
PERKIN-ELMER

COMMON ASSEMBLY LANGUAGE/32 (CAL/32)
Reference Manual

48-050 FOO RO 1

The information in this document is subject to change without notice and should not be
construed IS a commitment by the Perkin·Elmer Corporation. The Perkin-Elmer Corpo­
ration auumQl no res(lonsibility for any errors that may appear in this document.

The software described In this document is furnished under, Ucenle, and it can be ustKi or
copied only in a manner permitted by th', license. Any copy of the described sohwan!
mun include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and Iny copies thereof shall remain in The Perkin-Elmer Corporation.

The Perkin·Elmer Corporation assumes no responsibility for the 1.1 .. or reliability of its
loftwere on equipment thlt is not supplied by Perkin-Elmer.

The Perkin·Elmer Corporation, Data Syltems Group. 2 Crescent Place, Oceanport, New Jersey 07757

C 1979.1983 by The Perkin-Elmer Corporation

Print"; In the United SUIt .. of Am.rlc.

TABLE OF CONTENTS

PREFACE

CHAPTERS

1 BASIC CONCEPTS

1.1

1.2
1.2.1
1.2.2
1.2.3
1.2.3.1
1.2.4
1.2.5

1.3
1.3.1
1.3.2

1.3.3
1.3.4

1.4
1.4.1
1.4.2

1.4.3

1.4.4

1.4.5
1.4.6
1.4.7
1.4.8

1.5
1.5.1
1.5.2
1.5.3

I NTRODUCrr ION

rrHE PERK I N - ELMER PROCESSOR
Temporary storage (Registers)
Program statu, Word (PSW)
Input/Output ~I/O) Interface
Main Memory
Software Relocation
Hardware Relocation

INSTRUCTION FORMATS (16-BIT)
Register to Register (RR) Instructions
Register and Indexed Storage (RX)
Instructions
Reg ister and lnuned iate (RI) Instruct ions
Short Form (SF) Instructions

I NSTRUC'I' ION FORMArrS (32·- BIT)
Register to Register (RR) Instructions
Register and Indexed storage One (RXl)
Instructions
Register and Indexed Storage Two (RX2)
Instructions t
Register and Indexed storage Three (RX3)
Instructions
Register and Inunediate One (RI1) Instructions
Register and Inunediate Two (RI2) Instructions
Short Form (SF) Instructions
Register and Indexed storage/Register
and Indexed Storage (RXRX) Instructions

VARIATIONS ON INSTRUCTION FORMATS
Conditional Branch Instructions
Branch and Link Instructions
Ot.:.her Var iat ions

48-050 FOO R01

vii

1-1

1-1
1-3
1-4
1-5
1-5
1'-5
1-6

1-6
1-6

1-7
1-8
1-8

1-10

1-11
1-12
1-12
1-13

1-14

1-16
1-16
1-17
1-17

i

CHAPTERS (Continued)

2 SYMBOLIC REPRESENTATION

2.1

2.2

2.3
2.3.1
2.3.2

INTRODUCTION

SYMBOLS AND EXPRESSIONS

SYMBOLS AND THEIR VALUES
Implicit Symbols
Global Symbols

3 THE SOURCE PROGRAM

3.1

3.2

3.3

3.4

3.5

3.6
3.6.1
3.6.2
3 .. 6.3
3.6.4

3.7

3.8
3.8.1
3.8.1.1
3.8.1.2

3.8.1.3
3.8.2
3.8.2.1
3.8.2.2
3.8.2.3
3.8.2.4
3.8.2.5
3.8.2.6
3.8.2.7
3.8.2.8
3.8.3
3.8.4
3.8.5
3.8.6

I N'I'RODUCT rON

INSTRUCTION STATEMENTS

NAMl-: F lELD

OPERATION FIELD

OPERAND FIELD
Register to Register (RR) Instructions
Register and Indexed storage (RX) Instructions
Reg ister and Immed iate (RI) Instruct lons
Register and Indexed storage/Register and
Indexed storage (RXRX) Instructions

COMMON ASSEM.BLY LANGUAGE/32 (CAL/32)
MACHINE INSrrRUCTIONS

ASSEMBLER I NSTRUCT IONS ,
Symbol Def in it ion I nstr,uct ions
Equate (EQU) Instructioh
External, Entry, Weak External, Weak
Ent.ry, and Data Entry (EXTRN 1 ENTRY,
WXTRN, WNTRY, and DNTRY) Instructions
Include (INCL.D) Instruction
Data Definition Instructions
Define storage (OS, DSH, DSF) Instruction
Define Constant (DC, DCF) Instruction
Hexadecimal Constants
Integer Constants
Address Constants
Floating Point Constants
Character Constants
Decimal String Constants
Define Byte (DB) Instruction
Define List (DLIST) Instruction
Define Command (DeMD) Instruction
Locat ion Counter (LOC) Ins truc-t ions

2-1

2-1

2-3
2-3
2-5

3-1

3-1

3 ·--2

3·-3

3-4

3-5
3·-5
3 .. -6
3---7

3-8

3-10

3-24
3-24
3-24

3-28
3-31
3-31
3-32
3-34
3-36
3-37
3-39
3-41
3-43
3-43
3-46
3-47
3-48
3--48

ii 48-050 FDa ROl

CHAPTERS (Continued)

3.8.6.1
3.8.6.2
3.8 .. 6.3
3.8.6.4
3.8.6.5
3.8.6.6
3.8.7
3.8.7.1
3.8.7.2
3.8.7.3
3.8.7.4
3.8.7.5
3.8.7.6
3.8.7.7
3.8.7.8

3.8.7.9\
3.8.7.10
3.8.7.11
3.8.7.12
3.8.7.13
3.8.7.14

3.8.8
3.8.8.1

3.8.8.2
3.8.8.3
3.8.9
3.8.9.1

3.8.9.2

3.8.10
3.8.10.1

3.8.10.2

3.8.10.3
3.8.11

J.9

Pure (PURE) Instruction
Impure (IMPUR) Instruction
Origin (ORG) Instruction
Abs 0 1 ute (ABS) I ns t r u c t ion
Align (ALIGN) Instruction
Conditional No Operation (CNOP) Instruction
Assembler Control Instructions
Target (TARGT) Instruction
End (END) Instruction
Copy Library (CLIB) Instruction
Copy (COPY) Instruction
File Copy (FCOPY) Instruction
Pause (PAUSE) Instruction
Squeeze (SQUEZ) Instruction
Squeeze Related (NOSQZ, ERSQZ, NORX3)
Instructions
Sequence Checking (SQCHK, NOSEQ) Instructions
Scratch (SCRAT) Instruct.ion
Pass Pause (PPAUS) Instruction
Message (MSG) Instruction
Batch Assembly (BATCH, BEND) Instructions
Unreferenced Externals (UREX, NUREX)
Instructions
Conditional Assembly Instructions
Compound Conditional (IFx, ELSE, ENOC)
Instructions
Simple If (IF) Instruction
Do (DO) Instruction
Instructions for Data Structures
Structure Definition (COMN, STRUC, ENDS)
Instructions
Structure Initialization (BDATA, BORG)
Instructions
Listing Control Instructions
Listing Identifioation (PROG, TITLE)
Instructions
Format Control (LeNT, EJECT, SPAC8,
WIDTH) Instructions
Content Control (NLIST) Instructions
Auxiliary Processing Unit (APU) Option

ASSEMBLY LISrrING

4 COMMON MODE PROGRAMMING

4.1 INTRODUCTION

4.2 ADDRESS OPERAT I ON I NS'I'RUCT IONS

4.3 COMMON MODE IMMEDIATE OPERATIONS

48-050 FOO ROl

3·-48
3-49
3-49
3--50
3-50
3-51
3-52
3·-52
3-53
3--53
3-54
3-55
3--55
3-55

3·-59
3-59
3-60
3-60
3·-61
3-61

3-62
3--62

3·-63
3-66
3-67
3-68

3-68

3-71
3·-72

3·-12

3-73
3-74
3·-76

3-76

4-1

4-1

4-3

iii

CHAPTERS (Continued)

4.4
4.4.1
4.4.1.1
4.4.1.2
4.4.2

4.5

4.6

4.7

COMMON MODE ASSEMBLER INSTRUCTIONS
Data Definition Instructions
Define Address Length Constant Instruction
Define Address Length Storage Instruction
Assembler Control Instructions

MIXED MODE COMPUTATIONS

GLOBAL SYMBOLS

SPECIAL INSTRUCTIONS

5 COMMON ASSEMBLY LANGUl\GE/32 (CAL/32) OPERATING
I NStrRUCT IONS

5.1

5.2

5.3

INTRODUCTION

CAL/32 START OP'rIONS

OPERATING INS'l'RUCTIONS FOR ESTABLISHING
CAL/32 AS A TASK

APPENDIXES

A

B

COMMON ASSEMBLY LANGUAGE/32 (CAL/32) ERROR CODES

PERKIN-ELMER OBJECT CODE FORMAT

FIGURES

1·- 1
1-2

1-3
1-4
1-5
1-6
1-7
1--8
1-9
1-10
1-11
1-12
1-13
1-14

Configuration of a Typical Uniprocessing System
Configuration of a Typical Multiprocessing
System
RR Format (16-Bit)
RX Format (16-Bit)
RI Format (16-Bit)
SF Format (16-Bit)
RR Format (32-Bit)
RXl Format (32-Bit)
RX2 Format (32-Bit)
RX3 Format (32-Bit)
RII Format (32-Bit)
RI2 Format (32-Bit)
SF Format (32-Bit)
RX.RX Format (32-Bit)

4-3
4-4
4-4
4-4
4-5

4-5

4-6

4-8

5-1

5-5

5-7

A-I

B-1

1-2

1-2
1-7
1-7
1-8
1-8
1-9
1-10
1-10
1-11
1-12
1-13
1-13
1-14

iv 48-050 FOO ROl

TABLES

3-1

3-2

3-3

3-4
3-5

4-1

5-1

8-1
8-2

INDEX

SUMMARY OF CAL/32 MACHINE INSTRUCTIONS AND
MNEMONICS
CAL/32 MACHINE INSrI'RUCTIONS AND MNEMONICS FOR
'fHE MODEL 3200MPS SYSTEM
SUMMARY OF CAL/32 MACHINE INSTRUCTIONS AND
MNEMONICS FOR THE pgRKIN'-ELMER SERIES 3200
PROCESSORS
EXTENDED BRANCH MNEMONICS
CONSTANT rfYPES

COMMON MODE ADDRESS OPERArrIONS

CAL/32 LOGICAL UNITS

32-8IT LOADER ITEM DEFINITIONS
16-8IT LOADER IlrEM DEF INITIONS

48-050 FOO ROl

3-11

3-19

3-20
3-22
3-35

4-1

5-1

8-2
8-4

Ind-1

v

PREFACE

This manual describes the Perkin-Elmer Common Assembly
Language/32 (CAL/32). Chapter 1 is an introduction to the basic
concepts of t.he assembler, central process ing unit (CPU), and
main memory. Also described are the instruction formats for 16-
and 32-bit machines, as well as variations in the formats.
Chapter 2 introduces assembly language symbolic representation
and describes symbolic values. Chapter 3 defines the source
program and contains a list. of machine instructions, mnemonics,
and a detailed description of assembler instructions. Common
mode programming and common mode operations are explained in
Chapter 4. CAL/32 operati'\lg instructions are listed in Chapter
5. \

Appendix A contains CAL/32 error codes. Appendix 8 describes the
Perkin-Elmer 32-bit object code format and the Perkin-Elmer
16-bit object code format.

This revision introduces the Perkin-Elmer Model 3200MPS
Multiprocessing System and outlines the arrangement. of the CPU
and auxilia.ry processing units (APUs). The CAL/32 machine
instructions that are incompatible between the CPU and the APU of
a multiprocessing system and those that cannot be used on the APU
are specified.

This manual is intended for use with the OS/32 R07.1 software
release and higher. The Model 3200MPS System features are
identified throughout the manual as applicable to the Model
3200MPS System only.

For information on the contentts of all Perkin-Elmer 32-bi.t
manuals, see the 32·-8 it:. Systems User Documentat ion Summary.

48-050 FOO ROI vii

1.1 INTRODUCTION

CHAPTER 1
BASIC CONCEPTS

Like all assemblers, Conunon ,~ssembly Language/32 (CAL/32)
simplifies the direct control of th~ processor by providing the
programmer with a way of representing actual machine operations
in an easily understood symbolic form. Assemblers t.ranslate
symbolic representatJions of machine instructions into binary form
to be executed by the processor. CAL/32 also includes such
features as relocation, segmentation, complex data definitions,
and express ion analys is. CAL/32 can run on any Perkin--Elmer
processor and produce machine code for any Perkin-Elmer
processor.

Because assembly language programming is so close to actual
machine operations, it is essential that the assembly language
programmer have a good understanding of system architecture.
This chapter contains introductory architectural descriptions for
Perkin-Elmer uniprocessing systems and multiprocessing systems.
See the appropriate processor manual for more detailed
information.

1.2 THE PERKIN-ELMER PROCESSOR

The main components of a processor are the central processing
unit (CPU) and main memory. All Perkin-Elmer processors, whether
in a uniprocessing or a multiprocessing system, are
stored-program, multi-register, ·two·-address machines.

rrhere are three iterations of the p~ocessor within Perkin-Elmer
computers:

• A standard processor for a Perkin-Elmer uniprocessing
Figure 1-1 depicts the configuration of a
uniprocessing system.

• A CPU in a multiprocessing system.

system.
typical

• Up to nine auxiliary processing units (APUs) in a
multiprocessing system. Figure 1-2 depicts the configuration
of a typical multiprocessing system.

48-050 FOO ROl 1-1

5378

MEMORY

CPU

MUX BUS

TYPICAL UNIPROCESSOR

Figure 1--1 Configuration of a Typical Uniprocessing System

5379

SYSTEM MEMORY

SYSTEM f\1EMORY BUS

APU
#1

APU
#N

Figure 1-2 Configuration of a Typical Multiprocessing System

1-2 48-050 FOQ ROI

In addition to the standard tasks performed by the operating
system in a uniprocessing system, the operating system in a
multiprocessing system:

• Controls all APUs

• Monitors all activity in the multiprocessing system

• Services all APU exceptions

• Dispatches application tasks created for existing CPUs or the
CPU of a Model 3200MPS System

• Dispatches tasks to the APUs for execution in a Model 3200MPS
System.

The function of an APU is to execute tasks concurrently with the
CPU and other APUs.

1.2.1 Temporary Storage (Regis'ters)

All Perkin-Elmer processors have some amount of temporary storage
that can be used as accumulators or index registers. There are
three types of temporary storage:

• General purpose registers

• Single precision floating point registers

• Double precision floating point registers

one set of 16 general purpose
pro6essors, each general purpose
32-bit processors hold 32 bits.

can be used for integer arithmetic,
operations, and character operations.

All processors have at least
reg iaters. In tJhe 16-bit
register holds 16 bits; the
General purpose registers
address arithmetic, logical

Floating point registers are used only for floating point
arithmetic operations. Processors with floating point registers
have either eight single precision registers, or eight single
precision registers and eight double precision registers. The
single precision registers hold 32 bits. The double precision
registers hold 64 bits.

For a multiprocessing system, there are up to ten sets of these
registers~ one for each of the nine APUs that can be part of the
system, plus a set in the CPU~ i.e., ten machines each have eight
general register sets, eight single precision floating point
registers, and eight double preciSion floating point registers.

48-050 FOO ROl 1-3

1. 2 . 2 Pr'ogram Status Wo,rd ('PSW')

The PSW defines the current state of a proces,slng unit. The
Perkin-Elmer uniprocess ing> system has one current pg,w. S·ince the
Model 3200MPS System consists o,f multiple processors, thet:e i.s
one current PSW for each p,roces'sor. The, PSW cons ists of three
maj,or parts:

• status descriptor

• Condition code

• Location counter (LOC)

Individual bits and bit fields within the status descriptor
port ion of the PSW deE ine the current $'tat.e of interrupts and
various hardware features of the p~ocessor. By setting or
resetting bits within the status descripto·r, the progra.mmer can
enable or disable such interrupts as input/output (I/O),
ar ithmet~ic fault, and machine malfunction. On those processors
with multiple sets of general purpose registers, a field in the
status descriptor defines ~hich set is currently in use.
Pr ogr amrner s WI' it ing, us·er '-level t progr arns,. as, opposed to oper at ing
system or stand-alone prog,rams,. cannot directly acces·s the status
descr iptor. In this case, the operating s'ystem: maintains contrc~l
of interrupts and registers.

The condition code provides a means of controlling; program flow,
based on the t:esults of instruction execution. As certain
instructions are executed, the value in the condition code
changes to indicate' the nature of the re·sult. F;or example, if an
operation produces' a zet:o result, the condition code may be
changed to a zero value. With branch instructions, the
progranuner can test the value in the c,ondition code and branch or
not, depending on that value. NOS all instruction executions
affect the condition code. See the appropriate processor
reference manual for more details.

The LOC controls the order of in'struction execution. Normally,
the processor executes instructions sequentially and uses the LOC
to keep track of where the instructions are in main memory, then
fetches the instruction from the memory location specified by the
address contained in the LOC. It executes that instruction,
increments the LOC by the length of the instruction,. and fetches
the next instruction. Branch instructions, when executed, change
the cont.ents of the LOC and, thereby, affect the branch.

In 32-bit machines, the PSW cont.ains 64 bits, the least
significant 24 of which are reserved for the LOC. In l6-bit
machines, the PSW contains 32 bits; the least significant 16 bits
are reserved for the LOC.

1-4 48-050 FDD ROI

1.2.3 Input Output (I/O) Interface

The execution of certain machine instructions allows the
programmer to control external devices and to cause the transfer
of data between external devices and main memory or registers.
The actual programming of I/O operations is very much dependent
upon the hardware of both the processor and the peripherals. I/O
instructions are restricted to operating systems and stand-alone
programs. User programs can communicate with I/O devices through
facilities provided by the operating system.

1.2.3.1 Main Memory

To the assembly language prograrnme'r, main memory appears as a
block of contiguous storage locations. The smallest unit of
memory the programmer can acceS~3 is the byte (e ight bits). The
programmer can also access halfwords (two bytes), fullwords (four
bytes), and doublewords (eight bytes) .. Each byte in memory is
accessed by a unique address. Memory addresses start with zero
and are incremented by onel for each succeeding byte. Memory
addresses in the 32-bit processors always consist of 24 bits. In
the 16-bit processors, memory addresses consist of 16 bits. When
accessing bytes, any memory address within the limits of the
particular hardware configuration is considered valid. Halfwords
must be accessed with halfword addresses. Fullwords must be
accessed with addresses that are multiples of four. Doublewords
must be accessed with addresses that are multiples of eight.

1.2.4 Software Relocation

Programs written in CAL/32 can be absolute or relocatable. An
absolute program is one whose origin (starting location) is
specified at assembly time as being at a fixed halfword location
in memory. Subsequent addresses within the program, whether
referring to instructions or data, are fixed at assembly time.
For execution, absolute progr~ms must always be loaded into
memory at the location specified as the origin. This type of
programmi.ng is useful in stand--alone applications and some
operating system situations.

Relocatable programs can be loaded for execution beginning at any
halfword location in memory. 'rhe or ig1n of a relocatable program
is assumed to be relocalable zero. The CAL/32 output for this
type of program specifies all addresses in the program as
relative displacements from the origin. At link time, the
linkage editor resolves all addresses within the program by
adding a relocation value (the actual memory address for the
start of the program) to the relative addresses supplied by
CAL/32. Relocation applies only to addresses within the program.
Relocatable programs can contain absolute data.

48-050 FOO ROl 1-5

1.2.5 Hardware Relocation

Some Perkin-Elmer processors and their operating systems support.
hardware relocation and segmentation. Programs prepared for
these systems start out as relocatable~ A linkage editoI'
processes the relocatable output from CAL/32 to link in any
needed subprograms. The output of this process is an absolute
program that, because of the relocating hardware, can be loaded
beginning at any memory address that is a multiple of 256 fot:'
memory access controller (MAC) machines, or 2,048 fo~ memory
address translator (MAT) machines. At run time, the relocating
hardware adds the required relocation value to all addresses
supplied by the program. This relocating hardware also provides
for program segmentation, where the program is divided into
pieces that can be loaded into noncontiguous blocks of memory.

CAL/32 supports s€!gmentation by allowing the programmer to divide
the program into pure and impure segments. 'rhe pure segment of
a program consists of machine instructions and constant data and
cannot be modified at run-time. (Tt;te operating system and the
hardware prevent modification.) The impure segment consists of
the data base which can be modified at run-ti.me. Programs
prepared as pure and impure segments can be shared (executed
concurrently) by several users. Only one copy of the pure
segment resides in memory during execution while there is one
copy of the impure segment for each user.

1.3 INSTRUCTION FORMATS (16-BIT)

The l6-bit processors have four types of machine instructions:
register to register (RR), register and indexed storage (RX),
register and immediate (RI), and short form (SF). The following
abbreviations illustrate the instruction formats:

OP Operation
Rl First operand register
R2 Second operand register
N A 4-bit immediate value
X2 Second operand index register
A2 Second operand direct address
12 Second operand immediate value

Most instructions require two operands, the first of which is
contained in a register. The result usually replaces the
contents of the first operand register. Exceptions to these
rules are noted in Section 1.5.

1.3.1 Register to Register (RR) Instructions

RR instructions cause operations to take place between operands
contained in registers. RR instructions are 16 bits long, as
shown in Figur9 1-3.

1'-6 48-050 FOO ROl

----5 5---1 7'- -- .. - '-- - .. - .-f 7--7 f- .. "'·'-7 7--j :7-'-
OP I Rl I R2 , , I I

_ .. _- -7 7--1 r-·--·-_·-f ?--1 7- .- ... -.-~ 7-"", 5--
Bits:

0 7 8 11 12 15

Figure 1-3 RR Format (16-Bit)

The first eight bits of the instruction define the operation.
'rhe next four bits identify the first operand register. The
final four bits identify the second operand register. In most RR
instructions, the specified operation takes place between the
contents of the first operand register and the contents of the
second operand register. The result of the operation replaces
the contents of the first operand register.

1.3.2 Register and Indexed storage (RX) Instructions

RX instructions cause an\operation to take place between a first
operand, contained in a register, and a second operand, located
in main memory. These instructions require 32 bits, as shown in
Figure 1-4.

----5 :5--;' 7--"---'-~ :r.-;, :J-'-----; 7·--1 7-.- -.- ._--i 7-"--
OP I Rl I X2 , A2 I

I I I I

-".-.-~ ~-fo r--·---" 7-~
7- .. __ ._.,

r~ 7- - .- .. - ... -fJ ;,--_.-
Bits:

0 7 8 11 12 15 16 31

Figure 1-4 RX Format. (16-Bit)

The first eight bits define the operation. The next four bits
identify the first operand register, and the next four bits
identify an optional index register. The remaining 16 bits
specify an address in main memory. The operation takes place
between the contents of the first operand register and the
contents of the memory location specified. The actual address of
the second operand is determined by adding the contents of the
index register to the contents of the address field. If the
index field of the instruction contains zero, no indexing takes
place. In most cases, the result of the operation replaces the
contents of the first operand register.

48·-050 FOO ROl 1-7

1.3.3 Register and Immediate (RI) Instructions

These instructions cause operations to take place between the
contents of a register and the contents of an immediate field
imbedded in the instruction itself. They are 32 bits long, and
are shown in Figure 1-5.

---~ ~--5 7·------~ ;"'-7 $-,----f; T? T'------$ 7-'--
OP I R1 I X2 I 12 I

I I I I

-,--~ ~-7 7"---- ---., 7--7 ~,----~ ~~ 7- ,- ,- - -- -7 7---
Bits:

0 7 8 11 12 15 16 31

Figure 1-5 RI Format (16-Bit)

The first eight hits specify the operation. The next four bits
identify the first operand register. ' The next four bits identify
an optional index register. The final 16 bits are the immediate
value. The first operand is the contents of the first operand
register. The second operand is obtained by adding the contents
of the index register to the contents of the immediate field. If
the index field contains zero, no addition takes place. The
result of the operation usually replaces the contents of the
first operand register.

1.3.4 Short Form (SF) Instructions

These instructions are variations on the RI instructions in which
the second operand is small enough to be expressed in four bits.
SF instructions require 16 bits, as shown in Figure 1-6.

\

1

-,----7 7--7 7----- -,,-., r~ ~- '---5 7? ,..--
OP I Rl I N I I

---1 ~-J $--- -... - ,- - .., 7'-'" 7-- ,--.., 5-$ fr·_-
Bits:

0 7 8 11 12 15

Figure 1-6 SF Format (l6-Bit)

The first eight bits indicate the operation. The next four bits
identify the first operand register. The next four bits contain
the immediate value. Operations take place between the contents
of the first operand register. The result of the operation
usually replaces the contents of the first operand register.

1--8 48-050 FOD RDl

1.4 INSTRUCTION FORMATS (32-BI'1I
)

The 32-bit processors recognize seven different types of
instructions. These are: RR, three variations on RX, two
variations on RI, and SF. The following abbreviations are used
to illustrate instruction formats:

OP Operation
Rl First operand register
R2 Second operand register
N A 4-bit immediate value
X2 Second operand single index register
D2 Second operand displacement
FX2 Second operand first index register
SX2 Second operand second index register
A2 Second operand direct address
12 Second operand immediate value

Most instructions require two operands, of which the first is the
contents of a register. The result of the operation usually
replaces the contents of the first operand register. Exceptions
to these rules are noted in Se~tion 1.5.

1.4.1 Register to Register (RR) Instructions

The format and function of these' instructions are the same as for
the 16-bit processors. They cause operations to take place
between operands contained in registers, and they require 16
bits. These instructions are shown in Figure 1-7.

-,,--4 ~-? 7'------.., ~-~ ~--.--~ 7-~ ~--
OP I Rl I R2 I I I

.- ,-- ,,,- ~ 7--1 ?".- ... - .. ,. '''.' --- ,,- ~ 7-'~ ~'-----7 r'7 '7---
Bits:

0 7 8 11 12 15

Figure 1-7 RR Format (32-Bit)

The first eight bits specify the operation. The next four bits
identify the first operand register, and the last four bits
identify the second operand register. The processor performs the
indicated operation between the contents of the first' operand
register and the contents of the second operand register. In
most RR instructions, the result replaces the contents of the
first operand register.

48-050 FOO ROI 1-9

1.4.2 Register and Indexed storage One (RX1) Instructions

These instructions define an operation between the contents of a
register and the contents of a main memory location. They
require 32 bits, as shown in Figure 1-8.

---7 ~~ 7------/ ~~ 5-----? T-? 7--·---- --_.-._----;, 7--
OP I Rl X2 I 0 I 0 I A2 I I I I

---~ f,--0 7-------5 ~7 7---~ 7--? ,...----------,--f ~--
Bits:

0 7 8 11 12 15 16 17 18 31

Figure 1-8 RX1 Format (32-Blt)

The first eight bits define the operation. The next four bits
identify the first operand regiSter, and the next four bits
identify the index register. The next two bits, bits 16 and 17,
must be zeros. The next 14 bits constitute a direct program
address in a range from 0 to 16,383.

