DEVELOPING PROGRAMS

WITH FORTRAN VII -
A Guide

48-010 FOO RO4

Cbncunen@

Computer Corporation

Disclaimer

License

The information contained in this document is subject to change without
notice. Concurrent Computer Corporation has taken efforts to remove errors
from this document; however, Concurrent Computer Corporation’s only
liability regarding errors that may still exist is to correct said errors upon their
being made known to Concurrent Computer Corporation.

Concurrent Computer Corporation assumes no responsibility for the use or
reliability of this software if used on equipment that is not supplied by
Concurrent Computer Corporation.

The software: described in this document is furnished under a license, and it
can be used or copied only in a manner permitted by that license. Any copy of
the described software must include all copyright notices, trademarks, or other
legends or credits of Concurrent Computer Corporation and/or its suppliers.
Title to and ownership of the described software and any copies thereof shall
remain in Concurrent Computer Corporation and/or its suppliers.

The licensec program described herein may contain certain encryptions or
other devices which may prevent or detect unauthorized use of the Licensed
Software. Temporary use permitted by the terms of the License Agreement may
require assistance from Concurrent Computer Corporation.

Acknowledgments

© 1982, 1933, 1986, 1987, 1990 Concurrent Computer Corporation
— All Rights Reserved

Reliance is a trademark of Concurrent Computer Corporation.

Concurrent Computer Corporation
106 Apple Street
Tinton Falls, NJ 07724

Printed in the United States of America

About This Book

Overview

This book provides you with the necessary information to develop programs
using the FORTRAN VII Language System. It guides you through each step of
the program development process: coding, compiling, linking, executing, and
debugging your program. It also presents supplemental information on the
run-time library (RTL) routines, call recording analysis (CRA) system, and
execution profile analysis (XPA) system.

Before You Start

When using this book, you must be familiar with the basic programming
concepts, FORTRAN VII Language syntax and semantics, and 0S/32 and
multi-terminal monitor (MTM) environments. Familiarity with the command
substitution system (CSS), and Edit/32 is also helpful.

Using This Book

The objective of this manual is to assist you in the development of FORTRAN
VII programs under the 0S/32 environment. New users should read the
manual from cover-to-cover to become familiar with each program
development procedures. Experienced users should use the guide as a
reference tool to verify proper usage of the FORTRAN VII language.

Other Sources of Information

48-010 FOO R0O4

It may be helpful to supplement some of the information in this manual with
the following:

e FORTRAN VII Language and Syntax — A Reference (48-017)
This manual presents the FORTRAN VII Language syntax and semantic
rules.

e 0S/32 System Support Run-Time Library (RTL) (48-152)
This reference manual describes the OS/32 Support RTL subroutines and
functions.

e 0S5/32 Link Reference Manual (48-005)
This manual presents the command description for the Link process.

e 0OS/32 Patch Reference Manual (48-016)

This manual is a guide to using Concurrent’s 0S/32 Patch Utility. Patch
allows the user to apply software changes to object or image code
without reassembling the source module.

About this Book
Document Organijzation

Document Organization

This manual is composed of 15 chapters grouped into 7 parts. It has two
appendixes. A brief description of each chapter in the manual follows:

Part I - FORTRAN VII Environment

¢ Chapter 1 presents an overview of FORTRAN VI, the Development and
Optimizing compilers, other related products, and the requirements for
maintaining the environment.

o Chapter 2 presents a review of the MTM environment, use of CSS, and
Edit/32. It illustrates the use of the different program development
commands: COMPILE, LINK, COMPLINK, RUN, and EXEC.

Part II - Programming

o Chapter 3 introduces the available instream compiler directives. These
directives are categorized by function and further details are found in
later chapters. A table of both instream and start directives is also
presented.

o Chapte- 4 presents some useful guidelines for producing efficient code. It
provides the programmer with information on inherent features of
FORTRAN VII which, if not used properly, can produce inaccurate results.
Specifically, it covers the following: use of dummy arguments, DO loop
processing, use of computed and assigned GOTOs, use of array subscripts
and parentheses, data type conversions, test for floating point values, etc.

This chapter also describes the different optimizations that occur to a
program when compiled using the optimizing compiler. These may either
be built in (cannot be prevented from occurring) or optional (can be
prevented from occurring). Guidelines for preparing code for
optimization are presented.

¢ Chapter 5 discusses the procedures for interfacing FORTRAN VII
programs with assembly language programs. It describes the standard
FORTRAN VII calling sequence, how to insert assembly language code in
FORTRAN source, and how to write a program development procedure for
FORTRAN with embedded assembly code.

ii 48-010 FOO RO4

About this Book
Document Organization

Part Il - Compiling

e Chapter 6 describes the procedures for compiling programs using the
development and optimizing compilers. Use of the start directives for
both compilers are also detailed.

Part IV - Linking

e Chapter 7 details the procedure for linking a successfully compiled
program. It further discusses linking programs with trap handling
routines, programs that access shared data areas, and segments. The
chapter also explains the procedures for linking large programs into
segments (overlays). '

Part V - Executing

e Chapter 8 discusses the procedures for loading and starting your program
after it was successfully compiled and linked. Assignment of logical units
are also covered.

Part VI - Debugging

e Chapter 9 provides guidelines for debugging programs using compiler
directives. Specifically, it shows how to conditionally compile programs,
trace executable statements, check array subscripts, check intermediate

values, etc. It also describes how to analyze run-time error messages.

e Chapter 10 illustrates how to read program maps and listings. It defines
the important information found on compiler listings and link maps.

Part VII - Supplemental Information
e Chapter 11 describes a few of the basic RTL routines. Others are found in
the 0S/32 System Support Run-Time Library (RTL) and Math Run-Time
Library (RTL) Reference Manuals.

e Chapter 12 describes the use of the Execution Profile Analysis (XPA)
system.

e Chapter 13 describes the use of the CRA system.
e Chapter 14 explains the different rounding techniques performed on

floating point calculations. It discusses the different factors which might
affect results of the calculations.

48-010 FOO R04 iii

About this Book
Document Organization

e Chapter 15 describes the phases involved in the optimization process
performed by the F70 and F7Z compilers.

e Chapter 16 lists all the FORTRAN VII related error messages.

. Ap\pendix A describes the FORTRAN subprograms which are not directly
callable from FORTRAN code.

48-010 FOO R04

=5 ¢

TABLE OF
Contents
REVISION HISTOIY ... ssssssssssns s sssssssssass s s ss s s sssssss s xiii
CONVEINEIOMScooooeceevetcreeees s ssssaesssess s sass s s sRaRSass s e RR RS ssnsnEREER S XV
Chapters
1 FORTRAN VII Overview
The FORTRAN VII COMPIIEIS.uniriscnnreriariesseinsessessesssssesessnssssssssaseesssssssssssssssssassssses 1-2
FORTRAN VII SUPPOTT PFOAUCES ..cueccrvercenesesssisessssssssssssmssssssesssessssssssessssssssssssassssessens 1-2
Minimum System Requirements for FORTRAN VII...... 1-4
2 Overview of the Program Development Process
Program Developmeﬁt ProCess PhaSEsncvneccennssisensessnssenssssissonsins . 2-2
REVIEW Of the €SS s sssse e s ssssssssss s ssssssssssssesessasssssessssssssssssassses 2-4
Entering the FORTRAN VII ENVIFONIMENTvccevnvenninsminsinnesssssssnscnsesassessssassssssasesssens 2-6
Creating Your SOUICE PrOZIam .. esscssessseesiasssessssessssmsassesssssssessassessssssnses 2-7
Creating @ Data File. s sessssssesssssssssnsassessasesssssasssssasassinns 2-8
Assigning Logical UNItS i 2-9
Using Program Development COMMAaNASceircnmnesnrnesssrssnsissaseesssessssnsssesssensanses 2-10
COMPILE COMMANG ...uiiererreirtreresssmasaesssssssssssssssmssssssasesssssessensssssssssesssssssssssasssssassass 2-10
LINK COMMANA.uciiiririnieinisenranesscsssesmssssmsssssossmmessasssssessssssssesssossssssssssssssssassasessessnss 2-13
COMPLINK COMMANG c.cororrrrrrrereessrsesmrsesmessesssssesssssassssssssssssssssisasssasesessassssssonssssasess 2-13
RUN Command.... 2-14
EXEC COMMABNT...uuiciirarorsrnnmsenssssmsssssesssmesassssssmmessassssssssssssssssessassssssssssssassssssssassaes 2-14
Debugging Phase 2-15

3 Controlling Compilation Through Directives

48-010 FOO R0O4

Introducing the Two Types of Directives

Notes on Using the Two Types of Directives

How to Use the Instream Compiler Directives

Controlling Compiler Input

Controlling Compiler List Output

Inserting CAL Blocks
Controlling Compiler Optimization

Controlling the F7Z In-line Expansion Feature

Chapters (Continued)

Debugging the Source Code ...

Preparing Your Code for Parallelization...........

Miscellaneous Instream Compiler Directives

4 Preparing Your Source Code

Calling Subroutines with Dummy Arguments

4-2

Processing of DO LOOPS..eninnmsnees

. 45

Using the Computed GOTO.....cvvrcrirevcrnccrennens
Using the Assighed GOTO...enencrrerseresnnnns

. 4-8
4-9

Using Array Subscripts rereesnse e arare

. 4-9

. 4-10

Using Parentheses ... s
Converting Data Types

. 4-11

Allocation of Variables in Common...

. 4-12

Integer CONVerSioN.. s

. 4-13

Defining Program Entities

. 4-14

Testing Values of Floating Point Variables

4-16

Equivalencing Integer Variables to Floating Point Variables........

..................... 4-16

Improving Program Readability.......cccvreeene.
Optimizing 1/0 Operations

...... 4-16
4-17

Preparing Code for the Optimizing Compilers

. 4-19

4-20

Basic Optimization Concepts.....
Sequence of Optimization.......cw..

4-36

Preparing Source Code for the Optimizing Compilers........

5 Interfacing Assembly Language Routines

..................... 4-36

Knowing Your Options
Standard FORTRAN Calling Sequence

Passing Arguments

Passing the Return Address
Run-Time Library (RTL) Scratchpad

Function Results and Condition Codes (CCs)

Calling and Receiving Sequences
Sharing Data

Calling Intrinsic Subprograms from Assembly Program

Inserting an Assembly Language Block in Source Code

Guidelines for Embedding Assembly Blocks

Get and Release Storage Assembly Routines

MALLOC Routine (Get Storage)

MFREE Routine (Release Storage)
PFREE Routine (Release Partial Storage)

W NG NN RN e e - R RN

(LRGN RV EGROGEG RSN NE N, N NN N
1
HOWWOWOO kM= ONRFROO

48-010 FOO RO4

6 Building a Command File to Compile Your Program

Contents
Chapters (Continued)

9 Run-Time Debugging

The Basic CompPilation PrOCESS... i ivstririesssssnssessrssssssssessssssasesssssessasssssssassssets 6-2
Using the F70 and F7Z ComPilers . sicssnsesesessassessmsssessasssss s 6-2
LoAading the COMPIlEr e srneec s sstseses s essssrsssserssssssssassssenss 6-3
Allocating and Assigning I/0 Files..nneccons 6-5
Using the Compiler Start Directives....cnencdoreccncnnnn. 6-7
Using the In-line Start Directives....ucernneen. 6-19
Testing End of TAaSK COAE et sessssossssesessessssssssssess 6-20
Program Development Procedures With Embedded CAL................ 6-22
7 Building a Command File to Link a FORTRAN Program
Introducing the Basic Link Development Procedure.........umins . 7-2
Allocating Link I/70 Files...nireicinenen. . 74
Building a Basic Link .CMD File..... . 7-6
Linking Trap Handling Programs.......c.ene . 7-12
Overlaying a Program...........we. et s st 7-15
Linking Shared Data ATas ... unrinncisassssssssssnsensssssasssssassssssasasns 7-19
Linking Shared Segments.....cuenreensenen . 7-22
DCMD Messages............ . . 7-24
Loading and EXeCULING LINK ...eceinicnenescensnssessissssmssssssnesssesmsassasesmsssssssssssssses 7-25
Testing End of Task Codes for LinK ... 7-25
8 Building a Command File to Execute a FORTRAN Program
Introducing the Basic EXecute ProCeAUIe.. v sesasssesesasesssnstesaes 8-2
Loading and Starting the Task Image 8-3
AsSigNINgG LOZICaAl UNILS...uiieecrninessenensessesssesssssessasssnssmeessesssesssssesessssensssssansssessass 8-3
Testing End of Task Codes 8-4
Basic Debugging Concepts. 9-2
Compiling Code Using $COMP/$NCOMP 9-2
Checking Intermediate Values with $TRACE 9-4
Tracing Executable Statements 9-5
Checking Array Subscripts Using $TEST 9-7
RTL Argument Checking 9-9
Analyzing Run-Time Error Messages 9-10
Removing the Debugging Aids 9-10

48-010 FOO R0O4

Contents
Chapters (Continued)

10 Analyzing Prozram Maps and Listings

Source Listings...

10-2

F70 fource Listing with Compilation Errors

10-3

F70 end F7Z Source Listing Without Compilation Errors

Cross-Reference LiSUNES ...ccveennncsnnenerenmnnsnsesnsnsees

.................... 10-5

10-8

BAtCh StAtiStICS.ivinivrrinrerrriinriinsiseesssssmsnssessessessesssisesessassassns

10-11

Link Maps .ceveinenicnenes

10-13

Optimization Summaries
Assembly Listings

- 10-18
10-21

F7Z Extended Listing ...ccccvuevnnae

10-23

11 FORTRAN VII RTL Routines

Terminating Execution Using EXIT and EXITRE

g

Accessing :he System Time and Date

DATE Subroutine

H H
et pd e

TIME Subroutine

Pt

ICLOCK Subroutine...

Sending Massages Using CONMSG

Controlling Access to Shared Data
LOKCN Function..

ot et ot o

LOKCFF Subroutine

et bt et ot e et
1
OO WWN

et
—
1

Accessing Run-Time Start Options Through GETOPTS

12 FORTRAN VII XPA System

Introducinz the XPA System

11-10

12-2

Timing Your Program

12-2

Including the Timer in Your Program
XPA_SET Routine....cencecerenecenensersennens

12-2
12-4

Influences Upon the Trace Profile

12-5

Interfacing with INIT/ENABLE and Error Conditions

How to Analyze the Results

wrerressesenvarensarnaanenns 12-6

12-7

Basic XPA Commands

12-7

Comraands for Analyzing Modules

12-11

Merging XPA Files

12-16

Endirg the Session

12-16

viii

48-010 FOO R0O4

Contents
Chapters (Continued)

13 FORTRAN VII CRA System

Introducing the CRA.....ecerueee. . 13-2
Analysis of Your Program............... eereneeeress st ssanasaas 13-2
CRA Limitations.......cn. s e saens . 13-4
Error Conditions ...ecnessssimssssensssesens 13-5
How to Analyze the Results.. erreaereres et as e nsa s s e s R betaen 13-5

14 Floating Point Calculations

Floating Point Representation.......ccurneen 14-2
Rounding Techniques............ eversssessasretessesenar st sareas et s e e arr e nenas e aEnEes 14-4
Truncation.......... 14-5
Jamming reetsrent e en st n et ns 14-5
R-Star Rounding 14-6
Floating Point Hardware. 14-7
Lost Precision in Floating Point Arithmetic ...wocnscsmninnessine. 14-8
Accuracy Issues in the FORTRAN Code 14-10
Integer Arithmetic . 14-10
Floating Point Arithmetic 14-11
Optimization and Order of Evaluation Effects 14-15
Possible Effects of the FORTRAN RTLS.vvreeammsssssssssssesessssssssssssssssasassens 14-17
SUINIMAIY euverrerersrecessssessssaorssassssssssstisassessssssssssssssssssssessessssssssssssssssssssssassssessssssonasssssssnsss sessees 14-19

15 Universal Optimization

Comparing the Optimization Methods 15-2
Statement Optimizers 15-2
Block Optimizers 15-3
Global Optimizers . 15-3
Universal Optimizers 15-3

Phases of the F70 and F7Z Compilation 15-4

[llustrating the Use of In-line Expansion 15-7

How F7Z Performs In-line Expansion 15-9

Intermediate Code Translation 15-10

Argument Passing for In-line Expanded Subprograms 15-13

Preparing Source Code for In-line Expansion 15-14

When To Use In-line Expansion 15-15

16 FORTRAN VII Error Messages

Introduction 16-2
Compiler Messages 16-2
Diagnostic Messages for FORTRAN VII RTL 16-23

48-010 FOO R0O4 - ix

Contents

Chapters (Continued)

End-of-File (EOF) Errors 16-24
[/0 Common Errors....seeneaens 16-25
SVC1 Errors 16-27
SVC7 Errors 16-30
Format Translator Errors 16-35
Formatted 170 Errors 16-38
List-Directed 1/0 Errors 16-41
Namelist 170 Errors...... 16-44
AUXITHATY 170 EITOIS ivinnssenensrmnenssesiesammsansssassssesssissns sassstsssssssssssssssenssssasssenss 16-47
Pack fd Errors 16-55
Math Errors 16-56
Miscellaneous Errors 16-61
Special Error Messages 16-63
Nonzero End-of-Task Codes 16-66
Appendixes
A RTL Subprograms
Introduction A-2
Program Initiation and Termination Routines A-2
Formatted I/0 Routines A-3
Unformatted, Namelist, List-Directed 1/0 Routines A-4
Auxiliary 170 Command Routines A-5
Conversion Routines A-5
Alternate Returns for Subroutines (.ARET) A-5
Debug Routines A-6
RTL Constants A-10
Index In-1
Figures
2-1 Program Development Flowchart 2-3
4-1 Sample Common Data Areas 4-13
5-1 Argument List Structure 5-3
5-2 AAL Entry Structure 5-5
5-3 ADL Entry (Subprogram Descriptor) Structure 5-7
5-4 ADL Entry (Subprogram Descriptor) Structure 5-8
X 48-010 FOO R0O4

7-1

10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12

Tables

2-1

8-1

14-1
14-2

15-1

Sample Program with Overlay Tree StrUCTUTLe.......ccvinniessecinisinsnsssssssiessessnereseesasens

. Contents
Figures (Continued)

Example of F70 Source Listing with Compilation Errors ...
Example of F70 and F7Z Source Listing Without Compilation Errors............

Example of Cross-Reference Listing.... et enseat e b e et st atas
Example of Batch StAliSTCS .cmnincnnicennrereesnsessnesnesssesssnsssssssessssssnsssansassen

Link Establishment SUMMATYococeenmssensneensiessssensssssesssessesens

Link Address Map......on

.........

Link Alphabetic Map retesesesess e et s et enas s e seas s e anns

Link Cross-Reference Mapoecenene
Example of Optimization SUMMATY......cvnirerneseseseserenens

Example of Assembly LiStiNg...coecvemncsernsrisessesessresnesneosene
Source Listing for'In-line Expansion Program......

Extended Source Listing for In-line Expansion Program..........corcne

Call Recorder ANAlYZer (CRA) e ssssmsssssssssssssssessssasasens

CRA

F70 and F7Z Compilers Flowchart...

........................

Program Development Default Variable Settings and lu Assignments

Compiler Optimizations......enemmnnns

GPR14 Subprogram Type Field

AAL Argument Type Byte

ADL Argument and Subprogram DeSCIiPLOLS wnnenierereseessnersssassns

ADL Descriptors Corresponding to AAL Entries
Required Register and CC Settings for Assembly Language Functions

Logical Unit Assignments
End of Task Codes...

Logical Units Assigned By Link

Link End of Task Codes

FORTRAN VII Default Logical Unit Assignments

Values of X1, X2, and X3 as a Function of Host and Target Processors..........

Examples of Symbolic Arithmetic Performed By the

Optimizing Compilers

Phases of the F70 and F7Z Compilation

48-010 FOO R04

7-5
7-26

8-3

14-14

14-16

15-4

xi

Revision History

What Changed?

The FOO RO3 revision of this manual was reorganized and converted to the

" new Concurrent Computer Corporation’s design format. Although most of
the information was retained, the chapters have been rearranged to present a
more logical sequence of information. The Environment for Sequential to
Parallel Programming tool (E/SP), which allows you to analyze your FORTRAN
program for possible parallelization, was added to the list of products sup-
ported by FORTRAN VII. Subsequently, a section was added which explains
how to prepare your code for parallelization. Finally, we provide a discus-
sion on the new compiler directives supported.

How Can I Track Changes?

Each time this manual is updated or reissued, it will be added to the chart
above. This chart includes the manual printing date, functional variation
(Fxx Rxx) and compiler version. It should aid in ensuring that the document
and compiler version coincide. If they do not, call your local sales represen-
tative and ask for assistance.

48-010 FOO R04 xiii

Revision History
How Are Changes Shown?

How Are Changes Shown?

Changes to the documentation occur from one release of the compiler to the
next. These changes cause the document to be reissued (the RXX number
changes) or updated (the FXX number changes). The RXX and FXX numbers
are located at the bottom of the page. Technical changes within the docu-
ment are indicated by a vertical bar (I) shown in the page margins.

Reissues

Each time this document is reissued, it is replaced in its entirety, and the
RXX number is incremented by one. (For example, if the first release of the
document was RO0O and the document was reissued for the next release, the
RXX number would then be shown as R0O1.)

Updates

Update packages are issued between reissues and contain replacement and
additional pages that are merged into the manual by you. Each time this
document is updated, the FXX number is incremented by one. (For example,
if the first update of the document occurred after the document was
released at FOO ROO, the Fxx number would then be shown as FO1.) At the
next reissue of the document, the update package is included in the docu-
ment, and the document’s FXX number returns to FOQ. (For example, if the
document was updated and presently appeared as FO1 R0O, the next time it
was reissued, the numbers would be shown as FOO RO1.)

48-010 FOO R04

Conventions

Keywords

We use the following keyword conventions throughout this manual.

&l__NOTE > This symbol indicates information that highlights an
exception or clarifies an idea or concept.

Type Style

‘We use the following type style conventions throughout this manual.

Bold Type

Bold type (1) shows information that you enter and (2) emphasizes
a word or thought.

Italic Type

Italic type (1) cites references to other manuals, and (2) shows the
information is not to be taken literally. For example, when the
word file is used, you type the actual filename, not the word "file."

Constant Width Type

Constant width type (1) shows system output and (2) shows seg-
ments of code and program listings.

48-010 FOO RO3 XV

Conventions
Syntax

Syntax
We use the following syntax conventions throughout this manual.
Upper-Case Letters (A ... Z)

Upper-case letters show information that must be typed exactly as

it appears; however, this information is not itself case-dependent.
For example:

$TABLE

Underlining (_)

Underlining shows the minimum acceptable command abbrevia-
tion. For example:

START, {

ALST
NALST

Ellipses (... or)

Ellipses represent an indefinite number of elements or range of
elements. For example:

label, |,label,,... label,]

Braces ({})

Braces enclose required parameters of which one must be chosen.
For example:

ALST
START, NALST

48-010 FOO RO3

48-010 FOO RO3

Conventions
Syntax

Brackets ([])

Brackets enclose optional parameters. For example:

ALST
START, NALST

Commas (,)

Commas inside brackets ([,]) must be entered if you chose the
optional parameter. For example:

label, [,label,,...label,]

Commas outside brackets (,[]) must be entered whether or not
you chose the optional parameter. For example:

ALST
START, \NALST

Shading

Shading identifies default options. In the case shown below, 19 is
the default.

.
b

a=SQRT(b*b+c-c) l

FORTRAN VII Overview

In this chapter

We present an overview on the FORTRAN VII compilers. In addition, we
describe other related products that you may use with the compilers and the
minimum requirements for maintaining the system.

Topics include:
¢ FORTRAN VII compilers
e FORTRAN VII support products

¢ Minimum system requirements

48-010 FOO R04 1-1

1

FORTRAN VII Overview
The FORTRAN VII Compilers

The FORTRAN VII Compilers

Optimum FORTRAN programming environment can be achieved by taking
advantage of the FORTRAN VIl F70 and F7Z compilers. The FORTRAN VII
compilers modify and rearrange the source code during compilation to pro-
vide run-time efficiency. Coupled with the processing capabilities of the
Series 3200 Processors, the optimizing compilers allow the development pro-
grammer to produce highly optimized code at the least possible cost.

To take advantage of faster compilation provided by the F70 and F7Z com-
pilers, the NOPTIMIZE directive is available to turn off the optimizing capa-
bilities of both compilers.

The FORTRAN VII compilers provide two levels of optimization. Global
optimization, available on the F70 and F7Z compilers, optimizes individual
program units using optimization techniques such as common subexpression
elimination, invariant code motion, strength reduction of arithmetic opera-
tions, and loop test replacement.

Universal optimization, available on the F7Z compiler, goes one step further.
F7Z optimizes code across program unit boundaries by incorporating sub-
program code within the main program structure at the request of the user
via compiler directives. As a result of greater emphasis on the use of struc-
tured programming, programs are gaining an increasing number of units,
resulting in an increased amount of execution time spent in subprogram
linkage. F7Z eliminates the linkage penalty while retaining the advantages of
modular design.

The optimizations performed by the optimizing compilers are discussed in
Chapter 4. A more detailed discussion on the optimizing compilers are
presented in Chapter 15.

FORTRAN VII Support Products

1-2

Concurrent Computer Corporation (Concurrent) offers a number of products
that can enhance the performance of the FORTRAN VII compilers and
increase program development capabilities. These products include:

o FORTRAN VII Run-Time Library (RTL) - These software routines can be

used to:

— Manipulate strings

48-010 FOO RO4

48-010 FOO RO4

FORTRAN VII Overview 1
FORTRAN VII Support Products

— Perform basic input/output (I/0) functions

0S/32 System Support RTL - This package provides the software routines
that can be used to:

— Generate and handle task trap operations

— Perform analog - digital conversions

— Allow one program to control execution of another program
— Send messages from one program to another

— Create and delete files

— Handle timer expiration traps

— Control any 3200MPS Family of Processors

System Mathematical RTL - This package supplies mathqmatical functions,
which is a superset of the intrinsic functions required by X3.9-1978 Amer-
ican National Standard Institute (ANSI) FORTRAN.

FORTRAN VII Enhancement Package (FEP) - FEP is a combined
hardware/software package that provides an additional amount of writ-
able control store (WCS) memory that can be loaded with microcode rou-
tines designed to enhance the performance of the compiler and the RTL
math functions. These routines increase compilation rates for the F70
and F7Z compilers by 40% and improve the performance of certain assem-
bly language RTL routines by 25% over the standard RTL.

FORTRAN/RELIANCE™ Interface - This software consists of a set of sub-
routines that allow the FORTRAN programmer to access all the features of

the integrated transaction controller (ITC) and the data management sys-
tem (DMS) of Reliance.

Common Assembly Language (CAL/32) Assembler - CAL/32 converts CAL
output from the FORTRAN optimizing compilers into the Concurrent 32-
bit object code. The F70 and F7Z compilers optionally produce CAL out-
put.

E/SP - The Environment for Sequential to Parallel Programming tool which
allows you to analyze your FORTRAN program for possible parallelization.
The analysis is done using a graphical interface that runs on a worksta-
tion.

Reliance is a trademark of Concurrent Computer Corporation.

1

FORTRAN VII Overview
Minimum System Requirements for FORTRAN VII

Minimum System Requirements for
FORTRAN VII

1-4

The minimum system that supports the features of the R06 release of FOR-
TRAN VII is a Concurrent 32-bit processor running under 0S/32 R08-03 or
higher. A minimum of 1MB of total memory and one disk drive with at least
25MB available memory space is required on any Series 3200 Processor sup-
porting the F70 and F7Z compilers.

48-010 FOO RO4

Overview of the Program
Development Process

In this chapter

We introduce you to the program development process to create, compile,
link, execute, and debug your FORTRAN program. The program development
commands that allow you to perform most of these are command substitu-
tion system (CSS) files maintained on the system account. To fully under-
stand how these commands work, a review of the basic CSS features is
presented.

Topics include:

e Description of the program development phases
Review of the CSS

Entering the FORTRAN VII environment

Use of the basic program development commands to compile, link, and
execute programs

Description of the debugging phase

48-010 FOO R0O4 2-1

Overview of the Program Development Process
Program Development Process Phases

Program Development Process Phases

2-2

The program development process is divided into five major phases, as illus-
trated in the flowchart of Figure 2-1. These phases are Programming, Com-
piling, Linking, Executing, and Debugging.

Programming is the initial step of the development process. In this phase,
you combine all your programming skills and your familiarity with the FOR-
TRAN VI language to produce the source code. Awareness of certain guide-
lines applicable to the Concurrent environment will aid you in preparing
efficient and valid programs. You must also be familiar with a text editor
such as 0$/32 Edit. The output of this phase is a complete FORTRAN pro-
gram.

In the Compiling phase, you take the source program created during the Pro-
gramming phase and input that source to the compiler. The compiler
analyzes your source code, outputs a source listing, checks for compilation
errors, and outputs the object code if no errors occurred.

Linking comes after a successful compilation process. The Link process con-
verts the cbject code into task a image, outputs a Link map, checks for Link
errors, and creates a task image file if no errors occurred.

Executing is probably the last phase of the development process if you
achieve a successful run of the program. This means getting the required
results from your code. Otherwise, you have to modify your program to pro-
duce the desired results. In this phase, you load the task image, assign any
required logical units, and start the task. After completion, you get your task
output.

The Debugging phase can come after any of the three previous phases,
whenever arrors are encountered in the Compiling, Linking, or Executing
steps. You normally make use of program listings to perform this step
and/or other sophisticated debugging aids in the case of run-time errors.
After debugging, your source program may require some modifications and
must go through the whole process again.

In the succeeding sections, you will have a glimpse of the individual steps of
the development process. Program development commands are available to
perform most of these phases. You will have a more detailed discussion of
the development process in the succeeding chapters.

NOTE > The program development commands used in this
chapter are system CSS files. Check with your system
administrator to determine whether they were altered.
If so, the following documentation will be incon-
sistent.

48-010 FOO RO4

¥0y4 004 010-8%

€-Z

i010-66

PROGRAMMING

‘

KNOWLEDGEf _
BASE

‘ START '

\J

CODE

PROGRAM “’/ PROGRAM ;"’

l PROGRAM DEVELOPMENT PROCESS j

COMPILING

COMPILE
SOURCE

— —>»
PROGRAM

DEBUGGING

RUN-TIME
DEBUGGING

»

ANALYZE
LISTING/MAP|

Y

MODIFY
CODE

e

Y

ERRORS? D>—Y\
|
N

ERROR
MESSAGE
| _ ./ OBJECT
CODE -
i
®

LINKING

LINK
OBJECT
CODE

|- —»

MAP

EXECUTING

s

EXECUTE
TASK
IMAGE

MESSAGE

ERROR

—_——

— s e s et et

LEGEND

I/O ACESS/CREATION
PROCESS FLOW

Figure 2-1. Program Development Flowchart

$532014 Jusuido[aaa(wreidoxd 3} JO MIAIAQ

saseyd ssadold 1uswdo[aAaaq weadold

<

2

Overview of the Program Development Process
Review of the CSS

Review of the CSS

This section covers some of the basic features of the CSS sufficient to guide
you through the development process presented in this chapter. For the
more elaborate features of the CSS, see the Multi-Terminal Monitor (MTM)
Reference Manual. You must be familiar with these concepts when reading
the chapters dealing with building command files to compile, link, and exe-
cute your program.

The CSS allows you to write and store an operating system procedure to a
file. Once created, the procedure can be executed by invoking the filename
like an MTM command. '

Consider the file CREATE.CSS containing the following:

1 >XALLOCATE TEMP.CMD, IN,80
2 >$wr FILE CREATED
3 O8EIXIT

This file has the 0S/32 XALLOCATE command that creates an indexed file
named TEMP.CMD. Line 2 contains the CSS command $wr which echoes the
string FILE CREATED onto the screen. The command $EXIT ends the CSS pro-
cedure. To execute this procedure, simply enter the fllename with or
without the .CSS extension.

*CREATE
FILE CREATED

*

To verify the creation of the TEMP.CMD file, invoke the OS/32 DISPLAY FILE
command. '

If you name the procedure file CREATE.ANY instead of CREATE.CSS, you must
specify the full filename when you invoke it.

*GREATE.ANY
FILE CREATED

*

48-010 FOO RO4

Overview of the Program Development Process 2
Review of the CSS

A CSS procedure can be written such that it allows you flexibility when you
invoke it. This is possible through parameter substitution. The use of
parameter substitution adds flexibility to any CSS procedure since the value
of the parameter, denoted by the @n, can be specified when the CSS is called.
You can modify the CREATE.CSS file to XALLOCATE any file that you specify.

1 >XALLOCATE (@1,1IN, 80
2 >$wr FILE @1 CREATED
3 >SEXIT

In this example, @1 is the first positional parameter established by
CREATE.CSS. When invoking CREATE.CSS, you need to specify a filename to
satisfy this parameter.

*CREATE TEMP.NEW
FILE TEMP.NEW CREATED

*

A CSS file can have any number of positional parameters.

Whatever is entered at a positional parameter is automatically inserted wher-
ever the parameter appears in the procedure. The first parameter is placed
at @1, the second at @2, the third at @3, etc.

Positional parameters must be separated by commas when invoking the CSS.
You can also use a predetermined number of variables and a variety of com-

mands within your CSS. See the Multi-Terminal Monitor (MTM) Reference
Manual for a complete discussion on these topics.

48-010 FOO RO4 2-5

Overview of the Pr(n;ram Development Process
Entering the FORTRAN VII Environment

Entering the FORTRAN VII Environment

The initial step of the development process is Programming. You are
expected to produce a program source making use of your FORTRAN
knowledge and your familiarity with some guidelines that are applicable to
the FORTRAN VII environment.

You must initially sign on to the MTM environment. MTM gives you access to
the prograra development environment in two ways: using the FORT or the
LANGUAGE commands. Their syntaxes are as follows:

FORT {CZ)} [voln:ﬁlename]

0]
LANGUAGE |FORT {Z

Where:

FORT initializes the program development environment for the
optimizing compiler with no optimization (NOPT directive)
enforced. This environment is the equivalent of the develop-
ment compiler of R05-05 and earlier. If the O or Z character is
appended with no space in between (FORTO or FORTZ), the
program environment is initialized for the F70 and F7Z com-
pilers (optimizer is on by default), respectively. If you specify
a filename to this command, one of two things can happen:

« If the specified filename exists, this filename becomes the
current file on which any program development commands
may apply; or

o If the specified filename does not exist, the FORT command
automatically activates OS$/32 Edit to allow you to create
the file. Once created, that file becomes the current file on
which any program development command may apply.

2-6 48-010 FOO RO4

Overview of the Program Development Process 2
Entering the FORTRAN VII Environment

The current file can be changed by issuing another FORT com-
mand with a different filename.

LANGUAGE initializes.the program development environment for the F70
with the optimizer disabled (NOPT directive), F70, or F7Z
compilers. Without any parameter, this command returns the
current environment.

Example:

% TH/zzzzzzzzzzzazzzzzzzzzzz7zzzzzzzz7zz727

*FORT FILENAME
*

* New Language Environment —— Fortran VII O RO6
*
*
*Editing new file —— FILENAME.FTN (APPEND mode set)
*
Concurrent Computer Corp 0S/32 EDIT32 03-145 RxXx-yy
OPTION TAB=,7,73;0PTION INPLACE=OFF
GET FILENAME.FTN,OPTION COM=CON: ;AP
1 >

A ,-_s

As seen in the previous example, the system automatically attaches the
extension .FTN to the filename. FILENAME.FTN is used by the system to iden-
tify the source program throughout the programming session. FORT
automatically activates the 0S/32 Edit software, sets the append mode and
sets the backslash character (\) as the tab character for columns 7 and 73.

Creating Your Source Program

48-010 FOO RO4

Continuing from the previous section, you can now create the source pro-
gram and data files using the OS/32 Edit commands. Enter the source code

as follows:

2 Overview of the Progrim Development Process
Entering the FORTRAN V!I Environment

>\READ(*,10) R,Y
>\WRITE (*,20) R,Y

>\H=R*COS(R) **4/(2*Y)

>\WRITE(*,30) H

>10\FORMAT(F2.1,X,F3.2)

>20\FORMAT(1X,'R = /,F3.1,’ Y = ',F4.2)
»>31\FORMAT(1X, 'THE VALUE OF H =',F4.2)
>\STOP

>\END

>

WO Ny W

=
=}

Note that an error appears in the code listed above. The statement label of
the format statement in line seven (31) does not match the statement label
value called in line four (30). This causes the compiler to detect an error.
This error was included intentionally to illustrate how the compiler output
listing can be used to troubleshoot your source code. See "Checking the
Compiler Listing" later in this chapter.

Creating a Data File

To create a data file, save the source program file to a disk and clear the edit
buffer by deleting all lines currently in the buffer.

% 7 7 7

> SAVE*
WORK FILE = M300:FILENAME.000/P
RENUMBERED INPUT FILE AVAILABLE, M300:FILENAME.FTN/P
> DELETE 1-
ALL LINES DELETED
> APPEND
1 >2.1
2 >
> SAVE FILENAME.DTA
>END
YOU -END OF TASK CODE= 0 PROCESSOR=0.606 TSK-ELAPSED=1:19

*

AEEIE AR AN

2-8 48-010 FOO RO4

Overview of the Program Development Process 2
Entering the FORTRAN VII Environment

In the previous example, FILENAME.FTN is saved and then cleared from the
edit buffer. The edit APPEND command allows data to be entered in the data

file. The data file is saved and the edit session is terminated with the END
command.

See the 0S/32 Edit User Guide for more information on the 0S/32 Edit com-
mands.

Assigning Logical Units

The current program is now ready for the program development commands.
However, before using these commands, make certain that the default device
assignments set at system generation (sysgen) are appropriate. The program
development environment defines and sets global variables that are associ-
ated with particular devices. These devices have default logical unit (Iu)
assignments. The global variable names and their default settings are
displayed when the user signs on to MTM. Table 2-1 shows the variable
names, their default settings and lu assignments.

Variable Name Device lu
SSYSIN CON: 1
SSYSOUT CON: 2
SSYSPRT PR: 3
SSYSCOM CON: 5
SSYSMSG CON: 7
SSYSLST CON: 8

Table 2-1. Program Development Default Variable Settings
and lu Assignments

To change any of the default device assignments, enter the appropriate vari-
able followed by the new device assignment. For example, to change the
input device SSYSIN from the terminal (CON:) to FILENAME.DTA, type:

SSYSIN FILENAME.DTA

48-010 FOO R04 2-9

2

Overview of the Progiam Development Process
Using Program Development Commands

If listings are to be sent directly to the terminal rather than the printer, type:
SSYSPRT CON:

These assignments cause data to be read from FILENAME.DTA and listings to
be sent to the terminal.

You can now use the program development commands to compile, link, and
execute your program.

Using Program Development Commands

Once you have created your source program, you can invoke the program
development commands.

COMPILE Command

2-10

The COMPILE command compiles a source file as shown in the following
example.

Example:

*COMPILE FILENAME

FORTRAN-VII R06-00.00

.MAIN 1 ERROR(S) TABLE SPACE USED: 1K

YOU -END OF TASK CODE= 4 PROCESSOR=0.035 TSK-ELAPSED=0

Notice that the compiler detected an error which resulted in an end of task
equal to 4. Refer to the compiler listing to determine the exact error.

The compiier output listing is directed to the device specified by SSYSPRT,
which, in this case, is PR.. Thus, the compiler listing is printed by the device
designated by PR..

Compiler start options (called directives) may be passed on to the COMPILE
command. See Chapter 6 for details on the compilation process.

48-010 FOO RO4

Overview of the Program Development Process 2
Using Program Development Commands

Checking the Compiler Listing

From the listing generated, you can determine the compilation errors that
occurred. A partial listing of the sample program is presented as follows:

7 0000D8I 31 FORMAT(1X,’THE VALUE OF H =',F4.2)
8 0000F8I STOP
9 0001001 END
ERROR # 300 Kk kdkhhkkkhk kR AR KRR AR RA KRR KR RA KRR AR ARk Kk
>>> UNDEFINED LABEL
30
WARNING # 300 *kdkhkkhkhhkkdk kAR KKK KR AR KRR A KRR KR AR KA KX
UNREFERENCED LABEL
31

This listing indicates that an undefined label exists. To correct the error,
return to the editor by entering EDIT at the prompt. The label for line 7
should be 30 instead of 31.

See Chapter 10 for a comprehensive description of compiler listings.
Modifying a Program

Use the 0S/32 Edit command to make the necessary corrections. This com-
mand automatically makes FILENAME.FTN the current file and gets it for edit-
ing.

48-010 FOO R0O4 2-11

2 Overview of the Program Development Process
Using Program Developrient Commands

Example:

Hzziiiiariizzzzzzdzdz

YEDIT
concurrent Computer Corp 0S/32 EDIT32 03-145 RO8-02
OPTION TAB=,7,73;0PTION INPLACE=OFF
GET FILENAME.FTN;OPTION COM=CON: ;SC
1 READ(*,10) R,Y

2 WRITE (*,20) R,Y

3 H=R*COS(R)**4/(2*Y)

4 WRITE(*,30) H

5 10 FORMAT(F2.1,X,F3.2)

6 20 FORMAT(1X,‘R = /,F3.1,' Y = /,F4.2)
7 31 FORMAT(1X,’THE VALUE OF H =',F4.2)
8 STOP

9 END

'UNABLE TO TYPE FULL SCREEN
"AL7 {carriage return>
7 31 FORMAT(1X,’/THE VALUE OF H =/ ,F4.2)
7 > 0 <carriage return)
7 30 FORMAT(1X,’/THE VALUE OF H =’ ,F4.2)
7 > <(carriage return)
-8®* <(carriage return>
WORK FILE = M300:FILENAME.O000/P
KENUMBERED INPUT FILE AVAILABLE, M300:FILENAME.FTN/P
*END <carriage return>
You —END OF TASK CODE= 0 PROCESSOR=0.606 TSK-ELAPSED=1:19

N s nn s :san . n e,a,

To edit a source file other than the one just compiled, type the following:
*EDIT TEST.FTN

This command automatically makes TEST.FTN the current file and gets it for
editing.

Reissue the COMPILE command and your modified program should compile

successfuliy. This process creates the object module contained in the file
FILENAME.OB]J.

2-12 48-010 FOO R04

Overview of the Program Development Process 2
Using Program Development Commands

LINK Command

The LINK command links the object module to produce the task image in the
FORTRAN environment. If no object module exists, the LINK command
causes the source module to be compiled to yield the object module. Link
does not date check, load, or execute a program.

Example:

*LINK FILENAME
Concurrent Computer Corp 0S/32 LINKAGE EDITOR 03-242 Rxx-yy
YOU —END OF TASK CODE= 0 PROCESSOR= 0.74 TSK—ELAPSED=2

This process generates a link map which is printed by the device designated
by PR:. See Chapter 10 for a complete description of the link map.

Link options may be passed to the LINK command. See Chapter 7 for details
on the linking process.

A successful link of the program creates the task image contained in the file
FILENAME.IMG.

COMPLINK Command

48-010 FOO R04

The COMPLINK command compiles and links a program in one step. COM-
PLINK conditionally compiles and links by date checking the source, object,
and task image files in the FORTRAN VII environment. This command does
not execute the program. If compilation is required and there is an error,
the process ends with a nonzero end of task code, the link procedure is not
initiated and the process is aborted.

Example:
*COMPLINK FILENAME

The output of the COMPLINK command is the same as COMPILE and LINK
except that only one command is issued. If a compile is required, the com-
piler listing is output to the designated output device and the object file is
saved in the appropriate filename with the extension .OBJ. After a successful
compile, the link sequence is automatically initiated.

2-13

2 Overview of the Progiam Development Process
Using Program Developrient Commands

RUN Command

A,

The RUN command loads and runs the task image in the FORTRAN environ-
ment. This command does not date check, compile, or link. This command

is used to execute a task only.

Example:

% A 7 77 7

¥RUN FILENAME.FTN
* EXECUTION OF FILENAME.FTN FOLLOWS:

*

R'=0.2 Y=20.11

''HE VALUE OF H = 0.84

STOP

ouU ~END OF TASK CODE= 0 PROCESSOR=0.034 TSK~ELAPSED=3

EXEC Commamd

2-14

EXEC compiles, links, and executes the program in FILENAME.FTN to comple-
tion, yielding the following results:

%//,7//,
EXECUTION OF FILENAME.FTN FOLLOWS:

It=10.2 Y =20.11
THE VALUE OF H = 0.84

STOP
YOU -END OF TASK CODE= 0 PROCESSOR~0.034 TSK-ELAPSED=3

MMM

48-010 FOO R0O4

Overview of the Program Develo[?lgentiPrci;}:less 2
ebugging Phase

A successful compilation ends with a zero end of task code. An end of task
code other than zero indicates a compilation error. See Chapter 6 for an
explanation of end of task codes. In the previous example, the end of task
code is 4 which indicates that errors were encountered during compilation.
The EXEC command does not proceed with the linking and execution
processes if compilation errors occur.

The EXEC command recompiles the source program that was changed. If the
source code was not changed, it is not compiled again. This is made possible
by date checking. After a program development command is entered, the
ease of use (EOU) command procedure checks the date and time that the file
was last modified or created. Based on this information, the appropriate
process is performed. For example, when the EXEC command is entered, the
EOU first checks the last date and time that source file was modified. If the
FTN file is newer than the .OBJ file, this is interpreted to mean that the
source file was modified since the last compile and that a recompilation is
necessary before processing can continue.

Debugging Phase

A big percentage of the development process might be devoted to debugging
your program. Rarely would you be able to code your program, compile, link,
and execute it successfully without encountering errors along the way. This
is especially true for large programs. The debugging process may pertain to
a simple look at the compiler listing when a compiler error occurs or to an
actual trace of the program execution when the program returns unexpected
results. Thus, you should be well versed in reading the compiler listings and
link maps that are generated by the compilation and linking processes,
respectively. In addition, several compiler directives and a set of run-time
library (RTL) routines are available to support run-time debugging. See
Chapters 9 and 10 for a more detailed discussion on debugging.

48-010 FOO R04 : 2-15

a=SQRT(b‘b+c:c)

3

Controlling Compilation Through

Directives

In this chapter

We introduce you to the different compiler directives that allow you to con-
trol the compilation process. You can use most of these directives as options
to the START command or you can embed them in your FORTRAN program.
Some directives can only be embedded in the source program. A complete
summary of all directives and how each can be used are presented in tabular
form.

Topics include:

Introducing the two types of directives

Controlling compiler input

Controlling compiler list output

Inserting Common Assembly Language (CAL) clocks
Controlling compiler optimization

Controlling in-line expansion

Debugging the source code

Preparing your code for parallelization

Using other instream directives

48-010 FOO R04

3-1

3 Controlling Compilation Through Directives
Introducing the Two Types of Directives

Introducing the Two Types of Directives

If you initiate compilation using the program development commands EXEC,
COMPILE, and COMPLINK, the compiler will:

Perform a batch compilation on all program units submitted,

Allow up to 19 continuation lines per statement,
e Output €0 lines per page at 132 columns per line,

¢ Produce a complete source listing including all program statistics, compi-
lation errors, and warning messages,

e Assign the name .MAIN to a main program unit that was not named by the
PROGRAM statement,

o Refer to all subprograms by the name given to them in the source pro-
gram,

o Title each page of a source listing with the first statement of the program
module,

¢ Generate segmented object code, and
e Perform all global optimizations and send a summary of all optimizations
to the device or file designated by SSYSPRT.

The FORTRAN VII compilers are not limited to the operations provided by
the program development commands. Other commands, called compiler
directives, can be used to modify or add to these operations. When compiler
directives are inserted in the source code, they are referred to as instream
directives. Instream directives allow the user to:

e Control compiler input,

e Determine what listings should be output to the list device and how they
should be formatted,

o Insert assembler code within the FORTRAN source, -
« Control the optimization capabilities of the compilers,
e Control certain compiler functions, and

e Debug the program.

3-2 48-010 FOO R04

48-010 FOO RO4

Controlling Compilation Through Directives
Introducing the Two Type§ of Directives 3

Compiler directives can also be specified in command substitution system
(CSS) procedures that are used to compile FORTRAN programs.

Example:
*COMPILE PROGNAME.FTN, COMP INFORM

When used in this manner, compiler directives are referred to as start direc-
tives (also referred to as start options). Start directives are discussed in
Chapter 6.

A summary of all directives appears on the following pages. The "x" in the
start column indicates that the directive may also be specified as a start
directive. The syntax presented below is strictly for instream directives. For
the correct start directive syntax, see Chapter 6, "Using the Compiler Start
Directives."

The optional N ([N]) preceding some directives is used to negate the effect of
the directive. The definitions for these directives apply to their use without
the N.

DIRECTIVES
Instream Start Definition

Compiler Input

X Aborting batch compila-
tion in case of error.

X Batch compilation
feature.
$BEND Indicates end of source
input.
$SINCLUDE Include source from

specified file or device.

3-3

3

*

Controlling Compilaticn Through Directives
Introducing the Two Types of Directives

$[N]JINFORMt X

$LCNT n X

SN X
$TITLE
$IN X
$WIDTH

X

DIRECTIVES
Instream Start Definition
Compiler Output $ X Produce a CAL listing

after successful compi-
lation.

$EJECT List subsequent source
on the next page of
current listing.

$IN]JELIST X* Output an extended list-

ing for in-line expanded
subprograms. The
default depends on
$IN]JLIST. If SLIST is
specified and $NELIST is
not, $ELIST is in effect.
Output optimization
messages. The default
depends on $NLIST. If
$LIST is specified and
$NINFORM is not,
$INFORM is in effect.

Specifies number of
lines per page. The
default value is 60.

Output a source listing.

Specify a title for the
source listing. If $TITLE
is not specified, the
compilers print the first
line of the program as a
title for each page.

Output warning mes-
sages to the list device.

Specify the maximum
width of a line in the
listing. The default is
131.

Generate a cross-
reference listing of
labels and identifiers.

For the F7Z compiler only.

T See discussion of in-line expansion directive later in this chapter fo default values.

3-4

48-010 FOO R04

Coutrol’ing ompilt}‘tion Through
ntroducing t

irectives
e Two Types of Directives

DIRECTIVES

Instream Start

Definition

CAL Blocks

$ASSM
$FORT
$GOES
$REGS
$SETS

$USES

Indicates the beginning
of an embedded CAL
block.

Indicates the end of the
CAL block.

Lists the labels of FOR-
TRAN statements to
which CAL code
branches.

Indicates the registers
modified by the CAL
block.

Informs compiler which
variables are modified
inside the CAL block.
Informs compiler which

variables are used in the
CAL block.

Optimization

$IN

$[NJ]TCOM X

Makes base addresses
candidates for global
registration allocation.

Switch for global optim-
ization.

Declares specified com-
mon blocks, common or
global entities as shar-
able.

In-line Expan-
sions+t

$DISTINCT

SINLIB X

$INLINE name bed

SINSKIP

Identifies CAL symbols
to be replaced by
unique compiler gen-
erated symbols.
Specifies a source file to
be searched for in-line
expansion.

In-line expansion of a
subprogram.

Inhibits separate compi-
lation.

* For the F7Z compiler only.
1 See discussion of in-line expansion directives later in this chapter for default values.

48-010 FOO R0O4

3

3-5

3

3-6

Controlling Compilation Through Directives

Introducing the Two Types of Directives

DIRECTIVES

Instream

Start

Definition

Debugging

$in}

X

Conditional compilation
of debugging state-
ments flagged by an X in
the first column.

Check array subscripts
and substrings against
their declared bounds.

Trace the value of a
variable and/or labeled
statements.

E/SP tool

$INIOBJ

$[NJOVERLAP

$[N]JSAFE

Controls generation of
object code for E/SP.
The default is $NOB] if
$TABLES is specified,
otherwise, the default is
$OBJ.

Aliasing of dummy argu-
ments.

Embedded assembly
code can be parallel-
ized. The default is
$SAFE if the program
has no embedded

assembly code and
$NSAFE otherwise.

Dump tables for E/SP.

~The default is $TABLES

not in effect.

Contains special E/SP-
generated, nonFORTRAN
constructs. The default
is $XFORT not in effect.

Miscellaneous

SN

Generates informative
messages for supervisor
call (SVC) instructions.

48-010 FOO R0O4

48-010 FOO R04

Controlling Compilation Through Directives
Introducing the Two Types of Directives

3

Definition

Miscellaneous
(Cont,)

DIRECTIVES
Instream Start

X
$DCMD X
$DP X
$[NJF66DO X
$H X
$IBYTE X
$INT2 X
$LBYTE X

Generates assembly
language code instead
of object code.

Embed Link commands
in object code.

Treat all REAL and
COMPLEX variables
with non-explicit
lengths as double pre-
cision variables. The
default is the type
associated with FOR-
TRAN identifiers and
constants.

All DO loops executed
at least once.

Treats all quoted
strings used as sub-
program arguments as
Hollerith constants.
Treat BYTE statement
as INTEGER*1 state-
ment.

Treat all integer vari-
ables with non-explicit
lengths as INT*2. Not
specifying this direc-
tive gives you the
usual typing associ-
ated with FORTRAN
identifiers and con-
stants.

Treat BYTE statement
as LOGICAL*1 state-
ment.

Count bit positions
from left to right.

3

3-8

Controlling Compilation Through Directives
Introducing the Two Types of Directives

DIRECTIVES

Instream Start

Definition

Miscellaneous
(Cont.)

$PASSBYADDRESS X

$PAUSE

$PROG

$[NJREENTRANT X

$RTOLBIT X

$IN

$TARGET n X

All scalar arguments to
subprogram are
passed by address.

Suspends compilation
at the point where this
directive is encoun-
tered.

Changes the name of a

program unit. If

$PROG is not specified, |

the compiler uses
the main program unit.

Generate reentrant
code. The default is
$NREENTRANT.

Count bit positions
from right to left.
$LTOLBIT is the
default.

Generates segmented
object code.

Performs syntax check |

of source without gen-
erating an object code.

Generates machine
code optimized to the
instruction set of the
specified processor. If
the directive is not
specified, the compiler
will output machine
code targeted to the
processor on which
the compiler is run-
ning.

48-010 FOO R0O4

Controlling Compilation Through Directives 3
Introducing the Two Types of Directives

DIRECTIVES
Instream Start Definition

Miscellaneous $[N]JTRANSCENDENTAL X Generates 3280 tran-

(Cont.) scendentals. If NTRAN-
SCENDENTAL is
specified, run-time
library (RTL) calls are
generated. The default
is STRANSCENDENTAL
for a 328x processor
and $NTRANSCENDEN-
TAL for any other
Series 3200 Processor.

$[NJUNNORMALIZE X Generates unnormal-
ized floating point
load instructions. The
default is $SUNNOR-
MALIZE for the Model
3203, 3205, and 3280,
and $NNUNORMALIZE
otherwise.

48-010 FOO R0O4 3-9

3 Coutromn% Compilation Through Directives
Notes on Using the Two Types of Directives

Notes on Using the Two Types of Directives

Take note of the following guidelines when using either of the directives:

s Because some directives may be both an instream and a start directive,
instream directives override the values specified as start options, except
that:

— The NINLINE start option disables all $INLINE directives.

— The ELIST and NELIST start options disable all $ELIST and $NELIST
directives.

— The APU and NAPU start options disable all $APU and $NAPU directives.

— The UNNORMALIZE and NUNNORMALIZE start options disable all
$UNNORMALIZE and $NUNNORMALIZE directives.

— The TRANSCENDENTAL and NTRANSCENDENTAL start options disable
all STRANSCENDENTAL and $NTRANSCENDENTAL directives.

— Specifying a processor that does not support unnormalized floating
point loads in a TARGET start Opthl’l or $TARGET directive forces the
NUNNORMALIZE option.

— Specification of a processor which does not support transcendental
operations in a TARGET start option or $TARGET directive will force
the NTRANSCENDENTAL option.

¢ Blanks surrounding the equal sign (=) within start options are not allowed
(i.e., TARGET=3280 is allowed but not TARGET = 3280). Equal signs are
not allowed between an instream directive name and the value, i.e., $TAR-
GET=3280 is not valid.

« Shortened forms of start options are valid, but instream directives cannot
be abbreviated.

e Errors i start options suppress the compilation; errors in instream result
in warnings and do not terminate compilation.

3-10 48-010 FOO R0O4

Controlling Compilation Through Directives 3
How to Use the Instream Compiler Directives

How to Use the Instream Compiler Directives

48-010 FOO RO4

An instream directive is specified by placing a dollar sign ($) in column one
and providing the text of the directive in the following columns. Directive
text cannot exceed 72 characters; a semicolon (;) and a comment may option-
ally follow the directive text. An instream directive cannot be continued to
the following line and must not be placed between the initial line of a state-
ment and any of its continuation lines. With this exception, most instream
directives can be inserted anywhere in the source code. Some, however, must
be placed before the first FORTRAN statement in the module to be effective.

Example:

C THIS PROGRAM SEGMENT CONTAINS COMPILER DIRECTIVES
c
$ALST
$XREF
$WIDTH 70
$TRACE J
M =K+1
DO 10 I=1,3
J =I
WRITE (6,1000) J,I
10 CONTINUE

SNTRACE

END

Directives that begin with $N are used to deactivate previously specified
directives or override a positive default. In the previous example, $NTRACE
deactivates $TRACE] for all code following $NTRACE. Some directives, such
as $WIDTH, operate only on the code immediately following them. Other
directives, such as $XREF, operate on the entire program unit. Their effect is
completely neutralized over the entire unit if their $N counterpart is
specified in the same program unit. The very last directive specified takes
precedence over its counterpart directive.

3-11

3

3-12

Controlling Compilation Through Directives
How to Use the Instream Compiler Directives

Example:

C THIS EXAMPLE HAS BOTH $BABORT AND $NBABORT
C IN .MAIN
Cc
$BABORT
T =1
CALL SUBA
CALL SUBB
STOP
$NBABOERT
END

In this example, $SNBABORT is in effect during the entire compilation. If their
order is reversed (i.e., SNBABORT Is specified first before $BABORT), then,
$BABORT takes effect during the entire compilation.

The directives which act upon the entire program unit are:

48-010 FOO R04

48-010 FOO R04

$ALST/SNALST
$APU/$SNAPU
$BABORT/$SNBABORT
$BASE/$NBASE
$BATCH/$NBATCH
$BEND

$CAL/$NCAL

$DP

$ELIST/$NELIST
$F66DO/SNF66DO
$IBYTE
$INFORM/$NINFORM
$INLIB

$INT2

$LBYTE

$LTORBIT

$OPTIMIZE/$NOPTIMIZE

$PASSBYADDRESS

$REENTRANT/$SNREENTRANT

$RTOLBIT
$SEG/SNSEG
$SYNTAX/SNSYNTAX
$TARGET

$TCOM

Controlling Compilation Through Directives

How to

se the Instream Compiler Directives

$TRANSCENDENTAL/$SNTRANSCENDENTAL
$UNNORMALIZE/$SNUNNORMALIZE

$WARN/$NWARN
$XREF/$NXREF

The rest of the directives affect only the block of code in which they are
embedded.

3

The following sections discuss each instream directive and its effect on com-
pilation.

3-13

3 Controlling Compilation Through Directives
Controlling Compiler Input

Controlling Compiler Input

The following directives can be used to control how the source is input to
the compiler:

$BABORT/$NBABORT
$BATCH/$NBATCH
$BEND

$SINCLUDE

$BABORT/$NBABORT

$BABORT aborts a batch compilation if the program unit in which it appears
has a compilation error. $NBABORT: turns off the $BABORT feature. $NBA-
BORT is the default. ‘

$BATCH/$NBATCH

$BATCH turns on the batch compilation feature. $NBATCH turns off the
batch compilation feature after compilation of the program unit in which
$NBATCH appears is completed. $BATCH is the default.

$BEND
$BEND indicates the end of source input to the compiler.
SINCLUDE

$INCLUDE allows the user to switch input from one file or device to an alter-
nate file or device. The format of $INCLUDE is:

$SINCLUDE Iu{ufd [.Iabel range] [(options)]
fd

3-14 48-010 FOO RO4

Controlling Compilation Through Directives 3
Controlling Compiler Input

Where:
lu is a logical unit number from 9 to 15.
fd is the file descriptor of the file or device that contains the
source code to be included. This file descriptor follows
the 0S/32 file naming convention.
label range’ indicates the range of source code to be incorporated

from the include file. It can be specified in any one of the
following forms.

**nl-

causes the compiler to search for the module
delimiter **nl in the include file and include the
source code following that module delimiter
until the first module terminator. If **nl is not
found, a warning message is output and th
directive is ignored. :

causes the compiler to search for the module
delimiter **nl in the include file and incor-
porate the source code following that delimiter
up to the end of file (EOF). If **nl is not found,
a warning message is output and the directive is
ignored.

pnl-n2

.**nz

48-010 FOO R0O4

causes the compiler to search for the module
delimiter **nl in the include file and include the
source code following that delimiter until the
module terminator for **n2. If **n2 is not
encountered before the EOF, the compiler
unconditionally terminates $INCLUDE.

causes the compiler to include source code from
the current position on the file until the module
terminator for **n2 is encountered. If **n2 is
not encountered before the EOF, the compiler
unconditionally terminates $INCLUDE.

causes the compiler to include source code from
the current position on the file until the EOF.

3-15

3 Controlling Compilation Through Directives

Controlling Compiler Input

Not specifying label range causes the compiler to include
source code from the current position on the file until the
next module terminator.

A module delimiter has the form **n (starting in column
1). nis an alphanumeric string with no embedded blanks
whose length may not exceed eight characters. A module
terminator is either a /*, an END statement, or an end of

file.

options indicates one or more of the following options specified
in any order.

NEND

NLIST

REW

This option tells the compiler that the END
statement encountered in an included file is
only a module terminator and not a program ter-
minator. If NEND is not specified, an END state-
ment encountered in an included file is treated
as the end of the FORTRAN program.

This option prevents the compiler from output-
ting the included statements to the source list-
ing. NLIST applies to the current $INCLUDE and
all subsequent nested levels of $INCLUDE. If
NLIST is not specified, the compiler will produce
a listing of the included statements.

This option causes the compiler to rewind the
file or lu before including the source from it.

Successive modules in an included file are separately compiled if the follow-

ing four conditions exist.

¢ Label range specifies more than 1 module (i.e., **A-**B).

o The END statement is used as a module terminator for each of the

modules.

o NEND option is not specified on the $INCLUDE directive.

e NBATCH is not in effect in any of the modules contained within the label

range.

The following example illustrates the use of the different label range

specifications.

3-16

48-010 FOO RO4

48-010 FOO R0O4

Controlling Compilation Through Directives 3
Controlling Compiler Input

Examples:

Consider the file INCFILE.FTN which contains the following code:

**RANGE1
INTEGER*2 A

END

**RANGE2
COMPLEX B

/*
(end of file)

SINCLUDE INCFILE.FTN,**RANGE]1

This causes the compiler to search for the module delimiter **RANGE1 in
INCFILE.FTN and include the code following **RANGE1 until the first
module terminator END.

SINCLUDE INCFILE.FTN,"*RANGE1-

This causes the compiler to search for the module delimiter **RANGE]1 in
INCFILE.FTN and incorporate the code following **RANGE] up to the end
of file.

SINCLUDE INCFILE.FTN,"*RANGE1-**RANGE2

This causes the compiler to search for **RANGE1 in INCFILE.FTN and
include the code following **RANGE!] until the module terminator for
**RANGE?2 which, in this case, is /*.

SINCLUDE INCFILE.FTN,-**RANGE2

This causes the compiler to include code from the current position of the
file (in this case, the beginning of INCFILE.FTN) until the module termina-
tor for **RANGE2 which is /*.

SINCLUDE INCFILE.FTN,-

This causes the compiler to include the source code contained in
INCFILE.FTN.

3-17

3 Controlling Compilation Through Directives
Controlling Compiler Input

The effect of $INCLUDE depends on how the arguments lu and fd are
specified. The four distinct formats resulting from this are described below:

Format 1:
$INCLUDE fd [,label range] [(options)]

The compiler assigns a free lu to the file specified by fd and starts including
the source.

Example:

C THE }INCLUDE DIRECTIVE INCORPORATES
C CODE FROM SUBFILE.FTN
C
$

INCLUDE SUBFILE.FTN, **FINDB
WRITE (6,*)B
STOP
END

The file SUBFILE.FTN contains the following code:

**FINDA
GLOBAL A
END

**FINDB
GLOBAL B
/*

The $INCLUDE directive in the preceding example causes the compiler to
assign a free lu to SUBFILE.FTN, search for the program delimiter **FINDB
and include source code following it up to /*.

3-18 48-010 FOO RO4

48-010 FOO RO4

Controlling Compilation Through Directives 3
Controlling Compiler Input

Format 2:
$INCLUDE lu,fd [,label range] [(options)]

This directive causes the compiler to close the lu, assign it to the file
specified by fd, and start including the source.

Example:
$INCLUDE 9,SUBFILE.FTN,**FINDA-(NEND)

This $INCLUDE directive causes the compiler to close lu9 and assign it to
SUBFILEFFTN. The compiler then includes source code following the module
delimiter **FINDA until the end of file, because NEND is specified. The END
statement following **FINDA is treated as the module terminator of **FINDA
and not as the end of program.

Format 3:
SINCLUDE lu [,label range] [(options)]

This $INCLUDE directive causes the compiler to start including the source
from the specified lu. The lu may have been preassigned by the user or
assigned to a file through an earlier Format 2 $INCLUDE directive.

Example:
$INCLUDE 9,*FINDA(REW NEND)

This $INCLUDE directive causes the compiler to rewind the lu9. The com-
piler then includes source code following the module delimiter **FINDA
until the module terminator (END). The END statement is not treated as end
of program, but as a module terminator.

3-19

3 Controlling Compilation Through Directives
Controlling Compilér Input

Format 4:
$SINCLUDE [,label range] [(options)]

This form of $INCLUDE can only be used after another $INCLUDE directive.
The compiler will use the lu and the file of the previous $INCLUDE at the
same level of nesting.

Example:

$INCLUDE SUBFILE.FTN,**FINDB
$INCLUDE **FINDA(REW)

In this example, the first $INCLUDE will include the module **FINDB from
SUBFILE.FTN. The second $INCLUDE will include the module **FINDA from
the same file after rewinding the file.

An $INCLUDE directive is said to be a parent of another $INCLUDE if the
latter appears in a module being included by the former. The former is said
to be on a higher level than the latter. Two $INCLUDE directives are at the
same level if both have no parent or both have the same parent. Nesting of
$INCLUDE directives can be done up to 7 levels. Recursive $INCLUDE is pos-
sible, but definitely not recommended.

The lu specified in Format 3 of the $INCLUDE directive is never closed unless
a Format 2 $INCLUDE is encountered for that lu.

A compiler assigned lu for Format 1 and Format 2 $INCLUDE is closed for a
particular level when:

e another Format 1 or Format 2 $INCLUDE is encountered at the same level,
or

¢ the parent of a Format 1 $INCLUDE completed inclusion of source, and a
higher level $INCLUDE, if any, is made to proceed.

3-20 48-010 FOO R04

Controlling Compilation Throth Directives 3
Controlling Compiler List Output

Controlling Compiler List Output

The compiler produces various listings and messages to the list device dur-
ing compilation. To alter that output, use the following directives:

SALST/$SNALST
$SEJECT
$SELIST/$NELIST
SINFORM/$NINFORM
$LCNT n
SLIST/$NLIST -
$TITLE
$WARN/$SNWARN
$SWIDTH
$XREF/$NXREF

$SALST/$NALST

$ALST produces a CAL listing of the source program unit in which it appears
after the program unit is successfully compiled. The assembly listing is sent
to the list device. $NALST turns off this feature. $NALST is the default.

$EJECT

$EJECT causes the compiler to list the subsequent source statements on the
next page of the current listing.

48-010 FOO R0O4 3-21

3 Controlling Compilation Through Directives
Controlling Compller List Output

Example:

C THE SOURCE LISTING OF THIS PROGRAM IS
C PRINTED ON TWO SEPARATE PAGES

READ (5,10)N

10 FORMAT (I10)
WRITE (6,15)N

15 FORMAT (1X,’VALUE OF N READ IS’, I3)

$EJECT

CALL SUB1l (M,N)
WRITE (6,15) N,M
STOP

END

In this example, page 1 lists all code through statement labeled 15; page 2
lists all lines of code from CALL SUB1(M,N) to END.

$ELIST/$NELIST

$ELIST causes the F7Z compiler to output an extended listing, if subpro-
grams have been expanded in-line during compilation. $NELIST suppresses
this listing. See Chapter 10 for a description of the extended listing. If nei-
ther $ELIST nor $NELIST is specified and subprograms were expanded in-
line, an extended listing is output to the list device. These directives are
supported only on F7Z.

$INFORM/$NINFORM

$INFORM produces optimization messages to be output. $NINFORM
prevents optimization messages from being sent to the list device.

SLCNT

$LCNT allows the user to change the number of lines of output per page.
The format of $LCNT is:

LCNT n

The parameter n must be greater than or equal to 10. If $LCNT is not
specified, the compiler will automatically print 60 lines per page.

3-22 48-010 FOO RO4

Controlling Compilation Through Directives 3
Controlling Compiler List Output

Example:

C THIS PROGRAM CHANGES THE NUMBER OF
C LINES PER PAGE OF OUTPUT FROM 60 TO 30.

$LCNT 30
T=1
CALL SUBA
CALL SUBB
STOP
END

$LIST/$SNLIST

$LIST causes the compiler to output a source listing until an $NLIST is
encountered. $NLIST suppresses the source listing output so that only error
messages and source statements that have errors are printed. $LIST is the
default.

$TITLE

$TITLE allows the user to specify a title consisting of up to 66 ASCII charac-
ters for the source listing. The compiler automatically begins a new listing
page whenever $TITLE is encountered. If $TITLE is not specified, the com-
pilers print the first line of the program as a title for each page.

48-010 FOO RO4 3-23

3 Controlling Com;{llatlon Through Directives
Controlling Compiler List Output

Example:

C THIS PROGRAM CHANGES

C THE TITLE OF THE PROGRAM

C TO ’'TESTPROGRAM FOR USER SITE #2’

C AFTER ENCOUNTERING THE $TITLE DIRECTIVE
T=1

3 CALL SUBA
CALL SUBB

$TITLE TESTPROGRAM FOR USER SITE #2

[F(T.EQ.0)GO TO 3
3TOP
IND

A partial listing of this program is as follows:

3-24 48-010 FOO R0O4

48-010 FOO R04

Controlling Compilation Through Directives 3
Controlling Compiler List Output

FORTRAN VII-O RxX-yy.zz
FORTRAN VIIO: LICENSED RESTRICTED RIGHTS AS STATED

1 C THIS PROGRAM CHANGES

2 C THE TITLE OF THE PROGRAM

3 C TO ’'TESTPROGRAM FOR USER SITE #2'

4 C AFTER ENCOUNTERING THE $TITLE DIRECTIVE
5 000000T T=1

6 0000281 3 CALL SUBA

7 00004CI CALL SUBB

FORTRAN VII-O Rxx-yy.zz TESTPROGRAM FOR USER SITE #2

FORTRAN VIIO: LICENSED RESTRICTED RIGHTS AS STATED IN
$TITLE TESTPROGRAM FOR USER SITE #2

20 O000O0F8I IF(T.EQ.0)GO TO 3

21 0001001 STOP
22 0001081 END
$WARN/SNWARN

$WARN allows the compiler to output warning messages to the list device.
When this directive is used with $NOBJ, $TABLES, and/or $XFORT, the com-
piler outputs E/SP warning messages in addition to the regular messages.
These warning messages flag language constructs in the program that pro-
duce a complicated graph or inhibit parallelism. See the appropriate manual
in the E/SP documentation set for details on these directives.

%

H NOTE > Do not use the $WARN directive with $NOBJ, $TABLES,
or $XFORT if you want to suppress these E/SP-related
warning messages.

