PERKIN-ELMER

0S/32 BASIC DATA COMMUNICATIONS

Reference Manual

48-077 FOO ROO

The information in this document is subject to change without notice and should not be
construed as a commitment by The Perkin-Eimer Corporation. The Perkin-Elmer Corpo-
ration assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Eimer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Elmer.

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757
© 1984 by The Perkin-Eimer Corporation

Printed in the United States of America

TABLE OF CONTENTS

PREFACE

CHAPTERS

1 BASIC DATA COMMUNICATIONS

1.1 INTRODUCTION

-t
N

DATA COMMUNICATIONS NETWORKS

A BASIC DATA COMMUNICATIONS SYSTEM
Terminals

Terminal Communicat.ions Modes
Terminal Speeds

Data Transmission Modes

Data Codes

Modems

Transmission Lines

Multiplexors (MUXs) and Concentrators

.
»

B W N

3

FRHEHFRPHPFP
WWWWwWwWwwww
. [» 1] »

B WN e

2 0S/32 DATA COMMUNICATIONS SYSTEM

2.1 INTRODUCTION

2.2 ADAPTERS

2.2.1 Asynchronous Adapters

2.2.2 Bisynchronous Adapters

2.2.3 Zero-Bit Insertion/Deletion (ZBID) Adapters
2.3 LINE DRIVERS

2.4 DEVICE-INDEPENDENT ACCESS

2.4.1 Terminal Managers

2.4.2 Protocols

2.5 DEVICE-DEPENDENT ACCESS

48-077 F0O0 ROO

Xi

T
N

[|

B bt b et b e
HEREOOOO S D W

=0

CHAPTERS (Continued)

3 DEVICE HANDLING

3.1 INTRODUCTION

w
I

SUPERVISOR CALL 7 (SVC7)
Supervisor Call 7 (SVC7) Parameter Block
Function Code Field

Error Status Field

Logical Unit (lu) Field
Read and Write Key Fields
Logical Record Length Field
Device Mnemonic Field
Filename Field

Extension Field

File Size Field

HFHERREPRHERP

VOO dWN

WWWWwwwwwwww

. [. . . L]

WWWwwwwwwwww
1

COMMAND FUNCTIONS

Allocate Function

Assign Function

Change Access Privileges Function
Close Function

Delete Function

Checkpoint Function

Fetch Attributes Function
Vertical Forms Control (VFC) Functlon
Rename Function

Reprotect Function

0N U S W

[N

|
PFHRPOWOUOOONIOOO oo wwe= - -

o

WWWWwWWwwwwww
] i
(o]

OPERATOR COMMANDS
ALLOCATE Command
ASSIGN Command

CLOSE Command 3-15
DELETE Command 3-16
XALLOCATE Command 3-17
XDELETE Command 3-19

www
|

el g

we=~0

WWWWWwww WwWwwwwwwwww
1]] » » . L] .
DD DD DD WWWWwwWwwWwwwwww PO NNDNDNDND

o WN
L]

4 DEVICE-INDEPENDENT ACCESS
4.1 INTRODUCT ION

4.2 TERMINAI. MANAGER ACCESS

w

SUPERVISOR CALL 1 (SVCl)

4
4
SEQUENCE OF OPERATION 4-
4
.1 Supervisor Call 1 (SVCl) Parameter Block 4

D> >
o

5 DEVICE-DEPENDENT ACCESS

5.1 INTRODUCTION 5-1

ii 48-077 F00 ROO

S, oo o
. . .
38 N
-

OO~ W

[Sa NS OIS NS NS RS A RS S

LR N RN N,
SABERDS WWWWOWWWWE N NNN
O 0N

—

.

o

. 0 .
. [} .
. 0

.
.
3

OO NN O
W HWoFE BWN

NNNOOO OO R DA WWWWNNNONNDND R

W N =

oot CToToTUho oot oo OO O o
. C . b

.

[] 1]

N

CHAPTERS (Continued)

LINE DRIVER ACCESS
Sequence of Operations

Supervisor Call 15 (SVCl5) and the Task

Environment

Supervisor Call 15 (SVC1l5) Trap Handling

SUPERVISOR CALL 15 (SVCl15) PARAMETER BLOCK

Function Code Field

Logical Unit (lu) Field

Status Information Field

Command Number Field

Driver Command Word (DCW) Pointer
Length of Last Read Field

Length of Last Write Field

Data Fields

Data Field Chain

BUFFER TYPES

Direct Buffers

Indirect Buffers

Chained Buffers

Queued Buffers

Coding a Queued Buffer Request

DRIVER COMMAND WORD (DCW)

LINE DRIVER COMMAND TYPES
Null-Type Commands

NO QOPERATION (NOP) Command

WAIT Command

TRANSFER IN (XFER) Command
CONDITIONAL TRANSFER (CXFER) Command
Control-Type Commands

EXAMINE Command

RING WAIT Command

ANSWER Command

DISCONNECT Command

Read-Type Commands

READ BUFFER Command

READ1 Command

READ2 Command

Prepare-Type Commands

PREPARE Command

PREPARE3 Command

Write-Type Commands

WRITE BUFFER Command

WRITE1 Command

WRITEZ2 Command

Hold-Type Commands

HOLD SPACE (Line Break) Command
Mode-Type Commands

MODE TOUT (Time-out Interval) Command
MODE CMD2 (Adapter) Command

48-077 F0OO ROO

[So06)
i

[S20N6 L
1

i
| adlad’ 2 AR o W N

L1
Pt et
WRONNN

[So NS LIRS RO S LTS LIRS LS L)
1

5-13

5-14
5-15
5-15
5-16
5-19
5-20

5-21

5-23
5-24
5-24
5-24
5-24
5-24
5-25
5-25
5-25
5-26
5-26
5-26
5-26
5-26
5-27
5-27
5-27
5-27
5-27
5-28
5-28
5-28
5-28
5-28
5-29
5-29
5-29

iii

CHAPTERS (Continued)

iv

(<)) o [sp M) o)) o] (=2)] =) (o)) oo o))
. .

MODE RCMD (Read) and MODE WCMD
Commands

MODE RDIS (Read Disable) and MODE WDIS
(Write Disable) Commands

MODE DISC (Disconnect) Command

MODE SYNCNT (SYNC Character Count) Command
MODE SPCHAR (Special Character Enable Masks
Command

MODE TRANSL (Translation Options) Command
Test-Type Commands

(Write)

DATA COMMUNICATIONS STRUCTURES

6.1

www [y
. .

w W
w N

.
.

.
ww

. 3

N [\ NN [[ol aed

. L]
w w
w [\ [l

.
W w
.

1] L]

w w ww
w
N

o

[s))
L

w
o1

6.3.6
6.3.7
6.3.8

6.3.9

INTRODUCTION
DATA COMMUNICATIONS LINE DRIVERS

CONTROL BLOCK FORMATS

Data Communications Device Control Block (DCB)

Device Control Block (DCB) Device-Independent
Portion (Standard DCB)

Device Control Block (DCB) Data Communications-

Related Portion

Device Control Block (DCB) Device-Dependent
Portion

Line Control Block
Line Control Block
Portion

Line Control Block
Portion

Line Control Block
Descriptor Portion
Channel Control Block (CCB)

(LCB)
(LCB) Device-Independent

(LLCB) Device-Dependent

(LCB) Data Block

Channel Control Block (CCB) Device-Independent

Portion

Channel Control Block (CCB) Device-Dependent
Portion

Drop Control Table (DCT) for Zero-Bit
Insertion/Deletion Data Link Control ZDLC
Communications

Drop Definition Table (DDT) for Zero-Bit
Insertion/Deletion Data Link Control (ZDLC)
Communications

Drop Control Table (DCT) for Asynchronous
Multidrop Communications

Drop Access Table (DAT) for Asynchronous
Multidrop Communications

Input /Output Block (IOB) for Asynchronous
Multidrop Communications

Station Description Table (SDT) for 3270
Emulator

6-16
6-16

6-16
6-22

6-25
6-26

6-26

6-27

6-30

6-34
6-36
6-38
6-40

6-43

48-077 F0OO ROO

CHAPTERS (Continued)

6.3.10 Device Definition Table (DDT) for 3270

Emulator 6-44
6.3.11 Input/Output Handler (IOH) 6-47
6.3.12 File Manager Handler (FMH) ‘ 6-50
6.4 DEVICE CONTROL BLOCK (DCB) POINTER FOR LINE

DRIVER COMMAND INTERPRETATION 6-52
6.4.1 DCB.TERM Pointer 6-53
6.4.2 DCB.DOCR, DCB.DOCW, DCB.MOCR and DCB.MOCW

Pointers 6-53
6.4.3 DCB.AOC Pointer 6-54
6.4.4 DCB.INIT Pointer 6-54
6.4.5 DCB.RDN and DCB.WDN Pointers 6-54
6.4.6 DCB.ITV and DCB.OTV Pointers 6-54
6.5 EVENT SERVICE ROUTINE (ESR) SCHEDULING 6-54
6.6 SUPERVISOR CALL 15 (SVCl5) STRUCTURE AND FLOW 6-56
6.7 COMMON DATA COMMUNICATIONS SUBROUTINES 6-59
6.7.1 Supervisor Call 15 (SVC1l5) Subroutine 6-59
6.7.2 ITSRABS Subroutine 6-60
6.7.3 CMTERM Subroutine 6-60
6.7.4 CMEXIT Subroutine 6-61
6.7.5 ISSEXEC Subroutine 6-62
6.7.6 ITSETREA Subroutine 6-64
6.7.7 ITXFRISR Subroutine 6-64
6.7.8 ITISSTOP Subroutine 6-65
6.7.9 IT..STOP Subroutine 6-65
6.7.10 ITIMLINK Subroutine 6-66
6.7.11 ITIMUNLK Subroutine 6-66
6.7.12 ITISTOTC Subroutine 6-67
6.7.13 ITISPOTC Subroutine 6-67
6.7.14 ICMDINT Subroutine 6-67
6.7.15 ITGETMOD2 Subroutine 6-68
6.7.16 ITGETMOD Subroutine 6-68
6.7.17 ITGETDAT Subroutine 6-69
6.7.18 ITGETBUF Subroutine 6-70
6.8 SUPERVISOR CALL 1 (SVCl) PROCESSING 6-70
6.9 ADDITIONAL, EXECUTIVE FUNCTIONS 6-70
6.9.1 Cancellation of Input/Output (I1/0) 6-71
6.9.2 Add to Task Queue 6-71
6.9.3 System Initialization 6-71
6.9.4 Timer Management 6-71
6.10 SUPERVISOR CALL 7 (SVC7) PROCESSING 6-72
6.10.1 Allocate 6-72
6.10.2 Delete 6-72
6.10.3 Assign 6-73
6.10.4 Close 6-73

48-077 FOO ROO

CHAPTERS (Continued)

7

NNNNN NN

6.10.5 Checkpoint

6.10.6 Fetch Attributes

6.10.7 Change Access Privileges
6.10.8 Rename

6.10.9 Reprotect

HOW TO WRITE AND USE A TERMINAL MANAGER

7.1 INTRODUCTION
7.2 TERMINAL MANAGER MODIFICATION
7.3 BACKGROUND INFORMATION
.4 TERMINAL. MANAGER STRUCTURE
.4.1 Nonbuffered Terminal Manager
.5.2 Buffered Terminal Manager (Input)
4.3 Buffered Terminal Manager (Output)
.5 TERMINAIL, MANAGER FUNCTIONS
.5.1 Special Terminal Manager Functions
.5.1.1 Format Control
.5.1.2 Time-out Control
.5.1.3 Buffer Control
7.6 SYSTEM GENERATION (SYSGEN) CONVENTIONS
7.6.1 Register Conventions
7.6.2 Device Control Block/Line Control Block
(DCB/LCB) Reference
7.6.3 EXTRN/ENTRY References
7.6.4 System Generation (Sysgen)
7.7 WRITING TERMINAL MANAGERS SUMMARY
7.8 HOW TO USE DATA COMMUNICATIONS TERMINAL

MANAGERS

HOW TO WRITE AND USE DATA COMMUNICATIONS LINE DRIVERS

8.1 INTRODUCTION

8.2 MODIFYING A LINE DRIVER

8.3 LINE DRIVER USE OF THE DEVICE CONTROL BLOCK
(DCB)

8.4 LINE DRIVER STRUCTURE

8.4.1 Driver Initiation Routine

8.4.2 Translation Tables

6-74
6-74
6-74
6-74
6-74

48-077 F0OO0 ROO

CHAPTERS (Continued)

DATA COMMUNICATIONS LINE DRIVER EXAMPLE

8.5 8-6
8.5.1 Command Table 8-6
8.5.2 Command Fetch 8-7
8.5.3 Modifier Fetch 8-8
8.5.4 Command/Modifer Routines 8-8
8.5.5 Entering Interrupt Service Routines (ISRs) 8-9
8.5.6 Special Character Routines 8-11
8.5.7 Read After Write (RAW) Turnaround 8-12
8.5.8 Driver Termination Phase 8-13
8.6 USING DATA COMMUNICATIONS LINE DRIVERS 8-13
8.6.1 Buffer Management 8-14
8.6.1.1 Chained Buffers 8-18
8.6.1.2 Line Driver Data Communications Device

Interface 8-20

9 GENERATING AN OPERATING SYSTEM WITH DATA COMMUNICATIONS
DEVICES
9.1 INTRODUCTION 9-1
5.2 DATA COMMUNICATIONS CONFIGURATION STATEMENT
9-1

9.3 SYSTEM LIBRARIES 9-2
9.3.1 The Driver Library 9-2
9.3.2 Including User-Written Drivers 9-3
9.3.2.1 Creating the DCBxxx Macro 9-3

APPENDIXES

A LINE DRIVER COMMAND SUMMARY A-1
B INTERFACE SIGNAL DEFINITIONS B-1
FIGURES

1~-1 Point-to-Point and Multipoint Networks 1-2
1-2 A Simplistic Data Communications Network 1-3
1-3 Terminal Communications Modes 1-5
1-4 Asynchronous Transmission 1-6
1-5 Synchronous Transmission 1-7
2-1 A Data Communications Subsystem 2-1
2-2 0S/32 Terminal Managers 2-7

48-077 FOO ROO vii

FIGURES (Continued)

3-1 SVC7 Parameter Block Format and Coding 3-2
3-2 8VC7 Function Code Field 3-3
4-1 SVCl Parameter Block Format and Coding 4-5
4-2 SVC1l Function Code Field 4-7
5-1 SVC1l5 Access to a Line Driver 5-3
5-2 SVC1l5 Parameter Block 5-5
5-3 SVC1l5 Function Code Format 5-6
5-4 SVC1lSs Status Field Format 5-8
5-5 SVC1l5 Data Field Format 5-13
5-6 Direct Buffer 5-15
5-7 Indirect Buffer ‘ 5-16
5-8 Chained/Queued Buffer Format 5-16
5-9 Chained/Queued Buffer Link Word Flag Byte 5-17
5-10 Buffer Ring 5-18
5-11 Conceptual Circular List and Format 5-19
5-12 DCW Format 5-22
6-1 DCB Sections 6-3
6-2 Basic DCB Fields 6-4
6-3 Data Communications DCB Fields 6-8
6-4 Basic LCB Fields 6-17
6-5 Device-Dependent LCB Fields 6-22
6-6 CCB Device-Independent Portion 6-26
6~-7 Data Communications CCB Format 6-28
6-8 DCT (ZDLC) Format 6-30
6-9 DDT (ZDLC) Format 6-35
6-10 DCT (Asynchronous Multidrop) Format 6-37
6-11 DAT (Asynchronous Multidrop) Format 6-39
6-12 IOB Format 6-40
6-13 SDT Format 6-43
6-14 DDT (3270 Emulator) Format 6-45
6-15 IOH Format 6-48
6-16 FMH Format 6-51
6-17 8VC1l5 Line Driver Modules - Data Communications

Operation System Interface 6-58
7-1 Nonbuffered Terminal Manager 7-3
7-2 Buffered Terminal Manager (Input) 7-4
7-3 Buffered Terminal Manager (Output) 7-5
8-1 SVC1l5 Driver Structure 8-3
8-2 SVC1l5 Using Direct Buffers 8-15
8-3 SVC1l5 Using Indirect Buffers 8-15
8-4 8VC1l6 Using Chained Buffers 8-16
8-5 SVC1l5 Using Queued Buffers 8-17
8-6 Example of an SVCl5 Parameter Block and

Associated Data 8-23
8-7 Parameter Block and Associated Fields After

' SVCl5 Termination 8-24

8-8 8SVC1l5 Parameter Block After Termination 8-25%

viii 48-077 F0OO ROO

TABLES

w
i
—

B
I

|
Noods wh N =

[

oot oo
[T T A

o,
I
wWN

INDEX

SVC7 ERROR STATUS CODE BIT SETTINGS

SVC1 DATA TRANSFER FUNCTION CODE
SVC1l EXTENDED OPTIONS

SVC15 FUNCTION CODE BIT SETTINGS

SVC1l5 STATUS BIT SETTINGS

SVC15 ENCODED TERMINATION CODES

DATA CODE BIT SETTINGS

CHANNEL/QUEUED BUFFER LINK WORD FLAG BYTE
QUEUED BUFFER DATA FIELD FORMAT

DCW BIT SETTINGS

DCB.LNST BIT DEFINITIONS
BLOCK DESCRIPTOR FLAG BIT DEFINITIONS
DATA COMMUNICATIONS SUBROUTINE REQUEST BITS

48~-077 F0O0 ROO

IND-1

ix

PREFACE

This manual describes the concepts necessary to use the

Perkin-Elmer 0S/32 Basic Data Communications software. Included
in this manual is a description of the areas of application,
program interface, 0s/32 support features and internal
operations.

Chapter 1 introduces basic data communications facilities.
Chapter 2 introduces the 0S/32 Basic Data Communications
Subsystemn. The differences between device-independent and
device-dependent access are detailed and brief descriptions of
Perkin-Elmer adapters, line drivers and terminal managers are
included. Chapter 3 describes device handling through supervisor
call 7 (8vVC7) or the 0S/32 command language. The SVC7 parameter
block and related functions are discussed as well as the 0S/32
commands pertinent to data communications. Chapter 4 discusses
device-independent access of data communications facilities,
which is accomplished by using the SVCl parameter block described
in this chapter. Chapter 5 details device-dependent access of
data communications facilities through the use of 1line drivers,
which is accomplished by using the SVC1l5 parameter block
described in this chapter. SVC15 buffer types and the driver
command word (DCW) are also detailed in Chapter 5. Chapter 6
describes the various structures and routines used in the 0S/32
Data Communications Subsystem. Chapters 7, 8 and 9 describe the
internal operation of basic data communications and discuss the
process of modifying or adding a line driver or terminal manager.
These three chapters should be read by users whose requirements
are not satisfied by basic data communications support.

Throughout this manual, there are numerous references to the
Integrated Telecommunications Access Method (ITAM). Prior to the
RO5.1 version of 0S/32, all Perkin-Elmer data communications
software was packaged separately and was referred to as I[TAM.

This manual is intended for use with the 0S/32 R07.2 software
release and higher.

For information on the contents of all Perkin-Elmer 32-bit
manuals, see the 32-Bit Systems User Documentation Summary.

48-077 FOO ROO xi

CHAPTER 1
BASIC DATA COMMUNICATIONS

1.1 INTRODUCTION

Put simply, the purpose of data communications is to transfer
information. In the context of data processing, data
communications refers to the exchange of information between
computers or peripherals.

All transmissions between locations require three things:

e a transmitter or message source,
e a transmission medium, and

® a receiver.

A simple telephone call is a good example of a data transmission.
You, the caller, use a transmitting medium, the telephone and the
telephone lines, to transfer information to the person you are
calling. The same is true of a digital data communications
network with one small addition. In a digital data
communications system, the transmitter must not only be able to
transmit the data, it must also be able to translate the source
message from its original form into a form that can travel over
the available transmission path. The receiver must then be able
to translate the transmitted message back into a form that can be
understood by people or machines. An analogy can be made with an
earlier data communications system, the telegraph. Using a
telegraph, the words of a message could not be sent directly, but
had to be encoded into a system of dots and dashes that could be
transmitted over a wire. The dots and dashes received would then
have to be decoded into a language that the people receiving the
message could understand.

During the first half of this century, most of data
communications involved voice transmissions. With the advent anad
increased use of digital computers, the importance of digital
communications quickly became evident. Many users wanted their
computer to be able to communicate with their customer's computer
across town, or with another company's computer across the
nation. Initially, this was not possible, because most
conventional telecommunications facilities were developed before
the birth of the computer and were, therefore, for voice rather
than digital communications.

48-077 F00 ROO 1-1

These analog (voice) systems were not fast enough to keep up with
the speeds computers were becoming capable of. In addition, the
earlier computers were not designed to be connected to an
existing communications network. With the increasing demand for
long distance computer communications, the field of digital data
communications became an important part of the computer industry.

1.2 DATA COMMUNICATIONS NETWORKS

Data processing facilities are frequently joined together to form

data communications networks. Such networks connect remote
terminals and computer systems to each other and/or to a host
computer. The earlier systems were connected via public

telephone and telegraph lines, but large private networks using
high-speed digital facilities and leased transmission lines soon
evolved. Data can also be transferred by radio signals and, with
the increased wuse of microwaves and the advent of space travel,
by microwave relays to satellites.

If a single transmitting device 1is connected to a single
receiving device, the data communications network is considered
to have a point-to-point line (see Section A of Figure 1-1). To
decrease the costs of such a network, more than one terminal can
be connected over a single dedicated line. This type of line is
referred to as a multidrop (or multipoint) line (see Section B of
Figure 1-1). When using a multidrop 1line, the processor
communicates with a terminal by one of two methods:

® polling and selection, or

® collision avoidance/collision detection.

0771

A. POINT-TO-POINT

B. MULTIDROP

Figure 1-1 Point-to-Point and Multidrop Networks

1-2 48-077 FOO ROO

Polling 1is the process by which the computer queries each
individual terminal to see whether or not that terminal has any
data to transfer. The processor accomplishes this by sending out
a unique bit sequence (ID) that can be recognized by a particular
terminal as 1its address. The terminal then responds either
positively or negatively. A negative response causes the
processor to query the next terminal. A positive response causes
the processor to take the necessary steps for a data transfer to
occur. Polling is useful in large networks where tight control
over line wusage 1is desired; it is also applicable in cost-
conscious facilities or in applications where transmitted
messages have different levels of priority.

Selection 1is the mechanism by which the processor itself
gspecifies the terminal to which it wants to transmit data. This
is accomplished by using the terminal's ID. Multidrop networks

are able to broadcast a message to all of the terminals on the
multidrop line.

In collision avoidance/collision detection, a terminal first
"listens" to see if another terminal is sending data. Only if no
other terminal is transmitting will it attempt to send data. If
more than one terminal happens to start transmitting at the same
time, both cease transmissions and wait a specified and different
amount of time before they attempt to transmit again. The
advantage of this method is that the processor is not needed to
control the actual process as in the polling method. The main
disadvantage is that there is no limit on the amount of time a
low-priority terminal might have to wait before transmitting.

A special type of data communications network is the distributed
processing network. Such networks divide the data processing
among several smaller computers. This arrangement improves the
overall performance of the network, since a failure at one node
does not affect the other processors and peripherals. Such an
arrangement also provides increased reliability because
distributed networks provide alternate paths to other processors
in the event of a nodal failure.

1.3 A BASIC DATA COMMUNICATIONS SYSTEM
Figure 1-2 depicts a simplistic data communications network.

077-2

1 —F

Figure 1-2 A Simplistic Data Communications Network

48-077 FOO ROO 1-3

The components of the system in Figure 1-2 are numbered and
represent the hardware usually needed in any data communications
system. These devices are the:

1. Terminal

2. Modems

3. Transmission lines

4. Multiplexors and concentrators

5. 0S/32 Data Communications Subsystem

6. Processor

Components 1 through 4 and 6 are not actually part of the 0S/32
Data Communications Subsystem. They are, however, essential to
the operation of a data communications system. The remainder of
this chapter is, therefore, dedicated to a general discussion of
these components so that a better understanding of their
functions in a data communications system can be achieved. This
discussion is intended for the reader who does not have an
extensive background in data communications. The more
experienced reader may skip this discussion. Chapter 2 contains
a detailed discussion of the 05/32 Data Communications Subsystem.

1.3.1 Terminals

Communication between people and computers generally requires a
terminal with a keyboard and some type of display device.
Clearly, the CRT terminal provides the fastest and the most
convenient access to the data stored or manipulated by a
computer. While the CRT 1is the most popular type of data
communications terminal, the characteristics of the many CRTs
currently manufactured vary a great deal. In general, data
communications terminals can be classified according to their
communications mode, data transmission speed, data transfer mode
and data code format. Sections 1.3.1.1 through 1.3.1.4 discuss
these classifications.

1.3.1.1 Terminal Communications Modes

Data communications terminals can be divided into three modes of
operation:

e Simplex

e Half-duplex

® Full-duplex

1-4 48-077 F0OO0 ROO

Figure 1-3 depicts these three modes.

077-3

DATA FLOW 2> ONLY

A. SIMPLEX

oy DATA FLOW—>OR «

B. HALF-DUPLEX (2-WIRE)

DATA FLOW — -
1 e OR DATA FLOW < 2
C. C.HALF-DUPLEX (4WIRE)
DATA FLOW —>
1 e AND DATA FLOW < 2

D. FULL-DUPLEX

Figure 1-3 Terminal Communications Modes

A simplex terminal uses a simple l-wire link with its receiving
counterpart. In other words, a simplex terminal has a one-way
only transmission path. Data cannot reverse directions.

A half-duplex terminal is a 2- or 4-wire terminal 1link that
allows two-way communications, but transmissions can only occur
in one direction at a time. The installation of special
equipment that reverses the receive or transmit condition is
required. Half-duplex terminals are often connected to 4-wire
links to avoid turnaround delays (i.e., the modem switching
itself from transmitting to receiving mode and vice-versa.)

In a full-duplex mode, the terminal is connected via a 4-wire

link, which allows two-way simultaneous transmissions. Data can
be sent and received at the same time.

48-077 F0O ROO 1-5

An analogy can be made between these terminal modes and city
streets. A simplex line is analogous to a one-way street in that
traffic can only travel in one direction. The half-duplex mode
is similiar to a narrow two-way street; traffic can travel in
both directions, but only in one direction at a time.
Full-duplex mode is the same as a standard two-way street;
traffic can travel in both directions simultaneously.

1.3.1.2 Terminal Speeds
Although it is being replaced as a unit for measuring signaling

speed, the baud 1is the basis of all other units of signaling
speed. A baud is defined as the number of signal events per

second. This definition is the basis for the two main units of
signaling speed in use today: bits per second (bps) and
characters per second (cps). If each bit transferred represents

one signal event, the speed is expressed in bps. If a character
represents one signal event, then the speed is expressed in cps.

Data terminals are divided into three basic speed catagories.

e Standard - up to 30cps
® Medium - 30 to 480cps

e High - over 480cps

1.3.1.3 Data Transmission Modes

Data can be transmitted using one of two possible modes:
asynchronous- or synchronous. Most 1low- and medium-speed
terminals transmit data in the asynchronous mode. These
terminals generate a coded character each time a key is
depressed. Figure 1-4 illustrates the asynchronous transmission
mode.

077-4

(o]
e ONE-TWO
TIME BIT TIMES
[1 —_——
I | | ; | i
STARTIS CHARACTER .| sTopP
BIT CODE I BIT

DIRECTION OF FLOW
-

Figure 1-4 Asynchronous Transmission

1-6 48-077 FOO0 ROO

In asynchronous transmission mode, each character is prefixed by
a start bit and suffixed by one or more stop bits. In this mode,
the performance of one operation is initiated by the signals that
indicate the completion of the previous operation. In other
words, a new character cannot be transmitted until the previous
characters have been received. All bits within a character - are
sent at prescribed time intervals, but the data can have periods
of inactivity while the terminal is waiting for the operator to
input more data. In the asynchronous mode, the timing of the
terminal and the central system are established independently of
each other.

Most high-speed terminals transmit their data in the synchronous
mode. In synchronous transmissions, the data is transmitted in
long blocks with only a single framing pattern at the beginning
of each block. These framing characters are referred to as
'sync' characters. The advantage of this mode of transmission is
that each character transmitted consists only of data bits.
Transmission facilities, therefore, are used more efficiently
because there are no signal elements being wasted as start and
stop bits. Figure 1-5 illustrates the synchronous transmission
mode .

077-5

;|| HEE N |

<+—— SYNC CHARACTER —-—*“——— DATA BITS

DIRECTION OF FLOW
-

Figure 1-5 Synchronous Transmission

Unlike the asynchronous transmission mode, timing in the
synchronous mode 1is established and maintained by the
transmitting and receiving modems . These devices are
synchronized so that transmissions occur at a fixed rate. No
gaps are permitted between characters in the data block.

48-077 FOO ROO 1-7

1.3.1.4 Data Codes

Data is represented in a computer by a collection or series of
binary digits arranged in a particular order or grouping. These
groupings are known as data codes and the three basic data codes
used for data communications are Baudot, ASCII and EBCDIC.

@ The Baudot code is a 5-bit code which makes only 32 unique
characters possible. Because of this, two of the characters
must be used as shift characters so that the code can handle
the variety of 1letters, numbers and special characters
necessary. The Baudot code has no provision for error
checking. Terminal control is acheived by a line break or a
special character sequence. Baudot was used principally on
early teletype (TTY) machines; it is not in much use today.

® ASCII (American Standard Code for Information Interchange) is
a 7-bit code with an additional bit to check for parity. It
has unique code assignments for both alphanumeric and control
functions. ASCII is the most widely used code today and is
found on most micro and minicomputers. All Perkin-Elmer
computers use the ASCII data code.

e EBCDIC (Extended Binary Coded Decimal Interchange Code) is an
8-bit code similiar to, but not compatible with, ASCII. It
also uses a parity bit to check for errors. EBCDIC was
created by IBM® for use on their large computer systems.

In parity checking, the processor verifies that all characters
have either an even number (even parity) or an odd number (odd
parity) of bits. After the transmission 1is completed, the
receiving computer checks the parity to verify that all of the
data has been transferred completely. If all of the characters
do not have the correct number of odd or even bits, the computer
notifies the transmitter that an error has occurred in
transmission.

It is essential that all components of a data communications
system can "converse" with each other in the same data code. If
this is not the case, none of the data transferred will make
sense to the receiving station. The solution is an emulator, a
device or piece of software that makes a computer system
supporting one data code behave like another system supporting a
different code. Using emulators, it is possible for an ASCII
terminal to "converse" with an EBCDIC processor.

IBM® is a registered trademark of International Business Machines
Corporation.

1-8 48-077 F0OO0 ROO

1.3.2 Modens

Even though there are many other media available, the voice
frequency channel or phone line is still the most popular medium
for transmitting data because of its high availability and 1low
cost. When using phone 1lines, a device known as a modem
(modulator/demodulator) is recuired to interface between the
processor or terminal and the communications line. The function
of a modem (sometimes called a&a "data set") is to facilitate
digital data communicat ions over a telephone network by
converting the digital (square wave) signal to an analog (sine
wave) signal. It 1is this analog or "voice" signal that can be
transmitted over the phone lines. At the other end of the 1line
is a second modem that demodulates the analog signals back into
digital signals. In our example of the telegraph, the modem is
analogous to the telegraph operator who codes and decodes the
telegrams. The modem can actually be a part of the computer or
terminal (integrated) or it can be a stand-alone model. Modems
can be divided into three types:

e Voice grade
e Wideband

e Hard-wired

Voice grade modems can be further divided into two speed

catagories: low and medium. Low-speed modems are used on
switched networks and interface with low-speed asynchronous
terminals. These modem types generally operate at speeds of up
to 300bps. Medium-speed modems are used with terminal

controllers and high-speed terminals and can operate at speeds of
9,600bps and higher.

Wideband modems have very high operating speeds of 19,200 to
460,800bps. They are interfaced with special wideband leased
lines and are used primarily for processor-to-processor
transmissions.

Hard-wired modems operate on dedicated lines at speeds of wup to
one million bits per second. These modems are generally
limited-distance devices that are very useful for short distance
data communications.

Modems are not required when short distance direct lines can be
used. Only when the transmission is to take place over telephone
lines is a modem needed.

Another function of a modem 1is referred to as handshaking.
Handshaking is the procedure that occurs when two modems are
connected for the first time; it ensures that the communications
link is available and functional. This is accomplished through
the use of control signals sent down the line and returned. A
handshaking sequence is unique to the particular type of modem.

48-077 F0O0 ROO 1-9

Modems must operate in the same modes as the terminals to which
they are connected. A half-duplex modem sends or receives data
in only one direction at a time while a full-duplex modem can
send and receive information concurrently. Each modem can
transmit or receive either asynchronous or synchronous data.
1.3.3 Transmission Lines

Transmission lines are classified as one of three types according
to the speed of transmission. The transmission types are:

e Low-speed (subvoice)

® Medium-speed (voice-grade)

® High-speed (wideband)

Low-speed lines are commonly used by Telex, TWX and other TTY
transmissions. Both leased and switched networks can be used and

can transmit data at up to 300bps. Telex and TWX are used
primarily for transmitting business communications. Connections
are established by dialing into these networks, but

intercommunication is made via TTY rather than by voice.

Medium-speed networks are made up of voice-grade telephone lines.
These telephone lines can be grouped into three catagories.

e Switched, or public, lines make up the standard telephone
system and provide a dial-up service between the terminal and
the processor. Switched lines can transmit data
asynchronously up to 1,200bps or synchronously at rates of up
to 4,800bps. This type of connection is less costly 1if the
line's usage is low and infrequent.

e Leased lines are private point-to-point 1lines that are
dedicated to a particular customer. The advantages of this
type of 1line are that the connection between points is
constant; it does not have to be established each time and the

~private line allows the user more bandwidth. These advantages
make higher data transmission rates possible and make this
type of connection less costly if the 1line 1is to be used
frequently or constantly.

In contrast to switched lines, leased lines can transfer data
up to twice as fast and can achieve a speed up to 9,600bps.

® Special lines are 4-wire links that are available for two-way
transmissions. These links usually have a higher speed and a
lower error rate than switched 1lines, due to conditioning.
Conditioning refers to the process of adjusting the electrical
characteristics of the transmission path to control certain
types and levels of distortion.

1-10 48-077 FOO ROO

High-speed or wideband lines have transmission rates of 19,200bps

or more. They are used primarily for intercomputer communication
links.

1.3.4 Multiplexors (MUXs) and Concentrators

MUXs and concentrators are data communications devices that
improve system efficiency by increasing the speeds of data
transmissions.

A MUX is a device that receives and combines signals from many
low-speed 1lines and transmits them together over the same
high-speed communications channel.

A concentrator is a device that 1is used to interface many
different terminals to a single host computer. Like a MUX, a
concentrator combines the many low-speed 1lines into a single
high-speed line.

In using data multiplexing, the instantaneous rate of data
entering or exiting the terminal cannot exceed the data rate of
the communications channel. A concentrator, however, uses a
buffered resource sharing scheme so the instantaneous rate of
data entering or exiting the terminal can exceed the data rate of
the communications channel. Data concentration can, therefore,
take advantage of idle terminal time, while data multiplexing
cannot.

48-077 F0O0 ROO 1-11

CHAPTER 2

08/32 DATA COMMUNICATIONS SUBSYSTEM

2.1 INTRODUCTION

One of the
system 1is
processor.
levels and
levels and

most important components of any data

communications

the interface between the communications lines and the

This interface must be able to transform the

signal

data rates produced in the communications circuit into

rates that the processor can understand.

This is done

with a unique combination of hardware and software that makes up
the Perkin-Elmer 0S/32 Data Communications Subsystem.
shows the general breakdown of the subsystem.

Figure 2-1

Sections 2.2 through 2.5 discuss the components of the subsystem.

48-077 FOO

077-6

TO
MODEMS
ADAPTER
LINE DRIVER

i

I

TERMINAL
MANAGERS

SVCi
ACCESS

SVC15
ACCESS

USER TASK

Figure 2-1 A Data Communications Subsystem

RGO

2-1

Perkin-Elmer supports two basic network types:

® PENnet is a distributed data communications network for long

distance digital transmissions. It uses either leased or
switched phone lines and cyclic redundancy checking (CRC) for
error detection. PENnet is easy to install and use since no

specialized knowledge of data communications networks is
required to exploit its full facilities.

e Ethernet 1is a 1local area network (LAN) that uses a
peer-to-peer protocol known as carrier-sense multiple access
with collision detection (CSMA/CD). Components of an Ethernet
network are connected by coaxial cable over a limited distance
of about 1.5 miles with the use of repeater stations. This
system transmits data at a rate of 10Mbits per second. For
further information see the 0S/32 Network Drivers Programming
Reference Manual.

2.2 ADAPTERS

Communication adapters are hardware boards that interface the
processor with a transmission facility and enable remote devices
to communicate with the host computer. In general, an adapter
contains circuits to generate and detect the control signals
required to set up, take down and supervise the data
communications channel and to provide proper status and interrupt
information to the processor. There are two basic types of
adapters: serial and parallel. Serial adapters interface with
modems and usually use the Electrical Industries Association
(EIA) RS-232 standard signals. Parallel adapters can connect
indirectly to the computer's input/output (I/0) channels.

Perkin-Elmer's 0S/32 Data Communications Subsystem supports three
basic types of serial adapters:

@ asynchronous

e bisynchronous

® zero-bit insertion and deletion (ZBID)

2.2.1 Asynchronous Adapters

In the asynchronous mode, data is transferred
character-by-character. Each character is preceded by a start
bit and is followed by one or two stop bits. The disadvantage of
this type of transmission is that a substantial percentage of the
bits transmitted are used simply for separating characters; thus,
this method of transmission is more costly since the
transmissions are longer.

2-2 48-077 F00 ROO

The Perkin-Elmer 0S/32 Data Communications Subsystem supports the
following asynchronous adapters:

e The programmable asynchronous single 1line adapter (PASLA)
provides an interface between 103/202-type modems over either
a switched or leased network. It can accommodate 1local
terminals that match the EIA RS-232 standard. This system has
a high degree of flexibility in that it can be programmed for
a variety of baud rates, character formats and 1line control
functions. PASLA can also interface with either a half-duplex
or full-duplex 1line. The major disadvantage is that each
device must have its own PASLA.

@ The 2-line MUX is a halfboard that 1is equivalent to two
PASLAs.

e The 8-1line MUX is a fullboard that is equivalent to eight
PASLAs.

e The multiperipheral controller (MPC) contains the 8-channel
data communications multiplexor (COMM MUX) consisting of four
serial communication controllers. Each controller contains
two independent, full-duplex channels that can be
asynchronous, bisynchronous or ZBID interfaces, depending on
the needs of the user.

2.2.2 Bisynchronous Adapters

Bisynchronous (binary synchronous or BISYNC) adapters use the
BISYNC mode of data transmission. In bisynchronous
communications, data is transmitted in a synchronous mode with
special communications control characters that are specified for
formatting text, indicating status, synchronizing functions and
error control.

The 0S/32 Data Communications Subsystem supports the following
bisynchronous adapters:

® The synchronous 201 data set adapter contains the circuits
necessary to generate and detect control signals that are
needed to establish, maintain and terminate the data
communications channel and provide status and interrupt
information to the computer. The data transfer between a 201
modem and a 201 data set adapter occurs in the bit serial mode
with a synchronizing bit clock supplied by the modem for both
transmitting and receiving. Special character recognition
(other than the SYNC characters), block character checking and
generation, and code translation are accomplished by the
processor under program control.

48-077 FOO ROO 2-3

e The quad-synchronous adapter (QSA) is designed to operate with
synchronous modems and provides an interface between a
selector channel (SELCH) bus and four 2-wire or 4-wire
synchronous modems. Like the 201 data set adapter, data
transfer between the QSA and a modem is in the bit serial mode
with a bit clock supplied by the data set. The QSA also has
the logic necessary to generate and detect control signals
which are needed to establish, maintain and terminate a data
communications channel, and provide proper status and
interrupt information to the processor.

e The single-synchronous adapter (SSA) is a synchronous adapter
that, like the 201 and the Q0SA adapters, contains the logic
necessary to generate and read the control characters which
are needed to set up, supervise and terminate a data
communications channel, and provide the proper status and
interrupt information to the processor.

e The MPC can be used as a bisynchronous adapter as well as an
asynchronous adapter. See Section 2.2.1 for further details.

2.2.3 Zero-Bit Insertion/Deletion (ZBID) Adapters

ZBID adapters are synchronous adapters different from BISYNC
adapters. ZBID devices send data in frames, each of which starts
and ends with a particular bit sequence called a flag. ZBID gets
its name from the need to prevent the data being transmitted from
resembling the ZBID flag sequence. To accomplish this, the
sending station inserts a zero bit, whenever necessary, to
prevent the data from appearing as a flag sequence. These zero
bits are removed by the receiving station. Hence its name, =zero
bit insertion and deletion. ZBID is synonymous with synchronous
data set link control (SDLC) transmission modes.

