
OS/32 LINK
Reference Manual

OS/32 Version ROS-03 and higher

48-005 FOO ROS

Wncurren!E!f!J
Computer Corporation

The information contained in this document is subject to
change without notice. Concurrent Computer Corporation has
taken efforts tcp remove errors from this document, however,
Concurrent Computer Corporation's only liability regarding
errors that may still exist is to correct said errors upon their
being made known to Concurrent Computer Corporation.

The software described in this document is furnished under a
license, and i~ can be used or copied only in a manner
permitted by that license. Any copy of the described software
must include ; all copyright notices, trademarks, or other
legends or credits of Concurrent Computer Corporation
and/or its suppliers. Title to and ownership of the described
software and any copies thereof shall remain in Concurrent
Computer Corporation and/or its suppliers.

The licensed program described herein may contain certain
encryptions or other devices which may prevent or detect
unauthorized use of the Licensed Software. Temporary use
permitted by the terms of the License Agreement may require
assistance from Concurrent Computer Corporation.

Concurrent Computer Corporation assumes no responsibility
for the use or reliability of this software if used on equipment
that is not supplied by Concurrent Computer Corporation.

© 1980, 1983, 1984, 1985, 1986, 1989 Concurrent Computer Corporation - All Rights Reserved

Concurrent Computer Corporation, 106 Apple Street

Tinton Falls, New Jersey 07724

Printed in the United States of America

TABLE OF CONTENTS

SYNTAX CONVENTIONS

PREFACE

CHAPTERS

1 OS/32 LINK

INTRODUCTION

IMAGE FILE FORMAT

LINK SYMBOL TABLE

USING LINK-DEFINED SYMBOLS

1.1

1.2

1.3

1.4
1.4.1 Program Development Using Link-Defined

Symbols

1.5

1.6

SYSTEM REQUIREMENTS

LINK COMMAND SYNTAX

2 BUILDING AND STARTING LINK

2.1 BUILDING LINK

2.2 LOADING LINK
2.2.1 Loading Link From the System Console
2.2.2 Loading Link From an Multi-Terminal

(MTM) Terminal
2.2.3 Assigning Workspace for Link

2.3 LINK INPUT/OUTPUT (I/O) FILES

2.4 STARTING LINK

3 LINK COMMANDS

3.1 INTRODUCTION

3.2 BACKSPACE FILE (BFILE) COMMAND

48-005 FOO ROS

Monitor

vii

xiii

1-1

1-1

1-4

1-5

1-5

1-6

1-7

2-1

2-1
2-1

2-2
2-3

2-3

2-5

3-1

3-4

i

CHAPTERS (Continued)

3.3 BUILD COMMAND 3-5

3.4 DEFINE COMMAND (DCMD) COMMAND 3-8

3.5 END COMMAND 3-11

3.6 ESTABLISH COMMAND 3-12

3.7 EXTERNAL COMMAND 3-16

3.8 FORWARD FILE (FFILE) COMMAND 3-17

3.9 HELP COMMAND 3-1:3

3.10 INCLUDE COMMAND 3-20

3.11 LIBRARY COMMAND 3-22

3.12 LOCAL COMMAND 3-2·~

3.13 LOG COMMAND 3-25

3.14 MAP COMMAND 3-26

3.15 NDCMD COMMAND 3-31

3.16 NO LOG (NLOG) COMMAND 3-3:2

3.17 OPTION COMMAND 3-33

3.18 OVERLAY COMMAND 3-51

3.19 PAUSE COMMAND . 3-53

3.20 POSITION COMMAND 3-54

3.21 RESOLVE COMMAND 3-56

3.22 RE.WIND COMMAND 3-62

3.23 'fITLE COMMAND 3-63

3.24 VOLUME COMMAND 3-64

3.25 WFILE COMMAND 3-65

4 USING LINK

4.1 INTRODUCTION 4-1

4.2 BUILDING A TASK IMAGE 4-1

ii 4 8-0 0 5 F 0 0 F~O 5

CHAPTERS (Continued)

4.3

4.3.1
4.3.2
4.3.3

4.4
4.4.1
4.4.2

4.5
4.5.1
4.5.2

4.6

4.7

BUILDING FORTRAN, COBOL AND COMMON ASSEMBLY
LANGUAGE/32 (CAL/32) TASK IMAGES
Building a COBOL Task Image
Building a FORTRAN Task Image
Building a Common Assembly Language/32
(CAL/32) Task Image Using Embedded Link
Commands

BUILDING OVERLAYED TASK IMAGES
Overlaying a Program Using Link
Moving Common Blocks

BUILDING PARTIAL IMAGES
Linking and Using Shared Data Areas
Linking and Using Shared Code Segments

BUILDING A TASK IMAGE REFERRING TO PARTIAL
IMAGES

BUILDING AN OPERATING SYSTEM IMAGE

5 VIRTUAL TASK MANAGEMENT (VTM)

5.1

5.2

5.3

5.3.1

5.3.2

5.3.3

5.3.4
5.3.5

5.3.6
5.3.7

5.3.8

5.4

5.5

5.6

INTRODUCTION

SYSTEM REQUIREMENTS

USER INTERFACE TO VIRTUAL TASK
MANAGEMENT (VTM)
Declaring a Virtual Task Management
(VTM) Task
Virtual Task Management (VTM) Secondary
Storage
Including the Virtual Task Management (VTM)
Module
Virtual Task Workspace
Example of Virtual Task Management (VTM)
Link Procedures
Virtual Task Management (VTM) Logical Units
Rolling of Virtual Task Management (VTM)
Tasks
Absolute Code

FORTRAN OPERATIONAL RULES

COMMON ASSEMBLY LANGUAGE/32 (CAL/32)
RESTRICTIONS

PASCAL CODE RESTRICTIONS

48-005 FOO ROS

4-2
4-2
4-3

4-3

4-4
4-4
4-7

4-8
4-8
4-12

4-13

4-15

5-1

5-1

5-1

5-1

5-2

5-2
5-2

5-3
5-3

5-3
5-3

5-4

5-4

5-4

iii

CHAPTERS (Continued)

5.7

5.8

PERFORMANCE MEASUREMENT

VIRTUAL TASK MANAGEMENT (VTM) ERROR
CONDITIONS

6 RELOCATION WITHIN EXECUTIVE TASKS (E-TASKS)

6.1 INTRODUCTION

6.2 WRITING AND LINKING A RELOCATABLE EXECUTIVE
TASK (E-TASK)

6.2.1 Features of and Restrictions on Relocation
6.2.2 Declaring an Executive Task (E-Task) as

Relocatable
6.2.3 Example of Linking a Relocatable Executive

Task (E-Task)

6.3 FUNCTIONAL DETAILS

6.4 MEMORY REQUIREMENTS

7 THE OBJECT/32 UTILITY

7.1 INTRODUCTION

7.2 OBJECT/32 FUNCTIONALITY

7.3 LOADING AND STARTING OBJECT/32
7.3.1 Loading OBJECT/32
7.3.2 Starting OBJECT/32

7.4 OBJECT/32 COMMANDS

7.5 COMMAND COMMAND

7.6 DELETE COMMAND

7.7 DIRECTORY COMMAND

7.8 DONE COMMAND

7.9 END COMMAND

7.10 ESTABLISH COMMAND

7.11 EXTRACT COMMAND

7.12 GET COMMAND

7.13 HELP COMMAND

5-4

5-4

6-1

6-1
6-1

6-2

6-2

6-3

6-3

7-1

7-1

7-2:
7-2:
7-3

7-4~

7-51

7-6

7-7

7-10

7-11

7-12

7-13

7-14

7-15

iv 48-005 FOO HOS

CHAPTERS (Continued)

7.14 INCLUDE COMMAND

7.15 LIST COMMAND

7.16 LOG COMMAND

7.17 PAUSE COMMAND

7.18 REPLACE COMMAND

7.19 SAVE COMMAND

7.20 TITLE COMMAND

7.21 SAMPLE OBJECT/32 SESSION

APPENDIXES

A LINK AND OBJECT/32 COMMAND SUMMARY

B LINK AND OBJECT/32 MESSAGE SUMMARY

C VIRTUAL TASK MANAGEMENT (VTM) MESSAGE SUMMARY

D OBJECT MODULE FORMAT

FIGURES

1-1

3-1
3-2
3-3
3-4

4-1

Task Image File Format

Example of Link Establishment Summary
Example of Link Alphabetic Map
Example of Link Address Map
Example of Link Cross-Reference Map

Sample FORTRAN Program with Overlay Tree
Structure

48-005 FOO ROS

7-17

7-18

7-19

7-20

7-21

7-22

7-23

7-24

A-1

B-1

C-1

D-1

1-2

3-29
3-30
3-30
3-30

4-5

v

TABLES

2-1 LOGICAL UNITS ASSIGNED BY LINK 2-4

3-1 LINK COMMANDS 3-2
3-2 LINK EQT CODES 3-11

B-1 SVC7 ERROR TYPES AND STATUS B-11
B-2 SVCl ERROR TYPES AND STATUS B-12

C-1 VTM MEMORY FAULT CODES C-1

D-1 OBJECT CODE LOADER ITEMS D-2

INDEX IND-1

vi 48-005 FOO ROS

SYNTAX CONVENTIONS

GENERAL SYNTAX RULES

These rules clarify the syntax of the commands in this document.
Ref er to these conventions when interpreting the command syntax.

Multiple commands may appear on one line, but each one must be
separated by a semicolon (;). When multiple commands are entered
on the same line, they are executed sequentially. If an error
occurs, any subsequent commands on the line are ignored.

If the first character of any command input is an asterisk (*),
the remainder of that line is considered to be a comment and is
not executed. It is copied to the system log device if logging
is active.

In a batch environment, continue parameters by entering a comma
as the last character and continuing the parameters on the
following line.

Statement Syntax Conventions

The following conventions are used in all statement, command, and
instruction formats. They point out differences between
information that must be entered exactly as shown and that which
denotes information provided by the user. However, when entering
this information, upper- or lower-case can be used.

Underlining points out the mnemonic of the entry and means that
at least the underlined portion must be entered. If an entry is
not underlined at all, the entire entry must be entered.

PAUSE

Commands and parameters are represented in upper-case and must be
entered as shown.

DELETE actno

Variables are represented in lower-case and denote information
provided by the user:

ACCOUNT n

Punctuation must be entered exactly as shown.

48-005 FOO ROS vii

Commas separate parameters and substitute for missing positional
parameters:

Commas preceding braces inside brackets must be entered if one of
the optional parameters is chosen:

PRIVILEGE

[
[{

pr iv, [r pr iv2]}Jll
actno, [-actno~ , * . ~

Commas inside brackets must be entered if the optional parameter
is chosen:

EOU [NOSAVfilG UNPROTECT]

An ellipsis represents an indefinite number of parameters or
range of parameters:

IOTAB (cl assno, cl ass id G iocount])1 , ••• , (cl assno, cl ass id[, iocount J)"

Brackets represent optional parameters:

ENCRYPT [fd]

Braces represent required parameters of which one must be chosen:

Shading represents default options:

viii

ERRMODE EQU {,~}
:4:

48-005 FOO ROS

An equals sign associates a parameter with its keyword:

[{ ~EATE}] MODE !Lt!DATE [=fd3]

REPORT

Upper- and Lower-Case Characters

All commands and parameters can be entered in either upper- or
lower-case. Parameters that are retained internally (such as
task identifiers) are translated to uppercase. Subsequent
displays show the uppercase version.

Decimal and Hexadecimal Numbers

The OS/32 commands use decimal rather than hexadecimal numbers
for most numeric operands. One exception is addresses, which are
expressed in hexadecimal. Numeric operands are always integers
except for the SET SYS and TCOM commands, and the segment size
increment field of the LOAD command where the decimal point is
permissible. Leading zeros can be omitted in numeric operands,
whether decimal or hexadecimal.

Task Identifiers

Task identifiers must consist of 1- to a-alphanumeric characters;
the first character must be alphabetic. Valid task identifiers
are:

TASK3

MAX

x

T997XY25

Examples of invalid task iden.tif iers are:

34TASK First character is not alphabetic

T43.2 Contains a nonalphanumeric character

TASK12345 Contains more than eight characters

The background task has the special identifier .BG[nnnnn].

48-005 FOO ROS ix

File Descriptors

Ma.ny of the command formats in this manual require the user to
enter a file descriptor (fd). File descriptors are entered in
the following format:

Format:

Parameters:

voln:

dev:

filename

.ext

x

is the name of the disk volume on which the
file resides. It may be from 1 to 4
characters long. The first character must be
alphabetic and the remaining alphanumeric.
This parameter need not be specified. If this
parameter is not specified, the default user
volume is used. When voln is not specified,
the colon separating voln and filename must
not be entered.

is a 1- to 4-character device name. The first
character must be alphabetic and the remaining
alphanumeric. A colon must follow the device
name, and neither the filename or the
extension is entered.

is the name of a file and is from 1 to 8
characters long. The first character must be
alphabetic and the remaining alphanumeric. If
a filename is specified when a device mnemonic
is specified as dev:, the filename is ignored.

is a 1- to 3-character alphanumeric string
preceded by a period (.) specifying the
extension to a filename. If the period and
extension are omitted, a default extension is
appended to the filename, if appropriate for
that particular command: otherwise, it remains
blank. If the period is specified and the
extension is omitted, the default is a blank
extension.

48-005 FOO ROS

actno

file class

Examples:

is a decimal number ranging from 0 to 65,535
specifying the account number associated with
the file. Account numbers 1 through 65,535
(excluding 255) are used by MTM. Account
number 255 is reserved for the MTM
administrator. Account number 0 is used for
system files and is the default for all
operator commands.

is the class name of the file and consists of
one character. The class names are:

• IP for private file

• IG for group file

• IS for system file

The file class can be specified by a terminal
user or the system operator. If the system
operator specifies IP, IG, or IS, the
operation-is performed to account 0 only.

In the following example, PACK: is the volume name, CAL is the
filename, .TSK is the extension name and 0 is the account number.

PACK:CAL.TSKIO

In the following example, CONV is the filename, and .CAL is the
extension name with a default account number on the default
volume.

CONV.CAL

In the following example, all filenames beginning with CGG as the
first three characters and ending with the extension GG are
requested.

CGG-.*GG Possible filenames are:

CGGl.AGG
CGGl.BGG
CGGl.CGG

CGG12345.XGG

48-005 FOO ROS

CGG12.AGG
CGG12.BGG
CGG12.CGG

CGGABCDE.ZGG

CGG123.AGG
CGG123.BGG
CGG123.CGG

CGG.YGG

xi

In the following example, CAL is the filename with a default
extension, default account number, and default volume.

CAL

In the following example, M300: is the volume name, and MAR is
the filename with a default extension and default account number.

M300:MAR

In the following example, CARD: is the device mnemonic.

CARD:

xii 48-005 FOO ROS

PREFACE

This manual describes the linkage editor, OS/32 Link, which
provides the user with the ability to link one or more object
modules to produce an executable image. An image can be a task,
a partial image, or an operating system. This manual is intended
for all users who are developing programs for execution on 32-bit
computers using the OS/32 operating system. The user should be
familiar with Multi-Terminal Monitor (MTM) if Link is to be used
in an MTM environment (see the Multi-Terminal Monitor (MTM)
Reference Manual) -

Chapter 1 provides an overview of the features of Link. Chapter
2 describes how to build, load, and start the linkage editor.
Chapter 3 lists and describes the active, passive, and
environment Link commands. Chapter 4 provides examples of Link
command sequences. Chapter 5 introduces and explains ~rirtual
task management (VTM). Chapter 6 discusses relocation within
executive tasks Ce-tasks). Chapter 7 provides an explanation of
the OBJECT/32 Utility. Appendix A is the Link and OBJECT/32
command summary- Appendix B is the Link and OBJECT/32 message
summary. Appendix C is the VTM message summary. Appendix D
explains the format of an object module that is compatible with
Link. .

The following changes were made in revision FOO ROS:

• Two optional parameters, ARORT and ERROR, have been added to
the BUILD command.

• The INCLUDE com~and has a new parameter, -BLKDATA- which
controls the inclusion of block data.

• A new parameter ~as added to the MAP command. The
UNREFERENCED parameter specifies that all symbols, including
those that are not used, will appear in the map(s) requested.

• The OBJECT/32 Utility is documented in the R08-03 software
release. Chapter 7 has been added to describe the utility and
how it improves the performance of Link. Also included is
loading and starting information. OBJECT/32 commands are
described with their purpose, syntax, and functional details-

• New messages associated with the OBJECT/32 ·utility have been
added to Appendix B.

This manual is intended for use with OS/32 R08-03 software
version and higher.

48-005 FOO RO 5 xiii

1.1 INTRODUCTION

CHAPTER 1
OS/32 LINK

OS/32 Link provides the user with the ability to link one or more
object modules to produce a task image or partial image that can
be loaded via the OS/32 LOAD conunand.

Link can also build an operating system image from the object
module produced by OS/32 Library Loader or Sysgen/32. The
resulting image can be loaded into memory using OS/32 Bootstrap
Loader or loader storage unit (LSU).

This manual includes the DEBUG/32 tables (DTABLES) task option.
It also allows Link to separate symbolic debug data from the
object code and build this data into the tables required by
DEBUG/32. Support for the virtual task manager (VTM) has been
included also. VTM provides a user-transparent virtual memory
capability that allows some user tasks (u-tasks), consisting of
up to 16MB of code and data, to execute in as little as 128kB of
memory.

OS/32 Link can be used with both the uniprocessor system and the
multiprocessor system (3200MPS Family of Processors). The
multiprocessor system consists of one central processing unit
(CPU) and any combination up to a maximum of nine auxiliary
processing units (APUs) and input/output processors (IOPs). In
a multiprocessor system, the operating system defines a set of
logical processing units (LPUs) that are used to direct tasks to
execution queues. Link assigns the initial LPU for each task.
IJink also sets APU control or queue mapping privileges when
building a task and can optionally list comments embedded in the
object file. See the r,ink DCMD and OPTIONS commands. Also see
the 3200MPS Family of Processors Overview Manual for more
information on using the 3260MPS System.

1.2 IMAGE FILE FORMAT

Link allocates an image file on disk and builds an image
this file or builds the image into an already existing file.
format of the image file for a task is shown in Figure 1-1.

48-005 FOO ROS

into
The

1-1

I
LOADER INFORMATION I

I BLOCK (LIB) I
I I
1------------------------1
I I
I HISTORY I
I RECORDS I
I I

PRIVATE
IMAGE

OVERLAYS

OVERLAY DESCRIPTOR
TABLE (ODT)

SHARED
IMAGE

SYMBOLIC DEBUG
DATA

} Optional - generated by
OS/32 Patch

Impure object code

Pure object code

Figure 1-1 Task Image File Format

1-2 48-005 FOO ROS

The first section in the task image file is the loader
information block (LIB). The LIB tells the OS/32 loader how to
load the image into memory. For example, the first byte of the
LIB indicates the type of image which is to be loaded. When the
task is loaded by the LOAD command, the LIB is kept in the
loader's private memory area (not in task memory) until the
loader no longer requires it.

Following the 1,IB is the history records area. The history
records are created by OS/32 Patch. Patch is a utility that
allows the user to update a program by making changes to its
image or object file instead of the source. Any changes made to
the task or its LIB via Patch are recorded in the history records
area. See the OS/32 PATCH Reference Manual for more information.

Following the LIB and the history records {if they exist) is the
task image that is actually loaded into memory. This task image
consists of at least one private ima~e segment. The linkage
editor creates the private image with read, write, and execute
privileges. The private image contains the impure code from the
included object modules. Impure code is code that cannot be
shared by other executing tasks. It can consist of the user
program code, data that the user designates as impure, and common
data areas such as those used by the FORTRAN COMMON statement to
store variables. If NSEGMENTED is specified as a task option in
the Link OPTION command when the task is built, the pure code is
also included in the private image.

Each user loading the task is provided with a copy of the private
image. The first segment, of the private image is known as the
root segment. The root contains the primary task workspace, the
impure code, the user-dedicated location (UDL), and if the task
is nonsegmented, the pure code. In addition, any absolute code
found in the object modules is located in the root.

If a task is to use overlays {i.e., after the task is loaded,
certain subroutines, or overlays, are to remain in the image file
to be fetched into the root as needed}, they are formatted in the
private image overlay area following the root. Link is
instructed to construct overlays through the OVERLAY command (see
Chapter 3) in the link sequence.

The overlay descriptor
contains instructions
overlays into memory.
block (TCB) after
information is stored

table (ODT) following the overlay area
that tell the loader when to load the

The ODT is loaded into the task control
the task is loaded. All task status

in the TCB during task execution.

If the SEGMENTED parameter of the OPTION command is specified,
all pure code from the object modules is placed in the shared
image segment of the the image file.. This area has only read and
execute access privileges. When the first copy of the segment is
loaded into memory, both a private and a shared image segment are
created. Each user who loads the task is provided with a copy of
the private image. Only one copy of the shared image remains in
memory during multiple simultaneous executions of the task.

48-~005 FOO ROS 1-3

If the task is debugged using the Symbolic Debugger (DEBUG/32),
Link places task data required by the debugger following the
shared image segment. This data remains in the image file during
task execution so that it is always available for use by the
debugger.

A task may require access to subroutines or data areas in
addition to those created by the programmer and contained in the
task's object modules. OS/32 supports two types of external code
and data. One type is an object module such as the FORTRAN or
Pascal run-time library (RTL). Routines in object libraries are
included in a task's root segment or shared segment using the
Link LIBRARY command. The other type of external code or data is
called a partial image. A partial image may consist of code
(e.g., an RTL routine) or data (e.g., a shared common block) or
both. Partial images are built by separate runs of the linkage
editor, and each partial image exists in its own image file. A
partial image is included in a task's address space by the Link
RESOLVE command (see Chapter 3).

The virtual address map of the link establishment summary defines
where in the task's logical address space, the root, shared, and
partial images are located (see Chapter 3 for more information cm
the establishment summary).

1.3 LINK SYMBOL TABLE

Before Link actually builds the image into a file, Link builds a
symbol table of all of the information required to build the
image. This table is used in the image building and map
production steps.

As commands are entered, this table grows in memory. When Link
runs out of available real memory, it allocates a temporary disk
file and copies this table out to the file. Parts of the table
are swapped between memory and the file, as required. The less
real memory available, the more swapping Link is required to
perform and the longer it takes Link to build an image.

To allocate more memory for the Link symbol table, load Link
using the workspace parameter of the LOAD command explained in
Section 2.2.

1-4 48-005 FOO ROS

1.4 USING LINK-DEFINED SYMBOLS

Link defines seven symbols for general use:

e ®TIMEl

e ®TIME2

e ®DATEl

e @DATE2

• ®UBOT

• ®UTOP

e ®CTOP

HH:M (Hour and first digit of minute.)

M:SS (Second digit of minute and second.)

MM/D (Month and first digit of day, assuming
default of DATE option is specified at system
generation (sysgen).)

D/YY (Second digit of day and year.)

Address of the lowest byte in the image
built. For tasks, this is always zero.
partial images, this is the first byte of
segment named in the ESTABLISH command.

being
For
the

Address of the first byte following the included
object code. It is rounded according to the ALIGN
option specified in the OPTION command.

Address of the last addressable halfword of the
image.

1.4.1 Program Development Using Link-Defined Symbols

The following assembler program shows how the time and date of a
link edit session can be included in the task image by
referencing the symbols @TIME1, @TIME2, @DATE!, and @DATE2.

For more detailed information on program development, see the
Multi-Terminal Monitor (MTM) Reference Manual.

48-005 FOO ROS 1-5

Example:

*cal linkdemo
*ssysprt con:

LINKDAY PROG Demonstration program
EXTRN @TIME1,@TIME2,@DATE1,@DATE2
EXTRN @UTOP,@CTOP

START

PAUSE

LOGLINK

PURE
SVC
LA
LA
SVC
SVC
ALIGN
DB
IMPUR
ALIGN
DB
DB
DCF
DB
DCF
DB
END

*compile linkdemo
*load linkdemo
*start

2,LOGLINK
O,@UTOP
1,@CTOP
2 I PAUSE
3,0
ADC
0,1

ADC
0,7,0,80
C'Linkedited at
@TIME1,@TIME2
C' on '
@DATE1,@DATE2
x I OD I I 0

Linkedited at - 11:29:33 on 02/18/86
TASK PAUSED
*display registers

PSW 000077FO 00000146
0-3 00000150 OOOOllFE
4-7 00000000 00000000
8-B 00000000 00000000
C-F 00000000 00000000

*continue

00000000
00000000
00000000
00000000

- I

00000000
00000000
00000000
00000000

DEBBIE -END OF TASK CODE= 0 PROCESSOR=0.005 TSK-ELAPSED=52

1.5 SYSTEM REQUIREMENTS

System requirements for Link are:

• The current OS/32 release (see Preface). {If DEBUG/32 is
used, Link requires OS/32 Version R06-0l and higher.)

• One disk device

• 128kB of main storage for Link

1-6 48-005 FOO ROS

1.6 LINK COMMAND SYNTAX

In interactive mode, if the specified parameters of a Link
command exceed one line, entering a comma as the last character
and a carriage return (CR) causes the following message to be
displayed:

CONTINUE>

Continue entering the remaining parameters on the same line
following the greater than (>) symbol. In batch mode, parameters
can be continued by entering a comma as the last character and
continuing the parameters on the following line.

Comments are specified by entering an asterisk (*) before the
comment string and placing a CR or semicolon at the end of the
string. A comment can be the only data on a line or can precede
or follow a command on the same line.

Examples:

*THIS IS THE LINK ROUTINE

ESTABLISH TASK:*A TASK IS TO BE ESTABLISHED

*A TASK IS TO BE ESTABLISHED;ESTABLISH TASK

Unless otherwise noted, if the syntax of a Link command includes
a decimal number as a parameter, the number specified is a
positive whole number. Hexadecimal values may be used, if
preceded by the letter 'X'. For example, X10 , a hexadecimal 10,
is equivalent to a decimal 16.

48-005 FOO ROS 1-7

CHAPTER 2
BUILDING AND STARTING LINK

2.1 BUILDING LINK

If the supplied ready-to-execute version of Link is used, no
build is necessary. However, if a new version of Link is built,
this sequence of commands builds Link as a segmented task using
the supplied version of Link. In the example shown below, xxx is
the current version of the OS/32 software. For example, version
ROB-03 is entered in the format as 083.

