
PERKIN-ELMER

OS/32
SYSTEM LEVEL

Programmer Reference Manual

48-040 FOO R02

The information in this document is subject to change without notice and should not be
construed as a commitment by The Perkin-Elmer Corporation. The Perkin-Elmer Corpo­
ration assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Elmer.

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757

© 1981, 1983 by The Perkin-Elmer Corporation

Printed in the United States of America

TABLE OF CONTENTS

PREFACE

CHAPTERS

l OS/32 SUBSYSTEMS

1.1
1.1. l

1. 2
1. 2 .1
1.2.l.l
1. 2. 2
1. 2. 3
1. 2. 4
1. 2. 5
1. 2. 6
1. 2. 7
1. 2. 8
1. 2. 9
1. 2 .10
1. 2 .11
1. 2 .12
1. 2. 13
1. 2 .14
1. 2. 15
1. 2. 16

INTRODUCTION
OS/32 Multiprocessing Support

SOFTWARE SUBSYSTEMB
Task Management Subsystem
Task Scheduling on a Model 3200MPS System
Job Accounting Subsystem
Memory Management Subsystem
Timer Management Subsystem
File Management Subsystem
Input/Output (I/O) Subsystem
Error Recording Subsystem
Memory Diagnostics Subsystem
Loader and Segmentation Subsystem
Basic Data Communications Subsystem
Console Monitor Subsystem
Command Processor Subsystem
System Initialization Subsystem
Internal Interrupt Subsystem
Optional User Supervisor Call (SVC) Subsystem
Floating Point Subsystem

2 PRIVILEGED TASKS

2.1

2.2
2.2.1
2.2.2

2.3

2.4

INTRODUCTION

EXECUTIVE TASKS (E·-TASKS)
Writing Executive 'rasks (E-Tasks)
OS/32 Data Structures Used by Executive
Tasks (E-tasks)

PRIVILEGED USER TASKS (U-TASKS)

DIAGNOSTIC TASKS (D-TASKS)

48-040 FOO R02

ix

1-1
1-2

1-3
1-5
1-8
1-9
1-10
1-11
1-12
1-12
1-13
1-13
1-13
1-14
1-15
1-15
1-16
1-16
1-17
1-17

2-1

2-2
2-2

2-3

2-7

2-7

i

CHAPTERS (Continued)

3 OS/32 SUPERVISOR CALLS (SVCs) FOR SYSTEM LEVEL
PROGRAMMING

3.1

3.2

3.3

3.4
3.4.1
3.4.2
3.4.3
3.4.4

3.5

3.6

3.7

3.8

3.8.l
3.8.2

3.8.3
3.8.4
3.8.5

3.9

3.9.l

3.9.2

3.9.3

3.9.4

3.9.5

3.9.6
3.9.7

3.9.7.1

3.9.7.2
3.9.7.3

3.9.7.4

INTRODUCTION

SVC 0: USER WRITTEN SUPERVISOR CALL (SVC)

SVC 2 CODE 0: MAKE JOURNAL ENTRIES

SVC 2 CODE 14: INTERNAL READER
Parameter Block for Option 0
Parameter Block for Option 1
SVC 2 Code 14 Status Codes
Progranuning Considerations

SVC 2 CODE 26: FETCH DEVICE NAME

SVC 2 CODE 27: MEMORY MANAGEMENT

SVC 6: SYSTEM TASK RELEASE

SVC 7: EXTENDED FUNCTIONS FOR PRIVILEGED
TASKS
SVC 7: Bare Disk Assignment
SVC 7 Code 0: Fetch Attributes for Bare
Disk Devices
SVC 7: Device Rename
SVC 7: Device Reprotect
SVC 7 Code X'FF80': Extended Close Function

SVC 13: AUXILIARY PROCESSING UNIT (APU)
CONTROL
SVC 13 Code 0: Fetch Logical Processor
Mapping Table (LPMT)
SVC 13 Code 1: Fetch Auxiliary Processing
Unit (APU) Status
SVC 13 Code 2: Auxiliary Processing Unit
(APU) Mapping
SVC 13 Code 3: Auxiliary Processing Unit
(APU) Control
SVC 13 Auxiliary Processing Unit (APU)
Hardware Status (SV13.APS) Field
SVC 13 Error Status Code (SV13.ERR) Field
Typical Option Coding Sequences for SVC 13
Code 2 and Code 3
Auxiliary Processing Unit (APU)
Initialization and Start up
Auxiliary Processing Unit (APU) Mark On
Effective Task Scheduling on the Auxiliary
Processing Unit (APU) Queue
Auxiliary Processing Unit (APU) Mark Off

3-1

3-3

3-4

3-6
3-6
3-8
3-10
3-10

3-12

3-14

3-17

3-20
3-20

3-23
3-25
3-26
3-28

3-31

3-32

3-34

3-41

3-44

3-50
3-54

3-57

3-57
3-57

3-58
3-59

ii 48-040 FOO R02

CHAPTERS (Continued)

4 SUPERVISOR CALL (SVC) INTERCEPTION

4.1

4.2

4.3

4.3.1
4.3.2

4.3.3

4.4

4.5

4.6

4.7

4.8

4.9

4 .10

4.11

4 .12

4 .13

4 .13 .1
4 .13. 2
4 .13. 3
4. 13. 4
4. 13. 5
4.13.6
4.13.7
4.13.8
4.13.9
4 .13 .10
4.13.11

4.14

INTRODUCTION

HOW SUPERVISOR CALL (SVC) INTERCEPTION WORKS

PREPARING A TASK FOR SUPERVISOR CALL (SVC)
INTERCEPTION
Request Descriptor Block (RDB) Buffers
Circular List for Request Descriptor Block
(RDB) Buffers
Task Event Trap

CREATING INTERCEPT PATHS (ICREATE)

HOW TO CREATE A PS:EUDO DEVICE OR TASK
WITH ICREATE

USE OF GENERIC NAMING FOR PSEUDO DEVICES
AND TASKS

FUNCTIONAL SUMMARY OF SUPERVISOR CALL (SVC)
INTERCEPTION

FULL AND MONITOR CONTROL INTERCEPT PATHS

HOW INTERCEPT PATHS HANDLE SUPERVISOR CALLS
(SVCs) OCCURRING AT END OF TASK

TERMINATING THE INTERCEPTED SUPERVISOR CALLS
(SVCs)

HOW TO REMOVE INTERCEPT PATHS

ERROR HANDLING

MACROS USED WITH SUPERVISOR CALL (SVC)
INTERCEPTION
ICREATE Macro
IREMOVE Macro
IGET Macro
IPUT Macro
ICONT Macro
!PROCEED Macro
IROLL Macro
ITERM Macro
ITRAP Macro
IERRTST Macro
$RDB Macro

SAMPLE SUPERVISOR CALL (SVC) INTERCEPTION
PROGRAMS

48-040 FOO R02

4-1

4-3

4-4
4-4

4-6
4-8

4-8

4-9

4-9

4-10

4-11

4-13

4-13

4-14

4-14

4-16
4-16
4-22
4-24
4-26
4-27
4-28
4-29
4-30
4-32
4-34
4-35

4-36

iii

CHAPTERS (Continued)

5 OS/32 SUPPORTED INPUT/OUTPUT (I/O) DEVICES

5.1

5.2
5.2.1
5.2.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5 .10
5.10.1
5.10.2

5.11

5. 12

5. 13

5. 14

5.15

5.16

5 .17

5.18

5. 19

INTRODUCTION

VERTICAL FORMS CONTROL (VFC)
Horizontal Tabs
Theory of Operation

CARD READERS

CARD READER/PUNCH DEVICES

TELETYPE (TTY) READER/PUNCH

TELETYPE (TTY) KEYBOARD/PRINTER

PAPER TAPE EQUIPMENT

LINE PRINTERS

TAPE CASSETTE

MAGNETIC TAPE
Standard Input/Output (I/O)
Gapless Input/Output (I/0)

DISK STORAGE

FLOPPY DISK

VIDEO DISPLAY UNIT (VDU) TERMINALS

8-LINE INTERRUPT MODULE

DIGITAL MULTIPLEXOR

CONVERSION EQUIPMENT

ANALOG INPUT CONTROLLER

ANALOG OUTPUT CONTROLLER

DIGITAL INPUT/OUTPUT (DIO) CONTROLLER

6 PROGRAMMING IN A MODEL 3200MPS SYSTEM MULTIPROCESSING
ENVIRONMENT

6.1

6.2

INTRODUCTION

DESIGNING TASKS TO RUN ON A MULTIPROCESSING
SYSTF.M

5-1

5-1
5-2
5-2

5-3

5-4

5-6

5-7

5-8

5-9

5-9

5-9
5-10
5-11

5-11

5-12

5-12

5-13

5-13

5-13

5-14

5-15

5-15

6-1

6-1

iv 48-040 FOO R02

CHAPTERS (Continued)

6.3

6.4

6.5
6.5.1

6.5.2

6.5.3

6.6
6.6.1

6.7

6.8

ASSIGNING A TASK TO A PROCESSOR

PREPARING AN AUXILIARY PROCESSING UNIT
(APU) FOR TASK EXECUTION

TASK RESCHEDULING
Monitoring and Preempting Auxiliary
Processing Unit (APU) Task Execution
Ve~ifying Task Transfer to an Auxiliary
Processing Unit (APU)
Transferring a Task from an Auxiliary
Processing Unit (APU) to the Central
Processing Unit (CPU)

PREVENTING MEMORY ACCESS CONFLICTS
Avoiding System Deadlock

MEASURING REAL-TIME PERFORMANCE ON A
MODEL 3200MPS SYSTEM

WHERE TO GO FOR MORE INFORMATION

APPENDIXES

A

B

FIGURES

1-1

3-1
3-2

3-3

3-4
3-5
3-6

3-7

3-8

OS/32 SUPPORTED INPUT/OUTPUT (I/O) DEVICES

SUPPORTED VERTICAL FORMS CONTROL (VFC)
CHARACTER SET

Typical Model 3200MPS System Configuration

SVC 2 Code 0 Parameter Block Format and Coding
SVC 2 Code 14 Parameter Block Format and Coding
for Option 0
SVC 2 Code 14 Parameter Block Format and Coding
for Option 1
SVC 2 Code 26 Parameter Block Format and Coding
SVC 2 Code 27 Parameter Block Format and Coding
SVC 6 Release Function Parameter Block Format
and Coding
SVC 7 Bare Disk Assignment Parameter Block
Format and Coding
SVC 7 Code 0 Parameter Block Format and Coding

48-040 FOO R02

6-2

6-4

6-6

6-6

6-11

6-12

6-13
6-13

6-14

6-17

A-1

B-1

1-3

3-4

3-7

3-9
3-12
3-14

3-18

3-21
3-23

v

FIGURES (Continued)

3-9

3-10

3-11

3-12
3-13
3-14
3-15
3-16

3-17
3-18
3-19
3-20

4-1
4-2

5-1
5-2

6-1

TABLES

1-1

2-1

3-1
3-2
3-3
3-4

3-5
3-6

3-7
3-8
3-9

3-10

4-1
4-2
4-3

vi

SVC 7 Device Rename Parameter Block Format
and Coding
SVC 7 Device Reprotect Parameter Block Format
and Coding
SVC 7 Code X'FF80' Parameter Block Format and
Coding
SVC 13 Code O Parameter Block Format and Coding
Data Bu£fer Format for SVC 13 Code 0
SVC 13 Code 1 Parameter Block Format and Coding
Data Buff er Format for SVC 13 Code 1
Format of APU Software Status Field Returned
to Task Buffer
SVC 13 Code 2 Parameter Block Format and Coding
SVC 13 Code 3 Parameter Block Format and Coding
SVC 13 APU Control Options Field (SV13.0PT)
APU Hardware Response Byte (SV13.APS)

Request Descriptor Block
System Task Buff er List (Standard Circular List)

Random Field Format
Analog Output Data Format

Valid APU Operating States

PERKIN-ELMER OS/32 SOFTWARE SUPPORT

OS/32 DATA STRUCTURES USED BY E-TASKS

OS/32 SVCs FOR SYSTEM LEVEL PROGRAMMING
SVC 2 CODE 14 STATUS CODES
SVC 13 FUNCTION CODES
BIT DEFINITIONS FOR APU SOFTWARE STATUS FIELD
RETURNED TO TASK BUFFER
APU OPTIONS FIELD BIT DEFINITIONS
SVC 13 CODE 3 APU CONTROL OPTIONS (SV13.0PT)
FIELD BIT DEFINITIONS
SVC 13 CODE 3 APU COMMANDS (SV13.DOP)
APU HARDWARE RESPONSE BYTE BIT DEFINITIONS
ERROR CODES FOR ERROR CODE BYTE OF APU
HARDWARE STATUS (SV13.APS) FIELD
SVC 13 ERROR STATUS CODES (SV13.ERR)

SYSTEM MACROS FOR SVC INTERCEPTION
ERROR CODES RETURNED FOR INTERCEPT MACROS
VALID COMBINATIONS FOR SVC, MODE, AND NAME
PARAMETERS

3-25

3-27

3-29
3-32
3-34
3-35
3-37

3-38
3-42
3-45
3-47
3-51

4-5
4-7

5-14
5-15

6-5

1-4

2-4

3-1
3-10
3-31.

3-39
3-40

3-47
3-49
3-51

3-53
3-55

4-1
4-15

4-19

48-040 FOO R02

TABLES (Continued)

6-1
6-2

INDEX

TIMER MACROS
ADDITIONAL INFORMATION SOURCES FOR MODEL
3200MPS SYSTEM PROGRAMMING

48-040 FOO R02

6-15

6-17

Ind-1

vii

PREFACE

This manual describes privileged supervisor call (SVC) facilities
and other operating system features intended for use by system
programmers, system analysts, designers, engineers, and training
instructors.

Chapter 1 presents an overview of the operating system and the
software it supports. Chapter 2 describes the privileged task
types supported by OS/32. Chapter 3 explains how to use the SVC
0, SVC 2, SVC 6, SVC 7, and SVC 13 facilities for system level
programming. Chapter 4 contains a functional description of the
SVC interception feature. The vertical forms control (VFC)
feature is described in Chapter 5 along with other device
independent and dependent features supported by OS/32. Chapter
6 describes the techniques used in writing system level control
programs that take advantage of the increased throughput offered
by a Perkin-Elmer Model 3200MPS System.

The R02 revision of this manual introduces enhancements to the
OS/32 task manager for programming in a Model 3200MPS System
multiprocessing environment. Features for efficient use of this
expanded management ability include selection and assignment of
tasks to specific processor units, rescheduling of tasks from one
processor to another, and prevention of invalid data from
concurrently running tasks. Real-time performance of individual
tasks in the system is also measured.

This manual is intended for use with the OS/32 R07.l software
release or higher. Additional material that is specifically
related to the Model 3200MPS System has been included. These
Model 3200MPS System features are supported by the OS/32 R07.l
software release and higher. Throughout the text, these features
are identified as applicable only to the Model 3200MPS System.

For further information
32-bit manuals, see
Summary.

48-040 FOO R02

on
the

the contents of all
32-Bit Systems User

Perkin-Elmer
Documentation

ix

1.1 INTRODUCTION

CHAPTER 1
OS/32 SUBSYSTEMS

Perkin-Elmer OS/32 is a general purpose, event-driven operating
system for Perkin-Elmer 32-bit computer systems. Custom versions
of OS/32 are created through the use of a system generation
program (SYSGEN/32) that provides parameters for tailoring OS/32
to a specific installation. The combined hardware and software
capabilities of a Perkin-Elmer 32-bit computer system provide
support for all phases of program and system development. OS/32
supports concurrent multiprogramming, with up to 252 user
·programs written in any of the supported languages. The program
development facilities are designed to m1n1m1ze the time and
effort needed to test, debug, ,and integrate application programs
and systems. In addition, the OS/32 command language allows
complex jobs to be performed with minimum operator intervention.

OS/32 incorporates a powerful interrupt handling capability at
the task level. This capability permits a task to be interrupted
during its normal execution sequence by a variety of hardware and
software conditions.

The OS/32 roll function and the virtual task manager (VTM) allow
the memory requirements of a task running under OS/32 to exceed
available task memory.

The roll function allows portions of a task to be rolled out to
disk until enough memory is available for the entire task. In
real-time applications, rolling is commonly used to queue low
priority tasks while tasks of higher priority are active. The
roll eligibility of a task is established when the task is link
edited. However, a task option is provided to prevent roll of a
task when necessary (e.g., when the task must be able to respond
to real-time events).

VTM is a user transparent virtual memory capability that allows
tasks consisting of up to 16Mb of code and data to execute in as
little as 128kb of memory. This feature is provided by the OS/32
linkage editor. See the OS/32 Link Reference Manual for more
information.

A basic data communications facilities package is supplied with
OS/32. This package also provides support for higher level
Perkin-Elmer data communicat ion:s products.

48-040 FOO R02 1-1

The scope and power of the operating system can be extended
through these Perkin-Elmer OS/32 companion products:

• Multi-Terminal Monitor (MTM)

• Reliance

MTM is a subsystem monitor that uses the subtasking capabilities
of OS/32 to provide a time-sliced, interactive program
development environment for up to 64 concurrent terminal users.
MTM simultaneously supports both online terminal users and batch
background tasks. MTM terminal users are also provided with an
input/output (I/O) spooler for use with slow speed devices.

Reliance is a transaction software system, consisting of the
Integrated Transaction Controller (ITC), Data Management System
(DMS/32), and industry standard COBOL. ITC allocates system
resources, develops screen formats, and controls terminals.
DMS/32 supervises disk allocation and data access.

1.1.1 OS/32 Multiprocessing Support

OS/32 provides a transparent multiprocessing capability for use
with the Perkin-Elmer Model 3200MPS System. This system consists
of one central processing unit (CPU) and from one to nine
auxiliary processing units (APUs). See Figure 1-1. A task can
execute on an APU without any special preparation, unless it is
going to take advantage of . certain features specific to the
multiprocessing system (e.g., APU mapping, APU control, etc.).
See Chapter 3 for more information on these features.

Each processor in a Model 3200MPS System has a unique identifying
number. OS/32 uses the processor numbers to define a set of
logical processing units (LPUs). Each LPU is mapped to one
processor number through the logical processor mapping table
(LPMT). A task may execute on the processor that is mapped to
the LPU assigned to the task.

If a task is mainly compute intensive, executing that task on an
APU increases overall system performance. An 1/0 intensive task,
if directed to an APU, decreases system performance since each
1/0 request requires the task to be transferred back to the CPU
for OS/32 1/0 support services.

The main performance advantage of a multiprocessing system is
achieved when a problem is broken down into parts so that several
tasks on several processors can work on the problem at the same
time. See Chapter 6 for more information on progranuning from a
Perkin-Elmer Model 3200MPS System environment.

1-2 48-040 FOO R02

6269

CACHE

MUX BUS CPU

CONSOLE
RTSM

RTSM

GLOBAL
MEMORY

GLOBAL MEMORY BUS

CHANNEL CHANNEL
ADAPTER ••• ADAPTER

OMA BUS OMA BUS

CACHE CACHE

APU APU
#1 ••• #N

RTSM RTSM

Figure 1-1 Typical Model 3200MPS System Configuration

1.2 SOFTWARE SUBSYSTEMS

OS/32 consists of the following subsystems:

• Task management
• Job accounting
• Memory management
• Timer management
• File management
• Input/Output (I/O) management
• Error recording and reporting
• Memory diagnostics
• Loader and segmentation
• Basic communications
• Console monitor
• Command processor
• System initialization
• Internal interrupt
• Optional user supervisor call (SVC 14)
• Floating point

Table 1-1 summarizes the software supported by OS/32.

48-040 FOO R02 1-3

TABLE 1-1 PERKIN-ELMER OS/32 SOFTWARE SUPPORT

TYPE SOFTWARE PRODUCT I STD. I OPT. '

----------- -- -------------Program
Develop­
ment

Task management
Job accounting
Memory management
Timer management
File management
1/0 management
Error recording and reporting
Memory diagnostics
Loader and segmentation
Console monitor
Command processor
Floating point
Internal interrupt subsystem
*Integrated Transaction Controller (ITC)
Writable Control Store (WCS)
Multi-Terminal Monitor (MTM)

Program I Automatic interactive debugging
Debugging I system (AIDS)

Data Base
Manage­
ment

Data
Communi­
cations

Languages

I DEBUG/32

*Data management system (DMS/32)

Asynchronous data communications
Character synchronous communications
Bit synchronous communications
2780/3780 RJE emulation
3270 emulation
HASP/32

Common Microcode Assembler (MICROCAL)
Common Assembly Language/32 (CAL/32)
CAL Macro/32
FORTRAN VII Development (D) Compiler
FORTRAN VII Global Optimizing (0) Compiler
FORTRAN VII Universal Optimizing (Z)

Compiler
*COBOL
BASIC Level II
CORAL 66
RPG II
PASCAL

---·- -·-----------
Utilities Link

Edit
Text
Source Updater
Copy
Library Loader
Macro Library
Sort/Merge II
Patch
OS/32 Spooler
SPL/32
Fastchek
Fastback
Account Reporting Utility

x
x
x
x
x
x
x
x
x
x
x
x
x

x

x
x

x
x

x
x

x
x
x
x

x
x
x
x
x
x

x
x
x

x

x

x
x
x
x

x

x
x

x
x
x
x
x
x

x

x

* ITC, COBOL, and DMS/32 comprise the Perkin-Elmer Reliance software
system designed for transaction processing.

1-4 48-040 FOO R02

1.2.1 Task Management Subsystem

The task management subsystem allocates processor time for each
of the tasks executing in an OS/32 multi-tasking environment.
The task manager determines the order in which each task gains
processor control on a user defined priority basis. Task
priority levels range from 0 through 254 (0 being the highest
priority level). Of these 255 priority levels, 10 through 249
are available for user-written tasks, while l through 9 and 250
through 254 are reserved for system use.

The task manager maintains four priority levels for each task:

• Maximum

• Task

• Run

• Dispatch

Maximum priority, set by Link, is the highest priority level
(i.e., smallest number) that can be assigned to a task. Task
priority is the priority that is currently assigned to a task.
Initially, task priority is set when the task is linked, but this
priority can be changed after the task is loaded. However, task
priority can never be set higher than the maximum priority set by
Link.

Run priority may be set dynamically to a value ranging from the
task priority to task priority plus n. The value of n is based
on the behavior of the task. Run priority can only be set for
tasks that have dynamic time-slice/priority scheduling enabled.
If dynamic scheduli.ng is not enabled, a task's run priority is
equal to its task priority. Currently, only MTM enables dynamic
time-slice/priority scheduling.

A dispatched task usually has a priority level equal to its task
priority, even if dynamic scheduli.ng is enabled. Nevertheless,
if a higher priority task requires specific system resources
(e.g., a disk directory or bit map) that are currently controlled
by a lower priority task, the dispatch priority of this lower
priority task is raised to the priority of the higher priority
task waiting for the resource. When a task releases control of
a system resource, its dispatch priority is resel to its run
priority.

Tasks competing for processor time are maintained i.n priority
order on a task control block (TCB) queue known as the ready
queue. Tasks competing for both memory and processor time are
maintained in priority order on the roll-in queue. Tasks at the
same priority level are serviced on a round-robin basis; i.e.,
tasks are added to the ready queue or roll-in queue behind tasks
of the same priority.

48-040 FOO R02 1-5

In the absence of time-slicing, once a task gains control of the
processor, it continues executing until it voluntarily
relinquishes that control or is preempted by a higher priority
task. A task will relinquish control of the processor to another
task when:

• it is paused by the system operator;

• it is cancelled by the system operator, user, or by another
task;

• a higher priority task becomes ready due to an external event,
such as the completion of an outstanding 1/0 request;

• it executes a supervisor call (SVC) that places it in a wait,
paused, or dormant state;

• it initiates I/O to a device; or

• its time-slice expires.

After the task relinquishes control of the processor, it is
returned to the ready queue where its TCB is placed behind the
TCBs of tasks of equal priority. This allows the other tasks on
the queue to be given a turn on the processor.

To determine which task should have control of the processor, the
task manager chooses the highest priority task among those on the
ready queue, the roll-in queue, and any currently executing task.
If a task is chosen from one of the queues, the currently
executing task is placed back on the ready queue and the chosen
task becomes the current task.

The task manager supports two types of time-slicing:

• System time-slice

• Dynamic time-slice

System time-slicing may be enabled by the operator to limit the
execution of a task so that round-robin scheduling of priority
tasks can take effect. Time-slicing allows tasks of equal
priority to receive equal shares of processing time.

1-6 48-040 FOO R02

Dynamic time-slicing is enabled. only for MTM subtasks. The
dynamic time-slice is calculated as:

slice = 1 + 2**rn

Where:

m task priority - run priority + 1

The units of slice are line frequency clock ticks (one clock tick
= 8.333 milliseconds).

Run priority is adjusted whenever a task uses up a time-slice or
is removed.from a wait state. When a task uses up a time-slice,
its run priority is adjusted as follows:

New run priority = run priority + 1 or
task pr ic>r ity + k (whichever is smaller)

Where:

k = number of dynamically scheduled tasks or 12
(whichever is smaller)

Because a task that is placed in a wait state has not used up its
last assigned time-slice, the run-priority of the task when it is
removed from suspension is adjusted as follows:

Run priority = run priority - 1 or
task priority (whichever is larger)

The task manager also performs intra-task context switches to
allow tasks to receive and handle task traps in response to
synchronous and asynchronous trap-causing events. Synchronous
events include task-initiated faults (e.g., arithmetic, memory
access, illegal instruction, etc.) and SVC 14 traps.
Asynchronous events originate outside of a task and include the
task queue traps (e.g., I/O and timer completion, SVC 6 send
message/data and queue parameter., etc.) and the task event traps
currently associated only with SVC intercept support.

In addition to task scheduling and task trap support, the task
manager handles the state of a task during execution. Task
execution state is determined by the setting of the program
status word (PSW). The task manager switches or exits tasks from
one execution state to another.

48-040 FOO R02 1-7

1.2.1.1 Task Scheduling on a Model 3200MPS System

The OS/32 task manager uses four different types of queues to
facilitate task scheduling on a Model 3200MPS System:

• CPU ready queue

• CPU receive queue

• APU ready queue (one per APU)

• CPU roll-in queue

When a task requests processor time on a Model 3200MPS System,
the task manager adds the TCB for that task to the CPU ready
queue. The task manager selects a task for execution from the
queue on a strict priority basis. After selecting a task, the
task manager then decides whether the task is to be executed on
the CPU or on one of the APUs in the system. A task is
transferred to an APU for processing only when all of the
following conditions are true:

• The task is being dispatched to the user execution state. (If
the task is being dispatched to a system state, it will ~un on
the CPU.)

• The task is assigned to an LPU number greater than zero.
(Each task running on the Model 3200MPS System is assigned an
LPU number. An LPU number is mapped to an APU or the CPU; LPU
O is always mapped to the CPU.)

• The task status word (TSW) does not specify CPU-override
status. (If the CPU-override status bit of the TSW is set,
the task is executed on the CPU.)

• The APU to which the LPU number is mapped is marked on.

When all of the above conditions are true for the highest
priority task on the CPU ready queue, the task manager transfers
the TCB for that task from the CPU ready queue to an APU. If the
APU is waiting for the task (i.e., APU processing has been
suspended until the task arrives), the TCB becomes the current
TCB and execution begins immediately. If the APU is not waiting
for the task, the TCB is placed on the APU ready queue.

Whenever it is not processing a task, the APU continually checks
its APU ready queue. If the APU finds entries on the queue, it
will execute the task at the top of the queue.

1-8 48-040 FOO R02

Once the APU starts a task, the task will continue to execute
until it relinquishes control voluntarily (reschedules itself),
encounters a fault, issues an SVC, or is returned to the CPU via
an operating system request on behalf of a monitoring task,
operator command, etc. The task may reschedule itself to the
rear of the APU ready queue or to the CPU. In the latter case,
and in the cases of a fault, or SVC or operating system request,
the task is returned to the CPU receive queue. The task waits on
the receive queue until the CPU places the task on the CPU ready
queue.

If the task is placed on the receive queue as a result of a
fault, the task is moved to the CPU ready queue. If the
appropriate bits in the TSW are set, the task's TSW location is
set to the address of the task trap handler. The task can then
be dispatched back to the APU ready queue.

If the task is placed on the receive queue as a result of issuing
an SVC, the task is moved to the CPU ready queue and executed on
the CPU until SVC processing is complete. The task can then
automatically move back to the ~~Pu ready queue.

Rollable tasks are moved from the roll-in queue to
queue and are processed in the same manner as
running on a Model 3200MPS System. Rollable
dispatched to an APU. Howevez·, while a task is
APU (or queued for execution to an APU) the task
nonrollable by the system.

1.2.2 Job Accounting Subsystem

the CPU ready
any other task
tasks may be

executing on an
is considered

The job accounting subsystem reports CPU usage and time elapsed,
memory and disk space utilized, and number and length of I/O
transfers by device class. The job accounting subsystem contains
the:

• Data collection facility

• Account reporting utility

The data collection facility collects accounting data on all user
activities and stores this information in the accounting
transaction file (ATF) when the task terminates. The account
reporting utility is designed to accommodate specific customer
site requirements. The performance data collected by the data
collection facility is prepared by the account reporting utility
for use by system maintenance personnel. Reports can be
requested for individual usei:: accounts, summaries of user
accounts, and system usage. See the OS/32 System Support
Utilities Reference Manual.

48-040 FOO R02 1-9

Through the DISPT..AY ACCOUNTING command, the system operator has
access to accounting data for on~ or all tasks tn the system.

NOTE

The OS/32 job accounting subsystem does
not report APU usage and time elapsed in
a Model 3200MPS System.

1.2.3 Memory Management Subsystem

When a task is loaded, the memory management subsystem
dynamically allocates necessary space in memory. OS/32 supports
three types of memory:

• Local

• Shared

• System

Local memory is physically contiguous starting from location o
and contains the operating system, task space, and system space.

Shared memory is located above local memory and is not required
to be contiguous. Global task common segments located in shared
memory can be used by more than one processor.

System memory is that which is shared by all processors in a
Model 3200MPS System. System memory contains both local and
shared areas. Local memory is used by the CPU and all APUs.

Local memory is allocated on a first fit basis when sufficient
memory is available for a specific task. Free segments are
allocated in ascending address order. When no space is available
for a task, the memory manager determines which tasks are to be
rolled out to ensure that higher priority tasks take precedence.
When memory becomes free, adjacent areas are merged together to
minimize search time and to provide large free blocks of memory
for bigger tasks. System task space is also maintained by the
memory manager and is dynamically allocated when a task or device
structure is built.

The memory manager maintains task space through free and
allocated lists.. Segments are allocated dynamically on a first
fit basis by searching the free lists. When free task space is
allocated to a segment, it is removed from the free list and
connected to the allocated list. This list is called the segment
control list (SCL). Similarly, whenever a segment is released,
its memory space is removed from the allocated list and connected
to (or merged into) the free list.

1-10 48-040 FOO R02

1.2.4 Timer Management Subsystem

The timer management subsystem provides tasks with a set of timer
management/maintenance services. These services control all time
dependent functions (e.g., time-slicing, I/O, job accounting, and
file dating) through the universal clock.

The following timer queues are maintained by the timer management
subsystem:

• Time of day

• Device timeout

• Communications device timeout

• Interval timer

There are several timer routines that service
Entries are placed on the time of day queue
timer queue as a result of supervisor call 2
requests. The control blocks on the time
referred to as timer queue elem•:.mts (TMQs). The
queue has the same format as the time of
maintained as a separate queue. ·

these queues.
and the interval

(SVC 2) timer
of day queue are

interval timer
day queue but is

The universal clock consists of a line frequency clock (LFC) and
a precision interval clock (PIC). In a 60Hz system, the LFC
generates an interrupt every 8.3 milliseconds, or 120 times per
second. In a SOHz system, the LFC generates an interrupt every
10 milliseconds or 100 times per second. The PIC interrupts when
a task's requested time interval has expired or at intervals of
4,096 milliseconds, whichever is shorter. If the interval
terminates or the time of day is reached, the TMQ is removed from
system space and a trap is generate~, or the task is removed from
timer wait.

In a Model 3200MPS System configuration, the real-time support
module (RTSM) provides each processor with a 32-bit real-time
counter for timing program execution. These counters are
incremented every microsecond by an RTSM lMHz on-board
oscillator. The RRTC instruction allows tasks to read the
counters. See the Perkin-Elmer Model 3200MPS System Instruction
Set Reference Manual for more information.

48-040 FOO R02 1-11

1.2.5 File Management Subsystem

The OS/32 file management subsystem stores and retrieves
information for a task on secondary storage devices (disks,
floppy disks, etc.). The file manager partitions this storage
into smaller areas, called files, that can be used by tasks for
data and program storage. In addition, the file manager provides
tasks with the following support services for file management:

Allocate

Delete

Rename

Open

Close

Fetch
attributes

Checkpoint

Software
density
selection

creates a file by allocating space on a
secondary storage device.

removes a file from a secondary storage
device.

changes the name of a file.

assigns an lu to a file.

cancels the lu assignment.

examines the attributes of a file.

ensures that all data in an output buffer is
written to a secondary storage device.

selects recording density
magnetic tape drives.

for 6250 bpi

1.2.6 Input/Output (1/0) Subsystem

The I/O subsystem provides a uniform programming interface
between the task and external devices. 1/0 operations can occur
in the following task modes:

Wait

Proceed 1/0

Halt 1/0

Queued I/O

halts execution until
completed.

data transfer is

continues task execution during data transfer.

allows the task to cancel previous proceed 1/0
requests.

allows a task to queue 1/0 requests to a busy
device and continue execution until the device
is free.