The 0S/32 Data Communications Subsystem supports the following
ZBID adapters.

e (QSA
e SSA
e MPC
The Ethernet data link controller (EDLC) provides

processor-to-processor serial communications at a rate of 10Mbits
per second over a common coaxial cable. Communication sequences
over the half-duplex channel are divided into packets with frame
sizes ranging from 64 to 1,518 bytes. Each frame has two 48-bit
address fields, one 1l6-bit type field and a 32-bit cyclic
redundancy check (CRC) frame check sequence for error detection.

The " QSA, SSA and MPC support ZBID devices as well as
bisynchronous devices. See Section 2.2.2 for further details.

2-4 48-077 F0OO ROO

2.3 LINE DRIVERS

A line driver provides a standard software interface between the
particular communications adapter and the user task (u-task) or
special support programs in the processor. In general, a line
driver allows the user to specify the control sequence and. the
data necessary to send or receive a transmission over a data
communications line. More specifically, a line driver:

e interfaces with the communications hardware (adapter),
e controls reads and writes to or from the communications lines,
e performs certain basic timing functions, and

e controls some modem signals.

A line driver is essentially "dumb"; it does not know what is at
the end of the communications line with which it is interfaced.
The line driver, however, does know how to control the adapter in
order to pass data to or from the communications 1line. The
protocols and procedures necessary to initiate, maintain and
terminate the communications link must be supplied by either
special support software or the u-task with which the driver is
interfaced.

The 0S/32 Data Communications Subsystem supports four line
drivers.
e DASY is an asynchronous line driver that interfaces with 0S/32

asynchronous adapters (e.g., PASLA).

e DCSY is a character synchronous line driver that interfaces
with bisynchronous adapters (e.g., Q/A).

e DZBD is a ZBID line driver that interfaces with ZBID adapters
(e.g., MPC) . DZBD controls 1line synchronization, data
transparency and data blocking for medium- to high-speed
(1,200 to 19,200 baud) communications lines.

@ DETH is the Ethernet line driver, which is a ZBID line driver
that interfaces with the EDLC.

2.4 DEVICE-INDEPENDENT ACCESS

The 0S/32 Data Communications Subsystem supports two 1levels of

data communications access:

e Device-independent

e Device-dependent

48-077 F00 ROO 2-5

Device-dependent access is discussed briefly in Section 2.5 and
more fully in Chapter 5.

The device-independent access level is ideal for the
noncommunications-oriented user because it allows the user to
extend the range of the system beyond the computer room.
Device-independent access permits the user to communicate with
remote terminals over communications 1lines with normal 0S5/32
supervisor call 1 (SVCl) 1I/0 conventions just as if the data
communications terminals were local per ipherals.
Device-independent access is discussed more fully in Chapter 4.

2.4.1 Terminal Managers

Device-independent support of communications devices is provided

by 0S5/32 terminal managers. In data communications, a logical
device, such as a CRT, processor or printer connected over some
type of communications 1line, is known as a terminal. A data

communications terminal needs a coordination protocol and certain
buffer management procedures in order to be supported over a
particular type of communications facility. Data communications
terminals can be treated as local devices since the details of
hardware requirements are handled by terminal managers.

A terminal manager is actually software support that contains the
logic to initiate, maintain and terminate transmissions to a data
communications terminal. The user accesses the terminal manager
through SVCl. The terminal manager, in turn, calls a line driver
and, using the line driver features, supports the terminal in a
device-independent manner. The concept of a communications
device with device-independent access by a terminal manager is
analogous to the concept of a direct access file with file
manager support. The user program presents data to or requests
data from the terminal just as it would for any local device or
file. The terminal manager performs the necessary physical I/0,
communications line handshaking and/or data formatting.

The 0S/32 Basic Data Communications Subsystem supports four
different terminal managers; they are depicted in Figure 2-2.

2-6 48-077 F0OO0 ROO

077-7

S

©

c':v USER

<

Ry

m

o

o

g

Nt

o
MBSC
DCSY
QsA

MODEM
N BISYNCHRONOUS

Figure 2-2 0S/32 Terminal Managers

" " USER
SMART PROGRAM POINT-TO-POINT, MULTIDROP
USER
OR USER USER
PROGRAM
UTILITY
SVCIS SVC1 SVC1
MTM
CONVERSATIONAL .
[
|
MASY PPSM MMSM
MSUP
DASY
8-LINE MUX
m MODEM MODEM MODEM

»

q
;

GLASS
TTY L
N
ASYNCHRONOUS

e MASY is an unbuffered terminal manager that interfaces the
DASY driver with "dumb" terminals or printers (device codes
147). See the 0S/32 System Generation (Sysgen) Reference
Manual for further information on device codes. MASY works in
a conversational mode only and performs some very basic
formatting functions (e.g., carriage returns (CRs), line feeds
and trailing space truncations).

e MBSC is a buffered terminal manager that interfaces with the
DCSY 1line driver and intelligent terminals. MBSC works with

binary synchronous transmissions wusing the 2780 or 3780
protocols.

e PPSM is a nonbuffered terminal manager that interfaces between
DASY and intelligent terminals in a point-to-point
environment. It is used with devices having device codes 156
and 157. PPSM supports conversational data modes, as does
MASY, but PPSM also supports a block transmission mode. This
driver is used by 0S/32 Reliance.

e MMSM is a nonbuffered terminal manager that interfaces between
DASY and intelligent terminals in a multidrop environment. It
is used with devices having the device code 158. MMSM has the
same block support as PPSM, but is wused for a multidrop
environment (i.e., many terminals connected to a single data
communications line).

Both PPSM and MMSM use an additional software module known as
MSUP. MSUP contains code that is used by both PPSM and MMSM in
conjunction with their own differing software. MSUP's wuse is
analogous to two user tasks, both different, but both needing to
access the same library subroutine. Because of this, PPSM and
MMSM could be more correctly called PPSM-MSUP and MMSM-MSUP.

2.4.2 Protocols

A protocol is a set of conventions for the establishment and
maintenance of a data transmission line. In other words, a
protocol is a set of rules that the computer and/or terminal
follow when using data communications facilities. Military radio
communications are a good example of communications protocol. A
communications link is requested with "This is XYZ calling ABC."
Acknowledgments are made with a "Roger" and the end of a
transmission is signified by an "Over". These particular
responses are a part of the established protocol of military
communications. A data communications protocol is similiar, but
much more regimented. In a data communications protocol, the
conventions are precise and must be followed exactly.

Data communications protocols provide facilities for error

handling, handshaking, coordination procedures for switched
networks and failure recovery.

2-8 48-077 F0OO ROO

Error handling includes both error detection and error correction
techniques. Error detection is based on redundant information in
the transmitted message. Correction of detected errors is
generally done by retransmission of a portion of the message as
provided for in the protocol. Another method of error correction
is the replacement of an error with a special character - for
manual error correction.

Character errors can be checked by a method known as vertical
redundancy checking (VRC). In this technique, a parity bit is
added to the character bits and the process checks for either odd
or even parity. If a character with the incorrect parity is
detected, it is treated as an error.

The disadvantage of VRC is that it can only detect a single or an
odd number of bit errors. Another technique of error checking is
needed to find multiple errors. One such technique is to place
parity bits along a data block in addition to those used by VRC.
These special bits are added at the end of the block so the bit
parity is always odd. This technique is referred to as
longitudinal redundancy checking (LRC). LRC is computed by
taking the exclusive-OR of a zero character successively with
each character in the block.

CRC is another, more powerful way of detecting errors. This
method is essentially a combination of VRC and LRC. In CRC, a
polynomial formula 1is wused to generate a special checking
sequence at both ends of the transmission network. The result of
this sequence 1is sent by the transmitting station to the
receiving station and is compared to the value of the sequence
calculated by the receiving station. If the two values are not
equal, errors have occurred. CRC 1is capable of detecting
multiple bit errors and many burst-type errors.

A protocol known as the data link control protocol defines the
general control framework for the data communications network.
A terminal can have its own internal protocol, different from the
general control protocol. However, some type of control over
terminals 1is necessary in multiterminal networks where there are
many terminals connected to a single line. The process of
polling terminals uses a protocol to request and establish
communications links between the processor and a terminal
requesting the link.

Another type of protocol is known as a communications protocol.
This protocol provides rules for transmission and reception of
the different types of data streams. For example, the advanced
data communications control procedure (ADCCP) is a synchronous,
bit-oriented, code-independent, interactive protocol specifically
designed for computer-~based data communications over a
full-duplex mode. Other communications protocols are designed to
be character-oriented, or for asynchronous transmissions,
or to be used over a half-duplex transmission mode, etc.

48-077 F0O0 ROO 2-9

For information on the protocols supported by the 05/32 Data
Communications Subsystem, see the 0s/32 Asynchronous,
Bisynchronous, Bit-Synchronous and Network Drivers Programming
Reference Manuals.

2.5 DEVICE-DEPENDENT ACCESS

Device-dependent support of communications devices is often
referred to as the line driver access method because the user
makes use of line driver features directly through the SVC15
parameter block. Direct use of data communications line drivers
provides the more primitive functions that enable a user to
tailor a communications system to a particular need. The
position of the line drivers in the 0S/32 Data Communications
Subsystem makes it easy for the user to specify the special
control sequences needed to complete a transmission. For this
level of support, the u-task need only be assigned a
communications line by the operating system. The flexibility of
this system allows straightforward tailoring of the
communications system and such features as command chaining,
buffer management and task interrupts (traps).

The disadvantage of device-dependent access, as opposed to the
0S/32 terminal managers, is that the u-task must specify all data
communications control sequences through the 8SVC15 parameter
block. It is recommended that, when possible, device-independent
access be used.

2-10 48-077 F0O0 ROO

CHAPTER 3
DEVICE HANDLING

3.1 INTRODUCTION

Data communications lines and/or terminals must be assigned or
closed just like other devices. Also, line control blocks (LCBs)
for 0S/32 Data Communications buffered terminal managers need to
be allocated and deleted just like direct access files. These
allocations, assignments, etc., can be accomplished by using
either the supervisor call 7 (SVC7) parameter block or the
specific 0S/32 operator commands.

The SVC7 parameter block is covered in Sections 3.2 and 3.3. The

use of system operator commands is discussed in Section 3.4.

3.2 SUPERVISOR CALL 7 (SVC7)

SVC7 is used in data communications to:

e allocate and delete LCBs for buffered terminal manager access
(svcl),

e assign and close logical units for 1line driver (SVC1l5) and
terminal manager (SVCl) access,

e checkpoint buffered terminal manager access (SVCl),

© rename and reprotect data communications lines (SVC1l5 access
devices) and terminals (SVCl access devices), and

e allocate and delete drop control tables (DCTs) for channel
terminal manager (SVCl) access or multidrop lines.

This discussion of SVC7 includes only information pertinent to
data communications. For in-depth discussions of SVC7 support,
see the 05/32 Supervisor Call (SVC) Reference Manual.

3.2.1 Supervisor Call 7 (SVC7) Parameter Block
SVC7 provides device-handling functions supported by the data

communications subsystem. These functions are accomplished
through the SV(C7 parameter block and coding shown in Figure 3-1.

48-077 FOO ROO | 3-1

10(0) 12(2) 13(3) |
| Function code | Error status | lu !
! (8VC7.0PT) i (8VC7.8TA) i (8VC7.L0U) !
e o e e e e o e e e o o e e e o e e P B e e o e . o i e 2 i e e o e e o e e o e S e P o o S o . i e S o T T S [|
e]
14(4) 15(5) 16(6) :
i Write key i Read key i Logical record length |
! (SVC7.WKY) | (SVC7.RKY) | (8VC7.LRC) !
o e e =
18(8) ;
H Device mnhemonic !
' (8VC7.VOL) |
j=m——————— e |
112(C) |
! !
i |
j—————- Filename = -—==—-== !
116(10) (SVC7.FNM) !
{]
| |
f o T T T e e e e e e e e |
120(14) 123(17) !
| Extension ! Not used !
| (SVC7.EXT) ! !
e e ettt b i
124(18) !
! File size !
i (8VC7.812) '

svC 7,parblk

ALIGN 4

parblk DC X'function code’

Ds 1

DB 1lu

DB 'write key'

DB 'read key'

DC H'record length'

DC C'4-character device mnemonic'

DC C'8-character filename'

DB C'3-character extension'

DB Not used for data communications

DC F'file size'

Figure 3-1 SVC7 Parameter Block Format and Coding

3-2 48-077 F0OO0 ROO

3.2.1.1 PFunction Code Field

The function code field is a 2-byte field that contains the
hexadecimal number indicating the function to be performed. The
format of the function code field is shown in Figure 3-2.

Command byte Modifier byte
[> ~~— N\ Tmmm— S — "
| A} A} C} R} R} C}| D} C | Access |Access | File H
{ L{ S| H|N|P|L | L | K |privileges |method | types |
Bits:
0 1 2 3 4 5 6 7 8 10 11 12 13 15

Figure 3-2 SVC7 Function Code Field

The SVC7 function code field is divided into two l1l-byte sections.
The first byte is referred to as the command byte and the second
as the modifier byte.

The command byte, bits 0 through 7, requests one or more file
management functions. If more than one command bit is set, the
respective functions are processed sequentially, left to right.
The modifier byte, bits 8 through 15, modifies commands specified
in the command byte.

The data communications function of each bit setting in the SVC7
function code field is explained in Section 3.3.

NOTE

The modifier field is not used on a fetch
attributes call. Instead, the device
code is returned in this field.

3.2.1.2 Error Status Field

The error status field is a 1l-byte field that receives
appropriate error codes when an error occurs while executing
svVC7.

The interpretation of the error status field depends on the
command specified in the <call. It is compatible with nondata
communications status returns (see the 0S/32 System Level
Programmer Reference Manual). A zero status always means the
desired options were performed without error. Table 3-1 details
the SVC7 error status field bit settings.

48-077 FOO ROO 3-3

TABLE 3-1 SVC7 ERROR STATUS CODE BIT SETTINGS

| BIT | HEX | FUNCTION | MEANING !
= EEEEEREEEEESENEENREEEEREEEEN RS ETEEESERERNEDE R ZIE I3 ID I I I SE IR TR D IS T R R I NS 1 ‘
| 0 i (00) | All | No error; the requested !
! | ! | functions are complete !
oo et !
| 1 i (01) | A,O | Illegal function; illegal |
i i ! | FT or AM modifier |
st :
! 2 i (02) { All but | Logical unit (lu) error; |
i i | A,D | illegal lu !
e oo :
i 3 i (03) i A,0,D | Device error; no such !
i i | | device in the system |
| oo e !
| 4 i (04) i A,O,N,D | Name error; mismatch on '
! | i | filename.ext field (may |
i i | | indicate failure to |
| H | | allocate LCB when !
i i : | assigning for buffered |
| | | | access) |
e e !
i 5 i (05) | A | Size error; erroneous i
H | | { LRECL or SIZE field |
o e e e !
H 6 i (06) | 0,D | Protect error; erroneous |
| i | | protection keys !
= o e !
| 7 i (07) { O,H,N, | Privilege error; unable |
| | | P,D | to obtain requested |
H | | | privilege |
e e e e e e !
| 8 i (08) | O | Buffer error; unable |
i i | | to obtain requested !
i i] | privilege !
| T T e e e e e e e e e e e e e e e e i
i 9 i (09) i All but | Assignment error; lu not |
i | |\ A,D | assigned or attempted |
i H | | Lo mix SVC1l and SVC15 |
i i i | access to same device !
it :
i 10 i (0A) | A,N,P,D | Type error; nondirect |
H H | | access device or device !
i i i | off-line]
e =
P11 i (0B) i A,O,N,D | File descriptor (fd) i
i i | | error; illegal syntax !
d e e e ———————
12 (80-FF) o,c,D,T Input/output (I/0) error;

]
]
| interpreted as sSVCl
| status byte

48-077 F0O0 ROO

3.2.1.3 Logical Unit (lu) Field

This l-byte field contains a hexadecimal number indicating the lu
assigned to the data communications device for which the function

is requested. This field is used for all SVC7 functions except
allocate and delete.

3.2.1.4 Read and Write Key Fields

Protection keys for devices are specified 1in this halfword.
These keys are required for the allocate, assign, reprotect and
delete functions. It is recommended that they be reset to zero.

When executing the SVC7 fetch attributes function, the device
attributes are stored in the write and read key fields of the
parameter block.

3.2.1.5 Logical Record Length Field

The logical record length field is a 2-byte field containing a
decimal number that indicates the physical record length when
allocating the buffered logical terminal manager.

When executing a fetch attributes function, this field receives
a number indicating the physical record length of the device
assigned to the 1lu.

3.2.1.6 Device Mnemonic Field

The device mnemonic field is a 4-byte field containing ASCII code
that indicates the name of the data communications 1line to be
used when the allocate, assign, delete and fetch attributes
functions are executed.

3.2.1.7 Filename Fielad

The filename field is an 8-byte field containing ASCII code that
indicates the buffered logical terminal described by the LCB that
is being allocated or assigned.

When executing a fetch attributes function, this field receives
the filename from the data communications device currently
assigned to the lu specified in the parameter block.

3.2.1.8 Extension Field

This 3-byte ASCII field is treated as an extension of the
filename.

48-077 F0O0 ROO 3-5

3.2.1.9 File Size Field

This 4-byte field contains a hexadecimal number indicating the

block size established when an LCB is allocated.

3.3 COMMAND FUNCTIONS

This section briefly describes the command functions of the

function code field as they relate to data communications. For

a more detailed explanation of these command functions, see the

0S/32 Supervisor Call (SVC) Reference Manual.

3.3.1 Allocate Function

The allocate function reserves memory space for LCBs or DCTs for

SVC1l access. The space reserved must be less than the user's

remaining allotment of system space.

The required parameter block fields for this function are:

e Bits 0 and 13 through 15 (file type) of the function code
should be set (hex mask X'8007').

e Write key field

@ Read key field

e Logical record length field

® Device mnemonic field

e Filename field

e Extension field

e File size field

For multidrop lines, a DCT must be allocated for each drop

assigned.

3.3.2 Assign Function

The assign function establishes a logical connection between a

line or terminal and the task. This is accomplished through a

specified lu for either S8SVCl or SVC1l5 access. For buffered

terminal access, the device mnemonic, filename and extension

fields specify the name of a logical terminal given to a
previously allocated LCB.

3-6 48-077 F0OO ROO

The required parameter block fields for this function are:

e Bit 1 of the function code must be set; bits 8 through 10
(access privilege), 11 and 12 (access method) and 13 through
15 (file type) should be set as needed (hex mask X'40nn').

e 1lu field

e Write key field

® Read key field

e Device mnemonic field
e Filename field

e Extension field

Assignments of the same device to multiple 1logical units are
governed by the specified access privileges. Multiple
assignments are valid as long as assignments specify the same
access method. Assignments of a device for SVC1l5 access when it
is already assigned for SVCl access, or vice versa, is illegal
regardless of the specified access privileges. The only legal
access privileges for SVC1l5 assignment are those specifying both
read and write access (B 100 through B 111).

3.3.3 Change Access Privileges Function

This function changes the current access privileges of an
assigned device to the access privileges specified in the
parameter block. The new access privileges must be compatible
with the existing ones; otherwise, the existing access privileges
of the device remain unchanged and an error status is returned.
If the device is assigned with read-only privileges, a write
access privilege change is not allowed. See the 0S/32 Supervisor
Call (svC) Reference Manual for a table of allowable access
privilege changes.

Not all 0S/32 terminal managers support change access privileges.

See the appropriate terminal manager's manual for further

information.

The required parameter block fields for this function are:

e Bit 2 of the function code must be set; bits 8 through 10
should be set, as needed, to indicate the desired access
privileges (hex mask X'20n0').

e 1lu field

48-077 FOO ROO 3-7

If an error is encountered while processing this request, the
device remains assigned with its original access privilege. A
device assigned for SVC1l5 access can only request read/write
access.

3.3.4 Close Function

The close function breaks the logical connection between an 1lu
and a data communications 1line and terminal by closing the

currently assigned 1line. For 1logical units assigned for a
buffered terminal (SVCl) write access, partially filled buffers
are written to the line (i.e., checkpointed). If there are no

other assignments to this device, the data terminal ready (DTR)

signal to the modem is dropped, disconnecting a switched line.

This occurs whether or not the device is system generated

(sysgened) as a switched line.

The required parameter block fields for this function are:

e Bit 5 of the function code field must be set (hex mask
X'0400').

e 1lu field

3.3.5 Delete Function

The delete function removes a currently unassigned LCB from

memory. The required parameter block fields are:

e Bit 6 of the function code field must be set (hex mask
X'0200"').

e Write key field

® Read key field

e Device mnemonic field

e Filename field

e Extension field

If the logical terminal name matches the name in the LCB, the LCB
is deleted.

3-8 48-077 F0OO0 ROO

3.3.6 Checkpoint Function

The checkpoint function ensures that terminal data buffered in
memory is transmitted to the terminal. The required parameter
block fields for this function are:

® Bit 7 of the function code must be set; bits 11 and 12 should
be set, as needed, to specify the required access method (hex
mask X'0lnn').

e lu field

If the lu requested is not assigned, an error code of X'8l' is
returned.

3.3.7 PFetch Attributes Function

For proper operation, some programs require knowledge of the
physical attributes of the device associated with a given 1lu.
The fetch attributes function accesses and sends this information
to the SVC7 parameter block. These attributes include the device
mnemonic, filename, extension and buffer size. Device codes are
sent to the modifier byte of the function code field and device
attributes are stored in the write and read key fields. The
logical record length field receives a device physical record
length. The field differences for the fetch attributes function
are 1illustrated 1in the 0S/32 Supervisor Call (SVC) Reference
Manual.

When executing this function, the modifier (device codes) field
receives a hexadecimal number indicating the device type. The
System Generation/32 (Sysgen/32) Reference Manual 1lists all
device codes. :

The device attributes field receives a hexadecimal number
indicating certain device attributes. All supported attributes
and corresponding masks are listed in the 0S/32 Supervisor Call
(8VC) Reference Manual. The hex mask for this function is
X'0000' (no command bits set).

3.3.8 Vertical Forms Control (VFC) Function

The VFC option turns the VFC function on or off for a particular
device. To execute this function, only the first four bytes of
the SVC7 parameter block are required.

To use the VFC function, the command byte of the function code
should be set to X'FF'. To turn on the VFC function for a
particular device, set the modifier byte to X'20'. To turn the
function off, set the modifier byte to X'21'. The error status
and lu fields are the same for all SVC7 services.

48-077 FOO ROO 3-9

VFC is supported by device codes 156 and 157 only. See the
System Generation/32 (Sysgen/32) Reference Manual for further
information.

3.3.9 Rename Function

The rename function changes the device mnemonic table (DMT) entry
for the device. This routine also changes the LCB.NAME and
ILCB.EXT fields when it finds a buffered terminal.

The rename function may not be supported for all data
communications terminal managers. See the appropriate terminal
manager's manual for further information.

3.3.10 Reprotect Function

When parameters are passed by the user, the reprotect function
changes the read and the write keys. Also, if a device is
buffered, REP.DCB gets the device control block (DCB) address
from the LCB.

3.4 OPERATOR COMMANDS

Data communications SVC7 support can be invoked via the 0S5/32
System operator commands. A brief description of the commands
pertinent to data communications is given in this section. See
the 0S/32 Operator Reference Manual for a detailed description of
these commands.

The term ITAM, which appears in the following commands, is
synonomous with the term data communications.

3-10 48-077 F00 ROO

3.4.1 ALLOCATE Command

The ALILOCATE command is used to allocate an LCB for data
communications buffered terminal access.

.Format:

s co- s [{ 7] (1) [o]

Parameters:

fa is the file descriptor of the buffer or device
to be allocated.

ITAM specifies that the device to be allocated is
a data communications device.

lrecl is a decimal number specifying the logical
record length of a data communications device.
It cannot exceed 65,535 bytes. lrecl may
optionally be followed by a slash (/), which
delimits it from bsize. If no logical record
length is specified, 80 is the default.

bsize is a decimal number specifying the physical
block size to be used for buffering and
debuffering operations on the data

communications device.

When ITAM is specified, bsize represents the
buffer size in bytes. For ITAM buffers, this
parameter cannot exceed the maximum block size
established by the sysgen procedure. If bsize
is omitted, the default value for the ITAM
buffer will be the "standard" buffer size for
the particular device.

keys gspecifies the write and read protection keys.

48-077 FOO ROO 3-11

Functional Details:

The fd must specify the device mnemonic for the desired data
communications terminal, plus a unique filename and extension for
each 1lu to which the terminal is to be assigned. If an LCB' for
the specified filename and extension already exists, a NAME-ERR
message is returned.

The operator DISPLAY ITAMTERM command can be used to display
allocated LCBs in a manner analogous to that of the DISPLAY FILES
command . See the 0S/32 Operator Reference Manual for a
description of these commands.
Examples:
The following allocates an LCB for a binary synchronous terminal
called RJE.IN on device BSCl:.

AL BSC1:RJE.IN, ITAM,80/404

The following allocates an LCB for a binary synchronous terminal
called INPUT on device BSCl. Here the default logical record
buffer and block size are used. :

ALLOCATE BSCl:INPUT, ITAM

3-12 48-077 F0O ROO

3.4.2 ASSIGN Command

The ASSIGN command assigns a data communications device to a
task's logical units.

Format:

access privileges keys
ASSIGN 1lu,fd|, E }
8RW 0000

Parameters:

1lu

fd

access
privileges

48-077 F0OO ROO

is a decimal number specifying the 1logical
unit number to which a device or file is to be
assigned.

is the file descriptor of the device or file
to be assigned.

specifies the desired access privileges.
Possible access privileges are:

SRO Sharable read-only (SVCl access)
ERO Exclusive read-only (SVCl access)
SWO Sharable write-only (SVCl access)
EWO Exclusive write-only (SVCl access)
SRW Sharable read/write (default)
SREW Sharable read, exclusive write
ERSW Exclusive read, sharable write
ERW Exclusive read/write

NOTE

The ASSIGN command is rejected if
the specified access privileges

cannot be granted. For SVC15
access, the assignments must
specify both read and write
access. Assignment for SVCl5

access is rejected if read-only or
write-only access 1s requested.
Assignment for SVC1l5 access is
also rejected if the device is
already assigned for SVCl access,
and vice versa. See the 0S5/32
Operator Reference Manual.

keys signify the write/read protection keys of the
device to be assigned.

SVCl signify which 8VC parameter block is to be
SVC15 used. SVCl5 signifies that the specified
SVCF device is to be assigned for SVCl5 access. If
VFC SVC1l5 access is specified, VFC cannot be

gspecified. The default value is SVCl, which
specifies that the device is to be assigned
for SVC1l access.

Examples:

The following example assigns an asynchronous line, PALO: to 1lu
9 for SVC15 access. SRW access privileges and zero keys are
assumed.

AS 9,PALO:,,,SVC15

The following example assigns the bisynchronous terminal for
which an LCB was allocated in the first allocate example to 1lul
with SRW access.

AS 1,BSC1:RJE,IN

3-14 48-077 FOO ROO

3.4.3 CLOSE COMMAND

The CLOSE command permits the operator to close (unassign) one or
more devices assigned to the currently selected task's logical
units.

Format:
luy [[luz,...,lu,]
CLOSE
ALL

Parameters:

1u is a decimal number specifying the logical

unit assignments.
ALT, gspecifies that all 1logical units of the

currently selected task are to be closed.

Functional Details:

Closing an unassigned lu does not produce an error message. A
CLOSE command can be entered only if the referenced task is
dormant or paused.

Examples:
The following example closes logical units 1, 3 and 5 of the
currently selected task.

cL 1,3,5

The following example closes all logical units of the currently
selected task. :

CLOSE A

48-077 FOO ROO 3-15

3.4.4 DELETE COMMAND
The DELETE command is used to delete currently unassigned LCBs
from memory.
Format:
DELETE fd,[,fdy,...,fdn]
Parameter:

fd identifies the LCBs to be deleted.

Functional Details:

The LCB being deleted must not be currently assigned to any lu of
any task.

3-16 48-077 F00 ROO

| XALLOCATE |

3.4.5 XALLOCATE COMMAND

The XALLOCATE command allocates an LCB. If an LCB with the

specified fd exists, it is deleted and an LCB with the same fd is
allocated.

Format:

wusoass ca, o[{52 [o]

Parameters:

fd is the file descriptor of the buffer or device
to be allocated.

ITAM gspecifies that the device to be allocated is
a data communications device.

lrecl is a decimal number specifying the logical
record 1length of a data comunications device.
It cannot exceed 65,535 bytes. lrecl may
optionally be followed by a slash (/), which
delimits it from bsize.

bsize is a decimal number specifying the physical
block size to be used for buffering and
debuffering operations on the data

communications device.

" When ITAM is specified, bsize represents the
buffer size in bytes. For ITAM buffers, this
parameter cannot exceed the maximum block size
established by the sysgen procedure. If bsize
is omitted, the default value for the ITAM
buffer will be the "standard" buffer size for
the particular device.

keys specify the write and read protection keys.

48-077 F0OO0 ROO 3-17

Functional Details:

The XALLOCATE command differs from the ALLOCATE command in that
if an attempt is made to allocate an existing LCB with the
ALILLOCATE command, an error message is given. With the XALLOCATE
command, however, if the LCB to be allocated already exists, no
message is generated and the LCB is deleted and reallocated.
Otherwise, XALLOCATE and ALLOCATE behave in the same manner.

3-18 48-077 FOO ROO

3.4.6 XDELETE Command

The XDELETE command is used to delete one or more LCBs.
LCB does not exist, no error is generated.

Format:

XDELETE fd [[fds,...,fdn]

Parameter:

£a | identifies the LCBs to be deleted.

48-077 F0OO ROO

If

the

CHAPTER 4
DEVICE-INDEPENDENT ACCESS

4.1 INTRODUCTION

Device-independent access is designed for the noncommunications-
oriented user who wishes to use data communications facilities
without the trouble of direct line driver control. Such control
is provided for the user by the 0S/32 terminal managers. A
terminal manager contains the logic to initiate, maintain and
terminate a data communications link, thereby freeing the user
from the need to control these line driver functions through the
user task (u-task). For most basic communications tasks, use of
0S/32 terminal managers is sufficient to accomplish the link.

4.2 TERMINAL MANAGER ACCESS

The terminal manager provides access to remote or 1local devices
for the following uses:

@ Programs that can access local or remote devices without
recompilation.

e The noncommunications-oriented user who wishes to access
remote facilities without knowledge of 1line protocols and
codes - in addition to functions common to local and remote
devices, terminal managers provide functions to connect and
disconnect devices from a communications line.

e The communications-oriented user who determines that a
standard terminal manager provides adequate support for an
application without special-purpose software.

While data communications 1line drivers can communicate with
different types of devices, the terminal manager is designed to
support only a single device type or a group of similiar device
types.)

In general, terminals can be accessed in either a buffered or
nonbuffered mode. For nonbuffered access, data is transferred
directly to or from the user buffer and every request from the
user program requires at least one physical transmission over the
communications line.

48-077 F0O0 ROO 4-1

For buffered access, data is transferred between the user buffer
and a system buffer. The terminal manager initiates data
transmissions only when necessary. The system buffers needed by
buffered access are contained in a system structure known as the
line control block (LCB). Before accessing a terminal in the
buffered mode, the LCB must be allocated in memory. At
allocation time, the logical buffered terminal is given a name
and the logical record 1length and block size are specified.
After the program finishes accessing the terminal, the LCB can be
deleted from memory. Supervisor call 7 (SVC7) calls or the 0S/32
command language provides the means to allocate, assign, delete
or rename the LCB (see Chapter 3).

In data communications, all terminal access, such as input/output
(I/0) access, is accomplished via a logical unit (1lu). Each
terminal must be assigned to the proper lu prior to access. For
nonbuffered access, the terminal is assigned to the lu using the
name given to the terminal at system generation (sysgen) time.
For buffered access, the logical terminal, named by a previously
allocated LCB, is assigned to the desired lu. After the program
has accessed the terminal, the lu should be closed. Chapter 3
discusses the 0S/32 support provided via SVC7 or the command
language for assigning, checkpointing and closing logical units
for terminal access.

4.3 SEQUENCE OF OPERATION
For a terminal manager that supports buffered access, the wuser
must first allocate an LCB. The terminal is then capable of

accessing data in either a buffered or nonbuffered mode.

When a program is to be used with one type of buffered terminal,
all required actions can be performed by SVC7 calls.

To use the device-independent facilities provided by terminal
managers, the following four steps must be performed.
1. Sysgen

Include terminal manager support by specifying the needed

terminal (DCOD) at sysgen. Terminals are configured just
like any local device, such as a line printer.

4-2 48-077 FOO ROO

2. Programming
Perform I/0 requests by using SVCl as if the requests were to
a local device or direct access file. Since all 1I/0 is

performed to an 1lu rather than a specific device, device
dependency is of no importance.

3. Execution

A nonbuffered device is assigned to the 1lu just as if it were

a local device. For buffered devices, an LCB must be
allocated prior to assigning the lu. The terminal manager
uses this LCB to control access to the terminal. The LCB
contains control fields, the device name and the required
buffers.

After allocating an LCB, assign the LCB to the 1lu used for
program access. This establishes the link between the lu and
the device named by the LCB.

4. Termination
Close the lu assigned to the device and delete the LCB from

memory. The device is then available for another program.

The steps outlined for execution and termination can be performed

by the program via SVC7 requests or by the system operator

through the 08/32 command language.

In general, the sequence of operations necessary for terminal

level access is:

1. Allocate an LCB that reserves buffer space and names a
logical terminal (buffered access only). ‘

2. Assign the terminal or 1logical terminal to the desired
program lu.

3. Access the terminal via SVCl calls, similar to accessing a
local device.

4. Close the assigned lu when the terminal is no longer needed.

5. Delete the LCB from memory (buffered access only).

48-077 F0OO ROO 4-3

4.4 SUPERVISOR CALL 1 (SVCl)

The data communications 8VCl facility is ideal for the
noncommunications-oriented wuser. It allows the user to easily
extend the range of a system beyond the computer room. Remote
terminals can be added with no impact on user programs.

All data transfers are performed at the read/write level. The
0S/32 software performs the processing needed to interface with
the terminal or protocol that frees the user of the problems
generally associated with communications programming.

By issuing a read/write SVCl to the 0S/32 executive, the user can
perform local or remote I/0. SVC1l can be used directly by a
Common Assembly Language (CAL/32) program or indirectly by a
high-level language run-time library (RTL) routine. 0s/32
provides extended options with SVC1l to give the assembly-level
user direct control over communication functions that have no
parallel in local devices, such as disconnecting from a telephone
line.

Section 4.4.1 describes the SVC1l functions for terminal access.
The individual terminal manager description should be consulted
for exact interpretation of function code and status. To write
user programs that operate with either remote or local devices,
see the SVCl description in the 0S8/32 Supervisor Call (8VC)
Reference Manual.

4.4.1 Supervisor Call 1 (SVCl) Parameter Block

SVC1l is used to initiate I/0 for communications devices as well
as local devices. The extended options field of the SVCl
parameter block shown in Figure 4-1 is used for terminal manager
access. The function code byte, interpreted for data transfer
requests, is defined in Table 4-1.

The SVC1l parameter block must be 24 bytes 1long, fullword
boundary-aligned and located in a task-writable segment.
Location within a writable segment 1is necessary so that the
status of an I/0 request can be returned to the status fields of
the parameter block. All fields in the parameter block are not
required for every I1/0 request, but must be reserved (see Figure
4-1).

4-4 48-077 FOO ROO

0)
unc

o~

tion code]|

f1(1) 12(2) Device- |3(3) Device- |
Ju i independent | dependent |
! status ! status !

e " ——— T [G T Tt S o T B S B i T SAL S . S N S [P S e, S T ") o —— o ot St o S s S e S B

parb

Fields:

Func
code

48-077 F

ALIGN
DB
DB
DS
DC
DC
DC
DS
DC

1k

Figure 4-1

tion

00 ROO

l,parblk

4

X'function code’

xl lu’

2 bytes for status

A(buffer start)

A(buffer end)

4 bytes for random address

4 bytes for length of data transfer
Y'extended options'

SVC1l Parameter Block Format and Coding

is a l-byte field indicating whether a request

is a data transfer or a command function, and
the specific operation to be performed. Bit
settings for data transfer requests are
described in Table 4-1. Hexadecimal function
codes for command function requests are
defined in Table 4-2.

4-5

1lu

Device-
independent
status

Device-
dependent
status

Buffer start
address

Buffer end
address

Random
address

Length of
data transfer

Extended
options

is a l-byte field containing the logical unit
currently assigned to the device to which an
I1/0 request is directed.

is a 1-byte field receiving the execution
status of an I/0 request after completion.
The status received is not directly related to
the type of device used.

is a l-byte field receiving the execution
status of an I/0 request after completion.
The status received contains information
unique to the type of device used.

NOTE

The device-dependent status byte,
into which general purpose drivers
return the low-order eight bits of
the device address, . is used
differently for terminal managers.
When an error occurs on a data
communications device, the byte is
used to differentiate between the
possible specific errors within
the general category given by the
device-independent status.

is a 4-byte field used only for data
transfer requests and must contain the
starting address of the 1I1/0 buffer that
receives or sends the data being transferred.

is a 4-byte field used only for data
transfer requests and must contain the ending
address of the [1/0 buffer that receives or
sends the data being transferred.

is a 4-byte field containing the address
of the logical record to be accessed for a
data transfer request; a legal hexadecimal
number must be specified in this field if bit
5 of the function code is set to 1.

is a 4-byte field used only for data
transfer requests. [t receives the number of
bytes actually transferred as a result of a
data transfer request. If an error occurs
during data transfer, this field is modified
with indeterminate data.

is a 4-byte field specifying device-dependent
and device-independent extended functions that
must be executed by the device when it is
servicing a data transfer request.

48-077 F0OO0 ROO

If bit 7 of the function code is zZero (Format), the
interpretation is identical to the interpretation for other
devices described in the 0S/32 System Level Programmer Reference
Manual. The terminal manager will make assumptions using
defaults where necessary. If bit 7 is set to 1 (Image), the
extended options field is required.

I F T R W]F|{W|A|P]|E|]
i CIDJIR}JOJA}|CJR| O]
Bits:

0 1 2 3 4 5 6 7

Figure 4-2 SVC1l Function Code Field

TABLE 4-1 SVCl DATA TRANSFER FUNCTION CODE

BIT | MEANING
0 | Function code type

This bit indicates the 1/0 function to be performed.
0 Indicates a standard data transfer.
1 Indicates an SVCl command function. 1If bit 7 is

also set, no echoplex is desired for the next image
1/0.

Read/write bits

]

I

]

1

| The meaning of these two request bits is modified by
| bits 3 to 7 to control the transfer. Basically the
i four values are:
[}

i

|

1

I

i

10 Read

01 Write

1l Test and set

00 Wait only or test I/0 complete

48-077 F0O0 ROO 4-7

TABLE 4-1 SVCl DATA TRANSFER FUNCTION CODE (Continued)

BIT | MEANING
3 | ASCII/binary bit |

This bit indicates the type of formatting requested if
bit 7 is set.

|
|
I
= A
i 0 Indicates ASCII formatting. The internal data is in
! the 7-bit ASCII character set and is translated to
i an equivalent character set appropriate for the

| external device. If image I1/0 extended option is

| specified, the data is translated and the appro-

| priate parity is added.

]

;

|

i

|

i

!

1 Indicates binary formatting. The internal data is
8-bit binary and will not be translated. Binary
image is a straight 8-bit data transfer, no parity.
If bit 3 is set and an image I/0 extended option is
specified, the internal data byte (eight bits) is
transferred without translation.

