
PERKIN-ELMER 

OS/32 

APPLICATION LEVEL PROGRAMMER 

Reference Manual 

48-039 FOO R01 



The information in this document is subject to change without notice and should not be 
construed as a commitment by the Perkin-Elmer Corporation. The Perkin-Elmer Corpo­
ration assumes no responsibility for any errors that may appear in this document. 

The software described in this document is furnished under a license, and it can be used or 
copied only in a manner permitted by that license. Any copy of the described software 
must include the Perkin-Elmer copyright notice. Title to and ownership of the described 
software and any copies thereof shall remain in The Perkin-Elmer Corporation. 

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its 
software on equipment that is not supplied by Perkin-Elmer. 

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757 

® 1981, 1983 by The Perkin-Elmer Corporation 

Printed In the United States of America 



TABLE OF CONTENTS 

PREFACE 

CHAPTERS 

1 PROGRAMMING IN AN OS/32 ENVIRONMENT 

1.1 

1. 2 

1.3 

1.4 

OS/32 OPERATIONAL OVERVIEW 

OS/32 REAL-TIME ENVIRONMENT 

OS/32 MULTI-TERMINAL MONITOR (MTM) 
TIME-SHARING ENVIRONMENT 

THE OS/32 APPLICATION PROGRAMMER 

2 TASK STRUCTURE AND EXECUTION CONTROL 

2.1 

2.2 

2.3 

2.4 

2.5 
2.5.1 

2.6 

2.7 

INTRODUCTION 

IMAGE FILE FORMAT 

LOADING A USER-TASK (U-TASK) INTO MEMORY 

TASK STATES AND PRIORITIES 

MONITOR TASKS 
The OS/32 Multi-Terminal Monitor (MTM) 

RESTRICTIONS ON INTERTASK COMMUNICATION 

ACCESSING OS/32 SYSTEM SERVICES 

3 INTERRUPT SERVICING IN A REAL-TIME ENVIRONMENT 

3.1 

3.2 

3.3 

INTRODUCTION 

TASK STATUS WORD (TSW) 

TRAPS HANDLED BY OS/32 

48-039 FOO ROl 

v 

1-1 

1-3 

1-4 

1-5 

2·-1 

2-2 

2-5 

2-9 

2-13 
2-13 

2-14 

2-14 

3-1 

3-2 

3-5 

i 



CHAPTERS (Continued) 

3.4 
3.4.1 
3.4.2 

3.5 

3.6 
3.6.1 
3.6.2 
3.6.3 
3.6.4 
3.6.5 

3.6.6 
3.6.7 

TRAPS HANDLED BY USER-WRITTEN TASKS 
Task Queue Trap-Causing Events 
User-Defined Trap-Causing Events 

THE TASK STATUS WORD (TSW) SWAP 

WRITING TASKS THAT HANDLE TASK TRAPS 
Handling Task Queue Traps 
Tips for Writing Task Trap Handling Routines 
Handling Traps from Trap-Generating Devices 
Sample Task Trap Handling Program 
Using the OS/32 System Macro Library to 
Handle Traps 
Writing FORTRAN Trap Handling Programs 
Writing Pascal Trap Handling Programs 

4 OS/32 DISK FILE MANAGEMENT SERVICES 

4.1 

4.2 

4.3 
4.3.1 
4.3.2 

4.4 
4.4.1 
4.4.2 
4.4.3 

4.5 
4.5.1 
4.5.2 
4.5.3 

4.6 

4.7 
4.7.1 
4.7.2 
4.7.2.1 
4.7.2.2 
4.7.2.3 

4.8 

INTRODUCTION TO THE OS/32 FILE MANAGER 

SYSTEM RESOURCE MANAGEMENT 

FILE ORGANIZATION 
Linked-List Indexed Organization 
Contiguous Organization 

SUPPORTED DISK FILE TYPES 
Contiguous Files 
Indexed and Nonbuffered Indexed Files 
Extendable Contiguous Files 

DISK SPACE MANAGEMENT 
File Directories 
Bit Map 
Permanent and Temporary File Allocation 

ASSIGNING FILES TO A TASK 

ACCESS METHODS 
Buffered Input/Output (I/0) (Indexed Files) 
Nonbuffered Input/Output (I/O) 
Accessing Contiguous Files 
Accessing Nonbuffered Indexed Files 
Accessing Extendable Contiguous Files 

FILE SECURITY 

3-8 
3-8 
3-12 

3-12 

3-18 
3-22 
3-23 
3-24 
3-25 

3-27 
3-27 
3-28 

4-1 

4-2 

4-3 
4-5 
4-6 

4-6 
4-7 
4-7 
4-7 

4-8 
4-9 
4-12 
4-13 

4-13 

4-14 
4-16 
4-16 
4-17 
4-17 
4-17 

4-18 

ii 48-039 FOO ROl 



CHAPTERS (Continued) 

4.9 
4.9.1 
4.9.2 
4.9.3 
4.9.4 
4.9.5 

CHOOSING THE RIGH'r FILE TYPE 
Using Contiguous Files 
Using Indexed Files 
Using Nonbuffered Indexed Files 
Using Extendable Contiguous Files 
Disk Fragmentation 

5 WRITING PROGRAMS THAT ACCESS OS/32 SYSTEM SERVICES 

5.1 

5.2 

5.2.1 
5.2.2 

5.3 

5.4 

5.5 

FIGURES 

1-1 

2-1 

2-2 
2-3 
2-4 
2-5 
2-6 

3-1 
3-2 
3-3 

3-4 
3-5 
3-6 

INTRODUCTION 

BUILDING A SUPERVISOR CALL (SVC) PARAMETER 
BLOCK 
Accessing Input/Output (I/O) System Services 
Accessing File Management Services 

USING THE OS/32 SYSTEM MACRO LIBRARY TO 
ACCESS SYSTEM SERVICES 

WRITING A FORTRAN PROGRAM THAT ACCESSES 
SYSTEM SERVICES 

WRITING A PASCAL PROGRAM THAT ACCESSES 
SYSTEM SERVICES 

Summary of OS/32 Features 

Conversion of Object Modules into Task Image 
by Linkage Editor 
Task Image File Format for a Segmented Task 
Task Address Space on a MAC Machine 
Task Address Space on a MAT Machine 
Segmented Task Loaded into Memory 
Task States 

Task Status Word 
Perkin-Elmer Standard Circular List 
Circular List with Task Queue Entries for Subtask 
State Change 
Task Queue Entry for APU Signal 
User-Dedicated Location 
Task Status Word Swap 

48-039 FOO ROl 

4-22 
4-22 
4-23 
4-23 
4-24 
4-24 

5-1 

5-2 
5-2 
5-5 

5-8 

5-9 

5-10 

1-2 

2-1 
2-3 
2-6 
2-7 
2-8 
2-12 

3-2 
3-8 

3-11 
3-12 
3-13 
3-15 

iii 



FIGURES (Continued) 

4-1 
4-2 
4-3 
4-4 
4-5 
4-6 
4-7 

5-1 
5-2 
5-3 
5-4 

TABLES 

2-1 

3-1 
3-2 
3-3 
3-4 
3-5 
3-6 

3-7 
3-8 

4-1 
4-2 
4-3 
4-4 

5-1 

INDEX 

iv 

Formatted Disk Surf ace 
Linked-List Indexed File Organization 
Volume Descriptor 
Primary Directory Block 
Primary Directory Entry 
Secondary File Directory (SYSTEM.DIR) 
Task Interfaces to Access Methods 

Task Interface to OS/32 Executor Routines 
SVC 1 Parameter Block Defined by $SVC 1 
SVC 7 Parameter Block Defined by $SVC 7 
SVC 2 Code 16 Parameter Block 

TASK WAIT STATES 

TSW BIT SETTINGS 
ARITHMETIC FAULT TRAP-CAUSING EVENTS 
MEMORY ACCESS FAULT TRAP-CAUSING EVENTS 
DATA FORMAT/ALIGNMENT FAULT TRAP-CAUSING EVENTS 
TASK QUEUE TRAP-CAUSING EVENTS 
SUBTASK REASON CODES AND CORRESPONDING STATE 
CHANGES 
UDL FIELDS USED TO HANDLE TASK TRAPS 
SUMMARY OF TASK STRUCTURES USED FOR HANDLING 
TRAPS 

ACCESS PRIVILEGE COMPATIBILITY 
ALLOWABLE ACCESS PRIVILEGE CHANGES 
READ/WRITE KEYS 
FILE TYPE SUMMARY 

SVC 1 FUNCTION CODES 

4-4 
4-5 
4-8 
4-9 
4-10 
4-12 
4-14 

5-2 
5-3 
5-6 
5-6 

2-10 

3-3 
3-6 
3-6 
3-7 
3-9 

3-11 
3-16 

3-20 

4-19 
4-20 
4-21 
4-22 

5-3 

Ind-1 

48-039 FOO ROl 



PREFACE 

This manual describes the facilities available to a programmer 
implementing an application in an OS/32 real-time or OS/32 
Multi-Terminal Monitor (MTM) environment. Chapter l introduces 
the fundamental environmental concepts of the system. Chapters 
2, 3, 4, and 5 give specific details of the data structures and 
programming methods used to access OS/32 system services. 
Included in these chapters are descriptions of task structure, 
trap handling, file management services and the OS/32 supervisor 
calls (SVCs). To aid programmers who prefer to work with high 
level languages, programming examples are given in FORTRAN VII 
and Pascal, as well as assembly language. Full details on the 
SVCs used in these examples can be found in the OS/32 Supervisor 
Call (SVC) Reference Manual. 

System programmers wishing to implement privileged software for 
writing system level control programs are referred to the OS/32 
System Level Programmer Reference Manual. 

This manual is intended for use with the OS/32 R06.2 release or 
higher. Additional material specifically related to the Model 
3200MPS System has also been included. These Model 3200MPS 
System features are supported by the OS/32 R07.l software and 
higher. Throughout the text, these features are identified as 
applicable only to the Model 3200MPS System. 

For further ·information on 
32-bit manuals, see the 
Summary. 

48-039 FOO ROl 

the contents of all 
32-Bit Systems User 

Perkin-Elmer 
Documentation 

v 





CHAPTER 1 
PROGRAMMING IN AN OS/32 ENVIRONMENT 

1.1 OS/32 OPERATIONAL OVERVIEW 

The Perkin-Elmer OS/32 operating system is designed to facilitate 
programming in a real-time environment. Whether a task is to 
collect data from a transducer, maintain inventory, or process 
seismic data, OS/32 provides software service routines that can 
save programming time and effort. These services include program 
execution scheduling, memory management, file management, fault 
handling, device-dependent and device-independent input/output 
(I/O) services, and intertask communication and control. 

How OS/32 actually implements these services depends on the 
environment within which a program is executed. OS/32 provides 
three types of operating environments for application programs: 

o real-time 

o time-sharing 

o transaction processing 

All three environments can exist simultaneously on the same 
Perkin-Elmer 32-bit processor. 

The OS/32 real-time operating environment is an event-driven, 
priority-based, multitasking environment within which the other 
operating environments exist as monitors. Monitors are 
specialized real-time systems that manipulate the real-time 
scheduling components of OS/32 to create an environment that 
employs higher level scheduling algorithms. OS/32 is augmented 
for time-sharing by the OS/32 Multi-Terminal Monitor (MTM). 
Transaction processing is provided by RELIANCE. Features of the 
OS/32 operating environments are summarized in Figure 1-1. 

This manual deals exclusively with the real-time and time-sharing 
environments. For more information on transaction processing, 
see the RELIANCE Overview Manual. 

48-039 FOO ROl 1-1 



1-2 

OS/32 HIGHUGHTS 

<RELIANCE> 

OS/32 terminal command language 
• OS/32 supervisor calls <SVCs> 
• OS/32 system macro llbrary 
e FORTRAN VII Aun-Time library <ATU 
• Pascal Prefix 

Capacity 
up to 65. 536 sharable user accounts 
up to 64 onllne users 
any mix of Interactive or batch 
programs 
dial-In user support 

Facllltles 
MTM terminal command language 
program development commands 
private. group. and system files 
document preparation aids 
system and user accounting 

• Any mix of languages 
FORTRAN VII 
COBOL 
Common Assembly Language <CAL/32> 
Pascal 
BASIC 
CORAL 66 
RPG 
Program preparation aids <EDIT. COPY> 
Program development aids <LINK. OS/32 
AIDS. DEBUG/32> 

• Capacity 
255 tasks <252 user-written tasks> 
255 priority levels 

Intertask communication and control 
facilities that allow a task to: 

send messages to other tasks 
load tasks with/without Intertask 
control facilities 
suspend execution of a task 
release a task from suspension 
change priority of another task 
start execution of a task Immediately 
or after a specified time period 
roll a task to disk after execution 

• Multiprocessor control facilities that 
allow a task to: · 

control auxiliary processors 
direct tasks to auxiliary processors 

Protection facllltles 
Internal fault management 
Intertask memory protection 
password-based security 

• Input and output spoollng 
• Virtual task manager <VTM> 

Provides virtual memory on memory 
address translator <MAT> processors 
supports multiple tasks up to 16Mb 
user-transparent 
designed for large FORTRAN tasks 
no Impact on other tasks In system 

Operates concurrently with time-sharing 
and/or real-time applications 
Data management 
Supports COBOL or FORTRAN programming 

Figure 1-1 Sununary of OS/32 Features 

48-039 FOO ROl 



1.2 OS/32 REAL-TIME ENVIRONMENT 

OS/32 real-time operations enhance the hardware facilities 
provided by a Perkin-Elmer computer. As a multitasking system, 
OS/32 can support up to 252 user-written programs executing 
concurrently. One of these programs can run as a background 
program while the others are ex:ecuting in the foreground. 

OS/32 uses a priority driven scheduling algorithm with up to 255 
priority levels to decide when and how long each program should 
execute. Priorities are scheduled so that transient events 
monitored by a real-time program are captured and evaluated 
quickly, and that all system peripherals are used effectively. 

OS/32 also includes a timer facility that can be used to control 
the start of a procedure or detect whether a procedure has 
overrun its course. Other control services allow a program to 
reassign the priority of itself or another executing program. 

When internal fault conditions (such as arithmetic overflow, 
power restore, or incorrect data formats) are detected by the 
processor, the currently executing program is suspended and 
control is returned to the operating system. OS/32 handles these 
traps through default system trap handling routines. Other 
services are provided, however, that allow application programs 
to provide customized trap handling routines for handling their 
own fault conditions. 

As the need to access larger programs and data bases increases, 
the greater the effect the memory addressing capability of a 
system will have on performance. The 32-bit architecture of 
OS/32 provides a memory addressing capability of up to 16Mb for 
each of the 255 programs running on the system. In addition, 
Link, the OS/32 linkage editor, supports the virtual task manager 
(VTM). VTM provides a user-transparent virtual memory capability 
on a task-by-task basis. This capability allows tasks consisting 
of up to 16Mb of code and data to execute in as little as 128kb 
of memory. See the OS/32 Link Reference Manual for more 
information on VTM. 

OS/32 provides both device dependent and device independent I/O 
services. By using device independent services to perform 1/0 
transfers, devices can be reconfigured without reprogramming the 
application. Device dependent 1/0 allows control of 
device-specific functions such as density select on magnetic 
tape, screen access on a block mode terminal, or 
connect/disconnect on a dial-up line. 

OS/32 also supports user-transparent queuing of 1/0 requests to 
files and devices. Each time an 1/0 transfer is completed, OS/32 
activates any outstanding eligible 1/0 requests before returning 
control to the executing program. 

48-039 FOO ROl 1-3 



In a real-time environment, central processing unit (CPU) idling 
can be critical. The spooling utilities available with OS/32 
help eliminate the CPU idling that can occur when writing to slow 
devices. When a spooler is used, all output is assigned to a 
pseudo device rather than an actual physical device. A spooler 
redirects this output to files on disk. Later, the spooler 
writes these files to the correct physical device on a priority 
basis. OS/32 provides two spoolers: SPL/32, a flexible, dynamic 
program designed to meet the high volume of printing required of 
the commercial user; and OS/32 Spooler, a smaller program for 
users with fewer printers and less memory. See the SPL/32 System 
Administration Reference Manual and OS/32 Multi-Terminal Monitor 
(MTM) Reference Manual for more information on spooling in an 
OS/32 environment. 

OS/32 file management services provide four different file types: 
indexed, nonbuffered indexed, contiguous, and extendable 
contiguous. Each file type is designed to meet the requirements 
of specific real-time situations. For example, nonbuffered 
indexed and extendable contiguous files are designed for 
applications that involve random I/O and require variable length 
files that can be extended without system buffering overhead. 
Applications which require a fixed-file length and no buffering 
overhead can use the contiguous file type. For applications that 
involve sequential 1/0 (such as compiling a program),.the indexed 
file type is preferred. 

In order to operate smoothly, a multitasking system should allow 
communication among executing programs. OS/32 provides a queue 
message service that gives each program its own private message 
queue consisting of a chain or ring of message buffers. Two 
types of message services are provided. One type passes 
fixed-length (64-byte) messages. The other type allows variable 
length messages with no limit on the message length other than 
the amount of memory available to the task. 

1.3 OS/32 MULTI-TERMINAL MONITOR (MTM) TIME-SHARING ENVIRONMENT 

OS/32 MTM adds another dimension to the OS/32 real-time 
facilities. This dimension is time-sharing. Under MTM, up to 64 
users can be simultaneously signed on to a Perkin-Elmer system in 
any combination of interactive or batch modes. To prevent one 
user from tying up the CPU to the exclusion of others signed on 
the system, MTM schedules processor time according to the jobs 
performed by the programs. Compute intensive jobs are given 
lower priority but longer time slices than I/O intensive jobs, 
which are given higher priority levels and shorter time slices. 

1-4 48-039 FOO ROl 



One of the main uses of the time-sharing environment is program 
development. MTM users can develop programs in Common Assembly 
Language (CAL/32), FORTRAN VII, Pascal, COBOL, BASIC, CORAL 66, 
or RPG. The MTM terminal command language allows users to 
develop their own command files for compiling, assembling, 
linking, and running a program. See the OS/32 Multi-Terminal 
Monitor (MTM) Reference Manual for more information on developing 
programs in an MTM environment~ 

To support a diverse community of users, Perkin-Elmer provides 
MTM users with the authorized user utility. This utility allows 
users to specify certain privileges for each of the 64K (65,536) 
accounts supported on the system. Once privileges have been 
specified for an account, all users signed on that account will 
be allowed to use those privileges. For information on what 
privileges can be assigned, see the OS/32 Multi-Terminal Monitor 
(MTM) System Planning and Operator Reference Manual. 

Because MTM operates as a monitor within the OS/32 real-time 
environment, MTM can serve as a low-priority background 
environment for real-time applications or the primary environment 
in the system. 

1.4 THE OS/32 APPLICATION PROGRAMMER 

An application programmer is responsible for writing programs 
that result in optimum system response and throughput for a 
particular application. By using the OS/32 software services 
described in this manual, the user can greatly reduce the 
programming effort needed to achieve greater performance. The 
following chapters describe the basic data structures that should 
be understood to use OS/32 system services effectively. 

48-039 FOO ROl 1-5 





CHAPTER 2 
TASK STRUCTURE AND EXECUTION CONTROL 

2.1 INTRODUCTION 

When a program is compiled or assembled, it is converted into 
object modules that are stored in one or more object files on 
disk. These object modules must be converted into an executable 
form before the program can be run. This executable form is 
called a task. 

As shown in Figure 2-1, the OS/32 linkage editor, Link, performs 
this conversion by creating an image of the task from the modules 
in the object files. Link stores the task image, with 
instructions for loading the task, into an image file on disk. 

5612 

OBJECT 
MODULE #1 

OBJECT 
MODULE #2 

• 
• 
• 

OBJECT 
MODULE #n 

LINKAGE 

EDITOR 

MAIN MEMORY 

TASK 
IMAGE 

OS/32 

LOADER 

Figure 2-1 Conversion of Object Modules into Task Image By 
Linkage Editor 

48-039 FOO ROl 2-1 



An application task can be linked as an executive-task (e-task), 
diagnostic task (d-task), or a user-task (u-task). E-tasks run 
with memory relocation/protection hardware turned off and are 
allowed to execute all instructions provided by the Perkin-Elmer 
processor hardware. D-tasks, like e-tasks, can execute all 
instructions; however, they run with the relocation/protection 
hardware enabled. U-tasks run with the relocation/protection 
hardware enabled and are restricted to a subset of machine 
instructions known as nonprivileged instructions. This manual 
pertains to nonprivileged u-tasks only. For more information on 
e-tasks, d-tasks, and privileged u-tasks, see the OS/32 Systems 
Level Programmer Reference Manual. 

