PERKIN-ELMER

COMMON ASSEMBLY LANGUAGE/32 (CAL/32)

Reference Manual

48-050 FOO RO1

The information in this document is subject to change without natice and should nat be
construed as a commitment by the Perkin-Elmer Corparation. The Perkin-Elmer Corpo-
ration assumes na respansibility for any errors that may appear in this document,

The software described in this document is furnisbed under 8 license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Eimer Corporation.

The Perkin-Elmer Carpaoration sssumes no responsibility for the use or raliability of its
software on equipment that it not supplied by Perkin-Elmer,

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757

® 1979, 1983 by The Perkin-Elmer Carporation

Printed In the United States of America

TABLE OF CONTENTS

PREFACE vii

CHAPTERS

1 BASIC CONCEPTS

1.1 INTRODUCT ION 1-1
1.2 THE PERKIN-ELMER PROCESSOR 1-1
1.2.1 Temporary Storage (Registers) 1-3
1.2.2 Program Status Word (PSW) 1-4
1.2.3 Input/Output (I/0) Interface 1-5
1.2.3.1 Main Memory 1-5
1.2.4 Software Relocation 1-5
1.2.5 Hardware Relocation 1-6
1.3 INSTRUCTION FORMATS (16-BIT) 1-6
1.3.1 Register to Register (RR) Instructions 1-6
1.3.2 Register and Indexed Storage (RX)

Instructions 1-7
1.3.3 Register and Immediate (RI) Instructions 1-8
1.3.4 Short Form (SF) Instructions 1-8
1.4 INSTRUCTION FORMATS (32-BIT) 1-9
1.4.1 Register to Register (RR) Instructions 1-9
1.4.2 Register and Indexed Storage One (RX1)

Instructions 1-10
1.4.3 Register and Indexed Storage Two (RX2)

Instructions 4 1-10
1.4.4 Register and Indexed Storage Three (RX3)

Instructions 1-11
1.4.5 Register and Immediate One (RI1l) Instructions 1-12
1.4.6 Register and Immediate Two (RI2) Instructions 1-12
1.4.7 Short Form (SF) Instructions 1-13
1.4.8 Register and Indexed Storage/Register

and Indexed Storage (RXRX) Instructions 1-14
1.5 VARIATIONS ON INSTRUCTION FORMATS 1-16
1.5.1 Conditional Branch Instructions 1-16
1.5.2 Branch and Link Instructions 1-17
1.5.3 Other Variations 1-17

48-050 F0OO ROl

- -

CHAPTERS (Continued)

2 SYMBOL.IC REPRESENTATION

2.1 INTRODUCTION 2-1
2.2 SYMBOLS AND EXPRESSIONS 2-1
2.3 SYMBOLS AND THEIR VALUES 2-3
2.3.1 Implicit Symbols 2-3
2.3.2 Global Symbols 2-5

3 THE SOURCE PROGRAM

3.1 INTRODUCTION 3-1
3.2 COMMENT STATEMENTS 3-1
3.3 INSTRUCTION STATEMENTS 3-2
3.4 NAME FIELD { 3-3
3.5 OPERATION FIELD 3-4
3.6 OPERAND FIELD 3-5
3.6.1 Register to Register (RR) Instructions 3-5
3.6.2 Register and Indexed Storage (RX) Instructions 3-6
3.6.3 Register and Immediate (RI) Instructions 37
3.6.4 Register and Indexed Storage/Register and

Indexed Storage (RXRX) Instructions 3-8
3.7 COMMON ASSEMBLY LANGUAGE/32 (CAL/32)

MACHINE INSTRUCTIONS 3-10
3.8 ASSEMBLER INSTRUCTIONS | 3-24
3.8.1 Symbol Definition Instructions 3-24
3.8.1.1 Equate (EQU) Instruction 3-24
3.8.1.2 External, Entry, Weak External, Weak

Entry, and Data Entry (EXTRN, ENTRY,

WXTRN, WNTRY, and DNTRY) Instructions 3-28
3.8.1.3 Include (INCLD) Instruction 3-31
3.8.2 Data Definition Instructions 3-31
3.8.2.1 Define Storage (DS, DSH, DSF) Instruction 3-32
3.8.2.2 Define Constant (DC, DCF) Instruction 3-34
3.8.2.3 Hexadecimal Constants 3-36
3.8.2.4 Integer Constants 3-37
3.8.2.5 Address Constants 3-39
3.8.2.6 Floating Point Constants 3-41
3.8.2.7 Character Constants 3-43
3.8.2.8 Decimal String Constants 3-43
3.8.3 Def ine Byte (DB) Instruction 3-46
3.8.4 Define List (DLIST) Instruction 3-47
3.8.5 Def ine Command (DCMD) Instruction 3-48
3.8.6 Location Counter (LOC) Instructions 3-48

i 48-050 F0O RO1

CHAPTERS (Continued)

3.8.6.1
3.8.6.2
3.8.6.3
3.8.6.4
3.8.6.5
3.8.6.6
3.8.7
3.8.7.1
3.8.7.2
3.8.7.3
3.8.7.4
3.8.7.5
3.8.7.6
3.8.7.7
3.8.7.8
3.8.7.9:
3.8.7.10
3.8.7.11
3.8.7.12
3.8.7.13
3.8.7.14
3.8.8
3.8.8.1
3.8.8.2
3.8.8.3
3.8.9
3.8.9.1
3.8.9.2
3.8.10
3.8.10.1
3.8.10.2
3.8.10.3
3.8.11
3.9

Pure (PURE) Instruction

Impure (IMPUR) Instruction

Origin (ORG) Instruction

Absolute (ABS) Instruction

Align (ALIGN) Instruction

Conditional No Operation (CNOP) Instruction
Assembler Control Instructions

Target (TARGT) Instruction

End (END) Instruction

Copy Library (CLIB) Instruction

Copy (COPY) Instruction

File Copy (FCOPY) Instruction

Pause (PAUSE) Instruction

Squeeze (SQUEZ) Instruction

Squeeze Related (NOSQZ, ERSQZ, NORX3)
Instructions

Sequence Checking (SQCHK, NOSEQ) Instructions
Scratch (SCRAT) Instruction

Pass Pause (PPAUS) Instruction

Message (MSG) Instruction

Batch Assembly (BATCH, BEND) Instructions
Unreferenced Externals (UREX, NUREX)
Instructions

Conditional Assembly Instructions
Compound Conditional (IFx, ELSE, ENDC)
Instructions

Simple If (IF) Instruction

Do (DO) Instruction

Iinstructions for Data Structures
Structure Definition (COMN, STRUC, ENDS)
Instructions

Structure Initialization (BDATA, BORG)
Instructions

Listing Control Instructions

Listing Identification (PROG, TITLE)
Instructions

Format Control (LCNT, EJECT, SPACE,
WIDTH) Instructions

Content Control (NLIST) Instructions
Auxiliary Processing Unit (APU) Option

ASSEMBLY LISTING

4 COMMON MODE PROGRAMMING

4.1

4.2

4.3

INTRODUCTION

ADDRESS OPERATION INSTRUCTIONS

COMMON MODE IMMEDIATE OPERATIONS

48-050 FOO ROl

iii

——

—

- -

-—— ——

——— —an -

— - e

-

CHAPTERS (Continued)

4.4 COMMON MODE ASSEMBLER INSTRUCTIONS
4.4.1 Data Definition Instructions
4.4.1.1 Define Address Length Constant Instruction
4.4.1.2 Define Address Length Storage Instruction
4.4.2 Assembler Control Instructions
4.5 MIXED MODE COMPUTATIONS
4.6 GLOBAL SYMBOLS
4.7 SPECIAL INSTRUCTIONS
5 COMMON ASSEMBLY T.ANGUAGE/32 (CAL/32) OPERATING
INSTRUCTIONS
5.1 INTRODUCTION
5.2 CAL/32 START OPTIONS
5.3 OPERATING INSTRUCTIONS FOR ESTABLISHING
CAL/32 AS A TASK
APPENDIXES
A COMMON ASSEMBLY LANGUAGE/32 (CAL/32) ERROR CODES
B PERKIN-ELMER OBJECT CODE FORMAT
FIGURES

i
N

|

| I T S T |
-
N O

FHERFRFFRFRHERRRR e
i
0o W

i
b
w

1-14

iv

Configuration of a Typical Uniprocessing System
Configuration of a Typical Multiprocessing
System

RR Format (16-Bit)

RX Format (16-Bit)

RI Format (16-Bit)

SF Format (1l6-Bit)

RR Format (32-Bit)

RX1l Format (32-Bit)

RX2 Format (32-Bit)

RX3 Format (32-Bit)

RI1 Format (32-Bit)

RI2 Format (32-Bit)

SF Format (32-Bit)

RXRX Format (32-Bit)

S > P DD
1 I | |
o o (40— - - 73]

|
oo

[.

i
HFHEHWOVOOJdJIN N

i
=
N OO

[

B b e et e b e e e
1

1
=
w

1-13
1-14

48-050 FOO RO1

SUMMARY OF CAL/32 MACHINE INSTRUCTIONS AND
MNEMONICS

CAL/32 MACHINE INSTRUCTIONS AND MNEMONICS FOR
THE MODEL 3200MPS SYSTEM

SUMMARY OF CAL/32 MACHINE INSTRUCTIONS AND
MNEMONICS FOR THE PERKIN-ELMER SERIES 3200
PROCESSORS

EXTENDED BRANCH MNEMONICS

CONSTANT TYPES

COMMON MODE ADDRESS OPERATIONS
CAL/32 LOGICAL UNITS

32-BIT LOADER ITEM DEFINITIONS
16-BIT LOADER ITEM DEFINITIONS

48-050 FOO ROl

3-20
3-22
3-35

Ind-1

PREFACE

This manual describes the Perkin-Elmer Common Assembly
Language/32 (CAL/32). Chapter 1 is an introduction to the basic
concepts of the assembler, central processing unit (CPU), and
main memory. Also described are the instruction formats for 16-

and 32-bit machines, as well as variations in the formats.
Chapter 2 introduces assembly language symbolic representation
and describes symbolic values. Chapter 3 defines the source

program and contains a list of machine instructions, mnemonics,
and a detailed description of assembler instructions. Common
mode programming and common mode operations are explained in
Chapter 4. CAlL./32 operati?g instructions are listed in Chapter
5.

Appendix A contains CAL/32 error codes. Appendix B describes the
Perkin-Elmer 32-bit object code format and the Perkin-Elmer
16-bit object code format.

This revision introduces the Perkin-Elmer Model 3200MPS
Multiprocessing System and outlines the arrangement of the CPU
and auxiliary processing units (APUs). The CAL/32 machine
instructions that are incompatible between the CPU and the APU of
a multiprocessing system and those that cannot be used on the APU
are specified.

This manual is intended for use with the 0S/32 R07.1 software
release and higher. The Model 3200MPS System features are
identified throughout the manual as applicable to the Model
3200MPS System only.

For information on the contents of all Perkin-Elmer 32-bit
manuals, see the 32-Bit Systems User Documentation Summary.

48-050 FOO ROl vii

CHAPTER 1
BASIC CONCEPTS

1.1 INTRODUCTION

L.ike all assemblers, Common Assembly Language/32 (CAL/32)
simplifies the direct control of the processor by providing the
programmer with a way of representing actual machine operations
in an easily understood symbolic form. Assemblers translate
symbolic representations of machine instructions into binary form
to be executed by the processor. CAL/32 also 1includes such
features as relocation, segmentation, complex data definitions,
and expression analysis. CAL/32 can run on any Perkin-Elmer
processor and produce machine c¢ode for any Perkin-Elmer
processor.

Because assembly language programming is so close to actual
machine operations, it is essential that the assembly language
programmer have a good understanding of system architecture.
This chapter contains introductory architectural descriptions for
Perkin-Elmer uniprocessing systems and multiprocessing systems.
See the appropriate processor manual for more detailed
information. '

1.2 THE PERKIN-ELMER PROCESSOR

The main components of a processor are the central processing
unit (CPU) and main memory. All Perkin-Elmer processors, whether
in a uniprocessing or a multiprocessing system, are
stored-program, multi-register, two-address machines.

There are three iterations of the p%ocessor within Perkin-Elmer

computers:

e A standard processor for a Perkin-Elmer uniprocessing system.
Figure 1-1 depicts the configuration of a typical
uniprocessing system.

e A CPU in a multiprocessing system.
e Up to nine auxiliary processing units (APUs) in a

multiprocessing system. Figure 1-2 depicts the configuration
of a typical multiprocessing system.

48-050 FO0O ROl 1-1

5378

MEMORY

|

4 MEMORY BUS O
[

SELCH

=

MUX BUS b

| 1

CONSOLE TERMINAL

CPU

TYPICAL UNIPROCESSOR

Figure 1-1 Configuration of a Typical Uniprocessing System

5379

SYSTEM MEMORY

& SYSTEM MEMORY BUS 6
.
CHANNEL CHANNEL
ADAPTER ADAPTER

BASE APU APU
] MUX BUS cPU DMA BUS 6 ey =N

(cLock) DMA BUS _é

Figure 1-2 Configuration of a Typical Multiprocessing System

1-2 48-050 FOO RO1

In addition to the standard tasks performed by the operating
system in a uniprocessing system, the operating system in a
multiprocessing system:

e Controls all APUs
® Monitors all activity in the multiprocessing system
e Services all APU exceptions

e Dispatches application tasks created for existing CPUs or the
CPU of a Model 3200MPS System

e Dispatches tasks to the APUs for execution in a Model 3200MPS
System.

The function of an APU is to execute tasks concurrently with the
CPU and other APUs.

1.2.1 Temporary Storage (Registers)

All Perkin-Elmer processors have some amount of temporary storage
that can be used as accumulators or index registers. There are
three types of temporary storage:

@ General purpose registers
® Single precision floating point registers

® Double precision floating point registers

All processors have at least one set of 16 general purpose
registers. In the 1l6-bit prodessors, each general purpose
register holds 16 bits; the 32-bit processors hold 32 bits.
General purpose registers can be used for integer arithmetic,
address arithmetic, logical operations, and character operations.

Floating point registers are wused only for floating point
arithmetic operations. Processors with flcating point registers
have either eight single precision registers, or eight single
precision registers and eight double precision registers. The
single precision registers hold 32 bits. The double precision
registers hold 64 bits.

For a multiprocessing system, there are up to ten sets of these
registers; one for each of the nine APUs that can be part of the
system, plus a set in the CPU; i.e., ten machines each have eight
general register sets, eight single precision floating point
registers, and eight double precision floating point registers.

48-050 FOO ROL 1-3

—— ———— —

1.2.2 Program Status Word (PSW)

The PSW defines the current state of a processing unit. The
Perkin-Elmer uniprocessing system has one current PSW. Since the
Model 3200MPS System consists of multiple processors, there is
one current PSW for each processor. The PSW consists of three
major parts:

e Status descriptor
e Condition code

e Location counter (LOC)

Individual bits and bit fields within the status descriptor
portion of the PSW define the current state of interrupts and
various hardware features of the processor. By setting or
resetting bits within the status descriptor, the programmer can
enable or disable such interrupts as input /output (L/0),
arithmetic fault, and machine malfunction. On those processors
with multiple sets of general purpose registers, a field in the
status descriptor defines which set 1is currently in use.
Programmers writing user-level programs, as opposed to operating
system or stand-alone programs, cannot directly access the status
descriptor. In this case, the operating system maintains control
of interrupts and registers.

The condition code provides a means of ceoritrolling program flow,
based on the results of instruction execution. As certain
instructions are executed, the value in the condition code
changes to indicate the nature of the result. For example, if an
operation produces a zero result, the condition code may be
changed to a zero value. With branch instructions, the
programmer can test the value in the condition code and branch or
not, depending on that value. ©Not all instruction executions
affect the condition code. See the appropriate processor
reference manual for more details.

The LOC controls the order of instruction execution. Normally,
the processor executes instructions sequentially and uses the LOC
to keep track of where the instructions are in main memory, then
fetches the instruction from the memory location specified by the
address contained in the LOC. It executes that instruction,
increments the LOC by the length of the instruction, and fetches
the next instruction. Branch instructions, when executed, change
the contents of the LOC and, thereby, affect the branch.

In 32-bit machines, the PSW contains 64 bits, the least
significant 24 of which are reserved for the LOC. In 16-bit
machines, the PSW contains 32 bits; the least significant 16 bits
are reserved for the LOC.

1-4 48-050 FOO ROl

1.2.3 1Input Output (I/0) Interface

The execution of certain machine instructions allows the
programmer to control external devices and to cause the transfer
of data between external devices and main memory or registers.
The actual programming of I/0 operations is very much dependent
upon the hardware of both the processor and the peripherals. 1/0
instructions are restricted to operating systems and stand-alone
programs. User programs can communicate with 1/0 devices through
facilities provided by the operating system.

1.2.3.1 Main Memory

To the assembly language programmer, main memory appears as a
block of contiguous storage locations. The smallest unit of
memory the programmer can access is the byte (eight bits). The
programmer can also access halfwords (two bytes), fullwords (four
bytes), and doublewords (eight bytes). Each byte in memory is
accessed by a unique address. Memory addresses start with zero
and are incremented by one, for each succeeding byte. Memory
addresses in the 32-bit procesgors always consist of 24 bits. In
the 16-bit processors, memory addresses consist of 16 bits. When
accessing bytes, any memory address within the limits of the
particular hardware configuration is considered valid. Halfwords
must be accessed with halfword addresses. Fullwords must be
accessed with addresses that are multiples of four. Doublewords
must be accessed with addresses that are multiples of eight.

l1l.2.4 Software Relocation

Programs written in CAL/32 can be absolute or relocatable. An
absolute program is one whose origin (starting location) is
specified at assembly time as being at a fixed halfword 1location
in memory. Subsequent addresses within the program, whether
referring to instructions or data, are fixed at assembly time.
For execution, absolute programs must always be loaded into
memory at the location specified as the origin. This type of
programming is useful 1in stand-alone applications and some
operating system situations.

Relocatable programs can be loaded for execution beginning at any
halfword location in memory. The origin of a relocatable program
is assumed to be relocatable zero. The CAL/32 output for this
type of program specifies all addresses 1in the program as
relative displacements from the origin. At link time, the
linkage editor resolves all addresses within the program by
adding a relocation value (the actual memory address for the
start of the program) to the relative addresses supplied by
CAL/32. Relocation applies only to addresses within the program.
Relocatable programs can contain absolute data.

48-050 FOO ROl 1-5

1.2.5 Hardware Relocation

Some Perkin-Elmer processors and their operating systems support
hardware relocation and segmentation. Programs prepared for
these systems start out as relocatable. A 1linkage editor
processes the relocatable output from CAL/32 to link in any
needed subprograms. The output of this process is an absolute
program: that, because of the relocating hardware, can be loaded
beginning at any memory address that is a multiple of 256 for
memory access controller (MAC) machines, or 2,048 for memory
address translator (MAT) machines. At run time, the relocating
hardware adds the required relocation value to all addresses
supplied by the program. This relocating hardware also provides
for program segmentation, where the program is divided into
pieces that can be loaded into noncontiguous blocks of memory.

CAL/32 supports segmentation by allowing the programmer to divide
the program into pure and impure segments. The pure segment of
a program consists of machine instructions and constant data and

cannot be modified at run-time. (The operating system and the
hardware prevent modification.) The impure segment consists of
the data base which can be modified at run-time. Programs
prepared as pure and 1impure segments can be shared (executed
concurrently) by several users. Only one copy of the pure

segment resides in memory during execution while there is one
copy of the impure segment for each user.

1.3 INSTRUCTION FORMATS (16-BIT)

The 16-bit processors have four types of machine instructions:
register to register (RR), register and indexed storage (RX),
register and immediate (RI), and short form (SF). The following
abbreviations illustrate the instruction formats:

oP Operation

R1 First operand register

R2 Second operand register

N A 4-bit immediate value

X2 Second operand index register
A2 Second operand direct address
12 Second operand immediate value

Most instructions require two operands, the first of which is
contained in a register. The result usually replaces the
contents of the first operand register. Exceptions to these
rules are noted in Section 1.5.

1.3.1 Register to Register (RR) Instructions
RR instructions cause operations to take place between operands

contained in registers. RR instructions are 16 bits long, as
shown in Figure 1-3.

1-6 48-050 FOO ROl

—===§ G Hmmm==b Gb Gemmh Hf See
i OP ! R1] R2 |
el oml el G G G f G
Bits:

0 7 8 11 12 15

Figure 1-3 RR Format (1l6-Bit)

The first eight bits of the instruction define the operation.
The next four bits identify the first operand register. The
final four bits identify the second operand register. In most RR
instructions, the specified operation takes place between the
contents of the first operand register and the contents of the
second operand register. The result of the operation replaces
the contents of the first operand register.

1.3.2 Register and Indexed Storage (RX) Instructions

RX instructions cause an\operation to take place between a first
operand, contained in a register, and a second operand, located
in main memory. These instructions require 32 bits, as shown in
Figure 1-4.

et 5B Grmmmmmt b Goeenb S-f S ke
] opP H R1 | X2 i A2 |
PSS e $ 6% G----S b b 5=
Bits: .

0 7 8 11 12 15 16 31

Figure 1-4 RX Format (16-Bit)

v

The first eight bits define the operation. The next four bits
identify the first operand register, and the next four bits
identify an optional index register. The remaining 16 bits
specify an address in main memory. The operation takes place
between the contents of the first operand register and the
contents of the memory location specified. The actual address of
the second operand is determined by adding the contents of the
index register to the contents of the address field. 1If the
index field of the instruction contains zero, no indexing takes
place. In most cases, the result of the operation replaces the
contents of the first operand register.

48-050 FOO ROl 1-7

1.3.3 Register and Immediate (RI) Instructions

These instructions cause operations to take place between the
contents of a register and the contents of an immediate field
imbedded in the instruction itself. They are 32 bits long, and
are shown in Figure 1-5. '

e I e R et % 5% 5---F 55 s-—-=F 5=
! OP | R1 ! X2 i 12 H
b bf G $ 45 6--m-b 6-4 G-l G m
Bits:

0 7 8 11 12 15 16 31

Figure 1-5 RI Format (16-Bit)

The first eight bits specify the operation. The next four bits
identify the first operand register. ' The next four bits identify
an optional index register. The final 16 bits are the immediate
value. The first operand is the contents of the first operand
register. The second operand is obtained by adding the contents
of the index register to the contents of the immediate field. If
the index field contains 2zero, no addition takes place. The
result of the operation usually replaces the contents of the
first operand register.

1.3.4 Short Form (SF) Instructions
These instructions are variations on the RI instructions in which

the second operand is small enough to be expressed in four bits.
SF instructions require 16 bits, as shown in Figure 1-6.

/

~==$ 5% Ho---=$ 5% S---F 55 5=
| oP : R1 : N :
~—=F ¢S Grmm-nb 55 G-~-=b 55 5=
Bits:

0 7 8 11 12 15

Figure 1-6 SF Format (16-Bit)

The first eight bits indicate the operation. The next four bits
identify the first operand register. The next four bits contain
the immediate value. Operations take place between the contents
of the first operand register. The result of the operation
usually replaces the contents of the first operand register.

1-8 48-050 rF0OO0 RO1

1.4 INSTRUCTION FORMATS (32-BIT)

The 32-bit processors recognize seven different types of
instructions. These are: RR, three variations on RX, two
variations on RI, and SF. The following abbreviations are used
to illustrate instruction formats:

oP Operation

R1 First operand register

R2 Second operand register

N A 4-bit immediate value

X2 Second operand single index register
D2 Second operand displacement

FX2 Second operand first index register
SX2 Second operand second index register
A2 Second operand direct address

12 Second operand immediate value

Most instructions require two operands, of which the first is the
contents of a register. The result of the operation usually
replaces the contents of the first operand register. Exceptions
to these rules are noted in Section 1.5.

1.4.1 Register to Register (RR) Insatructions

The format and function of these instructions are the same as for
the 16-bit processors. They cause operations to take place
between operands contained 1in registers, and they require 16
bits. These instructions are shown in Figure 1-7.

==t 5% G-—--- 5 5% $--=% S 55—~
: OP : R1 : R2 :
[,__5 5..,.5 6... RRp—— ‘_...'(7 (7..6 ﬁ,. - k.....f ﬁ._..j f* -
Bits:

0 7 8 ;11 12 15

Figure 1-7 RR Format (32-Bit)

The first eight bits specify the operation. The next four bits
identify the first operand register, and the 1last four bits
identify the second operand register. The processor performs the
indicated operation between the contents of the first' operand
register and the contents of the second operand register. In
most RR instructions, the result replaces the contents of the
first operand register.

48-050 FOO ROl 1-9

1.4.2 Register and Indexed Storage One (RX1l) Instructions

These instructions define an operation between the contents of a
register and the contents of a main memory location. They
require 32 bits, as shown in Figure 1-8.

————t b H————— 5 5% $--=% $%5 HG-——m——-mmm—mb b
H oP i R1 ! X2 10t 0 A2 H
——=$ 5% fm—--- § 5% 5---% 5% fo———mm-—m- -—% 5--
Bits:

0] 7 8 11 12 15 16 17 18 31

Figure 1-8 RX1l Format (32~Bit)

The first eight bits define the operation. The next four bits
identify the first operand register, and the next four bits
identify the index register. The next two bits, bits 16 and 17,
must be zeros. The next 14 bits constitute a direct program
address in a range from 0 to 16,383.

The address of the second operand 1is obtained by adding the
contents of the index register to the contents of the 1l4-bit
address field. If the index register field contains zero, this
addition does not take place, and the contents of the address
field are used as the address. The operation takes place between
the contents of the first operand register and the contents of
the specified memory location. The result usually replaces the
contents of the first operand register.