3-25

3

3-26

Controlling Compilation Through Directives
Controlling Compiler List Output

$NWARN prevents all warning messages. If neither $WARN nor $NWARN is
specified, warning messages are output.

$WIDTH

$WIDTH allows the user to specify the maximum width of a line in the com-
piler listings. Lines which normally exceed the width specified are broken
into multiple lines. The width of a line can range from 64 to 131 columns. If
$WIDTH is not specified, the compiler will automatically output a line of
width 131. '

Example:

C THIS CODE CHANGES THE LINE WIDTH
C OF COMPILER OUTPUT FROM THE DEFAULT
C OF 131 COLUMNS TO 64 COLUMNS.

$WIDTH 64
=1
CALL SUBA
CALL SUBB
STOP
XND

$XREF/$NXREF

$XREF generates a cross-reference listing of labels and identifiers appearing
in the source program. $NXREF turns off this feature. If neither $XREF nor
$NXREF is specified, no cross-reference listing is generated.

For more information on the source, extended, CAL, optimization, and cross-
reference listings, see Chapter 10.

48-010 FOO RO4

Controlling Compilation Through Directives 3
Inserting CAL Blocks

Inserting CAL Blocks

FORTRAN VII allows users to write FORTRAN programs containing blocks of
CAL code. If CAL blocks are embedded in the FORTRAN source code, the
compilers automatically produce CAL output instead of object code. The
compilers send the CAL output to the device or file assigned to lu6. The CAL
output can then be assembled into object code by the CAL assembler.

Directives used to embed CAL code in a FORTRAN source program are:

$ASSM
$FORT
$GOES
$REGS
$SETS
$USES

For more details on the use of these directives, see Chapter 5, "Interfacing
Assembly Language Routines."

Controlling Compiler Optimization

]

48-010 FOO RO4

All of the global optimizations performed by F70 and F7Z occur automati-
cally during compilation. The optimization directives, however, can be used
to suppress the global optimizations. These directives include:

$BASE/$NBASE
$OPTIMIZE/$NOPTIMIZE
$TCOM

B NOTE_ > This section presents an overview of the global
optimizing directives. Before using these directives,
you must have a good grasp of the global optimiza-

tion techniques explained in Chapter 4.

3-27

3

3-28

Controlling Compilation Through Directives
Controlling Compller Optimization

$BASE/$NBASE

$BASE is used in conjunction with the global register allocation optimization.
When specified, $BASE allows the base addresses of all local variables and
named common blocks to be considered as candidates for register allocation.
$BASE is in effect throughout the entire compilation of the program unit.
$NBASE suppresses the effect of the $BASE directive over the entire program

unit. $NBASE is the default.
$SOPTIMIZE/$NOPTIMIZE
$NOPTIMIZE turns off the following global optimization features:

¢ Global register allocation

e Extended strength reduction

¢ Constant propagation

e Invariant code motion

e Test replacement

e Scalar propagation

e Folding and variable propagation

e Common subexpression elimination

e Dead cod= elimination

$NOPTIMIZE, which can be placed anywhere within the program unit, is in
effect during the entire compilation of the unit. When this directive is used
with any of the $NOBJ, $TABLES, and $XFORT directives, flow and data ana-
lyses, which are normally suppressed by $NOPTIMIZE, are still performed.
These operations generate data needed by E/SP to construct a dependence
graph of the program. See the appropriate manual in the E/SP documentation

set for details on these directives.

$OPTIMIZE activates the F70 and F7Z global optimizations.

48-010 FOO RO4

Controlling Compilation Through Directives 3
Controlling Compiler Optimization

$TCOM

$TCOM declares named common blocks, common entities, or global entities
as part of a task shared by two or more tasks. $TCOM prevents the compiler
from allocating registers for these entities or eliminating code that refer-
ences them. The format for the directive is a follows:

scom | /| name, [1]|.[] names [1.....] name, [/]]

Where:

hame,, name, specify variables, common block names (i.e., /ABC/) or
... name_ blank commons (i.e., //).

Example:

THIS EXAMPLE USES $TCOM TO DECLARE
WHICH COMMON BLOCK VARIABLES ARE PART
OF A TASK COMMON AND SHOULD

NOT BE CONSIDERED AS CANDIDATES FOR
OPTIMIZATION

QN0

$TCOM/ABC/

COMMON/ABC/EVENT
LOGICAL EVENT

10 EVENT = .FALSE.
IF (.NOT.EVENT) GO TO 10
STOP
END

In this example, if $TCOM was not specified, the statement labeled 10 and
the IF statement would be deleted by the compiler.

$TCOM can appear anywhere in the source code.

48-010 FOO R0O4 3-29

3 Controlling Compilatior: Through Directives
Controlling the F7Z In-line Expansion Feature

Controlling the F7Z In-line Expansion Feature

$INLINE, $INLIB, $INSKIP, and $DISTINCT are four directives designed to

. invoke the in-line expansion feature available on the F7Z compiler. In-line
expansion cf subprograms enhances optimization by allowing the compiler
to optimize code across program unit boundaries.

¢H__NOTE_ "> This section presents an overview of the in-line direc-
tive syntax. Before using these directives, you must
have a good grasp of the in-line expansion feature
explained in Chapter 15.

Before the F7Z compiler can expand a subprogram (i.e., subroutine or func-
tion) in-line, it must be provided with the following information:

which subprograms are to be expanded,

where to find the subprogram, and

which calls to expand.

@GL_NOTE_["» In-line expansion is not the default. The user must
explicitly request in-line expansion by specifying the
SINLINE directive. In-line expansion and global optim-
izations are two different features of the FORTRAN VII
Z compiler and are both individually controlled.

$INLINE/$NINLINE

The $INLINE directive supplies this information to the compiler as follows:

_ fa|l | (ALL
SINLINE name [.entryname] ’ ' \label ||, labels,...label,)

3-30 48-010 FOO R0O4

Controllmﬁ Compilation Through Directives 3
Controlling the F7Z In-line Expansion Feature

Where:

name is the name of the subprogram that is to be expanded
in-line.

entryname is the name of an entry point in the subprogram
specified by name. When entryname is specified, only
those calls made to the entry point of the subprogram
are expanded.

fd is the file descriptor of the file that contains the source
of the subprogram specified by name.

¥ indicates that the source of the subprogram specified by

name is on the same file as the calling program.

indicates that the subprogram to be expanded is on a file
specified by an $INLIB directive or any other $INLINE
directive.

If neither fd, *, nor - is specified, the compiler will search name.FTN for the
source of the subprogram specified by name.

ALL indicates that all the calls to the specified subprogram
are to be expanded in-line.

label indicates the statement label(s) containing calls to

[,label ..., the specified subprogram. When this argument is

Iahel'l specified, only those calls to the specified subprogram in

the labeled statement(s) are expanded in-line.

If neither ALL nor a statement label is specified, the compiler will expand all
calls to the subprogram.

The first argument of the $INLINE directive is the name of the function or
subroutine that is to be expanded in-line. Each subroutine that is to be
expanded must be specified by a separate $INLINE directive. If the calling
program calls the subprogram at an ENTRY statement rather than the SUB-
ROUTINE or FUNCTION statement, the entryname must be placed after the
subprogram name, as shown in the following example.

48-010 FOO RO4 3-31

- 3 Controlling Comﬁilation Through Directives
Controlling the F7Z In-line Expansion Feature

Example:

C THIS PROGRAM REQUESTS INLINE EXPANSION
C OF SUBROUTINE A AND ENTRY B

c
C THE CALLING PROGRAM FOLLOWS
o
$INLINE A, *
$INLINE A:B,*
INTEGER Al,Bl
COMMON Al,B1l
CALL A
WRITE (*,5) Al,Bl1
CALL B
WRITE (*,5) Al,Bl
5 FORMAT (1X,2I4)
3TOP
AIND
C THE CODE FOR SUBROUTINE A FOLLOWS

3UBROUTINE A
COMMON Al1,Bl1

ENTRY B

RETURN
END

The second argument to the $INLINE directive must tell the compiler where
to find the subprogram. If the subprogram is on the same file as the calling
program, the second argument must be an asterisk (*), as follows:

$INLINE A,*

If the subprogram is not on the same file as the calling program, $INLINE
must specify the file or device in one of the following ways.

3-32 48-010 FOO RO4

48-010 FOO R04

Controllinf Compilation Through Directives 3
Controlling the F7Z In-line Expansion Feature

Examples:

$INLINE SUB2,M300:USER.LIB
SINLINE SUB3

SINLINE SUB2:B,-

The second argument in the preceding example indicates the file the com-
piler must search to find the subprogram. If the second argument is omitted,
as in the second example, the compiler will search for a file having the same
filename as the subprogram followed by the extension .FTN. In this case, the
compiler will search SUB3.FTN for the source code of SUB3. In the third
example, the compiler will search for ENTRY B in SUB2 on M300:USER.LIB as
specified by the previous $INLINE directive for SUB2. If a hyphen (-) follows
the comma, the compiler will search the file indicated by the previous in-line
directive within the program unit.

The third argument to the $INLINE directive designates which calls to the
subprogram are to be expanded. If ALL is specified, the subprogram will be
expanded for all calls within the source program unit in which in-line expan-
sion is requested. An $INLINE directive specifying ALL can be placed any-
where before the END statement.

If a subprogram is called more than once by a source program, the user can
request that the subprogram be expanded only for selected calls. To do this,
specify the label of the statements that contain those calls as the third argu-
ment to the $INLINE directive.

3-33

3 Controlling Comgilation Through Directives
Controlling the F7Z In-line Expansion Feature

Example:

C THIS EXAMPLE SHOWS HOW TO EXPAND
C A SUBPROGRAM FOR SELECTED CALLS WITHIN
C THE SOURCE PROGRAM
c
C
INTEGER Al,B1,X
COMMON Al,B1
$INLINE A, *,10
10 CALL A (Al,B1l)
WRITE (*,5) Al,Bl1
CALL A (Al,Bl)
WRITE (*,5) Al,Bl
5 FORMAT (1X,2I4)
STOP
END

In this example, subroutine A is only expanded for the call to A, in the state-
ment labeled 10. Subroutine A is not expanded for the second call to A.

If neither ALL nor a statement label is specified, the compiler automatically
expands all calls to the subprogram.

$NINLINE

It may be necessary to turn off the in-line expansion feature. This is accom-
plished thrcugh the $NINLINE directive. The format of the $NINLINE direc-
tive is:

$NINLINE name .Iabel1 [,lalael2 ,...,labeln]

Where:
name is the name of the subprogram that is to be excluded
from in-line expansion.
label indicates the statement label(s) containing
l.label.,..., calls to the specified subprogram. The calls
Iabeln]z in those statements are excluded from in-line expansion.

3-34 48-010 FOO RO4

Controlllnf Compilation Through Directives 3
Controlling the F7Z In-line Expansion Feature

Specifying $NINLINE with the subprogram name without any labels turns off
the in-line expansion for all calls to the subprogram name.

Specifying $NINLINE with no arguments turns off the in-line expansion
feature over the entire calling program unit.

Example:

C THIS EXAMPLE USES THE $NINLINE DIRECTIVE
C TO TURN OFF INLINE EXPANSION
C FOR A SELECTED CALL WITHIN THE PROGRAM

$INLINE A, *
READ (*,2) I
CALL A
READ (*,2) I
CALL A
READ (*,2) I
$NINLINE A, 3

CALL A
2 FORMAT (I2)
3 CALL A

END

This example shows that to turn off in-line expansion for a selected call, the
name of the called subprogram and the label of the statement containing a
call to that subprogram must be specified as arguments to the $NINLINE
directive. To turn off in-line expansion of all calls to A within a program
unit, use $NINLINE A. To turn off in-line expansion for all calls to all subpro-
grams within a program unit, use $NINLINE with no arguments. An $NINLINE
directive can be placed anywhere in the calling unit.

$INSKIP

When a program consisting of more than one program unit is compiled in
batch, each subprogram is compiled separately. If in-line expansion is
requested for a subprogram, the subprogram is incorporated within the cal-
ling program. If all calls to a subprogram are to be expanded in-line, it is not
necessary to have the subprogram recompiled after the main program unit.
To prevent separate compilation of subprograms used only for in-line expan-
sion, use the $INSKIP directive. $INSKIP is placed before the subprogram to
inhibit its separate compilation.

48-010 FOO RO4 3-35

3

3-36

Controlling Compilatior: Through Directives

Controlling the F7

The format of the $INSKIP directive is as follows:

In-line Expansion Feature

$INSKIP [ALL]

If ‘ALL’ is omitted, the compilation of the program following the $INSKIP
directive is skipped. If ALL is used, the compilation of all subsequent sub-

programs (except BLOCK DATA) is skipped.

Example:

C THE FOLLOWING PROGRAM USES $INSKIP
C TO PREVENT SEPARATE COMPILATION OF
C SUBPROGRAMS THAT ARE EXPANDED INLINE.

PROGRAM MATIN

$INLINE AA,*,ALL
$INLINE BB, *,ALL

READ (*,2) N
CALL AA (N)
READ (*,2) M
CALL BB (M)
FORMAT (I2)
END

$INSKI?

This code is compiled as follows:

SUBROUTINE AA(N)

[F (N.LE.O) I

WRITE (*,4) N, I

FORMAT (2I2)
RETURN
2ND

SUBROUTINE BB(M)

[F (M.GT.0) I

WRITE (*,5) M,I

FORMAT (2I2)
RETURN
END

48-010 FOO RO4

Controllin% Compilation Through Directives 3
Controlling the F7Z In-line Expansion Feature

PROGRAM MAIN
READ (*,2) N
2 FORMAT (I2)
IF (N.LE.O) I
WRITE (*,4) N,
4 FORMAT (2I2)
READ (*,2) M
IF (M.GT.0) I =5
WRITE (*,5) M,I
5 FORMAT (2I2)
STOP
END

Mol
-

SUBROUTINE BB (M)
IF (M.GT.0) I =5
WRITE (*,5) M, I

5 FORMAT (2I2)
RETURN
END

The preceding listing does not show the actual compiler listing, but shows
the order with which the example code is compiled using the $INLINE and
$INSKIP directives. The optimizing compiler generates unique labels for all
labels in a subprogram that is expanded in-line. This prevents multiple
definition of labels that can result from repeated expansion of a subprogram
or when the main program uses a label which is identical to that used in an
in-line expanded subprogram.

Notice that because $INSKIP was not placed above subroutine BB, BB is need-
lessly compiled. To skip all of the remaining subprograms in a file, write
$INSKIP ALL after the END statement of the main program. In this example,

‘$INSKIP ALL should be placed after the END statement of the main program

unit. There should be no blank line or comment line between the END state-
ment of the previous program unit and the $INSKIP directive. Otherwise, the
compiler warns the user that the directive is ignored.

48-010 FOO RO4

| NOTE D> $INSKIP or $INSKIP ALL has no effect on BLOCK DATA

subprograms. This type of subprogram can never be
called from another program unit and thus, never
gets expanded in-line. Therefore, BLOCK DATA sub-
programs appearing after $INSKIP or $INSKIP ALL are
compiled as separate units.

3-37

3

3-38

Controlling Compilation Through Directives
Controlling the F7Z In-line Expansion Feature

$INLIB
Another method of preventing separate compilation of in-line expanded sub-
programs is to store all subprograms in a source code file.

To tell the compiler which source code file to search for the subprogram, use
the $INLIB directive followed by the fd of the source code file or files.

éH _NITE_> The SINLINE directive expands only those files con-

taining source codes and not those containing object
code. In addition, all subprograms that are available
for in-line expansion must reside on a direct access
file.

The format of the $INLIB directive is:

$INLIB fd, [fd, ...fd]

Where:

fd‘,...,fdn are file descriptors of source code files.

Example:

C THIS EXAMPLE USES THE $INLIB DIRECTIVE
C TO TELL THE COMPILER WHICH FILE

C TO SEARCH FOR THE SUBPROGRAMS THAT ARE
C TO BE EXPANDED INLINE.

S$INLINE AA,-—

$INLINE BB, -

$INLINE DD,NEW.FIL

$INLINE DD:BD,-

$INLINE CC,-—

$INLIB LIB.FIL
CALL AA(A)
CALL BB(B)
CALL CC(C)
CALL DD(D)
CALL BD(E)
AND

48-010 FOO RO4

Controlling Compilation Through Directives 3
Controlling the F7Z In-line Expansion Feature

Remember that when the hyphen is used as the second argument in the
$INLINE directive, the compiler searches a file that was already specified
elsewhere for the same routine by another $INLINE directive or else by an
in-line library. If the file is not designated by an $INLINE directive, the com-
piler searches for a source code file specified by the $INLIB directive. In this
case, $INLIB specifies the file to be searched for subprograms AA, BB, and CC;
and $INLINE DD,NEW.FIL specifies the file to be searched for subprogram DD.

$DISTINCT

- In the previous examples, the in-line directives are used to invoke expansion

48-010 FOO R04

of subprograms consisting entirely of FORTRAN source code. To expand a
subprogram containing embedded assembly code, the compiler must be
informed which CAL symbols are to be replaced by unique compiler gen-
erated symbols in each expansion of that subprogram within the same pro-
gram unit. This is done through the $DISTINCT directive.

Format:

$DISTINCT CALsymbol [,CALsymbolz...,CALsymboIn]

Where:
CALsymbol represents labels within an embedded CAL block which
need unique labels in the generated in-line expanded
code. .
3-39

3 Controlling Compilation Through Directives
Controlling the F7Z In-line Expansion Feature

Example:

C THIS EXAMPLE USES THE $DISTINCT
C DIRECTIVE TO PREVENT MORE THAN
C ONE LINE OF ASSEMBLY CODE FROM
C HAVING IDENTICAL LABELS.

$INLINE B, *
PROGRAM MAIN
READ (*,2)I
CALL B
READ (*,2)I
CALL B
READ (*,2)I
CALL B

2 FORMAT (I2)
END

SUBROUTINE B

COMMON /1/
SASSM
$USES
$GOES 10
$SETS I
$DISTINCT AROUND
B AROUND
B $P10
AROUND EQU =
ST B,I
$FORT
10 WRITE (*,12) I
12 FORMAT (I4)
RETURN
END

This example illustrates the conflict in label referencing that would result if
$DISTINCT is not used when a subprogram containing embedded assembly
code is expanded more than once within the same program unit. In this case,
the label AROUND would be defined three times in the calling program.
$DISTINCT tells the compiler to generate a unique symbol for AROUND each
time subroutine B is expanded. Therefore, at each instruction generated for
each expansion of B AROUND, the compiler will generate a unique label.

3-40 ' 48-010 FOO RO4

Controlling Compilation Through Directives 3
Debugging the Source Code

The $DISTINCT directive can appear anywhere before the first occurrence of
the CAL symbol in the block. Symbols specified by a $DISTINCT directive
must not appear in a FORTRAN statement.

$DISTINCT will not replace CAL type specifiers (Z, H, Y, X, etc.) with compiler
generated symbols. For example, the directive:

$DISTINCT Z would have no effect on the following instruction:

DC Z(B)

Debugging the Source Code

48-010 FOO R04

Four compiler directives can be used as run-time debugging aids. These
include:

$COMP/$NCOMP
$TEST/$SNTEST
$TRACE/SNTRACE

$COMP/$NCOMP

$COMP allows the programmer to insert debugging statements within the
source code without having to delete them individually after the debugging
session is over. Debugging statements are identified by placing an X in
column 1 of the first line of the statement. $COMP causes the compiler to
compile these statements conditionally; they can be deactivated by $SNCOMP
without having to remove the debugging statements from the source code.

$NCOMP prevents the compiler from compiling statements identified with an
X in column 1. When $NCOMP is specified, the source listing will indicate
which statements was not compiled by replacing X with #. $NCOMP is the
default.

$TEST/$NTEST

$TEST checks array subscripts and substrings during program execution
against their declared bounds. $TEST causes the compiler to generate code
that activates the .TEST RTL routine. This routine outputs an error message
at any point in the program when the value of an array subscript or sub-
string falls outside the declared bounds.

3-41

3 Controllingh ompilatmn Through Directives
Debugging the Source Code

$TEST can be used to check the value of subscripts of specific arrays and
substrings, all program subscripts and substrings, or all subscripts and sub-
strings up to a specified statement in the program.

The $TEST option is intended to check the array subscript and substring
bounds of array and character entities occurring in arithmetic, logical, and
character expressions. It is not intended for checking boundary violations of
arrays passed as arguments to subprograms or used as a buffer in
ENCODE/DECODE statements. $NTEST is the default.

For more details on these directives, see Chapter 9.
$TRACE/SNTRACE

$TRACE allows the user to trace the value of a variable as the program exe-
cutes. It is also used to trace the flow of control through the program.
$TRACE causes the compiler to generate code that activates the $.TRACE RTL
routine. This routine prints out a message every time a specified variable or
array is assigned a value through an assignment statement. This message
shows the value assigned to the variable at that point in the program.
.TRACE also prints a message every time a labeled statement is executed.

$TRACE can be used to trace the value of specific variables, all labeled state-
ments and variables throughout the program, or all variables and labeled

statements up to a specified statement in the program. $NTRACE is the
default.

Format:

$TRACE [varl [,varz...,varn]]

Where:

var represents the variable whose values are traced during
execution. If no arguments are specified, labeled state-
ments and the values of all variables are traced
throughout the program.

3-42 48-010 FOO RO4

Controlling Compilation Through Directives 3
Preparing Your Code for Parallelization

Preparing Your Code for Parallelization

48-010 FOO R04

The following directives prepare your program for the parallelization tool
(E/SP):

$OBJ/$NOBJ
$OVERLAP/$NOVERLAP
$SAFE/$NSAFE
$TABLES/$NTABLES
$XFORT/$NXFORT

$OBJ/$NOBJ

$OBJ controls the generation of object code by the compiler. If $TABLES is
not specified, $NOBJ is ignored. If $NOBJ and $TABLES are simultaneously in
effect, the compiler skips register allocation and code generation. This
causes the compiler to behave as the front-end to E/SP, saving compile time
and offsetting the increase in compile time caused by the writing of the
tables to a file. If $OBJ and $TABLES are simultaneously in effect, the com-
piler generates sequential object code or CAL code. The default is $NOB]J if
$TABLES is specified, otherwise, the default is $OBJ.

$OVERLAP/$NOVERLAP

$OVERLAP indicates that the currently compiled module may be called in the
program in such a way that it redefines one of its dummy arguments. If
$TABLES is not specified, this directive is ignored. $NOVERLAP is the
default.

$SAFE/$NSAFE

$SAFE flags whether it is safe to parallelize code with embedded assembly
code. $SAFE tells the compiler that any assembly code does not contain SVC
calls that could change the MPS system state. The default is $SAFE if the pro-
gram has no embedded assembly code, otherwise $NSAFE. The default is
$NSAFE if $TABLES is specified, otherwise, the default is $SAFE. This direc-
tive may be specified anywhere in a module. If both $SAFE and $NSAFE are
specified in the same module, the last specified directive takes effect on the
module. If a module contains more than one $ASSM block and at least one is
considered "not safe,” the entire module must be assumed to be $NSAFE.

3-43

3

3-44

Controlling Compilation Through Directives
Preparing Your Code for Parallelization

$STABLES/$NTABLES

$TABLES generates dependence tables and transcribed source code before
downloading a program to E/SP for restructuring. Unless specified, $TABLES

will not be in effect.

$XFORT/NXFORT

$XFORT informs the compiler that the code may contain non-FORTRAN struc-
tures which require parsing. The default is $XFORT not in effect. This direc-
tive must appear before the first FORTRAN statement or may be used as a

start option

For more details on these directives and on E/SP, see the appropriate manual

in the E/SP documentation set.

48-010 FOO RO4

Controlling Compilation Through Directives 3
Miscellaneous Instream Compiler Directives

Miscellaneous Instream Compiler Directives

48-010 FOO R04

The following instream directives can also be used:

$APU/$NAPU

$CAL/$NCAL

$DCMD

$pp

$F66DO/$NF66DO
$HOLL/$NHOLL

SIBYTE .

SINT2

$LBYTE

$LTORBIT

$PASSBYADDRESS

$PAUSE

$PROG
$SREENTRANT/$NREENTRANT
$RTOLBIT

$SEG/$NSEG

$SYNTAX/$NSYNTAX

$TARGET n
$TRANSCENDENTAL/$NTRANSCENDENTAL
$UNNORMALIZE/$NUNNORMALIZE

$APU/$SNAPU

$APU/$NAPU are provided for multi-processor applications. $APU causes the
F7 compilers to look for FORTRAN features in the input source that are
known to generate SVC instructions. Whenever they are detected, the com-
piler generates an informative message on the listing for those statements.
The compiler also outputs a DCMD command in the object for LINK/32 to
generate a similar message at LINK time. The format of the APU warning
message is:

ABOVE STATEMENT GENERATES SVC CALL.

For a module, the compiler generates one DCMD whose text is:

****MODULE name INVOKES SVC.

3-45

3

3-46

Controlling Compilation Through Directives
Miscellaneous Instream Ccmpiler Directives

Where:

name is the name of the module.

This message appears on the LOG file at Link time. Such messages have no
effect on the end of task code of the compilers. $NAPU prevents the F7 com-
pilers from generating the above messages for statements which generate
SVC instructions. The $APU/$NAPU may appear anywhere in the source and
can be used to toggle the option on and off.

$CAL/$NCAL

$CAL is provided for those users who require assembly language code
instead of object code of a FORTRAN source program. $CAL causes the com-
piler to gencrate assembly code for a FORTRAN program. The resultant
assembly code, which is output to the file or device assigned to lu6, can be
assembled by CAL/32. $NCAL suppresses the CAL feature. These directives
can be placed anywhere in a program unit except in an embedded CAL block.

$DCML:

$DCMD allows you to embed Link commands or comments within the object
code for processing during linking.

$DP

$DP causes all real and complex items whose lengths were not specified
explicitly in a specification statement to be treated as double precision
items. Length specification of *4 and *8 (for REAL) and *8 and *16 (for COM-
PLEX) are st:ll available if explicitly used in specification statements. Further,
all REAL and COMPLEX constants will be treated as REAL*8 and COMPLEX*16
constants, respectively, when $DP is specified. If you do not specify this
option, the default is the type associated with FORTRAN identifiers and con-
stants. This directive must appear before the first FORTRAN statement of a
module, including the FUNCTION or SUBROUTINE statements. If this option
appears after the first statement of a module, you get a warning message and
the compiler ignores the directive. The scope of $DP is limited to the module
in which it appears.

48-010 FOO R04

48-010 FOO R04

ControllinF Compilation Through Directives 3
Miscellaneous Instream Compiler Directives

$F66D0O/$NF66DO

$F66DO causes all DO loops to be executed at least once. This directive sup-
ports compatibility with FORTRAN 66. Specifying this directive produces
code that is not compatible with the ANSI Standard FORTRAN 77. This direc-
tive must appear before the first FORTRAN statement of a module, including
the FUNCTION or SUBROUTINE statements. If this option appears after the
first statement of a module, you get a warning message and the compiler
ignores the directive. The scope of $F66DO is limited to the module in which
it appears.

$HOLL/$NHOLL

$HOLL causes the compiler to interpret all quoted strings used as arguments
to subprograms as Hollerith constants rather than character constants up to
the point $NHOLL is specified. These quoted strings can then be passed to
any type of dummy arguments except character. $NHOLL turns off the
$HOLL feature.

$IBYTE

$IBYTE treats all entities appearing in the "var list" of the BYTE statement as
INTEGER*1 entities. This directive must appear before the first FORTRAN
statement in the module or as a start option.

$INT2

$INT2 treats all INTEGER variables whose lengths were not specified expli-
citly in a specification statement as INTEGER*2 variables. Similarly, all LOGI-
CAL variables whose lengths were not specified explicitly in a specification
statement are treated as LOGICAL*2 variables. All other length specifications
(*1, *2, and *4) for both types are still available if explicitly used in
specification statements.

4-byte entities (INTEGER*4 or LOGICAL*4) must be specified where such enti-
ties are required (i.e., variable of an ASSIGN statement).

If $INT?2 is specified and a constant used is larger than the integer value
32767 or smaller than -32768, an INTEGER*4 constant element is created for
that constant and a warning message is issued. Otherwise, an INTEGER*2
constant is created.

3-47

3

3-48

Controlling Compilation Through Directives
Miscellaneous Instream Compiler Directives

The $INT2 option must appear before the first FORTRAN statement of a
module, including the FUNCTION or SUBROUTINE statements. If this option
appears after the first statement of a module, you get a warning message and
the compiler ignores the directive. The scope of $INT?2 is limited to the
module in which it appears. Not specifying this directive gives you the usual
typing associated with FORTRAN identifiers and constants. Note that this
feature conflicts with the "storage unit" standards of FORTRAN 77.

SLBYTE

$LBYTE treats all entities appearing in the "var list" of the BYTE statement as
LOGICAL*1 entities. This directive must appear before the first FORTRAN
statement in the module or may be used as a start option.

$LTOREIT

SLTORBIT causes the bit positions in a word to be counted from left to right.
In a 4-byte word, the leftmost (most significant) bit position is marked as 0
and the rightmost (least significant) bit position is marked as 31. If neither
$LTORBIT nor $RTOLBIT is specified, the bit positions are counted from left
to right. This directive affects all bit manipulation routines. $LTORBIT does
not conform with Military Standard 1753 extensions and IRTF standard, but
is compatible with FORTRAN VII R05-05 and earlier. This directive must
appear either as an instream directive before the first FORTRAN statement in
a module, or as a start option.

$PASSBYADDRESS

$PASSBYADDRESS causes the module to treat all of its noncharacter scalar
dummy arguments as if they were passed by reference. If $NPASSBYAD-
DRESS is in effect, noncharacter scalar dummy arguments which are not
enclosed in slashes in the FUNCTION or SUBROUTINE statement are treated
as if they were passed by value-result.

This option has no effect on arguments passed to other subprograms; the
choice of passing by reference vs. passing by value-result is determined
solely by th2 coding of the FUNCTION/SUBROUTINE statement that receives
the arguments. This directive must appear before the first FORTRAN state-
ment of a module, including the FUNCTION or SUBROUTINE statements. If
this option appears after the first statement of a module, you get a warning
message and the compiler ignores the directive. The scope of $PASSBYAD-
DRESS is limited to the module in which it appears.

48-010 FOO R04

48-010 FOO R04

Controllinf Compilation Through Directives 3
. Miscellaneous Instream Compiler Directives

$PAUSE

$PAUSE suspends compilation and causes the compiler to pause at the point
where this directive is encountered. $PAUSE can be used to suspend compi-
lation anywhere in the program. To resume compilation, enter the 0S/32
CONTINUE command.

$PROG

$PROG can be used to change the name of a program unit. In the absence of
$PROG, the compiler uses .MAIN as the name for the main program unit; all
subroutines and functions are referred to by their subroutine or function
name. $PROG overrides the name specified in the PROGRAM statement.

Example:

C THIS EXAMPLE ILLUSTRATES
C THE USE OF $PROG
$PROG PROG1
READ (5,10)N
WRITE (6,*)N
10 FORMAT (I3)
STOP
END

$PROG can appear anywhere in the program unit. The argument to $PROG is
a symbol of 1- to 6-characters. The symbol chosen can be a legal FORTRAN
symbol or a legal CAL symbol. ‘

$SREENTRANT/$NREENTRANT

SREENTRANT produces reentrant code which allows you to develop sharable
(reentrant) libraries. SREENTRANT supports E/SP. Reentrant code also allows
parallel execution of DO loops containing subroutine calls without replica-
tion of subroutine code. Use of SREENTRANT precludes the use of any con-
struct resulting in the initialization or modification of static storage, i.e.,
DATA, GLOBAL, COMMON, or SAVE statements. It may also result in substan-
tially less efficient code. The default is SNREENTRANT.

3-49

3

3-50

Controlling Compilatior: Through Directives
Miscellaneous Instream Compiler Directives

It may be necessary to increase the size of the run-time library (RTL) stack.
The default size of the RTL stack is X’2000’. The size can be changed if more
workspace is necessary by patching the RTL object file using the 0S/32
PATCH utility. To modify the stack size, apply the following patch:

OBJ F7LIB60.LIB,NEWRTL.LIB,LIB
GET _ U, COPY

BIAS 0:P

VER 14,0,2000

MOD 14,0,3000

SAVE COPY,TERM

END

In the above example, the size of the stack was increased from 8192 to
12228 bytes. For more information on patches, see the OS/32 PATCH Utility
Reference Manual.

@ NOTE_>> The amount of workspace required by your task will

increase if the size of the RTL stack is increased.

$RTOLEIT

$RTOLBIT causes bit positions in a word to be counted from right to left. In a
4-byte word. the rightmost (least significant) bit position is marked as 0 and
the leftmost (most significant) bit position is marked as 31. If neither $RTOL-
BIT nor $LTORBIT is specified, the bit positions are counted from left to
right.

SRTOLBIT af’ects all the bit manipulation routines. Using this directive forces
the interpretation of bit manipulation functions to be compatible with Mili-
tary Standard 1753 extensions and IRTF standard, but incompatible with the
earlier versions of FORTRAN VII. This option must appear before the first
FORTRAN statement in a module.

If one moduie uses this option, $RTOLBIT will apply to all modules in the
application for any bit manipulation routine whose code is not generated in-
line. Thus, if $RTOLBIT was specified in any module:

e Bit manipulation routines passed as arguments will use the $RTOLBIT con-
ventions.

¢ Bit manipulation routines declared externally will also follow the $RTOL-
BIT conventions.

48-010 FOO RO4

Controlling Compilation Through Directives 3
Miscellaneous Instream Compiler Directives

In these cases, the program is linking to the RTL. It is suggested that code
be developed with only one direction specified.

If your program is compiled with the $RTOLBIT directive, a DCMD LINK com-
mand is embedded in the generated object code. The text of the DCMD is:

*** *MODULE xxxxCOMPILED WITH $RTOLBIT

Where:
XXXX is the name of the program.
$SEG/$NSEG

$SEG causes the F70 and F7Z compilers to generate segmented object code.
When object code is segmented, all local data is placed in the impure seg-
ment while all executable code is placed in the pure segment. See the 0S/32
Application Level Programmer Reference Manual for more information on
segmented tasks. Segmented code runs faster than nonsegmented code on
the Model 8/32.

$NSEG prevents the F70 and F7Z compilers from generating segmented
object code. All code is placed in the impure segment. When a program is
compiled using $NSEG, the size of the resultant object code is reduced. Non-
segmented code runs faster than segmented code on Series 3200 Processors.

H_NOTE > Object code located in an impure task segment can-
not be shared. '

$SYNTAX/$NSYNTAX

$SYNTAX causes the F70 and F7Z compiler to perform a syntax check of the
source code without generating object code. $NSYNTAX turns off the $SYN-
TAX feature. $SYNTAX should be used to decrease compilation time when
developing programs with the F70 and F7Z compilers.

48-010 FOO RO4 3-31

3

3-52

Controlling Compilation Through Directives
Miscellaneous Instream Compiler Directives

$TARGET n

$TARGET causes the F70 and F7Z compilers to generate machine code
specifically optimized to the instruction set available on the Concurrent 32-
bit processor whose model number (8/32, 3205, 3210, 3230, 3240, 3200CPU,
3200APU, etc.) is defined by n. If n=0, the compiler outputs machine code
capable of being executed on any one of the 32-bit processors. If n=3200,
then the machine code is targeted for any of the Series 3200 Processors. If
the directive is not specified, the compiler will output machine code targeted
to the processor on which the compiler is running. To target code to the
MicroThree, MicroFive, or 3280E, use $STARGET 3283, $TARGET 3285, or
$TARGET 3288, respectively.

If STARGET 3203, $TARGET 3205, or $TARGET 3280 is specified, the com-
piler, by default, generates unnormalized floating point load instructions.
However, when $TARGET 3203 is specified, the code generated for the Model
3203 does not execute on any processor other than the Model 3203, 3205, or
3280 Systems. Similarly, when $STARGET 3205 is specified, the code gen-
erated for the Model 3205 does not execute on any processor other than the
Model 3203, 3205, or 3280 Systems. If $TARGET 3280 is specified, the code
generated executes on the 3280, 3283, 3285, and 3288 Systems. A change to
$TARGET will force NUNNORMALIZE if the processor does not accept it. If
the compiler generates any unnormalized floating point instructions, a DCMD
LINK command is embedded in the generated object code. The text of the
DCMD is:

*x**MODULE xxxx CONTAINS NON-NORMALIZING LOADS
Where:

XXXX is the name of the program where unnormalized floating
point load instructions were generated.

If a program unit is compiled with $TARGET 3200 or
higher, the resultant object code will not execute on
a Model 8/32 processor. If a program unit is com-
piled with $TARGET 328x, the resultant object code
will not execute on any other Series 3200 Processor.

48-010 FOO R0O4

48-010 FOO RO4

Controlling Compilation Through Directives 3
Miscellaneous Instream Compiler Directives

$TRANSCENDENTAL/$NTRANSCENDENTAL

$STRANSCENDENTAL causes transcendental functions to be executed via sin-
gle microinstructions in the machine code for the 328x processors (3280,
3283, 3285, 3288). SNTRANSCENDENTAL causes the compiler to generate
calls to the RTL version of each transcendental function. The default is
$TRANSCENDENTAL for a 328x processor and $SNTRANSCENDENTAL for any
other Series 3200 Processor. Specifying SNTRANSCENDENTAL on a 328x pro-
cessor generates calls to the RTL version of each transcendental function.
This produces consistent results across Series 3200 processors.

If your program is compiled with the SNTRANSCENDENTAL directive, a

DCMD LINK command is embedded in the generated object code. The text of
the DCMD is:

****MODULE xxXxXCOMPILED WITH $NTRANSCENDENTAL

Where:

XXXX : is the name of the program.
$TRANSCENDENTAL cannot override the TARGET start option or the $TAR-
GET directive. Therefore, you must specify $STARGET if the processor on
which the compilation is being done doesn’t support nontranscendental
functions.
Example 1:
In the following example, the $STARGET 3200 option is specified, and

$NTRANSCENDENTAL is the default. The $STRANSCENDENTAL directive is
overridden by the $TARGET 3200 option, and is, therefore, ignored.

$TARGET 3200
$ TRANSCENDENTAL

Result: Transcendental functions are inhibited.

3-53

3

3-54

Controlling Compilation Through Directives
Miscellaneous Instream Compiler Directives

Example 2: |

In the following example, the $TARGET 3280 option is specified, and $TRAN- |
SCENDENTAL is the default. In this case, the SNTRANSCENDENTAL directive |
overrides the $TARGET 3280 default. I

STARGET 3280) |
$NTRANSCENDENTAL |

Result: Transcendental functions are inhibited. |

Respecifying the $TARGET option for a model whose default is $STRANSCEN- |
DENTAL (i.e., 328x processor) will override the SNTRANSCENDENTAL direc- |
tive.

$SUNNCRMALIZE/$SNUNNORMALIZE

$UNNORMALIZE directs the compiler to generate unnormalized floating point
load instructions. If the code is being targeted for the Model 3203, 3205, or
3280 processors, SUNNORMALIZE is the default. Otherwise, SNUNNORMAL- |
IZE is the default. If the compiler generates any unnormalized floating point
load instructions, a DCMD LINK command is embedded in the generated

object code. The text of the DCMD is:

****MODULE xxxx CONTAINS NON-NORMALIZING LOADS

Where:

XXXX is the name of the program where unnormalized floating
point load instructions were generated. This comment
on the DCMD is displayed on the LOG device by 0S/32
LINK when the object code is used to build a task. See
the OS/32 LINK Reference Manual for a discussion of the
DCMD command.

$NUNNORMALIZE inhibits the generation of unnormalized floating point load
instructions regardless of the $TARGET option. For processors other than
the Model 3203, 3205, and 3280, $NUNNORMALIZE is the default.

$UNNORMALIZE cannot override the TARGET start option or the $TARGET I

directive. Therefore, you must specify $TARGET if the processor on which |
the compilazion is being done doesn’t support normalized loads. I

48-010 FOO RO4

48-010 FOO RO4

Coutrollinr Compilation Through Directives 3
Miscellaneous Instream Compiler Directives

Example 1:
In the following example, the $TARGET 3200 option is specified, and $NUN-

NORMALIZE is the default. The $UNNORMALIZE directive is overridden by
the $STARGET 3200 option, and is, therefore, ignored.

$TARGET 3200
$UNNORMALIZE

Result: Unnormalized floating point instructions are inhibited.

In the following example, the $TARGET 3280 option is specified, and
$UNNORMALIZE is the default. In this case, the $NUNNORMALIZE directive
overrides the $STARGET 3280 default.

Example 2:

$TARGET 3280
$NUNNORMALIZE

Result: Normalized floating point instructions are generated.

Respecifying the $TARGET option for a model whose default is SUNNORMAL-
IZE (i.e., Model 3203, 3205, and 3280 processors) will override the SNUNNOR-
MALIZE directive.

3-55

a=SQRT(b‘b+c*c)

Preparing Your Source Code

In this chapter

48-010 FOO R04

We introduce you to certain programming practices that should be followed
when preparing source code for use with the Concurrent FORTRAN VII com-
pilers. This chapter shows how you can take advantage of the features of
the FORTRAN VII language to produce valid and efficient code. It provides
you ways to avoid the common pitfalls experienced by FORTRAN program-
mers, In addition, it discusses user-level optimization of input/output (I/0).

Topics include:

Calling subroutines with dummy arguments

Processing of DO loops

Using the computed GOTO and assigned GOTO

Using parentheses

Converting data types

Defining program entities

Testing values of floating point variables

Equivalencing integer variables to floating point variables
Improving program readability

Optimizing I/0 operations

Preparing code for optimization

4-1

4 Preparing Your Source Code
Calling Subroutines with Dummy Arguments

Calling Subroutines with Dummy Arguments

The following precautions must be taken into consideration when using
dummy argaments in subroutine calls.

e When ca:ling a subroutine, avoid writing code that passes the same actual
argument to two different dummy arguments, as shown in the following
example

Example:
CALL TRYONE (C,C)

EN2
SUBROUTINE TRYONE (A,B)

OR

END

In this example, dummy arguments A and B each become associated with the
same actual argument C and therefore, with each other. It is not possible to
say what the value of C is after returning from TRYONE. Neither A nor B
should be modified by this CALL statement nor by any procedures called by
TRYONE or its descendants.

+ Avoid using different dummy arguments at multiple entry points to a pro-
gram, as shown in the following example.

4-2 48-010 FOO R04

Preparing Your Source Code 4
Calling Subroutines with Dummy Arguments

Example:

SUBROUTINE MAIN (A,B,C)

GO TO 100

ENTRY MESS (A,B,D)

100 A=B*D

END

The statement at label 100 uses dummy argument D, which is not defined if
the subroutine is entered through MAIN, as shown in the previous example.
Therefore, if the subroutine is entered through MAIN and D was not previ-
ously set by an earlier call to MESS, A is undefined after execution of state-
ment 100. A similar situation exists for C if the subroutine is entered
through MESS.

e Do not use a scalar argument to pass an array to a subroutine.

48-010 FOO RO4 4-3

4 Prerarin Your Source Code
Calling Subroutines with Dummy Arguments

Example:

C THE FOLLOWING CODE IS ILLEGAL IN FORTRAN
INTEGER I(10)
CALL SUBA (I)

END

SUBROUTINE SUBA (J)

C MOTE THAT J IS NOT DIMENSIONED
CALL SUBB (J)
END

SUBROUTINE SUBB (K)
DIMENSION K(10)

END

In this example, array I is passed to SUBA using scalar argument J (note that J
is not dimer.sioned and therefore, is a pass-by-value argument). See FOR-
TRAN VII Language and Syntax — A Reference for an explanation of argu-
ment passingz conventions. SUBA then passes the scalar variable J to the
dummy array K in SUBB. Because FORTRAN VII adopts different argument
passing conventions for array and scalar arguments, array K does not refer
to array I

¢ In general, when passing a character constant or expression to a subpro-
gram, the corresponding receiving dummy argument must also be defined
as type character. When passing a Hollerith constant as an actual argu-
ment, the corresponding dummy argument can be any data type except
character

4-4 48-010 FOO RO4

Preparing Your Source Code 4
Processing of DO Loops

Example:

CHARACTER*8 PASS
DATA PASS/’'HELLO’/
CALL A(PASS)

END

SUBROUTINE A(RECEIVE)
CHARACTER*8 RECEIVE
TYPE *,RECEIVE
RETURN

END

In the previous example, RECEIVE must be declared as a character type in
order for SUBROUTINE A to execute properly. Otherwise, a value other than
HELLO is printed by SUBROUTINE A.

Specifying the $HOLL directive in the calling program unit allows a character
constant to be passed to a noncharacter dummy argument. When this direc-
tive is used, a character expression passed as an actual argument requires
the corresponding dummy argument to be defined as type character; passing
a Hollerith constant as an actual argument requires the corresponding
dummy argument to be any data type except character. See Chapter 3 for
more information on the $HOLL directive.

Processing of DO Loops

48-010 FOO R0O4

FORTRAN VII follows ANSI FORTRAN 77 specifications with respect to DO
loops. These specifications differ from earlier versions of FORTRAN and
must be taken into consideration when writing the source program.

The DO statement is used to repeat the execution of a group of statements.
The range of a DO loop is the set of executable statements following the DO
statement, up to and including the terminal statement of the loop.
Processing within a DO loop involves initialization of an index variable,
increment of the index, test of the index, test of the variable, and exit of the
loop.

The format of the DO statement is:

DO n I=A,B,C

4-5

4

Preparing Your Source Code
Processing of DO Loops

Where:
n indicates the label of the last statement of the loop.
I is the index variable.
A is the initial value of the DO variable.
B is the final value of the DO variable.
C is the increment value.

A DO index can be a variable or expression of type INTEGER*4, INTEGER*2,
REAL*4 or REAL*8. Ais the value initially assigned to I. B is the final value
associated with the loop, and Cis the increment value. The type of I should
be consistent with the types of the index values, i.e,, if A, B, and C are of type
REAL*4, then I should be declared as REAL*4. Otherwise, the loop might per-
form differently from its intended usage. For more information on the itera-
tion count of a DO loop, see FORTRAN VII Language and Syntax — A Refer-
ence Manual.

If the value of Cis positive, iterations of the loop are repeated until the
value of Iis greater than B. When I > B, the DO loop becomes inactive and
execution continues with the first executable statement following the last
statement in the DO loop.

If Cis a nezative integer, the DO loop becomes inactive when the value of |

is less thar: B. The final value of I, then, is the value that deactivated the
loop, not the value of I before the last iteration.

48-010 FOO R04

48-010 FOO RO4

Preparing Your Source Code 4
Processing of DO Loops

Example:
A=5
B=3

DO 10 I=-10,0,+1
DO 20 J=A,B

0 CONTINUE ‘
BECAUSE 2 IS LARGER THAN B, THE J LOOP
WILL NOT BE EXECUTED. THIS IS NOT
FLAGGED DURING COMPILATION OR RUN-TIME.
THE FINAL VALUE OF J IS 5.

el eNe eI N

10 CONTINUE
C THE I LOOP WILL BE EXECUTED 11 TIMES
Cc THE FINAL VALUE OF I IS 1

At the point of deactivation of a DO loop, the value of the DO variable may
not be the expected value if you are not careful.

Example:

C THE FOLLOWING CODE RESULTS IN AN UNDEFINED VALUE
C FOR I AT THE EXIT OF THE LOOP

INTEGER*2 I

DO 10 I=0,32000,1000

10 CONTINUE

In this example, the value of I is incremented by 1000 after each iteration.
After the thirty-third time through the loop, I should have the value of
33000. However, since the maximum value for any INTEGER*2 variable is
32767, this example results in an overflow condition which is not flagged
during run-time. I is undefined upon deactivation of the loop. Future uses of
the DO variable | would not provide the expected value. You get a warning
message on this condition during compilation.

4-7

4 Preparing Your Source Code
Using the Computed GOTO

DO statement indexes must not be changed during the execution of the loop.
The following example includes an illegal statement that attempts to modify
the DO loop index inside its respective loop.

Example:

C THE FOLLOWING CODE IS ILLEGAL
EQUIVALENCE (I,J)
DO 10 I=1,10

9 IF (COND) J=11

CALL ABC{I); ABC MUST NOT MODIFY I
10 CONTINUE

In this example, statement 9 is illegal since I and] are equivalent and]
attempts to modify the value of I if the (COND) statement is true. Under no
condition can the index of the loop be changed, but in this case, no warning
message is ‘ssued by the compiler.

Using the Computed GOTO

If the value of the index variable appearing in a computed GOTO statement
is less than 1 or greater than the number of statement labels appearing in
the statement label list, FORTRAN VII transfers control to the statement fol-
lowing the computed GOTO statement. If the value of | is a constant, the
F70/F77 optimizer messages alert you that this transfer of control has
occurred because the value of I is out of range.

Example:

GOTCO (90,80,70,60)I
10 CONTINUE

In this example, control is transferred to statement 90 if the value of I is 1,
to statement 80 if the value of | is 2, to statement 70 if the value of I is 3,
and to statement 60 if the value of | is 4. Otherwise, control falls through to
the statement labeled 10.

4-8 48-010 FOO R04

Preparing Your Source Code 4
Using the Assigned GOTO

Using the Assigned GOTO

When using an assigned GOTO statement followed by a parenthesized list of
statement numbers, care must be taken so that the statement number
assigned to the integer variable is a member of the list.

Example:

ASSIGN 20 TO L
GOTO L, (10,20,30)

In this example, 20 must be included in the parenthesized list of the
assigned GOTO, otherwise, the transfer of control is undefined.

Using Array Subscripts

Make certain that all subscripts are within the range of their declared
bounds. Referenced array elements whose subscripts are not within their
declared bounds can yield unexpected results.

Example:

INTEGER A(9)
DO 10 I=1,10
A(I)=0

10 CONTINUE

In the previous example, the value of A(l) is out of bounds in the last itera-
tion of the loop. ’

48-010 FOO RO4 4-9

4 Preparing Your Source Code
Using Parentheses

Using Parentheses

Parentheses are used to override the precedence of operators and to estab-
lish the order of evaluating an expression.

Example:

THE FXRST ASSIGNMENT STATEMENT
MULTIPLIES C BY THE SUM OF A+B

THE SHECOND ASSIGNMENT STATEMENT
ADDS THE PRODUCT OF B*C TO A

s NN

Y

(A+B) *C

A+B*C

e
[

Parentheses must be used to express a complex constant.

Example:

C THE FOLLOWING EXAMPLE USES
C PARENTHESES TO DESIGNATE A
C COMPLEX CONSTANT
c
COMPLEX COMP
COMP = (1.0,2.0)
WEITE (6,100) (1.0,2.0), I+J

Redundant parentheses used to enclose an entire 1/0 list can produce an
error message if the parenthesized list is illegal. A parenthesized 170 list is
illegal if the entities within the parentheses do not evaluate to a single value.

4-10 48-010 FOO RO4

Preparing Your Source Code 4
Converting Data Types

Example:

C THE FOLLOWING WRITE STATEMENT WILL RETURN
C A COMPILATION ERROR FOR INVALID COMPLEX
C ENTITY
o
WRITE (6,100) (X,Y)

100 FORMAT (2F10.0)

In this example, (X,Y) is interpreted as an illegal parenthesized list since the
variable X and Y do not evaluate to a single value. The following example
illustrates legal uses of parentheses in 170 lists.

Example:

WRITE (6,100) (X+Y), ((4))
WRITE (6,200) (1,2)

The above statement contains legal redundant parentheses. The expression
X+Y can be enclosed in parentheses since it evaluates to a single value.

Converting Data Types

Certain precautions must be taken when performing data type conversions
within a program. Otherwise, the conversion may produce values different
from what is expected. The necessary precautions are discussed in the fol-
lowing sections.

48-010 FOO RO4 4-11

4 Preparing Your Source Code
Converting Data Types

Allocation of Variables in Common

Storage allocated to variables in common is always aligned on proper byte
boundaries depending on their data type. CHARACTER, INTEGER*1, BYTE,
and LOGICAL*1 variables are aligned on one byte boundaries. INTEGER*2
and LOGICAL*2 variables are aligned on halfword boundaries. Variables of
any other type are aligned on fullword boundaries. Therefore, when placing
variables in a common block, you must be aware of the alignment constraints
imposed on these variables.

Equivalencing may affect the mapping of varibles in common. See the
"EQUIVALENCE Statement" in Chapter 3 for more information.

Example:

COMMON M, N

CALL SUBA

STOP

END

SUBROUTINE SUBA
INTEGER*2 I
COMMON I,J

STOP

END

In this example, the variables M and N, which are both INTEGER*4 variables,
are allocated to two adjacent fullword locations. Whereas the variables I and
J are allocated with a 2-byte gap between them because J must be aligned on
a fullword boundary.

Figure 4-1 shows that INTEGER*2 variable | occupies two bytes of LOC 1.

The variable 1, therefore, does not see the same value as the variable M in the
main program.

4-12 48-010 FOO RO4

Preparing Your Source Code 4
Converting Data Types

Common Area

Fullword LOC 1 | Fullword LOC 2
Common M,N M N
Common 1] | J
Byte Offset ol1121t3 4151617

Figure 4-1. Sample Common Data Areas

Integer Conversion

When converting a larger size integer to a smaller size integer (i.e., an
INTEGER*4 value to an INTEGER*2 value, INTEGER*2 value to an INTEGER*1,
INTEGER*4 value to an INTEGER*1 value) the larger size integer value must
be within the acceptable range of the smaller size integer (-32,768 through
32,767 for INTEGER*2 and -128 through 127 for INTEGER*1). INTEGER*2 and
INTEGER*1 variables can only have values in these ranges because of their
limited number of bytes. Assigning a value to an integer variable outside its
allowable range results in an undefined value.

In Examples 1 and 2 below, the value of 12 is undefined.

Example 1:

C THE FOLLOWING CODE UNSUCCESSFULLY ATTEMPTS TO CONVERT
C THE VALUE OF I4 TO AN INTEGER*2

C VALUE; THE RESULTING VALUE IS OUTSIDE

C THE RANGE OF THE DATA TYPE

INTEGER*2 I2

14 = 1
I2 = ISHFT(I4,16)

48-010 FOO R0O4 4-13

4 Preparing Your Source Cade
Defining Program Entities

Example 2:

THE FOLLOWING CODE UNSUCCESSFULLY ATTEMPTS TO CONVERT
THE VARIABLE WHOSE VALUE IS Y'O00O00FFFF’

TO AN [NTEGER*2 DATA TYPE.

I2 CANNOT ACCEPT A VALUE GREATER

THAN THE RANGE OF ITS DATA TYPE

OO0 0an

INTEGER I4/Y’0000FFFF’/,I2*2
12 = I4

Example 3:

C THIS EXAMPLE CONVERTS THE LOWER
C HALFWORD OF AN INTEGER*4 VALUE
C TO AN INTEGER*2 VALUE

IF (BTEST (I4,16)) THEN

I2 = IOR (I4,Y’FFFF8000’)
ELSE

I2 = IAND (I4,Y’00007FFF’)
ENDIF

Defining Program Entities

To avoid unpredictable results during program execution, you must ensure
that all entities (variables and arrays) referenced within a program are initial-
ized to the desired values before being used. Otherwise, these entities
acquire valuzs depending on where they are mapped in memory. This can
produce erroneous results or run-time errors.

An entity is defined in a FORTRAN VII program after the program executes
one of the following statements.

e Assignment statements - These statements evaluate an arithmetic, logical,
or character expression and assign its value to the variable, array element
or character substring to the left of the equal sign (=).

o Input staements (READ, ACCEPT, ENCODE) - These statements assign a
value to an entity from the input medium, provided that the data type of
the entity matches that of the data.

e DO - This statement defines the DO variable.

e Implied DO list in I/0 statement - This statement defines the implied DO
variable.

4-14 48-010 FOO R0O4

Preparing Your Source Code 4
Defining Program Entities

o DATA - This statement initializes variables, arrays, array elements, and
substrings during compilation. The DATA statement can be placed any-
where in a program unit following any possible specification statements.

o ASSIGN - This statement defines an integer value with the value of a state-
ment label.

o Subprogram invocation - This defines dummy arguments of the subpro-
gram if the corresponding actual arguments are defined and agree with
the dummy arguments in data type.

¢ Return from a subprogram - This defines the actual arguments in the cal-
ling program unit that were passed by value to the called subprogram,
provided that the dummy arguments are defined in the subprogram.

When any one of these statements except ASSIGN defines an entity, all enti-
ties equivalent to it are defined. When a statement defines a complex entity,
all real entities associated with the complex entity become defined. Con-
versely, if the real entities associated with a complex entity become defined,
the complex entity is defined.

You must be aware of how entities become undefined in FORTRAN VII. This
can occur in the following situations:

e at the beginning of program execution, unless the entities are initialized
with a DATA statement,

« when an ASSIGN statement changes the value of an integer variable to a
statement label so that the variable becomes undefined as an integer and
can no longer be used as an integer value,

o when the RETURN statement is executed at the end of a subprogram (in
this case all entities in the subprogram become undefined except entities
in common, initialized entities that were not undefined or redefined and
entities preserved through a SAVE statement), and

e when an error condition or end of file condition occurs during execution
of an input statement, all entities specified in the input list of the state-
ment become undefined.

When an entity becomes undefined, all associated entities of the same data
type and all partially associated entities become undefined. Entities are said
to be associated if they have the same storage sequence. An EQUIVALENCE
statement causes association of entities only within one program unit, unless
one of the equivalenced entities is in a COMMON block. Arguments and
COMMON statements cause entities in one program unit to become associ-
ated with entities in another program unit.

48-010 FOO R04 4-15

4

Your Source Ccde

Testing Values of Floating Paint Variables

Testing Values of Floating Point Variables

Because of rcund off errors that occur as a result of floating point computa-
tions (See Chapter 15 for different factors affecting floating point calcula-
tions), testing floating point entities for exact values (e.g., X.EQ.0.0) can yield
inaccurate results. Instead, testing should be done for a range of floating
point values ‘e.g., X.GT.-1E-6.AND.X.LT.1E-6).

Equivalencing Integer to Floating Point
Variables |

When equivaiencing an integer value to a floating point value, the integer
value must b2 capable of being normalized. Certain integers cannot be nor-
malized and produce an arithmetic fault error when the value is loaded into
the floating point register.

Example:

C THIS EXAMPLE WILL PRODUCE
C AN ARITTHMETIC FAULT

REAL A

IN''EGER I
EQUIVALENCE (A, I)
I=1

A=A+]1

Improving Program Readability

4-16

Unless blanks appear in a Hollerith field or a quoted literal, they are ignored
by the FORTRAN compiler. Programmers can use this feature to improve the
readability of a program.

Compare Example 1 with Example 2.

48-010 FOO RO4

Preparing Your Source Code 4
Optimizing I/0 Operations

Example 1:

C THIS EXAMPLE USES BLANKS TO IMPROVE THE
C READABILITY OF THE PROGRAM

DIST = 0.03 * 0.001

WRITE(2,10) DIST, DIST AROUND
10 FORMAT (1X, 2F10.6)

STOP

END

Example 2:

C THIS EXAMPLE IS WRITTEN WITHOUT REGARD
C TO THE READABILITY OF THE PROGRAM

DIST=0.03*0.001

WRITE(2,10)DIST,DISTAROUND
10 FORMAT(1X, 2F10.6)

STOP

END

Optimizing 1/0 Operations

An 170 statement takes longer to execute than a non-1/0 statement. Thus,
I/0 execution time is an important factor in program optimization. The fol-
lowing programming techniques can be used on the source level to reduce
the time required for I/0 operations;

¢ Use unformatted READ/WRITE statements to reference all files created by

the source program to be used as temporary files or as input to other
FORTRAN programs.

e Substitute arrays without subscripts for IMPLIED DO statements in
READ/WRITE statements.

48-010 FOO R04 4-17

4 Preparing Your Source ¢ ode
Optimizing 1/0 Operation:

Example:

THIS EXAMPLE REDUCES THE NUMBER
OF DATA ITEMS IN AN I/O LIST BY
USING AN ARRAY WITHOUT SUBSCRIPTS
RATIER THAN AN IMPLIED DO.

oo an

DIMENSION IARRAY (20)

WRITE (6,10) IARRAY,J
10 FORMAT (I6)

This exaraple reduces the number of data items represented by the WRITE
statement to two compared to the 21 data items represented by:

WRITE (6,10) (IARRAY(I),I=1,20),J
10 FORMAT(I6)

s Avoid the use of dynamic format statements.

e Use the COMMON BLOCK and EQUIVALENCE statements to reduce the
number of data items that are referenced in a READ or WRITE statement.

4-18 48-010 FOO RO4

Preparing Your Source Code 4
Preparing Code for the Optimizing Compilers

Example:

THIS EXAMPLE STORES J AND IARRAY
IN A COMMON BLOCK THAT CAN BE
REFERENCED AS A SINGLE ITEM IN
AN I/0 STATEMENT

[eXeXeXeXe!

DIMENSION IARRAY (20),Q(21)
COMMON/BLOCK/J , IARRAY

THE FIRST ELEMENT IN COMMON IS
EQUIVALENCED TO AN ARRAY

WHICH IS USED IN THE UNFORMATTED
WRITE STATEMENT

eNoXeio oo Xe!

EQUIVALENCE (J,Q(1))

WRITE (6) Q

Preparing Code for the Optimizing Compilers

The previous section introduced some user-level coding techniques that can
improve the performance of the object code at execution time. This section
discusses how the programmer can further enhance performance through
the use of the optimizing compilers.

Before introducing coding techniques that can be used with the optimizing

compilers, the specific optimizations performed by the compilers will be dis-
cussed.

48-010 FOO R04 4-19

4 Preparing Your Source Code
Preparing Code for the Optimizing Compilers

Basic Optimization Concepts

The FORTRAN VII optimizing compilers incorporate optimizing techniques
that order and modify the source code to produce an object program that
executes faster. Optimizations performed by these techniques are summar-
ized in Table 4-1. These optimizations can be classified as follows:

¢ Built-in optimizations - These optimizations are performed automatically
during all compilations and cannot be turned off by the user through the
NOPTIMIZE compiler directive.

« Optional optimizations - These optimizations are performed by the
optimizer and can be turned off at compilation time at the discretion of
the programmer by using the NOPTIMIZE compiler directive.

@H_NOTE > $OPTIMIZE/$NOPTIMIZE do not control the inline
expansion feature of the FORTRAN VII optimizing
compiler.

4-20 48-010 FOO RO4

Preparing Your Source Code

Preparing Code for the

ptimizing Compilers

Optimization Class Cost Savings Optimized Entities
Constant Built-in - T/8 Expressions
computation
Type conversions Built-in - T/S Constants, expressions
Symbolic Optional - T/S Expressions
arithmetic
simplification
Linearized array Built-in - T/S Array subscripts,
references character
substrings
Short circuit Built-in - - T Logical expressions
logical
computation
Machine Built-in S* T/S* Machine instructions
instruction choice
Expression Built-in - S Registers
reordering
Strength reduction | Built-in/Optional S T Machine instruction
Global register Optional - T/S Registers
allocation
Constant Optional - T/S Expressions
propagation and
computation
Invariant code Optional - T DO loop, blocks
motion
Test replacement Optional - T/S DO loop index
Scalar propagation | Optional - T/S Assignments
Folding Optional - T/S Assignments
Common Optional - T/S Assignments,
subexpression expressions
elimination
Dead code Optional - T/S Assignments, DO loops
elimination '

* In some cases, there will be a memory space cost, and in others, a
‘memory space savings; but never both.

= time

S = memory space

48-010 FOO RO4

Table 4-1. Compiler Optimizations

4

4-21

4 Preparing Your Source Code
Preparing Code for the Cptimizing Compilers

Before any built-in or optional optimizations can be performed, the compiler
collects information about the program, stores this information in various
tables and translates the source code into an intermediate language. In addi-
tion, optional optimizations require complete information on the flow of
control within a program and the definition and use information for each
program variable. The recording of definition and use information for a pro-
gram variable is known as p-graph analysis. This analysis determines infor-
mation abcut all generators of a variable and all the uses of the variable that
belong to each generator.

In general, the optimizations performed by the optimizing compilers have no
effect on the results. However, if the order of evaluation of an expression
greatly affects the results, the expression should be parenthesized to force a
particular order of evaluation. See Chapter 14 for details on the possible
effects of cptimization on floating point calculations.

The following sections discuss the operation of each of the optimizations
available o1 the optimizing compilers. In the following examples, a compiler
generated variable is represented by @n and a compiler generated label is
represented by $Ln, where n is a number chosen by the compiler.

Constant Computation (Built-in)

All arithmetic, relational and logical expressions whose operands are expli-
citly stated constants are candidates for computation. This optimization
saves execution time and memory space.

Example:
Source code before compilation: Optimized code:
TEMP = 16.*T/2.+(8.-3.) TEMP = 8, *T+5.
Compile Time Type Conversions (Built-in)

The compile time type conversion routine evaluates constants and performs
type conversions in mixed mode expressions.

4-22 48-010 FOO RO4

Preparing Your Source Code 4
Preparing Code for the Optimizing Compilers

Example:

Source code before compilation: Optimized code:

Y=Y+ 5 + 2 Y=Y+ 7.0

In this example, the optimization routine computes the integer expression
5+2 and converts the sum to a real number, 7.0. By performing type conver-
sions during compilation rather than execution, the compiler decreases both
time and memory space used during run-time.

Symbolic Arithmetic (Optional)

This optimization routine simplifies symbolic arithmetic expressions as fol-

lows:
K1*X + K2*X ———————m > (K1+K2)*X
X+0 ———————— > X
X#1 ———————— > X
X/l ———————- > X
X-X ———————= >0
X/X ———————= > 1
X*Q ———————— >0
Example:

Source code before compilation: Optimized code:

X=0 X=0
=1 Y=1
Z=(Y+X)*(Y/Y) Z=1

This optimization saves both execution time and memory space.

48-010 FOO R0O4 4-23

4 Preparing Your Source Code
Preparing Code for the Cptimizing Compilers

Array Linearization (Built-in)

Array linearization replaces multidimensjonal arrays with a one dimensional
array of the same data type. The one dimensional array is then simplified
into the following expression:

A(constant part + variable part)

Example:

Source code before compilation: Optimized code:

REAL*4 A(10,10,10) REAL*4 A(10,16,10)

DO 10 I=1,10 DO 10 I=1,10

DO 10 J=1,10 DO 10 J=1,10

DO 10 K=1,10 DO 10 K=1,10
@1=4*I+40*J+400*K

A(Z,J,K)=A(I,J,K)+1 A(-444+@1)=A(-444+@1)+1

10 CONTINUE 10 CONTINUE

In this example, a(1,J,K) is replaced by the linearized array:
A((I-)+(-1)*10+(K-1)*100)*4)

The expression representing the linearized array subscript is then simplified
by evaluating its constant and variable parts as follows:

constant part = (-1-10-100)*4
= -444

variable part = @1

@1 = (I+10*J+100*K)*4
= 4*[+40%*]J+400*K

In this example the linearized array subscript is converted to an actual byte
address of a 4-byte location by multiplying the subscript by 4.

4-24 48-010 FOO R04

Preparing Your Source Code 4
Preparing Code for the Optimizing Compilers

Short Circuit Logical Expression Computation (Built-in)

Short circuit logic evaluation is applied to a logical expression within an IF
condition in an IF statement. The logical expression consisting of subex-
pressions connected by .AND., .OR,, .EQ,, or .NEQ. is evaluated left to right,
subexpression by subexpression, until the value for the entire expression
can be determined. At that point, the evaluation of any remaining subex-
pressions is bypassed.

Example:
Source code before compilation: Optimized code:
A=-1 A=-1
IF(.NOT.(A.LT.0.0R.B.GT.0))GOTO 10 IF(A.LT.0)GO TO $L1

IF(B.LE.O0)GO TO 10
$L1 CONTINUE

In the above example, the second IF statement in the optimized code is
never executed.

@ _NOTE_ 1> Due to short circuit logic evaluation, functions con-
tained in a bypassed subexpression will not be
invoked.

Machine Instruction Choice (Built-in)

After a source statement is compiled, this optimization orders and modifies
the resulting machine instructions so that when executed, the program will
take full advantage of the performance features of the processor. The fol-

lowing example optimizes the source statement [= I*6 and, thereby, reduces
its execution time.

48-010 FOO R04 4-25

4 Preparing Your Sourcs: Code
Preparing Code for the Optimizing Compilers

Example:

Machine code after compilation: Optimized machine code:

L 5,1 L 5,I RS5=I

M 4,$CONST6 IR 4,5 ®R4=I

st 5,1 AR 5,5 RS5=I+I=2I
AR 5,4 R5=2T+I=31
AR 5,5 R5=3I+3I=6I
ST 5,I I=6I

Expression Reordering (Built-in)

Another optimization performed on an arithmetic expression by the com-
piler is expression reordering. This routine reorders the variables in an
expression so that the number of registers required for temporary storage is
reduced.

Example:
Source code before compilation: Reordered optimized code:

A+B*C B*C+A

In this example, the resulting machine code is:

LE 14,B R1l4=B
ME 14,C R1l4=B=*C
AE 14,A R14=B*C+A

Without reordering, the machine code would be:
LE 14,A R14=2
LE 12,B R12=B

ME 12,C R12=B*C
AER 14,12 R14=A+B*C

4-26 48-010 FOO 'R04

Preparing Your Source Code 4
Preparing Code for the Optimizing Compilers

Strength Reduction (Built-in/Optional)

The strength reduction optimizations reduce the strength of an operation by
replacing it with another operation that executes faster. The optimizing
compilers offer two optimizations for strength reduction. The built-in
strength reduction optimization transforms an algebraic expression into
another expression that requires fewer operations per computation. By fac-
toring algebraic expressions into simpler terms, this optimization rearranges
the code to produce a more efficient sequence of operations. Slower opera-
tions (exponentiation, division and multiplication) are replaced by opera-
tions that execute at a faster rate. For example, division operations are
replaced by multiplication, and multiplication operations are transformed
into addition.

Examples:
Source Code Before Net Change In
Compilation Optimized Code Operations

40*1+4*] 4*(10*1+)) Faster sequence of
operations

(1/B)*A A/B Eliminates one multipli-
cation

B**M * B**N B**(M+N) Replaces one exponen-
tiation with addition

A**M * B**M (A*B)**M Eliminates one exponen-
tiation

(A/7C)+(B/C) (A+B)/C Eliminates one division

X/4.0 X*.25 Replaces division with
multiplication

X**2 - Y**2 (X-Y)*(X+Y) Replaces two exponen-
tiations with one multi-
plication

A*X**3 4+ B*X**2 + C*X | (A*X+B)*X+C)*X Eliminates two exponen-
tiations

48-010 FOO R04 - 4-27

4 Preparing Your Source Code
Preparing Code for the Optimizing Complilers

The optional strength reduction optimization changes a multiplication
expression (e.g., I*K where | is the DO index and K is the loop invariant of
type integer) to an addition.

The following example shows how optional strength reduction can increase
optimizaticn after array linearization is performed.

Example:

Source code before compilation:

DIMENSION A(50,50)
DO 10 I = 1,50

DO 10 J = 1,50
A(I,J)= A(I,J)+1

10 CONTINUE

Optimized code after array linearization:
DIMENSION A (50,50)

DO 10 T = 1,50
bt 10 J = 1,50

A(-204 + 4*I+200*J) = A(—204 + 4*I + 200*%J)+1.0
10 CONTINUE

Optimized code after array linearization and optional strength reduction:
DIMENSION A(50,50)
@ = 4
DC $L1 I = 1,50
@2 = 200
DC $L2 J = 1,50
A(-204 + @1 + @2) = A(-204 + @1 + @) + 1.0

$L2 @2 = @2 + 200
$L1 @ = @1 + 4

In the previous example, @1 replaces [*4 and @2 replaces J*200.

These examples show that the strength reduction optimizing techniques
sacrifice memory space to save execution time.