The following sections describe the format of the image file for 
a u-task, how a u-task is actually loaded from this file into 
memory, and what happens to a task after it is loaded. These 
sections also ref er to a number of Link and OS/32 operator 
commands that are used by the programmer to develop programs. To 
learn more about the commands discussed in these sections, see 
the OS/32 Link Reference Manual or OS/32 Operator Reference 
Manual. 

2.2 IMAGE FILE FORMAT 

Figure 2-2 shows the format of an image file for a task. The 
first segment in the task image file is the loader information 
block (LIB). The LIB tells the OS/32 loader how to load the 
image into memory. While the task is loaded, the LIB is kept in 
the loader's private memory area, not in the task address space, 
until the loader no longer requires it. 

Following the LIB is the history records area. The history 
records are created by OS/32 PATCH. PATCH is a utility that 
allows the user to update a program by making changes to its 
image or object file instead of the source. Any changes made to 
the task or its LIB via PATCH, are recorded in the history 
records area. See the OS/32 PATCH Reference Manual for more 
information. 

The task image that is actually loaded into memory consists of at 
least one private image segment. The linkage editor creates the 
private image with read, write, and execute privileges following 
the LIB and any history records. The private image contains the 
impure code from the included object modules. Impure code is 
code that cannot be shared by other executing tasks. It can 
consist of the user program code, data that the user designates 
as impure, and common data areas such as those used by the 
FORTRAN COMMON statement to store variables. If NSEGMENTED is 
specified as a task option in the Link OPTION command when the 
task is built, the pure code is also included in the private 
image. Pure code can be read or executed by other tasks. 

2-2 48-039 FOO ROl 



5613 

• 
• 
• 

• 
• 
• 

• 
• 
• 

LOADER 
INFORMATION 
BLOCK (LIB) 

HISTORY 
RECORDS 

ROOT 

OVERLAYS 

OVERLAY DESCRIPTOR 
TABLE (ODT) 

SHARED 
IMAGE 

SYMBOLIC 
DEBUG 
DATA 

• 
• 
• 

• • 
• 

• 
• 
• 

~--------- RECORD 0 

) 

PRIVATE IMAGE 

I 

EOF 

Figure 2-2 Task Image File Format for a Segmented Task 

48-039 FOO ROl 2-3 



Each user who loads the task is provided with a copy of the 
private image. The first segment of the private image is known 
as the root segment. The root contains the primary task 
workspace, the impure code, the user-dedicated location (UDL), 
and, if the task is nonsegmented, the pure code. In addition, 
any absolute code found in the object modules is located in the 
root. 

Within the UDL is the task status word (TSW). Each task has an 
active TSW which defines the enabled state of task interrupts and 
task queue entries as well as the current program location. (See 
Chapter 3.) The TSW should not be confused with the program 
status word (PSW). The TSW is a convention of an OS/32 task, 
while the PSW is a convention of a processor. 

If a task is to use overlays; i.e., after the task is loaded, 
certain subroutines (overlays) are to remain in the image file 
and be fetched into the root as needed, they are formatted in the 
private image overlay area following the root. Link is 
instructed to construct overlays through the OVERLAY command. 

The overlay descriptor table (ODT) following the overlay area 
contains instructions that tell the loader when to load the 
overlays into memory. The ODT is loaded into the task control 
block (TCB) after the task is loaded. In a multitasking system, 
each loaded task is assigned a TCB in dynamic system space. All 
task status information is stored in the TCB during task 
execution. 

If the task is segmented, all pure code from the object modules 
is placed in the shared image segment of the image file. This 
area has only read and execute access privileges. When the first 
copy of the segmented task is loaded into memory, both a private 
and a shared image segment are created. If more than one user 
loads the task concurrently, each user is given a copy of the 
private image, but they all share the first copy of the shared 
image. Hence, only one copy of the shared image remains in 
memory during multiple simultaneous executions of the task. 

If the task is to be debugged using the Perkin-Elmer Symbolic 
Debugger (DEBUG/32), Link places task data required by the 
debugger following the shared image segment. This data remains 
in the image file during task execution so that it is always 
available for use by the debugger. 

A task may require access to subroutines or data areas in 
addition to those created by the programmer and contained in the 
task's object modules. OS/32 supports two types of external code 
and data. One type is an object module such as the FORTRAN or 
Pascal Run-Time Library (RTL). Routines in object libraries are 
included in a task's root segment or shared segment using the 
Link LIBRARY command. 

2-4 48-039 FOO ROl 



The other type of external code or data is called a partial 
image. A partial image may consist of code (e.g., an RTL 
routine) or data (e.g., a shared common block). Partial images 
are built by separate runs of the linkage editor, and each 
partial image exists in its own image file. A partial image is 
included in a task's address space by the Link RESOLVE command. 
In addition, an uninitialized shared common image can be created 
in memory either by the TCOM command at system generation 
(sysgen) or by the OS/32 operator TCOM command. 

2.3 LOADING A USER-TASK (U-TASK) INTO MEMORY 

In a multitasking system, u-tasks loaded into memory must be 
prevented from executing code in common data areas as well as any 
of the privileged instructions designated for the exclusive use 
of the operating system; e.g., input/output (I/O) and processor 
state change instructions. Likewise, a u-task needs protection 
from other tasks which might attempt to interfere with its 
execution. The relocation/protection hardware provides this 
protection. 

Perkin-Elmer processors use one of two types of 
relocation/protection hardware. The Models 7/32, 8/32, and 3220 
processors use the memory access controller (MAC); the Models 
3210, 3230, 3240, 3250 and 3200MPS processors use the memory 
address translator (MAT). 

When a u-task is loaded into memory, the relocation/protection 
hardware automatically allocates the first relative address in 
the task's root segment to the task's first physical address in 
memory. To the programmer, the task appears to be loaded at 
location 0 in memory. Actually, the MAC or MAT maps a range of 
task logical addresses intc> the available physical memory 
addresses. Thus, any program address referred to during program 
execution is translated and relocated to the correct physical 
address before memory is accessed. 

The range of addresses mapped for each task make up the u-task 
logical address space. Figures 2-3 and 2-4 show how the 
Perkin-Elmer relocation/protection hardware maps the u-task 
address space into segments~ As shown in Figure 2-3, each 
segment mapped by MAC starts on a 256-byte boundary. Up to a 
maximum of sixteen 64kb segments are allocated by MAC for each 
task, providing a maximum task address space of lMb. Each 
segment is further divided into 256 pages. A page is a set of 
256 contiguous one-byte locations beginning on an even 256-byte 
boundary. MAC locates the first address of each segment of the 
task on a 256-byte boundary; e~g., 00000, 10000, up to FOOOO. 

48-039 FOO ROl 2-5 



15 
s 1---------------------------------1 FOOOO 

14 I 
E :---------------------------------: 

13 I I 
G 

, _________________________________ , 
~ ~ 

M 
'°t' _________________________________ ~ 

4 
E 

3 
N ---------------------------------

2 
T ---------------------------------

1 
s ---------------------------------

0 

NOTE 

Each MAC segment consists of 256 256-byte 
pages or 64kb. 

Figure 2-3 Task Address Space on a MAC Machine 

lMb 

2-6 48-039 FOO ROl 



255 

s 254 

E 253 

G 252 

M 

E 4 

N 3 

T 2 

s l 

0 

--------------------------------- FFOOOl 

~ ----------------------------·-·-----~ 

~ ~ 

NOTE 

Each MAT segment consists of 32 2048-byte 
pages or 64kb. 

16Mb 

Figure 2-4 Task Address Space on a MAT Machine 

Figure 2-4 illustrates how MAT describes the u-task address 
space. On MAT machines, a maximum of 256 64kb segments or 16Mb 
are available for each u-task. Each segment is divided into 32 
2,048-byte pages. MAT locates the first address of each segment 
of the task on an even 2,048-byte boundary. 

As described in Section 2.2, a task may reference partial images 
resolved when the task is link-edited. Based on information 
recorded by Link in the LIB, the loader will ensure that the 
required partial images are in memory and automatically load any 
that are not. The partial images are then mapped into the 
appropriate ranges of the task's logical address space. 

If the image is formatted as a segmented task, the task is loaded 
into its address space as two distinct (possibly discontiguous) 
areas, private and shared, as shown in Figure 2-5. Every task 
has a private area. This area contains the private image code 
(root, UDL, plus any overlay areas required by the task). The 
relocation/protection hardware starts loading this code at the 
beginning of segment 0 in the task address space. 

48-039 FOO ROl 2-7 



5614 

SHARED SEGMENTS 

AREA RESERVED FOR 
TASK WORKSPACE 

CTOP 
- -- - - --- - - - - - -- - -~-- -1!111---1V1AXIMUM 

I 

UTOP .. 

UBOT 

ACTUAL 
TASK WORKSPACE 

USED 

OVERLAY n 

• • • 
OVERLAY 2 

OVERLAY 1 

ROOT 

UDL 

L __ 

Figure 2-5 Segmented Task Loaded into Memory 

ALLOCATED 
TO TASK 
BY LINK 

PRIVATE 
SEGMENT 

2-8 48-039 FOO ROl 



The relative task address of the first fullword of the private 
area is called UBOT. For u-tasks, UBOT is always 0. Starting at 
UBOT, the loader loads the UDL into the first 256 bytes of 
segment 0. Following the UDL ts the root node, which consists of 
segments that hold the user program code that cannot be shared by 
other tasks in the system& 

If a task is to be executed using overlays, segments mapped out 
for these overlays are placed sequentially above the root. Above 
the overlays, the loader reserves a workspace area for the task. 
For example, some tasks require workspace to build and store 
symbol tables during execution. The amount of workspace that is 
reserved for a task is determined by the workspace parameters 
given in the OPTION WORK command when the task is built. These 
parameters are UTOP and CTOP. UTOP is the address of the first 
byte of the task workspacei CTOP is the address of the last 
addressable halfword in the task workspace. To override CTOP, 
specify a larger workspace area in the operator LOAD command when 
the task is loaded. 

The pure code of a segmented task is loaded into the segments 
directly above the reserved task workspace. As noted in Section 
2.2, if two or more users load the task concurrently, the copy of 
the shared segment loaded into memory for the first task is 
mapped into the logical address space of each of the later tasks. 
For each task to receive its own copy of the pure code from the 
image file, the task should be link-edited with the NSEGMENTED 
task option enabled. This option causes the pure code to be 
loaded in the root. 

2.4 TASK STATES AND PRIORITIES 

In a multitasking system, the task scheduler 
scheduling algorithm that determines which loaded 
executed next. Tasks are scheduled according to 
priority assigned to thema The OS/32 task 
accommodate 255 levels of task priorities ranging 
255, with priority 1 being the highest. Several 
at the same priority level. 

enforces the 
task should be 
the level of 
scheduler can 

from 1 through 
tasks can exist 

An executing task is said to be in the current state. Other 
tasks that have been started, but which are lower in priority 
than the executing task, are in the ready state. The task 
scheduler initiates execution of the highest priority ready task. 

If the executing task becomes suspended, (either by the operating 
system, the operator, or another task), the task is said to be in 
the wait state. For example, a task becomes suspended when it 
requests a service from the operating system, such as an 1/0 
transfer or get the time of day. This task remains in a wait 
state until the operation is completed, at which time the task 
enters the ready state. Table 2-1 lists the conditions under 
which a task can become suspended. 

48-039 FOO ROl 2-9 



2-10 

TABLE 2-1 TASK WAIT STATES 

WAIT STATE MEANING 
============-----=-=======---------------------==-======= 

1/0 wait 

Connection wait 

Timer wait 

Trap wait 

Load wait 

Task wait 

Roll wait 

Terminal wait 

1/0 block wait 

Accounting wait 

Intercept wait 

Console wait 

Dormant wait 

Wait for an 1/0 operation to complete 

Wait for a system resource 

Wait for an interval to elapse or for 
a particular time of day to occur 

Wait for a task handled trap to occur 

Wait for a requested load operation 
to complete 

Wait to be continued by another task 

Wait to be rolled out 

Wait for 1/0 
terminal device 
tasks only) 

to complete to a 
(applies to terminal 

Wait for an 1/0 
when task reaches 
block limit 

block to be freed 
its I/0 control 

Counters overflowed; task waiting for 
accounting facility to collect 
accounting data and remove wait 

Wait for a supervisor call (SVC) to 
be executed 

Wait for system operator, user, or 
another task to instruct an inter­
rupted task to continue execution 

Wait for system operator, user, or 
another task to initiate a task. 
After a task is loaded, it enters the 
dormant state and remains there un­
til execution is initiated. When a 
resident task goes to end of task, it 
reenters the dormant state. 

48-039 FOO ROl 



A special wait state is the dormant state. When a task is 
loaded, it is initially in the dormant state. When a task is 
started (either by the OS/32 START command or another task), the 
task is removed from the dormant state and placed in the ready 
state. Once a task has been started, it can only become dormant 
again if it is a resident task; i.e., the task remains in memory 
after it reaches end of task. Because it enters the dormant 
state after execution, a resident task can be made ready through 
the OS/32 START command. 

Nonresident tasks cannot reenter the dormant state after 
execution because they are removed from memory at end of task. 
Hence, nonresident tasks must always be loaded and placed in the 
dormant state before they can be started. A task can be made 
resident or nonresident by specifying these task options in the 
OPTION command when the task is built. 

Nonresident tasks can enter the rolled state. A task becomes 
rolled when the task scheduler writes the task's private image 
segments to disk to make room for a higher priority task. A 
rolled task enters the ready state as soon as it becomes the 
highest priority rolled task and sufficient memory is available 
to accommodate it. 

OS/32 control of task states during and after task execution is 
illustrated in Figure 2-6a 

48-039 FOO ROl 2-11 



5615 

~---~ 
UJ 
0: 

z 
0 

LOAD 

,, 
z1--~~~~~~~~~~~--t ..... --- DORMANT 

_J 

M UJ u 
uz 
> <! 
CJ) u 

RESIDENT 

1/0 WAIT REQUEST 

TERMINAL 
TASK 
TRAP 
LOAD 

TIME 

--
CURRENT 

--
-----~~..---PAUSE 

A) OS 
B) TASK 
C) OPERATOR 

ROLL-OUT -. 

---
~--. - WAIT ... --... -. 

TIME SLICING 

HIGHEST PRIORITY 

1 ROLLED 
~(DOES NOT APPLY 

TP RESIDENT TASKS) 

' 

START 

1/0 
COMPLETES, 

ETC. 

READY 

CONTINUE ~~ 
(OR CANCEL) 

ROLL-IN 

Figure 2-6 Task States 

2-12 48-039 FOO ROl 



2.5 MONITOR TASKS 

In addition to the OS/32 task scheduler, execution of a task can 
be controlled by another task called a monitor. Tasks that are 
placed under monitor control are called subtasks. A monitor 
creates the operating environment within which its subtasks are 
executed. For example, a monitor can: 

• load, start, cancel or suspend any of its subtasks, 

• override the task options that had been set when the subtasks 
were linked, or 

• make logical unit (lu) assignments for any of its subtasks. 

A task can become a monitor by issuing a call (SVC 6) to an OS/32 
executor routine that allows a task to conununicate with and 
control another task. The number of subtasks that can be 
assigned to a single monitor is unlimited (within the 252 
user-written tasks supported). 

The OS/32 routine called by SVC 6 causes the operating system to 
keep the monitor informed of the status of its subtasks; e.g., 
when the subtasks have been started, suspended, released, rolled 
out, etc. When a monitor goes to end of task, all of its 
subtasks are forced to end of task. 

2.5.1 The OS/32 Multi-Terminal Monitor (MTM) 

All tasks loaded and started in an OS/32 time-sharing environment 
execute as subtasks of MTM. MTM subtasks run at a maximum 
priority of at least one less than the priority of MTM. 

Both interactive and batch processing are supported by MTM. Up 
to 64 interactive tasks can be executed concurrently, one from 
each MTM terminal. The number of batch jobs that can execute 
concurrently is determined by the operator during MTM system 
start-up and is a maximum of 64: minus the number of interactive 
terminals. Any batch jobs submitted above this number are queued 
by MTM. See the OS/32 Multi-Terminal Monitor (MTM) Reference 
Manual for more information on MTM. 

48-039 FOO ROl 2-13 



2.6 RESTRICTIONS ON INTERTASK COMMUNICATION 

OS/32 places some restrictions on which tasks can communicate 
with one another by assigning a group ID to each task. Normally, 
a task can communicate only with tasks within its assigned group. 

Group IDs are assigned according to the operating environment 
under which a task is loaded. Tasks loaded into an OS/32 
real-time environment are divided into two groups: foreground 
and background. A monitor and its subtasks are assigned to their 
own group. System tasks (e.g., the console monitor, the command 
processor, MTM and the Spooler) are in a separate group called 
the systems group. 

To communicate with tasks outside its group, a foreground task 
should be link-edited with the UNIVERSAL task option enabled. 
OS/32 defines a background task as nonuniversal to prevent it 
from communicating with tasks outside its group. 

A task monitor determines whether any of its subtasks can 
communicate outside the monitor's group. For example, all MTM 
subtasks are loaded with the communication task options specified 
for their accounts via the authorized user file (AUF), regardless 
of the task options chosen when the subtasks were built. See the 
OS/32 Multi-Terminal Monitor (MTM) System Planning and 
Configuration Guide for information on MTM sysgen options and the 
specification of options for MTM accounts. 

2.7 ACCESSING OS/32 SYSTEM SERVICES 

A u-task can access all of the nonprivileged system services that 
are available through OS/32. Tasks communicate with the 
operating system through structures that the task builds within 
its task address space. OS/32 uses the information stored in 
these structures to perform the services requested by the task. 

One structure that is of particular importance in a real-time 
environment is the UDL. Chapter 3 examines the UDL and its use 
in handling program interrupts. 

2-14 48-039 FOO ROl 



CHAPTER 3 
INTERRUPT SERVICING IN A REAL-TIME ENVIRONMENT 

3.1 INTRODUCTION 

Real-time application systems are often designed to interrupt 
task execution when certain events occur. For example, if 
program output would be invalidated when execution of an 
instruction causes a floating point overflow condition, the 
programmer would want to know if such an event occurred. 
Otherwise, the programmer could not be certain that the results 
of the program were valid. The mechanism that informs the task 
that such an event has occurred is called a task trap. 

Traps suspend task execution at the location following the 
instruction that was executing when a trap-causing event 
occurred. Execution then conti.nues in the routine that will 
handle the trap. The location counter (LOC) at the time of the 
trap is saved in the user-dedicated location (UDL) so that the 
interrupted execution can be resumed. In the preceding example, 
the program might continue in a trap handling routine that 
outputs a message giving the location of the instruction that 
caused the event. The routine might then suspend task execution 
until the task is either continued or cancelled by the operator. 

Task execution can be continued only if the state of the task 
(accumulators, carry, current hardware interrupt mask, program 
counter, etc.) was saved by the operating system after the trap 
occurred. The task structure that contains the information to be 
saved by the operating system is the task status word (TSW). 

48-039 FOO ROl 3-1 



3.2 TASK STATUS WORD (TSW) 

The structure of the TSW is shown in Figure 3-1. 

5616-1 

BITS 0 1 2 3 4 5 6 7 8 14 15 16 17 18 19 20 21 22 23 24 26 27 28 31 

~ LOC 

BITS 32 43 44 63 

Figure 3-1 Task Status Word 

8 bytes aligned on 
TSW are used to 

conditions. For 

As shown in Figure 3-1, the TSW occupies 
fullword boundaries. The first 28 bits of the 
enable or disable task traps for certain 
example, if bit 2 is set, a task trap will occur 
of an instruction results in an arithmetic fault. 

when execution 

The current condition code of the task is saved in the area 
comprised of bits 28 through 33. The program location counter 
(LOC) is contained in the area following bit 43. All TSW bit 
settings and their corresponding effects on task execution are 
listed in Table 3-1. 