The address of the second operand is obtained by adding the
contents of the index register to the contents of the 14-bit
address field. If the index register field contains zero, this
addition does not take place, and the contents of the address
field are used as the address. The operation takes place between
the contents of the first operand register and the contents of
the specified memory location. The result usually replaces the
contents of the first operand register.

1.4.3 Register and Indexed storage)TwO (RX2) Instructions

These instructions define operations between the contents of a
register and the contents of a location in main memory. RX2
instructions are like the RXI instructions; they require 32 bits.
They differ from the RXI instructions in the method of
calculating the second operand address. See Figure 1-9.

'---1 ~-7 ,..----- '--5 7~ 1r----7 7-'-7 ,.. -- ._"- '-'- .. ---.-~ 7--,-
OP I Rl I X2 I 1 I 02 I I I I

----7 7--7 ~------1 7-5 ,..-----7 7-~ 7·---------? ~ .. -.-
Bits:

0 7 8 11 12 15 16 17 31

Figure 1-9 RX2 Format (32-Bit)

1-10 48-050 FOO R01

The first eight bits define the operation. The next four bits
identify the first operand register, and the next four' bits
identify the index register. The next bit, bit 16, must be a
one. The remaining 15 bits are treated as a signed integer in
two's complement notation. Bit 17 is the sign bit which, if one,
indicates a negative quantity, and if zero, indicates a positive
quantity.

The address of the second operand is obtained in two steps.

1. The signed integer, with sign bit extended to produce a
32-bit integer, is added to the contents of the index
register.

2. This intermediate
incremented LOC.

result is added to the value
The result is truncated to 24 bits.

in the

If the index register field is zero, the first addition does not
take place. The indicated operation takes place between the
contents of the first operand register and the contents of the
specified m~mory location. The result usually replaces the
contents of the first operand register.

1.4.4 Register and Indexed stot'age Three (RX3) Instructions

These instructions are analogous to the RX instructions in the
l6-bit processors. They call for operations between the contents
of a register and the contents of an indexed memory location and
require 48 bits. See Figure 1-10.

---7 7~ ~-~ r7 r---~ ~-? ~-------------------~ 7-~ ~---~ r~ 7-
I OP I R1 I FX2 I 0 I 1 I 0 I 0 I SX2 I A2 I I I I

---~ 7~ r-~ ~~ ~---~ ~-~ ~-------------------i r-~ ~---7 ~~ 7-
Bits:

0 7 8 11 12 15 16 17 18 19 20 23 24 31

I

Figure 1-10 U3 Format (32-Bit)

The first eight bits specify the operation. The next four bits
identify the first operand register, and the next four bits
identify the first index register. Bit 16 must be zero. Bit 17
must be one. Bits 18 and 19 must be zero. The next four bits
identify the second index register. The next 24 bits contain a
direct memory address.

48-050 FOO ROI 1-11

I
I

The address of the second operand is obtained by adding the
contents of the first index register to the contents of the
second index register. This intermediate result is then added to
the contents of the direct address field, and the final result is
truncated to 24 bits.

If either of the index register fields contains zero, that level
of indexing does not take place. If both are zero, no indexing
takes place. In most RX3 instructions, the operation takes place
between the contents of the first operand register and the
contents of the specified memory location. The result usually
replaces the contents of the first operand register.

1.4.5 Register and Immediate One (RI1) Instructions

These instructions are similar to the RI i,nstructions in the
l6-bit processors. They specify operations that take place
between the contents of a register and the contents of a field
that is part of the instruction. They require 32 bits, as shown
in Figure 1-11. I

---,~ ~-? 7------; 7--7 7"-----'" 7-~ "'-'---5 ,...~ 7-"--
OP I Rl I X2 I 12 , , ,

,,----~ 7"--S 7------~ 7--7 7----.., T..., r-'----? 7-7 7-"'--
Bits:

a 7 8 11 12 15 16 31

Figure 1-11 RIl Format (32-Bit)

The first eight bits indicate the operation. The next four bits
identify the first operand register, and ~he next four bits
identify an index register. The second operand is obtained by
extending the contents of the immediate field to 32 bits, by
propagating the sign bit, and then adding this quantity to the
contents of the index register. If the index register field is
zero, no addition takes place, and the extended immediate value
is the second operand. The operation takes place between the
contents of the first operand register and the immediate value.
The result usually replaces the contents of the first operand
register.

1.4.6 Register and Immediate Two (RI2) Instructions

These instructions are similar to the RIl instructiona, except
that the field contains a 32-bit value, and the instruction
itself requires 48 bits. See Figure 1-12.

1--12 48-050 Faa ROl

,-

,..:.,- .. ,-~ ~-s f- ,.. ,'-' _ .. --'--1; ~'-? 7--"--7 ~.'-$ 7"------7 7-7 '7- .-. -
OP I R1 I X2 I 12 I I I

.---~ 7-'~ 7-'--'-'-~ ~-7 5- .. ··_·-·7 7"--5 ~-.-.-~ 7"'-; 7---
Bits:

0 7 8 11 12 15 16 31

Figure 1-12 RI2 Format (32-Bit)

The first eight bits define the operation. The next four bits
identify the first operand register. The next four bits identify
the index register. The second operand is obtained by adding the
contents of the index reg ister t.o the contents of the immedlate
field. If the index register field is zero, no addition takes
place, and the immediate value is the second operand. The
operation takes place between the contents of the first operand
register and the immediate value!. The result usually replaces
the contents of the first operand register.

1.4.7 Short Form (SF) Instructions

SF instructions are similar to the SF instructions in the I6-bit
processors. They specify operations between the contents of a
register and the contents of an immediate field, whose value is
small enough to be expressed in four bits. These instructions
require 16 bits, as shown in Figure 1-13 .

. ---~ 7--~ 7-------$ 7--7 ~-... --~ 7-$ ~r-

OP I R1 I N I I

-.--~ ~-4j 7- _- ----.? 7--7 t----~ ~~ r-
Bits:
a 7 8 11 12 15

Figure 1-13 SF Format (32-Bit)

The first eight bits define the operation. The next four bits
identify the first operand register. The next four bits are the
imrned iate f ie Id . The oper at i.on then takes p lace between th is
value and the contents of the first operand register. The result
usually replaces the contents of the first operand register.

48-050 FOO ROI 1-13

1.4.8 Regieter and Indexed storage/Register and Indexed storage
(RXRX) Instructions

RXRX instructions resemble a pair of adjacent RX instructions,
but represent one cohesive string-processing instruction. An
RXRX instruction is comprised of two instruction members. Each
member can be anyone of the RXI, RX2, or RX3 machine formats,
independent of the other member's format. For example, the first
instruction member might be of the RXI format, and the second
instruction member might be of the RX3 format, yielding a IO-byte
RXRX instruction. Thus, an RXRX instruction length might range
from 8, 10, or 12 bytes.

The first eight bits of the first instruction member, OP, specify
the operation class. The particular RXRX operation is specified
by the contents of t.he operation-modif ier (OP"-MOD) field in the
first eight bits of the second instruction member. OP'-MOD is
actually generated by the assembler according to the specific
RXRX operation mnemonic and the Rl/LI or R2/L2 fields programmed
by the user in source code. See Figure 1-14.

5381

FIRST MEMBER SECOND MEMBER

4 TO 6 BYTES 4 TO 6 BYTES

a 78 11 12 31/47 a 7 8 11 12 31/47

OPN1
I I I

OP MOD OPN2
,t

1

Z a I ' , 1

Z
"t----

X2 Q D
'I

F

OP
I U

=L1 ,S :L L C N =L2 FX2 0100 SX2 A

X2 1 D2 11 2 C I

I
I

';IT--- " a 12 151617 31 a 1 2 3 7 12-1516--1920-2324 47

RX1/RX2 SAMPLE MEMBER RX3 SAMPLE MEMBER
8,10,12 BYTES

Figure 1-14 RXRX Format (32-Btt)

The next four bits in the first instruction member, RIILI,
identify either RI, the string's length-specifying register, or
LI, the string's actual length. The user specifies to the
assembler whether the value in the RI/LI field is a register or
an immediate value.

1-14 48-050 FOQ ROl

The Rl/Ll field is assumed to be a register, unless an equal sign
(=) precedes the Ll source expression. fIn machine format, the
ILl field is set when the =Ll source field specifies an immediate
value as length. The IL2 field in machine format is reset when
the Rl field is used to specify a register that contains the
string's length. When the length is an immediate value, its
value may range from 0 through 15. When the length is in a
reg ister , t.he reg ister may contain a length that ranges from 0
through 224-1. A length of 0 ind.icates a null string.

The remaining bits, bits 12 through 31 or 12 through 47, of the
first instruction member, OPN1, contain the address/location of
the lowest addressable byte of a string or its storage location.
The field, OPN1, is then similar to the indexed address portion
of an RX1, RX2, or RX3 machine format. See OPN2 below.

The first eight bits of the second instruction member, OP-MOD,
are an operation--modifier field containing OPNl's lengt.h
indicator, ILl, in bit 0; OPN2's length indicator, IL2, in bit 1;
a special circumstances bit, C, in bit 2; and in bits 3 through
7, FUNC, the specific function code of the general operation
class, OP. As described above, ILl and IL2 are determined by the
assembler. The special circumstancJ~ bit, C, and function code,
FUNC, are determined by t-he assembler from the
operation-mnemonic. The C bit is used by some RXRX instructions
to indicate that the result of the operation will be forced
positive.

The next four bits, bits 8 through 11, of the second instruction
member, R2/L2, identify either R2, this string's
length-specifying register; or L2, the string's actual length.
Again, the user specifies in source format to the assembler
whether the value in the R2/L2 field is a register or an
immediate value. The R2/L2 source format field is assumed to be
a register, unless an equal sign (=) precedes the L2 source
expression. In machine format, IL2 is set when the =L2 field is
used to specify an immediate value. IL2 is reset when R2 is used
to specify a register. When the length is an immediate value,
expres$ed as =[,2, its va.lue may range from 0 t;hrough 15. When
the length is in a register, its value:, may range from 0 through
224-1. A zero length indicates a null" string.

The remaining bits, bits 12 through 31 or 12 through 47, of the
second instruct;ion member, OPN2" contain the address/locat ion of
the lowest addressable byte of a second member's string. Both
OPNl and OPN2 are similar in format to the indexed address
portion of an RXl, RX2, or RX3 machine format. The particular
format of either OPNI or OPN2 is selectively generated by the
assembler, independently according to the user source program.

In RXI machine format, bits 16 and 17 are zero. Bits 12 through
15 identify the index register, X2, the contents of which are
added to the absolute 14-bit value, 0, to formulate the string's
address.

48-050 FOO ROI 1-15

In RX2 machine format, bit 16 is set. Bits 12 through 15
identify the index register, X2, the contents of which are added
to the IS-bit displacement value, 02, to formulate the string's
address.

In RX3 machine format, bits 16 through 19 are 0100 binary_ Bits
12 through 15 identify the first index register, FX2; and bits 20
through 23 identify the second index register, SX2. The contents
of both are added to the 24-bit address value, A, to formulat.e
the string's address.

NOTES

1. When the first member's OPNI
represents t;he str ing' s address in
RX2 format, the displacement value,
D2, is relative to the end address of
the first instruction member, not to
the end of the full RXRX 'instruction.

2. When the second member's OPN2
represents the string's address in
RX2 format, the displacement value is
relative to the end of the second
instruction member, which is also the
end of the full RXRX instruction.

1.5 VARIATIONS ON INSTRUCTION FORMATS

Not all instructions follow the above instruction formats. In
some instructions the fields are redefined. Some instructions do
not require two operands. Some instructions do not change the
first operand, some instructions change the second operand, and
some instructions change neither ope~and.

1.5.1 Conditional Branch Instructions

Conditional branch instructions use formats that resemble RR, RX,
and SF instructions. However, the interpretation of the fields
differs from the standard, as does the actual operation. In all
conditional branch instructions, the first operand identification
is interpreted as a mask that is ANDed with the condition code.
If the result of this test indicates that the branch is to be
taken, then the second operand address is the location to which
the processor must go to obtain the next instruction.

In the RR instructions, the second operand register contains the
branch address. In the RX instructions, the branch address is
obtained by one of the standard methods for obtaining second
operand addresses. In the SF instructions, the immedia.te field
is interpreted as a ha1fword displacement, either forward or
backward, from the current LOC. The branch address is obtained
by adding or subtracting t ... his quantity from the current LOC.

1-16 48·-050 FOO ROI

1.5.2 Branch and Link Instructi,ons

These instructions facilitate branching to and returning from
subroutines. They use formats similar to RR and RX where the
first operand register is the link register. Before the branch
is taken, the address of the next memory location following the
branch instruction is placed in this register. In the RR
instructions, the branch location is the contents of the second
operand register. In the RX instruction, the branch address is
obtained by one of the usual methods for obtaining second operand
addresses.

1.5.3 Other Variations

Some instructions change the second operand rather than the
first. Most notable among these are the store instructions and
the instructions that add the contents of a register to the
contents of a memory location.

Test instructions an~ compare~ instructions change neither
operand. The indicat\ed operation takes place between the two
operands, but neither i~ changed. The result of the operation is
indicated by the condition code.

Certain other instructions, such as load PSW and simulate
interrupt, do not always require a first operand. In addition,
all of the I/O instructions do not follow the general rules. For
detailed information on how these and other anomalous
instructions work, see'the appropriate processor reference
manual.

/

48-050 FOO ROl 1-17

2.1 INTRODUCTION

CHAPTER 2
SYMBOLIC REPRESENTATION

When writing assembly language programs, the programmer uses
meaningful symbols to represent the binary language interpreted
by both Common Assembly Language/32 (CAL/32) and the processor.
Symbols consist of printable ASCII characters, either singly or
in combination. CAL/32 recognizes the complete set of printable
ASCII characters. However, depending on the context, there can
be restrictions on the use of the complete set. See Chapter 3.

2.2 SYMBOLS AND EXPRESSIONS
\

Symbols represent
values, operation
symbols are:

address~s, register identifiers, absolute

A
LOOP
BXLE
PARTl
REG5
16

identifiers, and constants. Examples of

Symbols can be combined to form expressions. The arithmetic
operators: add, subtract, multiply, and divide are represented
in CAL/32 by the symbols: t, -, *, and /. rrhey combine wi'Lh
other symbols to form arithmetic expressions. Examples of these
arithmetic expressions are:

AtB
LAST-F I Rs'r * TWO
A-16

Blanks and parentheses are not permitted within an expression.
For example, the sequence:

A - B * (C + D)

would not be interpreted by CAL/32 as an expression.

48-050 FOO ROl 2-1

Depending on the context, CAL/32 might misinterpret the symbols,
gener ate incor r ect code, and fa i 1 to detect the er r or . Whe·r e
CAL/32 can recognize the error, it generates an error message.

The evaluation of expressions takes place from left to right with
no rules of precedence. Thus, CAL/32 evaluates the expression:

LAST-FIRST*TWO

by subtracting the value of FIRST from the value of LAST, and
multiplying this result by the value of TWO.

Logical expressions consist of symbols joined by the logical
operators AND and inclus ive OR. 'rhey a.re represented in CAL/32
by the symbols & and!. Examples of logical expressions are:

X&Y!A
CHAR&NULL

I

Logical expressions are evaluated from left to right with no
rules of precedence. Blanks and parentheses are not permitted in
logical expressions.

Mixed expressions are formed by combining logical and arithmetic
operators. For example:

A-B!TWO

CAL/32 evaluates this expression by first subtracting the value
of B from the value of A, and then DRing the result with the
value of two. Mixed expressions are like arithmetic and logical
expressions in that blanks and parenth~ses are not allowed, and
the method of evaluation is from left to right with no rules of
precedence.

Symbols represent either absolute or relocatable quantities. At
assembly time, relocatable quantities have a value equal to their
displacement from some fixed point within the program, usually
but not necessarily, the origin or starting location. At load
time, the relocatable quantity is replaced by an absolute
quantity whose value is calculated by adding the relocation value
to the relocatable quantity. Absolute quantities are known t.o
the assembler at assembly time and are not changed at load time.

'rhe operations: multiply, divide, AND, and OR are permitted only
between absolute data. The plus and minus operators can be used
on mixed data. The results of such operations are:

2-2 48--050 FOO ROI

OPERATION

Absolute + Absolute
Absolute - Absolute
Relocatable + Relocatable
Relocatable - Relocatable
Relocatable + Absolute
Relocatable - Absolute
Absolute + Relocatable
Absolute - Relocatable

2.3 SYMBOLS AND THEIR VALUES

RESULT

Absolute
Absolute
Invalid
Absolute
Relocatable
Relocatable
Relocatable
Invalid

By definition, certain symbols used in CAL/32 programming have
implicit values; that is, the value of the symbol is determined
by the way in which it is expressed and used. Examples of this
kind of symbol are the decimal, hexadecimal, and character
symbols used as operands in instructions. There are also global
symbols in CAL/32. These symbols have preset values that cannol
be redefined by the programmer. The programmer can define the
value of a symbol explicitly by ~sing the equate statement. This
section covers the use of impl,ycit and globa.l symbols. Chapter
3 covers the explicit use and de~inition of symbols.

,

2.3.1 Implicit Symbols

When used in the correct context, a string of decimal digits is
automatically ass igned the· actual value of the number represented
by the string. For example, the expression:

A+14

has a value that the assembler determines by adding the quantity
14 to the value A, which must be defined by some other means.

CAL/32 also recognizes the implicit value of special character
strings the programmer uses to tepresent decimal, hexadecimal,
and character values. These strings are made up of a single
letter that indicates the particular type, followed by a group of
characters enclosed in apostrophes that represents the value.
The code characters are:

48-050 FOO ROl

CODE
CHARACTER

H
F
X
Y
C

TYPE

Ha,lfword decimal
Fullword decimal
Halfword hexadecimal
Fullword hexadecimal
Character

2-3

Decimal numbers consist of an optional sign (+ or -) followed by
decimal digits representing the actual value. Commas are not
allowed in the representation. Halfword decimal values can be
represented by from 1 to 5 decimal digits, with a range from
-32,768 to +32,767. Fullword values can be'represented by from
1 to 10 decimal digits, with a range from '-2,147,483,648 to
+2,147,483,647. CAL/32 converts these decimal numbers into two's
complement binary integers. Examples of decimal symbols, with
their internal representation expressed in hexadecimal notation
are:

SYMBOL

H'l2S'
H'327b5'
H'+-32765'
H'-lS'
F'123123'
F '1'
F'-2'

VALUE

0070
7FFO
7FFD
FFFI
0.001 EOF3
0000 0001
}o'FFF FFFE

Hexadecimal symbols consist of the X or Y type code followed by
a string of hexadecimal digits enclosed in apostrophes. Halfword
symbols can use from one to four digits. Ful1word symbols can
use from one to eight digits. Leading zeros are not required,
and the value is right justified. Examples of hexadecimal
symbols are:

SYMBOL

X'F'
X'D4E'
Y'030'
y'A'
Y'O'

VALUE

OOOF
OD4E
0000 (0030
0000 OOOA
0000 0000

Character symbols consist of from one to
enclosed in apostrophes and preceded
Characters are right justified, with zero
context, either a halfword or a fu1lword
character symbols are:

four ASCII characters
by the type code C.
fill. Depending on the
results. Examples of

SYMBOL VALUE VALUE
(HALFWORD) (F ULLWORD)

C' * • 002A 0000 002A
C'12' 3132 0000 3132
C'AB' 4142 0000 4142
C'l234' 3334 3132 3334

2-4 48--050 FOO ROI

In the last example, where a halfword value was generated, only
the -rightmost two characters were used. Where the context
dictates a halfword, and a longer string is used, a truncation
error results. One final type of implicit assignment occurs in
the use of symbols as statement identifiers. Where a symbol is
used in the name field of a statement, it is automatically
assigned a value equal to the value of the current location
counter (LOC). This type of assignment is covered in Chapter 4.

2.3.2 Global Symbols

Six symbols recognized by CAL/32 have predetermined values. 'rhey
are:

ADe
LADC
PURETOP
IMPTOP
ABs'rop

*

The use of these symbols is somewhat restricted, and they cannot
be redefined by the programmer.

In programs written for 32-bit processors, the address length
constant (ADC) always has a value of 4, the length of an address
constant in bytes. (In 32-bit processors, addresses must be
contained in fullwords, even though the actual address is only 24
bits in length.) In programs for which CAL/32 is to generate
16-bit code, ADC has the value of 2. In programs written for
32-bit processors, the log (base 2) of the address length
constant (LADe) always has a value of 2. In programs for l6-bit
processors, LADC always has a va.lue of 1. Both of these symbols,
ADC and LADC, are used most frequently in common mode
programming. See Chapter 4.

The symbols PURETOP, IMPTOP, and ABSTOP have values equal to:

PURETOP
IMP'rop
ABSTOP

The next available location in the pure segment
The next available location in the impure segment
The next available location in the absolute segment

Because these values change during assembly, the symbols must be
used carefully. They can be used as second operand identifie-rs
in machine instructions and as operands in assemble'r instructions
where they are treated as address values. They cannot be used in
assembler instructions that control the LOC.

48-050 FOO ROl 2-5

The asterisk symbol (*), used as an operand rather than as an
operator in an expression, always has a value equal to the value
of the current LaC. Throughout the assembly process, CAL/32
maintains a Lac analogous to the hardware LaC contained in the
central processing unit (CPU). Depending on the organization of
the program, this Lac can contain anyone of several values. For
32-bit programs, the LOC may point to the current location in the
absolute segment, the pure segment, or the impure segment. For
16-bit assemblies, the Lac may point to the cu'rrent absolute
location or the current relocatable location.

I

I

f

2-6 48--050 FOO ROl

CHAPTER 3
THE SOURCE PROGRAM

3.1 INTRODUCTION

The source program consists of a- set of assembly language
statements that specify the operations to be performed by the
processor, define the constants and storage areas used by the
program, and control the assembly process to produce the desired
output. Source statements for Common Assembly Language/32
(CAL/32) are of two types: comment statements and instruction
statements. Instruction statements are further divided into
machine instructions and assembler instructions. Each statement
consists of an 80-character record, in which s~nbols and
expressions identify the statement., and where necessary, indicate
the operation and locate the operands.

3.2 COMMENT STATEMENTS

Comment statements can appear anywhere in the source program.
They allow the programmer to include easy-to-read documentation
in the source program listing. They produce no object code. The
assembler does not process comment statements except to check for
proper sequencing and scan for invalid characters.

Comment statements must always start with an asterisk (*) in the
first character position. Positions 2 through 71 can contain any
printable ASCII character, including lowercase alphabetic
characters. Blanks are considered to be "printable" characters.
If a nonprintable character turns up in a comment statement,
CAL/32 replaces it with a pound sign I(ft). Pos.ition 72 of a
comment statement must contain a blank charact.er. Positions 73
through 80 can, at the programmer's option, be used for sequence
identification. The sequence field can contain any printable
ASCI I charact.er other than lowercase alphabetic characters.
Where sequence checking is requested, each sllccessive sequence
identifier must be greater, in the ASCII collating sequence, than
the previous identifier. Examples of co~nents are:

POSITION
1
* 'rH I SIS A COMMENT
* IT MAY APPEAR ANYWHERE IN THE PROGRAM
* SUBROUTINE GETCHAR
*MOVES A CHARACTER FROM THE INPUT BUFFER
*AND RErrURNS IT IN GENERAL REGISTER THREE

48-050 FOO ROl

72 73

GETlOOOO
GETIOOlO
GETI0020

3-1

3 .. 3 INSTRUCTION STATEMENTS

Instruction statements can be written in fixed format or in free
format. For either format, there are five distinct fields in
each statement. In fixed format, these fields are:

CHARACTER POSITIONS

1 through 8
10 through 14
16 through n

n+2 through 71
73 through 80

DEFINITION

Name field
Operation field
Operand field
Conunent field
Sequence field

Positions 9, 15, and 72 must always contain blank characters.
The operand field and t,he comment field are var iable in length,
and the first blank character after position 16 serves as a
delimiter between the operand field and the comment field.
Because of the way the output listing is tabulated, the comment
field cannot contain more than 37 characters. If more than 37
characters appear, only the first 37 are printed on the output
listing.

CAL/32 does not require source statements to be written in fixed
format~ It accepts free format source, in which blank characters
serve as delimiters. If, for example, the name field is not
used, a blank character in the first position indicates that the
next nonblank character is the sta.rt of the operation field.
Similarly, if the operation field requires fewer than five
characters, the first blank character following the operation
code indicates that the next nonblank character is the first
character of the operand field. As in the fixed format
statement, the first blank character following the operand field
indicates the end of that field and the beginning of the comment
field. There are three restrictions on the use of free format:

1. Comment 1engt ... h is 1 im ited to 37 char acter s, inc lud ing blanks.

2. Position 72 must contain a blank character.

3. The sequence field must start in position 73.

'rhe last restr ict ion is because CAL/32 cannot d 1st ingu ish between
a blank character as part of a comment and a blank character
intended to separate the comment from the sequence field.

3-2 48-050 FOO ROl

If there are no nonblank characters in positions 1 through 20,
CAL/32 assumes ·that the statement is a conunent, and lists it as
such with a warning note. rf more than 15 blanks separate the
name field from the operation field, CAL/32 assumes that the
operation field is not present. Similarly, if more than 15
blanks separate the operation field from the operand field,
CAL/32 assumes that the operand field is not present. rn both
cases, CAL/32 generates an error message.

When writing CAL/32 instruction statements, the programmer uses
symbolic representation in the name field, the operation field,
and the operand field. The following paragraphs describe the use
of symbols and expressions in these fields.

3.4 NAME FIELD

Where a symbol appears in the name field, it represents the value
of the current location counter (LaC) for that particular
instruction. I This allows the progranuner to refer to specific
locations symbolically, without having to know the actua.l value
of the LaC. The following five restrictions apply to the
formation of names:

1. The first character of
lowercase alphabetic
characters:

• at sign (@)

• dot (.)

• dollar sign ($)

• underscore (_)

a name must
character or

NOTE
)

Lowercase lettsrs are
converted to uppercase except
constants.

be an
one of

uppercase or
the special

internally
in string

2. The remaining characters can be made up of any combination of
valid first characters, plus the numeric characters 0 through
9.

3. The name must consist of from one to eight characters.

4. The name must start in the first character position of the
source record.

5. Imbedded blanks ate not permitted.

48-050 FOO ROl 3-3

Examples of valid names are:

LABEL
LOOPl
.SIN
@GOTO
$$GET5

Examples of incorrect names are:

lLOOP
LOOPCOUNTER
AB?C

First character is numeric
More than eight characters
Question mark is illegal

As a general rule, a given symbolic string can appear only once
in the program where it def ines a ,locat ion. 'rhat is, the same
symbol may not appear i.n the name field of more than one
instruction. The exception to this is the equate instruction.
This is covered in the section on assembler instructions.