ESTABLISH TASK
OPTION ACPRIVILEGE,SYSSPACE=XFFFF
OPTION SEGMENTED,WORK=(X8000,XCOOO)
INCLUDE LINK
MAP CON:,ALPHABETIC,ADDRESS,XREF
RESOLVE HELPRXXX.SEG/S
BUILD LINK
END

See the Package Information Document for the current OS/32
revision number.

The reserved workspace must be a minimum of 8kB. The more
workspace allocated, the less paging to and from the disk occurs.
The amount of workspace specified can be overridden when Link is
loaded.

2.2 LOADING LINK

Before Link can be loaded into main storage, it must be built as
a task image.

2.2.1 Loading Link From the System Console

The following OS/32 LOAD command loads Link from the system
console:

Format:

LOAD taskid [,fd] [,workspace]

48-005 FOO ROS 2-1

Parameters:

ta skid

f d

workspace

is a 1- to 8-character alphanumeric string
specifying the name of the task after it is
loaded into main memory.

is the file descriptor of the file containing
the linkage editor image to be loaded into
main memory. If this parameter is omitted,
the default is taskid.TSK.

NOTE

The supplied ready-to-execute
version of Link is included in a
file named LINK.TSK.

is a decimal number in kilobytes (kB)
specifying the additional area to be added to
the root node. This value overrides the WORK=
option if specified when the image was built.
If this parameter omitted, the default is
32kB.

NOTE

Link requires the OS/32 Help
segment (.HELPRXXX.SEG/S- where
XXX specifies the current OS/32
release. As an example, Release
08-03 is entered in the format
083) to be preloaded into memory
or be available on account 0 of
the default system disk volume.

2.2.2 Loading Link From an Multi-Terminal Monitor (MTM) Terminal

The following MTM command loads Link from an MTM terminal:

Format:

LOAD fd [,workspace]

2-2 48-005 FOO ROS

Parameters:

f d

workspace

is the file descriptor of the file containing
the linkage editor image to be loaded into
main memory.

is a decimal number in kilobytes (kB)
specifying the additional area to be added to
the root node. This value overrides the WORK=
option if specified when the image was built.
If this parameter is omitted, the default is
32kB.

2.2.3 Assigning Workspace for Link

The size of the workspace increment value given when Link is
loaded controls the maximum symbol table size generated by Link
as shown in the following table:

WORKSPACE SYMBOL
INCREMENT TABLE MAXIMUM

0 - 7 Link will not run
8 - 15 32kB

16 - 31 64kB
32 - 63 96kB
64 - 95 128kB
96 - 127 256kB

128 - 255 1MB
256 - or greater 4MB

2.3 LINK INPUT/OUTPUT (I/O) FILES

Link requires the following I/O files:

• Object files containing the compiled source code.

• Task image file to which Link outputs the task image.

• Map file to which Link sends a listing of
summary and, optionally, all external
addresses.

the establishment
programs and their

• Log file which lists all Link commands issued and any
Link-generated diagnostic messages.

• Command file containing commands to Link.

48-005 FOO ROS 2-3

The I.ink command file can be built by a command substitution
system (CSS} procedure or built as a separate file that can be
specified in the START command. If no Link command file is
specified in the START command, Link accepts commands
interactively from the terminal or console. The BUILD command
automatically allocates a file if the file does not already
exist. The filename entered with the BUILD command is given the
extension corresponding to the type of image being built (task,
partial image, or operating system). The log file must be
preallocated by the user. The user can optionally preallocate a
map file. However, Link will allocate the map file if it does
not exist.

Table 2-1 lists the logical unit (lu} assignments that are made
automatically by the Link commands.

TABLE 2-1 LOGICAL UNITS ASSIGNED BY LINK

-------------------·--------------------------------------
I LOGICAL UNITS I I

LINK COMMAND I ASSIGNED I I/0 FILE I ACCESS
===

INCLUDE/LIBRARY I 1 I Object SRO
BUILD I 2 I Task image SRW
MAP I 3 I Link map SWO
START I I
,COMMAND= I 5 I Link command SRO

I I input
I 7 I Link command SWO
I I output

,LOG= I 6 I Log SWO
HELP I 10 I Link help SRO

I I File

Link also assigns lu9 as needed for the temporary paging of its
symbol table.

2-4 48-005 FOO ROS

2.4 STARTING LINK

After Link is loaded into main memory, the OS/32 or MTM START
command starts execution of the Link program and specifies the
command and log files or devices.

Format:

STAR'I1
[, fOMMAND= f d] [, ~OG= fd]

Parameters:

COMMAND=

LOG=

Functional Details:

fd specifies the input file or device from
which Link commands are read. If this
parameter is omitted, the default is the
command input device (CON:). If the command
input device is ·interactive, all messages
generated by Link are sent to it. If the
command input file is batch, all Link messages
are sent to the file specified by the LOG
parameter.

fd specifies the output file or device from
which all commands are entered and messages
generated are written. If the command input
file is batch, this parameter must be
specified. If the log output device is a disk
file, it must have been previously allocated.

After the linkage editor is started, the following message is
displayed:

Concurrent Computer Corp OS/32 LINKAGE EDITOR 03-242 Rxx-xx

The revision number (Rxx} indicates the revision level of Link
and the update number (-xx) indicates the update level of Link.
If the command input device is interactive, the greater than (>}
symbol is then displayed as a prompt indicating that the linkage
editor is ready to accept commands.

48-005 FOO ROS 2-5

3.1 INTRODUCTION

CHAPTER 3
LINK COMMANDS

There are three types of Link commands:

• Active

• Passive

• Environmental

Active commands are executed as t~ey are entered and have an
immediate affect on how the image is to be built. Passive
commands are executed during the build process, at which time
Link processes them, making symbol table entries, etc. Althou~h
passive commands are not executed when entered, the order in
which passive commands are encountered can affect the image
produced by Link. This is due to the order in which items are
entered into Link's internal symbol table. Environmental
commands affect the link session instead of the image being
built. Environmental commands have no affect on the image being
built, but do establish the Link environment.

Table 3-1 lists all the Link commands, categorizes the type, and
describes the function.

48-005 FOO ROS 3-1

TABLE 3-1 LINK COMMANDS

TYPE I
1-----------------1 I

COMMAND I ACT I PAS I ENV I MEANING I
===!

BFILE I I I * I Backspaces a magnetic tape or I

BUILD

DCMD

END

I I I I contiguous file. I

*

*

*

I Starts building the image.

Enables execution of Link
commands embedded in object
modules. Enables the listing
of embedded auxiliary process
ing unit (APU) comments to the
log device in the 3200MPS
Family of Processors.

I Terminates the linkage editor.

ESTABLISH I * I Specifies the type of ima~re
I I to be built.

---·--
EXTERNAL I * I Specifies the names of common

FF ILE

I I block(s) to be externally vis-
1 I ible from the partial image
I I being built.

* I Forward spaces a magnetic tape
I or contiguous file.

HELP I * I Lists and describes all Link
I I commands accepted by the I
I I current revision of Link.

---·--
INCLUDE I * I I Specifies the object modules

I I I to be included in the image.
---·--

LIBRARY I * I I Specifies the object 1 ibrariE~s
I I I to be searched for unresol VE~d
I I I external references.

---·--
LOCAL * I I Specifies entry points that

I I are not to be visible from
I I I I outside of the partial image
I I I I being built.

1---1 LOG I I I * I Enables logging all commands,
I I I I I messages and maps to the log
I I I I I device.

3-2 48-005 FOO ROS

TABLE 3-1 LINK COMMANDS (Continued)

I TYPE I , _________________ ,
COMMAND I ACT I PAS I ENV I MEANING

=================================-~==============================
MAP I * I Generates a map when the image

I I is built.
------·--~------------~-------------~---------------------------

NDCMD I * Disables execution of Link

NLOG

OPTION

I commands embedded in object
I modules. Disables listing of
I embedded comments to the log
I device in the 3200MPS Family
I of Processors.

*

*

I Disables
I messages
I device.

logging of commands,
and maps to the log

I Sets task and Link options.

OVERLAY I * I Defines an overlay and a level
I I for that overlay.

PAUSE I I * I Pauses the linkage editor.

---------~-~~~~-~~--------------~------------------------------
POSITION * I I Moves a common block into a

RESOLVE *

I I specific overlay node.

I Specifies a partial image that
I can be ref erred to by the task I
I or image being built.

REWIND I * I Rewinds a magnetic tape or
I I contiguous file.

------------------------~----~------------------------------~--
SEGMENT I I Reserved for future definition

TITLE I * I Specifies a title for the Link
I I map.

VOLUME I * I Specifies the default volume

I I to be used for all subsequent
I I file descriptors (fds).

WFILE * I Writes
I netic
I file.

* Indicates the type of Link command

a f ilemark on a mag
tape or a contiguous

ACT = Active; PAS = Passive; ENV = Environmental

48-005 FOO ROS 3-3

BFILE

3.2 BACKSPACE (BFILE) COMMAND

The BFILE command is an environmental command that backspaces a
magnetic tape or contiguous file a specified number of filemarks.

Format:

BFILE fd t{;J]
Parameters:

f d

n

Functional Details:

is the file descriptor of the device or file
to be backspaced the specified number of
f ilemarks.

is a decimal number specifying the number of
filemarks to space backwards. If this
parameter is omitted, 1 is the default.

The 60MB cartridge tape does not support the BFILE command.

Example:

The following example causes the device MAGl: to backspace two
f il emarks.

BF MAGl:,2

3-4 48-005 FOO ROS

BUILD

3.3 BUILD COMMAND

The BUILD command is an active command that builds the image from
the object modules specified in the INCLUDE command.

Format:

I!llILD f d [,ABORT] [,ERROR]

Parameters:

f d

ABORT

ERROR

Functional Details:

is the file descriptor that is to receive the
image. If the extension is omitted, the
default extensions are:

• .TSK for tasks

• .IMG for partial images

• .000 for operating systems

indicates that Link will not build the task
image at all if unresolved externs or
multiply-defined symbols are encountered. If
this occurs, the process aborts with an end of
task (EOT) code of 3.

indicates that Link will still build the task
image if unresolved externs or
multiply-defined symbols are encountered. If
this occurs, the process will return an EOT
code of 2.

The linkage editor attempts to allocate and assign the file
specified in the BUILD command. If the file does not exist, the
linkage editor allocates the file. While in the interactive
mode, if an error occurs during this process or the file is not
specified in the BUILD command, the following message is
displayed:

ENTER FILE DESCRIPTOR FOR IMAGE>

48-005 FOO ROS 3-5

Enter the fd of the file or device to receive the image.

If a file with the fd specified already exists, Link will
overwrite it automatically, without issuing any prompts.

By default, Link allocates a contiguous file for the task image
file. Building an image file to a contiguous file is
significantly faster than building an image to an indexed file.
However, if not enough contiguous disk space is available for the
whole size of the task, an indexed file is allocated for the task
image. After the task is built, the Link maps are generated if
the MAP command was entered. If the MAP command was not entered,
the following message is displayed:

MAP?>

Enter Y (YES) or N (NO). If YES is entered, the following four
messages are displayed:

• ENTER FILE DESCRIPTOR FOR MAP>

Enter the fd of the device or file to receive the maps.

e SORTED BY ADDRESS?>

If YES is entered, a map with all symbols already in address
order is generated.

• CROSS REFERENCE?>

If YES is entered, a cross-reference map is generated. This
map lists all symbols in alphabetical order and the names of
all object modules that reference each symbol.

• SORTED ALPHABETICALLY?>

If YES is entered, a map with all symbols in alphabetical
order is generated.

If NO is entered for all of these messages, only an
establishment summary is generated (se~ Section 3.14).

After the BUILD command is executed, the linkage editor builds
the image. To only generate a Link map without saving the task
image to a file, specify NULL: as the fd to the BUILD command.

3-6 48-005 FOO ROS

Examples:

BUILD COM.IMG

BUILD TASK

BUILD TASK.TSK

BUILD NULL:

48-005 FOO ROS

NOTE

If Link is running in batch mode and
cannot allocate the file, the build
process is terminated.

3-7

DCMD

3.4 DEFINE COMMAND (DCMD} COMMAND

The DCMD is an active command that, when entered without
parameters, enables execution of passive Link commands in object
modules included in the image. This command, at the same time,
enables listing of embedded comments to the input or log devj,ce.
In programs written for the 3200MPS Family of Processors, this
command entered with parameters enables or suppresses listing of
APU comments to the log device.

Format:

Parameters:

APUCOMMENT

NAPUCOMMENT

enables listing of APU comments to the log
device.

disables listing of APU comments to the log
device. This is the default.

The DCMD command enables CAL/32 and FORTRAN programs to contain
passive Link commands that will be executed when the image is
built. To embed passive Link commands in a CAL/32 program, use
the CAL/32 DCMD pseudo-operation as follows:

DCMD C'linkedit command'

NOTE

This DCMD pseudo-operation is not the
same as the Link DCMD command.

3-8 48-aos FOO ROS

Example of CAL/32 code containing embedded passive Link commands:

MOD

ENTRY

PROG
ENTRY
EXT RN
EXT RN
EXT RN
DCMD
DCMD
DCMD
DCMD
PURE
L
ST
BAL
SVC
END

ENTRY
EX TRNA
EXTRNB
EX ENTRY
C'OPTION FLOAT'
C ' MAP PR : , ALPHA'
C'*PATCH FOR SCR 1183, 1/24/83'
C'*APU MODULE MOD INVOKES SVC CALLS'

O,EXTRNA
0, EXTRNB
13,EXENTRY
3,0

Embedded passive Lit1k commands are treated as if they were part
of the Link command sequence. Embedded LIBRARY commands are
treated as if they were entered immediately before the BUILD
command; all other embedded commands are treated as if they were
entered after the INCLUDE command.

If a log device is specified in the START command, all embedded
passive Link commands are output to the log device with a plus
sign (+) in column one.

The DCMD command entered without any parameters also enables
listing of embedded general comments to the log device. These
general comments refer to patches applied to a particular
compiler or other general comments the user does not want
suppressed.

In programs written for any of the 3200MPS Family of Processors,
some language processors, such as CAL/32 and FORTRAN VII,
generate APU information comments embedded in the object files of
APU tasks. These APU comment lines always begin with an asterisk
(*) and the letters APU. Listing or suppressing the APU comment
lines is enabled by entering the DCMD command with the APUCOMMENT
or NAPUCOMMENT parameter. If the APUCOMMENT parameter is
entered, all comments, including the general comments, are
displayed. If the NAPUCOMMENT parameter is entered, APU comments
are suppressed, but the general comments are still displayed.

Standard warning and error messages produced by a language
processor and inserted into the object code are documented in the
user guide for that language. Link does not know anything about
these messages; neither their contents nor what created them.

48-005 FOO ROS 3-9

When the previous program is linked, the following log listin~J is
displayed:

ES TA
INCLUDE MOD
BUILD MOD

If the DCMD command is entered with no parameters, the log
listing is displayed:

DCMD
ES TA
INCLUDE MOD
+OPTION FLOAT
+MAP PR: , ALPHA
+*PATCH FOR SCR 1183, 1/24/83
BUILD MOD

If the DCMD command is entered with the APUCOMMENT parameter, the
log listing is displayed:

ES TA
DCMD APUCOMMENT
INCLUDE MOD
+OPTION FLOAT
+MAP PR: , ALPHA
+*'PATCH FOR SCR 1183, 1/24/83'
+*APU 'MODULE MOD INVOKES SVC CALLS'
BUILD MOD/

Only passive Link commands can be embedded in CAL/32 object
modules. If active or environmental commands are embedded in
CAL/32 object modules, they are ignored and the following message
is displayed:

COMMAND NOT PERMITTED

Application users in a uniprocessor system can use the DCMD
command with its parameters for developing any of the 3200MPS
Family of Processors.

If this command is not entered, all embedded passive L1ink
commands are executed. To turn this feature off, use the NDCMD
command explained in Section 3.15.

3-10 48-005 FOO ROS

END

3.5 END COMMAND

The END command is an active command that terminates the linkage
editoi.

Format:

filID

Functional Details:

While Link is in the interactive mode, if a Link command sequence
contains at least one INCLUDE command, and the END command is
entered before the BUILD command the following message is
displayed:

BUILD IMAGE FROM PREVIOUS INPUT?>

Enter YES if the image is to be built. Enter NO if no image is
to be built and the task is to be terminated. See Table 3-2 for
the meaning of Link EOT codes.

TABLE 3-2 LINK EOT CODES

EOT CODE I MEANING I
==I

0 I Terminated normally.
I

1 I An error occurred that did not affect
I the building of the image.
I

2 I An error occurred that affected the
I building of the image.
I

3 I A severe error occurred that caused
I the linkage editor to abort.

48-005 FOO ROS 3-11

I ESTABLISH I

3.6 ESTABLISH COMMAND

The ESTA:S:pISH command is an active command that. specifies the
type of image to be built and provides a package name to a
multiple segment image. The three types of images that can be
built are:

• task,

• operating system, and

• partial image.

Format:

ESTABLISH

Parameters:

TASK

3-12

El:H
.QS

R

E

.IBAG E , .M:CESS= ill

RW
[{

mOOOO}l
,AQDRESS= * J

RWE

[,.NAME= package name]

specifies that a task image is to be built.
If the ESTABLISH command or the parameters
specifying the type of image are omitted, TASK
is the default.

48-005 FOO ROS

OS

IMAGE

ACCESS=

ADDRESS=

48-005 FOO ROS

specifies that an operating system image is to
be built.

specifies that a partial image is to be built.
A partial image is a collection of task
segments that can be used by one or more
separate tasks. A partial image has no
user-dedicated location (UDL) •

specifies the access privileges of the partial
image, as follows:

R specifies that all tasks can read data
within the partial image. Execution or
modification of data is not allowed.

E specifies that all tasks can execute code
within the partial image.

RE specifies that all tasks can read data
and execute code within the partial
image. Modification of data is not
allowed. If the ACCESS parameter is
omitted, RE is the default.

RW specifies that all tasks can read and
modify data within the partial image.
Execution of the data is not allowed.

RWE specifies that all tasks can read, modify
and execute data within the partial
image.

mOOOO is the starting address of the partial
image segment in memory. The variable m is a
hexadecimal number from 0 through FF. The
address must be greater than CTOP for any task
which references this partial image to prevent
overlapping of the task impure and the segment
to be built. If this parameter is omitted, or
ADDRESS=* is specified, the partial image
segment becomes address-independent and can be
assigned a different starting address by each
task that refers to it. If relocatable
addresses are located in an
address-independent partial image segment,
they are relocated as though ADDRESS=OOOOO was
specified and a warning message is issued.

3-13

NAME= specifies a package name for a multisegmented
task, partial image or operating system. If
this parameter is not specified, the fd in the
BUILD command is used as the package name.
Package names assigned by this parameter are
independent of the names of the individual
segments within a multisegmented image.

package name is a filename.ext that
identifies the partial ima~e
after it is loaded into main
memory. This name is matched
against the name specified by
the tasks that will ref er to
the partial image.

Functional Details:

If the ESTABLISH command is entered after active commands are
entered but before the BUILD command is entered, the following
message is displayed:

BUILD IMAGE FROM PREVIOUS INPUT?>

Enter y (YES) or N (NO).
message is displayed:

If YES is entered, the following

ENTER FILE DESCRIPTOR FOR IMAGE>

After fd is entered, the image is built.

If NO is entered, no build is performed, and the following
message is displayed:

*** ESTABLISHMENT ABORTED ***

Examples:

3-14

ES OS

Establish an operating system image.

ES IMAGE,ACCESS=RE,AD=FOOOO,NAME=SEGl

Establish a partial image with RE access privileges and
a package name of SEGl with a relocatable address of
FOOOO.

48-005 FOO ROS

ESTABLISH IMAGE,ACCESS=RE,ADDRESS=AOOOO

Establish a reentrant library image with RE access
privileges and a relocatable address of AOOOO.

ESTABLISH IMAGE,ACCESS=RW,ADDRESS=*

Establish a task common image with RW access privileges
with a relocatable address of 00000.

48-005 FOO ROS 3-15

I EXTERNAL

3.7 EXTERNAL COMMAND

The EXTERNAL command is a passive command that specifies the name
of one or more common blocks in a partial image that can be
referred to by tasks outside the partial image segment.

Format:

EXTERNAL common block name1 ~ ••• ,common block nameaj

Parameters:

common block
name

Functional Details:

is the name of a common block outside
the partial image segment to which reference
will be made.

Common blocks are local to a partial image that is shared by
other tasks unless specified by the EXTERNAL command. External
common blocks are matched against external common block
references in the same way external references are matched
against entry points in a segment.

3-16 4 8-00 5 FOO :ROS

FFILE

3.8 FORWARD FILE (FFILE) COMMAND

The FFILE command is an environmental command that forward spaces
a magnetic tape or contiguous file a specified number of
filemarks.

Format:

Parameters:

f d

n

Example:

is the file descriptor of the device or file
to be forward spaced the specified number of
f ilemarks.

is a decimal number specifying the number of
f ilemarks to space forward. If this parameter
is omitted, 1 is the default.

The following example causes the device MAGI: to forward space
two filemarks.

FF MAGl:,2

48-005 FOO ROS 3-17

HELP

3.9 HELP COMMAND

The HELP command provides a list of all Link commands accepted by
the latest revision of Link. HELP also describes the syntax and
function of each command.

Format:

.HELP [
mnemonic]

Parameters:

mnemonic

*

Functional Details:

is the mnemonic for a Link command that is to
be described by HELP.

lists all Link commands accepted by the latest
rev1s1on of Link. If no parameter is
specified, * is the default.

If a log device has been specified in the START command for Link,
HELP outputs all lists and descriptions of the Link commands to
the log device.

For some commands (e.g., OPTION), the HELP information will
require that more than one screen be displayed. In this case,
Link displays a maximum of 23 lines, then prompts for a carriage
return (CR) to continue the display. Any character except a CR
aborts the remainder of the display.

3-18 48-005 FOO :ROS

Example:

*LOAD LINK
*START
>help

BF (ILE)
ES(TABLISH)
IN(CLUDE)
MA (P)
OV(ERLAY)
RES (OLVE)
WF (ILE)

BU (ILD)
EX(TERNAL)
LI (BRARY)
ND(CMD)
PA (USE)
SEG (MENT)

DC (MD)
FF (ILE)
LOC(AL)
NL(OG)
PO(SITION
TI (TLE)

For HELP on any of the above command mnemonics,
type HELP <mnemonic>

>help map

EN(D)
H (ELP)
LOG
OP(TION)
REW (IND)
VO(LUME)

MA(P): This command is a passive command that displays a map
containing the names and addresses of symbols.

SYNTAX: MA(P) [<FD>] [,AL(PHABETIC)] [,AD(DRESS)] [,XR(EF)]
[,UN(REFERENCED)]

Where <FD> is the file descriptor of the device to receive the
map. If this parameter is omitted, the map is sent to the
log device. If no log device has been specified, the maps are
output to the command device, in interactive mode, and to
device PR: in batch mode.

The 'ALPHABETIC' parameter specifies that the map is to contain
all symbols in alphabetic order.

The 'ADDRESS' parameter specifies that the map is to contain all
symbols in address order.

The 'XREF' parameter specifies that the map is to contain all the
names of the modules that reference each symbol and the name of
the module in which the symbol is defined.

The 'UNREFERENCED' parameter specifies to pr the names of all
unreferenced entry points that are part of the map. By
default, the printing of these labels is suppressed.

>

48-005 FOO ROS 3-19

I INCLUDE

3.10 INCLUDE COMMAND

The INCLUDE command is an active command that specifies a file
containing object modules and the specific names of object
modules that are to be included in the image. The INCLUDE
command can be entered any number of times to include object
modules from many different files.

Format:

[

f,{modu*l e1}] [-{modu*l e"}] , ••• , modul ex] INCLUDE [fd] [-llLKDATA] L

Parameters:

f d

module 1

modulen

3-20

is the file descriptor of the file or device
containing the modules to be included. Either
a 126-byte format library or OBJECT/32 format
library may be specified. If this parameter
is omitted, a preassigned logical unit 1 (lul)
or the fd specified in the last INCJ~UDE
command entered is used. If the extension is
omitted, the default is .OBJ.

is a 1- to a-character alphanumeric string
specifying the name of the next module of a
range of modules to be included in the image.
The first character of this string must be
alphabetic if "*" or "-" is not specified. If
an asterisk (*) is specified or this parameter
is omitted, the next module, relative to the
position of the file, is included.

is a 1- to a-character alphanumeric string
specifying the name of the last module of a
range of modules to be included in the image.
The first character of this string must be
alphabetic if ~*" or "-" is not specified. If
this parameter is omitted, module is
included. If an asterisk (*) or hyphen (-)
with no module name is specified, all modules
starting with module1 to the end of the file
are included.

4a-005 FOO ROS

-BLKDATA controls the inclusion of block data. If a
partial image is being built, all block data
associated with named EXTERNAL common areas
will be included in the partial image: all
other data will be ignored. If a task is
being built, all data will be included except
block data associated with common areas
residing in partial images.

Functional Details:

If no module names are specified, all modules in the file are
included.

Object code modules specified in this command can consist only of
the object code defined in Appendix D. Appendix D lists each
loader item accepted by Link and describes what data may follow
it.

Examples:

INCLUDE LIBRARY.OBJ

Include all modules in fd LIBRARY.OBJ.

INCLUDE LIBRARY.OBJ, FIRST

Include the object module FIRST in fd LIBRARY.OBJ.

INCLUDE ,SECOND-FOURTH

Include modules SECOND through FOURTH in the fd specified
in the previous INCLUDE command.

INCLUDE LIBRARY.OBJ,-FOURTH,SIXTH,TENTH-*

Include modules FIRST through FOURTH, then module SIXTH,
and module TENTH through the end of LIBRARY.OBJ.

NOTE

If the NSEGMENTED option is selected,
Link writes object modules to the task
image in the same order as they are
included. However, if SEGMENTED is
specified, Link chooses the order of
modules in the task image. In this case,
modules will normally appear in exactly
the opposite order that they were
included.