1.4.3 Register and Indexed Storage>Two (RX2) Instructions

These instructions define operations between the contents of a
register and the contents of a location in main memory. RX2
instructions are like the RX1l instructions; they require 32 bits.
They differ from the RX1l instructions in the method of
calculating the second operand address. See Figure 1-9.

b b Gmmmmmd el Gmmmb b G- b % -~
! OP ! R1 ! X2 11} D2 |
=% b G-m-nmb b Gmmb S fy G % G-
Bits:

0 7 8 11 12 15 16 17 31

Figure 1-9 RX2 Format (32-Bit)

1-10 48-050 F0OO ROl

The first eight bits define the operation. The next four bits
identify the first operand register, and the next four bits
identify the index register. The next bit, bit 16, must be a
one. The remaining 15 bits are treated as a signed integer in
two's complement notation. Bit 17 is the sign bit which, if one,
indicates a negative quantity, and if zero, indicates a positive
quantity.

The address of the second operand is obtained in two steps.
l. The signed integer, with sign bit extended to produce a

32-bit integer, 1is added to the contents of the index
register.

2. This intermediate result is added to the value in the
incremented LOC. The result 1is truncated to 24 bits.

If the index register field is zero, the first addition does not

take place. The indicated operation takes place between the
contents of the first operand register and the contents of the
specified mémory location. The result wusually replaces the

contents of the first operand register.

1.4.4 Register and Indexed Storage Three (RX3) Instructions

These instructions are analogous to the RX instructions in the
16-bit processors. They call for operations between the contents
of a register and the contents of an indexed memory location and
require 48 bits. See Figure 1-10.

e R B e B e B e B A 4 $=% 4-==% 5% 4-
} OP | Rl | FX2 {0} 1}y 0} 0| sx2 ! A2
AR o o e A e e 4 G-b F-—-% % &-
Bits:
0 7 8 11 12 15 16 17 18 19 20 23 24 31
/

Figure 1-10 RX3 Format (32-Bit)

The first eight bits specify the operation. The next four bits
identify the first operand register, and the next four bits
identify the first index register. Bit 16 must be zero. Bit 17
must be one. Bits 18 and 19 must be zero. The next four bits
identify the second index register. The next 24 bits contain a
direct memory address.

48-050 FOO ROl 1-11

The address of the second operand is obtained by adding the
contents of the first index register to the contents of the
second index register. This intermediate result is then added to
the contents of the direct address field, and the final result is
truncated to 24 bits.

If either of the index register fields contains zero, that level
of 1indexing does not take place. If both are zero, no indexing
takes place. In most RX3 instructions, the operation takes place
between the contents of the first operand register and the
contents of the specified memory location. The result usually
replaces the contents of the first operand register.

1.4.5 Register and Immediate One (RI1l) Instructions

These instructions are similar to the RI instructions in the
16-bit processors. They specify operations that take place
between the contents of a register and the contents of a field
that is part of the instruction. They require 32 bits, as shown
in Figure 1-11. i

B i i A e A i B B A S I
! OP] R1 ! X2 ! 12 |
b Gy o m - 4 9% =% G4 G-rb b G-
Bits:

0 7 8 11 12 15 16 31

Figure 1-11 RI1 Format (32-Bit)

The first eight bits indicate the operation. The next four bits
identify the first operand register, and fthe next four bits
identify an index register. The second operand is obtained by
extending the contents of the immediate field to 32 bits, by
propagating the sign bit, and then adding this quantity to the
contents of the index register. 1If the index register field is
zero, no addition takes place, and the extended immediate value
is the second operand. The operation takes place between the
contents of the first operand register and the immediate value.
The result usually replaces the contents of the first operand
register.

1.4.6 Register and Immediate Two (RI2) Instructions
These instructions are similar to the RIl1 instructions, except

that the field contains a 32-bit value, and the instruction
itself requires 48 bits. See Figure 1-12.

1-12 48-050 F0OO ROl

e bl g g o=l GG Gm—b G b G-

OP 1 R1] X2] 12 i

—==b b Gmecbh Gb Gl Gf Gmnh bl G
Bits:

0 7 8 11 12 15 16 31

Figure 1-12 RIZ2 Format (32-Bit)

The first eight bits define the operation. The next four bits
identify the first operand register. The next four bits identify
the index register. The second operand is obtained by adding the
contents of the index register to the contents of the immediate
field. If the index register field is zero, no addition takes
place, and the immediate value 1is the second operand. The
operation takes place between the contents of the first operand
register and the immediate value. The result usually replaces
the contents of the first operand register.

1.4.7 Short Form (SF) Instructions

SF instructions are similar to the SF instructions in the 16-bit

processors. They specify operations between the contents of a
register and the contents of an immediate field, whose value |is
small enough to be expressed in four bits. These instructions

require 16 bits, as shown in Figure 1-13.

e I R e 5 4% g% 55 H-
i QP H R1 i N i
b Gy Gmnnhy) body Goonnly 68 G-
Bits:

0 7 8 Ll 12 15

]
1

Figure 1-13 SF Format (32-Bit)

The first eight bits define the operation. The next four bits
identify the first operand register. The next four bits are the
immediate field. The operation then takes place between this
value and the contents of the first operand register. The result
usually replaces the contents of the first operand register.

48-050 FOO ROl 1-13

1.4.8 Register and Indexed Storage/Register and Indexed Storage
(RXRX) Instructions

RXRX instructions resemble a pair of adjacent RX instructions,
but represent one cohesive string-processing instruction. An
RXRX instruction is comprised of two instruction members. Each
member can be any one of the RX1l, RX2, or RX3 machine formats,
independent of the other member's format. For example, the first
instruction member might be of the RX1l format, and the second
instruction member might be of the RX3 format, yielding a 1l0-byte
RXRX instruction. Thus, an RXRX instruction length might range
from 8, 10, or 12 bytes.

The first eight bits of the first instruction member, OP, specify
the operation class. The particular RXRX operation is specified
by the contents of the operation-modifier (OP-MOD) field in the
first eight bits of the second instruction member. OP~MOD is
actually generated by the assembler according to the specific
RXRX operation mnemonic and the R1/Ll or R2/L.2 fields programmed
by the user in source code. See Figure 1-14.

5381

FIRST MEMBER SECOND MEMBER
< - »>< —-»>
4TO6BYTES 4706 BYTES
0 78 1112 ., 3147 0 78 11 12 y 31/47
OPN1 [, OPMOD opN2 77
35 54
R1 X2 jo}o ») : F R2
RE u
oF L1 44 wlefel " |4l |Fx2 Jor00]sx2 A
x2 |1 D2 12 c
]
ryd Yy
0 12-1516 17 310123 7 1215 16--1920-23 24 -7 4
RX1/RX2 SAMPLE MEMBER RX3 SAMPLE MEMBER

A
v

Figure 1-14 RXRX Format (32-Bit)

The next four bits in the first instruction member, R1l/L1,
identify either R1l, the string's length-specifying register, or
L1, the string's actual length. The user specifies to the
assembler whether the value in the R1/Ll field is a register or
an immediate value,

1-14 48-050 FOO ROl

The R1/Ll field is assumed to be a register, unless an equal sign
(=) precedes the L1l source expression. In machine format, the
ILL field is set when the =Ll source field specifies an immediate
value as length. The IL2 field in machine format is reset when
the Rl field is used to specify a register that contains the
string's length. When the length 1is an immediate value, its
value may range from 0 through 15. When the length is 1in a
register, the register may contain a length that ranges from 0
through 224-1. A length of 0O indicates a null string.

The remaining bits, bits 12 through 31 or 12 through 47, of the
first instruction member, OPNl, contain the address/location of
the lowest addressable byte of a string or its storage 1location.
The field, OPNl, is then similar to the indexed address portion
of an RX1l, RX2, or RX3 machine format. See OPN2 below.

The first eight bits of the second instruction member, OP-MOD,
are an operation-modifier field containing OPNl's length
indicator, ILl, in bit 0; OPN2's length indicator, IL2, in bit 1;
a special circumstances bit, C, in bit 2; and in bits 3 through
7, FUNC, the specific function code of the general operation
class, OP. As described above, ILL1 and IL2 are determined by the
assembler. The special circumstancegs bit, C, and function code,
FUNC, are determined by he assembler from the
operation-mnemonic. The C bit is used by some RXRX instructions
to indicate that the result of the operation will be forced
positive.

The next four bits, bits 8 through 11, of the second instruction
member, R2/L2, identify either R2, this string's
length-specifying register; or L2, the string's actual 1length.
Again, the wuser specifies in source format to the assembler
whether the value in the R2/L.2 field 1is a register or an
immediate value. The R2/1.2 source format field is assumed to be
a register, unless an equal sign (=) precedes the L2 source
expression. In machine format, IL2 is set when the =L2 field is
used to specify an immediate value. IL2 is reset when R2 is used
to specify a register. When the length is an immediate value,
expressed as =L2, its value may range from 0O through 15. When
the length is in a register, its value may range from 0 through
224-1. A zero length indicates a null string.

The remaining bits, bits 12 through 31 or 12 through 47, of the
second instruction member, OPN2, contain the address/location of
the lowest addressable byte of a second member's string. Both
OPN1L and OPN2 are similar in format to the indexed address
portion of an RX1l, RX2, or RX3 machine format. The particular
format of either OPNl or OPN2 is selectively generated by the
assembler, independently according to the user source program.

In RX1 machine format, bits 16 and 17 are zero. Bits 12 through
15 identify the 1index register, X2, the contents of which are
added to the absolute 14-bit value, D, to formulate the string's
address.

48-050 FOO ROL ' 1-15

In RX2 machine format, bit 16 1is set. Bits 12 through 15
identify the index register, X2, the contents of which are added
to the 15-bit displacement value, D2, to formulate the string's
address.

In RX3 machine format, bits 16 through 19 are 0100 binary. Bits
12 through 15 identify the first index register, FX2; and bits 20
through 23 identify the second index register, SX2. The contents
of both are added to the 24-bit address value, A, to formulate
the string's address.

NOTES

1. When the first member's OPN1
represents the string's address in
R¥2 format, the displacement value,
D2, is relative to the end address of
the first instruction member, not to
the end of the full RXRX ‘instruction.

2. When the second member's OPN2
represents the string's address in
RX2 format, the displacement value is
relative to the end of the second
instruction member, which is also the
end of the full RXRX instruction.

1.5 VARIATIONS ON INSTRUCTION FORMATS

Not all instructions follow the above instruction formats. In
some instructions the fields are redefined. Some instructions do
not require two operands. Some instructions do not change the
first operand, some instructions change the second operand, and
some instructions change neither operand.

1.5.1 Conditional Branch Instructions

Conditional branch instructions use formats that resemble RR, RX,
and SF instructions. However, the interpretation of the fields
differs from the standard, as does the actual operation. In all
conditional branch instructions, the first operand identification
is interpreted as a mask that is ANDed with the condition code.
If the result of this test indicates that the branch is to be
taken, then the second operand address is the location to which
the processor must go to obtain the next instruction.

In the RR instructions, the second operand register contains the

branch address. In the RX instructions, the branch address is
obtained by one of the standard methods for obtaining second
operand addresses. In the SF instructions, the immediate field

is interpreted as a halfword displacement, either forward or
backward, from the current LOC. The branch address is obtained
by adding or subtracting this quantity from the current LOC.

1-16 48-050 FOO RO1

{
1.5.2 Branch and Link Instructions

These instructions facilitate branching to and returning from
subroutines. They use formats similar to RR and RX where the
first operand register is the link register. Before the branch
is taken, the address of the next memory location following the

branch instruction is placed in this register. In the RR
instructions, the branch location is the contents of the second
operand register. In the RX instruction, the branch address is

obtained by one of the usual methods for obtaining second operand
addresses.

1.5.3 Other Variations

Some instructions change the second operand rather than the
first. Most notable among these are the store instructions and
the instructions that add the contents of a register to the
contents of a memory location.

Test instructions an§ compare instructions change neither
operand. The indicated operation takes place between the two
operands, but neither is changed. The result of the operation is
indicated by the condition code.

Certain other instructions, such as 1load PSW and simulate
interrupt, do not always require a first operand. In addition,
all of the I/0 instructions do not follow the general rules. For
detailed information on how these and other anomalous
instructions work, see the appropriate processor reference
manual.

48-050 FOO RO1 ' 1-17

CHAPTER 2
SYMBOLIC REPRESENTATION

2.1 INTRODUCTION

When writing assembly language programs, the programmer uses
meaningful symbols to represent the binary language interpreted
by both Common Assembly Language/32 (CAL/32) and the processor.
Symbols consist of printable ASCII characters, either singly or
in combination. CAL/32 recognizes the complete set of printable
ASCII characters. However, depending on the context, there can
be restrictions on the use of the complete set. See Chapter 3.

2.2 SYMBOLS AND EXPRESSIONS

\
Symbols represent addresses, register identifiers, absolute
values, operation identifiers, and constants. Examples of
symbols are:

A
LOOP
BXL.E
PART1
REG5
16

Symbols can be combined to form expressions. The arithmetic
operators: add, subtract, multiply, and divide are represented
in CAL/32 by the symbols: +, -, *, and /. They combine with
other symbols to form arithmetic expressions. Examples of these

arithmetic expressions are: ;

A+B
LAST-FIRST*TWO
A-16

Blanks and parentheses are not permitted within an expression.
For example, the sequence:

A-B* (C + D)

would not be interpreted by CAL/32 as an expression.

48-050 FOO ROl - 2-1

Depending on the context, CAL/32 might misinterpret the symbols,
generate incorrect code, and fail to detect the error. Where
CAL/32 can recognize the error, it generates an error message.

The evaluation of expressions takes place from left to right with
no rules of precedence. Thus, CAL/32 evaluates the expression:

LAST-FIRST*TWO

by subtracting the value of FIRST from the wvalue of LAST, and
multiplying this result by the value of TWO.

Logical expressions consist of symbols Jjoined by the logical
operators AND and inclusive OR. They are represented in CAL/32
by the symbols & and !. Examples of logical expressions are:

X&Y!IA
CHAR&NUL.L

/
Logical expressions are evaluated from 1left to right with no
rules of precedence. Blanks and parentheses are not permitted in
logical expressions.

Mixed expressions are formed by combining logical and arithmetic
operators. For example:

A-B!TWO

CAL/32 evaluates this expression by first subtracting the wvalue
of B from the value of A, and then ORing the result with the
value of two. Mixed expressions are like arithmetic and logical
expressions in that blanks and parentheses are not allowed, and
the method of evaluation is from left to right with no rules of
precedence.

Symbols represent either absolute or relocatable quantities. At
assembly time, relocatable quantities have a value equal to their
displacement from some fixed point within the program, usually
but not necessarily, the origin or starting location. At load
time, the relocatable quantity 1is replaced by an absolute
quantity whose value is calculated by adding the relocation value
to the relocatable quantity. Absolute gquantities are known to
the assembler at assembly time and are not changed at load time.

The operations: multiply, divide, AND, and OR are permitted only

between absolute data. The plus and minus operators can be used
on mixed data. The results of such operations are:

2-2 : 48-050 FOO RO1

OPERATION RESULT

Absolute + Absolute Absolute
Absolute - Absolute Absolute
Relocatable + Relocatable Iinvalid

Relocatable - Relocatable Absolute

Relocatable + Absolute Relocatable
Relocatable - Absolute Relocatable
Absolute + Relocatable Relocatable
Absolute - Relocatable Iinvalid

2.3 SYMBOLS AND THEIR VALUES

By definition, certain symbols used in CAL/32 programming have
implicit wvalues; that is, the value of the symbol is determined
by the way in which it is expressed and used. Examples of this
kind of symbol are the decimal, hexadecimal, and character
symbols used as operands in instructions. There are also global
symbols in CAL/32. These symbols have preset values that cannot
be redefined by the programmer. The programmer can define the
value of a symbol explicitly by using the equate statement. This
section covers the use of impl§cit and global symbols. Chapter
3 covers the explicit use and definition of symbols.

¥
1

2.3.1 Implicit Symbols

When used in the correct context, a string of decimal digits 1is
automatically assigned the actual value of the number represented
by the string. For example, the expression:

A+14

has a value that the assembler determines by adding the quantity
14 to the value A, which must be defined by some other means.

CAL/32 also recognizes the implicit value of special character
strings the programmer uses to represent decimal, hexadecimal,
and character values. These strings are made up of a single
letter that indicates the particular type, followed by a group of
characters enclosed in apostrophes that represents the value.
The code characters are:

CODE
CHARACTER TYPE
H Halfword decimal
F Fullword decimal
X Halfword hexadecimal
Y Fullword hexadecimal
C Character

48-050 FOO RO1 2-3

Decimal numbers consist of an optional sign (+ or -) followed by
decimal digits representing the actual value. Commas are not
allowed in the representation. Halfword decimal values can be
represented by from 1 to 5 decimal digits, with a range from
-32,768 to +32,767. Fullword values can be represented by from
1 to 10 decimal digits, with a range from -2,147,483,648 to
+2,147,483,647. CAL/32 converts these decimal numbers into two's
complement binary integers. Examples of decimal symbols, with
their internal representation expressed in hexadecimal notation
are:

SYMBOL VALUE
H'125" 007D
H*32765" 7FFD
H'+32765" 7FFD
H'-15' FFF1l
F'123123" 0001 EOF3
F'l’ 0000 0001
F'-2' FFFF FFFE

Hexadecimal symbols consist of the X or Y type code followed by
a string of hexadecimal digits enclosed in apostrophes. Halfword
symbols can use from one to four digits. Fullword symbols can
use from one to eight digits. Leading zeros are not required,
and the value 1is right Jjustified. Examples of hexadecimal
symbols are:

SYMBOL VALUE
X'F' OO0O0F
X'D4E' OD4E
Y'030" 0000 0030
Y'A' 0000 000A
Y'o' 6000 0000

Character symbols consist of from one to four ASCII characters
enclosed 1in apostrophes and preceded by the type code C.
Characters are right justified, with zero fill. Depending on the
context, either a halfword or a fullword results. Examples of
character symbols are:

SYMBOL VALUE VALUE
(HALFWORD) (FULLWORD)
Cr*x 002a 0000 002a
criz’ 3132 0000 3132
C'AB' 4142 0000 4142
c'1234' 3334 3132 3334

2-4 48-050 FOO RO1

In the last example, where a halfword value was generated, only

the rightmost two characters were used. Where the context
dictates a halfword, and a longer string is used, a truncation
error results. One final type of implicit assignment occurs in

the use of symbols as statement identifiers. Where a symbol is
used in the name field of a statement, it is automatically
assigned a value equal to the value of the current location
counter (LOC). This type of assignment is covered in Chapter 4.

2.3.2 Global Symbols

Six symbols recognized by CAL/32 have predetermined values. They
are:

ADC
LADC
PURETOP
IMPTOP
ABSTOP
*

The use of these symbols is somewhat restricted, and they cannot
be redefined by the programmer.

In programs written for 32-bit processors, the address length
constant (ADC) always has a value of 4, the length of an address
constant in bytes. (In 32-bit processors, addresses must be
contained in fullwords, even though the actual address is only 24
bits in length.) In programs for which CAL/32 is to generate
16-bit code, ADC has the value of 2. In programs written for
32-bit processors, the 1log (base 2) of the address length
constant (LADC) always has a value of 2. In programs for 16-bit
processors, LADC always has a value of 1. Both of these symbols,
ADC and LADC, are used most frequently in common mode
programming. See Chapter 4.

The symbols PURETOP, IMPTOP, and ABSTOP have values equal to:

PURETOP The next available location in the pure segment
IMPTOP The next available location in the impure segment
ABSTOP The next available location in the absolute segment

Because these values change during assembly, the symbols must be
used carefully. They can be used as second operand identifiers
in machine instructions and as operands in assembler instructions
where they are treated as address values. They cannot be used in
assembler instructions that control the LOC.

48-050 F0OO ROl 2-5

The asterisk symbol (*), used as an operand rather than as an
operator in an expression, always has a value equal to the value
of the current LOC. Throughout the assembly process, CAL/32
maintains a LOC analogous to the hardware [OC contained in the
central processing unit (CPU). Depending on the organization of
the program, this LOC can contain any one of several values. For
32-bit programs, the LOC may point to the current location in the
absolute segment, the pure segment, or the impure segment. For
16-bit assemblies, the LOC may point to the current absolute
location or the current relocatable location.

48-050 FOO ROl

CHAPTER 3
THE SOURCE PROGRAM

3.1 INTRODUCTION

The source program consists of a° set of assembly language
statements that specify the operations to be performed by the
processor, define the constants and storage areas used by the
program, and control the assembly process to produce the desired
output. Source statements for Common Assembly Language/32
(cAL/32) are of two types: comment statements and instruction
statements. Instruction statements are further divided into
machine instructions and assembler instructions. Each statement
consists of an 80-character record, in which symbols and
expressions identify the statement, and where necessary, indicate
the operation and locate the operands.

3.2 COMMENT STATEMENTS

Comment statements can appear anywhere in the source program.
They allow the programmer to include easy-to-read documentation
in the source program listing. They produce no object code. The
assembler does not process comment statements except to check for
proper sequencing and scan for invalid characters.

Comment statements must always start with an asterisk (*) in the
first character position. Positions 2 through 71 can contain any
printable ASCII character, including lowercase alphabetic
characters. Blanks are considered to be "printable" characters.
If a nonprintable character turns up in a comment statement,
CAL/32 replaces it with a pound sign ,(#). Position 72 of a
comment statement must contain a blank character. Positions 73
through 80 can, at the programmer's option, be used for sequence
identification. The sequence field can contain any printable
ASCII character other than lowercase alphabetic characters.
Where sequence checking is requested, each successive sequence
identifier must be greater, in the ASCII collating sequence, than

the previous identifier. Examples of comments are:
POSITION
1 72 73

*x THIS IS A COMMENT

* IT MAY APPEAR ANYWHERE IN THE PROGRAM

* SUBROUTINE GETCHAR GET 10000
*MOVES A CHARACTER FROM THE INPUT BUFFER GET10010
*AND RETURNS IT IN GENERAL REGISTER THREE GET10020

48-050 FOO ROl 3-1

3.3 INSTRUCTION STATEMENTS

Instruction statements can be written in fixed format or in free

format. For either format, there are five distinct fields in
each statement. In fixed format, these fields are:
CHARACTER POSITIONS DEFINITION
1 through 8 Name field
16 through 14 Operation field
16 through n Operand field
n+2 through 71 Comment field
73 through 80 Sequence field

Positions 9, 15, and 72 must always contain blank characters.
The operand field and the comment field are variable in length,
and the first blank character after position 16 serves as a
delimiter between the operand field and the comment field.
Because of the way the output listing is tabulated, the comment
field cannot contain more than 37 characters. If more than 37
characters appear, only the first 37 are printed on the output
listing.

CAL/32 does not require source statements to be written in fixed
format. It accepts free format source, in which blank characters
serve as delimiters. If, for example, the name field is not
used, a blank character in the first position indicates that the
next nonblank character 1is the start of the operation field.
Similarly, if the operation field requires fewer than five
characters, the first blank character following the operation
code indicates that the next nonblank character is the first
character of the operand field. As in the fixed format
statement, the first blank character following the operand field
indicates the end of that field and the beginning of the comment
field. There are three restrictions on the use of free format:

1. Comment length is limited to 37 characters, including blanks.
2. Position 72 must contain a blank character.

3. The sequence field must start in position 73.

The last restriction is because CAL/32 cannot distinguish between

a blank character as part of a comment and a blank character
intended to separate the comment from the sequence field.

3-2 48-050 FOO RO1

i

If there are no nonblank characters in positions 1 through 20,
CAL/32 assumes that the statement is a comment, and lists it as
such with a warning note. If more than 15 blanks separate the
name field from the operation field, CAL/32 assumes that the
operation field is not present. Similarly, if more than 15
blanks separate the operation field from the operand field,
CAL/32 assumes that the operand field is not present. In both
cases, CAL/32 generates an error message.

When writing CAL/32 instruction statements, the programmer uses
symbolic trepresentation in the name field, the operation field,
and the operand field. The following paragraphs describe the use
of symbols and expressions in these fields.

3.4 NAME FIELD

Where a symbol appears in the name field, it represents the value
of the current location counter (L.LOC) for that particular
instruction. , This allows the programmer to refer to specific
locations symbolically, without having to know the actual value
of the LOC. The following five restrictions apply to the
formation of names:

1. The first character of a name must be an uppercase or
lowercase alphabetic character or one of the special
characters:

e at sign (@)
e dot (.)

e dollar sign (%)

NOTE

)
Lowercase letters are internally
converted to uppercase except 1in string

constants.

2. The remaining characters can be made up of any combination of
valid first characters, plus the numeric characters 0 through
9.

3. The name must consist of from one to eight characters.

4. The name must start in the first character position of the
source record.

5. Imbedded blanks are not permitted.

48-050 FOO ROl ' 3-3

Examples of valid names are:

LABEL
LOOP1
.SIN
eGOTO
$$GETS

Examples of incorrect names are:

1LOOP First character is numeric
LLOOPCOUNTER More than eight characters
AB?C Question mark is illegal

As a general rule, a given symbolic string can appear only once
in the program where it defines a location. That is, the same
symbol may not appear in the name field of more than one
instruction. The exception to this is the equate instruction.
This is covered in the section on assembler instructions.