3.5 OPERATION FIELD

The use of symbols in the operation field is severely restricted.
Only prey iously def .i.ned symbols can appear in this field. The
symbols that appear in the operation field are called mnemonics;
they represent operations to be performed by the processor at
run-time, or operations to be performed by the assembler. CAL/32
recognizes mnemonics that represent all machine operations for
all Perkin-Elmer processors. It also recognizes a large set of
assembler mnemonics that allows the programmer to control the
assembly process.

Mnemonics can consist of no more than five characters. They are
formed in the same way as names and use the same character set.
CAL/32 permits users to define mnemonics. This process :is
described in the section that deals with the equate instruction.
Specific mnemonics that define machine operations and assembler
operations are described later in this chapter. Examples of
operation mnemonics are:

3-4

MNEMONIC

AR
S
eLI
ORG

TYPE

Machine
Machine
Machine
Assembler

MEANING

Add register
Subtract
Compare logi.cal immediate
Set location counter

48·-050 FOO ROI

3.6 OPERAND FIELD

CAL/32 permits the use of both symbols and expressions in the
operand field of instructions. Symbols used in the operand field
can be implicitly defined or can be explicitly defined. The
rules for forming operands for assembler instructions vary from
instruction to instruction, and each is described individually
later in this chapter.

Most machine instructions require two operands while some require
only one. Where two operands are required, the first is
separated from the second by a comma. Following are the general
rules for forming operands for machine instructions.

3.6.1 Register to Register (RR) Instructions

Both the first and the seco~d operand must be represented by
symbols or expressions w~th values between 0 and 15 inclusive.
If the value is greater than 15 or less than 0, the assembler
sets it to 0, and generates an error message. For example, if
the symbols 1 and 2 appear in the operand field of the add
register instruction:

AR 1,2

CAL/32 generates the machine code to add the contents of register
2 to the contents of register 1 and store the result in register
1. The use of 1 and 2 here is an example of how decimal numbers
have an implicit value when used in the proper context. Another
example:

AR X'l',X'2'

shows how hexadecimal symboln can be used as register
identifiers. This is an exception to the previously stated rule
that hexadecimal symbols generate halfword or fullword values.
Where used as register identifiers, decimal, hexadeCimal, and
character symbols cause the assembler to generate 4-bit values.

Expressions can be used in identifying registers, as in:

AR A+B,C'A'-X'40'

where CAL/32 evaluates the expressions and uses the results as
the register identifiers. This is not a universally useful
feature of the language, although it has some applications in
common mode programming.

48-050 FOO ROI 3-5

A more useful way to identify registers is to use explicitly
defined symbols. Suppose the symbols SUM and INC are defined to
have values of 1 and 2, respectively. Then the instruction:

AR SUM, INC

has the same effect as:

AR 1,2

3.6.2 Register and Indexed Storage (RX) Instructions

If the first operand is required, it must be
identifier as described for RR instructions.
separated from the first by a comma, can be:

• a symbol,

• an expression, or

a valid register
The second operand,

• a symbol or an expression followed by an index register
identifier enclosed in parentheses.

Where indexing is used, identification of the registers follows
the same rules as those for specifying first or second operand
registers. In double-indexed instructions, the first and second
index identifiers are separated by a comma. An example of how
(RX) instructions are written is:

S 1,A

where the first operand is the contents of general register 1,
and the second operand is the value at location A in memory_
Another example:

S SUM, TABLE (p'rR)

shows how single indexing is expressed. In this case, the first
operand is the value contained in the register identified by the
symbol SUM, and the second operand is the value at memory
location table plus the contents of the index register PTR.
Another example:

s SUM,LAST-FIRST(BASE,PTR)

3-6 48-050 FOa ROl

shows the use of double indexing along with the use of an
expression in the operand fieldD A final example:

S SUM, o (ADDR)

illustrates where an address of a second operand is contained in
the index register. Here, there must be a symbol in the address
field even if it is equal to zero.

3.6.3 Register and Immediate (RI) Instructions

The first
identifier.

• a symbol,

operand must be specified
The second operand can be:

• an expression, or

by a valid regist.er

• a symbol or an expression followed by an index register
identifier enclosed in parentheses.

Example:

CLI STRNG,C'ABCD'

causes the character string ABeD, represented internally as the
fullword character value 4142 4344, to be compared with the
contents of the register identified by the symbol STRNG. In
another example:

the expression LAST-FIRST is evaluated by CAL/32 at assembly
time. At run-time this value is added to the contents of the
index register before the comparison takes place. In another
example:

eLI ADDR,Y'2000'(PTR)

the fullword, hexadecimal quantity 0000 2000, is added to the
contents of the index register. The result is then compared with
the contents of the register identified by the symbol ADDR.

48-050 FOO ROI 3,-7

3.6.4 Register and Indexed storage/Register and Indexed storage
(RXRX) Instructions

The RXRX instructions have four basic source ope·rand fields, each
of which is separated from the other by a comma. The first
operand field can be:

• a valid register identifier, symbol, or expression with a
defined absolute value in the range 0 to 15; or

• an equal sign (=) preceding a symbol or an expression with a
defined absolute value in the range 0 to 15,

The second source operand field, separated from the first by a
comma, can be:

• a symbol or an expression;

• a symbol or an expression, optionally followed by an index
registe~ identifier enclosed in pkrentheses; or

• a symbol or an expression, optionally followed by a pair of
index register identifiers, separated by a comma, with the
pair enclosed in parentheses.

The third source operand field, separated from the second by a
comma, can be:

• a valid register identifier, symbol, or expression with a
defined absolute value in the range 0 to 15; or

• an equal sign (=) preceding a symbol or an expression with a
defined absolute value in the range O~to 15.

{

The fourth source operand field, separated from the third by a
comma, can be:

• a symbol or an expression;

• a symbol or an expression, optionally followed by an index
register identifier enclosed in parentheses; or

• a symbol or an expression, optionally followed by a pair of
index register identifiers, separated by a comma, with the
pair enclosed in parentheses.

3-8 48-050 FOO ROI

Examples of how these instructions are written are:

MOVE =LENGTH2 , HERE, =LENG'rH 1, 'rHERE

which moves the string of length, LENGTHl, at location THERE to
the location HERE up to the nu~)er of bytes indicated by LENGTH2.
If LENGTHl is less than LENGTH2, this instruction pads the extra
bytes with the right-justified character in general register
zero.

In the preceding example, the first operand field is the
immediate value of symbol LENGTH2. The equal sign that specifies
LENGTH2's value is an immediate value and not a register
identifier. 'rhe second operand field is the storage address at
location HERE. 'rhe third operand field is the immediate value of
symbol LENGfrHl (its inuned iacy is again ind icated by the equal
sign). The fourth operand field is the string at location THERE.

Another example is:

MOVEP R 7 , PR I NfrOUT (L r NE , COL2) , R8 , MESSAGE (CLASSX, ERR I NDX)

which moves the string of the length specified in general
register R8, found at the memory location computed by summing the
address value of MESSAGE with the contents of both index
reg isters CLASSX and ERRINDX. rrhe str ing is moved to a storage
location whose address value is computed by summing the address
value of PRINTOUT plus the contents of both index registers, LINE
and COL2. The number of bytes to be filled is the length
specified in general register R7. If the length in R8 is less
than that in R7, the MOVEP instruction, by definition, pads the
extra bytes with the default character, a space.

I n the preced lng example, t.he first operand f teld is t~he reg istet'
identifier, R7; the second operand field is the storage address
at location PRINTOUT, as double indexed by the register
identifiers, LINE and COL2; the third operand field is the
register identifier, R8; and the fourth operand field is the
string's location MESSAGE, as double tndexed by the register
identifiers, CLASSX and ERRINDX.

Another example is:

PMV =8,DECSUMS(SALESID),5 r TOTALS(ORDERX)

which packs and moves the unpacked decimal data digit string
whose length is indicated in general register 5. Note that the
5 means a general register because no equal sign precedes it.

48-050 FOO ROI 3-9

The unpacked decimal data digit string is found at the memory
location computed by summing the address value of TOTALS with the
contents of the single index register identifier ORDERX. For
details on how this conversion takes place, refer to the
instruction definitions in the appropriate processor manuals.
Generally, the unpacked decimal data is converted to packed
decimal data up to the number of digits that may occupy the
reserved byte length, indicated by the =8 expression. In this
case, 8 bytes are reserved, providing storage for 15 decimal
packed digits and a position for the sign-indicator. The PMV
instruction, by definition, has various safeguards for illegal
digit cases and overflow, and provides leading zeros as needed,
when the number of positions available for either the unpacked
digits and the packed digits is of unequal length. The memory
location to which the converted digit data is moved is computed
by summing the address value of DECSUMS with the contents of the
single index register SALESIO.

In the preceding example, the first operand field is the
immediate value =8. Note that the equal sign specifies that B is
an immediate value and not a register identifier. The second
operand field is the address location DECSUMS as singly indexed
by the reg ister ident if ier, SALES 10. 'rhe third operand field is
the register identifier 5; and the fourth operand field is the
address location TOTALS, as indexed by the single index register
identifier ORDERX.

3.7 COMMON ASSEMBLY LANGUAGE/32 (CAL/32) MACHINE INSTRUCTIONS

Table 3-1 lists the mnemonics for CAL/32 machine instructions.
Where there is no entry in the format column, that instruction :is
not available for that particular line of processors.

3-10

NOTE

Some machine instructions are illegal on
the auxiliary processing unit (APU) in a
Model 3200MPS System and are so noted in
Table 3-1.

48-050 FDD RDl

TABLE 3-1 SUMMARY OF CAL/32 MACHINE
INSTRUCTIONS AND MNEMONICS

I I 32-BIT , ,
I NSTRUC(r ION I MNEMONIC I FORMAT , ,

I l6-BIT ,
I FORMAT ,

-~:~=========n=============~===a==~~=========~~~~====~===

Add A RX RX*
Add OP floating point AD RX RX
Add OP floating point
register ADR RR RR
Add to bottom of list A,BL RX RX
Add to bottom of list
flagged ABLF RX**

Add with carry halfword ACH RX
Add with carry halfword
register ACHR RR
Acknowledge interrupt ACK RX
Acknowledge interrupt
register ACKR RR
Add floating point AE RX RX
Add floating point
register AER RR RR
Add halfword AH RX RX
Add halfword immediate AHI RIl RI
Add halfword to memory AHM RX RX
Add halfword register AHR RR* RR
Acknowledge interrupt AI RX*
Add immediate AI RI2 RI*
Acknowledge interrupt

I register AIR RR
Add immediate short AIS SF SF
Autoload AL RX% RX

Add to memory AM RX RX
Add register AR RR RR
Add to top of list' A'rL RX RX
Add to top of list flagged A'rLF RX
Branch and link BAL RX RX
Branch and link register BALR RR RR
Branch to control storage BDCS RX RI
Branch on equal status
high speed BESHS RX**

Branch on false condition
backward short BFBS SF SF

48-050 FOO ROI 3-11

I

TABLE 3-1 SUMMARY OF CAL/32 MACHINE
INSTRUCTIONS AND MNEMONICS
(Continued)

....... '-.- ,_ , ___ ~._ ,, ___ ... __ ... _ .. _ ,_ • ___ , ___ .. _ , __ ,,~ ,,_ _ ,,_ • __ • __ •• r. , " _ ~ ___ , __ G_ ,,_ .. ____ "'_ ,._ ,_ •• _ •••• "'_ • ..,. .~ _

I I 32-BIT I l6-BIT I I I

INSTRUCTION I MNEMONIC I FORMAT I FORMAT I I I

========c=~====~=====~=======~====~=~=====~=~==_=~e===~_=

Branch on false condition BFC RX RX
Branch on false condition
register BFCR RR RR
Branch on false condition
forward short BFFS SF SF
Branch on not equal status
high speed BNSHS RX**
Branch on true condition
backward short BrrBS SF SF

Branch on true condition B'rc RX RX
Branch on true condition
register s'rCR RR RR
Branch on true condition
forward short B'rFS SF SF
Branch on index high BXH RX RX
Branch on index low or
equal BXLE RX RX
Compare C RX RX*
Complement bit CST RX
Compare OP floating point CO RX RX
Compare OP floating point
register CDR RR RR
Compare floating point CE RX RX
Compare floating point
register CER RR RR
Compare halfword CH RX RX
Compare halfword immediate CHI RIl RI
Compare halfword register CHR RR* RR
Convert t.o halfword value
register CHVR RR
Compare immediate CI RI2 RI *
Compare logical cr.... RX RX*
Compare logical byte CLB RX RX
Compare logical halfword CLH RX RX
Compare logical halfword
immediate CLHI Rll RI

Compare logical halfword
register CLHR RR* RR

3--12 48,-050 FOC ROl

TABLE 3-1 SUMMARY OF CAL/32 MACHINE
INSTRUCTIONS AND MNEMONICS
(Continued)