48-005 FOO ROS 3-21

LIBRARY

3.11 LIBRARY COMMAND

The LIBRARY command is a passive command that specifies object
libraries to be searched at build time to resolve external
references specified.

Format:

LIBRARY fd 1 [, ••• , fdn]

Parameters:

f d

Functional Details:

is the file descriptor of the library to be
searched. A 126-byte format or OBJEC'I'/32
format library may be specified. If the
extension is omitted, the default is .OBJ.

The libraries specified by the LIBRARY command are searched for
entry points that match unresolved external references in the
irnaqe being built. When a match is found, the object module is
included. Only one pass is made through the list of libraries.

When writing programs in high-level languages such as FORTRAN,
C3 Ada, or Pascal, be sure to specify all user libraries before
specifying a standard run-time library (RTL). This ensures that
each user library routine gets resolved against the standard RTL.

Also, keep in mind that the range of a LIBRARY command is the
entire Link command sequence (prior to the next BUILD or
ESTABLISH command); i.e., its domain is not restricted to any
overlay in which it might be placed. Only the order in which the
libraries are specified is significant to Link.

When a program is linked, external references that were not
resolved by the INCLUDE and RESOLVE commands are matched against
the library(ies) entry points. All external references generated
from modules included from the library cause the library modules
that resolve those external references to be included, regardless
of the order of the modules within the library.

3-22 48-005 FOO ROS

Weak external references generated by the WXTRN pseudo-operation
are not matched against the library. These references are only
resolved against entry points to modules that are explicitly
included or are included from a library through normal (strong)
external references.

Nonlinking external references generated by the INCLD
pseudo-operation are matched against module names in the library.

Weak entry points in the library generated by the
pseudo-operation are ignored.during the library search.

WNTRY

A module is selected from a library for either of the following
two reasons:

1. The module is named in an INCLD pseudo-operation.

2. The module contains an ENTRY or a DNTRY which can be matched
against an unresolved EXTRN in a previously included module.

Any weak entry points contained within this newly included module
also become known to Link. These weak entry points are resolved
against the list of unresolved, standard, and weak externals.

Example:

LI USER.LIB,F7RTL.OBJ

Specifies the user RTL and FORTRAN RTLs to be searched in
that order.

48-005 FOO ROS 3-23

LOCAL

3.12 LOCAL COMMAND

The LOCAL command is a passive command that specifies one or more
entry points in a partial image that can be ref erred to only by
external references within that partial image. This command is
valid only when establishing a partial image.

Format:

LOCAL entry point 1 [, ••• , entry pointn]

Parameters:

entry point

Functional Details:

is a 1- to a-character alphanumeric string
specifying the entry point name. The first
character of the string must be alphabetica

When a partial image is built, all entry points within that image
can be referred to by tasks external to the partial image, unless
the entry points are made local to that partial image by the
LOCAL command.

Example:

LOC ENTRYl

3-24 48-005 FOO ROS

LOG

3.13 LOG COMMAND

The LOG command is an active command that specifies a new log
device or starts the logging process if it was previously
stopped. All command input, messages, and maps are sent to the
log device.

Format:

LOG f d

Parameters:

f d

Examples:

LOG PR:

is the file descriptor of the device or file
to receive command input, messages, and maps.

Commands, messages, and maps are to be sent to PR:.

LOG M300:LOGFILE

Commands, messages, and maps are to be sent to the file
LOGFILE on volume M300:.

48-005 FOO ROS 3-25

MAP

3.14 MAP COMMAND

The MAP command is a passive command that generates an
establishment summary and a map or maps containing the names and
addresses of program symbols.

Format:

MAP [fd] [,.ALPHABETIC] [,AQDRESS] [,XBEF] [,UNREFERENCED]

Parameters:

f d

ALPHABETIC

ADDRESS

XREF

UNREFERENCED

is the file descriptor of the file or device
to receive the map. If this parameter is
omitted, the map is sent to the log device.
However, if a log device was not previously
specified, the maps are output to the command
input device in interactive mode and PR: in
batch mode. If the specified fd is not the
same as the log device, the map is sent to
both. If the specified file descriptor is not
preallocated, Link allocates an indexed file
(logical record length 120) by that name for
the map.

specifies that the map is to contain all
symbols in alphabetical order.

specifies that the map is to contain all
symbols in ascending address order.

specifies that the map is to contain all the
names of the object modules that reference
each symbol and the name of the module to
which the symbol is defined.

specifies that all symbols, including those
that are not used, will appear in the map(s)
requested. Otherwise, the MAP command will
show only referenced symbols.

If none of these parameters are specified, only the establishment
summary is generated.

3-26 48-005 FOO ROS

Functional Details:

The Link maps generated by the MAP command tell the user how the
image is structured and where each subprogram and RTL routine is
referenced by the program. These maps can be used to determine
whether a user-defined or a standard library routine has been
referred to or redefined by the program.

Three types of Link maps can be generated: alphabetic, address,
and cross-reference. The Link establishment summary precedes the
Link maps. Figure 3-1 shows an example of the Link establishment
summary. Numbered items contained in this summary are identified
as follows:

NUMBER LIST ITEM

1 File descriptor of image file.

2 Number of records in image file.

3 Image file and address space.

4 Task options set by the Link OPTION command or by Link
default.

5 Node map listing node characteristics as follows:

• LEVEL - indicates the overlay level for the node. (0
indicates that the node is not located in an overlay
area.)

• NAME - indicates the name of each segment within the
node.

• LENGTH - is a hexadecimal number indicating the length
of each segment in bytes.

• PURE - is a hexadecimal number indicating the number
of bytes comprising a sharable task segment.

• IMPURE - is a hexadecimal number indicating the number
of bytes comprising a nonsharable task segment.

• COMMON - is a hexadecimal number indicating the number
of bytes comprising a common data area.

• TABLES - is a hexadecimal number indicating the number
of bytes of executable code set aside for Link overlay
tables.

48-005 FOO ROS 3-27

6 Virtual address map listing the name, size, address
boundaries, and access privileges of each segment. Size
is expressed as a decimal number in lkB (1024-byte)
units.

The symbol maps specified by the MAP command follow the
establishment summary. If no map options are specified, the MAP
command outputs an establishment summary only. Symbol maps list
data areas, all subprograms, and RTL routines called by the
program. If the ALPHABETIC option is chosen, symbols and their
corresponding nodes are arranged alphabetically as shown in
Figure 3-2. If the ADDRESS option is chosen, symbols are
arranged according to their addresses within each node as shown
in Figure 3-3. The address map also 1 ists each overlay area
separately in the order each is defined. As shown in Figure 3-4,
if the XREF option is chosen, a cross-reference map is produced.
This map arranges symbols according to how they are ref erred to
by the program. For example, in Figure 3-4 the symbol ENTRY is
defined by the module INCLUDE, while INCLUDE refers to GRABBED
and SPACE, which are, in turn, defined by GRABIT.

All of the symbol maps precede each symbol name with a single
letter indicating the type of subprogram, routine, or data area
named by the symbol. C indicates a common data area.
D indicates the name of a data entry point. E is a standard
entry point name. P indicates the name of a program.

The letters P, I, or A follow the address of each symbol name in
the alphabetic address map. P indicates that the symbol is
located in a pure segment. I indicates the symbol is located in
an impure segment, while A indicates an absolute data area.

Examples:

3-28

MAP PR:

An establishment summary is to be output to the printer.

MAP MAPFILE,ADDR

An establishment summary and address map are to be output
to the file named MAPFILE.

MAP ,ALPHA

An establishment summary and alphabetic map are to be
output to the log device.

MAP PR:,XREF,ALPHA

An establishment summary and alphabetic and
cross-reference maps are to be output to the printer.

48-005 FOO ROS

Concurrent Computer Corp OS/32 LINKAGE EDITOR 03-242 Rxx-xx ESTABLISHMENT PAGE 1

-- IMAGE LINKED AT 14:43:11 ON FEBRUARY 26,1989 --

ff)
FILE NAME: M30l:LNKTESTB.TSK/P -- RECORDS: 17,,0
UBOT: 0 -- UTOP: 130 -- CTOP:

TASK OPTIONS:

NOTABLES
AFPAUSE
NCOMMUNICATE
ACCOUNTING
NUNIVERSAL

NXSVCl
NFL OAT
SVCPAUSE
NINTERCEPT
KEYCHECK

CFE -- SIZE:

NVFC
RESIDENT
ND FLOAT
NACPRIVILEGE
SEGMENTED

3.25 KB ft

UTASK
NCONTROL
ROLL (A'\
NDISC ~
NXTENDED

TEQSAVE=ALL LU=l5 SYSSPACE=X3000 WORK=(X50,X40000) ABSOLUTE=XlOO
IOBLOCKS=l PRIORITY=(l28,128) TSW=(XO,XlBC) ALIGN=l6

NODE MAP:

LEVEL NAME LENGTH PURE IMPURE COMMON TABLES

}~ 0 .ROOT 130 0 8 0 0
0 .SHARED 30 30 0 0 0

(TOTALS) 160 30 8 0 0

VIRTUAL ADDRESS MAP:

FROM TO SEGMENT NAME SIZE ACCESS }fa 000000 OOOCFF .ROOT 3.25 KB RWE
050000 05002F .SHARED 0.25 KB RE

Figure 3-1 Example of Link Establishment Summary

48-005 FOO ROS 3-29

Concurrent Computer Corp OS/32 LINKAGE EDITOR 03-242 Rxx-xx ALPHABETIC MAP PJ~GE l

-- IMAGE LINKED AT 14:43:11 ON FEBRUARY 26, 1989 --

SYMBOL

E-ENTRY
P-GRABIT
E-SPACE

NODE

• SHARED
.SHARED
.ROOT

ADDRESS

050010-P
050000-P
000110-I

SYMBOL

E-GRABBED
P-INCLUDE

NODE

• SHARED
• SHARED

ADDRESS

050000-P
050010-P

Figure 3-2 Example of Link Alphabetic Map

C0ncurrent Computer Corp OS/32 LINKAGE EDITOR 03-242 R ADDRESS MAP PAGE 1

-- IMAGE LINKED AT 14:43:11 ON FEBRUARY 26, 1989 --

NODE: .ROOT - LE.VEL: 0 - ADDRESS: 0 - SIZE: 13 0 - PARENT:

SYMBOL ADDRESS SYMBOL ADDRESS SYMBOL ADDRESS

P-GRABIT 000110-I E-SPACE 000110-I P-INCLUDE 000120-· I

NODE: .SHARED - LE.VEL: 0 - ADDRESS: 50000 - SIZE: 30 - PARENT:

SYMBOL ADDRESS SYMBOL ADDRESS SYMBOL ADDRESS

P-GRABIT 050000-P E-GRABBED 050000-P P-INCLUDE 050010-·P
E-ENTRY 050010-P

Figure 3-3 Example of Link Address Map

Concurrent Computer Corp OS/32 LINKAGE EDITOR 03-242 Rxx-xx CROSS-REFERENCE l?'AGE 1

-- IMAGE LINKED AT 14:43:11 ON FEBRUARY 26, 1989 --

SYMBOL

E-ENTRY
E-GRABBED
E-SPACE

DEF'INED

INCLUDE
GRAB IT
GRAB IT

REFERENCED BY

INCLUDE
INCLUDE

Figure 3-4 Example of Link Cross-Reference Map

3-30 48-005 FOO ROS

-----------NDCMD

3.15 NDCMD COMMAND

NDCMD is an active command that disables execution of passive
Link commands embedded in object modules included in the image.
This command also suppresses listing general comments to the log
device.

Format:

NDCMD

Functional Details:

The DCMD command reenables execution of passive Link commands
embedded in object modules and reenables listing of embedded
general comments (see Section 3.4).

48-005 FOO ROS 3-31

NLOG

3.16 NO LOG (NLOG) COMMAND

The NLOG command is an environmental command that terminates the
logging process.

Format:

Functional Details:

Logging can be restarted by the LOG command explained in Section
3.13.

3-32 48-005 FOO ROS

OPTION

3.17 OPTION COMMAND

The OPTION command is a passive command that sets the task
options that are in effect during task execution.

NOTE

When a task image created by link is
loaded under MTM, certain MTM
configurations can override the task
options set by the option command. See
the Multi-Terminal Monitor (MTM)
Reference Manual for more information.

If the syntax of a Link command includes a decimal number as a
parameter, the number specified is a positive whole number.
Hexadecimal values may be used, if preceeded by the letter "X".
For example, XlO, a hexadecimal 10, is equivalent to a decimal
16.

Example 1:

ALIGN = 16 LU·= 15

or

ALIGN = XlO LU = XOF

Example 2:

WORK = (80, 262144) PRIORITY = (128, 90)

or

WORK = (X50, X40000) PRIORITY = (X80, X5A)

48-005 FOO ROS 3-33

Format:

3-34

[
,·{ .••. M!!_A_··.:_··_·_.·_··.··· .. O .• N .. ··:·-· .. ·_·.L_ .. ::·_·:·-~.--:·.·:_._ •. }_. J [,{~_-·_:···M······M···u··.··:····.·:·N···:·:·:·~-:···:c.·.·_ .. •_A:·:':: .. ·.·T.·:·.·._:··.E··:·-:··,:···.·:·-·:·:·-·.} •. J t{ .. ~_-_._ _ :.~R.·:···:·.···:o·:·::·:.~-·:···:.··:···:·•,}] [,{_.,.~_ _ .. _'.'·L···o·:·:::·::::: .. _._ ::.T.···.--.· .. : •.··.•}·. J.,I ~ONLY ~U!i1:£~'f:E. ~W~p.lq BllE:LwAW\

[.{;;:
0
}] [{:;~::$}] [,mTRY=(main entry,debug entry~

[·{i~i}] [·{:;;;w}J H~;::;;~}J [IQaLocKs={;}]

[.{:;;::;~}] [.Lu={~;}] [.LPU=t;oc}] [{::;:.:~}]

[£B!ORITY=([{~;;i}] [.{:;.~i}]) l [{::~:~}] [{:;::;m}]
[.{:~L }] [.{::;:;~}] [.filSSPACE={Xh~~i~iij1~~~1~:1ue }]

[.{:~;:;;:E}] [,Tsw=([t~tus}] [·t.g~dr}])]

[' TEQSAVE={ .• ,~.··.·:_.
0

_ .. _ _:_._.·• .. ·_·.·_-.. ~IAL}] [,{ .. _!lli·:.-... _.·_.:_·_.·._·.·.··_ .•

1

_ .. _.v······.·_·._·.··.··E··.·_:•_·R·····::·-·_::·.s.·.: .. ·· .. ALS_.·.··.··.•·,·_ .. _._._'.·_._._ ..••. ,...._}J ['{.,,:_.·:.·:·:_~ . .,c_:r-_:_'. :_-_:} •. J [, VFD=fd J ~- lfUl'iIVF;~ __ :.:l\G•: ~9

[• VTM={:}J [,NQRK=(tmin~~;;.orkspace H maxim:b.;;kspace l)]
[.{::~$}] [{::::µ}]

48-005 FOO ROS

Parameters:

ABSOLUTE

NACCOUNTING

ACCOUNTING

ACPRIVILEGE

48-005 FOO ROS

reserves a specified number of bytes of main
storage for absolute data. If this parameter
is not specified, Link reserves 256 (X'lOO')
bytes of main storage for absolute data.

a is a 1- to 6-digit hexadecimal number
specifying the number of bytes of main
storage that are to be reserved by Link
for absolute data. XlOO is the default.
All relocatable code in the impure segment
is relocated from this value.

turns off the Accounting facility for the task
if accounting was enabled at system generation
(sysgen). If this parameter is not specified,
ACCOUNTING is the default.

turns on the Accounting facility for the task
if accounting was enabled at sysgen. The
Accounting facility collects task related data
including the task's roll-time, wait-time, I/O
transfer count, and the EOT code. If the
Accounting facility was not specified at
sysgen and ACCOUNTING is specified, no
accounting data is collected. If this
parameter is specified and the Accounting
facility was specified at sysgen, accounting
data is collected.

provides a user task (u-task) with extended
file access privileges as follows:

• a u-task can specify an account number
instead of a file class for all file
management functions.

• a u-task can turn off the KEYCHECK option,
if set.

NOTE

If a task loaded from the
system console is to access
files under an account number
other than O, ACPRIVILEGE must
be specified for that task.

3-35

3-36

If this parameter is not specif i.ed,
NACPRIVILEGE is the default. This option has
no affect on executive tasks Ce-tasks) or
diagnostic tasks Cd-tasks).

NACPRIVILEGE specifies that a u-task has no extended file
access privileges. If the extended file
access privilege option is not specified,
NACPRIVILEGE is the default. This option has

:no affect on e-tasks or a-tasks.

ALIGN specifies the byte boundary for aligning
object modules within segments. Unused bytes
between aligned modules are filled with zeros.
If this parameter is omitted, all object
modules begin on the next highest quadword
boundary Cvalue=l6) , unless already on such a
boundary.

AP CONTROL

NAP CONTROL

APMAPPING

NAPMAPPING

value is a decimal number expressed as an
even power of two in the range from
4 to 2,048. If this parameter is not
specified, 16 bytes (one quadword) is
the default boundary alignment value
for all object modules.

specifies that the task can obtain APU control
privileges. This option is valid for the
3200MPS Family of Processors only. Control of
an APU by a task is accomplished through the
supervisor call 13 (SVC13) parameter block.
See the OS/32 Supervisor Call (SVC) Referemce
Manual. If this option is omitted, NAPCONTROL
is the default.

specifies that the task cannot obtain APU
control privileges. This option is valid for
the 3200MPS Family of Processors only and is
the default.

specifies that the task can obtain APU mapping
privileges. This option is valid for the
3200MPS Family of Processors only. If this
option is omitted, NAPMAPPING is the default.

specifies that the task cannot obtain APU
mapping privileges. This option is valid for
the 3200MPS Family of Processors only and is
the default.

48-005 FOO ROS

APUONLY

NAPUONLY

COMMUNICATE

NCOMMUNICATE

CONTROL

NCONTROL

DFLOAT

ND FLOAT

48-005 FOO ROS

specifies that the task can execute on an APU
only. Any transfer of control from the APU to
the central processing unit (CPU), except for
supervisor functions, causes the task to
pause. This option is valid on the 3200MPS
Family of Processors only. If this option is
omitted, NAPUONLY is the default.

specifies that the task can execute on an APU
or a CPU. This option is valid for the
3200MPS Family of Processors only and is the
default.

specifies that the task can perform the SVC6
intertask communication functions. If this
parameter is not specified, the task cannot
communicate with other tasks.

prevents the task from issuing an
intertask communication. If the
communication option is not
NCOMMUNICATE is the default.

SVC6 for
intertask

specified,

specifies that the task can perform the SVC6
intertask control functions. If this
parameter is not specified, the task cannot
issue an SVC6 to control the execution of
another task.

prevents the task from issuing an SVC6 for
intertask control. If the intertask control
option is not specified, NCONTROL is the
default.

specifies that a task can execute double
precision floating point (DPFP) instructions.
If this parameter is not specified, the task
cannot execute DPFP instructions.

prevents the task from executing DPFP
instructions. If the double precision option
is not specified, NDFLOAT is the default~

3-37

DISC

NDISC

DTABLES

NOTABLES

3-38

is the bare disk input/output (I/O) privilege
option. This option allows a u-task or a-task
to bypass the file manager and directly assign
I/O requests to a disk device. If the disk is
marked on-line, only assignments for shared
read only (SRO). are allowed. Any other
assignment is rejected and a privilege error
message is output. If the disk is marked
off-line, all access privileges are allowed.
See the OS/32 Supervisor Call (SVC) Ref eremce
Manual for a description of the access
privileges. This option has no affect on
e-tasks, since they have bare disk privileges
by definition.

prevents u- and a-tasks from directly
assigning I/O requests to a disk device. If
the bare disk I/O privilege is not specified,
NDISC is the default. This option has no
affect on e-tasks.

NOTE

If a task is loaded under MTM and
DISC is not specified, or DISC is
specified but the task loader has
the ETASK option disabled, the
image is loaded without the bare
disk I/O privilege.

causes the task loader to build the
appropriate debug tables in the image for
DEBUG/32. This option also increases the
number of logical units used by the task, by
one. However, LU=l5 still appears on the Link
map.

prevents the task loader from building debug
tables so that all debug data contained in the
image is discarded. If DTABLES is not
specified, debug tables are not built.

4 8-005 FOO JRO 5

ENTRY

DTASK

ET ASK

UT ASK

FLOAT

48-005 FOO ROS

specifies the name of an entry point in the
root node or the debug task where execution of
the task image begins. If this option is
omitted, the entry point is the starting
address specified when the task was assembled
or compiled.

main entry

debug entry

is a standard entry point
known to Link while the
image is being built.
Standard entry points
include those for partial
images but exclude data
entry (DNTRY) points. If
only the main entry is
specified, omit the
parentheses.

is the name of the entry
point for the debug task.
The debug entry point
specifies the location
where execution of the
task image beginsa In
addition, the main entry
or default entry is
reserved for use by
DEBUG/32.

specifies that a a-task image is to be built.
A d-task has its own virtual address space but
can execute privileged instructions. If no
task type parameter is specified, UTASK is the
default.

specifies that an e-task image is to be built.
An e-task can contain only
positional-independent pure and impure code
and cannot reference partial images. An
e-task can execute privileged instructions and
reference physical memory addresses.

specifies that a u-task image is to be built.
A u-task cannot execute privileged
instructions. If no task type parameter is
specified, UTASK is the default.

specifies that the task can execute single
precision floating point (SPFP) instructions.
If FLOAT is not specified, the task cannot
execute SPFP instructions.

3-39

NFL OAT

INTERCEPT

NINTERCEPT

I OB LOCKS

NKEYCHECK

KEYCHECK

LU

3-40

prevents the task from executing SPFP
instructions. If the single precision option
is not specified, NFLOAT is the default.

specifies that the task can intercept an SVC
issued by another task tjef ore the SVC is
processed by the operating system. If this
option is not specified, the task cannot
intercept an SVC issued by another task. For
more information on SVC interception, see the
OS/32 System Level Programmer Reference
Manual.

prevents the task from intercepting an SVC
issued by another task. If the SVC
interception option is not specif led,
NINTERCEPT is the default.

specifies the maximum number of I/O blocks
assigned to the task. Each I/O control block
can contain one queued I/O request. If th i's
option is not specified, Link automatically
assigns one I/O control block to the task.

b is a decimal number from 1 through 65,535
indicating the number of I/O blocks
assigned to the task.

prevents the operating system from checking
the file protection keys of a u- or a-task
having accounting or bare disk I/O privileges.
If this option is not specified, the operating
system checks the file protection keys for all
privileged u-tasks. NKEYCHECK has no affect
on e-tasks.

causes the operating system to check the file
protection keys of a u- or a-task having
accounting or bare disk I/O privileges. If
the file protection option is not specified,
KEYCHECK is the default. KEYCHECK has no
affect on e-tasks.

is a decimal number from 0 through 255 which
specifies the maximum number of logical units
that can be assigned to a task. The task must
be linked with this parameter one greater than
the highest lu number quoted in the code. The
lu number identifies the highest lu number
that can be referenced, not the number of
logical units to be assigned. For example, a
task linked with 20 logical units may use
logical units 0 through 19.

48-005 FOO ROS

LPU

NAFPAUSE

AFPAUSE

PRIORITY

48-005 FOO ROS

specifies the logical processing unit {LPU)
used to direct tasks to processors. This
option is valid on the 3200MPS Family of
Processors only. Each task on the 3200MPS
Family of Processors is assigned an LPU. Each
LPU is logically mapped to an execution queue.
Assignment of a particular LPU number results
in the assignment of that task to the
associated queue. The default assignment is
zero.

lproc specifies the LPU that the task is to
be assigned to. Legal values can
range from decimal zero to the
maximum number of LPUs present in the
system {LPU) up to maximum of 255.
LPU is a sysgen statement. See the
System Generation/32 {Sysgen/32)
Reference Manual.

allows task execution to continue after an
arithmetic fault occurs. If NAFPAUSE is not
specified, task execution is paused after an
arithmetic fault.

pauses task execution after an arithmetic
fault occurs. If the NAFPAUSE fault option is
not specified, AFPAUSE is the default.

specifies the initial and maximum priorities
of the task. If this option is not specified,
both the initial and maximum task priorities
are 128. See the OS/32 Operator Reference
Manual for an explanation of priority.

ipri

mpri

is a decimal number from 11 through
254 indicating the initial task
priority. The initial priority must
be greater or equal numerically to
the specified maximum priority
{mpri). If ipri is not specified,
the default is 128.

is a decimal number from 11 through
254 indicating the maximum priority
of the task. If mpri is not
specified, the maximum priority is
128 (the value specified for the
initial priority).

3-41

RELOCATE

NRELOCATE

RESIDENT

NRESIDENT

NROLL

ROLL

SEGMENTED

NSEGMENTED

3-42

specifies that a relocation table
built within the task image if
option is also specified.

is to be
the E'I1ASK

specifies that a relocation table should not
be built within the task image if the E'I1ASK
option is specified. If the RELOCATE option
is not specified, NRELOCATE is the default.
See Chapter 6 for more information on the
RELOCATE option.

specifies that the task is to remain in main
memory after task execution is terminated.
The task can then be restarted by the operator
without issuing an OS/32 LOAD command. If
this option is not specified, the task is
removed from memory after task termination.

specifies that the task is to be removed from
main memory after task execution is
terminated. If the RESIDENT option is not
specified, NRESIDENT is the default.

prevents the task from being rolled in and out
of main memory during task execution. If this
option is not specified, the task can be
rolled during execution.

specifies that the task can be rolled
out of memory during task execution.
NROLL option is not specified, ROLL
default.

in and
If the

is the

specifies that the pure code of a u- or a-task
can be shared when more than one copy of the
task is loaded. Both a private and a
shared-image segment are created when the
first copy of the segment is loaded lnto
memory. The pure code is loaded into the pure
segment which is shareable by all usE~rs.
Impure and absolute code are built into the
impure segment which is private to the user.
If this option is not specified, the pure
segment cannot be shared. SEGMENTED is
incompatible with the OPTION ETASK parameter.

specifies that the pure code of a u- or a-task
is combined with the impure code and cannot be
shared when more than one copy of the task is
loaded. Pure and impure code are built into
the impure segment which is not shareable.
NSEGMENTED is the default.