A task trap mechanism can be used to report each completed 1/0
operation. Wait-only and test 1/0 functions allow the task to
synchronize its execution with the completed 1/0 operations.

1-12 48-040 FOO R02

1.2.7 Error Recording Subsystem

The error recording subsystem logs all data on disk errors for
the error reporting utility, which analyzes the data and
generates reports.

OS/32 memory error recording software supports the memory error
log hardware of the Perkin-Elmet· Series 3200 machines. Error log
hardware keeps a history ·of the si.ngle bit corrected memory
errors. The operating system reads the error log hardware and
stores the error information into an inter.nal error log buffer.
When the error log buff er is full, its contents are stored on an
error recording file with the date and time of the last error
recorded. When the error recording file is almost full, a
warning message is displayed on the system console indicating
that a new error recording file should be allocated or that the
error reporting utility should be initiated. The error reporti.ng
utility provides reports on the previously recorded error
information in the error recording file.

The current error status can be displayed to the system console
by using the DISPLAY ERRORS command. The internal error log
readout period can be changed by the system operator.

1.2.8 Memory Diagnostics Subsystem

The memory diagnostics subsystem eliminates inoperable memory
areas from the system without affecting task execution. It
allows the operating system to execute when portions of real
memory have been removed (holes) or when a part of the system is
powered down for maintenance. Memory can be tested, marked on,
and marked off through the operator MEMORY command or when the
operating system is initialized.

The marked off areas are noted as allocated in the memory map.
Memory is marked on when previously marked off memory is to be
used again. If an unrecoverable memory error occurs during task
execution on a Perkin-Elmer Series 3200 processor, the operating
system automatically marks off the area occupied by the task.

1.2.9 Loader and Segmentation Subsystem

The OS/32 resident loader is responsible for loading tasks,
reentrant libraries, task common (TCOM) segments, and partial
images. These tasks and segments must have been built by Link.
Each task image generated by Link contains information related to
the task (e.g., task options, size, libraries referenced) in a
record called the loader information block (LIB).

The OS/32 resident loader uses this information to generate data
areas, set the task options, create segment tables for the tasks,
and map the task segments.

48-040 FOO R02 1-13

All user tasks (u-taeke) in OS/32 are built ae though they
loaded at physical address 0 in memory.
relocation/protection hardware automatically relocates the
addresses at run-time by using the task segment table.
process is totally transparent to the user.

were
The

task
This

The loader is also responsible for creating the task environment;
allocating roll files; creating, maintaining, and deleting
segment tables; maintaining a segment control list; and mapping
and unmapping partial images.

The task image can be divided into pure and impure segments by
specifying the SEGMENTED task option when the task is built by
Link. Regardless of the number of times a task is loaded, the
loader will allow only one copy of the task's pure segment in
memory at any one time. A separate copy of the task's impure
segment is loaded each time the task is loaded. The
relocation/protection hardware ensures the integrity of pure
segments by allowing only read and execute only access privileges
to those segments.

Access to task common is achieved
assembly programs. The linkages
conunands are also used to request
privileges for task common blocks.
Manual for more information.

mnemonically in FORTRAN or
are resolved by Link. Link
read, write, and execute

See the OS/32 Link Reference

1.2.10 Basic Data Communications Subsystem

The basic data communications subsystem provides a software
interface between tasks and common carrier facilities. Basic
data communications facilities allow the user to access remote
terminals or computers as though they were locally attached
peripherals. For example, with OS/32 Data Communications
software, a task performs 1/0 to a remote terminal in the same
manner as 1/0 to a local device.

In addition to providing device independent (logical 1/0) access
to the task, the subsystem provides a device dependent 1/0
capability that allows the systems programmer to tailor a
communications package to a particular installation. Such a
package can include device dependent and device independent
support of asynchronous line devices as well as device dependent
support of binary synchronous lines.

The OS/32 Basic Data Communications software support package is
required for all 32-bit communications products; e.g., HASP,
2780/3780 Remote Job Entry, and the ZDLC Channel Terminal
Manager, which supports the SDLC, HDLC, and ADCCP protocols.

1-14 48-040 FOO R02

1.2.11 Console Monitor Subsystem

The console monitor subsystem processes all 1/0 requests directed
to the system console device and the system log device from all
tasks including the command processor task. The console driver
is responsible for intercepting system console 1/0 requests and
for directing them to the console monitor or to another monitor
task such as MTM. All 1/0 operations between the system console
and tasks running under MTM are routed to the user's terminal
through MTM and not through the console monitor.

When a command is issued from the system console, the console
monitor issues an SVC 6 to the command processor notifying it of
a command to be processed. The command processor interprets the
command and issues an SVC 6 to the console monitor indicating
that it is ready to accept another command.

The console driver is a part of the OS/32 1/0 subsystem and is
the module that intercepts 1/0 requests to the system console,
processes them, and gives them to MTM or to the console monitor
to do the actual 1/0.

The console monitor is the first task dispatched at OS/32
initialization. The console monitor initializes both itself and
the dummy device control block (DCB) used by the console driver
to intercept requests from the system console. The monitor then
issues an SVC 6 to start the command processor.

1.2.12 Command Processor Subsystem

The command processor subsystem accepts commands from the system
console monitor, decodes them, and calls the appropriate
executor. Commands can be input to the command processor by
entering them directly through the system console or issuing them
through a foreground task which uses the system console as an
interactive I/O device. Commands input from a foreground task
are executed by the command processor in the same manner as
commands entered from the system console. If an error occurs
during execution of a command, the command processor outputs an
error message to the console.

An extension to the command processor, the command substitution
system (CSS) allows commonly performed sequences of operations to
be executed with one command. The CSS routines provide the user
with the ability to build, execute, and control files of operator
and MTM commands. The user establishes command files that are
called from the user console and executed in the user defined
sequence. In this way, complex operations can be carried out by
the user with few commands. These commands are analogous to
macro instructions in assembly language.

48-040 FOO R02 1-15

The command substitution system (CSS) provides a set of logical
CSS commands to conditionally control the precise sequence of
commands to be executed. Parameters can be passed as part of a
css call so that general sequences can be written that take on
specific meaning only when the parameters are substituted. Other
calls to css files can be imbedded within a CSS file (nested
calls).

The command processor normally runs at the second highest
priority level after the console monitor in OS/32. This task is
strictly trap d~iven and responds to the SVC 6 task queue
parameter calls from the console monitor to service a command
request. When the command is processed, it signals the console
monitor for a new command read via an SVC 6 queue parameter call
and then enters into a trap wait state. The command processor
priority ca.n be decreased by the operator ATTN command. This
command can be used in a real-time application environment to
allow a task to run at a higher priority than the command
processor.

1.2.13 System Initialization Subsystem

After the operating system is loaded, the system initialization
subsystem initializes the memory diagnostics subsystem, error
recording subsystems, and system control blocks and tables in
memory. It then dispatches the console monitor which readies the
command processor to accept commands from the system console.

1.2.14 Internal Interrupt Subsystem

The internal interrupt subsystem is responsible for:

• handling illegal instruction faults,

• handling arithmetic faults,

• detecting memory faults,

• handling system queue service interrupts,

• handling relocation/protection hardware faults,

• handling data format/alignment faults,

• handling power fail and power restore conditions,

• restoring an i.nterrupted task to its previous program state
upon resumption of the task,

• handling parameter block errors,

1-16 48-040 FOO R02

• handling illegal SVCs and SVC interrupts,

• handling machine malfunction interrupts, and

• performing memory image dumps.

Processor dependent interrupt handlers comprise the internal
interrupt subsystem. The internal interrupt subsystem does not
support external I/O interrupts. External interrupts are handled
by the appropriate device drivers.

On a Model 3200MPS System, the CPU handles all fault conditions
or interrupts that occur during execution of a task on an APU.
Thus, the APU can execute another task while the CPU is handling
the fault or interrupt.

1.2.15 Optional User Supervisor Call (SVC) Subsystem

SVC 14 is provided as an optional SVC that can be defined by the
user. On execution, the task receives a task trap for SVC 14.
See the OS/32 Application Level Programmer Reference Manual for
information on how to implement the SVC 14 trap feature.

1.2.16 Floating Point Subsystem

A task has optional access to single and/or double prec1s1on
floating point instructions under OS/32. Floating point
instructions can be executed through hardware or simulated by
software. Those systems that do not support floating point
options handle all floating point instructions as illegal
instructions.

48-040 FOO R02 1-17

2.1 INTRODUCTION

CHAPTER 2
PRIVILEGED TASKS

In a multi-user system, improper use of certain machine
instructions, called privileged instructions, can have a
detrimental effect on system integrity. Privileged instructions
include storage protection setting, interrupt handling, timer
control, input/output (I/O), and some processor status-setting
instructions. To prevent accidental or intentional misuse of
these instructions, OS/32 provides a privileged operating state
in which tasks can execute these instructions. In addition to
the privileged operating state, OS/32 also provides a privileged
task state in which tasks can access the file account and bare
disk OS/32 supervisor routines.

Only privileged tasks can execute in a privileged operating or
task state. OS/32 allows three types of privileged tasks:

• executive tasks (e-tasks),

• privileged user tasks (u-tasks), and

• diagnostic tasks (d-tasks).

A task can be linked as a privileged task by specifying one or
more of the following task options in the Link OPTION command:

ETASK, ACPRIVILEGE, DISC, DTASK

See the OS/32 Link Reference Manual. ·

This chapter describes the privileges that are available to each
type of privileged task through the Link OPTION command.

48-040 FOO R02 2-1

2.2 EXECUTIVE TASKS (E-TASICS)

E-tasks run with the memory address relocation/protection
hardware turned off and are allowed to execute all instructions
provided by the hardware. E-tasks always have file account and
bare disk privileges. In addition, e-tasks can execute code that
modifies or enhances the OS/32 system software. For example, an
e-task can modify one of the system modules to enhance an
existing OS/32 feature. E-tasks can also function as drivers
that support nonstandard peripheral devices. A task can be
linked as an e-task by specifying the ETASK task option in the
Link OPTION conunand.

The following sections detail the programming considerations that
must be taken into account when writing e-tasks.

2.2.1 Writing Executive Tasks (E-Tasks)

Because e-tasks execute in a privileged state,
precautions must be taken when e-tasks are prograrruned.

certain

When an e-task is executing, no memory address protection or
relocation is provided and all interrupts are enabled. The task
has access to all machine instructions and memory address space
in the system. In addition, the e-task can access system tables
and control information via the system pointer table (SPT). The
address of the SPT is stored in the halfword at location X'62' in
memory.

Link builds the image for an e-task as if it were loaded at
absolute location zero. The loader, however, is free to load the
e-task into any available memory location. Therefore, an e-task
must be coded as if it were positionally independent; an e-task
must not contain relocatable code.

Because Link relocates e-task addresses to absolute zero, e-tasks
cannot assemble code containing address constants as shown in the
following example.

Example:

SVC7BLK DB
DAC

X' BO' , 7
ADDR

An e-task must dynamically set the addresses required by the
task.

2-2 48-040 FOO R02

To reference addresses in the +16kb range, use the following
technique:

LA UE,BUFSTART
LA UF,BUFEND
LA U3,SVC1PBK
STM UE,SVC1.SAD(U3)
SVC l,O(U3)

References to addresses exceeding the 16kb range can be made in
the following manner.

Example:

BASE LA
LA
LA
LA
STM
SVC

U4,BASE
UE,BUFSTART-BASE(U4)
UF,BUFEND-BASE(U4)
U3,SVC1BLK-BASE(U4)
UE,SVC1.SAD(U3)
l,O(U3)

E-tasks smaller than 16kb must use the no RX3 (NORX3) (CAL/32)
instruction to force all RX instructions to the RXl or RX2
format. The tasks must not contain any RXl or RX3 instructions
with relocatable addresses. See the Common Assembly Language/32
(CAL/32) Programming Reference Manual.

2.2.2 OS/32 Data Structures Used by Executive Tasks (E-Tasks)

OS/32 provides a data structure macro library that contains macro
routines for building OS/32 data structures in the e-task address
space. Field names for the data structures are also included.
The OS/32 data structure macro library is stored in file
SYSSTRUC.MLB. Table 2-1 lists the OS/32 data structures
available to e-tasks and their corresponding macros.

Using the OS/32 e-task capability and the data structures
available to e-tasks, the system level programmer can incorporate
changes or add user written modules to the source of the OS/32
system modules supplied by Perkin-Elmer.

48-040 FOO R02 2-3

2-4

TABLE 2-1 OS/32 DATA STRUCTURES USED BY E-TASKS

MACRO

$ACB
$AOPT
$APB
APB
$APRC
$APS
$APST
$ATF
$AUF

$CCB
$CTX

$DATB
DCB
$DDCB
$DDE
$DFLG
DIR
$DXFL

$EMIL
$EFMG
$EREGS
$ERRC$
$ESYS
$EVN

$FCB
FCB
$FDE
$FFLG$
$FD

$GERC

$HB

INTCPARM
$ICB
$IOB
IOB
$IOBF
$IOH
$IPCB
$IRCB
$IVT

DATA STRUCTURE

Directory access control block
APU options
Auxiliary processor block
$APB,$APRC,$APS,$AOPT
Passback reason codes and equates
APB status codes and equates
APU status codes and error codes and equates
Accounting transaction file
MTM authorized user file

Channel control block (CCB)
User task context block

I

Device attributes equates
$PDCB,$DDCB,DCB EQUATE,$DFLAG,$DATB,$DXFL
Device dependent device control block (DCB)
Error log data structure
DCB flags
Primary directory entry
Disk extended flags

System milestone recording entries
Bulk device error recording entries
16 executive registers (El=register 1)
$GERC, $EFMG, $ESYS, $EMIL, $MERC
System error recording entries
Event node

File control block (FCB)
FCB and FCB flags
Free block descriptor entry
FCB flags
File descriptor (fd)

General error recording information

Help subroutine argument block

SVC intercept information
Intercept control block
I/O block
I/O and I/O flags
I/O block flags
I/O handler list
Intercept path control block
interceptcontrol block
Initial value table

48-040 FOO R02

TABLE 2-1 OS/32 DATA STRUCTURES USED BY E-TASKS (Continued)

MACRO DATA STRUCTURE
= = = = = = = = = = = =w= = = = = = = = = = = = = = = = •~=••·=re_. m =•••em lfl:! :tl!r r= .ea•= r a===::!'=:=~

$LIB
LIB
$LPMT
$LOPT
$LSG
$LTCB

$MAGDCB
$MERC
$MTMSTE

$0CB
$0DT
$ORT

$PDCB
$PFCB
$PSDCB
$PSTCB
$PSW

$QH

$RCTX
$REGS$
$RLST
$RREGS
$RSARCPY

$SlXO
$SDCB
$SD
$SDE
$SOPT
$SPCMSG
$SPT
$SPTE
$SPOL
$STE
$SPR

48-040 FOO R02

Loader information block (LIB)
LIB and loader options
Logical processor mapping table
Loader options
Load segment
Loader task control block (TCB) redefinitions

Magnetic tape DCB
Memory error recording entry
MTM terminal and task status and modes

Overlay control block
Overlay descriptor table structure
Overlay reference

Primary (device independent) DCB
Private FCB
Pseudo DCB structure (device dependent)
Pseudo task control block
Program status word (PSW)

SVC intercept queue handler structure

RS/RSA context block
$SOPT, $UREGS, $EREGS, $RREGS, $PSW
Roll selection list
16 general user registers (Rl = register 1)
Reentrant system state alternate save area

SVC 1
Pseudo print device control block structure
Send data message block
Segment descriptor element
System options
Spooler message structures
System pointer table (SPT)
SPT extern definitions
Spooler message
Segment table entries
Segment privilege flags

2-5

2-6

TABLE 2-1 OS/32 DATA STRUCTURES USED BY E-TASKS (Continued)

MACRO DATA STRUCTURE
=========•••••••••=c=••••=••=••••====••=••••=•~••=•==~•====I

$SVC1
$SVC1$
$SVC1ERR
$SVC4
$SVCS
$SVC6
$SVC7
$SVC7SPL
$SVC13
$SVC13$
$SYP
$$SPT

$TABL$
$TCB
TCB

$TERMUSR$
$TKQ
$TLF
$TLFL
$TMQ
$TOPT
$TPRC
$TQE
$TQ27
$TQH
$TSTT
$TSW
$TTB
$TWT

$UDL
UDL
$UREGS

$VD
$VF CHARS
$VFDCB

$WAP

Supervisor call 1 (SVC 1)
SVC 1 and SVC 1 error codes
SVC 1 error codes
System SVC - reserved
SVC 5 parameter block
SVC 6 parameter block
SVC 7 parameter block
Spooler SVC 7 parameter block
SVC 13 parameter block
$SVC13,$APST
System space structure
SPT table definitions

Structure/extern generating macro
Task control block,$SDE,$10B$,$TCB,$CTX
$TCB,$TOPT,$TSTT,$TWT,$TLFL,$PSTCB,$0CB,$TQE,
$TFL,$TPRC,TQH
MTM terminal user block
Task queue head
Task control block flags
Logical unit table of flags
Timer queue entry (TQE)
Task options flags
Task passback codes
Task event queue entry
SVC 2, code 27 parameter block
Task event queue header
Internal task status flags
Task status word (TSW)
APU trap block
Task wait status flags

User dedicated locations (UDL)
UDL and TSW
16 general user registers (Ul = register 1)

Volume descriptor
Vertical forms characters
Common VFC DCB structure

Read/write access matrix header structure

I
I
I

48-040 FOO R02

2.3 PRIVILEGED USER TASKS (U-TASKS)

Like nonprivileged u-tasks, privileged u-tasks run with the
memory address relocation/protection hardware enabled and are
restricted to a subset of instructions known as nonprivileged
instructions. If a u-task attempts to execute a privileged
instruction, it causes an illegal instruction fault. However,
unlike nonprivileged u-tasks, privileged u-tasks have file
account and bare disk privileges. File account privileges allow
tasks to specify an account number in the file account/class
field of a file descriptor. Bare disk privileges allow tasks to
perform I/O operations to a bare disk device. See Chapter 3.

A u-task acquires file account and bare disk privileges by
specifying the ACPRIVILEGE and DISC task options, respectively,
in the Link OPTION command when the task is built.

2.4 DIAGNOSTIC TASKS (D-TASKS)

0-tasks, like e-tasks, can execute all instructions provided by
the hardware. However, like u-tasks, d-tasks run with the memory
address relocation/protection hardware enabled and execute in the
nonprivileged task state. D-tasks are designed for use in
diagnostic applications, loading WCS, and direct execution of 1/0
instructions.

A task can be linked as a d-task by specifying the DTASK task
option in the Link OPTION command. To execute in the privileged
task state, a d-task must be built with the ACPRIVILEGE and DISC
task options enabled.

48-040 FOO R02 2-7

3.1 INTRODUCTION

CHAPTER 3
OS/32 SUPERVISOR CALLS (SVCs)
FOR SYSTEM LEVEL PROGRAMMING

OS/32 provides a number of system services for designing system
level control programs. Access to these services is restricted
to privileged tasks and/or by certain hardware requirements.
Table 3-1 lists the OS/32 SVCs that access these system level
services and the restrictions for their use. The following
sections describe each system level SVC in detail.

TABLE 3-1 OS/32 SVCs FOR SYSTEM LEVEL PROGRAMMING

SVC RESTRICTED TO
=================----------=----========================

SVC 0: User written SVC

SVC 2 code 0: Make
journal entries

SVC 2 code 14: Internal
reader

SVC 2 code 26: Fetch
device name

SVC 2 code 27: Memory
management

SVC 6: System task
release

SVC 7: Extended close

48-040 FOO R02

Modification of OS/32 re­
quired

Executive tasks (e-tasks)
only

Foreground tasks loaded
from system console

E-tasks only

Tasks running on memory
address translator (MAT)
machines only

System tasks (.CMDP, .CSL,
t .MTM, and .SPL)

E-tasks or privileged user
tasks (u-tasks) and privi­
leged diagnostic tasks
(d-tasks) with bare disk
(DISC) task option enabled

3-1

3-2

TABLE 3-1 OS/32 SVCs FOR SYSTEM LEVEL PROGRM811NG
(Continued)

SVC RESTRICTED TO
~===

SVC 7: Fetch attributes
for bare disk devices

SVC 7: Device rename and
reprotect

SVC 7: Bare disk assign­
ment

SVC 13 code O and code 1

SVC 13 code 2 and code 3:
Auxiliary processing
unit (APU) control

E-tasks or privileged
u-tasks and privileged
d-tasks with the bare disk
(DISC) task option enabled

E-tasks only

E-tasks or privileged
u-tasks and privileged
d-tasks with bare disk
(DISC) task option
enabled.

No restrictions.
Available to all tasks
running on the Model
3200MPS System.

Tasks running on the Model
3200MPS System that have
APU control (APCONTROL)
and APU mapping (APMAPPING)
task options enabled.

48-040 FOO R02

SVC 0

3.2 SVC 0: USER WRITTEN SUPERVISOR CALL (SVC)

SVC 0 is reserved for user written OS/32 executor routines.
Before writing an executor routine that can be called by SVC 0,
the operating system must be modified. This modification can be
done dynamically at run-time by an e-task. Note, however, that
the SVC executor table contains only halfword entries; therefore,
the first instruction of the executor routine called by SVC O
must lie within the first 64kb of physical memory.

48-040 FOO R02 3-3

SVC 2
CODE 0

3.3 SVC 2 CODE 0: MAKE JOURNAL ENTRIES

SVC 2 code 0 makes an entry into the system journal from an
e-task. The system journal provides a method to trace back
important events (SVCs, input/output (I/O) operations, task
switching) that occurred during system operation. For example,
the journal is useful for tracing the cause of a system failure.
The parameter block format for SVC 2 code 0 is shown in Figure
3-1.

0(0)

4(4)

8(8)

12(C)

16 (10)

parblk

12(2)
Code

Value 1

Value 2

Value 3

Value 4

SVC 2,parblk

DC
DC
DC
DC
DC
DC

H'O'
H'journal code'
F 'value 1'
F'value 2'
F'value 3'
F'value 4'

Journal code

Figure 3-1 SVC 2 Code 0 Parameter Block Format and Coding

3-4 48-040 FOO R02

During execution, a logical OR op~ration is performed on a mask
and the journal code to indicate that the entry originates from
an SVC 2 code 0, rather than from within the system. The value
1, 2, 3, and 4 fields of the parameter block are stored following
the journal code and calling task name in the journal. These
values can contain any desi:red information to be preserved for
system debugging.

NOTE

This call has an effect only if the
journal is included in the system at
(source) system generation (sysgen).

48-040 FOO R02 3-5

I SVC 2
I CODE 14

3.4 SVC 2 CODE 14: INTERNAL READER

SVC 2 code 14 allows a foreground task loaded from the system
console to invoke operator and command substitution system (CSS)
commands. These commands are sent to the command processor where
they are executed as if they were entered from the system
console. SVC 2 code 14 provides two options for sending commands
to the command processor. Option 0 allows the user to place the
commands directly in the task command buffer field of the SVC 2
code 14 parameter block. Option 1 allows the user to store the
commands in a task command buffer located on a fullword boundary
within the task's address space. The address of this buffer is
placed in the parameter block.

SVC 2 code 14 will transfer the commands in a task command buff er
until the end of the buffer is reached. The parameter blocks for
both SVC 2 code 14 options are described in the following
sections.

3.4.1 Parameter Block for Option 0

The parameter block format for option 0 of SVC 2 code 14 is shown
in Figure 3-2.

3-6 48-040 FOO R02

0(0)
Option

4(4)

11 (1)
Code

12(2)
Status

16(6)
User command
buff er length

Maximum system
command buffer

length

8(8)

12(C)

16(10)

parblk

Task
command
buffer

SVC 2,parblk

DB
DC
DC
DC

0,14,0,0
H'user command buffer length'
H'O'
'operator commands'

Figure 3-2 SVC 2 Code 14 Parameter Block Format and Coding
for Option 0

This parameter block can be up to 1,032 bytes long, fullword
boundary aligned, and located in a task writable segment. A
general description of each field in the parameter block follows.

48-040 FOO R02 3-7

Fields:

Option

Code

Status

User
command
buffer
length

Maximum
system
command
buffer
length

Task
command
buffer

is a 1-byte field that contains a value of 0
to indicate that the task command buffer is
contained in the SVC 2 code 14 parameter
block.

is a 1-byte field that contains the decimal
value 14 to indicate code 14 of SVC 2.

is a 2-byte field that receives a status code
indicating the status of the SVC processing.
See

is a 2-byte field specifying a decimal number
indicating the maximum length allowed for the
user command buffer.

is a 2-byte field to which the operating
system returns the system command buffer
length established by CMDLEN at syagen. Thia
value is returned only for status code
X'0003'. See Table 3-2.

is a variable length field
length of 1,024 bytes. Thia
the commands to be sent to
processor.

with a maximum
field contains
the command

3.4.2 Parameter Block for Option 1

The parameter block format for option 1 of SVC 2 code 14 is shown
in Figure 3-3.

3-8 48-040 FOO R02

0(0)
Option

4(4)

11(1) 12(2)
Code Status

16(6)
User command
buffer length

Maximum system
command buffer

length

8(8)
Buffer address

SVC 2,parblk

parblk DB
DC
DC
DAC

1,14,0,0
H'user command buffer length'
H'O'
BUFADR

Figure 3-3 SVC 2 Code 14 Parameter Block Format and Coding
for Option 1

This parameter block is 12 bytes long, fullword boundary aligned,
and located in a task writable segment. A general description of
each field in the parameter block follows.

Fields:

Option

Code

Status

User
command
buffer
length

48-040 FOO R02

is a 1-byte field that contains a value of 1
to indicate that the parameter block contains
the address of the task command buffer.

is a 1-byte field that contains the decimal
value 14 to indicate code 14 of SVC 2.

is a 2-byte field that receives a status code
indicating the status of the SVC processing.
See Table 3-2 for a list of the SVC 2 code 14
status code:s.

is a 2-byte field specifying a decimal number
indicating the maximum length allowed for the
task command buffer.

3-9

Maximum
system
command
buff er

Buff er
address

is a 2-byte field to which the operating
system returns the system command buff er
length established by CMDLEN at sysgen. This
value is returned only for status code
X'0003'. See Table 3-2.

is a 4-byte field specifying the address of
the task command buffer. This buffer must
be located on a fullword boundary within the
task's address space.

3.4.3 SVC 2 Code 14 Status Codes

The status codes for each of the SVC 2 code 14 options are listed
in Table 3-2.

CODE

X'OOOO'

X'OOOl'

X'0002'

X'0003'

X'FFFF'

TABLE 3-2 SVC 2 CODE 14 STATUS CODES

MEANING

Successful completion - commands sent to
command processor for execution.

No free internal reader buffers available.

Option error - invalid option specified
for SVC.

User specified length of command buffer
incorrectly.

The length of the maximum allowed system
command buff er is returned to the maximum
system command length field.

No internal reader command buffers
defined.

3.4.4 Programming Considerations

Support for the internal reader must be included in the system at
sysgen. This is accomplished through the SYSGEN/32 command,
IRE.ADER. See the OS/32 System Generation (SYSGEN/32) Manual. If
the internal reader is not included at sysgen, an attempt to
execute an SVC 2 code 14 results in an execution error and an
illegal SVC message is sent to the user console.

3-10 48-040 FOO R02

The internal reader requires a set of buffers to receive the
commands sent to it by SVC 2 code 14. The OS/32 operator
command, IRBUFFER, is used to create command buffers for the
internal reader. See the OS/32 Operator Reference Manual. The
IRBUFFER command can also be used to increase the number of
command buffers when no free buffers are available (status code
X'OOOl'). IRBUFFER can be used at any time if support for the
internal reader has been generated into the system.

The following program demonstrates

Sample SVC 2 code 14 program:

SVC214 PROG SVC 2,14 EXAMPLE
SVC 2, COMMANDO ·
LH O,COMMAND0+2
BNZ STOP
SVC 2,COMMANDl
LH O,COMMAND1+2
BNZ STOP
SVC 3,0

STOP EQU *
SVC 2,PAUSE
SVC 3,0

ALIGN 4
PAUSE DB 0,1,0,0

ALIGN 4
COMMANDO DB 0,14,0,0

COMMANDl

DC Z(4)
DCX 0
DC C' D M '

ALIGN 4
DB 1,14,0,0

Z (CMDBUFFE-CMD.BUFF)
o
A(CMDBUFF)
4

the use of SVC 2 code 14.

SEND COMMAND
WAS IT SUCCESSFUL?
NO - ERROR
SEND COMMAND
WAS IT SUCCESSFUL?
NO - ERROR
EOT

PAUSE
EQT

DIRECT COMMAND BUFFER

INDIRECT COMMAND BUFFER ADDRESS

CMDBUFF
CMDBUFFE

DC
DCX
DC
ALIGN
DC
EQU
END

C'$WR ** CSS CALL BY IREADER ***· ' C.ALLCSS.CSS
*

48-040 FOO R02 3-11

SVC 2 I
CODE 26 I

3.5 SVC 2 CODE 26: FETCH DEVICE NAME

SVC 2 code 26 searches for a us:er supplied volume name in the
volume mnemonic table and returns the name of the device on which
that volume is mounted. The format for the SVC 2 code 26
parameter block is shown in Figure 3-4.

10(1)
Reserved

I 1(1) 12(2) 13(3)
Code User

register 1
I User

register 2

SVC 2,parblk

parblk ALIGN 4
DB 0,26
DB user register number 1
DB user register number 2

Figure 3-4 SVC 2 Code 26 Parameter Block Format and Coding

This parameter block is four bytes long,
aligned, and does not have to be in a writable
task. The fields are described as follows.

fullword boundary
segment of the

Fields:

3-12

Reserved

Code

User
register 1

is a 1-byte field that must contain a value of
0 to indicate no options for this call.

is a !-byte field that must contain the
decimal value 26 to indicate code 26 of SVC 2.

is a !-byte field that must contain a
user-specified register number. The specified
register contains a pointer to a fullword
containing a 4-character volume name.

48-040 FOO R02

User
register 2

is a 1-byte field that must contain a
user specified register number. The specified
register contains the address of the area
receiving the device name. This area is 4
bytes long, fullword boundary aligned, and
must be located in a task writable segment.

NOTE

User register 1 and user register
2 can specify the same register
number.

Possible condition codes occurring after SVC 2 code 26 execution
follow:

Condition Code:

ICIVIGILI
1======:1
101010101 Normal termination.
1-------1
101110101 Specified volume offline; no fetch occurred.

Example:

LA Rl,MTMVOLN
LA R2,MTMDEVN
SVC 2,FTCHDEVN

ALIGN 4
FTCHDEVN DB 0,26

DB Rl
DB R2

48-040 FOO R02 3-13

SVC 2 I
CODE 27 I

3 .. 6 SVC 2 CODE 27: MEMORY MANAGEMENT

SVC 2 code 27 allows a task to access and modify entries (except
shared ones) within the private segment table (PST) in its task
control block (TCB). This SVC can only be called by tasks
running on MAT machines. It is used by the virtual task manager
(VTM) support routines.. The format for the SVC 2 code 27
parameter block is shown in Figure 3-5.

10(0)
Option

(SV227.0P)

11(1)
Code

(SV227.CD)

12(2) User
I register 1

(SV227.Rl)

13(3) User
I register 2

(SV227 .. R2)
1---
14(4)

A (destination buffer)
(SV227.BF)

SVC 2,parblk

ALIGN 4
parblk DB option,27,regl,reg2

DAC BUFFADR

Figure 3-5 SVC 2 Code 27 Parameter Block Format and Coding

This parameter block is 8 bytes long, fullword boundary aligned,
and located in a task writable segment.. A general description of
the parameter block follows ..

3-14 48-040 FOO R02

Fields:

Option
(SV227.0P)

is a 1-byte field that contains a
number specifying one of the following
codes:

decimal
option

OPTION FUNCTION
CODE EQUATE MEANING

0 SV227.0 The first byte of each PST entry,
starting at PSTE 0 and ending with the
last private segment table entry (PSTE)
of the task's impure segment (PSTE
indicated by TCB.CTOP), is moved
sequentially to a byte buffer specified
by the SV227.BF field. After a byte is
moved, the reference bit (bit 0) of
each PSTE is reset.

1 SV227.l Bits 15-31 of PSTE 0 are added to the
user register specified by the SV227.Rl
field. The result of the addition is
stored in the PSTE identified by the
number contained in the register
specified by the SV227.R2 field.

2 SV227.2 The value in user register 1 is stored

Code
(SV227.CD)

User
register 1
(SV227.Rl)

User
register 2
(SV227.R2)

A
(destination
buffer)
(SV227.BF)

48-040 FOO R02

in TCB.UTOP and the value in user
register 2 is stored in TCB.CTOP.

is a 1-byte field that contains the decimal
number 27 indicating code 27 of SVC 2.

is a 1-byte field that contains a
user specified register number. If option 0
is specified, this field is unused but must be
reserved.

is a 1-byte field that contains a
user specified register number. If option 0
is specified, this field is unused but must be
reserved.

is a 4-byte field that contains the address of
the first byte of a user specified buffer to
which the entries in the PST will be copied.
This buff er should be located in a task
writable segment. This field is omitted for
options 1 and 2.

3-15

SVC 2 code 27 sets the condition code field in the PSW as
follows.

Condition Code:

CIVIGIL
===:==-=
0101010

0101011

0101110

0111010

1101010

3-16

SVC 2 code 27 completed. No errors.