I I 32,-8 I'r I I

I NS'rRUCT I ON I MNgMONIC I FORMAT I I

I 16,-8 IT I
I FORMAT I

~~~~=~====================~=~==========~===e~=~=~======== 

Compare logical immediate eLI RIl RI* 
Compare logical register CLR RR RR* 
Compare register CR RR RR* 
Cyclic redundancy check 

I modulo 12 CRC12 RX RX** 

Cyclic redundancy check 
modulo 16 CRC16 RX RX** 
Decrement counter high 
speed DCHS RX** 
Divide D RX RX* 
Divide DP floating point DD RX RX 
Divide DP floating point 
register DDR RR RR 

Divide floating point DE RX RX 
Divide floating point 
register DER RR RR 
Divide halfword DH RX RX 
Divide halfword register DHR RR* RR 
Divide register DR RR RR* 
Enter control storage ECS RII SF 
Exchange program status 
register EPSR RR RR 
Exchange byte register EXBR RR RR 

I Exchange halfword register EXHR RR 
Float OP register FLDR RR RR 
Float register FLR RR RR 
Fix DP register FXDR RR RR 
Fix register 1"XR RR RR 
Generate inter process 
interrupt GIPI RR** 
Load L RX RX* 
Load address LA RX RI * 
Load byte LB RX RX 

Load byte high speed [.BHS RI** 
Load byte high speed 
indirect LBHSI RX** 
Load byte register LBR RR RR 

48'-050 FOO ROI 3-13 



3 --14 

TABLE 3-1 SUMMARY OF CAL/32 MACHINE 
INSTRUCTIONS AND MNEMONICS 
(Continued) 

I I 32,-8 IT , , 
INSTRUCTION I MNEMONIC I FORMA'r , , 

I 16-BIT , 
I FORMAT , 

============================~=r~=~~===~-==~==========z=== 

Load complement short LeS SF SF 
Load OP floating point CD RX RX 
Load OP floating point 
register LOR RR RR 
Load floating point LE RX RX 
Load floating point 
-register LF~R RR RR 

Load halfword LH RX RX 
Load halfword immediate LHI Rll RI 
Load halfword logical LHL RX RX* 
Load halfword -regist.er LHR RR* RR 

Load immediate LI RI2 RI * 
Load immediate short LIS SF SF 
Load multiple LM RX RX 
Load multiple DP floating 
point LMD RX RX 
Load multiple floating 
point r.M.E RX RX 
Load program status LPS RX 
Load program status 
register LPSR RR 
Load PSW LPSW RX RX 
Load PSW register LPSWR RR 
Load real address LRA RX 
Load -register LR RR RR* 
Multiply M RX RX* 
Multiply DP floating poi.nt MD RX RX 
Multiply OP floating point 
-register MDR RR RR 
Multiply floating point ME RX RX 
Multiply floating point 
register MER RR RR 
Multiply ha,lfword MH RX RX 
Multiply halfword reg.i.ster MHR RR* RR 
Mult.i.ply halfword unsigned MHU RX 
Multiply halfword unsigned 
register MHUR RR 

Move and process byte 
string register MPBSR RR%% 

48-050 FOO ROl 



TABLE 3-1 SUMMARY OF CAL/32 MACHINE 
INSTRUCTIONS AND MNEMONICS 
(Continued) 

--------------------------------------------,--------------
I NSTRUC'r ION 

Multiply register 
AND 
AND halfword 
AND halfword immediate 

AND immediat.e 
AND halfword register 
AND register 
OR 
Output command 

output command register 
OR halfword 
OR halfword immediat.e 
OR halfword to memory 
OR halfword register 

OR i.mmediate 
OR register 
Process byte 
Process byte register 
Read block 
Remove from bottom of list 
Remove from bottom of list 
flagged 
Read block register 
Reset bit 
Read data 
Read Des 
Read data high speed 
Read data high speed 
register 
Read data register 
Read halfword 
Read halfword register 

Rolat.e left logical 
Rotate left logical shorL 

48-050 FOO ROI 

I I 32-BIT I l6-BIT 
I MNgMONIC I FORMAT I FORMAT 

MR 
N 
NH 
NHI 

NI 
NHR 
NR 
o 
OC 

OCR 
OH 
OHI 
OHM 
OHR 

01 
OR 
PB 
PBR 
RB 
RBL 

RBLF 
RBR 
RBT 
RD 
Roes 
ROBS 

RDRHS 
RDR 
RH 
RHR 

RLL 
RLLS 

RR 
RX 
RX 
Rll 

RI2 
RR* 
RR 
RX 
RX 

RR 
RX 
Rll 

RR* 

RI2 
RR 
RX% 
RR% 
RX%% 
RX 

RR%% 
RX 
RX 
RR 

RR 
RX 
RR 

RIl 

RR* 
RX* 
RX 
RI 

RI * 
RR 
RR* 
RX* 
RX 

RR 
RX 
RI 
RX** 
RR 

RI * 
RR* 

RX 
RX 

RX** 
RR 

RX 
RR 
RX** 

RR** 
RR 
RX 
RR 

RI 
SF** 

3-15 



3-16 

TABLE 3-1 SUMMARY OF CAL/32 MACHINE 
INSTRUCTIONS AND MNEMONICS 
(Continued) 

I I 32-BIT I I 

INSTRUCTION I MNEMONIC I FORMAT I I 

I l6-BIT I 
I FORMAT I 

========:===================~=~~=======-=====~=========~= 

Read process data high 
speed RPOHS RX** 
Replace PSW RPSW RR** 

Rotate right logical RRL RII RI 
Rotate right logical short RRL.S SF** 
Remove from top of list R'rr.... RX RX 
Remove from top of list 
flagged R'rLF RX** 
Subtract S RX RX* 

store byte high speed 
indirect SSHSI RI** 
Set bit SST RX 
Subtract with carry 
halfword SCH RX 
Subtract with carry 
halfword register SCHR RR 
Simulate channel program SCP RX% 

Subtract OP floating point SD RX RX 
Subtract DP floating point 
register SOR RR RR 
Subtract floating point SE RX RX 
Subtract floating point 
register SER RR RR 
Set program mask SErrM RX 

Set program mask register SErrMR RR 
Subtract halfword SH RX RX 
Subtract halfword immediate SHI RIl RI 
Subtract halfword from 
memory SHM RX** 
Subtract halfword register SHR RR* RR 
Subtract immediate SI RI2 RI * 
Simulate interrupt SINT Rll RI 
Subtract immediate short SIS SF SF 

Shift left arithmetic SLA Rll RI 

48-050 FOO ROl 



TABLE 3-1 SUMMARY OF CAL/32 MACHINE 
INSTRUCTIONS AND MNEMONICS 
(Continued) 

I NS'rRUCT ION 
I I 32-BIT I 16-BIT 
I MNEMONIC I FORMAT I FORMAT 

Shift left halfword 
a,r i thmet ic SLHA RII RI 
Shift left halfword 
logical SLHL RIl RI 
Shift left logical SLL Rll RI 
Shift left halfword 
logical short SLHLS SF RI 
Shift left logical short SLLS SF SF 
Store PSW SPSW RR** 

Subtract register SR RR RR* 
Shift right arithmetic SRA Rll RI 
Shift right halfword 
arithmetic SRHA Rll RI 
Shift right halfword 
logical SRHL RIl RI 
Shift right logical SRL RIl RI 

Shift right halfword 
logical short SRHLS SF SF 
Shift right logical short SRLS SF SF 

Sense status SS RX RX 
Sense status register SSR RR RR 
Store ST RX RX* 

Store byte STB RX RX 
Store byte high speed STBHS RX** 
Store byte register STBR RR RR 
store OP floating point s(ro RX RX 
store floating point STE RX RX 

store halfword s'rH RX RX 
store multiple STM RX RX 
store multiple OP float.. ing 
point 5 'rMD RX RX 
store multiple floating 
point STME RX RX 

48-050 FOO ROl 3-17 



., , 

3-18 

TABLE 3-1 SUMMARY OF CAL/32 MACHINE 
INSTRUCTIONS AND MNEMONICS 
(Continued) 

I I 32--B IT I I 

INSTRUCTION , MNEMONIC , FORMAT I I 

, 16-BIT I , FORMAT I 

=================:=_==a_~_~_====ft=~============_=======:= 

Supervisor call SVC RX RX 
Test bit TBT RX 
Test halfword immediate THI RIl RI 
Test immediate TI RI2 RI * 
Translate TLATE RX RX** 
Test and set TS RX 
Unchain UNC RR** 
Write block WB RX%% RX 
Write block register WBR RR%% RR 
Write data WD RX RX 
Write DCS WDes RR RR 

Write data register WDR RR RR 
Write data high speed WDHS RX** 
Write data high speed 
register WDRHS RR** 
Write halfword WH RX RX 
Write halfword register WHR RR RR 

Write processed data high 
speed WPDHS RX** 
Exclusive OR X RX RX* 
Exclusive OR halfword XH RX RX 
Exclusive OR halfword 
immediate XHI RIl RI 
Exclusive OR halfword 
register XHR RR* RR 

Exclusive OR to memory XHM RX** 
Exclusive OR immediate XI RI2 RI* 
Exclusive OR register XR RR RR* 

----------------------------------------------------------

* 'rhe ind icated mnemonic operat ion code is generated, 
and the listing is flagged with a question mark to 
indicate a potential error. 

** Model 50 instruction set. 

% These instructions are illegal on the APU of a 
Model 3200MPS System. 

%% Not applicable to Model 3200MPS System processors. 

48-050 FOO ROI 



There are three new machine instructions for the APU of the Model 
3200MPS System. They are summarized in Table 3-2. See the Model 
3200MPS Instruction Set Manual for an explanation of these new 
machine instructions. 

TABLE 3-2 CAL/32 MACHINE INSTRUCTIONS AND MNEMONICS 
FOR THE MODEL 3200MPS SYSTEM 

INSTRUCTION 

Generate Signal (Model 
3200MPS APU only) 

Read real-time counter 
(Model 3200MPS APU only) 

Reschedule (Model 3200MPS 
APU only) 

I I 32-BIT 
I MNEMONIC I FORMAT 

aSIG RR 

RRTC RR 

RSCH SF 

OS/32 R07.l and higher will simulate these instructions on other 
processors. 

The semantics of the privileged system function (PSF) are 
modified for the APU of the Perkin-Elmer Model 3200MPS System. 
Table 3-3 lists the mnemonics of machine instructions and 
mnemonics for the Series 3200 processors. The 16-bit format is 
not applicable. 

48-050 FOO R01 3-19 



TABLE 3-3 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS AND 
MNEMONICS FOR THE PERKIN-ELMER SERIES 
3200 PROCESSORS 

INSTRUCTIONS 
I : 32-BIT 
: MNEMONIC I FORMAT 

==========================~~===~~=~~===~=============== 

Breakpoint 
Compare alphanumeric (RO=pad) 
Compare alphanumeric and default 
pad 
Load interruptible state 
Save interruptible state 

Load complement SP register 
Load complement OP register 
Load OP register from SP memory 
Load OP register from SP register 
Load OP register from general 
register pair 

Load process state 
Load SP register from OP memory 
Load SP register from OP register 
Load SP register from general 
register 
Load general register pair from 
OP register 

I Load general register from SP 
register 
Load packed decimal string as 
binary 
Load positive OP register 
Load positive SP register 
Load process segment table 
descriptor 

BRK 
CPAN 

CPANP 
ISRST* 
ISSV* 

LeER 
LCOR 
LDE 
LOER 

LDGR 

LDPS* 
LED 
LEDR 

LEGR 

LGDR 

LGER 

LPB 
LPOR 
LPER 

LPSTD* 

RR 
RXRX 

RXRX 
RX 
RX 

RR 
RR 
RX 
RR 

RR 

RX 
RX 
RR 

RR 

RR 

RR 

RX 
RR 
RR 

RX 

48-050 FOO ROI 



TABLE 3-3 SUMMARY OF CAL/32 MACHINE INSTRUCTIONS AND 
MNEMONICS FOR 'rHE PERKIN-ELMER SERIES 
3200 PROCESSORS (Continued) 

INSTRUCTIONS 

Load shared segment table 
descriptor 
Move and pad (RO=pad) 
Move and pad default pad 
Move translated until 
Pack and move 
Pack and move absolute 
Read error logger 
Reset memory voltage failure 
Store DP register in SP memory 
Store binary as packed decimal 
string 
store process state 
Unpack and move 
Unpack and move absolute 
store byte with no ECC 

* PSF modified for APU 

*** No register or other 
format 

operands 

I I 32-BIT 
I MNEMONIC I FORMAT 

LSSTD* 
MOVE 
MOVEP 
MVTU 
PMV 
PMVA 
REL* 
RMVF* 
STDE 

Sl"fPB 
STPS* 
UMV 
UMVA 
XSTB* 

allowed in 

RX 
RXRX 
RXRX 
RXRX 
RXRX 
RXRX 
RXl 
RXl*** 
RX 

RX 
RX 
RXRX 
RXRX 
RX 

source 

In addition to the set of mnemonics listed in Tables 3-1 through 
3-3, CAL/32 recognizes a complete set of extended branch 
mnemonics. These instructions allow the programmer to call for 
conditional branch instructions without having to state 
explicitly the condition code mask. Table 3-4 lists these 
instructions. 

48-050 FOO ROI 3-21 



TABLE 3-4 EXTENDED BRANCH MNEMONICS 

--------------------------------------------
INSTRUCTION I MN'EMONIC I 

============== ___ .====~======aw===== ___ m_ft== 
Branch on carry BC 
Branch on carry register BCR 
Branch on carry short BCS 

Branch on no carry BNC 
Branch on no carry register BNCR 
Branch on no carry short BNCS 

Branch on equal BE 
Branch on equal register BER 
Branch on equal short BES 

Branch on not equal BNE 
Branch on not equal register BNER 
Branch on not equal short BNES 

Branch on low BL 
Branch on low register BLR 
Branch on low short BLS 

Branch on not low BNL 
Branch on not low register BNLR 
Branch on not low short BNLS 

Branch on minus BM 
Branch on minus register BMR 
Branch on minus short BMS 

Branch on not minus BNM 
Branch on not minus register BNMR 
Branch on not minus short BNMS 

Branch on plus BP 
Branch on plus register BPR 
Branch on plus short BPS 

Branch on not plus BNP 
Branch on not plus register BNPR 
Branch on not plus short BNPS 

Branch on overflow BO 
Branch on overflow register BaR 
Branch on overflow short BaS 

Branch on no overflow BNG 
Branch on no overflow register BNOR 
Branch on no overflow short BNOS 

3-22 48-050 FOO ROI 



TABLE 3-4 EXTENDED BRANCH MNEMONICS 
(Continued) 

INs'rRUCT ION : MNEMONIC 
=================:====~===================== 

Branch on zero BZ 
Branch on zero reg i:ster BZR 
Branch on zero short BZS 

Branch on not zero BNZ 
Branch on not zero register BNZR 
Branch on not zero :short BNZS 

Branch unconditional B 
Branch unconditional register BR 
Branch unconditional short BS 

No operation NOP 
No operation register NOPR 

The extended branch instructions are essentially single operand 
instructions where the first operand (mask) value is included in 
the operation mnemonic. The programmer supplies only the operand 
or branch location. For short branches, the programmer does not 
have to specify the forward or backward direction. CAL/32 
determines the direction of the branch and generates the 
appropriate machine code. For example: 

LOOP 1 L 
CLR 
BES 
AIS 
BNZS 
LIS 
ST 

STRNG,TABLE(PTR) 
STRNG, INPUT 

LOAD srrRING FROM TABLE 
COMPARE WITH INPUT 
EQUIVALENT FOUND END 

PTR,4 
LOOPI 
STRNG,O 

END S'rRNG, RETURN 

NOT FOUND INCREMENT p'rR 
GF.;T NEXT S'rR I NG 
NOT FOUND END OF TABLE 
R.ETURN VALUE 

In this program, CAL/32 determines the locations of LOOPl and END 
and generates the required forward and backward branch 
instructions. 

Two more CAL/32 instructions that do not have direct machine 
equivalents are: 

INSTRUCTION MNEMONIC 

Branch on true condition short BTCS 
Branch on false condition short BFCS 

48-050 FOO ROI 3-23 



With these instructions, the programmer must specify the mask 
value and the branch location. CAL/32 determines the direction, 
forward or backward, and the appropriate machine operation is 
generated. 

3.8 ASSEMBLER INSTRUCTIONS 

Assembler instructions control the assembly processu Although 
they may resemble machine instructions in form, they do not 
generate any machine executable code. They are used to define 
symbols, reserve storage, generate data constants, and control 
the final output. 

3.8.1 Symbol Definition Instructions 

Symbol definition instructions allow the programmer to assign 
values to symbols and set up communication paths between 
separately assembled programs. The latter operation facilitates 
the use of subroutines because they can be written and assembled 
separately from the main program. .At load time, a linking loader 
uses information supplied by CAL/32 to resolve addresses between 
main programs and subroutines to set up the correct linkage. 

3.8.1.1 Equate (EQU) Instruction 

This is one of the most commonly used assembler instructions. It 
assigns values to symbols and it has the form: 

NAME OPERATION OPERAND 

A symbolic name EQU An expression 

Examples of EQU instructions are: 

LOOP EQU LOOPl 
TOP EQU END-54 
DELTA EQU BOTTOM-TOP 
HERE EQU * 
START EQU X'lOFE' 
SUM EQU 1 
PTR EQU 2 

3-24 48·-050 FOO ROl 



EQU instructions can appear anywhere in the program. CAL/32 
requires that each EQU instruction have a symbol in the name 
field and treats the absence of this symbol there as an error. 
The value assigned to a symbol by an EQU instruction is absolute 
or relocatable, depending on the type of expression in the 
operand field. If the operand of an EQU statement contains a 
forward reference, CAL/32 will perform any additional passes 
required to define all symbols. CAL/32 does not reserve storage 
for symbols defined by an EQU instruction. Wherever it 
encounters the symbol in the program, CAL/32 replaces the symbol 
with the value defined in the EQU instruction. For example: 

STRNG 
PTR 
INPUT 

LOOPl 

EQU 
EQU 
EQU 

L 
CLR 

I 
2 
3 

STRNG,TABLE(PTR) 
S'rRNG, INPUT 

LOAD STRING FROM TABLE 
COMPARE WITH INPUT 

In this case, CAL/32 generates the code to load register I with 
four bytes located at the address specified by TABLE, indexed by 
register 2. The next instruction causes CAL/32 to generate the 
code to compare the four bytes in register 1 with the contents of 
register 3. The use of the EQU instruction here allows the 
programmer to assign meaningful names to the registers that hold 
the character strings, and index into the table. It also 
provides a simple way to redefine the values assigned to these 
symbols. By changing the EQU instructions and reassembling, it 
is possible to change the value£3 assigned to the symbols without 
doing extensive editing to change each individual statement where 
these registers are used. 

It. is also poss ible, although not recommended, to redaf ine a 
symbol within a program. For example: 

LOOPl EQU * 

LOOP I EQU * 

48-050 FOO ROI 3-25 



When the s~nbol LOOPl is encountered in the first EQU 
instruction, CAL/32 assigns it the value of the LOC. Subsequent 
references to LOOPl receive this value. Following the second EQU 
instruction, the value of LOOPl is changed to the value of the 
new LOC. Because such redefinitions might not be intentional, 
CAL/32 issues a warning message wherever a symbol is redefined by 
an EQU instruction. (In the example, the programmer might have 
intended to write LOOP2 instead of LOOPl in the second EQU 
instruction. ) 

The user must guard against circular LOC dependency, as shown in 
the following example: 

A 

B 

EQU 
OS 
OS 
EQU 
END 

'* 
1 
B--A 

* 

CAL/32 will flag an "MODi xxxfroP" error where xxx is PURE, IM.P, 
or ASS, depending upon the current LOC. 

As stated earlier, CAL/32 permits the user to define operation 
mnemonics within the program. To do this, the user defines the 
new mnemonic in an EQU instruction in which the new operation 
mnemonic is in the name field, and the operand field contains a 
hexadecimal constant of the form X'nnxy'. Here, nn is the 
machine language operation code, and x and yare descriptors that 
tell CAL/32 how to handle the new mnemonic. The values of x and 
y inform CAL/32 of the instruction format. The values are 
defined as follows: 

x = 0, Y 
x = 0, y 
x = 0, Y 
x = 0, y 

3--26 

8 
2 
4 

-. 1 

RR or SF format 
RX or RI format 
RIl format 
RI2 format 

48--050 FDa RO 1 



fro def ine extended branch mnemonics, x gets a va.lue equal to the 
RI field (mask) and y gets one of the following values: 

y 
y 
y 

3 
C 
o 

RX format 
RR format 
SF format 

For example, in the instruction: 

BTC 15,ADDR 

the branch on true condition mnemonic and the mask field 15 can 
be combined into an extended branch instruction as follows: 

BTCF EQU X'42F3' 

in which BTCF is the new mnemonic; 42 is the machine code for the 
branch on true condition instruction; F is the mask value (15); 
and 3 specifies RX format. Once this new mnemonic is defined, 
the programmer can write: 

BTCF ADDR 

instead of: 

BTC 15,ADDR 

The new nmemonic definition remains in effect only for the 
program in which it is deE ined. 'rhe new mnemonic must be 
different. from all other mnemonics recognized by CAL/32. 

There are three things to remember in using equate statements: 

1. The name field must always contain a va,lid symbol. 

2. The operand field must always contain a defined symbol or 
expression .. 

3. The symbol that appears in the name field of an equate 
instruction must not appear in the name field of any other 
instruction, except another equate instruction. 

If any of these rules are violated, CAL/32 generates an 
appropriate error message. 

48-050 FOO ROI 3-27 



3.8.1.2 External, Entry, Weak External, 
Data Entry (EXTRN, ENTRY, WXTRN, 
Instructions 

Weak Entry, and 
WNTRY, and DNTRY) 

These instructions are listed together since they perform 
corresponding functions to ~stablish links between main programs 
and subroutines, and between programs with a conunon data base. 
These instruction forms are: 

NAME OPERATION 

Not used EXTRN 
(illegal) 
Not used ENTRY 
(illegal) 
Not used wxrrRN 
(illegal) 
Not used WNTRY 
(illegal) 
Not used DNTRY 
( i.llegal) 

OPERAND 

One or more symbols 
separated by commas 
One or more symbols 
separated by commas 
One or more symbols 
separated by commas 
One or more symbols 
separated by commas 
One or more symbols 
separated by commas 

The EXTRN instruction identifies s~nbols referenced by the 
program but defined outside the program. The ENTRY instruction 
identifies symbols defined within the program and referenced 
externally. (They can be referenced internally as well.) 

For example, consider two programs: one calculates the sine and 
cosine of an angle, the other uses the sine and cosine. The 
first is a general purpose program that could be used by many 
other programs. The EN/rRY and Ex'rRN instructions make this 
possible without having to assemble the sine and cosine program 
every time it is needed. The sine and cosine program would 
contain an ENTRY instruction and entry points such as! 

ENTRY SIN,COS 

S[N EQU * 

COS EQU * 

3-28 48-050 FOO ROi 



frhe symbols S IN and COS appear as operands in the EN'rRY 
instruction and as names in the EQU instructions. When CAL/32 
assembles this program, CAL/32 informs the linking loader that 
the locations identified by the names SIN and COS are entry 
points into the program. 

'rhe program that uses sine and cos ine would contain an external 
statement and branch instructions such as: 

Ex'rRN SIN, COS 

BAL LINK,SIN 

BAL LINK,COS 

At assembly time, CAL/32 generat.es obj ect data to inform the 
linkage editor that the symbols SIN and COS are externally 
defined. At link time, the linkage editor uses this information, 
along with the information generated by the entry instruction in 
the other program, to provide the necessary linkage. 

The WXTRN instruction is essent.ially equivalent to the EXTRN 
instruct.ion. However WXTRN symbols are subject to the following 
exception processing by Link: 

• An error condition does not arise if the symbol is not 
resolved. 

• Object libraries are not searched in order t.o satisfy a weak 
ex-ternal. 

• If a module containing an entry point referenced by a WXTRN 
symbol is included, then the entry point. will be used to 
satisfy WXTRN references to it in t.he normal fashion. 

The WNTRY instruction is essentially equivalent to the ENTRY 
instruction. However, WN'rRY symbols are subject to the following 
exception processing by Link. 

• Weak entry points are not examined when searching an object 
library. Therefore, a program module containing a weak entry 
point is not included to satisfy an external reference. 

• If a program module containing a weak entry point is included 
from a module, the weak entry point will be used to satisfy 
external references in the normal fashion. 

48-050 FOO ROl 3-29 



The DNTRY instruction is essentially equivalent to the ENTRY 
instruction. However, symbols nominated by DNTRY are resolved 
directly when building overlaid modules rather than resolved in 
an SVC instruction. This instruction identifies a symbol defined 
local to the program containing the DNTRY instruction. 

To help protect references to data in higher level nodes, Link 
automatically loads the entire path of overlays starting at the 
overlay containing data and ending with the overlay making the 
reference to a data entry point (DNTRY). A reference to a 
program section positioned in a higher level node, via the 
POSITION command, is treated the same way. A reference to data 
or a program section in the root will not cause a path of 
overlays to be loaded. 

If a DNTRY is referenced in a lower level node, an SVC 5 manual 
overlay load m.ight berequ ired t.o i.nsure that t.:.he overlay is in 
memory at the time of the reference. 

Restrictions on the use of external and entry instructions are: 

• The operand field of an external instruction must not contain 
an expression, such as SIN+4. 

• Expressions involving externally defined symbols must be of 
the form: 

External symbol + absolute expression 

External symbol - absolute expression 

SAL LINK,SIN+4 

is a legal use of an externally defined symbol. 

• Externally defined symbols cannot be used internally as 
instruction identifiers. 

• Any symbol identified as an entry must appear internally in 
the name of an instruction. 

• Symbols identified as entries cannot be redefined by multiple 
equate instructions. 

3-30 48-050 FOO ROl 



3.8.1.3 Include (INCLD) Instruction 

This information provides Link with a mechanism to guaranLee the 
inclusion of object modules without other linkage references to 
it. It has the form: 

NAME OPERATION OPERAND 

Not used 
(illegal) 

I NCL.D One or more 
symbols 
sepa:rated by 
conunas 

rrhe INCLD is used in the same fashion as the 
references. However, this instruction is 
program modules rather than exte!rnal symbols. 

NOTE 

EXTRN to 
used to 

CAL/32 gener ates t.he same obj ect as in 
the past, provided none of the following 
instructions are used: external with 
offset, DCMO, DNTRY, WNTRY, WXTRN, or 
INCLD. The assembly of any of these 
instructions produces an object that TET 
will reject. Link is required to process 
modules containing this extended object. 
These instructions are only valid in a 
Target 32 assembly and have no effect on 
16-bit object generation. 

3.8.2 Data Definition Instructions 

linking 
nominate 

These instructions allow the programmer to reserve areas of 
memory to be used at run time. Some of these instructions allow 
the programmer to specify values with which these areas can be 
initialized at load time. Other data definition instructions 
provide easy access to complex data structures. 

48-050 FOO ROl 3-31 



3.8.2.1 Define storage (OS, DSH, DSF) Instruction 

This instruction causes CAL/32 to reserve a block of storage 
within the program without initializing the reserved locations to 
any value. It has the form~ 

NAME OPERAfrION OPERAND 

A symbol OS A previously defined absolute 
(optional) expression 

A symbol OSH A previously defined absolute 
(optional) ~Kpression 

A symbol OSF A previously defined absolute 
(optional) expression 

The OS mnemonic causes CAL/32 to reserve the specified block of 
storage start.tng from the value of the cllrrent LOC. 
In the OSH form, CAL/32 first aligns the LOC on a halfwot:d 
boundary and then reserves the storage. In the OSF form, CAL/3.2 
first aligns the LOC on a fullword boundary. Examples of the 
define storage instruction are: 

SUFI 
BUF2 
BUF3 

DS 
OSH 
OSF 

100 
125 
16 

In the first example, CAL/32 reserves 100 bytes of storage by 
simply adding 100 to the LOC. In the second example, CAL/32 
reserves 125 halfwords (250 bytes) of storage. CAL/32 does this 
by aligning the LOC on a halfword boundarYt if it is not already 
properly aligned, and then adding 250 to it. In the third 
example, CAL/32 ensures that the LOC is aligned on a fullword 
boundary and then adds 64 (the byte equivalent of 16 fullwords) 
to it. If the operand contains a forward reference, CAL/32 will 
perform any additional passes required to define all symbols. 

3-3~ 48-050 Faa ROI 



Def ine storage instruct ions a.re commonly used to reserve storage 
areas for transient data. Examples of this are I/O buffers and 
register save areas. For example: 

LINK 

RSAVE 

ENrrRY RSAVE 
ExrrRN SIN, COS 
EQU 15 

DSF 16 

BAL LINK,SIN 

shows how a maln program might set up a register save area within 
itself. The code for the called program might look like: 

RO 

SIN 

ENTRY SIN, COS 
EXTRN RSAVE 
EQU 0 

EQU 
STM 

* 
RO,RSAVE 

where the subroutine stores the 
externally defi.ned area, RSAVE. 
instructions remember that: 

general registers 
When using define 

in the 
storage 

• The DSH and DSF forms of the instructi.on ensure halfword and 
fullword alignment. 

• The define storage instructions do not initialize memory to 
any particular value. 

• Only one operand is allowed in a define storage instruction, 
and it must be a def ined, abl50lute symbol or expression. 

48-050 FOO ROI 3-33 



3.8.2.2 Define Constant (DC, DCF) Instruction 

The define constant instruction allows the programmer to reserve 
areas of memory and at the same time specify the initial value to 
be loaded into them. The define constant instruction has two 
forms: 

NAME OPERATION 

A symbol DC 
(optional) 

A symbol DCF 
(optional) 

OPERAND 

One or more operands 
separated by commas 

One or more operands 
separated by commas 

The DC mnemonic ensures that the first of the operands is aligned 
on a halfword bOllndary~ The DCF mnemonic ensures that the first 
of the operands is aligned on a fullword boundary. Operands of 
different types can be used in the same define constant 
instruction. However, where alignment is a concern, the 
programmer must be careful in mixing operands of different types. 
Types of operands are described below. 

A single character code indicates the type of constant. This 
character code is not always required, and the exceptions are 
noted as they occur. The assembler determines from the characte:r 