48-005 FOO ROS

SYS SPACE

(D '55)

NSVCPAUSE

SVCPAUSE

48-005 FOO ROS

specifies the maximum amount of system space
that a task can use during execution. System
space is used for file control blocks
associated with open disk files and other
operating system data structures associated
with the task. If this option is not
specified, the maximum system space that can
be used is 12,288 (X3000) bytes.

decimal value

hexadecimal value

is a 1- to 7-digit decimal
number specifying the
maximum amount of system
space.

is a 1- to 6-digit
hexadecimal
preceded by
specifying the
amount of system

number
an x

maximum
space.

specifies that SVC6 is treated as a
no-operation (NOP) (applies to .BG tasks
only). If a background task issues an SVC6,
the operating system ignores that call and
continues execution of the task. If this
option is not specified, the operating system
pauses the execution of a background task that
issues an SVC6.

specifies that SVC6 is treated as an illegal
SVC (applies to .BG tasks only). If an SVC6
is issued by a background task, the operating
system pauses execution of that task. If the
SVCPAUSE option for background tasks is not
specified, SVCPAUSE is the default.

3-43

TEQSAVE

3-44

sets the task status and starting address
fields of the task status word (TSW) in the
LIB. If multiple TSW options are specified,
an OR operation is performed on the status
field before the TSW is loaded into the final
TSW for the task image. This option overrides
any starting address specified by ENTRY.

status is a 1- to 8-digit hexadecimal number
indicating the initial setting of the
status field of the TSW in the loader
information block (LIB) • If the
asterisk (*) is specified, the
current TSW is reset to zero. If
status is not specified, the initial
setting of the status field is zero.

NOTE

For more information about TSW bit
settings, refer to Chapter 3 in the
Application Level Programmer
Reference Manual.

st adr is a 1- to 6-digit hexadecimal number
indicating the starting address for
the task. This address overrides the
starting address specified when the
task was assembled or compiled as
well as any starting address
specified by the ENTRY option.

informs the operating system whether or not
the register contents should be saved and
restored when the task enters or exits a task
event service routine. The parameters of this
option are:

NONE

PARTIAL

specifies that no register contents
are saved and restored by OS/32 when
the task enters or exits a task event
service routine.

specifies that only the register
contents that are used by the task
event service routine are saved and
restored when the task enters or
exits the routine.

ALL specifies that all register conte~nts
are saved by OS/32 when the task
enters or exits a task event service
routine.

If this option is not specified, ALL is the
default.

48-005 FOO ROS

UNIVERSAL

NUNIVERSAL

VFC

NVFC

VFD

allows a task to communicate with all the
other tasks in the system. If this option is
not specified, a task can only communicate
with other tasks having the same group ID as
the task.

specifies that a task can communicate with
only those tasks in the system having the same
group ID as the task. If the universal
communication option is not specified,
NUNIVERSAL is the default.

turns on vertical forms control (VFC) for all
task I/O operations. If this option is not
specified, VFC is turned off for all task I/O
operations.

turns off VFC for all I/O operations. If the
VFC option is not specified, NVFC is the
default.

NOTE

A task can override the NVFC and
VFC options for specific devices
or I/O operations by issuing the
appropriate SVCl or SVC7. See the
OS/32 Supervisor Call (SVC)
Reference Manual for more
information on using SVCl and SVC7
for VFC.

specifies the secondary storage file for a
is not

file at
virtual task. If this option
specified, VTM allocates a temporary
run-time.

f d is a file descriptor for
a contiguous file that
must occupy a minimum of
CTOP/256 minus 255 sectors
(plus 256 sectors if fd is
the task image file). If
the f d is the task image
file itself, the task
image is destroyed at
run-time.

NOTE

If option VFD=fd is specified,
multiple copies of the same task
image cannot be run.

48-005 FOO ROS 3-45

VTM

WORK

3-46

specifies that a virtual task image is· to be
built.

n is a decimal number from
2 through 127 specifying
the number of resident
64kB working pages
available for task memory
management. If n is not
specified, the default is
4.

specifies the number of bytes of main memory
that can be added to the root node by the LiOAD
command for task workspace. Hexadecimal
numbers specified by the WORK option must be
preceded by an X {e.g., X40000).

nominal workspace is a 1- to 6-digit
hexadecimal or
1- to 7-digit decimal
number indicating the
workspace to be added if
the w·orkspace parameter in
the LOAD command is not
specified. If nominal
workspace is not specified
by the WORK option, 80
bytes {X50) are added by
LOAD.

The nominal workspace
value is added to any
nominal workspace values
specified by previous
OPTION WORK= commands to
obtain the total nominal
workspace.

If an asterisk {*) is
specified, the nominal
workspace is reset to
zero. If only nominal
workspace is specified,
the parentheses are not
required.

4 8-0 0 5 F 0 0 RO 5

maximum workspace

48-005 FOO ROS

is a 1- to 6-digit
hexadecimal or
1- to 7-digit decimal
number indica·ting the
maximum amount of
workspace that can be
added by the LOAD command.
If the maximum workspace
is not specified, 256K
(X40000) is the maximum
number of bytes that can
be added. The maximum
workspace value is added
to the maximum workspace
values specified by
previous OPTION WORK=
commands to obtain the
total maximum workspace.
If SEGMENTED is specified,
the shared segment follows
the maximum workspace. A
task may fail to load on
certain systems with
limited memory. Care must
be taken by the user not
to exceed the maximum
memory available. Consult
the Link map to determine
the amount of system space
available.

3-47

XSVCl

NXSVCl

XTENDED

NXTENDED

3-48

indicates that if the task issues an SVCl with
bit 7 of the function code set, the options
specified by the SVCl extended option f i 1eld
are to be executed for all drivers which use
this field. If XSVCl is not specified, an
SVCl with bit 7 set performs an image I/O
transfer. See the OS/32 Supervisor Call (SVC)
Reference Manual for more information on the
SVCl function code and extended options.

indicates that if the task issues an SVCl with
bit 7 of the function code set, an image I/O
transfer is performed. If the XSVCl option is
not specified, NXSVCl is the default. See the
OS/32 Supervisor Call (SVC) Reference Manual
for more information on the SVCl function code
and extended options.

NOTE

Data communications devices do not
check the extended SVCl bit in the
task options; therefore, the user
must assure that the extended
options field is set up if bit 7
of the function code is s~t.

If performing
communications
the OS/32
Communications
and the OS/32
(SVC) Reference

I/O to data
devices, ref er to

Basic Data
Reference Manual
Supervisor Call

Manual.

enables the task to be loaded into extended
task space. Extended task space is memory
which resides above the first 16MB boundary.
If this parameter is not specified, NXTENDED
is the default.

specifies that the task be loaded into
non-extended task space. Non-extended task
space is memory which resides below the first
16MB boundary.

NOTE

A LOAD command issued with
,XTENDED or ,NXTENDED appended to
it overrides the Link OPTION
command for loading into extended
or nonextended memory. If neither
mnemonic is specified, the option
specified at Link time is used.

48-005 FOO ROS

Functional Details:

OS/32 places some restrictions on which tasks can communicate
with one another by assigning a group ID to each task. Normally,
a task can communicate only with tasks within its assigned group.

Group IDs are assigned according to the operating environment
under which a task is loaded. Tasks loaded into an OS/32
real-time environment are divided into two groups: foreground
and background. A monitor and its subtasks are assigned to their
own group. System tasks (the console monitor, the command
processor, MTM, and the spooler) are in a separate group called
the systems group.

To communicate with tasks outside its group, a foreground task
should be link-edited with the UNIVERSAL task option enabled.
OS/32 defines a background task as nonuniversal to prevent it
from communicating with tasks outside its group.

Examples:

OPTION ACPRIVILEGE,NKEYCHECK,ALIGN=4,
DFLOAT,LU=lO,PRIORITY=(,100),
SYSSPACE=X4000,VFC,XSVC1,
WORK=(XlOO,XlOOO)

In this example, the task is to be linked as a u-task with
extended file access privileges and without key checking. All
object modules will be aligned to the nearest fullword boundary.
The task can execute double precision floating point (DPFP)
instructions and assign up to ten logical units. Maximum task
priority is 100; initial task priority is 128. VFC is in effect
for all I/O operations. The options specified by the SVCl
extended option field are to be executed for all drivers that use
this field. The task can be loaded with a maximum workspace of
4,096 bytes. If workspace is not specified in the OS/32 or MTM
LOAD command, the task is loaded with 256 bytes. Note that X
precedes the hexadecimal numbers in the WORK option. Maximum
system space that can be used by this task is 16,384 bytes.

OPTION DTABLES,ENTRY=(,DEBUG32)

In this example, the u-task is to be debugged using DEBUG/32.
DTABLES builds the required debug tables needed to run DEBUG/32
while.ENTRY specifies the name of the entry point to the debug
task.

OPTION INTERCEPT,TEQSAVE=PARTIAL

48-005 FOO ROS 3-49

This example shows the task options that apply to a u-task that
is to be linked with the SVC interception software. INTERCEPT
allows the u-task to intercept an SVC of another task.
TEQSAVE=PARTIAL indicates that all register contents used by the
task event service routine are to be saved and restored. See the
OS/32 System Level Programmer Reference Manual for more
information on SVC interception and the task event service
routine.

OPTION VTM=S,VFD=PROGl.VTM

This example shows the task options that apply when a u-task is
to run under the virtual memory manager (see Chapter 5) • VTM
specifies that a virtual image is to be built; VFD specifies that
PROGl.VTM is to be used as a secondary storage file by the
virtual task.

OPTION FL,RES,LU=l0,WORK=X3000,TSW=(,B020) ,APC,APM

This example shows the task options that can apply when the task
is to run on the APU of the 3200MPS Family of Processors. The
task can execute single prec1s1on floating point (SPFP)
instructions1 is resident; has a maximum of 10 logical units that
can be assigned to it; has a maximum workspace of X3000 bytes;
has a starting address field of XB020 in the LIB; and can obtain
APO control privileges, and APU mapping privileges in a
multiprocessor system (MPS). The APC and array paging method
(APM) options are valid on the 3200MPS Family of Processors only.

3-50 48-005 FOO ROS

OVERLAY

3.18 OVERLAY COMMAND

The OVERLAY command is an active command that defines an overlay
area and specifies a level for the overlay.

Format:

Parameters:

overlay name

level

Functional Details:

is an a-character alphanumeric string
specifying the name of the overlay to be
loaded into main storage. The name .ROOT is
reserved for the root segment.

is a decimal number from 1 through 256
specifying the number of overlays between the
overlay being defined and the root
(inclusive). The number specified must be no
more than one greater than the previous level.
If this parameter is omitted, the default is
1.

This command is entered after all modules to be included in the
root segment are specified. Object modules to be positioned in
an overlay area are included following the OVERLAY command. The
sequence of defining overlays must specify the overlay and all
its descendants before defining other overlays at the same level.
Overlayed tasks generated by Link result in automatic loading of
overlays (see Section 4.4).

48-005 FOO ROS 3-51

Example:

3-52

INCLUDE ROOT.OBJ
OVERLAY ONE,1
INCLUDE A.OBJ

OVERLAY THREE,2
INCLUDE D.OBJ
INCLUDE E.OBJ
OVERLAY FOUR,2
INCLUDE F.OBJ

OVERLAY TW0,1
INCLUDE B. OBJ
INCLUDE C.OBJ

OVERLAY FIVE, 2
INCLUDE G. OBJ

48.;...oos FOO Et05

PAUSE

3.19 PAUSE COMMAND

The PAUSE command is an environmental command that pauses the
linkage editor.

Format:

,EAUSE

Functional Details:

The linkage editor can be continued by entering the OS/32
CONTINUE command.

48-005 FOO ROS 3-53

I POSITION

3.20 POSITION COMMAND

The POSITION command is a passive command that repositions common
blocks into a node closer to the root segment than Link would
normally position them.

Format:

Parameters:

COMMON=

TO=

name is a 1- to 8-character alphanumeric
string specifying the name of the common block
to be moved. If an asterisk (*) is specified,
all common blocks are moved.

nodename is a 1- to a-character alphanumeric
string specifying the name of the node to
which the blocks are to be moved. If this
parameter is omitted, the blocks are moved to
the overlay node in which the POSITION command
-is encountered. If • ROOT is specified, the
'blocks are moved to the root segment.

Functional Details:

Normally, the placement of a common block within an overlayed
task is determined by placement of the locations that ref er to
the block. A blank common is always positioned in .ROOT. A
named common block however, is initially positioned by Link no
closer to the root than any particular reference to the block~

3-54 48-005 FOO ROS

There are two consequences to this positioning policy. The first
is that named common blocks are initialized each time an overlay
is fetched from disk. The second consequence is that more than
one copy of a common entity can exist on separate paths in the
program (i.e., two or more overlays can have their own separate
and private copies of a common entity). These copies could then
contain different values.

Example:

ES TASK
INCLUDE ROOT
POSITION COMMON=(A,B)
OVERLAY OVLYl,l
INCLUDE SUBl
INCLUDE SUB2
OVERLAY OVLY2,l
INCLUDE SUB3

48-005 FOO ROS 3-55

RESOLVE

3.21 RESOLVE COMMAND

The RESOLVE command is a passive command that specifies the name
of a partial image to be ref erred to by the task image. The
partial image can be a global entity generated at the console by
the OS/32 TCOM command or a partial image created by the
ESTABLISH command.

Format:

RESOLVE [fa] [,.HAME=package name]

R

E

, ACCESS= :'Ill!
mq

m'V'E

[, ,ADDRESS=mO 0 0 0]

[,STRUCTURE= (name1 [/size1] [, ••• ,namen][/sizenJ)]

[,SIZE= ([min[, max J])]

3-56 48-005 FOO ROS

Parameters:

f d

NAME=

48-005 FOO ROS

is the file descriptor of the partial image.
If fd is not specified, the default partial
image is the global task common defined by the
TCOM command. If the file extension for a
partial image is not specified, the default
extension is .IMG.

NOTE

Link cannot get the size of a task
common segment defined by TCOM
from an image file; therefore,
when the partial image is a global
task common, the size of the
partial image must be specified by
the SIZE or STRUCTURE parameter in
the RESOLVE command.

specifies the package name of the partial
image. If this parameter is omitted, fd must
be specified, and the default package name is
the package name assigned to the partial image
when it was established. When the task is
loaded, the package name is matched against
the names of any partial images already in
main memory. If a partial image with the
specified package name is not found in memory
when the task is loaded, the package name is
converted into an f d which is then used to
locate and load a partial image.

package name is a filename.ext that
identifies the partial
image after it is loaded
into memory. This name is
matched against either the
name of the global entity
specified by TCOM or the
package names of sharable
segments or partial
images.

3-57

ACCESS=

ADDRESS=

STRUCTURE=

3-58

specifies the access privilege of the partial
image as follows:

R specifies that the task can read data
within the partial image. Execution
or modification of data is not
allowed.

E specifies that the task can execute
code within the partial image but
cannot read or modify data within the
image.

RE specifies that the task can read data
and execute code within the partial
image. Modification of data is not
allowed. If the ACCESS= parameter is
omitted, the default is RE.

RW specifies that the task can read and
modify data within the partial image.
Code execution is not allowed.

RWE specifies that the task can read and
modify data and execute code within
the partial image.

mOOOO is the starting address of the partial
image. If the RESOLVE command specifies an fd
for a partial image that is not
address-independent, the specified address
must match the address specified in the LIB of
the partial image. If ADDRESS= is not
specified, and the address was not specified
when the partial image was established, Link
automatically assigns an address to the
partial image. The variable m is a
hexadecimal number in the range from 0 through
FF.

structures task common blocks within the
partial image specified by fd. If fd is not
specified, this parameter is used to structure
global task common defined by the TCOM
command.

name1 ••• namen is an a-character
alphanumeric
specifying the name
task common block
structured.

string
of the
to be

48-005 FOO ROS

SIZE=

48-005 FOO ROS

is a 1- to 6-digit
hexadecimal number or a
1- to 7-digit decimal
number specifying the
length in bytes of the
task common block.
(Hexadecimal numbers must
be preceded by an X1 e.g.,
XFO.) This number must be
greater than or equal to
the size of the task
common block specified by
the program. If this
number is smaller than the
size specified by the
program, Link outputs a
warning message and uses
the size specified by the
program. The program size
is also used if this
parameter is omitted.

NOTE

If common blocks in a partial
image are declared by using the
EXTERNAL command when the partial
image is built, STRUCTURE cannot
be specified when resolving
against that partial image. Doing
so results in the following
message: COMMON XXXXXXXX
ENCOUNTERED IN MORE THAN ONE
PARTIAL IMAGE.

specifies the minimum and maximum number of
bytes of main memory that the partial image
can occupy. If SIZE= and fd are not
specified, the default size of the partial
image is that specified by the STRUCTURE
parameter. If SIZE is not specified but fd
is, the default size of the partial image is
the size obtained from the LIB of the partial
image specified by fd.

3-59

Functional Details:

min is a 1- to 6-digit hexadecimal number
or a 1- to 7-digit decimal number
specifying the minimum number of
bytes of main memory that the partial
image can occupy. (A hexadecimal
number must be preceded by an X;
e.g. , XFO.)

max is a 1- to 6-digit hexadecimal number
or a 1- to 7-digit decimal number
specifying the maximum number of
bytes that the partial image can
occupy. If the max is less than the
min, Link replaces max with min and
continues without displaying an error
message. If a hexadecimal number is
specified, it must be prefixed with
an X.

When Link resolves an external reference against a partial image,
all of the segments within that partial image are involved. At
least one segmentation register is reserved in the image being
built for each segment in the partial image. It is assumed that
a partial image requires all of its segments, even though the
image making the references does not call entry points in each
segment of the partial image.

Each entry point to the partial image is entered into the symbol
table which Link creates as it processes the commands and builds
the iu,age. All entry points are entered into the symbol table
whether or not the entry symbol is ever ref erred to by the image
being built.

When the task making references to the partial image is loaded,
the user-specified minimum and maximum size values are compared
with the actual size of the partial image. If the actual size is
smaller than the specified minimum value, a message is displayed
and the task is not loaded. If the actual size is larger than
the specified maximum value, only the specified maximum value is
available. If the partial image refers to other partial images,
these references are automatically included in the image's LIB.
These secondary references need not be specified again by the
RESOLVE command.

3-60 48-005 FOO HOS

Examples:

ESTABLISH IMAGE,NAME=SEGMENT.ACC,ACCESS=RW
INCLUDE COMX
BUILD COMX
END

ESTABLISH TASK
RESOLVE COMX,STRUCTURE=(COMX/XOA)
INCLUDE PROGl
BUILD PROGl
END

ESTABLISH IMAGE,NAME=SEGMENT.ACC,ACCESS=RE,ADDRESS=EOOOO
INCLUDE LIBl
INCLUDE LIB2
BUILD LIBX
END

ESTABLISH TASK
RESOLVE LIBX
INCLUDE PROGl
BUILD PROGl
END

48-005 FOO ROS 3-61

REWIND

3.22 REWIND COMMAND

The REWIND command is an environmental command that rewinds a
magnetic tape or contiguous file.

Format:

.Bl:MIND f d

Parameters:

f d

Example:

is the file descriptor of the device or file
to be rewound.

This example causes the tape on device MAGl: to be rewound.

REWIND MAGl:

3-62 40-oos FOO nos

TITLE

3.23 TITLE COMMAND

The TITLE command is an environmental command that specifies the
heading to be printed at the top of all maps.

Format:

TITLE title

Parameters:

title

Functional Details:

is a 1- to 60-character alphanumeric string
specifying the title to be printed at the top
of all maps. If the title contains a blank,
comma, or semicolon, the title must be
enclosed within single quotation marks (').
If this command and this parameter are not
specified, no title is printed at the top of
the maps.

The TITLE command remains in effect until a subsequent TITLE
command is specified.

Examples:

TI 'TINTON FALLS DEVELOPMENT GROUP'
TI 'DEPARTMENT 3145'

48-005 FOO ROS 3-63

VOLUME

3.24 VOLUME COMMAND

The VOLUME command is an environmental command that specifies the
volume to be used by the linkage editor when no volume is
specified in an fd.

Format:

VOLUME voln

Parameters:

voln

Functional Details:

is the name of the volume to be used by the
linkage editor as the default. If this
parameter is omitted, the current default
volume is displayed on the command input
device.

The VOLUME command remains in effect until a subsequent VOLUME
command is specified.

Example:

VO M300

3-64 4 8-005 FOO R.05

WFILE

3.25 WFILE COMMAND

The WFILE command is an environmental command that writes a
f ilemark on a magnetic tape or contiguous file.

Format:

!if:!LE fd [,{,:,}, J
rlt

Parameters:

f d

n

Example:

WF MAGl: ,2

48-005 FOO ROS

is the file descriptor of the device or file
to which a f ilemark is to be written.

is a decimal number specifying the number of
f ilemarks to be written. If this parameter is
omitted, 1 is the default.

3-65

•

4.1 INTRODUCTION

CHAPTER 4
USING LINK

This chapter provides examples of Link command sequences used to
build task images, operating system images, and partial images.
See Chapter 3 for detailed information on the Link commands.

4.2 BUILDING A TASK IMAGE

The following example builds a task image from an object module
called MOD1.0BJ produced by the Common Assembly Language/32
(CAL/32) assembler. MODl.OBJ has no external references. The
task built consists of one impure segment.

Example:

ESTABLISH TASK
INCLUDE MOD1
MAP PRl:
BUILD MODl
END

The INCLUDE command specifies that all the object modules in the
input file MOD1.0BJ are to be included in the image. The file
extension .OBJ is the default extension for the INCLUDE command.
Because INCLUDE is an active command, it is executed immediately.

The MAP command specifies that an establishment summary is to be
output to PR1:. The MAP command is a passive command that is
executed only when the BUILD command is entered.

The BUILD command builds the image and stores it in file
MODl.TSK. The file extension .TSK is the default extension for
the BUILD command. The BUILD command is an active command that
is executed immediately.

The END command is an active command that terminates the linkage
editor. Because the OPTION command is not specified, the
defaults are in effect. See Chapter 3 for a description of the
OPTION command.

48-005 FOO R05 4-1

4.3 BUILDING FORTRAN, COBOL, AND COMMON ASSEMBLY LANGUAGE:/32
(CAL/32) TASK IMAGES

This section provides examples for building COBOL, FORTRAN, a.nd
CAL/32 task images, linking subroutine libraries, outputting Link
maps, using the OPTION command, and embedding Link commands in
object modules.

There are three types of images that can be built through the use
of the ESTABLISH command: task, operating system, and partial
images.

4.3.1 Building a COBOL Task Image

The following example builds a task image from the COBOL object
module MOD2.0BJ containing external references. The task ima.ge
includes the single precision floating point (SPFP) capability.
A map is generated listing the names and locations of all modules
and entry points in address order.

Example:

ESTABLISH TASK
INCLUDE MOD2
LIBRARY COBOL.LIB
OPTION FLOAT
MAP PRl: , ADDRESS
BUILD MOD2.TSK
END

The INCLUDE command specifies that all the object modules in the
input file, MOD2.0BJ, are included in the image.

The LIBRARY command specifies that the COBOL run-time libra.ry
(RTL) file, COBOL.LIB, is searched and any routines that conta.in
entry points matching external references are included in the
task image. The LIBRARY command is a passive command that caus:es
the specified library to be searched when the image is built.

The OPTION command specifies that the SPFP capability is included
as part of the task image. All other parameters of this comma.nd
take their default values.

The MAP command specifies that an establishment summary and a
listing of the names and locations of all modules and entry
points in address order are generated.

The BUILD command builds the task image and stores it in f i.le
MOD2.TSK.

The END command terminates the linkage editor.

4-2 48-005 FOO '.ROS

4.3.2 Building a FORTRAN Task Image

The following example builds a task image from the FORTRAN object
module, MOD3.0BJ, containing external references. The image
includes both SPFP and double precision floating point (DPFP}
capabilities and additional workspace for the user and standard
RTLs.

Both cross-reference and alphabetic Link maps are output to the
printer.

Example:

INCLUDE MOD3
LIBRARY USERLIB,F7RTL
OPTION DFLOAT,FLOAT,WORK=XAOO
MAP PRl:,ALPHABETIC,XREF
BUILD MOD3
END

The INCLUDE command specifies that the object modules in the
input file, MOD3.0BJ, are included in the image.

The LIBRARY command specifies that the user library file,
USERLIB.OBJ, and FORTRAN RTL file, F7RTL.OBJ, are searched in the
order that they are named and that any routines containing entry
points matching external references are included in the task
image.

The OPTION command specifies that the SPFP and DPFP capabilities
and 4840 bytes of additional workspace for the RTLs are included
as part of the task image. All other parameters of the command
take their default values.

The MAP command generates an establishment summary, an alphabetic
map listing the names and locations of all modules and entry
points and a cross-reference map of all entry points, and modules
referencing them.

The BUILD command builds the task image and stores it in file
MOD3.TSK.

The END command terminates the linkage editor.

4.3.3 Building a Common Assembly Language/32 (CAL/32) Task Image
Using Embedded Link Commands

The following example builds a task image from the CAL object
module, MOD4.0BJ, containing external references and embedded
Link commands9 The image includes SPFP and DPFP capabilities.
An establishment summary, cross-reference, and alphabetic maps
are output to the printer.

48-005 FOO ROS 4-3

Execution of all embedded Link commands in MOD4 is disabled by
the NDCMD command. Link commands embedded in the user libra.ry
are enabled by the DCMD command. Two commands may be entered on
one line separated by a semicolon. Comment lines are specif i.ed
by preceding each comment with an asterisk.

Example:

NDCMD;*IGNORE EMBEDDED COMMANDS IN MOD4
INCLUDE MOD4: LIBRARY USERLIB
OPTION DFLOAT,FLOAT,WORK=4840
MAP PRl:,ALPHABETIC,XREF
DCMD;*PROCESS EMBEDDED COMMANDS IN LIBRARY MODULES
BUILD MOD4
END

Link accepts passive commands that are compiled or assembled into
an object module. These commands are treated as if they occurred
at the point where the module is included. Therefore, passive
commands embedded in object modules specified by an INCLUDE
command are treated as if they were entered immediately after the
INCLUDE command. Commands embedded in object modules specified
by a LIBRARY command are treated as if they were entered
immediately before the next BUILD command. The NDCMD comma.nd
causes all subsequent embedded commands to be ignored. The DCMD
command enables this feature.