Size of PST entry exceeds task allocation of
memory. Entry not stored in PST.
Illegal PST entry number.

Shared bit set in PST entry. This entry cannot
be modified.
Value of UTOP is greater than value of CTOP.

48-040 FOO R02

SVC 6

3.7 SVC 6: SYSTEM TASK RELEASE

The SVC 6 release function can be used by a system task
(.CMDP, .CSL, .MTM, and .SPL) to remove another task from a
suspended state. After the task is released, it continues
execution at the location specified in the SVC6.SAD field of the
SVC 6 parameter block. If this SVC · is used by other than a
system task, the continuation address (SVC6.SAD) is ignored.
Figure 3-6 shows the parameter block format and coding for the
SVC 6 release function for system tasks.

48-040 FOO R02 3-17

0(0)

4(4)

8(8)

12(C)

16 (10)

20 (14)

24 (18) ,..._,

l44(2C)

Reserved
(SVC6.TST)

Name of task
receiving SVC6

(SVC6. ID)

Function code
(SVC6.FUN)

114(E)

Reserved
(SVC6.LU)

Error status
(SVC6.STA)

Continue address of directed task
(SVC6 .. SAD)

Reserved
(SVC6.TIM)

SVC 6,parblk

4

,..,...,
I

parblk
ALIGN
DC C'S-byte name of task receiving SVC 6'

Y'80000080' DC
DC H'O'
DC H'O'
DC 0
DC A(START)
DC O,O,O,O,O,O

Figure 3-6 SVC 6 Release Function Parameter Block
Format and Coding

This parameter block must be 48 bytes long, fullword boundary
aligned, and located in a task writable segment. A general
description of each field in the parameter block follows.

3-18 48-040 FOO R02

Fields:

Name of task
receiving
SVC 6
(SVC6. ID)

Function code
(SVC6.FUN)

Reserved
(SVC6 .. TST)

Error status
(SVC6.STA)

Reserved
(SVC6.LU)

Continue
address
of directed
task
(SVC6 .. FUN)

Reserved
(SVC6 .. TIM)

48-040 FOO R02

is an 8-byte field containing the name of the
task to which SVC 6 is directed.. This name
must be left-justified with blanks.

is a 4-byte field containing the hexadecimal
number Y'80000080' indicating that the release
function is to be performed ..

is a reserved halfword field that must contain
a zero.

is a 2-byt·e field that receives an error code
when an error occurs during SVC 6 execution ..
If no error occurs, a value of 0 is stored in
this field. See the OS/32 Supervisor Call
(SVC) Reference Manual for a listing of SVC 6
error codes.

is a reserved fullword field that must contain
a zero.

is a fullword field that contains the address
at which the directed task is to resume
execution after it$is released.. If this field
contains a zero, execution continues at the
location at which the task was suspended.. If
this option is specified and the task issuing
the SVC is not a system task, this field is
ignored.

is a reserved 24-byte field that must contain
zeros.

3-19

SVC 7

3.8 SVC 7: EXTENDED FUNCTIONS FOR PRIVILEGED TASKS

The OS/32 file manager provides additional resource management
services to privileged tasks. These services are accessed
through the extended function codes of SVC 7. These functions
include:

• bare disk assignment,

• fetch attributes for bare disk devices,

• device rename and reprotect, and

• extended close.

The following sections describe how to access the SVC 7 extended
functions for privileged tasks.

3.8.l SVC 7: Bare Disk Assignment

An e-task, privileged u-task, or d-task with bare disk privileges
can bypass the file manager and directly assign to a disk device.
When such a task issues an SVC l I/O request directly to a disk
device, the operation is referred to as bare disk I/O and should
always be random access. The supported I/O functions are read,
write, and test and set.

Direct assignment to a disk device can be performed only by a
task that has the bare disk task option enabled. E-tasks always
have this option enabled. A u- or d-task is given bare disk
privileges by specifying the disk privilege option in the OPTION
command (OPTION DISC) when the task is built by Link. However,
if the task loader has the e-task option prevented, the
privileged task is loaded into memory with the bare disk
privilege option changed to the default, no bare disk privilege.
Therefore, bare disk I/O cannot be performed by the task.

The SVC 7 parameter block and coding for bare disk assignments
are shown in Figure 3-7.

3-20 48-040 FOO R02

0(0)

4(4)

8(8)

12(C)

16 (10) ,.........,

,,..,
I

Function code
(SVC7.0PT)

12(2) Error
I status code
I (SVC7.STA)

Reserved
(SVC7.WKY)

Device mnemonic
(SVC7.VOL)

Reserved
(SVC7.FNM)

13(3)
lu

(SVC7.LU)

A.,

'1'-1
I

1------ ------1
124(18)

parblk

SVC 7,parblk

ALIGN 4
DC
DB
DB
DC
DC
DC

X'function code'
0
lu
0
C' 4-charactE~r device mnemonic'
0,0,0,0

Figure 3-7 SVC 7 Bare Disk Assignment Parameter Block
Format and Ce>ding

This parameter block must be 28 bytes long, fullword boundary
aligned, and located in a task writable segment. A description
of each field in the parameter block follows.

48-040 FOO R02 3-21

Fields:

3-22

Function
code
(SVC7.0PT)

Error
status
codes
(SVC7.STA)

lu
(SVC7.LU)

Reserved
(SVC7.WKY)

Device
mnemonic
(SVC7.VOL)

Reserved
(SVC7.FNM)

is a 2-byte field that contains the
hexadecimal number indicating the assign
function (bit 1 must be set). In addition,
the appropriate access privileges (bits 8
through 10) must be set as follows:

• 000

• 001

• 010

• 011

• 100

• 101

• 110

• 111

Shared Read-Only (SRO)

= Exclusive Read-Only (ERO)

= Shared Write-Only (SWO)

= Exclusive Write-Only (EWO)

= Shared Read/Write (SRW)

= Shared Read, Exclusive Write (SREW)

= Exclusive Read, Shared Write (ERSW)

= Exclusive Read/Write (ERW)

CAUTION

IF THE BARE DISK IS MARKED ONLINE,
ONLY ASSIGNMENTS FOR SRO ARE
ALLOWED. ANY OTHER ACCESS
PRIVILEGE IS REJECTED, AND A
PRIVILEGE ERROR STATUS (07) IS
GIVEN.

is a 1-byte field that receives an error
code when an error occurs during SVC 7
execution. If no error occurs, a value of
O is return to this field. See the OS/32
Supervisor Call (SVC) Reference Manual for a
list of SVC 7 error status codes.

is a 1-byte field that contains a
hexadecimal number indicating the logical unit
to be assigned to the bare disk device.

is a 4-byte reserved
contain a zero.

field that must

is a 4-byte field containing the device
mnemonic of the bare disk device.

is a 16-byte field that must be reserved with
zeros.

48-040 FOO R02

3.8.2 SVC 7 Code 0: Fetch Attributes for Bare Disk Devices

The fetch attributes function fetches the attributes of a bare
disk device through its assigned logical unit (lu). The write
attribute is reset in the attributes halfword field (SVC7.ATRB)
of the parameter block if the disk is marked on protected.

This SVC 7 function is available only to tasks with bare disk
privileges or to e-tasks. Bef(>re issuing this SVC, the task must
have the bare disk already assigned to the lu. Figure 3-8 shows
the parameter block format and coding for SVC 7 code 0.

0(0) 11(1) 12(2) 13(3)
Option code I Device code Status lu

4(4) 16(6)
Attributes Device number

8(8)
Volume

12(C)
Flags

16 (10)
Size

20(14) 122(16)
Tracks per cylinder Sectors per track

24(18) 126(1A)
Controller address SELCH address

SVC 7,parablk

ALIGN 4
parblk DB 0

OS 2
DB lu
OS 24

Figure 3-8 SVC 7 Code 0 Parameter Block Format and Coding

48-040 FOO R02 3-23

Thia parameter block must be 28 bytes long, fullword boundary
aligned, and located in a task writable segment. A general
description of each field in the parameter block follows.

Fields:

3-24

Option

Device code

Status

lu

Attributes

is a 1-byte field that must contain X'OO' to
indicate the fetch attributes function code.

is a 1-byte field that receives the device
code of the bare disk device.

is a 1-byte field that receives the return
status of the bare disk device.

is a 1-byte field that muat contain the
logical unit for which attributes are
returned.

is a 2-byte field that receives the attributes
of the bare disk device.

Device number is a 2-byte field that receives the device
address of the bare disk.

Volume is a 4-byte field that receives the device
mnemonic for the bare disk.

Flags

Size

Tracks per
cylinder

Sectors per
track

Controller
address

SELCH
address

is a 4-byte field that receives the device
flags for the bare disk.

is a 4-byte field that receives the number of
sectors on the bare disk.

is a 2-byte field that receives the number of
tracks per cylinder on the bare disk.

is a 2-byte field that receives the number of
sectors per track on the bare disk.

is a 2-byte field that receives the controller
address for the bare disk device.

is a 2-byte field that receives the selector
channel address for the bare disk device.

48-040 FOO R02

3.8.3 SVC 7: Device Rename

E-tasks can use the SVC 7 rename function to rename devices. The
e-task must have the device already assigned to the lu with ERW
access privileges.

The SVC 7 parameter block format and coding for renaming devices
is shown in Figure 3-9.

0(0)

4(4)

8(8)

12(C)

,-l,16(10)

i------
124 (18)

12(2) Error 13(3)
Function code

(SVC7.0PT)
status code I
(SVC7.STA)

Reserved
(SVC7.WKY)

Device mnemonic
(SVC7.VOL)

Reserved
(SVC7.FNM)

SVC 7,parblk

ALIGN 4

lu
(SVC7.LU)

------i

parblk DC
DB
DB
DC
DC
DB

X'lOOO'
0
lu
0
C'4-character device mnemonic'
0,0,0,0

Figure 3-9 SVC 7 Dev:ice Rename Parameter Block
Format and Coding

48-040 FOO R02 3-25

This parameter block must be 28 bytes long, fullword boundary
aligned, and located in a task writable segment. A description
of each field in the parameter block follows.

Fields:

Function
code
(SVC7.0PT)

Error
status
codes
(SVC7.STA)

lu
(SVC7.LU)

Reserved
(SVC7.WKY)

Device
mnemonic
(SVC7.VOL)

Reserved
(SVC7.FNM)

is a 2-byte field that contains the
hexadecimal number X'lOOO' indicating that the
rename function is to be performed.

is a 1-byte field that receives an
code when an error occurs during
execution. If no error occurs, a value
is returned to this field. See the
Supervisor Call (SVC) Reference Manual
list of SVC 7 error status codes.

error
SVC 7

of O
OS/32
for a

is a 1-byte field that contains a hexadecimal
number indicating the logical unit assigned to
the device that is to be renamed.

is a 4-byte reserved field that must contain
a zero.

is a 4-byte field containing the device
mnemonic that is to replace the current device
mnemonic in the device mnemonic table.

is a 16-byte field that must be reserved with
zeros.

3.8.4 SVC 7: Device Reprotect

E-tasks can use the SVC 7 reprotect function to define the type
of access allowed to a device (e.g., read only, write only,
etc.). Thee-task must have the device already assigned to the
lu with ERW access privileges.

The SVC 7 parameter block format and coding for reprotecting
devices is shown in Figure 3-10.

3-26 48-040 FOO R02

0(0)

4(4)

Function code
(SVC7.0PT)

15(5)

12(2) Error
I status code

(SVC7.STA)

16(6)

13(3)
lu

(SVC7.LU)

Write key
(SVC7.WKY)

Read key
(SVC7 .. RKY)

Reserved
(SVC7. IRC)

8(8)

~
I

Reserved
(SVC7.VOL) .,..,

I

1------ ------1
124(18)

parblk

SVC 7,parblk

ALIGN
DC
DB
DB
DB
DB
DC
DC
DB

4
X'0800'
0
lu
'write key'
'read key'
H'O'
0
0,0,0,0

Figure 3-10 SVC 7 Device Reprotect Parameter Block
Format and Coding

This parameter block must be 28 bytes long, fullword boundary
aligned, and located in a task writable segment. A description
of each field in the parameter block follows.

48-040 FOO R02 3-27

Fields:

Function
code
(SVC7.0PT)

Error
status
codes
(SVC7.STA)

lu
(SVC7.LU)

Write key
(SVC7.WKY)

Read key
(SVC7.RKY)

Reserved
(SVC7.LRC)

Reserved
(SVC7.VOL)

is a 2-byte field containing the hexadecimal
number X'0800' indicating that the reprotect
function is to be performed.

is a 1-byte field that receives an error code
when an error occurs during SVC 7 execution.
If no error occurs, a value of 0 is returned
to this field. See the OS/32 Supervisor Call
(SVC) Reference Manual for a list of SVC 7
error status codes.

is a 1-byte field that contains a hexadecimal
number indicating the logical unit assigned to
the device that is to be reprotected.

is a 1-byte field that
number indicating the
keys for the device.

contains a hexadecimal
new write protection

is a 1-byte field that contains a hexadecimal
number indicating the new read protection keys
for the device.

is a 2-byte reserved field that must contain
a zero.

is a 20-byte unused field that should be
initialized with zeros.

3.8.5 SVC 7 Code X'FF80': Extended Close Function

The extended close function closes an lu and replaces the date
and time of allocation and the last write (or write f ilemark)
operation in the disk directory with information stored in the
SVC 7 parameter block. This SVC 7 function is available only to
e-tasks or privileged u-tasks and d-tasks with the bare disk task.
option enabled.

Figure 3-11 shows the parameter block format and coding for SVC
7 code X'FF80'.

3-28 48-040 FOO R02

0(0)

4(4)

8(8)

12(2) 13(3)
Function code I Error status I lu

I

Allocation date/time
(moved into DIR.DATE)

Last write operation date/time
(moved into DIR.LUSE)

SVC 7,parblk

parblk
ALIGN
DC

4
X'FF80'
1 DB

DB lu
DC Y'allocation date/time'
DC Y'last write operation date/time'

Figure 3-11 SVC 7 Code X'FFSO' Parameter Block
Format and Coding

This parameter block must be 12 bytes long, fullword boundary
aligned, and located in a task writable segment. A general
description of each field in the parameter block follows.

Fields:

Function code is a 2-byte field that contains the function
code X'FF80' indicating that the SVC 7
extended close function is to be performed.

Error status is a 1-byte field that receives an error code
when an error occurs during SVC 7 execution.
If no error occurs, a value of 0 is returned
to this field. If a non-privileged task
attempts to execute this SVC, a value of 1 is
returned. See the OS/32 Supervisor Call (SVC)
Reference Manual for a list of SVC 7 error
codes.

48-040 FOO R02 3-29

3-30

Allocation
date/time

Last write
operation
date/time

is a 4-byte field that contains the date and
time that is to replace the date and time of
allocation in the DIR.DATE field of the disk
directory. The format of the date and time
must be the same format generated by the
DATE.DIR routine in the file manager utility
(FMUT) module.

is a 4-byte field that contains the date and
time that is to replace the date and time of
the last write operation in the DIR.LUSE field
of the disk directory. The format of the date
and time must be the same format generated by
the DATE.DIR routine in the FMUT module.

48-040 FOO R02

SVC 13

3.9 SVC 13: AUXILIARY PROCESSING UNIT (APU) CONTROL

SVC 13 provides a task with an interface to the APU in a Model
3200MPS System environment. SVC 13 gives a task the ability to:

• access status information on all APUs in the system,

• direct the flow of tasks to an APU, and

• direct the execution of tasks on an APU.

Table 3-3 lists the SVC 13 function codes which provide these
capabilities.

Functions 0 and 1 are available to any task in a Model 3200MPS
System. Function 2 is available only to tasks in a Model 3200MPS
System that have been linked with the APMAPPING task option.
Function 3 is available only to tasks in a Model 3200MPS System
that have been linked with the APCONTROL task option. See the
OS/32 Link Reference Manual for more information on building a
task with these task options set.

TABLE 3-3 SVC 13 FUNCTION CODES

FUNCTION CODE I MEANING
===========--=---=---~------=================

SVC 13 code 0 Fetch logical processor
mapping table (LPMT).

SVC 13 code 1 Fetch APU status.

SVC 13 code 2 Execute APU mapping option.

SVC 13 code 3 Execute APU control option.

The following sections describe how to access each of the SVC 13
functions from an application task running on a Model 3200MPS
System.

48-040 FOO R02 3-31

3.9.l SVC 13 Code 0: Fetch Logical Processor Mapping Table
(LPMT)

The LPMT is. an OS/32 data structure that defines the relationship
between the logical processing units (LPUs) assigned to tasks and
the APUs of the system. The LPMT contains one entry for each LPU
number. In addition to the LPU entries, the LPMT contains the
maximum LPU and APU numbers allowed on the system. Each LPU
entry is 1-byte, sequentially arranged, starting with the entry
for LPUO (which is always mapped to the CPU) and ending with the
entry for LPUn. The maximum value for n is determined at OS/32
sysgen. See the OS/32 System Generation (SYSGEN/32) Reference
Manual.

When an APO is mapped to an LPU, its number is placed into the
byte corresponding to the LPU entry in the LPMT. SVC 13 code 0
allows a task to copy the LPMT into a data buff er located in a
writable segment of the task's address space. This buffer must
begin on a fullword boundary. Figure 3-12 shows the parameter
block and coding for SVC 13 code 0.

0(0) 11(1) 12(2)
Reserved

(SV13.0PT)
IFunction codel Reserved

(SV13 .FUN) I (SV13 .OOP)

13(3)
Reserved

(SV13.APU)

4(4)

8(8)

12(C)

parblk

Reserved
(SV13.APS)

16(6)
I Error status code

(SV13.ERR)

Data buffer start address
(SV13.BUF)

·suffer used
(SV13.USE)

SVC 13,parblk

ALIGN 4
DB 0,0,0,0
DB H'O'
DS 2
DC H'number

I 14(E)

of bytes'

Length of buff er
(SV13.LEN)

Figure 3-12 SVC 13 Code 0 Parameter Block Format and Coding

3-32 48-040 FOO R02

This parameter block must be 16 bytes long, fullword boundary
aligned, and located in a task writable segment.. A general
description of each field in the parameter block follows:

Fields:

Reserved
(SV13 .. 0PT)

is a 1-byte unused field that should be
initialized to zero.

Function code is a 1-byte field that must contain the
(SV13.FUN) decimal number 0 to indicate code 0 of SVC 13.

Reserved
(SV13.DOP)

Reserved
(SV13.APU)

Reserved
(SV13 .. APS)

Error
status code
(SV13.BUF)

Data buff er
start address
(SV13 .. BUF)

Buff er used
(SV13 .. USE)

Length of
buff er
(SV13 .. LEN)

is a 1-byte unused field that should be
initialized to zero.

is a 1-byte unused field that should be
initialized to zero.

is a 2-byte unused field that should be
initialized to zero.

is a 2-byte field that receives the execution
status of SVC 13 code 0. See Table 3-10 for
a list of the SVC 13 status codes ..

is a 4-byte field that contains the address of
a user specified buffer to which the operating
system returns an exact copy of the LPU
entries in the LPMT, including reserved
fields, the sign of each LPU entry, the
maximum LPU number, and the maximum APU
number.. The buffer can be variable in length
but must begin on a fullword boundary in a
task writable segment ..

is a 2-byte field that receives the actual
number of bytes used in the buffer specified
by the SV13.BUF field.

is a 2-byte field
number indicating
bytes) of the data
SV13.BUF field ..

that contains a decimal
the maximum length (in

buffer specified in the

When SVC 13 code 0 is executed, APU assignment information is
returned to the user's buffer in the format shown in Figure 3-13.

48-040 FOO R02 3-33

1 0(0)
Reserved

11(1)
I Maximum APO

number

12(2)
I Maximum LPU

number

13(3)
LPU entry

width

4(4)
LPU to APO mapping array

Figure 3-13 Data Buffer Format for SVC 13 Code 0

A general description of the fields in the APO mapping data
buffer follows:

Fields:

Reserved

Maximum APO
number

Maximum LPU
number

LPU entry
width

is a 1-byte field that is reserved for future
use.

is a 1-byte field containing the maximum APU
number allowed in the system. This number is
determined at OS/32 sysgen.

is a 1-byte field containing the maximum LPU
number allowed in the system. This number is
determined at OS/32 sysgen.

is a 1-byte field containing the width (in
bytes) of each LPU entry in the LPMT.

LPU to APO is a variable length array (O:MAXLPU) contain­
mapping array ing the LPU to APO mapping assignments. The

index to the array corresponds to the LPU
number. The entry at that index into the
array contains the APO ID of the APO mapped to
the LPU.

3.9.2 SVC 13 Code 1: Fetch Auxiliary Processing Unit (APO)
Status

SVC 13 code 1 allows a task to access information on the status
of each APO in a Model 3200MPS System. When executed, SVC 13
code 1 returns the following status information on the specified
APO to the requesting task's buffer:

• The names of all tasks in the APO ready queue (or name of task
having exclusive rights to the APO)

3-34 48-040 FOO R02

• The APU processing status

• The status of writable control store (WCS)

• The task currently active on the APU (or the waiting task if
the APU is stopped)

• The name of the task with control rights over the APO

• The name of the task with mapping rights over the APO

• The number of LPUs mapped to the APO

• The configuration options set for the APO

Figure 3-14 shows the parameter block format and coding for SVC
13 code 1.

0(0)
Reserved

(SV13.0PT)

11(1) 12(2)
I Function codel Reserved

(SV13.FUN) t (SV13.DOP)

13(3)
APU number
(SV13.APN)

4(4)

8(8)

12(C)

APU hardware status
(SV13.APS)

16(6)
I Error status code

(SV13.ERR)

Data buff er start address
(SV13.BUF)

Buffer used
(SV13.USE)

SVC 13,parblk

114(E)
Length of buffer

(SV.13.LEN)

parblk ALIGN 4
DB
DC
OS
DC
OS
DC

0,1,0
'APU number'
4
A(buffer)
2
H'number of bytes in buffer'

Figure 3-14 SVC 13 Code 1 Parameter Block Format and Coding

48-040 FOO R02 3-35

This parameter block must be 16 bytes long, fullword boundary
aligned, and located in a task writable segment. A general
description of each field in the parameter block follows.

Fields:

Reserved
(SV13.0PT)

Function code
(SV13. FUN)

Reserved
(SV13.DOP)

APU number
(SV13.APN)

APU hardware
status
(SV13.APS)

Error status
code
(SV13.ERR)

Data buffer
start address
(SV13. BUF)

Buffer used
(SV13.USE)

Length of
buffer
(SV13.LEN)

is a 1-byte unused field that should be
initialized to zero.

is a 1-byte field that must contain the
decimal number 1 to indicate code 1 of SVC 13.

is a 1-byte unused field that should be
initialized to zero.

is a 1-byte field specifying a decimal number
(0 through 9) indicating the number of the APO
to which this call is directed.

is a 2-byte field that receives the APO
response· status from the APU processor
hardware. See Section 3.9.5 for more
information on the status codes returned to
this field.

is a 2-byte field that receives the execution
status of SVC 13 code 1. See Table 3-10 for a
list of the SVC 13 status codes.

is a 4-byte field containing the address of a
data buff er to which SVC 13 is to return the
APU status information. The buffer can be
variable in length, but it must begin on a
fullword boundary and be located in a task
writable segment. If the buffer is less than
8 bytes in length, an error code (insufficient
buffer space) will be returned and no data
will be written to the buffer.

is a 2-byte field that receives a decimal
number indicating the actual number of bytes
used in the buffer specified by the SV13.BUF
field.

is a 2-byte field
number indicating
bytes) of the data
SV13.BUF field.

that
the

buffer

contains a decimal
maximum length (in
specified in the

When SVC 13 code 1 is executed, information on the status of the
specified APU is returned to the user's buffer in the format
shown in Figure 3-15.

3-36 48-040 FOO R02

0(0) 11(1) 12(2)
APU number I Number of Number of tasks

LPUs mapped

4(4)
APU software status APU options

8(8)

12(C)

16(10)

20(14)

24(18)

28(1C)

32(20)

36(24)

Active task name
or

Waiting task name

Control task name

Mapping task name

Ready task name (1)
or

Exclusive task name

Ready task name (N)

Figure 3-15 Data Buffer Format for SVC 13 Code 1

48-040 FOO R02 3-37

A general description of the fields in the data buffer for SVC 13
code 1 follows.

Fields:

APU number

Number of
LPUs mapped

Number of
tasks

APU software
status

is a 1-byte field containing the number of the
APU to which the status information applies.

is a 1-byte field containing the number of
LPMT entries mapped ~o the specified APU.

is a 2-byte field containing the total number
of ·tasks waiting in the specified APU's ready
queue. Any task currently executing on the
APU is not included in the total.

is a 2-byte field that contains the current
software status of the APU, the status after
the last power fail, and the state of the WCS
for the specifed APU.

Figure 3-16 shows the APU software status
field. See Table 3-4 for the bit definitions
for this field.

I WCS I I Last power I
IStatus I Reserved !failure statusl Reserved

Current
status

Bits:
0 1 2 4 5 7 8 12 13

Figure 3-16 Format of APU Software Status Field Returned
to Task Buff er

15

3-38 48-040 FOO R02

TABLE 3-4 BIT DEFINITIONS FOR APU SOFTWARE STATUS
FIELD RETURNED TO TASK BUFFER

I BIT I
APU STATUS I POSITION I

WCS state 0 I

' I I

' '

BIT SETTING AND MEANING

1 - WCS initialized
0 = WCS not initialized

1--
1 1 I 1 = WCS loaded

Reserved I 2-4
for future I
use

Status 5
after last
power 6
failure

7

Reserved I 8-12
for future I
use

Current
status

13
14
15

0 = WCS not loaded

111 = APU on and waiting
for task

110 = APU on exclusive and
waiting for task

011 APU on
010 = APU on exclusive
001 = APU off

111 - APU on and waiting
for task

110 = APU on exclusive and
waiting for task

011 • APU on
010 • APU on exclusive
001 = APU off
000 = APU disabled

APU options is a 2-byte field that is set according to the
configuration options in effect for the
specified APU. See Table 3-5 for the bit
definitions for this field.

48-040 FOO R02 3-39

3-40

TABLE 3-5 APU OPTIONS FIELD BIT DEFINITIONS

APU :
CONFIGURATION I BIT

OPTION POSITION BIT SETTING AND MEANING

wcs

Floating
point support

Trap block
wait

0

1

2

: 0 = APU has WCS
I 1 = APU has no WCS

0 = APU has floating point
support

1 APU has no floating
point support

0 = APU will continue pro­
cessing during CPU
fault handling

1 - APU will stop process­
ing and wait for a task
during CPU fault
handling

Reserved for 3-15
future APU
options

Active task
name or
waiting task
name

Control
task name

Mapping task
name

is an 8-byte field containing the name of the
currently active task. If the APU is stopped
and waiting for a task, this field contains
the name of the currently waiting task. The
task name is left-justified with trailing
blanks. If no currently active or waiting
task exists, the entire field is filled with
blanks.

is an 8-byte field containing the name of the
task having control rights over the specified
APU. If no control task exists, the entire
field is filled with blanks.

is an 8-byte field containing the name of the
task having mapping rights over the specified
APU. If no mapping task exists, the entire
field is filled with blanks.

48-040 FOO R02

Ready task
name (n)

or
Exclusive
task name

is a variable length table of 8-byte fields
containing the name of each task in the ready
queue of the specified APU. The order of
entries in this table corresponds to the order
of the tasks on the APU ready queue.

When the specified APU has been marked on
exclusively for one task, the ready queue is
always empty. In this case, this field
contains the name of the task having exclusive
rights to the specified APU.

3.9.3 SVC 13 Code 2: Auxiliary Processing Unit (APU) Mapping

SVC 13 code 2 allows a task to perform mapping functions on a
specified APU, provided the task has the mapping rights to the
specified APU. A task is granted mapping rights to an APU only
if:

• the requesting task has been Link edited with the APMAPPING
option, and

• no other task has been granted mapping rights to that APU.
Operator commands for APU mapping will not be accepted if a
task already has these mapping rights.

Once a task has been granted mapping rights to an APO, the task
can:

• mark the APU on,

• map the APU into the LPMT,

• remove all references to the APU from the LPMT, and

• mark the APU off.

Figure 3-17 shows the parameter block format and coding for SVC
13 code 2.

48-040 FOO R02 3-41

0(0) 11(1) 12(2) 13(3)
Options

(SV13.0PT)
I Function code I Directive option I APU number

(SV13 .FUN) (SV13 .DOP) I (SV13 .APN)

4(4)

8(8)

12(C)

parblk

Reserved
(SV13 .APS)

16(6) Error
status code

(SV13.ERR)

Data buff er start address
(SV13.BUF)

Reserved
(SV13.USE)

SVC 13, parblk

ALIGN 4
DC X'option(s)'
DB 2
DC 'LPU number'
DC 'APU number'
DC H'O'
DS 2
DC A(BUFFER)
DC H'O'
DC H'number of

114(E)

or 0

bytes in

Length of buff er
(SV13.LEN)

buffer'

Figure 3-17 SVC 13 Code 2 Parameter Block Format and Coding

This parameter block must be 16 bytes long, fullword boundary
aligned, and located in a task's writable segment. A general
description of the fields in this parameter block follows.

Fields:

3-42

Options
(SV13.0PT)

is a 1-byte field containing a hexadecimal
number specifying one or more of the following
mapping options:

48-040 FOO R02

Function code
(SV13.FUN)

Directive
option
(SV13.DOP)

APU number
(SV13.APN)

Reserved
(SV13.APS)

Error status
code
(SV13.ERR)

48-040 FOO R02

OPTION
CODES

X'80'

X'40'

X'20'

X'lO'

X'08'

X'02'

X' 01'

FUNCTION

Gain mapping rights for specified
APU.

Mark APU on, exclusive to only one
task.

Mar :k: APU on (tasks can be added to
APU queue).

Map APU into LPMT at LPUn. (n is
indicated by the directive option
field at SV13.DOP.) If APU = 0, LPUn
is mapped to the CPU.

Remove all references to the
specified APU from the LPMT.

Mark APU off (removes all tasks from
APU and APU queue).

Release task's mapping rights for the
specified APU.

NOTE

If two or more of the above option
bits are specified, they are
executed in a left-to-right order.

is a 1-byte field that must contain the
decimal number 2 to indicate code 2 of SVC 13.

is a 1-byte field that contains the LPU
number for option X'lO'. All other options
ignore this field.

is a !-byte field that must contain the number
of the APU to which this SVC is directed.

is an unused 2-byte field that should be
initialized to zero (0).

is a 2-byte field that receives the execution
status of SVC 13 code 1. The first byte of
this field indicates the bit position (0-7) of
the SVC 13 code 2 option being executed when
the error occurred. The second byte contains
one of the SVC 13 error status codes. See
Table 3-10. If no error occurs, both bytes
contain 0.

3-43

Data buff er
start address
(SV13.BUF)

Reserved
(SV13.USE)

Length of
buff er
(SV13.LEN)

is a 4-byte field that specifies the addzess
of the buff er containing the name of the task
to be granted exclusive access to the
specified APU. The task name specified in
this buff er must be 8 bytes long and
left-justified with trailing blanks. If the
entire buffer is filled with blanks, the task
issuing the SVC is granted exclusive access to
the specified APO. This field applies to
option X'40' only; all other options ignore
this field.

is a 2-byte unused field that should be
initialized to zero.

is a 2-byte field indicating the length of the
data buff er containing the name of the task to
be granted exclusive access to the specified
APU.

This field applies to option X'40' only; all
other options ignoze this field.

3.9.4 SVC 13 Code 3: Auxiliary Processing Unit (APU) Control

SVC 13 code 3 allows a task to perform control functions on a
specified APU provided the task has obtained the control rights
to the specified APU. OS/32 grants APU control rights to a
requesting task only if:

• the task has been Link edited with the APCONTROL option, and

• no other task has been granted control privileges to the
specified APU. Operator conunands for APO control will not be
accepted if a task already has these control rights.

SVC 13 code 3 gives a task the ability to:

• Initialize an APU (perform a power up link check).

• Send a directive to control APO task execution.

• Stop the APU and preempt the currently executing task.

• Preempt the next ready task on the APU ready queue with
another task selected from the queue.

• Disable an APU for online maintenance.

Figure 3-18 shows the parameter block format and coding for SVC
13 code 3.

3-44 48-040 FOO R02

0(0) APO 11(1) 12(2) 13(3)
control optional Function code I Directive option l APO number

(SV13 .OPT) (SV13 .FUN) (SV13 .DOP) I (SV13 .APN)

4(4)

8(8)

12(C)

parblk

Reserved
(SV13.APS)

16(6)
Error status code

(SV13.ERR)

Data buffer start address
(SV13. BOF) .

Reserved
(SV13.0SE)

SVC 13,parblk

ALIGN 4
X'option'
3

114(E)

DB
DB
DB
DB
DS
DC
DC
DC

X'directive option'
'APO number'
4
A(BUFFER)
H'O'
H'length of buffer'

Length of buff er
(SV13.LEN)

Figure 3-18 SVC 13 Code 3 Parameter Block Format and Coding

This parameter block must be 16 bytes long, fullword boundary
aligned, and located in a task: writable segment. A general
description of each field in the· parameter block follows.

Fields:

APO control
options
(SV13.0PT)

48-040 FOO R02

is a 1-byte field specifying a hexadecimal
number indicating the APO control option to
be executed. Figure 3-19 shows the APU
control option field format. See Table 3-6
for the available options for this field. If
more than one APO control option is specified,
the options are executed in a left-to-right
order.