4-28 48-010 FOO RO4

Preparing Your Source Code 4
Preparing Code for the Optimizing Compilers

Loop Test Replacement (Optional)

In the last example from the preceding section, the DO loop variables I and J
are no longer used with the loop. Loop test replacement replaces unused
DO loop variables resulting from strength reduction with compiler generated
variables. In this case, the compiler generated variables are @1 and @2. Loop
test replacement replaces the initial, final and increment values of the origi-
nal DO loop with the initial, final and increment values of the most heavily
used strength reduction temporary variable.

Example:
Optimized code after

Optimized code after strength reduction

strength reduction: and test replacement:
DIMENSION A(50,50) DIMENSION A(50,50)
@1=4 DO 10 @1 = 4,200,4
DO $L1 I=1,50 DO 10 @2 = 200,1000,200
@2 = 200 10 A =(-204 + @1 + @2)=
DO $L2 J=1,50 1 A(—-204 + @1 + @2) + 1.0

A(-204 + @1 + @2)=

1 A(-204 + @1 + @2) + 1.0
$L2 (@2 = @2 + 200
$L1 (@1 = @1 + 4

This optimization routine saves both time and space.

Global Register Allocation (Optional)

48-010 FOO RO4

To reduce the amount of memory space and/or execution time, the compiler
can optionally store program variables, constants and dummy array
addresses in available registers.

Using p-graph analysis, the compiler determines the definition and use of
each variable throughout the program. The compiler then divides the pro-
gram into sections in which the definition and use of that variable is
independent of the definition and use of that variable in the other sections
of the program. In other words, each variable is split into a number of
separate and independent variables each of which has its own separate sec-
tion in the program.

4-29

4

4-30

Preparing Your Source Code
Preparing Code for the Optimizing Compilers

The global ragister allocation routine scans the entire program for definition
and use infcrmation to determine the payoff value for each variable. The
payoff value is equal to the sum of the frequency and expected frequency of
the use and redefinition of the variable in a given section.

The payoff values are sorted and after all local register requirements are
satisfied, the variables with the highest payoff values are stored in the
remaining registers. For example, if variable A is referenced 10 times in a
particular section, A has a payoff value of 10. Variable B, which is referenced
5 times, has a payoff value of 5 for that section. If only one register is avail-
able, variablz A will be stored because of its higher payoff value.

The compiler computes the expected frequency of a variable from the loop
structures within the program. Statements within DO loops that have a con-
stant loop count are assigned an expected frequency value equal to the loop
count. If the loop count value is not a constant, the compiler assigns a value
of 10.

The expected frequency of a set of nested loops is the product of the DO
loop counts within the set. The compiler automatically assigns a frequency
value of 3 tc statements within compiler recognized loops outside any DO
statement. All statements outside either type of loop are assigned a fre-
quency value of 1.

The global ragister allocation routine uses the same methods to store con-
stants and dummy array addresses.

If the $BASE directive is specified, the base addresses of all variables and
named comrion blocks will also be allowed to compete for available regis-
ters. The global register allocation routine will sort the payoff values of
these base addresses along with the program variables, constants and
dummy arrav addresses. Because of the additional entities competing for
registers, $BASE can cause a slight increase in execution time. This increase,
however, is »ffset by the reduction in memory space required by the object
code which can now use the base addresses to replace RX3-type instructions
with RX2-tyre instructions. For an explanation of machine instruction for-
mat, see the appropriate Concurrent 32-bit processor manual.

Invariant Code Motion (Optional)

This optimization examines a DO loop for invariant aperations and moves
these operations to a point immediately before the loop entry. An operation
is invariant if its operands do not depend on variables that change within

the loop. This optimization saves execution time.

48-010 FOO RO4

Preparing Your Source Code 4
Preparing Code for the Optimizing Compilers

For example, if during compilation a single multiplication is moved out of a
loop that iterates 1000 times, 999 run-time multiplications are eliminated.

Example:

Source code before compilation: Optimized code:

DO 10 I = 1,10 @ =X *Y * 2
A(I,J,K)= X*Y*Z DO 10 I=1 ,10
10 CONTINUE A(I,J,K) = @1

10 CONTINUE

An intrinsic function can also be invariant if its arguments do not change
within the loop. External subprogram invocations are not considered for

loop invariance because their argument values can be altered by the called
subprogram.

Constant Propagation and Computation (Optional)

This optimization replaces all variables in an expression with their assigned
constant values and then evaluates the expression.

Example:

Source code before compilation: Optimized code:

T = 512.0 . T = 512.0
TEMP= 16.0*T/2.0 + (8.0-3.0) TEMP= 4101.0

In this example, T was replaced by its assigned constant 512.0 to yield the
expression:

16.0*512.0/2.0 + (8.0 - 3.0)

This expression was then evaluated to 4101.0.

48-010 FOO R04 4-31

4

4-32

Preparing Your Source Code
Preparing Code for the Optimizing Compilers

Constant propagation and computation can be performed on any variable
whose value is constant and is assigned through an assighment statement.
For example, 4101.0 can be substituted in all subsequent uses of the variable
TEMP.

Variables can be replaced by their assigned constants only if the statement
that conta ns the variable does not redefine the constant (e.g., subprogram
invocation argument), and the statement cannot be reached from any
definition of the variable other than the given constant assignment.

Dead Code Elimination (Optional)

After all uses of a variable are replaced with its assigned constant through
constant propagation, the original assignment statement becomes dead code
and can be eliminated.

Dead code elimination can also be performed on conditional statements. For
example, if an IF statement evaluates to false, the IF statement becomes dead
code and s deleted. Conversely, if the IF condition in a statement such as:

IF(IA.EQ.2) GO TO 20

evaluates to true, the entire IF statement is eliminated and replaced by an
unconditional branch to 20.

Invariant code motion can often reduce a DO loop to just two statements, DO
and CONTINUE. Dead code elimination removes all such loops.

Examples of dead code that can be removed are:

¢ DO loops with an iteration count of 0 (in this instance, only the assign-
ment of the initial value to the DO variable is preserved),

o Incremant step and loop termination test for a DO loop with an iteration
count of 1,

+ Logical and arithmetic IF statements that branch to one block of code
regardless of condition (these statements are replaced with unconditional
GOTO statements), :

¢ Assigned and computed GOTO statements that branch to one block of
code (these statements are replaced with unconditional GOTO state-
ments),

 GOTO statements that branch to the statement directly below it,

48-010 FOO R0O4

Preparing Your Source Code 4
Preparing Code for the Optimizing Compilers

e GOTO statements branching to other GOTO statements (the program
branches to the second GOTO statement label), and

¢ Blocks of code that become unreachable because of previously performed
optimizations.

Scalar Propagation (Optional)

Scalar propagation eliminates assignment statements of the form X=Y (where
X is a local variable) and replaces the value assigned to X in appropriate sub-
sequent uses of X.

Example:

Source code before compilation: Optimized code:

X =YX A=Y * C
A=X*_C B=Y *D
B=X*D

Scalar propagation occurs only if the value of X was not redefined before
using in an expression. X and Y must also be the same data type. The
assignment X=Y is deleted if there are no more uses of X in the program
unit.

This optimization saves both time and space.

Folding (Optional)

48-010 FOO RO4

Folding eliminates assignment statements of the form:
X = expression
if X is used only once in the program.

Example:

Source code before compilation: Optimized code:

X
Y

A*B Y = A*B + C
X + C

nn

4-33

4 Preparing Your Sourc: Code
Preparing Code for the Optimizing Compilers

In this example, A*B was folded into the expression X+C to eliminate the
assignment statement X=A*B. Folding occurs under the following conditions:

o The variable to be folded is used only once throughout the entire pro-
gram.

« The prcgram executes sequentially from the assignment statement to the
statement that uses the variable.

+« The cormponents of the expression assighed to the variable are not
redefined before the statement where the folding occurs.

Common Subexpression Elimination (Optionai)

Common subexpression elimination creates an assignment statement of the
form:

@n = subexpression

Where:
subexpression refers to an arithmetic, logical, or relational operation
that is used more than once through the program unit.
The compiler generated variable @n replaces all subse-
quent uses of the subexpression.
Example:

Source code before compilation: Optimized code:

A = B*C*D @1 = B*D
X = B*D A = @1*C
IF (B.GT.C) GO TO 10 X =@
Y = B*D IF(B.GT.C) GO TO 10
IF (B.LT.C) GO TO 10 Y = (@1
5 B = B+2 IF(B.LT.C) GO TO 10
10 z = B*D 5 B = B+2
10 %2 = B*D

4-34 48-010 FOO RO4

48-010 FOO R0O4

Preparing Your Source Code 4
Preparing Code for the Optimizing Compilers

In this example, all but the last occurrence of the subexpression B*D were
replaced with the compiler generated variable @1. B*D in statement 10 is
not equivalent to the other occurrences of B*D, because B was assigned a
new value in statement 5.

If any assignment is made to any of the components of a subexpression
before it is used, the subexpression can no longer be considered for com-
mon subexpression analysis. Subexpressions are considered for common
subexpression elimination if their operators (* or +) and operands are ident-
ical to other subexpressions.

In the code sequence:

the compiler will not recognize the A+B and X+B as common subexpressions
even though they have the same value. (It is assumed that folding has not
occurred.)

It is not required that unparenthesized subexpressions that are equivalent in
regard to operator and operand be identical in the sequence of their
operands. For example, A+B+C is equivalent to B+C+A, and A*B*C is
equivalent to B*C*A.

The compiler also recognizes partial common subexpressions as equivalent.
For example, in the code sequence:

Q=A+B+D
R=B+A+C

A+B is recognized as a common subexpression. This is also true if the
operator was *.

4-35

4 Preparing Your Source Code)
Preparing Code for the Optimizing Compilers

Sequence of Optimization

During compilation the compiler performs optimization in the following
order.

BEGIN

Perfcrm symbolic arithmetic and constant computation
Perfcrm type conversion
Perfcrm array linearization

RESTART: DO until no change
DO until no change
Perform flow analysis deleting unreachable code
Perform constant propagation., symbolic arithmetic,
and constant computation
Attempt to evaluate logical and arithmetic IF,
computed GOTOs and DO loops
Remove if possible
END

terform p-graphing of scalars and arrays

Ferform scalar propagation, folding. and dead code
elimination

Ferform array common subexpression analysis

Ferform strength reduction and test replacement

Ferform scalar common subexpression analysis

Ferform invariant code motion

Evaluate consequences to flow of control; If all
code is removed from a loop., GO TO RESTART

ENL
Perfcrm register allocation

END

Preparing Source Code for the Optimizing Compilers

Certain pre:autions must be taken to avoid degrading the compilers’ optim-
izing capabilities. To obtain optimum performance from the O and Z com-
pilers, follow these guidelines when preparing the source program.

e Avoid using extended range DO loops. These loops inhibit the perfor-
mance o’ the DO loop optimization techniques such as strength reduc-
tion, test replacement, and invariant code motion.

¢ To take advantage of the DO loop optimization techniques available, use
DO loop:s whenever possible to replace IF and GOTO loop structures.

4-36 48-010 FOO RO4

48-010 FOO R0O4

Preparing Your Source Code 4
Preparing Code for the Optimizing Compilers

When coding a logical expression for the IF condition of an IF statement,
code subexpressions whose values can determine the value of the entire
expression before coding the other subexpressions. For example, the
statement:

IF ((A.AND.B.AND.C).OR.D) GO TO 10
would be more efficiently executed if it were written as:
IF (D.OR.(A.AND.B.AND.C)) GO TO 10

This increases the efficiency of short circuit logical expression computa-
tion.

Make certain that all variables are defined at their point of entry into a
program unit. This will aid the compiler in gathering definition and use
information for the optimizer.

Do not use the RTL EXIT routine. The optimizing compilers treat EXIT as
any other subprogram. Consequently, a loop containing a CALL EXIT
statement will be treated as an infinite loop or as a program module that
has no program exit.

Avoid excessive use of EQUIVALENCE statements. If two scalar variables
are equivalenced, the two are treated as one scalar variable having the
combined uses of both scalars. If a scalar is equivalenced to an array, the
scalar is treated as an array. This degrades scalar optimization.

Use the $BASE directive when the combined number of references to indi-
vidual variables in a named common block is greater than the number of
references to any of the local variables. $BASE causes the register alloca-
tion routine to store the address of the block rather than the individual
block variables, which have less of a chance competing against the local
variables for register space than the block itself. This procedure allows
both an efficient use of registers and a more compact object program.

Use the $TCOM directive when optimizing a program that references a
common block shared by another running program. $TCOM prevents the
optimizer from eliminating code referencing the block or allocating regis-
ters for the variables within the block. '

4-37

4 Preparing Your Source Code
Preparing Code for the Optimizing Compilers

Example:
C THIS PROGRAM IS DESIGNED TO RUN
C CONZURRENTLY WITH A SECOND PROGRAM
C CALLED EVENT.TSK WHICH ALSO REFERENCES
C COMMON ABC.
C THIS EXAMPLE USES $TCOM TO DECLARE
C WHICH COMMON BLOCK VARIABLES ARE
C PART OF A TASK COMMON SEGMENT ABC AND
C SHOULD NOT BE CONSIDERED AS CANDIDATES
C FOR OPTIMIZATION.
C
C
$TCOM/ABC/
C
COMMON/ABC/EVENT
LOGICAL EVENT
EVENT = ,FALSE.

10 CONTINUE
IF(.NOT.EVENT) GO TO 10
STOP
END

In this example, $TCOM prevents dead code elimination of all code referring
to EVENT.

IF $TCOM was not specified, the optimizer would have scanned the program
for code that would have propagated the value of EVENT into the IF state-
ment. The IF statement would evaluate to TRUE and would be converted into
an unconditional GOTO to label 10. Consequently, the compiler would have
eliminated the IF statement during compilation even though EVENT.TSK
alters EVEMT.

$TCOM also prevents the compiler from storing common block variables in
available registers. If EVENT was stored in a register during compilation, the
above program would reference the register; therefore, the program will not
be informed when EVENT is changed by EVENT.TSK. Even with the $SNOPTIM-
IZE option specified, it is important that $TCOM be used whenever shared
COMMON exists. $NOPTIMIZE does not guarantee that the optimizing com-
pilers do not perform register allocation.

4-38 48-010 FOO R0O4

48-010 FOO RO4

Preparing Your Source Code 4
Preparing Code for the Optimizing Compilers

- The $TCOM statement prevents the optimizer from changing the meaning of

the user program when task common references are involved. However, this
statement does not provide mutual exclusion on access to shared COMMONSs.
Two RTL routines, LOKON and LOKOFF, are provided to enable the user to
implement mutual exclusion and to avoid the problems of degraded optimi-
zation which can result from the excessive use of the $TCOM directive.
These routines take a single argument which is normally an INTEGER*2 vari-
able in task common. LOKON is a LOGICAL function which performs a "test
and set" on its argument and returns .TRUE. if the sign bit of its argument is
set. Otherwise it returns .FALSE. and sets the sign bit of its argument. The
subroutine LOKOFF unconditionally resets the sign bit of its argument.

The argument of LOKON and LOKOFF is always treated as if it occurred in a
$TCOM statement.

Example:

SUBROUTINE UPDATE
INTEGER*2 KEY
COMMON /ABC/ KEY, IDATA (10)

c WAIT FOR COMMON TO BECOME ACCESSIBLE
10 IF (LOKON (KEY)) GO TO 10

C USE OR SET IDATA ELEMENTS

C
C ALLOW OTHER TASK TO ACCESS COMMON AGAIN
Cc

CALL LOKOFF(KEY)

RETURN
END

4-39

4 Preparing Your Source Code
Preparing Code for the Optimizing Compilers

This example illustrates two important points. First, KEY is treated as if it
were mentioned in the $TCOM directive. Therefore, the optimizer can regis-
ter allocate and optimize references to IDATA. This can be done safely
assuming that other tasks referencing /ABC/ also observe the locking
mechanism since the optimizer will not move any references to COMMON
areas across calls to LOKON and LOKOFF. While LOKON is functionally
identical to TESET and LOKOFF is identical to a reset bit of the high order bit
of KEY, this property of blocking the optimizer from moving COMMON refer-
ences is important in preserving the program'’s original intent. TESET should
never be used as a substitute for LOKON. An assignment statement is never
a substitute for LOKOFF.

The protection provided by LOKON and LOKOFF is not a positive protection
method. It relies on the strict observance of the locking convention by every
task referencing the task common. Members of the 'locked’ common should
not be referenced outside the scope of a LOKON/LOKOFF block.

4-40 48-010 FOO RO4

Interfacing Assembly Language
Routines

In this chapter

48-010 FOO RO4

We provide information on how to interface FORTRAN programs with assem-
bly language subprograms. This capability allows you to use any existing
assembly-written routine that may be useful for your task. You can also write
a routine in assembly language which is otherwise impractical to code in
FORTRAN and interface this routine with your FORTRAN program.

Topics include:

e Learning the standard FORTRAN calling sequence

e Embedding assembly language blocks in FORTRAN source

5-1

5 Interfacing Assembly Language Routines
Knowing Your Options

Knowing Your Options

There are two options for interfacing assembly language subprograms with a
FORTRAN program:

e Writing sssembly language routines that can be called by the FORTRAN
program as any other routine. These assembly language routines can be

called by all FORTRAN VII programs if the subprograms have the proper
interface.

e Directly embedding assembler code into the FORTRAN source code using
the FORTRAN VII compiler directives.

Guidelines to using both options are discussed in the following sections.

Standard FORTRAN Calling Sequence

The FORTRAN VII compiler automatically sets up the necessary interface
used by a FORTRAN program to communicate with a subprogram written in
FORTRAN. Assembly language subprograms must use the same interface.

The following sections contain the calling sequences to FORTRAN VII.

Passing Argunents

The standard FORTRAN VII interface passes arguments through general pur-
pose register 14 (GPR14). GPR14 contains the subprogram type field in the
high order hyte and the address of the argument list in the next three low
order bytes. The address of the argument list is limited to the first 16MB

(24-bit addressing). The argument list pointed to by GPR14 consists of two
distinct data structures:

e Argumernt address list (AAL) and
e Argument descriptor list (ADL).

Figure 5-1 illustrates the argument list structure.

5-2 48-010 FOO R0O4

1010-67

GPR 14

ARGUMENT
LIST
POINTER

ARGUMENT
LIST
POINTER

SUBPROGRAM I
TYPE

FIELD ADDRESS
OF
AAL

Figure 5-1. Argument List Structure

48-010 FOO R0O4

Interfacing Assemb
Standard FOR

4 BYTES

ARGUMENT
ADDRESS
LIST (AAL)

ADL

ADDRESS
OF

FIRST
ARGUMENT

[r——

ADDRESS
OF
LAST
ARGUMENT

ARGUMENT

TYPE
FIELD ADDRESS
OF

ARGUMENT

ANE

TrA

2 BYTES

ARGUMENT
DESCRIPTOR
LIST (ADL)

uage Routines
alling Sequence

OF
EXPLICIT
ARGUMENTS

DESCRIPTOR
FOR
SUBPROGRAM

POINTER

DESCRIPTOR
FOR
FIRST
ARGUMENT

DESCRIPTOR
FOR
LAST
ARGUMENT

5

5-3

5

5-4

Interfacing Assembly Language Routines

Standard FORTRAN Calling Sequence

If no argument list exists for the subprogram, the first entry of the ADL,
which contains the number of explicit arguments in the argument list, will be

0.

The subprogram type field in GPR14 is defined as in Table 5-1:

Bits | Definition | Value Effect
0 Arguments 0 No
passed 1 Yes
1-3 | Subprogram 5 Function
type 6 Subroutine
7 Soré6
4-7 | Function 1 INTEGER*2
result type 2 INTEGER*4
3 LOGICAL*1
4 LOGICAL*4
5 CHARACTER
6-7 Reserved
8 COMPLEX*16
9 REAL*4
10 COMPLEX*8
11 REAL*8
12-13 | Reserved
14 LOGICAL*2
15 INTEGER*1

Table 5-1. GPR14 Subprogram Type Field

G NOIE > The subprogram type field in GPR14 is maintained
for compatibility with FORTRAN Version or release
R05-05 and earlier versions of the compiler. All
information contained in this field is duplicated in
the ADL as described below. The information is
represented differently.

48-010 FOO R0O4

Interfacing Assembly Language Routines
Sta%dard FOR'H(AN gallﬁlg Sequence 5

GPR14 points to the second entry of the AAL (corresponding to the address
of the first argument). The first entry in the AAL is a pointer to the third
entry in the ADL. The AAL must be fullword aligned and contain one argu-
ment per word. Except for the first entry in the AAL, each argument word
consists of an argument type byte and the argument address in the next
three low order bytes (24-bit addressing).

Figure 5-2 illustrates the AAL entry:

i010-68

PRE R06-00
ARGUMENT 24 BIT ADDRESS
TYPE BYTE

Figure 5-2. AAL Entry Structure

The argument type byte is defined in Table 5-2:

48-010 FOO RO4 5-5

5 Interfacin; Assemb;?' lLanguage Routines
Standard FORTRAN Calling Sequence

Bits | Definition | Value Effect
0 Argument 0 Not last argument
position 1 Last argument
1-3 | Argument 0 Expression or constant
class 1 Variable
: 2 Array element
3 Array
4 Reserved
5 Function
6 Subroutine
7 Either 5 or 6
4-7 | Argument 1 INTEGER*2
type 2 INTEGER*4
3 LOGICAL*1
4 LOGICAL*4
5 CHARACTERt
6-7 Reserved
8 COMPLEX*16
9 REAL*4
10 COMPLEX*8
11 REAL*8
12 Alternate return label
13 Hollerith
14 LOGICAL*2
15 INTEGER*1

tt If the argument type is CHARACTER, the word following the
eddress of the CHARACTER is the address of its length.

Table 5-2. AAL Argument Type Byte
Entries in the ADL consist of two bytes each. The first entry contains the
number of explicit arguments in the argument list (this entry may be equal

to 0). The second entry contains the subprogram descriptor as illustrated in
Figure 5-3:

5-6 48-010 FOO R04

48-010 FOO RO4

1010-69

Interfacing Assembly Language Routines

Standard FOR

15

SUBPROGRAM
CLASS

FUNCTION RESULT

TYPE

Tra

N Calling Sequence

Figure 5-3. ADL Entry (Subprogram Descriptor) Structure

The subprogram descriptor is defined in Table 5-3:

Bits | Definition | Value Meaning
0-7 Arguments 0 No
passed 1 Yes
Subprogram 5 Function
Class 6 Subroutine
7 50r6
8-15 | Function 0 For SUBROUTINE
Result 1 LOGICAL*1
Type 2 LOGICAL*2
3 LOGICAL*4
4 Reserved
5 INTEGER*1
6 INTEGER*2
7 INTEGER*4
8 Reserved
9 ‘REAL*4
10 REAL*8
11 Reserved
12 COMPLEX*8
13 COMPLEX*16
14 Reserved
15 CHARACTER

Table 5-3. ADL Argument and Subprogram Descriptors

5

S

5-8

Interfacing Assembly Language Routines
Standard FORTRAN Calling Sequence

The succeeding entries in the ADL are the descriptors for the corresponding
AAL entries, as illustrated in Figure 5-4.

i010-70

15

ARGUMENT
CLASS

ARGUMENT
TYPE

Figure 5-4. ADL Entry (Argument Descriptor) Structure

The value of these argument descriptors are defined in Table 5-4:

48-010 FOO R0O4

48-010 FOO R04

Interfacing Assembly Language Routines
s 'FRAN Eallﬁxg Sequence

Standard FOR

Bits | Definition | Value Meaning
0-7 Argument 0 Expression or constant
Class 1 Variable
2 Array element
3 Array
4 Reserved
5 Function
6 Subroutine
7 5o0ré6
8-255 Reserved
8-15 | Argument 0 Reserved
Type 1 LOGICAL*1
2 LOGICAL*2
3 LOGICAL*4
4 Reserved
5 INTEGER*1
6 INTEGER*2
7 INTEGER*4
8 Reserved
9 REAL*4
10 REAL*8
11 Reserved
12 COMPLEX*8
13 COMPLEX*16
14 Reserved
15 CHARACTER
16 CHARACTER length
17 Alternate return
18 Hollerith
19-255

Reserved

Table 5-4. ADL Descriptors Corresponding to AAL Entries

5

The argument list may contain arguments that may not be explicitly known

to the user such as the length of character string arguments. These length

arguments follow the address of the corresponding character argument in
the AAL. The descriptor for each follows the descriptor for the correspond-

ing character argument.

5 Interfacin

Assembly Language Routines

Standard FORTRAN Calling Sequence

Passing the Return Address

The comp.ler generates the following code to branch to the subprogram
PASS.

BAL Ll5,PASS

Every call to a subprogram by a FORTRAN task uses GPR15 to store the
return address for the subprogram. Thus an assembly language routine
should use the address in this register when returning to the calling FOR-
TRAN routine. '

Run-Time Library (RTL) Scratchpad

5-10

To store cdata during execution, subprograms need a scratchpad area. The
FORTRAN VII compilers generate a call to the RTL routine .U to obtain RTL
scratchpad area and initialize the FORTRAN environment. This scratchpad is
an impure area 600 hexadecimal bytes in size. GPR1 always points to the
top of this area. This register must never be corrupted. Individual routines
use the scratchpad area by decrementing GPR1 by the desired number of
bytes at the beginning of execution and restoring GPR1 to its initial value
before returning.

Example:
SCRATCH STRUC DEFINE SCRATCH AREA
SG14 DSF 2
WORK DSF 2

ENDS
ENTRY EXAMPLE
EXAMPLE EQU *

SHI 1,SCRATCH GET SPACE FROM SCRATCHPAD
STM 14,5G14(1) SAVE REGISTERS

LM 14,5G14(1) RESTORE REGISTERS

AHI 1,SCRATCH RELEASE SCRATCHPAD AREA
LR 13,13 SET CONDITION CODE

BR 15 RETURN

END

48-010 FOO RO4

Interfacing Assembl
Standard FORTRAN

Language Routines
alling Sequence

)

User-written routines can participate in this scheme in a like manner or they
can obtain and release storage via supervisor call 2 (SVC2) or the assembly
routines discussed later in this chapter. However, care must always be exer-
cised to save and restore all registers except those that must be altered to
conform to standard conventions. To terminate the FORTRAN task, the com-
pilers generate a call to the RTL routine .V to release storage and end the

task.

Function Results and Condition Codes (CCs)

48-010 FOO R04

A routine that is called as a function by a FORTRAN program must place the
result of the function in a specific register as shown in Table 5-5.

Function Type | Register | Instruction Setting CC
LOGICAL*1 GPR13 LB followed by LR
LOGICAL*2 GPR13 LH
LOGICAL*4 GPR13 L
INTEGER*1 GPR13 LB followed by LR
INTEGER*2 GPR13 LH
INTEGER*4 GPR13 L
REAL*4 FPR14 LE
REAL*8 DPR14 LD
COMPLEX*8:
real part FPR12 No CC set
imaginary part FPR14 No CC set
COMPLEX*16:
real part DPR12 No CC set
imaginary part DPR14 No CC set

Table 5-5. Required Register and CC Settings for Assembly

Language Functions

The register into which the resuit is stored depends on the function data
type. In addition, all data types except complex and character require set-
ting the proper CC before returning control to the calling program. In other
words, the last instruction prior to the branch which returns control to the
calling program should load the resultant value of the function into the
proper register. For example, for the following code to evaluate properly,
the CC must be set prior to BZ $P10.

5-11

5 Interfacing Assembly Language Routines
Standard FORTRAN Calling Sequence

BAL 15,ARTN
BZ $P10

The above code is a partial translation of the FORTRAN statement:

IF(ARTN(I).EQ.0) GO TO 10

Where:

ARTN(I) is a function call with argument I.

The return code from routine ARTN may look like the following:

ENTRY ARTN

L 14, xxxx% ;load result - set CC

BR 15 ;branch back to caller
END

Calling and Receiving Sequences

Before writing an assembly language routine, it is helpful to examine the
instructions generated by the compiler when a program calls a subroutine
written in FORTRAN. The following example illustrates code generated from
a CALL with many different argument types. It can be used as a guide when
writing assembly language routines to be included in a FORTRAN program.

5-12 48-010 FOO R04

Interfacing Assembly Language Routines
Sta%dard FOR'rRAN Eall ng Sequence 5

Example of Calling Sequence:

LOGICAL*4 LOG,LOGl*1 ;LOGICAL*4 AND LOGICAL*1 VARIABLES

LOGICAL*2 LOG2 ;LOGICAL*2 VARIABLE
INTEGER*2 I2,I%4 ;INTEGER*2 AND INTEGER*4 VARIABLES
INTEGER*1 I1 ; INTEGER*1 VARIABLE
REAL*4 REAL,DPREC*8 ;REAL AND DOUBLE PRECISION VARIABLES
COMPLEX*8 COMPLEX ;COMPLEX*8 VARIABLE
COMPLEX*16 CMP16 ;DOUBLE PRECISION COMPLEX
INTRINSIC SQRT ;INTRINSIC ROUTINE SORT
CHARACTER*4 CHAR ;CHARACTER VARIABLE OF LENGTH 4
INTEGER*4 ARRAY(10) ;INTEGER*4 ARRAY
PARAMETER (IONE=1) " ;SYMBOLIC NAME OF CONSTANT 1
c .
CALL PASS(LOG,LOGl,LOG2,I,Il1,I2,REAL,DPREC,
+ COMPLEX,CMP16,5H12345, SQRT, *1,
+ *x10,CHAR,*102, ARRAY, IONE)
1 CONTINUE
10 CONTINUE
102 CONTINUE
END

The assembly code translation of the above FORTRAN source code follows.

BATCH

TARGT 32
_MAIN PROG _MAIN
IONE EQU 1

ALIGN 4 FULLWORD ALIGN
$LOCAL DS 96
ARRAY EQU $LOCAL
CMP16 EQU $LOCAL+40

COMPLEX EQU $LOCAL+56
DPREC EQU $LOCAL+64

REAL EQU $LOCAL+72
I EQU $LOCAL+76 DEFINE LOCAL STORAGE (IMPURE)
LOG EQU $LOCAL+80
12 EQU $LOCAL+84
LOG2 EQU $LOCAL+86
CHAR EQU $LOCAL+88
I1 EQU $LOCAL+92
LOG1 EQU $LOCAL+93

$LOCEND EQU %
ORG $LOCEND

PURE
ALIGN 4 FULLWORD ALIGN
$CONST EQU * DEFINE PURE CONSTANT 4
DC F’4’
ALIGN 4 FULLWORD ALIGN

48-010 FOO R04 5-13

5 Interfaclug Assembly Language Routines
Standard FORTRAN Calling Sequence

EXTRN _ U
EXTRN _ V DECLARE EXTERNS OF BOTH IMPLICITLY
EXTRN _SQRT AND EXPLICITLY REFERENCED
EXTRN PASS EXTERNAL ROUTINES
ENTRY _MAIN

_MAIN EQU *
LIS 14,2
BAL 15, U SET UP ENVIRONMENT AND GET STORAGE
LI 14,$L000+Y’D2000000’ LOAD Gl4 WITH CLASS OF CALL
BAL 15,PASS BAL TO SUBPROGRAM

$Pl EQU *

$P10 BQU GENERATE FORTRAN LABELS(ADDRESSES)

$P102 EQU *
BAL 15,V

ALIGN 4 FULLWORD ALIGN
ALIGN 4
DC A($L0OO1) BEGINNING OF ARGUMENT LIST (AAL)

$L0O0O EQU *
DC A(LOG+Y’14000000%)
pC A(LOG1+Y’13000000)
DC A(LOG2+Y’1E000000')
pC A(I+Y’120000007)
pC A(I1+Y’1F000000’)
DC A(I2+Y/110000007)
DC A(REAL+Y’19000000")
pC A(DPREC+Y’1B000000")
pC A(COMPLEX+Y’1A0000007)
pC A(CMP16+Y’18000000)
pC A($KONST+Y’ 0D000000")
pC A{_SORT+Y’ 79000000)
DC A($P1+Y/0C000000")
DC A($PLO+Y’0C000000 ")
DC A(CHAR+Y’15000000")
DC A($CONST+Y’ 02000000)
DC A($PL02+Y’0C000000)
DC A(ARRAY+Y’32000000")

DC A($KONST+8+Y’82000000") LAST ARGUMENT
ALIGN 2
DC X’0013’ BEGINNING OF ARGUMENT

DESCRIPTOR LIST (ADL)
DC X’8507/
$LOO1 EQU =
DC X’0103°
DC X70101°
DC X10102°
pe X’0107°

5-14 48-010 FOO RO4

48-010 FOO R0O4

DC

DC

DC

DC

DC

DC

DC

bc

DC

DC

DC

DC

DC

DC

DC

IMPUR

ALIGN

ALIGN

ALIGN
$KONST EQU

DB

DC

END

X’0105”
X’ 01067
X’0109'
X’010A’
X’010c’
X’010D’
X70012’
X’0709’
X0011’
X’0011’
X’010F'
X’0010’
X70011’
X’ 0307’
X’0007"

Lo

*

C’r12345
F’1/
_MAIN

Interfacing Assemb!rkl.an uage Routines 5
Standard FORTRAN Calling Sequence

FULLWORD ALIGN
FULLWORD ALIGN

DEFINE IMPURE CONSTANTS
(HOLLERITH AND INTEGER*4 1)

The compiler generates the necessary receiving sequence for a FORTRAN
subprogram. The following receiving sequence illustrates the code output
by the compiler for the subroutine PASS, which was called from the main
program in the example above. Note that none of the arguments passed to
PASS are actually used except 1. Therefore, there is no need for the compiler
to generate any code for any argument but I. The code shown is from the

F70 compiler without optimization.

5-15

5 Interfacin Assemball?' Language Routines
Standard FORTRAN Calling Sequence

Example of Receiving Sequence:

SUBROUTINE PASS(LOG,LOGl,LOG2,I,I1,I2,REAL,DPREC,

+ COMPLEX, CMP16 ,HOL, FUNKY, *,

v * ,CHAR, * , ARRAY, IONE)
LOGICAL*4 LOG,LOGl*1 ;LOGICAL*4 AND LOGICAL*1 VARIABLES
LOGICAL*2 LOG2 ;LOGICAL*2 VARIABLE
INTEGER*2 I2,I*4 ;INTEGER*2 AND INTEGER*4 VARIABLES
INTEGER*1 I1 . ;INTEGER*1 VARIABLE
REAL*4 REAL,DPREC*8 ;REAL AND DOUBLE PRECISION VARIABLES
COMPLEX*8 COMPLEX ;COMPLEX*8 VARIABLE
COMPLEX*16 CMP16 ;DOUBLE PRECISION COMPLEX
INTRINSIC SQRT ;INTRINSIC ROUTINE SQRT
CHARACTER*4 CHAR ;CHARACTER VARIABLE OF LENGTH 4
INTEGER*4 ARRAY(10) ;INTEGER*4 ARRAY
RETURN I
END

The assembly code translation of the above FORTRAN source code follows.

BATCH
TARGT 32
PASS PROG PASS .
ALIGN 4 FULLWORD ALIGN
$LOCAL DS 80
CMP16 EQU $LOCAL

COMPLIIX EQU $LOCAL+16
DPREC EQU $LOCAL+24

ARRAY EQU $LOCAL+32
@100 EQU $LOCAL+36
1ONE EQU $LOCAL+40
CHAR EQU SLOCAL+44
FUNKY EQU $LOCAL+48 DEFINE LOCAL STORAGE (IMPURE)
HOL EQU $LOCAL+52
REAL EQU $LOCAL+56
11 EQU $LOCAL+60
I EQU $LOCAL+64
LOG2 EQU $SLOCAL+68
LOG EQU $LOCAL+72
12 EQU SLOCAL+76
LOG1 EQU SLOCAL+78

$LOCEND EQU *
ORG $LOCEND
PURE

5-16 48-010 FOO RO4

48-010 FOO RO4

$CONST

PASS

$L000

$L001

$KONST

ALIGN 4

EQU *

ALIGN 4

ENTRY PASS

EQU *

ST 15,%$L001
15,12(14)
13,0(15)

ST 13,1

L 15,1

ST 15,@100

B $L000

EQU *

L 15,$L001

L 13,@100

BR 15

ALIGN 4

ALIGN 4

ALIGN 2

IMPUR

ALIGN 4

ALIGN 4

EQU *

DC Y’/ 00000000
ALIGN 4

EQU *

END

Interfacing Assembly Language Routines
Sta%dard FOR’H(AN Ealli%g Sequence

FULLWORD ALIGN

FULLWORD ALIGN
DECLARE PROGRAM NAME

FULLWORD ALIGN

FULLWORD ALIGN

FULLWORD ALIGN

The following is an example of a calling convention for a character function.

CHARACTER *10 CHFUNC
CHARACTER *10 RESULT

RESULT
END

= CHFUNC(I)

The following is the assembly translation of the preceding FORTRAN source

code.

5-17

Interfacin;
Standard FORTRAN C

5

_MAIN

$LOCAL
@100

I
RESULT
$LOCEND

$CONST

MAIN

$L000

$L001

SKONST.

5-18

BATCH
TARGT
PROG

ALIGN

EQU
EQU
EQU
EQU
ORG
PURE
ALIGN
EQU
DC
ALIGN
EXTRN
EXTRN
EXTRN
ENTRY
EQU
LIS
BAL
LI
BAL
BAL
ALIGN
ALIGN
DC
EQU
DC

DC

DC
ALIGN
DC

DC
EQU
DC

DC

DC
IMPUR
ALIGN
ALIGN
ALIGN
EQU
END

Assemb;?' lLanguage Routines
ling Sequence

32

_MAIN

4 FULLWORD ALIGN
24

$LOCAL+14

$LOCAL

$LOCAL+4

*

$LOCEND

4 FULLWORD ALIGN

4 FULLWORD ALIGN

CHFUNC

_MAIN

*

14,2

15, U
14,$L000+Y’E0000000’
15, CHFUNC

15, Vv

4 FULLWORD ALIGN
4

A($1L001)

*

A(RESULT+Y’ 15000000)
A(SCONST+Y’ 02000000)
A(I+Y’92000000')

2

X’ 0003’

X’8600’

*

X’ 010F’

X’0010’

X’0107’

FULLWORD ALIGN

FULLWORD ALIGN

* > DD

_MAIN

48-010 FOO R04

Interfacing Assembl Languaige Routines 5
Standard FORTRAN Calling Sequence

Sharing Data

In addition to passing arguments to subprograms, data can be shared
through the use of COMMON statement.

Common blocks are declared in Common Assembly Language (CAL) by
embedding the definitions between the COMN and ENDS statements. The
COMN statement is labeled with the common block name truncated to eight
characters. If the label has less than eight characters, the compiler will add a
period after the last character (e.g.; ABC., DEF.). Blank common has the exter-
nal name: "//". This is illustrated in the following example.

Example:

COMMON I2, DPREC, REALNUM (5,3) /A/I, LOG
INTEGER*2 I2

DOUBLE PRECISION DPREC

LOGICAL LOG

EQUIVALENCE (REAL23, REALNUM(2,3))

The program segment is translated to the following CAL representation:

48-010 FOO R04 5-19

5

5-20

Interfacing Assembly Language Routines
Standard FORTRAN Calling Sequence

_MAIN
/7

I2
DPREC
REALMNUM
REALZ3
A.

A,

I
LOG

$CONET

_MAIN

SKONST

BATCH
TARGT
PROG
COMN
ALIGN
EQU
EQU
EQU
EQU
ENDS
COMN
ALIGN
DS

'EQU

EQU
ENDS
ALIGN
PURE
ALIGN
EQU
ALIGN
EXTRN
EXTRN
ENTRY
EQU
LIS
BAL
BAL
ALIGN
ALIGN
ALIGN
IMPUR
ALIGN
ALIGN
ALIGN
EQU
END

32
_MAIN

..t
..+12
..+56

> oo

.14

* DD

_MAIN

FULLWORD

FULLWORD

FULLWORD

FULLWORD

FULLWORD

FULLWORD

ALIGN

ALIGN

ALIGN

ALIGN

ALIGN

ALIGN

An INTEGER*2 and LOGICAL*2 data type must be aligned on a halfword
boundary. CHARACTER, INTEGER*1, LOGICAL*1, and BYTE data types are
aligned on any byte boundary. All other types are aligned on a fullword

boundary.

The EQUIVALENCE statement assigns the same storage area for the
equivalenced variables. Thus, REAL23 and REALNUM(2,3) are assigned the
location ..4-56. This is implied for REALNUM(2,3) since REALNUM equates to
.+12. When equivalencing arrays in CAL, remember that FORTRAN is
column-mejor (ie., the left-most indexes vary most rapidly).

48-010 FOO R0O4

Interfacing Assembly Lanft_laie Routines
in

Inserting an Assembly Bloc

ource Code

S

Pseudo data types, such as labels and external subprogram names, are stored
as 3-byte address constants, right-justified on a fullword boundary.

Calling Intrinsic Subprograms froin Assembly Program

The FORTRAN VII RTL provides a number of intrinsic subprograms that can
be called by an assembly language subprogram. The internal names for
these RTL intrinsic subprograms are listed in Appendix A. When called by
their internal names, intrinsic subprograms communicate with the calling
program through a different interface. This interface stores arguments in

registers as follows.

Subprogram Passing Register Argument |
Type Argument Type Passed To
Subroutine/Function INTEGER*n GPR 14
LOGICAL*n GPR14
REAL*4 FPR14
REAL*8 DPR14
COMPLEX*8 FPR12 and 14
COMPLEX*16 DPR12 and 14
Resulting Register Result
Argument Type Passed To
Function INTEGER*n GPR13
LOGICAL*n GPR13
REAL*4 FPR14
REAL*8 DPR14
COMPLEX*8 FPR12 and 14
COMPLEX*16 DPR12 and 14

Inserting an Assembly Block in Source Code

48-010 FOO RO4

With FORTRAN VI, it is not necessary to write separate assembly language

subprograms to use the standard FORTRAN subprogram interface. The user
can develop an assembly subprogram with a SUBROUTINE or FUNCTION
statement so that the compiler automatically sets up the necessary receiving
sequence. An assembly block (enclosed between $ASSM and $FORT) may be
enclosed between the SUBROUTINE/FUNCTION and END statements.

5-21

5

5-22

Interfacing Assembly Language Routines
Inserting an Assembly Block in Source Code

Example:

$TITLE FORTRAN VII WITH EMBEDDED CAL BLOCKS

C THIS FORTRAN PROGRAM ILLUSTRATES THE

C USE OF DIRECTIVES FOR EMBEDDING CAL

C BLOCKS

C FORTRAN CODE BEGINS HERE

INTEGER PR
DIMENSION SAVE1l(2)

READ (*,10) J1,J2,JTEMP1,JTEMP2

10 FCRMAT (41)

C THE FCLLOWING DIRECTIVES ARE USED

C TO INSERT THE CAL BLOCK

C CAL BIOCK BEGINS HERE
$ASSM

$USES J1,32,JTEMPl ,JTEMP2
$SETS JTEMP1,SAVELl , JTEMP2

$GOES 20,30
*

IF JTEMP2

3,SAVEl
4,SAVE1+4
3,JTEMP2
4,JTEMP1
4,15
4,JTEMP1
3,1
3,JTEMP2
ZERO
3,SAVEl
4,SAVEL+4
$P20
3,SAVEL

IF THE NEW VALUE OF JTEMP2 EQUALS ZERO, THE PROGRAM

SAVE REGISTERS

PUT JTEMP2 IN REGISTER 3
PUT JTEMP1l IN REGISTER 4
ADD 15 TO JTEMP1

STORE NEW VALUE OF JTEMP1
SUBTRACT 1 FROM JTEMP2
STORE NEW VALUE OF JTEMP2
BRANCH IF JTEMP2=0
RESTORE REGISTERS

GO TO STATEMENT 20
RESTORE REGISTERS

* THIS ROUTINE INCREMENTS JTEMP1 BY 15
* AND SUBTRACTS 1 FROM JTEMP2.
*
* FALLS THROUGH OUT OF THE CAL BLOCK
* TO FORTRAN STATEMENT 30.
* DOES NOT EQUAL ZERO, THE PROGRAM
* BRANCHES TO FORTRAN STATEMENT 20.
*

ST

ST

L

L

AIS

ST

SIS

ST

BZ

L

L

B

ZERO L
L

*

* CAL BI1OCK ENDS HERE
*

$FORT

4,SAVEl+4

C FORTRAN CODE RESUMES HERE

30 CONTINUE
20 CONTINUE

END

48-010 FOO RO4

48-010 FOO RO4

Interfacing Assembly Language Routines 5
Inserting an Assembly Block in Source Code

The previous example illustrates five of the directives used to embed CAL
blocks within the source program.

These directives have the following format:

$ASSM
$FORT

$GOES [argl.araz,---argn]
$REGS Rx ,Fy Dz

$SETS [argl,argz.---argn]

- $USES [arg,,argz,...argn]

$ASSM

$ASSM indicates the beginning of an embedded CAL block and is placed
before the first line of CAL code.

$FORT

$FORT indicates the end of the CAL block. $FORT is placed immediately
after the last line of the CAL block.

Because the compiler does not translate CAL blocks, it must be informed
when the block uses or modifies the value of a FORTRAN variable. Other-
wise, the correct value of the variable cannot be guaranteed outside the
block. The compiler must also be informed of the FORTRAN statements to
which the CAL block branches.

$GOES

$GOES lists the labels of FORTRAN statements to which the embedded CAL
code branches. For example, in the sample program shown, the last line of
the CAL block falls through to FORTRAN statement 30. Statement 30 must
be an argument to $GOES. Statement 20 is also an argument of $GOES since
the embedded CAL block conditionally branches to FORTRAN statement 20.

5-23

5

5-24

Interfacing Assembly Language Routines
Inserting an Assembly Block in Source Code

If a $GOES dcirective with no arguments appears in a CAL block, the compiler
assumes that no transfer is made from the CAL block back to the FORTRAN
source. If no $GOES directive appears in a CAL block, the compiler assumes
that the CAL block only falls through to the FORTRAN statements following
the CAL block.

If a $GOES directive is specified, and control of the program falls through to
the first statement of the FORTRAN code after the block, a labeled statement
must follow $FORT and the label of that statement must be specified in a
$GOES directive.

$GOES, $USES, $REGS, and $SETS must be placed inside the CAL block
between $ASSM and $FORT.

$REGS

$REGS indicates the registers that are modified by the CAL block. This infor-
mation is used by the optimizer when allocating global registers. See
Chapter 4 for more information on global register allocation. The format of
the $REGS directive is:

$REGS Rx ,Fy Dz

Where:

Rx specifies the general purpose registers x through 15 that
are modified in the CAL block. The number of the first
register is indicated by x, which is an unsigned integer
between 0 and 15 inclusive. x may not be 1.

Fy specifies the floating point registers y through 14
: inclusive that are modified in the CAL block. The number
of the first floating point register is indicated by y which
is an unsigned even integer between 0 and 14 inclusive.

Dz specifies the double precision registers z through 14
inclusive that are modified in the CAL block. The number
of the first double precision register is indicated by z
which is an unsighed even integer between 0 and 14
inclusive.

48-010 FOO RO4

48-010 FOO R0O4

Interfacing Assembly Language Routines 5
Inserting an Assembly Block in Source Code

If $REGS is not specified, the programmer must make certain that the CAL
block saves the contents of any registers before they are changed and
restores them before the program exits the block. If the CAL block in the
sample program did not save and restore registers 3 and 4, $SREGS must be
coded above the first line of CAL code as follows:

$REGS R3

This $REGS directive tells the compiler that general purpose registers 3
through 15 are modified in the CAL block. If the syntax of $REGS is
incorrect, the compiler assumes that all registers are set in the CAL code.

$USES, $SETS, $REGS, and $GOES only apply to the CAL block in which they
appear. They must be placed inside the CAL block between $ASSM and
$FORT.

$SETS

$SETS informs the compiler which FORTRAN variables are modified in the
CAL block so that the modified value of those variables is available outside
the CAL block.

If a $SETS directive with no arguments appears in a CAL block, the compiler
assumes that no array or variable is modified in the CAL block. If no $SETS
directive appears within a CAL block, the compiler assumes that all variables
and arrays are modified in the CAL block. A $USES or $SETS directive must
be used for every variable that appears only in a FORTRAN specification
statement in a CAL block. These directives prevent the compiler from omit-
ting the variable from the generated CAL code.

$USES

$USES informs the compiler which FORTRAN variables are used in the CAL
block so that the correct value of those variables is available inside the CAL
block. Arguments cannot be names of COMMON blocks, but they may be
names of variables within COMMON blocks.

If a $USES directive with no arguments appears in a CAL block, the compiler
assumes that no array or variable is used in the CAL block. If the $USES
directive is missing in a CAL block, the compiler assumes that all variables
and arrays are referenced in the CAL block and the compiler will generate a
warning message to that effect.

5-25

5

Interfacing Assembly Language Routines
Inserting an Assembly Block in Source Code

Guidelines for Embedding Assembly Blocks

5-26

Follow these guidelines when using the CAL directives to insert assembly
blocks in a FORTRAN program.

e Do not use the same name to identify a variable in the FORTRAN block

and a label in the embedded CAL.

The following conventions must be followed when referencing FORTRAN
generated symbols or FORTRAN labels.

$Pn corresponds to the FORTRAN label n.
$Ln are internal labels generated by compiler (user should
avoid this type of symbol).
$CONST are pure generated constants.
$KONST are impure generated constants.
name. is a common block name appended with a dot.
" name$ - is a common block name corresponding to saved variables

(user should avoid this type of symbol).

Reference scalar arguments, except CHARACTER and those which are
passed by address, by their variable names in a CAL block.

The dummy arguments passed by address and dummy arrays in an
embedded CAL block contain addresses, not values. In order to reference
the value, load the address and then load the value using the address as a
pointer.

Do not use the following symbols as variable names in either the FOR-
TRAN or assembler blocks. '

ADC
LADC
ABSTOP
IMTOP
PURETOP

These names are reserved for use by the CAL assembler.

48-010 FOO RO4

48-010 FOO RO4

it

Interfacing Assembly Language Routines 5
Inserting an Assembly Block in Source Code

o Any FORTRAN variable that is to be used in the embedded CAL block

must be specified in a $SETS or $USES directive. If neither $SETS or
$USES is specified, the compiler assumes all FORTRAN variables will be
both used and set by the embedded CAL blocks.

It is a good practice to declare all FORTRAN variables

used in the CAL block with a $SETS or $USES direc-
tive for each embedded CAL block.

If a variable is declared in FORTRAN, but never used in FORTRAN, its
definition is omitted from generated CAL code. If this variable is refer-
enced in CAL code, it must appear in at least one $SETS or $USES direc-
tive.

If $USES is specified without a variable list, the embedded CAL cannot
read the most current value for any FORTRAN variable in the program.

If SUSES is specified with a list of variables, the embedded CAL can read
the most current value of only those variables in the list.

If $SETS is specified without a list, the embedded CAL must not modify
the value of any FORTRAN variable in the program.

If $SETS is specified with a list of variables, the value of only those vari-
ables in the list may be modified by the CAL block.

If a subprogram containing an embedded CAL block is to be expanded
inline, any CAL label that is used only in the embedded CAL block must
be specified by a $DISTINCT directive.

Modified data areas inside CAL blocks must be in an impure segment to
ensure proper segmentation when using the $SEG directive.

All registers modified in the CAL block must be saved when entering the
block and restored when exiting, unless a $REGS directive is used. $REGS
should indicate the registers modified in the CAL block. See Chapter 3
for information on the use of this directive.

Returning to the calling subprogram from an assembly block must not be
done; if it is done, critical data may not be restored.

GPR1 may not be used for any function other than its dedicated use as
the RTL scratchpad pointer.

If a subprogram containing an embedded assembly block is to be
expanded inline, the lines of CAL code should be as short as possible.

5-27

5 Interfacing Assembly Language Routines
Inserting an Assembly Biock in Source Code

o Declaring data areas in the embedded assembly blocks of a subprogram
that is expanded inline more than once in a program should be avoided.
Data areas which are only declared in embedded assembly blocks will not
be shared by separate $INLINE expansions unless the user restructures
the embedded assembly areas for this purpose.

« Branching from a CAL block into FORTRAN is permitted. All the FORTRAN
labels to which the CAL block branches should appear on the $GOES com-
piler directive. If the user desires to have control fall through to the fol-
lowing FORTRAN code, a labeled statement must be placed immediately
following the $FORT, and that label must appear on the $GOES of this CAL
block:

SUBROUTINE CAL
DIMENSION SAVE1(2)
$ASSM
$GOES 10,20

B $P20

ZERO L 3,SAVEl
L 4,SAVEl+4

$FORT
10 CONTINUE

20 CONTINUE

You must not violate any FORTRAN rules; e.g., branching into a DO loop.

e To compile your program with embedded Assembly code, you must fol-
low certain procedures. See Chapter 6 for details on how to compile your
program.

5-28 48-010 FOO RO4

Interfacing Assembly Language Routines 5
Get and Release Storage Assembly Routines

Get and Release Storage Assembly Routines

The 1/0 support routines in the R06-00 version of the RTL are rewritten in
the C language. For this reason, use of this version may introduce incompa-
tibility problems for applications which use the get and release storage SVCs
(SVC 2, codes 2 and 3, respectively). To avoid this problem, the following
assembly routines are to be used in place of the get and release storage
SVCs. They are callable from the assembly level only.

Use of the assembly routines is not necessary to avoid
incompatability problems if only the get storage SVC
is used, and not the release storage SVC.

MALLOC Routine (Get Storage)

48-010 FOO R0O4

The MALLOC assembly routine is designed to get storage space. MALLOC
requires one argument specifying the amount of space needed. Sample
instructions needed to invoke MALLOC are as follows:

Example:
SIZE EQU 200
GETBLK DB 0,2
DC 1
BLKSIZ DAC SIZE
LA 14,BLKSIZ
BAL 15, MALLOC

GPR 14 points to MALLOC'’s argument list; GPR15 stores the return address
for the subprogram. The start address of the memory allocated is always
returned in GPR13. If the allocation request failed, this value is 0. The start
address must be recorded in GPR13 if the memory is restored (freed) or par-
tially restored later. The argument list consists of an arbitrary location which
contains the amount of space, in bytes, requested.

5-29

5

Interfacing Assembly Language Routines
Get and Release Storage Assembly Routines

If the use of GPR13 through GPR15 presents a problem in your code, the fol-
lowing instructions provide an alternate interface:

SIS 1,12 Get space from the stack

STM 13,0(1) Save the registers

LA 14,BLKSIZ Set up arguments

BAL 15, MALLOC Get storage

LR RX,13 Move address to desired register
ST RX, SAVEADDR Put space back on the stack

The "RX" is the register that previously received the start address from the
get storage SVC.

MFREE Routine (Release Storage)

5-30

The MFREE assembly routine is is designed to release storage space. MFREE
requires a single argument, specifying the start address of the storage space
allocated by MALLOC. Sample instructions needed to invoke MFREE are as
follows:

Example:

LA 14, SAVEADDR Set up the argument list
BAL 15, MFREE Invoke it

GPR13 contains a 0 if no errors are detected; otherwise, GPR13 contains a 1.

The MFREE routine is not entirely equivalent to the release storage SVC. The
SVC call returns storage starting from the top of dynamic storage, i.e., the
storage that was last allocated. Invocation of the MFREE ’ routine releases
storage starting from the address given in the argument. This address must
correspond to the address returned after a call to the MALLOC routine.
Specifying an arbitrary address produces unpredictable results. The amount
of storage released by MFREE is equal to the amount allocated by the
corresponiding MALLOC call.

If the use of GPR13 through GPR15 presents a problem in your code, use

instructions similar to those provided in the discussion of the MALLOC rou-
tine to provide an alternate interface.

48-010 FOQ RO4

Interfacing Assembly Language Routines 5
Get and Release Storage Assembly Routines

PFREE Routine (Release Partial Storage)

The PFREE assembly routine is designed to release a partial amount of
storage space, which was previously allocated by the MALLOC routine. PFREE
requires you to specify two arguments, the start address of the storage
space and the amount of storage to release. Sample instructions needed to
invoke PFREE are as follows:

Example:

SAVEADDR DSF 1

AMOUNT DSF 1
LA 14, SAVEADDR Set up the argument list
BAL 15, PFREE Invoke it

Storage is released starting from the top of the storage space. You cannot
partially release more storage than was previously allocated. The argument
list is simply two contiguous fullwords, the first being the address and the
second the amount to release.

48-010 FOO R04 5-31

a=SQRT(b'b+c-c) 6

Building a Command File to
Compile Your Program

In this chapter

We discuss compiling your program using the FORTRAN VII compilers. The
available start directives which were briefly presented in Chapter 3 are
described.

Topics include:
¢ Basic compilation process

¢ Using the F70 and F7Z compilers

Allocating the input/output (1/0) files

Using the start directives

Compiling source with embedded assembly code

48-010 FOO R04 6-1

6

Bulldlnf a Command File to Compile Your Program
The Basic Compilation Process

The Basic Compilation Process

The minimum functions that must be performed by a command procedure to
compile a program are:

Load the compiler.

Allocate and assign the 170 files required for compilation,
Start compilation. |

Check the end of task code.

If end of task code is equal to 0, begin the LINK process.

D VI A WN

If end of task code is greater than or equal to 1 write an error mes-
sage and terminate the program development procedure.

The system: command procedure COMPILE.CSS performs these functions. If
your program does not have any special requirements, such as embedded
Common Assembly Language (CAL) code or larger work space, this command
substitution system (CSS) is sufficient to compile it. Otherwise, you may have
to tailor-fit your command procedure or provide the necessary compiler
directives as discussed in the succeeding section.

Using the F70 and F7Z Compilers

The following code sequence performs the basic functions of a compilation
procedure using the F70 and F7Z compilers.

- 48-010 FOO RO4

Building a Command File to Compile Your Program
Using the F70 and F7Z Compilers

Example:
1 LOAD F70,100
2 ASSIGN 1,@1.FTN
3 XALLOCATE @1.0BJ,IN,126/2
4 ASSIGN 2,(@l.0BJ
5 XALLOCATE (@1.LST,IN,132/2
6 ASSIGN 3,(@1.LST
7 TEMP 8,C0,4000
8 TEMP 4,IN,80/5
9 ASSIGN 7,ERRORFIL * use appropriate descriptor
10 START,@2
11 S$IFG 3
12 S$SWRITE COMPILATION ERRORS
13 S$CLEAR
14 S$ENDC

Call this command procedure COMPILE1.CSS. The succeeding sections refer
to specific lines of this CSS file.

GENOTE }> All references to compilation under F70 in this sec-
tion apply equally to the F7Z compiler.

Loading the Compiler

To load the F70 and F7Z compilers, use the operating system LOAD com-
mand specifying a memory increment size of at least 100kB as in line 1 of
COMPILEL.CSS.

LOAD F70,100

The memory increment size of 100 represents the amount of workspace
used by the compiler during source compilation. A minimum of 6kB of
storage is required. (A minimum of 4KkB is required if the number of con-
tinuation lines allowed for each FORTRAN statement is zero.) However, most
programs require at least 100kB. If you specify an increment of less than
6kB (4kB if CONT=0), compilation terminates after the following message is
sent to the list device.

NOT ENOUGH REAL MEMORY TO COMPLETE COMPILATION

48-010 FOO R04 6-3

6

6-4

Building a Command File to Compile Your Program
Using the F70 and F7Z Compilers

If you specify an increment size greater than 6kB, but not large enough to
contain all of the compiler generated symbol tables and logical unit 8 (Iu8) is
not assigned, compilation terminates after the following message is sent to
the list device.

WORK FILE ERROR - LU NOT ASSIGNED

To avoid the occurrence of this error, the program development procedure
must allocate a temporary contiguous work file and assign it to lu8. The
compiler then sends the entire symbol table that did not fit within the
workspace area to the work file after logging this message to the list device.

INTERNAL TABLES PAGING TO DISK

If, while paging to the disk, the compiler encounters end of medium (EOM)
for the work file, it terminates compilation after sending this message to the
list device.

END-OF-MEDIUM
ALLOCATE A BIGGER CONTIG FILE FOR PAGING—(LU8)

If this occurs, allocate a larger contiguous file for 1u8.

If the internal table exceeds the maximum size, the compilation terminates
with the fcllowing message to the list device.

COMPILER TABLE LIMIT EXCEEDED

—) No recovery is provided for a table limit error. You
must reduce the total number of lines in the program
unit being compiled.

By reducing the total number of lines of code, the amount of memory space
required by the internal table is reduced.

If the internal graphing tables of the optimizer have exceeded their max-
imum size, the compiler sends this message to the list device.

OPTIMIZER TABLE SATURATION: LIMITED OPTIMIZATION MAY RESULT

48-010 FOO RO4

Building a Command File to Compile Your Program
Using the F70 and F7Z Compilers

This message suggests that in recovering from table saturation, the compiler
must forego optimizations it might have performed had the table size not
been exceeded. Therefore, optimization of a program is impaired. To elim-
inate impairment due to table saturation, reduce the total number of lines in
the program unit being compiled.

Allocating and Assigning 1/0 Files

The COMPILE procedure for the optimizing compilers must assign:

¢ lul to the input device or file containing the source program,
e lu2 to the file containing the compiler output object code,

¢ lu3 to the device or file to which the compiler outputs all listings, warn-
ings, and diagnostic messages,

¢ lu8 to the temporary work file described in the previous section,
¢ lu4 to a temporary work file, and

e lu7 to the error file that contains the text for error messages generated by
the compiler.

Thus, COMPILE1.CSS contains lines 2 through 9 as follows:

ASSIGN 1,@1.FTN
XALLOCATE @1.0BJ,IN,126/2
ASSIGN 2,@1.0BJ
XALLOCATE @1.LST,IN,132/2
ASSIGN 3,@l.LST

TEMP 8,CO,4000

TEMP 4,IN,80/5

ASSIGN 7,ERRORFIL

The compiler automatically assigns lu0 to a temporary work file if you have
not assigned it.

Take note of the following when making the lu assignments:

o If you generate assembly code rather than object code, you must assign
lu6 to a file that receives the assembly code for later processing by the
CAL assembler. See "Writing a Program Development Procedure for FOR-
TRAN with Embedded Assembly Language" section for details.

48-010 FOO RO4 6-5

6

Building a Command File to Compile Your Program
Using the F70 and F7Z Compilers

o The COMPILE procedure must assign logical units 1, 2, 3, 4, 7, and 8. Itis
often convenient to use the XALLOCATE command to avoid having to
manually delete the temporary files each time the program is recompiled.

+ When allocating the list file, you must specify a record length of 132
bytes.

+ To decrease compilation time, do not allocate the source input, CAL and
object files to the same disk that the scratch and list files are allocated.

¢ You must assign a scratch file to lu4. This file must have an 80-byte
record length.

o When allocating the temporary work file, follow these three guidelines:

— Allocate a contiguous file.

— Locate the work file on the fastest disk with the greatest number of
free contiguous sectors.

— Use the following formula to determine the number of sectors that
should be allocated to the work file.

4 x number of
program lines

number of sectors=
6

¢H _NOTE_] > Before compilation, make certain that the error file

is present on the system volume.

The F70 and F7Z lu assighments are summarized in Table 6-1.

48-010 FOO RO4

Building a Command File to Coma:ile Your Program

Using the F70 and F7Z Compilers

File Record
Iu Device or File Extension | Length
0 | Temporary work file .TMP 80
1 Source input FTN None
2 Object output .OBJ 126
3 | Listing output .LST 132
4 | Compiler scratch ﬁlé .TMP 80
5 | Reserved - (MUST NOT BE ASSIGNED)
6 | CAL output. .CAL 80
7 | F70 or F7Z error message file .ERR 80
8 | Work file .TMP 256*

* Must be a contiguous file

Table 6-1. Logical Unit Assignments

Using the Compiler Start Directives

48-010 FOO RO4

Directives to the optimizing compilers can be listed as parameters to the
START command. These parameters can be specified simultaneously in the

6

COMPILE procedure and as one of the parameters to the command that calls

the procedure. In the following example, the start directives are listed in

parameter position @2. If you use EXEC to call the COMPILE procedure, enter
the following:

EXEC FILENAME,COMP TEST

COMP and TEST are directives to the compiler because they are located at

positional parameter @2. FILENAME, which is located at positional parameter
@1, is the name of the source program file.

6 Building a Command File to Compile Your Program
Using the F70 and F7Z Compllers

The format for the START command used with the F70 and F7Z compilers
follows.

H_NOTE "> If conflicting start options are specified (i.e., XREF and
NXREF are both specified) the option which was
specified last (e.g., rightmost option on the start line)
overrides. No warning is given when this occurs.

6-8 48-010 FOO RO4

START,

Building a Command File to Compile Your Program
Using the F70 and F7Z Compilers

r

{%‘,—’.‘FST

{UNNORMALIZE

fd
INLIB=\(fd, [fd,...fd,)

15

3
Boccce cocions s

TRANSCENDENTAL

NIRANSCENDENTAL}

The INLINE, INLIB, and ELIST start directives are avail-

48-010 FOO R04

able with the F7Z compiler only.

The NOBJ, TABLES, and XFORT start directives are for |
E/SP use only.

6-9

6

6-10

ALST

NALST

APU

NAPU

BABORT

NBABORT

BASE

NBASE

BATCH

NBATCH

CAL

NCAL

COMP

NCOMP

Building a Command File to Compile Your Program
Using the F70 and F7Z Compilers

causes the compilers to produce a CAL listing of the
source program after each program unit is successfully
compiled.

prevents the compiler from generating a CAL listing of
the source program.

is provided for multiprocessor operations and causes F7
compilers to look for FORTRAN features in the input
source that are known to generate supervisor call (SVC)
instructions. The compiler will then generate an informa-
tion message to that effect. It also causes the compiler to
generate a DCMD in the object file so that a similar mes-
sage is output at link time to the LOG file.

prevents the compiler from searching for FORTRAN
features which generate SVC instructions.

terminates a batch compilation when compilation of any
one of the program units ends in error.

prevents termination of batch compilation from continu-
ing when compilation of any one of the program units
ends in error.

causes the compiler to consider base addressing of all
variables and named common blocks for register alloca-
tion.

prevents the compiler from considering base addressing
of all variables and named common blocks for register
allocation.

causes all program units within a source file to be com-
piled.

causes the compiler to stop compiling the source file
when a FORTRAN END statement is encountered.

causes the compiler to generate assembly language out-
put of the source program. This output can then be
assembled by CAL/32 into object code.

causes the compiler to compile the FORTRAN source pro-
gram into object code.

compiles all FORTRAN statements, including those having
an X in column 1.

prevents compilation of all FORTRAN statements having
an X in column 1 and replaces X with # when the source
code is sent to the list device.

48-010 FOO R04

48-010 FOO RO4

CONTIN=n

DP

ELIST

NELIST

F66DO

NF66DO

HOLL

NHOLL

IBYTE

LBYTE

Building a Command File to Com&,ﬂe Your Program
Using the F70 and F7Z Compilers

specifies the maximum number (n) of lines the compiler
should accept for each FORTRAN statement. The variable
n represents a decimal number from 0 to 100. If this
parameter is not specified, the default is 19.

causes all real and complex items whose lengths were
not specified explicitly in a specification statement to be
treated as double precision items. Length specification of
*4 and *8 (for REAL) and *8 and *16 (for COMPLEX) are
still available if explicitly used in specification state-
ments. Further, all REAL and COMPLEX constants will be
treated as REAL*8 and COMPLEX*16 constants, respec-
tively, when the DP option is specified. If this option is
not specified, the default is the type associated with FOR-
TRAN identifiers and constants.

outputs an extended listing. When LIST is in effect, ELIST
is the default. This directive is available with the F7Z
compiler only.

prevents an extended listing from being sent to the list
device. When NLIST is in effect, NELIST is the default
unless ELIST is specified. This directive is available with
the F7Z compiler only.

causes all DO loops to be executed at least once. This
option supports compatibility with ANSI ’66 FORTRAN. If
you do not specify this option, ANSI '77 FORTRAN is the
default. Specifying this option produces code that is not
compatible with ANSI 77 FORTRAN.

supports compatibility with ANSI 77 FORTRAN. This is
the default.

causes the compiler to interpret all quoted strings used
as arguments to subprograms as Hollerith constants.

causes the compiler to interpret all quoted strings used
as arguments to subprograms as character constants.

causes the BYTE statement to be treated as an INTEGER*1
statement. All entities appearing in the "var list" of the
BYTE statement are treated as INTEGER*1 entities. This is
the default setting for the BYTE statement.

causes the BYTE statement to be treated as LOGlCAL*l
statement. All items appearing in the "var list" of the
BYTE statement are treated as LOGICAL*1 entities.

6-11

6 Building a Command File to Compile Your Program
Using the F70 and F7Z Compilers

INFORM causes the compiler to send information on code optimi-
zation to the list device. If this directive is not specified
when the LIST directive is in effect, INFORM is the
default.

NINFORM prevents information on code optimization from being
sent to the list device. If this directive is not specified
when NLIST is in effect, NINFORM is the default.

INLIB specifies the file descriptor(s) of the source library files
that the compiler is to search for the source of the sub-
programs to be expanded in-line. This directive is avall
able with the F7Z compiler only.

INLINE=fd causes the compiler to expand subprograms designated
by the in-line directives contained in the file designated
by the fd. If INLINE is specified without fd, all calls to
subprograms are expanded and batch compilation is
suppressed, except for the compilation of BLOCK DATA
modules in the batch. This directive is available with the
F7Z compiler only.

The file designated by fd consists only of instream in-line
directives. To identify the program unit to which the
directives apply, the program header **name is used,
where name is the subprogram name. If the directive
applies to the main program unit, ** is used. For more
information on in-line directives, see the section entitled
"Notes on Using the INLINE Start Directive."

Example:

The file INDIR.SAM contains the following:

L3

$INLINE SUBA,* ; INLINE DIRECTIVES FOR
$INLINE SUBB,*,10 ; MAIN PROGRAM UNIT

**SUBA H

$INLIB SUBl.LIB ;i INLINE DIRECTIVES FOR
$INLINE A,- ; SUBPROGRAM SUBA

**SUBC

$INLINE SUBB,- ; INLINE DIRECTIVE FOR SUBC

(END OF FILE)

6-12 48-010 FOO RO4

48-010 FOO RO4

NINLINE

INT2

LCNT=n

LIST

Building a Command File to Com&:ile Your Program
Using the F70 and F7Z Compllers

To utilize these instream in-line directives, the START
command must be invoked with the following option:

START, INLINE=INDIR.SAM

H NOTE_] > When INLINE is specified as a

start directive without fd, F7Z
will not compile any subpro-
grams (except BLOCK DATA)
following the first program unit
that is compiled. INLINE does
not expand calls made to an
entry name in a subprogram.

causes the compiler to ignore any INLINE directives that
may be encountered in the source code. No subprogram
will be expanded in-line. This directive is available with
the F7Z compiler only.

causes all integer and logical items whose lengths were
not specified explicitly in a specification statement to be
treated as INTEGER*2 and LOGICAL*2 items, respectively.
Length specification of *1, *2, and *4 are still available if
explicitly used in specification statements. 4-byte entities
must be specified where INTEGER*4 or LOGICAL*4 enti-
ties are required. If this option is specified and a con-
stant used is larger than the integer value 32767 or
smaller than -32768, an INTEGER*4 constant is created
for that element and a warning message is issued.

If you do not specify this option, the default type is the
usual type associated with FORTRAN identifiers and con-
stants. Note that this feature conflicts with the "storage
unit" standards of FORTRAN 77.

specifies the number of lines (n) per page the compiler
outputs to the list device. If this parameter is not
specified, the compiler automatically outputs 60 lines per
page.

causes the compiler to send a complete listing of the
source code and all compiler error messages and warn-
ings to the designated list device. LIST is the default.

LIST causes INFORM and ELIST (for F7Z only) to be in
effect if they were not specified.

