
PERKIN-ELMER

05/32 BASIC OAT A COMMUNICATIONS

Reference Manual

48-077 FOO ROO

The information in this document is subject to change without notic'e and should not be
construed as a commitment by The Perkin-Elmer Corporation. The Perkin-Elmer Corpo­
ration assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Elmer.

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757

© 1984 by The Perkin-Elmer Corporation

Printed in the United States of America

TABLE OF' CONTENTS

PREFACE

CHAPTERS

1 BASIC DATA COMMUNICATIONS

1.1

1.2

INTRODUCTION

DATA COMMUNICATIONS NETWORKS

l\ BAS I C DATA COMMUN I CAT IONS SYSTEM
'rerminals
'rerminal Communicat: ions Modes
'Terminal Speeds
Data Transmission Modes
Data Codes
lModems
'Transmiss ion Lines

1.3
1.3.1
1.3.1.1
1.3.1.2
1.3.1.3
1.3.1.4
1.3.2
1.3.3
1.3.4 Multiplexors (MUXs) and Concentrators

2 OS/32 DAT,~ COMMUNICATIONS SYSTEM

2.1 INTRODUCTION

2.2 ,ADAPTERS
2.2.1 Asynchronous Adapters
2.2.2 Bisynchronous Adapters
2.2.3 Zero-Bit Insertion/Deletion (ZBID) Adapters

2.3 LINE DRIVERS

2.4 DEVICE-INDEPENDENT ACCESS
2.4.1 Terminal Managers
2.4.2 Protocols

2.5 DEVICE-DEPENDENT AC!CESS

48-077 FOO ROO

xi

1-1

1-2

1-3
1-4
1-4
1-6
1-6
1-8
1-9
1-10
1-11

2-1

2-2
2-2
2-3
2-4

2-5

2-5
2-6
2-8

2-10

i

CHAPTERS (Continued)

3 DEVICE HANDLING

3.1

3.2
3.2.1
3.2.1.1
3.2.1.2
3.2.1.3
3.2.1.4
3.2.1.5
3.2.1.6
3.2.1.7
3.2.1.8
3.2.1.9

3.3
3.3.1
3.3.2
3.3.3.
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8
3.3. 10
3.3.10

3.4
3.4.1
3.4.2
3.4.3
3.4.4.
3.4.5
3.4.6

INTRODUCTION

SUPERVISOR CALL 7 (SVC7)
Supervisor Call 7 (SVC7) Parameter Block
Function Code Field
Error Status Field
Logical Unit (lu) Field
Read and Write Key Fields
Logical Record Length Field
Device Mnemonic Field
Filename Field
Extension Field
File Size Field

COMMAND FUNCTIONS
Allocate Function
Assign Function
Change Access Privileges Function
Close Function
Delete Function
Checkpoint Function
Fetch Attributes Function
Vertical Forms Control (VFC) Function
Rename Function
Reprotect Function

OPERATOR COMMANDS
ALLOCATE Command
ASSIGN Command
CLOSE Command
DELETE Command
XALLOCATE Command
XDELETE Command

4 DEVICE-INDEPENDENT ACCESS

4.1

4.2

4.3

4.4
4.4.1

INTRODUCTION

TERMINAL MANAGER ACCESS

SEQUENCE OF OPERATION

SUPERVISOR CALL 1 (SVC1)
Supervisor Call 1 (SVCl) Parameter Block

5 DEVICE-DEPENDENT ACCESS

5.1 INTRODUCTION

3-1

3-1
3-1
3-3
3-3
3-5
3-5
3-5
3-5
3-5
3-5
3-6

3-6
3-6
3-6
3-7
3-8
3-8
3-9
3-9
3-9
3-10
3-10

3-10
3-11
3-13
3-15
3-16
3-17
3-19

4-1

4-1

4-2

4-4
4-4

5-1

ii 48-077 FOO ROO

CHAPTERS (Continued)

5.2
5.2.1
5.2.2

5.2.2.1

5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9

5.4
5.4 .. 1
5.4.2
5.4.3
5.4.4
5.4 .. 4.1

5.5

5.6
5.6.1
5.6 .. 1.1
5.6.1.2
5.6.1.3
5.6.1.4
5.6.2
5.6.2 .. 1
5.6.2 .. 2
5.6.2.3
5.6.2.4
5.6.3
5.6.3.1
5.6.3.2
5.6.3.3
5.6.4
5.6.4 .. 1
5.6.4 .. 2
5.6.5
5 .. 6.5.1
5.6.5.2
5.6.5.3
5 .. 6.6
5.6.6.1
5 .. 6.7
5.6.7.1
5.6 .. 7.2

LINE DRIVER ACCESS
Sequence of Operations
Supervisor Call 15 (SVC15) and the Task
Environment
Supervisor Call 15 (SVC1S) Trap Handling

SUPERVISOR CALL lS (SVC1S) PARAMETER BLOCK
Function Code Field
Logical Unit (lu) Field
Status Information Field
Command Number Field
Driver Command Word (DCW) Pointer
Length of Last Read Field
Length of Last Writ,e Field
Data Fields
Data Field Chain

BUFFER TYPES
Direct Buffers
Indirect Buffers
Chained Buffers
Queued Buffers
Coding a Queued Buffer Request

DRIVER COMMAND woru) (DCW)

LINE DRIVER COMMAND TYPES
Null-Type Commands
NO OPERATION (NOP) Command
WA I 'r Command
TRANSFER IN (XFER) Command
CONDITIONAL TRANSFgR (CXFER) Command
Control-Type Commands
EXAMINE Command
RING WAIT Command
ANSWER Command
DISCONNECT Command
Read-Type Commands
READ BUFFER Command
READ 1 Command
READ2 Command
Prepare-Type Commands
PREPARE Command
PREPARE3 Command
Wr ite-Type Command~~
WRITE BUFFER Command
WRITEl Command
WR I ~rE 2 Command
Hold-Type Commands
HO[J) SPACE (Line Bl:eak) Command
Mode-Type Commands
MODE Tou'r (Time-out:. Interval) Command
MODE CMD2 (Adapter) Command

48-077 FOO ROO

5-1
5-2

5-3
S-4

5-5
5-6
5-7
5-8
5-12
5-12
5-12
5-12
5-13
5-13

5-14
5-15
5-15
5-16
5-19
5-20

5-21

5-23
5-24
5-24
5-'24
5-24
5-24
5-25
5-25
5-25
5-26
5-26
5-26
5-26
5-26
5-27
5-27
5-27
5-27
5-27
5-28
5-28
5-28
5-28
5-28
5-29
5-29
5-29

iii

CHAPTERS (Continued)

5.6.7.3 MODE RCMD (Read) and MODE WCMD (Write)

5.6.7.4

5.6.7.5
5.6.7.6
5.6.7.7

5.6.7.8
5.6.8

Commands
MODE RDIS (Read Disable) and MODE WDIS
(Write Disable) Commands
MODE DISC (Disconnect) Command
MODE SYNCNT (SYNC Character Count) Command
MODE SPCHAR (Special Character Enable Masks
Command
MODE TRANSL (Translation Options) Command
Test-Type Commands

5-30

5-30
5-30
5-30

5-30
5-30
5-30

6 DATA COMMUNICATIONS STRUCTURES

iv

6.1

6.2

6.3
6.3.1
6.3.1.1

6.3.1.2

6.3.1.3

6.3.2
6.3.2.1

6.3.2.2

6.3.2.3

6.3.3
6.3.3.1

6.3.3.2

6.3.4

6.3.5

6.3.6

6.3.7

6.3.8

6.3.9

INTRODUCTION 6-1

DATA COMMUNICATIONS LINE DRIVERS 6-1

CONTROL BLOCK FORMATS 6-2
Data Communications Device Control Block (DCB) 6-2
Device Control Block (DCB) Device-Independent
Portion (Standard DCB) 6-3
Device Control Block (DCB) Data Communicationfl-
Related Portion 6-7
Device Control Block (OCB) Device-Dependent
Portion 6-16
Line Control Block (LCB) 6-16
Line Control Block (LCB) Device-Independent
Portion 6-16
Line Control Block (LCB) Device-Dependent
Portion 6-22
Line Control Block (LCB) Data Block
Descriptor Portion 6-25
Channel Control Block (CCB) 6-26
Channel Control Block (CCB) Device-Independent
Portion 6-26
Channel Control Block (CCB) Device-Dependent
Portion 6-27
Drop Control Table (DCT) for Zero-Bit
Insertion/Deletion Data Link Control ZDLC
Communications 6·-30
Drop Definition Table (DDT) for Zero-Bit
Insertion/Deletion Data Link Control (ZDLC)
Communications 6-34
Drop Control Table (DCT) for Asynchronous
Multidrop Communications 6-36
Drop Access Table (DAT) for Asynchronous
Multidrop Communications 6-38
Input/Output Block (lOB) for Asynchronous
Multidrop Communications 6-40
Station Description Table (SOT) for 3270
Emulator 6-43

48-077 FOQ ROO

CHAPTERS (Continued)

6.3. 10

6.3.11
6.3.12

6.4

6.4.1
6.4.2

6.4.3
6.4.4
6.4.5
6.4.6

6.5

6.6

6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6
6.7.7
6.7.8
6 .. 7.9
6.7.10
6.7.11
6.7. 12
6.7.13
6.7.14
6.7.15
6.7.16
6.7.17
6.7.18

6.8

6.9
6.9.1
6.9.2
6.9.3
6.9.4

6.10
6.10.1
6.10.2
6.10.3
6.10.4

Device Definition Table (DDT) for 3270
Emulator
Input/Output Handler (IOH)
File Manager Handler (FMH)

DEVICE CONTROL BLOCK (DCB) POINTER FOR LINE
DRIVER COMMAND INTJE:RPRETATION
DCB.TERM Pointer
DCB.DOCR, DCB.DOCW, DCB.MOCR and DCB.MOCW
Pointers
DCB.AOC Pointer
DCB.INIT Pointer
DCB.RDN and DCB.WDN Pointers
DCB.ITV and DCB.OTV Pointers

EVENT SERVICE ROUTINE (ESR) SCHEDULING

SUPERVISOR CALL 15 (SVC15) STRUCTURE AND FLOW

COMMON DATA COMMUNICATIONS SUBROUTINES
Supervisor CallIS (SVC15) Subroutine
ITSRABS Subroutine
CMTERM Subroutine
CME.xIT Subroutine
ISSEXEC Subroutine
I TSETREA Subr out inl9
ITXFRISR Subroutine
ITISSTOP Subroutine
IT .. STOP Subroutine
IT IMLINK Subrout inl9
ITIMUNLK Subroutinl9
ITISTOTC Subroutine
ITISPOTC Subroutine
ICMDINT Subroutine
ITGETMOD2 Subroutine
ITGETMOD Subrout inle
ITGETDAT Subroutine
ITGETBUF Subroutine

SUPERVISOR CALL 1 (SVC1) PROCESSING

ADDITIONAL EXECUTIVE FUNCTIONS
Cancellation of Input/Output (I/O)
Add to Task Queue
System Initialization
Timer Management

SUPERVISOR CALL 7 (SVC7) PROCESSING
Allocate
Delete
Assign
Close

48-077 FOO ROO

6-44
6·-47
6-50

6-52
6-53

6-53
6-54
6-54
6-54
6-54

6-54

6-56

6-59
6-59
6-60
6-60
6-61
6-62
6-64
6-64
6-65
6-65
6-°66
6-66
6-67
6-67
6-67
6-68
6-68
6-69
6-70

6-70

6-70
6-71
6-71
6-71
6-71

6-72
6-72
6-72
6-73
6-73

v

CHAPTERS (Continued)

6.10.5
6.10.6
6.10.7
6.10.8
6.10.9

Checkpoint
Fetch Attributes
Change Access Privileges
Rename
Reprotect

7 HOW TO WRITE AND USE A TERMINAL MANAGER

8

7.1

7.2

7.3

7.4
7.4.1
7.5.2
7.4.3

7.5
7.5.1
7.5.1.1
7.5.1.2
7.5.1.3

7.6
7.6.1
7.6.2

7.6.3
7.6.4

7.7

7.8

HOW TO

8.1

8.2

8.3

8.4
8.4.1
8.4.2

INTRODUCTION

rrERMINAL MANAGER MODIFICATION

BACKGROUND INFORMATION

TERMINAL MANAGER STRUCTURE
Nonbuffered Terminal Manager
Buffered Terminal Manager (Input)
Buffered Terminal Manager (Output)

TERMINAL MANAGER FUNCTIONS
Special Terminal Manager Functions
Format Control
Time-out Cont-rol
Buffer Control

SYSTEM GENERATION (SYSGEN) CONVENTIONS
Register Conventions
Device Control Block/Line Control Block
(DCB/LCB) Reference
EXTRN/ENTRY References
System Generation (Sysgen)

WRITING TERMINAL MANAGERS SUMMARY

HOW TO USE DATA COMMUNICATIONS TERMINAL
MANAGERS

WRITE AND USE DATA COMMUNICATIONS LINE DRIVERS

INTRODUCTION

MODIFYING A LINE DRIVER

LINE DRIVER USE OF THE DEVICE CONTROL BLOCK
(DCB)

LINE DRIVER STRUCTURE
Driver Initiation Routine
Translation Tables

6-74
6-74
6-74
6-74
6-74

7-1

7-1

7--1

7-2
7-2
7-5
7-5

7-6
7-11
7-11
7-11
7-12

7-12
7-12

7-13
7-13
7-15

7-15

7-15

8-1

8-1

8-4

8-5
8-5
8-6

vi 48-077 FDa ROO

CHAPTERS (Continued)

8.5
8.5.1
8.5.2
8.5.3
8.5.4
8.5.5
8.5.6
8.5.7
8.5.8

8.6
8.6.1
8.6.1.1
8.6.1.2

DATA COMMUNICATIONS LINE DRIVER EXAMPLE
Command Table
Command Fetch
Modifier Fetch
Command/Modifer Routines
Entering Interrupt Service Routines (ISRs)
Special Character Routines
Read After Write (RAW) Turnaround
Driver Termination Phase

USING DATA COMMUNICATIONS LINE DRIVERS
Buffer Management
Chained Buffers
Line Driver Data Communlcations Device
Interface

9 GENERATING AN OPERATING SYS·rEM WITH DATA COMMUNICATIONS
DEVICES

9.1 INTRODUCTION

9. 2 DATA COMMUN I CAT IONS CONF I GURA'r ION S-TA'rEMENT

9.3
9.3.1
9.3.2
9.3.2.1

SYSTEM LIBRARIES
The Driver Library
Including User-Written Drivers
Creatlng the DCBxxx Macro

APPENDIXES

A LINE DRIVER COMMAND SUMMARY

B INTERFACE SIGNAL DEFINlrrIONS

FIGURES

1-1
1--2
1···3
1-4
1-5

2-1
2-2

PoinL-to-Point and Multipoint Networks
A Simplistic Data Communications Network
Terminal Con~unications Modes
Asynchronous Transmission
Synchronous Transmission

A Da,ta Communlcat ions Subsystem
OS/32 Terminal Managers

48-077 FOO ROO

8-6
8-6
8-7
8-8
8-8
8-9
8-11
8-12
8-13

8-13
8-14
8-18

8-20

9-1

9-1

9-2
9-2
9--3
9-3

A··· 1

B-l

1-2
1-3
1-5
1-6
1--7

2-1
2-7

vii

FIGURES (Continued)

3-1
3-2

4-1
4-2

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12

6-1
6-2
6-3
6-4
6-5·
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17

7-1
7-2
7-3

8-1
8-2
8-3
8-4
8-5
8-6

8-7

8-8

SVC7 Parameter Block Format and Coding
SVC7 Function Code Field

SVCl Parameter Block Format and Coding
SVCl Function Code Field

SVC15 Access to a Line Driver
SVC15 Parameter Block
SVC15 Function Code Format
SVC15 status Field Format
SVC15 Data Field Format
Direct Buffer
Indirect Buffer
Chained/Queued Buffer Format
Chained/Queued Buffer Link Word Flag Byte
Buffer Ring
Conceptual Circular List and Format
DCW Format

DCB Sections
Basic DeB Fields
Data Communications DCB Fields
Basic LCB Fields
Device-Dependent LCB Fields
CCB Device-Independent Portion
Data Communications CCB Format
DCT (ZDLC) Format
DDT (ZDLC) Format
OCT (Asynchronous Multidrop) Format
DAT (Asynchronous Multidrop) Format
lOB Format
SDT Format
DDT (3270 Emulator) Format
IOH Format
FMH Format
SVC15 Line Driver Modules - Data Communications
Operation System Interface

Nonbuffered Terminal Manager
Buffered Terminal Manager (Input)
Buffered Terminal Manager (Output)

SVC15 Driver structure
SVC15 Using Direct Buffers
SVCl5 Using Indirect Buffers
SVCl6 Using Chained Buffers
SVCl5 Using Queued Buffers
Example of an SVC15 Parameter Block and
Associated Data
Parameter Block and Associated Fields' After
SVC15 Termination
SVC15 Parameter Block After Termination

3-2
3-3

4-5
4-7

5-3
5-5
5-6
5-8
5-13
5-15
5-16
5-16
5-17
5-18
5-19
5-22

6-3
6-4
6-8
6-17
6-22
6-26
6-28
6-30
6-35
6-37
6-39
6-40
6-43
6-45
6-48
6-51

6-58

7-3
7-4
7-5

8-3
8-15
8-15
8-16
8-17

8-23

8-24
8-25

viii 48-077 FOO ROO

TABLES

3-1

4-1
4-2

5-1
5-2
5-3
5-4
5-5
5-6
5-7

6-1
6-2
6-3

INDEX

SVC7 ERROR STATUS CODE BIT SETTINGS

SVC1 DA'rA TRANSFER FUNCTION CODE
SVC1 EXTENDED OPTIONS

SVC15 FUNCTION CODE .e~IT SETTINGS
SVC15 STATUS BIT SET'I'INGS
SVC15 ENCODED TERMINPLTION CODES
DA'rA CODE BIT SETT INC~S
CHANNEL/QUEUED BUFFE~~ LINK WORD FLAG BYTE
QUE:UED BUFFER DATA FIELD FORMA'r
Day BIT SETTINGS

DCB .. LNST BIT DEFINITIONS
BLOCK DESCR I PTOR FLAG· BIT DEF I NIT IONS
DA~rA COMMUNICATIONS SUBROUTINE REQUEST BITS

48-077 FOO ROO

3-4

4-7
4-10

5-6
5-8
5-9
5-14
5-17
5-21
5-22

6-13
6-25
6-56

IND-l

ix

PFlEFACE

This manual describes the concepts necessary to use the
Perkin-Elmer OS/32 Basic Data Communications software. Included
in this manual is a description of the areas of application,
program intc9rface, OS/32 s:upport features and internal
operations.

Chapter 1 introduces basic data communications facilities.
Chapter 2 introduces the OS/32 Basic Data Communications
Subsystem. The differences between device-independent and
device-dependent~ access are detailed and br ief descr iptions of
Perkin-Elmer adapters, line dr i.vers and terminal managers are
included. Chapter 3 describes device handling through supervisor
call 7 (SVC7) or the OS/32 command language. The SVC7 parameter
block and related functions are! discussed as well as t.he OS/32
commands pertinent to data cClmmunications. Chapter 4 discusses
device-independent access of data communications facilities,
which is accc)mplished by us ing the SVCI parameter block descr ibed
in this chapter. Chapter S details device-dependent access of
data communications facilities through the use of line drivers,
which is accomplished by Ulsing the SVCIS parameter block
described in this chapter. SVCl5 buffer types and the driver
command word (DCW) are alscl detailed in Chapter S. Chapter 6
describes t.he various structures and routines used in the 09/32
Data Commun:icat.ions Subsystem. Chapters 7, 8 and 9 descr ibe the
internal opelr at ion of bas ic dat.a commun icat ions and discuss t.he
process of modifying or adding a line driver or terminal manager.
These three chapters should be read by users whose requirements
are not sati~3f ied by bas ic data communications support.

Throughout this manual, there are numerous references to the
Integrated TC9lecommunications P.~ccess Method (ITAM). Pr ior to the
ROS.1 vers ic)n of OS/32, all Perkin-Elmer data communications
software was packaged separately and was referred to as ITAM.

This manual is intended for use with t.he OS/32 R07.2 software
release and higher.

For information on the contents of all Perkin-Elmer 32-bit
manuals, see the 32-Bit Systemsi User Documentation Summary.

48-077 FOO ROO xi

CHAPTER 1
BASIC DATA COMMUNICATIONS

1.1 INTRODueTION

Put simply, t:.he purpose of data. communications is to transfer
information. In the context of data processing, data
communications refers to the exchange of information between
computers or peripherals.

All transmis~sions between locations require three things:

• a transmit:.ter or message source,

• a transmi~ssion medium, and

• a receiver.

A simple telE~phone call is a good example of a data transmission.
You, the caller, use a transmitting medium, the telephone and the
telephone lines, to transfer information to the person you are
calling. The same is true of a digital data communications
network with one small addition. In a digital data
communications system, the transmitter must not only be able' to
transmit the data, it must also be able to translate the source
message fro~~ its original form into a form that can travel over
the availablE~ transmiss ion path. The receiver must then be able
to translate the transmitted message back into a form that can be
understood by people or machines. An analogy can be made with an
earlier data communications system, the telegraph. Using a
telegraph, the words of a message could not be sent directly, but
had to be encoded into a system of dots and dashes that could be
transmitted over a wire. The dots and dashes received would then
have to be decoded into a language that the people receiving the
message could understand.

During the first half of this century, most of data
communications involved voice transmissions. With the advent and
increased Ufse of digital computers, the importance of digital
communications quickly became evident. Many users wanted their
computer to be able to communicate with their customer's computer
across town,. or with another company's computer across the
nation. InjLtially, this was not possible, because most
conventional telecommunications facilities were developed before
the birth of the computer and were, therefore, for voice rather
than digital communications.

48-077 FOO ROO 1-1

These analog (voice) systems were not fast enough to keep up with
the speeds computers were becoming capable of. In addition, the
earlier computers were not designed to be connected to an
existing communications network. With the increasing demand for
long distance computer communications, the field of digital data
communications became an important part of the computer industry.

1.2 DATA COMMUNICATIONS NETWORKS

Data processing facilities are frequently joined together to form
data communications networks. Such networks connect remote
terminals and computer systems to each other and/or to a host
computer. The earlier systems were connected via public
telephone and telegraph lines, but large private networks using
high-speed digital facilities and leased transmission lines soon
evolved. Data can also be transferred by radio signals and, with
the increased use of microwaves and the advent of space travel,
by microwave relays to satellites.

If a single transmitting device is connected to a single
receiving device, the data communications network is considered
to have a point-to-point line (see Section A of Figure 1-1). To
decrease the costs of such a network, more than one terminal can
be connected over a single dedicated line. This type of line is
referred to as a multidrop (or multipoint) line (see Section B of
Figure 1-1). When using a multidrop line, the processor
communicates with a terminal by one of two methods:

• polling and selection, or

• collision avoidance/collision detection.

077-1

A. POINT-TO-POINT

3 5

- 1 - 1 -)

1
T - J --

T
{ N

2 4 6

B. MULTIDROP

Figure 1-1 Point-to-Point and Multidrop Networks

1-2 48-077 FOO ROO

Polling is the process by which the computer queries each
individual t.erminal to see whe'ther or not that terminal has any
data to transfer. The processor accomplishes this by sending out
a unique bit sequence (10) that can be recognized by a particular
terminal as its address. Irhe terminal then responds either
positively or negatively. j~ negative response causes the
processor to query the next terminal. A positive response causes
t.he processor to take the nec1essary steps for a data transfer to
occur. Polling is useful in large networks where tight control
over line usage is desired; it is also applicable in cost­
conscious facilities or in applications where transmitted
messages have different levels of priority.

Selection i.s -the mechanism by which the processor itself
specifies the terminal to which it wants to transmit data. This
is accomplished by us ing the tlerminal' sID. Multidrop networks
are able t.o broadcast a mes:sage to all of the terminals on the
multidrop line.

In collision avoidance/collision detection, a terminal first
"listens" to see if another te:rminal is sending data. Only if no
other terminal is transmittin9 will it attempt to send data. If
more than one terminal happens to start transmitting at the same
time, both cease transmissions and wait a specified and different
amount of time before they attempt to transmit again. The
advantage of this method is that the processor is not needed to
control the actual process as in the polling method. The main
disadvantage: is that there is no limit on the amount of time a
low-priority terminal might have to wait before transmitting.

A special type of data communications network is the distributed
processing network. Such networks divide the data processing
among several smaller computer:s. This arrangement improves the
overall performance of the n.etwork, since a failure at one node
does not affect the other processors and peripherals. Such an
arrangement also provides increased reliability because
distributed networks provide alternate paths to other processors
in the event of a nodal failure.

1.3 A BASIC DATA COMMUNICATIONS SYSTEM

Figure 1-2 depicts a simplistic data communications network.

077-2

4 5 6

Figure 1·-2 A S impl1stic Data Communications Network

48-077 FOO ROO 1-3

The components of the system in Figure 1-2 are numbeI'ed and
represent the hardware usually needed in any data communications
system. These devices are the:

1. Terminal

2. Modems

3. Transmission lines

4. Multiplexors and concentrators

5. 05/32 Data Communications Subsystem

6. Processor

Components 1 through 4 and 6 are not actually part of the 05/32
Data Communications Subsystem. They are, however, essential to
the operation of a data communications system. The remainder of
this chapter is, therefore, dedicated to a general discussion of
these components so that a better understanding of their
functions in a data communications system can be achieved. This
discussion is intended for the reader who does not have an
extensive background in data communications. The more
experienced reader may skip this discussion. Chapter 2 contains
a detailed discussion of the OS/32 Data Communications Subsystem.

1.3.1 Terminals

Communication between people and computers generally requi.res a
terminal with a keyboard and some type of display device.
Clearly, the CRT terminal provides the fastest and the most
convenient access to the data stored or manipulated by a
computer. While the CRT is the most popular type of data
communications terminal, the characteristics of the many CRTs
currently manufactured vary a great deal. In general, data
communications terminals can be classified according to their
communications mode, data transmission speed, data transfer mode
and data code format. Sections 1.3.1.1 through 1.3.1.4 discuss
these classifications.

1.3.1.1 Terminal Communications Modes

Data communications terminals can be divided into three modes of
operation:

• Simplex

• Half-duplex

• Full-duplex

1-4 48-077 FOO ROO

Figure 1-3 depicts these three modes.

077-3

0 DATA FLOW -')oONLY

~ 2

A. SIMPLEX

0 DATA FLOW -')0 OR +-

~ 2

B. HALF-DUPLEX (2-WIRE)

0
DATA FLOW-')o

~I OR DATA FLOW +- 2

C. C. HALF-DUPLEX (4-WI RE)

0
DATA FLOW-')o

·1 AND DATA FLOW +- 2

D. FULL-DUPLEX

ll" igure 1-3 Terminell Communications Modes

A simplex terminal uses a simple I-wire link with its receiving
counterpart. In other words, & simplex terminal has a one-way
only transmission path. Data cannot reverse directions.

A half-duplex terminal is a 2- or 4-wire terminal link that
allows two-way communications, but transmissions can only occur
in one direction at a time. The installation of special
equipment that reverses the receive or transmit condition is
required. Half-duplex terminals are often connected to 4-wire
links to avoid turnaround delays (i.e., the modem switching
itself from t.ransmitting to receiving mode and vice-versa.)

In a full-duplex mode, the terminal is connected via
lin'k, which allows two-way simultaneous transmissions.
be sent and lreceived at the same time.

48-077 FOO ROO

a 4-wire
Data can

1-5

An analogy can be made between these terminal modes and city
streets. A simplex line is analogous to a one-way street in that
traffic can only travel in one direction. The half-duplex mode
is similiar to a narrow two-way street; traffic can travel in
both directions, but only in one direction at a time.
Full-duplex mode is the same as a standard two-way street;
traffic can travel in both directions simultaneously.

1.3.1.2 Terminal Speeds

Although it is being replaced as a unit for measuring signaling
speed, the baud is the basis of all other units of signaling
speed. A baud is defined as the number of signal events per
second. This definition is the basis for the two main units of
signaling speed in use today: bits per second (bps) and
characters per second (cps). If each bit transferred represents
one signal event, the speed is expressed in bps. If a character
represents one signal event, then the speed is expressed in cps.

Data terminals are divided into three basic speed catagories.

• Standard - up to 30cps

• Medium - 30 to 480cps

• .High - over 480cps

1.3.1.3 Data Transmission Modes

Data can be transmitted using one of two possible modes:
asynchronous- or synchronous. Most low- and medium-speed
terminals transmit data in the asynchronous mode. These
terminals generate a coded character each time a key is
depressed. Figure 1-4 illustrates the asynchronous transmission
mode.

077-4

IJ~I ~~~~~
--~Ul.......-.I I I I r ---

I
STARTI" CHARACTER _I STOP

BIT CODE BIT

DIRECTION OF FLOW
'4

Figure 1-4 Asynchronous Transmission

1-6 48-077 FOQ ROO

In asynchronous transmission mode, each character is prefixed by
a start bit .and suff ixed by onE~ or more stop bits. In this mode,
the performance of one operation is initiated by the signals that
indicate the completion of the previous operation. In other
words, a new character cannot be transmitted until the previous
characters have been received. All bits within a character· are
sent at prescribed time intervals, but the data can have periods
of inactivity while the terminal is waiting for the operator to
input mor e data. I n the aE,ynchr onous mode, the tim ing of the
terminal and the central system are established independently of
each other.

Most high-speed terminals transmit their data in the synchronous
mode. In !synchronous transmtss ions, the data is transmitted in
long blocks ~Nith only a single framing pattern at the beginning
of each block. These framtng characters are referred to as
'sync' characters. The advantage of this mode of transmission is
that each character transmitted consists only of data bits.
Transmiss ion facilities, theI'efore, are used more eff iciently
because there are no signal ele!ments being wasted as start and
stop bits. Figure 1-5 illustrates the synchronous transmission
mode.

07jl-5

11--'~!r1!1 I
1 L....L.L.I L..!.. I I

14-- SYNC CHARACTER -+- DATA BITS---'"

DIRECTION OF FLOW ...

Figure 1-5 Synchronous Transmission

Unlike the asynchronous transmission
synchronous mode is established and
transmitting and receiving modems.
synchronized so that transmissions occur
gaps are permitted between characters in

48-077 FOO ROO

mode, timing in
maintained by
These devices

at a fixed rate.
the data block.

the
the
are

No

1-7

1.3.1.4 Data Codes

Data is represented in a computer by a collection or series of
binary digits arranged in a particular order or grouping. These
groupings are known as data codes and the three basic data codes
used for data communications are Baudot, ASCII and EBCDIC.

• The Baudot code is a 5-bit code which makes only 32 unique
characters possible. Because of this, two of the characters
must be used as shift characters so that the code can handle
t.he variety of letters, numbers and special characters
necessary. The Baudot code has no provision for error
checking. Terminal control is acheived by a line break or a
special character sequence. Baudot was used principally on
early teletype (TTY) machines; it is not in much use today_

• ASCII (American Standard Code for Information Interchange) is
a 7-bit code with an additional bit to check for parity. It
has unique code assignments for both alphanumeric and control
functions. ASCII is the most widely used code today and is
found on most micro and minicomputers. All Perkin-Elmer
computers use the ASCII data code.

• EBCDIC (Extended Binary Coded Decimal Interchange Code) is an
8-bit code similiar to, but not compatible with, ASCII. It
also uses a parity bit to check for errors. EBCDIC was
created by IBM®for use on their large computer systems.,

In parity checking, the processor verifies that all characters
have either an even number (even parity) or an odd numbE~r (odd
parity) of bits. After the transmission is completed, the
receiving computer checks the parity to verify that all of the
data has been transferred completely. If all of the characters
do not have the correct number of odd or even bits, the computer
notifies the transmitter that an error has occurred in
transmission.

It is essential that all components of a data communications
system can "converse" with each other in the same data code. If
this is not the case, none of the data transferred will make
sense to the receiving station. The solution is an emulator, a
device or piece of software that makes a computer system
supporting one data code behave like another system supporting a
different code. Using emulators, it is possible for an ASCII
terminal to "converse" with an EBCDIC processor.

IBM® is a registered trademark of International Business Machines
Corporation.

1-8 48-077 FOO ROO

1.3.2 Modems

Even though there are many other media available, the voice
frequency channel or phone line is still the most popular medium
for transmitting data because clf its high availability and low
cost. When using phone lines, a device known as a modem
(modulator/d4emodulator) is required to interface between the
processor or terminal and the communications line. The function
of a modem (sometimes called a "data set") is to facilitate
digital dat.a communicatione~ over a telephone network by
converting the digital (square wave) signal to an analog (sine
wave) signal. It is this analog or "voice" signal 'that can be
t.ransmitted c)ver the phone linE!s. At the other end of the line
is a second modem that demodulates the analog signals back into
digital signals. In our example of the telegraph, the modem is
analogous to the telegraph operator who codes and decodes the
telegrams. 'rhe modem can actually be a part of the computer or
terminal (integrated) or it can be a stand-alone model. Modems
can be divided into three typee~:

• Voice grade

• Wideband

• Hard-wired

Voice grade modems can be further divided into t.wo speed
catagories: low and medium. Low-speed modems are used on
switched networks and interface with low-speed asynchronous
terminals. These modem types, generally operate at speeds of, up
t.o 300bps. Medium-speed modems are used with terminal
controllers and high-speed terminals and can operate at speeds of
9,600bps and higher.

Wideband modems have very high operating speeds of 19,200 to
460,800bps. They are interfaced with special wideband leased
lines and are used primat:ily for processor-to-processor
'lransmiss ionl3.

Hard-wired modems operate on de!dicated lines at speeds of up to
one million bits per second. These modems are generally
limited-distc1nce devices that are very useful for short distance
data commun ieat i.ons .

Modems are not required when short distance direct lines can be
used. Only ,~hen the transmiss 1,on is to take place over telephone
lines is a modem needed.

Another function of a modem is referred to as handshaking.
Handshaking is the procedure! that occurs when two modems are
connected fox the first time; i,t ensures that the communications
1in'k is aVc1il'able and functictnal. This is accomplished through
the use of control signals sent. down the line and returned. A
handshaking 13equence is unique to the particular type of modem.

48-077 FOO ROO 1-9

Modems must operate in the same modes as the terminals to which
they are connected. A half-duplex modem sends or receives data
in only one direction at a time while a full-duplex modem can
send and receive information concurrently. Each modem can
transmit or receive either asynchronous or synchronous data.

1.3.3 Transmission Lines

Transmission lines are classified as one of three types according
to the speed of transmission. The transmission types are:

• Low-speed (subvoice)

• Medium-speed (voice-grade)

• High-speed (wideband)

Low-speed lines are commonly used by Telex, TWX and other TTY
transmissions. Both leased and switched networks can be used and
can transmit data at up to 300bps. Telex and TWX are used
primarily for transmitting business communications. Connections
are established by dialing into these networks, but
intercommunication is made via TTY rather than by voice.

Medium-speed networks are made up of voice-grade telephone lines.
These telephone lines can be grouped into three catagories.

• Switched, or public, lines make up the standard telephone
system and provide a dial-up service between the terminal and
the processor. Switched lines can transmit data
asynchronously up to 1,200bps or synchronously at rates of up
to 4,800bps. This type of connection is less costly if the
line's usage is low and infrequent.

• Leased lines are private point-to-point lines that are
dedicated to a particular customer. The advantages I~f this
type of line are that the connection between points is
constant: it does not have to be established each time and the
private line allows the user more bandwidth. These advantages
make higher data transmission rates possible and make this
type of connection less costly if the line is to be used
frequently or constantly.

In contrast to switched lines, leased lines can transfer data
up to twice as fast and can achieve a speed up to 9,600bps.

• Special lines are 4-wire links that are available for two-way
transmissions. These links usually have a higher speed and a
lower error rate than switched lines, due to conditioning.
Conditioning refers to the process of adjusting the electrical
characteristics of the transmission path to control certain
types and levels of distortion.

1-10 48-077 FOO ROO

High-speed o:r wideband lines helve transmiss ion rates of 19, 200bps
or more. They are used primarl.ly for intercomputer communication
links.

1.3.4 Multiplexors (MOXs) and Concentrators

MOXs and concentrators are
improve system efficiency
t..ransmissions.

data communications devices that
by increasing the speeds of data

A MUX is a device that receiveel and combines signals
low-speed lines and transmits them together over
high-speed c()mmunications channel.

from
the

many
same

A concentrator is a device t.hat is used to interface many
different terminals to a slngle host computer. Like a MUX, a
concentrator combines the many low-speed lines into a single
high-speed line.,

In us ing dat.a multiplexing, the instantaneous rate of data
entering or exiting the terminal cannot exceed the data rate of
the communications channel. Pl concentrator, however, uses a
buffered resource sharing scheme so the instantaneous rate of
data enter in9' or ex it ing the tE~rminal can exceed the data r ate of
t..he communications channel. Data concentration can, therefore,
take advantage of idle ternlinal time, while data multiplexing
cannot.

48-077 FOO ROO 1-11

CHA:I?TER 2
09/32 DATA COMMrn~ICATIONS SUBSYSTEM

2 . 1 INTRODUC~T ION

One of the most important components of any data communications
system is the interface between the communications lines and the
processor. 'I'his interface must be able to transform the signal
levels and data 'rates produced in the communications circuit into
levels and rates that the proce:ssor can understand. This is done
with a unique combination of hardware and software that makes up
the Perkin-Elmer OS/32 Data Communications Subsystem. Figure 2-1
shows the general breakdown of t.he subsystem.

Sections 2.2 through 2.5 discus:s the components of the subsystem.

077-6

•

I

TERMINAL
MANAGERS

~~

SVCl
AC CESS

l n

ADAPTER

LINE DRIVER

USER TASK

TO
MODEMS

.~

SVCl
ACCE

5
SS

Figure 2-1 A Data C':>rnmunications Subsystem

48-077 FOO ROO 2-1

Perkin-Elmer supports two basic network types:

• PENnet is a distributed data communications network for long
distance digital transmissions. It uses either leased or
switched phone lines and cyclic redundancy checking (CRe) for
error detection. PENnet is easy to install and use since no
specialized knowledge of data communications networks is
required to exploit its full facilities.

• Ethernet is a local area network (LAN) that uses a
peer-to-peer protocol known as carrier-sense multiple access
with collision detection (CSMA/CD). Components of an Ethernet
network are connected by coaxial cable over a limited distance
of about 1.5 miles with the use of repeater stations~ This
system transmits data at a rate of 10Mbits per second. For
further information see theOS/32 Network·Drivers Programming
Reference Manual.

2 . 2 ADAPTERS

Communication adapters are hardware boards that interface the
processor with a transmission facility and enable remote devices
to communicate with the host computer. In general, an adapter
contains circuits to generate and detect the control signals
required to set up, take down and supervise the data
communications channel and to provide proper status and interrupt
information to the processor. There are two basic types of
adapters: serial and parallel. Serial adapters interface with
modems and usually use the Electrical Industries Association
(EIA) RS-232 standard signals. Parallel adapters can connect
indirectly to the computer's input/output (I/O) channels.

Perkin-EImer's OS/32 Data Communications Subsystem supports three
basic types of serial adapters:

• asynchronous

• bisynchronous

• zero-bit insertion and deletion (ZSID)

2.2.1 Asynchronous Adapters

In the asynchronous mode, data is transferred
character-by-character. Each character is preceded by a start
bit and is followed by one or two stop bits. The disadvantage of
this type of transmission is that a substantial percentage of the
bits transmitted are used simply for separating characters; thus,
this method of transmission is more costly since the
transmissions are longer.

2-2 48-077 FOO ROO

The Perkin-Elmer OS/32 Data Communications Subsystem supports the
following asynchronous adapterf':

• The programmable asynchronous single line adapter (PASLA)
provides an interface betwE~en 103/202-type modems over eiLher
a switched or leased network. It can accommodate local
terminals that match the EI}~ RS-232 standard. This system has
a high d1egree of flexibility in that it can be programmed for
a variety of baud rates, character formats and line control
functions. PASLA can also interface with either a half-duplex
or full-duplex line. The major disadvantage is that each
device mu:st have its own PASLA.

• The 2-linle MUX is a halfboard that is equivalent to two
PASLAs.

• The 8-line MUX is a fullboat:d that is equivalent to eight
PASLAs.

• The multiperipheral controller (MPC) contains the 8-channel
data communications multiplexor (COMM MUX) consisting of four
serial cOlnmunication controllers. Each controller contains
two independent, full-duplex channels that can be
asynchronous, bisynchronous or ZBID interfaces, depending on
the needs of the user.

2.2.2 Bisynchronous Adapters

Bisynchronou!:s (binary synchronous or BISYNC) adapters use the
BISYNC mode of data t.ransmission. In bisynchronous
communications, data is transmj.tted in a synchronous mode with
special communications control characters that are specified for
formatting text, indicating status, synchronizing functions and
error control.

The OS/32 Data Communications Subsystem supports the following
bisynchronous adapters:

• The synchlconous 201 data set~ adapter contains the circuits
necessary to generate and detect control signals that are
needed tC) establish, maintain and terminate the data
communications channel and provide status and interrupt
information to the computer. The data transfer between a 201
modem and a 201 data set adapter occurs in the bit serial mode
with a synchronizing bit clock supplied by the modem for both
transmitting and receiving. Special character recognition
(other thcin the SYNC charact.ers), block character checking and
generation, and code translation are accomplished by the
processor under program cont~rol.

48-077 FOO ROO 2-3

• The quad-synchronous adapter (QSA) is designed to operate with
synchronous modems and provides an interface between a
selector channel (SELCH) bus and four 2-wire or 4-wire
synchronous modems. Like the 201 data set adapter I' data
transfer between the QSA and a modem is in the bit serial mode
with a bit clock supplied by the data set. The QSA also has
the logic necessary to generate and detect control Signals
which are needed to establish, maintain and terminate a data
communications channel, and provide proper status and
interrupt information to the processor.

• The single-synchronous adapter (SSA) is a synchronous adapter
Lhat, like the 201 and the QSA adapters, contains the logic
necessary to generate and read the control characters which
are needed to set up, supervise and terminate a data
communications channel, and provide the proper status and
interrupt information to the processor.

• The MPC can be used as a bisynchronous adapter as well as an
asynchronous adapter. See Section 2.2.1 for further det:ails.

2.2~3 Zero-Bit Insertion/Deletion (ZBID) Adapters

ZBID adapters are synchronous adapters different from BISYNC
adapters. ZBro devices send data in frames, each of which starts
and ends with a particular bit sequence called a flag. ZBro gets
its name from the need to prevent the data being transmitted from
resembling Lhe ZBro flag sequence. To accomplish this, the
sending station inserts a zero bit, whenever necessary, to
prevent the data from appearing as a flag sequence. These zero
bits are removed by the receiving station. Hence its name_, zero
bit insertion and deletion. ZBIO is synonymous with synchronous
data set link control (SOLe) Lransmission modes.

The OS/32 Oata Communications Subsystem supports the following
ZBro adapters.

• QSA

• SSA

• MPC

The Ethernet data link controller (EDLC) provides
processor-to-processor serial communications at a rate of IDMbits
per second over a common coaxial cable. Communication sequences
over the half-duplex channel are divided into packets with frame
sizes ranging from 64 to 1,518 bytes. Each frame has two 48-bit
address fields, one 16-bit type field and a 32-bit cyclic
redundancy check (eRC) frame check sequence for error detection.

The· QSA, SSA and MPC support ZBro devices as well as
bisynchronous devices. See Section 2.2.2 for further details.

2-4 48-077 FOD ROO

2.3 LINE DRIVERS

A line driver provides a standard software interface between the
particular communications ada.pter and the user task (u-task) or
spec ial support programs in the' processor. In general, aline
driver allows the user to specify the control sequence and. the
data necessar.y to send or receive a transmission over a data
communications line. More specifically, a line driver:

• interfacef5 with the communications hardware (adapter),

• controls l:eads and wr ites to' or from the communications lines,

• performs certain basic timing functions, and

• controls nome modem signals.

A line dr ivel: is essentially "dumb"; it does not know what is at
the end of the communications line with which it is interfaced.
The line driver, however, does know how to control the adapter in
order to paso data to or from the communications line. The
protocols and procedures necessary to initiate, maintain and
terminate thE;' communications link must be supplied by either
special support software or the u-task with which the driver is
interfaced.

The OS/32 Data Communications Subsystem supports four line
drivers.

• DASY is an asynchronous line driver that interfaces with OS/32
asynchron()us adapters (e. g., PASLA).

• OCSY is a character synchronous line driver that interfaces
with bisynchronous adapters (e.g., Q/A).

• ozeo is a zeIO line driver that interfaces with zeIO adapters
(e.g., MPC). DzeD controls line synchronization, data
transparency and data blocking for medium- to high-speed
(1,200 to 19,200 baud) communications lines.

• OETH is the Ethernet line driver, which is a zeIO line driver
that interfaces with the EDLC.

2.4 DEVICE-INDEPENDENT ACCESS

The OS/32 Dat~a Communications Subsystem supports two levels of
data communications access:

• Device-independent

• Device-dependent

48-077 FOO ROO 2-5

Device-dependent access is discussed briefly in Section 2.5 and
more fully in Chapter 5.

The device-independent access level is ideal for the
noncommunications-oriented user because it allows the user to
extend the range of the system beyond the computer room.
Device-independent access permits the user to communicat.e with
remote terminals over communications lines with normal OS/32
supervisor call 1 (SVC1) I/O conventions just as if the data
communications terminals were local peripherals.
Device-independent access is discussed more fully in Chapter 4.

2.4.1 Terminal Managers

Device-independent support of communications devices is provided
by OS/32 terminal managers. In data communications, a logical
device, such as a CRT, processor or printer connected over some
type of communications line, is known as a terminal. A data
communications terminal needs a coordination protocol and certain
buffer management procedures in order to be supported c)ver a
particular type of communications facility. Data communications
terminals can be treated as local devices since the details of
hardware requirements are handled by terminal managers.

A terminal manager is actually software support that contains the
logic to initiate, maintain and terminate transmissions to a data
communications terminal. The user accesses the terminal manager
through SVC1. The terminal manager, in turn, calls a line driver
and, using the line driver features, supports the termin(~l in a
device-independent manner. The concept of a communications
device with device-independent access by a terminal manager is
analogous to the concept of a direct access file with file
manager support. The user program presents data to or requests
data from the terminal just as it would for any local device or
file. The terminal manager performs the necessary physical I/O,
communications line handshaking and/or data formatting.

The OS/32 Basic Data Communications Subsystem supports four
different terminal managers~ they are depicted in Figure 2-2.

2-6 48-077 FOO ROO

~
co
I
o
...,J
...,J

~
o
o

~
'-'
o

N
I

...,J

077-7

USER

MBSC

DCSY

BISYNCH RONOUS

- -

/

h

/

"-

"SMART" USER
PROGRAM POINT-TO-POINT

USER USER
PROGRAM OR

UTILITY

SVC15 I SVC1

MTM
CONVERSATIONAL -I--- - - - -- .- -- - - -

i i

MASY PPSM

I

I

DASY

I
8-L1NE MUX

I
""'I / /

MODEM MODEM
~ " ~

GLASS
TTY

ASYNCHRONOUS

Figure 2-2 OS/32 Terminal Managers

MULTIDROP

USER

SVC1

- -- - -- -- -

MMSM

MSUP

I
""'I / "'""'I

MODEM

• MASY is an unbuffered terminal manager that interfaces the
DASY driver with "dumb" terminals or printers (device codes
147). See the OS/32 System Generation (Sysgen) Reference
Manual for further information on device codes. MASY w()rks in
a conversational mode only and performs some very basic
formatting functions (e.g., carriage returns (CRs), line feeds
and trailing space truncations).

• MBse is a buffered terminal manager that interfaces with the
DCSY line driver and intelligent terminals. MBse works with
binary synchronous transmissions using the 2780 or 3780
protocols.

• PPSM is a nonbuffered terminal manager that interfaces between
DASY and intelligent terminals in a point-ta-point
environment. It is used with devices having device codes 156
and 157. PPSM supports conversational data modes, as does
MASY, but PPSM also supports a block transmission mode. This
driver is used by OS/32 Reliance.

• MMSM is a nonbuffered terminal manager that interfaces between
DASY and intelligent terminals in a multidrop environment. It
is used with devices having the device code 158. MMSM has t.he
same block support as PPSM, but is used for a multidrop
environment (i.e., many terminals connected to a single data
communications line).

Both PPSM and MMSM use an addit.ional software module known as
MSUP. MSUP contains code that is used by both PPSM and MMSM in
conjunction with their own differing software. MSUP's use is
analogous to two user tasks, both different, but both needing to
access the same library subroutine. Because of this, PPSM and
MMSM could be more correctly called PPSM-MSUP and MMSM-MSUP.

2.4"2 Protocols

A protocol is a set of conventions for the establishment and
maintenance of a data transmission line. In other words, a
protocol is a set of rules that the comp~ter and/or terminal
follow when using data communications facilities. Military radio
communications are a good example of communications protocol. A
communications link is requested with "This is XYZ calling A~e."
Acknowledgments are made with a "Roger" and the end of a
t.ransmission is signified by an "Over". These particular
responses are a part of the established protocol of military
communications. A data communications protocol is s imilia.r, but
much more regimented. In a data communications protocol, the
conventions are precise and must be followed exactly.

Data communications protocols provide facilities for error
handling, handshaking, coordination procedures for switched
networks and failure recovery.

2-8 48-077 FOO ROO

Error handling includes both error detection and error correction
techniques. Error detection is based on redundant information in
the transmitt~ed message. Correction of detected errors is
generally done by retransmission of a portion of the message as
provided for in the protocol. Another method of error correction
is the replacement of an error with a special character for
manual error correction.

Character errors can be checked by a method known as vertical
redundancy checking (VRC). In this technique, a parity bit is
added to the character bits and the process checks for either odd
or even par it},. If a character with the incorrect parity is
detected, it is treated as an error.

The disadvantage of VRC is that it can only detect a single or an
odd number of bit errors. Another technique of error checking is
needed to find multiple errors. One such technique is to place
parity bits along a data block in addition to those used by VRC.
These special bits are added at the end of the block so the bit
parity is always odd. This technique is referred to as
longitudinal redundancy checkin.g (LRC). LRC is computed by
taking the E~xclus ive-OR of a. zero character success ively with
each character in the block.

CRC is anothel:, more powerful \t.J'ay of detecting errors. This
method is eosentially a combination of VRC and LRC. In CRC, a
polynomial formula is used to generate a special checking
sequence at both ends of the tra.nsmission network. The result of
this sequence is sent by the transmitting station to the
receiving station and is compared to the value of the sequence
calculated by the receiving station. If the two values are not
equal, errorn have occurred. CRC is capable of detec~ing
multiple bit errors and many burst-type errors".

A protocol known as the data link control protocol defines the
general contr.ol framework for the data communications network.
A terminal can have its own inte'rnal protocol, different from the
general control protocol. However, some type of control over
terminals is necessary in multi terminal networks where there are
many terminals connected to a single line. The process of
polling terminals uses a pro,tocol to request and establish
comrnunication~5 links between the processor and a terminal
requesting the link.

Another type of protocol is kno~'I1 as a communications protocol.
This protocol provides rules for transmission and reception of
the different types of data stre!ams. For example, the advanced
data communications control procedure (ADCCP) is a synchronous,
bit-oriented, code-independent, interactive protocol specifically
designed for computer-based data communications over a
full-duplex m()de. Other communi.cations protocols are designed to
be character-oriented, or for asynchronous transmissions,
or to be u~:led over a half-·duplex transmiss ion mode, etc.

48-077 FOO ROO 2-9

For information on the protocols supported
Communications Subsystem, see the
Bisynchronous, Bit-Synchronous and Network
Reference Manuals.

2.5 DEVICE-DEPENDENT ACCESS

by the OS/32 Data
OS/32 Asynchronous,
Drivers Programming

Device-dependent support of communications devices is often
referred to as the line driver access method because the user
makes use of line driver features directly through the SVC15
parameter block. Direct use of data communications line drivers
provides the more primitive functions that enable a user to
tailor a communications system to a particular need. The
position of the line drivers in the OS/32 Data Communications
Subsystem makes it easy for the user to specify the special
control sequences needed to complete a transmission. For Lhis
level of support, the u-task need only be assigned a
communications line by the operating system. The flexibility of
this system allows straightforward tailoring of the
communications system and such features as command chaining,
buffer management and task interrupts (traps).

The disadvantage of device-dependent access, as opposed to Lhe
OS/32 terminal managers, is that the u-task must specify all data
communications control sequences through the SVC15 parameter
block. It is recommended that, when possible, device-independent
access be used.

2-10 48-077 FOO ROO

3.1 INTRODUCTlrON

CHAPT'ER 3
DEVICE HANDLING

Data communications lines and/or terminals must be assigned or
closed just lilte other devices. Also, line control blocks (LeBs)
for OS/32 Data Communications buffered terminal managers need to
be allocated and deleted just like direct access files. These
allocations, assignments, etc., can be accomplished by using
either the supervisor call 7 (SVC7) parameter block or the
specific OS/32 operator commands.

The SVC7 paramE~ter block is covered in Sect ions 3.2 and 3.3. frhe
use of system operator commands is discussed in Section 3.4.

3.2 SUPERVISOR CALL 7 (SVC7)

SVC7 is used in data communications to:

• allocate and delete LCBs for buffered terminal manager access
(SVCl) ,

• assign and close logical units for line driver (SVClS) and
terminal manager (SVCl) access,

• checkpoint buffered terminal manager access (SVCl),

• rename and l~eprotect data communications lines (SVClS access
devices) and terminals (SVCl access devices), and

• allocate and d~lete drop control tables (DCTs) for channel
terminal manage~r (SVCl) access or multidrop lines.

This discussion of SVC7 includes only information pertinent to
data communications. For in-depth discussions of SVC7 support,
see the OS/32 Supervisor Call (SVC) Reference Manual.

3.2.1 Superv1nor Call 7 (SVC7) Parameter Block

SVC7 provides device-handling functions supported by the data
communications s,ubsystem. These functions are accomplished
through the SVe7 parameter block and coding shown in Figure 3-1.

48-077 FOO ROO 3-1

0(0) 12(2) 13(3)
Function code
(SVC7.0PT)

1 Error status I
1 (SVC7. STA)

lu
(SVC7.LU)

4(4)
Write key
(SVC7.WKY)

8(8)

12(C)

16(10)

20(14)

24(18)

parblk

15(5) 16(6)
Read key

(SVC7.RKY)

Device mnemonic
(SVC7.VOL)

Filename
(SVC7.FNM)

F~xtension

(SVC7.EXT)

File size
(SVC7.SIZ)

SVC 7,parblk

Logical record length
(SVC7.LRC)

123(17)
Not used

ALIGN 4
DC
DS
DB
DB
DB
DC
DC
DC
DB
DB
DC

X'function code'
1
lu
'write key'
'read key'
H'record length'
C'4-character device mnemonic'
C'8-character filename'
C'3-character extension'
Not used for data communications
F'file size'

Figure 3-1 SVC7 Parameter Block Format and Coding

3-2 48-077 FOO ROO

3.2.1.1 Function Code Field

The function code field is a 2-byte field that contains the
hexadecimal number indicating the function to be performed. The
format of the function code field is shown in Figure 3-2.

I A I A I C I R I RIC I Die I Access IAccess I
I LIS I H I NIP I L I L I K Iprivileges Imethod I

Bits:
o 1 2 3 4 5 6 7 8 10 11 12 13

Figure 3-2 SVC7 Function Code Field

File
types

15

The SVC7 function code field is divided into two I-byte sections.
The first byte is referred to as the command byte and the second
as the modifier byte.

The command byte, bits 0 throu,gh 7, requests one or more file
management functions. If mo're than one command bit is set, the
respective functions are processed sequentially, left to right.
The modifier byte, bits 8 through 15, modifies commands specified
in the command byte.

The data communications function of each bit setting in the SVC7
function code field is explained in Section 3.3.

NOTE

The modifier field is not used on a fetch
attributes call. Instead, the device
code is returned in this field.

3.2.1.2 Error status Field

The error status
appropriate error
SVC7.

field is a l-byte field that receives
codes when an error occurs while executing

The interpretation of the error status field depends on the
command specified in the ciall. It is compatible with nondata
communications status returnleJ (see the OS/32 System Level
Programmer Reference Manual). A zero status always means the
desired options were performed without error. Table 3-1 details
the SVC7 error status field bit settings.

48-077 FOO ROO 3-3

3-4

TABLE 3-1 SVC7 ERROR STATUS CODE BIT SETTINGS

BIT HEX I FUNCTION I MEANING

---o (00)

I (01)

2 (02)

3 (03)

4 (04)

5 (05)

6 (06)

7 (07)

8 (08)

9 (09)

10 (OA)

11 (OB)

12 (80-FF)

I All

I A,O

I All but
I A,D

I A,O,D

A,O,N,D

I A

I O,D

I O,H,N,
I P,D

o

All but
A,D

I No error; the requested
I functions are complete

I Illegal function; illegal
I FT or AM modifier

I Logi6al unit (lu) error~
I illegal lu

I Device error; no such
I device in the system

Name error; mismatch on
filename. ext ·field (may
indicate failure to
allocate LCB when
assigning for buffered
access)

I Size error; erroneous
I LRECL or SIZE field

I Protect error; erroneous
I protection keys

I Privilege error; unable
I to obtain requested
I privilege

I Buffer error; unable
I to obtain requested
I privilege

Assignment error; lu. not
assigned or attempted
to mix SVCl and SVCl5
access to same device

A,N,P,D Type error; nondirect
I access device or device
I off-line

I A,O,N,D I File descriptor (fd)
I error; illegal syntax

O,C,D,T I Input/output (I/O) error;
I interpreted as SVCl
I status byte

48-077 FOO ROO

3.2.1.3 Logical Unit (lu) Field

This l-byte f i.eld contains a hexadec imal number ind icat ing the Iu
assigned to the data communications device for which t.he function
is requested. This field is used for all SVC7 functions except
allocate and delete.

3.2.1.4 Read and Write Key Fields

Protection keys for devices are specified in this halfword.
These keys are required for the allocate, assign, reprotect and
delete functions. It is recommended that they be reset to zero.

When executing the SVC7 fetch a·ttr ibutes function, the device
attributes are stored in the write and read key fields of the
parameter block.

3.2.1.5 Logical Record Length Field

The logical record length field is a 2-byte field containing a
dec imal numbe!r ·that ind icates the phys ical record length when
allocating the! buffered logical -terminal manager.

When executing a 'fetch attr ibutels function, this field receives
a number indica·ting the phys ical record length of the device
assigned to the lu.

3.2.1.6 Device Mnemonic Field

The device mnemonic field is a 4·-byte field containing ASCI I code
that indicates the name of the di:lta communications line to be
used when the allocate, assign, delete and fetch attributes
functions are executed.

3.2.1.7 Filename Field

The filename field is an 8-byte field containing ASCII code that
indicates the buffered logical tl9rminal described by the Lca that
is being allocated or assigned.

When executing a fetch attr ibutel3 function, this field
the filename from the data communications device
ass igned to the lu spec if ied in 1:.he parameter block.

3.2.1.8 Extension Field

receives
currently

This 3-byte ASCII field is treated as an extension of the
filename.

48-077 FOO ROO 3-5

3.2.1.9 File Size Field

This 4-byte field contains a hexadecimal number indicating the
block size established when an LCB is allocated.

3.3 COMMAND FUNCTIONS

This section briefly describes the command functions of the
function code field as they relate to data communications. For
a more detailed explanation of these command functions, see the
OS/32 Supervisor Call (SVC) Reference Manual.

3.3.1 Allocate Function

Tne allocate function reserves memory space for LCBs or DCTs for
SVCl access. The space reserved must be less than the user's
remaining allotment of system space.

The required parameter block fields for this function are:

• Bits 0 and 13 through 15 (file type) of the function code
should be set (hex mask X'8007').

• Write key field

• Read key field

• Logical record length field

• Device mnemonic field

• Filename field

• Extension field

• File size field

For multidrop lines, a OCT must be allocated for each drop
assigned.

3.3.2 Assign Function

The assign function establishes a logical
line or terminal and the task. This is
specified lu for either SVCl or SVC15
terminal access, the device mnemonic,
fields specify the name of a logical
previously allocated LCB.

3-6

connection between a
accomplished through a

access. For buffered
filename and extension
terminal given to a

48-077 FOO ROO

The required parameter block fields for this function are:

• Bit 1 of the function code must be set; bits 8 through 10
(access privilege), 11 and 12 (access method) and 13 through
15 (file type) should be set as needed (hex mask X'40nn').

• lu field

• Write key field

• Read key field

• Device mnemonic field

• Filename f i,eld

• Extension field

Assignments of the same device -to multiple logical units are
governed by the specified access privileges. Multiple
assignments are valid as long as assignments specify the same
access method. Assignments of a device for SVC15 access when it
is already assigned for SVCl access, or vice versa, is illegal
regardless of the specified access privileges. The only legal
access privileges for SVC15 assignment are those specifying both
read and write access (B 100 through B 111).

3.3.3 Change Access Privileges Function

This function changes the current access privileges of an
assigned device to the access privileges specified in the
parameter block. The new access privileges must be compatible
with the existing ones; otherwise, the existing access privileges
of the device remain unchanged and an error status is returned.
If the device is assigned with read-only privileges, a write
access privilege change is not allowed. See the 08/32 Supervisor
Call (SVC) Reference Manual for a table of allowable access
privilege changes.

Not all 08/32 terminal managers support change access privileges.
See the appropriate terminal manager's manual for further
information.

The required parameter block fields for this function are:

• Bit 2 of the function code must be set; bits 8 through 10
should be set, as needed, to indicate the desired access
privileges (hex mask X'20nO').

• lu field

48-077 FOO ROO 3-7

If an error is encountered while processing this request, the
device remains assigned with its original access privilege. A
device assigned for SVCl5 access can only request read/write'
access.

3.3.4 Close Function

The close function breaks the logical connection between an lu
and a data communications line and terminal by closing the
currently assigned line. For logical units assigned for a
buffered terminal (SVCl) write access, partially filled buffers
are written to the line (i.e., checkpointed). If there are no
other assignments to this device, the data terminal ready (DTR)
signal to the modem is dropped, disconnecting a switched line.
This occurs whether or not the device is system generated
(sysgened) as a switched line.

The required parameter block fields for this function are:

• Bit 5 of the function code field must be set (hex mask
X'0400').

• lu field

3.3.5 Delete Function

The delete function removes a currently unassigned LCB from
memory. The required parameter block fields are:

• Bit 6 of the function code field must be set (hex mask
X'0200').

• Write key field

• Read key field

• Device mnemonic field

• Filename field

• Extension field

If the logical terminal name matches the name in the LeB, the LeB
is deleted.

3-8 48-077 FOO ROO

3.3.6 Checkpoint Function

The checkpoint function ensures that terminal data buffered in
memory is transmitted to the 'terminal. The required parameter
block fields for this function are:

• Bit 7 of the function code must be set; bits 11 and 12 should
be set, as needed, to specify the required access method (hex
mask X' Olnn') .

• lu field

If the lu requested is not aSSigned, an error code of X'Sl' is
returned.

3.3.7 Fetch A,ttr ibutes Function

For proper operation, some programs require knowledge of the
physical attributes of the device associated with a given lu.
The fetch attributes function accesses and sends this information
to the SVC7 pa.rameter block. Thf~se attr ibutes include the dev ice
mnemonic, filename, extension and buffer size. Device codes are
sent to the mod.ifier byte of the function code field and device
attributes are stored in the wri1:e and read key fields. The
logical record length field l:eceives a device physical record
length. The field differences f()r the fetch attributes function
are illustrated in the OS/32 Supervisor Call (SVC) Reference
Manual.

When executing this function, thE~ modifier (device codes) field
receives a hexadecimal number indicating the device type. The
System Generation/32 (Sysgen/3;~) Reference Manual lists all
device codes.

The device attributes field receives a hexadecimal number
indicating certain device attributes. All supported attributes
and corresponding.masks are listed in the OS/32 Supervisor Call
(SVC) Reference Manual. The hex mask for this function is
X 10000' (no command bits set).

3.3. S Vertical Forms Control (V1~C) Function

The VFC option turns the VFC function on or off for a particular
device. To ,execute this function, only the first four bytes of
the SVC7 param1eter block are requ ired.

To use the VFC function, the cOIDnland byte of the function code
should be set to X'FF'. To turn on the VFC function for a
part icular dev ice, set the mod if i.er byte to X' 20 I. To turn the
function off, set the modifier byte to X'2l'. The error status
and lu fields are the same for all SVC7 services.

48-077 FOO ROO 3-9

VFC is supported by device codes 156 and 157 only. Se~ the
System Generation/32 (Sysgen/32) Reference Manual for further
information.

3.3.9 Rename Function

The rename function changes the device mnemonio taQle (OMT) entry
for the device. This routine al,sQ changes the LeB.NAME and
LCB.EXT fields when it finds a buffered terminal.

The rename function may not be supported for al.l data
communications terminal managers. See the appropriate terminal
manager's manual for further information.

3.3.10 Reprotect Function

When parameters are passed by the user, the
changes the read and the write keys.
buffered, REP.DCB gets the device control
from the LCS.

reprotect function
Also, if a device is

block (DCB) address

3.4 OPERATOR COMMANDS

Data communications SVC7 support can be invoked
System operator commands. A brief description
pertinent to data communications is given in this
the OS/32 Operator Reference Manual for a detailed
these commands.

via the OS/32
of the commands
section. See
description of

The term ITAM, which appears in the following commc~nds, i$
synonomous with the term data communications.

3-10 48-077 FOO ROO

I ALLOCATE

3.4.1 ALLOCATE Command

The ALLOCATE command is used to allocate an LeB for data
communication~3 buffered terminal access.

Format:

Parameters:

fd

I TAM

lrecl

bsize

keys

48-077 FOO ROO

is the file descriptor of the buffer or device
to be allocated.

specifies that the device to be allocated is
a data communications device.

is a decimal number specifying the logical
record length of a data communications device.
It cannot exceed 65,535 bytes. 1recl may
optionally be followed by a slash (/), which
delimits it from bsize. If no logical record
length is specified, 80 is the default.

is a decimal number specifying
block size to be used for
debuffering operations on
communications device.

the physical
buffering and

the data

When ITAM is specified, bsize represents the
buffer size in bytes. For ITAM buffers, this
parameter cannot exceed the maximum block size
established by the sysgen procedure. If bsize
is omitted, the default value for the ITAM
buffer will be the "standard" buffer size for
the particular device.

specifies the write and read protection keys.

3-11

Functional Details:

The fd must specify the device mnemonic for the desired data
communications terminal, plus a unique filename and extension for
each lu to which the terminal is to be assigned. If an LCB'for
the specified filename and extension already exists, a NAME-ERR
message is returned.

The operator DISPLAY ITAMTERM command can be used to display
allocated LCBs in a manner analogous to that of the DISPLAY FILES
command. See the OS/32 Operator Reference Manual for a
description of these commands.

Examples:

The following allocates an LCB for a binary synchronous terminal
called RJE.IN on device aSC1:.

AL aSC1:RJE.IN,ITAM,80/404

The following allocates an Lca for a binary synchronous terminal
called INPUT on device aSC1. Here the default logical record
buffer and block size are used.

ALLOCATE BSC1: INPUT, I TAM

3-12 48-077 FOO ROO

ASSIGN

3.4.2 ASSIGN Command

The ASSIGN con~and assigns a data communications device to a
task's logical units.

Format:

ASSIGN lu,fd , , ,)SVCl5

[Dlaccess : ... p r .•....• :.i v i leges }] [{.,.k ... , " .. e." ..•.•. y .. ,', ... ,.', .. s .. , ,.}] [(Iuml I]]
Parameters:

lu

fd

access
privileges

48-077 FOO ROO

IRil IDell} SVCF
~VFC

is a decimal number specifying the logical
unit number to which a device or file is to be
assigned.

is the file descriptor of the device or file
to be assigned.

specifies the desired access
Possible access privileges are:

privileges.

SRO
ERO
SWO
EWO
SRW
SREW
ERSW
ERW

Sharable read-only (SVCl access)
Exclusive read-only (SVCl access)
Sharable write-only (SVCl access)
Exclusive write-only (SVCl access)
Sharable read/write (default)
Sharable read, exclusive write
Exclusive read, sharable write
Exclusive read/write

NOTE

The ASSIGN command is rejected if
the specified access privileges
cannot be granted. For SVCl5
access, the assignments must
specify both read and write
access. Assignment for SVCl5
access is rejected if read-only or
write-only access is requested.
Ass ignm,ent for SVCl5 access is
also rejected if the device is
already aSSigned for SVCl access,
and vice versa. See the OS/32
Operator Reference Manual.

3-13

keys

SVCl
SVClS
SVCF
VFC

signify the write/read protection keys of the
device to be assigned.

signify which SVC parameter block :Ls to be
used. SVClS signifies that the specified
device is to be assigned for SVClS access. If
SVClS access is specif,ied, VFC can.not be
specified. The default value is SVC1, which
specifies that the device is to be assigned
for SVCl access.

Examples:

The following example assigns an asynchronous line, PALO: to Iu
9 for SVClS access. SRW access privileges and zero keys are
assumed.

AS 9,PALO:",SVC1S

The following example assigns the bisynchronous terminal for
which an LCS was allocated in the first allocate example to lul
with SRW access.

AS l, SSC l: RJE , IN

3-14 48-077 FOO ROO

CLOSE

3.4.3 CLOSE COMMAND

The CLOSE comrnand permits the op l9rator to close (unass ign) one or
more dev ices a.ss igned to the curlrently selected task' slog ica 1
units.

Format:

{ iu 1 G iU::: .. , iUn]}
.cLOSE ,a.u.L..t

Parameters:

lu

ALL

Functional Details:

is a decimal number specifying the logical
unit assignments.

specifies that all logical units of the
currently sel'9cted task are to be closed.

Closing an unassigned lu does not produce an error message. A
CLOSE command can be entered only if the referenced task is
dormant or paused.

Examples:

The following example closes logical units 1, 3 and 5 of the
currently seletcted task.

CL 1,3,5

The following example closes all logical units of the currently
selected task.

CLOSE A

48-077 FOO ROO 3-15

DELETE

3.4.4 DELETE COMMAND

The DELETE command is used to delete currently unassigned LeBs
from memory.

Format:

DELETE fd 1 [, fd2 , ••• ,fdnJ

Parameter:

fd identifies the LeBs to be deleted.

Functional Details:

The LeB being deleted must not be currently assigned to any lu of
any task.

3-16 48-077 FOO ROO

I XALLOCATE I

3.4.5 XALLOCATE COMMAND

The XALLOCATE command allocates an LCB. If an Lca with the
specified fd exists, it is deleted and an LCB with the same fd is
allocated.

Format:

Parameters:

fd

I TAM

lrecl

bsize

keys

48-077 FOO ROO

is the file descriptor of the buffer or device
to be allocat.ed.

specifies that the device to be allocated is
a data communications device.

is a decimal number specifying the logical
record lengt.h of a data comunications device.
It cannot exceed 65,535 bytes. lrecl may
optionally be followed by a slash (/), which
delimits it from bsize.

is a decimal number specifying
block size to be used for
debuffering operations on
communication:s device.

the physical
buffering and

the data

When ITAM is specified, bsize represents the
buffer size in bytes. For ITAM buffers, this
parameter cannot exceed the maximum block size
established by the sysgen procedure. If bsize
is omitted, the default value for the ITAM
buffer will be the "standard" buffer size for
the particular device.

specify the write and read protection keys.

3-17

Functional Details:

The XALLOCATE command differs from the ALLOCATE command in that
if an attempt is made to allocate an existing LCB with the
ALLOCATE command, an error message is given. With the XALLOCATE
command, however, if the LCB to be allocated already exists, no
message is generated and the LCB is deleted and reallocated.
Otherwise, XALLOCATE and ALLOCATE behave in the same manner.

3-18 48-077 FOO ROO

3 • 4 • 6 XDELETI~ Command

The XDELETE c()mmand is used to delete one or more LCBs.
LCB does not exist, no error is generated.

Format:

Parameter:

fd identifies the LeBs to be deleted.

48-077 FOO ROO

XDELETE

If the

3-19

4.1 INTRODUCTION

CHAPTER 4
DEVICE-INDEPENDENT ACCESS

Device-independent access is des igned for the noncommunications·­
oriented use): who wishes to use data communications facilities
without the trouble of direct line driver control. Such control
is provided for the user by the OS/32 terminal managers. A
terminal manager contains the logic to initiate, maintain and
terminate a data communications link, thereby freeing the user
from the need to control these line driver functions through the
user task (u--task). For most bas ic communications tasks, use of
OS/32 terminal managers is sufficient to accomplish the link.

4.2 TERMINAL MANAGER ACCESS

The terminal ~nanager provides access to remote or local devices
for the following uses:

• Programs that can access local or remote devices without
recompilation.

• The nonco~~unications-oriented user who wishes to access
remote facilities without knowledge of line protocols and
codes - in addition to functions common to local and remote
devices, t~erminal managers provide functions to connect and
disconnect devices from a communications line.

• The communications-oriented user who determines that a
standard terminal manager provides adequate support for an
application without special-purpose software.

While data c()mmunications line drivers can communicate with
different types of devices, the terminal manager is designed to
support only a single device type or a group of similiar device
types.

In general, terminals can be accessed in either a buffered or
nonbuffered mode. For nonbuffered access, data is transferred
directly to 01: from the user buffer and every request from the
user program r.equires at least one physical transmission over the
communicationn line.

48-077 FOO ROO 4-1

For buffered access, data is transferred between the user buffer
and a system buffer. The terminal manager initiates data
~ransmissions only when necessary. The system buffers needed by
buffered access are contained in a system structure known as the
line control block (LCB). Before accessing a terminal in the
buffered mode, the LCB must be allocated in memol::y. At
allocation time, the logical buffered terminal is given a name
and the log ical record length and block size are SPE'C if ied.
After the program finishes accessing the terminal, the LCB can be
deleted from memory. Supervisor call 7 (SVC7) calls or the OS/32
command language provides the means to allocate, assign, delete
or rename the Lca (see Chapter 3).

In data communications, all terminal access, such as input/output
(I/O) access, is accomplished via a logical unit (lu). Each
terminal must be assigned to the proper lu prior to access. For
nonbuffered access, the terminal is assigned to the lu using the
name given to the terminal at system generation (sysgen) time.
For buffered access, the logical terminal, named by a previously
allocated LCa, is assigned to the desired lu. After the p~ogram
has accessed the terminal, the lu should be closed. Chapter 3
discusses the OS/32 support provided via SVC7 or the command
language for assigning, checkpointing and closing logical units
for terminal access.

4.3 SEQUENCE OF OPERATION

For a terminal manager that supports buffered access, ~he user
must first allocate an Lca. The terminal is then capable of
accessing data in either a buffered or nonbuffered mode.

When a program is ~o be used with one type of buffered terminal,
all required actions can be performed by SVC7 calls.

To use the device-independent facilities provided by terminal
managers, the following four steps must be performed.

1. Sysgen

4-2

Include terminal manager support by specifying the needed
terminal (DCOD) at sysgen. Terminals are configured just
like any local device, such as a line printer.

48-077 FOO ROO

2. Programming

Perform I/O requests by using SVCl as if ~he requests were to
a local device or direct access file. Since all I/O is
performed to an lu rather than a specific device, device
dependency is of no importance.

3. Execution

A nonbuffered device is assigned to the lu just as if it were
a local device. For buffered devices, an LCB must be
allocated prior to assigning the lu. The terminal manager
uses this Lca to control access to the Lerminal. The Lca
contains control fields, the device name and the required
buffers.

After allocating an LCS, assign the Lca to the lu used for
program access. This establishes the link between the lu and
the dey iCE~ named by the LCB.

4. Termination

Close the lu assigned to the device and delete the LCB from
memory. ~~he device is then available for another program.

The steps outlined for execution and termination can be performed
by the progr~n via SVC7 requests or by the system operator
through the 08/32 command langua,ge.

In general, the sequence of operations necessary for terminal
leve I access jLs:

1. Allocate an Lca that reserves buffer space and names a
logical terminal (buffered access only).

2. Assign the terminal or logical terminal to the desired
program Ill.

3. Access the terminal via SVCI calls, similar to accessing a
local device.

4. Close the assigned lu when the terminal is no longer needed.

5. Delete thE~ Lca from memory (buffered access only).

48-077 FOO ROO 4-3

4.4 SUPERVISOR CALL 1 (SVC1)

The data communications SVCl facility is ideal for the
noncommunications-oriented user. It allows the user to easily
extend the range of a system beyond the computer room. Remote
terminals can be added with no impact on user programs.

All data transfers are performed at the read/write level. The
OS/32 software performs the processing needed to interface with
the terminal or protocol that frees the user of the problems
generally associated with communications programming.

By issuing a read/write SVCl to the OS/32 executive, the llser can
perform local or remote I/O. SVCl can be used directly by a
Common Assembly Language (CAL/32) program or indirectly by a
high-level language run-time library (RTL) routine. OS/32
provides extended options with SVCl to give the assembly-level
user direct control over communication functions that have no
parallel in local devices, such as disconnecting from a telephone
line.

section 4.4.1 describes the SVCl functions for terminal access.
The individual terminal manager description should be consulted
for exact interpretation of function code and status. To write
user programs that operate with either remote or local devices,
see the SVCl description in the OS/32 Supervisor Call (SVC)
Reference Manual.

4.4.1 Supervisor Call 1 (SVC1) Parameter Block

SVCl is used to initiate I/O for communications devices as well
as local devices. The extended options field of the SVCl
parameter block shown in Figure 4-1 is used for terminal manager
access. The function code byte, interpreted for data 'transfer
requests, is defined in Table 4-1.

The SVCl parameter block must be 24 bytes long, fullword
boundary-aligned and located in a task-writable segment.
Location within a writable segment is necessary so that the
status of an I/O request can be returned to the status fields of
the parameter block. All fields in the parameter block are not
required for every I/O request, but must be reserved (see Figure
4-1).

4-4 48-077 FOO ROO

0(0) 11(1) 12(2) Device- 13(3) Device­
independent 1 dependent Function codel]u

4(4)

8(8)

12(C)

16(10)

20(14)

parblk

status status

Buffer start address

Buffer end address

Random address

Length of data transfer

Extended options

S:VC l,parblk

ALIGN 4
DB
DB
DS
DC
DC
DC
DS
DC

X'function code'
X' lu'
2 bytes for status
A(buffer star1t.)
A(buffer end)
4 bytes for random address
4 bytes for length of data transfer
Y'extended options'

Figure~ 4-1 SVCl Par'ametlsr Block Format and Coding

Fields:

Function
code

48-077 FOO ROO

is a l-byte field indicating whether a request
is a data tr~1sfer or a command function, and
the specific operation to be performed. Bit
settings for data transfer requests are
described in Table 4-1. Hexadecimal function
codes for command function requests are
defined in Table 4-2.

4-5

4-6

lu

Device~

independent
status

Device­
dependent
status

Buffer start
address

Buffer end
address

Random
address

Length of
data transfer

Extended
options

is a l-byte field containing the logical unit
currently assigned to the device to which an
I/O request is directed.

is a l-byte field recelvlng the execution
status of an I/O request after completion.
The status received is not directly related to
the type of device used.

is a l-byte field recelvlng the execution
status of an I/O request after completion.
The status received contains information
unique to the type of device used.

NOTE

The device-dependent status byte,
into which general purpose drivers
return the low-order eight bits of
the device address, is used
differently for terminal managers.
When an error occurs on a data
communications device, the byte is
used to differentiate between t.he
possible specific errors within
the general category given by t~he
device-independent status.

is a 4-byte field used only for data
transfer requests and must contain the
starting address of the I/O buffer that
receives or sends the data being transferred.

is a 4-byte field used only for data
transfer requests and must contain the ending
address of the I/O buffer that receives or
sends the data being transferred.

is a 4-byte field containing the address
of the logical record to be accessed for a
data transfer request; a legal hexadecimal
number must be specified in this field if bit
5 of the function code is set to 1.

is a 4-byte field used only for data
transfer requests. It receives the number of
bytes actually transferred as a result of a
data transfer request. If an error occurs
during data transfer, this field is modified
with indeterminate data.

is a 4-byte field specifying device-dependent
and device-independent extended functions that
must be executed by the device when it is
servicing a data transfer request.

48-077 FOO ROO

If bit 7 of the function code is zero (Format), ~he
interpretation is identical to the interpretation for other
devices descr :lbed in the OS/32 System Level Programmer Reference
Manual. The terminal manager will make assumptions using
defaults wherE~ necessary. If bit 7 is set to 1 (Image), the
extended options field 1s required.

BIT I

I FIR I W I F I W I A I PIE I
I C I D I RIO I A I C I RIO I

Bits:
o 1 2 3 4 5 6 7

Figure 4-2 SVCl Function Code Field

TABLE 4-1 SVCl DATA TRANSFER FUNCTION CODE

MEANING

o Function code type

This hit indicates the I/O function to be performed.

o Indicates a standard data transfer.

1 Indicates an SVCl command function. If bit 7 is
also set, no echoplex is desired for the next image
I/O.

1,2 Read/write bits

The mE~aning of these two request bits is modif ied by
bits 3 to 7 to control the transfer. Basically the
four values are:

10 RE~ad
01 Wl~ ite
11 Test and set
00 Weli t only or tes t I/O complete

48-077 FOO ROO 4-7

TABLE 4-1 SVC1 DATA TRANSFER FUNCTION CODE (Continued)

BIT I MEANING

--==----------------=--3 ASCII/binary bit

This bit indicates the type of formatting requested if
bit 7 is set.

o Indicates ASCII formatting. The internal data ls in
the 7-bit ASCII character set and is translated to
an equivalent character set appropriate for the
external device. If image I/O extended option is
specified, the data is translated and the appro­
priate parity is added.

1 Indicates binary formatting. The internal data is
8-bit binary and will not be translated. Binary
image is a straight 8-bit data transfer, no parity_
If bit 3 is set and an image I/O extended option is
specified, the internal data byte (eight bits) is
transferred without translation.

4 Proceed/wait bit

This bit indicates the action to be taken after an I/O
is initiated.

o Proceed - indicates that control is to be returned
to the task after I/O initiation.

1 Wait - indicates that a task is to be put into I/O
wait until the data transfer is complete.

5 Sequential/random bit

o Sequential - indicates the next logical record is to
be accessed.

1 Random - indicates the logical record specified by
the hexadecimal value in the random access field is
to be accessed.

6 Unconditional proceed bit

o Indicates the task is to be put into wait until the
requested device/file is free. At that time, the
request is processed.

1 Indicates that the request is to be rejected with a
condition code of X'F' if the requested device/file
is not free.

4-8 48-077 FOO ROO

TABLE 4-1 SVCl DATA TRANSFER FUNCTION CODE (Continued)

BIT I MEANING
:=====a=======================~=========================~======

7 Standard/extended options bit

o Indicates standard device-independent data format­
ting is to be performed.

1 Indicates that the extended options field is to be
examined for additional formatting and line control
options.

The extended options field of the SVCl parameter block consisting
of 32 bits, is defined in Table 4-2. Extended options provide
both device-dependent and communications-dependent features with
SVCl access. This allows a limited amount of formatting to be
done by the program without having to use SVCl5 line driver
access. The capability to connect to and disconnect from a
switched communications line (i.e., the ability to answer a data
telephone call and to hang up) is also provided. The extended
options can bEt used only in conjunction with a read or wr ite
operation, as explained in Table 4-2.

If the user does not wish to use the extended options,
connect/disconnect operations are controlled by the terminal
manager. If an SVCl request is made to an unconnected switched
line, a connect is automatically performed. When the last
assignment to a switched terminal is closed, a disconnect is
performed.

For editing terminals (device codes 156 and 157), a user may
specify no €!choplex for an imatge I/O. Another option available
for these device codes is 8-bit no parity data transfer. No
echoplex is specified by preceding the image I/O with an SVCl
command with the function code slet to X, 81' and the extended
options field set to Y'lOOO 0000'. To indicate 8-bit no parity
data transfer, the user must set the binary bit in the function
code (X' 10') .

An in-depth discussion of SVCl data transfer functions and
extended options can be found in the OS/32 Supervisor Call (SVC)
Reference Manual.

48-077 FOO ROO 4-9

TABLE 4-2 SVCl EXTENDED OPTIONS

BIT I HEX MASI{ MEANING
__ w. _____ _

o BODO 0000.

1 4000 0000

2 2000 0000

3 1000 0000

Connect

When set, this bit instructs the terminal
manager to establish a connection over a
switched line before transferring data. It
is ignored for nonswitched configurations.
If the line has beeri sysgened with the
XDCD bit set, then alII/Os are errors
until an SVCI with the 0 bit set is
executed. See the System Generation/32
(Sysgen/32) Reference Manual for further
details.

Disconnect

When set, this bit instructs the terminal
manager to disable the data terminal ready
control signal to the adapter after the
data transfer operations specified in the
function code are completed. This allows
program-controlled disconnect of switched
lines and control of carrier on leased
configurations.

Format/image bit

o Indicates that no data formatting is to
be performed by the terminal manager
(image mode).

1 Indicates that the terminal manager
performs all required data manipulation
to convert between the terminal's
required data format and one th~t can be
used for transfers to other Perkin'-Elmer
peripherals (i.e., trim trailing blanks
and stop I/O on the detection of the
carriage return (CR».

No echoplex

When set, this bit is used in conjunction
with function code X'Bl' to specify no
echoplex.

4-6 I OEOO 0000 I Not ITAM-related.

4--10 4B-077 FOO ROO

TABLE 4-2 SVCl EXTE~~ED OPTIONS (Continued)

BIT 1 HEX Ml\SK

"]

8 0080 0000

MEANING

\ 0 ':0 reservedl

Vertical forms control (VFC)

When set, this bit requests the VIC
option for an ASCII I/O operation.

9-151 007F 0000 1 Reserved for future device-independent
1 options. All bits must be zero.

16-31\ 0000 FFFF 1 Reserved for device-dependent options. See

48-077 FOO ROO

\ individual terminal manager descriptions'
1 for definitions. I

4-11

5.1 INTRODUCTION

CHAPTER 5
DEVICE-DEPENDENT ACCESS

Device-dependent support of communications devices is provided by
OS/32 line driver access. For this support, the operating system
is configured with communications lines that correspond to the
hardware communications adapterl:3 present in the system. Through
line driver access, different terminals can be supported at
different times over the same line since the actual
communications protocols and data formats are specified by the
user program via supervisor call 15 (SVC15). SVCl5 allows a
program to. specify a sequence of control commands and the data
required by the control sequencc9. Line driver access supports a
communications network with maxilnum efficiency and throughput by
providing the capability to specify buffering techniques, monitor
the progress of a control sequc9nce, and alter control sequences
and data while in progress.

SVCl5 is similiar to SVCl, but because of the specialized
requirements of data communications, SVCl5 has more variables and
options. The SVCl function code allows a task to request a
single function, read, write, rewind, etc., on a single data area
for each SVCl call. SVC15 allows a task to request a series of
commands to be executed on a serles of data areas.

A key feature of SVCl5 access is the flexibility allowed in data
formatting. Dr iver commands mc:lY result in a var iable number of
data fields being accessed from the SVCl5 parameter block; the
exact number of data fields is dependent upon the command type.
For example, the READ or WRITE buffer commands obtain either one
or two data fields. Other command types use e'ither one or no
data fields.

5.2 LINE DRIVER ACCESS

The SVCl5 call and line drivers provide access to remote devices
for the communications-oriented user to:

• access devices with protocols or codes not supported by a
terminal manager,

• use special buffering techniques because of time, memory or
line use considerations, or

• use data or command chain.ing to achieve the throughput
necessary for the application.

48-077 FOO ROO 5-1

5.2.1 Sequence of Operations

To use the device-dependent facilities provided by line drivers,
perform the following steps:

1. System generation (sysgen)

Include line driver support by specifying the desired lines
at sysgen. Lines are configured just as any local device,
such as a line printer.

2. Programming

Perform communications line access by providing the control
sequences and data necessary to support the remote device
attached to the communications line. The control slequences
and data are passed to the line driver through SVC15. Access
to the line driver is by logical unit (lu), so different
communications facilities of the same type can be ,accessed
without recompiling the program. Further control is possible
through the OS/32 Task Trap Facility, invoked when necessary
by SVC1S.

3. Execution

Assign the desired communications line to the lu accessed by
the program.

4. Termination

Close the iu assigned to the communications line. The
program can assign and close the lu via SVC7 or the OS/32
command language.

The steps outlined for execution and termination can be performed
by the program via SVC7 requests or by the system operator
through the OS/32 command language.

Access to a remote terminal connected to a communications line,
like access to a local device or terminal, is through an lu. The
general procedure for SVC1S line access is:

1. Assign the communications line to the desired program lu.

2. Issue SVC1S to specify the initial control sequence and data.

3. Use a trap-handling routine to monitor the progress of the
control sequence.

4. Modify the control sequence and/or data, or issue a
subsequent SVC15 specifying new control sequences and/or data
to continue communications.

5. Close the lu assigned to the communications line.

5-2 48-077 FOO ROO

S.2.2 Supervisor Call lS (SVC15) and the Task Environment

Execution of SVC1S affects the E~nvironment of the calling task
differently than the execution c)f SVC1. SVC1S returns control to
the calling task following driver activation (no input/output
(I/O) and wait). It is the tas)c~'s responsibility to synchronize
processing with the ongoing I/O request.

Driver control is specified by a driver command word (DCW). A
DCW is actually a halfword that specifies to the driver a
particular operation to be performed and certain options
applicable to that operation. A DCW chain consists of
consecutive Dews with their respective chain option bits set.
For further information on the DCW, see Section 5.5. The format
of the DCW is shown in Figure 5--12.

The SVC1S paramet.er block spec if' ies the first entry in each of
two related chains used to define the following requests:

• The DCW chclin that specifies the sequence of driver operations
(i.e., REru), WRITE, etc.).

• The data f :leld chain that spec if les the argumentsrequ ired by
each driver. command in the Dew chain.

Figure 5-1 sh()ws SVC15 access tOI a line dr iver.

077-8

--'- ---
/'

(DCW CHAI r\1

'til DRIVER COMMAND WORD
~--------------.--
DRIVER COMMAND WORD

•
•
•

SVC15 PARAMETER BLOCK

1
--- -POINTEH TO DCW CHAIN

J
CODE DATA FIELD-- - ~-

--P

v 1 /J CODE

CODE

DATA FIELD- -

DATA FIELD

•
•
•

"....1

- I
I
I

/

DATA AREAS

• DIRECT BUFFER
• INDIRECT BUFFER
• QUEUED-BUFFER

LIST
• CHAINED BUFFER
• DCW PARAMETER
• NEXT DATA-FIELD

CHAIN

Figure 5-1 SVC15 Access to a Line Driver

48-077 FOO ROO 5-3

SVC1S activates the line driver to fetch and execute the first
Dew in the Dew chain. Once autonomous driver execution starts,
control is returned to the user task (u-task) with the cc)ndition
code indicating the result of the call. If there is no error in
initiating the operation by the first DCW specified, thE~ status
field of the SVC1S parameter block is set to indicate that the
line driver is active with the request X'4000'. For the
remainder of the I/O request, as each command operat:ion is
successfully completed, the next operation is fetched from the
Dew chain and executed by the line driver. This sequence of
fetch and execute is repeated until the entire Dew chain is
interpreted or an error condition is encountered.

5.2.2.1 Supervisor Call 15 (SVC1S) Trap Handling

The progress of SVC1S execution and the facilities provided for
buffer management can be monitored by the task through the use of
traps. The traps that can be generated for data communications
are:

• SVC1S command execution trap

• SVC1S buffer transfer trap

• SVC15 termination trap

• SVC15 halt I/O termination trap

Other types of traps can be generated for specific terminal
managers such as the channel terminal manager (CTM). These traps
are detailed in the appropriate manual.

The traps listed above allow the task to synchronize execution
with the concurrent processing of the SVC15 request. To enabled
traps, bit 23 (TSW.ITM) of the task status word (TSW) must be
set. When traps are so enabled and a trap-causing event occurs,
the task trap-handling routine is given control before any
subsequent task level instruction can be executed. Remember that
the trap-handling routines operate at a lower pr ior ity -than the
line driver. Several entries can be made to the task queue
before the trap-handling routine completes processing a single
entry. See the OS/32 Applications Level Programmer Reference
Manual for more information on trap handling.

When enabled by the appropriate bit settings in the T:SW, the
SVC15 function code and the DCW, a trap can be generated by
adding one of the following reason codes and the address of the
SVCl5 parameter block to the u-task queue.

5-4 48-077 FOO ROO

REASON CODE
DEClMAL(HEX)

10(OA)
11(OB)
12(OC)
13(OD)

QUEUE ENTRY

Command trap
Buffer trap
Termination trap
Halt I/O trap

5.3 SUPERVIS()R CALL 15 (SVC1S) PARAMETER SLOCK

SVC1S specifies a control sequence and its associated data to the
data communications line driver. The format of the SVCl5
parameter block is illustrated i,n Figure 5-2.

10(0)
Function

code

11(1)
I
I

12(2)

lu status
--.-----------------------------~---------------------------1
4(4) 15(5)

Command
Number Pointer to DCW chain

---1
8(8) 110(A)

I~ngth of last read I~ngth of last write
--.---1
12(C) 113(0) I

I
I

Data code 1 I Pointer to data field 1
--1
16(10) 117(11)

I
I

Data code 2 I Pointer to data field 2 I
I

---1

1--------------------------- -------------------------------1
14n+8 14n+9 I

I I
Data code n I Pointer to data field n I

SVC 15, parblk

ALIGN 4
piublk DB x 'function code'

DB x 'luI
OS 2 bytes for status
OS 1 byte for command number
DC 3 bytes for DCW chain address
os 2 bytes for length of last read
os 2 bytes for length of last write
DB 1 byte for di:lta code 1
os 3 bytes for data field 1 address

DB 1 byte for data code n
os 3 bytes for data field n address

Figure 5-2 SVC1S Function Code Format

48-077 FOO ROO 5-5

5.3.1 Function Code Field

The first byte in the parameter block is a function code provided
by the u-task. This field specifies options that apply to all
driver commands in the DCW chain executed by this SVC15. Figure
5-3 shows the composition of the function code byte and Table 5-1
shows the bit settings of the function code field.

-------------------------------------- '

I H I C I BIT I E I Reserved I

I A I E I E I E I R I (reset to zero) I

Bits:
o 1 2 3 4 5 7

Figure 5-3 SVC15 Function Code Format

TABLE 5-1 SVC15 FUNCTION CODE BIT SETTINGS

BIT I MASK MEANING

o X'BO'

5-6

HALT I/O (HA)

An SVCIS request with this bit set indicates
that a task is requesting to halt an I/O that
it previously started to the indicated lu. The
program status word (PSW) condition code after
the request indicates the results of the halt
I/O call. Traps will not be generated for the
halt call itself.

I CC ~ 0 The halt I/O was accepted, the orig­
inal requesL ends with a halt I/O
status and the command number field
is updated accordingly. If the orig­
inal request specified termination
Lraps, a Lrap is generated when the
I/O terminates.

If Lhe original request was in error
recovery, then the original error
status may be returned at termination
rather than a halt I/O status.

CC 1 The halt I/O was not accepted be-
cause the driver was not performing
SVCl5 I/O to the specified task lu at
Lhe time of the call. The status
field is not changed.

4B-077 FOO ROO

TABLE 5-], SVCIS FUNCTION CODE BIT SETTINGS (Continued)

BIT I MASK MEANING ======== ____ W. _______________________________ L ______________ ====

I X'40'

2 X'20'

3 X'IO'

4 X'08'

5-7 X'07'

Command queue entry enable (eE)

This bit must be set, along with the corre­
sponding bit in the DCW and the enable SVClS
queue entry bit in the TSW, to allow a trap at
the start of each DCW execution.

Buffer queue entry enable (BE)

This bit must be set, along with the cor­
responding bit in the DCW and the enable SVCIS
queue entry bit in the TSW, to allow a trap at
the start of buffer use associated with the
DCW.

Termination queue entry enable (QE)

This bit must be set, along with the enable
SVCIS queue entry bit of the TSW, to allow a
trap on completion, normal or abnormal, of an
SVCIS call. A halt I/O call does not generate
a trap. However, the call being halted does if
termination queue entry enable was specified.

Continuous error processing (ER)

Setting this bit permits some errors to be non­
terminating during continuous read operations.

Reserved

These bits are reserved for future use and must
be zero.

5.3.2 Logical Unit (lu) Field

This byte identifies the lu to which the communications line is
assigned for the transfer. A valid data communications device
must have been previously assigned to the specified lu for SVClS
access.

48-077 FOO ROO 5-7

5.3.3 statue Information Field

The completion status of the SVCl5 operation is returned to the
system via the status information field. The format of this
halfword is shown in Figure 5-4; the meanings of each bit setting
are listed in Table 5-2. The termination codes resulting from a
terminated SVClS command are listed in Table 5-3. While
processing an SVCl5 request, the completion statue of each DCW is
maintained internally in the same format.

I I I I I I I I I
I I I I I I I I I

I E I BU I XFER I TIME I DATA CHECK : RESERVED : CHARACTER I ENCODED TERMINA~rION CODE I

Bits:
o 1 2

BIT

o

1

2

3

5-S

I

3 4 5 6 7 8 9 10 15

Figure 5-4 SVCl5 status Field Format

TABLE 5-2 SVCl5 STATUS BIT SETTINGS

MASK

X'SOOO'

X'4000'

X'2000'

X'2000'

MEANING

Error

Set for error condition. Bits 3, 4, 5 and
any termination code greater than 2, in
bits 10 to 15, are considered errors.

Busy

Set when the driver is busy with an sve
request and can be cancelled via halt I/O.
The SVCl5 parameter block status halfword
is initialized to this value and cannot
terminate with this bit set.

Transfer not begun

This bit is set if read operations do not
receive the proper required starting
control characters (e.g., for binary
synchronous).

Time-out

This bit is set if an entire command had
not executed when the error timer expired.

48-077 FOO ROO

BIT

4-5

TABLE: 5-2 SVC15 STATUS BIT SETTINGS (Continued)

MASK

x'oeoo'

X'OBOO'
X'0400'

MEANING

Data check

Received data with parity, cyclic
redundancy check (CRC) or longitudinal
redundancy check (LRC) error.

6-7 I X'030Q' I Driver-dependent
I X' 02.00' I

8-9

10-15

VALUE
DEC

(HEX)

I X, 0100' I

X'OOCO'

X'0080'
.X'0040·

X'003F'

Special character detection

Drivers can flag reception of special char­
acters by setting these bits.

Encoded Termination Code

Cause of driver termination; see Table 5-3.

TABLE 5-3 SVC15 ENCODED TERMINATION CODES

STATUS MEANING

=--=----------------==-=-1 I I 0(00) I No errors I No errors detected __ ---______ 1

1 (01) I Reserved

2 (02) I Line delete

3(03) I Break on write

4(04) I Break on read

1 Line delete detected during read

I Break detected during an asyn-
1 chronous write

I Break detected during an asyn­
I chronous read

------------------------~--------------------------------------
5(05) Data check

6(06) Bu.ffer limit

48-077 FOO ROO

Bec, LRC or parity error caused
I termination (bits 4 and 5
I specify exactly)

Buffer limits reached (no
proper ending sequence, binary
synchronous)

5-9

TABLE 5-3 SVC15 ENCODED TERMINATION CODES (Continued)

VALUE
DEC

(HEX) STATUS MEANING

-------=---====--1 7(07) I Bad pad I PAD character (not
I binary synchronous)

received I

---1
8(08) I Framing error I Framing or stop bit error asyn- t

I chronous
---1

9 (09) I Reverse channel : Reverse channel error asy'nchro- I
I I nous

--f
10(OA) I Loss of carrier I Lost carrier on read

---l
II(OB) 1 eL2S error I Lost clear to send on write I

---1
12(OC) I Data set not I Data set not ready l

I ready I l
--------------------.---l

13(OD) I Device I Adapter not present l
I unavailable

.14(OE) I Overflow I Character overflow

15(OF) I Ring I Ring signal detected during data
f transfer

---,
16(10) I Buffer overrun 1 I Busy and/or done bits in chained 1

I buffers not properly set
--·-------t

17(11) I NeE overflow I More than 255 commands executed I
---f

18(12) Task queue Task queue full, invalid or
error nonexistent during attempt to

trap (amount of data transferred
questionable); error code over­
writes previous error codes
reported via traps ___ t

19(13) I Buffer overrun 2 I Next I/O buffer not reset in
I time

20(14) I Time-out

21(15) I Halt I/O

22(16)

5-10

Transparent
block size
error

I Time-out

I Halt I/O request~ aborted I/O

Data buffer is smaller than the
transparent block size (binary
synchronous only)

48-077 FOO ROO

TABLE 5-3 SVC15 ENCODED TERMINATION CODES (Continued)

VALUE
DEC

(HEX) STATUS MEANING ======= _______________ == _______ 1= ______ === __ === ___ = ____________ _

23(17) I Bad character
I sequence

I Improper
I sequence

binary synchronous

24(18) I Illegal command I Cc)mmand or modifier not valid

2S(19) I Memory fault 1

26(lA) I Memory fault 2

27(lB) I Illegal lu

I Memory fault referencing data

I Memory fault referencing buffer

I lu illegal (not
I al:Jsigned)

SVClS, not

28(lC) I Illogical status I Device status not valid (pos-
I I sible strapping problem)

29(lD) I Power fail , I/O interrupted by power failure
I OJr cancel

30(lE) I Illegal software I Illegal condition detected
, condition ,

3l(lF) I Illegal
I translate

32(20) Idle line

33(21) I Frame abort

34(22) I Invalid frame
I .

3S(23) I Queue empty

36(24) I Queue overflow

48-077 FOO ROO

I Illegal translation table speci­
I fied

I Idle line sequence received
I zero-bit insertion/deletion
I (~lBID)

I FJrame abort character received I

I ZJ3ID

I Rf~ceived frame of
I lf~ngth ZBID

incorrect

I Queued buffer list empty

I Queued buffer list overflow

5-11

5.3.4 Command Number Field

The fourth byte of the parameter block indicates the nun~er of
commands executed. The number of DCWs fetched and executed 1e
maintained by the driver and returned to the u-task via this
field. In the event of an error (or halt I/O), this counter
indicates the number of the commands being executed when the
error occurred; i.e., it equals 1 if only one DeW of the chain
was executed.

NOTE

When this byte is incremented past 255,
the SVC15 request is aborted and the
status indicates that the number of
commands executed overflowed, X'80ll' ..

5.3.5 Driver Command Word (DCW) Pointer

This field must be set to the address of the first command in the
DCW chain to be executed by the SVC15 call.

5.3.6 Length of Last Read Field

This halfword is updated by the driver termination to indicate
the number of bytes transferred during the last READ command
executed by SVCl5. If no data was transferred or if no reads
were executed, zero is returned.

5.3.7 Length of Last Write Field

This halfword is updated by the driver at termination to indicate
the number of bytes transferred during the last WRITE command
executed by SVC15. If no data was transferred, or if no reads
were executed, zero is returned.

For the length of the last read and the length of the last write
fields, if a Dew string contains more than one READ or WRITE
command, only the length of the most recent operation is
reflected in this field. However, when chained buffers are used,
the total number of bytes transferred to or from the entire
chained buffer by the last READ or WRITE command is reflected.

5-12 48--077 FDa ROO

5.3.8 Data Fi.elds

The remainder of the parameter block consisls of data fields
required by the DCW chain. As illustrated in Figure 5-5, each
data field consists of a fullword divided into two sections. The
last three bytes of the field contain a pointer to the data
needed by the DCW (bits 8 through 31). This address could point
to no data or to one or more data fields, depending on t.he
particular command. The first byte (bits 0 through 7) consists
of a data code indicating the type of data pointed to by the last
t.hree bytes. The data code also indicates the type of buffering
desired. Definitions of the data code bit settings are detailed
in Section 5.3.9.

Data Code Pointer

o 7 8 31

Figure 5-5 SVCl5 Data Field Format

When the Dc~r associated with ·the data field is a READ or WRITE
command, the data field points tID a buffer. For other DCWs, the
data field po ints to a paramete:r requ ired by that DCW, such as a
time value. The data field can also point to the head of another
data field chain, allowing data field chains to exist in
noncontiguous memory.

5.3.9 Data Field Chain

The SVC15 parameter block specifies the control sequence to be
performed by pointing to a DCW chain. The first data field in
the data field chain is at the fullword at offset l2(C) from the
start of the parameter block.

Table 5-4 details the bit settings of the data code byte of the
data field.

48-077 FOO ROO 5-13

TABLE 5-4 DATA CODE BIT SETTINGS

DATA CODE I
(HEX) J CONTENTS

=======----------------------------------.---=1 00 I Pointer to direct buffer I
01 I Pointer to DCW parameter I
04 I Pointer to indirect buffer J

08 Pointer to chained buffer
OA Pointer to queued buffer list
80 Pointer to next data field chain

Data codes 00, 04 08 and OA indicate that the data field contains
the address of a data buffer that can be direct, indirect,
chained or queued.

Data code 01 indicates that the data field contains the address
of a parameter required by a driver command, such a~~a time
value.

Data code 80 indicates that subsequent data fields are to be
fetched from the specified address, allowing the data field chain
to exist in noncontiguous memory_

5.4 BUFFER TYPES

SVCl5 supports four buffer types:

• Direct

• Indirect

• Chained

• Queued

These buffer types are defined by the data fields in the SVC1S
parameter block.

5-14 48·-077 FOO ROO

5.4.1 Direct Buffers

A direct buffer is defined by two data fields containing the
starting and ending addresses of the buffer, similar to an SVCl
data buffer. The starting addrE~ss points to the first data
character and the end address points to the last data character
(i.e., a l-character buffer has Cl starting address equal to the
ending address). Direct buffers can begin on any byte boundary
and require two data fields in the data field chain. Figure 5-6
depicts a direct buffer.

START

< ---BYTE-->

DATA
BYTE 1

DATA
BYTE 2

DATA
BYTE 3

DATA
BYTE 4

I I
I I

1--------------1
1 DATA 1

END 1 BYTE N 1

1--------------1

Figure 5-6 Direct Buffer

5.4.2 Indirect Buffers

An indirect bU1Efer is specif ied by one data field containing its
starting address. The buffer i.tself contains all required size
information. ~rhe first halfword indicates the number of bytes
available in the buffer. The second halfword of the buffer is
updated by the driver and indicat.es how many bytes of data were
actually tran!3ferred by the I/O. An indirect buffer must be
aligned on a hc~lfword boundary. Figure 5-7 depicts an indirect
buffer.

48-077 FOO ROO 5-15

I (-----...,HALFWORD-.,..-...,-) ~

I----------------~-------I
HALF WORD

ALIGNED
: BYTES' AVAIL = n t

BYTES USED
--.,..--------------~--=~=-t

BYTE 1
-------------~---~~-~~--l

BYTE 3 t BYTE 4 I
---------------~-~-~----I

BYTE 5 1 BYTE 6 1
---------------------~--I

,...,.., ,...,..,
I
I

I-------------------~--=~I
1 BYTE n-1 1 BYTE n t
1------------------------1

Figure 5-7 Indirect Buffer

5.4.3 Chained Buffers

Chained buffers are specified by one data field cont~ining the
address of the first buffer in the chain. Chain~d bu'fe~~ look
very much like indirect text buffers, but have an ~dditional
fullword at the beginning called the link word that might contaln
'the address of another chained buffer. Thus, two Qr 11\01:e b1Jffer.~
can be linked together into a chain. The l.et buff~r 1n A chatn
of linked buffers contains a zero link word indicating the end of
'the chain. Figure 5-8 illustrates chained buffers.

FULLWORD
ALIGNED

+ (- - - - - - - - - - - - - F ULLWORD - - ~ -...., - - -.,......, - '":"'") +
------------------------------~~~~~I

FLAGS I LINK WORD I
--------------~--~---~--~~~~~~~~~--I

BYTES AVAIL = n I BYTES uamo
--------------------------------~-~I
BYTE 1 I BYTE 2 I BYTE 3 I BY~E 4 I
----------------------------=~~----I

BYTE 5 1 BYTE 6 I BYTE 7 I ETC. I

-----------------------------------1
I
I ,...,.., ,...,..,

1 "--------1
1 BYTE n I

Figure 5-8 Chained/Queued Buffer Format

5-16 48-077 Faa ROO

Chained buffers can also be configured into a closed chain (a
ring) by having the last buffer link back to the first buffer.

The first byte of the link word :ls used for certain flags to
indicate conditions or optionu within the buffer. Figure 5-9
shows the format of the chained/queued buffer link word flag byte
and Table 5-5 details the bit settings. Chained buffers must be
aligned on a fullword boundary.

A task can manipulate the links Clnd data of chained buffers while
I/O is in progress. Bits 0 through 7 of the link word (the flag
byte) are used for coordination between driver and u-tasks.

I I I Reserved for driver use I
I Busy I Done I (reset to zeroes)

Bi'ts:
o 1 2 7

Figure 5-9 Chained/Queued Buffer Link Word Flag Byte

TABLE 5-5 CHAINED/QUEUED BUFFER LINK WORD FLAG BYTE

(BUSY) I (lDONE) I
BIT 0 I BIT 1, I MEANING

= _____________ D ______________ ~ ________________ = _______ ___ s_

o

1

1

o

o

1

I Buffer is available for driver use.
I The link word contains a valid address
I or zero ..

The driver is currently using this
buffer for I/O.. The u-task must not
change data, size values, link word
or flags ..

The driver finished using the buffer.
The driver will not use this buffer
again if it reoccurs in the chain;
i.e., a ring. U-task can now change
anyva1ue and the bytes used reflect
actual transfer.

----------~--
o 1

48-077 FOO ROO

I Invalid setting. Driver treats it as
I if busy and done: 11.

5-17

The driver attempts to set up two I/O buffers when chained
buffers are specified. This means that if the task needs more
than a single chained buffer for I/O, it must supply at least two
linked buffers when the SVC15 call is issued. These two buffers
are set up in internal buffers associated with this line. The
first buffer is flagged as busy (bit 0 of link word set), a
buffer trap is generated if enabled and I/O is started.

If the link word of buffer 2 is valid, the driver fills buffer 1.
When buffer 1 is exhausted, the driver receives a buffer limit
interrupt, finds buffer 2 is available (busy and done bits reset)
and uses this buffer to continue I/O. Meanwhile, a routine is
scheduled to flag buffer 1 as done and buffer 2 as busy and to
attempt to set up the first I/O buffer using the current link
word of buffer 2 as a pointer. If this link word is zero, the
current buffer is the last buffer of the chain and the I/O must
terminate within it. If this link word is nonzero, it points to
buffer 3. At this time, buffer 3 does not necessarily have to be
available (busy and done bits reset) indicating that buffer 1 is
done and buffer 2 is now busy as long as its address is specified
in the link word of buffer 2. A buffer trap is again generated
to the calling task, indicating that buffer 1 is done and buffer
2 is now busy. Buffer 3 must be available before the next buffer
limit interrupt. If it is not, a buffer overrun occurs, I/O is
aborted and the status reflects this overrun.

For read-after-write (RAW), the driver looks ahead and sets up
only one read buffer. Thus, if chained buffers are used for the
read, only one buffer is set up in advance. When the driver
terminates the write, one buffer is ready to perform the read.
When the read uses chained buffers, a subroutine to get the next
buffer is scheduled immediately after performing the
write-to-read turnaround. The buffer trap for the read is
performed after read I/O begins. Thus, having only one read
buffer instead of two is useful when using chained buffers for
both write and read. However, the buffer trap for the next to
last write buffer must be identified by the task because the task
must specify the second buffer in the link word of the first read
buffer before the driver completes the write.

Memory is used most efficiently by linking two or more chained
buffers to form a ring. See Figure 5-10.

BUF 1

5-18

1 00 A(BUF2) 1 BUF 2 I 00 A(BUFl) 1
1-------------1

CHAINED 1

BUFFER
NO. 1

Figure 5-10

1-------------1
CHAINED
BUFFER

NO. 2

Buffer Ring

48-077 FOO ROO

When the busy and done bits = 11, buffer 1 is finished and the
driver is using buffer 2, which would be busy. The task can now
process the data in buffer 1 and reset busy and done. When the
driver is finished with buffer 2 (busy and done set), it chains
onto buffer 1 and, finding the busy and done bits reset, uses it
to continue the I/O. Thus, one SVC15 request can continuously
perform I/O as long as the task keeps ahead of the driver.

5.4.4 Queued Buffers

Queued buffers are specified by two data fields, each of which
contains the address of a standard Perkin-Elmer circular list.
List 1 specifies a queue of buffers from which the data
communications subsystem remov~~s buffers for I/O operations.
List 2 specifies a queue of buffers being returned to the
applications program following I/O activity. List 1 can coincide
with List 2. See Figure 5-11 for a description of the standard
Perkin-Elmer circular list. Buffers are removed from the top of
List 1 by a Remove from Top of List (RTL) instruction. Buffers
are returned to the bottom of List 2 by an Add to Bottom of List
(ABL) instruction.

077-9

OCCUPIED
SECTION

CURRENT
TOP--tII~

NEXT
BOTTOM-

o
NUMBER OF SLOTS

CURRENT TOP

15 16

NUMBER USED

NEXT BOTTOM

SLOT 0

SLOT 1

SLOT N

Figure 5-11 Conceptual Circular List and Format

31

The format of each individual queued buffer with an address in
the list is identical to the format of a chained buffer.
Restrictions for modifying the control fields of a buffer during
I/O are the same for queued and chained buffers.

When an I/O buffer is removed from List 1, the link address field
is cleared to prevent any ambiguity in error verification and the
address of the buffer is maintained solely within driver control
storage. The buffer is, in effect, not available to the
applications program during I/O.

48-077 FOO ROO 5-19

The busy and done bits within the flag byte are used analogous to
chained buffers. When I/O is complete, the buffer is returned to
the bottom of List 2. Simultaneously with I/O operation, the
applications task can add new I/O buffers to the bottom of List
1 or remove completed buffers from the top of List 2. Only list
processing instructions (RTL, Remove from Bottom of List (RaL),
Add to Top of List (ATL), ABL) can be used by the task to modify
a circular list. Any other attempt to modify circular list
control fields can result in a loss of control.

If the program attempts to return a buffer to List 2 and cannot
because the list is full, a queue overflow (X'24') error
termination results. The addresses of any buffers currently
being used for I/O are then chained to the bottom buffer in List
2 to return them to the task. As the list address field is
initialized to zero at the start of I/O, the task should check
the nonzero link field to detect buffers returned because of a
queue overflow condition.

The buffer trap mechanism is available for queued buffers.
However, to conserve processor time, a buffer trap is generated
only when a buffer is added to a previously empty List 2,
indicated by the status returned by the last RTL or RBL. This
technique requires a program to process all buffers in List 2
whenever a trap interrupt occurs.

In Figure 5-11, the first two fullwords of a circular list
contain the list parameters. Immediately following the parameter
block is the list itself. The first fullword in the list is
designated Slot 0, with the remaining slots designated 1, 2, 3,
etc., up to a maximum slot number equal to the number in the list
minus one. A maximum of 65,535 fullword slots can be specified.
(Maximum slot designation is equal to X'FFFE J

.)

The first parameter halfword indicates the number of slots
(fullwords) in the entire list. The second parameter halfword
indicates the current number of slots being used. When the
second parameter halfword equals zero, the list is empty. When
it equals the number of slots in the list, the list is full.
Once initialized, this halfword is maintained automatically and
incremented when elements are added to the list and decremented
when elements are removed.

The third and fourth halfwords of the list parameter block
specify the current top of the list and next bottom of the list,
respectively. These pointers are also updated automatically.

5.4.4.1 Coding a Queued Buffer Request

Three separate areas must be coded with a precise format to
facilitate the use of queued buffers. These areas are the data
field chain, the circular list descriptor and the individual
queued buffer.

5-20 48-077 FOO ROO

The data field chain must be coded as in Table 5-6. Two fullword
entries must be defined in the data field chain in order to use
queued buffers. The first fullword provides the address of the
circular list from which the drjLve can draw buffers for I/O; t.he
second fullword provides the address of t.he circular list to
which complet1ed buffers are returned. Each fullword entry must
contain a hexadecimal A in the high-order byte to identify t.he
entry as a qUleued buffer data byte and each must be aligned on a
fullword boundary.

TABLE 5-6 QUEUED BUFFER DATA F lEW FORMAT

DATA CODE I
BYTJe: 0

POINTER
BYTES 1 THROUGH 3 ========a===_= _________ .: _____________________ ====~

OA I Address of circular list from which
I buffers are obtained

OA I Address of circular list to which
I buffers are returned

The circular list can be dE~fined by a DLIST Common Assembly
Language (CAL) direction or by the FORTRAN 32-bit run-time
library (RTL) subroutine, DEFLS1~.

Each individual queued buffer must be coded as a chained buffer
shown in F iglUre 5-8. Its addrE~ss is placed into the FROM buffer
list.

5.5 DRIVER COMMAND WORD (DCW)

Each DCW is a 16-bit command that specifies a primitive operation
to a line driver. Figure 5-12 details the DCW format and Table
5-7 describes the DCW bit settings. Bits 0 through 3 are flag
bits that indicate options in effect for the command; bits 13
through 15 indicate the general type of command; bits 8 through
12 identify the specific request; bits 4 through 7 are unused and
should be reslet t.o zeroes. Not all commands are implemented for
each line driver.

48-077 FOO ROO 5-21

I C I C I BIT I Reserved I I I
I C I EI E I 0 I (reset to zeroes) I Modifier 1 Command ~

Bits:
o 1 2 3 4 7 8 12 13 15

Figure 5-12 Dew Format

TABLE 5-7 Dew BIT SETTINGS

BIT MEANING

o CHAIN Command (CC)

Set this bit to indicate that the line driver should
fetch and execute the next DeW in the chain. If
reset, the SVC1S request terminates after executing
this Dew.

1 Command enable (CE)

Set this bit to specify that a queue entry is to be
generated by adding a parameter consisting of the
address of the SVC15 parameter block to the task
queue with reason code 10 (OA) before executing this
DCW. For trap generation, the appropriate enabling
bits must be set in the SVC1S function code and the
TSW. If reset, no trap is generated. I

---1
2 Buffer enable (BE) I

5-22

.1 ,
Set this bit to specify that a queue entry is to be I
generated by adding a parameter consisting of the
address of the SVC1S parameter block to the task
queue with reason code (OB):

o when processing the first character of any buffer
used by this command

o before switching to the next buffer if chained
buffers are used

To generate a trap, the appropriate enabling bits
must be set in the SVClS function code and TSW. If
reset, no trap is generated.

48-077 FOO ROO

'l~ABLE 5-7 Dew BIT SETTINGS (Continued)

BIT MEANING
==========~==~===--==========~=--====--==============--====-=~==

3 Time-out (TO)

Set this bit to specify that an error time interval
is t~o be started when this command is fetched. If
the command has not completed before this interval
expires, the SVC15 request is aborted with time-out
status .. The interval is given a default value at
sysc.:;ren time or can be modified by the MODE TOUT
command. There are separate read and write time-out
values. If reset, this command is not aborted
because of time-out.

4-7 I Reserved. Must be zero.

8-12

13-15

Command modifier

Thee,e bits specify the particular command for each
command type.

Driver command type

These bits specify the general type or primitive
requests as follows:

VALUE TYPE

000 NULL
001 CONTROL
010 READ
011 PREPARE
100 WRITE
101 HOLD
110 MODE
III TEST

5G6 LINE DRIVER COMMAND TYPES

This section describes the commands for each driver command type
with the binary and hexadecimal value of bits 8 through 15 of the
Dew for each. These descriptions refer to signals generated by
the communicat~ions adapter hardware. For all commands, normal
completion mE~ans that the next DCW is fetched. If no further
Dews exist, the SVC15 request terminates. Nonerror status
conditions al:e noted by setting the appropr iate bits in the
status halfword; the status returned on termination can reflect
several such cumulative conditions, i.e., speci~l character
detection.

48-077 FOO ROO 5-23

5.6.1 Null-Type Commands

There are four nUll-type commands, none of which issue 1/0
instructions to the adapter. A CHAIN command and command trap
flags are valid.

NUMBER OF
COMMAND BINARY HEX DATA FIELDS

NOP 00000 000 00 1
WAIT 00001 000 08 1
XFER 00010 000 10 1
CXFER 00011 000 18 2

5.6.1.1 NO OPERATION (NOP) Command

The NOP command performs no operation; one data field is fetched
but not used. However, it must specify a valid program address.
If the CHAIN command bit (bit 0) is set, the next command is
fetched.

5.6.1.2 WAIT Command

The WAIT command suspends driver executi.on for a specified
interval. One data field is fetched which must point to a
halfword containing the value of a time interval in multiples of
lOOms. The driver waits until the specified interval expires and
then continues execution (if the CHAIN command is set) or
terminates (if the CHAIN command is reset).

5.6.1.3 TRANSFER IN (XFER) Command

The XFER command specifies the next DCW in a chain that does not
exist in contiguous memory. One data field is fetched, if a
CHAIN command is set, the next command to be executed is fetched
from the address contained in the data field. Thus, a branch to
a DCW is performed.

5.6.1.4 CONDITIONAL TRANSFER (CXFER) Command

The CXFER command tests the internally-maintained status of the
SVClS request. Two data fields are fetched. The first data
field points to two halfwords, the first of which is logically
ANDed with the current state of the logical status halfword. The
result is compared to the second halfword of the pair, and if
equal, the next command to be executed is specified by the second
data field. Otherwise, command execution continues with the next
command in the current chain.

5-24 48-077 FOD ROO

The CXFER command can be used. to test for specific conditions as
indicated by the logical status; the first halfword of the first
data area contains a mask with a 1 in each bit portion to be
tested; the second halfword of the first data area contains the
value to be tested against (e.g., if one or more special
characters were detected after a read, a different command
sequence might be desired).

5.6.2 Control-Type Conunands

A CHAIN command, command trap and time-out are valid flag bits.
There are fOUl: control-type commands:

COMMAND

EXAMINE
RING WAI'r
ANSWER
DIS CONNEC~r

BINARY

00000 001
00001 001
00010 001
00011 001

5 . 6 . 2 . 1 EXAM l[NE Conunand

HEX

01
09
11
19

NUMBER OF
DATA FIELDS

1
o
o
o

The EXAMINE command returns the device status of the specified
adapter in one data field. The value obtained specifies the
address of a 't\1r itable byte into which the status of the device is
stored. The last known physical device status is fetched from a
byte in memory (DCB.DVS'r) maintained by the driver during I/O.
When the byte is nonzero, its contents are returned and the byte
is reset to zero. When the! byte is zero, a sense status is
performed on the device and its present status is returned.
Thus, two EXAMINE commands shCtuld be suggested. The first will
return the last status that caused the last error. The second
will return the active device status at this time.

5.6.2.2 RING WAIT Conunand

The RING WAIT command suspends fetching of Dews until a ring
signal is received for the adapter. Interrupts from the adapter
are enabled, but the data terminal ready lead to the modem is
not. This command fetches no data fields and terminates when a
ring signal is received from thE~ adapter. When a CHAIN command
is set, execution continues ~,ith the next command. Otherwise,
the dr iver telcminates. When time-out is set, the command waits
as long as the value specified in the write timer halfword; when
this interval "expires, time-out error status is set. If time-out
is not set, the command waits indefinitely for a ring signal.

48-077 FOO ROO 5-25

5.6.2.3 ANSWER Command

The ANSWER command terminates immediately for nonswitched lines
and switched lines that are already connected. For dial-in lines
not connected, the data terminal ready lead to the modem is
enabled, causing the modem to answer the incoming call. The
command terminates when the data set indicates it is ready for
I/O. TIME-OUT and CHAIN commands are handled as described in the
RING WAIT command.

5.6.2.3 DISCONNECT Command

The DISCONNECT command disconnects from a switched line. The
command resets the data terminal ready lead to the modem,
suspends Dew fetching for one second and continues to the next
command (if the CHAIN command is set) or terminates (if re:set).

5.6.3 Read-Type Commands

A CHAIN command, command trap, buffer trap and time-out
flag bits. There are three read-type commands. When
time is critical, these commands must immediately
write-type or prepare-type command to use
read-after-prepare-lookahead.

COMMAND

READ BUFFER
READ 1
READ 2

BINARY

00000 010
00001 010
00010 010

5.6.3.1 READ BUFFER Command

HEX

02
OA
12

NUMBER OF
DATA FIELDS

1 or 2
1
1

are valid
response
follow a

RAW or

The READ BUFFER command reads data into specified buffers. One
or two data fields are fetched, depending on the buffer types.
The data fields specify a buffer or buffer chain into which data
is read. The first byte of the first data field fetched
specifies whether the buffer type is direct text, indirect text,
chained or queued buffers. If the buffer type is direct text, a
second data field is fetched.

5.6.3.2 READl Command

The READ 1 command reads one character into the specified
location. One data field is fetched, containing the address of
a byte in writable memory into which a character is to be read.
No alignment is required. Data code must specify X'Ol'.

5-26 48--077 FOO ROO

5.6.3.3 READ2 Command

The READ 2 command reads two characters into the specified
locations. One data field is fetched, containing the address of
t.he first of ·two wr itable bytes into which t.wo characters are
read. No alignment is required. Data code must specify X'Ol'.

5.6.4 Prepar1e-Type Commands

A CHAIN command, command trap and time-out are valid flag bits.
There are two prepare-type cornmclnds.

COMMAND

PREPARE
PREPARE 3

BINARY

00000 all
00011 all

5.6.4. 1 PREP~\RE Command

HEX

03
lB

NUMBER OF
DATA FIELDS

1
1

The PREPARE command suspends DC~7 fetching until the specif ied
character is received from the adapter. One data field is
fetched, po int ing to a byte thslt conta ins a match char acter .
Characters are read from the line until one is detected that is
equal to the match character, there the command terminates. If
the PREPARE command is chained to a READ command, the READ will
take effect immediately because of the read-after-prepare
lookahead.

5.6 .4. 2 PREPARE 3 Command

The PREPARE3 command is an asynchronous driver command only. The
command sets a 200ms timer each time a character is received.
The command i~Jnores all line errors (parity, stop bit, etc.) and
terminates if the timer expires or the match character is
received.

5.6. 5 Wr i te-~['ypei Commands

A CHAIN command, command trap, buffer trap and time-out are valid
f lag bits. There are three wr ite·-type commands:

COMMAND

WRITE BUFPER
WRITEl
WRITE2

48-077 FOO ROO

BINARY

00000 100
00001 100
00010 100

HEX

04
DC
14

NUMBER OF
DATA FIELDS

1 or 2
1
1

5-27

5.6.5.1 WRITE BUFPER Command

The WRITE BUFFER command writes data from specified buffers. One
or two data fields are fetched, depending on the buffer type.
The data field specifies a buffer or buffer chain from which data
is written to the line. The left-most byte of the first data
field fetched specifies whether the buffer type is direct text,
indirect text, chained buffers or queued buffers. If the buffer
type is direct text, a second data field is fetched.

5.6.5.2 WRITEI Command

The WRITEl command writes one character from the specified
locations. One data field is fetched, containing the address of
a byte from which a character is written to the line. No
alignment is required. Data code must specify X'Ol'.

5.6.5.3 WRITE2 Command

The WRITE2 command is used to write two characters from specified
locations. One data field is fetched, containing the address of
the first of two bytes from which characters are written to the
line. No alignment is required. Data code must specify x'Ol'.

5.6.6 Hold-Type Commands

A CHAIN command and command trap are valid flag bits.
one hold-type command.

COMMAND BINARY HEX

HOLD SPACE 00000 101 05

5.6.6.1 HOLD SPACE (Line Break) Command

NUMBER OF
DATA FIELDS

1

There is

The HOLD SPACE command puts the line in a space (zero) condition
for a specified interval. One data field is fetched, containing
the address of a halfword with a time value in units of lOOms.
The line is held in a continuous space (zero) condition for this
interval. This command is valid for asynchronous communications
only.

5-28 48-077 FDa ROO

5.6.7 Mode-Type Commands

A CHAIN command and command trap are valid flag bits. 'Mode-lype
commands are used to change various defaull values in the DCB
that are maintained by the driver. If the default value
specified in the individual driver description is acceptable, a
mode-type command is not necessary. Once a value is changed by
a mode-type command, the only way to restore the defau.lt
condition is by a mode-type co~nand specifying the correct value.
Coordinate such modifications if access is being shared by more
than one program. There are ten defined mode-type commands:

NUMBER OF
COMMAND BINARY HEX DA'rA F IELOS

MODE TOUT 00000 110 06 1
MODE CMD2 00001 110 DE 1
MODE RCMD 00010 110 16 1
MODE WCMD 00011 110 lE 1
MODE RDIS,ABL 00100 110 26 1
MODE WDIS,ABL 00101 110 2E 1
MODE DISC 00110 110 36 1
MODE SYNCN'r 00111 110 3E 1
MODE TRANSL 01000 110 46 1
MODE SPCH~R 01001 110 4E 1

5.6.7.1 MODE TOUT (Time-out Int~erva1) Command

The MODE TOUT command sets the E~rror time intervals for commands
that enable the time-out flag. One data field is fetched
containing the address of the first of two halfwords~ the first
halfword contains an error time-out interval for read-type
operations, the second contains an interval for write-type
operations. Both are in one second units. The data field
pointer to it.he two halfword parameters should point to a
ful1word-aligned address.

This timer is strictly for errOl' detection~ when it expires, the
SVC15 call terminates in error. Interval timing is performed via
the WAIT commi:ind, which uses a e~eparate (lOOms resolution) clock.
The resolution of the time is accurate to +0, -1 second.
Time-out values shou.ld thereforE! be set to the desired number of
seconds plus one.

5.6.7.2 MODE CN02 (Adapter) Command

The MODE CN02'command specifies the device-dependent command used
to set adapte1r options. One da.ta field is fetched with the
address of a byte containing the device command that should be
output to specify programmable adapter options such as parity,
number of datei bi.ts, etc.

48-077 FOO ROO 5-29

5.6.7.3 MODE RCND (Read) and MODE WCMD (Write) Commands

These commands specify the device-dependent commands to set read
or write mode in the adapter. One data field is fetched for
these commands, with the address of a byte containing the device
command to be output for read or write data transfers,
respectively. This command should enable interrupts.

5.6.7.4 MODE RDIS (Read Disable) and MODE WDIS (Write Disable)
Commands

These commands specify the device-dependent commands used to
quiesce the read or write side of the adapter. One data field is
fetched with the address of a byte containing the device command
to be output to set the quiesce read or write side of the line.
These commands should disable interrupts.

5.6.7.5 MODE DISC (Disconnect) Command

The MODE DISC command specifies the device-dependent comma.nd used
to disconnect the adapter from the line. One data field is
fetched, with the address of a byte containing the device command
to be output to disconnect the communications line (reset data
terminal ready).

5.6.7.6 MODE SYNCNT (SYNC Character Count) Command

The MODE SYNCNT command specifies the SYNC character count.. One
data field is fetched, with the address of a byte containing the
number of leading SYNCs transmitted (synchronous dr ivers c.nly).

5.6.7.7 MODE SPCHAR (Special Character Enable Masks) Comn\and

The MODE SPCHAR command sets up the bit masks necessary for
special character detection. One data field is fetched,
containing the address of the first of two halfwords; the first
has a bit mask used to enable recognition of specific special
characters during read-type operations; the second contains a bit
mask used to enable special character recognition during
write-type operations.

5~6.7.8 MODE TRANSL (Translation Options) Command

The MODE TRANSL command specifies translation options. One data
field is fetched containing the address of a byte with a series
of indicators controlling translation options.

5.6.8 Test-Type Commands

Reserved for driver-dependent on-line test functions.

5-30 48-077 FOO ROO

CHAPTER 6
DATA COMMUNICATIONS STRUCTURES

6 . 1 I NTRODUC~T ION

This chapter describes the internal operation of the various
structures and subroutines that must be added or modified to
include the Basic Data Communications Subsystem in the operating
system.

The Basic Dat:a Communications System Support Module includes many
subroutines that are called from the line drivers. These
subroutines are involved with interfacing the driver with the
operating sy~3tem and with common buffer management and command
fetching operations.

6,,2 DATA COMMUNICATIONS LINE DRIVERS

The most obvious differences between data communications line
drivers and the general-purpose drivers are:

• Parameter blocks

• Supervisor call 15 (SVCI5) instead of SVCl

• Format of the device-dependent portion of the device control
block (DCn)"

• Event service routine (ESR)

Normally, the driver schedules the ESR itself from the
int~rrupt service (IS) state. However, the operating system
executive might also schedule the ESR because of a time-out,
cancel, power fail or the close of a logical unit (lu) during
input/output (I/O) by the ca.lling task or command processor.

The OS/32 Basic Data Communications System Support Module
includes many subroutines that are called from data
communications line drivers. 'These subroutines are involved with
interfacing t.he dr iver with the! operating system and with common
buffer management and command fetching operations. Some of these
subroutines are exclusively for driver use, but have been
included in this module to reduce code duplication between
drivers.

48-077 FOO ROO 6-1

6.3 CONTROL BLOCK FORMATS

This section describes the control blocks and other system
structures used in data communications. The following structures
will be discussed:

• Device control block (DCB)

• Line control block (LCB)

• Channel control block (CCB)

• Drop control table (DCT) for zero-bit insertion/deletion data
link control (ZDLC) communications

• Drop definition table (DDT) for ZDLC communications

• OCT for asynchronous multidrop communications

• Drop access table (DAT) for asynchronous
communications

• Input/output block (lOB) for asynchronous
communications

• Station descriptor table (SDT) for 3270 emulator

• DDT for 3270 emulator

• Input/output handler (IOH)

• File manager handler (FMH)

6.3.1 Data Communications Device Control Block (DCB)

multidrop

multidrop

The data communications DCB provides a table-driven mechanism for
line drivers and terminal managers. It contains parameters and
system information, such as addresses of line driver/terminal
manager modules, addresses of task control blocks (TCSs) and user
parameter blocks and specific device-related fields. The DCB
structure is divided into three portions:

• Device-independent (standard DCB)

• Data communications

• Device-dependent

Figure 6-1 shows a generalized DCB and how its three sections
relate to each other.

6 -2 48-077FOO ROO

0(00)
STAND}\RD DCB

DEVICE-INDEPENDENT
---\

DATA COMMUNICATIONS
SECTION

---1
DEVI CE-DEPENDEN'r

SEC'1~ ION

Figure 6-1 DCB Sections

The device-independent portion, also called the basic DCB, is
identical to the standard OS/32 DCB. Figure 6-2 shows the fields
of the basic DCB.

The data communications-related portion of ~he DCB, immediately
following the basic DCB, has fields pertaining only ~o devices
requiring basic data communicattons support. Figure 6-3 shows
the data communications-related portion of the DCB.

The device-dependent portion of the DCB, immediately following
the data communications-related portion, is used only if
device-dependent access is requested. This section contains
fields unique to individual lines or devices (e.g., asynchronous
devices, binary synchronous lines and ZDLC lines).

All reference:s to the DeB f ieldel must use the names spec if ied in
Figures 6-2 and 6-3~ These nc~es come from the OS/32 and Basic
Data Communiclations Internal Macro and structure Library supplied
in the standard software package.

48-077 FOO ROO 6-3

6.3.1.1 Device Control Block (DCB) Device-Independent Portion
(Standard DCB)

0(00)

4(04)

8 (08)

I2(OC)

16(10)

20(14)

24(18)
Reserved

28(IC)

32(20)

36(24)

40(28)

44(2C)

DCB.WCNT

125(19)
DCB.DCOP

DCB.ATRB

DCB.DMT

DCB . LEAF

110(OA)

DCB.FLOS

DCB.1INC

DCB.7INC

126(lA)

130(lE)

DCB.INIT

DCB .FUNe

DCB.TERM

DCB.RCNT

DCB.DN

DCB.RECL

DCB.TOUT DCB.RTRY

Figure 6-2 Basic DCB Fields

6-4 48-077 FOO ROO

48(30)
DCB.WKEY

52(34)

56(38)

60(3C)

64(40)

68(44)

72(48)

76(4C)

80(50)

84(54)

88(56)
DCB.PRI

92(5C)

96(60)

149(31)
DCB.RKEY

DCB.XFLG

150(32)

nCB.ERRL

DCB.LLXF

DCB.TOCH

DCB. IOH

DCB.Q

DCB.EDMA

DCB.NXT

DCB.RFLG

189(57)
DCB.TYPE

190(58)

DCB.DCB

DCB.TCB

DCB.ILVL

DCB.CLAS

DCB.DOWE

Figure 6-2 Basic DCB Fields (Continued)

48-077 FOO ROO 6-5

100(64)

104(68)

108(6C)

112(70)
DCB.FC

116(74)

120(78)

124(7C)

128(80)

132(84)

136(88)

140(8C)

144(90)

148(94)

1113(71)
DCB.LU

DCB.ESR

DCB.UPBK

DCB.PBLK

1114(72)
DCB.STAT

DCB.SADR

DCB.EADR

DCB.RAND

DCB.LUE

DCB.SVIX

DCB.WCHN

DCB.SIZE

DCB. VFC

1115(73)
I DCB.DDPS

Figure 6-2 Basic DCB Fields (Continued)

6-6 48-077 FOO ROO

Fields:

DCB . LEAF

DCB.INIT

DCB.TERM

DCB.IOH

DCB.DONE

DCB.ESR

is the fullword address of
coordination table entry for
devices described by the DCB.

the event.
the physical

is the fullw()rd starting address of the SVCl
driver/terminal manager code. This address
corresponds to t.he INITxxxx label in the
driver/terminal manager module itself.

is the fullword address of t.he driver
termination routine scheduled a~ the final ESR
at end of command processing.

is the fullword list address of the IOH
routines. The SVCl executor vector~ from this
IOH list to the specific routine for the
requested function. IOH lists exist for
asynchronous devices (IOHXASY), binary
synchronous devices (IOHMBSC), ZBID devices
(IOHCZBD) and SVC15 accessed devices
(IOHSVCF) .

is the fullword address of a special routine
that does special device-dependent functions
at I/O completion before branching t.o the
standard IOOONE routine.

is the fullword address of the next driver
entry point. At system queue service (SQS)
time, event servicing begins here. Normally,
this address is for the ISSEXEC routine.

6.3 .. 1.2 Device Control Blocks (DCB) Data Communications-Related
Port. ion

The data communications DCB con·tains fields pertaining to the
devices requiring data communications support. All the fields
within this part of the DCB are described in this section.
Figure 6-3 shows the format of ·the data communications portion of
the DCB.

48-077 FOO ROO 6-7

152(9S)

156(9C)

160(AO)

164(A4)

16S(AS)

172(AC)

176(BO)

1S0(B4)

1S4(BS)

1SS(BC)

192(CO)

196(C4)

200(CS)

DCB.RCCB

DCB.LLR

DCB.TCCB

DCB.T01

1154(9A)
I
1

1158(9E)

DCB.FLCB

DCB.CTCB

1170(M)

DCB.LSN

1178(B2)
I
1

DCB.CPCR

DCB.CPTR

DCB.BTRP

DCB.DCW

DCB.NDA

DCB.eTA

DCB.WCCB

DCB.LLW

DCB.HALT

DCB.T02

Figure 6-3 Data Communications DCB Fields

6-8 48-077 FOO ROO

204(CC) 1206(CE)

2.08 (DO)

212 (D4)

216(D8)

220(DC)

224(EO)

228(E4)
DCB.MLT

232(E8)

236(EC)

240(FO)

244(F4)

248(F8)

DCB.RDN DCB.WDN

DCB.XDCD

DCB.ISTA

DCB.IFC

1229(E5)
DCB.SLT

DCB. lTV

DCB.MXEC

DCJ3.XITO

1214(D6)

1218(DA)
I DCB.EXST

DCB.SVCF

1226(E2)

1230(E6)

DCB.ITB

DCB.ESR2

1242(F2)

DCB.LNST

1219(DB)
DCB.DVST

DCB.NCE

DCB.IFLG

DCB.OTV

1246(F6)
DCB.QBCT

1247(F7)
DCB.CHAR

DCB .CHNB

252(FC)
DCB.DOCR

1253(FD)
DCB.DOCW

1254(FE)
DCB.MOCR

1255(FF)
DCB.MOCW

Figure 15-3 Data Communications DCB Fields (Continued)

48-077 FOO ROO 6-9

256(100)
DCB.AOC

260(104)

264(108)

268(10C)

272(110)

Figure 6-3

Fields:

DCB.RCCB

DCB.WCCB

6-10

1257(101)
DCB.DISC

1258(102)

DCB.SCNl

DCB.SCN2

DCB.SCN3

DCB.SCN4

Reserved

Data Communications DCB Fields (Continued)

is the halfword with the address of the read
CCB.

is the halfword with the address of the write
CCB.

NOTE

The auto driver channel requires
CCBs to hold buffer pointers and
other information required during
interrupt service routines (ISRs).
Data communications require the
read CCB and the write CCB to
process read-after-write (RAW).
A simplex device can have only one
CCB and can specify zero for the
unused one.

48-077 FOO ROO

DCB.LLR

DCB.LLW

DCB.FLCB

DCB.CTCB

DCB.TCCB

DCB.HALT

DCB.LSN

DCB.TOl

DCB.T02

DCB.CPCR

DCB.CPTR

DCB.BTRP

DCB.DCW

DCB.NDA

48-077 FOO ROO

Devices geared to human response
time can also use a single CCB for
reads and writes. The use of one
CCB saves some system memory, but
also inhibits the RAW lookahead,
possibly slowing read response
time. (See below for further
information on CeBs.)

is the driver-maintained halfword to specify
the length of last read.

is the driver-maintained halfword to specify
the length of last write.

is the fullword address of a pointer to the
beginning of an LCB chain used by file manager
routines GE'I'FCB and RELEFCB. This entry point
must be in the same position as DCB.FCB within
the file manager DCB.

is the fullword address of the TeB for the
currently executing task. The TCB selects I/O
requests on behalf of the task.

is the halfword address of the timer CCB.

is the halfword address of a special halt
routine (pure code) called by some drivers.

is the logical segment number for an address
check.

is time-out 1 (screen time).

is time-out 2 (OP response limit).

is the fullword address for a channel program
continuation return, referred to for line
driver/terminal manager interface.

is the fullw'Ord address for a channel program
termination return, referred to for line
driver/terminal manager interface.

is the fullword address of the pOinter to a
continuous read buffer trap, referred to for
line driver/terminal manager interface.

is the fullword address of the relocated
driver command words (DCWs).

is the fullword address of the relocated next
data area.

6-11

6-12

DCB.CTA

DCB.RDN

DCB.WDN

Both DCB.RDN
and DCB.WDN

DCS.XITO

DCB.XDCD

DCS.LNST

is the fullword address of the command table
within the particular driver. Every driver
has a command table with addresses of routines
that execute specific DCW commands. When the
task issues an SVCIS request to the driver,
the command field in the DCW serves as an
index to one of these driver routines.

Drivers can support different subsets of the
standard set of driver commands. One command
table might have some driver' commands in
common with other drivers while having other
commands unique to itself. The command table
must be coded as a DAC label. The label must
be declared an EXTRN.

is the halfword with the read device number.

is the halfword with the write device number.

are adjusted at assign time based on the
actual system generated (sysgened) device
number (DCB.DN) and the type of line indicated
in the DCB.XDCD field (i.e., 2-wire or 4-wire,
simplex, etc.).

is the fullword with the SVCl extended data
communications options obtained from the user
parameter block.

is the halfword for the extended device code.
To use file manager routines, the entry must
be at the same offset in the DCB as LCB.XDCD
is within the LCS. DCB.XDCD must be generated
as DC Z(XDCD). XDCD must be declared an
EXTRN.

is the halfword for the line activity status
used by line drivers and terminal managers.
Table 6-1 describes the status bits for this
halfword. DCB.LNST is structurally identical
LO LCB.LNST.

48-077 FOO ROO

I I HEX I
I BIT I MASK I

TABLE 6-1 DCB.LNST BIT DEFINITIONS

NAME MEANING

o I 8000 I LNS.BSYM/B I DCB iB being used.

1 I 4000 I LNS.RWM/B I Line is currently performing a read.

2 I 2000 I LNS.INTM/B I Line is currently with a read or write
I I I initiation phase.

3 I 1000 I LNS.ACKM/B I Next ACK should be an ACK1.

4 I 0800 I LNS.ACQM/B I An ACK is required.

5 0400 LNS.HLDM/B I Put any future I/O requests into I/O
1 wait. A DONE return to user task
I (u-task) is pending.

6 I 0200 I: LNS. 10M/B I I/O ii3 currently in progress.

7 I 0100 I: LNS.RVIM/B 1 Reveri3e interrupt received.
--,

8 I 0080 I: LNS. ERRM/B 1 An oU1tstand ing unr ecover able error
1 1 exists.

9 I 0040 :i LNS. EOTM/B 1 End of tr ansmiss ion r ece i ved.

10 I 0020 :i LNS.IOQM/B 1 An im.a.ge I/O write is on queue.

11 I ~ Reserved

12 1 0008 :1 LNS. CPTM/B 1 Line Gheckpo int is be ing performed.
--1

13 1 0004 :1 LNS. CLSM/B 1 Line Glose is be ing performed.
--1

14 I 0002 ;1 LNS.EQM/B I ENQ slent for read time-out.
------------.--1

15 I I Reserved I

DCB.ISTA

DCB.EXST

DCB.DVST

48-077 FOO ROO

is the halfword into which the line driver
stores SVClS status.

is the byte reserved for the driver.

is the byte for saving the latest device
status after a.n interrupt. This field and the
DCB.ISTA field are useful for debugging
purposes.

6-13

DCB.SVCF

DCB.IFC

DCB.NCE

DCB.MLT

DCB.SLT

DCB.IFLG

DCB.ITB

DCB.ESR2

DCB. lTV

DCB.OTV

DCB.MXEC

DCB.CHAR

6-14

is the fullword with a pointer to the line
driver initiation routine. This address is
used by the SVC1S executor and the terminal
manager to enter the driver. In the DCB
coding, DCB.SVCF must be coded as DAC INITxxxx
and this label must be declared an EXTRN.

As for general-purpose drivers, the driver
initiation routine pointer is the beginning
address of the driver responsible for
communicating with the attached adapter and
device. Entered in the event service state
from the SVC1S executor, this routine assumes
DCB.DCW and DCB.NDA are valid and usually
starts execution of DCW commands.

is the halfword containing the SVC1S function
byte and other information bits for line
drivers.

is the halfword with which the line driver
keeps track of the number of commands
executed.

is the byte containing the main line-type
descriptor for ITFM, the file manager.

is the byte containing
descriptor for ITFM.

is the halfword for flags.

the sUbline-type

is the fullword with bits to be used by
ISSEXEC and ITSRABS when scheduling ESRs for
buffer management and system :support
functions.

is the fullword address of the second ESR.

is the halfword with an error timer value in
seconds for input (reads). The MODE time-out
command can change this value.

is the halfword with an error timer value in
seconds for output (writes). The MODE
time-out command can change this value.

is the halfword with a value for the :maximum
number of allowable error retries.

is the byte with the count of queued buffers
in use. With this count, the line driver
keeps track of queued buffers.

is the byte for temporarily saving characters.

48-077 FDa ROO

DCB.CHNB

DCB.DOCR

DCB.DOCW

DCB.MOCR

DCB.MOCW

DCB.AOC

DCB.DISC

DCB.SCNl

48-077 FOO ROO

is the fullword address of the first buffer in
a chain.

is the byte used by the driver to disable the
adapter after completing each read request.
DCB.DOCR is coded as DCB 'hexadecimal value'
to agree with the adapter.

is the byte used by the driver to disable the
adapter after completing each write request.
DCB.DOCW is coded as DCB 'hexadecimal value'
to agree with the adapter.

is the byte used by the driver to enable
interrupts and to place the adapter into read
mode. DCB.MOCR is coded as DB X'value', with
the value of the bits depending upon how the
adapter is to be used.

is the byte used by the driver to enable
interrupts a.nd to place the adapter into write
mode. DCB.MOCW must be coded as DB X'value',
with the value of the bits dependent upon how
the adapter is to be used.

is the byte used to load programmable adapters
with required information. DCB.Aoe is coded
as DB X'values', where the values might
reflect such programmable information as:

• line speed,

• character size,

• parity information,

• number of stop bits,

• SYNC character,

• test function or local loop-back, and

• synchronization technique.

is the byte used by the driver to disable
interrupts and, for switched lines, to
disconnect the line (i.e., to drop data
terminal ready). DCB.DISC is coded as DC
X'value'. If the read device number is zero,
then this command is issued to the write
device number.

is the fullword for the SVC15 data chain area
1.

6-15

DCB.SCN2 is the fullword for the SVC1S data chain area
2.

DCB .. SCN3 is the fullword for the SVC1S data chain area
3.

DCB.SCN4 is the fullword for the SVC1S data chain area
4.

Terminal managers may place values into these 'fullwords to
provide data buffering information (e.g., buffer BEGIN and END
address or TO and FROM list addresses to the line driver).

6.3.1.3 Device Control Block (DCB) Device-Dependent Portion

In order to remain reentrant, all additional storage required by
any terminal managers must be in additional DCB space set aside
here or in extra memory obtained from system space.

For a description of the device-dependent portion of the DCB, see
Lhe appropriate data communications manuals.

6 .. 3.2 Line Control Block (LCB)

All buffered terminal managers use an LCB to provide required
format pointers, line control and device-independent inter:faces.

An LCB is usually a copy of the appropriate DCB with additional
space for data blocks. The LCB is obtained from dynamic system
space. As shown in Figure 6-5, the LCB consists of three
segments:

• Device-independent segment (basic LCB)

• Device-dependent segment

• Data block descriptor

6.3.2.1 Line Control Block (LCB) Device-Independent Portion

The device-independent portion of the LCB is pictured in Figure
6-4. The device-independent portion of the LCB is structurally
identical to the basic DCB of Figure 6-1.

6-16 48-077 FOO ROO

0(00)
liCE. .DMT

I
I

- - - - - - - - - - .- - - -- - - - - - -. - - - _. - - - - -. - - - -. - _. - .. - _. _. _.- _. - -. - -- - - - - -. -- - - - -. _. -. - .. - .. 1

4(04)
LCE..LEAF

---1
8(08) 110(OA)

Ilca .WCNT

12(OC)

16(10)

20(14)

24(18)
RESERVED

28(lC)

LCE..FLGS

LCB.IINC

125(19)
LCB.DCOD

LCB.7INC

126(lA)

130(IE)
LCB.ATRB

32(20)

36(24)

40(28)

44(2C)

48(30)
LCB.WKEY

LCB.INIT

LCB.TOUT

149(31)
LCB.RKEY

LCB .FUNC

146(2E)

150(32)

LCB.RCNT

LCB.DN

LCB.RECL

LCB.RTRY

RESERVED

Figure 6-4 Basic LCB Fields

48-077 FOO ROO 6-17

----~---
52(34)

RESERVED

56(38)

LCB.FLRT

--~------~---
60(3C)

64(40)

68(44)

72(48)

76(4C)

80(50)

84(54)

88(58)

92(5C)

96(60)

100(64)

6-18

LCB.XFLG

LCB.RFLG

LCB.TOCH

166(42)

LCB.IOH

LCB.Q

LCB.EDMA

LCB.NXT

186(56)
LCB.PRI

LCB.DONE

LCB.DCB

LCB.TCB

LCB.ESR

RESERVED

187(57)
LCB.TYPE

Figure 6-4 Basic LCB Fields (Continued)

48-077 FOO ROO

104(68)
LCB.UPBK

--1
108(6C)

112(70)
LCB .FC

116(74)

120(78)

124(7C)

128(80)

132(84)

136(88)

140(8C)

144(90)

1113(71)
IICB .LU

LCB.PBLl<

1114(72)
LCB.STAT

LCB.SADR

LCB.EADR

LeB .FLR5

LCB .LUE

LCB.SV1X

LCB.WCHN

LCB.SIZE

LCB. VFC

1115(73)
LCB.DDPS

Figure 6-4 Basic LCB Fields (Continued)

48-077 FOO ROO 6-19

Fields:

LCB.DMT

LCB.LEAF

LCB.WCNT

LCB.RCNT

LCB.FLGS

LCB.lINC

LCB.7INC

LCB.DCOD

LCB.DN

LCB.ATRB

LCB.RECL

LCB.INI'r

LCB.FUNC

LCB.TERM

LCB.TOUT

LCB.RTRY

LCB.WKEY

LCB.RKEY

LCB. FLRT

LCB.TOCH

LCB.XFLG

LeB. IOH

LCB.Q

6-20

is the fullword address of the device mnemonic
table (DMT) entry.

is the fullword address of an event leaf.

is the halfword for the write count.

is the halfword for the read count.

is the fullword for the flags.

is the SVCl device intercept.

is the SVC7 device intercept.

is the byte for the device code (DCB number).

is the halfword for the device number (a
physical address).

is the halfword for the device attributes.

is the halfword for the record length.

is the fullword address
initiation routine.

of the driver

is the fullword address of the driver function
routine.

is the fullword address
termination routine.

of the driver

is the halfword for the time-out constant.

is the halfword for the operation retry count.

is the halfword for the write key.

is the halfword for the read key.

is the fullword for the close/checkpoint save
area.

is the fullword address of the time-out chain.

is the halfword for the device-dependent
flags.

is the fullword address of the IOH list. The
default is zero.

is the fullword address of the queue strategy
routine. The default is zero.

48-077 .FOO ROO

LCB.EDMA

LCB.NXT

LCB .RFLG

LCB.PRI

LCB.TYPE

LCB.DONE

LCB.DCB

LCB.TCB

LCB.ESR

LCB.UPBK

LCB.PBLK

LCB.FC

LCB.LU

LCB.STAT

LCB.DDPS

LCB.SADR

LCB.EADR

LCB.FLR5

LCB.LUE

LCB.SVlX

LCB.WCHN

LCB.SIZE

LCB.VFC

48-077 FOO ROO

is the fullword address of the extended direct
memory acceSiS (EDMA) strategy routine.

is the fullword link to the next lOB.

is the halfword for the request-dependent
flags.

is the byte for the I/O priority.

is the byte for the lOB-type code.

is the fullword address
executor.

of the IODONE

is the fullword address of the DCB.

is the fullword address of the TCB.

is the fullword address of the next entry into
driver.

is the fullword task-relative address of the
SVC parameter block.

is the fullword absolute address of the SVC
parameter block.

is the byte for the SVC function code.

is the byte for the SVC logical unit (lu) .

is the byte for the I/O status.

is the byte for the device-dependent status.

is the fullword absolute starting address of
the SVCl buffer.

is the fullword absolute ending address of the
SVCl buffer.

is the fullword checkpoint save area for
register 5.

is the fullword LCB address used in the
contiguous file manager.

is the extended SVCl word.

is the task waiting for this I/O to complete.

is the size in sectors or lines.

is the fullword address of VFCDCB.

6-21

6.3.2.2 Line Control Block (LCB) Device-Dependent Portion

The device-dependent portion of the LCB is pictured in Figure
6-5.

148(94)

LCB.NAME
152(98)

156(9C)
LCB.EXT

160(AO)
Reserved

164(A4)
LCB.LCB

168(A8)
LCB.BSB

172(AC)
LCB.BSE

176(BO)
LCB.URPB

180(B4)
LCB.RPB

184(B8)
LCB.SV1B

188(BC)
LCB.DCW

192(CO)
LCB.NDA

Figure 6-5 Device-Dependent LCB Fields

6-22 48-077 FOO ROO

196(C4) 1198(C6)
LCB.WKBF

200(C8)
LCB.BKRK

204(CC)

208(DO)

212(D4)

216(08)

220(DC)

224(EO)

228(E4)

2.32 (E8)

236(EC)

240(FO)

244(F4)

1201(C9)
LCB.BKCT

LCB.XDCD

1202(CA)
LCB.GDCT

LCB.XITO

1210(D2)

LCB.HTMP

1230(E6)

LC.B.SCNI

LC.B.SCN2

LCB.SCN3

LCB.SCN4

LCB.BKSZ

1203(CB)
LCB.LSTE

LCB.LNST

Reserved

Figure 6-5 Device-Dependent Lca Fields (Continued)

48-077 FOO ROO 6-23

It should be noted that the device-dependent portion of the Lea
described in this section may vary in structure for different
terminal managers.

Fields:

LeB.NAME

LeB.EXT

LCB.LCB

LCB.BSB

LCB.BSE

LCB.URPB

LCB.RPB

LCB.SVlB

LCB.DCW

LCB.NDA

LCB.WKBF

LCB.BKSZ

LCB.BKRK

LCB.BKCT

LCB.GDCT

LCB.LSTE

LCB.XITO

LCB.XDCD

6-24

is the doubleword for the filename.

is the fullword for the extension.

is the fullword LeB-to-LCB linkage address for
SVC7.

is the fullword absolute starting addI:ess of
the segment (the buffer segment begin
address) .

is the fullword absolute ending address of the
segment (the buffer segment end address).

is the fullword task-relative address of the
SVC parameter block.

is the fullword absolute address of the SVC
parameter block.

is the fullword address of the SVCl buffer for
delays.

is the fullword for storage of the DCW address'
for retries.

is the fullword for storage of the next data
area (NDA) address for retries.

is the halfword address of the work buffer to
receive ACK.

is the halfword for the size of each data
buffer.

is the byte for the maximum records permitted
in each block.

is the byte for the total number of data
blocks assigned.

is the byte for the good transmission counter.

is the byte for the error code of the last
transmission.

is the fullword for the extended options.

is the halfword for the extended device code.

48-077 FOO ROO

LCB.LNST is the halfword for the line activity status.

LCB.HTMP are the nine halfwords for the horizontal tab
bit map ..

LCB.SCNl is the fullword for data area 1.

LCB.SCN2 is the fullword for data area 2.

LCB.SCN3 is the fullword for data area 3 .

LCB.SCN4 is the fullword for data area 4.

6.3.2.3 Line Control Block (LCf~) Data Block Descriptor Portion

The data block descr iptor descr jLbed in this section is an LeB
subtable that controls the use c)f individual internal buffers.

BLK.RKCT is the byte for the count of records in the
block.

BLK.ADR is the address of the data block.

BLK.PTR is the halfword for relative offset into a
data block.

BLK.DSCR is the halfword for the data block descriptor
flags. See Table 6-2.

TABLj~ 6-2 BLOCK DESCR1:PTOR FLAG BIT DEFINITIONS

I HEX I
BIT I MASK I NAME MEANING
======:===:=-====:====-====-===.====================~=====~====~==

o I 8000 I BLK.BSM/B I Line buffer is currently being used.

1 I 4000 I B·LK.RWM/B I Line buffer is currently being used
I for a. read.

2 I 2000 I BLK.BKM/B I Line buffer blocking or deblocking is
I currently in progress.

3 I 10010 I BLK.IOM/B I Line buffer is currently being used
I for I/O.

4 I 0800 I BLK.QUM/B I Line buffer is on queue for either an
. I I output write or input deblocking.

5 I 04010 I BLK.INM/B I Second line buffer is on queue.

6 I 0200 I BLK.QU2M/BI Reserved

8 I 0080 I BLK.EXM/B I Line buffer contains an ETX character.

9 I 0040 I BLK.AKM/B I Reserved

48-077 FOO ROO 6-25

6.3.3 Channel Control Block (CCB)

The CCB contains the address of the DCB, the. fullwords and
halfwords used by the line drivers and the clock halfword.

6.3.3.1 Channel Control Block (CCB) Device-Independent Portion

This section discusses the device-independent (standard) fields
of the CCB. The device-independent CCB format is illustrated in
Figure 6-6.

0(00)
CCB.CCW

4(04)

8(08)
CCB.CW

12(OC)

16(10)

20(14)
CCB.SUBA

24(18)

28(16)

Figure 6-6

6-26

12(02)

CCB.EBO

110(OA)

CCB.EBI

CCB.XLT

122(16)
CCB.MISC

CCB.DCB

CCB.XLT2

CCB.LBO

CCB.LBI

123(17)
CCB.FLOS

CCB Device-Independent Portion

48-077 FOO ROO

Fields:

CCB.CCW

CCB.LBO

CCB.EBO

CCB.CW

CCB.LBI

CCB.EBI

CCB.XLT

CCB.SUBA

CCB.MISC

CCB.FLGS

CCB.DCB

CCB.XLT2

is the half\~ord containing the channel command
word (CCW).

is the halfword containing the length of
buffer O.

is the fullword containing the end address of
buffer O.

is the 16-bit check "word".

is the half~ord containing the length of
buffer 1.

is the full~rord containing the end address of
buffer 1.

is the fullword containing the address of the
translation table.

is the halfword address of the subroutine
(pure code).

is the I-byte temporary save area used by line
drivers.

is the I-byte for CCB flags.

is the fullword containing the address of the
associated DCB.

is the fullword address of the secondary
translation table.

6.3.3.2 Channel Control Block (CCa) Device-Dependent Portion

This section discusses the fields of the CCB used by data
communications. The CCB format is illustrated in Figure 6-7.

48-077 FOO ROO 6-27

0(00)

24(18)

28(1C)

32(20)

36(24)

40(28)

44(2C)

48(30)

52(34)

56(38)

Device-independent section

CCB.SAV1

CCB.CMD

CCB.TLXF

CCB.ITIM

CCB.PITC

CCB.BFO

134(22)

CCB.BF1

142(2A)

146(2E)
I

150(32)
I
1

154(36)

CCB.QBF

CCB.SAV2

CCB.RECS

CCB.BMOD

CCB.DN

CCB.NITC

---1
60(3C)

CCB.QBT

64(40) 166(42)
CCB.PDCT Reserved

Figure 6-7 Data Communications CCB Format

6-28 48-077 FOD ROO

Fields:

CCB.BFO

CCB.SAVl

CCB.SAV2

CCB.BFl

CCB.CMD

CCB.RECS

CCB.TLXF

CCB.BMOD

CCB.ITIM

CCB.DN

CCB.PITC/
CCB.NITC

CCB.QBF

CCB.QBT

CCB.PDCT

48-077 FOO ROO

is the fullword used by the line driver during
ISRs containing the beginning address of
buffer zero.

is the halfword save area 1.

is the halfword save area 2.

is the fullword used by the line driver during
ISRs containing the beginning address of
buffer 1.

is the halfword storage for the DCW.

is the halfword used by the binary synchronous
driver to contain CCB count equivalent to
transparent record size.

is the halfword used to total the length of
transfers when using chained buffers.

is the halfword required by drivers that must
maintain their present mode~ i.e., binary
synchronous and future asynchronous drivers.

is the halfword used by the clock.

is the halfword used by the clock containing
a device number correspondng to the CCB (read
or write). It is initialized by the file
manager at af3S ign time.

are the halfwords used by the clock containing
previous and next pointers of the forward- and
backward-linked time chain. It.. must be coded
as DC H' 0' ,H' 0' .

is the address of a queued buffer from the
list (queued buffer support, lines only).

is the address of a queued buffer to the list
(queued buffer support, lines only).

is the halfword pad count used by the direct
I/O sUbsystem (DIOS). The relative position
of this field in the CCB is fixed.

6-29

6.3.4 Drop Control Table (DCT) for Zero-Bit Insertion/Deletion
Data Link Control (ZDLC) Communications

The DCT is a system table that is either allocated by the user or
sysgened into the DCB. The DCT stores data necessary for
controlling ZDLC communications with a specific drop. Included
with its data are the relocated addresses (i.e., addresses
relocated from task space to system space) of the:

• four circular lists (for the u-task I/O buffers),·

• secondary station address (SSA) of the allocated drop, and

• logical filename.ext of the drop.

When directed by the SVCl extended option bits, these parameters
are placed into the DCT from the user's DDT. Figure 6-8 depicts
the DCT.

0(00)

4(04)
DCT.SSA

8(08)

16(10)

20(14)

24(18)

28(lC)

DCT.INK

DCT.SSAL

DCT.FNM

Not used

DCT.UDR

DCT.UQW

DCT.UDW

Figure 6-8 DCT (ZDLC) Format

6-30 48-077 FOO ROO

32(20)

36(24)

40(28)
OCT. HOLE

44(2C)

141(29)
I

nCT. lOR

nCT. lOW

nCT.HLNI<

DCT.80S
146(2E)
I DCT.DDS

48(30)
DCT.MBFS

52(34)
DCT.ORFC

56(38)
nCT.OCR

60(3C)
nCT.INEF

64(40)
OCT. IOSR

68(44)
DCT.OCNT

157(39)
nCT.OCX

161(3D)
DCT.ILFA

165(41)
OCT.ONTX

\50(32)
DCT.MNOF

154(36)
nCT.NOAB

158(3A)
DCT.PPO

162(3E)
nCT.INFA

166(42)
nCT.OLRR

(Reserved)

\51(33)
DCT.ORRC

155(37)
DCT.TPER

159(38)
nCT.PSC

\63(3F)
DCT.INUF

167(43)
nCT.ONRT

Figure 6-8 OCT (Zm~C) Format (Continued)

Fields:

OCT.LINK is the fu11wc>rd pointing to the address of the
next OCT on the chain of OCTs.

OCT.SSA is the first byte for the SSA.

48-077 FOO ROO 6-31

OCT.SSAL

OCT.FNM

OCT.UDR

OCT.UQW

OCT.UDW

OCT. lOR

OCT. lOW

OCT. HOLE

OCT.HLNK

OCT.SOS

OCT.OOS

OCT.MBFS

OCT.MNOF

6-32

1s the 3-byte link: to any additional SS.A
bytes.

1s the l2-byte field containing the ll-byte
f ilename. ext (logical drop name) for t.he OCT;
the last byte is unused.

is the fullword pointing to the user dc)ne with
read (UDR) circular list (the read-done list)
associated with the drop.

is the fullword pointing to the user queue for
wr ite (UQW) circular list (the wr itE~ list)
associated with the drop.

is the fullword pointing to the user dc)ne with
write (UDW) circular list (the write-done
list) associated with the drop.

is the fullword header pointing t~o the
internal read-done chain of input frames. It
is not yet passed to the UDR circular list.

is the fullword header pointing t .. o the
internal write-done chain of output frames
that has already been transmitted, but is
awaiting acknowledgement.

is the l-byte "frame hole" indicator having a
value of X'FF', when applicable. When not
used, this byte is reset to zeros. (A hole is
a missing I-frame within the input data
register (lOR) chain. The frame was
selectively rejected by the channel terminal
manager (CTM) and, consequently, not entered
into the lOR chain.)

is the 3-b~e link: to the address of the next
frame after the hole in the lOR chain. When
not used, these bytes are reset to zeros.

is the halfword static drop status describing
drop criteria to the CTM.

is the halfword dynamic drop status reflecting
drop activity at the given time.

is the halfword containing the maximum size of
a frame that can be transmitted for the drop.

is the byte containing the maximum number of
frames on the internal write-done (lOW) chain
Lhat can be awaiting acknowledgement.

48-077 FOO ROO

DCT.ORRC

DCT.ORFC

DCT.NOAB

Dc'r.TPER

DCT.OCR

DCT.OCX

DCT.PPD

DCT.PSC

DCT.INEF

DCT.ILFA

DCT.INFA

DCT.INUF

DCT. IOSR .

48-077 FOO ROO

is the byte containing the
code for an FRMR frame
having a FRMR code in
(C-field) being output.

rejection reason
(i.e., a UN-frame

the control field

is the halfword containing the rejected
C-field to be included within the FRMR frame
being output.

is the byte specifying the number of address
bytes in the SSA.

is the byte containing the reason code of the
problem-causing trap.

is the byte containing the binary index code
of the NUMBERED or UNNUMBERED C-field sequence
to be output.

is the byte into which
requested by the above
before the appropriate
output.

the command code
DCT.OCR is stored

N·- or UN-frame is

is the byte determining the poll priority of
the drop.

is a byte used to defer an implied rejection.
(An implied rejection occurs when a drop
receives an N- or I-frame having the P/F bit
set and the N(R) value less than the sequence
number, N(S), of the next frame to be
transmitted.)

is the byte indicating the next expected
sequence number, N(S), of an incoming I-frame.

is the byte indicating the sequence number,
N(S), of the last input I-frame that was
acknowledged.

is the byte indicating the sequence number,
N(S), of the next expected input I-frame to be
acknowledged.

is the byte :indicating the sequence number,
N(S), of the next input I-frame that can be
passed from t.he IDR chain to the UDR list.

is the byte containing the sequence number,
N(S), of a f~electively rejected input I-frame
that is currently outstanding.

6-33

DCT.ONTX

DCT.OLRR

DCT.ONRT

OCT.OCNT

is the byte indicating the sequence number,
N(S), of the next I-frame to be transmi.tted.

is the byte containing the sequence number,
N(R), of the last RR (receive ready) frame
received from another drop.

is the byte containing the sequence
N(S), of the next output I-frame
retransmission; this I-frame must be
IDW chain.

number,
needing
in the

l-byte counter for I-frames transmitted or
received in response to a poll.

To communicate with a drop, a OCT for that drop must be in system
space. The DCT gets into system space in one of two ways:

1. The user allocates the OCT with an
extended SVC7 parameter block.
the following:

SVC7 call based on an
Issuing the SVC7 call does

• Allocates a DCT from system space.

• Enters the logical filename.ext and SSA from the SVC7
parameter block into the DCT.

• Initializes DCT control fields to specific values needed
by the CTM.

2. As a user convenience, static DCTs can be sysgened as
permanent tables within the DCB; the user need not allocate
the DCTs. At sysgen, the DCB for the ZDLC line can have one
or more DCTs built in with each DCT having a defined logical
filename. ext and secondary station address. To communicate
with a drop defined this way, the user must know the logical
filename.ext of the drop.

6.3.5 Drop Definition Table (DDT) for Zero-Bit Insertion/
Deletion Data Link Control (ZDLC) Communications

The DDT is a table the user sets up in task space as an extension
to the SVCl parameter block. It supplies additional parameters
needed for ZDLC protocol support, including:

• the logical name of the drop with which ZOLC communi.cations
are wanted, and

• the addresses of the four circular lists (read pool, read-done
list, write list, and write-done list) needed for I/O.

6-34 48-077 FOO ROO

When the useI' issues the SVCl call, DD'r parameters are passed t.o
~he OCT and the DCB.

As defined for ZDLC protocol, a drop is a logical start.ing or
ending point on a ZDLC communications line. A drop can be a
primary station, a secondary station, or a station acting as
multiple secondaries. Figure 6-9 depicts the DDT.

0(00)
DDT.SSA,

4(04)

8(08)

12(OC)

16(10)

20(14)

24(18)

28(lC)

Fields:

DDT.SSA

48-077 FOO ROO

11(01)
DDT.SSAL

DD'r .FNM

DD~r.EXT

DD~r. UQR

DD~r e UDR

DD~r. UQW

DDT.UDW

Figure 6-9 DDT (ZDLC) Format

used when a user changes the secondary station
address of a drop. Holds the replacement SSA.

6-35

DDT.SSAL

DDT.FNM
DDT. EXT

DDT.UQR

DDT.UDR

DOT.UQW

OOT.UOW

holds pOinter to additional SSA bytes when a
u-task changes an SSA to have more t.han one
byte.

As seen in Figure 6-9, the first byte of this
fullword is .an additional SSA byte and the
following three bytes point to another SSA
byte, if necessary. The last SSA byte has its
pointer filled eet to zero.

defines the logical drop name and e:Ktension
by which the drop is known to the system.

is the address of the UQR list (user's read
pool) .

is t.he address of the UDR list (user's
read-done list) .

is the address of the UQW list (user's write
list) .

is t.he address of t.he UDW list (user's
write-done list) .

6.3.6 Drop Control Table (DCT) for Aeynchronoue
Communications

Multidrop

The OCT for asynchronous multidrop communications is a caps
system table that is allocated by the user executing t.he generate
macro or command. One DCT per terminal is allocated to specify
the drop. Fields in the DCB specific to asynchronous multidrop
communications contain the OCT queue control data. The following
are included with the DCTs:

• Logical filename/extension of the drop

• Device access queue control data

• Line polling/selection address of t.he drop

The structure of t.he OCT is shown in Figure 6-10.

6-36 48 ·-077 FOO ROO

10(00)
DC,]~ .DLNK

I 1 __ _

4(04)

8(08)

12(OC)

16(10)

20(14)

24(18)

28(1C)

32(20)

36(24)

40(28)

44(2C)

DCT.FLOS

DCT.WCNT

DC,]~ . NAME

DC,]~ .FDAT

DC,]~ .I.DAT

DC,]~ .DFQH

DC,]~.DFQT

DC,]~ .FQLK

DC,]~ .DCB

142(2A)
DCT.LADR

146(2E)

143(2B)
Reserved

nCT.RCNT

F igu're 6-10 nCT (Asynchronous Multidrop) Format

48-077 FOO ROO 6-37

Fields:

DCT.DLNK

DCT.NAME

DCT.FDAT

DCT.LDAT

DCT.DFQH

DCT.DFQ'r

DCT.DQLK

DCT.DCB

DCT.FLGS

DCT.LADR

DCT.WCN'r

DCT.RCNT

is the link to the next DCT (from the DCB).

is the file descriptor (fd) for the particular
terminal.

is the first DAT used by this DCT.

is the last DAT used by this DCT~

is the first DAT on the function queue chain.

is the last DAT on the function queue chain.

is the link to the next DCT in the function
queue chain.

is the pointer to the parent·DCB.

is a halfword reserved for flags.

is the polling/selection line address for the
particular terminal.

is the halfword for the write count.

is the halfword for the read count.

6.3.7 Drop Access Table (DAT) for
Communications

Asynchronous Multidrop

The DAT is a system table that is internally allocated when an lu
is assigned to a terminal. The following are included with its
data:

• lu

• lOB queue control data

• Timer chain data

The structure of the DAT is shown in Figure 6-11.

6-38 48·-077 FOO ROO

0(00)

4(04)

8(08)

I2(OC)
DAT.LU

16(10)

20(14)

24(18)

28(1C)

II3(OD)

DAT.TIMR

32(20)

36(24)
DAT.APR.V

137(25)

DA.T.FQLK

DA,T.TMLK

DAT.Tca

DAT.DCT

DAT.DCB

DA'T.IOBH

130(1E)
DAT.FLGS

DA'r.IOBT

DAT.CONB

Figure 6-11 OAT (Asynchronous Multidrop) Format

Fields:

OAT.OLNK is the link t.o the next OA'r for the
OCT.

OAT.FQLK is the link 1:'0 the next OA'r in the
queue chain.

current

function

48-077 FOO ROO 6-39

OAT.TMLK

OAT.LU

OAT.TCB

OAT.OCT

DAT.DCB

OAT. IOBH

OAT.TIMR

OAT.FLGS

OAT. IOBT

OAT. APRV

OAT. CONS

is the link for the timer chain.

is the byte for the lu assigned to the OAT.

is the address of the.

is the address of the parent OCT of this OAT.

is the address of the parent OCB of this OAT.

is the pointer to the first lOB for this OAT.

is the timer value.

is a halfword reserved for flags.

is a pointer to the last lOB for this OAlr.

is the access privilege byte.

is the multi-terminal monitor (MTM) Tca save
area.

6.3.8 Input/Output Block (lOB) for
Communications

Asynchronous Multidrop

The lOB is allocated from system space and chained to the TCB.
This occurs both at load time and assignment time. At load time,
the number of lOBs built is dependent on the Link option IOBLoeK.
If the option is not specified, a default of one lOB is contained
in the TCB. At assignment time, additional lOBs are allocated
and chained, thereby eliminating the problem of proceed I/O
waiting for a free I/O block. The lOB contains I/O information
t.hat includes the SVCl parameter block. The structure of the lOB
is shown in Figure 6-12.

0(00)

4(04)

8(08)

J2(OC)

IOB.RFLG

IOB.NXT

16(06)
IOB.PRT

10B.DONE

10B.DCB

Figure 6-12 lOB Format

17(07)
IOB.TYPE

6-40 48-077 FOO ROO

16(10)

20(14)

24(18)

28(1C)

32(20)
IOB.FC

36(24)

40(28)

44(2C)

48(30)

52(34)

56(38)

60(3C)

133(21)
IOB.1.U

IOB.CYL

IOB.TCB

IOB.ESR

IOB.UPBK

IOB.PBLK

134(22)
10B.STAT

IOB.SADR

IOB.EADR

10B.RAND

10B.LUE

IOB.SVIX

IOB.WCHN

162(3E)
10B.SECT

135(23)
IOB.DDPS

163(3F)
IOB.LSEC

Figure 6-12 lOB :Pormat (Continued)

48-077 FOO ROO 6-41

Fields:

IOB.NXT

IOB.RFLG

IOB.PRT

IOB.TYPE

IOB.DONE

IOB.DCB

IOB.TCB

IOB.ESR

IOB.UPBK

IOB.PBLl<

IOB.FC

IOB.LU

IOB.STAT

IOB.DOPS

IOB.SADR

IOB.EADR

lOB. RAND

IOB.LUE

IOB.SV1X

IOB.WCHN

IOB.CYL

IOB.SECT

IOB.LSEC

6-42

is a fullword that holds the forward pointer.

is the request-dependent flag.

is the I/O priority.

is the type byte.

is the address of the IODONE/SUB executor.

is the address of the parent DCB.

is the pointer to the caller TCB.

is the driver entry fullword.

is the unrelocated parameter block address.

is the relocated parameter block add~ess.

is the SVCl function code.

is Lhe SVCl I/O iu number.

is the device-independent status from the SVCl
paramet.er block.

is the device-dependent status from the SVCl
parameter block.

is Lhe buffer start address.

is Lhe buffer ending address.

is Lhe pOSitional address of the logical
record LO be accessed for a data transfer.

is the iu entry address.

is the extended SVCl word.

is Lhe list o~ tasks waiting for the current
I/O to finish.

is the request.ed cylinder *2 for a disk.

is the st.arting relative sector.

is the relat.ive position of the last sector.

48-077 FOO ROO

6.3.9 Station Oeser iption TablE! (SOT) for 3270 Emulator

The SOT is attached to the DCB and is created from system space,
one per control unit, when the GENERATE command is executed. The
following are included with its data:

• Control units polling/selection addresses

• Pointers to the DOTs for the devices on the control unit

The structure of the SOT is sho~m in Figure 6-13.

0(00)

4(04)

8(08)

12(OC)

16(10)
SDT.CUP

20(14)

24(18)

117(11)
I SDT.CUS

SDT.LINK

SDT.DDT

SOT.LDOT

SOT.DCB

118(12)
I

SOT.RSV

SOT.TS

SDT.STAT

Figure 6-13: SOT Format

48-077 FOO ROO 6-43

Fields:

SDT.LINK is the link to the next SOT.

SOT. DDT is the link to the first DDT on the station.

SDT.LDDT is the link to the last DDT on the station.

SDT.DCB is the link to the parent DCB.

SOT. CUP is the station control unit polling address.

SDT.CUS is the station control unit selection address.

SOT. STA'r is the status of the control unit~

SDT.TS is the general polling time stamp.

6.3.10 Device Def inition Table (DDT) for the 3270 Emulatc)r

The DDT is a system table that is attached to the SOT. DDTs are
created at generation time from system space and one DDT is
created for each device to be generated. Each DOT is chained to
the proper SOT according to which control unit the device is to
be attached.. The following are included with its data:

• Device address for the virtual terminal for which it is
generated

• Pointer to the screen image storage (SIS) buffer

The structure of the DDT for the 3270 emulator is shown in Figure
6-14.

6-44 48-077 FOQ ROO

0(00)

4(04)
DDT.SSA

8(08)

15(05)
I DDT.TYPE
1

DDT.RSTA

12(OC)

16(10)

20(14)

24(18)

28(1C)

32(20)

36(24)

40(28)
DDT.LU

44(2C)

48(30)

141(29)

DDT.LINK

1 (6(06)
DDT.IOC

IIO(OA)
DDT.STAT

DDT. lOB

DDT.'WRQT

DDT.'WRQB

DDT.RDQT

DDT.:RDQB

DDT.SIS

DDT.SDT

DDT.TOB

DDT .1PEPL

DDT . JPEVL

F'igure 6-14 DDT (3,270 Emulator) Format

48-077 FOO ROO 6-45

52(34)

56(38)
DDT.DSTA

60(30)

64(40)

68(44)

72(48)

76(4C) 177(4D)
DDT.BCNT

80(50)
DDT.FSTA

84(54)

DDT.TIML

158(3A)

DDT.LXF

DDT.NAME

DDT.FLGS

175(4B)
Reserved

Reserved

182(52)
DDT.TIMR

DDT.TS

Figure 6-14 DDT (3270 Emulator) Format (Continued)

Fields:

DDT.LINK. is t.he 1 ink to the next DD'r.

DDT~SSA is the secondary station address.

DDT. TYPE is the 3270 device type.

DD'r.IOC is the I/O request counter.

DDT~RSTA is t.he last reported device status.

6-46 48-077 FDa ROO

DDT. STA'r

DDT. rOB

DDT.WRQT

DDT.WRQB

DDT.RDQ'r

DDT.RDQB

DDT.SIS

DDT.SDT

DDT.LU

DDT.TOB

DDT.FEPL

DDT.FEVL

DDT. TIMr.. ..

DDT. DSTA

DDT.FLGS

DDT.LXF

DDT.NAME

DDT. BCNT

DDT. FSTA

DDT.TIMR

DDT.TS

is the 3270 device status.

is the address of the retained lOB.

is the pointer to the top of the write ready
queue.

is the pointer to the bottom of the write
ready queue.

is the pointe~r t.o the top of the read done
queue.

is the po inte~r to the bottom of the read done
queue.

is the address of the screen image storage.

is the addI'ess of the station descriptor
t..able.

is the assigned lu.

is the address of the connector TOB.

is the format. terminal manager (FTM) entry
from the prot.ocol terminal manager (PTM) link.

is the FTM entry from the virtual t..erminal
monitor (VTM) link.

is the logicaLl I/O timer link.

is the dynami.c status halfword.

is a halfwordl reserved for control flags.

is the length of data transfer.

is the v irtu"aLl terminal name.

is the write queue buffer counter.

is the FTM st.atus field.

is the current logical timer value.

is the ·genera.l polling time stamp.

6.3.11 Input/Output Handler (IOH)

The IOH is a syst.em structure that handles I/O from the OS/32
SVCl paramet.~r block. The structure of the IOH is shown in
Figure 6-15.

48-077 FOO ROO 6-47

10(00)
1
I
I
I ___________ _
1 ______ ----
1

14(04)
1
I

IOH . READ

IOH.WRIT
I _______________ _
1 - ---------
18(08)
I
I

------1--------
II2(OC)

1 ______ ----
I ------------
116(10)

1 ______ --
1

120(14)

1
1

1 ______ ----
I

124(18)
I
I

IOH.WAIT

IOH.HALT

IOH.TEST

IOH.SET

IOH.REW
1 _______________ _
1 ______ ----
I

128(1C)
IOH.BSR

1

I
I

---------------1 -------- 1

1
1
1
1
1

------------1
1
1

1
I
1

---I
1

---------------- 1
1
1

---I

1
1

------_·-----1 ------- 1

1

I
1

:------------------1

132(20)
1 -----------------------: -------------- 1

IOH.FSR 1 ,
1
1
1 1 __________ _

1 ------------------------- -_ .. _---------------------1
1 136(24) I

IOH. WFM

1 ______ ----
1

140(28)
--------------------1

1

-------- -------- 1 -----------
IOH.FFM

1 ______ --
I ------------------
144(2C)

IOH.BFM
1 _______________ _ 1 _. _________ _

1

148(30)
IOH.EOT

Figure 6-15

6-48

IOH Format

1
1
1

---------1
1
1

1
1
I

----------------11
I

48-077 FOO ROO

52(34)

56(38)

60(3C)

64(40)

Fields:

IOH.READ

IOH.WRIT

IOH.WAI'r

IOH.HALT

IOH.SET

48-077 FDa ROO

10H.INIT

IOH.DlDF

IOH~CON

IOH.PIN"R

Figure 6-15 IOH :Format (Continued)

is the fullwlOrd address of the SVCl read
executor.

is the fullwo'rd address of the SVCl wr ite
executor.

is the fullwo'rd address of the SVCl wait-only
executor.

is the fullwo'rd address of the SVCl halt I/O
executor.

is the fullwo'rd address of the SVCl test I/O
complet ion ex,ecutor.

is the fullwo'rd address of the SVCl test and
set executor.

6-49

IOH.REW

IOH.BSR

IOH.FSR

IOH.WFM

IOH.FFM

IOH.BFM

IOH. Eo'r

IOH.INIT

IOH.DDF

IOH.CON

IOH.PWR

is the fullword address of the SVCl rewind
executor.

is the fullword address of the SVCl backspace
record executor.

is the fullword address of the SVCl forward
space record executor.

is the fullword address of the SVCl write file
mark executor.

is the fullword address of the SVCl forward
file mark executor.

is the fullword address of the SVCl backspace
file mark executor.

is the fullword address of the SVC task
termination executor.

is the fullword
initialization
entered when the
started.

address
routine.
operating

of the device
This routine is
system is first

is the fullword address of the
device-dependent function executor.

is the fullword address of special enit.ry for
the operating system console.

is the fullword address of the power restore
initialization routine. This routine is
entered after a power restoration.

6.3.12 File Manager Handler (FMH)

The FMH is a system structure that handles SVC7 functions for
data communications. The format of the FMH is shown in Figure
6-16.

6--50 48--077 FOO ROO

0(00)
FMH.ALL

4(04)
FMH.DEL

8(08)
F"MH.OPNI

12(OC)
FMH.OPN2

16(10)
FMH.CKPT

20(14)
FMH.FTCH

---,
24(18)

28(lC)
FMH.RSLU

32(20)
FMH.CAP

36(24)
FMH.REN

40(28)
FMH.REP

Figure 6-16 FMH Format

48-077 FOO ROO 6-51

Fields:

FMH.ALL

FMH.DEL

FMH.OPNl

FMH.OPN2

FMH.CKP'r

FMH.FTCH

FMH.CLOS

FMH.RSLU

FMH.CAP

FMH.REN

FMH.REP

is the fullword address of the SVC7 allocate
routine.

is the fullword address of the sve7 delete
routine.

is the fullword address of the standard SVC7
assign routine.

is the fullword address of an optional SVC7
assign routine, which can be used by buffered
terminal managers for additional processing,
after FMH.OPNl branches to the operating
system for common processing.

is the fullword address of the SVe7 checkpoint
routine.

is the fullword address of the SVC7 fetch
attributes routine.

is the fullword address of the sve7 close
routine.

is the fullword address of the SVC6 lu/TeS
exchange lu routine.

is the fullword address of the sve7 change
access privileges routine.

is the fullword address of the BVC7 rename
routine.

is the fullword address of the SVC7 reprotect
routine.

6.4 DEVICE CONTROL BLOCK (DCB) POINTERS FOR LINE DRIVER COMMAND
INTERPRETATION

Sysgen includes one DCB for each adapter (line) configured in the
system. The DCB contains information about that line, its modem,
and sometimes, the attached terminals. Line driver command
interpretation is controlled by pointers contained in the DCB.
These pointers are the:

• Driver initiation routine DCB.SVCF

• Command table used for decoding commands DCB.CTA

• Translation tables available for this device

• Driver command termination routine DCB.TERM

6-52 48--077 FOO ROO

• Actual output commands required by the adapter DCB.DOCR
DCB.DOCW
DCB.MOCR
DCB.DISC

• Programmable adapter information DCB.AOC

• SVCl terminal manager entry (if supported)

• Adapter device numbers DCB. RON
DCW.WDN

• Error timeout values DCB. lTV
DCB.OTV

• Next entry into the driver (ESR scheduling) DCB.ESR

• CCB required for the
adapter

DCB.RCCB
DCB.WCCB

6.4.1 DCB.TERM Pointer

When a driver schedules its own .ESR, it branches to an address
pointed to by the driver termination code which usually checks to
see if the command is chained. If the command is chained, it
continues with command fetching or it terminates the entire SVC15
request by branching to CMTERM, the data communications
equivalent of IODONE.

6.4.2 DCB.DOeR, DCB.DOCW, DCB.MOCR and DCB.MOCW Pointers

A s ingle type~ of adapter, a programmable asynchronous line
adapter (PASLA) for example, may require different commands to
control it, depending on how it is strapped and how it is to be
used (i.e., half-duplex, full-duplex, echoplex or reverse
channel). The DCB has space to hold the actual bytes used for
the output commands. A single driver can therefore issue the
proper output command to several differently strapped adapters.

DCB.DOCR

DCB.DOCW

DCB.MOCR

DCB.MOCW

48-077 FOO ROO

is the command used to disable an adapter
leav ing the r lead mode.

is the command used to disable an adapter
leav ing the w:r i te mode.

is the command used to enable an adapter and
place it into read mode, assuming a previously
unknown state.

is the command used to enable an adapter and
place it into the write mode, assuming a
previously unknown state.

6-53

6.4.3 DCB.AOC Pointer

This byte is used to pass required information (such as mode,
parity, line speed, number of stop bits, etc.) to a programmable
adapter. It is generally the CMD2 byte. This allows onE~ dr iver
to communicate with various similar terminals operating at
different speeds.

6.4.4 DCB.INIT Pointer

Terminals supported for SVCl access must have a pOinter to the
beginning of the terminal manager code for the attached terminal.
This is provided in the DCB. The label referenced by DCB .. INIT is
of the form INITxxxx and is declared an EXTRN in the DeB.

6.4.5 DCB.RDN and DCB.WON Pointers
.

Communication adapters can have one or two device numbers,. again
depending on the strapping. A 2-wire (half-duplex) adapter uses
the same device number for both reading and writing, while a
4-wire (full-duplex) adapter uses two different numbers. Drivers
can remain transparent to this difference by using the numbers
supplied in the DCB when needed.

A simplex device has only one of these numbers (the other is
zero, signifying no device).

These numbers are set up at assign time by ITFM, which uses
DCB.DN and DCB.XDCD, both initialized at sysgen. The real device
number should be specified at sysgen time.

6.4.6 DCB.ITV and DCB.OTV Pointers

The time values used to abort an I/O if not completed within the
allotted time period are obtained from the DCB. There are two
halfwords, one for read and one for write. Thus, similar
devices can have time-outs that vary depending on the intended
use of the line and the attached device. These time values are
in I-second increments with a resolution of +0, -1 second.

6.5 EVENT SERVICE ROUTINE (ESR) SCHEDULING

Execution of data communications line dr iver code can over la,p
execution of certain buffer management routines that execute in
ES(NSU) state, except for actual I/O processing. For I/O
processing, these routines execute in the IS state. Therefore,
ESR scheduling is required because concurrent events might result
from overlapped processing.

6-54 48-077 FOO ROO

Examples of cloncurrent events al:e:

• I-second error timer time-out

• lOOms timer time-out

• System console cancellation of a task

• Closing of an lu in the middle of an I/O operation

The coordination needed for such
communications ESR scheduling
drivers.

concurrent events makes
different from that of

data
other

To coordinate the asynchronous occurrence of ESR requests to a
dr iver, all line dr ivers USE~ a special routine (ITSRABS) for
scheduling ESRs. Standard dat.a communications drivers might
require several ESR functions, (mainly buffer management) to be
performed concurrently with IS processing. Other functions, such
as cancel, halt I/O, power fail or time-out, can occur whenever
the operating system or the cOIDnland processor requests them.

Since several of these reqests may be outstanding before any or
all of them can be completed, there is a mechanism to handle
multiple requE::sts for ESR schedu.ling. This mechanism cons ists of
a series of bit.s located in the DCB (DCB.ITS). Each bit
indicates a standard function to be performed during ESR
processing. ~rhe bits are set by the subroutine ITSRABS, which
'schedules an ESR when it adds the address of the leaf to the
system queue if no previous bits were set before this one. Thus,
only one entry to the system queue is made for many outstanding

. ESR requests.

The actual ESR code executed as a result of an ATL instruction to
the system qUE~ue is a rout ine ca.lled I SSEXEC, wh ich scans the
bits from left to right and executes the indicated subroutine
corresponding to each bit set. The bit numbers and their
correpsonding functions are shown in Table 6-3.

The ISSEXEC r()utine is always set up as the next ESR by the SVC15
executor at c()nnect time. DCS.ESR is set up with the ISSEXEC
routine addrE~ss. Data communications drivers should never call
EVMon unless t~he routine used can perform exactly as ISSEX:EC
performs, especially as far as power fail, time-out or halt I/O
is concerned; EVMOD modifies the DCS.ESR field.

48-077 FOO ROO 6-55

TABLE 6-3 DATA COMMUNICATIONS SUBROUTINE REQUEST BITS

BIT I FUNCTION ROUTINE

=--======-=--------=------==-----------------=--------------=-o

1

2

3

4

5

6

7

8

9

12

13

30

31

Get second buffer for read on RAW

Generate a buffer trap for writes

Set up next chained buffer for write CCB

Perform end buffer processing for write

Generate a command trap

Generate a buffer trap for reads

Set up next chained buffer for read CCB

Perform end buffer processing for read

Time-out occurred (abort I/O)

Independent time-out pending expiration

Halt I/O request

Cancel operation (power fail)

Final ESR processing

Schedule initiation phase processing
within driver/terminal manager

6.6 SUPERVISOR CALL 15 (SVC15) STRUCTURE AND FLOW

ITRAWNX

ISSBTW

IT.NXBF

IT.ENDBF

ISSCT

ISSBTR

IT.NXBF

IT.ENDBF

IT.STOP

A(CCB.TADR)

IT .. s'rop

IT .. STOP

A(DCB.TERM)
or CMEXIT

A(DCB.INIT)

The elements involved in the flow of a typical SVCl5 request are
illustrated in Figure 6-12. Refer to this figure while reading
the following description of a data communications driver SVC1S
request.

6-56 48-077 FOO ROO

The task sets up an SVCl5 parameter block and performs an SVC15
instruction. The SVCl5 executor uses the lu assignments for the
task to find the appropriate DCB. If this DeB is a data
communications DCB and was assigned for SVCl5 access, t.he driver
initiation routine address is obtained from the DCB.SVCF, and the
driver is entered in ES(NSU) state. Line drivers begin
interpretation of each Dew command at this time. The fullword at
DCB.CTA contains the address of the command table to be used for
command interpretation. The cornrrland table contains the address
of the routines for each of the eight basic categories of
commands suppol~ted by th is dr i ver .

Each routine contains an address table of the specific routine to
perform the exact function indicated by the modifier. Commands
that require I/O must enter an ISR. The ISRs, executing in IS
state, process all device interrupts. They are responsible for
placing the adapter and modern into the proper modes required for
I/O. Once the hardware adapter tndicates I/O can proceed, all
data transfer, character translation and special character
detection are performed through the auto driver channel of the
processor.

The ISRs can schedule ESRs (e.g., the system support routines,
the buffer mlanagement subroutlnes or the dr iver terminat ion
routine) by calling the subroutine ITSRABS. This subroutine, by
interfacing with the operating system, schedules ISSEXEC as a
subroutine of the calling task.

ISSEXEC is responsible for calling the support subroutines
requested by the driver ISRs and for handling certain abort
situations imp'osed by the operat ing system.

Via the DCB.ITB bit (ITB.ESR), ITSRABS and ISSEXEC also schedule
the driver termination routine. This routine is responsible for
continuing Dew cormnand interpretation. After all Dew commands
are executed, the driver terrnination routine terminates by
branching to CMTERM. CMTERM returns the results (e.g., status)
of the SVCl5 call to the U!3er parameter block, generates a
termination trap, if required, and returns control through the
operating sys~em~.

48-077 FOO ROO 6-57

(1'1

I
(}'1

00

~
00
I
o
...J
-....J

to:I:l
o
o
!XI o
o

077-10

}- USER I TASK

{7
I svc15L

PPLK r
-I-

I
I
L __ -- SVC15 F

EXECUTOR

I
I
I
I
I
I

DCB •
DCB SVCF

DCB CTA

DCB CTA

DCB XLT
DCB ESR

DCB TERM I--

DCB

c::::==!:> BRANCH ES
----1 POINTERS
-- - - ~ DATA PATH

~

~ INITIATION

- ROUTINES ...
(ES)

l\ OS/32

COMMUNICATION HARDWARE AUTO ISTAB
LINE ~ ADAPTER ~-. DRIVER + CHANNEL SO

I

\I t
COMMAND ISR

I NTE RPRETATION ,...SJ.~T. ~
ROUTINES ~

(IS)
(ES)

~ • I
I r TRANSLATION -

TABLE ...

1\
~ ~

~~ \J .. DRIVER TERMINATION
~ ...

ROUTINE -
(ES)

LINE DRIVER

+
I
I

ITSRABS

:{>

(IS)

V .. ISSEXEC --= (ES)

~ ~
DATA

COMMUNICATIONS
SYSTEM SUPPORT

SUBROUTINES

DATA
COMMUNICATIONS

Figure 6-17 SVC1S Line Driver Modules - Data
Communications Operating System Interface

n

1t \l
CMTERM

OR
CMEXIT

(ES)

~

6.7 COMMON Dl~TA COMMUNICATIONS SUBROUTINES

This section details the subroutines included in Perkin-Elmer's
OS/32 Data Communications Subsystem. Of these subroutines, the
first five (SVC15, ITRABS, CMTERM, CMEXIT and ISSEXEC) must be
used by all data communications drivers for enlering and exiting
the drivers.

6.7.1 Supervisor Call 15 (SYC15) Subroutine

This subroutine consists of the SVC15 executor entered on any
SVC15 instruction. It is responsible for validating a request
and entering 1:he correct driver at the initiation entry.

The SYC15 routine:

1. Sets the user condition code (CC) to zero.

2. Finds the DCB via the lu.

a. If the DCB is not assigned for SVC15 access, rejects
call, CC=2, status=illegal lu.

b. If the DeB is a null device, returns to task, CC=4,
statu~:J=O .

3 . Connects 1:.he DCB by call ing EVCON.

a. If the DCB is already connected, rejects call, CC=l,
status unchanged.

b. Connects and continues.

4. Relocates DCW pOinter.

An out-of '-bounds address tet'minates the call, status=memory
fault 1.

5. Stores the following values in the DCB:

a. Relocated DCW pointer

b. Relocated data area pOinter

c. Unrelocated parameter block address

d. Relocated parameter bloc:k address

e. TCB n1llmber and TCB addrE~ss

f. Function code

48-077 Faa ROO 6-59

6. sets a busy status in the user parametel= blo,c~.

7. Sets zero status in the DCB.

8. Zeros out the following:

a. DCB.NCE (byte) number of commands executed

b. DCB.AA (halfword) absolute address indicator

c. DCB.CPTR (fullword) channel program continuation program

d. DCB.LLR and DCB.LLW (two halfwords) length of last read
and write

9. sets timer (DCB.TOUT) to X'7FFF'.

10. Using the address contained in the first data field, finds
the absolute limits of this logical segment and saves these
in DCB.BSB and DCB.BSE (if an executive task (e-task), 0 and
MTOP are used, respectively).

11. Puts the DCB on time chain.

12. Goes to the driver initiation code by branching to the
address located in DCB.SVCF.

6.7.2 ITSRABS Subroutine

This is the special routine necessary for sch.ed~ling ESRs from
lSRs that must be used by all data communications line drivers.

lTSRABS is called from drivers during IS to schedule an ESR
routine. Register 7 is set to the absolute value of the bit
number that can be set for the required routines. I TSRABS
performs an ATL of the leaf to the system queue only ~f no other
ESR processing bits are set.

ENTRY: BAL E6 IS state
E4 = CCB address
E7 : ESR reason bit number absolute (see ISSEXEC)
Destroys E3, ES, E7

6.7.3 CMTERM Subroutine

This is the equivalent of IODONE2 or IODONE. It is called from
drivers in either an RS or ES state when the entire SVC15 request
is completed, either normally or because of error.

6-60 48-077 FOO ROO

CMTERM is branched "to by the las,t command in an SVCl5 request.
It is essentially "the data corrmunications equivalent of IODONE.
Functionally, it:

1. Updates all pertinent fields, of the SVClS parameter block
using values from "the DCB.

a. Statu~3

b. Length of' last read and write

c . Numbel~ of commands executed

2. Removes the DCB from time chain.

3. Generates teI'mination trap i.f requested in function code.

4. Disconnects leaf.

5. Ex its from ES state via EVR'I'E.

ENTRY:

EXIT:

Branch CMTERM RS or ES state
UD=DCB addres,s

Does not return

6.7.4 CMEXIT Subroutine

This is the equivalent of TMRSO(JT or EVRTE. It is called from
dr ivers in t.he ES state whe!n they exit control so that other
operations can continue. An interrupt or other operation is
necessary to get control back to the driver.

THe CMEXIT routine branches t.o the channel program/termina 1
manager via A(DCB. CPCR) if aL return was requested or via
A(DCB.BTRP) if ~ read buffer trap return was requested.
Otherwise, th:is routine branches, to EVRTE.

ENTRY: Branch CMEXI'I' in ES state

EXIT: Does not return

48-077 FOO ROO 6-61

6.7.5 ISSEXEC Subroutine

This special ESR is always set up as the ESR to be scheduled by
any add to top of list (ATL) LO system queue for all data
conununications drivers. It is responsible for scanning the
DCB.ITB bits and calling the proper routines to handle any bits
set, especially the three bits set by the operating system:
time-out, power fail and halt I/O. This 1S the data
conununications system subroutine executor entered in the ES state
whenever an ATL instruction to system queue (SQ) is performed for
a device. It is responsible for handling buffer management
routines and certain buffer and conunand trap generation
functions. This routine scans the bits in DCB.ITB from left to
right and calls the routines corresponding to each set bit until
all bits are processed. Then it exits LO CMEXI'r. The bit
numbers of DCB.ITS and their corresponding functions are:

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

6-62

RAW second buffer

Scheduled by a read ISR if the read is a
result of a RAW. Used to get the second
buffer of a chained buffer since only one
buffer was set up during read initialization.
This routine loads UC with the address of the
read CCB and calls ITRAWNX.

Generate buffer trap for write

Scheduled by a write ISR to generate
initial buffer Lrap when I/O begins.
routine calls IT.TRAP with buffer trap as
reason.

Next buffer write

the
This
the

Scheduled by write ISRs using chained buffers
when each buffer, is exhausted. This routine
loads UC with the address of the write CCB and
calls IT.NXBF.

End buffer write

Scheduled by write ISRs after terminating
write to load register UC with the address of
the write CCB and call IT.ENDS.

Generate command trap

Scheduled by ISRs after completing a write and
proceeding to Lhe read ISR in the RAW
situation when a command trap is specified in
~he read command. This routine calls IT.TRAP
with command trap as the reason.

48-077 FOO ROO

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 12

Bit 13

48-077 FOO ROO

Generate buffer trap for read

Scheduled by a read ISR to generate
initial buffer trap when I/O begins.
routine calles IT. TRAP with buffer trap as
reason.

Next buffer read

the
This
the

Scheduled by read ISRs using chained buffers
when each . buffer is exhausted. This routine
loads UC with the address of the read CCB and
calls IT. NXBf' .

End buffer read

Scheduled by read ISRs after terminating the
read. This t:outine loads UC with the read CCB
and calls IT.ENDS.

Time-out

Scheduled by the system clock whenever the
error timer (DCB.TOUT) is decremented to zero.
This routine calls IT. STOP with time-out
status, effectively killing the I/O and the
entire SVC1S request.

Independent time-out expiration

Scheduled by the channel terminal manager for
polling purposes. Branches to the expiration
routine address given in the timer CCS.

Halt I/O

Scheduled by the SVC1S executor whenever a
task issues a halt I/O while the task is
connected for an I/O to the device. The file
manager also schedules the halt I/O routine
when closing an lu connected for power up I/O
if the device has no other assignments. The
halt I/O routine branches to IT. STOP, with a
halt I/O stat.us.

Cancel (power fail)

Scheduled by the operating system at power up
after a power failure. The operating system
also schedules the cancel routine to cancel a
task connected to a data communications
device. The cancel routine branches to
IT.STOP with a power fail status.

6-63

Bit 30

Bit 31

Final ESR (termination) processing

Scheduled by line drivers for end of command
processing. This routine branches to the
driver termination phase via A(DCB.TERM) or to
CMEXIT and returns to the terminal manager or
to the operating system.

Schedule initiation phase processing

Scheduled by the IOH functional :routines
(IOHCZBD and IOHMBSC) to invoke terminal
manager initiation via A(DCB.INIT) for
connected devices.

6.7.6 ITSETREA Subroutine

This is a subroutine called from driver IS to schedule ESR
processing. It is similar to ITSRABS except that the reason
numbers do not have to be absolute. The subroutine decides
whether it is performing read or write and modifies the reason
numbers for reads by adding the appropriate constant (4). It is
used for common processing for:

• Buffer traps, reason code=Ol

• Next buffer, reason code=02,

• End buffer requests, reason code=03

ENTRY: BAL E6 IS state
E4=CCB address
E7=Reason bit number (as shown above)
Destroys E3, ES, E7

6.7.7 ITXFRISR Subroutine

This is a subroutine that can be called from drivers in IS state
after the auto driver channel sends a buffer limit interrupt.
This subroutine checks to see if a buffer is available to the CCB
as the' currently selected buffer.

Auto driver microcode complements the buffer select bit before
generating a buffer limit interrupt. If no buffer is available,
it means all possible buffers have been exhausted and the routine
returns to the caller. If a buffer is available, a next buffer
routine is scheduled by calling ITSETREA with E7 specifying next
buffer request and the routine exits by an LPSWR EO.

6-64 48-077 FOO ROO

ENTRY:

EXIT:

BAL E5 IS staLte
E4=CCB address

Destroys E3, E6, E7

1. Buffer is available; exit by an LPSWR EO.

2. No buffer available.

a. Used last buffer; return to caller.

b. RAW nC9xt buffer was schE!duled but did not execute. Abort.
I/O with buffer overrun 2 status.

c. Buf f elr in CCB but the count is pos it i ve; i. e. , air eady
used. Abort I/O with buffer overrun 2 status.

d. Buffer in CCB is flagged as busy.

e. Buffe:r in CCB is flagged as done. Abort I/O with buffer
overrun 1 status.

6.7.8 ITISSTOP Subroutine

This routine can be called from IS code to terminate I/O because
of errors. E7 is loaded wtih the status for t.he error. ITISSTOP
disables both read and write stdes of the adapt.er and clears t.he
interrupt service pointer (ISP) table entries to III. ITISSTOP
then ORs the new status to the accumulated status, schedules a
halt I/O by calling ITSRABS and exits by an LPSWR EO.

ENTRY:

EXI'r:

Branch ITISSTOP
E4=CCB address
E7=Error stat~us

Does not return

6.7.9 IT .. STOP Subroutine

IS state

This is a common data communications routine used to abort an I/O
call because of error conditions. This subroutine:

1. Disables read and write sidE~s of a device using DCB.DOCR with
DCB.RDN and DCB.DOCW with DCB.WDN, respectively.

2. sets ISPT.AB entry to I I I fOl: read and wr ite device numbers.

48-077 FOO ROO 6-65

3. ORs status halfword contained in register 7 to the latest
status in DCB.ISTA. If the encoded portion of DCB status is
nonzero, the encoded portion of the status in register 7 is
stripped off before it is ORed.

4. Branches to driver ESR obtained from DCB.TERM.

ENTRY:

EXIT:

Branch IT .. STOP ES state
UD(l3)=DCB address
U7=Status (new status)

Either CMEXIT or
branch via A(DCS.TERM)

6.7.10 ITIMLINK Subroutine

This subroutine is used to enter a data communications CCS into
the timer chain for the lOOms clock.

At time-out, the clock removes CCS from the timer chain and
generates an SINT.

CCB.SUBA and the ISPTAB should be set up prior to any call to
ITIMLINK.

ENTRY:

EXIT:

SAL U8 ES state
UC(l2)=CCB address

Returns via U8
Destroys U9, UA, US, UE

6.7.11 ITlMUNLK Subroutine

This subroutine is used to remove a CCB from the timer chain. On
return, the condition code (CC) indicates whether or not the CCB
was on the chain at the time of the call.

6-66

CC=G
Cc=o

ENTRY:

EXIT:

if CCB was on chain.
if CCS was not on chain.

SAL U8 ES state
UC=CCS address

Retu~ns to address in register 8
Destroys U9, UA, US, UE

48-077 FDa ROO

6.7.12 ITISTOTC Subroutine

This subroutine is used to remove a CCB from a timer chain. IL
is called ft'om the dr iver IS state and is similar in action to
ITIMUNLK except that it must be called from the ISRs of drivers
and it uses di.fferent registers. On return:

CC=O
CC=G

ENTRY:

EXIT:

if CCB was not on chain.
if CCB was removed from chain.

BAL ES
E4=CCB

IS state

Returns via E5
Destroys E6, E7

6.7.13 ITISPOTC Subroutine

This subroutine adds a CCB Lo Lhc Limor chain [or the lOOms
clock; called from IS state only.

ENTRY:

EXIT:

BAL ES
E4=CCB

IS state

Returns via ES
Destroys E6, E7

6.7.14 ICMDINT Subroutine

This subroutine fetches and interprets DCW commands by performing
the following six functions:

1. I ncr ement~s the number of commands executed in DCB. NCE by 1.

2. Fetches the next DCW command from the halfword pointed to by
DCB.DCW.

3. ANDs the buffer trap and command trap bits of the command
with the corresponding bits of the function code and saves in
reg ister ~~.

4. If the command trap is requested and enabled, generates a
command t:rap by calling IT.TRAP with the command trap as the
reason (reason code X'OA').

5. If the corrunand indicates time-out, sets the error timer
(DCB.TOUT). Otherwise it stops the timer by setting DCB.TOUT
t,o X' 7FFF ~ . The time value used is obtained from DCB. lTV for
READ and l?REPARE commands. All other commands use DCB. OTV .

48-077 FOO ROO 6-67

6. Uses the least three bits of the conunand to index into the
conunand table (located by DCB.CTA), obtains the code address
to handle this conunand, and branches to it. A zero entry in
the table indicates that the conunand is unsupported and
results in an illegal conunand status.

ENTRY:

EXIT:

Branch ICMDINT
UD(13)=DCB address

ES state

Branches to proper conunand obtained
conunand table
UD=DCB address
UA=Address of ITGETMOD
US=Address of ICMDILL (illegal conunand
handler)
U3=Conunand

Branches to illegal conunand
illegal conunands.

Destroys U7, U8, U9, UB, UC, UE

handler

6.7.15 ITGETMOD2 Subroutine

from

for

This subroutine is the second entry to ITGETMOD and is used by
conunands that do not require a CCB (e.g., the NULL conunand). The
routine performs the same functions as ITGETMOD, but it does not
store the commmand in the CCB or clear the CCB, since none is
provided.

ENTRY: See ITGETMOD

EXIT: See ITGETMOD

6.7.16 ITGETMOD Subroutine

This subroutine is used by driver conunands to enter the code for
a specific modifier. Each driver conunand specifies its
appropriate modifier table, maximum modifier and CCB. ITGETMOD
stores the conunands in the CCB, clears the CCB of any buffers and
validates that the modifier is less than or equal to the maximum
allowable modifier. It is then used to index into the modifier
table to fetch the address of the routine responsible for
handling this specific request. If the address fetched is
negative, a branch on register 5 is performed. This allows
conunands to perform some conunon preprocess ing before ,actually
branching to the code for a specific modifier.

6-68 48-077 FOO ROO

ENTRY:

EXIT:

Branch ITGETMOD ES state
U3=Command
U5=Address fo·r negative modif ier return
U6=Number of entries in modifier table
U7=Address of modifier table
UC-CCB address (not required for ITGETM02)
UD=:DCB address

If a modifier table entry
branches to that location.

is positive,

If a modifier table entry is negative,
branches to address in U5 entry fetched from
the table is in U6.

If a modifier table entry is zero, aborts
entire SVCl5 request by branching to illegal
command handler.

Destroys U8, UA, U6

6.7.17 ITGE~)AT Subroutine

This subroutine is called from commands that require a data
field. This routine fetches the next data field in order and
returns to the! caller with the data field in reg ister 7. The
po inter to the next data fie! ld (DCB. NDA) is incr emented by 4,
causing successive calls to ITGETDAT fetch sequential data
fields. If the data field fetched is negative (data codes of
X'80'), ITGETDAT relocates the address contained in the field by
calling ADCHK and replaces the data field pointer (DCB.NDA) with
the new value. Data fetch then continues from the beginning,
effectively c::aus ing a transfe!r out of the normal data field
sequence.

ENTRY:

EXIT:

48-077 FOO ROO

BAL UF ES state
UD=DCB address

U7=Data field fetched
Destroys U8, U9, UA, US

6-69

6.7.18 ITGETBUF Subroutine

This subroutine is used by all data communications drivers
supporting standard buffer management. The routine fetches the
data field, calls ITBFREL to relocate the address and sets up the
CCB for a data transfer of the proper size using the buffer type
specified by the data code. Options contained by U4 are:

• If the get one bit is set (X'4000'), only the first buffer of
a possible set of chained buffers is set up in the CCB.
Otherwise, two buffers are set up. This option is usually
requested in the read of a RAW, where only one buffer must be
available. Get one has no effect on direct or indirect
buffers.

• If the data code indicates a data area instead of a buffer
(data code X'OI') as used by READl or READ2, the lCJw-order
four bits of the option word contain the size of the I/O.
Routine ITGETBUF uses ITBFREL to relocate buffers and ADCHK to
relocate data areas.

ENTRY: BAL U2 ES state
U4-0ptions
UC=CCB address
UD-DCB address

EXIT: Destroys U5, U6, U7, U8, U9, UA, UB, UE, UF

6.8 SUPERVISOR CALLl (SVCl) PROCESSING

Processing an 5VCl call for a data communications device differs
from processing standard devices in the following ways:

• For data-transfer calls to buffered terminals,
manager entry is made in ES/NSU state.

·terminal

• Upon termination of an 5VCl call (in IODONE), the I5P table
entry is not modified for data communications devices.

6.9 ADDITIONAL EXECUTIVE FUNCTIONS

05/32 executive handling of certain functions
data communications devices as explained
sections.

6-70

is redefined for
in the following

48-077 FOO ROO

6.9.1 Cancellation of Input/Out~put (I/O)

On power restlorat~ion and when a task is cancelled, t.he TIMEou'r
rout ine is called. For datcl commun icat ion dev ices, time-out
calls the HAL'rITAM routine in the data communications system
support module. This routinE~ performs the normal actions of
timing out an I/O. However, it also sets a bit in DCB.ITB t.hat
can be used by the driver or terminal manager to determine if the
situation is a halt I/O (unrecoverable) rather than a recoverable
time-out.

6.9.2 Add To Task Queue

The SV9.ATQ rc:>utine is modified to accept reason codes 10, 11,
12, 13, 14, IS, 16 and 17 whenever these codes are enabled by bit
23 of the TSW. It. is also possible to determine if an
unsuccessful return is due to a full, nonexistent or invalid
queue; the former sets only the L bit in the CC, the latter two
set both C and L bits. To indicate the reason for an error,
SV9.ATQ returns with the L bit set in the CC if a queue is full
or with both Land C bits set for a nonexistent or invalid queue.

6.9.3 System Initialization

The SYS INIT rc:>utine is modif ied to set up initial values for the
data communications timer and DCBs for data communications
devices.

6 . 9 . 4 T imer I~anagement

An additional timer is maint.ained for data communications
. devices. It allows interval t~iming with a granular ity of lOOms

and is maintained by a chain of CCBs. Routine ISRLFC is modified
to maintain an additional countE!r, ITM.FREQ, which is initialized
to the line flrequency divided by five. At every interrupt from
t..he LFC, this counter is decremented by one. When it reaches
zero, the counter is reset to one-fifth the line frequency and
ISRLFC continues' to decrement. TM.FREQ by one-fifth the line
frequency, rather than onee If the address of the first CCB in
the ITAM time1r chain (ITAMTIMC) is nonzero, an ESR is scheduled.

Routine TIMESR is modified for t.he possibility that it may be
entered once every lOOms for dalta communications timer handling.
When this happens, it follows the CCB chain and decrements the
value of CCB.ITAM. When this value goes to zero, the device is
S INTed and ITISTOTC is called tel remove the CCB from the chain.

48-077 Faa ROO 6-71

6.10 SUPERVISOR CALL 7 (SVC7) PROCESSING

The standard OS/32 module FMS7 does preliminary processing on all
SVC7 function calls. For any data communication-related 'request,
FMS7 branches to individual function routines within the ITFM,
the data communication file and memory manager program.

6.10.1 Allocate

The IT.ALLOC routine processes allocate requests for data
communication devices. Entry to this routine is in the RS state.
To obtain the DCB address, IT.ALLOC calls the DMTLOOK routine.
To enter the appropriate allocation routine (i.e., rT.ABSC for
allocating a BISYNC LCB, or IT.ADCT for allocating a ZBID DCT),
IT.ALLOC uses the main line-type index:

o = Illegal
1 = BISYNC LCB
2 = ZBIn DCT
3 = ZDLC LCB

At entry, each of the allocation routines:

1. Disable the SQS routine.

2. Verifies filename and station-address uniqueness.

3. Obtains and initializes memory space.

On exit, each routine enables the SQS routine.

6.10.2 Delete

The IT.DELET routine processes deletion requests for data
communications devices. Entry to this routine is in the RS
state. To enter the appropriate deletion routine (i.e., IT.DBSC
for deleting a BISYNC LCB, or IT.DDCT for deleting a ZBrD nCT),
IT.DELET uses the main line-type indexes specified above.

At entry, each of the deletion routines:

1. Disable the SQS routine.

2. Finds a matching LCB or DCT and removes it from the chain.

3. Releases memory space.

On exit, each routine enables the SQS routine.

6-72 48-077 FOO ROO

6.10.3 Assign

The IT.OPEN routine processes assignment requests for data
communicatione, devices. Entry to this routine is in the RS
state. After checking the extended device code to see if the
line is 2-wlre or 4-wire, IT.OPEN sets up the device-number
entries (for l:eads and writes) within the DCB.

For an SVC15 assignment, IT.OPEN calls OPEN.SVCF to complete any
necessary validity checks, to set up the read count and write
count within t~he DCB and to set up the lu table. For an SVC1
assignment, IT.OPEN calls OPEN.DEV to perform normal validity
checking, as \t/ith all nonbulk devices, and calls IT.ORJE to
perform data communications-related functions.

To enter the appropriate assignment routine (i.e., OPEN.RJE for
a BISYNC LCB, or OPD.NRJE for all other devices), IT.OPEN uses
the main line--type indexes. If IT.OPEN branches to OPEN.RJE,
this allocation routine calls LCBLOOK to:

1. Find the LCB address.

2. Ensure no previous assignment to the found LCB.

3. Set up the read count and write count within the DCB/LCB.

4. Set up thE~ lu table to include the LCB address.

At exit, eithE~r assignment routine returns control to the SVC7
mainline coding .

. 6. 10.4 Close

The IT.CLOSE routine processes closing requests for devices
assigned SVC15 access. The CLOS.RST routine processes closing
requests for nonbuffered devices assigned SVCl access. For SVCl
buffered devices using main line-type indexes, IT.CBSC closes
BISYNC device~5, and IT.CDCT closes ZBID devices.

48-077 FOO ROO 6-73

6.10.5 Checkpoint

The IT.CHKPT routine processes checkpointing requests fc)r data
communications devices. For nonbuffered devices and for devices
assigned SVC15 access, IT.CHKPT waits for ongoing I/O to end
before returning control to the operating system. For SVCl
buffered device using main line-type indexes, IT.KBSC checkpoints
BISYNC devices and IT.KDCT checkpoint ZBID devices. Both of
these routines:

1. Wait for ongoing I/O to end.

2. Call HALTITAM.

3. Flush the various buffer management queues.

4. Exit to the operating system.

6.10.6 Fetch Attributes

The IT.FETCH routine fetches attributes for data communications
devices. For nonbuffered devices, IT.FETCH returns only the
device mnemonic to the user's parameter block. For buffered
devices, IT.FETCH extracts the block size, fd and device code and
returns them to the user.

6.10.7 Change Access Privileges

For data communications devices assigned SVC15 access, read-only
or write-only privileges cannot be granted. For buffered devices
assigned SVCl access, the address of the CB must be obtained from
the LCT.

6.10.8 Rename

The REN.DCB routine changes the DMT entry for the device. Also,
this routine changes LCB.NAME and LCB.EXT when it finds a
buffered data communications terminal.

6.10.9 Reprotect

As determined by SVC7 parameters passed by the user, the REP.DCB
routine changes the read keys and the write keys. Also, if an
ITAM device is buffered, REP.DCB must get the DCB address from
the Les.

6-74 48-077 FOO ROO

CHAPTER 7
HOW TO WRITE AND USE A TERMINAL MANAGER

7.1 INTRODUC'TION

In data communications, a large number of special-purpose line
protocols and data format variations within standard protocols
are possible. Consequently, it may be necessary to provide a new
terminal manager that satisfies a nonstandard protocol or an
interface no·t currently suppol~ted by Perkin-Elmer. The purpose
of this chapter is to assist the design analyst and system
programmer with the creation of a new terminal manager. It is
not or iented ·toward the modif ication of any specif ic existing
terminal manlager and should be considered a general guideline to
be used along with other pertinE~nt Perkin-Elmer publications and
protocol specifications. WherE~ possible, examples of functional
requirements are provided with reference to existing terminal
managers.

7.2 TERMINAL MANAGER MODIFICAT10N

Terminal manager modification n\ight involve preparation of a
newly des ignced terminal manager to add new features to channel
program line control using exist~ing format routines. It. could
also add new format capabilitiE~s using existing channel programs
or could remove existing nonrequired features from a standard
terminal mana~;Jer.

Existing term:inal manager utilit.y routines and tables des igned to
support general format and protocol control functions, should be
used whenever possible as they can be easily applied to new
terminal mana~~er applications. Determine if the terminal manager
needs to be modified. For example, if only new line control
procedures alre required, usinlg a standard supervisor call 15
(SVClS) driver request from an application program may be more
appropriate. If' only new format procedures are required, adding
format subrout.ines to an applica.tion program and obtaining line
access via SVel image reads and writes might be sufficient.

7.3 BACKGROUND INFORMATION

Terminal manager' modif ication might require some background
information depending on how much is to be modified and the
program areas that will be affected by the changes.

48-077 Faa ROO 7-1

To remove trailing blank suppression from the e:lCisting
teletype/video display unit (TTY/VDU) terminal manager, only
cursory knowledge of the operating system and data communications
is required and the TTY/VDU terminal manager program description
might suffice as an information source. To design a totally new
buffered terminal manager, extensive background information
concerning the operating system and data communications may be
required.

• An understanding of the internal structural design, module
interface and table structure of the operating system
Executive and File Manager is recommended if any interface to
the operating system is to be modified or created. While such
knowledge of the operating system is highly recommended,
existing data communications/operating system interface
subroutines should be sufficient for most applications.

• Design criteria, internal structure and module interfaces are
required for formatting or channel program modification using
common data communications subroutines.

• Design criteria and detailed descriptions of the SVC15 line
driver supporting your terminal manager are required for any
terminal manager modification involving interface w1'th the
line driver or format routine modification to change the·
control character sequence passed to the line driver.

• General-purpose driver design criteria should be obtained
prior to terminal manager modification.

• Detailed specifications concerning the protocol to be
supported are required for all terminal manager modifications.

7.4 TERMINAL MANAGER STRUCTURE

While the specific actions to support terminal manager protocol
control and data formatting vary for different applications, the
high-level functions performed by all terminal managers are
similar. Three terminal manager functional flowcharts are
provided in Figures 7-1, 7-2 and 7-3. While not indicating every
piece of code a terminal manager can contain, these flowcharts
provide a guideline to general terminal manager design.

7.4.1 Nonbuffered Terminal Manager

Based on the design of the existing TTY/VDU terminal manager,
Figure 7-1 depicts terminal manager requirements for using
standard SVCl task connection control and for performing
input/output (I/O) into and out of the task data buffer. This
des ign is similar to a standard OS/32 dr iver except that i,t uses
SVC15 routines for actual line I/O.

7-2 48-077 FOO ROO

077-11

0
0

tPAOGAAM
INITIALIZATION

0
YES PERFORM

LINE
INITIALIZATION

PHtFORM DATA 0
TRANSLATION,
CONVERSATION

OUTPUT OR OTHER MODI·
FICATION AS RE

0 0
[SETUP e SETUP SVC15 SVC15

INTERFACE INTERFAce
FOR READ FOR WRITE

0 0 ENTER

~ SVC15
CONTlN·
UATION

CONVERT 0
YES SVC15 STATUS

TO SVCl DONE
ERROR
STATUS

YES PERFORM GJ
POST I/O
ACTIONS

AS REQUIRED

NO

0 ~SETUP SVCl RETURN
STATUS

INFORMATION

G

!~ igure 7-1 Nonbuffered Terminal Manager

48-077 FOO ROO 7-3

7.4.2 Buftered Terminal Manager (Input)

Based on the design of the existing binary synchronous terminal
manager, Figure 7-2 depicts the requirements of a terminal
manager to control input through single or dual internal buffers,
attempt to read ahead of the user task (u-task) and perform its
own task connection control.

077-12

PROGRAM
INITIALIZATION

FORMAT

NO

SET UP
SVCl RETURN

STATUS
INFORMATION

PERFORM TASK
CONNECT OR

BUSY WAIT
AS REOUIRED

YES PERFORM LINE
>---..,. INITIALIZATION

SET UP
NO PARAMETERS

TO PERFORM
SVC15 READ

G

YES READ AHEAD
FROM LINE

0

0

0 0
VALIDATE J

EAW,INATION INPUT DATA
ENTER SVC15 ACCORDING TO

PROTOCOL

CONTINUATION

INDICATE A 0
READ DONE

RETURN
PENDING

NO

GJ GJ
IRLOUT IRLOUT

Figure 7-2 Buffered Terminal Manager (Input)

0

7-4 48-077 FOO ROO

7.4.3 Buffered Terminal Manager (Output)

Based on the design of the existing binary synchronous terminal
manager, F igu.re 7-3 depicts t.he requirements of a terminal
manager that c.ontrols output through single or dual internal
buffers, is behind the u-task in actual writes due to data
buffer ing and performs its own t,ask connection control.

077-13

PROGRAM
INITIALIZATION

FORMAT

SET UP SVCl
RETURN
STATUS

INFORMATION

I~

PERFORM TASK
CONNECT OR
BUSY WAIT

AS REQUIRED

PERFORM LINE
INITIALIZATION

SET UP
PARAMETERS
TO PERFORM
SVC15WRITE

VALIDATE OAT
ACCOHDING TO

PROTOCOL

,...-__ a...-._--.
INDICATE A

WRITE DONE
RETURN PENDING

PUT BUFFER
ON QUEUE

B

....--------. TERMINATION

ENTER SVC15

CONTINUATION

NO

WRITE
TERMINATION

INDICATE A
WRITE DONE

RETURN
PENDING

Figure 7-3 Buffered Terminal Manager (Output)

48-077 FOO ROO 7-5

7.5 TERMINAL MANAGER FUNCTIONS

This section describes the individual blocks within the terminal
manager flowcharts. Functions performed in more than one
flowchart are described only once. These block descriptions
should be read as an addendum to Figures 7-1, 7-2 and 7-3.

• BLOCK A

All terminal managers are initially entered from SVCl handlers
via the I/O handler (IOH) list. For entrance to nonbuffered
terminal managers, the device control block (OCB) add.ress is
in register U13. For entrance to buffered terminal ma.nagers,
the line control block (LCB) address is in register U13.

• BLOCK B

Basic program initialization procedures include interpreting
data communications extended options, setting default extended
options as required, determining and setting up the register
environment, etc. Routine PCINT of the binary synchronous
terminal manager can perform these initialization functions.

• BLOCK C

If a communications line was not readied to accord with a
protocol, certain special-purpose actions might be required.
Within existing terminal managers, the busy bit (LNS.BSYB) in
the line status description word, OCB.LNST, determines if the
line was previously readied. The control actions required can
be determined from the extended device code, OCB.XDCD. If
line initialization is not required for a particular
application, exclude this area.

• BLOCK D

Line initialization is the first of a sequence of funct~ions to
ready a communications line for data transfer. Depending on
individual requirements, it can involve dial-in/out, polling
or terminal selection, line bid transmission/reception or line
password or security check. Priority control of master/slave
stations, prevention of line bid clashes and similar error
control can also be included.

• BLOCK E

7-6

This is a simple format subroutine. For example, within the
existing TTY/VDU terminal manager, a carriage return (CR)
character terminates an output data buffer and all t~railing
blank:.:; are truncated. Similar format control routines can be
included at this same functional location. A nonbuffered
terminal manager should not modify data within a user buffer,
as the same buffer could be used simultaneously by the u-task
or another driver or terminal manager.

48-077 FOO ROO

• BLOCK F

Preparation for an SVCl5 read includes setting time-out values
and building SVCl5 command and data chains. It is convenient
to define standard command chains within the terminal manager
and build data chains depending on individual circumstances
within the DCB.

• BLOCK G

Preparation for an SVCl5 write is similar to a read
preparation, described in Block F. Within either of these
areas, it might be necessary to cancel any outstanding timers
(SVCI5 wait requests) required by the individual protocol.

• BLOCK H

Actual entry into the line dlC iver and final DCB initialization
for SVC15 is best achieved by a common subroutine. The
terminal manager/line dr iv«~r interface is currently provided
by a branch to the address f()und within the DCB at DCB.SVCF
with the DCB address contained in register UD. Dual return
paths are provided to a continuation address found in DCB.CPCR
and to a final I/O terminati()n address found in DCB.CPTR. The
existing SVC15 interface subroutine within the binary
synchronous terminal manager (SVC15GO) saves the command chain
address for possible retr~Les, sets an I/O active bit within
the line status word, clears SVC15 status words and puts the
DCB on the common OS/32 timel: chain.

• BLOCK I

The common exit subroutine IF~OUT is a way to terminate driver
action pending the final satisfaction of the user request.
The exit is to EVRTE~ If the application program performed
proceed I/O, it can regain cc)ntrol at this point.

• BLOCK J

A common subroutine can be ueled to check for possible errors
following all' communications line I/Os. This might include a
line/hardware error or an invalid data response depending on
protocol requirements. It is necessary to differentiate
between e1rrors the terminall manager might retry and
unrecoverable errors. As thi.s is a common point following all
SVCl5 line interfaces, it is a possible point at which to
include an OS/32 journal entry. The binary synchronous
ERRORSET s:subroutine can bet used to perform these basic
functions.

48-077 FOO ROO 7-7

• BLOCK K

When an error return to the user program must be made, convert
the SVClS status or protocol failure to a standard SVCl error
code by using an SVCl status table indexed by the SVClS status
return.

• BLOCK L

Within even basic nonbuffered terminal managers, certain
protocol-dependent actions might be required following I/O
completion. The TTY/VDU terminal. manager, for example,
determines if a line delete character was received on a read
and transmits a line feed (LF)/CR/CR sequence on writes.,

• BLOCK M

Before a return to the user program, certain common status
areas must be set for the SVCl parameter block. These include
device-independent status, DCB.STAT, driver-dependent status,
DCB.DDPS, if applicable, plus length of last transfer,
DCB.LLXF.

• BLOCK N

The exit subroutine DONE is a way to terminate driver action
following completion of a user request. The exit may be to
IODONE or to a specialized routine for post-I/O process:ing and
task disconnection, as required. Normally, the application
program performing SVCl wait I/O regains control through this
exit point.

• BLOCK 0

7-8

Within buffered terminal managers, it might be advisable to
perform task connection within the terminal manager instead of
having SVCl perform it. This allows a task to be connected to
a line at the beginning of a transmission sequence and remain
connected to it throughout the entire transmission. A common
application of this procedure allows a task to be connected
for a read with the line initialization sequence (see Block
D), and later suspend the read before it starts in favor of a
write request. This technique requires that the terminal
manager perform internal checks to ensure proper handling of
proceed I/O requests. A task can perform proceed I/O, regain
control through IRLOUT, and issue a second request before
completing the first. For proper handling of such requests,
the standard terminal manager technique is to set a hold bit,
LNS.HLDB, within the line status word if exit is made to
IRLOUT prior to request satisfaction. If this bit is set upon
terminal manager entry, the second request is put into a wait
state pending completion of the first.

48-077 FOO ROO

• BLOCK P

The standa.rd OS/32 subroutinjes EVCON and EVQCON are used for
task connect. An OS/32 utility subroutine, WAIT, puts a task
into wait I/O pending completion of an earlier request.

• BLOCK Q

No data can be moved into a user buffer unless a line I/O was
previously performed. If data is not ready for the user,
initiate a read and a return to this pOint, following a
successful line read. Init:late this code in either reentrant
state (RS) or event state (ES) state. Because of this, it is
important to ensure against. interlace of proceed requests as
described in Block o.

• BLOCK R

This block contains the crux of the protocol-dependent channel
program wi'th all ACK/NAK sequences, line error detection and
corrections.

• BLOCK S

This block indicates setting the LNS.HLDB prior to an exit to
IRLOUT and before completing a user request. See Block o.

• BLOCK T

This block is reached only af'ter completing a successful line
I/O. It depicts checking LNS.HLDB and returning to data
formatting, if required. See! Block o.

• BLOCK U

This block shows all data input deblocking, formatting and
moving of data to a user buffer. Should a new protocol
subformat be required, such as a 3270 emulation within binary
synchronouE~, only this blo-ck requires modif ication such as
removing e)cisting format subroutines and replacing them by
3270 format ~rocedures or exception code to perform 3270,
3780, 2780 or processor-to-processor formatting, as required.
An existing subroutine within binary synchronous, DCDINDEX,
can providE~ an. exception code table index dependent on format
decode.

48-077 FOO ROO 7-9

• SLOCK V

This block depicts checking for a possible readahead if dual
block buffering is used. Before any readahead, the terminal
manager checks for the availability of an input buffer,
existence of any concurrent line I/O and other conditions that
might preclude such an action.

• BLOCK W

A readahead is performed like any data read. Following
successful read completion, the block is put on queue for
deblocking and checking LNS.HLDB for possible return to data
formatting ..

The readahead technique generally allows an interface to
operate at maximum line speed as opposed to a slower
combination of line speed and user program return speed~

• BLOCK X

This block depicts all data output blocking, formatting and
moving of data from a user buffer. Since I/O is performed in
an internal buffer as opposed to the user buffer, data
modification is permitted in accordance with protocol
standards. See Blocks E and U.

• BLOCK Y

After the last user record is moved into an internal buffer,
that data buffer is ready for output. This ready condition
should be indicated to the channel program by the format
subroutine.

• BLOCK Z

Following write preparation, the actual write may be delayed
and the write buffer only put on queue for output. Reasons
for a delay could include existing data I/O if dual buffering
is used, the expiration of the wait timer or other
protocol-dependent conditions. Return to this point is
required following removal of the delay. This area must be
able to operate in either RS or ES state, similar to the
dual-state read sequence described in Block Q.

• BLOCK AA

If a ready buffer cannot be output, put it on queue fot:' output
and establish a hold state until output initiation. See Block
o.

7-10 48-077 FOO ROO

• BLOCK AB

After line data I/O
accomplished only if
user request; i.e.,
deblocking.

• BLOCK AC

initiation, return to the user is
it is possible to accept a subsequent

another buffer is available for

After a successful data write, determine if a subsequent data
block is ready for output. If not, return to the appropriate
write preparation routine.

7.S.1 Special Terminal Manager Functions

Special terminal manager functions are performed within existing
terminal managers. If an existing similar terminal manager is
available, study each major function in it before preparing any
similar routi.nes for a new terminal manager. Wherever poss ib1e,
terminal manaLger subsections and utility subroutines were
prepared in a modular format to permit easy modification,
replacement, t'emoval or use in a different environment.

7.S.l.l Format Control

As shown in Fi.gures 7-1, 7-2 and 7-3, data format blocking and
deblocking t:outines are subroutines of the data transfer
preparation section. Inserting a new format subroutine is a
straightforward process. Within existing format control
subroutines, slpecial character scans are performed by moving the
involved dat~a through a translate table. Single format
subroutines achieve multiple for:mat techniques with control bit
registers. Flor example, internal space suppression is performed
only if the pE~rform space suppression bit is set in a control
register. Trle correct control bit register is generally set by
a subroutine based on device code DCB.DCOD, data communications
extended device code DCB.XDCD and extended options DCB.XITO.

7. S .1. 2 Time-·out Control

Usually, communications protocols require time-out delays (SVC15
wait) to be initiated bet'ween data transfers. Time-out
expiration may require transmission of a protocol-dependent data
delay signal or request. Common subroutines exist to set timers
via the SVClS WAIT command and to cancel outstanding time-outs
pr ior to datal transfer and determine if the time-out has already
expired. An tnvalid return to the program might occur if a data
transfer is attempted simultaneously with an earlier SVC1S
time-out data transfer request. Within the binary synchronous
terminal mana~rer, use the ONTlMER subroutine to set a delay timer
and the OFFTlMER subroutine to cancel an existing time-out.

48-077 FOO ROO 7-11

7.5.1.3 Butfer Control

There are subroutines to access or change the status of internal
data buffers. Where appropriate, an error return is provided.
These routines are:

BUFFERO

BUFFERl

BUFFER2

BUFFER3

BUFFER4

BUFFERS

BUFFER6

BUFFERS

BUFFER9

Release buffer
Error exit if invalid address provided

Obtain write blocking buffer
Error exit if nonavailable

Obtain active read deblock buffer
Error exit if nonavailable

Obtain free buffer
Error exit if nonavailable

Obtain write buffer on queue 'for output
Error exit if nonavailable

Is there a free buffer?
Error exit if no free buffer

Is there a buffer with I/O in progress?
Error exit if not

Free all buffers
No error exit

Place buffer on queue
No error exit

7.6 SYSTEM GENERATION (SYSGEN) CONVENTIONS

See the System Generation/32 (Sysgen/32) Reference Manual for
sysgen considerations. To generate the proper basic data
communications code, SGN.ITAM must be set to 1.

7.6.1 Register Conventions

In the binary synchronous terminal manager, str ict adherE_nce to
register conventions was an aid in system implementation. These
conventions are recommended for future terminal manage~
modifications:

7-12 4S-077 FOQ ROO

Uo
Ul

U2

Work (may be destroyed by any subroutine)

DCB address

LCB address

U3 Block descriptor address for format
subroutines (LCB.BLK)

U4 Function code, (DCB.FC)

U5 Extended option function code (DCB.XITO)

U6 Line status code (DCB.LNST)

U7 Level 0 subrolutine entry or return

U8 Level 1 subro,ut ine entry or return

U9 Level 2 subro,utine entry or return

UIO-U15 Work (may be destroyed by any subroutine)

7.6.2 Device Control
References

Block/L.ine Control Block (DCB/LCB)

Future data communications
reorganization of a DCB or LCB.
following cod:Lng techniques:

modifications may involve
For this reason, do not use the

• Reference t.o any DCB or LCB e,lement by an absolute value as
opposed to its symbolic name.

• Reference t.o any DCB or LCB element to require certain DCB/LCB
elements to be adjacent. This includes load halfword of
currently adjacent bytes, load fullword of currently adjacent
halfwords Clnd similar multiple load techniques.

7.6.3 EXTRN/ENTRY References

Certain EXTRN/ENTRY references are required to ensure proper
OS/32 interfClce. Although specific applications might require
different interface points, the list of the external references
currently uSE~d by the binary synchronous terminal manager should
suffice.

48-077 FDD ROO 7-13

IT. HALT

BEBC.ABC

ISSEXEC

WAIT

TMREMW

JOURNAL

TOCHON

TOCHOFF

I I I

ISPTAB

IODONE/IODONE2

EVRTE

TWT.RJE

CPT.RJE

CLOSMBSC

INITMBSC/FUNCMBSC

7-14

is an external reference to the halt I/O
subroutine.

is an external reference to the binary
synchronous line driver ASCII-to-EBCDIC
translation table.

is an external reference to the system
subroutine executor.

is an external reference to the executive
wait subroutine.

is an external reference to the OS/32
remove task wait subroutine.

is an external reference to the OS/32
system journal subroutine.

is an external reference to the OS/32
subroutine to put a DCB on a timer chain~

is an external reference to the OS/32
subroutine to remove a DCB from a timer
chain.

is an external reference to the OS/32
subroutine to ignore interrupts.

is an external reference to the interrupt
service pointer table.

is an external reference to the OS/32 I/O
completion exit points.

is an external reference to the OS/32
exit points.

is an entry reference to the subroutine
to determine whether or not a terminal
manager is busy.

is an entry reference to the terminal
manager checkpoint subroutine.

is an entry reference to the terminal
manager close subroutine.

is an entry reference to the terminal
manager entry points from SVC1.

48-077 FOO ROO

7.6.4 System Generation (Sysgen)

Following assE~mbly of a new term.inal manager and its assoc iated
DCBs, standard sysgen procedures can be used to add the new
terminal manager and its assoriiated DCBs to the 08/32 system.
The new terminal manager and DCBs must be merged into the
combined dr iVE~r library us ing the OS/32 Library Loader. The only
restrictions on the required order of modules within the library
is that the DeBs for all devices supported by a particular driver
or terminal manager must precede the driver or terminal manager.

7. 7 WRITING 'l~ERMINAL MANAGERS SUMMARY

The following procedures provide a user-written terminal manager:

• Determine if a new terminal manager is actually required.
Where pract~ical, use a standard terminal manager in image mode
or applicat~ions program SVCl5 access.

• Gain thorough familiarity with areas involved. study existing
terminal managers to determine which major sections or
subroutinef~ can be used. Consult the individual line driver
descriptions to determine how these capabilities can be best
used.

• Test and inlplement the new integrated communications package.

7.8 HOW TO USE DATA COMMUNICATIONS TERMINAL MANAGERS

This section provides a sample program containing four coding
examples to illustrate the structure of data communications SVCI
parameter blocks and the execution of SVCI reads and writes. A
CAL STRUC is provided to generate equates for all parameter block
references, and each used parameter block is laid out with
explanatory cc)mments. The parameter block labelled LINEBLK is
used for all functions, and the parameter blocks READBLK and
PRINTBLK are used for other SVCI accesses. The following four
coding examplE~s descr ibe these functions.

Example 1:

This example illustrates a loop reading from an input device
(e.g., a terminal) and writing each record to a bisynchronous
terminal manager. The lo.op terminates when it recognizes an
input sentinE,l and an end of file (EOF) is written to the line.
No extended options are used.

48-077 FOO ROO 7-15

EXAMPLE 1 EQU 111:

111:

111: THE FOLLOWING USER EXAMPLE WILL READ
111: CARDS FROM LOGICAL UNIT 1 AND
111: WRITE EACH CARD RECORD TO AN ITAM
111: COMMUNICATIONS LINE ON LOGICAL UNIT 2

'* UNTIL A
'* CARD BEGINNING WITH II IS FOUND. IT
111: WILL THEN WRITE AN EOF.
111:

SVC 1,READBLK READ A CARD
LH U15,READBLK+SVC1.STA CHECK FOR ERROR
BNZ DONE
LH U15,BUFSTART SEE IF LOOP IS DONE
CLHI U15,C'II'
BE EOF
SVC 1,LINEBLK WRITE CARD TO ITAM COMM LINE
LH U1S,LINEBLK+SVC1.STA CHECK FOR ERROR
BNZ DONE
B EXAMPLE 1 CONTINUE LOOP

EOF EQU 111:

LHI U15,X'88' MODIFY PARAMATER BLOCK
STB U15,LINEBLK+SVC1.FC
SVC 1,LINEBLK

DONE EQU 111:

SVC 3,0

ALIGN ADC
READBLK EQU 111:

DB X'48',1,0,0
DAC BUFSTART,BUFEND
DAC 0,0,0

LINEBLK DB
DAC
DAC

X'28',2,0,0
BUFSTART,BUFEND
0,0,0

TO WRITE EOF
WRITE EOF TO .COMM LINE

END OF JOB SVC

Example 2:

This example illustrates the use of data communications extended
options. The data communications parameter block (LINEBLK) is
modified to include a write with extended options and the format,
~ransparent and transmission extended options, are set. A single
record is then read from an input device and written to the
terminal manager. After write completion, the example goes to
end of job. The transparent and transmission extended options
are not honored on all devices.

7-16 48-077 FOO ROO

EXAMPLE EQU
*
*
\I:

. *
*
*
*
*

LHI
STB
LI
ST
SVC
LH
BNZ
SVC
B

Example 3:

THE FOLLOWING USER EX.1\MPLE WIU ...
READ A SINGLE CARD F ROM LOG I CAL
UNIT 1 AND WRITE IT AS A SINGLE
RECORD TRANSMISSION, 'TRANSPARENT
TEXT TO AN ITAM COMMUNICATIONS
LINE ON LOGICAL UNIT 2.

U15,X'29'
U15,LINEBLK+SVC1.FC
U1S,SV1X.FM+SVC1X.TRM+SV1X.TM
U15,LINEBLK+SVC1.EXO
1,READBLK
U1S,READBLK+SVC1.STA
DONE
1,LINEBLK
DONE

SET UP WRITE FUNCTION CODE
USING ITAM EXTENDED OPTIONS
SET UP ITAM EXTENDED
OPTIONS
HEAD A CARD
CHECK FOR ERROR

WRITE TO COMMUNICATIONS LINE

Illustrates a loop reading record from a terminal manager and
writing each input record to an output device (e.g., a printer).
When an error from the line is received (e.g., an EOF), t..he loop
terminates and the example goes to end of taskn

EXAMPLE 3 EQU
*
*
*
*
*
*
*
*
*
*
*

LHI
STB

EX3LOOP EQU
SVC
LH
BNZ
SVC
LH
BNZ
B

48-077 FOO ROO

THE FOLLOWING USER EXAMPLE WILL
READ SUCCESS lVE CARD RECORDS
FROM AN ITAM COMMUNICATIONS
LINE ON LOGICAL UNIT 2.
EACH RECORD WILL BE PRINTED ON
LOGICAL UNIT 1. UPON RECEIPT
OF AN EOF OR OTHER ERROR RETURN
FROM ITAM, THE TASK lYILL
TERMINATE

U15,X'48'
U15,LINEBLK+SVC1.FC

SET ITAM PARAMETER BLOCK FUNCTION
CODE FOR A READ.

1,LINEBLK
U15,LINEBLK+SVC1.STA
DONE
1,PRINTBLK
U15, PRINTBLK+SVC1. STJ\
DONE
EX3LOOP

READ FROM ITAM
CHECK FOR ERROR
DEPART FOR AN ERROR
WRITE TO THE PRINTER
CHECK FOR ERROR
DEPART FOR ERROR
CONTINUE LOOP

7-17

Example 4:

Illustrates the use of the disconnect extended option. A data
communications parameter block is built to write a record using
extended options. The format and disconnect extended options are
set. Upon completion, the example goes to end of job.

EXAMPLE 4 EQU
*
*
*
*
*
*
*
*
*
*

LHI
STB
LI
ST
LA
ST
LA
ST
SVC
SVC

7-18

*
THE FOLLOWING USER EXAMPLE
WILL MAKE A SINGLE RECORD
WRITE TO THE COMMUNICATIONS
LINE ON LOGICAL UNIT 2. THE
USER REQUEST USES ITAM EXTENDED
OPTION WITH A REQUEST
TO DISCONNECT THE LINE FOLLOWING
THE WRITE. AFTER THE WRITE, THE
TASK GOES TO END OF JOB.

U15,X'29'
U15,LINEBLK+SVC1.FC
U15,SV1X.FM+SV1X.DM
U15,LINEBLK+SVC1.EXO
U15,PRINTOUT
U15,LINEBLK+SVC1.SAD
U15,PRINTEND
U15,LINEBLK+SVC1.EAD
1,LINEBLK

PUT WRITE WITH. EXTENDED OPTIONS
FUNCTION INTO PARAMETER BLOCK
FORMAT AND DISCONNECT

3,0

EXTENDED OPTIONS
SET UP PRINT-LINE START AND
END ADDRESSES

EXECUTE THE TERMINAL MANAGER SVC
GO TO END OF JOB

48-077 FOO ROO

8 . 1 I NTRODUC',r ION

CHAE)TER 8
HOW TO WRITE: AND USE DATA

COMMUNICATIONS LINE DRIVERS

Data communications covers a brc.ad range of transmission types,
line protocols, character sets, modems, terminals and terminal
idiosyncrasies. Since the basic data communications subsystem
cannot support every possible configuration, the purpose of this
chapter is tC) assist the system programmer responsible for
modifying or ~"'r iting a data communications line dr iver.

8.2 MODIFYIN(} A LINE DRIVER

Before modifying a dr iver or wr i.ting a new dr iver, determine the
functions pelrformed by a typical line dr iver, where they are
performed and which functions re!quire modification with existing
drivers as a working base.

In general, data communications line drivers perform some or all
of the following steps during a supervisor call lS (SVC1S)
request:

1. Common dr :i.ver initiation prc1cess ing

2. Command f c~tch of the bas ic command category

3. Common command processing

4. Modifier fetch of the specific command

5. Data field fetch

6. Address relocation

7. Data buffer initialization and channel control block (CCB)
setup

8. Initialization of adapter an.d modems

48-077 FOO ROO 8-1

9. Transfer of actual data

a. Internal/external character set translation

b. Detection of special characters

c. Buffer limit processing

d. Error status processing

10. Ending sequence processing and adapter disabling

11. Event service routine (ESR) processing

a. Restart at step 2 if command is chained

b. Terminate the call if in error or completed

steps 1 through 7 are nearly device-independent. They are
basically the same for all drivers observing the standa:rd data
communications command and buffer format. steps 8, 9 and 10 are
concerned with the type of modem and characteristics of the
attached terminal. steps 8, 9c, 9d and 10 are performed by the
interrupt service routines (ISRs) of the command. The auto
driver channel, with the assistance of the translation table
whose address is in CCB.XLT, performs steps 9a and 9b.

For example, the existing asynchronous line driver supports a
103-type modem. If support for a 202-type modem using reverse
channel is desired, new ISRs are required to handle the different
status interrupts caused by the reverse channel. Different
output commands are required to enable and disable t.he adapter.
These should be assembled in the new device control block (DCB).

If the attached terminal communicates in ASCII, only the new ISRs
that handle the interrupts are required along with the new DCB
containing the desired output command bytes. Figure 8-1 shows
the structure of a typical data communications line driver.

8-2 48-077 FOO ROO

~
00
I

o
.....
"zJ
o
o
~ o
o

00
I

W

077-14

DCB

INITIATION
J INITIATION

CODE

OUTPUT
COMMAND

BYTES

R NOP I MODIFIER r F=l TABLES ~ WAIT - {ITI,M~Rl
1 NULL u .Sn I . I NULL CODE MODIFIER XFER
2 TABLE

COMMAND TABLE
L ,

COMMAND
TABLE

CONTROL 3
---.
----4 CODE

5 0 -,

6 I READ CODE
7 I

TRANSLATION TRANSLATION I
POINTER TABLE I PREPARE

FRr. FRr. I CODE

ASC:EBC I11I
EBC.ASC I

I
TERMINATION~ II TRANSLATION III TABLE 1 ~_ HOLD

CODE (NOT SUPPORTED)
SPECIAL

TRANSLATION ~
TABLE 3

SPECIAL
CHARACTER t­

ROUTINES

CHARACTER
ROUTINES OF t­
TRANSLATION

TABLE

TRANSLATION
TABLE 2

Y MODECODE

~~~"I TEST CODE 

L---.I MODE 
I -J MODIFIER 

TABLE 

.. o 

Figure 8-1 SVC15 Driver structure 



As another example, 
interface to a 103-type 
other character set). 
tables, ASCII-to-EBCDIC 
would be required. 

assume that the attached terminal can 
modem but communicates in EBCDIC (or any 

The addition of two new translation 
for output and EBCDIC-to-ASCII for input, 

Most specialized requirements would need: 

• Different translation tables 

• Special character handling subroutines 

• ISRs to handle interrupts in a device-dependent (modem) manner 

The standard command format and buffer management should be 
maintained. A similar asynchronous or binary synchronous line 
driver should be studied as an example. Much of the basic data 
communications subsystem is table-driven, so modificatiQns or 
additions require a table change and the additional code 
necessary to perform the new feature. 

8.3 LINE DRIVER USE OF THE DEVICE CONTROL BLOCK (OCB) 

A separate DCB is maintained for each device (adapter) in the 
system. It is the DCB that controls the flow of any SVCl5 
request by allowing each device to specify its particular 
requirements. The DCB maintains control of the SVCl5 request 
through these fields: 

8-4 

DCB.INIT 

DCB.eTA 

DCB.MOCR 
DCB.MOCW 
DCB.DOCR 
DCB.DOCW 
DCB.DISK 

DCB.AOC 

DCB.XLT 

is the pointer to the initiation code for all 
SVCl5 requests to this device. 

is the address of the command table that 
contains pointers to the code for each of the 
commands supported by this device. Some 
commands may be common with other drivers; 
other commands may be specially designed. 

are the bytes used with output command 
instructions to control the adapter for a 
particular attached modem and terminal$ 

is the byte used to load programmable adapters 
with the information required to control the 
communications line attached (line speed, 
character size and parity information)e 

is the pointer to the table of valid driver 
translation tables. 

48-077 FOQ ROO 



DCB.TERM 

DCB.RDN 
DCB.WDN 

DCB.XDCD 

DCB.ESR 

is the pointer to the driver termination code. 

are the halfwords indicating the device 
numbers to uSle when reading and writing to the 
connected adapter. Depending on the adapter 
strapping, these numbers may be the same or 
different. These numbers are initialized by 
the file manager using the 2-wire/4-wire 
indication in DCB.XDCD to determine device 
strapping. 

is the extended device code field initialized 
at sysgen that supplies information about the 
intended use of the communications line. 

is the address of the ESR to be scheduled 
during system queue service (SQS). 

8.4 LINE DRIVER STRUCTURE 

The actual code to handle a specific request (command and 
modifier) is depicted by the boxes on the right side of Figure 
8-1. The rout.ines are entered by indexing through a series of 
tables beginning at the DCB (left side of Figure 8-1). New 
commands or features can be added by specifying a new table that 
points to the old command routines that remain unchanged and to 
the new routines for the added features. 

Much of the code needed by linle dr ivers handles command and 
modifier fet,ching and buffer management. This is usually 
consistent throughout all line d:rivers supporting the standard 
data communications format and has been implemented in 
subroutines ma.intained in the data communications module. The 
user-written line drivers should use these supplied routines. If 
the standard data communications command format and buffer 
management is followed, a specialized driver would require ISR 
code to handle the adapter and translation tables to handle the 
character set involved. 

8.4.1 Driver Initiation Routine 

Drivers are entered in the ES(NSU) state and command 
interpretation begins immediately. Commands performing 
input/output (I/O) require interrupt service (IS) (execution is 
in the IS state), eventually ending in event state (ES). Any 
additional commands in the command chain are interrupted and 
executed in the ES state. Normally, the drivers exit to the 
supplied routines CMEXIT and CMTERM. 

Routine CMEXIT' is like TMRSOUT o:r EVRTE and is used whenever the 
driver desires to exit and wait for a condition to reactivate it. 
Routine CMTERM is like IODONE or IODONE2 and is used to end an 
SVCl5 request and, if required, ito generate a termination trap to 
the calling task. 

48-077 Faa ROO 8-5 



SVClS instruction execution by a task results in entry -to the 
line driver in the ES(NSU) state at the initiation address given 
by the DCB.SVCF, with UDl3 containing the address of the DCB. 
Most drivers at this time begin driver command word (DCW) command 
execution by branching to the supplied routine ICMDINT. However, 
the dr iver might initialize progranunable adapters at this ·time or 
perform some other introductory operation. Once ICMDINT is 
entered, the driver is controlled by the command table and the 
DCB. 

8.4.2 Translation Tables 

Translation tables can exist anywhere in memory_ However, all 
special character subroutines referenced by the tables must be in 
pure code located below 64K. 

To make changes in translation as easy as possible, drivers make 
no absolute reference to any character. A driver can have a code 
to handle a terminating character, but the translation ta.ble and 
the translation table routines decide what constitutes such a 
character and branch to the code that handles it. A change of 
translation table and possibly some output commands supplied in 
the DCB, should orient the supplied driver toward a ne~' device 
while maintaining compatibility with the devices for which the 
driver was originally designed. 

All basic data communications special character routines begin 
with a Load Halfword Immediate (LHI) instruction to load a 
register with the translated character. This instructi.on must 
not be squeezed by CAL/32 to allow line dr ivers to pet:form a 
software translation of all characters, including special 
characters, since the translated value of any character is always 
the second halfword of each routine. 

8.5 DATA COMMUNICATIONS LINE DRIVER EXAMPLE 

This section is to guide the reader through the code of a typical 
line driver. To write a new line driver that handles reads and 
writes using the existing buffer management and command format 
but requires a new protocol and different handling of thE~ modem 
interface, the standard routines supplied for NULL and CONTROL 
should be adequate. No support is required for the MODE or 
PREPARE command. 

8.5.1 Command Table 

First, a command table referencing the necessary comm(~.nds is 
required. This table llAllally is a part of the driver and must be 
aligned on a fullword boundary and have a label declared as an 
ENTRY in the driver. This label is referenced as an EXTRN by the 
DCB. The command table can be coded as follows: 

8-6 48-077 FOO ROO 



ENTRY 
EXTRN 

UWCOMTAB 
ITAMNUIL, ITAMCTRL 

ALIGN ADC ALIGN TABLE ON FULLWORD 
UWCOMTAB EQU * 

DAC ITAMNULL USE STANDARD NULL 
DAC ITAMCTRL USE STANDARD CONTROL 
DAC UWREAD USER WRITTEN READ 
DAC 0 NOT SUPPORTED (PREP) 
DAC UWRITE USER WRITTEN WRITE 
DAC 0 NOT SUPPORTED (HOLD) 
DAC 0 NOT SUPPORTED (MODE) 
DAC 0 NOT SUPPORTED (TEST) 

The initiation code for the driver must begin with a label of the 
form INITxxxx just as for general-purpose drivers. This is 
declared as an ENTRY in the driver and an EXTRN in the DCB. The 
reference to t:he line driver in the DCB is in DCB.SVCF instead of 
DCB.INIT, since DCB.INIT is reserved for the address of the 
terminal manager, if supported. 

8.5.2 Command Fetch 

Routine ICMDI~lT locates the first command in the Dew string, uses 
the least significant three bits to index into the command table 
and branches t:..o the code to perform that command. If the command 
specifies co~~and traps or time-out, the trap is generated or the 
timer started before entering the command. If the command is a 
NULL or CONTROL, the routine ITAMNULL or ITAMCTRL is entered, 
indicated by the command table. If the command is a WRITE, the 
user-wr itten l~outine UWWRITE is entered. The command halfword is 
in U3 and the DCB in UD (the user-written routine in the center 
of Figure 8--1) can perform any desired function or initialize 
programmable adapters, if necessary. To enter the code to 
perform the exact function indicated by the modifier, use a data 
communicationf~ routine and a user-supplied table. The basic 
command (WRITE, in this case) can access the code for each 
modifier by the following steps: 

1. Loading UC with the address of the write channel control 
block (CCH) 

2. Loading U7 with the address of the write modifier table 

3. Loading Uf) with the maximum allowable modifier 

4. Branching to the ITGETMOD routine 

The command halfword is still contained in U3 and the DCB address 
is always maintained in 00. 

48-077 FOO ROO 8-7 



8.5.3 Modifier Fetch 

The CCB is cleared of all buffers by ITGETMOD, which then places 
a copy of the conunand in the CCB after clear ing the unusc~d four 
bits (bits 4 through 7) and branches to the code for the function 
specified in the modifier table. 

NOTE 

All loads of CCB addresses must use the 
LHI instruction since the CCB address is 
stored in a halfword that might be 
located above 32K. 

8.5.4 Conunand/Modifier Routines 

Each particular conunand (right side of Figure 8-1) must perform 
all the processing required to complete its defined function. If 
data fields are required, they can be fetched by calling 
ITGETDAT, which returns with the next data field in U7. If bit 
o of the data field is set (data code X'80'), ITGETDAT performs 
a data field transfer by relocating the address contained .in the 
data field and using this to continue the data field fetch. 

Data fields contain the addresses in user program space of data 
required by the driver. These addresses must be relocated to 
absolute values to be useful to drivers. Data buffer addresses 
can be relocated by calling ITBFREL. All other addresses must be 
relocated by calling ADCHK. 

The routine ITBFREL assumes all buffers are in the same logical 
segment as the address contained in the first data field of the 
SVC15 parameter block. 

The conunand can now load the data from this address and perform 
the required operation. Mode conunands, for example, merely store 
the data in selected places in the DCB. READ and WRITE c:onunands 
must transfer data into or out of this location. They use the 
address and the data code to set up the CCB for a data transfer 
using the buffer type specified by the data code through the 
ITGETBUF routine. 

8-8 48-077 FDa ROO 



A call to ITGETBUF works to fetch the data field, relocate the 
address and set up the CCB for a transfer of the proper size 
data. It uses the buffer type specified by the data code. The 
least significant four bits of the data code are also stored in 
bits 4 through 7 of the command kept in theCCB. If the conunand 
is a short write such as WRITE2 (maximum of 15), this number is 
placed (ORed) into the low-order four bits of the options 
register, U4, before calling ITGgTBUF. 

If read after write lookahead is supported, a check is performed 
to see if the present command (WRITE) is chained. If so, RAWCHKR 
(referenced as an EXTRN) is called. This routine checks to see 
if the next command is a READ. If so, RAWCHKR sets a read after 
write (RAW) pending flag in the DCB, sets the get one buffer flag 
in the options register, and fetches and enters the READ code. 
The READ commalnd performs as if it were fetched normally and can 
initialize programmable adapters or any other introductory read 
operation. It. performs the following steps: 

1. Loads UC ~,ith the address of the read CCB 

2. Loads U7 with the address of the modifier table 

3. Loads U6 with the maximum valid modifier 

4. Branches t.o ITGETMOD 

The ITGETMOD routine performs the same operations conducted in 
fetching the WRITE and enters the code for the indicated type of 
READ. This code also sets up the read CCB for a READ using the 
appropriate buffer type by calling ITGETBUF. The READ is now 
ready to begin. However, if a RAW pending flag is found, it 
returns to thel WRITE code. 

8.5.5 Entering Interrupt Service Routines (ISRs) 

Returning from a call to RAWCHKR, the WRITE code sets up the 
channel command word (CCW) of the CCB (CCB.CCW) to ensure that 
the execute bit is off and that the other bits are appropriate 
for the write. Most likely, the write and the translate bits are 
also set. The subroutine pointer in the CCB (CCB.SUBA) is loaded 
with the address of a pure routine, an ISR in the driver. The 
address of the CCB+l is stored in the ISPTAB entry for the write 
device number, and a simulate interrupt (SIN'r) instruction is 
performed using a write device number. The routine now exits by 
branching to CMEXIT. 

48-077 FOO ROO 8-9 



The SINT instruction simulates an interrupt and therefore enters 
the ISR. User-written drivers can perform whatever is necessary 
here; however, most drivers try to place the adapter and the 
modem into write mode, assuming that the adapter is in an unknown 
state. This is done by issuing an output command using the byte 
in the DCB reserved for placing the adapter in write mod Ie with 
interrupts enabled (DCB.MOOW). The address of CCB.SUBA can now 
be changed to point to the next ISR and the routine exits by a 
Load Program status Word Register (LPSWR) instruction. Each 
interrupt causes the second ISR to be activated. The following 
registers are loaded by firmware: 

EO 

El 

E2 

E3 

E4 

Program status word (PSW) status before the 
interrupt 

PSW location before the interrupt 

Device number causing the interrupt 

status of device causing the interrupt 

Address of the CCB 

This second ISR generally ignores all interrupts until the 
adapter is ready for data transfers (indicated by zero status). 
ISRs exit by the LPSWR using register EO. They can use registers 
E2 through E7 without restoring them; E8 through ElS can be used 
only if saved and stored. 

Once the adapter is ready for the transfer (status equal zero), 
the CCB.SUBA is loaded with the address of an ISR to handle the 
interrupts from the auto driver channel. The execute bit is 
turned on in the CCW. The first character is obtained from the 
buffer by a call to ITFC, translated by the TLATE instruction and 
written to the adapter. The CCB pointers are adjusted by the 
Simulate Channel Program (SCP) instruction, and the ISR exits by 
loading the PSW from register EO. 

All future interrupts from the adapter are handled by the auto 
driver channel (microcode) and assistance from the driver is 
required only for one of the following reasons: 

• Error status interrupts 

• Buffer limit interrupts 

• Special character processing 

8-10 48-077 FOO ROO 



An error status interrupt is usucilly an indication to abort I/O 
by loading the appropriate statu~3 in register E7 and branching to 
ITISSTOP. This routine store~3 the status, disables the device 
(both read and write), clears thc~ ISPTAB entries and schedules 
the halt I/O routine, terminating the entire SVC1S request. 

A buffer limit interrupt means the CCB has just used the last 
byte from the buffer and complemented the buffer select bit in 
the CCW of the CCB. When us ing chained buffe'rs, the dr iver must. 
determine if another buffer is available. If another buffer is 
available, the driver keeps the I/O going with the second buffer 
while a third buffer is readied by scheduling the next buffer 
write routine. All these operations are done by calling ITXFRISR 
to schedule the next buffer routine, if there is a need for it, 
or to return to the caller and indicate that no more buffers are 
available. Each individual d.river can treat this situation as 
appropriate. The binary synchronous driver treats it as an error 
and indicates that a proper terminating sequence was not 
encountered. The asynchronous driver considers it a normal 
completion. The ITXFRISR rout.ine checks for certain error 
conditions, and if any exist, aborts the entire SVC1S request 
with the appro'pr iate status. Thlese errors are concerned with 
chained buffers and the condition of the busy and done bits or 
with the fact that a next buffer write routine was scheduled, but 
had not yet executed. 

8.5.6 Special Character Routines 

Special character routines 
translation table and 
procedures: 

are entered as 
are responsible 

a 
for 

result of the 
the following 

• Translating the character by an LHI instruction, since each 
routine is for a specific character. 

• Performing the required function of the character (change 
modes, terminate the I/O or backspace). 

• Wr iting the! translated charac'ter to the adapter or stor ing it 
in the buffer, as appropriate. 

• Performing cyclic redundancy checks (CRC) or longitudinal 
redundancy checks (LRC), if necessary. 

• Incrementing the pointers of the CCB so that character count 
is correct. 

• Handling any buffer limit situations that occur during the 
previous step. 

48-077 FOO ROO 8-11 



8.5.7 Read After Write (RAW) Turnaround 

At some point, the ending character, ending sequence or buffer 
limit condition can terminate I/O. The adapter is disabled by 
issuing an output command using the command byte in DCB.DOCW and 
is usually set up to disable the adapter while keeping it in 
write mode. The end buffer write routine is scheduled by calling 
ITSRABS. This routine takes care of the last buffer and adjusts 
the length of the last write indicator in the DCB. If the RAW 
pending flag is set, the driver ISR calls the routine ITWR.RD to 
perform the following steps: 

• Increment the current DCW pointer 

• Set transfer not begun in status halfword 

• Set up the ISPTAB entry for the read device number 

• Load E2 with the read device number 

• Load E3 with the read status 

• Load E4 with the read CCB 

• Start read error timer if command requests time-out 

• Schedule RAW second buffer if chained buffers are used 

• Schedule command trap read if command requests it 

• Increment number of commands executed 

• AdjusL current DCW pointer 

• Return to caller, who branches to the first read ISR 

The read ISR now performs like the write ISR, placing the adapter 
in read mode by using DCB.MOCR and waiting for an interrupt with 
the proper status (usually zero). If buffer traps are requested 
in the command, the trap is scheduled by calling ITSRABS with the 
proper reason number. CCB.SUBA is loaded with the address of the 
read ISR to handle the interrupts from the auto driver, the 
execute bit is set and the I/O proceeds as in the write. Buffer 
limit, error statu~ and special characters are handled just as in 
the write ISR. The read ISR, using DCB.DOCR, eventually 
terminates by disabling the adapter, schedules the end buffer 
read routine and the driver-termination routine by two calls to 
ITSRABS, and exits by the LPSWR instruction. 

8-12 48-077 FOO ROO 



8.5.8 Driver-Termination Phase 

The driver-termination phase routine, whose address is in 
DCB.TERM, checks the status halfword in DCB.ISTA and terminat.es 
the SVCl5 request. if any errors exist by branching to CMTERM. 
When no error~:l exist, the dr iveI ESR checks to see if t.he current 
command is chained and, if so, fetches and executes t.he next 
command; t.his is accomplished by the routine ITNXTCMD. This 
routine checks the current DCW command and, if it i,s chained, 
increments the DCW pointer and branches to ICMDINT, which 
cont inues with command interpI'etat ion. When the command is not 
chained, ITNXTCMD returns to the caller. The ent.ire SVC15 
request can ~hen be terminated by branching to CMTERM. 

8.6 USING DA~rA COMMUNICATIONS LINE DRIVERS 

Except for interrupt handling rClutines whose code is executed in 
the IS state, data communications line drivers execute in the 
ES(NSU) state with SQS turned off. 

Drivers fetch and execute each command of a Dew chain. When a 
command goes to an error-free completion and if the chain command 
bit of the command is set, the next command in line is fetched 
and executed. This sequence of fetch and execute is repeated 
until the entire DCW chain is successfully interpreted or until 
an error condition in any command terminates the SVC request. 

Commands can be arranged in any order; however, each command is 
interpreted one at a time and at user priorit.y. A command chain 
consisting of three consecutive writes is interpreted as three 
complete and separate write operations that are fetched, set up, 
executed and terminated one at a time. On a high-speed CRT, 
de lays may appeal: between the WI: i tes . 

If the preceding sequence of three writes were issued to the 
binary synchronous driver, each write would begin by sending a 
series of leading synchronous characters. In addition, each 
write would end with the proper binary synchronous termination 
sequence. If this sequence is not supplied, an error results. 
An analogous situation existfl for chained reads. Data 
communications is generally interactive and involves a write 
request followed by a read request, such as: 

• Write prompt character(s) and read data 

• Wr ite a buffer and read acknowledge (ACK) o'r 
acknowledg1e (NAK) 

• Write ACK lOr NAK and read buffer 

• Write poll or select and read response 

48-077 FOO ROO 

negative 

8-13 



Data communications allows a write command chained to a read 
command to be handled as one continuous command, both of which 
are fetched and set up before any I/O begins. The write is then 
performed. Upon completion, the line is immediately turned 
around and the read is performed. Once I/O for the write 
actually begins, the entire sequence (write and read) is 
performed regardless of task priority and in a manner totally 
transparent to the user. 

In addition to the RAW lookahead, there is a read after prepare 
lookahead that allows a task to chain a read to a prepare. Thus, 
a task can scan a communications line for a special (prepare) 
character and immediately enter the read command to read any 
following data. 

8.6.1 Buffer Management 

Buffer management currently supports four buffer types: 

• Direct 

• Indirect 

• Chained 

• Queued 

Direct and indirect buffers each consist of a single buffer that 
must be sufficient to complete a single write or read command. 
The term complete means that the buffer contains one or more 
terminating characters (if required for writes) or enough buffer 
space to hold one or more terminating characters (if required for 
reads). Chained and queued buffers consist of one or more linked 
buffers. It is through the use of chained and queued buffers 
that most flexibility is achieved. The entire series of buffers 
must be sufficient to complete a command. The use of buffers is 
illustrated as follows: 

• Figure 8--2 is a sample SVC15 parameter block to wr ite data 
from a direct buffer. 

• Figure 8-3 is a sample SVC15 parameter block to read data (an 
SVCl5 parameter block reading) into an indirect buffer. 

• Figure 8-4 is a sample SVC15 parameter block to read data into 
a series of chained buffers. 

• Figure 8-5 is a sample SVC15 parameter block to read data into 
a series of queued buffers. 

8-14 48-077 FOO ROO 



I/O has a double-buffering capability. However, when a single 
buffer (direct, indirect or single chained) is specified for a 
read or write, only one buffer can be used. If I/O reaches 'lhe 
end of the buffer, the line driver receives a buffer limit 
interrupt. Buffer limit interpretation is driver-dependent. For 
example, the asynchronous driver terminates error-free when 
buffers are e)(ceeded, while the binary synchronous driver returns 
a buffer limit status if a proper terminating sequence did not 
occur before buffer limits were exceeded. 

077-15 

077-16 

SVC15 PARAMETER BLOCK DCW CHAIN OF 1 COMMAND 

FC ElU STATUS 

#CMDS A (DCW) 

f.----HALFWORD----I 

X '0004 , (WRITE) 

LLR LLW 

00 E A (START) 

00 A (END) 

DIRECT BUFFER 

~jwO~~WORO -J. DATA BYTE 1 

DATA BYTE 2 

DATA BYTE 3 

nEND STARTl1 DATA BYTE n 

Figure 8-2 SVC1S Using Direct Buffers 

SVC15 PARAMETER BLOCK 

FC tlU I 
#CMDS 

I 

STATUS 

A (DCW) 

DCW CHAIN OF 1 COMMAND 

f.---- HAL FWO R D ------l 
~ ____ ----..J X'OO02' (READ) 

I 

LLR LLW 

04 r A (IND.BUF) 
INDIRECT BUFFER 

__________ ~I----. BYTES AVAIL en 

t I J J. BYTES USED 
BYTE --I DATA BYTE 1 DATA BYTE 2 

HALFWORD DATA BYTE 3 DATA BYTE 4 
--- FULLWORD --

DATA BYTE 5 •.•• . . . . . . 
DATA BYTE n 

Figure 8-3 SVC1S Using Indirect Buffers 

48-077 FOO ROO 8-15 



077·17 

SVC15 PARAMETER BLOCK DCW CHAIN OF 1 COMMAND 

FC 1 LU J STATUS I-- HALFWORD--I 

#CMDS 1 A (DCW) t---------tot1 X'OO02' J (READ) 
~----~----~----------~ 

LLR I LLW 

08 I A (CHN.BUF 1) ~~r=====:;::_FU_L_L_W_O_RD_-_-_~-=-:.::~·1 
I J -JI ----- 00 I A (CHN.BUF2) 

i-"-BYTE-! CHN.BUF1 BYTES AVAIL I BYTES USED 

!4--HALFWORD D1 I D2 I· D3 I D4 

----- FULLWORD 

DATA 

Dn·3 I Dn2 I Dn·1 I Dn 

r-
OO I A (CHN.BUF3) 

CHN.BUF2 BYTES AVAIL I BYTES USED 

D1 l D2 I D3 I D4 

DATA 

Dn·3 I Dn·2 J Dn·1 1 Dn 

~ -- ----------------
00 I 0 

CHN.BUF3 BYTES AVAIL I BYTES USED 

D 1 I D2 I D3 I D4 

DATA 

Dn·3 I Dn·2 I Dn·1 I Dn 

Figure 8-4 SVC1S Using Chained Buffers 

8-16 48-077 FDD ROO 



077-18 
SVC15 PARAMETER BLOCK 

FC LU STATUS 

#CMDS A (DCW) 

LLR LLR 

OA A (FROM.O) 

OA A (TO.O) 

t
l-BYTE-~ J 
f--HALFWORD 

f----- FULLWORD ------

~ 
rULAR LIST FORMAT 

TO.Q NUMBER OF SLOTS NUMBER USED 

CURR TOP CURR BOT 

o 
~-----------------------~ 

o 

1 0 r 

BUF2 BYTES AVAIL 

D1 D2 

BUF1 BYTES AVAIL 

D1 D2 

Dn-3 

DCW CHAIN OF 1 COMMAND 

r HALFWORD--j 

X'OO02' (READ) 

CI RCULA R LIST FORMAT 

r----- FULLWORD ----1 
iHALFWORD1 I 

NUMBER USED 

CURR TOP CURR BOT 

A (BUF 1) 

A (BUF2) 

A (BUFn) 

----FULLWORD---------' 

o 

BYTES USED 

D1 D2 D3 D4 

DATA 

Dn3 Dn 

0 

BYTES USED 

D3 D4 

DATA 

Dn 

0 

BYTES USED 

D3 D4 

DATA 

Dn 

Figure 8-5 SVC15 Using Queued Buffers 

48-077 FOO ROO 8-17 



8.6.1.1 Chained Buffers 

When chained buffers are specified, the driver attempts to set up 
two I/O buffers. This means that for the task to use more than 
a single chained buffer for I/O, it must supply at least two 
linked buffers when the SVClS request is issued. These two 
buffers are set up; the first buffer is flagged as busy (bit 0 of 
link word set) a buffer trap is generated, if specified and I/O 
starts'. When buffer 1 is exhausted, the driver receives a buffer 
limit interrupt and finds buffer 2 is available (busy and done 
bits reset) and uses this buffer to continue I/O. Meanwhile, a 
routine is scheduled to flag buffer 1 as done, flag buffer 2 as 
busy, and attempts to set up the first I/O buffer using the 
current link word of buffer 2 as a pOinter. If this link is 
zero, the current buffer is the last buffer of the chain and the 
I/O must terminate within it. If the link woyd is nonzero, it 
indicates the location of buffer 3. At this time, buffer 3 does 
not necessarily have to be available (busy and done bits reset) 
as long as its address is specified. A buffer trap is generated 
to the calling task. However, buffer 3 must be available before 
the next buffer limit inter~upt. If it is not, the buffer 
overruns and I/O aborts; the status reflects this overrun. 

In RAW, the driver looks ahead and sets up only one read buffer. 
Therefore, if chained buffers are used for the read, only one 
buffer is set up in advance. When the dr iver terminat,es the 
write, one buffer is ready for the read. If the read uses 
chained buffers, a subroutine to get the next buffer schedules 
inunediately after performing the write to read turnaround. The 
buffer trap for the read is performed after read I/O begins. 
Getting only one read buffer instead of two is useful when using 
chained buffers for both write and read. However, the buffer 
trap for the next to last write buffer must be identified by the 
u-task because the task must specify the second buffer in the 
link word of the first read buffer before the driver completes 
the write. 

When i.nter pr et i ng conunands, the dr i ver us es two po inter s that ar e 
updated during conunand fetching and execution: 

• The current DeW pointer that points to the current De~~ being 
executed. I f the conunand is chained, it is updated aft.er each 
conunand goes to completion. 

• The next data field pointer pointing to the data field to be 
used on the next data field fetch. It is updated after each 
data field is fetched. 

This example illustrates how these pointers are used. It also 
illustrates the transfer in Data Pac ility and the 'rRANSFER 
corrunand. 

8-18 48-077 FOO ROO 



Dew COMMAND 
NUMBER DATA FIELD COMMAND eHAIN NUMBER 

1 00 BUF1.STRT cc WRITE BUFFER 1 
2 00 BUF 1. END cc READ BUFFER 2 
3 04 BUF2 cc XFER 3 
4 01 A(command 1) 
5 80 A(data 1) 

Execution of the command chain and data chain results in 
continuous I/O consisting of the following: 

• A WRITE from buffer 1 (direct text) 

• A READ into buffer 2 (indirect text) 

• A branch back to a write from buffer 
repeating the write/read sequence 
error occUt:s. 

1 (direct text), thus 
indefinitely or until an 

At starting ti.me, the: 

• current De~r points to the WRI'TE (command 1), and 

• the next data field points to BUFISTR1r (data field 1). 

The first command is fetched and the write routine is 
which sets up for the write by fetching a data field. 
data field indicates a direct buffer, a second data 
fetched. Now the pointers show the following: 

• The current. Dew pointing to WRITE (command 1) 

• The next data field pointing to BUF2 (data field 3) 

entered, 
Since the 
field is 

Before actually writing the data, the driver looks at the next 
command and finds it to be a read. Therefore, the read code is 
entered. The read routine sets up for the read by fetching a 
data field. Since the data field indicates an indirect text 
buffer, the driver is satisfied. After setting up for the read, 
the read routine finds that it was entered from a write and 
returns to write without performing any I/O. The pOinters now 
show the following: 

• The current Dew pointing to M~ITE (command 1) 

• The next data field pointing to data field 4 

48-077 FOO ROO 8-19 



Write I/O is performed and, on error-free completion, the write 
termination routine finds a RAW situation, bumps the current DCW 
pointer and enters the READ code. The pointers now show: 

• The current DCW pointing to READ (command 2) 

• The next data field pointing to data field 4 

After the READ goes to completion, a routine is scheduled to 
check the command to see if it is chained. Since it is, the 
current DCW pointer changes to fetch the next commando The 
pOinters now show: 

• The current DCW pointing to XFER (command 3) 

• The next data field pointing to data field 4 

The XFER routine fetches data field 4 (the address 'of command 1) 
and changes the DCW pointer to the value contained in that data 
field, affecting a branch. The next command is fetched again. 
However, the pointers show: 

• The current DCW pointing to WRITE (command 1) 

• The next data field pointing to data field 5 

The command fetch brings the WRITE routine into action again. It 
fetches data fields and finds the X'80' data code, indicating 
that the data field contains the address of another data field. 
The next data field pointer is updated to the contained value. 
The pointers now show: 

• The current DCW pointing to WRITE (command 1) 

• The next data field pointing to BUF1.STRT (data field 1) 

The WRITE code again attempts to fetch a data field to use for 
buffers. 

8.6.1.2 Line Driver Data Communications Device Interface 

The line drivers provide a simple interface to standard data 
communications devices and allow enough flexibility for effective 
control of the particular communications network. 

8-20 48-077 FOO ROO 



A simple communications network can be controlled by 'lhe use of 
only three c()mmands: READ BUFF', WRITE BUFF and WAIT. Assuming 
t..hat move commands are not needed! to change default parameters, 
the user merely reads or writes information regardless of 
communication variables like line~ speed, character size, line 
parity, type of line (2-wire, 4-wire, leased), type of adapter, 
programmable asynchronous single line adapter (PASLA), 
quad-synchronous adapter (QSA) or type of modem. 

While the line drivers do handle t..he specific operating 
requirements of the actual communications line interface 
(computer, adapter and modem), they are unaware of any line 
discipline or protocol. The user provides the correct 
handshaking procedure or dialogue with the other end of the line, 
if any is rC9quired, by chaining appropriat.e WRITE and READ 
commands. 

While complex DCW chains can be c:onstructed, commands are fetched 
and executed in an interruptible state at the priority of the 
calling task. Ensure that the~ task's pr ior ity is commensurate 
with the requirements of the lin€~, especially when using the more 
sophisticated chained buffers. 

Although commands are fetched and! interpreted in an interruptible 
state, special provision is made for the unique sequence of write 
chained to read. In this situati.on, after the write is set up, 
but before actually starting I/O, the driver checks to see if the 
write is chained to a read. If it is, the read is also set up. 
This way the dlriver can turn a li,ne around very quickly and be 
ready to receive the data regardless of task priority. 

Intelligent terminals usually operate with a protocol that 
requires each c9nd to ACK or NAK I'eceipt of a message. Therefore, 
to communicate information to such a device, issue a write 
(containing your message) chained! to a read (to accept the ACK or 
NAK). The driver relocates and sets up the write and read 
buffers and the write is performed. When write completes, the 
line is turned around and r€!ad is performed. When read 
completes, the dr iver has f inish€!d the SVC1S request. The status 
is stored in the user's SVClS parameter block, and if canceled, 
a termination trap is generated. Now look at the read buffer and 
determine whether the message should be repeated (received an 
NAK) or the ne:Kt message should be wr itten (received an ACK). 

If the user is receiving a data message from the device, the 
message must be acknowledged to indicate error-free (ACK) o~ 
inval id (NAK) ~r ecept ion by the WI' i te cha ined to read sequence. 

First issue jan SVClS read tel get the message. After SVClS 
completes, check the status (and optionally the data) and reply 
with an SVClS write chained to I'ead. The write specifies ACK or 
NAK (reply to it.he last message), and the chained read readies the 
driver to receive a new message (if ACK) or a repeat of the 
message (if N~K). 

48-077 FOO ROO 8-21 



Once write to read turnaround is done, the driver has one buffer 
transfer time to set up additional required buffers. If, due to 
heavy processor loading, these operations are not performed in 
time, I/O is terminated on detection of the buffer overrun 
situation and the status is set to reflect this (status=buffer 
overrun). Take appropriate recovery action (retry I/O). 

Assume that the task is an interactive interpreter that, once 
started, requests input from a remote terminal. Normally the 
computer writes out a statement number (sequence number) a.nd then 
initiates a read to the terminal in several ways, using the SVCl5 
request. 

Method 1: 

The sequence number is maintained in one buffer. 

Buffer 1 is a direct buffer of eight characters, containing two 
carriage return (CR) characters, one line feed(LF) character, a 
4-digit ASCI I sequence number and a space. Wr iting this buffe'r 
causes the four sequence numbers to appear on the terminal at the 
left margin of a new line. 

Buffer 2, an indirect buffer of 60 characters, receives the 
input. By using an indirect buffer, the number of characters 
actually entered can be determined without~scanning the input for 
special characters. The first supplied halfword indicates to the 
driver how many bytes are available for data character storage. 
The actual number of characters read by the driver is stored in 
the second halfword of the buffer. 

A user could issue a write from buffer 1 and then a read into 
buffer 2. Adequate response time for the read can be assured and 
system overhead can be saved by issuing only one SVClS for both 
the write and read. The SVClS parameter block and associated 
data are shown in Figure 8-7. 

The function code specifies termination trap. 
contains the following: 

The Dew chain 

• A WRITE command specifying a chain to the next command when 
this write is error free. 

• A READ command. The read does not have the time-out bit 
and is able to wait indefinitely for input. The read is 
chained. When this command completes, SVCl5 terminates 
storing certain values in the parameter block and 
generating a termination trap (requested in function code) 
the user program. 

set 
not 
by 
by 
to 

If the response at the terminal was A=B CR, the parameter block 
'in., associated fields might be as shown in Figure 8-7. 

8-22 48-077 FOO ROO 



Method 2: 

Since the interpreter is just one of many programs running in a 
multitasking environment, unacceptable delays might occur between 
responses from the task because of higher priority tasks. 

To inform a remote terminal of the status of the input attempt, 
it might be desirable to establish the dialogue as: 

• The computer starts a new linl9 and types out a sequence number 
when it wants input. 

• The user types in a line of data and signals the end of input 
with the ASCII ETX, which leaves the TTY carriage at the end 
of the input line. 

• The computer, on recognizing the end character (ETX), writes 
out a CR sequence to signal that the computer is still there 
and running, and that input was received. Any delay between 
the CR and the next sequence number is due to computation time 
within the computer. 

077-19 

SVC15 PARAMETER BLOCK 

FC = 10 L~ XXXX CC WRITE 

I XX ADDR (DCW CHAIN) END READ 

XXXX xxxx 
00 ADDR (BUFFER 1 BEGIN) 

1------XX ADDR (BUFFER 1 END) 

04 ADDR (BUFFER 2) 

>( ~ UNDEF INED 

DCW CHAIN 

8 0 0 4 

0 0 0 2 

BUFFER 1 

OD OD 

OA SEQ NO.1 

SEQ NO.2 SEQ NO.3 

SEQ NO.4 20 

BUFFER 2 

0 0 3 C 

X x x x 
x x x X 

X X X X 

I 
WRITE BUFF 

READ BUFF 

Figure 8-6 Example of an SVC1S Parameter Block and Associated 
Data 

48-077 FOO ROO 8-23 



077-20 

SVC15 PARAMETER BLOCK 
DCW CHAIN 

1 0 LU I o 0 0 0 I 8 0 0 4 

I o 2 ADDR (DCW CHAIN) LENGTH OF 0 0 0 2 
LAST WRITE 

o 0 0004 I 000 8 NUMBER BYTES STORED 

o 0 ADDR (BUFFER 1 BEG) 

~ 
IN BUFFER 

X X ADDR (BUFFER 1 END) BUFFER 1 

o 4 ADDR (BUFFER 2) o D o D 

o A SEa NO.4 

SEa NO.2 SEa NO.4 

SEa NO.4 2 0 

BUFFER 2 

0 0 3 C 

0 0 0 4 

4 1 3 D 

4 2' 0 D DATA READ IN 

Figure 8-7 Parameter Block and Associated Fields 
After SVC1S Termination 

If the interpreter needs to store the input line image, along 
with its sequence number on a disk or tape, the program with 
sequence numbers can be listed when requested. For example: 

• Assume buffer 1 is a direct buffer of 72 characters and 
buffers 2 and 3 are direct buffers that are subsets of buffer 
1 

• Buffer 2 begins where buffer 1 begins 

• Buffer 2 ends where buffer 1 began +7; i.e., buffer 2 is just 
the first eight characters of buffer 1 

• Buffer 3 begins where buffer 1 began +8 

• Buffer 3 ends where buffer 1 ends. 

• Assume, as in the previous example, that buffer 2 cont.ains a 
CR, LF and SEQ number space. 

By performing a write from buffer 2 and a read into buffer 3, 
buffer 1 then contains the sequence numbers and the input. These 
can then be written to a disk or magnetic tape by simply starting 
past the CR-LF sequence. See Figure 8-8. 

8-24 48-077 FOO ROO 



Although considerably more complex, the program performs no 
additional work other than initially setting up the block. The 
commands (DCWs) specify time-out, which is normally an error 
time-out used to abort the call should the command not go to 
completion (possibly due to hardware problems) within the 
allotted time. store a null in the first position of a read 
buffer to determine if the read timed-out before or during data 
input. 

077-21 

1 

0 

0 

0 

X 

0 

X 

0 

SVC15 PARAMETER BLOCK DCW CHAIN 

0 LU I 
3 ADDR (DCI 

0000 ~ 9004 
----.------~ ~.----~----~ 
N CHAIN) 9 0 0 2 

0 0004 I 000 2 1 0 0 C 

0 ADDR 

X ADDR 

0 AOOR 

(BUFF 2) 

_(E_N_D_B.U_F_F_2_) __ ~~ BUFFER 2 & BUFFER 3 

(BUFF 3) ,~OO 00 

X AOOR (END BUFF 3) 0 A SEQ NO.1 

1 ADOR (BUFF 4) 

4 1 3 0 

4 2 0 3 

, 00 I 00 I 

WRITE BUFFER, TIME-OUT, CHAIN DCW 

READ BUFFER, TIME-OUT, CHAIN DCW 

WRITE 2, TIME-OUT 

Figure B-8 SVCIS Parameter Block After Termination 

48-077 FOO ROO 8-25 





CHAPTER 9 
GENERATING AN OPERATING SYSTEM 

WITH DATA COMMUNICATIONS DEVICES 

9 . 1 I NTRODUC'l~ ION 

An operating flystem configured with data communications devices 
is generated using the System Generation/32 (Sysgen/32) program. 

Sysgen/32 enables you to create and tailor an operating system to 
accommodate particular system requirements. Hardware and 
software features are selected and defined through sysgen 
configuration statements. These statements form a sysgen 
configuration input file. Driver and system modules provided in 
the OS/32 packa.ge are selected by Sysgen/32 based on the 
requirements indicated in these sysgen statements. 

You can create a new configuration input file or modify an 
existing one through Sysgen/32 commands. Once a configuration 
input file is created, it is processed by the Sysgen/32 program 
to produce melcro, calls. These macros are subsequently expanded, 
assembled and linked to yield the operating system. See the 
System Generation/32 (Sysgen/32) Reference Manual for a 
description of sysgen comma.nds. 

9.2 DATA COMMUNICATIONS CONFIGURATION STATEMENT 

The sysgen IT1\M conf iguration st.atement is used to conf igure data 
communication~~ support in the operating system. Communications 
support consists of system modules, drivers and device control 
blocks (DCBs) and channel control blocks (CCBs), etc. The 
drivers are stored in either the comrnmunications driver library 
or extended communications drive~r library. The system modules 
are stored in the system communications library. 

Every communications device to be configured in the operating 
system must be defined by a device descriptor statement. The 
sysgen DEVICES ... END statements are used to delimit the device 
descriptor statements. Each communications device descriptor 
statement requires three paramet.ers; the device name, the device 
address and t.he device code. rx'he three required parameters must 
be entered in the order described. There are optional parameters 
describing other device details that can be entered in any order. 

48-077 FOO ROO 9-1 



Example: 

In the following example, an asynchronous communications line is 
to be configured in the operating system. The first ~equired 
parameter is the device name. The second paramet$r i~ the 
required device address, in this example, 40. The thirq r~quire~ 
parameter, XD=X0830, is the device code. Note that 
communications device code specifications are pr~ceded by XD 
specifying additional device configuration information. This is 
called the extended device code. 

LINE:,40,l44,XD=X0830,REA=XElC9,WRI=XE809,PAD=2 

9.3 SYSTEM LIBRARIES 

Sysgen for OS/32 configured with the basic data communications 
subsystem is performed in the same manner as any other 
configuration of OS/32. However, the OS/32 Library Loader must 
first be used to merge the OS/32 System Object Module Lib~ary 
with the Data Communications System Object Module Library and the 
OS/32 General-Purpose Driver Library with the Data Communications 
Driver/Terminal Manager Library. Sysgen/32 is used to process 
the resulting combined driver library. The 08/32 Librar~~ Loader 
is then used to generate the final load module as described in 
the System Generation/32 (Sysgen/32) Reference Manual. 

9.3.1 The Driver Library 

The recommended sysgen procedure requires that the driver library 
processed by Sysgen/32, and the system module library processed 
by the OS/32 library loader, each reside on a singl~ disk file, 
magnetic tape or cassette. These libraries must, for an 05/32 
system with basic data communications, include object modules 
from the OS/32 software package and the basic data communications 
software package. The procedure for creating the combined 
libraries involves the use of the OS/32 Library Loader facilities 
for library manipulation. The reader should be familiar with the 
mater ial contained in the OS/32 Library Loader Reference l~anual. 

The only restriction on the order of modQles in the driver 
library is that the DCB for each device code precedes the driver 
for that device. Since all Perkin-Elmer supplied libraries are 
in this order, the Bas ic Data Communications Dr iver/'rerminal 
Manager Library can simply be appended to the existing general 
purpose driver library by a single DUPE operation. 

The combined system library situation is a bit more complex; t.he 
required order is that all EXEC object modules precede the data 
communications module and UBOT be last. Thus, it is necessary to 
create the combined system library on a third file or ~ape by 
duplicating the OS/32 System Module Library to the combined 
system library, duplicating the Data Communications System Module 
Library, and finally, copying UBOT from the OS/32 System Module 

9-2 48-077 FDa ROO 



Library. These procedures are described in detail in the Data 
Communications Packaging Information Document. 

9.3.2 Including User-Written Drivers 

To include a nonstandard device in the operating system, i~ must 
be defined in the sysgen device statements. The library 
containing the user-written driver (USERDLIB.LIB) for the device 
must be specified during the link phase of the Sysgen/32 process. 

Use reserved device codes 240-254 to configure a user-written 
driver in the system. 

Each device configured in the system gets an appropriate DCBxxx 
macro call ,,,,r it.ten to the . MAC output file where xxx is the 
device code (e.g., DCB39, DCB147, DCB24S, etc.). The DCBxxx 
macro create'3 the device DCB and external references to the 
device driver (in DRIVER.LIB or USERDLIB.LIB). The user must 
create the DCBxxx macro definition and put it in the user 
USERDLIB.MLB file. 

9.3.2.1 Creating the DCBxxx Macro 

Creating the DCBxxx macro entails these six intermediate steps: 

1. Use MLU32 to get the DCBFORM macro from the SYSGEN32.MLB file 
to use as the pattern. 

2. Make the appropr iate changes, noted in DCBFORM to create the 
DCB macro,. 

3. Save the file as DCBxxx.MAC. 

4. Use the ~~U32 (Macro Library) Utility to add the DCBxxx macro 
definition to your USERDLIB.MLB file. This library will be 
searched by MACR032 before the SYSGEN32.MLB in the normal 
sysgen process. Use care when creating definitions of macros 
with name~3 identical to macro names in other libraries. 

5. Use Copy/32 or the LIBLDR Ut,ility to add the dr iver code to 
your USERDLIB.LIB file. The! USERDLIB.LIB file will be edited 
by OS/3;~ Link before the standard DRIVER.LIB file. 
Therefore jr modif ied Perkin-E:lmer dr ivers that use standard 
Perkin-Elmer device codes can also be placed in USERDLIB.LIB, 
thereby pl:eempting the standard Perkin-Elmer dr iver. 

6. Perform a sysgen using the standard SYSGEN.CSS. The 
USERDLIB.MLB file will be a.sslgned and the DCBxxx definition 
will be used. 

See the DCBFORM macro in the SYSGEN32.MLB file. 

48-077 FOO ROO 9-3 





MODE COMMAND 

NULL 
NOP 

WAIT 

XFER 

CXFER 

CONTROL 
EXAMINE 

RING ~IAIT 

ANSWEU 

DISCONNECT 

READ 

APPENDIX A 
LINE DRIVER I~OMMAND SUMMARY 

MODIFIER/ 
COMMAND 
BYTE HEX 

XXOO 

XX08 

XXIO 

XXl8 

XXOI 

XX09 

XXII 

XXl9 

VALID COMMAND BITS 

ICCICTI XI XIXXXXIOOOOOIDOOI 

ICCICTI XI OIXXXXIOOOOIIOOOI 

ICCICTI XI XIXXXXIOOOIOIOOOI 

ICCICTI XI XIXXXXIOOOIIIOOOI 

ICCICTI XITOIXXXXIOOOOOIOOII 

ICCICTI XITOIXXXXIOOOOIIOOII 

ICCICTI XITOIXXXXIOOOIOIOOII 

ICCICTI XITOIXXXXIOOOIIIOOII 

READ BUFFE:R XX02 ICCICTIBTITOIXXXXIOOOOOI0101 

READ 1 XXOA ICCICT BTITOIXXXXIOOOOII0101 

READ 2 XX12 ICCICTIBTITOIXXXXI0001010101 

PREPARE 
PREP XX03 ICCICTI XITOIXXXXIOOOOOIOIII 

48-077 FOO ROO 

NUMBER 
DATA DATA FIELD 
FIELDS SPECIFIES 

1 

I 

I 

2 

1 

1.2 

1 

2 

I 

Any valid 
address 

Halfword 

Halfword 

2 halfwords 
valid address 

Byte 

None 

None 

None 

Buffer 

Byte 

Byte 

Byte 

A-l 



MODIFIER/ NUMBER 
COMMAND DATA DA'I'A FIELD 

MODE COMMAND BYTE HEX VALID COMMAND BITS FIELDS SPECIFIES 

WRITE --------------------------
WRITE BUFFER XX04 ICCICTIBTITOIXXXXIOOOOOI1OOI 1.2 Buffer 

--------------------------
--------------------------

WRITEl XXOC ICCICTIBTITOIXXXXIOOOOlllOOI 1 Byt.e 
--------------------------
--------------------------

WRITE2 XX14 ICCICTIBTITOIXXXXIOOO1OI1OOI 2 Byt.e 
--------------------------

HOLD --------------------------
BREAK XX05 ICCICTI XITOIXXXXIOOOOOllOll 1 Halfword 

--------------------------
--------------------------

TOUT XX06 ICCI XI XI XIXXXXIOOOOOlllOI 1 Fullword 
--------------------------
~-------------------------

CMD2 XXOE ICCI XI XI XIXXXXIOOOOllllOI 1 Byt.e 
--------------------------
--------------------------

RCMD XXl6 ICCI XI XI XIXXXXIOOOlOlllOI 1 Byt.e 
--------------------------
--------------------------

WCMD XX1E ICCI XI XI XIXXXXIOOOlllllOI 1 Byt.e 
----------------------------------------------------

RDIS XX26 ICCI XI XI XlXXXXIOO1OOI11Ol 1 Byt.e 
--------------------------
--------------------------

WDIS XX2E ICCI XI XI XIXXXXIOO1OlI11OI 1 Byte 
----------------------------------------------------

DISK XX36 ICCI Xl XI XIXXXXIOOllOlllOI 1 Byte 
~-------------------------

--------------------------
SYCT XX3E ICCI XI XI XIXXXXIOOllllllOI 1 Byte 

--------------------------
--------------------------

TRNSL XX46 ICCI XI XI XIXXXXI01OOOIllOI 1 Byte 
--------------------------
--------------------------

SPEC CHAR XX4E ICCI XI XI XIXXXXI01OO1111OI 1 Fullword 
--------------------------
--------------------------

TRECS XX56 ICCICTI XI XIXXXXI01OlOI11OI 1 Halfword 
--------------------------

Default values are assembled in the DCB. 

A-2 48-077 FOO ROO 



APP!=NDIX B 
INTERFACE S IC~NAL DEF INITIONS 

The following signals, defined by EIA Standard RS-232C, are used 
by the 103 and 201 series modemfS and are supported by the basic 
data communications subsystem. 

SIGNAL (RS-232C 
DESIGNATION) 

Transmit data (BA) 

Received data (BB) 

Request to send (CA) 

Clear to send (CB) 

Data set ready (CC) 

Carrier detect (CF) 

Data terminal ready (CD) 

Ring indicator (CE) 

48-077 FOO ROO 

PIN 

2 

3 

4 

5 

6 

8 

20 

22 

COMMENTS 

Serial data sent from adapter 
to modem. 

Serial data received 
adapter from modem. 

by 

Set by adapter when user 
program wishes to transmit. 

Set by modem when transmission 
can commence. 

Set by modem when it is 
powered on and ready to 
transfer data in response to 
data terminal ready (CD). 

Set by modem 
present. 

when signal 

Set by adapter to enable modem 
to answer an incoming call on 
a . switched line. Reset by 
adapter to disconnect call. 

Set by modem when telephone 
rings. 

B-1 





A. 

Access, device-dependent 

access, line driver 
Access, device-independent 

LCB 
nonbuffered access 
operation 

Access, line driver 
sequence of operations 

Access, terminal manager 
buffered access 

Adapters 
asynchronous 
bisynchronous adapters 
EDLC 
parallel 
serial 
ZBID adapt1ers 

Add to task queue 
Allocate 

function 
routine 

ALLOCATE command 
American standard code for 

information interchange. 
See ASC I I. 

ANSWER command 
ASCI I 
Assign 

function 
routine 

ASS I GN command 
Asynchronous i:ldapter s 

MPC 
MUX, 2-line 
MUX, 8-line 
PASLA 

Asynchronous mode 

JB 

Baudot code 
Bisynchronous adapter 

QSA 
SELCH 
SSA 
synchronous 201 data set 

Buffer control 
Buffer types SVC15 

chained bu:ffers 
chained/queued buffer 
link word flag byte 

direct buffers 
indirect buffers 
queued buffers 

Buffered terminal manager 
input 
output 

48-077 FOO ROO 

INDEX 

2-10 
5-1 
5-1 
2-5 
4-1 
4-2 
4-1 
4"":'2 
5-1 
5-2 
4-1 
4-2 

2-2 
2-3 

2-2 
2-2 
2-4 
6-71 

3-6 
6-72 
3-11 

5-26 
1-8 

3-6 
6-73 
3-13 
2-2 
2-3 
2-3 
2-3 
2-3 
1-6 

1-8 

2-4 
2-4 
2-4 
2-3 
7-13 
5-14 
5-16 

5-17 
5-15 
5-15 
5-19 

7-5 
7-6 

c 

CA/CD 
Cancellation I/O 
CCB 

device-dependent portion 
device-independent 
portion 

Change access privileges 
Change access privileges 
function 

Channel control block. See 
CCB. 

Checkpoint 
function 
routine 

Close 
function 
routine 

CLOSE command 
CMEXIT subroutine 
CMTERM subroutine 
Collision avoidance/collision 
detection 

Command 
fetch 
modifier routines 
number field SVC15 
table 

Command functions 
allocate 
assign 
change access privileges 
checkpoint 
close 
delete 
fetch attributes 
rename 
reprotect 
VFC 

Communications methods 
CA/CD 
polling 
selection 

Conditional transfer 
command. See CXFER command 

Control block formats 
DCB data communications 
related portion 

device-dependent portion 
device-independent 
portion 

Control-type commands 
ANSWER 
DISCONNECT 
EXAMINE 
READ BUFFER 
read-type commands 
READ 1 

1-3 
6-71 

6-27 

6-26 
6-74 

3-7 

3-9 
6-74 

3-8 
6-73 
3-15 
6-61 
6-60 

8-7 
8-8 
5-12 
8-6 

3-6 
3-6 
3-7 
3-9 
3-8 
3-8 
3-9 
3-10 
3-10 
3-9 
1-2 
1-3 
1-3 
1-3 

6-2 

6-7 
6-16 

6-3 
5-25 
5-26 
5-26 
5-25 
5-26 
5-26 
5-26 

IND-l 



Control-type commands 
(Continued) 

READ 2 
RING WAIT 

CSMA/DC 
CXFER command 

o 

DASY driver 
DAT for asynchronous 
multidrop communications 

Data block descriptor, LCB 
Data codes 

ASCI I 
Baudot 
EBCDIC 

Data communications 
analog 
distributed processing 

networks 
networks 
subsystem 

Data communications 
subroutines 

I TSRABS 
Data fields SVC15 
Data set link control 
transmission modes. 
See SDLC transmission modes. 

Data transmission modes. 
See modes, data transmission 

DCB data communications 
DCB data communications 
related portion 

DCB line driver use 
DCB pointers 

DCB.AOC 
DCB.DOCR 
DCB.DOCW 
DCB.INIT 
DCB. lTV 
DCB.MOCR 
DCB.MOCW 
DCB.OTV 
DCB.RDN 
DCB.TERM 
DCB.WON 

DCB/LCB references 
DCSY driver 
OCT for asynchronous 
multidrop communications 

OCT for ZDLC communications 
DCW 
DCW pointer SVC15 
DDT for 3270 Emulator 
DDT for ZDLC communications 
Delete 

function 
routine 

DELETE command 
DETH driver 
Device control block. See 

DCB data communications. 
Device definition table. 

See DDT. 

IND-2 

5-27 
5-25 
2-2 
5-24 

2-5 

6-18 
6-25 

1-8 
1-8 
1-8 
1-1 
1-2 

1-3 
1-2 
2-1 

6-60 
5-13 

6-2 

6-7 
8-4 
6-52 
6-54 
6-53 
6-53 
6-54 
6-54 
6-53 
6-53 
6-54 
6-54 
6-53 
6-54 
7-14 
2-5 

6-36 
6-30 
5-21 
5-12 
6-44 
6-34 

3-8 
6-72 
3-16 
2-5 

6-2 

Device-dependent portion 
CCB 
DCB 

Device-dependenL portion LCB 
Device-independent portion 

CCB 
DCB 
LCB 

Device mnemonic field 
DISCONNECT command 
Distributed processing 

networks 
Driver command work. See 

DCW. 
Driver initiation routine 
Driver library 

DCBxxx macro creation 
user-written drivers 

Driver-termination phase 
Drop access table. See OAT. 
Drop control table. See OCT. 
Drop definition table. See 

DDT. 
DZBD driver 

EBCDIC 
EDLC 

E 

Error handling 
CRC 
LRC 
VRC 

Error status field 
ESR 
Ethernet data link 
controller. See EDLC. 

Ethernet network 
Event service routine. See 

ESR. 
EXAMINE command 
Extended binary coded 
decimal interchange code. 
See EBCDIC. 

Extension field 
EXTRN/ENTRY references 

~EBC.ASC 
CLOSMBSC 
CPT.RJE 
I I I 
INITMBSC/FUNCMBSC 
IODONE/IODONE2 
ISPTAB 
ISSEXEC 
IT.HALT 
JOURNAL 
TMREMW 
TOCHOFF 
TOCHON 
TWT.RJE 
WAIT 

6-27 
6-16 
6-22 

6-26 
6-3 
6-16 
3-5 
5-26 

1-3 

8-5 
9-2 
9-3 
9-3 
8-13 

6-34 
2-5 

1-8 

2-9 
2-9 
2-9 
3-3 
6-54 

2-2 

5-25 

3-5 
7-14 
7-15 
7-15 
7-15 
7-15 
7-15 
7-15 
7-15 
7-15 
7-15 
7-15 
7-15 
7-15 
7-15 
7-15 
7-15 
7-15 

48-077 FOO ROO 



F,G 

Fetch attributes 
funct.ion 

File manager handler. See 
FMH. 

File size field 
Filename field 
FMH 
Format control 
Full-duplex mode 
Function code field 
Functions, terminal manager 

BLOCK A 
BLOCK AA 
BLOCK AS 
BLOCK AC 
BLOCK B 
BLOCK C 
BLOCK D 
BLOCK E 
BLOCK F 
BLOCK G 
BLOCK H 
BLOCK I 
BLOCK J 
BLOCK K 
BLOCK L 
BLOCK M 
BLOCK N 
BLOCK a 
BLOCK P 
BLOCK Q 
BLOCK R 
BLOCK S 
BLOCK T 
BLOCK U 
BLOCK V 
BLOCK W 
SLOCK X 
BLOCK Y 
BLOCK Z 
buffer cont.rol 
format cont.rol 
special functions 
time-out control 

H 

Half-duplex terminal 
Hard-wired modteme 
Hold space (line break) 

command 
Hold-type conunands 

hold space (line break) 

I ,Jr,K 

ICMDINT subroutine 
Input/output block. See lOB. 
Input/output handler. See 

IOH. 

48-077 FOO ROO 

6-74 
3-9 

3-6 
3-5 
6-50 
7-12 
1-5 
3-3 

7-7 
7-11 
7-12 
7-12 
7-7 
7-7 
7-7 
7-7 
7-8 
7-8 
7-8 
7-8 
7-8 
7-9 
7-9 
7-9 
7-9 
7-9 
7-10 
7-10 
7-10 
7-10 
7-10 
7-10 
7-11 
7-11 
7-11 
7-11 
7-11 
7-13 
7-12 
7-12 
7-12 

1-5 
1-9 

5-28 

5-28 

6-67 

Interrupt service routine. 
See ISR. 

lOB for asynchronous 
multidrop communications 

IOH 
ISR 
ISSEXEC subroutine 
IT .. STOP subroutine 
ITGETBUF subroutine 
ITG~TDAT subroutine 
ITGETMOD subroutine 
ITGETMOD2 subroutine 
ITIMLINK subrout.ine 
ITIMUNLK subroutine 
ITISPOTC subroutine 
ITISSTOP subroutine 
ITISTOTC subroutine 
ITSASS subroutine 
ITSETREA subroutine 
ITXFRISR subroutine 

LAN 
LCB 

L 

data block descriptor 
portion 

device-dependent portion 
device-independent 

portion 
Leased lines 
Length of last read field 

SVC15 
Length of last write field 

SVC15 
Line control block. See LCB. 

Line driver 
data communications 
example 

Line driver command types 
SVC15 

control-type 
CXFER 
hold-type 
mode-type 
Nap 
nUll-type 
prepare-type 
test-type 
WAIT command 
write-type 
XFER 

Line drivers 
buffer management 
chained buffers 
command fetch 
command table 
command/modifier routines 
DASY 
DCB line driver use 
DCSY 
DETH 
driver-termination phase 

6-40 
6-47 
8-9 
6-62 
6-64 
6-70 
6-69 
6-68 
6-68 
6-66 
6-66 
6-67 
6-64 
6-67 
6-60 
6-64 
6-64 

2-2 
4-2 
6-16 

6-25 
6-22 

6-16 
1-10 

5-12 

5-12 

6-1 
8-6 

5-23 
5-25 
5-24 
5-28 
5-29 
5-24 
5-24 
5-27 
5-30 
5-24 
5-27 
5-24 

8-14 
8-18 
8-7 
8-6 
8-8 
2-5 
8-4 
2-5 
2-5 
8-13 

IND-3 



Line drivers (Continued) 
DZBD 
ISR 
line driver device 
interface 

modif ter fetch 
modifying 
RAW turnaround 
special character 
routines 

structure 
use 

Lines 
multidrop 
point-to-point 

Local area network. See LAN. 
Logical record length field 
Logical unit. See lu. 
lu field 

M 

MASY nonbuffered terminal 
manager 

MBSC buffered terminal 
manager 

MMSM nonbuffered terminal 
manager 

MODE CMD2 (adapter) command 
MODE DISC command 
MODE RCMD and MODE WCMD 

commands 
MODE ROIS and MODE WDIS 

commands 
MODE SPCHAR command 
MODE SYNCNT command 
MODE TOUT (time-out 

interval) command 
MODE TRANSL command 
Mode-type commands 

MODE CMD2 (adapter) 
MODE DISC 
MODE RCMD and MODE WCMD 
MODE ROIS and MODE WDIS 
MODE SPCHAR 
MODE SYNCNT 
MODE TOUT (time-out 

interval) 
MODE TRANSL 

Modems 
hard-wired modems 
voice grade 
wideband 

Modes, data transmission 
asynchronous mode 
synchronous mode 
ZBID 

Modes, terminal 
communications 

full-duplex mode 
half-duplex terminal 
simplex terminal uses 

Modifier fetch 
MPC 
Multidrop line 

IND-4 

2-5 
8-9 

8-20 
8-8 
8-1 
8-12 

8-11 
8-5 
8-13 

1-2 
1-2 

3-5 

3-5 

2-8 

2-8 

2-8 
5-29 
5-30 

5-30 

5-30 
5-30 
5-30 

5-29 
5-30 

5-29 
5-30 
5-30 
5-30 
5-30 
5-30 

5-29 
5-30 

1-9 
1-9 
1-9 

1-6 
1-7 
2-4 

1-4 
1-5 
1-5 
1-5 
8-8 
2-3 
1-2 

Multiperipheral controller. 
See MPC. 

Multiplexors 
See MUXs. 

MUXs 

Networks 

N 

data communications 
Ethernet 
LAN 
PENnet 

No operation command. See 
NOP command. 

Nonbuffered terminal manager 
NOP command 
Null-type commands 

o 

Operation, sequence of 
Operator commande 

ALLOCATE 
ASSIGN 
CLOSE 
DELETE 
XALLOCATE 
XDELETE 

P 

Parameter block 

command functions 
device mnemonic field 
error status field 
extension field 
file size field 
filename field 
function code field 
logical record length 
field 

lu field 
read and write key fields 

Parameter block SVCl5. See 
SVCl5 parameter bloc 

Parity 
PENnet network 
Point-to-point line 
Polling process 
PPSM nonbuffered terminal 

manager 
PREPARE command 
Prepare-type commands 

PREPARE 
PREPARE 3 

PREPARE3 command 
Processing, SVC1 
Processing, SVC7 

allocate 
assign 
change access privileges 

1-11 

1-2 
2-2 
2-2 
2-2 

7-2 
5-24 
5-24 

4-2 
3-10 
3-11 
3-13 
3-15 
3-16 
3-17 
3-19 

3-1 
4-4 
3-6 
3-5 
3-3 
3-5 
3-6 
3-5 
3-3 

3-5 
3-5 
3-5 

1-8 
2-2 
1-2 
1-3 

2-8 
5-27 
5-27 
5-27 
5-27 
5-27 
6-70 

6-72 
6-73 
6-74 

48 --077 FOO ROO 



Processing, SVC7 (Continued) 
checkpoint 
close 
delete 
fetch attl~ ibutes 
rename 
reprotect 

Protocols 
commun icat~ ions 
data link control 
error handling 

Q 

QSA 
Quad synchronous adapter. 

See QSA. 

R 

RAW 

turnaround 
Read after WI' i te. See RAW. 
Read and wr it.e key fields 
READ BUFFER command 
Read-type conmands 
READl command 
READ2 command 
Register conventions 
Rename 

function 
routine 

Reprotect 
function 
routine 

RING WAIT command 

S 

SOLC transmission modes 
SOT for 3270 emulators 
SELCH 
Selection mechanism 
Selector channel. See SELCH. 
Simplex terminal uses 
Single-synchronous adapter. 

See SSA. 
Special character routines 
Speeds, terminal 
SSA 
Station description table. 

See SOT. 
Structure 

buffered terminal 
manager (input) 

buffered terminal 
manager (output) 

data communications 
line driver initiation 
routine 

line driver translation 
tables 

48-077 FOO ROO 

6-74 
6-73 
6-72 
6-74 
6-74 
6-74 
2-8 
2-9 
2-9 
2-9 

2-4 

5-18 
8-12 
8-12 

3-5 
5-26 
5-26 
5-26 
5-27 
7-13 

3-10 
6-74 

3-10 
6-74 
5-25 

2-4 
6-43 
2-4 
1-3 

1-5 

8-11 
1-6 
2-4 

7-5 

7-6 
6-1 

8-5 

8-6 

Subroutine, data 
communications 

ITISPOTC 
Subroutines 

CMEXIT 
CMTERM 
data communications 
ICMDINT 
ISSEXEC 
IT .. STOP 
ITGETBUF 
ITGETOAT 
ITGETMOO 
ITGETMOD2 
ITIMLINI< 
ITIMUNLI< 
ITISSTOP 
ITISTOTC 
I TSETREA 
I TSRABS 
ITXFRISR 
SVC15 

Subsystem, data 
communications 

Supervisor call 1. See SVC1. 
Supervisor call 15. See 

SVC15. 
Supervisor call 7. See SVC7. 
SVCl 

data transfer function 
code 

format and coding 
parameter block 

SVCl extended options field 
connect 
disconnect 
echoplex 
format/image bit 

SVCl parameter block 
buffer end address 
buffer start address 
device-dependent status 
device-independent status 
extended options 
extended options field 
function code 
length of data transfer 
lu 
random address 

SVC15 
SVC15 function code field 
SVC15 lu field 
SVC15 parameter block 

command number field 
data fields 
DCW pointe 
length of last read field 
length of last write 
field 

SVC15 function code field 
SVC15 lu field 
SVC15 status information 
field 

SVC15 status information 
field 

SVC15 structure and flow 

6-67 

6-61 
6-60 
6-59 
6-67 
6-62 
6-64 
6-70 
6-69 
6-68 
6-68 
6-66 
6-66 
6-64 
6-67 
6-64 
6-60 
6-64 
6-59 

2-1 

4-7 
4-5 
4-4 
4-9 
4-10 
4-10 
4-10 
4-10 
4-4 
4-6 
4-6 
4-6 
4-6 
4-6 
4-9 
4-5 
4-6 
4-6 
4-6 
5-3 
5-6 
5-7 
5-5 
5-12 
5-13 
5-12 
5-12 

5-12 
5-6 
5-7 

5-8 

5-8 
6-56 

IND-5 



SVC15 trap handling 
buffer transfer trap 
command execution trap 
halt I/O termination trap 
termination trap 

SVC7 
parameter block 

switched lines 
Synchronous mode 
Sysgen, data communications 

driver library 
system libraries 

Sysgen conventions 
DCB/LCB references 
EXTRN/ENTRY references 
register 

System 
data communications 
terminals 

initialization 
libraries 

System, data communications 
System generation. See 

Sysgen. 

T,U 

Terminal communications 
modes. See modes, terminal 
communications. 
Terminal manager modification 

nonbuffered terminal 
manager 

structure 
Terminal managers 

MASY 
MaSC 
MMSM 
PPSM 

Terminal speeds. See 
speeds, terminal 

Terminals 
Test-type commands 
Time-out control 

IND-b 

5-4 
5-4 
5-4 
5-4 

3-1 
1-10 
1-7 
9-1 
9-2 
9-2 

7-14 
7-14 
7-13 

1-3 
6-71 
9-2 
1-3 

7-1 

7-2 
7-2 
2-6 
2-8 
2-8 
2-8 
2-8 

1-4 
5-30 
7-12 

Timer management 
Transfer in command. See 

XFER command. 
Translation tables 
Transmission llnes 

leased 
switched 

Trap handling SVC15. See 
SVC15 trap handling. 

v 

Vertical forms control. See 
VFC function. 

VFC function 
Voice grade 

w 

WAIT command 
Wideband modems 
WRITE BUFFER command 
Write-type commands 

WRITE BUFFER 
WRITEl 
WRITE2 command 

WRITEl command 
WRITE2 command 

X,Y 

XALLOCATE command 
XDELETE command 
XFER command 

Z 

ZBID adapters 
Zero-bit insertion/deletion 
adapters. See ZBID. 

6-71 

8-6 

1-10 
1-10 

3-9 
1-9 

5-24 
1-9 
5-28 
5-27 
5-28 
5-28 
5-28 
5-28 
5-28 

3-17 
3-19 
5-24 

2-4 

48-077 FDa ROO 



PERKIN-ELNIER 

PUBUCATION CO~~MENT FORM 

We try to make our publications easy to understand and free of errors. Our 
users are an Integral source of InformaUon for Improving future revisions. 
Please use this pc:)stage paid form to send us comments. corrections. 
suggestions. etc. 

1. Publication number _. __ .. _ .. ________________ . __ -, ______________________ _ 

2. Title of publlc:atlon ______________________________ . _____________ _ 

3. Describe. prc)Vldlng page numbers. any technical errors you 
found. Attach additional sheet if neccessary. 

4. Was the publication easy to understnnd? If no. why not? 

5. Were Illustrations adequate? 

6. What addltionls or' deletions would yC)U suggest? __________________ _ 

7. Other commElnts: _______________________________________ _ 

From _______________________________ Date _____________________ . 

Position ITltle ____________ . __________ _ 

Company __________ .. ________________ _ 

Address 



'APLE STAPLE 

JL[) . FOLD 

---------------------------- -----1 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J. 

,TTN: 

POSTAGE WILL BE PAID BY ADDRESSEE 

PERKIN-ELMER 
Data Systems Group 
106 Apple Street 
Tinton Falls, NJ 07724 

'E:CHNICAL SYSTEMS PUBLICATIONS DEPT. 

JLD 

NOPOSTA;JG NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

STAPLE 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

643 