—— e ——— A ——— ——— ——— men VA e - —— ——— ——— ——— ———— —— —— —

]

)
i 4 | Proceed/wait bit i
[} |]
1 I 1
| ! This bit indicates the action to be taken after an 1/0 |
| ! is initiated. !
! i |
] i 0 Proceed - indicates that control is to be returned !
! | to the task after 1/0 initiation. |
i i i
i ! 1 Wait - indicates that a task is to be put into I1/0 |
| H wait until the data transfer is complete. |
| T T T T T T e !
{ 5 | Sequential/random bit |
| i !
| i 0 Sequential - indicates the next logical record is to |
i ! be accessed. =
i i |
i { 1 Random - indicates the logical record specified by !
}] the hexadecimal value in the random access field is |
! | to be accessed. H
e e e e e e e o o e e o e e T . o o o = S = e e T o T . et ot e T e o o Tt A e e Tt ot vt . . . e o o e e ot e o t
] |

6 Unconditional proceed bit

:

:

| 0 Indicates the task is to be put into wait until the
! requested device/file is free. At that time, the

! request is processed.
]
;
|
|

1 Indicates that the request is to be rejected with a
condition code of X'F' if the requested device/file
is not free.

4-8 48-077 F0O0 ROO

TABLE 4-1 SVCl DATA TRANSFER FUNCTION CODE (Continued)

!
1
|
i
|
|
1
!
I
I
i
l
!
!
I
]
|
|
1
I
!
I
|
!
!
!
[
I
!
1
]
|
!
!
!
!
I
!
|
|
|
!
!
H
i
!
!
!
!
I
!
!
|
t
|
1
1
|
H
|
|
I

MEANING '

e D e N Y e L P L T EE L gy

Standard/extended options bit
0

Indicates standard device-independent data format-
ting is to be performed.

s

Indicates that the extended options field is to be
examined for additional formatting and line control
options.

v ban o ——— i ———— o ——— i - " — i - T - St A T o Tt M e s e e T A bhe e WAm e e Mme et e AMa s et Sme Mmoo —

The extended options field of the SVCl parameter block consisting
of 32 bits, is defined in Table 4-2. Extended options provide
both device-dependent and communications-dependent features with

SVCl access. This allows a limited amount of formatting to be
done by the program without having to wuse SVC15 1line driver
access. The capability to connect to and disconnect from a

switched communications line (i.e., the ability to answer a data
telephone call and to hang up) is also provided. The extended
options can be used only in conjunction with a read or write
operation, as explained in Table 4-2.

If the user does not wish to wuse the extended options,
connect/disconnect operations are controlled by the terminal
manager. If an SVCl request is made to an unconnected switched
line, a connect 1is automatically performed. When the last
assignment to a switched terminal is closed, a disconnect is
performed.

For editing terminals (device codes 156 and 157), a user may
specify no echoplex for an image I/0. Another option available
for these device codes is 8-bit no parity data transfer. No
echoplex is specified by preceding the image I/0 with an SVCl
command with the function code set to X'8l1' and the extended
options field set to Y'1000 0000'. To indicate 8-bit no parity
data transfer, the user must set the binary bit in the function
code (X'10').

An in-depth discussion of SVCl data transfer functions and

extended options can be found in the 0S/32 Supervisor Call (SVC)
Reference Manual.

48-077 F0OO0 ROO 4-9

TABLE 4-2 SVCl EXTENDED OPTIONS

BIT | HEX MASK | MEANING
0] i 8000 0000. | Connect

i

1

| When set, this bit instructs the terminal
| manager to establish a connection over a

| switched line before transferring data. It
| is ignored for nonswitched configurations.
| If the line has been sysgened with the

! XDCD bit set, then all 1/0s are errors

| until an SVCl with the 0 bit set is

| executed. See the System Generation/32

i (Sysgen/32) Reference Manual for further

| details.

4000 0000 Disconnect

i
i
i When set, this bit instructs the terminal
i manager to disable the data terminal ready
| control signal to the adapter after the

| data transfer operations specified in the
i function code are completed. This allows

i program-controlled disconnect of switched
i lines and control of carrier on leased

| configurations.

2000 0000 Format/image bit

0 Indicates that no data formatting is to
be performed by the terminal manager
(image mode).

performs all required data manipulation
to convert between the terminal's
required data format and one that can be
used for transfers to other Perkin-Elmer
peripherals (i.e., trim trailing blanks
and stop 1/0 on the detection of the

i
i
i
|
|
i
i 1 Indicates that the terminal manager
|
|
:
g
=
=
! carriage return (CR)).

No echoplex

with function code X'81' to specify no

i
i
| When set, this bit is used in conjunction
1
}
| echoplex.

| 4-6 | OEOO 0000 | Not ITAM-related. |

4--10 48-077 FOO ROO

TABLE 4-2 SVC1l EXTENDED OPTIONS (Continued)

——— . — — — T — A ——] m_— - - _— T — i — A o — " -

IT | HEX MASK

{ B

i L2 23 2 3 3 3 3 % 3 3 § 3 3 3 R A 3 3 3 & % & 3 3 B 3 3 3 3 2 3 3 R 2 % & 33 3 & ¥ A% B -3 B 3 & R B & B -3 B & 3 % 3 3 J
P 7

]

| 8 | 0080 0000
]]

L

| |

|

| 9-15| 007F 0000
| i

116-31| 0000 FFFF

MEANING
0 = reserved

Vertical forms control (VFC)

When set, this bit requests the V/C
option for an ASCII I/0 operation.

Reserved for future device-independent

options. All bits must be zero.

Reserved for device-dependent options. See

individual terminal manager
for definitions.

descriptions

——— . e - — . . ——" - — - — o —— i —— ;- . WS At = o St s s S o M o T o T i o s e St e i s o

48-077 F00 ROO

CHAPTER 5
DEVICE-DEPENDENT ACCESS

5.1 INTRODUCTION

Device-dependent support of communications devices is provided by
0S/32 line driver access. For this support, the operating system
is configured with communications lines that correspond to the
hardware communications adapters present in the system. Through
line driver access, different terminals can be supported at
different times over the same line since the actual
communications protocols and data formats are specified by the
user program via supervisor call 15 (SVC1l5). SVCl5 allows a
program to specify a sequence of control commands and the data
required by the control sequence. Line driver access supports a
communications network with maximum efficiency and throughput by
providing the capability to specify buffering techniques, monitor
the progress of a control sequence, and alter control sequences
and data while in progress.

SVCl5 is similiar to SVCl, but because of the specialized
requirements of data communications, SVC1l5 has more variables and
options. The SVCl function code allows a task to request a
single function, read, write, rewind, etc., on a single data area
for each SVC1l call. SVCl5 allows a task to request a series of
commands to be executed on a series of data areas.

A key feature of SVC1l5 access is the flexibility allowed in data
formatting. Driver commands may result in a variable number of
data fields being accessed from the SVC1l5 parameter block; the
exact number of data fields is dependent upon the command type.
For example, the READ or WRITE buffer commands obtain either one
or two data fields. Other command types use either one or no
data fields.

5.2 LINE DRIVER ACCESS

The SVC1l5 call and line drivers provide access to remote devices

for the communications-oriented user to:

® access devices with prétocols or codes not supported by a
terminal manager,

e use special buffering techniques because of time, memory or
line use considerations, or

e use data or command chaining to achieve the throughput
necessary for the application. :

48-077 F00 ROO 5-1

5.2.1 Sequence of Operations

To use the device-dependent facilities provided by line drivers,
pexform the following steps:

1. System generation (sysgen)

Include line driver support by specifying the desired lines
at sysgen. Lines are configured just as any local device,
such as a line printer.

2. Programming

Perform communications line access by providing the control
sequences and data necessary to support the remote device
attached to the communications line. The control sequences
and data are passed to the line driver through SVC1l5. Access
to the 1line driver 1is by logical unit (lu), so different
communications facilities of the same type can be accessed
without recompiling the program. Further control is possible
through the 0S/32 Task Trap Facility, invoked when necessary
by SVC15.

3. Execution

Assign the desired communications line to the lu accessed by
the program.

4. Termination
Close the 1lu assigned to the communications line. The
program can assign and close the lu via SVC7 or the 0S/32
command language.
The steps outlined for execution and termination can be performed
by the program via SVC7 requests or by the system operator
through the 0S/32 command language.
Access to a remote terminal connected to a communications 1line,
like access to a local device or terminal, is through an lu. The
general procedure for SVC1l5 line access is:
1. Assign the communications line to the desired program lu.

2. [Issue SVC1l5 to specify the initial control sequence and data.

3. Use a trap-handling routine to monitor the progress of the
control sequence.

4. Modify the control sequence and/or data, or issue a
subsequent SVC1l5 specifying new control sequences and/or data
to continue communications.

5. Close the lu assigned to the communications line.

5-2 48-077 F0OO0 ROO

5.2.2 Supervisor Call 15 (SVCl&) and the Task Environment

Execution of 3VCl5 affects the environment of the calling task
differently than the execution of SVCl. SVC1l5 returns control to
the calling task following driver activation (no input/output
(I/0) and wait). It is the task's responsibility to synchronize
processing with the ongoing I1/0 request.

Driver control is specified by a driver command word (DCW). A
DCW 1is actually a halfword that specifies to the driver a
particular operation to be performed and certain options
applicable to that operation. A DCW chain consists of
consecutive DCWs with their respective chain option bits set.
For further information on the DCW, see Section 5.5. The format
of the DCW is shown in Figure 5-12.

The SVCl5 parameter block specifies the first entry in each of
two related chains used to define the following requests:

e The DCW chain that specifies the sequence of driver operations
(i.e., READ, WRITE, etc.). :

e The data field chain that specifies the arguments required by
each driver command in the DCW chain.

Figure 5-1 shows SVC1l5 access to a line driver.

077-8
SVC15 PARAMETER BLOCK

T T T T ~ — —FPOINTER TO DCW CHAIN
-
(DCW CHAIN ' DATA AREAS
_—/'
DRIVER COMMAND WORD CODE DATA FIELD— — 7 /; e DIRECT BUFFER
1 e INDIRECT BUFFER
DRIVER COMMAND WORD CODE DATA FIELD s f o QUEUED-BUFFER
] CODE DATA FIELD — / LIST
° ° — e CHAINED BUFFER
° ! ° - e DCW PARAMETER
l ° | e NEXT DATA-FIELD

CHAIN

Figure 5-1 SVC1l5 Access to a Line Driver

48-077 FOO ROO 5-3

SVCl5 activates the 1line driver to fetch and execute the first
DCW in the DCW chain. Once autonomous driver execution starts,
control 1is returned to the user task (u-task) with the condition
code indicating the result of the call. If there is no error in
initiating the operation by the first DCW specified, the status
field of the SVC1l5 parameter block is set to indicate that the
line driver 1is active with the request X'4000'. For the
remainder of the I/0 request, as each command operation is
successfully completed, the next operation is fetched from the
DCW chain and executed by the 1line driver. This sequence of
fetch and execute is repeated until the entire DCW chain is
interpreted or an error condition is encountered.

5.2.2.1 Supervisor Call 15 (SVCl5) Trap Handling

The progress of SVC1l5 execution and the facilities provided for
buffer management can be monitored by the task through the use of
traps. The traps that can be generated for data communications
are:

® SVC1l5 command execution trap
e SVC15 buffer transfer trap
e SVC1l5 termination trap

e SVC15 halt I/0 termination trap

Other types of traps can be generated for specific terminal
managers such as the channel terminal manager (CTM). These traps
are detailed in the appropriate manual.

The traps listed above allow the task to synchronize execution
with the concurrent processing of the SVCl5 request. To enabled
traps, bit 23 (TSW.ITM) of the task status word (TSW) must be
set. When traps are so enabled and a trap-causing event occurs,
the task trap-handling routine 1is given control before any
subsequent task level instruction can be executed. Remember that
the trap-handling routines operate at a lower priority than the
line driver. Several entries can be made to the task queue
before the trap-handling routine completes processing a single
entry. See the 0S/32 Applications Level Programmer Reference
Manual for more information on trap handling.

When enabled by the appropriate bit settings in the TSW, the
SVC1l5 function code and the DCW, a trap can be generated by
adding one of the following reason codes and the address of the
SVC1l5 parameter block to the u-task queue.

5-4 48-077 F0OO ROO

REASON CODE

DECIMAL (HEX) QUEUE ENTRY
10(0A) Command trap
11(0B) Buffer trap
12(0C) Termination trap
13(0D) Halt I/0 trap

5.3 SUPERVISOR CALL 15 (SVCl5) PARAMETER BLOCK
SVC1S5 specifies a control sequence and its associated data to the

data communications 1line driver. The format of the SVC1l5
parameter block is illustrated in Figure 5-2.

10(0) 11(1) 12(2) i
| Function |) '
| code ! lu | Status |
o e e H
14(4) 15(5) i
| Command | !
t Number | Pointer to DCW chain '
R e !
18(8) 110(A)

112(C) 113(D) |
| ! |
i Data code 1 | Pointer to data field 1 !
fmmr e i
116(10) 117(11) 1
i [{
i Data code 2 | Pointer to data field 2 |
| . s i — T o o = i - S S = Gy e B S ke S S - M S S S S S S ML B R e e e - o]
| ;
! i
f= s e e e e e e i
4an+8 4an+9

svc 15, parblk

ALIGN 4
parblk DB x 'function code'
DB x 'lu’
DS 2 bytes for status
DS 1 byte for command number
DC 3 bytes for DCW chain address
DS 2 bytes for length of last read
DS 2 bytes for length of last write
DB 1 byte for data code 1
Ds 3 bytes for data field 1 address
DB 1 byte for data code n
DS 3 bytes for data field n address

Figure 5-2 SVC15 Function Code Format

48-077 FOO ROO 5-5

5.3.1 PFunction Code Field

The first byte in the parameter block is a function code provided
by the u-task. This field specifies options that apply to all
driver commands in the DCW chain executed by this SVC15. Figure
5-3 shows the composition of the function code byte and Table 5-1
shows the bit settings of the function code field.

eserved |
reset to zero) |

- ——— ——— —— - ——— = — - AWe M~ = — -~ e — =

~x

Figure 5-3 8VC15 Function Code Format

TABLE 5-1 SVC15 FUNCTION CODE BIT SETTINGS

e - —— — — —————— ———— —— . " S~ —— — o~ ————————— — T t— ——— o~ — —_— o — - T o ot " o o7y T T s o e S

MASK | MEANING

= - -2 -F -3 B R R R -3 B B B B BB B B A 3 3 & B B 2 R B R 3 3 3 % 3 % B £ 2 B2 0 B B 3 R B QB R 23 - 2 R 3 J_2_ J

X'80' | HALT I/0 (HA)

An SVCl5 request with this bit set indicates
that a task is requesting to halt an I/0 that
it previously started to the indicated lu. The
program status word (PSW) condition code after
the request indicates the results of the halt
1/0 call. Traps will not be generated for the
halt call itself.

CC = 0 The halt I/0 was accepted, the orig-
inal regquesL ends with a halt 1/0
status and the command number field
is updated accordingly. 1If the orig-
inal request specified termination
traps, a trap 1is generated when the
I/0 terminates.

If the original request was in error
recovery, then the original error
status may be returned at termination
rather than a halt /0 status.

CC = 1 The halt I/O0 was not accepted be-
cause the driver was not performing
SVC1l5 I/0 to the specified task lu at
the time of the call. The status
field is not changed.

- G S T A - ——— —— . Em— ——— —— —————— ———— A VR —— ———— —Ren WEen —en WReR Ema . s e —— “ ——

- — e e E——— e Ahem . - —— —— ———— o ————— ——— " ——— —— ——— —— m——— —— —— —— ———

5-6 48-077 F0O0O ROO

TABLE 5-] SVC1l5 FUNCTION CODE BIT SETTINGS (Continued)

BIT | MASK | MEANING
1 | X'40' | Command queue entry enable (CE)

i

[}

|

i This bit must be set, along with the corre-
i sponding bit in the DCW and the enable SVCl5
| queue entry bit in the TSW, to allow a trap at
| the start of each DCW execution.

Buffer queue entry enable (BE)

i

i

{ This bit must be set, along with the cor-
| responding bit in the DCW and the enable SVC15
| queue entry bit in the TSW, to allow a trap at
| the start of buffer use associated with the
| DCW.

Termination queue entry enable (QE)

|

|

| This bit must be set, along with the enable
i SVC1l5 queue entry bit of the TSW, to allow a
| trap on completion, normal or abnormal, of an
| SVC15 call. A halt 1I/0 call does not generate
i\ a trap. However, the call being halted does if
| termination queue entry enable was specified.

———— —— o ————— —) - ———— " — - ——— - f—— . " T —— = " = A v M ——— — — —————— — ——— —— ——

Continuous error processing (ER)

Setting this bit permits some errors to be non-
terminating during continuous read operations.

- ———— ——— ———— —— (- S ———— " S SMP MW f Cem S Smm R M S . e v S S ———— . ———— T S ————— — —

Reserved

These bits are reserved for future use and must
be zero.

——— o A S AN M . A M W AL e N S S A S e S e A S Gt - S TR M S M Sme W S v S A - - S e ————

5.3.2 Logical Unit (lu) Field

This byte identifies the lu to which the communications 1line is
assigned for the transfer. A valid data communications device
must have been previously assigned to the specified lu for SVC15
access. '

48-077 FOO0 ROO 5-7

5.3.3 8Status Information Field

The completion status of the SVC1l5 operation is returned to the
system wvia the status information field. The format of this
halfword is shown in Figure 5-4; the meanings of each bit setting
are listed in Table 5-2. The termination codes resulting from a
terminated SVC1l5 command are listed in Table 5-3. While
processing an SVCl5 request, the completion status of each DCW is
maintained internally in the same format.

=
o
(o]
>
e
m
=
=]
g
>
<)
>
Q
X
t
@]
=
0]
23]
5
w]
0
g
0
|
3
o
=
Z
8
=]
o)
e
=)
o]
g
z
>
Lo]
Bt
(o]
2z
Q
e}
=}
=1

Figure 5-4 SVC15 Status Field Format

TABLE 5-2 SVC1l5 STATUS BIT SETTINGS

e e o T 2 T o . o s o e o ———— T —— T T—— — s S —_————_——— o~ — — " = — - —

! BIT |} MASK | MEANING }
| O | X'8000' | Error ' |
i i i i
! ! | Set for error condition. Bits 3, 4, 5 and |
' ' { any termination code greater than 2, in |
! H { bits 10 to 15, are considered errors. i
: __ ’
bl | X'4000' | Busy |
i d] !
i | | Set when the driver is busy with an SVC |
i | | request and can be cancelled via halt 1/0. |
H ! { The 8SVCl5 parameter block status halfword |
| | | is initialized to this wvalue and cannot |
| | ! terminate with this bit set.)
o e e e e e i
b2 | X'2000' | Transfer not begun !
]] 1 1
1 ! []
| | i This bit is set if read operations do not |
i i | receive the proper required starting |
i | i control characters (e.g., for binary |
i i | synchronous). !
b o o e e e e e e e o e = et - ——— i — ———— — —— S " e oz o —n o o - s o e]
| I e i
3 X'2000° Time-out

| |
i i
i This bit is set if an entire command had |
i not executed when the error timer expired. |

5-8 48-077 FOO ROO

TABLE 5-2 SVC15 STATUS BIT SETTINGS (Continued)

BIT | MASK | MEANING

EEEEEESEIEREERESNDTSImN USSR ISR EIE I S D0 N0 N TR N IR S IS T R T IS R I O N . U T N DN NT NE T SR N RS X M RS WS S DN R W

4-5 | X'0C00' | Data check

X'0400" redundancy check (CRC) or longitudinal

i |
i]
i 1
i X'0800' | Received data with parity, cyclic
1]
! !
| { redundancy check (LRC) error.

} 6-7 |} X'0300' | Driver dependent

| i X'0200"' |

| { X'0100' |

g e o e e e e e e e e e e e e e e e e o e e

i 8-9 | X'00CO' | Special character detection

[} 3 !

) I)

! | X'0080' | Drivers can flag reception of special char-

| | X'0040' | acters by setting these bits.

= __

i 10-15 |} X'003F' | Encoded Termination Code

{ t |

1 U I

i ! | Cause of drlver termination; see Table 5-3.
TABLE 5-3 SVC1l5 ENCODED TERMINATION CODES

| VALUE | |

| DEC | |

i (HEX) | STATUS i MEANING

: -+ 31 3 32 3 32 3 2 3 3 2 3 32 3 8 2 2 3 3 % 0 3 3 0 & & 3% 2 % R 3.4 3 % % 2 3 % 3 & %+ 3 2 23§ 3+ 2 -3 3 O 2 % % 3 3 32 3 & % 3 % -3 J

t 0(00) | No errors | No errors detected

: __

i 1(01) | Reserved |

= __

I 2(02) | Line delete | Line delete detected during read

= __

i 3(03) | Break on write | Break detected during an asyn-

|) | chronous write

: __

| 4(04) | Break on read | Break detected during an asyn-

| ' i chronous read

=_______-___,____“_______ __

i 5(05) | Data check { BCC, LRC or parity error caused

| ! | termination (bits 4 and 5

| ! | specify exactly)

i ___

i 6(06) | Buffer limit | Buffer limits reached (no

' | | proper ending sequence, binary

! ! i synchronous)

48-077 F0OO ROO 5-9

TABLE 5-3

SVC15 ENCODED TERMINATION CODES

(Continued)

— ———— ——— ————— " —— T i ok A M e s e Tee . Gam EAA TR e . - Sae Sa U A Wt FE e e —n A W Sey S e S G M Gt e

(HEX)

7(07)

e e ——— e = e s e e e - - . T e S S T — e S —— " T G oo U " e . e WS S S S S S S A S S S S . S A —— o ——— - —

STATUS

Bad pad

Data set not
ready

Device
unavailable

MEANING

PAD character (n
binary synchronous

Framing or stop b
chronous

Reverse channel er
nous

e - —— —— T — T~ = = = — = T T e . T A A e A e S e e Ao S o Sy S T e - W A S e —

Ring signal detect
transfer

ot received
)

]]
! !

I
: t
| {
i i
‘===s=======:-sana-=a-----'-------:----‘-----:-a:---.--:u=====swg
e [}

i

{
‘ i
1 i

it error asyn- |}
[}
§

ror asynchro-

!
1
t
|
|
1
i
!
!
!
|
|
1
|
{
1
|
i
{
!
i
i
i
|
1
]
{
|
!
|
1
|
{
I
]
|
|
|
1
|
i
1
i
|
|
1
{
i
1
i
1
1
1
i
!
f
{
|
|
I
i
t
i

-

- ——— — e - S — 4 - e o ——— ——— — ———— ——— — ——— - . — T a S ————— —— - ——— ———— "

o

ed during data |
[;
]

18(12)

22(16)

Task queue
error

Transparent
block size
error

Busy and/or done b
buffers not proper

Task queue full,

i
1]
its in chained |
ly set i
¥
{

o — o ——_——— i ——— —— — ————_— ——————— —— ———————————————— o o~ W oo S Vo U i s e e s s S g v

invalid or

nonexistent during attempt to

trap (amount of da
questionable); er
writes previous

reported via traps

Halt 1/0 request;

Data buffer is sma
transparent block
synchronous only)

i
+
i
i
ta transferred |
ror code over- |

error codes |
i
1

aborted 1/0 !

ller than the |
size (binary |
[]
[}

48-077 F0OO0 ROO

TABLE 5-3 SVC15 ENCODED TERMINATION CODES (Continued)

(HEX) | STATUS

23(17) | Bad character
| sequence

MEANING

Improper binary synchron
sequence

ous

e e e - — " I - > T ——— T M S B4 S e T s Saes S Gre Sae S SRt St M A M San W e R i e m et T A Beh ik S o o — — . S e —

i 30(1E) | Illegal software
! ! condition
]
!

o ————— — — t (A ks S S D S - S . S T Ao T S WS At M B G - S S S - e - o — A Gt e - T S nts S

! 31(1F) | Illegal
| | translate

] |
i 1
1]
! 1
,]

!
‘=======--------sms:::m:z--:-a--munnsgBsn:nass:nnaan--.:msgaana-i
1 1
1 |
]]
' |
] 1
! 1

lu illegal (not SVCls,
assigned)

Device status not wvalid (p
sible strapping problem)

1/0 interrupted by power fail
or cancel

Illegal translation table spe
fied

Idle 1line sequence recei
zero-bit insertion/deletion
(ZBID)

Frame abort character recei
ZBID

Received frame of incorr
length ZBID

o8—

ure |
(]
]

ci—- |

ved

]
}
ved |
i
i

——— - — o —— — T — o — T ——") (o " T St Ea Mo Smn i e i T - o e e o A s S o e e s i ——— —— - — -

48-077 F0O0 ROO

5.3.4 Command Number Field

The fourth byte of the parameter block indicates the number of
commands executed. The number of DCWs fetched and executed is
maintained by the driver and returned to the u-task via this
field. In the event of an error (or halt 1/0), this counter
indicates the number of the commands being executed when the
error occurred; 1i.e., it equals 1 if only one DCW of the chain
was executed.

NOTE

When this byte is incremented past 255,
the SVC15 request 1is aborted and the
status indicates that the number of
commands executed overflowed, X'8011'.

5.3.5 Driver Command Word (DCW) Pointer

This field must be set to the address of the first command in the
DCW chain to be executed by the SV(C1l5 call.

5.3.6 Length of Last Read Field

This halfword is updated by the driver termination to indicate
the number of bytes transferred during the last READ command
executed by SVC15. 1If no data was transferred or if no reads
were executed, zero is returned.

5.3.7 Length of Last Write Field

This halfword is updated by the driver at termination to indicate
the number of bytes transferred during the last WRITE command
executed by SVC1l5. If no data was transferred, or if no reads
were executed, zero is returned.

For the length of the last read and the length of the last write
fields, 1if a DCW string contains more than one READ or WRITE
command, only the 1length of the most recent operation is
reflected in this field. However, when chained buffers are used,
the total number of bytes transferred to or from the entire
chained buffer by the last READ or WRITE command is reflected.

5-12 48-077 FOO ROO

5.3.8 Data Fields

The remainder of the parameter block consists of data fields
required by the DCW chain. As illustrated in Figure 5-5, each
data field consists of a fullword divided into two sections. The
last three bytes of the field contain a pointer to the data
needed by the DCW (bits 8 through 31). This address could point
to no data or to one or more data fields, depending on the
particular command. The first byte (bits 0 through 7) consists
of a data code indicating the type of data pointed to by the last
three bytes. The data code also indicates the type of buffering
desired. Definitions of the data code bit settings are detailed
in Section 5.3.9.

Figure 5-5 SVC15 Data Field Format

When the DCW associated with the data field is a READ or WRITE
command, the data field points to a buffer. For other DCWs, the
data field points to a parameter required by that DCW, such as a
time value. The data field can also point to the head of another
data field chain, allowing data field chains to exist in
noncont iguous memory.

5.3.9 Data Field Chain

The SVCl5 parameter block specifies the control sequence to be
performed by pointing to a DCW chain. The first data field in
the data field chain is at the fullword at offset 12(C) from the

start of the parameter block.

Table 5-4 details the bit settings of the data code byte of the
data field.

48-077 F00 ROO 5-13

TABLE 5-4 DATA CODE BIT SETTINGS

i T — e - —— ——— —— ———————— S~ {———— " Dot (O bk S T oo

0OA Pointer to queued buffer list

Pointer to next data field chain

— . ——— - —— -~ —— - — D W S M Y o Tt i mae s d mbn o s

! DATA CODE | i
H (HEX) } CONTENTS |
i===========n----n=-=n-n-=n-a=ssununsnusnnn.nnn=
! 00 | Pointer to direct buffer H
| 01l Pointer to DCW parameter |
| 04 Pointer to indirect buffer !
| H
| |
| H

(]
|
|
08 ! Pointer to chained buffer
i
|

Data codes 00, 04 08 and OA indicate that the data field contains
the address of a data buffer that can be direct, indirect,
chained or queued.

Data code 01 indicates that the data field contains the address
of a parameter required by a driver command, such as a time
value.

Data code 80 indicates that subsequent data fields are to be
fetched from the specified address, allowing the data field chain
to exist in noncontiguous memory.

5.4 BUFFER TYPES

SVC15 supports four buffer types:

e Direct
e Indirect
e Chained

® Queued

These buffer types are defined by the data fields in the 8SVC15
parameter block.

5-14 48-077 FOO ROO

5.4.1 Direct Buffers

A direct buffer is defined by two data fields containing the
starting and ending addresses of the buffer, similar to an SVCl
data buffer. The starting address points to the first data
character and the end address points to the last data character
(i.e., a l-character buffer has a starting address equal to the
ending address). Direct buffers can begin on any byte boundary
and regquire two data fields in the data field chain. Figure 5-6
depicts a direct buffer.

START

——— - — - —vau e

END

o
s
=3
(e}
-4

Figure 5-6 Direct Buffer

5.4.2 Indirect Buffers

An indirect buffer is specified by one data field containing 1its
starting address. The buffer itself contains all required size
information. The first halfword indicates the number of bytes
available in the buffer. The second halfword of the buffer is
updated by the driver and indicates how many bytes of data were
actually transferred by the 1I/0. An indirect buffer must be
aligned on a halfword boundary. Figure 5-7 depicts an indirect
buffer.

48-077 F0OO ROO 5-15

—— o - — —— " - . S — Vo v

]

!

HALFWORD ! BYTES AVAIL = n t
ALIGNED f——m—— A — e e |
! BYTES USED f

] - k

i ——— e ———— — v WO TP W wp wyw o emp owm T =}

! BYTE 1 | BYTE 2 !

] BYTE 3 | BYTE 4 i
=——————————————e—wq-——! —————— }

! BYTE 5 | BYTE 6 i

b e e e e e ot e o o e e l

! ;

Figure 5-7 1Indirect Buffer

5.4.3 Chained Buffers

Chained buffers are specified by one data field containing the
address of the first buffer in the chain. Chained bhuffers look
very much like indirect text buffers, but have an additional
fullword at the beginning called the link word that might contain
the address of another chained buffer. Thus, two or more buyffers
can be linked together into a chain. The last buffer in a chain
of linked buffers contains a zero link word indicating the end of
the chain. Figure 5-8 illustrates chained buffers.

F{mmmm FULLWORD——==—======—=%+
FULLWORD | FLAGS | LINK WORD]
AL IGNED e e m e e =

! BYTES AVAIL = n | BYTES USED |
; —————————————— T o e o o ot o o oy o e g
! BYTE 1 | BYTE 2 | BYTE 3 | BYTE 4 !
i“——-'——_———""-"‘“‘_—— ————————————— 'F'?W"‘":
! BYTE 5 | BYTE 6 | BYTE 7 I ETC]
| e e et e e e e e o e o o e e o o o o o e ey o e o o 1
i : '
| |
| [1
[} i
! BYTE n |

Figure 5-8 Chained/Queued Buffer Format

5-16 48-077 FOO0 ROO

Chained buffers can also be configured into a closed chain (a
ring) by having the last buffer link back to the first buffer.

The first byte of the link word is wused for certain flags to
indicate conditions or options within the buffer. Figure 5-9
shows the format of the chained/queued buffer link word flag byte
and Table 5-5 details the bit settings. Chained buffers must be
aligned on a fullword boundary.

A task can manipulate the links and data of chained buffers while
[I/0 is in progress. Bits 0 through 7 of the link word (the flag
byte) are used for coordination between driver and u-tasks.

i i i Reserved for driver use |
{ Busy | Done | (reset to zeroes) |

Bits:
0 1 2 7

Figure 5-9 Chained/Queued Buffer Link Word Flaq Byte
TABLE 5-5 CHAINED/QUEUED BUFFER LINK WORD FLAG BYTE

(BUSY) | (DONE) |
BIT 0 | BIT 1 |

L2 131 3 3 31 313231 3 ¥ 332 33 3 2 3 2 2 2 2 3 32 3 2 £ 3 2 32 2 2 3 3 32 3 3 & % 2. -3 32 -2 2 & 32 3 2 2 3 B 3 & 3 3 & B 3 J

| |
! MEANING |
i |
} 0 | Buffer is available for driver wuse. |
H ! The link word contains a valid address |
] 1]
| | |

or ZzZero.

| The driver 1is currently using this |
! buffer for 1/0. The u-task must not |
i change data, size values, 1link word |
| or flags. !

!
i\ The driver finished using the buffer. |
i The driver will not use this buffer |
{ again if it reoccurs in the chain; |
| i.e., a ring. U-task can now change |
i any value and the bytes used reflect |
| actual transfer. |
___]
1 ! Invalid setting. Driver treats it as |

| if busy and done = 11. !

o

48-077 F00 ROO 5-17

The driver attempts to set up two I1/0 buffers when chained
buffers are specified. This means that if the task needs more
than a single chained buffer for I/0, it must supply at least two
linked buffers when the SVCl5 call is issued. These two buffers
are set up in internal buffers associated with this line. The
first buffer 1is flagged as busy (bit 0 of link word set), a
buffer trap is generated if enabled and 1/0 is started.

If the link word of buffer 2 is valid, the driver fills buffer 1.
When buffer 1 is exhausted, the driver receives a buffer limit
interrupt, finds buffer 2 is available (busy and done bits reset)
and uses this buffer to continue I1/0. Meanwhile, a routine is
scheduled to flag buffer 1 as done and buffer 2 as busy and to
attempt to set up the first I/0 buffer using the current link
word of buffer 2 as a pointer. If this link word is zero, the
current buffer 1is the last buffer of the chain and the I/0 must
terminate within it. If this link word is nonzero, it points to
buffer 3. At this time, buffer 3 does not necessarily have to be
available (busy and done bits reset) indicating that buffer 1 is
done and buffer 2 is now busy as long as its address is specified
in the link word of buffer 2. A buffer trap is again generated
to the calling task, indicating that buffer 1 is done and buffer
2 is now busy. Buffer 3 must be available before the next buffer
limit interrupt. 1If it is not, a buffer overrun occurs, 1/0 is
aborted and the status reflects this overrun.

For read-after-write (RAW), the driver looks ahead and sets up
only one read buffer. Thus, if chained buffers are used for the
read, only one buffer is set up in advance. When the driver
terminates the write, one buffer is ready to perform the read.
When the read uses chained buffers, a subroutine to get the next

buffer is scheduled immediately after performing the
write-to-read turnaround. The buffer trap for the read is
performed after read 1/0 begins. Thus, having only one read

buffer instead of two is useful when using chained buffers for
both write and read. However, the buffer trap for the next to
last write buffer must be identified by the task because the task
must specify the second buffer in the link word of the first read
buffer before the driver completes the write.

Memory is used most efficiently by linking two or more chained
buffers to form a ring. See Figure 5-10.

BUF 1 | 00 A(BUF2) | BUF 2 | 00 A(BUFl) |
|~ —mmmmmm e ! | —m o :
| CHAINED | | CHAINED |
| BUFFER | | BUFFER |
: NO. 1 : : NO. 2 :

Figure 5-10 Buffer Ring

5-18 48-077 F0OO ROO

When the busy and done bits = 11, buffer 1 is finished and the
driver is using buffer 2, which would be busy. The task can now
process the data in buffer 1 and reset busy and done. When the
driver is finished with buffer 2 (busy and done set), it chains
onto buffer 1 and, finding the busy and done bits reset, uses it
to continue the 1/0. Thus, one SVC1l5 request can continuously
perform 1/0 as long as the task keeps ahead of the driver.

5.4.4 Queued Buffers

Queued buffers are specified by two data fields, each of which
contains the address of a standard Perkin-Elmer circular list.
List 1 specifies a queue of buffers from which the data
communications subsystem removes buffers for 1/0 operations.
List 2 specifies a queue of buffers being returned to the
applications program following I/O activity. List 1 can coincide
with List 2. See Figure 5-11 for a description of the standard
Perkin-Elmer circular list. Buffers are removed from the top of
List 1 by a Remove from Top of List (RTL) instruction. Buffers
are returned to the bottom of List 2 by an Add to Bottom of List
(ABL) instruction.

077-9

0 15 16 31
SLOT n NUMBER OF SLOTS NUMBER USED
CURRENT [SLOTO CURRENT TOP NEXT BOTTOM
OCCUPIED TOP——WL SoTr ‘ SLoT 0
SECTION stor-2 ¢ SLOT 1
SLOT 3 -
NEXT SLOT 4 - SLOT N
BOTTOM- SLOT 5

Figure 5-11 Conceptual Circular List and Format

The format of each individual gqueued buffer with an address in
the list 1is identical to the format of a chained buffer.
Restrictions for modifying the control fields of a buffer during
I/0 are the same for queued and chained buffers.

When an 1/0 buffer is removed from List 1, the link address field
is cleared to prevent any ambiguity in error verification and the
address of the buffer is maintained solely within driver control
storage. The buffer is, in effect, not available to the
applications program during I/0.

48-077 F0OO ROO 5-19

The busy and done bits within the flag byte are used analogous to
chained buffers. When I/0 is complete, the buffer is returned to
the bottom of List 2. Simultaneously with 1I/0 operation, the
applications task can add new I1/0 buffers to the bottom of List
1 or remove completed buffers from the top of List 2. Only 1list
processing instructions (RTL, Remove from Bottom of List (RBL),
Add to Top of List (ATL), ABL) can be used by the task to modify
a circular list. Any other attempt to modify circular list
control fields can result in a loss of control.

If the program attempts to return a buffer to List 2 and cannot
because the 1list is full, a queue overflow (X'24') error
termination results. The addresses of any buffers currently
being used for I/0 are then chained to the bottom buffer in List
2 to return them to the task. As the 1list address field is
initialized to zero at the start of 1/0, the task should check
the nonzero link field to detect buffers returned because of a
queue overflow condition.

The buffer trap mechanism is available for queued buffers.
However, to conserve processor time, a buffer trap is generated
only when a buffer is added to a previously empty List 2,
indicated by the status returned by the last RTL or RBL. This
technique requires a program to process all buffers in List 2
whenever a trap interrupt occurs.

In Figure 5-11, the first two fullwords of a circular 1list
contain the list parameters. Immediately following the parameter
block 1is the 1list itself. The first fullword in the list is
designated Slot 0, with the remaining slots designated 1, 2, 3,
etc., up to a maximum slot number equal to the number in the list
minus one. A maximum of 65,535 fullword slots can be specified.
(Maximum slot designation is equal to X'FFFE'.)

The first parameter halfword indicates the number of slots
(fullwords) in the entire list. The second parameter halfword
indicates the current number of slots being used. When the
second parameter halfword equals zero, the list is empty. When
it equals the number of slots in the 1list, the 1list is full.
Once 1initialized, this halfword is maintained automatically and
incremented when elements are added to the list and decremented
when elements are removed.

The third and fourth halfwords of the 1list parameter block
gspecify the current top of the list and next bottom of the list,
respectively. These pointers are also updated automatically.

5.4.4.1 Coding a Queued Buffer Request
Three separate areas must be coded with a precise format to
facilitate the wuse of queued buffers. These areas are the data

field chain, the circular 1list descriptor and the individual
qgueued buffer.

5-20 48-077 F0OO ROO

The data field chain must be coded as in Table 5-6. Two fullword
entries must be defined in the data field chain in order to use
gqueued buffers. The first fullword provides the address of the
circular list from which the drive can draw buffers for 1/0; the
second fullword provides the address of the circular list to
which completed buffers are returned. Each fullword entry must
contain a hexadecimal A in the high-order byte to identify the
entry as a queued buffer data byte and each must be aligned on a
fullword boundary.

TABLE 5-6 QUEUED BUFFER DATA FIELD FORMAT

S —— e (h o T " —— T o 7 o i o T B ok @D o (e et W e M o oy Bowr S . S M e S S S e ot o e -

]
i buffers are obtained

{ DATA CODE | POINTER H
{ BYTE O] BYTES 1 THROUGH 3 |
: TSI E RS D I T NS I S5 N D RS IR RS IS MK IR ER SC 30 I N 5 R R e S5 NE AR SR ORE SR BT SR M DD D =D W oy N: =R im o Th W =
! OA | Address of circular list from which |
]]
| |

| Address of circular 1list to which |
i buffers are returned]

The circular 1list can be defined by a DLIST Common Assembly
Language (CAL) direction or by the FORTRAN 32-bit run-time
library (RTL) subroutine, DEFLST.

Each individual queued buffer must be coded as a chained buffer

shown 1in Figure 5-8. 1Its address is placed into the FROM buffer
list.

5.5 DRIVER COMMAND WORD (DCW)

Each DCW is a 16-bit command that specifies a primitive operation
to a line driver. Figure 5-12 cdetails the DCW format and Table
5-7 describes the DCW bit settings. Bits 0 through 3 are flag
bits that indicate options in effect for the command; bits 13
through 15 indicate the general type of command; bits 8 through
12 identify the specific request; bits 4 through 7 are unused and
should be reset to zeroes. Not all commands are implemented for
each line driver. :

48-077 FOO ROO 5-21

o ——————————— T ——— - —— — o — = — T _—— - ———— — S — o — " T — ————— T —— -

T | Reserved ! | |
O | (reset to zeroes) | Modifier | Command |

—— ——————_—— Y ————— - — " = " 7 —— — o " - — T —— W T o . o (o G = "y e

Figure 5-12 DCW Format

TABLE 5-7 DCW BIT SETTINGS

- ——— — T T —— o — ———— T —_— " —— T —— — 7 T o o Tt o o T o G T S i e S B S bl Do o e S i e

o ——————— —— ——— o —— T —— o — o p— P — T T — T]— —— " — — o " " G — f————— T o {— - =

o —— i ———— - — — —————— " f——— T — — -~ —{— - ———————— - = - —_———p— T = s s o o oo s o oy o s

MEANING

CHAIN Command (CC)

Set this bit to indicate that the line driver should
fetch and execute the next DCW in the chain. If
reset, the SVC1l5 request terminates after executing
this DCW.