When a task is link-edited, its TSW is initialized. A Link 
initialized TSW has all task traps disabled and the task's 
starting address in the LOC field. The user can change the TSW 
default values initialized by Link by specifying the desired bit 
settings in the Link OPTION TSW conunand. See the OS/32 LINK 
Reference Manual for more information on this command. 

The initialized TSW is placed in the task control block (TCB) 
when the task is loaded into memory. If all the task trap bits 
have been disabled, all trap-causing events will be handled by 
system default trap handlers. 

3-2 48-039 FOO RO! 



BIT I 
POSITION I 

MASK 
NAME 

TABLE 3-1 TSW BIT SETTINGS 

BIT NAME EFFECT ON TASK 
===========•===•=•••••••••••••~=s•£•=======•====•z==•======~==== 

O(W) 

l(P) 

2 (A) 

3(S) 

4(Q) 

5 (M) 

6(I) 

7(R) 

8-14 

lS(K) 

16 (D) 

I TSW.WTM I Trap Wait I Suspends execution until 
I a trap occurs. 

TSW.PWRM I Enable Power I Notifies task when power 
I Restore Trap I is restored after a 
I I power failure. 

TSW.AFM I Enable I Notifies task when an 
I Arithmetic 
I Fault T·rap 

I arithmetic fault occurs. 

I TSW.Sl4M I Enable I Notifies task when an 
I SVC 14 is issued. I SVC 14 Trap 

TSW. TSKM I Enable 1rask I Notifies task when an 

TSW.MAFM 

TSW. I ITM 

I· TSW.DFFM 
I 

TSW.SUQM 

TSW.DIQM 

I Queue I item is placed on the 
I Service Trap I task queue. 

Enable 
Memory 
Access Fault 
Trap 

Enable 
Illegal 
Instruction 
Trap 

Enable Data/ 
Alignment 
Fault Trap 

I Reserved 

Queue Entry 
on Subtask 
Change 

Queue Entry 
on Device 
Interrupt 

Notifies task when it 
attempts to access 
memory outside its task 
address space. 

Notifies task when it 
attempts to execute 
an illegal instruction. 

Notifies task when it 
attempts to execute an 
instruction that causes 
a data format or 
alignment fault. 

Notifies task of subtask 
state change by adding a 
3-fullword entry to task 
queue. 

Notifies task of a de­
vice interrupt by adding 
a fullword entry to the 
task queue. 

48-039 FOO ROl 3-3 



BIT 
POSITION 

TABLE 3-1 TSW BIT SETTINGS (Continued) 

MASK 
NAME BIT NAME EFFECT ON TASK 

======----------------------------------------------------------17(T) TSW.TCM 

18 (AP) TSW.APTM 

19(E) TSW. PMM 

20(L) TSW.LODM 

21(0) TSW. IOM 

22(Z) TSW.TMCM 

23(F) TSW. ITM 

24-25 

3-4 

Queue Entry 
on Task Call 

Queue Entry 
on Signal 
from APU 

Queue Entry 
on Task 
Message 

Queue Entry 
on Load 
Proceed 

Queue Entry 
on I/O 
Completion 

Queue Entry 
on Time-Out 
Completion 

Queue Entry 
on Data 
Communica­
tions 
Functions 

Queue Entry 
on SVC 1 
Buffer 
Transfer 
Completion 

I Reserved 

Notifies task of an SVC 
6 queue parameter call 
by adding a fullword 
entry to the task queue. 

Notifies task of an APU 
signal to the CPU by 
adding a fullword entry 
to the task queue. 

Notifies task that a 
message has been sent to 
it by adding a fullword 
entry to the task queue. 

Notifies task that its 
subtask has been loaded 
by adding a fullword 
entry to the task queue. 

Notifies task that an 
SVC 1 I/O operation has 
completed by adding a 
fullword entry to the 
task queue. 

Notifies task that a 
specified time interval 
has elapsed by adding a 
fullword entry to the 
task queue. 

Notifies task that an 
SVC 15 operation has 
been completed by adding 
a fullword entry to the 
task queue. 

Notifies task that 
magnetic tape driver 
has added a buffer to 
the OUT-QUEUE by adding 
a fullword entry to the 
task queue. 

48-039 FOO ROl 



BIT 
POSITION 

TABLE 3-1 TSW BIT SETTINGS (Continued) 

MASK 
NAME BIT NAME EFFECT ON TASK 

-====-------==================·=---------------================= 
26(TE) TSW.TESM 

27(SD) TSW.SDM 

28-3l(CC) I 

32-40 

Enable Task 
Queue Event 
Service 

Enable Queue 
Entry on 
Send Data 
Call 

I Condition 
I Code 

I Reserved 

41-63(LOC)I TSW.LOC I Location 
I counter 

3.3 TRAPS HANDLED BY OS/32 

Notifies task of an 
event through a task 
event trap. See OS/32 
System Level Programmer 
Reference Manual. 

Notifies task that a 
message is being sent to 
it by adding a fullword 
entry to task queue. 

I Address where task is to 
I begin executing. 

Internal trap-causing events detected by the processor hardware 
are called faults. Five types of faults can be detected by the 
processor: 

• Power restoration after power failure 

• Arithmetic faults (see Table 3-2) 

• Memory access faults {see Table 3-3) 

• Illegal instruction faults 

• Data format/alignment faults {see Table 3-4) 

48-039 FOO ROl 3-5 



When a fault is detected by the processor, the currently 
executing task is suspended and control is given to the 
approprate default system trap handling routine. After power 
restoration, the trap handling routine suspends task execution 
until the task is continued or cancelled by the operator. When 
an arithmetic, memory access, illegal instruction or data 
format/alignment fault occurs, the trap handling routine 
generates a reason code that identifies the fault. This reason 
code is output to the console and task execution is suspended. 
Tables 3-2, 3-3, and 3-4 list the reason codes identifying each 
type of fault. 

3-6 

TABLE 3-2 ARITHMETIC FAULT TRAP-CAUSING 
EVENTS 

EVENT 
I REASON 

CODE 
=============----------------=========-----
Fixed point zero divide 
Fixed point quotient overflow 
Floating point zero divide I 
Floating point exponent underf lowl 
Floating point exponent overflow I 

X'OO' 
X' 01' 
X'02' 
X'03' 
X'04' 

TABLE 3-3 MEMORY ACCESS FAULT TRAP-CAUSING EVENTS 

I 
I 

PROCESSOR I EVENT 
I REASON 

CODE 
===========================---========================== 

3220 SVC address error 
Execute protect violation 
Write/interrupt protect violation 
Reserved 
Write protect violation 
Reserved 
Reserved 
Reserved 
Segment number not present 
Reserved 
Program address is greater than 

segment limit fault (SLF) 

X'OO' 
X' 01' 
X'02' 
X'03' 
X'04' 
x' 05' 
X'06' 
X'07' 
X'08' 
X'09' 

X' OA' 

48-039 FOO ROl 



TABLE 3-3 MEMORY ACCESS FAULT TRAP-CAUSING EVENTS 
(Continued) 

I 
PROCESSOR I EVENT 

I REASON 
CODE 

===========------=-======·=----------=···==•=========·== 
3210 
3230 
3240 
3250 
3200MPS 

Reserved 
Execute protect violation 
Write protect violation 
Read protect violation 
Access level fault 
Segment limit fault 
Nonpresent segment fault 
Shared segment table (SST) size 

exceeded 
Private segment table (PST) size 

exceeded 

TABLE 3-4 DATA FORMAT/ALIGNMENT FAULT 
TRAP-CAUSING EVENTS 

Reserved 
Reserved 

EVENT' 

Invalid sign digit, packed data 
Invalid data digit, packed data 
Reserved 
Reserved 
Fullword alignment fault 
Halfword alignment fault 

I REASON 
CODE 

X'OO' 
X' 01' 
X' 02' 
X'03' 
X'04' 
X'05' 
X'06' 
X'07' 

48-039 FOO ROl 

X'OO' 
X' 01' 
X'02' 
X'03' 
X'04' 
X'OS' 
X'06' 

X'07' 

X'08' 

3-7 



3.4 TRAPS HANDLED BY USER-WRITTEN TASKS 

Before a task can handle a trap, the task must replace the 
link-initialized TSW in the TCB with a TSW in which the 
appropriate trap bits are set. Depending on which trap bits are 
enabled, a task can handle traps caused by the following events: 

• arithmetic faults 

• data format/alignment faults 

• power restoration 

• illegal instruction faults 

• memory access faults 

• events that add entries to the task queue 

• user-defined trap-causing events 

If the trap bit for one of the internal fault conditions is 
enabled, execution control is transferred to the user-written 
trap handling routine when that internal fault condition occurs. 
If the internal fault trap bit is disabled, execution control is 
transferred to the OS/32 trap handling routine as explained in 
Section 3.3. A trap caused by an event that adds items to the 
task queue is handled by a task queue trap. User-defined 
trap-causing events are handled by an SVC 14 task trap. 

3.4.1 Task Queue Trap-Causing Events 

A task queue is in the form 0£ a standard Perkin-Elmer circular 
list as shown in Figure 3-2. 

5617 

0 15 16 31 

NUMBER OF SLOTS NUMBER OF SLOTS USED 

CURRENT TOP NEXT BOTTOM 

SLOT 0 

SLOT 1 

~ ,.i.-

T SLOT n T 
Figure 3-2 Perkin-Elmer Standard Circular List 

3-8 48-039 FOO ROl 



The first four halfwords of the circular list make up the list 
header that contains the list parameters. lnunediately following 
the header is the list itself. The first fullword in the list is 
designated slot 0. The remaining slots are numbered sequentially 
from 1 up to a maximum of X'FFFE'. Hence, a task queue can 
contain a maximum of 65,535 fullword slots. 

When a task queue trap occurs, entries are added to the bottom of 
the list, ending with slot 0. The user-supplied task queue trap 
handling routine should always remove entries from the top of the 
queue. 

Table 3-5 lists the fullword entries added to the list by the 
task queue trap-causing events. 

TABLE 3-5 TASK QUEUE TRAP-CAUSING EVENTS 

I TASK QUEUE FULLWORD ENTRY 
1--------------------------------------
1 1-BYTE I 
I REASON I 3-BYTE 

EVENT CODE PARAMETER 
==============================s•================================= 
Device interrupt 

SVC 6 queue parameter 

SVC 6 send data 

APU signals CPU 

Message received 

Load proceed completion 

I/O proceed completion 

Timer completion 

SVC 15 conunand completion 

SVC 15 buffer completion 

SVC 1 buff er transfer 
completion 

48-039 FOO ROl 

X'OO' 

x' 01' 

X'04' 

X'05' 

X'06' 

X'07' 

X'08' 

X'09' 

X'OA' 

X'OB' 

X'OB' 

Associated with device 

Specified by the task that 
issued the SVC 6 

A(send data message 
buffer) 

APU number, status, and 
error code. See Figure 
3-4. 

A(message in ring) 

A(SVC 6 parameter block) 

A(SVC 1 parameter block) 

Time interval specified by 
the SVC 2 code 23 param­
eter block 

A(SVC 15 parameter block) 

A(SVC 15 parameter block) 

A(SVC 1 parameter block) 

3-9 



TABLE 3-5 TASK QUEUE TRAP-CAUSING EVENTS (Continued) 

EVENT 

I 
I TASK QUEUE FULLWORD ENTRY 
!--------------------------------------
! 1-BYTE 
I REASON 

CODE 
3-BYTE 
PARAMETER 

=============================·-====------------------------------
SVC 15 termination X'OC' A(SVC 15 parameter block) 

SVC 15 halt I/O X'OD' A(SVC 15 parameter block) 

ZDLC buffer input X'OE' A(UDR list) 

ZDLC buffer output X'OF' A(UDW list) 

ZDLC error condition X'lO' A( information block) 

ZDLC buff er error X' 11' A(UQR list) 

EMT 3270 unsolicited X'l8' 
host input 

EMT 3270 unrequested X'l9' 
disconnect 

EMT switched line X' lA' 
connect timeout 

NOTE 

For more information on the OS/32 
supervisor routines that initiate task 
queue trap-causing events, see the OS/32 
Supervisor Call (SVC) Manual. 

Task queue entries that are added to a monitor's task queue when 
its subtask experiences a state change are shown in Figure 3-3. 
Note that a subtask state change adds 3 fullword entries to the 
bottom of the queue. The first fullword consists of a 1-byte 
reason code (X'02'), a 1-byte subtask reason code (see Table 
3-6), and other subtask information items. The remaining 
fullword slots contain the name of the subtask. 

3-10 48-039 FOO ROl 



5618 

BYTES 
0 

NAME OF 

SUBTASK 

ADDITIONAL 
SUBTASK 

INFORMATION 

2 

SLOT 1 

SLOT 2 

SLOT 3 

SLOT 4 

SLOT 5 

3 

Figure 3-3 Circular List with Task Queue Entries 
for Subtask State Change 

TABLE 3-6 SUBTASK REASON CODES AND 
CORRESPONDING STATE CHANGES 

SUBTASK 
REASON 

CODE SUBTASK STATE CHANGE 
===================~======================== 

48-039 FOO ROl 

0 I End of task; bytes 2 and 3 are 
I binary end of task codes 

1 I Paused 

2 I Continued 

3 I Suspended 

4 I Released 

5 I Rolled out 

6 I Rolled in 

7 I Started by a task other than the 
I monitor 

8 I Accounting overflow (MTM only) 

3-11 



In a Model 3200MPS System, a task can receive a task queue trap 
from an auxiliary processing unit (APU). The task must first be 
connected to the APU through the SVC 6 CONNECT function, and the 
APU must be enabled for interrupts through the SVC 6 THAW 
function. See Section 3.6.3. Figure 3-4 shows the format of the 
task queue entry when an APU in a Model 3200MPS System signals 
the central processing unit (CPU). Note that the 3-byte 
parameter consists of three items: APU number, APU status, and 
APU error status. See the OS/32 System Level Programmer 
Reference Manual for more information on the values that are 
returned to the task queue for reason code 5. 

6022 

X'05' APU APU APU 

(TRC.APTR) NUMBER STATUS ERROR 

CODE STATUS 

BYTE: 

0 2 3 

Figure 3-4 Task Queue Entry for APU Signal 

3.4.2 User-Defined Trap-Causing Events 

1rhe OS/32 supervisor routine called by SVC 14 allows the 
programmer to define trap-causing events for a task. SVC 14 
suspends task execution, saves the current state of the task, and 
transfers execution to the SVC 14 task trap handling routine. 

One argument can be specified when SVC 14 is called. This 
argument can point to a memory location that contains a reason 
code for the user-defined trap-causing event. See the OS/32 
Supervisor Call (SVC) Reference Manual for more information on 
using SVC 14. 

3.5 THE TASK STATUS WORD (TSW) SWAP 

A task that services traps requires a data structure that can be 
used to save the current TSW after a trap occurs. The OS/32 data 
structure that is reserved for this purpose is the UDL shown in 
Figure 3-5. 

3-12 48-039 FOO ROl 



5921-2 

0 (00) CTOP (UDL.CTOP) 

4 (04) UTOP (UDL.UTOP) 

8 (08) U_BOT (UDL.UBOT) 

12 (OC) DATA MANAGEMENT SYSTEM (UDL.DMS) 

16 (10) A (TASI< QUEUE) (UDL.TSKQ) 

20 (14) A (SEND DATA FREE BUFFER QUEUE) (UDL.SDQ) 

24 (18) A (MESSAGE RING) (UDL.MSGR) 

28 (1C) A (SVC 14 ARG) (UDL. SV14) 

32 (20) RESERVED (UDL.EXT1) 

36 (24) RESERVED (UDL.EXT2) 

40 (28) LOAD MULTIPLE STARTING ADDRESS (UDL.LMSA) 

44 (2C) RESERVED 

4B (30) POWER FIESTORATION OLD TSW 

52 (34) (UDL.PWRO) 

56 (38) POWER RESTORATION NEW TSW 

60 (3C) (UDL.PWRN) 

64 (40) ARITHMETIC FAULT OLD TSW 

6B (44) (UDL.ARFO) 

72 (4B) ARITHMETIC FAULT NEW TSW 

76 (4C) (UDL.ARFN) 

BO 
RESERVEi 811511 DATA FOHMA f 182 1521 MAC MAT f AULT J 83 1531 AHITH FAULT 

(50) REASON CODE IUDL.DfFRI FlEASON CODE IUDL.MAFH1 HEASON CODE 1Ul>L AHFH1 

B4 (54) ARITHMETIC FAULT, NEXT INSTRUCTION ADDRESS (UDL.ARFX) 

BB (5B) DATA/ALIGNMENT, ACTUAL FAULT ADDRESS (UDL.DFFX) 

92 (5C) MAC/MAT FAULT, ACTUAL FAULT ADDRESS (UDL.MAFL) 

96 (60) SVC 14 OLD TSW 

100 (64) (UDL.S140) 

104 (6B) SVC 14 NEW TSW 

108 (6C) (UDL.S14N) 

112 (70) TASK QUEUE SERVICE OLD TSW 

116 (74) (UDL.TSKO) 

120 (7B) TASK QUEUE SERVICE NEW TSW 

124 (7C) (UDL.TSKN) 

12B (80) MEMORY ACCESS FAULT OLD TSW 

132 (B4) (UDL.MAFO) 

136 (BB) MEMORY ACCESS FAULT NEW TSW 

140 (BC) (UDL.MAFN) 

144 (90) ILLEGAL INSTRUCTION OLD TSW 

14B (94) (UDL.llTO) 

152 (9B) ILLEGAL. INSTRUCTION NEW TSW 

156 (9C) (UDL.llTN) 

160 (AO) DATA FORMAT FAULT OLD TSW 

164 (A4) (UDL.DFFO) 

168 (AB) DATA FORMAT FAULT NEW TSW 

172 (AC) (UDL.DFFN) 

176 (BO) 

180 (B4) 
RESERVED 

1B4 (BB) POINTER TO SYSTEM NETWORK ARCHITECTURE TABLE (UDL.SNA) 

1BB (BC) SAVE AREA USED BY SYSlfEM NETWORK ARCHITECTURE(UDL.RSAV) 

192 (CO) 

196 (C4) 

~ RESERVED FOR AIDS ~ 

24B (F8) 

252 (FC) ___ J 
Figure 3-5 User-Dedicated Location 

48-039 FOO ROl 3-13 



Note that the UDL is divided into fields that are used to store 
the TSW. Each type of trap requires two TSW save areas, the old 
TSW (OTSW) field and the new TSW (NTSW) field. The operating 
system uses the OTSW field for saving the TSW that is in the TCB 
when the trap occurs. The NTSW field is used by the task to 
store the TSW that contains the address of the user-written trap 
handling routine and the new TSW bits to be enabled during 
execution of the routine. 

When a task is link-edited, a UDL is initialized in locations 0 
through 255 of the task's private image segment. After a task 
with a link-initialized UDL is loaded, a TSW containing the 
task's starting address and all trap bits disabled is placed into 
the TCB for that task. This task cannot handle traps until it 
loads an NTSW in the UDL and loads a new TSW into the TCB. 

NOTE 
I 

Users can initialize the UDL by 
assembling the appropriate code and using 
the Link OPTION ABSOLUTE=O command before 
including the UDL in their task. 

Figure 3-6 shows the effect of the TSW swap on the TCB. Note 
that for a task trap to occur, a TSW swap is performed at least 
three times during task execution: 

• after the task is started, 

• when the task trap occurs, and 

• at the end of a trap handling routine. 

3-14 48-039 FOO ROl 



5621 

1 TASK _t INITIATION 

TCB UDL 

LTSW ,, NTSW 

LOAD TSW 

l (SVC9) l 
TCB UDL 

OTSW ,, 
NTSW 

TASK TRAP i l TSW SWAP 
TCB UDL 

NTSW 
OTSW 

,, NTSW 

TRAP HANDLING 
i BOUTINE i 

TCB 
(SVC 9) 

UDL 

OTSW 
NTSW 

LTSW - TSW INITIALIZED BY LINK 
OTSW - TSW INITIALIZED BY TASK WITH TASK EXECUTION ADDRESS AND TRAP BIT SET 
NTSW - TSW WITH ADDRESS OF TRAP HANDLING ROUTINE 

Figure 3-6 Task Status Word Swap 

To perform the TSW swap, the task and the trap handling routine 
issues a call (SVC 9) to an OS/32 supervisor routine that 
replaces the current TSW in the TCB with the TSW specified as an 
argument to SVC 9. 

