
08/32 SYSTEM
LEVEL
Programmer
Reference Manual
05/32 Version 8.2 or Higher

48-040 FOO R05

Wncurren!iffff!J
Computer Corporation

The information in this doc:ument is subject to change without notice
and should not be construed as a commitment by Concurrent
Computer Corporation. Concurrent Computer Corporation assumes
no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license,
and it can be used or copied only in a manner permitted by that
license. Any copy of the described software must include any
copyright notice, trademarks, or other legends or credits of
Concurrent Computer Corporation and/or its suppliers. Title to and
ownership of the described software and any copies thereof shall
remain in Concurrent Computer Corporation and/or its suppliers.

The licensed program described herein may contain certain
encryptions or other devices which may prevent or detect
unauthorized use of th(: Licensed Software. Temporary use
permitted by the terms of the License Agreement may require
assistance from Concurrent Com puter Corporation.

Concurrent Computer Corporation assumes no responsibility for the
use or reliability of the software on equipment that is not supplied by
Concurrent Computer Corporation.

Reliance is a trademark of Concurrent Computer Corporation.

© 1981, 1983, 1984, 1986 Concurrent Computer Corporation - All Rights Reserved

Concurrent Computer Corporation, 2 Crescent Place

Oceanport, New Jersey 07757

Printed in the United States of America

TABLE OF CONTENTS

PREFACE v

CHAPTERS

1 OS/32 SUBSYSTEMS

1.1
1.1.1

1.2
1.2.1
1.2.1.1

1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7
1.2.8
1.2.9
1.2.10
1.2.11
1.2.12
1.2.13
1.2.14
1.2.15
1.2.16

INTRODUCTION
OS/32 Multiprocessing Support

SOFTWARE SUBSYSTEMS
Task Management Subsystem
Task Scheduling on the 3200MPS Family of
Processors
Job Accounting Subsystem
Memory Management Subsystem
Timer Management Subsystem
File Management Subsystem
Input/Output (I/O) Subsystem
Error Recording Subsystem
Memory Diagnostics Subsystem
Loader and Segmentation Subsystem
Basic Data Communications Subsystem
Console Monitor Subsystem
Command Processor Subsystem
System Initialization Subsystem
Internal Interrupt Subsystem
Optional User Supervisor Call (SVC) Subsystem
Floating Point Subsystem

1-1
1-2

1-3
1-6

1-11
1-14
1-14
1-15
1-16
1-17
1-17
1-18
1-18
1-19
1-19
1-20
1-20
1-21
1-21
1-21

2 PRIVILEGED TASKS

2.1

2.2
2.2.1
2.2.2
2.2.3
2.2.4

2.3

2.4

INTRODUCTION 2-1

EXECUTIVE TASKS (E-TASKS) 2-2
Relocatable Executive Tasks (E-Tasks) 2-2
Writing Executive Tasks (E-Tasks) 2-2
Writing Re10catable Executive Tasks (E-Tasks) 2-3
OS/32 Data Structures Used by Executive
Tasks (E-tasks) 2-4

PRIVILEGED USER TASKS (U-TASKS) 2-8

DIAGNOSTIC TASKS (D-TASKS) 2-9

48-040 FOO R05 i

CHAPTERS (Continued)

3 PROGRAMMING IN THE 3200HPS FAMILY OF PROCESSORS
MULTIPROCESSING ENVIRONMENT

3.1

3.2

3.3

3.3.1
3.3.2

3.3.3
3.3.4

3.4

3.5
3.5.1

3.5.2

3.5.3

3.5.4

3.5.5

3.5.6

3.6
3.6.1

3.7

3.8

INTRODUCTION 3-1

DESIGNING TASKS TO RUN ON A MULTIPROCESSING
SYSTEM 3-2

PREPARING AN AUXILIARY PROCESSING UNIT (APU)
FOR TASK EXECUTION 3-3
Queue Assignments 3-3
Auxiliary Processing Unit (APU) Operating
States 3-3
APU-Only Queue Operating States 3-4
Logical Processing Unit (LPU) Mapping 3-6

ASSIGNING TASKS TO A PROCESSOR QUEUE 3-7

CONTROLLING TASK ORDER OF EXECUTION 3-8
Changing Auxiliary Processing Unit (APU)
Task Queue Ordering 3-8
Monitoring and Preempting Auxiliary Processing
Unit (APU) Task Execution 3-10
Transferring a Task from an Auxiliary
Processing Unit (APU) to the Central
Processing Unit (CPU) 3-16
Internal Task Control of Auxiliary Processing
Unit (APU) Execution 3-17
Verifying Task Transfer to an Auxiliary
Processing unit (APU) 3-18
Customizing Auxiliary Processing Unit (APU)
Fault and Supervisor Call (SVC) Handling 3-19

PREVENTING MEMORY ACCESS CONFLICTS 3-20
Avoiding System Deadlock 3-21

MEASURING REAL-TIME PERFORMANCE ON THE
3200MPS FAMILY OF PROCESSORS 3-22

WHERE TO GO FOR MORE INFORMATION 3-24

4 SUPERVISOR CALL (SVC) INTERCEPTION

ii

4.1

4.2

4.3

4.3.1
4.3.2

INTRODUCTION

HOW SUPERVISOR CALL (SVC) INTERCEPTION WORKS

PREPARING A TASK FOR SUPERVISOR CALL (SVC)
INTERCEPTION
Request Descriptor Block (ROB) Buffers
Circular List for Request Descriptor Block
(ROB) Buffers

4-1

4-2

4-3
4-4

4-6

48-040 FOO ROS

CHAPTERS (Continued)

4.3.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.13.1
4.13.2
4.13.3
4.13.4
4.13.5
4.13.6
4.13.7
4.13.8
4.13.9
4.13.10
4.13.11

4.14

Task Event Trap 4-8

CREATING INTERCEPT PATHS (ICREATE) 4-8

HOW TO CREATE A PSEUDO DEVICE OR TASK
WITH ICREATE 4-8

USE OF GENERIC NAMING FOR PSEUDO DEVICES
AND TASKS 4-9

FUNCTIONAL SUMMARY OF SUPERVISOR CALL (SVC)
INTERCEPTION 4-10

FULL AND MONITOR CONTROL INTERCEPT PATHS 4-11

HOW INTERCEPT PATHS HANDLE SUPERVISOR CALLS
(SVCs) OCCURRING AT END OF TASK 4-13

TERMINATING THE INTERCEPTED SUPERVISOR CALLS
(SVCs) 4-13

HOW TO REMOVE INTERCEPT PATHS 4-14

ERROR HANDLING 4-14

MACROS USED WITH SUPERVISOR CALL (SVC)
INTERCEPTION
ICREATE Macro
IREMOVE Macro
IGET Macro
IPUT Macro
ICONT Macro
IPROCEED Macro
IROLL Macro
ITERM Macro
ITRAP Macro
IERRTST Macro
$RDB Macro

SAMPLE SUPERVISOR CALL (SVC) INTERCEPTION
PROGRAMS

4-16
4-16
4-24
4-25
4-27
4-28
4-29
4-30
4-31
4-32
4-34
4-36

4-36

APPENDIXES

A SUPPORTED VERTICAL FORMS CONTROL (VFC)
CHARACTER SET

48-040 Faa ROS

A-I

iii

FIGURES

1-1

3-1
3-2

4-1
4-2

TABLES

1-1

2-1
2-2

3-1
3-2
3-3

4-1
4-2
4-3

INDEX

iv

Typical 3200MPS Fally of Processors
Configuration

Valid APU Operating States
Valid APU Queue Operating States

Request Descriptor Block
System Task Buffer List (Standard Circular List)

OS/32 SOFTWARE SUPPORT

OS/32 DATA STRUCTURES MACRO LIBRARY
MTM DATA STRUCTURES MACRO LIBRARY

QUEUE PRIORITY ASSIGNl-IENTS
TIMER MACROS
ADDITIONAL INFORMATION SOURCES FOR THE 3200MPS
FAMILY OF PROCESSORS PROGRAMMING

SYSTEM MACROS FOR avc INTERCEPTION
ERROR CODES RETURNED FOR INTERCEPT MACROS
VALID COMBINATIONS FOR SVC, MODE AND NAME
PARAMETERS

1-3

3-4
3-5

4-4
4-7

1-4

2-5
2-8

3-9
3-23

3-25

4-1
4-15

4-20

IND-1

48-040 FOO R05

PREFACE

This manual describes operating system features intended for use
by system programmers, system analysts, designers, engineers and
training instructors.

Chapter 1 presents an overview of the operating system and the
software subsystems it supports. Chapter 2 describes the
privileged task types supported by OS/32. Chapter 3 describes
the techniques used in writing system level control programs that
take advantage of the increased throughput offered by the 3200MPS
Family of Processors. Chapter 4 contains a functional
description of the supervisor call (SVC) interception feature.
The vertical forms control (VFC) feature is described in Appendix
A.

The ROS revision of this manual includes two new operands in the
ICREATE macro. The NOTIFY operand distinguishes an intercepting
task as either an entry or exit intercept for use with the
AUOIT32 security disk/tape audit utility. The RDB.RID field in
the request descriptor block (ROB) has been utilized for this
task. The IOPT operand resolves system task deadlocks by
removing a task from wait state. Also the SVC= operand of the
ICREATE macro has been enhanced to permit an extended option to
the SVC7 parameter. This enhancement includes the addition of an
SVC7 extended block (ROB. EXT) after the SVC7 parameter block in
the ROB. The ROB.EXT field is utilized to hold the name of a
file assigned to a logical unit (lu) that is to be passed to the
AUOIT32 utility.

Revision FOQ ROS is intended for use with the OS/32 ROB.2
software release or higher.

48-040 FOO ROS v

1.1 INTRODUCTION

CHAPTER 1
OS/32 SUBSYSTEMS

OS/32 is a general-purpose, event-driven operating system for
32-bit computer systems. Custom versions of OS/32 are created
through the use of a system generation program (Sysgen/32) that
provides parameters for tailoring OS/32 to a specific
installation. The combined hardware and software capabilities of
a 32-bit computer system provide support for all phases of
program and system development. OS/32 supports concurrent
multiprogramming, with up to 252 user programs written in any of
the supported languages. The program development facilities are
designed to minimize the time and effort needed to test, debug
and integrate application programs and systems. In addition, the
OS/32 command language allows complex jobs to be performed with
minim~l operator intervention.

OS/32 incorporates a powerful interrupt handling capability at
the task level. This capability permits a task to be interrupted
during its normal execution sequence by a variety of hardware and
software conditions.

The OS/32 virtual task manager (VTM) allows the memory
requirements of a task running under OS/32 to exceed available
task memory. VTM has a virtual memory capability that allows
tasks consisting of up to 16MB of code and data to execute in as
little as 128kB of memory. This feature is provided by the OS/32
linkage editor. See the OS/32 Link Reference Manual for more
information.

The roll function allows segments of a task to be rolled out to
disk until enough memory is available for the entire task. In
real-time applications, rolling is commonly used to queue low
priority tasks while tasks of higher priority are active. The
roll eligibility of a task is established when the task is link
edited. However, a task option is provided to prevent rolling of
a task when necessary (e.g., when the task must be able to
respond to real-time events).

A basic data communications facilities package is supplied with
OS/32. This package also provides support for higher level data
communications products.

48-040 FOO ROS 1-1

The scope and power of the operating system can be extended
through the following 08/32 companion products:

• Multi-terminal monitor (MTM)

• ReI iance™

MTM is a subsystem monitor that uses the subtasking capabilities
of OS/32 to provide a time-sliced, interactive program
development environment for up to 64 concurrent terminal users.
MTM simultaneously supports both on-line terminal users and batch
background tasks. MTM terminal users are also provided with an
input/output (I/O) spooler for use with slow speed devices.

Reliance is a transaction ,software system consisting of the
integrated transaction controller (ITC), data management system
(DM8/32) and industry standard COBOL. ITC allocates system
resources, develops screen formats and controls terminals.
DM8/32 supervises disk allocation and data access.

1.1.1 OS/32 Multiprocessing Support

08/32 provides a transparent multiprocessing capability for use
with the 3200MP8 Family of Processors. This system consists of
one central processing unit (CPU) and any combination of one to
nine auxiliary processing units (APUs) or input/output processors
(lOPs) (see Figure 1-1). A task can execute on an APU unless it
is going to take advantage of certain features specific to the
multiprocessing system (e.g., APU assignment, APU control, etc.).
lOPs are processors specifically designed to handle the I/O
portion of I/O intensive tasks". These processors cut down the
overhead incurred by the CPU when handling I/O requests,
therefore, enhancing system performance.

08/32 defines a set of logical processing units (LPUs) that are
used to schedule tasks to APU queues for execution on an APU.
Tasks are assigned to an LPU that is mapped to an APU queue. The
logical processor mapping table (LPMT) defined by 08/32 contains
the mapping arrangement between the LPUs and APU execution
queues. (More than one LPU can be mapped to an APU queue.)

Each APU and/or lOP in the 3200MPS Family of Processors is
assigned a unique identifying number. Each APU is assigned to an
APU queue. (More than one APU can be assigned to a queue.)
Tasks on an APU queue execute on an APU assigned to the queue.

If a task is mainly computation intensive, executing that task on
an APU increases overall system performance. If a task is
I/O-intensive, execution should be performed on the CPU. This

Reliance is a trademark of Concurrent Computer Corporation.

1-2 48-040 FOa R05

will also increase system performance. lOPs perform physical
I/O, they do not perform I/O to the console or to Integrated
Telecommunications Access Method (ITAM) devices. An
I/O-intensive task executing on an APU is transferred to the CPU
when an I/O request is encountered. The task is then transferred
to an IOP for I/O servicing. The lOP does the physical I/O and
sends it back to the APU via the CPU. An I/O-intensive task, if
directed solely to an APU, decreases system performance since
each I/O request requires the task to be transferred back to the
CPU for OS/32 I/O support services.

The main performance advantage of a multiprocessing system is
achieved when a problem is broken down into parts so that several
tasks on several processors can work on the problem at the same
time or when multiple independent tasks can be executed
simultaneously. See Chapter 3 for more information on
programming within the 3200MPS Family of Processors environment.

040-1

GLOBAL
MEMORY

I
h GLOBAL MEMORY BUS ~

I I I I I
CACHE CHANNEL CHANNEL CACHE CACHE CACHE

ADAPTER ••• ADAPTER
PROCESSOR PROCESSOR PROCESSOR

b MUX BUS CPU I I #1 ••• ••• #N

I APU APU/IOP APU
b DMA BUS ~ ~ DMA BUS ~

I I I
CONSOLE

RTSM
I

RTSM RTSM RTSM

I I RTSM

I

RTSM

Figure 1-1 Typical 3200MPS Family of Processors Configuration

1.2 SOFTWARE SUBSYSTEMS

OS/32 consists of the following subsystems:

• Task management
• Job accounting
• Memory management
• Timer management
• File management

48-040 FOO ROS 1-3

• I/O management
• Error recording and reporting
• Memory diagnostics
• Loader and segmentation
• Basic communications
• Console monitor
• Command processor
• System initialization
• Internal interrupt
• Optional user supervisor call 14 (SVC14)
• Floating point

Table 1-1 summarizes the software supported by OS/32.

TABLE 1-1 OS/32 SOFTWARE SUPPORT

TYPE SOFTWARE PRODUCT I STANDARD I OPTIONAL
===========~====================================~==========~~~~=~===~

Program Task management x
develop- Job accounting x
ment Memory management x

Timer management x
File management x
I/O management x
Error recording and reporting x
Memory diagnostics x
Loader and segmentation x
Console monitor x
Command processor x
Floating point x
Internal interrupt subsystem x
ITC* x
writable control store (WCS) x
MTM x

Program I Automatic interactive debugging I
debugging I system (AIDS) I x

I DEBUG/32 I x
-------------------------~-------~~-----~----~~------~------~------~-
Data base I DMS* I
manage- I I x
ment I I
---------~--~-~---------~----
Data I Asynchronous data communications x
communi- I Character synchronous communica-
cations I tions x

I Bit synchronous communications x
I 2780/3780 RJE emulation x
I 3270 emulation x
I HASP/32 x
I Ethernet communications x

1-4 48-040 FOO ROS

TABLE 1-1 OS/32 SOFTWARE SUPPORT (Continued)

TYPE SOFTWARE PRODUCT I STANDARD I OPTIONAL
===

Languages

utilities

Common microcode assembler
(MICROCAL)
Common assembly language/32
(CAL/32)
CAL macro/32
FORTRAN VII development (D)
compiler
FORTRAN VII global optimizing (0)
compiler
FORTRAN VII universal optimizing
(Z) compiler
COBOL *
BASIC Level II
CORAL 66
RPG II
Pascal
C on OS/32

Link
Edit
Medit
Text
Source Updater
Copy
Library Loader
Macro Library
Sort/Merge II
Patch
OS/32 Spooler
SPL/32
Fastchek
Fastback
Fastcopy
Account Reporting
Backup
Error Reporting
Disk Dump
Dump Print
Mirror Disk Synchronization
AUDIT32
Virtual Console Facility (VCF)
System Performance Monitor (SPM)

x
x

x
x

x
x
x
x

x
x
x
x
x
x
x
x
x
x
x

x
x
x

x

x

x

x
x
x
x
x
x
x

x
x

x

* lTC, COBOL and DMS/32 comprise the Reliance software system
designed for transaction processing.

48-040 FOO ROS 1-5

1.2.1 Task Management Subsystem

The task management subsystem consists of five major parts!

• Self-initialization

• Task dispatcher

• Machine state control

• Task queueing

• Task trap support

Self-initialization is invoked during system initialization. It
sets up the subsystem for those aspects of machine architecture
pertinent to the task manager (number of register sets and
floating point support) and system configuration (number of
tasks). This process also defines console monitor and command
processor subsystems as tasks.

The task dispatcher allocates processor time and activates memory
space allocation for the tasks executing in an OS/32 multitasking
memory multiplexing environment. The task dispatcher is first
invoked upon completion of system initialization to dispatch the
command processor and console monitor tasks. It is subsequently
invoked upon conclusion of every scheduling event1 i.e., (every
interrupt signal).

The Task Dispatcher:

• selects the highest priority task from the current task, CPU
ready tasks and ready to roll-in tasks. When no current CPU
ready or ready to roll-in task exists, the taBk dispatcher
selects a task off the top of APU queue 0 (for 3200MPS Family
of Processors only) .

• enforces any task status set while the task was outside the
control of the dispatcher 1 i.e., (cancel, pause, roll-in,
etc.) •

• transfers the task to
Processors only) based
mapping arrangement.

an APU queue (3200MPS Family of
on its LPU and existing LPU to queue

• sets up the task's time slice.

• switches task context (program status word (PSW), registers)
and transfers control to the selected task.

1-6 48-040 FOO ROS

Several task queues are maintained under task management:

• CPU ready queue, a sequence of the CPU ready tasks in priority
order.

• Roll-in queue, a sequence of the ready to roll-in tasks in
priority order.

• APU queues, (3200MPS Family of Processors only) numbered 0
through n, where n is the number of APUs (maximum of 9). Each
APU queue is a sequence of APU ready tasks in a priority or
first-in/first-out (FIFO) order.

The machine state control portion of the task management
subsystem is invoked every time there is a need in the operating
system to change the PSW to one of the following established
values:

• USER TASK (UT) state; memory relocation protection
(MAC/MAT/VAT) is enabled, privileged instructions are illegal,
SVCs are legal, system queue service (90S) is enabled and
register set X'F' is selected.

• EXECUTIVE TASKS (ET) state; memory relocation protection
(MAC/MAT/VAT) is enabled, privileged instructions and SVCs are
legal, SQS is enabled and the user register set X'F' is
selected.

• DIAGNOSTIC TASKS (DT) state; memory relocation protection
(MAC/MAT/VAT) is enabled, privileged instructions and SVCs are
legal, SQS is enabled and the register set X'F' is selected.

• REENTRANT SYSTEM
(MAC/MAT/VAT) is
are legal and SQS
structures. On
register set 6 is

(RS) state; memory relocation protection
disabled, privileged instructions and SVCs

is enabled, except when accessing system
a 2-register set machine, register X'F' of
selected.

• REENTRANT SYSTEM ALTERNATE (RSA) state; memory relocation
protection (MAC/MAT/VAT) is disabled, privileged instructions
and SVCs are legal and SQS is enabled except when accessing
system structures. RSA is similar to RS state except an
alternate context block is utilized; it is normally used to
access supervisor services from the supervisor itself.

• NONREENTRANT SYSTEM (NS) state; memory relocation protection
(MAC/MAT/VAT) is disabled, privileged instructions are legal,
SVCs are illegal, SQS is disabled and registers 8 through X'F'
of register set 0 are used. This is used to execute
noninterruptible portions of the operating system.

48-040 FOO ROS 1-7

• NONREENTRANT USER (NSU) state; memory relocation protection
(MAC/MAT/VAT) is disabled, privileged instructions are legal,
SVCs are illegal, SOS is disabled and registers 0 through X'F'
of register set X'F' are used. This is utilized by the OS/32
command processor.

• EVENT SERVICE (ES) state; memory relocation protection
(MAC/MAT/VAT) are disabled, privileged instructions are legal,
SVCs are illegal and SQS is disabled. On a 2-register set
machine, register X'F' of register set 5 is selected.

• INTERCEPT SERVICES (IS) state; memory relocation protection is
disabled, privileged instructions are legal, SVCs are illegal,
SOS is disabled and registers 0 through 7 of register set 0
are used. This state is used by drivers.

• INTERCEPT SERVICE USER (ISU) state; relocation protection
(MAC/MAT/VAT) are disabled, privileged instructions are legal,
SVCs are illegal, SOS is d.isabled and registers 0 through X'F'
of register set X'F' are used.

NOTE

Fo~ mo~e information regarding PSW
settings, see the Processor User Manuals
or Instruction Set Reference Manuals.

OS/32 allows a task to specify private interrupt processing or
trap routines. The task supplies a task status word (TSW) for
each supported trap in a dedicated area known as the
user-dedicated location (UDL). If a trap condition occurs, the
operating system stores the current TSW, loads the respective new
TSW from the UDL and transfers control accordingly. Upon
completion, the trap routine restores the current T8W and returns
control back to the main routine.

The task management subsystem allocates processor time for each
of the tasks executing in an 08/32 multitasking environment. The
task manager determines the order in which each task gains
processor control on a user-defined priority basis. Task
priority levels range from 0 to 254 (0 being the highest priority
level) . Of these 255 priority levels, 10 through 249 are
available for user-written tasks, while 1 through 9 and 250
through 254 are reserved for system use.

The task manager maintains four priority levels for each task:

• Maximum

• Task

1-8 48-040 FOO R05

• Run

• Dispatch

Maximum priority, set by Link, is the highest priority level
(i.e., the smallest number) that can be assigned to a task. Task
priority is the priority that is currently assigned to a task.
Initially, task priority is set when the task is linked, but this
priority can be changed after the task is loaded. Task priority
can never be set higher than the maximum priority set by Link.