Command enable (CE)

Set this bit to specify that a queue entry is to be
generated by adding a parameter consisting of the
address of the SVC1l5 parameter block to the task
queue with reason code 10 (0OA) before executing this
DCW. For trap generation, the appropriate enabling
bits must be set in the SVC1l5 function code and the
TSW. 1If reset, no trap is generated.

— — - - ———— ———. A ———

Buffer enable (BE)

Set this bit to specify that a queue entry is to be
generated by adding a parameter consisting of the
address of the SVC1l5 parameter block to the task
gqueue with reason code (OB):

o when processing the first character of any buffer
used by this command

o before switching to the next buffer if chained
buffers are used ~

To generate a trap, the appropriate enabling bits
must be set in the SVC1l5 function code and TSW. If
reset, no trap is generated.

—— . —— —— —— —— ——— — o —— ——— m——— —— G m m—— -

48-077 FOO ROO

TABLE 5-7 DCW BIT SETTINGS (Continued)

e e St A B B i T e T s o o o S S M —— - — A - — —— T S St Bmie i i RER b S e i e e G b o it s i A fnnes oo e o b e o o

{ BIT | MEANING

3 Time-out (TO)

Set this bit to specify that an error time interval
is to be started when this command is fetched. 1If
the command has not completed before this interval
expires, the SVC15 request is aborted with time-out

status. ' The interval is given a default value at
sysgen time or can be modified by the MODE TOUT
command . There are separate read and write time-out
values. If reset, this command is not aborted

because of time-out.

———— - —t— —— 7 T T Tt B S i e B e e G o T " — ot (o Lok i By o i o B e o o o ot e S o M S ot S Mo o St e o M

Command modifier

These bits specify the particular command for each
command type.

Driver command type

These bits specify the general type or primitive
requests as follows:

i 3 |
| | i
| | i
! i |
| | |
! | VALUE TYPE :
| | |
! ! 000 NULL |
! ' 001 CONTROL !
! ! 010 READ |
! ! 01l PREPARE |
| ! 100 WRITE |
| | 101 HOLD !
i | 110 MODE !
| | 111 TEST !

5.6 LINE DRIVER COMMAND TYPES

This section describes the commands for each driver command type
with the binary and hexadecimal value of bits 8 through 15 of the
DCW for each. These descriptions refer to signals generated by
the communications adapter hardware. For all commands, normal
completion means that the next DCW is fetched. If no further
DCWs exist, the 8VCl5 request terminates. Nonerror status
conditions are noted by setting the appropriate bits in the
status halfword; the status returned on termination can reflect
gseveral such cumulative conditions, 1i.e., special character
detection. '

48-077 FOO0 ROO 5-23

5.6.1 Null-Type Commands

There are four null-type commands, none of which issue 1/0
instructions to the adapter. A CHAIN command and command trap
flags are valid.

NUMBER OF
COMMAND BINARY HEX DATA FIELDS
NOP _ 00000 000 00 1
WAIT 00001 000 08 1
XFER 00010 000 10 1
CXFER 00011 00O 18 2

5.6.1.1 NO OPERATION (NOP) Command

The NOP command performs no operation; one data field is fetched
but not used. However, it must specify a valid program address.
If the CHAIN command bit (bit 0) is set, the next command is
fetched.

5.6.1.2 WAIT Command

The WAIT command suspends driver execution for a specified
interval. One data field 1is fetched which must point to a
halfword containing the value of a time interval in multiples of
100ms. The driver waits until the specified interval expires and
then continues execution (if the CHAIN command 1is set) or
terminates (if the CHAIN command is reset).

5.6.1.3 TRANSFER IN (XFER) Command

The XFER command specifies the next DCW in a chain that does not
exist 1in contiguous memory. One data field is fetched, if a
CHAIN command is set, the next command to be executed is fetched
from the address contained in the data field. Thus, a branch to
a DCW is performed.

5.6.1.4 CONDITIONAL TRANSFER (CXFER) Command

The CXFER command tests the internally-maintained status of the
SVC1l5 request. Two data fields are fetched. The first data
field points to two halfwords, the first of which 1is 1logically
ANDed with the current state of the logical status halfword. The
result 1is compared to the second halfword of the pair, and if
equal, the next command to be executed is specified by the second
data field. Otherwise, command execution continues with the next
command in the current chain.

5-24 48-077 FOO ROO

The CXFER command can be used to test for specific conditions as
indicated by the logical status; the first halfword of the first
data area contains a mask with a 1 in each bit portion to be
tested; the second halfword of the first data area contains the
value to be tested against (e.g., 1f one or more special

characters were detected after a read, a different command
sequence might be desired).

5.6.2 Control-Type Commands

A CHAIN command, command trap and time-out are valid flag bits.
There are four control-type commands:

NUMBER OF
COMMAND BINARY HEX DATA FIELDS
EXAMINE 00000 001 01 1
RING WAIT 00001 001 09 0
ANSWER 00010 001 11 0
DISCONNECT 00011 001 19 0

5.6.2.1 EXAMINE Command

The EXAMINE command returns the device status of the specified
adapter in one data field. The value obtained specifies the
address of a writable byte into which the status of the device is
stored. The last known physical device status is fetched from a
byte in memory (DCB.DVST) maintained by the driver during [/0.
When the byte is nonzero, its ccontents are returned and the byte
is reset to =zero. When the byte is zero, a sense status is
performed on the device and its present status is returned.
Thus, two EXAMINE commands should be suggested. The first will
return the last status that caused the last error. The second
will return the active device status at this time.

5.6.2.2 RING WAIT Command

The RING WAIT command suspends fetching of DCWs wuntil a ring

signal 1is received for the adapter. Interrupts from the adapter
are enabled, but the data terminal ready lead to the modem is
not. This command fetches no data fields and terminates when a

ring signal is received from the adapter. When a CHAIN command
is set, execution continues with the next command. Otherwise,
the driver terminates. When time-out is set, the command waits
as long as the value specified in the write timer halfword; when
this interval expires, time-out error status is set. If time-out
is not set, the command waits indefinitely for a ring signal.

48-077 F0O0 ROO 5-25

5.6.2.3 ANSWER Command

The ANSWER command terminates immediately for nonswitched 1lines
and switched lines that are already connected. For dial-in lines
not connected, the data terminal ready lead to the modem is
enabled, causing the modem to answer the incoming call. The
command terminates when the data set indicates it is ready for
I/0. TIME-OUT and CHAIN commands are handled as described in the
RING WAIT command.

5.6.2.3 DISCONNECT Command

The DISCONNECT command disconnects from a switched 1line. The
command resets the data terminal ready 1lead to the modem,
suspends DCW fetching for one second and continues to the next
command (if the CHAIN command is set) or terminates (if reset).

5.6.3 Read-Type Commands

A CHAIN command, command trap, buffer trap and time-out are valid

flag bits. There are three read-type commands. When response
time is «critical, these commands must immediately follow a
write-type or prepare-type command to use RAW or

read-after-prepare-lookahead.

NUMBER OF
COMMAND BINARY HEX DATA FIELDS
READ BUFFER 00000 010 02 1l or 2
READ 1 00001 010 oA 1
READ 2 00010 010 12 1
5.6.3.1 READ BUFFER Command
The READ BUFFER command reads data into specified buffers. One

or two data fields are fetched, depending on the buffer types.
The data fields specify a buffer or buffer chain into which data
is read. The first byte of the first data field fetched
specifies whether the buffer type is direct text, indirect text,
chained or queued buffers. If the buffer type is direct text, a
second data field is fetched.

5.6.3.2 READ1 Command
The READ1 command reads one character into the specified
location. One data field is fetched, containing the address of

a byte in writable memory into which a character is to be read.
No alignment is required. Data code must specify X'0l'.

5-26 48--077 FOO ROO

5.6.3.3 READZ2 Command

The READZ2 command reads two characters into the specified
locations. One data field is fetched, containing the address of
the first of two writable bytes into which two characters are
read. No alignment is required. Data code must specify X'Ol'.

5.6.4 Prepare-Type Commands

A CHAIN command, command trap and time-out are valid flag bits.
There are two prepare-type commands.

NUMBER OF
COMMAND BINARY HEX DATA FIELDS
PREPARE 00000 011 03 1
PREPARE3 00011 011 1B 1

5.6.4.1 PREPARE Command

The PREPARE command suspends DCW fetching until the specified
character is received from the adapter. One data field is
fetched, pointing to a byte that contains a match character.
Characters are read from the line until one is detected that is
equal to the match character, there the command terminates. If
the PREPARE command is chained to a READ command, the READ will
take effect immediately because of the read-after-prepare
lookahead.

5.6.4.2 PREPARE3 Command

The PREPARE3 command is an asynchronous driver command only. The
command sets a 200ms timer each time a character 1is received.
The command ignores all line errors (parity, stop bit, etc.) and
terminates if the timer expires or the match character is
received.

5.6.5 Write-Type Commands

A CHAIN command, command trap, buffer trap and time-out are valid
flag bits. There are three write-type commands:

NUMBER OF
COMMAND BINARY HEX DATA FIELDS
WRITE BUFFER 00000 100 04 l or 2
WRITE1l 00001 100 oc 1
WRITE2 00010 100 14 1

48-077 FOO ROO 5-27

5.6.5.1 WRITE BUFFER Command

The WRITE BUFFER command writes data from specified buffers. One
or two data fields are fetched, depending on the buffer type.
The data field specifies a buffer or buffer chain from which data
is written to the 1line. The left-most byte of the first data
field fetched specifies whether the buffer type is direct text,
indirect text, chained buffers or queued buffers. If the buffer
type is direct text, a second data field is fetched.

5.6.5.2 WRITEl Command

The WRITE1 command writes one character from the specified
locations. One data field is fetched, containing the address of
a byte from which a character is written to the line. No
alignment is required. Data code must specify X'0Ol'.

5.6.5.3 WRITE2 Command

The WRITE2 command is used to write two characters from specified
locations. One data field is fetched, containing the address of
the first of two bytes from which characters are written to the
line. No alignment is required. Data code must specify X'0Ol'.

5.6.6 Hold-Type Commands
A CHAIN command and command trap are valid flag bits. There is
one hold-type command.
NUMBER OF
COMMAND BINARY HEX DATA FIELDS

HOLD SPACE 00000 101 05 1

5.6.6.1 HOLD SPACE (Line Break) Command

The HOLD SPACE command puts the line in a space (zero) condition
for a specified interval. One data field is fetched, containing
the address of a halfword with a time value in units of 100ms.
The 1line is held in a continuous space (zero) condition for this
interval. This command is valid for asynchronous communications
only.

5-28 48-077 FOO ROO

5.6.7 Mode-Type Commands

A CHAIN command and command trap are valid flag bits. ‘Mode-type
commands are used to change various default values in the DCB
that are maintained by the driver. If the default value
specified in the individual driver description is acceptable, a
mode-type command is not necessary. Once a value is changed by
a mode-type command, the only way to restore the default
condition is by a mode-type command specifying the correct value.
Coordinate such modifications if access is being shared by more
than one program. There are ten defined mode-type commands:

NUMBER OF
COMMAND BINARY HEX DATA FIELDS
MODE TOUT 00000 110 06 1
MODE CMD2 00001 110 OE 1
MODE RCMD 00010 110 16 1
MODE WCMD 00011 110 1E 1
MODE RDISABL 00100 110 26 1
MODE WDISABL 00101 110 2E 1
MODE DISC 00110 110 36 1
MODE SYNCNT 0011l 110 3E 1
MODE TRANSL 01000 110 46 1
MODE SPCHAR 01001 110 4E 1

5.6.7.1 MODE TOUT (Time-out Interval) Command

The MODE TOUT command sets the error time intervals for commands
that enable the time-out flag. One data field 1is fetched
containing the address of the first of two halfwords; the first
halfword contains an error time-out interval for read-type
operations, the second contains an interval for write-type
operations. Both are 1in one second units. The data field
pointer to the two halfword parameters should point to a
fullword-aligned address.

This timer is strictly for error detection; when it expires, the

SVC1l5 call terminates in error. Interval timing is performed via
the WAIT command, which uses a separate (100ms resolution) clock.
The resolution of the time 1is accurate to +0, -1 second.

Time-out values should therefore be set to the desired number of
seconds plus one.

5.6.7.2 MODE CMD2 (Adapter) Command

The MODE CMD2 command specifies the device-dependent command used
to set adapter options. One data field 1is fetched with the
address of a byte containing the device command that should be
output to specify programmable adapter options such as parity,
number of data bits, etc.

48-077 F00 ROO 5-29

5.6.7.3 MODE RCMD (Read) and MODE WCMD (Write) Commands

These commands specify the device-dependent commands to set read
or write mode in the adapter. One data field is fetched for
these commands, with the address of a byte containing the device
command to be output for read or write data transfers,
respectively. This command should enable interrupts.

5.6.7.4 MODE RDIS (Read Disable) and MODE WDIS (Write Disable)
Commands ‘

These commands specify the device-dependent commands used to
quiesce the read or write side of the adapter. One data field is
fetched with the address of a byte containing the device command
to be output to set the quiesce read or write side of the 1line.
These commands should disable interrupts.

5.6.7.5 MODE DISC (Disconnect) Command

The MODE DISC command specifies the device-dependent command used
to disconnect the adapter from the 1line. One data field is
fetched, with the address of a byte containing the device command
to be output to disconnect the communications line (reset data
terminal ready).

5.6.7.6 MODE SYNCNT (SYNC Character Count) Command

The MODE SYNCNT command specifies the SYNC character count. One
data field is fetched, with the address of a byte containing the
number of leading SYNCs transmitted (synchronous drivers only).

5.6.7.7 MODE SPCHAR (Special Character Enable Masks) Command

The MODE SPCHAR command sets up the bit masks necessary for
special character detection. One data field 1is fetched,
containing the address of the first of two halfwords; the first
has a bit mask used to enable recognition of specific special
characters during read-type operations; the second contains a bit
mask used to enable special character recognition dur ing
write-type operations.

5.6.7.8 MODE TRANSL (Translation Options) Command
The MODE TRANSL command specifies translation options. One data

field 1is fetched containing the address of a byte with a series
of indicators controlling translation options.

5.6.8 Test-Type Commands

Reserved for driver-dependent on-line test functions.

5-30 48-077 FOO ROO

CHAPTER 6
DATA COMMUNICATIONS STRUCTURES

6.1 INTRODUCTION

This chapter describes the internal operation of the various
structures and subroutines that must be added or modified to
include the Basic Data Communications Subsystem in the operating
system.

The Basic Data Communications System Support Module includes many
subroutines that are called from the 1line drivers. These
subroutines are involved with interfacing the driver with the
operating system and with common buffer management and command
fetching operations.

6.2 DATA COMMUNICATIONS LINE DRIVERS

The most obvious differences between data communications 1line
drivers and the general-purpose drivers are:

e Parameter blocks
® Supervisor call 15 (SVCl5) instead of SVCL

e Format of the device-dependent portion of the device control
block (DCB)

e Event service routine (ESR)

Normally, the driver schedules the ESR itself from the
interrupt service (IS) state. However, the operating system
executive might also schedule the ESR because of a time-out,
cancel, power fail or the close of a logical unit (lu) during
input/output (I1/0) by the calling task or command processor.

The 05/32 Basic Data Communications System Support Module
includes many subroutines that are called from data
communications line drivers. These subroutines are involved with
interfacing the driver with the operating system and with common
buffer management and command fetching operations. Some of these
subroutines are exclusively for driver use, but have been
included in this module to reduce code duplication between
drivers.

48-077 F0O0 ROO 6-1

6.3 CONTROL BLOCK FORMATS

This section describes the control blocks and other system
structures used in data communications. The following structures
will be discussed:

® Device control block (DCB)

e Line control block (LCB)

e Channel control block (CCB)

e Drop control table (DCT) for zero-bit insertion/deletion data
link control (ZDLC) communications

e Drop definition table (DDT) for ZDLC communications
e DCT for asynchronous multidrop communications

e Drop access table (DAT) for asynchronous multidrop
communications

e Input/output block (IOB) for asynchronous multidrop
communications

e Station descriptor table (SDT) for 3270 emulator
e DDT for 3270 emulator
e Input/output handler (IOH)

e File manager handler (FMH)

6.3.1 Data Communications Device Control Block (DCB)

The data communications DCB provides a table-driven mechanism for
line drivers and terminal managers. It contains parameters and
system information, such as addresses of line driver/terminal
manager modules, addresses of task control blocks (TCBs) and user
parameter blocks and specific device-related fields. The DCB
structure is divided into three portions:

e Device-independent (standard DCB)

e Data communications

e Device-dependent

Figure 6-1 shows a generalized DCB and how its three sections
relate to each other.

6-2 48-077 FO0O0 ROO

| STANDARD DCB
i DEVICE-INDEPENDENT

I o e e o i A B e S e B S e e B e S e B S o e B 1 P o b e o . o e S . A 2

DATA COMMUNICATIONS
SECTION

DEVICE-~DEPENDENT
SECTION

Figure 6-1 DCB Sections

The deviée—independent portion, also called the basic DCB, is
identical to the standard 0S/32 DCB. Figure 6~2 shows the fields
of the basic DCB.

The data communications-related portion of the DCB, immediately
following the basic DCB, has fields pertaining only to devices
requiring basic data communications support. Figure 6-3 shows
the data communications-related portion of the DCB.

The device-dependent portion of the DCB, immediately following
the data communications-related portion, is wused only if
device-dependent access is recuested. This section contains
fields unique to individual lines or devices (e.g., asynchronous
devices, binary synchronous lines and ZDLC lines).

All references to the DCB fields must use the names specified in
Figures 6-2 and 6-3. These names come from the 0S/32 and Basic
Data Communications Internal Macro and Structure Library supplied
in the standard software package.

48-077 FOO ROO 6-3

6.3.1.1 Device Control Block (DCB) Device-Independent Portion
(Standard DCB)

- ————— ———— —————— T — - T {—————— — ——————— W T " T~ = T T " . S o) T —

10(00) ,
! DCB .DMT i
: :
| o e e e !
14(04) ,
| DCB .LEAF |
: :
T e e e e e e e e e e e e e i
18(08) 110(0A) |
' DCB .WCNT | DCB.RCNT !
: : :
= = = e e e e :
112 (0C) |
' DCB.FLGS i
: :
= e e :
116(10) !
! DCB.1INC |
| i
| e e e e e e e e |
120(14) |
! DCB.7INC |
| :
| = = e e e e |
124(18) 125(19) 126 (1A2) |
H Reserved ! DCB.DCOP ! DCB.DN H
! = ! |
e e e e e e e e e e e !
128(1C) |30 (1E) ,
' DCB.ATRB | DCB.RECL !
: : :
ettt :
132(20) !
| DCB.INIT |
! :
| T e e e e e e e e e e e e e e e i
136(24) |
' DCB.FUNC |
= :
ittt :
140(28) :
H DCB.TERM |
i i
| T T e e e e e e e e e e e e i
144(2C) | |
] DCB.TOUT | DCB.RTRY !
1 |]
} 1 i

Figure 6-2 Basic DCB Fields
6-4 48-077 FOO ROO

148(30) 149(31) 150(32)

! DCB.WKEY ! DCB.RKEY ! DCB. ILVL

| |]
A O S .
152(34)

! ICB.ERRL

]

| e e e e e
156(38)

! DCB.LLXF

i

o e e e e e e
160(3C)

! DCB.TOCH

1

| e
164(40) i

! DCB.XFLG ! DCB.CLAS

]]

] f

i __
168(44)

] DCB. IOH

]

I ___
172(48)

i DCB.Q

|

i_ __
176(4C)

i DCB.EDMA

]

|
180(50)

! DCB . NXT

]

| oo e e o o e e e e e e e
184(54)

] DCB.RFLG

|

= __
188(56) 189(57) 190(58)

! DCB.PRI ! DCB.TYPE ! DCB .DOWE

1]]

|
192 (50C)

! DCB.DCB

{
e
196 (60)

! DCB.TCB

Figure 6-2 Basic DCB Fields (Continued)

48-077 F00 ROO

—— - —

——————— —— —— ———_— —— —— - — o —————— T ——— ——————{———— —— — O W_ T = o { —— v ——— —-

1104 (68)

1108 (6C)

1112(70)

1124(7C)

1132(84)

1144 (90)

148(94)

DCB.

114(72)

]
i
FC i DCB.LU DCB.STAT
1
i

—— —

——————— DCB .WCHN

115(73)
DCB.DDPS

s —————— . ——— —— —— = — — o — T~ G — e~ o — o — W ——— — T ——— ——— - - — - — e T V— s - —— ———

. —— . i 2 - S s Tt T o — — — — ——— T — W ——— - —] —_— T O —— ————————————— " ————

- ——— . —— T T - o T —— —— ——— o ———— - T — T ———— v f——— - ——" o — - —_- - ——

Figure 6-2 Basic DCB Fields (Continued)

48-077 FOO

— — e — —

ROO

Fields:

DCB .LEAF is the fullword address of the event
coordination table entry for the physical
devices described by the DCB.

DCB. INIT is the fullword starting address of the SVC1l
driver/terminal manager code. This address
corresponds to the INITxxxx label 1in the
driver/terminal manager module itself.

DCB.TERM is the fullword address of the driver
termination routine scheduled as the final ESR
at end of command processing.

DCB.IOH is the fullword 1list address of the IOH
routines. The SVCl executor vectors from this
IOH 1list to the specific routine for the

requested function. IOH 1lists exist for
asynchronous devices (IOHXASY), binary
synchronous devices (IOHMBSC), ZBID devices
(IOHCZBD) and SVC15 accessed devices
(IOHSVCF).

DCB .DONE is the fullword address of a special routine

that does special device-dependent functions
at I/0 completion before branching to the
standard IODONE routine.

DCB.ESR is the fullword address of the next driver
entry point. At system queue service (SQS)
time, event servicing begins here. Normally,

this address is for the ISSEXEC routine.

6.3.1.2 Device Control Blocks (DCB) Data Communications-Related
Portion

The data communications DCB contains fields pertaining to the
devices requiring data communications support. All the fields
within this part of the DCB are described 1in this section.
Figure 6-3 shows the format of the data communications portion of
the DCB.

48-077 F0OO ROO 6-7

————————— —— —— ——— " — — " ————— - —— - ——— — o — — - ———_ —— T —— - ————— — —— o ———

1152(98) 1154 (9A)

!
| DCB.RCCB ! DCB.WCCB |
! ! |
= e |
1156 (9C) 1158 (9E) |
! DCB.LLR | DCB.LIW |
| ! |
j m e e e e e e e e e e e e |
1160 (A0) |
| DCB.FLCB !
| |
ettt !
1164 (A4) |
f DCB.CTCB !
| |
= e e |
1168 (A8) |170(AA) i
| DCB.TCCB | DCB.HALT !
[} .
T —— |
1172 (AC) !
| DCB.LSN !
| |
T T e e e l
1176 (BO) 1178 (B2) !
' DCB.TO1 ! DCB.TO2 |
| | I
m e e !
1180 (B4) !
| DCB.CPCR |
| |
e e e e !
1184 (B8) !
' DCB.CPTR !
]
| o §
1188 (BC) !
! DCB.BTRP |
! |
o e e e e e |
1192(C0) !
! DCB.DCW |
| |
e e e ——_——— |
1196 (C4) !
! DCB .NDA i
' |
fm e e e |
1200(C8) |
! DCB.CTA !
i |

Figure 6-3 Data Communications DCB Fields

6-8 48-077 FOO ROO

204 (cc) 206 (CE)

-
Q
>
g
z
g
(@]
o
g
2

1208 (DO)
i DCB.XITO
]
o
1212 (D4) 1214 (D6)
! DCB.XDCD ! DCB.LNST
]
.S _
1216 (D8) 1218 (DA) 1219 (DB)
! DCB.ISTA] DCB .EXST ! DCB.DVST
] []]
. S
1220(DC)
H DCB.SVCF
|
| e
1224 (EO) 1226 (E2)
| IDCB.IFC] DCB.NCE
]]
| e
|228(E4) 1229 (ES5) 1230(E6)
! DCB.MLT ! DCB.SLT] DCB. IFLG
| | |
= ___
1232 (E8)
| DCB.ITB
]
]
' ___
1236 (EC)
| DCB.ESR2
e
| 240 (FO) 1242 (F2)
| DCB.ITV ! DCB.OTV
[]]
. A
1244 (F4) 1246 (F6) 1247 (F7)
| DCB .MXEC ! DCB.QBCT ! DCB.CHAR
1] [
A S
1248 (F8)
! DCB . CHNB
e
|252(FC) 1253 (FD) 1254 (FE) 255(FF)
] DCB.DOCR ! DCB .DOCW ! DCB .MOCR DCB .MOCW

| !

'
|

Figure 6-3 Data Communications DCB Fields (Continued)

48-077 FOO ROO

256 (100)
DCB.AOC

1272(110)

Figure 6-3

Fields:

DCB.RCCB

DCB.WCCB

- o e i e i S o s Tt S s .t i T B o e i o e i o D i M o W e M o S o S i o (v

————— ————— ———— ——————— ———— - —————— —— o 0 T T ——— (o ———

1257(101) 1258(102)
DCB.DISC

g
Q
w
0
Q
Z
-

¢
Q
o
[42]
Q
2
o

g
Q
o
n
Q
4
w

B T R ——

g
P
w
4]
Q
2
N

Data Communications DCB Fields (Continued)

is the halfword with the address of the read
CCB.

is the halfword with the address of the write
CCB.

NOTE

The auto driver channel requires
CCBs to hold buffer pointers and
other information required during
interrupt service routines (ISRs).
Data communications require the
read CCB and the write CCB to
process read-after-write (RAW) .
A simplex device can have only one
CCB and can specify zero for the
unused one.

48-077 F0OO ROO

DCB.LLR
DCB.LLW

DCB.FLCB

DCB.CTCB

DCB.TCCB
DCB.HALT

DCB.LSN
DCB.TO1l
DCB.TO2
DCB.CPCR
DCB.CPTR

DCB.BTRP

DCB.DCW

DCB .NDA

48-077 F0O ROO

Devices geared to human response
time can also use a single CCB for
reads and writes. The use of one
CCB saves some system memory, but
also inhibits the RAW lookahead,
possibly slowing read response
time. (See below for further
information on CCBs.)

is the driver-maintained halfword to specify
the length of last read.

is the driver-maintained halfword to specify
the length of last write.

is the fullword address of a pointer to the
beginning of an LCB chain used by file manager
routines GETFCB and RELEFCB. This entry point
must be in the same position as DCB.FCB within
the file manager DCB.

is the fullword address of the TCB for the
currently executing task. The TCB selects I/0
requests on behalf of the task.

is the halfword address of the timer CCB.

is the halfword address of a special halt
routine (pure code) called by some drivers.

is the logical segment number for an address
check.

is time-out 1 (screen time).
is time-out 2 (OP response limit).

is the fullword address for a channel program
continuation return, referred to for line
driver/terminal manager interface.

is the fullword address for a channel program
termination return, referred to for 1line
driver/terminal manager interface.

is the fullword address of the pointer to a
continuous read buffer trap, referred to for
line driver/terminal manager interface.

is the fullword address of the relocated
driver command words (DCWs).

is the fullword address of the relocated next
data area.

DCB.CTA

DCB . RDN
DCB .WDN

Both DCB.RDN
and DCB.WDN

DCB.XITO

DCB .XDCD

DCB.LNST

is the fullword address of the command table
within the particular driver. Every driver
has a command table with addresses of routines
that execute specific DCW commands. When the
task 1issues an SVCl5 request to the driver,
the command field in the DCW serves as an
index to one of these driver routines.

Drivers can support different subsets of the
standard set of driver commands. One command
table might have some driver commands in
common with other drivers while having other
commands unique to itself. The command table
must be coded as a DAC label. The label must
be declared an EXTRN.

is the halfword with the read device number.
is the halfword with the write device number.

are adjusted at assign time based on the
actual system generated (sysgened) device
number (DCB.DN) and the type of line indicated
in the DCB.XDCD field (i.e., 2-wire or 4-wire,
simplex, etc.).

is the fullword with the SVCl extended data
communications options obtained from the user
parameter block.

is the halfword for the extended device code.
To use file manager routines, the entry must
be at the same offset in the DCB as LCB.XDCD
is within the LCB. DCB.XDCD must be generated
as DC Z(XDCD). XDCD must be declared an
EXTRN.

is the halfword for the line activity status
used by 1line drivers and terminal managers.
Table 6-1 describes the status bits for this
halfword. DCB.LNST is structurally identical
to LCB.LNST.

48-077 F0O ROO

TABLE 6-1 DCB.LNST BIT DEFINITIONS

| | HEX | i i
{ BIT | MASK | NAME | MEANING]
= k2 X £ F £ X 2 R _2 % F X Z_F 2 B P X X £ & £ 3 F 3 F F F FF FEF X F XY FEFXENF YN FFYYFYXFYF XY F Yy ¥ :
{ O | 8000 | LNS.BSYM/B | DCB is being used. |
e e e e e e e e e e e e m i
{ 1 | 4000 | LNS.RWM/B | Line is currently performing a read]
= o o e :
I 2 | 2000 | LNS.INTM/B | Line is currently with a read or write]
' | | | initiation phase. !
e !
{ 3 | 1000 | LNS.ACKM/B | Next ACK should be an ACKl. {
== e i
i 4 | 0800 | LNS.ACQM/B | An ACK is required |
b e e !
{ 5 | 0400 | LNS.HLDM/B | Put any future I/0 requests into 1/0 |
1 | ! i wait. A DONE return to user task [
! i t ' (u—task) is pending. !
o e e e e '
{ 6 | 0200 | LNS.IOM/B | I/0 is currently in progress]
| e e e :
{ 7 | 0100 {| LNS.RVIM/B | Reverse interrupt received. i
| e e :
{ 8 | 0080 | LNS.ERRM/B | An outstandlng unrecoverable error |
i i ! | exists. !
| e e e e |
i 9 | 0040 | LNS.EOTM/B | End oE transmission received.
o e e e e e e e e e e e e i
{ 10 | 0020 | LNS.IOQM/B | An image I/0 write is on queue !
o e e e e e e e i
!o11 | Reserved ! |
f——— e !
i 12 | 0008 | LNS.CPTM/B | Line checkp01nt is being performed !
T e '
t 13 | 0004 | ILNS.CLSM/B | Line close is being performed.
| m e e e |
{ 14 | 0002 | LNS.EQM/B | ENQ sent for read time-out. [
=T e e e e e e e e e e e]
i 15 | | Reserved ! ;
DCB.ISTA is the halfword into which the 1line driver
stores 8SV(Cl5 status.
DCB.EXST is the byte reserved for the driver.
DCB.DVST is the byte for saving the latest device
status after an interrupt. This field and the

DCB.ISTA field are useful for debugging
purposes.

48-077 F0OO0 ROO

DCB.SVCF

DCB. IFC
DCB . NCE

DCB.MLT
DCB.SLT

DCB. IFLG

DCB.ITB

DCB.ESR2

DCB.ITV
DCB.OTV

DCB.MXEC

DCB.QBCT

DCB.CHAR

is the fullword with a pointer to the 1line

driver initiation routine. This address is
used by the SVC1l5 executor and the terminal
manager to enter the driver. In the DCB

coding, DCB.SVCF must be coded as DAC INITxxxx
and this label must be declared an EXTRN.

As for general-purpose drivers, the driver
initiation routine pointer is the beginning
address of the driver responsible for

communicating with the attached adapter and

device. Entered in the event service state
from the SVCl5 executor, this routine assumes
DCB.DCW and DCB.NDA are valid and wusually
starts execution of DCW commands.

is the halfword containing the SVC1l5 function
byte and other information bits for 1line
drivers.

is the halfword with which 4the line driver
keeps track of the number of commands
executed.

is the byte containing the main line-type

"descriptor for ITFM, the file manager.

is the byte containing the subline-type
descriptor for ITFM. :

is the halfword for flags.

is the fullword with bits to be used by
ISSEXEC and ITSRABS when scheduling ESRs for
buffer management and system support
functions.

is the fullword address of the second ESR.

is the halfword with an error timer wvalue in
gseconds for input (reads). The MODE time-out
command can change this value.

is the halfword with an error timer value in
seconds for output (writes). The MODE
time-out command can change this value.

is the halfword with a value for the maximum
number of allowable error retries.

is the byte with the count of gqueued buffers
in wuse. With this count, the line driver
keeps track of queued buffers.

is the byte for temporarily saving characters.

48-077 F0OO0 ROO

DCB.CHNB

DCB .DOCR

DCB .DOCW

DCB .MOCR

DCB .MOCwW

DCB.AOC

DCB.DISC

DCB.SCN1

48-077 F0O ROO

is the fullword address of the first buffer in
a chain.

is the byte used by the driver to disable the
adapter after completing each read request.
DCB.DOCR is coded as DCB 'hexadecimal value'
to agree with the adapter.

is the byte used by the driver to disable the
adapter after completing each write request.
DCB.DOCW is coded as DCB 'hexadecimal value'
to agree with the adapter.

is the byte used by the driver to enable
interrupts and to place the adapter into read
mode. DCB.MOCR is coded as DB X'value', with
the value of the bits depending upon how the
adapter is to be used.

is the byte used by the driver to enable
interrupts and to place the adapter into write
mode. DCB.MOCW must be coded as DB X'value',
with the value of the bits dependent upon how
the adapter is to be used.

is the byte used to load programmable adapters
with required information. DCB.AOC is coded
as DB X'values', where the values might
reflect such programmable information as:

® 1line speed,

e character size,

e parity information,

e number of stop bits,

® SYNC character,

e test function or local loop-back, and

e synchronization technique.

is the byte used by the driver to disable

interrupts and, for switched 1lines, to
disconnect the 1line (i.e., to drop data
terminal ready). DCB.DISC 1is coded as DC
X'value'. If the read device number is zero,

then this command is 1issued to the write
device number.

is the fullword for the SVCl5 data chain area
1.

DCB.SCN2 is the fullword for the SVCl5 data chain area

2.
DCB.SCN3 is the fullword for the SVCl5 data chain area
3. .
DCB.SCN4 is the fullword for the SVC1l5 data chain area
4.

Terminal managers may place values into these fullwords to
provide data buffering information (e.g., buffer BEGIN and END
address or TO and FROM list addresses to the line driver).
6.3.1.3 Device Control Block (DCB) Device-Dependent Portion

In order to remain reentrant, all additional storage required by
any terminal managers must be in additional DCB space set aside
here or in extra memory obtained from system space.

For a description of the device-dependent portion of the DCB, see
the appropriate data communications manuals.

6.3.2 Line Control Block (LCB)

All buffered terminal managers use an LCB to provide required
format pointers, line control and device-independent interfaces.

An LCB is usually a copy of the appropriate DCB with additional
space for data blocks. The LCB is obtained from dynamic system
space. As shown in Figure 6-5, the LCB consists of three
segments:

e Device-independent segment (basic LCB)

e Device-dependent segment

e Data block descriptor

6.3.2.1 Line Control Block (LCB) Device-Independent Portion
The device-independent portion of the LCB is pictured in Figure

6-4. The device-independent portion of the LCB is structurally
identical to the basic DCB of Figure 6-1.

6-16 48-077 F0OO ROO

]
1
| 1.CE .DMT
[}
L _
14(04)
| LCE.LEAF
]
e -
18(08) 110 (OA)
| 1.CB.WCNT | I.CB.RCNT
] [}
S
112(0C)
| LCB.FLGS
[}
e
116(10)
| LCB.1INC
]
e
120(14)
: LCB.7INC
]
e
124(18) 125(19) 126 (1A)
| RESERVED | LCB.DCOD | LCB.DN

] 1
S S
128(1C) |30 (1E)
| 1.CB.ATRB | LCB.RECL
]]
O
132(20)
| LCB.INIT
]
)
! ___
136(24)
; L.CE . FUNC
[}
'
; ___
140(28)
| L.CE . TERM
]
e
144 (20) 146 (2E)
| LCB.TOUT | LCB.RTRY
]]
S A
148 (30) : 149(31) 150(32)
| IL.CB.WKEY | IL.CB.RKEY H RESERVED
| | i

48-077 FOO ROO

Figure 6-4 Basic LCB Fields

—— ————— T —— ———————— T — — T — — —— —— ——— " o o o T B S S —— ——e S — T Sl o W " W

152(34)

156(38)

I
1
|
1
1
|
|
|
!
|
I
|
|
|
|
|
i
|
|
1
1
|
1
|
|
1
|
|
|
|
1
|
1
t
|
1
|
|
|
|
|
|
|
|
1
|
|
1
1
1
i
|
1
|
1
t
|
|
|

100(64)

o e - - — e o e B i T T o . e e s i T — —— —— " ——] T ot o W T s B o T T T - e Ww ————

———————— ————————_— —_— ———— T —— " T _——— W T —— T TS — i S —— T G - - — T~ ——

et e —— T o T d— S ——" — T —— " o — " P - S oa o T S PO e e e e Bt B e S i W e Bt S e M S T — ot - ——— —

186(56)
] LCB.PRI
!

IL.CB.ESR

:
:
o

—— e —

e — ————— T T W A S E ST m e V- e Em e ——— M S S — — —— S - (o ———— —— o — ——

87(57)

=
Q
w
3
<
o
s

'
!
{
!
i
i
1
1
1
|
|
|
|
|
!
!
1
|
|
1
1
i
i
i
|
i
!
{
1
1
i
1
!
!
i
]
!
{
]
|
1
i
i
1
1
1
!
!
|
|
|
1
|
]
!
i
|
|
1

Figure 6-4 Basic LCB Fields (Continued)

48-077 FOO ROO

|
| ICB.
[}
i
[

1128(80)

132(84)

1114 (72)

| LCB.STAT
[}

!

e T . W G- b M ot e o s B R oo S i okt Ao WA S e s b e o e o Wn e o oAy s i T i ot —— o o s s e e

115(73)

I1.CB.DDPS

e —— —— —— ——— { (—— T T B s S B e S A M S e S i e e BB e St s M e e e e e e M o e B e e e o e e S et e Tt s b e

Figure 6-4

48-077 FOO ROO

Basic IL.CB Fields (Continued)

Fields:

LCB.DMT

LCB.LEAF
LCB.WCNT
LCB.RCNT
LCB.FLGS
LCB.1lINC
LCB.7INC
LCB.DCOD

LCB.DN

LCB.ATRB
LCB.RECL

LCB.INIT
LCB.FUNC
LCB.TERM

LCB.TOUT
LCB.RTRf
LCB.WKEY
LCB.RKEY

LCB.FLRT

LCB.TOCH

LCB.XFLG
LCB. IOH

LCB.Q

is the fullword address of the device mnemonic
table (DMT) entry.

is the fullword address of an event leaf.

is the halfword for the write count.

is the halfword for the read count.

is the fullword for the flags.

is the SVCl device intercept.

is the SVC7 device intercept.

is the byte for the device code (DCB number).

is the halfword for the device number (a
physical address).

is the halfword for the device attributes.
is the halfword for the record length.

is the fullword address of the driver
initiation routine.

is the fullword address of the driver function
routine.

is the fullword address of the driver
termination routine.

is the halfword for the time-out constant.

is the halfword for the operation retry count.
is the halfword for the write key.

is the halfword for the read key.

is the fullword for the close/checkpoint save
area.

is the fullword address of the time-out chain.

is the halfword for the device-dependent
flags.

is the fullword address of the IOH list. The
default is zero.

is the fullword address of the queue strategy
routine. The default is zero.

48-077 FOO ROO

LCB.EDMA

LCB .NXT

LCB.RFLG

LCB.PRI
LCB.TYPE

LCB.DONE

LCB.DCB
LCB.TCB

LCB.ESR

LCB.UPBK

LCB.PBLK

LCB.FC
LCB.LU
LCB.STAT
LCB.DDPS

LCB.SADR

LCB.EADR

LCB.FLR5

LCB.LUE

LCB.SV1X
LCB .WCHN
LCB.SIZE

LCB.VFC

48-077 F0OO ROO

is the fullword address of the extended direct
memory access (EDMA) strategy routine.

is the fullword link to the next IOB.

is the halfword for the request-dependent
flags.

is the byte for the /0 priority.
is the byte for the I0B-type code.

is the fullword address of the IODONE
executor.

is the fullword address of the DCB.
is the fullword address of the TCB.

is the fullword address of the next entry into
driver.

is the fullword task-relative address of the
SVC parameter block.

is the fullword absolute address of the 8vVC
parameter block.

is the byte for the SVC function code.

is the byte for the SVC logical unit (1lu).
is the byte for the I/0 status.

is the byte for the device-dependent status.

is the fullword absolute starting address of
the SVC1 buffer.

is the fullword absolute ending address of the
SVC1l buffer.

is the fullword checkpoint save area for
register 5.

is the fullword LCB address used 1in the
contiguous file manager.

is the extended SVC1l word.
is the task waiting for this I/0 to complete.
is the size in sectors or lines.

is the fullword address of VFCDCB.

