
PERtC:IN-ELMER

OS/32

APPLICATION LEVEL PROGRAMMER

Reference Manual

48-039 F 00 R 02

The information in this document is subject to change without notice and should not be
construed as a commitment by The Perkin-Elmer Corporation. The Perkin-Elmer Corpo
ration assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and 1t can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Elmer.

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757

© 1981, 1983, 1984 by The Perkin-Elmer Corporation

Printed in the United States of America

TABLE OF CONTENTS

PREFACE

CHAPTERS

l PROGRAMMING IN AN OS/32 ENVIRONMENT

1.1

1.2

1.3

1.4

OS/32 OPERATIONAL OVERVIEW

OS/32 REAL-TIME ENVIRONMENT

OS/32 MULTI-TERMINAL MONITOR (MTM)
'rIME:-SHARING ENVIRONMENT

'rHE OS/32 APPLICATION PROGRAMMER

2 TASK STRUCTURE AND EXECUTION CONTROL

2.1

2.2

2.3

2.4

2.5
2.5.1

2.6

2.7

INTRODUCTION

IMAGE FILE FORMAT

LOADING A USER TASI<: (U-TASK) INTO MEMORY

'rASK STATES AND PRIORITIES

MONITOR TASKS AND SUBTASKS
'rhe OS/32 Multi-Terminal Monitor (MTM)

RESTRICTIONS ON IN'l~ERTASK COMMUNICATION

ACCESSING OS/32 SYSTEM SERVICES

3 INTERRUPT SERVICING IN A REAL-TIME ENVIRONMENT

3.1

3.2

3.3

INTRODUCTION

'.rASK STATUS WORD ('l~SW)

'rRAPS HANDLED BY OS/32

48-039 FOO R0:2

v

1-1

1-3

1-4

1-5

2-1

2-2

2-5

2-9

2-11
2-12

2-12

2-13

3-1

3-2

3 5

i

CHAPTERS (Continued)

3.4

3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6

3.5.7

3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5

3.6.6
3.6.7

USER-DEDICATED LOCATION (UDL) AND TASK STATUS
WORD (TSW) SWAP

TRAPS HANDLED BY USER-WRITTEN TASKS
Arithmetic Fault Trap
Data Format/Alignment Faults
Power Restoration
Illegal Instruction Faults
Memory Access Faults
Task Queue Trap-Causing Events and Task
Queue Service
User-Defined Trap-Causing Events

WRITING TASKS THAT HANDLE TASK TRAPS
Handling Task Queue Traps
Tips for Writing Task Trap-Handling Routines
Handling Traps from Trap-Generating Devices
Sample Task Trap-Handling Program
Using the OS/32 System Macro Library to
Handle Traps
Writing FORTRAN Trap-Handling Programs
Writing Pascal Trap-Handling Programs

4 OS/32 DISK FILE MANAGEMENT SERVICES

4.1

4.2

4.3
4.3.1
4.3.2

4.4

4.5
4.5.1
4.5.2
4.5.3
4.5.4

4.6
4.6.1
4.6.2

4.7

4.8
4.8.l
4.8.2
4.8.3

INTRODUCTION TO THE OS/32 FILE MANAGER

SYSTEM RESOURCE MANAGEMENT

FILE ORGANIZATION
Linked-List Indexed Organization
Contiguous Organization

DISK ORGANIZATION

SUPPORTED DISK FILE TYPES
Contiguous Files
Indexed and Nonbuffered Indexed Files
Extendable Contiguous Files
Long Record Files

MIRROR DISK ENVIRONMENT
Disk Failure
Normal Input/Output (I/O) Performance

DISK SPACE MANAGEMENT

VOLUME DESCRIPTOR
File Directories
Bit Map
Permanent and Temporary File Allocation

3-9

3-16
3-17
3-18
3-19
3-19
3-19

3-20
3-26

3-26
3-30
3-31
3-32
3-33

3-35
3-35
3-36

4-1

4-2

4-3
4-5
4-6

4-6

4-7
4-7
4-8
4-8
4-9

4-9
4-9
4-10

4-10

4-10
4-12
4-16
4-16

ii 48-039 FOO R02

CHAPTERS (Continued)

4.9

4 .. 10
4 .. 10 .. 1
4.10.2
4.10.2.1
4.10 .. 2.2
4.10.2.3
4 .. 10.2.4

4.11

4.12
4.12.1
4.12.2
4.12.3
4.12.4
4 .. 12.5
4 .. 12.6

ASSIGNING FILES TO A TASK

ACCESS METHODS
Buffered Input/Output (I/O) (Indexed Files)
Nonbuffered Input/Output (I/O)
Accessing Contiguous Files
Accessing Nonbuffered Indexed Files
Accessing Extendable Contiguous Files
Accessing Long Record Files

FILE SECURITY

CHOOSING THE RIGHT FILE TYPE
Using Contiguous Files
Using Indexed Files
Using Nonbuffered Indexed Files
Using Extendable Contiguous Files
Using Long Record Files
Disk Fragmentation

5 WRITING PROGRAMS THAT ACCES:S OS/32 SYSTEM SERVICES

5.1

5 .. 2

5.2.1
5.2.2

5 .. 3

5 .. 4

5 .. 5

FIGURES

1-1

2-l

2-2
2-3
2-4
2-5
2-6

INTRODUCTION

BUILDING A SUPERVI:SOR CALL (SVC) PARAMETER
BLOCK
Accessing Input/Output (I/O) System Services
Accessing File Management Services

USING THE OS/32 SY:STEM MACRO LIBRARY TO
ACCESS SYSTEM SERVICES

WRITING A FORTRAN PROGRAM THAT ACCESSES
SYSTEM SERVICES

WRl'TING A PASCAL PROGRAM THAT ACCESSES
SYSTEM SERVICES

Summary of OS/32 Features

Conversion of Object Modules into Task Image
By Linkage Editor
Tas:k: Image File Format for a Segmented Task
Task Address Space on a MAC Machine
Tas~: Address Space on a MAT Machine
Segmented Task Loaded into Memory
Tas~: States

48-039 FOO R02

4·-16

4-17
4-19
4-20
4-20
4-21
4-21
4-22

4-22

4-25
4-26
4-26
4-27
4-27
4-28
4-28

5-1

5-3
5-3
5-7

5-9

5-10

5-11

1-2

2-1
2-3
2-6
2-6
2-8
2-11

iii

FIGURES (Continued)

3-1
3-2
3-3
3-4
3-5
3-6

3-7

4-1
4-2
4-3
4-4
4-5
4-6
4-7

5-1
5-2
5-3
5-4

TABLES

2-1

3-1
3-2
3-3
3-4

3-5

3-6
3-7
3-8

3-9

4-1
4-2
4-3

5-1

INDEX

iv

Task Status Word
User-Dedicated Location
TSW Swap
Perkin-Elmer Standard Circular List
Fullword Task Queue Entry
Circular List with Task Queue Entries for
Subtask State Change
Task Queue Entry for APO Signal

Formatted Disk Surf ace
Linked-List Indexed File Organization
Volume Descriptor
Primary Directory Block
Primary Directory Entry
Secondary File Directory (SYSTEM.DIR)
Task Interfaces to Access Methods

Task Interface to OS/32 Executor Routines
SVCl Parameter Block Defined by $SVC1
SVC? Parameter Block Defined by $SVC7
SVC2 Code 16 Parameter Block

TASK WAIT STATES

TSW BIT SETTINGS
ARITHMETIC FAULT HANDLING
UDL FIELDS USED TO HANDLE TASK TRAPS
ARITHMETIC FAULT TRAP-CAUSING EVENTS (REASON CODE
IN UDL (83('53'))
DATA FORMAT/ALIGNMENT FAULT TRAP-CAUSING EVENTS
(REASON CODE IN UDL 81('51'))
MEMORY ACCESS FAULT TRAP-CAUSING EVENTS
TASK QUEUE TRAP-CAUSING EVENTS
SUBTASK REASON CODES AND CORRESPONDING STATE
CHANGES
SUMMARY OF TASK STRUCTURES USED FOR HANDLING
TRAPS

ACCESS PRIVILEGE COMPATIBILITY
READ/WRITE KEYS
FILE TYPE SUMMARY

SVCl FUNCTION CODES

3-2
3-10
3-12
3-21
3-21

3-24
3-27

4-4
4-5
4-11
4-12
4-13
4-15
4-17

5-2
5-3
5-7
5-8

2-10

3-3
3-7
3-13

3-17

3-18
3-20
3-22

3-24

3-28

4-23
4-24
4-25

5-4

IND-1

48-039 FOO R02

PR.fi~FACE

This manual describes the facilities available to a programmer
implementing an application in an OS/32 real-time or OS/32
multi-terminal monitor (MTM) environment. Chapter 1 introduces
the fundamental environmental concepts of the system. Chapters
2, 3, 4 and 5 give specific details of the data structures and
programming methods used to access OS/32 system services.
Included in these chapters are descriptions of task structure,
trap handling, file management services and the OS/32 supervisor
calls (SVCs). To aid programmers who prefer to work with
high-level languages, programming examples are given in FORTRAN
VII and Pascal, as well as assembly language. Full details on
the SVCs used in these examples can be found in the OS/32
Supervisor Call (SVC) Reference Manual.

System programmexs wishing to implement privileged software for
writing system level control programs are referred to the OS/32
System Level Programmer Reference Manual.

Revision 02 of this manual introduces background material needed
to use the Mirror Disk facility. A list of default trap handling
messages have been added to Chapter 3. Chapter 4 includes
introductory information of the mirror disk feature. All task
structures, control information and system data structures have
been updated to reflect these revisions. Features that are
applicable only to the Model 3200MPS System are identified as
such. This revision is intended for use with the OS/32 R07.2
release or higher.

For information on the contents of all Perkin-Elmer 32-bit
manuals, see the 32-Bit Systems User Documentation Summary.

48-039 FOO R02 v

CHAPTER 1
PROGRAMMING IN AN OS/32 ENVIRONMENT

1.1 OS/32 OPERATIONAL OVERVIEW

The Perkin-Elmer OS/32 operating system (OS) is designed to
facilitate programming in a real-time environment. Whether a
task is to collect data from a transducer, maintain inventory or
process seismic data, OS/32 provides software service routines
that can save programming time and effort. These services
include progrram execution scheduling, memory management, file
management, fault handling, device-dependent and
device-independent input/output (I/O) services, and intertask
communication and control.

How OS/32 actually implements these services depends on the
environment within which a program is executed. OS/32 provides
three types of operating environments for application programs:

• Real-time

• Time-shar i.ng

• Transaction processing

All three environments can exist simultaneously on the same
Perkin-Elmer 32-bit processor.

The OS/32 real-time operating environment is an event-driven,
priority-based, multitasking environment in which the other
operating environments exist as monitors. Monitors are
specialized real-time systems that manipulate the real-time
scheduling components of OS/32 to create an environment that uses
higher level scheduling algorithms. OS/32 is augmented for
time-sharing by the OS/32 Multi-Terminal Monitor (MTM).
Transaction processing is provided by RELIANCE. Features of the
OS/32 operati.ng environments are summarized in Figure 1-1.

This manual deals exclusively with the real-time and time-sharing
environments. For more information on transaction processing,
see the RELIP~CE Overview Manual.

48-039 FOO R02 1-1

6025-2

• REAL-TIME
• TIME-SHARING (MTM)
• TRANSACTION PROCESSING (RELIANCE)

• OS/32 TERMINAL COMMAND LANGUAGE
• OS/32 SUPERVISOR CALLS (SVCs)
• OS/32 SYSTEM MACRO LIBRARY
f FORTRAN VII RUN-TIME LIBRARY (RTL)
• PASCAL PREFIX

• CAPACITY
- UP TO 65.536 SHARABLE USER ACCOUNTS
- UP TO 64 ONLINE USERS
- ANY MIX OF INTERACTIVE OR BATCH

PROGRAMS
- DIAL-IN SUPPORT

• FACILITIES
- MTM TERMINAL COMMAND LANGUAGE
- PROGRAM DEVELOPMENT COMMANDS
- PRIVATE, GROUP, AND SYSTEM FILES
- DOCUMENT PREPARATION AIDS
- SYSTEM AND USER ACCOUNTING

e VIRTUAL TASK MANAGER (VTM)
- PROVIDES VIRTUAL MEMORY ON

MEMORY ADDRESS TRANSLATOR
(MAT) PROCESSORS

- SUPPORTS MULTIPLE TASKS UP TO 16MB
- DESIGNED FOR LARGE TASKS
- NO IMPACT ON OTHER TASKS IN SYSTEM

• ANY MIX OF LANGUAGES
- FORTRAN VII
- COBOL
- COMMON ASSEMBLY LANGUAGE (CAL/32)
- PASCAL
- BASIC
- CORAL 66
- RPG
- PROGRAM PREPARATION AIDS (EDIT, SCREEN

EDITOR, COPY)
- PROGRAM DEVELOPMENT AIDS (LINK, OS/32

Al DS, DEBUG/32)

e CAPACITY
- 255 TASKS (252 USER-WRITTEN TASKS)
- 255 PRIORITY LEVELS

• INTERTASK COMMUNICATION AND CONTROL
FACILITIES THAT ALLOW A TASK TO
- SEND MESSAGES TO OTHER TASKS
- LOAD TASKS WITH/WITHOUT INTERTASK

CONTROL FACILITIES
- SUSPEND EXECUTION OF A TASK
- RELEASE A TASK FROM SUSPENSION
- CHANGE PRIORITY OF ANOTHER TASK
- START EXECUTION OF A TASK IMMEDIATELY

QR AFTER A SPECIFIED TIME PERIOD
- ROLL A TASK TO DISK AFTER EXECUTION

•MULTIPROCESSOR CONTROL FACILITIES THAT
ALLOW AT ASK TO
- CONTROL AUXILIARY PROCESSORS
- DIRECT TASKS TO AUXILIARY PROCESSORS
- PERFORM TRANSPARENT LOAD-LEVELLING

• PROTECTION FACILITIES
- INTERNAL FAULT MANAGEMENT
- INTERTASK MEMORY PROTECTION
- PASSWORK-BASED SECURITY

• INPUT AND OUTPUT SPOOLING

e OPERATES CONCURRENTLY WITH TIME-SHARING
AND/OR REAL-TIME APPLICATIONS

e DATA MANAGEMENT
e SUPPORTS COBOL OR FORTRAN PROGRAMMING

Figure 1-1 Summary of OS/32 Features

1-2 48-039 FOO R02

1. 2 OS/32 REl~-TIME ENVIRONMEN1'

OS/32 real-time operations enhance the hardware facilities
provided by a Perkin-Elmer computer. As a multitasking system,
OS/32 can support up to 252 user-written programs executing
concurrently. One of these programs can run as a background
program while the others are exe~cuting in the foreground.

OS/32 uses a priority-driven scheduling algorithm with up to 255
priority lev1els to dee ide when and how long each program should
execute. Priorities are scheduled so that transient events
monitored by a real-time pre>gram are captured and evaluated
quickly, and :so that all system peripherals are used effectively.

OS/32 also includes a timer facility that can be used to control
the start of a procedure or detect whether a procedure has
overrun its ciourse. Other control services allow a program to
reassign the priority of itself or another executing program.

When internal fault conditions (such as arithmetic overflow,
power restor,e or incorrect data formats) are detected by the
processor, the currently executing program is suspended and
control is returned to the OS. OS/32 handles these traps through
default system trap handling routines. Other services are
provided, however, that allow application programs to provide
customized trap-handling routines for handling their own fault
conditions.

As the need to access larger programs and data bases increases,
the memory addressing capability of a system will have a greater
effect on performance. The 32-bit architecture of OS/32 provides
a memory address :i.ng capability of up to 16Mb for each of the 255
programs running on the system.

OS/32 provides both device-dependent and device-independent I/O
services. By using device-independent services to perform I/O
transfers, devices can be reconfigured without reprogramming the
application. Device-dependent I/O allows control of
device-specific functions such as density select on magnetic
tape, screen access on a block mode terminal, or
connect/disconnect on a dial-up line.

OS/32 also supports user-transparent queuing of I/O requests to
files and devices. Each time an I/O transfer is completed, OS/32
activates any outstanding eligible I/O requests before returning
control to the executing program.

48-039 FOO R02 1-3

In a real-time environment, central processing unit (CPU) idling
can be critical. The spooling utilities available with OS/32
help eliminate the CPU idling that can occur when writing to slow
devices. When a spooler is used, all output is assigned to a
pseudo device rather than an actual physical device. A spooler
redirects this output to files on disk. Later, the spooler
writes these files to the correct physical device on a priority
basis. OS/32 provides two spoolers: SPL/32, a flexible, dynamic
program designed to meet the high volume of printing required by
the commercial user; and OS/32 Spooler, a smaller program for
users with fewer printers and less memory. See the SPL/32 System
Administration Reference Manual and OS/32 Multi-Terminal Monitor
(MTM) Reference Manual for more information on spooling in an
OS/32 environment.

OS/32 file management services provide five different file types:
indexed, nonbuffered indexed, contiguous, extendable contiguous,
and long record files. Each file type is designed to meet the
requirements of specific real-time situations. For example,
nonbuffered indexed and extendable contiguous files are designed
for applications that involve random I/O and require variable
length files that can be extended without system buffering
overhead. Applications that require a fixed-file length and no
buffering overhead can use the contiguous file type. Long record
files are designed for applications that require large record
lengths. For applications that involve sequential I/O (such as
compiling a program), the indexed file type is preferred.

In order to operate smoothly, a multitasking system should allow
communication among executing programs. OS/32 provides a queue
message service that gives each program its own private message
queue consisting of a chain or ring of message buffers. Two
types of message services are provided. One type passes
fixed-length (64-byte) messages. The other type allows variable
length messages with no limit on the message length other than
the amount of memory available to the task.

1.3 OS/32 MULTI-TERMINAL MONITOR (MTM) TIME-SHARING ENVIRONMENT

OS/32 MTM adds another dimension to the OS/32 real-time
facilities. This dimension is time-sharing. Under MTM, up to 64
users can be simultaneously signed on to a Perkin-Elmer system in
any combination of interactive or batch modes. To prevent one
user from tying up the CPU to the exclusion of others signed on
the system, MTM schedules processor time according to the jobs
performed by the programs. Compute-intensive jobs are given
lower priority but longer time-slices, and I/0-intensive jobs are
given higher priority levels and shorter time-slices.

Link, the OS/32 linkage editor, supports the virtual task manager
(VTM). VTM provides a virtual memory capability on a
task-by-task basis. This capability allows tasks consisting of
up to 16Mb of code and data to execute in as little as 128kb of
memory. See the OS/32 Link Reference Manual for more information
on VTM.

1-4 48-039 FOO R02

The priority scheduling mechanism (PSM) dynamically alters MTM
task priority. PSM increases system throughput by adjusting the
priorities of MTM subtasks according to their run-time behavior.
PSM performs a periodic check on the run-time behavior of all MTM
subtasks. Based on this behavioral information, PSM adjusts the
priorities of subtasks whose initial load priorities have been
assigned.

For further information on PSM, see the Multi-Terminal Monitor
(MTM) System Planning and Operator Reference Manual.

One of the main uses of the time-sharing environment is program
development. MTM users can develop programs in Common Assembly
Language (CAL/32), FORTRAN VII, Pascal, COBOL, BASIC, CORAL 66,
RPG, or 'C 11

• The MTM terminal command language allows users to
develop the:lr own command files for compiling, assembling,
linking and running a program. See the OS/32 Multi-Terminal
Monitor (MTM) Reference Manual for more information on developing
programs in an MTM environment.

To support a diverse community of users, Perkin-Elmer provides
system operators and/or system administrators with the Authorized
User Utility. This utility allows certain privileges for each of
the 64K (65,536) accounts supported on the system. Once
privileges have been specified for an account, all users signed
on that account receive those privileges. For information on
what privileges can be assigned, see the OS/32 Multi-Terminal
Monitor (MTM) System Planning and Operator Reference Manual.

Because MTM operates as a monitor within the OS/32 real-time
environment, MTM can serve as a low-priority background
environment for real-time applications or the primary environment
in the system.

1.4 THE OS/:32 APPLICATION PROGRAMMER

An applicatii0n programmer is responsible for writing programs
that result in optimum system response and throughput for a
particular application. By using the OS/32 software services
described in this manual, the user can greatly reduce the
programming effort needed to achieve greater performance. The
following chapters describe the basic data structures that should
be understood to use ·os/32 system services effectively.

48-039 FOO R02 1-5

CHAPT'ER 2
TASK STRUCTURE AND1 EXECUTION CONTROL

2.1 INTRODUCTION

When a program is compiled or assembled, it is converted into
object modu le~:s that are stored in one or more object files on
disk. These objecL modules must be converted into an executable
form before the program can be run. This executable form is
called a task.

As shown in Fic~ure 2-1, the OS/32. linkage editor, Link, performs
this conversion by creating an image of the task from the modules
in the object files. Link storeo the task image, with
instrucLions for loading the task, in an image file on disk.

5612

OBJECT
MODULE #1

OBJECT
MODULE #2

•
•
•

OBJECT
MODULE #n

LINKAGE

EDITOR

MAIN MEMORY

TASK
IMAGE

OS/32

LOADER

Figure 2-1 Conversion of Object Modules into Task Image By
Linkage Editor

48-039 FOO R02 2-1

An application task can be linked as an executive-task (e-task),
diagnostic task (d-task) or user task (u-task). E-tasks run with
memory relocation/protection hardware turned off and are allowed
to execute all instructions provided by the Perkin-Elmer
processor hardware. D-tasks, like e-tasks, can execute all
instructions; however, they run with the relocation/protection
hardware enabled. U-tasks run with the relocation/protection
hardware enabled and are restricted to a subset of machine
instructions known as nonprivi.leged instructions. This manual
pertains to nonprivileged u-tasks only. For more information on
e-tasks, d-tasks and privileged u-tasks, see the OS/32 System
Level Programmer Reference Manual.