4.4 BUILDING OVERLAYED TASK IMAGES

This section discusses building overlayed task images. ~1he

overlay feature allows a task to be broken into sections so it
can be executed using less main storage than its total size.

4.4.1 Overlaying a Program Using Link

During its lifetime, a program may become very large. Link
provides a means to execute a program in an area of main storage
that is not actually large enough to contain the entire task at
one time. Link divides such a program into nodes, collections of
modules, and common blocks, which are loaded as needed. Only one
private node, the root, must remain in main memory throughout the
execution of the program: the other nodes reside on disk, from
where they are fetched when needed.

To ensure the integrity of the overlayed program, an overlay
structure must be carefully designed. This structure is a tree
that shows which nodes of a program occupy the same main memory
at different times. Figure 4-1 is a graphic example of an
overlay tree structure.

4-4 48-005 FOO ROS

Sample FORTRAN Program

Call B
Call C
Call X
END: MAIN

Subroutine B

Call X

END: B

Subroutine C

Call D

Call X

END: C

Subroutine D
Call X
Call E
Call F

END: D

Subroutine E
Global E AND F
Call X

END: E

Subroutine F
Global E AND F
Call X

END: F

Subroutine X

END: X

routine B

Overlay Tree Structure

I Main routine .MAIN
I routine X

routine C
routine D

I
Global E_AND_F

I
I
I

routine E

I
I
I

routine F

Figure 4-1 Sample FORTRAN Program with Overlay Tree Structure

48-005 FOO ROS 4-5

The sample FORTRAN program is composed of one main routine and
six subprograms~ B, C, D, E, F, and X. The main routine calls B
and c. C, in turn, calls D which calls E and F. All routines
call X, and E and F share the global variable E_AND_F.

The main routine must reside in the root node throughout the
execution of the task. Also, X should be placed in the root
because all other routines call X in this sample program.

The execution of B and C are mutually exclusive; that is, they
never call each other directly or indirectly. Therefore, thE~se
two subprograms can occupy the same address space. C must remain
in storage while D, E, and F are executing. However, there is
nothing to be gained by separating routines C and D since they
must be present simultaneously, so C and D can be placed in the
same node.

The following Link command sequence can be used to implement t:he
overlay structure in Figure 4-1.

INCLUDE MYPROG.OBJ,.MAIN
INCLUDE ,X
OVERLAY B,l

INCLUDE ,B
OVERLAY CD,1

INCLUDE ,C
INCLUDE ,D
OVERLAY E,2

INCLUDE ,E
OVERLAY F,2

INCLUDE ,F
LIBRARY MYLIB.OBJ
LIBRARY F7RTL.OBJ
BUILD MYPROG

The INCLUDE command specifies that the object module .MAIN in the
input file MYPROG.OBJ is to be included in the image. .~.IN

resides in the root node. Because the following INCLUDE comma.nd
is specified before any OVERLAY command, X is placed in the root
node. This is done since all other routines call X.

The OVERLAY command specifies the start of a node and the node!' s
relative position within the tree structure. The first OVERLAY
command defines an overlay area named B with a depth level of
one. The INCLUDE command specifies that the object module called
B is part of overlay B.

The second OVERLAY command defines an overlay area named CD with
a depth level of one.

The third and fourth OVERLAY commands define overlay areas named
E and F with a depth level of two, which indicates that the:se
overlays are descendants of overlay CD.

4-6 48-005 FOO ROS

The LIBRARY commands specify that the two RTL files, MYLIB and
the standard RTL, are to be searched by Link (MYLIB first, then
F7RTL.OBJ) for any routines containing entry points matching the
unresolved external references of the program. Link places a
copy of a library routine in the referencing node unless an
ancestor node already contains a copy.

Each node has a fixed length in bytes. The total size of a task
depends upon both the routine composition of each node and the
structure of the overlay tree. An overlay structure can be
represented by a set of parallel paths. A path can be defined as
a particular set of nodes (one at each level), each of which is
a descendent from the previous level. Therefore, the total size
of a task is determined by the path in which the node sizes add
up to the greatest number of bytes. By using the cross-reference
map from Link, one can manually build a call-tree representation
of a program (similar to the one shown in Figure 4-1) as an aid
in determining the smallest possible task size.

The BUILD command builds the image, which consists of the root
segment, overlay areas, and the subprograms. ·

4.4.2 Moving Common Blocks

Normally, the placement of a common block or global blocks within
an overlayed task is determined by the locations that ref er to
the block. Named common and global blocks, however, are
initially positioned by Link no closer to the root than any
particular reference to the block. In the sample FORTRAN program
in Figure 4-1, subprograms E and F both refer to the global
variables E AND F. Link will place E AND F in the node
containing subprograms c and D.

The first consequence is that named common and global entities
are initialized every time the overlay is fetched from disk. The
second consequence is that more than one copy of a common or
global entity can exist on separate paths in the program. That
is, two or more overlays can have their own separate and private
copies of a common or global entity. These copies could then
contain different values.

Link provides the POSITION command to reposition common or global
entities into an overlay closer to the root than they normally
would be positioned. Global E AND F, in the sample program, can
be forced into the root node by-inserting into the sample Link
command sequence:

POSITION Common=E_AND_F,To=.ROOT

The following example moves a common block called BETA, which is
referred to by subprograms E and F in Figure 4-1, to the root
node in the overlay structure by using the POSITION command.

48-005 FOO ROS 4-7

Example:

INCLUDE MYPROG.OBJ,.MAIN
OVERLAY B,1

LIBRARY MYLIB.OBJ
POSITION COMMON=BETA,TO=.ROOT

END

The POSITION command in the above example specifies that the
conunon block named BETA is to be placed in the root node. Only
one copy of a common block can occur in a task. An error results
if an attempt is made to position a common block in a node that
is at a numerically higher level or is not in the same path as
the node in which it would normally be placed.

4.5 BUILDING PARTIAL IMAGES

Partial images, such as shared data areas which contain block
data modules and shared code segments, must be separately built
by Link prior to being used or referenced by tasks. A partial
image is a single task segment that can be used by one or more
separate tasks. A partial image has no user-dedicated location
(UDL) •

To build a partial image, the IMAGE parameter is specified in the
ESTABLISH command. The ACCESS parameter of the ESTABLISH comm.and
is then used to specify the access privileges of the partial
image. The access privilege can be read (R), execute (E), read
and execute (RE), read and write (RW), or read, write, and
execute {RWE) • The ADDRESS parameter of the ESTABLISH comm.and
specifies the starting address of the partial image segment. The
NAME parameter of the ESTABLISH command specifies a package name
for a partial image.

4.5.1 Linking and Using Shared Data Areas

A program can reference data areas that can be read or written to
by other tasks running on the same or different processors.

Shared data areas must be built and linked into shared image
modules before they can be specified in the RESOLVE command. To
build a data area, use a FORTRAN block data subprogram.

4-8 48-005 FOO ROS

Example:

C THIS BLOCK DATA SUBPROGRAM BUILDS
C A DATA AREA CONSISTING OF BOTH
C NAMED COMMON AND GLOBAL COMMON
C VARIABLES

BLOCK DATA DAT Al
GLOBAL A,B,C,D,E
COMMON /ABC/I,J,K
COMMON /DEF/IJ,M,N
REAL A,B,C,D,E
DATA A,B,C,D,E,I,J,K,L,M,N/5*0.0,6*0/
END

WARNING

BECAUSE OS/32 DOES NOT SUPPORT STATIC
INITIALIZATION WITHIN GLOBAL TASK COMMON
AREAS, BLOCK DATA SUBPROGRAMS USED FOR
STRUCTURING SHARED DATA WITHIN GLOBAL
TASK COMMON MUST NOT CONTAIN DATA
STATEMENTS.

The following sequence of Link commands are to be used to
establish a block data structure as a shared data area.

ESTABLISH IMAGE,ACCESS=RW
INCLUDE DATAl
EXTERNAL ABC.,DEF.,A,B,C,D,E
BUILD DATAl.IMG
END

In the previous command sequences, DATAl is not only the name of
the block data subprogram but also the name of the file
containing the object code for the subprogram.

The ESTABLISH command specifies that a shared data area is to be
built with read/write access privileges.

The INCLUDE command specifies that the object modules in the
input file DATAl.OBJ are to be included in the shared data area.

These Link commands establish DATAl.IMG as a shared data area
containing DATAl. Items within the shared area are arranged
exactly as they are arranged within the block data structure.
Each shared area can contain more than one block data structure.
These structures are arranged within the shared area according to
the order in which they are included by the Link INCLUDE command.

48-005 FOO ROS 4-9

When establishing the shared area, all global variables and named
common blocks whose names should be externally accessible must be
listed in the Link EXTERNAL command. Common block names are
limited to eight characters. If a name is less than eight
characters, a period must be appended by the user to the name
(e.g., ABC. and DEF.). There is no need to add the period to a
global name.

When establishing a shared data area that is to be located in the
global task common (memory shared by two or more processors), use
the name of the global task common as the argument to the Link
BUILD command. This name is determined by the TCOM command at
sysgen. For example, if DATAl is to be established as a shared
area within a global task common named GTC, the Link BUILD
command would be written as follows:

BUILD GTC

Where:

GTC is the name given by the system administrator
at sysgen time to that shared data area.

To link a FORTRAN task that can reference a shared data area, use
the Link RESOLVE command as shown in the following example.

Example:

ESTABLISH TASK
MAP MOD7.MAP,XREF
OPTION DFLOAT,FLOAT,WORK={XCOO,XCOO),

SYSSPACE=XFFFF
INCLUDE MOD7.0BJ
RESOLVE DATAl.IMG
LIBRARY F7RTL.OBJ/S
BUILD MOD7.TSK
END

The MAP command generates an establishment summary, a map listing
the names and locations of all modules and entry points and a
cross-reference map of all entry points and modules referencing
them.

The OPTION command specifies that the image includes both SPFP
and DPFP capabilities and additional workspace for the user and
additional system space for the task.

The INCLUDE command specifies that the object modules in the
input file, MOD7.0BJ, are included in the image ..

4-10 48-005 FOO ROS

The RESOLVE command is used to establish a FORTRAN task image
that references the shared area, DATAl. The LIBRARY command
specifies that the FORTRAN RTL file, F7RTL.OBJ, is to be
searched. When a program is linked, external references that
were not resolved by the INCLUDE and RESOLVE commands are matched
against the library entry points. All external references
generated from modules included from the library cause the
library modules that resolve those external references to be
included, regardless of the order of the modules within the
library.

The BUILD command builds the task image and stores it in file
MOD7.TSK.

The END command terminates the linkage editor.

The following example
called BDALPHA.OBJ and
called ALPHA and BETA.

includes two
BDBETA.OBJ

blockdata object modules
to initialize common blocks

Example:

ESTABLISH IMAGE,ACCESS=RW,NAME=COMMONS
INCLUDE BDALPHA.OBJ
INCLUDE BDBETA.OBJ
EXTERNAL ALPHA,BETA
BUILD COMMONS.IMG

The ESTABLISH command specifies that the partial image to be
built is called COMMONS.IMG with read/write access privileges.
The ACCESS and NAME parameters provide information that is
verified against the parameters specified in a RESOLVE command
for a task making reference to the partial image. For example,
if a RESOLVE command in a task ref erring to the partial image
specifies read-only access, the access is allowed because it is
a subset of the maximum access privileges specified in the
previous example. A request for execute access is rejected.

The two INCLUDE commands include the blockdata object modules
called BDALPHA.OBJ and BDBETA.OBJ.

The EXTERNAL command specifies that the two common blocks ALPHA
and BETA can be referred to by tasks outside the partial image.

The BUILD command builds the partial image and stores it in file
COMMONS.IMG.

The OS/32 operator TCOM command creates common areas within the
system's task space. A task can use this common area instead of
the partial image. See the OS/32 Operator Reference Manual for
an explanation of the TCOM command.

48-005 FOO ROS 4-11

4.5.2 Linking and Using Shared Code Segments

If more than one task will be using a reentrant RTL, the RTL, or
individual modules of it, can be included in a shared code
segment. This segment can be built by the user as shown in the
following example.

Example:

ESTABLISH IMAGE,ACCESS=RE,ADDRESS=FOOOO
INCLUDE F7RTL.OBJ,.ATAN
INCLUDE ,.SIN
INCLUDE ,.COS
INCLUDE , • U
INCLUDE , • V
LIBRARY F7RTL
BUILD FORTLIB.IMG
END

The ESTABLISH command specifies that a partial image is built
with read/execute access privileges.

The INCLUDE command specifies that the object module, .ATAN, in
the input file, F7RTL.OBJ, is included in the image. The
following INCLUDE commands include modules .SIN, .COS, .u, and .v
in the file F7RTL.OBJ specified in the previous INCLUDE command.

The LIBRARY command specifies that the FORTRAN RTL
F7RTL.OBJ, is searched.

file,

The BUILD command
modules specified
file FORTLIB.IMG.

builds the partial image from the obj E~Ct
in the INCLUDE commands and stores it in the

The END command terminates the linkage editor.

By building the Link command file as shown in the following
example, references to shared code segments specified by the
RESOLVE command are placed in the FORTRAN task. The shared code
segment, in this case FORTLIB.IMG, must be available at program
execution.

Example:

4-12

RESOLVE FORTLIB.IMG
LIBRARY F7RTL.OBJ/S
INCLUDE MOD3
OPTION DFLOAT,FLOAT,WORK=X1770
MAP PRl:,ALPHABETIC,XREF
BUILD MOD3
END

48-005 FOO ROS

The following example includes an object file called F7RTL.OBJ to
be included in a partial image that includes local entry points.

The LOCAL command of Link is used to establish entry points to
shared code segment that can only be referenced by that segment.

ESTABLISH IMAGE,ACCESS=RE,ADDRESS=FOOOO
INCLUDE F7RTL.OBJ
LOCAL .DI,.DO,.TGD,.TASKID,.HYDEX,.HYEXP
BUILD F7 RTL. IMG
END

The ESTABLISH command specifies that a partial image, F7RTL.IMG,
is built with read-execute access privileges only. The ADDRESS
parameter specifies that this segment is placed at XFOOOO in the
address space of any task which references it. If the ADDRESS
parameter is not specified, or the task making reference does not
specify an address in the RESOLVE command, Link automatically
locates the partial image within the address space of the task
making reference.

The INCLUDE command includes all the FORTR.AN RTL routines in
F7RTL.OBJ in the partial image to be built.

The LOCAL command prevents the
.TASKID, .HYDEX, and .HYEXP
outside the partial image.

entry points .DI, .DO, .TGD,
from being ref erred to by tasks

The BUILD command builds the partial image and stores it in file
F7RTL. IMG.

The END command terminates the linkage editor.

4.6 BUILDING A TASK IMAGE REFERRING TO PARTIAL IMAGES

OS/32 allows multiple tasks to share a single copy of a partial
task. . In particular, shared common blocks allow data to be
shared or communicated among tasks. Shared copies of RTLs allow
more efficient use of main memory.

The following example builds a FORTRAN task image. MOD7.0BJ is
a FORTRAN program that refers to two partial images, COMMONB and
F7RTL. COMMONB contains two common blocks, DELTA and GAMMA.
F7RTL contains the FORTRAN RTL.

Example:

INCLUDE MOD7
RESOLVE COMMON.IMG,NAME=COMMONB,ACCESS=R,
CONTINUE>STRUCTURE=(DELTA/X1000,GAMMA/X80}
RESOLVE F7RTL.IMG
MAP PRl : , ADDRESS
BUILD MOD7
END

48-005 FOO ROS 4-13

The INCLUDE command specifies that the object module MOD7.0BJ is
included in the image.

The first RESOLVE command specifies that COMMON.IMG is the file
containing a partial image called COMMONB. This file consists of
the two common blocks, DELTA and GAMMA. The access privile£res
are read-only. Because a comma is the last character entered on
the line, the CONTINUE> prompt is displayed in interactive mode
and the remaining' parameters are entered. The STRUCTURE
parameter specifies that the first 4,096 bytes of the partial
image, COMMONB, are allocated for the common block DELTA. 'I'he
next 128 bytes after the first 4,096 bytes are allocated for the
common block GAMMA. The parameters in the RESOLVE command are
compared with the information in the file COMMON.IMG. 'Any
information not provided by the parameters is taken from the file
or defaulted. At run-time, the preinitialized partial image is
loaded from the file.

Normally, common blocks are considered local. Note that either
the STRUCTURE parameter in a subsequent RESOLVE command in the
task making reference or the EXTERNAL command, not both, CLre
required to match external references to the common with the
initialized common blocks.

The second RESOLVE command specifies that another partial imCLge
is loaded from the file F7RTL.IMG. All of the other parameters
default to information contained in the file.

The MAP command specifies that an establishment summary and a
listing of the names and locations of all modules and entry
points in address order are generated.

The BUILD command builds the task image and stores it in the file
MOD7.TSK. The partial images are referenced to resolve external
references and to determine the placement of common blocks. ~~he
partial images are stored as separate image files and are not
included as part of the task image that references them.

The END command terminates the linkage editor.

4-14 48-005 FOO ROS

4.7 BUILDING AN OPERATING SYSTEM IMAGE

The following example builds an operating system image from the
object module MTSYSTEM.OBJ produced by SYSGEN/32. MTSYSTEM.OBJ
contains no external references. A map is generated listing the
names and locations of a.11 symbols, program labels and entry
points in alphabetical and address order.

Example:

ESTABLISH OS
INCLUDE MTSYSTEM.OBJ
MAP PRl:,ADDRESS,ALPHABETIC
BUILD OS32ROn.OOO
END

The ESTABLISH command specifies that an operating system image is
to be built.

The INCLUDE command specifies that the input file MTSYSTEM.OBJ
contains the object module to be included in the image.

The MAP command specifies that an establishment summary and a
listing of the names and locations of all modules and entry
points in alphabetical and address order are to be generated and
sent to PRl:.

The BUILD command builds the operating system image and stores it
in the file OS32ROn.OOO which can be loaded into memory by the
bootstrap loader or the loader storage unit {LSU). n is the
current revision of the OS/32 operating system.

The END command terminates the linkage editor.

48-005 FOO ROS 4-15

CHAPTER 5
VIRTUAL TASK MANAGEMENT (VTM)

5.1 INTRODUCTION

VTM provides a virtual memory capability for large FORTRAN tasks.
User tasks (u-tasks) consisting of up to 16MB of code and data
can execute in as little as 128kB of user task memory. VTM also
supports Common Assembly Language/32 (CAL/32) and Pascal programs
with some code restrictions.

VTM uses the memory address translator {MAT) to optimize run-time
performance. For the 3280MPS and 3280E MPS Systems, VTM uses the
virtual address translator (VAT) • It contains run-time
algorithms to provide performance for the widest possible scope
of u-task characteristics. VTM employs a least recently used
working set algorithm. The virtual activity of a VTM task is
independent of the operating system and does not impact other
tasks in the system. VTM·tasks are nonrollable by default but
can be made rollable.

5.2 SYSTEM REQUIREMENTS

The minimum requirements for use of this feature are any
processors equipped with MAT or VAT hardware, and OS/32 R06-02
software version and higher. Models 8/32 and 3220 are not
supported.

5.3 USER INTERFACE TO VIRTUAL TASK MANAGEMENT (VTM)

The following sections describe how to use VTM.

5.3.1 Declaring a Virtual Task Management {VTM) Task

The user declares a virtual task via the Link OPTION command:

OPTION [VTM=n]

Where:

n is the number of 64kB working pages desired
for task memory management.

48-005 FOO R05 5-1

The minimum value of n is 2, the default is 4 and the maximum is
127. The number of working pages needed for reasonable
performance varies depending upon the user's applications and
needs.

NOTE

The VTM option and the Link overlay
feature are incompatible and must not be
used in the same task.

5.3.2 Virtual Task Management (VTM) Secondary Storage

An additional option may also be specified via the Link OPTION
command:

OPTION [VFD=fd]

Where:

f d is a contiguous file used as
storage for the virtual task.

secondary

If the VFD option is not entered, VTM allocates a temporary
contiguous file at run-time.

The specified file descriptor (fd) may be the task image file
itself, in which case the task image file might be destroyed at
run-time. When OPTION VFD is specified, multiple copies of the
same task image cannot be run concurrently. The minimum sizE? of
fd is (CTOP/256)-255 sectors (plus 256 sectors if fd is the task
ima. g e f i 1 e } •

5.3.3 Including the Virtual Task Management (VTM} Module

Prior to including any task modules, the user must include the
VTM object module ,VTM32.0BJ, supplied with the operating system
package. The VTM module is approximately 8kB in size.

5.3.4 Virtual Task Workspace

All workspace required for the execution of a virtual task must
be requested at Link time via the WORK option of the Link OPTION
command. Additional memory cannot be obtained via the I~OAD
command.

5-2 48-005 FOO ROS

S.3.5 Example of Virtual Task Management (VTM) Link Procedures

The following Link command sequence demonstrates how to build a
VTM task.

Example:

OPTION VTM=5
OPTION DFLOAT,FLOAT,WORK=X3000
INCLUDE VTM32
INCLUDE MAIN
INCLUDE SUBl
INCLUDE SUB2
LIBRARY F7RTL
MAP PR:
BUILD FORTTASK
END

FORTTASK executes in five working pages, using a temporary file
as secondary storage.

5.3.6 Virtual Task Management (VTM) Logical Units

For a VTM task, the two highest numbered, valid task logical
units are reserved for VTM use. For example, if OPTION LU is
allowed to default to 15 logical units, logical units 13 and 14
are reserved for VTM.

5.3.7 Rolling of Virtual Task Management (VTM) Tasks

VTM tasks are nonrollable by default. A user can specify VTM
task roll eligibility after loading and before starting the task
by entering the following command:

MODIFY 104,1

5.3.8 Absolute Code

Absolute-origined code or data cannot extend beyond X'400' in a
VTM task.

48-005 FOO ROS 5-3

5.4 FORTRAN OPERATIONAL RULES

The following are FORTRAN operational rules for the VTM feature!:

• The u-task workspace requested by the WORK option should not
exceed 64kB in a virtual task. Input/output (I/O) transfers
are limited to 64kB.

• Nonlanguage I/0 calls made through the use of SYSIO fall under
the CAL coding restrictions.

5.5 COMMON ASSEMBLY LANGUAGE/32 (CAL/32} RESTRICTIONS

Supervisor call 1 (SVCl) I/O buffers and SVC parameter blocks
should not cross logical 64kB boundaries to ensure proper
execution. It is suggested that the buffers be placed in the
first 64kB of the task to avoid this possibility.

5.6 PASCAL CODE RESTRICTIONS

To ensure proper execution, declare file variables before any
other variables in the global variable declarations of the main
program. The total size of the file buffers, plus 80 bytes of
control data for ,each file, should not exceed 64kB.

5.7 PERFORMANCE MEASUREMENT

The user can analyze the relative performance of a virtual task
with different numbers of working pages using the data on the
number of I/Os available in the OS/32 DISPLAY ACCOUNTING command.

NOTE

Certain tasks, by their nature, do not
perform well in a virtual environment.
Tasks with extensive compute bound array
access in which a working set cannot be
contained in the number of specified
working pages might operate poorly as VTM
tasks.

5.8 VIRTUAL TASK MANAGEMENT (VTM) ERROR CONDITIONS

VTM error conditions result in the task being paused or cancelled
with end of task (EOT) code of 1 and an appropriate error
message. A summary of VTM error messages is presented in
Appendix c.

5-4 48-005 FOO ROS

CHAPTER 6
RELOCATION WITHIN EXECUTIVE TASKS (E-TASKS)

6.1 INTRODUCTION

A relocatable e-task is a method by which a programmer is freed
from the traditional restrictions associated with writing an
e-task. Within a relocatable e-task, a programmer can specify
address constants and RX3 instructions without having to relocate
them manually from within the program. The programmer can also
write programs in modules,_which means that overlays may also be
developed. Furthermore, all relocation is user-transparent, so
the programmer does not have to worry about any special
housekeeping or additional memory requirements.

6.2 WRITING AND LINKING A RELOCATABLE EXECUTIVE TASK (E-TASK)

This section describes how to take advantage of relocation within
e-tasks.

6.2.1 Features of and Restrictions on Relocation

Any 3- or 4-byte relocatable address can be used within a
relocatable e-task; this includes address constants, RX3 and RI2
instructions and EXTRNs. Halfword address constants and absolute
data will not be relocated. Because of the previous restriction,
only programs written in Common Assembly Language/32 (CAL/32) can
be used with relocation, since some of the object code generated
by the compilers for other programming languages can reference
absolute address locations. All other restrictions associated
with e-tasks apply (for example, shared segments cannot be
specified); the exception is that the program can be linked with
overlays. Common blocks can also be referenced as long as the
common block is not linked as a sharable segment.

E-task relocation has been. available since the OS/32 ROB-01
software version. Attempting to execute a relocatable e-task on
an earlier version of the operating system will cause unknown
results and possibly crash the system.

48-005 FOO ROS 6-1

6.2.2 Declaring an Executive Task (E-Task) as Relocatable

The user specifies an e-task to be relocatable at Link time via
the OPTION command:

OPTION ETASK,RELOCATE

Both options must be specified in order for the relocation tables
to be built. If ETASK is omitted, the RELOCATION option is
ignored; if RELOCATION is omitted, an e-task is established but
no relocation tables are built.

NOTE

Do not attempt to run any utility as a
relocatable e-task since some of the
utilities make references to absolute
address locations.

6.2.3 Example of Linking a Relocatable Executive Task (E-Task)

The following example illustrates one possibility for linking an
e-task as relocatable:

ESTABLISH TASK
OPTION ETASK,RELOCATE
INCLUDE PROG
INCLUDE SUBI
INCLUDE SUB2
LIBRARY PROG.LIB
BUILD PROG
END

Note that the only consideration in establishing the task was
that the ETASK and RELOCATE options were specified.