6.3.2.2 Line Control Block (LCB) Device-Dependent Portion

The device-dependent portion of the LCB 1is pictured in Figure
6-5.

1148 (94) |
] |
! |
fmmmm e LCB.NAME = ~=——=———mmmem |
1152 (98) !
! |
i !
e e e e e e S |
1156(9C) |
| I.CB.EXT]
i i
 ——— e e e e e |
{160 (A0) |
] Reserved |
]]
e |
1164 (A4) |
| I.CB.LCB |
| |
et e ity |
{1168 (A8) |
! I.CB.BSB |
i !
e e e e s s e |
1172 (AC) H
i L.CB.BSE |
| |
== — !
1176 (B0) !
} I.CB.URPB !
| |
fr e e e e |
1180(B4) |
| I.CB.RPB |
| |
m e e e e e i
{1184 (B8) !
i I.CB.SV1B H
i |
f-————— e e !
1188 (BC) !
| LCB.DCW |
| !
|~ e |
1192(C0) |
! L.CB.NDA |
| |

Figure 6-5 Device-Dependent LCB Fields

6-22 48-077 FOO ROO

196(Cc4) - 1198(C6)

]

[} t

| L.CB .WKBF ! L.CB.BKS?Z

]
S
1200(C8) 1201(C9) 1202 (CA) 1203 (CB)

! I.CB .BKRK ! I.CB.BKCT ! L.CB.GDCT | I.CB.LSTE
|]] i

e
{204 (CC)

| ILCB.XITO

[.

e e S
1208 (D0) 1210(D2)

! LCB.XDCD ! LCB.LNST

]
S
1212 (D4)

= _______________________________
|

1216 (08)

]

I

|

o e LCB.HTMP o
1220(DC)

]

E

: - ——— e —— s e e e e ——— e o
1224 (EOQ)

1

i

: ___
1228 (E4) 1230(E6)

! | Reserved

| i

; __
1232 (E8)

! I.CB.SCN1
I
1236 (EC)

! I.CB.SCN2

]
e
1240 (F0)

] LCB.SCN3

1
e
1244 (F4)

| L.CB.SCN4

i

]

———— — - —— — " A ——— —— T —— " o —— W " — T - (o~ ———— T ————— " — - —— —— ————

Figure 6-5 Device-Dependent LCB Fields (Continued)

48-077 FOO0 ROO

It should be noted that the device-dependent portion of the LCB
described in this section may vary 1in structure for different
terminal managers.

Fields:

LCB .NAME is the doubleword for the filename.

LCB.EXT is the fullword for the extension.

LCB.LCB is the fullword LCB-to-LCB linkage address for
sSvC7.

LCB.BSB is the fullword absolute starting address of
the segment (the buffer segment begin
address).

LCB.BSE is the fullword absolute ending address of the
segment (the buffer segment end address).

LCB.URPB is the fullword task-relative address of the
SVC parameter block.

LCB.RPB is the fullword absolute address of the SVC
parameter block.

LCB.SV1B is the fullword address of the SVCl buffer for
delays.

LCB.DCW is the fullword for storage of the DCW address’
for retries.

LCB .NDA is the fullword for storage of the next data
area (NDA) address for retries.

LCB.WKBF is the halfword address of the work buffer to
receive ACK.

LCB.BKSZ is the halfword for the size of each data
buffer.

LCB.BKRK is the byte for the maximum records permitted
in each block.

LCB.BKCT is the byte for the total number of data
blocks assigned.

LCB.GDCT is the byte for the good transmission counter.

LCB.LSTE is the byte for the error code of the last
transmission.

LCB.XITO is the fullword for the extended options.

LCB.XDCD is the halfword for the extended device code.

6-24 48-077 F0OO ROO

LCB.LNST

LCB.HTMP

LCB.SCN1
LCB.SCN2
LCB.SCN3

LCB.SCN4

is the halfword for the line activity status.

are the nine halfwords for the horizontal tab
bit map.

is the fullword for data area 1.
is the fullword for data area 2.
is the fullword for data area 3.

is the fullword for data area 4.

6.3.2.3 Line Control Block (LCB) Data Block Descriptor Portion

The data block descriptor described in this section 1is an LCB
subtable that controls the use of individual internal buffers.

BLK.RKCT

BLK.ADR

BLK.PTR

BLK.DSCR

is the byte for the count of records 1in the
block.

is the address of the data block.

is the halfword for relative offset into a
data block.

is the halfword for the data block descriptor
flags. See Table 6-2.

TABLE 6-2 BLOCK DESCRIPTOR FLAG BIT DEFINITIONS

! | HEX | | |
i BIT | MASK | NAME ! MEANING !
:==========:====&============E===.====B=============================.l
{ O | 8000 | BLK.BSM/B | Line buffer is currently being used. !
T e fe e e e {
i 1 | 4000 | BILK.RWM/B | Line buffer is currently being used 1
| i i | for a read. !
| = e e e e !
! 2 | 2000 | BLK.BKM/B | Line buffer blocking or deblocking is {
! |] | currently in progress. '
[== = = e et e e e e :
! 3 '} 1000 | BLK.IOM/B | Line buffer is currently being used !
i | i i for 1/0. i
- H
14 { 0800 | BLK.QUM/B | Line buffer is on queue for either an |
!] ! { output write or input deblocking. !
T e e e e e e e e e i
i 5 | 0400 | BLK.INM/B | Second line buffer is on queue. |
= e e e e |
i 6 | 0200 | BLK.QU2M/B| Reserved !
e e e e e H
! 8 | 0080 | BLK.EXM/B | Line buffer contains an ETX character !
fm e e e e e e]
{ 9 | 0040 | BLK.AKM/B | Reserved !

48-077 F0O0 ROO

6.3.3 Channel Control Block (CCB)

The CCB contains the address of the DCB, the fullwords and
halfwords used by the line drivers and the clock halfword.
6.3.3.1 Channel Control Block (CCB) Device-Independent Portion
This section discusses the device-independent (standard) fields

of the CCB. The device-independent CCB format is illustrated in
Figure 6-6. '

o ————— —————— - _— T — - — o - - o — o - — - T — T o —— - " —- T T— . T T

10(00) 12(02) g
! CCB.CCW | CCB.LBO !
] { {
| i 1
o e e e e e |
14(04) I
| CCB.EBO]
| |
o e e e e |
18(08) 110 (0A) |
| CCB.CW | CCB.LB1 !
= e I
f12(0C) !
! CCB.EB1 |
| !
o e e '
116(10) |
| CCB.XLT !
| |
e |
120(14) 122(16) 123(17) !
| CCB.SUBA | CCB.MISC ! CCB.FLGS !
] |]]
S S ;
124(18) |
! CCB.DCB !
| |
| T e e e e e e e |
28(16)

— - - . ———————— — — " — " - - "y g ——— - S ————————————— — ————————] - ——

Figure 6-6 CCB Device-Independent Portion

6-26 48-077 FOO ROO

Fields:

CCB.CCw

CCB.LBO

CCB.EBO

CCB.Cw

CCB.LB1

CCB.EB1

CCB.XLT

CCB.SUBA

CCB.MISC

CCB.FLGS

CCB.DCB

CCB.XLT2

is the halfword containing the channel command
word (CCW).

is the halfword containing the length of
buffer 0.

is the fullword containing the end address of
buffer 0.

is the 16-bit check "word".

is the halfword containing the 1length of
buffer 1.

is the fullword containing the end address of
buffer 1.

is the fullword containing the address of the
translation table.

is the halfword address of the subroutine
(pure code).

is the l-byte temporary save area used by line
drivers.

is the 1l-byte for CCB flags.

is the fullword containing the address of the
associated DCB.

is the fullword address of the secondary
translation table.

6.3.3.2 Channel Control Block (CCB) Device-Dependent Portion

This section discusses the fields of the CCB used by data

communications.

48-077 FOO ROO

The CCB format is illustrated in Figure 6-7.

——— — — ——

- - — " —— ——

156(38)

164 (40)

Device-independent section = = --—-—-==ve—-]

1

!

|

!

__ ‘

!

CCB.BFO !

|

___ i

134(22) |

CCB.SAV1 | CCB.SAV2 !

] i

. |

!

CCB.BF1l i

]

___ |

142 (2A) |

CCB.CMD ! CCB.RECS H

i |

___ !

146 (2E) |

CCB.TLXF | CCB .BMOD]

]

S |

150(32) |

CCB.ITIM | CCB.DN H

| |

___ '

154(36) |

CCB.PITC H CCB.NITC H

]

e |

!

CCB.QBF |

|

___ ‘

|

CCB.QBT i

]

__ |
66(42)

Q
Q
o
g
c
Q
=3
=
(0]
(1]
0]
2]
<
0]
Q.

Figure 6-7 Data Communications CCB Format

48-077 FOO ROO

Fields:

CCB.BFO

CCB.SAV1
CCB.SAV2

CCB.BF1l

CCB.CMD

CCB.RECS

CCB.TLXF

CCB.BMOD

CCB.ITIM

CCB.DN

CCB.PITC/
CCB.NITC

CCB.QBF

CCB.QBT

CCB.PDCT

48-077 F0OO0 ROO

is the fullword used by the line driver during
ISRs containing the beginning address of
buffer zero.

is the halfword save area 1.
is the halfword save area 2.

is the fullword used by the line driver during
ISRs containing the beginning address of
buffer 1.

is the halfword storage for the DCW.

is the halfword used by the binary synchronous
driver to contain CCB count equivalent to
transparent record size.

is the halfword used to total the length of
transfers when using chained buffers.

is the halfword required by drivers that must
maintain their present mode; 1i.e., binary
synchronous and future asynchronous drivers.

is the halfword used by the clock.

is the halfword used by the clock containing
a device number correspondng to the CCB (read
or write). It is 1initialized by the file
manager at assign time.

are the halfwords used by the clock containing
previous and next pointers of the forward- and
backward-linked time chain. It must be coded
as DC H'O',H'O"'.

is the address of a queued buffer from the
list (queued buffer support, lines only).

is the address of a queued buffer to the list
(queued buffer support, lines only).

is the halfword pad count used by the direct
I1/0 subsystem (DIOS). The relative position
of this field in the CCB is fixed.

6.3.4 Drop Control Table (DCT) for Zero-Bit Insertion/Deletion
Data Link Control (ZDLC) Communications

The DCT is a system table that is either allocated by the user or
sysgened into the DCB. The DCT stores data necessary for
controlling ZDLC communications with a specific drop. Included
with its data are the relocated addresses (i.e., addresses
relocated from task space to system space) of the:

e four circular lists (for the u-task I/0 buffers),

e secondary station address (SSA) of the allocated drop, and

e logical filename.ext of the drop.

When directed by the SVC1l extended option bits, these parameters

are placed into the DCT from the user's DDT. Figure 6-8 depicts
the DCT. :

10(00) ,
! DCT.LNK |
| |
o e e e e e e e e e e e e |
}4(04) | |
| DCT.SSA | DCT.SSAL |
| | |
| e :
18(08) |
i]
| !
R et DCT.FNM = ———— oo !
116(10) ! l
! { Not used |
| | |
e e e e e !
120(14) l
! DCT.UDR !
| |
e e e e e e e e e e e e e |
124(18) |
H DCT.UQW !
! |
e e e e e e e e e i
128(1C)

I
| DCT .UDW |
! !

Figure 6-8 DCT (ZDLC) Format

6-30 48-077 FOO ROO

{]
' §
i DCT.IDR !
| '
I_. __ !
136(24) !
! DCT. IDW i
| i
= ___________________________ s o e e e e e e B B s e e o o . e e S ot B o e o o e ot =
140(28) 141(29) |
| DCT.HOLE ! DCT.HLNK !
i] i
e |
}44(2C) 146 (2E) !
| DCT.SDS | DCT.DDS]
| i i
= L e e o S ey e e B S s S e B Sy i S i e P s e A P e At e P S B B o Bt i e e s S e S S P e S St ey B e S e e e =
148(30 150(32) 151(33) |
! DCT.MBFS | DCT .MNOF ! DCT.ORRC !
t [}] |
S S |
152(34) 164(36) 165(37) !
' DCT.ORFC ! DCT .NOAB { DCT.TPER !
\ |] ']
A L A |
156(38) 157(39) 158(3A) 159(38) |
| DCT.OCR | DCT.OCX H DCT.PPD ! DCT.PSC !
| {] 1]
S S |
160(3C) 161(3D) |62 (3E) 163 (3F) !
| DCT. INEF ! DCT.ILFA ! DCT. INFA | DCT . INUF !

]] 1
.S A |
{64 (40) 165(41) 166(42) 167(43) |
| DCT.IOSR ! DCT.ONTX | DCT.OLRR ' DCT.ONRT '
]]]] |
S A |
168(44) | |
| DCT.OCNT | (Reserved) !
i i i

Figure 6-8 DCT (ZDI.C) Format (Continued)
Fields:
DCT.LINK is the fullword pointing to the address of the
next DCT on the chain of DCTs.
DCT.SSA is the first byte for the SSA.

48-077 F00 ROO

[o)]
|

31

DCT.SSAL

DCT.FNM

DCT.UDR

DCT . UQW

DCT.UDW

DCT. IDR

DCT. IDW

DCT.HOLE

DCT . HLNK

DCT.SDS
DCT.DDS
DCT.MBFS

DCT .MNOF

is the 3-byte 1link to any additional SSA
bytes.

is the 12-byte field containing the 1ll-byte
filename.ext (logical drop name) for the DCT;
the last byte is unused.

is the fullword pointing to the user done with
read (UDR) circular list (the read-done 1list)
associated with the drop.

is the fullword pointing to the user queue for
write (UQW) circular 1list (the write 1list)
associated with the drop.

is the fullword pointing to the user done with
write (UDW) circular 1list (the write-done
list) associated with the drop.

is the fullword header pointing to the
internal read-done chain of input frames. It
is not yet passed to the UDR circular list.

is the fullword header pointing t.o the
internal write-done chain of output frames
that has already been transmitted, but is
awaiting acknowledgement.

is the l-byte "frame hole" indicator having a
value of X'FF', when applicable. When not
used, this byte is reset to zeros. (A hole is
a missing I-frame within the input data
register (IDR) chain. The frame was
selectively rejected by the channel terminal
manager (CTM) and, consequently, not entered
into the IDR chain.)

is the 3-byte link to the address of the next
frame after the hole in the IDR chain. When
not used, these bytes are reset to zeros.

is the halfword static drop status describing
drop criteria to the CTM.

is the halfword dynamic drop status reflecting
drop activity at the given time.

is the halfword containing the maximum size of
a frame that can be transmitted for the drop.

is the byte containing the maximum number of

frames on the internal write-done (IDW) chain
that can be awaiting acknowledgement.

48-077 F0O0 ROO

DCT.ORRC

DCT.ORFC

DCT.NOAB

DCT.TPER

DCT.OCR

DCT.OCX

DCT.PPD

DCT.PSC

DCT. INEF

DCT. ILFA

DCT. INFA

DCT. INUF

DCT.IOSR -

48-077 FOO ROO

is the byte containing the rejection reason
code for an FRMR frame (i.e., a UN-frame
having a FRMR code 1in the control field
(C-field) being output.

is the halfword containing the rejected
C-field to be included within the FRMR frame
being output.

is the byte specifying the number of address
bytes in the SSA.

is the byte containing the reason code of the
problem-causing trap.

is the byte containing the binary index code
of the NUMBERED or UNNUMBERED C-field sequence
to be output.

is the byte into which the command code
requested by the above DCT.OCR is stored
before the appropriate N- or UN-frame is
output.

is the byte determining the poll priority of
the drop.

is a byte used to defer an implied rejection.
(An implied rejection occurs when a drop
receives an N- or I-frame having the P/F bit
set and the N(R) value less than the sequence
number, N(S), of the next frame to be

transmitted.)

is the byte indicating the next expected
sequence number, N(S), of an incoming I-frame.

is the byte indicating the sequence number,
N(S), of the 1last input I-frame that was
acknowledged.

is the byte indicating the sequence number,
N(S), of the next expected input I-frame to be
acknowledged.

is the byte indicating the sequence number,
N(S), of the next input I-frame that can be
passed from the IDR chain to the UDR list.

is the byte containing the sequence number,
N(S), of a selectively rejected input I-frame
that is currently outstanding.

DCT.ONTX is the byte indicating the sequence number,
N(S), of the next I-frame to be transmitted.

DCT.OLRR is the byte containing the sequence number,
N(R), of the 1last RR (receive ready) frame
received from another drop.

DCT.ONRT is the byte containing the sequence number,
N(S), of the next output I-frame needing
retransmission; this I-frame must be 1in the
IDW chain. '

DCT .OCNT l-byte counter for I-frames transmitted or
received in response to a poll.

To communicate with a drop, a DCT for that drop must be in system
space. The DCT gets into system space in one of two ways:

1. The user allocates the DCT with an SVC7 call based on an
extended SVC7 parameter block. Issuing the SVC7 call does
the following:

e Allocates a DCT from system space.

e Enters the logical filename.ext and SSA from the SVC7
parameter block into the DCT.

e Initializes DCT control fields to specific values needed
by the CTM.

2. As a user convenience, static DCTs can be sysgened as
permanent tables within the DCB; the user need not allocate
the DCTs. At sysgen, the DCB for the ZDLC line can have one
or more DCTs built in with each DCT having a defined logical
filename.ext and secondary station address. To communicate
with a drop defined this way, the user must know the logical
filename.ext of the drop.

6.3.5 Drop Definition Table (DDT) for Zero-Bit Insertion/
Deletion Data Link Control (ZDLC) Communications
The DDT is a table the user sets up in task space as an extension

to the SVCl parameter block. It supplies additional parameters
needed for ZDLC protocol support, including:

e the logical name of the drop with which ZDLC communications
are wanted, and

® the addresses of the four circular lists (read pool, read-done
list, write list, and write-done list) needed for 1/0.

6-34 48-077 F0O0 ROO

When the user issues the SVCl call, DDT parameters are passed to
the DCT and the DCB.

As defined for ZDLC protocol, a drop is a logical starting or
ending point on a ZDLC communications line. A drop can be a
primary station, a secondary station, or a station acting as
multiple secondaries. Figure 6-9 depicts the DDT.

10(00) 11(01) |
| DDT.SSA | DDT.SSAL |
z : :
| = = !
14(04) ,
| i
= :
jm—— DDT.FNM = ————mmmmm e]
18(08) ,
i i
: =
= __ !
j12(0C) !
| DDT.EXT !
: !
___ :
116(10) !
] DDT.UQR !
| !
o e |
120(14) |
| DDT .UDR |
| i
| e :
124 (18) !
| DDT .UQW [
1]
oo e |
128(1C) !
| DDT . UDW |
i i

Figure 6-9 DDT (ZDLC) Format

Fields:

DDT.SSA used when a user changes the secondary station

address of a drop. Holds the replacement SSA.

48-077 F0OO0 ROO 6-35

DDT.SSAL holds pointer to additional SSA bytes when a
u-task changes an SSA to have more than one
byte.

As seen in Figure 6-9, the first byte of this
fullword 1is an additional SSA byte and the
following three bytes point to another SSA
byte, if necessary. The last SSA byte has its
pointer filled set to zero.

DDT.FNM _ defines the logical drop name and extension

DDT.EXT by which the drop is known to the system.

DDT .UQR is the address of the UQR 1list (user's read
pool).

DDT.UDR is the address of the UDR list (user's
read-done list).

DDT.UQW is the address of the UQW list (user's write
list).

DDT.UDW is the address of the UDW 1list (user's

write-done list).
6.3.6 Drop Control Table (DCT) for Asynchronous Multidrop.
Communications

The DCT for asynchronous multidrop communications is a caps
system table that is allocated by the user executing the generate
macro or command. One DCT per terminal is allocated to specify
the drop. Fields in the DCB specific to asynchronous multidrop
communications contain the DCT queue control data. The following
are included with the DCTs:

e Logical filename/extension of the drop

e Device access gqueue control data

e Line polling/selection address of the drop

The structure of the DCT is shown in Figure 6-10.

6-36 48-077 FOO0 ROO

116(10)

120(14)

124(18)

128 (1C)

136(24)

DCT

.NAME

e e - e P o S e i e S o S " T i — o S B e i b S e e oy T S Pvas B S et S o M P W e St T - — T m_—

143 (2B)

! Reserved
1

[}

Figure 6-10 DCT (Asynchronous Multidrop) Format

48-077 F0OO ROO

Fields:

DCT .DLNK is the link to the next DCT (from the DCB).

DCT.NAME is the file descriptor (fd) for the particular
terminal.

DCT.FDAT is the first DAT used by this DCT.

DCT.LDAT is the last DAT used by this DCT.

DCT .DFQH is the first DAT on the function queue chain.

DCT.DFQT is the last DAT on the function queue chain.

DCT.DQLK is the link to the next DCT in the function
queue chain.

DCT.DCB is the pointer to the parent DCB.

DCT.FLGS is a halfword reserved for flags.

DCT.LADR is the polling/selection line address for the
particular terminal.

DCT.WCNT is the halfword for the write count.

DCT.RCNT is the halfword for the read count.

6.3.7 Drop Access Table (DAT) for Asynchronous Multidrop
Communications

The DAT is a system table that is internally allocated when an lu
is assigned to a terminal. The following are included with its
data:
e lu

e IOB queue control data

e Timer chain data

The structure of the DAT is shown in Figure 6-11.

6-38 48-077 FOO ROO

’ !
| DAT . DLNK |
[]
b |
1 - |
14(04) ,
| DAT.FQLK i
! | :
b o e e ;e e e o e " S S o 7 e o o i e B S e At e e o s ik e e o e St e B e s e e o S vt St Mt i i oo . s art ot i s ek e e e e]
] f
18(08) ,
] DAT . TMLK i
H |
e e e e e |
112(0C) 113(0D) |
| DAT.LU | DAT.TCB !
| | i
e e e !
116 (10) :
| DAT.DCT !
| i
g ___ :
120(14) :
| DAT.DCB |
! i
= ___ ’
124 (18) i
| DAT.IOBH !
! s
}..., ___ =
128(1C) |30 (1E) ,
] DAT.TIMR : DAT.FLGS !
| i |
| o e -1
132(20) !
! DAT.IOBT i
| i
I e e |
136(24) 137(25) !
! DAT.APRV ! DAT.CONB !
i i |
Figure 6-11 DAT (Asynchronous Multidrop) Format
Fields:
DAT .DLNK is the link to the next DAT for the current
DCT.
DAT.FQLK is the link to the next DAT in the function

gueue chain.

48-077 F0OO ROO 6-39

DAT . TMLK is the link for the timer chain.

DAT.LU is the byte for the 1lu assigned to the DAT.

DAT.TCB is the address of the.

DAT.DCT is the address of the parent DCT of this DAT.

DAT.DCB is the address of the parent DCB of this DAT.

DAT. IOBH is the pointer to the first I0B for this DAT.

DAT.TIMR is the timer value.

DAT.FLGS is a halfword reserved for flags.

DAT. IOBT is a pointer to the last IOB for this DAT.

DAT.APRV is the access privilege byte.

DAT.CONB is the multi-terminal monitor (MTM) TCB save
area.

6.3.8 Input/Output Block (IOB) for Asynchronous Multidrop
Communications

The [OB is allocated from system space and chained to the TCB.
This occurs both at load time and assignment time. At load time,
the number of IOBs built is dependent on the Link option IOBLOCK.
If the option is not specified, a default of one IOB is contained
in the TCB. At assignment time, additional IOBs are allocated
and chained, thereby eliminating the problem of proceed 1I/0
waiting for a free I/0 block. The IOB contains [/0 information
that includes the SVCl parameter block. The structure of the I0B
is shown in Figure 6-12.

10(00) |
| 10B.NXT |
‘ !
| o !
14(04) 16 (06) 17(07) !
| I0B.RFLG | I0B.PRT | 10B.TYPE |
1 i 1]
L A |
18(08) =
| 10B .DONE |
! |
:_-. __ =
112(0C)

| I0B.DCB

[}

I

Figure 6-12 I0B Format

6-40 48-077 FOO ROO

116(10)

24(18)

___ -
|

28(1C)

{44 (2C)
148 (30)

152(34)

160(3C)

33(21)

10B.1LU

10B.TCB

10B.UPBK

IOB.PBLK

34(22)

e Bt v s e s o . B " P~ " i St b B B B S A o (i S P Mot s i Bt ot i S Gy M e e o e Sl s T M Mt B Wt i At e o

135(23)

! 10B.DDPS
]

]

e - ——— 4t - " A S P S S S et Mt S Fe S B B e s S Pl B T T e e e et Me Sy P S B0 e o hem B e e a M e S W G e —— b A o

63 (3F)

—— v " ———— —— " Watn —— ——— ——— —— mn —— ——— e w—em e m ——n —

48-077 FOO0 ROO

Figure 6-12

IOB Format (Continued)

Fields:

I[OB .NXT
IOB.RFLG
I[OB.PRT
[OB.TYPE
[OB.DONE
[OB.DCB
[IOB.TCB
IOB.ESR
[OB.UPBK
[OB.PBLK
IOB.FC
[OB.LU

[OB.STAT

OB .DDPS

[OB.SADR
IOB.EADR

[OB.RAND

IOB.LUE
IOB.SV1X

[OB .WCHN

IOB.CYL
IOB.SECT

[OB.LSEC

is a fullword that holds the forward pointer.
is the request-dependent flag.

is the I/0 priority.

is the type byte.

is the address of the IODONE/SUB executor.
is the address of the parent DCB.

is the pointer to the caller TCB.

is the driver entry fullword.

is the unrelocated parameter block address.
is the relocated parameter block address.
is the SVC1l function code.

is the 8VCl I/0 lu number.

is the device-independent status from the SVCl
parameter block.

is the device-dependent status from the SVCl

parameter block.
is the buffer start address.
is the buffer ending address.

is the positional address of the 1logical
record to be accessed for a data transfer.

is the lu entry address.
is the extended SVCl word.

is the list of tasks waiting for the current

I/0 to finish.
is the requested cylinder *2 for a disk.
is the starting relative sector.

is the relative position of the last sector.

48-077 F0OO ROO

6.3.9 Station Description Table (SDT) for 3270 Emulator

The SDT is attached to the DCB and is created from system

space,

one per control unit, when the GENERATE command is executed. The
following are included with its data:

The structure of the SDT is shown in Figure 6-13.

Control units polling/selection addresses

Pointers to the DDTs for the devices on the control unit

18(08)

112(0C)

116(10)

| SDT.CUP
|

i

17(11)

a4 n n v — A S WA dee S S M S A SOm e M Sen MBS Men A e U M A A e T U8 bvR b Sam G m G e Nt S e Rew e e S

48-077 FOO ROO

Figure 6-13

SDT Format

Fields:

SDT.LINK is the link to the next SDT.

SDT.DDT is the link to the first DDT on the station.
SDT.LDDT is the link to the last DDT on the station.
SDT.DCB is the link to the parent DCB. A

SDT.CUP is the station control unit polling address.
SDT.CUS is the station control unit selection address.
SDT.STAT is the status of the control unit,

SDT.Ts is the general polling time stamp.

6.3.10 Device Definition Table (DDT) for the 3270 Emulator

The DDT is a system table that is attached to the SDT. DDTs are
created at generation time from system space and one DDT is
created for each device to be generated. Each DDT is chained to
the proper SDT according to which control unit the device is to
be attached. The following are included with its data:

® Device address for the virtual terminal for which it is
generated

e Pointer to the screen image storage (SIS) buffer

The structure of the DDT for the 3270 emulator is shown in Figure
6-14.

6-44 48-077 FOO ROO

]

|

| DDT.LINK

]

| e e e e e e e e
14(04) 15(05) 1 (6(06)

| DDT.SSA ! DDT.TYPE ! DDT. 10C

{]
.
18(08) 110(0A)

] DDT.RSTA ! DDT.STAT

] 1

e e e e e e e e e e
112(0C)

i DDT.IOB

|

’ __
116 (10)

| DDT . WRQT

]
O
120(14)

| DDT . WRQB

]

]

’ __
124(18)

! DDT.RDQT

|

I __
128 (1C)

] DDT .RDQB

|

I ___
132(20)

] DDT.SIS

]

e
136(24)

! DDT.SDT

|

3 __
140(28) 141(29)

! DDT.LU ! DDT.TOB

1]

N OO
144 (2C)

! DDT.FEPL

{
e
148 (30) :

] DDT.FEVL

]

]

Figure 6-14 DDT (3270 Emulator) Format

48-077 F00 ROO

— — —— — —— ————— " ———— G G- S ——————— —— —— — " S S —— o —— e i T o o o St o (e e Bl o S S W et i W

| !
! DDT.TIML !
i |

___ }
156(38) 158(3A) H
! DDT.DSTA ! DDT.FLGS !
]] i
S ;
160(30) |
! DDT.LXF H
i i
o e e e e e !
164 (40) :
i |
i i
jmmm e —— e e i
168(44) DDT .NAME |
i !
| |
; __________________________________ :
172(48) 1 75(4B) |
| ! Reserved !
i i i
T e e e e e e e e e e e e e e e e e i
176 (4C) 177(4D) !
H DDT.BCNT | Reserved !
]] 1
e |
180(50) 182(52) |
! DDT.FSTA i DDT.TIMR i
] [} [}
e |
184(54) =
i DDT.TS !
] i

- e —————— i ————— " —_ — o — —— . - = i S . M . Ve . A . T Am A" e —— i

Figure 6-14 DDT (3270 Emulator) Format (Continued)

Fields:

DDT.LINK.
DDT.SSA
DDT.TYPE
DDT.IOC

DDT.RSTA

is

is

is

is

is

the
the
the
the

the

link to the next DDT.
secondary station address.
3270 device type.

I/0 request counter.

last reported device status.

48-077 FOO ROO

DDT.STAT is the 3270 device status.

DDT. IOB is the address of the retained IOB.

DDT .WRQT is the pointer to the top of the write ready
queue.

DDT .WRQB is the pointer to the bottom of the write
ready queue.

DDT.RDQT is the pointer to the top of the read done
queue.

DDT.RDQB is the pointer to the bottom of the read done
queue.

DDT.SIS is the address of the screen image storage.

DDT.SDT is the address of the station descriptor
table.

DDT.LU is the assigned 1lu.

DDT.TOB is the address of the connector TOB.

DDT.FEPL is the format terminal manager (FTM) entry
from the protocol terminal manager (PTM) link.

DDT.FEVL is the FTM entry from the virtual terminal
monitor (VTM) 1link.

DDT.TIML is the logical I/0 timer link.

DDT.DSTA is the dynamic status halfword.

DDT.FLGS is a halfword reserved for control flags.

DDT.LXF is the length of data transfer.

DDT . NAME ~ is the virtual terminal name.

DDT.BCNT is the write queue buffer counter.

DDT.FSTA is the FTM status field.

DDT.TIMR is the current logical timer value.

DDT.TS is the general polling time stamp.

6.3.11 Input/Output Handler (ICH)
The IOH is a system structure that handles 11/0 from the 0S/32

SVC1l parameter block. The structure of the IOH is shown in
Figure 6-15.

48-077 F0OO ROO 6-47

o — s —— —— O > T ——— o T — — T — " o — o — oy T = ot fi T St B T gt o S Vo T N W W T " 7o —— —

i] ! I | 1 I i 1 i | i
| 1 i | 1 1 1 I i i i 1
! i [i 1 1 1 i ! I i {
1 1 | |] | I | ! I i i
i 1 | ! i ! ! } 1] 1 1
t I i ! ! i I] | 1 1 i
! |] i 1 i I i ! i i l
i i 1 i i l I i | | 1 i
1 I ! 1 i i 1 | 1] i i
| 1 i i I 1 1 | 1 i] |
| i i 1 [1 l i] i i i
i i] 1 [I i i | 1 i i
| i 1 i | 1 | 1 ! 1 1 i
! 1 1 1 1 1 i i | i i t
[] | 1 i 1 i 1 i | | 1
1 | I 1 1 i 1 | ! | | \
| | 1 ! 1 1 |]] I i }
| | 1 I 1 1 i i 1 [! i
1 1 ! 1 1 | I i] i i i
! | { ! | | i i | i i 1
! i i 1 | 1] i | i i I
| i | 1 i 1 I 1 i i 1 i
| i I i | 1 1] i ! 1 i
! ! 1 1 ! 1 I] i i 1 i
i 1 | i i l i 1 1 i 1 i
! l 1 1] i 1 | 1 ! i i
| i i I i { 1] 1 i f i
m 1 (] | [i (=] i B i 1 | i 1 t | 1
| — i — 1 M } 0 1 & 1 = ! 24 ! ~ | = i = i = I (o
.M I m ! < !] jc3] i [e3] { M] (7))] w0 | W] [z i I] Q
“ T B B LS R G I A T T e B
. a2 . . [l — . .
oot | o i = i T i T i T | T ! o o] I] T 1 = ! T | foa)
(@] | O | @) I (@] | O | O | @] I (®] | O] (@] I O 1 O i O
- [} — } —] -] —] —t 1 -] o] } —] — H — i — { -
! 1 1 | 1 |] | 1 i i i
i i i 1 I ! i 1 1 I i }
| l I i 1 i 1 1 i { i |
|] i i 1 | [! 1 ! i i
I 1 i ! i i | 1 1 i | i
1 | I i 1 | 1 1 1 1 i i
| ! 1 i | | | i 1 i i !
i | 1 ! 1 i 1 | 1 ! i i
1]]] 1 i i i i t i 1
l I 1 i | 1 1 { { 1] i
1 I ! [| 1 | 1 1 1 l i
i i t i i I i | i | I 1
1 | I | 1 i i 1 f | 1)
1 1 i |] | | 1 } | i i
! ! 1 l 1 1 i | | i | 1
|] | i i i | 1 1 1 i 1
l | | 1 | | | | 1 1 i 1
l | | 1 1 i 1 i i | i i
1] I~ I~ I~ i~ |~ I~ 1~ I~ i~ 1~
—~ P~ |~ S I O | < | o0 (&) 1 O i< | o0] I O
o | < | © 1 O 1~ 1~ 1~ I~ | ~N I N i~ | N i ™
o 1 © 1 O | ~ 1~ | ~ |~ 1~ 1~ 1~ I~ |~ |~
~ |~ |~ [IN! Vo)] | < | @ I~ [Ve) I o < 1 ©
o | < | 00 P o= (] i~ I o~ i N i ™) < < i<

IOH Format

Figure 6-15

48-077 FOO ROO

48

i

164 (40)

Fields:

IOH.READ

[OH.WRIT

[IOH.WAIT

[OH.HALT

IOH.TEST

IOH.SET

48-077 FOO ROO

—
o
jasd
—
z
—
=3

—t
o]
o o
g
O
=

L]
o
z.
Q
S
2

o
T
g
2

Figure 6-15 IOH Format (Continued)

is the fullword address of the 8VC1l read
executor.

is the fullword address of the S8SVCl write
executor.

is the fullword address of the SVCl wait-only
executor.

is the fullword address of the SVCl halt 1/0
executor.

is the fullword address of the SVCl test 1I[/0
completion executor.

igs the fullword address of the SVC1l test and
set executor.

IOH.REW
IOH.BSR
IOH.FSR
[OH.WFM
IOH.FFM
IOH.BFM
IOH.EOT

IOH. INIT

[OH.DDF
IOH.CON

IOH.PWR

is the fullword address of the S8SVCl rewind
executor.

is the fullword address of the SVCl backspace
record executor.

is the fullword address of the SVCl forward
space record executor.

is the fullword address of the SVCl write file
mark executor. ‘

is the fullword address of the 8VCl forward:
file mark executor.

is the fullword address of the SVCl backspace
file mark executor.

is the fullword address of the 8SVC task
termination executor. :

is the fullword address of the device
initialization routine. This routine is
entered when the operating system is first
started.

is the fullword address of the
device-dependent function executor.

is the fullword address of special entry for
the operating system console.

is the fullword address of the power restore
initialization routine. This routine is
entered after a power restoration.

6.3.12 File Manager Handler (FMH)

The FMH is a system structure that handles 8VC7 functions for

data communications. The format of the FMH is shown in Figure
6-16.
6-50 48-077 F0O0 ROO

- mms e mmem GrE e mEen G GEEe e . APEn E——— E—E. R - e e en mram Smm e e . —an e e . . - A GRGm = Gmen - S Gee e At o ——

i 1 i i 1] 1 | f !
; i i i i i I 1 1 {
i i | | i 1 | 1 i i
i i i] i] i I ! |
i i i i i 1 i i i |
i i i] i i 1 1 i i
i i i i l i i i ! I
: i | I i i i i i |
i i i i 1 i I 1 i i
i i i i i i i 1 { |
i i } i ! i i 1 1]
1 i i ! i | t i ! !
!] i i i i i i t i
; i i l i 1 | 1 i {
i i 1 1 i I i I 1 i
1 i [i 1 1] i i I
i i i i i i t 1 i i
1 1 i i | 1 i 1 1 l
i i 1 1 | i 1 i i !
i 1 i 1 1 | 1 1 i 1
i i 1] i i 1 1 1 i
i I i [i i 1 i i 1
1] i 1 ! i] i i {
i i 1 1 i i | 1 | 1
! i 1 i 1 i i i i 1
i] i i i 1 1 i i i
1 1 i i i i i i I 1
. i i — i o~ 1 B ! e i N i D ! 1 i
u {] i 4 i Z 1 !]] i w I .| I oy i Z i o
t 3 | o i [1 " { B 1 | 0 1 < 1 =] i 3]
< “ o w (o) “ (o] “ (3] ! [N “ (8] “ [+ 4 “ (&) “ [~ “ 4
i i bu i e i = i i i { i e i ot
m i m i s i s i = 1 m | W i m I m ! = i =
N 1 [oN | oY 1 fx 1 [°H t e 1 o) i B 1 [N | o) 1 [N
i] i i i i i | I 1
| | ! I t ! i i I i
! i ! ! i] } 1 1 1
{ i i 1 i 1 1 1 ! !
1 i 1 i 1 i 1 |] 1
{ 1 1 i i i | | | i
1 l i { 1 i 1] 1 !
i 1 i I i 1 1 | | l
i i I 1 l i i i i 1
1 1 i] i 1 1 [1 1
i i i i | i i i I i
! ! i 1] i 1 i i [
1 i 1 1 1 | ! t 1 1
i i i i i i { i i !
| { | { i | 1 1 I i
] 1 | | i I i 1 1 |
| 1 I i i } i 1 i |
! | 1 1] l 1 1 i I
i i | f o~ |~ | o~] ~ | o~ |~ |~
—~ P~ I~ S) i< | © 1O 1 © | < i o
o it I © 1 O I~ 1~ i~ I~ i o~ I N 1~
(=] i O (=) |~ I ~ | ~ |~ [1~ |~ 1~
~ i~ P I N Rt 1 O = i o0 ! N i W 1O
o < i 00 i~ (s i N i N i N i ™ [0] i <

—— e G wan e amem Gmem E—am teen o ana- . . S —— —— —— REn WGn Wan Seem EPen ST SR EeAn G S MR PR SEEm TSR S e SR Sman e e e e e

. ———— - —— " — - W M. " . S A et W A . W e e P SED T S e . SeR G bt T S et S S U . S AN M B S S T G W . . - .

Figure 6-16 FMH Format

6-51

48-077 FOO ROO

Fields:

FMH.ALL is the fullword address of the SVC7 allocate

routine.

FMH .DEL is the fullword address of the 8SVC7 delete
routine.

FMH.OPN1 is the fullword address of the standard 8SVC7

assign routine.

FMH.OPN2 is the fullword address of an optional SVC7
assign routine, which can be used by buffered
terminal managers for additional processing,
after FMH.OPN1 branches to the operating
system for common processing.

FMH.CKPT is the fullword address of the SVC7 checkpoint
routine. ‘

FMH.FTCH is the fullword address of the 8SVC7 fetch
attributes routine.

FMH. CLOS is the fullword address of the SVC7 close
routine.

FMH.RSLU is the fullword address of the SVC6 1lu/TCB
exchange 1lu routine.

FMH.CAP is the fullword address of the S8SVC7 change
access privileges routine.

FMH.REN is the fullword address of the S8VC7 rename
routine.

FMH.REP is the fullword address of the SVC7 reprotect
routine.

6.4 DEVICE CONTROL BLOCK (DCB) POINTERS FOR LINE DRIVER COMMAND
INTERPRETATION

Sysgen includes one DCB for each adapter (line) configured in the
system. The DCB contains information about that line, its modem,
and sometimes, the attached terminals. Line driver command
interpretation 1is controlled by pointers contained in the DCB.
These pointers are the:

e Driver initiation routine DCB.SVCF
e Command table used for decoding commands DCB.CTA
e Translation tables available for this device DCB.XL'T
e Driver command termination routine 7 DCB.TERM

6-52 48-077 FOO ROO

e Actual output commands required by the adapter DCB.DOCR

DCB .DOCW
DCB .MOCR

DCB.DISC

® Programmable adapter information DCB.AOC
e SVCl terminal manager entry (if supported) DCB.INIT
e Adapter device numbers DCB.RDN
DCW.WDN

e Error timeout values DCB.ITV
DCB.OTV

® Next entry into the driver (ESR scheduling) DCB.ESR
® CCB required for the DCB.RCCB
adapter DCB.WCCB

6.4.1 DCB.TEEM Pointer

When a driver schedules its own ESR, it branches to an address
pointed to by the driver termination code which usually checks to

see 1if the command 1is chained. If the command is chained, it
continues with command fetching or it terminates the entire SVC1l5
request by branching to CMTERM, the data communications

equivalent of IODONE.