As shown in Figure 3-6, the TSW swap performed after the task is 
started replaces the link-initialized TSW in the TCB with the 
task-initialized TSW (OTSW). This swap causes task execution to 
resume at the location specified by OTSW; or, if the LOC of OTSW 
is zero, execution resumes after the SVC 9 instruction. 

The TSW swap performed by the OS/32 trap mechanism replaces the 
OTSW in the TCB with a copy of the NTSW stored in the UDL. Task 
execution resumes at the address of the trap handling routine. 

48-039 FOO ROl 3-15 



The TSW swap performed at the end of the trap handling routine 
replaces the NTSW in the TCB with the OTSW saved in the UDL. 
Execution resumes at the instruction that was about to be 
executed when the trap occurred. 

In addition to the TSW swap areas, the UDL structure also 
reserves fields that are used to store information used by the 
trap handling routine; e.g., internal fault reason codes, task 
queue address, address of message buffers, etc. 

The UDL fields that are used by a task to handle task traps are 
summarized in Table 3-7. 

TABLE 3-7 UDL FIEI.DS USED TO HANDLE TASK TRAPS 

BYTE MASK 
LOCATION FIEID NAME NAME CONTENTS OF FIEID 

----------- -------------------- ---------- --------------------------------------------1 16('10') A(task queue) UDL.TSKQ Address of task queue. 

20( '14') A(Send Data Free 
Buffer Queue) 

24 ( '18') A(Message ring) 

28 ( 'lC') A(SVC 14 Arg) 

40 ( '28') Load Multiple 
Starting Address 

48 ( '30') Power Restoration 
Old TSW 

56('38') Power Restoration 
New TSW 

64 ( '40') Arithmetic Fault 
Old TSW 

72( '48') Arithmetic Fault 
New TSW 

81('51') Data Format Reason 
Code 

82('52') MAC/MAT Fault 
Reason Code 

3-16 

UDL.SDQ 

UCL.MSGR 

UDL.SV14 

UDL.LMSA 

UDL.PWRO 

UDL.PWRN 

UDL.ARFO 

UDL.ARFN 

UDL.DPFR 

UDL.MAFR 

Address of free buff er queue for SVC 6 
send data function. 

Address of ring of 76-byte message buffers 
aligned on a fullword boundary. 

Effective address of the argument to an 
SVC 14. 

Second operand of load multiple instruc­
tion that caused a memory access fault. 

TSW saved by the OS/32 after a power 
failure occurs. 

TSW containing the address of the power 
restoration trap routine to which execu­
tion will branch when power is restored 
after a power failure occurs. 

TSW saved by the OS/32 when an arithmetic 
fault trap occurs. For the Perkin-Elmer 
3200 Series processors, the LOC of this 
TSW points to the faulting instruction. 
For 7/32 and 8/32 processors, LOC points 
to the instruction after the faulting 
instruction. 

TSW containing the address of the arith­
metic fault trap handling routine to which 
execution will branch when an arithmetic 
fault occurs. 
Reason code indicating the event that 
caused the data format/alignment fault. 
See Table 3-4. 

Reason code indicating the event that 
caused the memory access fault. See 
Table 3-3. 

This reason code is given only for a 
memory access controller (MAC) or memory 
address translator (MAT) fault occurring 
on a Series 3200 processor. 

48-039 FOO RO! 



TABLE 3-7 UDL FIELDS USED TO HANDLE TASK TRAPS (Continued) 

I BYTE 
I LOCATION FIELD NAME 

MASK 
NAM! CONTENTS OF FIELD 

-------------------------------- -------------------------------~-----------------------
83 ( '53') 

84( '54') 

88('58') 

92 ('SC') 

96 ( '60') 

104 ( '68') 

112 ( '70') 

128 ( '80') 

136 ( '88.) 

144( I 9Q) 

152 (I 98 I) 

160( 'AO') 

168( 'AS I) 

Arithmetic Fault 
Reason Code 

Arithmetic Fault, 
Next Instruction 
Address 

Data/Alignment, 
Actual Fault 
Address 

MAC/MAT Fault, 
Actual Fault 
Address 

SVC 14 Old TSW 

SVC 14 New TSW 

Task Queue Service 
New TSW 

Memory Access 
Fault, Old TSW 

Memory Access 
Fault, New TSW 

Illegal 
Instruction,Old 

Illegal 
Instruction, 
New TSW 

TSW 

Data Format Fault 
Old TSW 

Data Format Fault 
New TSW 

48-039 FOO ROl 

UDL.ARFR 

UDL.ARFX 

UDL.DFFX 

UDL.MAJPL 

UDL.Sl40 

UDL.Sl4N 

UDL.TSKN 

UDL.MA1.10 

UDL.MAFN 

UDL. I I~l'O 

UDL. I I~l'N 

UDL.DFFO 

UDL.DFFN 

Reason code indicating the event that 
caused the arithmetic fault. See Table 
3-2. 

This reason code is given only for an 
arithmetic fault occurring on a Series 
3200 processor. 

Address of the instruction following the 
instruction that caused an arithmetic 
fault. 

This address is given only for an arith­
metic fault occurring on a Series 3200 
processor. 

Address of the memory location ref erred to 
by the instruction that caused the data 
format or alignment fault. 

This address is given only for a data/ 
alignment fault occurring on a Series 3200 
processor. 

Address of the data or instruction that 
caused a memory access fault trap. 

This address is given only for a MAC/MAT 
fault occurring on a Series 3200 proces­
sor. 

TSW saved by OS/32 when an SVC 14 trap 
occurs. 
TSW containing the address of the SVC 14 
trap handling routine to which execution 
branches when an SVC 14 trap occurs. 

TSW containing the address of the task 
queue trap handling routine to which exe­
cution branches when a task queue trap 
occurs. 

TSW saved by OS/32 when a memory access 
fault trap occurs. 

TSW containing the address of the memory 
access fault trap handling routine to 
which execution branches when a memory 
access fault trap occurs. 

TSW saved by OS/32 when an illegal 
instruction fault trap occurs. 

TSW containing the address of the illegal 
instruction trap handling routine to which 
execution will branch when an illegal 
instruction fault trap occurs. 

TSW saved by OS/32 when a data format or 
alignment fault trap occurs. 

This TSW is saved only for a data format/ 
alignment fault trap occurring on a Series 
3200 processor. 

TSW containing the address of the data 
format/alignment fault trap handling 
routine to which execution branches when a 
data format or alignment fault trap 
occurs. 

3-17 



3.6 WRITING TASKS THAT HANDLE TASK TRAPS 

A task cannot handle a trap until it has a TSW with the 
appropriate trap bits enabled in the TCB and a TSW with the 
address of the trap handling routine in the UDL. 

The OS/32 system structure macro library, SYSSTRUC.MLB, provides 
macro instructions that automatically set up a UDL or TSW within 
a task's address space. The $UDL instruction defines the UDL 
structure; the $TSW instruction defines a TSW. To prepare a task 
to handle a trap, simply execute these instructions and set the 
appropriate fields or bit masks for the trap the task is to 
handle. 

For example, suppose a program is to output its own message and 
pause each time it attempts to execute an illegal instruction. 
First, place the address of the task trap routine in the illegal 
instruction new TSW field (UDL.IITN) as follows: 

Example: 

$UDL 
ABS 

MYUDL OS 
MYUDLE EQU 

ORG 
DC 
DC 
ORG 

TRAP SVC 
SVC 

3-18 

0 
UDL 
* 
MYUDL+UDL.IITN 
0 
A(TRAP) 
MYUDLE 
2,MSG 
2,PAUSE 

SETS UP UDL AND EQUATES 

SET LOC TO FIELD 
DISABLES TASK TRAPS FOR NTSW 
PLACES ADDRESS OF TRAP ROUTINE IN NTSW 
SET LOC TO END OF UDL 

48-039 FOO ROl 



Next, build a TSW with the TSW.IITM bit mask set. 

Example: 

$TSW 
NTSW DC TSW. I ITM SETS ILLEGAL INSTRUC TRAP BIT 

DC 0 SETS LOC AT INSTRUC FOLLOWING SVC 9 

After initiation, the task will issue an SVC 9 to load this TSW 
into the TCB as follows: 

SVC 9,NTSW 

Table 3-8 summarizes the UOL fields and TSW bit masks that 
pertain to each type of task trap. 

CAUTION 

TASKS THAT HANDLE ARITHMETIC ~AULT TRAPS 
MUST BE LINK-EDITED WITH THE NAFPAUSE 
TASK OPTION. WHEN AN ARITHMETIC FAULT 
TRAP OCCURS, NAFPAUSE PREVENTS OS/32 FROM 
PAUSING THE TASK SO THAT EXECUTION 
CONTINUES TO THE USER-WRITTEN TRAP 
HANDLING ROUTINE. SEE THE OS/32 LINK 
REFERENCE MANUAL FOR MORE INFORMATION. 

48-039 FOO ROl 3-19 



3-20 

TABLE 3-8 SUMMARY OF TASK STRUCTURES USED FOR HANDLING 
TRAPS 

UDL I TASK I 
TRAP-CAUSING EVENT FIELDS I QUEUE I TSW BIT MASK 

====================================-=================--
APU Signals 
CPU**** 

Arithmetic Fault** 

Data Communications 

• SVC 15 
• 3270 
• ZDLC 

Data Format/ 
Alignment Fault 

Device Interrupt 
(SVC 6) 

• Connect 

• Thaw 

• Sint 

• Freeze 

• Unconnect 

I UDL.TSKO 
I UDL.TSKN 
I UDL.TSKQ 

UDL.ARFO 
UDL.ARFN 
UDL.ARFR* 
UDL.ARFX* 

UDL.TSKO 
UDL.TSKN 
UDL.TSKQ 

UDL.DFFO* 
UDL.DFFN 
UDL.DFFX* 
UDL.DFFR 

UDL.TSKO 
UDL.TSKN 
UDL.TSKQ 

Yes I TSW.APTM 
I TSW.TSKM 

No 

Yes 

No 

Yes 

TSW.AFM 

TSW.TSKM 
TSW. ITM 

TSW.DFFM 

TSW.TSKM 
TSW.DIQM 

Illegal Instruction I UDL.IITO I No TSW. I ITM 
Fault I UDL.IITN 

1/0 Proceed 
Completion 
(SVC 1) 

Load and Proceed 
Completion 
(SVC 1) 

Memory Access 

Power Restoration 

I UDL.TSKO 
I UDL.TSKN 
I UDL.TSKQ 

I UDL.TSKO 
I UDL.TSKN 
I UDL.TSKQ 

UDL.MAFO 
UDL.MAFN 
UDL.MAFL* 
UDL.MAFR* 
UDL.LMSA 

I UDL.PWRO 
I UDL.PWRN 

Yes 

Yes 

No 

No 

TSW.TSKM 
TSW .. IOM 

TSW .. TSKM 
TSW.LODM 

TSW .. MAFM 

TSW.PWRM 

48-039 FOO ROl 



TABLE 3-8 SUMMARY OF TASK STRUCTURES USED FOR HANDLING 
TRAPS (Continued) 

UDL I TASK I 
TRAP-CAUSING EVENT FIELDS I QUEUE I TSW BIT MASK 
==================:==============================:====~= 

Send Data*** 
(SVC 6) 

Send Message*** 
(SVC 6) 

Send Queue 
Parameter 
(SVC 6) 

Subtask State 
Change 
(SVC 6) 

SVC 14 

UDL.TSKO 
UDL.TSKN 
UDL.TSKQ 
UDL.SDQ 

UDL.TSKO 
UDL.TSKN 
UDL.TSKQ 
UDL.MSGR 

I UDL.TSKO 
I UDL.TSKN 
I UDL.TSKQ 

I UDL.TSKO 
I UDL.TSKN 
I UDL.TSKQ 

Yes 

Yes 

Yes 

Yes 

I UDL.Sl40 I No 
I UDL.Sl4N 
I UDL.SV14 

TSW.TSKM 
TSW.SDM 

TSW.TSKM 
'rsw. PMM 

TSW.TSKM 
TSW.TCM 

TSW.·rsKM 
TSW.SUQM 

TSW.Sl4M 

--------------------------------------~-----------------: 
Timer Termination I UDL.TSKO I Yes TSW.TSKM 
(SVC 2, Code 23) I UDL.TSKN TSM.TMCM 

I UDL.TSKQ 
--------------------------------------------------------: 
Trap Wait I No TSM.WrM 

Available on Perkin-Elmer Series 3200 processors 
only. 

** Task must be linked-edited with NAFPAUSE task 
option enabled. 

*** 

**** 

Task must also include a message buffer to receive 
the message. See OS/32 Supervisor Call Reference 
Manual. 

Available with Model 3200MPS System only. 

NOTE 

A task can be suspended, until a 
trap-causing event occurs by setting the 
TSW.WTM bit in the OTSW. 

48-039 FOO ROl 3-21 



3.6.1 Handling Task Queue Traps 

In addition to the UDL and TSW, a program that handles task queue 
traps must have a task queue. The DLIST instruction can be used 
to build a circular list for the task queue as follows: 

QUEUE DLIST 3 

The following example builds a UDL structure for a task that 
handles I/O proceed completion traps. Note that the address of 
the task queue is placed in the UDL.TSKQ field. 

Example: 

MYUDL 
MYUDLE 

$UDL 
ABS 
DS 
EQU 
ORG 
DC 
ORG 
DC 
DC 
ORG 

0 
UDL 
* 
MYUDL+UDL.TSKQ 
A(QUEUE) 
MYUDL+UDL.TSKN 
0 
A(TRAP) 
MYUDLE 

INITS ADDRESS OF TASK QUEUE 

INITS ADDR OF TASK QUEUE HANDLER 

The TSW for a task handling an input/output (I/O) proceed 
completion trap is initialized as follows: 

$TSW 
NTSW DC TSW.TSKM!TSW.IOM SETS TASK QUEUE & 1/0 PROCEED BITS 

DC 0 

If a task queue trap is a send data trap, the task requires a 
message buffer queue to receive the message sent by the trap. 
The address of this queue is placed in the UDL.SDQ field. 

Send message traps require a message ring whose address is placed 
in the UOL.MSGR field. For more information on how to set up a 
message ring or send data buffer queue, see the OS/32 Supervisor 
Call (SVC) Reference Manual. 

3-22 48-039 FOO ROl 



The following code sets up a UDL, TSW, task queue and message 
ring for a task to service a send message trap. 

Example: 

MYUDL 
MYUDLE 

QUEUE 
TSW 

MESSl 

MESS2 

$UDL 
$TSW 
ABS 
DS 
EQU 
ORG 
DC 
ORG 
DC 
ORG 
DC 
DC 
ORG 
DLIST 
DC 
DC 
ALIGN 
DC 
DS 
DC 
DS 

0 
UDL 
* 
MYUDL+UDL.TSKQ 
A(QUEUE) 
MYUDL+UDL.MSGR 
A(MESSl) 
MYUDL+UDL.TSKN 
0 
A(TRAP) 
MYUDLE 
3 
TSW.TSKM!TSW.PMM 
0 
4 
A(MESS2) 
72 
A(MESSl) 
72 

STORES TASK QUEUE ADDR 

STORES MESSAGE RING ADDR 

STORES TRAP HANDLER ADDR IN LOC 

SETS TSK Q AND SEND MESS TRAP BITS 

3.6.2 Tips for Writing Task Trap Handling Routines 

The task trap handling routine should contain all the program 
code necessary to process the trap. Because no registers are 
saved as part of the TSW swap that causes a trap handling routine 
to be initiated, the routine should save the contents of any 
registers required by the task. 

Task queue trap handling routines should contain code that will 
remove items from the task queue. For example, suppose a send 
message trap placed the following item in slot five of the task 
queue: 

06 A(MESSl) 

48-039 FOO ROl 3-23 



The following example demonstrates one method of removing this 
item from the task queue. 

Example: 

TRAP EQU 
STM 
RTL 
BO 
RLL 
LBR 
CLI 
BNE 
SRL 
LI 
ST 
LI 
ST 

B 
·rRAPEX [ T EQU 

LM 
SVC 

* 
RO,TRAPSAVE 
l,QUEUE 
TRAPEXIT 
1,8 
2,1 
2,6 
ERROR 
1,8 
2, 12 ( 1) 
2,WRITE+SVC.l.SAD 
2,63(2) 
2,WRITE+SVCl.EAD 

TRAP 
* 
RO,TRAPSAVE 
9,UDL.TSKO 

SAVE REGS (OPTIONAL) 
TRANSFER QUEUE ITEM TO Rl 
QUEUE EMPTY 

VERIFY REASON CODE 

SHIFT Rl ONE BYTE TO LEFT 
(Rl)+l2 IS MESS START ADR 
STORE ADR IN SVC 1 PARBLI< 
(R2)+63 IS MESS END ADR 
STORE ADR IN SVC 1 PARBLK 

SEE IF ANY MORE ON QUEUE 

RESTORE REGS (OPTIONAL) 

To resume task execution, a trap handling routine must return the 
old 'rsw in the UDL to the TCB. In the above example, the routine 
issued an SVC 9. See the OS/32 Supervisor Call (SVC) Reference 
Manual for more information. 

3.6.3 Handling Traps From Trap-Generating Devices 

OS/32 provides intertask control services that allow a task to 
receive a trap from an external trap-generating device. These 
services include: 

Connect 

Thaw 

Sinl 

Freeze 

Unconnect 

3-24 

attaches a trap-generating device to a task 

enables interrupts from 
trap-generating device 

the attached 

simulates an interrupt from a trap-generating 
device 

disables interrupts from 
trap-generating device 

the attached 

detaches a trap-generating device from a task 

48-039 FOO ROl 



These services implement the proposed standards established by 
the Instrument Society of America (ISA) for electronic devices. 

An example of a task that receives and handles traps from 
trap-generating devices is the Perkin-Elmer 8-line interrupt 
module driver. To handle a trap received from a trap-generating 
device, the task sets the TSW .. TSKM and TSW.DIQM bits in the TSW. 
The task also builds a task queue to receive an entry from the 
device when an interrupt occurs. Using the OS/32 intertask 
control services and data structures for handling task queue 
traps, the user can write a task that handles traps from external 
devices. 

The OS/32 intertask control services can also be used to attach 
an APO to a task and enable interrupts from the APO each time it 
sends a signal to the CPU in a Model 3200MPS System. To handle 
a trap generated by an APO signal, the task must have the 
TSW.APTM and TSW.TSKM bits set in the TSW. The task must also 
build a task queue to receive the interrupt information items 
from the APO. See Figure 3-4. 

See the OS/32 Supervisor Call (SVC) Reference Manual for more 
information on the intertask control services provided by OS/32. 

3.6.4 Sample Task Trap Handling Program 

The following assembly program suspends execution of a task 
(called the directed task) until another task (called the calling 
task) places a reason code and message buff er address on the task 
queue. After the send message trap occurs, task execution 
branches to the task queue trap handling routine that removes the 
queue entry and stores the beginning and ending address of the 
message in an SVC 1 parameter block. The routine then outputs 
the message sent from the calling task. See the OS/32 Supervisor 
Call (SVC) Reference Manual for more information on SVC 1. 