3-45

3-46

Function code
(SV13.FUN)

Directive
option
(SV13.DOP)

APU number
(SV13.APN)

APU hardware
status
(SV13.APS)

Error status
code
(SV13.ERR)

Data buffer
start address
(SV13. LEN)

is a 1-byte field that must contain the
decimal number 3 to indicate code 3 of SVC 13.

is a 1-byte field specifying a hexadecimal
command code to be sent to the specified
APU. See Table 3-7. This field is used only
if X'08' was specified in the APU control
options field. The directive option field is
ignored for all other APU control options ..

is a 1-byte field (one through the number of
APUs in the system) that identifies the speci­
fied APU. (APU 0 has no meaning here. By
default all tasks have mapping and control
rights to APU 0 but no other control functions
are valid for APU 0).

is a 2-byte field that will contain one
of the following:

• If option X'08' is specified and any
conunand other than link check (X'80') is
specified in the SV13.DOP field, this field
receives the APU response status returned
after execution of the specified byte.

• If option X'08' is specified and the link
check conunand (X'80') is specified in the
directive option (SV13.DOP) field, the
right-most byte of the halfword defines a
data pattern (determined by the user),
which is sent to the APU. The APU
complements the byte and sends it back to
the left byte of the field.

is a 2-byte field that receives the execution
status of SVC 13 code 3. The first byte of
this field indicates the bit position of the
option being executed when the error occurred.
The second byte of this field contains one of
the SVC 13 error status codes. See Table 3-10
for a list of the SVC 13 error codes.

is a 4-byte field that specifies the address
of a buff er containing the name of the task
on the APU ready queue that is to be selected
as the next task to be executed. This task
must be an existing member of the queue.

This field applies to option X'lO' only and is
ignored for all other APU control options.

48-040 FOO R02

Reserved
(SV13.USE)

Length of
buff er
(SV13.LEN)

is an unused 2-byte reserved field that should
be initialized to zero.

is a 2-byte field specifying a decimal
number (8 or greater) indicating the length of
the data buffer specified by the SV13.BUF
field. This field applies to option X'lO'
only and.is ignored for all other APU control
options.

I Gain I I Stop and IPreemptl Send IReleasel
lcontrollEnablelreschedulel task I APU IReservedlDisablelcontroll
lrights I APU I APU task I queue lcommandl APU !rights I

Bits:
0 1 2 3 4 5 6 7

Figure 3-19 SVC 13 APU Control Options Field (SV13.0PT)

TABLE 3-6 SVC 13 CODE 3 APU CONTROL OPTIONS (SV13.0PT)
FIELD BIT DEFINITIONS

APU CONTROL
PRIVILEGE

OPTION

I
I

BIT I HEX
POSIT ION I CODE DESCRIPTION PREREQUISITES

===============•=======•=••=•••• •R•••••=••••••••••••••••••••a•••••mr•==
Gain
control
rights

Enable APU

..
I
I

48-040 FOO R02

0 X'80'

1 X'40'

Task gains control
rights to the
upec if ied APU.

Initializes speci­
fied APU by per­
forming a power up
link check. After
power up link
check, APU is in
an OFF and IDLE
1~tate.

Task link edited
with APCONTROL
task option.

No other task
has control
rights to
specified APU.

------------------'
APU must be in
disabled state.

3-47

TABLE 3-6 SVC 13 CODE 3 APU CONTROL OPTIONS (SV13.0PT)
FIELD BIT DEFINITIONS (Continued)

APU CONTROL
PRIVILEGE

OPTION

Stop and
preempt
APU task

I
I

BIT I HEX
POS IT ION I CODE

2 X'20'

DESCRIPTION

Stops execution of
the current task
on the specified
APU, saves the
task context, and
reschedules the
current task
to the rear of the
APU ready queue.
APU is left in
IDLE state.

PREREQUISITES

APU must be
enabled.
APU must have a
currently exe­
cuting task.

Select next 3 X'lO' Select the task APU must be
task specified in the enabled.

buffer from the

Send APU
Command

4 X'08'

, APU ready queue as
the next task for
the APU to run.
Tasks appearing in
the APU ready
queue after this
task will execute
in order.

Send the APU
command specified
in the SVC
directive option
field (SV13.DOP)
to the specified
APU.

See Table 3-7.

'------------- --
Reserved

Disable APU I

Release
control
rights

3-48

5

6

7

I X'04' I Reserved for
I future use.

I X'02' I Disable the
I specified APU.

I APU must be in
I OFF state.

X'Ol' I Task gives up con- I None.
I trol rights to the I
I specified APU.

48-040 FOO R02

I HEX
I CODE

TABLE 3-7 SVC 13 CODE 3 APU COMMANDS (SV13.DOP)

MEANlNG PREREQUISlTES
l=====••==•=•===••••==••====••••as====a========•====•=•===•==========
I X'Ol' I Start APU for task execution. ; APU must be in lDLE state.
' : APU enters running state.

X'02' Execute single instruction. APU must be in IDLE state.

Reserved for diagnostic
use.

X'04' I Transfer current task to CPU
Not recommended for uset'-

APU must be in IDLE state.

X'07'

X'08'

X'OB'

X'80'

X'83'

wr itten tasks. See SVC 6
example in Chapter 6.

Start APU for nontask
execution - loads and starts
APU using power fail image.

Store power fail image

Stop APU if task state -­
saves context of current
executing task and stops APU
(APU enters lDLE state ..)

APU must have a current
task.

APU must be in IDLE state.

Reserved for diagnostic
use.

APU must be in IDLE state.

Reserved for diagnostic
use.

APU must be running in
task state (PSW 15=0).

APU must have a current
task.

RTSM link check - sends data .APU must be in IDLE state.
byte and receives complement.

Reschedules task on APU -
reschedules the current task
to the rear of the APU 1~eady
queue.

Reserved for diagnostic
use.

APU must have a current
task.

APU must be in IDLE state.

NOTE

The preferred method of rescheduling a task on an
APU is to issue an SVC 13 code 3 with the X'20' APU
control option specified.

48-040 FOO R02 3-49

TABLE 3-7 SVC 13 CODE 3 APU COMMANDS (SV13.DOP) (Continued)

HEX I
CODE I MEANING PREREQUISITES

=========================·---------------------------------=-=====-= X'85'

X'86'

X'89'

X'8A'

Stop APU and save power fail
image saves context of
currently executing task and
stops APU (APU enters IDLE
state).

Fetches APU status.

Fetch APU error code.

Checkpoint task state saves
context of current task.
Task continues execution if
previously running or remains
idle if previously idle.

NOTE

Use only after attempt to
stop APU with X'OB' has
failed due to APU command
sequence error.

I APU must not be disabled.

I Reserved for diagnostic
I use.

APU must have a current
task.

If an undefined conunand code in the
SV13.DOP field is to be sent to the APU,
the APU will identify the code sent as an
unrecognizable conunand code or as a
sequence error. For more information on
the SVC 13 APU conunands, see the Model
3200MPS System Instruction Set Reference
Manual.

3.9.5 SVC 13 Auxiliary Processing Unit (APU) Hardware Status
(SV13.APS) Field

After execution of SVC 13 code 1 or SVC 13 code 3 option X'08',
the status of the APU hardware is saved in the APU status
(SV13.APS) field of the parameter block. This field consists of
two bytes, a response byte and an error code byte, representing
the response and error fields of the PSW. The hardware status is
returned to this field in the format shown in Figure 3-20. See
Table 3-8 for the response byte bit definitions. Error codes
returned to the error code byte are listed in Table 3-9. See the
Model 3200MPS System Instruction Set Reference Manual for more
information.

3-50 48-040 FOO R02

- - - - - - - - - - -·- - - - - - - - - - - - .;.. - ~· - - - - -,~·
p

A

R

Bits:
0

R

u

N

NON-

TASK

w
A
I
T

R
E
s
p

E
R
R
0
R

M
0
D
1

M
0
D
2

7 8

ERROR CODE

Figure 3-20 APO Hardware Response Byte (SV13.APS)

TABLE 3-8 APU HARDWARE RESPONSE BYTE BIT DEFINITIONS

BIT I I
POSITION I BIT NAME I :SIT SETTING AND MEANING

15

========~===============•==~==•·=••••=•••smm••=••••==••====•==~=

0 PAR

1 I RUN

2 NONTASK

3 WAIT

4 RESP

48-040 FOO R02

l= ensures that the response byte has
an odd parity

O= odd number of bits have been set for
the remainder of the byte

I l= APO is running
I O= APO is idle

l= current PSW bit 15 is set, indicat­
ing no context save area is
available

O= APO executing in task state; the
current PSW bit 15 is not set,
indicating that the current task's
context save area is ready to
receive the processor task state

l= current PSW bit 16 is set, indicat­
ing APU is in a wait state or APU is
working in an internal service state
(e.g., scheduling a task)

O= current PSW bit 16 is not set,
indicating the APU is executing
instructions

l= APO is responding to a command from
the CPU

O= APO is generating a signal indi­
cating a change in APO state

3-51

TABLE 3-8 APU HARDWARE RESPONSE BYTE BIT DEFINITIONS
(Continued)

BIT I I
POSITION I BIT NAME I BIT SETTING AND MEANING

=======--5 ERROR l= APU detects an error condition that
causes the APU to stop; the error
condition is indicated by the set­
ting of the error code bit (see
Table 3-9)

O= no error condition is detected by
APU

'·---

' I
••

3-52

6,7 MODl
MOD2

Bit definitions for MOD! and MOD2
depend on the definitions for RESP and
ERROR, as follows:

RESP=O, ERROR=O

00 = undefined
01 = APU entering queue wait state
10 = task rescheduled to APU ready

queue
11 = task rescheduled to CPU

RESP=O, ERROR=!

00 = general error status
01 error occurred while APU in

queue wait state
10 error occurred while locking

queue
11 = undefined

RESP=l, ERROR=O

00 =
01 =
10
11 =

general response status
task is waiting on APU queue
APU attempting to lock a queue
command sequence error; command
was ignored

RESP=l, ERROR=l

= error as a result of command 00
01
10 =
11 =

response, error in queue wait
response, error in queue lock
error and command sequence error

48-040 FOO R02

NOTE

See the Model 3200MPS System Instruction
Set Reference Manual for more information
on the nontask and wait states that
reflect the PSW bit definitions.

TABLE 3-9 ERROR CODES FOR ERROR CODE BYTE OF APU
HARDWARE STATUS (SV13.APS) FIELD

ERROR l
CODE MEANING
=======================~==========================

X'80'
XI 01 1

X'02'
X'83'

X'04'
X'85'
X'86'
X'07'

X'08'
X'89'
X' BA'
X'OB'

X'8C'
X'OD'
X'OE'
X'8P'

X'lO'
x' 91'
X'92'
X'l3'

X'94'
X'l5'
X'l6'
X'97'

X'98'
X'l9'
X'lA'
X'9B'

X'lC'
X' 9D'
X'9E'
X' lF'

48-040 FOO R02

No error
APUID DEVICE FALSE SYNC
ZERO APUID RETURNED BY RTSM
CAN'T FETCH WORD @ X'C4' - ECC

APUID > MAX APU @ X'C7'
BAD A(APB_DIR) - ECC/ZERO/ALIGN
BAD A(APB) - ECC/ZERO/ALIGN
BAD APB (FLAGS:APB#) WORD - ECC

WRONG APB# IN A.PB
APB PASSBACK
UNRECOGNIZED COMMAND

1 BAD APB A(CTCB) - ECC/ZERO/ALIGN

BAD A (APU QUEUE) - ECC/ZERO/ALIGN
QUEUE LOCK TIMEOUT
EXECUTION SUSPENDED (TRAP PSW WAIT)
BAD SSTD - ECC

CAN'T LOAD TASK CONTEXT
CAN'T STORE TASK CONTEXT
CAN'T LOAD PWR FAIL IMAGE
CAN'T STORE POWER FAIL IMAGE

CAN'T LOAD PSTD - ECC
BAD APB PFAIL PTR - ECC/ZERO
BAD APB MMF NEW PSW - PCC/ZERO
BAD CTCB CTX P'I'R - ECC/ZERO/ALIGN

BAD APB TCB CN'I' WORK - ECC
BAD A(APU FRON'!' TCB) - ECC/ZERO/ALIGN
FRONT TCB PTR< TCB CNT DISAGREE
QUEUE TCB CNT UNDERFLOW

BAD APB A(CPU c;~UEUE) - ECC/ZERO/ALIGN
BAD TCB QHPTR -- ECC/ZERO/ALIGN
INCORRECT TCB QUEUE HEAD PTR
BAD TCB BPTR - ECC/ZERO/ALIGN

3-53

TABLE 3-9 ERROR CODES FOR ERROR CODE BYTE OF APU
HARDWARE STATUS (SV13.APS) FIELD
(Continued)

ERROR I
CODE MEANING

==!
X'20'
X'Al'
X'A2'

I X'23'
X'A4'
X'25'
X'26'
X'A7'

X'A8'
X'29'
X' 2A'
X'AB'

X' 2C'
X'AD'
X'AE'
X'2F'

X'BO'
x' 31'
x' 32'
X'B3'
X'B4'
X'BS'
X'B6'

BAD BACK TCB FPTR - ECC/ZERO/ALIGN
BACK TCB FPTR NOT TO FRONT TCB
BAD FRONT TCB FPTR - ECC/ZERO/ALIGN
BAD FWD TCB BPTR - ECC/ZERO/ALIGN
FWD TCB BPTR NOT TO FRONT TCB
INCONSISTENT FRONT TCB FPTR & BPTR
BAD FRONT TCB PTR - ECC/ZERO/ALIGN
BAD BACK TCB FPTR - ECC/ZERO/ALIGN

BACK TCB'S FPTR NOT TO FRONT TCB
TCB QUEUE OVERFLOW (CPU OR APO)
BAD MSH TIME ACCUMULATOR - ECC
BAD LSH TIME ACCUMULATOR - ECC

BAD TCB START TIME WORD - ECC
CAN'T READ RTSM CLOCK DATA
TCB ELAPSED TIME OVERFLOW
TCB "PENDING" FLAGS SET ON QUEUE OR CTCB

BAD "PENDING" FLAGS WORD - ECC
INTERRUPT FROM RTSM XMrR
CAN'T LOAD PFAIL PSTD - ECC
CAN'T LOAD PFAIL PSTD - ECC
BAD APB MSH TIME ACC - ECC
BAD APB LSH TIME ACC - ECC
WRONG APO NUMBER IN SBC 'FLAGS' WORD

3.9.6 SVC 13 Error Status Code (SV13.ERR) Field

When execution of an SVC 13 is completed, the execution status is
returned to the error status code (SV13.ERR) field of the
parameter block. If no error occurs, a value of 0 is stored in
this field. If SVC 13 code 2 or code 3 is issued and an error
occurs, the first byte of this field contains the bit position of
the option that caused the error.

Table 3-10 lists the SVC 13 error status codes and their
applicable function codes.

3-54 48-040 FOO R02

TABLE 3-10 SVC 13 ERROR STATUS CODES (SV13.ERR)

I
STATUS I

CODE

APPLICABLE
FUNCTION

CODES MEANING
==

0

1

2

3

4

5

6

7

I
I

all

all

0,1

all

2,3

2,3

1,2,3

2 option
X'lO'

I No errors occurred.

I The specified data buffer does
I not begin on a fullword boun-
1 dary.

I The specified data buffer is
I not located in a writable seg- '
I ment of the task.

Insufficient space was avail­
able in the supplied data buf­
f er. For functions 0 and 1,
any data that does not fit in
the available space is lost.

I Task establishment options
I prohibit the task from gaining
I mapping or control rights.

Task has not been granted the
rights to perform the attempt­
ed mapping or control
function.

I The APU number specified is
I greater than the maximum
I allowed ..

I The LPU number specified is
I greater than the maximum
I allowed ..

--,
8 2,3 I An invalid option was speci-

9 2,3

1 f ied for this function.

I The requested privilege is
I currently held by another
I task and cannot be granted ..

10 2 option I The specified APU cannot be

48-040 FOO R02

X'40' I marked on exclusive from ON
I state ..

3-55

3-56

TABLE 3-10 SVC 13 ERROR STATUS CODES (SV13.ERR)
(Continued)

I
I

STATUS I
CODE

APPLICABLE
FUNCTION

CODES MEANING
======================-==========================----=

11

12

13

2,3

1,2,3

2 option
X'lO'

The function requested cannot
be completed because the spe­
c if ied APU is in DISABLED
state.

Access to the task queue for
the specified APU could not be
obtained; SVC 13 request was
aborted.

The task has not been granted
mapping rights over the APU
currently mapped to the speci­
fied LPU.

14 3 option I Cannot enable APU unless in
X'40' I DISABLED state.

15 3 option I APU could not pass power up
X'40' I link check sequence. APU left

I in DISABLED state.

16 3 option I Cannot disable APU unless
X'02' I in an OFF state.

17 2 option I The APU could not be marked
X'40' on exclusive because the spec­

ified task could not be found
in the system.

18 3 option I Error encountered in transmis-

19

X' 08' I sion of the specified control

3 option
X'lO'

I conunand.

The preemptive task could not
be found on the specified APU
ready queue. The APU queue is
unchanged.

48-040 FOO R02

3.9.7 Typical Option Coding Sequences for SVC 13 Code 2 and
Code 3

The options field (SV13.0PT) in the SVC 13 parameter blocks for
codes 2 and 3 allows the user to issue one call to execute
multiple APU mapping or control functions. Multiple options are
executed from left-to-right. Care must be taken when selecting
the sequence of options to perform a designated APU control or
mapping procedure. The following sections demonstrate specific
option coding sequences that would be used by a typical APU
control task in a Model 3200MPS System.

3.9.7.1 Auxiliary Processing
and Start Up

Unit (APU) Initialization

Before a task can run on an APU, the APU must be initialized and
started for task execution. This is accomplished through an SVC
13 code 3 with the following sequence of option codes specified:

OPTION
CODES

X'80'

X'40'

X'08'

X' 01'

FUNCTIONS PERFORMED

Gain control rights for task

Enable (initialize) APU

Send APU start directive (X'Ol') specified
in SV13.DOP field

Release control rights

3.9.7.2 Auxiliary Processing Un.it (APU) Mark On

After initialization, the APU must be mapped into the LPMT and
assigned to the LPU number to which the task that will run on the
APU is directed. This is accomplished through an SVC 13 code 2
with the following sequence of option codes specified:

OPTION
CODES FUNCTIONS PERFORMED

X'80' Gain mapping rights for task

X'20' Mark APU on

X'lO' Map APU into LPMT

X' 01' Release mapping rights

The SV13.DOP field contains the LPU number to which the specified
APU (SV13.APN) is to be mapped.

48-040 FOO R02 3-57

If the APU is to be marked on exclusively for one task, the
following option coding sequence is used for SVC 13 code 2:

OPTION
CODES

X'80'

X'40'

X'lO'

X'Ol'

FUNCTIONS PERFORMED

Gain mapping rights for task

Mark APU on, exclusive

Map APU into LPMT

Release mapping rights

The buffer, identified by the address specified in the SV13.BUF
parameter block field, contains the name of the task for which
exclusive access is requested. SV13.DOP contains the LPU number
to which the specified APU (SV13.APN) is to be mapped.

3.9.7.3 Effective Task Scheduling on the Auxiliary Processing
Unit (APU) Queue

Scheduling is initially done by the task manager; the preempting
process changes normal scheduling of tasks on an APU. Two
methods are available for preemptive scheduling of the next ready
task on the APU ready queue:

• Stop the APU, reschedule the currently active task to the rear
of the queue, and restart the APU, which will automatically
select the next task from the front of the queue.

• Stop the APU, reschedule the currently active task to the rear
of the queue, assign another task on the queue to the front of
the queue, and start the APU, which will automatically select
it as the next task to execute.

To schedule the current task to the rear of the queue, use SVC 13
code 3 with the following sequence of option codes specified:

3-58

OPTION
CODES

X'80'

X'20'

FUNCTIONS PERFORMED

Gain control rights for task

Stop APU task execution and reschedule current
task to rear of the queue

48-040 FOO R02

X'08'

X'Ol'

Send APU start directive (X'Ol') specified in
SV13.DOP field to select the task at the front
of the APU ready queue for execution

Release control rights

To preempt the next ready task, thereby explicitly selecting the
next task to be run, use SVC 13 code 3 with the following
sequence of option codes specified:

OPTION
CODES

X'80'

X'20'

X'lO'

X'08'

FUNCTIONS PERFORMED

Gain control rights for task

Stop APU task execution and reschedule current task
to rear of the queue

Change front of queue pointer to designated task
(name of task is specified in the buffer identified
by the address in the SV13.BUF field)

Send APU start directive (X'Ol') specified in
SV13.DOP field to start task

X'Ol' Release control rights

3.9.7.4 Auxiliary Processing Unit (APU) Mark Off

An APU can be marked off with or without changing its LPU to APU
mapping assignments in the LPMT1

• To mark off an APU, use SVC 13 code
2 with the following sequence of option codes specified:

OPTION
CODES

X'80'

X'02'

X'Ol'

48-040 FOO R02

FUNCTIONS PEFPORMED

Gain mapping rights for task

Mark APU off

Release mapping rights

3-59

To mark off an APU and remove all of its references from the LPMT
(i.e., remap all LPUs currently assigned to the APU to the CPU), use
SVC 13 code 2 with the following sequence of option codes specified:

3-60

OPTION
CODES

X'80'

X'08'

X'02'

x' 01'

FUNCTIONS PERFORMED

Gain mapping rights for task

Remove all references to APU number from LPMT, no
matter what LPUs are assigned to it

Mark APU off

Release mapping rights

48-040 FOO R02

CHAPTER 4
SUPERVISOR CALL (SVC) INTERCEPTION

4.1 INTRODUCTION

SVC interception software is us 1ed to write programs that can
emulate the SVC processing ability of OS/32. This software
consists of macros that allow a task (intercepting task) to
intercept the SVC of another task before it goes to the operating
system for processing. Once intercepted, the SVC can be
monitored by the intercepting task and sent to the operating
system for processing, or it can be processed by the intercepting
task. Table 4-1 lists the system macros used for SVC
interception.

TABLE 4-1 SYSTEM MACROS FOR SVC INTERCEPTION

MACRO FUNCTION
============================mm=c=~====s•~===========~==========

I CREATE

I REMOVE

IGET

IPUT

I CONT

I PROCEED

I ROLL

I TERM

I TRAP

IERRTST

Creates an SVC intercept path.

Removes a previously created path.

Gets data from a data area of the task that issued
an intercepted SVC.

Puts data into a data area of the task that issued
an intercepted SVC.

Continues standard execution of an intercepted SVC
by passing control to an OS/32 SVC executor.

Allows the task that issued the intercepted SVC to
proceed with its execution.

Makes an intercepted task rollable.

Terminates an intercepted SVC after processing.

Sends a task queue trap to a task.

Evaluates errors returned by any of the above
macros and branches execution to specific error
routines within the intercepting task.

48-040 FOO R02 4-1

The intercepting task tells the OS/32 SVC executor which SVC it
will process or monitor. When the intercepting task is sent an
SVC from the executor, the intercepting task handles the
intercepted SVC while the task that issued the SVC is placed in
a wait state. While executing the intercepted SVC, the
intercepting task can read from or write to the address space of
the task that issued the SVC.

A task is not aware that its SVC has been intercepted unless it
is informed by the intercepting task.

SVC interception software must be configured in OS/32 at the time
of system generation (sysgen). See the INTERCEPT configuration
statement in the OS/32 System Generation (SYSGEN/32) Reference
Manual.

A task can intercept SVC calls only after it is linked with the
intercept task option enabled (OPTION INTERCEPT). See the OS/32
Link Reference Manual. The task can then be programmed to
intercept any of the following SVCs issued by any application
task in the system:

e SVC 1

• SVC 2 code 7

• SVC 3

e SVC 6

e SVC 7

Intercepting tasks can be loaded and executed under MTM.
However, the intercepting task must be loaded from an account
that has executive task (e-task) load privileges. See the OS/32
Multi-Terminal Monitor (MTM) System Planning and Operation
Reference Manual.

4-2 48-040 FOO R02

4.2 HOW SUPERVISOR CALL (SVC) INTERCEPTION WORKS

In general, SVC interception software functions as follows:

1. A task with SVC interception enabled by Link is built.
intercepting task must:

This

• reserve memory for a set of request descriptor block (ROB)
buffers for each SVC to be intercepted,

• build a circular list for storing addresses of ROB buffers
containing information on intercepted SVCs,

• create (via the ICREATE macro) intercept paths that
designate the SVCs to be intercepted, and

• define (via the ICREATE macro) what control the
intercepting task has over the SVCs it intercepts.

2. An application task issues an SVC.

3. If no intercept path was created for that particular SVC, one
of the standard OS/32 executors services the SVC.

4. If an intercept path has been created for that SVC, the
operating system:

• intercepts the SVC before it reaches the OS/32 executor,

• removes an RDB address from the circular list of the
intercepting task,

• loads the SVC's parameter
information into the RDB, and

block and identifying

• sends a task event trap to the intercepting task to notify
the task that an SVC has been intercepted.

48-040 FOO R02 4-3

5. Execution of the intercepting task branches to the task event
trap handling routine. The address of this routine is
specified when the path is created via the ICREATE macro.

6. If the intercept path was built to monitor this SVC, the task
event trap handling routine issues an ICONT macro to return
the SVC to the OS/32 executor for execution.

7. If the intercept path was built to service the SVC, the task
event trap handling routine processes the SVC by the
intercept macros IGET, IPUT, IROIL, and ITRAP. Also, the
routine can issue the !PROCEED macro to allow the application
task to continue executing during SVC processing.

8. After the task event trap handling routine processes the SVC,
it issues an ITERM macro that transfers control back to the
application task that issued the SVC.

9. The intercepting task exits the trap handler through the
TEXIT macro.

4.3 PREPARING A TASK FOR SUPERVISOR CALL (SVC) INTERCEPTION

Before creating an intercept path, an intercepting task must:

• build a set of ROB buffers for each type of SVC to be
intercepted,

• build a circular list to store the addresses of the ROB
buffers, and

• be prepared to handle a task event trap.

4.3.1 Request Descriptor Block (ROB) Buffers

The size of each RDB buffer built by the intercepting task
depends on the size of the p~rameter block for the particular SVC
that is to be intercepted. For example, a set of buffers
allocated for SVC 6 interception will be larger than a set of
buffers for SVC 1 interception. When an intercepting task uses
one set of buffers for intercepting two or more SVC types, the
buffer size must equal the size of the ROB needed to hold the
largest parameter block associated with the SVCs to be
intercepted. Figure 4-1 shows the ROB fields. To define a
structure containing these fields, use the $ROB macro.

4-4 48-040 FOO R02

0(00) 12(02)
Reserved

(ROB.RID)

Intercept path
identifier
(ROB.PIO)

4(04) Parameter block offset 16(06) SVC 17(07) Task
priority

(RDS. TPRI)
(ROB.OFF) type

8(08)

12(0C)

16(10)

20(14)

(ROB.SVC)

Operating system task identifier
(ROB.TIO)

SVC parameter block address
(ROB.PAD)

Instruction address following
intercepted SVC instruction

(RD.B .. SVAD)

SVC parameter block
(RD.B. PB)

Figure 4-1 Request Descriptor Block

The fields contained within the ROB are described as follows.

Fields:

Reserved
(ROB.RID)

Intercept
path
identifier
(RDB.PID)

Parameter
block
offset
(ROB.OFF)

48-040 FOO R02

is a halfword field reserved for future use.

is a halfword field containing an SVC
intercept path identifier exclusively reserved
for one particular SVC interception.

is a halfword field containing the hexadecimal
offset value for the parameter block field
within the RDB.

4-5

SVC
type
(ROB.SVC)

Task
priority
(RDB. TPRI)

Operating
system task
identifier
(RDB.TID)

SVC parameter
block address
(ROB.PAD)

Instruction
address
following
intercepted
SVC
instruction
(RDB.SVAD)

SVC parameter
block
(ROB.PB)

is a 1-byte field containing a decimal number
specifying the type of SVC that is to be
intercepted.

• 01 indicates SVC 1

• 02 indicates SVC 2 code 7

• 03 indicates SVC 3

• 06 indicates SVC 6

• 07 indicates SVC 7

is a 1-byle field containing a decimal number
specifying the priority of the task that
issued the intercepted SVC.

is a 4-byte field containing the operating
system task identifier for the task that
issued the intercepted SVC.

is a 4-byte field containing a hexadecimal
number specifying the address of the parameter
block for the SVC being intercepted. For
SVC 3 interceptions, this field contains the
end of task code.

is a 4-byte field containing a hexadecimal
number specifying the address of the instruc­
tion following the intercepted SVC
instruction. This field is set to 0 for SVC
3 interceptions.

is a variable length field containing the.
parameter block of the intercepted SVC.

4.3.2 Circular List for Request Descriptor Block (RDB) Buffers

The intercepting task must have a standard Perkin-Elmer circular
list to hold the address of each ROB buffer. Figure 4-2 shows
the fields of the standard circular list. When an SVC is sent to
the intercepting task for processing, one ROB buffer address is
automatically removed from the circular list, and the ROB is
filled with information identifying the intercepted SVC. The
circular list can be created by the assembler instruction DLIST.
Refer to the appropriate Perkin-Elmer Series 3200 Processor
User's Manual for a more detailed explanation of the standard
circular list.

4-6 48-040 FOO R02

0(00) 1~(02)
Maximum number

of buffers
Current number

of buffers

4(04) 1.6(06)
Current top Next bottom

8(08)
A (buff er 1)

12(0C)
A (buffer 2)

A (buff er n)

Figure 4-2 System Task Buffer List (Standard Circular List)

Fields:

Maximum
number of
buffers

Current
number of
buffers

Current top

Next bottom

A (buff er n)

48-040 FOO R02

is a halfword field indicating the maximum
number of fullwords in the entire list.

is a halfword field indicating the number of
fullwords currently in use. When this field
equals 0, the list is empty. When this field
equals the number of fullwords in the list,
the list is full.

is a halfword field indicating the address of
the ROB buff er that is currently at the top of
the list.

is a halfword field indicating the address of
the next ROB buff er that is at the bottom of
the list.

indicates the address of an RDB buffer.

4-7

4.3.3 Task Event Trap

To receive a task event trap, an intercepting task must have the
TSW.TESB bit in its task status word (TSW) set. See the OS/32
Application Level Programmer Reference Manual for more
information on TSW bit settings. If this bit is not set, the
task event trap will be queued until a TSW is loaded with this
bit set. In addition, a task cannot receive a task event trap or
task queue trap during execution of the task event trap handling
routine. These traps will be queued until the task exits from
the routine.

Before execution branches to the task event trap handling
routine, the operating system places the address of the RDB in
register 1 and a unique intercept path identifier in register 0.
To prevent the data in these registers from being lost during
execution of the task event trap handling routine, the
intercepting task should be link edited with the TEQSAVE task
option. TEQSAVE informs the operating system which register
contents should be saved and restored when a task enters or exits
the task event trap handling routine. See the OS/32 Link
Reference Manual for more information on TEQSAVE.

4.4 CREATING INTERCEPT PATHS (!CREATE)

Before an intercepting task can intercept an SVC, it must create
a path to the application task that contains the SVC to be
intercepted. This path is created by executing code built by the
!CREATE macro that informs the OS/32 SVC executor which SVC is to
be intercepted by this path. The intercepting task also accesses
the application task's address space through the intercept path.

An intercept path remains in effect until it is removed by the
intercepting task creating it or until the intercepting task
terminates. Although only one type of SVC can be intercepted by
each path, there is no limit to the number of paths that can be
created by one intercepting task.

The mode parameter of the I CREATE macro spec if ies when an SVC is.
to be intercepted. Under caller mode, the specified SVC is
intercepted every time it is issued by the application task.
When the recipient existent mode is specified, the SVC is
intercepted only when it is directed towards a specified task,
device, pseudo task, or pseudo device that exists in the system.
Under the recipient nonexistent mode, the SVC is intercepted only
when it is directed toward a specified pseudo task or pseudo
device created by execution of code built by the ICREATE macro.

4-8 48-040 FOO R02

4.5 HOW TO CREATE A PSEUDO DEVICE OR TASK WITH ICREATE

A pseudo device consists of a name and the SVC 1 or SVC 7
intercept paths attached to it. The pseudo device name, which is
known to the system but does not actually ref er to any system
device or file, consists of a device name, filename, and
extension. A device name that does not already exist for a real
device or disk volume must be used. Pseudo devices ignore the
file class/account number field of the file descriptor.

When the operating system cannot find a device or filename in the
system, it will search the list of pseudo devices. If a match
occurs, the system will continue processing the SVC using the
pseudo device.

To create a pseudo device using SVC interception software, the
!CREATE macro should be set to specify either an SVC 1 or SVC 7.
The recipient nonexistent mode should also be specified. An SVC
1 intercept path must be in effect when an 1/0 operation is
attempted to a pseudo device; otherwise, an invalid function
(X'CO') error status is returned.

A pseudo task consists of a name attached to one or more SVC 6
intercept paths. A pseudo task name is known to the system but
does not ref er to an actual task existing in the system.

To create a pseudo task, issue the !CREATE macro specifying SVC
6 and the recipient nonexistent mode. Because a pseudo task does
not refer to a real task, the pseudo task cannot be cancelled.
Both pseudo tasks and pseudo devices can be deleted by removing
all intercept paths attached to them.