6.4.2 DCB.DOCR, DCB.DOCW, DCB.MOCR and DCB.MOCW Pointers

A single type of adapter, a programmable asynchronous 1line
adapter (PASLA) for example, may require different commands to
control it, depending on how it is strapped and how it is to be

used (i.e., half-duplex, full-duplex, echoplex or reverse
channel). The DCB has space to hold the actual bytes used for
the output commands. A single driver can therefore issue the

proper output command to several differently strapped adapters.

DCB.DOCR is the command used to disable an adapter
leaving the read mode.

DCB .DOCW is the command used to disable an adapter
leaving the write mode.

DCB .MOCR is the.command used to enable an adapter and
: place it into read mode, assuming a previously
unknown state.

DCB .MOCW is the command used to enable an adapter and

place it into the write mode, assuming a
previously unknown state.

48-077 FO00 ROO 6-53

6.4.3 DCB.AOC Pointer

This byte is used to pass required information (such as mode,
parity, line speed, number of stop bits, etc.) to a programmable
adapter. It is generally the CMD2 byte. This allows one driver
to communicate with various similar terminals operating at
different speeds.

6.4.4 DCB.INIT Pointer

Terminals supported for SVCl access must have a pointer to the
beginning of the terminal manager code for the attached terminal.
This is provided in the DCB. The label referenced by DCB.INIT is
of the form INITxxxx and is declared an EXTRN in the DCB.

6.4.5 DCB.RDN and DCB.WDN Pointers

Communication adapters can have one or two device numbers, again
depending on the strapping. A 2-wire (half-duplex) adapter uses
the same device number for both reading and writing, while a
4-wire (full-duplex) adapter uses two different numbers. Drivers
can remain transparent to this difference by using the numbers
supplied in the DCB when needed.

A simplex device has only one of these numbers (the other is
zero, signifying no device).

These numbers are set up at assign time by ITFM, which wuses
DCB.DN and DCB.XDCD, both initialized at sysgen. The real device
number should be specified at sysgen time.

6.4.6 DCB.ITV and DCB.OTV Pointers

The time values used to abort an I/0 if not completed within the
allotted time period are obtained from the DCB. There are two
halfwords, one for read and one for write. Thus, similar
devices can have time-outs that vary depending on the intended
use of the line and the attached device. These time values are
in l-second increments with a resolution of +0, -1 second.

6.5 EVENT SERVICE ROUTINE (ESR) SCHEDULING

Execution of data communications line driver code can overlap
execution of certain buffer management routines that execute in
ES(NSU) state, except for actual 1/0 processing. For 1/0
processing, these routines execute in the IS state. Therefore,
ESR scheduling is required because concurrent events might result
from overlapped processing.

6-54 48-077 FOO ROO

Examples of concurrent events are:

® l-second error timer time-out
e 100ms timer time-out
e System console cancellation of a task

@ Closing of an lu in the middle of an I/0 operation

The coordination needed for such concurrent events makes data
communications ESR scheduling different from that of other
drivers.

To coordinate the asynchronous occurrence of ESR requests to a
driver, all 1line drivers use a special routine (ITSRABS) for
scheduling ESRs. Standard data communications drivers might
require several ESR functions (mainly buffer management) to be
performed concurrently with IS processing. Other functions, such
as cancel, halt 1/0, power fail or time-out, can occur whenever
the operating system or the command processor requests them.

Since several of these regests may be outstanding before any or
all of them can be completed, there is a mechanism to handle
multiple requests for ESR scheduling. This mechanism consists of
a series of bits located in the DCB (DCB.ITB). Each bit
indicates a standard function to be performed during ESR
processing. The bits are set by the subroutine ITSRABS, which
‘'schedules an ESR when it adds the address of the leaf to the
system queue if no previous bits were set before this one. Thus,
only one entry to the system queue is made for many outstanding
.ESR requests.

The actual ESR code executed as a result of an ATL instruction to
the system queue is a routine called ISSEXEC, which scans the
bits from left to right and executes the indicated subroutine
corresponding to each bit set. The bit numbers and their
correpsonding functions are shown in Table 6-3.

The ISSEXEC routine is always set up as the next ESR by the SVC15
executor at connect time. DCB.ESR is set up with the ISSEXEC
routine address. Data communications drivers should never call
EVMOD unless the routine used can perform exactly as ISSEXEC
performs, especially as far as power fail, time-out or halt I/0
is concerned; EVMOD modifies the DCB.ESR field.

48-077 FOO ROO 6-55

TABLE 6-3 DATA COMMUNICATIONS SUBROUTINE REQUEST BITS

o ——— ———————— " — T o Tl Bt Tt T o o o o e P . e Sy T M e o ot S s R o T W v W T W B T .

O 0o N O b

12
13
30

FUNCTION
Get second buffer for read on RAW
Generate a buffer trap for writes
Set up next chained buffer for write CCB
Perform end buffer processing for write
Generate a command trap
Generate a buffer trap for reads
Set up next chained buffer for read CCB
Perform end buffer processing for read'
Time-out occurred (abort 1/0)
Independent time-out pending expiration
Halt 1/0 request
Cancel operation (power fail)
Final ESR processing

Schedule initiation phase processing
within driver/terminal manager

EEDNEEEEESESEAEESEEIEEIRS ST RN NSRS T I IE I I IR IS IS DD I IS IT IR D IR TR IR YR B S 0N

ROUTINE
I TRAWNX
1SSBTW
IT.NXBF
IT .ENDBF
ISSCT
ISSBTR
IT.NXBF
1T .ENDBF
IT.STOP
A(CCB.TADR)
IT..STOP
IT..STOP

A(DCB.TERM)
or CMEXIT

A(DCB.INIT)

——— - ——— — ———— ——— . ———— —— = ———— ———— m— e HhE— Mhn - e M. ARER Gmem e e e Gmes Wme Gma e

6.6 SUPERVISOR CALL 15 (SVC1l5) STRUCTURE AND FLOW

The elements involved in the flow of a typical SVC1l5 request are
illustrated in Figure 6-12. Refer to this figure while reading

the following description of a data communications

request.

driver 8VCL15

48-077 F0O0 ROO

The task sets up an SVC1l5 parameter block and performs an SV(C15
instruction. The SVCl5 executor uses the lu assignments for the
task to find the appropriate DCB. If this DCB is a data
communications DCB and was assigned for SVC15 access, the driver
initiation routine address is obtained from the DCB.SVCF, and the
driver is entered in ES(NSU) state. Line drivers begin
interpretation of each DCW command at this time. The fullword at
DCB.CTA contains the address of the command table to be used for
command interpretation. The command table contains the address
of the routines for each of the eight basic categories of
commands supported by this driver.

Each routine contains an address table of the specific routine to
perform the exact function indicated by the modifier. Commands
that - require I/0 must enter an ISR. The ISRs, executing in IS
state, process all device interrupts. They are responsible for
placing the adapter and modem into the proper modes required for
1/0. Once the hardware adapter indicates 1/0 can proceed, all
data transfer, character translation and special character
detection are performed through the auto driver channel of the
processor.

The ISRs can schedule ESRs (e.g., the system support routines,
the buffer management subroutines or the driver termination
routine) by calling the subroutine ITSRABS. This subroutine, by
interfacing with the operating system, schedules ISSEXEC as a
subroutine of the calling task.

ISSEXEC is responsible for calling the support subroutines
requested by the driver 1ISRs and for handling certain abort
situations imposed by the operating system.

Via the DCB.ITB bit (ITB.ESR), ITSRABS and ISSEXEC also schedule
the driver termination routine. This routine is responsible for
continuing DCW command interpretation. After all DCW commands
are executed, the driver termination routine terminates by
branching to CMTERM. CMTERM returns the results (e.g., status)
of the 8VC1l5 call to the user parameter block, generates a
termination trap, if required, and returns control through the
operating system.

48-077 FOO ROO 6-57

8G9-9

00 004 LLO-8Y

077-10

i\'icl:_:(s PR ?::2 INITIATION
ROUTINES
: (ES)
|
L___] svcis
EXECUTOR |
: COMMUNICATION [\ couce | auro
1 LINE ADAPTER DRIVER
| I CHANNEL sa
I
| L ‘,

DCB ¢ ¥ L |
Rp—— COMMAND ISR ITSRABS CMTERM
= INTERPRETATION | SINT, | OR

ROUTINES 3 > C“(AEES)f'T
DCB CTA (IS) (IS)
(ES)
DCB XLT ISSEXEC
DCB ESR TRANSLATION (ES)
DCB TERM TABLE I
: DATA
COMMUNICATIONS
SYSTEM SUPPORT
DRIVER TERMINATION SUBROUTINES
ROUTINE ,
(ES)
DATA
DCB LINE DRIVER COMMUNICATIONS
————{> BRANCHES

—— POINTERS
-~—~-» DATAPATH

Figure 6-17 SVC15 Line Driver Modules - Data
Communications Operating System Interface

6.7 COMMON DATA COMMUNICATIONS SUBROUTINES

This section details the subroutines included in Perkin-Elmer's
0S5/32 Data Communications Subsystem. Of these subroutines, the
first five (SVCl5, ITRABS, CMTERM, CMEXIT and ISSEXEC) must be
used by all data communications drivers for entering and exiting
the drivers.

6.7.1 Supervisor Call 15 (8VCl5) Subroutine

This subroutine consists of the SVC1l5 executor entered on any
SVCl5 instruction. It 1is responsible for validating a request
and entering the correct driver at the initiation entry.

The 8VC1l5h routine:

l. Sets the user condition code (CC) to zero.
2. Finds the DCB via the 1lu.

a. If the DCB is not assigned for SVCl5 access, rejects
call, CC=2, status=illegal lu.

b. 1If the DCB is a null device, returns to task, CC=4,
status=0.
3. Connects the DCB by calling EVCON.
a. If the DCB is already connected, rejects call, CC=1,
status unchanged.

b. Connects and continues.

4. Relocates DCW pointer.

An out-of-bounds address terminates the call, status=memory
fault 1.

5. Stores the following values in the DCB:
a. Relocated DCW pointer
b. Relocated data area pointer
¢c. Unrelocated parameter block address
d. Relocated parameter block address
e. TCB number and TCB address

f. PFunction code

48-077 F0O0 ROO ' 6-59

6. Sets a busy status in the user parameter block.
7. Sets zero status in the DCB.

8. Zeros out the following:

a. DCB.NCE (byte) number of commands executed
b. DCB.AA (halfword) absolute address indicator
c. DCB.CPTR (fullword) channel program continuation program

d. DCB.LLR and DCB.LIW (two halfwords) length of 1last read
and write

9. Sets timer (DCB.TOUT) to X'7FFF'.

10. Using the address contained in the first data field, finds
the absolute 1limits of this logical segment and saves these
in DCB.BSB and DCB.BSE (if an executive task (e-task), 0 and
MTOP are used, respectively).

1l1. Puts the DCB on time chain.

12. Goes to the driver initiation code by branching to the
address located in DCB.SVCF.

6.7.2 ITSRABS Subroutine

This is the special routine necessary for scheduling ESRs from
ISRs that must be used by all data communications line drivers.

ITSRABS is called from drivers during IS to schedule an ESR
routine. Register 7 is set to the absolute value of the bit
number that can be set for the required routines. ITSRABS
performs an ATL of the leaf to the system queue only if no other
ESR processing bits are set.

ENTRY: BAI. Eb6 IS state
E4 = CCB address
E7 = ESR reason bit number absolute (see ISSEXEC)
Destroys E3, E5, E7

6.7.3 CMTERM Subroutine
This is the equivalent of IODONE2 or IODONE. It is called from

drivers in either an RS or ES state when the entire SVC1l5 request
is completed, either normally or because of error.

6-60 48-077 F0OO0 ROO

CMTERM is branched to by the last command in an SVCl5 request.
It 1is essentially the data communications equivalent of IODONE.
Functionally, it:

1. Updates all pertinent fields of the SVC1l5 parameter block
using values from the DCB.
a. Status
b. Length of last read and write

c. Number of commands executed

2. Removes the DCB from time chain.
3. Generates termination trap if requested in function code.
4. Disconnects leaf.
5. Exits from ES state via EVRTE.
ENTRY: Branch CMTERM RS or ES state
UD=DCB address

EXIT: Does not return

6.7.4 CMEXIT Subroutine

This is the equivalent of TMRSOUT or EVRTE. It is called from
drivers in the ES state when they exit control so that other
operations can continue. An interrupt or other operation is
necessary to get control back to the driver.

THe CMEXIT routine branches to the channel program/terminal
manager via A(DCB.CPCR) if a return was requested or via
A(DCB.BTRP) if a read buffer trap return was requested.
Otherwise, this routine branches to EVRTE.

ENTRY: Branch CMEXIT in ES state

EXIT: Does not return

48-077 FOO ROO 6-61

6.7.5 [ISSEXEC Subroutine

This special ESR is always set up as the ESR to be scheduled by
any add to top of 1list (ATL) to system queue for all data
communications drivers. It is responsible for scanning the
DCB.ITB bits and calling the proper routines to handle any bits
set, especially the three bits set by the operating system:
time-out, power fail and halt 1I/0. This is the data
communications system subroutine executor entered in the ES state
whenever an ATL instruction to system gqueue (SQ) is performed for
a device. It is responsible for handling buffer management
routines and certain buffer and command trap generation
functions. This routine scans the bits in DCB.ITB from left to
right and calls the routines corresponding to each set bit until
all bits are processed. Then it exits to CMEXIT. The bit
numbers of DCB.ITB and their corresponding functions are:

Bit O RAW second buffer

Scheduled by a read ISR if the read 1is a
result of a RAW. Used to get the second
buffer of a chained buffer since only one
buffer was set up during read initialization.
This routine loads UC with the address of the
read CCB and calls ITRAWNX.

Bit 1 Generate buffer trap for write

Scheduled by a write ISR to generate the
initial buffer trap when I[/0 begins. This
routine calls IT.TRAP with buffer trap as the
reason.

Bit 2 Next buffer write

Scheduled by write ISRs using chained buffers
when each buffer. is exhausted. This routine
loads UC with the address of the write CCB and
calls IT.NXBF.

Bit 3 End buffer write

Scheduled by write [ISRs after terminating
write to load register UC with the address of
the write CCB and call IT.ENDB.

Bit 4 Generate command trap

Scheduled by ISRs after completing a write and
proceeding to the read ISR in the RAW
situation when a command trap is specified in
the read command. This routine calls IT.TRAP
with command trap as the reason.

6-62 48-077 F0OO ROO

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 12

Bit 13

48-077 FOO ROO

Generate buffer trap for read

Scheduled by a read ISR to generate the
initial buffer trap when 1[/0 begins. This
routine calls IT.TRAP with buffer trap as the
reason.

Next buffer read

Scheduled by read ISRs using chained buffers
when each buffer is exhausted. This routine
loads UC with the address of the read CCB and
calls IT.NXBF.

End buffer read-

Scheduled by read ISRs after terminating the
read. This routine loads UC with the read CCB
and calls IT.ENDB.

Time-out

Scheduled by the system clock whenever the
error timer (DCB.TOUT) is decremented to zero.
This routine calls IT.STOP with time-out
status, effectively killing the [/0 and the
entire SVC1l5 request.

Independent time-out expiration

Scheduled by the channel terminal manager for
polling purposes. Branches to the expiration
routine address given in the timer CCB.

Halt I/0

Scheduled by the 8SVCl5 executor whenever a
task issues a halt 1/0 while the task is
connected for an I/0 to the device. The file
manager also schedules the halt I/0 routine
when closing an lu connected for power up I[/0
if the device has no other assignments. The
halt I/0 routine branches to IT.STOP, with a
halt I/0 status.

Cancel (power fail)

Scheduled by the operating system at power up
after a power failure. The operating system
also schedules the cancel routine to cancel a
task connected to a data communications
device. The cancel routine branches to
IT.STOP with a power fail status.

Bit 30 Final ESR (termination) processing

Scheduled by line drivers for end of command
processing. This routine branches to the
driver termination phase via A(DCB.TERM) or to
CMEXIT and returns to the terminal manager or
to the operating system.

Bit 31 Schedule initiation phase processing

Scheduled by the IOH functional routines
(IOHCZBD and IOHMBSC) to invoke terminal
manager initiation via A(DCB.INIT) for
connected devices.

6.7.6 ITSETREA Subroutine

This is a subroutine called from driver IS to schedule ESR
processing. It is similar to ITSRABS except that the reason
numbers do not have to be absolute. The subroutine decides
whether it is performing read or write and modifies the reason
numbers for reads by adding the appropriate constant (4). It is
used for common processing for:

e Buffer traps, reason code=01
® Next buffer, reason code=02,

e End buffer requests, reason code=03

ENTRY: BAL Eb6 IS state
E4=CCB address
E7=Reason bit number (as shown above)
Destroys E3, E5, E7

6.7.7 ITXFRISR Subroutine

This is a subroutine that can be called from drivers in IS state
after the auto driver channel sends a buffer limit interrupt.
This subroutine checks to see if a buffer is available to the CCB
as the currently selected buffer.

Auto driver microcode complements the buffer select bit before
generating a buffer limit interrupt. If no buffer is available,
it means all possible buffers have been exhausted and the routine
returns to the caller. 1If a buffer is available, a next buffer
routine 1is scheduled by calling ITSETREA with E7 specifying next
buffer request and the routine exits by an LPSWR EO.

6-64 48-077 F0OO ROO

ENTRY: BAL, E5 IS state
E4=CCB address

EXIT: Destroys E3, E6, E7

1. Buffer is available; exit by an LPSWR EO.

2. No buffer available.

a. Used last buffer; return to caller.

b. RAW next buffer was scheduled but did not execute. Abort
1/0 with buffer overrun 2 status.

c. Buffer in CCB but the count is positive; 'i.e., already
used. Abort I/0 with buffer overrun 2 status.

d. Buffer in CCB is flagged as busy.
e. Buffer in CCB is flagged as done. Abort /0 with buffer
overrun 1 status.

6.7.8 ITISSTOP Subroutine
This routine can be called from IS code to terminate I/0 because
of errors. E7 is loaded wtih the status for the error. ITISSTOP
disables both read and write sides of the adapter and clears the
interrupt service pointer (ISP) table entries to III. ITISSTOP

then ORs the new status to the accumulated status, schedules a
halt I/0 by calling ITSRABS and exits by an LPSWR EO.

ENTRY: Branch ITISSTOP IS state
E4=CCB address
E7=Error status

EXIT: ‘ Does not return

6.7.9 IT..STOP Subroutine

This is a common data communications routine used to abort an I[/0
call because of error conditions. This subroutine:

1. Disables read and write sides of a device using DCB.DOCR with
DCB.RDN and DCB.DOCW with DCB.WDN, respectively.

2. Sets ISPTAB entry to III for read and write device numbers.

48-077 F00O ROO 6-65

3. ORs status halfword contained in register 7 to the latest
status in DCB.ISTA. 1If the encoded portion of DCB status is
nonzero, the encoded portion of the status in register 7 is
stripped off before it is ORed.

4. Branches to driver ESR obtained from DCB.TERM.
ENTRY: Branch IT..STOP ES state
UD(13)=DCB address
U7=Status (new status)
EXIT: Either CMEXIT or
branch via A(DCB.TERM)
6.7.10 ITIMLINK Subroutine

This subroutine is used to enter a data communlcatlons CCB into
the timer chain for the 100ms clock. ‘

At time-~out, the clock removes CCB from the timer chain and
generates an SINT.

CCB.SUBA and the ISPTAB should be set up prior to any call to
ITIMLINK. '

ENTRY: BAL U8 ES state
UC(1l2)=CCB address
EXIT: Returns via U8
Destroys U9, UA, UB, UE
6.7.11 ITIMUNLK Subroutine
This subroutine is used to remove a CCB from the timer chain. On

return, the condition code (CC) indicates whether or not the CCB
was on the chain at the time of the call.

CC=G if CCB was on chain.
CC=0 if CCB was not on chain.
ENTRY : BAL U8 ES state

UC=CCB address

EXIT: Returns to address in register 8
Destroys U9, UA, UB, UE

6-66 48-077 F0O0 ROO

6.7.12 ITISTOTC Subroutine

This subroutine is used to remove a CCB from a timer chain. It
is called from the driver IS state and is similar in action to
ITIMUNLK except that it must be called from the ISRs of drivers
and it uses different registers. On return:

CC=0 if CCB was not on chain.
CC=G if CCB was removed from chain.
ENTRY : BAL ES IS state
E4=CCB
EXIT: Returns via ES5

Destroys E6, E7

6.7.13 ITISPOTC Subroutine

This subroutine adds a CCB Lo Lhe Limer chain Lor the 100ms
clock; called from IS state only.

ENTRY: BAL E5 IS state
E4=CCB
EXIT: Returns via ES

Destroys E6, E7

6.7.14 ICMDINT Subroutine

This subroutine fetches and interprets DCW commands by performing
the following six functions:

l. Increments the number of commands executed in DCB.NCE by 1.

2. Fetches the next DCW command from the halfword pointed to by
DCB.DCW.

3. ANDs the buffer trap and command trap bits of the command
with the corresponding bits of the function code and saves in
register 3.

4. 1If the command trap is requested and enabled, generates a

command trap by calling IT.TRAP with the command trap as the
reason (reason code X'OA').

5. If the command indicates time-out, sets the error timer
(DCB.TOUT). Otherwise it stops the timer by setting DCB.TOUT
to X'7FFF'". The time value used is obtained from DCB.ITV for
READ and PREPARE commands. All other commands use DCB.OTV.

48-077 FOO ROO 6-67

6. Uses the least three bits of the command to index into the
command table (located by DCB.CTA), obtains the code address
to handle this command, and branches to it. A zero entry in
the table indicates that the command is unsupported and
results in an illegal command status.

ENTRY: Branch ICMDINT ES state
UD(13)=DCB address

EXIT: Branches to proper command obtained from
command table
UD=DCB address
UA=Address of ITGETMOD
U5=Address of ICMDILL (illegal command
handler)
U3=Command

Branches to 1illegal command handler for
illegal commands. :

Destroys U7, U8, U9, UB, UC, UE

6.7.15 ITGETMOD2 Subroutine

This subroutine is the second entry to ITGETMOD and is wused by
commands that do not require a CCB (e.g., the NULL command). The
routine performs the same functions as ITGETMOD, but it does not
store the commmand in the CCB or clear the CCB, since none is
provided.

ENTRY: See ITGETMOD

EXIT: See ITGETMOD

6.7.16 ITGETMOD Subroutine

This subroutine is used by driver commands to enter the code for
a specific modifier. Each driver command specifies 1its
appropriate modifier table, maximum modifier and CCB. ITGETMOD
stores the commands in the CCB, clears the CCB of any buffers and
validates that the modifier is less than or equal to the maximum
allowable modifier. It is then used to index into the modifier
table to fetch the address of the routine responsible for
handling this specific request. If the address fetched is
negative, a branch on register 5 is performed. This allows
commands to perform some common preprocessing before actually
branching to the code for a specific modifier.

6-68 48-077 FOO ROO

ENTRY: Branch ITGETMOD ES state
U3=Command
U5=Address for negative modifier return
Ub=Number of entries in modifier table
U7=Address of modifier table
UC=CCB address (not required for ITGETMO2)
UD=DCB address

EXIT: If a modifier table entry is positive,
branches to that location.

If a modifier table entry is negative,
branches to address in U5 entry fetched from
the table is in U6.

If a modifier table entry is =zero, aborts
entire SVC1l5 request by branching to illegal
command handler.

Destroys U8, UA, U6

6.7.17 ITGETDAT Subroutine

This subroutine is called from commands that require a data
field. This routine fetches the next data field in order and
returns to the caller with the data field 1in register 7. The
pointer to the next data field (DCB.NDA) is incremented by 4,
causing successive calls to ITGETDAT fetch sequential data
fields. If the data field fetched is negative (data codes of
X'80'), ITGETDAT relocates the address contained in the field by
calling ADCHK and replaces the data field pointer (DCB.NDA) with
the new value. Data fetch then continues from the beginning,
effectively causing a transfer out of the normal data field
sequence.

ENTRY : BAIL. UF ES state
UD=DCB address

EXIT: - U7=Data field fetched
Destroys U8, U9, UA, UB

48-077 F0OO ROO _ 6-69

6.7.18 ITGETBUF Subroutine

This subroutine is wused by all data communications drivers
supporting standard buffer management. The routine fetches the
data field, calls ITBFREL to relocate the address and sets up the
CCB for a data transfer of the proper size using the buffer type
specified by the data code. Options contained by U4 are:

e If the get one bit is set (X'4000'), only the first buffer of
a possible set of chained buffers is set up in the CCB.
Otherwise, two buffers are set up. This option is usually
requested in the read of a RAW, where only one buffer must be
available. Get one has no effect on direct or indirect
buffers.

e If the data code indicates a data area instead of a buffer
(data code X'0l') as wused by READ]1 or READ2, the low-order
four bits of the option word contain the size of the 1I/0.
Routine ITGETBUF uses ITBFREL to relocate buffers and ADCHK to
relocate data areas.

ENTRY: BAL, U2 ES state
U4=0ptions
UC=CCB address
UD=DCB address

EXIT: Destroys U5, U6, U7, U8, U9, UA, UB, UE, UF

6.8 SUPERVISOR CALLl1 (SVCl) PROCESSING

Processing an SVC1l call for a data communications device differs

from processing standard devices in the following ways:

® For data-transfer calls to buffered terminals, terminal
manager entry is made in ES/NSU state.

e Upon termination of an SVC1l call (in IODONE), the ISP table
entry is not modified for data communications devices.

6.9 ADDITIONAL EXECUTIVE FUNCTIONS

0Ss/32 executive handling of certain functions is redefined for

data communications devices as explained in the following
sections.

6-70 48-077 F0OO ROO

6.9.1 Cancellation of Input/Output (I/0)

On power restoration and when a task is cancelled, the TIMEOUT

routine is called. For data communication devices, time-out
calls the HALTITAM routine in the data communications system
support module. This routine performs the normal actions of

timing out an I/0. However, it also sets a bit in DCB.ITB that
can be used by the driver or terminal manager to determine if the
situation is a halt I/0 (unrecoverable) rather than a recoverable
time-out.

6.9.2 Add To Task Queue

The SV9.ATQ routine is modified to accept reason codes 10, 11,
12, 13, 14, 15, 16 and 17 whenever these codes are enabled by bit
23 of the TSW. It is also possible to determine if an
unsuccessful return is due to a full, nonexistent or invalid
queue; the former sets only the L bit in the CC, the latter two
set both C and L bits. To indicate the reason for an error,
SV9.ATQ returns with the L bit set in the CC if a queue is full
or with both L and C bits set for a nonexistent or invalid queue.

6.9.3 System Initialization

The SYSINIT routine is modified to set up initial values for the
data communications timer and DCBs for data communications
devices.

6.9.4 Timer Management

An additional timer is maintained for data communications
~devices. It allows interval timing with a granularity of 1l00ms
and is maintained by a chain of CCBs. Routine ISRLFC is modif ied
to maintain an additional counter, ITM.FREQ, which is initialized
to the line frequency divided by five. At every interrupt from
the LFC, this counter is decremented by one. When it reaches
zero, the counter is reset to one-fifth the 1line frequency and
ISRLFC continues to decrement TM.FREQ by one-fifth the line
frequency, rather than one. If the address of the first CCB in
the ITAM timer chain (ITAMTIMC) is nonzero, an ESR is scheduled.

Routine TIMESR is modified for the possibility that it may be
entered once every 1l00ms for data communications timer handling.
When this happens, it follows the CCB chain and decrements the
value of CCB.ITAM. When this value goes to zero, the device is
SINTed and ITISTOTC is called to remove the CCB from the chain.

48-077 F0OO ROO 6-71

6.10 SUPERVISOR CALL 7 (SVC7) PROCESSING

The standard 0S/32 module FMS7 does preliminary processing on all
SVC7 function calls. For any data communication-related request,
FMS7 branches to individual function routines within the ITFM,
the data communication file and memory manager program.

6.10.1 Allocate

The IT.ALLOC routine processes allocate requests for data
communication devices. Entry to this routine is in the RS state.
To obtain the DCB address, IT.ALLOC calls the DMTLOOK routine.
To enter the appropriate allocation routine (i.e., IT.ABSC for
allocating a BISYNC LCB, or IT.ADCT for allocating a ZBID DCT),
IT.ALLOC uses the main line-type index:

Illegal
BISYNC LCB
ZBID DCT
ZDLC LCB

WN O
0

At entry, each of the allocation routines:

1. Disable the SQS routine.
2. Verifies filename and station-address uniqueness.

3. Obtains and initializes memory space.

On exit, each routine enables the SQS routine.

6.10.2 Delete

The IT.DELET routine processes deletion requests for data
communications devices. Entry to this routine 1is in the RS
state. To enter the appropriate deletion routine (i.e., IT.DBSC
for deleting a BISYNC LCB, or IT.DDCT for deleting a ZBID DCT),
IT.DELET uses the main line-type indexes specified above.

At entry, each of the deletion routines:

1. Disable the SQS routine.
2. Finds a matching LCB or DCT and removes it from the chain.

3. Releases memory space.

On exit, each routine enables the SQS routine.

6-72 48-077 F0OO ROO

6.10.3 Assign

The IT.OPEN routine processes assignment requests for data
communications devices. Entry to this routine 1is in the RS
state. After checking the extended device code to see if the
line is 2-wire or 4-wire, IT.OPEN sets up the device-number
entries (for reads and writes) within the DCB.

For an SVC1l5 assignment, IT.OPEN calls OPEN.SVCF to complete any
necessary validity checks, to set up the read count and write
count within the DCB and to set up the lu table. For an SVCl
assignment, IT.OPEN calls OPEN.DEV to perform normal validity
checking, as with all nonbulk devices, and calls IT.ORJE to
perform data communications-related functions.

To enter the appropriate assignment routine (i.e., OPEN.RJE for
a BISYNC LCB, or OPD.NRJE for all other devices), IT.OPEN uses
the main line-type indexes. If IT.OPEN branches to OPEN.RJE,
this allocation routine calls LCBLOOK to:

1. Find the LCB address.

2. Ensure no previous assignment to the found LCB.

3. Set up the read count and write count within the DCB/LCB.

4. Set up the lu table to include the LCB address.

At exit, either assignment routine returns control to the SVC7
mainline coding. ’

" 6.10.4 Close

The IT.CLOSE routine processes closing requests for devices
assigned SVCl5 access. The CLOS.RST routine processes closing
requests for nonbuffered devices assigned SVCl access. For SVC1l

buffered devices using main 1line-type indexes, IT.CBSC closes
BISYNC devices, and IT.CDCT closes ZBID devices.

48-077 F0OO ROO 6-73

6.10.5 Checkpoint

The IT.CHKPT routine processes checkpointing requests for data
communications devices. For nonbuffered devices and for devices
assigned SVC1l5 access, IT.CHKPT waits for ongoing I/0 to end
before returning control to the operating system. For SVCl
buffered device using main line-type indexes, IT.KBSC checkpoints
BISYNC devices and IT.KDCT checkpoint ZBID devices. Both of
these routines:

. Wait for ongoing I/0 to end.
. Call HALTITAM.

1
2
3. Flush the various buffer management queues.
4

. Exit to the operating system.

6.10.6 Fetch Attributes

The IT.FETCH routine fetches attributes for data communications
devices. For nonbuffered devices, IT.FETCH returns only the
device mnemonic to the user's parameter block. For bhuffered
devices, IT.FETCH extracts the block size, fd and device code and
returns them to the user.

6.10.7 Change Access Privileges

For data communications devices assigned SVC1l5 access, read-only
or write-only privileges cannot be granted. For buffered devices
assigned SVCl access, the address of the CB must be obtained from
the LCT.

6.10.8 Renéme

The REN.DCB routine changes the DMT entry for the device. Also,
this routine changes LCB.NAME and LCB.EXT when it finds a
buffered data communications terminal.

6.10.9 Reprotect

As determined by SVC7 parameters passed by the user, the REP.DCB
routine changes the read keys and the write keys. Also, if an

ITAM device is buffered, REP.DCB must get the DCB address from
the LCB.

6-74 48-077 FOO ROO

CHAPTER 7
HOW TO WRITE AND USE A TERMINAL MANAGER

7.1 INTRODUCTION

In data communications, a large number of special-purpose line
protocols and data format variations within standard protocols
are possible. Consequently, it may be necessary to provide a new
terminal manager that satisfies a nonstandard protocol or an
interface not currently supported by Perkin-Elmer. The purpose
of this chapter is to assist the design analyst and system
programmer with the creation of a new terminal manager. It is
not oriented toward the modification of any specific existing
terminal manager and should be considered a general guideline to
be used along with other pertinent Perkin-Elmer publications and
protocol specifications. Where possible, examples of functional
requirements are provided with reference to existing terminal
managers.

7.2 TERMINAL MANAGER MODIFICATION

Terminal manager modification might involve preparation of a
newly designed terminal manager to add new features to channel
program line control using existing format routines. It could
also add new format capabilities using existing channel programs
or could remove existing nonrequired features from a standard
terminal manager.

Existing terminal manager utility routines and tables designed to
support general format and protocol control functions, should be
used whenever possible as they can be easily applied to new
terminal manager applications. Determine if the terminal manager
needs to be modified. For example, if only new 1line control
procedures are required, using a standard supervisor call 15
(8VCl5) driver request from an application program may be more
appropriate. If only new format procedures are required, adding
format subroutines to an application program and obtaining 1line
access via SVC1l image reads and writes might be sufficient.

7.3 BACKGROUND INFORMATION
Terminal manager modification might require some background

information depending on how much is to be modified and the
program areas that will be affected by the changes.

48-077 FOO ROO 7-1

To remove trailing blank suppression from the existing
teletype/video display unit (TTY/VDU) terminal manager, only
cursory knowledge of the operating system and data communications
is required and the TTY/VDU terminal manager program description
might suffice as an information source. To design a totally new
buffered terminal manager, extensive background information
concerning the operating system and data communications may be
required.

e An understanding of the internal structural design, module
interface and table structure of the operating system
Executive and File Manager is recommended if any interface to
the operating system is to be modified or created. While such
knowledge of the operating system is highly recommended,
existing data communications/operating system interface
subroutines should be sufficient for most applications.

e Design criteria, internal structure and module interfaces are
required for formatting or channel program modification using
common data communications subroutines.

® Design criteria and detailed descriptions of the SVC1l5 1line
driver supporting your terminal manager are required for any
terminal manager modification involving interface with the
line driver or format routine modification to change the
control character sequence passed to the line driver.

® General-purpose driver design criteria should be obtained
prior to terminal manager modification.

e Detailed specifications concerning the protocol to be
supported are required for all terminal manager modifications.

7.4 TERMINAL MANAGER STRUCTURE

While the specific actions to support terminal manager protocol
control and data formatting vary for different applications, the
high-level functions performed by all terminal managers are
similar. Three terminal manager functional flowcharts are
provided in Figures 7-1, 7-2 and 7-3. While not indicating every
piece of code a terminal manager can contain, these flowcharts
provide a guideline to general terminal manager design.

7.4.1 Nonbuffered Terminal Manager

Based on the design of the existing TTY/VDU terminal manager,
Figure 7-1 depicts terminal manager requirements for using
standard SVCl task connection control and for performing
input/output (I/0) into and out of the task data buffer. This
design is similar to a standard 0S/32 driver except that it uses
SVC1l5 routines for actual line 1/0.

7-2 48-077 FOO0 ROO

077-11

PROGRAM
INITIALIZATION

PERFORM
LINE
INITIALIZATION

PERFORM DATA E

TRANSLATION,
| CONVERSATION
OUTPUT OR OTHER MOQDI-
FICATION AS REQ)

SET UP

INPUT
OR QUTPUT

SET LUP

SVC15 SVC15
INTERFACE INTERFACE
FOR READ FOR WRITE

ENTER D
SVC15 IRLOUT
CONTIN-

UATION
TERMINA-
» CONVERT
: YES SVC16 STATUS
ERROR? TO SVC1
ERROR
STATUS
NO
LINE YES PERFORM
CONTROL OR POST 1/0
DATA PROC ACTIONS
REQ?2 AS REQUIRED
NO]
SET UP El
SVC1 RETURN
STATUS
INFORMATION

< DONE ’ E

Figure 7-1 Nonbuffered Terminal Manager

48-077 FOO0 ROO

7.4.2 Buffered Terminal Manager (Input)

Based on the design of the existing binary synchronous terminal
manager, Figure 7-2 depicts the requirements of a terminal
manager to control input through single or dual internal buffers,
attempt to read ahead of the user task (u-task) and perform its

own task connection control.

077-12

ENTER
FROM SvC1

PROGRAM
INITIALIZATION

PERFORM TASK
CONNECT OR
BUSY WAIT
AS REQUIRED

|

LINE
INITIALIZA-
TION REQ,

PERFORM LINE
INITIALIZATION

FOR USER
BUFFER

SET UP
PARAMETERS
TO PERFORM

SVC15 READ

(]

[TERMINATION

YES

FORMAT

AHEAD BE
ERFORME

READ AHEAD
FROM LINE

SET UP
SVC1 RETURN
STATUS
INFORMATION

o> (]
DONE

[+]

ENTER SVC15

CONTI

NUATION

INDICATE A
READ DONE
RETURN
PENDING

[
< IRLOUT)

VALIDATE
INPUT DATA
ACCORDING TO
PROTOCOL

READ
DONE RETUR
PENDING
?

IRLOUT

Figure 7-2 Buffered Terminal Manager (Input)

48-077 F0OO0 ROO

7.4.3 Buffered Terminal Manager (Output)

Based on the design of the existing binary synchronous terminal
manager, Figure 7-3 depicts +the requirements of a terminal
manager that controls output through single or dual internal
buffers, is behind the u-task 1in actual writes due to data
buffering and performs its own task connection control.

077-13
(]
ENTER WRITE
FROM SVC1 TERMINATION
(]
PROGRAM VALIDATE DATA
INITIALIZATION ACCORDING TO
PROTOCOL

PERFORM TASK
CONNECT OR BUFFER
BUSY WAIT ON QUEUE
AS REQUIRED

WRITE

DONE RETURN

PENDING
?

PERFORM LINE
INfTIALIZATION

NO
IRLOUT

YES

FORMAT

TERMINATION
SET UP -
YES | PARAMETERS WRIT
FOR LINE —=| TOPERFORM ENTER SVC15 TERMINATION
UTPU SVC15 WRITE
)
NO
CONTINUATION
[v]

SET UP SVCI INDICATE A INDICATE A
RETURN WRITE DONE WRITE DONE
STATUS RETURN PENDING RETURN

INFORMATION PUT BUFFER PENDING

ON QUEUE

(DONE > < IRLOUT) (IRLOUT)

Figure 7-3 Buffered Terminal Manager (Output)

48-077 F0OO0 ROO 7-5

7.5 TERMINAL MANAGER FUNCTIONS

This section describes the individual blocks within the terminal
manager flowcharts. Functions performed in more than one
flowchart are described only once. These block descriptions
should be read as an addendum to Figures 7-1, 7-2 and 7-3.

e BLOCK A

All terminal managers are initially entered from SVCl handlers
via the I/0 handler (IOH) list. For entrance to nonbuffered
terminal managers, the device control block (DCB) address is
in register Ul3. For entrance to buffered terminal managers,
the line control block (LCB) address is in register U1l3.

e BLOCK B

Basic program initialization procedures include interpreting
data communications extended options, setting default extended
options as required, determining and setting up the register
environment, etc. Routine PCINT of the binary synchronous
terminal manager can perform these initialization functions.

e BILOCK C

If a communications line was not readied to accord with a
protocol, certain special-purpose actions might be required.
Within existing terminal managers, the busy bit (LNS.BSYB) in
the line status description word, DCB.LNST, determines if the
line was previously readied. The control actions required can
be determined from the extended device code, DCB.XDCD. If
line initialization is not required for a particular
application, exclude this area.

e BIOCK D

Line initialization is the first of a sequence of functions to
ready a communications line for data transfer. Depending on
individual requirements, it can involve dial-in/out, polling
or terminal selection, line bid transmission/reception or line
password or security check. Priority control of master/slave
stations, prevention of 1line bid clashes and similar error
control can also be included.