code how it is to interpret the constant and translate it into 
the proper object format. Table 3-5 lists the character codes 
recognized by CAL/32, their meanings, and the types of constants 
generated. 

3-34 48--050 FOO RO 1 



CODE I 

x 
y 
H 
F 
A 
Z 
'r 
E 

D 

C 

P 

U 

TABLE 3-5 eONSTANT TYPES 

M.EANING 

Hexadec ima.l 
Hexadecimal 
Integer 
Integer 
Address 
Address 
Address 
Single precision 
floating point 
Double precision 
floating point 
Character 

Packed decimal 
string 

Unpacked decimal 
string 

MACH r NE FORMAT 

16·-bit binary 
32-bit bi.nary 
16-bit signed binary 
32-bit signed binary 
32-bit value of address 
l6-bit value of address 
One half of l6-bit address 
32-bit floating point 
format 
64-bit floating point 
format 
An 8-bit code per 
cha.racter (7-bit ASCII) 

Fixed point sign-coded 
integer of binary en­
coded 4-bit decimal 
digits in a string of 
variable byte length. 

Fixed point sign-coded 
integer of 7-bit ASCII 
encoded decimal digits 
(8-bits per digit) in a 
string of variable byte 
length. 

48-050 FOO ROl 3-35 



3.8.2.3 Hexadecimal Constants 

A hexadecimal constant consists of one or more hexadecimal 
digits, a through 9 and A through F, enclosed in apostrophes and 
preceded by the type code X or Y. Where the X type is used, 
CAL/32 reserves two bytes of storage and generates the loader 
information that will cause those two bytes to be initialized at 
load time with the binary representation of the hexadecimal 
number. The Y type causes four bytes to be reserved and 
initialized. Examples of hexadecimal constants are: 

CONSTANT VALUE 

DC X'1234' 1234 
DC Y'l234' 0000 1234 
DCF X'20' 0020 
DCF y'OO64' 0000 0064 
DC X'l234ABC' 4ABC 

The first. example shows a halfwor:d hexadecimal constant which, 
because of the DC operation code, is aligned on a halfword 
boundary. The second example shows a fullword hexadec ima.l 
constant. In this case, fullword alignment is not guaranteed. 
The third example shows a halfword constant aligned on a fullword 
boundary. The fourth example shows how to force fullword 
alignment for a fullword constant. The last example shows what 
happens when too many digits are given. CAL/32 truncates the 
constant to the least significant digits and generates an error 
message. The maximum number of digits for an X type constant is 
four. The maximum number for a Y type constant is eight. 

NOTE 

Where fewer than the maximum number of 
digits are given, CAL/32 right justifies 
the value in the location and fills in 
the missing digits with zeros. 

Two spec ial rnnemon ics f ac i 1 i tate the bu i ld ing of hexadec ima.l 
tables by eliminating the need to specify the X or Y type code. 
They have the form: 

3-36 

NAME 

A symbol 
(optional) 

A symbol 
(optional) 

OPERATION 

DCX 

Dey 

OPERAND 

One or more operands 
separated by commas 

One or more operands 
separated by commas 

48-050 FOO ROI 



Operands for these instructions consist of from one to four 
hexadecimal digits for the DCX instruction and from one to eight 
hexadec.imal digits for the DCY instruction. Examples of these 
consta.nts are: 

DCX l,0,l4AE,20,4040 
Dey 1,2FFFE,64,80000000 

The DCX instruction generates five halfword constants as follows: 

0001 
0000 
14AE 
0020 
4040 

The Dey instruction generates f()ur ful1word constants as follows: 

0000 0001 
0002 FFFE 
0000 0064 
8000 0000 

Before generating the constants,. CAL/32 ensures that they are 
properly aligned with halfword constants aligned on halfword 
boundaries and fullword constants aligned on fullword boundaries. 

3.8.2.4 Integer Constants 

Integer constants can be either halfword or fullword. Halfword 
constants are expressed by the character code H followed by a 
string of from 1 to 5 decimal digits enclosed in apostrophes. 
Fullword constants are expressed by the character code F followed 
by a string of from 1 to 10 decimal digits enclosed in 
apostrophes. The range of half~,ord constants is from -32,768 to 
+32,767. The range of fullword constants is from -2,147,483,648 
to +2,147,483,647. The decimal strings used in these constants 
must not include conunas or blanks. A sign, + or -, can precede 
the string. 

The internal representation of integer constants is two's 
complement binary. In this notation, positive numbers and zero 
have their true binary form. For example, a halfword integer 
with a value of 25 is represented internally (hexadecimal 
notation) as: 

00 

48-050 FOO ROl 3-37 



Negative numbers are expressed in accordance with the formula: 

Value 2 - x 

where n is the number of bits used to express the value, and x is 
the absolute value of the number. For example, to represent 
minus 10 in a halfword constant: 

n = 16 (10 16 ) 

X ~ 10 (A 16 ) 

Value = 10000 16 - A 16 = FFF6 16 

Examples of integer constants are: 

CONSTANT VALUE 

DC H'32767' 7ft'FF 
DC H I -3276B' 8000 
DC F'll 0000 0001 
DC HI --2' Fl4'FE 
DCF F I 2S' 0000 0019 

The Hand F codes themselves do not guarantee correct alignment. 
To ensure that a fullword integer is aligned on a fullword 
boundary, the programmer should use the DCF instruction. 

CAL/32 does not require that integer constants be defined with 
the character codes and decimal strings enclosed in apostrophes. 
A simple decimal string can be used. For example: 

DC 1 
DC -7 

The length of the integer constants generated by these 
instructions depends on the processor on which the program is to 
run~ For 32-bit processors such instructions generate fullword 
constants, such as: 

3-38 

CONSTANT 

DC 1 
OCF -7 

VALUE 

0000 0001 
FI-'FF FFF9 

48-050 FOO ROI 



For 16-bit processors, these instructions generate halfword 
constants, such as: 

CONSTANT 

DC 
DC 

1 
·-7 

VALUE 

0001 
FFF9 

It. is possible to force a fullword alignment by using the DCF 
mnemonic with a simple decimal string. The use of a DCF 
instruction affects only the alignment of the first of the 
integer constants; the length of the constant is determined 
solely by the processor on which the program is to be run. Thus, 
when using these instructions with operands which are simple 
decimal strings, it is not possible to generate a halfword 
constant for a 32-bit processor. 

3.8.2.5 Address Constants 

Address constants consist of a single character type code 
followed by a symbol or an lexpress ion enclosed in parentheses. 
'rhe three types of address constants are A, Z, and T. Type A 
constants generate fullword address constants in programs 
intended to be run on 32-bit processors; they generat.e halfword 
address constants in programs intended to be run on 16-bit 
processors. Types Z and T address constants always generate 
halfword values. Examples of address constants are: 

DC A(LOOP+2) 
DC A(TABLE) 
DC A(TOP-BOTTOM) 
DC Z(IOVECTOR) 
DC 'r(ALPHATAB) 

48-050 FOO ROI 3-39 



For 32-bit processors, the first three examples cause CAL/32 to 
reserve a fullword of storage, initialized at load time to 
contain the value of the expression or symbol enclosed in 
parentheses~ This value can be absolute or relocatable, 
depending on the nature of the expression .. The address quantity 
is right justified in the least-significant 24 bits of the 
fullword, and the most-significant 8 bits are forced to zero. 
However, it is possible to use the moet-significant bits for some 
purpose. They might be used as flag bits as in the example: 

PARAM 
ADDR 

LINK 
ADREG 

OS 
DC 
EXTRN 
EQU 
EQU 

4 
A(PARAM+Y'AOOOOOOO') 
SIN 
15 
14 

STE RO,PARAM 
L ADREG,ADDR 
BAL LINK,SIN 

At the time of the branch and link instruction, register 14 
contains the address of the location PARAM in the 
least-significant 24 bits. The most-significant 8 bits contain 
the value X'AO'. The subroutine can use the address portion and 
the flag portion independently, as: 

SIN EQU 

LE 
TI 

R4,O(ADREG) 
ADREG,Y'AOOOOOOO' 

GET PARAMETE,R 
TEST FLAGS 

'rhe z type address constants generate halfword values. They can 
be used in programs for 32·-bit processors if the programmer is 
cert.ain that the actual address cannot exceed 65,535, the maximum 
unsigned value that can be expressed in a halfword. 

3-40 48-050 FOO ROI 



The T type address constants are used as entries in translation 
tables. These instructions cause CAL/32 to reserve a hal.fwotd of 
storage initialized with one half of the actual address, right 
justified. The most significant bit is zero. These constants 
are intended for use with the translation tables associated with 
the translate instruction and with the auto driver channel. 

Address constants can be written without the type code and 
parentheses, as in: 

TABLE 
BUFFl 

ADDl 
ADD2 

OS 
DS 

DC 
DC 

16 
64 

TABLE 
BUFFl 

ADDRESS OF TABLE 
ADDRESS OF BUFFER ONE 

Where this convention is used, the size of the generated constant 
depends on the processor for which the program is written. For 
32-bit assemblies, CAL/32 generates fullword constants. For 
16-bit assemblies, CAL,./32 generates halfword constants. 'rhe 
programmer can force halfword constants to be generated by using 
the mnemonic DCZ, as: 

DCZ TABLE, BUF!Fl 

which causes a series of halfword address constants to be 
generated. 

3.8.2.6 Floating Point Constants 

The source form for floating point constants consists of a 
decimal number enclosed in apof3trophes and preceded by the letter 
E for single precision, or the letter D for double precision. 
The dec imal number cons iats of:: 

• an optional plus sign or minus sign, 

• one or more decimal digits that may include a decimal point, 
and 

• an optional E charaqter followed by an optional plus sign or 
minus sign, folloWed by one or two decimal digits denoting a 
power of 10. 

48--050 FOO ROI 3-41 



Single precision floating point constants require a fullword of 
!3torage. Double prec is ion float lng po lnt constants requ ire a 
doubleword of storage. Internally, floating point constants are 
represented in excess 64 notation. In this kind of notation, 
leach floating point number consists of a sign, an exponent, and 
.a fraction. The first bit of the number is the sign bit. If 
'this bit is a 1, the number is negative; if it is a 0, the number 
is positive. The next 7 bits represent the exponent, expressed 
in excess 64 notation. This field can contain any value between 
o and 127 inclusive. The remaining bits, 24 for single precision 
.and 56 for double precision, represent the fraction with an 
implied radix point before the first bit. 

'rhe true value of the float ing po int number is obta ined by 
multiplying the fraction by 16 raised to the power indicated by 
the exponent field. In excess 64 notation, this power is 
determined by subtracting 64 from the value in the exponent 
field. In this way, values equal to or greater than 64 produce 
.a 0 or positive power. Raising 16 to this power and then 
lTIultiplying by the fraction produces values between .0625 and 7.5 
x 10. Exponent field values that are less than 64 produce a 
negative powey and values between .06249 ... and 5.4 x 10- . 
Ploating point a is represented by a fullword or a doubleword of 
:zeros. 

JE:xamples of floating point constants are: 

CONSTANT INTERNAL REPRESEN'rATION 

DC E'l' 4110 0000 
DC E'O.O' 0000 0000 
DC E'7.2E74' 7F19 7817 
DC 0'10.5' 41A8 0000 0000 0000 
DC O'S.4E-79' 0010 0101 33A9 49F6 
DC O'7.2E+7S' 7FFE BOE3 AD97 8760 

In the internal representation of floating point constants, the 
fractional part can consist of from 1 to 6 hexadecimal digits for 
single precision, and up to 14 hexadecimal digits for double 
precision. If the decimal number exceeds this degree of 
accuracy, the magnitude of the number is preserved but the 
precision is lost. In performing the conversion from decimal to 
internal floating point, CAL/32 carries guard digits to ensure 6 
hexadecimal digit accuracy for single precision and 14 
hexadecimal digit accuracy for double precision. The programmer 
must ensure proper alignment. 

3 d-42 48-050 FDa ROI 



3.8.2.7 Character Con$tants 

Character constants consist of the single letter code C followed 
by a string of ASCII characters enclosed in apostrophes. All 
characters are translated into 7-bit ASCII, in which the most 
significant bit is always O. Examples of cha.racter constant.s 
are: 

DC 
DC 

C'NAME' 
C ' APos'rROPHE 'f , 

The second example shows how an apostrophe is included in a 
character constant. Between enclosing apostrophes, a double 
apostrophe is treated ~s a single character. The ma.ximum number 
of characters that can be defined in a single character constant 
is 64. If the number of chara.cters in a constant is odd, CAL/32 
appends a blank character at the end to maintain halfword 
alignment. 

3.8.2.8 Decimal String Constants 

The source format for decimal string constants consists of a 
decimal number enclosed in apostrophes and preceded by the letter 
P for packed decimal string constants, or by the letter U for 
unpacked decimal string constants. The decimal number is an 
integer and consists of an optional plus sign or minus sign, 
followed by 1 to 31 de¢imal digits. 

The machine internal representation of the packed decimal string 
constant is a fixed pOint, sign-coded integer, where each digit 
occupies 4 bits and ea¢h byte holds 2 digits. That is, each 
decimal digit, 0 thtough 9, is binary encoded in a 4-bit 
hexadecimal digit. As the number of decimal digits varies from 
1 to 31, the length in bytes of the decimal string varies from I 
to 16 bytes. The last,hexadecimal digit contains a 4-bit code 
for sign; a hexadecimal C for plus, or a hexadecimal D for minus. 
The integer representation is right-justified within the variable 
length string, so the least-significant digit of the decimal 
number occupies the hexadecimal digit just preceding the sign 
code. Each digit is thus consecutively packed, with the 
most·-significant digit" (zero or nonzero) in bit positions 0 
through 3 of the leftmost byte of the string. See the examples 
that follow for the difference:s in internal representation, when 
the packed decimal ~tring constant is defined by either the 
define constant (DC) instruction or the define byte (DB) 
instruction. 

48-050 Faa ROl 3-43 



'The machine internal representation of the unpacked decimal 
string constant is a fixed point, sign-coded integer, where each 
zoned digit occupies a byte. That is, each decimal digit, 0 
through 9, is encoded in 7-bit ASCII with the leftmost bit 0; 
providing an 8-bit byte with the left hexadecimal digit 
containing a zone code of 3 and the right hexadecimal digit 
containing the binary encoded decimal digit. As the number of 
decimal digits varies from 1 to 31, the length in bytes of the 
decimal string varies from 1 to 31 bytes. The integer 
representation is right-justified within the variable length 
string. The rightmost byte contains the least-significant digit 
in its rightmost hexadecimal digit and the sign code in its 
leftmost hexadecimal digit. The sign code is a 4-bit code, 
described above with a hexadecimal C for plus, and a hexadecimal 
o for minus. Each digit is thus consecutively coded into bytes, 
with the most-significant digit (zoned zero or zoned nonzero). 
See the following examples for the differences in internal 
representation, when the unpacked decimal string constant is 
defined by either the DC instruction or the DB instruction. 

The address of the string is the address of the leftmost byte 
containing the most-significant digit (zero or nonzero). The 
address generated for either the packed decimal string constant 
or the unpacked decimal string constant is that associated with 
the label of the source statements and the current LaC. Examples 
of the PDS constants are: 

SOURCE FORMAT 

DB P' I' 
DB P'+50' 
DB P'-879' 
DB P'+1234' 
DB P'-12345' 
DB P'12345678901234567890l2345678901' 

DC Pill 
DC P'+50' 
DC P'-879' 
DC P'+1234' 
DC P'12345' 
DC P'l234567890123456789012345678901' 

3-44 

INTERNAL 
REPRESENTATION 
(HEXADEC [MAL) 

le 
osoe 
8790 
0123 4e 
1234 50 
1234 5678 9012 
7890 1234 5678 
OOlC 
050C 
8790 
0001 234C 
0012 345C 
1234 5678 9012 
7890 1234 5678 

3456 
901C 

3456 
901C 

48--050 FDa ROl 



Note that as string-~rocessing instructions are intended to 
operate at the lowe$t addressable level, on byte-addressable 
locations these constants are most efficiently generated by the 
DB instructions, de$cribed in the define byte instruction 
section. If the DC in,truction is used, an extra byte of leading 
zeros is generated, wh$n the number of digits is a multiple of 4, 
or is an odd number of:digits not divisible by 3. Examples of 
unpacked decimal string (zoned) constants are: 

INTr~RNAL 

REPRESENTATION 
SOURCE FORMAT (HEXADECIMAL) 

DB U'l' Cl 
DB U'+50' 35CO 
DB U'-879' 3837 D9 
DB U'+1234' 3132 33C4 
DB U'12345' 3132 3334 05 
DB U'1234567890123456789012345678901' 3132 3334 3536 3738 

3930 3132 3334 3536 
3738 3930 3132 3334 
3536 3738 3930 Cl 

DC U'l' 30Cl 
DC U'+50' 35CO 
DC U'-879' 3038 3709 
DC U'+1234' 3132 33C4 
DC U'-12345' 3031 3233 3405 
DC U'1234567890123456789012345678901' 3031 3233 3435 3637 

3839 3031 3233 3435 
3637 3839 3031 3233 
3435 3637 3839 30Cl 

As string processing i.nstructions require programmed length 
attributes, familiar:ization with the internal storage 
requirements for both packed decimal string and unpacked decimal 
string constants is advisable. In the previous examples, the 
relationship of number ,Of digits to byte length is as follows: 

CONSTANT DEFINED BY BYTE LENG'rH 

Packed DB (integer of n/2) + 1 

Packed DC 2*(integer of n/4) + 2 

Unpacked DB n 

Unpacked DC n, for n even 
n + 1, for n odd 

where n is the number of decimal digits in the source formats of 
the decimal constants. 

48-050 FOO ROI 3-45 



:3 .. 8.3 Define Byte (DB) Instruction 

rrhis instruction defines consecutive 8-bit bytes of data. 
it.he form: 

NAME 

A symbol 
(optional) 

OPERATION 

DB 

OPERAND 

One or more operands 
separated by commas 

It has 

'rhe symbol used in the name field of the DB instruction is 
assigned the value of the current LOC. There is no automatic 
.alignment. The programmer must ensure proper alignment where the 
symbolic name of a DB instruction is used as an operand 
identifier in an i.nstruction requiring its operand to be located 
on a halfword, fullword, or doubleword boundary_ 

'rhe operand field can contain one or more operands, separ.ated by 
commas. There can be an even or an odd number of operands. The 
.operands can be any symbol or expression value. For any operand, 
other than character or decimal string expressions, the least 
significant eight bits of the operand value are used to generate 
one byte of data. Examples of the DB instructions are: 

DB X'F7' 
DB 128 
DB -1 
DB CiA' 
DB C'ABCDEFG' 

As shown in the examples, the operand of a DB instruction can be 
a signed integer. In this case, the integer can have any value 
between -128 and +127, inclusive. 

A special form of the DB instruction: 

DB * 

forces alignment of the LOC to a halfword boundary. If, when 
this instruction is encountered, the LOC contains an odd value, 
one byte of zero value is generated, and the LOC is made even. 
If the LOC is already even, this instruction has no effect. 

3--46 48-050 FOO ROl 



3.8.4 Define List (DLiIST) Instruction 

This instruction provides a simple means for defining circular 
lists used by the machine instructions: 

• Add to top of list 

• Add to bottom of li~t 

• Remove from top of ~ist 

• Remove from bottom of list 

The define list instruCtion has the form: 

NAME OPERATION 

A symbol DLIST 
(optional) 

OPERAND 

A previously defined absolute 
expression 

The absolute expression in the operand field specifies the number 
of slots in the list. For 32-bit assemblies, CAL/32 reserves 
four halfwords of storage for list pointers, followed by the 
specified number of fu~lwords (slots). The first halfword list 
pointer is initialize~ with a value equal to the number of slots 
in the list. The rema;;'ning three pointers are initialized to 
zero. For l6-bit a semblies, CAL/32 reserves four bytes of 
storage for list point rs, followed by the specified number of 
halfwords. The firs~ byte pointer is initialized to a value 
equal to the number of slots in the list. The remaining byte 
pointers are initialized to zero. An example of the DLIST 
instruction is: 

LISTl DLIST 10m 

In a 32·-bit assembly, this has the same effect as: 

LISTI DCF 
OS 

X' 64 ' , X f 0 • , X' 0' I X' 0' 
400 

The DLIST instruction forces alignment to a fullword boundary in 
32-bit assemblies. It forces alignment to a halfword boundary 
for l6-bit assemblies. 

48-050 FOO ROl 3-47 



:~. 8.5 Def ine Command (DCMD) Instruction 

This instruction causes the string within the set of apostrophes 
to be passed directly to the object code. 

NAME 

A symbol 
(optional) 

OPERATION 

DCMO 

OPERAND 

C'cornmand string' 

~rhe operand of the DCMO instruction is subject to the same 
~3yntactic rules as any other character string. CAL/32 performs 
no syntax checking on the command string. 

CAL/32 will generate the same object as in the past, provided the 
DCMO instruction is not used. The assembly of this instruction 
\~ill produce an object that TET will reject. Link is required to 
process modules containing this extended object. 'rhe DCMD 
:instruction is valid only in a Target 32 assembly and has no 
effect on the l6-bit object generation. 

:~. 8.6 Location Counter (LOC) Instructions 

These instructions allow the programmer to select the current LOC 
and set its value. For 32-bit assemblies, CAL/32 maintains three 
l~Cs: pure, impure, and absolute. For 16-bit assemblies, it 
rnaintains two LOCs: relocatable and absolute. At any given 
1:ime, only one LOC can be in use. With these instructions, the 
programmer can control the program segmentation and relocation. 

3.8.6.1 Pure (PURE) Instruction 

~rhis instruction causes all subsequent machine instructions to be 
a.ssembled as part of the pure segment. It has the form: 

NAME OPERATION 

A symbol PURE 
(optional) 

OPERAND 

None 
(ignored) 

~rhe current LOC is saved, and the new LOC is set to point to the 
next halfword boundary beyond the most recently used location in 
t.he pure segment. If a PURE instruction occurs in a relocatable 
16-bit program, it has no effect. If it occurs in an absolute 
16-bit. program, it causes a switch to the relocatable LOC. 

3-48 48-050 FOa ROI 



3.8.6.2 Impure (IMPUR~ Instruction 

This instruction caU$es all subsequent instructions to be 
assembled as part of tne impure segment. It has the form: 

NAME OPERATION 

A symbol IMPUR 
(optional) 

OPERAND 

None 
(ignored) 

trhe current LOC is sav~d, and -the new halfword boundary is set 
beyond the most recently used impure address. In l6-bit 
assemblies, this instruction has no effect if the program is 
already in relocatable mode. If it is in absolute mode, the LOC 
is switched to relocatable. 

NOTE 

Unless otiherwise specified by the 
programmer, impure mode is assumed. 

3.8.6.3 Origin (ORG) Instruction 

'rhis instruction selec'Gs a LOC and sets it to a def ined value. 
It has the form: 

NAME 

A symbol 
(optional) 

OPERATION 

ORG 

OPERAND 

A previously defined symbol or 
expression 

The operand of the or ig: in inst]~l1ct ion determines wh ich LOC is 
selected and t.:.he value it is 91ven. If the valUE) of t_he operand 
is pure, impure, absol~te, or relocatable, the corresponding LOC 
is selected and set to the operand value. If the operand 
contains a forward refe1rence, CAL/32 will perform any additional 
passes requ ired to def i!ne all symbols. 

The user must guard ag~inst cir.cular LOC dependency, as in the 
following example: 

ORG A 
LIS 4,4 

A EQU B 
LIS 4,4: 

B EQU * 
END 

48-050 FOO ROI 3-49 



CAL/32 will flag an "MODI xxxTOP" error, where xxx is PURE, IMP, 
()r ASS depending on the current LOC. 

NOTE 

If no ORG instruction appears at the 
beginning of a program, CAL/32 assumes it 
to be relocatable starting at relocatable 
zero. For 32-bit programs it also 
assumes the impure segment. 

~L.8.6.4 Absolute (ABS) Instruction 

'rhis instruction causes the LOC to be put in the absolute mode. 
It has the form: 

NAME OPERATION 

A symbol ABS 
(optional) 

OPERAND 

None 
(ignored) 

The current LaC is saved, and the new LaC is set to point to the 
next halfword boundary beyond the most recently used absolute 
location. If the absolute LaC was not previously used, it is set 
t..o zero. 

~~. 8.6.5 Align (ALIGN) Instruction 

This instruction conditionally aligns the current LaC to the next 
highest value that is divisible by the specified operand. It has 
t.he form: 

NAME 

A symbol 
(optional) 

OPERATION 

ALIGN 

OPERAND 

A symbol or 
expression 

rrhe value contained in the operand field determines the type of 
alignment. Symbols used in the operand field must be previously 
defined. The value in the operand field must be absolute and 
equal to either 2, 4, 8, 16, etc. (power of 2). If the operand 
value is 2, CAL/32 adjusts the LaC to ensure that it contains a 
halfword address. CAL/32 forces fullword alignment if the 
operand value is 4, and doubleword alignment if the value is 8. 

3--50 48-050 Faa ROI 



If at the time of this instruction the LOC 
is already properly al~gned, CAL/32 does not change it. If it 
is not properly aligne~, CAL/32 increments it by the minimum 
amount necessary to fo~ce proper alignment. A symbol, if used in 
the name field, receives the value of the LOC after the alignment 
is performed. . 

NOTE 

If the value of the operand is not 
absolute, ,or if it is not correctly 
defined, CAL/32 forces fullword 
alignment, and generates an error. 
message. 

3.8.6.6 Conditional No Operation (CNOP) Instruction 

This instruction is similar to the ALIGN instruction in that it 
condit;ionally aligns the LOC to a power of 2. It has the form: 

NAME OPERATION 

A symbol CNOP 
(optional) 

OPERAND 

A symbol or 
expression 

The CNOP differs from the ALIGN instruction in that instead of 
merely incrementing the LOC, it actually inserts no operation 
instructions into the ~rogram stream. The value of the operand 
must be absolute and equal to a power of 2. Symbols used in the 
operand field must hav~ been previously defined. If at the time 
th is instruct ion is ~ncounte]~ed, the LOC is on an odd boundary, 
CAL/32 increments it b~ one to make it even, inserts the required 
number of CNOP instruc'tJions to force alignment, and generates an 
error message. This instruction has no effect if the LOC is 
already properly a.ligne:d. A symbol, if used in the name field, 
receives the value of the LOC associated with the first CNOP 
instruction generated. 

48-050 FOO ROl 3-51 



:3.8.7 Assembler Control Instructions 

'rhese instructions allow the programmer to control the assembly 
process itself, identify the type of processor on which the 
program is to be run, halt the assembly operation temporarily, 
and request a limited amount of optimization. 

:3.8.7.1 Target (TARGT) Instruction 

'rhis instruction identifies the type of processor on which the 
program is to be run. It has the form: 

NAME 

A. symbol 
(optional) 

OPERATION 

TARGT 

OPERAND 

A symbol or 
expression 

The value of the operand expression must be either 16 or 32, 
I~bsolute. Symbols used in the operand field must be previously 
defined. If the operand value is 16, CAL/32 generates object 
code for 16-bit processors. If the value is 32, it generates 
object code for 32-bit processors. If the value is anything 
leIse, CAL/32 generates a warning message and generates code for 
-the same type of processor on which it is running. If there is 
no TARGT instruction in the program, CAL/32 assumes the target 
lnachine to be the same as the machine on which the assembly is 
:running. 

3--52 

NOTE 

The TARGT instruction must precede any 
PURE or IMPUR instructions or any 
instruction that generates machine code. 

48-050 FOO ROl 



3.8.7.2 End (END) Instruction 

The END instruction in~icates the end of the source input. It 
has the form: 

NAME OPERATION 

A symbol END 
(optional) 

OPERAND 

A symbol or 
expression (optional) 

Because of its function, this statement must be the last 
instruction in the s~urce input file. The optional operand, if 
used, identifies the $tarting location of the program. For 
example: 

MAIN EQU * 

LAST END MAIN 