48-039 FOO ROl 3-25 



Example: 

1 
2 
3 
4 
5 
6 
7 
8 MYUDL 
9 MYUDLE 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 QUEUE 
20 * 
21 TSW 
22 
23 
24 MESSl 
25 
26 MESS2 
27 
28 
29 
30 WRITE 
31 ENDBLK 
32 
33 
34 
35 
36 START 
37 
38 
39 QTRAP 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 ERROR 
56 

3-26 

PROG 
ML I BS 
NT~TM 

FREZE 
$UDL 
$TSW 
ABS 
OS 
EQU 
ORG 
DC 
ORG 
DC 
ORG 
DC 
DC 
ORG 

DIRECTED TASK WI TH TRAP HANDT .ER 
8,9,10 

0 
UDL 
* 
MYUDL+UDL.TSKQ 
A(QUEUE) 
MYUDL+UOL.MSGR 
A(MESSl) 
MYUDL+UDL.TSKN 
TSW.PMM 
A(QTRAP) 
MYUDLE 

DEFINE UDL STRUC 
DEFINE TSW STRUC 

RESERVE STORAGE FOR UDL 

INITIALIZE UDL FIELDS 
DEFINE TASK QUEUE LOC 

DEFINE MESSAGE RING LOC 

DEFINE NEW TSW FOR TASK TRAP HANDLER 

IMP UR 
DLIST 3 

DC 
DC 
ALIGN 
DC 
OS 
DC 
OS 
$SVC1 
ALIGN 
OS 
EQU 
ORG 
DB 
DB 
ORG 
EQU 
SVC 
SVC 
EQU 
RTL 
RLL 
LBR 
CLI 
BNE 
SRL 
LA 
ST 
LA 
ST 
SVC 
LIS 
RBT 
RBT 
SVC 
SVC 
END 

ENABLE TRAP WAIT,TASK Q TRAPS,MESS Q 
TSW.W'rM!TSW.TSI<M!TSW.PMM 
0 RESUME AFTER SVC 9 
4 
A(MESS2) RESERVE STORAGE FOR MESSAGE RING 
72 
A(MESSl) 
72 

4 
SVCl. 
* 
WRITE+SVCl. FUN 
SVl.WRIT!SVl.WAIT 
2 
ENDBLK 
* 
9,TSW 
3,0 

* 
l,QUEUE 
1,8 
2,1 
2,6 
ERROR 
1,8 
2,12(1) 
2,WRITE+SVCl.SAD 
2,63(2) 
2,WRITE+SVCl.EAD 
l,WRITE 
2,0 
2,0(1) 
2,UDL.TSKO 
9,UDL.TSKO 
3,4 
START 

SVC 1 PARAMETER BLOCK 

1/0 WRITE AND WAIT FUNC 
LOGICAL UNIT 2 

ENABLE Q ENTRIES,TRAP WAIT,ENTER TRAP WAIT 
END TASK 

REMOVE QUEUE ENTRY TO Rl 
ROTATE REASON CODE TO LOW BYTE 
MOVE REASON CODE TO R2 
IS IT A MESSAGE (RC=6) 
NO, ABORT ON ERROR 
SHIFT A(MESS) BACK IN Rl 
R2 = A(MESSAGE START) 
PUT ADR IN SVC 1 PARBLK 
R2 = A(MESSAGE END) 
PUT ADR IN SVC 1 PARBLK 
ISSUE WRITE 
BIT OFFSET = 0 
RELEASE MESSAGE BUFFER 
RESET TRAP WAIT IN OLD TSW 
LOAD OLD TSW 
ABORT: RETURN CODE = 4 
SPECIFIES PROGRAM START ADDRESS 

48-039 FOO ROl 



3.6.5 Using the OS/32 System Macro Library to Handle Traps 

The OS/32 system macro library provides macro definitions for 
setting up the data structures necessary to handle task traps. 
Another macro, LTSW, performs a TSW load. The following program 
performs the same functions as the sample program given in 
Section 3.6.4. Notice, however, the lines of code that have been 
replaced with one-line macros. 

Example: 

Lines Replaced by Macros 
MLIBS 8,9,10 
NLS'rM 

SETUDL TSKQ=QUEUE,MSGR=MESSl,TSKN=(O,TRAP) 
LTSW WT,TSKE,TMQ 
EOT RC=O 

QUEUE DLIST 3 
MESSl MSGRING 3,72 
TRAP EQU * 

RTL l,QUEUE 
RLL 1, 8 
LBR 2,1 
CLI 2, 6 
BNE ERROR 
SRL 1, 8 

WRITE LU=2,ADDR=l2(1),RECL=64 
LIS 2,0 
RBT 2,0(1) 

LTSW PCB=UDL.TSKO 
ERROR SVC 3,4 

END 

5-17 
21-22,37 

38 

24-27 

28-35,50 

54 

See the OS/32 System Macro Library Reference Manual for details 
on how to use the OS/32 macro instructions for writing trap 
handling programs. 

3.6.6 Writing FORTRAN Trap Handling Programs 

The Perkin-Elmer FORTRAN VII Run-time Library (RTL) provides 
subroutines that allow the FORTRAN programmer to write programs 
that handle task traps. Subroutine INIT initializes the task's 
TSW, UDL, task queue, and message ring. Subroutine ENABLE sets 
the appropriate TSW trap bit and stores the address of the task 
trap handling routine in the UDL. 

48-039 FOO ROl 3-27 



Example: 

C THIS PROGRAM SERVICES DEVICE INTERRUPTS 
c 

EXTERNAL NAME 

CALL INIT 

CALL ENABLE (l,NAME) 
END 

C THE FOLLOWING SUBROUTINE 
C HANDLES THE TASK TRAP 
c 

SUBROUTINE NAME ( ... ) 

RE'rURN 
END 

Sec the FOR'rRAN VI I User Guide for more information on writing 
FOR'eRAN programs that handle task traps. 

3.6.7 Writing Pascal Trap Handling Programs 

Writing a Pascal program that enables and handles task traps is 
very difficult, but it can be done by using a combination of 
Pascal features and common assembly language (CAL) routines. 

The SMPLSVCS.PAS file supplied with the Perkin-Elmer Pascal 
compiler provides constants and types for handling SVCs in a 
Pascal program. The following code represents a sample Pascal 
program for enabling memory access faults. 

3-28 48-039 FOO ROl 



Example: 

PROGRAM SAMPLE; 

CONST MAFN = 35; 
TSW_ MEMF_EN = #04000000; 

TYPE UDL_INDEX = 0 .. 63; 

VAR NEWTSW,HADDR: INTEGER; 

PROCEDURE TOUDL (I: ULD_INDEX; 
VAL: UNIV INTEGER); EXTERN; 

PROCEDURE GETHADDR (VAR HADDR: INTEGER); EXTERN; 
PROCEDURE SETTSW (NEWTSW: INTEGER); EXTERN; 
PROCEDURE SVC2PAUS; EXTERN; 

BEGIN 
GETHADDR (HADDR); 
TOUDL (MAFN,HADDR); 
NEWTSW := TSW_MEMF_EN; 
SETTSW (NEWTSW) ; 
SVC2PAUS; 

END. 

GETHADDR PROG GET ADDRESS 
ENTRY GETHADDR 
EXT RN MEMAFH 

OF HANDLER 

STACK STRUC STRUC OF ACTIVATION REC ON S1rACK 
or .or...a DSF 1 OLD LOCAL BASE (R2) 
RETAD DSF 1 RETURN ADDRESS 
SLINK DSF 1 STATIC LINK 

ENDS 
GETHADDR EQU * 

ST 15,RETAD(2) SAVE RETURN ADR ON STACK 
LA 8 ,MEMAFH MOVE ADR OF HANDLER 
ST 8,0(3) TO ARGUMENT (R3 = A(HADDR)) 
L 15,RETAD(2) RESTORE RETURN ADDRESS 
L 2,0LDLB(2) RELOAD LOCAL BASE (RELEASE STACK) 
BR 15 RETURN 
END 

48-039 FOO ROl 3-29 



SETTSW PROG SET UP NEW TSW IN TCB 
ENTRY SETTSW 

STACK STRUC 
OLD LB DSF 1 
RETAD DSF 1 
SLINK DSF 1 
SVC9BLK DSF 2 

ENDS 
SETT SW EQU * 

ST 15,RETAD(2) SAVE RETURN ADDRESS 
ST 3,SVC9BLK(2) STORE NEW TSW ON STACK 
LIS RO,O 
ST RO,SVC9BLK+4(2) ZERO LOC OF NEW TSW 
SVC 9,SVC9BLK(2) LOAD NEW TSW 
L 15,RETAD(2) RESTORE RETURN ADDRESS 
L 2,0LDLB(2) RELEASE STACK 
BR 15 RETURN 
END 

MODULE MEMAFH 
BEGIN 

END 

The· above example enables and handles memory access faults. The 
user-written SETTSW procedure issues an SVC 9 to replace the 
link-initialized TSW in the TCB with a TSW enabled for memory 
access faults. The user-written procedure GETHADDR sets the 
variable HADDR to the address of the task trap handling routine 
(MEMAFH). The procedure TOUDL places the address of this routine 
into UOL.MAFN. TOUDL is included in the SMPLSVCS.PAS file. 

Except for arithmetic fault handlers, all trap-handling programs 
require a similar user-written procedure to enable the 
appropriate trap bit. SMPLSVCS.PAS provides information about a 
procedure that automatically enables the arithmetic fault trap 
bit in the TCB. 

If the trap-handling routines are written in Pascal, the Pascal 
register set must be set up or preserved. Entry into the trap 
handling routine would then usually be through a CAL routine that 
establishes the register set. A separate stack/heap area may 
need to be set up in such a CAL routine. 

For more information on traps and interfaces between Pascal and 
CAL routines, see the Perkin-Elmer Pascal User Guide, Language 
Reference, and Run-Time Support Reference Manual. 

3-30 48-039 FOO ROl 



CHAPTER 4 
OS/32 DISK FILE MANAGEMENT SERVICES 

4.1 INTRODUCTION TO THE OS/32 FILE MANAGER 

Application programs read and write data through the peripheral 
devices connected to the computer. In addition to such 
input/output (I/O) operations as logging messages on the system 
console or reading data from a multi-terminal monitor (MTM) 
terminal, a task should be able to store any amount of data for 
future use. All tasks within a system should be able to store, 
move, and update all information required by the user's 
application. 

The OS/32 file manager stores and retrieves information for a 
task on secondary storage devices (disks, magnetic tapes, floppy 
disks, etc.). The file manager partitions this storage into 
smaller areas, called files, that can be used by tasks for data 
and program storage. In addition, the file manager provides 
tasks with the following support services for management of files 
on disk: 

Allocate 

Delete 

Rename 

Open 

Close 

Fetch 
Attributes 

Checkpoint 

initializes a file by allocating space on disk 

removes a file from disk 

changes the name of a file 

assigns a file to a task 

releases a 
assignment) 
of the file 

file (cancel an existing 
when a task has completed its use 

examines the attributes of a file 

ensures that all data in an output buffer is 
written to disk 

This chapter describes the OS/32 structures that are used by the 
file manager to provide these services. 

48-039 FOO ROl 4-1 



4.2 SYSTEM RESOURCE MANAGEMENT 

The file manager controls two types of system resources for a 
task; namely, files and the devices that store and retrieve 
files. 

A file is a named collection of data records on a secondary 
storage device. Secondary storage devices supported by the file 
manager include fixed-head disks, moving-head disks, and floppy 
disks. Fixed-head disk drives have smaller average access times 
than moving-head disks, while moving-head disks typically have 
larger storage capacities. 

Devices are read from or written to like ordinary disk files; 
i.e., a task performs a data transfer to a device in the same 
manner it would perform a data transfer to a file on disk. 
However, when a task performs an I/O operation to a device (such 
as a printer, data conununication device, magnetic tape, etc.), 
data must be transferred via an appropriate protocol determined 
by the device driver. Device drivers are system software modules 
that make the device look like an ordinary disk file to the file 
manager. These drivers are included in the OS/32 I/O subsystem. 

Every file and device on a Perkin-Elmer system is referenced by 
a file descriptor (fd). The fd is used by the file manager to 
find and access a device or file as required by the task. 

Format 

[{ 
voln: }] 

. dev: [filename] 

Parameters: 

voln: 

dev: 

4-2 

is a 1- to 4-character alphanumeric string 
specifying the name of the disk volume on 
which the file specified by filename resides. 
The first character must be alphabetic and the 
remaining alphanumeric. If this parameter is 
omitted, the default is the system volume in 
an OS/32 real-time environment or a default 
volume specified by the user in an MTM 
environment. 

is a 1- to 4-character 
specifying the name of 
PR: , NULL: , or MAGl:) • 
must be alphabetic 
alphanumeric. 

alphanumeric string 
a device (e.g., CON:, 
The first character 
and the remaining 

48-039 FOO ROl 



filename 

.ext 

actno 

file class 

is a 1- to a-character alphanumeric string 
specifying the name of a disk file. The first 
character must be alphabetic and the remaining 
alphanumeric. If a filename is specified when 
a device name is referenced, the filename is 
ignored. 

is a 1- to 3-character alphanumeric string 
specifying the extension to a filename. 

is a decimal number ranging from 0 through 
65,535, specifying the account number 
associated with the file. Account numbers 1 
through 65,535 (excluding 255) are used by MTM 
for termina.l users. Acount number 255 is 
reserved for the MTM system administrator. 
Account number 0 is for system files and is 
the default for all operator commands. 

is a 1-character alphabetic string specifying 
the file class. The file classes are: 

• P for a private file 

• G for a group file 

• S for a system file 

If the file class is omitted, the default is 
P for f ilea generated in an M'rM environment 
and S for files generated in an OS/32 
real-time environment. 

4.3 FILE ORGANIZATION 

A data record is a list of information elements that are accessed 
together. Before the file manager can store a record on a disk, 
the disk must be initialized by the OS/32 disk initializer 
program. See the OS/32 Fastchek Reference Manual for more 
information. Figure 4-1 shows the surface of a formatted disk. 
Note that the surface of the disk is divided into tracks. A 
track is the area covered by a stationary read/write head with 
one revolution of the disk. The amount of information that can 
be stored on a track is a function of the recording density and 
size of the track. 

48-039 FOO ROl 4-3 



5623 

DIRECTION OF ROTATION 

Figure 4-1 Formatted Disk Surface 

TRACKS 

SECTOR 
NUMBER 

When a disk is initialized, the tracks are divided into sectors. 
The disk surface shown in Figure 4-1 is divided into 8 sectors. 
Each sector of each track holds 256 bytes of data, the smallest 
addressable storage area on disk. 

The file manager uses two methods for organizing data records 
into files on formatted disks: 

• linked-list indexed organization, and 

• contiguous organization. 

4-4 48-039 FOO ROl 



4.3.1 Linked-List Indexed Organization 

When the file manager creates a file using the linked-list 
indexed organization method, it sets aside two types of storage 
areas or blocks on disk: data blocks and index blocks. These 
areas are shown in Figure 4-2. The data block is a group of one 
or more contiguous sectors that are used to store the data 
records. The index block is a group of contiguous sectors that 
store pointers to the individual data blocks. Note that index 
block 1 in Figure 4-2 points to the first sector of index block 
2. Because each index block points to its successor, the file is 
said to contain a linked-list indexed organization. One index 
block for each indexed file assigned to a task remains in dynamic 
system space as long as the file is assigned to the task. The 
remaining index blocks remain on disk. For buffered indexed 
files, space for two data blocks is reserved in dynamic system 
space as long as the file remains assigned. 

5624-1 
INDEX BLOCK 1 

#1 

SECTO~ 

#5 #6 

INDEX BLOCK 2 

SECTOR 

#7 #8 

INDEX 
BLOCK 
AREA 

DATA 
BLOCK 
AREA 

Figure 4-2 Linked-List. Indexed File Organization 

48-039 FOO ROl 4-5 



4.3.2 Contiguous Organization 

A contiguously organized disk file consists of a sequence of data 
blocks stored on tracks with consecutive addresses. Each block 
of data is one sector (256 bytes) in length. Contiguous files 
can be accessed randomly (by sector) or sequentially. When 
accessed sequentially, the contiguous file appears to have a 
magnetic tape like organization; i.e., to the task the file 
resembles a magnetic tape with 256-byte blocks. For example, the 
task can write a filemark (X'l313') to the first 2 bytes of a 
sectoY in a contiguous disk file. Using the filemark as a record 
delimiter, the task can space forward or backward to the filemark 
as it would to a f ilemark on magnetic tape. 

4.4 SUPPORTED DISK FILE TYPES 

How a file is organized determines the size of its data records. 
Contiguous files have a fixed record length and file length. 
Indexed organization supports fixed record lengths but the file 
is extendable. Files can extend the length of the disk volume. 

To meet the requirements of applications running in a real-time 
environment, the OS/32 file manager supports four different types 
of disk files. These file types offer the user a flexible range 
of record lengths, file lengths, and access methods. The file 
types are: 

• contiguous 

• indexed 

• nonbuf f ered indexed 

• extendable contiguous 

The following sections define these file types in terms of their 
record and file lengths. Access methods are discussed in Section 
4.7. 

4-6 48-039 FOO ROl 



4.4.1 Contiguous Files 

Contiguous files are organized sequentially on disk. When the 
file manager has allocated a contiguous file (i.e., reserved a 
user-specified number of contiguous sectors on disk), the maximum 
length of the file is fixed. It cannot be changed during data 
transfer. Records within a contiguous file are 256 bytes (one 
sector) in length. A read or write to a contiguous file can 
transfer any amount of data (from a partial sector to the entire 
length of the file) in a single I/O operation. Nevertheless, the 
I/O operation must begin on a sector boundary. 

Like records stored on magnetic tape, contiguous file records are 
stored on consecutive adjacent sectors. In addition, a f ilemark 
can be written to the first 2 bytes of each record. When using 
the f ilemark capability, care should be taken that any data to be 
transferred to disk does not contain X'l313'. 

4.4.2 Indexed and Nonbuffered Indexed Files 

Two types of files for which the file manager uses a linked-list 
organization are the buffered indexed and nonbuf f ered indexed 
files. Because these files are open-ended, the maximum length of 
either of these files is determined during data transfer. 
Maximum file length is limited only by the free space available 
on disk; however, records are restricted in size from 1 to 65,535 
bytes. In addition, because of hardware restrictions, 
nonbuffered indexed file records must be an even number of bytes 
in length. The record size is specified by the user when the 
file is allocated. Records are stored in data blocks consisting 
of one or more 256-byte contiguous sectors. 

The organization of records in a nonbuffered indexed file differs 
from that for indexed file records. Each record in a nonbuffered 
indexed file begins on a physical sector (256-byte) boundary, 
whether or not the previously transferred record filled up its 
sector space. Also, nonbuffered files do not have memory 
reserved in dynamic system space for data block buffers. Indexed 
file records are transferred so no unused space remains between 
two records. There are no hardware restrictions for indexed 
files. 

4.4.3 Extendable Contiguous Fi.lea 

The third type of file that uses a linked-list organization is 
the extendable contiguous file. Like the indexed and nonbuffered 
indexed files, the maximum length of an extendable contiguous 
file can be extended by write operations. However, like 
contiguous files, the record length is fixed at 256 bytes (1 
sector), and any number of sect.ors can be transferred in a single 
I/O operation. 

48-039 FOO ROl 4-7 



4.5 DISK SPACE MANAGEMENT 

In servicing task file requests, the file manager must: 

• allocate file directory entries and index blocks, 

• allocate a sufficient amount of disk space to contain the file 
(e.g., contiguous files), 

• extend the space already allocated to a file (indexed, 
nonbuffered indexed, or extendable contiguous) by allocating 
additional index blocks and data blocks, and 

• delete a file and return the space to the available space 
inventory. 

To perform these operations effectively, the file manager must 
keep track of all the files on a disk and the storage space 
available to the files. A special data structure, called the 
volume descriptor, is used by the file manager to identify the 
disk volume and to point to structures that contain the file and 
disk space information. 

The volume descriptor is shown in Figure 4-3. When formatting 
the disk, the OS/32 disk initializer initializes the volume 
descriptor in logical block address (LBA) zero (sector O, head 0, 
cylinder 0). The data stored in this data structure includes: 

• the name of the disk volume, 

• the address of the bit map, and 

• the address of the first block in the primary file directory. 

5625 

0 (0) VOL (4) 
VOLUME NAME 

4 (4) ATRB (4) 
VOLUME ATTRIBUTES 

8 (8) FDP (4) 
Fl RST DI RECTORY BLOCK POINTER 

12 (C) OSP (4) 
POINTER TO OS IMAGE (UNUSED) 

16 (10) oss (4) 
SIZE OF OS IMAGE (UNUSED) 

20 (14) MAP (4) 
POINTER TO BIT MAP 

Figure 4-3 Volume Descriptor 

4-8 48-039 FOO ROl 



4.5.1 File Directories 

The file manager keeps track of all the files on the disk through 
the primary file directory. This file is organized as a 
linked-list of one-sector directory blocks. Figure 4-4 shows one 
block of a primary directory. Note that it contains five 
directory entries and a pointer to the next primary directory 
block. 