3.5 OPERATION FIELD

The use of symbols in the operation field is severely restricted.
Only previously defined symbols can appear in this field. The
symbols that appear in the operation field are called mnemonics;
they represent operations to be performed by the processor at
run—-time, or operations to be performed by the assembler. CAL/32
recognizes mnemonics that represent all machine operations for
all Perkin-Elmer processors. It also recognizes a large set of
assembler mnemonics that allows the programmer to control the
assembly process.
i

Mnemonics can consist of no more than five characters. They are
formed 1in the same way as names and use the same character set.
CAL/32 permits users to define mnemonics. This process is
described 1in the section that deals with the equate instruction.
Specific mnemonics that define machine operations and assembler
operations are described later in this chapter. Examples of
operation mnemonics are:

MNEMONIC TYPE , MEAN ING
AR Machine Add register
S Machine Subtract
CLI Machine Compare logical immediate
ORG Assembler Set location counter

3-4 48-050 FOO0 RO1

3.6 OPERAND FIELD

CAL/32 permits the use of both symbols and expressions in the
operand field of instructions. Symbols used in the operand field
can be implicitly defined or can be explicitly defined. The
rules for forming operands for assembler instructions vary from
instruction to instruction, and each is described individually
later in this chapter.

Most machine instructions require two operands while some require
only one. Where two operands are required, the first is
separated from the second by a comma. Following are the general
rules for forming operands for machine instructions.

3.6.1 Register to Register (RR) Instructions

Both the first and the second operand must be represented by
symbols or expressions wilth values between 0 and 15 inclusive.
If the value is greater than 15 or less than 0, the assembler
sets it to 0, and generates an error message. For example, if
the symbols 1 and 2 appear in the operand field of the add
register instruction:

AR 1,2

CAL/32 generates the machine code to add the contents of register
2 to the contents of register 1 and store the result in register

1. The use of 1 and 2 here is an example of how decimal numbers
have an implicit value when used in the proper context. Another
example:

AR X'1',X'2°

{

shows how hexadecimal symbols can be used as register
identifiers. This is an exception to the previously stated rule
that hexadecimal symbols generate halfword or fullword values.
Where used as register identifiers, decimal, hexadecimal, and
character symbols cause the assembler to generate 4-bit values.

Expressions can be used in identifying registers, as in:

AR A+B,C'A'-X'40"

where CAL/32 evaluates the expressions and uses the results as
the register identifiers. This is not a universally useful
feature of the language, although it has some applications in
common mode programming.

48-050 FOO ROl 3-5

A more useful way to identify registers is to use explicitly
defined symbols. Suppose the symbols SUM and INC are defined to
have values of 1 and 2, respectively. Then the instruction:

AR SUM, INC

has the same effect as:

AR 1,2

3.6.2 Register and Indexed Storage (RX) Instructions

If the first operand is required. it must be a valid register
identifier as described for RR instructions. The second operand,
separated from the first by a comma, can be:

e a symbol,
® an expression, or

@ a symbol or an expression followed by an index register
identifier enclosed in parentheses.

Where indexing is used, identification of the registers follows
the same rules as those for specifying first or second operand
registers. In double-indexed instructions, the first and second
index 1identifiers are separated by a comma. An example of how
(RX) instructions are written is:

S 1l,Aa

where the first operand is the contents of general register 1,
and the second operand is the value at location A in memory.
Another example:

S SUM, TABLE (PTR)

shows how single indexing is expressed. In this case, the first
operand 1is the value contained in the register identified by the
symbol SUM, and the second operand is the value at memory
location table plus the contents of +the index register PTR.
Another example:

S SUM,LAST-FIRST(BASE, PTR)

3-6 48-050 FOO ROl

shows the use of double indexing along with the use of an
expression in the operand field. A final example:

s SUM, 0 (ADDR)

illustrates where an address of a second operand is contained in
the index register. Here, there must be a symbol in the address
field even if it is equal to zero.

3.6.3 Register and Immediate (RI) Instructions

The first operand must be specified by a valid register
identifier. The second operand can be:

e a symbol,

® an expression, or)

e a symbol or an expression followed by an 1index register
identifier enclosed in parentheses.

Example:

CLI STRNG,C'ABCD'

causes the character string ABCD, represented internally as the
fullword character value 4142 4344, to be compared with the
contents of the register identified by the symbol STRNG. In
another example:

CLLI ADDR,LAST-FIKST(PTR)

the expression LAST-FIRST is evaluated by CAL/32 at assembly

time. At run-time this value is added to the contents of the
index register before the comparison takes place. In another
example:

CLI ADDR, Y'2000' (PTR)

the fullword, hexadecimal guantity 0000 2000, is added to the
contents of the index register. The result is then compared with
the contents of the register identified by the symbol ADDR.

48-050 FOO ROl ' 3-7

3.6.4 Register and Indexed Storage/Register and Indexed Storage

(RXRX) Instructions

The RXRX instructions have four basic source operand fields, each
of which is separated from the other by a comma. The first
operand field can be:

e a valid register identifier, symbol, or expression with a

def ined absolute value in the

e an equal sign (=) preceding a
def ined absolute value in the

The second source operand field,

comma, can be:

e a symbol or an expression;

® a symbol or an expression,
register

e a symbol or an expression,
index register identifiers,

pair enclosed in parentheses.

The third source operand field,
comma, can be:

® a valid register identifier,
def ined absolute value in the
® an equal sign (=) preceding a

def ined absolute value in the

The fourth source operand field,
comma, can be:

e a symbol or an expression;

® a symbol
register

or an expression,

® a symbol or an expression,
index register identifiers,
pair enclosed in parentheses.

optionally followed by
identifier enclosed in parentheses;

optionally followed by a pair

separated from the

optionally followed by
identifier enclosed in parentheses; or

optionally followed by

range 0 to 15; or

symbol or an expression with a
range 0 to 15,

separated from the first by a

an index

or

of
separated by a comma, with the

second by a

symbol, or expression with a
range 0 to 15; or

symbol or an expression with a
range O{to 15.

separated from the third by a
index

an

a pair of
separated by a comma, with the

48-050 FOO ROl

Examples of how these instructions are written are:
MOVE =LENGTH2,HERE, =LLENGTHL1, THERE

which moves the string of length, LENGTH1l, at location THERE to
the location HERE up to the number of bytes indicated by LENGTHZ2.
If LENGTH1 is less than LENGTHZ2, this instruction pads the extra
bytes with the right-justified character in general register
Zero.

In the preceding example, the first operand field 1is the
immediate value of symbol LENGTH2. The equal sign that specifies
LLENGTH2's value 1is an immediate value and not a register
identifier. The second operand field is the storage address at
location HERE. The third operand field is the immediate value of
symbol LENGTH1 (its immediacy 1is again indicated by the equal
sign). The fourth operand field is the string at location THERE.

Another example is:
MOVEP R7,PRINTOUT(LINE,COLZ2),R8,MESSAGE (CLASSX, ERRINDX)

which moves the string of the 1length specified 1in general
register R8, found at the memory location computed by summing the
address value of MESSAGE with the contents of both index
registers CLASSX and ERRINDX. The string is moved to a storage
location whose address value is computed by summing the address
value of PRINTOUT plus the contents of both index registers, LINE
and COL2. The number of bytes to be filled 1is the length
gspecified 1in general register R7. If the length in R8 is less
than that in R7, the MOVEP instruction, by definition, pads the
extra bytes with the default character, a space.

In the preceding example, the first operand field is the register
identifier, R7; the second operand field is the storage address
at location PRINTOUT, as double indexed by the register
identifiers, LINE and COL2; the third operand field is the
register 1identifier, R8; and the fourth operand field is the
string's location MESSAGE, as double indexed by the register
identifiers, CLASSX and ERRINDX.

Another example is:

PMV =8, DECSUMS (SALESID), 5, TOTALS (ORDERX)

which packs and moves the unpacked decimal data digit string
whose 1length is indicated in general register 5. Note that the
5 means a general register because no equal sign precedes it.

48-050 FOO ROl 3-9

—— e e a———

The unpacked decimal data digit string is found at the memory
location computed by summing the address value of TOTALS with the
contents of the single index register identifier ORDERX. For
details on how this conversion takes place, refer to the
instruction definitions in the appropriate processor manuals.
Generally, the unpacked decimal data is converted to packed
decimal data up to the number of digits that may occupy the

reserved byte length, indicated by the =8 expression. In this
case, 8 bytes are reserved, providing storage for 15 decimal
packed digits and a position for the sign-indicator. The PMV

instruction, by definition, has various safeguards for illegal
digit cases and overflow, and provides leading zeros as needed,
when the number of positions available for either the unpacked
digits and the packed digits is of unequal 1length. The memory
location to which the converted digit data is moved is computed
by summing the address value of DECSUMS with the contents of the
single index register SALESID.

In the preceding example, the first operand field 1is the
immediate value =8. Note that the equal sign specifies that 8 is
an 1immediate value and not a register identifier. The second
operand field is the address location DECSUMS as singly indexed
by the register identifier, SALESID. The third operand field is
the register identifier 5; and the fourth operand field 1is the
address location TOTALS, as indexed by the single index register
identifier ORDERX.

3.7 COMMON ASSEMBLY LANGUAGE/32 (CAL/32) MACHINE INSTRUCTIONS
Table 3-1 lists the mnemonics for CAL/32 machine instructions.
Where there is no entry in the format column, that instruction is
not available for that particular line of processors.
NOTE
Some machine instructions are illegal on
the auxiliary processing unit (APU) in a

Model 3200MPS System and are so noted in
Table 3-1.

3-10 48-050 FOO RO1

TABLE 3-1 SUMMARY OF CAL/32 MACHINE
INSTRUCTIONS AND MNEMONICS

INSTRUCTION

Add
Add DP floating point
Add DP floating point
register

Add to bottom of list
Add to bottom of list
flagged

i

i

{

i

i

i

i

i

|

i

i

i Add with carry halfword
i Add with carry halfword
| register

i Acknowledge interrupt
i Acknowledge interrupt
| register

{ Add floating point

i Add floating point

{ register

{ Add halfword

| Add halfword immediate
i Add halfword to memory
{ Add halfword register
i Acknowledge interrupt
i Add immediate

i Acknowledge interrupt
| register

| Add immediate short

| Autoload

]
;
i
i
i
!
i
i
i
i
i
i
i

Add to memory

Add register

Add to top of list -

Add to top of list flagged
Branch and link

Branch and link register
Branch to control storage
Branch on equal status
high speed '

Branch on false condition
backward short

48-050 FOO ROl

e e e e e e e e e e e e e e o e e o e o e e e o e

fi

ABLF

ACH

ACHR
ACK

ACKR
AE

AER
AH
AHI
AHM
AHR
Al
Al

AIR
AIS
AL

AM
AR
ATL
ATLF
BAL
BALR
BDCS

BESHS

BFBS

|
I
J
i
|
|
|
i
i
i
!
i
i
i
|
i
|
|
i
|
!
!
i
|
i
|
i
|
|
|
i
i
i
|
!
'
'
|
[}
|
i

32-BIT
FORMAT

AT o IE R P o o

RX

RR
RX
RILl
RX
RR*

RI2
SF
RX$%
RX

RR
RX

RR
RX

SF

i

- m—— mmen s e W - - mmen EmEr EmAn e Wmr A WEem WEe. MR GEen e S Wmem mem ween e weem)] w—en -
——— e mme e e e e e e e S Gmee S e e - - i

T A Lk e G e e S o Ake e e e Wi B o etk R e e v

16-BIT
FORMAT

RX*
RX

RR
RX

RX X *
RX

RR
RX

RR
RX

RR
RX
RI
RX
RR
RX*
RI*

RR
SF
RX

RX
RR
RX
RX
RX
RR
RI

RYX % %

SF

11

e ween emme mem mman s MR WS EAA MNam mman Een Gman mE G am mman M Gwan Weme MEen eAw SRR men MEee MO Eem Eeem mem Wnen WS e MmAY WmAR e Geen Wean Mman A mme .

TABLE 3-1 SUMMARY OF CAL/32 MACHINE
INSTRUCTIONS AND MNEMONICS

(Continued

Larm e o e it e i i i vn s 3 v o i M i ow e mam A Ao e s WG e Swn e e e e e sma e e ewa

INSTRUCTION
Branch on false condition
Branch on false condition
register
Branch on false condition
forward short
Branch on not equal status
high speed
Branch on true condition
backward short

Branch on true condition
Branch on true condition
register

Branch on true condition
forward short

Branch on index high
Branch on index low or
equal

Compare

Complement bit

Compare DP floating point
Compare DP floating point
register

Compare floating point
Compare floating point
register

Compare halfword

Compare halfword immediate
Compare halfword register
Convert to halfword value
register

Compare immediate

Compare logical

Compare logical byte
Compare logical halfword
Compare logical halfword
immediate

Compare logical halfword
register

)

- Emen Emes Eren WRex S W EEAE PSR ShAs Emew TEAR Mmes e TR GEAN SR GEeh EEAR R AEGE WEAR e WEAE SEen AR EEAE SR Wrar WEen Eeen meee See Wman Gmee e Wmen WP mmam - u —— ——

MNFMONIC

ﬂ

BFFS

BNSHS

BTBS

BTC

BTCR

BTFS
BXH

BXLE
Cc
CBT
CD

CDR
CE

CER
CH

CHI
CHR

CHVR
CI
CL
CLB
CLH

CLHI

CIL.HR

32-BIT | 16-BIT |
FORMAT | FORMAT |
Srersvmonmmmm s e "'ﬂ"‘"ﬂ!bﬂ"—"
RX | RX |
! !

RR | RR |
! |

SF | SF :
]]

| xer |

! !

SF i SF |
! !

RX | RX |
] 1

] i

RR | RR |
] [}

) i

SF | SF |
RX | RX |
1 1

| |

RX | RX |
RX | RX* |
RX | |
RX | RX |
] '

i |

RR | RR :
RX | RX |
| |

RR | RR |
RX | RX |
RI1L | RI |
RR* | RR |
i i

RR i i
RIZ | RI* |
RX | RX* |
RX | RX |
RX | RX |
] i

I 1

RI1 | RI |
i |

] [}

i !

RR* | RR :

48-050 FQO ROl

TABLE 3-1 SUMMARY OF CAL/32 MACHINE
INSTRUCTIONS AND MNEMONICS

(Continued)
i i
i INSTRUCTION { MNEMONIC
; ST AT U T L R A T A T T T R T T T T T A T T XTI T AT LT IS AT I T AT A I A X mm
i Compare logical immediate | CLI
i Compare logical register i CLR
i Compare register i CR
i Cyclic redundancy check !
{ modulo 12 | CRC1l2
i i
i Cyclic redundancy check i
{ modulo 16 i CRC1l6
i Decrement counter high |
{ speed i DCHS
{ Divide i D
i Divide DP floating point i DD
{ Divide DP floating point |
| register it DDR
' {
i Divide floating point { DE
i Divide floating point |
| register i DER
{ Divide halfword i DH
| Divide halfword register i DHR
{ Divide register ‘ { DR
{ Enter control storage i ECS
| Exchange program status |
| register i EPSR
{ Exchange byte register i EXBR
{ Exchange halfword register | EXHR
| Float DP register { FLDR
{ Float register ! FLR
{ Fix DP register i FXDR
{ Fix register i FXR
i Generate interprocess i
i interrupt I GIPI
{ Load i L
i Load address i LA
{ Load byte i LB
{]
1 '
| Load byte high speed { [LBHS
{ Load byte high speed |
i indirect { TLBHSI
{ Load byte register i LBR

48-050 FO0O ROl

|
]
|
{
|
|
!
i
I
1
t
1
|
i
|
1
I
1
|
1
i
]
i
i
t
1
!
]
t
{
|
]
|
]
1
{
1
1
i
|
|
]
4
1
1
1
1
[}
!
]
i
1
!
1
!
|
i
1
|
1
|
1
|
1
!
1
|
1
|
!
1
]
i
|
1

32-BIT

RI1
RR
RR

RX
RX

RX
RX

RR
RX

RR
RX
RR*
RR
RI1

RR
RR
RR
RR
RR
RR
RR

RX
RX
RX

RR

_.
e e e e e e Mmem e em e M e en e e Cmem mee e Wees Tmes Smem Neee men Weem e Twan e wtm W em mem Meee fmen e e e e weem (] me

i 16-BIT
FORMAT

RI*
RR*
RR*

RXXx*%

RX*x%x

RX**
RX*
RX

RR
RX

]

|

|

i

|

i

|

|

|

|

|

i

i

i

i

i

i

i

'

i

i

RR i
RX i
RR H
RR* H
SF i
|

i

|

|

i

i

i

i

i

i

i

i

i

|

i

|

|

i

RR
RR

RR
RR
RR
RR

RR* %
RX*
RI*
RX

RIxx

RX X *
RR

TABLE 3-1 SUMMARY OF CAL/32 MACHINE
INSTRUCTIONS AND MNEMONICS

(Continued)

INSTRUCTION

Load complement short
Load DP floating point
Load DP floating point

register

Load floating point

Load floating

register

Load
Load
Load
L.oad

Load
Load
Load
Load
point

halfword
halfword
halfword
halfword

log
reg

immediate
immediate short
multiple
multiple DP floating

point

immediate

ical
ister

l.oad multiple floating

point

[.oad program status
l.oad program status

register

L.oad PSW

[.oad PSW

register

l.oad real address
Load register

Multiply
Multiply
Multiply
register
Multiply
Multiply
register
Multiply
Multiply
Multiply
Multiply
register

Move and

DP float
DP float

floating
floating

halfword
halfword
halfword
halfword

ing point
ing point

point
point

register
unsigned
uns igned

process byte
string register

MNEMONIC

LER

LH

LHI
L.HL
LLHR

LI
LIS
LM

LMD

LME
LPS

LPSR
LPSW
LPSWR
ILRA
LR

M

MD

MDR
ME

MER
MH

MHR
MHU

MHUR

MPBSR

1
1
]
i

32-BIT
FORMAT

RR

RX
RI1l
RX
RR*

RI2
SF
RX

RX

RX

RX
RR
RX
RR
RX
RX

RR
RX

RR

RX
RR*

RR%%

i 16-BIT
i FORMAT

RR

RX
RI
RX*
RR

RI*
SF
RX

RX

RX

RR
RX

RR¥*
RX*
RX

RR
RX

RR
RX
RR
RX

RR

i
i
i
i
i
i
i
i
i
i
]
|
i
i
!
i
|
|
i
i
i
i
RX H
i
i
i
i
i
i
i
i
I
i
i
i
i
i
i
i
i
i
i
i
i
i

48-050 FOO ROl

TABLLE 3-1 SUMMARY OF CAL/32 MACHINE
INSTRUCTIONS AND MNEMONICS

(Cont inued)

INSTRUCTION
Multiply register
AND
AND halfword
AND halfword immediate

AND immediate

AND halfword register
AND register

OR

Output command

Output command register
OR halfword

OR halfword immediate
OR halfword to memory
OR halfword register

OR immediate

OR register

Process byte

Process byte register

Read block

Remove from bottom of list
Remove from bottom of list
f lagged

Read block register

Reset bit

Read data

Read DCS

Read data high speed

Read data high speed
register '

Read data register

Read halfword

Read halfword register

Rotate left logical
Rotate left logical short

48-050 F0OO RO1

i
{ MNEMON

|
|
!
i
!
i
|
|
|
|
|
i
i
i
i
i
!
|
|
i
i
i
i
i
i
i
|
!
i
i
i
|
|
i
!
|
|
|

_— LT A VET ISR ST ST IR SN IS ST IT ST NN OTOT AT oM N LT @ AP AT O U By e e 2t

MR
N
NH
NHI

NI
NHR
NR
0
ocC

OCR
OH

OHI
OHM
OHR

Ol
OR
PB
PBR
RB
RBL

RBL.F
RBR
RBT
RD
RDC3
RDHS

RDRHS
RDR
RH
RHR

RLL
RI.LS

I

c

|
1
i
t
I
t
!
i}
'
[
|
1
U
]
t
1
'
1
!
1
|
!
|
]
!
1
1
]
1
]
i
]
4
'
'
[}
t
]
!
{
i
i
!
i
!
1
|
t
1
]
i
]
[
]
!
]
|
1
t
t
'
]
i
]
]
!
|
|
|
t
'
t
1

32-BIT

FORMAT

RI1
RR*

RI2
RR
RX%
RR%
RX%%
RX

RR%%
RX
RX
RR

RR
RX
RR

RI1

- e e e e G e i e en men M e e T e S e mmae Gman mmae man e e e e e e e e e e e e e e men (] e -

RX % %
RR

RI*
RR*

RX
RX

RX * %
RR

RX
RR
RX * %

RR* *
RR
RX
RR

RI
SF %%

— ———

TABLE 3-1 SUMMARY OF CAL/32 MACHINE
INSTRUCTIONS AND MNEMONICS

!
%
=3

RX

RR

RX

RR
RX

RR
RX

RR
RX
RI

RX*
RR
RI*
RI
SF

RI

*

(Continued)

! i | 32-BIT

| INSTRUCTION ! MNEMONIC | FORMAT

| Read process data high | !

| speed | RPDHS i

! Replace PSW i RPSW i

i i i

| Rotate right logical | RRL | RIL

| Rotate right logical short | RRLS |

| Remove from top of list i RTL i RX

| Remove from top of list i |

i flagged i RTLF i

{ Subtract | S i RX

i i i

i Store byte high speed | H

i indirect i SBHSI]

| Set bit i SBT i RX

{ Subtract with carry H |

{ halfword { BSCH |

| Subtract with carry ! i

i halfword register i SCHR |

{ Simulate channel program i SCP i RX$%

{]]

! ! I

{ Subtract DP floating point | 8D | RX

{ Subtract DP floating point | |

| register | SDR i RR

{ Subtract floating point { SE i RX

| Subtract floating point | i

| register | SER i RR

{ Set program mask i\ SETM |

i i i

| Set program mask register | SETMR H

{ Subtract halfword | SH i RX

{ Subtract halfword immediate| SHI ! RI1

{ Subtract halfword from ! |

| memory | SHM |

{ Subtract halfword register | SHR ! RR*

{ Subtract immediate i8I i RI2

{ Simulate interrupt i SINT i RIL1

! Subtract immediate short i\ SIS { SF

i i |

{ Shift left arithmetic i SLA i RI1
3-16

48-050

FOO RO1

TABLE 3-1 SUMMARY OF CAL/32 MACHINE
INSTRUCTIONS AND MNEMONICS

(Continued)
! i { 32-BIT | 16-BIT
] INSTRUCTION | MNEMONIC | FORMAT | FORMA
= ST ST ST I AT I R LT O O OW OIT U DN DT T MR O O D 0T LT O Ut m IO IR L N o e oh DU D R ST N ST LT TN DT ST D OLIY LUT NSRS L S nm one nw e g
i Shift left halfword ! | |
| arithmetic i SLHA i RILl i RI
{ Shift left halfword H H H
| logical , | SLHL i RI1 i RI
| Shift left logical | SLL | RIl | RI
i Shift left halfword ! H !
i logical short i SLHLS { SF i RI
i Shift left logical short | SLLS | SF | SF
| Store PSW i SPSW ! i RR*¥*
| ! i i
| Subtract register ! SR i RR ! RRX*
{ Shift right arithmetic | SRA | RIL1 i RI
i Shift right halfword H | !
| arithmetic | SRHA i RI1 i RI
| Shift right halfword ! i i
| logical ! SRHL i RI1 { RI
{ Shift right logical i SRL i RIl { RI
i i ! i
i Shift right halfword i i i
{ logical short | SRHLS | SF { SF
i Shift right logical short | SRLS | SF i SF
i i i i
| Sense status { 8Ss i RX { RX
| Sense status register { SSR i RR ! RR
| Store i 8T ! RX | RXx
i i | i
| Store byte i STB | RX i RX
{ Store byte high speed { STBHS H i RXXx
| Store byte register i STBR i RR i RR
| Store DP floating point { STD i RX I RX
| Store floating point { STE i RX i RX
| | i i
{ Store halfword { STH i RX i RX
{ Store multiple ! ST™M i RX i RX
| Store multiple DP floating | H |
| point i STMD i RX i RX
i Store multiple floating { | |
| point i STME | RX ! RX

48~-050 F0O0 ROl

|

- e A A GEE S Am e Wen em Mmew s WEee e Gmen Amam et Tmen e mem e MR e GME Mme en mEan A e e R -

18

(Continued)
H ! 32-BIT | 16-BIT
INSTRUCTION ! MNEMONIC | FORMAT | FORMAT

Supervisor call ! 8VC I RX ! RX
Test bit ! TBT ! RX !
Test halfword immediate ! THI ! RI1 ! RI
Test immediate i TI ! RI2 ! RI*
Translate { TLATE i RX i RX*x
Test and set i TS i RX !
Unchain { UNC | t RR*x
Write block ! WB i RX%% | RX
Write block register i WBR i RR%% | RR
Write data ! WD ! RX ! RX
Write DCS | WDCS ! RR ! RR

]]]

1]]
Write data register ! WDR ! RR i RR
Write data high speed i\ WDHS : 1 RXXX%
Write data high speed H H H
register ! WDRHS H i RR¥**
Write halfword i WH i RX i RX
Write halfword register { WHR ! RR i RR

]] 1

I]]
Write processed data high | | !
speed i WPDHS ! I RX*x
Exclusive OR i X i RX i RX*
Exclusive OR halfword i XH I RX I RX
Exclusive OR halfword | | !
immediate i XHI i RI1 i RI
Exclusive OR halfword i 1 |
register i XHR i RR* i RR

1 [] i

] i]
Exclusive OR to memory { XHM H I RXX*x
Exclusive OR immediate i XI i RI2 i RI*
Exclusive OR register i XR { RR ! RR¥*

%%

TABLE 3-1 SUMMARY OF CAL/32 MACHINE
INSTRUCTIONS AND MNEMONICS

The indicated mnemonic operation code is generated,
and the listing is flagged with a question mark to
indicate a potential error.