4.6 USE OF GENERIC NAMING FOR PSEUDO DEVICES AND TASKS

A pseudo device or task can be generically named. The following
characters can be used for generic naming:

• An asterisk (*) represents any character or blank.

• A backward slash (\) represents any character.

If a pseudo device or task name specifies the filename and
extension fields as blanks, the system substitutes filename and
extension fields filled with asterisks. This has the effect of
generically naming the filename and extension fields so that they
will always match the input filename and extension.

48-040 FOO R02 4-9

If the operands of an !CREATE macro specify the recipient
existent mode and a generic pseudo device or task name, a pseudo
device or task must exist with its name exactly matching the one
specified by ICREATE. An error will result if the names do not
match. For example, a system is asked to create the following
pseudo devices:

• FAKE:FILEl

e FAKE:FILE*

e FAKE:

• FAKE:F ILE* .EXT

Normally, the following input will match the above pseudo
devices:

INPUT NAME

FAKE:
FAKE:FIT.E3
FAKE:FILEl
FAKE:FILEll
FAI<E:FILEX.EXT
FAKE:FILEX.EX

SELECTED PSEUDO DEVICE

FAKE:
FAKE:FILE*
FAKE:FILEl
FAK.E:
FAKE : F I LE* . EXT
FAKE:

When the code built by the !CREATE macro is issued specifying
recipient nonexistent mode and the pseudo device FAKE:, the
!CREATE function will not be performed because the pseudo device
already exists. Consequently, when an !CREATE macro is used
specifying recipient existent mode along with the pseudo device
FAKE:FILE*, !CREATE will be executed because the pseudo device
FAKE:FILE* already exists.

4.7 FUNCTION.AL SUMMARY OF SUPERVISOR CML (SVC) INTERCEPTION

The following describes how interception works for each SVC and
mode:

4-10

SVC 1 caller

SVC 1
recipient
existent

SVC 1
recipient
nonexistent

Any SVC 1 issued by the specified task is
intercepted.

Any SVC 1 directed to an lu assigned to the
specified device or pseudo device is
intercepted. (Note that disk volume
interception is not supported for SVC 1.)

The pseudo device is
call specifying an lu
device is intercepted.

created, and any SVC l
assigned to this pseudo

48-040 FOO R02

SVC 2 code 7
caller

SVC 2 code 7
recipient
existent

SVC 2 code 7
recipient
nonexistent

SVC 3 caller

SVC 3
recipient
existent

SVC 3
recipient
nonexistent

SVC 6 caller

SVC 6
recipient
existent

SVC 6
recipient
nonexistent

SVC 7 caller

SVC 7
recipient
existent

SVC 7
recipient
nonexistent

Any SVC 2 code 7 issued by the specified task
is intercepted.

This call is invalid.

This call is invalid.

If the specif led task goes to end of task for
any reason, an SVC 3 intercept will occur.

This call is invalid.

This call is invalid.

Any SVC 6 issued by the specified task is
intercepted.

Any SVC 6 directed to the specified task
or pseudo task is intercepted.

The pseudo task
call directed
intercepted.

is created, and any SVC 6
to this pseudo task is

Any SVC 7 issued by the specified task is
intercepted.

Any SVC 7 directed to the specified device,
disk volume, or pseudo device is intercepted.

The pseudo device is created, and any SVC 7
call specifying this pseudo device is
intercepted.

4.8 FULL AND MONITOR CONTROL IN'rERCEPT PATHS

The !CREATE macro specifies the level of control that the
intercept path allows an intercepting task to have over an
application task.

A full control intercept path allows the intercepting task to
exert full control over a task whose SVC has been intercepted.
Specifically, the intercepting task can:

48-040 FOO R02 4-11

Either ICONT or ITERM can be used to terminate interception from
a monitor control intercept path. The system does not
differentiate between the two calls in this case. Here the ICONT
or ITERM macro replaces the RDB buff er address back on the
circular list. It is very important that the ICONT or ITERM
macro be used to replace the RDB.

Cancelling an application task under monitor or full control
aborts the processing of the intercepted SVC in progress. The
intercepting task must still issue an ICONT or ITERM to terminate
the SVC interception.

4.11 HOW TO REMOVE INTERCEPT PATHS

An intercepting task can remove an intercept path by executing
code built by an !REMOVE macro specifying the path to be removed.
!REMOVE can be used for both immediate and delayed termination
depending on whether the controlled shutdown or abort option is
chosen.

The controlled shutdown option refuses all incoming requests and
completes the servicing of all existing queued and executing
SVCs. When processing of the last existing SVC intercepted by
the path is completed, the path is removed from the system.

The abort option terminates all existing queued and executing
SVCs before removing the intercept path from the system.

4.12 ERROR HANDLING

Run-time errors that result from executing intercept
are handled by user written error routines
intercepting task. When an error occurs, execution
the routine specified by either the IERRTST macro
the error parameter associated with each macro.

macro code
within the

branches to
statement or

The IERRTST macro is issued immediately after a macro for which
the error parameter has been omitted. If an error occurs,.
execution of the intercepting task will branch to a user written
error routine to handle the error. Error codes returned by the
IERRTST macro are listed in Table 4-2. If no error occurs,
execution continues at the instruction following the IERRTST
macro.

If the ERROR parameter is specified with an intercept macro and
an error occurs, execution branches to the specified error
routine within the intercepting task. If no error occurs,
execution proceeds to the next executable statement. The error
routine pointed to by the ERROR parameter can contain an IERRTST
macro to identify what error has occurred.

4-14 48-040 FOO R02

TABLE 4-2 ERROR CODES RETURNED FOR INTERCEPT MACROS

ERROR I
CODE MEANING

: REf .EVANT I
MACROS

===========================i======================~=~~==I
MO

AD

EX

SP

CT

HA

FD

I Invalid interception mode

Invalid address in parameter con­
trol block (PCB)

I Task or device exists when it
I should

Insufficient system space to do
request, or NINTC)64, or
PBSIZE)998

Full control already selected

I Invalid queue handler name

I Invalid device name or task name

I !CREATE

ICREA'rE
I TERM
I CONT
I REMOVE
I'rRAP
IGET
IPU'r

I ICREA'l'E

ICREA'rE
I 'l'ERM
I 'l'RAP
IGET
IPUT

ICREA'rE
I ROLL
I PROCEED
I TRAP
IGET
IPUT

I ICRENl1E

I ICREA'T'E
---,

ST Invalid state for call; e.g., !CONT
IROIL followed by !CONT or issuing !REMOVE

TP

RD

48-040 FOO R02

IPUT with monitor control inter- IROLL
cept path !PROCEED

Task queue item not added

Invalid RDB

I'rRAP
IGET
IPUT

I ITRAP

I TERM
I CONT
I ROLL
I PROCEED
I TRAP
IGET
IPUT

4-15

TABLE 4-2 ERROR CODES RETURNED FOR INTERCEPT MACROS
(Continued)

ERROR I
CODE MEANING

I RELEVANT
MACROS

~=======~================•=•===========•=m=============

ID

WR

CD

NT

Intercept path corresponding to
this path ID does not exist

Attempt to copy SVC parameter
block back into write protected
area

Invalid subcode in SVC parameter
block
SVC interception software not in­
cluded at sysgen

Intercepted task has gone to end
of task

I IREMOVE

I TERM

all

I ROLL
I PROCEED
I TRAP
IGET
IPUT

4.13 MACROS USED WITH SUPERVISOR CALL (SVC) INTERCEPTION

Once configured for SVC interception, the operating system allows
tasks to execute code built by macros for SVC interception
provided the tasks were linked with the intercept option.

This section gives the syntax for the SVC macros described in the
previous sections. See the OS/32 System MacYo Library Reference
Manual for a list of syntax rules.

4.13.1 !CREATE Macro

The !CREATE macro creates an intercept path for a particular SVC
type. See Table 4-3 for valid combinations for the SVC, MODE,
and NAME parameters.

4-16 48-040 FOO R02

Fot:mat:

NAME OPERATION

symbol I CREATE

48-040 FOO R02

OPERAND

l(l) ! (2,7)
svc~'" c 3)

(6)
(7)

l<'L(
I ,MODE~ =~

, NA!.ffi=po inter

,TID=pointer

,BUPFERL=pointer

[HANDLER=po inter]

,PID=pointer

,EXEC=pointer

[PBS IZE=n J
[SVAR=po inter J
[r ERROR=po inter]

[, PCB=po inter]

[FORM=L]

[N rNTC=n J

4-17

Parameters:

SVC=

MOOE::

4-18

is an integer, enclosed by parentheses, that
indicates the type of intercept path to be
created:

• (l) indicates SVC 1

• (2, 7) indicates SVC 2 code 7

• (3) indicates SVC 3

• (6) indicates SVC 6

• (7) indicates SVC 7

indicates one of the following interception
modes:

• CL indicates caller mode

• RX indicates recipient existent mode

• RN indicates recipient nonexistent mode

When CL is specified, an intercept path is
created for all SVCs (selected by the SVC
parameter) issued from the task specified in
the NAME or TID parameter.

When RX is specified, an intercept path is
created for all SVCs (selected by the SVC
parameter) directed to an existing task,
device, pseudo task, or pseudo device
specified in the NAME parameter.

When RN is specified, a pseudo device is
created for SVC 1 or SVC 7, or a pseudo task
is created for SVC 6. The pseudo device or
task is attached to the intercept path created
by the call.

A pseudo task or pseudo device is deleted when
all intercept paths attached to it are
removed. When a pseudo device is assigned
without SVC 7 interception, the requested
access privileges are ignored and shared
read/shared write privileges are granted. If
an SVC 1 is attempted to a pseudo device
without an interception in effect, an invalid
function error (X'CO') is returned.

48-040 FOO R02

NAME= indicates the address of the memory location
specifying the name of a device, task, pseudo
device, or pseudo task. This location must be
fullword boundary aligned and contain eight
bytes of blanks followed by a standard file
descriptor (fd) or task identifier (taskid).
An fd must be packed, left-justified, and
padded with blanks within the fullword. A
taskid must be left-justified and padded with
blanks.

When RX or RN is specified by the MODE
parameter, the standard fd or taskid given
with the NAME parameter can include an
asterisk or a backward slash to allow generic
naming. See Section 4.6.

TABLE 4-3 VALID COMBINATIONS FOR SVC, MODE, AND NAME
PARAMETERS

I CREA'l'E PARAMETERS
------------------------!

SVC= I MODE= I NAME= FUNCTION
=~==~==-===================================~===~=~==:=========~

(1) CL task id

RX f d

RN f d

(2, 7) CL task id

RX

RN

(3) CL task id

RX

RN

48-040 FOO R02

Intercepts any SVC 1 issued from the
task
Intercepts any SVC 1 directed to the
existing device
Creates a pseudo device and inter-
cepts any SVC 1 directed to it

Intercepts any SVC 2 code 7 issued
from the task
No function; specifying fd or taskid
results in error
Results in error

End of task interception; occurs no
matter how a task terminates
No function; specifying fd or taskid
results in error
Results in error

4-19

TABLE 4-3 VALID COMBINATIONS FOR SVC, MODE, AND NAME
PARAMETERS (Continued)

I CREATE PARAMETERS I
I

------------------------1
SVC= I MODE= I NAME= FUNCTION
========================·-==~======s===========~=========~=~====

(6) CL task id

RX task id

RN task id

(7) CL task id

RX f d

RN f d

Intercepts any SVC 6 issued from the
task
Intercepts any SVC 6 directed to the
existing task
Creates a pseudo task and intercepts
any SVC 6 directed to it

Intercepts any SVC 7 issued from the
task
Intercepts any SVC 7 directed to the
existing device
Creates a pseudo device and inter­
cepts any SVC 7 directed to it

·r10= indicates the address of a fullword location

CON'rROL=

BUFF ERL=

4·-20

containing a task identifier. This parameter,
which is mutually exclusive with the NAME=
parameter, can be used when MODE=CL, or
MODE=RX with SVC 6, to identify the task to be
intercepted. The TID can be obtained from the
RDB.TID field of an RDB from a previously
intercepted SVC call.

contains a mnemonic indicating either full
control (FC) or monitor control (MC) over
intercepted SVCs.

When CONTROL=FC, an intercepting task can
exert full control over an application task's
intercepted SVCs.

When CONTROL=MC, an intercepting task acts as
a monitor only; it has no control over an
intercepted SVC.

indicates the address of the standard circular
list that contains the addresses of available
ROB buffers.

48-040 FOO R02

HANDLER=

PIO=

EXEC=

PBSIZE=

48-040 FOO R02

The ROB used by the intercepting task to
identify an intercepted SVC must not be moved
to a new location after the interception takes
place. The system ensures that the address of
this ROB is the same as the address of the ROB
that was passed to the intercepting task when
the interception occurred.

indicates the address of a fullword location
containing the nam~ of a queue handler. This
name, a max.i.mum of eight characters, is
left-justified and padded with blanks. If
this parameter is omitted, the default queue
handler is invoked.

NOTE

Currently, user defined queue
handlers are not supported.

indicates the address of a halfword location
that is used by the system to store the path
identifier for the intercept path.

is the address of an SVC intercept executor
routine within the intercepting task. This
routine will process intercepted SVCs of the
type specified with the SVC parameter. During
SVC interception, the system removes an RDB
specified by the list, fills it with
information, and queues a task event trap with
the specified executor address to the
intercepting task.

On entry to an executor routine, general
register 0 contains the PIO of the intercept
path and general register 1 contains the
address of the ROB buffer associated with the
intercepted SVC. The executor routine
executes as task event service routine.

specifies the number of bytes in the parameter
block for the SVC indicated by the SVC
parameter.

When this parameter is omitted, the parameter
block size defaults to the standard sizes
documented for each type of SVC in the OS/32
Supervisor Call (SVC) Reference Manual, except
for SVC 2 code 7 interception, which defaults
to eight byte·s .

4-21

SVAR=

ERROR=

PCB=

FORM=

NINTC=

The size of the RDS.PB field in the RDB for
this interception path is the value of the
PBSIZE parameter (or its default if PBSIZE is
not spec if ied).

is the address of a fullword location
containing user defined data. This data is
passed to the intercept logic. The queue
handler named by the HANDLER parameter can
later access the data. The SVAR parameter is
for user defined purposes when needed by a
user defined queue handler.

NOTE

Currently, user defined queue
handlers are not supported.

is the address of an error routine within the
intercepting task. If a run-time error occurs
for this macro, execution branches to this
error routine. If this parameter is omitted
and a run-time error occurs, execution resumes
with the instruction following code built by
the macro.

is the address of a PCB previously constructed
and initialized by the FORM=L parameter.

When no PCB parameter is included, macro code
automatically builds a new PCB and initializes
it with values corresponding to the other
specified parameters.

L requests a PCB to be built but not executed.
Macro code constructs a PCB for this macro and
initializes it with values. Subsequent macros
can reference this PCB via the PCB parameter.

n specifies the number of interceptions that
can be handled concurrently for this intercept
path. If there are more SVC interceptions
outstanding than can be handled concurrently,
the excess interceptions are queued. The
default value for n is 1.

4.13.2 !REMOVE Macro

·rhe !REMOVE macro allows an intercepting task to remove one or
all previously created SVC intercept paths.

4-22 48-040 FOO R02

Format:

NAME

symbol

Parameters:

PIO=

ERROR=

48-040 FOO R02

OPERATION

I REMOVE

OPERAND

PIO=pointer

[ERROR=po inter]

~ PCB=po inter J
[FOP.M=L]

is the address of the path identifier
specifying the path being removed. A zero
value in the PIO halfword removes all existing
intercept paths.

indicates either of two termination modes
intercepted SVCs already queued for
intercepting task:

• AB indicates abort.
currently queued
removal.

OS/32
requests

aborts
before

for
the

all
path

• CS indicates controlled shutdown. OS/32
services only currently queued requests
before path removal; no requests made after
TERM=CS is issued can be queued or
processed.

If this parameter is omitted, AB is the
default.

is the address of an error routine within the
intercepting task. If a run-time error occurs
for this macro, execution branches to this
error routine* If this parameter is omitted
and a run-time error occurs, execution resumes
with the instruction following the macro.

4-23

PCB=

FORM=

is the address of a PCB previously constructed
and init.ialized by the FORM=L parameter.

If this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameters.

L requests a PCB be built but not executed.
A PCB is built by this macro and initialized
with values. Subsequent macros can reference
this PCB via the PCB parameter.

4.13.3 IGET Macro

'rhe IGET macro allows an intercepting task to get data from the
application task whose SVC is intercepted.

Format:

NAME

symbol

Parameters:

RDB=

ADST=

4-24

OPERATION

IGET

OPERAND

RDB=pointer

,ADST=pointer

,ADEND=pointer

,SDST=pointer

,SDEND=pointer

[,ERROR=pointer]

[, PCB=po inter J
[,FORM=L]

[, DONE=addr]

is the address of the RDB buffer built for the
intercepted SVC.

is the start address of a data area within the
application task whose SVC is intercepted.
The contents of this area are transferred to
an intercepting task data area.

48-040 FOO R02

ADE ND=

SDST=

SDEND=

ERROR=

PCB=

FORM=

DONE=

48-040 FOO R02

is the end address of the data area within the
application task whose SVC is intercepted.

is the start address of a data area within the
intercepting task. This area receives the
data from the application task.

is the end address of the data area within the
intercepting task.

is the address of an error routine within the
intercepting task. If a run-time error occurs
for this macro, execution branches to this
error routine.

If this parameter is omitted and a
error occurs, execution resumes
instruction following the macro.

run-time
with the

is the address of a PCB previously constructed
and initialized by the FORM=L parameter.

If this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameters.

L requests a PCB be built but not executed.
A PCB is built for this macro and initialized
with values. Subsequent macros can reference
this PCB via the PCB parameter.

is an address that specifies that the macro is
to be a PROCEED call. When the call is
completed, a task event interrupt occurs,
using the routine specified by the address in
the DONE parameter. This routine enters with
RO containing the error code for the call and
Rl pointing to the macro's parameter block.
Once this routine has finished processing, it
exits using the code built by the TEXIT macro.

The proceed form of the IGET macro must be
used if an IROLL macro was issued to the
application task whose SVC is intercepted.
The system cannot guarantee that the
application task is in memory or t.hat it can
be rolled into memory within a reasonable
time.

4-25

4.13.4 IPUT Macro

The IPUT macro lets an intercepting task put data into a data
area of the application task whose SVC is intercepted.

Format:

NAME

symbol

Parameters:

ROB=

ADST=

AD END=

SDST=

SD END=

ERROR=

4-26

OPERATION

IPUT

OPERAND

RDB=pointer

,ADST=pointer

,ADEND=pointer

,SDST=pointer

,SDEND=pointer

[,ERROR=pointer]

[r PCB= po inter J
[,FORM=L]

[' DONE=addr]

is the address of the RDB buffer built for the
intercepted SVC.

is the start address of a data area within the
application task. This area receives the
contents of an intercepting task data area.

is the end address of the data area within the
application task.

is the start address of a data area within the
intercepting task. The contents of this area
are put into the application task data area.

is the end address of the data within the
application task.

is the address of an error routine within the
intercepting task. If a run-time error occurs
for code built by this macro, execution
branches to this error routine.

48-040 FOO R02

PCB=

FORM=

DONE=

If this parameter is omitted and a
error occurs, execution resumes
instruction following the macro.

run-ti.me
with the

is the address of a PCB previously constructed
and initialized by the FORM=L parameter. If
this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameters.

L requests a PCB be built but not executed.
A PCB is built for this macro and initialized
with values. Subsequent macros can refer to
this PCB via the PCB parameter.

is an address that specifies that the macro is
to be a proceed call. When the call is
completed, a task event interrupt occurs,
using the routine specified by the address in
the DONE parameter. This routine enters with
general register 0 containing the error code
for the call, and general register 1 pointing
to the macro's parameter block. Once this
routine has finished processing, it exits
using the code built by the TEXIT macro.

The proceed form of the IPUT macro must be
used if an IROIL macro was issued to the
application task. The system cannot guarantee
that the application task is in memory or that
it can be rolled into memory within a
reasonable time.

4.13.5 ICONT Macro

The ICONT macro relinquishes control of an intercepted SVC by
returning control to an OS/32 SVC executor.

Format:

NAME OPERATION

symbol ICONT

48-040 FOO R02

OPERAND

RDB=pointer

[,ERROR=pointer]

[' PCB=po inter J
[,FORM=L]

4-27

Parameters:

RDB=

ERROR=

PCB=

FORM=

is the address of the RDB buffer built for the
intercepted SVC.

is the address of an error routine within the
intercepting task. If a run-time error occurs
for code built by this macro, execution
branches to this error routine.

If this parameter is omitted and a run-time
error occurs, execution resumes with the
instruction following the code built by the
macro.

is the address of a PCB previously constructed
and initialized by the FORM=L parameter.

If this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameters.

L requests a PCB be built but not accessed.
A PCB is built for this macro and initialized
with values. Subsequent macros can refer to
this PCB via the PCB parameter.

4.13.6 !PROCEED Macro

After an SVC has been intercepted, the intercepting task can
execute code built by an !PROCEED macro to allow the application
task that issued the SVC to proceed with its execution. Until
the intercepting task executes code built by an !PROCEED macro,
the application task is in a wait state.

Format:

NAME OPERATION

symbol I PROCEED

4-28

OPERAND

RDB=pointer

[r ERROR=po inter J
[r PCB=po inter J
[,FORM=L]

[1 CC=n]

48-040 FOO R02

Parameters:

ROB=

ERROR=

PCB=

FORM=

CC=

is the address of the RDB buffer built for the
intercepted SVC.

is the address of an error routine within the
intercepting task. If a run-time error occurs
for code built by this macro, execution
branches to this error routine. If this
parameter is omitted and a run-time error
occurs, execution resumes with the instruction
following code built by the macro.

is the address of a PCB previously constructed
and initialized by the FORM=L parameter. If
this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameters.

L requests a PCB be built but not assessed.
A PCB is built for this macro and initialized
with values. Subsequent macros can refer to
this PCB via the PCB parameter.

n is a decimal number specifying the setting
of the application task PSW condition code
after the SVC instruction execution. If the
CC parameter is omitted, the condition code of
the application task PSW is set to zero.

4.13.7 IROLL Macro

After an SVC is intercepted, an IROLL, macro lets an intercepting
task change the status of the application task from nonrollable
to rollable, provided that the task was established as rollable
by Link. This allows OS/32 to roll out a task having an
intercepted SVC that requires lengthy processing.

Format:

NAME OPERATION

symbol I ROLL

48-040 FOO R02

OPERAND

RDB=pointer

[,ERROR=pointer]

[,PCB=pointer]

[,FORM=L]

4-29

Parameters:

RDB=

ERROR=

PCB=

FORM=

is the address of the RDB buffer built for the
intercepted SVC.

is the address of an error routine within the
intercepting task. If a run-time error occurs
for this macro, execution branches to this
error routine. If this parameter is omitted
and a run-time error occurs, execution resumes
with the instruction following the macro.

is the address of a PCB previously constructed
and initialized by the FORM=L parameter. If
this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameters.

L requests a PCB be built but not accessed.
A PCB is built for this macro and initialized
with values. Subsequent macros can refer to
this PCB via the PCB parameter.

4.13.8 ITERM Macro

•rhe ITERM macro terminates SVC processing. It also allows an
intercepting task to return the parameter block of the SVC it
processed to the application task that issued the SVC. The
returned parameter block can have updated information such as
status, number of bytes transferred, etc.

Format:

NAME OPERATION

symbol I TERM

4-30

OPERAND

RDB=pointer

,TRAP=pointer

[r ERROR=po inter J
[, PCB=po inter J
[,FORM=L]

[1 CC=n]

48-040 FOO R02

Parameters:

ROB=

TRAP=

COPY=

ERROR=

PCB=

FORM=

CC=

48-040 FOO R02

is the address of the RDB buffer built for the
intercepted SVC.

is the address of a fullword that contains an
item to be added to the task queue of the
application task whose SVC is intercepted.

Y (yes) indicates that the SVC parameter block
in the RDB is to be copied back into the
parameter block of the intercepted SVC.

N (no) indicates the copy operation is not
performed. If this parameter is omitted, N is

·the default.

is the address of an error routine within the
intercepting task. If a run-time error occurs
for code built by this macro, execution
branches to this error routine. If this
parameter is omitted and a run-time error
occurs, execution resumes with the instruction
following the code built by the macro.

is the address of a PCB previously constructed
and initialized by the FORM=L parameter. If
this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameters ..

L requests a PCB be built but not accessed.
A PCB is built for this macro and initialized
with values. Subsequent macros can refer to
this PCB via the PCB parameter.

n is a decimal number specifying the setting
of the application task PSW condition code
after the SVC instruction execution. If the
CC parameter is omitted, the condition code of
the application task PSW is set to zero.

4-31

4.13.9 ITRAP Macro

The ITRAP macro allows an intercepting task to send a task queue
item to an application task whose SVC is intercepted. The task
queue item can be any of the task queue items supported by OS/32.

Format:

NAME

symbol

Parameters:

ROB=

TID=

4-32

OPERATION

I TRAP

OPERAND

{

RDB=pointer}

TID=pointer

,TRAP=pointer

[ERROR=po inter J
[PCB=po inter J
[FORM=L]

[DONE=addr]

is the address of the RDB buffer built for the
intercepted SVC.

is the address of a fullword containing the
taskid for the task. Before issuing an ITRAP
macro with the TID parameter, the intercepting
task must have obtained the task identifier
from an RDB and placed it into the fullword.
location.

NOTE

The TID form of this macro can be
used to send a trap to a task that
is not being intercepted.

48-040 FOO R02

TRAP=

ERROR=

PCB=

FORM=

DONE=

48-040 FOO R02

is the address of a fullword that contains an
item to be added to the task queue of the
application task having an SVC that is
intercepted.

is the address of an error routine within the
intercepting task. If a run-time error occurs
for code built by this macro, execution
branches to this error routine. If this
parameter is omitted and a run-time error
occurs, execution resumes with the instruction
following the code built by the macro.

is the address of a PCB previously constructed
and initialized by the FORM=L parameter. If
this parameter is omitted, a new PCB is
automatically built and initialized with
values corresponding to the other specified
parameters.

L requests a PCB be built but not accessed.
A PCB is built for this macro and initialized
with values. Subsequent macros can refer to
this PCB via the PCB parameter.

is an address that specifies that the macro is
to be a PROCEED call. When the call is
completed, a task event interrupt occurs,
using the routine whose address is specified
in the DONE parameter. This routine enters
with general register 0 containing the error
code for the call and general register 1
pointing to the macro's parameter block. Once
this routine has finished processing, the
intercepting task exits using code built by
the TEXIT macro.

The proceed form of the ITRAP macro must be
used if an IROLL macro was specified in the
application task having an SVC that is
intercepted. The system cannot guarantee that
the application task is in memory or that it
can be rolled into memory within a reasonable
time.

4-33

4.13.10 IERRTST Macro

The IERRTST macro allows an intercepting task to evaluate errors
resulting from execution of code built by intercept macros in
order to branch to appropriate error handling routines.

Format:

NAME

symbol

Parameters:

xx=

Pointer

4-34

OPERATION

IERRTST

OPERAND

xx=pointer

[xx=pointerJ

[ELSE=pointerJ

[PCB=pointerJ

[FORM=L]

is a two-character alphabetic string
specifying one of the error codes for the
intercept macros. See Table 4-2.

specifies the name of an intercepting task
error routine that handles errors having a
returned error code identical to the one
specified by the xx parameter. For instance,
an IERRTST macro might include these
parameters for evaluating an IPUT macro:

IERRTST AD=pointer,NT=pointer,RD=pointer

These parameters specify the addresses of the
error routines to which execution will branch
whenever the returned error code equals AD,
NT, or RD.

48-040 FOO R02

ELSE= is the name of an error routine to be executed
for errors other than those specified in the
xx parameter. If this parameter is omitted,
either of the following actions occurs for
returned errors:

• If the returned error code corresponds to
the one specified by the xx parameter,
execution branches to a specific error
routine.

• If the returned error code does not
correspond to the one specified by the xx
parameter, execution branches to the
instruction immediately following the code
built by the IERRTST macro.

PCB= is the address of a PCB previously constructed
and initialized by the FORM=L parameter. If
this parameter is omitted, a new PCB is
automatically built and initialized wiLh
values corresponding to the other specified
parameters.

FORM= L requests a PCB be built but not accessed.
A PCB is built for this macro and initialized
with values. Subsequent macros can refer to
this PCB via the PCB parameter.

4.13.11 $RDB Macro

The $ROB macro is used to define a structure containing the
symbolic names for all of the ROB fields. It is recommended that
symbolic names be used to refer to the RDB fields instead of
coding the hexadecimal offsets to the fields.

Format:

NAME OPERATION OPERAND

symbol $ROB

48-040 FOO R02 4-35

4.14 SAMPLE SUPERVISOR CALL (SVC) INTERCEPTION PROGRAMS

The following program uses SVC interception software to intercept
SVC 1 to the existing real device MAGl. Each time an SVC 1 is
issued to MAGl, the program prints out the following message:

SVC 1 CALL INTERCEPTED

The SVC 1 is terminated with a device unavailable error code
(X'AO').

$RDB DEFINES AN RDB STRUCTURE

* ADD AN RDB BUFFER ADDRESS TO THE RDB BUFFER ADDRESS LIST.

LA

*

ABL
*

O,RDB

O,BUFLIST

LOAD THE ADDRESS OF THE RDB
INTO REGISTER 0

ADD THE ADDRESS OF THE RDB
TO THE CIRCULAR LIST

* CREATE THE INTERCEPT PATH

!CREATE NAME=INTNAME, FD FOR DEVICE NAME X

MODE•RX, REC IP I ENT-EX I STENT MODE X

CONTROL=FC, GIVES INTERCEPTING TASK FULL CONTROL X

SVC=(l), AI.J.... SVC l ARE TO BE INTERCEPTED X

EXEC=INTRTN, POINTS TO THE SVC EXECUTOR ROUTINE X

BUFFERL•BUFLIST, ASSIGNS POINTER TO FREE BUFFER LIST X

PID-PATHID, DATA AREA FOR INTERCEPT PATH ID X

ERROR•BOMBOUT ERROR ROUTINE FOR !CREATE MACRO

* IF ERROR OCCURS IN !CREATE MACRO ENABLE TASK EVENT TRAP SO TASK
* CAN GO INTO TRAP WAIT FOR INTERCEPTS TO OCCUR

* LOAD TSW WITH WAIT STATE SET AND TASK EVENT TRAPS ENABLED

LTSW TETS,WT

* COME HERE IF ERROR OCCURS IN !CREATE MACRO

4-36 48-040 FOO R02

BOMBOUT SVC 3,1 FAIL TASK ON ERROR

* ALLOCATE DATA AREA FOR I CREA'l1E

ALIGN 4
INTNAME DC C' NODE NAME

DC C' RESERVED
DC C'MAGl' DEVICE NAME
DC C' FILE NAME PART 1
DC C' FILE NAME PART 2
DC C' EXTENSION

BUFLIST DLIST 1 DESIGNATE 1 ROB IN CIRCULAR LIST

RDB DS RDB.PB+20 ALLOCATES SIZE OF ROB + SVC 1

PATH ID DS 2 DESIGNATE AREA FOR PA'rH ID

* TRAP EVENT SERVICE ROUTINE
* THE FOLLOWING ROUTINE IS EXECUTED WHEN AN SVC IS INTERCEPTED

INTRTN SVC 2,NOTIFY LOG MESSAGE THAT SVC l WAS INTER-
* CEP1rED

LHI O,X'AOOO' RETURN DEVICE UNAVAILABLE STA'rus
* FOR INTERCEPTED SVC 1

STH O,RDB.PB+2(1) SAVE SVC 1 STATUS IN S'rA'rUS FI Ef .0

* OF ROB

* * TERMINATE THE INTERCEPTED CALL, COPYING THE MODIFIED SVC
* PARAMETER BLOCK IN THE ROB BACK OVER THE USER'S SVC PARAMETER
* BLOCK.

ITERM RDB=(l),COPY-Y

TEX IT EXIT THE TASK EVENT ROUTINE

* ALLOCATE DATA AREA FOR TRAP EVENT SERVICE ROUTINE
ALIGN 4

NOTIFY DB 0,7,0,22
DC C'SVC 1 CALL INTERCEPTED'
END

48-040 FOO R02 4-37

The following program creates a pseudo device to which a u-task
can assign and write. The user's data buffer is passed to the
OS/32 command processor via SVC 2 code 14 to be executed as a
command line.

IRDR PROG SVC INTERCEPT EXAMPLE - INTERNAL READER
**
**
*
*
*
*
*
*
*

This task creates a pseudo device to which a user task
can assign and write. The user's data buffer is
passed to the OS command processor via a SVC 2,14 to
be executed as a command line.