Run priority can be set dynamically to a value ranging from the
task priority to task priority plus n. The value of n is based
on the behavior of the task. Run priority can only be set for
tasks that have dynamic time-slice/priority scheduling enabled.
If dynamic scheduling is not enabled, a task's run priority is
equal to its task priority. Currently, only MTM enables dynamic
time-slice/priority scheduling.

A dispatched task usually has a priority level equal to its task
priority even if dynamic scheduling is enabled. Nevertheless, if
a higher priority task requires specific system resources (e.g.,
a disk directory or bit map) that are currently controlled by a
lower priority task, the dispatch priority of this lower priority
task is raised to the priority of the higher priority task
waiting for the resource. When a task releases control of a
system resource, its dispatch priority is reset to its run
priority.

Tasks competing for processor time are maintained in priority
order on a task control block (TeB) queue known as the ready
queue. Tasks competing for both memory and processor time are
maintained in priority order on the roll-in queue. Tasks at the
same priority level are serviced on a round-robin basis1 i.e.,
tasks are added to the ready queue or roll-in queue behind tasks
of the same priority.

In the absence of time-slicing, once a task gains control of the
processor, it continues executing until it voluntarily
relinquishes that control or is preempted by a higher priority
task.

A task will relinquish control of the processor to another task
when one of the following occurs:

• It is paused by the system operator.

• It is cancelled by the system operator, user or another task.

• A higher priority task becomes ready due to an external event,
such as the completion of an outstanding I/O request.

• It executes an sve that places it in a wait, paused or dormant
state.

48-040 FOO R05 1-9

• It initiates I/O to a device.

• Its time-slice expires.

After the task relinquishes control of the processor, it is
returned to the ready queue where its TCB is placed behind the
TCBs of tasks of equal priority. This allows the other tasks on
the queue to be given a turn on the processor.

To determine which task should have control of the processor, the
task manager chooses the highest priority task among those on the
ready queue, the roll-in queue and any currently executing task.
If a task is chosen from one of the queues, the currently
executing task is placed back on the ready queue and the chosen
task becomes the current task.

The task manager supports two types of time-slicing:

• System time-slice

• Dynamic time-slice

System time-slicing limits the execution of
round-robin scheduling of priority tasks
Time-slicing allows tasks of equal priority
shares of processing time.

a task so that
can take effect.
to receive equal

At sysgen, system time-slicing can be enabled through the use of
the SLICE command. This allows time-slice scheduling to be
activated automatically by the system. Thereafter, the operator
SET SLICE command can be used to override the SLICE value set at
sysgen.

Dynamic time-slicing is enabled only for MTM subtasks. The
dynamic time-slice is calculated as:

slice = 1 + 2**m

Where:

m = task priority - run priority + 1

The slice is measured in units of line frequency clock (LFC)
ticks (one LFC tick = 8.333ms, 60Hz).

Run priority is adjusted whenever a task uses up a time-slice, is
removed from a wait state or has its priority modified by the
operator SET PRIORITY command. When a task uses up a time-slice,
its run priority is adjusted as follows:

1-10 48-040 FOQ RQS

New run priority = run priority + 1 or
task priority + k (whichever is smaller)

Where:

k = number of dynamically scheduled tasks or
12 (whichever is smaller)

Because a task that is placed in a wait state does not use up its
last assigned time-slice, the run priority of the task, when it
is removed from suspension, is adjusted as follows:

Run priority = run priority - 1 or
task priority (whichever is larger)

The task manager also performs intratask context switches to
allow tasks to receive and handle task traps in response to
synchronous and asynchronous trap-causing events. Synchronous
events include task-initiated faults (e.g., arithmetic, memory
access, illegal instruction, etc.) and SVC14 traps.
Asynchronous events originate outside of a task and include the
task queue traps (e.g., I/O and timer completion, SVC6 send
message/data and queue parameter, etc.) and the task event traps
currently associated only with SVC intercept support.

In addition to task scheduling and task trap support, the task
manager handles the state of a task during execution. Task
execution state is determined by the setting of the PSW. The
task manager switches or exits tasks from one execution state to
another.

1.2.1.1 Task Scheduling on the 3200MPS Family of Processors

The 05/32 task manager uses four different types of queues to
facilitate task scheduling:

• CPU ready queue

• CPU receive queue

• CPU roll-in queue

• APU execution queue

48-040 FOO ROS 1-11

An APU execution queue can be one of four different types:

• APU idle queue, not serviced by any processor

• APU private queue, serviced by a single APU

• APU shared queue, serviced by several APUs

• CPU/APU shared queue, serviced by the CPU whenever its own
ready queue is empty and/or by one or more APUsJ this is
always APU execution queue O.

Each APU execution queue can be designated either no-priority or
priority-ordered. Priority-ordered queues can be either enforced
or not enforced. For a priority queue that is not enforced, a
new task entry is placed on the queue according to its priority.
The currently executing ta8k is not affected. An entry with a
higher priority than another E~ntry is placed at the front of the
queue to be serviced when thE~ current task relinquishes control.
For a priority-enforced queue, if the priority of the new task
entry is higher than that of the currently executing task, the
executing task is interrupted and the new entry becomes the
current task. with enforced priority, any entry of high enough
priority will preempt the currently executing task. After system
initialization, the CPU ready queue is priority-enforced and the
CPU receive queue is no-priori,ty.

When a task requests processor time, the task manager adds the
TCB for that task to the CPU ready queue. The task manager
selects a task for execution from the queue on a strict priority
basis. After selecting a task, the task manager then decides
whether the task is to be executed on the CPU or placed on one of
the APU queues in the system. A task is transferred to an APU
queue for processing only when all of the following conditions
are true:

• The task must be executing in the user state, not in the
system state.

• The task's "LPU-directed" status must be set. (In MTM, when
the load-leveling executive (LLE) is active, subtasks of MTM
cannot be LPU-directed unless the user has SVC6 privileges.)

• The TSW does not specify
CPU-override status bit of
executed on the CPU.)

CPU-override status. (If the
the TSW is set, the task is

When all of the above conditions are true for the highest
priority task on the CPU ready queue, the task manager transfers
the TCB for that task from the CPU ready queue to an APU queue.

1-12 48-040 FOO ROS

If the APU is waiting for the task (i.e., APU processing has been
suspended until the task arrives), the TCB becomes the current
TCB and execution begins immediately. If the APU is not waiting
for the task, the TCB is placed on the APU queue.

Whenever it is not processing a task, the APU continually checks
its APU queue. If the APU finds entries on the queue, it will
execute the task at the top of the queue.

Once the APU starts a task, the task will execute until it:

• relinquishes control voluntarily (reschedules itself),

• encounters a fault,

• issues an SVC, or

• is returned to the CPU via an operating system request on
behalf of a monitoring task, operator command, etc.

The task may reschedule itself to the rear of the APU queue or to
the CPU. In a no-priority APU queue, the task is placed at the
bottom of the queue. In a priority APU queue, the task is placed
behind all tasks of equal or higher priority or at the queue top
if there is no task of equal or higher priority on the queue. In
a priority-enforced APU queue, the task is placed on the queue in
the same manner as for a priority queue. In addition, whenever
the task happens to be placed at the queue top, the operating
system executes the preempt procedure to ensure execution of the
highest priority tasks even if a lower priority task is currently
executing.

The task is returned to the CPU receive queue if it is
rescheduled to the CPU, if a fault occurs or if an SVC or
operating system request occurs. The task waits on the receive
queue until the CPU places the task on the CPU ready queue.

If the task is placed on the receive queue as a result of a
fault, the task is moved to the CPU ready queue. If the
appropriate bits in the TSW are set, the task's TSW location is
set to the address of the task trap handler. The task can then
be dispatched back to the APU queue.

If the task is placed on the receive queue as a result of issuing
an SVC, the task is moved to the CPU ready queue and executed on
the CPU until SVC processing is complete. The task can then
automatically move back to the APU queue.

Rollable tasks are moved from the roll-in queue to the CPU ready
queue and are processed in the same manner as any other currently
executing tasks. Rollable tasks may be dispatched to an APU.

48-040 FOO R05 1-13

Tasks running under MTM will run on APUs as determined by the LLE
at a priority scheduled by the priority scheduling mechanism
(PSM). When the LLE is active, MTM controls whether the task or
request will be assigned to one of the APUs, lOPs or to the CPU.

1.2.2 Job Accounting Subsystem

The job accounting subsystem reports CPU usage and time elapsed,
memory and disk space utilized and number and length of I/C
transfers by device class. ~~he OS/32 job accounting subsystem
now reports APU usage, lOP usage and time elapsed in the 3200MPS
Family of Processors. The job accounting subsystem contains the:

• Data Collection Facility

• Account Reporting utility

The Data
all user
accounting

Collection Facility collects accounting data on
activities and stores this information in the
transaction file (ATF) when the task terminates.

The Account Reporting utility is designed to accommodate specific
customer site requirements. The performance information gathered
by the Data Collection Facility is prepared by the Account
Reporting Utility for use by system maintenance personnel.
Reports can be requested for individual user accounts, summaries
of user accounts and system usage. For more information, see the
OS/32 System Support Utilities Reference Manual.

Through the DISPLAY ACCOUNTING command, the system operator has
access to accounting data for one or all tasks in the system.
This command also gives MTM users access to accounting data for
a task monitored by MTM on their behalf.

1.2.3 Memory Management Subsystem

When a task is loaded, the memory management subsystem
dynamically allocates necessary space in memory. OS/32 supports
three types of memory:

• Local

• Shared

• System

1-14 48-040 FOO R05

Local memory is physically contiguous starting from location 0
and contains the operating system, task space and system space.
Local memory is allocated on a first-fit basis when sufficient
memory is available for a specific task. Free segments are
allocated in ascending address order. When no space is available
for a task, the memory manager dete-rmines which tasks are to be
rolled out to ensure that higher priority tasks take percedence.
When memory becomes free, adjacent areas are merged together to
minimize search time and to provide large free blocks of memory
for bigger tasks.

Shared memory is located above local memory and is not required
to be contiguous. Global task common (TCOM) segments, located in
shared memory can be used by more than one processor.

System task space is maintained by the memory manager and is
dynamically allocated when a task or device structure is built.
System memory is shared by all processors in the 3200MPS Family
of Processors. System memory contains both local and shared
areas with local memory areas used by the CPU and all APUs.

The memory manager maintains task space through free and
allocated lists. Segments are allocated dynamically on a
first-fit basis by searching the free lists. When free task
space is allocated to a segment, it is removed from the free list
and connected to the allocated list. This list is called the
segment control list (SCL). Similarly, whenever a segment is
released, its memory space is removed from the allocated list and
connected to (or merged into) the free list.

1.2.4 Timer Management Subsystem

The timer management subsystem provides tasks with a set of timer
management/maintenance services. These services control all
time-dependent functions (e.g., time-slicing, I/O, job accounting
and file dating) through the universal clock (UCLOCK).

The following timer queues are maintained by the timer management
subsystem:

• Time of day

• Device time-out

• Communications device time-out

• Interval timer

48-040 FOO ROS 1-15

There are several timer routines that service these queues.
Entries are placed on the time of day queue and the interval
timer queue as a result of SVC2 timer requests. The control
blocks on the time of day queue are referred to as timer queue
elements (TMQs). The interval timer queue has the same format as
the time of day queue but is maintained as a separate queue.

The UCLOCK consists of an LFC and a prec1s1on interval clock
(PIC) • In a 60Hz system, the LFC generates an interrupt every
8.3ms or 120 times per second. In a 50Hz system, the LFC
generates an interrupt every 10ms or 100 times per second. The
PIC interrupts when a task's requested time interval has expired
or at intervals of 4,096ms, whichever is shorter. If the
interval terminates or the time of day is reached, the TMQ is
removed from system space and a trap is generated or the task is
removed from timer wait.

In the 3200MPS Family of Processors configuration, the real-time
support module (RTSM) providE~s each processor, having only APU' s
and IOP's, with a 32-bit real-Mtime counter for timing program
execution. These counters are incremented every microsecond by
a lMHz on-board oscillator. The read real time clock (RRTC)
instruction allows tasks to read the counters. See the
appropriate instruction set reference manual for more
information.

1.2.5 File Management Subsystem

The OS/32 file management subsystem stores and retrieves
information for a task on secondary storage devices (disks,
floppy disks, etc.). The filE: manager partitions this storage
into smaller areas, called files, that can be used by tasks for
data and program storage. In addition, the file manager provides
tasks with the following support services for file management:

1-16

Allocate

Delete

Rename

Open

Close

Fetch
attributes

Checkpoint

creates a file by allocating space on a
secondary storage device.

removes a file from a secondary storage
device.

changes the name of a file.

assigns a logical unit (lu) to a file.

cancels the lu assignment.

examines the attributes of a file.

ensures that all data in an output buffer is
written to a secondary storage device.

48-040 FOO R05

Software
density
selection

selects recording density for 6,250 bits
per inch (bpi) magnetic tape drives.

1.2.6 Input/Output (I/O) Subsystem

The I/O subsystem provides a uniform programming interface
between the task and external devices. I/O operations can occur
in the following task modes:

wait

Proceed I/O

Halt I/O

Queued I/O

halts execution until
completed.

data transfer is

continues task execution during data transfer.

allows the task to cancel previous proceed I/O
requests.

allows a task to queue I/O requests to a busy
device and continue execution until the device
is free.

A task trap mechanism can be used to report each completed I/O
operation. wait-only and test I/O functions allow the task to
synchronize its execution with the completed I/O operations.

1.2.7 Error Recording Subsystem

The error recording subsystem logs all memory errors, file
manager errors, system milestones and system detected errors on
a disk for the Error Reporting utility, which analyzes the data
and generates reports.

OS/32 memory error recording software supports the memory error
log hardware of the Series 3200 processors. Error log hardware
keeps a history of the single-bit corrected memory errors. The
operating system reads the error log hardware and stores the
error information into an internal error log buffer. On a 3280
System, the operating system requests error log information
through the Control Diagnostic System (CDS). When the error log
buffer is full, its contents are stored on an error recording
file with the date and time of the last error recorded. When the
error recording file is almost full, a warning message is
displayed on the system console indicating that a new error
recording file should be allocated or that the Error Reporting
utility should be initiated. The Error Reporting utility
provides reports on the previously recorded error information in
the error recording file.

The current error status can be displayed to the system console
by using the DISPLAY ERRORS command. The internal error log
read-out period can be changed by the system operator.

48-040 FOO ROS 1-17

1.2.8 Memory Diagnostics Subsystem

The memory diagnostics subsystem eliminates inoperable memory
areas from the system without affecting task execution. It
allows the operating system to execute when portions of real
memory have been removed (holes) or when a part of the system is
powered down for maintenance. Memory can be tested and marked on
and off through the operator MEMORY command or when the operating
system is initialized.

The marked-off areas are notE~d as allocated in the memory map.
Memory is marked on when previously marked-off memory is to be
used again. If an irrecoverable memory error occurs during task
execution on a Series 3200 processor, the operating system
automatically marks off the area occupied by the task.

1.2.9 Loader and Segmentation Subsystem

The OS/32 resident loader is responsible for loading tasks,
reentrant libraries, TeOM segments and partial images. These
tasks and segments must have been built by Link. Each task image
generated by Link contains information related to the task (e.g.,
task options, size, libraries referenced) in a record called the
loader information block (LIB). The OS/32 resident loader uses
this information to generate data areas, set the task options,
create segment tables for the tasks and map the task segments
into the memory space of the processor.

All user tasks (u-tasks) in OS/32 are built as though they were
loaded at physical address 0 in memory. The
relocation/protection hardware automatically relocates the task
relative addresses at run-time by using the task segment table.
This process is totally transparent to the user.

The loader is also responsible for creating the task environment,
allocating roll files, creating, maintaining and deleting segment
tables, maintaining a segment control list and mapping and
unmapping partial images.

The task image can be divided into pure and impure segments. A
pure segment is one that is read and execute only, while an
impure segment is one that is read, write and excute. Pure and
impure segments are defined by specifying the SEGMENTED task
option when the task is built by Link. Regardless of the number
of times a task is loaded, the loader will allow only one copy of
the task's pure segment in memory at anyone time. A separate
copy of the task's impure segment is loaded each time the task is
loaded. The relocation/protection hardware ensures the integrity
of pure segments by allowing read-only and execute-only access
privileges to those segments.

1-18 48-040 FOO R05

FORTRAN and assembly programs utilize TCOM segments. Access to
TCOM is achieved mnemonically, that is by reference to the name
of the segment. Linkages to these TCOM segments are resolved by
Link. Link commands are also used to request read, write and
execute privileges for TCOM blocks. See the OS/32 Link Reference
Manual for more information.

1.2.10 Basic Data Communications Subsystem

The basic data communications subsystem provides a software
interface between tasks and common carrier facilities. Basic
data communications facilities allow the user to access remote
terminals or computers as though they were locally attached
peripherals. For example, with OS/32 Data Communications
software, a task performs I/O to a remote terminal in the same
manner as I/O to a local device.

In addition to providing device-independent (logical I/O) access
to the task, the subsystem provides a device-dependent I/O
capability that allows the systems programmer to tailor a
communications package to a particular installation. Such a
package can include device-dependent and device-independent
support of asynchronous line devices as well as device-dependent
support of binary synchronous lines.

The OS/32 Basic Data Communications software support package is
required for all 32-bit communications products; e.g., HASP,
2780/3780 Remote Job Entry, the zero-bit data link control (ZDLC)
Channel Terminal Manager and the Ethernet Data Link Controller
(EDLC), which support the synchronous data logic control (SDLC),
high-level data link controller (HDLC) and advanced data
communications control procedure (ADCCP) protocols.

1.2.11 Console Monitor Subsystem

The console monitor subsystem processes all I/O requests directed
to the system console device and the system log device from all
tasks including the command processor task. The console driver
is responsible for intercepting system console I/O requests and
for directing them to the console monitor or to another monitor
task such as MTM. All I/O operations between the system console
and tasks running under MTM are routed to the user's terminal
through MTM and not through the console monitor.

When a command is issued from the system console, the console
monitor issues an SVC6 to the command processor notifying it of
a command to be processed. The command processor interprets the
command and issues an SVC6 to the console monitor indicating that
it is ready to accept another command.

The console driver is a part of the OS/32 I/O subsystem and is
the module that intercepts I/O requests to the system console,
processes them and gives them to MTM or to the console monitor to
perform the actual I/O.

48-040 FOO ROS 1-19

The console monitor is the first task dispatched at OS/32
initialization. The console monitor initializes both itself and
the "dummy" device control block (DCB) used by the console driver
to intercept requests from the system console. The monitor then
issues an SVC6 to start the command processor.

1.2.12 Command Processor Subsystem

The command processor subsystem accepts commands from the system
console monitor, decodes them and calls the appropriate executor.
Commands can be input to the command processor by entering them
directly through the system console or issuing them through a
foreground task that uses the system console as an interactive
I/O device. Commands input f.rom a foreground task are executed
by the command processor in the same manner as commands entered
from the system console. If an error occurs during execution of
a command, the command processor outputs an error message to the
console.

An extension to the command processor, the command substitution
system (CSS), allows commonly performed sequences of operations
to be executed with one command. The CBS routines provide the
user with the ability to build, execute and control files of
operator and MTM commands. The user establishes command files
that are called from the user console and executed in the
user-defined sequence. In this way, complex operations can be
carried out by the user with few commands. These commands are
analogous to macro instructions in assembly language.

The CSS provides a set of logical CSS commands
control the precise sequence of commands
Parameters can be passed as part of a CSS call
sequences can be written that take on specific
the parameters are substituted. Other calls to
imbedded within a CSS file (nested calls).

to conditionally
to be executed.
so that general
meaning only when
CSS files can be

The command processor normally runs at the second highest
priority level after the console monitor in OS/32. This task is
strictly trap driven and responds to the SVC6 task queue
parameter calls from the console monitor to service a command
request. When the command is processed, it signals the console
monitor for a new command read via an SVC6 queue parameter call
and then enters into a trap wait state. The command processor
priority can be decreased by the operator ATTN command. This
command can be used in a real-time application environment to
allow a task to run at a higher priority than the command
processor.

1.2.13 system Initialization Subsystem

After the operating system is loaded, the system initialization
subsystem initializes the memory diagnostics subsystem, error
recording subsystems and system control blocks and tables in
memory. It then dispatches the console monitor, which readies
the command processor to accept commands from the system console.

1-20 48-040 FOO ROS

1.2.14 Internal Interrupt Subsystem

The internal interrupt subsystem is responsible for:

• handling illegal instruction faults,

• handling arithmetic faults,

• detecting memory faults,

• handling SQS interrupts,

• handling relocation/protection hardware faults,

• handling data format/alignment faults,

• handling power fail and power restore conditions,

• restoring an interrupted task to its previous program state
upon resumption of the task,

• handling parameter block errors,

• handling illegal SVCs and SVC interrupts,

• handling machine malfunction interrupts, and

• performing memory image dumps.

Processor-dependent interrupt handlers comprise the internal
interrupt subsystem. This subsystem does not support external
I/O interrupts; they are handled by the appropriate device
drivers.

On the 3200MPS Family of Processors, the CPU handles all fault
conditions or interrupts that occur during execution of a task on
an APU. Thus, the APU can execute another task while the CPU is
handling the fault or interrupt.

1.2.15 Optional User Supervisor Call (SVC) Subsystem

SVC14 is provided as an optional SVC that can be defined by the
user. On execution, the task receives a task trap for SVC14.
See the Supervisor Call (SVC) Reference Manual for information on
how to implement the SVCl4 trap feature.

1.2.16 Floating Point Subsystem

A task has optional access to single and/or double precision
floating point instructions under OS/32. Floating point
instructions can be executed through hardware or simulated by
software. Systems that do not support floating point options
handle all floating point instructions as illegal instructions.

48-040 FOO R05 1-21

2.1 INTRODUCTION

CHAPTER 2
PRIVILEGED TASKS

In a multiuser system, improper use of certain machine
instructions, called privileged instructions, can have a
detrimental effect on system integrity. Privileged instructions
include storage protection setting, interrupt handling, timer
control, input/output (I/O) and some processor status-setting
instructions. To prevent accidental or intentional misuse of
these instructions, OS/32 provides a privileged operating state
in which tasks can execute these instructions. In addition to
the privileged operating state, OS/32 provides a privileged task
state in which tasks can access the file account and bare disk
OS/32 supervisor routines.

Only privileged tasks can execute in a privileged operating or
task state. OS/32 allows three types of privileged tasks:

• Executive tasks (e-tasks)

• Privileged user tasks (u-tasks)

• Diagnostic tasks (d-tasks)

A task can be linked as a privileged task by specifying one or
more of the following task options in the Link OPTION command:

ETASK, ACPRIVILEGE, DISC, DTASK

See the OS/32 Link Reference Manual.

This chapter describes the privileges that are available to each
type of privileged task through the Link OPTION command.