Model 50 instruction set.

These instructions are 1illegal on the APU of a
Model 3200MPS System.

Not applicable to Model 3200MPS System processors.

48-050 F0OO ROl

There are three new machine instructions for the APU of the Model
3200MPS System. They are summarized in Table 3-2. See the Model
3200MPS Instruction Set Manual for an explanation of these new
machine instructions.

TABLE 3-2 CAL/32 MACHINE INSTRUCTIONS AND MNEMONICS
FOR THE MODEL 3200MPS SYSTEM

i i i\ 32-BIT |
i INSTRUCTION { MNEMONIC | FORMAT |
i Generate Signal (Model] GSIG | RR |
| 3200MPS APU only) d i i
1 [}]]
]]] [}
i Read real-time counter | RRTC 1 RR !
i (Model 3200MPS APU only) i H i
1] 1]
1 1 {]
i Reschedule (Model 3200MPS | RSCH i SF H
1] t
[} [}]

APU only) i

0S8/32 R0O7.1 and higher will simulate these instructions on other
processors. '

The semantics of the privileged system function (PSF) are
modified for the APU of the Perkin-Elmer Model 3200MPS System.
Table 3-3 1lists the mnemonics of machine instructions and
mnemonics for the Series 3200 processors. The 1l6-bit format is
not applicable.

48-050 FOO ROl 3-19

1
!
i
!
3
!
t
1
1
!
i
L)
]
!
1
[}
1
[}
1
i
1
i
1
1
1
i
[}
{
t
i
1
1
1
i
[}
i
t
1
[}
t
1
i
1
[}
1
i
1
[}
[}
!
3
U
t
|
1
!
]
[}
]
{
1
1
i
i
1
[}

TABLE 3-3 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS AND
MNEMONICS FOR THE PERKIN-ELMER SERIES

3200 PROCESSORS

o s G A o M i S e S T

INSTRUCTIONS
Breakpoint
Compare alphanumeric (RO=pad)
Compare alphanumeric and default
pad
Load interruptible state
Save interruptible state

Load complement SP register

Load complement DP register

Load DP register from SP memory
Load DP register from SP register
Load DP register from general
register pair

Load process state

Load SP register from DP memory
Load SP register from DP register
[.oad SP register from general
register

Load general register pair from
DP register

Load general register from SP
register

Load packed decimal string as
binary

Load positive DP register
Load positive SP register
Load process segment table
descriptor

s WSam mmen EER W e WP WEem WEEN WS e WEms SRS WEGe ERae WRAE R GEeE WG e AR WEER WRAR AR AR ARG e Ween WEGe Eew - u —— ——

MNEMONIC

masrmamsmI IR

BRK
CPAN

CPANP
ISRST*
ISSV*
LCER
IL.CDR
LDE
LDER
LDGR
LDPS X
LED
LEDR
LEGR

LGDR

LGER
L.PB

L.PDR
LPER

LPSTD*

]
[}
[}
I
1
)
[}
i
]
!
]
i
i
[}
]
1
]
1
]
1
i
t
]
!
]
1
1
!
[}
{
i
i
]
i
!
i
1
!
!
1
1
1
]
t
1
L}
1
f
t
I
1
i
|
1
1
|
1
i
]
I

48-050 FOO ROl

32-BIT
FORMAT

RR
RXRX

RXRX
RX
RX
RR
RR
RX
RR
RR
RX
RX
RR
RR

RR

RR
RX
RR
RR

RX

TABLE 3-3 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS AND
MNEMONICS FOR THE PERKIN-ELMER SERIES
3200 PROCESSORS (Continued)

i | { 32-BIT |
i INSTRUCTIONS { MNEMONIC | FORMAT |
= T T R R N TR S R T R R T RO AR e RsE ST e TR EeE = |
| Load shared segment table i] i
{ descriptor | LSSTD* | RX !
{ Move and pad (RO=pad) { MOVE i RXRX |
| Move and pad default pad i\ MOVEP ! RXRX |
| Move translated until i MVTU i RXRX |
i Pack and move i PMV { RXRX |
| Pack and move absolute { PMVA i RXRX |
i Read error logger { REL* i RX1 H
{ Reset memory voltage failure { RMVF* I RXL**x|
{ Store DP register in SP memory { STDE i RX i
| Store binary as packed decimal ! | i
i string | STPB i RX |
{ Store process state i STpPS* i RX H
{ Unpack and move i UMV i RXRX |
| Unpack and move absolute i UMvVAa { RXRX |
i Store byte with no ECC i XSTBx* i RX i

*x PSF modified for APU

xx* No register or other operands allowed in source
format

In addition to the set of mnemonics listed in Tables 3-1 through

3-3, CAL/32 recognizes a complete set of extended branch
mnemonics. These instructions allow the programmer to call for
conditional branch instruct ions without having to state

explicitly the condition code mask. Table 3-4 1lists these
instructions.

48-050 FOO ROl 3-21

TABLE 3-4 EXTENDED BRANCH MNEMONICS

Branch
Branch
Branch

Branch
Branch
Branch

Branch
Branch
Branch

Branch
Branch
Branch

Branch
Branch
Branch

Branch
Branch
Branch

Branch
Branch
Branch

Branch
Branch
Branch

Branch
Branch
Branch

Branch
Branch
Branch

Branch
Branch
Branch

Branch
Branch
Branch

INSTRUCTION

on
on
on

on
on
on

on
on
on

on
on
on

on
on
on

on
on
on

on
on
on

on
on
on

on
on
on

on
on
on

on
on
on

on
on
on

carry
carry register
carry short

no carry
no carry register
no carry short

equal
equal register
equal short

not equal
not equal register
not equal short

low
low register
low short

not low
not low register
not low short

minus
minus register
minus short

not minus
not minus register
not minus short

plus
plus register
plus short

not plus
not plus register
not plus short

overf low
overflow register
overflow short

no overf low
no overflow register
no overflow short

'
[}
1
1
i
i
[}
[}
i
]
I
[
}
|
i
]
I
1
1
i
!
1
1
1
!
1
i
i
1
i
[}
[}
I
1
1
1
|
]
t
§
I
'
i
1
!
]
1
[}
[}
1
!
1
!
]
]
]
'
'
]
i
t
]
I
1
!
1
'
]
'
]
1
[}
L}
]
]
]
]
]
1
1
'
]
!
H
]
[}
]
]
!
]
'
]
1

MNEMONIC

BC
BCR
BCS

BNC
BNCR
BNCS

BE
BER
BES

BNE
BNER
BNES

BL
BLR
BLS

1
|
=
]
[
{
=
=
:
:
:
:
:
:
:
t
!
:
:
:
:
i
!
i
i
i
BNL 1
BNLR i
i

i

]

!

i

i

i

|

i

i

|

i

i

!

|

i

|

i

|

|

i

!

i

|

i

|

BNLS

BM
BMR
BMS

BNM
BNMR
BNMS

BP
BPR
BPS

BNP
BNPR
BNPS

BO
BOR
BOS

BNO

BNOR
BNOS

48-050 FOO ROl

TABLE 3-4 EXTENDED BRANCH MNEMONICS

(Cont inued)
i INSTRUCTION i MNEMONIC |
i Branch on zero i BZ H
{ Branch on zero register | BZR i
{ Branch on zero short ! BZS H
]]]
]] ¥
!\ Branch on not zero H BNZ]
i Branch on not zero register | BNZR |
! Branch on not zero short | BNZS !
!] i
! Branch unconditional ! B H
| Branch unconditicnal register i BR i
i Branch unconditional short ! BS H
1 { []
[} t [}
i No operation | NOP i
i No operation register i NOPR i

The extended branch instructions are essentially single operand
instructions where the first operand (mask) value is included in
the operation mnemonic. The programmer supplies only the operand
or branch location. For short branches, the programmer does not
have to specify the forward or backward direction. CAL/32
determines the direction of the branch and generates the
appropriate machine code. For example:

L.OOP1 L STRNG, TABLE (PTR) LOAD STRING FROM TABLE
CLR STRNG, INPUT COMPARE WITH INPUT
BES END EQUIVALENT FOUND
AIS PTR, 4 NOT FOUND INCREMENT PTR
BNZS [LOOPl GET NEXT STRING
LIS STRNG, O NOT FOUND END OF TABLE
END ST STRNG, RETURN RETURN VALUE

In this program, CAL/32 determines the locations of LOOPl and END
and generates the required forward and backward branch
instructions.

Two more CAL/32 instructions that do not have direct machine
equivalents are:

INSTRUCTION MNEMONIC

Branch on true condition short BTCS
Branch on false condition short BFCS

48-050 FOO ROl 3-23

With these instructions, the programmer must specify the mask
value and the branch location. CAL/32 determines the direction,
forward or backward, and the appropriate machine operation is
generated.

3.8 ASSEMBLER INSTRUCTIONS

Assembler instructions control the assembly process. Although
they may resemble machine instructions in form, they do not
generate any machine executable code. They are used to define
symbols, reserve storage, dgenerate data constants, and control
the final output.

3.8.1 Symbol Definition Instructions

Symbol definition instructions allow the programmer to assign
values to symbols and set up communication paths between
separately assembled programs. The latter operation facilitates
the use of subroutines because they can be written and assembled
separately from the main program. At load time, a linking loader
uses information supplied by CAL/32 to resolve addresses between
main programg and subroutines to set up the correct linkage.
3.8.1.1 Equate (EQU) Instruction

This is one of the most commonly used assembler instructions. It
assigns values to symbols and it has the form:

NAME OPERATION OPERAND

A symbolic name EQU An expression

Examples of EQU instructions are:

LOOP EQU LOOP1

TOP EQU END-64
DELTA EQU BOTTOM-TOP
HERE EQU

START EQU X'lOFE'
SUM EQU 1

PTR EQU 2

3-24 48-050 FOO ROl

EQU instructions can appear anywhere in the program. CAL/32
requires that each EQU instruction have a symbol in the name
field and treats the absence of this symbol there as an error.
The value assigned to a symbol by an EQU instruction is absolute
or relocatable, depending on the type of expression in the
operand field. If the operand of an EQU statement contains a
forward reference, CAL/32 will perform any additional passes
required to define all symbols. CAL/32 does not reserve storage
for symbols defined by an EQU instruction. Wherever it
encounters the symbol in the program, CAL/32 replaces the symbol
with the value defined in the EQU instruction. For example:

STRNG EQU 1

PTR EQU 2

INPUT EQU 3

LOOP1 L STRNG, TABLE(PTR) LOAD STRING FROM TABLE
CLR STRNG, INPUT COMPARE WITH INPUT

In this case, CAL/32 generates the code to load register 1 with
four bytes located at the address specified by TABLE, indexed by
register 2. The next instruction causes CAL/32 to generate the
code to compare the four bytes in register 1 with the contents of
register 3. The use of the EQU instruction here allows the
programmer to assign meaningful names to the registers that hold
the character strings, and index into +the table. It also
provides a simple way to redefine the values assigned to these
symbols. By changing the EQU instructions and reassembling, it
is possible to change the values assigned to the symbols without
doing extensive editing to change each individual statement where
these registers are used.

It is also possible, although not recommended, to redefine a
symbol within a program. For example:

LLOOP1 EQU *

LOOP1 EQU *

48-050 FOO ROl - 3-25

When the symbol LOOPl is encountered in the first EQU
instruction, CAL/32 assigns it the value of the LOC. Subsequent
references to LOOPl receive this value. Following the second EQU
instruction, the value of LOOPl is changed to the value of the

new LOC. Because such redefinitions might not be intentional,
CAL/32 issues a warning message wherever a symbol is redefined by
an EQU instruction. (In the example, the programmer might have

intended to write LOOP2 instead of LOOPl in the second EQU
instruction.)

The user must guard against circular LOC dependency, as shown in
the following example:

A EQU x
DS 1
DS B-A

B EQU *
END

CAL/32 will flag an "MO0Ol xxxTOP" error where xxx is PURE, IMP,
or ABS, depending upon the current LOC.

As stated earlier, CAL/32 permits the user to define operation
mnemonics within the program. To do this, the user defines the
new mnemonic in an EQU instruction in which the new operation
mniemonic is 1in the name field, and the operand field contains a
hexadecimal constant of the form X'nnxy'. Here, nn is the
machine language operation code, and x and y are descriptors that
tell CAL/32 how to handle the new mnemonic. The values of x and
y inform CAL/32 of the instruction format. The values are
defined as follows:

RR or SF format
RX or RI format
RI1l format
RI2 format

MK XX
Wosonon
eLeLed
NN
[T}
BN o

3-26 48-050 F0OO ROl

To define extended branch mnemonics, x gets a value equal to the
Rl field (mask) and y gets one of the following values:

3 RX format
C RR format
D SF format

oo

Y
Y
Y
For example, in the instruction:

BTC 15, ADDR

the branch on true condition mnemonic and the mask field 15 can
be combined into an extended branch instruction as follows:

BTCF EQU X'42F3"

in which BTCF is the new mnemonic; 42 is the machine code for the
branch on true condition instruction; F is the mask value (15);
and 3 specifies RX format. Once this new mnemonic is defined,
the programmer can write:

BTCF ADDR
instead of:
BTC 15,ADDR

The new mnemonic definition remains in effect only for the
program in which it is defined. The new mnemonic must be
different. from all other mnemonics recognized by CAL/32.

There are three things to remember in using equate statements:

1. The name field must always contain a valid symbol.

2. The operand field must always contain a defined symbol or
expression.

3. The symbol that appears in the name field of an equate

instruction must not appear in the name field of any other
instruction, except another equate instruction.

If any of these rules are violated, CAL/32 generates an
appropriate error message.

48-050 FOO RO1 3-27

3.8.1.2 External, Entry, Weak External, Weak Entry, and

Data Entry (EXTRN, ENTRY, WXTRN, WNTRY, and DNTRY)
Instructions

These instructions are 1listed together since they perform
corresponding functions to #stablish links between main programs
and subroutines, and between programs with a common data base.
These instruction forms are:

NAME OPERATION OPERAND
Not used EXTRN One or more symbols
(illegal) se¢parated by commas
Not used ENTRY One or more symbols
(illegal) separated by commas
Not used WXTRN One or more symbols
(illegal) separated by commas
Not used WNTRY One or more symbols
(illegal) separated by commas
Not used DNTRY One or more symbols
(illegal) separated by commas

The EXTRN instruction identifies symbols referenced by the
program but defined outside the program. The ENTRY instruction
identifies symbols defined within the program and referenced
externally. (They can be referenced internally as well.)

For example, consider two programs: one calculates the sine and
cosine of an angle, the other uses the sine and cosine. The
first is a general purpose program that could be used by many

other programs. The ENTRY and EXTRN instructions make this
possible without having to assemble the sine and cosine program
every time it 1is needed. The sine and cosine program would

contain an ENTRY instruction and entry points such as:

ENTRY SIN,COS
SIN EQU *

cos EQU *

w
i

28 48-050 FOO ROl

The symbols SIN and COS appear as operands in the ENTRY
instruction and as names in the EQU instructions. When CAL/32
assembles this program, CAL/32 informs the 1linking 1loader that
the 1locations identified by the names SIN and COS are entry
points into the program.

The program that uses sine and cosine would contain an external
statement and branch instructions such as:

EXTRN SIN,COS
BAL LINK,SIN

BAL LINK,COS

At assembly time, CAL/32 generates object data to inform the
linkage editor that the symbols SIN and C(COS are externally
defined. At link time, the linkage editor uses this information,
along with the information generated by the entry instruction in
the other program, to provide the necessary linkage.

The WXTRN instruction is essentially equivalent to the EXTRN
instruction. However WXTRN symbols are subject to the following
exception processing by Link:

e An error condition does not arise if the symbol is not
resolved.

e Object libraries are not searched in order to satisfy a weak
external.

e If a module containing an entry point referenced by a WXTRN
symbol is included, then the entry point will be used to
satisfy WXTRN references to it in the normal fashion.

The WNTRY instruction is essentially equivalent to the ENTRY
instruction. However, WNTRY symbols are subject to the following
exception processing by Link.

® Weak entry points are not examined when searching an object
library. Therefore, a program module containing a weak entry
point is not included to satisfy an external reference.

e If a program module containing a weak entry point is included

from a module, the weak entry point will be used to satisfy
external references in the normal fashion.

48-050 FOO ROl 3-29

The DNTRY instruction is essentially equivalent to the ENTRY
instruction. However, symbols nominated by DNTRY are resolved
directly when building overlaid modules rather than resolved in
an SVC instruction. This instruction identifies a symbol defined
local to the program containing the DNTRY instruction.

To help protect references to data in higher 1level nodes, Link
automatically 1loads the entire path of overlays starting at the
overlay containing data and ending with the overlay making the

reference to a data entry point (DNTRY). A reference to a
program section positioned 1in a higher 1level node, via the
POSITION command, is treated the same way. A reference to data

or a program section in the root will not cause a path of
overlays to be loaded.

If a DNTRY is referenced in a lower level node, an SVC 5 manual
overlay 1load might be required to insure that the overlay is in
memory at the time of the reference.

Restrictions on the use ¢f external and entry instructions are:

e The operand field of an external instruction must not contain
an expression, such as SIN+4.

e Expressions involving externally defined symbols must be of
the form: '
- External symbol + absolute expression

- External symbol - absolute expression
BAL LINK,SIN+4
is a legal use of an externally defined symbol.

e Externally defined symbols cannot be used internally as
instruction identifiers.

e Any symbol identified as an entry must appear internally in
the name of an instruction.

e Symbols identified as entries cannot be redefined by multiple
equate instructions.

3-30 48050 FOO ROl

3.8.1.3 Include (INCLD) Instruction

This information provides Link with a mechanism to guarantee the

inclusion of object modules without other linkage references to
it. It has the form:

NAME OPERATION OPERAND
Not used INCILD One or more
(illegal) symbols

separated by
commas

The INCID is used in the same fashion as the EXTRN to linking
references. However, this instruction 1is wused to nominate
program modules rather than external symbols.

NOTE

CAL/32 generates the same object as in
the past, provided none of the following
instructions are used: external with
offset, DCMD, DNTRY, WNTRY, WXTRN, or
INCLD. The assembly of any of these
instructions produces an object that TET
will reject. Link is required to process
modules containing this extended object.
These instructions are only wvalid in a
Target 32 assembly and have no effect on
16-bit object generation.

3.8.2 Data Definition Instructions

These instructions allow the programmer to reserve areas of
memory to be used at run time. Some of these instructions allow
the programmer to specify values with which these areas can be
initialized at load time. Other data definition instructions
provide easy access to complex data structures.

48-050 FOO ROl 3

]

31

3.8.2.1 Define Storage (DS, DSH, DSF) Instruction

This instruction causes CAL/32 to reserve a block of storage
within the program without initializing the reserved locations to
any value. It has the form:

NAME OPERATION OPERAND
A symbol DS A previously defined absolute
(optional) expression
A symbol DSH A previously defined absolute
(optional) éxpression
A symbol DSF A previously def ined absolute
(optional) expression

The DS mnemonic causes CAL/32 to reserve the specified block of
storage starting from the value of the current LOC.
In the DSH form, CAL/32 first aligns the I.LOC on a halfword
boundary -and then reserves the storage. In the DSF form, CAL/32
first aligns the LOC on a fullword boundary. Examples of the
define storage instruction are:

BUF1 DS 100
BUF 2 DSH 125
BUF3 DSF 16

In the first example, CAL/32 réserves 100 bytes of storage by
simply adding 100 to the LOC. In the second example, CAL/32
reserves 125 halfwords (250 bytes) of storage. CAL/32 does this
by aligning the LOC on a halfword boundary, if it is not already
properly aligned, and then adding 250 to it. In the third
example, CAL/32 ensures that the LOC is aligned on a fullword
boundary and then adds 64 (the byte equivalent of 16 fullwords)
to 1it. If the operand contains a forward reference, CAL/32 will
perform any additional passes required to define all symbols.

3-32 48-050 FOO RO1

Def ine storage instructions are commonly used to reserve storage
areas for transient data. Examples of this are I/0 buffers and
register save areas. For example:

ENTRY RSAVE
EXTRN SIN,COS
LINK EQU 15

RSAVE DSF 16

BAL LINK,SIN

shows how a main program might set up a register save area within
itself. The code for the called program might look like:

ENTRY SIN, COS
EXTRN RSAVE
RO EQU 0

SIN EQU x
STM RO, RSAVE

where the subroutine stores the general registers in the
externally defined area, RSAVE. When using define storage
instructions remember that:

® The DSH and DSF forms of the instruction ensure halfword and
fullword alignment.

® The define storage instructions do not initialize memory to
any particular value.

e Only one operand is allowed in a define storage instruction,
and it must be a defined, absolute symbol or expression.

48-050 F0OO ROl - 3-33

3.8.2.2 Define Constant (DC, DCF) Instruction

The define constant instruction allows the programmer to reserve
areas of memory and at the same time specify the initial value to

be loaded into them. The define constant instruction has two
forms:
NAME OPERATION OPERAND
A symbol DC One or more operands
(optional) separated by commas
A symbol DCF One or more operands

(optional) separated by commas

The DC mnemonic ensures that the first of the operands is aligned
on a halfword boundary. The DCF mnemonic ensures that the first
of the operands is aligned on a fullword boundary. Operands of
different types can be used in the same define constant
instruction. However, where alignment is a concern, the
programmer must be careful in mixing operands of different types.
Types of operands are described below.

A single character code indicates the type of constant. This
character code 1is not always required, and the exceptions are
noted as they occur. The assembler determines from the character
code how it is to interpret the constant and translate it into
the proper object format. Table 3-5 lists the character codes
recognized by CAL/32, their meanings, and the types of constants
generated.

3-34 48-050 FOO RO1

TABLE 3-5

MEANING

string

48-050 F0OO ROl

{ CODE |
;.:..:-;.‘:r.:::r;::::z:::-:'::—r:az*.7:::::::
i X | Hexadecimal

. 4 { Hexadecimal

i H i Integer

T i Integer

i A i Address

i 2 i Address

it T { Address

. i Single precision
i i floating point

i D i Double precision
H | floating point
. \ Character

i i

i i

i P { Packed decimal

i | string

| i

i i

1]

1 [}

i |

i U { Unpacked decimal
1]

]

! :

: :

: :

L

CONSTANT TYPES

signed binary
signed binary
32-bit value of address
1l6-bit value of address
One half of 16-bit address
32-bit floating point
format

64-bit floating point
format

An 8-bit code per
character (7-bit ASCII)

32-bit

Fixed point sign-coded
integer of binary en-
coded 4-bit decimal
digits in a string of
variable byte length.

Fixed point sign-coded
integer of 7-bit ASCII
encoded decimal digits
(8-bits per digit) in a
string of variable byte
length.

3.8.2.3 Hexadecimal Constants

A hexadecimal constant consists of one or more hexadecimal
digits, O through 9 and A through F, enclosed in apostrophes and
preceded by the type code X or Y. Where the X type 1is used,
CAL/32 reserves two bytes of storage and generates the loader
information that will cause those two bytes to be initialized at
load time with the binary representation of the hexadecimal
number. The Y type causes four bytes to be reserved and
initialized. Examples of hexadecimal constants are:

CONSTANT VALUE
DC X'1234" 1234
DC ¥Y'1234" 0000 1234
DCF X'20' 0020
DCF Y'0064' 0000 0064
DC X'1234ABC' 4ABC

The first example shows a halfword hexadecimal constant which,
because of the DC operation code, 1is aligned on a halfword

boundary. The second example shows a fullword hexadecimal
constant. In this case, fullword alignment is not guaranteed.
The third example shows a halfword constant aligned on a fullword
boundary. The fourth example shows how to force fullword
alignment for a fullword constant. The last example shows what
happens when too many digits are given. CAL/32 truncates the

constant to the least significant digits and generates an error
message. The maximum number of digits for an X type constant is
four. The maximum number for a Y type constant is eight.

NOTE

Where fewer than the maximum number of
digits are given, CAL/32 right justifies
the wvalue 1in the location and fills in
the missing digits with zeros.

Two special mnemonics facilitate the building of hexadecimal
tables by eliminating the need to specify the X or Y type code.
They have the form:

NAME OPERATION OPERAND
A symbol DCX One or more operands
(optional) separated by commas
A symbol DCY One or more operands
(optional) separated by commas

3-36 48-050 FOO RO1

Operands for these instructions consist of from one to four
hexadecimal digits for the DCX instruction and from one to eight
hexadecimal digits for the DCY instruction. Examples of these
constants are:

DCX 1,0, 14AE, 20,4040
DCY 1, 2FFFE, 64,80000000

The DCX instruction generates five halfword constants as follows:

0001
0000
14AE
0020
4040

The DCY instruction generates four fullword constants as follows:

0000 0001
0002 FFFE
0000 0064
8000 0000

Before generating the constants, CAL/32 ensures that they are
properly aligned with halfword constants aligned on halfword
boundaries and fullword constants aligned on fullword boundaries.

3.8.2.4 Integer Constants

Integer constants can be either halfword or fullword. Halfword
constants are expressed by the character code H followed by a
string of from 1 to 5 decimal digits enclosed in apostrophes.
Fullword constants are expressed by the character code F followed
by a string of from 1 to 10 decimal digits enclosed in
apostrophes. The range of halfword constants is from -32,768 +to

+32,767. The range of fullword constants is from -2,147,483,648
to +2,147,483,647. The decimal strings used in these constants
must not 1include commas or blanks. A sign, + or -, can precede
the string.