® BILOCK E

This is a simple format subroutine. For example, within the
existing TTY/VDU terminal manager, a carriage return (CR)
character terminates an output data buffer and all trailing
blanks are truncated. Similar format control routines can be
included at this same functional location. A nonbuffered
terminal manager should not modify data within a user buffer,
as the same buffer could be used simultaneously by the u-task
or another driver or terminal manager.

7-6 48-077 FOO ROO

® BLOCK F

Preparation for an SVC1l5 read includes setting time-out values
and building SVC15 command and data chains. It is convenient
to define standard command chains within the terminal manager
and build data chains depending on individual circumstances
within the DCB.

e BLOCK G

Preparation for an SVC1l5 write is similar to a read
preparation, described in Block F. Within either of these
areas, it might be necessary to cancel any outstanding timers
(S8VC1l5 wait requests) required by the individual protocol.

e BLOCK H

Actual entry into the line driver and final DCB initialization
for SVC1l5 is best achieved by a common subroutine. The
terminal manager/line driver interface is currently provided
by a branch to the address found within the DCB at DCB.SVCF
with the DCB address contained in register UD. Dual return
paths are provided to a continuation address found in DCB.CPCR
and to a final I/0 termination address found in DCB.CPTR. The
existing SVC1l5 interface subroutine within the binary
synchronous terminal manager (SVC1l5G0) saves the command chain
address for possible retries, sets an I1/0 active bit within
the line status word, clears SVC1l5 status words and puts the
DCB on the common 0S/32 timer chain.

e BLOCK I

The common exit subroutine IRLOUT is a way to terminate driver
action pending the final satisfaction of the wuser request.
The exit 1is to EVRTE. If the application program performed
proceed 1/0, it can regain control at this point.

e BLOCK J

A common subroutine can be used to check for possible errors
following all communications line I/0s. This might include a
line/hardware error or an invalid data response depending on
protocol requirements. It is necessary to differentiate
between errors the terminal manager might retry and
unrecoverable errors. As this is a common point following all
SVCl5 1line interfaces, it is a possible point at which to

include an 0S/32 journal entry. The binary synchronous
ERRORSET subroutine can be used to perform these basic
functions.

48-077 F00 ROO 7-7

BLOCK K

When an error return to the user program must be made, convert
the SVCl5 status or protocol failure to a standard SVCl error
code by using an SVCl status table indexed by the SVCl5 status
return.

BLOCK L

Within even basic nonbuffered terminal managers, certain
protocol-dependent actions might be required following I/0
completion. The TTY/VDU terminal manager, for example,
determines if a line delete character was received on a read
and transmits a line feed (LF)/CR/CR sequence on writes.

BLOCK M

Before a return to the user program, certain common status
areas must be set for the SVCl parameter block. These include
device-independent status, DCB.STAT, driver-dependent status,
DCB.DDPS, if applicable, plus length of last transfer,
DCB.LLXF.

BLOCK N

The exit subroutine DONE is a way to terminate driver action
following completion of a user request. The exit may be to
IODONE or to a specialized routine for post-1/0 processing and
task disconnection, as required. Normally, the application
program performing SVCl wait 1/0 regains control through this
exit point.

BLOCK O

Within buffered terminal managers, it might be advisable to
perform task connection within the terminal manager instead of
having SVCl perform it. This allows a task to be connected to
a 1line at the beginning of a transmission sequence and remain
connected to it throughout the entire transmission. A common
application of this procedure allows a task to be connected
for a read with the line initialization sequence (see Block
D), and later suspend the read before it starts in favor of a
write request. This technique requires that the terminal
manager perform internal checks to ensure proper handling of
proceed 1/0 requests. A task can perform proceed I1/0, regain
- control through IRLOUT, and 1issue a second request before
completing the first. For proper handling of such reqguests,
the standard terminal manager technique is to set a hold bit,
LNS.HLDB, within the line status word if exit 1is made to
IRLOUT prior to request satisfaction. If this bit is set upon
terminal manager entry, the second request is put into a wait
state pending completion of the first.

48-077 F0OO ROO

e BLOCK P

The standard 0S/32 subroutines EVCON and EVQCON are used for
task connect. An 0S/32 utility subroutine, WAIT, puts a task
into wait I/0 pending completion of an earlier request.

e BLOCK Q

No data can be moved into a user buffer unless a line I/0 was
previously performed. If data 1is not ready for the user,
initiate a read and a return to this point, following a
successful 1line read. Initiate this code in either reentrant
state (RS) or event state (ES) state. Because of this, it is
important to ensure against interlace of proceed requests as
described in Block O.

e BLOCK R

This block contains the crux of the protocol-dependent channel
program with all ACK/NAK sequences, line error detection and
corrections.

e BLOCK S

This block indicates setting the LNS.HLDB prior to an exit to
IRLOUT and before completing a user request. See Block O.

e BLOCK T

This block is reached only after completing a successful 1line
I/0. It depicts checking LNS.HLDB and returning to data
formatting, if required. See Block O.

e BLOCK U

This block shows all data input deblocking, formatting and
moving of data to a user Dbuffer. Should a new protocol
subformat be required, such as a 3270 emulation within binary
synchronous, only this block requires modification such as
removing existing format subroutines and replacing them by
3270 format procedures or exception code to perform 3270,
3780, 2780 or processor-to-processor formatting, as required.
An existing subroutine within binary synchronous, DCDINDEX,
can provide an exception code table index dependent on format
decode.

48-077 F00 ROO 7-9

BLOCK V

This block depicts checking for a possible readahead if dual
block buffering is used. Before any readahead, the terminal
manager checks for the availability of an input buffer,
existence of any concurrent line I/0 and other conditions that
might preclude such an action.

BLOCK W

A readahead 1is performed 1like any data read. Following
successful read completion, the block is put on queue for
deblocking and checking LNS.HLDB for possible return to data
formatting.

The readahead technique generally allows an interface to
operate at maximum line speed as opposed to a slower
combination of line speed and user program return speed.

BLOCK X

This block depicts all data output blocking, formatting and
moving of data from a user buffer. Since I/0 is performed in
an internal buffer as opposed to the user buffer, data
modification is permitted in accordance with protocol
standards. See Blocks E and U. ’

BLOCK Y

After the last user record is moved into an internal buffer,
that data buffer is ready for output. This ready condition
should be indicated to the channel program by the format
subroutine.

BLOCK 7

Following write preparation, the actual write may be delayed
and the write buffer only put on queue for output. Reasons
for a delay could include existing data I/0 if dual buffering
is used, the expiration of the wait timer or other
protocol-dependent conditions. Return to this point is
required following removal of the delay. This area must be
able to operate in either RS or ES state, similar to the
dual-state read sequence described in Block Q.

. BLOCK AA
If a ready buffer cannot be output, put it on queue for output

and establish a hold state until output initiation. See Block
0.

7-10 48-077 F0O0 ROO

e BLOCK AB

After 1line data 1I/0 initiation, return to the user is
accomplished only if it is possible to accept a subsequent
user request; i.e., another buffer is available for
deblocking.

e BLOCK AC

After a successful data write, determine if a subsequent data
block 1is ready for output. If not, return to the appropriate
write preparation routine.

7.5.1 Special Terminal Manager Functions

Special terminal manager functions are performed within existing
terminal managers. If an existing similar terminal manager is
available, study each major function in it before preparing any
similar routines for a new terminal manager. Wherever possible,
terminal manager subsections and utility subroutines were
prepared in a modular format to permit easy modification,
replacement, removal or use in a different environment.

7.5.1.1 Format Control

As shown in Figures 7-1, 7-2 and 7-3, data format blocking and
deblocking routines are subroutines of the data transfer
preparation section. Inserting a new format subroutine is a
straightforward process. Within existing format control
subroutines, special character scans are performed by moving the
involved data through a translate table. Single format
subroutines achieve multiple format techniques with control bit
registers. For example, internal space suppression is performed
only if the perform space suppression bit is set in a control
register. The correct control bit register is generally set by
a subroutine based on device code DCB.DCOD, data communications
extended device code DCB.XDCD and extended options DCB.XITO.

7.5.1.2 Time-out Control

Usually, communications protocols require time-out delays (SVC1l5
wait) to be initiated between data transfers. Time-out
expiration may require transmission of a protocol-dependent data
delay signal or request. Common subroutines exist to set timers
via the SVC1l5 WAIT command and to cancel outstanding time-outs
prior to data transfer and determine if the time-out has already
expired. An invalid return to the program might occur if a data
transfer is attempted simultaneously with an earlier SVC15
time-out data transfer request. Within the binary synchronous
terminal manager, use the ONTIMER subroutine to set a delay timer
and the OFFTIMER subroutine to cancel an existing time-out.

48-077 F0OO0 ROO 7-11

7.5.1.3 Buffer Control

There are subroutines to access or change the status of internal
data buffers. Where appropriate, an error return is provided.
These routines are:

BUFFERO Release buffer
Error exit if invalid address provided

BUFFER1 Obtain write blocking buffer
Error exit if nonavailable

BUFFER2 Obtain active read deblock buffer
Error exit if nonavailable

BUFFER3 Obtain free buffer
Error exit if nonavailable

BUFFER4 Obtain write buffer on queue for output
Error exit if nonavailable

BUFFERS Is there a free buffer?
Error exit if no free buffer

BUFFER6 Is there a buffer with I/O in progress?
Error exit if not

BUFFERS Free all buffers
No error exit

BUFFERS Place buffer on queue
No error exit

7.6 SYSTEM GENERATION (SYSGEN) CONVENTIONS
See the System Generation/32 (Sysgen/32) Reference Manual for
sysgen considerations. To generate the proper basic data
communications code, SGN.ITAM must be set to 1.
7.6.1 Register Conventions
In the binary synchronous terminal manager, strict adherence to
register conventions was an aid in system implementation. These

conventions are recommended for future terminal manager
modifications:

7-12 48-077 F0OO ROO

uo Work (may be destroyed by any subroutine)

Ul DCB address

U2 LCB address

u3 Block descriptor address for format
subroutines (LCB.BLK)

ud Function code (DCB.FC)

Ub Extended option function code (DCB.XITO)

U6 Line status code (DCB.LNST)

u7 Level 0 subroutine entry or return

U8 Level 1 subroutine entry or return

U9 Level 2 subroutine entry or return

Ul0-U1l5 Work (may be destroyed by any subroutine)

7.6.2 Device Control Block/Line Control Block (DCB/LCB)
References

Future data communications modifications may involve
reorganization of a DCB or LCB. For this reason, do not use the
following coding techniques:

® Reference to any DCB or LCB element by an absolute value as
opposed to its symbolic name.

e Reference to any DCB or LCB element to require certain DCB/LCB
elements to be adjacent. This includes 1load halfword of
currently adjacent bytes, load fullword of currently adjacent
halfwords and similar multiple load techniques.

7.6.3 EXTRN/ENTRY References

Certain EXTRN/ENTRY references are required to ensure proper
0S/32 interface. Although specific applications might require
different interface points, the list of the external references
currently used by the binary synchronous terminal manager should
suffice. o

48-077 F0OO0 ROO 7-13

IT.HALT

BEBC.ASC

ISSEXEC

WAIT

TMREMW

JOURNAIL

TOCHON

TOCHOFF

ITI

ISPTAB

IODONE/ IODONE 2

EVRTE

TWT .RJE

CPT.RJE

CLOSMBSC

INITMBSC/FUNCMBSC

is an external reference to the halt 1/0
subroutine.

is an external reference to the binary
synchronous 1line driver ASCII-to-EBCDIC
translation table.

is an external reference to the system
subroutine executor.

is an external reference to the executive
wait subroutine.

is an external reference to the 0S8/32
remove task wait subroutine.

is an external reference to the 085/32
system journal subroutine.

is an external reference to the 08/32
subroutine to put a DCB on a timer chain.

is an external reference to the 08/32
subroutine to remove a DCB from a timer
chain.

is an external reference to the 08/32
subroutine to ignore interrupts.

is an external reference to the interrupt
service pointer table.

is an external reference to the 0S/32 1/0
completion exit points.

is an external reference to the 08/32
exit points.

is an entry reference to the subroutine
to determine whether or not a terminal
manager is busy.

is an entry reference to the terminal
manager checkpoint subroutine.

is an entry reference to the terminal
manager close subroutine.

is an entry reference to the terminal
manager entry points from SVCl.

48-077 FOO ROO

7.6.4 System Generation (Sysgen)

Following assembly of a new terminal manager and its associated
DCBs, standard sysgen procedures can be used to add the new
terminal manager and its associated DCBs to the 0S/32 system.
The new terminal manager and DCBs must be merged into the
combined driver library using the 0S/32 Library Loader. The only
restrictions on the required order of modules within the library
is that the DCBs for all devices supported by a particular driver
or terminal manager must precede the driver or terminal manager.

7.7 WRITING TERMINAL MANAGERS SUMMARY

The following procedures provide a user-written terminal manager:

e Determine if a new terminal manager 1is actually required.
Where practical, use a standard terminal manager in image mode
or applications program SVC1l5 access.

e Gain thorough familiarity with areas involved. Study existing
terminal managers to determine which major sections or
subroutines can be used. Consult the individual line driver
descriptions to determine how these capabilities can be best
used.

e Test and implement the new integrated communications package.

7.8 HOW TO USE DATA COMMUNICATIONS TERMINAL MANAGERS

This section provides a sample program containing four coding
examples to illustrate the structure of data communications SVC1l
parameter blocks and the execution of SVCl reads and writes. A
CAL STRUC is provided to generate equates for all parameter block
references, and each used parameter block 1is 1laid out with
explanatory comments. The parameter block labelled LINEBLK is
used for all functions, and the parameter blocks READBLK and
PRINTBLK are used for other SVCl accesses. The following four
coding examples describe these functions.

Example 1:

This example illustrates a loop reading from an input device
(e.g., a terminal) and writing each record to a bisynchronous
terminal manager. The loop terminates when it recognizes an
input sentinel and an end of file (EOF) is written to the line.
No extended options are used.

48-077 F0O0 ROO 7-15

EXAMPLE1l EQU x

x
* THE FOLLOWING USER EXAMPLE WILL READ
* CARDS FROM LOGICAL UNIT 1 AND
* WRITE EACH CARD RECORD TO AN ITAM
* COMMUNICATIONS LINE ON LOGICAL UNIT 2
* UNTIL A
* CARD BEGINNING WITH // IS FOUND. IT
x WILL THEN WRITE AN EOF.
*
SVC 1,READBLK READ A CARD
LH U15, READBLK+SVC1.STA CHECK FOR ERROR
BNZ DONE
LH U15, BUFSTART SEE IF LOOP IS DONE
CLHI Ul5,C'//' :
BE EOF
SVC 1,LINEBLK WRITE CARD TO ITAM COMM LINE
LH Ul5,LINEBLK+SVC1.STA CHECK FOR ERROR
BNZ DONE
B EXAMPLE 1 CONTINUE LOOP
EOF EQU *
LHI Ul5,X'88’ MODIFY PARAMATER BLOCK
STB Ul5,LINEBLK+SVC1.FC TO WRITE EOF
SVC 1,LINEBLK WRITE EOF TO COMM LINE
DONE EQU *
sve 3,0 END OF JOB SVC
ALIGN ADC

READBLK EQU *
DB X'48',1,0,0
DAC BUFSTART, BUFEND
DAC 0,0,0

LINEBLK DB X'28',2,0,0
DAC BUFSTART, BUFEND
DAC 0,0,0

Example 2:

This example illustrates the use of data communications extended
options. The data communications parameter block (LINEBLK) is
modified to include a write with extended options and the format,
transparent and transmission extended options, are set. A single
record is then read from an input device and written to the
terminal manager. After write completion, the example goes to
end of job. The transparent and transmission extended options
are not honored on all devices.

7-16 48-077 FOO ROO

EXAMPLE EQU x
* THE FOLLOWING USER EXAMPLE WILL,

* READ A SINGLE CARD FROM LOGICAL

x UNIT 1 AND WRITE IT AS A SINGLE

Cx RECORD TRANSMISSION, TRANSPARENT

* TEXT TO AN ITAM COMMUNICATIONS

* LINE ON LOGICAL UNIT 2.

*

*
LHI Ul5,X'29' SET UP WRITE FUNCTION CODE
STB Ul5,LINEBLK+SVC1l.FC USING ITAM EXTENDED OPTIONS
LI Ul5,SV1X.FM+SVC1X.TRM+SV1X.TM SET UP ITAM EXTENDED
ST Ul5,LINEBLK+SVC1.EXO OPTIONS
SVC 1,READBLK HEAD A CARD
LH Ul5, READBLK+SVC1.STA CHECK FOR ERROR
BNZ DONE
svCc 1,LINEBLK WRITE TO COMMUNICATIONS LINE
B DONE

Example 3:

Illustrates a loop reading record from a terminal manager and
writing each input record to an output device (e.g., a printer).
When an error from the line is received (e.g., an EOF), the loop
terminates and the example goes to end of task.

EXAMPLE3 EQU *

*
x THE FOLLOWING USER EXAMPLE WILL.
* READ SUCCESSIVE CARD RECORDS
* FROM AN ITAM COMMUNICATIONS
* LINE ON LOGICAL UNIT 2.
x EACH RECORD WILL BE PRINTED ON
* LOGICAL UNIT 1. UPON RECEIPT
x OF AN EOF OR OTHER ERROR RETURN
* FROM ITAM, THE TASK WILL
* TERMINATE
*
LHI Ul5,X'48' SET ITAM PARAMETER BLOCK FUNCTION
STB Ul5,LINEBLK+SVCL.FC CODE FOR A READ.
EX3LOOP EQU *
svC 1,LINEBLK READ FROM ITAM
LH U15,LINEBLK+SVCL.STA CHECK FOR ERROR
BNZ DONE DEPART FOR AN ERROR
SVC 1,PRINTBLK WRITE TO THE PRINTER
LH U15,PRINTBLK+SVC1.STA CHECK FOR ERROR
BNZ DONE DEPART FOR ERROR
B EX3LOOP CONTINUE LOOP

48-077 FOO0 ROO . 7-17

Example 4:

Illustrates the use of the disconnect extended option. A data

communications

extended options.

parameter

block is built to write a record using
The format and disconnect extended options are

set. Upon completion, the example goes to end of job.

EXAMPLE4 EQU

¥ O O O N O X W O

LHI
STB
LI
ST

ST
ST

svc
svc

x*

THE FOLLOWING USER EXAMPLE
WILL MAKE A SINGLE RECORD -
WRITE TO THE COMMUNICATIONS

LINE ON LOGICAL UNIT 2.

THE

USER REQUEST USES ITAM EXTENDED

OPTION WITH A REQUEST

TO DISCONNECT THE LINE FOLLOWING
THE WRITE. AFTER THE WRITE, THE

TASK GOES TO END OF JOB.

Ul5,Xx'29"
Ul5,LINEBLK+SVC1.FC
Ul5,SV1X.FM+SV1X.DM
Ul5,LINEBLK+SVC1.EXO
Ul15, PRINTOUT
Ul5,LINEBLK+SVC1.SAD
Ul5, PRINTEND
Ul5,LINEBLK+SVC1.EAD
1,LINEBLK

3,0

PUT WRITE WITH. EXTENDED OPTIONS
FUNCTION INTO PARAMETER BLOCK
FORMAT AND DISCONNECT

EXTENDED OPTIONS

SET UP PRINT-LINE START AND

END ADDRESSES

EXECUTE THE TERMINAL MANAGER SVC
GO TO END OF JOB

48-077 FOO0 ROO

CHAPTER 8
HOW TO WRITE AND USE DATA
COMMUNICATIONS LINE DRIVERS

8.1 INTRODUCTION

Data communications covers a broad range of transmission types,
line protocols, character sets, modems, terminals and terminal
idiosyncrasies. Since the basic data communications subsystem
cannot support every possible configuration, the purpose of this
chapter is to assist the system programmer responsible for
modifying or writing a data communications line driver.

8.2 MODIFYING A LINE DRIVER

Before modifying a driver or writing a new driver, determine the
functions performed by a typical 1line driver, where they are
performed and which functions require modification with existing
drivers as a working base.

In general, data communications line drivers perform some or all
of the following steps during a supervisor call 15 (SVC15)
request:

1. Common driver initiation processing

2. Command fetch of the basic command category

3. Common command processing

4. Modifier fetch of the specific command

5. Data field fetch

6. Address relocation

7. Data buffer initialization and channel control block (CCB)
setup

8. Initialization of adapter and modems

48-077 FOO ROO 8-1

9. Transfer of actual data

a. Internal/external character set translation
b. Detection of special characters
c. Buffer limit processing

d. Error status processing

10. Ending sequence processing and adapter disabling

1l1. Event service routine (ESR) processing

a. Restart at Step 2 if command is chained

b. Terminate the call if in error or completed

Steps 1 through 7 are nearly device-independent. They are
basically the same for all drivers observing the standard data
communications command and buffer format. Steps 8, 9 and 10 are
concerned with the type of modem and characteristics of the
attached terminal. Steps 8, 9c, 94 and 10 are performed by the
interrupt service routines (ISRs) of the command. The auto
driver channel, with the assistance of the translation table
whose address is in CCB.XLT, performs Steps 9a and 9b.

For example, the existing asynchronous 1line driver supports a

103-type modem. If support for a 202-type modem using reverse
channel is desired, new ISRs are required to handle the different
status interrupts caused by the reverse channel. Different

output commands are required to enable and disable the adapter.
These should be assembled in the new device control block (DCB).

If the attached terminal communicates in ASCII, only the new ISRs
that handle the interrupts are required along with the new DCB
containing the desired output command bytes. Figure 8-1 shows
the structure of a typical data communications line driver.

8-2 48-077 FOO0 ROO

00¥ 00d LLO-8Y

£-8

077-14
DCB
INITIATION
INITIATION CODE
COMMAND TABLE MODIFIER {
WAIT TIMER
C%“(‘,"ﬁé‘s”" 1 NULL CODE [—"{MODIFIER XFER
2 TABLE COND XFE
COMMAND 3 CONTROL |IconTROL
TABLE 4 CODE MODIFIER EXAMINE
TABLE
5 0 =
6 E— READ READ
READ CODE |—w»IMODIFIER
7 — 1) TABLE ISRs
TRANSLATION TRA?i;fEON I — — READ BUF
POINTER 1 EPARE |] ‘
=G ERC | CODE M?RQ?ER PREPARE
TERMINATION ASC.EBC | TRITE WRITE 1 TRTTE
EBC.ASC |=—*] WRITE CODE |—» M‘?EIBTEER DI WRITE 2 I ISRs
I
TRANSLATION| ||| RITE BUF
TERMINATION TABLE 1 L HOLD
CODE =1 (NOT SUPPORTED)
SPECIAL
CHARACTER | : TODE TRANSL
TRANSLATION], || |ROUTINESOF | /\l___s! moDE cODE »{ MODIFIER
TABLE 3 TRANSLATION TABLE RCMO
SPECIAL TABLE
CHARACTER TRANSLAT10N| 0
ROUTINES TABLE 2 TEST CODE o

Figure 8-1 SVC15 Driver Structure

As another example, assume that the attached terminal can
interface to a 103-type modem but communicates in EBCDIC (or any
other character set). The addition of two new translation
tables, ASCII-to-EBCDIC for output and EBCDIC-to-ASCII for input,
would be required.

Most specialized requirements would need:

e Different translation tables
® Special character handling subroutines

e ISRs to handle interrupts in a device-dependent (modem) manner

The standard command format and buffer management should be
maintained. A similar asynchronous or binary synchronous line
driver should be studied as an example. Much of the basic data
communications subsystem is table-driven, so modifications or
additions require a table change and the additional code
necessary to perform the new feature.

8.3 LINE DRIVER USE OF THE DEVICE CONTROL BLOCK (DCB)

A separate DCB is maintained for each device (adapter) in the
system. It is the DCB that controls the flow of any SVC15
request by allowing each device to specify its particular
requirements. The DCB maintains control of the SVC1l5 request
through these fields:

DCB. INIT is the pointer to the initiation code for all
SVC1l5 requests to this device.

DCB.CTA is the address of the command table that
contains pointers to the code for each of the
commands supported by this device. Some

commands may be common with other drivers;
other commands may be specially designed.

DCB .MOCR

DCB .MOCW are the bytes wused with output command

DCB .DOCR instructions to control the adapter for a

DCB .DOCW particular attached modem and terminal.

DCB.DISK

DCB.AOC is the byte used to load programmable adapters
with the information required to control the
communications line attached (line speed,
character size and parity information).

DCB . XLT is the pointer to the table of valid driver

translation tables.

8-4 48-077 F0OO0 ROO

DCB.TERM is the pointer to the driver termination code.

DCB . RDN are the halfwords indicating the device

DCB.WDN numbers to use when reading and writing to the
connected adapter. Depending on the adapter
strapping, these numbers may be the same or
different. These numbers are initialized by
the file manager using the 2-wire/4-wire
indication in DCB.XDCD to determine device
strapping.

DCB . XDCD is the extended device code field initialized
at sysgen that supplies information about the
intended use of the communications line.

DCB.ESR is the address of the ESR to be scheduled
during system queue service (SQS).

8.4 LINE DRIVER STRUCTURE

The actual code to handle a specific regquest (command and
modifier) is depicted by the boxes on the right side of Figure
8-1. The routines are entered by indexing through a series of
tables beginning at the DCB (left side of Figure 8-1). New
commands or features can be added by specifying a new table that
points to the old command routines that remain unchanged and to
the new routines for the added features.

Much of the code needed by 1line drivers handles command and
modifier fetching and buffer management. This is usually
consistent throughout all line drivers supporting the standard
data communications format and has been implemented in
subroutines maintained in the data communications module. The
user-written line drivers should use these supplied routines. If
the standard data communications command format and buffer
management is followed, a specialized driver would require ISR
code to handle the adapter and translation tables to handle the
character set involved.

8.4.1 Driver Initiation Routine

Drivers are entered in the ES(NSU) state and command
interpretation begins immediately. Commands performing
input/output (1/0) require interrupt service (IS) (execution |is
in the IS state), eventually ending in event state (ES). Any
additional commands in the ' command chain are interrupted and
executed in the ES state. Normally, the drivers exit to the
supplied routines CMEXIT and CMTERM.

Routine CMEXIT is like TMRSOUT or EVRTE and is used whenever the
driver desires to exit and wait for a condition to reactivate it.
Routine CMTERM is 1like IODONE or IODONE2 and is used to end an
SVC1l5 request and, if required, to generate a termination trap to
the calling task.

48-077 F0OO ROO 8-5

SVC1l5 instruction execution by a task results in entry to the
line driver in the ES(NSU) state at the initiation address given
by the DCB.SVCF, with UD1l3 containing the address of +the DCB.
Most drivers at this time begin driver command word (DCW) command
execution by branching to the supplied routine ICMDINT. However,
the driver might initialize programmable adapters at this time or
perform some other introductory operation. Once ICMDINT is
entered, the driver is controlled by the command table and the
DCB.

8.4.2 Translation Tables

Translation tables can exist anywhere in memory. However, all
special character subroutines referenced by the tables must be in
pure code located below 64K.

To make changes in translation as easy as possible, drivers make
no absolute reference to any character. A driver can have a code
to handle a terminating character, but the translation table and
the translation table routines decide what constitutes such a
character and branch to the code that handles it. A change of
translation table and possibly some output commands supplied in
the DCB, should orient the supplied driver toward a new device
while maintaining compatibility with the devices for which the
driver was originally designed.

All basic data communications special character routines begin
with a Load Halfword Immediate (LHI) instruction to 1load a
register with the translated character. This instruction must
not be squeezed by CAL/32 to allow 1line drivers to perform a
software translation of all characters, including special
characters, since the translated value of any character is always
the second halfword of each routine.

8.5 DATA COMMUNICATIONS LINE DRIVER EXAMPLE

This section is to guide the reader through the code of a typical
line driver. To write a new line driver that handles reads and
writes wusing the existing buffer management and command format
but requires a new protocol and different handling of the modem
interface, the standard routines supplied for NULL and CONTROL
should be adequate. No support is required for the MODE or
PREPARE command.

8.5.1 Command Table

First, a command table referencing the necessary commands is
required. This table usually is a part of the driver and must be
aligned on a fullword boundary and have a label declared as an
ENTRY in the driver. This label is referenced as an EXTRN by the
DCB. The command table can be coded as follows:

8-6 48-077 FOO ROO

ENTRY UWCOMTAB
EXTRN I TAMNULL,, I TAMCTRIL.

AL IGN ADC ALIGN TABLE ON FULLWORD
UWCOMTAB EQU x

DAC I TAMNULL USE STANDARD NULL

DAC ITAMCTRL USE STANDARD CONTROL
DAC UWREAD USER WRITTEN READ

DAC 0 NOT SUPPORTED (PREP)
DAC UWRITE USER WRITTEN WRITE

DAC 0 NOT SUPPORTED (HOLD)
DAC 0] NOT SUPPORTED (MODE)
DAC 0 NOT SUPPORTED (TEST)

The initiation code for the driver must begin with a label of the
form INITxxxx just as for general-purpose drivers. This is
declared as an ENTRY in the driver and an EXTRN in the DCB. The
reference to the line driver in the DCB is in DCB.SVCF instead of
DCB.INIT, since DCB.INIT is reserved for the address of the
terminal manager, if supported.

8.5.2 Command Fetch

Routine ICMDINT locates the first command in the DCW string, uses
the least significant three bits to index into the command table
and branches to the code to perform that command. If the command
specifies command traps or time-out, the trap is generated or the
timer started before entering the command. If the command is a
NULL or CONTROL, the routine ITAMNULL or ITAMCTRL is entered,
indicated by the command table. If the command is a WRITE, the
user-written routine UWWRITE is entered. The command halfword is
in U3 and the DCB in UD (the user-written routine in the center
of Figure 8-1) can perform any desired function or initialize

programmable adapters, 1f necessary. To enter the code to
perform the exact function indicated by the modifier, use a data
communications routine and a user-supplied table. The basic
command (WRITE, 1in this case) can access the code for each

modifier by the following steps:

1. Loading UC with the address of the write channel control
block (CCB)

2. Loading U7 with the address of the write modifier table

3. Loading U6 with the maximum allowable modifier

4. Branching to the ITGETMOD routine

The command halfword is still contained in U3 and the DCB address
is always maintained in UD.

48-077 F00 ROO 8-7

8.5.3 Modifier Fetch

The CCB is cleared of all buffers by ITGETMOD, which then places
a copy of the command in the CCB after clearing the unused four
bits (bits 4 through 7) and branches to the code for the function
specified in the modifier table.

NOTE

All 1loads of CCB addresses must use the
LHI instruction since the CCB address is
stored in a halfword that might be
located above 32K.

8.5.4 Command/Modifier Routines

Each particular command (right side of Figure 8-1) must perform
all the processing required to complete its defined function. If
data fields are required, they can be fetched by calling
ITGETDAT, which returns with the next data field in U7. If bit
0 of the data field is set (data code X'80'), ITGETDAT performs
a data field transfer by relocating the address contained in the
data field and using this to continue the data field fetch.

Data fields contain the addresses in user program space of data
required by the driver. These addresses must be relocated to
absolute values to be useful to drivers. Data buffer addresses
can be relocated by calling ITBFREL. All other addresses must be
relocated by calling ADCHK.

The routine ITBFREL assumes all buffers are in the same logical
segment as the address contained in the first data field of the
SVC1l5 parameter block.

The command can now load the data from this address and perform
the required operation. Mode commands, for example, merely store
the data in selected places in the DCB. READ and WRITE commands
must transfer data into or out of this location. They use the
address and the data code to set up the CCB for a data transfer
using the buffer type specified by the data code through the
ITGETBUF routine.

8-8 48-077 F0O0 ROO

A call to ITGETBUF works to fetch the data field, relocate the
address and set up the CCB for a transfer of the proper size
data. It uses the buffer type specified by the data code. The
least significant four bits of the data code are also stored in
bits 4 through 7 of the command kept in the CCB. If the command
is a short write such as WRITE2 (maximum of 15), this number is
placed (ORed) into the low-order four bits of the options
register, U4, before calling ITGETBUF.

If read after write lookahead is supported, a check is performed
to see if the present command (WRITE) is chained. If so, RAWCHKR
(referenced as an EXTRN) is called. This routine checks to see
if the next command is a READ. If so, RAWCHKR sets a read after
write (RAW) pending flag in the DCB, sets the get one buffer flag
in the options register, and fetches and enters the READ code.
The READ command performs as if it were fetched normally and can
initialize programmable adapters or any other introductory read
operation. It performs the following steps:

1. Loads UC with the address of the read CCB
2. Loads U7 with the address of the modifier table
3. Loads Ub with the maximum valid modifier

4. Branches to ITGETMOD

The ITGETMOD routine performs the same operations conducted in
fetching the WRITE and enters the code for the indicated type of
READ. This code also sets up the read CCB for a READ using the
appropriate buffer type by calling ITGETBUF. The READ is now
ready to begin. However, if a RAW pending flag is found, it
returns to the WRITE code.

8.5.5 Entering Interrupt Service Routines (ISRs)

Returning from a call to RAWCHKR, the WRITE code sets up the
channel command word (CCW) of the CCB (CCB.CCW) to ensure that
the execute bit is off and that the other bits are appropriate
for the write. Most likely, the write and the translate bits are
also set. The subroutine pointer in the CCB (CCB.SUBA) is loaded
with the address of a pure routine, an ISR in the driver. The
address of the CCB+1l is stored in the ISPTAB entry for the write
device number, and a simulate interrupt (SINT) instruction is
performed using a write device number. The routine now exits by
branching to CMEXIT.

48-077 F0OO ROO 8-9

The SINT instruction simulates an interrupt and therefore enters
the ISR. User-written drivers can perform whatever is necessary
here; however, most drivers try to place the adapter and the
modem into write mode, assuming that the adapter is in an unknown
state. This is done by issuing an output command using the byte
in the DCB reserved for placing the adapter in write mode with
interrupts enabled (DCB.MOCW). The address of CCB.SUBA can now
be changed to point to the next ISR and the routine exits by a
Load Program Status Word Register (LPSWR) instruction. Each
interrupt causes the second ISR to be activated. The following
registers are loaded by firmware:

EO Program status word (PSW) status before the
interrupt

El PSW location before the interrupt

E2 Device number causing the interrupt

E3 Status of device causing the‘interrupt

E4 Address of the CCB

This second ISR generally ignores all interrupts until the
adapter is ready for data transfers (indicated by zero status).

ISRs exit by the LPSWR using register EO. They can use registers

E2 through E7 without restoring them; E8 through E15 can be used

only if saved and stored.

Once the adapter is ready for the transfer (status equal zero),
the CCB.SUBA 1s loaded with the address of an ISR to handle the
interrupts from the auto driver channel. The execute bit is
turned on in the CCW. The first character is obtained from the
buffer by a call to ITFC, translated by the TLATE instruction and
written to the adapter. The CCB pointers are adjusted by the
Simulate Channel Program (SCP) instruction, and the ISR exits by
loading the PSW from register EO.

All future interrupts from the adapter are handled by the auto

driver channel (microcode) and assistance from the driver is
required only for one of the following reasons:

e Error status interrupts
e Buffer limit interrupts

® Special character processing

8-10 48-077 FOO ROO

An error status interrupt is usually an indication to abort 1[/0
by loading the appropriate status in register E7 and branching to
ITISSTOP. This routine stores the status, disables the device
(both read and write), clears the ISPTAB entries and schedules
the halt I/0 routine, terminating the entire SVC1l5 request.

A buffer 1limit interrupt means the CCB has just used the last
byte from the buffer and complemented the buffer select bit in
the CCW of the CCB. When using chained buffers, the driver must
determine if another buffer is available. If another buffer is
available, the driver keeps the I/0 going with the second buffer
while a third buffer is readied by scheduling the next buffer
write routine. All these operations are done by calling ITXFRISR
to schedule the next buffer routine, if there is a need for it,
or to return to the caller and indicate that no more buffers are
available. Each individual driver can treat this situation as
appropriate. The binary synchronous driver treats it as an error
and 1indicates that a proper terminating sequence was not
encountered. The asynchronous driver considers it a normal
completion. The ITXFRISR routine checks for certain error
conditions, and if any exist, aborts the entire SVC1l5 request
with the appropriate status. These errors are concerned with
chained buffers and the condition of the busy and done bits or
with the fact that a next buffer write routine was scheduled, but
had not yet executed.

8.5.6 Special Character Routines
Special character routines are entered as a result of the

translation table and are responsible for the following
procedures:

e Translating the character by an LHI instruction, since each
routine is for a specific character.

e Performing the required function of the character (change
modes, terminate the I/0 or backspace).

@ Writing the translated character to the adapter or storing it
in the buffer, as appropriate.

e Performing cyclic redundancy checks (CRC) or longitudinal
redundancy checks (LRC), if necessary.

e Incrementing the p01nters of the CCB so that character count
is correct.

e Handling any buffer limit situations that occur during the
previous step.

48-077 F0OO ROO 8-11

8.5.7 Read After Write (RAW) Turnaround

At some point, the ending character, ending sequence or buffer
limit condition can terminate I/0. The adapter is disabled by
issuing an output command using the command byte in DCB.DOCW and
is usually set up to disable the adapter while keeping it in
write mode. The end buffer write routine is scheduled by calling
ITSRABS. This routine takes care of the last buffer and adjusts
the 1length of the last write indicator in the DCB. If the RAW
pending flag is set, the driver ISR calls the routine ITWR.RD to
perform the following steps:

e Increment the current DCW pointer

® Set transfer not begun in status halfword

e Set up the ISPTAB entry for the read device number

e Load E2 with the read device number

® Load E3 with the read status

e Load E4 with the read CCB

e Start read error timer if command requests time-out

® Schedule RAW second buffer if chained buffers are used

® Schedule command trap read if command requests it

e Increment number of commands executed

® AdjusL current DCW pointer

® Return to caller, who branches to the first read ISR

The read ISR now performs like the write ISR, placing the adapter
in read mode by using DCB.MOCR and waiting for an interrupt with
the proper status (usually zero). If buffer traps are requested
in the command, the trap is scheduled by calling ITSRABS with the
proper reason number. CCB.SUBA is loaded with the address of the
read ISR to handle the interrupts from the auto driver, the
execute bit is set and the 1/0 proceeds as in the write. Buffer
limit, error status and special characters are handled just as in
the write ISR. The read ISR, wusing DCB.DOCR, eventually
terminates by disabling the adapter, schedules the end buffer

read routine and the driver-termination routine by two calls to
ITSRABS, and exits by the LPSWR instruction.

8-12 48-077 F0OO ROO

8.5.8 Driver—-Termination Phase

The driver-termination phase routine, whose address 1is in
DCB.TERM, checks the status halfword in DCB.ISTA and terminates
the SVC15 request if any errors exist by branching to CMTERM.
When no errors exist, the driver ESR checks to see if the current
command 18 chained and, if so, fetches and executes the next
command; this is accomplished by the routine JITNXTCMD. This
routine checks the current DCW command and, if it is chained,
increments the DCW pointer and branches to JICMDINT, which
continues with command interpretation. When the command is not
chained, ITNXTCMD returns to the caller. The entire SVC15
request can then be terminated by branching to CMTERM.

8.6 USING DATA COMMUNICATIONS LINE DRIVERS

Except for interrupt handling routines whose code is executed in
the IS state, data communications line drivers execute in the
ES(NSU) state with SQS turned off.

Drivers fetch and execute each command of a DCW chain. When a
command goes to an error-free completion and if the chain command
bit of the command is set, the next command in line is fetched
and executed. This sequence of fetch and execute 1is repeated
until the entire DCW chain is successfully interpreted or until
an error condition in any command terminates the SVC request.

Commands can be arranged in any order; however, each command is
interpreted one at a time and at user priority. A command chain
consisting of three consecutive writes is interpreted as three
complete and separate write operations that are fetched, set up,
executed and terminated one at a time. On a high-speed CRT,
delays may appear between the writes.

If the preceding sequence of three writes were issued to the
binary synchronous driver, each write would begin by sending a

series of 1leading synchronous characters. In addition, each
write would end with the proper binary synchronous termination
sequence. If this sequence is not supplied, an error results.
An analogous situation exists for chained reads. Data

communications is generally interactive and involves a write
request followed by a read request, such as:

e Write prompt character(s) and read data

e Write a buffer and read acknowledge (ACK) or negative
acknowledge (NAK)

e Write ACK or NAK and read buffer

e Write poll or select and read response

48-077 F0O ROO 8-13

Data communications allows a write command chained to a read
command to be handled as one continuous command, both of which
are fetched and set up before any 1/0 begins. The write is then
performed. Upon completion, the 1line is immediately turned
around and the read 1is performed. Once I/0 for the write
actually begins, the entire sequence (write and read) Iis
performed regardless of task priority and in a manner totally
transparent to the user.

In addition to the RAW lookahead, there is a read after prepare
lookahead that allows a task to chain a read to a prepare. Thus,
a task can scan a communications line for a special (prepare)
character and immediately enter the read command to read any
following data.