5626 

0 (0) 4 
NEXT DIRECTOFtY BLOCK POINTER 

4 (4) 48 
DIRECTORY ENTRY 1 

52 (34) 48 
DIRECTORY ENTRY 2 

100 (64) 48 
DIRECTORY ENTRY 3 

148 (94) 48 
DIRECTORY ENTRY 4 

196 (C4) 48 
DIRECTORY ENTRY 5 

244 (F4) 
RESERVED 

12 

256 (100) 

Figure 4-4 Primary Directory Block 

48-039 FOO ROl 4-9 



5627 

0 (0) FNM8 
FILENAME 

8 (8) EXT 3 11 (B) ACT 1 
EXTENSION Fl LE ACCOUNT # 

12 (C) FLBA4 
FIRST LOGICAL BLOCK ADDR 

16 (10) LLBA4 
LAST LOGICAL BLOCK ADDR 

20 (14) KEYS 0 21 (15) RKEY 1 122 (16) LRCL 2 
WKEY 1 READ KEY LOGICAL RECORD LENGTH 

24 (18) DATE4 
DATE FILE ALLOCATED 

28 (1C) LUSE 4 
LAST DATE FILE ASSIGNED 

32 (20) WCNT2 34 (22) RCNT2 
WRITE COUNT READ COUNT 

36 (24) 37 (25) BKSZ 1 38 (26) INBS '1 39 (27) 1 
ATTRIBUTES BLOCK SIZE INDEX BLOCK SIZE RESERVED 

40 (28) CSEC4 
CURRENT SECTOR/#LOGICAL RECORDS 

44 (2C) 
RESERVED 

48 (30) 

Figure 4-5 Primary Directory Entry 

Each directory entry is a 48-byte data structure that identifies 
and describes a file on the disk. Every file has an entry in the 
primary directory. As shown in Figure 4-5, the directory entry 
tells the file manager: 

• the name and extension of the file, 

• the low order byte of the file's account number (The eight 
bits of the high order byte of the account number are 
distributed across the high-order bits of the eight characters 
of the filename.), 

• the addresses of the,first and last sectors if the allocated 
file is a contiguous file, or the addresses of the first and 
last index blocks if the allocated file is a nonbuffered 
indexed, extendable contiguous, or indexed file, 

4-10 48-039 FOO ROl 



• the file's access privileges, 

• the length of the file's records, 

• file attributes or set of operations that can be performed on 
the file, 

• date the file was allocated, 

• date the file was last read or written by a task, 

• the data block size and index block size if the file is an 
indexed, nonbuffered indexed, or extendable contiguous file, 
and 

• the number of disk records or sectors currently used by the 
file. 

Only one directory block can remain in memory at a time; 
therefore, only five file entries can be memory resident. The 
file manager scans these entries to find a file. To search the 
remaining files on the system, the file manager has to replace 
the primary directory block in memory with the next block from 
the disk. Examining five entries at a time to find a f ilc can 
greatly increase the time it takes to access that file. 

To decrease the amount of time required to scan the directory, 
the file manager uses a secondary file directory. (See Figure 
4-6.) The secondary directory is a contiguous file named 
SYS 1rEM.DIR that is created when the disk is marked online. The 
secondary directory points to each block of the primary directory 
and lists the filenames of the directory entries that are in each 
block. All or part of the secondary directory is maintained in 
memory in dynamic system space. After the file manager finds the 
filename it is searching for in the secondary directory, it can 
directly access the primary directory block that contains its 
directory entry. Note that while this method saves access time, 
the secondary directory does use more memory space than scanning 
the primary directory. 

To use the secondary file directory method, specify this option 
in the MARKON command when marking a disk online. See the OS/32 
Operator's Reference Manual. This command also allows the 
operator to specify the size of SYSTEM.DIR, including room for 
expansion. If during processing, the secondary directory cannot 
accommodate any additional files that are being allocated, the 
disk must be marked off line and then marked back online to 
recreate a larger secondary directory. The MARKON command will 
provide the operator with information to make a decision as to 
the preferred size of the secondary directory. 

48-039 FOO ROl 4-11 



5628 

0(0) PRIMARY DIRECTORY BLOCK POINTER 1 [4] 

4(4) FILENAME 1 [12] 

16(10) FILENAME 2 [ 12] 

28(1C) FILENAME 3 [12] 

40(28) FILENAME 4 [12] 

52(34) FILENAME 5 [ 12] 

I 
I 
I 
I 
I 
I 
I 

192(CO) PRIMARY DIRECTORY BLOCK POINTER 4 [4] 

196(C4) FILENAME 16 [ 12] 

208(DO) FILENAME 17 [12] 

220(DC) FILENAME 18 [12] 

232(E8) FILENAME 19 [12] 

244(F4) FILENAME 20 [12] 

256(100) 

Figure 4-6 Secondary File Directory (SYSTEM.DIR) 

4.5.2 Bit Map 

The file manager interrogates the bit map to determine which 
sectors are available for allocation. The bit map maintains an 
available space inventory for the disk volume. A bit in the bit 
map is assigned to each sector on disk. When a bit in the bit 
map is set to 1, its corresponding sector is allocated for a 
file. When the bit is set to 0, its corresponding sector is 
free. The disk initializer places the bit map close to the file 
directory to minimize disk head movement when allocating files. 

4-12 48-039 FOO ROl 



4.5.3 Permanent and Temporary File Allocation 

When a f i.le is allocated, it can be designated as a permanent or 
temporary file. If permanent, the file remains on disk until an 
operator conunand or a task asks the file manager to delete it. 
Temporary files remain on disk only as long as they are assigned 
to a task. Once the assignment to a task is closed, the file 
manager deletes the file. 

4.6 ASSIGNING FILES TO A TASK 

The OS/32 file manager allows a task to access system resources 
via a logical unit (lu) number rather than by the name of a 
device or file. Up to 255 logical units (0 through 254) can be 
used by a task. Because lu255 is reserved, it is not available 
for task use. 

All disk files that are to be accessed by a task must be assigned 
to an lu before any I/O operations can be performed to those 
files. Once a file is assigned to an lu, the OS/32 1/0 subsystem 
ensures that the proper devicE~ driver or controller is used when 
the task requests an I/O transfer to the lu. Such I/O requests 
are device-independent I/O; i.e., device assignments are made by 
the operator who started the task, not by the task that made the 
I/O request. 

For example, suppose a FORTRAN program has the following code: 

READ(2,100) A 
WRITE(l,100) B 

When executed, the task reads a value from the device or file 
assigned to lu2, stores it into variable A, and writes the value 
of B to the device assigned to lul. The operator may assign lu2 
to an MTM terminal, disk file or whatever input device is 
available to the task. Likewise, lul can be assigned to a disk 
file, printer, terminal, or whatever output device is available. 
Hence, device-independent I/O allows the devices or files that 
will be used by a task to be changed without changing the actual 
code within the program. 

Sometimes a progranuner may wish to perform an operation while 
suppressing the output from that operation. For example, one may 
wish to compile a program or build a task image without creating 
an object or task image file. To do this, the lu should be 
assigned to the NULL: device. This assignment allows the 
operation to be performed without generating any output from that 
operation. 

48-039 FOO ROl 4-13 



4.7 ACCESS METHODS 

The OS/32 system services that interpret and fulfill a task's 
request for storage and retrieval of data are known as access 
methods. The OS/32 I/O subsystem supports two access methods: 
buffered and nonbuffered. Both methods are transparent to the 
user. 

To perform a read or write operation, a task should have two 
interfaces to these access methods: 

• the user code interface that requests a data transfer (e.g., 
a READ or WRITE statement in FORTRAN), and 

• the lu assigned to the file required by the task. 

5629 

U-TASK ---

FREC 
BREC 
FFILE 
BFILE 
OPEN 

REWIND 
READ 

WRITE 

RECORDS 

OS/32 --- ACCESS --
METHODS 

LU ----
RECORDS 

BUFFERED - .. - --
t-------

LU --NON BUFFERED -
-- RECORDS 

_ .. - ----

Figure 4-7 Task Interfaces to Access Methods 

As shown in Figure 4-7, the access methods fall between these two 
interfaces. 

Each time a read or write operation is performed to a file, the 
access methods adjust the current record pointer for that file. 
The value of the current record pointer is the number of a 
logical record in a file on disk. For contiguous and extendable 
contiguous files, this number refers to a logical sector address. 
For nonbuffered indexed and indexed files, this number refers to 
a logical record. The value of the current record pointer can 
range from 0 to the current number of records in the file minus 
one. 

4-14 48-039 FOO ROl 



All records can be accessed sequentially or randomly. When data 
records are transferred sequentially (i.e., one record at a time) 
the record pointer is automatically incremented by 1 to point to 
the next record after the last record or sector is transferred. 
After a random read or write operation is completed, the record 
pointer is set to the number of the record immediately following 
the last one that was transferred. 

In addition to read or write o·perations, the 
adjusted after the following operations 
task: 

• Rewind 

Record pointer is set to 0 

• Assign (open) 

record pointer is 
are requested by the 

Record pointer is set to 0 for all access privileges except 
write only (SWO/EWO). If write only is in effect, the record 
pointer is set to the number of the record following the last 
existing record in an indexed or nonbuffered indexed file and 
to the last record read or written in a contiguous or 
extendable contiguous file. 

• Backspace Filemark (BFILE) 

If the file is a contiguous file, the record pointer 
backspaces to the number of the record containing a f ilemark. 
Otherwise, the record pointer is set to zero. 

• Forward Space Filemark (FFILE) 

If the file is a contiguous file, the record pointer spaces 
forward to the number of' the next record containing a 
f ilemark. Otherwise, the record pointer is set to the total 
number of records in the f il.e. 

• Backspace Record (BREC) 

The record pointer is decremented by 1 unless it is already 
pointing to record number 0. 

• Forward Space Record (FREC) 

The record pointer is incremented by 1 unless incrementing by 
1 would cause the pointer to exceed end of file (EOF). 

Data can be transferred in either binary, image, or ASCII mode. 
The amount of data that can be accessed is determined by the file 
type, as listed below. 

48-039 FOO ROl 4-15 



FILE TYPE 

Contiguous 
Extendable ContiguouB 

Indexed 
Nonbuf f ered indexed 

BYTE-LIMIT OF TRANSFER 

2 - Capacity of file 
2 - Capacity of file (Read) 
2 - Capacity of disk (Write) 
1 - Record length 
2 - Record length 

4.7.1 Buffered Input/Output (I/O) (Indexed Files) 

Indexed files use buffered I/O. When a data block of an indexed 
file is read or written, the transfer occurs between the system 
buffer and the file. Data is moved between the system buffer and 
the user buffer as requested by the task. 

For example, to read data block 1 and data block 60, the data 
blocks are read into the system buff er before the records in the 
blocks are transferred to a user buffer. A data transfer is 
complete when one complete record has been moved into the user 
buffer or when the user buffer is full, whichever comes first. 
If a record does not fill the user's receiving buffer, the 
remaining bytes in the user buffer are unaffected. 

When a write operation is performed, data is moved from the user 
buffer to the system buffer before transfer to disk. The 
open-ended structure of the indexed file allows the file size to 
be extended during a write operation up to the available free 
space on the disk. However, file extension can only be performed 
sequentially; i.e., each record added to the file must follow the 
last record written to the file. Random write operations can 
only be performed to an existing record in the file. For 
example, if an indexed file consists of 5 records, a request to 
write record 6 causes the file size to be extended to a 6-record 
length capacity. However, a request to write record 7 or higher 
to an indexed file containing 5 records would return EOF status. 

If a binary record written to an indexed file is shorter than the 
file's record length, the remaining bytes of the record are 
automatically filled with zeros. ASCII records that are shorter 
than the file's record length are padded with blanks. If a 
record longer than the files record length is read or written, 
the data exceeding the record length is not transferred. Hence, 
the record length of an indexed file should be large enough to 
hold the largest possible amount of data that will be read or 
written during one data transfer operation. 

4.7.2 Nonbuffered Input/Output (I/O) 

Nonbuffered I/O is used for contiguous, extendable contiguous, 
and the nonbuffered indexed file types. Data is transferred 
directly between the user buffer and the file on disk. All but 
contiguous files can be extended during write operations. Both 
random and sequential I/O are supported by all three nonbuffered 
file types; however, some restrictions apply. 

4-16 48-039 FOO ROl 



4.7.2.1 Accessing Contiguous Files 

Data records for a contiguous file are transferred in blocks 
greater or smaller than the file's record length (256 bytes or 
one sector). All transfers begin on a sector boundary and must 
be an even number of bytes. If the amount of data written to a 
file does not equal 256 bytes, the data is left-justified in the 
sector and the last 2 bytes of the data are propagated to the end 
of the sector. Because contiguous files cannot be extended 
during write operations, random writes can only be performed on 
existing allocated sectors. 

To extend the file length of a contiguous file, use OS/32 Copy to 
copy the file to another file of the desired size. See the OS/32 
Copy User Guide for more information. 

4.7.2.2 Accessing Nonbuffered Indexed Files 

Nonbuffered indexed files provide the flexibility of indexed 
files without the use of system space for data buffers or the use 
of processor time for moving data between system space and the 
task's I/O buffer. For example, suppose a nonbuffered indexed 
file is made up of a 250-sector data block consisting of 240-byte 
records. Since each record begins on a sector boundary, there 
will be 250 records in the block. Because the size of each 
record is less than 256 bytes, each sector is filled with the 
last 2 bytes of the data. To read records 15 and 62,015, data 
blocks 1 and 249 are accessed. If a five-sector index block was 
specified, the addresses of both of these sectors would be in 
memory at the time of access when they would be transferred 
directly to the task's buffer. The time required to perform such 
a transfer is comparable to that required when using a contiguous 
file. 

Like indexed files, the open-ended structure of a nonbuffered 
indexed file allows the file to be extended sequentially during 
write operations. Random write operations can only be performed 
on existing file records. 

4.7.2.3 Accessing Extendable Contiguous Files 

A sector in an extendable contiguous file is directly accessed in 
the same manner as a contiguous file. Multiple data block 
transfer requests, however, require a separate I/O operation for 
each block. Contiguous files require one I/O operation for a 
multiple-sector transfer. 

48-039 FOO ROl 4-17 



For example, suppose an extendable file has data blocks 
consisting of 250 sectors per data block. To read sector number 
15 and then sector number 62,015, simply access data blocks 1 and 
249. If the index block for this file is at least 5 sectors, the 
addresses of both blocks are in memory at the time of access and 
they are transferred directly to the task's buffer. The time 
required to perform such a transfer is comparable to that 
required by a contiguous file. 

Like nonbuffered indexed and indexed files, extendable contiguous 
files are open-ended. However, extendable contiguous files can 
be expanded sequentially and randomly. For example, a 10-sector 
file can be extended to a 20-sector file simply by writing to 
sector 20. The sectors between 10 and 20 are automatically 
allocated to the file. Essentially, for write operations no EOF 
exists. Hence, it is possible to completely fill a disk by 
writing to a sector with an unusually large random address. 

Transfer of data begins and ends on a sector boundary. Partially 
filled sectors are padded with the last 2 bytes of the 
transferred data. In addition, an even number of bytes should be 
transferred; otherwise, the processor hardware will add one 
additional undefined byte to the buffer. 

4.8 FILE SECURITY 

As explained in Chapter 2, a task cannot perform its function if 
the data it acts on has been destroyed. When data is contained 
in main memory, it is protected by the relocation/protection 
hardware. However, if task data is stored on disk, access to the 
files containing the data must be controlled. 

File access is controlled by matching a task with a set of 
permissable operations that they can perform on a given file. 
1rhese operations are called access privileges. Access privileges 
are given to a task when a file is assigned to the task's lu. 
The access privileges are: 

• Sharable read only (SRO) 

• Exclusive read only (ERO) 

• Sharable write only (SWO) 

• Exclusive write only (EWO) 

• Sharable read/write (SRW) 

• Sharable read, exclusive write (SREW) 

• F.xclusive read, sharable write (ERSW) 

• Exclusive read/write (ERW) 

4-18 48-039 FOO ROl 



When multiple tasks are ass ign1ed to the same file, the access 
privileges for those tasks should be compatible. For example, 
one task cannot have EWO privileges to a file while another task 
has SWO privileges. Table 4-1 shows which access privileges are 
compatible. If a file is assigned to a task with access 
privileges that are incompatible with those previously assigned 
for another task, the access privileges for the second assignment 
will automatically default to the previous assignment. 

* 

TABLE 4-1 ACCESS PRIVILEGE 
COMPATIBILITY 

ERSW 

ERO 

SRO 

SRW 

swo 

EWO 

SREW 

ERW 

E 
R 
s 
w 

* 

LEGEND 

E 
R 
0 

* 

* 

Compatible 
Incompatible 

,s 

R 
0 

* 

* 

* 

* 

* 

s 
R 
w 

* 

* 

* 

s 
w 
0 

* 

* 

* 

* 

* 

E 
w 
0 

* 

* 

s 
R 
E 
w 

* 

E 
R 
w 

- I -

If a file is assigned to multiple logical units for the same 
task, the file cannot be assigned for ERO on one lu and SRO on 
another. If a file is assigned for exclusive read or write 
access on any given lu, the file cannot be assigned for that 
access on any other lu. 

48-039 FOO ROl 4-19 



.. 
A task can change its access privileges to a file without closing 
the file by requesting an access privilege change from the file 
manager. Allowable access privilege changes are shown in Table 
4-2. If the task attempts to change an access privilege to one 
that is not allowed, the existing access privilege remains in 
effect. 

TABLE 4-2 ALLOWABLE ACCESS PRIVILEGE CHANGES 

I 
I CHANGE TO 

CHANGE 1---------------------------------------------·----
FROM I SRO I ERO I SWO I EWO I SRW I SREW I ERSW I ERW 

================·=-=-====--------------==========·====-=== 
SRO x x 

ERO x x 

swo x x 

EWO x x 

SRW x x x x x x x x 

SREW x x x x x x x x 

ERSW x x x x x x x x 

ERW x x x x x x x x 

LEGEND 

x indicates allowable change 

A file can also be protected from read or write operations 
through the read/write keys that are given to the file when it is 
allocated. See Table 4-3. The read/write keys can protect a 
file from being read from or written to by any task assigned to 
it. For example, if a file's read and write keys are X'OO' and 
X'07', respectively, its assigned task can read from that file 
but it cannot write to the file unless the file is assigned to 
the task with the same write key. 

4-20 48-039 FOO ROl 



TABLE 4-3 READ/WRITE KEYS 

WRITE I READ I 
KEY I KEY MEANING 

======================================~========== 

00 

FF 

07 

FF 

00 

27 

00 

FF 

00 

A7 

FF 

32 

Not protected. 

Unconditionally protected (used 
by executive tasks). See the 
OS/32 System Level Programmer 
Reference Manual. 

Unprotected for read, condition­
ally. Protected for write. Task 
must match write key of X'07'. 

Unconditionally protected for 
write, conditionally protected 
for read. Task must match read 
key of X 'A 7' . 

Unprotected for write, uncondi­
tionally protected for read 

Conditionally protected for both 
read and write. Task must match 
both keys. 

A task can change the keys of a file if the file has been 
assigned to the task with exclusive read or exclusive write 
privileges. For example, if the file is assigned to the task 
with the exclusive write only privilege, the write key can be 
changed. If the file is assigned to the task with exclusive 
read/write privileges, one or both keys can be changed. 

Further protection is available when the disk is marked online. 
A disk volume can be marked online as write-protected. A 
write-protected volume will only accept assignments for SRO and 
SRW. (SRW is immediately changed to SRO). No other access 
privileges are permitted. If the write-protected feature of the 
disk hardware is enabled, the volume should also be marked on as 
a protected volume. See the OS/32 Operator Reference Manual for 
more information on marking on a disk. 