The internal representation of integer constants is two's
complement binary. In this notation, positive numbers and zero
have their true binary form. For example, a halfword integer
with a value of 25 1is represented internally (hexadecimal
notation) as:

00

48-050 F0O0 ROl 3-37

Negative numbers are expressed in accordance with the formula:

Value = 2 - x

where n is the number of bits used to express the value, and x is
the absolute value of the number. For example, to represent
minus 10 in a halfword constant:

n 16 (1046)
x = 10 (Ass)
Va.lue = 1000016 - A1G = FFF616

ot

Examples of integer constants are:

CONSTANT VALUE
DC H'32767" 1FFF
DC H'-32768"' 8000
DC F'l' 0000 0001
DC H'-2' FFFE
DCF F'25' 0000 0019

The H and F codes themselves do not guarantee correct alignment.
To ensure that a fullword integer 1is aligned on a fullword
boundary, the programmer should use the DCF instruction.

CAL/32 does not require that integer constants be defined with
the character codes and decimal strings enclosed in apostrophes.
A simple decimal string can be used. For example:

DC 1
DC -7

The length of the integer constants generated by these
instructions depends on the processor on which the program is to
run. For 32-bit processors such instructions generate fullword
constants, such as:

CONSTANT VALUE
DC 1 0000 0001
DCF -7 FFFF FFF9

3-38 48-050 FOO ROl

For 16-bit processors, these instructions generate halfword
constants, such as:

CONSTANT VALUE
DC 1 0001
DC -7 FFF9

It is possible to force a fullword alignment by wusing the DCF
mnemonic with a simple decimal string. The use of a DCF
instruction affects only the alignment of the first of the
integer constants; the length of the constant is determined
solely by the processor on which the program is to be run. Thus,
when using these instructions with operands which are simple
decimal strings, it is not possible to generate a halfword
constant for a 32-bit processor.

3.8.2.5 Address Constants

Address constants consist of a single character type code
followed by a symbol or an expression enclosed in parentheses.
The three types of address constants are A, Z, and T. Type A
constants generate fullword address constants in programs
intended to be run on 32-bit processors; they generate halfword
address constants in programs intended to be run on 1l6-bit
processors. Types Z and T address constants always generate
halfword values. Examples of address constants are:

DC A(LOOP+2)

DC A(TABLE)

DC A (TOP-BOTTOM)
DC 7 (IOVECTOR)
DC T (ALPHATAB)

48-050 FOO RO1 3-39

For 32~bit processors, the first three examples cause CAL/32 to

reserve a fullword of storage, 1initialized at load time to
contain the value of the expression or symbol enclosed in
parentheses. This value can be absolute or relocatable,

depending on the nature of the expregsion. The address quantity
is right Jjustified in the least-significant 24 bits of the
fullword, and the most-significant 8 bits are forced to zero.
However, it is possible to use the most-significant bits for some
purpose. They might be used as flag bits as in the example:

PARAM DS 4

ADDR DC A(PARAM+Y 'A0000000"')
EXTRN SIN

LINK EQU 15

ADREG EQU 14

-

STE RO, PARAM
L ADREG, ADDR
BAL LINK,SIN

At the time of the branch and 1link instruction, register 14
contains the address of the location PARAM in the
least-significant 24 bits. The most-significant 8 bits contain
the value X'AO'. The subroutine can use the address portion and
the flag portion independently, as:

SIN EQU *
LE R4, 0 (ADREG) GET PARAMETER

TI ADREG, Y 'A0C0000COO" TEST FLAGS

The Z type address constants generate halfword values. They can
be wused 1in programs for 32-bit processors if the programmer is
certain that the actual address cannot exceed 65,535, the maximum
unsigned value that can be expressed in a halfword.

3-40 48-050 FOO RO1

The T type address constants are used as entries in translation
tables. These instructions cause CAL/32 to reserve a halfword of
storage 1initialized with one half of the actual address, right
justified. The most significant bit is zero. These constants
are intended for use with the translation tables associated with
the translate instruction and with the auto driver channel.

Address constants can be written without the type code and
parentheses, as in:

TABLE DS 16
BUFF1 DS 64
ADD1 DC TABLE ADDRESS OF TABIE

ADD2 DC BUFF1 ADDRESS OF BUFFER ONE

Where this convention is used, the size of the generated constant

depends on the processor for which the program is written. For
32-bit assemblies, CAL/32 generates fullword constants. For
16-bit assemblies, CAIL,/32 generates halfword constants. The

programmer can force halfword constants to be generated by using
the mnemonic DCZ, as:

DCZ TABLE, BUFF 1

which causes a series of halfword address constants to be
generated.

3.8.2.6 Floating Point Constants

The source form for floating point constants consists of a
decimal number enclosed in apostrophes and preceded by the letter
E for single precision, or the letter D for double precision.
The decimal number consists of:

e an optional plus sign or minus sign,

® one or more decimal digits that may include a decimal point,
and

@ an optional E character followed by an optional plus sign or

minus signh, followed by one or two decimal digits denoting a
power of 10.

48-050 FO0O ROl 3-41

Single precision floating point constants require a fullword of
storage. Double precision floating point constants require a
doubleword of storage. Internally, floating point constants are
represented in excess 64 notation. In this kind of notation,
each floating point number consists of a sign, an exponent, and
a fraction. The first bit of the number is the sign bit. If
this bit is a 1, the number is negative; if it is a 0, the number
is positive. The next 7 bits represent the exponent, expressed
in excess 64 notation. This field can contain any value between
0 and 127 inclusive. The remaining bits, 24 for single precision
and 56 for double precision, represent the fraction with an
implied radix point before the first bit.

The true value of the floating point number is obtained by
multiplying the fraction by 16 raised to the power indicated by
the exponent field. In excess 64 notation, this power is
determined by subtracting 64 from the value in the exponent
field. In this way, values equal to or greater than 64 produce
a 0 or positive power. Raising 16 to this power and then
multiplying by the fraction produces values between .0625 and 7.5
x 10. Exponent field values that are 1less than 64 produce a
negative power and values between .06249... and 5.4 x 10-
Floating point 0 is represented by a fullword or a doubleword of
zZeros.

Examples of floating point constants are:

CONSTANT INTERNAL REPRESENTATION
DC E'1l' 4110 0000

DC E'0.0' 0000 0000

DC E'7.2E74" 7F19 7817

DC D'10.5" 41A8 0000 0000 0000
DC D'5.4E-79' 0010 01Dl 33A9 49F6
DC D'7.2E+75" 7FFE BOE3 AD97 8760

In the internal representation of floating point constants, the
fractional part can consist of from 1 to 6 hexadecimal digits for
single precision, and up to 14 hexadecimal digits for double
precision. If the decimal number exceeds this degree of
accuracy, the magnitude of the number 1is preserved but the
precision is lost. In performing the conversion from decimal to
internal floating point, CAL/32 carries guard digits to ensure 6
hexadecimal digit accuracy for single precision and 14
hexadecimal digit accuracy for double precision. The programmer
must ensure proper alignment.

3-42 48-050 F0OO RO1

3.8.2.7 Character Constants

Character constants consist of the single letter code C followed
by a string of ASCII characters enclosed in apostrophes. All
characters are translated into 7-bit ASCII, in which the most
significant bit 1is always 0. Examples of character constants
are:

DC C'NAME'
DC C'APOSTROPHE. = '*' '

The second example shows how an apostrophe is included in a
character constant. Between enclosing apostrophes, a double
apostrophe is treated as a single character. The maximum number
of characters that cah be defined in a single character constant
is 64. If the number of characters in a constant is odd, CAL/32
appends a blank character at the end to maintain halfword
alignment.

3.8.2.8 Decimal String Constants

The source format for decimal string constants consists of a
decimal number enclosed in apostrophes and preceded by the letter
P for packed decimal string constants, or by the letter U for
unpacked decimal string constants. The decimal number is an
integer and consists. of an optional plus sign or minus sign,
followed by 1 to 31 dec¢cimal digits.

The machine internal representation of the packed decimal string
constant is a fixed point, sign-coded integer, where each digit
occupies 4 bits and ea¢h byte holds 2 digits. That 1is, each
decimal digit, 0 through 9, is binary encoded 1in a 4-bit
hexadecimal digit. As the number of decimal digits varies from
1 to 31, the length in bytes of the decimal string varies from 1
to 16 bytes. The last hexadecimal digit contains a 4-bit code
for sign; a hexadecimal C for plus, or a hexadecimal D for minus.
The integer representation is right-justified within the variable
length string, so the least-significant digit of the decimal
number occupies the hexadecimal digit just preceding the sign
code. Each digit is thus consecutively packed, with the
most-significant digit (zero or nonzero) in bit positions 0
through 3 of the leftmost byte of the string. See the examples
that follow for the differences in internal representation, when
the packed decimal string constant 1is defined by either the
define constant (DC) instruction or the define byte (DB)
instruction.

48-050 F0OO ROl 3-43

The machine internal representation of the unpacked decimal
string constant is a fixed point, sign-coded integer, where each
zoned digit occupies a byte. That is, each decimal digit, O
through 9, 1is encoded in 7-bit ASCII with the leftmost bit 0;
providing an 8-bit byte with the left hexadecimal digit
containing a 2zone code of 3 and the right hexadecimal digit
containing the binary encoded decimal digit. As the number of
decimal digits varies from 1 to 31, the length in bytes of the
decimal string varies from 1 to 31 bytes. The integer
representation 1is right-justified within the variable length
string. The rightmost byte contains the least-significant digit
in its rightmost hexadecimal digit and the sign code in its
leftmost hexadecimal digit. The sign code is a 4-bit code,
described above with a hexadecimal C for plus, and a hexadecimal
D for minus. Each digit is thus consecutively coded into bytes,
with the most-significant digit (zoned zero or zoned nonzero).
See the following examples for the differences in internal
representation, when the unpacked decimal string constant is
defined by either the DC instruction or the DB instruction.

The address of the string is the address of the leftmost byte
containing the most-significant digit (zero or nonzero). The
address generated for either the packed decimal string constant
or the unpacked decimal string constant is that associated with
the label of the source statements and the current LOC. Examples
of the PDS constants are:

INTERNAL

‘ REPRESENTATION
SOURCE FORMAT (HEXADECIMAL)
DB P'1’ 1c
DB P'+50° 0s50cC
DB P'-879' 879D
DB P'+1234° 0123 4cC
DB P'-12345"' 1234 5D

DB P'1234567890123456789012345678901"' 1234 5678 9012 3456
7890 1234 5678 901cC

pc p'l’ 0o1lc
DC P'+50' os50c
DC Pp'-879' 879D
DC P'+1234' 0001 234cC
DC P'12345" 0012 345cC

DC P'1234567890123456789012345678901' 1234 5678 9012 3456
7890 1234 5678 901C

3-44 48-050 FOO ROl

Note that as string-processing instructions are intended to
operate at the lowest addressable 1level, on byte-addressable
locations these constants are most efficiently generated by the
DB instructions, described in the define byte instruction
section. If the DC ingtruction is used, an extra byte of leading
zeros is generated, when the number of digits is a multiple of 4,
or is an odd number of digits not divisible by 3. Examples of
unpacked decimal string (zoned) constants are:

INTERNAL
REPRESENTATION

SOURCE FORMAT (HEXADEC IMAL)

DB U'1l' c1

DB U'+50° 35C0

DB U'-879° 3837 D9

DB U'+1234' 3132 33C4

DB U'12345' 3132 3334 D5

DB U'1234567890123456789012345678901' 3132 3334 3536 3738
3930 3132 3334 3536
3738 3930 3132 3334
3536 3738 3930 Cl1

pc o'l 30C1

DC U'+50° ; 35C0

pc U'-879° i 3038 37D9

DC 0U'+1234' 3132 33C4

DC U'-12345" 3031 3233 34D5

DC U'1234567890123456789012345678901' 3031 3233 3435 3637
' 3839 3031 3233 3435

3637 3839 3031 3233

3435 3637 3839 30C1

As string processing instructions require programmed length

attributes, familiariization with the internal storage
requirements for both packed decimal string and unpacked decimal
string constants 1is advisable. In the previous examples, the

relationship of number of digits to byte lenglLh is as follows:

CONSTANT DEFINED BY BYTE LENGTH
Packed DB (integer of n/2) + 1
Packed DC 2*(integer of n/4) + 2
Unpacked DB n

Unpacked DC n, for n even

n + 1, for n odd

where n is the number of decimal digits in the source formats of
the decimal constants. :

48-050 F0O ROl 3-45

3.8.3 Define Byte (DB) Instruction

This instruction defines consecutive 8-bit bytes of data. It has
the form:

NAME OPERATION OPERAND
A symbol DB One or more operands
(optional) separated by commas

The symbol used in the name field of the DB instruction is
assigned the value of the current LOC. There is no automatic
alignment. The programmer must ensure proper alignment where the
symbolic name of a DB instruction is wused as an operand
identifier in an instruction requiring its operand to be located
on a halfword, fullword, or doubleword boundary.

The operand field can contain one or more operands, separated by
commas . There can be an even or an odd number of operands. The
operands can be any symbol or expression value. For any operand,
other than character or decimal string expressions, the least
significant eight bits of the operand value are used to generate
one byte of data. Examples of the DB instructions are:

DB X'F7°'

DB 128

DB -1

DB c'a’

DB C'ABCDEFG'

As shown in the examples, the operand of a DB instruction can be

a signed integer. In this case, the integer can have any value
between -128 and +127, inclusive.

A special form of the DB instruction:
DB *

forces alignment of the LOC to a halfword boundary. If, when
this instruction 1is encountered, the LOC contains an odd wvalue,
one byte of zero value is generated, and the LOC is made even.
If the LOC is already even, this instruction has no effect.

3-46 48-050 FOO RO1

3.8.4 Define List (DLIST) Instruction

This instruction provides a simple means for defining circular
lists used by the machine instructions:

® Add to top of list
® Add to bottom of list
e Remove from top of list

® Remove from bottom bf list
The define list instruction has the form:

NAME OPERATION OPERAND

A symbol DLIST; A previously defined absolute
(optional) expression

The absolute expression in the operand field specifies the number
of slots in the list. For 32-bit assemblies, CAL/32 reserves
four halfwords of storage for 1list pointers, followed by the
specified number of fu@lwords (slots). The first halfword 1list
pointer is initialized with a value equal to the number of slots
in the list. The remaining three pointers are initialized to
Zero. For 16-bit assemblies, CAL/32 reserves four bytes of
storage for list pointers, followed by the specified number of
halfwords. The first byte pointer 1is initialized to a value
equal to the number of slots in the 1list. The remaining byte
pointers are initialized to zero. An example of the DLIST
instruction is: ‘

LIST1 DLLIST 100
In a 32-bit assembly, this has the same effect as:

LIST1 DCF X'64',X'0',X'0"',X'0"
DS 400

The DLIST instruction forces alignment to a fullword boundary in
32-bit assemblies. It forces alignment to a halfword boundary
for 16-bit assemblies.

48-050 F0OO ROL 3-47

3.8.5 Define Command (DCMD) Instruction

This instruction causes the string within the set of apostrophes
to be passed directly to the object code.

NAME OPERATION OPERAND
A symbol DCMD C'command string'
(optional)

The operand of the DCMD instruction is subject to the same
syntactic rules as any other character string. CAL/32 performs
no syntax checking on the command string.

CAL/32 will generate the same object as in the past, provided the
DCMD instruction is not used. The assembly of this instruction
will produce an object that TET will reject. Link is required to
process modules containing this extended object. The DCMD
instruction is valid only in a Target 32 assembly and has no
effect on the 16-bit object generation.

3.8.6 Location Counter (LOC) Instructions

These instructions allow the programmer to select the current LOC
and set its value. For 32-bit assemblies, CAL/32 maintains three
I.OCs: pure, impure, and absolute. For 16-bit assemblies, it
maintains two LOCs: relocatable and absolute. At any given
time, only one LOC can be in use. With these instructions, the
programmer can control the program segmentation and relocation.

3.8.6.1 Pure (PURE) Instruction

This instruction causes all subsequent machine instructions to be
assembled as part of the pure segment. It has the form:

NAME OPERATION OPERAND
A symbol PURE None
(optional) (ignored)

The current LOC is saved, and the new LOC is set to point to the
next halfword boundary beyond the most recently used location in
the pure segment. If a PURE instruction occurs in a relocatable
16-bit program, it has no effect. If it occurs in an absolute
1l6-bit program, it causes a switch to the relocatable LOC.

3-48 48-050 F0O RO1

3.8.6.2 Impure (IMPURj Instruction

This instruction causes all subsequent instructions to be

assembled as part of the impure segment. It has the form:
NAME OPERAT ION OPERAND
A symbol IMPUR None

(optional) 3 (ignored)

The current LOC is saved, and the new halfword boundary is set
beyond the most recently used impure address. In 16-bit
assemblies, this instruction has no effect if the program is
already 1in relocatable mode. If it is in absolute mode, the LOC
is switched to relocatable.

NOTE

Unless otherwise specified by the
programmer, impure mode is assumed.

3.8.6.3 Origin (ORG) Instruction

This instruction selects a LOC and sets it to a defined value.
It has the form: ;

NAME OPERATION OPERAND
A symbol ORG A previously defined symbol or
(optional) : expression

The operand of the origin instruction determines which LOC is
selected and the value it is given. [If the value of the operand
is pure, impure, absolute, or relocatable, the corresponding LOC
is selected and set to the operand value. If the operand
contains a forward reference, CAL/32 will perform any additional
passes required to defﬂne all symbols.

The user must guard against circular LOC dependency, as 1in the
following example:

ORG

LIS

A EQU
LIS

B EQU
END

L U

48-050 F0O0 ROl _ 3-49

CAL/32 will flag an "M00Ol xxxTOP" error, where xxx is PURE, IMP,
or ABS depending on the current LOC.

NOTE

If no ORG instruction appears at the
beginning of a program, CAL/32 assumes it
to be relocatable starting at relocatable
zero. For 32-bit programs it also
assumes the impure segment.

3.8.6.4 Absolute (ABS) Instruction

This instruction causes the LOC to be put in the absolute mode.
It has the form:

NAME OPERATION OPERAND
A symbol ABS None
(optional) (ignored)

The current LOC is saved, and the new LOC is set to point to the
next halfword boundary beyond the most recently used absolute
location. If the absolute LOC was not previously used, it is set
to zero.

3.8.6.5 Align (ALIGN) Instruction

This instruction conditionally aligns the current LOC to the next
highest value that is divisible by the specified operand. It has
the form:

NAME OPERATION OPERAND
A symbol ALIGN A symbol or
(optional) expression

The value contained in the operand field determines the type of
alignment. Symbols used in the operand field must be previously
defined. The value in the operand field must be absolute and
equal to either 2, 4, 8, 16, etc. (power of 2). If the operand
value is 2, CAL/32 adjusts the LOC to ensure that it contains a
halfword address. CAL/32 forces fullword alignment if the
operand value is 4, and doubleword alignment if the value is 8.

3-50 48-050 F0O ROl

If at the time of this instruction the L.oc
is already properly aligned, CAL/32 does not change it. If it
is not properly aligned, CAL/32 increments it by the minimum
amount necessary to force proper alignment. A symbol, if used in
the name field, receives the value of the LOC after the alignment
is performed. E

NOTE

If the value of the operand 1is not
absolute, or if it is not correctly

def ined, - CAL/32 forces fullword
alignment, and generates an error
message.

3.8.6.6 Conditional Nd Operation (CNOP) Instruction

This instruction is similar to the ALIGN instruction in that it
conditionally aligns the LOC to a power of 2. It has the form:

NAME OPERATION OPERAND
A symbol CNOP ; A symbol or
(optional) ; expression

The CNOP differs from the ALIGN instruction in that instead of
merely incrementing the LOC, it actually inserts no operation
instructions into the program stream. The value of the operand
must be absolute and equal to a power of 2. Symbols used in the
operand field must have been previously defined. If at the time
this instruction is encountered, the LOC is on an odd boundary,
CAL/32 increments it by one to make it even, inserts the required
number of CNOP instructions to force alignment, and generates an
error message. This @ instruction has no effect if the LOC is
already properly aligned. A symbol, if used in the name field,
receives the value of the LOC associated with the first CNOP
instruction generated.

w
i

48-050 F0O0 ROl 51

3.8.7 Assembler Control Instructioné

These instructions allow the programmer to control the assembly
process itself, identify the type of processor on which the
program is to be run, halt the assembly operation temporarily,
and request a limited amount of optimization.

3.8.7.1 Target (TARGT) Instruction

This instruction identifies the type of processor on which the
program is to be run. It has the form:

NAME OPERATION OPERAND
A symbol TARGT A symbol or
(optional) expression

The value of the operand expression must be either 16 or 32,
absolute. Symbols used in the operand field must be previously
defined. [If the operand value is 16, CAL/32 generates object
code for 16-bit processors. If the value is 32, it generates
object code for 32-bit processors. If the value 1is anything
else, CAL/32 generates a warning message and generates code for
the same type of processor on which it is running. If there Iis
no TARGT instruction in the program, CAL/32 assumes the target
machine to be the same as the machine on which the assembly is
running.

NOTE
The TARGT instruction must precede any

PURE or [IMPUR instructions or any
instruction that generates machine code.

3-52 48-050 F0OO ROl

3.8.7.2 End (END) Instruction

The END instruction indicates the end of the source input. It
has the form: ;

NAME OPERATION OPERAND
A symbol END A symbol or
(optional) expression (optional)

Because of its function, this statement must be the last
instruction in the source input file. The optional operand, if
used, identifies the sgtarting location of the program. For
example: :

MAIN EQU x

-

-

LAST END MAIN

The END instruction, with the operand MAIN, causes CAL/32 to
output information identifying the location MAIN as the starting
location of the program. The loader and the operating system use
this information to ensure that the program starts at the
requested location. If there is no operand, the END instruction
merely terminates the assembly process without outputting any
loader information. The END instruction is required in all
CAL/32 programs. ‘

3.8.7.3 Copy Library éCLIB) Instruction
This instruction allows the user to specify or change library
files from within a program. [t has the form:

CLIB vol:fname.ext

Each CLIB statement logically concatenates the new library file
(operand of CLIB) to any existing 1library file. If the new
library file cannot be assigned, CAL/32 will log an error message
and pause.

48-050 FOO ROl 3-53

3.8.7.4 Copy (COPY) Instruction

This instruction allows the programmer to insert source code from
library files into the source code received from the regular
gsource input file. It has the form:

NAME OPERATION OPERAND
A symbol COPY A symbol[,vol:fname.ext]
(optional) (required)

CAL/32 assumes that the library file was assigned to 1lu7 (see
Appendix A). CAL/32 also assumes that the file is made up of
80-character records. It searches through the logical file,
looking only at the first 10 characters of each record until it
finds a file label of the form:

RECORD POSITION CONTENTS
1l and 2 * %
3 through 10 A valid symbolic name of

from 1 to 8 characters

in which the symbolic name exactly matches the symbol 1in the
operand field. If the search is unsuccessful, CAL/32 logs the
message:

COPY ERROR: XXXXXXXX

in which xxxxxxxx is replaced by the name of the file being
sought. This might happen in the case of incorrect file
assignment. The operator can change the assignment and resume
the assembly process from the location of the COPY instruction.
The COPY instruction allows only one operand. The programmer
must provide one COPY instruction for each file to be copied into
the source stream.

If the optional second operand is supplied, CAL/32 will assign
and search only that physical file and ignore any files logically
attached by CLIB. If the file cannot be assigned, CAL/32 will
log an error message and pause.

The copy process terminates when an END statement is encountered
in the file, or when a record with either /* or /& in the first
two character positions is encountered. Where an END instruction
is encountered in the copy file, it does not mean the end of the
source file but only the end of the copy file. At this point,
CAL./32 resumes reading from the source input file. COPY
instructions may not appear in files which are themselves being
included in a source program by means of a COPY instruction.

3-54 48-050 FOO ROl

3.8.7.5 File Copy (FCOPY) Instruction

The assembler instructjon FCOPY allows the user to copy an entire
library file. It has the form:

FCOPY vol:fname.ext

When FCOPY is in effect, a /* starting in column 1 or an END in
the opcode field will be skipped, and copying will continue until
an end of file is reached. If the file cannot be assigned,
CAL/32 will log an error message and pause.

3.8.7.6 Pause (PAUSE)| Instruction
The PAUSE instruction éllows the programmer to halt the assembly

process. It has the form:

NAME OPERATION OPERAND

A symbol PAUSE None

(optional) 5 (ignored)

The PAUSE instruction temporarily halts the assembly process.
When the assembler encounters a PAUSE instruction, the assembler
requests the operating system under which it is running to
suspend execution. The system notifies the operator. The
operator can resume exécution of the assembler at the instruction
immediately following the PAUSE instruction by using the
operating system command CONTINUE. For example, the PAUSE
instruction can be usea by the operator to reassign a copy file,
such as: e

1
COPY REGEQUS COPY REGISTER EQUATES
PAUSE |
CoPY COMBLKS COPY COMMON BLOCKS

3.8.7.7 Sqgueeze (SQUEZ) Instruction

The SQUEZ instruction fputs CAL/32 into a mode 1in which it

performs a limited émount of space optimization. It has the
form:
NAME OPERATION OPERAND
A symbol SQUEZ A symbol or
(optional) expression (optional)

48-050 FOO ROl , 3

55

When in optimization mode, CAL/32 makes multiple passes over the
source input. During each pass, it attempts to reduce long
instructions (48 and 32 bits) to shorter forms (32 and 16 bits).
The value of the operand expressions sets the maximum number of
passes. If CAL/32 can complete the optimization in fewer passes,
it stops the optimization process and completes the assembly.