8.6.1 Buffer Management

Buffer management currently supports four buffer types:

® Direct
e Indirect
e Chained

® Queued

Direct and indirect buffers each consist of a single buffer that
must be sufficient to complete a single write or read command.
The term complete means that the buffer contains one or more
terminating characters (if required for writes) or enough buffer
gspace to hold one or more terminating characters (if required for
reads). Chained and queued buffers consist of one or more linked
buffers. It is through the use of chained and queued buffers
that most flexibility is achieved. The entire series of buffers
must be sufficient to complete a command. The use of buffers is
illustrated as follows:

e Figure 8-2 is a sample SVC1l5 parameter block to write data
from a direct buffer.

e Figure 8-3 is a sample SVC1l5 parameter block to read data (an
SVC1l5 parameter block reading) into an indirect buffer.

® Figure 8-4 is a sample SVC1l5 parameter block to read data into
a series of chained buffers.

® Figure 8-5 is a sample SVC1l5 parameter block to read data into
a series of queued buffers.

8-14 48-077 F0O0 ROO

I/0 has a double-buffering capability. However, when a single
buffer (direct, indirect or single chained) is specified for a
read or write, only one buffer can be used. If I/0 reaches the
end of the buffer, the 1line driver receives a buffer limit
interrupt. Buffer limit interpretation is driver-dependent. For
example, the asynchronous driver terminates error-free when
buffers are exceeded, while the binary synchronous driver returns
a buffer 1limit status if a proper terminating sequence did not
occur before buffer limits were exceeded.

077-15
SVC15 PARAMETER BLOCK DCW CHAIN OF 1 COMMAND
FC LU 1 STATUS fe——— HALFWORD ——]
CMDS A (DCW) X0004" | {(WRITE)
LLR r LLW
00 A (START) DIRECT BUFFER
00 A (END) \F—-BYTE——"
START DATA BYTE 1
[—BYTE-— DATABYTE 2
[——HALFWORD DATA BYTE 3
o FULLWORD —————————%{ _ H
n END START+1 END DATA BYTE n
Figure 8-2 8SVC1l5 Using Direct Buffers
077-16
5VC15 PARAMETER BLOCK DCW CHAIN OF 1 COMMAND
FC Ly l STATUS le—— HALFWORD —]
#CMDS A (DCW) X'0002' (READ)
LLR [LLW
INDIRECT BUFFER
04 A (IND.BUF)
I BYTES AVAIL - n
' BYTES USED
e— BYTE -
DATABYTE1 | DATABYTE?2

[¢—— HALFWORD
DATABYTE 3 DATABYTE 4

o FULLWORD ———————+|
DATA BYTE 5 “ o o

[} . L] L] L] .

DATA BYTE n

Figure 8-3 SVC1l5 Using Indirect Buffers

48-077 F00 ROO 8-15

077-17

SVC15 PARAMETER BLOCK

w | STATUS

A (DCW)

LLR f

I A (CHN.BUF1)

LLW

DCW CHAIN OF 1 COMMAND

fe— HALFWORD —o

g

X'0002'

j#—~—————— FULLWORD —————=

(READ)

l-BYTE —=
‘P——-HALFWORD

\.

o]

A (CHN.BUF2)

.

CHN.BUF1

BYTES AVAIL

BYTES USED

o1 | o2

D3 1 D4

A—— FULLWORD ————————

DATA

Dn-3 —[Dn-2 [Dn-1 I

Dn

© |

_ A (CHN.BUF3)

CHN.BUF?2

BYTES AVAIL

BYTES USED

DI_[DZ

D3 [D4

DATA

on3 | on2 |

Dn-1 L Dn

CHN.BUF3

o_|

0

BYTES AVAIL

BYTES USED

01]02

D3 l D4

DATA

0n-3J Dn-2]

Dn-1 l Dn

Figure 8-4 8VCl5 Using Chained Buffers

48-077

FOO ROO

077-18

SVC156 PARAMETER BLOCK

DCW CHAIN OF 1 COMMAND

FC LU STATUS fe— HALFWORD —
#CMDS A (DCW) X'0002" (READ)
LLR LLR
CIRCULAR LIST FORMAT
0A A (FROM.Q)
e FULLWORD ———-{
0A A (TO.0)
-———HALFWORD—W
-»-BYTE-~0|
NUMBER OF SLOTS| NUMBER USED
—HALFWORD
CURR TOP CURR BOT
f— FULLWORD -
A (BUF1)
A (BUF2)
I Ve Y e
7T . e
CIRCULAR LIST FORMAT
A (BUFn)
TO.Q | NUMBER OF SLOTS| NUMBER USED
CURR TOP CURR BOT |~————-—— FULLWORD————-{
0 00 0
0 BYTES AVAIL BYTES USED
L A
7 . = D D2 03 D4
0
DATA
Dn-3 Dn-2 Dn-1 Dn-
§ 00 0
BUF?2 BYTES AVAIL BYTES USED
D1 D2 D3 D4
DATA
Dn-3 Dn-2 Dn-1 Dn
00 0
BUF1 BYTES AVAIL BYTES USED
D1 D2 D3 D4
DATA
Dn-3 l Dn-2 | Dn-1 r Dn

48-077

Figure 8-5 8VC15 Using Queued Buffers

FOO ROO

8.6.1.1 Chained Buffers

When chained buffers are specified, the driver attempts to set up
two I1/0 buffers. This means that for the task to use more than
a single chained buffer for 1/0, it must supply at least two
linked buffers when the 8VCl5 request 1is issued. These two
buffers are set up; the first buffer is flagged as busy (bit 0 of
link word set) a buffer trap is generated, if specified and I/0
starts. When buffer 1 is exhausted, the driver receives a buffer
limit interrupt and finds buffer 2 is available (busy and done
bits reset) and uses this buffer to continue I1/0. Meanwhile, a
routine is scheduled to flag buffer 1 as done, flag buffer 2 as
busy, and attempts to set wup the first I/0 buffer using the

current link word of buffer 2 as a pointer. If this 1link is
zero, the current buffer is the last buffer of the chain and the
I/0 must terminate within it. If the link word is nonzero, it

indicates the location of buffer 3. At this time, buffer 3 does
not necessarily have to be available (busy and done bits reset)
as 1long as its address is specified. A buffer trap is generated
to the calling task. However, buffer 3 must be available before
the next buffer 1limit interrupt. If it 1is not, the buffer
overruns and [/0 aborts; the status reflects this overrun.

In RAW, the driver looks ahead and sets up only one read buffer.
Therefore, 1if chained buffers are used for the read, only one
buffer is set up in advance. When the driver terminates the
write, one buffer is ready for the read. If the read uses
chained buffers, a subroutine to get the next buffer schedules
immediately after performing the write to read turnaround. The
buffer trap for the read is performed after read 1/0 begins.
Getting only one read buffer instead of two is useful when using
chained buffers for both write and read. However, the buffer
trap for the next to last write buffer must be identified by the
u-task because the task must specify the second buffer in the
link word of the first read buffer before the driver completes
the write.

When interpreting commands, the driver uses two pointers that are
updated during command fetching and execution:

e The current DCW pointer that points to the current DCW being
executed. If the command is chained, it is updated after each
command goes to completion.

e The next data field pointer pointing to the data field to be
used on the next data field fetch. It is updated after each
data field is fetched.

This example illustrates how these pointers are used. It also
illustrates the transfer in Data Facility and the TRANSFER
command .

8-18 48-077 FOO ROO

DCW COMMAND

NUMBER DATA FIELD COMMAND CHAIN NUMBER
1 00 BUF1l.STRT cc WRITE BUFFER 1
2 00 BUF1.END cc READ BUFFER 2
3 04 BUF2 cc XFER 3
4 01 A(command 1)
5 80 A(data 1)

Execution of the command chain and data chain results in
continuous [/0 consisting of the following:

e A WRITE from buffer 1 (direct text)

e A READ into buffer 2 (indirect text)

e A branch back to a write from buffer 1 (direct text), thus

repeating the write/read sequence indefinitely or until an
error occurs.

At starting time, the:

& current DCW points to the WRITE (command 1), and

e the next data field points to BUF1STRT (data field 1).

The first command is fetched and the write routine 1is entered,
which sets up for the write by fetching a data field. Since the
data field indicates a direct buffer, a second data field is
fetched. Now the pointers show the following:

® The current DCW pointing to WRITE (command 1)

® The next data field pointing to BUF2 (data field 3)

Before actually writing the data, the driver looks at the next
command and finds it to be a read. Therefore, the read code is
entered. The read routine sets up for the read by fetching a
data field. Since the data field indicates an indirect text
buffer, the driver is satisfied. After setting up for the read,
the read routine finds. that it was entered from a write and
returns to write without performing any I/0. The pointers now
show the following:

e The current DCW pointing to WRITE (command 1)

® The next data field pointing to data field 4

48-077 FOO ROO 8-19

Write 1/0 is performed and, on error-free completion, the write
termination routine finds a RAW situation, bumps the current DCW
pointer and enters the READ code. The pointers now show:

® The current DCW pointing to READ (command 2)

® The next data field pointing to data field 4

After the READ goes to completion, a routine 1is scheduled to
check the command to see if it is chained. Since it is, the
current DCW pointer changes to fetch the next command. The
pointers now show:

® The current DCW pointing to XFER (command 3)

e The next data field pointing to data field 4

The XFER routine fetches data field 4 (the address of command 1)
and changes the DCW pointer to the value contained in that data
field, affecting a branch. The next command 1is fetched again.
However, the pointers show:

® The current DCW pointing to WRITE (command 1)

e The next data field pointing to data field 5

The command fetch brings the WRITE routine into action again. It
fetches data fields and finds the X'80' data code, indicating
that the data field contains the address of another data field.
The next data field pointer is updated to the contained value.
The pointers now show:

® The current DCW pointing to WRITE (command 1)

® The next data field pointing to BUF1.STRT (data field 1)

The WRITE code again attempts to fetch a data field to use for
buffers.

8.6.1.2 Line Driver Data Communications Device Interface

The line drivers provide a simple interface to standard data

communications devices and allow enough flexibility for effective
control of the particular communications network.

8-20 ’ 48-077 F0OO ROO

A simple communications network can be controlled by the use of
only three commands: READ BUFF, WRITE BUFF and WAIT. Assuming
that move commands are not needed to change default parameters,
the user merely reads or writes information regardless of
communication variables like line speed, character size, 1line
parity, type of line (2-wire, 4-wire, leased), type of adapter,
programmable asynchronous single line adapter (PASLA),
quad-synchronous adapter (QSA) or type of modem.

While the line drivers do handle the specific operating
requirements of the actual communications line interface
(computer, adapter and modem), they are unaware of any line
discipline or protocol. The user provides the correct

handshaking procedure or dialogue with the other end of the line,
if any 1is required, by chaining appropriate WRITE and READ
commands .

While complex DCW chains can be constructed, commands are fetched
and executed in an interruptible state at the priority of the
calling task. Ensure that the task's priority is commensurate
with the requirements of the line, especially when using the more
sophisticated chained buffers.

Although commands are fetched and interpreted in an interruptible
state, special provision is made for the unique sequence of write
chained to read. In this situation, after the write is set |up,
but before actually starting [/0, the driver checks to see if the
write 1is chained to a read. If it is, the read is also set up.
This way the driver can turn a line around very quickly and be
ready to receive the data regardless of task priority.

Intelligent terminals usually operate with a protocol that
requires each end to ACK or NAK receipt of a message. Therefore,
to communicate information to such a device, 1issue a write
(containing your message) chained to a read (to accept the ACK or
NAK). The driver relocates and sets up the write and read
buffers and the write is performed. When write completes, the
line 1is turned around and read 1is performed. When read
completes, the driver has finished the SVC15 request. The status
is stored in the user's SVCl5 parameter block, and if canceled,
a termination trap is generated. Now look at the read buffer and
determine whether the message should be repeated (received an
NAK) or the next message should be written (received an ACK).

If the user is receiving a data message from the device, the
message must be acknowledged to indicate error-free (ACK) or
invalid (NAK) reception by the write chained to read sequence.

First issue an SVCl5 read to get the message. After SVC15
completes, check the status (and optionally the data) and reply
with an SVC1l5 write chained to read. The write specifies ACK or
NAK (reply to the last message), and the chained read readies the
driver to receive a new message (if ACK) or a repeat of the
message (if NAK).

48-077 FO0O0 ROO 8-21

Once write to read turnaround is done, the driver has one buffer
transfer time to set up additional required buffers. If, due to
heavy processor loading, these operations are not performed in
time, I/0 is terminated on detection of the buffer overrun
situation and the status is set to reflect this (status=buffer
overrun). Take appropriate recovery action (retry [/0).

Assume that the task is an interactive interpreter that, once
started, requests input from a remote terminal. Normally the
computer writes out a statement number (sequence number) and then
initiates a read to the terminal in several ways, using the SVC15
request.

Method 1:
The sequence number is maintained in one buffer.

Buffer 1 is a direct buffer of eight characters, containing two
carriage return (CR) characters, one line feed (LF) character, a
4-digit ASCII sequence number and a space. Writing this buffer
causes the four sequence numbers to appear on the terminal at the
left margin of a new line.

Buffer 2, an indirect buffer of 60 characters, receives the
input. By using an indirect buffer, the number of characters
actually entered can be determined without scanning the input for
special characters. The first supplied halfword indicates to the
driver how many bytes are available for data character storage.
The actual number of characters read by the driver is stored in
the second halfword of the buffer.

A user could issue a write from buffer 1 and then a read into
buffer 2. Adequate response time for the read can be assured and
system overhead can be saved by issuing only one SVC1l5 for both
the write and read. The SVC1l5 parameter block and associated
data are shown in Figure 8-7.

The function code specifies termination trap. The DCW chain
contains the following:

® A WRITE command specifying a chain to the next command when
this write is error free.

e A READ command. The read does not have the time-out bit set
and 1is able to wait indefinitely for input. The read is not
chained. When this command completes, SVCl5 terminates by
storing certain values in the parameter block and by
generating a termination trap (requested in function code) to
the user program.

If the response at the terminal was A=B CR, the parameter block
and associated fields might be as shown in Figure 8-7.

8-22 48-077 F0OO0 ROO

Method 2:

Since the interpreter is just one of many programs running in a
multitasking environment, unacceptable delays might occur between
responses from the task because of higher priority tasks.

To
it

inform a remote terminal of the status of the input attempt,
might be desirable to establish the dialogue as:

The computer starts a new line and types out a sequence number
when it wants input.

The user types in a line of data and signals the end of input
with the ASCII ETX, which leaves the TTY carriage at the end
of the input line.

The computer, on recognizing the end character (ETX), writes
out a CR sequence to signal that the computer is still there
and running, and that input was received. Any delay between
the CR and the next sequence number is due to computation time
within the computer.

077-19
SVC15 PARAMETER BLOCK DCW CHAIN
FC=10 LU X X X X CC WRITE 8 0 0 4 WRITE BUFF
X X ADDR (DCW CHAIN) END READ 0 0 0 2 READ BUFF
X X X X X X X X
00 ADDR (BUFFER 1 BEGIN) —— BUFFER 1
X X ADDR (BUFFER 1 ENDJ 0D 0D
04 ADDR (BUFFER 2) \\\\ 0A SEQ NO. 1
SEQNO.2 [SEQNO.3
SEQNO. 4 20
BUFFER 2
o] o 3| ¢
x | x| x| x
x | x| x| x
% = UNDEFINED X | X | x| x

Figure 8-6 Example of an SVC1l5 Parameter Block and Associated
Data

48-077 F0O ROO 8-23

077-20

SVC15 PARAMETER BLOCK DCW CHAIN
LU I 0000 8 0 0 4
02 ADDR (DCW CHAIN) tiggw;ﬂ% 0o 0 o0 2
0004 | ooos NUMBER BYTES STORED
ADDR (BUFFER 1 BEG) IN BUFFER
ADODR (BUFFER 1 END) N\\\\\\\\\“\\\~\\\\. BUFFER 1
04 ADDR (BUFFER 2) 0D 0 D
0A SEQNO. 4
SEQNO.2 | SEQNO. 4
SEQNO. 4 20
BUFFER 2
0 0 3 C
0 o o0 a4
4 113 o
a 2o o DATA READ IN

Figure 8-7 Parameter Block and Associated Fields
After SVC1l5 Termination

If the interpreter needs to store the input line image, along
with its sequence number on a disk or tape, the program with
sequence numbers can be listed when requested. For example:

e Assume buffer 1 is a direct buffer of 72 characters and
buffers 2 and 3 are direct buffers that are subsets of buffer
1

e Buffer 2 begins where buffer 1 begins

e Buffer 2 ends where buffer 1 began +7; i.e., buffer 2 is just
the first eight characters of buffer 1

e Buffer 3 begins where buffer 1 began +8
e Buffer 3 ends where buffer 1 ends.
e Assume, as in the previous example, that buffer 2 contains a

CR, LF and SEQ number space.

By performing a write from buffer 2 and a read into buffer 3,
buffer 1 then contains the sequence numbers and the input. These
can then be written to a disk or magnetic tape by simply starting
past the CR-LF sequence. See Figure 8-8.

8-24 48-077 F0OO0 ROO

Although considerably more complex, the program performs no
additional work other than initially setting up the block. The
commands (DCWs) specify time-out, which is normally an error
time-out wused to abort the call should the command not go to
completion (possibly due to hardware problems) within the
allotted time. Store a null in the first position of a read

buffer to determine if the read timed-out before or during data
input.

077-21 SVC15 PARAMETER BLOCK DCW CHAIN
1o w | 0000 /- 9 0jo 4 WRITE BUFFER, TIME-OUT, CHAIN DCW
0 3 | ADDR (DCW CHAIN) 9 0lo 2 READ BUFFER, TIME-OUT, CHAIN DCW
0 0|0004 I 00 0 2 10|00 C WRITE 2, TIME-OUT
6 0 ADDR (BUFF 2)
X X ADDR (END BUFF 2) BUFFER 2 & BUFFER 3
0 0 ADDR (BUFF 3) oD 0D
XX ADDR (END BUFF 3) 0A | SEQNO.1
0 1 ADDR (BUFF 4) SEQNO. 2| SEQNO. 3
SEQNOQO. 4 20
41 30
4 2 03

oo | oo |

Figure 8-8 SVC15 Parameter Block After Termination

48-077 F0OO ROO 8-25

CHAPTER 9
GENERATING AN OPERATING SYSTEM
WITH DATA COMMUNICATIONS DEVICES

9.1 INTRODUCTION

An operating system configured with data communications devices
is generated using the System Generation/32 (Sysgen/32) program.

Sysgen/32 enables you to create and tailor an operating system to

accommodate particular system requirements. Hardware and
software features are selected and defined through sysgen
configuration statements. These statements form a sysgen

configuration input file. Driver and system modules provided in
the 0S/32 package are selected by Sysgen/32 based on the
requirements indicated in these sysgen statements.

You can create a new configuration input file or modify an
existing one through Sysgen/32 commands. Once a configuration
input file is created, it is processed by the Sysgen/32 program
to produce macro calls. These macros are subsequently expanded,
assembled and linked to yield the operating system. See the
System Generation/32 (Sysgen/32) Reference Manual for a
description of sysgen commands.

9.2 DATA COMMUNICATIONS CONFIGURATION STATEMENT

The sysgen ITAM configuration statement is used to configure data
communications support in the operating system. Communications
support consists of system modules, drivers and device control
blocks (DCBs) and channel control blocks (CCBs), etc. The
drivers are stored in either the commmunications driver library
or extended communhications driver library. The system modules
are stored in the system communications library.

Every communications device to be configured 1in the operating
system must be defined by a device descriptor statement. The
sysgen DEVICES...END statements are used to delimit the device
descriptor statements. Each communications device descriptor
statement requires three parameters; the device name, the device
address and the device code. The three required parameters must
be entered in the order described. There are optional parameters
describing other device details that can be entered in any order.

48-077 FOO ROO 9-1

Example:

In the following example, an asynchronous communications line is
to be configured 1in the operating system. The first required

parameter is the device name. The second parameter is the
required device address, in this example, 40. The third required
parameter, XD=X0830, is the device code. Note that

communications device code specifications are preceded by XD
specifying additional device configuration information. This is
called the extended device code.

LINE:, 40, 144,XD=X0830,REA=XE1C9,WRI=XE809, PAD=2

9.3 SYSTEM LIBRARIES

Sysgen for 0S/32 configured with the basic data communications
subsystem is performed in the same manner as any other
configuration of 0S/32. However, the 0S/32 Library Loader must
first be used to merge the 0S/32 System Object Module Library
with the Data Communications System Object Module Library and the
0S/32 General-Purpose Driver Library with the Data Communications
Driver/Terminal Manager Library. Sysgen/32 is used to process
the resulting combined driver library. The 0S/32 Library Loader
is then used to generate the final load module as described in
the System Generation/32 (Sysgen/32) Reference Manual.

9.3.1 The Driver Library

The recommended sysgen procedure requires that the driver library
processed by Sysgen/32, and the system module 1library processed
by the 0S/32 library loader, each reside on a single disk file,
magnetic tape or cassette. These libraries must, for an 0S8/32
system with basic data communications, include object modules
from the 0S/32 software package and the basic data communications
software package. The procedure for creating the combined
libraries involves the use of the 0S/32 Library Loader facilities
for library manipulation. The reader should be familiar with the
material contained in the 0S/32 Library Loader Reference Manual.

The only restriction on the order of modules in the driver
library 1is that the DCB for each device code precedes the driver
for that device. Since all Perkin-Elmer supplied libraries are
in this order, the Basic Data Communications Driver/Terminal
Manager Library can simply be appended to the existing general
purpose driver library by a single DUPE operation.

The combined system library situation is a bit more complex; the
required order 1is that all EXEC object modules precede the data
communications module and UBOT be last. Thus, it is necessary to
create the combined system library on a third file or tape by
duplicating the 0S/32 System Module Library to the combined
system library, duplicating the Data Communications System Module
Library, and finally, copying UBOT from the 0S/32 System Module

9-2 48-077 F0O0 ROO

Library. These procedures are described in detail in the Data
Communications Packaging Information Document.

9.3.2 Including User-Written Drivers

To include a nonstandard device in the operating system, it must
be defined in the sysgen device statements. The library
containing the user-written driver (USERDLIB.LIB) for the device
must be specified during the link phase of the Sysgen/32 process.

Use reserved device codes 240-2%4 to configure a user-written
driver in the system.

Each device configured in the system gets an appropriate DCBxxx
macro call written to the .MAC output file where xxx is the

device code (e.g., DCB39, DCB147, DCB245, etc.). The DCBxxx
macro creates the device DCB and external references to the
device driver (in DRIVER.LIB or USERDLIB.LIB). The user must

create the DCBxxx macro definition and put it in the user
USERDLIB.MILB file.

9.3.2.1 Creating the DCBxxx Macro

Creating the DCBxxx macro entails these six intermediate steps:

1. Use MLU32 to get the DCBFORM macro from the SYSGEN32.MLB file
to use as the pattern.

2. Make the appropriate changes noted in DCBFORM to create the
DCB macro.

3. Save the file as DCBxxx.MAC.

4. Use the MLU32 (Macro Library) Utility to add the DCBxxx macro
definition to your USERDLIB.MILB file. This library will be
searched by MACRO32 before the SYSGEN32.MLB in the normal
sysgen process. Use care when creating definitions of macros
with names identical to macro names in other libraries.

5. Use Copy/32 or the LIBLDR Utility to add the driver code to
your USERDLIB.LIB file. The USERDLIB.LIB file will be edited
by 0S/32 Link before the standard DRIVER.LIB file.
Therefore, modified Perkin-Elmer drivers that use standard
Perkin-Elmer device codes can also be placed in USERDLIB.LIB,
thereby preempting the standard Perkin-Elmer driver.

6. Perform a sysgen using the standard SYSGEN.CSS. The
USERDLIB.MLLB file will be assigned and the DCBxxx definition
will be used.

See the DCBFORM macro in the SYSGEN32.MLB file.

48-077 FOO ROO 9-3

APPENDIX A
LINE DRIVER COMMAND SUMMARY

MODIFIER/ NUMBER
COMMAND DATA DATA FIELD

MODE COMMAND BYTE HEX VALID COMMAND BITS FIELDS SPECIFIES
NULL, e e -

NOP XX00 {CCICT} X! X{XXXX}00000;000} 1 Any valid

——————————————————————————— - address

WAIT XX08 ICCiCT} X| O}XXXX{00001|000} 1 Halfword

XFER XX10 iCCICT] X{ X|XXXX|{00010}000} 1 Halfword

CXFER XX18 {CCICT} X} X|XXXX|00011}000} 2 2 halfwords

———————————————————————————— valid address

CONTROL e

EXAMINE XX01l {CCICT} X|TO|{XXXX}00000,001} 1 Byte

RING WAIT XX09 ICCICT] X|TO|XXXX|00001}001} None

ANSWER XX1l ICCICT! X{TO|XXXX|00010/001} None

DISCONNECT XX19 {CCICT} X|TO|XXXX}{00011;001} None
READ e

READ BUFFER XX02 {CCICTIBT|TO}XXXX}00000)010} 1.2 Buffer

READL XX0A iCCICT BT|TO|XXXX{00001,010} 1 Byte

READ2 XX12 ICCICT|{BT|TO|XXXX|{00010{010} 2 Byte
PREPARE e

PREP XX03 {CC{CT} X{TO|XXXX{00000{011} 1 Byte

48-077 F0O ROO A-1

MODE

WRITE

HOLD

MODIFIER/
COMMAND
BYTE HEX

COMMAND

WRITE BUFFER

WRITELl

WRITE2

BREAK

TOUT

CMD2

RCMD

WCMD

RDIS

WDIS

DISK

SYCT

TRNSL

SPEC CHAR

TRECS

XX04

XX0C

XX14

XX05

XX06

XXO0E

XX16

XX1E

XX26

XX2E

XX36

XX3E

XX46

XX4E

XX56

VALID COMMAND BITS

Default values are assembled in the DCB.

NUMBER
DATA
FIELDS

DATA FIELD
SPECIFIES

1.2 Buffer

1 Byte
2 Byte
1 Halfword
1 Fullword
1 Byte
1 Byte
1 Byte
1 Byte
1 Byte
1 Byte
1 Byte
1 Byte
1 Fullword
1 Halfword

48-077 F0OO ROO

APPENDIX B
INTERFACE SIGNAL DEFINITIONS

The following signals, defined by EIA Standard RS-232C, are used
by the 103 and 201 series modems and are supported by the basic
data communications subsystem.

SIGNAL (RS-232C PIN COMMENTS

DESIGNATION)

Transmit data (BA) 2 Serial data sent from adapter
to modem.

Received data (BB) 3 Serial data received by

adapter from modem.

Request to send (CA) 4 Set by adapter when user
program wishes to transmit.

Clear to send (CB) 5 Set by modem when transmission
can commence.

Data set ready (CC) 6 Set by modem when it is
powered on and ready to
transfer data in response to
data terminal ready (CD).

Carrier detect (CF) 8 Set by modem when signal
present.
Data terminal ready (CD) 20 Set by adapter to enable modem

to answer an incoming call on
a switched line. Reset by
adapter to disconnect call.

Ring indicator (CE) 22 Set by modem when telephone
rings.

48-077 F00 ROO B-1

A
Access, device-dependent

access, line driver
Access, device-independent

LCB
nonbuffered access
operation
Access, line driver
sequence of operations
Access, terminal manager
buffered access
Adapters
asynchronous
bisynchronous adapters
EDLC
parallel
serial
ZBID adapters
Add to task gueue
Allocate
function
routine
ALI,OCATE command
Amer ican standard code for
information interchange.
See ASCII.
ANSWER command
ASCII
Assign
function
routine
ASSIGN command
Asynchronous adapters
MPC
MUX, 2-line
MUX, 8-line
PASLA
Asynchronous mode

Baudot code
Bisynchronous adapter
QSA
SELCH
3sA
synchronous 201 data set
Buffer control
Buffer types 8VCl5
chained buffers
chained/queued buffer
link word flag byte
direct buffers
indirect buffers
queued buffers
Buffered terminal manager
input
output

48-077 F0OO ROO

INDEX

[
o

SBOOBDBEBEBNOGN
]
NN N N U e

NN
[}
w N

!
[A ~N B NN
[

=N

NN
|

wow
1

e
1
o

LI] Pl
QAWWWWNoHENO o N
ww

FMOMNMNNDNODNDWOW
|

Cc
CA/CD
Cancellation 1/0
CCB

device-dependent portion
device-independent
portion
Change access privileges
Change access privileges
function
Channel control block.
CCB.
Checkpoint
function
routine
Close
function
routine
CLOSE command
CMEXIT subroutine
CMTERM subroutine
Collision avoidance/collision
detection
Command
fetch
modifier routines
number field SVC15
table
Command functions
allocate
assign
change access privileges
checkpoint
close
delete
fetch attributes
r ename
reprotect
VFC
Communications methods
CA/CD
polling
selection
Conditional transfer
command. See CXFER command
Control block formats
DCB data communications
related portion
device-dependent portion
device-independent
portion
Control-type commands
ANSWER
DISCONNECT
EXAMINE
READ BUFFER
read-type commands
READ1

See

6-60

oINS s <o o}
|
N

L [
WWWNORWOoWNO N o
oo

FHFRFOLWWWWWWWWW
1

IND-1

Control-type commands
(Cont inued)
READ2
RING WAIT

CSMA/DC

CXFER command

D

DASY driver
DAT for asynchronous
multidrop communications
Data block descriptor, LCB
Data codes
ASCI1
Baudot
EBCDIC
Data communications
analog
distributed processing
networks
networks
subsystem
Data communications
subroutines
ITSRABS
Data fields SVC15
Data set link control
transmission modes.
See SDLC transmission modes.
Data transmission modes.
See modes, data transmission
DCB data communications
DCB data communications
related portion
DCB line driver use
DCB pointers
DCB.AOC
DCB.DOCR
DCB . DOCW
DCB. INIT
DCB.ITV
DCB .MOCR
DCB.MOCW
DCB.OTV
DCB .RDN
DCB.TERM
DCB .WDN
DCB/LCB references
DCSY driver
DCT for asynchronous
multidrop communications
DCT for ZDLC communications
DCW
DCW pointer SVC15
DDT for 3270 Emulator
DDT for ZDLC communications
Delete
function
routine
DELETE command
DETH driver
Device control block. See
DCB data communications.
Device definition table.
See DDT.

IND-2

I
w

o [\
i

N W

ot 00

[l st ondl acll aed
il
N~ 00000

N
1
W

oo
[
= N
wo

Device-dependent portion
CCB
DCB
Device-dependent portion LCB
Device-independent portion
CCB
DCB
LCB
Device mnemonic field
DISCONNECT command
Distributed processing
networks
Driver command work.
DCW.
Driver initiation routine
Driver library
DCBxxx macro creation
user-written drivers
Driver-termination phase
Drop access table. See DAT.
Drop control table.
Drop definition table.
DDT.
DZBD driver

See

See

EBCDIC
EDLC
Error handling

CRC

LRC

VRC
Error status field
ESR
Ethernet data link
controller. See EDLC.
Ethernet network
Event service routine.
ESR.
EXAMINE command
Extended binary coded
decimal interchange code.
See EBCDIC.
Extension field
EXTRN/ENTRY references

BEBC.ASC

CLOSMBSC

CPT.RJE

I11

INITMBSC/FUNCMBSC

IODONE/10ODONE2

1SPTAB

ISSEXEC

IT.HALT

JOURNAL

TMREMW

TOCHOFF

TOCHON

TWT .RJE

WAIT

See

48-077

See DCT.

3-5

7-14
7-15
7-15
7-15
7-15
7-15
7-15
7-15
7-15
7-15
7-15
7-15
7-15
7-15
7-15
7-15
7-15

FOO ROO

F,G

Fetch attributes
function

File manager handler.

FMH.

File size field

Filename field

FMH

Format control

Full-duplex mocde

Function code field

Functions, terminal manager
BLOCK A
BLOCK AA
BLOCK AB
BLOCK AC
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
buffer control
format control
special functions
time-out control

See

NKXESCHOXMOWOZIAMNrRG—~IQWERUO®D

H

Half -duplex terminal
Hard-wired mocdems
Hold space (line break)
commangd
Hold-type commands
hold space (line break)

I,3,K

ICMDINT subroutine

Input /output block.

Input /output handler.
IOH.

See

48-077 FOO ROO

See 10B.

w
11
O~

>

WHNOWW
I Y |
WO~
N O

| S S S A N SN AR B |
NN

NNNNNNNNNNNNNNNNNNNNS
|
R OOOOOOOOOONNNN= N

7-12

Interrupt service routine.
See ISR.

10B for asynchronous
multidrop communications
IOH

ISR

ISSEXEC subroutine
IT..STOP subroutine
ITGETBUF subroutine
ITGETDAT subroutine
ITGETMOD subroutine
ITGETMOD2 subroutine
ITIMLINK subroutine
ITIMUNLK subroutine
ITISPOTC subroutine
ITISSTOP subroutine
ITISTOTC subroutine
ITSABS subroutine
ITSETREA subroutine
ITXFRISR subroutine

LAN
LCB

data block descriptor
portion
device-dependent portion
device-independent
portion
Leased lines
Length of last read field
SVC15
Length of last write field
SVC15
Line control block.

Line driver
data communications
example
Line driver command types
SVC1l5
control-type
CXFER
hold-type
mode-type
NOP
null-type
prepare-type
test-type
WAIT command
write-type
XFER
Line drivers
buffer management
chained buffers
command fetch
command table
command/modif ier routines
DASY
DCB line driver use
DCSY
DETH
driver-termination phase

See LCB.

6-40
6-47
8-9

6-62
6-64
6-70
6-69
6-68
6-68
6-66
6-66
6-67
6-64
6-67
6-60
6-64
6-64

||
00

[B

0 NN 00N 000 M
i
MR N OO

w

IND-3

Line drivers (Continued)
DZBD
ISR
line driver device
interface
modifier fetch
modifying
RAW turnaround
special character
routines
structure
use
Lines
multidrop
point-to-point
Local area network.
Logical record length field

Logical unit. See lu.
lu field
M

MASY nonbuffered terminal
manager

MBSC buffered terminal
manager

MMSM nonbuffered terminal
manager

MODE CMD2 (adapter) command

MODE DISC command
MODE RCMD and MODE WCMD
commands
MODE RDIS and MODE WDIS
commands
MODE SPCHAR command
MODE SYNCNT command
MODE TOUT (time-out
interval) command
MODE TRANSL command
Mode-type commands
MODE CMD2 (adapter)
MODE DISC
MODE RCMD and MODE WCMD
MODE RDIS and MODE WDIS
MODE SPCHAR
MODE SYNCNT
MODE TOUT (time-out
interval)
MODE TRANSL
Modems
hard-wired modems
voice grade
wideband
Modes, data transmission
asynchronous mode
synchronous mode
ZBID
Modes, terminal
communications
full-duplex mode
half-duplex terminal
simplex terminal uses
Modifier fetch
MPC
Multidrop line

IND-4

See LAN.

2-8

5-29
5-30
5-30

5-30

Multiperipheral controller.
See MPC.

Multiplexors
See MUXs.

MUXs

Networks
data communications
Ethernet
LAN
PENnet
No operation command.
NOP command.
Nonbuffered terminal manager
NOP command
Null-type commands

See

0

Operation, sequence of
Operator commands

ALLOCATE

ASSIGN

CLOSE

DELETE

XALLOCATE

XDELETE

P
Parameter block

command functions
device mnemonic field
error status field
extension field
file size field
filename field
function code field
logical record length
field
lu field
read and write key fields
Parameter block SVCl5. See
SVC1l5 parameter bloc
Parity
PENnet network
Point-to-point line
Polling process
PPSM nonbuffered terminal
manager
PREPARE command
Prepare-type commands
PREPARE
PREPARE3
PREPARE3 command

Processing, SVCl

Processing, SVC7
allocate
assign

change access privileges

48-077 F0OO ROO

4-2

3-10
3-11
3-13
3-15
3-16
3-17
3-19

WWWWwWwwwdw
|
WO U WU O

www
!
;coo

{

Processing, S$SVC7 (Continued)
checkpoint
close
delete
fetch attributes
rename
reprotect
Protocols
communicat. ions
data link control
error handling

Q

Qsa
Quad synchronous adapter.
See QSA.

RAW

turnaround
Read after write. See RAW.
Read and write key fields
READ BUFFER command
Read-type commands
READ1 command
READZ2 command
Register conventions
Rename

function

routine
Reprotect

function

routine
RING WAIT command

S

SDLC transmission modes
SDT for 3270 emulators
SELCH
Selection mechanism
Selector channel. See SELCH.
Simplex terminal uses
Single-synchronous adapter.
See SSA. :
Special character routines
Speeds, terminal
SSA
Station description table.
See SDT.
Structure
buffered terminal
manager (input)
buffered terminal
manager (output)
data communications
line driver initiation
routine
line driver translation
tables

48-077 FO00 ROO

5-18
8-12
8-12

3-5

5-26
5-26
5-26
5-27
7-13

3-10
6-74

3-10
6-74
5-25

Subroutine, data
communications
ITISPOTC
Subroutines
CMEXIT
CMTERM
data communications
ICMDINT
ISSEXEC
IT..STOP
ITGETBUF
ITGETDAT
ITGETMOD
ITGETMOD2
ITIMLINK
ITIMUNLK
ITISSTOP
ITISTOTC
ITSETREA
ITSRABS
ITXFRISR
svCl5s
Subsystem, data
communications
Supervisor call 1.
Supervisor call 15.
8VC15.
Supervisor call 7.
svCl
data transfer function
code
format and coding
parameter block
SVCl extended options field
connect
disconnect
echoplex
format/image bit
SVC1l parameter block
buffer end address
buffer start address
device-dependent status
device-independent status
extended options
extended options field
function code
length of data transfer
lu
random address
8SVC15
8VC1l5 function code field
SvVCl5 1lu field
SVC1l5 parameter block
command number field
data fields
DCW pointe
length of last read field
length of last write
field
SVCl5 function code field
SVCl5 1lu field
8vCl5 status information
field
8SVvC1l5 status information
field
SVC15 structure and flow

See

See SVCL1.

See SVC7.

6-67

6-61
6-60
6-59
6-67
6-62
6-64
6-70
6-69
6-68
6-68
6-66
6-66
6-64
6-67
6-64
6-60
6-64
6-59

S R A AN A R Y N

{
FHREEFRFOAONOWOO OO OO NS i 0d 0

NNWN

| I I I I N I |

USSR AELDALALDDLDS BN
|

t

N

[S N5 8,]
!
NO

8VCl5 trap handling
buffer transfer trap
command execution trap
halt I1/0 termination trap
termination trap

svC7
parameter block

Switched lines

Synchronous mode

Sysgen, data communications
driver library
system libraries

Sysgen conventions
DCB/LCB references
EXTRN/ENTRY references
register

System
data communications
terminals
initialization
libraries

System, data communications

System generation. See

Sysgen.

T,U

Terminal communications
modes. See modes, terminal
communications.
Terminal manager modification
nonbuffered terminal
manager
structure
Terminal managers
MASY
MBSC
MMSM
PPSM
Terminal speeds.
speeds, terminal
Terminals
Test-type commands
Time-out control

See

IND-b6

mo;m
| I |
BB

~
1
=

1t

NN
1
oA NN

Timer management
Transfer in command.
XFER command.
Translation tables
Transmission lines
leased
switched
Trap handling SVC15.
SVC1l5 trap handling.

See

See

v
Vertical forms control. See
VFC function.
VFC function
Voice grade

WAIT command
Wideband modems
WRITE BUFFER command
Write-type commands

WRITE BUFFER

WRITELl

WRITE2 command
WRITEl command
WRITE2 command

X, Y
XALLOCATE command
XDELETE command
XFER command
Z
ZBID adapters

Zero-bit insertion/deletion
adapters. See ZBID.

48-077 FOO ROO

W
I

5-24
1-9

5-28
5-27
5-28
5-28
5-28
5-28
5-28

3-17
3-19
5-24

PERKIN-ELMER
PUBLICATION COMMENT FORM

We try to make our publications easy to understand and free of errors. Our
users are an Integral source of information for improving future revisions.
Please use this postage paid form to send us comments. corrections.
suggestions. etc.

1. Publication number

2. Title of publication

3. Describe. providing page numbers. any technical errors you
found. Attach additional sheet it neccessary.

4. Was the publication easy to understand? If no. why not?

5. Were illustrations adequate?

6. What additions or deletions would you suggest?

7. Other comments:

From Date

Position/Title

Company

Address

"APLE STAPLE

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

POSTAGE WILL BE PAID BY ADDRESSEE

PERKIN-ELMER

Data Systems Group
106 Apple Street
Tinton Falls, NJ 07724

\TTN:
‘ECHNICAL SYSTEMS PUBLICATIONS DEPT.

TAPLE STAPLE