The following sections describe the format of the image file for
a u-task, how a u-task is actually loaded from this file into
memory, and what happens to a task after it is loaded. These
sections also refer to a number of Link and OS/32 operator
commands that are used by the programmer to develop programs. To
learn more about the commands discussed in these sections, see
the OS/32 Link Reference Manual or OS/32 Operator Reference
Manual.

2.2 IMAGE FILE FORMAT

Figure 2-2 shows the format of an image file for a task. The
first section of the task image file is the loader information
block (LIB). The LIB tells the OS/32 loader how to load the
image into memory. While the task is loaded, the LIB is kept in
the loader's private memory area, not in the task address space,
until the loader no longer requires it.

Foilowing the LIB is the history records area. The history
records are created by OS/32 Patch. Patch is a utility that
allows the user to update a program by making changes to its
image or object file instead of the source. Any changes made to
the task or its LIB via Patch are recorded in the history records
area. See the OS/32 Patch Reference Manual for more information.

Following the LIB and the history records, if they exist, is the
task image that is actually loaded into memory. This task image
consists of at least one private image segment. The linkage
editor createa the private image with read, write and execute
privileges. The private image contains the impure code from the
included object modules. Impure code is code that cannot be
shared by other executing tasks. It can consist of the user
program code, data that the user designates as impure, and common
data areas such as those used by the FORTRAN COMMON statement to
store variables. If NSEGMENTED is specified as a task option in
the Link OPTION command when the task is built, the pure code is
also included in the private image.

2 -2 48-039 FOO R02

5613

•
•
•

•
•
•

•
•
•

LOADER
INFORMATION
BLOCK (LIB)

HISTORY
RECORDS

ROOT

OVERLAYS

OVERLAY DESCRIPTOR
TABLE (ODT)

SHARED
IMAGE

SYMBOLIC
,DEBUG
DATA

•
•
•

•
• •

•
•
•

PRIVATE IMAGE

EOF

Figure 2--2 Task Image File Format for a Segmented Task

48-039 FOO R02 2-3

Each user who loads the task is provided with a copy of the
private image. The first segment of the private image is known
as the root segment. The root contains the primary task
workspace, the impure code, the user-dedicated location (UDL),
and if the task is nonsegmented, the pure code. In addition, any
absolute code found in the object modules is located in the root.

The UDL is used to communicate between the user task and the
operating system. Within the UDL is the task status word (TSW).
Each task has an active TSW that defines the enabled state of
task interrupts and task queue entries as well as the current
program location (see Chapter 3). The TSW should not be confused
with the program status word (PSW). The TSW is a convention of
an OS/32 task, while the PSW is a convention of a processor.

If a task is to use overlays (i.e., after the task is loaded,
certain subroutines, or overlays, are to remain in the image file
and be fetched into the root as needed), they are formatted in
t.he private image ove·rlay area following the root. Link is
instructed to construct overlays through the OVERLAY conunand.

The over]ay descriptor table (ODT) following the overlay area
contains instructions that tell the loader when to load the
overlays into memory. The ODT is loaded into the task control
block (TCB) after the task is loaded. In a multitasking system,
each loaded task is assigned a TCB in dynamic system space. All
task status information is stored in the TCB during task
execution.

If the task is segmented, all pure code from the object modules
is placed in the shared image segment of the image file. This
area has only read and execute access privileges. When the first
copy of the segmented task is loaded into memory, bott1 a private
and a shared image segment are created. If more than one user
loads the task concurrently, each user is given a copy of the
private image, but they all share the first copy of the shared
image. Hence, only one copy of the shared image remains in
memory during multiple simultaneous executions of the task.

If the task is to be debugged using the Perkin-Elmer Symbolic
Debugger (OEBUG/32), Link places task data required by the
debugger following the shared image segment. This data remains
in the image file during task execution so that it is always
available for use by the debugger.

A task may require access to subroutines or data areas in
addition to those created by the programmer and contained in the
task's object modules. OS/32 supports two types of exLernal code
and data. One type is an object module such as the FORTRAN or
Pascal run-time library (RTL). Routines in object libraries are
included in a task's root segment or shared segment using the
Link LIBRARY command.

2·-4 48-039 FOO R02

The other type of external code or data is called a partial
image. A partial image may consist of code (e.g., an RTL
routine) or data (e.g., a shared conunon block). Partial images
are built by separate runs of the linkage editor, and each
partial image exi.sts in its own image file. A partial image is
included in a task's address s1pace by the Link RESOLVE command.
In addition, an uninitialized shared conunon image can be created
in memory either by the TCOM command at system generation
(sysgen) or by the OS/32 operator TCOM conunand.

2.3 LOADING i~ USER TASK (U-TASK) INTO MEMORY

In a multitasking system, u-tasJrn loaded into memory must be
prevented from executing code in common data areas as well as any
of the priv:lleged instructions designated for the exclusive use
of the operating system (OS); e.g., input/output (I/O) and
processor state change instructions. Likewise, a u-task needs
protection from other tasks that might attempt to interfere with
its execution. The relocation/protection hardware provides this
protection.

Perkin-Elmer processors use
relocation/protection hardware.
processors use the memory access
3205, 3210, 3230, 3240, 3250
memory addres~; translator (MAT).

one of two types of
The Model 7/32, 8/32 and 3220
controller (MAC); the Model

and 3200MPS processors use the

When a u-task is loaded into memory, the relocation/protection
hardware automatically allocates the first relative address in
the task's root segment to the task's first physical address in
memory. To the programmer, the task appears to be loaded at
location 0 in memory. Actually, the MAC or MAT maps a range of
task logical addresses into the available physical memory
addresses. Thus, any program address referred to during program
execution is translated and relocated to the correct physical
address before memory is accessed.

The range of addresses mapped for each task make up the u-task
logical address space. Figures 2-3 and 2-4 show how the
Perkin-Elmer relocation/protection hardware maps the u-task
address space into segments. As shown in Figure 2-3, each
segment mapped by MAC starts on a 256-byte boundary. Up to a
maximum of ~sixteen· 54kb segments are allocated by MAC for each
task, providing a maximum task address space of lMb. Each
segment is further divided into 256 pages. A page is a set of
256 contiguou~s one-byte locations beginning on an even 256-byte
boundary. ~~C locates the first address of each segment of the
task on a 256-byte boundary; e.g., 00000, 10000, up to FOOOO.

48-039 FOO R02~ 2-5

15 :
S I----·------------------------------ t FOOOO

14 :
E :---------------------------------!

13
G

M - - - -·· -- - - - - - - - - -· -- - - - - - - - - - - - - - - - - - -
4

-· - - - -- -- - - - - - -· - - - - - - - - - - - -· - - - - - - - - - I lMb
3

N ----------------------------------!
2

T ---------------------------------!
l

s - - - - - -- - - - -- - - -· -· - -· -· - - - - - - -· - - - - - - -· - - :
0

Each MAC segment consists of two-hundred fifty-six 256-byte pages
or 64kb.

Figure 2-3 Task Address Space on a MAC Machine

255
-- -· -·· - - - - - -· - -· - -· - -· - - - - -· - - - - - - - - - - - - - I FF 0001

s 254
... - - -- -- - - - - - -- - - -- - -- -- -- - - -· - - - - - - - - - - - - l

g 253
-- -- - ··- -· -· - - - - -·· - - - - - - - - - - - - - - -· - - - - -· -· - :

G 252

M
16Mb

E 4
---------------------------------:

N 3
---------------------------------:

T 2
----------------------~----------!

s 1
---------------------------------:

0

Each MAT segment consists of thirty-two 2, 048-·byte pages or 64kb.

Figure 2-4 Task Address Space on a MAT Machine

2-6 48-039 FOO R02

Figure 2-4 i.llustrates how MAT describes the u-task address
space. On MA'l1 machines, a maximum of two-hundred fifty-six 64kb
segments or 16Mb are available for each u-task. On all MAT
machines except the Model 3205, each segment is divided into
thirty-two 2,048-byte pages. On the Model 3205, each segment is
divided into s~ixteen 4096-byte pages. MAT locates the first
address of eac:h segment of the task on a 2,048-byte or 4,096-byte
boundary.

As described i.n Section 2.2, a task may reference partial images
resolved when the task is link-edited. Based on information
recorded by Li.nk in the LIB, the loader will ensure that the
required partial images are in memory and automatically load any
that are not. The partial images are then mapped into the
appropriate ranges of the task's logical address space.

If the image i.s formatted as a segmented task, the task is loaded
into its addre!SS space as two distinct (possibly discontiguous)
areas, private and shared, as shown in Figure 2-5. Every task
has a private area. This area contains the private image code
(UDL, root, plus any overlay areas required by the task). The
relocation/protection hardware starts loading this code at the
beginning of s,egment 0 in the task address space.

The relative task address of the first fullword of the private
area is called UBOT. For u-tasks, UBOT is always 0. Starting at
UBOT, the loader loads the UDL into the first 256 bytes of
segment 0. Following the UDL is the root node, which consists of
segments that hold the user prog·ram code that cannot be shared by
other tasks in the system.

If a task is to be executed usint;J overlays, segments mapped out
for these overlays are placed sequentially above the root. Above
the over lays, Lhe loader reservies a workspace area for the task.
For example, s.ome tasks require workspace to build and store
symbol tables. during execution. The amount of workspace that is
reserved for a task is determined by the workspace parameters
given in the! OPTION WORK command when the task is built. These
parameters are! the nominal space and the maximum work space.
UTOP is a pointer to the addr1ess of the first byte of the task
workspace. U'I'OP plus the nominal workspace is equivalent to
CTOP, the pointer to the address of the last addressable halfword
in the task wo·rkspace. CTOP must be equal to or less than the
maximum workspace parameter of the OPTION WORK command.

The pure code of a segmented task is loaded into the segments
directly above the reserved task workspace. As noted in Section
2.2, if two or more users load the task concurrently, the copy of
the shared segment loaded into memory for the first task is
mapped into the logical address space of each of the later tasks.

48-039 FOO R02 2-7

5614

UTOP ...

UBOT

SHARED SEGMENTS

AREA RESERVED FOR
TASK WORKSPACE

CTOP
- -- - - --- - - - - - -- - ----.---..,.----MAXIMUM . I

ACTUAL
TASK WORKSPACE

USED

OVERLAY n

• • •
OVERLAY 2

OVERLAY 1

ROOT

UDL

WORKSPACE
L _ - ALLOCATED

TO TASK
BY LINK

PRIVATE
SEGMENT

Figure 2-5 Segmented Task Loaded into Memory

2-8 48-039 FOO R02

2.4 TASK STATl~S AND PRIORITIES

In a multitasking system, the task scheduler enforces the
scheduling al9orithm that determines which loaded task should be
executed next. Tasks are scheduled according to the level of
priority assigned to them. The OS/32 task scheduler can
accommodate 25S levels of task priorities ranging from 1 to 255,
with priority 1 being the most favored. Several tasks can exist
at the same pr :i.or ity level.

An executing task is said to be in the current state. Other
tasks that have been started, but are lower in priority than the
executing task, are in the ready state. The task scheduler
initiates execution of the highest priority ready task.

If the executing task becomes suspended, (either by the OS, the
operator or a.nether task), the task is said to be in the wait
state.. For example, a task becomes suspended when it requests a
service from the OS, such as an I/O transfer. This task remains
in a wait state until the operation is completed, at which time
the task enteEs the ready state.. Table 2-1 lists the conditions
under which a task can become suspended.

A special wait state is the dormant state. When a task is
loaded, it i~:l initially in the dormant state. When a task is
started (eithe1r by the OS/32 START command or by another task),
the task is removed from the dormant state and placed in the
ready state. Once a task has been started, it can only become
dormant again if it is a resident task; i.e., if the task remains
in memory aft.er it reaches end of task. Because it enters the
dormant state after execution, a resident task can be made ready
through the OS/32 START command.

Nonresident tasks cannot reenter the dormant state after
execution beca.usei they are removed from memory at end of task.
Hence, nonresident tasks must always be loaded and placed in the
dormant state before they can be started. A task can be made
resident or nonresident by specifying these task options in the
OPTION command when the task is built.

Nonresident tasks can enter the rolled state. A task becomes
rolled when the task scheduler· writes the task's private image
segments to disk to make room for a higher priority task. A
rolled task enters · the ready state as soon as it becomes the
highest priority rolled task and sufficient memory is available
to accommodate it.

OS/32 control of task states during and after task execution is
illustrated in Figure 2-6.

48-039 FOO R02 2-9

TABLE 2-1 TASK WAIT STATES

WAIT STATE MEANING
======================-====-------------=========--------------

I/O wait Wait for an I/O operation to complete.

Connection wait Wait for a system resource.

Timer wait ' Wait for an interval to elapse or for a
particular time of day to occur.

Trap wait Wait for a task-handled trap to occur.

I~ad wait Wait for a requested load operation to
complete.

Task wait Wait to be continued by another task.

Roll wait Wait to be rolled out.

Terminal wait Wait for I/O to complete to a
terminal device (applies to terminal
tasks only) .

I/O block wait Wait for an 1/0 block to be freed when task
reaches its I/O control block limit.

Accounting wait Counters overflowed; task waiting for
accounting facility to collect accounting
data and remove wait.

Intercept wait Wait for a intercepted supervisor call
(SVC) to be executed.

Console wait Wait for system operator, user or another
task to instruct an interrupted task to
continue execution.

Dormant wait

2-10

Wait for system operator, user or another
task to initiate a task. After a task is
loaded, it enters the dormant state and
remains there until execution is initiated.
When a resident task goes to end of task,
it reenters the dormant state.

48-039 FOO R02

5615

I-

~ r---------~·
0
U5

OUT
OF

SYSTEM

LOAD

~ 0

~ ---------------1·~..,.1 DORMANT
RESIDENT _

M~
uz
> <(
en u

1/0 WAIT REQUEST

TERMINAL
TASK
TRAP
LOAD

TIME

--
CURRENT

--
-----..... IPA USE

A) OS
B) TASK

.. ---- W.AIT .. ------
TIME SLICING

HIGHEST PRIORITY

START

1/0
COMPLETES,

ETC.

,, ,,

READY

CONTINUE ·~ h

(OR CANCEL)

..__c,_) __ o_P_E_R_A_T_o_R __ -t l~---PA __ u_s_E_D __ ------------

HOLL-OUT - ROLLED
(DOES NOT APPLY

TO RESIDENT TASKS)

Figure 2-6 Task States

2. 5 MONITOR ~rASKS AND SUBTASKS

ROLL-IN

In addition to the OS/32 task scheduler, execution of a task can
be controlled by another task called a monitor. Tasks that are
placed under monitor control are called subtasks. A monitor
creates the operating environment within which its subtasks are
executed. Fo1: ex.ample, a monitor can:

• load, start, cancel or suspend any of its subtasks;

• override the task options that had been set when the subtasks
were linked; or

• make logical unit (lu) assignments for any of its subtasks.

48-039 FOO R02 2-11

A task can become a monitor by specifying the subtask reporting
option when loading another task. The number of subtasks that
can be assigned to a single monitor is unlimited (within the 252
user-written tasks supported).

The subtask reporting option causes the OS to keep the monitor
informed of the status of its subtasks; i.e., when the subtasks
have been started, suspended, released, rolled out, etc. When a
monitor goes to end of task, all of its subtasks are forced to
end of task.

2.5.1 The OS/32 Multi-Terminal Monitor (MTM)

All tasks loaded and started in an OS/32 time-sharing environment
execute as subtasks of MTM. MTM subtasks run at a maximum
priority of at least one less than the priority of MTM; i.e., if
MTM's priority is 140, the task's highest priority could not
exceed 141.

Both interactive and batch processing are supported by MTM. Up
to 64 interactive tasks can be executed concurrently, one from
each MTM terminal. The number of batch jobs that can execute
concurrently is determined by the operator during MTM system
start-up and is a maximum of 64 minus the number of interactive
terminals. Any batch jobs submitted above this number are queued
by MTM. See the OS/32 Multi-Terminal Monitor (MTM) Reference
Manual for more information on MTM.

2.6 RESTRICTIONS ON INTERTASK COMMUNICATION

OS/32 places some restrictions on which tasks can conununicate
with one another by assigning a group ID to each task. Normally,
a task can conununicate only with tasks within its assigned group.

Group IDs are assigned according to the operating environment
under which a task is loaded. Tasks loaded into an OS/32
real-time environment are divided into two groups: foreground
and background. A monitor and its subtasks are assigned to their
own group. System tasks (the console monitor, the command
processor, MTM and the spooler) are in a separate group called
the systems group.

To communicate with tasks outside its group, a foreground task
should be link-edited with the UNIVERSAL task option enabled.
OS/32 defines a background task as nonuniversal to prevent it
from communicating with tasks outside its group.

2--12 48-039 FOO R02

A task monitor determines whether any of its subtasks can
communicate outside the monite>r's group. For example, all MTM
subtasks are loaded with the communication task options specified
for their accounts via the autho1~ized user file (AUF), regardless
of the task options chosen when the subtasks were built. See the
OS/32 Multi-Terminal Monitor (MTM) System Planning and
Configuration Guide for informat:Lon on MTM sysgen options and the
specification of options for MTM accounts.

2. 7 ACCESSING OS/32 SYSTEM SERVJ[CES

A u-task can access all of the nonprivileged system services that
are available through OS/32. ~rasks communicate with the OS
through structures that the task builds within its task address
space. OS/32 uses the information stored in these structures to
perform the services requested by the task.

One structure that is of particular importance in a real-time
environment is the UDL. Chapter 3 examines the UDL and its use
in handling program interrupts.

48-039 FOO R02~ 2-13

CHAP'l?ER 3
INTERRUPT SERVICING IN A REAL-TIME ENVIRONMENT

3.1 INTRODUCTION

Real-time application systems arE~ often designed to interrupt
task execution when certain events occur. For example, if
program output was invalidated when execution of an instruction
caused a floating point overflow condition, the programmer would
want to know when such an event occurred. Otherwise, the
programmer could not be certain that the results of a pi:ogram
were valid. The mechanism that informs the task when such an
event occui:s is called a task trap.

Tt:aps suspend task execution at the location following the
instruction that was executing when a trap-causing event
occui:red. Execution then continues in the routine that will
handle the trapN The location counter (LOC) at the time of the
trap is saved in the user-dedicated location (UDL) so that the
interrupted execution can be refmmed. For example, the user may
create a trap-handling routine so that when an event like a
floating point overflow occurs, the trap-handling routine places
asterisks in the output of a variable and outputs some meaningful
message. The trap routine then causes the original task to
resume exe6ution at the instruction following the one that caused
the suspended trap execution.

Task execution can be resumed only if the state of the task was
saved by the operating system (OS) prior to executing the trap
service routine. The task structure that contains the
information to be saved by the OS is the task status word (TSW).

48-039 FOO R02 3-1

3.2 TASK STATUS WORD (TSW)

The structure of the TSW is shown in Figure 3-1.

5616-2

BITS 0 1 2 3 4 5 6 7 8 14 15 16 17 18 19 20 21 22 23 24 26 27 28 31

LOC

BITS 32 39 40 63

Figure 3-1 Task Status Word

As shown in Figure 3-1, the TSW occupies eight bytes aligned on
doubleword boundaries. The first 28 bits of the TSW are used to
enable or disable task traps for certain conditions. For
example, if bit 2 is set, a task trap will occur when execution
of an instruction results in an arithmetic fault.

The current condition code of the task is saved in the area
comprised of bits 28 through 31. The program LOC is contained in
the area following bit 39. All TSW bit settings and their
corresponding effects on task execution are listed in Table 3-1.

When a task is link-edited, using OS/32 Link, its TSW is
initialized. The default TSW has all task traps disabled and the
task's starting address in the LOC field. The user can change
the TSW trap and LOC default values initialized by Link by
specifying the desired bit settings in the Link OPTION TSW
command. See the OS/32 Link Reference Manual for more
information on this command.

The initialized TSW is placed in an OS data structure called the
task control block (TCB) when the task is loaded into memory. If
a task trap bit is disabled, that trap-causing event will be
handled by the default OS/32 trap-handling routine. See Section
3 .. 3.

If the trap bit fo~ one of the internal fault conditions is
enabled, execution control is transferred to the user-written
trap-handling routine, as described in Section 3.5.

3 ·-2 48-039 FOO R02

TABLE 3-1 ~rsw BIT SETTINGS

BIT MASK
I POSITION NAME BIT Nl\ME EFFECT ON TASK
!================================~=======================:=========
I O(W) I TSW.W'rM I Trap Wa.it I Suspends execution until

I a trap occurs.
'---

l(P)

2(A)

3(S)

4(Q)

5 (M)

6 (I)

7(R)

8(C)

TSW.PWRM I Enable l?ower I Notifies task when power
I Restore Trap I is restored after a

TSW.AFM I Enable
I Arithmetic
I Fault Trap

I TSW.Sl4M I Enable
I SVC14 Trap

I power failure.

I Notifies task when an
I arithmetic fault occurs.

I Notifies task when an
I SVC14 is issued.

TSW. TSKM I Enable '!'ask I Notifies· task when an

TSW.MAFM

TSW. I ITM

TSW.DFFM

'l'SW. CPOM

I Queue I item is placed on the
I Service Trap I task queue.

Enable
Memory
Access JFault
Trap

Enable
Illegal
Instruction
Trap

Enable Data/
Alignment
Fault Trap

CPU Only

Notifies task when it
attempts to access
memory outside its task
address space.