The END instruction, w~th the operand MAIN, causes CAL/32 to 
output information id~ntifying the location MAIN as the starting 
location of the progra~. The loader and the operating system use 
this information to ensure that the program starts at the 
requested location. If there is no operand, the END instruction 
merely terminates the assembly process without outputting any 
loader information. The END instruction is required in all 
CAL/32 programs. 

3.8.7.3 Copy Library (eLlS) Instruction 

This instruction allow$ the user to specify or change library 
fl.les from within a program. It has the form: 

CLIS vol:fname.ext 

Each CLIB statement logically concatenates the new library file 
(operand of CLIB) to any existing library file. If the new 
library file cannot be 'assigned, CAL/32 will log an error message 
and pause. 

48-050 FOO ROI 3-53 



~L 8. 7 • 4 Copy (COPY) Instruction 

This instruction allows the programmer to insert source code from 
library files into the source code received from the regular 
source input file. It has the form: 

NAME 

A symbol 
(optional) 

OPERA'rION 

COpy 

OPERAND 

A symbol[, vol: fname. ext] 
(required) 

CAL/32 assumes that the library file was assigned to lu7 (see 
l\ppendix A). CAL/32 also assumes that the file is made up of 
80-character records. It searches through the logical file, 
looking only at the first 10 characters of each record until it 
finds a file label of the form: 

RECORD POSITION 

1 and 2 
3 through 10 

CONTENTS 

** 
A valid symbolic name of 
from 1 to 8 characters 

:In which the symbolic name exactly matches the symbol in the 
operand field. If the search is unsuccessful, CAL/32 logs the 
message: 

COPY ERROR: xxxxxxxx 

:Ln which xxxxxxxx is replaced by the name of the file being 
sought. This might happen in the case of incorrect file 
assignment. The operator can change the assignment and resume 
t~he assembly process from the location of the COpy instruction. 
~rhe copy instruction allows only one operand. The programmer 
~nust provide one COpy instruction for each file to be copied into 
t.he source stream. 

j[f the optional second operand is supplied, CAL/32 will assign 
and search only that physical file and ignore any files logically 
attached by CLIB. If the file cannot be assigned, CAL/32 will 
log an error message and pause. 

The copy process terminates when an END statement is encountered 
in t .. he file, or when a record with either /* or /& in the first 
t:wo character positions is encountered. Where an END instruction 
is encountered in the copy file, it does not mean the end of the 
source file but only the end of the copy file. At this point, 
CAL/32 resumes reading from the source input file. COpy 
instructions may not appear in files which are themselves being 
included in a source program by means of a COpy instruction. 

3-54 48-050 FOO ROI 



3.8.7.5 File Copy (FC~PY) Instruction 

The assembler tnstruct~on FCOPY allows the user t.o copy an entire 
library file. It has the form: 

FCOPY vol:fname.ext 

When FCOPY is in effect, a /* starting in column I or an END in 
the opcode field will be skipped, and copying will continue until 
an end of file is . reached. If the file cannot be assigned, 
CAL/32 will log an error message and pause. 

3.8.7.6 Pause (PAUSE) I Instruction 

The PAUSE instruction allows the programmer to halt the assembly 
process. It has the form: 

NAME OPERATION 

A symbol PAUSE 
(optional) 

OPERAND 

None 
(ignored) 

The PAUSE instruction temporarily halts the assembly process. 
When the assembler en~ounters a PAUSE instruction, the assembler 
requests the operating system under which it is running to 
suspend execution. The system notifies the operator. The 
operator can resume execution of the assembler at the instruction 
immediately following the PAUSE instruction by using the 
operating system co~and CONTINUE. For example, the PAUSE 
instruction can be use~ by the operator to reassign a copy file, 
such as: 

COPY 
PAUSE 
COPY 

REGEQUS 

COMBLKS 

toPY REGIS'rER EQUA'I'ES 

COpy COMMON BLOCKS 

3.8.7.7 Squeeze (SQUEZ) Instruction 

The SQUEZ instruction ,puts 
performs a limited amount 
form: 

NAME OPERATION 

CAL/32 into a mode in 
of space optimization. 

OPERAND 

A symbol SQUEZ 
(optional) 

A symbol or 
expression (optional) 

48'-050 FDD ROI 

which it 
It has the 

3-55 



~~en in optimization mode, CAL/32 makes multiple passes over the 
source input. During each pass, it attempts to reduce long 
instructions (48 and 32 bits) to shorter forms (32 and 16 bits). 
'l~he value of the operand express ions sets the max imum number of 
passes. If CAL/32 can complete the optimization in fewer passes, 
l.t stops the optimization process and completes the assembly. 

1.~he value of the operand express ion must be an absolute number 
between 1 and 99. Any symbols used in the expression must have 
been previously defined. If the operand value is 0, or if there 
i.s no operand, CAL/32 assumes a max imum of 9 passes. 

NOTE 

If there are user induced errors in the 
source stream (illegal mnemonics or 
undefined symbols), CAL/32 terminates the 
squeeze operation and goes on to produce 
the final assembler output. Some 
instructions in this output may have been 
squeezed, depending on where in the 
process the errors were discovered. 

CAL/32 performs three types of space optimization: 

1. Changes RX3 instructions to RX2 or RXI 

2. Changes operation codes to allow the use of an equivalent, 
but shorter, instruction 

3. Eliminates unconditional branch instructions to the next 
halfword location 

J\n example of the f irsl type of optimization 
reference instruction. In this instruction, 
defined in the program at some point beyond the 
\l\rhich it refers. 

E:xample: 

A Rl,VALUE 

VALUE DCF F'l2S' 

3-56 

is the forward 
the operand is 
instruction to 

48-050 FOD ROI 



When CAL/32 processes the ADD instruction, it cannot tell if the 
location of the secC)nd operand, identified by the symbol VALUE, 
is within the range oe either an RXI or RX2 instruction. It has 
to assume that an ,RX3 instruction is necessary. By making 
additional passes ove~ the source input after all addresses have 
been resolved, eAL/3~ has the needed information to determine if 
the reference to VALU~ is within the range of either a.n RXI or an 
RX2 instruction and m4ke the substitution. 

! 

An example of the sec1nd type of optimization is: 
I 

LI R3, ",-1 

In the optimization mqde, CAL/32 reduces this instruction to: 

Les R31,1 

which reduces the length of the instruction from 48 bits to 16 
bits, without chang~ng the effect. Depending on the processor, 
the substituted instruction might be faster or slower than the 
original instruction. 

NOTE 

eAL/32 changes an operation code only 1.n 
the obje~t output. The original 
instructio~ remains in the listing, 
flagged with an asterisk. 

The third type of optimization does not occur in normal 
programming, but it does son\etimes appear in compiler-generated 
CAL/32. For example: 

ST 
8 

CONTINUE L 

R.L,SAVE 
eON'rINUE 
Rl!,TEMP 

In this case, CAL/32 simply eliminates the unnecessary branch 
instruction, although, the branch instruction does appear in the 
assembly listing, flag~ed with an asterisk. 

48-050 FOD RDI 3-57 



More than one SQUEZ instruction can appear in the program. The 
first SQUEZ instruction sets the number of additional passes. 
Subsequent SQUEZ instructions put CAL/32 back into optimization 
mode after a NOSQUEZ instruction (described below) took it out of 
the optimization mode. Operands may appear in the subsequent 
SQUEZ instructions, but they are ignored. 

Because CAL/32 looks at only one instruction at a time, and 
because its global data is limited to the symbol table, squeezing 
might introduce errors into the program. This is most likely to 
happen when data and instructions are mixed. 

E:x:a.mple: 

LOOPl 

CONST 
LOOP 2 

BTC 8,LOOPl 

EQU 

BFC 
DS 
ALIGN 
DC 
EQU 

* 

0, LOOP2 
26 
4 
F'2S6' 
* 

If on one pass, CONST is already aligned on a fullword boundary, 
the branch to LOOP2 can be converted to a short format branch. 
A subsequent pass may allow the branch to LOOPl to be shortened. 
When this happens, CONST is no longer on a fullword boundary, and 
CAL/32 adds two to the LOC to align it properly. This forces 
LOOP2 out of the range of a short branch instruction. CAL/32 
will recover from this situation by changing the branch 
instruction back to its original format and marking it internally 
as unsqueezable. 

3-58 48-050 FOO ROI 



3.8.7.8 Squeeze Relat:ed (NOSQZ, ERSQZ, NORX3) Instructions 

There are three addittonal instructions 
conlrol squeezing and optimization of 
They have the form: 

NAME 

A symbol 
(optional) 
A symbol 
(optional) 
A symbol 
(optional) 

OPERlvrrON 

NOSfZ 

ERSpZ 

NOR\X3 

OPERAND 

Not used 
(ignored) 
Not used 
(ignored) 
Not. used 
(ignored) 

that can be used to 
the source input file. 

The no squeeze instruction (NOSQZ) has the effect of turning off 
the optimization p~ocesses initiated by a previous SQUEZ 
instruction. Optimiza~ion can be restarted by a subsequent 
squeeze statement. NOSQZ ovel'rides a squeeze start option. 

The error squeeze inst~uction, (ERSQZ) can be used with the SQUEZ 
instruction. It forces CAL/32 to continue squeezing even after 

I 

assembly errors are detected. 

The no RX3 instruction (NORX3) provides a simpler form of 
optimization during a normal 2-pass assembly. Once this 
instruction is encount~red, CAL/32 forces RX instructions to the 
RXl or RX2 format. ~X3instruction formats are still generated 
if double-indexing is ~pecified, or if the instruction references 
an element of a common l block or an externally defined symbol. 
This instruction can ~e safely used in programs that are smaller 
than l6kb. It must not be used in segmented (pure and impure), 
programs. 

3.8.7.9 Sequence Checking (SQCHK, NOSEQ) Instructions 

The sequence checkin~ instructions enable and disable the 
sequence checking of source. They have the form: 

NAME 

A symbol 
(optional) 
A symbol 
(optional) 

48--050 FOO ROI 

OPERA'~ION 

SQCHK 

NOSEQ 

OPf;RAND 

Not used 
(ignored) 
Not used 
(ignored) 

3-59 



The sequence check instruction (SQCHK) causes CAL/32 to compa~e 
each source statement sequence numbe~ with the numbe~ of the 
preceding statement. Each successive number must be greate~ in 
t~he ASCII collating sequence than the preceding one. CAL/32's 
JLnitial sequence value is equal to eight spaces, so that numbers 
can be ~ight-justified in the field without leading zeros. If a 
sou~ce statement contains a value equal to or less than the 
p~eceding statement, CAL/32 generates an error message. The 
f~equence fields of statements included in the program by a COPY 
instruction are not checked. 

~rhe no sequence check instruction (NOSEQ) disables the sequence 
checking process. The sequence field of this instruction is 
checked, if sequence checking was in effect at the time. The 
default mode of CAL/32 is NOSEQ. 

~l. 8. 7 .10 Scratch (SCRAT) Instruction 

The scratch instruction causes CAL/32 to copy the source input 
file to a scratch device during pass one. It has the form: 

NAME 

A symbol 
(optional) 

OPERATION 

SCRAT 

OPERAND 

Not used 
(ignored) 

Subsequent passes over the source input file are read from the 
scratch device. Since no statement preceding the SCRAT 
JLnstruction can be copied, the SCRAT instruction should be the 
first statement in the program. 

3.8.7.11 Pass Pause (PPAUS) Instruction 

~~his instruction causes CAL/32 to issue a pause request to the 
operating system at the end of each pass. It has the form: 

3-60 

NAME 

A symbol 
(ignored) 

OPERATION 

PPAUS 

OPERAND 

Not used 
(ignored) 

48-050 FOO ROI 



The purpose of the PPAtiS instruction is to allow the operator to 
reset the source input file to the beginning for the next pass. 
This is useful in situations where no scratch file is available, 
and the source input file is not rewindable. 

NOTE 

Wher e ne ither the SCRA'r ins t r uct ion nor 
the PPAUS instruction is used, CAL/32 
issues a rewind command to the source 
input logical unit (Iu) the end of each 
pass. 

3.8.7.12 Message (MSG) Instruction 

The message instruction allows the programmer to log a message to 
the system console. It has the form: 

NAME 

A symbol 
(optional) 

OPERA'rION 

MSG 

OPERAND 

Text 

'rhe operand field c~ntains the text of the message. All 
characters following the operation field, up to and including 
position 71, are sent to the system console as a message. This 
instruction can appear anywhere in the program, and the message 
is logged on every pass. 

3.8.7.13 Batch Assembly (BATCH, BEND) Instructions 

The batch assembly instructions provide a means for assembling 
more than one complete program in a batch stream. They have the 
form: 

NAME 

None 
(illegal) 
None 
(illegal) 

48-050 FOO ROl 

OPERATION 

BATCH 

B~~ND 

OPERAND 

Not used 
(ignored) 
Not used 
(ignored) 

3-61 



1:'he batch instruction (BATCH) initiates the batch stream. It has 
t,he effect of redef ining the END instruction so CAL/32 does not 
terminate itself at the end of the required number of passes. 
Rather, CAL/32 terminates the assembly of that particular 
program, reinitializes itself, and starts reading the next 
program from the source input file. The BATCH instruction must 
be the first statement in the stream of programs. If it is used, 
CAL/32 assumes that there is a scratch device. Options specified 
i.n the operating system START conunand remain in effect for the 
E,ntire batch assembly (see Appendix A). 

1:~he batch end instruct ion (BEND) terminates the batch assembly. 
It must appear inunediately following the END instruction in the 
l.ast program of the stream. The BEND instruction tells CA,I../32 to 
go to end of task when final assembly is completed. The end of 
task code returned is equal to the highest code generated during 
t.he batch assemblies _ CAL/32 will also terminate a balch 
assembly normally if end of file or end of medium status is 
detected when attempting to read the first statement after the 
END of an assembly_ 

3.8.7.14 Unreferenced Externals (UREX, NUREX) Instructions 

These instructions permit or suppress the output of object 
for unreferenced externals. The default state is UREX. 
have the form: 

NAME OPERATION OPERAND 

Not used UREX Not used 
(ignored) (ignored) 

Not used NUREX Not used 
(ignored) (ignored) 

3.8.8 Conditional Assembly Instructions 

code 
They 

''{Ihese instructions allow the progranuner to include code sequences 
i,n the program that mayor may not be assembled, depending on 
some condition. By simply reassembling the program and 
redefining the conditions, a single program can be made to serve 
more than one purpose. 

3·-62 48-050 FOD ROI 



3.8.8.1 Compound Cond!itiona1 (IFx, ELSE, ENDC) Instructions 

There are three instructions in this set. They have the form: 

NAME OPERATION OPERAND 

A symbol IFx A symbol or 
(optional) expression 
A symbol ELSE A symbol or 
(optional) expression 

ENDC 
(ignored) 

A symbol A symbol or 
(optional) e'xpress ion 

(ignored) 

The compound conditional instructions are used to provide 
complete conditional assembly capability. A symbol used in the 
name field of an IF instruction is defined if the condition 
described by the insttuction is true. A symbol used in the name 
field of an ELSE instruction is defined if the corresponding IF 
condition is false. Symbols used in the name fields of end 
condition instructions, are always defined. 

In the first instruction, the compound IF 
represents the actua~ condition. Following 
various mnemonics for these instructions: 

MNEMONIC MEANlNG MNEMONIC 

IFZ If zero IFNM If 
IFNZ If nonzero IFE If 
IFP If plu~ IFO If 
IFNP If nonplus IFU If 
IFM If min1lls IFD If 

instruction, x 
is a list of the 

MEANING 

nonminus 
even 
odd 
undefined 
defined 

CAL/32 tests the value;of the operand when processing compound IF 
instructions. If the ~perand meets the condition specified by 
the operation, the instructions immediately following the IF 
instruction are assembled. If the operand does not meet the 
specified condition, .the i.nstructions immediat.ely following the 
IF instruction are not:assembled. 

'rhe J:o:LSE instruction r¢versesthe state of the assembler as set 
by a previous compo~nd IF statement. If the assembler was not 
assembling code becaus$ a previous IF statement turned off the 
assembly process, th¢ appearance of an ELSE instruction would 
cause the assembler t~ resume assembling, starting with the 
instruction immediately followi.ng the ELSE instruction. If the 
assembler was assembling code because a previous IF condition was 
met, the appearance of, the E'LSE instruction would cause the 
instructions imrnediatety following the ELSE instruction not to be 
assembled. An ELSE 'instruction is not required to appear in a 
block of condit .. ionally: assembled code. 

48--050 FOO ROI 3-63 



The third instruction of this set is the end condition 
instruction (ENDC) which terminates the presently active 
condition. Normal assembly process resumes with the next 
instruction. Any compound IF instruction used in the program 
must have a corresponding ENDC instruction. If the end of the 
s·ource file is reached before an existing condition terminates, 
CAL/32 terminates the condition, generates an error message, and 
resumes normal assembly on the next pass. If the operand of the 
IFx contains a forward reference, CAL/32 will perform any 
additional passes required to define all symbols. As an example 
clf cond it ional assembly r cons ider a subrout ine that can rece i ve 
i.ts parameters in either of two ways: first, the parameters are 
located by referencing a list of addresses immediately following 
t.he branch and link instruction in the main program; second, the 
address of the actual parameLer list is contained in register 14. 
The subroutine could handle both of these situations with 
conditional assembly, as follows: 

IFZ CALLl 
SUB LH Rl,O(RF) GET FIRST PARAMETER ADDRESS 

LH Rl,O(Rl) GET FIRST PARAMETER 
LH R2,2(RF) GET SECOND PARAMETER ADDRESS 
LH R2,0(R2) GET SECOND PARAMETER 
AIS RF,4 ADJUST RETURN ADDRESS 
ELSE LIST NOT IN LINE 

SUB LH Rl,O(RE) GET FIRST PARAMETER 
LH R2,2(RE) GET SECOND PARAMETER 
ENDC 

BR RF RETURN TO CALLER 

If, at assembly time, the value of CALLl is zero, the 
instructions between the IF instruction and the ELSE instruction 
are assembled, and the instructions between the ELSE instruction 
and ENDC instruction are not assembled. If the value of CALLl is 
other than zero, only the instructions between the ELSE 
instruction and the ENDC instruction are assembled. 

3--64 48-050 FOO ROl 



Another example of con~itiona1 assembly shows how conditions can 
be nested: 

IFNP LGTH CONDITION #:1 
* ERROR 1 LGTH IS NOT POSITIVE 

ELSE CONDITION #:1 
IFZ SRC--DST CONDITION #:2 

* ERROR 2 SRC IS EQUAL fro DST 
ELSE CONDITION tt2 
LHI Rl~LG'rH 
IFP SRC'-DST CONDITION #:3 
LHI R2, SRC 
LHI R3,DST 
ELSE CONDITION #:3 
LHI R2,DST 
LHI R3,SRC 
ENDC END CONDITION tt3 
ENDC END CONDITION tt2 
ENDC END CONDITION ttl 

'rhis set of nested con~itionals depends on the values of three 
symbols: LGTH, SRe, and DST. If LGTH is negative or zero, only 
the comment: 

* f~RROR 1 LGTH IS NOT POSITIVE 

is produced. If ,LGTH is positive, and SRC is equal to DST, only 
the second comment: 

* ERROR 2 SRC IS EQUAL rro DST 

is produced. If LGTH is positive, and SRC is greater than DST, 
the following instructions: 

LHI 
LHI 
LHI 

48-050 FOO ROI 

Rl, LG'rH 
R2,SRC 
R3,DSC 

3-65 



are assembled. If LGTH is positive, and SRC is less than DST, 
t.he following instructions are assembled: 

LHI Rl,LGTH 
LHI R2,DST 
LHI R3,SRC 

'l~he user must be careful, when us ing a forward reference in the 
operand field of the IFU inst~uction, to avoid the following type 
of code: 

IFU A 
B EQU 8 

ENOC 
A EQU 1 

IFNZ B 
OS 10 
ENOC 

B EQU a 
END 

CAL/32 will flag this code with an "MODI xxxTOP" error where xxx 
i.s PURE, IMP, or ABS, depending upon the LOC used. 

NOTE 

A condition once set by an IF instruction 
remains in effect until the corresponding 
ENOC instruction is encountered. Thus, 
when the first condition was met, the 
first comment was produced. The ELSE 
instruction reversed this state, and no 
subsequent code was assembled. 

3.8.8.2 Simple If (IF) Instruction 

The simple IF instruction is retained 
compatibility with previous assemblers. 

3--66 

NAME 

A symbol 
(optional) 

OPERATION 

IF 

OPERAND 

A syrnbol or 
expression 

in CAL/32 to maintain 
It has the form: 

48 '~050 FOO RO 1 



What CAL/32 does on en:countering an IF instruction depends on the 
value of the operand. If the operand has a nonzero value, CAL/32 
assembles all statements following the IF instruction, until the 
end of the source file is reached, or until another IF 
instruction is encountered in which the operand value is zero. 
At this pOint, CAL/32 stops assembling the source input until the 
END instruction, or another IF instruction with a nonzero operand 
value, is encountered. If the operand contains a forward 
reference, CAL/32 will perform any additional passes required to 
define all symbols. 

NOTE 

Do not use simple IF instructions and 
compound IF instructions in the same 
program. Simple IF instructions must not 
be used in nested conditionals. 

3.8.8.3 Do (DO) Instruction 

The DO instruction provides a form of conditional and multiple 
assembly capability. It has the form: 

NAME 

A symbol 
(op·t ional) 

OPERATION 

DO 

OPERAND 

A previously defined absolute symbol 
or expression 

The DO instruction causes the statement immediately following it 
to be assembled as many times as specified by the value of the 
operand. The value of the operand must be between a and 32,767. 
If the value of the operand is 0, the next instruction is 
skipped. If the operand conta.ins a forward reference, CAL/32 
will perform any additional passes required to define all 
symbols. 

The user must guard against circular LOC dependency, as in the 
following example: 

A EQU * 
DO 8-A 
OS 2 

B EQU * 
END 

CAL/32 will flag an "MOOl xxxTOP" error, where xxx is PURE, IMP, 
or ABS, depending upon the current LOC. 

48-050 FDa ROI 3-67 



3$8.9 Instructions for Data structures 

These instructions allow the programmer to define complex data 
structures. Some of these instructions allow the programmer to 
define and initialize data blocks compatible with FORTRAN cornmon. 

3.8.9.1 Structure Definition (COMN, STRUC, ENDS) Instructions 

structuze definition instructions are used to define 
structures. They have the form: 

NAME OPERATION OPERAND 

A symbol COMN Not used 
(optiona.l) (ignored) 
A symbol STRUC Not used 
(optional) (ignored) 
A symbol ENDS Not used 
(optional) (ignored) 

data 

The common instruction (COMN) defines FORTRAN compatible common 
blocks. The structure instruction (STRUC) defines other types of 
d,ata structures. The end structure instruction (ENDS) terminates 
both common definitions and data definitions. 

The symbol in the name field of a COMN or STRUC statement 
contains the absolute value of the length of the structure or 
common block. The symbol specified with the ENDS instruction is 
associated with the current value of the offset counter. 

A symbol is always required in the name field of a COMN 
instruction. To define FORTRAN compatible blank cornmon, a 
special symbol consisting of two slashes (II) must appear in the 
first two positions of the name field. The remaining positions 
must be blank. If the name field is blank, CAL/32 will assume 
(II) was intended for a FORTRAN blank cornmon. 

The scope of the common block consists of all the storage 
definitions between the COMN instruction itself and the next ENDS 
statement. Only define storage, origin, and equate instructions 
are permitted between a COMN and its corresponding ENDS 
instruction. The define storage instructions included within the 
common block definition do not actually reserve storage; they 
define offsets within the cornmon block. Origin statements can be 
used to modify the offset counter. The equate instructions can 
be used to define symbols relative to elements in the common 
block. Common blocks cannot be nested within other common blocks 
or within other structure definitions. 

3-68 48--050 FOO ROI 



'rhe following is an example of the def inition of FORTRAN 
compatible common blocks: 

C FORTRAN PROGRAM 
INTEGER*2 I,J,K,KK,K2,L 
COMMON A(10), I, J(3,20) 
COMMON/COMONE/B(30), K(4), KK 
COMMON/COMTWO/X,Y,Z,K2,L(24) 

The CAL/32 code to define these common blocks is: 

1/ COMN DEFINE BLANK COMMON 
A DS 40 TEN FLOATING POINT NUMBERS 
I DS 2 ONE TWO-BY(rE INTEGER 
J OS 120 SIXTY 'NO-BYTE IN'rEGERS 

ENDS END OF BLANK COMMON DEFINITION 
COMONE COMN DEFINE COMMON BLOCK COMONE 
B OS 120 TH I RTY FLOAT INC PO INT NUMBr~RS 
K OS 8 FOUR TWO·-By'rE I NfrEGERS 
KK DS 2 ONE TWO·-B Y'rE INTEGER 

ENDS END COMMON BLOCK COMONE 
COMTWO COMN DEF INE COMMON BLOCK COMfflWO 
X OS 4 ONE FLOA'rING POINT NUMBER 
Y OS 4 ONE FLOATING POINT NUMBER 
Z OS 4 ONE FLOA'rING POIN'r NUMBER 
K2 OS 2 ONE TWO-By'rE IN'I'EGER 
L OS 48 TWENTY FOUR 'rwo-BY'rE INTEGERS 

ENDS 

Common block definitions must precede any statements that 
reference the common block. Referencing a common element plus a 
displacement is permitted in the operand of a machine 
instruction, in a define constant instruction, or in a block data 
origin instruction defined below. 

STRUC is used to define general purpose data structures. The 
scope of this data structure consists of all the storage 
definitions between the structure instruction and its 
corresponding ENDS instruction. Only define storage, origin, and 
equate instructions ;can be used in a structure definition. The 
define storage instructions do not actually reserve storage; they 
define offsets within the data structure. Origin statements can 
be used to modify the value of the offset counter. Equate 
statements can be used to def.lne names relative to elements in 
the data structure. Data structures cannot be nested within 
other data structure defin:itions or within common block 
definitions. 

48-050 FOO ROI 3-69 



To define a linked list structure, each node of which contains a 
2-byte forward pOinter, a 2-byte backward pOinter, six bytes, and 
a set of values such as: four bytes, one byte, one byte and six 
bytes, the programmer might write: 

NODE 
FWD 
BAR: 
VALA 
VALB 
VALC 
VALD 

STRUC 
DS 2 
DS 2 
DS 4 
DS 1 
DS 1 
DS 6 
ENDS 

DEFINE FORWARD POINTER 
DEFINE BACKWARD POINTER 
DEF INE FOUR-BY1rE VALUE 
DEFINE ONE-BYTE VALUE 
DEFINE ONE-BYTE VALUE 
DEFINE SIX-BYTE VALUE 

The effect of this definition is the same as: 

NODE 
FWD 
BAR 
VALA 
VALB 
VALC 
VALD 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

16 
o 
2 
4 
8 
9 
10 

Once NODE is defined, it can be used as follows: 

POOL 

LHI 
LB 
LH 

DS 

R5,POOL 
RO,VALB(R5) 
R5,FWD(R5) 

100*NODE 

GET ADDRESS OF POOL 
GET VALUE B OF FIRST NODE 
GET POINTER TO NEXT NODE 

Data structure definitions must precede any references to their 
elements in RX3 format instructions, unless the NORX3 instruction 
or the SQUEZ instruction was used. 

3,>·70 48-050 FOO ROI 



3.8.9.2 structure Initialization (BDATA, BORG) Instructions 

structure initialization instructions define FORTRAN compatible 
block data subprograms that consist of labeled common blocks. 
They have the form: 

NAME OPERA'rION OPERAND 

A symbol BDATA Not used 
(optional) (ignored) 
A symbol BORG Not used 
(optional) (ignored) 

The block data instruction (BDATA) must precede any statements 
that generate data, and the block data subprogram must not 
contain any executable code. 'rhe common blocks to be initialized 
must be defined at the beginning of the block data subprogram. 
Once they are defined, the block origin instruction (BORG) is 
used to initialize the data elements of the common blocks. The 
operand of the block origin instruction consists of the common 
block name followed immediately by the element name or its 
displacement enclosed in parentheses. Only one operand is 
allowed. The following is an example of a block data subprogram: 

A 
B 
Y 
Z 

BDATA 
* 
* 
* 
Bf....K 
OS 
OS 
OS 
OS 
ENDS 
* 
* 
* 
BORG 
DC 
BORG 
DC 
BORG 

COMN 
4 
40 
20 
4 