48-039 FOO ROl 4-21 



4.9 CHOOSING THE RIGHT FILE TYPE 

Not every file type is right for every real-time application. 
Record length, access method, and file expandability should all 
be taken into consideration when allocating and assigning files 
to a task. These and other file type characteristics are 
sununarized in Table 4-4. The following sections describe the 
advantages and disadvantages of using each of the four file 
types, as well as some tips on handling disk fragmentation. 

'rY'PE 

Contiguous 

Indexed 

Nonbuf fered 
Indexed 

Exlendable 
Contiguous 

TABLE 4-4 FILE TYPE SUMMARY 

I RECORD 
I DATA I LENGTH I 
I ORGANIZATION I (BYTES) I 

FILE 
LENGTH 

I BUFF- I RECORD I 
l ERED I POINTER I 
I I/O VALUE 

Contiguous 

Linked-list 
indexed 

Linked-list 
indexed 

Linked-list 
indexed 

256 Fixed at NO 
allocation 

1 to Open-ended YES 
65,535 

2 to Open-ended NO 
65,535 

256 Open-ended NO 

Sector 
number 

Data 
block 
number 

Data 
block 
number 

Sector 
number 

BYTE LlMIT/ 
TRANSFER 

2 - Capacity 
of file 

1 - Record 
length 

2 - Record 
length 

2 - Capacity 
of file (read) 
2 - Available 
disk space 
(write) 

4.9.l Using Contiguous Files 

The primary advantage of using contiguous files is that all space 
required for the file is fixed when the file is allocated. Since 
the maximum file length cannot be changed, the user knows how 
much data can be input. This advantage should be weighed against 
the cost of losing file space when a contiguous file that 
contains a large number of unused sectors exists on disk. 
Contiguous files also support overlapped I/O and program 
execution. For all other file types, the task actually waits for 
an I/O operation to complete, even if a proceed 1/0 request was 
made. See the OS/32 Supervisor Call (SVC) Reference Manual for 
more information on I/O proceed requests. 

4-22 48-039 FOO ROl 



Another characteristic of contiguous files that proves helpful in 
some applications (e.g., magnetic tape emulation) is the ability 
to support f ilemarks. 

Finally, to achieve the fastest possible access time for 
applications that perform a large number of random read and write 
operations, use contiguous files. 

4.9.2 Using Indexed Files 

The advantage of using indexed files is that the user does not 
have to compute the size of the file before allocation. Hence, 
indexed files are best suited for applications where file size 
continues to expand throughout the life of the file. 

Many applications, such as compiling or assembling source code, 
are I/O bound; i.e., the time required to complete the job 
depends primarily on the speed of the sequential I/O to and from 
the disk. In these circumstances, indexed files with moderate 
block sizes provide the best throughput. Due to the additional 
central processing unit (CPU) overhead caused by buffering 
operations, the use of data block sizes of 5 to 20 has been found 
to cause a job to become CPU limited. However, many simple tasks 
do not become CPU limited until much larger block sizes are used. 

It should be remembered that for strictly sequential access 
applications, nonbuffered indexed, extendable contiguous, and 
contiguous files all offer the same throughput, and all three are 
usually lower in performance than indexed files. 

The random access performance of indexed files depends on the 
correct choice of index and data block sizes. The optimal choice 
of data block size can usually be determined only by experiment 
for a particular application. In general, the index block size 
should be such that the file requires only one index block. (In 
reality, this is often not possible since the data blocks 
supported by indexed files are not as large as those supported by 
nonbuffered indexed and extendable contiguous files.) 

4.9.3 Using Nonbuffered Indexed Files 

The purpose of nonbuffered files is two-fold. They provide the 
user with excellent random access performance for files of 
arbitrary logical record length, and they eliminate the CPU 
overhead and main memory requirements associated with buffered 
indexed files. 

For CPU bound processes, or those processes that perform only 
random I/O on very large t:iles of arbitrary record size, 
nonbuffered indexed files are preferred. Because these files 
have no data buffers in main memory, some users may prefer to use 
nonbuffered indexed files to conserve memory space, even at the 
expense of performance in typical sequential access operations. 

48-039 FOO ROl 4-23 



Like indexed files, the random access performance of nonbuffered 
indexed files also depends on the correct choice of index and 
data block sizes. Hence, the maximum possible data block size 
should always be used, unless disk fragmentation prevents such 
large block sizes. 

Nonbuffered indexed files are also suited for applications whose 
total file size continues to expand throughout the life of the 
file. 

4.9.4 Using Extendable Contiguous Files 

Extendable contiguous files provide all of the random access and 
performance advantages of contiguous files, without the drawback 
of fixed file sizes. Care should be taken, however, in choosing 
data and index block sizes to ensure the best possible 
performance. For example, suppose that an application requires 
a contiguous file of 200,000 sectors. Using the largest possible 
data block size (255 sectors), there would be 785 data blocks. 
These data blocks could be pointed to from one index block of 13 
sectors. Thus, for a cost of 13 sectors (3.25kb) of system 
space, the entire file index could be contained in memory. This 
would allow random access to the file to be the same as to a 
contiguous file. 

Extendable contiguous files are also suited for applications 
whose total file size continues to expand throughout the life of 
the file. 

4.9.5 Disk Fragmentation 

The process of repeatedly allocating, expanding, and deleting 
files of various sizes and record lengths eventually results in 
disk fragmentation. Here, fragmentation means that the available 
free space on the disk is divided among a great many relatively 
small areas. These areas may be as small as one sector or may 
cover the total available free space on the disk. 

On the average, there are fewer places to allocate a large 
physical block than a small physical block. On badly fragmented 
disks, the maximum block size that can be allocated may be very 
small. Also, the time required to allocate any given block will 
increase with increasing block size or increasing disk 
fragmentation, since there are generally fewer locations where 
the block will fit (that is, it takes somewhat longer to locate 
a large free space than a small free space). 

4-24 48-039 FOO ROl 



Disk fragmentation and total amount of free space both determine 
the maximum possible file size for any given physical block size. 
For example, on a given disk the maximum file size might be 
150,000 sectors if the block size were 5 sectors, but only 90,000 
sectors if the block size were 64 sectors, and only 40,000 
sectors if the block size were 250. On the same disk, the 
largest contiguous file that could be allocated would be 20,000 
sectors. 

Once a disk is badly fragmented, the only option available is to 
compress the disk. To compress a disk, initialize a new disk 
pack on another drive and copy all files from the fragmented pack 
to the newly initialized pack. If only a single drive is 
available (or no additional packs are available), the fragmented 
pack can be backed up to tape, reinitialized, then restored from 
the tape. 

48-039 FOO ROl 4-25 





CHAPTER 5 
WRITING PROGRAMS THAT ACCESS OS/32 SYSTEM SERVICES 

5.1 INTRODUCTION 

The OS/32 supervisor calls (SVCs) provide the task interface to 
OS/32 system services. These calls activate the appropriate 
OS/32 executor routines that can handle the user's requests. For 
example, to request use of a system resource, a task issues an 
SVC 7. To request transfer of information to the resource given 
to the task by SVC 7, an SVC 1 is issued. 

When a task calls an executor t:out ine through an SVC, the task 
must pass the information needed by the routine to perform the 
requested function. For example, to transfer data from a d.isk 
file, the operating system requires the address of the user 
buffer to which the data is to be sent. This information is 
passed through a special OS/32 data structure called the SVC 
parameter block. OS/32 provides a separate parameter block 
structure for each type of SVC that can be issued by the task. 
The task builds a parameter block in its task address space and 
stores the information required by the executor routine in that 
block. When the SVC is issued, the operating system refers to 
data stored in the parameter bl6ck during execution of the 
routine. 

Perkin-Elmer provides a number of methods for writing application 
programs that access system services. A progranuner working in 
OS/32 Common Assembly Language (CAL) can write a program that 
directly issues an SVC or executes an OS/32 system macro library 
routine that issues an SVC. A FORTRAN program can issue an SVC 
by calling a Perkin-Elmer Run-Time Library (RTL) routine that 
issues the SVC. If a FORTRAN program is to access the file 
manager, the FORTRAN VII auxiliary input/output (I/O) statements 
can be used. Finally, a Pascal program can access system 
services through procedures contained in the standard Pascal 
Pref ix supplied with the Perkin-Elmer Pascal compiler. These 
programming methods are outlined in Figure 5-1. 

48-039 FOO ROl 5-1 



5815 

OS/32 
SYSTEM 
MACRO 

FORTRAN 
STATEMENT 

SVC 

OS/32 
EXECUTOR 

PASCAL 
PROCEDURE 

Figure 5-1 Task Interface to OS/32 Executor Routines 

This chapter demonstrates how each of these methods are used to 
write a program that accesses two OS/32 system services; namely, 
the I/O and file management services. First, the SVC 1 and SVC 
7 parameter block structures that pass data to the I/O and file 
management executor routines are discussed. Refer to the OS/32 
Supervisor Call (SVC) Reference Manual for more details on the 
individual parameters of the SVC parameter blocks discussed in 
these sect.ions. 

5.2 BUILDING A SUPERVISOR CAIL (SVC) PARAMETER BLOCK 

•rhe OS/32 macro library SYSSTRUC.MLB provides macro routines that 
define parameter blocks for SVC 1, SVC 5, SVC 6, SVC 7, and SVC 
13 in a task's address space. These macro routines are listed in 
the OS/32 Supervisor Call (SVC) Reference Manual. To build a 
parameter block structure within a task's address space, expand 
the appropriate OS/32 system macro routine and store the 
information required by the OS/32 executor routine in the 
parameter block. 

5.2.1 Accessing Input/Output (I/0) System Services 

To request an I/O service, the task first 
parameter block using the $SVC1 macro. 
parameter block shown in Figure 5-2. 

5-2 

defines an SVC 1 
$SVC1 defines the 

48·-039 FOO ROl 



5816 

O(O) FUNCTION CODE 
1 ( 1) 2(2) DEVICE 3(3) DEVICE 

LU INDEPENDENT STATUS DEPENDENT STATUS 

4(4) 

8(8) 

12(C) 

16(10) 

20(14) 

(SVC1.FUN) (SVC1.LU) (SVC1.STA) (SVC1 .DN) 

BUFFER START ADDRESS 
(SVC1.SAD) 

BUFFER END ADDRESS 
(SVC1 .EAD) 

RANDOM ADDRESS 
(SVC1 .RAD) 

LENTH OF DATA TRANSFER 
(SVC1.LXF) . 

EXTENDED OPTIONS 
(SVC1 .XOP) 

Figure 5-2 SVC 1 Parameter Block Defined by $SVC1 

TABLE 5-1 SVC~ 1 FUNCTION CODES 

I FUNCTION I 
EQUATE CODE MEANING 

======================~=======~=========~====~=== 

SVl.CMDF 
SVl.READ 
SVl.WRIT 
SVl.BIN 
SVl.WAIT 
SVl.RAND 
SVl. UPRO 
SVl. IMG 
SVl. XOP 
SVl.XIT 

SVl. REW 
SVl.BSR 
SVl.FSR 
SVl.WFM 
SVl.FFM 
SVl.BFM 
SVl.DDF 
SVl. HALT 
SVl.SET 
SVl.WO 
SVl.TEST 

X'80' 
X'40' 
X'20' 
X'lO' 
X'08' 
X'04' 
X'02' 
X'Ol' 
X'Ol' 
x' 01' 

X'CO' 
X'AO' 
X'90' 
X'88' 
X'84' 
X'82' 
x' 81' 
X'80' 
X'60' 
X'08' 
X'02' 

Command 
Read 
Write 
Binary 
Wait 
Random 
Unconditional proceed 
Image mode 
Use extended options 
Use data communications 

extended option word 
Rewind 
Backspace record 
Forward-space record 
Write f ilemark 
Forward-space f ilemark 
Backspace f ilemark 
Device dependent function 
Halt I/O 
Test and set 
Wait only 
Test I/O completion 

48-039 FOO ROl 5-3 



Notice that the SVC l parameter block is divided into specific 
fields that contain the data·required by the OS/32 I/O subsystem 
to perform the requested operation. The first field contains the 
function code indicating the particular I/O function to be 
performed. See Table 5-1. For example, a parameter block for a 
read request contains the following: 

• SVl.READ function code 

• logical unit (lu) assigned to the disk file to be read 

• starting and ending addresses of the user buffer 

1rhe fol lowing code builds an SVC 1 parameter block for an SVC 1 
that requests a data transfer from a file or device assigned to 
lul to the user buffer at location BUFF. 

Example: 

SVC. IN 
ENDPBK 

$SVC1 
ALIGN 
OS 
EQU 
ORG 
DB 
DFB 
ORG 
DC 
DC 
ORG 

4 
SVCl. 
* 
SVCl. IN+SVCl. FUN 
SVl.READ 
1 
SVCl.IN+SVCl.SAD 
A( BUFF) 
A(BUFFE) 
ENDPBK 

DEFINE THE STRUCTURE 

ALLOCATE $TORAGE FOR PARBLJ< 

INITIALIZE FIELDS 
FUNCTION CODE 
LOGICAL UNIT=l 

BUFFER START ADDRESS 
BUFFER END ADDRESS 

To request this operation, the task issues the SVC 1 as follows: 

SVC l,SVC. IN 

The following program uses SVC 1 to build two parameter blocks, 
one for an SVC l that performs a read operation from a file or 
device assigned to lul and one for an SVC l that performs a write 
operation to a file or device assigned to lu2. Notice that this 
program uses the function code SVl. WAIT to a.llow task execution 
to be suspended until each data transfer operation is complete. 
Also notice that the program checks the status field of the SVC 
1 parameter block to determine if the I/O operation was 
successfu 1. 

5-4 48-039 FOO ROl 



Example: 

SVCl PROG 
ML I BS 
NLSTM 
FREZE 
$SVC1 
ALIGN 

SVCl. IN OS 
ENDPBK EQU 

ORG 
DB 
DB 
ORG 
DC 
DC 
ORG 

BUFF OS 
BUFFE EQU 

ALIGN 
SVCl.OUT OS 
ENDPBK EQU 

ORG 
DB 
DB 
ORG 
DC 
DC 
ORG 

START EQU 
SVC 
LH 
BM 
SVC 
LH 
BM 
SVC 

ERROR EQU 
SVC 
END 

SIMPLE SVC 1 EXAMPLE 
8,9,10 DECLARE MACRO LIB TO CAL/MACRO 

DON'T LIST MACRO EXPANSIONS 
FREEZE LINE NUMBERS 
DEFINE SVC 1 STRUCTURE 

4 ALIGN PARBLK ON FULLWORD 
SVCl. ALLOCATE INPUT PARBLK 
* 
SVCl.IN+SVCl.FUN 
SVl.READ!SVl.WAIT 
1 
SVCl.IN+SVCl.SAD 
A( BUFF) 
A(BUFFE) 
ENDPBK 
80 
*-1 
4 
SVCl. 
* 
SVCl.OUT+SVCl.FUN 
SVl.WRIT!SVl.WAIT 
2 
SVCl.OUT+SVCl.SAD 
A( BUFF) 
A(BUFFE) 
ENDPBK 
* 
l,SVCl. IN 
O,SVCl.IN+SVCl.STA 
ERROR 
1, SVCl. OUT 
0, SVC 1. OUT+SVC 1 .. STA 
ERROR 
3,0 
* 
3,1 
START 

FUNCTION CODE=READ & WAIT 
LOGICAL UNIT=l 

BUFFER START ADDRESS 
BUFFER END ADDRESS 

ALLOCATE 80-BYTE BUFFER 

ALLOCATE OUTPUT PARBLK 

FUNC CODE=WRITE & WAIT 
LOGICAL UNIT=2 

SAME BUFFER AS INPUT 

ISSUE SVC 1 TO READ LUl 
CHECK STATUS 
<O, ERROR 
ISSUE OUTPUT SVC TO LU2 
CHECK STATUS 
<O, ERROR 
NORMAL EOT=O 

EOT=l 

5.2.2 Accessing File Management Services 

All file management requests are made through SVC 7. For 
example, a task requests an lu assignment via the SVC 7 assign 
function. The operating system assigns the resource (file or 
device) to the requesting taskys lu. The task proceeds to use it 
as required. When the task no longer needs the lu, the SVC 7 
close function is used to cancel the assignment. 

The SVC 7 parameter block that passes the necessary information 
to the file manager is shown in Figure 5-3. To define this 
structure, use the $SVC7 macro. Notice that the SVC 7 parameter 
block contains the file descriptor (fd) of the file on which the 
OS/32 executor is to perform the requested operation. 

48-039 FOO ROl 5-5 



6021 

0(0) 2(2) 3(3) 

FUNCTION CODE ERROR STATUS LU 
(SVC7.0PT) (SVC7.STA) (SVC7.LU) 

4(4) 5(5) 6(6) 

WRITE KEY READ KEY LOGICAL RECORD LENGTH 
(SVC7.WKY) (SVC7.RKY) (SVC7.LRC) 

8(8) 

VOLUME NAME OR DEVICE MNEMONIC 
(SVC7.VOL) 

12(C) 

FILENAME 

16( 10) 
(SVC7.FNM) 

20(14) 23(17) 

EXTENSION FILE CLASS/ 
(SVC7.EXT) ACCOUNT NO. 

(SVC7.ACT) 

24(18) 26(1A) 

INDEX BLOCK SIZE DATA BLOCK SIZE 
(SVC7.ISZ) (SVC7.DSZ) 

Figure 5-3 SVC 7 Parameter Block Defined by SSVC7 

SVC 2 code 16 can be used to pack an fd into the SVC 7 parameter 
block. This SVC must be used if the fd to be packed into the 
block specifies an account number. The parameter block for SVC 
2 code 16 is shown in Figure 5-4. Note that there is no macro 
available for defining this structure. See the OS/32 Supervisor 
Call (SVC) Reference Manual for more information on coding the 
SVC 2 code 16 parameter block. 

5818 

0(0) 1 ( 1) 2(2) 
OPTION CODE USER REGISTER 

4(4) 
ADDRESS OF PACKED FD AREA 

Figure 5-4 SVC 2 Code 16 Parameter Block 

5-6 48-039 FOO ROl 



The following program issues an SVC 7 and SVC 2 code 16 to assign 
lu2 to a file named MYFILE.TXT/P. The program uses $SVC7 to 
define an SVC 7 parameter block. A parameter block is also built 
for SVC 2 code 16. This block contains the nufnber of the 
register that holds the fd to be packed and the address of the 
SVC 7 parameter block field where the fd is to be packed. No 
error checking is performed by this program. 

Example: 

ML I BS 8,9 
PROG ASSIGN 
$SVC7 

ASSIGN DS SVC7. BUILD SVC 7 PRBLK 
ASSIGNE EQU * 

ORG ASSIGN+SVC7.0PT 
DC SV7.ASGN!SV7.SRW SET FUNCTION CODE & ACCESS PRIV 
ORG ASSIGN+SVC7.LU 
DB X'2' INDICATE LU TO BE ASSIGNED 
ORG ASSIGNE 
ALIGN 4 

PACK EQU * BUlLD SVC 2,16 PRBLK 
DB X'lO' SET DEFAULT VOLUME OPTION CODE 
DB 16 SET SVC CODE 
DC X' l' 
DC A(ASSIGN+SVC7.VOL) STORE ADR OF PACKED FD AREA 
ALIGN 4 

FD DB C'MYFILE.TXT/P' 
ALIGN 4 

START EQU * 
LA l,FD LOAD FD INTO REG 1 
SVC 2,PACK 
SVC 7,ASSIGN 
SVC 3,0 END TASK WITH EOT 0 
END START 

The above examples represent only three of the I/O and file 
management services that can be accessed by an application 
program. For more information on other OS/32 system services, 
see the OS/32 Supervisor Call (SVC) Reference Manual. 

48-039 FOO ROl 5-7 



5.3 USING THE OS/32 SYSTEM MACRO LIBRARY TO ACCESS SYSTEM 
SERVICES 

The OS/32 system macro library pro~ides macro routines that not 
only build an SVC parameter block but also issue the SVC for a 
task. The programmer simply provides the necessary data for the 
OS/32 executor as operands to the macro instruction that expands 
the routine. For example, to output data from the user buffer, 
BUFF, to the file or device assigned to lu2, execute the WRITE 
macro instruction as follows: 

WRI'I1E LU=2, ADDR=BUFF, REGL=80, ENDADDR=BUFFE 

·rhe WRI'rE macro routine builds an SVC 1 parameter block with the 
SVl.WRIT function code set. Using the operands specified in the 
macro instruction, the WRI'rE routine stores the values for lu, 
record length (REGL), and the user buffer's starting and ending 
address in the appropriate fields of the SVC 1 parameter block. 
The routine then issues SVC 1. 