48-040 FOO R05 2-1

2.2 EXECUTIVE TASKS (E-TASRS)

E-tasks run with the memory address relocation/protection
hardware disabled and are allowed to execute all instructions
provided by the hardware. E:-tasks always have file account and
bare disk privileges. In addition, e-tasks can execute code that
modifies or enhances the OS/32 system software. For example, an
e-task can modify one of the system modules to enhance an
existing OS/32 feature. E-tasks can also function as drivers
that support nonstandard peripheral devices. A task can be
linked as an e-task by specifying the ETASK task option in the
Link OPTION command. The following sections detail the
programming considerations that must be taken into account when
writing e-tasks.

2.2.1 Relocatable Executive Tasks (E-tasks)

A relocatable e-task is a method by which a programmer is freed
from the traditional restrictions associated with writing an
e-task. within a relocatable e-task, a programmer can specify
address constants and (RX3) instructions without having to
relocate them manually from within the program. The programmer
can also write programs in modules, which means that overlays can
also be developed. All relocation is user-transparent so that
the programmer does not have to worry about any special
housekeeping or additional memory requirements.

2.2.2 Writing Executive Tasks (E-Tasks)

Because e-tasks execute in a privileged state,
precautions must be taken when e-tasks are programmed.

certain

When an e-task is executing, no memory address protection or
relocation is provided and .ill interrupts are enabled. The task
has access to all machine instructions and memory address space
in the system. In addition, the e-task can access system tables
and control information via the system pointer table (SPT). The
address of the SPT is stored in the halfword at location X'62' in
memory.

Link builds the image for an e-task as if it were loaded at
absolute location zero. The loader, however, is free to load the
e-task into any available memory location. Therefore, an e-task
must be coded as if it were positionally independent; an e-task
must not contain relocatablE~ code unless the the RELOCATE option
is specified.

Because Link relocates e-task addresses to absolute zero, e-tasks
cannot assemble code containing address constants, as shown in
the following example.

2-2 48-040 FOO ROS

Example:

SVC7BLK DB
DAC

X I 80 I ,7
ADDR

An e-task must dynamically set the addresses
task. To reference addresses in the l6kB
following technique:

LA UE,BUFSTART
LA UF,BUFEND
LA U3,SVCIPBK
STM UE,SVCI.SAD(U3)
SVC 1,0 (U3)

required by
range, use

the
the

References to addresses exceeding the 16kB range can be made in
the following manner.

Example:

BASE LA
LA
LA
LA
STM
SVC

U4,BASE
UE,BUFSTART-BASE(U4)
UF, BUFEND-BASE (U4)
U3,SVCIBLK-BASE(U4)
UE,SVCl.SAD(U3)
1,0 (U3)

E-tasks smaller than l6kB must use the no RX3 (NORX3) (CAL/32)
instruction to force all RX instructions to the RXl or RX2
format. The tasks must not contain any RXl or RX3 instructiQns
with relocatable addresses. See the Common Assembly Language/32
(CAL/32) Programming Reference Manual.

2.2.3 Writing Relocatable Executive Tasks (E-Tasks)

When writing relocatable e-tasks, any 3- or 4-byte instruction
can be used within the task; this includes address constants such
as RX3 and RI2 instructions along with external instructions.
Halfword address constants and absolute data will not be
relocated. Due to previous restrictions, only programs written
in Common Assembly Language (CAL) may be used with relocation
features since some of the object code generated by the compilers
may reference absolute address locations. All other restrictions
associated with e-tasks apply (e.g., shared segments can not be
specified); on the other hand, a program may be linked with
overlays. Common blocks can also be referenced, as long as the
common block is not linked as a sharable segment.

48-040 FOa ROS 2-3

To declare an e-task as relocatable, the user must specify it to
be relocatable at link time via the OPTION command.

Example:

OPTION ETASK,RELOCATE

Both options must be specified in order for the relocation tables
to be built. If ETASK is omitted, the RELOCATE option is
ignored; if RELOCATE is omitted, an e-task is established with no
relocation tables being built.

NOTE

No attempt should be made to run any
utilities as relocatable e-tasks. This
is due to the fact that some of these
utilities refer to absolute address
locations.

For information on linking a relocatable e-task, see the OS/32
Link Reference Manual.

A relocatable e-task requires no additional memory to run, since
the relocation tables are only used at load time. However, an
extra 2S6-byte buffer is reserved within the task control block
(TCB) for a task established with overlays; this buffer is used
to read the relocation table every time an overlay is loaded.

2.2.4 OS/32 Data Structures Used by Executive Tasks (E-Tasks)

OS/32 provides two macro libraries that contain OS/32 and
multi-terminal monitor (MTM) data structures. The OS/32 data
structure macro library is stored in file SYSSTRUC.MLB. Table
2-1 contains a list of the macros and corresponding data
structures in this library. Data structures specific to the MTM
subsystem are stored in file MTMSTRUC.MLB. The contents of this
library are listed in Table 2-2.

Using the OS/32 e-task capability and the data structures
available to e-tasks, the system level programmer can incorporate
changes or add user-written modules to the source of the OS/32
system modules.

2-4 48-040 FOO ROS

TABLE 2-1 OS/32 DATA STRUCTURES MACRO LIBRARY

MACRO DATA STRUCTURE
===

$ACB
$ACTCD
$AOPT
$APB
APB
$APRC
$APS
$APST
$ATF

$CABINET
$CCB
$CDS

$CDSHDR
$CDSTIME

$CMMADDR

$CMMCONF
$CMMMSG
$CTX

$DATB
DCB
$DDCB
$DDE
$DFLG
$DIR
$DXFL

$EMIL
$EFMG
$EREGS
$ERRC$
$ESYS
$EVN

$FCB
FCB
$FDE
$FFLG
$FD

$GERC

$HB

INTCPARM

48-040 FOO R05

Directory access control block (ACB)
Input/output processor (lOP) action code
Auxiliary processing unit (APU) options
Auxiliary processor block (APB)
$APB, $APRC, $APS, $AOPT
Passback reason codes and equates
APB status codes and equates
APU status codes, error codes and equates
Account transaction file (ATF)

Cabinet configuration (3280 System only)
Channel control block (CCB)
Control Diagnostic Subsystem (CDS) (3280
System only: unsolicited message format)
CDS message header (3280 System only)
CDS time (3280 Systems only; request time
response format)
Composite memory module (CMM) address (3280
System only)
CMM configuration (3280 System only)
CMM message (3280 System only)
U-task context block

Device attributes equates
$PDCB, $DDCB ,DCB EQUATE, $DFLAG,
Device-dependent device control
Error log data structure
DCB flags
Primary directory entry
Disk-extended flags

$DATB, $DXFL
block (DCB)

System milestone recording entries
Bulk device error recording entries
16 executive registers (E1=register 1)
$GERC, $EFMG, $ESYS, $EMlL, $MERC
System error recording entries
Event node

File control block (FCB)
FCB and FCB flags
Free block descriptor entry
FCB flags
File descriptor (fd)

General error recording information

Help subroutine argument block

Supervisor call (SVC) intercept information

2-5

2-6

TABLE 2-1 OS/32 DATA STRUCTURES MACRO LIBRARY (Continued)

MACRO DATA STRUCTURE
===1

$ICB
$IOB
IOB
$IOBF
$IOH
$IPB
$IPCB
$IRCB
$IVT

$LIB
LIB
$LLE
$LPMT
$LOPT
$LSG
$LTCB

$MAGDCB
$MERC

$OCB
$ODT
$ORT

$PDCB
$PFCB
$PSCMSG
$PSDCB
$PSTCB
$PSW

$QCB
$QCHEAD
$QH
$QPB
QPB
$QPSTAT

$RCTX
$REGS$
$REL
$REQSTAT
$RLST
$RREGS
$RREL

$RSARCPY

Intercept control block
I/O block
I/O and I/O flags
I/O block flags
I/O handler list
lOP parameter block (IPB)
Intercept path control block
Intercept control block
Initial value table

Loader information block (LIB)
LIB and loader options
Load-leveling executive (LLE)
Logical processor mapping table (LPMT)
Loader options
Load segment
Loader TCB redefinitions

Magnetic tape DCB
Memory error recording entry

Overlay control block
Overlay descriptor table (ODT) structure
Overlay reference table

Primary (device-independent) DCB
Private FCB
Power supply cabinet (3280 System only)
Pseudo DCB structure (device-dependent)
Pseudo TCB
Program status word (PSW)

Queue control block (QCB)
Queue control block header (QCHEAD)
SVC intercept queue handler structure
Queue parameter block (OPB)
$QPB, $QPSTAT
QPB status

RS/RSA context block
$SOPT, $UREGS, $EREGS, $RREGS, $PSW
Read error logger (REL) (3280 System only)
Request status (3280 System only)
Roll selection list
16 general user registers (R1 = register 1)
Response for read error logger (3280 System
only)
Reentrant system state alternate save area

f
I
1
1
t
I
I
I
I:

I
I
I
I,
1
I
I
I
I
I
I
I
I
I
I
I
l
I

TABLE 2-1 OS/32 DATA STRUCTURES MACRO LIBRARY (Continued)

MACRO DATA STRUCTURE
===

$SlXO
$SDCB
$SD
$SDE
$SENDREL
$SOPT
$SPLMSG
$SPT
$SPTE
$SPOL
$SSUB
$STE

$SPR
$SVCl
$SVCl$
$SVClERR
$SVClMTE
$SVC4
$SVC5
$SVC6
$SVC7
$SVC7EXT
$SVC7SPL
$SVC13
$SVC13$
$SVT
$SYP
$$SPT

$TABL$
$TCB
TCB

$TFL
$TKQ
$TLFL
$TMQ
$TOPT
$TPRC
$TQE
$TQH
$TQ27
$TSTT
$TSW
$TTB
$TWT

SVCl extended options masks
Pseudo print DCB structure
Send data message block
Segment descriptor element
Send read error logger (3280 System only)
System options
Spooler message structures
System pointer table (SPT)
SPT extern definitions
Spooler message
Shared segment usage block
Segment table entries (STEs) memory address
translators «(MAT) processors)
Segment privilege flags
SVCl
SVCl and SVCl error codes
SVCI error codes
SVCI magnetic tape specific error codes
System SVC - reserved
SVC5 parameter block
SVC6 parameter block
SVC7 parameter block
Extended SVC7 functions
Spooler SVC7 parameter block
SVCl3 parameter block
$SVCI3, $APST
System value tab
System space structure
SPT table definitions

Structure/extern generating macro
TCB, $SDE, IOB, $TCB, $CTX
$TCB, $TOPT, $TSTT, $TWT, $TLFL, $PSTCB, $OCB,
$TQE, $TFL, $TPRC, TQH
TCB flags
Task queue head
Logical unit (lu) table of flags
Timer queue entry
Task options flags
Task passback codes
Task event queue entry
Task event queue header
SVC2 code 27 parameter block
Internal task status flags
Task status word (TSW)
APU trap block
Task wait status flags

$UDL User-dedicated locations (UDLs)

48-040 FOO ROS 2-7

TABLE 2-1 OS/32 DATA S~~UCTURES MACRO LIBRARY (Continued)

MACRO DATA STRUCTURE
===

UDL
$UREGS

UDL and TSW
16 general user registers (Ul = register 1)

$VD
$VFCHARS
$VFDCB
$VSTE

Volume descriptor
Vertical forms control (VFC) characters
Common VFC DeB structure
Virtual addrE~ss translator (VAT) segment table
entry (VSTE) (3280 System only)

$WAP Read/write ac:cess matrix header structure

TABLE 2-2 MTM DATA STRUCTURES MACRO LIBRARY

MACRO 1 DATA STRUCTURE
==1

$TERMUSR
$AUF
$MTMSTE
$PRIV
$VAR
$BTQ
$CMB
$LMB
$CBH
$CSTK

Terminal user block
Authorized user file (AUF) record
Terminal state definitions
User privileges
CSS variable flags and structures
Batch queue header and entry structures
Command buffer structure
Log/broadcast message buffer structures
Common buffer header structure
Command sUbstitution system (CSS)
pointer stack structure

2.3 PRIVILEGED USER TASKS (U-TASKS)

Privileged u-tasks run with the memory address
relocation/protection hardware enabled and are restricted to a
subset of instructions known as nonprivileged instructions. If
a u-task attempts to execute a privileged instruction, it causes
an illegal instruction fault. However, unlike nonprivileged
u-tasks, privileged u-tasks have file account and bare disk
privileges. File account privileges allow tasks to specify an
account number in the file account/class field of an fd. Bare
disk privileges allow tasks to perform I/O operations to a bare
disk device. See the OS/32 Supervisor Call (SVC) Reference
Manual.

2-8 48-040 FOO ROS

A u-task acquires file account and bare disk privileges by
specifying the ACPRIVILEGE and DISC task options, respectively,
in the Link OPTION command when the task is built.

2.4 DIAGNOSTIC TASKS (D-TASKS)

D-tasks, like e-tasks, can execute all instructions provided by
the hardware. However, like u-tasks, d-tasks run with the memory
address relocation/protection hardware enabled and execute in the
nonprivileged task state. D-tasks are designed for use in
diagnostic applications, loading writable control store (WCS) ,
and direct execution of I/O instructions.

A task can be linked as a d-task by specifying the DTASK task
option in the Link OPTION command. To execute in the privileged
task state, a d-task must be built with the ACPRIVILEGE and DISC
task options enabled.

48-040 FOO ROS 2-9

CHAPTER 3
PROGRAMMING IN THE 3200MPS FAMILY OF PROCESSORS

MULTIPROCESSING ENVIRONMENT

3.1 INTRODUCTION

Programming in a multiprocessing environment is similar to
programming in a uniprocessing environment. However, due to the
nature of the hardware configuration, the multiprocessing
environment offers one major programming advantage: increased
throughput. For efficient use of this expanded computing
ability, the system level programmer should take the following
into consideration:

• The selection of tasks or input/output (I/O) requests that are
to be executed on a central processing unit (CPU), auxiliary
processing units (APUs), or I/O Processors (lOPs).

• The preparation of the APUs for task execution.

• The assignment of tasks to processor queues.

• The establishment and control over the order
execution.

of task

• The prevention of invalid data variables, caused when two
tasks running on different processors are allowed to
concurrently read and modify a common data structure or memory
location.

• The measurement of real-time performance of the individual
tasks in the system.

• The customization of APU fault handling.

This chapter focuses on some techniques that can be
assembly language programmer in solving unique
problems in a multiprocessing environment. For
programming information, see Table 3-3.

48-040 FOO ROS

used by an
programming
additional

3-1

3.2 DESIGNING TASKS TO RUN ON A MULTIPROCESSING SYSTEM

The main performance advantage of designing an application to run
on a multiprocessing system is that a job can be broken down into
several parts that can be run on different processors
simul taneously •

A job can be divided amon.g a number of tasks that control
individual operations, such as processing I/O, performing
calculations resulting from a particular action and providing an
operator interface for reporting and responding to the results of
the calculations.

The individual APUs running these tasks can transmit all status
information regarding the components of the system to another
task, called the supervisor monitor. The supervisor monitor can
then output messages to a console or printer as the status is
received. Another function of the supervisor monitor is to store
a code in a status word in memory that can be accessed by a
stand-by task. The stand-by task would then be able to
periodically check the status of the system and adjust task
execution accordingly.

Once the programmer has divided a job into several tasks that can
be run simultaneously, the next step should be to assign each
task to an APU for execution. It should be remembered, that
generally, execution of a computation-intensive task on an APU
increases overall system performance, while an I/O-intensive task
running on an APU decreases system performance. Because the
operating system executes exclusively on the CPU, each physical
I/O request made by an APU task causes the task's execution to
transfer back to the CPU for operating system support. For this
reason, all I/O-intensive tasks should be assigned to the CPU for
execution. An I/O request from an APU will be passed to the CPU,
which in turn passes it to an lOP, if one or more are available.

Tasks that perform extensive supervisor calls (SVCs) (other than
SVCls to an indexed file with large blocking factors), are best
left for the CPU to execute. Tasks that perform I/O to indexed
files or proceed I/O to contiguous files should be executed on
APUs. This takes advantage of an APU's ability to efficiently
perform logical I/O. Computational-intensive tasks are most
efficiently executed on APUs leaving the CPU free to service
other tasks. Tasks that perform I/O to indexed files with one to
one blocking factors or to contiguous files that are not proceed
I/O (or proceed I/Os that are not followed by
computational-intensive routines) should be scheduled to the CPU.

3-2 48-040 FOO ROS

3.3 PREPARING AN AUXILIARY PROCESSING UNIT (APU) FOR TASK
EXECUTION

OS/32 supports a multiprocessing configuration consisting of one
CPU and any combination of one to nine APUs or lOPs. The
operating system schedules tasks for execution by arranging them
in queues. These queues consist of a CPU ready queue and APU
execution queues.

3.3.1 Queue Assignments

The CPU ready queue is intended for SVC I/O-intensive tasks and
is serviced by the CPU. The APU execution queues are numbered 0
through n, where n represents the number of APUs in the system.
They are intended for the computation-intensive tasks and are
serviced by APUs assigned to them. APU queue 0 is serviced by
the CPU when the CPU ready queue is empty. The APU execution
queues numbered 1 and above are also referred to as APU-only
queues.

The APU-only queues
possibilities:

may have the

• The queue is idle with no APUs assigned.

following

• The queue is private and has one APU assigned.

• The queue is shared with two or more APUs assigned.

assignment

When the operating system is loaded, each of the APU-only queues
is designated as a private queue and is assigned to one APU. The
number of the queue will correspond to the number of the APU to
which it is assigned. Subsequently, the APUs may be reassigned
using a corresponding SVC13 control function or the operator
command APC. To employ an SVC13 control function, a task must be
linked using the OPTION APCONTROL command of LINK.

3.3.2 Auxiliary Processing Unit (APU) Operating States

OS/32 maintains two operating states for an APU.
the degree of APU readiness for task execution.
are:

Each differs in
These. states

DISABLED

ENABLED

48-040 FOO ROS

APU is unavailable for all purposes except
running the power-up link check procedure.

APU has successfully passed the power-up link
check procedure and is ready for task
execution.

3-3

All APUs are put into the DISABLED state upon operating system
load or power restore. On a power fail restart, an attempt is
made to upgrade each APU not disabled prior to the power fail to
the ENABLED state.

The transition from one APU state to another can be accomplished
along the paths shown in Figure 3-1. These transitions are
executed by the corresponding SVC13 control functions or the
operator APe command. The APU firmware logic requires resetting
the APU state after it is disabled in order to be enabled again.
The resetting is done using the appropriate button on the APU
board or by powering down the APU cabinet.

040-2

ENABLED
STATE STATE

Figure 3-1 Valid APU Operating States

3.3.3 APU-Only Queue Operating States

08/32 maintains three operating states for each APU-only queue.
Each differs in the degree of queue availability for task
scheduling. These states are:

OFF

ON EXCLUSIVE

ON

APU queue is
scheduling.

not available for task

APU queue has only a designated task scheduled
to it. (Only an idle or private APU queue can
be marked ON EXCLUSIVE.)

APU queue is fully
scheduling.

available for task

All the APU-only queues are put into the OFF state upon operating
system load. Upon a power fail restart, the load power fail
monitor (LPFM) restores the queue states. The queue 0 is always
maintained in the ON state.

3-4 48-040 FOO ROS

The transition from one APU queue state to another
accomplished-~ along the paths shown in Figure 3-2.
transitions are executed by the corresponding SVC13
functions or the operator QUEUE command. To use an SVC13
function, a task must be linked using an OPTION APMAPPING
of LINK.

040-3

ON

STATE

OFF
STATE

Figure 3-2 Valid APU Queue Operating states

can be
These

mapping
mapping
command

* The following code demonstrates how SVCl3 *
* is used to enable an APU and mark on the queue *
* for task scheduling. This example does not *
* check for SVC13 execution errors. A task incor- *
* porating this code must be linked using a LINK *
* command OPTION APCONTROL, APMAPPING. *

48-040 FOO R05 3-5

Example:

$SVC13
ALIGN 4

ENABLE DS SVC13 ALLOCATE STORAGE FOR SVC 13 PARBLK
ENABLEE EQU *
*GAIN CONTROL RIGHTS, ENABLE APU, START APU, ASSIGN TO QUEUE,
*RELEASE CONTROL RIGHTS

ORG ENABLE+SV13.0PT
DB XI CD t

ORG ENABLE+SV13.FUN
DB X 103 1 FUNCTION CODE=3
ORG ENABLE+SV13.DOP
DB X 1011 SEND START APU COMMAND
ORG ENABLE+SV13.APN
DB 2 APU NUMBER
ORG ENABLE+SV13.USE
DCX 3 ASSIGN APU TO QUEUE
ORG ENABLEE

***BUILD SVC 13 PARAMETER BLOCK FOR MARKING QUEUE
ALIGN 4

MARK DS SVC13. ALLOCATE STORAGE FOR sve 13 PARBLK
MARKE EQU *
*GAIN MAPPING RIGHTS, MARK QUEUE ON, MAP LPU,
*RELEASE MAPPING RIGHTS

ORG MARK+SV13.0PT
DB X'B1'
ORG MARK+SV13.FUN
DB 2 FUNCTION eODE=2
ORG MARK+SV13.DOP
DB 2 LPU NUMBER TO BE MAPPED
ORG MARK+SV13.APN
DB 3 QUEUE TO MAP LPU TO
ORG MARKE

******1SSU£ SVC 13 TO ENABLE APU AND MARK QUEUE*******
sve 13,ENABLE ENABLE APU
sve 13 I MARK MARK QUEUE ON

3.3.4 Logical Processing unit (LPU) Mapping

For the purpose of directing tasks to the queues, OS/32 defines
LPUs ranging from 0 to 255. LPUs are mapped into the APU queues
while each task is associated with a particular LPU.

All the LPUs are initially mapped to queue 0 at operating system
load time. LPUs 1 through 255 can later be mapped to other
queues using a corresponding SVC13 mapping function or the
operator LPU command. LPU 0 always remains mapped to queue O.

3-6

3.4 ASSIGNING TASKS TO A PROCESSOR QUEUE

As mentioned previously, each task in the 3200MPS Family of
Processors is associated with an LPU. The initial LPU value is
established at task link editing time to be either LPU=O by
default or a value specified in the OPTION LPU command of Link.
The LPU value may be changed at task load time or whenever the
task is paused via a corresponding SVC6 function or with an
operator OPTION LPU command.

Each task's LPU mapping (association with an APU queue) is
enabled or disabled in a task status either by default or via a
corresponding SVC6 function or via operator OPTION LPU and OPTION
NLPU commands. By default, LPU mapping is disabled if the task
is linked with LPU=O and is enabled if the task is iinked with a
nonzero LPU. The operator OPTION LPU command, however, sets the
specified LPU and also enables mapping even if LPU=O was
previously specified. The operator OPTION NLPU command enables
mapping without changing the LPU number.