Notifies task when it
attempts to execute
an illegal instruction.

Notifies task when it
attempts to execute an
instruction that causes
a data format or
alignment fault.

I Prevents scheduling task
I to APU execution queue.
I Applies to ModeJ 3200MPS
I System only.

I -· - - - - - - - - - - - - -· - - - - - - - -·· - - - - -· - - - - - - - - -· - - ·- - - - ·- -· - - -· - - - - - - - -· -·· - - - -· -- - - - -
' 9-14 I Reserved

lS(K)

16(D)

48-039 FOO R02

TSW.SUQM

TSW.DIQM

Queue Entry
on Subtask
Change

Queue Entry
on Device
Interrupt

Notifies task of subtask
state change by adding a
3-fullword entry to task
queue.

Notifies task of a de
vice interrupt by adding
a fullword entry to the
task queue.

3-3

BIT
POSITION

TABLE 3-1 TSW BIT SETTINGS (Continued)

MASK
NAME BIT NAME EFFECT ON TASK

=======================~========•••===••~~~=•s==••=m=•==~=======

l.7(T) TSW.TCM

18(AP) TSW.APTM

19(E) TSW.PMM

20(L) TSW.LODM

21(0) 'I'SW. IOM

I -·· - - - -· - -- - -- -· --

22(Z) TSW.TMCM

23(F) 'I'SW. ITM

Queue Entry
on Task Call

Queue Entry
on Signal
from APU

Queue Entry
on Task
Message

Queue Entry
on Load
Proceed

Queue Entry
on 1/0
Completion

Queue Entry
on Time-Out
Completion

Queue Entry
on Data
Communica-
tions
Functions I

I

Notifies task of an SVC6
queue parameter call
by adding a fullword
entry to the task queue.

Notifies task of an APU
signal to the CPU by
adding a fullword entry
to the task queue.

Notifies task that a
message has been sent to '
it by adding a fullword
entry to the task queue.

Notifies task that its
subtask has been loaded
by adding a fullword
entry to the task queue.

Notifies task that an
SVCl I/O operation has
completed by adding a
fullword entry to the
task queue.

Notifies task that a
specified time interval
has elapsed by adding a
fullword entry to the
task queue.

Notifies task that an
SVClS operation has
been completed by adding
a fullword entry to the
task queue.

- -· -· - - - - - - - - - - - - -· - I

Queue Entry
on SVC!
Buff er
Transfer
Completion

Notifies task that
magnetic tape driver
has added a buffer to
the OUT-QUEUE by adding
a fullword entry to the
task queue.

1--
1 24-25 I Reserved

3-·4 48-039 FOO R02

TABLE 3-1 TSW BIT SETTINGS (Continued)

BIT
POSITION

26(TE)

27(SD)

28-31 (CC) I

32-39

MASK
NAME

~rsW.TESM

~rsw .SDM

BIT NAME

Enable 'I1ask
Queue Event
Service

F~nable Qiueue
Entry on
Send Data
Call

I Condition
I Code

I Reserved

40-63
(LOC)

I ~rsw .r.oc I Location.
I Counter

3.3 TRAPS HANDLED BY OS/32

EFFECT ON TASK

Notifies task of an
event through a task
event trap. See the
OS/32 System Level
Programmer Reference
Manual.

Notifies task that a
message is being sent to
it by adding a fullword
entry~to task queue.

I Address where task is to
I begin executing.

Internal trap-causing events detected by the processor hardware
are called faults. Five types of faults can be detected by the
processor:

• Power restoration after power failure

• Arithmetic faults (see Table 3-4)

• Memory access faults (see Table 3-6)

• Illegal instruction faults

• Data format/alignment faults (see Table 3-5)

When a fault i.s detected by the processor, the currently
executing tasJc is checked for trap fault-handling facilities. If
none exist (TSW trap bits are zero), the task is suspended and
control is given to the appropriate default system trap-handling
routine.

48-039 FOO R0;2 3-5

In the case of power restoration, the default OS/-32 trap-handling
routine causes suspension of task execution until the task is
continued or cancelled by the operator. When an arithmetic,
memory access, illegal instruction or data format/alignment fault
occurs, the default OS/32 trap-handling routine identifies the
fault and outputs a message to the console. Task execution is
then suspended.

All fault-caused traps are handled in the above manner, except
arithmetic faults. Arithmetic faults are handled based on the
following three possible conditions:

• OS/32 task arithmetic fault pause option (AFPAUSE)

• TSW arithmetic fault bit (bit 2)

• Hardware floating point underflow interrupt bit (bit 19) of
the PSW (the AF bit on Model 7/32 and 8/32 Systems)

The task option for arithmetic fault handling is set at Link time
via the Link command:

OPTION AF PAUSE
NAFPAUSE

or at run-time via the OS command:

OPTION AF PAUSE
AF CONT

The TSW fault bit is set as described in Section 3.6, and a PSW
bit is set or reset by SVC2 code 4. See the OS/32 Supervisor
Call (SVC) Reference Manual. The results are described in Table
3-2.

3-6 48-039 FOO R02

TABLE 3-2 ARITHME:TIC FAULT HANDLING

HARDWARE I LINK/OS I TSW I
PSW BIT 19 I TASK OPTION I BIT 2 I ACTION
===•~=-•=••••••••••••••••••••••••=••••••==•=======•====•a•~••=e•==•

0 x

1 Continue

1 Pause

1 Continue

1 Pause

x

0

0

1

1

For Model 7/32 and 8/32 pro
cessors, all AF fault recog
nition disabled; task con
tinues; no OS message.

For Perkin-Elmer Series 3200
processors, floating point
underflow recognition dis
abled; task continues; no OS
message.

I OS message sent to console;
I task continues.

I OS message sent to console;
I task is paused.

I No OS message sent to console;
I task trapped to AF handler.

I OS message sent to console;
I task is paused.

1 Interrupt enabled
O Interrupt disabled
X Don't-care

The following are the default trap-handling messages sent to the
system console or MTM terminals.

Error Messages:

taskid: ACCESS PRIVILEGE ADDRESS ERROR AT RRxxxx (yyyyyy)

The user program tried to perform a function (execute,
store or load) that is prevented by the access privileges
requested at Link time for the segment. The most common
cause of this error is an attempt to store data into a
pure, nonwr itable segmEmt. Program address is RRxxxx;
segmentation number regiHter is RR; physical address is
yyyyyy.

48-039 FOO R02 3-7

3-8

taskid: ALIGNMENT FAULT INSTRUCTION AT xxxxxx (yyyyyy)
MEMORY FAULT ADDRESS=xxxxxx (yyyyyy)

Data instruction is not properly aligned to specific
fields for fullword or halfword alignment. The memory
fault address is the memory location that is not properly
aligned. The memory fault address is given only on
Perkin-Elmer Series 3200 machines. Program address is
xxxxxx; physical address is yyyyyy.

taskid: ARITHMETIC FAULT AT xxxxx (yyyyyy)

Arithmetic fault is detected at location xxxxx in the
taskid address space; physical address is yyyyyy.

taskid: ILLEGAL INSTRUCTION AT xxxxx (yyyyyy).

Illegal instruction fault detected at location xxxxx in
the taskid address space; physical address is yyyyyy.

taskid: INVALID SEGMENT ADDRESS ERROR AT xxxxx (yyyyy)

The task tried to address a segment outside the address
space of the program. Program address is xxxxx; physical
address is yyyyy.

taskid: MEMORY PARITY ERROR AT xxxxx (yyyyyy)

Parity or an error correction code (ECC)
malfunction is detected at location xxxxx;
address is yyyyyy.

machine
physical

taskid: SEGMENT LIMIT ADDRESS ERROR AT RRxxxx (yyyyyy)

The task attempted to access an address outside allowable
limits for one of its segments. Program address is
RRxxxx; segmentation register is RR; physical address is
yyyyyy.

taskid: TASK PAUSED

Task taskid paused; results from a SVC2 code 1,
PAUSE command or power fail recovery via
default.

POWER RESTORE - RESET PERIPHERALS

Power fail restore sequence; no
required.

operator

operator
the OS/32

response

48-039 FOO R02

POWER RES'I10RE - RESET PER I PH:l!!RALS AND ENTER GO

Power fail restore sequence; perform any manual
intervention required at the peripheral device(s), then
type GO (CR) to complete power recovery.

NOTE

Tasks that handle arithmetic fault traps
must be link-edited with the NAFPAUSE
task option. When an arithmetic fault
tI'ap occurs, NAFPAusg prevents OS/32 from
pausing the task so that execution
continues with the user-written
tr·ap-handling routine. See Section 3. 5
ot: the OS/32 Link Reference Manual for
mc1re information.

3 .4 USER-DEDICATED LOCATION (UD'.L) AND TASK STATUS WORD (TSW)
SWAP

A task that se1rvices traps requi·res a data structure that can be
used to save the current TSW after a trap occurs. The OS/32 data
structure that is reserved for this purpose is the UDL. The UDL
is an area occ:upying locations 0 through 255 (X'FF') in each task
impure memory space preceding the task code. Expansion of the
$UDL macro ge1nerates the structures and equates for the UDL data
structure. F i.gure 3-2 illustrat,es the UDL structure. The UDL
fields used to handle traps are described in Table 3-3.

48-039 FOO R02~ 3-9

5921-2 0 (00) CTOP (UDL.CTOP)

4 (04) UTOP (UDL.UTOP)

8 (08) UBOT (UDL.UBOT)

12 (OC) DATA MANAGEMENT SYSTEM (UDL.DMS)

16 (10) A (TASK QUEUE) (UDL.TSKQ)

20 (14) A (SEND DATA FREE BUFFER QUEUE) (UDL.SDQ)

24 (18) A (MESSAGE RING) (UDL.MSGR)

28 (1C) A (SVC 14 ARG) (UDL. SV14)

32 (20) RESERVED (UDL.EXT1)

36 (24) RESERVED (UDL.EXT2)

40 (28) LOAD MULTIPLE STARTING ADDRESS (UDL.LMSA)

44 (2C) RESERVED

48 (30) POWER RESTORATION OLD TSW

52 (34) (UDL.PWRO)

56 (38) POWER RESTORATION NEW TSW

60 (3C) (UDL.PWRN)

64 (40) ARITHMETIC FAULT OLD TSW

68 (44) (UDL.ARFO)

72 (48) ARITHMETIC FAULT NEW TSW

76 (4C) (UDL.ARFN)

80
AESERVEDI81(511 DATA FORMAT 1821521 MAC/MAT FAULT I 831531 ARITH FAULT

(50) REASON CODE IUDL.DFFRI REASON CODE IUDL.MAFR) REASON CODE \UDL.ARFRJ

84 (54) ARITHMETIC FAULT, NEXT INSTRUCTION ADDRESS (UDL.ARFX)

88 (5B) DATA/ALIGNMENT, ACTUAL FAULT ADDRESS (UDL.DFFX)

92 (5Cl MAC/MAT FAULT, ACTUAL FAULT ADDRESS (UDL.MAFL)

96 (60) SVC 14 OLD TSW

100 (64) (UDL.S140)

104 (68) SVC 14 NEW TSW

108 (6C) (UDL.S14Nl

112 (70) TASK QUEUE SERVICE OLD TSW

116 (74) (UDL.TSKO)

120 (78) TASK QUEUE SERVICE NEW TSW

124 (7C) (UDL.TSKN)

128 (80) MEMORY ACCESS FAULT OLD TSW

132 (84) (UDL.MAFO)

136 (BB) MEMORY ACCESS FAULT NEW TSW

140 (BC) (UDL.MAFN)

144 (90) ILLEGAL INSTRUCTION OLD TSW

148 (94) (UDL.llTO)

152 (9B) ILLEGAL INSTRUCTION NEW TSW

156 (9C) (UDL.llTN)

160 (AO) DATA FORMAT FAULT OLD TSW

164 (A4) (UDL.DFFO)

168 (AB) DATA FORMAT FAULT NEW TSW

172 (AC) (UDL.DFFN)

176 (BO)

180 (B4)
RESERVED

1B4 (BB) POINTER TO SYSTEM NETWORK ARCHITECTURE TABLE (UDL.SNA)

18B (BC) SAVE AREA USED BY SYSTEM NETWORK ARCHITECTURE(UDL.RSAV)

192 (CO)

196 (C4)
RESERVED FOR AIDS

~ OR DEBUG/32 ~

1
248(FB) _J
252 (FC)___ ____ ,

Figure 3-2 User-Dedicated Location

3-10 48-039 FOO R02

Note that severa.l fields in the UDL are used to store the TSW.
Each type of t1:ap requires two TSW save areas, the old TSW (OTSW)
field and the new TSW (NTSW) f ieldo The OS uses the OTSW field
for saving the TSW that is in the TCB when the trap occurs. The
NTSW field is used by the task to store the TSW that contains the
address of the user-written trap-handling routine and the new TSW
bits to be enabled during execution of the routine.

Unless the use1r specifically initializes the UDL, all locations
in the UDL and the initial TSW are set to zero by OS/32 Link.
Thus, for all tasks, the default is OS-handled traps.

The users, how•9Ver, can initialize the UDL by assembling the
appropriate cc:>de and using the Link OPTION ABSOLUTE=O command
before including the UDL in theit.· task or by initializing the
fields at run-time (e.g., by calling the appropriate FORTRAN
routines as described in Section 3.6).

Figure 3-3 shows the effective TSW swaps to and from the TCB and
the UDL. The 'following notes cot: respond to the numbers in Figure
3-3.

NOTES

1. In Figure 3-3, the original TSW was
allowed to default to zero at Link
time.

2. After the task is started, the TSW
can be initialized or modified via an
SVC9.

3. TSW swap is performed when the task
t:r::ap occurs.

4. At the end of a trap-handling
routine, the user can return to the
original interrupted code sequence.

48-039 FOO R02 3-11

5621-2

<D
I TASK

INITIATION

TCB

LTSW ,,
@ LOAD TSW

l (SVC9)
INITIALIZE TSW IN TCB

TCB

OTSW ,.
@ TASK TRAP

i TSW SWAP
BYOS

TCB

NTSW . ,.
@ TRAP+IANDLING

i ROUTINE

TCB
(SVC9)

OTSW

LTSW - TSW INITIALIZED BY LINK
OTSW - TSW INITIALIZED BY TASK WITH TASK EXECUTION ADDRESS AND TRAP BIT SET

NTSW - TSW WITH ADDRESS OF TRAP SERVICE ROUTINE

Figure 3-3 TSW Swap

I
UDL

NTSW

1
UDL

NTSW

l
UDL

OTSW

NTSW

l
UDL

NTSW

To perform the TSW swap, the task and the trap-handling routine
issues a call (SVC9) to an OS/32 supervisor routine that replaces
the current TSW in the TCB with the TSW specified as an argument
to SVC9 (see number 2 of Figure 3-3).

As shown in Figure 3-3, the TSW swap performed after the task is
started replaces the link-initialized TSW in the TCB with the
task-initialized TSW (OTSW). This swap causes task execution to
resume at the location specified by OTSW; or, if the LOC of OTSW
is zero, execution resumes after the SVC9 instruction.

The TSW swap performed by the OS/32 trap mechanism, in response
to an event, replaces the OTSW in the TCB with a copy of the NTSW
stored in the UDL (see number 3 of Figure 3-3). Task execution
resumes at the address of the trap-handling routine.

3-12 48-039 FOO R02

The TSW swap performed at the end of the trap-handling routine
replaces the NTSW in the TCB with the OTSW saved in the UDL.
Execution resumes at the instruction that was about to be
executed when the trap occurred. See number 4 of Figure 3-3.

In addition to the TSW swap areas, the UDL structure also
reserves fields that are used to store information used by the
trap-handling routine; i.e., internal fault reason codes, task
queue address, address of message buffers, etc.

The UDL fields that are used by a task to handle task traps are
surnmar ized in 1Table 3-3.

TABLE 3-3 UDL FIELDS USED TO HANDLE TASK TRAPS

BYTE I
LOCATION I FIELD NAME

MASK
NAME CONTENTS OF FIELD

---~--16 ('10') I A('J:'ask Queue) I UDL.TSKQ I Address of task queue

20 ('14') I A(Send Data Free I UDL. SDQ I Address of free buff er queue for SVC6
I Buff er Queue) I send data function

24('18') I A(Messa9e Ring) I UDL.MSGR I Address of ring of 76-byte message buffers
I
I I I aligned on a fullword boundary

28('lC') I A(SVC14 Arg)
I

I UDL.SV14 I gf fective address of the argument to an
I SVC14

1 40('28') I Load Multiple I UDL.LMSA I Becond operand of Load Multiple instruc-
1 Startirn;J Address I I t.ion that caused a memory access fault

!--------------~--------------·---
~ 48 ('30') I Power R1estoI·ation I UDL. PWRO I ·rsw saved by the OS/32 after a power
I I Old TSW I I :failure occurs
1-----------------------------·---1

56('38') I Power R1estoration UDL.PWRN I •rsw containing the address of the power
I New TSW I :restoration trap routine to which execu-
1 I tion will branch when power is restored

I after a power failure occurs
~-----------------------------·- ---------- --

64 ('40') Arithmetic Fault
Old TSW

48-039 FOO R02

UDL.ARFO •rsw saved by the OS/32 when an arithmetic
fault trap occurs

For the Perkin-Elmer Series 3200 proces
:aors, the LOC of this TSW points to the
faulting instruction. For Model 7/32 and
.S/32 processors, LOCs point to the in
struction after the faulting instruction.

3-13

TABLE 3-3 UDL FIELDS USED TO HANDLE TASK TRAPS (Continued)

I BYTE
I LOCATION

72('48')

FIELD NAME

Arithmetic Fault
New TSW

MASK
NAME CONTENTS OP PIELD

UDL.ARFN TSW containing the address of the arith-
1 metic fault trap-handling routine to which
I execution will branch when an arithmetic
I fault occurs

·--·------------------------
81('51') I Data Format Reason

I Code

82('52') MAC/MAT Fault
Reason Code

:--------------------------------
83('53') Arithmetic Fault

84 (I 54 I)

Reason Code

Arithmetic Fault,
Next Instruction
Address

UDL.DFFR I Reason code indicating the event that

UDL.MAFR

UDL.ARFR

UDL.ARFX

I caused the data format/alignment fault
I (see Table 3-7)

Reason code indicating the event that
caused the memory access fault (see
Table 3-6)

This reason code is given only for a
memory access controller (MAC) or memory
address translator (MAT) fault occurring
on a Perkin-Elmer Series 3200 processor.

Reason code indicating the event that
caused the arithmetic fault (see Table
3-5)

This reason code is given only for an
arithmetic fault occurring on a Perkin
Elmer Series 3200 processor.

Address of the instruction following the
instruction that caused an arithmetic
fault

This address is given only for an
arithmetic fault occurring on a
Perkin-Elmer Series 3200 processor.

1----------- ------------------------------- --
88 (I 58 I)

92('5C')

3-14

Data/Alignment,
Actual Fault
Address

MAC/MAT Fault,
Actual Fault
Address

UDL.DFFX

UDL.MAFL

Address of the memory location referred to
by the instruction that caused the data
format or alignment fault

This address is given only for a data/
alignment fault occurring on a
Perkin-Elmer Series 3200 processor.

Address of the data or instruction that
caused a memory access fault trap

This address is given only for a MAC/MAT
fault occurring on a Perkin-Elmer Series
3200 processor.

48-039 FOO R02

TABLE 3-3 UDL FIELDS USED TO HANDLE TASK TRAPS (Continued)

BYTE
LOCATION l~IELD NAME

96 (I 60 I) I svcu Old TSW

104 (I 68 1) SVClil New TSW

MASK
NAME CONTENTS OP FIELD

I UDL.Sl40 I TSW saved by OS/32 when an SVC14 trap
I I occurs

I UDL.Sl4N I TSW containing the address of the SVC14
I I trap-handling routine to which execution

I branches when an SVC14 trap occurs

112('70') I Task Queue Service I UDL.TSKO l TSW saved by OS/32 when a service trap
I Old •rsw I I occurs

120('78') Task Queue Service
New •rsw

128 ('80') I Memo1t:y Access

136('88')

I Fault., Old TSW

Memo:t:y Access
Fault., New TSW

144('90') I Illegal
I Inst:t:uction,
: old •rsw

UDL.TSKN I TSW containing the address of the task
I queue trap-handling routine to which exe-
1 cution branches when a task queue trap
I occurs

I UDL.MAFO I TSW saved by OS/32 when a memory access
I I fault trap occurs

UDL.MAFN I TSW containing the address of the memory
I access fault trap-handling routine to
I which execution branches when a memory
I access fault trap occurs

I UDL.IITO I TSW saved by OS/32 when an illegal
I I instruction fault trap occurs

I
I

'-----------------·---
152('98')

160 (I AO I)

168 (I AS')

1 lle•~al
Inst:t:uction,
New •rsw

Data Format Fault
old •rsw

Data Format Fault
New 'rsw

48-039 FOO RO~~

UDL.IITN : TSW containing the address of the illegal
: instruction trap-handling routine to which
I execution will branch when an illegal

UDL.DFFO

UDL.DFFN

I instruction fault trap occurs

TSW saved by OS/32 when a data format or
alignment fault trap occurs

This TSW is saved only for a data format/
alignment fault trap occurring on a
Perkin-Elmer Series 3200 processor.