6-2 48-005 FOO ROS

6.3 FUNCTIONAL DETAILS

Link builds a relocation table for the main program and a
relocation table for each overlay built. The relocation table
consists of fullword address constants pointing to the data
within the task image to be relocated. For the main program,
this table is found within the task image file after the program
itself and is pointed to within the loader information block
(LIB) by the label LIB.PRN. For each overlay, the table is found
on the first record following the overlay. The last entry within
each relocation table is a -1 (Y'FFFF FFFF'); this is a sentinel
to signal the end of the table. An entry which has its
high-order byte set to X'Ol' is called an ignored entry, because
the loader ignores that entry at load time.

6.4 MEMORY REQUIREMENTS

A relocatable e-task requires no additional memory to run since
the relocation tables are used only at load time. However, an
extra 256-byte buff er is reserved within the task control block
(TCB) for a task established with overlays; this buffer is used
to read the relocation table every time an overlay is loaded.

48-005 FOO ROS 6-3

CHAPTER 7
THE OBJECT/32 UTILITY

7.1 INTRODUCTION

OBJECT/32 is a utility that greatly improves the performance of
Link. When a library is processed through the OBJECT/32 Utility,
its format is restructured from a 126-byte record length to a
2048-byte record length. In addition, modules in the library are
put into an indexed file, and all labels associated with the
modules appear in the beginning of this file.

The OBJECT/32 format library significantly improves Link's
processing time because Link no longer has to read an entire
object file to locate modules, entry points, externs, etc. All
of the information Link needs is contained at the top of the
library in the indexed file.

Link is modified to recognize and take advantage of the
"fast-style" OBJECT/32 libraries. No changes are necessary to
Link commands to process OBJECT/32 libraries. OBJECT/32
libraries are processed the same as any other library by
specifying them in Link's INCLUDE and LIBRARY commands.

Using OBJECT/32 is optional. Link recognizes the current
126-byte format libraries or the 2048-byte format of an OBJECT/32
library. Processing an OBJECT/32 library through Link is
transparent to the user except for the noticeable decrease in
processing time.

Once a library is converted into OBJECT/32 format, it is not
necessary to retain the .126-byte version. The OS/32 DELETE
command can be used to delete unwanted libraries and save disk
space. If necessary, the library can be returned to 126-byte
format by using the OBJECT/32 EXTRACT command.

7.2 OBJECT/32 FUNCTIONALITY

The OBJECT/32 Utility has many features to aid in the creation of
OBJECT/32 libraries. OBJECT/32 commands allows the user to:

• Establish new libraries as OBJECT/32 libraries.

• Include modules from other libraries (either OBJECT/32 format
or 126-byte format) into an OBJECT/32 library.

48-005 FOO ROS 7-1

• Replace modules from other libraries (either OBJECT/32 format
or 126-byte format) into an OBJECT/32 library.

• Display a directory of modules in
alphabetical or sequential order.
also available.

an OBJECT/32 library in
A module cross reference is

• Delete modules or a range of modules from an OBJECT/32
library.

• Extract OBJECT/32 modules to a file and convert them back to
126-byte format (for use by the PATCH/32 Utility).

• Assign a descriptive title to an OBJECT/32 library.

The last section in this chapter provides examples of OBJECT/32
sessions.

7.3 LOADING AND STARTING OBJECT/32

Because OBJECT/32 and Link are separate programs, the Link
software does not have to reside on your system to use OBJECT/32.

7.3.l Loading OBJECT/32

The following OS/32 LOAD command loads OBJECT/32 from the system
console:

.LOAD taskid, [fd] [,workspace]

Parameters:

task id

f d

workspace

7-2

is the 1- to a-character alphanumeric string
specifying the name of the OBJECT/32 task
after it has been loaded into main memory.

is the file descriptor of the file containing
the OBJECT/32 image to be loaded into main
memory. If this parameter is omitted, the
default is taskid.TSK.

is a decimal number (in kilobytes) which
specifies the additional area of workspace to
be added for OBJECT/32 processing.

48-005 FOO R05

The following OS/32 LOAD command loads OBJECT/32
Multi-Terminal Monitor (MTM):

from a

LOAD fd[,workspace]

Parameters:

f d

workspace

is the file descriptor of the file containing
the OBJECT/32 image to be loaded into main
memory.

is a decimal number (in kilobytes) which
specifies the additional area of workspace to
be added for OBJECT/32 processing.

7.3.2 Starting OBJECT/32

After OBJECT/32 is loaded, the OS/32 or MTM START command starts
the OBJECT/32 Utility. A COMMAND file or device, LIST file or
device, or LOG file pr device can be specified with the START
command.

Format:

START [,COMMAND=fd] [,LIST=fd] [,LOG=fd]

Parameters:

COMMAND

LIST

LOG

48-005 FOO ROS

fd specifies the input file or device from
which OBJECT/32 commands are read. If this
parameter is omitted, CON: (the command input
device) is the default. An error is generated
if fd cannot be assigned. If the command
input device is interactive, all messages are
sent to it. If the command input file is
batch, all messages are sent to the file
specified by the LIST parameter.

fd is the file or device to be used for
utility output. An error is generated if fd
cannot be assigned. If this option is
omitted, CON: is the default.

is the file or device used for logging a copy
of all OBJECT/32 input commands. An error is
generated if fd cannot be assigned. If this
option is omitted, CON: is the default.
Error messages and other output will be
directed to the LIST file or device, not the
LOG file or device.

7-3

Functional Details:

After OBJECT/32 is started, the following message is displayed:

Concurrent Computer Corp OBJECT/32 03-929 Rxx-xx

The rev1s1on number (Rxx) indicates the revision level of
OBJECT/32 and the update number (-xx) indicates the update level
of OBJECT/32. If the command device is interactive, a greater
than sign (>) is displayed to indicate that OBJECT/32 is ready
for command input.

7.4 OBJECT/32 COMMANDS

OBJECT/32 commands are listed on the following pages. These
commands allow you to create and maintain OBJECT/32 libraries.

There are several unique command conventions associated with
OBJECT/32:

• The format moda-modb specifies a range of modules. Both
rnoda and rnodb are optional parameters. If a starting module
is not specified, the first module in the library is assumed.
If an ending module is not specified, the last module in the
library is assumed. For example, the DELETE command may be
entered with the following formats:

DELETE rnodulenamel-modulename5

DELETE -modulename3

The first example will delete the range of modules specified
by the starting and ending module names.

Since a starting module name was not specified in the second
example, the first module in the library is assumed. All
modules from the beginning of the library up to and including
modulename3 are deleted.

• For commands that accept module ranges as valid input,
entering a dash (-) without entering starting or ending module
names refers to all modules in the library. For example,
DELETE will delete all modules in the library.

7-4 48-005 FOO JROS

COMMAND

7.5 COMMAND COMMAND

The COMMAND command reassigns the command input file or device.

Format:

Parameters:

f d

48-005 FOO ROS

is the file or device used for command input.
The previous command input file (defined by
the START option) is closed. An error is
generated if fd cannot be assigned. If a file
is not specified, CON: (the console device)
is the default.

7-5

DELETE

7.6 DELETE COMMAND

The DELETE command deletes modules from the current OBJECT/32
library.

Format:

{
mod, [,mod2 [, ••• , modn] ~ [moda] -[modbJJl}

l:mLETE IJ

Parameters:

mod represents the module or range of modules to
be deleted from the current library.

a dash (-) allows you to delete all modules
from the current OBJECT/32 library.

Functional Details:

More than one module
names with commas
which they appear in
particular libxary,
parameter).

can be deleted by separating the module
(,). Modules are deleted in the sequence in
the library. To view the modules in a

use the DIRECTORY command (with the BRIEF

The DELETE command also allows you to delete a range of modules
by entering starting and ending module names separated by a dash.
Since modules are deleted in the sequence in which they appear in
the library, all modules between the starting and ending module
names are d~leted.

To delete all modules in the current library, simply enter a dash
(-) (e.g., DELETE -) • A dash indicates to the utility that
there is n) starting or ending module; therefore, all modules
should be deleted.

An error is generated if an entered module does not exist in the
current OBJECT/32 library.

7-6 48-005 FOO F~OS

DIRECTORY I

7.7 DIRECTORY COMMAND

The DIRECTORY Command displays a directory of modules in the
current OBJECT/32 library to the LIST device.

Format:

Parameters:

mod

LONG
BRIEF

ALPHABETIC
XREFERENCE
SEQUENTIAL

48-005 FOO ROS

represents the module name or range of module
names to be displayed from the current
OBJECT/32 library.

defines the type of information to be dis
played about the entered modules. Both
parameters (LONG and BRIEF) display the module
name and the date in which the module was
included or replaced in the library. In
addition to this information, the LONG
parameter displays all embedded Link commands,
defined location counters, and defined labels
(entry points, externs, commons). If this
parameter is omitted, BRIEF is the default.
If the XREFERENCE parameter is specified as
the sequence in which to display the modules,
the BRIEF and LONG parameters are ignored.

defines the sequence in which the modules
are displayed. If ALPHABETIC is specified,
modules are displayed in alphabetical order.
If XREFERENCE is specified, a cross reference
is generated which lists all entry points and
the module(s) in which they are defined.
Specifying XREFERENCE as the method of
displaying modules negates the use of the
BRIEF and LONG parameters. If SEQUENTIAL is
specified, modules are displayed in the order
in which they are included in the library. If
this parameter is omitted, SEQUENTIAL is the
default.

7-7

Functional Details:

An error is generated if one of the specified modules does not
exist in the library.

Examples:

Listed below is an example of the DIRECTORY command using the
BRIEF and SEQUENTIAL options (the defaults):

>DIRECTORY

Concurrent Computer Corp OBJECT/32 03-929 Rxx-xx
Date Run: Fri Jan 06 13:57:47 1989

Library Name: M300:ABC.LIB/120

Title: OBJECT/32 Library ABC

Page l
Sequential Map

Module Name: C
Module Name: A
Module name: B

Date Included: Fri Jan 06 13:51:54 1989
Date Included: Fri Jan 06 13:51:54 1989
Date Included: Fri Jan 06 13:51:54 1989

Listed below is an example of the DIRECTORY command using the
BRIEF and ALPHABETIC options:

7-8

>DIRECTORY ,ALPHABETIC

Concurrent Computer Corp OBJECT/32 03-929 Rxx-xx
Date Run: Fri Jan 06 13:57:47 1989

Library Name: M300:ABC.LIB/120

Title: OBJECT/32 Library ABC

Page 1
Alphabetic Map

Module Name: A
Module Name: B
Module name: c

Date Included: Fri Jan 06 13:51:54 1989
Date Included: Fri Jan 06 13:51:54 1989
Date Included: Fri Jan 06 13:51:54 1989

48-005 FOO HOS

Listed below is an example of the DIRECTORY command using the
LONG option (the default is SEQUENTIAL) for Module C:

>DIRECTORY C,LONG

Concurrent Computer Corp OBJECT/32 03-929 Rxx-xx
Date Run: Fri Jan 06 13:57:47 1989

Page 1
Sequential Map

Library Name: M300:ABC.LIB/120

Title: OBJECT/32 Library ABC

Module Name C: Date Included: Fri Jan 06 13:51:54 1989

Location Counter Information:
Loe # Size Section Name Data Pool Name

1 44:I IMPTOP

Defined Labels:

Name Type Loe # Address Off set Size
c ENTRY 1 A: I
B EXT RN 1 40:I 64
A WXTRN 1 3C:I 0
B EXT RN 0 O:A

Listed below is an example of the DIRECTORY command using the
XREFERENCE option:

Listed below is an example of the DIRECTORY command using the
XREFERENCE option:

>DIRECTORY ,XREFERENCE

Concurrent Computer Corp OBJECT/32 03-929 Rxx-xx Page 1
Date Run: Fri Jan 06 13:57:47 1989 Cross-Reference Map

Library Name: M300:ABC.LIB/120

Title: OBJECT/32 Library ABC

Name
A
B
c
D

48-005 FOO ROS

Referenced
wx-c
EX-C
EN-C
DN-B

WN-A
EN-B
EX-A

EX-B

7-9

DONE

7.8 DONE COMMAND

The DONE command saves changes made to the current OBJECT/32
library and terminates the OBJECT/32 Utility.

Format:

DONE

Functional Details:

If changes are made to the OBJECT/32 library, the DONE command
has the combined effect of the SAVE and END commands.

If changes are not made to the library, the DONE command has the
same effect as the END command.

7-10 48-005 FOO ROS

END

7.9 END COMMAND

The END command terminates the OBJECT/32 Utility.

Format:

END

Functional Details:

If changes are made to an OBJECT/32 library (by using the
INCLUDE, REPLACE, DELETE, or TITLE commands), a SAVE command must
be issued first to save the changes made. If a SAVE command is
not issued before the END command, a message is displayed "Please
issue a SAVE command first". If the END command is entered a
second time, OBJECT/32 terminates and all changes made to the
library are lost.

48-005 FOO ROS 7-11

ESTABLISH

7.10 ESTABLISH COMMAND

The ESTABLISH command allocates an OBJECT/32 library to be built
and establishes the library as the current input library.

Format:

ESTABLISH fd [,title]

Parameters:

f d

title

Functional Details:

is the OBJECT/32 library
error is generated if
exists.

to be built. An
the filename already

is an optional title to
library for descriptive
library name is displayed
DIRECTORY command.

be given to
purposes.

as part of

the
This
the

The INCLUDE command is used to add modules to a newly established
object library.

7-12 48-oos FOO nos

EXTRACT

7.11 EXTRACT COMMAND

The EXTRACT command extracts a copy of a specified module(s) from
the OBJECT/32 library and converts them to the 126-byte format.

Format:

EXTRACT
fd [, [mod, ~mod2 [, ••• [,modnJJJ]]

[moda] - [modb]

Parameters:

f d

mod

Functional Details:

is the file to which the specified module(s)
are dumped. If the file does not already
exist, it is allocated automatically.·

is the module name(s) or range of module names
to be extracted and returned to the 126-byte
format. Modules are extracted from the
OBJECT/32 library in sequential order. An
error is generated if the specified modules do
not exist in the current library.

If module names are not specified with the EXTRACT command, the
entire current OBJECT/32 library is copied to the 126-byte format
and dumped to the specified filename.

The EXTRACT command must be
patched using the Patch
OBJECT/32 module format.
extracted and returned to
PATCH/32.

48-005 FOO ROS

used to extract modules that are
Utility. Patch will not recognize an
Therefore, the modules must be
the 126-byte format for use by

7-13

GET

7.12 GET COMMAND

The GET command retrieves an OBJECT/32 library for processing and
establishes it as the current library.

Format:

GET f d

Parameters:

f d

Functional Details:

is the OBJECT/32 library to assign for
processing. If the library is already
assigned by another GET command, the file is
closed first. An error is generated if the
file cannot be assigned or if it is not an
OBJECT/32 library.

Some OBJECT/32 commands (e.g., DELETE, DIRECTORY, EXTRACT,
INCLUDE, REPLACE, SAVE, and TITLE) issue the message, "GET or
ESTABLISH has not been issued yet" if the GET command is not
issued first to retrieve (or establish) an OBJECT/32 library for
processing.

7-14 4a-oos FOO nos

HELP

7.13 HELP COMMAND

The HELP command provides a list of all OBJECT/32 commands. HELP
also describes the syntax and function of each command.

Format:

Parameters:

mnemonic is the mnemonic for an OBJECT/32 command to be
described by HELP.

* lists all OBJECT/32 commands.

Functional Details:

If a list device has been specified i~ the START command
OBJECT/32, HELP outputs all lists and descriptions of
OBJECT/32 commands to the list device.

for
the

For some commands, the HELP information will require more than
one screen. In this case, OBJECT/32 displays a maximum of 23
lines, then prompts for a carriage return (CR) to continue the
display. Any character except a carriage return ends the
remainder of the display.

48-005 FOO ROS 7-15

E'xample:

*LOAD OBJECT32,256
*START
Concurrent Computer Corp OBJECT/32 Rxx-xx
>help *

C(OMMAND)
END
H (ELP)
P (AUSE)

DE (LETE)
ES(TABLISH)
I (NCLUDE)
R(EPLACE)

DI (RECTORY)
EX(TRACT)
LI (ST)
S (AVE)

For HELP on any of the above command mnemonics,
type HELP <mnemonic>

>help save

SAVE:

DO (NE)
G (ET)
LO(G)
T (ITLE)

This command saves the current input library along with any
changes which were made to the library

>

7-16

Format:

S (AVE) fd

fd specifies the file to be written. If "*" is specified,
the file will be saved under the name of the current
input file. If a filename is specified, the file must
not already exist.

48-005 FOO ROS

INCLUDE

7.14 INCLUDE COMMAND

The INCLUDE command reads specified modules into the current
OBJECT/32 library.

Format:

.INCLUDE
f d [, [mod, ~mod2 [, ... [,modnJJJ]]

[moda] - [modb]

Parameters:

f d

mod

is the filename from which the specified
modules is read. The INCLUDE command appends
the modules to the end of the current
OBJECT/32 library. The specified file may be
either an OBJECT/32 library or a 126-byte
format library.

is the module name(s) or range of modules to
include in the OBJECT/32 library. An error is
generated if any of the specified modules
exist in the OBJECT/32 library.

Functional Details:

When a command is issued that changes the OBJECT/32 library (in
this case, the INCLUDE command), a SAVE command must be issued to
save all changes.

Examples:

INCLUDE LIBRARY.l

Include all modules from LIBRARY.I into the current
library.

INCLUDE LIBRARY.l, module.l

Include module.I from LIBRARY.I into
library.

the

INCLUDE LIBRARY .1, -module. 4 ,module. 6 ,modul e.10-

current

Incl ude module.I through module.4, then module.6, and
module.IO through the end of LIBRARY.I.

48-005 FOO ROS 7-17

LIST

7.15 LIST COMMAND

The LIST command opens a file or device for OBJECT/32 output.

Format:

Parameters:

f d

7-18

is the file or device specified for OBJECT/32
output. An error is generated if fd cannot be
assigned. If this parameter is omitted, the
default list device is CON: (the console
device).

4 8-005 FOO ROS

LOG

7 .16 LOG COMMAND

The LOG command opens a file or device for logging a copy of all
OBJECT/32 input commands.

Format:

LOG [=] fd

Parameters:

f d

Functional Details:

is the file or device used for logging a copy
of all OBJECT/32 input commands. An error is
generated if f d cannot be assigned.

Error messages and other output go to the LIST file or device,
not the LOG file or device.

48-005 FOO ROS 7-19

PAUSE

7.17 PAUSE COMMAND

The PAUSE command pauses the OBJECT/32 Utility.

Format:

£AUSE

Functional Details:

The OBJECT/32 Utility can be resumed by using the OS/32 CONTINUE
command.

7-20 48-005 FOO ROS

REPLACE

7.18 REPLACE COMMAND

The REPLACE command reads specified modules into the current
OBJECT/32 library.

Format:

REPLACE
f d [, [mod, ~ mod2 [, ••• [, modnJ] J]

[mod a] - [modb]

Parameters:

f d

mod

Functional Details:

is the library from which modules are read.
The specified library may be either in
OBJECT/32 format or in 126-byte format.

represents the module or range of modules to
be read from the specified library. More than
one module may be specified (separated by
commas [,]). A range of modules may be
specified (separated by a hyphen [-]). If a
starting module is not specified, the first
module in the library is assumed. If an
ending module is not specified, the last
module in the library is assumed. If no
modules are specified, all modules in fd are
read in and replaced in the current OBJECT/32
library.

If a specified module currently exists in the OBJECT/32 library,
the module being read in replaces the module currently in the
library. If the specified modules do not exist in the OBJECT/32
library, the module(s) are appended to the end of the library.

48-005 FOO ROS 7-21

-----------SAVE

7.19 SAVE COMMAND

The SAVE command saves the current OBJECT/32 library along with
all changes that are made to the library.

Format:

.S.AVE {* }
f d

Parameters:

f d

Functional Details:

is the library name to be saved. If "*" is
entered (e.g., SAVE*), the library is saved
under its current name. If a new name is
given to the library, the filename must not
exist.

When a SAVE command is issued, all modules in the library are
saved under the name "fd" in OBJECT/32 format.

A SAVE command must be issued if changes have been made to a
library by the INCLUDE, REPLACE, DELETE, or TITLE commands.

7-22 48-005 FOO ROS

TITLE

7.20 TITLE COMMAND

The TITLE command assigns a descriptive title to an OBJECT/32
library.

Format:

TITLE title

Parameters:

title

Functional Details:

is the descriptive title to
OBJECT/32 library. The
optionally enclosed in
quotation marks and can be
bytes.

be assigned to the
title may be

single or double
a maximum of 80

This title displays as part of the DIRECTORY command. To remove
a title from a library, enter the TITLE command and press the
space bar once.

48-005 FOO ROS 7-23

7.21 SAMPLE OBJECT/32 SESSION

Listed below are several examples of OBJECT/32 sessions:

The example listed below shows OBJECT/32 being loaded and started
in an interactive environment (a COMMAND file was not specified).
The user is creating a new OBJECT/32 library (LIBRARY.!) and is
including modules (module.! and module.2) from an existing
library (LIBRARY.2). In addition, a range of modules are being
replaced from another library (LIBRARY.3). The DIRECTORY command
is used (with its defaults) to display the modules just copied
into the new OBJECT/32 library. A SAVE command is issued to save
the new library and convert it into the OBJECT/32 format.

*LOAD OBJECT32
*START
Concurrent Computer Corp OBJECT/32 03-929
>ESTABLISH LIBRARY.I
>TITLE LIBRARY NUMBER ONE
>INCLUDE LIBRARY.2,module.l,module.2
>REPLACE LIBRARY.3,module.4-module.6
>DIRECTORY

Concurrent Computer Corp OBJECT/32 Rxx-xx
Date Run: Mon Jan 02 13:49:09 1989

Library Name: M300:LIBRARY.l/120

Title: LIBRARY NUMBER ONE

Module Name: module.l Date Included:
Module Name: module. 2 Date Included:
Module Name: module.4 Date Replaced:
Module Name: module. 5 Date Replaced:
Module Name: module. 6 Date Replaced:

>SAVE*
>END
*

7-24

Rxx-xx

Page 1
Sequential Map

Mon Jan 02 13:45:30 1989
Mon Jan 02 13:45:30 1989
Mon Jan 02 13:46.10 1989
Mon Jan 02 13:46:10 1989
Mon Jan 02 13:46:10 1989

48-oos FOO nos

The example below shows additional modules being replaced in
LIBRARY.l. OBJECT/32 is already loaded and started.

>GET LIBRARY .1
>REPLACE LIBRARY.4,module.1-module.3
>DIRECTORY

Concurrent Computer Corp OBJECT/32 Rxx-xx
Date Run: Tue Jan 03 11:15:10 1989

Library Name: M300:LIBRARY.l/120

Title: LIBRARY NUMBER ONE

Module Name: module. I Date Replaced:
Module Name: module. 2 Date Replaced:
Module Name: module.4 Date Replaced:
Module Name: module.5 Date Replaced:
Module Name: module.6 Date Replaced:
Module Name: module. 3 Date Replaced:

>SAVE*
>END
*

Page 1
Sequential Map

Tue Jan 03 11:14:30 1989
Tue Jan 03 11:14:30 1989
Mon Jan 02 13:46.10 1989
Mon Jan 02 13:46:10 1989
Mon Jan 02 13:46:10 1989
Tue Jan 03 11:14:30 1989

Because the REPLACE command was issued, module.l and module.2
originally included in LIBRARY.l are replaced by module.1 and
module.2 from LIBRARY.4 (because they had the same name).
Because rnodule.3 did not exist in LIBRARY.l, it was appended to
the end of the modules in LIBRARY .1.

48-005 FOO ROS 7-25

APPENDIX A
LINK AND OBJECT/32 COMMAND SUMMARY

L..lliK COMMANDS

~ILE fd t{;}]
llllILD fd [,ABORT] [,ERROR]

filiD

ESTABLISH

:11;:1:
OS

R

E

.IMAGE , ACCESS=)::8ig;,)

RW

RWE

[{
mOOOO}] ,ADDRESS= *

[, .NAME=package name]

~TERNAL common block name1 ~ ••• ,common block name~

FFILE fd ~{~}]

48-005 FOO ROS A-1

[
mnemo. nic]

HELP .·:·.·::-:-:
::::w:::

INCLUDE [fd] [-B.LKDATA] , . - .
.[

'.[{· mo-dule1
}· J .[{mod.ulen}·].·· , ••• ,modulex] .• •· .• •

: * ; . ! * : . .

L_IBRARY f d 1 [, ••• , fdn]

L.QCAL entry point1 [, ••• , entry pointn]

LOG f d

MAP [fd] [,.ALPHABETIC] [,.ADDRESS] [,XBEF] [,JlliRE·FERENCED]

NDCMD

A-2 -48-005 FOO ROS

OPTION

[{

DTABLES }]
• H'm!' '''''"" [,.!lli.TRY= (main entry, debug entry>]

>>:.:<g,y~§:

[{
FLOAT }] ' [{INTERCEPT }] [{b}] , , , IOBLOCKS= .
·~:~1911 .:1~:lj'J.;~.gg~·g, :~·

[,TEQSAVE={iii~IAL}] [•{;~;;~}] [•{;;~}] ~VFD=fd]
[• VTM={~}] [·WORK=({ nomin~~~i;iorkspace} •{ maxim~;~;;;J~space }) l
[.{::;;~.~} J [{;;;:;~}]

48-005 FOO R05 A-3

PAUSE

{

name } nodename
.EQSITION !:QMMON= (name,,:··•namenl [.'rQ={ .ROOT }]

P.ESOLVE [fd][,.NAME=package name]

R

E

, ACCESS= :.f{m:. [, ADDRESS=mOOOO]

RW

RWE

[,STRUCTURE= (name 1 [/size1] [, ••• ,namen][/sizenJ)]

[,SIZE= ([min[, max J])]

REWIND f d

TITLE title

VOLUME voln

A-4 48-005 FOO ROS

OBJECT/32 COMMANDS

{
mod, I, rnod2 [, ••• _' rnod 0J ~ [moda] -[rnodbJJl}

DELETE L IJ

DONE

ESTABLISH fd [,title]

EXTRACT
fd[, [mod, tmod2 [, ... [,modnJJJ]]

[mod a] - [rnodb]

GET fd

LIST [=]{•.••./•~.::·d·:··•.·.•••~.•: .•.. } CON.~

LOG [=] fd

~AUSE

4 8-0 0 5 Fa· 0 RO 5 A-5

REPLACE
fd[, [mod, Gmod2 [, ... [,modnJJJ]]

[moda] - [modb]

.QAVE

~ITLE title

A-6 48-005 FOO ROS

APPENDIX B
ERROR MESSAGE SUMMARY

This appendix provides an alphabetical list and description of
Link and OBJECT/32 messages.