All tasks with mapping enabled are called LPU-directed tasks.
OS/32 places the LPU-directed tasks onto corresponding APU
queues. Tasks with mapping disabled and CPU-directed tasks are
placed onto the CPU ready queue.

* *
*
*
*

This example loads and starts a copy of a task
and makes it LPU-directed via the SVC6 function.

*
*
*

$SVC6
ALIGN 4

PARBLK DS SVC6 ALLOCATE STORAGE FOR PARBLK
ENDBLK EQU *
*SET LOAD, ASSIGN LPU, LPU-DIRECTED, & START FUNC CODES

ORG PARBLK+SVC6.FUN
DC SFUN. DOM! SFUN. IJM 1 SFUN. LPM 1 SFUN. XLM! SFUN. SIM
ORG PARBLK+SVC6.LU
DB 5 LU OF DIRECTED.TSK (IMAGE)
ORG PARBLK+SVC6.SAD
DC 0 TASK EXECUTION START ADDR
ORG PARBLK+SVC6.S0P
DC 0 START OPTIONS (none)
ORG PARBLK+SVC6.SEG
DC Y'40' TASK WORKSPACE
ORG ENDBLK

START EQU *
*SETUP NAME OF TASK TO BE LOADED

LI Rl,C'APUl'
ST RI,PARBLK
LI RI,C'TASK'
ST RI,PARBLK+4

48-040 FOO R05 3-7

*ASSIGN LPU NUMBER
LIS Rl,2
STB Rl , PARBLK+ SVC6 • LPU

*ISSUE SVC6 '1'0 LOAD TASK FROM LU5
SVC 6, PARBLK
END START

After the SVC6 in the previous example is executed, the task will
be loaded into memory from the file (DIRECTED. TSK) with a
workspace of 64 (X'40') bytes. When the task is started, t.he
task manager dispatches it to the APU queue into which LPU2 is
mapped.

3.5 CONTROLLING TASK ORDER OF EXECUTION

In a uniprocessor system, priority scheduling determines the
execution flow of the tasks in the system. In order to affect
task scheduling, a programmer must change the priority of the
tasks in the system. In a multiprocessing environment, there is
a choice of options to control the order of task execution as
described in the following sections.

3.5.1 Changing Auxiliary Processing unit (APU) Task
Ordering

Queue

Each of the APU queues can be" set to handle its assigned tasks
through the following priority disciplines.

• The no-priority queue services tasks in a first-in/first-out
(FIFO) order, regardless of task priority.

• The priority queue services its highest priority tasks first
and its equal priority tasks in a FIFO order. No preemption
of currently executing tasks by higher priority tasks will
occur.

• The priority-enforced queue services its tasks in the same
manner as the priority queue; however, higher priority tasks
are allowed to preempt lower priority tasks being executed on
the processor assigned to the queue.

At operating system load time, the queues are initially set with
the following priority assignments or diSCiplines. See Table
3-1.

3-8 48-040 FOO ROS

TABLE 3-1 QUEUE PRIORITY ASSIGNMENTS

I QUEUE I PRIORITY DISCIPLINE I
I=================~=====~================I
I CPU Ready Queue I Priority-enforced I
I APU Queue 0 I Priority-enforced I
I APU Queue 1 to n -I No-priori ty I

These initial settings can be subsequently
corresponding SVC13 mapping function or with an
command.

altered
operator

via a
QUEUE

* The following example uses SVC13 to change a *
* queue priority discipline. If the discipline *
* of this queue prior to the SVC13 call was no- *
* priority, OS/32 will reorder the queue according *
* to the task priorities subsequent to the SVC13 *
* call. A task incorporating this code must be *
* linked using the LINK command OPTION APMAPPING. *

Example:

$SVCI3
ALIGN 4

DISCIP DS SVC13 ALLOCATE STORAGE FOR SVC13 PARBLK
SETD EQU *
*GAIN MAPPING RIGHTS, SET QUEUE DISCIPLINE,
*RELEASE MAPPING RIGHTS

ORG DISCIP+SVC13.0PT
DB X, 85 I

ORG DISCIP+SVC13.FUN
DB 2 FUNCTION CODE=2
ORG DISCIP+SVC13.APN
DB 3 QUEUE NUMBER
ORG DISCIP+SVC13.USE
DC H'll PRIORITY DISCIPLINE
ORG SETD

*ISSUE SVC13 TO CHANGE QUEUE DISCIPLINE
SVC13, DISCIP

48-040 FOO R05 3-9

3.5.2 Monitoring and Preempting Auxiliary Processing Unit
(APU) Task Execution

The 3200MPS Family of Processors provide facilities to monitor
APU operation via the mechanism of task trap service. The APU
reports its significant events to OS/32 by issuing asynchronous
status signals.

An APU status signal is a byte with the following format:

I PAR I RUN I NON- I WAIT I RESP I ERROR I MODI I MOD2 I
I I I TASK I I I I I I

Bits:
o

PAR

RUN

NON-TASK

WAIT

RESP

ERROR

I

MODI, MOD2

2 3 4 S 6 7

is the parity bit which is adjusted
maintain odd parity for the byte.

to

is set to 1 if the APU is currently not idle.
The APU may be executing task instructions or
performing servicing functions (NON-TASK) such
as: selecting a task from the queue,
releasing a task back to the queue, processing
a task fault, etc.

is set to I if the APU is performing any of
the servicing functions.

is set to 1 if the APU is idle and in the wait
state imposed upon it by the last executed
task.

is set to I if the APU is returning
in response to a command from
(normally an SVCl3 read APU status
this bit is always reset in
asynchronous status signal.

the status
the CPU

function);
an APU

is set to I if the APU has detected an error
in system data structures and subsequently
entered an idle state.

are set or reset to supply some additional
status information.

When the last three bits are set to 1, they have the values of 4,
2 and 1, respectively. The actual value of these three bits
reflects the APU status condition as follows:

3-10 48-040 FOa ROS

o
1

2

3

4

5

6

7

Undefined.

The APU has detected that the queue to which
it is assigned is empty (contains no tasks).

The APU has rescheduled
the APU queue as a
instruction in the task
appropriate command
control function.

(released) a task to
result of an RSCH1

or as a result of an
issued via an SVC13

The APU has rescheduled a task to the CPU
ready queue as a result of an RSCH 0
instruction in the task, an appropriate
command issued via an SVC13 control function,
a nonexecutable APU instruction (normally an
SVC) or a task fault.

The APU has detected an error
structures at an arbitrary moment.

in data

The APU has detected an error in data
structures while attempting to select a task
from its queue.

The APU has detected an error in data
structures while attempting to lock its queue.
Each processor locks its assigned queue prior
to manipulating it.

Undefined.

Detailed information regarding the data structure errors detected
by the APU can be obtained using SVC13 read APU status function.

NOTE

In the absence of an APU monitor task,
OS/32 reports APU errors via the operator
console.

This section will examine the methods used by an APU monitor task
to:

• receive status signals from an'APU, and

• preempt the current task executing on an APU with another task
after a certain time interval has elapsed.

48-040 Faa ROS 3-11

To receive
and thawed
task. In
bits in its
the status
service the

a status signal from an APU, the APU must be connected
(via SVC6) as a trap-generating device to the monitor
addition, the monitor task must have the appropriate
task status word (TSW) set, a task queue to receive
signal and a task queue trap-handling routine to

trap.

* The following example demonstrates how to code *
* a typical APU monitor program to receive and *
* handle task queue traps from an APU. For more *
* information on task trap handling, see the OS/32 *
* Application Level Programmer Reference Manual. *

Example:

**** Define a task queue to receive APU signals ***************
* * ALIGN 4

TASKQ DLIST 100 DEFINE ']~ASK Q OF 100 ELEMENTS.
* * Put the address of task queue in UDL (UDL.TSKQ)
* LA R14,TASKQ

ST R14,UDL.TSKQ
* * Set TSW bits to enable the applicable task traps.
*

LI R14, TSW. TSKM+TSW. APTM
* * TSW.TSKM enables task queue service traps
* TSW.APTM enables signals from APU
* Save TSW values to enable APU signals and task Q

ST R14,ENTRIES SAVE TSW VALUES
* TO ENABLE APU SIGNALS AND TASK Q ENTRIES
* * SET UP TSW FOR TRAPS IN UDL
*

entries

LA
STM
SVC

R15,QSERVICE
R14, UDL. TSKN
9,UDL.TSKN

SET UP TSW ON TRAPS IN UDL
ENABLE TASK QUEUE ENTRIES

*
*
*

*
*
*

*
*
*
*

*
*
*

For information on writing a task queue trap handling routine
that removes the APU status entries from the task queue, see the
OS/32 Application. Level Programmer Reference Manual.

* The following code demonstrates a method of *
* connecting the APUs as trap-generating devices *
* to the APU monitor task. *

3-12 48-040 FOO ROS

Example:

* Enable each APU in the system if it is not enabled and then *
* connect to each APU, but first *
* read APU assignment information to obtain the *
* number of APUs in the system. *
* *
START SVC l3,APUASGN

LB Rl,BUFFER1+1 LOAD MAX APU NO. INTO Rl
* SET UP SVC13 PARAMETER BLOCK TO *
* FETCH APU STATUS *

LIS R3,X'80'
STB R3,FETAPU+SV13.0PT SET APU STATUS OPTION
LIS R3,1
STB R3,FETAPU+SV13.FUN SET UP FUNCTION CODE 1
LA R4,APUBUF *
ST R4,FETAPU+SV13.BUF SET UP BUFFER AnDR. *
LHI R3,40
STH R3,FETAPU+SV13.LEN SET UP BUFFER LENGTH

*
* SET UP SVC13 PARAMETER BLOCK TO ENABLE THE APU
*

LIS R3,3 SET UP SVC 13 FUNC CODE
STB R3,ENABAPU+SV13.FUN
LIS R3,X'C1' SET UP CONTROL OPTIONS
STB R3,ENABAPU+SV13.0PT GAIN, ENABLE, RELEASE

* * GET THE APU STATUS. IF APU IS DISABLED,
* ATTEMPT TO ENABLE IT. IF APU CAN'T BE
* ENABLED, LOG MESSAGE TO CONSOLE AND
* CONNECT TO IT ANYWAY JUST IN CASE IT IS
* ENABLED LATER.
*
APULOOP EQU *
* GET APU STATUS

STB Rl,FETAPU+SV13.APN SET UP APU NO.
SVC 13,FETAPU ISSUE SVC 13
LH R4,FETAPU+SV13.ERR GET SVC 13 ERROR STATUS

3

BZ GETSTAT IF NO ERROR-GET APU STATUS
BNE ER.ROUTE IF ERROR, BRANCH TO ER.ROUTE
LB RS,APUBUF+S GET 2ND BYTE OF APU S-STATUS
BNZ CONNECT NOT DISABLED, GO CONNECT

*APU IS DISABLED, ISSUE SVC 13 TO ENABLE IT.
STB Rl,ENABAPU+SV13.APU SAVE APU NUMBER
SVC l3,ENABAPU ENABLE THE APU
LH R3,ENABAPU+SV13.ERR GET SVC 13 ERROR STATUS

*
*
*

*
*
*
*
*
*
*

BNZ ENAB.ERR BRANCH TO ERROR ROUTINE ON ERROR
CONNECT EQU *
* *SAVE APU NO. AS PART OF APU'S TGD MNEMONIC

STB Rl,SVC6.DEV
*ISSUE SVC6 TO CONNECT AND THAW THE APU
*

48-040 FOO ROS

*
*
*
*

3-13

SVC 6,APUTRAPS
LH R6 , SVC6 • STA GET SVC 6 ERROR STATUS
BZ NEXT.APU NO ERROR-GO CONNECT TO NEXT

* APU
STB Rl,CONB.ERR+24 SAVE APU NO. IN MESSAGE
SVC 2, LOGltlSG LOG MESSAGE: COULD NOT

* CONNECT TO APUX
NEXT.APU SIS Rl,l MOVE ON TO NEXT LOWEST APU

BP APULOOP GO HANDLE NEXT APU.

The parameter blocks used in the previous example are defined
follows:

*SVC 13 Read APU Assignment Parameter Block and Buffer
ALIGN 4

APUASGN DS SVC13
ENDPBK EQU *

ORG APUASGN+SV13tiFUN
DB X'OO' SET FUNC CODE 0
ORG APUASGN+SV13 .. BUF
DAC BUFFER 1 DATA BUFFER ADDR
ORG APU ASG N+ SV13 " IJEN
DC H 'SO' MAX LENGTH OF BUFF
ORG ENDPBK
ALIGN 4

BUFFER DS 50
* * SVC13 Fetch APU Status Parameter Block & Buffer
* ALIGN 4
* FETAPU DS SVC13

APUBUF
*

ALIGN 4
DS 40

*** SVCl3 Enable APU Parameter Block
* ALIGN 4
ENABAPU DS SVC13.
* * SVC 6 Connect & Thaw APU Parameter Block
* $SVC6

ALIGN 4
APUTRAPS DS SVC6.
ENDAPUTB EQU *

ORG APUTRAPS+SVC6.FUN

NO.

as

*
*
*

*
*
*

*
*

DS Y'COOO COOO' SVC6 FUNC CODE
SELF-DIRECTED, CONNECT & THAW

*

3-14

ORG
DC
ORG

APUTRAPS+SVC6.DEV
C'APU'
ENDAPUTB

TRAP-GENERATING DEVICE MNEMONIC

48-040 FOa ROS

**** SVC 2 Log Message Parameter Block
*
LOGMSG DB 0,7

DCZ CONE.ERR-CONB.ERR
CONB.ERR DB C'UNABLE TO CONNECT TO APU'
CONE. ERR EQU *

The code in the previous example allows the monitor to receive
traps from the APUs. Status returned from these traps can be
reported to the console (via SVCl or SVC2 code 7) or to a file
designated for the APU output (via SVC1). In addition, this
monitor program can be coded to run a certain task (TASK1) every
ten minutes on a specific APU. To do this, the monitor sets an
interval timer via SVC2 code 23. Upon expiration of the timer,
the monitor task issues an SVC13 code 3 to preempt the current
executing task on the APU, as shown below. This preemption
mechanism is only allowed on no-priority queues. It is used when
the overhead associated with maintaining a priority queue is to
be avoided.

Example:

SVC 13, PREQ

ALIGN 4
* PREEMPT TASK EXECUTION, RESTART
PREQ.OPT DB X'B9'
PREQ.FUN DB X'03'
*
PREQ.DOP DB X'Ol'
*
PREQ.APN DB X'Ol'
PREQ.APS DS 2
PREQ.ERR DS 2
PREQ.BUF DAC BUF2
PREQ.USE DS 2
PREQ.LEN DC H'S'

ALIGN 4
BUF2 DC C'TASK1

APU
SET SVC 13 OPTIONS:
SET FUNCTION CODE
CONTROL FUNCTION
DIRECTIVE OPTION
START APU
APU NO. - APU 1
APU HARDWARE STATUS
SVC 13 ERROR STATUS
DATA BUFFER ADDRESS
LENGTH OF BUFFER USED
~mx LENGTH OF BUFFER

TASK ID BUFFER

Execution of the previous SVC13 will cause the monitor to gain
control rights to the specified APU (APUl), provided that the
task has been link-edited with the APCONTROL task option and no
other task has control rights to the APU. The control options,
specified in the SVC13 parameter block, will then cause the
following actions:

• Execution of the current executing task on the APU will be
stopped.

48-040 FOO R05 3-15

• The current task will be rescheduled to the end of the APU
queue.

• The APU's queue pointer will be repositioned to point to
TASKl. (This will cause TASKl to be selected as the next task
to be executed on the APU.)

• The APUwill be restarted for execution of TJs .. SKl.

• The monitor task will release the control rights to the APU.

The remaining code in the monitor program should check the
PREQ.ERR field of the PREQ parameter block for errors as follows.

Example:

LH R2,SV13.ERR
BNZ ERR.PREQ

If an error has occurred, ERR.PREQ can log a message to the
console.

Finally, to reexecute TASKI in ten minutes, the interval timer
(via SVC2 code 23) should be reset so that the SVC13 code 3 to
preempt the current APU task can be reissued when ten minutes
have elapsed.

See the 08/32 Supervisor Call (SVC) Reference Manual for more
information on SVC13, SVC6 and SVC2 code 23.

3.5.3 Transferring a Task from an Auxiliary Processing Unit
(APU) to the Central Processing Unit (CPU)

Under certain conditions, a monitor task may need to transfer
some other task back to the CPU ready queue. The task to be
transferred may be executing on an APU or waiting on its queue.
The monitor task can transfer a task back to the CPU ready queue
by issuing an SVC6, specifying the following function codes:

• Suspend (SFUN.SM)

• Transfer to CPU (SFUN.XCM)

• Release (SFUN.RM)

The suspend will transfer the task back to the CPU
and then the LPU-directed task status is reset.
the task will stay on the CPU ready queue and not
according to its LPU assignment.

3-16

ready queue
Upon release,

be dispatched

48-040 FOO ROS

Example:

CPUDIR
CPUDIRE

*

SVC 6,CPUDIR

•
ALIGN 4
$SVC6
DS SVC6.
~U * ORG CPUDIR+SVC6.ID
DC C'TASKl~~~'

ORG CPUDIR+SVC6.FUN

ID OF TASK TO BE
TRANSFERRED

* SET OTHER-DIRECTED, SUSPEND, TRANSFER TO CPU, & RELEASE FUNC CODES
* FOR TASKI

DB SFUN.DOMlSFUN.SMlSFUN.XCMlSFUN.RM
ORG CPUDIRE

Execution of this SVC6 causes TASKI to be suspended (if it is not
already in a wait state) and transferred to the CPU ready queue.
Resetting the LPU-directed status directs the task manager to
ignore its LPU mapping and to schedule this task for execution on
the CPU ready queue. When released, the task will execute on the
CPU at the location following the instruction that was executed
before the task was suspended. If the SVC6 in the previous
example did not reset the LPU-directed status bit, the task will
again be dispatched to the APU queue into which its LPU is mapped
upon release from the suspended state.

3.5.4 Internal Task Control of Auxiliary Processing Unit (APU)
Execution

A task can exercise control over its own execution on an APU
through the SVC6 mechanism described previously since SVC6 can be
made self-directed; however, there are more efficient mechanisms
achieving the same result that are particularly valuable for
real-time and APU diagnostic applications.

1. A task wishing to relinquish use of an APU while remaining on
the same processor queue may issue the following instruction:

RSCH Rl,l

The APU places the task at the queue tail and immediately
picks up the task residing at the queue head. OS/32 will
restore the queue order according to the queue discipline, if
necessary.

48-040 FOO R05 3-17

2. A task wishing to transj:er to the CPU indefinitely, may issue
the following instruction:

RSCH RI,O

The APU sends the task to the CPU and then immediately picks
up the task residing at its queue head. OS/32 resets the
tasks LPU-directed status, which prevents the task from going
anywhere but the CPU receive queue.

3. A task wishing to transfer to an APU indefinitely, according
to its LPU mapping, may issue the following instruction:

R8CH Rl,2

08/32 insures that the t:ask is scheduled to the appropriate
APU queue according to the task's priority and the queue
discipline.

4. A task may manipulate its T8W CPU-override status to enable
or disable its transfer to the APU, for a given reason, to
which the T8W corresponds. Bit TSW.CPOB (currently bit 8)
prevents task schedulin9 to an APU queue when set to 1. This
is necessary when a particular task fault, not a single
instruction, should be executed on the APU.

3.5.5 Verifying Task Transfer to an Auxiliary Processing Unit
(APU)

It may be necessary for a task to verify whether or not it has
actually been transferred to an APU queue. For example, suppose
a task on the CPU is assigned to LPU3 and executes the following
instruction:

R8CH Rl,2

Execution of this instruction will
LPU-directed status of the task.
then attempt to transfer the task to
LPU3 has been mapped. Suppose LPU3
APU4 is assigned to this queue. To
indeed executing on APU4, the next
task could be:

3-18

cause 08/32 to set the
The 08/32 task manager will

the APU queue into which
is mapped to APU queue 3 and
verify that the task is

instructions executed by the

48-040 FOO R05

LIS Rl,O GET RTSM PULSE LINE
* TO PULSE

LI R2,15 FILL IN APU ID
G8IG Rl,R2 GENERATE SIGNAL

* HERE THE NO. (15) CAN NEVER MATCH
* THE APU ID IN THE RT8M. NO SIGNAL WILL BE
* SENT. INSTEAD, ONLY THE APU ID IS RETURNED TO Rl

After execution of GSIG, R1 will contain the number of the APU
that the task is currently executing. See the appropriat~
instruction set reference manual for more information on the RSCH=
and GSIG instructions.

3.5.6 Customizing Auxiliary Processing unit (APU) Fault and
Supervisor Call (SVC) Handling

08/32 allows customization of fault and SVC handling by the APUs.
When consistently pursued, this route may allow reduction of the
task traffic between the APUs and the cpu caused by SVCs or it
may provide for APU I/O handling "invisible" to 08/32 and
subsequently more efficient.

As an example of this customized handling, an APU can be made to
wait for a task return while the task fault or SVC is processed
by the cpu. This may be needed to leave private queue orders
undisturbed by occasional SVCs.

This feature is not fully supported by OS/32 and therefore, is
intentionally made difficult to use. However, software tools may
be easily developed to exploit the customization feature.

In order to allow for custom processing of the faults and SVCs in
a given task by the APUs, the following actions must be
performed:

• An APU trap block has to be allocated in memory. This block
will contain pairs of fullwords, each being a program status
word (PSW) for a given APU detected reason in this order:

•

arithmetic fault
illegal instruction
memory controller fault
instruction format fault
SVC
machine malfunction fault

A single trap block is allocated during
generation (sysgen) and is designated in
symbol TBLKI. Any additional blocks can be
the MODULE command at sysgen.

48-040 FOO R05

OS/32 system
the map under a

allocated using

3-19

• The trap block has to be patched with zeros for various
reasons. If an APU wait is desired, the first word of the
pair is set to X'8000' (bit 16 set) and the second word is
ignored. However, if custom processing is desired, the first
word of the pair is set to the required status and the second
word is set to the location where the custom processing
begins.

• The APU queue parameter block (QPB) fullword at location
QPB.TPTR, (currently XIS' in QPB) has to be patched to the
address of the APU trap block after task loading. This
patching can be performed using the operator MODIFY command or
via a dedicated executive task (e-task) assembled with the
appropriate data structures.

When a task executes on an APU assigned to the patched queue and
a fault is detected for which the PSW in the trap block is not
zero, the APU transfers control according to this PSW. In the
case of the bit 16 of the first word set in PSW, the APU
transfers the task to the CPU ready queue and awaits the task's
return. OS/32 will restart the APU when the task is scheduled
back to it. OS/32 also restarts the APU when the task for which
the APU is waiting is cancelled or terminated.