TSW containing the address of the data
format/alignment fault trap-handling
routine to which execution branches when a
data format or alignment fault trap
occurs

3-15

3.5 TRAPS HANDLED BY USER-WRITTEN TASKS

The purpose of this section is to describe and summarize the
following task-handled traps:

• Arithmetic faults

• Data format/alignment faults

• Power restoration

• Illegal instruction faults

• Memory access faults

• Task queue service events

• User-defined, trap-causing events

The traps described below are divided into three categories based
upon the causing event: hardware-based events in category 1,
asynchronous software events in category 2, and specifically
called (synchronous) software events in category 3.

Before a task can handle a trap, the task must have a TSW in
which the appropriate trap bits are set. If the trap bit in the
TSW is enabled, execution control is transferred to the
user-written trap-handling routine when that fault condition
occurs. (If the trap bit is disabled, execution control is
transferred to the default OS/32 trap-handling routine as
previously explained in Section 3.3.)

Category l events (hardware) include arithmetic, data
format/alignment, power restoration, illegal instruction and
memory access faults. These events are recognized by the OS,
which then passes control by performing a TSW swap. The TSW is
removed from the TCB at the time of the fault and is saved in the
UDLs at an old TSW save area. The location portion of the old
TSW is updated to point to the next executable instruction.

After successfully saving the old TSW, the OS fetches a new TSW
from the user's UDL. The location specified by the new TSW is
the entry point to the appropriate trap service routine. The
effect of this is a forced branch into a subroutine that handles
the special conditions represented by the fault. These traps are
more fully described in Sections 3.5.1 through 3.5.5.

The second category consists of asynchronous software events,
known as task queue service events. Unlike the specific events
described above, software-based traps are handled by a single
trap service routine, referred to as the task queue service
routine, ~nd a data structure referred to as a task queue.

3-16 48-039 FOO R02

Task-handled traps use the data structures and procedures
previously discussed. The task queue is added as an information
transfer mechanism. Task queue service is fully described in
Section 3.5.6 ..

The third category of task-handled traps are user-defined traps.
User-defined traps allow the assembly programmer to insert in the
program coding specific SVC14 calls to a trap routine. When the
SVC14 is encountered, the user is trapped to the SVC14 trap
handler exactly as described in the category 1 traps. This
mechanism is frequently used as a debugging aid for Perkin-Elmer
debugging packages. User-defined ttaps are more fully described
in Section 3.5.7.

Section 3.6 provides examples of programming techniques and tips
for effectivE~ use of task-handled traps in various programming
languages.

3.5.1 Arithmotic Fault Trap

An arithmetic fault trap can result from any one of the events
listed in Table 3-4.

TABLl~ 3-4 ARITHMETIC FAULT TRAP-CAUSING EVENTS
(REASON CODE IN UDL 83('53'))

EVENT
I REASON I

CODE
====================·======================='
Fixed point zero divide X'OO'

F Jlxed point quotient overflow X'Ol'

Floating point zero divide X'02'

Floating point exponent underflow X'03'

Floating point exponent overflow X'04'

When an arithmetic fault occurs with the TSW.AFM bit set in the
TSW, the currEmt TSW is stored in the UDL.ARFO field, and the new
TSW in the UDL.ARFN field is loaded and becomes the current TSW.
The reason code is stored in the UDL.ARFF field. The LOC of the
new TSW contains the address of the arithmetic fault trap service
routine. The act.ion taken when an arithmetic fault trap occurs
depends on thE~ options specified by Link and the traps enabled in
both the TSW a.nd PSW.

48-039 FOO R02 3-17

3.5.2 Data Format/Alignment Faults

A data format or alignment fault trap results when one of the
events listed in Table 3-5 occurs.

TABLE 3-5 DATA FORMAT/ALIGNMENT FAULT
TRAP-CAUSING EVENTS (REASON
CODE IN UDL 81('51'))

EVENT
I REASON

CODE
=====================•~=~=•==••••m~s=~===•

Reserved X'OO'

Reserved x' 01'

Invalid sign digit, packed data X'02'

Invalid data digit, packed data X'03'

Reserved X'04'

Reserved X'OS'

Fullword alignment fault X'06'

Halfword alignment fault X'07'

When a data format or alignment fault trap occurs with the
TSW.DFFM bit set, the current TSW is stored in the UDL.DFFO
field; the NTSW in the UDL.DFFN field is loaded and becomes the
current TSW; the address of the location in memory referenced by
the faulting instruction is stored in the UDL.DFFX field; and the
reason code is stored in the UDL.DFFR field. The new TSW LOC
contains the address of the data format or alignment fault trap
service routine. Thia trap service routine exits by issuing an
LTSW macro or SVC9 call to load the TSW stored in the UDL.DFFO
field as the current TSW.

3-18 48-039 FOO R02

3.5.3 Power Restoration

A power restoration trap occurs after power is restored following
a power failure and the TSW.PWRM bit in the TSW is set. The
current TSW is stored in the UDL.PWRO field, and the new TSW in
the UDL.PWRN field is loaded and becomes the current TSW. The
LOC of the new TSW should contain the address of the power
restoration trap service routine. This trap service routine
exits by issuing an LTSW macro or SVC9 call to load the TSW
stored in the UDL.PWRO field as the current TSW.

3.5.4 Illegal Instruction Faults

An illegal instruction trap occu1rs after a user task (u-task)
executes an illegal instruction with the TSW.IITM bit set. The
current TSW is stored in the UDL.IITO field, and the new TSW in
the UDL.IITN field is loaded and becomes the current TSW. The
new TSW LOC should contain the address of the illegal instruction
trap service routine. This trap service routine exits by issuing
an LTSW macro call to load the TBW stored in the UDL.IITO field
as the current TSW.

3.5.5 Memory Access Faults

A memory access fault trap occurs when one of the events listed
in Table 3-6 occurs.

48-039 FOO R02 3-19

TABLE 3-6 MEMORY ACCESS FAULT TRAP-CAUSING EVENTS

I REASON CODES
1---------------1

EVENT I 3220 I MAT
---:
svc address error x•oo• N/A I

Execute protect violation X'Ol' X'Ol'

Write/interrupt protect violation X'02' X'02'

Read protect violation N/A X'03'

Access level fault N/A X'04'

Segment limit fault X'lO' x•os•

Nonpresent segment fault N/A X'06'

Shared segment table (SST) size exceeded N/A X'07'

Private segment table (PST) size exceeded X'08' 'X08'

When a memory access fault occurs with the TSW.MAFM bit set, the
current TSW is stored in the UDL.MAFO field; the new TSW in the
UDL.MAFN field is loaded and becomes the current TSW; and the
faulting instruction address is stored in the UDL.MAFR field.
The new TSW LOC should contain the address of the memory access
fault trap service routine. This trap service routine exits by
issuing an LTSW macro or SVC9 call to load the TSW stored in the
UDL.MAFO field as the current TSW.

3.5.6 Task Queue Trap-Causing Events and Task Queue Service

A task queue is in the form of a standard Perkin-Elmer circular
list, as shown in Figure 3-4.

3-20 48-039 FOO R02

5617

0 15 16 31

NUMBER OF SLOTS NUMBER OF SLOTS USED

CURRENT TOP NEXT BOTTOM

-
SLOTO

SLOT 1

-
'-~ ,. ..,.,

T SLOT n T
Figure 3-4 Perkin-Elmer Standard Circular List

The first four halfwords of the circular list make up the list
header that contains the list pa1:ameters. Irnmed iately following
the header is the list itself. The first fullword in the list is
designated slot O~ The remaining slots are numbered sequentially
from 1 up to a maximum of X'FFFE'. Hence, a task queue can
contain a maximum of 65,535 fullword slots. For further
information on list processing, refer to the Instruction Set
Reference Manual for any Perkin-glmer 32-bit processor.

When a software fault trap occu1~s, entries a.re added to the
bottom of the list. The user-supplied task queue service routine
should always remove entries from the top of the queue.

Except for the subtask change event and the APU signaling the
CPU, all items added to the task queue, by OS/32, are four bytes
long and have the following format.

I Reason I
code Parameter

Bits 0 7 8 31

Figure 3-5 Fullwo·rd Task Queue Entry

48-039 FOO R02 3-21

Reason codes and parameter information can be found in Table 3-7.
Table 3-7 lists the fullword entries added to the list by the
task queue trap-causing events.

~· TABLE 3-7 TASK QUEUE TRAP-CAUSING EVENTS

f
---~-~---; f TASK QUEUE FULLWORD ENTRY

1--------------------------------------
1 !-BYTE
I REASON CONTENTS OF

EVENT CODE 3-BYTE PARAMETER
===
Device interrupt
(SVC6)

SVC6 queue parameter

X'OO'

X'Ol'

I Associated with trap-
1 generating device

I Specified by the task that
I issued the SVC6

'--
Subtask state change

SVC6 send data

APU signals CPU

Message received
(SVC6)

Load proceed completion
(SVC6)

X'02'

X'04'

X'OS'

X'06'

X'07'

I See Figure 3-6.

I A(send data message
I buffer)

I APU number, status, and
I error code (see Figure
I 3-7)

I A(message buffer in ring)

I A(SVC6 parameter block)

'---
1/0 proceed completion
(SVC6)

Timer completion
(SVC2, 23)

X'08'

X'09'

SVClS command completion I X'OA'

SVClS buffer completion

SVC! buffer transfer
completion

SVClS termination

SVClS halt I/O

ZDLC buffer input

3-22

X'OB'

X'OB'

X'OC'

X'OD'

X'OE'

I A(SVCl parameter block)

I Time interval specified by
I the SVC2 code 23 param-
1 eter block

I A(SVClS parameter block)

I A(SVClS parameter plock)

I A(SVCl parameter block)

I A(SVClS parameter block)

I A(SVClS parameter block)

I A(UDR list)

48-039 FOO R02

TABLE 3--7 TASK QUEUE TRAP-CAUSING EVENTS (Continued)

TASK QUEUE FULLWORD ENTRY
:-------------------------------------
! 1-BYTE I
I REASON I CONTENTS OF

EVENT CODE 3-BYTE PARAMETER
==============~=~===========~===m=============~===~====~==~=~~=~=

ZDLC buff er output

ZDLC error condition

ZDLC buffer error

EMT 3270 unsolicited
host input

EMT 3270 unrequested
disconnect

EMT switched line
connect t ime--out

X'OF' I A(UDW list)

X'lO' I A(information block)

X ' 11 ' I A (UQR l is t)

X'l8'

X' 19 I I

X'lA'

* The letter A indicates that the 3-byte Q entry is an address.

NOTE

For more information on the OS/32
supervisor routines that initiate task
queue service trap-causing events, see
the appropriate SVC in the OS/32
Supervisor Call (SVC) Reference Manual.

Task queue entries that are added to a monitor's task queue when
its subtask experiences a state change are shown in Figure 3-6.
Note that a subtask state change adds three fullword entries to
the bottom of the queue. The first fullword consists of a 1-byte
reason code (X'02'), a 1-byte subtask reason code (see Table 3-8)
and other subtask information items. The remaining fullword
slots contain the name of the subtask.

48-039 FOO R02 3-23

3-24

5618-1

BYTES
0

REASON
CODE
X'02'

PREVIOUS ENTRY

SUBTASK
REASON

CODE

NAME OF

SUBTASK

2

ADDITIONAL
SUBTASK

INFORMATION

3

SLOT 1

SLOT2

SLOT 3

SLOT4

SLOTS

Figure 3-6 Circular List with Task Queue Entries
for Subtask State Change

TABLE 3-8 SUBTASK REASON CODES AND
CORRESPONDING STATE CHANGES

SUBTASK
REASON

CODE SUBTASK STATE CHANGE
==

X'OO'

X'Ol'

X'02'

X'03'

X'04'

X'OS'

X'06'

X'07'

X'08'

End of task; bytes 2 and 3 are
binary end of task codes

Paused

Continued

Suspended

Released

Rolled out

Rolled in

Started by a task other than the
monitor

Accounting overflow (MTM or
AFDCB only)

48-039 FOO R02

In a Model 3~WOMPS System, a ta.sk can receive a trap in response
to the auxiliary processing unit (APU) signals that indicate APU
state change~s or errors. Sect ion 3. 6 .. 3 describes the SVC6
CONNECT and THAW functions that associate APUs with the task.
Figure 3-7 shows the format of the task queue entry for an APU
signal.

6022-1

APU SIGNAL.
APU APU APU

CODE
NUMBER STATUS ERROR

X'05' CODE CODE

BYTE:

0 2 3

Fi~Jure 3-7 Task Queue Entry for APU Signal

Fields:

APU Signal Code

APU Numbe1:

APU Status Code

APU Error Code

48-039 FOO RO~~

is x•os•.

is a 1-byte field specifying a decimal
number (1 through 9) indicating the
number of the APU from which the signal
was received.

is a 1-byte field whose contents
correspond to the response byte of the
SVC13 APO hardware status field.

is a 1-byte field whose contents
correspond to the error byte of the SVC13
APU hardware status field. An X'80' code
indicates that no errors exist.

NOTE

For information concerning the
SVC'l3 APU hardware status
field, consult the OS/32
Supervisor Call (SVC) Reference
Manual.

3-25

An APU signal entry can be made to the task queue in order to:

• Indicate that the APU is entering the queue wait state. For
example, the APU is waiting for the CPU to place a TCB on the
empty APU queue; no errors exist. In this instance, the APU
status code is set to X'Cl' and the APU error code is set to
X'80'.

• Indicate that the APU has returned a TCB to the APU queue; no
errors exist. In this instance, the APU status code is set to
X'C2' and the APU error code is set to X'80'.

• Indicate that the APU has placed a TCB on the CPU receive
queue; no errors exist. In this instance, the APU status code
is set to X'43' and the error code is set to X'80'.

• Indicate that the APU has detected an error in system data
structures at an arbitrary moment. In this instance, the APU
status code is set to X'C4' and the error code indicates the
particular APU error condition.

• Indicate that the APU has detected an error in system data
structures during the queue wait state. In this instance, the
APU status code is set to X'45' and the error code indicates
the particular APU error condition.

• Indicate that the APU has detected an error in system data
structures during the queue lock state. In this instance, the
APU status code is set to X'46' and the error code indicates
tha particular APU error condition.

3.5.7 User-Defined Trap-Causing Events

The OS/32 supervisor routine called by SVC14 allows the
progranuner to define trap-causing events for a task. SVC14
suspends task execution, saves the current state of the task, and
transfers execution to the SVC14 task trap-handling routine.

One argument can be specified when SVC14 is called. This
argument can point to a memory location that contains a reason
code for the user-defined trap-causing events. See the OS/32
Supervisor Call (SVC) Reference Manual for more information on
using SVC14.

3.6 WRITING TASKS THAT HANDLE TASK TRAPS

A task cannot handle a trap until it has a TSW with the
appropriate trap bits enabled in the TCB and a TSW with the
address of the trap-handling routine in the UDL.

3-26 48-039 FOO RG2

The OS/32 system structure macro library, SYSSTRUC.MiiB, provides
macro instructions that automatically set up a UDL or TSW within
a task's address space. The $UDL instruction defines the UDL
structure; the $TSW instruction defines a TSW structure. To
prepare a task to handle a trap, simply execute these
instructions and set the approp:riate fields or bit masks for the
trap that the task is to handle.

For example, suppose a program is to output its own message and
pause each time it attempts to execute an illegal instruction.
First, place the address of the task trap routine in the illegal
instruction new TSW field (UDL.IITN) as follows:

Example:

MYUDL
MYUDLE

MLIBS 8
NLS:TM
$UDL
ABS
DS
EQU
ORG
DC
DC
ORG~

0
UDL

MYUDL+UDL.IITN
0
A(TRAP)
MYUDLE

FETCHES SYSSTRUC.MLB
SUPPRESSES MACRO LISTING
MACRO TO DEFINE UDL STRUC

SET LOC TO FIELD
DISABLES TASK TRAPS FOR NTSW
PLACES ADDRESS OF TRAP ROUTINE IN NTSW
SET LOC TO END OF UDL

Next, build a TSW with the TSW.IITM bit mask set.

Example:

NTSW

NLSTM
$TSW
DC TSW. I ITM
DC 0

SUPPRESSES MACRO LISTING
MACRO TO EXPAND TSW EQUATES
SETS ILLEGAL INSTRUC TRAP BIT
SETS LOC AT INSTRUC FOLLOWING SVC9

After initiation is completed , the task will execute the "TRAP"
label and will then issue an SVC9 to load this TSW into the TCB
as follows:

TRAP SVC
SVC
SVC

2 ,.MSG
2,PAUSE
9,NTSW

Table 3-9 summarizes the UDL fields and TSW bit masks that
pertain to each type of task trap.

48-039 FOO RO~~ 3-27

3-28

TABLE 3-9 SUMMARY OF TASK STRUCTURES USED FOR HANDLING
TRAPS

UDL I TASK I I
TRAP-CAUSING EVENT FIELDS I QUEUE I TSW BIT MASK t

============--=-: APU Signals
CPU****

Arithmetic Fault**

Data Communications

SVC15
3270
ZDLC

Data Format/
Alignment Fault

Device Interrupt
(SVC6)

Connect
Thaw
Sint
Freeze
Unconnect

Illegal Instruction
Fault

I/O Proceed
Completion
(SVCl)

Load and Proceed
Completion
(SVCl)

Memory Access

Power Restoration

UDL.TSKO
UDL.TSKN
UDL.TSKQ

UDL.ARFO
UDL.ARFN
UDL.ARFR*
UDL.ARFX*

UDL.TSKO
UDL.TSKN
UDL .. TSKQ

UDL.DFFO*
UDL.DFFN
UDL.DFFX*
UDL.DFFR

UDL.TSKO
UDL.TSKN
UDL.TSKQ

UDL. I ITO
UDL. I ITN

UDL.TSKO
UDL.TSKN
UDL.TSKQ

UDL.TSKO
UDL.TSKN
UDL.TSKQ

UDL.MAFO
UDL.MAFN
UDL.MAFL*
UDL.MAFR*
UDL.LMSA

UDL.PWRO
UDL.PWRN

Yes

No

Yes

No

Yes

TSW.APTM
TSW.TSKM

t
I

--------------:
TSW.AFM

--------------:
TSW.TSKM
TSW. ITM

t
I
I
I

--------------:
TSW.DFFM

--------------:
TSW.TSKM
TSW.DIQM

------- --------------:
No TSW.IITM

I
I

------- --------------:
Yes TSW.TSKM

TSW. IOM

------- --------------:
Yes TSW.TSKM t

TSW.LODM
' f

------- --------------:
No TSW.MAFM t

I
f
t
I

------- --------------:
No TSW.PWRM t

48-039 FOO R02

TABLE 3-9 SUMMARY OF TASK STRUCTURES USED FOR HANDLING
TRAPS (Continued)

*

UDL I TASK I
TRAP-CAUSING EVENT FlELDS I QUEUE I TSW BIT MASK

Send Data***
(SVC6)

Send Me:ssage* * *
(SVC6)

Send Qu1eue
Pararneber
(SVC6)

Subtask State
Change
(SVC6)

SVC14

Timer Termination
(SVC2 code 23)

Trap Wait

UDL.TSKO
UDL.TSKN
UDL.TSKQ
UDL.SDQ

UDL.TSKO
UDL.TSKN
UDL. 'l'SKQ
UDL.MSGR

UDL.TSKO
UDL.TSKN
UDL.TSKQ

I UDL.TSKO
I UDL.TSKN

UDL.TSKQ

UDL.Sl40
UDL.Sl4N
UDL.SV14

UDL.TSKO
UDL.TSKN
UDL.TSKQ

Yes

Yes

Yes

Yes

No

Yes

No

Available on Perkin-Elmer Series 3200
processors only.

TSW.TSKM
TSW.SDM

'I'SW. TSKM
TSW.PMM

TSW.TSKM
TSW.TCM

'I'SW. TSKM
'I'SW.SUQM

TSW.Sl4M

'!'SW. TSKM
TSM.TMCM

TSM.WTM

** Task must be linked·-eclited with NAFPAUSE 'task
option enabled.

Task must also include a message buffer to receive
the message. See the OS/32 Supervisor Call (SVC)
Reference Manual.

Available with the Model 3200MPS System only.

NOTE

A task can be suspended until a
trap·-caus ing event e>ccurs by setting the
TSW.WTM bit in the TSW.

48-039 FOO R02 3-29

3.6.l Handling Task Queue Traps

In addition to the UDL and TSW, a program that handles task queue
traps must have a task queue. The DLIST instruction can be used
to build a circular list for the task queue as follows:

QUEUE DLIST 3

The following example builds a UDL structure for a task that
handles I/O proceed completion traps. Note that the address of
the task queue is placed in the UDL.TSKQ field.

Example:

MYUDL
MYUDLE

MLIBS 8
NLSTM
$UDL
ABS 0

UDL DS
EQU
ORG
DC
ORG
DC
DC
ORG

*
MYUDL+UDL.TSKQ
A(QUEUE)
MYUDL+UDL.TSKN
TSW. IOM
A(TRAP)
MYUDLE

FETCHES SYSSTRUC.MLB
SUPPRESSES MACRO LISTING
MACRO TO DEFINE UDL STRUC

INITS ADDRESS OF TASK QUEUE

QUEUE ENTRY - I/O COMPLETION
INITS ADDR OF TASK QUEUE HANDLER

The TSW for a task handling an input/output (I/O) proceed
completion trap is initialized as follows:

$TSW
NTSW DC TSW.TSKM!TSW.IOM SETS TASK QUEUE & I/O PROCEED BITS

DC 0

If a task queue trap is a send data trap, the task requires a
message buffer queue to receive the message sent by the trap.
The address of this queue is placed in the UDL.SDQ field.

Send message traps require a message ring whose address is placed
in the UDL.MSGR field. For more information on how to set up a
message ring or send data buffer queue, see Chapter 6 (SVC6) in
the OS/32 Supervisor Call (SVC) Reference Manual.