The value of the operand expression must be an absolute number
between 1 and 99. Any symbols used in the expression must have
been previously defined. If the operand value is 0, or if there
is no operand, CAL/32 assumes a maximum of 9 passes.

NOTE

If there are user induced errors in the
source stream (illegal mnemonics or
undef ined symbols), CAL/32 terminates the
squeeze operation and goes on to produce

the final assembler output. Some
instructions in this output may have been
squeezed, depending on where in the

process the errors were discovered.
CAL/32 performs three types of space optimization:

1. Changes RX3 instructions to RX2 or RX1l

2. Changes operation codes to allow the use of an equivalent,
but shorter, instruction

3. Eliminates unconditional branch instructions to the next

halfword location

An example of the first type of optimization 1is the forward
reference instruction. In this instruction, the operand is
defined in the program at some point beyond the instruction to
which it refers.

Example:

A R1,VALUE

VALUE DCF F'125"

3-56 48-050 FOO RO1

When CAL/32 processes the ADD instruction, it cannot tell if the
location of the second operand, identified by the symbol VALUE,
is within the range of either an RX1l or RX2 instruction. It has
to assume that an RX3 instruction is necessary. By making
additional passes over the source input after all addresses have
been resolved, CAL/3Z2 has the needed information to determine if
the reference to VALUE is within the range of either an RX1l or an
RX2 instruction and make the substitution.

An example of the second type of optimization is:

[JI R3 7 """1
In the optimization mdde, CAL/32 reduces this instruction to:
LCS R3, 1

which reduces the length of the instruction from 48 bits to 16
bits, without changing the effect. Depending on the processor,
the substituted instruction might be faster or slower than the
original instruction.

NOTE
CAL/32 changes an operation code only in
the object output. The original
instruction remains in the listing,

flagged with an asterisk.

The third type of bptimization does not occur in normal
programming, but it does sometimes appear in compiler-generated
CAL/32. For example:

-

.

ST R1,SAVE

B CONTINUE

CONTINUE L RlpTEMP

In this case, CAL/32 simply eliminates the unnecessary branch
instruction, although the branch instruction does appear in the
assembly listing, flagged with an asterisk.

48-050 F0O ROl 3-57

More than one SQUEZ instruction can appear in the program. The
first SQUEZ instruction sets the number of additional passes.
Subsequent SQUEZ instructions put CAL/32 back into optimization
mode after a NOSQUEZ instruction (described below) took it out of
the optimization mode. Operands may appear in the subsequent
SQUEZ instructions, but they are ignored.

Because CAL/32 looks at only one instruction at a time, and
because its global data is limited to the symbol table, squeezing
might introduce errors into the program. This is most likely to
happen when data and instructions are mixed.

Example:
BTC 8,LOOP1
LOOP1 EQU x
BFC 0,LOOP2
DS 26
ALIGN 4
CONST DC F'256"'
LOOP2 EQU x

-

If on one pass, CONST is already aligned on a fullword boundary,
the branch to LOOP2 can be converted to a short format branch.
A subsequent pass may allow the branch to LOOPl to be shortened.
When this happens, CONST is no longer on a fullword boundary, and
CAL/32 adds two to the LOC to align it properly. This forces
LOOP2 out of the range of a short branch instruction. CAL/32
will recover from this situation by changing the branch
instruction back to its original format and marking it internally
as unsgueezable.

3-58 48-050 FOO ROl

3.8.7.8 8Squeeze Relaﬁed (NOSQZ, ERSQZ, NORX3) Instructions

There are three additﬁonal instructions that can be used to

control squeezing and optimization of the source input file.
They have the form:

NAME OPERATION OPERAND
A symbol NOSQZ Not used
(optional) (ignored)
A symbol ERSQZ Not used
(optional) - (ignhored)
A symbol NORX3 Not used
(optional) , (ignored)

The no squeeze instruction (NOSQZ) has the effect of turning off
the optimization processes 1initiated by a previous SQUEZ
instruction. Optimization can be restarted by a subsequent
squeeze statement. NOSQZ overrides a squeeze start option.

The error squeeze instruction, (ERSQZ) can be used with the SQUEZ
instruction. It forces CAL/32 to continue squeezing even after
assembly errors are detected.

The no RX3 instruction (NORX3) provides a simpler form of
optimization dur ing a normal 2-pass assembly. Once this
instruction is encountered, CAL/32 forces RX instructions to the
RX1 or RX2 format. RX3 ‘instruction formats are still generated
if double-indexing is specified, or if the instruction references
an element of a common| block or an externally defined symbol.
This instruction can be safely used in programs that are smaller
than 16kb. It must not be used in segmented (pure and impure),
programs. ‘

3.8.7.9 Sequence Checking (SQCHK, NOSEQ) Instructions

The sequence checking instructions enable and disable the
sequence checking of source. They have the form:

NAME OPERATION OPERAND
A symbol SQCHK Not used
(optional) 5 (ignored)
A symbol NOSEQ Not used
(optional) (ignored)

48-050 FOO ROl 3-59

The sequence check instruction (SQCHK) causes CAL/32 to compare
each source statement sequence number with the number of the
preceding statement. Each successive number must be greater in
the ASCII collating sequence than the preceding one. CAL/32's
initial sequence value is equal to eight spaces, so that numbers
can be right-justified in the field without leading zeros. If a
source statement contains a value equal to or 1less than the
preceding statement, CAL/32 generates an error message. The
sequence fields of statements included in the program by a COPY
instruction are not checked.

The no sequence check instruction (NOSEQ) disables the sequence
checking process. The sequence field of this instruction is
checked, if sequence checking was in effect at the time. The
default mode of CAL/32 is NOSEQ.

3.8.7.10 Scratch (SCRAT) Instruction

The scratch instruction causes CAL/32 to copy the source input

file to a scratch device during pass one. It has the form:
NAME OPERATION OPERAND
A symbol SCRAT Not used
(optional) (ignored)

Subsequent passes over the source input file are read from the
scratch device. Since no statement preceding the SCRAT
instruction can be copied, the SCRAT instruction should be the
first statement in the program.

3.8.7.11 Pass Pause (PPAUS) Instruction

This instruction causes CAL/32 to issue a pause request to the

operating system at the end of each pass. It has the form:
NAME OPERATION OPERAND
A symbol PPAUS Not used
(ignored) (ignored)
3-60 48-050 FOO ROl

The purpose of the PPAUS instruction is to allow the operator to
reset the source input file to the beginning for the next pass.
This is useful in situations where no scratch file is available,
and the source input file is not rewindable.

NOTE
Where neither the SCRAT instruction nor
the PPAUS ' instruction is wused, CAL/32
issues a rewind command to the source
input logital unit (lu) the end of each
pass.

3.8.7.12 Message (MSG) Instruction

The message instruction allows the programmer to log a message to

the system console. It has the form:
NAME OPERATION OPERAND
A symbol MSG Text
(optional)
The operand field c&ntains the text of the message. All
characters following the operation field, up to and including
position 71, are sent to the system console as a message. This

instruction can appear anywhere in the program, and the message
is logged on every pass.

3.8.7.13 Batch Assembly (BATCH, BEND) Instructions

The batch assembly instructions provide a means for assembling

more than one complete program in a batch stream. They have the
form:

NAME OPERATION OPERAND
None BATCH Not used
(illegal) (ignored)
None BEND Not used
(illegal) (ignored)
48-050 FOO RO1 3-61

The batch instruction (BATCH) initiates the batch stream. It has
the effect of redefining the END instruction so CAL/32 does not
terminate itself at the end of the required number of passes.
Rather, CAL/32 terminates the assembly of that particular
program, reinitializes itself, and starts reading the next
program from the source input file. The BATCH instruction must
be the first statement in the stream of programs. I[If it is used,
CAL/32 assumes that there is a scratch device. Options specified
in the operating system START command remain in effect for the
entire batch assembly (see Appendix A).

The batch end instruction (BEND) terminates the batch assembly.
It must appear immediately following the END instruction in the
last program of the stream. The BEND instruction tells CAL/32 to
go to end of task when final assembly is completed. The end of
task code returned is equal to the highest code generated during
the batch assemblies. CAIL/32 will also terminate a batch
assembly normally if end of file or end of medium status is
detected when attempting to read the first statement after the
END of an assembly.

3.8.7.14 Unreferenced Externals (UREX, NUREX) Instructions
These instructions permit or suppress the output of object code

for wunreferenced externals. The default state is UREX. They
have the form:

NAME OPERATION OPERAND
Not used UREX Not used
(ignored) (ignored)
Not used NUREX Not used
(ignored) (ignored)

3.8.8 Conditional Assembly Instructions

These instructions allow the programmer to include code sequences
in the program that may or may not be assembled, depending on
some condition. By simply reassembling the program and
redefining the conditions, a single program can be made to serve
more than one purpose.

3-62 48-050 FOO RO1

3.8.8.1 Compound Condﬁtional (IFx, ELSE, ENDC) Instructions

There are three instructions in this set. They have the form:
NAME OPERATION OPERAND
A symbol IFx A symbol or
(optional) : expression
A symbol ELSE A symbol or
(optional) ‘ expression
é (ignored)
A symbol ENDC A symbol or
(optional) expression

(ignored)

The compound conditional instructions are used to provide
complete conditional . assembly capability. A symbol used in the
name field of an IF instruction is defined 1if the condition
described by the instruction is true. A symbol used in the name
field of an ELSE instruction is defined if the corresponding IF
condition 1is false. . Symbols used in the name fields of end
condition instructions: are always defined.

In the first instruction, the compound IF instruction, X

represents the actual condition. Following 1is a list of the
var ious mnemonics for these instructions:

MNEMONIC MEAN ING MNEMONIC MEANING

IFZ If zero [FNM If nonminus
[FNZ If nonzero IFE If even

IFP If plus IFO If odd

I[FNP If nonplus IFU If undefined

IFM If minus IFD If defined

CALL/32 tests the value of the operand when processing compound IF

instructions. If the ¢perand meets the condition specified by
the operation, the instructions immediately following the IF
instruction are assembled. If the operand does not meet the

specified condition, the instructions immediately following the
IF instruction are not assembled.

The ELSE instruction réverses the state of the assembler as set
by a previous compound IF statement. If the assembler was not
assembling code because a previous [F statement turned off the
assembly process, the appearance of an ELSE instruction would
cause the assembler t¢ resume assembling, starting with the
instruction immediately following the ELSE instruction. If the
assembler was assembling code because a previous IF condition was
met, the appearance of the ELSE instruction would cause the
instructions immediately following the ELSE instruction not to be
assembled. An ELSE instruction is not required to appear in a
block of conditionally assembled code.

48-050 FOO RO1 ' 3-63

The third instruction of this set is the end condition
instruction (ENDC) which terminates the presently active
condition. Normal assembly process resumes Wwith the next
instruction. Any compound IF instruction used in the program
must have a corresponding ENDC instruction. I[If the end of the
source file is reached before an existing condition terminates,
CAL/32 terminates the condition, generates an error message, and
resumes normal assembly on the next pass. If the operand of the
[IFx contains a forward reference, CAL/32 will perform any
additional passes required to define all symbols. As an example
of conditional assembly, consider a subroutine that can receive
its parameters in either of two ways: first, the parameters are
located by referencing a list of addresses immediately following
the branch and link instruction in the main program; second, the
address of the actual parameter list is contained in register 14.
The subroutine could handle both of these situations with
conditional assembly, as follows:

IFZ CALLl

SUB LH R1,0(RF) GET FIRST PARAMETER ADDRESS
LH R1,0(R1) GET FIRST PARAMETER
LH R2,2(RF) GET SECOND PARAMETER ADDRESS
LH R2,0(R2) GET SECOND PARAMETER
AlIS RF,4 ADJUST RETURN ADDRESS
ELSE LIST NOT IN LINE

SUB LH R1,0(RE) GET FIRST PARAMETER
LH R2,2(RE) GET SECOND PARAMETER
ENDC

RETURN BR RF RETURN TO CALLER

If, at assembly time, the value of CALLl1 is zero, the

instructions between the IF instruction and the ELSE instruction
are assembled, and the instructions between the ELSE instruction
and ENDC instruction are not assembled. If the value of CALLl is
other than zero, only the instructions between the ELSE
instruction and the ENDC instruction are assembled.

3-64 48-050 F0OO0 ROl

Another example of
be nested:

IFNP

LGTH
* HERROR 1 !
ELSE ;
IFZ SRC-DST
* ERROR 2
ELSE
LHI R1,LGTH
IFP SRC-DST
LHI R2,SRC
LHI R3,DST
ELSE
LHI R2,DST
LHI R3,SRC
ENDC |
ENDC
ENDC

This set of nested conditionals depends on
symbols: LGTH, SRC, and DST. If L.GTH is
the comment:

* ERROR 1

is produced. If I.GTH is positive, and SRC
the second comment: :

* ERROR 2
is produced. If LGTH is positive, and SRC

the following instructions:

LHI R1,LGTH
LHI R2,SRC
LHI R3,DSC

48-050 FOO ROl

conditional assembly shows how conditions can

CONDITION #1
LGTH IS NOT POSITIVE
CONDITION #1
CONDITION #2
SRC IS EQUAL TO DST
CONDITION #2

CONDITION #3

CONDITION #3

END CONDITION #3
END CONDITION #2
END CONDITION #1

three
only

the values of
negative or zero,

LGTH IS NOT POSITIVE

is equal to DST, only

SRC IS EQUAL TO DST

is greater than DST,

are assembled. I[f LGTH is positive, and SRC is less than DST,
the following instructions are assembled:

LHI R1,LGTH
LHI R2,DST
LHI R3,SRC

The user must be careful, when using a forward reference in the
operand field of the IFU instruction, to avoid the following type
of code:

[FU A

B EQU 8
ENDC

A EQU 1
IFNZ B
DS 10
ENDC

B EQU 0
END

CAL/32 will flag this code with an "MOOl1 xxxTOP" error where xxx
is PURE, IMP, or ABS, depending upon the LOC used.

NOTE

A condition once set by an IF instruction
remains in effect until the corresponding
ENDC instruction is encountered. Thus,
when the first condition was met, the
first comment was produced. The ELSE
instruction reversed this state, and no
subsequent code was assembled.

3.8.8.2 Simple If (IF) Instruction

The simple IF instruction 1is retained in CAL/32 to maintain

compatibility with previous assemblers. It has the form:
NAME OPERATION OPERAND
A symbol IF A symbol or
(optional) expression

3-66 48-050 FOO RO1

What CAL/32 does on encountering an IF instruction depends on the
value of the operand. If the operand has a nonzero value, CAL/32
assembles all statements following the IF instruction, until the
end of the source file 1is reached, or wuntil another IF
instruction is encountered in which the operand value 1is zero.
At this point, CAL/32 stops assembling the source input until the
END instruction, or another IF instruction with a nonzero operand
value, 1is encountered. If the operand contains a forward
reference, CAL/32 will perform any additional passes required to
define all symbols.

NOTE
Do not use simple IF instructions and
compound JIF instructions in the same
program. Simple IF instructions must not
be used in nested conditionals.

3.8.8.3 Do (DO) Instruction

The DO instruction provides a form of conditional and multiple
assembly capability. It has the form:

NAME OPERATION OPERAND
A symbol DO A previously defined absolute symbol
(optional) or expression

The DO instruction causes the statement immediately following it
to be assembled as many times as specified by the value of the
operand. The value of the operand must be between 0 and 32,767.
If the value of the operand 1is 0, the next instruction is
skipped. If the operand contains a forward reference, CAL/32
will perform any additional passes required to define all
symbols.

The user must guard against circular LOC dependency, as 1in the
following example:

A EQU x
DO B-A
Ds 2

B EQU x
END

CAL/32 will flag an "MOOl xxxTOP" error, where xxx is PURE, IMP,
or ABS, depending upon the current LOC.

48-050 F0OO RO1 3-67

3.8.9 Instructions for Data Structures

These instructions allow the programmer to define complex data
structures. Some of these instructions allow the programmer to
define and initialize data blocks compatible with FORTRAN common.
3.8.9.1 8tructure Definition (COMN, STRUC, ENDS) Instructions

Structure definition instructions are used to define data
structures. They have the form:

NAME OPERATION OPERAND
A symbol COMN Not used
(optional) (ignored)
A symbol STRUC Not used
(optional) (ignored)
A symbol ENDS Not used
(optional) (ignored)

The common instruction (COMN) defines FORTRAN compatible common
blocks. The structure instruction (STRUC) defines other types of
data structures. The end structure instruction (ENDS) terminates
both common definitions and data definitions.

The symbol in the name field of a COMN or STRUC statement
contains the absolute value of the length of the structure or
common block. The symbol specified with the ENDS instruction is
assoclated with the current value of the offset counter.

A symbol is always required in the name field of a COMN
instruction. To define FORTRAN compatible blank common, a
special symbol consisting of two slashes (//) must appear in the
first two positions of the name field. The remaining positions
must be blank. If the name field is blank, CAL/32 will assume
(//) was intended for a FORTRAN blank common.

The scope of the common block consists of all the storage
definitions between the COMN instruction itself and the next ENDS
statement. Only define storage, origin, and equate instructions
are permitted between a COMN and its corresponding ENDS
instruction. The define storage instructions included within the
common block definition do not actually reserve storage; they
def ine offsets within the common block. Origin statements can be
used to modify the offset counter. The equate instructions can
be used to define symbols relative to elements in the common
block. Common blocks cannot be nested within other common blocks
or within other structure definitions.

3-68 48-050 FOO ROl

The following 1is an example of the definition of FORTRAN
compat ible common blocks:

C FORTRAN PROGRAM
INTEGER*2 [,J,K,KK,K2,L
COMMON A(10), I, J(3,20)
COMMON/COMONE/B(30), K(4), KK
COMMON/COMTWO/X,¥,Z,K2,L.(24)

The CAL/32 code to deﬁine these common blocks is:

// COMN DEF INE BIL.ANK COMMON
A DS 40 TEN FLOATING POINT NUMBERS
I DS 2 ONE TWO-BYTE INTEGER
J DS 120 SIXTY TWO-BYTE INTEGERS
ENDS END OF BLANK COMMON DEFINITION
COMONE COMN ‘ DEFINE COMMON BLOCK COMONE
B DS 120 THIRTY FLOATING POINT NUMBERS
K DS 8 FOUR TWO-BYTE INTEGERS
KK DS 2 ONE TWO-BYTE INTEGER
ENDS : END COMMON BLOCK COMONE
COMTWO COMN _ DEFINE COMMON BIL.OCK COMTWO
X DS 4 ONE FLOATING POINT NUMBER
Y DS 4 ONE FLOATING POINT NUMBER
Z DS 4 ONE FLOATING POINT NUMBER
K2 DS 2 ONE TWO-BYTE INTEGER
L DS 48 TWENTY FOUR TWO-BYTE INTEGERS
ENDS

Common block definitions must precede any statements that
reference the common block. Referencing a common element plus a
displacement is permitted in the operand of a machine
instruction, in a define constant instruction, or in a block data
origin instruction defined below.

STRUC is used to define general purpose data structures. The
scope of this data structure consists of all the storage
definitions between the structure instruction and its
corresponding ENDS instruction. Only define storage, origin, and
equate instructions :can be used in a structure definition. The

def ine storage instructions do not actually reserve storage; they
def ine offsets within the data structure. Origin statements can
be used to modify the value of the offset counter. Equate
statements can be used to define names relative to elements in
the data structure. Data structures cannot be nested within
other data structure definitions or within common block
definitions.

48-050 FOO RO1 3-69

To define a linked list structure, each node of which contains a
2-byte forward pointer, a 2-byte backward pointer, six bytes, and
a set of values such as: four bytes, one byte, one byte and six
bytes, the programmer might write:

NODE STRUC
FWD Ds 2 DEF INE FORWARD POINTER
BAK DS 2 DEF INE BACKWARD POINTER
VALA DS 4 DEFINE FOUR-BYTE VALUE
VALB DS 1 DEFINE ONE-BYTE VALUE
VALC DS 1 DEFINE ONE-BYTE VALUE
VALD DS 6 DEFINE SIX-BYTE VALUE
ENDS

The effect of this definition is the same as:

NODE EQU 16
FWD EQU O
BAK EQU 2
VALA EQU 4
VALB EQU 8
VALC EQU 9
VALD EQU 10

Once NODE is defined, it can be used as follows:

LHI R5, POOL GET ADDRESS OF POOL

LB RO,VALB(RS5) GET VALUE B OF FIRST NODE

LH R5,FWD(RS) GET POINTER TO NEXT NODE
POOL DS 100*NODE

Data structure definitions must precede any references to their
elements in RX3 format instructions, unless the NORX3 instruction
or the SQUEZ instruction was used.

3-70) 48-050 FOO ROl

3.8.9.2 Structure Initialization (BDATA, BORG) Instructions

Structure initialization instructions define FORTRAN compatible
block data subprograms that consist of labeled common blocks.
They have the form: .

NAME OPERATION OPERAND
A symbol BDATA Not used
(optional) (ignored)
A symbol BORG Not used
(optional) (ignored)

The block data instruction (BDATA) must precede any statements
that generate data, and the block data subprogram must not
contain any executable code. The common blocks to be initialized
must be defined at the beginning of the block data subprogram.
Once they are defined, the block origin instruction (BORG) is
used to initialize the data elements of the common blocks. The
operand of the block origin instruction consists of the common
block name followed immediately by the element name or its
displacement enclosed 1in parentheses. Only one operand is
allowed. The following is an example of a block data subprogram:

BDATA
*
x | COMMON BLOCK DEF INITION
*
BLK COMN
A DS 4
B DS 40
Y DS 20
vA DS 4
ENDS
*
* INITIALIZE ELEMENTS A, B+8, AND Z
*
BORG BLK(A) REFERENCE BY NAME
DC E'10"
BORG BIK(64) REFERENCE BY DISPLACEMENT
DC E'20"
BORG BLK(B+8) REFERENCE BY NAME AND
DISPLACEMENT
DC E'30'
END

This program initializes A to a floating point value of 10; Z to
a floating point value of 20; and the third fullword, B, to a
floating point value of 30.

48-050 F0O ROl 3

i

71

3.8.10 Listing Control Instructions

These instructions allow the programmer to exercise some control
over the format and the content of the source listing produced by
CAL/32 on the final pass of the assembly. '

3.8.10.1 Listing Identification (PROG, TITLE) Instructions
Listing identification instructions are used to force CAL/32 to

print header information at the top of each page of the source
listing. They have the form:

NAME OPERATION OPERAND
A symbol PROG Text.
(optional)

A symbol TITLE Text
(optional)

The program instruction (PROG) specifies the primary heading for
each page of the listing. In addition, it causes the symbol in
the name field to be placed at the beginning of the object file
for program identification. On 16-bit assemblies, only the first
six characters of the name field are put in the object file.

All characters in the operand field (a maximum of 56) up to and
including position 71 are printed in the primary header line of
each page of the listing. If more than one PROG instruction is
encountered in a module, the last PROG instruction will override
all previous ones.

The title instruction (TITLE) is a way to specify subheadings
that can be changed within the program. The text contained in
the operand field up to and including position 71, is printed on
the 1line immediately below the heading produced by the PROG
instruction. As many TITLE instructions as required can appear
in the source input file. Each time a TITLE instruction is
encountered, CAL/32 starts a new 1listing page with the new
subheading when the next printable statement is processed.
Subsequent pages contain this same subheading, until another
TITLE instruction appears. If two or more TITLE instructions
occur together in sequence, only the last TITLE instruction
affects the subheading content since a new page will be printed
only when a printable statement is encountered.

TITLE instructions themselves are not printed although they are
included in the statement count.

3-72 48-050 FOO ROl

3.8.10.2 Format Control (LCNT, EJECT, SPACE, WIDTH) Instructions

Format control instructions allow the programmer to control the
format of the listing. They have the form:

NAME OPERATION OPERAND

A symbol LCNT A symbol or
(optional) § expression
A symbol EJECT A symbol or
(optional) : expression
A symbol SPACE A symbol or
(optional) expression
A symbol WIDTH A symbol or
(optional) expression

The operand field of the line count instruction (LCNT) specifies
the number of 1lines to be printed on each page of the listing.
The operand value must be an absolute number no greater than 99
and no less than 10. The default value of the line count is 58.

Whenever the eject instruction (EJECT) appears, it overrides the
gspecified or default line count, and causes CAL/32 to start a new
page when the next . printable statement is processed. The new
page starts with whatever headings are in use. This statement is
included in the statement count, but it is not printed. If one
or more EJECT instructions cccur together in sequence, only one
page is advanced since the actual advance occurs only when a
printable instruction is encountered. EJECT instructions
themselves are not printed although they are included 1in the
statement count.

The operand field of the space instruction (SPACE) specifies the
number of lines to be skipped in the listing. The value of the
operand must be absolute. I[If the number of lines to be skipped
exceeds the number of 1lines remaining on the page, this
instruction has the same effect as an EJECT instruction and is
included in the statement count, but not printed.

The operand field of the width instruction (WIDTH) specifies the
number of columns to be printed across the page. The value of
the operand field must be an absolute number, not greater than
132 and not less than 64. The default value is 132.

48-050 FOO ROl 3-73

3.8.10.3 Content Control (NLIST) Instructions

The content control instructions control the content of the

program.