If the customized processing needs to be done on a per task
rather than per queue basis, this can be arranged by patching out
the OS/32 code in module APSV routine TMCKAPU that loads the
QPB. TPTR into every TCB schE~duled to the queue. Then, instead of
patching QPB.TPTR with the selected task's TCB at location
TCB.TPTR (currently X'20' in TCB) , it can be patched with the
address of the trap block. This task level trap block support is
used in the operating system to intercept SVC calls from tasks
running on APUs. This intercept is used to enhance index file
I/O performance. The SVC trap blocks vectors to the routine
FLIHAPU in APSV, so any further processing that the user wishes
to do with SVC requests should be done by modifying this routine.

3.6 PREVENTING MEMORY ACCESS CONFLICTS

When several processors are executing simultaneously, it is
po~sible for tasks running on two or more processors to require
access to the same data. For example, suppose two tasks share a
buffer list consisting of 30 buffers defined as follows:

BLISTBIT DS 2
BUFLIST DLIST 30

3-20 48-040 FOO ROS

BUFLIST contains the addresses of the buffers. BUFLIST and the
actual buffers reside in an area of memo·ry shared by the two
tasks. One task collects data, writes it to a buffer and adds
the address of that buffer to the bottom of the list. The other
task removes an address of a buffer from the top of the list and
processes it. Since both tasks can be run simultaneously on
different APUs, both tasks may attempt to access the list at the
same time. The Test and Set instruction (TS) can be used to
ensure that only one task at a time can access the buffer.

To ensure that only one task at a time can access BUFLIST, a test
and set operation is performed on BLISTBIT. BLISTBIT acts as a
lock-out mechanism that is set and reset. A task can only access
BUFLIST if BLISTBIT is not set.

3.6.1 Avoiding System Deadlock

When using the test and set operation, care should be taken to
ensure that system deadlock is avoided.

For example, suppose task A uses TS to lock out data structure X
while task B is locking out data structure Y. Task A now finds
that it needs to access data structure Y, so it waits for Y to be
released. Similarly, Task B finds it needs to access data
structure X, so it waits for X to be released. Since each task
holds the data structure needed by the other, processing stops.
Both tasks are deadlocked.

To avoid system deadlock, the Test and Set instruction should be
used with a time-out mechanism.

* The following example shows how to prevent *
* memory access conflicts without system deadlock. *

Example:

TS BLISTBIT TASK CHECKS IF IT CAN GET
* ACCESS TO LIST

BNM CONTINUE PROCESS LIST IF FREE
LI R2,50 LOAD TIMEOUT VALUE OF 50

* MICROSEC IN R2
SETBITLP EQU * TIMER ROUTINE

SIS R2,1 DECREMENT TIMEOUT COUNT
BM TIMEOUT BRANCH TO TIMEOUT ROUTINE

*IF BRANCH TO TIMEOUT IS TAKEN IT MEANS THAT THE *
*TASK STILL COULD NOT GET ACCESS TO LIST *
*THE TIMEOUT ROUTINE PRINTS A MESSAGE TO THE CONSOLE *
*SO OPERATOR CAN TAKE NECESSARY ACTION *
*ELSE CONTINUE *

48-040 FOO R05 3-21

LH R4,BLISTBIT
BMS SETBITLP

*
TS BLISTBIT

*
BMS SETBITLP

**IF SUCCESSFUL, PROCESS LIST
*
CONTINUE EQU *
* •

USE APU CACHE TO MATCH LOCKS
BUFLIST NOT AVAILABLE YET;
TRY AGAIN
BUFLIST IS AVAILABLE SO
ATTEMPT TO GRAB ACCESS
NOT QUICK ENOUGH, RETRY

**
*
*

* *
* * •
*ACCESS BUFLIST EITHER BY ABL (ADD TO BOTTOM OF LIST *
*INSTRUCTION) OR RTL (REMOVE FROM TOP OF LIST INSTRUCTION). *
* * •
* * •
* *
*AFTER PROCESSING BUFFER, UNLOCK BLISTBIT SO OTHER TASK CAN *
*ACCESS IT. *
* *

LIS R4,0
RBT R4,BLISTBIT

3.7 MEASURING REAL-TIME PERFORMANCE ON THE 3200MPS FAMILY OF
PROCESSORS

The OS/32 system macro library provides a set of timer macros
that can be used to measure the real-time performance of
individual tasks currently exeucting. These macros allow the
programmer to set up a named timer in memory. A named timer can
be compared to a stopwatch that measures the amount of time
elapsed from the time the watch is started to the time it is
stopped. The following example shows the data structure setup in
memory for a timer named TIMRNMIE. The timer macro, CRTIMERS, is
used to set up timer data areas.

Example:

TIMRNAME
ALIGN
DCF
DCF
DCF
DCF
DCF

4
C'TIMRNAME'
o
o
o
o

TIMER NAME (8 CHAR MAX)
TIMER COUNTER
TIMER START VALUE
ACCUMULATED TIME
REGISTER SAVE AREA

The timer macros are used to set the watch and read the
accumulated time after a specified interval has elapsed. The
timer macros are listed in Table 3-2.

3-22 48-040 FOO R05

TABLE 3-2 TIMER MACROS

MACRO I FUNCTION 1
=====~=====:===1

CRTIMERS (NAMEl[,NM1E2, •••]) I Creates a data area for each I
1 named timer. 1

---1
STRTIME N~lE(,REG) \ Starts the named timer. \

---\
STOPTIME NAHE(,REG) I stops the named timer. \

---1
GETIME NAME, REG I Gets the total time accumulated I

I by the named timer. I
---1

READTCNT NAME, REG I Gets the number of intervals I
\ that have been timed by this I
\ timer. \

---1
RESE'I'IME NMIE I Resets accumulated time counts. I

* The following example demonstrates how these *
* macros can be used to time the execution of a *
* program and its subroutine. *

Example:

* Create a data area for the timer
* for ~~IN and the timer for SUB
* CRTIMERS (~mIN,SUB)

* * Start timer for MAIN.
*
START EQU *

STRTlf.1E ~IAIN

BAL Rl5,SUBPROG

• * Stop timer for MAIN
STOPTIME MAIN

* Get total time accumulated by MAIN
* Timer. Load into REG 0

48-040 FOa R05

*
*
*
*
*
*
*

*

*

*
*

3-23

GETIME MAIN,RO

* Log MAIN program execution time.

* Get total time accumulated by SUB
* timer. Load into REG 3

GETI~lE SUB, R3
* Get number of intervals timed by
* SUB timer. Load into RO

READTCNT SUB,RO

* Compute average subroutine execution
* time.

DR R2,RO

SUBPROG EQU *
*
'* start timer for SUB
*

STRTIME SUB

* .
* stop timer for SUB
*

STOPTI~1E SUB
BR R15

*

*

*
*
*
*
*
*
*
*
*
*

*
*
*
*

*
*
*

Detailed descriptions of the timer macros can be found in the
OS/32 System Macro Library Reference Manual.

3.8 WHERE TO GO FOR MORE INFORMATION

This chapter is intended to demonstrate assembly language
programming techniques used in designing system level control
programs that take advantage of the 3200"IPS Family of Processors
capabilities. However, all the programming facilities available
for writing system level control programs are not shown. Table
3-3 summarizes additional facilities and lists the manuals in
which they are described.

3-24 48-040 FOO ROS

TABLE 3-3 ADDITIONAL INFORMATION SOURCES FOR THE 3200MPS
FAMILY OF PROCESSORS PROGRAMMING

MANUAL I PROGRAMMING METHODS DESCRIBED 1
=======~==1

3260MPS Instruction Set I Describes the machine instructions 1
and System Architecture I specific to each processor with a I
Reference Manual 1 discussion of the APU processor

-------------------------1 states.
3280MPS Instruction Set 1
and System Architecture I
Reference Manual 1

-------------------------1
3230XP Instruction Set 1
and System Architecture 1
Reference Manual I

-------------------------1
3230MPS Supplement to 1
the 3230XP Instruction I
Set and System 1
Architecture Reference 1
Manual I

OS/32 System Support
Run Time Library (RTL)
Reference Manual

1 All RTL routines available for the
I writing of system level control
I programs that perform the functions
I described.

OS/32 Operator I Describes the operator commands that
Reference Manual 1 can be used to perform SVC13 mapping

1 and control functions. APU-related
1 functions included APC, LPU, OPTION
1 LPU, QUEUE.

1--
1 OS/32 Supervisor Call 1 Gives details on how to use SVC6,
1 (SVC) Reference Manual 1 SVCl3 and assembly language program-

OS/32 System Macro
Library Reference
Manual

OS/32 Link Reference
Manual

1 ming SVCs.

1 Describes
1 macros.
I

the time and SVCl3

1 Describes the use of OPTION LPU,
I APCONTROL and APMAPPING at task 1
1 linkage time. 1

--1
OS/32 Application 1 Gives details on writing a task trap 1
Level Programmer 1 handling routine that can be used to 1
Reference Manual 1 handle APU-related events. 1

--1
OS/32 System 1 Describes the use of the MODULE 1
Generation (Sysgen/32) I command. 1
Reference Manual 1 1

48-040 FOO ROS 3-25

CHAPTER 4
SUPERVISOR CALL (SVC) INTERCEPTION

4.1 INTRODUCTION

SVC interception software is used to write programs that can
emulate the SVC processing ability of OS/32. This software
consists of macros that allow a task (intercepting task) to
intercept the SVC of another task before it goes to the operating
system for processing. Once intercepted, the SVC can be
monitored by the intercepting task and sent to the operating
system for processing or it can be processed by the intercepting
task. Table 4-1 lists the system macros used for SVC
interception.

TABLE 4-1 SYSTEM MACROS FOR SVC INTERCEPTION

MACRO FUNCTION
============~:=~========~======================================

I CREATE

IREMOVE

IGET

IPUT

ICONT

IPROCEED

IROLL

ITERM

I TRAP

IERRTST

Creates an SVC intercept path.

Removes a previously created path.

Gets data from a data area of the task that issued
an intercepted SVC.

Puts data into a data area of the task that issued
an intercepted SVC.

Continues standard execution of an intercepted SVC
by passing control to an OS/32 SVC executor.

Allows the task that issued the intercepted SVC to
proceed with its execution.

Makes an intercepted task roll able.

Terminates an intercepted SVC after processing.

Sends a task queue trap to a task.

Evaluates errors returned by any of the above
macros and branches execution to specific error
routines within the intercepting task.

48-040 FOa ROS 4-1

The intercepting task tells the OS/32 SVC executor which SVC it
will process or monitor. When the intercepting task is sent an
SVC from the executor, the intercepting task handles the
intercepted SVC while the task that issued the SVC is placed in
a wait state. While executing the intercepted SVC, the
intercepting task can read from or write to the address space of
the task that issued the SVC.

A task is not aware that its SVC has been intercepted unless it
is informed by the intercepting task.

SVC interception software must be configured in 08/32 at the time
of system generation (sysgen). See the INTERCEPT configuration
statement in the OS/32 System Generation (Sysgen/32) Reference
Manual.

A task can intercept SVC calls only after it is linked with the
intercept task option enabled (OPTION INTERCEPT). See the OS/32
Link Reference Manual for further details. The task can then be
programmed to intercept any of the following SVCs issued by any
application task in the system:

• SVCl

• SVC2 code 7

• SVC3

• SVC6

• SVC7

Intercepting tasks can be loaded and executed under the
multi-terminal monitor (MTM). However, the intercepting task
must be loaded from an account that has executive task (e-task)
load privileges. See the 08/32 Multi-Terminal Monitor (MTM)
System Planning and Operation Reference Manual for more
information regarding e-task privileges.

4.2 HOW SUPERVISOR CALL (SVC) INTERCEPTION WORKS

In general, SVC interception software functions as follows:

1. A task with SVC interception enabled is built by Link.
intercepting task must:

This

• reserve memory for a set of request descriptor block (RDB)
buffers for each SVC to be intercepted,

• build a circular list for storing addresses of RDB buffers
containing information on intercepted SVCs,

4-2 48-040 FOO ROS

• create, via the ICREATE macro, intercept paths that
designate the SVCs to be intercepted, and

• define, via the ICREATE macro, what control the
intercepting task has over the SVCs it intercepts.

2. An application task issues an SVC.

3. If no intercept path was created for that particular SVC, one
of the standard OS/32 executors services the SVC.

4. If an intercept path has been created for that SVC, the
operating system:

• intercepts the SVC before it reaches the OS/32 executor,

• removes an ROB address from the circular list of the
intercepting task,

• loads the SVC1s parameter
information into the ROB, and

block and identifying

• sends a task event trap to the intercepting task to notify
the task that an SVC has been intercepted.

5. Execution of the intercepting task branches to the task event
trap-handling routine. The address of this routine is
specified when the path is created via the ICREATE macro.

6. If the intercept path was built to monitor this SVC, the task
event trap-handling routine issues an ICONT macro to return
the SVC to the OS/32 executor for execution.

7. If the intercept path was built to service the SVC, the task
event trap-handling routine processes the SVC by the
intercept macros IGET, IPUT, IROLL and ITRAP. Also, the
routine can issue the IPROCEEO macro to allow the application
task to continue executing during SVC processing.

8. After the task event trap-handling routine processes the SVC,
it issues an ITERM macro that transfers control back to the
application task that issued the SVC.

9. The intercepting task exits the trap handler through the
TEXIT macro.

4.3 PREPARING A TASK FOR SUPERVISOR CALL (SVC) INTERCEPTION

Before creating an intercept path, an intercepting task must:

• build a set of ROB buffers for each type of SVC to be
intercepted,

48-040 FOO ROS 4-3

• build a circular list to store the addresses of the RDB
buffers, and

• be prepared to handle a task event trap.

4.3.1 Request Descriptor Block (RDB) Buffers

The size of each ROB buffer built by the intercepting task
depends on the size of the parameter block for the particular SVC
to be intercepted. For example, a set of buffers allocated for
SVC6 interception will be larger than a set of buffers for SVCl
interception. When an intercepting task uses one set of buffers
for intercepting two or more SVC types, the buffer size must
equal the size of the RDB needed to hold the largest parameter
block associated with the SVCs to be intercepted. Figure 4-1
shows the RDB fields. ~ro define a structu.re containing these
fields, llse the $RDB macro.

0(00)

4(04)

Entry/Exit
SVe7 Flag
(ROB. RID)

12(02)
1
1

16(06)

Intercept path
identif ie'r
(RDB.PID)

17(07)Task
Parameter block offsE~t

(RDB.OFF)
I sve type
I (RDB. SVe)

I priority
I (ROB. TPRI).

8 (08)
Operating system task identifier

(ROB. TID)

---1
12(OC)

16(10)
I

20(14)

n(n)

SVC parameter block address
(RDB.PAD)

Instruction address following
intercepted sve instruction

(RDB.SVAD)

SVC parameter block
(RDB.PB)

Extended BVC7 block
(ROB. EXT)

Figure 4-1 Request Descriptor Block

4-4 48-040 FOO ROS

The fields contained within the RDB are described as follows:

Fields:

Exit/Entry
SVC7 Flag
(RDB.RIO)

Intercept
path
identifier
(ROB.PIO)

Parameter
block
offset
(ROB. OFF)

SVC
type
(ROB. SVC)

Task
priority
(ROB. TPRI)

OS task
identifier
(ROB.TIO)

48-040 FOO ROS

is a halfword field containing an SVC7
flag. This flag is utilized exclusively to
distinguish entry intercepts from exit
intercepts. This field contains '00' on an
entry intercept and '01' on an exit intercept.
The ROB. RIO field is only valid if an SVC7
intercept path is established.

is a halfword field containing an SVC
intercept path identifier exclusively reserved
for one particular SVC interception.

NOTE

ROB.PID is not to be mistaken for
the PIO returned by I CREATE and
used in IREMOVE.

, is a halfword field containing the hexadecimal
offset value for the parameter block field
within the ROB.

is a I-byte field containing a decimal number
specifying the type of SVC that is to be
intercepted·.

• 01 indicates SVCl.

• 02 indicates SVC2, code 7.

• 03 indicates SVC3.

• 06 indicates SVC6.

• 07 indicates SVC7.

is a I-byte field containing a decimal number
specifying the priority of the task that
issued the intercepted SVC.

is a 4-byte field containing the operating
system task identifier for the task that
issued the intercepted SVC.

4-5

SVC parameter
block address
(RDB.PAD)

Instruction
address
following
intercepted
SVC
instruction
(RDB.SVAD)

SVC parameter
block
(ROB.PB)

Extended SVC7
block
(RDB.EXT)

is a 4-byte field containing a hexadecimal
number specifying the address of the parameter
block for the SVC being intercepted. For
SVC3 interceptions, this field contains the
end of task code.

is a 4-byte field containing a hexadecimal
number specifying the address of the instruc
tion following the intercepted SVC
instruction. This field is set to 0 for
SVC3 interceptions.

is a variable length field containing the
parameter block of the intercepted SVC.

is a 32-byte field containing the name of the
file assigned to a logical unit (lu). This
field is only utilized if the SVC=(7,X)
operand is specified in the ICREATE macro.

4.3.2 Circular List for Request Descriptor Block (ROB) Buffers

The intercepting task must have a standard circular list to hold
the address of each ROB buffer. Figure 4-2 shows the fields of
the standard circular list. When an SVC is sent to the
intercepting task for processing, one ROB buffer address is
automatically removed from the circular list and the ROB is
filled with information identifying the intercepted SVC. The
circular list can be created by the assembler instruction DLIST.
See the appropriate Series 3200 Processor User's Manual or the
Instruction Set Reference Manual for a more detailed explanation
of the standard circular list.

4-6 48-040 FOO ROS

1

---0(00)

4(04)

8 (08)

12(OC)

Maximum number
of buffers

Current top

12(02)
1
1

16(06)
1
1

A (buffer 1)

A (buffer 2)

Current number
of buffers

Next bottom

1---
I
I
1 •
1---
1
I A (buffer n)
1

Figure 4-2 System Task Buffer List (Standard Circular List)

Fields:

Maximum
number of
buffers

Current
number of
buffers

Current top

Next bottom

A (buffer n)

48-040 FOO R05

is a ha1fword field indicating the maximum
number of fullwords in the entire list.

is a ha1fword field indicating the number of
ful1words currently in use. When this field
equals zero, the list is empty. When this
field equals the number of fullwords in the
list, the list is full.

is a halfword field indicating the address of
the ROB buffer that is currently at the top of
the list.

is a ha1fword field indicating the address of
the next ROB buffer that is at the bottom of
the list.

indicates the address of an ROB buffer.

4-7

4.3.3 Task Event Trap

To receive a task event trap, an intercepting task must have the
TSW.TESB bit in its task status word (TSW) set. See the OS/32
Application Level Programmer Reference Manual for more
information on T8W bit settings. If this bit is not set, the
task event trap will be queued until a TSW is loaded with this
bit set. In addition, a task cannot receive a task event trap or
task queue trap during execution of the task event trap-handling
routine. These traps will be queued until the task exits from
the routine.

Before execution branches to the task event trap-handling
routine, the operating system places the address of the RDB in
register 1 and a unique intercept identifier in register O. To
prevent the data in these registers from being lost during
execution of the task event trap-handling routine, the
intercepting task should be link-edited with the TEQSAVE task
option. TEQSAVE informs the operating system which register
contents should be saved and restored when a task enters or exits
the task event trap-handling routine. See the 08/32 Link
Reference Manual for more information on TEQSAVE.

4.4 CREATING INTERCEPT PATHS (ICREATE)

Before an intercepting task can intercept an SVC, it must create
a path to the application task that contains the SVC to be
intercepted. This path is created by executing code built by the
ICREATE macro that informs the OS/32 SVC executor which SVC is to
be intercepted by this path. The intercepting task also accesses
the application task's address space through the intercept path.

An intercept path remains in effect until it is removed by the
intercepting task creating it or until the intercepting task
terminates. Although only one type of SVC can be intercepted by
each path, there is no limit to the number of paths that can be
created by one intercepting task.

The mode parameter of the ICREATE macro specifies when an SVC is
to be intercepted. Under caller mode, the specified SVC is
intercepted every time it is issued by the application task.
When the recipient existent mode is specified, the SVC is
intercepted only when it is directed toward a specified task,
device, pseudo task or pseudo device that exists in the system.
Under the recipient nonexistent mode, the SVC is intercepted only
when it is directed toward a specified pseudo task or pseudo
device created by execution of code built by the ICREATE macro.

4.5 HOW TO CREATE A PSEUDO. DEVICE OR TASK WITH ICREATE

A pseudo device consists of a name and the SVCl or SVC7 intercept
paths attached to it. The pseudo device name, which is known to
the system but does not actually refer to any system device or
file, consists of a device name, filename and extension. A

4-8 4 8 - 0 40 F 00 RO 5

device name that does not already exist for a real device or disk
volume must be used. Pseudo devices ignore the file
class/account number field of the file descriptor (fd).

When the operating system cannot find a device or filename in the
system, it will search the list of pseudo devices. If a match
occurs, the system will continue processing the SVC using the
pseudo device.

To create a pseudo device using SVC interception software, the
I CREATE macro should be set to specify either an SVCI or SVC7.
The recipient nonexistent mode should also be specified. An SVCl
intercept path must be in effect when an input/output (I/O)
operation is attempted to a pseudo device; otherwise, an invalid
function (X'CO') error status is returned.

A pseudo task consists of a name attached to one or more SVC6
intercept paths. A pseudo task name is known to the system but
does not refer to an actual task existing in the system.

To create a pseudo task, issue the ICREATE macro specifying SVC6
and the recipient nonexistent mode. Because a pseudo task does
not refer to a real task, the pseudo task cannot be cancelled.
Both pseudo tasks and pseudo devices can be deleted by removing
all intercept paths attached to them.

4.6 USE OF GENERIC NAMING FOR PSEUDO DEVICES AND TASKS

A pseudo device or task can be generically named. The following
characters can be used for generic naming:

• An asterisk (*) represents any character or blank.

• A backward slash (\) represents any character.

If a pseudo device or task name specifies the filename and
extension fields as blanks, the system substitutes filename and
extension fields filled with asterisks. This bas the effect of
generically naming the filename and extension fields so that they
will always match the input filename and extension.

If the operands of an ICREATE macro specify the recipient
existent mode and a generic pseudo device or task name, a pseudo
device or task must exist with its name exactly matching the one
specified by ICREATE. An error will result if the names do not
match. For example, a system is asked to create the following
pseudo devices:

48-040 FOO ROS 4-9

• FAKE:FILEI

• FAKE:

• FAKE:FILE*.EXT

Normally, the following input w ill match the -above pseudo
devices:

INPUT t;lAl'lE

FAKE:
FAKE:FILE3
FAKE :FILEI
FAKE:FILEll
FAKE:FILEX.EXT
FAKE:FILEX.EX

SELECTED PSEUDO DEVICE

FAKE:
FAKE:FILE*
li'AKE:FILEl
FAKE:
FAKE:FILE*.EXT
FAKE:

When the code built by the ICREATE macro is issued specifying
recipient nonexistent mode and the pseudo device FAKE:, the
ICREATE function will not be performed because the pseudo device
already exists. Consequently, when an ICREA:TEmacro is used
specifying recipient existent mode alon'g with the pseudo ,device
FAKE:FILE*" ICREATE will be executed because the pseudo device
FAKE:FILE* already exists.