6-13

6

6-14

Building a Command File to Compile Your Program

Using the F70 and F7Z Corapilers

NLIST

LTORBIT

RTOLBIT

OBJ

NOBJ

OPTIMIZE

NOPTIMIZE

causes the compiler to send only warnings, error mes-
sages, and statements that have errors to the designated
list device. NLIST causes NINFORM and NELIST (for F7Z
only) to be in effect if they were not specified.

causes bit positions in a word to be counted from left to
right. In a 4-byte word, the left most bit position is
marked as 0 and the right most bit position is marked as
31. If this option is not specified, the bit positions are
counted from left to right. This option affects bit mani-
pulation routines.

causes bit positions in a word to be counted from right
to left. In a 4-byte word, the right most bit position is
marked as 0 and the left most bit is marked as 31. If this
option is not specified, the default is LTORBIT. This
option affects bit manipulation routines. See the section
in Chapter 3, "Miscellaneous Instream Compiler Direc-
tives," on the $RTOLBIT directive for more information.

produces object code. This is the default.

suppresses the generation of object code. This is used in
conjunction with the TABLES option to instruct E/SP to
control compiler output at different phases of the paral-
lel program development cycle.

activates all optimization routines available on the F70
and F7Z compilers. '

turns off the following optimizations:
— Global register allocation

— Extended strength reduction

— Constant propagation

— Invariant code motion

— Test replacement

— Scalar propagation

— Folding

— Common subexpression elimination

— Dead code elimination

48-010 FOO R0O4

48-010 FOO R0O4

PASSBYADDRESS

REENTRANT

SEG

NSEG

SYNTAX

Building a Command File to Comopile Your Program 6
i Using the F70 and F7Z Compilers

When this directive is used with any of the NOBJ, TABLES,
and XFORT directives, flow and data analyses, which are
normally suppressed by NOPTIMIZE, are still performed.
These operations generate data needed by E/SP to con-
struct a dependence graph of the program. See the
appropriate manual in the E/SP documentation set for
details on these directives.

causes the module to treat all of its noncharacter scalar
dummy arguments as if they were passed by reference.
If SNPASSBYADDRESS is in effect, noncharacter scalar
dummy arguments which are not enclosed in slashes in.
the FUNCTION or SUBROUTINE statement are treated as if
they were passed by value-result.

This option has no effect on arguments passed to other
subprograms; the choice of passing by reference vs. pass-
ing by value-result is determined solely by the coding of
the FUNCTION/SUBROUTINE statement. that receives the
arguments. If this option appears after the first statement
of a module, you get a warning message and the compiler
ignores the directive. The scope of PASSBYADDRESS is
limited to the module in which it appears.

generates reentrant code. This option allows you to
develop reentrant (sharable) libraries. If you do not
specify this option, the default is NREENTRANT, i.e., the
code generated is not reentrant. Use of REENTRANT pre-
cludes the use of any construct resulting in the initializa-
tion or modification of static storage, i.e., DATA, GLOBAL,
COMMON, or SAVE. It may also result in substantially less
efficient code.

causes the compiler to generate segmented object code.

All local data is placed in the impure task segment; exe-

cutable code is placed in the pure task segment. See the
0S/32 Application Level Programmer Reference Manual

for more information on task segments.

prevents the compiler from generating segmented object
code. All code is placed in the impure task segment.

Gd__NOTE > Code placed in an impure segment
cannot be shared.

causes the compiler to check the source code for syntax
errors without producing optimized object code.

6-15

6

6-16

Building a Command File to Compile Your Program

‘Using the F70 and F7Z Compilers

NSYNTAX

TABLES

NTABLES
TARGET=n

TCOM

causes the compiler to check for syntax errors and gen-
erate optimized object code during compilation of the
source code.

generate dependence tables and transcribed source code
before downloading a program to E/SP for restructuring.

turns off the TABLES option. This is the default.

causes the compiler to generate machine code
specifically optimized for the processor as denoted by n.
If n=0, the compiler will output machine code capable of
being executed on any one of the Concurrent 32-bit pro-
cessors. If n=3200, the machine code is targeted for any
of the Series 3200 Processors. If TARGET is not
specified, the machine code will be targeted for the pro-
cessor that ran the compiler when the program was com-
piled. If h=3205 or n=328x, the compiler, by default,
generates unnormalized floating point load instructions.
In this case, however, the code generated for the Model
3205 or 3280 systems executes only on these systems
including the Model 3203, which also supports unnormal-
ized floating point. When n=328x, the optimizing com-
piler generates in-line machine code instructions for the
following math functions: sine, cosine, square root, log,
logl0, and atan. The object code generated does not run
on any other 32-bit processors.

When TARGET=3200 or higher is
specified, the resultant object code
will not execute on the model
8/32 processor. If TARGET=3280
is specified, the resultant object
code executes only on a 3280 sys-
tem.

" To target code to the MicroThree, MicroFive, or 3280E,

use TARGET=3283, TARGET=3285, or TARGET=3288,
respectively.

informs the compiler that all named common blocks,
common entities, and global entities are candidates for
task common and prevents the compiler from allocating
registers for these entities or eliminating code that refer-
ences them. Unrestricted use of TCOM will impair optim-
ization severely.

48-010 FOO RO4

TEST

NTEST

TRACE

NTRACE

TRANSCENDENTAL

NTRANSCENDENTAL

UNNORMALIZE

48-010 FOO R0O4

Building a Command File to Compile Your Program
Using the F70 and F7Z Compilers

causes the compiler to generate code that checks
the bounds of array subscripts and substrings; out-
puts an error message at run-time to the device or
file assigned to a lu6 at any point in the program
when the value of an array subscript or substring
becomes out of bounds. It is not intended for
checking boundary violations of arrays passed as
arguments to subprograms or used as a buffer in
ENCODE/DECODE statements.

prevents the compiler from generating code that
will perform the TEST function.

causes the compiler to generate code that outputs a
message at run-time to the device or file assigned to
lu6 when:

o the value of any program variable is changed by
a logical or arithmetic assignment statement, or

¢ a labeled statement is executed.

prevents the compiler from generating code that
will perform the TRACE function.

causes transcendental functions to be generated as
single microinstructions in the machine code for the
328x processor. Specifying NTRANSCENDENTAL on a
328x processor generates calls to the RTL version of
each transcendental function. This option has no
effect on any other Series 3200 Processor. TRAN-
SCENDENTAL is the default for a 328x processor
and NTRANSCENDENTAL for other Series 3200 pro-
cessors.

prevents transcendental functions from being gen-
erated as single microinstructions in the machine
code for the 328x processor.

directs the compiler to generate unnormalized float-
ing point load instructions. This option overrides
the TARGET option for the generation of unnormal-
ized or normalized instructions. If the code is being
targeted for the Model 3203, 3205, or 3280 proces-
sors, UNNORMALIZE is the default.

6-17

6

6-18

Building a Commanad File to Compile Your Program

Using the F70 and F7Z Compilers

NUNNORMALIZE

If the compiler generated any unnormalized floating
point instructions, a DCMD LINK command will be
embedded in the generated object code. The text of the
DCMD is:

****MODULE XXXX CONTAINS NON-NORMALIZING LOADS

where xxxx is the name of the program where unnormal-
ized floating point load instructions were generated.
This comment on the DCMD will be displayed on the LOG
device by 0S/32 Link when the object code is used to
build a task.

inhibits the generation of unnormalized floating point‘
load instructions regardless of the TARGET option.

{_NOTE_> Although unnormalized floating

WARN

point instructions are currently
implemented only on the Model
3205 and 3280 processors, the
UNNORMALIZE/NUNNORMALIZE
option is provided for future
additional processors.

causes the compiler to send warning messages to the list
device.

When this directive is used with any of NOBJ, TABLES,
and/or XFORT, it sends E/SP warning messages in addi-
tion to the regular messages. These warning messages
flag language constructs in the program that produce a
complicated graph or inhibit parallelism. See the
appropriate manual in the E/SP documentation set for
details on these directives.

GH NOTE_ > Do not use NOBJ, TABLES, or

XFORT with this directive if the
E/SP warning messages are not
desired.

48-010 FOO R0O4

NWARN

XFORT

NXFORT

XREF

NXREF

Building a Command File to Compile Your Program
Using the F70 and F7Z Compilers

prevents the compiler from sending all warning mes-
sages to the list device.

informs the compiler that the code may contain non-
FORTRAN structures which require special parsing for
E/SP.

informs the compiler that there are no non-FORTRAN
constructs. This is the default.

causes the compiler to generate a cross-reference listing
of variables and labels in the source code. This listing is
output to the designated list device.

prevents the compiler from generating a cross-reference
listing of the source program.

Using the In-line Start Directives

48-010 FOO R0O4

In-line expansion is not a default action of F7Z. You must explicitly request
in-line expansion through the INLINE/S$INLINE directive.

When you specify the INLINE directive (without fd) in the START command,
special search methods are used by the compiler to find the source of the
subprogram to be expanded in-line. The order of search is as follows:

1. The source of a subprogram is searched for in the file specified through
the INLIB/$INLIB directive.

2. If the source of the subprogram is not found in the file, or if the $INLIB
directive is not specified, the source is searched for in the file that con-
tains the call to that subprogram.

3. If the source is not found in that file, the ‘source is searched for in the

input file.

If the source of the subprogram is not found in any of these files, the com-
piler outputs a warning message and excludes that subprogram from in-line
expansion. $NBATCH is enforced at the completion of in-line expansion.

The file specified by the fd parameter of the $INLINE directive may consist of
in-line directives and the names of the subprograms to which those direc-
tives apply. (The file can only consist of in-line directives.) To identify a
subprogram to which the directives apply, the program header **name is
used, where name is the name of the subprogram. For the main program,
this should be just **, with no name (even if a PROGRAM statement is used
to name the program).

6-19

6

6-20

Building a Command File to Compile Your Program
Using the F70 and F7Z Compilers

The in-line directives that apply to this subprogram are those which follow
the header until the next program or end of file is encountered.

If the first record on the file fd is not a program header, the in-line directives
in that file before the first program header, if any, are applied to all the sub-
programs compiled. In addition to these directives, the directives following
the program header of a subprogram up to the next header, if any, are also
applicable to that subprogram. A $INSKIP directive, if any, must appear
immediately after the header in the file fd. In this case, the subprogram with
this name is not compiled separately. If the ALL option is specified by the
$INSKIP directive, batch compilation is terminated after compiling all the
subsequent BLOCK DATA subprograms in the batch input.

Testing End of Task Code

Compilatior. by the optimizing compilers can terminate under any one of the
following seven conditions.

« All source code was compiled into object code with no syntax errors.

¢ All source code was compiled into assembly language output with no syn-
tax errors.

¢ All source code was compiled and found to contain syntax errors.
e The directives specified in the START command are illegal.

e The memory size specified by the LOAD command is less than 6kB (4kB if
CONT=0).

o An internal table exceeds the maximum table size.

e The compiler encounters either an EOM or an 1I/0 error on the temporary
work file.

These conditions and their end of task codes are listed in Table 6-2.

48-010 FOO RO4

48-010 FOO R04

Building a Command File to Compile Your Program
Using the F70 and F7Z Compilers

End Of

Task Code F70 and F7Z Termination Status
0 No compilation errors, object code produced.*
1 No compilation errors, CAL produced.
4 Compilation errors.
6 Illegal start directives.
8 Real memory insufficient.
9 Compiler table limit exceeded.
10 End of medium encountered on work file.

* If $SYNTAX is in effect, no object code is produced and, therefore,
the program cannot be linked.

Table 6-2. End of Task Codes

The program development procedure must check for end of task codes 0 or
1 before proceeding with the LINK procedure. To do this, the procedure
uses the CSS conditional commands. For further information on the CSS
commands, see the 0OS/32 Multi-Terminal Monitor (MTM) Reference Manual.

Recall lines 11-13 of COMPILE1.CSS presented earlier,

$IFG 3

SWRITE COMPILATION ERRORS
$CLEAR

$ENDC

These lines check for an end of task of 3 or greater. If it is equal to 0, the
operating system skips over the next three commands and ends the compila-
tion process. You can now LINK your program as described in Chapter 7. If
the end of task code is 1, the CAL output produced by the compiler should
be assembled with the CAL/32 assembler. You can expect this result only if
you specify the CAL/$CAL directive. See the next section for the CSS pro-
cedure that performs the ASSEMBLY process. An end of task code greater
than 3 causes the operating system to send the message COMPILATION
ERRORS to the terminal. $CLEAR terminates the COMPILE procedure.

The program development procedure can also test for other end of task
codes.

6-21

Building a Command File to Compile Your Program
Using the F70 and F7Z Compilers

Example:

$IFG 3
$IFE 4;$WRITE COMPILATION ERRORS IN SOURCE;$ENDC
$IFE 6;SWRITE CHECK FOR MISSPELLED START DIRECTIVES;$ENDC
$IFE 8;$WRITE MEMORY OVERFLOW: INCREASE LOAD SIZE;$ENDC
$ENDC

For more information on how to use the CSS conditional commands, see the
0S5/32 Multi-Terminal Monitor (MTM) Reference Manual.

Program Development Procedures With Embedded CAL

6-22

The program development procedure COMPILE1.CSS presented earlier in this
chapter does not take into account programs with embedded assembly codes
and when you specify the CAL/$CAL directive. For convenience, the pro-
cedure is presented again as follows:

LOAD F70,100

ASSIGN 1,@1.FTN
XALLOCATE @1.0BJ,IN,126/2
ASSIGN 2,@1.0BJ
XALLOCATE @1.LST,IN,132/2
ASSIGN 3,@1.LST

TEMP 8,C0,4000

TEMP 4,IN,80/5

ASSIGN 7,ERRORFIL
START, @2

SIFG 3

SWRITE COMPILATION ERRORS
$CLEAR

$ENDC

When you specify the CAL/$CAL directive, the above procedure produces
assembly language code rather than object code. Since this procedure does
not produce the object code, the allocation of the object code file (@1.0BJ)
and its assignment to lu2 are not necessary. However, the assembly code
produced must be allocated to a file and assigned to lu6. Otherwise, an
assighment error occurs and compilation aborts. The following two lines
must be added to the program development procedure above:

48-010 FOO RO4

48-010 FOO RO4

Building a Command File to Compile Your Program
_ £ he F7C§’ £ 6

Using t

XALLOCATE @1.CAL,IN,80/5
ASSIGN 6,@1.CAL

LOAD CAL32,50

XALLOCATE (@1.LST,IN,132/4
ASSIGN 3,@1.LST,EWO
XALLOCATE (@1.0BJ,IN,126/2
ASSIGN 2,@1.0BJ, EWO
TEMPORARY 4,IN,80/2
ASSIGN 1,@1.CAL, SRO
START, SQUEZ=99 ,NLIST, (@2
$IFNE 0

SWRITE **CAL ERRORS**
$CLEAR

SENDC

Where:

@1 = SOURCE FILENAME
@2 = CAL START OPTIONS

and F7Z Compilers

This file containing the assembly code, must be assembled by the CAL
assembler to obtain the object code for linking
cedure is shown below: :

. A typical ASSEMBLY pro- -

lu2 and lu3 must be assigned with 'EWO’ privileges. lu7 may be assigned to
a copy file.

@ NOTE_> If you invoked the SYNTAX compiler option, either as

a start option or as an inline directive, and the com-
piler ends with EOT 1, CAL may pause with an 170
error 8800, unless you enter BATCH mode as a start

parameter to CAL.

6-23

a=SQRT(b‘b+c-c)

Building a Command File to Link a
FORTRAN Program

In this chapter

We discuss how the Link process converts the object module created during
the COMPILE phase into an executable task image. Link constructs a loadable
task image from the object modules and object libraries that you specify.

Topics include:

e Building the Link command file

Linking trap handling programs

Linking shared data/segments

Overlaying large programs

Loading and executing Link

48-010 FOO R04 7-1

7 Building a Command File to Link a FORTRAN Program
Introducing the Basic Link. Development Procedure

Introducing the Basic Link Development
Procedure

The minimum functions performed by the LINK development procedure are
as follows:

o allocate the input/output (170) files required by Link,

o build the Link .CMD file,

o load the Link software,

e start Link,

« check the end of task code, and

e write an zrror message and terminate the program development pro-

cedure, i end of task code is greater than 0.

The following command sequence performs the basic operating system func-
tions for linking a FORTRAN program.

7-2 , 48-010 FOO RO4

Building a Command File to Link a FORTRAN Program 7
ntroducing the Basic Link Development Procedure

Example:

XDELETE (@1.TSK

XALLOCATE (d1.MAP,IN,132/2

k k %k k Kk k k Kk k% %k Kk % *k k Kk *x *k *x k Xk %k k kx %k *x %k %
* The following sequence builds the link .CMD file

* using the CSS $BUILD ... $ENDB commands. This

* file is then passed to the Link task via the

* COMMAND= parameter of the 0S/32 START command.
$BUILD LINK.CMD

ESTABLISH TASK

MAP @1.MAP,ALPHABETIC,ADDRESS,XREF

OPTION DFLOAT,FLOAT,WORK=(X2800,X2800),SYSSPACE=XFFFF
* Kk k Kk k Kk Kk Kk Kk Kk % k k Kk Kk Kk k Kk k kK k *k *k k * * *

* % ¥ X %

* If you are using Link R00-01 or lower, change the
* OPTION command to:
* OPTION DFLOAT,FLOAT,WORK=(C00,C00),SYSSPACE=FFFF
INCLUDE @1.0BJ '
LIBRARY F7RTL.OBJ/S
BUILD @1.TSK
END
$ENDB
k k% k Kk Kk *k k* Kk %k Kk k *k Kk Kk k Kk Kk &k %k Kk Kk %k k Kk %k %k %
* The following is the load and start sequence to
* invoke the LINK task
LOAD LINK/S,20
START, COMMAND=LINK.CMD, LOG=CON:
* Kk Kk Kk k k k k Kk Kk k Kk k k k k k k Kk %k k k %k k k *x %
* The following sequence tests for an EOT code of
* other than zero (0)
$IFNE 0
SWRITE LINK ERRORS
$CLEAR
$ENDC
SEXIT

* % ¥ *

*

*

You may save this command sequence to a command substitution system
(CSS) file such as LINK1.CSS (avoid naming CSS files after existing system
files; LINK.CSS is a system CSS file).

48-010 FOO RO4 7-3

7 Building a Command File to Link a FORTRAN Program
Allocating Link 1/0 Files

If you are using OS/32 Link version R00-01 or lower,
take note of the following differences:

il

o Use ESTABLISH SHARED instead of ESTABLISH
IMAGE when linking a partial image.

o Use the command SHARED instead of the Link
RESOLVE command. The partial image file created
gets an extension .SEG instead of .IMG.

Example:

SHARED fd.SEG instead of RESOLVE fd.IMG

+ Any values to reflect a work area or system space
need not be preceded by an X.
Example:
WORK=(CO00,C00), SYSSPACE=FFFF
instead of

WORK=(XC00,XC00) , SYSSPACE=XFFFF

Allocating Link I/0 Files

Link requires the following 1/0 files.

e Object files containing the compiled source code.
+ Task image file to which Link outputs the task image.

« Map file to which Link sends a listing of all program names and their
addresses.

e Log file tc which Link logs all commands given to it and any Link-
generated diagnostic messages.

e .CMD file containing commands to Link. Without this file, you have to use
Link interactively.

7-4 48-010 FOO RO4

48-010 FOO R0O4

Building a Command File to Link a FORTRAN Program 7
Allocating Link 170 Files

These 170 files are assigned and/or accessed by Link via Link commands that
are contained in the .CMD file. You can create the Link .CMD file within the
program development procedure LINK1.CSS (as shown in the previous sec-
tion) or create it as a separate file using any text editor. This .CMD file must
then be specified in the START command. What you can specify within the
.CMD file is discussed in the next section.

The BUILD command for Link automatically allocates a file for the task image
using the source filename followed by the extension .TSK.

The map and log files must be allocated by the program development pro-
cedure. In the previous example, a file is allocated for the Link map.

Because all messages are being logged to the console, it was not necessary to
allocate a log file.

Table 7-1 lists the logical unit (lu) assignhments that are automatically made
by the Link commands.

Logical Units
Link Command Assigned I/0 File
INCLUDE 1 OBJECT
BUILD 2 TASK IMAGE
MAP 3 LINK MAP
START
,COMMAND= 5 | LINK COMMAND
,LOG= 6 LOG

Table 7-1. Logical Units Assigned By Link

The Link commands used in this chapter are fully explained in the 0S/32
Link Reference Manual. This chapter explains these commands adequately
for you to follow the discussions. However, not all the possible uses and
options of these commands are covered. .

7

Building a Command File to Link a FORTRAN Program
Building a Basic Link .CMD File

Building a Basic Link .CMD File

The LINK1.CSS procedure presented earlier in this chapter uses the CSS
$BUILD ... $ENDB commands to create the Link .CMD file. This file contains
the minimum commands required to link a FORTRAN object file. These com-

7-6

mands are:
ESTABLISH
MAP
OPTION
INCLUDE
LIBRARY
BUILD
END
ESTABLISH depending on the option passed to it, this command tells Link
to convert the object code into a loadable task image (TASK),
partial image (IMAGE), or operating system (OS).
MAP allows Link to send a Link map to the specified file or device.
OPTION specifies the task options that must be activated during exe-

cution of the task image. The options to be specified are:

FLOAT
DFLOAT
WORK=
SYSSPACE=

If the program uses single precision arithmetic, FLOAT must
be specified. The use of double precision arithmetic requires
the DFLOAT option.

To determine the amount of additional workspace that should
be given to a task by the WORK= option, use the following
formula.

WORK = 8kB + /0 buffer space (in bytes) + (68B * # of LOGI-
CAL UNITS) + 114B + 268B + temporary space

8kB is the workspace required for the run-time
library (RTL) stack. This size can be
changed using the 0S/32 PATCH Utility.
For more information, refer to the discus-
sion of the REENTRANT directive, in
Chapter 3, in the section entitled "Miscel-
laneous Instream Compiler Directives.”

48-010 FOO R04

48-010 FOO RO4

INCLUDE

LIBRARY

Building a Command File to Link a FORTRAN Program
Building a Basic Link .CM

File

I70 buffer space is the largest single record length (in
bytes) needed for any one 170 multiplied
by the maximum number of logical units
assigned at any given time.

68B number of logical units is used by the

7

FORTRAN static communication area for

maintaining information about each Iu.

114B is a constant that the FORTRAN static com-
munications area uses for other data.

268B ' is the maximum workspace required to

support start options using the GETOPTS

RTL routine.

temporary space dynamically allocated space used by the
RTL. The amount allocated depends upon
the application being performed (usually
between 2-5KB).

For most applications, a SYSSPACE option of X'’FFFF’ is

sufficient. For tasks containing trap handling routines, see the

section entitled "Linking Trap Handling Programs".

specifies an object file that is to be included when the task

image is built. This is the object file created by the COMPILE

process.

specifies the RTLs containing the RTL routines called by the

FORTRAN program. These RTL routines, which Link incor-
porates into the task image module, can be user-written or

those provided by the FORTRAN VII RTL.

Twelve versions of the RTL can be built from the

F7RTLLIB.CSS, a command file which allows customization of
the RTL based on the arguments specified. The format to

build the RTL is as follows:

X
F7RTLLIB [A|, {w} , [c]

ﬁlename ext
F7RTLxx.LIB

ﬂ]

7-7

7

7-8

Building a Command File to Link a FORTRAN Program

Building a Basic Link .CMD File

The arguments are positionally dependent and must appear in
the order listed. Arguments are separated by commas. When
omitting an argument, a comma must be included as a place-
holder. The four arguments which the CSS accepts are
described below.

A

filename.ext

specifies argument checking for all RTL rou-
tines and functions. The default is no argu-
ment checking.

allows interfacing to the 3200 FORTRAN
Enhancement Package (FEP) microcode func-
tions (WCS). The default is no WCS.

allows interfacing to the high-speed FORTRAN
package for the 8/32 processor (WCS). The
default is no WCS.

includes the FORTRAN VII RO5 compatible RTL.
This library provides object compatibility so
that the object code generated by R0O5 com-
pilers can be linked with object generated by
R0O6 compilers.

specifies the filename on which the generated
RTL is to be created. The default filename is
F7RTLxx.LIB, where xx is the number associated
with the current software revision level (i.e.,
F7RTL60.LIB for the R06-00 revision level). If a
filename is specified without an extension, .LIB
is assumed.

The following list describes the library version referenced
given the F7RTLLIB command issued. In all cases described,
the filename on which the RTL is generated defaults to
F7RTLxx.LIB unless you specify a different filename using the
filename.ext argument.

F7RTLLIB

F7RTLLIB A

all RTL routines and mathematical func-
tions are included.

all RTL routines and mathematical func-
tions are included along with an argu-
ment checking routine that checks the
arguments of all RTL routines called by a
FORTRAN program.

48-010 FOO.RO4

Building a Command File to Link a FORTRAN Program

F7RTLLIB \W

F7RTLLIB AW

F7RTLLIB X

F7RTLLIB AX

F7RTLLIB ,,C

F7RTLLIB A,,C

F7RTLLIB ,W,C

48-010 FOO R0O4

Building a Basic Link .CMD File 7

all RTL routines and mathematical func-
tions are included. The RTL interfaces to
the high-speed FORTRAN package for the
8/32 (WCS).

all RTL routines and mathematical func-
tions are included along with an argu-
ment checking routine that checks the
arguments of all RTL routines called by a
FORTRAN program. The RTL interfaces
to the high-speed FORTRAN package for
the 8/32.

all RTL routines and mathematical func-
tions are included. The RTL interfaces to
the Series 3200 FORTRAN Enhancement
Package (FEP).

all RTL routines and mathematical func-
tions are included along with an argu-
ment checking routine that checks the
arguments of all RTL routines called by a
FORTRAN program. The RTL interfaces
to the Series 3200 FEP.

all RTL routines and mathematical func-
tions are included. The RTL has R0O5
object compatibility.

all RTL routines and mathematical func-
tions are included along with an argu-
ment checking routine that checks the
arguments of all RTL routines called by a
FORTRAN program. The RTL has RO5
object compatability (with argument
checking).

all RTL routines and mathematical func-
tions are included. The RTL interfaces to
the high-speed FORTRAN package for the
8/32 (WCS) and has R0O5 object compata-
bility.

7-10

Building a Command File to Link a FORTRAN Program
Building a Basic Link .CMD File

F7RTLLIB AW,C all RTL routines and mathematical func-
tions are included along with an argu-
ment checking routine that checks the
arguments of all RTL routines called by a
FORTRAN program. The RTL interfaces
to the high-speed FORTRAN package for
the 8/32 and has RO5 object compatabil-
ity (with argument checking).

F7RTLLIB ,X,C all RTL routines and mathematical func-
tions are included. The RTL interfaces to
the Series 3200 FORTRAN Enhancement
Package (FEP) and has ROS object compa-
tability.

F7ZRTLLIB A X,C all RTL routines and mathematical func-
tions are included along with an argu-
ment checking routine that checks the
arguments of all RTL routines called by a
FORTRAN program. The RTL interfaces
to the Series 3200 FEP and has R05
object compatability (with argument
checking).

The twelve versions of the library presented above are refer-
enced in the LIBRARY command as follows:

LIBRARY F7RTLXX.LIB
or

LIBRARY filename.ext (if a different filename was specified
using the filename.ext argument)

(B NOTE > On the 328x Systems (except 3280E),
use the mathematical functions pro-
vided in the nonWCS System Mathemat-
ical Library instead of those provided
in the 3200 Series WCS library. The
transcendental functions (sine, cosine,
atan, log, log10, and square root) for
the nonWCS version of the library use
the machine instructions, whereas the
WCS library uses a microcode interface
to do the same.

48-010 FOO R04

Building a Command File to Link a FORTRAN Program 7
Building a Basic Link .CMD File

BUILD instructs the linkage editor to begin building the task image
from the object modules. BUILD allocates the task image file
and stores the task image in it.

END terminates the linkage editor.

Using the options provided by these commands, you can increase the capa-
bilities of the basic Link command file to meet the needs of each application.
For example, the SEGMENTED option to the Link OPTION command specifies
that the pure code of a user-task (u-task) can be shared by two or more
tasks.

Example:

$BUILD LINK.CMD

ESTABLISH TASK

MAP (@1.MAP,ADDRESS

OPTION FLOAT,DFLOAT,WORK=(XC00,XC00),

SYSPACE=XFFFF, SEGMENTED

INCLUDE @1.0BJ

LIBRARY F7RTL.OBJ/S

BUILD (@1.TSK

END
$SENDB

In this example, the task created consists of both a private and a shared
image. The private image contains the impure code which cannot be shared
by other tasks. The shared segment contains the pure code which is available
to other tasks.

While most FORTRAN programs can be linked using the commands in the
basic Link command file described above, FORTRAN programs handling task
traps, using overlays, accessing shared data areas or shared segments
require a different set of Link commands. These are described in the follow-
ing sections.

48-010 FOO RO4 7-11

7 Building a Command File to Link a FORTRAN Program
Building a Basic Link .CMD File

Linking Trap Handling Programs

Using the RTL ENABLE subroutine, you can write programs that handle task
traps. See 05/32 System Support Run-Time Library (RTL) Reference Manual
for more information on how to write these programs. When developing a
LINK procedure for trap handling programs, you must reserve 768 (hexade-
cimal 300) bytes of main memory for user-dedicated location (UDL) storage
and increase the amount of workspace allowed for task execution. This is
done through the Link OPTION command as shown in the following example.

Example:

SBUILD LINK.CMD

ESTABLISH TASK

MAP (31.MAP, ADDRESS

OPTION FLOAT,DFLOAT,WORK=(X1600,X1600),

SYSPACE=XFFFF , ABSOLUTE=X300, NAFPAUSE

INCLUDE @1.0BJ

LIBRARY F7RTL.OBJ/S

BUILD @1.TSK

END
$ENDB

In this exaraple, the Link OPTION command is used to:

¢ Increase absolute data space in memory by specifying a minimum of
X300 in the ABSOLUTE option.

With the R05-05 (or higher) version of the F7RTL, the
ABSOLUTE=X300 option does not have to be
specified. The F7RTL automatically defines this for
the LINK procedure. However, if a task calls INIT and
requires more than X’300’ of memory, the link com-
mand must be specifically set up to override the
'OPTION ABS=X300' command passed to LINK by the
RTL. To do this, use a LINK command sequence simi-
lar to the following:

INCLUDE @1.0BJ

INCLUDE SYS:F7RTL.OBJ/S, .INIT
OPTION ABS=xxx

LIB SYS:F7RTL.OBJ/S

Where:

xxx memory size other than X’300’.

7-12 48-010 FOD RO4

48-010 FOO RO4

Building a Command File to Link a FORTRAN Program 7
Building a Basic Link .CMD File

¢ Increase task workspace for execution of trap handling routines by speci-
fying a minimum of X'1600’ in the WORK option.

o Allow the task to continue execution after an arithmetic fault by specify-
ing NAFPAUSE.

A FORTRAN program can handle three types of task traps:

o Task queue service traps including those resulting from device interrupt,
intertask communication, completion of /0 proceed calls, and termina-
tion of timer routines.

e Power restoration traps occurring after power is restored following a
power failure.

e Arithmetic fault traps resulting from division by zero, fixed point quo-
tient overflow, and floating point exponent underflow or overflow.

To determine the workspace required for programs containing trap handling
routines, use the following formula:

WORK = 8kB + 1/0 buffer space (in bytes) + (68B * # of LOGICAL UNITS)
+ 114B + 268B + TASKQUEUE SIZE (in bytes) + MESSAGE RING SIZE
(in bytes) + temporary space

Where:

8kB is the workspace required for the RTL stack. This size
can be changed using the 0OS/32 PATCH Utility. For more
information, refer to the discussion of the REENTRANT
directive in Chapter 3, within the section entitled, "Mis-
cellaneous Instream Compiler Directives."

170 buffer space is the amount of space needed (in bytes) by FORTRAN for
its buffered 170 multiplied by the maximum number of
logical units assigned at any given time. If there are no
trap handling routines that issue 170, this buffer space is
the largest single record length needed for any one 1/0.
Otherwise, 170 buffer space is determined by the follow-
ing method:

7-13

7 Building a Command File to Link a FORTRAN Program
Building a Basic Link .CMD File

e For all unformatted 1/0s that may occur concurrently,
take the sum of their physical record sizes as deter-
mined by the FORTRAN BLOCKSIZE parameter.

e For all formatted [/0s that may occur concurrently,
take the sum of their logical record sizes as deter-
mined by the FORTRAN RECL. parameter.

¢ Add these sums to get the total physical record length
for concurrent 1/0.

« Finally, take the larger of this sum and the largest sin-
gle record length needed for any one 1/0.

68B number of logical units is used by the FORTRAN static
communication area for maintaining information about
each lu.

114B is the size of the FORTRAN static communications area

used for other data.

268B is the maximum workspace required to support start
options using the GETOPTS routine.

temporary space dynamically allocated space used by the RTL. The amount
allocated depends upon the application being performed
(usually 2-5KB).

Additional workspace, measured in bytes, is required for the TASKQUEUE
and/or the MESSAGE RING if the task is using the task queue service trap
and either of these structures is specified as being larger than default size in
the call to the INIT RTL routine. The number of queue entries defaults to 48
bytes. You may increase the size using the INIT routine. The message ring
does not require any workspace if the default size of two is used.

If a nondefault size TASKQUEUE and/or MESSAGE RING is specified, use the
following equations to calculate the required work space:

7-14 48-010 FOO RO4

Building a Command File to Link a FORTRAN Program 7
Building a Basic Link .CMD File

TASKQUEUE SIZE = 4 * no. of queue entries + 8 bytes

MESSAGE RING SIZE = 76 * no. of message buffers

When an arithmetic fault occurs, 0S/32 automatically pauses task execution.
To allow execution to continue so that the FORTRAN RTL routine can handle
the trap, the task must be prevented from being paused. This is done by
linking the program with the Link option NAFPAUSE.

For more information on task trap handling, see the 0S/32 Application Level
Programmer Reference Manual.

Overlaying a Program

48-010 FOO R0O4

During its lifetime, a program may become very large. Concurrent provides a
means to execute a program in an area of main storage that is not actually
large enough to contain the entire task at one time. Link is used to divide
such a program into nodes, a collection of modules and common blocks,
which are loaded as needed. Only one node, the root, must remain in main
memory throughout the execution of the program; the other nodes reside on,
and are fetched from, disk when needed.

To ensure the integrity of the overlayed program, an overlay structure must
be carefully designed. You can create a tree structure to show which nodes
of a program occupy the same main memory at different times. Figure 7-1
illustrates a tree structure. The sample program is composed of one main
routine and six subprograms, B, C, D, E, F, and X. The main routine calls B
and C. Cin turn calls D, which calls E and F. All routines call X, and E and F
share the global variable E_AND_F.

The main routine must reside in the root node throughout the execution of
the task. Also, X should be placed in the root because all other routines call
X.

The execution of B and C are mutually exclusive; that is, they never call each
other directly or indirectly. Therefore, these two subprograms can occupy
the same address space. C must remain in storage while D, E, and F are exe-
cuting. However, E and F are mutually exclusive and they can occupy the
same space. E and F can be placed in separate substructures below D; there-
fore, D is considered to be an ancestor of E and F. However, there is nothing
to be gained by separating routines C and D since they must be present
simultaneously, so C and D can be placed in the same node.

7-15

7

7-16

Sample Program

Call X

Global E _AND_F

Call X

Figure 7-1. Sample Program with Overlay Tree Struéture

Building a Command File to Link a FORTRAN Program
Building a Basic Link .CMD File

Overlay Tree Structure

| routine X

routine B

routine E

routine C
routine D

routine F

48-010 FOO R0O4

48-010 FOO RO4

Building a Command File to Link a FORTRAN Program 7
Building a Basic Link .CMD File

The following Link command sequence can be used to implement the overlay
structure of Figure 7-1.

Example:

INCLUDE MYPROG.OBJ, .MAIN
INCLUDE ,X
OVERLAY B,1
INCLUDE ,B
OVERLAY CD,1
INCLUDE ,C
INCLUDE ,D
OVERLAY E, 2
INCLUDE ,E
OVERLAY F,2
INCLUDE ,F
LIBRARY MYLIB.OBJ
LIBRARY F7RTL.OBJ
BUILD MYPROG

The OVERLAY command specifies the start of a node and the node’s relative
position within the tree structure. The two RTL files, MYLIB and the standard
RTL, will be searched by Link (MYLIB first, then F7RTL.OBJ) for any routines
containing entry points matching the unresolved external references of the
program. It will place a copy of a library routine in the referencing node
unless an ancestor already contains a copy.

Care should be taken to place all LIBRARY commands which reference user
libraries before the RTL LIBRARY command. This ensures that each user
library routine gets resolved against the standard RTL. Also, it should be
remembered that the domain of a LIBRARY command is the entire Link com-
mand sequence. That is, its domain is not restricted to the overlay in which
it was placed; only the order of the LIBRARY commands are significant to
Link.

Each node has a fixed length in bytes. The total size of a task depends upon
both the routine composition of each node and the structure of the overlay
tree. An overlay structure can be represented by a set of parallel paths. A
path can be defined as a particular set of nodes (one at each level) each of
which is a descendant from the previous level. Therefore, the total size of a
task is determined by the path whose node sizes add up to the greatest
number of bytes. By using the cross-reference map from Link, one can
manually build a call-tree representation of a program (similar to the one
shown in Figure 7-1) as an aid in determining the smallest possible task size.

7-17

7 Building a Command File to Link a FORTRAN Program
Building a Basic Link .CMD File

Normally, the placement of a common block or global block within an over-
layed task is determined by where the block is referenced. Blank common is
always positioned in .ROOT. Named common and global blocks, however, are
initially positioned by Link no closer to the root than any particular refer-
ence to the block. In the sample program of Figure 7-1, subprograms E and F
both reference the global variables E_AND_F. Link will place E_AND_F in the
node containing subprograms C and D.

There are two consequences to this positioning policy. The first conse-
gquence is that named common and global entities are initialized every time
the overlay is fetched from disk. The second consequence is that more than
one copy of a common or global entity can exist on separate paths in the
program. That is, two or more overlays can have their own separate and
private cofpies of a common or global entity. These copies could then con-
tain different values.

Link provices the POSITION command to reposition common or global enti-

ties into an overlay closer to the root than it would normally position them.

Global E_AND_F, in the sample program, can be forced into the root node by
inserting:

POSIT.-ON Common=E_AND_F,To=.ROOT

into the sample Link command sequence. Notice here that global entities are
considered as common.

Common blocks and global entities are not the only entities affected by over-
laying a program; implicitly saved local entities are also affected. A program
containing an implicitly saved local entity depends upon the value of that
entity to remain unchanged between invocations. Very subtle bugs can occur
in an overlayed program if the value of the entity is well defined at one
point during the execution of the program, but becomes undefined at
another. The FORTRAN SAVE statement will avoid this problem. The local
entities specified on a SAVE statement are repositioned by Link to the root
node via a ~ompiler generated DCMD command to Link in the object code.
Thus, the values-of entities specified on a SAVE statement are guaranteed to
be the mos: recent. The SAVE statement may also be used to reposition
common blocks and global entities to the root.

7-18 48-010 FOO R04

Building a Command File to Link a FORTRAN Program 7
Building a Basic Link .CMD File

Linking Shared Data Areas

48-010 FOO RO4

A FORTRAN program can reference data areas that can be read or written to
by other tasks running on the same or different processors. Two require-
ments must be met for this particular situation.

e You must build a partial image containing the data areas to be accessed if
it does not yet exist; and

¢ You must link your program using the Link RESOLVE command.
Shared data areas must be built and linked into shared image modules

before they can be specified in the RESOLVE command. To do this, perform
the following steps:

1 Build a data area by using a FORTRAN block data subprogram.
Save this block in the file DATAL.FTN.

Example:

C THIS BLOCK DATA SUBPROGRAM BUILDS
C A DATA AREA CONSISTING OF BOTH

C NAMED COMMON AND GLOBAL COMMON

C VARIABLES

BLOCK DATA DATA1

GLOBAL A,B,C,D,E

COMMON /ABC/I,J,K

COMMON /DEF/L,M,N

REAL A,B,C,D,E

DATA A,B,C,D,E,I,J,K,L,M,N/5%0.0,6*0/
END

7-19

7

7-20

Building a Command File to Link a FORTRAN Program
Building a Basic Link .CMD File

2 Compile this source to create the object file.

COMPILE DATAl.FTN

3 Establish a block data structure as a shared data area by using the
following Link .CMD file:

ESTABLISH IMAGE,ACCESS=RW,ADDRESS=F0000
INCLUDE DATAl

EXTERNAL ABC.,DEF.,A,B,C,D,E

BUILD DATAl.IMG

END

The ADDRESS parameter in the ESTABLISH command selects the segment
number to be assigned to the task common. Once this is determined and the
common is established, LINK uses this information each time a task is built
and the task common is resolved against it.

When defin:ng a task common entry point or name, the EXTERNAL statement
is used. The external name of a common block is the seven character ASCII
name used in the COMMON statement with a period appended to the end. If
the name is eight characters long, the external name of the common block is
the name itself. Note how COMMON /ABC/ maps to the EXTERNAL ABC. in
the previous example.

In this command sequence, DATA1 is not only the name of the block data
subprogram, but also the name of the file containing the object code for the
subprogram. '

These Link commands establish DATAL as a shared data area containing
DATAL. Items within the shared area are arranged exactly as they are
arranged within the block data structure. Each shared area can contain more
than one block data structure. These structures are arranged within the
shared area according to the order in which they are included by the Link
INCLUDE ccmmand.

When establishing the shared area, all global variables as specified in the
FORTRAN VII GLOBAL statement and named common blocks to be contained
in that area must be listed in the Link EXTERNAL command. The compiler
truncates common block names and GLOBAL variables to eight characters. If
a name is less than eight characters, a period is appended to the name (e.g.,
ABC. and DFEF.). Global entities must also be truncated to eight characters.

48-010 FOO RO4

48-010 FOO RO4

Building a Commanad File to Link a FORTRAN Program 7
Building a Basic Link .CMD File

To link a FORTRAN task that references the shared data area contained in
DATAL.IMG, create a link .CMD file as follows:

Exémple:

$BUILD LINK,CMD
ESTABLISH TASK

MAP @1.MAP,XREF
OPTION DFLOAT, FLOAT,WORK=(XC00,XC00),

SYSSPACE=XFFFF

INCLUDE @1.0BJ
RESOLVE DATA1.IMG
LIBRARY F7RTL.OBJ/S
BUILD @1.TSK

END
$ENDB

When establishing a shared data area that is to be located in the global task
common (memory shared by two or more distinct processors), use the name
of the global task common as the argument to the Link BUILD command.

This name is determined by the TCOM command at system generation (sys-
gen). For example, if DATAL is to be established as a shared area within a
global task common named GTC, the Link BUILD command would be written
as follows:

BUILD GTC

where GTC is the name given by the system administrator at sysgen time to
that shared data area.

To link a FORTRAN task that references the shared data area containing GTC,

the link RESOLVE command would be written as follows:

RESOLVE GTC

Because 0S/32 does not support static initialization within global task com-
mon (TCOM) areas, block data subprograms used for structuring shared data
within global task common must not contain data statements. Otherwise,
these statements have no effect at run-time,

You have encountered most of the commands in LINK.CMD earlier in this
chapter with the exception of the Link RESOLVE command. The RESOLVE
command establishes a FORTRAN task image that references the shared area,
DATAL.IMG.

7-21

7

Building a Command File to Link a FORTRAN Program
Building a Basic Link .CMD File

Linking Shared Segments

7-22

If more than one task will be using a reentrant RTL, the RTL or individual
modules of it, can be included in a shared segment. You can build this seg-
ment as shown in the following example.

Example:

ESTABLISH IMAGE,ACCESS=RE,ADDRESS=F0000
INCLUDE F7RTL.LIB

BUILD F7RTL.IMG

END

ESTABLISH This command specifies that a partial image is built with
read/execute access privileges.

INCLUDE This command specifies that all object modules in the input
file, FZRTL.LIB, are included in the image.
BUILD This command builds the partial image from the object

modules specified in the INCLUDE commands and saves the
image in the file F7RTL.IMG.

END This command terminates the linkage editor.

Once the partial image F7RTL.IMG exists, you can create the following .CMD
file to resolve this partial image into your FORTRAN task.

RESOLVE F7RTL.IMG

INCLUDE MOD3

OPTION DFLOAT, FLOAT,WORK=X1770
MAP PR1:,ALPHABETIC,XREF

BUILD MOD3

END

48-010 FOO RO4

Building a Command File to Link a FORTRAN Program
" £ " Building a Basic Link .CMD File 7

Example 2:

The RTL routine .U, which initializes the FORTRAN environment cannot be
placed in an RTL shared segment (as in Example 1) unless execution profile
analysis (XPA) and call recording analysis (CRA) are not needed. This is
because .U calls the XPA initialization routine .XPATIMR, which gets resolved
to the entry point in the dummy module .XPADUMY. See Chapters 12 and 13
for a discussion on the XPA and CRA Systems, respectively.

To build a shared RTL that contains all modules except .U and .XPADUMY,
enabling the use of XPA and CRA, use the 0S/32 Library Loader as follows:

*AL F7RTL.TMP,IN.126/8 * allocate the file

*LO LIBLDR * load the Library Loader

*AS 1,F7RTL.LIB/S,SRO * assign the system RTL to lu 1

*AS 2,F7RTL.TMP * assign the allocated file to 1lu 2
*AS 3 ,NULL: * assign null device to lu 3

*AS 5,CON: * assign the terminal to lu 5

*ST * start the Library loader

>DU 1,2 .XPADUMY * dupe all modules until .XPADUMY
>COll,3 * do a copy just to go past .XPADUMY
>bu 1,2 .U * dupe following modules until .U
>Cco 1,3 * do a copy just to go past .U

>bU 1,2 * dupe the remaining modules

>END * end the Library Loader

The above sequence produces an RTL without the modules XPADUMY and .U.
See the 0OS/32 Library Loader Reference Manual for more details on the util-
ity.

Now, use Link to produce the shared segment using the following com-
mands:

ESTABLISH IMAGE,ACCESS=RE,ADDRESS=F0000
INCLUDE F7RTL.TMP

BUILD FORTLIB.IMG

END

By building the Link command file as shown in the following example, refer-
ences to shared segments specified by the RESOLVE command are placed in
the FORTRAN task. The shared segment, in this case F7RTL.IMG, must be
available at program execution.

48-010 FOO R0O4 7-23

7

a Command File to Link a FORTRAN Program
essages

To link the object MOD3.0BJ with the partial image F7RTL.IMG, create the fol-
lowing .CMD file:

RESOLJVE F7RTL.IMG

LIBRARY F7RTL.LIB/S

INRCLUDE MOD3

OPTIO DFLORT, FLOAT,WORK=X1770
MzP PR1:,ZLPHABETIC,XREF

BUILD MOD3

END

DCMD Messages

7-24

The define command (DCMD) is a Link command that enables execution of
Link commands in the object modules. It also enables listing of embedded
comments to the input or log device. The FORTRAN VII compilers generate,
as a defaul:, a DCMD in the object file for subprograms which generate
supervisor call (SVC) instructions or nonnormalizing floating point load
instructions. Link commands or comments may also be embedded using the
$DCMD directive, which is discussed in Chapter 3.

When the APU compiler option is specified, the linkage editor will output the
message ccntained in the DCMD on the LOG file. The format of this message
is:

x *MODULE xxxx INVOKRES SVC

Where:

XXXX is the name of the module.

If the compiler generates a DCMD in the object file for a subprogram in
which nonnormalizing floating point load instructions were generated, the
Linkage editor will output the message contained in the DCMD on the log
file. The fcrmat of this message is:

48-010 FOO RO4

Building a Command File to Link a FORTRAN Program 7
Loading and Executing Link

Where:

XXXX is the name of the subprogram.

If SRTOLBIT or SNTRANSCENDENTAL are specified within a subprogram, the
Linkage editor will output the message contained in the DCMD on the log
file. The format of this message is:

xMODULE xxxx COMPILED WITH s$directive

Where:
XXXX is the name of the subprogram.
directive is either RTOLBIT or NTRANSCENDENTAL.

Loading and Executing Link

To load Link into memory, use the 0S/32 LOAD command. To start Link exe-
cution, use the Link START command specifying the name of the command
file in the command parameter and the log device in the log parameter. If

the START parameters are not specified, the parameters will default to the
terminal.

Testing End of Task Codes for Link

The Link process can terminate under any one of the following four condi-
tions.

All object code was linked into task image code.

All object code was linked into image code, but found to contain
unresolved external references.

Linking of the object code was terminated due to a Link error.

Link aborted and no object code was linked; i.e., an error resulted from a
command within the program development procedure.

48-010 FOO RO4 7-25

7

7-26

Building a Command File to Link a FORTRAN Program

Testing End of Task Codes for Link

These conditions and their e.nd of task codes are listed in Table 7-2.

End Of
Task Code

Link Termination Status

0

1

Normal termination
Link errors
Linking aborted some code linked

Linkage editor aborted before any
code was linked

Table 7-2. Link End of Task Codes

The prograra development procedure must test for an end of task code 0
before proceeding to execute the task image. To do this, the procedure uses
the CSS conditional commands as shown by LINK1.CSS.

Example:

S$IFNE 0O

SWRITE LINK ERRORS

$CLEAF.
$ENDC

In the previous example, the procedure checks whether the end of task code
is not equal to 0. If it is equal to 0, the operating system skips over the next
three commands and begin task execution. If it is not 0, the operating sys-
tem sends the message LINK ERRORS to the terminal. After the message is

sent, $CLEAR terminates the program development procedure.

The program development procedure can also test for the other end of task

codes.

48-010 FOO R04

Building a Command File to Link a FORTRAN Program 7
Testing End of Task Codes for Link

Example:

$IFE 2

SWRITE CHECK EXTERNAL REFERENCES
$CLEAR

$SELSE

$IFG 2

$WRITE LINK ERRORS

SCLEAR

$ENDC

$EXIT

48-010 FOO RO4 7-27

Building a Command File to
Execute a FORTRAN Program

In this chapter

48-010 FOO R0O4

We teach you how to load and start the task created by the LINK process.

Topics include:
¢ Loading and starting the task
e Assigning logical units

e Testing end of task codes

8-1

8 Building a Command File to Execute a FORTRAN Program
Introducing the Basic Exacute Procedure

Introducing the Basic Execute Procedure

The minimuam functions that must be performed by the operating system to
execute a program are as follows:

e Load the task image file.

¢ Assign logical units to the required input/output (170) files.
e Start ex:2cution.

e Check the end of task code. -

» Write an error message if end of task code is greater than 0.

The follow:ng command sequence performs the basic operating system func-
tions for executing a FORTRAN program.

Example:

LOAD (@1.TSK

ASSIGN 1,DATAFILE.IN
ASSIGN 3,CON:

ASSIGN 6,PR:

ASSIGN 5,CON:

START

$IFNE 0

SWRITE Run—-Time Error encountered
$CLEAR

SENDC

SEXIT

You can save this command sequence in a command substitution system
(CSS) file such as RUN1.CSS. (Avoid naming CSS files the same as the system
CSS files. RUN.CSS is a system CSS.)

8-2 48-010 FOO RO4

Building a Command File to Execute a FORTRAN Program
Introducing the Basic Execute Procedure

Loading and Starting the Task Image

To load the task image into memory, use the operating system LOAD com-
mand. It is not necessary to state the memory increment size. The Link
OPTION WORK command allocates the necessary workspace for task execu-
tion. To begin execution, use the operating system START command.

Assigning Logical Units

48-010 FOO RO4

All FORTRAN I/0 statements require an logical unit (lu) assigned to the 170
device or file used by the program. FORTRAN VII has default lu assighments
for 170 statements that either do not specify an lu or use * as the lu. These
defaults are listed in Table 8-1.

FORTRAN 170 | lu | Assignments
Statement

READ | CR:

WRITE 3 | PR:

PRINT 3 | PR:

ACCEPT 5 | CON:

TYPE 5 CON:

Table 8-1. FORTRAN VII Default Logical Unit Assignments

In addition, lu6 is the default Iu for TRACE and TEST output. This lu must be
assigned by the user.

FORTRAN VII RTL also needs the run-time error file, F7RTL60.ERR. This file
should be on the system volume on account 0. The file is opened, read, and
closed on each I/0 encountered by IOERR. The run-time library (RTL) assigns
the error file dynamically to a free lu. If the error file does not exist or a free
lu cannot be found, no details of the error message are given. The error file
cannot be preassigned.

8-3

Building a Command File to Execute a FORTRAN Program
Introducing the Basic Execute Procedure

The program development procedure can assign the logical units as follows.

Example:

LOAD (@1.TSK
ASSIGN 1,@3
ASSIGN = ,@4
ASSIGN €¢,PR:
ASSIGN £ ,CON:
START (@2

To assign a particular device to lul or lu3, the user specifies that device in
the third and fourth parameter positions of the EXEC command as follows:

* EXEC1 FORTPROG,TRACE TEST COMP,DATAFILE.IN,CON:

Testing End of Task Codes

8-4

Routines within the RTL check for errors during program execution.
Depending on the error, the RTL routines output an error message to the
console or terminal and, in certain cases, conditionally pause execution so
that the user can take the appropriate action to resolve the error.

Normal termination of a task yields end of task code 0. However, the user
can change the end of task code by calling the RTL EXIT routine. Users can
control the nandling of execution exceptions or faults by writing task trap
handling routines within the source program. See the 0S/32 System Support
Run-Time Library (RTL) Reference Manual for more information on using the
real-time processing RTL routines.

48-010 FOO RO4

a=SQRT(b*‘b+c:c

Run-Time Debugging

In this chapter

We provide you with another look at the debug directives introduced in
Chapter 3. These directives are designed to support run-time debugging.
With additional aid from a set of run-time library (RTL) routines, these utili-
ties provide you adequate tools in debugging your program.

Topics include:
e Conditional compilation
« Tracing variables and executable statements

¢ Checking array subscripts

¢ Using RTL version which performs argument checking

48-010 FOO R04 9-1

9

Run-Time Debugging
Basic Debugging Concepts

Basic Debugging Concepts

After you have successfully compiled your program, there is still no guaran-
tee that it is free of errors. FORTRAN VII provides three directives and a set
of RTL routines that are designed to support debugging. Chapter 3
describes the available debug directives. This chapter provides further
details on F ow you can use them.

Essentially, debugging is testing the code during run-time. Debugging
includes:

¢ Running the program with test variables and analyzing the results,

Checking intermediate values of a variable as the program is executed,

Tracing the flow of control throughout the program,

Checking that array elements are within their declared bounds, and

Analyzing run-time error messages.

Compiling Code Using SCOMP/SNCOMP

9-2

The FORTRAN VII compiiers provide a conditional compilation facility that
allows debugging code to be incorporated into a program without having to
delete them after you are done with the debugging process. An X' in column
one of the initial line of a FORTRAN statement flags the statement as a condi-
tionally con:piled statement. When you compile the program with the
$COMP dire-:tive specified, the debugging code becomes part of the program.
When debugging is completed, you do not have to perform the time consum-
ing and often error prone job of removing each line of test code individually.
One simply replaces the $COMP directive with the $SNCOMP directive before
recompiling the program.

Recompiling the program with $SNCOMP causes the debugging code to be
compiled as comment lines with the # character placed in column one. The
debugging code can be reactivated by replacing the $NCOMP directive with
$COMP and recompiling the program.

@__NOTE_ > The COMP/NCOMP start directive may be used

:nstead of the instream directive $COMP/$NCOMP.
3y using the start directives, you do not have to
modify your source code.

48-010 FOO RO4

48-010 FOO RO4

Run-Time Debng in 9
Compiling Code Using $COMP/$NCOM

Example:

SUBROUTINE SUM_SQUARES(S,X,I)

C THIS SUBPROGRAM USES $COMP TO TEST
C THE CODE FOR SPECIFIED VALUES

C OF ARRAYS X AND I.
C

$

COMP
REAL S, X(3)
INTEGER I(2)

X X(1) = .2
X X(2) = .3
X X(3) = .4
X I(1) =0
X I(2) = 1
IF(I(1).EQ.1.AND.I(2).EQ.0) THEN
S=X(1)**2 + (—=X(2))**2 + (-X(3))**2
X WRITE (*,40) S
ELSE
IF(I(1).EQ.1.AND.I(2).EQ.1) THEN
S=X(1)**2 + (-X(2))**2 + X(3)**2
X WRITE (*,40)S
ELSE
IF(I(1).EQ.0.AND.I(2).EQ.0) THEN
S=X(1)**2 + X(2)**2 + (=-X(3))**2
X WRITE (*,40) S
ELSE
S=X(1)**2 + X(2)**2 + X(3)**2
X WRITE (*,40) S
END IF
END IF
END IF
X 40 FORMAT (1X,F15.8)
RETURN
END

In the previous example, the first five conditionally compiled statements
assign values to each array element. Those values are used to evaluate S.
The value of S is then output and the program terminated. You can then
check the value of S to see if it is valid for the conditionally assigned values.
Once satisfied that the subprogram works as intended, replace the $COMP
directive with the $SNCOMP directive and recompile the program. Note that
this subprogram must be called by a main program to execute.

9-3

9 Run-Time Debugging
Checking Intermediate Values with $TRACE

Checking Intermediate Values with STRACE

$TRACE allows you to check the value of a variable which is redefined by an
assignment statement without having to insert a write statement after each
assignment.

Example:

SUBROUTINE SUM SQUARES(S,X,I)
C THIS SUBPROGRAM USES $TRACE TO CHECK
C THE VALUE OF 8. '

$COMP

$TRACE S
REAL S, X(3)
INTEGER I(2)

X (1) = .2
X 2(2) = .3
X X(3) = .4
X [(1) =0
X I[(2) = 1

IF(I(1).EQ.1.AND.I(2).EQ.0) THEN
X=X(1)**2 + (—-X(2))**2 + (—-X(3))**2
ELSE
IF(I(1).EQ.1.AND.I(2).EQ.1) THEN
S=X(1)**2 + (-X(2))**2 + X(3)**2
ELSE
IF(I(1).EQ.0.AND.I(2).EQ.0) THEN
S=X(1)**2 + X(2)**2 + (—X(3))**2
ELSE
S=X(1)**2 + X(2)**2 + X(3)**2
END IF
END IF
END IF
RETURN
1ND

When this subprogram is called by a main program, $TRACE automatically
outputs the following message to logical unit 6 (lu6).

9-4 48-010 FOO RO4

Run-Time Debuggin
Checking Intermediate Values with S'FRACE 9

When variables are traced, the format of the message is:

id=value
Where:
id is the name of the variable being traced.
value is the current value of id. Logical values are output as T or F.

‘A complex value is output as two floating point numbers
separated by a comma and enclosed in parentheses. Floating
point values use the F, E, or D format depending on the mag-
nitude of the data. Integers use the I format. A character is
output as a quoted string.

Tracing Executable Statements

To find out when a particular statement is executed within a program, label
that statement and insert $TRACE above its first occurrence in the source
program. This causes all variables and labeled statements to be traced for
that section of the program between the $TRACE <label> statement and the
statement labeled <label>. For example, to know which statement within the
BLOCK IF the program branches to, the appropriate statement would be
labeled as shown in the following example:

48-010 FOO R0O4 9-5

9

9-6

Run-Time Debugging
Tracing Executable Staterients

Example:

SUBROUTINE SUM_SQUARES(S,X,I)
C THXS SUBPROGRAM USES $TRACE TO TRACE
C THE FLOW OF CONTROL WITHIN THE BLOCK IF

$COMP
$TRACE 5
STRACE S
REAL S, X(3)
INTEGER I(2)
X X(1) = .2
X X(2) = .3
X X(3) = .4
X I(1) =0
X I(2) =1
IF(I(1).EQ.1.AND.I(2).EQ.0) THEN
1 S=X(1)**2 + (=X(2))**2 + (-X(3))**2
ELSE
IF (I(1).EQ.1.AND.I(2).EQ.1) THEN
2 S=X(1)**2 + (—X(2))**2 + X(3)**%2
ELSE
IF(I(1).EQ.0.AND.I(2).EQ.0) THEN
3 S=X(1)**2 + X(2)**2 + (-X(3))**2
ELSE
4 S=X(1)**2 + X(2)**2 + X(3)**2
END IF
END IF
END IF
5 RETURN
END

As this code is executed, $TRACE sends the following output to lu6.

STATEMENT LABEL 4
S =0.29
STATEMENT LABEL 5

The format of a label trace message is:

STATENENT LABEL h

In this format, n is the label of the statement being traced. This message is

output before the statement is executed.

48-010 FOO RO4

Run-Time Debuggin
Checking Array Subscripts Using g%ES% 9

Checking Array Subscripts Using STEST

48-010 FOO RO4

The $TEST directive is used to check whether all array elements referenced
within the program are within their declared bounds. $TEST checks the
array subscript and substring bounds referenced in arithmetic, logical, and
character expressions. However, it does not check boundary violations of
arrays passed as arguments to subprograms or used as a buffer in
ENCODE/DECODE statements.

Example:

SUBROUTINE SUM_SQUARES (S,X,I)

C THIS SUBPROGRAM USES $TEST TO CHECK
C THE ARRAY ELEMENT SUBSCRIPTS AGAINST THEIR
C DECLARED BOUNDS
$COMP
$TEST

REAL S, X(3)

INTEGER I(2)

X X(1) = .2
b4 X(2) = .3
X X(3) = .4
X I(1) =0
X I(2) =1

IF(I(1).EQ.1.AND.I(2).EQ.0) THEN

1 S=X(1)**2 + (—-X(2))**2 + (—X(3))**2
ELSE
IF (I(1).EQ.1.AND.I(2).EQ.1) THEN
2 S=X(1)**2 + (—X(2))**2 + X(3)**2
ELSE ’
IF(I(1).EQ.0.AND.1(2).EQ.0) THEN
3 S=X(1)**2 + X(2)**2 + (—-X(3))**2
ELSE
4 S=X(1)**2 + X(2)**2 + X(4)**2
END IF
END IF
END IF
5 RETURN
END

The FORTRAN VII compiler issues a warning for the statement labeled 4 since
the constant subscript of X exceeds its bounds.

9-7

9

9-8

Run-Time Debugging
Checking Array Subscripts Using $TEST

Since the statement labeled 4 is written as:
S=X(1)**2 + X(2)**2 + X(4)**2

and $TEST is specified, the following message is sent to lu6 during execu-
tion.

ERROR IN .MAIN AT LINE 28, ARRAY X: DIM3 (1:3) SUBSCRIPT = 4

This message tells the user:

the program unit in which the error occurred,

the line number of the statement in which the error occurred,
e the name of the array,
e the original dimensions of the array, and

o the subscript that is out of bounds.

The format of the test message for out of bounds subscripts is:

ERROR N subpro AT stmtno aname: DIMd(lb:ub) SUBSCRIPT = S

In this format, subpro is the name of the program unit in which the error
occurred, stimtno is the number of the source statement in which the error
occurred, aname is the array identifier and d is the dimension number. The
lower and upper bounds of the dimension are indicated by (Ib:ub). S is the
value of the subscript that is out of bounds.

The format of the test message for out of bounds substrings is:

ERROR N ubpro AT stmtno cname*len SUBSTRING=(b:e)

The identifier of the character string is cname. The declared length of
cname is len. The beginning and ending substring values that caused the
string to be out of bounds are indicated by (b:e).

Test messag=s are output before the statement is executed.

48-010 FOO RO4

Run-Time Debugging
RTL Argument Checking 9

RTL Argument Checking

The Concurrent RTL is available with or without argument checking code. An
argument checking RTL contains user-controllable code that automatically
checks:

the class of an RTL call; e.g., function or subroutine,
the type of function; e.g., REAL or INTEGER,

the class of arguments to an RTL call; e.g., array, array element, or scalar,
the type of arguments; e.g., REAL or INTEGER, and

the number of arguments.

The internal RTL routine .CHECK performs the actual checking of the type of
argument. A user written RTL routine can use .CHECK if the routine has the
correct interface. See Appendix A for more information on .CHECK.

This type of RTL argument checking code is user-controllable; that is, it can
be turned off by calling ICHECK as follows:

CALL ICHECK (1)

If the argument [is an integer*4 zero and argument checking is in effect, a
call to ICHECK turns off user-controllable argument checking for all subse-
quent RTL invocations. A call to ICHECK with a nonzero argument turns on
the argument checking. The default for the argument checking RTL is to per-
form this checking.

While user-controllable argument checking code is available only with an
argument checking RTL, many routines in both types of libraries automati-
cally check the actual values passed to them. For example, EXP checks that
its argument is in the range -180.0 to +174.0. The code to do this type of
checking is present in both the argument checking and nonargument check-
ing libraries. It cannot be turned off.

¢H _NOTE > Once debugged, a task executes faster if the user-

48-010 FOO RO4

controllable argument checking is turned off. In
addition, a program that uses the nonargument
checking RTL requires less memory.

9-9

Run-Time Debugging
Analyzing Run-Time Error Messages

Analyzing Run-Time Error Messages

To aid in analyzing error messages, the RTL routine ERLU allows run-time
error messages to be interposed with run-time output.

Run-time error messages can be logged to the system console or the lu
designated oy the subroutine ERLU. ERLU is called as follows:

CALL ERLU (1)

The argument / is the INTEGER*4 lu number in the range 0 to the maximum
lu for the task.

Removing the Debugging Aids

After debugging the program, delete all debug directives, remove all debug-
ging codes, and recompile the program. $TRACE and $TEST can be deac-
tivated by inserting SNTRACE and $NTEST directives. If modifying the pro-
gram, it may be convenient to retain the debugging code as comments. The
debugging code can also be superseded by specifying NTRACE, NTEST, and
NCOMP as start directives.

9-10 48-010 FOO RO4

10

Analyzing Program Maps and
Listings

In this chapter

We illustrate the different types of information provided by the compiler
listings and link maps. The different listings and maps produced by the FOR-
TRAN VII compilers and 0S/32 Link, respectively, provide a means for desk
checking the source for bugs. This chapter uses the output that would result
from compiling and linking the sample program presented in Figure 10-1. A
different example is used to illustrate the extended listing generated by the
F7Z compiler. Important items within the listings are identified by numbered
balloons attached to arrows pointing to the items.

Topics include:

¢ Compiler source and cross-reference listing

Compiler batch statistics

Compiler optimization and register allocation summary

F7Z extended source listing

Compiler assembly language listing

Link maps

48-010 FOO RO4 10-1

1 OAnalyzing Program Maps and Listings
Source Listings

Source Listings

Desk checking is the first step in program debugging. In this step, the
source code is checked for syntax and logic errors. Source listings are
designed to aid the programmer in performing this step.

A source listing is comprised of all lines of source code as they are input to
the compiler. Diagnostic messages are printed after each statement that is
syntactically incorrect (does not adhere to rules of the FORTRAN language.)
The caret (") is used to indicate the position of syntactical errors which have
generated the diagnostic messages.

There are taree types of compiler run-time diagnostics generated by the
FORTRAN VIl compilers: WARNING, SOFTERR, and ERROR. A WARNING mes-
sage indicates that no syntax error occurred, but the code as written could
result in error upon execution. A SOFTERR message is produced when a syn-
tax error is detected, but the compiler is able to take a corrective action and
continues with compilation. The following shows an example of a SOFTERR.

Example:
Fortran-VIIO R06-00.00 I=0 04/10/89 13:46:24 PAGE 1/1
* OPTIMIZER: LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE E-0178 SEE DOCUMENTATION PACKAGE, 04-101M39 *
LINE LVL + START,
1 ! I=0 ! 1

2 !
SOFTERR P14
3

10-2

1

IF(1.EQO)TYPE*, 'HI' ! 2
- -MISSING PERIOD ASSUMED AFTER OPERATOR.
! 3

ERROR denotes the presence of a fatal error. A fatal error causes compila-
tion to be aborted while WARNING and SOFTERR do not interrupt compila-
tion. All fatal errors must be corrected before program processing can con-
tinue.

48-010 FOO RO4

Analyzing Program Maps and Listings
yzing pSource Listlngs 1 o

F70 Source Listing with Compilation Errors

Figure 10-1 is an example of an F70 source listing with compilation errors.
Numbered items contained in this listing are identified as follows.

Number List Item
1 These diagnhostic messages indicate that the DO statement in
line 17 has no ending statement because line 19 has a syntax
error.
2 A diagnostic message indicating that the label referenced in

line 17 was not defined.

3 A warning message is displayed indicating that a label is
defined for a FORMAT statement, but no reference is made to
that statement in the program.

4 The total number of errors detected by the compiler.

48-010 FOO RO4 10-3

v-01

$0¥ 004 010-8%

010-50-2

Fortran~-vIIO R06-00.00
LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE #**—dkkkkdkk_kid

* OPTIMIZER

REAL S, X(3), C(3)

04/10/89 10:57:30 PAGE 1/1
SEE DOCUMENTATION PACKAGE,

-COLUMNS 1-5 OF CONTINUATION LINE ARE NOT

LINE LVL + START ,

1 ! REAL S, X(3), C(3) 1 1
2 ! INTEGER I(2) ! 2
3 ! DATA X(1), X(2), X(3), I(1), I(2)/3.0, 2.0, 1.0, 0,1/ ! 3
4 0! IF (I(1) .EQ. 1 .AND. I(2) .EQ. 0) THEN ! 4
5 1t S = X(1)**2 * (=X(2))**2 * (~X(3))**2 ! 5
6 0! ELSE ! 6
7 1t IF (I(1) .EQ.1 .AND. I(2) .EQ. 1) THEN 1 7
8 2! S = X(1)**2 * (=X(2))**2 + X(3)**2 ! 8
9 11 ELSE ! 9
10 21 IF (I(1l) .EQ. 0 .AND. I(2) .EQ. 0) THEN ' 10
11 2 S = X(1)*%*2 4+ X(2)%*2 + (=X(3))**2 1 11
12 21 ELSE] 12
13 31 S = X(1)**2 + X(2)%*2 * X(3)*%2 1 13
14 21 ENDIF 1 14
15 1! ENDIF ! 15
16 0! ENDIF ! 16
17 1 DO 30 M=1,3 ! 17
18 1 C(M) = X(M)/SQRT(S) 1 18
19 130/CONTINUE ! 19

* ERROR P06 ~

BLANK.

20 ! WRITE(*,35) C(1), C{2), C(3) ! 20
21 ! STOP ! 21
22 135 FORMAT('0',TS,F15.8,T18,F15.8,T33,F15.8) ! 22
23 ! END ' 23

* ERROR P45 -MISSING ENDDO.

ERROR M0l @

UNDEFINED LABELS:

LABEL REFERENCED IN LINES

30 17

* 3 ERROR(S) DETECTED

-------- >> COMPILATION ABORTED! <({==—=rmm=w

MAIN COMPILED ON MONDAY, APRIL 10, 1989

NALST NAPU NBABORT NBASE BATCH NCAL NCOMP . CONT=19 NHOLL INFORM LIST

NSYNTAX TARG=3230 NTEST NTRACE NXREF WARN NUNNORMALIZE

71.50K UNUSED OUT OF 100.00K. TABLE SPACE: 28.75K DISC SECTORS:

COMPILER FILE: M300:F7055.TSK/P
INPUT FILE:

1,M300 :REAL, FTN/P

0

SOURCE LISTING: 3,M300:REAL.LST/P

Figure 10-1. Example of F70 Source Listing with Compilation Errors

04-101M99

OPTIMIZE

* *

SEG

s3UISIT 22IN0S
s3uynsyy pue sdew wer3oxg Bu!z,ﬂeuvo I

Analyzing Program Maps and Listings
Source Llstings 1 o

F70 and F7Z Source Listing Without Compilation Errors

48-010 FOO RO4

An example of the source listing format for a program compiled without
errors under F70 and F7Z is shown in Figure 10-2. Numbered items con-
tained in this figure are identified as follows.

Number

1

10

11 -

12

13

14

15

List Item
FORTRAN compiler identification including compiler name,
release and revision number, license number, and documenta-
tion package number.