The list instruction (LIST)
source statements are printed.

listing. They have the form:

NAME OPERATION OPERAND
A symbol NLIST Not used
(optional) (ignored)
A symbol LIST Not used
(optional) (ignored)
A symbol LSTC Not used
(optional) (ignored)
A symbol NLSTC Not used
(optional) (ignored)
A symbol ERLST Not used
(optional) (ignored)
A symbol LSTM Not used
(optional) (ignored)
A symbol NLSTM Not used
(optional) (ignored)
A symbol FREZE Not used
(optional) (ignored)
A symbol NFREZ Not used
(optional) (ignored)
A symbol CROSS Not used
(optional) (ignored)
A symbol NCROS Not used
(optional) (ignored)
A symbol LSTUR Not used
(optional) (ignored)
A symbol NLSTU Not used
(optional) (ignored)
A symbol WARN Not used
(optional) (ignored)
A symbol NWARN Not used
(optional) (ignored)

reverses

The no list instruction (NLIST) suppresses listing of the
Only those statements that contain errors are printed.

situation,
The assembler default is to print

source

and

all

all source statements.

The list conditionals instruction (LSTC) permits printing of
unassembled conditional assembly statements. This is the normal
default mode of the assembler.

The no list conditionals instruction (NLSTC) suppresses
of unassembled conditional statements.

print ing

3-74 48-050 FOO ROl

The error list instruction (ERLST) causes CAL/32 to print all
assembly errors by type, along with the number of each statement
on which the error occurred, immediately after symbol table
listing.

The list macro instruction (LSTM) permits printing of all macro
expansions that are : part of the source input file. The macro
instruction, the expanded source code, and the generated object
code are printed. A plus character (+) precedes each statement
number in the expanded source to identify those statements as
part of a macro. Thiﬁ is the normal mode cof the assembler.

The no list macro in&truction (NLSTM) suppresses printing of
macro expansions. Only the macro statement itself is printed.

The freeze (FREZE) ‘instruction halts incrementing of the
statement counter when a copy file or macro expansion are
included in the source input file. All statements 1in the copy
file or macro expansion receive the same statement number as that
of the COPY instruction. This is the normal mode of the
assembler.

The no freeze (NFREZ) 1instruction increments the statement
counter for every statiement encountered in the source input.

The cross reference (CROSS) instruction uses CAL/32 to generate
and print a cross rieference listing of all the symbols used in
the program. Each symbol is listed in alphabetical order, along
with identification of the statements in which it is referenced.
The statement in which it is defined is flagged with an asterisk.
This is the normal mode of the assembler.

The no cross (NCROS) instruction prevents the generation of a
cross reference listing.

The 1list unreferenced symbols (LLSTUR) instruction causes
unreferenced symbols to be listed in the symbol list. This is
the normal mode of tha assembler.

The no list unreferenced symbols (NL.STU) instruction suppresses
the listing of unreferenced symbols in the symbol list.

The warning (WARN) instruction allows CAl./32 to flag warnings in
the 1listing and tally the number of warnings encountered. This
is the normal mode of the assembler.

The no warning (NWARN) instruction suppresses both the warnings
and the warning count from the listing.

48-050 FOO ROl 3-75

3.8.11 Auxiliary Processing Unit (APU) Option

The APU and NAPU start options and the APU and NAPU pseudo
instructions turn the APU option on or off. The APU and NAPU
start options override the corresponding APU and NAPU pseudo
instructions. If more than one APU or NAPU option appears in a
START option, the latest option takes precedence. The default
for this option is off.

If SVC, WCS, or non-APU instructions are encountered when the APU
option is on, their occurrences are flagged in the listing by the
carat character (A) as CAL warnings which have no affect on the
end of task code. When the APU option is in effect for each
program containing SVC, WCS, or non-APU instructions, CAL/32
automatically generates and inserts one or more DCMD commands
inte the object code. The text of these DCMD commands is:

wxx%xx MODULE XXXX CONTAINS SVC INSTRUCTIONS"
mxxx* MODULE XXXX CONTAINS WCS INSTRUCTIONS"
"xxx* MODULE XXXX CONTAINS INSTRUCTIONS ILLEGAL FOR APU"

XXXX represents the name of the program.

3.9 ASSEMBLY LISTING

The assembly listing consists of two sections: the source and
object program statements and the symbol cross reference table.
The format for printing the source and object program statements
is basically the same for either 16-bit assemblies or 32-bit
assemblies. The only difference is in the number of characters
printed for the LOC and the object data.

e In 1lb-bit assemblies, only four hexadecimal digits are printed
for the LOC, and a maximum of eight hexadecimal digits for the
data. The letter R is appended to the LOC value if the
relocatable LOC is being used.

e In 32-bit assemblies, six hexadecimal digits are printed for
the LOC and a maximum of 12 hexadecimal digits for the object

data. In addition, the actual second operand address of RX2
and SF instructions is printed next to the object data. This
address 1s preceded by an equal sign (=). The letter I is

appended to the LOC if the impure LOC is being used. The
letter P is appended to the LOC if the pure LOC is being used.

e In both 16- and 32-bit assemblies, the letter F is appended to

the data field to indicate that the statement references an
externally defined symbol, a symbol in a common block, or an
undef ined symbol.

3-76 48-050 FOO RO1

The statement number is a decimal number between 1 and 99,999.
Each source statement read by the assembler is assigned a
unique statement number, beginning with 1, except for source
statements from a copy file or macro expansion with the FREZE
instruction. The first column of the listing can contain any
of the following characters:

CHARACTER MEANING

! The name field of this instruction contains a
symbol that was redefined by an EQUATE
instruction.

? A mﬁchine instruction not available on the
target machine was used; an operand that was
improper existed and was substituted, or

a machine dependent instruction was used in
assembling a common but could be assembled, or

an assembler 1instruction was used with an
operand that was improper but could be
assembled, or

a SCRAT card was encountered as other than the
first statement or when batch mode is in
effect, or

an :EXTRN/ENTRY symbol is longer than 6
characters for target 16, or

a DS instruction was encountered in a pure
section.

x A machine instruction was shortened or
modif ied by squeezing.

A The APU option is in affect, and the
instruction on this line is an svC
instruction, a WCS instruction, or an

instruction illegal for an APU.

48-050 F0O RO1 3-77

The following information is printed at the beginning of the
cross reference listing:

e Start options in the START command

® The number of errors detected by the macro processor if the
program assembled was generated by the macro processor.

® Number of CAL/32 errors and the page number of the last error

o Number of CAL/32 warnings and the page number of the last
warning

® Number of passes
e Message indicating the use of symbol table paging to disk

® Message indicating abnormal termination of squeezing because
of squeeze-induced errors

® Message indicating the amount of required table space

Following this, each symbol used in the program is 1listed 1in
alphabetical order along with its value. If a cross reference
was requested, the statement number of each statement containing
a reference to the symbol is printed following the value. The
statement number in which the symbol is defined is printed with
an asterisk (*) following. Associated with each symbol is a flag
used to indicate one of the following:

FLAG MEAN ING

)] Properly defined local symbol
M Multiply defined symbol

U Undef ined symbol

< Entry symbol

(o - Undef ined entry

> Externally def ined symbol

>M Multiply defined external

* x Unreferenced external

The flag is printed in the first column of the 1line containing
the symbol.

3-78 48-050 F0OO RO1

If an error is detected in a source statement, the following
message is printed immediately after the error statement:

X*x Annn XX

A indicates the general type of error, and nnn 1is a decimal
number that further identifies the error. Appendix A contains a
complete list of CAL/32 error codes.

48-050 F0OO RO1 3-79

: CHAPTER 4
COMMON MODE PROGRAMMING

4.1 INTRODUCTION

A useful feature of ¢ommon Assembly Language/32 (CAL/32) is
common mode programming where a single source file can be used to
produce object code for either 16- or 32-bit processors. In
creating a common mode source file, the programmer must be aware
of certain restrictions and safeguards and, in some cases, must
use special operation mnemonics that can be translated into
either 16- or 32-bit operations.

4.2 ADDRESS OPERATIONiINSTRUCTIONS

Addresses for 1l6-bit processors occupy 16 bits, a halfword. For
the 32-bit processors, addresses occupy the least-significant 24
bits of a fullword. In normal mode, CAL/32 makes no distinction
between operations on address quantities and operations on other
data types. However, when writing in common mode, the programmer
must use special operation mnemonics for address operations so
CAL/32 can translate them into the correct target machine code.
Table 4-1 lists these instructions, their mnemonics, and the
target machine translations.

TABLE 4-1 COMMON MODE ADDRESS OPERATIONS

e v i e e s e Ao 4ms o im0 s m e i e wo e i bare i v o e ma ek ot im e e A e s e pie e iy S e S C T A e e oA i v e i s e —

| 32-BIT { 16-BIT

i]]
[}] | 1 i
! | | | TRANS- | TRANS- |
' INSTRUCTION { MNEMONIC | LATION | LATION |
::mnwwmnmmm:gz:r:aemmnummmmmmmzmmmnxgm:ﬂmmmnm::mx::::zmza:rng:=
{ Add address H AA i A i AH !
! Add address immediate H AAI1 i AI i AHI !
{ Add address RR ' i AAR i AR i AHR !
i Add address to memory i AAM i AM i AHM [
{ Compare address | CA i C ! CH |
= e o 7 7 o o s i S i o AR Sl o S S S A e A A S i 43 e S e Somn (o T o ot S S0 M A Toin S 4 S i frn S e W M i o A 12 S o i z
i Compare address immediate ! CAI t CI i\ CHI !
| Compare address RR | CAR i CR i CHR i
| Compare logical address i CLA i CL \ CLH |
i Compare logical address i i | H
i immediate , H CLAI ! CLI i CLHI |
| Compare logical address RR ' CLAR i CLR i CLHR |
| Immediate ‘ i CLAI i CLI i CLHI |

48-050 FOO ROl 4-1

TABLE 4-1 COMMON MODE ADDRESS OPERATIONS (Continued)

— - - —— - ——

CAL/32 translates

INSTRUCTION

Load addres

S

Load address immediate

Load address RR

AND address

AND address immediate

AND address
OR address

RR

OR address immediate

OR address

Subtract address

o o - ———— — . ——— . T -~ — - a1 i i Yo A s S o o o o o ot

Subtract address immediate

RR

Subtract address RR

Shift left address arithmetic
Shift left address logical
Shift right address arithmetic

e G~ — . T — o {3 " " —— it o T o — " 7y A o e e b T 2 v

Shift right address logical

Store address
Test address immediate
Exclusive OR address

Exclusive OR address immediate

o o . i o ot o s ot s o oy o i - _— 0= ot W W T S A imn U e v o -

Exclusive OR address RR

Multiply address

Multiply address RR

Divide addr

€ess

Divide address RR

N it e o i i 1 ot o R o o e s o b o (o wn o S8 7o i A7 DA ot o o b i o

ADD1
DISP

DC
DC

MNEMONIC

LDA
L.DAI
LDAR
NA

|
|
i
|
L i LH i
|
{
|
i
]

el o ——— o\ —— — i — 7 Voo Y - i T T W - —— Nk S - - — - -~ o o>

1
LA | LHI
LR | LHR
N | NH
NI | NHI
|
NR | NHR |
0 | OH :
oI | OHI |
OR | OHR |
s | SH :
]
1
SI | SHI |
SR | SHR |
SLA | SLHA |
SLL | SLHL |
SRA | SRHA |
1
]
SRL | SRHL |
ST | STH |
TI | THI |
X | XH |
X1 ! XHI |
i
|
XR | XHR |
M | MH |
MR | MHR |
D i DH I
DR ! DHR |

these instructions into halfword or fullword
instructions, depending on the target machine.

R1,ADD1
R1,DISP

A(TABLE)
2

For example:

48-050 FOO ROl

When CAL/32 assembles%these instructions for 16-bit execution, it
produces object code that would normally correspond to:

-

LH RL,ADD1
AH R1,DISP

For 32-bit programs, CAL/32 produces code that would correspond
to:

Translation is at thé object code 1level; CAL/32 prints the
original common mode code on the listing.

4.3 COMMON MODE IMMEQIATE OPERATIONS

CAL/32 provides a common mode immediate operation for the load
immediate [LDI instruction. Depending on the target machine, the
I.DI is translated into a fullword-referencing LI instruction for
the 32-bit machine, or a halfword-referencing LHI instruction for
the 1l6-bit machine, as follows:

. COMMON 32-BIT 16-BIT

INSTRUCTION QMNEMONIC TRANSLATION TRANSLATION
l.oad Immediate ; DI I.I LHI

4.4 COMMON MODE ASSEMbLER INSTRUCTIONS

In addition to all of the regular assembler instructions
descr ibed in Chapter 3, CAL/32 recognizes four assembler
instructions primarily for use in common mode programming. Two

of these are data definition type instructions; the other two are
assembler control type instructions.

48-050 FOO RO1 4-3

4,4.1 Data Definition Instructions

The common mode data definition instructions are: define address
length constant and define address length storage. They have the
form: '

NAME OPERATION OPERAND
A symbol DAC One or more operands
(optional) separated by commas
A symbol DAS A symbol or expression
(optional)

4.4.1.1 Define Address Length Constant Instruction

The define address length constant instruction is equivalent to

the define constant instruction. It is used in common mode
programming to reserve storage to be initialized with address
length constants. For 32-bit assemblies, the constants are

fullwords aligned on fullword boundaries. For 16-bit assemblies,
the constants are halfwords aligned on halfword boundaries.

4.4.1.2 Define Address Length Storage Instruction

The define address length storage instruction is equivalent to

the define storage instruction. In 32-bit assemblies, the
instruction reserves the specified amount of fullwords aligned on
a fullword boundary. In 1l6-bit assemblies, it reserves the

specified amount of halfwords aligned on a halfword boundary.
Examples of the use of these instructions are:

DAC A(TABLE)
DAS 16

When assembled for 32-bit execution, the define address 1length
constant instruction generates a fullword containing the address
of TABLE. The define address length storage instruction reserves
16 fullwords of storage. When assembled for 16-bit execution,
these instructions cause CAL/32 to generate a halfword containing
the address of TABLE, along with a storage area of 16 halfwords.

4-4 48-050 FOO ROl

NOTE
Def ine ? address length storage

instructions can be used in common block
and structure definitions.

4.4.2 Assembler Cont?ol Instructions

Two special assemblerfinstructions control error checking. Their
form is:
NAME OPERATION OPERAND
A symbol CAL Not used
(optionaﬁ) (ignored)
A symboli NOCAL Not used
(optional) (ignored)

The first of these instructions (CAL) establishes the common mode
and enables common mode error checking. In this mode, any
machine dependent instruction causes a nonfatal error, and a
warning flag is printed on the assembly listing.

The NOCAL instruction|disables the common mode and its error
checking mechanisms| wuntil the next CAL instruction |is
encountered. This is|the assembler default mode in which an
operation code mnemonic, not valid for the targeted processor but
for which there 1is a valid equivalent, is assembled using the
valid equivalent. A guestion mark (?) is then printed in the
left hand margin of the listing.

4.5 MIXED MODE COMPUTATIONS

On 32-bit processors, mixed mode computations, such as adding a
halfword quantity to an address length quantity contained in a
register, can be performed. In general, any halfword arithmetic
or logical operation can be performed on address length
quantities contained in registers. The exceptions are: shifts,
multiply, and divide. The halfword forms of these instructions
should never be used with address length quantities. Instead,
use the special addre$s operation instructions.

48-050 FOO RO1 4-5

4.6 GLOBAL SYMBOLS

The global symbols, ADC and LADC, are used primarily in common
mode programming. In 32-bit assemblies, ADC has a value of four,
the length in bytes of an address length constant. LADC has a
value of two, the log (base 2) of the address length. In 16-bit
assemblies, ADC has a value of two, and LADC has a value of one.
Illustrated are these symbol uses in which a main program calls
a subroutine and passes parameters to the subroutine in a list of
addresses immediately following the branch and link instruction:

BAL RF,3SUB
DAC A(PARM1) ,A(PARM2) ,A(PARM3)
RETURN EQU *

The subroutine picks up the parameters and calculates the return
address as follows:

SuUB AIS RF ,LADC ADJUST RF FOR
NAI RF , -ADC AL IGNMENT
LDA R1,0(RF) ADDRESS OF FIRST PARAMETER
LDA R2,ADC(RF) ADDRESS OF SECOND PARAMETER
LDA R3,2*ADC(RF) ADDRESS OF THIRD PARAMETER
SUBEND B 3*ADC(RF) RETURN TO CALLER

The add immediate short instruction and the add address immediate
instruction are needed in the subroutine because alignment of
address constants 1in 32-bit assemblies can cause a halfword of
filler to be inserted between the branch and link instruction and
the first address constant. In this case, the address 1in
register 15 is the address of this halfword, and these
instructions increment the address in register 15 to make it
point to the first address constant. If no filler is required,
because the first constant is naturally aligned on a fullword
boundary, register 15 points to the first constant, and these two
instructions have no effect.

4-6 48-050 FOO RO1

Another use of TADC is in shift instructions where a byte pointer
must be converted into an address pointer, as:

LB R1l, INDEX GET BYTE POINTER

SLAL R1,TADC CONVERT TO ADDRESS POINTER
LDA R%,TABLE(Rl) GET ADDRESS FROM TABI.E
BR R :

In 16-bit assemblies, LADC has a value of one, and the shift left
logical instruction has the effect of doubling the value of the
byte pointer, converting it into a halfword pointer. 1In 32-bit
assemblies, LADC has a value of two, and the shift instruction
has the effect of quadrupling the value of the byte pointer,
converting it into a fullword pointer.

The L.ADC symbol can aiso be used where machine dependent code
must be written within a common mode program. For example:

IFNZ LADC-1 IF NOT ZERO USE 32 BIT CODE
L RF, A I.OAD FULLWORD IN RF

A RF,B ADD FULLWORD B

ST RF, A STORE IN A

FLSE LADC~1 IS ZERO USE 16 BIT
LM RE, A LOAD FULLWORD IN RE AND RF
AH RF,B+2 ADD LOW ORDER B

ACH RE, B ADD HIGH ORDER B

S'™ RE, A STORE IN A

ENDC

shows how fullword ad&ition, requiring double registers in 16-bit
assemblies and single registers in 32-bit assemblies, can be
handled in a common mode program.

48-050 FGOO RO1 _ 4-7

4.7 SPECIAL INSTRUCTIONS

By definition, the instructions load multiple, store multiple,
and load PSW, operate on address length data. This is why there
are no address operation mnemonics for these instructions. Where
these instructions are used in common mode programming, the data
on which they operate must be defined by the define address
length constant and the define address length storage
instructions. For example:

LLPSW NEWPSW

START STM RO, SAVE
LM RO, PARAM

NEWPSW DAC STATUS ,A(START)
RSAVE DAS 16
PARAM DAC CON1l,CONZ, ...

List processing instructions operate on address length guantities
within the list. There is some incompatibility between the 16-
and the 32-bit versions of these instructions. The 16-bit list
instructions require byte pointers at the head of the list. The
32-bit list instructions require halfword pointers. List
instructions can be used in common mode programming as long as
the number of slots in the list does not exceed 255.

4-8 48-050 FOO ROl

Lists always should be defined with the define list instruction.
Use byte instructions where it is necessary to refer to the list
pointers in the program. Define displacement into the list
pointer fields in terms of the LADC symbol. For example:

SLOTS EQU c-1 NUMBER OF SLOTS
USED EQU 2*LADC-1 | NUMBER USED
CTOP EQU 3*LADC-1 CURRENT TOP
NBOT EQU 4*LADC-1 NEXT BOTTOM

LB R1,LIST+CTOP
LIST DLIST 32

In this example, the load byte instruction is used along with the
value of CTOP to access the current top pointer in the list.

48-050 FOO ROl 4-9

| CHAPTER 5
COMMON ASSEMBLY LANGUAGE/32
(CAL/32) OPERATING INSTRUCTIONS

5.1 INTRODUCTION

The CAL/32 assembler requires a minimum of one logical unit (1lu)
and up to a maximum of 11 logical units for operation, depending
on the options selected and the features invoked by the source
program. All of these logical units can be assigned by the user.
However, if an 1lu is needed and not assigned, CAL/32 will
allocate temporary system files for logical units
4, 5, 6, 8, 9, 12, and 13. CAL/32 will delete and reallocate
permanent files for logical units 2 and 3, provided they were not
previously assigned and the DEL start option was specified. The
logical units used are shown in Table 5-1.

TABLE %5-1 CAL/32 LOGICAL UNITS

| LOGICAL | ALLOCATED
USE i RECORD | BY CAL/32

Source input device. | 80 No
The source input to be |
assembled is read from |
this device on pass |
one. This device is re- |
wound prior to each |
subsequent pass unless |
BATCH 1is specified and |
the source input is not |
on a random access |
device, or Scratch |
]
|
1
|
i
t
1
|
i
i
i
i
i
i

REQUIRE
FOR

>

(SCRAT) or Pass Pause
(PPAUS) is specified.

108 T=16
126 T=32

If DEL
specified

Binary output device. All
Assembled object pro-
gram is written to this
device on last pass.

64 - 132 If DEL

specified

Assembly listing output All
device. Assembly list-
ing is written to this

device on the last pass.

—— A Miew MR e GOem EEes MEen EhEE EE . A e eme AR e - A me Sm e WG M- - ﬁ -
Goos aEes AR SEOR e mEEm e WROn EEas We dhee wmem mee WRae Mmam Weem e - ‘_- —— - - “ - ——

48-050 FOO RO1 5-1

TABLE 5-~1 CAL/32 LOGICAL UNITS (Continued)

USE

N T T N TN TSI TN I I T

Source scratch device.
The source input is
copied to this device
during pass one. The
source 1input is read
from this device on all
subsequent passes.

Symbol cross reference
scratch device. Cross
reference informat ion
is built on this device
during the last pass. A
device assigned to this
lu must support random
access.

Symbol table paging
device. Symbol table
information is paged to
this device during all
passes. A device
assigned to this 1lu
must support random
access.

Source library input
device. Source inform-
ation to be included in
the main assembly is
read from this device
on each pass unless
SCRAT or BATCH was
specified. Then the
library is searched and
read on pass one only.

Forward equate scratch
device. This lu can be
used if forward refer-
enced equates exist in
the source input. This
device must support
random access.

ALLLOCATED | REQUIRED

L.OGICAL |
RECORD | BY CAL/32 | FOR
80 | Yes | SCRAT
H ! BATCH
1 H
i i
H i
| |
] 1
i]
i i
256 ! Yes { CROSS
| H
i |
! i
| H
! H
i 1
i i
| i
512 ! Yes ! Insuffi-
i ! cient
i | memory
H H
i H
|]
| i
H i
! i
80 ! No ! COPY
! i
H |
1 I
]]
H H
i !
1 !
' i
i H
H |
] i
256 ! Yes { Forward
i | equates
| i
H !
! |
i |
H i

48-050 FOO ROl

TABLE 5-1 CAL/32 LOGICAL UNITS (Continued)

o
e

N
i
i
4
"
4

Error
their

=
3]

PCB

device

=
w

device

- s e W e mem - Wres WEe AR WRim Mar Emeh W Wem MR Gwae Seae i e e M wen
8
i . wmas Eman Gmen ERen e MR HSE R SRR AT GReh WeeR Emar MR mer e e - ———— !; ———

N e e e nam eim ik pome e e num e s e e s irim e i kW o en A AR S e 1 WP e e ek e

USE

B e NE IR UTY LNt N SR T R QT ST T L 0T I QT 1S D IO TR LM UM gy b S nIoon I Do DT 2Y

Frror tabulation device.
messages. and
associated: line
numbers are
binary to this evice
during the
and written to 1lu3
after completion of the
assembly and symbol
table listing. '

scratch device. This
must support
random access. i

PCB name
scratch device. This
must support
random access.

i b Tt are o o i i e e o P e i fe A h e i e e T e hm m mm W e A are oe e e M e A i i amm R (MR U e v v s e e ews am fm e AR v bna

i
H
i
i

P
5 t

LIL.OCATED REQUIRED
CAlL/32 FOR

oo m I a ov oy e T TR

Yes I.sT

i LOGICAL
i RECORD

§
;

+
1

80 E

54

written in

last pass

directory | 256 Yes CLIB

diréctory 256 Yes COPY

—— e —m - - ———— e ———— —— —————— - = —— o= =} ————

e e |

When an assembly terminates, an end of task code is passed to the

operating system

in thée operand field of the SVC 3 instruction.

The meanings of the possible end of task codes are:

END OF
TASK CODE

0

1

48-050 FOO ROl

MEANING
Assembly complete without errors.

Illegal option passed with the START command.
Assembly 1is aborted after logging the illegal
options to the console. The user should
retry.

One or more errors detected dur ing the
assembly. This end of task code is also used
if errors are detected in one or more programs
of a batch assembly.

Misplaced BEND.
Symboi table overflow.
A créss—reference option problem. Try to

reassémble or use the NCROSS option to turn
off the CROSS option.

—

5.2 COMMON ASSEMBLY LANGUAGE/32 (CAL/32) START OPTIONS

When operating under 0S/32, CAL/32 accepts certain control
options as arguments of the START command. The start options
override assembler instructions and cause a carat (A) to appear
in the first 1line of the listing. Any combination of spaces
and/or commas can separate or follow the options specification:

START

OPTION OPERANDS

APU None (Turns on APU warnings.)

NAPU None (Turns off APU warnings.)

BATCH None

CAL None

NQCAL None

CROSS None

NCROS None

DEL None

NDEL None

ERLST None

ERSQZ None

FREZE None

NFREZ None

LCNT Lines per page (10-99)

LIST None

NL.IST None

LSTC None

NL.sTC None

LSTM None

NLSIM None

LSTUR None

NLSTU None

NDISK None (Inhibits symbol table paging to disk.)

NFIX None (Prevents CAL/32 from making extra
passes to fix squeeze induced errors.)

NORXT None (Alias for NORX3.)