4 • 7 FUNCTIONAL SUMMARY OF SUPERVISOR CALL (SVC) INTERCEPTION

The following describes how interception works for each SVC and
mode:

4-10

SVCI caller

svel
recipient
existent

SVCl
recipient
nonexistent

SVC2 code 7
caller

SVC2 code 7
recipient
existent

Any SVC1 issued by the specified task is
intercepted.

Any SVCl directed to an lu assigned to
the specified device or pseudo device is
intercepted. (Note that disk volume
interception is not supported for SVCI.)

The pseudo device is created and any SVCl call
specifying an lu assigned to this pseudo
device is intercepted.

Any SVC2 code 7 issued by the specified task
is intercepted.

This call is invalid.

48-040 FOC ROS

SVC2 code 7
recipient
nonexistent

SVC3 caller

SVC3
recipient
existent

SVC3
recipient
nonexistent

SVC6 caller

SVC6
recipient
existent

SVC6
recipient
nonexistent

SVC7 caller

SVC7
recipient
existent

SVC7
recipient
nonexistent

This call is invalid.

If the specified task goes to end of task for
any rea~on, an SVC3 intercept will occur.

This call is invalid.

This call is invalid.

Any SVC6 issued by the specified task is
intercepted.

Any SVC6 directed to the specified task
or pseudo task is intercepted.

r:L'he pseudo task is
call directed to
intercepted.

created, and
this pseudo

any
task

SVC6
is

Any SVC7 issued by the specified task is
intercepted.

Any ~TC7 directed to the specified device,
disk volume or pseudo device is intercepted.

The pseudo device is created and any SVC7 call
specifying this pseudo device is intercepted.

4.8 FULL AND MONITOR CONTROL INTERCEPT PATHS

The ICREATE macro specifies the level of control that the
intercept path allows an intercepting task to have over an
application task.

A full control intercept path allows the intercepting task to
exert full control over a task whose SVC has been intercepted.
Specifically, the intercepting task can perform the following
procedures:

• Make the task rollable via the IROLL macro. When an SVC is
intercepted, the task that issued the SVC is placed in a wait
state and made nonrollable. At the discretion of the
intercepting task, the application task can be made rollable
(assuming the application task can be rolled).

48-040 FOO R05 4-11

• Allo.w the application task to. execute while it processes a
proceed SVC via co.de built by the IPROCEED macro. When an SVC
is intercepted, the application task that issued the SVC is
placed in a wait state and made nonrollable. At the
discretion of the intercepting task, the application task that
issued the intercepted SVC can preceed with its execution
while the intercepting task processes the SVC.

• Obtain data from the applicatien task memery space via the
IGET macro.

• write data into. the writable memery space of the application
task via the IPUT macro..

• Send a task queue trap to. the application task via the ITRAP
macro.. While precessing the SVC, the intercepting task may
find it necessary to. send a task queue trap to. the application
task. The task queue item sent must have a valid OS/32 reason
cede in the high-crder byte. In addition, the TSW ef the
applicatien task must have the task queue entry (TQE) bit
asseciated with the reason cede set.

A monitor contrel intercept path allews the intercepting task to.
be netified whenever one of the designated SVCs is issued by an
applicatien task. Moniter centrel differs from full contrel in
that o.nce OS/32 has sent the task event trap to. the intercepting
task, the SVC is passed to. the appropriate 05/32 executer and the
task that issued the SVC preceeds with nermal precessing.

The fo.llowing guidelines sheuld be fo.llowed when assigning a
level of contrel to. the intercept path:

• Only one full control intercept path can be attached to. a
device or task (er pseudo device or task) fer each type ef SVC
to be intercepted.

• A task er device (or pseudo task or device) can be attached to.
any number of meniter centrol intercept paths.

In the following example, a full control SVC7 intercept path is
attached to. device MAG:. A full centrel SVCl intercept path is
also. attached to. MAG:. No. other SVCl or SVC7 full control
intercept paths can be attached. Of course, any number of SVCl
and SVC7 moniter control intercept paths can be attached to. MAG:;
here, one SVC7 and ene SVCl monitor centrol paths are attached.

4-12 48-040 FOO ROS

Example:

ICREATE NAHE=DEVNAME,MODE=RX,CONTROL=FC,SVC=(7)
ICREATE NAME=DEVNAME,MODE=RX,CONTROL=FC,SVC=(l)
ICREATE NAME=DEVNAME,MODE=RX,CONTROL=MC,SVC=(7)
ICREATE NMIE=DEVNAME,MODE=RX, CONTROL=MC, SVC= (1)

DEVNAME DC C' DEFINE 8 BLANK CHARACTERS

DC C' ~iAG '

DC C' DEFINE 8 BLANK CHARACTERS (FD)

DC C' DEFINE 4 BLANK CHARACTERS (EXTENSION)

4.9 HOW INTERCEPT PATHS HANDLE SUPERVISOR CALLS (SVCs) OCCURRING
AT END OF TASK

SVCl and SVC7 can be intercepted during end of task processing
(including end of task processing after cancel), if intercept
paths exist from these SVCs to devices assigned to the task's
logical uni ts. The inter'cepting task must be careful \\7hen
writing into the operating system address space while executing
these SVCs so as not to destroy the system's integrity.

If the application task is cancelled while the intercepting task
is processing the SVC, SVC processing is aborted and the
application task proceeds to end of task.

4.10 TERMINATING THE INTERCEPTED SUPERVISOR CALLS (SVCs)

When the intercepting task receives an SVC from a full control
intercept path, the intercepting task has the option of returning
the SVC to the operating system for processing. To do this, the
intercepting task executes code built by an. ICONT macro that
allows the operating system to resume processing the intercepted
SVC as if the intercept had never occurred. The ICONT macro
cannot be used if an IPROCEED or IROLL macro has been used.

If the intercepting task chooses to process the SVC, the
intercepting task executes code built by an ITERM macro after the
SVC is processed. ITERM terminates the interception and, if no
IPROCEED has been issued, allows the application task to resume
execution with the instruction immediately following the
intercepted SVC instruction.

Either ICONT or ITERM can be used to terminate interception from
a monitor control intercept path. The system does not
differentiate between the two calls in this case. Here the ICONT
or ITERM macro replaces the RDB buffer address back on the
circular list. It is very important that the ICONT or ITERM
macro be used to replace the RDB.

48-040 FOa ROS 4-13

Cancelling an application task under monitor or full control
aborts the processing of the intercepted SVC in progress. The
intercepting task must still -issue an ICONT or ITERM to terminate
the SVC interception.

4.11 HOW TO REMOVE INTERCEPT PATHS

An intercepting task can remove an intercept path by executing
code built by an IREMOVE macro specifying the path to be removed.
IREMOVE can be used for both immediate and delayed termination
depending on whether the controlled shutdown or abort option is
chosen.

The controlled shutdown option refuses all incoming requests and
completes the servicing of all existing queued and executing
SVcs. When processing of the last existing SVC intercepted by
the path is completed, the path is removed from the system.

Tbe abort option terminates all existing queued and executing
SVCs before removing the intercept path from the system.

4.12 ERROR HANDLING

Run-time errors that result from executing intercept
are handled by user-written error routines
intercepting task. When an error occurs, execution
the routine specified by either the IERRTST macro
the error parameter associated with each macro.

macro code
within the

branches to
statement or

Tbe IERRTS'l' macro is issued inunediately after a macro for which
the error parameter has been omitted. If an error occurs,
execution of the intercepting task will branch to a user-written
error routine to handle the error. Error codes returned by the
IERRTST macro are listed in Table 4-2. If no error occurs,
execution continues at the instruction following the IERRTST
macro.

If the ERROR parameter is specified with an intercept macro and
an error occurs, execution branches to the specified error
routine within the intercepting task. If no error occurs,
execution proceeds to the next executable statement. The error
routine pointed to by the ERROR parameter can contain an IERRTST
macro to identify what error has occurred.

4-14 48-040 FOO ROS

TABLE 4-2 ERROR CODES RETURNED FOR INTERCEPT MACROS

I ERROR 1 I RELEVANT I
I CODE I MEANING I MACROS I
1===1
I MO I Invalid interception mode I ICREATE I
J---1
I AD I Invalid address in parameter control block I ICREATE 1
f I (PCB) I ITERM
J I I ICONT
I I 1 IREMOVE
I I I ITRAP
I 1 1 IGET
I 1 I IPUT
1---I EX I When MODE=RX, it indicates that no device I ICREATE
I I or task of the given name exists. I
I I When MODE=RN, it indicates that the speci- I
I I fied pseudo device or task could not be 1
! I created because a device or task of the I
I I same name was found to exist. I
i---
r SP I Insufficient system space to do request, I ICREATE I
~ I or NINTC > 64 or PBSIZE > 998, I ITERM
11 I I ITRAP
! I 1 IGET
I I I IPUT
1---I CT I Full control already selected. I ICREATE
I I I IROLL

I I IPROCEED
I I ITRAP
I I IGET
I I IPUT

I-------------·----------------~---------------------------------
HA I Invalid queue handler name. I ICREATE

j---i FD I Invalid device name or task name. I ICREATE
1---I ST I Invalid state for callJ e.g., IROLL I ICONT
I I followed by ICONT or issuing INPUT with I IREMOVE
I I monitor control intercept path. I IROLL
j I I I PROCEED
I I I ITRAP
I I I IGET
I I I IPUT
1---t TP I Task queue item not added. I ITRAP

48-040 FOO R05 4-15

TABLE 4-2 ERROR CODES RE~L'URNED FOR INTERCEPT MACROS (Continued)

ERROR I I RELlNANT I
CODE I MEANING I MACROS I
==========~=~~===~c~===~=~==~c=~c~=~:====~===========~========~I

RD 1 Inval id RDB. I ITERM I
I I ICONT I
I I IROLL I
I I IPROCEED I
1 I ITRAP I
I I IGET 1
1 1 IPUT 1

---1
ID I Intercept path corresponding to this path 1 IREMOVE I

1 ID does not exist. I I

--------------------------.-------------------------------------1
WR I ltttempt to copy HVC parameter block back I ITERM I

I into write-protected area. I I
---1

CD I Inval id subcode In SVC parameter block. I All I
I SVC interception software not included at I I
I sysgen. 1 I

--1 I NT I Intercepted task has gone to end of task. I IROLL I
I I 1 IPROCEED I
I 1 I ITRAP I
I 1 1 IGET 1
I I 1 IPUT I

4.13 MACROS USED WITH SUPE:RVISOR CALL (SVC) INTERCEPTION

Once configured for SVC interception, the operating system allows
tasks to execute code bullt by macros for SVC interception
provided the tasks were linked with the intercept option.

This section gives the syntax for the SVC macros described in the
previous sections. See the! 08/32 System Macro Library Reference
Manual for a list of syntax rules.

4.13.1 ICREATE Macro

The ICREATE macro creates an intercept path for a particular SVC
type. See Table 4-3 for valid combinations for the SVC, MODE and
NAME parameters.

4-16 48-040 FOO ROS

Format:

NAl-lE OPERATION I OPERAND
~---~-~~------------------~--~--~--------~-~-------

symbol I CREATE

48-040 Faa ROS

I
I
I
I
I
I
I
I
I
I
I
I

{

(I) } (2,7)
SVC= (3)

(6)
(7 [, x])

I , NAME=pointer

,TID=pointer

. {FC} ,CONTROL= MC

,BUFFERL=pointer

[,HANDLER=pointer]

,PID=pointer

, EXEC=pointer

[, PBSIZ E=n]

[, SVAR=pointer]

[,ERROR=pointer]

[, PCB=pointer]

[,FORM=L]

[,NINTC=n]

4-17

Operands:

svc=

MODE=

4-18

is an integer, enclosed by parentheses, that
indicates the type of intercept path to be
created:

• (1) indicates SVCI.

• (2,7) indicates SVC2 code 7 •

• (3) indicates SVC3.

• (6) indicates SVC6.

• (7 ,X indicates SVC7. X indicates an
optional SVC7 intercept by lu when
the lu is assigned to a file.

indicates one of the following interception
modes:

• CL indicates caller mode

• RX indicates recipient existent mode

• RN indicates recipient nonexistent mode

When CL is specified, an intercept . path is
created for 'all SVCs (selected by the SVC
parameter) issued from the task specified in
the NANE or TID parameter.

When RX is specified, an intercept path is
created for all SVCs (selected by the SVC
parameter) directed to an existing task,
device, pseudo task or pseudo device specified
in the NAl-lE parameter.

When RN is specified, a pseudo device is
created for SVCI or SVC7, or a pseudo task is
created for SVC6. The pseudo device or task
is attached to the intercept path created by
the call.

48-040 Faa ROS

NAME=

48-040 FOO ROS

A pseudo task or pseudo device is deleted when
all intercept paths attached to it are
removed. When a pseudo device is assigned
without SVC7 interception, the requested
access privileges are ignored and shared
read/shared write privileges are granted. If
an SVCl is attempted to a pseudo device
without an interception in effect, an invalid
function error (X'CO') is returned.

indicates the address of the memory location
specifying the name of a device task, pseudo
device or pseudo task. This location must be
fullword boundary-aligned and contain eight
bytes of blanks followed by a standard file
descriptor (fd) or task identifier (taskid).
An fd must be pa.cked, left-justified and
padded with blanks within the fullword. A
taskid must be left-justified and padded with
blanks.

When RX or RN is specified by the MODE
parameter, the standard fd or taskid given
with the NM1E parameter can include an
asterisk (*) or a backward slash (\) to allow
generic naming. See Section 4.6 for more
information on the use of generic naming of
pseudo devices and tasks.

4-19

TABLE 4-3 VALID COMBINATIONS FOR SVC, MODE AND NAME PARAMETERS

--------.---I CREATE PARAMETERS I
-----_·_--_ ... ·_ .. ·_--_ ... ·_-- ... ---1 1
svc= 1 MODE= I NM1E= I FUNCTION I
=======~:~~=~~=~=~==c====~~~c===~~~e~c~~em=~~~~~~.~~~~~~~~c~=~=1

(1) I CL I taskid I Intercepts any sve1 issued f rom the I
I I I task. ,
'RX I fd I Intercepts any SVCl directed to the I
I I I existing device.
I RN I fd I Creates a pseudo device and
I I I intercepts any SVC1 directed to it.

--_._--
(2,7) I CL I taskio I Intercepts any SVC2 code 7 issued

I I I from the task.
I RX I I No function; specifying fd or taskid
I I I resu1 ts in error.
I RN I I Reaul ts in error.

_ ____ ~_ " ... _._w _._.uo. _ _ ... ~ aiiILo.:_ 1 _.. .. _ ... _#l,.. __ ~ .. AIIo '

(3) I CL I taskid End of task interception; occurs no
I I I matter how a task terminates.
I RX I I No function~ specifying fd or taskid
I I I results in e~ror.
I RN I I Resu1 ts in error.

---(6) CL I taskid Intercepts any SVC6 issued from
I

RX I taskid Intercepts any SVC6 directed to the
I existing task.

RN I taskid Creates a pseudo task and intercepts
I any SVC6 directed to it.

--~I (7) CL taskid Intercepts any SVC7 issued from ~he

4-20

TID=

task.
RX fd Inter'cepts any SVC7 directed LO the

existing device.
RN fd Creates a pseudo device and

intercepts any SVC7 directed to it.

indicates the address of a ful1word location
containing a taskid. This parameter, which is
mutually exclusive with the NAME- parameter,
can be used when MODE=CL or MODE=RX with SVC6,
to identify the task to be intercepted. The
TID can be obtained from field ROB. TID of an
ROB from a previously intercepted SVC call.

CONTROL= contains a mnemonic indicating either full
control (FC) or monitor control (Me) over
intercepted SVCs.

48-040 FOO ROS

BUFFERL=

HANOLER=

PIO=

EXEC=

48-040 FOO R05

When CONTROL=FC, an intercepting task can
exert full control over an application task's
intercepted SVCs.

When CONTROL=MC, an intercepting task acts as
a monitor only; it has no control over an
intercepted SVC.

indicates the address of the standard circular
list that contains the addresses of available
ROB buffers.

The ROB used by the intercepting task to
identify an intercepted SVC must not be moved
to a new location after the interception takes
place. The system ensures that the address of
this RDB is the same as the address of the RDB
that was passed to the intercepting task when
the interception occurred.

indicates the address of a fullword location
containing the name of a queue handler. This
name, a maximum of eight characters, is
left-justified and padded with blanks. If
this parameter is omitted, the default queue
handl er is invoked.

NOTE

Currently, user-defined queue
handlers are not supported.

indicates the address of a halfword location
that is used by the system to store the path
identifier for the intercept path.

NOTE

PIO= is not to be confused with
ROB.PID. PID= identifies the path
issued by the IREMOVE statement.

is the address of an SVC intercept executor
routine within the intercepting task. This
routine will process intercepted SVCs of the
type specified with the SVC parameter. During
SVC interception, the system removes an ROB
specified 'by the list, fills it with
information and queues a task event trap with
the specified executor address to the
intercepting task.

4-21

PBSIZE=

SVAR=

ERROR=

PCB=

4-22

On entry to an executor routine, general
register 0 contains the PID of the intercept
path and general register 1 contains the
address of the RDB buffer associated with the
intercepted SVC. The executor routine
executes as a task event service routine.

specifies the number of bytes in the parameter
block for the SVC indicated by the SVC
parameter.

When this parameter is omitted,
block size defaults to the
documented for each type of SVC
Supervie,or Call (SVC) Reference
for SVC2 code 7 interception,
to eight bytes.

the parameter
standard sizes
in the OS/32
Manual, except
which def aul ts

The sizE~ of the RDB.PB field in the RDB for
this interception path is the value of the
PBSIZE parameter (or its defaul t if PBSIZE: is
not specified).

is the address of a fullword location
containing user-defined data. This data is
passed t.o the intercept logic. The queue
handler named by the HANDLER parameter can
later access the data. The SVAR parameter is
for user-defined purposes when needed by a
user-defined queue handler.

NOTE

Currently, user-defined queue
handlers are not supported.

is the address of an error routine within the
intercepting task. If a run-time error occurs
for this macro, execution branches to this
error routine. If this parameter is omitted
and a run-time error occurs, execution resumes
with the instruction following code built by
the macro.

is the address of a PCB previously constructed
and initialized by the FORM=L parameter.

When no PCB parameter is included, macro code
automatically builds a new PCB and initializes
it with values corresponding to the other
specified parameters.

48-040 FOO ROS

FORH=

NINTC=

NOTIFY=

IOPT=

48-040 FOa ROS

L requests a PCB to be built but not executed.
Macro code constructs a PCB for this macro and
initializes it with values. Subsequent macros
can reference this PCB via the PCB parameter.

n specifies the number of interceptions that
can be handled concurrently for this intercept
path. If there are more SVC interceptions
outstanding than can be handled concurrently,
the excess interceptions are queued. The
default value for n is 1. The default value
of 1 means that the intercepting task will
receive notification of a single intercept,
regardless of the number of RDBs. To allow an
intercepting task to handle multiple
concurrent intercepts (e.g., proceed I/O, halt
I/O, etc.) this value should be greater than
1.

designates the time at which a task is
informed of an SVC7 intercept.

• EX intercepts on an exit from the SVC7
handler only

• EN intercepts on an entry from the SVC7
handler only

• NX intercepts on both entry and exit from
the SVC7 handler

Where entry means the intercept occurs before
the SVC7 is handled and exit means the
intercept occurs after the SVC7 is handled.

aids in preventing a system task deadlock
between two system tasks that create intercept
paths for SVC's issued to each other. If the
YES option is specified, the system task
creating the intercept path is temporarily
removed from a wait state and rejects any
intercept directed to it from another system
task. Upon failing the intercept, the system
task is placed back into intercept wait state.
This option may be issued on a per path basis
within a system task. The IOPT operand does
not guarantee that a system deadlock will
always be prevented; however, since the system
task is temporarily removed from a wait state
and dispatched to handle its TEQ, a user is
given the capability to detect the possible
deadlock situation and take corrective action.
This option default is NO.

4-23

4.13.2 IREMOVE Macro

The IREMOVE ma.cro allows an intercepting task to remove one or
all previously created SVC intercept paths.

Format:

NAME

syrnbol

Operands:

PID=

TERl~=

4-24

OPERATION

IREMOVE

OPERAND

PID=pointer

, TERM={:.i~:~.} 18

[,ERROR=pointer]

[, PCB=pointer]

[, FORH=L]

is the address of the path identifier
specifying the path being removed. A zero
value in the PID halfword removes all existing
intercept paths.

indicates either of two termination modes for
intercepted SVCs already queued for the
intercepting task:

• AB indicates abort. OS/32
currently queued requests
removal.

aborts all
before path

• CS indicates controlled shutdown. OS/32
services only currently queued requests
before path removal; requests made after
TERM=CS is issued cannot be queued or
processed.

If this parameter is omitted, AS is the
defaul t.

48-040 FOO ROS

ERROR=

PCB=

FORM=

is the address of an error routine within the
intercepting task. If a run-time error occurs
for this macro, execution branches to this
error routine. If this parameter is omitted
and a run-time errOr occurs, execution resumes
with the instruction following the macro.

is the address of a PCB previously constructed
and initialized by the FORM=L parameter.

If this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameters.

L requests that a PCB be built but not
executed. A PCB is built by this macro and
initialized with values. Subsequent macros
can reference this PCB via the PCB parameter.

4.13.3 IGET Macro

The IGET macro allows an intercepting task to get data from the
application task whose SVC is intercepted.

Format:

NAME OPERATION

symbol IGET

48-040 FOO R05

OPERAND

RDB=pointer

, ADST=pointer

,ADEND=pointer

,SDST=pointer

,SDEND=pointer

[,ERROR=pointer]

[, PCB=pointer]

[, FORl-1="L]

[,DONE=addr]

4-25

Operands:

RDB::

ADST=

ADENDa:

BDST::;

SDEND=

ERRORe:

PCB::

FOR~l=

DONE=

4-26

is the address of the RDB buffer built for the
intercepted svc.
is the start address of a data area within the
application task whose sve is intercepted.
The contents of this area are transferred to
an intercepting task data area.

is the end address of the data area within the
application task whose SVC is intercepted.

is the start address of a data area within the
intercepting task. This area receives the
data from the application task.

is the end address of the data area within the
intercepting task.

is the address of an error routine within the
intercepting task. If a run-time error occurs
for this macro, execution branches to this
error routine. If this parameter is omitted
and a run-time error occurs, execution resumes
with the instruction following the macro.

is the address of a PCB previously constructed
and initialized by the FORM=L parameter. If
this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
paramete'rs.