'rhe following assembly program uses system macros to access the 
read, write, assign, and allocate OS/32 executor routines. 

Example: 

PROG SVC 1 AND SVC 7 MACRO EXAMPLE 
MLIBS 8,9,10 

BUFF DS 80 
BUFFE EQU *-1 
START EQU * 

ALAS FD='TEST2.DTA',LU=2,AP=SRW,RECL=80,FT=IN,BLKSIZE=l,NDXSIZE=l 
ASSIGN LU=l,FD='CARDIN.FMU/S' 
READ LU=l,ADDR=BUFF,RECL=80,ENDADDR=BUFFE 
WRITE LU=2,ADDR=BUFF,RECL=80,ENDADDR=BUFFE 
EOT RC=O 

END START 

In the above example, the ALAS macro routine builds an SVC 7 
parameter block and then issues an SVC 7 to allocate the file 
·rEs·r2.o·rA and assign the file to lu2. The ASSIGN macro routine 
builds another SVC 7 parameter block and issues an SVC 7 to 
assign CARDIN.FMU/S to lul. 

The READ macro routine builds an SVC 1 parameter block and issues 
an SVC l to read data from CARDIN.FMU/S into the user buffer at 
location BUFF. The WRITE macro routine builds an SVC 1 parameter 
block and issues an SVC 1 to write data from BUFF to the indexed 
file irEST2. o·rA. 

See the OS/32 System Macro Library Reference Manual for details 
on how to use the OS/32 macro routines for writing assembler 
language programs that access OS/32 system services. 

5-8 48-039 FOO ROl 



5.4 WRITING A FORTRAN PROGRAM THAT ACCESSES SYSTEM SERVICES 

The Perkin-Elmer FORTRAN VII RTL provides subroutines that allow 
access to system services through a FORTRAN application program. 
Like the OS/32 system macro library routines, these subroutines 
build the SVC parameter block and issue the SVC for the program. 
The progranuner simply calls the RTL routine specifying the 
required SVC parameters as arguments to the call. For example, 
the SYSIO RTL routine is used to access OS/32 I/O services. 
SYSIO builds an SVC 1 parameter block using the arguments in the 
CALL SYSIO statement. After the block is built, SYSIO issues an 
SVC 1 to perform the requested I/O operation. 

The following example uses SYSIO to transfer data from the disk 
file assigned to lu2 to the user buffer at location BUFF. A 
second RTL subroutine, IOERR, is called to interpret the status 
of the I/O request after the operation is completed. IOERR 
places the status code contained in the error status field of the 
SVC 1 parameter block into the argument ISTATUS and outputs a 
message to the device assigned to lu6. 

Example: 

INTEGER 
INTEGER 
LU=2 
NBYTES=80 
RANADD=O 
ISTATUS=O 

LU,ISTATUS,NBYTES,RANADD,FC 
PBLK(S), BUFF(20) 

FC=Y'28' ; SVCl READ WAIT FUNCTION CODE 
CALL SYSIO(PBLK,FC,LU,BUFF,NBYTES,RANADD) 
CALL IOERR(PBLK,ISTATUS) 
IF (ISTATUS.NE.O) GO TO 10 

In the above example, the function code Y'28' tells the OS/32 
executor to perform the write operation and suspend task 
execution until the data transfer is completed. PBLK specifies 
the array in which the parameter block will be built. LU is the 
logical unit assigned to the output device. BUFF is the buffer 
array that is to be output. NBYTES specifies the number of bytes 
that will be output. 

See the FORTRAN VII User Guide for more information on using the 
RTL routines to access system services. 

To access file management servi.ces, the Perkin-Elmer FORTRAN VII 
compilers provide auxilliary I/O statements; e.g., OPEN and 
CLOSE. These statements are si.milar to the system macro library 
and RTL routines in that they build the necessary parameter block 
and call the SVC. These statements include parameters required 
to perform the specific file management function. 

48-039 FOO ROl 5-9 



Example: 

OPEN (UNIT=l,FILE=CARDIN.FMU/S,STATUS=OLD,ERR=lOO) 

The above example assigns the file CARDIN.FMU/S to lul by 
building an SVC 7 parameter block and issuing an SVC 7 to assign 
the file. STATUS=OLD tells the operating system that the file 
has already been allocated. If the file assignment operation 
ends in error, the program branches to statement label 100. 

See the FORTRAN VII Reference Manual for more information on the 
use of auxiliary I/O statements. 

5.5 WRITING A PASCAL PROGRAM THAT ACCESSES SYSTEM SERVICES 

The standard Pascal Pref ix supplied with the Perkin-Elmer Pascal 
package contains CONST, TYPE and PROCEDURE declarations that can 
be used to access system services. The Pref ix also supplies 
procedures that provide access to. system or SVC services. Like 
the FORTRAN VI I standard R'rL routines, these Pascal procedures 
both build the SVC parameter block and issue the SVC. The data 
required by the OS/32 executor is passed via the procedure 
parameters as shown in the following example. 

Example: 

(*$INCLUDE(PREFIX.PAS/S)*) 
PROGRAM SAMPLEPAS(OUTPUT) 

VAR STA1rus: BYTE; 

BEGIN 
OPEN(l,'M300:CMD~~~~~.FIL/P',SRW,O,STATUS); 
IF STATUS( )0 THEN 

WR I 'rELN ( •ERROR STATUS=• , STATUS) ; 
END 

•rhe above procedure uses the OPEN Pref ix procedure to assign the 
file M300:CMD.FIL/P to lul. With the OPEN procedure, an SVC 7 
parameter block is built and an SVC 7 is issued to assign the lu. 
This program checks the status field returned by the OPEN 
procedure. This status is the SVC 7 parameter block status after 
the I/O operation is completed. If an error has occurred, this 
program outputs an error message. 

See the OS/32 Pascal User Guide, Language Reference, and Run-Time 
Support Reference Manual for details on how to use the Pascal 
Pref ix to write a Pascal program that accesses system services. 

5-10 48-039 FOO RO! 



A 

Absolute code 
Access privileges 

compatibility of 
write only 

APU. See auxiliary 
processing unit. 

Arithmetic faults 

reason codes 
traps 

Assign 

AUF. See authorized user 
file. 

Authorized user file 
Authorized user utility 
Auxiliary I/O statements 

Auxiliary processing unit 

B 

Backspace f ilemark 
Backspace record 
BFILE. See backspace 

f ilemark. 
Bit map 

BREC. See backspace record. 

c 

Central processing unit 
Circular list 

Common assembly language 
Condition code 
Contiguous files 

advantages of 

byte-limit of transfer 
file length 
I/O operations 

maximum file length 
record length 
record size 
write operations 

Contiguous organization 

CPU. See central processing 
unit. 

CTOP 

48-039 FOO ROl 

2-4 
4-18 
4-20 
4-19 
4-lS 

3-5 
3-8 
3-6 
3-18 
4-13 
4-lS 

2-14 
1-5 
5-1 
5-9 
3-12 
3-26 

4-15 
4-lfi 

4-8 
4-12 

3-12 
3-8 
3-22 
5-1 
3-2 
4-6 
4-22 
4-23 
4-16 
4-17 
4-7 
4-22 
4-7 
4-17 
4-7 
4-16 
4-17 
4-4 
4-6 

2-9 

INDEX 

D 

D-task. See diagnostic task. 
Data blocks 

Data format/alignment faults 

reason codes 
Data record 

DEBUG/32 
Debugger 
Device drivers 

Device-independent I/O 
Diagnostic task 
Disk 

compression of 
fixed-head 
formatted 
fragmentation of 

moving-head 
sector 

track 
volume 

Disk initializer 

Disk volume 
write-protected 

Dormant state 

E 

E-task. See executive task. 
Executive task 
Extendable contiguous files 

advantages of 
byte-limit of transfer 
I/O operations 
maximum file length 
record size 
write operations 

4-5 
4-6 
4-7 
4-11 
4-16 
4-17 
4-18 
4-23 
3-5 
3-8 
3-7 
4-3 
4-6 
2-4 
2-4 
3-25 
4-2 
4-13 
4-13 
2-2 

4-25 
4-2 
4-3 
4-24 
4-25 
4-2 
4-4 
4-7 
4-10 
4-12 
4-3 
4-21 
4-3 
4-8 
4-12 

4-21 
2-11 

2-2 
4-6 
4-17 
4-24 
4-16 
4-7 
4-7 
4-7 
4-16 
4-18 

IND-1 



F,G 

Faults 
reason code 
types of 

fd. See file descriptor. 
FFILE. See forward space 

f ilemark. 
File access methods 

buffered 

interfaces to 
nonbuf fered 

File descriptor 

File directories 
primary 

secondary 
File management services 

allocate 
checkpoint 
close 
delete 
fetch attributes 
open. See also assign. 
rename 

File manager 
operations 
organization of 
supported devices 

File organization 
contiguous 

linked-list indexed 

File types 
choosing 
contiguous 
extendable contiguous 
indexed 
nonbuf fered indexed 
summary of 

Filemarks 

Files 

IND-2 

access methods 
access privileges 

account numbers 

attributes 
buffered 

byte-limit of transfer 
classes 

3-6 
3-5 

4-14 
4-16 
4-14 
4-14 
4-16 
,4-17 
4-2 
5-5 

4-8 
4-9 
4~10 
4-11 
4-11 
5-2 
5-5 
4-1 
4-1 
4-1 
4-1 
4-1 
4-1 
4-1 
4-1 
4-8 
4-3 
4-2 

4-4 
4-6 
4-4 
4-5 
4-6 
4-22 
1-4 
1-4 
1-4 
1-4 
4-22 
4-6 
4-7 
4-23 

4-14 
4-11 
4-18 
4-19 
4-20 
4-3 
4-10 
4-11 
4-5 
4-14 
4-16 
4-16 
4-3 

Files (Continued) 
definition of 
naming of 
nonbuf fered 

permanent 
random access 
read/write keys 

record pointer 
records 

security 
sequential access 
size of 
temporary 
types of 

FORTRAN VI I 
auxiliary I/O statements 

run-time library 
FORTRAN VII run-time library 
Forward space f ilemark 
Forward space record 
FREC. See forward space 
record. 

Function code 

H 

History records 

I ,J ,K 

I/O subsystem 

1/0 system services 
Illegal instruction faults 

Image file 
format 

Impure code 
Index blocks 

Indexed files 
advantages of 
buffered 

byte-limit of transfer 
1/0 operations 
maximum file length 
nonbuf f ered 

read operations 
record length 

4-2 
4-10 
4-14 
4-16 
4-17 
4-13 
4-15 
4-20 
4-21 
4-14 
4-11 
4-15 
4-16 
4-18 
4-15 
4-25 
4-13 
4-6 

5-1 
5-9 
5-9 
3-27 
4-15 
4-15 

5-4 

2-2 

4-13 
4-14 
5-4 
5-2 
3-5 
3-8 
2-1 
2-2 
2-2 
4-5 
4-10 
4-11 
4-18 
4-23 
4-24 

4-23 
4-5 
4-7 
4-16 
4-16 
4-7 
4-7 
4-6 
4-16 
4-17 
4-16 
4-16 

48-039 FOO ROl 



Indexed files (Continued) 
record size 
size of 
write operations 

Instrument Society of America 
Intertask communication 

restrictions on 
Intertask control services 
ISA. See Instrument Society 
of America. 

L 

LIB. See loader information 
block. 

Link 

Linked-list indexed 
organization 

Loader information block 
LOC. See location counter. 
Location counter 

Logical unit 

lu. See logical unit. 

M 

MAC. See memory access 
controller. 

MAT. See memory address 
translator. 

Memory access controller 
Memory access faults 

reason codes 
Memory address translator 
Message buff er queue 
Message ring 
Model 3200MPS System 

Monitors 

MTM. See OS/32 
Multi-Terminal Monitor. 

N 

Nonbuffered indexed files 
advantages of 

byte-limit of transfer 
hardware restrictions 
I/O operations 
maximum file length 

48-039 FOO ROl 

4-7 
4-16 
4-Hi 
3-25 

2-14 
3-24 

1-3 
2-1 

4-4 
4-5 
4-7 
2-2 

3-1 
3-2 
2-13 
4-13 
4-14 
4-18 
4-19 

2-5 
3-5 
3-8 
3-6 
2-5 
3-22 
3-2.2 
3-_l.2 
3-25 
1-1 
1-5 
2-13 
2-14 

4-6 
4-23 
4-24 
4-16 
4-7 
4-7 
4-7 

Nonbuffered indexed files 
(Continued) 
record size 
write operations 

Nonresident task 
NULL: device 

0 

Object libraries 
Object modules 
ODT. See overlay descriptor 
.table. 

OPEN. See also assign. 
OS/32 

common assembly language 
disk initializer 

features of 

file management services 

file manager 
I/O subsystem 

I/O system services 
intertask control 
services 

linkage editor 

loader 
monitors 
operating environments 
parameter block 
supervisor call 
system macro library 

OS/32 Copy 
OS/32 Multi-Terminal Monitor 

account privileges 
batch jobs 
subtasks 

OS/32 PATCH 
OS/32 real-time environment 

fault conditions 
file management services 
I/O services 
interrupt servicing 
memory addressing 
message service 
priority levels 
spooling utilities 
timer facility 

OS/32 Spooler 
OS/32 system macro library 
OS/32 time-sharing 

environment 
Overlay descriptor table 
Overlays 

4-7 
4-16 
4-17 
2-11 
4-13 

2-4 
2-4 

5-4 
5-1 
4-3 
4-8 
4-12 
1-1 
1-2 
4-1 
5-2 
5-5 
4-1 
4-2 
5-4 
5-2 

3-24 
1-3 
2-1 
2-2 
1-1 
1-1 
5-8 
5-1 
3-27 
5-1 
5-8 
4-17 
1-1 
1-4 
1-5 
2-13 
2-13 
2-2 

1-3 
1-4 
1-3 
3-1 
1-3 
1-4 
1-3 
1-4 
1-3 
1-4 
3-27 

1-4 
2-4 
2-4 
2-9 

IND-3 



P,Q 

Page 
Parameter block 

Partial images 

Pascal Pref ix 
example 
use of 

Permanent files 
Power restoration 

Prefix, Pascal 
example 
use of 

Primary directory block 
Primary directory entry 
Primary file directory 

Private image segment 

Program status word 
PSW. See program status 
word. 

Pure code 

R 

Random access 
Random I/O 
Read/write keys 

changing of 
Record 

ASCII 
binary 

Record pointer 

RELIANCE 
Relocation/protection 

hardware 

Resident task 
Rewind 
Rolled state 
Root node 
Root segment 

RTL. See run-time library. 
Run-time library 

use of 

s 

Secondary file directory 
size of 

IND-4 

2-5 
5-l 
5-2 
5-5 
5-6 
5-8 
5-9 
5-10 
2-5 
2-7 
5-1 
5-10 
5-10 
4-13 
3-5 
3-8 
5-1 
5-10 
5-10 
4-11 
4-10 
4-8 
4-9 
2-2 
3-14 
2-4 

2-2 
2-4 

4-15 
4-16 
4-20 
4-21 

4-16. 
4-16 
4-14 
4-15 
1-1 

2-2 
2-5 
2-11 
4-15 
2-11 
2-9 
2-4 
2-5 

5-1 
5-9 

4-11 
4-11 

Secondary atorage devices 
Sector 

Send data trap 
Send message trap 

example of 
Send message trap handler 

example of 
Sequential access 
Sequential I/O 
Shared image segment 
Shared segment 
SPL/32 
Spooling utilities 
Subtasks 

state change 
Supervisor calls 

example 

parameter block 
use of 

SVC 1 

example 
parameter block 

SVC 14 task trap 
reason code 

SVC 2 code 16 
parameter block 

SVC 6 

SVC 7 
parameter block 

SVC 9 
SVC. See supervisor call. 
System macro library 

example 

use of 

System structure macro 
library 

System tasks 

Task 
background 
foreground 

T 

logical address apace 
_nonresident 
nonsegmented 
object modules 
overlays 

4-1 
4-4 
4-7 
4-10 
4-12 
3-22 
3-22 
3-25 

3-23 
4-15 
4-16 
2-4 
2-9 
1-4 
1-4 
2-13 
2-14 
3-10 

5-4 
5-5 
5-7 
5-1 
5-2 
5-4 
5-5 
5-7 
5-2 
5-1 
5-5 
5-9 
5-3 
5-8 
3-8 
3-12 

5-6 
2-13 
3-12 
5-1 
5-5 
5-6 
5-8 
3-15 

5-1 
5-4 
5-8 
5-2 
5-8 

3-18 
2-14 

2-1 
2-14 
2-14 
2-9 
2-11 
2-9 
2-4 
2-4 

48-039 FOO RO.l 



Task (Continued) 
priorities 
private area 
resident 
segmented 

states 
system 
wait states 
workspace 

Task address space 

Task control block 

Task image 
Task queue 

Task queue trap handler 
example of 

Task queue trap handling 
routines 

examples 

Task queue traps 

reason codes 

Task scheduler 
Task states 

current 
dormant 
ready 
rolled 
wait 

Task status word 

bit definitions 
Task status word swap 

Task trap 

48-039 FOO ROl 

2-9 
2-7 
2-11 
2-4 
2-7 
2-9 
2-9 
2-14 
2-10 
2-4 
2-9 
2-6 
2-7 
2-4 
3-2 
3-15 
3-16 
3-18 
2-1 
3-22 
3-25 

3-22 

3-23 
3-24 
3-25 
3-8 
3-9 
3-12 
3-22 
3-9 
3-10 
3-11 
2-9 
2-9 
2-9 
2-11 
2-9 
2-11 
2-9 
2-4 
3-1 
3-8 
3-14 
3-rn 
3-25 
3-2 
3-12 
3-14 
3-1!> 
3-16 
3-2 
3-18 

Task trap handler 
example of 

Task trap handling routine 
Task wait states 
TCB. See task control block. 
Temporary files 
Track 
Transaction processing 
Trap-causing events 

arithmetic fault 
data format/alignment 
fault 

memory access fault 

task queue 
user-defined 

Trap-generating devices 

Trap handlers, system default 
TSW. See task status word. 

u 

U-task. See user-task. 
UBOT 
UDL. See user-dedicated 

location. 

User-dedicated location 

User-task 
logical address space 
nonprivileged 
privileged 

UTOP 

v 

Virtual task manager 
Volume descriptor 
VTM. See virtual task 

manager. 

w-z 

Workspace 

3-18 
3-25 
3-27 
3-28 
3-29 
3-23 
2-10 

4-13 
4-3 
1-1 

3-6 

3-7 
3-6 
3-7 
3-9 
3-12 
3-24 
3-25 
3-2 

2-9 

2-4 
3-1 
3-12 
3-13 
3-14 
3-16 
3-18 
2-2 
2-5 
2-2 
2-2 
2-9 

1-3 
4-8 

2-9 

IND-5 





w 
z 
...J 
(!) 
z 
0 
...J 
<( 

I­
::> 
CJ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
l 
I 

PUBLICATION COMMENT FORM 

Please use this postage-paid form to make any comments, suggestions, criticisms, etc. concerning 
this publication. 

Title---------------, Publication Title-------------

Company _____________________ _ Publication Number---------------------

Address --------------------------------

FOLD FOLD 

Check the appropriate item. 

D Error Page No. Drawing No.---------

D Addition Page No. Drawing No. ___________ _ 

D Other Page No. Ora wing No. ---------------------

Explanation: 

FOLD FOLD 

Fold and Staple 
No postage necessary if mailed in U.S.A. 

6434 



STAPLE STAPLE 

FOLD FOLD 

----------------------------~ 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J. 

POSTAGE WILL BE PAID BY ADDRESSEE 

PERKIN-ELMER 
Computer Systems Division 
2 Crescent Place 
Oceanport, NJ 07757 

TECH PUBLICATIONS DEPT. MS 322A 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

FOLD FOLD 

STAPLE STAPLE 

64: 