3-30 48-039 FOO R02

The following code sets up a UDL, TSW, task queue and message
ring for a task to service a send message trap.

Example:

MYUDL
MYUDLE

QUEUE
TSW

MESSl

MESS2

MLIBS:
NLSTM
$UDL
$TSW
ABS
OS
EQU
ORG
DC
ORG
DC
ORG
DC
DC
ORG
DLIS'l~

DC
DC
ALIGN
DC
OS
DC
OS

8 FETCHES SYSSTRUC.MLB
SUPPRESSES MACRO LISTING
MACRO TO DEFINE UDL STRUC
MACRO TO EXPAND TSW EQUATES

0
UDL
*
MYUDL+UDL.TSKQ
A(QUEUE) STORES TASK QUEUE ADDR
MYUDL+UDL.MSGR
A(MESSl) STORES MESSAGE RING ADDR
MYUDL+UDL.TSKN
0
A(TRAP) STORES TRAP HANDLER ADDR IN LOC
MYUDLE
3
TSW.TSKM!TSW.PMM SETS TSK Q AND SEND MESS TRAP BITS
0
4
A(MESS2)
72
A(MESSl)
72

3.6.2 Tips for Writing Task Trap-Handling Routines

The task trap-handling rout.ine should contain all the program
code necessary to process the trap. Because no registers are
saved as part of the TSW swap that causes a trap-handling routine
to be initiated, the routine should save t.he contents of any
registers required by the task.

Task queue trap-handling routines should contain code that will
remove items from the task qu•9Ue. For example, suppose a send
message trap placed the followinq item in slot five of the Lask
queue:

06 A(MESSl)

48-039 FOO R02 3-31

The following example demonstrates one method of removing this
item from the task queue.

Example:

TRAP EQU *
STM RO,TRAPSAVE SAVE REGS (OPTIONAL)
RTL !,QUEUE TRANSFER QUEUE ITEM TO Rl
BO TRAPEXIT QUEUE EMPTY
RLL 1,8
LBR 2,1 VERIFY REASON CODE
CLI 2,6
BNE ERROR
SRL 1,8 SHIFT Rl ONE BYTE TO RIGHT
LA 2,12(1) (Rl) +·12 IS MESS START ADR
ST 2,WRITE+SVC.l.SAD STORE ADR IN SVCl PARBLK
LI 2,63(2) (R2)+63 IS MESS END ADR
ST 2,WRITE+SVCl.EAD STORE ADR IN SVCl PARBLK

LIS 2,0 RESET BUFFER FALL BIT IN
RBT 2,0(1) MESSAGE BUFFER
B TRAP SEE IF ANY MORE ON QUEUE

TRAPEXIT EQU lie

LM RO,TRAPSAVE RESTORE REGS (OPTIONAL)
SVC 9,UDL.TSKO LOAD OLD TSW

To resume task execution, a trap-handling routine must return the
old TSW in the UDL to the TCB. In the above example, the routine
issued an SVC9. See the OS/32 Supervisor Call (SVC) Reference
Manual for more information.

3.6.3 Handling Traps From Trap-Generating Devices

OS/32 provides intertask control services that allow a task to
receive a trap from an external trap-generating device. These
services include:

Connect

Thaw

Sint

Freeze

Unconnect

3-32

attaches a trap-generating device to a task.

enables interrupts from
trap-generating device.

the attached

simulates an interrupt from a trap-generating
device.

disables interrupts from
trap-generating device.

the attached

detaches a trap-generating device from a task.

48-039 FOO R02

These services implement the proposed standards established by
the Instrument Society of Americ:a (ISA) for electronic devices.

An example of a task that re~ceives and handles traps from
trap-generating devices is the Perkin-Elmer 8-line interrupt
module driver. To handle a trap received from a trap-generating
device, the task sets the TSW.TSKM and TSW.DIQM bits in t.he TSW.
The task also builds a task queue to receive an entry from the
device when an interrupt occurs. Using the OS/32 intertask
control services and data structures for handling task queue
traps, the user can write a task that handles traps from external
devices.

The OS/32 intertask control services can also be used to attach
an APU to a task and enable interrupts from the APU each time it
sends a signal to the CPU in a Model 3200MPS System. To handle
a trap generated by an APU signal, t.he task must have the
TSW.APTM and •rsW .. TSKM bits set] .. n the TSW. The task must also
build a task queue to receive the interrupt information items
from the APU. See Figure 3-4.

See the OS/32 Supervisor Call (SVC) Reference Manual for more
information on the intertask control services provided by OS/32.

3.6.4 Sample Task Trap-Handlin9 Program

The following assembly program (called the directed task)
establishes an environment for handling task queue entry traps on
the reception of a message from another task (called the calling
task), and. then places itself in a trap wait state. After the
send message trap occurs, task execution branches to the task
queue trap-handling routine that removes the queue enlry and
stores the beginning and ending address of t.he message in an SVCl
parameter block.. The routine then outputs the message sent from
the calling task. See the OS/32 Supervisor Call (SVC) Reference
Manual for more information on SVCl.

48-039 FOO R02 3-33

Example:

1
2
3
4
5
6
7
8 MYUDL
9 MYUDLE

10
11
12
13
14
15
16
17
18
19 QUEUE
20 *
21 TSW
22
23
24 MESSl
25
26 MESS2
27
28
29
30 WRITE
31 ENDBLK
32
33
34
35
36 START
37
38
39 QTRAP
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 ERROR
56

3-34

PROG DIRECTED TASK WITH TRAP HANDLER
MLIBS 8 FETCH SYSSTRUC.MLB
NLSTM
FREZE
$UDL DEFINE UDL STRUC
$TSW DEFINE TSW STRUC
ABS 0
DS UDL RESERVE STORAGE FOR UDL
EQU *
ORG MYUDL+UDL.TSKQ INITIALIZE UDL FIELDS
DC A(QUEUE) DEFINE TASK QUEUE LOC
ORG MYUDL+UDL.MSGR
DC A(MESSl) DEFINE MESSAGE RING LOC
ORG MYUDL+UDL.TSKN
DC TSW.PMM
DC A(QTRAP) DEFINE NEW TSW FOR TASK TRAP HANDLER
ORG MYUDLE
IMPUR
DLIST 3

DC
DC
ALIGN
DC
DS
DC
DS
$SVC1
ALIGN
DS
EQU
ORG
DB
DB
ORG
EQU
SVC
SVC
EQU
RTL
RLL
LBR
CLI
BNE
SRL
LA
ST
LA
ST
SVC
LIS
RBT
RBT
SVC
SVC
END

ENABLE TRAP WAIT,TASK Q TRAPS,MESS Q
TSW.WTM!TSW.TSKM!TSW.PMM
0 RESUME AFTER SVC9
4
A(MESS2) RESERVE STORAGE FOR MESSAGE RING
72
A(MESSl)
72

4
SVCl.
*
WRITE+SVCl.PUN
SVl.WRIT!SVl.WAIT
2
ENDBLK
*
9,TSW
3,0

*
l,QUEUE
1,8
2,1
2,6
ERROR
1,8
2, 12 (1)
2,WRITE+SVCl.SAD
2,63(2)
2,WRITE+SVCl.EAD
l,WRITE
2,0
2,0(1)
2,UDL.TSKO
9,UDL.TSKO
3,4
START

SVCl PARAMETER BLOCK

I/O WRITE AND WAIT FUNC
LOGICAL UNIT 2

ENABLE Q ENTRIES,TRAP WAIT,ENTER TRAP WAIT
END TASK

REMOVE QUEUE ENTRY TO Rl
ROTATE REASON CODE TO I..DW BYTE
MOVE REASON CODE TO R2
IS IT A MESSAGE (RC-6)
NO, ABORT ON ERROR
SHIFT A(MESS) BACK IN Rl
R2 • A(MESSAGE START)
PUT ADR IN SVCl PARBLK
R2 • A(MESSAGE END)
PUT ADR IN SVCl PARBLK
ISSUE WRITE
BIT OFFSET = 0
RELEASE MESSAGE BUFFER
RESET TRAP WAIT IN OLD TSW
LOAD OLD TSW
ABORT: RETURN CODE = 4
SPECIFY PROGRAM START ADDRESS

48-039 FOO R02

3.6.5 Using the OS/32 System Macro Library to Handle Traps

The OS/32 system macro library provides macro definitions for
setting up the data structures necessary to handle task traps.
Another macro, LTSW, performs a TSW load. The following program
performs the same functions as the srunple program given in
Section 3.6.4. Notice, however, the lines of code that have been
replaced with one-line macros.

Example:

MLIBS 10
NLSTM

LINES REPLACED BY MACROS

QUEUE
MESSl
START

TRAP

ERROR

DLIST 3
MSGRING 3,72
SETUDL TSKQ-QUEUE,MSGR=MESSl,TSKN=(O,TRAP)
LTSW WT,TSKE,TMQ
EOT RC=O
EQU *
RTL l,QUEUE
RIL 1,8
LBR 2,1
CLI 2,6
BNE ERROR
SRL 1,8
WRITE LU=2,ADOR=l2(1),RECLa64
LIS 2,0
RBT 2, 0 (1)
LTSW PCB•UOL.TSKO
SVC 3,4
END START

See the OS/32 System Macro Library Reference Manual
on how to use the OS/32 macro instructions
trap-handling pro~rrams.

3.6.6 Writing FORTRAN Trap-Handling Programs

24-27
5-17

21-22,37
38

28-35,50

54

for
for

details
writing

The Perkin-Elmer FORTRAN VI I Run·-time Library (RTL) provides
subroutines that allow the FOR,rRAN programmer to write programs
that handle task traps. Subroutine INIT initializes the task's
TSW, UDL, task queue and message ring. Subroutine ENABLE sets
the appropriate TSW trap bit and stores the address of the task
trap-handling routine in the UDL.

48-039 FOO R02 3-35

Example:

C THIS PROGRAM SERVICES DEVICE INTERRUPTS
c

EXTERNAL NAME

CALL INIT

CALL ENABLE (l,NAME)

END

C THE FOLLOWING SUBROUTINE
C HANDLES THE TASK TRAP
c

SUBROUTINE NAME(...)

RETURN
END

See the FORTRAN VII User Guide for more information on writing
FORTRAN programs that handle task traps.

3.6.7 Writing Pascal Trap-Handling Programs

Writing a Pascal program that enables and handles task traps is
very difficult, but it can be done by using a combination of
Pascal features and OS/32 Conunon Assembly Language (CAL}
routines.

The SMPLSVCS.PAS file supplied with the Perkin-Elmer Pascal
compiler provides constants and types for handling SVCs in a
Pascal program. The following code represents a sample Pascal
program for enabling memory access faults.

3-36 48-039 FOO R02

Example:

PROGRAM SAMPLe:;

CONST MAFN = 35;
TSW_ MEMF_EN = #04000000;

TYPE UDL_IND:EX == 0 .. 63;

VAR NEWTSW,JHADDR: INTEGER;

PROCEDURE TOrnDL (I: ULD_INDEX;
VAL: UNIV INTEGER); EXTERN;

PROCEDURE GETJHADDR (VAR HADDR: INTEGER); EXTERN;
PROCEDURE SET1rsw (NEWTSW: INTEGER); EXTERN;
PROCEDURE SVC.2PAUS; EXTERN;

BEGIN
GETHADDR (IHADDR) ;
TOUDL (MAF1~, HADDR) ;
NEWTSW := 1rSW_.MEMF_EN;
SETTSW (NEWTSW) ;
SVC2PAUS;

END.

GETHADDR PROG GET ADDRESS
ENTRY GETHADDR
EXTRN MEMAFH

OF HMIDLER

STACK STRUtC STRUC OF ACTIVATION REC ON STACK
OLD LB DSF 1 OLD LOCAL BASE (R2)
RETAD DSF 1 RETURN ADDRESS
SLINK DSF 1 STATIC LINK

ENDS
GETHADDR EQU *

ST 15,RETAD(2) SAVE RETURN ADR ON STACK
LA 8,MEMAFH MOVE ADR OF HANDLER
ST 8,0(3) TO ARGUMENT (R3 • A(HADDR))
L 15, RETAD(2) RESTORE RETURN ADDRESS
L 2 ,OLDLB(2) RELOAD LOCAL BASE (RELEASE STACK)
BR 15 RETURN
END

48-039 FOO R02 3-37

SETT SW PROG SET UP NEW ·rsw IN TCB
ENTRY SETTSW

STACK STRUC
OLD LB DSF 1
RE'rAD DSF 1
SLINK DSF 1
SVC9BLK DSF 2

ENDS
SETTSW EQU * srr 15,RE:TAD(2) SAVE RETURN ADDRESS

ST 3,SVC9BLK(2) STORE NEW TSW ON STACK
LIS RO,O
S'r RO,SVC9BLK+4(2) ZERO LOC OF NEW TSW
SVC 9,SVC9BLK(2) LOAD NEW TSW
L 15,RETAD(2) RESTORE RETURN ADDRESS
L 2,0LDLB(2) RELEASE STACK
BR 15 RETURN
END

MODULE MEMAFH
BEGIN

END

The above example enables and handles memory access faults. 'rhe
user-written SETTSW procedure issues an SVC9 to replace the
Link-initialized TSW in t..he TCB with a TSW enabled for memory
access faults. The user-written procedure GETHADDR sets the
variable HADDR to the address of the task trap-handling routine
(MEMAFH). The procedure TOUDL places the address of this routine
into UDL.MAFN. TOUDL is included in the SMPLSVCS.PAS file.

Except for arithmetic fault handlers, all trap-handling programs
require a similar user-written procedure to enable the
appropriate trap bit. SMPLSVCS.PAS provides information about a
procedure that automatically enables the arithmetic fault trap
bit in the 'res.

If the trap-handling routines are written in Pascal, the Pascal
register set must be set up or preserved. Entry into the
trap-handling routine would then usually be through a CAL routine
that establishes the register set. A separate stack/heap area
may need to be set up in such a CAL rout..ine.

For more information on traps and interfaces between Pascal and
CAL routines, see the Perkin-Elmer Pascal User Guide, Language
Reference and Run-Time Support Reference Manuals.

3-38 48-039 FOO R02

CHAP1~ER 4
OS/32 DISK FILE ~~AGEMENT SERVICES

4.1 INTRODUCTION TO THE OS/32 FILE MANAGER

Application prc::>grams read and wr i.te data through the peripheral
devices connected to the computer. In addition to such
input/output (I/O) operations as logging messages on the system
console or r•eading data from a multi-terminal monitor (MTM)
terminal, a taiak e~hould be able to store any amount of data for
future use. All tasks within a system should be able to store,
move, and update all information required by the user's
application.

The OS/32 file manager stores and retrieves information for a
task on secondary storage devices (disks, magnetic tapes, floppy
disks, etc.). The file manager partitions this storage into
smaller areas, called files, that can be used by tasks for data
and program stc::>rage. In addition, the file manager provides
tasks with the following support services for management of files
on disk:

Allocate

Delete

Rename

Open

Close

Fetch
Attributes

Checkpoint

initializes a file by allocating space on
disk.

removes a file from disk.

changes the name of a file.

assigns a file to a task.

releases a
assignment)
of the file.

file (cancels an existing
when a task has completed its use

examines the attributes of a file.

ensures that all data in an output buffer is
written to d ie~k.

This chapter d1escr ibes the OS/32 structures that are used by the
file manager to provide these services.

48-039 FOO R02 4-1

4.2 SYSTEM RESOURCE MANAGEMENT

The file manager controls two types of system resources for a
task: files and the devices that store and retrieve files.

A file is a named collection of data records on a secondary
storage device. Secondary storage devices supported by the file
manager include fixed-head disks, moving-head disks, and floppy
disks. Fixed-head disk drives have smaller average access times
than moving-head disks, while moving-head disks typically have
larger storage capacities.

Devices are read from or written to like ordinary disk files;
i.e., a task performs a data transfer to a device in the same
manner it would perform a data transfer to a file on disk.
However, when a task performs an I/O operation to a device (such
as a printer, data communications device, magnetic tape, etc.),
data must be transferred via an appropriate protocol determined
by the device driver. Device drivers are system software modules
that make the device look like an ordinary disk file to the file
manager. These drivers are included in the OS/32 I/O subsystem.

Every file and device on a Perkin-Elmer system is referenced by
a file descriptor (fd). The fd is used by the file manager to
find and access a device or file as required by the task.

Format:

[{
voln:}]
dev: [filename]

Parameters:

voln:

dev:

4-2

is a 1- to 4-character alphanumeric string
specifying the name of the disk volume on
which the file specified by filename resides.
The first character must be alphabetic, the
remaining alphanumeric. If this parameter is
omitted, the default is the system volume in
an OS/32 real-time environment or a default
volume specified by the user in an MTM
environment.

4-character alphanumeric string
the name of a device (e.g., CON:,
or MAGl:). The first character

is a l·- to
specifying
PR:, NULL:,
must be
alphanumeric.

alphabetic, the remaining

48-039 FOO R02

filename

.ext

act no

file class

is a 1- to 8-character alphanumeric string
specifying the name of a disk file. The first
character must be alphabetic, the remaining
alphanumeric. If a filename is specified when
a device name~ is referenced, the filename is
ignored.

is a 1- to 3-character alphanumeric string
specifying the extension to a filename.

is a decimal number ranging from 0 to 65,535,
specifying the account number associated with
the file. Account numbers 1 through 65,535
(excluding ~~55) are used by MTM for terminal
users. Account number 255 is reserved for the
MTM system administrator. Account number 0 is
for system files and is the default for all
operator commands. Under MTM, only privileged
users may ~specify an account number rather
than a file class.

is a !-character alphabetic string specifying
the file class. The file classes are:

• P for a private file

• G for a group file

• S for a system file

If the file class is omitted, the default is
P for files generated in an MTM environment
and S for files generated in an OS/32
real-time environment.

4. 3 FILE ORG.ANIZATION

A data record is a list of information elements that are accessed
together. Before the file manager can store a record on a disk,
the disk must be initialized by the OS/32 disk initializer
program. See the OS/32 Fastchek Reference Manual for more
information. Figure 4-1 shows the surface of a formatted disk.
Note that the surface of the disk is divided into tracks. A
track is the area covered by a stationary read/write head with
one revolution of the disk. ThE~ amount of information that can
be stored on a track is a function of the recording density and
size of the track.

48-039 FOO R02 4-3

5623
DIRECTION OF ROTATION

Figure 4-1 Formatted Disk Surface

SECTOR
NUMBER

When a disk is initialized, the tracks are divided into sectors.
The disk surface shown in Figure 4-1 is divided into eight
sectors. Each sector of each track holds 256 bytes of data, the
smallest addressable storage area on disk.

The file manager uses two methods for organizing data records
into files on formatted disks:

• linked-list indexed organization, and

• contiguous organization.

4-4 48-039 FOO R02

4. 3 .1 Linked-·List Indexed Organization

When the file manager creates a file using the linked-list
indexed organization method, it sets aside two types of storage
areas or blocks on disk: data blocks and index blocks. These
areas are shown in Figure 4-2. The data block is a group of one
or more contiguous sectors that are used to store the data
records. Thei index block is a group of contiguous sectors that
store pointers to the individual data blocks. Note that index
block 1 in F'igure 4-2 points to the first sector of index block
2. Because each index block points to its successor, the file is
said to contain a linked-list indexed organization. One index
block for each indexed file assiigned to a task remains in dynamic
system space as long as the file is assigned to the Lask. The
unused index blocks remain on disk. For buffered indexed files,
space for two data blocks is reserved in dynamic system space as
long as the file remains assigned.

5624 INDEX BLOCK 1

(
0(0)4
4(4 4

SECTOR SECTOR

#1 #2

SECTOR SECTOR

#5 #6

INDEX BLOCK 2

0(0)4
4(4)4

SECTOR

#3 #4

SECTOR

#7 #8

INDEX
BLOCK
AREA

DATA
BLOCK
AREA

Figure 4-2 Linked-List Indexed File Organization

48-039 FOO R02 4-5

4.3.2 Contiguous Organization

A contiguously organized disk file consists of a sequence of data
blocks stored on tracks with consecutive addresses. Each block
of data is one sector (256 bytes) in length. Contiguous files
can be accessed randomly (by sector) or sequentially. When
accessed sequentially, the contiguous file appears to have a
magnetic tape-like organization; i.e., to the task the file
resembles a magnetic tape with 256-byte blocks. For example, the
task can write a filemark (X'l313') to the first two bytes of a
sector in a contiguous disk file. Using the f ilemark as a record
delimiter, the task can space forward or backward to the filemark
as it would to a f ilemark on magnetic tape.

4.4 DISK ORGANIZATION

Disk packs organized under OS/32 contain two distinct categories
of information:

• Control information

• User-defined data

Control information includes the volume descriptor, bit map, file
directory and pack administration file, which perform the
following functions:

• The volume descriptor is a data structure used by the file
manager to identify the disk volume and to point to structures
that contain the file and disk space information.

• The bit map, also called a sector allocation map, is used to
indicate which sectors are in use on a disk. Also, in the
case of defective sectors, the bit map indicates which sectors
are unusable.

• The file directory is a file used by the file manager to keep
track of all files on the disk. This file is organized as a
linked-list, where each entry of the list identifies and
describes a file on the disk.

• The pack administration file contains a list of defective
sectors and a record of the administrative history of the disk
pack.

User-defined data includes all the contiguous and
application files.

indexed

4-6 48-039 FOO R02

The Mirror Disk facility maintains two identical copies of the
user-defined files on separate disk packs. These files are
physically synchronized by keeping them identical bit for bit and
sector for sector. The control information is also mirrored in
normal write and read operations in the mirrored environment.
This control information is important in establishing whether two
disks are compatible for mirroring.