L requests a PCB be built but not executed.
A PCB is built for this macro and initialized
with values. Subsequent macros can reference
this PCB via the PCB parameter.

is an address that specifies that the macro is
to be a PROCEED call. When the call is
completed, a task event interrupt occurs,
using the routine specified by the address in
the DONE parameter. This routine enters with
RO containing the error code for the call and
Rl pointing to the macro's parameter block.
Once this routine has finished processing, it
exits using the code built by the TEXIT macro.

The proceed form of the IGET macro must be
used if an IROLL macro was issued to the
appl ieat,ion task whose SVC is intercepted. The
system cannot guarantee that the application
task is in memory or that it can be rolled
into mem.ory within a reasonable time.

48-040 FOO R05

4.13.4 IPUT Macro

The IPUT macro lets an intercepting task put data into a data
area of the application task whose SVC is intercepted.

Format:

NAME

symbol

Operands:

RDB=

ADST=

ADEND=

SDST=

SDEND=

ERROR=

48-040 FOa ROS

OPERATION

IPUT

OPERAND

RDB=pointer

, ADST=pointer

,ADEND=pointer

, SDST=pointer

,SDEND=pointer

[,ERROR=pointer]

[, PCB=pointer]

[,FORM=L]

[, DONE= addr]

is the address of the RDB buffer built for the
intercepted SVC.

is the start address of a data area within the
application task. This area receives the
contents of an intercepting task data area.

is the end address of the data area within the
application task.

is the start address of a data area within the
intercepting task. The contents of this area
are put into the application task data area.

is the end address of the data within the
application task.

is the address of an error routine within the
intercepting task. If a run-time error occurs
for code built by this macro, execution
branches to this error routine.

4-27

PCB=

FORM=

DONE=

If this parameter is omitted and a run-time
error occurs, execution resumes with the
instruction following the macro.

is the address of a PCB previously constructed
and initialized by the FORM=L parameter. If
this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameters.

L requests a PCB be built but not executed.
A PCB is built for this macro and initialized
with values. Subsequent macros can refer to
this PCB via the PCB parameter.

is an address that specifies that the macro is
to be a proceed call. When the call is
completed, a task event interrupt occurs,
using the routine specified by the address in
the DONE parameter. This routine enters with
general register 0 containing the error code
for the call and general register I pointing
to the macro's parameter block. Once this
routine has finished processing, it exits
using the code built by the TEXIT macro.

The proceed form of the IPUT macro must be
used if an IROLL macro was issued to the
application task. The system cannot guarantee
that the application task is in memory or that
it can be rolled into memory within a
reasonable time.

4.13.5 ICONT Macro

The ICONT macro relinquishes control of an intercepted SVC by
returning control to an OS/32 SVC executor.

Format:

NAME OPERATION

symbol ICONT

4-28

OPERAND

RDB=pointer

[, ERROR=pointer]

[, PCB=pointer]

[,FORM=L]

48-040 FOO ROS

Operands:

RDB=

E:RROR=

PCB=

FORM=

is the address of the RDB buffer built for the
intercepted SVC.

is the address of an error routine within the
intercepting task. If a run-time error occurs
for code built by this macro, execution
branches to this error routine.

If this parameter is omitted and a run-time
error occurs, execution resumes with the
instruction following the code built by the
macro.

is the address of a PCB previously constructed
and ini tial ized by the FORI1=L parameter.

If this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameter's.

L requests a PCB be built but not accessed.
A PCB is built for this macro and initialized
with values. Subsequent macros can refer to
this PCB via the PCB parameter.

4.13.6 IPROCEED Macro

After an SVC has been intercepted, the intercepting task can
execute code built by an IPROCEED macro to allow the application
task that issued the SVc to proceed with its execution. Until
the intercepting task executes code built by an IPROCEED macro,
the application task is in a wait state.

Format:

NAME OPERATION

symbol IPROCEED

48-040 FOO ROS

OPERAND

RDB=pointer

[, ERROR=pointer]

[, PCB=pointer]

[,FORM=L]

[, CC=nJ

4-29

Operands:

RDB=

ERROR.=

PCB=

FORM:::

cc=

4.13.7 IROLL Macro

is the address of the RDB buffer built for the
intercepted svc.

is the address of an error routine within the
intercepting task. If a run-time error occurs
for code built by this macro, execution
branches to this error routine. If this
parameter is omitted and a run-time error
occurs, execution resumes with the instruction
following code built by the macro.

is the address of a PCB previously constructed
and initialized by the FOR~1=L parameter. If
this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameters.

L requests a PCB be built but not accessed.
A PCB:is built for this macro and initialized
with values. Subsequent macros can refer to
this PCB via the PCB parameter.

n is a decimal number specifying the setting
of the application task program status word
(PSW) condition code after the SVC instruction
execution. If the CC parameter is omitted,
the condition code of the application task PSW
is set t:o zero.

After an SVC is intercepted, an IROLL macro lets an intercepting
task change the status of: the application task from nonrollable
to rollable, provided that the task was established as rollable
by Link. This allows OS/32 to rollout a task having an
intercepted SVC that requires lengthy processing.

Format:

I
NAME J OPERATION OPERAND

----------~~---------~~---~--------------~~--------

4-30

symbol I IROLL RDB=pointer
I
I
r
r
r
I

[, ERROR=pointer]

[, PCB=po i nte rJ

[,FORM=L]

48-040 FOa R05

Operands:

RDB=

ERROR=

PCB=

FORM=

is the address of the RDB buffer built for the
intercepted SVC.

is the address of an error routine within the
intercepting task. If a run-time error occurs
for this macro, execution branches to this
error routine. If this parameter is omitted
and a run-time error occurs, execution resumes
with the instruction following the macro.

is the address of a PCB previously constructed
and ini tial ized by the FORf.1=L parameter. If
this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameters.

L requests a PCB be built but not accessed.
A PCB is built for this macro and initialized
with values. Subsequent macros can refer to
this PCB via the PCB parameter.

4.13.8 ITERM Macro

The ITERM macro terminates SVC processing. It also allows an
intercepting task to return the parameter block of the SVC it
processed to the application task that issued the SVC. The
returned parameter block can have updated information such as
status, number of bytes transferred, etc.

Format:

NAME OPERATION

symbol ITERlYl

48-040 FOO R05

OPERAND

RDB=pointer

, TRAP=pointer

'COpy={~}
[, ERROR=pointer]

[, PCB=pointer]

[,FORM=L]

[,CC=n]

4-31

Operands:

RDB=

TRAP=

COPY=

ERROR=

PCB=

FORM=

CC=

4.13.9 ITRAP Macro

is the address of the RDB buffer built for the
intercepted svc.

is the address of a fullword that contains an
item to be added to the task queue of the
application task whose SVC is intercepted.

Y (yes) indicates that the SVC parameter block
in the RDB is to be copied back into the
parameter block of the intercepted SVC.

N (no) indicates the copy operation is not
performed. If this parameter is omitted, N is
the def aul t •

is the address of an error routine within the
intercepting task. If a run-time error occurs
for code built by this macro, execution
branches to this error routine. If this
parameter is omitted and a run-time error
occurs, execution resumes with the instruction
following the code built by the macro.

is the address of a PCB previously constructed
and initi.alized by the FORH=L parameter. If
this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameters.

L requests that a PCB be built but not
accessed. A PCB is built for this macro and
initialized with values. Subsequent macros
can refer to this PCB via the PCB parameter.

n is a decimal number specifying the setting
of the application task PSW condition code
after the SVC instruction execution. If the
CC parameter is omitted, the condition code of
the application task PSW is set to zero.

The ITRAP macro allows an intercepting task to send a task queue
item to an application task whose SVC is intercepted. The task
queue item can be any of the task queue items supported by OS/32.

4-32 48-040 FOO ROS

Format:

NAME

symbol

Operands:

RDB=

TID=

TRAP=

ERROR=

48-040 FOO ROS

OPERATION

ITRAP

OPERAND

{
RDB=pointer}

TID=pointer

t, TRAP=pointer]

[, ERROR=pointer]

[, PCB=pointer]

[,FOR~1=LJ

[, DONE= addr]

is the address of the RDB buffer built for the
intercepted svc.

is the address of a fullword containing the
taskid for the task. Before issuing an ITRAP
macro with the TID parameter, the intercepting
task must have obtained the task identifier
from an RDB and placed it into the fullword
location.

NOTE

The TID form of this macro can be
used to send a trap to a task that
is not being intercepted.

is the address of a fullword that contains an
item to be added to the task queue of the
application task having an SVC that is
intercepted.

is the address of an error routine within the
intercepting task. If a run-time error occurs
for code built by this macro, execution
branches to this error routine. If this
parameter is omitted and a run-time error
occurs, execution resumes with the instruction
following the code built by the macro.

4-33

PCB=

FORn=

DONE=

is the address of a PCB previously constructed
and initialized by the FORM=L parameter. If
this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameters.

L requests that a PCB be built but not
accessed. A PCB is built for this macro and
initialized with values. Subsequent macros
can refer to this PCB via the PCB parameter.

is an address that specifies that the macro is
to be a PROCEED call. When the call is
completed, a task event interrupt occurs,
using the routine whose address is specified
in the DONE parameter. This routine enters
with general register 0 containing the error
code for the call and general register I
pointing to the macro's parameter block. Once
this routine has finished processing, the
intercepting task exits using code built by
the TEXIT macro.

The proceed form of the ITRAP macro must be
used if an IROLL macro was specified in the
application task having an SVC that is
intercepted. The system cannot guarantee that
the application task is in memory or that it
can be rolled into memory within a reasonable
time.

4.13.10 IERRTST Macro

The IERRTST macro allows an intercepting task to evaluate errors
resulting from execution of code built by intercept macros in
order to branch to appropriate error handling routines.

Format:

NAME OPERATION

sywbol IERRTST

4-34

OPERAND

xx=pointer

.
[xx=pointerJ

[EL SE=po i nte rJ

[PCB=pointer]

[FORM=L]

48-040 FOO ROS

Operands:

xx=

pointer

ELSE=

PCB=

FORM=

48-040 FOO R05

is a 2-character alphabetic string specifying
one of the error codes for the intercept
macros. See Table 4-2.

specifies the name of an intercepting task
error routine that handles errors having a
returned error code identical to the one
specified by the xx parameter. For instance,
an IERRTST macro might include these
parameters for evaluating an IPUT macro:

IERRTS'l' AD=pointer,NT=pointer,RD=pointer

These parameters specify the addresses of the
error routines to which execution will branch
whenever the returned error code equals AD, NT
or RD.

is the name of an error routine to be executed
for errors other than those specified in the
xx parameter. If this parameter is omitted,
one of the following actions occurs for
returned errors:

• If the returned error code corresponds to
the one specified by the xx parameter,
execution branches to a specific error
routine.

• If the returned error code does not
correspond to the one specified by the xx
parameter, execution branches to the
instruction immediately following the code
built by the IERRTST macro.

is the address of a PCB previously constructed
and initialized by the FORM=L parameter. If
this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameters.

L requests that a PCB be built but not
accessed. A PCB is built for this macro and
initialized with values. Subsequent macros
can refer to this PCB via the PCB parameter.

4-35

4.13, .11 $RDB Macro

The $RDB macro is used to define a structure containing the
symbolic names for all of the RDB fields. It is recommended that
symbolic names be used to refer to the ROB fields instead of
coding the hexadecimal offsE~ts to the fields.

Format:

I
NAME I: OPERATION OPERAND

- -- •. _. ~ - ----.. -- --.. -...-" -.-..- -=--..-..~- -- -. -----.-.. -...-.. --- --.-.--- ----_._.- ...

eyf(lbol I, $RDB
I:

4.14 SAMPLE SUPERVISOR CALLI (SVC) INTERCEPTION' PROGRAMS

The following prog:rarn uses SVC interception software to intercept
SVCl to the existing real device MAGl. Each time an SVCl is
iss,ued to MAG!, the program prints the following messag,e:

SVC 1 CALL IN.TERCEPTED

SVCl is terminated with a device unavailable error c.ode, X'AO'.

$RDB DEFINES AN RDB STRUCTURE

* ADD AN RDB BUFFER ADDRESS TO THE ROB BUFFER ADDRESS LIST.

LA
*

ABL
*

O,RDB

0, BUFL,IST

LOAD THE ADDRESS OF THE RDB
IN.TO REGISTER 0

ADD THE ADDRESS OF THE RDB
TO THE CIRCULAR LIST

* CRE,ATE THE INTERCEPT PATH

ICREA'l'E NAME=INTNAME, FD FOR DEVICE NAME X

MODE=.RX, RECIPIENT-EXISTENT MODE X

CONTROL=FC, GIVES INTERCEPTING TAS.K FULL CONTROL X

SVC= (1) , ALL sve 1 ARE TO BE INTERCEPTED X

EXEC=INTRTN, POINTS TO THE SVC EXECUTOR ROUTINE X

BUFFERL=BUFLIST, ASSIGNS POINTER TO FREE B,UFFER L,IST' X

PID=.PATHID, DATA AREA FOR INTERCEPT PATH ID X

ERROR=BOMB,OUT ERROR ROUTINE FOR ICREATE MACRO

4-36 48-040, FOO: ROS,

* IF ERROR OCCURS IN ICREATE MACRO ENABLE TASK EVENT TRAP SO TASK
* CAN GO INTO TRAP WAIT FOR INTERCEPTS TO OCCUR

* LOAD TSW WITH WAIT STATE SET AND TASK EVENT TRAPS ENABLED

LTSW TETS,WT

* COME HERE IF ERROR OCCURS IN ICREATE MACRO

BOMBOUT SVC 3,1 FAIL TASK ON ERROR

* ALLOCATE DATA AREA FOR ICREATE

ALIGN 4
INTNAME DC C' NODE NAME

DC C' RESERVED
DC C' MAGI' DEVICE NAME
DC C' , FILE NAME PART 1
DC C' FILE NAME PART 2
DC C' EXTENSION

BUFLIST DLIST 1 DESIGNATE 1 RDB IN CIRCULAR LIST

RDB DS RDB. PB+20 ALLOCATES SIZE OF RDB + SVC 1

PATHID DS 2 DESIGNATE AREA FOR PATH ID

* TRAP EVENT SERVICE ROUTINE
* THE FOLLOWING ROUTINE IS EXECUTED WHEN AN SVC IS INTERCEPTED

INTRTN SVC 2,NOTIFY LOO MESSAGE THAT SVC 1 WAS INTER-
* CEPTED

LHI O,X'AOOO' RETURN DEVICE UNAVAILABLE STATUS
* FOR INTERCEPTED SVC 1

STH o , RDB. PB+2 (1) SAVE SVC 1 STATUS IN STATUS FIELD
* OF RDB

* * TERMINATE THE INTERCEPTED CALL, COPYING THE MODIFIED SVC
* PARAMETER BLOCK IN THE RDB BACK OVER THE USER'S SVC PARAMETER
* BLOCK.

ITERM RDB=(l) ,COPY=Y

TEXIT EXIT THE TASK EVENT ROUTINE

~LLOCATE DATA AREA FOR TRAP EVENT SERVICE ROUTINE
ALIGN 4

NOTIFY DB 0,7,0,22
DC C'SVC 1 CALL INTERCEPTED'
END

The following program creates a pseudo device to which a user
task (u-task) can assign and write. The user's data buffer is
passed to the OS/32 command processor via SVC2 code 14 to be
executed as a command line.

48-040 FOO ROS 4-37

IRDR PROG SVC INTERCEPT I'~XAMPLE - INTERNAL READER
**
**
* *
* * * This task creates a pseudo device to which au-task *
* can assign and write~ The user's data buffer is *
* passed to the operati.ng system command processor via *
* an SVC2 code 14 to be executed as a command line. *
* *
* * **
**
ROO EQU 0
R01 EQU 1
R02 EQU 2
R03 EQU 3
R04 EQU 4
R05 EQU 5
R06 EQU 6
R07 EQU 7
R08 EQU 8
R09 EQU 9
RlO EQU 10
R11 EQU 11
Rl2 EOU 12
Rl3 EOU 13
Rl4 EOU 14
R15 EOU 15

SPACE 3
NLSTM
NLSTU
$SVC1
$SVC7
$RDB
TITLE INTERCEPT PATH CREATION

**
*
* SET UP INTERCEPT PATHS *

*'
* * **

4-38 48-040 FOC ROS

IRDR EQU *
SVC 2,PEEKOI GET NAME OF SYSTEM CONSOLE
L ROO,CON
ST ROO,SVC7.VOL+SVC7CON
LHI ROO,SV7.ASGN!SV7.SRW
SLL ROO,16 ASSIGN LU 0 SRW
ST ROO,SVC7.0PT+SVC7CON
SVC 7,SVC7CON ASSIGN TO SYSTEM CONSOLE
LB ROO,SVC7.STA+SVC7CON
LR ROO,ROO WAS THE ASSIGN OK?
BNZ BADCON NO
LIS ROO,O CHANGE SVC 7 TO FETCH ATTR
STH ROO,SVC7.0PT+SVC7CON
SVC 7,SVC7CON FETCH ATTRIBUTES ON CON:
LB ROO,SVC7.STA+SVC7CON
LR ROO, ROO WAS THE FETCH OK?
BNZ BADCON NO
LHI ROO,SV7.CLOS CHANGE SVC 7 TO CLOSE
SRLS ROO,S DO NOT DESTROY DEVICE CODE
STB ROO,SVC7.0PT+SVC7CON
SVC 7,SVC7CON CLOSE THE SYSTEM CONSOLE
LB ROO,SVC7.STA+SVC7CON
LR ROO,ROO WAS THE CLOSE OK?
BNZ BADCON NO
LHI ROO,X'7FFF' BAD LENGTH FOR SVC 2,14 TO GET
STH ROO,COMMAND+4 MAX LENGTH ALLOWED BY SYSTEM
SVC 2,COMMAND WILL GET ERROR STATUS 3
LH ROO,COMMAND+6 USE AS IRDR LENGTH
STH ROO,SVC7.LRC+SVC7CON
SPACE 1
LHI ROO,RDBNUM NUMBER OF RDB'S
LA ROl,RDBPOOL ADDRESS OF RDB POOL

INTRDB EQU *
ATL ROl,RDBP ADD RDB TO QUEUE
AHI ROl,RDBSIZE ADDRESS OF NEXT RDB
SIS ROO,1 ALL RDB'S ADDED TO QUEUE?
BNZ INTRDB NO
SPACE 1
ICREATE SVC=(7),MODE=RN,NAME=NAME, X

CONTROL=FC,BUFFERL=RDBP,PID=PID,EXEC=INT7
IERRTST FD=BADFD,EX=BADEX,ELSE=BADALL
ICREATE SVC=(I),MODE=RX,NAME=NAME,PBSIZE=SVCIX, X

CONTROL=FC,BUFFERL=RDBP,PID=PID,EXEC=INTI
IERRTST FD=BADFD,EX=BADEX,ELSE=BADALL
SPACE 1
LTSW WT,TETS ENTER TRAP WAIT
SPACE 3

BADFD SVC 2,LOGFD
SVC 3,1

BADEX SVC 2,LOGEX
SVC 3,1

BADALL SVC 2, STRANGE
SVC 3,1

BADCON SVC 2,LOGCON
SVC 3,1
SPACE 1

48-040 FOO ROS 4-39

ALIGN 4
LOGFD DC H ' 7 ' , H • 8 '

DC C'FD ERROR'
LOGEX DC H ' 7 ' , H ' 8 '

DC C'EX ERROR I

STRANGE DC H'7 1 ,H'8'
DC C'l! ERROR'

LOG CON DC H ' 7 I , H ' 12 '
DC C'IICON ERROR'

NAME
PID

SPACE 1
DC C'
DSF 1
SPACE I

RDBNUM EQU 3
RDBSIZE EQU RDB.+SVC7.
RDBP DLIST RDBNUM

IROR

RDBPOOL DS RDBSIZ E*ROBNU}~

NUMBER OF ROB'S IN POOL
MAXIMUM SIZE OF RDB
RDB POOL
RDB BUFFERS

TITLE SVC 7 TEQ HANDLER
****************************,t***
*
*
*

SVC 7 INTERCEPT EXECUTOR *
*
*

**
INT7

INT7. NS

*
*
*

EQU
LR
LR
AH
LB
LR
BZ
CLHI
BE
THI
BNZ
THI
BNZ
THI
BNZ
SPACE
EQU
SVC
SVC
LIS
STB
ITERM
TEXIT
SPACE

*
RIO ,ROI
Rl1, RlO
RII,RDB.OFF(R10)
ROO,SVC7.0PT(RII)
ROO ,ROO
DOFETCH
ROO,XIFF'
INT7.NS
ROO,X '40 '
DOOPEN
ROO,X ' 04'
DOCLOSE
ROO,X'21'
INT7. IG
I

* 2,UNPACK7
2,LOG7ERRC
ROO,1
ROO,SVC7.STA(Rll)
PCB=TERM,RDB=(RI0)
PCB=EXIT
3

SAVE RDB POINTER

ADDRESS OF SVC 7 PBLK
GET SVC 7 OPTIONS
FETCH ATTRIBUTES?
YES
EXTENDED SVC 7 FUNCTIONS?
YES - NOT SUPPORTED
ASSIGN?
YES
CLOSE?
YES
CHAP OR CHECKPOINT?
YES - IGNORE

PUT SVC 7 OPTION IN ERROR MESSAGE
AND LOO ERROR MESSAGE
RETURN ILLEGAL FUNCTION TO USER
AS AN ERROR STATUS
TERMINATE THIS SVC 7
EXIT FROM TEQ HANDLER

IGNORE SVC 7 COMMAND PROCESSOR

INT7.IG EQU *

*
*

4-40

ITERM PCB=TERM,RDB=(RI0) IGNORE THIS SVC 7
TEXIT PCB=EXIT EXIT FROM TEO HANDLER
SPACE 3

OPEN PROCESSOR

48-040 FOO R05

*
DOOPEN EQU *

LB RiS,SVC7.0PT+i(Rii) GET ACCESS PRIVILEGES
SRLS RlS,S SRO = 0 & ERO = 1
CLHI RiS,2 REQUESTING READ ONLY ACCESS?
BL OPEN. ERR YES - ERROR
B OPEN. OK SKIP SECURITY CHECK
SPACE 2

*--------------USER DEFINED SECURITY CH,ECK FOLLOWS--------------------
L RlS,RDB.TID(RiO) MOVE TID FOR PEEK03
ST RiS,TID
SVC 2,PEEK03 INFO ON USER TASK
LM R14,MONITOR GET NAME OF USERS MONITOR
CLI R14,C'.MTM' TASK A SUB-TASK OF MTM?
BNE OPEN. OK NO
CLI RiS,C' BE SURE
BNE OPEN. OK NO?
LM R14,TASKNAME GET NAME OF USER
CLI R14,C'LEE' IS IT ME?
BNE OPEN. ERR NO
CLI RiS,C' BE SURE
BNE OPEN. ERR NO?
L RiS,LEGACY GET NAME OF USERS TERMINAL
CLI RiS,C'CT42' IS IT MINE?
BNE OPEN. ERR NO
L RiS,ACCT.P GET USERS PRIVATE ACCOUNT NUMBER
CLHI RiS,29 AM I IN MY ACCOUNT?
BNE OPEN. ERR NO
L RiS,ACCT.G GET USERS GROUP ACCOUNT NUMBER
CLHI RiS,18 DO I HAVE MY CORRECT GROUP ACCOUNT?
BNE OPEN. ERR NO

*--
SPACE 2

OPEN.OK EQU *
ICONT PCB=CONT,RDB=(RiO) RETURN TO OS SVC 7 EXECUTOR
TEXIT PCB=EXIT EXIT FROM TEQ HANDLER
SPACE 2

OPEN. ERR EQU *
LIS RiS,9 RETURN ASSIGNMENT ERROR TO USER
STB RiS,SVC7.STA(Rii)
ITERM PCB=TERM,RDB=(RiO) RETURN BAD STATUS TO USER
TEXIT PCB=EXIT EXIT FROM TEQ HANDLER
SPACE 3

* * CLOSE PROCESSOR
*
DOCLOSE EQU *

ICONT PCB=CONT,RDB=(RiO) RETURN OS OS SVC 7 EXECUTOR
TEXIT PCB=EXIT EXIT FROM TEQ HANDLER
SPACE 3

* * FETCH ATTRIBUTES PROCESSOR
*
DOFETCH EQU *

LA R09,SVC7CON GET ADDRESS OF FETCH ATTR OF CON
LB RiS,SVC7.0PT+i(R09) MOVE DEVICE CODE

48-040 FOO R05 4-41

STB RIS,SVC7.0PT+I(RII)
LIS RlS,O GOOD STATUS
STB RlS,SVC7.STA(RIl)
L RIS,SVC7.KEY(R09) DEVICE ATTR & RECORD LENGTH
ST RI5,SVC7.KEY(RIl)
L Rl5,NAME+8 IRDR DEVICE NAME
ST RIS,SVC7.VOL(RI1)
LM Rl2 ,SVC7 .FNM (R09)
STM RI2,SVC7.FNM(RI1)
ITERM PCB=TERM, ROB= (RIO) RETURN SVC 7 FETCH PBLK TO USER
TEXIT PCB=EXIT EXIT FROM TEQ HANDLER
TITLE SVC I TEQ HANDLER

**
*
* SVC I INTERCEPT EXECU'roR *

*
* * **
INTI

*
*
*
*

*
*
*

EQU *
LR RIO, ROI
LR R07, RlO
AH R07,ROB.OFF(RIO)
LIS R14,0
LIS RIS,O
LB RI3,SVCI.FC(R07)
THI RI3,SVI.CMDF
BNZ ECHODONE
THI RI3,SVI.WRIT
BNZ INTI.WRT

SAVE RDB ADDRESS

ADDRESS OF SVC I PBLK
NO ERROR ON COMMAND FUNCTION
LENGTH OF TRANSFER
GET FUNCTION CODE
COMMAND FUNCTION?
YES - TREAT AS A NOP
IS USER DOING A WRITE?
YES

A read from the internal reader will give the
user an illegal function status.