Title of the program. If no title is specified through the TITLE
directive, the compiler prints the first line of the source code.

Date compilation was performed.

Time compilation began.

Page number of listing for current program unit.

Page number of batch listing.

Line number assigned to each line of code by compiler.
Level number of nested IF statements.

Compiler directives specified by the user in the START com-
mand.

Actual lines of source code as input to the compiler.
Left-most source delimiter (column O).

Right-most source delimiter (column 73).

Statement labels.

Length of impure code in bytes.

Length of pure code.

10-5

10

10-6

Analyzing Program Maps and Listings

Source Listings

Number

16

17

18

19

20

21

22

23

24

25

26

27

List Item
Total size of the program object code in bytes.
Name of program unit compiled (compiler automatically
assigns a name .MAIN, if PROG directive is not specified or if
the PROGRAM statement is not used for a main program unit).
Day and date of compilation.
Compiler directives in effect during compilation.
Amount of workspace not used by compiler out of the total
workspace allotted to it in the LOAD command.
Table space used by the compiler for processing.

Number of disk sectors used for compiler generated tables.

Name of the file that contains the compiler used to compile the
source program.

Logical unit (lu) and device or file assigned for output of
source listing.

lu and name of input device or file containing the source code.
lu and device or file assigned for output of object code.

Record number of the source line in the input source file. This
number is not incremented for lines included by the $INCLUDE

directive. For the included lines, the include nesting level is
also produced to the right of the line number.

48-010 FOO R0O4

¥0¥ 00d 010-8%

Z-01

010-52-2
Fortran-VIIO R06-00.0 REAL S, X(3), C(3) 04/10/89 11:28:37 PAGE 1/1
* OPTIMIZER: LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE **-*%*kx&ikk_&¥%x GEE DOCUMENTATION PACKAGE, 04-101M99 * *
LINE LYL + START , NOP
1 1 0 REAL 5, X(3), C(3)== 10 1 1
2 ! INTEGER I(2) 1 2
3 ! DATA X(1), X(2), X(3), I(1), I(2)/3.0, 2.0, 1.0, 0,1/ ! 3
4 0! IF (I(1) .EQ. 1 .AND. I(2) .EQ. 0) THEN ! 4
5 11 S = X(1)**2 * (-X(2))**2 * (-X(3))**2 . ! 5
6 0! ELSE ! 64—@
7 1 IF (I(1) .EQ.1 .AND. I(2) .EQ. 1) THEN ! 7
8§ 2 S = X(1)**2 * (-X(2))**2 + X(3)**2 ! 8
9 11 ELSE ! 9
10 21 IF (I(1) .EQ. 0 .AND. I(2) .EQ. 0) THEN ! 10
11 31 S = X(1)**2 + X(2)**2 + (-X(3))**2 ! 11
12 21 ELSE ! 12
13 3t S = X(1)**2 + X(2)**%2 * X(3)**2 ! 13
14 21 ENDIF ! 14
15 11 ENDIF ! 15
16 0! ENDIF ! 16
17 ! DO 30 M=1,3 ' 17
18 ! C(M) = X(M)/SQRT(S) ! 18
19 13 CONTINUE ! 19
20 1 WRITE (*,35) C(1), C(2), C(3) ! 20
21 ! STOP ! 21
22 13 FORMAT('0',T5,F15.8,T18,F15.8,T33,F15.8) ! 22
23 ! END ! 23’
LENGTH OF IMPURE: 00000028 40 @
LENGTH OF PURE: 00000178 376
TOTAL SIZE: 00000140 416w @
\MAIN COMPILED ON MONDAY, APRIL 10, 1989
AI..ST NAPU NBABORT NBASE BATCH NCAL NCOMP CONT=19 NHOLL LIST NOPTIMIZE SEG NSYNTAX
'ARG=3230 NTEST NTRACE NXREF WARN NUNNORMALIZE

73 .50K UNUSED OUT OF 100.00K. TABLE SPACE: 26.75K DISC SECTORS:

0 :
OMPILER FILE: M300:F7055.TSK/P SOURCE LISTING: 3,H300:REAL.LST/P .

INPUT FILE: 1,M300:REAL.FTN/P OBJECT FILE: 2,M300:REAL,OBJ/P

Figure 10-2. Example of F70 and F7Z Source Listing Without Compilation Errors

s3uj1sI] 32in0sg
0 I s3upsy] pue sdey weadosqd 3ujzijeuy

1 OAnalyzing Program Maps and Listings
Cross-Reference Listings

Cross-Reference Listings

If the XREF directive is specified, the FORTRAN compiler will generate a
cross-reference listing of the source code. This listing can help determine:

o If a variable or array was defined by a specification statement and not
referred to after its definition.

o The line numbers where labels and subprogram entry points are defined
and referenced. (If a label is not referenced, only its defining statement
will appear in the cross-reference listing.)

e The line numbers where a variable or array are referenced.
o If a variable or array is used before its value is set.

« If a variable or array value is set and never used.

The last two features may not prove to be of significant value when desk
checking a program whose flow of control is complex. In this instance, a
more careful inspection of the source code is required.

An example of the cross-reference listing format for a program compiled
without errors under F70 or F7Z is shown in Figure 10-3. Numbered items in
this figure are identified as follows.
Number List Item
1 FORTRAN compiler identification including compiler name,
release and revision number, license, and documentation pack-

age numbers.

2 Title of the program. If no title is specified through the TITLE

directive, the compiler prints the first line of source code.
3 Date compilation was performed.
4 Time compilation began.
5 Page number of listing.
6 Total number of pages for this listing.

10-8 48-010 FOO R04

Number

10

11

12

13

14

15

16

48-010 FOO RO4

Analyzing Program Maps and Listings
vzing gCross-ch‘erence Listln%s l o

List Item
Title of listing.

Header for the attributes of program variables and procedures
that follow.

Header for the statement line numbers of the referenced pro-
gram variables and procedures contained in the program.

FORTRAN program variable or name of program unit.

Attributes of variable or procedure including data type, word
size, and type of subprogram.

Line numbers of statements that reference the variables or
procedures. Starred line numbers indicate that the statement
declares the variable or procedure. See the source listing in
Figure 10-3.

Header indicating that cross-reference information on state-
ment labels follows.

Statement label.

Type of statement in which a statement label is used (e.g., DO,
FORMAT, etc.).

Line numbers of statements that reference the statement label.

Starred line numbers indicate that the statement defines the
label. (See Figure 10-3.)

10-9

01-01

704 004 010-8¥%

010-54-2 (:)
REAL S, X(3), C(3)

Fortran-VvIIO R06-00.00

: 04/10/89 11:38:48 PAGE 2/2

® UPTIMIZER: LICENSED RESTRICIED RIGHTS AS STATED IN LICENSE **-xEfxwxs_xwsx, gpk DOCUMENTATION PACKAGE,

CROSS REFERENCE LISTING

@ ATTRIBUTES REFERENCES BY LINE -- (* SPECIFIES A NON-EXECUTABLE REFERENCE)d—@

C ARR REAL*4 1% 18 20

I ARR INTEGER*4 2* 3 4 7 10

M SCA INTEGER*4 17 18

s SCA REAL*4 1* 5 8 11 13
FUN REAL*4

SQRT
X ARR REAL*4 1* 3 5 8 11
\MAIN ENT 3
.SQRT FUN REAL*4 18

@-»STATEMENT LABELS. (* INDICATES DEFINING STATEMENT)

30 LABEL 17 19*
35 FORMAT 20 22%*

18
13 18

Figure 10-3. Example of Cross-Reference Listing

SBUNSIT 90Ua19)9Y-Ss01D)
s3ansy1 puae scep weidolrg B%l;z,{[euvo I

Analyzing Program Maps and Listings
yzing & pBa.tch Statistigcs 1 o

Batch Statistics

When more than one program unit is compiled in batch, a listing of the batch
statistics is sent to the list device. The format of this listing is shown in Fig-
ure 10-4. Numbered items in Figure 10-4 are identified as follows.

48-010 FOO R0O4

Number

1

2
3
4

(9,1

10

11

List Item

FORTRAN compiler identification.
Title of the listing.
Total number of program units compiled.

Sequence number of each program unit in the batch compila-
tion.

Name of the program unit.

Memory required for internal tables to compile the program
unit.

Number of the first page of the source listing for the specified
program unit.

Hexadecimal number indicating the size in bytes of the object
code generated.

Name of the program unit that required the largest memory
space for internal tables.

Hexadecimal number indicating the total length of the object
code generated for the entire batch compilation.

- End of task code with which the batch compilation terminated.

In some instances, additional information may also be displayed on the list-
ing of the batch statistics as follows:

e CAL

e ERRORS

A Common Assembly Language (CAL) file was created
instead of object code.

Errors were detected during compilation.

e COMPILATION Compilation of a program was skipped either due to a

$SYNTAX or due to a $INSKIP directive.

10-11

Z1-01

Y0¥ 004 010-8%

010-55-2 /@
Fortran-VIIO R06-00.00

* UNIVERSAL: LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE **-k*kkkdkk___sk%,

LINE LVL + START ,AL
TOTAL NUMBER OF JOBS: 2

BATCH NO. PGM NAME TABLE SPACE

BATCH STATISTICS

PAGE NO. OBJ. SIZE

1 AT 34.75K
2\@ 34.75K \®

LARGEST TABLE SPACE NEEDED: 34.75K IN PROGRAM .MAIN EOT CODE: 0

B % N R & A O F ¥ ¥ *

TOTAL LENGTH OF OBJECT 180 BY‘?‘ES (HEXADECIMAL)‘ \

Figure 10-4. Example of Batch Statistics

SEE DOCUMENTATION PACKAGE,

sansneIs yoeg

s3upisy1 pue sdely werdold Bu;zAnmvo I

Analyzing Program Maps and Listings
yzing £ P Link Mags 1 0

Link Maps

48-010 FOO RO4

The Link map tells the programmer how the task is structured and where
each subprogram or run-time library (RTL) routine is referenced by the pro-
gram. The map can be used to determine whether a user-defined or Con-
current standard library routine was referenced incorrectly or redefined by
the program.

Each Link map begins with a task establishment summary as shown in Figure
10-5. Numbered items contained in this summary are identified as follows.

Number List Item
1 File descriptor (fd) of task image file.
2 Number of records in task image file,
3 Task size and address space.
4 Task options set by Link OPTION command or by Link default.
5 Length of each segment within the address space.
6 Address and size of pure and impure task segments.

Following the task establishment summary are the symbol maps which list
all subprograms and RTL routines called by the program. Symbols can be
arranged alphabetically, in order of their entry point names, or according to
how they are referenced by the program. How the map is arranged depends
on the options specified in the Link MAP command.

Figure 10-6 is an address map which can be used to trace the use of any sub-
program or RTL routine in the sample program. From this map it can be seen
that the code for the standard SQRT routine starts at location 7FC. The pro-
gram calling SQRT branches to the entry point 804.

The alphabetic map in Figure 10-7 provides the same information as the
address map except that all routines are arranged alphabetically rather than
by their entry point addresses.

Reading the cross-reference map, the user can trace where a subprogram or

an RTL routine is referenced. For example, Figure 10-8 shows that @SQRT is
referenced in .MAIN and @SQRT references .SQRT which, in turn, references

.ERR.

10-13

PI-01

¥0d 004 010-8%

010-56-2
0S/32 LINKAGE EDITOR R(8-03 ESTABLISHMENT SUMMARY
-- IMAGE LINKED AT 12:50:13 ON APRIL 10, 1989 --

FILE NAME: M300:CH7 TSK/P -~ RECORDS: 1134—@
UBOT: 0 -- UTOP: 681C -- CTOP: 70FE -- SIZE: 28.25 KB<—@

TASK OPTIONS:

UTASK AFPAUSE FLOAT NRESIDENT NCON
SVCPAUSE NDFLOAT ROLL ACCOUNTING NACP
NUNIVERSAL NSEGMENTED

LU=15 SYSSPACE=5000 WORK=(800,800) ABSOLUTE=100 IOBLOCKS=1 PRIORITY=(128,128) TSW=(0,100)

NODE MAP:
LEVEL NAME LENGTH PURE IMPURE COMMON TABLES
0 «ROOT 681C 0o 671C (o] o
{(TOTALS) 681C 0o 671C (o] o]

VIRTUAL ADDRESS MAP:
FROM TO SEGMENT NAME SIZE ACCESS C
000000 OO70FF {IMPURE) 28.25 KB

Figure 10-5. Link Establishment Summary

PAGE 1

NCOM
NDISC

=0T

sde

117 pue sdepw weirdorg SurzAy

Y04 004 010-8%

S1-01

010-57-2

0S/32 LINKAGE EDITOR R08-03

ADDRESS MAP

-- IMAGE LINKED AT 12:50:13 ON APRIL 10, 1989 --

NODE: .ROOT - LEVEL:
SYMBOL - ADDRESS
. MAIN-P 000100-1I
. STOP-P 0004A0-P
.WXSC~-P 0006 E8-P
V=P 0007A4-P
@SQRT-E 000804-P
. INITL-E 000880-P
. IOFNL-E 002ABE-P
.GTLU-E 003080-P
.GNWXF-E 003148-P
-RTLST-E 0034C4-P
.GINPUT-E 0035B8-P
.GOUTPUT-E 003A10-P
.WARRF-E 004192-pP
. RADTFCN-E 00439E-P
« NCUGN-E 00452A-p
.ATOF-E 00480E-P
. FTOA~-E 0051BE-P
.VTYPE-E 005A70-P
. FMOUT-E 005B40-P
. BFERR-E 005C48-P
- ERRSTR-E 005CE8-P
. CHKMS-E 005F2A-P
« ERRX-P 006240-P
. CONTIN-P 0062E8-P
. IOMES-P 006358-P
.CPLUB-E 0065D0-P
« EXPMS-E 0066F8-P

0 - ADDRESS:

SYMBOL -

«MAIN-E

« STOP-E
+WXSC-E
.V-E

« WRSL-~P

« INITN-E
. OUTCV~-P
«GTERC-P
. CHKLU-P
. ITOC-P

. SQRT-P

« INITC-P
.RDATF-E
+« RWDTFTP-E
.GETAL-P
. ATOD-P
.DTOA-P
+«GTINT-P
« FEDIT-P
« ERR-P

. CHKER" P

. TR1CH-E
+ ERRX-E
.CONTIN-E
« ERORTXT-E
.OUTMS-P

Figure 10-6. Link Address Map

0 - SIZE:

ADDRESS

000100-I
0004A8-P
0006 E8-P
0007AC-P
000820-P
000882-P
002BDC-P
0030D8-P
003174-p
0034F0-P
0038F4-P
0040B4-P
004192-pP
0043EE-P
004798-pP
004B94-P
005564-P
005B04-P
005B54-P
005CBC-P
005E40-P
005F80-P
006240-P
0062E8-P
0063C8-P
0066A0-P

681C - PARENT:

SYMBOL

« RXXI-P
.U-P
.GTFMC-P
.V1-E
.WRSL-E
. RWDTL-E
.OUTCV-E
«GTERC-E
.CHKLU-E
. ITOC-E
«SQRT-E
. INITC-E
. RARRF-E
. IOFNF-E
.GETAL-E
.ATOD-E
.DTOA-E
.GTINT-E
.FEDIT-E
. ERR-E

. CHKER-E
-GNWXF1-E
« FXCRR-P
+«BLKBF-P
. IOMES-E
.OUTMS-E

ADDRESS

0003D8-P
000558-P
000764-P
0007AE-P
000820-P
000CB4-P
002BDC-P
0030D8-P
003174-P
0034F0-P
0038FC-P
0040B4-P
004192-P
004486-P
0047A0-P
004B9A-P
00556A-P
005B04-P
005B54-P
005CC4-P
005E40-P
006058-P
00628C-P
006344-P
006428-P
0066A0-P

PAGE
SYMBOL. -~ ADDRESS
.RXXI-E 0003E0-P
.U-E 000560-P
.GTFMC-E 000764-P

[@sQrRT-P 0007FC-P
. INITL-P 000880-P
+WDTL-E 001DE2-P
.GTLU-P 003080-P
.GNWXF-P 003148-p
.RTLST-P 0034C4-P
.GINPUT-P 0035B8-P
.GOUTPUT-P 003A10-P
.WDATF-E 004192-P
. RWDTF-E 0041AE-P
. NONCV-E 0044FC-P
.ATOF-P 004808-P
.FTOA-P 0051B8-P
.VTYPE-P 005A70-P
. FMOUT-P 005B40-P
.BFERR-P 005C48-P
. ERRSTR-P 005CE8-P
.ERABT-E 005E7E-P
.DEVER-E 00614E-P
.FXCRR-E 00628C-P
.BLKBF-E 006344-P
. CPLUB-P 0065D0-P
. EXPMS-P 0066F8-P

sdep quy]
0 I s3unsi] pue sdey weidoid 3ujzijeuy

91-01

¥0¥ 004 010-8¥

010-58-2

0S/32 LINKAGE EDITOR R08-03 ALPHABETIC MAP PAGE 1
-- IMAGE LINKED AT 12:50:13 ON APRIL 10, 1989 --

SYMBOL —-- NODE -~ ADDRESS SYMBOL -- NODE -- ADDRESS SYMBOL -- NODE -- ADDRESS
. ATOD-E - ROOT 004B9A-P . ATOD-P . ROOT 004B94-P . ATOF-E . ROOT 00480E-P
. ATOP-P . ROOT 004808-P .BFERR-E . ROOT 005C48-P .BFERR-P .ROOT 005C48-P
.BLKBF~E . ROOT 006344-P .BLKBF-P . ROOT 006344~P . CHKER-E . ROOT 005E40-P
.CHRER-P . ROOT 005E40-P .CHRLU-E .ROOT 003174-P . CHRLU-P . ROOT 003174-P
. CHRMS-E . ROOT 005F2A-P .CONTIN-P .ROOT 0062E8-P .CONTIN-E ,ROOT 0062ER-D
.CPLUB-P . ROOT 0065D0-P .CPLUB-E . ROOT 0065D0-P .DEVER-E . ROOT 00614E-P
.DTOA-E . ROOT 00556A-P .DTOA-P .ROOT 00556 4~P .ERABT-E . ROOT 005E7E-P
.ERORTXT-E .ROOT 0063C8-P .ERR-E . ROOT 005CC4~P .ERR-P . ROOT 005CBC-P
.ERRSTR-P ,ROOT 005CE8-P .ERRSTR-E .ROOT 005CE8-P . ERRX-P . ROOT 006240-P
.ERRX-E . ROOT 006240-P .EXPMS-E .ROOT 0066F8~P .EXPMS-P .ROOT 0066F8-P
.FEDIT-E . ROOT 005B54-P .FEDIT-P . ROOT 005B54-P .FMOUT-E .ROOT 005B40-P
. FMOUT-P . ROOT 005B40-P .FTOA-P . ROOT 0051B8-P .FTOA-E .ROOT 0051BE-P
. FXCRR-E . ROOT 00628C-P . FXCRR-P . ROOT 00628C-P .GETAL-P . ROOT 004798-P
.GETAL-E ,ROOT 0047R0-P .GINPUT-P ,ROOT 0035B8-P .GINPUT-E ,ROOT 0035B8-P
.GNWXF-P . ROOT 003148-p «GNWXF-E . ROOT 003148-P .GNWXF1-E .ROOT 006058-P
.GOUTPUT-P .ROOT 003A10-P .GOUTPUT-E .ROOT 003A10-P .GTERC-P .ROOT 0030D8-P
.GTERC-E . ROOT 0030D8-P .GTFMC-P .ROOT 000764-P .GTFMC-E .ROOT 000764-P
.GTINT-P . ROOT 005B04~P .GTINT-E . ROOT 005B04-P .GTLU-P . ROOT 003080-P
.GTLU-E . ROOT 003080-P .INITC-E . ROOT 0040B4-P .INITC-P . ROOT 0040B4-P
.INITL~-E . ROOT 000880-P . INITL-P . ROOT 000880-P . INITN-E . ROOT 000882-P
. IOFNF-E . ROOT 004486-P . IOFNL-E . ROOT 002ABE-P . IOMES-P . ROOT 006358-P
. IOMES-E . ROOT 006428~P . ITOC~P . ROOT 0034F0-P .ITOC-E . ROOT 0034F0-P
.MAIN-P . ROOT 000100-1I .MAIN-E . ROOT 000100-TI . NCVGN-E . ROOT 00452A-P
.NONCV-E . ROOT 0044FC-P .OUTCV-P . ROOT 002BDC-P .OUTCV-E .ROOT 002BDC-P
.OUTMS-E . ROOT 0066A0-P .OUTMS-P . ROOT 0066A0-P . RARRF~E . ROOT 004192-P
. RDATF-E . ROOT 004192-P .RTLST-P . ROOT 0034C4-P .RTLST-E . ROOT 0034C4-P
. RDTF~E . ROOT 0041AE-P .RWDTFCN-E .ROOT 00439E-P .RWDTFTP-E ,ROOT 0043EE-P
. RADTL-E . ROOT 000CB4-P . RXXI-E . ROOT 0003EQ-P .RXXI-P . ROOT 0003D8-P
. SQRT-E . ROOT 0038FC-P . SQRT-P . ROOT 0038F4-P | . STOP-E . ROOT 0004A8-P
. STOP-P . ROOT 000420-P .TRICH-E . ROOT 005FB0-P .U-E . ROOT 000560-P
.U-P . ROOT 000558-P .V-E . ROOT 0007AC-P .V-P . ROOT 0007A4-P
.V1-E . ROOT 0007AE-P .VTYPE-P . ROOT 005A70-P .VTYPE-E . ROOT 005A70-P
.WARRF-E . ROOT 004192-P WDATF-E . ROOT 004192-P .WDTL-E . ROOT 001DE2-P
.WRSL~-E .ROOT 000820-P . WRSL-P . ROOT 000820-P . WXSC-E . ROOT 0006 E8-P
.WXSC-P . ROOT 0006 E8-P @SQRT-E . ROOT 000804-P @SQRT-P . ROOT 0007FC-P |

Figure 10-7. Link Alphabetic Map

sde

ur
s3unsyry pue sdey weir3ord 3urz |2u'\}0 I

Analyzing Program Maps and Listings
Y g £ < P LinkMagslo

0S/32 LINKAGE EDITOR R08-03 CROSS—-REFERENCE MAP

—— IMAGE LINKED AT 12:50:13 ON APRIL 10, 1989 --

SYMBOL DEFINED REFERENCED BY

.ATOD-E .ATOB .GINPUT
.ATOF-E .ATOF .GINPUT
.BFERR-E .BFERR .INITC .OUTCV
.BLKBF-E .BLKBF .CHKER . GNWXF .INITC .INITL
.CHKER-E .CHKER .BFERR . CHKLU .INITC . INITL .ouTCV
.CHKLU-E .CHKLU .WRSL .WXSC
.CHKMS-E .CHKER
.CONTIN-E .CONTIN .CHKER .ERRSTR .INITC
.CPLUB-E .CPLUB .CHKER . CHKLU .CONTIN .U
.DEVER-E . CHKER .INITL
.DTOA~E .DTOA .GOUTPUT
.ERABT-E . CHKER .INITC
.ERORTXT-E . IOMES

[CERR-E _ERR | .RXXI
.ERRSTR-E .ERRSTR . FMOUT .INITL
.ERRX~E .ERRX .ERR
.EXPMS-E .EXPMS . IOMES
.FEDIT-E .FEDIT .INITC .OUTCV
.FMOUT-E .FMOUT .INITC
.FTOA-E .FTOA .GOUTPUT
.FXCRR-E .FXCRR .CHKER
.GETAL-E .GETAL .1TOC
.GINPUT-E .GINPUT .INITL
.GNWXF-E . GNWXF .WXSc
.GNWXF1-E .CHKER . GNWXF
.GOUTPUT-E .GOUTPUT .INITL .ouUTCV
.GTERC-E .GTERC .WRSL .WXsc
.GTFMC-E .GTFMC .WXsC
.GTINT-E .GTINT .INITC .INITL
.GTLU~E .FTLU .WRSL .WXsc
.MAIN-E .MAIN
.NCVGN-E .INITC
.NONCV-E .INITC
.OUTCV-E .OUTCV .WXsC .
.OUTMS~E .OUTMS .ERRSTR . INITC . IOMES
.RARRF-E .INITC
.RDATF-E .INITC
.RTLST-E .RTLST .WRSL .WXsC
.RWDTF-E .INITC
.RWDTFCN-E .INITC .OUTCV
.RWDTFTP-E .INITC .ouTCV
.RWDTL-E .INITL
.RXXI-E .RXXI .MAIN

| . SORT-E . SQRT @SQRT |
. STOP—E . STOP .MAIN
.TR1CH-E .CHKER . GNWXF
.U-E .U .MAIN
.V-E v .MAIN . STOP
.V1-E v
.VTYPE-E .VTYPE .INITC .OUTCV
.WARRF-E .INITC
.WDATF-E .INITC
.WDTL-E .INITL
.WRSL-E .WRSL .MAIN
.WXSC-E .WXsc .MAIN

| @SQRT-E @SQRT .MAIN |

Figure 10-8. Link Cross-Reference Map

48-010 FOO R04 10-17

1 OAnalyzing Program Maps and Listings
Optimization Summaries

Optimization Summaries

10-18

The source and cross-reference listings are important aids in determining
how the compiler translated the source code. However, more information is
needed when debugging optimized code. Compiler optimization summaries
provide this information.

The optimizing compilers automatically follow each source listing with an
optimizaticn and register allocation summary. This summary tells the pro-
grammer what optimizations were performed on each line of source code.
From this information, the programmer can determine what code was elim-
inated, moved, or replaced. For example, the optimization summary in Fig-
ure 10-9 for the sample program introduced in Figure 10-2 shows that com-
mon subexpression replacement (i.e., replacement of expressions with
compiler-generated temporary variables was performed on lines 5, 8, 11, and
13.) The register allocation summary shows the allocation of registers for
specific entities within the program. For example, the register allocation
summary in Figure 10-11 shows that I(O) was assigned to register 14 in lines
4,6,7,9,and 10. Numbered items in Figure 10-9 are identified as follows.

Number List Item
1 FORTRAN compiler identification including compiler name,

release and revision number, license number and documenta-
tion package number.

2 Title of the program. If no title is specified through the TITLE
directive, the compiler prints the first line of source code.

3 Date compilation was performed.

4 Time compilation began.

5 Page number of listing.

6 Header for optimization summary.

7 Array linearization message. This message informs the user

that all array subscripts were replaced by the actual byte
address of the array element. (See Chapter 3)

8 Line number of an optimized source statement.

48-010 FOO R04

Analyzing Program Maps and Listings
Optimizgtion Summari%s 1 o

Number List Item
9 Optimizations performed on the specified line.
10 Header for register allocation summary.
11 Allocated registers and the line numbers of the statements on

which register allocation was performed.

48-010 FOO R04 10-19

0Z-01

010-60-2 @“,@\ @\
Fortran-vVIIZ R06-00.00 REAL §, X(3), C(3) 04/10/8911:18:13 PAGE 2/2
* UNIVERSAL: LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE #*-*##&k&x_##%, SEE DOCUMENTATION PACKAGE, 04-101M99 * *

***NOTE :

OPTIMIZATION SUMMAR

ARRAY ELEMENTS ARE A LINEARIZ

Y.

©

ED REPRESENTATION OF
THE BYTE OFFSET FROM THE FIRST ELEMENT (0TH BYTE). 4‘———®
FOR FURTHER INFORMATION REFER TO THE FORTRAN 7 USER'S MANUAL.

LINE 5:
[

LINE 8:
LINE 11:
LINE 13:

LINE 17:

LINE 18:

**ASSIGNMENT TO TEMPORARY @110
**COMMON STTREXPRESSTON Y () *%9
COMMON SUBEXPRESSION X(8)2
**ASSIGNMENT TO TEMPORARY €111
COMMON SUBEXPRESSION X(4)2
**COMMON SUBEXPRESSION X(4)*+*2
**ASSIGNMENT TO TEMPORARY @112
COMMON SUBEXPRESSION X(0)2
**COMMON SUBEXPRESSION X (0) **2
**COMMON SUBEXPRESSION X(8) **2
COMMON SUBEXPRESSION X(4)%2
**COMMON SUBEXPRESSION X(0) **2
COMMON SUBEXPRESSION X(8)2
COMMON SUBEXPRESSION X(4)2
COMMON SUBEXPRESSION X(0)2
COMMON SUBEXPRESSION X(8)2
COMMON SUBEXPRESSION X (4)2
COMMON SUBEXPRESSION X (0)2

GENERATED FOR COMMON SUBEXPRESSION X(8)**2 AND INSERTED IMMEDIATELY BEFORE LINE
FADND IN LINE/(S): E, 22, 11, 8,
REPLACED BY TEMPORARY €110.
GENERATED FOR COMMON SUBEXPRESSION X(4)**2 AND INSERTED IMMEDIATELY BEFORE LINE
FOUND IN LINE(S): 5, 13, 11, 8.
REPLACED BY TEMPORARY @111,
GENERATED FOR COMMON SUBEXPRESSION X(0)**2 AND INSERTED IMMEDIATELY BEFORE LINE
FOUND IN LINE(S): 5, 13, 11, 8.
REPLACED BY TEMPORARY @112,
REPLACED BY TEMPORARY @110,
REPLACED BY TEMPORARY @111.
REPLACED BY TEMPORARY @112,
REPLACED BY TEMPORARY €110.
REPLACED BY TEMPORARY @111.
REPLACED BY TEMPORARY @112.
REPLACED BY TEMPORARY @110.
REPLACED BY TEMPORARY @111.
REPLACED BY TEMPORARY @112.

**STRENGTH REDUCTION TEMPORARY @109 GENERATED FOR TEST REPLACEMENT EXPRESSION M*4.
**DO STATEMENT TEST REPLACED BY AN EQUIVALENT DO LOOP ON TEMPORARY @109.

**TEST REPLACEMENT EXPRESSION
**TEST REPLACEMENT EXPRESSION

M*4 REPLACED BY TEMPORARY @109.
M*4 REPLACED BY TEMPORARY @109.

**L,OOP INVARIANT EXPRESSION ,SQRT(S) FOUND.

**ASSIGNMENT TO TEMPORARY @115 GENERATED FOR LOOP INVARIANT EXPRESSION .SQRT(S) AND INSERTED IMMEDIATELY AFTER LINE

**LOOP INVARIANT EXPRESSION .SQRT(S) REPLACED BY TEMPORARY €115,

4.
-

4.

4:

anewuing uonezjwndo
doxq Su[z.qenvo I

<
)ISIT pue sdey wes

s3ur

¥0Y 004 010-8%

Fortran-viiZ R06-00.00 REAL S, X(3), C(3) 04/10/89 11:18:13 PAGE 3/3
* UNIVERSAL: LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE **-k*k&&&&_#*% SEE DOCUMENTATION PACKAGE, 04-101M99 * *

REGISTER ALLOCATION SUMMARY-g— @
**TEMPORARY @109 ASSIGNED TO REGISTER R13 OVER LINES 17-19-w—
*+*TEMPORARY €112 [= X(0)**2] ASSIGNED TO REGISTER E12 OVER LINES 4-13 11
TEMPORARY @111 [= X(4)2] ASSIGNED TO REGISTER E10 OVER LINES 4-13
TEMPORARY @110 [= X(8)2] ASSIGNED TO REGISTER E8 OVER LINES 4-13
**TEMPORARY @115 [= .SQRT(S)] ASSIGNED TO REGISTER El12 OVER LINES 17-19
**VARIABLE I(0) ASSIGNED TO REGISTER R14 OVER LINES 4, 6-7, 9-10
**VARIABLE I(4) ASSIGNED TO REGISTER R13 OVER LINES 4, 6-7, 9-10
**VARTABLE S ASSIGNED TO REGISTER El12 OVER LINES 6, 9, 12, 14-17
**CONSTANT 16 ASSIGNED TO REGISTER R12 OVER LINES 17-19
**CONSTANT 1 ASSIGNED TO REGISTER R12 OVER LINES 4, 6-7

Figure 10-9. Example of Optimization Summary

Analyzing Program Maps and Listings
yzing & Agsemblv Listln%s l o

Assembly Listings

If the ALST directive is specified, the F70 and F7Z compilers will output an
assembly listing to the list device after a successful compilation. Using the
assembly listing and the Link map described in the section entitled "Link
Maps," the user can debug the program with 0S$/32 Aids.

A portion of the assembly listing for the sample program in Figure 10-2 is
shown in Figure 10-10. To aid debugging, the actual lines of FORTRAN
source code are inserted before their equivalent lines of assembly code.
Numbered items in Figure 10-10 are identified as follows.

Number List Item

1 FORTRAN compiler identification including compiler name,
release and revision number, license number, and documenta-
tion number.

2 Title of the program. If no title is specified through the TITLE
directive, the compiler prints the first line of source code.

3 Date compilation was performed.

4 Time compilation began.

5 Page number of listing.

6 Relative memory address of each line of assembly code.

7 Object code compiled from the source code.

8 Assembly source code of prograrh unit .MAIN.

9 Line number.

10 Actual lines of FORTRAN source code as input to the compiler.

48-010 FOO RO4 10-21

Z22-01

¥04 004 010-8%

e Cion B,
Fortran-VIIO R06-00,00 REAL S, X(3), C(3) 04/10/89 2:45:48 PAGE 2/2

* FORTRAN VII: LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE **-*#*%tk&t.%&%, SEEF DOCUMENTATION PACKAGE,

OBJECT LISTING

ASSEMBLY SOURCE<>.0
+MAIN PROG MAIN

1 .
2 .BKTRC. COMN
000000 3 ALIGN 8 -
000000 4 .BETRC.. DS 4
0000 0000 F 5 JBRTRC EQU «BRTRC. .
000004 6 ENDS
0000001 7 ALIGN 4 FULLWORD ALIGN
0000001 8 SLOCAL DS 40
0000 0000 I 9 I BQU SLOCAL
0000 0008 I 10 C BEQU $SLOCAL+8
0000 0014 I 11 X EQU SLOCAL+20
0000 0020 I 12 M EQU SLOCAL+32
0anne nN24 v 17 S BQU ST.OCAT.4+36
0000 0028 I 14 SLOCEND EQ *
0000141 o 15 ORG X
0000141 4130 0000 16 DCY 441300000 3.0
0000181 17 ORG X+4
0000181 4120 0000 18 DCY 41200000 2.0
00001CI 19 ORG X+8
00001CI 4110 0000 20 DCY 41100000 1.0
0000001 21 ORG I
000000I 0000 0000 22 DC P'0’
0000041 23 00G I+4
0000041 0000 0001 24 DC F'1!
0000281 25 ORG SLOCEND
0000281 26 PURE
000000P 27 ALIGN 4 FULLWORD ALIGN
0000 0000 P 28 S$CONST EQU *
000000P 0008 0130 29 DB 0,8,1,48,4,5,18,15,8,4,18,18
00000CP OF08 0421 30 DB 15,8,4,33,18,15,8,17
000014P 31 ALIGN 4 FULLWORD ALIGN
000014P 32 EXTRN .U
000014P 33 EXTRN .STOP
000014P 34 EXTRN .WXSC
000014P 35 EXTRN .SQRT
000014P 36 ENTRY .MAIN
0000 0014 P 37 .MAIN EQU *
000014P 41F0 4000 0000 F 38 BAL 15,.0
00001AP 24F0 39 LIS 15,0
00001CP 50F0 4000 0000 F 40 ST 15, .BKTRC
41 1 REAL S, X(3), C{(3)
42 * 2 INTEGER I(2)
43 * 3 DATA X(1), X(2), X(3), I(1), I(2)/3.0, 2.0, 1.0, 0,1/
44 * 4 IF (I(1).BEQ.1.AND.I(2).EQ.0) THEN
000022P S58F0 4000 0000 I 45 L 15,1
000028P 27F1 46 SIs 15,1
00002AP 4230 8030 =00005E 47 BNE $L100001
00002EP 5BF0 4000 0004 I 48 L 15,1+4
000034P 4230 8026 =0000SE 49 BNE $L100001
50 * 5 S = X(1)**2 + (~X(2))**2 + (-X(3))**2
000038P 68E0 4000 0014 I 51 LE 14,X
00003EP 2CEE 52 MER 14,14
000040P 68C0 4000 0018 I 53 LE 12,X+4
000046P 2CCC 54 MER 12,12
000048P 2AEC 55 AER 14,12
00004AP 68CO 4000 001C I 56 LE 12,X+8

Figure 10-10. Example of Assembly Listing

|

04-101M99

* %

s3UISIT A[qQUIISS
s3unsy1 pue sdep um.xzo.t.,ll -knlgg,qeugo I

Analyzing Program Maps and Listings
yzing & F7Z Extended Listigglo

F7Z Extended Listing

48-010 FOO R04

When a program requesting in-line expansion is compiled, the compiler
automatically generates an extended listing in addition to the original source
listing. The extended listing is the back translated form of the compiler’s
intermediate representation of the user program before it is optimized by
the global optimization routines. At this intermediate stage, subprograms
were expanded in-line as requested. All listings which are produced by the
compiler after the extended listing (i.e., optimization summaries and assem-
bly listing) refer to this listing of the source, rather than the user’s source
program. '

To read the extended listing, you must understand how the original code is
transformed at this stage. See Chapter 15 for more information on F7Z
intermediate code translation. The program whose source listing is shown in
Figure 10-11 will be used to illustrate the F7Z extended listing.

10-23

vZ-01

¥0d 004 010-8%

010-62-2
Fortran-VIIZ R06-00.00 C THIS IS THE MAIN PROGRAM

* UNIVERSAL:
LINE LVL + START ,NSEG NB NO

1 IC THIS IS THE MAIN PROGRAM
2 ISINLINE Y, *
3 1$INLINE SUBI,*
4 t SINLINE DOG,*
5 |C DECLARE VARIABLES
6 ! CHARACTER * 10 ARF(10)
7 i REAL A,Z%,F,C,D,X,R
8 !C DECLARE COMMON
9 1 " COMMON A,B,X,L,R
10 IC INITIALIZE VARIABLES
11 ! DATA A,2,C,D,X,L/4.5,2.1,8.1,4.2,3.0,2/(ARF(I),I=1,10)
12 ! 1 /'NIPPER', 'DUFFY', 'ALKI', 'CASEY', 'RUSTY',
13 ! 1 'HAPPY', 'BENJI', 'SANDY', 'PENNY', 'FLUFFY'/
14 !C SOLVE FOR F USING FUNCTION SUBPROGRAM Y
15 ! F =2 + Y(A+Z)
16 1C CALL SUBROUTINE
17 1 CALL SUB1
18 ! WRITE (*,10) F, R ;OUTPUT RESULTS
19 1 CALL DOG (ARF)
20 ! STOP
21 110 FORMAT ('l', 2F15.8)
22 ! END

REQUEST FOR INLINE EXPANSION OF FOLLOWING ROUTINES HAS BEEN ENCOUNTERED :

04/10/89

o b m b b e pee bew = b Gem e gew be pen B b e b e Bem e

DOG SUB1 Y
Fortran-VIIZ R06-00.00 C THIS IS THE MAIN PROGRAM

* UNIVERSAL: LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE *¥-*dk&kkk_dks,
LINE LVL + START ,NSEG NB KO
1 ! SUBROUTINE DOG (BONE)
2 ! CHARACTER * 10 BONE(10)
3 1 WRITE (*,20) (BONE(I),I=1,10)
4 120 FORMAT (1X,10A10)
5 ! RETURN
6 ! END
Fortran-VIIZ R06-00.00 C TEIS IS THE MAIN PROGRAM
* UNIVERSAL: LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE **-#&kdkid_kki
LINE LVL + START ,NSEG NB NO
1 1C
2 ! SUBROUTINE SUB1
3 1 COMMON A,B,X,L,R
4 ! R = SQRT(A+ (B*X) + X**L)
5 1 RETURN
6 ! END
Fortran-VIIZ R06-00.00 C THIS IS THE MAIN PROGRAM
* UNIVERSAL: LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE **-®kkidddk_iid,
LINE LVL + START ,NSEG NB NO

REAL FUNCTION Y(X)
IF (X.LT.0) Y = 1 + SQRT(1+X**2)
IF (X.EQ.0) Y =10

IF (X.GT.0) ¥ = 1 - SORT(1+X**2)
RETURN

END

AU W N
- b b o

®

04/10/89
SEE DOCUMENTATION PACRAGE,

- b bt b b

04/19/89
SEE DOCUMENTATION PACKAGE,

!
!
!
!
!
!

04/10/89
SEE DOCUMENTATION PACKAGE,

SR

Figure 10-11. Source Listing for In-line Expansion Program

11:18:13 PAGE 1/1
LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE **-*##%%k%%_&%+ GEE DOCUMENTATION PACKAGE, 04-101M99

11:18:13 PAGE 2/2

04-101M99

11:18:13 PAGE 3/3

04-101M99

11:18:13 PAGE 4/4

04~101M99

* *

* &

* *

* *

avitvO T

u?lxX
urz

zuu&;;l’ .&ag

s3upisy1 pue sdep wex

Analyzing Program Maps and Listings
yzing & F7Z Extended Listi§g1 o

Except for item number 1, the original source listing shown in Figure 10-11
has virtually the same format as the F70 and F7Z source listings. Item
number 1 is only present on source listings of programs that request in-line
expansion. This message informs the user which subprograms will be
expanded in-line.

Figure 10-12 is the extended listing for this compilation. Because the
extended listing comes from the compiler’s internal representation of the
user’s program, it differs from the original source listing in a number of
ways.

Some of these differences are shown by the numbered items in Figure 10-12
as follows.

Number List Item

1 Name of the main program unit. If no name is assigned by the
user, the compiler generated name, .MAIN, is used.

2 Explicit type declaration of all variables and functions used in
the main program and subprograms. To distinguish subpro-
gram variable names from variable names used in the main
program, the compiler precedes the name of each subprogram
variable with the name of the subprogram followed by a
period; i.e., subprogram name.variable name.

Notice that if the program uses a Concurrent RTL function, the
compiler outputs it in its internal form; i.e., .SQRT.

¢H NOTE > All format statements are listed
before the first executable
statement in the program.

3 EQUIVALENT COMMON statement generated by compiler. This
statement indicates the variables in the subprogram that
occupy the same positions as the variables specified in the
COMMON statement.

48-010 FOO R0O4 10-25

Analyzing Program Maps and Listings
1 0F7Z E))':ten ed Lgting P &

Number List Item

4 Explicit declaration of intrinsic or external functions used in
the program.

5 EQUIVALENCE dummy argument statement. This statement
indicates which arguments in the CALL statement are
equivalent to the dummy arguments in the SUBROUTINE or
FUNCTION statements.

6 Hollerith code replacement. The compiler replaces all quoted
strings in FORMAT statements with equivalent Hollerith code.

7 Compiler-generated labels.

8 Expanded function Y as follows:

e Line 16 indicates the compiler generated variable (@100)
assigned to the variable expression (A+Z) whose value is
passed from the calling program to the subprogram through
Y.X.

e Line 17 indicates that the argument Y.X for the statement
function Y is to be assigned the value of the compiler gen-
erated variable @100.

o Lines 18 through 20 indicate the body of the expanded
function Y which is represented by the compiler as follows:

— All variable names of the subprogram Y are preceded by
the subprogram name followed by a period.

— .LT. is replaced by its symbolic equivalent <.
— SQRT is replaced by its RTL internal name .SQRT.
— .GT. is replaced by its symbolic equivalent >.

— All integer values assigned to real variables are
represented by real numbers; i.e., 0 replaced by 0.0.

e Line 21 indicates that the result passed from the subpro-
gram Y to the calling program is to be assigned to the com-
piler generated variable @100.

10-26 48-010 FOO RO4

Analyzing Program Maps and Listings
L & F7Z Extended Listiggl 0

Number List Item

9 Expanded subroutine SUB1 as follows:

e Line 24 indicates the body of the expanded subroutine
SUB1 which is represented by the compiler as follows:

— each variable of the subprogram SUB1 is preceded by its
subprogram name followed by a period.

— SQRT is replaced by its RTL internal name.
10 Elimination of trailing comments.

11 Expanded subroutine DOG as follows:

e Line 26 indicates the compiler generated BIND statement
that binds the start of the dummy character array BONE to
the location of the actual argument array ARF.

e Line 27 indicates the body of the subprogram DOG,
represented by the compiler as follows:

— each variable is preceded by the subprogram name DOG
followed by a period.

— WRITE statement label is replaced by the compiler gen-
erated label $L002 which is unique to this expansion of
the subprogram.

48-010 FOO R04 10-27

82-01

¥04 004 010-8¥

010-63-2

Fortran-VIIZ R06-00.00
* UNIVERSAL:

C THIS IS THE MAIN PROGRAM
FORTRAN VIIZ EXTENDED LISTING

tee b b gt b gem G b e fem 4 S g b § b G fve fum S tem b = S fea e e b

1 IC THIS IS THE MAIN Eigggﬁg____,_____.{:::)
2 1 PROGRAM .MAIN
3 1 INTEGER DOG.I,SUBl.L,@0,I,L - /@
4 REAL SUB1.A,SUB1.B,SUB1.X,SUB1.R,Y.X,Y.Y,@100,B,R,X,D,C,F,%,A
5 1 CHARACTER DOG,BONE*10(10),ARF*10(10)
6 ! COMMON A,B,X,L,R
7 1 EQUIVALENT COMMON SUB1.A, SUB1.B,SUB1.X, SUB1.L, SUBl.R 4 5:2{)
g 1 INTRINSIC .SQRT <
S i EQUIVALENCE (DUOG.BUNL, ARF)< — s
10 1 DATA (ARF(@0),@0=1,10)/'NIPPER','DUFFY', 'ALKI', 'CASEY','RUSTY','HAPPY',
11 1 1'BENJI','SANDY", PENNY', 'FLUFFY'/
12 1 DATA A,Z,C,D,X,L/4.500000,2.100000,8.100000,4.200000,3.0,2/
13 110¥ FORMAT(1H],2F15.8)
14 13L002 FORMAT(1X NOAL0) 6
15 1C SOLVE FOR F USING FUNCTION SUBPROGRAM Y
16 ! Q100 = A+Z
17 1 Y.X = @100
18 ! IF(Y.X < 0.0)Y.Y = .SQRT(Y.X**2+1.0)+1.0
19 1 IF(Y.X == 0.0)Y.Y = 0.0
20 ! IF(Y.X > 0.0)Y.Y = (=(.SQRT(Y.X**2+1.0)))+1.0
21 1 @100 = Y.X
22 1 F = Y.Y+2.0
23 IC CALL SUBROUTINE
24 1 SUBL.R = .SQRT(SUBl.A+(SUBl.B*SUBl.x)+SUBl.X**SUBl.L)4———-@
25 1 WRITE(*,10)F, R
26 ! BIND DOG.BONE TO ARF (iii)
27 1 WRITE (*,$L002) (DOG.BONE(DOG.I),DOG.I=1,10)
28 1 STOP
29 1 END
LENGTH OF IMPURE: 000001D8 472
LENGTH OF PURE: 00000000 0
TOTAL SIZE: 000001D8 472
.MAIN COMPILED ON MONDAY, APRIL 10, 1989
NALST NBABORT NBASE NBATCH NCAL NCOMP NHOLL LIST NOPTIMIZE NSEG
NXREF WARN INLIKE ELIST INFORM

7.00K UNUSED OUT OF 31.50K.

COMPILER FILE: M301:F7/G
INPUT FILE:

TABLE SPACE: 24.75K DISK SECTORS: 0

SOURCE LISTING: 3,M300:EX1.LST/P

1,M300:EX1.FTN/P OBJECT FILE: 2,NULL:

04/10/8% 14:18:13 PAGE 5/5

LICENSED RESTRICTED RIGHTS AS STATED IN LICENSE **-##k#kdx.%%x SEE DOCUMENTATION PACKAGE, 04-101M99 * *

NSYNTAX NTEST NTRACE

Figure 10-12. Extended Source Listing for In-line Expansion Program

v T

U)X
urz

BT

s3unsy1 pue sdepy wel

:a_SQRT(b-b+c‘c) ') l 1

FORTRAN VII RTL Routines

In this chapter

48-010 FOO R0O4

We introduce you to the general routines provided by the FORTRAN VII RTL.
These routines allow you to terminate a program'’s execution, output infor-
mational messages, access the operating system time and date, control
access to shared data, and access a program’s run-time start options. The
FORTRAN VII RTL also provides routines to control processing within a real-
time system. These routines provide a variety of task manipulations such as
performing system level input/output (1/0), 170 error handling, and control-
ling a 3200MPS processor. These types of RTL routines are described in the
05/32 System Support Run-Time Library (RTL) Reference Manual.

Topics include:

¢ Terminating execution using EXIT and EXITRE
e Accessing the system time and date

¢ Sending messages

¢ Controlling access to shared data

e Accessing run-time start options

11-1

1

FORTRAN VII RTL Routines
Terminating Execution Using EXIT and EXITRE

Terminating Execution Using EXIT and EXITRE

11-2

The EXIT subroutine allows the calling task to terminate its own execution.
If the calling task is nonresident, it is removed from memory. The EXITRE
subroutine is the same as EXIT except that, if the task is resident, any
assigned logical units are not closed at the end of task. The format for the
subroutine is as follows:

CALL EXIT (arg)
or’

CALL EXITRE (arg)

Where:

arg is an optional INTEGER*4 argument used to specify an
end of task code. This code must be greater than 0, but
less than 255.

Functional Details:

When arg is specified, it is truncated to an 8-bit value, thereby limiting arg
to 255. If argis not specified, EXIT will set the following end of task codes.

e 0 - Normal termination

« 255 - Task cancelled by operator or via an ABORT call
If the task is executing in the background, the return code can be used by a
command substitution system (CSS) procedure to affect system control. For

information concerning the writing of CSS procedures, see the 05/32 Multi-
Terminal Monitor (MTM) Reference Manual.

48-010 FOO RO4

FORTRAN VII RTL Routines 1 1
Accessing the System Time and Date

Accessing the System Time and Date

The following RTL routines allow access to the system calendar, time of day
clock, and interval clock.

DATE obtains the current calendar date from the operating sys-
tem.

TIME obtains the current time of day from the operating sys-
tem.

ICLOCK obtains the current time of day from the operating sys-

tem in one of the following formats:

¢ hours: minutes: seconds
o ASCII

e number of seconds since midnight

¢H _NOTE > The argument checking RTL checks all calls to real-
time subroutines. All arguments to these routines
must be stated as indicated in the following sections.
If the number of arguments is incorrect, the follow-
ing message is logged and the request is ignored:

progname: INCORRECT NUMBER OF ARGUMENTS

DATE Subroutine

The DATE subroutine obtains the current calendar date. Call DATE as fol-

lows:
CALL DATE (ARRAY)
Where:
ARRAY is an INTEGER*4 array of at least 3 elements whose first 3

elements receive:
First element - year O to 99

Second element - month 1 to 12
Third element - day 1 to 31

48-010 FOO R04 11-3

l FORTRAN VII RTL Routines
Accessing the System Time and Date

Example:
INTEGER*4 ARRAY(3)
CALL DATE(ARRAY)
WRITE(5,10)ARRAY
10 FORMAT(X, 3I)
END
Output:
87 4 1

Functional Details:

The content of elements 1, 2, and 3 of ARRAY depend on the DATE option
chosen at system generation (sysgen) time. The above explanation assumes
that the mm/dd/yy DATE option was chosen. If the dd/mm/yy DATE option
is chosen, the day (1 to 31) occupies element 2 and the month (1 to 12) occu-
pies element 3.

TIME Subroutine

The TIME subroutine obtains the current time of day. Call TIME as follows:

CALL TIME (ARRAY)
Where:
ARRAY is an INTEGER*4 array of at least 3 elements whose first 3

elements receive:
First element - hour O to 23

Second element - minutes 0 to 59
Third element - seconds O to 59

11-4 48-010 FOO'RO4

FORTRAN VII RTL Routines 1 l
Accessing the System Time and Date

Example:
INTEGER*4 ARRAY(3)
CALL TIME(ARRAY)
WRITE(S5,10)ARRAY
10 FORMAT (X, 31)
END
Output:
16 00 00

ICLOCK Subroutine

48-010 FOO RO4

The ICLOCK subroutine obtains the current time of day in one of three for-
mats. Call ICLOCK as follows:

CALL ICLOCK (IFUNC,DEST)

Where:
IFUNC is an INTEGER*4 argument that specifies the required for-
mat of the time of day as follows:
0 - three integers: hours, minutes, seconds
1 - 8-byte formatted ASCII string
2 - number of seconds since midnight
DEST is a variable where the time of day is to be stored. There

are different requirements for DEST according to the
IFUNC specified.

If IFUNC=0, DEST must be an INTEGER*4 array of at least

3 elements, into the first 3 of which the time of day is
placed as follows:

11-5

1 FORTRAN VII RTL Routines
Accessing the System Tirne and Date

DEST (1) - hour 0 to 23
DEST (2) - minute O to 59
DEST (3) - second 0 to 59

If IFUNC=1, DEST must be an INTEGER*4 array with at
least 2 elements or a double precision variable into
which the time of day is placed as follows:

DEST = hh:mm:ss

If IFUNC=2, DEST must be an INTEGER*4 variable into
which ICLOCK places the time of day as follows:

DEST = number of seconds since midnight

Example:
INTEGER*4 ARRAY(3), IFUNC
IFUNC=0
CALL ICLOCK(IFUNC,ARRAY)
WRITE(5,10)ARRAY
10 FORMAT (X, 31)
END
Output:
16 00 00

Functional Details:

If the value of IFUNC is other than 0, 1, or 2, an ILLEGAL FUNCTION CODE
error message is output, and the request is ignored.

11-6 48-010 FOO RO4

FORTRAN VII RTL Routines
Sending Messages Using CONMSG

Sending Messages Using CONMSG

11

The CONMSG subroutine outputs messages to the user's terminal. This rou-

tine allows a task to output a message to the user’s terminal without the

caller having to know the device mnemonic of the terminal. Call CONMSG as

follows:

CALL CONMSG (NCHAR,MSG)

Where:

NCHAR is an INTEGER*4 argument that specifies the number of
characters in MSG that is to be displayed. If this is not
specified, the whole string MSG is displayed.

MSG is a character constant, a Hollerith constant, a variable or

an array containing the message.

Functional Details:

NCHAR characters, starting at MSG, are output to the user’s terminal. If
NCHAR is not specified, the whole string denoted by MSG is displayed.

If NCHAR has a value less than one, the following error message is logged

and the request is ignored:

CONMSG: ARGUMENTS (ZERO, NEGATIVE)

Example:

INTEGER*4 NCHAR
CHARACTER*8 MSG
DATA MSG /’HELLO’/

NCHAR = 5
CALL CONMSG(NCHAR,MSG)
END
Output:
HELLO

48-010 FOO R04

11-7

1 FORTRAN VII RTL Routines
Controlling Access to Shared Data

Controlling Access to Shared Data

FORTRAN VIl provides for the sharing of data between tasks via shared seg-
ments or task common areas. The optimizing compilers’ perception of
access to these areas can have serious implications for optimization. The
following function and subroutine are provided to signal current usage of
shared data. For more information about shared data area usage and optimi-
zation, see the sections " Linking Shared Data Areas" and "Guidelines for
Preparing Source Code for Optimization."

LOKON Function

The logical function LOKON sets the high order bit of its argument. If this bit
is already set, LOKON returns ".TRUE.". If the high order bit of its argument
was not set, LOKON sets it and returns ".FALSE.". This function alerts the F7
optimizing compilers that subsequent references to members of common are
under exclusive control of the calling task. This control is granted solely by
user-stipulated convention with all tasks which have access to this common
area. Succeeding references to these variables will not be moved across this
call. See Chapter 4 for more information on shared data usage.

Invoke LOKON as follows:

LOKON()

Where:

I is any halfword aligned variable; i.e., not character, Hol-
lerith or LOGICAL*1.

Functional Details:

This function is implemented via the machine instruction test and set. Use
the FORTRAN function TESET when control of data areas is not to be implied.

11-8 48-010 FOO RO4

FORTRAN VII RTL Routines 1 1
Controlling Access to Shared Data

LOKOFF Subroutine

48-010 FOO RO4

The LOKOFF subroutine resets the high order bit of its argument. This is the
companion routine to LOKON. It must be invoked by a task which has
gained exclusive access rights to shareable segments or task commons by
calling LOKON to signal that it is releasing access rights.

Failure to observe this convention may result in indeterminate run-time data
in COM'MON. Call LOKOFF as follows:

CALL LOKOFF(J)

Where:

1 is any halfword aligned variable; i.e., not character, Hol-
lerith or LOGICAL~*1.

Functional Details:

This subroutine is implemented via the machine instruction RBT. The FOR-
TRAN subroutine BCLR can be used when control of data areas is not to be
implied.

Example:

COMMON /FLAG/ FLAGA,FLAGB
CALL P(FLAGA)

CALL V(FLAGA)

STOP
END
SUBROUTINE P(/FLAG/)

5 IF(FLAG .LT. 0) GOTO 5
IF (LOKON(FLAG)) GOTO 5
RETURN
END
SUBROUTINE V(/FLAG/)
CALL LOKOFF (FLAG)
RETURN
END

i1-9

1 1 FORTRAN VII RTL Routines
Accessing Run-Time Start Options Through GETOPTS

Accessing Run-Time Start Options Through
GETOPTS

The GETOPTS routine allows users to access their run-time start options
from a FORTRAN program. Call GETOPTS as follows:

CALL GETOPTS(opstring,length)

Where:
opstring is a character variable or array element in which
GETOPTS returns the string of start options.
length is the length of the string returned in opstring.
Example:

CHARACTER OPSTRING*80
INTEGER*4 LENGTH

CALL GETOPTS(OPSTRING, LENGTH)
TYPE *,’Length = ’,LENGTH
TYPE *,’String = ’,0PSTRING
END

START,BEGIN=10 END=200 (This assumes that the code was
compiled, linked, and the task loaded.)

Output:

Length = 16
String BEGIN=10 END=200

Functional Details:

Each system start option must be preceded by the % character and all system
start options must come before any user start options. The delimiter for
start options is either a comma or a space. The first option, from left to
right, which does not start with the % character marks the beginning of the
options. See Chapter 7 for the available run-time system start options.

11-10 48-010 FOO R0O4

a=SQRT(b*b+c+*c) 1 2

FORTRAN VII XPA System

In this chapter

We discuss the execution profile analysis (XPA) system. XPA is a tool which
monitors your program during execution and helps you determine the
optimal candidates for in-line expansion or fine tuning.

Topics include:

¢ How to include the XPA in your program

¢ Analyzing the results using the XPA commands

48-010 FOO RO4 12-1

1 2 FORTRAN VII XPA System
Introducing the XPA System

Introducing the XPA System

To aid in deciding which subprograms are likely candidates for expansion
under the optimizing compilers, Concurrent provides the XPA. XPA in its
basic form does not require program recompilation. It is a two part system.
The first part, which must be included at Link time, creates an address trace
during program execution. An address trace is a statistical sampling of run-
time locations trapped at specified regular time intervals.

The second part of XPA is a separate task which analyzes the address trace
and produceas ‘execution frequency’ tables by either:

« modules, or

¢ address ranges.

This task is run after completion of the user task (u-task).

When using XPA, non-FORTRAN subroutines should
not use general register 1 for any purpose other than
FORTRAN'’s work space pointer (even if general regis-
ter 1 is saved at the entry and restored at the exit of
the subroutine). If general register 1 is used for any
other purpose, run-time faults occur when using XPA.

Timing Your Program

XPA provides the ability to trace addresses at speciﬁed time intervals during
program execution.

Including the Timer in Your Program

You can easily include the XPA system in your task without recompilation of
any program module. However, if you need more flexibility, you can utilize
the user interface routine, XPA_SET, supplied with the XPA system. This
interface is described later in this chapter.

12-2 48-010 FOO RO4

48-010 FOO R0O4

FORTRAN VII XPA System 1 2
Timing Your Program

In its basic form, XPA traps the current address every 10ms. Immediately
after the FORTRAN VII run-time environment is initialized, XPA issues its ini-
tial timer trap. Thereafter, every 10ms the u-task is interrupted by the
operating system, and the trap is passed to XPA. The task’s current address
is stored in an internal buffer and another timer trap is issued. When the
1,024 byte internal buffer is full, it is written to MAXLU. This process contin-
ues until either the timer is turned off by a call to XPA_SET or the task goes
to end of task. If the task completes normally, XPA dumps the last buffer to
MAXLU. If the task is cancelled for any reason, the last buffer is lost. (Note
the buffer holds up to 256 entries.)

If MAXLU is preassigned, it must be an indexed file of record size 1,024. It
should be blocked at a factor of 4 or greater to ensure a reasonable
input/output (170) speed. If MAXLU is unassigned, XPA creates an indexed
file of record size 1,024/4 and assigns it to MAXLU. The name of this file is
the program’s task filename appended with .XPA; e.g., usertask.XPA. If this
file already exists, it is deleted and reallocated.

To append XPA data tp an already existing XPA file, reprotect it with keys
0100. This prevents it from being reallocated.

The maximum logical unit (lu) number is used to perform all 1/0 operations
of the XPA timer. MAXLU cannot be used during program execution for any
purpose other than for XPA output. This lu may be changed by means of the
OPTION LU=nn command at link time. MAXLU may then be calculated as nn-
1. The default for nn is 15, giving a default MAXLU of 14. See the 0S/32
Link Reference Manual for more information.

The timer interrupt module of XPA exists in the FORTRAN VII run-time
library (RTL). To begin timing immediately after the program is started,
whether or not XPA_SET is present in your source, include .XPATIMR from
the RTL at Link time. To delay the start of the timer, call XPA_SET from the
appropriate spot in your source program and do not include .XPATIMR at
link time.

Additional XPA Link requirements are:

o 1.5kB workspace above normal task requirements.

e An ADDRESS Link map if a frequency profile by module is desired.

A typical link command sequence for including XPA is as follows:

12-3

1

FORTRAN VII XPA System
Timing Your Program

>OP FI1,DFL,WORK=X1600

>LIB F7PFUT/S (LIB against F7PFUT.OBJ)
>LIB F7RTL/S (LIB against F7RTL)
>IN user (includes user’s program)

>IN F7PFUT/S, .XPATIMR (includes the XPA timer from
the F7PFUT.OBJ)

>MAP user.MAP,ADDR,XREF (gets map on the user.MAP file)

>BUI user (builds user task with XPA)

>END

For Link R0O0-01 or lower, this same link command applies except that the
first line of the command should be replaced with the following.

>OP Fl.,DFL,WORK=1600

In order to Link with an RTL shared segment, add the following information
after the first command line.

>RES FORTLIB.IMG

See the section entitled "Linking Shared Segments" found in Chapter 7 for
more information on RTL shared segments.

XPA_SET Routine

12-4

The RTL subroutine XPA_SET performs multiple functions. It can turn the
timer on or off, change the interval between ticks, or mark all subsequent
ticks with a tag character. The call to XPA_SET consists of 0, 1, or 2 argu-
ments in any order. If no arguments are specified, it starts the timer with
either the default values (the first time) or the previously specified values
(otherwise). If any argument is missing, it keeps the value from the previous
call.

One of the two arguments specifies the timing interval in milliseconds. It
must be an INTEGER*4 value. If it is <=0, the timer is turned off and the
buffer is written. If it is >0, the timer is restarted with this new interval.
The default interval value is 10ms.

48-010 FOO R0O4

FORTRAN VII XPA System 1 2
Timing Your Program

The other argument specifies an address tag. It must be a CHARACTER*1
value between 'A’ and 'Z’ or a '0’ (zero). Any other value is taken as '0’. The
address tag is used to identify the execution of separate parts of a program
with respect to either address space or time. For instance, an address tag
can be used to identify ticks from different overlays. In this case, the
addresses cover the same space, but are really from different parts of the
program. In another case, the address tag can be used to distinguish ticks
from the same routine which was called at different times. The second phase
of the XPA system, the XPA analyzer, allows you to use this tag when you
display timing results. The default value of the tag is '0’".

Some examples of calls to XPA_SET follow:

CALL XPA_SET (15,’A’) ; starts the timer with a 15ms interval.
; Addresses are tagged with ’'A’.

CALL XPA_SET (’B’) ; Addresses are now tagged with ‘B’. The
; interval is still 15ms.

CALL XPA_SET (‘0’,0) ; Stops the timer and sets the tag
; back to default ’0’.

CALL XPA_SET ; Restarts the timer with previous interval,
; i.e. 15ms and with tag ‘0’.

Influences Upon the Trace Profile

48-010 FOO R0O4

XPA uses supervisor call 2 (SVC2) code 23 option X'00’ to set the timer trap.
Option X’00’ causes the timer interval to run concurrently with program exe-
cution. When the interval elapses, a service request is added to the
program'’s task queue. When the program is in CURRENT state, the request is
serviced by XPA. XPA's central processing unit (CPU) and 170 time to service
a trap is excluded from the user’s trace.

If an interval ends when the program is in READY, WAIT, or PAUSED state, the
tick gets charged to that part of the program which ran last or which issued
the wait or pause. For instance, if the program is in 170 wait and if the inter-
val is smaller than the time it takes to service the I/0 request, the tick occurs
in the I/0 routine. That is, when the program is reading or writing data, the
tick occurs in the FORTRAN RTL I/0 routines. This should not unduly bias
the sample as there will be only one tick per read or write. In short, program
composition and system load can affect the address trace sample. Some of
these factors are:

12-5

1 ZFQRTRAN VII XPA System
Timing Your Program

« amount of [/0 by the program,
e amount of system wide /0, and

« number of CPU bound tasks in the system.

These factors affect the number of times the task is in READY, WAIT, or
PAUSE state when the trap is due. Therefore it is possible to get an execu-
tion profile on a stand alone machine that is somewhat different from one on
a shared system. In general, the results obtained from a multi-terminal
monitor (M7M) environment are sufficiently accurate, especially with respect
to heavily frequented parts of the program.

Interfacing with INIT/ENABLE and Error Conditions

The XPA system does not preclude the use of any of OS/32 trap handling
facilities available in FORTRAN VII's real-time routines INIT and ENABLE.
These routines are aware of XPA and do not interfere with each other.

There are three errors which may occur during the execution of a task in
which XPA was included.

» Insufficient user memory.
e Insufficient amount of system space available to store the timer trap.

o Overflow of user’s task queue.

Cases 1 and 2 cause the XPA to log an error message and cancel the program
with end of task code 240 and 241, respectively. For case 1, reload the pro-
gram with a load size of 1.5kB more than previously. For case 2, increase the
system space using the system console and rerun the program. Case 3
causes 0S/=2 to cancel the program with an end of task code 1000. This
error is only possible if the program, itself, is using FORTRAN VII's real-time
facility. The size of the queue is fixed at 50 entries. The queue size can be
changed by a call to INIT. See the 0S5/32 System Support Run-Time Library
(RTL) Reference Manual for details on the INIT routine.

12-6 48-010 FOO R0O4

FORTRAN VII XPA System 1 2
How to Analyze the Results

How to Analyze the Results

The second part of the XPA system is a task, XPATAB.TSK, which formats the
result from XPATIMR in a ledger like fashion. The ledger contains a list of
either module names, if a Link map is available, or a range of addresses. Both
lists are sorted by the frequency of execution. Then, by concentrating on
those parts of the program which consume the most time, you can determine
the optimal candidates for inline expansion or for fine tuning an algorithm.

XPATAB assigns all the necessary files after it has been started. However, if
you wish to preassign, perform the following;:

e assign lul to the program trace file,
e assign lu3 to the output device or file the analysis is to be printed,
e assign lu5 to the command input file, defaults to CON:, and

e assign lu6 to the logging device for messages, defaults to CON..

There are two kinds of table formats available to the user:

e by module name, or

e by address.

To output the table by module name, a standard Link map with the ADDRESS
option must be available. XPATAB uses this map to find out the module
name in which each tick occurred. It then prints a table associating module
names with their frequencies. If an ADDRESS map is not available, or if you
want to dissect a module, the address format is available. The address for-
mat only associates frequencies with ranges of addresses. You must then
associate the addresses to your program.

Basic XPA Commands

48-010 FOO RO4

The preceding commands allow you to manipulate the XPA. You must have
loaded and started XPATAB.TSK prior to using these commands.

12-7

1 2 FORTRAN VII XPA System
How to Analyze the Resul's

PROGRAM Command

To enable the module format and to clear the XPATAB environment i.e., start
afresh, use the PROGRAM command as follows:

PROGRAM [pgmname]

Where:

pgmname is a program name of a traced task. XPATAB appends .MAP to
pgmname i.e., pgmnameMAP to find the program’s map file.
The map file is searched for on the user’s private, group, and
system accounts. If pgmname is absent, XPATAB logs the
current program name to lu6.

INPUT Command
The INPUT command specifies which trace file to analyze. The format is:

INPUT | fdi]

Where:

fdi is the file descriptor (fd) of the trace file generated by .XPA-
TIMR. If this command is not specified, pgmnameXPA is
assumed, if possible. If the argument is absent, XPATAB logs
the current trace fd.

OUTPUT Command

The OUTPUT command specifies to which file the analysis is to be output.
The format :s:

OUTPUT [fdo)

12-8 48-010 FOO RO4

FORTRAN VII XPA System 1 2
How to Analyze the Results

Where:

fdo is the file to which the analysis ledger is to be printed. If fdo
is nonexistent, it is allocated as indexed 80/1. If this com-
mand is not specified, CON: is assumed. If fdo is absent, XPA-
TAB logs the current fdo.

TAG Command

48-010 FOO RO4

If the character tag facility of XPA is used in a FORTRAN program, XPATAB
provides the TAG command to restrict the analysis to a specific set of tagged
trace entries. If a Link map is available, a tag may be associated to an over-
lay node. The format is:

TAG [t [=node] | -]

Where:
t is a character tag in your program (A through Z and 0
(zero)).
node is the overlay name from an OVERLAY command in your

Link command sequence.

— means to accept all trace entries regardless of tag.

If this command is not specified, a tag of 0, the default from XPATIMR, is
assumed. Essentially, the TAG command specifies which tag is current and
causes analysis to be restricted to a particular set of trace entries carrying
that tag. Furthermore, for those who have an overlayed program, =node is
provided to specify a path from the root up to and including that node. The
Link address map must be accessible to XPATAB via the PROGRAM command
for this feature to be available. XPATAB ascertains the path of the overlay
tree for this node and only consider those module names occurring along
that path for analysis.

If there are no arguments present in the command, XPATAB logs a list of only
those tags and their associated nodes, if any, which were entered by TAG.
The current tag is highlighted.

12-9

1 ZFORTRAN VII XPA System
How to Analyze the Resulis

12-10

TABLE Command

The TABLE command causes the analysis ledger to be produced on fdo. Its

format is:

TABLE [ADDRESS]

The optional argument, ADDRESS, specifies that the address range format is
desired; it is only needed if a pgmname was specified and it is to be tem-
porarily ignored. In general, TABLE defaults to a module format if a
pgmname was specified; otherwise an address range format is given. The
following is a sample of a module ledger:

RUTABAGA:—, . ROOT
5120;
5120 TICKS IN RANGE,

TOTAL TICKS =

MODULE: POTATO
MODULE: DOORMAT
MODULE: PRETZEL
MODULE: PHYSIQUE

TOTAL SHOWING:

Where:

TOTAL TICKS

OF MODULES

MAX # AVAILABLE

TICKS IN EANGE

TICKS OUTSIDE RANGE

;title goes here

OF MODULES = 61; MAX # AVAILABLE = 8057
100.0%; O TICKS OUTSIDE RANGE, 0.0%
3717 TICKS, 72.6%
576 TICKS, 11.3%
242 TICKS, 4.7%
119 TICKS, 2.3%
4654 TICKS, 90.9%

is the total number of ticks in the sample.

is the total number of modules including RTL rou-
tines specific to an analysis.

is the maximum of modules that can be analyzed
given the load size of XPATAB.

is the number of ticks in the analysis.

is the number of ticks outside the range of an
analysis.