4.5 SUPPORTED DISK FILE TYPES

How a file is organized determines the size of its data records.
Contiguous files have a fixed record length and file length.
Indexed organization supports fixed record lengths but Lhe file
is extendable. Files can extend the length of the disk volume.
OS/32 does not support multi-volume files.

To meet the requirements of applications running in a real-time
environment, the OS/32 file manaqer supports five different types
of disk files. These file types offer the user a flexible range
of record lengths, file lengths and access methods. The file
types are:

• Contiguous

• Indexed

• Nonbuf f ered indexed

• Extendable contiguous

• Long record

The following sections define th•~se file types in terms of their
record and file lengths. Access methods are discussed in Section
4 .. 7.

4.5.1 Contiguous Files

Contiguous files are organized sequentially on disk. When the
file manager has allocated a contiguous file (i.e., reserved a
user-specified number of contiguous sectors on disk), the maximum
length of the file is fixed. It cannot be changed during data
transfer. Records within a contiguous file are 256 bytes (one
sector) in length. A read or write to a contiguous file can
transfer any amount of data (from a partial sector to the entire
length of the file) in a single I/O operation. Nevertheless, the
I/O operation must begin on a sector boundary.

48-039 FOO R02 4-7

Like records stored on magnetic tape, contiguous file records are
stored on consecutive adjacent sectors. In addition, a f ilemark
can be written to the first two bytes of each record. When using
the f ilemark capability, care should be taken that any data to be
transferred to disk does not contain X'l313'.

4.5.2 Indexed and Nonbuffered Indexed Files

Two types of files for which the file manager uses a linked-list
organization are the buffered indexed and nonbuffered indexed
files. Because these files are open-ended, the maximum length of
either of these files is determined during data transfer.
Maximum file length is limited only by the free space available
on disk; however, records are restricted in size from 1 to 65,535
bytes. In addition, because of hardware restrictions,
nonbuffered indexed file records must be an· even number of bytes
in length. The record size is specified by the user when the
file is allocated. Records are stored in data blocks consisting
of one or more 256-byte contiguous sectors.

The organization of records in a nonbuffered indexed file differs
from that for indexed file records. Each record in a nonbuffered
indexed file begins on a physical sector (256-byte) boundary,
whether or not the previously transferred record filled up its
sector space. Also, nonbuffered files do not have memory
reserved in dynamic system space for data block buffers. Indexed
file records are transferred so no unused space remains between
two records. There are no hardware restrictions for indexed
files.

Data block size describes the physical block size to be used for
buffering and debuffering operations on indexed files or data
conununications devices. Data block size represents the block
size in sectors of the physical data blocks containing the file.

Index block size represents the size of index blocks in sectors.
Index blocks are actual pointers to physical data blocks.

4.5.3 Extendable Contiguous Files

The third type of file that uses a linked-list organization is
the extendable contiguous file. Like the indexed and nonbuffered
indexed files, the maximum length of an extendable contiguous
file can be extended by write operations. A random write to a
record past the current end of file will cause that record to
become the new end of file, and empty records will be created
between the previous last record and the new last record.
However, like contiguous files, the record length is fixed at 256
bytes (1 sector), and any number of sectors can be transferred in
a single I/O operation.

4-8 48-039 FOO R02

4.5.4 Long Record Files

OS/32 also supports the long record file type which is used to
perform I/O operations with very large logical record lengths.
This file type is similar to an extendable contiguous file but
differs in that the logical record length of the long record file
is specified by its data block size.

For long record files the maximum size of a data block is 65,535
(64K) secton~, which is equivalent to an absolute maximum logical
record length of 16,776,960 (16M) bytes. With the use of a long
record file, a maximum of 16Mb of data can be read from or
written to memory with a single 1/0 command. In practice,
however, the actual maximum logical record length for any given
system is limited by the amount of memory available for I/O
buffering.

4 . 6 MIRROR I) I SI<: ENVIRONMENT

The Mirror D:Lsks facility provides a service such that in the
event of a disk failure a system can continue normal operation
using a duplicate copy of the failed disk. This is made possible
by maintaining pairs of disks in physical synchronization. Disks
are physically sychronized if the user-defined data files are
identical bit for bit. One disk is designated as the primary
disk and the other is designated as the secondary disk.

The only necessary hardware to support the facility is the extra
disks requil~ed. These must be the same size as those which are
to be mirrorE~d.

During normal operation, any write to a mirrored disk will result
in writes to both disks. This not only includes writes to the
files themsE~lve~s, but also file allocation, file renaming, etc.
Control is returned once both writes are complete. If one disk
fails, the system continues normal operation using the remaining
good disk. Reads are scheduled from one disk only, the primary
disk. In thE~ event that an attempt to read from the primary disk
fails, data is. read from the secondary disk instead. The
programmer interface is essentially unchanged. It is possible,
however, to detect when a prima.ry read has failed. This requires
an extended option as described in the OS/32 Supervisor Call
(SVC) Reference Manual.

4.6.1 Disk Failure

In the case of a failure of one of a mirrored pair of disks, the
following occurs:

• Repeated messages are output to the system console, at regular
intervals,. indicating the disks are no longer synchronized.

48-039 FOO R02 4-9

• The secondary disk immediately takes over if the primary disk
failed, with no interruption to the system software using the
disk.

4.6.2 Normal Input/Output (I/O) Performance

The disks of a mirrored pair should be on separate selector
channels (SELCHs) to ensure the efficiency of write operations to
the mirrored disks. These disks are not required to be on
separate SELCHs, but if they are, the performance degradation is
likely to be minimal.

Degradation varies according to the volume of data being written
for mirror disks that are on the same SELCH. It is estimated
that it takes 22% longer to write a sector and 45% longer to
write a 16kb buffer in a mirrored environment. Read operations
are not adversely affected.

The Mirror Disk facility is designed to be user-transparent.
However, extended SVCl options are available (see the OS/32
Supervisor Call (SVC) Reference Manual for more information).

4.7 DISK SPACE MANAGEMENT

In servicing task file requests, the file manager must:

• Allocate file directory entries and index blocks.

• Allocate a sufficient amount of disk space to contain the file
(e.g., contiguous files).

• Extend the space already allocated to a file (indexed,
nonbuffered indexed, extendable contiguous or long record) by
allocating additional index blocks and data blocks.

• Delete a file and return the space to the available space
inventory.

4.8 VOLUME DESCRIPTOR

The file manager must keep track of all the files on a disk
the storage space available to the files to perform
operations effectively. A special data structure, called
volume descriptor, is used by the file manager to identify
disk volume and to point to structures that contain the file
disk space information.

and
it's
the
the
and

The volume descriptor is shown in Figure 4-3. When formatting
the disk, the Fastchek Utility initializes the volume descriptor
in logical block address (LBA) 0 (sector 0, head 0, cylinder 0).
Refer to the OS/32 Fastchek Reference Manual.

4-10 48-039 FOO R02

6(124

0(0) VOL. (4)
VOLUME NAME

4(4) ATRB (4)
VOLUME ATTRIBUTES

I--·

8(8) FDP (4)
FIRST DIRECTORY BLOCK POINTER

I--·

12!(C) OSP (4)
POINTER TO OS IMAGE (UNUSED)

I--·

1€1(10) ass (4)
SIZE OF OS IMJ~GE (UNUSED)

~-

20(14) MAP (4)
POINTER TO BIT MAP

I--·

24(18) ILA (4)
RESERVED FOR OS/16

~-

2EH1C) SOP (4)
SECOND DIRECTORY BLOCK POINTER

i----

32(20) SYNC (4)
SYNCHRONIZATION STAMP

I
~.

Figure 4-3 Volume Descriptor

The volume descriptor is used as the basis for establishing
whether a pair of disks are synchronized and mirrored. The
following fields of the volume descriptor are used:

• Disk volume name

• Volume on-line bit of the attribute words

• First directory block pointer

• Pointer to the bit map

• Synchronization stamp

After the initial synchronization
synchronization stamp is the main
mirror disk operation.

48-039 FOO R02

of the two disks, the
factor used to control the

4-11

The stamp is initialized to zero whenever a disk pack is
initialized or checked by the Fastchek Utility. A zero setting
indicates that the Synchronization Utility (DISCSYNC) must be
run. See the OS/32 System Support Utilities Reference Manual for
information. It is important that disk packs used for mirroring
are initialized by the Fastchek Utility.

The synchronization stamp is only calculated and placed in the
volume descriptor when a pair of mirrored disks are marked off
together. The stamp is cleared again when the disks are marked
on. In all circumstances, the synchronization stamp remains with
a zero setting and must be resynchronized using the DISCSYNC
Utility when used as a mirrored pair again.

4.8.l File Directories

The file manager keeps track of all the files on the disk through
the primary file directory. This file is organized as a linked
list of one-sector directory blocks. Figure 4-4 shows one block
of a primary directory. Note that it contains five directory
entries and a pointer to the next primary directory block.

5626

0 (0) 4
NEXT DI RECTORY BLOCK POINTER

4 (4) 48
DIRECTORY ENTRY 1

52 (34)
DIRECTORY ENTRY 2

48

100 (64)
DIRECTORY ENTRY 3

48

148 (94)
DIRECTORY ENTRY 4

48

196 (C4)
DIRECTORY ENTRY 5

48

244 (F4)
RESERVED

12

256 (100)

Figure 4-4 Primary Directory Block

4-12 48-039 FOO R02

6023

0(0)

FNM (Bl
FILE NAME ----- ---- ----------- -r

8(8) EXT (3) 11 (8) ACT (1)
EXTENSION ACCT NUMBER

12(C) FLBA (4)
FIRST LOGICAL BLOCK ADDRESS

--- -·---·-

16(10) LLBA !4)
LAST LOGICAL BLOCK ADDRESS

20(14)
WKEY (1) -=r1(151 AKEY 111 . r2(i61 LRCL (2)

WRITE KEY READ KEY LOGICAL RECORD LENGTH
---~------ --- " .

24(18) DATE 14)

DATE FILE ALLOCATED

28(1C) LUSE i'.4)

DATE FILE LAST WRITTEN

32(20) WCNT (2) RCNT (2)
WRITE COUNT READ COUNT

36(24)

=11221

ATRB (1) J:251 BLSZ (1) B(26) INBS (1) 1391271 SHDS 111
SHARED DISK SUPPORT

ATTRIBUTES BLOCK SIZE INDEX BLOCK SIZE (BOOENSEEWERE)

40(28) CSEC (4)
#CURRENT SECTOR/# LOGICAL RECORDS

- -----~

44(2C)
LASN (4)

DATE FILE LAST ASSIGNED

Figure 4-5 Primary Directory Entry

Each directory entry is a 48-byte data structure that identifies
and describes a file on the disk. Every file has an entry in the
primary directory. As shown in F.igure 4-5, the directory entry
tells the file manager the:

• Name and extension of the file

• Low-order byte of the file's account number. (The eight bits
of the high-order byte of the account number are distributed
across the high-order bits of the eight characters of the
filename.)

• Addresses of the first and last sectors if the allocated file
is a contiguous file, or the addresses of the first and last
index blocks if the allocated file is a nonbuffered indexed,
extendable contiguous, indexed or long record file

• File's access privileges

48-039 FOO R02 4-13

• Length of the file's records

• File attributes or set of operations that can be performed on
the file

• Date the file was allocated

• Date the file was last read or written by a task

• Data block size and index block size if the file is an
indexed, nonbuffered indexed, extendable contiguous or long
record file

• Number of disk records or sectors currently used by the file

Only one directory block can remain in ·memory at a time;
therefore, only five file entries can be memory resident. The
file manager scans these entries to find a file. To search the
remaining files on the system, the file manager has to replace
the primary directory block in memory with the next block from
the disk. Examining five entries at a time to find a file can
greatly increase the time it takes to access that file.

To decrease the amount of time required to scan the directory,
the file manager uses a secondary file directory. (See Figure
4-6.) The secondary directory is a contiguous file named
SYSTEM.DIR that is created when the disk is marked on-line with
secondary directory support. The secondary directory points to
each block of the primary directory and lists the filenames of
the directory entries that are in each block. All or part of the
secondary directory is maintained in memory in dynamic system
space.

After the file manager finds the filename it is searching for in
the secondary directory, it can directly access the primary
directory block that contains its directory entry. Note that
while this method saves access time, the secondary directory does
use more memory space than scanning the primary directory.

To use the secondary file directory method, specify this option
in the MAR.KON command when marking a disk on-line (see the OS/32
Operator Reference Manual). This command also allows the
operator to specify the size of SYSTEM.DIR, including room for
expansion. If, during processing, the secondary directory cannot
accommodate any additional files that are being allocated, the
disk must be marked off-line and then marked back on-line to
recreate a larger secondary directory. The MARKON command will
provide the operator with information to make a decision as to
the preferred size of the secondary directory.

4-14 48-039 FOO R02

5628

0(0) PRIMARY DIRECTORY BLOCK POINTER 1 [4]

4(4) FILENAME 1 [12]

16(10) FILENAME 2 [12]

28(1C) FILENAME 3 [12]

40(28) FILENAME 4 [12]

52(34) FILENAME 5 [12]

I
I
I
I
I
I
I

192(CO) PRIMARY DIRECTORY BLOCK POINTER 4 [4]

196(C4) FILENAME 16 [12]

208(DO) FILENAME 17 [12]

220(DC) FILENAME 18 (12]

232(E8) FILENAME 19 [12]

244(F4) FILENAME 20 [12]

256(100)

Figure 4-6 Secondary F:lle Directory (SYSTEM.DIR)

Within a mirror disk environment, attention should be given to
the file directories of the mirrored disks. Since the file
directories are mirrored bit for bit on the secondary disk, the
primary file directories must bc:?g in at the same posit ion on both
disks. If the secondary file directory SYSTEM.DIR is present in
memory, it may need to be deleted and recreated for the primary
disk if there are any defective sectors on the secondary disk.

48-039 FOO R02 4-15

4.8.2 Bit Map

The file manager interrogates the bit map to determine which
sectors are available for allocation. The bit map maintains an
available space inventory for the disk volume. A bit in the bit
map is assigned to each sector on disk. When a bit in the bit
map is set to 1, its corresponding sector is allocated for a
file. When the bit is set to 0, its corresponding sector is
free. The disk initializer places the bit map close to the file
directory to minimize disk head movement when allocating files.

When marking on mirror disks, the bit map is used to synchronize
the disks. If the disks are compatible, the primary disk's bit
map is updated for all sectors that are defective on the
secondary disk and for any extra sectors taken up by the
secondary disk's pack administration file. The pack
administration file (PACKINFO.DIR) is a file created and
mainitained by the Fastchek Utility containing a list of
defective sectors. Defective sectors are an important factor in
establishing whether two disks can be mirrored. For further
information regarding the pack administration file refer to the
OS/32 Fastchek Reference Manual.

4.8.3 Permanent and Temporary File Allocation

When a file is allocated, it can be designated as a permanent or
temporary file. If permanent, the file remains on disk until an
operator command, MTM command or task asks the file manager to
delete it. Temporary files remain on disk only as long as they
are assigned to a task. Once the assignment to a task is closed,
the file manager deletes the file.

4.9 ASSIGNING FILES TO A TASK

The OS/32 file manager allows a task to access system resources
via a logical unit (lu) number rather than by the name of a
device or file. Up to 255 logical units (0 through 254) can be
used by a task. Because lu255 is reserved, it is not available
for task use.

All disk files that are to be accessed by a task must be assigned
to an lu before any I/O operations can be performed to those
files. Once a file is assigned to an lu, the OS/32 I/O subsystem
ensures that the proper device driver or controller is used when
the task requests an I/O transfer to the lu. Such I/O requests
are device-independent I/O; i.e., device assignments are made by
the operator who started the task, not by the task that made the
I/O request.

For example, suppose a FORTRAN program has the following code:

4-16

READ(2,100) A
WRITE(l,100) B

48-039 FOO R02

When executed, the task reads a Vctlue from the device or file
assigned to lu2, stores it into variable A, and writes the value
<)f B to the device or file assigned to lul. The operator may
assign lu2 to an MTM terminal, d iesk file or whatever input device
is available to the task. Likewise, lul can be assigned to a
disk file, printer, terminal e>r whatever output device is
available. Hence, device-independent 1/0 allows the devices or
files that will be used by a task to be changed without changing
the· actual code within the prograr1!l.

Sometimes a proigrammer may wish te> perform an operation while
suppressing the output from that e>peration. For example, one may
wish to compile a program or build a task image without creating
an object or task image file. To do this, the pertinent lu
should be assigned to the NULL: device. This assignment allows
the operation to be performed without generating any output from
that operation.

·4 • 10 ACCESS METHODS

The OS/32 system services that interpret and fulfill a task's
request for storage and retr h~val of data are known as access
methods. The OS/32 1/0 subsystem supports two access methods:
buffered and nonbuffered. Both methods are transparent to the
user.

To perform a read or write operat.ion, a task should have two
interfaces to these access methods:

• the user code interface that r ·~quests a data tr ans fer (e.g. ,
a READ or WRITE statement in FORTRAN), and

• the lu assigned to the file required by the task.

5629 FIREC

U-TASK --

BiREC
FFILE
BFILE
OPEN

REWIND
RIEAD

WHITE

RECORDS

_ __..,.
OS/32

ACCESS

METHODS

LU ---
BUFFERED - RECORDS -- --

t---------
LU -NON BUFFERED ..

RECORDS _ - --

Figure 4-7 Task Interfaces to Access Methods

48-039 FOO R02 4-17

As shown in Figure 4-7, the access methods fall between these two
interfaces~

Each time a read or write operation is performed to a file, the
access methods adjust the current record pointer for that file.
The value of the current record pointer is the number of a
logical record in a file on disk. For contiguous and extendable
contiguous files, this number refers to a logical sector address.
For nonbuffered indexed, indexed files and long record files,
this number refers to a logical record. The value of the current
record pointer can range from 0 to the current number of records
in the file minus one.

All records can be accessed sequentially or randomly. When data
records are transferred sequentially (i.e., one record at a time)
the record pointer is automatically incremented by 1 to point to
the next record after the last record or sector is transferred.
After a random read or write operation is completed, the record
pointer is set to the number of the record immediately following
the last one that was transferred.

In addition to read or write operations, the record pointer is
adjusted whenever the following operations are requested by the
task:

• Rewind

Record pointer is set to 0

• Assign (open)

Record pointer is set to 0 for all access privileges except
write-only (SWO/EWO). If write-only is in effect, the record
pointer is set to the number of the record following the last
existing record in an indexed or nonbuffered indexed file and
to the last record read or written in a contiguous or
extendable contiguous file.

• Backspace Filemark (BFILE)

If the file is a contiguous file, the record pointer is
positioned to the number of the record containing a f ilemark.
Otherwise, the record pointer is set to zero.

• Forward Space Filemark (FFILE)

If the file is a contiguous file, the record pointer
backspaces to the number of the next record containing a
f ilemark. Otherwise, the record pointer is set to the total
number of records in the file.

4-18 48-039 FOO R02

• Backs pace RE~cord (BREC)

The record pointer is decremented by 1 unless it is already
pointing to record number 0.

• Forward Space Record (FREC)

The record pointer is incremented by 1 unless incrementing by
1 would cau~se the po inter to exceed end of file (EOF) .

Data can be transferred in either binary, image or ASCII mode.
The amount of data that can be accessed is determined by the file
type, as listed below.

FILE 'l~YPE

Contiguous
Extendable contiguous

Indexed
Nonbuf f ered indexed
Long Record

BYTE-LIMIT PER TRANSFER

2 to capacity of file
2 to capacity of file (Read)
2 to capacity of disk (Write)
1 to record length
2 to record length
2 to record length

4.10.1 Buffered Input/Output (I/O) (Indexed Files)

Indexed files use buffered I/O. When a data block of an indexed
file is read or written, the transfer occurs between the system
buffer and the file. Data is moved between the system buffer and
the user buffer as requested by the task.

For example, te> read data block 1 and data block 60, the data
blocks are read into the system buff er before the records in the
blocks are transferred to a user buffer. A data transfer is
complete when one complete record has been moved into the user
buffer or when the user buffer is full, whichever comes first.
If a record does not fill the user's receiving buffer, the
remaining bytes in the user buffer are unaffected.

When a write operation is performed, data is moved from the user
buffer to thE~ system buffer before transfer to disk. The
open-ended structure of the indexed file allows the file size to
be extended during a write operation up to the available free
space on the djLsk. However, file extension can only be performed
sequentially; jL.e., each record added to the file must follow the
last record written to the file. Random write operations can
only be perfe>rmed to an existing record in the file. For
example, if an indexed file consists of five records, a request
to write rece>rd 6 causes the file size to be extended to a
6-record length capacity. However, a request to write record 7
or higher to an indexed file containing five records would return
EOF status.

48-039 FOO R02 4-19

If a binary record written to an indexed file is shorter than the
file's record length, the remaining bytes of the record are
automatically filled with zeros. ASCII records that are shorter
than the file's record length are padded with blanks. If a
record longer than the files record length is read or written,
the data exceeding the record length is not transferred. Hence,
the record length of an indexed file should be large enough to
hold the largest possible amount of data that will be read or
written during one data transfer operation.

4.10.2 Nonbuffered Input/Output (I/O)

Nonbuffered I/O is used for contiguous, extendable contiguous,
nonbuffered indexed and the long record file types. Data is
transferred directly between the user buffer and the file on
disk. All but contiguous files can be extended during write
operations. Both random and sequential I/O are suppported by all
four nonbuffered file trpes; however, some restrictions apply.