There are instances when Link will construct messages as needed
based on the following generic form. The following format is
used to indicate that a supervisor call 7 (SVC7) error has
occurred.

Format 1:

x(ERROR y) ON z TO fd

Where variable x is the type of error, y is the hexadecimal
status, z is the SVC7 function attempted, and fd is the file
name. See Table B-1 for the error types and status.

Example:

BUFFER ERROR (ERROR 8) ON ASSIGN TO D8:BERDC.OBJ/P

In this example, buffer error is the type of error, the hex
status 8 refers to system space and ASSIGN is the function
attempted to a file named BERDC.OBJ/P on volume D8.

ADDRESS OVERFLOW AT xxxxxx

A halfword relocatable address was larger than 64kB.

ATTEMPT TO POSITION x IN A DIFFERENT PATH

An attempt was made to position a common block to a node that
is not in the same path as is the node referring to it.

ATTEMPT TO POSITION x IN LOWER-LEVEL NODE

An attempt was made to reposition a common block program in
a lower-level node.

48-005 FOO ROS B-1

ATTEMPT TO REFERENCE ADDRESS number
ADDRESS OUTSIDE OF ADDRESS SPACE FOR IMAGE
-FILE: vol:filename.ext/a -MODULE:module
-RECORD:number - BYTE:number

The task image
address space
of the task.
record number,
the error.

being built refers to an address outside the
of any of the known segments or partial ima~1es
This message identifies the file, module,
and byte number of the object code that caused

BUILD NOT SUPPORTED ON THIS DEVICE

A file other than an indexed, nonbuffered indexed,
contiguous, or extended contiguous file, or the null device
was specified for building the image.

CANNOT ALLOW SHARABLE CODE - 'ETASK' ALREADY SPECIFIED

An OPTION SEGMENTED or a RESOLVE command is issued after
OPTION ETASK was specified.

CANNOT ENABLE E-TASK SUPPORT - SHARABLE CODE HAS ALREADY BJrnN
SPECIFIED

An OPTION ETASK command is issued after an OPTION SEGMEN~rED
or a RESOLVE command was specified.

CHECKSUM ERROR FILE: x MODULE: y RECORD: z

An invalid checksum is detected while reading an object file.

CHECKSUM ERROR ON INPUT LIBRARY - EXPECTING XXXX, FOUND YYYY

OBJECT/32 discovered an object record whose checksum was
calculated as XXXX, but the checksum found was YYYY. ~rhe
specified object file is probably corrupt. Recompile ithe
program and try again.

COMMAND FORMAT ERROR

B-2

While processing a command, OBJECT/32 encountered a syntax
error within the command (e.g., a missing command, too many
arguments, etc.).

48-005 FOO JROS

COMMAND NOT PERMITTED

Command is not valid for the type of build or is not
permitted as in an embedded command in an object module.

COMMON x ENCOUNTERED IN MORE THAN ONE PARTIAL IMAGE

The same common block is specified in more than one of the
partial images ref erred to by the task.

COMMON BLOCK x, UNREFERENCED

The common block named is never ref erred to.

COMMON BLOCK x SPECIFIED IN POSITION COMMAND IS PART OF PARTIAL
IMAGE

An attempt is made to reposition a common block that is part
of a partial image by using the POSITION command.

CONTINUATION NOT PERMITTED

An attempt is made to continue a command embedded in an
object module.

ENTRY POINT x SPECIFIED IN ENTRY OPTION NOT FOUND

The ENTRY
nonexistent
root node.

parameter of the OPTION command specified a
entry point or an entry point in other than the

ENTRY POINT x SPECIFIED IN LOCAL COMMAND NOT DEFINED

The entry point named was never defined.

ESTABLISHMENT ABORTED

A serious error occurred that prevented the image from being
built. Link is cleared as if an image was built with all
options reset to initial load values. In batch mode, Link
terminates with an end of task code 3.

EXTERNAL REFERENCE TO OVERLAY CONTAINS OFFSET AT xxxxxx

An external reference with offset cannot be resolved because
the corresponding entry point is an overlay.

48-005 FOO ROS B-3

EXTRA RIGHT PARENTHESIS

There is either an extra right parenthesis or a missing :Left
parenthesis.

f d IS NOT A PARTIAL IMAGE

The file descriptor (fd) specified by the RESOLVE command is
not a partial image.

f d NOT FOUND

An assignment error occurred when Link attempted to assign
the specified file.

GET OR ESTABLISH HAS NOT BEEN ISSUED YET

In OBJECT/32, the GET or ESTABLISH commands must be is::>ued
first to assign a current object library.

INPUT LIBRARY IS NOT AN OBJECT32 FORMAT LIBRARY

A GET command was issued that specified a file which was not
built by OBJECT/32.

INTERNAL FAILURE n

An internal error occurred within OBJECT/32 which would cause
hazardous results if execution continued. If OBJECT/32 is
running in interactive mode, it pauses. If OBJECT/32 is
continued or is running in th~ batch mode, it aborts with an
end of task (EOT) code of 3.

INSUFFICIENT MEMORY - PLEASE RELOAD WITH A LARGER SEGMENT SIZl8

OBJECT/32 did not have enough work space to build its
internal tables and aborted with an EOT code of 2. OBJEC~r/32
should be linked with a minimum of 44K of work space. To
correct this error, reload OBJECT/32 with a minimum of 46K
segment size increment.

INSUFFICIENT WORK SPACE

B-4

Link is not loaded with enough workspace. Link terminates
with an EOT code of 3, returns to command mode, and clears
itself as if an image was built with all options reset to
initial load values.

48-005 FOO ROS

INVALID BLOCK DATA LOADER ITEM ENCOUNTERED: X

While processing
OBJECT/32 found
data segment. A
record number,
occurred.

a block data segment within an object file,
a loader item which is invalid for a block

second message is displayed indicating the
byte offset, and filename in which· the error

The specified object file was probably corrupt. To correct
the error, recompile the program in question and try again.

INVALID CHARACTERS IN NAME

Invalid characters in an entry point, common block, or
overlay node name are encountered.

INVALID COMBINATION OF OPERANDS

A particular combination of operands is invalid.

INVALID COMMAND

While processi_ng a command 1 ine, Link
encountered an unrecognizable command. To
error, ensure each command entered on the last
is a valid Link or OBJECT/32 command.

INVALID DELIMITER

or OBJECT/32
correct this
command line

A unknown delimiter was found at the end of a parameter or
where a parameter should have been.

INVALID FILENAME SPECIFIED

The filename specified within an OBJECT/32 command is not a
valid OS/32 filename.

INVALID FILE DESCRIPTOR

A syntax error occurred in the specified fd.

INVALID KEYWORD

Misspelled keyword.

INVALID LOADER ITEM ENCOUNTERED: X

While processing an object file, OBJECT/32 found a loader
item it did not recognize. The object file (represented by

48-005 FOO ROS B-5

X) is probably corrupt. A second message is displayed
indicating the record number, byte offset, and filename in
which the error occurred. To correct this error, recompile
the program and try again.

INVALID NUMERIC VALUE

A numeric value is expected but not encountered.

INVALID PARAMETER

An invalid parameter is specified in a command.

INVALID PARAMETER LENGTH

The length of the value of an operand is longer or shorter
than expected.

INVALID PARAMETER SPECIFIED

While processing a command, OBJECT/32 encountered a parameter
that it did not recognize or is outside of the valid range
for that parameter.

INVALID POINTER TO LOCATION xxxxxx ENCOUNTERED IN
REFERENCE CHAIN FOR xxxxxx AT LOCATION xxxxxx
THIS INVALID POINTER ERROR OCCURRED IN
- FILE: vol:filename.ext/a - MODULE: module
- RECORD: number - BYTE:number

Link encountered an invalid link in an address chain. When
Link resolves a chain of references, it traces back through
the chain, link by link, replacing the chain pointer with the
resolved address of the object. If a chain has a forward
pointer within a module or if a pointer indicates an area
outside of the module, Link ceases to follow this chain,
leaves the remainder of the chain unresolved, and prints the
above error message.

INVALID SEQUENCE NUMBER ON INPUT LIBRARY - EXPECTED XXXX,
FOUND YYYY

B-6

In an object file, the first two bytes of each record contain
a sequence number. This number starts at -1 for the first
record, -2 for the second, etc. OBJECT/32 discovered an
object record which did not follow this sequence. OBJECT/32
expected to find a sequence number of XXXX, but instead found
YYYY. A second message displays indicating the record
number, byte offset, and filename in which the error

48-005 FOO ROS

occurred. To correct this error, recompile the specified
program and try again.

INVALID START OPTION

While processing its START options, OBJECT/32 encountered an
option it did not recognize. OBJECT/32 aborts with an EOT
code of 2.

I/O ERROR ON READ FROM LOGICAL UNIT N:

During OBJECT/32 processing, an error occurred while reading
from lu n. Another specific message displays indicating the
reason for the read failure.

I/O ERROR ON WRITE TO LOGICAL UNIT N:

During OBJECT/32 processing, an error occurred while writing
to lu n. Another more specific message displays indicating
the reason for the write failure.

LOCATION COUNTER number WAS DEFINED PREVIOUSLY
THIS ERROR OCCURRED IN
-FILE: vol:filename.ext/a -MODULE:module
-RECORD:number -BYTE:number

The specified location counter (LOC) number in the object
code is already defined by Link and cannot be redefined
within this object module. To correct this error, recompile
the module identified by this message.

LOCATION COUNTER number WAS NOT DEFINED PREVIOUSLY
THIS ERROR OCCURRED IN
-FILE: vol:filename.ext/a -MODULE:module
-RECORD:number -BYTE:number

The object code did not define the specified LOC for Link.
To correct this error, recompile the module identified by
this message.

MISSING PARAMETER

A required parameter is not specified.

MISSING RIGHT PARENTHESIS

There is a missing right parenthesis.

48-005 FOO ROS B-7

MODULE INCOMPLETE FILE: x MODULE: y

An end of file condition is detected before the end of
program loader item in an object module.

MODULE xxxxxxx ALREADY EXISTS

In OBJECT/32 an INCLUDE command is issued, but the specified
module name (xxxxxxx) already exists in the current library.
If the specified module is to replace the current module, use
the REPLACE command. OBJECT/32 will not allow modules with
the same name in an object library.

MODULE xxxxxx ATTEMPTS TO INITIALIZE xxxxxx THAT IS IN A PARTIA.L
IMAGE

While a task is being linked, the task cannot initialize any
common blocks within the partial images that are resolved
with the task. Consequently, if the task attempts to perform
an initialization (e.g., through a BLOCKDATA statement).
Link builds the image but no initialization of that comm.on
block is performed. After the task image is built, the task
common contains the data that was present when the partial
image was built. The above message indicates which object
module tried to perform the initialization of the specified
block within the partial image.

MODULE xxxxxxx NOT FOUND

A specified module name (xxxxxxx) was not found. This error
can occur in any command that accepts a module name, more
than one module name, or a range of module names as input.
To correct this error, ensure that the module name is spelled
correctly. In OBJECT/32, ensure that the current object
library contains the specified module(s).

MODULE name2 NOT FOUND OR IS LOCATED BEFORE MODULE namel

In OBJECT/32 commands that accept more than one module name
or module name ranges as input, the second module name
(name2) must be located sequentially after the first module
name (name!) in the current object library.

n AMBIGUOUSLY DEFINED SYMBOLS

B-8

Entry points are defined in parallel paths and are referred
to by a node common to both paths. This message appears in
the establishment summary of the Link maps and is followed by
a list of the ambiguously defined entry points.

48-005 FOO ROS

n MULTIPLY DEFINED SYMBOLS

The specified number (n) of entry points are encountered
which are defined more than once in the image being built.

n UNDEFINED EXTERNAL SYMBOLS

This message is output if any standard external symbols
remain unresolved after the image is built.

n UNDEFINED WEAK EXTERNAL SYMBOL (S)

This message is output if any weak external symbols remain
unresolved after the image is built.

name SPECIFIED IN POSITION COMMAND NOT FOUND

The named common block that is specified by a POSITION
command could not be found.

NODE IS NOT SUITABLE FOR OVERLAYS

This message indicates that
attempting to overlay the
segment.

the Link command sequence is
task in a partial image or pure

NO MODULES EXIST IN THE CURRENT LIBRARY

In OBJECT/32, a DIRECTORY command is issued, but the current
object library was empty.

NUMERIC VALUE OUT OF RANGE

A numeric operand is greater than the maximum permissible
value or less than the minimum permissible value.

OBJECT CODE ERROR (n) FILE: x MODULE: y RECORD: z BYTE m

An object code error occurred. If n=l, an invalid object
code item exists in object record. If n=2, the object code
item overflows the record. If n=3, a load program address
item is expected but not encountered.

OVERLAY DEFINED OUT OF ORDER

An OVERLAY command specified a level inconsistent with the
rules for defining overlays.

48-005 FOO ROS B-9

PLEASE ISSUE A SAVE COMMAND FIRST

In OBJECT/32 a GET, ESTABLISH, or END command was issued, but
the current object library was modified. To correct this
error, issue a SAVE command to save the changes made. If a
SAVE command is not issued and a GET, ESTABLISH, or :!~:ND
command is issued a second time, all changes made to the
library is lost.

PROGRAM TRANSFER ADDRESS IN PROGRAM module IN AN OVERLAY

A program transfer address {PTA) {starting address) is
specified for the task in a module that is in an overlay
node. Link ignores the specified PTA and uses the task's
default starting address.

RECORD LENGTH FOR MAP DEVICE/FILE < 64 BYTES

The device or file specified for the output of the maps has
a record length of less than 64 bytes.

REQUIRED OPERAND MISSING

OBJECT/32 unexpectedly encountered the end of a command. To
correct this error, ensure that all required operands are
entered on the command line and that a command does not emd
with a comma.

SEGMENT AT x OVERLAPS PREVIOUSLY DEFINED SEGMENT

The end address of an impure, pure or shared logical segrnemt
was greater than the beginning address of another segment.
See the establishment summary for the names of the segments.

SEQUENCE ERROR FILE x MODULE: y RECORD: z

A sequence number error is detected while reading an object
module.

SIZE OF SEGMENT TRUNCATED TO PHYSICAL SIZE

B-10

The maximum length of the partial image specified by the SIZE
parameter in the RESOLVE command is larger than any existing
segment for that image. This message indicates that Link is
using the size of the existing segment for the maximum
partial image size rather than the maximum specified by SIZE.

48-005 FOO ROS

TOO MANY OPERANDS

More operands than allowed are encountered.

UNABLE TO ALLOCATE VOLN:FILENAME.EXT/ACCT#:

During an ESTABLISH or SAVE command, OBJECT/32 is unable to
allocate the filename which was specified by the command. A
second message displays indicating why the allocate failed.
Correct the error as described in the second message and try
again. If the action to be taken is unacceptable, specify a
different filename.

UNABLE TO ASSIGN VOLN:FILENAME.EXT/ACCT# TO LOGICAL UNIT N:

During any command in which a filename may be specified,
OBJECT/32 is unable to assign the filename. The lu to which
OBJECT/32 is trying to assign is shown as "N". A second
message displays indicating the reason why the assign failed.

UNABLE TO DELETE VOLN:FILENAME.EXT/ACCT#:

During a SAVE command, OBJECT/32 is unable to delete the old
library in order to rename the temporary library to the
original library name. Two additional messages display. The
first message indicates why the.delete failed. The second
message states "Updated library now in
VOLN:OBJECT32.EXT/ACCT#", which indicates the filename where
the updated library may be found.

UNABLE TO RENAME VOLN:OBJECT32.EXT/ACCT# TO
VOLN:FILENAME.EXT/ACCT#

During a SAVE command, OBJECT/32 is unable to rename the
temporary library to the original library name. Two
additional messages display. The first message indicates the
reason why the rename failed. The second message states
"Updated library now in VOLN:OBJECT32.EXT/ACCT#", which
indicates the filename where the updated library may be
found.

UPDATED LIBRARY NOW IN VOLN:OBJECT32.EXT/ACCT#

During a SAVE command, OBJECT/32 is unable to delete the old
library or rename the new library. VOLN:OBJECT32.EXT/ACCTi
is the name of the temporary file which is used to save the
new library.

48-005 FOO ROS B-11

VTM TASK WORKSPACE IS GREATER THAN 64K BYTES

When a FORTRAN task is linked as a virtual task, the user
task (u-task) workspace requested by the WORK option should
not exceed 64kB. This message indicates that the WORK option
for the FORTRAN task being linked exceeds 64kB.

VIRTUAL SYMBOL TABLE SPACE LIMIT EXCEEDED

The current maximum symbol table size is inadequate. Link
should be loaded with a larger workspace. Link terminates
with an EOT code of 3.

WARNING: ABSOLUTE SPACE LESS THAN 100

Less than 100 bytes of absolute code were reserved for the
User-dedicated Locati n (UDL) •

WARNING: ADDRESS OF PARTIAL IMAGE SEGMENT FOR fd DOES NOT MATCH
ADDRESS SPECIFIED ON RESOLVE COMMAND

This warning is output if the RESOLVE command specifies an fd
and an address for an address-dependent partial image and
that address does not match the address in the loader
information block (LIB) for that partial image. Link uses
the address specified in the partial image's LIB.

WARNING: COMMON xxxxxx APPEARS MORE THAN ONCE IN STRUCTURE
COMMAND

In the STRUCTURE parameter of the RESOLVE command, the us 1er
attempted to use the same name to define two separate common
blocks. Common block names within a partial image must be
unique.

WARNING: ITEM NOT PERMITTED IN AN ADDRESS INDEPENDENT SEGMENT
-FILE: vol:filename.ext/a -MODULE:module
-RECORD:number -BYTE:number

B-12

The loader item encountered cannot be properly processed
while building an address-independent partial image segment.
Loader items involving relocatable data or items which set
the loation counter (LOC) to an absolute value cause this
message to be displayed.

4 8-005 FOO RIDS

WARNING: ITEM NOT PERMITTED IN E-TASK
-FILE: vol:filename.ext/a -MODULE:module
-RECORD:number -BYTE:number

The loader item encountered is not allowed in an executive
task (e-task) establishment.

WARNING: LOGICAL UNIT 254 IS RESERVED FOR DEBUG PROGRAM

This message is displayed if lu=255 is entered with the
DTABLES option. If the program is to be debugged using
DEBUG/32, lu254 cannot be assigned by the program.

WARNING: MORE THAN 16 SEGMENTATION REGISTERS REQUIRED

More than 16 segmentation registers are used, making this
image loadable only on a processor with greater than lMB of
memory.

WARNING: n AMBIGUOUS REFERENCES

External references are encountered that could be resolved to
more than one entry point.

WARNING: NAME OF PARTIAL IMAGE FOR fd DOES NOT MATCH NAME
SPECIFIED IN RESOLVE COMMAND

The name given to a partial image when it is linked does not
match the name specified in the NAME parameter of the RESOLVE
command. The package name specified in the RESOLVE command
overrides the name found in the LIB of the partial image
file.

WARNING: OPTION "NSEGMENTED" HAS BEEN SELECTED

An invalid segmentation option is selected.
nonsegmented task.

Link builds a

WARNING: OPTION "VTM" HAS BEEN DISABLED.
SPECIFIED

INCOMPATIBLE OPTIONS

User selected task options that are incompatible with VTM.

WARNING: OPTION "VTM" HAS BEEN DISABLED.
GREATER THAN X400.

TASK ABSOLUTE AREA

VTM will not run if the task absolute area is greater than
X'400'.

48-005 FOO ROS B-13

WARNING: OPTION "VTM" HAS BEEN DISABLED. VIRTUAL CTOP EXCEEDS
ACTUAL CTOP OF TASK.

Number of allocated VTM pages exceeds the actual size of the
task. Increase task workspace or decrease number of V'J~M
pages.

WARNING: OPTION "VTM" HAS BEEN DISABLED. VTM OBJECT MODULE NOT
FOUND

User omitted INCLUDE command for VTM32.0BJ.

WARNING: OVERRIDE SIZE FOR COMMON BLOCK x SMALLER THAN ACTUAL
SIZE

The override size specified in the STRUCTURE parameter of the
RESOLVE command was smaller than the largest definition of
the common block.

WARNING: PREASSIGNMENT FOR LU NOT USED

After Link is loaded, the user assigned an lu that could not
be used as an input/output (I/O) file for Link.

WARNING: TASK REQUIRES MORE THAN lMB ADDRESS SPACE

The task being built requires more than lMB of memory address
space.

WARNING: TASK REQUIRES MORE THAN 12MB ADDRESS SPACE

The task being built requires more than 12MB of memory
address space.

x (ERROR y) ON z TO fd

A SVC? error occurred. Variable x is the type of error, y is
the hexadecimal status, z is the SVC7 function, and fd is the
file. See Table B-1 for the error types and status.

x (ERROR y) ON z TO LU n FILE fd

B-14

An SVCl error occurred. Variable x is the type of error, y
is the hexadecimal status, z is the function that was being
performed and n is the lu number. See Table B-2 for the
error types and status.

48-005 FOO ROS

TABLE B-1 SVC7 ERROR TYPES AND STATUS

FUNCTION I ERROR TYPE I HEX STATUS I
z I x I y I MEANING

==
ALLOCATE
ASSIGN

CLOSE

DELETE

FETCH
ATTRIBUTES

VOLUME

NAME

DISC SPACE

PROTECTION I
KEY I

3

4

5

6

I Volume was not specified.

I Filename does not exist
I on specified volume.

I Insufficient disk space
I available to allocate or
I assign a file.

I File being assigned had
I non-zero protection keys.

ACCESS I 7 I Specified access privi-
PRIVILEGE I I leges could not be

I I granted.

SYSTEM I 8 I Insufficient system
SPACE OR I I space available.
BUFFER I I

ASSIGNMENT I
I

9 I lu is already assigned
I or device is offline.

DEVICE r A I Specified volume is not
TYPE I I a direct access device.
--------------------------~---------------------~--~-

FILE I B I The f d format is
DESCRIPTOR I I incorrect.

TRAP I C Specified trap genera-
GENERATING I ting device does not
DEVICE I exist in the system, is

I not a connectable device,
I or is busy and cannot be
I connected.

------------~----~-------~--~-----~--------~-----~---
GROUP/ I D I Allocation or deletion
SYSTEM I I was attempted on a
FILE I I system or group file.

------------------------------~--------------~-------~------------

On an ALLOCATE, ASSIGN, or DELETE function an error code of 8 is
indicative of a BUFFER error. On a DELETE or FETCH ATTRIBUTES
function an error code of 8 is indicative of a SYSTEM SPACE
error.

48-005 FOO ROS B-15

TABLE B-2 SVCl ERROR TYPES AND STATUS

I
FUNCTION I ERROR TYPE

z I x

I HEX I
I STATUS I
I y I MEANING

===
READ

WRITE

COMMAND

B-16

DEVICE
UNAVAILABLE

AO I Device has been turned
I off (set off-line).

END OF MEDIUM I 90 I End of tape or disk
I I encountered.

-----~------------------------------~-~~~~-----~-~
END OF FILE I 88 I End of tape or disk

I I encountered.

UNRECOVERABLE I
I

RECOVERABLE

84

82

I An unrecoverable error
I occurred.

I A recoverable error
I occurred.

48-005 FOO R.05

APPENDIX C
VIRTUAL TASK MANAGEMENT (VTM) MESSAGE SUMMARY

INSUFFICIENT VTM WORKING PAGES

For this task, at least one additional working page is
required for VTM execution.

MEM FAULT AT xxxxxx INSTR AT xxxxxx CODE=xx (task paused}

Task memory access fault. xx specifies the code that
describes the type of memory error fault that occurred.
These· codes are defined in Table C-1.

TABLE C-1 VTM MEMORY FAULT CODES

MEMORY I
FAUL'!' I
CODES I MEANING

===
00 Supervisor call (SVC} address

error.

01 Execute protect error.

02 Write protect error.

03 Read protect error.

04 Access level error.

07 Shared segment table size error.

08 Private segment table size error.

48-005 FOO ROS C-1

TASK FD ASGN-ERR - CODE=xx

Error in assigning task file. xx is the SVC? error status.

VIRT FD ALLO-ERR - CODE=xx

Error in allocating temporary file. xx is the SVC? error
status.

VIRT FD ASGN-ERR - CODE=xx

Error in assigning VFD file. xx is the SVC? error status.

VIRT FD NOT CONTIG

Specified file is not contiguous.

VIRT FD TOO SMALL

Specified file is too small.

VTM RD-ERR S'I1AT=xxxx (task paused)

Unrecoverable read error
transfer. xxxx is the
independent status of 00
error.

on a virtual
SVCl status
indicates a

VTM WT-ERR STAT=xxxx (task paused)

input/output (I/O)
halfword; a device
length of transfer

Unrecoverable write error on a virtual I/O transfer.
the SVCl status halfword; a device-independent status
indicates a length of transfer error.

xxxx is
of 00

C-2 48-005 FOO ROS

APPENDIX D
OBJECT MODULE FORMAT

Object modules accepted by Link are stored in indexed files with
a record length of 126 bytes. Each record contains . a sequence
number, a checksum and at least one loader item.

The sequence number is contained in the first two bytes of the
record. The first record of the module has a sequence number
of -1 (hexadecimal value FFFF). For each record following, one
is subtracted from the sequence number. Record two has the
sequence number -2 or FFFE. Record three has -3 or FFFD. This
continues until the last record in the object module is reached
or until a loader item is encountered which resets the sequence
number to -1.

The second two bytes of the record contain the checksum for the
record. It is calculated by taking -1 and performing an
EXCLUSIVE-OR operation on each halfword of data in the record
(except the checksum halfword itself).