LHI
B

RI4,X'COOO'
ECHODONE

ILLEGAL FUNCTION ON READ
FINISH UP

Queue the user I s commclnd line to the internal reader

INTI.WRT EQU
L

*
RlI,SVCI.SAD(R07) GET START ADDRESS
RI2,SVCI.EAD(R07) AND END ADDRESS
RDB=(RIO),SDST=BUFFER,SDEND=BUFEND,
ADST=(RII),ADEND=(RI2)

L
IGET

SR
LR
AIS
STH
SVC
LH
BZ
LHI
SPACE

ECHODONE EQU
STH
ST
THI
BNZ

RI2,Rll GET LENGTH-I OF STRING
R15,Rl2
RIS,I
RI5,COMMAND+4
2,COMMAND
RI4,COMMAND+2
ECHODONE
RI4 , X I AO 0 0 I

I

*
RI4,SVCI.STA(R07)
RI5,SVCI.LXF(R07)
R13, SVI. WAIT
ECHOWAIT

LENGTH OF USER COMMAND LINE

PASS COMMAND TO IREADER
COMMAND QUEUED TO IREADER?
YES
NO - GIVE DEVICE UNAVAILABLE

RETURN STATUS
RETURN LENGTH
IS USER REQUEST A WAIT?
YES - NO NEED FOR A TRAP

*

4-42 48-040 FOO R05

ECHOWAIT

UNPACK7

LOG7ERRC

SVC7ERRC
LOG7ERRX

TRAP

CONT

EXIT

PEEK01

CON

SVC7CON

PEEK03
TID
TASKNAME
CTSW
TOPT
WAITS
ACCT.P
ACCT.G
L.VOL
L.FD
L.EXT
MONITOR

SPACE
L
01

1
RlS , RDB • PAD (RIO)
R1S,Y'08000000' .
R1S, TRAP
1

GET ADDRESS OF USER SVC 1 PBLK
I/O PROCEED COMPLETION PARAMETER

ST
SPACE
ITERM
TEXIT
SPACE
EQU

RDB=(R10) , TRAP=TRAP, COPY=Y TERMINATE WITH
PCB=EXIT EXIT FROM TEQ HANDLER
1

TRAP

*
ITERM PCB=TERM,RDB=(R10)
TEXIT PCB=EXIT
EJECT
ALIGN 4
DB 2,6,0,0
DAC SVC7ERRC
DB 0,7
DC Z(LOG7ERRX-*)
DB C'UNSUPPORTED SVC 7
DB C' •• INTERCEPTED'
EQU *-1
SPACE 2
ALIGN 4
DS 4
SPACE 2
ALIGN 4
ICONT FORM=L
SPACE 2
ALIGN 4
ITERM FORM=L,COPY=Y
SPACE 2
ALIGN 4
TEXIT FORM=L
SPACE 2
ALIGN 4
DB 1,19
DS 22
DS 4
SPACE 2
ALIGN 4
DS SVC7.
SPACE 2
ALIGN 4
DB 3,19,0,0
DSF 1
DSF 2
DSF 1
DSF 1
DSF 1
DSF 1
DSF 1
DSF 1
DSF 2
DSF 1
DSF 2

TERMINATE THIS SVC 1
EXIT FROM TEQ HANDLER

PUT SVC 7 ERROR CODE IN

FUNCTION '

I/O PROCEED COMPLETION TRAP

CONTINUE SVC

TERMINATE SVC

EXIT SVC

SYSTEM CONSOLE NAME

GET INFO AN USER TASK
USER TASK ID
NAME OF USER TASK
CURRENT TASK STATUS WORD
TASK OPTIONS
TASK WAITS
USER'S PRIVATE ACCOUNT NUMBER
USER'S GROUP ACCOUNT NUMBER
LOAD VOLUME NAME
LOAD FILE NAME
LOAD EXTENSION & FILE CLASS
NAME OF MONITOR TASK

48-040 FOO R05 4-43

LEGACY DSr 1
PRIO DS 1

DS 3
SPACE 3
ALIGN 4

COMMAND DB 1,14,0,0
bcx 0
DCX 0
DC A(BUFrER)
SPACE 1
ALIGN 4

BUFFER bS 128
BUFEND EQU *~1

END IRDR

4-44

~AME MTM USERS TERMtNAL
1'ASR PRtoRttr
(RESERVED)

QUEUE cOMMAND ~b l~gADgR
STATuS

AnDRESS OF BUFFE~

4 a-o 40F' 00 RO 5

APPENDIX A
SUPPORTED VERTICAL FORMS CONTROL (VFC) CHARACTER SET

I 1 OPERATIONS AFFECTING 1

HEX 1 CHAR 1 LINE SPACING 1
====================================1

09 HT Horizontal tab I
OB VT Set vertical tabs 1

(EVFU, no print) 1
20 b 1 line b/print 1
2B + No 1 ine advance 1
2D 3 lines b/print 1
30 0 2 lines b/print 1
31 1 Top of form b/print 1
32 2 Select VFU-2 b/print 1
33 3 Select VFU-3 b/print 1
34 4 Select VFU-4 b/print 1
35 5 Select VFU-5 b/print 1
36 6 Select VFU-6 b/print 1
37 7 Select VFU-7 b/print
38 8 Select VFU-8 b/print
39 9 Select VFU-9 b/print
41 A Select VFU-10 b/print
42 B Select VFU-11 b/print
43 C Select VFU-12 b/print
45 E 1 line a/print
46 F No line advance
47 G 3 lines a/print
48 H 2 lines a/print
49 I Top of form a/print
4A J Select VFU-2 a/print
4B K Select VFU-3 a/print
4C L Select VFU-4 a/print
4D M Select VFU-5 a/print
4E N Select VFU-6 a/print
4F 0 Select VFU-7 a/print
50 P Select VFU-8 a/print
51 P Select VFU-9 a/print
52 R Select VFU-10 a/print
53 S Select VFU-11 a/print
54 T Select VFU-12 a/print
60 No line advance
61 a 1 line b/print
62 b 2 lines b/print
63 c 3 lines b/print
64 d 4 lines b/print
65 e 5 lines b/print
66 f 6 lines b/print
67 9 7 lines b/print

48-040 FOO R05 A-1

------------------------------~-~~--
I I OPERATIONS AFFECTING

HEX I CHAR I LINE SPACING
============~===:===================

68 h 8 lines b/print
69 i 9 lines b/print
6A j 10 lines b/print
6B k 11 lines b/print
6C 1 12 lines b/print
60 m 13 lines b/print
6E n 14 lines b/print
6F 0 15 lines b/print
70 p 16 lines b/print
71 q 17 lines b/print
72 r 18 lines b/print
73 s 19 lines b/print
74 t 20 lines b/print
75 u 21 lines b/print
76 v 22 lines b/print I
77 w 23 lines b/print I
78 x 24 lines b/print I
79 Y 25 lines b/print I
7A z 26 lines b/print I
7B { 27 lines b/print " Ir
7C 1 28 lines b/print I
70 } 29 lines b/print I
7E 30 lines b/print I
7F DEL 31 lines b/print
80 32 lines b/print
81 33 lines b/print
82 34 lines b/print
83 35 lines b/print
84 36 lines b/print
85 37 lines b/print
86 38 lines b/print
87 39 lines b/print
88 40 lines b/print
89 41 lines b/print
8A 42 lines b/print
8B 43 lines b/print
8C 44 lines b/print
80 45 lines b/print
8E 46 lines b/print
8F 47 lines b/print
91 48 lines b/print
92 50 lines b/print
93 51 lines b/print
94 52 lines b/print
95 53 lines b/print
96 54 lines b/print
97 55 lines b/print
98 56 lines b/print
99 57 lines b/print
9A 58 lines b/print
9B 59 lines b/print

A-2 48-040 FOO R05

48-040 FOO R05

-~-~---~---~-------~-----~----------
I 1 1 OPERATIONS AFFECTING I
1 HEX 1 CHAR 1 LINE SPACING I
====================================1

9C
9D
9E
9F
AO
Al
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
Bl
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
CO
Cl
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF

60 lines b/print
61 lines b/print
62 lines b/print
63 lines b/print
64 lines b/print
65 lines b/print
66 lines b/print
67 lines b/print
68 lines b/print
69 lines b/print
70 lines b/print
71 lines b/print
72 lines b/print
73 lines b/print
74 lines b/print
75 lines b/print
76 lines b/print
77 lines b/print
78 lines b/print
79 lines b/print
No line space

1 line a/print
2 lines a/print
3 lines a/print
4 lines a/print
5 lines a/print
6 lines a/print
7 lines a/print
8 lines a/print
9 lines a/print

10 lines a/print
11 lines a/print
12 lines a/print
13 lines a/print
14 lines a/print
15 lines a/print
16 lines a/print
17 lines a/print
18 lines a/print
19 lines a/print
20 lines a/print
21 lines a/print
22 lines a/print
23 lines a/print
24 lines a/print
25 lines a/print
26 lines a/print
27 lines a/print
28 lines a/print
29 lines a/print
30 lines a/print
31 lines a/print

A-3

I I OPERATIONS AFFECTING

HEX I CHAR I LINE SPACING
===============================~====

DO 32 lines a/print
Dl 33 lines a/print
D2 34 lines a/print
D2 35 lines a/print
D3 36 lines a/print
04 36 lines a/print
05 37 lines a/print
06 38 lines a/print
07 39 lines a/print
08 40 lines a/print
09 41 lines a/print
OA 42 lines a/print
DB 43 lines a/print
OC 44 lines a/print
00 45 lines a/print
OE 46 lines a/print
OF 47 lines a/print
EO 48 lines a/print
El 49 lines a/print
E2 50 lines a/print
E3 51 lines a/print
E4 52 lines a/print
E5 53 lines a/print
E6 54 lines a/print
E7 55 lines a/print
E8 56 lines a/print
E9 57 lines a/print
EA 58 lines a/print
EB 59 lines a/print
EC 60 lines a/print
EO 61 lines a/print
EE 62 lines a/print
EF 63 lines a/print
FO 64 lines a/print
Fl 65 lines a/print
F2 66 lines a/print
F3 67 lines a/print
F4 68 lines a/print
F5 69 lines a/print
F6 70 lines a/print
F7 71 lines a/print
F8 72 lines a/print
F9 73 lines a/print
FA 74 lines a/print
FB 75 lines a/print
Fe 76 lines a/print
FO 77 lines a/print
FE 78 lines a/print
FF 79 lines a/print

A-4 48-040 FOO R05

A

Account Reporting utility
ACPRIVILEGE
ADCCP
Advanced data communications
control procedure. See ADCCP.

APU
customizing fault
disabled
enabled
internal task control
execution

monitor task
monitoring task execution
only, queue operating
states

operating states
preempting task execution
queue pointer
status signal
task execution
task queue ordering
task transferring
verifying task transfer

Asynchronous events
ATTN command
Auxiliary processing unit.

See APU.

B

Basic data communications
subsystem

C

Caller mode. See CL.
CDS
Central processing unit.

See cpu.
CL
Command processor sUbsystem
Command sUbstitution system.

See CSS.
Commands

ATTN
DISPLAY ACCOUNTING
DISPLAY ERRORS
MEMORY
OPTION

QUEUE
SET PRIORITY

Computational-intensive task
Console monitor subsystem
Control/Diagnostic System.

See CDS.

48-040 FOO ROS

INDEX

1-14
2-9
1-19

1-2
3-19
3-3
3-3

3-17
3-11
3-10

3-4
3-3
3-10
3-16
3-10
3-2
3-8
3-16
3-18
1-11
1-20

1-19

1-17

4-18
1-20

1-20
1-14
1-17
1-18
2-1
2-4
3-9
1-10
3-2
1-19

CPU
task transferring

CPU-override status
CSS

D

D-tasks
ACPRIVILEGE option
DISC option

Data Collection facility
Data structures
DCB
Device control block. See

DCB.
Diagnostic tasks. See
d-tasks.

DISPLAY ACCOUNTING command
DISPLAY ERRORS command
DLIST instruction
DT state
Dynamic

scheduling
time-slice

E-tasks

E

data structures used by
relocatable
RELOCATE option
writing
writing relocatable

Error recording subsystem
Error Reporting Utility
ES state
ET state
Executive tasks. See
e-tasks.

F,G

File management
subsystem
support services

Floating point
instructions
subsystem

HASP
HDLC

H

High level data link
controller. See HDLC.

3-16
1-12
1-20

1-7
2-9
2-9
1-14
2-5
1-19

1-14
1-17
4-6
1-7

1-9
1-10

1-7
2-4
2-2
2-2
2-2
2-3
1-17
1-17
1-8
1-7

1-16
1-16

1-21
1-21

1-19
1-19

IND-l

I,J,K

I/O
intensive
processors
subsystem

ICONT macro
ICREATE macro

IERRTST macro
IGET macro
Input/output processor. See

lOP.
Input/output. See I/O.
Intercept paths

creating
full and monitor control
how to remove

Interception program
sample SVC

Internal interrupt subsystem
lOP
IPROCEED macro
IPUT macro
IREMOVE macro
IROLL macro
IS state
ISU state
ITERM macro
ITRAP macro

LFC
LIB

L

Line frequency clock. See
LFC.

LLE
Load-leveling executive.

See LLE.
Load power fail monitor.

See LPFM.
Loader and segmentation

subsystem
Loader information block.

See LIB.
Logical processing unit.

See LPU.
Logical processor mapping
table. See LPMT.

LPFM
LPMT
LPU

mapping

M

Machine architecture
Macro libraries

MTMSTRUC. MLB
SYSSTRUC.MLB

Macros

IND-2

ICONT
ICREATE

1-2
1-2
1-17
4-28
4-8
4-16
4-34
4-25

4-13
4-8
4-11
4-14

4-36
1-21
3-1
4-29
4-27
4-24
4-30
1-8
1-8
4-31
4-32

1-10
1-18

1-12

1-18

3-4
1-2
1-2
3-6

1-6
2-5
2-4
2-4

4-28
4-16

Macros (Continued)
IERRTST
IGET
I PROCEED
IPUT
IREMOVE
IROLL
ITERM
ITRAP
$RDR

Memory
local
map
preventing access
conflicts

shared
system

MEMORY command
Memory diagnostics subsystem
MTM

data structures macro
libraries

Multi-terminal monitor. See
MTM.

Multiprocessing
support

Nested calls
NS state
NSU state

N

o

OPTION command

Optional user SVC subsystems
OS/32

basic data communications
command processor
console monitor
data structures macro
libraries

error recording and
reporting

file management
floating point
I/O management
I/O subsystem
internal interrupt
job accounting
loader and segmentation
memory diagnostics
memory management
optional user SVC
software support
subsystems
system initialization
task management
timer management

4-34
4-25
4-29
4-27
4-24
4-30
4-31
4-32
4-36
1-14
1-15
1-18

3-20
1-15
1-15
1-18
1-18
1-2

2-8

3-1
1-2

1-20
1-7
1-8

2-1
2-4
1-21

1-19
1-20
1-19

2-5

1-17
1-16
1-21
1-17
1-17
1-21
1-14
1-18
1-18
1-14
1-21
1-4
1-3
1-20
1-6
1-15

48-040 FOO ROS

P

PIC
Precision interval clock.

See PIC.
Priority scheduling
Privileged tasks

e-tasks
Processor queue

assigning tasks to
Program status word. See

PSw.
Pseudo device

generic naming for
psw

QPB
Queue

Q

priority assignments
timer .,

QUEUE command
Queue parameter block. See

QPB.

R

ROB
circular list for

$ROR macro
Read real time clock. See

RRTC.
Real-time support module.

See RTSM.
Recipient existent mode.

See RX mode.
Recipient nonexist mode.

See RN mode.
Relocation/protection
Request descriptor block.

See ROB.
RN mode
RRTC
RS state

al ternate
RSA state
RTSM
RX mode

S

Sample SVC interception
programs

SCL
SOLC
Segment control list. See

SeL.
SET PRIORITY command
SPT
Subsystems. See OS/32.
SVC, mode and name parameters

valid combinations

48-040 FOO ROS

1-16

1-9

2-1

3-7

4-8
4-9
1-7

3-20

3-9
1-15
3-9

4-4
4-6
4-36

1-18

4-18
1-16

1-7
1-7
1-16
4-18

4-36
1-15
1-19

1-10
2-2

4-20

SVC handling
SVC interception

error codes
error handling
functional summary
how it works
macros used with
occurring at the end of

task
preparing a task for
system macros for
terminating intercept
calls

SVC13

Synchronous data logic
control. See SOLC.

Synchronous events
Sysgen
System

configuration
deadlock avoidance
initialization subsystem
time-slice

System generation. See
sysgen.

System pointer table. See
SPT.

T

Task
computational-intensive
controlling order of
execution

event trap
mode
rollable

Task common. See TCOM.
Task control block. See TCB.
Task event trap
Task images

impure segments
pure segments

Task management
3200MPS Family of
Processors

roll function
scheduling
subsystem
system performance

Task management subsystem
machine state control
self-initialization
task dispatcher

Task priority levels
dispatch
maximum
run
task

Task queues
APU
CPU ready
roll-in

3-19

4-15
4-14
4-10
4-2
4-16

4-13
4-3
4-1

4-13
3-5
3-9
3-14

1-11
1-1

1-3
3-21
1-21
1-10

3-2

3-8
4-8
1-17
1-13

4-8

1-18
1-18

1-11
1-1
1-11
1-6
1-1

1-7
1-6
1-6

1-9
1-8
1-9
1-8

1-7
1-7
1-7

IND-3

Task states
diagnostic
event service
executive
intercept service
intercept service user
nonentrant system
nonentrant user
reentrant system
reentrant system
alternate

user
Task status word. See TSW.
TCB

TCOM segments
assembler
FORTRAN

Test and set instruction.
See TS.

Time-slicing
dynamic
system

Timer

1-7
1-8
1-7
1-8
1-8
1-7
1-8
1-7

1-7
1-7

1-9
2-4

1-18
1-18

1-10
1-10

macros 3-23
management subsystem 1-15

Timer queue elements. See
TMQ.

Timer queues
communications device

time-out 1-16
device time-out 1-16
interval timer 1-16
time of day 1-16

TMQ 1-16
TS 3-21
TSW 1-8

U

U-tasks

ACPRIVILEGE option
DISC option
privileged

UCLOCK
UOL
Universal clock. See UCLOCK.
User-dedicated location.

See UOL.
User tasks. See u-tasks.
UT state
Utilities

Account Reporting
Error Reporting

v

Virtual task manager. See
VTM.

1-7
1-18
2-9
2-9
2-8
1-16
1-8

1-7

1-14
1-17

VTM 1-1

IND-4

W,X,Y

WCS
Writable control store. See
wes.

Z

ZDLC
Zero-bit data link control.
See ZOLC.

3200MPS Family of Processors
designing tasks for
programming
considerations

measuring real-time
performance

additional information
sources

2-9

1-19

1-2
3-1

3-1

3-22

3-25

48-040 FOa ROS

PUBLICATION CClMMENT FORM

We try to: make our publications easy to understand and free of errors. Our users are an integral source
of information: for improving future tevisions. Please use this postage paid form to send us comments,
corrections~ suggestions, etc.

1. Publication number __________ ~ ________________ .

2. Title of publication ___________________ ----___ _

3. Describe, providing page' numbers, any technical errors you found. Attach additional sheet if

necessa~. __ ---

4. Was the publication easy to understand? If no, why not? ____ ---------

6. What additions or deletions would you suggest? _______________ .

7. Other comments: _______________________________ _

From ________________________________ Oate ___________________ ___

Positio"!Title _______________________ ~ _______ _

Company ___ __

Address _________________________________ ----------

9409

FOLD FOLD

--------------.--------------~

ATTN:

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 22

POSTAGE WILL BE PAID BY ADDRESSEE

Concurrent Computer Corporation
2 Crescent Place
Oceanport, NJ 07757

OCEANPORT, N.J.

TECHNICAL SYSTEMS PUBLICATIONS DEPT.

FOLD

STAPLE

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

STAPLE
9410