BLK(A) 
EllO' 
BL.K(64) 
E'20' 
BLK(B+-8) 

DC E'30' 
END 

COMMON BLOCK DEFINITION 

1 NIT I A.L r ZE EL.EMF~N(rS A, B + 8, AND Z 

REFERENCE BY NAME 

REFERENCE BY DISPLACf<~MENT 

RF~f4'J:o~RENCE BY NAME AND 
DISPLACEMENT 

This program initializes A to a floating point value of 10; Z to 
a floating point value of 20; and the third fullword, B, to a 
floating point value of 30. 

48-050 FOO ROI 3-71 



3.8.10 Listing Control Instructions 

'I'hese instruct ions allow the progranuner to exerc ise some control 
over the format and the content of the source listing produced by 
CAL/32 on the final pass of the assembly. 

3.8.10.1 Listing Identification (PROG, TITLE) Instructions 

Listing identification instructions are used to force CAL/32 to 
print header information at the top of each page of the source 
listing. They have the form: 

NAME OPERATION OPERAND 

A symbol PROG Text. 
(optional) 
A symbol TITLE Text 
(optional) 

rrhe program instruction (PROG) specif ies the pr imary heading for 
E~ach page of the listing. In addition, it causes the symbol in 
t~he name field to be placed at the beginning of the object file 
for program identification. On 16-bit assemblies, only the first 
E5 ix char acter s of the name f ie Id ar e put in the obj ect. file. 

J\11 characters in the operand field (a maximum of 56) up to and 
tncluding position 71 are printed in the primary header line of 
E~ach page of the listing. If more than one PROG instruction is 
encountered in a module, the last PROG instruction will override 
all previous ones. 

'l?he title instruction (TITLE) is a way to specify subheadings 
t~hat can be changed within the program. The text contained in 
the operand field up to and including position 71, is printed on 
t~he 1 ine inuned iate ly be low the head ing produced by the PROG 
lLnstruction. As many TITLE instructions as required can appear 
tn the source input file. Each time a TITLE instruction is 
encountered, CAL/32 starts a new listing page with the new 
EJubhead ing when the next pr intable statement is processed. 
Subsequent pages contain this same subheading, until another 
TITLE instruction appears. If two or more TITLE instructions 
occur together in sequence, only the last TITLE instruction 
affects the subheading content since a new page will be printed 
only when a printable statement is encountered. 

']rI'rLE instructions themselves are not pr inted although they are 
included in the statement count. 

3-72 48-050 FOO ROl 



3.8.10.2 Format Contrb1 (LCNT, EJECT, SPACE, WIDTH) Instructions 

Format control instructions allow the programmer to control the 
format of the listing. They have the form: 

NAME OPERATION OPERAND 

A symbol LCNT p.~ symbol or 
(optional) expression 
A symbol EJECT. A symbol or 
(optional) e:xpress ion 
A symbol SPACE A symbol or 
(optional) expression 
A symbol WIDTH A symbol or 
(opt iona,l) Elxpress ion 

The operand field of the line count instruction (LCNT) specifies 
the number of lines to be printed on each page of the listing. 
The operand value must be an absolute number no greater than 99 
and no less than 10. The default value of the line count is 58. 

Whenever the eject instruction (EJ'ECT) appears, it overrides the 
specified or default Line count, and causes CAL/32 to start a new 
page when the next' printable statement is processed. The new 
page starts with whatever headings are in use. This statement is 
included in the statement count, but it is not printed. If one 
or more EJECT instructions occur together in sequence, only one 
page is advanced since the act.ual advance occurs only when a 
printable instruction is encountered. EJECT instructions 
themselves are not printed although they are included in the 
statement count. 

The operand field of the space instruction (SPACE) specifies the 
number of lines to be skipped in the listing. The value of the 
operand must be absolute. If the number of lines to be skipped 
exceeds the number of lines remaining on the page, this 
instruction has the same effect as an EJECT instruction and is 
included in the statement count, but not printed. 

The operand field of the width instruction (WIDTH) specifies the 
number of columns to be pr inted across the page. 'rhe value of 
the operand f ield must be an a,bsolute number, not greater than 
132 and not less than 64. The default value is 132. 

48-050 FDD RDI 3-73 



3.8.1083 Content Control (NLIST) Instructions 

The content control instructions control the content of the 
listing. They have the form: 

NAME OPERATION OPERAND 

A symbol NLIST Not used 
(optional) (ignored) 
A symbol LIST Not used 
(optional) (ignored) 
A symbol LSTC Not used 
(optional) (ignored) 
A symbol NLSTC Not used 
(optional) (ignored) 
A symbol F';RLST Not used 
(optional) (ignored) 
A symbol LSTM Not used 
(optional) (ignored) 
A symbol NLSTM Not used 
(optional) (ignored) 
A symbol FREZE Not used 
(optional) (ignored) 
A symbol NFREZ Not used 
(optional) (ignored) 
A symbol CROSS Not used 
(optional) (ignored) 
A symbol NeROS Not used 
(optional) (ignored) 
A symbol LSTUR Not used 
(optional) (ignored) 
A symbol NLSTU Not used 
(optional) (ignored) 
A symbol WARN Not used 
(optional) (ignored) 
A symbol NWARN Not used 
(optional) (ignored) 

The no list instruction (NLIST) suppresses listing of the source 
program. Only those statements that contain errors are printed. 

The list instruction (LIST) reverses this situation, and all 
source statements are printed. The assembler default is to print 
all source statements. 

The list conditionals instruction (LSTC) permits printing of 
unassembled conditional assembly statements. This is the normal 
default mode of the assembler. 

The no list conditionals instruction (NLSTC) suppresses printing 
of unassembled conditional statements. 

3-74 48-050 FOO ROI 



'rhe error list instruction (F~RLS'r) causes CAL/32 to pr int all 
assembly errors by type, along with the number of each statement 
on which the error occurred, irrunediately after symbol table 
listing. 

The list macro instruotion (LSTM) permits printing of all macro 
expansions that are part of the source input file. The macro 
instruction, the expanded source code, and the generated object 
code are printed. ~ plus character (+) precedes each statement 
number in the expande~ source to identify those statements as 
part of a macro. Thisl is the normal mode of the assembler. 

I 

The no list macro ins!truction (NLSTM) suppresses pr inting of 
macro expansions. On]y the macro statement itself is printed. 

The freeze (FREZE) instruction 
statement counter when a copy 
included in the sourc~ input file. 
file or macro expansion receive the 
of the COpy instruction. This 
assembler. 

halts incrementing of the 
file or macro expansion are 
All statements in the copy 
same statement number as that 
is the normal mode of the 

The no freeze (NFREZ) instruction increments the statement 
counter for every stabement encountered in the source input. 

The cross reference (dROSS) instruction uses CAL/32 to generate 
and pr int a cross rleference listing of all the symbols used in 
the program. Each symbol is listed in alphabetical order, along 
with ident if i cat ion o:f the statements in wh i ch it is ref er enced . 
The statement in which it is defined is flagged with an asterisk. 
This is the normal mode of the assembler. 

The no cross (NCROS) instruction prevents the generation of a 
cross reference listing. 

The list unreference:d symbols (LSTUR) instruction causes 
unreferenced symbols to be listed in the symbol list. This is 
the normal mode of the~ assembler. 

'rhe no li.st unreferencied symbols (NLSTU) instruction suppresses 
the list ing of unrefer,enced symbols in the symbol list. 

The warning (WARN) insltructi.on allows CAL/32 to flag warnings in 
the listing and tally the number of warnings encountered. This 
is the normal mode of the assembler. 

'rhe no warning (NWARN) instruction supp'resses both the warnings 
and the ~arning count from the listing. 

48-050 FOO ROI 3-75 



3.8.11 Auxiliary Processing Unit (APU) Option 

The APU and NAPU start options and the APU and NAPU pseudo 
instructions turn the APU option on or off. The APU and NAPU 
start options ove~ride the corresponding APU and NAPU pseudo 
instructions. If more than one APU or NAPU option appears in a 
START option, the latest option takes precedence. The default 
for this option is off. 

If SVC, WCS, or non-APU instructions are encountered when the APU 
option is on, their occurrences are flagged in the listing by the 
C.::l.rat character (1\) as CAL warnings which have no affect on the 
end of task code. When the APU option is in effect for each 
p'rogram containing SVC, WCS, or non-APU instructions, CAL/32 
automatically generates and inserts one or more DCMD commands 
into the ob,j ect code. rrhe t.ext of these DCMD commands is: 

U**** MODULE XXXX CONTAINS SVC INSTRUCTIONS" 
n**** MODULE XXXX CONTAINS WCS INS'rRUCTIONS" 
"**** MODULE XXXX CONTAINS INSTRUCTIONS ILLEGAL FOR APU" 

XXXX represents the name of the program. 

3.9 ASSEMBLY LISTING 

The assembly listing consists of two sections: the source and 
object program statements and the symbol cross reference table. 
The format for printing the source and object program statements 
is basically the same for either 16-bit assemblies or 32-bit 
assemblies. The only difference is in the number of characters 
printed for the LOC and the object data. 

• In 16-bit assemblies, only four hexadecimal digits are printed 
for the LOC, and a maximum of eight hexadecimal digits for the 
data. The letter R is appended to the LOC value if the 
relocatable LOC is being used. 

• In 32-bit assemblies, six hexadecimal digits are printed for 
the LOC and a maximum of 12 hexadecimal digits for the object 
data. In addition, the actual second operand address of RX2 
and SF instructions is printed next to the object data. This 
address is preceded by an equal sign (=). The letter I is 
appended to the LOC if the impure LOC is being used. The 
letter P is appended to the LOC if the pure LOC is being used. 

• In both 16- and 32-bit assemblies, the letter F is appended to 
the data field to indicate that the statement references an 
externally defined symbol, a symbol in a common block, or an 
undef ined symbo 1. 

3-76 48-050 FOO ROI 



'rhe statement numbe;r is a dec imal number between 1 and 99,999. 
Each source statement read by the assembler is assigned a 
unique statement number, beginning with 1, except for source 
statements from a copy file or macro expansion with the FREZE 
instruction. The first column of the listing can contain any 
of the following characters: 

CHARACTER 

? 

lie 

A 

48-050 FOO ROI 

MEANING 

'rhe name f leld of this instruct ion contains a 
symbol that was redef ined by an EQUA'rE 
instruct.ion. 

A m~chine inst.ruction not available on the 
target machine was used; an operand that was 
improper existed and was substituted, or 

a machine dependent instruction was used in 
assembling a common but could be assembled, or 

an iassemble!r instruct ion was 
operand that was improper 
assembled, or 

used 
but 

with 
could 

an 
be 

a SCRAT card was encountered as other than the 
first statement or when bat.ch mode is in 
effect, or 

an EXTRN/ENTRY symbol is longer 
characters for target 16, or 

than 6 

a DS instruction was encountered in a pure 
section. 

A machine instruction 
modified by squeezing. 

rrhe APU option is in 
inst:ruct ion on this 
instruction, a WCS 
instruction illegal for 

was shortened or 

affect, and the 
line is an SVC 

instruction, or an 
an APU. 

3-77 



The following information is printed at the beginning of the 
cross reference listing: 

• start options in the START command 

• The number of errors detected by the macro processor if the 
program assembled was generated by the macro processor. 

• Number of CAL/32 errors and the page number of the last error 

• Num)er of CAL/32 warnings and the page number of the last 
warning 

• Number of passes 

• Message indicating the use of symbol table paging to disk 

• Message indicating abnormal termination of squeezing because 
of squeeze-induced errors 

• Message indicating the amount of required table space 

Following this, each symbol used in the program is listed in 
alphabetical order along with its value. If a cross reference 
was requested, the statement number of each statement containing 
a reference to the symbol is printed following the value. The 
statement number in which the symbol is defined is printed with 
an asterisk (*) following. Associated with each symbol is a flag 
used to indicate one of the following: 

1"LAG 

I'D 
M 
U 

< 
<U 
) 

)M 
** 

MEANING 

Properly defined local symbol 
Multiply defined symbol 
Undefined symbol 
Entry symbol 
Undefined entry 
Externally defined symbol 
Multiply defined external 
Unreferenced external 

The flag is pr inted in the first column of t .. he line containing 
the symbol. 

3-78 48-050 FOO ROI 



If an error is detect~d in a source statement, the following 
message is printed immed,iately after the error statement: 

** Annn ** 

A indicates the general type of error, and nnn is a decimal 
number that further identifies the error. Appendix A contains a 
complete list of CAL/32 error codes. 

48'-050 FOD RDl 3-79 





CHAPTER 4 
COMMON MODE PROGRAMMING 

4.1 INTRODUCTION 

A useful feature of ¢ornrnon Assembly Language/32 (CAL/32) is 
conunon mode programminc;jJ where a single source file can be used to 
produce object code ifor either 16- or 32-bit processors. In 
creating a common modeisource file, the programmer must be aware 
of certain restricti6ns and safeguards and, in some cases, must 
use special operation mnemonics that can be translated into 
either 16- or 32-bit operations. 

4.2 ADDRESS OPERATION INSTRUCTIONS 

Addresses for 16-bit ptocessors occupy 16 bits, a halfword. For 
the 32-bit processors~ addresses occupy the least-significant 24 
bits of a fullword. In normal mode, CAL/32 makes no distinction 
between operations on,address quantities and operations on other 
data types., However, When wr it Ing in common mode, the programmer 
must use special opera¢ion mnemonics for address operations so 
CAL/32 can translate them into the correct target machine code. 
Table 4-1 lists these : instruc'tions, their mnemonics, and the 
target machine translations. 

TABLE 4-1 :COMMON MODE ADDRESS OPERATIONS 

INSTRUCTIO~ 

Add address 
Add address inunediat+e 
Add address RR 
Add address to memo~y 
Compare address 

Compare address imm~diate 
Compare address RR 
Compare logical address 
Compare logical addrjess 
immediate 
Compare logical addtess RR 
Irnrnediate 

48--050 FOO ROI 

I 32-BIT I 16-BIT 
I TRANS'- I TRANS­

MNEMONIC I LATION I LATION 

AA A AH 
AAI AI AHI 
AAR AR AHR 
AAM AM AHM 
CA C CH 

CAl CI CHI 
CAR CR CHR 
CLA CL CLH 

CLAI eLI CLHI 
CLAR CLR CLHR 
CLAI CLI CLHI 

4-1 



TABLE 4-1 COMMON MODE ADDRESS OPERATIONS (Continued) 

INSTRUCTION 

Load address 
Load address immediate 
Load address RR 
AND address 
AND address immediate 

AND address RR 
OR address 
OR address immediate 
OR address RR 
Subtract address 

I 32-BIT I l6-BIT 
I TRANS- I TRANS­

MNEMONIC I LATION I LATION 

LDA 
LDAI 
LDAR 
NA 
NAI 

NAR 
OA 
OAI 
OAR 
SA 

L 
LA 
LR 
N 
NI 

NR 
o 
01 
OR 
S 

LH 
LHI 
LHR 
NH 
NHI 

NHR 
OH 
OHI 
OHR 
SH 

-------------------------------------------------------------
Subtract address immediate 
Subtract address RR 
Shift left address arithmetic 
Shift left address logical 
Shift right address arithmetic 

Shift right address logical 
Store address 
Test address immediate 
Exclusive OR address 
Exclusive OR address immediate 

Exclusive OR address RR 
Multiply address 
Multiply address RR 
Divide address 
Divide address RR 

SAl 
SAR 
SLAA 
SLAI... 
SRAA 

SRAL 
STA 
TAl 
XA 
XAI 

XAR 
MA 
MAR 
DA 
DAR 

. 
SI 
SR 
SLA 
Sr...L 
SRA 

SRI... 
ST 
TI 
X 
XI 

XR 
M 
MR 
D 
DR 

SHI 
SHR 
SLHA 
SLHL 
5RHA 

SRHL 
5TH 
THI 
XH 
XHI 

XHR 
MH 
MHR 
DH 
DHR 

CAL/32 translates these instructions into halfword or fullword 
instructions, depending on the target machine. For example: 

4-2 

ADDl 
DISP 

LDA Rl,ADDl 
AA Rl,DISP 

DC 
DC 

A(TABLE) 
2 

48-050 FOO ROl 



When CAL/32 assembles: these instructions for l6-bit execution, it 
produces object code that would normally correspond to: 

LH Rl,ADDl 
AH Rl,DISP 

For 32-bit programs, CAL/32 produces code that would correspond 
to: 

L Rl,ADDl 
A Rl,DISP 

Translation is at the object code level; CAL/32 prints the 
original common mode code on the listing. 

4.3 COMMON MODE IMMEOIATE OPERATIONS 

CAL/32 provides a cornmon mode immediate operation for the load 
immediate r~I instrudtion. Depending on the target machine, the 
LDI is translated into a fullword-referencing LI instruction for 
the 32-bit machine, or a halfword-referencing LHI instruction for 
the l6-bit machine, as follows: 

INSTRUCTION 

Load Immediate 

\ COMMON 
!MNEMONIC 

LDI 

32-BIT 
trRANSLAtr ION 

LI 

4.4 COMMON MODE ASSEMaLER INSTRUCTIONS 

l6-BIT 
TRANSLATION 

LHI 

In addition to all of the regular assembler instructions 
described in Chapter 3, CAL/32 recognizes four assembler 
instructions primarily for use in common mode programming. Two 
of these are data definition type instructions; the other two are 
assembler control type: instruct ions. 

48-050 FOO ROl 4-3 



4.4.1 Data Definition Instructions 

The common mode data definition instructions are: 
lE~ngth constant and def ine address length storage. 
form: 

NAME OPERATION OPERAND 

define address 
They have the 

A symbol 
(optional) 

DAC One or more operands 
separated by commas 

A symbol 
(optional) 

OAS A symbol or expression 

4.4.1.1 Define Address Length Constant Instruction 

The define address length constant instruction is equivalent to 
the define constant instruction. It is used in common mode 
p'rogramming to reserve storage to be init ialized with address 
leng~h constants. For 32-bit assemblies, the constants are 
fullwords aligned on fullword boundaries. For l6-bit assemblies, 
the constants are halfwords aligned on halfword boundaries. 

4.4.1.2 Define Address Length storage Instruction 

jrhe define address length storage instruction is equivalent to 
the define storage instruction. In 32-bit assemblies, the 
instruction reserves the specified amount of fullwords aligned on 
a fullword boundary. In l6-bit assemblies, it reserves the 
specified amount of halfwords aligned on a halfword boundary. 
Examples of the use of these instructions are: 

DAC A(TABLE) 
OM 16 

When assembled for 32·-bit execution, the def ine address length 
constant instruction generates a fu11word containing the address 
OIf TABLE. The define address length storage instruction reserves 
16 fullwords of storage. When assembled for l6-bit execution, 
t,hese instructions cause CAL/32 to generate a halfword containing 
t,he address of TABLE, along with a storage area of 16 halfwords. 

4--4 48-050 FOO ROI 



NOTE 

Define address length storage 
instruct ipns can be used i.n common block 
and sLruc~ure definitions. 

4.4.2 Assembler Cont~ol Instructions 

Two special assembler, instructions control error checking. 'rheir 
form is: 

NAME OPERATION OPERAND 

A symbol CAL Not used 
(optiona~) (ignored) 

A symbol NOCAL Not used 
(optional) (ignored) 

The first of these in~tructions (CAL) establishes the common mode 
and enables common mpde error checking. In this mode, any 
machine dependent ipstruction causes a nonfatal error, and a 
warning flag is printed on the assembly listing. 

rrhe NOCAL instructionj disables the common mode a.nd its error 
checking mechanisms) until the next CAL instruction is 
encountered. This isltheassembler default mode in which an 
operation code mnemon~c, not valid for the targeted processor but 
for which there is' a valid equivalent, is assembled using the 
valid equivalent. A ~uestion mark (1) is then printed in the 
left hand margin of the listing. 

4.5 MIXED MODE COMPutATIONS 

On 32-bit processors, mixed mode computations, such as adding a 
halfword quantity t~ an address length quantity contained in a 
register, can be perfbrmed. In general, any halfword arithmetic 
or logical operation can be performed on address length 
quantities contained ~n registers. The exceptions are: shifts, 
multiply, and divid~. The halfword forms of these instructions 
should never be used o/ith address length quantit.ies. Instead, 
use the special addre$s operation instructions. 

48-050 FOO ROl 4-5 



4 " 6 GLOBAL SYMBOLS 

The global symbols, ADC and LADC, are used primarily in common 
mode prog.ramming * In 32-bit assemblies, ADC has a value of four, 
the length in bytes of an address length constant. I~C has a 
value of two, the log (base 2) of the address length. In 16-bit 
assemblies, ADC has a value of two, and LADC has a value of one. 
Illustrated are these symbol uses in which a main program calls 
a subroutine and passes parameters to the subroutine in a list of 
addresses immediately following the branch and link instruction: 

RETURN 

BAL 
DAC 
EQU 

RF,SUB 
A(PARMl),A(PARM2),A(PARM3) 
* 

The subroutine picks up the parameters and calculates the return 
address as follows: 

SUB 

SUBEND 

AIS 
NAI 
LOA 
LOA 
LOA 

B 

RF,LADC 
RF, -ADC 
Rl,O(RF) 
R2,ADC(RF) 
R3,2*ADC(RF) 

3 *ADC(RF) 

ADJUST RF FOR 
ALIGNMENT 
ADDRESS OF FIRST PARAMETER 
ADDRESS OF SECOND PARAMETER 
ADDRESS OF THIRD PARAMETER 

RETURN TO CALLER 

The add immed iate short instruct ion and the add address irruned iat.e 
instruction are needed in the subroutine because alignment of 
address constants in 32-bit assemblies can cause a halfword of 
filler to be inserted between the branch and link instruction and 
the first address constant. In this case, the address in 
register 15 is the address of this halfword, and these 
instructions increment the address in register 15 to make it 
point to the first address constant. If no filler is required, 
because the first constant is naturally aligned on a fullword 
boundary, register 15 points to the first constant, and these two 
instructions have no effect. 

4-6 48-050 FOQ ROI 



Another use of fADe i~ in shift instructions where a byte pointer 
must be converted int6 an address painter, as: 

LB 
SLAL 
LDA 
BR 

Rl, INDEX 
Rt,LADC 

~l' TABLE (Rl) 

GET BYTE POINTER 
CONVERT TO ADDRESS PO IN'rER 
GET ADDRESS FROM 'rABLE 

In l6-bit assemblies, I~DC has a value of one, and the shift left 
logical instruction h4s the effect of doubling the value of the 
byte pOinter, conve~ting it into a halfword pointer. In 32-bit 
assemblies, I~C has a value of two, and the shift instruction 
has the effect of quadrupling the value of the byte pointer, 
converting it into a fullword pointer. 

'rhe [~C symbol can also be used where machine dependent code 
must be written within a common mode program. For example: 

IFNZ 
L 
A 
ST 
ELSE 
L.M 
AH 
ACH 
S'I'M 
ENDC 

LADC-l 
RF ,A 
R.Fi , B 
RF ,A 

REl,A 
RFl,B+2 
RE,S 
RE,A 

IF NOT ZERO USE 32 BIT CODE 
LOAD FULLWORD IN RF 
ADD FULLWORD B 
STORE IN A 
r~DC-l IS ZERO USE 16 BIT 
LOAD FULLWORD IN RE AND RF 
ADD LOW ORDER B 
ADD HIGH ORDER B 
S'I'ORE IN A 

shows how fullword addition, requiring double registers in l6-bit 
assemblies and single registel:s in 32-bit assemblies, can be 
handled in a common m~de progl:am. 

48'-050 FOQ ROI 4-7 



4.7 SPECIAL INSTRUCTIONS 

By definition, the instructions load multiple, store multiple, 
and load PSW, operate on address length data. This is why there 
are no address operation mnemonics for these instructions. Where 
these :i.nstruct ions are used in conunon mode progranuning, the data 
on which they operate must be defined by the define address 
length constant and the define address length storage 
instructions. For example: 

START 

NEWPSW 
RSAVE 
PARAM 

LPSW NEWPSW 

sm 
LM 

DAC 
DAS 
DAC 

RO,SAVE 
RO,PARAM 

STATUS ,A(S'rART) 
16 
CONI, CON2, •.• 

L.ist processing instructions operate on address length quantities 
within the list. There is some incompatibility between the 16-
and the 32-bit versions of these instructions. The l6-bit list 
instructions require byte pointers at the he'ad of the list. The 
32-bit list instructions require halfword pointers. List 
instructions can be used in conunon mode progranuning as long as 
the number of slots in the list does not exceed 255. 

4-8 48'-050 FOO ROI 



Lists always should be: defined with the define list instruction. 
Use byte instructions'where it is necessary to refer to the list 
pOinters in the program. Define displacement into the list 
pointer fields in terms of the~ LADC symbol. For example: 

SLOTS 
USED 
CTOP 
NBOT 

LIST 

EQU 
EQU 
EQU 
EQU 

~
C-l 

2* ',~C-l 
3* ~C-l 
4*t..ADC-l 

LB Rl,LIST+CTOP 

DLIST 32; 

NUMBER OF SLOTS 
NUMBER USED 
CURREN'r TOP 
NEXT BOTTOM 

In this example, the load byte instruction is used along with the 
value of CTOP to accesS the current top pointer in the list. 

48-050 FOD RDl 4-9 





CHAPTER 5 
COMM~N ASSEMBLY LANGUAGE/32 

(CAL/32) OPERATING INSTRUCTIONS 

5.1 INTRODUCTION 

The CAL/32 assembler requires a minimum of one logical unit (iu) 
and up to a maximum of 11 logical units for operation, depending 
on the options selected and the features invoked by the source 
program. All of these logical units can be assigned by the user. 
However, if an lu is needed and not assigned, CAL/32 will 
allocate temporary system files for logical units 
4, 5, 6, 8, 9, 12, and ,13. CAL/32 will delete and reallocate 
permanent files for logical units 2 and 3, provided they were not 
previously assigned and the DEL start option was specified. The 
logical units used are Shown in Table 5-1. 

I 
I 

LU I 

1 

2 

3 

TABLE $-1 CAL/32 LOGICAL UNITS 

USE 
LOGICAL I ALLOCATED I REQUIRED 
RECORD I BY CAL/32 I FOR 

Source input device. 80 
The source input to be 
assembled is read from 
this device on pass 
one. 'rhis device is re--
wound prior to each 
subsequent pass unless 
BATCH is specified and 
the source input is not 
on a random access 
device, or Scratch 
(SCRAT) or Pass Pause 
(PPAUS) is specified. 

Binary output device. 108 T=16 
Assembled object pro- I 126 T=32 
gram is written to this 
device on last p~ss. 

Assembly listing output 64 - 132 
device. Assembly list-
ing is written to this 
device on the last pass. 

No 

If DEL 
specified 

If DEL 
specified 

All 

All 

All 

48-050 FDa ROI 5-1 



I 
I 

LU I 

4 

5 

I 

6 

7 

8 

5-2 

TABLE 5-1 CAL/32 LOGICAL UNITS (Continued) 

USE 

Source scratch device. 
The source input is 
copied to this device 
during pass one. The 
source input is read 
from this device on all 
subsequent passes. 

Syrnbol cross reference 
scratch device. Cross 
reference information 
is built on this device 
during the last pass. A 
device assigned to this 
lu must support random 
access. 

Symbol table paging 
device. Symbol table 
information is paged to 
this device during all 
passes. A device 
assigned to this lu 
must support random 
access. 

Source library input 
device. Source inform-
ation to be included in 
the main assembly is 
read from this device 
on each pass unless 
SCRAT or BATCH was 
specified. Then the 
library is searched and 
read on pass one only. 

Forward equate scratch 
device. This Iu can be 
used if forward refer-
enced equates exist in 
the source input. This 
device must support 
random access. 

LOG I CAL I ALLOCA'rED I REQU I RED 
RECORD I BY CAL/32 I FOR 

80 Yes SCRAT 
BATCH 

25b Yes CROSS 

512 'ies Insuffi-
cient 
memory 

80 No I COpy 

256 Yes Forward 
equates 

48-050 FOO ROI 



I 
I 

f ... U I 

9 

12 

13 

TABLE 5-1 CAL/32 LOGICAL UNITS (Continued) 

USE 

Error tabulation device. 
Er.ror messages and 
their associated line 
numbers are writlen in 
binary to this evice 
during the last pass 
and written to lu3 
after completion of the 
assembly and $ymbol 
table listing. 

PCB file directory 
scratch device. frhis 
device must support 
random accessa 

PCB name directory 
scratch device. This 
device must support 
random access. 

LOG I CAL I ALLOCAfrED I REQU I RED 
RECORD I BY CAL/32 I FOR 

80 Yes ft:RLST 

256 Yes eLlB 

256 Yes COpy 

When an assembly terminates, an end of task code is passed to the 
operating system in th$ operand field of the SVC 3 instruction. 
The meanings of the possible end of task codes are: 