The remainder of the record contains loader items. A loader item
is a command byte, followed by zero or more bytes of data. The
command byte informs Link how to interpret the data which follows
or requests Link to perform some specific action.

For example, loader item 11 is followed by six bytes of data.
The first three are to be loaded directly into the image at the
current location in the image. The last three are to be used as
an address off set from the beginning of the impure area for this
object module. The absolute address of the impure area is to be
added to this off set. The least significant three bytes of the
resulting sum are to be stored in the image immediately following
the first three bytes. The current location is to be incremented
by six bytes.

Loader items must end in the record in which they begin. They
may not begin in one record and finish in the following record.

Table D-1 lists the object code loader items accepted by Link
ROl. Each loader item is followed by a description of the data
to be associated with it.

48-005 FOO ROS D-1

TABLE D-1 OBJECT CODE LOADER ITEMS

LOADER I
ITEM I DATA FORMAT DESCRIPTION

===·====
0

1

2

3

4

5

6

7

8

9

A

I (none)

I (none)

I (none)

8 bytes name
3 bytes displacement
any of these loader items:

7, 8, 9, A, 10, 11, 15,
16, lB, lC, lD, lF-SB,
60, 61, 62, 63, 64

I 3 bytes address value

I 3 bytes address value

I 3 bytes address value

I 2 bytes address data

I 2 bytes address data

I 4 bytes address data

I 4 bytes address data

I End of record.

I End of object module.

I Reset sequence number.

Block data item.

I Absolute program address.

I Pure relocatable address.

I Impure relocatable address.

I Pure relocatable address.

I Impure relocatable address.

I Pure relocatable address.

I Impure relocatable address.

B I 8 bytes common name I Common reference.
I 3 bytes displacement I

-------------------~--------------------------------------~~~--~-·---

D-2

c I 8 bytes external name I External reference EXTRN.

D

E

F

10

11

I address loader item I
I (4, 5, 6, or SF) I

I 8 bytes entry name
I address loader item
I (4, 5, 6, or SF)

I 8 bytes common name
I 3 bytes length

I 8 bytes program name

I 3 bytes absolute data
I 3 bytes address data

I 3 bytes absolute data
I 3 bytes address data

Entry point definition.

I Common block definition.
I

I Program name.

I Instruction with pure
I relocatable address.

I Instruction with impure
I relocatable address.

48-005 FOO ROS

TABLE D-1 OBJECT CODE LOADER ITEMS (Continued)

LOADER I
ITEM I DATA FORMAT DESCRIPTION

==
12

13

14

lS

16

17

18

19

lA

lB

lC

lD

lE

lF

20

21

22

23

24

I Address loader item
I (4, S, 6, or SF)

I Address loader item
I (4, S, 6, or SF)

I Address loader item
I (4, S, 6, or SF)

I 2 bytes absolute data
I 2 bytes address data

I 2 bytes absolute data
I 2 bytes address data

I 8 bytes external name
I address loader item
I (4, S, 6, or SF)

I 3 bytes impure length
I 3 bytes pure length

I (none)

I (none)

I (none)

I 2 bytes address data
I

I 2 bytes address data
I

I 1 byte absolute date

I 2 bytes absolute data

I 4 bytes absolute data

I 6 bytes absolute data

I 8 bytes absolute data

I 10 bytes absolute data

48-005 FOO ROS

I Load program start address.
I

I Start of reference chain.
I

I Chain definition address.
I

I Instruction with pure
I relocatable address.

I Instruction with impure
I relocatable address.

I Short (halfword) external
I reference.
I

I Length of pure and impure
I segments.

I Perform fullword chain.

I Perform halfword chain.

I No operation.

I Pure translation table
I address.

I Impure translation table
I address.

I Not used.

I Absolute data.

I Absolute data.

I Absolute data.

I Absolute data.

I Absolute data.

I Absolute data.

D-3

TABLE D-1 OBJECT CODE LOADER ITEMS (Continued)

LOADER I
ITEM I DATA FORMAT I DESCRIPTION I

==!
25 I 12 bytes absolute data I Absolute data. I

--[
26 I 14 bytes absolute data I Absolute data. l

--1
27 I 16 bytes absolute data I Absolute data. l

--[
28 I 18 bytes absolute data I Absolute data. (

--l
29 I 20 bytes absolute data I Absolute data. l __ ,
2A I 22 bytes absolute data I Absolute data. t __ ,
2B I 24 bytes absolute data I Absolute data. l

--[
2C I 26 bytes absolute data I Absolute data. f

--1
2D I 28 bytes absolute data I Absolute data. r

--J
2E I 30 bytes absolute data I Absolute data. l

--f
I 2F I 32 bytes absolute data I Absolute data. l
1--t
I 30 I 34 bytes absolute data I Absolute data. l
!--(
I 31 I 36 bytes absolute data I Absolute data. l
1--J
I 32 I 38 bytes absolute data I Absolute data. r
1--1
I 33 I 40 bytes absolute data I Absolute data. I
1--t
I 34 I 42 bytes absolute data I Absolute data. I
1--t
I 35 I 44 bytes absolute data I Absolute data. I
1--r
I 36 I 46 bytes absolute data I Absolute data. l
1--l
I 37 I 48 bytes absolute data I Absolute data. f
--[

38 I 50 bytes absolute data I Absolute data. l
--l

39 I 52 bytes absolute data I Absolute data. l
--(

3A I 54 bytes absolute data I Absolute data. t
--1

3B I 56 bytes absolute data I Absolute data. i __ ,
3C I 58 bytes absolute data I Absolute data. I

--1
3D I 60 bytes absolute data I Absolute data. I

D-4 48-005 FOO HOS

LOADER I
ITEM I

TABLE D-1 OBJECT CODE LOADER ITEMS (Continued)

DATA FORMAT DESCRIPTION
==

3E I 62 bytes absolute data I Absolute data.

3F I 64 bytes absolute data I Absolute data.

40 I 66 bytes absolute data I Absolute data.

41 I 68 bytes absolute data I Absolute data.

42 I 70 bytes absolute data I Absolute data.

43 I 72 bytes absolute data I Absolute data.

44 I 74 bytes absolute data I Absolute data.

45 I 76 bytes absolute data I Absolute data.

46 I 78 bytes absolute data I Absolute data.

47 I 80 bytes absolute data I Absolute data.
1--

48 I 82 bytes absolute data I Absolute data.

49 I 84 bytes absolute data I Absolute data.

4A I 86 bytes absolute data I Absolute data.

4B I 88 bytes absolute data I Absolute data.

4C I 90 bytes absolute data I Absolute data.

4D I 92 bytes absolute data I Absolute data.

4E I 94 bytes absolute data I Absolute data.

4F I 96 bytes absolute data I Absolute data.

50 I 98 bytes absolute data I Absolute data.

51 I 100 bytes absolute data I Absolute data.

52 I 102 bytes absolute data I Absolute data.

53 I 104 bytes absolute data I Absolute data.

54 I 106 bytes absolute data I Absolute data.

55 I 108 bytes absolute data I Absolute data.

56 I 110 bytes absolute data I Absolute data.

48-005 FOO ROS D-5

TABLE D-1 OBJECT CODE LOADER ITEMS (Continued)

-------------------~-----------------~~--------------------~--~~---~-
LOADER I

ITEM I DATA FORMAT DESCRIPTION
===

S7

S8

S9

SA

SB

SC

SD

SE

SF

I 112 bytes absolute data

I 114 bytes absolute data

I 116 bytes absolute data

I 118 bytes absolute data

I 120 bytes absolute data

1 byte location counter
(LOC) number
8 bytes section name
8 bytes data pool name

I Reserved for future use

I Reserved for future use

I 1 byte LOC number
I 3 bytes address data

I Absolute data.

I Absolute data.

I Absolute data.

I Absolute data.

I Absolute data.

Define PURE LOC.

I Reserved.

I Reserved.

I Load program address.
I

-------------------~----------------------~-~-~----------~~~--~---~-~
60

61

62

I 1 byte LOC number
I 2 bytes address data

I 1 byte LOC number
I 4 bytes address data

I 1 byte LOC number
I 2 bytes absolute data
I 2 bytes address data

I Defined counter.
I

I Defined counter
I relocatable address.

I Instruction with address
I based on a defined LOC.
I

---~---------------~-----
63

64

I 1 byte LOC number
I 3 bytes absolute data
I 3 bytes address data

I Reserved for future use

I Instruction with an
I address based on a
I defined LOC.

I Reserved.
-------------------~-------------------~~---~~~-~~-------~---~~~~-~~~

6S

D-6

8 bytes external name
1 byte reference type

00-Standard
01-Weak
10-INCLD

4 bytes address off set
address loader item
(4, S, 6, or SF)

Extended external
reference.

48-005 FOO ROS

TABLE D-1 OBJECT CODE LOADER ITEMS (Continued)

I LOADER I I
I ITEM I DATA FORMAT I DESCRIPTION
\==
I 66 I 8 bytes entry name I Extended entry point
I I 1 byte entry type I def ini ti on.
I I 00-Standard I
I I 01-Data I
I I 10-weak I
I I Address loader item I
I I (4, 5, 6 , or SF) I
1--
1 67 I 1 byte character count I Imbedded Link commands.
I I 1-80 bytes of command I
1--
1 68 I Reserved for future use I Reserved.
1--
1 69 I 1 byte character count, I Library title.
I I 0-80 bytes of title I
!--
! 6A I I Start of module table:

6B

6C

6D

I 8 bytes name I Module name
I 4 bytes date I Date ("C" language format)
I I module included in
I I library
I 3 bytes absolute length I Length of Absolute segment
I 3 bytes impure length I Length of Impure segment
I 3 bytes pure length I Length of Pure segment
I 2 bytes sequence number I Sequence number of extrn
I I table.
I 4 bytes displacement I Byte offset in library of
I I extrn table.
I 2 bytes sequence number I Sequence number of start of
I I data.
I 4 bytes displacement I Byte offset in library to
I I start data.
I 2 bytes sequence number I Sequence number of next
I I module.
I 4 bytes displacement I Byte offset in library of
I I next module.
I 4 bytes relocation entry I Number of relocatable data
I I items in module.

I (none)

I 8 bytes name
I 3 bytes displacement
I 3 bytes length

I 1 byte LOC number
I 8 bytes section name
I 8 bytes data pool name
I 3 bytes length

I End of module table.

New-format block data item.

New-format PURE LOC.

6E-FF I Reserved for future use I Reserved.
--

4 8-0 0 5 F 0 0 RO 5 D-7

A

Absolute data
Access privileges

extended file
Accounting facility
Active commands
Address map

absolute data area
example of
impure segment
pure segment

Alphabetic map
example of

APU
control privileges
execute task
mapping privileges

APU comments
enable
suppress

Auxiliary processing unit.
See APU.

B

Backspace file command
Bare disk I/O privileges

BFILE command
BUILD command

termination
Building Link

CAL/32
VTM

CAL/32 code
example

c

log listing
CAL/32 object modules

active commands
environmental commands
passive commands

CAL/32 restrictions
VTM

Central processing unit.
See CPU.

COMMAND command
Command file

using CSS
Command syntax

file descriptors
hexadecimal values
lower-case letters
punctuation
task identifiers
upper-case letters

48-005 FOO ROS

INDEX

3-35

3-35
3-35
3-1

3-28
3-30
3-28
3-28

3-30
1-1
3-36
3-37
3-36

3-8
3-8

3-4
3-38
3-40
3-4
3-5
3-7
2-1

5-1

3-9
3-9

3-10
3-10
3-10

5-4

7-5

2-4
ix
x
ix
ix
viii
ix
vii

Commands, passive
CAL/32 code containing
disable execution

Commands. See Link commands.
Commands. See OBJECT/32
Utility commands.

Comments, embedded
APU

Comments, general
suppress listing

Common block
external

name of
outside partial images
placement of

Common data area

Common entities
reposition

Compatible Link utility
commands supported

Contiguous file
backspacing
forward spaces
rewinding
write filemark

Continuation of
commands

CPU
Cross-reference map

example of

D-task image
building

D

Data entry point
DCMD

command
pseudo-operation

Debug ta bl es
DELETE command
DIRECTORY command
DONE command
Double precision floating
point. See DPFP.

DPFP

E-task image
building

E-tasks

E

declaring as relocatable
example of linking
features of
functional details

3-9
3-31

3-9
3-9
3-31
4-7
3-16
4-10
3-16
3-16
3-51
4-7
1-3
3-28
3-52
4-7

3-1

3-4
3-17
3-62
3-65

1-7
1-1

3-30

3-38
3-28

3-8
3-8
3-38
7-6
7-7
7-10

3-37

3-39

6-2
6-2
6-1
6-2

IND-1

E-tasks (Continued)
memory requirements
relocation within
restrictions on
relocation

writing and linking a
relocatable

END command

End of task. See EOT.
Entities

common
global

Entry point
data
debug task
root node
standard
symbol table
weak

Environmental commands
EOT codes
Error conditions

VTM
ESTABLISH command

examples
operating system
partial
task

Establishment summary

example of
Executive tasks. See
E-tasks.

EXTERNAL command
External references

nonlinking
resolve
strong
weak

EXTRACT command

F

FFILE command
File descriptors

account number
device name
disk volume
extension
file class
filename
format

File protection keys
FORTRAN operational rules

CAL/32 restrictions
PASCAL restrictions

Forward file command

GET command
Global block

G

pl a cement of

IND-2

6-3
6-1

6-1

6-1
3-11
7-11

4-7
4-7

3-28
3-38
3-38
3-28
3-58
3-23
3-1
3-11

5-4
7-12
3-14
3-12
3-12
3-12
1-4
3-26
3-29

3-16

3-23
3-22
3-23
3-23
7-13

3-17

x
x
x
x
xi
x
x
3-39

5-4
5-4
3-17

7-14

4-7

Global entities
reposition

Global task common
Group IDs

background
foreground

H

HELP command

History records area

I,J,K

I/O control block
I/O files

command
log
map
object
task image

Image, operating system
package name

Image, task
package name

Image file
building
format
LIB
symbol table
task

Images
building
multiple segment
operating system
package name
partial
task

Images, partial
access privileges

actual size
building
common blocks
entry points
external references
file descriptor
memory occupied
package name

ref erred by the task
image

resolve external
references

starting address

structures task common
blocks

task image ref erring
tasks external to
tasks outside

Impure code

3-56
4-7
4-9

3-46
3-46

3-18
7-15
1-3

3-40

2-3
2-3
2-3
2-3
2-3

3-14

3-14

1-1
1-2
1-3
1-4
1-1

3-12
3-12
3-12
3-12
3-12
3-12

3-13
3-54
3-58
4-8
3-16
3-24
3-24
3-57
3-57
3-14
3-54

3-54

3-58
3-13
3-58

3-58
4-14
3-24
3-16
1-3

4 8-005 FOO ROS

INCLD pseudo-operation
nonlinking external

references
INCLUDE command

Input/output processor. See
IOP.

Input/output. See I/O.
Intertask communication
Intertask control
!OP

L

Languages
specifying libraries

LIB
history records area
type of image

Libraries
linking
order of
standard RTL
UBJECT/32 format
user

Libraries, object
searching

LIBRARY command
Link

assigning lu
building
command summary
end of task codes
I/O files
loading
message summary
revision level
starting
update level
using

Link command syntax
batch mode
file descriptors
interactive mode

Link commands

list of
active
BFILE
BUILD
DCMD
END
environmental
ESTABLISH
EXTERNAL
FF ILE
function
HELP
INCLUDE
LIBRARY
list Of
LOCAL
LOG
lu assignments
MAP

48-005 FOO ROS

3-23
3-20
7-17

3-37
3-37
1-1

3-22

1-3
1-3

4-2
3-22
3-22
7-1
3-22

3-22
3-22

2-4
2-1
A-1
3-11
2-3
2-1
B-2
2-5
2-5
2-5
4-1

1-7
x
1-7

3-19
3-1
3-4
3-5
3-8
3-11
3-1
3-12
3-16
3-17
3-18
3-18
3-20
3-22
3-2
3-24
3-25
2-4
3-26

Link commands (Continued)
mnemonic
NDCMD
NLOG
OPTION
OVERLAY
passive

embedded comments
execution of

PAUSE
POSITION
read from
RESOLVE
REWIND
TITLE
VOLUME
WFILE
written to

Link-defined symbols
program development

Link I/O files
Link symbol table

allocating memory
maximum size

Linkage editor
continue
pause
terminate
volume used

LIST command
Loader information block.

See LIB.
Loading Link

assigning workspace
from an MTM terminal
from the system console

Loading OBJECT/32
from an MTM terminal
from system console

LOCAL command
LOG command

Log device
Logging process

terminate
Logical processing unit.

See LPU.
Logical unit. See lu.
LPU

lu

direct tasks to
processors

assignments
maximum number of

M

Magnetic tape
backspacing
forward spaces
rewinding
write filemark

Map
object modules
outputting

3-18
3-31
3-32
3-33
3-51
3-1
3-8
3-8
3-53
3-54
2-5
3-56
3-62
3-63
3-64
3-65
2-5

1-5
2-3

1-4
2-3

3-53
3-53
3-11
3-64
7-18

2-3
2-2
2-1

7-3
7-2
3-24
3-25
7-19
3-25
3-25
3-32

1-1

3-40

2-4
3-40

3-4
3-17
3-62
3-65

3-26
4-2

IND-3

Map (Continued)
print heading
program symbols

MAP command
establishment summary

Map types

MAT

address
alphabetic
cross-reference

Module
selection

MTM
LOAD command

MTM terminal
loading link

Multi-terminal monitor. See
MTM.

Multiprocessor system
link usage

NDCMD command
NLOG command

N

Node characteristics
common data area
length of segment
name of segment
nonsharable task segment
overlay level
overlay tables
sharable task segment

Node map
node characteristics

Nodes
root

0

Object module
aligning within segments
CAL/32
COBOL
file containing
format
FORTRAN

include in overlay
included in image
names of
Pascal

OBJECT/32 Utility
features of
loading and starting
sample session

OBJECT/32 Utility commands
COMMAND
DELETE
DIRECTORY
DONE
END
ESTABLISH

IND-4

3-63
3-26
3-6
3-26

3-27
3-27
3-27
5-1
5-1

3-23

2-2

2-2

1-1

3-31
3-32

3-27
3-27
3-27
3-27
3-27
3-27
3-27

3-27

4-4

3-36
4-3
4-2
3-20
D-2
1-4
4-3
3-49
3-20
3-20
1-4

7-1
7-2
7-24

7-5
7-6
7-7
7-10
7-11
7-12

OBJECT/32 Utility commands
(Continued)
EXTRACT
GET

ODT

HELP
INCLUDE
LIST
LOG
PAUSE
REPLACE
SAVE
TITLE

Operating system image
building of

OPTION command
OS/32 command

LOAD
TCOM

OS/32 loader
LIB

OS/32 Patch

Overlay area
defining sequence
level
name

OVERLAY command
Overlay descriptor table.

See ODT.
Overlay tree structure

Link command sequence
used

sample of
Overlayed task

placement of common
blocks

placement of global
blocks

Overlaying a progcam
Overlays

P,Q

Partial images
building of

PASCAL
VTM

PASCAL code restrictions
VTM

Passive commands
PAUSE command

POSITION command
Private image segment

root segment
Pure code
Pure segment

shared

R

Register contents
restore

7-13
7-14
7-15
7-17
7-18
7-19
7-20
7-21
7-22
7-23
1-3

4-16
3-33

2-1
3-53

1-3
1-3
7-13

3-49
3-49
3-49
3-49

4-6
4-5

4-7

4-7
4-4
1-3

1-4
4-8

5-1

5-4
3-1
3-51
7-20
3-52

1-3
1-3

3-42:

3-43

48-005 FOO HOS

Register contents
(Continued)
save

Relocation table
built within task image

REPLACE command
Requirements

system
RESOLVE command
REWIND command
Root node

entry point
task workspace
workspace

Root segment
name
positioning common blocks
routines

SAVE command
Segments

s

private image
shared image

Shared code segments
linking and using

Shared data areas
establishing
linking and using

Shared image segment
Single precision floating
point. See SPFP.

SPFP
Standard entry point
Starting Link
Structures task common blocks
Supervisor call. See svc.
SVC interception
SVCl

extended option field
SVC6
Symbol maps

data areas
RTL routines
subprograms

Symbol table
allocating memory
temporary paging

Symbolic Debugger
Symbols

Link-defined
Symbols, program

alphabetical order
ascending address order

Syntax, Link commands
decimal number
hexadecimal values

Syntax conventions
Syntax. See command syntax.
System console

loading Link
System requirements

48-005 FOO ROS

3-43

3-41
7-21

1-6
3-54
3-62

3-38
3-45
2-2
2-3
1-3
3-49
3-52
1-4

7-22

1-3
1-3

4-12

4-10
4-8
1-3

3-39
3-28
2-5
3-58

3-39

3-45
3-42

3-28
3-28
3-28

1-4
2-4
1-4

1-5

3-26
3-26
vii
3-33
3-33
ix
vii

2-1
1-6

System space

T

Task
amount of system space
communicate
resident in memory
rollable

Task communication
restrictions

Task control block. See TCB.
Task execution

continue after
arithmetic fault

Task image
building

Task image file
LIB

Task image ref erring to
partial images

building of
Task images

building a CAL/32
building a COBOL
building a FORTRAN
building overlayed

Task options
image created under MTM

Task priority
initial
maximum

Task space
Xtended

Task status word. See TSW.
TCB
TITLE command

TSW

u-task image
building

UDL

u

Uniprocessor system
DCMD command
developing 3200 System

User-dedicated location.
See UDL.

v

VAT
Vertical forms control. See

VFC.
VFC
VFD
Virtual address map
Virtual address translator.

See VAT.
Virtual task

secondary storage file

3-42

3-42
3-43
3-41
3-41

3-46

3-40

4-1

1-3

4-14

4-3
4-2
4-3
4-4

3-33

3-40
3-40

3-46

1-3
3-63
7-23
3-43

3-39
1-3

3-10
3-10

5-1

3-44
3-44
3-28

3-44

IND-5

Virtual task image
building 3-44

Virtual task management
See VTM.

VOLUME command 3-64
VTM 3-44

absolute code 5-3
CAL/32 restrictions 5-4
error conditions 5-4
FORTRAN operational rules 5-4
Link procedures 5-3
logical units 5-3
MAT 5-1
memory fault codes C-1
message summary C-1
object module 5-2
performance measurement 5-4
rolling of tasks 5-3
secondary storage 5-2
system requirements 5-1
user interface to 5-1
VAT 5-1
workspace 5-2

VTM task
declaring a 5-1

W,X,Y,Z

WFILE command
WNTRY pseudo-operation

weak entry points
Workspace increment
WXTRN pseudo-operation

weak external references

IND-6

3-65

3-23
2-3

3-23

48--005 P0-0 ~05

In reference
to ...

I think this
manual...

My other
comments ...

About
myself ...

Document Comment Form

OS/32 LINK Reference Manual - 48-005 FOO ROS

We try to make our documentation easy to use, easy to understand, and free
from errors. We invite your comments and suggestions to assist us in improving
our documentation to suit your needs.

Please send us comments, corrections, suggestions, etc. Use the SCA system
to report software documentation or software problems.

Strongly Strongly
Agree Agree Disagree Disagree

is easy to read D D D D
is easily understood D D D D
is concise & to the point D D D D
covers the subject D D D D
has enough detail D D D D
is well organized D D D D
provides easy-to-locate information D D D D
is aesthetically pleasing D D D D
has clear illustrations D D D D
has enough illustrations D D D D
has meaningful examples D D D D
has a helpful index D D D D

Please make any additional specific comments. (Include chapter, page, table or
figure number.)

Job Function: D Dev. Engineer
D Technician
D Service Eng.

D Sys. Analyst
D Administrator
D Operator

D Sys./App. Prog.
D Casual user
D Other ---

What hardware system are you using? _______________ _

What revision level of system software are you using? -------------------

Name/Title: -------------------------------
Company/Organization: ______________________ _

Address: -----------------------------
May we contact you? 0Yes D No

Telephone: ------------------ Date: -------------

FOLD FOLD

.-------------------------- --· ---t

111111

BUSINESS REPLY MAIL

ATTN:

FIRST CLASS PERMIT NO. 22

POSTAGE WILL BE PAID BY ADDRESSEE

Concurrent Computer Corporation
2 Crescent Place
Oceanport, NJ 07757

TECHNICAL SYSTEMS PUBLICATIONS DEPT.

FOLD

STAPLE

OCEANPORT, N.J.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

STAPLE

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

9410

In reference
to ...

I think this
manual ...

My other
comments ...

About
myself ...

Document Comment Form

Manual Title Number & Revision Level

We try to make our documentation easy to use, easy to understand, and free
from errors. We invite your comments and suggestions to assist us in improving
our documentation to suit your needs.

Please send us comments, corrections, suggestions, etc. Use the SCA system
to report software documentation or software problems.

Strongly Strongly
Agree Agree Disagree Disagree

is easy to read D D D D
is easily understood D D D D
is concise & to the point D D D D
covers the subject D D D D
has enough detail D D D D
is well organized D D D D
provides easy-to-locate information D D D D
is aesthetically pleasing D D D D
has clear illustrations D D D D
has enough illustrations D D D D
has meaningful examples D D D D
has a helpful index D D D D

Please make any additional specific comments. (Include chapter, page, table or
figure number.)

Job Function: D Dev. Engineer
D Technician
D Service Eng.

D Sys. Analyst
D Administrator
D Operator

D Sys./App. Prag.
D Casual user
D Other ----

What hardware system are you using? ______________ _

What revision level of system software are you using? _________ _

Name/Title:
~-------------------------~

Company/Organization: ___________________ ~-~

Address:
~------------------------

May we contact you? 0Yes D No

Telephone:----------- Date: ---------

FOLD FOLD

----------------------------~

111111

BUSINESS REPLY MAIL

ATTN:

FIRST CLASS PERMIT NO. 22

POSTAGE WILL BE PAID BY ADDRESSEE

Concurrent Computer Corporation
2 Crescent Place
Oceanport, NJ 07757

TECHNICAL SYSTEMS PUBLICATIONS DEPT.

FOLD

STAPLE

OCEANPORT, N.J.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

STAPU:
9410