GH NOTE {> All percentages are with respect to the total number
of ticks in the sample.

TOTAL SHOWING

is the number of ticks shown on the ledger. This
number is not always 100% of the total number of
ticks in the sample; it is based on the number of
entries that the ledger is limited to. See the LIMIT
command described later on in this chapter for
more information.

48-010 FOO R04

FORTRAN VII XPA System 1 2
How to Analyze the Results

A sample address ledger is:

TAG = —;title goes here

SPECIFIED RANGE:0-1AC54; STEP SIZE: 100, BIAS:0

TOTAL TICKS = 5120; # OF BUCKETS = 424; MAX # AVAILABLE = 8057
5120 TICKS IN RANGE, 100.0%; O TICKS OUTSIDE RANGE, 0.0%

RANGE: DF00- DFFF 991 TICKS, 19.4%

RANGE: D800- D8FF 791 TICKS, 15.4%

RANGE: DAOO— DAFF 352 TICKS, 6.9%

RANGE: DEOO- DEFF 272 TICKS, 5.3%

TOTAL SHOWING: ' 2406 TICKS, 47.0%

Where:
SPECIFIED RANGE is the absolute address range for an address format.
STEP SIZE is the step size for each address interval.
BIAS is the address bias for an analysis.

A further explanation of range, step size, and bias can be found under their
respective commands RANGE, STEP, and BIAS. Both the modules and the
address intervals are sorted according to their frequencies in descending
order.

Commands for Analyzing Modules

The preceding commands are sufficient to analyze both overlayed and nono-
verlayed programs by module.

A typical XPATAB command sequence is as follows:

*L, XPATAB

*ST

EXECUTION PROFILE ANALYZER RXX—XX.XX

>P user (Program command)

>T (Table command)

. (Module ledger appears here)
>END

The remainder of the commands add address range capability and additional
format control.

48-010 FOO RO4 12-11

12

12-12

FORTRAN VII XPA System
How to Analyze the Results

BIAS Command

The BIAS command sets up an address bias specified either by address or by
module. This bias is then applied upon the address range intervals in the
address range format. This is useful when conducting a micro-inspection of
a module’s algorithm and the FORTRAN VII assembly listing of that module is
close at hand. The format is:

BIAS ['ad¥ | modnamel:node] | *]

Where:
‘adv represents a hexadecimal address (up to six digits)
enclosed in apostrophes.
modname is a module name in the program.
node is the overlay name in which modname may be found.

%

means set the bias to the start of the current RANGE.

The address to which the bias is set if the modname argument is specified is
the pure starting address. The impure address of the module is used only if
there is no pure code for that module.

If this command is not specified, a bias of 0 is assumed. If the argument is

absent, XPATAB logs the bias. The bias has no effect upon a module ledger
format.

RANGE Command

The RANGE command restricts the range in which the analysis is to be per-
formed and thus the information printed in the ledger. It can restrict the
range either by address or by module name. RANGE has no effect upon a
module ledger format. The format is:

RANGE [from[-to]] | -

48-010 FOO RO4

Where:

from and to

3%

Some examples of range values are:

‘adr-'adr

‘ady -

,O,*'

modname -modname

modname

modname :node -modname

modname :node -modname :node

FORTRAN VII XPA System 1 2
How to Analyze the Results

are either 'adr[*] or modname|:node].
‘ad¥, modname, and node are as defined
from BIAS.

means the address is relative to the bias;
otherwise the address is absolute.

means to span the address range from
‘ady to 'adr'.

means from 'ad¥ to 'FFFFFF’ or Utop.

means from 0’ to 'FFFFFF’ or Utop (the
default).

means from the bias to 'FFFFFF’ or Utop.

ranges the address from modname to
modname, inclusive.

sets the range to include only that
module.

ranges from modname in overlay node
to modname in node.

ranges from modname in overlay node

-to modname in node where node is

accessible from node.

If modname is specified without a node, and that modname occurs in more
than one node of a program, the first occurrence in the map is used. If mod-
name is specified without a node, then the node containing modname is

assumed. If RANGE is not specified,

the range is from '0’ to 'FFFFFF’ or Utop

if a map is available. If no arguments are specified, XPATAB logs the current

range.

STEP Command

48-010 FOO RO4

To set the length of the address interval for an address ledger, use the STEP

command. Its format is:

STEP [size]

12-13

1 ZFORTRAN VII XPA System
How to Analyze the Result:s

Where:

size is a hexadecimal number (up to six digits) specifying the
address interval. The default step size is 100. If no
argument is specified, XPATAB logs the current step size.

LIMIT Command

The LIMIT command limits the number of frequency entries i.e., modules or
address intervals output to the ledger. The format is:

LIMIT [iim]

Where:

lim . is an integer decimal number between 1 and 100. The
default for lim is 18 entries. If no argument is specified,
XPATAB logs the current frequency-entry limit.

TITLE Command

The TITLE command places its argument on the top line of the analysis
ledger. Its format is:

TITLE [title]

Where:

~ title is the first 76 characters after the first nonblank charac-
ter from the keyword TITLE, inclusive.

If no argument is specified, XPATAB logs the current title.

12-14 48-010 FOO R0O4

FORTRAN VII XPA System 1 2
How to Analyze the Results

LOCATE Command

To find out where a particular module occurs in your program, use the
LOCATE command. Its format is:

LOCATE modname

It finds and logs all occurrences of modname, their beginning and ending
addresses of their pure code and their overlay nodes, if any. The log
arrangement is:

modname,; saddr, - eaddr, NODE:overlay

modname, saddr, - eaddv, NODE:overlay

NODE Command

To find out what overlay nodes appear in the Link map, use the NODE com-
mand. It accepts no arguments and logs a list of all the overlay nodes
appearing in the Link map.

MAP Command

48-010 FOO RO4

To ascertain the members of a particular overlay node or to dump the entire

program map containing all overlays and their members, use the MAP com-
mand. Its format is:

MAP [node]

When node is specified, only that overlay node is detailed; otherwise, all
overlay nodes are detailed. Note that nonoverlayed programs always contain
a .ROOT node. MAP's logging format is:

UBOT: xxxx UTOP: xxxx
NODE: node

modname :saddr!modname,.saddr!modnames:saddr!

modnamegsaddr!modnames.saddrimodnameg.saddr!

12-15

1 2 FORTRAN VII XPA System
How to Analyze the Results

HELP Command

The HELP command logs to 1u6 a list of all available commands of XPATAB
and their syntax. For this revision it does not accept a command argument.

Merging XPA Files

Two or more XPA files generated by different runs of the same program may
be merged in order to summarize their contents by using the COPY/32 Util-
ity as follows:

*L COPY32

*AL SUM.XPA,IN,1024/4
*§T

>OP BIN

>COPY in1.XPA,SUM.XPA
>COPY in2.XPA,*

>END

XPATAB may now be run on this summary file by specifying 'IN SUM.XPA’.

Ending the Session

To end the analysis session use the END command. To begin a fresh session
use either the PROGRAM or NEW command. Both commands clear the XPA-
TAB environment; NEW command, however, does not specify a pgmname.

12-16 48-010 FOO R04

a=SQRT(b*'b+c+c)

13

FORTRAN VII CRA System

In this chapter

We discuss the call recording analysis (CRA) System. This utility is similar to
the execution profile analysis (XPA) (described in Chapter 12). The difference
is that the CRA creates and analyzes the call graph of an executing program
and produces tables of call counts identifying the caller and the callee.

Topics include:
o How to use the CRA

e Analyzing results

¢ Limitations of the CRA

48-010 FOO R04 13-1

1 3PORTRAN VII CRA System
Introducing the CRA |

Introducing the CRA

To expedite the process of selecting which subprograms are likely candi-
dates for in-line expansion under the FORTRAN VII optimizing compiler, use
the CRA system. This utility is easy to use and does not require program
recompilaticn. It consists of two parts:

e The first part, which must be included at link time, creates a dynamic call
graph of an executing program in memory. This graph is then written to a
disk file.

e The second part, the call recorder analyzer, is a separate task which
analyzes the dynamic call graph and produces tables of all counts identi-
fying the caller and the callee.

The space requirements of the CRA are as follows:

e The size of CRA is 5.5kB, CRAXPA is 8.0kB, including the XPA routines.

¢ The size of run-time library (RTL) routines used by CRA/CRAXPA is
28.5kB.

e The workspace requirement of CRA/CRAXPA is approximately 8kB
(depends on size of dynamic call graph).

Analysis of Your Program

The call recorder is easy to include in your task and does not require recom-
pilation of any program module. Link it into your task and it automatically
begins to operate.

The call recorder logs a message to the console when it is initiated. It opens
the link address map (user.MAP) which must be the task filename with the
extension “MAP‘ appended. The call recorder installs a breakpoint supervisor
call 14 (SVC14) on each entry point in the program with the exception of
those routinas which begin with a period (.). For each entry point, a table
entry is built in memory which serves as a node of the dynamic call graph, as
well as holding the instruction replaced by the breakpoint. The map file is
then closed and the call recorder exits, allowing the task being monitored to
execute.

When a breakpoint occurs, control is passed to the call recorder’s trap
handler. The call is charged to the callee and is marked as being from the
caller, possibly adding a new arc to the dynamic call graph. This process
continues until the user task (u-task) is complete.

13-2 48-010 FOO R0O4

48-010 FOO R04

FORTRAN VII CRA System 1 3
Analysis of Your Program

Immediately before the u-task terminates, the call recorder’s end of task
handler is invoked. An indexed file of record size 1024/4 is created and
given the name of the task with extension .CRA‘. If this file exists, it will be
deleted and reallocated. The dynamic call graph is then written to this file.
To append CRA data to an already existing CRA file, reprotect it with keys
0100. This will prevent it from being reallocated.

There are two versions of the call recorder; .CRA and .CRAXPA. .CRA is the
call recorder, as previously described. .CRAXPA is the call recorder
integrated with XPA in such a way that both run simultaneously. In order to
enable the CRA system, either version is included into the user program at
link time.

The CRA link requirements are as follows:

o Approximately 8kB (2000) work space above normal task requirements
depending upon the size of the dynamic call graph. This workspace
includes all XPA requirements.

o An address link map on file user.MAP. This map file must be on the same
volume as the task and must be deleted and reallocated each time the
task is linked.

A typical link command sequence for including CRA is as follows:

>0OP FL,DFL,WORK=X3000

>LIB F7PFUT/S (LIB against F7PFUT.OBJ)
>LIB F7RTL/S (LIB against F7RTL)
>IN user (includes user’s object)

>IN F7PFUT/S,.CRA (or) IN F7PFUT/s,.CRAXPA
(includes object from F7PFUT.OBJ)

>MAP user.MAP,ADDR, XREF (gets map)
>BUI user (builds task)
>END

For Link R00-01 and lower, this same link command sequence applies except
that the first line will be replaced by:

>OP FL,DFL,WORK=3000

In order to Link with an RTL shared segment, add the following information
after the first command line:

>RES FORTLIB.IMG

13-3

1 3 FORTRAN VII CRA System
CRA Limitations

See the section on "Linking Shared Segments" found in Chapter 7 for more
information on RTL shared segments.

To append CRA data to an already existing CRA file, reprotect it with keys
0100. This will prevent it from being reallocated.

The CRA system does not preclude the use of any of the OS/32 trap handling
facilities available in FORTRAN VII's real-time routines INIT and ENABLE.

The maximum logical unit (lu) number is used for all call recorder input/
output (I170). This lu must not be preassigned and may not be used by the
user program. This lu may be changed by relinking the task with a larger
limit on the OPTION lu=nn link command.

CRA imposes an overhead of approximately 310us per call (on a Model 3250).
The overhead for CRAXPA is approximately 380us per call.

CRA Limitations

The limitations of CRA are as follows:

e Because breakpoints are installed at run-time, the task must not be linked
segmented (pure and impure), although the call recorder is itself sharable.

e Overlayed tasks are not supported for the same reason.

e Recording call information over a portion of the program is not sup-
ported. Fecording is always enabled for the entire program.

e Programs that abort abnormally will lose their call recorder information.
This info-mation is only written by normal program termination (STOP,
END of main program or CALL EXIT). Note that normal program termina-
tion can be simulated by continuing a paused program at entry point ".V'.

e Modules whose names begin with . are not included in the call graph.
This keeps the call recorder from significantly slowing down the program.

e CRAXPA automatically starts XPA at program initialization as if “‘XPATIMR'
were linked into the task. There is no provision for a delayed start of
XPA. The default XPA interval (10ms) is used, but may be changed by cal-
ling XPA_SET immediately in the main program.

o XPA_SET must not be called if the CRA version is selected instead of
CRAXPA.

« A subroutine call which is immediately followed by a branch (i.e., GOTO)
will be recorded as occurring at the target of the branch. This is due to
an optimization performed by the FORTRAN VII O and Z compilers.

13-4 48-010 FOO RO4

FORTRAN VII CRA System 1 3
Error Conditions

Error Conditions

There are four errors which may occur during the execution of a task in
which CRA was included.

Insufficient user memory.

o MAP file nonexistant or ADDRESS map not found.
e [/0 error reading the MAP file.

e 170 error writing the CRA file.

Cases 1 and 2 cause CRA to log an error message and cancel the program
with end of task code 240 and 241, respectively. Reload the program with a
larger load size. Case 3 causes CRA to pause (uses standard FORTRAN 1/0).
Case 4 causes CRA to log an error message and cancel the program with end
of task code 242.

How to Analyze the Results

48-010 FOO RO4

The second part of the call recording analysis system is a task, CRATAB.TSK,
that formats the result from the call recorder into two tables. See Figures
13-1 and 13-2.

Figure 13-1 lists each entry point in the user program (1) sorted in order of
total calls (2). With each entry point is a list of all the call sites given as a
subprogram name (3) with an offset in hex (4). The offset is from the start of
the pure section of the subprogram, or if the program has no pure section
(NSEG), the offset is from the start of the subprogram. The number of times
called from each call site is given (5) as well as the percentage in relation to
the total number of calls in the entire user program (6). The total number of
calls from each caller subprogram is given (7) as well as the percentage with
respect to the rest of the program (8). The percentage of total calls with
respect to the rest of the program is given (9). The total calls of all entries is
given (10).

13-5

13

13-6

FORTRAN VII CRA System
How to Analyze the Results

Figure 13-2 lists each subprogram in the user program sorted in alphabetical
order (11). With each subprogram name is a list of all the entry points called
by this subprogram (12), the offset of the call site (13), the number of calls
(14), and the percentage with respect to the rest of the program (15). Finally,
the total calls of all entries is given (16).

By concentrating on those subprograms which are called numerously, you
can find the optimal candidates for in-line expansion. The offset given will
help you locate which call is to be selectively expanded in a subprogram
which has many different calls to a candidate module. Routines that are
called only a few times, but consume considerable run-time from XPA, are
potential candidates for optimization through replacement of a poor algo-
rithm with a better one. Routines that are not called at all are candidates for
elimination or are indicators that the test data is incomplete.

48-010 FOO RO4

FORTRAN VII CRA System l 3
How to Analyze the Results

CALL RECORDER ANALYZER R06-00.00 PROGRAM SAMPLE PAGE 1
LIST OF CALLED ENTRIES SORTED BY TIMES CALLED
CALLED FROM FROM THIS MODULE
ENTRY NAME MODULE OFFSET # OF TIMES $ # OF TIMES $ TOTAL CALLS
FUN BENSUB +272 3500 9.9 '
FUN BENSUB +342 3500 9.91 |
FUN BENSUB +374 3500 9.91 10500 29.6!
FUN FUN3 +F8 3500 9.91 3500 9.91 14000 39.4
! !
LOGGER BENSUB +3CC 3500 9.9! '
LOGGER BENSUB +3E4 3500 9.91 7000 19.71 7000 19.7
1 ' 1
PHIG BENSUB +3D8 3500 9.91 '
PHIG BENSUB +3F0 3500 9.91 7000 19.7! 7000 19.7
‘ '
FUN3 BENSUB +86 3500 9.91 3500 9.9 3500 9.9
]]
ARKY2 BENSUB +3C0 3500 9.9 3500 9.91 3500 9.9
!]
BENSUB _MAIN +56 500 1.4! 500 1.41 500 1.4
! :
MTIME .MAIN +46 1 0.0t '
MTIME _MAIN +66 1 0.0¢ 2 0.0 2 0.0
!]
CONPR *%% NOT INVOKED *** v ' 0
1 1
ARKY1 *%x% NOT INVOKED *** ' ' 0
| 1
FUNVAL *x% NOT INVOKED *%* ' ' 0
1 |
CONMSG *%% NOT INVOKED *** | _ ' 0
]]
XPA_SET *%% NOT INVOKED *** ' ' 0
TOTAL CALLS IN PROGRAM = 35502

Figure 13-1. Call Recorder Analyzer (CRA)

48-010 FOO R0O4 13-7

13

13-8

FORTRAN VII CRA System
How to Analyze the Results

MODULE
.MAIN

ARKY1
ARKY2
BENSUB

CONMSG
CONPR
FUN
FUNVAL
LOGGER
FUN3

MTIME
PHIG
XPA_SET

CALL RECORDER ANALYZER R05-05.00
ALPHABETICAL LIST OF CALLERS
CALLS

OFFSE™

+56
+46
+66

+3C0
+272
+342
+374
+3CC
+3E4
+86

+3D8
+3F0

+F8

BENSUB
MTIME

MTIME

** NONE **

** NONE **

ARKY2

FUN
FUN
FUN

LOGGER
LOGGER
FUN3
PHIG

PHIG

* %

* k

* %k

* K

* *

FUN

* X

* K

* k

NONE
NONE
NONE
NONE
NONE

NONE
NONE
NONE

TOTAL CALLS IN PROGRAM

* %

*x Kk

* *x

* K

*x

*x

* %

* Kk

OF TIMES

500

o O e

3500
3500
3500
3500
3500
3500
3500
3500
3500

o o O ©

3500

Figure 13-2. CRA

Vol Ne Ve I V>R Vo (o SN B Yo
W O O YW W Y O W WY

PROGRAM SAMPLE PAGE 1/2

The CRATAB command substitution system (CSS) assigns all the necessary
files for CRATAB. The format of the CSS call is:

CRATAB <taskname>

48-010 FOO R04

. FORTRAN VII CRA System 1 3
How to Analyze the Results

Where:

<taskname> is the name of the task being analyzed. The output is
generated on file <taskname>.CTB which is also printed
by the spooler PRINT command. CRATAB may be used
without the CSS by assigning:

lul - <taskname>.CRA
lu3 - output
lu4 - <taskname>.MAP

The map file must exist on the same disk volume as the .TSK file. The map
file must be the identical ADDRESS map that was used when the call recorder
was run.

48-010 FOO R0O4 13-9

SR

a=SQRT(b'b+c-c) 1 4

Floating Point Calculations

In this chapter

48-010 FOO R0O4

We discuss the limitations inherent in floating point calculations that pro-
duce inaccuracies in expected results. These inaccuracies may be due to a
number of factors such as simple round-off error or the effects of optimiza-
tion on floating point arithmetic.

Topics include:

e Floating point representation

Different rounding techniques

Floating point hardware

Accuracy issues in the FORTRAN VII environment
Effects of the run-time libraries (RTL)

14-1

14

Floating Point Calculaticns
Floating Point Representation

Floating Point Representation

14-2

Floating point is a means of representing a quantity in any numbering sys-
tem. For example, the decimal number 123 can be represented in the follow-
ing forms:

123.0%10°

12.3% 10!
1.23%10?
.123%103

Notice how the decimal point moved in relation to the power of the factor
10. This is called the floating point. In actual floating point representation,
the significant digits are always fractional and are collectively referred to as
the mantisse. The factor with which the mantissa is multiplied by is called
the base. And the power to which this base number is raised is called the
exponent. For example, in the last representation of the decimal number 123,
123 is the mantissa, 10 is the base and 3 is the exponent. Both the mantissa
and the exponent can be positive or negative. A floating point number is
represented mathematically by the equation:

fon=sgn*mn*(be)

Where:
sgn plus or minus sign.
mn mantissa
b base
ex exponent

Floating point representation in a computer is similar to the previous
representation. The difference is that the hexadecimal numbering system is
used insteac! of the decimal system.

The mantissa is a fraction whose value is less than 1 and greater than or
equal to 1/k. For b=16, this is the range 1/16<= mantissa < 1. The value of
the mantissa is given by the formula:

mn=d1l/b'+d2/b%+...+dn/b"

48-010 FOO R0O4

Floating Point Calculations 1 4
Floating Point Representation

Where:

dn represents hexadecimal digits and n is the total number
of hexadecimal digits. For single precision, n is equal to
6 and for double precision, n is equal to 14.

In a computer, floating point numbers are represented by a string of bits
divided into fields representing the sign, exponent, and mantissa. The
machine representation is as follows:

sigh exponent mantissa
0 1-7 8 n
Where:

sign is the sign bit. ']’ indicates a negative number and '0’
indicates a positive value.

exponent is a 7-bit quantity representing the exponent in excess-
64 notation. The number in this field contains the true
value of the exponent plus X'40’.

mantissa is a string of 6 hexadecimal digits for single precision or

14 hexadecimal for double precision whose first digit is
non-zero. Thus, nis equal to 31 for single precision and
63 for double precision.

Not all floating point numbers have exact hexadecimal machine representa-
tion. While real numbers are continuous, there are gaps between consecutive
floating point numbers. The smallest step between two consecutive floating
point numbers having the same exponent value is referred to as a ’granule’.
The size of this gap is given by (b**(ex-X'40"))/(b**n), where n is 6, if single
precision, or 14, if double precision. This limitation exists for all representa-
tional forms on binary computers due to the finite number of bits available.
This explains the possible loss of precision when converting from decimal to
hexadecimal values. To illustrate:

Decimal Hexadecimal
125 .20000000
.010 .028F5C28...

48-010 FOO R04 14-3

14

Floating Point Calculations
Rounding Techniques

The previous example shows that the decimal number .125 has an exact hex-
adecimal representation whereas the decimal number .01 does not. Thus, if
.01 is converted into a hexadecimal number having single precision floating
point (SPFP), it loses precision from the seventh fractional position and up.
In contrast, the decimal number .125 loses only zeroes.

Rounding Techniques

14-4

The manipulation of floating point numbers may require exponent equaliza-
tion and normalization. In exponent equalization, the exponent of the
operand wi:h the smaller exponent value is incremented by one and the
mantissa shifted four bits to the right until its exponent equals that of the
other operand. Equalization is done before an addition or subtraction opera-
tion can be performed.

Normalization is performed when the most significant digit of the mantissa
of a floating point number is zero. The number is normalized by repeatedly
shifting the mantissa four bits to the left and decrementing the exponent by
one until the most significant digit is nonzero. Normalization is done on the
result of an arithmetic operation.

There are basically three approaches to rounding the results of a floating
point calculation. These are truncation, jamming, and r-star rounding. Given
two floating point numbers to be added, 41444444 and 40888888, the
expected result is:

41 444444
+ 41 0888888 (after exponent equalization)
41 4CCCCC8 '

This is an exact result and rounds to 414CCCCD.

The following sections illustrate the above addition using each of the round-
ing techniques mentioned.

48-010 FOO RO4

Floating Point Calculations
iounding Techniques]- 4

Truncation

Truncation is the simplest way to deal with the rounding problem. One just
removes the low-order bits to get the proper number of digits and does the
calculation with the remaining digits. The greatest drawback is that the abso-
lute value of the average error is half a granule and this granule is always off
in the same direction. The preceding example is performed using truncation
as follows:

41 444444 ‘
+ 41 0888888 (after equalization and truncation)
41 4CCCCC

Thus, accuracy is lost through the last hexadecimal digit. This is not a
significant problem by itself, but accumulates with each additional calcula-
tion and can result in significant error.

Multiplication and division require no exponent equalization before the
operation takes place, but the result must be six hexadecimal digits (single
precision). Thus, any information in the least significant 6 digits of the 12-
digit result are truncated and lost. A similar loss of accuracy occurs in dou-
ble precision multiplication and division.

Jamming

48-010 FOO RO4

Another method to deal with rounding is the jamming technique. This
method requires that the least significant bit (LSB) of the result should
always be a 'l’. Jamming is less biased than truncation since there is an equal
probability of the error being positive or negative, but the absolute value of
the error still averages half a granule.

The previous addition is performed using the jamming technique.

41 444444
+ 41 0888888 (after equalization and truncation)

41 4CCCCC (C="1100"- the last bit is a 0)

In this example, the last bit is set to a '1’ giving the result 4CCCCD.

14-5

1 4Floating Point Calculations
Rounding Techniques

R-Star Rounding

The third anproach is called r-star rounding. R-star rounding uses extra
digits, called guard digits, obtained from the intermediate result of the arith-
metic operation. These guard digits are used to decide which number is
closest to tne result. After the operation is performed and the intermediate
result normalized, the remaining guard digits are inspected and the final
result is chosen to be the number closest to the intermediate result. If the
intermediate answer is exactly halfway between the representable floating
point numters, the larger number is generally chosen. The absolute value of
the error is reduced to one quarter of a granule. No bias is introduced unless
the value o7 the intermediate result is exactly halfway, in which case the
result is biased towards the larger number.

This bias cen be eliminated by using a technique called r-star rounding. This
technique vorks the same as regular rounding except for the handling of
results which are exactly halfway between the representable floating point
numbers. The rules for r-star rounding, used by floating point hardware, are:

¢ If the most significant guard digit is X'7’ or less, no rounding is per-
formed.

« If the most significant guard digit is X'8’ and all other guard digits are
zero, the LSB of the mantissa is set to ']

e In all other cases, a’l’ is added to the mantissa of the result.

The addition of 41444444 and 40888888 using the r-star method is as fol-
lows:

41 444444
+ 41 0888888 (after exponent equalization)

41 4CCCCC800000 (shifted byte is retained and padded
zeroes to serve as guard digits)

Since the most significant guard digit is 8 and the rest are all zeroes, from
rule 2 above, the LSB of the mantissa (C = "1100’) is set to 1. This gives a
final result of 414CCCCD for the addition.

The followiag examples illustrate each of the rules for r-star rounding.

14-6 48-010 FOO RO4

Floating Point Calculations 1 4
Floating Point Hardware

Examples:

Intermediate Result | Final Result Comments
Guard Digit (SP)

42B317E6 53010000 42B317E6 No change since 5 < 8

42B317E6 80000000 42B317E7 Force lowest bit to 1
since most significant
guard digit is '8’ and
the rest are zeros.

42B317E9 80000000 42B317E9 No change. Lowest bit
is already 1.

42B317E6 A4201310 42B317E7 Add 1 to mantissa
since it is neither of
the first two rules.

The error is still the same as for regular rounding, but the bias is eliminated
using the guard digits.

Floating Point Hardware

48-010 FOO R0O4

There are two sets of floating point hardware, that offered with Series 3200
Processors and 8/32 Processors.

The 8/32 Processors perform truncation. Floating point calculations are
truncated to the appropriate precision,

Series 3200 Processors’ floating point hardware performs r-star rounding.
This floating point hardware has two versions, one for the 3203/3205 pro-
cessor and one for other Series 3200 Processors (e.g., 3230, 3250, ...). They
differ only in how they keep track of the information necessary to perform
the rounding. The 3203/3205 and the 3280 processors are functionally
equivalent and perform the same r-star rounding technique.

The 3203/3205/3280 hardware carries out the calculations to full precision

and uses this full precision to round. For example the addition of
Y’'46445566’ and Y'41886644’ becomes:

14-7

14

Floating Point Calculations
Lost Precision in Floating Point Arithmetic

46 445566
+ 46 00000886644

46 44556D86644 which rounds to CW46 44556E

with the 'C’ being rounded up to an 'E’.

Rather than carrying all the extra digits, the other Series 3200 Processors use
one guard digit and one sticky-bit to perform the rounding. When the
mantissa i« shifted downward to equalize the exponents, the shifted digits
go through the guard digit, to the sticky-bit, and are then lost. The sticky-bit
keeps track of the effect of these lost digits. This bit, initially zero, is set to
one and stays one if any of the lost bits were ’1’ and remains zero if only '0’s
were shifted out. Keeping track of the lost bits through the sticky-bit allows
r-star rounding to be performed without carrying along the extra bits associ-
ated with the operation. The addition of Y’'41886644" and Y’'46445566’
becomes:

46 445566
+ 46 (00008 8’1’
46 44556E

In this case, the least significant digit of the second addend is an ’'8’, the
guard digit is an '8’, and the sticky-bit is set to '1’, indicating that the lost
bits were r.ot all zeroes’. Thus, a ']’ is added to the least significant digit of
the result changing the 'D’ to an 'E’.

Lost Precision in Floating Point Arithmetic

14-8

As an example of a round-off error associated with floating point calcula-
tions, consider the following code.

REAL YADD,YMULT,EX
EX = 0.1
YADL = 0.0
YMULT = 0.0
DO 17 I = 1,1024
17 YADL = YADD + EX
YMUIT = EX * 1024.0
WRITE(5,’ (X,%,X,%)')YADD, YMULT
END

48-010 FOO R0O4

48-010 FOO R04

Floating Point Calculations 1 4
Lost Precision in Floating Point Arithmetic

This code adds EX repeatedly, 1024 times, and then computes the product
EX * 1024.0, both of which may be expected to yield the same result. The
results, however, show YADD = Y'426667C4’ and YMULT = Y’42666668’,
which shows a discrepancy of X'15C’ in the least significant places.

This discrepancy is a result of accumulated round-off error. It is acquired as
follows. The single precision hexadecimal equivalence of the decimal value
0.1 is Y'4019999A'. The result of the first nine additions of this series is pre-
cisely Y'40E6666A’ as no rounding yet occurred. The addition of the tenth
item yields:

40 E6666A
+ 40 19999A8°'Y
46 44556E

After the tenth addition, there is no loss of precision. However, the next
addition results in the following:

41 100000
+ 41 019999A

41 119999A which is 41 11999A after rounding

By rounding the last digit of the mantissa, this intermediate result is larger
by 6/16 granules in the least significant hexadecimal place. These rounding
errors continue until the fiftieth sum. At this point, the partial result is
Y’41500010’ rather than the infinite precision result of Y’41500000’. After
the 160th addition, the result is Y’42100004’, which is 4 granules larger than
the infinite precision result of Y’42100000’. In the remaining 864 additions,
the smaller addend has to be shifted down two places. In each addition, the
result is rounded up and the effect is that each step is larger by 102/256
granules in the least significant hexadecimal place. This leads to an addi-
tional 158 granules of error in the last 864 additions. Together with the 4
granules from the first 160 additions, the total error is X’15C’ as noted previ-
ously.

14-9

1 4Floating Point Calculations
Accuracy Issues in the FORTRAN Code

Accuracy Issues in the FORTRAN Code

Aside from the inaccuracies that arise from round-off errors, other factors
can affect the results of calculations such as the processor on which the
compiler and task run, Series 3200 Processors versus the 8/32 Processor.
The following sections describe the general behavior of floating point arith-
metic and type conversions in FORTRAN. The effects of the order of evalua-
tion of expressions are discussed in the section entitled "Optimization and
Order of Evaluation Effects.”

FORTRAN parforms arithmetic in three different modes: integer, SPFP and
double precision floating point (DPFP). The last two follow the same rules
and differ only in the number of digits involved in the calculations.

Integer Arithmetic

Integer arithmetic is always exact as integers are exactly representable and
the results of all integer operations are forced to integers. The only limita-
tion is the range of representable integers, -2147483648 to +2147483647,
allowing for integers of up to eight hexadecimal digits. An overflow condi-
tion occurs if the result of an integer operation falls outside this range. This
is not flagged at compile-time and does not result in run-time error.

FORTRAN allows an integer to be assigned to a floating point variable. How-
ever, not all integer values are exactly representable as floating point
numbers. This is true for SPFP representations since large integers can con-
tain up to eight hexadecimal digits while the mantissa portion of a single
precision number contains only six hexadecimal digits. In cases where an
integer value having more than six hexadecimal representation is assigned to
a SPFP variable, the assignment involves rounding of the integer value to six
hexadecimal places. For example, if the decimal number 72788941
(X’456ABCD’) is assigned to a SPFP variable, the internal representation of the
floating poiat number is X'47456ABD’. Notice that the value is forced to a six
hexadecimal number after rounding the least significant digit.

14-10 48-010 FOO RO4

Floating Point Calculations l 4
Accuracy Issues in the FORTRAN Code

DPFP numbers contain fourteen hexadecimal digits and can thus represent
all integers exactly. .

Integers may also be assigned the result of a floating point expression. For
example, INTA = 7.0/4.0 results in the integer value '1’ being assigned to
INTA. This assignment is a FORTRAN language definition and is not an inac-
curacy.

Floating Point Arithmetic

The following discussion on floating point arithmetic is broken into two
parts. The first section illustrates straight assignment between floating point
types as performed by the optimizing compiler. The second section exam-
ines the differences that may occur depending on whether the evaluation of
an expression occurs at compile-time or at run-time and whether the target
processor is a Series 3200 Processor or 8/32 Processor.

Simple Assignment

48-010 FOO R0O4

Some care must be taken when mixing types in floating point expressions. A
REAL*8 variable can be assigned a REAL*4 value and vice-versa. In addition,
the intrinsic subprograms SNGL or DBLE may be called to perform type
conversions. FORTRAN defines these type conversions as illustrated by the
following examples.

The following programs perform type conversions between SPFP and DPFP
types and print the results in hexadecimal and decimal notation. In all four
examples, compilation is performed using the optimizing compiler and the
variables EX and Y are declared as REAL*4 and REAL*8, respectively.

Example 1:

EX = 0.05E0
Y = DBLE(EX)
WRITE(5,’(X,2%Z,X,F10.8,X,D20.14,X)’) EX,Y,EX,Y

Output:

3FCCCCCD 3FCCCCCD00000000 0.05000000 0.50000000745058D-01

14-11

1 4Floaling Point Calculations
Accuracy Issues in the FORTRAN Code

14-12

In Example 1, a single precision constant is assigned to a single precision
variable, EX, and the function DBLE is used to convert EX from single to dou-
ble precision to be assigned to Y. The decimal number 0.05EQ is represented
as the repeating number 0.0CCCCCCCC... in hexadecimal. The assignment of
0.05E0 to EX results in the hexadecimal number 3FCCCCCD being assigned to
it. Note that the assigned value is rounded to obtain the closest possible
hexadecimal number to the exact value, The intrinsic function DBLE converts
EX to double precision and this value is assigned to Y. The result is
3FCCCCCD00900000. The function DBLE loads the most significant fullword
of the double precision value from the single precision value and pads the
least significant fullword of the result with zeros. This assighment does not
regain the loss of precision from the assignment EX = 0.05E0. Even though it
is apparent tc the compiler that 0.05 is being assigned to Y, neither the com-
piler nor the function DBLE can assume that the value is 0.05 in double pre-
cision. Also, tine double precision decimal output is not exactly 0.05. It is 0.05
to single precision accuracy, but since DBLE pads the lower fullword with
zeros, the resulting value is not exactly 0.05 but a slightly larger number.

Example 2:

EX = 0.05D0

Y = DBLE(EX)
WRITE(S5,’(X,2%,X,F10.8,X,D20.14,X)’) EX,Y,EX,Y
EX = SNGL(O0.05D0)

Y = DBLE(EX)

WRITE(S,’ (X,2%,X,F10.8,X,D20.14,X)’) EX,Y,EX,Y

Qutput:

3FCCCCCC 3FCCCCCC00000000 0.05000000 0.49999997019768D-01
3FCCCCCC 3FCCCCCC00000000 0.05000000 0.49999997019768D-01

In Example 2, a double precision value, 0.05D0, is assigned to EX and the
function DBLE is invoked to convert this value to double precision before
assignment to Y. In line one, the double precision value is directly assigned
to EX. In line four, the intrinsic function SNGL is used to convert the double
precision value to single precision before assigning the result to Y. The
results show that the assignment of a double precision value to a single pre-
cision variable may lose some precision and that reassigning the resultant
value to a double precision variable does not regain this lost precision.

48-010 FOO RO4

Floating Point Calculations 1 4
Accuracy Issues In the FORTRAN Code

Example 3:

Y = 0.05E0
WRITE(5,’(X,2,X,F10.8,X,D20.14,X)’) Y,Y,Y

Output:
3FCCCCCD00000000 0.05000000 0.50000000745058D-01

Example 3 produces the same results for Y as does Example 1. 0.05E0 is a
single precision value whose hexadecimal equivalent, 3FCCCCCD, is loaded
into the most significant fullword of Y while the least significant fullword is
padded with zeros. Again, the decimal output shows that the result is
exactly 0.05 to single precision accuracy and a little larger than 0.05 to dou-
ble precision accuracy.

Example 4:

Y = 0.05D0
WRITE(5,’ (X,%Z,F10.8,X,D20.14,X)’) Y,Y,Y

Output:
3FCCCCCCCCCCCCeD 0.05000000 0.50000000000000D-01

Example 4 results in 0.05 being assigned to Y to double precision accuracy.
The decimal output shows that the result is exactly 0.05 to both single preci-
sion and double precision accuracy.

Compile-Time and Run-Time Evaluation

48-010 FOO R0O4

As mentioned before, there are basically two sets of floating point hardware,
those associated with Series 3200 Processors and those associated with the
8/32 Processors. The FORTRAN compilers evaluate all compile-time con-
stants in 8/32 compatible mode regardless of where the compiler is running.

14-13

1 4~Floating Point Calculations
Accuracy Issues in the FORTRAN Code

Using the floating point instruction set associated with the Non-Series 3200

. processors to compute compile-time constants allows the compilers to run
on all processor equally well. The larger instruction set of the Series 3200
Processors support floating point instructions which perform r-star round-
ing. Thus, differences between run-time and compile-time evaluations may
occur as illustrated in the following example.

REAL*8 2FIVE

X1=SNGL(0.05D0) ;1
PFIVE=SOMEHOW(0.05D0) ;
X2=SNGL (PFIVE) ;2
X3=ESNGL(PFIVE, SNGL) ;3
END

REAL FUNCTION ESNGL(D,F)

REAL*8 D
ESNGL=F (D) ;3
END

REAL*8 TUNCTION SOMEHOW(D)
REAL*8)

SOMEHOW:=D

END

1. computed at compile time
2. compiler generates inline code for this intrinsic function
3. RTL routine is called for this case

The results as a function of host and target processor are given in Table 14-
1. '

Table 14-1. Values of X1, X2, and X3 as a Function of Host and Target Processors

14-14

Host | Target X1 X2 X3

8732 | 8/32 3FCCCCCC | 3FCCCCCC | 3FCcccccc
8/32 | 3200 3FCCCCCC | 3FCCCCCD | 3FCCCCCD
3200 | 8/32 3FCCCCCC | 3FCCCCCC | 3FCCccCccC
3200 | 3200 3FCCCCCC | 3FCCCCCD | 3FCCCCCDh

48-010 FOO RO4

Floating Point Calculations 1 4
Accuracy Issues in the FORTRAN Code

The FORTRAN statement X1 = SNGL(0.05D0) results in assigning 3FCCCCCC
to X1 since the 8/32 instruction LE is performed rather that the LED/LEDR
instruction available with Series 3200 Processors. If SNGL is declared as an
external or invoked as in case 3, then the RTL is used and a process running
oh an 8/32 uses the LE and one running on a 3200 uses an LED instruction.
If the routine SNGL is performed inline (case 2) rather than at compile time
then the LE instruction is generated for an 8/32 target and the faster LED
instruction is generated for a Series 3200 Processors target. If an assign-
ment like X1 = 0.05D0 is performed, then, at all times, the LE instruction is
used.

When converting a floating point constant to an internal representation the
FORTRAN compilers assume all such constants are double precision. A SPFP
constant is thus treated as double precision when converted to an internal
representation and is rounded to single precision as the final step of the
conversion process.

Optimization and Order of Evaluation Effects

48-010 FOO R0O4

The FORTRAN VII optimizing compilers provide two classes of optimizations,
built-in and optional. The built-in optimizations are performed on input code
and cannot be disabled. The optional optimizations are controlled by the
OPTIMIZE/NOPTIMIZE compiler directives. Chapter 2 discusses these optimi-
zations in detail.

While these optimizations produce object code that executes faster, the pres-
ence or absence of these optimizations may produce slight variations on the
results under certain conditions. The possible influence on floating point cal-
culations by these two classes of optimizations are discussed below.

The optimizing compilers attempt to evaluate as much of the code as possi-
ble at compile time rather than at run-time to save execution time and
memory space. The optimizations performed include constant computation,
type conversion, symbolic arithmetic, machine instruction choice, and
strength reduction. In general, these types of optimizations have no effect on
the results; but if the order of evaluation of an expression greatly affects the
results, then the expression should be parenthesized to force a particular
order of evaluation. Thus, the source code T=16.*S/2.+(8.0-3), which is
optimized to T=8.#*S+5, should be written as T=(16.*S)/2.+(8.0-3) if it is abso-
lutely necessary to multiply S by 16 before performing the division. Such
use of parentheses inhibits optimization and its overuse can degrade run-
time speed.

14-15

1 4Floating Point Calculations
! Accuracy Issues in the FORTRAN Code

Other built-in optimizations which may affect the results of floating point

calculations are the evaluation of symbolic arithmetic expressions, expres-
sion reordering, and strength reduction. Examples of optimizations which

may be performed are shown in the Table 14-2.

Code Before Compilation Optimized Code
J*I+K*1 (J+K)*1
I*K1+J*K2 WHERE K=GCF(K1,K2 (IK1/K]*1+[K2/K])*])*K
[#*K*J**K (]*J)**K
I**J*l**K l**(J+K)
K1#*[*K2**] WHERE K1=2%**K*K2 | 2**(K*[)*K2**(I+]J)
A*A A**2
A**X*A A**(X+1)
A*A**X A**(X+1)
A**X/A A**(X-1)
A7A**X A**(1-X)
A/C+B/C (A+B)/C
1/B*A A/B
X**24+X*((X*2)+X) (X+K)**2
(A*B)/(A*C; B/C
(A/B)/(C/D) (A*D)/(B*C)
(A/B)*(C/D) (A*C)/(B*D)
SQRT(A)*SQRT(B) SQRT(A*B)
A**5 SQRT(A)
A** 25 SQRT(SQRT(A))
X/RK X*(1/RK) RK IS POWER OF 2
A*X**K+B*X**(K-N) (A*X**N+B)*X**(K-N)
A*X**K+B*X (A*X**(K-1)+B)*X
A*X**K+X**(K-N) (A*X**N+1)*X**(K-N)
X**K+B*X**(K-N) _ (X**N+B)*X**(K-N)
X**K+B*X X**(K-1)+B)*X
X**K+X**(k-N) (X**N+1)*X**(K-N)
A/A 1
A*X+A A*(X+1)
X**RK WHIERE INT(RK) == RK X**INT(RK)

Table 14-2. Examples of Symbolic Arithmetic Performed By the
Optimizing Compilers

The optional optimizations include other strength reductions, invariant code
motion, constant propagation and computation, scalar propagation, and com-
mon subexpression elimination. These techniques are discussed in detail in
Chapter 3.

14-16 48-010 FOO R0O4

Floating Point Calculations 1 4
Possible Effects of the FORTRAN RTLs

For discussion purposes, consider the following example using the common
subexpression elimination.

A
C

i

C+ D+ B
B + C

The optimized version of the code is:

@100 = B + C
A = (@100 + D
C = @100

The compiler recognizes the common subexpression B + C and computes
this value which is then used in the assighment statements. @100 is a tem-
porary variable generated by the compiler.

If the NOPTIMIZE compiler option is specified, common subexpression
optimization is turned off. This may result in a different order of evaluation
for the expression assigned to A. The FORTRAN development compiler may
evaluate the operands in a third order which may lead to a third slightly
different answer. Thus, while C + D + B mathematically evaluates to one par-
ticular result, under some conditions, each different compilation method may
result in a slightly different answer. If an application is very sensitive to
small variations in the intermediate results, as small as one granule, then
parentheses should be used in the expression to enforce the desired order
of evaluation. In addition, parentheses should be used if it is necessary to
get very close results from the use of both the development and optimizing
compilers.

Possible Effects of the FORTRAN RTLs

48-010 FOO RO4

The FORTRAN language system contains a number of RTLs with which the
compiled source code may be linked. The RTLs may be either writeable con-
trol store (WCS), where the routines are written in microcode, or non-WCS,
with the routines generally written in assembly code, and may be either
argument-checking or nonargument checking.

For a particular RTL, either WCS or non-WCS, there is no computational
difference between the argument checking and nonargument checking ver-
sions. The argument checking RTLs check to see if the arguments to the RTL
routines are of the correct type and class and that the correct number of
arguments are passed. All other computations are the same. Additionally,
the functionality of both the assembly RTL and the WCS RTL is exactly the
same.

14-17

1 4Floating Point Calculaticns
Possible Effects of the FORTRAN RTLs

14-18

The WCS has a different instruction set than the non-WCS and the floating
point instructions allow greater accuracy than available in assembly code.
To take advantage of this, some of the WCS routines may use slightly
different algorithms than their non-WCS counterpart. In general, all single
precision routines return values with a relative accuracy better than 1.0E-7
and all double precision routines return values with a relative accuracy
better than 1.0E-16. A statement of the relative accuracy of a computation is
based on th2 assumption that the numerical data, such as the argument of a
function, is perfectly accurate. See the System Mathematical Run-Time
Library (RT.) Reference Manual for a discussion on relative accuracy. It
should be noted that the WCS RTLs are limited by the size of the WCS avail-
able on a perticular machine. Therefore, not the entire RTL is written in
microcode, hut only some commonly used transcendental and involution
routines. A list of the microcoded routines can be found in the the Series
3200 Processors FORTRAN Enhancement Package (FEP) Reference Manual.

Given these inherent differences, it may be expected that the WCS and non-
WCS versions of the RTL may give a slightly different answer for a specific
operation. -or example, given two specific floating point numbers fpl and
fp2, then thz result of fpl**fp2 obtained using the WCS RTL may be different
from that o»tained using the non-WCS RTL. This is generally not the case,
for the vast majority of input values the WCS and non-WCS RTLs provide
exactly the same answer for the given operation. Even in those cases where
the computzd value differs from the mathematically correct value by a
granule or two, the WCS and non-WCS routines usually return the same
slightly inaccurate answer. In cases where the WCS and non-WCS RTLs pro-
vide different answers, the WCS RTL is generally more accurate.

It is possibie to set up conditions where the differences are noticed. For
example, if two tasks are communicating via task common with one task
using the non-WCS RTL and the other task using the WCS RTL then occa-
sional smal! differences may occur. Should comparisons for exact equality,
rarely a good idea for floating-point numbers, be made between numbers
from the differing tasks, then discrepancies might again be noticed.

There are t¥yo WCS RTLs, one for the 3230 and one for the 3250. The storage
allotted to WCS is larger on the 3230 than on the 3250. This leads to the
difference in the WCS RTLs for these machine. The 3230 WCS RTL contains a
routine, RXXR, which specifically performs the exponentiation of a single
precision base to a single precision power. The 3250 WCS RTL does not have
the RXXR b it instead uses the DXXD, which performs the exponentiation of a
double pre:ision base to a double precision power. There is a loss of preci-
sion on the 3230 WCS RTL since it makes use of single precision quantities
when compg uting exponentiation.

48-010 FOO RO4

Floating Point Calculations 1 4
Summary

As a result of differences between the 3230 WCS and the 3250 WCS, the
discrepancies between WCS and non-WCS RTLs and the differences between
compilers, several situations exist where normal use can lead to inconsisten-
cies:

1. Results from repeated runs of a single task on a 3260MPS under the
load leveling executive (LLE). Different processors may be used for
different parts of a program.

2. Results of runs of the same tasks on a 3260MPS where one run is cen-
tral processing unit (CPU) directed and the other is auxiliary processing
unit (APU) directed. Results on the same processor will be consistent
but may differ between processors.

3. Results of tasks compiled under different compilers.

4, Tasks communicating via task common where either 2 or 3 above come
into play or one task uses WCS and the other does not.

Summary

This chapter addressed the limitations inherent in floating point calculations.
It presented the various factors which may affect the accuracy of floating
point arithmetic. These factors are:

e round-off errors,

« conversion between types (i.e., integer to real),

« optimizations performed on the source code,

e the order in which calculations are performed, and

e conversion between decimal and hexadecimal representations.
These factors may in turn be affected by the user’s code, the user’s data, the
FORTRAN compiler and RTL used, and even the hardware on which the task

is run. These considerations were discussed in the hope of helping the users
understand unexpected results when using the FORTRAN language system.

48-010 FOO R04 14-19

;:SQRT(b-b+c-c) l 5

Universal Optimization

In this chapter

48-010 FOO RO4

We present the different phases of optimization performed by the FORTRAN
VII compilers. The process involves the gathering and use of information for
optimizing code across program unit boundaries. Optimization under the
F7Z compiler provides the FORTRAN programmer with a semiautomatic
method for improving program performance, while retaining the benefits of
program modularity; i.e., ease of development, debugging, and maintenance.

Topics include:

e Comparison of the optimization methods
e FORTRAN VII compilation phases

e F7Z in-line expansion feature

15-1

1 5 Universal Optimization
Comparing the Optimization Methods

Comparing the Optimization Methods

The use of high-level languages in place of assembly language for imple-
menting time critical applications depends on the quality of code generated
by the compiler. Because a statement-by-statement translation of the user’s
source program often produces inefficient object code, other compilation
methods must be used to generate code suitable for time critical applica-
tions. These methods involve gathering information from the user’s program
that can be used to rearrange and modify the original source into an optim-
ized version that executes more efficiently. Different compilation methods
provide diiferent levels of optimization dependent upon the information
gathered and used by the compiler.

According to the level of optimization provided, compilers can be classified
as follows:

o Statement optimizers
o Block optimizers

» Global cptimizers

e Universal optimizers

In general, each level of optimization includes the optimization capabilities
of the more primitive levels.

Statement Optimizers

Statement optimizing compilers scan each statement to determine whether
or not it can be rearranged to minimize the use of temporary storage,
decrease code size, and increase execution speed. This type of code rear-
rangement is more commonly known as smart code generation. Most high-
level language compilers provide this level of optimization.

15-2 48-010 FOO R04

Universal 0 timization 1 5
Comparing the Optimizat on Methods

Block Optimizers

Block optimizing compilers scan blocks of code within a program to deter-
mine where code can be rearranged to eliminate redundant computation of
expressions and minimize references to memory. A block of code consists
of a number of statements that are executed sequentially until a branch
statement (IF, GOTO, computed GOTO, etc.) or the target of a branch state-
ment (labeled statement) is reached. Some block optimizing compilers also
optimize special constructs such as DO loops.

Global Optimizers

Global optimizing compilers perform a complete analysis of the data flow
within each separately compiled program unit. The compiler uses the infor-
mation obtained from this analysis to optimize the entire program unit.
Even though some block optimizers that optimize special constructs are
occasionally marketed as global optimizers, only compilers which perform a
complete data flow analysis of each program unit are considered to be true
global optimizers. The FORTRAN VII O compiler is a global optimizing com-
piler.

Universal Optimizers

48-010 FOO RO4

A universal optimizing compiler gathers information for optimization across
program unit boundaries. This information can be used to enhance global
optimization in the following ways.

e Program units can be merged; i.e., calls to subprograms can be expanded
within the calling program and the resulting code can be optimized as a
single unit. The F7Z compiler provides this level of optimization.

« Subprogram interface information, gathered by the compiler on the
effects of a particular call on the arguments of the CALL and/or COMMON
statements, can be used by the global optimization routines to further
optimize the code in the calling program. This allows the compiler to
overcome the limits imposed on optimizing separately compiled units
without in-line expansion.

15-3

15

Universal Optimization

Phases of the F70 and F7Z Compilation

Phases of the F70 and F7Z Compilation

The operation of the F70 and F7Z compilers are divided into several phases.
Each phase makes at least one complete pass through the user program
(source or internal tables).

15-4

When the F7Z compiler is being used, Phases 1 and 2 are repeated for each
source subprogram for which in-line expansion is requested.

Some of the phases are optional.

Phases 5 and 6 are invoked only if optimi-

zation is cesired. Phase 3 is invoked only when the F7Z compller is being
used and in-line expansion is requested.

Phase

Description

Table initialization.

Creates the program table (P-table) and all
other parse related tables; outputs the
source listing indicating any errors that
were detected.

Detects errors on labels, equivalence
statements, and DO loops; generates an
optional cross-reference listing of vari-
ables and labels.

Performs in-line expansion of subroutines
creating a compound internal table; pro-
duces an extended listing, if requested.
(Phase 3 is an optional phase on the F7Z
compiler if in-line expansion was
requested.)

Completes semantic structure for some
statements (i.e., logical IF), array lineariza-
tion and statement label transformation;
optionally creates a cross-reference for
the extended listing on the F7Z compiler.

Table 15-1. Phases of the F70 and F7Z Compilation

48-010 FOO R04

48-010 FOO RO4

Universal Optimization
Phases of the F70 and F7Z Compilation

Phase

Description

Optional; globally optimizes the user’s
program by building a thorough flowchart
of the program; examples of optimization
are: common subexpression elimination,
invariant code motion, constant propaga-
tion, etc. Various optimizer messages are
produced for user information.

Always follows Phase 5; transforms
machine independent optimizations to
machine dependent operations; this
improves the quality of the object code.
Examples are: strength reductions of
integer multiply, exponentiation opera-
tions, and global register assignment.

Interprets the intermediate language and
decides which machine instructions to
use; it must correctly interpret this P-
graph whether or not optimization is
chosen; that is, whether Phase 5 and
Phase 6 are executed or skipped.

Transforms the intermediate language
into one or two forms:

¢ An assembly-form suitable for the
Common Assembly Language (CAL)
assembler, or

e A squeezed object-form suitable for
input into OS/32 Library Loader or
Link.

An assembly listing can be optionally pro-
duced.

15

Table 15-1. Phases of the F70 and F7Z Compilation (Continued)

Figure 15-1 presents the operational phases of the F70 and F7Z compilers in

flowchart form.

15-5

1 SUniversal Optimization
Phases of the F70 and F7Z Compilation

010-6
START

Ve

0
TABLE
INITIALIZATION

> PARSE R
2 CROSS

MACRO REFERENCE
EXPANSION 1 LISTING

INLINE
EXPANSION
REQUESTED
7

\

4 CROSS
SEMANTIC REFERENCE
CHECK : LISTING

ERRORS
?

INLINE ERRORS
SUBPROGRAMS ?
SEARCHED

?

w

EXPANDED INLINE
LISTIN3 EXPANSION

|
L

OPTIMIZER

A

6
REORGANIZER

J.________

CODE
SELECT

!

ASSEMBLER f-———

ASSEMBLY
LISTING

Figure 15-1. F70 and F7Z Compilers Flowchart

15-6 48-010 FOO RO4

Universal Optimization 1 5
Hlustration the Use of In-line Expansion

Illustrating the Use of In-line Expansion

48-010 FOO RO4

The following example demonstrates the level of optimization that can be
achieved with in-line expansion.

Example:

C THIS EXAMPLE SHOWS HOW OPTIMIZATION CAN BE
C SIGNIFICANTLY IMPROVED WHEN A SUBPROGRAM IS
C EXPANDED WITHIN A CALLING PROGRAM UNIT

C

SUBROUTINE POLEV (AR,X,N,F)
INTEGER X

REAL AR(6)

GO TO (1,2,3,4)N

F=AR(1)*X + AR(2)

RETURN

F=(AR(1)*X + AR(2))*X + AR(3)

RETURN

F=((AR(1)*X + AR(2))*X + AR(3))*X + AR(4)
RETURN

F=(((AR(1)*X + AR(2))*X + AR(3))*X + AR(4))*X + AR(5)
RETURN
END

When POLEV is called with the statement;

CALL POLEV (EP,MACH,3,EPSO)

and POLEV is expanded in-line, the F7Z compilér replaces this statement with
the following code and uses EP, MACH, 3, and EPSO as arguments.

15-7

1 5 Universal Optimization
Illustrating the Use of In-lir.e Expansion

POLEV . X=MACH
POLEV.N=3
POLEV.F=EPSO
GO TO($L001,$L002,$L003,$L004),POLEV.N
$1L001 POLEV.F=EP(1)*POLEV.X + EP(2)
GO TO $L00S5
$L002 POLEV.F=(EP(1)*POLEV.X + EP(2))*POLEV.X + EP(3)
GO TO $LO0O5
$L003 POLEV.F=((EP(1)*POLEV.X + EP(2))*POLEV.X + EP(3))*POLEV.X +
1 EP(4)
GO TO $L00S
$L.004 POLEV.F=(((EP(1)*POLEV.X + EP(2))*POLEV.X + EP(3))*POLEV.X
1 + EP(4))*POLEV.X + EP(5)
$L005 CONTINUE
EPS0=POLEV . F
MACH=POLEV .X

The optimizer can now perform the scalar and constant propagation on the
expanded program unit using the arguments passed by the CALL statement,
It can also perform dead code elimination on the unit. These routines yield
the following code:

GO TO($L001,$L002,$L003,5L004),3

$1L001 POLEV.F=EP(1)*MACH + EP(2)
GO TO $L00S5

$1,002 POLEV.F=(EP(1)*MACH + EP(2))*MACH + EP(3)
GO TO $LO005

$1L003 POLEV.F=((EP(1)*MACH + EP(2))*MACH + EP(3))*MACH + EP(4)
GO TO $L005

$1.004 POLEV.F=(((EP(1)*MACH + EP(2))*MACH + EP(3))*MACH + EP(4))*
1 MACH + EP(5)

$L005 CONTINUE
EPSO=POLEV . F

This code is further reduced by the computation of the computed GOTO, the
elimination of dead code, and the propagation .of the value of POLEV.F into
the assignment of EPSO. These optimizations yield the following code:

$L003 EPSO=((EP(1)*MACH + EP(2))*MACH + EP(3))*MACH + EP(4)

Still further code reduction may be obtained by propagating the values of
MACH and the elements of EP if additional uses of these scalar values exist
in the calling program unit.

15-8 48-010'F00.R04

Universal Optimization 1 5
How F7Z Performs In-line Expansion

As shown by the preceding example, optimization through in-line expansion
does more than eliminate the subprogram linkage operations. It greatly
increases the number of global optimizations applied to a program by allow-
ing them to be performed across program unit boundaries.

How F7Z Performs In-line Expansion

48-010 FOO R0O4

When a program requesting in-line expansion is compiled, certain processes
are performed by the F7Z compiler before global optimization takes place.
First, F7Z produces a standard listing of the main source program and a
cross-reference listing, if requested. At this stage the program is translated
into an intermediate (internal) code. Then, the subprograms designated for
in-line expansion by the main program are located, read into the compiler,
and translated into intermediate code. For each of these subprograms, a
separate standard listing and cross-reference listing is produced, if
requested.

The compiler locates the source code of a subprogram in one of two ways:

e It parses the first statement of each subprogram in a user-specified file
until the subprogram being searched for is found.

e It searches a user-specified source file until a module delimiter for that
subprogram is found. See Chapter 3 on $INCLUDE for more information
on module delimiters.

If the compiler encounters a module delimiter for the first subprogram in the
file, it will not use the parsing method. In this case, each of the subprograms
in the source file must have a module delimiter. While the use of module
delimiters requires more preparation on the part of the programmer, this
method is faster than parsing.

If additional requests for in-line expansion are made by the subprograms
that are expanded in-line, the compiler performs the same operations for
these requests as it did for those made by the main program. If the source
code of a subprogram that is to be expanded in-line cannot be located by the
compiler, a message is sent to the list device. Compilation is continued until
all requests for in-line expansion are satisfied. A fatal error occurring any
time during this compilation stage causes F7Z to terminate processing with
an end of task code 4. Otherwise, F7Z begins expanding the requested sub-
programs at the specified calls within the calling program. Diagnostic mes-
sages or warnings are sent to the list device for each argument type
mismatch encountered.

15-9

1 5 Universal Optimization
Intermediate Code Translation

After all requested subprograms are expanded, the compiler produces a list-
ing of the source code as it appears after in-line expansion, but before
optimization. This listing is called the extended listing. All subsequent list-
ings and messages from the compiler refer to this extended listing.

(]I_NOTE_ > In-line expansion is not performed by default. It
must be explicitly requested by the user.

Intermediate Code Translation

15-10

After all designated subprograms are expanded in-line, F7Z rearranges and
modifies the intermediate code of all the subprograms. This intermediate
code is then translated and represented on the extended listing as follows.

e Data type specification - the data type of all variables and functions used
by the program and subprograms, including those not declared by the
user, arz2 explicitly declared by the compiler at the beginning of the pro-
gram,

e FORMAT statements - all FORMAT statements occurring in all the subpro-
grams are grouped together and located above the first executable state-
ment in the main program.

« Comments - the compiler removes all trailing comments following a state-
ment ar.d any comments located between continuation lines. All other
comment lines are retained.

o DO loops - the compiler generates a CONTINUE statement with a compiler
generatad label for each DO loop that ends on a statement other than a
CONTINUE statement or shares a terminal statement with another DO
loop.

o Compiler generated labels - the compiler generates unique labels for all
FORTRAN labels in a subprogram each time the subprogram is expanded
in-line. Compiler generated labels, which have the form $Ln where n is a
compiler generated number, prevent multiple definitions of labels that
can result from repeated expansions of a subprogram.

o Compiler generated variables - the compiler replaces all statement func-
tion dummy arguments and DATA implied DO indexes with compiler gen-
erated variables. The format of these variables is @n, where n is a com-
piler generated number.

48-010 FOO RO4

48-010 FOO R04

Universal Optimization 1 5
Intermediate Code Translation

e Renaming of program variables and functions - all occurrences of local,

dummy, and common variables in in-line expanded subprograms are
prefixed with the first eight characters of the subprogram name followed
by a period. This is also done for FORTRAN symbols used in an embed-
ded CAL block.

Compiler generated EQUIVALENT COMMON - the compiler generates an
EQUIVALENT COMMON statement for all common blocks referenced by
both the calling program and the expanded subprogram.

The EQUIVALENT COMMON statement declares a list of variables starting
at the same address as does the regular common with the same name.

Example:

COMMON A,B,C
EQUIVALENT COMMON SUB1.A,SUB1.B,SUBl1.C

Compiler generated SAVE and COMMON statements - local variables
specified in a SAVE statement are promoted by the compiler into COM-
MON. The common block name for this common is generated by truncat-
ing the name of the subprogram to seven characters and appending a dol-
lar sign ($) to it. For example, the statement:

SAVE L1, L5, L3
in the main program is represented in the extended listing as:

COMMON/.MAINS$ /L1, L5, L3
SAVE/ .MAINS/

Expansion of a function in an input/output (1/0) list - when a function call
in an 170 list is expanded, the 1/0 statement is broken down into its com-
ponent parts as shown in the following example.

15-11

1 5 Universal Optimization
Intermediate Code Translation

Example:

C THIS PROGRAM UNIT REQUESTS INLINE EXPANSION
C OF A FUNCTION WITHIN AN I/O LIST.
$SINLINE F,*
X=1
WRITE (*,10)X,F(X),X
10 FORMAT (1X,3F4.0)
STOP
END

FUNCTION F(Y)
Y=Y + 2

F=Y

RETURN

END

Intermediate code translation of this program yields the following code:

PROGRAM. MAIN

REAL F.Y, F.F, X,@100
10 FORMAT (1X,3F4.0)

X=1.0

WRITE(*,10)

WDATA X

F.Y=X

F.Y=F.Y + 2.0

F.F=F.Y

X=F.Y

@100=F.F

WDATA (@100

WDATA X

IOFIN

STOP

END

15-12 48-010 FOO R04

Universal Osptimlza(ion 1 5
Argument Passing for In-line Expanded Subprograms

Argument Passing for In-Line Expanded
Subprograms

48-010 FOO RO4

When a subprogram is expanded in-line, all arguments passed to and from
the subprogram must be defined as they were originally intended to be
defined by the user’s program. Except for expansions involving embedded
assembly code or the retention of local variables across calls to the same
subprogram by more than one calling program, proper argument definition is
automatically ensured by the F7Z compiler.

Two methods of argument passing are used by F7Z for subprograms that are
expanded in-line:

o Pass-by-value

o Pass-by-address

Whether the pass-by-value or pass-by-address method is used is determined
by the dummy arguments of the called subprogram. If the dummy argument
is an array or character string or is surrounded by slashes (/dummy/), the
pass-by-address method is used. For other dummy arguments, the pass-by-
value method is used. See FORTRAN VII Language and Syntax — A Reference
for more information on argument passing methods.

The pass-by-value method uses an arithmetic assignment statement to assign
the value of the actual argument to the corresponding dummy argument.

Example:
F.Y = X
F.Y = F.Y + 2.0
F.F = F.Y
X =F.Y

This example of extended code, which is taken from the last section, "Inter-

mediate Code Translation," uses the following assignment statement to pass
the value of X to the dummy argument Y in the function F:

F.Y = X

The value of X is passed back to the calling program unit through the assign-

ment statement:

15-13

1 5 Universal Optimization
Preparing Source Code for In-line Expansion

X =F.Y

Dummy arrays and character strings are always passed by address. If a char-
acter variable, an array, or array element with a constant subscript is passed
to a dummy array, the compiler generates an EQUIVALENCE statement for the
two variables. If a character variable with a variable substring or an array
element with a variable subscript is passed to a dummy array, the compiler
generates a BIND statement. This statement binds the dummy array to the
starting location of the actual argument. If the equivalenced variable is an
array that :s used in an I/0 statement or in an actual argument list of a CALL,
the compiler uses a VECTOR function to indicate the length of the array to
be transferred.

The user can pass an argument of one type to a dummy argument of a
different type. F7Z reconciles this type mismatch through the NOTYPE func-
tion, whick: can occur on either side of the compiler generated assignment
statement.

The user must be certain that an expanded program does not change the
value of a constant argument that is passed to one of its dummy arguments.
If a constaat is passed by value to the subprogram, the compiler will not
generate the statement that changes the value. If a constant is passed by
address to the subprogram, the compiler will generate a warning indicating
that if the code is executed, the value of the constant is modified.

Preparing Source Code for In-line Expansion

Ordinarily, source programs consisting entirely of FORTRAN code require no
preparation for in-line expansion other than the insertion of the appropriate
$INLINE, $INLIB, and $INSKIP directives. These directives are discussed in
detail in Chapter 3. However, if two or more program units are expanding
the same subprogram in-line and the same value of one of the subprogram
variables is used by all calls to the subprogram, that variable must be
specified by a SAVE statement. Subprogram variables must also be specified
in a SAVE statement if the subprogram is both expanded in one program unit
and separately compiled as a single unit that can be called by other pro-
grams. See FORTRAN VII Language and Syntax — A Reference for more
information on the SAVE statement.

15-14 48-010 FOO RO4

Universal Optimization 1 5
When To Use In-line Expansion

Programs which expand subprograms containing embedded assembly code
require special directives to the compiler. The compiler must be able to
recognize which symbols in a CAL block are FORTRAN variables. Recognition
is possible only if each FORTRAN variable referenced in a CAL block either
(1) appears in a FORTRAN statement prior to the block or (2) appears in a
$SETS or $USES directive in the CAL block or in a prior CAL block. The com-
piler must also be informed which CAL symbols are not to be used by multi-
ple expansions of an embedded CAL block. $DISTINCT tells the compiler
which symbols in the block must be converted to compiler generated sym-
bols to prevent multiple definition.

In addition to argument passing, two other items must be taken into con-
sideration when preparing embedded assembly blocks for in-line expansion.
First, due to the substitution of FORTRAN symbols occurring in a CAL state-
ment in an in-line expanded subprogram, the length of that CAL line may
exceed 71 characters. CAL lines exceeding 71 characters cause the compiler
to generate CAL continuation lines by placing a nonblank character in
column 72. While such a CAL statement can be interpreted by the CAL
macroprocessor, it will not be recognized as a legal statement by CAL.
Therefore, lines of CAL code must be as short as possible. Second, data
areas which are declared only in an embedded assembly block are not shared
by repeated expansions of the block unless the user restructures the block
for this purpose. Therefore, the user should avoid declaring common data
areas in an assembly block embedded in a subprogram that is expanded
more than once.

When To Use In-line Expansion

The F7Z in-line expansion feature is designed for use in programs that are in
the final stage of development. This allows the user to concentrate on tun-
ing the performance of the program when it can be examined in its entirety
rather than as it is being written. Therefore, it is not necessary to limit the
use of structured design techniques that aid programmers, but significantly
reduce execution speed. Through universal optimization, the programmer
can improve performance without altering any line of the original source
program.

48-010 FOO RO4 15-15

1 5 Universal Optimization
When To Use In-line Expansion

15-16

After the program is developed to the point where it can be examined in its
entirety, it can be scanned for subprogram calls that can be profitably
expanded. The initial temptation may be to simply expand all calls within a
program. It must be remembered, however, that in-line expansion is essen-
tially a tradeoff between memory space and execution time. Only expansion
of those routines which are called often at execution will yield a significant
increase in performance to offset the increased use of memory space.
Expansion elsewhere will, at best, yield negligible results or, at worst, pro-
duce programs that result in excessively long compilation times, poor per-
formance due to increased size, or compile time failure. The internal table
storage area of the F7Z compiler is limited and the run-times of the optimi-
zation algorithms increase rapidly as the size of the program approaches
3000 lines.

GH _NOTE > Failure of compilation due to insufficient internal

table space is an indication that in-line expansion
was carried out beyond its limits. If this occurs, sub-
programs with lower run-time profile should be
excluded from in-line expansion.

Studies show that a typical program spends most of its execution time in a
small percentage of the total program code. In-line expansion of subpro-

grams called in such areas can lead to substantial improvements in perfor-
mance without a significant increase in program size. These areas include:

e Nested loop structures that contain calls to moderately sized subpro-
grams (approximately 100 lines). These loops should be nested down to
the third level or below. Programs often spend much of their execution
time in calling and executing subprograms within such loops.

s Calls to subprograms in which constant arguments are used to determine
the flow of control within the subprogram. These programs, which often
exist solely for convenience in design, are particularly suited for in-line
expansion.

e Repeated calls to subprograms containing long computations that would
appear redundant if made a part of the original calling program. An
example is a subprogram that references arrays with dummy variables as
indexes, but are called with constants for the corresponding dummy argu-
ments.

The execution profile analysis (XPA) system and the call recording analysis
(CRA) system provide a means for locating subprogram candidates for in-line
expansion. XPA and CRA, which are included in the F7Z package, are
explained in Chapter 12 and Chapter 13, respectively.

48-010 FOO RO4

Universal Optimization 1 5
When To Use In-line Expansion

Once the programmer has decided which calls to subprograms are to be
expanded, the source program can be recompiled with the necessary in-line
directives. Details on the use of these directives are given in Chapter 3.

48-010 FOO R0O4 : 15-17

16

FORTRAN VII Error Messages

In this chapter

We provide you with a description of each of the FORTRAN VII language sys-
tem error messages. End-of-task (EOT) codes are also provided.

Topics include:

¢ Compiler error messages

e Run-time library (RTL) error messages

e Special utility error messages (CRA/XPA)
e EOT codes

48-010 FOO R0O4 16-1

1 GPORTRAN VII Error Mes:sages
Introduction

Introduction

The following sections document the error messages which are issued as a
result of an error during compilation, execution of a FORTRAN VII RTL rou-
tine, or execution of a special utility. For more information regarding the
context of each error message refer to the appropriate section of this
manual, FORTRAN VIl Language and Syntax - A Reference, and any additional
manuals listed under the message description. For further information on
the RTL error messages listed under the section "Math Errors," refer to the
System Mathematical Run-Time Library - A Reference.

Compiler Messages

Following is a list of error messages generated by the F70 and F7Z com-
pilers. The format is as follows:

ERROR (n) - description

Where n is the error message number and description is a diaghostic mes-
sage.