*
*
*
*
*
*
*

* *
**
**
ROO EQU 0
ROl EQU 1
R02 EQU 2
R03 EQU 3
R04 EQU 4
ROS EQU 5
R06 EQU 6
R07 EQU 7
ROB EQU 8
R09 EQU 9
RlO EQU 10
Rll EQU 11
Rl2 EQU 12
Rl3 EQU 13
Rl4 EQU 14
Rl5 EQU 15

SPACE 3
NLSTM
NLSTU
$SVC1
$SVC7
$ROB

4-38 48-040 FOO R02

TITLE INTERCEPT PATH CREATION
**
*
*
*

SET UP INTERCEPT PATHS
*
*
*

**
IROR

INTRDB

EQU *
SVC 2,PEEKOl GET NAME OF SYSTEM CONSOLE
L ROO,CON
ST ROO,SVC7.VOL+SVC7CON
LHI ROO,SV7.ASGN!SV7.SRW
SLL R00,16 ASSIGN LU 0 SRW
ST ROO,SVC7.0PT+SVC7CON
SVC 7,SVC7CON ASSIGN TO SYSTEM CONSOLE
LB ROO,SVC7.STA+SVC7CON
LR ROO,ROO WAS THE ASSIGN OK?
BNZ BADCON NO
LIS ROO,O CHANGE SVC 7 TO FETCH ATTR
STH ROO,SVC7.0PT+SVC7CON
SVC 7,SVC7CON FETCH ATTRIBUTES ON CON:
LB ROO,SVC7.STA+SVC7CON
LR ROO,ROO WAS THE FETCH OK?
BNZ BADCON NO
LHI ROO,SV7.CLOS CHANGE SVC 7 TO CLOSE
SRLS R00,8 DO NOT DESTROY DEVICE CODE
STB ROO,SVC7.0PT+SVC7CON
SVC 7,SVC7CON CLOSE THE SYSTEM CONSOLE
LB ROO,SVC7.STA+SVC7CON
LR ROO,ROO WAS THE CLOSE OK?
BNZ BADCON NO
LHI ROO,X'7FFF' BAD LENGTH FOR SVC 2,14 TO GET
STH ROO,COMMAND+4 MAX LENGTH ALLOWED BY SYSTEM
SVC 2,COMMAND WILL GET ERROR STATUS 3
LH ROO,COMMAND+6 USE AS IROR LENGTH
STH ROO,SVC7.LRC+SVC7CON
SPACE l
LHI ROO,ROBNUM
LA ROl,ROBPOOL
EQU *
ATL ROl,ROBP
AHi ROl,ROBSIZE
SIS ROO,l
BNZ INTROB

NUMBER OF ROB'S
ADDRESS OF ROB POOL

ADD ROB TO QUEUE
ADDRESS OF NEXT RDS
.A.LL ROB ' S ADDED TO QUEUE?
NO

SPACE 1
I CREATE

IERRTST
I CREATE

IERRTST
SPACE 1

SVC=(7),MODE=RN,NAMErNAME,
CONTROLrFC,BUFFERL=ROBP,PID=PID,EXEC=INT7
FD=BADFD,EX=BADEX,ELSE=BADAT.L
SVCr(l),MODE=RX,NAME=NAME,PBSIZErSVClX,
CONTROL=FC,BUFFERL=ROBP,PID=PID,EXEC=INTl
FD=BADFD,EX=BADEX,ELSE=BADAIL

LTSW WT,TETS
SPACE 3

ENTER TRAP WAIT

x

x

48-040 FOO R02 4-39

BAD FD SVC 2,LOGFD
SVC 3,1

BAD EX SVC 2,LOGEX
SVC 3,1

BAD ALL SVC 2,STRANGE
SVC 3,1

BADCON SVC 2,LOGCON
SVC 3,1
SPACE 1
ALIGN 4

LOG FD DC H'7' ,H'S'
DC C 'FD ERROR'

LOG EX DC H'7' ,H'S'
DC C'EX ERROR'

STRANGE DC H'7' ,H'S'
DC c' ! ! ERROR'

LOG CON DC H' 7' , H' 12'
DC C'!!CON ERROR I

SPACE 1
NAME DC C' IRDR
PID DSF 1

SPACE 1
RDBNUM EQU 3 NUMBER OF ROB'S IN POOL
RDBSIZE EQU RDB.+SVC7. MAXIMUM SIZE OF RDB
RDBP DLIST RDBNUM RDB POOL
RDBPOOL OS RDBSIZE*RDBNUM RDB BUFFERS

4-40 4S-040 FOO R02

TITLE SVC 7 TEQ HANDLER
**
*
*
*

SVC 7 INTERCEPT EXECUTOR
*
*
*

**
INT7 EQU *

LR RlO,ROl SAVE RDB POINTER
LR Rll,RlO
AH Rll,RDB.OFF(RlO) ADDRESS OF SVC 7 PBLK
LB ROO,SVC7.0PT(Rll) GET SVC 7 OPTIONS
LR ROO,ROO FETCH ATTRIBUTES?
BZ DOFETCH YES
CLHI ROO,X'FF' EXTENDED SVC 7 FUNCTIONS?
BE INT7.NS YES - NOT SUPPORTED
THI ROO,X'40' ASSIGN?
BNZ DOOP EN YES
THI ROO,X'04' CLOSE?
BNZ DOCLOSE YES
THI R00,X'21' CHAP OR CHECKPOINT?
BNZ INT7. IG YES - IGNORE
SPACE 1

INT7.NS EQU *
SVC 2,UNPACK7 PUT SVC 7 OPTION IN ERROR MESSAGE
SVC 2,LOG7ERRC AND LOG ERROR MESSAGE
LIS ROO,l RETURN ILLEGAL FUNCTION TO USER
STB ROO,SVC7.STA(Rll) AS AN ERROR STATUS
ITERM PCB•TERM,RDB•(RlO) TERMINATE THIS SVC 7
TEXIT PCB=EXIT EXIT FROM TEQ HANDLER
SPACE 3

*
* IGNORE SVC 7 COMMAND PROCESSOR
*
INT7. IG EQU *

ITERM PCB•TERM,RDB•(RlO) IGNORE THIS SVC 7
TEX IT PCB=EXIT EXIT FROM TEQ HANDLER
SPACE 3

48-040 FOO R02 4-41

*
*
*
DOOP EN

OPEN PROCESSOR

EQU *
LB Rl5,SVC7.0PT+l(Rll)
SRLS Rl5,5
CLHI Rl5,2
BL OPEN.ERR
B OPEN.OK
SPACE 2

GET ACCESS PRIVILEGES
SRO = 0 & ERO = l
REQUESTING READ ONLY ACCESS?
YES - ERROR
SKIP SECURITY CHECK

*--------------USER DEFINED SECURITY CHECK FOLLOWS--------------------
L Rl5,RDB.TID(Rl0) MOVE TIO FOR PEEK03
ST Rl5,TID
SVC 2,PEEK03
LM Rl4,MONITOR
CLI Rl4,C'.MTM'
BNE OPEN.OK
CLI Rl5,C'
BNE OPEN.OK
LM Rl4,TASKNAME
CLI Rl4,C'LEE '
BNE OPEN.ERR
CLI Rl5,C'
BNE OPEN.ERR
L Rl5,LEGACY
CLI Rl5,C'CT42'
BNE OPEN.ERR
L RlS,ACCT.P
CLHI RlS,29
BNE OPEN.ERR
L RlS,ACCT.G
CLHI Rl5,18
BNE OPEN.ERR

INFO ON USER TASK
GET NAME OF USERS MONITOR
TASK A SUB-TASK OF MTM?
NO
BE SURE
NO?
GET NAME OF USER
IS IT ME?
NO
BE SURE
NO?
GET NAME OF USERS TERMINAL
IS IT MINE?
NO
GET USERS PRIVATE ACCOUNT NUMBER
AM I IN MY ACCOUNT?
NO
GET USERS GROUP ACCOUNT NUMBER
DO I HAVE MY CORRECT GROUP ACCOUNT?
NO

*--
OPEN.OK

OPEN.ERR

4-42

SPACE 2
EQU
ICONT
TEX IT
SPACE
EQU
LIS
STB
I TERM
TEX IT
SPACE

*
PCB=CONT,RDB=(RlO)
PCB=EXIT
2

*
Rl5,9
Rl5,SVC7.STA(Rll)
PCB=TERM,RDB•(RlO)
PCB•EXIT
3

RETURN TO OS SVC 7 EXECUTOR
EXIT FROM TEQ HANDLER

RETURN ASSIGNMENT ERROR TO USER

RETURN BAD STATUS TO USER
EXIT FROM TEQ HANDLER

48-040 FOO R02

*
* CLOSE PROCESSOR
*
DO CLOSE EQU *

ICONT PCB=CONT,RDB=(RlO) RETURN OS OS SVC 7 EXECUTOR
TEX IT PCB=EXIT EXIT FROM TEQ HANDLER
SPACE 3

*
* FETCH ATTRIBUTES PROCESSOR
*
DO FETCH EQU *

LA R09,SVC7CON GET ADDRESS OF FETCH ATTR OF CON
LB Rl5,SVC7.0PT+l(R09) MOVE DEVICE CODE
STB Rl5,SVC7.0PT+l(Rll)
LIS RlS,O GOOD STATUS
STB Rl5,SVC7.STA(Rll)
L Rl5,SVC7.KEY(R09) DEVICE ATTR & RECORD LENGTH
ST Rl5,SVC7.KEY(Rll)
L Rl5,NAME+8 IRDR DEVICE NAME
ST Rl5,SVC7.VOL(Rll)
LM Rl2,SVC7.FNM(R09)
STM Rl2,SVC7.FNM(Rll)
I TERM PCB•TERM,RDB=(RlO) RETURN SVC 7 FETCH PBLK TO USER
TEX IT PCB=EXIT EXIT FROM TEQ HANDLER

48-040 FOO R02 4-43

TI 'rf .E SVC l TEQ HANDLER
**
* *
*
*

SVC l INTERCEPT EXECUTOR *
*

**
INTl EQU

LR
LR
AH
LIS
LIS
LB
THI
BNZ
THI
BNZ

*
RlO,ROl
R07,Rl0
R07,RDB.OFF(Rl0)
Rl4,0
Rl5,0
Rl3,SVC1.FC(R07)
Rl3, SVl. CMDF
ECHODONE
Rl3,SV1.WRIT
INTl.WRT

SAVE RDS ADDRESS

ADDRESS OF SVC 1 PBLK
NO ERROR ON COMMAND FUNCTION
LENGTH OF TRANSFER
GET FUNCTION CODE
COMMAND FUNCTION?
YES - TREAT AS A NOP
IS USER DOING A WRITE?
YES

*
*
*
*

A read from the internal reader will give the
user an illegal function status.

LHI
B

Rl4,X'COOO'
ECHODONE

ILLEGAL FUNCTION ON READ
FINISH UP

*
*
*

Queue the user's conunand line to the internal reader

INT 1. WRT EQU
L
L
IGET

SR
LR
AIS
STH
SVC
LH
BZ
LHI
SPACE

ECHODONE EQU
STH
ST
THI
BNZ
SPACE
L
01
ST
SPACE
I TERM
TEX IT
SPACE

ECHOWAIT EQU
I TERM
TEX IT

*
Rll,SVC1.SAD(R07) GET START ADDRESS
Rl2,SVC1.EAD(R07) AND END ADDRESS
RDB•(RlO),SDST•BUFFER,SDEND•BUFEND,
ADST•(Rll),ADEND•(Rl2)
Rl2,Rll GET LENGTH-! OF STRING
R15,Rl2
Rl5,l
Rl5,COMMAND+4
2,COMMAND
R14,COMMAND+2
ECHODONE
Rl4,X'A000'

LENGTH OF USER COMMAND LINE

1
*
Rl4,SVC1.STA(R07)
Rl5,SVC1.LXF(R07)
Rl3 I SVl. WAIT
ECHOWAIT
l
Rl5,RDB.PAD(Rl0)
Rl5,Y'08000000'
Rl5,TRAP
l

PASS COMMAND TO !READER
COMMAND QUEUED TO !READER?
YES
NO - GIVE DEVICE UNAVAILABLE

RETURN STATUS
RETURN LENGTH
IS USER REQUEST A WAIT?
YES - NO NEED FOR A TRAP

GET ADDRESS OF USER SVC 1 PBLK
1/0 PROCEED COMPLETION PARAMETER

RDB•(RlO),TRAP•TRAP,COPY•Y TERMINATE WITH
PCB-EXIT EXIT FROM TEQ HANDLER
1

TRAP

*
PCB•TERM,RDB•(RlO) TERMINATE THIS SVC 1
PCB•EXIT EXIT FROM TEQ HANDLER

*

4--44 48-040 FOO R02

UNPACK?

LOG7ERRC

SVC7ERRC
LOG7ERRX

TRAP

CONT

TERM

EXIT

PEEKOl

CON

SVC7CON

PEEK03
TIO
TASKNAME
CTSW
TOPT
WAITS
ACCT.P
ACCT.G
L.VOL
L.FD
L.EXT
MONITOR
LEGACY
PRIO

COMMAND

BUFFER
BUFEND

EJECT
ALIGN 4
DB 2,6,0,0
DAC
DB
DC
DB
DB
EQU
SPACE
ALIGN
DS
SPACE
ALIGN
I CONT
SPACE
ALIGN
ITERM
SPACE
ALIGN
TEX IT
SPACE
ALIGN
DB
DS
DS
SPACE
ALIGN
DS
SPACE
ALIGN
DB
DSF
DSF
DSF
DSF
DSF
DSF
DSF
DSF
DSF
DSF
DSF
DSF
DS
DS
SPACE
ALIGN
DB
DCX
DCX
DC
SPACE
ALIGN
DS
EQU
END

SVC7ERRC
0,7
Z(LOG7ERRX-*)
C'UNSUPPORTED SVC 7
C' .. INTERCEPTED '
*-1
2
4
4
2
4
FORM=L
2
4
FORM=L,COPY=Y
2
4
FORM=L
2
4
1,19
22
4
2
4
SVC7.
2
4
3,19,0,0
1
2
1
1
1
1
1
1
2
1
2
l
1
3
3
4
1,14,0,0
0
0
A(BUFFER)
1
4
128
*-1
IRDR

48-040 FOO R02

PUT SVC 7 ERROR CODE IN

FUNCTION I

I/O PROCEED COMPLETION TRAP

CONTINUE SVC

TERMINATE SVC

EXIT SVC

SYSTEM CONSOLE NAME

GET INFO AN USER TASK
USER TASK ID
NAME OF USER TASK
CURRENT TASK STATUS WORD
TASK OPTIONS
TASK WAITS
USER'S PRIVATE ACCOUNT NUMB~:R
USER'S GROUP ACCOUNT NUMBr;R
LOAD VOLUME NAME
LOAD FILE NAME
LOAD EXTENSION & F Ir ,E CLASS
NAME OF MON I 'rOR TASK
NAME MTM USERS TERMINAL
TASK PRIORITY
(RESERVED)

QUEUE COMMAND TO !READER
STATUS

ADDRESS OF BUFFER

4-45

CHAPTER 5
OS/32 SUPPORTED INPUT/OUTPUT (I/O) DEVICES

5.1 INTRODUCTION

This chapter discusses the functional aspects of the devices
supported by OS/32. Specific device dependent information is
included.

OS/32 devices and files support ASCII formatting, sequential
access, unconditional and conditional proceed I/O, and vertical
forms control (VFC). Device codes associated with Perkin-Elmer
supported devices range from 0 through 255. These codes are
defined in the System Generation/32 (SYSGEN/32) Reference Manual.

5.2 VERTICAL FORMS CONTROL (VFC)

VFC provides a means to control the vertical forms motion on an
output device, such as a line printer or CRT, while writing data.
Available VFC functions are:

• Set vertical tabs (EVFU)

• Vertical space 0-79 before or after printing

• Vertical tab before or after printing

• No space before or after printing (overprint)

• Select VFU channels 2-12 before and after printing

• Horizontal tabs (available with BIOC and local line printer
drivers only)

The VFC character is the first character of the user's outpul
buffer and is interpreted to mean one of the above functions.
VFC characters supported by OS/32 drivers are listed in Appendix
B. Other bytes in the buffer are considered to be data and are
output without further interpretation.

The OS/32 routines that control VFC can be shared by all drivers
requiring VFC character recognition. OS/32 makes no assumption
as to the type of device calling the routines; device specificity
is maintained by each individual driver.

48-040 FOO R02 5-1

5.2.1 Horizontal Tabs

When the BIOC driver encounters a horizontal tab character, the
driver replaces the character with one or more spaces, as
determined by the tab stops that were established by the last
down line load. If a horizontal tab character is encountered at
a column position beyond the last tab stop, it will be replaced
by one space. If a horizontal tab character is encountered while
positioned on a tab stop, the necessary number of spaces will be
output to position to the next tab stop.

The local line printer driver expands the tab character (control
I) to the appropriate number of spaces. Tab stops are defined to
be every eighth column; i.e., columns 9, 17, 25, etc. This
feature is enabled via extended device code Xl for device codes
112, 113, or 114 only. All other drivers output the horizontal
tab character unmodified.

5.2.2 Theory of Operation

For devices that support ASCII output operations (e.g., line
printer), a write operation begins with a call to the write
initialization routine to dete~mine i.f there is any VFC operation
to be performed before printing.

If a VFC character is present, the driver performs the VFC
operation designated by that character. The driver then outputs
the user's data buffer. On completion, the driver checks for any
VFC operations that are to be performed afler the data is output.
If a VFC operation is required, the driver pe~forms it. If no
"afler" VFC operation is required, but the current output is VFC,
the driver enters into a line feed pending state for the next
write operation.

For drivers that support both input and output operations (e.g.,
CRT driver), output operations are performed in the same manner
as above. However, the procedure for input operations differs
slightly. Before an input operation, the cursor remains
positioned where the last output operation left it. To prevent
the characters that are input from overwriting the previous line,
the drive delays echoing the first character input until a line
feed is output. Two types of echoing can be performed:

• Software-echo (e.g., BIOC drivers)

• Hardware-echo (e.g., ITAM PPSM drivers)

If a driver uses the software-echo feature, (i.e., the driver
echoes the charactezs that are typed in via software control),
the driver waits foz the first character to be typed in by the
operator. After the character is typed in, the driver performs
a VFC operation if it is in line feed pending state before the
character is echoed.

5-2 48-040 FOO R02

If a driver uses the hardware-echo feature and is in line feed
pending state, the driver first turns off the echo, waits for the
input character to be typed, performs the VFC operation, out~puts

the character just typed in, and finally turns the hardware-echo
back on for the remainder of the buffer.

5.3 CARD READERS

Perkin-Elmer card readers can accommodate a fixed record lenqlh
of 80 bytes (ASCII), 120 bytes (binary), or 160 byLes (imaqe).

During read ASCII operations, each card column (12 bits) is
converted into one 8-bit ASCII character. Illegal codes are
converted into the null character (X'OO') indicating an error has
occurred.

During read binary operations, each pair of card columns (12 bits
each) is unpacked into three bytes having the following format:

Read Binary Format:

First card column

-----------------~----------------------------i
I 121 111 o I 1 I 2 I 3 I 4 I 5 l 6 I 7 I 8 : 9
--·-----~

Bytes:
0 1

Second card column c_.__ .. _________________ -_-__ -~--------------------·- ---
121 111 o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I

~--
Bytes:

2

During read image operations, each column is converted into one
halfword in the following format (U=undefined):

Read Image Format:

I U I u I 121 111 O I 1 I 2 I 3 l u l u l 4 I 5 I 6 I 7 I 8 I 9 I

Bits:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

48-040 FOO R02 5-3

The translation for an ASCII read is accomplished through a
translation table. Devices without hardware translation
translate 029- or 026-compatible Hollerith code to 8-bit ASCII
code. Source sysgen options include translation of 029- or
026-compatible Hollerith code to EBCDIC code. The hardware
translation matches that of the 029-compatible Hollerith to
EBCDIC translation.

5.4 CARD READER/PUNCH DEVICES

Card reader/punch devices supported by Perkin-Elmer 32-bit
computers acconunodate fixed record lengths of 80 bytes (ASCII),
120 bytes (column binary), and 160 bytes (image).

During read ASCII operations, each card column (12 bits) is
converted into one 8-bit ASCII character. Illegal codes are
converted into the null character (X'OO') indicating an error has
occurred.

During read binary operations, each pair of card columns (12 bits
each) is unpacked into three bytes having the following format:

Read Binary Format:

First card column

-·- ·- -- - -- -- ·- ··- -l..
I 12: 111 o I 1 : 2 I 3 I 4 I 5 I 6 I 7 l 8 l 9
--~

Bytes:
0 1

Second card column

~--
12: 111 o I 1 I 2 I 3 I 4 I 5 I 6 l 7 I 8 I 9 I

~--
Bytes:

2

48-040 FOO R02

During read image operations, each card column (1.2 bits each) is
placed into a halfword in the following format:

Read Image Format:

I 0 I 0 I 0 I O I 121 111 o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I

Bits:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

During write ASCII operations, each byte of data is translated
from ASCII into a 12-bit Hollerith code. Depending on the device
code chosen, the following can occur:

• All data is punched and printed.

• Data is punched only.

• Of each 160 bytes of data accepted, the first 80 bytes are
punched while the second 80 bytes are printed.

During write binary operations, each 3-byte group is packed into
two columns on the card in the following format. Nothing is
printed on top of the card.

Write Binary Format:

Odd Column

--~
I O I 1 I 2 I 3 I 4 I 5 I 6 I 7 I o I 1 I 2 I 3
--~

Bytes:
0 1

~ Even Column
r ~_._._ ____ ~ _ __./_ ____ _.-..--
~ - - - - - -- - - - - -- -

4 I 5 I 6 : 7 : O I 1 I 2 I 3 I 4 I 5 I 6 I 7 :
~--

Bytes:
2

48-040 FOO R02 5-5

During write image operations, the low order 12 bits of each
halfword are punched according to the following format. Nothing
is printed on top of the card. Bits 0 through 3 are ignored.

Write Image Format:

I 121 111 o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I

Bits:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The translation for ASCII operations is accomplished through a
translation table. The standard translation is 8-bit ASCII code
to 029-compatible Hollerith code.

Source sysgen options include 8-bit ASCII code to 026-compatible
Hollerith code and also EBCDIC code to 026- or 029-compatible
Hollerith codes.

5.5 TELETYPE (TTY) READER/PUNCH

Perkin-Elmer TTY reader/punch devices support read and
ASCII, read and write binary, and read and write
operations. Variable length records are also accommodated.

write
image

During read ASCII operations, an X-ON character is output to turn
the reader on. The tape is read in blocked mode so data is not
copied to the printer while it is being read. Leading blank
frames and delete characters are ignored. Data is masked to
7-bit ASCII. The transfer is terminated on buffer full or when
a carriage return character is read, whichever occurs first. On
termination of the transfer, the tape is advanced to the next
delete character or blank frame. An X-OFF character is output to
stop the tape.

During read binary operations, an X-ON character is output to
turn on the tape. The tape is skipped until the first nonblank
frame is found. If the first nonblank character is X'FO',
subsequent frames are read in until the user buffer is full. The
characters are read in unzoned binary format.

If the first nonblank character read is not X'FO', the characters
are read in zoned binary format, stripped of their zones, and
packed into the user buffer. Transfer begins with the first
nonblank frame after X'FO'. Only punches X'90', X'81' through
X'84', and X'95' through X'9F' are read. Other characters are
ignored. When the user buffer is full, the tape is advanced to
the next blank frame.

5-6 48-040 FOO R02

During read image operations, none of the above formatting
operations are performed. An X-ON character is output to turn
the tape on, and data is read into the user buffer until the
buffer is full. The X-OFF character is then output to turn the
tape off and the transfer is complete.

During write ASCII operations, the driver outputs a RUBOUT-TAPE
RUBOUT-RUBOUT sequence in order to initialize the TTY
reperforator. Eight frames of blank tape are output as leader,
the user data is output until the buffer is empty, or a carriage
return character is encountered, whichever occurs first. The
driver ensures that a CR-LF-TAPE OFF-RUBOUT sequence terminates
the record.

During write binary operations, the driver outputs a
RUBOUT-TAPE-RUBOUT-RUBOUT sequence, followed by eight blank
frames of leader. The user buffer is output, translati.ng each
byte into two frames of zoned binary data. The transfer is
terminated when the buffer is empty. The driver outputs a TAPE
OFF-RUBOUT sequence.

During write image operations, none of the
control operations are performed. The
until the buffer is empty.

above formatting or
user buffer is output

On ASCII or image write, it is possible to inadvertently turn off
the punch by outputting a TAPE OFF character. On image write, it
is the responsibility of the user to place the necessary control
characters, such as TAPE and TAPE OFF, in the user buffer to
control the operation of the tape.

Since the reader/punch portion of the TTY is connected to the
keyboard/printer portion, only one of these devices can be active
at a time. On ASCII write, the data punched on the tape is also
printed on the printer.

5.6 TELETYPE (TTY) KEYBOARD/PRINTER

Perkin-Elmer TTY keyboard/printers accommodate variable length
records and can be interfaced to current loop devices.

In non-VFC read ASCII operations, data read is masked to 7-bit
ASCII. Data is read until the buffer is full or a carriage
return is found, whichever occurs first. Upon termination, a
carriage return/line feed (CR/LF) sequence is sent to the
printer.

In non-VFC write ASCII operations, the buffer is scanned to
eliminate trailing blanks. Data is then output until the buffer
is exhausted or until a carriage return is found in the data
stream. A line feed is automatically appended to the detected
carriage return; or if no carriage return is detected, a CR/I~
sequence is output after the last nonblank character.

48-040 FOO R02 5-7

During non-VFC image I/O, none of the above formatting actions
occur. The amount of data requested is printed or read in,
without masking to 7-bit ASCII, eliminating trailing blanks,
checking for control characters, or detecting or appending
carriage returns or line feeds. On image read, however, a
carriage return is detected as an end of line sentinel.

For information on 1/0 operations with VFC, see Section 5.2. See
the OS/32 Operator Reference Manual for an explanation of the
function control keys available on Perkin-Elmer TTY
keyboard/printers.

While the reader/punch of an ASR TTY is treated as
device, it cannot operate simultaneously
keyboard/printer.

5.7 PAPER TAPE EQUIPMENT

a separate
with the

Variable record lengths are supported by Perkin-Elmer paper tape
devices. During read ASCII operations, leading blank tape and
delete characters are ignored. Data is masked to 7-bit ASCII.
Carriage return terminates read. On termination, the tape is
advanced until either a blank frame or a delete character is
read.

During read binary operations, tape is advanced until a nonzero
character is read. If this character is X'FO', the tape is read
until the buffer is full (unzoned binary). If the first nonzero
character is not X'FO', the tape is treated as a zoned binary
tape. Each two characters are stripped of their zones, merged
into one byte, and placed in the buffer until the buffer is full.
On buffer full, the tape is advanced until blank tape is found.
In zoned binary mode, the only valid characters are: X'90',
X'Bl' - X'84' and X'95' - X'9F'. All other characters cause the
transfer to end with a transfer error status.

During read image operations, the tape is read until the buffer
is full.

During write ASCII operations, eight frames of blank tape are
output. The user buffer is output up to (but not including)
carriage return or until the buffer is empty. CR/LF is then
output.

During write binary operations, eight frames of blank tape are
output followed by the character X'FO'. The user buffer is
output until the buffer is empty.

During write image operations, the user buffer is output unti.l
the buffer is empty.

5-8 48-040 FOO R02

5.8 LINE PRINTERS

Perkin-Elmer line printers support variable record lengths up to
132 bytes.

During non-VFC write ASCII operations, the user buffer is output
until a carriage return is found or until the buffer is empty.
At buffer termination, the system ensures that the buffer is
printed and the paper is spaced upward one line.

During non-VFC write image operations, the user buffer is output
exactly as it exists in memory. The system does not ensure that
the data is printed or that the paper is properly moved. The
user should be familiar with the characteristics of the
particular device being used.

For information on I/O operations with VFC, see Section 5.2.

5.9 TAPE CASSETTE

Variable length records are supported by Perkin-Elmer tape
cassettes. During input, ASCII, binary, and image modes are
identical. Data is read from the cassette into the user buffer.
The transfer terminates when the buffer is full or at end of
record, whichever comes first. If the record is longer than the
buffer, error status is not returned. Parity errors in the
unread part of the record can be detected. If a parity error
occurs, five retries are attempted before error status is
returned. When a parity error status is returned, the tape is
positioned in the interrecord gap following the record in error.

During output, ASCII, binary, and image modes are identical.
Data is written from the user buffer until the buffer is empty.
The system retries five times on parity errors.

The driver generates an end of tape condition, whether the tape
is positioned at the beginning or at the end of the reel. It
must be assumed from the last operation what position end of tape
is actually referring to.

Since the two drives on an intertape cassette share logic, only
one drive of a cassette pair (e.g., X'45' and X'55') can be
active at a time.

Continuous mode operations are used to pass requests to the
driver within the time required (10 milliseconds for read; 30
milliseconds for backspace).

5.10 MAGNETIC TAPE

Data transfer operations can be performed in standard and gapless
I/O format.

48-040 FOO R02 5-9

5.10.1 Standard Input/Output (I/0)

Variable length records are supported by Perkin-Elmer magnetic
tape devices. During input, data is read into the user buffer
from the magnetic tape. The transfer ends on buffer full or end
of record, whichever comes first. If a parity error occurs, the
driver retries the read operation before an error status is
returned. The number of retries performed is determined by the
retry value set in the DCB or specified by the user in the SVC 1
extended function code field for data transfer operations. After
a parity error occurs during a read forward operation, the tape
is positioned in the interrecord gap preceding the record with
the error. If an error occurs during a read backward operation,
the tape is physically positioned following the record with the
error.

During output, data is written from the user buffer to the
magnetic tape until the buffer is empty. On parity error, the
tape is positioned before the record causing the error, the
record gap is extended and the write operation is retried.
Again, the number of retries is determined by the retry value set
in Lhe DCB or specified in the SVC 1 parameter block.

In addition to giving users control over the number of retries
for data transfer errors, OS/32 provides the ability to erase a
variable length of tape and to select the recording density, via
SVC 1 and SVC 7, respectively. See the OS/32 Supervisor Call
(SVC) Reference Manual for more information on how to implement
these features.

For read and write requests, ASCII, binary, and image requests
are identical.

The minimum number of bytes that can be transferred by a tape
drive is four. All data transfers must start on a halfword
(i.e., even byte) boundary and should specify an even number of
bytes (i.e., end address odd).

On a read operation, end of tape may be detected on a different
record than on a write operation because of mechanical tape
positioning. If rewind is issued at beginning of tape, the
driver returns normal status. Ensure that the tape is loaded at
beginning of tape unless some other condition is expected.

5-10 48-040 FOO R02

5.10.2 Gapless Input/Output (l/O)

Data transfer operations in gapless mode consist of a task
reading or writing data buffers to a magnetic tape with no
intervening interrecord gaps, using only one SVC 1. To perform
gapless I/O to a magnetic tape, a task must issue an SVC 1 call
that specifies, among other things, a pair of buffer queues, t.he
IN-QUEUE and the OUT-QUEUE. The driver takes buffers from
IN-QUEUE and returns used buffers to the OUT-QUEUE. The task
processes the buffers from the OUT-QUEUE and returns these
buffers to the IN-QUEUE for reuse by the driver. A special
gapless format SVC 1 parameter block must be used for gapless 1/0
operations. Buffers used within a single gapless I/O operation
must be equal in length, with the possible exception of the last
buffer used.

5.11 DISK STORAGE

Perkin-Elmer disk devices support variable length records.
During input, a current sector pointer is maintained. On a
sequential read, data is read into the user buffer from the disk,
starting at the current sector, until the buffer is full. If an
attempt is made to read beyond the end of the disk, end of medium
(EOM) status is returned. On a random read request, data is read
from the disk starting at the sector specified by the random
sector address passed with the request, until the buffer is full.
If an attempt is made to read beyond the end of the disk, EOM
status is returned with data transferred. ASCII, binary, and
image requests are identically treated.

During output, data is written from the user buffer to the disk,
starting at the current sector (for sequential writes) or at the
specified sector (for random writes), until the buffer is empty.
Attempts to write past the end of the disk cause EOM status to be
returned. In this case, no data is transferred.

Errors on data transfers cause the operation to be retried
several times before returning error status.

All data transfers start on a sector boundary, but can end on any
byte of a sector. If the size of the user buffer is less than
the record size of an indexed file to which it is written, the
remaining bytes will be filled with blanks for ASCII writes or
binary zeros for binary writes. If a record written to a
contiguous, extendable contiguous, or nonbuffered indexed file is
less than the file's record length, the last byte or two bytes
are propagated through the remaining unfilled bytes of the last
256-byte sector of the record.

Only e-tasks and privileged u-tasks and d-tasks linked with bare
disk privileges (OPTION DISC) can access a bare disk.
Non-privileged u-tasks and d-tasks access the disk via the
contiguous, extendable contiguous, nonbuffered indexed, or
indexed file handlers.

48-040 FOO R02 5-11

5.12 FLOPPY DISK

Variable length records are supported by Perkin-Elmer floppy
disks. During input, a current sector pointer is maintained. On
a sequential read, data is read from the disk starting at the
current sector into the user buffer until the buffer is full. On
a random request, the data is read from the disk starting at the
sector specified by the random sector address passed with the
request, until the buffer is full. If an attempt is made to read
beyond the end of disk, EOM status is returned with data
transferred. ASCII, binary, and image requests are identically
treated.

During output, data is written from the user buffer to the disk,
starting at the current sector pointer (for sequential writes) or
at the specified sector (for random writes), until the buffer is
empty. If an attempt is made to write beyond the end of the
disk, EOM status is returned with no data transferred. ASCII,
binary, and image requests are identically treated.

Errors on data transfers cause the operation to be retried ten
times before returning error status.

All data transfers start on a logical 256-byte sector boundary
(two physical sectors on the floppy). Transfer can end on any
byle of a sector~

The floppy disk driver is designed for use by the file manager.
A user program cannot access a bare disk unless it is an e-task
or privileged u-task or d-task linked with bare disk privileges
(OPTION DISC). For nonprivileged u-tasks and d-tasks, the disk
is accessed by the contiguous, extendable contiguous, nonbuffered
indexed, or indexed file handlers.