END OF 
'rASK CODE 

o 

1 

2 

3 

4 

5 

48-050 FOD RDl 

MEANING 

Assembly complete without errors. 

1 11eg~1 opt ion passed with the SffAR'r conunand. 
Assem~ly is aborted after logging the illegal 
optio~s to the console. The user should 
retry. 

One ~r more errors detected during the 
assemtbly. This end of task code is also used 
if ertors are detected in one or more programs 
of a batch assembly. 

Misplaced BEND. 

SymboL table overflow. 

A cross-reference option problem. Try to 
reassemble or use the NCROSS option to turn 
off the CROSS option. 

5-3 



5.2 COMMON ASSEMBLY LANGUAGE/32 (CAL/32) START OPTIONS 

When operating under OS/32, CAL/32 accepts certain control 
options as arguments of the START command. The start options 
override assembler instructions and cause a' carat (A) to appear 
in the first line of the listing. Any combination of spaces 
and/or commas can separate or follow the options specificat.ion: 

START 
OPTION 

AP.U 
NAPU 
.BA'rCH 
.cAL 
NQCAL 
.cROSS 
NeRDS 
DEL 
ND.EL 
ERLs'r 
.E.RS.QZ 
.F.Rfe~ZE 

Nf.REZ 
LeNT 
LIST 
NLIST 
LS.T.C 
NLSTC 
LS.~rM 
NLs~r.M 
LSTUR 
NLs~rU 
NDISK 
NFl X 

NQRXT 
NQRX3 
NQS.EQ 
£PAUS 
S.CRArr 
S.QCHK 
S.QUEZ 
NQSQZ 
TARGT 
llREX 
.NU.REX 
WARN 
NWARN 
WID'rH 

OPERANDS 

None (Turns on APU wa~nings.) 
None (Turns off APU warnings.) 
None 
None 
None 
None 
None 
None 
None 
None 
None 
None 
None 
Lines per page (10-99) 
None 
None 
None 
None 
None 
None 
None 
None 
None (Inhibits symbol table paging to disk.) 
None (Prevents CAL/32 from ma.king extra 

passes to fix squeeze induced errors.) 
None (Alias for NORX3.) 
None 
None 
None 
None 
None 
Number of passes (1-99) 
None 
16 or 32 
None 
None 
None 
None 
Width of listing 

See Chapter 3 for an explanation of the assembler instructions 
that correspond to these start options. 

5-4 48--050 FOO ROl 



! 

start options have the f6llowing form: 

opt ion "-"""operand 

A typical start command for a CAL/32 assembly with start opt~ions 
is: 

ST ,DEL,SQUEZ=99,NCROS 

The delete start options (DEL, NOEL) enable or disable CAL/32 
from deleting and reallocating object and listing files when 
needed. If the DEL opti~n is in effect and lu2 and lu3 are 
unassigned, CAL/32 will delete, reallocate, and assign them Lo 
fname.OBJ and fname.LSrr, 'respectively. 'rhe default option is 
NDEL, in which case CAIL/32 will simply log an 8100 error to the 
console and pause. If lql is not assigned to a direct access 
device, the DEL option will have no effect, and CAL/32 will issue 
an 8100 error before pauSing. 

When CAL/32 encounters c~nflicting start options such as CROSS 
and NCROS, it will r$gard the last option encountered as the 
intended option. This allows the user to redefine the default 
start options via CSS. For example: 

LO CAL32 
AS 1, SOURCE. CAL 
s'r ,NCROS Dr~L @ 1 
$EX I'r 

The above command substi~ution system (CSS) effectively changes 
the default options to ~CROS and DELETE unless overridden by the 
parameter @l. 

48-050 FOO ROl 5-5 



5.3 OPERATING INSTRUCTIONS FOR ESTABLISHING COMMON ASSEMBLY 
LANGUAGE/32 (CAL/32) AS A TASK 

CAL/32 will not run on a l6-bit machine~ however, it will still 
produce l6-bit object code if requested. 

Before using CAL/32 under 05/32, the relocatable object supplied 
must be established as an operating system task, using Link. A 
typical command sequence using Link to establish CAL/32 as a task 
is: 

LO .BG,LINK 
T .SG 
ST 
)ES '!'A 
)OP work:5000, SYS~FFFFF, SEG,ROL 
)IN CAL32 
)BU CAL32 
)END 

CAL/32 is segmented into pure and impure code for shared use wi~h 
operating systems that support this capability. To establish 
CAL/32 as a nonsharable task, remove the SEG option from the 
above command sequence. 

When assembly is completed, CAL/32 terminates through the 
operating system, which logs this message: 

END OF TASK n 

where n specifies the end of task code. 

The files used for scratch, cross reference, paging, forward 
equates, PCB file directory, PCB name directory, and error 
summary will be allocated by CAL/32 as temporary operating system 
files if they are needed and were not previously assigned by the 
user. 

5--6 48-050 FOO ROl 



I 

5.3 OPERATING INSTRUCTiIONS FOR ESTABLISHING COMMON ASSEMBLY 
LANGUAGE/32 (CAL/32 i ) AS A 'rASK 

CAL/32 will not run on a l6-bit machine; however, it will still 
produce l6-bit object co~e if requested. 

Before using CAL/32 under OS/32, the relocatable object supplied 
must be established as; an operat lng system task, us ing Link. A 
typical command sequence using Link to establish CAL/32 as a task 
is: 

LO .BG,LINK 
T .BG 
ST 
)ES TA 
)OP work=5000, SYS=FFFFF, SEG,ROL 
)IN CAL32 
)BU CAL32 
)END 

CAL/32 is segmented into pure and impure code for shared use with 
operating systems that support this capability. To establish 
CAL/32 as a nonsharable task, remove the SEG option from the 
above command sequence. 

When assembly is completed, CAL/32 terminates through the 
operating system, which logs this message: 

END OF 'rASK n 

where n specifies the end of task code. 

The files used for scratch, cross reference, paging, forward 
equates, PCB file directory, PCB name directory, and error 
summar.y will be allocated by CAL/32 as temporary cperaLing system 
files if they are needed and were not previously assigned by the 
user. 

48-050 FOO ROl 5-7 





APPENDIX A 
COMMON ASSEMBLY LANGUAGE/32 (CAL/32) ERROR CODES 

AOOl 

A002 

A003 

BOOI 

B002 

COOl 

0001 

EOOI 

FOOl 

F002 

FOD3 

F004 

the address 

the address 

the operand 

alignment 

alignment 

conunon mode 

data structure 

END placement 

misSing operand 

register 
specification 

inva,l id source 
field 

invalid symbol 

48-050 FDa ROI 

The address is out of range for the 
specified instruction format. 

The address is out of range for an 
RX2 instruction. 

The operand of a previously squeezed 
instruction was changed making the 
squeezed instruction invalid. 

The address of the operand is on an 
incorrect boundary for the 
instruction specified. 

An odd address used in a fr constant 
location counter (LOC) was not even 
when the instruction was specified. 

An opcode that is not pa.rt. of the 
common mode set is used in a common 
mode assembly. 

An illegal statement appears in a 
STRUC or COMN definition. 

An END statement was encountered 
within a STRUC or COMN definition or 
within an unterminated conditional. 

A required operand is missing. 

A register value is not in the 
range of 0 to 15, or an odd register 
value is used where an even value is 
required. 

Invalid label in the source field, 
a label in the name field is not 
followed by a space, or a required 
label is missing~ e.g., on EQU. 

More than 8 characters 
specified in a symbol. 

were 

A-l 



FOOS EXTRN 

FDDG- immediate field 

FDD7 ENTRY 

Fooa delimiter 

F009 invalid expression 

FOlD apostrophe 

FOIl invalid operand 

F012 improper statement 

A--2 

An invalid type for EXTRNi e.g., 
common block, or EXTRN was used in 
an expression. 

The value of d~ta is too large to 
fit into the immediate field. A 
fullword EXTRN is used in RII 
instruction. A character string 
used as an immediate field is too 
long. 

A symbol declared as an ENTRY is 
undefined. Improper type for ENTRY~ 
e.g., common block name. 

Operands are not separated by 
commas. Unrecognizable operator. 
The last operand is not followed by 
a CR or a blank. Unbalanced 
parentheses. Opcode is not followed 
by a space or a CR. 

Expression uses common element names 
not in the same block. 

No ending apostrophe in C,O,E,F, 
H,P,U,X, or Y constant. Illegal 
character encountered in 
C,O,E,F,H,P,U,X, or Y constant prior 
to the ending apostrophe. 

T constant was specified in TARGT 16 
assembly. Argument mode of T 
constant is not ABS, PURE, or 
IMPURE. Illegal data specified in 
BOA'rA program. Fullword EXTRN used 
as an operand of Ocz. Value of DB 
operand must be absolute. Value of 
OS, nSF, nSH. Invalid symbol used 
for ENTRY name. Symbol used as 
ENTRY must be ABS, PURE, IMPURE, or 
Relocatable. Invalid symbol used 
for Ex'rRN name. Invalid data in 
BORG. Operand of CNOP or A.LIGN is 
not absolute. Operand of DLIST is 
not absolute. 

Improper type for EXTRN operand; 
e. g. , common block name. rrransfer 
address on END statement is an 
improper type; e. g. , EXTRN. Illegal 
operand on EQU. 

48 --050 Faa ROl 



FOl3 

FOl4 

FOlS 

1001 

MOOl 

M002 

0001 

POOl 

P002 

ROOl 

SOOl 

S002 

S003 

file descriptor! 

missing string 

invalid character 

conditional 

symbol definitiQn 

symbol definition 

illegal opcode 

locat ion counter' 

reentrancy check 

relocation error, 

sequence check 

COpy 

invalid option 
sequence 

48-050 FOa ROl 

Syntax error on fd of a COPY, FCOPY, 
or CLIB statement. 

No characters between apostrophes of 
C,E,D,F,H,P,U,X or Y constant. 

Illegal character 
between apostrophes 
constant. 

encountered 
of an E or 0 

An ELSE or ENDC slatement found 
without a matching IFx. 

The symbol in the name field is also 
ul3ed in the name field of another 
statement. The value or type of a 
symbol changed from its definition 
on a previous pass. (This can occur 
by illegal use of conditionals, ORG, 
DO, OS, or a misplaced SCRAT 
statement.) 

An attempt was made to redefine a 
~symbol with an EQU that is the name 
field of a statement. 

The opcode used 
unrecognizable or 
spec if ied 'rARGT. 

is 
illegal 

tot~ally 

for the 

The location counter exceeded 216 on 
a TARGT-16 or 224 on a TARGT-32 
assembly. 

The instruction attempts to modify 
PURE code. 

An inval id comb inat.:. ion of 
relocatable terms in an expression. 
A relocatable operand follows a 
unary m i.nus . 

The value in the, sequence numbers 
field is not greater than the 
previous sequence number. 

COPY statement appears within a file 
bE~ing copied. An invalid symbol 
used as COpy operand. The operand 
of COpy is not followed by a space, 
comma, or CR. 

A COpy, PAUSE, MBG, or DO 
st:.atement immed iately follows a DO 
statement~ . 

A--3 



S004 invalid option 

S005 PROG 

1~001 overflow 

1~002 floating point 

1'003 value 

'1'004 divisor 

UOOI not used 

U002 undefined symbol 

U003 undefined symbol 

U004 

U005 

A--4 

An argument is not absolute or 
exceeds 32,767. An argument of LCNT 
is in the range of 10 to 99. An 
argument of WIDTH is not in the 
range of 64 t6 132. An argument of 
TAROT does not evaluate to either 16 
or 32. An argument of SQUEZ is not 
in the range of 1 to 99. 

Multiple PROG statements 
encountered in a program. 

were 

The intermediate or final result of 
an arithmetic expression exceeded 
231 - 1. 

An over- flow 
conversion of 
constant. 

occurred 
floating 

during 
point 

The data item exceeds the range for 
specified type; e.g., X'12345 i

• 

A division by 0 is attempted. 

A referenced symbol is not defined 
in the program. 

An attempt was made to circularly 
define a symbol; e.g.: 

A EQU S 
B EQU A 

File specified as an operand of 
FCOPY, CLlS, or COpy does not exist. 

Program name is not found in any of 
the PCB libraries. 

48-050 FOQ ROl 



APPENDIX B 
PERKIN-ELMER OBJECT CODE FORMAT 

Modules in perkin-El~er object code format produced by Con~on 
Assembly Language/32 (CAL/32) are divided into records. Each 
record contains 126 bytes of information for 32-bit object code, 
or 108 byles of inforrnation for l6-bit object code. The first 4 
bytes of each record of the object code format are organized as 
follows: 

'''" ... ",," ""- '.'. ,,, .. " ... -,,~ .. -,- -- .- ,", .. ., )'" ' .. " .- ." ..... "" ... ,". '"" .... - .,,- ,,"," .... ",," ... " .".,. ,,- ". ,"- ... -,,"- '"- ,,- ,- ,"- "- ,,- ... --5 ~ ... "."._'" ",. ' .. " .... -,.- .. -.. -'.'. ,,--
Sequence number Checksum 

".". ".- ., ._." ..... ,,"- .- '"- " .• '"'- ,- '. -;S fo- " .. ,,". ".- ". ,". , .... ,. ,,,. ,,- ,,'". "'- "." ,,- ""- "'- ." .... ,"'. "' .. ",.,,, ". ' .... ". " .. ,,- " .. ,_ .. ., )- ".- ,- ... "," ". -......... ,,--
Bit.s: 
o 15 16 31 

'rhe sequence numbers are sequent ia 1 negat i ve integers "-1,-2,-3, 
etc., represented in two's complement form. The first record in 
a program must have sequence number-l. Subsequent records must 
be in proper order to be loaded. 

The checksum is an exclusive OR sum of all halfwords in the 
record, except itself, exclusive ORed with a halfword of all l's. 

The remainder of the record is a sequence of items; an item is a 
byte of loader information. There are two types of items: 
loader items and data items. Each loader item is followed by a 
certain number (which can be 0) of data items. The loader items 
and tJheir meanings a.re listed in 'rabIes 8-1 a.nd 8-2. 

48 --050 FOO RO 1 8-1 



LOADER : 

B-2 

ITEM 

o 
I 
2 
3 

4 
5 

6 

7 

8 

9 

A 

B 

c 

D 

E 

F 
10 

11 

12 
13 

14 

15 

16 

TABLE B-1 32-BIT LOADER ITEM DEFINITIONS 

MEANING 

End of record 
End of program 
Reset sequence number 
Block data indicator 

Absolute program address 
Pure relocatab1e program 
address 
Impure re10catable program 
address 
2 bytes of pure re10catable 
data 
2 bytes of impure 
relocatab1e data 
4 bytes of pure relocatable 
data 
4 bytes of impure 
relocatab1e data 
Common reference 

Common definition 

Program label 
3 bytes absolute and 3 
bytes pure relocatable 
3 bytes absolute and 3 
bytes impure relocatable 
Load program transfer 
Define start of chain 
(reference) 
Load chain definition 
address 
2 bytes absolute and 2 
bytes pure re1ocatab1e 
2 bytes absolute and 2 
bytes impure re10catable 

. NUMBER OF DATA 
ITEMS FOLLOWING 

I None 
None 
None 
8-byte name, 
3-byte displacement, 
any absolute data 
item (20-5B) 
3-byt.e address 
3-byLe address 

3-byte address 

2-byte address 

2-byte address 

4-byte address 

4-byt.e address 

8-byte address 
3-byte displacement 
8-byte name, fol­
lowed by item 4, 
5, or 6 
8--byte name fol­
lowed by item 4, 
5, or 6 
8-byte name fol­
lowed by a 3 byte 
length 
8-character name 
b bytes 

6 bytes 

Item 4, 5, or 6 
Item 4, 5, or 6 

Item 4, 5, or 6 

4 bytes 

4 bytes 

48 -- 0 50 F 0 0 RO 1 



TABLE B-1 32-BIT LOADER ITEM DEFINITIONS (Continued) 

LOADER : 
rrrEM 

17 

18 

19 
lA 
18 
le 

10 

lE 
IF 
20 
21 
22 
23 

58 
5C·-64 
65 

66 

67 

MEANING 

Length of impure and pure 
segments 

Perform fullword chain 
Perform halfword chain 
No operation 
2-byLc pure translation 
table address 
2-byte impure translation 
table address 
Not used 
1 byte absolute data 
2 bytes absolute data 
4 bytes absolute data 
6 bytes absolute data 
8 bytes absolute data 

120 bytes absolute data 
Future use 
Extended EXTRN refer.ence 

Extended entry 

Link comma.nds 

48'-050 FOO ROI 

NUMBER OF DATA 
I'rEMS FOLLOWING 

a-byte name and 
Item 4, S, or 6 
3-byte impure length 
and 3-byte pure 
lengt::.h 
None 
None 
None 
2 bYLes 

2 bytes 

N/A 
1 byte 
2 bytes 
4 bytes 
6 bytes 
8 byles 

120 bYLes 

a-byte external 
symbol name 
I-byte flag 
xxxx xxOO standard 

EXTRN 
xxxx xxOl weak 

EX'rRN 
xxxx xxlO include 

EX'l'RN 
4-byLe offset 
Item 4, 5, or 6 
8 --byte entry symbol 
l-byte flag 
xxxx xxOO slandard 

entry 
xxxx xx01 dala 

entry 
xxxx xxlO weak 

entry 
Item 4, 5, or 6 
I-byte length 
1-80 characters 
of command 

B-3 



TABLE B-2 i6-BIT LOADER ITEM DEFINITIONS 

LOADER I 
ITEM 

a 
1 
2 
3 

4 
5 
6 
7 
8 
9 
A 
B 

C 
D 
E 
EO 

El 

MEANING 

End of record 
End of program 
Perform chain 
Toggle absolute/relocatable 
mode 
Transfer address 
Load program address (ORG) 
Load reference address 
Load definition value 
2 bytes absolute data 
2 bytes relocatable data 
4 bytes absolute data 
2 bytes absolute and 2 
bytes relocatable data 
EXrrRN reference 
ENTRY definition 
Decode next item 
Declare common block 

Load common block 
definition value 

E2 i 2 bytes absolute block data 

E3 

E4 
E5 
E6 

F 

4 bytes absolute block data 

Reset sequence number to -1 
1 byte absolute data 
1 byte absolute block data 

Program label 

I NUMBER OF DATA 
I ITEMS FOLLOWING 

None 
None 
None 
None 

2'-byte address 
2 --byte address 
2-byLe address 
2-byte address 
2 bytes data 
2 bytes data 
4 bytes data 
4 bytes data 

6-byte name 
6-byte name 
Next item 
6-byte name 
2-byte size 
6'-byte name 
2-byte offset 
6-byte name 
2-byte offset 
2 bytes data 
6-byte name 
2-byte offset 
4 bytes data 
None 
1 byte data 
6-byte name 
2-byte offset 
1 byte data 
6-byte name 

All items are given in hexadecimal. Note that item E is actually 
a compound item whose interpretation depends on the item it 
follows. Item E and the following item are considered a single 
control item, however, and cannot be split across object records. 
This effectively allows more than 16 different control iLems, 
though most of them require only 1 nibble. 

B--4 48-050 FOD RDI 



A 

Absolute instruction 
ADC. See address length 
constant. 

Add address immediate 
instruction 

Add immediate short 
instruction 

Address constants 
Address length constant 
Address length data 
Address operation 

instructions 
Align instruction 
Alignment 

doubleword 
fullword 

halfword 
AND mask 
APU. See auxiliary 
processing unit. 

ArithmetiC expressions 
Arithmetic operators 
Assembler control 

instructions 
assembler control 
target 

Assembler instructions 
common mode 

Assembly listing 
source and object 

program statements 
symbol cross reference 
table 

Assembly process 
halting 

Auxiliary processing unit 
Auxiliary processing unit 
option 

B 

Batch assembly 
Batch assembly instructions 
Batch end instruction 
Batch instruction 
Block data instruction 
Block origin instruction 
Branch and link instructions 
Branch instructions 

C 

CAL instruction 
CAL/32 start options 
Character constants 

48-050 FOO ROl 

INDF~X 

3-S0 

4-6 

4-6 
3-39 
2-5 
4-8 

4-1 
3-50 

3-50 
3-33 
3-50 
3-33 
1-16 

2-1 
2--1 

4-5 
3-52 
3-52 
3-24 
4-3 

3-76 

3-76 

3-55 
3-10 

3-76 

3-62 
3-61 
3-62 
3-62 
3-71 
3-71 
1-17 
1-4 

4-5 
5-5 
3-43 

Circular LaC dependency 

Comment statements 
Common blocks 

FORTRAN compatible 
Common instruction 
Common mode 

immediate operation 
Common mode programming 

Complex data structures 
Compound conditional 

instructions 
Compound IF instructions 
Conditional assembly 
Conditional assembly 

instruction 
Conditional branch 

instructions 
branch and link 

Conditional no operation 
instruction 

Constants 
character 
decimal string 
hexadecimal 
integer 

Content control instructions 
Copy file 
Copy instruction 

Copy library instruction 
Cross reference instruction 
Cross reference listing 
Current location counter 

D 

Data definition instructions 
common mode data 
definition 

Data entry instruction 
Data structure instructions 
DCMO command 
Decimal string constants 

packed 
unpacked 

Define address length 
constant instruction 

Define address length 
storage instruction 

Define byte instruction 

Define command instruction 
Define constant instruction 

Define list instruction 

Define storage instruction 

3-49 
3-67 
3-1 

3-68 
3-68 

4-3 
4-3 
4-6 
3-68 

3-63 
3-63 
3-64 

3-62 

1-16 
1-17 

3-51 

3-43 
3-43 
3-36 
3-37 
3-74 
3-54 
3-54 
3-75 
3-53 
3-75 
3-78 
3-3 

3-31 

4-4 
3-28 
3-68 
3-76 
3-43 
3-43 
3-43 

4-4 

4-4 
3-43 
3-46 
3-48 
3-34 
3-43 
3-47 
4-9 
3-32 
3-68 

IND-l 



DO instruction 

E 

Eject instruction 
ELSE instruction 
End condition instruction 
END instruction 
End of task codes 
End structure instruction 
Entry instruction 
Equate instruction 

Error list instruction 
Error squeeze instruction 
Excess 64 notation 
Expressions 

evaluation of 
Extended branch instructions 
Extended branch mnemonics 

External instruction 
Externally defined symbols 
EXTRN. See external 

instruction. 

F 

Field 
name 
operand 
operation 

File copy instruction 
Floating point constants 

internal representation 
of 

Floating point registers 
double precision 
single precision 

Format control instructions 
FORTRAN blank common 
Forward reference 
Forward reference instruction 
Freeze instruction 

G 

Global symbols 
ADC 
LADC 

H 

Hardware 

IND---2 

register and immediate 
register and indexed 
storage 

register to register 
relocation 
segmentation 

3-67 

3-73 
3-63 
3-64 
3-53 
5-4 
3-68 
3-28 
3-24 
3-68 
3-75 
3-59 
3-42 

2-2 
3-23 
3-22 
3-27 
3-28 
3-30 

3-3 
3-5 
3-4 
3-55 
3-41 
3-42 

3-42 

1-3 
1-3 
3-73 
3-68 
3-25 
3-56 
3-75 

4-6 
4-6 

1-8 

1-7 
1-6 
1-6 
1-6 

Header information 
printing of 

Hexadecimal constant 

I,J ,K 

I/O instructions 
IF instruction 
Impure instruction 
Include instruction 
Instruction execution 

order of 
Instruction statements 

assembler 
character positions 
fixed format 
free format 
machine 

Instruction variations 
Instructions 

absolute 
add address immediate 
address operation 
align 
assembler 
assembler control 
batch 
batch end 
block data 
block origin 
branch on false 
condition short 

branch on true condition 
short 

CAL 
common 
compare 
compound conditional 
compound IF 
conditional assembly 
conditional branch 
conditional no operation 
content control 
copy library 
cross reference 
data definition 
data entry 
data structures 
define address length 
define byte 
define constant 
define list 
do 
eject 
else 
end 
end condition 
end structure 
entry 
equate 
error list 
error squeeze 
external 
format control 
forward reference 

3-72 
3-36 

1-5 
3-63 
3-49 
3-31 

1-4 

3-1 
3-2 
3-2 
3-2 
3-1 
1-17 

3-50 
4-6 
4-1 
3-50 
3-24 
3-52 
3-62 
3-62 
3-71 
3-71 

3-23 

3-23 
4-5 
3-68 
1-17 
3-63 
3-63 
3-62 
1-16 
3-51 
3-73 
3-53 
3-75 
4-3 
3-28 
3-68 
4-4 
3-45 
3-43 
3-47 
3-67 
3-73 
3-63 
3-53 
3-64 
3-68 
3-28 
3-24 
3-75 
3-59 
3-28 
3-73 
3-56 

48-050 FOO ROl 



Instructions (Continued) 
freeze 
I/O 
IF 
inunediate short 
impure 
line count 
list conditional 
list macro 
list unreferenced symbols 
listing control 
listing indentification 
load inunediate 
load multiple 
load PSW 

message 
no cross 
no freeze 
no list 
no list conditional 
no list macro 
no list unreferenced 

symbols 
no RX3 
no squeeze 
no squeeze check 
no warning 
NOCAL 
origin 
pass pause 
pause 
program 
pure 
register and inunediate 
register and indexed 
storage 

register to register 
scratch 
sequence check 
simple IF 
simulate interrupt 
space 
squeeze 
store 
store multiple 
structure 
structure definition 
structure initialization 
symbol definition 
target 
test 
title 
unreferenced externals 
warning 
weak entry 
weak external 
width 

Integer constants 
address 
alignment of 
double precision 
floating point 

floating point 
fullword 
halfword 

48-050 FOO ROl 

3-7S 
1-17 
3-63 
4-6 
3-49 
3-73 
3-74 
3-75 
3-75 
3-72 
3-72 
4-3 
4-8 
1-17 
4-9 
3-61 
3-7!5 
3-7!5 
3-74 
3-74 
3-75 

3-75 
3-59 
3-59 
3-60 
3-75 
4-5 
3-49 
3-60 
3-55 
3-72 
3-48 
3-7 

3-6 
3-5 
3-60 
3-60 
3-66 
1-17 
3-73 
3-55 
1-17 
4-8 
3-68 
3-68 
3-71 
3-24 
3-52 
1-17 
3-72 
3-62 
3-75 
3-28 
3-28 
3-73 

3-39 
3-39 

3-42 
3-41 
3-37 
3-37 

Integer constants 
(Continued) 
single precision 
floating point 

L 

LADC. See log of address 
length constant. 

Library files 
Line count instruction 
Linked list structure 
List conditional instruction 
List instruction 
List macro instruction 
List unreferenced symbols 

instruction 
Listing control instructions 
Listing identification 

instructions 
Load inunediate instruction 
Load multiple instruction 
Load PSW instruction 
LOC. See location counter. 
Location counter instructions 
Log of address length 

constant 
Logical expressions 
Logical unit assignment 

M 

Machine instructions 
16-bit 
conunon assembly 

language/32 (CAL/32) 
Main memory 

accessing 
Memory addresses 

16-bit processors 
32-bit processors 

Message instruction 
Mixed expressions 
Mixed mode computations 
Mode 

absolute 
optimization 

relocatable 
Model 3200MPS System 

machine instructions and 
mnemonics for 

Multiprocessing system 
standard tasks 

Name field 
characters 
symbols 

N 

Nested conditionals 

No cross instruction 

3-42 

3-53 
3-73 
3-70 
3-74 
3-74 
3-75 

3-75 
3-72 

3-72 
4-3 
4-8 
4-8 

3-48 

2-5 
2-2 
5-1 

1-6 

3-10 

1-5 

1-5 
1-5 
3-61 
2-2 
4-5 

3-49 
3-56 
3-58 
3-49 

3-19 

1-3 

3-3 
3-3 
3-65 
3-67 
3-75 

IND-3 



No freeze instruction 
No list conditionals 

instruction 
No list instruction 
No list macro instruction 
No list unreferenced symbols 

instruction 
No RX3 instruction 
No sequence check instruction 
No squeeze instruction 
No warning instruction 
NOCAL instruction 

o 

Offset counter 
Operand field 
Operation field 
Optimization process 
Origin instruction 
Origin statements 
Overlay 

path 

P 

Packed decimal string 
constant 

Pass pause instruction 
Pause instruction 
POSITION command 
Privileged system function 
Program instruction 
Program status word 

condition code 
location counter 
status descriptor 

Programming 
common mode 

Programs 
absolute 
relocatable 

Pseu'do instructions 
APU 
NAPU 

PSF. See privileged system 
function. 

PSW. See program status 
word. 

Pure instruction 
Pure segment 

Q 

Quantities 
absolute 
relocatable 

R 

Register and immediate 
instructions 

[ND-4 

3-75 

3-74 
3-74 
3-75 

3-75 
3-59 
3-60 
3-59 
3-75 
4-5 

3-68 
3-5 
3-4 
3-56 
3-49 
3-68 

3-30 

3-43 
3-60 
3-55 
3-30 
3-19 
3-72 

1-4 
1-4 
1-4 

4-1 

1-5 
1-5 

3-76 
3-76 

3-48 
3-48 

2-2 
2-2 

3-7 

Register and immediate 
instructions (16-bit) 

Register and immediate one 
instructions (32-bit) 

Register and immediate two 
instructions (32-bit) 

Register and indexed storage 
instruction (16-bit) 

Register and indexed storage 
instructions 

Register and indexed storage 
one instructions 

Register and indexed storage 
three instructions 

Register to register 
instructions 

Register to register 
instructions (16-bit) 

S 

Scratch instruction 
Sequence check instruction 
Sequence checking instruction 
Short form instructions 

16-bit 
32-bit 

Simple IF instruction 
Source input file 

last instruction in 
Source statements 

comment 
instruction 

Space instruction 
Space optimization 
Special circumstances bit 
Special instructions 
Squeeze instruction 
Squeeze related instructions 
Start options 

APU 
NAPU 

Store multiple instruction 
String processing 

instructions 

Structure definition 
instructions 

Structure initialization 
instruction 

Structure instruction 
Subroutines 

branching to 
returning from 

Symbol definition 
data definition 
define constant 
define storage 
include 

Symbol definition instruction 
Symbols 

character 
decimal 
externally referenced 

1-8 

1-12 

1-12 

1-7 

3-6 

1-10 

1-11 

3-5 

1-6 
1-9 

3-60 
3-60 
3-59 

1-8 
1-13 
3-66 

3-53 

3-1 
3-1 
3-73 
3-55 
1-15 
4-8 
3-55 
3-59 

3-76 
3-76 
4-8 

1-14 
3-45 

3-68 

3-71 
3-68 

1-17 
1-17 

3-31 
3-34 
3-32 
3-31 
3-24 

2-3 
2-3 
3-28 

48-050 FOO ROl 



global 
hexadecimal 
implicit 

Symbols and expressions 
System architecture 

multiprocessing 
uniprocessing 

T 

Target machine code 
Task establishment 
Temporary storage 

types of 
Title instruction 

48-050 FOO ROl 

2-3 
2-3 
2-3 
2-1 

1-1 
1-1 

4-1 
5-7 

1-3 
3-72 

U,V 

Unpacked decimal string 
constant 

Unreferenced externals 
instructions 

Unreferenced symbols 

W-z 

Warning instruction 
Weak entry instruction 
Weak entry points 
Weak external instruction 
Width instruction 

3-44 

3-62 
3-75 

3-75 
3-28 
3-29 
3-28 
3-73 

INO-5 





I 
I 
I 
I 
I 
I 
I 
I 

UJI I 
Z' 

:::ii I 
'" z'l o 
..JI 

<tl 
t-

a'i 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

PUBLICATION COMMENT FORM 

Please use this postage-paid fOfm to make any comments, suggestions, criticisms, etc. concerning 
this publication. 

From __________________ Date _______________ _ 

Title _________________ Publication Title --_________ _ 

Company _________________ Publication Number __________ _ 

Address _______ -,-_____ _ 

FOLD FOLD 

Check the appropriate item. 

0 Lrror Page No. Drawing No.-_______ _ 

D Addition Page No. Drawing No. ________ _ 

D Other Page No. Drawing No. ________ _ 

Explanation: 

FOLD FOLD 

Fold and Staple 
No postage necessary if mailed In U.S.A. 



STAPLE 

FOLD 

POSTAGE WILL BE PAID BY ADDRESSeE 

PERKIN-ELMER 
Computer Systems Dlvilion 
2 Crescent Place 
Oceanport, NJ 07757 

TeCH /PUBLICATIONS DEPT. MS 322A 

FOLD 

STAPLE 

1111I1 

STAPLE 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

FOLD 

FOLD 

STAPLE 

_I 