16-2 48-010 FOO RO4

Code

A00

A0l

A02

AO03
A04
AO05

A06

AQ07
AO8
A09
Al0
All
Al2
Al3
Al4d
Al5

Al6
Al7
Al8

Al9
A20
A21

A22
A23
A24
A25
A26

48-010 FOO R04

FORTRAN VII Error Messages 1 6
Compiler Messages

Message Text

SIZE OF LOCAL DATA AREA EXCEEDS COMPILER LIMIT OF 16,252,927
BYTES. COMPILATION ABORTED !!

LEFTMOST CHARACTER POSITION OF SUBSTRING EXCEEDS LENGTH
OF IDENTIFIER

RIGHTMOST CHARACTER POSITION OF SUBSTRING EXCEEDS LENGTH
OF IDENTIFIER

LEFTMOST CHARACTER POSITION OF SUBSTRING IS LESS THAN 1
RIGHTMOST CHARACTER POSITION OF SUBSTRING IS LESS THAN 1
LEFTMOST CHARACTER POSITION OF SUBSTRING EXCEEDS THE
RIGHT MOST POSITION

NUMBER OF SUBSCRIPTS DO NOT MATCH DECLARED NUMBER OF
DIMENSIONS :

ADJUSTABLE BOUND NOT ALLOWED IN MAIN PROGRAM OR BLOCKDATA
UPPER BOUND IS LESS THAN LOWER BOUND

IDENTIFIER HAS PREVIOUSLY BEEN DIMENSIONED

ARRAY MUST NOT HAVE MORE THAN SEVEN DIMENSIONS

WRONG TYPE OF ARGUMENT FOR INTRINSIC FUNCTION/SUBROUTINE
GENERIC FUNCTION NAME CANNOT BE PASSED AS AN ARGUMENT
TOO FEW ARGUMENTS FOR INTRINSIC FUNCTION/SUBROUTINE

TOO MANY ARGUMENTS FOR INTRINSIC FUNCTION/SUBROUTINE
THIS KIND OF ARGUMENT NOT ALLOWED FOR INTRINSIC
FUNCTIONS/SUBROUTINE

SUBPROGRAM NOT DECLARED IN INTRINSIC STATEMENT
SUBPROGRAM NOT DECLARED IN EXTERNAL STATEMENT

NUMBER OF ARGUMENTS DIFFERS FROM STATEMENT FUNCTION
DEFINITION ‘

NUMBER OF ARGUMENTS DIFFERS FROM FIRST REFERENCE

TYPE OF THIS ARGUMENT DIFFERS FROM FIRST REFERENCE

TYPE OF THIS ARGUMENT DIFFERS FROM STATEMENT FUNCTION
DEFINITION

ARGUMENT WAS NOT AN ARRAY NAME IN FIRST REFERENCE
ARGUMENT WAS NOT A PROCEDURE NAME IN FIRST REFERENCE
ARGUMENT WAS AN ARRAY NAME IN FIRST REFERENCE

ARGUMENT WAS A PROCEDURE NAME IN FIRST REFERENCE

THIS ARGUMENT FOR INTRINSIC FUNCTION/SUBROUTINE

SHOULD NOT BE AN EXPRESSION

16-3

1 GFORTRAN VII Error Messages
Compiler Messages

Code Message Text
Do1 REFLICATION FACTOR MUST BE A POSITIVE INTEGER OR A
PAFAMETER
D02 NOT PREVIOUSLY DEFINED AS A PARAMETER, OR BAD Z CONSTANT
DO3 MUST BE A VARIABLE OR AN ARRAY
D04 SUESCRIPT EXPRESSION MUST BE CONSTANT
D05 SUESTRING EXPRESSION MUST BE CONSTANT
D06 UNLDIMENSIONED ARRAY OR PROCEDURE REFERENCE NOT ALLOWED
D07 SHCULD BE INTEGER VARIABLE
EOL TYFE OF EXPRESSION INCOMPATIBLE FOR ADDITION OR
SUETRACTION
E02 TYFE OF EXPRESSION INCOMPATIBLE FOR MULTIPLICATION OR
DIVISION
E03 TYFE OF EXPRESSION INCOMPATIBLE FOR RAISING TO A POWER
E04 OPERANDS OF RELATIONAL OPERATOR CANNOT BE COMPARED
EO05 COMPLEX OPERANDS CAN ONLY BE COMPARED FOR (IN)EQUALITY
E06 TYFE OF EXPRESSION MUST BE LOGICAL :
E07 TYFE OF EXPRESSION INCOMPATIBLE FOR CONCATENATION (//)
EO8 PASSED LENGTH DUMMY ARGUMENT MUST NOT BE CONCATENATED
E09 TYPE OF EXPRESSION MUST BE BIT
E10 LOGICAL EXPRESSION DOES NOT FOLLOW .NOT.
Ell THE CHARACTER POSITIONS OF THIS OPERAND MAY BE REFERENCED
IN THE TARGET
E12 LOGICAL OPERAND IN ARITHMETIC EXPRESSION
FO1 FORMAT STATEMENT MUST HAVE A LABEL
FO2 FORMAT DOES NOT BEGIN WITH A LEFT PARENTHESIS
FO3 UNPRINTABLE CHARACTER ENCOUNTERED IN FORMAT
F04 NESTING LEVEL OF LEFT PARENTHESES IN FORMAT EXCEEDS 255
FO5 REPEAT COUNT NOT ALLOWED FOR EDIT DESCRIPTOR
F06 MISSING OR ZERO LENGTH IN HOLLERITH EDIT DESCRIPTOR
FO8 ENDING RIGHT PARENTHESIS NOT FOUND IN FORMAT
F09 NUMBER EXCEEDS HALFWORD IN FORMAT
F10 ILLEGAL CHARACTER ENCOUNTERED IN FORMAT
F11 ILLEGAL MINUS SIGN ENCOUNTERED IN FORMAT
F12 D FIELD EXCEEDS FIELD WIDTH
F13 NUMBER OF EXPONENT DIGITS EXCEEDS FIELD WIDTH
ri4 ZERO REPEAT COUNT IN FORMAT

16-4 48-010 FOO RO4

48-010 FOO R0O4

Code

F16
F17
F18

G02
GO03
G04
GO05
Go6
GO07
G08
G09
G10
G1l1
Gl2
G13
Gl4
G15
Gleo
G17
G18
G19
G20
G21
G22
G23
G24
G25
G26
G27
G28
G29
G30
G31
G32
G33
G34
G35
G36

FORTRAN VII Error Messages
Compiler Messages

Message Text

FIELD WIDTH MISSING OR ZERO IN FORMAT
D FIELD MISSING IN FORMAT

E FIELD MISSING,

ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL

OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR

MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING

ZERO, OR GREATER THAN 255 IN FORMAT

OPERAND OF EXPRESSION
OPERAND OF EXPRESSION
EXPRESSION

NAME

NAME

NAME

NAME

SPECIFIER

SPECIFIER

SPECIFIER LIST

PART OF SPECIFIER LIST
SPECIFIER LIST
EXPRESSION/SPECIFIER LIST
BLOCK IF STATEMENT
ARGUMENT LIST

ARGUMENT

SPECIFIER

SPECIFIER

SPECIFIER LIST

PART OF SPECIFIER LIST
SPECIFIER LIST

SUBSTRING OPERATOR
COMMON BLOCK NAME

COMMON BLOCK DECLARATION
COMMON BLOCK DECLARATION LIST
NAME

LIST OF NAMES

LIST OF NAMES

COMMON BLOCK DECLARATION
COMPLEX CONSTANT

COMPLEX CONSTANT PART
CONSTANT/NAME

EXPRESSION

I/0 CONTROL LIST ITEM
I/0 CONTROL LIST ITEM

16

16-5

1 6FORTRAN VII Error Messages

Compiler Messages

Code

G37
G38
G39
G40
G4l
G42
G43
G44
G45
G46
G47
G49
G50
G51
G52
G53
G54
G55
G57
G58
G59
G60
G61
G62
G65
G66
G67
G638
G69
G70
G71
G73
G74
G75
G76
G77
G78
G79
G8o

16-6

ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL

Message Text

OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR

MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING

I/0 CONTROL LIST ITEM
I/0 CONTROL LIST

PART OF I/O CONTROL LIST
PART OF I/0 CONTROL LIST
PART OF I/0 CONTROL LIST
DATA CONSTANT LIST

DATA DEFINITION

DATA DEFINITION LIST
DATA IMPLIED DO LIST
NAME IN A DATA IMPLIED DO LIST
LIST OF NAMES

REPETITION FACTOR
CONSTANT

CONSTANT

NAME/IMPLIED DO LIST
LIST OF NAMES

DIMENSION SPECIFICATION
LIST OF DIMENSION SPECIFICATIONS
DIMENSION BOUND
DIMENSION BOUND LIST
DIMENSION BOUND
DIMENSION BOUND LIST
DIMENSION BOUND SPECIFICATION
DO LOOP CONDITION

NAME

DO RANGE

CONTROL LIST

NAME

LIST OF NAMES
EQUIVALENCE LIST
EQUIVALENCE LIST
SPECIFIER

LABEL

OPERAND OF EXPRESSION
EXPRESSION

LIST OF NAMES

FORMAT IDENTIFIER

FORMAT IDENTIFIER

LABEL

48-010 FOO RO4

48-010 FOO R0O4

Code

G83
G84
G85
G86
G87
G8s
G89
G90
G91
G92
G93
G94
G95
G96
G97
G98
G99
G100
G101
G102
G103
G104
G105
G107
Glo08
G109
G110
G111
Gl12
G113
G114
G115
G116
G117
G118
G119
G120
Gl21
Gl22
G123

ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL
ILLEGAL

FORTRAN VII Error Messages l 6
Compiler Messages

Message Text

OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR

OR~

OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR

MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING

LIST OF LABELS

LIST OF LABELS

IF CONDITION

IMPLICIT DECLARATOR
IMPLICIT DECLARATOR LIST
IMPLICIT RANGE
IMPLICIT RANGE LIST
TYPE

SPECIFIER

SPECIFIER

KEYWORD

KEYWORD

KEYWORD

SPECIFIER LIST

PART OF SPECIFIER LIST
SPECIFIER LIST
EXPRESSION

EXPRESSION

EXPRESSION

CHARACTER EXPRESSION
CHARACTER EXPRESSION
IMPLIED DO LIST

I/0 LIST ITEM

I/0 LIST

FORMAT IDENTIFIER
LABEL

LENGTH SPECIFICATION
LENGTH SPECIFICATION
LOGICAL EXPRESSION
EXPRESSION

OPERAND OF EXPRESSION
LOOP CONDITION
NAMELIST DECLARATION
LIST OF NAMELIST DECLARATIONS
NAMELIST NAME

LIST OF NAMELIST ITEMS
LIST OF NAMELIST NAMES
NAMELIST DECLARATION
NAMELIST NAME

NAMELIST NAME

16-7

1 6FORTRAN VII Error Messages
Compiler Messages

Code Message Text

G126 ILLEGAL OR MISSING SPECIFIER

G127 ILLEGAL OR MISSING SPECIFIER

G128 ILLEGAL OR MISSING KEYWORD

G129 ILLEGAL OR MISSING KEYWORD

G130 ILLEGAL OR MISSING SPECIFIER LIST

G131 ILLEGAL OR MISSING PART OF SPECIFIER LIST

G132 ILLEGAL OR MISSING SPECIFIER LIST

G133 ILLEGAL OR MISSING EXPRESSION IN SUBSTRING REFERENCE
G134 ILLEGAL OR MISSING ARGUMENT

G135 ILLEGAL OR MISSING EXPRESSION

G136 ILLEGAL OR MISSING DO INCREMENT

G137 ILLEGAL OR MISSING DUMMY ARGUMENT LIST

G138 ILLEGAL OR MISSING LIST OF SUBSCRIPTS/ARGUMENTS
G139 ILLEGAL OR MISSING PARAMETER DEFINITION

G140 ILLEGAL OR MISSING PARAMETER DEFINITION LIST
G141 ILLEGAL OR MISSING READ/WRITE

G142 ILLEGAL OR MISSING NAME/COMMON NAME

G143 ILLEGAL OR MISSING LIST OF SAVE ITEMS

G144 ILLEGAL OR MISSING SIGN

G146 ILLEGAL OR MISSING STATEMENT

G147 ILLEGAL OR MISSING STATEMENT AFTER LOGICAL IF
G148 ILLEGAL OR MISSING STATEMENT

G149 ILLEGAL OR MISSING CONSTANT

G150 ILLEGAL OR MISSING DUMMY ARGUMENT

G151 ILLEGAL OR MISSING DUMMY ARGUMENT LIST

G152 ILLEGAL OR MISSING DUMMY ARGUMENT LIST

G153 ILLEGAL OR MISSING ARRAY SUBSCRIPT/FUNCTION ARGUMENT
G154 ILLEGAL OR MISSING ARRAY/FUNCTION REFERENCE
G155 ILLEGAL OR MISSING LIST OF SUBSCRIPTS/ARGUMENTS
G156 ILLEGAL OR MISSING SUBSTRING REFERENCE

G157 ILLEGAL OR MISSING NAME

G160 ILLEGAL OR MISSING NAME

G161 ILLEGAL OR MISSING LIST OF NAMES

G162 ILLEGAL OR MISSING TYPE

G163 ILLEGAL OR MISSING TYPE SPECIFICATION

G164 ILLEGAL OR MISSING NAME

G165 ILLEGAL OR MISSING UNIT= SPECIFIER

G166 ILLEGAL OR MISSING UNIT SPECIFICATION

16-8 48-010 FOO R04

48-010 FOO R04

FORTRAN VII Error Messages 1 6
Compiler Messages

Code Message Text

G167 ILLEGAL OR MISSING CONSTANT
G201 MISSING OR MUST BE **

G202 MISSING OR MUST BE //

G203 MISSING OR MUST BE RELATIONAL
G204 MISSING OR MUST BE &

G205 MISSING OR MUST BE LEFT PARENTHESIS
G206 MISSING OR MUST BE RIGHT PARENTHESIS
G207 MISSING OR MUST BE *

G208 MISSING OR MUST BE +

G209 MISSING OR MUST BE COMMA

G210 MISSING OR MUST BE -

G211 MISSING OR MUST BE LOGICAL RELATIONAL
G212 MISSING OR MUST BE /

G213 MISSING OR MUST BE NUMBER

G214 MISSING OR MUST BE COLON

G215 MISSING OR MUST BE .BAND.

G216 MISSING OR MUST BE .AND.

G217 MISSING OR MUST BE EQUAL SIGN

G218 MISSING OR MUST BE .OR.

G219 MISSING OR MUST BE .BNOT.

G220 MISSING OR MUST BE NAME

G221 MISSING OR MUST BE .NOT.

G222 MISSING OR MUST BE .BOR.

G223 MISSING OR MUST BE END OF STATEMENT
G224 MISSING OR MUST BE »>

G225 MISSING OR MUST BE CONSTANT

G226 MISSING OR MUST BE §

G227 MISSING OR MUST BE #

G228 MISSING OR MUST BE INTEGER

G229 MISSING OR MUST BE REAL

G230 MISSING OR MUST BE COMPLEX

G231 MISSING OR MUST BE LOGICAL

G232 MISSING OR MUST BE CHARACTER

G233 MISSING OR MUST BE BIT

G234 MISSING OR MUST BE DOUBLE PRECISION
G235 MISSING OR MUST BE DOUBLE COMPLEX
G236 MISSING OR MUST BE OPEN

G237 MISSING OR MUST BE INQUIRE

G238 MISSING OR MUST BE CLOSE

G239 MISSING OR MUST BE BACKSPACE

16-9

l 6FORTRAN VII Error Messages

Compiler Messages

16-10

Code

G240
G241
G242
G243
G244
G245
G246
G247
G248
G249
G250
G251
G252
G253
G254
G255
G256
G257
G258
G259
G260
G261
G262
G263
G264
G265
G266
G267
G268
G269
G270
G271
G272
G273
G274
G275
G276
G277
G278
G279

MISSING
MI3SING
MISSING
MI3SING
MISSING
MI3SING
MISSING
MISSING
MISSING
MIS3SING
MI3SING
MISSING
MIS3SING
MIS3SING
MI3SING
MIS3SING
MISSING
MISSING
MISSING
MISSING
MISSING
MIS5SING
MISSING
MI3SING
MIS3SING
MIS3SING
MIS3SING
MISSING
MIS3SING
MIS3SING
MISSING
MI3SING
MISSING
MISSING
MISSING
MISSING
MISSING
MI5SING
MIS3SING
MIS5SING

Message Text

OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR

MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST

BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE

REWIND
ENDFILE
READ
WRITE
PRINT
ACCEPT
TYPE
ASSIGN
BLOCK DATA
CALL
COMMON
CONTINUE
DATA
DECODE
DIMENSION
DO

ELSE
ENCODE
ENDIF
ENTRY
EQUIVALENCE
EXTERNAL
FORMAT
FUNCTION
GO TO

IF
IMPLICIT
INTRINSIC
NAMELIST
PARAMETER
PAUSE
PROGRAM
RETURN
SAVE

STOP
SUBROUTINE
TO
ACCESS=
ATTRIBUTES=
BLANK=

48-010 FOO RO4

48-010 FOO R04

Code

G280
G281
G282
G283
G284
G285
G286
G287
G288
G289
(G290
(3291
G292
G293
G294
G295
G296
G297
G298
G299
G300
G301
G302
G303
G304
G305
G306
G307
G308
G309
G310
G311
G312
G313
G314
G315
G316
G317
G318
G319

MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING
MISSING

FORTRAN VII Error Messages
Compiler Messages 1 6

Message Text

OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR
OR

MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST
MUST

BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE
BE

BLOCKSIZE=
COUNT=
COUNTBY=
DEVCODE=
DIRECT=
END=

ERR=
EXIST=
FILE=

FMT=

FORM=
FORMATTED=
TIOSTAT=
ISIZE=
NAME=
NAMED=
NEXTREC=
NML=
NUMBER=
OPENED=
REC=

RECL=
RENAME=
REPROTECT=
RKEY=
SEQUENTIAL=
SHARE=
SIZE=
STATUS=
TYPE="
UNFORMATTED=
UNIT=
WKEY=

THEN

NONE
GLOBAL
LOCAL
WHILE
ENDDO
UNTIL

16-11

FORTRAN VII Error Messages

]- 6Compiler Messages

Code

G320
G321
G322
G323
G324
G325
G326
G327
G328
G329
G330
G331
G335

101
102

103

I04
I05
106
I07

108

109
I10
I11
I12
I13
I14
I15
Il16

Lo1

16-12

Message Text

MISSING OR MUST BE LOOP

MISSING OR MUST BE REPEAT
MISSING OR MUST BE EXIT

MISSING OR MUST BE ESCAPE
MISSING OR MUST BE STEP

MISSING OR MUST BE STEPBY
MISSING OR MUST BE STEPFIRST
MISSING OR MUST BE NEXT

MISSING OR MUST BE UBLE COMPLEX
MISSING OR MUST BE UBLE PRECISION
MISSING OR MUST BE RECURSIVE
MISSING OR MUST BE BYTE

MI3SING OR MUST BE RWXKEY=

IL.EGAL INTERNAL FILE SPECIFICATION

DUPLICATE SPECIFIER OR ILLEGAL COMBINATION OF
SPECIFIERS

THIS KEYWORD SPECIFIER IS NOT ALLOWED ON THIS
STATEMENT

INQUIRE MUST HAVE A 'UNIT=’ OR A ’'FILE=’ SPECIFIER
INQUIRE MUST NOT SPECIFY BOTH ’'UNIT=’ AND /FILE=’
MISSING UNIT SPECIFICATION

DIRECT ACCESS NOT ALLOWED ON LIST DIRECTED OR NAMELIST
1/0

TH:S KEYWORD SPECIFIER NOT ALLOWED WITH INTERNAI FILE
1/0

ILLEGAL I/0 LIST ITEM ON INPUT LIST

I/0 LIST NOT ALLOWED ON NAMELIST. I/O

NOT A NAMELIST NAME

NAMELIST NAME NOT ALLOWED HERE

HOLLERITH NOT ALLOWED IN I/O LIST

INTERNAL FILE I/0 MUST BE FORMATTED

ABOVE STATEMENT GENERATES SVC CALL

THIS KEYWORD IS NO LONGER SUPPORTED AND IS IGNORED

SUEBPROGRAM NAME <name> DOES NOT MATCH HEADER <name).

48-010 FOO RO4

FORTRAN VII Error Messages 1 6
Compiler Messages

Code Message Text
L02 SOURCE OF SUBPROGRAM <name> IS NOT FOUND IN THE LIBRARY.
or

SOURCE CF SUBPROGRAM <name?> IS NOT FOUND IN THE LIBRARY,
LIBRARY IS NOT SPECIFIED.

L03 SUBPROGRAM <name?> CALLING <name> IS RECURSIVE.

L04 <name> NOT INVOKED AS A FUNCTION IN SUBPROGRAM <name>,

L05 <name> NOT INVOKED AS A SUBROUTINE IN SUBPROGRAM <name>.

L06 TYPE OF FUNCTION <name> INCOMPATIBLE WITH ITS INVOCATION
IN SUBPROGRAM <name>,

L.07 TYPE OF FUNCTION <name> INCOMPATIBLE WITH ITS INVOCATION
IN SUBPROGRAM <name>.

L08 FUNCTION <name> NOT DECLARED IN <name> WITH TYPE SAME AS
IN OTHER DECLARATIONS.

L09 ARGUMENTS SUPPLIED IN THE INVOCATION OF <name> IN <name>
ARE NOT CONSISTENT WITH OTHER INVOCATIONS.

L10 INVOCATION OF FUNCTION <name> IN <name?> DOES NOT AGREE
WITH OTHER USES OF IT AS A SUBROUTINE.

L1l INVOCATION OF SUBROUTINE <name> IN <name> DOES NOT AGREE
WITH OTHER USES OF IT AS A FUNCTION.

L12 CHARACTER FUNCTION LENGTH OF <name?> LONGER THAN IT IS
SPECIFIED IN <name>

L13 DUMMY VARIABLE <name?> DOES NOT RECEIVE CORRECT TYPE
IN THE INVOCATION OF <name?> IN LINE NNNN OF <name>.

L14 DUMMY VARIABLE <name?> DOES NOT RECEIVE PROCEDURE
IN THE INVOCATION OF <name> IN LINE NNNN OF <name>.

L15 DUMMY VARIABLE <name> DOES NOT RECEIVE ARRAY
.IN THE INVOCATION OF <name> IN LINE NNNN OF <name>.

L16 DUMMY VARIABLE <name> DOES NOT RECEIVE MATCHING
CHARACTER
LENGTH IN THE INVOCATION OF <name> IN LINE NNNN OF
<{name>

L17 DUMMY VARIABLE <name> DOES NOT RECEIVE CHARACTER
IN THE INVOCATION OF <name> IN LINE NNNN OF <name>.

L18 DUMMY CHARACTER ARGUMENT <name> DOES NOT RECEIVE INTEGER

VALUE FOR ITS LENGTH IN THE INVOCATION OF <name>
IN LINE NNNN OF <name>.

L19 DUMMY VARIABLE <name) DOES NOT RECEIVE FORTRAN LABEL
IN THE INVOCATION OF <name> IN LINE NNNN OF <{name>.

48-010 FOO RO4 16-13

1 6FORTRAN VII Error Messages
Compiler Messages

Code Message Text

L20 <{name> NOT INVOKED WITH SUFFICIENT ARGUMENTS
IV LINE NNNN OF <name>.

L21 THE FILE <name> IS NOT ON A DIRECT ACCESS DEVICE.

L22 THAE FILE <name> DOES NOT EXIST.

L23 <{name?> HAS BEEN USED AS A SUBPROGRAM NAME ELSEWHERE.

L24 SOURCE OF SUBPROGRAM <name> IS NOT THE FIRST MODULE
IN THE FILE <name>.

L25 EXTERNAL <name> IN <{name?> INCONSISTENT WITH ITS USE
AS A GLOBAL VARIABLE ELSEWHERE.

L26 DJMMY VARIABLE <name?> DOES NOT RECEIVE SCALAR IN THE
INVOCATION OF <name> IN LINE NNNN OF <name>.

L27 BLOCK DATA SUBPROGRAM MUST NOT BE EXPANDED INLINE.

L28 NJ ENTRY <name> IN SUBPROGRAM <name> INVOKED IN
LINE ‘LLL’ OF <name>

L29 PREVIOUS LINE WILL CORRUPT A CONSTANT IF EXECUTED.

L30 TYPE OF GLOBAL <name?> IN <name> INCONSISTENT WITH OTHER
DECLARATIONS OF IT ELSEWHERE.

L31 CHARACTER FUNCTION <name> NOT INVOKED WITH MATCHING
LENGTH IN LINE NNNN OF <name>.

L32 GLOBAL <name> IN <name> INCONSISTENT WITH ITS USE
A3 AN EXTERNAL ELSEWHERE.

L33 SOURCE OF SUBPROGRAM <name> IS NOT FOUND IN THE FILE
<{aame>.

L34 SQURCE OF SUBPROGRAM <name> IS NOT FOUND IN THE FILE
<aame>.

L35 {1ame> IS NOT A SUBROUTINE.

L36 <aame> IS NOT A FUNCTION.

L37 TYPE OR NUMBER OF ARGUMENTS FOR <name?> INCONSISTENT
WITH OTHER INVOCATIONS. ,

L38 <{aame> IS INVOKED WITH MORE THAN NECESSARY ARGUMENTS IN
LINE <line number> OF <name).

L39 RIFERENCE OF <name’> IN LINE <line number> IS NOT

EXPANDED IN LINE.

MO1 UNDEFINED LABELS:

MO2 UNREFERENCED LABELS:

MO03 CONSTANT SUBSCRIPT OUT OF RANGE ON AN ARRAY REFERENCE OF
<{a1ame.

16-14 48-010 FOO RO4

Code

MO04

MO5

MO6

MO7
MO8

M09
M10
M11
M12
M13

M14

M15
M16
M17
M18
M19
M20
M21

M22
M23
M24
M25
M26
M27

M28

M29
M30

48-010 FOO R0O4

FORTRAN VII Error Messages 1 6
Compiler Messages

Message Text

TYPE OR LENGTH OF STMT FUNC ARGUMENT <name> IS NOT
COMPATIBLE WITH DUMMY ARGUMENT.

ASSUMED-SIZE OR ADJUSTABLE ARRAY <name> MUST BE DUMMY
ARGUMENT .

DIMENSION DECLARATOR CONTAINS LOCAL VARIABLE FOR DUMMY
ARRAY <name>.

ILLEGAL DIMENSION DECLARATOR FOR ARRAY <name>,

<{name> EXTENDS THE HEAD OF A COMMON/GLOBAL VIA
EQUIVALENCE.

AN EQUIVALENCING CONFLICT OCCURS ON <name?>.
EQUIVALENCE RESULTS IN ILLEGAL ALIGNMENT FOR <name>.
ALIGNMENT IMPOSED ON COMMON ELEMENT <name>.

DUMMY ARGUMENT, <name?>, MAY NOT BE EQUIVALENCED.

MORE THAN ONE COMMON/GLOBAL ITEM IN AN EQUIVALENCE GROUP
CAUSES A CONFLICT ON <name>.

THE PROMOTION OF <name> INTO COMMON/GLOBAL CAUSES AN
EQUIVALENCE CONFLICT. '

POSSIBLE ILLEGAL BRANCH INTO DO-LOOP.

ILLEGAL BRANCH INTO DO-LOOP.

ILLEGAL OPERATION IN SUBSCRIPT/SUBSTRING EXPRESSION,
TOO FEW CONSTANTS TO INITIALIZE IDENTIFIER <name>.
EXTRA DATA CONSTANTS IGNORED.

A DATA CONSTANT OVERFLOWS VARIABLE <name?>.

INVALID INITIALIZATION DATA FOR CHARACTER VARIABLE
<{name?>.

VARIABLE <name> WAS USED AS AN ARRAY BUT NEVER
DIMENSIONED.

INVALID INITIALIZATION DATA FOR LOGICAL VARIABLE <name>.
INVALID INITIALIZATION USE OF LOGICAL DATA FOR <name>.
SUBSCRIPT/SUBSTRING OUT OF BOUNDS FOR <name). .
THE VARIABLE, <name>, TO BE INITIALIZED IS NOT A LOCAL
VARIABLE.

THE LOCAL VARIABLE, <name>, CAN NOT BE INITIALIZED IN
A BLOCK DATA.

EQUIVALENCING OF COMMON/GLOBAL ITEM <name) CAUSES A
CONFLICT WITH SAVE DESIGNATION.

A DATA IMPLIED-DO PARAMETER IS ILLEGAL.

FUNCTION ENTRY, <name>, CANNOT APPEAR IN COMMON.

16-15

1 6FORTRAN VII Error Messages
Compiler Messages

Code Message Text

M31 THE NUMBER OF SUBSCRIPTS CONFLICTS WITH DECLARATION FOR
<{name>.

M32 THE INITIAL VALUE FOR A SUBSTRING OF <name> IS OUT OF
RANGE.

M33 THE FINAL VALUE FOR A SUBSTRING OF <name> IS OUT OF
RANGE.

M34 SUBSTRING USED WITH NON-CHARACTER VARIABLE <name>.

M35 CONSTANT ARGUMENT PADDED WITH BLANKS FOR STMT FUNCTION
<name> .

M36 PASSED-LENGTH SPECIFICATION IS NOT ALLOWED ON THE
CHARACTER IDENTIFIER <name>.

M37 NAMELIST CONTAINS THE INELIGIBLE IDENTIFIER <name> .

M38 TYPE OF ENTRY-POINT <name> IS NOT TYPE CHARACTER.

M39. THE CHARACTER LENGTH OF ENTRY-POINT <name> <> LENGTH OF.
THE FUNCTION.

M40 THE TYPE OF ENTRY-POINT <name> IS INCOMPATIBLE WITH THE
PRIMARY FUNCTION’S TYPE.

' M4l EVERY LOCAL VARIABLE HAS BEEN PROMOTED INTO ITS OWN

GLOBAL BLOCK!

M42 DUMMY ARGUMENT OR ENTRY NAME <name> IS NOT EXPLICITLY
TYPED,

M43 NO $SETS IN CALBLOCK CAN CRIPPLE OPTIMIZATION. ALL
VARIABLES ASSUMED SET.

M4 4 NO $USES IN CALBLOCK CAN CRIPPLE OPTIMIZATION. ALL
VARIABLES ASSUMED IN USE.

M45 INTEGER VARIABLE <name> IS USED AS A LABEL BUT NEVER
"ASSIGN ' 'D",

M46 THE FOLLOWING IDENTIFIERS ARE NOT EXPLICITLY TYPED DUE
TO IMPLICIT NONE. ‘

M47 COMMON BLOCK <name> HAS NOT BEEN EXPLICITLY DECLARED.

M48 IF OPTIMIZING & DUMMY ARRAY <name> IS USED AS
ASSUMED-SIZE, INVALID CODE MAY RESULT.

M49 COMMONS AND GLOBALS ARE NOT ALLOWED IN A SHARABLE
SJBPROGRAM.

M50 SAVE/DATA STATEMENTS NOT ALLOWED IN A SHARABLE
SUBPROGRAM.

M51 LOCAL IDENTIFIER <name) MAY NOT BE INITIALIZED IN A

REZCURSIVE SUBPROGRAM,

16-16 48-010 FOO R04

48-010 FOO R0O4

Code

M52
M53

M54
M55

M56

M57

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

030 .

FORTRAN VII Error Messages 1 6
Compiler Messages

Message Text

COMMON BLOCK OR ARRAY <name> EXCEEDS COMPILER LIMIT
OF 16,252,927 BYTES.

EQUIVALENCE GROUP CONTAINING <name?> EXCEEDS COMPILE
LIMIT OF 16,252,927 BYTES.

PROCEDURE NAME <name> CANNOT BE EQUIVALENCED.

MORE THAN ONE EXTERNAL ENTITY WITH EXACT FIRST

8 CHARACTERS: <{name>

INTEGER*1 ARITHMETIC PRODUCES INEFFICIENT CODE,
INTEGER*2 IS PREFERRED.

$HOL OPTION AND CHARACTER TYPE USED SIMULTANEOUSLY.
SEE FORTRAN 7 USER’S GUIDE,

UNRECOGNIZABLE SYSTEM DIRECTIVE

EOF ENCOUNTERED IN $ASSM CODE

ILLEGAL REGISTER SPECIFIER — $REGS RO,F0,D0 ASSUMED
NAME MISSING v

LINE COUNT MUST BE INTEGER GREATER THAN 10

THIS DIRECTIVE ONLY ALLOWED WITHIN $ASSM BLOCK
$SNTEST WITH NO PRECEDING $TEST ACTIVE

PRECEDING $NTEST ASSUMED

STATEMENT LABEL MUST NOT BE PREVIOUSLY DEFINED

MUST BE ARRAY OR CHARACTER VARIABLE NAME

PRECEDING $NTRACE ASSUMED

MUST BE A VARIABLE OR AN ARRAY NAME

WIDTH MUST BE INTEGER BETWEEN 64 AND 131

$NTRACE WITH NO PRECEDING $TRACE ACTIVE

MUST BE A VARIABLE, ARRAY, OR COMMON NAME

MISSING / ASSUMED

ILLEGAL PROGRAM NAME — $PROG IGNORED

$ON/$OFF VALUE MUST BE <= 63 ,

INTRINSIC FUNCTION CANNOT BE EXPANDED INLINE
MISSING ARGUMENT

FILE DESCRIPTOR SYNTAX ERROR

ALL/LABEL-LIST MISSING, ALL ASSUMED

SYNTAX IS ILLEGAL

PRIVATE/SHARE MISSING

CONFLICTING SOURCE FILE INFORMATION FOR THE SUBPROGRAM
CANNOT BE A DUMMY PARAMETER

CAL NAME LONGER THAN 8 CHARACTERS

$INSKIP/$BEND MISPLACED, IGNORED

SOURCE FILE IS NOT ON A DIRECT ACCESS DEVICE
LOGICAL UNIT NUMBER IS OUT OF RANGE OR UNRECOGNIZABLE

16-17

1 GFORTRAN VII Error Messages

Compiler Messages

Code

031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

047

048
049
050

PO1
P02
P03
P04
P05
P06
P07
PO8
P09
P10
P11
P12
P13
P14
P15

16-18

Message Text

LABEL DESCRIPTOR IS UNRECOGNIZABLE OR TOO LONG

FILE DESCRIPTOR IS UNRECOGNIZABLE OR TOO LONG

IL.EGAL TO RE-USE LOGICAL UNIT FROM AN ACTIVE $INCLUDE
LOGICAL UNIT IS NOT ASSIGNED

A ¥REE LOGICAL UNIT IS NOT AVAILABLE FOR S$INCLUDE
INSUFFICIENT SPACE ON VOLUME TO OPEN SPECIFIED FILE
VOLUME IS NOT ON-LINE OR DOES NOT EXIST

SPECIFIED FILE DOES NOT EXIST

TH® FILE IS PROTECTED AND CANNOT BE OPENED

THE FILE CANNOT BE OPENED FOR SHARED-READ ACCESS

FII.E CANNOT BE OPENED DUE TO INSUFFICIENT SYSTEM SPACE
NESTING OF $INCLUDES EXCEEDS 7 LEVELS

INITIAL **LABEL NOT FOUND, $INCLUDE IGNORED

MUST BE END OF STATEMENT

ILLEGAL TARGET SPECIFIER

$INCLUDE OPTION LIST CONTAINS ILLEGAL OR UNRECOGNIZABLE
OP'TIONS

THIS STATEMENT/DIRECTIVE NOT ALLOWED IN THE INLINE
DIRECTIVE FILE

THIS NAME IS USED AS AN ENTRY NAME ELSEWHERE

THIS NAME IS USED AS A SUBPROGRAM NAME ELSEWHERE

$A5SM NOT ALLOWED INSIDE EXPANDED ROUTINES FOR

7000 SERIES.

END STATEMENT MISSING

END OF STATEMENT ASSUMED HERE

UNSUPPORTED FEATURE

FIRST LINE OF STATEMENT IS A CONTINUATION LINE
TOO MANY CONTINUATION LINES

COLUMNS 1-5 OF CONTINUATION LINE ARE NOT BLANK
NULL SOURCE FILE

INVALID CHARACTER IGNORED

SYMBOLIC NAME MUST NOT BEGIN WITH UNDERSCORE
END OF STATEMENT BEFORE END OF CONSTANT
DUPLICATE STATEMENT LABEL

UNRECOGNIZABLE OPERATOR AFTER ’'.’
UNRECOGNIZABLE SEQUENCE OF CHARACTERS

MISSING PERIOD ASSUMED AFTER OPERATOR

FLOATING POINT CONSTANT NOT ALLOWED HERE

48-010 FOO R04

Code

P16
P17

P18
P19
P20
P21

P22
P23
P24
P25
P26
P27
P28
P29
P30
P31
P32
P33
P34
P35
P36
P37
P38
P39
P40
P41
P42
P43
P44
P45
P46
P47
P48
P49
P50
P51
P52
P53

48-010 FOO R0O4

FORTRAN VII Error Messages 1 6
Compiler Messages

Message Text

INVALID LABEL

ENTRY STATEMENT NOT ALLOWED TO BE NESTED WITHIN LOOP OR
IF BLOCK

ENTRY STATEMENT NOT ALLOWED IN MAIN PROGRAM OR BLOCKDATA
THIS STATEMENT IS OUT OF ORDER. STATEMENT IGNORED

THIS LABEL DEFINED ON NON—-EXECUTABLE STATEMENT

THIS LABEL PREVIOUSLY USED TO REFERENCE EXECUTABLE
STATEMENT '

THIS LABEL DEFINED ON EXECUTABLE STATEMENT

ACTIVE DO-LOOP INDEX MUST NOT BE MODIFIED

RETURN MAY ONLY APPEAR IN A FUNCTION OR SUBROUTINE
ALTERNATE RETURN MAY ONLY APPEAR IN A SUBROUTINE

NO CORRESPONDING BLOCK IF

ELSE CANNOT FOLLOW ELSE

ELSE PRECEDED BY UNTERMINATED LOOP

ELSE IF CANNOT FOLLOW ELSE

ELSE IF PRECEDED BY UNTERMINATED LOOP

IF BLOCK BEGINS BEFORE LOOP AND ENDS INSIDE LOOP
MISSING ENDIF

MUST BE AT LEAST 2 ITEMS.

ILLEGAL PARENTHESIZED LIST

THIS LABEL MUST NOT BE PREVIOUSLY DEFINED

ILLEGAL DO NESTING

THIS LABEL PREVIOUSLY USED TO REFERENCE FORMAT STATEMENT
LOOP BEGINS BEFORE IF BLOCK AND ENDS INSIDE BLOCK
ILLEGAL STATEMENT FOR DO TERMINAL

THIS STATEMENT NOT ALLOWED IN BLOCK DATA

NO PRIOR ACTIVE LOOP

STEPBY CANNOT FOLLOW STEPBY

NO PRIOR ACTIVE DO

ENDDO OF LABELED DO MUST HAVE SAME LABEL AS THAT OF DO
MISSING ENDDO

MISSING REPEAT

DO LOOP BEGINS BEFORE LOOP—REPEAT AND ENDS INSIDE

LOOP BEGINS BEFORE DO LOOP AND ENDS INSIDE

STEPBY PRECEDED BY UNTERMINATED DO LOOP

STEPBY PRECEDED BY UNTERMINATED IF BLOCK

ENTRY/PROG IGNORED IN INLINE ROUTINES

DO INCREMENT IS ZERO, INFINITE LOOP GENERATED
RECURSIVE SUBPROGRAM CANNOT BE EXPANDED INLINE

16-19

1 6FORTRAN VII Error Messages

Compiler Messages

Code

P54
P55
P56

so1
502
S03
504
505

S06
507
S08
S09
S10
S11
S12
S13
S14
S15
S16
S17
518
519
520
S21
522
523
524
S25
526
527
528
529
530
531
S§32

S33

16-20

Message Text

MUST BE ACTIVE LOOP LABEL
ZERO TRIP DO-LOOP
SINGLE TRIP DO-LOOP

IDENTIFIER CAN NOT BE RE-TYPED

ASSUMED-LENGTH SPECIFICATION MUST NOT APPEAR HERE
LENGTH SPECIFICATION IGNORED

CHARACTER LENGTH MUST NOT EXCEED 32767

LENGTH SPECIFICATION DOES NOT MATCH A LEGAL LENGTH FOR
THIS TYPE

SYMBOLIC CONSTANT MUST NOT BE TYPED AFTER BEING DEFINED
COMMON BLOCK NAME CONFLICTS WITH PRIOR USAGE
IDENTIFIER MUST NOT APPEAR IN BOTH COMMON AND SAVE
DUMMY ARGUMENT MUST NOT APPEAR IN COMMON

IDENTIFIER MUST NOT APPEAR IN COMMON MORE THAN ONCE
IDENTIFIER IS MULTIPLY DEFINED

DUMMY ARGUMENT NAME CONFLICTS WITH AN ENTRY POINT NAME
FUNCTIONS DO NOT HAVE AN ALTERNATE RETURN CAPABILITY
DUMMY ARGUMENT MUST NOT BE EQUIVALENCED OR SAVED
ARGUMENT MUST NOT APPEAR TWICE IN THIS ENTRY LIST
ENTRY NAME MUST NOT APPEAR IN COMMON

MUITIPLY DEFINED IMPLICIT

NOT AN INTRINSIC FUNCTION

TOC MANY LETTERS

LETTERS NOT IN ALPHABETICAL ORDER

PREVIOUS PARAMETER DEFINITION IGNORED

NAME HAS ALREADY DEFINED AN EMPTY NAMELIST

NAMELIST NAME PREVIOUSLY REFERENCED IN AN I/O STATEMENT
NAME HAS ALREADY DEFINED A NON EMPTY NAMELIST

ENTRY NAME MUST NOT BE EQUIVALENCED

FUNCTION REFERENCE NOT ALLOWED HERE

STATEMENT FUNCTION DUMMY ARGUMENT MUST BE A VARIABLE NAME
ASSUMED SIZE ARRAY NAME NOT ALLOWED HERE

NAME SHOULD NOT BE SAVED MORE THAN ONCE

NAME HAS PREVIOUSLY BEEN DECLARED GLOBAL

NAME HAS PREVIOUSLY BEEN DECLARED LOCAL

COMMON ELEMENT MUST NOT APPEAR IN GLOBAL OR LOCAL
STATEMENT

DUMMY ARGUMENT MUST NOT APPEAR IN GLOBAL OR LOCAL
STATEMENT

48-010 FOO R04

Code

534
S35

S36

S37
538

S39

S40
S41

TO1

TO2
TO3
TO04
TOS
TO6
TO07
TO8
TO9

T10

T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21

48-010 FOO RO4

FORTRAN VII Error Messages
Compiler Messagges 1 6

Message Text

ILLEGAL FUNCTION REFERENCE OR UNDIMENSIONED ARRAY
ADDRESSING MODE CONFLICTS WITH INITIAL SPECIFICATION.
THIS MODE IGNORED

MUST NOT RETYPE AN IDENTIFIER USED IN A DIMENSION
DECLARATION

IDENTIFIER MUST BE EITHER A VARIABLE OR AN ARRAY

THIS IDENTIFIER PREVIOUSLY APPEARS ON A SAVE STMT. SAVE
ATTRIBUTE IGNORED

ATTRIBUTES OF IDENTIFIER ARE INCOMPATIBLE WITH SAVE. SAVE
ATTRIBUTE IGNORED

ENTRY NAME APPEARS IN ITS OWN DUMMY ARGUMENT LIST

AN INTRINSIC MUST NOT BE A DUMMY ARGUMENT NAME

ATTIBUTES OF IDENTIFIER ARE INCOMPATIBLE WITH THE
SPECIFICATION OR USE

EXPRESSION MUST BE OF TYPE INTEGER

MUST BE AN INTEGER CONSTANT EXPRESSION

MUST BE OF TYPE LOGICAL

MUST BE ARITHMETIC TYPE (OTHER THAN COMPLEX)

MUST BE OF TYPE CHARACTER

MUST BE A CONSTANT

IDENTIFIER MUST BE OF TYPE CHARACTER

NO DIGITS FOLLOWING EXPONENT SPECIFICATION OF FLOATING
POINT CONSTANT

VALUE OF CONSTANT EXCEEDS MAXIMUM-—-MAXIMUM INTEGER
VALUE USED

NULL HOLLERITH CONSTANT NOT ALLOWED

INVALID R CONSTANT

INVALID QUOTED CONSTANT TYPE

IDENTIFIER NAME EXCEEDS 36 CHARACTERS

NULL STRING NOT IMPLEMENTED

INVALID CHARACTER(S) WITHIN BIT CONSTANT

INVALID CHARACTER(S) WITHIN 'E’ OR ’'D’ CONSTANT

TOO MANY SIGNIFICANT DIGITS WITHIN CONSTANT

INVALID CHARACTER(S) WITHIN INTEGER OR OCTAL CONSTANT
FLOATING POINT CONSTANT UNDERFLOWS——-VALUE SET TO ZERO
FLOATING POINT CONSTANT OVERFLOWS——VALUE SET TO MAXIMUM

16-21

1 6FORTRAN VII Error Messages
Compiler Messages

Code Message Text

T22 MUST BE INTEGER CONSTANT 0-99999 OR CHARACTER CONSTANT

<= 66 CHARACTERS

T23 EXPRESSION SHOULD BE OF TYPE INTEGER

T24 LENGTH OF CHARACTER DUMMY ARGUMENT MUST BE A CONSTANT
T26 RIGHT HAND TYPE INCOMPATIBLE WITH LEFT HAND TYPE

T27 MUST BE AN INTEGER VARIABLE

T28 PREVIOUS EXPLICIT TYPING OF THIS INTRINSIC IGNORED
T29 NAME WAS PREVIOUSLY REFERENCED AS A FUNCTION

T30 NAME WAS PREVIOUSLY REFERENCED AS A SUBROUTINE

Uol <type> DIVIDE BY ZERO

U0z {type> OVERFLOW

Uo03 <type> DIVIDE BY ZERO

Uo4 <{type> EXPONENT UNDERFLOW

Uos {type> EXPONENT OVERFLOW

Uo6 {type> ZERO BASE, NEGATIVE EXPONENT

Uo7 {type> NEGATIVE EXPONENT

uos <type> NEGATIVE BASE

uo9 {type> SIGN BIT IS NOT EXTENDED

16-22 48-010 FOO R0O4

FORTRAN VII Error Messaﬁes 1 6
Diagnostic Messages for FORTRAN VII RTL

Diagnostic Messages for FORTRAN VII RTL

48-010 FOO R0O4

The following information documents the error messages which are invoked
as a result of an error occuring during the execution of a FORTRAN VII RTL
routine. For additonal run-time error messages, consult the 0S/32 System
Messages Reference Manual.

Format:

ERR n (a)
m:d

Where:
n is the error message number.
m is the name of the RTL function.

a is the hexadecimal return address in the user’s program. This is
only printed on 0OS/32.

d is either a number or a diagnostic message.

Key to Symbols:

\A - ADDRESS

\D - DECIMAL NUMBER
\S - CHARACTER STRING
\Z - HEX NUMBER

All supervisor call (SVC) errors reflect the status returned from the SVC. For
more information on each status, see the 0S/32 Supervisor Call (SVC) Refer-
ence Manual.

0 ILLEGAL ERROR NUMBER (INTERNAL ERROR)

The run-time error handler has processed an error number outside the
legal range because of a discrepancy in the source program. A possi-
ble cause of this error message is that the task memory was overwrit-
ten by assignments to array elements with out-of-bounds subscripts.
Also, a variable used as a format label in an input/output (I/0) state-
ment without a valid prior ASSIGN statement can cause this error.

Use available debugging methods to isolate and correct the error(s) in
the source program.

16-23

1 FORTRAN VII Error Messages
Diagnostic Messages for FORTRAN VII RTL

End-of-File (EOF) Errors
—3 EOF DETECTED ON INTERNAL FILE AT \A.

An end-of-file (EOF) condition was detected while peforming 170 to an
internal file which is located at address \A. Add the keywords END=,

ERR=, or IOSTAT= to the statements performing the I/0 and add code
to the program to handle the EOF condition.

—2 SOFT INTERNAL EOF DETECTED

An EOF marker (/*) was found while performing an 1/0 operation to a
file. Add the keywords END=, ERR=, or IOSTAT= to the statements per-
forming the 170 and add code to the program to handle the EOF condi-
tion.

—1 HARDWARE EOF DETECTED
An operating system-defined EOF condition was found while perform-
ing an I/0 operation to a file. Add the keywords END=, ERR=, or 10S-

TAT= to the statements performing the 1/0 and add code to the pro-
gram to handle the EOF condition.

16-24 48-010 FOO R04

FORTRAN VII Error Messaﬁes 1 6
Diagnostic Messages for FORTRAN VII RTL

I7/0 Common Errors

48-010 FOO RO4

1 UNABLE TO ASSIGN DEFAULT UNIT \D TO DEFAULT DEVICE \S.

The RTL was not able to assign the default device \S to the default log-
ical unit (lu) \D while processing a read or write. The default device \S
may not exist in the system or the default unit may already be
assigned. Alter the source program so it does not use reads and writes
or free the required unit for reads and writes. If the default device
does not exist have the default device created or added to the
program’s environment.

2 UNIT ILLEGAL.

The lu specified for the I/0 statement is not between 0 and 254. The
error message only shows the lower byte of the specified word.
Correct the source program if the lu is greater than 254 or increase the
number of logical units allowed at Link time with the LINK OPTION
command parameter lu=. For more information, see the 0S/32 Link
Reference Manual.

UNABLE TO GET ENOUGH STORAGE TO DO I/O.

The RTL was unable to get the necessary workspace to build the record
for performing a requested 1/0 operation. At run-time, increase the
amount of extra memory that the program was given with the LOAD
command based upon the largest record length of any file that will be
processed. If the largest record length to be processed is 10K, specify
a load memory expansion factor of at least 15K in the LOAD command.
Optionally, set the default LINK OPTION command parameter
WORKSPACE to the necessary minimum value. For more information,
0S/32 Link Reference Manual.

4 EXCEED RTL SCRATCH AREA.

The attempted I/0 exceeded the available RTL scratch area for creating
the needed information to perform the I/0 operation. This error indi-
cates an illegal nesting of 1/0 operations, in most cases. This can
occur when a FORTRAN VII function containing WRITE statements is
called on a WRITE statement. Correct the source program by sending
the function results to an intermediate variable.

16-25

1 GFORTRAN VII Exrror Messages
Diagnostic Messages for FORTRAN VII RTL

5 RECORD NUMBER \D NOT POSITIVE FOR DIRECT ACCESS
The record number for a direct access I/0 should be one or greater.
Correct the problem within the source code of the program.

6 ONLY FORMATTED AND SEQUENTIAL ACCESS ALLOWED ON TEXTFILES
An unformatted or direct access 170 was attempted on a file that was

designated as a FORMATTED and SEQUENTIAL file. Correct the prob-
lem within the source code:

16-26 48-010 FOO R0O4

FORTRAN VIl Error Messaﬁes 1 6
Diagnostic Messages for FORTRAN VII RTL

SVC1 Errors

48-010 FOO R04

25

26

UNIT UNASSIGNED.

The lu used in an 170 statement does not have a file or device attached
for performing 1/0. Either correct the program source or assign the lu
to the needed file or device so that the /0 can be performed. For
more information, see the 0S/32 Supervisor Call (SVC) Reference
Manual.

PARITY OR RECOVERABLE ERROR

A parity or a recoverable error, i.e., attempting to perform a write on a
write-protected file while trying to write, was detected on a file or dev-
ice. Retry the 170 after making the needed correction(s). If the error
persists, the interface to a device may be incorrectly programmed. On
a tape drive, the tape itself may be bad or the tape drive read/write
heads and tape path may need to be cleaned. This error can occur for
various reasons, including time-outs and other events that depend on
the driver that is attached to a device. The system's error logger
should be checked for errors that may have been logged by the partic-
ular driver. For more information, see the OS/32 Supervisor Call (SVC)
Reference Manual.

16-27

1 GFORTRAN VIl Error Messa%_es
Diagnostic Messages for FORTRAN VIl RTL

16-28

27

28

29

30

UNRECOVERABLE ERROR

An unrecoverable error was detected during a FORTRAN VII 1/0 opera-
tion. This error can be caused by format failures on a disk drive, tapes
which are physically damaged, and various other reasons. The
system’s error logger should be checked for errors that may have been
logged by the particular driver that was in use. For more information,
see the 0OS/32 Supervisor Call (SVC) Reference Manual.

END OF MEDIUM

This error indicates that an I/0 detected an end-of-medium condition
during an 170 to a device. This error generally means that the end of a
contiguous file has been reached or that the end of a tape has been
reachec. If a non-contiguous file could not be extended, this error
code can also be returned. Possible solutions include using a longer
tape, deleting unnecessary files from the existing tape, or adding code
to the program to handle the error. For more information, see the
05/32 Supervisor Call (SVC) Reference Manual.

DEVIC}EE UNAVAILABLE

The device or file to which the I/0 was directed is not available to per-
form the 170. Place the device or file on-line and continue the program
execution. For more information, see the 0OS/32 Supervisor Call (SVC)
Reference Manual.

ILLEGAL FUNCTION

The I/C operation being directed to the specified file or device is not
allowed. Writing to a file that is read-only causes this error. Correct
the problem in the source code of the program or alter the access
privileges of the file or device. For more information, see the 05/32
Supervisor Call (SVC) Reference Manual.

48-010 FOO R0O4

48-010 FOO R0O4

31

32

33

FORTRAN VIl Error Messages 1 6
Diagnostic Messages for FORTRAN VII ETL

DIRECT ACCESS READ ENCOUNTERS EOF RECORD

While performing a direct access read the 1/0 detected an EOF record.
Either correct the program that generated the file or the program that
is reading the file. Also, the file being read may be corrected manually
and the program execution restarted. For more information, see the
0S/32 Supervisor Call (SVC) Reference Manual.

DIRECT ACCESS READS BEYOND END OF INDEX FILE

A read was attempted beyond the end of the file. This is generally a
programming problem. Correct the program that generated the file or
is reading the file. For more information, see the 0S/32 Supervisor
Call (SVC) Reference Manual.

ACCESS PRIVILEGES INCOMPATIBLE N
An 170 attempt was made on a default logical unit without preassign-
ment. The logical unit is assigned to a file with access privileges which

are incompatible to the current 1/0 privilege. For more information
see the 0OS/32 SVC Reference Manual.

16-29

1 FORTRAN VII Error Messages
Diagnostic Messages for FORTRAN VII RTL

SVC7 Errors

50 ILLEGAL FUNCTION CODE ON SVC7

An illegal function code was used for an SVC7. You may be running
under an unsupported version of the operating system or the function
code raay not be supported on the particular file or device. Verify that
the program is running under the correct release of the operating sys-
tem or that the SVC7 function is supported for the file or device. If the
file is on an optical disk, certain SVC7 are not supported. If the prob-
lem cannot be resolved, contact your local Concurrent Computer Cor-
poration service office for assistance. For more information, see the
0S/32 Supervisor Call (SVC) Reference Manual.

51 ILLEGAL LOGICAL UNIT \D

The lu specified is illegal. ChecK the lu that was specified and make
the necessary correction in the program source code. This error can
be caused by specifying a negative number for the lu in an I/0 state-
ment. For more information, see the 0S/32 Supervisor Call (SVC)
Reference Manual.

52 SPECIFIED VOLUME NOT MOUNTED OR NON—-EXISTENT

The volume name that was specified in the OPEN, INQUIRE, etc.
statement(s) does not exist or is not on-line. Correct the program
source code if the volume name(s) is specified in the source code of
the program or correct the data that contains the volume name(s). If
the velume is not on-line then mark the volume on-line and continue
the program. For more information, see the OS/32 Supervisor Call
(SVC) Reference Manual.

53 ATTEMPT TO ALLOCATE OR RENAME USING EXISTING FILENAME
An attempt was made to allocate or rename a file with a filename that
already exists on the specified volume. Either remove the file or use a

different filename for the allocate or rename operation. For more
information, see the 0S/32 Supervisor Call (SVC) Reference Manual.

16-30 48-010 FOO R0O4

48-010 FOO R04

54

55

56

57

58

FORTRAN VII Error Messages 1 6
Diagnostic Messages for FORTRAN VII RTL

ASSIGN TO NON-EXISTENT FILE

The filename specified in the OPEN statement does not exist on the
specified volume. Either allocate the file or alter the OPEN statement
to create the file if the file does not exist. For more information, see
the 0S/32 Supervisor Call (SVC) Reference Manual.

INSUFFICIENT SPACE EXISTS FOR ALLOCATE

The specified file in the OPEN statement could not be allocated because
the space needed for the file was not available on the disk volume.
This error can also occur during a close operation if the system buffers
cannot be written to disk due to insufficient space when a file is
closed. Either free up the space on the specified disk volume or use
another volume. For more information, see the 0S/32 Supervisor Call
(SVC) Reference Manual.

READ AND WRITE KEYS DO NOT MATCH ON ASSIGN

An attempt was made to assign a file which has protection keys that do
not match the protection keys specified in the OPEN statement.
Specify the correct protection keys for the file in the OPEN statement.
For more information, see the 0S/32 Supervisor Call (SVC) Reference
Manual.

ATTEMPT TO ALLOCATE WHEN ENTIRE DISK ERW

An attempt was made to allocate a file when the specified volume was
assigned exclusive read/write (ERW). This can occur during the time
the command processor’s MARK command is being processed. Redo
the allocation after the disk volume is no longer assigned ERW. For
more information, see the 0S/32 Supervisor Call (SVC) Reference
Manual.

ACCESS PRIVILEGES CANNOT BE GRANTED ON ASSIGN

The desired access privileges cannot be granted. This generally occurs
when the file is currently assigned. For example, an ERW assign is not
compatible with a current assignment that is SRW. Either wait for the
file to be freed or change the desired access privileges. For more
information, see the 0S/32 Supervisor Call (SVC) Reference Manual.

16-31

1 6FORTRAN VII Error Messages
Diagnostic Messages for FORTRAN VII RTL

16-32

59

60 °

61

62

63

INCOMPATIBLE ACCESS PRIVILEGES ON CHANGE PRIVILEGES

The desired access privileges cannot be granted. This generally occurs
because the file is currently assigned to another lu or when a file is
assigned with an account number and is not linked with the
ACPRIVILEGE option. For example, an EWO access privilege is not com-
patible with another assignment that is SRW. Wait for the file to be
freed or change the desired access privileges. For more information,
see the OS/32 Supervisor Call (SVC) Reference Manual.

FILE NOT ASSIGNED ERW ON REPROTECT OR RENAME

To reprotect or rename a file, the file must currently be assigned ERW.
Change the access for the file to ERW. For more information, see the
0S5/32 Supervisor Call (SVC) Reference Manual.

ATTEMPT TO DELETE A FILE WHICH IS NOT CLOSED BY ALL TASKS

The file that is to be deleted is currently assigned to one or more logi-
cal units of one or more tasks. Correct the source code if the file
should not have been assighed, or wait until the file is no longer
assignad to any logical units. For more information, see the OS/32
Supervisor Call (SVC) Reference Manual.

EXCEED ALLOCATED SPACE ON ASSIGN
The file cannot be assigned because the task would exceed the allow-

able amount of system space. Use PATCH or LINK to increase the
amount of system space that the task is allowed. For more informa-

tion, see the 0S/32 Supervisor Call (§VC) Reference Manual, OS/32 Link

Reference Manual, or OS/32 Patch Reference Manual.

ATTEMPT TO ASSIGN ALREADY ASSIGNED LOGICAL UNIT \D

An attempt was made to assign a file to an lu that is currently assigned
to a file. Change the source program to use a different lu for the file.
For more information, see the 0S/32 Supervisor Call (SVC) Reference
Manual.

48-010 FOO R0O4

48-010 FOO R0O4

64

65

66

67

FORTRAN VII Error Messaﬁes 1 6
Diagnostic Messages for FORTRAN VII RTL

LOGICAL UNIT \D NOT ASSIGNED

An attempt was made to perform a SVC7 function (other than an
ASSIGN function) that requires an assigned lu on an lu that is not
currently assigned. Assign the lu prior to attempting the specific SVC7
operation either by correcting the program or manually assigning the
lu. For more information, see the or 0OS/32 Supervisor Call (SVC) Refer-
ence Manual.

SPECIFIED VOLUME NOT A DIRECT ACCESS DEVICE

Direct access was specified on a file or device which does not support
direct access. Make the necessary changes to the source program.
Ensure that you did not specify DIRECT access for a device that does
not support direct access.

FILE DESCRIPTOR FORMAT BAD ON SVC7

The file descriptor specified is not valid. This could mean that an
account number was specified when the program does not have
account privileges. It may also occur when the filename is illegal or
contains meaningless data. Correct the program’s source code.

ASSIGN: DEVICE NON-EXISTENT, NON-CONNECTABLE, OR BUSY
The device does not exist, is not a trap generating device, or is already
connected to another task. Correct the source code to use a trap gen-

erating device that exists or is not already in use. For more informa-
tion, see the 0S/32 Supervisor Call (SVC) Reference Manual.

16-33

1 FORTRAN VII Exrror Message
Diagnostic Messages for FOR RAN VII RTL

16-34

68

69

ALLOCATE OR DELETE ATTEMPTED ON SYSTEM OR GROUP FILE

An attempt was made to allocate or delete a file that is on the group or
system account. Correct the source code so it does not attempt to
delete or allocate files on the GROUP or SYSTEM account. For more
information, see the 0S/32 Supervisor Call (SVC) Reference Manual.

SVC7 ERROR: \Z

An unknown SVC7 error occurred that does not have a meaning within
the context of the run-time library (RTL). Refer to the 0S/32 Supervi-
sor Call (§VC) Reference Manual for the meaning of the SVC7 error.
For raore information, see the 0S/32 Supervisor Call (SVC) Reference
Manual.

48-010 FOO RO4

FORTRAN VII Error Messaﬁes 1 6
Diagnostic Messages for FORTRAN VII RTL

Format Translator Errors |

100 FORMAT DOES NOT BEGIN WITH ‘(. I

The format specified in the 1/0 statement is not correctly formatted. |

The format statement must be enclosed in parentheses. Correct the I

format statement. |

101 UNPRINTABLE CHARACTER ENCOUNTERED IN FORMAT I

The specified format contains unprintable characters. Correct the for- |

mat statement. |

102 NESTING LEVEL OF ’(’ IN FORMAT EXCEEDS 255 I
The specified format statement is too complex. The number of

parenthesis pairs nesting is limited to 255. Simplify the format by

reducing the number of nested parenthesis pairs or break the 170 for-
mat into multiple I/0 and format statements.

103 REPEAT COUNT NOT ALLOWED FOR EDIT DESCRIPTOR I
A format specifier was given a repeat count when it is not allowed to |

have a repeat count. Correct the format by simplifying and removing |
the illegal format repeat specifier. |

104 MISSING DIGITS BEFORE P OR H SPECIFIERS I
The format specifiers P (Precision) and H (Hollerith) require a number I

to preceed the actual format specifier. Correct the format by inserting |
a number before the P/H format specifier or remove the P/H specifiers. |

105 MEMORY OVERFLOW DURING FORMAT TRANSLATION 'I
The format translator exhausted the available memory used for I

translating the format statement. Rerun the program with more]
memory or simplify the format. I

48-010 FOO RO4 16-35

1 FORTRAN VII Error Messages
Diagnostic Messages for FORTRAN VII RTL

106 NUMBIR EXCEEDS HALFWORD IN FORMAT
A numnber that is used as part of the format (not a number to be read
in or written out) is greater than 32767. Simplify the format to use a
value that is less than 32767.

107 CHARZCTER ILLEGAL OR NOT ALLOWED HERE IN FORMAT
An illegal character or an illegal use of a character was found in the
format. Correct the format.

108 ILLECAL SIGN ENCOUNTERED IN FORMAT
An illz2gal use of a sign was found within the format. Correct the for-
mat. :

109 D FIELD EXCEEDS FIELD WIDTH
The L field format identifier was specified so that the total length of
the field will be exceeded by the other parameters in the D field for-
mat. Correct the D field format specifications.

110 NUMBER OF EXPONENT DIGITS EXCEEDS FIELD WIDTH
The number of exponent digits that was specified in the format item
will exceed the size of the format field width. Correct the format
specifier.

111 ZERO REPEAT COUNT IN FORMAT

A forraat item was specified with a repeat count of zero. Correct the
number or remove the format specifier from the format.

16-36 48-010 FOO R04

48-010 FOO RO4

112

113

114

115

FORTRAN VII Error Messaﬁes 1 6
Diagnostic Messages for FORTRAN VII RTL

FIELD WIDTH MISSING OR ZERO IN FORMAT

A field width was omitted or was specified as a 0. Correct the format
by adding the field width, changing the O to a valid value, or removing
the format identifier.

D FIELD MISSING IN FORMAT

A format specifier that requires a D field had the D field omitted from
the format. Correct the format by including the missing fields in the
format. '

EXPONENT FIELD MISSING, ZERO, OR GREATER THAN 255 IN FORMAT
An error was found in a format field that either requires an exponent
field or the exponent field specified is not between 1 and 255
inclusive. Correct the format by including the missing exponent field
or changing the size of the field to be between 1 and 255 inclusive.
RTL STACK OVERFLOW DURING FORMAT TRANSLATION

The format caused the RTL stack to overflow while it was being pro-

cessed. Simplify the format and check for programming errors that
may be causing the recursive format translator calls.

16-37

1 6FORTRAN VII Error Messages
Diagnostic Messages for FORTRAN VII RTL

Formatted 1/0 Errors

16-38

150

151

152

153

154

155

WRITE ATTEMPT EXCEEDS RECORD SIZE \S

An attempt was made to write a record to a file that would result in the trun-
cation of the formatted record. Reduce the size of the formatted record or
increase the record length of the file to be able to handle the size of the for-
matted record’s length.

INPUT RECORD TOO SHORT FORM FORMAT \S

The record length of the file that is being read is not long enough to handle
the specified format. Correct the use of the format or make the necessary
changes in the record length of the particular file.

ATTEMPT FORMATTED I/0O ON LU \D, WHICH HAS NOT BEEN SO DESIGNATED
A formatted 1I/0 was executed on an lu (\D) which was not designated for
formatted 1/0 operations. Correct the program appropriately so as not to
perform formatted I/0 on logical units that are not designated for formatted
1/0 operations.

WRITE BEYOND END OF INTERNAL FILE AT \A

A formatted write operation, if completed, would overwrite an internal file.
Make the necessary changes to the 170 statement or the internal file so that
the 170 operation does not write beyond the end of the internal file.
DIRECT ACCESS NOT ALLOWED

A direct access 170 was attempted where direct access to a file is not
allowed. Correct the source program.

ARGUMENT EXISTS, BUT FORMAT REQUIRES NONE

An argument was specified on a formatted write statement, but the format
does not have any format specifiers that operate with arguments (i.e., I, F, A,

or G format specifiers). Correct the format itself or remove the argument(s)
from the [/O statement.

48-010 FOO RO4

156

157

158

159

160

48-010 FOO R0O4

FORTRAN VII Error Messaﬁes 1 6
Diagnostic Messages for FORTRAN VII RTL

QUOTE OR HOLLERITH EDIT ILLEGAL IN INPUT FORMAT

The format used in a formatted read contains quoted information or a Hol-
lerith string. Correct the format. A format used for input may not contain
quoted strings or Hollerith strings.

TYPE MISMATCH BETWEEN \S EDIT AND \S

The variable that was specified for the particular format identifier is not
compatible with the variable that is being written or read. Either correct the
format that was used for the I/0 or correct the data that was being read or
written. If the program paused, a CONTINUE command can be entered and
the format identifier will be adapted to the variable.

ILLEGAL INPUT FOR \S EDIT IN FORMAT

The data entered for the format specifier is illegal for the particular format
identifier. Correct the format if it does not accept the correct data or enter
the correct type of input data.

INPUT VALUE UNDERFLOW IN \S EDIT \S

The value that was entered for the specified format has underflowed during
the conversion to the binary format. Increase the variable that is being used
for the input to a double precision variable or make the necessary correc-
tions to the number that is being input.

INPUT VALUE OVERFLOW IN \S EDIT \S.
The value that was entered for the specified format overflowed during the
conversion to the binary format. Increase the variable that is being used for

the input to larger integer or floating point value or make the necessary
corrections to the number that is being input.

16-39

1 FORTRAN VII Error Messages
Diagnostic Messages for FORTRAN VII RTL

16-40

175

176

177

178

179

ATTEMPT UNFORMATTED I/0 ON LU \D, WHICH HAS NOT BEEN SO DESIGNATED
An unformatted /0 was attempted on an lu (\D) which was not designated
for unformatted I/0 operations. Make the necessary corrections in the pro-
gram and /O statements.

UNFORMATTED INPUT RECORD TOO SHORT

The unformatted input record is not long enough for the 1/0 that was
attempted on the file. Correct the program that generated the data record or
correct the program that is reading the data record.

ATTEMPT AN UNFORMATTED I/O GREATER THAN RECL: \D

An attempt was made to perform an unformatted I/0 greater than the record
length (\D) of the file. Correct the program that generated the data record or
correct the program that is reading or writing the data record.

ATTEMPT TC READ MORE THAN WAS WRITTEN

An attempt was made to read more data from a record than was actually
written. Correct the program that generated the data record or correct the
program that is reading or writing the data record.

ATTEMPT BINARY I/O ON UNIT \D —— ILLEGAL RECL

Binary 170 was attempted on the specified lu (\D) and the record length of

the file is illegal. Make the necessary changes to the program that is generat-
ing the 170 operation.

48-010 FOO RO4

FORTRAN VII Error Messaﬁes 1 6
Diagnostic Messages for FORTRAN VII RTL

List-Directed 1/0 Errors

200

201

202

203

204

48-010 FOO R0O4

MISMATCH IN TYPE OF DATA AND VARIABLE IN \S INPUT

The data that was entered does not match the type required by the variable
being input. Correct the data or include in the INPUT statement the ERR= or
IOSTAT= keywords to handle the mismatch of the data and the variable type.

OVERFLOW IN \S INPUT

During the conversion of the input data for the list-directed or namelist
input a conversion overflow occurred. Either correct the data or add the
keywords ERR= or IOSTAT= to the I/0 statement to handle the error condi-
tion.

INVALID CHARACTER IN \S INPUT

An invalid character was found while processing the list-directed or namelist
input. Correct the input data or add the keywords ERR= or IOSTAT= param-
eter to the 170 statement to handle the error condition.

MISSING BEGINNING QUOTE IN \S INPUT

The necessary leading quote character needed for the \S edit descriptor was
not found. Correct the data by adding the necessary quote or adding the
keywords ERR= or IOSTAT= to handle the error condition.

STRING OF LENGTH ZERO IN \S INPUT

The data input for the list-directed or namelist input is a null string. Correct

the data input. If the data is generated by other sources add the keywords
ERR= or IOSTAT= to detect the error condition.

16-41

1 GFQRTRAN VII Error Messages
Diagnostic Messages for FORTRAN VII RTL

205

206

207

208

209

210

16-42

ADDITIONAL STORAGE COULD NOT BE OBTAINED IN \S INPUT

During the processing of the 1/0, the necessary additional memory could not
be obtained for processing input. Run the program with more memory, make
the necessary additions to the I/0 statement by adding ERR= or IOSTAT=, or
correct the errors in the program.

CHARACTER STRING > 32K IN \S INPUT

The 170 statement attempted to read a string that is greater than 32kB in
size while processing the list-directed or namelist input. Correct the pro-
gram and cr data so the program does not attempt to read a string more
than 32kB .n size.

REAL VALUR UNDERFLOW IN \S INPUT

During the conversion of the input data for the input variable a conversion
underflow occurred. Either correct the data or add the keywords ERR= or
IOSTAT= parameter to the 170 statement to handle the error condition.
MISSING OPEN PARENTHESIS IN \S§ INPUT

The necessary open parenthesis is missing from the input data. Correct the
input data and add the keywords ERR= or IOSTAT= to allow the program to
handle the error condition.