5.13 VIDEO DISPLAY UNIT (VDU) TERMINALS

Variable length records are supported by all Perkin-Elmer VDU
terminals.

During non-VFC read ASCII operations, data read is masked to
7-bit ASCII. Data is read until the buffer is full or a carriage
return is encountered, whichever occurs first. Upon termination,
a CR/LF sequence is sent to the screen.

During non-VFC write ASCII operations, the buffer is scanned to
eliminate trailing blanks. Data is then sent to the VDU until
the buffer is exhausted, the last nonblank character has been
processed, or until a carriage return is found in the data
stream. A line feed is automatically appended to the detected
carriage return; or, if no carriage return is detected, an LF/CR
sequence is sent to the terminal.

5-12 48-040 FOO R02

During non-VFC image I/O, none of the above formatting actions
occur. The amount of data requested is output or read in without
masking to 7-bit ASCII, eliminating trailing blanks, checking for
control characters, or detecting or appending carriage returns or
line feeds. On image read, however, an ASCII CR is detected as
an end of line sentinel.

For information on I/O operations with VFC, see Section 5.2. See
the OS/32 Operator Reference Manual for an explanation of the
function control keys available on Perkin-Elmer VDU terminals.

5.14 8-LINE INTERRUPT MODULE

Interrupt simulation (SINT) is the only attribute supported by
the Perkin-Elmer 8-line interrupt module. The module provides
the processor with eight interrupt lines from external equipment
and acknowledges interrupts on a priority basis. Any line can be
selectively enabled or disabled. Several lines can be
concurrently enabled. An interrupt does not transfer any data,
nor is any status given.

5.15 DIGITAL MULTIPLEXOR

ASCII operations are not supported by the Perkin-Elmer
multiplexor. During input, the second byte of the random
field contains the segment and point number to be read.
read from the point specified until the buffer specified
starting and ending address is full.

digital
address
Data is
by the

During output, the second byte of the random address field
contains the segment and point number to be written to. Data is
written until the buffer specified by the starting and ending
address is exhausted.

5.16 CONVERSION EQUIPMENT

The analog conversion equipment used with Perkin-Elmer 32-bit
computers cannot be programmed in the device independent manner
of other peripheral devices. The chassis, channel and card
addresses, and data values are directly passed to the real-time
analog system controller as the 16-bit words that are obtained
from the user.

During input, the random address field of the SVC 1 parameter
block contains the starting address of a table containing
analog-to-digital converter addresses (chassis address, channel
address, and card address). The user buffer, which the start and
end addresses of the parameter block determine, is loaded with
the digitized data obtained from these analog-to-digital
converters.

48-040 FOO R02 5-13

The table length containing the converter addresses is equal to
the length of the buffer. It is the user's responsibility to
provide valid addresses. Since the analog input system mode of
the controller is used for READ, if a nonexistent chassis is
addressed, zero data is stored and no other i.ndication is given.

During output, the user buffer is assumed to contain sequential
pairs of alternating digital-to-analog converter addresses and
the corresponding data to be converted; i.e., ADDl, DATAl, ADD2,
DATA2, ADDn, DATAn. The address and data are directly
passed to the real-time analog system controller.

The control outpu~ mode of the controller is used for write
operations. If a nonexistent chassis is addressed, the status is
set to X'88', and the remainder of the I/O is aborted.

Each write sequence to any converter must consist of two
halfwords. One halfword specifies the adapter to do the
conversion; the other halfword contains the data to be converted.
A buffer must be a multiple of two halfwords in length;
otherwise, any attempt to do a write results in a memory fault.

For read and write operations, ASCII/binary and image/format
requests are identical.

5.17 ANALOG INPUT CONTROLLER

Variable record lengths are supported by the Perkin-Elmer
input controller. ASCII operations are not supported.
functions are ignored.

analog
Conunand

The random address field of the supervisor call 1 (SVC 1)
parameter block contains the gain and address of the first
channel to be sampled. The format is shown in Figure 5-1.
Dividing the length of the user buffer (END-START+l) by two
determines the number of channels to sample. The digitized data
is sequentially stored in the user buffer, one halfword per
channel.

Bits:
0

Gain

3 4 11 12

Figure 5-1 Random Field Format

Address

15

5-14 48-040 FOO R02

The driver accepts only random calls, meaning that the first
address is selected at random and that further addresses are
sequential (in the same call). The start address must be on an
even address boundary and the end address must be on an odd
address boundary, since the analog input controller is a halfword
device. This complies with the Instrument Society of America
(ISA) definition of sequential analog input.

5.18 ANALOG OUTPUT CONTROLLER

All conunand functions are ignot'ed by the Perkin-Elmer analog
output controller. One halfword of data is obtained from the
user buffer in the format specified in Figure 5-2 and written to
the device for conversion. This procedure is repeated until all
halfwords in the user buffer are output. Dividing the length of
the user buff er (END-START+l) by two computes the number of
halfwords to be output.

Bits:
0

Data

3 4 11 12

Figure 5-2 Analog Output Data Format

15

Binary image is treated identically to binary formatted; the
image bit is ignored. The sequential/random bit is also ignored.
The start address must be aligned on an even boundary, whereas
the end address must be on an odd boundary because the analog
output controller is a halfword device.

5.19 DIGITAL INPUT/OUTPUT (DIO) CONTROLLER

All conunand functions are ignored by the Perkin-Elmer DIO
controller. The number of transfers is computed using the start
and end address fields: (END-START+l)/2. Resetting the
sequential/random bit in the function code field causes transfers
to occur sequentially without interruption. This is a
nonhandshaking transfer mode. In the handshaking transfer mode,
the sequential/random bit is set, and each transfer occurs only
after the internal strobe line is pulsed. A timeout rate for
each transfer is set at a constant of four seconds.

During a binary read operation, one halfword of data is
transferred to the user buffer whose starting address is stored
in the SVC 1 parameter block. Each halfword of data from
subsequent binary read operations is stored sequentially in the
user buffer.

48-040 FOO R02 5-15

For binary write operations, the buffer starting address in the
SVC 1 parameter block points to a buffer (Kl) consisting of image
halfwords for transfer to an output device. The random address
field of the SVC 1 parameter block points to another buffer (K2)
of halfwords designating masks, each of which defines the
corresponding bit position of the halfwords in Kl that is to be
changed.

The length of K2 must be the same as that of Kl. A bit set in K2
indicates that the digital output is changed to the state defined
by the corresponding bit position in Kl. The following logical
expression computes the halfwords transferred to the digital
output card:

(KloK2) + (K2oR)

Where:

• means logical AND.

(±) means logical OR.

K2 means one's complement of K2.

R is the last known content of the output
register.

Binary image is treated identically to binary formatted; the
drive ignores the formatted/image bit of the SVC 1 function code.
Both handshaking and nonhandshaking transfer modes are supported.
The start and random addresses of the user buff er must be aligned
to even boundaries, whereas the end address must be aligned to an
odd boundary because the digital 1/0 controller is a halfword
device.

5-16 48-040 FOO R02

CHAPTER 6
PROGRAMMING IN A MODEL 3200MPS SYSTEM

MULTIPROCESSING ENVIRONMENT

6.1 INTRODUCTION

Programming in a Model 3200MPS System multiprocessing environment
is similar to programming in a uniprocessing environment.
However, due to the nature of the hardware configuration, the
Model 3200MPS System environment offers one major programming
advantage, increased throughput. For efficient use of this
expanded computing ability, the system level programmer should
take the following into consideration:

• the selection of tasks that are to run on each processor in
the system at any given time,

• the assignment of processor units to the selected tasks,

• the preparation of the auxiliary processing units (APUs) for
task execution,

• the rescheduling of tasks from one processor to another in
response to a failure condition or processor overload,

• the prevention of invalid data variables caused when two
tasks, running on different processors concurrently, read and
modify a common data structure, and

• the measurement of real-time performance of the individual
tasks in the system.

This chapter focuses on some techniques that can be used by an
assembly language programmer in solving some of the progranuning
problems that are unique to the Model 3200MPS System
multiprocessing environment.

6.2 DESIGNING TASKS TO RUN ON A MULTIPROCESSING SYSTEM

The main performance advantage of designing an application to run
on a multiprocessing system is that a job can be broken down into
several parts that can be run on different processors
simultaneously. For example, a job can be divided among a number
of tasks that control individual operations, such as process
input/output (1/0), perform calculations resulting from a
particular action, and provide an operator interface for
reporting and responding to the results of the calculations.

48-040 FOO R02 6-1

The individual APUs running these tasks can transmit all status
information regarding the components of the system to another
task, called the supervisor monitor. The supervisor monitor can
then output messages to a console or printer as the status is
received. Another function of the supervisor monitor could be to
store a code in a status word in memory that can be accessed by
a standby task. The standby task then would be able to
periodically check the status of the system and adjust task
execution accordingly.

Once the programmer has divided a job into several tasks that can
be run simultaneously, the next step should be to assign each
task to a proces~or for execution. It should be remembered that
execution of a compute-intensive task on an APO increases overall
system performance, while an 1/0 intensive task running on an APU
decreases system performance. Because the operating system
executes exclusively on the central processing unit (CPU), each
I/O request made by an APO task causes the task's execution to be
transferred back to the CPU for operating system suppport.
Hence, all I/O intensive tasks should be assigned to the CPU for
execution.

6.3 ASSIGNING A TASK TO A PROCESSOR

OS/32 supports a multiprocessing configuration consisting of one
CPU and one to nine APUs. Each processor is given a unique
identifying number. By definition, the identifying number for
the CPU is zero. APUs are numbered from one through nine.

The operating system also defines a set of logical processing
units (LPUs). An LPU is mapped to an APU or to the CPU. An APU
can be mapped to more than one LPU, but each LPU can be mapped to
one and only one APO. The identification number of the processor
to which each LPU is mapped is contained in a system data
structure known as the logical processor mapping table (LPMT).
Before a task can run on an APU, the task must be assigned to an
LPU that is mapped to the processor. (If the LPU is mapped to
APU 0, the task will execute on the CPU.)

As in a uniprocessor system, a task can load another task for
execution on an APO via supervisor call 6 (SVC 6). Unlike a
uniprocessor system, however, the programmer must consider two
additional SVC 6 function codes, assign LPU (SFUN.LPM) and
transfer to LPU (SFUN.XLM). These function codes assign the task
to an LPU and transfer execution from the CPU to the APU mapped
to the assigned LPU.

The following example shows how to code an SVC 6 parameter block
for sending a task to the APO assigned to LPU 2. It is assumed
that logical unit 5 (luS) has been assigned to the file
DIREC'I.1ED.TSK (via the OS/32 ASSIGN command or an SVC 7) and is
positioned to the first byte of the LIB for the task, and that
LPU 2 has been mapped to an APU.

6-2 48-040 FOO R02

*
*
*
*

This example loads and starts a copy of a task to
run on an APU in a Model 3200MPS System.

*
*
*
*

$SVC6
ALIGN 4

PARBLK DS SVC6 ALLOCATE STORAGE FOR PARBLK
ENDBLK EQU *
*SET LOAD, ASSIGN LPU, LPU-DIRECTED, & START FUNC CODES

ORG PARBLK+SVCG.FUN
DC SFUN.DOM!SFUN.LM!SFUN.LPM!SRUN.XLM!SFUN.SIM
ORG PARBLK+SVC6.LU
DB 5 LU OF DIRECTED.TSK (IMAGE)
ORG PARBLK+SVC6.SAD
DC 0 TASK EXECUTION START ADDR
ORG PARBLK+SVC6.SOP
DC 0 START OPTIONS (none)
ORG PARBLK+SVC6.SEG
DC Y'40' TASK WORKSPACE
ORG ENDBLK

START EQU *
*SETUP NAME OF TASK TO BE LOADED

LI Rl,CAPUl
ST Rl,PARBLK
LI Rl,C'TASK'
ST Rl,PARBLK+4

*ASSIGN LPU NUMBER
LIS Rl,2
STB Rl,PARBLK+SVC6.LPU

*ISSUE SVC6 TO LOAD TASK FROM LU5
SVC 6,PARBLK
END START

After the SVC 6 in the above example is executed, the task will
be loaded into memory from the file (DIRECTED.TSK) with a
workspace of 640 (X'40') bytes. When the task is loaded, the
task manager dispatches it to the APO mapped into APU 2.

NOTE

If the LPO-directed function code
(SFUN.XLM) was not set, the task is
executed on the CPU. If the task was
linked with the APO-only (APUONLY) task
option, the task is not dispatched to an
APO and pauses.

For more information on SVC 6, see the OS/32 Supervisor Call
(SVC) Reference Manual.

48-040 FOO R02 6-3

6.4 PREPARING AN AUXILIARY PROCESSING UNIT (APU) FOR TASK
EXECUTION

Even though a task is assigned to an LPU mapped to an APU, the
task will not be dispatched to the APU unless the APU is in a
valid task operating state. OS/32 maintains four operating
states for an APU, each differing in the degree of APU readiness
for task execution. These states are:

• DISABLED - APU is unavailable for all purposes except running
the power up link check procedure. (An APU is placed in the
DISABTED state upon loading of the operating system or power
restore.)

• OFF (ENABl£D) - APU has successfully passed the power up link
check procedure but is not available for task execution.

• ON EXCLUSIVE - APU is available for scheduling and executing
a single designated task only.

• ON - APO is fully available for scheduling and executing any
task in the system.

Figure 6-1 shows the valid APU operating states. A task can
control the task operating state of an APU by executing the
corresponding SVC 13 APU control and mapping functions. The SVC
13 APO control functions are used by a task to enable or disable
an APO. The SVC 13 mapping functions are used to mark the APU on
for task scheduling and to map the APU to a particular LPU number
in the LPMT.

6-4 48-040 FOO R02

6275

ON

STATE

ON

EXCLUSIVE
STATE

DISABLED OFF
STATE STATE

Figure 6-1 Valid APU Operating States

The following code demonstrates how SVC 13 is used to enable an
APU and mark it on for task scheduling. This example does not
check for SVC 13 execution errors.

Example:

$SVC13
ALIGN 4

ENABLE DS SVC13 ALLOCATE STORAGE FOR SVC 13 PARBI..K
ENABLEE EQU *
*GAIN CONTROL RIGHTS, ENABLE APU, SEND APU COMMAND, AND
*RELEASE CONTROL RIGHTS

ORG ENABLE+SV13.0PT
DB X'C9'
ORG ENABLE+SV13.FUN
DB X'03' FUNCTION CODE=3
ORG ENABLE+SV13.DOP
DB X'Ol' SEND START APU COMMAND
ORG ENABLE+SV13.APN

48-040 FOO R02 6-5

DB 2 APU NUMBER
ORG ENABLED

***BUILD SVC 13 PARAMETER BLOCK FOR MAPPING APU
ALIGN 4

MAP DS SVC13. ALLOCATE STORAGE FOR SVC 13 PARBLK
MA.PE EQU *
*GAIN MAPPING RIGHTS, MARK APU ON, MAP APU INTO LPMT,
*RELEASE MAPPING RIGHTS

ORG MAP+SV13.0PT
DB X'Bl'
ORG MAP+SV13.FUN
DB 2 FUNCTION CODE=2
ORG MAP+SV13.00P
DB 2 LPU NUMBER TO BE MAPPED
ORG MAP+SV13.APN
DB 2 APU TO MAP LPU TO
ORG MAPE

******ISSUE SVC 13 TO ENABLE AND MAP APU*******
SVC 13,ENABLE ENABLE APU
SVC 13,MAP MAP APU TO LPU 2

6.5 TASK RESCHEDULING

In a uniprocessor system, priority scheduling determines the
execution flow of the tasks in the system. In order to affect
task scheduling, a programmer must change the priority of the
tasks in the system. In an OS/32 Model 3200MPS multiprocessing
system, this is only true for tasks that are running on the CPU.
Rescheduling tasks on an APU is accomplished via the SVC 13
control function options, as described in the following sections.

6.5.l Monitoring and Preempting Auxiliary
(APU) Task Execution

Processing Unit

This section will examine the methods used by an APU monitor task
to:

• receive status signals from an APU, and

• preempt the current task executing on an APU with another task
after a certain time interval has elapsed.

To receive a status signal from an APU, the APU must be connected
and thawed (via SVC 6) as a trap-generating device to the monitor
task. In addition, the monitor task must have the appropriate
bits in its task status word (TSW) set, a task queue to receive
the status signal, and a task queue trap handling routine to
service the trap. The following example demonstrates how to code
a typical APU monitor program to receive and handle task queue
traps from an APU. For more information on task trap handling
see the OS/32 Application Level Programmer Reference Manual.

6-6 48-040 FOO R02

Example:

**** Define a task queue to receive APU signals ***************
* *

ALIGN 4
TASKQ DLIST 100 DEFINE TASK Q OF 100 ELEMENTS.

* *
* Put the address of task queue in UDL (UDL.TSKQ)
*

*

LA
ST

Rl4,TASKQ
Rl4,UDL.TSKQ

* Set TSW bits to enable the applicable task traps.
*

LI Rl4,TSW.TSKM+TSW.APTM
* * TSW.TSKM enables task queue service traps
* TSW.APTM enables signals from APU
* Save TSW values to enable APU signals and task Q entries

ST Rl4,ENTRIES SAVE TSW VALUES
* TO ENABLE APU SIGNALS AND TASK Q ENTRIES
* * SET UP TSW FOR TRAPS IN UDL
*

LA
STM
SVC

Rl5,QSERVICE
Rl4,UDL.TSKN
9

SET UP TSW ON TRAPS IN UDL
ENABLE TASK QUEUE ENTRIES

*
*

*
*
*

*
*
*
*

*
*
*

For information on writing a task queue trap handling routine
that removes the APU status entries from the task queue, see the
OS/32 Application Level Programmer Reference Manual.

The following code demonstrates a method of connecting the APUs
in a system as trap-generating devices to the APU monitor task.

Example:

* Enable each APU in the system if it is not enabled and then *
* connect to each APU, but f irat *
* fetch a copy of the LPMT to obtain the *
* number of APUs in the system. *
* *
START SVC 13,LPMTFET

LB Rl,BUFFERl+l LOAD MAX APU NO.INTO Rl
* SET UP SVC 13 PARAMETER BLOCK TO *
* FETCH APU STATUS *

LIS R3,l
STB R3,FETAPU+SV13.FUN SET UP FUNCTION CODE 1
LA R4 , APUBUF *
ST R4,FETAPU+SV13.BUF SET UP BUFFER ADDR. *

48-040 FOO R02 6-7

LHI R3,256
STH R3,FETAPU+SV13.LEN SET UP BUFFER LENGTH

*
* SET UP SVC13 PARAMETER BLOCK TO ENABLE THE APU
*

LIS R3,3 SET UP SVC 13 FUNC CODE
STB R3,ENABAPU+SV13.FUN
LIS R3,X'Cl' SET UP CONTROL OPTIONS
STB R3,ENABAPU+SV13.0PT GAIN,ENABLE,RELEASE

* * GET THE APU STATUS. IF APU IS DISABLED,
* ATTEMPT TO ENABLE IT. IF APU CAN'T BE
* ENABLED, LOG MESSAGE TO CONSOLE AND
* CONNECT TO IT ANYWAY JUST IN CASE IT IS
* ENABLED AND MARKED ON LATER.

APULOOP EQU *
* GET APU STATUS

STB Rl,FETAPU+SV13.APN SET UP APU NO.
SVC 13,FETAPU ISSUE SVC 13
LH R4,FETAPU+SV13.ERR GET SVC 13 ERROR STATUS

3

BZ GETSTAT IF NO ERROR-GET APU STATUS
BNE ER.ROUTE IF ERROR, BRANCH TO ER.ROUT
LB R5,APUBUF+5 GET 2ND BYTE OF APU S-STATUS
BNZ CONNECT NOT DISABLED, GO CONNECT

*APU IS DISABLED; ISSUE SVC 13 TO ENABLE IT.
STB Rl,ENABAPU+SV13.APU SAVE APU NUMBER
SVC 13,ENABAPU ENABLE THE APU
LH R3,ENABAPU+SV13.ERR GET SVC 13 ERROR STATUS

*
*
*

*
*
*
*
*
*
*

BNZ ENAB.ERR BRANCH TO ERROR ROUTINE ON ERROR
CONNECT EQU *
*
*SAVE APU NO. AS PART OF APU'S TGD MNEMONIC

STB Rl,SVC6.DEV
*ISSUE SVC6 TO CONNECT AND THAW THE APU
*

*

*

SVC
LH
BZ

STB
SVC

6,APUTRAPS
R6,SVC6.STA
NEXT.APO

Rl,CONB.ERR+24
2,LOGMSG

GET SVC 6 ERROR STATUS
NO ERROR-GO CONNECT TO NEXT
APU
SAVE APU NO. IN MESSAGE
LOG MESSAGE: COULD NOT
CONNECT TO APUX

*
*

*
*

NEXT.APO SIS
BP

Rl,l
APULOOP

MOVE ON TO NEXT LOWEST APU NO.
GO HANDLE NEXT APU.

The parameter blocks used in the above example are defined as
follows:

*SVC 13 FETCH LPMT Parameter Block and Buffer
ALIGN 4

LPMTFET DS SVC13
ENDPBK EQU *

ORG LPMTFET+SV13.FUN

6-8 48-040 FOO R02

BUFFER
*

DB
ORG
DAC
ORG
DC
ORG
ALIGN
OS

X'OO'
LPMTFET+SV13.BUF
BUFFER 1
LPMTFET+SV13.LEN
H'SO'
ENDPBK
4
50

SET FUNC CODE 0

DATA BUFFER ADDR

MAX LENGTH OF BUFF

* SVC13 Fetch APU Status Parameter Block & Buff er
* ALIGN 4
* FETAPU OS SVC13

ALIGN 4
APUBUF OS 256
*
*** SVC13 Enable APU Parameter Block
*

ALIGN 4
ENABAPU OS SVC13.

*
*
*

* * * SVC 6 Connect & Thaw APU Parameter Block
*

$SVC6
ALIGN 4

APUTRAPS OS SVC6.
ENDAPUTB EQU *

ORG APUTRAPS+SVC6.FUN
OS Y'COOO COOO' SVC6 FUNC CODE-

* SELF-DIRECTED,
*

ORG APUTRAPS+SVC6. Dl~V
DC C'APU' TRAP-GENERATING
ORG ENDAPUTB

*
**** SVC 2 Log Message Parameter Block
*
LOGMSG DB 0,7

DCZ CONE.ERR-CONS.ERR
CONS.ERR DB C'UNABLE TO CONNECT TO APU'
CONE.ERR EQU *

CONNECT

DEVICE

& THAW

*
*

MNEMONIC

The code in the above example allows the monitor to receive traps
from the APUs. Status returned from these traps can be reported
to the console (via SVC 1 or SVC 2 Code 7) or to a file
designated for the APU output (via SVC 1). In addition, this
monitor program could be coded to run a certain task (TASKl)
every 10 minutes on a specific APU. To do this, the monitor sets
an interval timer via SVC 2 Code 23. Upon expiration of the
timer, the monitor task issues an SVC 13 Code 3 to preempt the
current executing task on the APU, as shown beiow.

48-040 FOO R02 6-9

Example:

SVC 13,PREQ

ALIGN 4
* PREEMPT QUEUE, EXECUTE CONTROL
PREQ.OPT DB X'B9'

COMMAND, AND RELEASE CONTROL RIGHTS
SET SVC 13 OPTIONS:

PREQ.FUN DB X'03'
*
PREQ.DOP DB X'Ol'
*
PREQ.APN DB X'Ol'
PREQ.APS OS 2
PREQ.ERR OS 2
PREQ.BUF DAC BUF2
PREQ.USE OS 2
PREQ.LEN DC H'S'

ALIGN 4
BUF2 DC C'TASKl

Execution of the above SVC i3 will
control rights to the specified
task has been Link edited with the
other task has control rights to
specified in the SVC 13 parameter
following actions:

SET FUNCTION CODE­
CONTROL FUNCTION
DIRECTIVE OPTION­
START A~
APO NO. - APO 1
APO HARDWARE STATUS
SVC 13 ERROR STATUS
DATA BUFFER ADDRESS
LENGTH OF BUFFER USED
MAX LENGTH OF BUFFER

TASK ID BUFFER

cause the monitor to gain
APU (APU 1), provided that the
APCONTROL task option and no
the APU. The control options,
block, will then cause the

• Execution of the current executing task on the APU will be
stopped.

• The current task will be rescheduled to the end of the APO
ready queue.

• The APU's ready queue pointer will be repositioned to point to
TASKl. (This will cause TASKl to be selected as the next task
to be executed on the APU.)

• The APU will be restarted for execution of TASKl.

• The monitor task will release the control rights to the APU9

The remaining code in the monitor program should check the
FREQ.ERR field of the PREQ parameter block for errors as follows:

Example:

6-10

LH
BNZ

R2,SV13.ERR
ERR.PREQ

48-040 FOO R02

If an error has occurred, ERR.FREQ can log a message to the
console.

Finally, to reexecute TASKl in 10 minutes, the interval timer
(via SVC 2 Code 23) should be reset so that the SVC 13 Code 3 to
preempt the current APU task can be reissued when 10 minutes have
elapsed.

See Chapter 3 for more information on SVC 13. See the OS/32
Supervisor Call (SVC) Reference Manual for more information on
SVC 6 and SVC 2 Code 23.

6.5.2 Verifying Task Transfer to an Auxiliary Processing Unit
(APU)

It may be necessary for a task to verify whether or not it has
actually been transferred to an APU for processing. For example,
suppose a task on the CPU is assigned to LPU 3 and executes the
following instruction:

RSCH Rl,2

Execution of this instruction will cause OS/32 to set the LPU
directed status of the task. The OS/32 task manager will then
attempt to transfer the task to the APU mapped to LPU 3. Suppose
LPU 3 is mapped to APU 3. To verify that the task has indeed
been transferred to APU 3, the next instructions executed by the
task could be:

LIS Rl,O Get RTSM PULSE LINE
* TO PULSE

LI R2,15 FILL IN APU ID
GSIG Rl,R2 GENERATE SIGNAL

* HERE THE NO. (15) CAN NEVER MATCH
* THE APU ID IN THE RTSM. NO SIGNAL WILL BE
* SENT. INSTEAD, ONLY THE APU ID IS RETURNED TO Rl

After execution of GSIG, Rl will contain the number of the APU on
which the task is currently executing. See the Model 3200MPS
System Instruction Set Reference Manual for more information on
the RSCH and GSIG instructions.

48-040 FOO R02 6-11

6.5.3 Transferring a Task from an Auxiliary Processing Unit
(APU) to the Central Processing Unit (CPU)

Under certain conditions, a monitor task may need to transfer
some other task back to the CPU for processing. The task to be
transferred may be executing on an APU or waiting on its ready
queue. The monitor task can transfer a task back to the CPU by
issuing an SVC 6, specifying the following function codes:

• Suspend (SFUN.SM)

e Set CPU directed (SFUN.XCM)

• Release (SFUN.RM)

The suspend will transfer the task back to the CPU by setting the
CPU directed flag. Upon release, it will stay on the CPU and not
be dispatched back to the LPU.

Example:

CPUDIR
CPUDIRE

*

SVC 6,CPUDIR

ALIGN 4
$SVC6
DS SVC6.
EQU
ORG
DC

*
CPUDIR+SVC6.ID
C'TASK116)zSl6'

ORG CPUDIR+SVC6.FUN

ID OF TASK TO BE
TRANSFERRED

* SET SUSPEND,CPU-DIRECTED, & RELEASE FUNC CODES
* FOR TASKl

DB SFUN.DOM!SFUN.SM!SFUN.XCM!SFUN.RM
ORG CPUDIRE

Execution of this SVC 6 causes TASKl to be suspended (if it is
not already in a wait state) and transferred to the CPU. Setting
the CPU directed bit in the task's TSW directs the task manager
to ignore its LPU assignment and to schedule this task for
execution on the CPU. When released, the task will execute on
the CPU at the location following the instruction that was
executed before the task was suspended. If the SVC 6 in the
above example did not set the CPU directed bit in the task's TSW,
the task will again be dispatched to the APU assigned to its LPU
number upon release from the suspended state.

6-12 48-040 FOO R02

6.6 P.REVENTING MEMORY ACCESS CONFLICTS

When several processors are executing simultaneously, it is
possible for tasks running on two or more processors to need
access to the same data. For example, suppose two tasks share a
buffer list consisting of 30 buffers defined as follows:

BLISTBIT OS 2
BUFLIST DLIST 30

BUFLIST is a list containing the addresses of the buffers.
BUFLIST, and the actual buffers, reside in an area of memory
shared by the two tasks. One task collects data, writes it to a
buffer and adds the address of that buff er to the bottom of the
list. The other task removes an address of a buffer from the top
of the list and processes it. Since in a Model 3200MPS System
both tasks may be running simultaneously on different APUs, both
tasks may attempt to access the list at the same time. The Test
and Set instruction (TS) can be used to ensure that only one task
can access the buffer at a time.

To ensure that only one task can access BUFLIST at a time, a test
and set operation is performed on BLISTBIT. BLISTBIT acts as a
lock out mechanism that is set and reset. A task can only access
BUFLIST if BLISTBIT is not set.

6.6.1 Avoiding System Deadlock

When using the test and set operation, care should be taken to
ensure that system deadlock is avoided.

For example, suppose task A uses TS to lock out data structure X
while task B is locking out data structure Y. Task A now finds
that it needs to access data structure Y, so it waits for Y to be
released. Similarly, Task B finds it needs to access data
structure X, so it waits for X to be released. Since each task
holds the data structure needed by the other, processing stops.
Both tasks are deadlocked.

To avoid system deadlock, the test and set instruction should be
used with a timeout mechanism. The following example shows how
to prevent memory access conflicts without system deadlock.

48-040 FOO R02 6-13

Example:

*
TS BLISTBIT TASK CHECKS IF IT CAN GET

ACCESS TO LIST
BNM CONTINUE PROCESS LIST IF FREE
LI R2,50 LOAD TIMEOUT VALUE OF 50

* MICROSEC IN R2
SETBITLP EQU * TIMER ROUTINE

SIS R2,l DECREMENT TIMEOUT COUNT
BM TIMEOUT BRANCH TO TIMEOUT ROUTINE

*IF BRANCH TO TIMEOUT IS TAKEN IT MEANS THAT THE
*TASK STILL COUI.D NOT GET ACCESS TO LIST
*THE TIMEOUT ROUTINE PRINTS A MESSAGE TO THE CONSOLE
*SO OPERATOR CAN TAKE NECESSARY ACTION
*ELSE CONTINUE

*

*

LH
BMS

TS

R4,BLISTBIT
SETBITLP

BLISTBIT

BMS SETBITLP
**IF SUCCESSFUL, PROCESS LIST
*
CONTINUE EQU
*
*
*

*

USE APU CACHE TO MATCH LOCKS
BUFLIST NOT AVAIT.ABLE YET;
TRY AGAIN
BUFLIST IS AVAILABLE SO
ATTEMPT TO GRAB ACCESS
NOT QUICK ENOUGH, RETRY

*
*
*
*
*

**
*

*
*
*

*ACCESS BUFLIST EITHER BY ABL (ADD TO BOTTOM OF LIST *
*INSTRUCTION) OR RTL (REMOVE FROM TOP OF LIST INSTRUCTION). *
* *
* *
* *
*AFTER PROCESSING BUFFER, UNLOCK BLISTBIT SO OTHER TASK CAN *
*ACCESS IT. *
* *

LIS R4,0
RBT R4,BLISTBIT

6.7 MEASURING REAL-TIME PERFORMANCE ON A MODEL 3200MPS SYSTEM

The OS/32 system macro library provides a set of timer macros
that can be used to measure the real-time performance of
individual tasks running in a Model 3200MPS System. These macros·
allow the progranuner to set up a named timer in memory. A named
timer can be compared to a stopwatch that measures the amount of
time elapsed from the time the watch is started to the time it is
stopped. The following example shows the data structure set up
in memory for a timer named TIMRNAME. The timer macro, CRTIMERS,
is used to set up timer data areas.

6-14 48-040 FOO R02

Example:

ALIGN
TIMRNAME DCF

DCF
DCF
DCF
DCF

4
C'TIMRNAME'
0
0
0
0

TIMER NAME (8 CHAR MAX)
TIMER COUNTER
TIMER START VALUE
ACCUMULATED TIME
REGISTER SAVE AREA

The timer macros are used to set the watch and read the
accumulated time after a specified interval has elapsed. The
timer macros are listed in Table 6-1.

TABLE 6-1 TIMER MACROS

MACRO FUNCTION

CRTIMERS (NAME1[,NAME2, ...]) I Creates a data area for each
I named timer.

STRTIME NAME(,REG) I Starts the named timer.

STOPTIME NAME(,REG) I Stops the named timer.
---,

GETIME NAME,REG I Gets the total time accumulated

READTCNT NAME,REG

I by the named timer.

I Gets the number of intervals
I that have been timed by this
I timer.

RESETIME NAME I Resets accumulated time counts.

The following example demonstrates how these macros can be used
to time the execution of a program and its subroutine.

Example:

* Create a data area for the timer
* for MAIN and the timer for SUB
*

CRTIMERS (MAIN,SUB)
* * Start timer for MAIN.
*

48-040 FOO R02

*
*
*

*
*
*

6-15

START EQU *
STRTIME MAIN

BAL RlS,SUBPROG

* Stop timer for MAIN
STOPT I ME MA IN

* Get total time accumulated by MAIN
* Timer. Load into REG 0

GETIME MAIN,RO

* Log MAIN program execution time.