NORX3 None

NOSEQ None

PPAUS None

SCRAT None

SQCHK None

SQUEZ Number of passes (1-99)

NOSQZ None

TARGT 16 or 32

UREX None

NUREX None

WARN None

NWARN None

WIDTH Width of listing

See Chapter 3 for an explanation of the assembler instructions
that correspond to these start options.

5-4 48--050 FOO ROl

Start options have the féllowing form:
option ~operand

A typical start command for a CAL/32 assembly with start options
is:

ST ,DEL,SQUEZ=99,NCROS

The delete start options. (DEL, NDEL) enable or disable CAL/32
from deleting and reallocating object and listing files when
needed. If the DEL option is in effect and 1lu2 and 1lu3 are
unassigned, CAL/32 will delete, reallocate, and assign them to
fname.OBJ and fname.l.ST, respectively. The default option is
NDEL, 1in which case CAL/32 will simply log an 8100 error to the
console and pause. If lul is not assigned to a direct access
device, the DEL option will have no effect, and CAL/32 will issue
an 8100 error before pausing.

When CAL/32 encounters conflicting start options such as CROSS
and NCROS, it will regard the last option encountered as the
intended option. This allows the user to redefine the default
start options via CSS. For example:

[.O CAL32

AS 1,SOURCE.CAL
ST ,NCROS DEL @1
SEXIT

The above command substiﬁution system (CSS) effectively changes
the default options to NCROS and DELETE unless overridden by the
parameter @l.

48 -050 F0O ROl 5-5

5.3 OPERATING INSTRUCTIONS FOR ESTABLISHING COMMON ASSEMBLY
LANGUAGE/32 (CAL/32) AS A TASK

CAL/32 will not run on a 16-bit machine; however, it will still
produce 1l6-bit object code if requested.

Before using CAL/32 under 0S/32, the relocatable object supplied
must be established as an operating system task, using Link. A
typical command sequence using Link to establish CAL/32 as a task
is:

[.LO .BG,LINK

T .BG
ST
>ES TA

>OP work~5000, SYS=FFFFF, SEG,ROL
>IN CAL32

>BU CAL32

>END

CAL/32 is segmented into pure and impure code for shared use with
operating systems that support this capability. To establish
CALL/32 as a nonsharable task, remove the SEG option from the
above command sequence.

When assembly 1is completed, CAL/32 terminates through the
operating system, which logs this message:

END OF TASK n

where n specifies the end of task code.

The files used for scratch, c¢ross reference, paging, forward
equates, PCB file directory, PCB name directory, and error
summary will be allocated by CAL/32 as temporary operating system
files if they are needed and were not previously assigned by the
user.

5-6 48-050 FOO ROl

i
5.3 OPERATING INSTRUCTIONS FOR ESTABLISHING COMMON ASSEMBLY
LANGUAGE/32 (CAL/32) AS A TASK

CAL/32 will not run on a 1l6-bit machine; however, it will still
produce 16-bit object code if requested.

Before using CAL/32 under 0S/32, the relocatable object supplied
must be established as an operating system task, using Link. A
typical command sequence using Link to establish CAL/32 as a task
is: :

LO .BG,LINK

T .BG

ST

>ES TA :

>0P work=5000, SYS=FFFFF, SEG,ROL
>IN CAL32

>BU CAIL32

>END

CAL/32 is segmented into pure and impure code for shared use with
operating systems that support this capability. To establish
CAL/32 as a nonsharable task, remove the SEG option from the
above command segquence.

When assembly 1is completed, CAL/32 terminates through the
operating system, which logs this message:

END OF TASK n

where n specifies the end of task code.

The files used for scratch, cross reference, paging, forward
equates, PCB file directory, PCB name directory, and error
summary will be allocated by CAL/32 as temporary cperaling system
files if they are needed and were not previously assigned by the
user.

48-050 F0OO ROl 5-7

A0O01

AGO2

A003

BOO1

B0O2

co01l

D001

E0O01

FOO1

F002

F0OO3

FO04

APPENDIX A

COMMON ASSEMBLY LANGUAGE/32 (CAL/32) ERROR CODES

the address

the address

the operand

alignment

alignment

common mode

data structure

END placement

missing operand

register
specification

invalid source
field

invalid symbol

48-050 FOO ROl

The address is out of range for the
specified instruction format.

The address is out of range for an
RX2 instruction.

The operand of a previously squeezed
instruction was changed making the
squeezed instruction invalid.

The address of the operand is on an
incorrect boundary for the
instruction specified.

An odd address used in a T constant
location counter (I.OC) was not even
when the instruction was specified.

An opcode that is not part of the
common mode set is used in a common
mode assembly.

An illegal statement appears in a
STRUC or COMN def inition.

An END statement was encountered
within a STRUC or COMN definition or
within an unterminated conditional.

A required operand is missing.

A register value 1is not in the
range of 0 to 15, or an odd register
value is used where an even value 1is
required.

Invalid label in the source field,
a label in the name field is not
followed by a space, or a required
label is missing; e.g., on EQU.

More than 8 characters were
specified in a symbol.

F0OO05

F006

FOO07

F0O08

FOO09

FO1l0

FOll

FO12

EXTRN

immediate field

ENTRY

delimiter

invalid expression

apostrophe

invalid operand

improper statement

An invalid type for EXTRN; e.qg.,
common block, or EXTRN was used in
an expression.

The value of data is too large to
fit into the immediate field. A
fullword EXTRN is used in RI1
instruction. A character string
used as an immediate field 1is too
long.

A symbol declared as an ENTRY is
undef ined. Improper type for ENTRY;
e.g., common block name.

Operands are not separated by

commas . Unrecognizable operator.
The last operand is not followed by
a CR or a blank. Unbalanced

parentheses. Opcode is not followed
by a space or a CR.

Expression uses common element names
not in the same block.

No ending apostrophe in CC,D,E,F,
H,P,U0,X, or Y constant. Illegal
character encountered in
c,D,E,F,H,P,U,X, or Y constant prior
to the ending apostrophe.

T constant was specified in TARGT 16
assembly. Argument mode of T
constant is not ABS, PURE, or
IMPURE. Illegal data specified in
BDATA program. Fullword EXTRN used
as an operand of DCZ. Value of DB
operand must be absolute. Value of
DS, DSF, DSH. Invalid symbol used
for ENTRY name. Symbol used as
ENTRY must be ABS, PURE, IMPURE, or
Relocatable. Invalid symbol wused
for EXTRN name. Invalid data 1in
BORG. Operand of CNOP or ALIGN is
not absolute. Operand of DLIST is
not absolute.

Improper type for EXTRN operand;
e.g., common block name. Transfer
address on END statement is an
improper type; e.g., EXTRN. Illegal
operand on EQU.

48-050 FOO RO1

FO13

FOl4

FO1l5

1001

M0O1

MOO2

0001

POO1

P00O2

ROO1

sS001

5002

S003

file descriptor
missing string

invalid character

conditional

symbol definition

symbol definiti?n
illegal opcode
location counter
reentrancy checﬁ
relocat ion erroﬁ
sequence check

coryY

invalid option
sequence

48-050 FOO ROL

S

Syntax error on fd of a COPY, FCOPY,
or CLIB statement.

No characters between apostrophes of
¢,E,D,F,H,P,U,X or Y constant.

Illegal character encountered
between apostrophes of an E or D
constant.

An ELSE or ENDC statement found
without a matching IFx.

The symbol in the name field is also
used in the name field of another
statement. The value or type of a
symbol changed from its definition
on a previous pass. (This can occur
by illegal use of conditionals, ORG,
DO, DS, or a misplaced SCRAT
statement.)

An attempt was made to redefine a
symbol with an EQU that is the name
field of a statement.

The opcode used is totally
unrecognizable or illegal for the
specified TARGT.

The location counter exceeded 216 on
a TARGT-16 or 224 on a TARGT-32
assembly.

The instruction attempts to modify
PURE code.

An invalid combinat.ion of
relocatabie terms in an expression.
A relocatable operand follows a

unary minus.

The value in the sequence numbers
field is nct greater than the
previous sequence number.

COPY statement appears within a file
being copied. An - invalid . symbol
used as COPY operand. The operand
of COPY is not followed by a space,
comma, or CR.

A CoPY, PAUSE, MSG, or DO
statement immediately follows a DO
statement.

S004

S005

T001

T0O02

T003

T004
uoo1

U002

uoo3

U004

U005

invalid option

PROG

overf low

floating point

value

divisor
not used

undef ined symbol

undef ined symbol

An argument is not absolute or
exceeds 32,767. An argument of LCNT
is in the range of 10 to 99. An
argument of WIDTH is not in the
range of 64 to 132. An argument of
TARGT does not evaluate to either 16
or 32. An argument of SQUEZ is not
in the range of 1 to 99.

Multiple PROG statements were
encountered in a program.

The intermediate or final result of
an arithmetic expression exceeded
231 - 1.

An overf low occurred dur ing
conversion of floating point
constant.

The data item exceeds the range for
specified type; e.g., X'12345°.

A division by 0 is attempted.

A referenced symbol is not defined
in the program.

An attempt was made to circularly
def ine a symbol; e.g.:

A EQU B
B EQU A

File specified as an operand of
FCOPY, CLIB, or COPY does not exist.

Program name is not found in any of
the PCB libraries.

48-050 FOO ROl

‘ APPENDIX B
PERKIN-ELMER OBJECT CODE FORMAT

Modules in PerkinmElAer object code format produced by Common
Assembly Language/32 (CAL/32) are divided into records. Each
record contains 126 bytes of information for 32-bit object code,
or 108 bytes of information for 16-bit object code. The first 4
bytes of each record of the object code format are organized as
follows:

T T T P e S T T Teeeump
i Sequence number] Checksum i
Bits:
0 15 16 31

The sequence numbers are sequential negative integers -1, -2, -3,
etc., represented in two's complement form. The first record in
a program must have sequence number -1. Subsequent records must
be in proper order to be loaded.

The checksum is an exclusive OR sum of all halfwords in the
record, except itself, exclusive ORed with a halfword of all 1's.

The remainder of the record is a sequence of items; an item is a

byte of loader information. There are two types of items:
loader items and data items. Each loader item is followed by a
certain number (which can be 0) of data items. The loader items

and their meanings are listed in Tables B-1 and B-2.

48-050 FOO RO1 B-1

TABLE B-1 32-BIT LOADER ITEM DEFINITIONS

v A v G o ks i M S G 0 o o o o - S ash ek s e ek e o A AN R R M A e Gy a1 WL MRS WM KR A A R R MR s Cum e aoe i e e R e

| LOADER | ' NUMBER OF DATA |
i ITEM | MEANING i ITEMS FOLLOWING i
===:"‘_"=.".‘:'_’_‘=:——»='..T======!=H.""‘..#.“‘_‘.‘:ﬂza‘n:#g’?mm:ﬁmﬂm:ﬂ:rmﬂzf:ﬁ’.‘.‘-=.’7:&"ST.:.‘?"‘-‘T&!:;‘»H?T;‘!&";‘:7.:-"1::'3:"&?‘
H 0 { End of record i None |
1 1 i End of program i None i
| 2 i Reset sequence number i None i
i 3 { Block data indicator { 8-byte name, i
H | { 3-byte displacement, |
| 1 { any absolute data i
i i { item (20-5B) '
| 4 i Absolute program address i 3-byte address i
d 5 i Pure relocatable program { 3-bylLe address '
| i address | i
| 6 | Impure relocatable program | 3-byte address i
! i address | i
] 7 i 2 bytes of pure relocatable | 2-byte address H
| | data | i
i 8 i 2 bytes of impure \ 2-byte address H
! I relocatable data ' |
| 9 i 4 bytes of pure relocatable | 4-byte address i
' i data i i
d A i 4 bytes of impure { 4-byte address i
| | relocatable data | |
| B i Common reference i 8-byte address !
| H | 3-byte displacement |
H c i EXTRN | 8-byte name, fol- i
i H i lowed by item 4, i
i i i 5, or 6 i
! D | ENTRY { 8~-byte name fol-]
H i { lowed by item 4, |
i i i 5, or 6 i
i E i Common definition i 8-byte name fol-

' i i lowed by a 3 byte '
i i i length !
i F { Program label i 8-character name

i 10 { 3 bytes absolute and 3 i 6 bytes |
' i bytes pure relocatable i i
i 11 ! 3 bytes absolute and 3 i 6 bytes i
| i bytes impure relocatable H i
| 12 i Load program transfer i Item 4, 5, or 6 H
i 13 i Define start of chain { Item 4, 5, or 6 i
! | (reference) | !
| 14 i Load chain definition i Item 4, 5, or 6 i
i | address H H
| 15 i 2 bytes absolute and 2 | 4 bytes i
) { bytes pure relocatable H d
| 16 | 2 bytes absolute and 2 { 4 bytes |
j { bytes impure relocatable |]
B-2 48-050 FOO RO1

LOADER
I'TEM

17

18

19
1A
1B
1c

1D

1E
1F
20
21
22
23

-

5B

65

66

67

TABLE B-1

:
:
]
!
:
|
:
:
:
=
1
|
!
'
i
i
i
i
i
i
|
i
i
i
i
i
i 5C-64
i
|
i
i
i
i
'
d
i
i
i
i
'
'
i
g
i
i
i
i
i
]
]
i

|
i
1
]
i
[}
i
[}
[}
|
1
1
1
I
]
t
]
!
|
i
[}
I
§
|
]
]
]
'
[
t
1
]
t
t
t
J
[}
}
}
t
]
|
]
)
[}
!
1
i
1
i
1
[}
1
1
}
'
]
!
1
t
[}
!
3
t
)
1
i
i
1
t
1
!
]
1
]
[}
1
!
i
1
[}
]
[}
1
]
)
]
|
]
!
i
i
[}
'
]
!

MEAN ING

Short form EXTRN

Length of impure and pure
segments

Perform fullword chain
Perform halfword chain
No operation

2-bylLe pure translation
table address

2-byte impure translation
table address

Not used

byte absolute data
bytes absolute data
bytes absolute data
bytes absolute data
bytes absolute data

00O N

120 bytes absolute data
Future use
Extended EXTRN reference

Extended entry

Link commands

48-050 FOO ROl

32-BIT LOADER ITEM DEFINITIONS (Continued)

NUMBER OF DATA
['TEMS FOLLOWING

8-byte name and

Item 4, 5, or 6
3-byte impure length
and 3-byte pure
length

None

None

None

2 bytes

2 bytes

N/A

1 byte
2 bytes
4 bytes
6 bytes
8 bytes

-

i20 bytes

8-byte external

symbol name

1-byte flag

xxxx xx00 standard
EXTRN

xxxx xx01 weak
EXTRN

xxxx xx10 include
EX'TRN

4-byte offset

Item 4, 5, or ©

8-byte entry symbol

l-byte flag

xxxx xx00 standard
entry

xxxx xx01l data
entry

xxxx xx10 weak
entry

Item 4, 5, or 6

l-byte length

1-80 characters

of command

TABLE B-2 16-BIT LOADER ITEM DEFINITIONS

| LOADER | | NUMBER OF DATA |
H ITEM | MEANING { ITEMS FOLLOWING |
i 0 i End of record | None H
' 1 i End of program i None]
! 2 | Perform chain { None i
i 3 | Toggle absolute/relocatable | None i
' i mode i : i
| 4 i Transfer address i 2-byte address |
H 5 ! Load program address (ORG) | 2-byte address |
H 6 { L.oad reference address i 2-byte address |
H 7 i Load definition value | 2-byte address |
i 8 i 2 bytes absolute data | 2 bytes data '
i 9 { 2 bytes relocatable data i 2 bytes data i
H A i 4 bytes absolute data | 4 bytes data H
H B { 2 bytes absolute and 2 | 4 bytes data !
H { bytes relocatable data H i
i Cc { EXTRN reference i 6-byte name |
H D i ENTRY definition | 6-byte name H
i E | Decode next item { Next item i
H EO { Declare common block i 6-byte name |
' ! ! 2-byte size)
| El i Load common block i 6-byte name i
' { definition value { 2-byte offset |
f E2 i 2 bytes absolute block data | b6-byte name |
i i | 2-byte offset '
i i i 2 bytes data]
H E3 i 4 bytes absolute block data | 6-byte name !
| ' | 2-byte offset !
i] i 4 bytes data |
i E4 i Reset sequence number to -1 | None 1
i E5 i 1 byte absolute data i 1 byte data |
i Eb6 ! 1 byte absolute block data | 6-byte name i
i H i 2-byte offset i
i i | 1 byte data !
i F i Program label i 6-byte name |

All items are given in hexadecimal. Note that item E is actually
a compound item whose interpretation depends on the item it
follows. Item E and the following item are considered a single
control item, however, and cannot be split across object records.
This effectively allows more than 16 different control items,
though most of them require only 1 nibble.

B-4 48-050 FOO ROl

INDEX

A { Circular LOC dependency 3-49
i 3-67
Absolute instruction i Comment statements 3-1
ADC. See address length i Common blocks
constant. 1 FORTRAN compatible 3-68
Add address immediate | Common instruction 3-68
instruction i Common mode
Add immediate short H immediate operation 4-3
instruction i Common mode programming 4-3
Address constants i 4-6
Address length constant { Complex data structures 3-68
Address length data { Compound conditional
Address operation H instructions 3-63
instructions i Compound IF instructions 3-63
Align instruction i Conditional assembly 3-64
Alignment i Conditional assembly
doubleword H instruction 3-62
fullword { Conditional branch
H instructions 1-16
halfword] branch and link 1-17
AND mask i Conditional no operation
APU. See auxiliary H instruction 3-51
processing unit. i Constants
Arithmetic expressions i character 3-43
Arithmetic operators H decimal string 3-43
Assembler control } hexadecimal 3-36
instructions H integer 3-37
assembler control i Content control instructions 3-74
target } Copy file 3-54
Assembler instructions i Copy instruction 3-54
common mode H 3-75
Assembly listing { Copy library instruction 3-53
source and object i Cross reference instruction 3-75
program statements | Cross reference listing 3-78
symbol cross reference i Current location counter 3-3
table 3-76 |
Assembly process !
halting 3-55 | D
Auxiliary processing unit 3-10 |
Auxiliary processing unit { Data definition instructions 3-31
option 3-76 | common mode data
1 definition 4-4
{ Data entry instruction 3-28
B { Data structure instructions 3-68
\ DCMD command 3-76
Batch assembly 3-62 | Decimal string constants 3-43
Batch assembly instructions 3-61 | packed 3-43
Batch end instruction 3-62 | unpacked 3-43
Batch instruction 3-62 | Define address length
Block data instruction 3-71 | constant instruction 4-4
Block origin instruction 3-71 | Define address length
Branch and link instructions 1-17 | storage instruction 4-4
Branch instructions 1-4 { Define byte instruction 3-43
H 3-46
{ Define command instruction 3-48
C | Define constant instruction 3-34
| 3-43
CAL instruction 4-5 { Define list instruction 3-47
CAL/32 start options 5-5 1 4-9
Character constants 3-43 | Define storage instruction 3-32
} 3-68

48-050 FOO RO1 IND-1

DO instruction

E

Eject instruction

ELSE instruction

End condition instruction
END instruction

End of task codes

End structure instruction
Entry instruction

Equate instruction

Error list instruction
Error squeeze instruction
Excess 64 notation
Expressions

evaluation of
Extended branch instructions
Extended branch mnemonics

External instruction

Externally defined symbols

EXTRN. See external
instruction.

Field

name

operand

operation
File copy instruction
Floating point constants

internal representation

of
Floating point registers

double precision

single precision
Format control instructions
FORTRAN blank common
Forward reference
FPorward reference instruction
Freeze instruction

G
Global symbols
ADC
LADC
H
Hardware

register and immediate
register and indexed
storage

register to register

relocation

segmentation

IND~-2

3-73
3-63
3-64
3-53
5-4

3-68
3-28
3-24
3-68
3-75
3-59
3-42

2-2

3-23
3-22
3-27
3-28
3-30

Header information
printing of
Hexadecimal constant

I,J3,K

I/0 instructions
IF instruction
Impure instruction
Include instruction
Instruction execution
order of
Instruction statements
assembler
character positions
fixed format
free format
machine
Instruction variations
Instructions
absolute
add address immediate
address operation
align
assembler
assembler control
batch
batch end
block data
block origin
branch on false
condition short
branch on true condition
short
CAL
common
compare
compound conditional
compound IF
conditional assembly
conditional branch
conditional no operation
content control
copy library
cross reference
data definition
data entry
data structures
define address length
def ine byte
def ine constant
define list
do
eject
else
end
end condition
end structure
entry
equate
error list
error squeeze
external
format control
forward reference

48-050 F00 ROl

48-050 FOO

Instructions (Continued)
freeze
1/0
IF
immediate short
impure
line count
list conditional
list macro
list unreferenced symbols
listing control
listing indentification
load immediate
load multiple
load PSW

message

no cross

no freeze

no list

no list conditional

no list macro

no list unreferenced
symbols

no RX3

no squeeze

no squeeze check

no warning

NOCAL

origin

pass pause

pause

program

pure

register

register
storage

register

scratch

sequence check

simple IF

simulate interrupt

space

squeeze

store

store multiple

structure

structure definition
structure initialization
symbol definition

target

test

title

unreferenced externals

warning

weak entry

weak external

width

Integer constants

address

alignment of

double precision
floating point

floating point

fullword

halfword

and immediate
and indexed

to register

RO1

Integer constants
(Continued)
single precision
floating point

L

LADC. See log of address
length constant.

Library files

Line count instruction

Linked list structure

List conditional instruction

List instruction

List macro instruction

List unreferenced symbols
instruction

Listing control instructions

Listing identification
instructions

Load immediate instruction

Load multiple instruction

Load PSW instruction

LOC. See location counter.

Location counter instructions

Log of address length
constant

Logical expressions

Logical unit assignment

M

Machine instructions
16-bit
common assembly
language/32 (CAL/32)
Main memory
accessing
Memory addresses
16-bit processors
32-bit processors
Message instruction
Mixed expressions
Mixed mode computations
Mode
absolute
optimization

relocatable
Model 3200MPS System
machine instructions and
mnemonics for
Multiprocessing system
standard tasks

N

Name field
characters

symbols

Nested conditionals

No cross instruction

IND-3

No freeze instruction

No list conditionals
instruction

No list instruction

No list macro instruction

No list unreferenced symbols
instruction

No RX3 instruction

No sequence check instruction

No squeeze instruction

No warning instruction

NOCAL instruction

o)

Offset counter
Operand field
Operation field
Optimization process
Origin instruction
Origin statements
Overlay

path

P

Packed decimal string
constant
Pass pause instruction
Pause instruction
POSITION command
Privileged system function
Program instruction
Program status word
condition code
location counter
status descriptor
Programming
common mode
Programs
absolute
relocatable
Pseudo instructions
APU
NAPU
PSF. See privileged system
function.
PSW. See program status
word.
Pure instruction
Pure segment

Quantities
absolute
relocatable

R

Register and immediate
ingstructions

[IND-4

3-74
3-74
3-75

3-75
3-59
3-60
3-59
3-75
4-5

NN
DN

Register and immediate
instructions (16-bit)

Register and immediate one
instructions (32-bit)

Register and immediate two
instructions (32-bit)

Register and indexed storage
instruction (l6-bit)

Register and indexed storage
instructions

Register and indexed storage
one instructions

Register and indexed storage
three instructions

Register to register
instructions

Register to register
instructions (l6-bit)

S

Scratch instruction
Sequence check instruction
Sequence checking instruction
Short form instructions

16-bit

32-bit
Simple IF instruction
Source input file

last instruction in
Source statements

comment

instruction
Space instruction
Space optimization
Special circumstances bit
Special instructions
Squeeze instruction
Squeeze related instructions
Start options

APU

NAPU
Store multiple instruction
String processing

instructions

Structure definition
instructions
Structure initialization
instruction
Structure instruction
Subroutines
branching to
returning from
Symbol definition
data definition
def ine constant
define storage
include
Symbol definition instruction
Symbols
character
decimal
externally referenced

48-050

3-1

3-73
3-55
1-15
4-8

3-55
3-59

3-76
3-76
4-8

1-14
3-45

3-68

3-71
3-68

1-17
1-17

3-31
3-34
3-32
3-31
3-24

2-3

2-3
3-28

FOO ROl

global
hexadecimal
implicit
Symbols and expressions
System architecture
multiprocessing
uniprocessing

T

Target machine code

Task establishment

Temporary storage
types of

Title instruction

48-050 FOO ROl

u,v

Unpacked decimal string
constant

Unreferenced externals
instructions

Unreferenced symbols

W-Z

Warning instruction

Weak entry instruction
Weak entry points

Weak external instruction
Width instruction

3-75
3-28
3-29
3-28
3-73

IND-5

CUT ALONG LINE

—— e e e e e e e e s s . e . e — — —— — — — T e e e e e o —— — ——— et S b ikt i, s > Gt s carem

PUBLICATION COMMENT FORM

Please use this postage-paid form to make any comments, suggestions, criticisms, etc. concerning
this publication.

From Date

Title Publication Title

Company Publication Number

Address

FOLD

Check the appropriate item.

D Error Page No. ——_ Drawing No.

[] Addition PageNo.________ Drawing No.

[] oOther Page No.________ . Drawing No.

Explanation:

Fold and Staple
No postage necessary if mailed in U.S.A.

FOLD

FOLD

STAPLE

— — — — —— — e — v — m— o— — — o— —— —

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

POSTAGE WILL BE PAID BY ADDRESSEE

PERKIN-ELLMER

Computer Systems Division
2 Crescent Place
Oceanport, NJ 07757

TECH PUBLICATIONS DEPT. MS 322A

FOLD

STAPLE

STAPLE

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

FOLD

STAPLE