With all nonbuffered 1/0 file types, transfer of data begins and
ends on a sector boundary. Partially filled sectors are padded
with the last two bytes of the transferred data. ln addition, an
even number of bytes should be transferred; otherwise, the
processor hardware will add one additional undefined byte to the
buffer.

4.10.2.1 Accessing Contiguous Files

Data records for a contiguous file are transferred in blocks
greater or smaller than the file's record length (256 bytes or
one sector). All transfers begin on a sector boundary and must
be an even number of bytes. If the amount of data written to a
file does not equal 256 bytes, the data is left-justified in the
sector and the last two bytes of the data are propagated to the
end of the sector. Because contiguous files cannot be extended
during write operations, random writes can only be performed on
existing allocated sectors.

The EOF status for a contiguous file is returned as an end of
medium (EOM), X'90', marker. Pseudo filemarks, X'l313', are
supported by contiguous files; the standard EOF, X'88', status is
returned when a pseudo f ilemark is encountered.

To extend the file length of a contiguous file, use OS/32 COPY to
copy the file to another file of the desired size. See the OS/32
Copy User Guide for more information.

4-20 48-039 FOO R02

4.10.2.2 Accessing Nonbuffered Indexed Files

Nonbuffered indexed files provide the flexibility of indexed
files without the use of system space for data buffers or the use
of processot· time for moving data between system space and the
task's I/O buffer. For example, suppose a nonbuffered indexed
file is made up of a 250-sector data block consisting of 240-byte
records. Since each record begins on a sector boundary, there
will be 250 records in the block. Because the size of each
record is less than 256 bytes, each sector is filled with the
last two byte~s of the data. To read records 15 and 62, 015, data
blocks 1 and 249 are accessed. If a 5-sector index block was
specified, the addresses of both of ·these sectors would be in
memory at the time of access when they would be transferred
directly to the task's buffer. The time required to perform such
a transfer ie' comparable to that required when using a contiguous
file.

Like indexed files, the open-ended structure of a nonbuffered
indexed f ilE~ allows the file to be extended sequentially during
write operati~ons. Random write operations can be performed on
existing file records or on the next record after EOF.

4.10.2.3 Acc:essing Extendable Contiguous Files

A sector in an extendable contiguous file is directly accessed in
the same manner as a contiguous file. Multiple data block
transfer requests, however, require a separate I/O operation for
each block. Contiguous files require one I/O operation for a
multiple-sector transfer. As in contiguous files, the EOF status
is returned as a.n EOM, X'90', marker.

For example,. suppose an extendable file has data blocks
consisting c>f 250 sectors per data block. To read sector number
15 and then f:sector number 62, 015, simply access data blocks 1 and
249. If the index block for this file is at least five sectors,
the addressE~s of both blocks are in memory at t.he time of access
and they are transferred directly to the task's buffer. The time
required to perform such a transfer is comparable to that
required by a contiguous file.

Like nonbuffE~red indexed and indexed files, extendable contiguous
files are open-ended~ However, extendable contiguous files can
be expanded sequentially and randomly. For example, a 10-sector
file can be extended to a 20-sector file simply by writing to
sector 20. The sectors between 10 and 20 are automatically
allocated to the file. Essentially, for write operations no EOF
exists. Hence, it is possible to fill a disk completely by
writing to a sector with an unusually large random address.

48-039 FOO R02 4-21

4.10.2.4 Accessing Long Record Files

In long record files, as in other nonbuffered I/O file types,
data is transferred directly between the user's buffer in task
space and the file on disk without incurring the overhead
required by buffering in system space. The main difference
between this file and other nonbuffered I/O types is that in a
long record file, the data block size can be greater than 255
sectors. In fact, the maximum size of a data block for a long
record file can be up to 64K sectors. In accessing this file
type, it must be remembered that the logical record length of the
long record file is specified by its data block size. For
example, if a long record file exists with data blocks of 4000
sectors each, to read sector 6000, the user must access the
second data block. Sector 6000 is in the second record of the
file because the record length of the long record file is
specified by the data block size.

4.11 FILE SECURITY

As explained in Chapter 2, a task cannot perform its function if
the data it acts on has been destroyed. When data is contained
in main memory, it is protected by the relocation/protection
hardware. However, if task data is stored on disk, access to the
files containing the data must be controlled.

File access is controlled by matching a task with a set of
permissible operations that they can perform on a given file.
These operations are called access privileges. Access privileges
are given to a task when a file is assigned to the task's lu.
The access privileges are:

• Sharable Read-Only (SRO)

• Exclusive Read-Only (ERO)

• Sharable Write-Only (SWO)

• Exclusive Write-Only (EWO)

• Sharable Read/Write (SRW)

• Sharable Read, Exclusive Write (SREW)

• Exclusive Read, Sharable Write (ERSW)

• Exclusive Read/Write (ERW)

4-22 48-039 FOO R02

When multiple tasks are assigned to the same file, the access
privileges for those tasks should be compatible. For example,
1one task cannot have EWO privileges to a file while another task
has SWO privileges. Table 4-1 shows which access privileges are
compatible. If a file is assigned to a task with access
privileges that are incompatiblce with those previously assigned
for another task, the access privileges for the second assignment
will automatically default to the previous assignment.

TABLE 4-1 ACCESS PRIVILEGE
COMPATIBILITY

E
R
s
w

E
R
0

s
R
0

s
R
w

s
w
0

E
w
0

s
R
E
w

E
R
w

l======•••============•••=••=•==•••••m•
1 ERSW *

*

ERO

SRO

SRW

swo * *
EWO *
SREW

ERW

Compatible
Incompatible

*

* * *
* * *

* * *

*

*

*

* *
-- I

If a file is as,signed to multiple logical units for the same
task, the f il.e cannot be assigned for ERO on one lu and SRO on
another. If a file is assigned for Exclusive Read or Write
access on any given lu, the file cannot be assigned for that
access on any other lu.

A task can change its access privileges to a file without closing
the file by requesting an access privilege change from the file
manager. The new access privileges must be compatible with
existing ones.

48-039 FOO R02 4-23

A file can also be protected from read or write operations
through the read/write keys that are given to the file when it is
allocated. See Table 4-2. The read/write keys can protect a
file from being read from or written to by any task to which this
file is assigned. For example, if a file's read and write keys
are X'OO' and X'07', respectively, the task to which this file is
assigned can read from the file but it cannot write to it unless
the file is assigned to the task with the same write key.

TABLE 4-2 READ/WRITE KEYS

WRITE I READ I
KEY I KEY MEANING

======---00 00

FF FF

07 00

FF A7

00 FF

27 32

Not protected

Unconditionally protected, used
by executive tasks; see the
OS/32 System Level Programmer
Reference Manual.

Unprotected for read; condition
ally protected for write; task
must match write key of X'07'.

Unconditionally protected for
write; conditionally protected
for read; task must match the
read key of X'A7'.

Unprotected for write; uncondi
tionally protected for read.

Conditionally protected for both
read and write; task must match
both keys.

A task can change the keys of a file if the file has been
assigned to the task with Exclusive Read or Exclusive Write
privileges. For example, if the file is assigned to the task
with the EWO privilege, the write key can be changed. If the
file is assigned to the task with Exclusive Read/Write
privileges, one or both keys can be changed.

4-24 48-039 FOO R02

Further protection is available when the disk is marked on-line.
A disk volume can be marked on-line as write-protected. A
write-protectedl volume will only accept assignments for SRO and
SRW. (SRW is~ immediately changed to SRO.) No other access
privileges are permitted. If the write-protected feature of the
disk hardware is enabled, the volume should also be marked on as
a protected volume. See the OS/32 Operator Reference Manual for
more informatic•n on marking on a disk.

4.12 CHOOSING THE RIGHT FILE TYP:E

Not every file type is right for every real-time application.
Record length, access method and file expandability should all be
taken into cc•nsideration when allocating and assigning files to
a task. These and other file type characteristics are summarized
in Table 4-3. The following sections describe the advantages and
disadvantages of using each of the four file types, as well as
some tips on handling disk fragmentation.

TYPE

Contiguous

, Indexed

Non-
buf fer ed
indexed

TABLE 4-3 FILE TYPE SUMMARY

DA'l~A

ORGJ~I

ZATION

RECORD
LENGTH
(BYTES)

FILE
LENGTH

I I BYTE LIMIT
I BUFF- I RECORD I PER TRANSFER I
I ERED I POINTER l----------------------1
I (1/0) I VALUE I MINIMUM I MAXIMUM

••••••n••=•=•••••••••••••I
Contiguous I 256

I Linked
: list
I indexe'd

I Linked
: list
I indexe'd

I
I

I 1 to
: 65,535

I 2 to
: 65,535

I Fixed !Lt I No
I alloca-·
I tion

I Open-
1 ended

I Open
: ended

I Yes

I No

I Sector I
I number

I Logical I
I record I
: number

I Logical I
: record I
I number

2

1

2

I Capacity
I of file

I Record
I length
I
I

I Record
I length
I
I

Extendable Linked- 256 Open- No Sector 2 Capacity
contiguous list ended number of file

indexEid (read)
2 available

disk space
I I I I I I I I (write)
:---------------------------~--
: Long I Linked- I 256 to I Open- I No : Logical I 2 I Record
: record I list 116,776,9601 ended I record I I length

I indexEid I number I

48-039 FOO R02 4-25

4.12.1 Using Contiguous Files

The primary advantage of using contiguous files is that all space
required for the file is fixed when the file is allocated. Since
the maximum file length cannot be changed, the user knows how
much data can be input. This advantage should be weighed against
the cost of losing file space when a contiguous file that
contains a large number of unused sectors exists on disk.
Contiguous files also support overlapped I/O and program
execution. For all other file types, the task actually waits for
an I/O operation to complete, even if an I/O proceed request was
made. See the OS/32 Supervisor Call (SVC) Reference Manual for
more information on I/O proceed requests.

Another characteristic of contiguous files that proves helpful in
some applications (e.g., magnetic tape emulation) is the ability
to support f ilemarks.

Finally, to achieve the fastest possible access time for
applications that perform a large number of random read and write
operations, use contiguous files.

4.12.2 Using Indexed Files

The advantage of using indexed files is that the user does not
have to compute the size of the file before allocation. Hence,
indexed files are best suited for applications where file size
continues to expand throughout the life of the file.

Many applications, such as compiling or assembling source code,
are I/O bound; i.e., the time required to complete the job
depends primarily on the speed of the sequential I/O to and from
the disk. In these circumstances, indexed files with moderate
block sizes provide the best throughput. Due to the additional
central processing unit (CPU) overhead caused by buffering
operations, using data block sizes of 5 to 20 sometimes causes a
job to become CPU-bound. However, many simple tasks do not
become CPU-bound until much larger block sizes are used.

It should be remembered that for strictly sequential access
applications, nonbuffered indexed, extendable contiguous and
contiguous files all offer the same throughput, and all three are
usually lower in performance than indexed files.

The random access performance of indexed files depends on the
correct choice of index and data block sizes. The optimal choice
of data block size can usually be determined only by experiment
for a particular application. In general, the index block size
should be such that the file requires only one index block. (In
reality, this is often not possible since the data blocks
supported by indexed files are not as large as those supported by
nonbuffered indexed and extendable contiguous files.)

4-26 48-039 FOO F02

4.12.3 Using Nonbuffered Indexed Files

1The purpose of nonbuffered files is two-fold. They provide the
user with excellent random access performance for files of
arbitrary logical record length, and they eliminate the CPU
overhead and main memory requirements associated with buffered
indexed files.

For CPU-bound processes, or those processes that perform only
random I/O on very large files of arbitrary record size,
nonbuffered indexed files are preferred. Because these files
have no data buffers in main memory, some users may prefer to use
nonbuffered indexed files to conserve memory space, even at the
expense of pe~formance in typical sequential access operations.

Like indexed f i.les, the random access performance of nonbuffered
indexed files also depends on the correct choice of index and
data block s izets. Hence, the maximum possible data block size
should always be used, unless disk fragmentation prevents such
large block sizes.

Nonbuffered indexed files are also suited for applications whose
total file size continues to expand throughout the life of the
file.

4 .12. 4 Using E:xtendable Contiguous F ilea

Extendable contiguous files provide all of the random access and
performance advantages of contiguous files, without the drawback
of fixed file flizes. Care should be taken, however, in choosing
data and index block sizes to ensure the best possible
perf·ormance. F'or example, suppose that an application requires
a contiguous f J.le of 200,000 sectors. Using the largest possible
data block size (255 sectors), there would be 785 data blocks.
These data blocks could be pointed to from one index block of 13
sectors. Thu~s, for a cost of 13 sectors (3.25kb) of system
space, the entJLre file index could be contained in memory. This
would allow ?:and.om access to the file to be the same as to a
contiguous f ilo.

Extend.able contiguous files are also suited for applications
whose total f :lle size continues to expand throughout the life of
the file.

48-039 FOO R02 4-27

4.12.5 Using Long Record Files

Long record files provide the user with the unusual ability to
read or write very long logical records to or from memory in a
single I/O operation. This file type permits the user to
transfer more than 255 sectors of data in one I/O operation, thus
quickly freeing system resources for other purposes. If, for
example, we had 200,000 sectors of data being input to the system
and the I/O buffer size was 4000 sectors, the entire file could
be written to disk in only 50 writes as compared with the 785
writes needed for an extendable contiguous file of the same
length. With a larger logical record length, even fewer writes
would be necessary.

The long record file type would be advantageous to a user who
finds it necessary to transfer vast quantities of data more
rapidly than is possible with the other file types. For example,
such a user could establish several extremely large buffers in
task space, and, in using the long record record file type, each
buffer could be written to a disk in a single I/O operation.

4.12.6 Disk Fragmentation

The process of repeatedly allocating, expanding and deleting
files of various sizes and record lengths eventually results in
disk fragmentation. Here, fragmentation means that the available
free space on the disk is divided among a great many relatively
small areas.

On the average, there are fewer places to allocate a large
physical block than a small physical block. On badly fragmented
disks, the maximum block size that can be allocated may be very
small. Also, the time required to allocate any given block will
increase with increasing block size or increasing disk
fragmentation, since there are generally fewer locations where
the block will fit (that is, it takes somewhat longer to locate
a large free space than it does a small free space).

Disk fragmentation and total amount of free space both determine
the maximum possible file size for any given physical block size.
For example, on a given disk the maximum file size might be
150,000 sectors if the block size were 5 sectors, but only 90,000
sectors if the block size were 64 sectors, and only 40,000
sectors if the block size were 250. On the same disk, the
largest contiguous file that could be allocated would be 20,000
sectors.

Once a disk is badly fragmented, the only option available is to
compress the disk. To compress a disk, initialize a new disk
pack on another drive and copy all files from the fragmented pack
to the newly initialized pack. If only a single drive is
available (or no additional packs are available), the fragmented
pack can be backed up to tape, reinitialized, then restored from
the tape.

4-28 48-039 FOO F02

CHAPTER 5
WRI'l~ING PROGRAMS THAT ACCESS OS/32 SYSTEM SERVICES

5.1 INTRODUCTION

The OS/32 supervisor calls (SVCs) provide the task interface to
OS/32 system services. These calls activate the appropriate
OS/32 executor routines that can handle the user's requests. For
example, to request use of a system resource, a task issues an
SVC7. To request transfer of information to the resource given
to the task by SVC7, an SVCl is issued.

When a task calls an executor routine through an SVC, the task
must pass the information needed by the routine to perform the
requested function. For example, to transfer data from a disk
file, the operating system (OS) requires the address of the user
buffer to which the data is to be sent. This information is
passed through a special OS/32 data structure called the SVC
parameter block. OS/32 provides a separate parameter block
structure for each type of SVC that can be issued by the task.
The task bul.lds a parameter block in its task address space and
stores the information required by the executor routine in that
block. When the SVC is issued, the OS refers to data stored in
the parameter block during execution of the routine.

Perkin-Elmet: provides a number of methods for writing application
programs that access system services. A programmer working in
OS/32 Common Assembly Language (CAL) can write a program that
directly issues an SVC or executes an OS/32 system macro library
routine that issues an SVC. A FORTRAN program can issue an SVC
by calling a Perkin-Elmer Run-Time Library (RTL) routine that
issues the SVC. If a FORTRAN program is to access the file
manager, the FORTRAN VII auxiliary input/output (I/O) statements
can be used. Finally, a Pascal program can access system
services through procedures contained in the standard Pascal
Prefix supplied with the Perkin-Elmer Pascal compiler. These
programming methods are outlined in Figure 5-1.

48-039 FOO R02 5-1

5815

OS/32
SYSTEM
MACRO

FORTRAN
STATEMENT

SVC

OS/32
EXECUTOR

PASCAL
PROCEDURE

Figure 5-1 Task Interface to OS/32 Executor Routines

This chapter demonstrates how each of these methods is used to
write a program that accesses two OS/32 system services; namely,
the I/O and file management services. First, the SVCl and SVC7
parameter block structures that pass data to the I/O and file
management executor routines are discussed. See the OS/32
Supervisor Call (SVC) Reference Manual for more details on the
individual parameters of the SVC parameter blocks discussed in
these sections.

s--2 48-039 FOO R02

5. 2 BUILDING ,.,, SUPERVISOR CALL (:SVC) PARAMETER BLOCK

The OS/32 macro library SYSSTRUC.MLB provides macro routines that
define parameteir blocks for SVCl, SVCS, SVC6, SVC7 and SVC13 in
a task's address space. These macro routines are listed in the
OS/32 Supervisor Call (SVC) Reference Manual. To build a
parameter block structure within a task's address space, expand
the appropriate OS/32 system :macro routine and st.ore the
information re~quired by the OS/32 executor routine in the
parameter blocl<:.

5.2.l Accessing Input/Output (I/O) System Services

To request an I/O service, the task first defines an SVCl
parameter bloc:k using the $SVC1 macro. $SVC1 defines the
parameter bloc~~ shown in Figure 5--2.

5816

O(O) FUNCTION CODE =e, 12(2) DEVICE 3(3) DEVICE
LU DEPENDENT STATUS

(SVC1.FUN) (SVC1.LU)
INDEPENDENT STATUS

(SVC1.DN) (SVC1.STA)

4(4) BUFFER STAFn ADDRESS
(SVC1.SAD)

8(8)
BUFFER END ADDRESS

(SVC1.EAD)

12(C) RANDOM ADDRESS
(SVC1.RAD)

16(10) LENGTH OF DATA TRANSFER
(SVC1..LXF)

20(14) EXTENDED OPTIONS
(SVC1.XOP)

Figure 5-2 SVCl Parameter Block Defined by $SVC1

48-039 FOO R02 5-3

TABLE 5-1 SVCl FUNCTION CODES

I FUNCTION I
EQUATE CODE MEANING

~=~~===~=====================================s••-•••-••~••••=~m

SVl.CMDF l X'80'

SVl.READ l X'40'

SVl.WRIT l X'20'

SVl.BIN X'lO'

SVl.WAIT I X'08'

SVLRAND I X'04'

SVl.UPRO I X'02'

SVl. lMG X'Ol'

SVl.XOP X'Ol'

1 SVl.XlT X'Ol'

SVl.REW X'CO'

SVl .BSR X'AO'

SVl.FSR X'90'

SVl.WFM X'88'

I SVl .F'FM X'84'

SVl.BFM X'82'

SVl.DDF X'8J'

SVl.HALT I X'80'

SVl.SET X'60'

SVl.WO X'08'

SVl.TEST l X'02'

5-4

: Command

: Read

: Write

I Binary

I Wait

I Random

: Unconditional proceed

I Image mode

: Use extended options

: Use data communications extended option
I word

I Rewind

I Backspace record

: Forward-space record

I Write f ilemark

I Forward-space f ilemark

I Backspace f ilemark

: Device-dependent function

I Halt 1/0

: Test and set

l Wait only

: Test 1/0 completion

48-039 FOO R02

Notice that the SVCl parametex block is divided into specific
fields that contain the data required by the OS/32 I/O subsystem
to perform the requested operation. The first field contains the
function code indicating the particular I/O function to be
performed (see Table 5-1). For example, a parameter block for a
read request contains the following:

• SVl.READ function code

• Logical unit (lu) assigned to the disk file to be read

• Starting and ending addresses of the user buffer

The following code builds an SVCl parameter block for an SVCl
that requests a data transfer from a file or device assigned to
lul to the user buffer at location BUFF.

Example:

SVC. IN
ENDPBK

$SVC1
ALIGN 4
DS SVCl.
EQU
ORG
DB
DF'B
ORG
DC
DC
ORG

*
SVCl. IN+SVCl. FUN
SVl. READ
l
SVCl.IN+SVCl.SAD
A(BUFF)
A(BUFFE)
ENDPBK

DEFINE 'I1HE STRUCTURE

ALLOCATE STORAGE FOR PARBLK

INITIALIZE FIELDS
FUNCTION CODE
LOGICAL UNIT=l

BUFFER START ADDRESS
BUFFER END ADDRESS

To request thiB operation, the task issues the SVCl as follows:

SVC 1, SVC . IN

The following program uses SVCl to build two parameter blocks,
one for an SVCl that performs a read operation from a file or
device assigned to lul and one for an SVCl that performs a write
operation to a file or device assigned to lu2. Notice that this
program uses the function code SVl.WAIT to allow task execution
to be suspended until each data. transfer operation is complete.
Also notice that the program checks the status field of the SVCl
parameter block to determine if the I/O operation was successful.

48-039 FOO R02 5-5

If the mirror disk option is selected and a primary read failure
occurred, the SVC! parameter block receives an X'86' in the
device-dependent status. Data is read to the secondary disk
only. If the read was successful, the SVCl parameter block
receives a 0 in the device-independent status. Data is read to
both primary and secondary disks.