* Get total time accumulated by SUB
* timer. Load into REG 3

GETIME SUB,R3
* Get number of intervals timed by
* SUB timer. Load into RO

READTCNT SUB,RO

* Compute average subroutine execution
* time.

DR R2,RO

SUBPROG EQU *
*
* Start timer for SUB
*

STRTIME SUB

*
* Stop timer for SUB
*

STOPTIME SUB
BR RlS

*

*

*

*
*

*

*

*
*
*
*
*
*
*
*
*

*

*
*
*
*

*
*
*

Detailed descriptions of the timer macros can be found in the
OS/32 System Macro Library Reference Manual.

6-16 48-040 FOO R02

6. 8 WHERE TO GO FOR MORE INFORMATION-

This chapter is intended to demonstrate assembly language
programming techniques used in designing system level control
programs that take advantage of the Model 3200MPS System
multiprocessing capabilites. However, all the programming
facilities available for writing system level control programs
are not shown. Table 6-2 summarizes additional facilities and
lists the manuals in which they are described.

TABLE 6-2 ADDITIONAL INFORMATION SOURCES FOR
MODEL 3200MPS SYSTEM PROGRAMMING

MANUAL PROGRAMMING METHODS DESCRIBED
==========•==================•=================================I
Model 3200MPS System I This manual describes the machine
Instruction Set instructions specific to the Model
Reference Manual 3200MPS System processor. It also

gives a detailed discussion of the
APU processor states.

---:
FORTRAN VII User Guide This manual describes the

Perkin-Elmer FORTRAN VII run-time
libt·ary (RTL) routines available
for writing a FORTRAN system level
control program that performs the
functions described in this chapter.

---:
OS/32 Operator This manual describes the operator
Reference Manual commands that can be used to write a

command substitution system (CSS)
command file to perform SVC 13
mapping and control functions.

OS/32 Supervisor
Call (SVC) Reference
Manual

I Thia manual gives more details on
I how to use SVC 6, SVC 2 code 23, and
I assembly language programming SVCs.

--- --··- ... - ·- - ·- ___ ., __ - I

OS/32 System Macro I This manual describes the timer and
Library Reference I SVC 13 macros.
Manual

48-040 FOO R02 6-17

APPENDIX A
OS/32 SUPPORTED INPUT/OUTPUT (I/0) DEVICES

TYPE DEVICE

ATTRIBUTES
I - - - - - - ·- ·- ·- ···· - - ·- - - - - I
I IWI IBIWIRIFIIIHl
IRIRITIIIAINILINILI
IDITISINITIDIPITlTI

=======================================~==========7~

Card
equipment

Teletype
reader/
punch

Teletype
keyboard
printer

48-040 FOO R02

400 CPM card
reader

1000 CPM card
reader

High speed card
reader/punch

High speed card
reader/punch with
separate print
option

TTY Model 33 *

TTY Model 35 *

Carousel 35 with
paper tape reader
132-character
line

TTY Model 33

I I I I I I I I I
I I I I I I I I I

:xi I Ix lxl I I I

I I I I I I I I I
I I I I I I I I t

lxl I lxlxl I I I

I I I I I I I I I
I I I t I I I I I

lx I xi l x lxl I I I

I I ' I I I
I I I I I I
I I I ' I ' I I I I I I
I I ' I I I
I I I I I I

:x:x: :x:x:

lxlxl lxlxl I I Ix

I I
I I
I I
I I
I I
I I

:x:

I I I
I I I
I I I
I I I
I I I
I I I

:x:x:

I Ix

I
I

Ix

--------------------------------------,
TTY Model 35 lxlxl I lxl I lxlx

Perkin-Elmer I I I I I I I
I I I I I I I

Carousel 'Jc 15, 30, I I I I I I I
I I I I I I I

35, 132-character I I I I I I I
I I I I I I I

line 'Jc :x:x: Ix I :x:x

Perkin-Elmer I I I I I I I
I I I I I I I

Carousel * 15, 30, I I I I I I ' I I I I I I ' 35, SO-character I I I I I I I
I I I I I I I

line * :x:x: Ix I :x:x

A-1

A-2

TYPE DEVICE

ATTRIBUTES
1-----------------
1 IWI IBIWIRIFIIIH
IRIRITIIIAINILINIL
IDITISINITIDIPITIT

=======================•••••••=••=m=•============•=z
Teletype
keyboard
printer
(Continued)

Perkin-Elmer
Carousel 300 A $

Perkin-Elmer
Carousel 300 with
electronic format
controls

I I I I I I I I I
lxlxl I lxl I lxlx

I I I
I I I
I I I
I I I
I I I
I I I

lxlxl

I I
I I
I I
I I
I I
I I

I xi

I I
I I
I I
I I

I t
lxlx

Paper tape I Paper tape reader/ I I I I I I I I
I I

I equipment I punch lxlxl lxlxl I Ix
I - - - ·- - - - - ·- - - - - - -- - - - - - - - - - - - - ·- - - - - - - - ·- - ·- - ·- - - - - ·- - - - - - - -

Printers Low speed line I I I I I I I I I

Tape
Cassette

Magnetic
tape

pr inter I Ix I I Ix I I I I

Letter quality
printer

I I I I I I I I I
I I I I I I I I I

I lxl I lxl I I I

Character printer I lxl I lxl I I I

Medium speed line I I I I I I I I I
pr inter I Ix I I Ix I I I I

High speed line
printer

Thermal page
printer

Remote printer

I Intertape

800 bpi

1600 bpi

I I I I I I I I I
I lxl I lxl I I I

I I I I I I I I I
I I I I I I I I I

I lxl I lxl I I I

I lxl I lxl I I I

lxlxl lxlxl lxl I
I I I I I I I I I
I I I I I I I I I

lxlxl lxlxl lxl I

lxlxl lxlxl lxl I

1600/800 bpi dual I I I I I I I I I
density lxlxl lxlxl lxl I

6250 bpi lxlxl lxlxl lxl I

6250 bpi halfword I I I I I I I I
I I I I I I

mode controller I I I I I I I I
I I I I I I I I

(STC) lxlxl lxlxl lxl
6250 bpi TELEX mag I I I I I I I I

I I I I I I I I

tape lxlxl lxlxl :x:

48-040 FOO R0'2

DEVICE

AT'rR I BU'I1ES
:-----------------
: IWI IBIWIRlFIIIH
IRIRITIIIAlNILINIL
IDITISINITIDIPITlT

==~=:=====

Magnetic
tape
(Continued)

Disks

48-040 FOO R02

9-track, 75 ips,
800 bpi

9-track, 45 ips,
800/1600 bpi

I I I I I I I I I
I I I I I I I I I

lxlxl lxlxl lxl I

I I I I I I I I I I
I I I I I I I I I I

lxlxl lxlxl lxl I I
--------------------------------------:
9~track, 45 ips, I I I I l l I : l
800 bpi Ix Ix I Ix Ix I Ix I l

9-track, 45 ips,
1600 bpi

1. 5Mb HPT disk

2.5Mb moving head
disk, removable

2.5Mb moving head
disk, fixed

lOMb mov.ing head
disk (5Mb fixed,
removable)

40Mb moving head
disk, removable

67Mb disk, fixed

I I I I I I I I I
I I I I I I I I I

lxlxl lxlxl lxl I

I I I I I I I I I
I I I I I I I I I

lxlxlxlxlxlxl I l

I I I I I I I I I
I I I I I I I I I

lxlxlxlxlxlxl I I

I I I I I I I
I I I I I I I
I I I I I I I I I
I I I I I I I I I

lxlxlxlxlxlxl I I

I I I I I I I I I
I I I I I I I I I I

:x:x;x;x:x:x: I I

·--------------------------------------
67Mb disk, remov­
able

I I I I I I I I I
I I I I I I I I I

lxlxlxlxlxlxl I l

160Mb disk, fixed l x Ix Ix l x Ix Ix I I I

256Mb disk,
removable

I I I I I I I I I
I I I I I I I I I

lxlxlxlxlxlxl I l

1 256Mb disk, fixed lxlxlxlxlxlxl I I

675Mb disk, fixed lxlxlxlxlxlxl I I ,
--------------------------------------:

68.6Mb disk lxlxlxlxlxlxl I I I
- - - - - ·- - - - - - - - - - ·- ·- - - - - - - - - - - - ·- - -- - - ·- - - - - I

MSM 300 disk sys- l I I l I l l l l I
tern (256Mb format- I I I I l I l : I :
ed) : x I x I x I x I x I x I I l I

--------------------------------------:
MSM 80 disk system I I I I I I l I I I
(67Mb formatted) Ix Ix Ix Ix Ix Ix I I I I

A-3

A-4

TYPE DEVICE

ATTRIBUTES
1-----------------
1 IWI IBIWIRIF I I IH
IRIRITIIIAINILINIL
IDITISINITIDIPITIT

===~==================-===-======================·==

Disks
(Continued)

Video
display
units
(VDU)

MSM 80F disk
system

MSM 80F/HPT disk
system

I I I I I I I I I
lxlxlxlxlxlxl I I

I I t t I I I I t
I I I I I I I I I

lxlxlxlxlxlxl I I

Vanguard 1 car- I I I I I I I I I
tridge disk system lxlxlxlxlxlxl I I

Nonediting VDU $ A lxlxl I lxl I lxlx

Graphic display
terminals $ A

Model 1200 VDU $

I I I I I I I I t
I I I I I I I I I

lxlxl I lxl I lxlx

lxlxl I lxl I lxlx

' Model 1100 VDU $ A lxlxl I lxl I lxlx

Model 550 VDU $ * lxlxl I lxl I lxlx

Model 1250 VDU $

Model 1251 VDU $

Floppy disk I Floppy disk

8-line
interrupt
module

I 8-line interrupt
I module

I I I I I I I I
I I I I lxl I I I
I I I I I I I I I
I I I I I I I I I

Digital I Digital multiplex- I I I I I I I I I
multiplexor I or controller lxlxl lxlxlxl I I

Conversion
equipment

Real-time analog
system with
internal clock

Real-time analog
system with user
supplied external
clock

I I I I I I I I I
I I I I I I I I I
lxlxl lxlxl I I I

I I t t I I I I I I I
I I • t I I
I I I I I I
I I I I I I I I I I

lxlxl lxlxl

48-040 FOO R02
!

TYPE DEVICE

Analog 1/0 I Analog input
controller I controller

ATTR I su·rES
:---------·--------
: IWI IBIWIRIFIIIH
IRIRlTlllAINlLINIL
lDITISINITIDIPlTIT

I I I I I I I I I
I I I I I I I I I

I xi I lxl xix: I I
: - - - - - -- - - - - - - - - - - - - - ·- - ··- - - ·- - - ·-- ·- - ·- ·- - - -
I Analog output I I I I I I I I I
I controller I :x: :x:x:x: I I

Digital 1/0 I Digital 1/0 and:
controller I analog output

:· system

LEGEND

* CLI - Current loop interface

I I I I I I I
I I I I I I I
I I I I I I I I I
I I I I I I I I I

:x:x: :x:x:x: : :

/\

$
CLCM - Current loop communications multiplexor
RS232C

ATTRIBUTES

RD READ
WRT WRITE
TS TEST & SET
BIN BINARY
WAT WAIT
RND RANDOM
FLP FILE POSITION
INT INTERACTIVE
HLT HALT I/O

48-040 FOO R02 A-5

APPENDIX B
SUPPORTED VERTICAL FORMS CONTROL (VFC) CHARACTER SET

- - - - - - - - - - - - ·- -· - - - - ,,,._ - ..- ·- - ·- ·- - - .. -- - ·--
I i OPERATIONS AFFECTING I I

HEX I CHARI LINE SPACING
=============r===rr=======~~====

09 HT Horizontal tab
OB VT Set vertical tabs

(EVFU, no print)
20 b 1 line b/print
28 + No line advance
2D 3 lines b/print

'30 0 2 lines b/print
31 1 Top of form b/print
32 2 Select VFU-2 b/print
33 3 Select VFU-3 b/print
34 4 Select VFU-4 b/print
35 5 Select VFU-5 b/print
36 6 Select VFU-6 b/print
37 7 Select VFU-7 b/print
38 8 Select VFU-8 b/print
39 9 Select VFU-9 b/print
41 A Select VFU-10 b/print
42 B Select VFU-11 b/print
43 c Select VFU-12 b/print
45 E 1 line a/print
46 F No line advance
47 G 3 lines a/print
48 I H 2 lines a/print
49 I Top of form a/print
4A J Select VFU-2 a/print
48 K Select VFU-3 a/print
4C L Select VFU-4 a/print
40 M Select VFU-5 a/print
4E N SelE~ct VFU-6 a/print
4F 0 Select VFU-7 a/print
50 p Select VFU-8 a/print
51 p Select VFU-9 a/print
52 R Select VFU-10 a/print
53 s Select VFU-11 a/print
54 T Select VFU-12 a/print
60 No line advance
61 a 1 line b/print
62 b 2 lines b/print
63 c 3 lines b/print
64 d 4 lines b/print
65 e 5 lines b/print
66 f 6 lines b/print
67 g 7 lines b/print

48-040 FOO R02 B-1

l I OPERATIONS AFFECTING
HEXICHARl LINE SPACING

68 h 8 lines b/print
69 i 9 lines b/print
6A j 10 lines b/print
6B k 11 lines b/print
6C 1 12 lines b/print
6D m 13 lines b/print
6E n 14 lines b/print
6F I 0 15 lines b/print
70 p 16 lines b/print
71 q 17 lines b/print
72 r 18 lines b/print
73 s 19 lines b/print
74 t 20 lines b/print
75 u 21 lines b/print
76 v 22 lines b/print
77 w 23 lines b/print
78 x 24 lines b/print
79 y 25 lines b/print
7A z 26 lines b/print
7B { 27 lines b/print
7C 28 lines b/print
7D } 29 lines b/print
7E 30 lines b/print
7F DEL 31 lines b/print
80 32 lines b/print
81 33 lines b/print
82 34 lines b/print
83 35 lines b/print
84 36 lines b/print
85 37 lines b/print
86 38 lines b/print
87 39 lines b/print

•as 40 lines b/print
89 41 lines b/print
BA 42 lines b/print
BB 43 lines b/print
BC 44 lines b/print
BD 45 lines b/print
BE 46 lines b/print
BF 47 lines b/print
91 I 48 lines b/print
92 50 lines b/print
93 51 lines b/print
94 52 lines b/print
95 53 lines b/print
96 54 lines b/print
97 55 lines b/print
98 56 lines b/print
99 57 lines b/print
9A 58 lines b/print
9B 59 lines b/print

B-2 48-040 FOO RO~

- - ·- -- - -- - - - - ··- - ,._ - - - - - ·- ·- - ·- - -- - ,._ - " - -
I OPERA.TIONS AFFECTING I

HEX I CHARI LINE SPACING
================================
9C 60 lines b/print
90 61 lines b/print
9E 62 lines b/print
9F 63 lines b/print
AO 64 lines b/print
Al 65 lines b/print
A2 66 lines b/print
A3 67 lines b/print
A4 6B lines b/print
AS 69 lines b/print
A6 70 lines b/print
A7 71 lines b/print
AB 72 lines b/print
A9 73 lines b/print
AA 74 lines b/print
AB 75 lines b/print
AC 76 lines b/print
AD 77 lines b/print
AE 1B lines b/print
AF 79 lines b/print
BO No line space
Bl 1 line a/print
B2 2 lines a/print
B3 3 lines a/print
B4 4 lines a/print
BS s lines a/print
B6 6 lines a/print
B7 7 lines a/print
BB B lines a/print
B9 9 lines a/print

1 BA 10 lines a/print
BB 11 lines a/print
BC 12 lines a/print
BD 13 lines a/print
BE 14 lines a/print
BF lS lines a/print
co 16 lines a/print
Cl 17 lines a/print
C2 lB lines a/print
C3 19 lines a/print
C4 20 lines a/print
cs 21 lines a/print
C6 22 lines a/print
C7 23 lines a/print
CB I 24 lines a/print
C9 2S lines a/print
CA 26 lines a/print
CB 27 lines a/print
cc 2B lines a/print
CD 29 lines a/print
CE 30 lines a/print
CF 31 lines a/print

4B-040 FOO R02 B-3

I I OPERATIONS AFFECTING I I

HEX I CHARI LINE SPACING
===-====-===~2==~=======r==•===='
DO 32 lines a/print
Dl 33 lines a/print
D2 34 lines a/print
D2 35 lines a/print
D3 36 lines a/print
D4 36 lines a/print
D5 37 lines a/print
D6 38 lines a/print
D7 39 lines a/print
DB 40 lines a/print

1 D9 41 lines a/print
DA 42 lines a/print
DB 43 lines a/print
DC 44 lines a/print
DD 45 lines a/print
DE 46 lines a/print
OF 47 lines a/print
EO 48 lines a/print
El 49 lines a/print
E2 50 lines a/print

'E3 51 lines a/print
E4 52 lines a/print
ES 53 lines a/print
E6 54 lines a/print
E7 55 lines a/print
EB 56 lines a/print
E9 57 lines a/print
EA 58 lines a/print

IEB 59 lines a/print
IEC 60 lines a/print
'ED 61 lines a/print
EE 62 lines a/print
EF 63 lines a/print
FO 64 lines a/print
Fl 65 lines a/print
F2 66 lines a/print
F3 67 lines a/print
F4 68 lines a/print
F5 69 lines a/print
F6 70 lines a/print
F7 71 lines a/print
FB 72 lines a/print
F9 73 lines a/print
FA 74 lines a/print
FB 75 lines a/print
FC 76 lines a/print
FD 77 lines a/print
FE 78 lines a/print
FF 79 lines a/print
.._ - ~- - - - ,,_ - - - - - - ·- - - - -- - - - - - - - - - - -- - -

B-4 48-040 FOO R02

A

Account reporting utility
Accounting transaction file
Analog input controller

supported record lengths
Analog output controller
Analog to digital converter
APU. See auxiliary
processing unit.

Assigning a task
LPU mapping

ATF. See accounting
transaction file.

Auxiliary processing unit

active task
commands

configuration options

control options

control rights

error codes

exclusive task
hardware status

initialization
mapping
mapping rights

mark-off
mark-on
monitor task
number of LPUe
operating states
power-up link check
ready queue

ready task
scheduling tasks on
eof tware statue

start-up
statue
task execution
task scheduling
waiting task

48-040 FOO R02

INDEX

1-9.
1-9

5-14
5-15
5-13

6-2

1-2
3-31
3-32
3-40
3-48
3-50
3-35
3-39
3-45
3-47
3-48
3-35
3-40
3-44
3-53
3-54
3-41
3-36
3-46
3-50
3-57
3-41
3-35
3-40
3-41
3-60
3-57
6-6
3-35
6-4
3-44
1-8
1-9
3-34
3-44
3-41
3-58
3-38
3-39
3-57
3-·34
6-4
6-4
3-40

B

Bare disk I/O
Bare disk privileges

Basic data communications
subsystem

protocols
BIOC driver

horizontal tabbing
Buff er access

c

Card reader/punch devices
ASCII operations

binary operations

Hollerith code
tr ans lat i.on

image operations

supported record lengths
Card readers

ASCII operations
binary operations
Hollerith code
translation

image operations
supported record lengths

Central processing unit
ready queue

receive queue

roll-in queue

Circular list

Command processor subsystem
priority level of

Command substitution system

Console driver
Console monitor subsystem
Contiguous files

CPU. See central processing
unit.

css. See command
substitution system.

3-20
2-6
3-20
3-23
5-11
5-12

1-14

5-2
6-13

5-4
5-5
5-4
5-5

5-5
5-6
5-5
5-6
5-4

5-3
5-3

5-4
5-4
5-3
1-2
1-5
1-8
l·-9
1-8
1-9
1-5
1-8
1-9
4-4
4-6
4-7

1-16
1-16
3-6
1-15
1-15
5-11
5-12

IND-1

D

D-tasks

Data collection facility
Data management system
Data structures
Designing tasks

simultaneous processing
Device dependent 1/0
Device drivers
Device independent 1/0
Diagnostic tasks. See
d-tasks.

Digital 1/0 controller
binary operations

Digital multiplexor
Disk devices

random reads
random writes
retry on error
sequential read
sequential writes
supported record lengths

Disk directory
Dispatch priority
DMS/32. See data management

system.
Dynamic scheduling
Dynamic time-slice

E

E-tasks

characteristics of
data structures
programming of

Error code byte

Error log hardware
Error recording subsystem
Error reporting utility
Executive tasks. See
e-tasks.

Extendable contiguous files

Extended close function

IND-2

2-1
2-6
3-20
3-28
5-11
5-12
1-9
1-2
2-3

6-1
1-14
1-17
1-14

5-15
5-16
5-13

5-11
5-11
5-11
5-11
5-11
5-11
3-28
1-5

1-5
1-6
1-7

2-1
3-20
3-23
3-25
3-26
3-28
5-11
2-2
2-3
2-2
2-3
3-50
3-53
3-54
1-13
1-13
1-13

5-11
5-12
3-28

F

File account privileges
File handlers

File management subsystem
Files
Floating point subsystem
Floppy disk

random reads
random writes
sequential reads
sequential writes
supported record lengths

G

Gapless 1/0
Global task common
GSIG instruction

H

Hardware-echo
Horizontal tabbing

1/0 operations
I/0 subsystem

I CONT
use of

I CREATE
use of

IERRTST
use of

IGET
use of

Impure segment
Indexed files

Input/output. See I/O.
Instrument Society of America
Integrated transaction
controller

Intercept macros
error codes
I CONT
I CREATE
IERRTST
IGET
I PROCEED
IPUT
I REMOVE
I ROLL
I TERM
I TRAP

Intercept path

end of task operation

2-6
5-11
5-12
1-12
1-12
1-17

5-12 '
5-12 !
5-12
5-12
5-12

5-11
1-10
6-11

5-2
5-1
5-2

1-13
1-12
1-15
4-27
4-13
4-16
4-8
4-34
4-14
4-24
4-12 :
1-14
5-11
5-12

5-15

1-2
4-1
4-15
4-25
4-16
4-34
4-24
4-28
4-26
4-22
4-29
4-30
4-32
4-4
4-8
4-9
4-13

48-040 FOO R02

Intercept path (Continued)
example
full control

identifier
monitor control
programming guidelines
removing

Intercepting task

use with MTM
Internal interrupt subsystem
Internal reader

command buffers
Interval timer queue
I PROCEED

use of
IPUT

use of
I REMOVE

use of
IROLL

use of
ISA. See Instrument Society
of America.

ITC. See integrated
transaction controller.

I TERM
use of

I TRAP

J,K

Job accounting subsystem

L

LFC. See line frequency
clock.

LIB. See loader information
block.

Line frequency clock
Line printer driver

horizontal tabbing
Line printers

ASCII operations
byte limit of transfer
erasing of
gapless I/O
image operations
read operations
recording density
retry on error
standard 1/0
supported record lengths
write operations

Loader and segmentation
subsystem

Loader information block
Local memory

48-040 FOO R02

4-13
4-11
4-12
4-8
4-12
4-13
4-14
4-11
4-12
4-13
4-2
1-16
3-6
3-10
3-11
1-11
4-28
4-12
4-25
4-12
4-22
4-14
4-29
4-11

4-30
4-13
4-32

1-9

1-11

5-2

5-9
5-10
5-10
5-11
5-9
5-10
5-10
5-10
5-10
5-9
5-10

1-13
1-13
1-10

Logical processing unit

Logical processor mapping
table

LPMT. See logical processor
mapping table.

LPU number
LPU. See logical processing
unit.

M

Magnetic tape
Maximum priority
Memory

types of
Memory conflicts

buff er access
system deadlock
test and set

Memory diagnostics subsystem
Memory management subsystem
Memory map
Model 3200MPS System

assigning a task
designing tasks for
memory conflicts
performance advantage
real-time performance
task rescheduling
task scheduling

MTM. See multi-terminal
monitor.

Multi-terminal monitor

N

Non-privileged instructions
Non-privileged u-tasks
Nonbuffered indexed files

0

OS/32
account reporting
basic data communications
command processor
console monitor
data collection facility
data structures
error recording
file management
I/O operations

1-2
1-8
3-32

1-2
3-32
3-41
3-59

3-57

5-9
1-5

1-10

6-13
6-13
6-13
1-13
1-10
1-13
1-2
1-11
1-17
3-31
3-34
6-2
6-1
6-13
1-2
6-14
6-6
1-8
6-4

1-2

2-6
2-5
5-11
5-12

1-9
1-14
1-15
1-15
1-9
2-3
1-13
1-12
1-12

IND-3

OS/32 (Continued)
interrupt servicing
job accounting
linkage editor
loader and segmentation
memory diagnostics
memory management
multiprocessing support
optional supervisor call
roll function
software support summary
subsystems
supervisor calls
supported I/O devices

system initialization
task management
timer management
virtual task manager

P,Q

Paper tape equipment
ASCII operations
binary operations
image operations
supported record lengths

PIC. See precision interval
clock.

Power-up link check
Precision interval clock
Private segment table
Privileged instructions

Privileged operating state
Privileged tasks

extended SVC 7 function
codes

types of
Privileged u-tasks

Program status word

Pseudo device
use of generic naming

Pseudo task
use of generic naming

PST. See private segment
table.

Pure segment

R

RDB. See request descriptor
block.

Ready queue

Real-time performance
timer macros

IND-4

1-16
1-9
1-1
1-13
1-13
1-10
1-2
1-17
1-1
1-4
1-3
3-1
5-1
A-1
1-16
1-5
1-10
1-1

5-8
5-8
5-8
5-8

3-44
1-11
3-14
2-1
2-6
2-1
2-1
2-1

3-20
2-1
2-1
2-6
3-20
3-28
1-7
3-50

4-9

4-9

1-14

1-6
1-8
1-9

6-14

Receive queue

Reliance
Relocation/protection

hardware

programming of
Request descriptor block

buffers

fields
Response byte

bit definitions

Roll function
Roll-in queue

RSCH instruction
RTSM
Run priority

s

SCL. See segment control
list.

Segment control list
Shared memory
Software density selection

SPT. See system pointer
table.

Standard 1/0
parity error
record gap
supported record lengths

Supervisor call interception
caller mode
creating intercept paths
error handling
functional summary
macros
operation of

recipient existent mode

recipient nonexistent
mode

rollable tasks
sample programs

task preparation for
termination of

Supervisor calls. See SVC.
SVC
SVC 0
SVC 1

interception

1-8
1-9
1-2

1-14
2-6
2-6
2-2
4-36
4-4
4-6
4-14
4-5
3-50
3-51
3-52
1-1
1-6
1-8
1-9
6-11
1-11
1-5
1-7

1-10
1-10
1-12

5-10
5-10
5-10

4-8
4-8
4-14
4-10
4-1
4-3
4-4
4-8
4-10

4-8
4-9
4-10
4-11
4-36
4-38
4-4
4-13
4-14

3-1
3-3
6-9
4-2
4-10

48-040 FOO R04

SVC 13
APU rescheduling
control sequence
error status codes

example of

function codes
mapping functions
task scheduling
use of

SVC 13 code 0
coding
data buff er format
parameter block

SVC 13 code 1

coding
data buff er format
parameter block

SVC 13 code 2
coding
option coding sequences
options
parameter block

SVC 13 code 3

coding
control options

option coding sequences
parameter block

SVC 14
SVC 2 code O

coding
functional details
parameter block

SVC 2 code 14
coding for option 0
coding for option 1
example
parameter block for
option 0

parameter block for
option 1

progranuning
considerations

status codes
SVC 2 code 23

SVC 2 code 26
coding
condition codes
example
parameter block

SVC 2 code 27
coding
condition codes
option codes
parameter block

48-040 FOO R02

6-6
6-10
3-54
3-55
3-56
6-5
6-10
3-31
6-4
6-4
3-57
3-58
3-59

3-32
3-34
3-32
3-34
3-50
3-35
3-37
3-35
3-41
3-42
3-57
3-42
3-42
3-44
3-50
6-9
6-11
3-45
3-45
3-47
3-48
3-57
3-45
1-17

3-4
3-5
3-4

3-7
3-9
3-11

3-6

3-8

3-10
3-10
6-9
6-11

3-12
3-13
3-13
3-12

3-14
3-16
3-15
3-14

SVC 2 code 7
interception

SVC 3
interception

SVC 6
example of

interception

loading a task
suspend task

SVC 6 system task release
coding
parameter block

SVC 7
interception

SVC 7 bare disk assignment
coding
parameter block

SVC 7 code 0
coding
parameter block

SVC 7 code X'FF80'
coding
parameter block

SVC 7 device rename
coding
parameter block

SVC 7 device reprotect
coding
parameter block

System deadlock
avoiding

System initialization
subsystem

System journal
System memory
System pointer table
System task
System time-slice

T

Tape cassette
ASCII operations
binary operations
continuous mode
operations

image operations
supported record lengths

Task
dynamic scheduling
execution state
impure segment
priority levels
pure segment
user execution state

Task common
Task control block

Task event trap
handler

6-9
4-2
4-11

4-2
4-11

6-3
6-12
4-2
4-11
6-2
6-12
3-17
3-18
3-18

4-2
4-11
3-20
3-21
3-21

3-23
3-23
3-28
3-29
3-29

3-25
3-25
3-26
3-27
3-27

6-13

1-16
3-4
1-10
2-2
3-17
1-6

5-9
5-9

5-9
5-9
5-9

1-5
1-7
1-14
1-5
1-14
1-8
1-14
1-5
1-8
4-4
4-8

IND-5

Task event trap (Continued)
register saving

Task image

Task management
Task priority
Task priority levels

dispatch
maximum
run

task
Task queue trap
Task rescheduling

connecting the APU,
example of

connecting the APU,
parameters

GSIG instruction
monitoring and preempting
RSCH instruction
task queue, example of
transferring a task
trap handling
verifying task transfer

Task segment table
Task status word

CPU override status bit
Task transfer

example of
from APU to CPU

Task traps

TCB. See task control block.
Teletype keyboard/printer

ASCII operations
image operations
supported record lengths

Teletype reader/punch
ASCII operations

binary operations

image operations
supported record lengths

Test and set
example of

Time of day queue
Time-slicing

types of
Timer macros

CRTIMERS
example of
GETIME

IND-6

4-8
1-13
1-14
1-5
1-5

1-5
1-5
1-5
1-7
1-5
4-12

6-7

6-8
6-11
6-6
6-11
6-7
6-12
6-6
6-11
1-14
4-8
1-8

6-12
6-12
1-7
1-13
1-17

5-7
5-8
5-7

5-6
5-7
5-6
5-7
5-7
5-6
6-13
6-14
1-11

1-6

6-14
6-15
6-14

Timer macros (Continued)
READTCNT
RESETIME
STRTIME

Timer management subsystem
Timer queues
TMQ. See timer queues
TSW. See task status word.
TTY. See teletype.

u

U-tasks

non-privileged
priviledged

Universal clock
User supervisor call

subsystem
User tasks. See u-tasks.

v

VDU. See video display unit.
Verifying task transfer to

an APU
example of

Vertical forms control
functions of
supported characters

theory of operating
VFC. See vertical forms
control.

Video display unit
ASCII operations
image operations
supported record lengths

Virtual task manager
Volume mnemonic table
VTM. See virtual task

manager.

w-z

WCS. See writable control
store.

Writable control store

8-line interrupt module

6-14
6-14
6-14
1-11
1-11

2-1
5-11
5-12
2-5
2-5
1-11

1-17

6-11

5-1
5-1
B-1
5-2

5-12
5-13
5-12
1-1
3-12

3-35

5-13

48-040 FOO R02

w
z
~
C)
z
0
_J
<(,_
::>
(.)

PUBLICATION COMMENT FORM

Please use this postage-paid form to make any comments. suggestions. criticisms, etc. concerninf'.
this publication.

Title----------------- Publication Title ------------

Company _______________ Publication Number -----------

Address ----------------

FOLD FOLD

Check the appropriate item.

D Error Page No. Drawing No.---------

D Addition Page No. Drawing No. ________ _

D Other Page No. Drawing No. ---------

Explanation:

FOLD FOLD

Fold and Staple
No postage necessary if mailed in U.S.A.

6434

S1 AP Lt STAPLE

FOLD FOL~

-----------------------------~~

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

POSTAGE WILL BE PAID BY ADDRESSEE

PERKIN-ELMER
Computer Systems Division

2 Crescent Place
Oceanµort, NJ 07757

TECH PUBLICATIONS DEPT. MS 322A

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

1

l
I
I
I
I
I
I
I
I
I
I
1

I
I ---------------------------- _.__

FOLO I FOLD

STAPLE

I
I
I
I
I
I
I
I
I
I
I
I

STAPLE . ,

I 643

PERKIN-ELMER
Technical Systems Division

D 0 C U M E N T A T I 0 N C H A N G E N 0 T I C E

The purpose of this documentation change notice (OCN) is to
provide a quick and efficient way of making technical ·changes to
technical manuals before they are formally updated or revised.

The manual affected by these changes is:

~8.-.040 .FOO .B.02 O.S/.3.2 S¥s.t.em LeY.el .Progr.ammer . .Ref.er.ence Manual

• Page 3-38

Under APU software status, replace the statement, "status
after the last power fail", to "previous status".

• Page 3-38

•

•

Add the following paragraph to APU software status:

The "previous status" would be returned i.n the caller's
buffer when the following occurs:

• Global power failure

• Local APU power failure

• APU hardware failure

• RTSM link failure

Page 3-38

In Figure 3 ·-16, replace "Last power failure status" with
"previous status".

Page 3-39

In Table 3--4 replace "Last powe·r failure status" with
"previous status".

48-040 FOO R02A 1