END OF RECORD NOT ALLOWED HERE IN \S INPUT

An end of record condition was detected during the input processing where
its occurrence is not allowed. Correct the input data and add the keywords
ERR= or I0O5TAT= to allow the program to handle the error condition.

PART OF CCMPLEX CANNOT BE NULL IN \S INPUT

A complex number was input but a part of the number was not specified.

Correct the input data and add the keywords ERR= or [OSTAT= to allow the
program to handle the error condition.

48-010 FOO RO4

FORTRAN VII Error Messages

Diagnostic Messages for FORTRAN VII

211 MISSING VALUE SEPARATOR IN \S INPUT

212

213

-48-010 FOO R0O4

#16

The input data is missing the required value separator between each variable
input item. Correct the input data and add the keywords ERR= or IOSTAT=

to allow the program to handle the error condition.

REPLICATION FACTOR OF ZERO NOT ALLOWED IN \S INPUT

A format replication was specified where it is not allowed or was set to 0
which is not allowed. Correct the input data and add the keywords ERR= or

IOSTAT= to allow the program to handle the error condition.

RECORD LENGTH < MAXIMUM REQUIRED TO OUTPUT VALUE IN \S OUTPUT

The record length of the file is too small to perform the 1/0. Correct the
record length of the file or the output statement that is generating the out-

put.

16-43

1 FORTRAN VII Error Message
Diagnostic Messages for FOR RAN VII RTL

Namelist I1/0 Errors

16-44

225

226

227

228

229

230

INVALID VARIABLE NAME SYNTAX IN NAMELIST INPUT

A namelist input variable name was detected that contains a syntax error.

Correct the namelist input data.

END OF RECORD BEFORE ‘=’ IN NAMELIST INPUT

The end-of-record was detected after a namelist variable and before the
equal sign (=') was found. Correct the namelist data. Also add the ERR= or
IOSTAT= parameters to allow for checking of errors by the program.

VARIABLE NOT IN NAMELIST

A variable was specified in the namelist data that is not in the NAMELIST
statement. Correct the data or add the variable to the NAMELIST statement.

/=’ MISSING AFTER VARIABLE NAME IN NAMELIST INPUT

The equal sign ('=’) was not placed after the variable name. Correct the

namelist data to include the necessary equal signs.

SCALAR VARIABLE CANNOT HAVE SUBSCRIPTS IN NAMELIST INPUT

A scalar (nonarray) variable was specified in the input data with array sub-
scripts. Correct the data. If the variable is suppose to be an array make the

corrections in the source code.

TOO FEW SUBSCRIPTS IN NAMELIST INPUT

The input variable name in the NAMELIST data was specified without the
correct number of subscripts. Correct the input data or make the necessary

corrections to the source program.

48-010 FOO R04

231

232

233

234

235

48-010 FOO RO4

FORTRAN VII Error Messaﬁes 1 6
Diagnostic Messages for FORTRAN VII RTL

SUBSCRIPT OUT OF RANGE IN NAMELIST INPUT

The specified subscript in the input data is not in the correct range for the
array variable specified. Correct the input data or if it is correct make the
necessary corrections in the source code of the program.

TOO MANY SUBSCRIPTS IN NAMELIST INPUT

The input variable name in the NAMELIST data was specified without the
correct number of subscripts. Correct the input data or make the necessary
corrections to the source program.

TOO MANY VALUES FOR ARRAY IN NAMELIST INPUT

Too many data values were specified for an array in the NAMELIST input
data. Correct the input data by reducing the number of input items for the
array that is being processed.

RECORD LENGTH < 38 FOR NAMELIST I/0

The record length of the file that is being used with NAMELIST 1/0 is less
than 38 bytes in length. Increase the record length of the appropriate file to
be at least 38 bytes in length. This correction can be done from the OS level
if necessary or from within the program.

QUOTE IN CHARACTER DATA HAS BEEN SPLIT ACROSS RECORD IN
NAMELIST OUTPUT

A quote in a namelist output (designated by consecutive single quotes)
causes one quote to occur at the end of a record and its corresponding
quote to occur at the beginning of the next record. Make the corrections in
the program so the data item does not split.

16-45

1

FORTRAN VII Error Messages
Diagnostic Messages for FORTRAN VII RTL

236

237

238

239

240

241

16-46

ERROR IN SUBSTRING SPECIFICATION IN NAMELIST INPUT

An error was found in the substring specification in the namelist data item.
Correct the substring specification in the input data.

TOO MANY SIGNIFICANT DIGITS IN HEX CONST IN NAMELIST INPUT

The hex constant being processed has too many digits (less than eight
significant digits for a 'Y’ constant; less than four significant digits for an 'X’
constant). Correct the input data so it does not have an excessive number of
digits.

CR IN HEX, HOLLERITH, OR R CONST IN NAMELIST INPUT

A carriage return was detected inside of HEX, HOLLERITH, or R CONST data
item during the NAMELIST input. Correct the NAMELIST data.

R CONSTANT LONGER THAN 4 CHARS IN NAMELIST INPUT

The R constant that was specified in the NAMELIST input is longer than four
characters in length. Correct the NAMELIST input data.

ZERO LENGTH IN HOLLERITH OR R CONSTANT IN NAMELIST INPUT

The Holler th data or R constant length in the NAMELIST input is zero digits
in length. Correct the NAMELIST input data.

NO DIGITS IN HEX CONSTANT IN NAMELIST INPUT

The Hex constant in the NAMELIST data does not have any digits. Correct
the NAMELIST data input.

48-010 FOO RO4

FORTRAN VII Error Messaﬁes 1 6
Diagnostic Messages for FORTRAN VII RTL

Auxiliary 170 Errors
300 NO MATCH FOUND IN AUX. I/O PARAMETER LIST (INTERNAL ERROR)

While processing an auxiliary 1/0 statement, a keyword was encountered that
is not valid for this particular function. Verify that the program did not
cause the problem by overwriting arrays or other data areas. Make the
necessary correction to the program if this is the cause. If the program is
not the cause, please report the problem with a software change request
(SCR) and supporting documentation.

301 VALUE \D FOR SPECIFIER > MAX VALUE ALLOWED: \D

The value for the specifier (\D) is greater than the maximum value allowed.
An example is specifying a value of 256 for a file’s blocking factor when 255
is the maximum blocking factor allowed for files. Make the necessary correc-
tions to the values that are being passed to the auxiliary I/0 statement or
perform program validation on the program’s input.

302 INVALID SPECIFIER CODE TYPE (INTERNAL ERROR)

While processing an auxiliary 1/0 statement a specifier was encountered that
is not valid for this particular function. Verify the program did not cause the
problem by overwriting arrays or other data areas. Make the necessary
correction to the program if this is the cause. If the program is not the
cause, please report the problem with a SCR and supporting documentation.

303 LENGTH NOT PRESENT WITH CHARACTER ADDRESS (INTERNAL ERROR)

A character item was found on the argument list passed to the auxiliary 1/0
which was not followed by a character length. Verify the program did not
cause the problem by overwriting arrays or other data areas. Make the
.necessary correction to the program if this is the cause. If the program is
not the cause, please report the problem with a SCR and supporting docu-
mentation.

48-010 FOO RO4 16-47

1 GFORTRAN VII Error Messages
Diagnostic Messages for FORTRAN VII RTL

16-48

304

305

306

307

308

309

MNEMONIC STRING INVALID: \S

The MNEMONIC string passed to the auxiliary I/0 statement is not a valid
mnemonic for this particular auxiliary I/0 statement. Correct the MNEMONIC
string that was passed to the auxiliary 1/0 statement. Also ensure that the
program has not corrupted the program memotry space.

NO UNIT SPECIFIER PRESENT IN AUXILIARY I/O STATEMENT

The auxiliary 170 statement does not have a [UNIT=]lu specifier present. All
auxiliary 1/D statements require that a lu be specified. Correct the auxiliary
170 statement by adding the [UNIT=]lu parameter to the auxiliary 1/0 state-
ment.

OPEN STMT: FILE SPECIFIER NOT PRESENT AND RENAME='YES’

A request to renew a file cannot be performed because the new name for the
file was not specified. Correct the auxiliary I/0 statement by including the
new name of the file in the auxiliary I/0 statement.

OPEN STMT: BLANK SPECIFIER ONLY ALLOWED FOR FORMATTED FILES

The auxiliary 170 statement opened a file and specified the BLANK= specifier,
but the open is not for a FORMATTED (ASCII only) file.

OPEN STMT: FILE SPECIFIER NOT PRESENT AND STATUS OLD, NEW,
OR RENEW

The auxiliary 170 statement opened a file and specified the STATUS= parame-
ter but no file descriptor was specified for the auxiliary 170 OPEN statement
to use. Cotrect the auxiliary 170 statement by including the FILE= specifier
to allow the auxiliary 170 statement to operate.

OPEN STMT: ATTEMPT TO CREATE A NAMED SCRATCH FILE
An attempt was made to open a scratch file (temporary file) as a permanent
file. Correct the auxiliary 170 statement by either not using a file descriptor

(i.e., specifying FILE=fd) for the temporary file or not specifying the file as a
temporary file.

48-010 FOO RO4

310

311

312

313

314

48-010 FOO R0O4

FORTRAN VII Error Messages 1 6
Diagnostic Messages for FORTRAN VIl RTL

DIRECT ACCESS, COUNTBY=RECORD, AND RECL NOT SPECIFIED

An auxiliary 170 statement was specified that requires that
COUNTBY="RECORD’ and the record length of the file to be specified. Make
the necessary correction to the auxiliary I/0 statement so it functions
correctly.

OPEN STMT: COUNTBY=SECTOR AND FILE TYPE IS NOT CONTIG OR EC

The auxiliary 170 statement specified COUNTBY="SECTOR’ and the file is not
a contiguous nor an extendible contiguous file. Make the necessary program
correction to the auxiliary 170 statement and the program design, as
required.

OPEN STMT: TYPE SPECIFIED INCOMPATIBLE WITH EXISTING FILE

The TYPE= specifier was specified on an auxiliary 170 statement and the file
that exists with the particular file descriptor is not compatible with the
specified value of the TYPE= parameter. Make the necessary corrections to
the auxiliary 1/0 statement so it operates correctly.

OPEN STMT: SIZE SPECIFIER NOT PRESENT & FILE TYPE=CONTIG, EC
OR LR

The auxiliary [/0 statement requires the SIZE= parameter to open the
specified file. Make the necessary correction to the auxiliary /0 statement
so it operates correctly.

OPEN STMT: STATUS=NEW FOR EXISTING FILE.
The auxiliary 170 statement does not expect the specified file to exist, yet it
does. Make the necessary corrections to the auxiliary 170 statement so it

either renews (reallocate) the file, deletes the file, or handles the error, as
needed.

16-49

1 FORTRAN VII Error Message
Diagnostic Messages for FOR RAN VII RTL

16-50

315

316

317

318

319

OPEN STMT: STATUS=OLD ON FILE WHICH DOES NOT EXIST

A file which does not exist was specified for the auxiliary 170 statement.
Make the necessary corrections to the auxiliary /0 statement so it renews
(reallocate) :he file or handles the error as needed.

OPEN STMT- ATTEMPT TO ALLOCATE A DEVICE

An illegal at-empt was made to allocate a device. Make the necessary correc-
tions to the auxiliary 1/0 statement so that it does not attempt to allocate a
device.

OPEN STMT ATTEMPT TO CHANGE FILE FORM ON USED LU

An attempt was made to change the FORM of the file assigned to an lu, (i.e.,
by specifying UNIT=), after it was opened and written to or read. Make the

necessary corrections by closing the file and reopening it with the desired

attributes or by not attempting to change the FORM of the file attached to

the lu.

OPEN STMT: ATTEMPT TO CHANGE BLOCKSIZE ON USED LU

An attempt was made to change the BLOCKSIZE on a file that is attached to
an lu and had an 1/0 operation performed on it. Make the necessary correc-
tions to the auxiliary 170 statement so it specifies the correct BLOCKSIZE of
the file that is assigned to the specified lu (UNIT=).

OPEN STMT: ATTEMPT TO CHANGE RECORD LENGTH ON USED LU
An attempt was made to change the record length of the file that is assigned
to the lu (UNIT=) after the file had an 170 operation performed on it. Make

the necessary corrections to the auxiliary 170 statement so it specifies the
correct record length of the file that is assigned to the specified lu (UNIT=).

48-010 FOO RO4

320

321

322

323

324

48-010 FOO RO4

FORTRAN VII Error Messaﬁes 1 6
Diagnostic Messages for FORTRAN VII RTL

OPEN STMT: ATTEMPT TO CHANGE FILE TYPE ON USED LU

An attempt was made to change the file type (indexed, contiguous etc.) of the
file that is assigned to the lu (UNIT=) after the file had an 1/0 operation per-
formed on it. Make the necessary corrections to the auxiliary 1/0 statement
so it specifies the correct file type of the file that is assigned to the specified
lu (UNIT=).

OPEN STMT: LU NOT ASSIGNED ON REPROTECT
An attempt was made to reprotect a file that is not currently assigned to an

lu. Assign the file to an Iu with exclusive read/write access and then repro-
tect the file.

OPEN STMT: LU NOT ASSIGNED ON RENAME

‘An attempt was made to rename a file that is not currently assigned to an lu.

Assign the file to an lu with exclusive read/write access and then rename the
file.

OPEN STMT: SIZE = \D > CURRENT CONTIG FILE SIZE OF \D

An attempt was made to assign an existing contiguous file with a specified
size, but the number of sectors specified in the SIZE= parameter is greater
than the actual number of sectors in the file. Make the necessary correction
to the OPEN statement by renewing the file to the desired size or omitting
the SIZE= parameter.

OPEN STMT: FORMATTED RECL \D > CURRENT RECL \D

An attempt was made to assign an existing file with a specified record length,
but the record length specified in the RECL= parameter is greater than the
actual record length of the file. Make the necessary cofrection to the OPEN
statement by renewing the file to the desired record length or omitting the
record length parameter.

16-51

1

FORTRAN VII Error Messages
Diagnostic Messages for FORTRAN VII RTL

325

326

327

328

16-52

OPEN STM1': READ AND WRITE KEYS MUST BE SPECIFIED ON
REPROTECT!

An attempt was made to reprotect a file (i.e., REPROTECT="YES’), but the read
and/or write keys were not specified (i.e., RKEY=, WKEY=). Correct the auxi-
liary 170 statement so it specifies the read and write protection keys for the
reprotect option of the auxiliary 170 statement.

OPEN STM?!: DIRECT ACCESS SPECIFIED BUT RANDOM NOT SUPPORTED

An attempt was made to open a file with direct access, but direct access is
not supported on the file or device being assigned. This may occur if you
try to open a device (e.g., CON;, PR;, etc.) with ACCESS="DIRECT’. Make the
necessary correction to the auxiliary I/0 statement.

OPEN STMT: UNFORMATTED SPECIFIED BUT BINARY NOT SUPPORTED

An attempt was made to issue an auxiliary [/0 statement that is requesting a
binary file format, but the device or file does not support binary I/0. For
example, opening a device (such as PR:) with FORM="UNFORMATTED’ parame-
ter. Make the necessary corrections to the auxiliary 170 statements.

OPEN STMT: UNFORMATTED BLOCKSIZE \D GREATER THAN FILE
RECL \D

The specified BLOCKSIZE is greater than the record length of the file that is
being oper.ed or created. Make the necessary corrections to the auxiliary 170
statement 30 that the BLOCKSIZE is not greater than the record length of the
file.

CLOSE STMT: STATUS=KEEP ON CLOSE STATEMENT AND FILE
IS SCRATCH FILE

An attempt. was made to close and retain a file that is a scratch (temporary)
file. Correct the auxiliary 170 statement as required.

48-010 FOO RO4

330

331

332

333

334

48-010 FOO R0O4

FORTRAN VII Error Messaﬁes 1 6
Diagnostic Messages for FORTRAN VII RTL

INQUIRE STMT: NEITHER UNIT NOR FILE SPECIFIER PRESENT

An auxiliary I70 INQUIRE statement was executed and neither UNIT= nor
FILE= was specified. Correct the auxiliary 1/0 statement so that one or both
of the keywords UNIT= or FILE= is specified.

INQUIRE STMT: NO LU AVAILABLE TO ASSIGN FILE

There are no logical units available to the auxiliary I/0 statement to assign
the specified file to perform the inquire function. This may occur if you are
inquiring by FILE=, in which case the INQUIRE routine requires an extra lu to
assign temporary files. Close an lu so the INQUIRE statement will execute or
relink/patch the task with more logical units for the task to use during exe-
cution. For more information, see the OS/32 Link Reference Manual or
0S/32 Patch Reference Manual.

LU \D BUSY AND UNUSABLE
The lu specified by \D is currently unavailable. This error may occur if, for

example, a function called as one of the I/0 list items in a write statement
performs 170 on that lu. Correct the source code so this does not occur.

BACKSPACE COUNT NOT POSITIVE: \D

The count for an auxiliary 1/0 BACKSPACE statement should be one or

greater. Correct the count for the auxiliary 170 statement so that it is one or
greater. If the intention is to rewind the file then use the auxiliary 170
REWIND statement.

OPEN STMT: RECL NOT POSITIVE: \D
The record length on an auxiliary 1/0 statement is not positive. Correct the

auxiliary 1/0 statement so that the specified record length is positive. Add
the validation code to the program as needed.

16-53

1 FORTRAN VI Error Messages
Diagnostic Messages for FORTRAN VII RTL

16-54

335

336

337

338

BLOCKSIZE NOT POSITIVE OR TOO SMALL FOR UNF. I/O: \D

The BLOCKSIZE specified for an auxiliary 170 statement is not positive or is
too small for the unformatted 1/0 that is being requested. Correct the auxili-
ary 170 statement so that the specified BLOCKSIZE is positive and is large
enough for the specified unformatted 1/0.

OPEN STMT: SIZE NOT POSITIVE: \D

The value specified with the SIZE= parameter should be greater than or
equal to one (or zero, if being used with an index file that is being reallo-
cated or allocated). Make the necessary corrections to the value specified
with the SIZE= parameter.

OPEN STMT: ISIZE NOT POSITIVE: \D

The value specified with the ISIZE= parameter should be greater than or
equal to one (or zero, if being used with an index file that is being reallo-
cated or allocated). Make the necessary corrections to the value specified
with the ISIZE= parameter. If the value is negative, the program probably
has overwritten arrays or other areas of the program task space.

OPEN STMT: ATTEMPT TO CHANGE COUNTBY ON USED LU
An attempt was made to change the COUNTBY method on an lu that is

currently opened. Correct the auxiliary /0 statement so that it does not
change the COUNTBY= mode of the opened lu.

48-010 FOO RO4

FORTRAN VII Error Messaﬁes 1 6
Diagnostic Messages for FORTRAN VII RTL

Pack fd Errors

349

48-010 FOO RO4

INVALID FILE SPECIFIER OR ERROR ON PACK FILE DESCRIPTOR-SVC2

An error was detected on the file descriptor defined by the file descriptor
specifiers of the auxiliary 1/0 statements. Correct the filename that is being
specified to the auxiliary 1/0 statement if the file descriptor contains errors.
If the file descriptor is correct and the error is being reported, ensure that
the file descriptor format is valid for the version of the FORTRAN VII RTL
being used. The FORTRAN RTL supplied as part of the FORTRAN VII R05.01
package does not support account numbers (i.e. /1 /0 /345 etc.). Also,
ensure that the program task image has the ACPRIVILEGE option specified if
the program requires account numbers. If the program is being run under
the multi-terminal monitor (MTM) then this error may be generated. For
more information, see the 0S/32 Supervisor Call (SVC) Reference Manual,
05/32 Link Reference Manual, or OS/32 Patch Reference Manual.

16-55

1 FORTRAN VII Error Messa
Diagnostic Messages for FOR RAN VII RTL

Math Errors

16-56

500

501

502

504

505

\S: TOO MANY ARGUMENTS
The subroutine or function was called with too many arguments. Make the
necessary corrections to the source code so that the routine is called with
the correct number of arguments.

\S: TOO FEW ARGUMENTS
The subroutine or function was called with too few arguments. Make the

necessary corrections to the source code so that the routine is called with
the correct number of arguments.

\S: AN ARGUMENT OF INCORRECT TYPE

One of the arguments to the subroutine or function is not the correct type.

Make the necessary corrections to the source code so that the routine is
called with the proper argument type (i.e., INTEGER*4, REAL*4 etc.).

\S: ZERC ARGUMENT

An argument with a value of zero was passed to a routine which does not
allow the value zero. Make the necessary corrections to the source code so
that the routine is called with the correct values for the arguments.

\S: NEGATIVE ARGUMENT

An argument with a negative value was passed to a routine which does not
allow negative argument values. Make the necessary corrections in the
source code so that the routine called with the correct values for the argu-
ments.

\S: ARGUMENTS (0,0)
The arguments of the routine are zero and the routine does not allow zero

arguments. Make the necessary corrections in the source code so that the
routine is called with the correct values for the arguments.

48-010 FOO R04

506

507

508

509

510

48-010 FOO RO4

FORTRAN VI Error Messaﬁes 1 6
Diagnostic Messages for FORTRAN VII RTL

\S: ARGUMENT TOO LARGE

The absolute value of the argument is too large for the routine that was
invoked. Make the necessary corrections in the source code so that the rou-
tine is called with the correct values for the arguments.

\S: ARGUMENT OUT OF RANGE : POSITIVE

The specified routine was called with an argument that is greater than the
maximum value allowed for the routine invoked. Make the necessary correc-
tions in the source code so that the routine is called with the correct values
for the arguments. ‘

\S: ARGUMENT OUT OF RANGE : NEGATIVE

The specified routine was called with an argument that is less than the
minimum value allowed for the routine invoked. Make the necessary correc-
tions in the source code so that the invocation of the routine is with the
correct values for the arguments.

\S: REAL PART TOO LARGE

A routine was invoked with an imaginary number which contains a real value
portion with an absolute value that is too large for the routine which was
invoked. Make the necessary corrections in the source code so that the rou-
tine is called with the correct values for the arguments.

\S: REAL PART OUT OF RANGE : POSITIVE
A routine was invoked with an imaginary number which contains a real value
portion that is greater than the maximum allowed for the routine that was

invoked. Make the necessary corrections in the source code so that the rou-
tine is called with the correct values for the arguments.

16-57

1 GF(_)RTRAN VII Error Messages
Diagnostic Messages for FORTRAN VII RTL

16-58

511

512

513

514

515

516

517

\S: REAL PART OUT OF RANGE : NEGATIVE

A routine was invoked with an imaginary number which contains a real value
portion that is less than the minimum allowed for the routine that was
invoked. Make the necessary corrections in the source code so that the rou-
tine is called with the correct values for the arguments.

\S: IMAGINARY PART TOO LARGE

A routine was invoked with an imaginary number which contains an ima-
ginary value portion with an absolute value that is too large for the routine
that was invoked. Make the necessary corrections in the source code so that
the routine is called with the correct values for the arguments.

\S: IMASINARY PART OUT OF RANGE : POSITIVE

A routine was invoked with an imaginary number which contains an ima-
ginary value portion that is greater than the maximum allowed for the rou-
tine that was invoked. Make the necessary corrections in the source code so
that the invocation of the routine is with the correct values for the argu-
ments.

\S: TIMAGINARY PART OUT OF RANGE : NEGATIVE
A routine was invoked with an imaginary number which contains an ima-
ginary value portion that is less than the minimum allowed for the routine

that was invoked. Make the necessary corrections in the source code so that
the invocation of the routine is with the correct values for the arguments.

\S: OVERFLOW ON CONVERSION
An overflow occurred during the conversion of a number while it was being
processed by the specified routine. Make the necessary corrections in the
source code so that the program can handle the conversion of the number.
\S: VALUE OF SIZE IS ILLEGAL
The specified size of the value is illegal for the routine that was invoked.

Make the necessary corrections in the source code so that the routine is
called with the correct values for the arguments.

\S: EXPONENTIAL OVERFLOW

48-010 FOO RO4

518

519

520

521

522

48-010 FOO RO4

FORTRAN VII Error Messages 1 6
Diagnostic Messages for FORTRAN VII RTL

An exponential overflow occurred while program execution was located in
the routine \S. Make the necessary corrections in the source code so that
the routine is called with the correct values for the arguments.

\S: EXPONENTIAL UNDERFLOW

An exponential underflow occurred while program execution was located in
the routine \S. Make the necessary corrections in the source code so that
the routine is called with the correct values for the arguments.

\S: ZERO DIVISOR

An operation within the routine \S is attempting to use zero as a divisor.
Make the necessary corrections in the source code so that the routine is
called with the correct values for the arguments.

\S: ARGUMENTS (ZERO,NEGATIVE)

The routine \S was called with arguments that are less than or equal to zero
when only arguments with positive values are allowed. Make the necessary
corrections in the source code so that the routine is called with the correct

values for the arguments.

\S: NEGATIVE EXPONENT

A routine was invoked with an argument that has a negative exponent when
only numbers with positive exponents are allowed. Make the necessary
corrections in the source code so that the routine is called with the correct
values for the arguments.

\S: ZERO BASE, NEGATIVE EXPONENT
The routine \S was invoked with an argument that is zero or has an
exponent value that is negative. Make the necessary corrections in the

source code so that the routine is called with the correct values for the argu-
ments.

16-59

1 6FQRTRAN VII Error Messages
Diagnostic Messages for FORTRAN VII RTL

16-60

523

524

525

\S: NEGATIVE INDEX

A negative index was passed to the routine \S which does not allow negative
indexes. Make the necessary corrections in the source code so that the rou-
tine is called with the correct values for the arguments.

\S: SIZE TOO LARGE
The size which was specified for the routine \S is too large for the routine to
handle. Make the necessary corrections in the source code so that the rou-
tine is called with the correct values for the arguments.

\S: SIZE NOT POSITIVE
The size which was specified for the routine \S is not positive. The routine
requires that the size be positive. Make the necessary corrections in the

source code so that the routine is called with the correct values for the argu-
ments.

48-010 FOO R0O4

FORTRAN VII Error Messaﬁes 1 6
Diagnostic Messages for FORTRAN VII RTL

Miscellaneous Errors

526

527

528

529

530

531

48-010 FOO RO4

\S: ILLEGAL FUNCTION CODE
The function code specified for the routine \S is not valid for the operation
that is desired. Make the necessary corrections in the source code so that
the routine is called with the correct values for the arguments.

\S: ILLEGAL TRAP CODE
The routine \S encountered a trap code that is illegal or is not supported by
the FORTRAN RTL. If the trap code is not needed then make the necessary
corrections to the source code so that the trap code is not placed on the task
queue. If the reason code is required, make the necessary changes to the
source code to handle the trap code.

\S: ILLEGAL LEVEL OF TRAPPING
An illegal level of trapping was detected in the routine \S. Make the neces-
sary corrections to the source code to prevent the illegal trapping.

\S: ILLEGAL CALL
An illegal call was detected by the routine \S. Make the necessary correc-
tions to the source code to prevent the illegal call.

\S: TARGET VARIABLE FOR FUNCTION IS OF WRONG TYPE
The target variable for the function \S is not the correct type for this func-

tion. Make the necessary changes to the source code so the target variable is
the correct type for the function that is being called.

\S: NEGATIVE BASE

The routine \S found that the argument that supplies the base for routine is
negative. Make the necessary changes to the source so the routine is called
with the correct values.

16-61

1 6FORTRAN VII Error Messa
Diagnostic Messages for FOR RAN VII RTL

16-62

532

533

534

535

536

\S: ARGUMENT OF INCORRECT CLASS

The routine \S was called with one or more arguments that are not of the
proper class (i.e., INTEGER*4, INTEGER*2, etc.). Make the necessary correc-
tions to the source code so that the arguments passed are of the correct
class.

\S: INCORRECT NUMBER OF ARGUMENTS
The routine was called with the incorrect number of arguments. Make the
necessary corrections to the source code so that the correct number of argu-
ments are called.

\S: NO TRAPS
The prograrn received a trap but does not have any traps enabled. Enable
the desired trap so the RTL can process the desired trap.

\S: NO ALTERNATE RETURN IN ARGUMENT LIST
An attempt was made to execute a RETURN statement with an alternate
return specifier (e.g.,, RETURN 1). Correct the source code when the routine
was called so that it includes the proper number of alternate return labels.

\S: EXCEED RTL SCRATCH PAD,TEST/TRACE WITH I/0
The routine \S exhausted the RTL scratch pad that is available for use.
Correct the source code. Normally, the RTL scratch pad can only be
exhausted by the illegal nesting of FORTRAN 170 statements. Examine the

source code for the illegal nesting of FORTRAN 1/0 and other routines that
use the RTL scratch pad and return the space used when exiting the routine.

48-010 FOO RO4

FORTRAN VII Error Messages 1 6
Special Error Messages

Special Error Messages

__0U — /'INSUFFICIENT MEMORY’

Not enough memory to get RTL stack space, load program with more
memory.

__U — 'TASK REQUIRES FEP BE PRESENT’

Program requires the FORTRAN ENHANCEMENT PACKAGE; the system
options do not have the writable control store (WCS) option set.

.RTLST - ’'ABORT: INSUFFICIENT RTL SPACE’

There is not enough RTL stack space remaining to initialize for 1/0. This
can be caused by illegally nested I/0 and must be remedied by altering

the source code to decrease the nesting level. The task is terminated with
an end of task code of 255.

_IOERMS (.IOMES) = 'ERROR EXISTS, CANNOT GIVE DETAILS DUE TO LACK OF
RTL SPACE’

There is not enough RTL stack space remaining to build an error message
buffer. This can be caused by illegally nested I/0 in which an error is
encountered and must be remedied by altering the source code to
decrease the nesting level.

_IOERMS (.IOMES) — 'ERROR \D (\A) \S : NO DETAILS, TEXT CANNOT BE REI
FROM F7RTLxx.ERR/S’

Error \D was detected, however, the error text file cannot be
assigned/read. The error file should exist on the system volume on the
system account. The RTL assigns the error file dynamically to a free lu.
The error file may not be preassigned.

48-010 FOO R04 16-63

1 GFORTRAN VII Error Messages
Special Error Messages

.XPA - 'XPA - INSUFFICIENT USER MEMORY’
Not enough memory for work space; load program with more memory.
.XPA ~ 'XPA — INSUFFICIENT SYSTEM SPACE FOR TIMER TRAP’
The system space must be increased by operator.
.XPA - 'XPA - ALLOCATE ASSIGN ERROR <type> : FILE : file.XPA/P’
MAX lu, the output lu for XPA data, cannot be allocated/assigned.
XPA_SET — 'XPA_SET — INCORRECT ARGUMENT TYPE’
The arguments passed to XPA_SET are incorrect.
.CRA/.CRAXPA - ’CRA[XPA] - I/0 ERROR xXxxX WRITING CRA FILE’

An 170 error occurred while writing the call recording analysis (CRA) file.
xxxx is the SVC1 status.

.CRA/.CRAXPA — ’'CRA[XPA] — INSUFFICIENT MEMORY FOR TABLES’
Not enough memory for table space; load program with more memory.
.CRA/.CRAXPA - ’CRA[XPA] - ADDRESS MAP NOT FOUND ON MAP FILE’

ADDRESS option was not used when the map was requested by the Link
MAP command. The task must be relinked and an address map generated.

16-64 48-010 FOO R0O4

48-010 FOO RO4

FORTRAN VII Error Messages 1 6
Special Error Messages

.CRA/.CRAXPA — 'CRA [XPA] - voln:filename.MAP DOES NOT EXIST ON
/P, /G OR /S’

The MAP file could not be located. It must exist on the same volume as
the task and be on either the private, group, or system account.

XPATAB — ’‘MAX RANGE MUST BE >= MIN RANGE’

Range with which the analysis is to be performed must be of the form"
rangel-range2 where rangel2 >= rangel.

XPATAB — ’'NOT ENOUGH BUCKETS, INCREASE STEP SIZE OR PROGRAM
LOAD SIZE'

Work size is insufficient for the requested analysis. Either increase the
STEP size ar reload XPATAB with a larger load size.

XPATAB — ’‘XPA FILE INCOMPLETE — PARTIAL XPATAB PRODUCED’

The program being analyzed did not run to completion which resulted in
a partial XPATAB file.

16-65

1 GFORTRAN VII Error Messages
Nonzero End-of-Task Codes

Nonzero End-of-Task Codes

16-66

240

241

242

251

252
253

254

255

1000

Insufficient user memory for XPA/CRA. Reload program with
more work space.

XPA - Insufficient system space to store timer trap. Have opera-
tor increase system space.

CRA - Address map not found on MAP file or MAP file not found.
1/0 error occurred writing CRA file. Disc is probably bad.

Error on release storage in a real-time program. The extra space
required to save task environment was not released correctly.
Task queue service, trap on empty queue.

lllegal reason code or bad item on task queue.

Insufficient space to save environment. Real-time task is
incorrectly established.

Insufficient RTL space or the task is cancelled by the operator’s
command 'CANCEL'.

Overflow on task queue.

48-010 FOO R04

B
a=SQRT(bb+cc) A

RTL Subprograms

In this appendix

We introduce you to the routines which supplement the FORTRAN VII RTL.
These routines are not directly callable from FORTRAN code.

Topics include:

e Program initiation and termination routines

e Formatted input/output (I/0) routines

e Unformatted, namelist and list-directed 1/0 routines

e Alternate returns for subprograms

48-010 FOO R0O4

A

RTL Subprograms
Introduction

Introduction

The descriptions in this appendix are supplied for information only. None
of these routines are directly callable from FORTRAN code. The calling
sequence for these routines is generally outside the scope of the standard
FORTRAN subprogram calling sequence. The intrinsic routines, however, can
be called from user-written assembly code which provides the correct stan-
dard interface.

All RTL routines follow these conventions:

+ all modified registers are saved and restored except where they are used
to return results,

o general-purpose register 1 is never corrupted, and
e code is PURE.
The FORTRAN VII compilers generate code to call the RTL routines listed in

this appendix. FORTRAN VII R05-05 and earlier generate the code as listed.
FORTRAN VII RO6 generates entry points enclosed in parentheses.

Program Initiation and Termination Routines

Initiation and termination routines provided by the RTL are as follows:

e .U (_U) - This routine is called at the beginning of every FORTRAN main
program. [t reserves 1.5kB of memory for the RTL scratchpad. GPR1
points to the top of this reserved area. .U obtains another 256 bytes for
the static communication area. The address of this area is placed at abso-
lute location X'20’ in the user-dedicated location (UDL). Each logical unit
(lu) is checked to see if it is assigned to a printing device. If so, the bit in
the static communication area corresponding to that lu is set to indicate
that carriage control conversions are to be performed. The addresses of
the top and bottom of the scratchpad area, the operating system revision
and level, and the processor type are also placed in the static communica-
tion area. .U clears the single precision floating point register (SPFPR)
and/or double precision floating point register (DPFPR), depending on
which task options are chosen.

e .V (_LV) - This routine terminates a program, releasing the RTL scratchpad
and optionally closing all logical units. It is a result of an END statement.
It is also called by EXIT, EXITRE, and STOP.

48-010 FOO RO4

RTL Subprograms
Formatted 1/ Rogutmes A

e .STOP (_STOP) - This program is called from the code generated for the
STOP statement. STOP can have an unsigned integer or a character string
as an argument.

Examples:

STOP
STOP 7
STOP MESSAGE

.STOP logs the message specified in the STOP statement and terminates
execution of the task.

¢ .PAUSE (_PAUSE) - This program is called from the code generated for the
PAUSE statement. PAUSE can have an unsigned integer or a character
string as an argument. .PAUSE logs the message specified in the PAUSE
statement, then pauses the task.

Formatted I/0 Routines

o Initialization Routines: (Pretranslated FORMAT Statements)

.WXSC (_RWXS)
.WXDC (_RWXD)

WRITE EXTERNAL SEQUENTIAL
WRITE EXTERNAL DIRECT

.WNSC (_RWIFS) - WRITE INTERNAL

.PRNTC (_APTXS) - PRINT

.TYPEC (_APTXS) - TYPE

.ENCDC (_EDIBS) - ENCODE

.RXSC (_RWXS) - READ EXTERNAL SEQUENTIAL
.RXDC (_RWXD) - READ EXTERNAL DIRECT
.RNSC (_RWIFS) - READ INTERNAL

.ACPTC (_APTXS) - ACCEPT

.DECDC (_EDIBS) - DECODE

e Data Transfer Routines:

.RWDTF (_RWDRF) — DATA TRANSFER

48-010 FOO R04 A-3

RTL Subprograms i
Unformatted, Namelist, List-Directed 1/0 Routines

A

¢ Termination Routines:

.IOFNF (_IOFNF)

e FORMAT Translator:

.FORMT (_TRFMF)

TERMINATION

FORMAT TRANSLATOR

Unformatted, Namelist, List-Directed

I/0 Routines

o Initialization Routines:

.RDSU (_RWSU) -
.RDDU (_RWDU) -
.RDSN (_RWSN) -
.ACPTN (_ACPTN) -
.RDSL (_RWDL) - L
.ACPTL (_ACPTL) - L
.WRSU (_RWSU) -
.WRDU (_RWDU) -
.WRSN (_RWSN) -
.PRNTN (_ACPTN) -
.TYPEN (_ACPTN) - N
.WRSL (_RWDL) - L
.PRNTL (_ACPTL) - L
.TYPEL (_ACPTL) - L

o Data Transfer Routines:

.RWDTU (_RWDTU)
.RWDTL (_RWDTL)

U
L

UNFORMATTED READ SEQUENTIAL
UNFORMATTED READ DIRECT
NAMELIST READ SEQUENTIAL
NAMELIST ACCEPT

IST-DIRECTED READ SEQUENTIAL
IST-DIRECTED ACCEPT

UNFORMATTED WRITE SEQUENTIAL
UNFORMATTED WRITE DIRECT
NAMELIST WRITE SEQUENTIAL
NAMELIST PRINT

AMELIST TYPE

IST-DIRECTED WRITE SEQUENTIAL
IST-DIRECTED PRINT
IST-DIRECTED TYPE

NFORMATTED READ/WRITE DATA
IST-DIRECTED READ/WRITE DATA

48-010 FOO R0O4

RTL Subprograms A
Auxiliary I/0 Command Routines

e Termination Routines:

.IOFNU (_TIOFNU) — UNFORMATTED TERMINATE
.IOFNL (_IOFNL) — LIST-DIRECTED TERMINATE

Auxiliary I70 Command Routines

.OPEN (_OPEN)
.CLOSE (_CLOSE)
.REW (_REW)

.BACK (_BACK)
.ENDF (_ENDF)

Conversion Routines

ATOP and .ATOD convert ASCII representation of numbers to SPFP and DPFP
numbers. Conversely, to convert from floating point to ASCII, .FTOA, and
.DTOA are used. .CTOI converts character data to integer and .ITOC con-
verts integer to character.

Alternate Returns for Subroutines (.ARET)

48-010 FOO RO4

The .ARET routine ensures that the alternate return count is greater than
zero and less than or equal to n, where n is the total number of asterisks (*)
and ampersands (&) in the dummy argument list. If n is not in the proper
range, it returns immediately to the calling routine. If it is in the proper
range, .ARET searches the argument list for the indicated alternate return
address. In other words, if k is the alternate return count, .ARET searches for
the kth argument word in the argument list. An argument word contains an
alternate return address if bits 4 through 7 of the argument word are X'C’. If
it finds such an alternate return address, it stores it in the normal return
address save area and returns to the calling program. If it does not find an
alternate return address, it issues an error message and returns to the calling
program.

A

RTL Subprograms
Debug Routines

Debug Routines

A-6

e Test and Trace Routines:

.TEST (_TEST)
.ATEST (_ATEST)
.CTEST (_CTEST)
.FTRCE (_VTRCE)
.VTRCE (_VTRCE)
.ATRCE (_ATRCE)
.STRCE (_STRCE)
.ASTRE (_ASTRE)
.ASTRG (_ASTRG)
.STRCD (_STRCD)
.FTRCD (_FTRCD)

e Argument Checking Routines:

The routine .CHECK is called from all user callable RTL routines in the
argumert checking RTL. It can be turned off with a call to ICHECK. See
Chapter 11 for more information on the ICHECK routine. When .CHECK is
entered, GPR12 points to a block of data with which it checks the argu-
ment list; GPR13 contains the link address in the calling routine; GPR14
contains the pointer to the argument list; GPR15 contains the return
address in the user program. Upon return, .CHECK sets GPR12 with:

0 the list is acceptable,

-1 the class or type of call is incorrect, or
+1 the number, class, or type of arguments is incorrect.

The data block to which GPR12 points is organized as follows:

o]
.

NAME
Revision and update levels
3. Class./type of call

N

4, Minimum number of arguments
5. Maximum number of arguments

6. Aliasing option

7. Acceptable classes of argument
repeated as necessary

6 bytes, ASCII
2 bytes
1-byte
(remark 1)
1-byte

1-byte
(remark 2)
1-byte
(remark 3)

1-byte

48-010 FOO R0O4

RTL Subprograms
Debug Rogutines A

8. Argument class delimiter X'cC
(remark 4)
9. Acceptable type of argument
repeated as necessary 1-byte
10. Argument type delimiter 1-byte
(remark 5)

Remark 1: The class and type values are as given in Chapter 5. In
this byte, the most significant bit (MSB) is reset.

Remark 2: The maximum number of arguments is set to O if the
number of arguments are arbitrary (e.g., MAXO).

Remark 3: The aliasing option is 1 if the subprogram can take either
INTEGER*2 or INTEGER*4 arguments (e.g., IEOR), zero oth-
erwise,

Remark 4: X'CC’ indicates the end of all acceptable class types.

Remark 5: If this byte is X’FF’, then all the remaining arguments

have the same choices of type and class as the one that
was previously processed. The value X'DD’ for the byte
indicates the end of all acceptable argument types.

See the section entitled "Passing Argument" in Chapter 5 for byte values.

e Error Response Routines:

Run-time error conditions are handled by a system of four subprograms,
.ERR, .ERRO, .ERRX, and .MES. These routines cannot be called from the
user program. The error messages have the form:

ERROR d (X):
| 4 m
Where:
d is a number which identifies the kind of error.
is the address in the user program where the routine
was called.
I 4 is the name of the RTL in which the error occurred.
m is an explanation of the error.

48-010 FOO RO4 A-7

A

A-8

RTL Subprograms
Debug Routines

The explanatory texts are kept on a disk file, located on the system
volume. When the error handler is activated, it attempts to assign this file
to the highest lu. If the attempt fails because the file is not found or the
highest lu is already assigned, the explanatory text m is not incorporated
in the error message. The error number d can be used to identify the

error.

Intrinsic Functions:

+ The following mathematical functions are intrinsic functions which accept
argumerts in registers:

.CSQRT
.CDSQR
.CLOG
.CD1.0G
.DTAN
.DACOS
.DNINT
.ALOG1
.ATEN
. TAMH
.AINT

.CEXP
. CDEXP
.CABS
.CDABS
.DLOG1
.DATAN
.SIN
.ALOG
. ATAN?2
. SORT

.CSIN
.CDSIN
.CSIN
.DSIN
.DLOG
.DATN2
.COos
.ASIN
.SINH
.EXP

.DASIN

.TAN
.ACOS
.COSH
.ANINT

.CCos
.CDCOS
.CCOS

e The intrinsic functions that accept arguments via an argument list are:

(@ISHFT
@IANL:
@voT
(@BCMEL
(@BCLR.
@csiN
@CDSIN
@ccos
@cocces
(@CONJG
(@pCONg
(@DTAN
(@DACOS
@DCOSH
(@DMIN1
(@SNGL
(@IDNIN
(@DDIM
(@QTAN
(QATAN
(@AMAXO
(@AMAX1
(@AINT
@ISIGN
@IDIM2

@cos
dcLoG
@cpLoG
(@DSQRT
@pLoG1
@DATAN
(@DTANH
@IDINT
(@DBLE
@MOD
{dSQRT
@ALOG
(dATAN2
(@AMINO
@aAMIN1
@INT2
(dANINT
@AMOD
@SIGN
@piM
@acos

@IOR

@IEOR
(@BTEST
(@BSET
(@CSQRT
@CDSQR
@caBs
(@CDABS
(@DEXP
@p1.0G
(@DATN2
(@DPROD
(@DINT
@pABS
@EXP
@ALOG1
(@SINH

@TaNH
@CEXP
(@CDEXP
(@AIMAG
(@DIMAG
@DSIN
(@DASIN
(@DSINH
@oMax1
@DFLOA
(@DNINT
@DSIGN
@SIN
@ASIN
dcosH
@cosH

@INO
@MIN1

@INT
(@uoD
@IDIM
@pcos
(@DREAL
(@DCMPL

48-010 FOO RO4

48-010 FOO RO4

e Optimizable Intrinsic Functions:

This is a list of intrinsic functions that are candidates for code motion

transformations.

*ABS
ACOS
*AIMAG
*AINT
ALOG
ALOG10
*AMAXO
*AMAX1
*AMINO
*AMIN1
*AMOD
*ANINT
ASIN
ATAN
ATAN2
CABS
CCOS
CDABS
CDCOS
CDEXP
* CDLOG
CDSIN
CDSQRT
CEXP
CLOG
*CMPLX

*CONJG
Ccos
COSH
CSIN
CSQRT
*DABS
DACOS
DASIN
DATAN
DATAN2
*DBLE
*DCMPLX
*DCONJG
DCOS
DCOSH
DDIM
DEXP
*DFLOAT
*DIM
DIMAG
*DINT
DLOG
DLOG10
*DMAX1
*DMIN1
*DMOD

*DNINT
*DPROD
DREAL
*DSIGN
DSIN
DSINH
DSQRT
DTAN
DTANH
EXP
*FLOAT
*IABS

“*TAND

*ICHAR
*IDIM
*IDINT
*IDNINT
*IEOR
*IFIX
*IMAG
*INT
*INT1
*INT2
*IOR
*ISHFT
*ISIGN

RTL Subprograms
Debug Routines

LGE
LGT
LLE
LLT
LOG
LOG1
LOG2
LOG10
*MAX
*MAXO
*MAX1
*MIN
*MINO
*MIN1
*MOD
*NINT
*NOT
*REAL
*SIGN
SIN
SINH
*SNGL
SQRT
TAN
TANH

A

* Explicit invocation causes in-place expansion of the code for these

routines.

The following intrinsic functions are not optimizable but are expanded in

place.

A-9

A RTL Subprograms
RTL Constants

RTL Constants

A-10

BCLR
BCMP1,
BSET
BTEST
CHAR
CTOI
GENSIG

GOAPU
GOCPU
IBCLR
IBITS
IBSET
ICBYTE
ILBYTE

INBYTE
INDEX
IRTCNT
ISBYTE
ISHFTC
ITOC

LEN
LOKOFF
LOKON
MVBITS
RSCHDL
TESET

The following are entry points to routines containing RTL constants.

.CONLEN
.STACKSZ

The record length of a console (multi-terminal monitor (MTM) or OS/32) is
set at 80 bytes. This default is in a global data area |CONLEN!. For consoles
with record lengths other than the default, the user should modify .CONLEN

accordingly.

48-010 FOO RO4

RN
1y, My Vi,
iy i,

g My llhq[ll
i I!‘ll Uy gy

Index

argument type byte.........
entry structure.......

Address map..........

Address tracing

analyzing modules.......nnnenneenne

ending the session.....

............

influences upon

merging files

preassigning files

restricting analysis....

ADL

argument descriptor structure......

subprogram descriptor

Alphabetic map
$SALST/NALST directive

Alternate return routine, RTL.....ccuuue..

$APU/NAPU directive.

ARET routine...vccveenene

Argument address list. See AAL.
Argument checking, RTL

Argument descriptor list. See ADL.

Argument list.....
Argument type byte

Argument types

dummy...
scalar

Arguments, passing

Arithmetic fault trap

Array linearization
Array subscripts

Assembly listings

Assigned GOTO
$ASSM directive

Auxiliary 170 errors
Auxiliary 170 routines, RTI

48-010 FOO R0O4

5-2
5-6 $BABORT/NBABORT directive.......ummmmmn. 3-14
.5-5 6-10
10-13 Base, of an equation 14-2
12-2 $BASE/NBASE directive 3-28
12-11 6-10
12-16 global register allocation.......eeccennas 4-29
12-5 Batch statistics 10-1
12-16 $BATCH/NBATCH directive.....cirsnesenne. 3-14
12-7 6-10
12-9 $BEND directive 3-14
5-2 BIAS commandoeneccncsnmensnncssnsenses 12-1
5-8 Blank common block placement
5-7 overlay...... .7-15
10-13 Block optimizers 15-3
3-21 BUILD command 7-8
6-10
A-5 CAL blocks
.3-45 inline expansion 5-27
6-10 inserting within code ... vrcrneccsnnennnnns 5-21
A-5 referencing dummy arguments 5-26
referencing scalar arguments........ceueeens 5-26
9-9 referencing symbols and labels................ 5-26
variable names 5-26
5-2 $CAL directives
5-6 ASSMurrrerecneesrarenssersss s ssssssensssssssesens 5-23
FORT ... 5-23
4-2 GOES 5-23
4-3 REGS 5-24
5-2 SETS 5-25
.7-10 USES ..eecerennsesssrenessesenssssssssssssnsssssssssssssssssesss 5-25
.4-24 CAL subprograms
.4-9 interfacing with 5-2
10-21 $CAL/NCAL directive 3-46
4-9 6-10
3-27 Call recording analysis. See CRA.
5-23 Call recording 13-2
16-46 Calling sequence 5-13
A-5 5-2

In-1

Index
Character — Define

Character constant, as argument ...

.CMD file
Link.

Command substitution system. See CSS.

Commands
COMPILE

Common block

COMMON statement

Common subexpression
elimination

optimization
$COMP/NCOMP directive.

debugging code
Compilation

errors

loading compilers

logical unit assignments.....ccoeveversennene

memory size errors......

4-34
14-17
3-41
6-10

phases of

system space requirements.........awn.

COMPILE command.

Compile time type conversion......cuuw.

COMPILE.CSS

Compiler listings

checking errors....

Compiler optimization. See Optimization.

Compiler
block optimizer w..15-3
classification 15-2
coding techniques 4-19
controlling input 3-14
controlling optimization 3-27
controlling output 3-21
end of task codes 6-20
error messages 16-2
global optimizer 15-3
loading 6-3
overview 1-2
START command 6-9

In-2

start directives 6-7
statement optimizer 15-2
support products 1-2
universal optimizer.......cccnnnscecnnennn. 15-3
Complex constant eXpressioN... . 4-10
COMPLINK command 2-13
Computed GOTO .crernrsensrsesressrsasesseseseeecesenas 4-8
Condition codes 5-11
CONMSG subroutine 11-7
Constant computation
built-in 4-22
OPLIONAL.ectrest et ssrsenenssssnsssnens 4-31
FCONTIN dIreCiVE .nrverrrerrrreermassrsesssnrasrssessesssnns 6-10
Conversion routines, RTL....ccvermrecrcnnenennees A-5
CRA vt senesssssesressssssnsssssssnssnsssssssssasssssssanss 13-2
et asn s e aeee 7-20
error CONAitioNS ... rrssreneesracsesersensaesesnees 13-5
liMitations .. e 13-4
link requUiremMents.....eecevesseessareassseenenns 13-3
result analysis ... 13-5
system space requirements........ourccenene 13-2
CRATAB taskccoveccremnenrcenmcercnienmmsenssssssesessssseseens 13-5
{09 ¢ 0T U PP O OO 13-8
CRAXPA...crverennrnssssssssesssnssssssassssssssserssssassasasssenes 13-4
Cross-reference listings 10-8
CSSurrrvene 2-4
Data files
CLEALING woeeeereccerecemrteessveseeensesnensssasessessssenesesens 2-8
Data Sharing ... 5-19
Data type CONVErsion ... ennvcnnnsennenesnenens 4-11
Date checCKing... i cccrecrcercscscenernsscssnreseens 2-15
DATE SUDIOUUNE .ueerrcrcceccrrsnicssenessseasesenaseenas 11-3
FDCMD AIreCliVe..reeresseeserersenssrerseressrssaseasasessaens 3-46
messages 7-21
Dead code elimination 4-32
Debugging 2-15
9-2
removing aids 9-10
Debug routines, RTL
argument checking A-6
error response A-7
intrinsic A-8
test and trace A-6

Define command. See DCMD.

48-010 FOO R04

Desk checking

10-2

Devices
default settings

Directives
notes on using..

$DISTINCT directive

2-9

3-10
3-39
5-27

declaring CAL labels
DO index

DO loop processing
dead code elimination

$DP directive

4-6
4-8
4-5
4-32
3-46

Dummy arguments
argument passing

calling subroutines

noncharacter.......

Dynamic call graph.

$E/SP directives
$OBJ/NOR]J

$SOVERLAP/NOVERLAP

6-11

15-13
4-2
4-5
13-2

3-43
3-43

$SAFE/NSAFE

3-43

$TABLES/NTABLES

3-44

$XFORT/NXFORT

3-44

$EJECT directive..........

3-21

$ELIST/NELIST directive..

ENABLE routine

trap handling..
END command

End of file errors

End of task codes
compiler

Link

program execution

3-22
6-11
12-6
7-9
7-8

.16-22

6-20
7-22
8-4

Entity, defined
ASSIGN statement

assignment statement

DATA statement....

DO statement

implied DO

input statements
subprogram invocation

subprogram, return from

48-010 FOO RO4

4-15
4-14
4-15
4-14
4-14
4-14
4-15
4-15

Index
Desk — Floating

Entity, undefined 4-1¢
Entity, uninitialized 4-1¢
Environment for Sequential
to Parallel Programming tool. See E/SP.
Environment
invoking 2-6
Equivalenced variable storagecoveennn 5-2(
Equivalencing
integer to floating point.....venieecreennes 4-1¢
ERLU FOULINE ccvvcirvicrirnnsestisssensssessssnsnassessessesenenss 9-1(
ERROR message, compiler..... e 10-2
Erfror messages, run-time
analyzing ; 9-1(
Error messages
compiler .16-2
RTI 16-2
special...... 16-¢
within a source listing 10-:
XPA sttt enssss s s nsssssasans 12-¢€
ESTABLISH command 7-6
EXEC command 2-1¢
Execution of a program 8-2
end of task codes 8-4
Execution profile analysis. See XPA.
Execution termination 11-Z
EXIT subroutine 11-2
EXITRE subroutine....... 11-2
Expected frequency. wed-3(
Exponent w14-2
equalization 14-«
normalization 14-4
Expression reordering..... 4-2¢
Extended listing, F7Z 10-2
15-1
EXTERNAL statement...... 7-1:
$F66DO/NF66DO directive 3-47
6-11
Floating point arithmetic
compile-time evaluation 14-]
limitation summary 14-1
precision loss 14-:
14-¢
run-time evaluation 14-]
simple assighment 14-]

In-3

Index
Floating — Instream

Floating point conversion

ICHECK routine

rounding techniques... 14-4 turn off argument checking......cuoeeereennae 9-9
Floating point hardware...... ..14-7 ICLOCK subroutine 11-5
Floating point representation.................. 14-2 In-line expansion, F7Z 15-7
Floating point variable testing 4-16 argument passing 15-13
Folding 4-33 code preparation 15-14
Format translator errors.. ..16-32 controlling .. 3-30
Formatted 1/0 errors......... 16-36 effective areas....... 15-16
Formatted [/0 routines, KTL stages of Processing.... s 15-9

data transfer «A-3 subprogram search order.........venne. 6-19

FORMAT translator..... A4 when to use 15-15

initialization A-3 with embedded CAL 15-15

termination ..A-4 INCLUDE command....... W7-7
FORT command ..2-6 $INCLUDE directive 3-14
$FORT directive...... 3-27 S$INFORM/NINFORM directive....ueeresesenes 3-22

5-23 6-12
FUNCTION statement INIT routine .12-6

setting up receiving sequence.........ueee- 5-21 Initiation routines, RTL....cicvcnmenecnncennnansaennes A-2

$SINLIB directive 3-37
General purpose register. SEe GPR. s sssssssssssssenesssnse 6-12
GETOPTS routine 11-10 SINLINE directive 3-30
Global block placement SINLINE/NINLINE directive 6-12

overlay..... 7-15 INPUT command 12-8
Global optimizers..... 15-3 Input/output. See 1/0.

Global register allocation 4-29 $INSKIP directive -34

$GOES directive

CAL block branching...

GPR1

GPR14

subprogram type fielc

GPR15
storing return address

HELP command

$HOLL/NHOLL directive.

Hollerith constant, as argument.......u..

¥/0 common errors

170 files, Link

170 operations, optimizing
$IBYTE directive

In-4

3-3

3-27 Instream directives 3-3
5-23 $SALST/NALST 3-21
5-28 $APU/NAPU 3-45
5-10 $ASSM 3-27
5-27 5-23
5-2 $BABORT/NBABORT 3-14
5-4 $BASE/NBASE 3-28
$BATCH/NBATCH 3-14
5-10 $BEND 3-14
$CAL/NCAL 3-46
12-16 $COMP/NCOMP 3-41
3-47 $DCMD 3-46
6-11 $DISTINCT 3-39
....... 4-4 $DP 3-46
SEJECT 3-21
16-23 $ELIST/NELIST 3-22
7-4 $F66D0O/NF66DO 3-47
4-17 $FORT 3-27
3-47 5-23
6-11 $GOES 3-27

48-010 FOO R0O4

Index
Instream - List-directed

....... 5-23 $XREF/NXREF e 3-2€
$HOLL/$SNHOLL 3-47 Instrinsic subprograms
SIBYTE....rneernrrerensenressserrsennns .3-47 calling from assembly 5-2:
$INCLUDE .3-14 $INT2 directive 3-4;
$INFORM/NINFORM.. 3-22 ressresisemsansesasas st an st s en e e erens 6-1:
$INLIB.. 3-37 Integer arithmetiCu. e sserseseeerresnnsens 14-:
$INLINE....... 3-30 Integer conversion , .4-1:
Y 1) 5 £ 3-34 Intermediate code translation......sen. 15-:
instructions for USING ... 3-11 Invariant code motion .4-3(
SINT2 cririrririsssenessaeseesesesens .3-47
$LBYTE 3-48 Jamming, floating point 14-f
$SLCNT 3-22
$SLIST/NLIST 3-23 LANGUAGE command... .2-6
SLTORBIT .cvenercereereemsssesssessisesssesossessasssessssessases 3-48 $LBYTE directive 3-4¢
$NINLINE «3-38 .. 6-1]
SOBJ/NOBJ .o vcevrrernreerssnssssssssssssssassssssssssssesssses 3-43 SLCNT dir@CLIVE wueverremreseresensnerseressssssessessessasasssansans 3-2:
$OPTIMIZE/NOPTIMIZE 328 e s aans 6-1:
$OVERLAP/NOVERLAP 3-43 LIBRARY command 7-7
$PASSBYADDRESS 3-48 LIMIT command A2-]
$PAUSE 3-49 Link .CMD file 7-5
$PROG 3-49 creating 7-6
$SREENTRANT/NREENTRANT ...ccoevcrveneernenens 3-49 LINK cOmmand.......ccorenessersmscsnnnesnesssnsasessessssesens 2-1:
$REGS.. 327 e st b nasnansnans 7-2

.5-24 Link commands

SRTOLBIT..ccrrrrrerearerenne 3-50 BUILD veemereesnrensanenasessaanne 7-8
$SAFE/NSAFE...... 3-43 END ottt stsesssnensnssessens 7-8
$SEG/NSEG cucerveerrererresennnarensns .3-51 ESTABLISH 7-6
$SETS 3-27 INCLUDE 7-7
. 5-25 LIBRARY 7-7
summary of features 3-2 MAP 7-6
$SYNTAX/NSYNTAX 3-51 OPTION 7-6
$TABLES/NTABLES 3-44 Link

STARGET ...overrereermeersencene .3-52 Address MaAP..cncrerneseeneenmnssesssmessssrensess 13-2
$TCOM 3-29 end of task COdes... . 7-2:
$TEST/NTEST 3-41 170 files 7-4
$TITLE 3-23 loading and executing 7-2¢
$TRACE/NTRACE ' .3-42 logical unit assignments ... 7-5
$TRANSCENDENTAL/ maps 10-]
NTRANSCENDENTAL ..3-53 minimum functions 7-2
$SUNNORMALIZE/NUNNORMALIZE............. 3-54 shared data areas 7-1¢
$USES 3-27 trap handling programs 7-9

: 5-25 Linking

$SWARN/NWARN 3-25 shared segments 7-1¢
$WIDTH .3-26 List-directed 170 errors 16-:
$XFORT/NXFORT .3-44 List-directed 170 routines, RTL

48-010 FOO RO4 In-5

Index
List-directed — Payoff

data transfer .. A-4 constant computation ... 4-22
RSV LAE:1T12-1 810} o VO A-4 . reeesreeesiaseaereetere et e e sban Rt nt oA e ResnEna e s e b aenres 4-31
termination.....corccnnnn. A-5 dead code elimination ... 4-32
SLIST/NLIST directive e ccveereceerreecensnssasnens 3-23 effects Of RTLS s 14-17
.. 6-13 effects on evaluation order..........cccuevenee. 14-15
LOCATE cOMMANd......ceceemnenriersnscssssmesssssssassenss 12-15 expression reordering ... 4-26
Logical units fOlAING vt 4-33
F T3 124 01 1 4 V= 2-9 global register allocation.........eenene 4-29
compilation assignments........cereeenn 6-5 invariant code motion.......ciervennenecns 4-30
default assignments.......eeeceereeeerrnererennens 2-9 loop test replacement ... civceereennereenens 4-29
Link asSignments....oroneceeineseeesecsssanene 7-5 machine instruction choice. ... 4-25
Program eXeCULION .o ceererereerreerenensesenasanne 8-3 o] 514 1o o - | F0UUEOR OO SOV OO RO O U 4-20
LOKOFF routine....ccsesesesscsesecsensssssmansnses 11-9 scalar propagation ... 4-33
... 4-39 sequence....... R 51 o}
LOKON routine ...eveeseecceerenrrenees .11-8 short circuit logical evaluation............ 4-25
........................... 4-39 preparing source code.nrinverereceerennnd-36
Loop test replacement .. nenennenesesssssnsens 4-29 strength reduction... s 4-27
SLTORBIT directive....mvccereenseseseens 3-48 RY000011 0 F=1 g (3 S0 10-18
.............. 6-14 symbolic arithmetic......cucmrvvereceenresnirennend-23
SOPTIMIZE/NOPTIMIZE directive.....uvveienn 3-28
Machine instruction choice .o 4-25 ettt b b en s e e rere s bensaenetes 6-14
Mantissa, of an equatioN.....rceccneeninnnnn 14-2 OPTION COMMANcorrrmcrrerinrrersessssarenssesssnssissesses 7-6
MAP cOommand.......evcrrccnresennes e ssassssnases 12-15 memory allocation ..., 7-9
... 7-6 0S/32 Aids, debugging.... .10-21
Math EIrorsS.. e neens e 16-56 OS/32 Edit et cececennceeessnerenesesanssessssnenns 2-12
MAXLU...reeecvrennne ..12-3 OUTPUT command. 12-8
Miscellaneous errors 16-61 $OVERLAP/NOVERLAP directive......ccvereunn.. 3-43
OVERLAY command.........c.cesecnseesnersnessnsscanes 7-14
Named common block placement Overlaying 7-12
103'=) o -\ 7-15
Namelist /0 errors) 16-42 P-graph analysis 4-22
Namelist 170 routines, RTL 4-29
data transfer A-4 Pack fd Errors 16-55
initialization..... A-4 Parallelization
termination A-5 preparing code 3-43
$NINLINE directive 3-38 Parentheses 4-10
NODE command 12-15 expressing complex constants ... 4-10
Pass-by-address 15-13
$OBJ/NOB]J directive 3-43 Pass-by-value 15-13
6-14 $PASSBYADDRESS directive 3-48
Optimization 4-21 , 6-15
array linearization 4-24 Passing arguments 5-2
built-in 4-20 $PAUSE directive 3-49
common subexpression elimination......4-34 .PAUSE routine A-3
compile time type conversion ... 4-22 Payoff values, variable 4-30

In-6

48-010 FOO RO4

POSITION command
overlay

Power restoration trap

$PROG directive..

7-15
7-10
3-49

Program analysis
address tracing

call recording
PROGRAM command

Program development commands. See Commands. linking

Program development
flowchart.

modifying a procedure
Program execution...........

12-2
13-2
12-8

2-2
6-22
8-2

end of task codes......

Program readability, improving

Pseudo data type storage

R-star rounding

RANGE command

Receiving sequence
$REENTRANT directive.......

8-4
4-16
5-21

14-6
12-12
5-15
3-49

Register settings

6-15
5-11

$REGS directive

3-27

5-24

modified CAL register

Requirements, system
RESOLVE command

Return address, passing..

5-27
1-4

7-18
5-10

RTL constants

A-10

RTL error messages

RTL routine conventions ...,

$RTOLBIT directive

6-23
A-2
3-50

RUN command

6-14
2-14

Run-time library. See RTL.
Run-time start options
accessing via GETOPTS

$SAFE/NSAFE directive

11-10 SVC7 errors

3-43

SAVE statement
overlay.......

Scalar arguments

Scalar propagation

Scratchpad, RTL.

48-010 FOO R04

7-15
4-3

4-33
5-10

Index

Position — System

$SEG/NSEG directive

$SETS directive.

declaring CAL variables
Shared data areas
controlling access to.....

Shared segments, linking

Short circuit logical evaluation..

Smart code generation

SOFTERR message, compiler

........

Source listings

with compilation errors

without compilation errors (F7Z).............

Source programs
compiling

creating

debugging

preparing for parallelization

Special error messages

START command

Start directives
compiler

Statement optimizer...

......

STEP command

.STOP routine

12-]

Strength reduction

Subprogram type field
SUBROUTINE statement

setting up receiving sequence.................

Subroutines -

calling with dummy arguments.................

Subscripts, array

Supervisor call. See SVC.

SVC1 errors

Symbol maps

Symbolic arithmetic

$SYNTAX/NSYNTAX directive

System calendar

System requirements

.4-27

5-21

10-]
4-2:
3-51
6-1:
11-:

In-7

Index
Table — XPA

TABLE command

$TABLES/NTABLES directive....n

TAG command

$TARGET directive

12-10 directive

3-44
6-15 User-dedicated location
12-9 Link procedure

3-52

Task common

entry point/name definition.............
segment number assignment............

Task image
loading and starting........

Task queue service trap.....cooececeees

Task size, determining

Task traps, types ..weeenes

6-17

7-9

$USES directive
6-16

3-27
5-25

declaring CAL variables

7-17

7-17 .V routine

5-27

A-2

Variable names, reserved

8-2 Variables in common

7-10

7-14 $WARN/NWARN directive

7-10

$TCOM directive...

optimizing code

Termination routines, RTL

3-29
6-16 WCS/non-WCS
4-37 optimization effects

WARNING message, compiler........

$TEST/NTEST directive

A-2 optimization inconsistencies
3-41 WCS

checking array elements

6-17 3230 vs. 3250

9-7 $WIDTH directive

3-25
6-18
10-2

14-17
14-19

14-18
3-26

TIME subroutine 11-4 Writable control store. See WCS.
Timer traps 12-3
TITLE command 12-14 $XFORT/NXFORT dir€CtiVe um.ummmmeeeereressseessssssss
$TITLE directive... 3-23
$TRACE/NTRACE directive. 3-42 XPA commands
6-17 BIAS
tracing statements 9-5 HELP
variable value check....... 9-4 INPUT
$TRANSCENDENTAL/NTRANSCENDENTAL LIMIT
directive 3-53 LOCATE
6-17 MAP
Trap handling programs NODE
linking 7-9 OUTPUT
workspace requirements ... 7-10 PROGRAM
Tree structure, overlay 7-13 RANGE
Truncation, floating point 14-5 STEP
TABLE
.U routine A-2 TAG
Unformatted 170 routines, RTL TITLE
data transfer A-4 XPA
initialization A-4
termination A-5 address tracing
Universal optimizers 15-3 ending the session
$UNNORMALIZE/NUNNORMALIZE errors

In-8

3-44
6-19

12-12
12-16
12-8
12-14
12-15
12-15
12-15
12-8
12-8
12-12
12-13
12-10
12-9
12-14
12-2
7-20
12-2
12-16
12-6

48-010 FOO R04

Index
XPA — $XREF

interfacing with INIT/ENABLEcceu.... 12-6
Link requirements.....cu e 12-3
MAXLU... 12-3
merging files e 12-16
result analysis . 12-7
XPATAB 1aSK...ecrenrnnennssssnessessssessessssorsssssans 12-7
XPA_SET v sressrssnnensesessesssesnsessssens 12-4
... 13-4
$SXREF/NXREF dir€CtiVe..ereeneenrerrenersecenenns 10-8
... 3-26
.. 6-19

48-010 FOO R04 In-9

Document Comment Fol

In reference
to.ll

I think this
manual...

My other
commentis...

About
myself...

Developing Programs With FORTRAN VII — A Guide — 48-010 F00O R04

We try to make our documentation easy to use, easy to understand, and fre
from errors. We invite your comments and suggestions to assist us in impro
our documentation to suit your needs.

Please send us comments, corrections, suggestions, etc. Use the SCR systce
to report software documentation or software problems.

Strongly Strong
Agree Agree Disagree Disagr

is easy to read

is easily understood

is concise & to the point
covers the subject

has enough detail

is well organized
provides easy-to-locate information
is aesthetically pleasing
has clear illustrations
has enough illustrations
has meaningful examples
has a helpful index

04

OOoO0Ooooooonod
OOoooaooaoo

Ogoooooooooon
Oooooooooood

Please make any additional specific comments. (include chapter, page, tabl
figure number.)

Job Function: [] Dev. Engineer [Sys. Analyst [Sys./App. P
[Technician [0 Administrator [] casual user
[service Eng.] Operator [J Other

What hardware system are you using?

What revision level of system software are you using?

Name/Title:

Compariy/Organization:

Address:

May we contact you? COyes [ONo

Telephone: Date:

| " " | NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 22 OCEANPORT, NJ
POSTAGE WILL BE PAID BY ADDRESSEE
Concurrent Computer Corporation
2 Crescent Place
Oceanport, NJ 07757
ATTN:
DOCUMENTATION DESIGN & DEVELOPMENT, M.S. 345
0 T T e

STAPLE STAPLE

Document Comment Forn

In reference
to...

| think this
manual...

My other

comments...

About
myself...

Manual Title Number & Revision Leve

We try to make our documentation easy to use, easy to understand, and free
from errors. We invite your comments and suggestions to assist us in improvin
our documentation to suit your needs.

Please send us comments, corrections, suggestions, etc. Use the SCR system
to report software documentation or software problems.

Strongly Strongly
Agree Agree Disagree Disagree
is easy to read]] O O
is easily understood l] | L]
is concise & to the point] L] [U
covers the subject]] O O
has enough detail L]]] O
is well organized O (] |]
provides easy-to-locate information [] O O O
is aesthetically pleasing O O D O]
has clear illustrations O O O]
has enough illustrations O] (] Ll
has meaningful examples Ol] D O
has a helpful index O] O L]

Please make any additional specific comments. (Include chapter, page, table ¢
figure number.)

Job Function: [] Dev. Engineer [J Sys. Analyst [J Sys./App. Pro
[J Technician [(J Administrator (O casual user
[] Service Eng.] Operator] Other

What hardware system are you using?

What revision level of system software are you using?

Name/Title:

Company/Organization:

Address:

May we contact you? Ovyves [ONo

Telephone: Date:

| " " | NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 22 OCEANPORT, NJ
POSTAGE WILL BE PAID BY ADDRESSEE
Concurrent Computer Corporation
2 Crescent Place
Oceanport, NJ 07757
ATTN:
DOCUMENTATION DESIGN & DEVELOPMENT, M.S. 345
"""" 0T T T T s

STAPLE STAPLE