Example:

5 -6

SVCl

SVCl. IN
ENDPBK

BUFF
BUFFE

SVCl.OUT
ENDPBK

START

ERROR

PROG
MLIBS
NLSTM
FREZE
$SVC1
ALIGN
OS
EQU
ORG
DB
DB
ORG
DC
DC
ORG
DS
EQU
ALIGN
OS
EQU
ORG
DB
DB
ORG
DC
DC
ORG
EQU
SVC
LH
BM
SVC
LH
BM
SVC
EQU
SVC
END

SIMPLE SVCl EXAMPLE
8,9,10

4
SVCl.
*
SVCl.IN+SVCl.FUN
SVl. READ !SVl. WA IT
1
SVCl. lN+SVCl. SAD
A(BUFF)
A(BUFFE)
ENDPBK
80
*-1
4
SVCl.

*
SVCl.OUT+SVCl.FUN
SVl.WRIT!SVl.WAIT
2
SVCl.OUT+SVCl.SAD
A(BUFF)
A(BUFFE)
ENDPBK
*
l,SVCl. IN
O,SVCl.IN+SVCl.STA
ERROR
l,SVCl.OUT
O,SVCl.OUT+SVCl.STA
ERROR
3,0
*
3,1
START

DECLARE MACRO LIB TO CAL/MACRO
DON'T LIST MACRO EXPANSIONS
FREEZE LINE NUMBERS
DEFINE SVCl STRUCTURE
ALIGN PARBLK ON FULLWORD
ALLOCATE INPUT PARBLK

FUNCTION CODE=READ & WAIT
LOGICAL UNIT=l

BUFFER START ADDRESS
BUFFER END ADDRESS

ALLOCATE 80-BYTE BUFFER

ALLOCATE OUTPUT PARBLK

FUNC CODE=WRITE & WAIT
LOGICAL UNIT=2

SAME BUFFER AS INPUT

ISSUE SVCl TO READ LUl
CHECK STATUS
<O, ERROR
ISSUE OUTPUT SVC TO LU2
CHECK STATUS
<O, ERROR
NORMAL EQT:aO

EOT=l

48-039 FOO R02

5.2.2 Accesai1!"lg File Management Serviees

All file managjement requests are made through SVC7. For example,
a task request:s an lu assignment via the SVC7 assign function.
The OS assigns the resource (file or device) to the requesting
task's lu. Thie task proceeds to use it as required. When the
task no longer needs the lu, the SVC7 close function is used to
cancel the assignment. The SVC7 parameter block that passes the
necessary info:rmation to the f ilE~ manager is shown in Figure 5-3.
To define this structure, use the $SVC7 macro. Notice that the
SVC7 parameter block contains the file descriptor (fd) of the
file on whiclh the OS/32 executor is to perform the requested
operation.
6021

0(0)

4(4)

FUNCTION CODE
(SVC7.0PT)

5(5)

2(2)

ERROR STATUS
(SVC7.STA)

6(6)

3(3)

LU
(SVC7.LU)

WRITE KEY
(SVC7.WKY)

READ KEY
(SVC7.RKY)

LOGICAL RECORD LENGTH
(SVC7.LRC)

8(8)

12(C)

16(10)

20(14)

24(18)

VOLUME NAME OR DIEVICE MNEMONIC
(SVC7.VOL)

EXTENSION
(SVC7.EXT)

INDEX BLOCK SIZE
(SVC7.ISZ)

FILENAME
(SVC7.FNM)

26(1A)

23(17)

FILE CLASS/
ACCOUNT NO.

(SVC7.ACT)

DATA BLOCK SIZE
(SVC7.DSZ)

Figure 5-3 SVC7 ParametEtr Block Defined by SSVC7

SVC2 code 16 can be used to pack an fd into the SVC7 parameter
block. This SVC must be used if the fd to be packed into the
block specif ijes an account numbE~r. The parameter block for SVC2
code 16 is shown in Figure 5-4. Note that there is no macro
available for defining this structure. See the OS/32 Supervisor
Call (SVC) Refjerence Manual for more information on coding the
SVC2 code 16 parameter block.

48-039 FOO R02 5-7

5818

0(0) 1 (1) 2(2)
OPTION CODE USER REGISTER

4(4)
ADDRESS OF PACKED FD AREA

Figure 5-4 SVC2 Code 16 Parameter Block

The following program issues an SVC7 and SVC2 code 16 to assign
lu2 to a file named MYFILE.TXT/P._ The program uses $SVC7 to
define an SVC7 parameter block. A parameter block is also built
for SVC2 code 16. This block contains the number of the register
that holds the fd to be packed and the address of the SVC7
parameter block field where the fd is to be packed. No error
checking is performed by this program.

Example:

MLIBS 8,9
PROG ASSIGN
$SVC7

ASSIGN DS SVC7. BUILD SVC7 PRBLK
ASSIGNE EQU *

ORG ASSIGN+SVC7.0PT
DC SV7.ASGN1SV7.SRW SET FUNCTION CODE & ACCESS PRIV
ORG ASSIGN+SVC7.LU
DB X'2' INDICATE LU TO BE ASSIGNED
ORG ASSIGNE
ALIGN 4

PACK EQU * BUILD SVC2,l6 PRBLK
DB X'lO' SET DEFAULT VOLUME OPTION CODE
DB 16 SET SVC CODE
DC x' l'
DC A(ASSIGN+SVC7.VOL) STORE ADR OF PACKED FD AREA
ALIGN 4

FD DB C'MYFILE.TXT/P'
ALIGN 4

START EQU *
LA l,FD LOAD FD INTO REG l
SVC 2,PACK
SVC 7,ASSIGN
SVC 3,0 END TASK WITH EOT 0
END START

5-8 48-039 FOO R02

The above examples represent only three of the I/O and file
management services that can be accessed by an application
program. For more information on other OS/32 system services,
see the OS/32 Supervisor Call (SVC) Reference Manual.

5.3 USING THE OS/32 SYSTEM MACRO LIBRARY TO ACCESS SYSTEM
SERVICES

The OS/32 system macro library provides macro routines that not
only build an SVC parameter block but also issue the SVC for a
task. The programmer simply provides the necessary data for the
OS/32 executor as operands to the macro instruction that expands
the routine. For example, to out.put data from the user buffer,
BUFF, to the f .i le or device a~~s igned to lu2, execute the WRITE
macro instruction as follows:

WRITE LU=2,.ADDR=BUFF,REGL=80,ENDADDR=BUFFE

The WRITE macro routine builds an SVCl parameter block with the
SVl.WRIT function code set. Ustng the operands specified in the
macro instruction, the WRITE routine stores the values for lu,
record length (REGL) and the user buffer's starting and ending
address in the appropriate f ield1:s of the SVCl parameter block.
The routine then issues SVCl.

The following assembly program u1:ses system macros to access the
read, write, assign and allocate OS/32 executor routines.

Example:

PROG SVCl AND SVC? MACRO EXAMPLE
MLIBS 8,9,10

BUFF OS 80
BUFFE EQU *-1
START EQU *

ALAS FD=' TJ~ST2. OTA' , LU=2, AP•SRW, RECL=80, FT= IN, BLKS I ZE= 1, NDXS I ZE= 1
ASSIGN LU=l,FD='CARDIN.FMU/S'
READ LU• l, '!U>DR=BUFF, RECL=80, ENDADDR=BUFFE
WRITE LU=2,ADDR=BUFF,RECL=80,ENDADDR-BUFFE
EQT RC=O

END START

In the above e·xample, the ALAS macro routine builds an SVC?
parameter block and then issues an SVC7 to allocate the file
TEST2.DTA and assign the file to lu2. The ASSIGN macro routine
builds anothe·r SVC7 parameter block and issues an SVC7 to assign
CARDIN.FMU/S to lul.

48-039 FOO R02. 5-9

The READ macro routine builds an SVCl parameter block and issues
an SVCl to read data from CARDIN.FMU/S into the user buffer at
location BUFF. The WRITE macro routine builds an SVCl parameter
block and issues an SVCl to write data from BUFF to the indexed
file TEST2.DTA.

See the OS/32 System Macro Library Reference Manual for details
on how to use the OS/32 macro routines for writing assembler
language programs that access OS/32 system services.

5.4 WRITING A FORTRAN PROGRAM THAT ACCESSES SYSTEM SERVICES

The Perkin-Elmer FORTRAN VII RTL provides subroutines that allow
access to system services through a FORTRAN application program.
Like the OS/32 system macro library routines, these subroutines
build the SVC parameter block and issue the· SVC for the program.
The progranuner simply calls the RTL routine specifying the
required SVC parameters as arguments to the call. For example,
the SYSIO RTL routine is used to access OS/32 I/O services.
SYSIO builds an SVCl parameter block using the arguments in the
CALL SYSIO statement. After the block is built, SYSIO issues an
SVCl to perform the requested I/O operation.

The following example uses SYSIO to transfer data from the disk
file assigned to lu2 to the user buffer at location BUFF. A
second RTL subroutine, IOERR, is called to interpret the status
of the I/O request after the operation is completed. IOERR
places the status code contained in the error status field of the
SVCl parameter block into the argument ISTATUS and outputs a
message to the device assigned to lu6.

Example:

5-10

INTEGER
INTEGER
LU=2
NBYTES=80
RANADD=O
ISTATUS=O

LU,ISTATUS,NBYTES,RANADD,FC
PBLK (-5), BUFF (20)

FC=Y'28' ; SVCl READ WAIT FUNCTION CODE
CALL SYSIO(PBLK,FC,LU,BUFF,NBYTES,RANADD)
CALL IOERR(PBLK,ISTATUS)
IF (ISTATUS.NE.O) GO TO 10

48-039 FOO R02

Whet:e:

PBLK

BUFF

LU

NBYTES

Y'28'

specifies the array in which the parameter
block will be built.

is the buffer array that is to be output.

is the logical unit assigned to the output
device.

spec if ies th~~ number of bytes that wi 11 be
output.

is the function code telling the OS/32
executor to perform the write operation and
suspend task execution until data transfer is
completed.

See the FORTRAN VII User Guide f()r more information on using the
RTL routines to access system services.

To access file management services, the Perkin-Elmer FORTRAN VII
compilers provide auxiliary I/O f:Jtatements; e.g., OPEN and CLOSE ..
These statements are similar to the system macro library and RTL
routines in that they build the necessary parameter block and
call the SVC. These statements include parameters required to
perform the specific file management function.

Example:

OPEN (UNIT=l,FILE='CARDIN.FMU/S',STATUS='OLD',ERR=lOO)

The above example assigns the file CARDIN.FMU/S to lul by
building an SVC7 parameter blc:>ck and issuing an SVC? to assign
the file. STATUS=OLD tells the OS that the file has already been
allocated. If the file assignment operation ends in error, the
program branches to statement label 100.

See the FORTRAN VII Reference Manual for more information on the
use of auxiliary 1/0.statements.

5.5 WRITING A PA.9CAL PROGRAM THAT ACCESSES SYSTEM SERVICES

The standard Pascal Pref ix supplied with the Perkin-Elmer Pascal
package contains CONST, TYPE and PROCEDURE declarations that can
be used to access system servic•~s. The Pref ix also supplies
procedures that provide access to system or SVC services. Like
the FORTRAN VII standard RTL routines, these Pascal procedures
both build the SVC parameter block and issue the SVC. The data
required by the OS/32 executor is passed via the procedure
parameters as shown in the following example.

48-039 FOO R02 5-11

Example:

(*$INCLUDE(PREFIX.PAS/S)*)
PROGRAM SAMPLEPAS(OUTPUT)

VAR STATUS:BYTE;

BEGIN
OPEN(l,'M300:CMD~~~~~.FIL/P',SRW,0,STATUS);
IF STATUS<)0 THEN

WRITELN ('ERROR STATUS=',STATUS);
END

The above procedure uses the OPEN Pref ix procedure to assign the
file M300:CMD.FIL/P to lul. With the OPEN procedure, an SVC7
parameter block is built and an SVC7 is issued to assign the lu.
This program checks the status field returned by the OPEN
procedure. This status is the SVC7 parameter block status after
the I/O operation is completed. If an error has occurred, this
program outputs an error message.

See the OS/32 Pascal User Guide, Language Reference and Run-Time
Support Reference Manual for details on how to use the· Pascal
Pref ix to write a Pascal program that accesses system services.

5-12 48-039 FOO R02

A

Access methods
buffered

nonbuff er~:td

Access privileges
AP CONT
AP PAUSE
APU

task queue entry
Arithmetic fa.ult

error messages
Assigning files
Authorized User Utility
Auxiliary processing unit.

See APU.

B

Bit map

c

CAL
Central proc•~ssing unit.

See CPU.
CLOSE
Code

impure
pure

Common assembly language.
See CAL.

Contiguous f :i les

CPU

accessing
using

bound processor
CTOP

Data block

buffers
DEBUG/32
Device

driver

D

tr ap-gene:i:: at ing

48-039 FOO R02

INDEX

4-17
4-20
4-17
4-20
4-22
3-6
3-6
3-21
3-33
3-25

3-7
4-16
1-5

4-6
4-16

5-1

5-12

2;...2
2-4

4-6
4-7
4-19
4-21
4-26
1-4
3-21
3-33
4-26
4-27
2-7

4-5
4-27
4-8
2-4

4-2
3-32

Directory block

Disk
compress
drives
failure
file management services
formatting
fragmentation
marking on

space management
Disk file types. See File
types.

Disk organization
control information
user-defined data

Dynamic system space

E

End of file
End of medium
Environment

mirror disk

real-time

real-time.
time-sharing

Executor routines
file management
sample program
task interface to

Extendable contiguous files

accessing
using

F,G

Faults
arithmetic

data format/alignment

illegal instruction

memory access

power restoration

f d

4-12
4-14

4-28
4-2
4-9
4-1
4-3
4-28
4-14
4-25
4-10

4-6
4-6
4-8

4-21
4-21

4-9
4-15
1-3
3-1
4-7
1-1
1-1
1-4
2-12

5-2
5-10
5-1
4-8
4-19
4-21
4-27

3-5
3-7
3-16
3-5
3-16
3-5
3-16
3-5
3-16
3-5
3-16
4-2

IND-1

File
directories

security
support services

File allocation
permanent
temporary

File descriptor. See fd.
File management services

accessing
File manager

primary
File organization

contiguous organization
linked-list indexed

File types
assigning

contiguous

disk
extendable contiguous

indexed

long record

nonbuf f ered indexed

Filemark

pseudo
Files

assigning
FORTRAN

RTL

sample program
trap-handling programs

IND-2

4-6
4-12
4-22
4-1

4-16
4-16

5-7
4-1
4-3
4-5
4-7
4-14
4-12
4-3
4-6
4-5
1-4
4-2
4-16
4-6
4-7
4-19
4-21
4-26
4-25
4-7
4-8
4-19
4-21
4-27
4-5
4-7
4-8
4-19
4-20
4-26
4-7
4-19
4-22
4-28
4-7
4-8
4-19
4-21
4-27
4-6
4-8
4-26
4-21
4-1
4-2
4-16
5-1
5-10
3-35
5-10
5-11
3-35

H

History records

I ,J ,K

I/O

accessing system services
device-dependent
device-independent

performance
queuing of requests

Image file
format

Index block

Indexed files

using
Interrupt servicing
Intertask communication

restrictions on

L

LIB

Link

Linked-list organization
Loader information block.

See LIB.
LOC

Location counter. See LOC.
Logical unit. See lu.
Long record files

lu

MAC

accessing
using

assignment

M

MARKON command
MAT
Memory access controller.

See MAC.
Memory address translator.

See MAT.
Memory addressing

2-2

4-2
4-20
5-3
1-3
1-3
4-16
4-10
1-3
2-4
2-2
4-5
4-22
4-26
4-27
4-5
4-8
4-19
4-20
4-26
3-1

2-12

2-2
2-7
l-1
2-7
3-2
4-8

3-1
3-17

4-9
4-19
4-22
4-28
2-11
4-16
5-7

2-5
4-14
2-5

1-3

48-039 FOO R02

Mirror disk

environment

marking on
Monitor

Monitor tasks. See Monitor.
MTM

Authorized User Utility
conunand language

Multitasking sy1stem.. See
Environment, r1eal-time.

N

NAFPAUSE
Nonbuffered indexed files

accessing
using

NULL: device

ODT
OPEN

0

Operating system. See OS.
OPTION WORK command
OS

Over lay descr ip1tor table.
See ODT.

p

Pack administration file
Partial image
PASCAL

sample progr.am
trap-handlin•;1 programs

Primary directory entry·
Priority scheduling

mechanism. Se1e PSM.
Private image
Program status word. See

PSW.
PSM
PSW

48-039 FOO R02

4-7
4-9.
5-6
4-9
4-15
4-15
1-1
2-11
3-23

1-1
1-4
2-12
1-5
1-5

3-6
4-8
4-19
4-21
4-27
4-17

2-4
5-13

2-7
1-1
2-5
2-9
2-12
3-1
3-16
5-1
5-7

4-6
2-5
5-1
5-12
3-36
4-13

2-4

1-5
2-4

Q

Queue message eervice

R

Random access

READ macro
Read/write keys
Real-time environment

RTL

Run-time library. See RTL.

s

Secondary file directory
Segmented task

root segment
Sequential access

Spoolers
OS/32
SPL/32

Spooling utilities
Storage devices

secondary
Subtask

reason codes
Supervisor call. See SVC.
SVC

parameter block

SVC13
SVCS
SVC6

SVCl
and mirror disks
function codes
parameter block

sample call
sample parameter block

SVC14

SVC2
code 16
sample program

SVC6
SVC7

$SVC7 macro
parameter block

1-4

4-26
4-27
5-10
4-24
1-1
1-3
3-1
4-7
2-4
3-35
5-1
5-10

4-14
2-3
2-4
2-7
2-4
4-6
4-26

4-1
1-4
1-4

4-2
2-11
3-24

2-10
3-20
5-1
5-3
5-9
5-3
5-3
5-3
5-3
5-6
5-4
5-2
5-6
5-10
5-6
5-5
3-17
3-26

5-8
5-9
3-25

5-7
5-2
5-7

IND-3

SVC7 (Continued)
sample program
with SVC2

SVC9

SYSSTRUC.MLB. See system
macro library.

system
resource management
space

System macro library

sample program
use of

System macros
sample program

System services
access

System space

T

Task
addi:ess space
intei:rupts
noni:esident
ODT
ovei:lay

pr ioi: ities

queue entries

queue traps
resident
scheduler
sti:ucture

Task control block. See TCB.
Task image

OPTION command
Task queue

service
service events
service routine
trap-causing events

Task queue traps
sample program

Task states
current
dormant
ready
i:olled
wait

Task status word. See TSW.

IND-4

5-9
5-8
3-12
3-18

4-2
4-21
3-27
5-3
5-9
3-35
3-35

5-10

2-13
5-1
5-9
5-10
5-12
2-4

2-5
2-4
2-9
2-4
2-4
2-7
1-3
2-9
2-4
3-24
3-30
2-9
2-9
2-1
3-28

2-1
2-2
2-2

3-20
3-16
3-16
3-20
3-22
3-26

3-31

2-9
2-9
2-9
2-9
2-9
2-10

Task trap-handling routines
writing

Task traps

sample program
TCB

Time-sharing
environment

Time-slicing
Timer facility
Trap-genei:ating devices
Trap-handling programs

example of

Trap-handling routines
Traps

arithmetic fault
asynchronous softwai:e
events

data format/alignment
faults

handled by u-tasks
hardware-based events
illegal instruction
faults

memory access faults

TSW

power restoration
synchronous software
events

user-defined

bit settings
task-initialized
UDL swap

u

U-task
loading

UBOT
UDL

building a

3-31
3-1
3-13
3-26
3-27
2-4
3-2
3-16

1-1
1-4
2-12
1-4
1-3
3-32
3-33
3-35
3-36
3-34
3-36
3-37
1-3
3-5
3-38
3-17

3-16

3-18
3-16
3-16

3-19
3-19
3-38
3-19

3-16
3-17

2-4
3-1
3-2
3-16
3-17
3-20
3-27
3-30
3-3
3-12
3-9

2-5
2-7
2-4
2-7
3-1
3-16
3-27
3-30

48-039 FOO R02

UDL (Continued)
fields 3-13
TSW swap 3-9

User-dedicated location.
See UDL.

User task. See u-task.

v

Virtual task master. See
VTM.

Volume descriptor 4-6
4-10

VTM 1-4

W,X,Y,Z

WRITE macro 5-10

48-039 FOO RI02 IND-5

PERKIN-ELMER

PUBUCA TION COMMENT FORM

We try to make our publications easy to understand and free of errors. Our
users are an Integral source of Information for Improving future revisions.
Please use this postage paid form to send us comments. corrections.
suggestions. etc.

1. Publication number-----------------·--------------------------------

2. Title of publication _____________ ·-----------------------------

3. Describe. providing page numbers .. any technical trrors you
found. Attach additional sheet If 11eccessary.

4. Was the publication easy to understand? If no. why not?

5. Were Illustrations adequate?

6. What addltlc>ns or deletions would ~fOU suggest? ---------------

7. Other comments:

From --------·---------------------- Date

Position /Title --·------------------

Company -~--------------------------

Address

iTAPLE STAPLE

FOLD. FOLD

-----------------. -----------· ~

,A,TTN:

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

POSTAGE WILL BE PAID BY ADDRESSEE

PERKIN-ELMER
Data Systems Group
106 Apple Street
Tinton Falls, NJ 07724

TECHNICAL SYSTEMS PUBLICATIONS DEPT.

:OLD

STAPLE

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

STAPLE

I s4:

