PERKIN-ELMER

0S/32 SYSTEM MACRO LIBRARY

Reference Manual

48-006 FOO RO2

The information in this document is subject to change without notice and should not be
construed as a commitment by The Perkin-Elmer Corporation. The Perkin-Elmer Corpo-
ration assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a ficense, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described

software and any copies thereof shall remain in The Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Elmer.

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757
© 1979, 1983 by The Perkin-Elmer Corporation

Printed in the United States of America

TABLE OF CONTENTS

PREFACE

CHAPTERS

1 OVERVIEW OF THE SYSTEM MACRO LIBRARY

1.1 INTRODUCT ION

1.2 MACRO INSTRUCTIONS

1.2.1 Macro Instruction Formatting

1.2.1.1 Fixed Formatting of Macro Instruction
Statements

1.2.1.2 Free Formatting of Macro Instruction
Statements

1.2.2 Macro Instruction Fields

1.3 PARAMETERS

1.3.1 Positional Parameters

1.3.2 Keyword Parameters

1.3.3 Mixed Mode Parameters

1.4 PARAMETER FIEI.D VALUE MNEMONICS

1.5 MACRO EXPANSION ERRORS

1.6 CONSTRUCTING PARAMETER BLOCKS

1.6.1 Parameter Blocks for Supervisor Macros

1.6.1.1 Omitting the PCB> and FORM= Parameters

1.6.1.2 Code FORM=L (List Form)

1.6.1.3 Code PCB= (Execute Form)

1.6.2 Parameter Blocks for Input/Output, File
Management, Task Management.,, and Timer
Management Macros

1.7 ERROR HANDLING AND RECOVERY

1.8 MACROS IN CONDITIONAIL. ASSEMBLY

48-006 FO0O RO2

CHAPTERS (Continued)

2 SUPERVISOR MACROS

2.1 INTRODUCT ION : 2-1

2.2 END OF TASK (EOT) 2-2

2.3 FETCH DATE (FETDATE) 2-4

2.4 FETCH POINTER (FETPTR) 2-6

2.5 FETCH TIME (FETTIME) 2-8

2.6 GET STORAGE (GETSTORE) 2-10
2.7 GENERATE A GETSTORE STRUCTURE (GETSTORS) 2-12
2.8 BUIT.D A MNEMONIC TABLE (MNEMTBL) 2-13
2.9 MOVE ASCII (MVASCII) 2-14
2.10 PACK NUMERIC DATA (PACK) 2-17
2.11 PACK A FILE DESCRIPTOR (PACKFD) 2-19
2.12 PAUSE A TASK (PAUS) 2-22
2.13 EXTRACT INFORMATION FROM SYSTEM TABLES (PEEK) 2-23
2.14 GENERATE A PEEK STRUCTURE AND EQUATES (PEEKS) 2-24
2.15 RELEASE STORAGE (RELSTORE) 2-26
2.16 SCAN A MNEMONIC TABLE (SCAN) 2-28
2.17 SET STATUS (SETSTAT) 2-31
2.18 UNPACK BINARY NUMBER (UNPK) 2-33
2.19 WRITE TO OPERATOR--LOG MESSAGE (WTO) 2-35

3 FILLE MANAGEMENT MACROS

3.1 INTRODUCTION 3-1
3.2 PARAMETERS FOR FILE MANAGEMENT MACROS 3-1
3.3 ALLOCATE AND ASSIGN A FIILLE OR DEVICE (ALAS) 3-6

ii 48-006 FOO RO2

CHAPTERS (Continued)

3.20

AILLOCATE A FII.E (ALLOCATE)
ASSIGN A FILE OR DEVICE (ASSIGN)

CHANGE ACCESS PRIVILEGES (CHAP)

CHECK THE ERROR STATUS OF AN FMPCB (CHECKFM)

CHECKPOINT A LOGICAL UNIT (CKPOINT)

CLOSE A LOGICAL UNIT AND DEIL.ETE A FILE (CLDE)

CLOSE A LOGICAL UNIT (CLOSE)
DEL.ETE A FILE (DELETE)

GENERATE A FILE DESCRIPTOR STRUCTURE (FDS)

FETCH ATTRIBUTES OF A FIIL.E OR DEVICE ASSIGNED

TO AN LU (FETATR)

GENERATE THE SUBROUTINE TO CHECK THE STATUS

OF AN FMPCB (FMERR)

FETCH RETURN ADDRESS IN A USER ROUTINE
FOR FILE MANAGEMENT ERRORS (FMERRET)

GENERATE A TABLE OF ADDRESSES FOR FM
ERROR HANDLING (FMERRTBL)

GENERATE A FILE MANAGEMENT PARAMETER
CONTROL BLOCK (FMPCB)

GENERATE AN FMPCB STRUCTURE AND EQUATES
(FMPCBS)

RETURN THE RELATIVE RECORD ADDRESS OF 'THE
NEXT SEQUENTIAL RECORD (NOTE)

REPOSITION A FILE TO A SPECIFIED RELATIVE
RECORD ADDRESS (POINT)

RENAME A FILE ASSIGNED TO A LOGICAL
UNIT (RENAME)

REPROTECT A FILE ASSIGNED TO A LOGICAL
UNIT BY CHANGING THE KEYS (REPROT)

48-006 FOO RO2

3-19

i-21

w
t

23

3-25%5

3-27

iii

CHAPTERS (Continued)

4 INPUT/OUTPUT MACROS

4.1 INTRODUCTION 4-1
4.2 PARAMETERS FOR I/0 MACROS 4-1
4.3 BACKWARD TO FIL.EMARK ON A FILE OR

DEVICE (BFIILE) 4-6
4.4 BACKSPACE ONE RECORD (BREC) 4-8
4.5 FORWARD TO FILEMARK ON A FIIL.E OR

DEVICE (FFILE) 4-9
4.6 FORWARD TO NEXT RECORD ON A FILE OR DEVICE

(FREC) 4-10
4.7 HALLT AN INPUT/OUTPUT PROCEED REQUEST (HALTIO) 4-11
4.8 GENERATE THE SUBROUTINE THAT CHECKS THE

STATUS OF AN IOPCB (IOERR) 4-14
4.9 FETCH RETURN ADDRESS IN A USER ROUTINE

FOR INPUT/OUTPUT ERRORS (IOERRET) 4-15
4.10 GENERATE A TABLE OF ADDRESSES FOR

INPUT/OUTPUT ERROR USER HANDLING

ROUTINES (IOERRTBL) 4-16
4.11 GENERATE AN INPUT/OUTPUT PARAMETER CONTROL

BLOCK (IOPCB) 4-18
4.12 GENERATE AN IOPCB STRUCTURE (IOPCBS) 4-20
4.13 READ A LOGICAL RECORD (READ) 4-21
4.14 REWIND A FII.LE OR DEVICE (REWIND) 4-24
4.15 TEST FOR INPUT/OUTPUT COMPLETION (TESTIO) 4-25
4.16 WAIT FOR INPUT/OUTPUT COMPI.ETION (WAITIO) 4-26
4.17 WRITE FIL.EMARK (WFM) 4-28
4.18 WRITE A LOGICAL RECORD (WRITE) 4-29

iv 48-006 FOO RO2Z

CHAPTERS (Cont

inued)

5 TASK MANAGEMENT MACROS

5.16

5.19

48-006 FOO RO2

[NTRODUCTION

CANCEL A TASK (CANCEL)

CHANGE PRIORITY (CHPRIO)

CHECK THE STATUS OF A TASK (CTASK)

CONNECT A TRAP-GENERATING DEVICE TO A
TASK (CONNECT)

DISABLE INTERRUPTS ON A TRAP-GENERATING
DEVICE (FREEZE)

LOAD A TASK INTO MEMORY (LOAD)
LOAD TASK STATUS WORD (I.TSW)
MAKE TASK NONRESIDENT (MAKNRES)

MAKE

A
A
MAKE A TASK NONROLLABLE (MAKNROI.L)
A TASK RESIDENT (MAKRES)
A

MAKE TASK ROLLABLE (MAKROLL)

BUILD A MESSAGE RING OR CHAIN OF BUFFERS
(MSGRING)

ADD A PARAMETER TO THE TASK QUEUE (QUEPARM)
RECEIVE A LOGICAL UNIT FROM A TASK (RECVLU)
RET.EASE A TASK (RELEASE)

RUN A TASK (RUN)

SEND A LOGICAL UNIT TO A TASK (SENDLU)

SEND A MESSAGE (SENDMSG)

INITIALIZE OR MODIFY A USER DEDICATED
LOCATION (SETUDL)

SIMULATE AN INTERRUPT ON A TRAP-GENERATING
DEVICE (SIMINT)

START EXECUTION OF A TASK (START)

PLACE A TASK IN THE WAIT STATE (SUSPEND)

5-21

5-22

5-24

CHAPTERS (Continued)

5.24 ENABL.E INTERRUPTS ON A CONNECTED

TRAP -GENERATING DEVICE (THAW) 5-43
5.25 CONSTRUCT A TASK PARAMETER CONTROL BLOCK

(TMPCB) 5-45
5.26 EXIT TRAP EVENT SERVICE ROUTINE (TEXIT) 5-47
5.27 GENERATE A USER DEDICATED LOCATION

STRUCTURE AND EQUATES (UDLS) 5-48
5.28 DISCONNECT A TRAP-GENERATING DEVICE (UNCONN) 5-50

6 TIMER MANAGEMENT MACROS

6.1 INTRODUCTION 6-1
6.2 CANCEL TIME INTERVAL REQUEST (CANTIME) 6-2
6.3 SCHEDULE TRAPS CYCLICALLY AT DIFFERENT

TIMES (CYCTIME) 6-3
6.4 GENERATE A GENTIME INTERVAL (GENTIME) 6-5
6.5 READ TIME REMAINING FOR AN INTERVAL '

TO ELAPSE (READTIME) 6-7
6.6 BUILD A TABLLE OF TIME INTERVALS FOR CYCTIME

(TIMETBL) 6-9
6.7 SCHEDUT.E AN INTERRUPT BY ADDING A PARAMETER

TO THE TASK QUEUE WHEN A SPECIFIED

INTERVAL HAS ELAPSED (TRAPTIME) 6-10
6.8 WAIT FOR A SPECIFIC INTERVAL TO EILAPSE
: (WAITTIME) 6-12

7 MODEL 3200MPS SYSTEM MACROS

7.1 INTRODUCTION 7-1
7.1.1 Chapter Organization 7-1
7.2 SUPPORT MACROS 7-2
7.2.1 APPCB (Build APU Parameter Block) Macro 7-3
7.2.2 APPERTBL: (Build APU Error Recovery Table)

Macro 7-5
7.2.3 APPERR (APU Error Recovery) Macro 7-8
7.2.4 APPERRET (APU Error Return) Macro 7-10
7.2.5 APSTRUC (Control and Mapping Structures)

Macro 7-12

vi 48-006 FOO RO2

CHAPTERS (Continued)

N NN
www
P—-

~N N
B

’

NN N
oo,
H

NN NN
N4 NN oo,
— —

~l
~
w

~ ~N
~N

~J
()]

INFORMATION MACROS
FETLPU (Fetch LPU Map) Macro
APUSTAT (Fetch APU Status) Macro

MAP LPU TO APU MACROS
APUMAP (APU Mapping) Macro

TASK CONTROL MACROS
APUCNTL (APU Control) Macro
REQUEUE (Requeue the APU Ready Queue) Macro

TASK DIRECTION MACROS
SETCPU (Set CPU-Directed Task) Macro
SETIL.PU (8et LPU-Directed Task) Macro

TASK TIMER MACROS
CRTIMERS (Create Software Interval Timer)

Macro
RESETIME (Reset Software Interval Timer)
Macro
STRTIME (Start Software Interval Timer)
Macro

GETIME (Read Software Interval Timer) Macro
READTCNT (Read Software Interval Timer's
Count) Macro

STOPTIME (Stop Software Interval Timer)
Macro

8 MISCELLANEOUS MACROS

48-006 FOO RO2

INTRODUCTION

GENERATE A CHARACTER CONSTANT OF A
SPECIFIED LENGTH (CHAR)

COMPARE LOGICAL CHARACTER (CLC)

DEFINE SYSTEM MACRO ENVIRONMENT (ENVIRON)
FETCH ACCOUNTING INFORMATION (FETACCT)
GENERATE A MESSAGE (GENMSG)

LOAD A RANGE OF REGISTERS FROM AN AREA
(LDREG)

MOVE CHARACTER (MVC)
SET ACCOUNTING INFORMATION (SETACCT)

SKIP TO BLANK (SKTB)

vii

CHAPTERS (Continued)

8.

8.

INDEX

viii

11

12

.13
.14

.15

.16

SKIP TO CARRIAGE RETURN (SKTCR)

SKIP TO DELIMITER--BLANK, COMMA, CARRIAGE
RETURN (SKTD)

SKIP TO NONBLANK (SKTNB)

TAKE A SNAPSHOT DUMP OF AN AREA OF STORAGE
(SNAP)

GENERATE THE SUBROUTINE FOR THE SNAP MACRO
(SNAPSUB)

STORE A RANGE OF REGISTERS IN A GIVEN AREA
(STREG)

Buffer Data Returned for FETLPU Macro
Data Buffer Format for APUSTAT Macro
Valid Paths for an SVC Call

APU Hardware Response Bytes

Format Returned by CRTIMERS Macro

VALID ACCESS KEY COMBINATIONS
ERROR RECOVERY SUBROUTINE DESCRIPTIONS
ERROR COES FOR APU STATUS BYTE

8-17

8-18

8-19

7-17
7-21
7-25
7-32
7-45

Ind-1

48-006 FOO RO2

PREFACE

This reference manual details the 0S/32 System Macro Library.
The user should have an in-depth knowledge of the 0s/32
Application TILevel Programmer Reference Manual and the CAL Macro
Processor and Macro Library Utility Reference Manual.

Chapter 1, Overview of the System Macro Library, explains macro
instructions, parameters, parameter field value mnemonics, macro
expansion errors, constructing parameter blocks, and error
handling and recovery. The remaining seven chapters of this
manual explain the formats, parameter values, default wvalues,
required parameters, programming considerations, examples, and
messages for all supervisor, task management, input/output (I/0),
file management, timer management, and miscellaneous macros.
Chapter 7 is a new chapter that explains the macros used for the
Perkin-Elmer Multiprocessor System (Model 3200MPS). This chapter
applies to the Model 3200MPS System only. The previous Chapter
7 is now Chapter 8.

This manual is intended for use with the 08/32 R07.1 software
release or higher. Additional material specifically related to
the Model 3200MPS System has been included and is supported by
the 0S/32 R07.1 software release and higher. Throughout the text
these features are identified as applicable only to the Model
3200MPS System.

For further information on the contents of all Perkin-Elmer

32-bit manuals, see the 32-Bit Systems User Documentation
Summary.

48-006 FOO ROZ2 ix

——— e —— -

- e e wmen e -

CHAPTER 1
OVERVIEW OF THE SYSTEM MACRO LIBRARY

1.1 INTRODUCTION

This chapter explains macro instructions, parameters, parameter
field value mnemonics, macro expansion errors, constructing
parameter blocks, and error handling and recovery.

1.2 MACRO INSTRUCTIONS

A macro instruction, a single instruction that expands to a
series of instructions, is written like an assembler instruction;
but the output, when processed by the Common Assembler [Language
(CAL) Macro Processor, is in assembly language. The output of a
macro instruction can be machine instructions, another macro
instruction, assembler instructions, or a combination of these
instructions.

1.2.1 Macro Instruction Formatting

As with CAL instruction statements, macro instruction statements
are written in fixed or free format. A macro instruction
statement of either format has five separate fields:

® Name

® Operation

e Operand

e Comment

e Identification/sequence

48-006 F0OO RO2 1-1

1.2.1.1 Fixed Formatting of Macro Instruction Statements

In fixed formatting, the macro instruction fields are normally
defined as:

COLUMNS DEFINITION
1L -8 Name field
9 Blank
10 - 14 Operation field
15 Blank
16 - n Operand field
nt+l Blank
nt2 - 71 Comment field*
72 Cont inuat ion
73 - 80 Identification/sequence field

* Wherever possible, the comment field begins at column 36.

The operand field can be continued by placing a nonblank

character into column 72. The operand field and the comment
field are variable in length; the first blank encountered after
column 16 delimits these two fields. Due to how the output

listings are tabulated, the comment field cannot contain more
than 37 characters; if it does, only the first 37 characters
appear on the listing.

1.2.1.2 Free Formatting of Macro Instruction Statements

In free formatting, blanks delimit the five separate fields. For
example, if the name field is not wused, a blank character in
column 1 indicates the start of the operation field. Similarly,
the first blank following the MACRO code in the operation field

indicates the start of the operand field. As in fixed
formatting, the first blank within the operand field indicates
the start of the comment field. Free formatting has three

restrictions:

e Comment length, including blanks, is limited to 37 characters.

e Unless the operand field is being continued, column 72 must
contain a blank.

e If present, the identification/sequence field must start in
column 73.

1-2 48-006 F0OO RO2

1.2.2 Macro Instruction Fields

The following paragraphs detail the fields for free and fixed
format macro instructions:

e name field

-~ The name field contains a symbol or blanks. A symbol,
which must begin in column 1, is the name associated with
the first executable instruction or the first byte of a
generated table of constants. The name field is optional
with most instructions; however, with some instructions, it
is required. The symbol can be any valid CAL symbol, but
it must not begin with an @ sign because system macros use
this character as an internal symbol.

e operation field

- The operation field contains a mnemonic operation code for
a macro instruction. This mnemonic operation code is a
string of not more than 8 alphanumeric characters. The
first character must be alphabetic.

e operand field

~ The operand field contains blanks, or one or more operands
separated by commas. Blanks cannot be embedded within
operands, except when enclosed by apostrophes. The operand
field can be continued by placing a nonblank character in
column 72.

e comment field

- The comment field follows the operand field, separated by
at least one blank column. This field contains user
comments.

e identification/sequence field

- The identification/sequence field occupies columns 73
through 80. The wuser has the option of identifying and
maintaining the sequence of the source field.

48-006 FOO RO2 1-3

1.3 PARAMETERS

Three types of parameters (positional, keyword, and mixed mode)
can be used in the operand field of a macro instruction. The
following sections explain each parameter type.

1.3.1 Positional Parameters

Postional parameters have a particular position within the
operand field. Positional parameters are represented with
lowercase characters; the user must supply a value or expression
for the parameters. Positional parameters are processed by the
macro processor according to their positions, and positions are
maintained by separating commas. When entering or omitting
positional parameters, supply the separating commas to mark the
position of succeeding parameters. For example:

[symbol] MACRO operl,oper2,oper3

In this example, the parameter field consists of three positional
parameters. These are processed by position, left-to-right. If
omitting:

e oper2, then write operl,,oper3

e operl and oper2, then write ,,oper3

e the last parameter(s), then write either operl OR operl, OR
operl,,

e all parameters, then leave blanks or insert commas

1.3.2 Keyword Parameters

Keyword parameters have no particular position within the operand
field. They consist of a keyword, immediately followed by an
equal sign (=) and a keyword value. Since the keyword uniquely
def ines the parameter to the macro processor, the user can write
keyword parameters in any sequence within the parameter field.
If keyword parameters are omitted, their separating commas are
also omitted. Uppercase characters represent keyword parameters.
For example:

[symbol] MACRO KEYWORDl=expression,KEYWORD2=value

1-4 48-006 FOO RO2

1.3.3 Mixed Mode Parameters

An operand field is referred to as mixed mode when it contains
positional and keyword parameters. In mixed mode parameter

fields, all positional parameters must precede keyword
parameters:

[symbol] MACRO operl,oper2,KEYWORD1=A,KEYWORD2=B

The previously discussed rules for omitting positional and
keyword parameters also apply to mixed mode parameter fields:

e If omitting operl and KEYWORD2=B, write: roper2 ,KEYWORD1=A

e If omitting all positional parameters, then write:
, KEYWORD1=A,KEYWORD2=B or KEYWORD1l=A,KEYWORD2-B

Parameters are represented by lowercase or uppercase characters.
Lowercase charactexs represent positional parameters or
expressions, the values of which the user must supply. Uppercase
characters represent keyword parameters or option codes, which
the user must enter as shown.

1.4 PARAMETER FIELD VALUE MNEMONICS

A value mnemonic is a lowercase abbreviation appearing in the
parameter field and representing an address, expression, or
value. The user must supply the actual value.

When macro instruction formats are presented in subsequent
sections of this manual, value mnemonics appear as parameter

values. Refer to this section for the description of these value
mnemonics:

e addr

- The addr mnemonic represents a valid address-expression
that CAL evaluates at assembly time. The address that addr
references cannot be indexed.

Example:
[symbol] MACRO dest-addr,source-addr

Where the user might supply one of these
address-expressions: A, LOOP, A-B, A-16, or A+4.

48-006 FOO RO2 1-5

addrx

The addrx mnemonic represents a valid indexable address-
expression that can be partially evaluated at assembly time
and (by adding the |INDEX register) at execution time.
Targeted 32-bit assemblies permit double-indexing.

Example:

[symbol] MACRO dest-addrx,PCB=addrx

Where the user might supply one of these indexable
address-expressions: A, A+B, A(5), A+B(5), or 0(5).

reg

The reg mnemonic represents a register-expression that CAL
can evaluate to a value between 0 and 15, corresponding to
one of the 16 general registers. By supplying a
register-expression for the reg mnemonic, the user
designates one of the general registers to be used for a
special function.

Example:
[symbol] MACRO pointer-reg,reg-reg

Where the user might specify one of these
register-expressions: 2, 0, R2, or RO.

(reg)

The (reg) mnemonic represents a register-expression,
enclosed 1in parentheses that CAL can evaluate to a value
between 0 and 15. The register must contain the parameter
to be supplied to the macro.

Example:
[symbol] MACRO dest-(reg),PCB=(reg)

Where the user might specify one of these
register-expressions: (3), (R3), (7), or (R7).

48-006 FOO RO2

e abs address exp

- The abs address exp mnemonic represets a return code
specifying the condition code that the operating system
returns after a task is terminated. The condition code can

refer to a

parameter block size field; the bytes of

temporary storage released by a RELSTORE macro; a 4-byte
condition code setting in the program status word (PSW); or
the length (maximum 63) of a number to be converted by the

UNPK macro.

Example:

[symbol] UNPK num, dest [LEN=60]

® absexp

~ The absexp mnemonic represents an absolute expression that

CAL 1is to
expression.
abs byte exp.

evaluate. It can be a byte or halfword

If it is a byte expression, the mnemonic 1is
If it is a halfword expression, the mnemonic

is abs halfword exp. It is evaluated by a load immediate

instruction;

Example:

so, it can contain an INDEX register.

[symbol] MACRO size-absexp,l.EN=absexp

Where the user might specify one of these absolute

expressions:

e 'string'

3, X'FF', or C'ABC'.

- The 'string' mnemonic represents any string of characters
enclosed in apostrophes.

Example:

[symbol] MACRO msg-'string'

Where the user might supply this message: ‘MY NAME IS

O''BRIEN'.
apostrophes.)

48-006 FOO RO2

(An apostrophe is specified as two consecutive

SYSVOL

SYSVOLB

NOVOL

NOVOIL.B

SYSVOL

SYSVOI.B

oD

SD

INT

The SYSVOL mnemonic specifies the volume name
field of a packed file descriptor (fd).

The SYSVOLB mnemonic specifies the volume name
field of a packed fd with leading blanks
skipped.

The NOVOL mnemonic specifies that no volume
name is to be moved into the volume name field
of the packed fd. The default volume name is
moved into the packed fd.

The NOVOI.B mnemonic specifies that no volume
name and, therefore, the default volume name
with leading blanks skipped, is to be moved
into the packed fd.

The SYSVOL mnemonic specifies the name of the
spool volume to be moved into the spool volume
name field of the packed fd.

The SYSVOILB mnemonic specifies the name, with
leading blanks skipped, of the spool volume
name field of the packed fd.

This abbreviation stands for other-directed
assignment of a logical processing unit (LPU)
number, where a task's [LLPU number is assigned
by another task. This option is used with the
DIR parameter of the Model 3200MPS System
SETLLPU macro and others as well as with other
non-3200MPS System macros.

Example:

[symbol} SETI.PU tmpcb, DIR=0

In the example, the SETLPU macro points to the
previously created tmpcb parameter block and
specifies that the task's LPU number is to be
set by another task.

This abbreviation specifies self-directed LPU
number assignment. It means that the task is
to assign its own LPU number. See Chapter 7
for an explanation of the Model 3200MPS System
macros.

This abbreviation specifies a table of
intervals in milliseconds from midnight. It
is used with the options parameter of the time
management macros.

48-006 FOO RO2

Example:

[symbol] CYCTIME NUMBINIT=reg, OPT=INT

TOD This abbreviation specifies a table of
intervals in seconds from midnight. It is
used with the option parameter of timer
management macros. See Chapter 6.

D This abbreviation specifies decimal. DB
specifies decimal, skip leading blanks. It is
used with the options parameter of the PACK
macro and other macros. See Section 2.10.

H , This abbreviation specifies a hexadecimal
number. HB specifies hexadecimal, skip
leading blanks. It is used with the option
parameter of the PACK macro and with other
macros.

L This abbreviation specifies a list form-only,
build a parameter control block (PCB). It is
used with the form parameter of the CANTIME
macro and other timer management macros. See
Chapter 6.

1.5 MACRO EXPANSION ERRORS
Depending on their cause, macro expansion errors can be grouped

into several categories. The return code at macro processor end
of task determines the source of error.

e return code O

- A return code of 0 indicates that no " errors or warnings
were detected. (CALL. can 1later detect such errors as
invalid operation codes or undefined symbols.)

e return code 1

- A return code of 1 is a warning from one or more system
macros. An MNOTE in the listing determines the default
action taken. The usual case is an invalid code.

48-006 FOO RO2 1-9

——— e e e —

e return code 2

- A return code of 2 indicates that the macro processor
detected an error. Check the syntax of the macro; the most
common error is an invalid keyword.

e return code 4

~ A return code of 4 means the macro detected the error.
Look for an MNOTE in the listing to determine the cause.
The most common error is an omitted required parameter.

® execution time error messages

- The nonproceed input/output macros produce error messages
at execution time if an error occurs and the task pauses.
The operator can take appropriate action and continue. The
task continues at the RESTART address.

- The file management macros also produce execution time
error messages. The ERR parameter, which specifies a table
of addresses that the FMERRTBL macro built, traps each of
these errors. Any nontrapped error produces a message.
Depending on the PAUS flag in the error table, the task
will or will not pause. Whether or not the task pauses, it
continues at the RESTART address. If the task pauses for
either cause, the state of the user registers is:

REGISTERS STATUS

RO ~-R13 same as when macro was issued
R14 pointer to PCB

R15 undef ined

Upon continuation, R15 is restored to its original value.

1.6 CONSTRUCTING PARAMETER BLOCKS

Parameter blocks can be constructed in several ways depending on
the type of macro. Because supervisor macros use small parameter
blocks of different formats and sizes, it is more efficient to
construct a block for each call. Because [/0, file management,
and task management macros use larger parameter blocks, it is
more efficient to construct the block once and reuse it for
different calls, modifying fields as required. Special macros
generate these blocks.

1-10 48-006 FOO RO2

1.6.1 Parameter Blocks for Supervisor Macros

Supervisor macros require miscellaneous services from the
operating system. Two mutually exclusive parameters, PCB= and
FORM=, control parameter block contruction for supervisor macros.

1.6.1.1 Omitting the PCB= and FORM= Parameters

When omitting both the PCB= and FORM= parameters:

e If called from within a PURE segment, the macro switches to an
IMPURE segment, constructs the parameter block, and returns to
the PURE segment.

e If called from within an IMPURE segment, the macro constructs
the parameter block and branches around it.

In both cases, R14 (or the PCBREG from the ENVIRON macro) is set
pointing to the parameter block. CAL. constructs any other
parameters that were coded as constants. Any other parameters
coded as indexed expressions or registers containing values are
constructed as zeros and code is generated to modify the
parameter block at execution time using R15 (or SCRREG from the
ENVIRON macro). Examples are:

e FETDATE ALPHA

- constructs a FETDATE parameter block with an address
constant ALPHA, sets R14 pointing to the parameter block,
and executes the SVC.

e FETDATE ALPHA(RZ2)

- constructs a FETDATE parameter block, generates an LDAI R15
and ALPHA(2) and a store into the block, and executes the
svcC.

e FETDATE (R2)

- generates a FETDATE parameter block, stores R2 into the
block, and executes the SVC.

48-006 FOO RO2 1-11

1.6.1.2 Code FORM=L (List Form)

Only the parameter block is constructed. A label, if specified
in the NAME field, is associated with the first byte of the
aligned parameter block. Any other parameters coded as constants
are filled in as constants by CAL. Any other parameters coded as
indexed expressions or registers containing values are ignored.

Examples:
e BETA FETDATE AI.PHA,FORM=L

- constructs a FETDATE parameter block with the address
constant ALPHA. The symbol BETA is associated with the
first byte of the parameter block.

e GAMMA FETDATE FORM-L

- constructs a FETDATE parameter block with =zero in the
address field. This parameter block can be referenced by
another FETDATE macro by coding PCB=GAMMA.

1.6.1.3 Code PCB= (Execute Form)

Code PCB= executes a remote parameter block at the address that
the PCB parameter block specifies. Any other parameters; whether
they are constants, indexed expressions, or registers containing
values; generate code to store into the parameter block and then
execute the SVC. R1l4 is set to point to the parameter block. If

PCB= (reg) is coded, that register is used as the parameter block
pointer.

Example:
FETDATE PCB=BETA

Since the parameter block at BETA had the address field coded,
R14 is set to point to the block and the SVC is executed.

Example:

FETDATE AI.PHA, PCB=GAMMA

R14 is set to point to the parameter block at GAMMA; ' AI.PHA is
stored into the address field; and the SVC is executed.

1-12 48-006 FO0O RO2

Example:

LDAI R3,GAMMA
FETDATE ALPHA,PCB=(R3)

The address ALPHA is stored in the parameter block that R3 points
to and the SVC is executed. A subsequent call of FETDATE, using
GAMMA as the parameter block address, has the address ALPHA
already stored in the block.

Example:

FETDATE PCB=GAMMA

Once set in a parameter block, it remains unchanged until a
subsequent macro modifies the field.

1.6.2 Parameter Blocks for Input/Output, File Management,
Task Management, and Timer Management Macros

The first positional parameter controls the construction of the
parameter blocks for the input/output, file management, and task
management macros.

e If the first positional parameter is coded, it is assumed that
the IOPCB, FMPCB, or TMPCB macros built the parameter block.
Several macros can use the same parameter block providing only
parameters change from call to call. Omitted operands are
left unchanged or revert to default values.

e If the macro is in a PURE segment and the first positional
parameter is omitted, the macro switches to an IMPURE segment,
constructs the parameter block, and returns to the PURE
segment. If the macro is in an IMPURE segment and the first
positional parameter is omitted, the macro constructs the
parameter block and branches around it.

In both cases, R14 (or the PCBREG from the ENVIRON macro) is set
pointing to the parameter block. Any other parameters coded as
constants are constructed as constants by CAL. Any other
parameters coded as indexed expressions or registers containing
values are constructed as zeros and code is generated to modify
the parameter block at execution time using R15 (or the SCRREG
from the ENVIRON macro).

48-006 FOO RO2 1-13

Example:
REWIND LU=2

The parameter block IOPCB is constructed as described and the
logical unit (lu) field is set to 2. The device attached to lu2
is rewound.

READ LU=1,ADDR=BUFFER,RECL=256
LDA 2,10.TRANS (R14)

In this example, the parameter block IOPCB 1is constructed with
the appropriate fields filled in. The READ SVC is then issued
with R14 pointing to the parameter block. The actual number of
transferred bytes can be found at offset IO0.TRANS past Rl4. The
I0., FM., or TM. STRUCs are constructed as part of the
appropriate macros.

Example:

IOPARBI.K IOPCB ADDR=BUFFER,RECL=80

BUFFER DS 80

LOOP READ [OPARBLK,LU=1
WRITE IOPARBLK,LU=2
B LOOP

-

In this example, the parameter block is constructed with the
IOPCB macro. The ADDR and RECL fields are filled in, while the
lu field is set to zero because it was omitted. The READ macro
specifies IOPARBILK as the first positional parameter. The 1lu
field is modified; the ADDR and RECL fields are 1left unchanged.
Care must be exercised 1in reusing parameter blocks after
modifying fields that were defined when the block was first
constructed.

1-14 48-006 F0OO RO2

Example:

IOPARBI.K IOPCB LU=1,...

-

L.OOP READ IOPARBIK
WRITE IOPARBIK,LU=2
B LOOP

The READ macro uses 1 in the LU field because it was defined 1in
the IOPCB macro. The WRITE macro modifies the LU field and

writes to LU 2. When READ is reexecuted, the LU field has been
modified and attempts to READ from LU 2.

NOTE

As a general principle, do not modify
fields that have been def ined as
constants.

This example is a more subtle representation of this principle:

LOOP READ LU=1,...
WRITE O(R14),LU=2

B LOOP

The READ macro constructs the parameter block; the LU field is
set as a constant, and R14 points to the block. The first READ
executes as desired. WRITE reuses the same parameter block using
R14 as a pointer to it and modifying the I.U field. When READ is

reexecuted, the LU field 1is not modified because it was
constructed as a constant.

Example:
LIS R3,1
L.OOP READ L[U=(R3),...
WRITE O(R14),LU=2
B LOOFP

48-006 FOO RO2 1-15

Even though the READ macro constructs the parameter block, the LU
field is not defined until execution time because it is coded as
a register. In this case, the LU field is modified for the READ
and WRITE macros as desired.

1.7 ERROR HANDLING AND RECOVERY

When an I/0 or file management operation has completed, the
operating system writes a status code into the parameter block.
A zero status indicates the operation was performed successfully;
a nonzero status means that an error was detected and the
operation was not successful.

When an I/0 or file management macro is first encountered, a
subroutine is generated to check the status and take action. A
zero status results in the next instruction being executed. If
a nonzero status is detected, the ERR, PAUS, and RESTART
parameters determine the following sequence of events.

The ERR parameter specifies the address of a table that the
IOERRTBL, or FMERRTBL macros built. The entries in this table
specify branch addresses of user-written routines to handle each
specific error. The ERR parameter can be specified when the
parameter block 1is constructed or in a macro. If the ERR
parameter is specified in a macro, it replaces the address in the
block.

Example:

An ALLOCATE macro is issued and the file already exists. Since
the file exists, the program wants to delete the file:

ALLOCATE FD='FILEl',ERR=NAMERR, ...

DELETE EQU *

FMERRET 12
DEILETE (14)
ALLOCATE (14)
BR 12

NAMERR FMERRTBL. NAME=DELETE

When detecting the NAME error, the program branches to the label
DELETE. In the DELETE routine, the program then deletes the file
by using the parameter block pointed to by R14 because this
parameter block contains the filename FILELl. The file can be
reallocated by using the same parameter block and returning to
the instruction following the original ALLOCATE macro.

1-16 48-006 F0O0 RO2

If the ERR parameter is omitted from the parameter block or an
error occurs for which there is no entry in the table, then:
e An error message is written to the log device.
® The task does or does not pause depending on the PAUS-
parameter:
- PAUS=N does not pause the task.
- Omitting the PAUS= parameter causes the task to pause.
e The task resumes execution at the RESTART= address. If
RESTART= is omitted:
- Input/output macros retry the operation.
- File management macros restart at the next instruction.
The RESTART parameter cannot be specified in the IOPCB or FMPCB
macros. If the task pauses, all registers except R1l4 and R15
contain the values prior to the macro. R14 points to the
parameter block. R1l5 is undef ined.
1.8 MACROS IN CONDITIONAL ASSEMBLY
CAL conditional assembly, such as IFZ, IFNZ, cannot be evaluated
at macro processing time because the values of the EQUs are not

known to the CAL macro processor. Therefore, any macros within
conditional code will always be expanded regardless of whether

CAL will actually generate the expanded code. Usually, this
would not be a problem since CAL would not generate the expanded
code if the conditional failed. However, the PUR and IMPUR

macros also set global flags that are used by other macros.
These flags are set regardless of whether CAL includes the
statements in the assembly. Therefore, the conditionals IFZ and
IFNZ should not be used with EQU flags to generate PURE or IMPURE
statements. Macros should be written with global macro flags to
alter the flow of controls.

Example:
FT.AG EQU O
IFNZ FI.AG
PURE
ENDC

48-006 F0OO RO2 1-17

In this example, CAL will not generate the PURE statement;
however, CAL macro will set a global flag within the PURE macro,
thus affecting other macros. An alternate approach follows:

Example:

MACRO
SETFLAG
GBLB $FLAG
$FLAG SETB 0 FIAG SETTING
MEND
MACRO
ISPURE
GBLB $FLAG
SETFLAG TO SET OR RESET THE
AIF ($FLLAG) &PURE GLOBAL FLAG
MEXIT
&PURE PURE
MEND

A call to ISPURE with $FLAGC set to 0 will not generate the PURE
statement. A call to ISPURE with $FLAG set to 1 will generate
the PURE statement.

1-18 48-006 FOO RO2

CHAPTER 2
SUPERVISOR MACROS

2.1 INTRODUCTION

Supervisor macros are those macros that request services from the
operating system. These macros enable the user to access the
system calendar and clock, pause or end a task, build and search
a mnemonic table, and perform various other functions.

The following sections detail the formats, parameter values,
default values, required parameters, programming considerations,
examples, and error messages for all supervisor macros.

Section 1.4, Parameter Field Value Mnemonics, explains the

lowercase abbreviations that appear in the parameter fields of
supervisor macros.

48-006 FOO RO2 2-1

2.2 END OF TASK (EOT)

The EOT macro enables the task to terminate in an orderly manner.
If the task has input/output (I/0) in progress, I/0 is
terminated; write operations terminate normally; read operations
abort.

Format:

[symbol] EOT [RC=]

Parameter Values:

RC = abs address exp (return code)
= addrx
Default Values:
RC = 0

Required Parameters:

none

Programming Considerations:

If a nonresident task issues an EOT, all of its files and devices
are closed, it is removed from memory, and all control
information pertaining to the task is deleted. If the task is
resident, its files are check-pointed, but not closed; it is not
removed from memory.

The return code (RC) specifies the condition code that the
operating system returns after the task is terminated.

A parameter block is not associated with the EOT macro.

2-2 48-006 FO0OO RO2

Example:

EOT
EOT RC=4
EOT RC=0(9)

48-006 FOO ROZ2

R9 contains the return code

| FETDATE |

2.3 FETCH DATE (FETDATE)

The FETDATE macro returns the current date from the operating
system. The format of the returned date is MMDDYY or DDMMYY,
depending on the selection at system generation time.

Format:

[symbol] FETDATE dest[,PCB=][,FORM=]

Parameter Values:

dest - addrx (destination)
- (reg)

PCB = addrx
= (regqg)

FORM = L

Default Values:

none

Required Parameters:

dest

Programming Considerations:

The parameter, dest, gives the starting
buffer to receive the fetched date.
writable segment.

address of an 8-byte
This buffer must be in a

48-006 FOO RO2

Example:

FETDATE PLACE
FETDATE 0(9)
FETDATE (8)

IMPUR

DATE FETDATE ABC,FORM=L
PL.ACE DS 8
PURE

FETDATE PCB=DATE

Error Messages:

MNOTE NO ADDRESS SPECIFIED - NO EXPANSION
Return code = 4

48-006 FOO RO2

| FETPTR |

2.4 FETCH POINTER (FETPTR)

The FETPTR macro fetches a pointer to the task's user-dedicated
locations (UDLs). This pointer, or starting address, is returned
in a specific general register. Also, FETPTR copies the address

of UTOP, CTOP, and UBOT from the task's task control block (TCB)
into its UDL. The register where the pointer is returned is reg.

Format:

[symbol] FETPTR reg[,PCB=][,FORM=]

Parameter Values:

reg - reg (register pointer)
PCB = addrx

= (reg)
FORM = L

Default Values:

none

Structure Generated:

UDLS

Required Parameters:

reg

Example:

FETPTR b6 (pointer returned in R6)

2-6 48-006 FOO ROZ2

Error Messages:

MNOTE NO REGISTER SPECIFIED - NO EXPANSION
Return code = 4

48-006 FOO RO2

{ FETTIME |

2.5 FETCH TIME (FETTIME)

The FETTIME macro fetches the current time of day from the
operating system and returns it in a 4- or 8-byte buffer that the
destination address points to. This buffer must be in a writable
segment.

Format:

[symbol] FETTIME dest[,O0PT=][,PCB=][,FORM=]

Parameter Values:

dest - addrx (destination)
- (reg)

OPT = A (ASCII)
= B (binary)

PCB = addrx
= (reg)

FORM = L

Default Values:
OPT = A (ASCII)

Required Parameters:

dest

Programming Considerations:

OPT specifies ASCII or binary format for the receiving buffer.
If OPT=A, the default, the buffer must be 8 bytes long and
aligned on any byte boundary. The time stored within this buffer
is HH:MM:SS.

2-8 48-006 F0OO RO2

If OPT=B (binary), the buffer is 4 bytes long aligned on a
fullword boundary. The time stored has a binary value indicating
seconds from midnight.

The operating system maintains a 24-hour clock, calibrated in
seconds from midnight. A zero value equals midnight. A decimal
value of 86,399 is equivalent to 23:59:59.

Example:
FETTIME ABC TIME RETURNED TO ABC
FETTIME (9) R9 POINTS TO THE BUFFER
IMPUR
ABC DS 8

48-006 FOO RO2 2-9

{ GETSTORE |

2.6 GET STORAGE (GETSTORE)

The GETSTORE macro increases the user's storage by adjusting UTOP
upward according to the number of bytes specified in SIZE. Once
the UTOP address is adjusted, the starting address of the

reserved temporary storage area, which is the original or
previous UTOP, is stored in the register POINTER.

Format:

[symbol] GETSTORE pointer,size[,PCB=][,FORM=]

Parameter Values:

pointer - reg (pointer to storage)

size - abs address exp (size of storage)
- ALL
- (reg)

PCB = addrx
= (reg)

FORM = L

Default Values:

none

Structure Generated:

GETSTORS

Required Parameters:

pointer
size

2-10 48-006 FOO RO2

Programming Considerations:

If the SIZE is a negative value or ' greater than the task's
current allocation size (task's current CTOP):

® UTOP's address is not adjusted.

® A zero address is returned in the user-specified register.

o The condition code is set to 4 (V bit set).

NOTE

The number of bytes should be specified
in fullword increments because UTOP's
address is rounded up to the nearest
fullword boundary.

If SIZE specifies ALL, UTOP is adjusted to CTOP+2 and the number
of bytes actually reserved 1is stored in the SIZE field of the
parameter block. In this case, the parameter block must be in a
writable segment. The reserved storage address is returned in
the register REG.

Example:

GETSTORE 3,600

GETSTORE 3, (4) R4 CONTAINS THE NUMBER
OF BYTES
GETSTORE 3,ALL GETS ALL STORAGE
L.DA 4,G5.SIZ2E(14) NUMBER OF BYTES TO R4
NOTE

R14 1is pointing to the parameter block
and the operating system returns the
number of bytes into the GS.SIZE field of
the parameter block.

48-006 FOO RO2 2-11

| GETSTORS |

i ——— - — - —

2.7 GENERATE A GETSTORE STRUCTURE (GETSTORS)

The GETSTORS macro creates the structure that the GETSTORE macro
needs. This structure can only be generated once. Repeated

GETSTORS macros have no effect.

Format:

blank GETSTORS blank

Structure Generated:

* GETSTORE PARBILK

x

GETSTORS STRUC

GS.OPT DS 2 OPTIONS
GS.REG DS 2 REGISTER
GS.SIZE DAS 1 SIZE
ENDS
NOTE

GETSTORS is automatically generated in
the expansion of the GETSTORE macro.

48-006 FOO ROZ2

2.8 BUILD A MNEMONIC TABLE (MNEMTBL)

The MNEMTBL macro builds a mnemonic table suitable for use with
the SCAN macro.

Format:

[symbol] MNEMTBL (required,optional),...[,EOT]

Programming Considerations:

Operands must be paired and enclosed in parentheses. For each
pair, the first parameter is the required portion of the mnemonic
and the second parameter is the optional portion. The required
portion of the mnemonic is the minimum number of characters that
must be supplied for the mnemonic to be recognized. The optional
portion completes the full spelling of the mnemonic and can or

cannot. be specified for the mnemonic to be recognized. The
mnemonic separating character is inserted between each pair.
Coding EOT indicates the end of the table. If an optional

portion does not exist, the comma and parentheses can be omitted.

Example:

TAB MNEMTBL (PA,USE), (AS,SIGN), (END), (ST,ART),RW,EOT

Where:

PA is required; USE is optional.

AS 1is required; SIGN is optional.

END is required; no optional portion.
ST is required; ART is optiounal.

RW is required; no optional portion.

NOTE
In the first specified parameter, PA,
these character sequences are recognized
as the mnemonic: PA, PAU, PAUS, and
PAUSE.

To obtain the characters EOT as a
required part, use: MNEMTBL (EOT),EOT.

48-006 FOO RO2 2-13

—— - ——— - — -

2.9 MOVE ASCII (MVASCII)

The MVASCII macro moves ASCII characters from an input string to
a specified address. The input string can include ending
characters for controlling the number of moved characters.

Format:

[symbol] MVASCII dest,source,len{,EC=][,0PT=]
[,PCB=][,FORM=]

Parameter Values:

dest - reg (destination pointer)
source - reg (source pointer)
len - abs byte exp (length)
- (reg)
EC addrx (ending character)

(reg)
'‘quoted string'

OPT = EC (use ending character)
PCB = addrx
= (reg)
FORM = L
Default Valuss:
EC no ending characters
OoPT no ending characters

Required Parameters:

dest
source
len

2-14 48-006 FOO RO2

Programming Considerations:

The required parameter, dest, identifies the register pointing to
the start of the output string address. This output address must
be in a writable segment.

The required parameter, source, identifies the register pointing
to the start of the input string.

The required parameter, 1len, gives the length (number of
characters) of +the input string to be moved. Its value must be
less than or equal to 127.

OPT=EC signifies that "ending characters" are included within the
input string. These ending characters are located at the address
pointed to by EC=. OPT=EC is only required when EC= has been
specified in a remote FORM=L call, and PCB= and the parameter,
len, have both been specified in the current call.

EC= specifies a string of "ending characters" (within quotes) or

the address of the following block: DB n;
DB C'ending characters' where n is the number of ending
characters. If a single quote is one of the ending characters,

it should be coded as two consecutive single quotes but counted
as one.

If only the three required parameters (dest, source, and len) are
included with MVASCII, the number of characters specified are
moved. As each character is moved, the dest and source registers
are incremented to point to the location of the next character to
be moved. At termination, the registers are pointing one byte
past the characters moved and the condition code is set to zero
(cc=0).

If ending characters are used, as each input string character is
moved, it is <checked against the ending characters. When the
input string character matches an ending character, it is not
moved; the MVASCII terminates and the condition code is set to
zero (cc=0).

If the number of characters that the len parameter specifies have

been moved and an expected match is not found, MVASCII terminates
and the condition code is set to four (cc=4).

48-006 FOO RO2 2-15

Example:

MVASCII
MVASCII

MVASCII
MVASCII

MOVE1 MVASCII

3,4,5
3,4,5,EC="' ,/!'

PCB=MOVE1l
. +»3,PCB=MOVELl,OPT=EC

ALPHA,BETA,5,EC=' ,/,FORM=L'

NOTE

Since a length was specified, the OPT=EC
is . required.

Error Messages:

MNOTE EC MUST BE REG OR ADDR WITH THIS OPTION

Return code = 1

48-006 FOO RO2

2.10 PACK NUMERIC DATA (PACK)

The PACK macro converts an ASCII hexadecimal or decimal number to
its eguivalent binary value. PACK includes an option for
skipping leading blanks in the input string.

Format:

[symbol] PACK num(,OPT=](,PCB=][,FORM=]

Parameter Values:

num - reg (pointer to number to be packed)
OPT = DB (decimal - skip leading blanks)
= D (decimal)
= HB (hexadecimal - skip leading blanks)
= H (hexadecimal)
PCB = addrx
= (reg)
FORM = L
Default Values:
OPT = DB (decimal - skip leading blanks)

Regquired Parameters:

num

Programming Considerations:

The required parameter, num, is the register number containing
the input string address to be packed. At the termination of
PACK, register 0 (RO) contains the result and the pointer
register contains the address of the byte following the last
digit converted.

48-006 FO0O ROZ2 2-17

The valid ASCII hexadecimal numbers are 0 through 8 and A through
F. The valid ASCII decimal numbers are 0 through 9. Any
character, other than those specified ASCII hexadecimal or ASCII
decimal numbers, causes the conversion process to stop and the
nonconverted byte's address to be stored in the register.

The condition code setting is:

e A condition code of 1 indicates no characters processed; RO is
set to O.

e A condition code of 4 indicates the number processed was too

large to fit in a register. RO contains the least-significant
portion of the number processed.

Example:

PACK 4
STA 4,ALPHA

Register 4 (R4) is repositioned to point to the end of the
numeric string, while the converted number is placed in RO.

Error Messages:

MNOTE INVALID OPTION - DECIMAL SKIP BLANKS USED
Return code = 1

An invalid option was specified; PACK proceeded assuming
OP=DB.

. 2-18 48-006 FOO RO2

2.11 PACK A FILE DESCRIPTOR (PACKFD)
PACKFD permits the user to process a file descriptor (fd) in
standard operating system syntax: VOLN:FILENAME.EXT/ACCOUNT.

Format:

[symbol] PACKFD source,dest[,0PT=][,FORMAT=]
[,PCB=][,FORM=]

Parameter Values:

source - reg (pointer toc source string)

dest - addrx (destination address)
- (reg)

OPT = SYSVOIB (system volume - skip leading blanks)
= SYSVOL (system volume)
= NOVOLB (no volume - skip leading blanks)
= NOVOL (no volume)
= SPLVOLB (spool volume - skip leading blanks)
= SPLVOL (spool volume)

FORMAT = 1
= 2

PCB = addrx
= (reg)

FORM = L

Default Values:
oPT = SYSVOLB
FORMAT = 1

Required Parameters:

source
dest

48-006 FOO ROZ2 2-19

Programming Considerations:

If skip leading blanks is selected, the macro ignores all blanks
from the current position of the pointer to the first nonblank.
If skip leading blanks is not selected, it assumes that the fd to
be converted starts at the current pointer position.

The reg parameter specifies one of the general registers that
must point to the ASCII string of the unpacked fd.

The dest parameter points to a 1l6-byte receiving area aligned on
a fullword boundary 1in a writable segment. The format is
identical to the fd field of an FMPCB parameter block. The
receiving area can be such a field.

Format 1 is normally used. If P, G, or S 1is specified in the
unpacked fd, then a P, G, or S is returned in the packed fd,
respectively. If this field is omitted in the unpacked fd, an S
is then returned in the packed fd; however, P is returned for a
task running under multi-terminal monitor (MTM). Any value other
than P, G, or S in the account number field of an unpacked fd is
treated as a syntax error.

Format 2 is used if the account number (numeric) is specified in

the unpacked fd. When P, G, or S is specified or the account
number field is omitted, the obtained result is the same as that
result obtained in format 1. However, if a numeric value is

found in the account number field of the unpacked fd, the G bit
is set in the condition code and the numeric value is returned
into the packed fd.

The extended fd and account number field are only meaningful in
an MTM environment.

The pointer contained in register, reg, is returned pointing to
the first byte that is not part of the fd.

The condition code is set on return as:

® A condition code of 0 indicates normal return.

® A condition code of 1 indicates no volume name present in
input.

@ A condition code of 2 indicates an account number rather than
a P, G, or S appeared in account number field.

condition code of 4 indicates a syntax error.

condition code of 9 indicates no extension or volume present

A
@ A condition code of 8 indicates no extension present in input.
A
in input.

2-20 48-006 FOO RO2

If a syntax error occurs, the scan of the unpacked fd terminates
at the byte that caused the error. The contents of the area
receiving the packed fd are filled with indeterminate code.
Check the condition c¢ode to ensure that a syntax error has
occurred. If the volume name, filename, or extension 1is fewer
than 4, 8, or 3, respectively, the field is left-justified and
the unused characters are set to blanks. (The operating system

always sets the reserved character following the extension field
to blank.)

If no volume name is provided and a "default volume" option is
specified, the current default system volume name is moved into
the volume name field of the packed fd. If this option 1is not
specified, the contents of the volume name in the receiving field
are left unchanged.

NOTE

If the fd parameter is specified for file
management macros (AL.LOCATE, ASSIGN,
RENAME , etc), a PACKFD macro is
automatically issued with the option
SYSVOLB and FORMAT=1.

Error Messages:

MNOTE INVALID OPTION - SYSVOLB USED
MNOTE INVALID FORMAT - FORMAT 1 USED
Return code = 1

MNOTE MISSING PARAMETER - NO EXPANSION
Return code = 4

48-006 FOO RO2 2-21

2.12 PAUSE A TASK (PAUS)

The PAUS macro places the task in the console wait state. A
message 1is issued to the system console. If the operator enters
a CONTINUE command at the system console, the task 1is restarted
at the next instruction.

Format:

[symbol] PAUS [PCB=][,FORM=]

Parameter Values:

PCB = addrx
= (regq)
FORM = L

Default Values:

none

Required Parameters:

none

Programming Considerations:

Incomplete I/0 requests continue to complete even when the task
is in the paused state.

2-22 48-006 FOO RO2

2.13 EXTRACT INFORMATION FROM SYSTEM TABLES (PEEK)

The PEEK macro obtains user-related information from the system
pointer table (SPT).and task control block (TCB) and stores it in
a corresponding location in the parameter block.

Format:
[symbol]) PEEK [OPT=][,PCB=][,FORM=]

Parameter Values:

OPT = 0 returns the following information: number
of logical wunits, maximum priority, operating
system name, task name, current task status word
(TSW), and task options.

1 returns the following information: maximum
blocking factor, operating system name, operating
system update level, central processing unit (CPU)
model numbers, system options, user account number,
group account number, and system console name.

2 returns the following information: operating
system name, load volume, filename, extension, and
file class.

PCB = addrx

= (reg)
FORM = L

Structure Generated:

PEEKS

Programming Considerations:

If no option number is specified for the OPT= parameter, the
default is O.

The parameter block must be in a writable segment. The names of
the returned fields can be found in the PEEKS macro explained in
Section 2.14. For OPT=0 use the TOPT. - equates. For OPT=1l use
the SOPT. - equates.

48-006 FOO RO2 2-23

- —— o ———— -

2.14 GENERATE A PEEK STRUCTURE AND EQUATES (PEEKS)

The PEEKS macro generates the
PEEK macro.

Format:

blank PEEKS blank.

Structure Generated:

X

* PEEK PARBIK
%

PEEKS
PK.OPT
PK.NLU
PK.MPRI
PK.OSID
PK.TSKID
PK.UPLVL

STRUC
DS
DS
DS
DS
DS
DS
DS
DS
DS
Ds
DS
ENDS

PK.SOPT
PK.CTSW
PK.TOPT
PK.STAT

NNOAERARMMDNMDOORRMN

*

Equates Generated:

* SYSTEM
x

SOPT.FPB
SOPT.FPM
SOPT.USB
SOPT.USM
SOPT.DIB
SOPT.DIM
SOPT.DFB
SOPT.DFM
SOPT.WCB
SOPT.WCM
SOPT.ALB
SOPT.ALM

OPTION EQUATES

2'80000000'
%'40000000'
%'20000000'
3'10000000'
3'08000000'
3'04000000'

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

STRUC and EQUs required for the

OPTIONS

NUMBER OF LUs

MAXIMUM PRIORITY

OS IDENTIFICATION

TASK IDENTIFIER (FORMAT 1)
OS UPDATE LEVEL (FORMAT 2)
RESERVED (FORMAT 2)
SYSTEM OPTIONS (FORMAT 2)
CURRENT TASK STATUS WORD
TASK OPTIONS

OPTIONS FROM TASK'S TCB

SYSTEM OPTION - SINGI.LE PRECISION
FILLOATING POINT

SYSTEM OPTION-MMDDYY IF OFF
DDMMYY IF ON

SYS. OPT.-DISPLAY TIME ON PANEL

DISPLAY IF ON

SYSTEM OPTION-DOUBLE PRECISION
FI.OATING POINT

WCS SUPPORT

ALIGNMENT ERROR CHECK

48-006 FOO RO2

SOPT.DAB
SOPT.DAM
SOPT.ITB
SOPT.ITM
SOPT.SPB
SOPT.SPM
SOPT.RIB
SOPT.RLM
SOPT.TMB
SOPT.TMM
x

* TASK O
X

TOPT.ETB
TOPT . ETM
TOPT.ACB
TOPT . ACM
TOPT.FPB
TOPT . FPM
TOPT . MRB
TOPT .MRM
TOPT.CTB
TOPT.CIM
TOPT . CMB
TOPT . CMM
TOPT.S6B
TOPT . S6M
TOPT .DFB
TOPT . DFM
TOPT . RLB
TOPT . RLM
TOPT.OVB
TOPT . OVM
TOPT.SYB
TOPT . SYM
TOPT.CIB
TOPT.CIM

TOPT.FAB
TOPT.FAM
TOPT.LEB
TOPT.LEM
TOPT.UVB
TOPT.UVM
TOPT.KCB
TOPT.KCM

48-006 FOO R

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

PTION

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

PEEKS

02

6

¥'02000000'

7

¥Y'01000000"

8

Y'00800000"

9

Y'00400000"

10

Y'00200000'"

EQUATES

0
X'8000"
1
X'4000"'
2
X'2000"
3
X'1000"
4
X'0800"
5
X'0400"
6
X'0200"
7
X'0100"
8
X'0080"
9
X'0040"
10
X'0020"
11
X'0010"

12
X'oo008'
13
X'0004'
14
X*oo0o02'
15
X*ooo1’

SYSTEM OPTION-DIRECT ACCESS
SYSTEM OPTION-ITAM

SYSTEM OPTION-SPOOL SUPPORT
SYSTEM OPTION-ROIL SUPPORT

SYSTEM OPTION-TEMPF ILES

E-TASK

ARITHMETIC FAULT CONTINUE
USING SINGLE FLOATING POINT
MEMORY RESIDENT

PREVENT SVC 6 CONTROL CALL

PREVENT SVC 6 COMMUNICATION CALL

SVC 6 CONTINUE

USING DOUBLE FLOATING POINT

ALLOW ROLL-OUT
USE OVERLAY
IN SYSTEM GROUP

CONSOLLEE I/0 INTERCEPT ENABLE
(MTM)

FILE ACCOUNT PRIVIILEGES
PREVENT E-TASK LOAD
UNIVERSAL

DO KEY CHECKS ON ASSIGN, E-TASK

NOTE

is automatically generated in the
expression of the PEEK macro.

N
]

25

——— T ———

2.15 RELEASE STORAGE (RELSTORE)

The RELSTORE macro releases the temporary storage in the unused
portion of the task's impure segment that a previous GETSTORE
macro reserved. Releasing temporary storage does not decrease
the task's allocated memory size; but, it releases the unused
portion of the task's impure segment. This area is between the
UTOP and CTOP of a user's task.

Format:
[symbol] RELSTORE size[,PCB=][,FORM=]

Parameter Values:

size - abs address exp
- (reg)

PCB = addrx
= (reg)

FORM = L

Default Values:

none

Required Parameters:

size

2-26 48-006 FOO RO2

Programming Considerations:

The parameter block must be in a writable segment. The size
field must contain the number of bytes to be released. If the
number of bytes is not specified in fullword increments, UTOP's
address 1is adjusted by rounding down to the nearest fullword
boundary. The condition code is set as:

@ A condition code of 0 indicates normal termination.

® A condition code of 4 indicates the size parameter 1is a

negative value or greater than the task's current allocation
size.

48-006 FOO RO2 2-27

2.16 SCAN A MNEMONIC TABLE (SCAN)

The SCAN macro permits the user to decode command mnemonics as
the operating system command processor does.

Format:

[symbol] SCAN TABILE=,SOURCE=, INDEX=[,PCB=][,FORM=]

Parameter Values:

TABI.E = addrx
= (reg)
SOURCE = reg
INDEX = reg
PCB = addrx
= (reg)
FORM = L

Default Values:

none

Required Parameters:

TABLE
SOURCE
INDEX

Programming Considerations:

The source register must be pointing to the string to be scanned.
Leading blanks are accounted for in the source. Use the SKTNB
macro to ensure that this register actually points to the
beginning of the string. The SKTNB macro is discussed in Section
8.13.

2-28 48-006 FOO ROZ2

The TABI.E parameter is the address of a command table to be
recognized. This table can be built with the MNEMTBL macro. The
MNEMTBL macro is detailed in Section 2.8.

The result, returned in the INDEX register, is a number that |is
-1 if a match was not found; or, 0 to n-1, where n is the number

of mnemonics in the table, if a match is found. This number
represents the matched mnemonic's position in the table, starting
with =zero. Thus, if a match is found on the third item in the

table, the result returned in the INDEX register is 2.

The source register is returned pointing to the first nonblank
character that is usually a separator following the mnemonic in
the string being scanned. If a match is not found, the source
register is returned unchanged. The condition code is set as:

@ A condition code of 0 indicates that a match is found.

e A condition code of 4 indicates that a match has not been
found.

Example:

To write a command processor that recognizes commands:

COPY, DELETE, ADD, STOP

READ INBLK

LLDAI 3,BUF POINT TO BUFFER
SKTNB 3 POINT TO NONBLANK
SCAN SOURCE=3, INDEX=4, TABL.E=COMMAND
BO CMDERR ERROR
SLLLSs 4,LADC COMPUTE INDEX
LDA 4,JTAB(4) GET BRANCH ADDRESS
BR 4 VECTOR TO ROUTINE
JTAB DAC COPY,DELETE, ADD,STOP
INBLK IOPCB ADDR=BUF,LU=5,RECL=80
COMMAND MNEMTBL (C,OPY), (D,ELETE), (A,DD), (S,TOP),EOT
BUF DS 80

CMDERR EQU ¥

* Routine to handle command errors

48-006 F0OO RO2 2-29

The COPY command is recognized as:

e C

e CO

e COP
e COPY

Other commands can be abbreviated in a similar manner.

CIPY is detected as an error and branches to CMDERR.

2-30 48-006 FOO RO2

2.17 SET STATUS (SETSTAT)

The SETSTAT macro modifies the arithmetic fault (AF) interrupt
bit and the condition code settings in the program status word
(PSW). When the arithmetic fault interrupt bit setting Iis
modified, interrupts are enabled (E) or disabled (D). When the
condition code setting is modified, the current 4-bit setting is
replaced with a new 4-bit setting.

Format:
[symbol] SETSTAT [AF=](,CC=][,PCB=](,FORM=]

Parameter Values:

AF = E (arithmetic fault - enabled)
= D (arithmetic fault - disabled)

cc = abs byte exp (condition code)
= (reg)

PCB = addrx
= (reqg)

FORM = L

Default Values:
AF = no change
cc = 0 (zero)

Required Parameters:

none

48-006 FOO ROZ

8]
|

31

Programming Considerations:
If no parameters are coded, the condition code is set to zero and
the AF bit is not changed.

If only CC= is coded, the condition code is set; but, the
arithmetic fault bit is not changed.

If only AF= is coded, the arithmetic fault bit is changed and the
condition code is set to zero.

If CC= and AF= are coded, the arithmetic fault bit and condition
code are changed.

If AF=E, an interrupt occurs when any of these conditions result
during an arithmetic operation:

e fixed point quotient overflow

e fixed point division by zero

e floating point overflow and underflow

e floating point division by zero

If AF=D, all interrupts caused by an arithmetic fault are
ignored.

2-32 48-006 F0OO RO2

o ———— - ———

2.18 UNPACK BINARY NUMBER (UNPK)

The UNPK macro converts an unsigned binary number located 1in a
register 1into an ASCII hexadecimal number or an ASCII decimal
number. Leading zeros can be included or replaced with blanks.
The binary number is moved to register 0 (RO) for conversion.

Format:

[symbol] UNPK num,dest([,L.EN=]{,0PT=](,PCB=][,FORM=]

Parameter Values:

num - reg (number to be converted)

dest - addrx (destination)
- (reg)

L.LEN = abs byte exp (length - maximum 63)
= (reg)

OPT = D (decimal - leading blanks)

' = DZ (decimal - leading zeros)
= H (hexadecimal - leading blanks)
= HZ (hexadecimal - leading zeros)

PCB = addrx
= (reqg)

FORM = L

Default Values:
L.EN = 10 for D (decimal)

= 8 for H (hexadecimal)

Required Parameters:

num
dest

48-006 F0OO RO2 - 2-33

Programming Considerations:

The required parameter, dest, must be in a writable segment. If
the number to be converted 1is too large for dest, the
most-significant digits are lost. The result is stored

right-justified in dest with the left-most-significant digits
filled with ASCII zeros or ASCII blanks, depending on the option.
The number can be in any register; however, it is moved to
register 0 (RO) before conversion.

Error Messages:

MNOTE INVALID OPTION - DECIMAL LEADING BLANKS USED
Return code = 1

2-34 48-006 FOO RO2

2.19 WRITE TO OPERATOR--LOG MESSAGE (WTO)

The WTO macro writes a message to the operator's console or
system log device. It can output a message regardless of logical
unit (lu) assignments. The message can be a quoted string; or,
it can be stored in memory. WTO is treated as a proceed call;
consequently, the message can be modified or destroyed
immediately following the macro.

Format:
[symbol] WTO [msg][,ADDR=][,LEN=][,0PT=][,PCB=][,FORM=]

Parameter Values:

msg - 'quoted string' (must be used alone or with
OPT)
ADDR = addrx
= (reg)
LEN = abs halfword exp (must be used with ADDR)
' = (regq)
OPT = F (format mode)
= 1 (image mode)
PCB = addrx
= (reg)
FORM = L
Default Values:
OPT = F (format mode)

Required Parameters:

msg
or

ADDR and LEN

48-006 FOO RO2 2-35

Programming Considerations:

When sent to the appropriate log device, the message is formatted
or in image mode. When a formatted message is sent to a device,
these operations occur:

e All trailing blanks in the buffer or at the end of the message
are eliminated.

e A carriage return line feed is automatically appended to the
message.

e The message terminates when the end of the buffer or the

message 1is reached, or when a carriage return is found in the
message.

When a message is sent to a device in image mode, it terminates
when the end of the buffer or message is reached.
When using image mode, a message with multiple lines can be sent

with a single WTO macro. However, each line should include a
carriage return and line feed at the end.

Error Messages:
MNOTE INVALID OPT - FORMAT USED

Return code = 1

MNOTE MISSING T.ENGTH - NO EXPANSION
Return code = 4

2-36 48-006 FOO RO2

CHAPTER 3
FILE MANAGEMENT MACROS

3.1 INTRODUCTION

File management macros are those macros that manipulate files.
These macros can create or delete direct access files, rename
files, assign files or devices to a task's logical unit, modify
the access privileges of such assignments, close the assignments,
and fetch attributes.

The following sections detail the parameters for all file
management macros and the formats, parameter values default
values, required parameters, programming cons iderations,
examples, and error messages for all file management macros.

Section 1.4 explains the lowercase abbreviations that appear in
the parameter fields of file management macros.

3.2 PARAMETERS FOR FILE MANAGEMENT MACROS

A parameter, coded in the FMPCB macro, sets a constant into the
parameter block. A parameter, ccded in any other macro, replaces
the value 1in the parameter block; but, the RESTART parameter,
which cannot be coded in the FMPCB macro, can be coded in any
other macro. The default value is the next instruction.

Required parameters can be coded in the FMPCB macro or in
individual macros. It is more efficient to code those macros
that do not change as constants in the FMPCB macro. Coding these
in the individual macros generates code that stores the values in
the parameter block. Refer to Section 3.17 for more details on
the FMPCB macro.

e File Management Parameter Control Block (FMPCB)

- FMPCB is specified as a file management parameter control
block address or it is omitted. If it is omitted, it is
constructed and filled in with remaining parameters. The
FMPCB address is placed in R1l4.

48-006 FOO RO2 3-1

Example:

CLOSE LU=2
DELETE PARBI K
ALLOCATE 0(2)

File Descriptor (FD)

The FD is specified as the address of an unpacked file
descriptor in standard form. A PACKFD macro packs the FD
into the parameter block. PACKFD uses the default system
volume with skip leading blanks. If a register is coded,
it is repositioned to the byte after the last wvalid
character of the FD.

If a quoted string is coded in the FMPCB macro, it must be
a packed file descriptor. The volume name must be
specified; but, trailing blanks can be omitted. To
allocate a temporary file, use FD='&"'.

Example:

ASSIGN FD='CON: "

ALLOCATE FD=(3)

ALLOCATE FD='FILEl'

FMPCB FD="'CON'

FMPCB FD='VOL FILEl CALP'
ALLOCATE FD='&',LU=2

Logical Unit (LU)

LU represents the logical unit to which the file or device
is attached.

Example:

ASSIGN LU=3
ALAS LU=(8)

Record Length (RECL)

RECL is the logical record length of an index file to be
allocated.

48-006 FOO RO2

Example:

ALILOCATE RECL=80
ALLOCATE RECL=(4)

e Number of 256-Byte Buffers for Blocking (BLKSIZE)

- When allocating an index file, BLKSIZE is the number of
256-byte buffers allocated 1in the operating system.
Logical records are packed into physical blocks of 256
bytes and then written to the file. BIKSIZE defaults to
one for an index file in the FMPCB macro.

Example:

ALLOCATE BLKSIZE=4
ALLOCATE BIKSIZE=(7)

o Number of Index Blocks for an Index File (NDXSIZE)

- When allocating an index file, NDXSIZE is the number of
index blocks initially allocated. As the file grows,
additional index blocks are automatically added. In the
FMPCB macro, NDXSIZE defaults to one.

Example:

ALLOCATE NDXSIZE=4

® Number of Sectors for a Contiguous File (SIZE)

- When allocating a contiguous file, SIZE is the number of
gsectors allocated. SIZE must be specified when allocating
a contiguous file.

Example:

ALLOCATE FT=CO,SIZE=20
ALLOCATE FT=CO,SIZE=(7)

48-006 FOO RO2 3-3

® Access Privileges (AP)

- When assigning a file, AP specifies access pr
associated with the file or device. When coding a

ivileges
register

containing access privileges, the value must be in the

low-order byte and the remainder of the register
zero. Refer to this table:

CODE VALUE MEANING

SRO X'00' Sharable read-only

ERO X'20' Exclusive read-only

SWO X'40' Sharable write-only

EWO X'60" Exclusive write-only

SRW X'80" Sharable read-write

SREW X'AQ' Sharable read, exclusive write
ERSW X'co! Exclusive read, sharable write
ERW X'EOQ! Exclusive read-write

NOTE

An invalid code results in SRO
being used.

e File Type (FT)

must Dbe

- When allocating a file, FT specifies the file type to be
allocated. When FT is coded in a register, the value must
be the low-order byte and the remainder of the register

must be zero. Refer to this table:

CODE VALUE MEANING

co X'oo0! Cont iguous

IN X'o02' Index

ITAM X'07! ITAM buffered terminal manager

NOTE
An invalid code results in IN being
used.
3-4 48-006

FOO ROZ2

e I[TAM Access Method (AM)

- When allocating an integrated telecommunications access
method (ITAM) terminal manager, AM specifies the line type.
If AM 1is coded in a register, the value must be in the
low-order byte and the remainder of the register must be
zero. Refer to this table:

CODE VALUE MEANING

T X'00' Terminal level

LL X'18" Line level
NOTE

An invalid code results in TL being
used.

e Protection Keys (KEYS)

- When assigning a file, the KEYS in the parameter block must
match the keys in the directory.

® Table of Routine Addresses to Handle Errors (ERR)

- The ERR parameter specifies the address of a table of
routine addresses that handle errors returned by the file
management macros. The FMERRTBL macro builds this table.
The codes listed for each error message can be used in the
FMERRTBL macro to provide branch addresses for each error.

e Pause on Error (PAUS)

- On any error not specified in the FMERRTBL table, which is
pointed to by the ERR parameter, the task will or will not
pause after writing a message to the log device, depending
on the PAUS flag.

e ILocation to Restart After Error (RESTART)

- On any error not specified in the FMERRTBL table, which is
pointed to by the ERR parameter, the task restarts after

writing a message to the log device. 1If the task pauses,
it continues at this address. The default is the next
instruction.

48-006 FOO RO2 3-5

3.3 ALLOCATE AND ASSIGN A FILE OR DEVICE (ALAS)
The AILLAS macro is a combination of the ALLOCATE and ASSIGN
macros. It allocates and assigns a file or device.

Format:

[symbol] ALAS [fmpcb][,FD=]1([,LU=](,AP=][,RECL=][,FT=]
[,BLKSIZE=][,NDXSIZE=][,AM=][,KEYS=]
[ERR=][,RESTART=][,PAUS=][,SIZE=]

Parameter Values:

fmpcb - addrx
- (reg)
FD addrx file descriptor

(reg)
'quoted string' (unpacked FD)

nonon

LU = absolute byte expression
= (reg)

AP = SRO 000xxxxx (access privilege)
= ERO 00 lxxxxx (access privilege)
= BSWO 010xxxxx (access privilege)
= EWO Ollxxxxx (access privilege)
= SRW 100xxxxx (access privilege)
= SREW 10lxxxxx (access privilege)
= ERSW 1l0xXXxxx (access privilege)
= ERW 1llxxxxx (access privilege)
= (regqg)

RECL = absolute halfword expression
= (reg)

FT = CO Xxxxxx000 (contiguous file)
= IN XXxxx010 (index file)
= ITAM xxxxx1ll1l
= (reg)

BLKSIZE = absolute halfword expression
= (reg)

NDXSIZE absolute halfword expression

(reg)

3-6 48-006 FOO RO2

KEYS

ERR

RESTART

PAUS

SIZE

FD

LU

AP

FT

BL.KSIZE

NDXSIZE

AM

KEYS

ERR

RESTART

PAUS

48-006 F0O0 RO2

nou

4

Default Values:

TL xxx00xxx
LL xxxllxxx

(reg)

(terminal level)
(1ine level)

absolute halfword expression
(reg)

addrx
(reg)

addrx
(reg)

N

absolute fullword expression
(reqg)

0]

IN

1 for indexed files; or else O
1 for indexed files; or else 0

TL

0]

PAUS flag if NO DEFAULT in previous FMERRTBL
DEFAULT FMERRTBL of previous FMERRTBL

next instruction

pause if error

Required Parameters:

FD

LU

AP

RECL

FT

AM for ITAM

KEYS

SIZE for contiguous files

NDXSIZE and BLKSIZE for index files

Programming Considerations:

Any required parameter, not specified in the ALAS macro, must be
specified in the FMPCB macro. Section 3.17 details the FMPCB
macro. Any specified parameter replaces the field 1in the
parameter block.

Since the combined functions of the ALLOCATE and ASSIGN macros
are performed, an error terminates without the macro completing
the function. The error status cannot properly reflect the true
error. For example, if ALAS fails on the AILOCATE function, the
ASSIGN function is not performed. The ALAS macro should only be
used if the user is certain of no errors.

Error Messages:

MNOTE INVALID ACCESS PRIV - SRO USED
MNOTE INVALID FILE TYPE - INDEX USED
MNOTE INVALID ACCESS METHOD - TL USED
Return Code = 1

Also refer to the ALLOCATE or ASSIGN macros explained in Sections
3.4 and 3.5, respectively.

3-8 48-006 FOO RO2

3.4 ALLOCATE A FILE (ALILOCATE)

The ALLOCATE macro makes a directory entry and reserves space on
a direct access device specified in the file type (FT) parameter.
(Section 3.2 explains the FT parameter.) When allocating through
the Integrated Telecommunications Access Method (ITAM) buffered
terminal manager, ALLOCATE reserves a memory area for a line
control block.

Format:

[symbol] ALLOCATE [fmpcb](,FD=][,FT=][,RECL=][,SIZE=]
[,BLKSIZE=][,NDXSIZE=][,KEYS=]
[ERR=][,RESTART=][,PAUS=][,LU=]

Parameter Values:

fmpcb - addrx
- (reg)

FD = addrx file descriptor
= (reg)
= 'quoted string' (unpacked FD)

FT = CO xxxxx000 (contiguous file)
= IN xxxxx010 (index file)
= [ITAM xxxxxlll
= (reg)

RECL = absolute halfword expression
= (reg)

SIZE = absolute fullword expression
= (reg)

BLKSIZE = absolute halfword expression
= (reg)

NDXSIZE = absolute halfword expression
= (reg)

KEYS = absolute halfword expression
= (reg)

ERR = addrx
= (reg)

48-006 F0OO RO2 3-9

RESTART = addrx
= (reg)
PAUS = N
LU = absolute byte expression
= (reg)
Default Values:
FD = 0
FT = IN
RECL = 0
SIZE = 0
BLKSIZE = 1 for indexed files; or else O
NDXSIZE = 1 for indexed files; or else 0O
KEYS = 0
ERR = PAUS flag if NO DEFAULT in previous FMERRTBL

= DEFAULT FMERRTBL of previous FMERRTBL
RESTART = next instruction

PAUS = pause if error

Required Parameters:

KEYS

RECL

FD

FT

SIZE for contiguous files

NDXSIZE and BLKSIZE for index files

NOTE
The FD parameter must specify an unpacked

file descriptor because a PACKFD macro is
generated.

3-10 48-006 FOO RO2

Programming Considerations:

Any required parameter, not specified in the ALLOCATE macro, must
be specified in the FMPCB macro. (Section 3.17 details the FMPCB
macro.) Any specified parameter replaces the field in the
parameter block.

When allocating contiguous files, a directory entry and a sector
or number of sectors are reserved. When a contiguous file |is
allocated and the sectors are reserved, the filename, sector's
starting address, read/write keys, and file type are entered into
the directory. A contiguous file is not buffered.

When allocating a temporary file, the LU field must be filled in
for the assign function. Temporary files are assigned when they
are allocated by the ALLOCATE macro.

When allocating indexed files, only a directory entry is

reserved. When an index file is allocated, the filename, number
of logical records, read/write keys, and the file type are
entered into the directory. Two data buffers and one index

buffer are allocated in system space. Each data buffer equals
the file's index block size.

When allocating a line control block, system space in memory 1is
reserved. When a 1line control block is allocated and system
space is reserved, the buffered terminal's filename, logical
record length, and read/write keys are entered into the LCB. Two
data buffers are allocated in system space. Each data buffer
must equal the device's physical block size.

Error Messages:

CODE MESSAGE

IF VOL:FD - ILLEGAL FUNCTION - CANNOT ALLOCATE
VOL VOL:FD - VOLUME NOT MOUNTED - CANNOT ALLOCATE
NAME VOL:FD - EXISTS -~ CANNOT ALLOCATE
SIZE VOL:FD - NO ROOM ON DISC - CANNOT ALLOCATE
PRIV VOL:FD - PRIVILEGE ERROR - CANNOT ALLOCATE
TYPE VOL:FD - DEVICE NOT DIRECT ACCESS -~ CANNOT AILILOCATE
FD VOL:FD - INVALID FILENAME - CANNOT ALILOCATE
SYS VOL:FD - ACCOUNT VIOLATION - CANNOT ALILOCATE
XX - UNEXPECTED STATUS

MNOTE INVALID ACCESS PRIV - SRO USED
MNOTE INVALID FILE TYPE - INDEX USED
MNOTE INVALID ACCESS METHOD - TL USED
Return code = 1

48-006 F0OO ROZ2 3-11

3.5 ASSIGN A FILE OR DEVICE (ASSIGN)
The ASSIGN macro uses an LU to establish a logical connection
between the task and file or device; or, it uses a lcgical

connection between an Integrated Telecommunications Access Method
(ITAM) line and buffered terminal.

Format:

[symbol] ASSIGN [fmpcb]([,LU=][,FD=][,KEYS=][,AP=][,AM=]
[ERR=][,RESTART=][,PAUS=]

Parameter Values:

fmpcb - addrx
- (reg)

LU = absolute byte expression
= (reg)

FD = addrx
= (reg)
= 'quoted string' (unpacked FD)

KEYS = absolute halfword expression
= (reg)

AP = SRO 000xxxxx (access privilege)
= ERO 00lxxxxx (access privilege)
= SWO 010xxxxx (access privilege)
= EWO Ollxxxxx (access privilege)
= SRW 100xxxxx (access privilege)
= SREW 10lxxxxx (access privilege)
= ERSW 1l0xxxxx (access privilege)
= ERW 111xxxxx (access privilege)
= (regqg)

AM = TL xxx00xxx (terminal level)
= LL XxXx1llxxx (line level)
= (reg)

ERR = addrx
= (reqg)

RESTART = addrx
= (reg)

PAUS = N

3-12 48-006 FOO RO2

Default Values:

LU = 0

FD = 0

KEYS = 0

AP = SRO

AM = TL

ERR = PAUS flag if NO DEFAULT in previous FMERRTBL

= DEFAULT FMERRTBL of previous FMERRTBL

RESTART

next instruction

PAUS pause if error

Required Parameters:

LU

FD

KEYS

AP

AM for ITAM

NOTE

The FD parameter must specify an unpacked
file descriptor because a PACKFD macro is
generated.

Programming Considerations:

Any required parameter, not specified in the ASSIGN macro, must
be specified in the FMPCB macro. (Section 3.17 details the FMPCB
macro.) Any specified parameter replaces the field in the
parameter block.

When assigning to disk devices, the read/write keys corresponding
to specified access privileges are compared to the read/write
keys in the file directory entry. If the appropriate keys match,
the file is assigned according to specified access privileges.

When assigning -to nondirect access devices, only the access
privileges are examined. If the access privileges are SWO or EWO
and the user issues an ASSIGN, the file is positioned at its
logical end (append mode). If an ASSIGN is not issued, the file
is positioned at the beginning.

48-006 FOO RO2 3-13

Error Messages:

CODE MESSAGE

IF LU XXX VOL:FD - ILLEGAL FUNCTION - CANNOT ASSIGN

LU LU XXX VOL:FD - ILLEGAL LU NUMBER - CANNOT ASSIGN

VOL LU XXX VOL:FD - VOLUME NOT MOUNTED - CANNOT ASSIGN

NAME LU XXX VOL:FD - DOES NOT EXIST - CANNOT ASSIGN

PROT LU XXX VOL:FD - PROTECTED BY KEYS - CANNOT ASSIGN

PRIV LU XXX VOL:FD - PRIVILEGE ERROR - CANNOT ASSIGN

BUF LU XXX VOL:FD - BUFFER ERROR - NO ROOM IN 0S -
CANNOT ASSIGN

ASGN LU XXX VOL:FD - ASSIGNED - CANNOT ASSIGN

FD LU XXX VOL:FD - INVALID FILENAME - CANNOT ASSIGN

TGD LU XXX VOL:FD - TRAP GENERATING DEVICE - CANNOT
ASSIGN

SYS LU XXX VOL:FD - ACCOUNT VIOLATION - CANNOT ASSIGN
XX - UNEXPECTED STATUS

MNOTE INVALID ACCESS PRIV - SRO USED
MNOTE INVALID FILE TYPE - INDEX USED
MNOTE INVALID ACCESS METHOD - TL USED
Return code = 1

3-14 48-006 FOO RO2

3.6 CHANGE ACCESS PRIVILEGES (CHAP)

The CHAP macro changes the current access privileges of an
assigned file or device to the access privileges that the AP
parameter specifies. The new access privileges must be
compatible with the existing ones; if they are not compatible,
the file's existing access privilege keys remain unchanged.

Format:

(symbol] CHAP [fmpcb]{,LU=]([,AP=]([,ERR=]
[, RESTART=][, PAUS=]

Parameter Values:

fmpcb - addrx
- (reg)

LU = absolute byte expression
= (reg)

AP = SRO 000xxxxx (access privilege)
= ERO 00lxxxxx (access privilege)
= SWO 01l0xxxxx (access privilege)
= EWO Ollxxxxx (access privilege)
= SRW 100xxxxx (access privilege)
= SREW 10lxxxxx (access privilege)
= ERSW 110xxxxx (access privilege)
= ERW 111lxxxxx (access privilege)
= (reg)

ERR = addrx
= (reg)

RESTART = addrx
= (reg)

PAUS = N

48-006 FOO RO2 3-15

Default Values:

.U = 0
AP = SRO
ERR = PAUS flag if NO DEFAULT in previous FMERRTBL

= DEFAULT FMERRTBL of previous FMERRTBL

RESTART next instruction

PAUS

pause if error

Required Parameters:

LU
AP

Programming Considerations:

Any required parameter, not specified in the CHAP macro, must be
specified 1in the FMPCB macro. (Section 3.17 details the FMPCB
macro.) Any specified parameter replaces the field in the
parameter block. The valid access privilege key combinations are
shown in Table 3-1.

3-16 48-006 FOO RO2

TABLE 3-1 VALID ACCESS KEY COMBINATIONS

CHANGE | CHANGE TO

]
1

| FROM | SRO ERO SWO EWO SRW SREW ERSW ERW
; I DT I L e I DN I T D DT I N IS LA L I LT D I DT IR LI I LT ST ST LT I Lm I DU e OO L W N e Do oot oiw N BT LS I ue e pee guw oD s ome e e o sem
! SRO /Y J Y | N | N | N | N | N | N
d i i] i i i !]
| ERO /'Y | Y J N }J N | N | N | N | N
])]]]]]]]
1 1 i] [} } i [}]
! SWO /' N | N } Y | Y | N | N | N | N
i i i] i] i i]
{ EWO ¢ N { N } Y | Y ! N ! N | N | N
1 { { [] i] { | 1
I] I I I }) I I
| SRW Y)Y VY oY LY VoY by oY
i i i i i ' i i i
| SREW | Y | Y { Y | Y + Y | ¥ | ¥ | ¥
| i i ' i i ! i]
 ERSW] Y L Y | Y | Y { Y { Y | ¥ | ¥
i i i i i i i i i
| ERW Yy LY LY)oY LY Y b Y 4y

LEGEND
Y = VALID REQUEST
N = INVALID REQUEST

Error Messages:

CODE MESSAGE

LO LU XXX VOL:FD - ILLEGAL LU NUMBER - CANNOT CHANGE
ACCESS PRIVIILEGES
PRIV LU XXX VOL:FD - PRIVILEGE ERROR - CANNOT CHANGE
ACCESS PRIVII.EGES
ASGN LU XXX VOL:FD - NOT ASSIGNED - CANNOT CHANGE
ACCESS PRIVILEGES
XX - UNEXPECTED STATUS

MNOTE INVALID ACCESS PRIV - SRO USED
MNOTE INVALID FILLE TYPE - INDEX USED
MNOTE INVALID ACCESS METHOD - TL USED
Return code = 1

48-006 FOO RO2 3

I

17

3.7 CHECK THE ERROR STATUS OF AN FMPCB (CHECKFM)

The CHECKFM macro generates code that checks the status after a
file management function has been performed. '
Format:

[symbol] CHECKFM [fmpcb]l[,ERR=][,RESTART=]

Parameter Values:

Empcb - addrx
- (reqg)
ERR = addrx
= (reg)
RESTART = addrx
= (reg)
Default Values:
ERR = PAUS flag if NO DEFAULT in previous FMERRTBL

= DEFAULT FMERRTBL of previous FMERRTBL

RESTART next instruction

NOTE

CHECKFM automatically occurs in the
expansion of all file management macros.

3-18 48-006 FOO RO2

3.8 CHECKPOINT A LOGICAL UNIT (CKPOINT)

The CKPOINT macro copies file buffered data to the indexed file
or terminal buffered data to the terminal and updates the
directory entries. Issuing a CKPOINT macro to a contiguous,
nondirect access device or unbuffered file has the same effect as
a WAITIO macro. Section 4.16 explains the WAITIO macro.

Format:

[symbol] CKPOINT [fmpcb](,LU=][,AM=][,ERR=][,RESTART~-]
[,PAUS=]

Parameter Values:

fmpcb - addrx
- (reg)
LU = absolute byte expression
= (reg)
AM = TL xxx00xxx (terminal level)
= LL Xxxx1llxxx (line level)
= (reg)
ERR = addrx
= (regqg)
RESTART = addrx
= (reg)
PAUS = N
Default Values:
LU = 0
AM = TL
RESTART = next instruction
ERR = PAUS flag if NO DEFAULT in previous FMERRTBL
= DEFAULT FMERRTBL of previous FMERRTBL
PAUS = pause if error

48-006 FOO RO2 - 3-18

Required Parameters:

LU
AM for [TAM

Programming Considerations:

Any required parameter, not specified in the CKPOINT macro, must
be specified in the FMPCB macro. (Section 3.17 details the FMPCB
macro.) Any specified parameter replaces the field in the
parameter block.

After issuing a CKPOINT macro, the file pointer is not
repositioned to the beginning of the file as in a CLOSE macro.
CKPOINT should be used after a large amount or a considerably
important amount of data is saved to a buffered file because it
preserves the data by copying it to the file. If a system
failure occurs and data exists in the file buffers, all data up
to the last CLOSE or CKPOINT can be recovered; any data appended
after the last CLOSE or CKPOINT is lost.

Error Messages:

CODE MESSAGE

LU LU XXX VOL:FD - ILLEGAL LU NUMBER - CANNOT
CHECKPOINT
ASGN LU XXX VOL:FD - NOT ASSIGNED - CANNOT CHECKPOINT
XX - UNEXPECTED STATUS

3-20 48-006 FOO RO2

3.9 CLOSE A LOGICAL UNIT AND DELETE A FILE (CLDE)
The CIDE macro closes an LU and deletes a file. It performs the
combined functions of the CLOSE and DELETE macros.

Format:

(symbol]l CLDE [fmpcb]([,FD=](,LU=][,KEYS=][,ERR=]
[,RESTART=][,PAUS=]

Parameter Values:

fmpcb - addrx
- (regq)
FD addrx file descriptor

(reg)
'‘quoted string' (unpacked FD)

| |

LU = absolute byte expression
= (reg)

KEYS = absolute halfword expression

» = (reg)

ERR = addrx
= (reg)

RESTART = addrx
= (reg)

PAUS = N

Default Values:

FD - 0

LU = 0

KEYS = 0

48-006 FO0O0 RO2 3-21

ERR = PAUS flag if NO DEFAULT in previous FMERRTBL
= DEFAULT FMERRTBL of previous FMERRTBL

RESTART next instruction

PAUS

pause if error

Required Parameters:

FD
LU
KEYS

Programming Considerations:

Any required parameter, not specified in the CLDE macro, must be
specified 1in the FMPCB macro. (Section 3.17 details the FMPCB
macro.) Any specified parameter replaces the field in the
parameter block.

Since the combined functions of the CLOSE and DELETE macros are
performed, an error terminates the macro without completing the
function. The error status cannot properly reflect the true
error. For example, if CLDE fails on the close function, the
delete function is not performed. The CLDE macro should only be
used if the user is certain no errors exist.

Error Messages:

Refer to the error messages given for the CLOSE or DELETE macros
explained in Sections 3.10 and 3.1ll, respectively.

3-22 48-006 FOO ROZ2

3.10 CLOSE A LOGICAL UNIT (CLOSE)

The CLOSE macro breaks the logical connection between the task
and file or between the device, or ITAM line, and terminal by
closing the currently assigned LU.

Format:

[symbol] CLOSE [fmpcbl[,LU=][,ERR=][,RESTART=][,PAUS~]

Parameter Values:

fmpcb - addrx
- (reg)

LU = absolute byte expression
= (reg)

ERR = addrx
= (reg)

RESTART = addrx
= (reg)

PAUS = N

Default Values:
LU = 0
ERR = PAUS flag if NO DEFAULT in previous FMERRTBL

= DEFAULT FMERRTBL of previous FMERRTBL

RESTART next instruction

PAUS pause if error

Required Parameters:

LU

48-006 FOO RO2 3-23

Programming Considerations:

Any required parameter, not specified in the CLOSE macro, must be
specified in the FMPCB macro. (Section 3.17 details the FMPCB
macro.) Any specified parameter replaces the field in the
parameter block.

When the LU is closed, all data in file buffers or terminal
buffers are copied to the user's file.
Error Messages:

CODE MESSAGE

LU LU XXX - ILLEGAL LU NUMBER - CANNOT CLOSE
ASGN LU XXX - NOT ASSIGNED - CANNOT CLOSE
XX - UNEXPECTED STATUS

3-24 48-006 FOO RO2

3.11 DELETE A FILE (DELETE)

The DELETE macro removes the file directory entry and releases
the reserved space of a currently unassigned file on a direct
access device. When deleting through the ITAM buffered terminal
manager, a currently unassigned ILine Control Block (LCB) is
removed from memory.

Format:

[symbol] DELETE [fmpcb][,FD=][,KEYS=][,ERR=][,RESTART-]
[, PAUS=] .

Parameter Values:

fmpcb - addrx
- (reg)
FD = addrx
= (regq)
= 'quoted string' (unpacked FD)
KEYS = absolute halfword expression
= (reg)
ERR = addrx
(reg)
RESTART = addrx
= (reg)
PAUS = N

Default Values

FD = 0
KEYS = 0
ERR = PAUS flag if NO DEFAULT in previous FMERRTBL

= DEFAULT FMERRTBL of previous FMERRTBL

]

RESTART next instruction

PAUS pause if error

48-006 FOO RO2 3-25

Required Parameters:

FD
KEYS

NOTE

The FD parameter must specify an unpacked
file descriptor because a PACKFD macro 1is
generated.

Programming Considerations:

Any required parameter, not specified in the DELETE macro, must
be specified in the FMPCB macro. (Section 3.17 details the FMPCB
macro.) Any specified parameter replaces the field in the
parameter block.

If the contents of the parameter block's volume name, filename,
extension, and read/write keys fields match the fields in the
file directory entry, the file is deleted. If the logical
terminal's name matches the name in the LCB, the LCB is deleted.

Error'Messages:
CODE MESSAGE

VOL VOL:FD - VOLUME NOT MOUNTED - CANNOT DELETE
NAME VOL:FD - DOES NOT EXIST - CANNOT DELETE
PROT VOL:FD - PROTECTED BY KEYS - CANNOT DELETE
PRIV VOL:FD - PRIVILEGE ERROR - CANNOT DELETE
ASGN VOL:FD - ASSIGNED - CANNOT DELETE
TYPE VOL:FD - DEVICE NOT DIRECT ACCESS - CANNOT DELETE
FD VOL:FD - INVALID FILENAME - CANNOT DELETE :
TGD VOL:FD - TRAP GENERATING DEVICE - CANNOT DELETE
SYS VOL:FD - ACCOUNT VIOLATION - CANNOT DELETE

XX - UNEXPECTED STATUS

3-26 48-006 FOO RO2

3.12 GENERATE A FILE DESCRIPTOR STRUCTURE (FDS)

The FDS macro generates the structure for a packed file
descriptor.

Format:

blank FDS blank

Structure Generated:

x FILE DESCRIPTOR

X

FDS STRUC

FD.VOL DS 4 VOLUME

FD.FNAME DS 8 F ILENAME

FD.EXT DS 3 EXTENS IONS

FD.ACT DS 1 PRIVATE, GROUP, SYSTEM
ENDS

48-006 FOO RO2 3

I

27

3.13 FETCH ATTRIBUTES OF A FILE OR DEVICE ASSIGNED TO AN LU
(FETATR)

The FETATR macro sends to the parameter block the physical
attributes of the file or device currently assigned to the
specified L.LU. The parameter block must be in a writable segment.

Format:

[symbol] FETATR [fmpcb][,LU=][,ERR=][,RESTART-][,PAUS=]

Parameter Values:

fmpcb - addrx
- (reg)

LU = absolute byte expression
= (reg)

ERR = addrx
= (reg)

RESTART = addrx
= (reg)

PAUS = N

Default Values:
LU = 0
ERR = PAUS flag if NO DEFAULT in previous FMMERTBL

= DEFAULT FMERRTBL of previous FMERRTBL

RESTART

]

next instruction

PAUS

pause if error

Required Parameters:

LU

3-28 48-006 FOO RO2

Programming Considerations:

Any required parameter, not specified in the AILLOCATE macro, must
be specified in the FMPCB macro. (Section 3.17 details the FMPCB
macro.) Any specified parameter replaces the field 1in the
parameter block.

The FM.DC field receives a hexadecimal number indicating the file
or device type. Refer to the 0S/32 System Planning and
Configuration Guide for a list of the devices and their codes.

The FM.DATB field receives a hexadecimal number indicating
certain file or device attributes. See the FMPCBS macro, Section
3.18, for the code and equates.

The FM.RECL field receives the logical record length of the file
or physical record length of the device assigned to the specified
.U (e.g., 80-byte records for card readers and 120 or 132 - byte

records for 1line printers). If the device has variable length
records, a zero value is returned to this field (e.g., magnetic
tape). However, variable length record devices are normally used

as a fixed record length device. For direct access devices, a
record length, which is the file's logical record length
established at allocation time.

The FM.VOL, FM.FNAME, FM.EXT, and FM.ACT each receive the volume
name, filename, extension, and file class, respectively. For a
nondirect access device, the device mnemonic is sent to the
FM.VOL field and the remaining fields are filled with blanks.

The FM.SIZE field receives an unsigned hexadecimal number
indicating the current size of a direct access file which is the
number of logical records in an index file and the number of
sectors in a contiguous file.

All other fields remain unchanged.

Error Messages:

CODE MESSAGE

LU LU XXX - ILLEGAL LU NUMBER - CANNOT FETCH ATTRIBUTES
ASGN LU XXX - NOT ASSIGNED - CANNOT FETCH ATTRIBUTES
XX - UNEXPECTED STATUS

48-006 FOO ROZ2 3-29

3.14 GENERATE THE SUBROUTINE TO CHECK THE STATUS OF AN FMPCB
(FMERR)

The FMERR macro generates the subroutine to check the error
status after the completion of a file management function. Refer
to Section 1.7, Error Handling and Recovery, for a description of
these functions.

Format:
blank FMERR blank

NOTE

The subroutine is only generated on the
first call of this macro. Subsequent
calls do not generate another copy of the
subroutine. FMERR is called by all file
management macros.

3-30 48-006 FOO ROZ2

3.15 FETCH RETURN ADDRESS IN A USER ROUTINE FOR FILE MANAGEMENT
ERRORS (FMERRET)

In a user-defined routine to handle file management errors, a
return to the instruction following the macro call that caused
the error is obtained by using the FMERRET macro. The optional
register is the register where the address is returned. The user

routine can save this address before issuing any other file
management macros.

Format:

[symbol] FMERRET {[reg]
Parameter Values:

reg - register expression
Default Values:

reg - 15
Example:

If a program wants to allocate a file that already exists, the
FMERRTBL. macro specifies a return to delete the file and retries
the ALLOCATE. At the end of this routine, the user might want to
continue after the original AILLOCATE:

ALI.OCATE NEWFILE, ERR=DELERR,FD=(3),FT=IN,
RECL=80
* R3 points to the unpacked file descriptor

ASSIGN NEWF IL.E,LU=4 ASSIGN IT

-

DEL.ERR FMERRTBL PAUS=N, NAME=DEL

48-006 F0OO ROZ2 3-31

x if name error occurs,

DEL

EQU
FMERRET
STA
LDAR

DELETE
ALLOCATE
LDA

BR

NEWF ILLE FMPCB
RETSAV DAS

12
12 ,RETSAV
12,14

(12)

(12)
12,RETSAV
12

branch to DEL

GET RETURN ADDRESS

HOLLD ADDRESS OF NEWFILE
WHICH IS IN R1l4

RETURN TO ASSIGN

48-006 FOOQ ROZ2

3.16 GENERATE A TABLE OF ADDRESSES FOR FM ERROR HANDLING
(FMERRTBL)

The FMERRTBL macro generates a table of branch addresses to
user-written routines to handle errors returned by the file
management macros. Refer to Section 1.7, Error Handling and
Recovery, for a description of these functions.

Format:

[symbol] FMERRTBL ([default][,IF=][,LU=](,VOL=][,NAME=]
{,SIZE=][,PROT=][,PRIV=][,BUF=]
(,ASGN=][,TYPE=][,FD=](,TGD=][,8¥S=]
[,10=][,PAUS=]

Parameter Values:

default - DEFAULT (use this FMERRTBL as the default
for all FMPCBs)

IF = addr (illegal function)

LU = addr (logical unit)

VOL = addr (volume)

NAME = addr (name)

SIZE = addr (size)

PROT = addr (protection)

PRIV = addr (privilege)

BUF = addr (buffer)

ASGN = addr (assignment)

TYPE = addr (type)

FD = addr (file descriptor)

TGD = addr (trap-generating device)

SYS = addr (system)

48-006 FOO ROZ2 3-33

10

PAUS

= addr

Default Values:

IF

LU

VOL

NAME

PROT

PRIV

BUF

ASGN

TYPE

FD

TGD

SYS

10

PAUS

= no

= no

= no

= no

= no

= no

= no

= no

= no

= no

= no

entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry
entry

entry

= pause if

If the

(input/output)

(no pause)

in
in
in
in
in
in
in
in
in
in
in
in
in

in

table
table
table
table
table
table
table
table
table
table
table
table
table

table

error

NOTE

DEFAULT parameter is specified,
the FMERRTBL macro is the default for all
FMPCB macros.

48-006 FOO RO2

3.17 GENERATE A FILE MANAGEMENT PARAMETER CONTROL BLOCK (FMPCB)

The

Format:

symbol FMPCB

Parameter Values:

AP

FT

LU

KEYS

RECL

FD

SIZE

NDXSIZE

48-006 FOO RO2

FMPCB macro
manhagement macros.

[/ I I |

]

constructs

the

parameter
It can be constructed alone or as part of the
expansion of other file management macros.

block

for

(AP=][,AM=][,FT=][,LU=][,KEYS=][,RECL=]
(,FD=][,NDXSIZE=][,BLKSIZE=][,SIZE=]
[,ERR=][,PAUS=]

SRO
ERO
SWO
EWO
SRW
SREW
ERSW
ERW

TL
LL

co
IN
ITAM

000xxxxx
00lxxxxx
0l0xxxxx
0llxxxxx
100xxxxx
101lxxxxx
110xxxxx
Lllxxxxx

xxx00xxx
XxXxllxxx

Xxxxxx000
xxxxx010
Xxxxx1lll

(access
(access
(access
(access
(access
(access
(access
(access

privilege)
privilege)
privilege)
privilege)
privilege)
privilege)
privilege)
privilege)

(terminal level)
(line level)

(contiguous file)
(index file)

absolute byte expression

absolute halfword expression

absolute halfword

'‘quoted string’

absolute fullword

absolute halfword

expression

(packed FD)

expression

expression

file

BLKSIZE = absolute halfword expression
ERR = addr

PAUS = N

NOTE
The FD parameter must specify a packed

file descriptor because a PACKFD macro is
not generated.

Default Values:

AP = SRO
AM = TL
FT = [N
LU = 0
KEYS = 0
RECL = 0
FD = 0

NDXSIZE = 1 for indexed files; or else O

BIKSIZE = 1 for indexed files; or else 0

SIZE = 0

ERR = PAUS flag if NO DEFAULT in previous FMERRTBL
= DEFAULT FMERRTBL of previous FMERRTBL

PAUS = pause if error

3-36 48-006 FOO RO2

3.18 GENERATE AN FMPCB STRUCTURE AND EQUATES (FMPCBS)

The FMPCBS macro generates the structure and equates for the
FMPCB parameter block.

Format:

blank FMPCBS blank

Structure Generated:

FM.NDXSI DS
FM.BLKSI DS
FM.PAUS DS

INDEX BLOCK SIZE
DATA BLOCK SIZE
PAUSE FLAG

x FM PARBLK
*
FMPCBS STRUC
FM.FC DS 0 FUNCTION CODE
FM.FUN DS 1 FUNCTION CODE
FM.DC DS 0 DEVICE CODE (FETATR)
FM.MOD DS 1 MODIF IER
FM.STAT DS 1 STATUS
FM.LU DS 1 LOGICAL UNIT
FM.DATB DS 0 DEVICE ATTRIBUTES (FETATR)
FM.KEYS DS 0 KEYS
FM.WRKY DS 1 WRITE KEY
FM.RDKY DS 1 READ KEY
FM.RECL DS 2 LOGICAL RECORD LENGTH
FM.FD DS 0 FILE DESCRIPTOR
FM.VOL, DS 4 VOLUME
FM.FNAME DS 8 FILENAME FIELD
FM.EXT DS 3 EXTENS ION
FM.ACT DS 1 PRIVATE, GROUP, SYSTEM
FM.SIZE DS 0 FILE SIZE
2
2
4
FM.ERR DAS 1 ERROR ADDRESS

FM.RESTA DAS 1 RESTART ADDRESS

ENDS

48-006 F0OO0 ROZ2 3-37

Equates Generated:

* DEVICE ATTRIBUTES EQUATES
*

DATB.INB EQU O INTERACTIVE DEVICE

DATB.INM EQU X'8000'

DATB.RDB EQU 1 SUPPORTS READ

DATB.RDM EQU X'4000'

DATB.WRB EQU 2 SUPPORTS WRITE

DATB.WRM EQU X'2000'

DATB.BIB EQU 3 SUPPORTS BINARY

DATB.BIM EQU X'1000°*

DATB.WAB EQU 4 SUPPORTS WAIT 1/0

DATB.WAM EQU X'0800°'

DATB.RNB EQU 5 SUPPORTS RANDOM

DATB.RNM EQU X'0400'

DATB.UPB EQU 6 SUPPORTS UNCONDITIONAL PROCEED
DATB.UPM EQU X'0200°'

DATB.IMB EQU 7 SUPPORTS IMAGE

DATB.IMM EQU X'0100°)

DATB.HIB EQU 8 SUPPORTS HALT 1/0

DATB.HIM EQU X'0080'

DATB.RWB EQU 9 SUPPORTS REWIND

DATB.RWM EQU X'0040'

DATB.BRB EQU 10 SUPPORTS BACKSPACE RECORD
DATB.BRM EQU X'0020'

DATB.FRB EQU 11 SUPPORTS FORWARD SPACE RECORD
DATB.FRM EQU X'0010'

DATB.WFB EQU 12 SUPPORTS WRITE FILEMARK
DATB.WFM EQU X'0008'

DATB.FFB EQU 13 SUPPORTS FORWARD SPACE FILEMARK
DATB.FFM EQU X'0004°'

DATB.BFB EQU 14 SUPPORTS BACKSPACE FILEMARK

DATB.BFM EQU X'0002'
x

* DEVICE CODE EQUATES

X

DC.CO EQU 0 CONTIGUOUS FILE

DC.IN EQU 2 INDEXED FILE

DC.NUL EQU 255 NULL DEVICE
NOTE

FMPCBS 1is automatically generated in the
expansion of any file management macro.

3-38 48-006 FOO RO2

3.19 RETURN THE RELATIVE RECORD ADDRESS OF THE NEXT SEQUENTIAL
RECORD (NOTE)

The NOTE macro returns the relative record address of the next
sequential record.

Format:

[label] NOTE [iopcbl[,LU=1[,RECNUMB=]
[,RESTART=][,PAUS=][,ERR]

Parameter Values:

iopcb - addrx
(reg)
LU = absolute byte expression
= (reg)
RECNUMB = record number
= (reg)
PAUS = N
ERR = addrx
= (regqg)
Default Values:
iopcb =
LU =0
RECNUMB =
RESTART = next instruction
PAUS = pause if error
ERR =

48-006 FOO ROZ2 3-39

Programming Considerations:

A 256-byte sector is defined as one record for a contiguous file,
for which relative record is interpreted as relative sector. The
first record of a file is record 0. A NOTE issued to a logical
unit (lu) that has had no I/0 since being assigned will return a
relative record address of O.

If a NOTE is issued and a contiguous file is positioned at EOM or
an indexed file is positioned at EOF, an EOM or EOF status is
returned.

A NOTE always returns the record or sector address immediately
following the last record referenced, or 0 if the file has not
been referenced or has just been rewound. If a NOTE is issued
and the returned record address is subsequently used in a POINT
request, the latter function will position the file to the exact
position it occupied when the NOTE request was issued. See POINT
macro, Section 3.20.

3-40 48-006 F0OO RO2

3.20 REPOSITION A FILE TO A SPECIFIED RELATIVE RECORD ADDRESS

(POINT)

The POINT macro repositions a file to a specified relative record
address that is specified in the SVC 1 record address field.

Format:

[label] POINT

Parameter Values:

iopcb

LU

RECNUMB

PAUS

ERR

Default Values:

iopchb
LU
RECNUMB
RESTART

ERR

48-006 F0OO RO2

{iopcb][,LU=][,RECNUMB=]
[RESTART=](,PAUS=][,ERR=]

addrx
(req)

absolute byte expression
(reg)

record number
(regqg)

N

addrx
(reg)

next instruction

Programming Considerations:

A POINT request specifying the relative record address 0 is
equivalent to a rewind. If a POINT request specifies a record
position beyond EOF for an indexed file or beyond EOM for a
contiguous file, and EOM status is returned. The relative record
position 1is set to one position beyond the last record for
indexed files and one position beyond the last sector for
contiguous files.

If a NOTE request is issued and the returned record address is
subsequently used 1in a point request, the latter function will
position the file to the exact position it occupied when the note
request was issued.

w
i

42 48-006 FOO RO2

3.21 RENAME A FILE ASSICGNED TO A LOGICAL UNIT (RENAME)
The RENAME macro changes a currently assigned filename and
extension to the filename and extension specified in the FD

parameter. The filename must be on a direct access device and
assigned with ERW access privileges.

Format:

[symbol] RENAME ([fmpcb][,LU=]([,FD=](,ERR=][,RESTART=]

[,PAUS=]
Parameter Values:
fmpcb - addrx
- (reg)
FD = addrx
= (reg)
= 'quoted string' (unpacked FD)
LU = absolute byte expression
= (reqg)
ERR = addrx
= (regqg)
RESTART = addrx
= (regq)
PAUS = N
Default Values:
LU = 0
FD = 0
ERR = PAUS flag if NO DEFAULT in previous FMERRTBL

= DEFAULT FMERRTBL of previous FMERRTBL

RESTART

next instruction

PAUS

pause if error

48-006 FOO ROZ2 3-43

Required Parameters:

FD
LU

NOTE

The FD parameter must specify an unpacked
file descriptor because a PACKFD macro is
generated.

Programming Considerations:

Any required parameter, not specified in the RENAME macro, must
be specified in the FMPCB macro. (Section 3.17 details the FMPCB
macro.) Any specified parameter replaces the field in the
parameter block.

The RENAME macro ignores the volume name field. The filename and
extension replace the current filename and extension in the
directory.

Error Messages:
CODE MESSAGE

LU LU XXX VOL:FD - ILLEGAL LU NUMBER - CANNOT RENAME
NAME LU XXX VOL:FD - EXISTS - CANNOT RENAME
PROT LU XXX VOL:FD - PROTECTED BY KEYS - CANNOT RENAME
PRIV LU XXX VOL:FD - PRIVILEGE ERROR - CANNOT RENAME
ASGN LU XXX VOL:FD - NOT ASSIGNED - CANNOT RENAME

LU XXX VOL:FD - DEVICE NOT DIRECT ACCESS - CANNOT

RENAME

FD LU XXX VOL:FD - INVALID FILENAME - CANNOT RENAME
5YS LU XXX VOL:FD - ACCOUNT VIOLATION - CANNOT RENAME
XX ~ UNEXPECTED STATUS

3-44 48-006 F0OO RO2

3.22 REPROTECT A FILE ASSIGNED TO A LOGICAL UNIT BY CHANGING
THE KEYS (REPROT)

The REPROT macro changes the read/write protection keys of a
currently assigned file to the contents of the KEYS parameter.

The file must be on a direct access device and assigned with ERW
access privileges.

Format:

[symbol] REPROT ([fmpcb][,LU=](,KEYS=][,ERR=][,RESTART=]
[,PAUS=]

Parameter Values:

fmpcb - addrx
- (regq)
LU = absolute byte expression
= (reg)
KEYS = absolute halfword expression
= (reg)
ERR = addrx
= (reg)
RESTART = addrx
= (reg)
PAUS = N
Default Values:
.U = 0
KEYS = 0
ERR = PAUS flag if NO DEFAULT in previous FMERRTBL
= DEFAULT FMERRTBL of previous FMERRTBL
RESTART = next instruction
PAUS = pause if error

48-006 FOO RO2 3-45

Required Parameters:

LU
KEYS

Programming Considerations:

Any required parameter not specified in the REPROT macro, must be
specified in the FMPCB macro. (Section 3.17 details the FMPCB
macro.) Any specified parameter replaces the field in the
parameter block.

When issuing the REPROT macro, the specified read/write Kkeys
replace the current read/write keys of a specified file in the
device's directory.

Error Messages:

CODE MESSAGE

LU LU XXX VOL:FD - ILLEGAL LU NUMBER - CANNOT
REPROTECT

PRIV LU XXX VOL:FD ~ PRIVILEGE ERROR - CANNOT
REPROTECT

ASGN LU XXX VOL:FD - NOT ASSIGNED - CANNOT REPROTECT

TYPE LU XXX VOL:FD - DEVICE NOT DIRECT ACCESS -
CANNOT REPROTECT

3YS LU XXX VOL:FD - ACCOUNT VIOLATION - CANNOT
REPROTECT

XX - UNEXPECTED STATUS

3-46 48-006 F0OO RO2

CHAPTER 4
INPUT/OUTPUT MACROS

4.1 INTRODUCTION

Input/output (I/0) macros enable a task to sequentially or
randomly read and write records while ®maintaining full control
over waiting for 1[/0 to complete or to proceed and manipulate
filemarks.

The following sections detail the parameters associated with
input/output macros. The formats, parameter values, default
values, required parameters, programming considerations,
examples, and error messages are also supplied for each I/0
macro.

Section 1.4, Parameter Field Value Mnemonics, explains the
lowercase abbreviations that appear in the parameter field.

4.2 PARAMETERS FOR I/0 MACROS

A parameter, coded in the input/ocutput parameter control block
(IOPCB) macro, sets a constant 1into the parameter block; an
omitted parameter sets a zero value for the field. A parameter,
coded in any other macro, replaces the value in the parameter
block. Two exceptions are record length (RECL) and location to
restart after error (RESTART). RECL computes the ending address
and it is not part of the parameter block passed to the operating
system. RESTART defaults to retry the I/0 SVC.

The required parameters can be ccded in the IOPCB macro or in
individual macros. It is more efficient to code those parameters
that do not change as constants in the IOPCB macro. Coding these
parameters in individual macros results in generating code to
store values in the parameter block. Refer to Section 4.11 for
a detailed explanation of the IOPCB macro.

The following paragraphs detail the parameters for input/output
macros.

e Input/Output Parameter Control Block (IOPCB)

- The input/output parameter control block is specified as an
address of an IOPCB macro. If omitted, it is constructed
and filled in with remaining parameters. The IOPCB address
is placed in register 14 (R1l4).

48-006 FO0O0 ROZ 4-1

Example:

READ PARBILK
WRITE PARBIK,ADDR=ALPHA
REWIND LU=2

PARBIK IOPCB LU=2,RECL=80,ADDR=BETA

Logical Unit (L.U)

LU is the logical unit where the [I/0 operation occurs.
This LU must be assigned prior to any I[/0 operation.

Example:

BFILE LU=4
WRITE PARBIK,LU=2

Address of Data to Be Transferred (ADDR)

ADDR is the 1/0 buffer address that sends or receives the
data being transferred. It is used only for READ and WRITE
macros. To specify the amount of data to be transferred,
refer to the RECL or ENDADDR parameters.

Example:

READ ADDR=ALPHA, RECL=80
WRITE ADDR=BETA,ENDADDR=BETA+79

Record Length (RECL)

RECL is the actual number of bytes to be transferred in a
READ or WRITE macro.

Example:

READ ADDR=ALPHA,LU=3,RECL=132
WRITE ADDR=BETA,LU=5,RECL=(8)

48-006 FOO RO2

e Address of the lL.ast Byte to Be Transferred (ENDADDR)

- The ENDADDR parameter is the actual address of the last
byte to be transferred. If RECL is specified, this field
is computed as ADDR+RECL~-1 and is automatically set. This
address must be greater than or equal to ADDR.

e Actual Number of Bytes Transferred (TRANS)

- TRANS is the actual number of bytes that a READ or WRITE
macro transfers. If an error occurs during the data
transfer, this field is modified with indeterminate data.
It can be addressed as [O.TRANS(14) or IOPCB+IO.TRANS.

e Options Used for READ and WRITE (OPT)

If options other than the default options are needed, specify
them in every READ or WRITE macro. The options are:

- ASCII (A) or Binary (B)
The default for the ASCII or binary option is ASCII. If

image (I) is coded, this option is ignored.

- Wait (W) or Proceed (P)

The default for wait and proceed modes is wait. In wait
mode, the task stops execution, initiates the data
transfer, and waits until I/0 completion. If the device is

not busy in the proceed mode, the I/0 1is initiated and
returned to the calling task. If the device is busy, the
request is queued and control 1is or is not returned,
depending on the options CP and UP, to the calling task.
If the 10Q option is specified in the LTSW macro and 1[/0
has been completed, an item is added to the task gueue.

- Sequential (S) or Random (R) Access

In sequential and random access, the default is sequential
access. With sequential access, the next logical record is
accessed. With random access, the record in the RECNUMB
field is accessed.

48-006 FOO ROZ2 4-3

Conditional Proceed (CP) or Unconditional Proceed (UP)

With conditional or unconditional proceeds, the default is
CP. If, after a proceed request, the device is busy and
the total number of requests exceeds the maximum, CP puts
the task in a wait state. Once the request has been gueued
or initiated, the task resumes execution. If UP is coded
and the device is busy, the task resumes execution at the
UPEXIT address. UPEXIT must be coded in this case.

Format (F) or Image (I) Mode

With format and image modes, the default is format (F)

mode. In format mode, the data being transferred is
formatted according to the ASCII (A) or binary (B) options.
In image mode, the data is not formatted. The data does

not contain any control characters (carriage returns, line
feeds) that the user must supply for inclusion.

Extended Options for ITAM (XOPT)

The XOPT parameter specifies the extended options for
integrated telecommunications access method ([TAM)
requests.

Random Record Number (RECNUMB)

RECNUMB specifies the number of the next logical record to
be accessed. It 1is only used for READ and WRITE macros.
[f RECNUMB is specified in READ or WRITE macros, OPT=R does
not have to be specified. If it is specified in only the
[IOPCB macro, the OPT=R must be coded for random access.

End of File (EOF)

The EOF parameter specifies the address to go to if an EOF
condition arises on an indexed file. It can be coded as
part of a macro or incorporated as part of the [OERRTBL
macro.

End of Medium (EOM)

The EOM parameter specifies the address to go to if an EOM
condition arises on a contiguous file. It can be coded as
part of a macro or it can be incorporated as part of the
IOERRTBL, macro.

48-006 FOO ROZ2

- End of File or End of Medium (END)

The END parameter can be used in place of the EOF and EOM
parameters; it detects either condition. It is most useful
when the program goes to the same address in both cases.
It can be coded as part of a macro or incorporated as part
of the IOERRTBL macro.

-~ Table of Routines to Handle Errors (ERR)

The ERR parameter specifies the address of an address table
of routines that handles errors returned by I[/0 macros.
The IOERRTBL macro builds this table. The codes listed for
each error message can be used in the I[OERRTBL macro to
provide branch addresses for each error.

- Pause on Error (PAUS)
On any error not specified in the IOERRTBL table (pointed
to by ERR), the task does or does not pause after writing
a message to the log device.

- TLocation at which to Restart After Error (RESTART)
On any error not specified in the IOERRTBL table (pointed
to by ERR), the task restarts after writing a message to

the log device. If the task pauses, it continues at this
address. The default is to retry the [/0O operation.

48-006 F00 RO2 4-5

4.3 BACKWARD TO FILEMARK ON A FILE OR DEVICE (BFILE)

The BFILE macro backspaces the device or file assigned to the LU
over one filemark. For an indexed file, this backspacing is
equivalent to a rewind. For a contiguous file or magnetic tapse,
the effect is to position to the end of the previous file.

Format:

[symbol] BFILE [iopcb]{,LU=]

Parameter Values:

iopcb - addrx
- (reqg)
LU = absolute byte expression
= (reg)
Default Values:
LU = 0

Required Parameters:

LO

Programming Considerations:

If positioned at the beginning of a file, BFIILE has no effect.
BFILE to an indexed file has the same effect as a REWIND because
indexed files do not recognize filemarks.

4-6 48-006 FOO ROZ2

To reposition to the beginning of a file on magnetic tape or on
a contiguous file after reading a filemark, the issuing of two
BFILEs is required. The first BFILE positions the tape to the
end of the file before the filemark. The second BFILE positions
it to the beginning of the file if it is the first file on the
tape. If the file is not the first on the tape, the second BFILE
positions over the beginning filemark to the end of the previous
file. To position to the beginning of the desired file, issue a
FFILLE to position past the filemark. Section 4.5 details the
FFILLE macro.

NOTE
BFIILE is treated as a proceed call.

Refer to Section 4.16 for a detailed
explanation of the WAITIO macro.

48-006 F0O0 RO2 ' 4-7

4.4 BACKSPACE ONE RECORD (BREC)

The BREC macro backspaces an LU to the previous record. If the
LU is at the beginning of the file, backspacing does not occur.
Format:

[symbol] BREC [iopcb][,LU=]

Parameter Values:

iopcb - addrx
- (reg)
LU = absolute byte expression
= (reg)
Default Values:
LU = 0

Required Parameters:
.U
NOTE
BREC is treated as a proceed call. Refer

to Section 4.16 for a detailed
description of the WAITIO macro.

4-8 48-006 FOO ROZ2

4.5 FORWARD TO FILEMARK ON A FILE OR DEVICE (FFILE)

The FFILE macro forward spaces over one filemark on the device or
file assigned to the LU. For an indexed file, the file |is
positioned at the end of the file. For a contiguous file or

magnetic tape, the file is positioned after the filemark at the
beginning of the next file.

Format:

[symbol] FFILE [iopcb][,LU=]

Parameter Values:

iopcb - addrx
- (reg)
LU = absolute byte expression
= (reg)
Default Values:
LU = 0

Required Parameters:

LU

Programming Considerations:

To position at the end of an indexed file in order to append,
issue a FFILE. To position at the end of a contiguous file or
magnetic tape, issue a FFILE followed by a BFILE to position back
over the filemark. Section 4.3 explains the BFILE macro.

NOTE
FFILLE is treated as a proceed call.

Refer to the WAITIO macro discussed in
Section 4.16.

48-006 FOO RO2 4-9

4.6 FORWARD TO NEXT RECORD ON A FILE OR DEVICE (FREC)

The FREC macro forward spaces an LU to the next 1logical record.
Spacing does not occur if the LU is positioned at the end of a
file or device.

Format:

[symbol] FREC [iopcb]{,LU=]

Parameter Values:

iopchb - addrx
- (reg)
.U = absolute byte expression
= (reg)
Default Values:
LU = 0

Required Parameters:

.U

NOTE

FREC is treated as a proceed call. Refer
to the WAITIO macro discussed in Section
4.16.

4-10 48-006 F0OO0 ROZ2

4.7 HALT AN INPUT/OUTPUT PROCEED REQUEST (HALTIO)

The HALTIO macro cancels a previously issued proceed [/0 request.
(This action is useful on an interactive device.) If a HALTIO
macro is not used, an outstanding request must be satisfied
before any other I/0 can be started on that LU.

Format:
[symbol] HALTIO [iopcb](,LU=]1[,ERR=][,RESTART=][,PAUS=]

Parameter Values:

iopcb - addrx
- (reqg)

LU = absolute byte expression
= (reg)

ERR = addrx
= (reg)

RESTART = addrx
= (reg)

PAUS = N

Default Values:
LU = 0
ERR = PAUS flag if no default in previous
IOERRTBL
RESTART = 0
PAUS = pause if error

Required Parameters:

LU

48-006 FOO RO2 4-11

Programming Considerations:

When a HALTIO macro is issued to an LU, any previous [/0 proceed
requests, whether in progress or queued, are cancelled. When [/0
is terminated, the task that issued the [/0 proceed request takes
a trap (if enabled); the parameter block address that issued the
I/0 proceed request is placed on the task gqueue; and the 1/0
operation status (data transfer or command function) is returned
to the status fields of both parameter blocks. The time of the
actual termination is asynchronous to when the HALTIO macro is
issued.

When an [/0 request is issued to an LLU and a previous I[/0 proceed
request exists for the same LU, the second request and any
subsequent requests to that LU cannot be serviced until the
previous [/0 request has been completed. When issuing a HALTIO
macro, the first [/0 request is cancelled, allowing I/0 regquests
issued after the cancellation to be started on the device.

If the QIO statement was specified at task establishment time and
at least one I/0 request to a specified LU is on the wuser [/0
queue, executing a HALTIO macro cancels any I/0 to that specified
LU already 1in progress and all requests to that specified LU on
the user I/0 queue.

These devices support the HALTIO macro:

e card reader

e Carousel

e CRT

e cassette

e Owl 1100 CRT

e Owl 1200 CRT

® paper tape reader/punch
® printer

e Teletype keyboard/printer

4-12 48-006 FOO RO2

The system returns status in the HALT and PROCEED blocks as
follows:

1.

In the HALT block status [0.STAT(14):

X'00' indicates that the requested 1/0 termination has been
scheduled.

X'8l' indicates that an LU has not been assigned.

X'82' indicates that I/0 is not ongoing for this LU.

The device number is placed in the IO.DN(14) field.

The PROCEED block occurs when I/0 actually terminates. X'B82'
is returned in I0.STAT(14).

When a proceed 1/0 call is requested, the status field (a

halfword) 1is initialized to a positive value (l1). The user
can sense (poll) this status to determine I/0 completion.

Example:
BT.K IOPCB ADDR=BUF , RECL~=80,LU~1
BUF DS 80

READ BT.K,OPT=P

*R14 contains the address of BLK
*I0.STAT has been preset to plus 1

B TEST
IODONE EQU x

48-006 FOO0 RO2 - 4-13

4.8 GENERATE THE SUBROUTINE THAT CHECKS THE STATUS OF AN

(I0OERR)

The IOERR macro generates the subroutine that checks

the

of

IOPCB

error

these

status after completing an I/0 function. Refer to Section 1.7,

Error Handling and Recovery, for a description

functions.

Format:

blank IOERR blank
NOTE

The subroutine 1is only generated on the
initial call of this macro. Subsequent
calls do not generate another copy of the
subroutine. IOERR is called by all
nonproceed I/0 macro calls.

4-14

48-006 FOO0 RO2

4.9 FETCH RETURN ADDRESS IN A USER ROUTINE FOR [INPUT/OUTPUT
ERRORS (IOERRET)

The I[OERRET macro, used in a user—~defined routine to handle [/0
errors, fetches the return address and enables the user to return
to the instruction following the macro that caused the error.
The optional register is the register where the address is
returned. The user routine can save this address before issuing
any other I/0 macro.

Format:

blank IOERRET blank

Parameter Values:

reqg - register expression

Default Value:

reg ~ 15

48-006 FO0O RO2 ' 4

15

{ IOERRTBL |

4.10 GENERATE A TABLE OF ADDRESSES FOR INPUT/OUTPUT ERROR USER
HANDLING ROUTINES (IOERRTBL)

The IOERRTBL macro generates a table of branch addresses to
user-written routines. This table handles errors that [/0 macros
return. Refer to Section 1.7, Error Handling and Recovery, for
a description of these functions.

Format:

[symbol] [IOERRTBL [default](,I[F=][,LU=][,DU=](,EOM=]
{,EOF=][,UERR=]1[,RERR=][,UNERR=]
[,PAUS=][,END=]

Parameter Values:

default - DEFAULT (use this IOERRTBI. as the default for
all I/0 macros)

IF = addr (illegal function)

LU = addr (illegal or unassigned LU)

DU = addr (device unavailable)

EOM = addr (end of medium)

EOF = addr (end of file)

UERR = addr (unrecoverable error)

RERR = addr (parity or recoverable error)

UNERR = addr (unknown error)

PAUS = N (no pause)

END = addr (end of file or medium)

4-16 48-006 FO0OO RO2

Default Values:

IF =

LU =

DU =

EOM =

EOF =

END =

UERR =

RERR =

UNERR =

PAUS =

48-006 FOO RO2

no

no

no

no

no

no

no

no

no

entry
entry
entry
entry
entry
entry
entry
entry

entry

pause if

in

in

in

in

in

in

in

in

in

table
table
table
table
table
table
table
table

table

error

4.11 GENERATE AN INPUT/OUTPUT PARAMETER CONTROL BLOCK (IOPCB)

The IOPCB macro constructs the parameter block for

It

I/0 macros.

can be constructed alone or as part of the expansion of other
I/0 macros.

Format:

Parameter Values:

[symbol]

FUN

LU

STAT

DN

ADDR
ENDADDR
RECNUMB
TRANS
XOoPT
RECL
RESTART
PAUS

ERR

* These parameters are usually not needed because

IOPCB

[FUN=

1(,LU=]1(,STAT=](,DN=][,ADDR=]

[,ENDADDR=] [, RECNUMB=] [, TRANS=]
[,XOPT=][,RECL=][,RESTART=][,PAUS=]
[,ERR=]

absolute

absolute

absolute

absolute

byte expression¥

byte expression

byte expression*

byte expression¥

relocatable address expression

relocatable address expression

absolute
absolute
absolute

absolute

fullword expression
address expression*
fullword expression

address expression

relocatable address expression*

N

addr

macros

the operating system set the fields.

48-006 FOO

or

RO2

Default Values:

FUN = 0

LU = 0

STAT = 0

DN = 0

ADDR = 0

ENDADDR = ADDR+RECL-1 if both are specified
= 0 otherwise

RECNUMB = 0

TRANS = 0

XOPT = 0

RECL = 0

RESTART = 0

PAUS = pause if error

ERR = PAUS flag if no default in previous I[OERRTBL

= default IOFRRTBL of previous I[OERRTBL

48-006 F0OO0 RO2

4.12 GENERATE AN IOPCB STRUCTURE (IOPCBS)

The IOPCBS macro generates the STRUCs and equates for the I[OPCB
parameter block.

Format:

blank IOPCBS blank

Structure Generated:

*

IOPCBS STRUC

[IO.FUN DS 0 FUNCTION CODE

I0.FC DS 1 FUNCTION CODE

I0.LU Ds 1 LOGICAL UNIT

IO.DINDS DS o DEVICE INDEPENDENT STATUS
I0.STAT DS 1 STATUS

IO.DDEPS DS 0 DEVICE DEPENDENT STATUS
IO.DN DS 1 DEVICE NAME

I[0.ADDR Ds ADC STARTING ADDR

IO.ENDAD DS ADC ENDING ADDR

IO.RNDAD DS 4 RANDOM ADDR

IO.TRANS DS ADC TRANSFER LENGTH

I0.XOPT DS 4 ITAM REQUESTS

I0.RECL DS ADC RECORD LENGTH

I0.PAUS DS 4 PAUSE FLAG

I0.ERR DAS 1 ERROR TABILE POINTER
IO.RESTA DS ADC RESTART ADDRESS

ENDS
NOTE

IOPCBS 1is automatically generated in any
I/0 macro expansion.

4-20 48-006 FOO RO2

4.13 READ A LOGICAL RECORD (READ)

The READ macro accesses the next logical record according to the
gpecified options. [If RECNUMB or OPT=R is coded, the next random
record is accessed. Section 4.2 summarizes the parameters for
I/0 macros.

Format:

[symbol] READ ([iopcb][,LU=][,ADDR=][,RECNUMB=]
{,RECL=][,ENDADDR=][,EOF=][,EOM=]
[,O0PT=][,ERR=][,END=][,RESTART=]
[,UPEXIT=][,PAUS=][,X0OPT=]

Parameter Values:

iopcb - addrx
- (reg)
LU = absolute byte expression
= (reg)
ADDR = addrx
= (reg)
RECL = absolute address expression does not change
I0.RECL
= (reg)
ENDADDR = addrx
= (reg)
EOF = addrx
EOM = addrx
OPT = B (binary) specified in
= P (proceed) any order
= 1 (image) enclosed in
= UP (unconditional proceed) parentheses
= R (random)
RECNUMB = absolute fullword expression
= (reg)
ERR = addrx

48-006 FOO RO2 4-21

END = addrx

RESTART = addrx

UPEXIT = addrx

XOPT = absolute fullword expression
= (reg)

PAUS = N

Default Values:

LU = 0

ADDR = 0

RECNUMB = 0

RECL = 0

ENDADDR = ADDR+RECL-1 if both are specified
= 0 otherwise

XOPT = 0

ERR = PAUS flag if no default in previous IOERRTBL
= default I[OERRTBL of previous [OERRTBL

RESTART = retry the READ

PAUS = pause if error

END = addrx

Required Parameters:

ADDR
LU
RECL, or ENDADDR

NOTE
On a proceed call, the status is set to

positive one for polling. RECNUMB= or
OPT=R, or both, cause a random READ.

4-22 48-006 FO0O RO2

Error Messages:

CODE

IF
DU
EOM
EOF
UERR
RERR

LU

MESSAGE

1/0
1/0
1/0
1/0
1/0
1/0

I/0

ERROR
ERROR
ERROR
ERROR
ERROR
ERROR

ERROR

48-006 FO0O RO2

COXX
AOXX
90XX
88XX
84XX
82XX

81XX

LU
LO
LU
LU
LU
LU

LU

LT o I o

[LILEGAL FUNCTION
DEVICE UNAVAITLABLE
END OF MEDIUM

END OF FILE
UNRECOVERABILE ERROR
PARITY OR RECOVERABLE
ERROR

ILILEGAL, OR UNASSIGNED
LU

o o ——

4.14 REWIND A FILE OR DEVICE (REWIND)

The REWIND macro rewinds the file or device assigned to the ILU.
The file or device is repositioned to its beginning whether or
not any filemarks are found.

Format:

[symbol] REWIND [iopcb][,LU=]

Parameter Values:

iopcb - addrx
- (reg)
.U = absolute byte expression
= (reg)
Default Values:
LU = 0

Required Parameters:
.U
NOTE
REWIND is treated as a proceed call.

Refer to the WAITIO macro detailed in
Section 4.16. .

4-24 48-006 FOO RO2

4.15 TEST FOR INPUT/OUTPUT COMPLETION (TESTIO)

The TESTIO macro tests for [/0 completion to a specified LU. If
a previous I/0 proceed request or gqueued I/0 proceed request does
exist, the condition code is set to X'F'. However, if no

outstanding I/0 proceed request exists, the condition code is set
to X'0'.

Format:

[symbol] TESTIO {iopcb](,LU=]

Parameter Values:

iopcb - addrx
- (reg)
LU = absolute byte expression
= (reg)
Default Values:
LU = 0

48-006 F0OO RO2 4-25

4.16 WAIT FOR INPUT/OUTPUT COMPLETION (WAITIO)

The WAITIO macro puts the task in a wait state until all previous

I/0 proceed requests to the specified LU, which are
or currently on the I/0 queue,
Task execution then resumes.
on the I/0 queue,

completed.
request is

not
task execution continues.
I/0 proceed

request

When [/0 1is

in progress

are serviced and all [/0 has been

[/O proceed

user—-control is returned and
completed,
status is returned to the status fields of

the previous

the parameter block that issued the [/0 proceed request.

Format:

[symbol]

Parameter Values:

iopcb

IOPCB

EOF

EOM

END

RESTART

/]

Hoh [

WAITIO

addrx
(reg)

addrx
(reg)

addrx
(reg)

addrx
(reg)

addrx
(reg)

addrx
(reqg)

addrx
(reg)

(WAIT block)

(PROCEED block)

[iopcb][,IOPCB=][,EOF=][,EOM=][,END=]
[,RESTART=][,ERR=][,PAUS=]

48~-006 FOO RO2

Default Values:

RESTART = 0

ERR = PAUS flag if no default in previous IOERRTBL
= default IOERRTBL of previous IOERRTBL

PAUS = pause if error

Required Parameters:

IOPCB = PROCEED block

Programming Considerations:

The LU number from the PROCEED block is placed in the WAIT block
and the wait state 1is entered. The status is returned to the
PROCEED block and that status is checked after the task resumes
execution.

If RESTART is omitted, the restart address is the same as
whatever address is in the PROCEED parameter block. The default
is to retry the proceed 1/0 request.

Error Messages:

CODE MESSAGE

IF I/0 ERROR COXX LU
DU I/0 ERROR AOXX LU
EOM I/0 ERROR 90XX LU
EOF I/0 ERROR 88XX LU
UERR I/0 ERROR 84XX LU
RERR I/0 ERROR 82XX LU

- ILLEGAL FUNCTION

- DEVICE UNAVAILABLE

- END OF MEDIUM

END OF FILE

- UNRECOVERABLE ERROR

- PARITY OR RECOVERABLE
ERROR

- ILLEGAL OR UNASSIGNED
- UNKNOWN ERROR

LU I/0 ERROR 81XX LU
UNERR I/0 ERROR XXXX LU

T T o I I
I

48-006 FOO0 RO2 4-27

—— v - - "

—— - —

4.17 WRITE FILEMARK (WFM)

The WFM macro writes a filemark to the file or device assigned to
the specified LU. If it is an indexed file, no action occurs.
Format:

[symbol] WFM [iopcb][,LU=]

Parameter Values:

iopcb - addrx
- (reg)
LU = absolute byte expression
= (regq)
Default Values:
LU = 0

Required Parameters:

LU

NOTE

WFM is treated as a proceed call. Refer
to the WAITIO macro discussed in Section
4.16.

4-28 48~-006 FOO ROZ

4.18 WRITE A LOGICAL RECORD (WRITE)

The WRITE macro writes the next logical record according to the
specified options. If RECNUMB or OPT=R is coded, the next random
record 1is written. Refer to Section 4.1, Summary of Parameters
for Input/Output Macros, for a description of these functions.

Format:

[symbol] WRITE [iopcb](,LU=](,ADDR=][,RECNUMB=]
[{,RECL=](,ENDADDR=][,EOF=][,EOM=]
[,OPT=][,ERR=][,END=][,RESTART=]
[,UPEXIT=](,PAUS=][,X0OPT=]

Parameter Values:

iopcb - addrx
- (reg)
LU = absolute byte expression
= (reg)
ADDR = addrx
= (reg)
RECL = absolute address expression does not change
10.RECL
= (reg)
ENDADDR = addrx
= (reg)
EOF = addrx
EOM = addrx
OPT = B (binary) specified in
= P (proceed) any order
= [(image) enclosed in
= UP (unconditional proceed) parentheses
= R (random)
RECNUMB = absolute fullword expression
= (reg)
ERR = addrx

48-006 FOO RO2 4-29

RESTART

UPEXIT

XOPT

PAUS

addrx

addrx

absolute fullword expression
(reg)

N

Default Values:

RESTART

FUN

LU

STAT

DN

ADDR

ENDADDR

RECNUMB

TRANS

XOPT

RECL

RESTART

PAUS

ERR

= retry the WRITE

= 0

= 0

= 0

= 0

= 0

= ADDR+RECL-1 if both are specified

= 0 otherwise

= 0

= 0

= 0

= 0

= 0

= pause if error

= PAUS flag if no default in previous IOERRTBL

= default IOERRTBL of previous IOERRTBL

NOTE

On a proceed call, the status is set to
positive one for polling; RECNUMB= or
OPT=R, or both, cause a random WRITE.

48-006 FOO RO2

Error Messages

CODE MESS
IF 1/0
DU 1/0
EOM 1/0
EOF I/0
UERR 1/0
RERR 1/0
LU 1/0
UNERR /0

48-006 FOO RO2

AGE

ERROR
ERROR
ERROR
ERROR
ERROR
ERROR

ERROR
ERROR

COXX
AOXX
30XX
88XX
84XX
82XX

8 1XX
XXXX

LO
.U
LU
LU
LU
LU

LU
LU

AP KKK

[LLEGAL FUNCTION
DEVICE UNAVAIILABLE
END OF MEDIUM

END OF FILE
UNRECOVERABLE ERROR
PARITY OR RECOVERABLE
ERROR

ILLEGAL OR UNASSIGNED
UNKNOWN ERROR

31

CHAPTER 5
TASK MANAGEMENT MACROS

5.1 INTRODUCTION

Task management macros manipulate tasks. Through these macros,
foreground tasks can extract control over and can communicate
with other tasks. :

The formats, parameter values, default values, required
parameters, programming considerations, examples, and error
messages are supplied for each task management macro.

Section 1.4, Parameter Field Value Mnemonics, explains the

lowercase abbreviations that appear in the parameter field of
task management macros.

48-006 FO0O RO2 5-1

5.2 CANCEL A TASK (CANCEL)

The CANCEL macro cancels a task; if it is nonresident, it removes
the task from memory.

Format:

[symbol] CANCEL [tmpcb](,TASKID=][,DIR=][,0PT=]

Parameter Values:

tmpcb - addrx (address or pointer to PCB)
- (reg)

TASKID = addrx (address or pointer to TASKID)
= (reg)

DIR = OT (direction - other task)
= 8D (direction - self-directed)

OPT S (save in memory)

nn

D (delete from memory)

Default Values:

tmpcb - TMPCB built automatically
TASKID = no change

DIR = OT (other task)

OPT = 8

Programming Considerations:

If tmpcb is specified, the function is set according to DIR=. If
a TASKID is specified, it is moved into the tmpcb; if TASKID is
not specified, it is assumed to be in the tmpcb. The TASKID must
be left-justified in an 8-byte field padded with blanks and
fullword boundary aligned. If a tmpcb is not specified, it is
automatically built and set as previously stated. The TMPCB
macro can build the tmpcb. Refer to Section 5.25 for an
explanation of the TMPCB macro.

5-2 48-006 FOO RO2

R14 points to the tmpcb; R15 modifies it. Neither register can
be wused for addressing. Task execution is halted. If the task

is resident and OPT=S, the task remains in memory and all task
LLUs are checkpointed, not closed.

If the task 1is nonresident and OPT=S, the task is removed from
memory and all LUs are closed.

If the task is resident and OPT=D, the task is made nonresident
and removed from memory, and all LUs are closed.

If the task is nonresident and OPT=D, the task is removed from
memory and all LUs are closed.

48-006 FOO RO2

5.3 CHANGE PRIORITY (CHPRIO)

The CHPRIO macro changes the priority of a directed task.

Format:

[symbol] CHPRIO ([tmpcb](,TASKID=][,DIR=][,PRI=]

Parameter Values:

tmpcb - addrx (address or pointer to PCB)
- (reg)
TASKID = addrx (address or pointer to TASKID)
= (reg)
DIR = OT (direction - other task)
= SD (direction - self-directed)
PRI = absolute byte expression
= (reg) - new priority

Default Values:

tmpcb - TMPCB built automatically
TASKID = no change

DIR = OT (other task)

PRI = no change

5-4 48-006 FOO RO2

Programming Considerations:

If tmpcb is specified, the function is set according to DIR. If
a TASKID 1is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKID must be
left~justified in an 8-byte field padded with blanks and fullword
boundary aligned. If a tmpcb is not specified, it 1is
automatically built and set as previously stated. The TMPCB
macro can build the tmpcb.

R14 points to the tmpcb; R15 modifies it. Neither register can
be used for addressing.

The CHPRIO macro changes the directed task's current priority to
the user-specified priority, PRI.

48-006 FOO ROZ2 ' 5-5

5.4 CHECK THE STATUS OF A TASK (CKTASK)

The CKTASK macro checks the status of the directed task.

Format:

[symbol] CKTASK [tmpcb][,TASKID=][,DIR=]

Parameter Values:

tmpcb - addrx (address or pointer to PCB)
- (reg)

TASKID = addrx (address or pointer to TASKID)
= (reg)

DIR = OT (direction - other task)

= 8D (direction - self-directed)

Default Values:

tmpcb - TMPCB built automatically

TASKID

]

no change

DIR OT (other task)

Programming Considerations:

If tmpcb is specified, the function is set according to DIR. If
a TASKID is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKID must be
left-justified in an 8-byte field padded with blanks and fullword
boundary aligned. If a tmpcb is not specified, it is
automatically built and set as previously stated. The TMPCB
macro can build the tmpcb. R1l4 points to the tmpcb; R15 modifies
it. Neither register can be used for addressing.

5-6 48-006 FOO RO2

The CKTASK macro checks the directed task status. These
are set in the calling task's parameter block:

T™.TST wait status
TM.RPI current priority
TM.STA error status

These fields are also set on any other task-directed macro.
CKTASK macro provides no other functions.

48-006 F0O0 RO2

fields

The

| CONNECT |

5.5 CONNECT A TRAP GENERATING DEVICE TO A TASK (CONNECT)

The CONNECT macro connects the trap-generating device that DMN
specifies to the directed task. CONNECT does not enable traps.
Refer to the THAW macro discussed in Section 5.24.

Format:

[symbol] CONNECT ([tmpcb][,TASKID=](,DIR=]
['DMN-':][,PARMr-]

Parameter Values:

tmpcb - addrx (address or pointer to PCB)
- (reg)
TASKID = addrx (address or pointer to TASKID)
= (reg)
DIR = OT (direction - other task)
= 8D (direction - self-directed)
DMN = addrx (address or pointer to 4-byte device
mnemonic)
= (reg)
PARM = absolute address expression
= (reg) - register containing parameter

Default Values:

tmpcb - TMPCB built automatically
TASKID = no change

DIR = OT (other task)

DMN = no change

PARM = no change

5-8 48-006 FOO RO2

Programming Considerations:

If tmpcb is specified, the function is set according to DIR. If
a TASKID is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKID must be
left-justified in an 8-byte field padded with blanks and fullword
boundary aligned. If tmpcb is not specified, it is automatically
built and set as previously stated. The TMPCB macro can build
the tmpcb.

R14 points to the tmpcb; R15 modifies it. Neither register can
be used for addressing.

Before the connection is made, these conditions must exist:

e DMN must be a trap-generating device.

e DMN must not currently be connected to the directed task or
any other task. It can be connected to only one task at a
time; however, a task can be connected to more than one
trap-generating device at the same time.

e The directed task must set up the UDL with a SETUDL macro with

the DIQ code specified 1in the TSKN option and then enable
traps with a LTSW macro.

Example:

SETUDL TSKN=(DIQ,addrx),TSKQ=addrx

LTSW DIQ,TSKE

48-006 FOO RO2 5-9

—————————— -

5.6 DISABLE INTERRUPTS ON A TRAP-GENERATING DEVICE (FREEZE)

The FREEZE macro disables interrupts on DMN that are connected to
the directed task. The system first ensures that the
trap-generating device and directed task are connected. It then
disables interrupts. When the FREEZE macro disables interrupts,
the trap-generating device remains connected; but, all generated
interrupts are lost. If interrupts are already disabled, FREEZE
has no effect.

Format:

[symbol] FREEZE (tmpcb],[,TASKID=][,DIR=][,DMN=]

Parameter Values:

tmpcb - addrx (address or pointer to PCB)
- (regqg)

TASKID = addrx (address or pointer to TASKID)
= (reg)

DIR = OT (direction -~ other task)
= SD (direction - self-directed)

DMN = addrx (address or pointer to 4-byte device

mnemonic)
= (reg)
Default Values:

tmpcb - TMPCB built automatically

TASKID = no change

DIR = OT (other task)

DMN = no change

5-10 48-006 F0OO RO2

Programming Considerations:

If tmpcb is specified, the function is set according to DIR. I[f
a TASKID is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKID must be
left-justified in an 8-byte field padded with blanks and fullword
boundary aligned. If a tmpcb is not specified, it |is
automatically built and set as previously stated. The TMPCB
macro can build the tmpcb.

R14 points to the tmpcb; R15 modifies it. Neither register can
be used for addressing.

48-006 FOO RO2

(4]
1

11

——— i ————————

5.7 LOAD A TASK INTO MEMORY (LOAD)

The LOAD macro loads a task into memory. It does not start the
task. Refer to the START macro discussed in Section 5.22.

Format:

[symbol] LOAD ([tmpcb]([,TASKID=][,DIR=][,LU=]}
[,OPT=][,SIZE=]

Parameter Values:

tmpcb - addrx (address or pointer to PCB)
- (reg)

TASKID = addrx (address or pointer to TASKID)
= (reg)

DIR = OT (direction - other task)

LU = absolute byte expression
(reg) - logical unit

OPT CM (intertask communication)

RP (subtask reporting)

SZ (segment size increment)

PR (load and proceed)

ET (prevent E-task load)

CT (intertask control)

RL (roll)

NO (no option)

(reg) - register containing the options

SIZE absolute address expression

(reg) - increment size

5-12 48-006 FOO RO2

Default Values:

tmpcb - ‘TMPCB built automatically
TASKID = no change

DIR = QT (other task)

1.0 = no change

OPT = no change

SIZE = no change

Programming Considerations:

If tmpcb is specified while the directed task 1is being loaded,
the function is set according to DIR. I[f a TASKID is specified,
it is moved into the tmpcb; if it is not specified, it is assumed
to be in the tmpecb. The TASKID must be left-justified 1in an
8-byte field padded with blanks and fullword boundary aligned.
If a tmpcb is not specified, it is automatically built and set as
previously stated. The TMPCB macro can build the tmpcb.

R14 points to the tmpcb; R15 modifies it. Neither register can
be used for addressing.

Before issuing the LOAD macro, the directed task must be assigned
to the LU with an ASSIGN macro. The LU must be positioned to the
first byte of the task's LIB. When the LOAD macro is executed,
the directed task is loaded from the specified LU into a memory
area large enough to hold the task. If that area does not exist
and the roll option is specified, the directed task is rolled out
to a file on the roll volume and is placed in a wait state.
While the directed task is being loaded, the calling task is
placed in a wait state. When the directed task 1is loaded, its
task name becomes the name specified in the TASKID parameter or
the name specified in the task name field of the parameter block.

The calling task is released from the wait state and the LU is
positioned to the byte following the loaded task. If the same
task is to be reloaded with the same assigned LU, the LU must be
rewound by using the REWIND macro prior to each subsequent load.

48-006 FOO RO2 5-13

If these error conditions occur, LOAD is rejected and an error
code is stored in the parameter block's error status field:

The receiving task is already loaded into memory.
The specified task name is invalid.
The macro is self-directed.

The system does not have a large enough memory area to hold
the receiving task and it does not support the roll option.

The requested memory size specified where the task is to be
loaded, is larger than the system's total memory space.

The directed task is a background task. (Background tasks can
only be loaded from the system console.)

The LU is not positioned to LIB, or LIB is invalid.

The following options can be specified'in any order enclosed
in parentheses. If only one option is coded, the parentheses
must be omitted:

CcM indicates that the loaded directed task can
execute communications functions.

RP indicates that the calling task becomes a
monitor task and the directed task becomes
a subtask, causing the subtask to report
all status changes during execution to the
monitor task through task traps.

sz indicates that the task's impure segment
size 1is increased by adding the number of
bytes the SIZE parameter specifies.

PR indicates that the calling task continues
executing while the directed task is being
loaded. 1If the latest LTSW macro specifies
the LODQ option, a trap to the calling task
occurs when loading is completed.

ET indicates that the directed task cannot be
an E-task.

CT indicates that the directed task loaded
into memory can issue SVC 6 control

functions.

NO indicates that no options are desired.

5-14 48-006 FOO ROZ

5.8 LOAD A TASK STATUS WORD (LTSW)

The ILTSW macro sets or replaces the current task status word
(TSW) located in the task's TCB with a new user-specified TSW.

Format:
[symbol] LTSW [option,...,option]{,CC=][,LOC=]([,PCB=]
[FORM=]
Parameter Values:
option - (reg)
- absolute fullword expression
- WT (trap wait)

- PWRE (power restore trap enable)

- ARFE (arithmetic fault trap enable)

- S1l4E (SVC 14 trap enable)

-~ TSKE (task queue service trap enable)

- MAFE (memory access fault trap enable)

- IITE (illegal instruction trap enable)

- 8UQ (enable subtask queue entries for
subtask state change)

- DIQ (enable task queue on device
interrupt)

- TCQ (enable task queue entry on task
call)

- TMQ (enable task queue entry on task
message)

- LODQ (enable task queue entry on
completion of load and proceed)

- I0Q (enable task gueue entry on 1/0
completion)

- TMCQ (enable task gueue entry on time out
completion)

- ITQ (enable task queue entry on SVC 15
buffer transfer command execution,
termination or halt [/0)

- TETS (enable trap event service routines)

cc = condition code (absolute expression less
than 16)
L.OC = addrx (transfer location)
= (reg)
48-006 FOO RO2 5-15

PCB = addrx
= (regqg)
FORM = L
Default Values:
option - bits not set
LocC = 0

Programming Considerations:

If specified as codes, the options are specified as positional
parameters in any order. They cannot be used with (reg) or an
absolute fullword expression. The condition code (CC) can only
be specified with the codes. If CC is specified without any
codes, all interrupts are disabled; that is, all code bits are
reset to zero. The condition code cannot be specified if the
codes are specified in (reg) or as an absolute expression.

If FORM=L is specified, the parameter block is built according to
the options. |IF LOC= is omitted, the parameter block is set to
zero.

If PCB= is specified, an existing parameter block is assumed. If
gpecified, the options set new options, regardless of previous
options in the existing block. If specified, LOC= replaces the
previous transfer location; if it is not specified, the existing
transfer location is used. The new TSW is loaded.

If neither PCB= nor FORM=L are specified, a parameter block is

built according to the options, LOC= and FORM=L, and the new TSW
is loaded.

5-16 48-006 FO0OO RO2

5.9 MAKE A TASK NONRESIDENT (MAKNRES)

The MAKNRES macro makes the directed task nonresident regardless
of the options specified at Link time. Once nonresident, the
task can be rolled if the system supports the roll option.

Format:

[symbol] MAKNRES ([tmpcb]([,TASKID=][,DIR=]

Parameter Values:

tmpcb - addrx (address or pointer to PCB)
- (reg)
TASKID addrx (address or pointer to TASKID)

(reg)

DIR OT (direction - other task)

SD (direction - self-directed)

W

Default Values:

tmpcb - TMPCB built automatically
TASKID = no change
DIR = OT (other task)

Programming Considerations:

If tmpcb is specified, the function is set according to DIR. If
a TASKID 1is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKID must be
left-justified in an 8-byte field padded with blanks and fullword
boundary aligned. If a tmpcb 1is not specified, it is
automatically built and set as previously stated. The ‘TMPCB
macro can build the tmpcb.

R14 points to the tmpcb; R15 modifies it. Neither register can
be used for addressing.

48-006 FOO RO2 ' 5-17

5.10 MAKE A TASK NONROLLABLE (MAKNROLL)

The MAKNROLL macro restricts the directed task from being rolled.

Format:

[symbol] MAKNROLL [tmpcb][,TASKID=]1[,DIR=]

Parameter Values:

tmpcb - addrx (address or pointer to PCB)
- (reg)

TASKID = addrx (address or pointer to TASKID)
= (regqg)

DIR = OT (direction - other task)

SD (direction - self-directed)

Default Values:

tmpcb - TMPCB built automatically
TASKID = no change

DIR = OT (other task)

Programming Considerations:

If tmpcb is specified, the function is set according to DIR. If
a TASKID 1is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKID must be
left-justified in an 8-byte field padded with blanks and fullword
boundary aligned. If a tmpcb 1is not specified, it is
automatically built and set as previously stated. The TMPCB
macro can build the tmpcb.

R14 points to the tmpcb; R15 modifies it. Neither register can
be used for addressing.

5-18 48-006 FOO RO2

5.11 MAKE A TASK RESIDENT (MAKRES)

The MAKRES macro makes the directed task resident regardless of
what options were specified at Link time. Once resident, the

task cannot be rolled.

Format:

[symbol] MAKRES ([tmpcb]([,TASKID=][,DIR=]

Parameter Values:

tmpcb - addrx (address or pointer to PCB)
- (reg)
TASKID addrx (address or pointer to TASKID)

(reg)
DIR

Default Values

.

OT (direction - other task)
SD (direction - self-directed)

tmpcb - TMPCB built automatically

TASKID no change

DIR

Programming Considerations:

OT (other task)

If tmpcb is specified, the function is set according to DIR. If

a TASKID 1is specified, it
specified, it is assumed to
left-justified in an 8-byte
boundary aligned. If
automatically built and set
macro can build the tmpcb.

is moved into the tmpcb; if it is not
be in the tmpcb. The TASKID must be
field padded with blanks and fullword
a tmpcb 1is not specified, it 1is
as previously stated. The TMPCB

R14 points to the tmpcb; R15 modifies it. Neither register can

be used for addressing.

48-006 FOO RO2

5.12 MAKE A TASK ROLLABLE (MAKROLL)

The MAKROLIL macro makes the directed task rollable. However, if
resident, the task is not rolled.

Format:

[symbol] MAKROLL ([tmpcb][,TASKID=][,DIR=]

Parameter Values:

tmpcb .- addrx (address or pointer to PCB)
- (reg)
TASKID addrx (address or pointer to TASKID)

(reg)

DIR OT (direction - other task)

SD (direction - self-directed)

Default Values:

tmpcb - TMPCB built automatically

TASKID

no change

DIR = OT (other task)

Programming Considerations:

If tmpcb is specified, the function is set according to DIR. If
a TASKID 1is specified, it is moved into the tmpcb; if it is not
gspecified, it is assumed to be in the tmpcb. The TASKID must be
left-justified in an 8-byte field padded with blanks and fullword
boundary aligned. If a tmpcb 1is not specified, it is
automatically built and set as previously stated. The TMPCB
macro can build the tmpcb.

R14 points to the tmpcb; R15 modifies it. Neither register can
be used for addressing.

5-20 ' 48-006 FOO RO2

5.13 BUILD A MESSAGE RING OR CHAIN OF BUFFERS (MSGRING)

The MSGRING macro builds a ring or chain of 76-byte buffers and
sets the 1link addresses. In a ring buffer, the link address of
the last buffer points to the first buffer. I[In a chain buffer,

the 1link address of the last buffer is set to 0. Any number of
buffers can be built.

Format:

[symbol] MSGRING [number]{,code][,LEN=]

Parameter Values:

number - integer constant (number of 76-byte buffers)
code - R (ring buffers)

- € (chain buffers)
LLEN = integer constant (length of buffer plus link)

Default Values:

code - R
number - 1
LEN 76 (for 32-bit assemblies)

74 (for 1lb6-bit assemblies)

48-006 F0O0 RO2 5-21

5.14 ADD A PARAMETER TO THE TASK QUEUE (QUEPARM)

The QUEPARM macro adds a user-specified parameter to the directed
task's task queue. The directed task must set up the UDL to
receive a parameter with a SETUDL macro and enable traps with a
LTSW macro.

Format:

[symbol] QUEPARM [tmpcb][,TASKID=][,DIR=][,PARM=]

Parameter Values:

tmpcb - addrx (address or pointer to PCB)
- (reg)
TASKID = addrx (address or pointer to TASKID)
= (reg)
DIR = OT (direction - other task)
= 8D (direction - self-directed)
PARM = absolute address expression
(reg) - register containing parameter
Default Values:
tmpcb - TMPCB built automatically
TASKID = no change
DIR = OT (other task)
PARM = no change

5-22 48-006 FOO RO2

Programming Considerations:

If tmpcb is specified, the function is set according to DIR. [f
a TASKID 1is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKID must Dbe
left-justified in an 8-byte field padded with blanks and fullword
boundary aligned. If a tmpcb is not specified, it is
automatically built and set as previously stated. The TMPCB
macro can build the tmpcb.

R1l4 points to the tmpcb; R15 modifies it. Neither register can
be used for addressing.

Example:

SETUDL TSKN=(TCQ,addrx) , TSK@Q=addrx

LTSW TCQ,TSKE

48-006 FOO RO2 5-23

5.15 RECEIVE A LOGICAL UNIT FROM A TASK (RECVLU)

The RECVLU macro transfers the LU currently assigned to the
directed task to the calling task and then closes the LU assigned
to the directed task. The calling task's LU must not be

assigned. The directed task must be in a dormant or paused wait
state or suspended by a SUSPEND macro.

Format:

[symbol] RECVLU [tmpcb][,TASKID=][,DIR=][,CLU=][,DLU=]

Parameter Values:

tmpcb - addrx (address or pointer to PCB)
- (reg)
TASKID = addrx (address or pointer to TASKID)
= (reg)
DIR = OT (direction - other task)
= 8D (direction - self-directed)
CLU = absolute byte expression
= (reg) - calling LU
absolute byte expression

=

C

(o]
]

(reg) - directed LU

Default Values:

mpcb - TMPCB built automatically
TASKID = no change

DIR = OT (other task)

CLU = no change

DILU = no change

5-24 48-006 FOO RO2

Programming Considerations:

If tmpcb is specified, the function is set according to DIR. If
a TASKID 1is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKID must be
left-justified in an B-byte field padded with blanks and fullword
boundary aligned. If a tmpcb is not specified, it is
automatically built and set as previously stated. The TMPCB
macro can build the tmpcb.

R14 points to the tmpcb; R15 modifies it. Neither register can
be used for addressing.

48-006 FOO RO2 5-25

5.16 RELEASE A TASK (RELEASE)

The RELEASE macro releases the directed task, currently suspended
by a previous SUSPEND macro, by taking it out of the task wait
state. Once released, the directed task continues to execute.
If the task is not in another wait state, executing occurs with
the instruction that follows the instruction executed before the
task was suspended.

Format:
[symbol] RELEASE [tmpcb]{,TASKID=][,DIR=]

Parameter Values:

tmpcb - addrx (address or pointer to PC8)
- (reg)
TASKID addrx (address or pointer to TASKID)

(reg)

DIR OT (direction - other task)

SD (direction - self-directed)

Default Values:

tmpcb - TMPCB built automatically
TASKID = no change
DIR = OT (other task)

Programming Considerations:

If tmpcb is specified, the function is set according to DIR. If
a TASKID 1is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKID must be
left-justified in an 8-byte field padded with blanks and fullword
boundary aligned. If a tmpcb 1is not specified, it is
automatically built and set as previously stated. The TMPCB
macro can build the tmpcb.

R14 points to the tmpcb; R15 modifies it. Neither register can
be used for addressing.

5-26 48-006 FOO RO2

5.17 RUN A TASK (RUN)

The RUN macro is a combination of the LOAD and START macros; it
loads a task into memory and causes that loaded task to be
executed. Both functions are performed with a single call.
Refer to the LOAD macro explained in Section 5.7 and the START
macro explained in Section 5.22.

Format:

[symbol] RUN [tmpcb] (,TASKID=][,DIR=][,LU=][,0PT=]
(,SIZE=][,TOD=][, INT=][,SAD=]
[,SOP*’-]

Parameter Values:

tmpcb - addrx (address or pointer to PCB)
- (reg) - address or pointer to PCB

TASKID addrx (address or pointer to TASKID)

(reg)

DIR

OT (direction - other task)
SD (direction - self-directed)
LU absolute byte expression
(reg) - logical unit

OPT S (start option)

D (delay start)

CM (intertask communication)
RP (subtask reporting)

SZ (segment size increment)
PR (load and proceed)

ET (prevent E-task load)

CT (intertask control)

RL (roll)

NO (no options)

(reg) - register containing options

oW owon W NN NN

SIZE absolute address

(reg) - increment size

W on

TOD time expression (time of day to start)
(reg) - register containing the time of day

in seconds from midnight. See Section 6.5.

48-006 FOO RO2 - b-27

INT- = time expression (interval of delay start)
= (reg) - register containing interval in mil-
liseconds of delay to start
SAD = addrx (task starting address)
= (reg) - register containing the starting ad-
dress
SOP = addrx (address of start options field)
= (reg) - pointer to start options field
Default Values:
tmpcb = TMPCB built automatically
TASKID = no change
DIR = OT (other task)
OPT | = start immediate (no load options)
TOD = no change
SIZE = no change
TOD = no change
INT = no change
SAD = no change
SOP = no change

Programming Considerations:

If tmpcb is specified while the directed task 1is being loaded,
the function is set according to DIR. If a TASKID is specified,
it is moved into the tmpcb; if it is not specified, it is assumed
to be in the tmpcb. The TASKID must be left-justified in an
8-byte field padded with blanks and fullword boundary aligned.
If tmpcb is not specified, it is automatically built and set as
previously stated. The TMPCB macro can build the tmpcb.

R14 points to the tmpcb; R15 modifies it. Neither register can
be used for addressing.

5-28 48-006 FOO ROZ

The OPT parameter must specify S8, or D, or both. [f specified,
S and D must be enclosed in parentheses and separated by a comma
in either order. To leave the parameter block (set by a TMPCB
macro) unchanged, specify a null parameter (OPT=,). If OPT is
omitted, an immediate start is requested. If OPT=S is specified,
SOP must be coded or a valid start option address must be
specified 1in the parameter block. If OPT=D is specified, TOD or
INT, but not both, must be specified. See the GENTIME macro
(Section 6.4) for a definition of a time-expression. Refer to
the LOAD and START macros, Sections 5.7 and 5.22, respectively,
for a more detailed explanation.

48-006 FOO RO2 5-29

——— - ——

5.18 SEND A LOGICAL UNIT TO A TASK (SENDLU)

The SENDLU macro sends to the directed task the LU currently
assigned to the calling task and then closes the LU assigned to
the calling task. The directed task must not bave the LU

currently assigned and must be 1in the dormant or paused wait
state or suspended by a SUSPEND macro.

Format:
[symbol] SENDLU [tmpcb][,TASKID=][,DIR=][,CLU=][,DLU=]

Parameter Values:

tmpcb - addrx (address or pointer to PCB)
- (reg)
TASKID = addrx (address or pointer to TASKID)
= (reg)
DIR = OT (direction - other task)
= 8D (direction - self-directed)
CLU = absolute byte expression
= (reg) - calling LU
DLU absolute byte expression

LI |

(reg) - directed LU

Default Values:

tmpcb - TMPCB built automatically
TASKID = no change

DIR = QT (other task)

CLU = no change

DLU - = no change

5-30 48-006 FOO RO2

Programming Considerations:

If tmpcb is specified, the function is set according to DIR.

a TASKID 1is specified, it
specified, it is assumed to
left-justified in an 8-byte
boundary aligned. If
automatically built and set
macro can build the tmpcb.

R14 points to the tmpcb; R15 modifies it.

be used for addressing.

48-006 FOO RO2

It

is moved into the tmpcb; if it is not
be in the tmpcb. The TASKID must be

field padded with blanks and fullwo
a tmpcb 1is not specified, it

rd
is

as previously stated. The ‘TMPCB

(8]
i

Neither register can

31

—— i — —— ——— -

5.19 SEND A MESSAGE (SENDMSG)

The SENDMSG macro sends a message from the calling task to the
directed task by transferring the message to the directed task's
message buffer and by putting an item on the directed task's task
gueue. The message must be 64 bytes long and fullword boundary
aligned. Before sending the message to the directed task, the
system appends the calling task's 8-byte TASKID to the beginning
of the message. The message is sent in binary format and image
mode.

Format:
[symbol] SENDMSG [tmpcb][,TASKID=][,DIR=][,MSG=]

Parameter Values:

tmpcb - addrx (address or pointer to PCB)
- (reg)
TASKID = addrx (address or pointer to TASKID)
= (reg)
DIR = OT (direction - other task)
= BSD (direction - self-directed)
addrx (address or pointer to message buffer)

&
@

(reg) - address or pointer to message buffer

Default Values:

tmpcb - TMPCB built automatically
TASKID = no change

DIR = OT (other task)

MSG = no change

5-32 48-006 FOO RO2

Programming Considerations:

If tmpcb is specified, the function is set according to DIR. I[f
a TASKID 1is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKID must be
left-justified in an 8-byte field padded with blanks and fullword
boundary aligned. If a tmpcb is not specified, it is
automatically built and set as previously stated. The TMPCB
macro can build the tmpcb.

R14 points to the tmpcb; R15 modifies it. Neither register can
be used for addressing.

Example:

The directed task must accept a message by setting up the UDL
with a SETUDL macro and enable message traps with a LTSW macro:

SETUDL TSKN=(PMQ,addrx) , TSKQ=addrx

L TSW PMQ, TSKE

48-006 FOO RO2 ' 5-33

-

5.20 INITIALIZE OR MODIFY A USER DEDICATED LOCATION (SETUDL)

The SETUDL macro dynamically sets or modifies the user dedicated

locations

(UDLs). with addresses of user-supplied trap routines

and new task status words to service the various traps.

Format:

[symbol] SETUDL [TSKQ=][,MSGR=][,PWRN=](,ARFN=]

Parameter

TSKQ

MSGR

PWRN

ARFN

S14N

TSKN

MAFN

ITTN

[,S14N=][,TSKN=][,MAFN=][, I [TN=]

Values:

addrx (task gueue address)
(reg) - pointer to task queue
integer constant (task queue size)

LI

addrx (message ring address)

(reg) - pointer to message ring

integer constant (number of 76-byte buffers
in message ring)

addrx (power restore address; new TSW)
(code,...,code,addrx) power restore new TSW

[/}

addrx (arithmetic fault address; new TSW)
(code,...,code,addrx) arithmetic fault new TSW

/]

addrx (SVC 14 address; new TSW)
(code,...,code,addrx) SVC 14 new TSW

]

addrx (task queue address; service routine TSW)
(code, ...,code,addrx) - task queue service
routine TSW

o

addrx (memory access fault address; new TSW)
(code,...,code,addrx) - memory access fault new
TSW

]

addrx (illegal instruction address; new TSW)
(code, ... ,code,addrx) - illegal instruction new
TSW

48-006 FOO RO2

where code is any of these states:

WT trap wait

PWRE power restore trap enable

ARFE arithmetic fault trap enable

S14E SVC 14 trap enable

TSKE task queue service trap enable

MAFE memory access fault trap enable

IITE illegal instruction trap enable

sSUQ enable subtask queue entry

DIQ enable device interrupt task queue entry

TCQ enable task call task queue entry

TMQ enable task message task queue entry

LODQ enable completion of load and proceed task queue
entry

10Q enable I/0 completion task queue entry

TMCQ enable time out completion task queue entry

ITQ enable SVC 15 buffer transfer, termination or wait

I1/0 task queue entry

Programming Considerations:

The SETUDL macro can initialize or modify the UDL. If the
operand of the TSKQ parameter is an address or register pointer,
assume a DLIST assembler instruction built the actual queue. The
address of the DLIST assembler instruction is stored in the UDL.
If an integer constant 1is specified, DLIST is automatically
generated and branched around. The DLIST address is stored in

the UDL. The program can access this address by:

L.DA R1,UDL.TSKQ
RTL R2,0(R1)

If the parameter of the MSGR pointer specifies an address or a
register pointer, assume that a MSGRING macro built the message
ring. That value is stored in the UDL. 1If an integer constant
is specified, that number of buffers is built into a ring,
branched around, and the first buffer's address is stored in the
UDL.. The buffers' link fields are set into a ring.

If the operand of any PWRN, ARFN, ©S14N, TSKN, MAFN, ITTN
parameter is an address, assume the list form of the LTSW macro
built the new TSW and that the TSW is stored in the UDL. If the
parameter is specified as (code,...code,addrx), a TSW is built in
R14 and R15 and stored in the UDL.

48-006 FOO ROZ2

o
I

3%

5.21 SIMULATE AN INTERRUPT ON A TRAP-GENERATING DEVICE (SIMINT)

The SIMINT macro simulates an interrupt on a specified
trap-generating device connected to the directed task. The THAW
macro must have been issued to the directed task. If interrupts
are disabled, there 1is no effect. The system ensures that the
trap-generating device and the directed task are connected. It
then simulates interrupts.

Format:
[symbol] SIMINT {[tmpcb]{,TASKID=][,DIR=][,DMN=]

Parameter Values:

tmpcb - addrx (address or pointer to PCB)
- (reg)

TASKID = addrx (address or pointer to TASKID)
= (reg)

DIR = OT (direction - other task)
= 8D (direction - self-directed)

DMN = addrx (address or pointer to 4-byte

device mnemonic)
= (reg) - address or pointer to 4-byte
device mnemonic

Default Values:

tmpcb - TMPCB built automatically
TASKID = no change

DIR = OT (other task)

DMN = no change

5-36 48-006 F0OO ROZ2

Programming Considerations:

If tmpcb is specified, the function is set according to DIR. [
a TASKID 1is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKID must be
left-justified in an 8-byte field padded with blanks and fullword
boundary aligned. If a tmpcb is not specified, it is
automatically built and set as previously stated.

R14 points to the tmpcb; R15 modifies it. Neither register can
be used for addressing.

48-006 FOO RO2 5-37

5.22 START EXECUTION OF A TASK (START)

The START macro causes a task, which has been loaded into memory,
to be executed.
specific time of day or after an interval, a start at a specific
address, and the passing of start options to the task.

Format:

[symbol]

Parameter Values:

tmpcb

TASKID

DIR

OPT

TOD

INT

/] o

Options enable a delayed start, a start at a

START ([tmpcb]([,TASKID=][,DIR=][,0OPT=]

[’TOD=][I INT=](,8AD=][,S0P=]

addrx (address or pointer to PCB)
(reg)

addrx (address or pointer to TASKID)
(reg)

OT (direction - other task)
SD (direction - self-directed)

S (start options)
D (delay start)

time expression (time of day to start)
(reg) - register containing time of day in
seconds from midnight. See Section 6.5.

time expression (interval of delay to start)
(reg) - register containing interval in milli-
seconds of delay to start. See Section 6.5.

addrx - (task starting address)
(reg) register containing starting address

addrx - address or pointer to start options field
(reg) address or pointer to start options field

48-006 F0OO RO2

Default Values:

tmpcb - TMPCB built automatically
TASKID = no change

DIR = OT (other task)

OPT = start immediate

TOD = no change

INT = no change

SAD = no change

SOP = no change

Programming Considerations:

If tmpecb is specified, the function is set according to DIR. If
a TASKID 1is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKID must be
left-justified in an 8-byte field padded with blanks and fullword
boundary aligned. If a tmpcb is not specified, it is
automatically built and set as previously stated. The TMPCB
macro can build the tmpcb.

R14 points to the tmpcb; R15 modifies it. Neither register can
be used for addressing. :

The OPT parameter must specify $, or D, or both. If specified,
S and D must be enclosed in parentheses and separated by a comma
in either order. To leave the parameter block (which was set by
a TMPCB macro, or some other macro) unchanged, specify a null
parameter (OPT=,). If OPT is omitted, an immediate start is
requested. If OPT-S is specified, SOP must be coded or a valid
start option address must be specified in the parameter block.
If OPT=D is specified, TOD or INT, but not both, must be
specified. See the GENTIME macro (Section 6.4) for a definition
of a time-expression.

e start immediate - no start options

- The OPT parameter must be omitted. The SAD parameter
specifies the directed task starting address. If the
starting address is 0, the task is started at the address
established at Link time.

48-006 FOO RO2 5-39

e start immediate with start options

Start options, optionally specified in certain languages
and utility programs at execution time, are also included
as run-time information when the directed task starts
execution. When the start function is executed, start
options located at the address specified in the parameter
block are stored into the directed task's user top of
program (UTOP) area. If sufficient memory is not available
between UTOP and core top of memory (CTOP), the macro is
rejected and an error code is stored in the parameter
block's error status field. The task should then be
reloaded into a larger segment using the SIZE parameter of
the LOAD macro. Refer to Section 5.7 for a detailed
explanation of the LOAD macro.

The user-specified start options must be loaded on a
fullword boundary. The maximum length of start options are
defined at SYSGEN time through the CMDLENGTH option. If
the start options' length 1is greater than that length
specified at SYSGEN time or a carriage return 1is present
within start options, only those characters up to the
maximum number or the carriage return are stored in the
task's UTOP area.

NOTE

The start options field address is
also the message buffer field
address in the parameter block.
The contents of this field are
always assumed to be the start
option address when the start
function is specified.

® delayed start

The directed task starts execution after a user-specified
interval elapses. The interval can be specified as time of
day (TOD) or an interval in milliseconds (INT). If neither
TOD or INT are specified, the interval is assumed to be in
the parameter block.

Before the start function can be executed for the directed
task, bytes 192 through 251 of the UDL must be reserved for
the delayed start function's use.

When the start function is executed, the directed task is

immediately placed into a time wait state. When the
interval elapses, the directed task starts execution.

48-006 FOO RO2

48-006 FOO RO2 5

delay start function with start options

When this function is specified, the directed task starts
execution after a user-specified interval elapses. This
interval, which is 1located in the parameter block's
increment of time and count fields, can be specified as
time of day or interval timing interval.

Before this start function can be executed for the directed
task, bytes 192 through 251 of the UDL must be reserved for
the delay start function's use.

When this start function is executed, the start options,
located at the address specified in the parameter block,
are stored into the directed task's UTOP area and the
directed task is immediately placed into a time wait state.
If sufficient memory is not available between UTOP and
CTOP, this call is rejected and an error code is stored in
the parameter block's error status field. The task should
then be reloaded into a larger segment using the SIVE
parameter of the LOAD macro. Refer to Section 5.7
detailing the L.OAD macro.

The user-specified start options must be located on a
fullword boundary. The maximum length of the start options
is defined at SYSGEN time through the CMDILENGTH option. If
the length of the start options is greater than that length
specified at SYSGEN time or a carriage return is present
within the start options, only those characters up to the
max imum number or the carriage return are stored in the
task's UTOP area. Since the start options' field address
is also the message buffer field address in the parameter
block, this field's contents are always assumed to be the
start options address when the start function is specified.
When the user-specified interval elapses, the directed task
starts execution.

i

41

{ SUSPEND |

5.23 PLACE A TASK IN THE WAIT STATE (SUSPEND)

The SUSPEND macro places the directed task in the task wait
state. The directed task remains in the wait state until another
task releases it. If the task is self-directed, it causes the
calling task to suspend itself. To release the calling task from

the task wait state, another task must be available to
subsequently release it.

Format:
[symbol] SUSPEND ([tmpcb]}[,TASKID=](,DIR=]

Parameter Values:

tmpcb - addrx (address or pointer to PCB)
- (reg)
TASKID addrx (address or pointer to TASKID)

(reg)

DIR OT (direction - other task)

SD (direction - self-directed)

Default Values:

tmpcb - TMPCB built automatically

TASKID no change

DIR

OT (other task)

Programming Considerations:

If tmpcb is specified, the function is set according to DIR. I£
a TASKID is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKID must be
left-justified in an B-byte field padded with blanks and fullword
boundary aligned. If a tmpcb is not specified, it 1is
automatically built and set as previously stated. The TMPCB
macro can build the tmpcb.

R14 points to the tmpcb; R15 modifies it. Neither register can
be used for addressing.

5-42 48-006 FO0O RO2

5.24 ENABLE INTERRUPTS ON A CONNECTED TRAP-GENERATING DEVICE
(THAW)

The THAW macro ensures that the trap-generating device and the
directed task are connected. Refer to the CONNECT macro detailed
in Section 5.5. The THAW macro then enables interrupts. The UDL
can be established by using the SETUDL macro. Interrupts are
disabled when the directed task terminates or if an UNCONN or
FREEZE macro is directed to the task. If a THAW macro is issued
when interrupts are already enabled, the macro has no effect.

Format:
[symbol] THAW [tmpcb][,TASKID=][,DIR=](,DMN=][,PARM=]

Parameter Values:

tmpcb - addrx (address or pointer to PCB)
- (reg)

TASKID = addrx (address or pointer to TASKID)
= (reg)

DIR = OT (direction - other task)
= 8D (direction - self-directed)

DMN = addrx - address or pointer to 4-byte

device mnemonic

PARM = absolute address expression :

= (reg) - register containing parameter
Default Values:

tmpcb - TMPCB built automatically

TASKID = no change

DIR = OT (other task)

DMN = no change

PARM = no change

48-006 F0OO ROZ2 5-43

Programming Considerations:

If tmpcb is specified, the function is set according to DIR. If

a TASKID 1is specified, it
specified, it is assumed to
left-justified in an 8-byte
boundary aligned. If
automatically built and set
macro can build the tmpcb.

is moved into the tmpcb; if it is not
be in the tmpcb. The TASKID must be
field padded with blanks and fullword
a tmpcb is not specified, it is
as previously stated. The TMPCB

R14 points to the tmpcb; R15 modifies it. Neither register can

be used for addressing.

48-006 FOO RO2

5.25 CONSTRUCT A TASK PARAMETER CONTROL BLOCK (TMPCB)
The TMPCB macro constructs the parameter block for task

management macros. It can be constructed alone or as part of the
expansion of other task management macros.

Format:

[symbol] TMPCB [TASKID=]{,DIR=][,0PT=][,PRI=][,DMN=]
{,PARM=](,LU=](,SIZE=][,MSG=][,SAD=]
[,TOD=][,INT=][,CLU=][,DLU=][,S0P=]

Parameter Values:

TASKID = 'quoted string' (the task's name specified as
1- to 8-alphanumeric characters, the first
of which must be a letter)

DIR = OT (other task)

= 8D (direction - self-directed)
OoPT = CM (intertask communication)

= RP (subtask reporting)

= SZ (segment size increment)

= PR (load and proceed)

= ET (prevent E-task load)

= CT (intertask control)

= RL (roll)

= 8§ (start options for IOAD)

= D (delayed start)

PRI = abs byte exp (priority)

DMN = 'quoted string' (one- to four-character device
mnemonic)

PARM = addr (address of parameter to be queued)

.U = abs byte exp (logical unit number)

SIZE = abs addr exp (size increment)

MSG = addr (message buffer address)

SAD = addr (start address)

48-006 FO0O0 RO2 5-45%5

TOD

INT

CLLU

DLOU

S0P

time expression (time of day to start)
time expression (increment of time to start)

abs byte exp (calling LU)

- abs byte exp (directed LU)

addr (address of start options)

48-006 FOO RO2

5.26 EXIT TRAP EVENT SERVICE ROUTINE (TEXIT)

A task event service routine is executed as a result of a task
event trap. To terminate the execution of a task event service
routine, issue the TEXIT macro.

Format:

[symbol] TEXIT [PCB=] [FORM=]

Parameter Values:

PCB = addrx (address or pointer to parameter control
block)
= (reg) - address or pointer to parameter control
block
FORM = L (list form - only build PCB)

Programming Considerations:

When the TEXIT macro is issued, the following sequence takes
place:

® TSW location that was saved at the time of interrxuption Iis
restored.

® Registers are restored according to the selected IL.ink options
NONE, ALL, TEQSAVE.

48-006 FOO RO2 5-47

5.27 GENERATE A USER DEDICATED LOCATION STRUCTURE AND EQUATES
(UDLS)

The UDLS macro generates the STRUC and EQUs for user dedicated
locations (UDL).
Format:

blank UDLS blank

Structure Generated:

UDL.S STRUC
UDL.CTOP DS CTOP
UDL.UTOP DS UTOoP
UDL.UBOT DS UBOT
DS RESERVED
UDL.TSKQ DS A(TASK QUEUE)
DS

UDL.MSGR DS
UDL.8V14 DS

DS
UDL..PWRO DS
UDL..PWRN DS
UDL.ARFO DS
UDL.ARFN DS

DS

DS
UDL.S140 Ds
UDL.S14N DS
UDL.TSKO DS
UDL.TSKN DS
UDL.MAFO DS
UDL.MAFN DS
UDL.TIITO DS
UDL.IITN DS

A(MESSAGE RING)
A(SVC 14 ARG)
6 RESERVED
POWER RESTORATION OLD TSW
POWER RESTORATION NEW TSW
ARITHMETIC FAULT OLD TSW
ARITHMETIC FAULT NEW TSW

SVC 14 OLD TSW

SVC 14 NEW TsW

TASK QUEUE SERVICE OLD TSW
TASK QUEUE SERVICE NEW TSW
MEMORY ACCESS FAULT OLD TSW
MEMORY ACCESS FAULT NEW TSW
ILLEGAL [NSTRUCTION OLD TSW
IL.LEGAL INSTRUCTION NEW TSW

00 00 00 00 0000 00 000000000000 0 (=~ o> i bbb

DS 16*2 RESERVED
UDL.AIDS DS 64 RESERVED FOR AIDS
ENDS

5-48 48-006 FOO ROZ2

Equates Generated:

*

* TASK STATUS

%

WORD EQUATES

TSW.WIM EQU Y*'80000000' TRAP WAIT
TSW.WTB EQU 0
TSW.PWRM EQU Y'40000000' POWER RESTORATION TRAP ENABILE
TSW.PWRB EQU 1
TSW.AFM EQU Y'20000000' ARITH FAULT TRAP ENABLE
TSW.AFB EQU 2
TSW.S14M EQU Y'10000000' SVC 14 TRAP ENABLE
TSW.S14B EQU 3
TSW.TSKM EQU Y'0B000000*' TASK QUEUE SERVICE TRAP ENABLE
TSW.TSKB EQU 4
TSW.MAFM EQU Y'04000000' MEMORY ACCESS FAULT TRAP ENABLE
TSW.MAFB EQU 5
TSW.IITM EQU ¥*02000000' ILLEGAL INSTRUCTION TRAP ENABLE
TSW.IITB EQU 6
TSW.SUQM EQU Y'00010000' SUBTASK QUEUE ENTRY ENABLE
TSW.SUQB EQU 15
TSW.DIQM EQU ¥'00008000' QUEUE ENTRY DEVICE INTERRUPT
TSW.DIQB EQU 16
TSW.TCM EQU Y '00004000' QUEUE ENTRY TASK CALL
TSW.TCB EQU 17
TSW.PMM EQU Y'00001000*' QUEUE ENTRY PEER TASK MESSAGE
TSW.PMB EQU 19
TSW.LODM EQU Y'00000800' LOAD PROCEED QUEUE ENTRY ENABLE
TSW.LODB EQU 20
TSW.IOM EQU Y'00000400' QUEUE ENTRY I/0O PROCEED
TERMINATION
TSW.IOB EQU 21
TSW.TMCM EQU Y'00000200' OQUEUE ENTRY TIMEOUT COMPILLETION
TSW.TMCB EQU 22
TSW.ITM EQU Y'00000100' ITAM BIT
TSW.ITB EQU 23
TSW.LOC EQU 4 DISPLACEMENT OF LOC FUIL.LWORD
NOTE
UDLS is automatically generated in the

expansion of the FETPTR macro.

48-006 FOO ROZ2

———— - -

5.28 DISCONNECT A TRAP-GENERATING DEVICE (UNCONN)

The UNCONN macro disconnects a specified DMN that is connected to
the directed task. The system first ensures that the
trap-generating device and directed task are connected. It then

disables all interrupts and disconnects the device from the
directed task. The device can now be connected to another task.

Format:
[symbol] UNCONN ([tmpcb](,TASKID=]}[,DIR=][,DMN=]

Parameter Values:

tmpcb - addrx (address or pointer to PCB)
- (reg)

TASKID = addrx (address or pointer to TASKID)
= (reg)

DIR = OT (direction - other task)
= 8D (direction - self-directed)

DMN = addrx (address or pointer to 4-byte device

mnemonic)
= (reg)
Default Values:

tmpcb - TMPCB built automatically

TASKID = no change

DIR = OT (other task)

DMN = no change

5-50 48-006 FOO RO2

Programming Considerations:

If tmpcb is specified, the function is set according to DIR. If
a TASKID 1is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKID must be
left-justified in an 8-byte field padded with blanks. No
boundary alignment is required. If a tmpcb is not specified, it
is automatically built and set as previously stated. The TMPCB
macro can build the tmpcb.

R14 points to the tmpcb; R15 modifies it. Neither register can
be used for addressing.

48-006 F0O RO2 5-51

CHAPTER 6
TIMER MANAGEMENT MACROS

6.1 INTRODUCTION

Timer management macros can cancel time interval requests,
schedule traps cyclically at different times, read the remaining
time for an interval to elapse, generate a time interval, build
a table of time intervals, schedule an interrupt by adding a
parameter to a task queue when a specified interval has elapsed,
and wait for a specific interval to elapse.

The formats, parameter values, default values, required
parameters, programming considerations, examples, and error
messages are supplied for each timer management macro.

Section 1.4, Parameter Field Value Mnemonics, explains the

lowercase abbreviations that appear in the parameter fields of
timer management macros.

48-006 F0OO ROZ2Z 6-1

- — - ——— o

6.2 CANCEL TIME INTERVAL REQUEST (CANTIME)

The CANTIME macro cancels all previous interval requests that
match the increment of time specified in OPT and the parameter
located in PARM. (PARM is the parameter associated with the

interval to be cancelled.) If the interval to be cancelled is
part of a cyclic group, the entire time cycle is cancelled.

Format:

[symbol] CANTIME ([PARM=][,0PT=][,PCB=][,FORM=]

Parameter Values:

PARM = absexp
= (reqg)
OPT = TOD (code to indicate time-of-day interval
to be cancelled)
= INT (code to indicate interval to be cancelled)
PCB = addrx (address or pointer to parameter
control block)
= (reg) - address or pointer to parameter
control block
FORM = L (list form - only build PCB)

The possible condition codes are:

@ A condition code of 0 indicates normal termination.

e A condition code of 4 indicates that no previous interval
request exists that matches the provided parameter.

Example:

CYCTIME NUMBINT=3,TABLE=AI.PHA,OPT=INT

-

CANTIME PARM=2,0PT=INT CANCEL THE GROUP

ATPHA TIMETBL (10,1),(20,2),(30,3),0PT=INT

6-2 48-006 F0OO RO2

6.3 SCHEDULE TRAPS CYCLICALLY AT DIFFERENT TIMES (CYCTIME)

The CYCTIME macro repetitively adds items to the calling task's
gueue at user-defined intervals within a specific time cycle
until the task terminates or issues a CANTIME macro specifying
any parameter in the table. The user-defined intervals within a
specific time cycle must be specified as all TOD intervals or all
INT intervals.

Format:

[symbol] CYCTIME ([NUMBINT=][,TABLE=](,O0PT=][,PCB=]
[,FORM=] .

Parameter Values:

NUMBINT = abs halfword exp (number of intervals
defined in the table)
= (reg) - register containing number of
intervals defined in the table
TABIE = addrx (address or pointer to the table
of intervals)
= (reg) - address or pointer to the table
of intervals
oPT = TOD (table of intervals in seconds from
midnight)
= INT (table of intervals in milliseconds
from now)
PCB = addrx (address or pointer to parameter
control block?
= (reg) - address or pointer to parameter
control block
FORM = L (list form - only build PCB)

Programming Considerations:

The table can be built with the TIMETBL macro. The option in the
TIMETBL macro must agree with the option in the CYCTIME macro;
that is, both must be TOD or both must be INT. Section 6.6
details the TIMETBL macro.

48-006 FOO RO2 6-3

None of - the intervals can be zero. If the intervals are
specified as TOD, each interval must minimally be one greater
than the preceding interval.

The time cycle, in which the user-defined intervals must occur,
differs for time-of-day intervals and interval timing intervals.
The cycle for time-of-day intervals ranges from the day on which
the first interval occurs through and including the day on which
the last interval occurs. The time cycle is the sum of days on
which the intervals occur. The time period for interval timing
is the sum of intervals in the table.

Example:

TODTABILE TIMETBL (15:00:00,1),(1:15:00:00,2),
(2:15:00:00,3),(2:16:00:00,4) ,0PT=TOD

The intervals are:

15:00 hours of current day
15:00 hours of second day
15:00 hours of third day
16:00 hours of third day
15:00 hours of fourth day

The time cycle is three days.
INTTABI.LE TIMETBL (:18,1),(:36,2),0PT=INT
The first interval is 18 seconds or 18000 ms.

The second interval is 36 seconds or 36000 ms.
The third interval is 18 seconds or 18000 ms.

The time cycle is 54 seconds or 54000 ms.

6-4 48-006 FOO RO2

{ GENTIME |

6.4 GENERATE A GENTIME INTERVAL (GENTIME)

The GENTIME macro converts a time expression to seconds from
midnight or milliseconds from now; but, it does not convert a
time expression to both. If INT is specified and OPT is omitted,
bits 0 through 3 of the word generated are set to 0001l. If INT

is specified and OPT is not omitted, bits 0 through 3 are not
set. The macro generates a CAL DC instruction at the symbol.

Format:

[symbol] GENTIME [TOD=]([,INT=]({,0PT=]

Parameter Values:

TOD = time expression (specifies the time of day)
INT = time expression (specifies the time interval)
oPT = any character (to prevent bits 0 through 3 from

being set)
Programming Considerations:
The time expression is expressed as:

DAY : HOUR:MINUTE : SECOND . FRACTION-OF -SECOND

The expression is evaluated from right to left. If TOD |is
specified, the macro converts it to seconds from midnight and the
fraction-of-second is ignored. [f INT is specified, the time is

converted to milliseconds.

48-006 FOO RO2 ' 6-5

Example:

GENTIME
GENT IME
GENTIME
GENTIME
GENTIME
GENTIME
GENTIME
GENTIME
GENTIME
GENTIME
GENTIME
GENTIME

INT=.005
INT=.05
INT=.5
INT=1.5

INT=2:0.5

TOD=.5
TOD=25

TOD=1:0:0

TOD=60:
TOD=2::
TOD=120:
TOD=3:::

5MS

50MS
500MS
1500Ms
120500MS
MIDNIGHT

25 SECONDS AFTER MIDNIGHT

1 aM

aAM
AM
AM

WM =

DAYS FROM MIDNIGHT

48-006 FOO RO2

{ READTIME |
6.5 READ TIME REMAINING FOR AN INTERVAL TO ELAPSE (READTIME)
The READTIME macro reads the current remaining time associated
with the parameter in PARM. PARM is the parameter associated
with the desired interval when the interval was started. The

time is returned in 4 bytes past the beginning of the PCB that
R14 points to.

Format:

[symbol] READTIME [PARM=][,0OPT=][,PCB=]([,FORM=-]

Parameter Values:

PARM = absexp
= (reqg)
opPT = TOD (time of day returned in seconds from
midnight)
= INT (time returned in milliseconds from now)
PCB = addrx (address or pointer to parameter
control block)
= (reg) - address or pointer to parameter
control block
FORM = L (list form - only build PCB)

Programming Considerations:

If the interval was scheduled with a CYCTIME macro and more than
one interval in the table had the same parameter associated with
it, the current time during the desired interval cannot be the
time that is read. Each interval should have a unique parameter
associated with it. The condition code is set as:

e A condition code of 0 indicates normal termination.

e A condition code of 4 indicates that no interval is associated
with PARM.

48-006 F0O0 RO2 6-7

Example:

TRAPTIME INT=4, PARM=1 Four second interval
STA 15,HOLD Hold pointer to PCB
LDA 5,HOLD Recover pointer to PCB

READT IME PCB=(5),PARM=1 Read the time

Since the same parameter block used in the TRAPTIME macro reads
the time, it 1is returned into the parameter block in the same

form.

6-8 48-006 FOO ROZ2

i TIMETBL |

6.6 BUILD A TABLE OF TIME INTERVALS FOR CYCTIME (TIMETBL)

The TIMETBL macro builds a table of time intervals and associated
parameters for use with the CYCTIME macro. Refer to the GENTIME
macro, Section 6.4, for a definition of a time expression.

Format:
[symbol] TIMETBL (interval,parm)...,OPT~

Parameter Values:

interval - time expression (the interval of time)

parm - absolute expression (the parameter associated
with the interval)

OPT = TOD (interval is time of day)

= INT (interval in milliseconds)

48-006 FOO RO2 6-9

—— v —

6.7 SCHEDUILE AN INTERRUPT BY ADDING A PARAMETER TO THE TASK
QUEUE WHEN A SPECIFIED INTERVAL HAS ELAPSED (TRAPTIME)

The TRAPTIME macro concurrently sets up a timer interval with the
task's subsequent execution. An item is then added to the

calling task's task queue when the user-specified interval has
elapsed.

Format:

[symbol] TRAPTIME [TOD=][,INT=][,PARM=][,PCB=]

[,FORM=]
Parameter Values:
TOD = time expression (time of day to schedule
interrupt)
= (reg) - register containing the time of day 1in
day 1in seconds from midnight to schedule
interrupt
INT = time expression (interval of time to wait)
= (reg) - register containing interval in
milliseconds
PARM = absexp (parameter that is added to the task
queue)
= (reg) - parameter that is added to the task
queue
PCB = addrx (address or pointer to parameter
control block)
= (reg) - address or pointer to parameter
control block
FORM = L (list form - only build PCB)

6-10 48-006 FOO RO2

Programming Considerations:

Before executing the TRAPTIME macro, these
performed so traps are serviced as they occur:

1. Define a trap-service routine.

2. Initialize the UDL with the SETUDL macro:

SETUDL TSKN=(TMCQ,addrx),TSKQ=addrx

steps must

3. Initialize the current TSW with the LTSW macro:

LTSW TSKE, TMCQ

be

After the interval has started and the condition code is set, the
task can continue processing or enter a trap wait state. The

possible condition codes are:

e A condition code of 0 indicates that the interval has started;

normal termination.

e A condition code of 4 indicates a sufficient amount of

space is unavailable.

48-006 FO0O RO2

system

11

6.8 WAIT FOR A SPECIFIC INTERVAL TO ELAPSE (WAITTIME)

The WAITTIME macro places the task in a wait state until the
specified time-of-day or interval has elapsed. Refer to the
GENTIME macro, Section 6.4, for the definition of a time
expression.

Format:
[symbol] WAITTIME [TOD=]1{,INT=][,PCB=][,FORM=]

Parameter Values:

TOD = time expression
= (reg)
INT = time expression
= (reg)
PCB = addrx
= (reg)
FORM = L (list form - only build PCB)

Programming Considerations:

Time of day (TOD) is the time when a task, currently in a wait

state, resumes execution. If TOD 1is specified, the time is
converted to seconds from midnight and the fraction-of-second is
ignored. If INT 1is specified, the time is converted to
milliseconds from the time the WAITTIME macro was executed. PCB

is the address or pointer to the parameter control block.

Examples:

WAITTIME INT=5 is converted to 5000ms.

WAITTIME INT=.005 is converted to 5ms.

6-12 48-006 FOO RO2

CHAPTER 7
MODEL 3200MPS SYSTEM MACROS

7.1 INTRODUCTION

The Perkin-Elmer Multiprocessing System (Model 3200MPS System)
consists of a central processing unit (CPU), up to nine auxiliary
processing units (APUs), and a number of logical processing units
(LPUs) used to assign (map) tasks to the CPU or an APU.

Tasks can run on an APU or on the CPU and must be able to
communicate with, obtain status information about, and have
control over other tasks in the Model 3200MPS System.
Communications between and control of tasks running on the CPU or
the APU are performed by supervisor call (SVC) 6 and the new 5VC
13. The Model 3200MPS System macros detailed in this chapter
make the SVC services available to a task and ensure the proper
timing and use of these services. These macros are applicable to
the Model 3200MPS System only. They are divided into the
following categories:

® Support macros. Included in this category are the APPCB,
APPERTBL, APPERR, APPERRET, and APSTRUC macros.

¢ Information macros. In this group are the FEILPU and APUSTAT
macros.

e A macro used to map the LPU to the APU. This is the APUMAP
macro.

e Task control macros that include the APUCNTL and the REQUEUE
macros.

e Task direction macros. This category consists of the SETCPU
and SETLPU macros.

e Task timer macros that include the CRTIMERS, RESETIME,
STARTIME, GETIME, READTCNT, and STOPTIME macros.

7.1.1 Chapter Organization

This chapter explains the functions of the Model 3200MPS System

macros and details their format, parameters, and functional

details. Examples and explanations for using each of the macros
are included.

48-006 FO0O RO2 7-1

- -

Each macro is presented in an easily-readable format that in all
cases shows the user-supplied name or symbol (in lower case) in
the NAME field, the operation in the OPERATION field, and the
parameters in the OPERAND field. When a parameter is enclosed in
brackets, it is optional. An operand entered without brackets is
a required operand. The operands are separated by commas and can
continue on more than one line.

Example:

NAME | OPERATION | OPERAND

symbol | APUSTAT | APN=n [,BUF=n] [,LEN=n]

In this example, symbol designates a user-supplied name and
APUSTAT 1is the macro name. The APN parameter is required. The
BUF and LEN parameters are optional, shown by their enclosing
brackets. Each parameter except the first one must be entered
with its preceding comma. The value of the character to be
entered after the keyword equal sign (,BUF=n) is explained under
the Parameters: heading in each macro section. The keyword
parameters are nonpositional.

7.2 SUPPORT MACROS

The Model 3200MPS System support macros build a parameter block
for use by the other macros; generate tables of branch addresses
to user-written error routines; handle input/output (I/0) errors;
enable a task to return to the instruction following a macro that
caused an error; generate subroutines that check error status
after completing an 1/0 function; and generate structures and
def ine equates for the appcb parameter block built by the APPCB
macro or built automatically by other macro calls.

Support macros are called automatically from +the information,
mapping, and control macros, or the user can directly call the
support macros and, thereby, override the timing and default
values set by the other macros. The support macros are:

e APPCB

e APPERTBL

® APPERR

® APPERRET

® APSTRUC

7-2 48-006 FOO RO2

7.2.1 APPCB (Build APU Parameter Block) Macro

The APPCB macro builds the appcb parameter block for use by the
APU information, mapping, and task control macros and fills the
parameter block fields with the appropriate information. This
macro also can be called automatically from the FETLPU, APUSTAT,
APUMAP, APUCNTL, and REQUEUE macros.

Format:

NAME] OPERATION | OPERAND
symbol | APPCB { [FUN=] [,OPT=n] [,DOPT=n]
H [/APN=n] [,ERR=n] [,BUF=n]
H { ,LEN=n] [,USE=n]

— —a— -

Parameters:

FUN= This optional parameter sets up the function
field in the appcb parameter block. A user
can enter any of the following four function
field designators with this parameter:

1. LPMT.FUN (entered as FUN=LPMT.FUN) returns
the logical processor mapping table (LPMT)
in the user buffer. The LPMT lists which
LLPUs are mapped to which APUs.

2. STAT.FUN returns APU task status
information.

3. MAP.FUN performs the LPU/APU mapping
functions.

4. CTRL.FUN performs the APU control

functions.

OPT~= n specifies the mapping or control function to
be performed. The available options are any
byte expression.

Example:

OPT=X'FF"'

48-006 FOO RO2 7-3

DOPT= n specifies the command to be 1issued or the
LPU number to be mapped to.

APN= n specifies the number of the processor for
which status information is being requested.
The range is from 0 through 9, with 0 always
designating the CPU.

HSTAT= . n specifies in bytes the data to be sent to
the APU for a link check in one's complement
of the APU status byte.

ERR= n specifies the return error code.
BUF = n specifies the address of the user buffer.
TLEN= n specifies in bytes the maximum length of the

user buffer.

USE= n specifies the length in bytes of the buffer
actually used.

Functional Details:

If the APSTRUC macro (Section 7.2.5.) that generates structures
and defines equates for the appcb parameter block was not
expanded by the time the APPCB macro is called, the APPCB macro
expands the APSTRUC macro and uses the symbolic names generated
for the parameter block.

If the paramater block is generated by the macro using it, the
parameter block will be pointed to by the register defined by the
ENVIRON macro (See Section 8.4) as the PCBREG parameter
immediately following the macro execution. The default value for
this register is the contents of Register 14 (R14).

If the APPCB macro is expanded in a pure section of code, the
macro allocates the required storage space at the next impure

location that is fullword aligned, constructs the parameter
block, and returns to the pure segment.

Example:

In this example, the APPCB macro builds a parameter block to
obtain the status for APUl and uses the storage space called
BUFFER. The storage space (BUFFER) is 128 bytes long.

PARMBLLK APPCB APN=1, BUF=BUFFER, LEN=128

7-4 48-006 FOO ROZ2

7.2.2 APPERTBL (Build APU Error Recovery Table) Macro

The APPERTBL macro builds a table of branch addresses to
user-written error recovery routines that handle specific errors
returned by the APU task control macros.

The value the user gives each parameter with this macro specifies
the branch address of the error recovery subroutine written by
the user.

Format:

NAME { OPERATION i OPERAND
symbol | APPERTBL i [+BAE=n] [,BNW=n} [,IBS=n]
[,ITO=n] [,PNG=n] [,IAN=n]
[,ILN=n] [,I0S=n] [,COP=n]
[,ONX=n] [,DIS=n] [,NTS=n]
[,NMR=n] [,NDS=n] [,ENE=n]
[,NOF=n] [,NET=n] [,EIX-n]
{,NTQ=n] [,ELSE=n]

Parameters:

BAE~- n specifies the address of a routine to remedy
errors if the data buffer is not fullword
aligned. This and all of the following
parameters are optional with the APPERTBL
macro. If none of these parameters are
entered, the default error routine address
table (RERR.TAB) is built.

BNW= n specifies the address of a routine to remedy
errors if the data buffer is not located in a
writable segment.

IBS= n specifies the address of a routine to remedy
errors if the data buffer is not 1long enough
(Insufficient Buffer Space).

ITO= n specifies the address of a routine to remedy
errors if task options prevent granting of
privileges (Illegal Task Options).

PNG~ n specifies the address of a routine to remedy

errors if the recovery address for Privileges
was Not Granted.

48-006 FOO RO2 7-5

IAN=

I0S=

COP=

ONX=

DIS=

NTS=

NDS=

ENE=

NOF =

NET=

EIX=

NTQ=

ELSE=

n specifies the address of a routine to remedy
errors if an Invalid APU Number was specified.

n specifies the address of a routine to remedy
errors if amn Invalid LPU Number was specified.

n specifies the address of a routine to remedy
errors if an Invalid Option byte was
Specified.

n specifies the address of a routine to remedy
errors if requested privileges are currently
owned by another task (Currently Owned
Privileges).

n specifies the address of a routine to remedy
error if the APU cannot be marked On-EXclusive
from the On state.

n specifies the address of a routine to remedy
errors if a request was denied because the APU
was Disabled.

n specifies the address of a routine to remedy
errors if status cannot be returned because
the queue is locked.

n specifies the address of a routine to remedy
errors if No Mapping Rights were granted.

n specifies the address of a routine to remedy
errors if the APU 1is ©Not in the Disabled
State.

n specifies the address of a routine to remedy
Errors if the the APU is Not Enabled.

n specifies the address of a routine to remedy
errors if the APU is Not marked Off.

n specifies the address of a routine to remedy
errors if the exclusive task is not in the
system, or if the APU is not marked On.

n specifies the address of a routine to remedy
errors encountered during command
transmission.

n specifies the address of a routine to remedy
errors if the preemptive task was not on the
ready gueue.

n specifies the address of a routine to remedy
any errors other than those specified above.

48-006 FOO RO2

Functional Details:

The APPERTBL macro is automatically expanded by the APPERR macro.
See Section 7.2.3. The user can call the APPERTBL macro prior to
calling the APPERR macro, and the APPERR macro will not expand
the APPERTBIL. macro. Once the APPERTBL macro is expanded, any
macro needing the error recovery routine address table will refer
to it. To use a user-defined error routine address table, the
APPERTBL macro must be expanded by the user before it is expanded
by the first occurrance of the APPERR macro. The name of the
default error routine address table is @ERR.TAB.

The ELSE keyword parameter provides a way for the user to handle
all errors except for the ones whose entry points were identified
by the standard keyword parameters. If none of the keyword
parameters (including ELSE) 1is specified, the default error
recovery subroutine is executed.

The user can specify the error conditions with user-written
recovery procedures by including the keyword for the specific
error followed by the error recovery entry point. The macro
starts execution at these points when the error occurs. Whenever
the ELSE parameter is specified, the ELSE handler must be able to
handle all error conditions except those specifically referred to
by the keyword parameters used.

Example:

This is an example of a wuser-written routine to handle four
different types of errors: the condition of the APU ready queue
is locked (NTS); the status buffer is not fullword aligned (BAE);
the status buffer is not long enough (IBS); the requested rights
are currently owned by another task (COP).

TABLENAME APPERTBL NTS=RETRY1MS, BAE=ALIGNBUF, IBS=SHORTBUF
, COP=RETI Y 1MS

48-006 FOO RO2 ' 7-7

7.2.3 APPERR (APU Error Recovery) Macro

The APPERR macro is an error linkage macro that references branch
addresses in the error table built by the APPERTBL macro. The
APPERR macro generates default error recovery and error linkage
procedures to the user-written subroutine if that subroutine was
specified.

Format:
NAME ! OPERATION H OPERAND
symbol i APPERR i
Parameters:

There are no optional or required parameters for this macro.

Functional Details:

This macro is expanded automatically by the first call to the
FETLPU, APUSTAT, APUMAP, APUCNTL, or REQUEUE macro. After the
first expansion of this macro, all subsequent macro calls
generate a linkage to the subroutine.

If the APPERTBL macro was not expanded by the wuser, it is
expanded using the default values. The default error recovery
procedure used by the system will release control or mapping
rights to an APU after the function completes. The RELEASE=N
parameter with the APUMAP and APUCNTR macros has no effect on the
default error recovery procedure.

The default error procedure for any error is to display an error
message. The task is paused when an error is encountered. To
restore all of the user registers and continue executing the user
code at the line following the macro call producing the error,
enter the operator CONTINUE command.

Table 7-1 shows the error messages produced by the default System
Error Recovery Subroutine and the conditions causing the errors.

7-8 48-006 FOO RO2

TABLE

Examples:

Since there are no parameters ti.at must be
macro, simply

7-1 ERROR RECOVERY SUBROUTINE DESCRIPTIONS

REASONS FOR ERROR

LR R S A R 2 S-S0 R 3 R _% R B35 B3 B 3§ 3 3 3 B_§ § 4

Data buffer not aligned on fullword boundary.

Data buffer not located in writable segment.
Insufficient space in data buffer.

Link option prohibits granting requested pri-
vilege.

Task was not granted the requested privilege.

APU number greater than the maximum allowed.

LPU number greater than the maximum allowed.

An invalid option specified for the function.
Requested option was specified for this
function.

APU cannot be marked On-Exclusive from the
On state. -

Function rejected, APU is in disabled state.

Access to APU ready queue not obtainable.

No mapping rights for LPU currently mapped to
the APU.

Cannot enable the APU more than once.

APU could not pass the power up link check.
Disable the APU from the Off state only.
Exclusive task is not in the system. APU is
not on.

Error encountered in transmission of command.

The preemptive task was not on the ready queue.

function to occur:

APPERR

48-006 FOO RO2

o A i o — - o ot o o e M Vs b s A e e b e -

- e wran s wmAm wPen s W wPen “PAn Wan e WS WPeR WEAR AR PR W WA WSAR WGN WPAW WPAR wen wmen ween WeAn

entered with this
entering the macro name causes the error linkage

——————— - ———

{ APPERRET |

7.2.4 APPERRET (APU Error Return) Macro

The APPERRET macro is the return error linkage macro that permits
the user to recover from an error and return to the user-level
code and continue the main program at the instruction following
the APU macro that caused the error.

Format:
NAME { OPERATION 1 QOPERAND
symbol { APPERRET !

Parameters:
There are no required or optional parameters for this macro.
Functional Details:

While in the user-defined error recovery procedure, a user can
use any of the general purpose registers without affecting the
normal execution of the main program, with the exception of the
link register. The 1link register is defined by the SCRREG
parameter of the ENVIRON macro. See Section 8.4. The default
value is R15. :

NOTE
The return register points back to the

error recovery subroutine, NOT back to
the instruction following the macro.

7-10 48-006 F0OO RO2

Examples:

This is an example of a user-written routine to recover from a
buffer alignment error. The algorithm used is to round the
buffer address up to the next fullword location and decrease the
length of the buffer by the alignment factor. Assume the buffer
address to be in location STATBUF, and the buffer length to be in
T.ENGTH.

ALIGNBUF EQU o

L R1l,STATBUF GET ADDRESS OF STATUS BUFF

LR R2,R1 SAVE THE ADDRESS

AIS R1,3 ROUND UP TO NEXT FULLWORD

NHI R1,X'FFFC'

ST R1,STATBUF SAVE THE NEW BUFFER ADDRESS

NHI R2,3 SAVE THE ODD BITS

SIS R2,4 SUBTRACT ALIGNMENT FACTOR

L R1,LENGTH GET THE BUFFER L.ENGTH

AR R1,R2 ADD NEGATIVE VALUE TO
L.ENGTH

ST R1l,LENGTH SAVE THE SHORTER VALUE

APPERRET RETURN TO USER TO TRY
AGAIN

This is an example of a user-written routine to ignore an error,
which 1is ‘'status buffer too short in length for the data to be
returned’.

SHORTBUF EQU x
LIS RO,0 SET CONDITION CODE TO ZERO
APPERRET RETURN TO CAIL. ERROR

48-006 FO0O ROZ2 7-11

{ APSTRUC |

7.2.5 APSTRUC (Control and Mapping Structures) Macro
The APSTRUC macro generates structures and defines equates for

the appcb parameter block used by the FETLPU, APUSTAT, APUMAP and
APUCNTL. macros.

Format:
NAME ! OPERATION H OPERAND
symbol ! APSTRUC i
Parameters:

There are no required or optional parameters for this macro.

Functional Details:

This macro is automatically invoked by the first APPCB macro
call. Once this macro is expanded, it will not be expanded
again.

Examples:

These are examples of the structures that are defined by this
macro:

SVC13.STRUC SVC 13 PARAMETER BLOCK

SV13.0PT DS OPTIONS

SV13.FUN DS FUNCTION CODE
SV13.DOP Ds DIRECTIVE OPTION
SV13.APN DS APU NUMBER
SV13.APS DS APU STATUS

ERROR STATUS

DATA BUFFER START ADDRESS
BUFFER USED

LENGTH OF BUFFER

SV13.ERR Ds
SV13.BUF DS
SV13.USE DS
SV13.LEN Ds

NNENN e

THE SVC1l3 FUNCTION 1 BUFFER DEFINITION STRUCTURE

F1B. STRUC STRUCTURE OF FUNCTION 1 BUFFER

7-12 48-006 FOO RO2

F1B.APUN DS 1 1-BYTE FOR APU NUMBER

F1B.LPUN DS 1 1-BYTE FOR LPU NUMBER :
F1B.NTSK DS 2 2 BYTES FOR NUMBER OF READ TASKS
F1B.STAT DS 2 2 BYTES APU STATUS

F1B.OPTS DS 2 2 BYTES OF OPTIONS

F1B.CURT DS 8 NAME OF CURRENTLY ACTIVE TASK
F1B.CNTL DS 8 NAME OF TASK WITH CONTROL RIGHTS
F1B.MAPT DS 8 NAME OF TASK WITH MAPPING RIGHTS
F1B.RDYQUEUE DS 8 FIRST TASK NAME ON READY QUEUE

APU STATE MNEMONICS DEFINITION

APS.DISA EQU
APS .MOFF EQU
APS .MONX EQU
APS.MON EQU
APS .WATX EQU
APS .WAIT EQU

APU IS DISABILED

APU IS MARKED OFF

APU IS MARKED ON EXCILUSIVE

APU IS MARKED ON NORMAI.LY

APU WAITING FOR EXCLUSIVE TASK
APU IS WAITING FOR NORMAL TASK

NoOwNh~0O

APU MAPPING MNEMONICS DEFINITION

MAP.GMP EQU X'80' GAIN MAPPING PRIVII.EGES

MAP .MOX EQU X'40' MARK APU ON, EXCLUSIVE
MAP.MON EQU X'20' MARK APU ON

MAP.MAP EQU X'1c' MAP APU INTO L.PMT AT LPU"X"
MAP.REM EQU X'o8' REMOPVE AIL REFERENCES TO APU
MAP .MOF EQU X'o2' MARK APU OFF

MAP.RMP EQU X'0o1’ RELLEASE MAPPING PRIVILEGES

APU CONTROL OPTIONS MNEMONICS DEFINITION

COPT.GCR EQU X'80' GAIN APU CONTROL RIGHTS
COPT.ENA EQU X'40' ENABI.E APU

COPT.ECF EQU X'08' EXECUTE CONTROL FUNCTION
COPT.DIS EQU X'02' DISABI.E MARKED OFF APU
COPT.RCR EQU X'ol' RELEASE CONTROL RIGHTS

APU CONTROL. COMMAND MNEMONICS

CCMD.STR EQU X'ol' STI’RT THE APU

CCMD.SST EQU X'02' SINGI.E STEP THE APU

CCMD.TTH EQU X'04' TRANSFER TASK TO CPU
CCMD.RPF EQU X'o7' RELOAD POWER FAIL IMAGE
CCMD.SPF EQU X'o8! STORE POWER FAIL IMAGE
CCMD.RTS EQU X'80' RTSM CHECK

CCMD.RES EQU X'83" RESCHEDUL.E ON APU

CCMD.STO EQU X*'85" STCP THE APU

CCMD.STA EQU X'86"' SEND APU STATUS

CCMD.CHK EQU X'8A' CHECK POINT THE CURRENT TASK

SVC 13 FUNCTION CODES

LPMT.FUN EQU X'00'
STAT.FUN EQU X'Ol'
MAP.FUN EQU X'02'
CTRL.FUN EQU X'03'

48-006 FOO RO2 7-13

7.3 INFORMATION MACROS

Tasks in a Model 3200MPS System must be able to obtain- status
information about the LPUs and APUs in the system. This
information is available to the tasks through SVC 13. By use of
the APU information macros that utilize the SVC services, LPU and
APU information is available to all tasks in the system. The
information macros are FETLPU and APUSTAT. They allow a task to
gain information regarding the:

¢ Maximum number of LPUs and APUs

o Logical Processor Mapping Table (LPMT)

o Number of LPUs mapped for the selected APU

® Number of tasks in the ready queue for the selected APU

o Status of the selected APU

© Task names associated with the selected APU, which include:

- the active, control, and mapping tasks

- what task the selected APU is waiting for
- APU number

- all ready tasks in queue order

~ task options

7-14 48-006 FOO RO2

7.3.1 FETLPU (Fetch LPU Map) Macro

The FETLPU macro returns APU and LPU information to the
requesting task and stores the information in a user-specified
buffer. This information consists of:

e Maximum number of APUs and LPUs

e A copy of the Logical Processor Mapping Table (LPMT)

The LPMT contains one entry for each LPU number, starting at LPUO
and ending with LPUn, where n represents the maximum number of
LPUs that can be configured in the system at system generation.
See the System Generation/32 (SYSGEN/32) Reference Manual. By
convention, LPUO always represents the CPU

Format:
NAME i OPERATION ! OPERAND
symbol | FETLPU { [appcb]l [,BUF=n] [,LEN=n]
Parameters:
appcb specifies the address or pointer to the appcb
parameter block or to a register that will
contain the address of the parameter block.
BUF = n specifies the starting address of the

user-specified buffer to receive the requested
data. The buffer length can be variable, but
must begin on a fullword boundry and be
located in the task's writable segment. This
parameter can be supplied in the FETLPU macro
or in the APPCB macro if the parameter block
is expanded separately. The buffer address
can also be passed to the FETLPU macro in a
register in the format BUF=(R4). A data
buffer is not required for mapping or control
macros.

48-006 FOO RO2 7-15

LLEN= n specifies a decimal number that expresses
the maximum usable length of the data buffer
in bytes. This parameter can be supplied in
the FETLPU macro or in the APPCB macro if the

parameter block is expanded separately. The
length can also be passed to the FETLPU macro
in a register in the format ILEN=(R1l). The

max imum length is 65,535 bytes, and the
minimum is 4.
NOTE
The maximum required buffer length
can be calculated as follows:
I.LEN = ((#LPUs + 1) * TABILEWIDTH) + 4
#LPUs = The maximum number of LPUs

in the system. TABLEWIDTH
always equals 1.

The maximum buffer length ever
required is:

LEN = ((255 + 1) * 1) + 4 = 260 bytes

When this call is successfully completed, the following parameter
block fields are def ined:

® SVI1I3.ERR - This error status field can contain any of the
following values:
- Zero means no error, successful completion.

- BAE means a buffer alignment error, because the starting
address of the data buffer is not fullword aligned.

- BNW means a buffer not writable error because the data
buffer is in a nonwritable program segment.

- IBS means insufficient buffer space error because the data
buffer is not large enough to contain all the data.

The data buffer field shows the data that was returned to the
buffer in bytes in the format shown in Figure 7-1.

7-16 48-006 FOO RO2

B e e e 0 e e ke . T G S W o W e WM e S i Gk AN R T A S e e e R NS R e s T WS e e N e e e 4 U TR Gie M A Al e e e e e v

10(0) i1(L) 12(2) 13(3) .

! (Reserved) | Maximum APU ! Maximum LPU | LPMT Table

i | Number ! Number ! wWidth

: __________________________ e U U o T o o o s o 20n o .
4(4)

Copy of Logical Processor Mapping Table (I.PMT)

.

Figure 7-1 Buffer Data Returned for FETLPU Macro

Max imum This field contains a binary number with a

APU Number value that can range from O through 9,
representing the total number of APUs that can
be in the current system configuration.

Max imum This field contains a binary number with a

I.PU Number value that can range from 1 to 255,
representing the total number of LPUs that can
be in the current system configuration.

L.PMT This field is for future expansion. It now
Table Width always has a value of one.

I.PU1l These fields contain the APU number that the
through LPU is mapped to. The value can range from O
I.PUn through 9, the maximum APU number. A value of

zero always signifies that the LLPU is mapped
to the CPU. The LPU number is determined by
the byte position in the data buffer and can
be calculated hy the following:

I.LPU# = Byte Position - 4

The first byte in the buffer starts at zero.

Functional Details:

If the appcb parameter is not entered with this macro, the appcb
parameter block is automatically built and the required
parameters are assigned to the appropriate fields.

If any required parameter is not specified in the FETLPU macro,
it must have been previously specified in the APPCB macro. Any
required parameter specified with an existing appcb parameter
block replaces the old value in that field.

~
1

48-006 FOO RO2 17

The buffer address (BUF) must begin on a fullword boundary and be
located in the task's writable segment.

ixamples:

In the following example, the user wants to access the maximum
LLPU number, the maximum APU number, and the LPMT.

FETLPU , BUF=BUFFER,LEN=260

I.B R1l,BUFFER+1 Rl=Maximum APU Number
1.B R2,BUFFER+2 R2=Maximum LPU Number
LA R3,BUFFER+4 R3=Address of LPMT
ALIGN 4

BUFFER DS 260

NOTE

If an error occurs, it is handled by the
default error recovery procedure, the
APPERR macro.

In this example, the user wants to use a named parameter block
for this FETLPU macro call.

PROGRAM
FETLPU PARMBL.K
L.B R1,BUFFER+1 Rl=Maximum APU Number
PARMBI.K APPCB FUN=MAP .FUN, BUF=BUFFER,I.EN=260
ALIGN 4
BUFFER DS 260

7-18 48-006 FOO RO2

7.3.2 APUSTAT (Fetch APU Status) Macro

The APUSTAT macro allows a task to access APU status information
by returning information for the specified APU to the requesting
task. The returned status information is stored in the
user-specified buffer and consists of the:

e APU number, state, and options

e Number of tasks in the APU ready gqueue

e Number of LPUs mapped to the APU

e Name of the task having control and mapping rights of the APU
e Name of the task currently active on the APU

e Name of the task the APU is waiting for

e List of tasks in the APU ready gueue in order of execution

Format:
NAME | OPERATION] OPERAND
o e s , e s b o A o e e o : o i e 0O e o i e 1o e S oo o S i S o i oy o . o o v o o oo S
symbol ! APUSTAT i [appcb] [,APN=n] [,BUF=n] [,LEN=n]
Parameters:
appcb Specifies thc address or pointer to the appcb
parameter block or to a register that will
contain the address of the parameter block.
APN= n specifies the APU number about which

information is desired. The number can be
supplied in this macro or in the APPCB macro
if the parameter block is built separately.
The APU number can also be passed to the
APUSTAT macro in bits 24 through 31 of a
register. The format for this is APN=(R4).

48-006 FOO ROZ2 7-19

BUF =

LEN=

n sgpecifies the starting address of the
user-specified data buffer or register. This
buffer can be variable in 1length, but must
begin on a fullword boundary and be located in
the task's writable segment. This parameter
can be supplied in the APUSTAT macro or in the
APPCB macro if the parameter block is expaned
separately. The buffer address can also be
passed to the APUSTAT macro in a register in
the format BUF=(R2). A data buffer is not
required for mapping or control macros. This
is a required parameter.

n specifies a decimal number that expresses
the maximum usable length of the data buffer
in bytes. This parameter can be supplied 1in
the APUSTAT macro or in the APPCB macro if the
parameter block is expanded separately. The
length can also be passed to the APUSTAT macro
in a register in the format I.EN=(R9). The
maximum length is 65,535 bytes and the minimum
is 8. This is a required parameter.

The data buffer field receives the status information 1in the
format shown in Figure 7-2.

7-20

48-006 FOO RO2

APU number

i 1(1) P 2(2)

I

! Number of | Number of tasks
]
1

1
i LPUs mapped

’*w“-_m____‘_______-___”m---__________wm-ﬁm‘_n--___"_-_

i APU.STAT

Active task name:
or
Waiting task name

Ready task names (1)
or
Exclusive task name

APU.OPTS

i o o v T~ o " i - A Sk e Mm hmm e AN e S A i oma et e e S mmr

Figure 7-2 Data Buffer Format for APUSTAT Macro

48-006 F0OO RO2

[

— - —— - - e w——

— —em mem mem —a— ——

21

Fields:

APU number

Number of
LPUs mapped

Number of.
tasks -

APU.STAT

is a l-byte field containing the decimal
number of the APU to which the status
information applies. The number can be from
0 through 9, with 0 designating the CPU.

field containing the number of
gspecified

is a l-byte
LPMT entries that are mapped to the
APU.

is a 2-byte field containing the number of
waiting tasks in the specified APU ready
gqueue. The active task, if there is one, is

not included in this count.

is a 2-byte field containing bit settings that
indicate the current software status of the
APU, the status after the last power fail, and
whether or not the writable control store
(WCS) is initialized or loaded for the
specified APU. The specific bits used are
identified below.

i e i o G M i -] o b i - imn e S e e Vi e

. NI N,
Bits
0 1 s 6 7 13 14 15
WCS status current
state after last status

power failure

If bit 0 is set, the WCS has been initialized.
If bit 1 is set, the WCS has been loaded.

The current status and status after last power

failure may contain one of the following
settings:

7 = APU on, and walting for task

6 = APU on exclusive, and waiting for task

3 = APU on

2 = APU on, exclusive

1 = APU off

0 = APU disabled

48-006 FOO ROZ2

APU.OPTS is a 1l6-bit field specifying any special APU
conf iguration options. If bit 0 of the
halfword is set, the APU has no WCS support.
If bit 1 is set, the APU has no floating point

support. If bit 2 is set, the APU will stop
and wait for a task; i.e., trap block wait
convention. Other bits are reserved for

future options.

Active task is an 8-byte field containing the name of the
name currently active task. It may also contain
the waiting task name if the APU is stopped
and waiting for a task. The task name is
left-justified in the field and padded with
blanks, if necessary. If there is no

currently active or waiting task, the field is
entirely filled with blanks.

Control task is an 8-byte field containing the name of the

name task that has been granted control rights over
this APU. If no control task exists, the
field is entirely filled with blanks.

Mapping task is an 8-byte field containing the name of the

name task that has been granted mapping rights over
this APU. If no mapping task exists, the
field is entirely filled with blanks.

Ready task is a variable length table of 8-byte fields
names containing the name of each task in this APU
ready queue. The currently active task, if
any, does not appear in this table. The

number of entries in this table is given in
the number of tasks field. The order of
entries corresponds to the order of the tasks
on the ready queue.

If the current status setting for the APU is
set to X'2' marked On-Exclusive the APU ready
queue is alweys empty. The ready task names
field contains the name of the task that has
exclusive rights to the APU.

Examples:

This is an example of a user-written routine to get APU status.
The routine could be part of the main body of code or a
subroutine. Assume that the data buffer address is in 1location
STATBUF; the buffer 1length 1is in location LENGTH; and the APU
number is passed in Rl:

48-006 FOO RO2

~
1

23

GETSTAT EQU *

LIS R3,2 INITIALIZE RETRY COUNTER

ST R3,RETRYCNT

L R2,STATBUF GET THE BUFFER ADDRESS

L R3 ,LENGTH GET THE BUFFER LENGTH
RETRY APUSTAT APN=1,BUF=(R2),[.EN=(R3)

BP RETRY SOFT ERROR TRY AGAIN

BZ CONTINUE GOOD RETURN

If the condition code came back as a minus, there was an
unrecoverable error and the main routine must handle this
gituation.

WTO 'UNRECOVERABLLE ERROR TRYING TO
GET APU STATUS'
EOT RC=1

This is the logic path for no errors:

CONTINUE EQU x
EOT RC=0
END

In this example, the user requests the APU status for APU 1:

[P

APUSTAT APN=1, BUF=BUFFER,[.EN=112

LLHL RO,SV13.APS(R14) RO=APU H/S Status

LA R1,BUFFER Rl=Data Buffer Address

LB R2,F1B.APUN(R1) R2=APU Number

LB R3,F1B.LPUN(RL) R3= # LPUs Mapped

L.H R4,F1B.NTSK(RL1) R4= § of Tasks

LH R5,F1B.STAT(R1) R5=APU Mapping State

LH R6,F1B.OPTS(R1) R6=APU Options

LA R7,F1B.CURT(R1) R7=Current Task Address

LA R8,F1B.CNTL(RL1) R8=Controlling Task
Address

LA RS,F1B.MAPT(R1) R9=Mapping Task Address

LA RA,F1B.RDYQ(R1) RA-~Address of Task on

the Ready Queue

ALIGN 4
BUFFER DS 112

T7-24 48-006 FOO RO2

7.4 MAP LPU TO APU MACROS

Tasks 1in a Model 3200MPS System can request the mapping
privileges of a specified APU through the APUMAP macro. If no
other task was granted that privilege, and if permitted by the
task's established options, mapping privileges are granted to the
requesting task, giving the task the right to:

e Mark the APU on or off

® Map the APU into the TLPMT

e Remove all references to the APU from the LPMT

e Request and release mapping privileges

Via the LPMT, an LPU can be mapped to one, and only one, APU.

However, an APU can be mapped to more than one LPU.

Figure 7-3 shows the valid paths for the SVC call.

6432

Mark
ON
Mark
ON Mark
ON EXCLUSIVE
o ON
. N _ EXCLUSIVE
tate State)
A
Mark
Mark OFF Mark
OFF ON EXCLUSIVE
Mark
DISABLE Y
(Control)
-
DISABLED > OFF
State Mark State Mark
ENABLE OFF
(Control)

Figure 7-3 Valid Paths for an SVC Call

48-006 F0OO0 RO2 7-25

7.4.1 APUMAP (APU Mapping) Macro

The APUMAP macro is used by a task to gain mapping privileges to
and perform mapping functions on the specified APU, and to
release or not release the mapping privileges of a specified APU
after completion of this macro function.

Format:

OPERATION] OPERAND

- o i o i o o a2 i mn (vn o i M o o oo e i — o 7 o 2 o o i oot

Parameters:

appcb

APN=

I.PN=

MAPFN=

7-26

| [appcb] [,APN=n] [,LPN=n]
i [MAPFN= [mapfnl,...,mapfnn]]
i [/RELEASE=(Y/N)] [,TASKID=]

is the address or pointer to the appcb
parameter control block (PCB). If this
parameter is omitted, the parameter block will
be built automatically.

n specifies the number of the APU that the
mapping request is directed to or specifies a
register. This is a required parameter 1if
MLPU is specified in the MAPFN parameter.

n specifies the LPU number or a register. If
MLPU is specified, this parameter is required.

name specifies the name of the APU for which
mapping privileges are requested. A user can
choose any one of the following four
designators with this parameter:

1. APUON indicates that the specified APU is
to be marked On.

2. MLPU means map the specified APU into the
LPMT, which will contain the mapping
arrangement between the L.LPU and the APU,
at the LPU number specified with the LPN
parameter. The LPMT contains one entry
for each LPU number.

48-006 F0OO ROZ2

RET.EASE=

TASKID=

Upon completion of

3. APUCFF means mark the specified APU off.

4. REMAPU means remove all references to the
APU from the IL.PMT.

5. APUEXCL means mark the specified APU on
exclusively to the task whose name must be
specified with the TASKID parameter.

¥Y/N indicates yes or no. Yes means the task
is to release mapping privileges after
completion of this macro function. No
indicates mapping privileges are not to be
released after completion of this macro
function. Yes is the default parameter.

specifies the address of the buffer containing
the task name to which this APU is to be
marked on exclusively. It must be fullword
aligned and 8 bytes long. The task name must
be left justified, and any remaining bytes (if
task name 1is less than 8 characters) must be
filled with blanks.

NOTE
A buffer filled with all blanks

means mark the APU on exclusively
to the task issuing the macro.

the APUMAP macro, the following parameter

block fields are def ined:

® SV13.ERR - error

byte 1

byte 2

48-006 FO0O ROZ2

status

contains the bit position of the option being
executed when the error occurred.

contains the error code indicating the type of
error. It will contain one of the following:
- Zero means no errors.

- BAE means the buffer is not fullword
aligned.

- IBS means the buffer size is too small.

- ITO means an error, task options prevent
granting of privilege.

- PNG means the task has not been granted
privileges required to perform the option.

- IAN means an invalid APU number.
- ILN means an invalid LPU number.
- 108 means an invalid option specified.

- COP means an error, privilege is currently
owned by another task.

- ONX means the APU cannot be marked
On-exclusive from the On state.

- DIS means the APU is not enabled (disable
state).

- NTS means the APU queue access is denied.

- NMR means the task has not been granted
mapping rights over the APU that |is
currently mapped to the specified LPU.

- NET means APU could not be marked
On-Exclusive because the exclusive task
could not be found in the system.

Functional Details:

If appcb is not specified, the parameter block is automatically
built and the required information is assigned to the appropriate
fields. If appcb is specified, all the required information not
specified with the macro is assumed to be in the parameter block.

To successfully execute this macro the task must be established
with the 1link APU mapping option. See the 0S/32 Link Reference
Manual.

If more than one mapping function is specified, each must be
enclosed in parentheses and separated by commas.

The value of N for the RELEASE parameter, will allow a task to
retain mapping privileges to the specified APU after the macro
call has completed. All other tasks in the system will be
prohibited from sending mapping commands to that APU, including
the command processor, until the mapping privileges are released
by the task holding them. The controlling task releases mapping
privileges by reentering the APUMAP macro and specifying Yes with
the RELEASE parameter.

7-28 48-006 FOO ROZ2

Examples:

In this example, the APUMAP macro maps all tasks directed to LPUl
to execute on APUL:

APUMAP ,APN=1 ,LPN=1 ,MAPFN=MIL.PU

This example shows how the APUMAP macro marks APU2 into the OFF
state:

APUMAP ,APN=2 ,MAPFN=APUOFF

7.5 TASK CONTROL MACROS

A task in a Model 3200MPS System must be able to control other
tasks in the system. A task can request the control privilege of
a specified APU. If no other task was granted that privilege,
and if permitted by the task's options, control privileges are
granted to the requesting task giving the task the right to:

e Initialize an APU if it is waiting for power up link check

e Preempt current task

e Start normal APU execution (if stopped)

e Otherwise control the APU

e Disable APU

® Perform a power up link check on the APU

e Stop APU execution

48-006 F0O ROZ2 - 7-29

7.5.1 APUCNTL (APU Control) Macro

The APUCNTL macro is used by a task to gain control privileges to
and perform control functions upon the specified APU, and to
release or not release control privileges to the specified APU.

Format:

OPbRATION i OPERAND

Parameters:

appcb

APN=

CNTRFN=

7-30

APUCNTL

i [appcb] [,APN=n] [,CNTRFN= n]
{ [,DATA=n] [,RELEASE=Y/N]

specifies the address or pointer to the
parameter block or a register.

n specifies the number of the APU for which
the control request is made, or it specifies
a register containing the APU parameter.

n specifies the code command to be sent to the

APU. A user can choose any one of the
following seven control codes:

1. from 1idle state, STRTAPU means start
normal APU execution.

2. from idle state, SSTEP means single step
through a user instruction at the current

task.

3. from idle state, TRHOST means transfer the
current task to the host CPU.

4. from idle state, LNKCH means send data to
APU; receive one's compliment
(diagnostic).

5. from idle state, RSCH means reschedule
current task at the end of APU gqueue.

6. STOPAPU means stop APU execution.

7. FETAPU means fetch APU status.

48-006 FOO RO2

DATA= n specifies the data sent to the APU during
the 1link check or specifies the register to
receive the returned value. This parameter
must be on a halfword boundary in the task's
writable segment. Bits 8-15 contain the data
that is sent to the APU. Bits 0-7 contain the
data returned by the APU. This parameter is
used only if LNKCH is entered with the CNTFRN
parameter.

REL.EASE= Y/N specifies yes or no. Yes means control
rights are to be released after completion of
the macro function. Other tasks in the system
can then gain control rights to the specified
APU when this macro completes. This is the
default.

No means the user does not want to release
control rights after completion of this macro
function. No allows the user to keep control
rights to the specified APU after the macro
completes. All other tasks in the system are
then prohibited from sending commands to that
APU, including the command processor until the
controlling task releases those privileges by
reentering the APUCNTL macro and specifying
Yes with the RELEASE parameter. Yes is the
default.

Upon completion of the APUCNTL macro, the following parameter
block fields are def ined:

e SVI3.ERR - error status
byte 1 contains the bit position of the option being
executed when the error occurred.
byte 2 contains the error code indicating the type of

error.

® SV13.APS receives the APU 1response status returned after
execution of this macro call. The APU status consists of a
response byte followed by an error code byte. The response
and error code bytes have the format shown in Figure 7-4.

48-006 FOO RO2 7

31

RESPONSE BYTE

ERROR CODE

|
i
| ERROR CODE
:
|

PAR

RUN

NON-TASK

WAIT

RESP

ERROR

MOD1,

MOD2

7-32

Figure 7-4 APU Hardware Response Bytes

is the parity bit that ensures the status byte
has odd parity.

is set if the APU is running, it is reset if
the APU is idle.

is set if the current program status word
(PSW) bit 15 1is set and indicates that no
context save area is available. If the bit is
reset, the current task must be defined and
its task context be ready to accept the
current task state active in the APU.

is set if the current PSW bit 16 is set or if
the APU 1is working in an internal service
state; i.e., scheduling a task. If the bit is
reset, the APU is executing instructions.

is set if the APU is responding to a command
from the CPU. 1If the bit is reset, the APU is
generating its own signal indicating a change
in APU state.

is set if the APU detects an error condition
which causes the APU to stop. An error code
must be read from the APU to identify the
error and to release the APU from the
IDI.LE-ERROR state.

are set depending on the state of RESP and
ERROR.

They are encoded to identify one of the
following specific conditions:

48-006 FOO RO2

RESP ERROR MOD1 MOD2 Meaning
Signal, :
No_.error 0 0 0 0] Undef ined
0 0 0 1 APU entering Queue Wait State
0] 0 0 0 Task rescheduled to APU Queue
0 0 1 1 Task rescheduled to CPU
Signal,
Error 8] 1 0 0] General error status
0 1 0 1 Error while in Queue Wait
0 1 1 0 BError while locking gqueue
0 1 1 1 Undef ined
Response,
No_error 1 0 0 0 General response status
1 0 0 1 Task is waiting on APU Queue
1 0] 1 0 APU trying to lock a gqueue
1 8] 1 1 Command Sequence Error
Response,
Error 1 1 0 0] Error as result of command
1 1 0 1 Response, error in Queue Wait
1 1 1 0 Response, error in Queue Lock
1 1 1 1 Error as result of command

The error codes defined for the

sequence

second byte are

TABLE 7-2 ERROR CODES FOR APU STATUS BYTE

presented

in

o . . o T ok L b e R AR RS M A ke e G i e N M i i U RS 1t e e e A e T A R G e A e A W e L L S e Pam o e e o

DESCRIPTION

No error
APUID DEVICE FALSE SYNC
ZERO APUID RETURNED BY RTSM

Table 7-2.

' ERROR | CODE |
1

L - I X'80' |
STA.IDFS EQU	X'O1
STA.ZID EQU	X'02
STA.MPCR EQU	X'83
i i !	
! i i	
STA.MAPU EQU	X'04'
STA.NDIR EQU	X'85'
STA.MAPP EQU	X'86'
STA.MAPN EQU	X'07'
STA.WAPB EQU	X'08'
STA.APBK EQU	X'89'
STA.CMDR EQU	X'8A'
STA.NTCB EQU	X'OB'
!	!
; -	x'sc'
STA.QTIM EQU	X'OD'
STA.SUSP EQU	X'OE'
! :	
STA.NSST EQU	X'8F'

48-006 FOO ROZ2

CANNOT FETCH WORDS

BAD A(AFB)

NOT USED

QUEUE LOCK TIMEOUT
EXECUTION SUSPENDED (TRAP
PSW WAIT)

BAD SSTD - ECC

APUID > MAX APU @X'C7'

BAD A(AFB_DIR)-ECC/ZERO/ALIGN
- ECC/ZERO/ALIGN
BAD APB(FLAGS:APB#) WORD-ECC

WRONG APB NUMBER IN APB
ABP PASSBACK

UNRECOGNIZED COMMAND
BAD APB A(CTCB)-ECC/ZERO/ALIGN

X'C4'-ECC

TABLE 7-2 ERROR CODES FOR APU STATUS BYTE (Continued)

ERROR | CODE | DESCRIPTION
STA.NCTX EQU | X'10' | CANNOT T.OAD TASK CONTEXT
STA.NCTS EQU X'9l’ CANNOT STORE TASK CONTEXT
STA.NPF1 EQU X'92" CANNOT LOAD PWB FAIL IMAGE
STA.SPFI EQU X'13' CANNOT STORE POWER FAIL IMAGE
STA.NPST EQU X'94" CANNOT LOAD PSTD - ECC
STA.NPFP EQU X'15" BAD APB PFAIL PTR-ECC/ZERO
STA.HDST EQU X'16" BAD APB MMF NEW PSW-FCC/ZERO LOC
STA.WCTP EQU X'97" BAD CTCB CTX PTR-ECC/ZERO/ALIGN
STA.NCNT EQU X'98" BAD APB TCB CNT WORD - ECC
STA.QFPT EQU X'19" BAD A(APU FRONT TCB)-ECC/ZERO/ALIGN
STA.TCNT EQU X'1A" FRONT TCB PRT, TCB AND CNT DISAGREE
STA.QUNP EQU X'9B" QUEUE TCB CNT UNDERFLOW
STA.NHQP EQU X'1c' BAD APB A(CPU QUEUE) - ECC/ZERO/

ALIGN

STA.NQTP EQU X'9D" BAD TCB QHPTR - ECC/ZERO/ALIGN
STA.WAPQ EQU X'9E" INCORRECT TCB QUEUE HEAD PTR
STA.NBPT EQU X'1F" BAD TCB BPTR - ECC/ZERO/ALIGN
STA.NBFP EQU X'20" BAD BACK TCB FPTR - ECC/ZERO/
STA.NBFP EQU X'20' BAD BACK TCB FPTR - ECC/ZERO/ALIGN
STA.FLNK EQU X'Al’ BACK TCB FPTR NOT TO FRONT TCB

- mam wman mmem e wmam Amen mmem mmae mman mtn mhem Emen e medh Hhin Weem mmem A MRAn MEAe Gmes WHAR MEeR SEM Aeen AER Ween WeAn WRAR v W ER G MmAe TR RGN W e Weev SR wmAm e Sman mmam mman mmn mam mmam e e e

:

‘

= 1 !
! = =
: ! !
| | |
! ! !
! : :
! ! |
| : |
! ! !
: ! !
: ! !
| : :
! ! :
! | :
! ! !
! ! !
! ! |
: ! :
! ! !
! ! !
! = !
! ! !
: ! !
! ! !
| STA.NFPT EQU | X'A2' | BAD FRONT TCB FPTR-ECC/ZERO/ALIGN
| STA.NFBP EQU | X'23' | BAD FWD TCB BPTR-ECC/ZERO/ALIGN
1 1 i
| | |
| ! :
! ! |
i 1]
i i !
! ! !
! ! z
! ! !
! | |
| ! :
! ! :
! ! !
! | |
! | !
! ! !
{ ' 1
i i 1
| : :
! ! !
! ! !
: ! :
| ! |
: ! :
: : !

STA.BLNK EQU X'a4’ FWD TCB BPTR NOT TO FRONT TCB
STA.FLBIL. EQU X'25" INCONSISTENT FRONT TCB FPTR

AND BPTR
STA.FBPT EQU X'26' BAD FRONT TCB PTR-ECC/ZERO/ALIGN
STA.BFPT EQU X'A7' BAD BACK TCB FPTR-ECC/ZERO/ALIGN
STA.WBFP EQU X'Aa8' BACK TCB FPTR NOT TO FRONT TCB
STA.QOVF EQU X'29' TCB QUEUE OVERFLOW (CPU OR APU)
STA.TIM1 EQU X'a2a BAD MSH TIME ACCUMULATOR - ECC
STA.TIM2 EQU X'AB' BAD LSH TIME ACCUMULATOR - ECC
STA.STIM EQU xrac' BAD TCB START TIME WORD - ECC
STA.STIM EQU X'ac' BAD TCB START TIME WORD -~ ECC
STA.NRTC EQU X'AD' CANNOT READ RTSM CLOCK DATA
STA.TMOV EQU X'AE' TCB ELAPSED TIME OVERFLOW
STA.PEND EQU X'2F' TCB PENDING FILLAGS SET ON QUEUE
STA.NPND EQU X'BO' BAD PENDING FLAGS WORD - ECC

OR CTCB
STA.NPND EQU X'BO' BAD PENDING FLAGS WORD - ECC
STA.XINT EQU X'31' INTERRUPT FROM RTSM XMTR
STA.PFPS EQU X'32' CANNOT LOAD PFAIL PSTD -~ ECC
STA.PFSS EQU X'B3'

CANNOT LOAD PFAIL SSTD - ECC

7-34 48-006 FOO RO2

Functional Details:

If appcb is not specified, the parameter block is automatically
built and the required parameters are assigned to the appropriate
fields. If appcb is specified, all the required parameters not
specified in the macro command are assumed to be in the parameter
block.

To successfully execute this macro, the task must be established
with the APU Control (APC) link option. No other task can have
the APU control rights granted to it.

Example:

In this example, the APUCNTL macro enables APUl:

APUCNTL ,APN=1 ,CNTRFN=ENABT.E

In the following example, the APUCNTL macro performs a link check
on the APU specified in R1l. It sends the data byte located in
bits 24-31 of R3 and receives the returned data in bits 16-23 of
R3.

Example:

APUCNTL ,APN=(R1l) ,CNTRFN=LNKCH ,DATA=(R3)

48-006 F00 RO2 7-35

—— . ——————

7.5.2 REQUEUE (Requeue the APU Ready Queue) Macro

The REQUEUE macro gives a task the ability to preempt or
reschedule the current task and select the next task on an APU
ready gqueue. The optional parameters allow a task limited
ability to reorder the APU ready queue.

Format:
NAME i OPERATION | OPERAND
symbol ! REQUEUE i [appcb] [,APN=n} [,TASKID=n]
| { [,RESTART=Y/N] [,RESCHED=Y/N]
! ! [,REL.EASE=Y/N]
Parameters:
appcb is the address or pointer to the appch

parameter block or a register containing the
address of the parameter block.

APN= n specifies the number of the APU to which
this function 1is directed. The task must be
assigned to a nonzero LPU, which, in turn must
be mapped to a nonzero APU. APU 0 indicates
the CPU.

TASKID= n specifies the address or pointer to a wvalid
task name or the register containing the
address of the valid task name.

RESCHED= Y/N specifies Yes or No. Yes means the
currently active task 1is to be rescheduled
back on the APU ready queue before the queue
pointer is changed. No means the currently
active task is not to be rescheduled on the
APU ready queue before the queue pointer is
moved. Yes is the default value.

RESTART= Y/N specifies Yes or No. Yes is the default
and restarts the APU after the APU at the top
of the ready queue was changed. No specifies
that the APU is not to be restarted.

7-36 ' 48-006 FOO RO2

RELEASE= Y/N specifies Yes or No. Yes is the default
and means that the control rights to the
specified APU are to be released. No means
the control rights are not to be released and
no other task in the system (including the
command processor) can have control of the
APU.

Functional Details:

If appcb is not specified, the paramater block is automatically
built by the APPCB macro.

The TASKID parameter must point to a valid task name. This task
name must be left-justified, padded with blanks, if necessary,
and must start on a fullword boundary. The task name must be on
the APU ready queue. If a valid task name is not specified, the
task at the head of the queue is assumed to be the task to be
preempted.

The RESCHED parameter entered with yes keeps the currently active
task in the same position relative to all of the other tasks in
the APU ready queue. No causes the currently active task to be
positioned just behind a valid task name specified when the
current task is finally put back on the queue and gives the user
the ability to reorder the ready queue.

The REQUEUE macro could result in any one of the following error
conditions:

ITO The task option prevents granting of control
rights. Relink the program using the OPTION
APCONTROI, command. See the 0s/32 Link
Reference Manual.

IAN An invalid APU number was specified. Verify
that the APU number has a value from zero
through the highest APU number on the system.

108 An invalid option byte was specified. Check
location SV13.0PT in the parameter block to
verify the contents.

COP The requested control rights are held by
another task. There is no recovery from this
error except to wait for the other task to
release the control rights and try this caill
again.

DIS Request is denied because the APU is disabled.
The APU must be made active before this call
is entered. The optional TASKID parameter
secifying the valid task name also must be on
the APU ready queue.

48-006 FOO RO2 7-37

EIT Error occurred in the transmission of a
: command. This error is significant of
hardware failures. Retry and, if the error

recurs, call the customer engineer.

NTQ: The task name in the TASKID field was not
found on the APU ready queue. Reenter this
macro. If the error disappears, the desired
task was probably executing an SVC call on the

CPU. If the error remains, check the task
name and the location of the task in the
system.

Examples:

In this example, the REQUEUE macro stops the APU whose number is
contained in R2. The pointer to the next task on the ready queue
is changed to point to the task whose name is located in BUFFER
(TASKNAME). The APU is then restarted:

REQUEUE ,APN=(R2) ,TASKID=BUFFER

ALIGN 4
BUFFER DB C'TASKNAME'

7.6 TASK DIRECTION MACROS

The Model 3200MPS System task direction macros direct a task to
an APU or from an APU back to the CPU. In order to direct a task
to a particular APU or from a particular APU back to the CPU, the
ILPU has to be assigned to the processor where the task is to
execute. The LPU must be assigned to an APU with a nonzero
number because only the CPU can have a zero designation. The
task direction macros utilize the tmpcb parameter block built by
the TMPCB macro or built automatically. See Section 5.23. There
are two ways to assign the LPU to an APU.

o Self-directed assignment of an LPU where a task sets its own
LPU assignment. Self-directed assignment does not reguire a
task name in the task name field of the parameter block built
by the TMPCB macro. However, the LPU must be specified in the
parameter block.

o Other-directed assignment of an LPU where the LPU is assigned
by the task, but the behavior of the task is not affected
until the task is transferred from the CPU.

The task direction macros are SETCPU and SETLPU.

7-38 v 48-006 FO0O RO2

——— ——— ————

7.6.1 SETCPU (Set CPU-Directed Task) Macro

If a task is set to run on an APU and the user wants it set to
the CPU, the SETCPU macro will direct task execution to the CPU
by resetting the LPU-directed status.

Format:

NAME | OPERATION i OPERAND

o (7. A — o A i " B T Y a0 et e e e TES S e o v - iy i A —— e -

symbol H SETCPU { [tmpcb] ,TASKID=n [,DIR=n]
Parameters:

tmpcb specifies the address or pointer to the
parameter block built by the TMPCB macro, or
to a register that holds the parameter block
address. This is the default if the tmpcb
parameter block is built automatically. '

TASKID= n specifies the address or pointer to a valid
task name or to a register containing the
address of the valid task name. When a valid
task name 1is specified, it is moved into the
tmpcb parameter block. 1If no valid task name
is specified, it is assumed to already be in
the tmpcbh parameter block. This parameter is
required only if the tmpcb is not entered.

DIR= n specifies the type of assignment: S means
self-directed assignment and (0] means
other-directed assignment. Other-directed

assignment is the default.

Functional Details:

If tmpcb is not specified, the parameter block is automatically
built by calling the TMPCB macro and the functions are set
according to the DIR parameter. The TMPCB macro is then called
to build the tmpcb parameter block.

48-006 FOO RO2 - 7-39

The valid task name specified with the TASKID parameter must be
left-justified in an 8-byte field, padded with blanks, and
fullword boundary aligned. When the SETCPU macro is called for
other than a self-directed task, the SUSPEND function (see
Section 5.23) is called to place the directed task in the task
wait state; the LPU-directed status of the task is reset; and the
RELEASE function (see Section 5.16) 1is called to release the
directed task from the suspend wait state.

Example:

This example shows how the execution of the SETCPU macro
redirects the task whose name is located in BUFFER (TASKNAME) to
execute on the CPU. This is an example of other-directed
assignment:

SETCPU ,DIR=0T ,TASKID=BUFFER

BUFFER DB C'TASKNAME'®

7-40 48-006 FOO RO2

7.6.2 SETLPU (Set LPU-Directed Task) Macro

The SETLPU macro sets the LPU-directed task state. It can also
assign a new LPU to the task. 1If the task is self-directed on
its default LPU, it duplicates the function of the CAL/32
reschedule task (RSCH 2) instruction. See the Common Assembly
Language/32 (CAL/32) Reference Manual.

Format:
NAME | OPERATION i OPERAND
symbol | SETLPU { [tmpcb] [,DIR=n] [,LPU=n]
! i +TASKID=n
Parameters:
tmpcb is the address or pointer to the tmpcb

parameter block or to a register containing
the address or pointer to the parameter block.
This is the default if the tmpcb parameter
block is built automatically.

DIR= n specifies the type of LPU assignment which
is either self-directed, where a task sets its
own LPU number; or other-directed, where the
macro sets the LPU number of the task
specified in the TASKID parameter.

LPU= n specifies the LPU or the register to which
the task is reassigned.

TASKID= n specifies the address or the pointer to a
valid task name or to a register containing
the address of a wvalid task name. This

parameter is required only if tmpcb is not
specified.

Functional Details:

If tmpcb is not specified, the parameter block is automatically
built by calling the TMPCB macro and the functions are set
according to the DIR parameter. The TMPCB macro is then called
to build the tmpcb parameter block.

|

48-006 F0OO RO2 7-41

If a valid task name is specfiied, it is moved into the tmpcb
parameter block. If a task name is not specified, it is assumed

to be in the tmpcb. The TASKID must be 1left-justified in an
8-byte field, padded with blanks, and fullword boundary aligned.

When the SETLPU macro is invoked for an other-directed task, the
following steps take place:
e The SUSPEND macro is invoked to place the directed task in the

task wait state.

® The directed task's LPU is reassigned to the LPU specified
with the LPU parameter.

® The directed task is marked for transfer to LPU.
® The RELEASE macro is entered to release the directed task from

the task wait state.

If the task is self-directed, or the called task has a higher
priority than the calling task, the called task is immediately
dispatched to the LPU specified.

Examples:

This example shows how execution of the SETLPU macro sets its own
(self-directed) LPU number to 2:

SETLPU ,DIR=SD ,LPU=2

Execution of the SETLPU macro shown in the following example sets
the LPU number of the task specified in 1location BUFFER
(TASKNAME) to 3. This other task must already be in the system:

SETLPU ,DIR=0T ,LUP=3 ,TASKID=BUFFER

-

BUFFER DB C'TASKNAME'

T-42 48-006 FOO RO2

7.7 TASK TIMER MACROS

The Model 3200MPS System task timer macros measure real-time
performance for a system configured with a real-time support
module (RTSM). These macros use the CAL/32 RRTC instruction and
allow a wuser to instrument a program and measure its real-time
performance. See the Common Assembly Language/32 (CAL/32)

Reference Manual for information on the RRTC instruction. These
macros measure real-time performance by:

e Creating a parameter block used by the other software interval
timer macros.

e Initializing a software interval timer

e Starting a timer

e Returning the total time accumulated

o Rethrning the total number of times a timer is started or
stopped

® Stopping a timer
The Model 3200MPS System timer macros are:

e CRTIMERS
® RESETIME
e STARTIME
e GETIME

® READTCNT

e STOPTIME

48-006 FOO RO2 7-43

| CRTIMERS |
7.7.1 CRTIMERS (Create Software Interval Timer) Macro

The CRTIMERS macro creates a parameter block that will be used by
the other software interval timer macros in the program to reset

the interval timer, initialize it, record the total time
accumulated by the timer, read the number of times the timer was
activated, and stop the timer. The generated information is

stored in the appropriate fields of the parameter block after
each of the timer macro functions is completed. This macro does
not generate executable code.

Format:

NAME i OPERATION H OPERAND

symbol | CRTIMERS { namel([,name2,...,namen]
Parameters:

name specifies a 1- to 8-character name
representing a software interval timer. Each
timer name must be unique within the user
program. This name is used by the RESETIME,
GETIME, READTCNT and STOPTIME macros.

Functional Details:

The CRTIMERS macro uses 24 bytes for each name specified and must
be called in a program segment with read and write access.

The parameter block created by this macro 1is shown in the
examples.

Examples:

In this example, the CRTIMERS macro creates a parameter block
with storage space that is 6 words long, on a fullword boundary
in the impure segment of code. The format of the parameter block
the CRTIMERS macro creates is shown in Figure 7-5.

7-44 48-006 FO0OO ROZ

' 11(L)] 13(3) ‘
| Reserved H Timer Name | Count } Start Value
i |] |

Figure 7-5 Format Returned by CRTIMERS Macro

This is an example of how the CRTIMERS macro sets up three
software interval timers:

1% MLIBS 8,9,10
2 NLIST
5 LIST
6 CRTIMERS TIMER1,TIMER2,TIMER3
000000:1 6+ ALIGN 4
0000 00600:1 6+ TIMERL EQU *)
000000:1 5449 4D45 5231 2020 6+ DB C'TIMER1 ' TIMER NAME FIEID
000008:1 0000 0000 6+ DCF o] TIMER COUNTER WORD
00000C: 1 0000 0000 6+ DCF 0 TIMER START VALUE
000010:1 0000 0000 6+ DCF 0 ACCUMULATED TIME
000014:1 0000 0000 6+ DCF 0 REGISTER SAVE AREA
0000 o0018:1 6+ TIMER2 EQU *
000018:1 5449 4D45 5232 2020 6+ DB C'TIMER2 ' TIMER NAME FIE[D
000020:1 0000 0000 6+ DCF 0 TIMER COUNTER WORD
000024:1 0000 0000 6+ DCF [0} TIMER START VALUE
000028:1 0000 0000 6+ DCF 0 ACCUMULATED TIME
00002C:1 0000 0000 6+ DCF o] REGISTER SAVE AREA
0000 0030:1 6+ TIMER3 EQU *
000030:1 5449 4D45 5233 2020 6+ DB C'TIMER3 ' TIMER NAME FIELD
000038:1 0000 0000 6+ DCF 0 TIMER COUNTER WORD
00003C:1I 0000 0000 6+ DCF 0 TIMER START VALUE
000040:1 0000 0000 6+ DCF 0 ACCULATED TIME
000044:1 0000 0000 6+ DCF 0 REGISTER SAVE AREA
000048:1 7 END

48-006 F0O0 RO2 7-45

7.7.2 RESETIME (Reset Software Interval Timer) Macro

The RESETIME macro initializes the named software interval timer
that will measure the real-time performance of a task running on
a CPU or an APU. Each time the interval timer's count is
initialized by the RESETIME macro, its count is set to zero.

Format:
NAME | OPERATION] OPERAND
symbol ! RESETIME i namel [,name2,...,namen]

Parameters:

name specifies a 1l- to 8-character name of an
interval timer that must have been defined by
a CRTIMERS macro. This is a required
parameter.

Functional Details:

The named timer's count, accumulated time, and state are reset to
zero when initialized by this macro.

Examples:

In this example, the RESET macro resets timers TIMER1l, TIMER2,
and TIMER3 back to their initial value of zero.

RESETIME TIMER1l ,TIMERZ ,TIMER3

7-46 48-006 FOO RO2

7.7.3 STRTIME (Start Software Interval Timer) Macro

The STRTIME macro begins a timing interval for the named software
interval timer. The interval timer will measure the real-time
performance of a task running on a CPU or an APU.

Format:
NAME i OPERATION] OPERAND
symbol | STRTIME | name [,reg]
Parameters:
name gpecifies a 1- to 8-character name for a timer
that must have been declared in a CRTIMERS
macro.
reg specifies a register that can be used by the
macro for a working or scratch register. If

this parameter is not specified, the macro
will select, save and restore the contents of
its own work register.

Functional Details:

The named timer acts like a stopwatch. This macro starts the
theoretical stopwatch, but has no effect if this named timer was
already started by a previous STRTIME macro.

This macro reads the current value of the real-time counter and

saves it in the named timer parameter block. It also sets a
start timer flag. .

48-006 FOO RO2 7-47

Examples:

This is an example of how the STRTIME macro starts the software
interval timer named TIMERIL. Since no work register was
specified, this macro saves its own register and restores the
original values when it completes:

STRTIME TIMER1

In this example, the macro starts a timer and passes it to a
specified work register:

STRTIME TIMERZ2,R2

48-006 F0OO ROZ2

— v ——— -

7.7.4 GETIME (Read Software Interval Timer) Macro

The GETIME macro returns the total time accumulated, in
microseconds, for the named software interval timer and stores
the accumulated time in a user-specified register.

Format:
NAME { OPERATION i OPERAND
symbol i GETIME | name ,reg

Parameters:

name gpecifies a 1- to 8-character name of a timer
that must have been declared in a CRTIMERS
macro. This parameter must be entered.

reg gspecifies the user register that will receive
the accumulated time. This is a required
parameter.

Functional Details:

If the named timer is active, it does not include the time for
the current interval, but only the time for all previously
completed intervals.

The 32-bit time value returned by this macro is treated as an
unsigned integer. Its range is approximately 68 minutes.

There is no check for a counter overflow condition in the

specified register. It is the user's responsibility to identify
overflow conditions.

Examples:

This example shows how the GETIME macro obtains the accumulated
amount of time for a timer named TIMER]1l and returns the time in
R2. The time returned is a 32-bit unsigned integer and 1is in
microseconds.

GETIME TIMER1 ,R2

48-006 FO0O0 RO2 7-49

7.7.5 READTCNT (Read Softwaté Interval Timer's Count) Macro

The READTCNT macro returns a number that shows how many times the
named software interval timer was activated (started and stopped)
since the last time it was reset and stores the resulting 32-bit
unsigned integer in a user-specified register.

Format:
NAME | OPERATION i OPERAND
symbol i READTCNT { name ,reg

Parameter Values:

name specifies a 1- to 8-character name that must
have been declared in a CRTIMERS macro. This
parameter is required.

reg specifies the user register that will receive
the interval timer's count. This is a
required parameter.

Functional Details:

The 32-bit value returned represents the number of time intervals
measured. The accumulated time for this timer divided by the
timer's count represents the average time interval for this
timer.

The module ¢ount of this counter is 2,147,483,647. There is no

check in the macro to identify an overflow condition. It is the
user's responsibility to identify the overflow condition.

Examples:

In this example, the READTCNT macro obtains the number of times
that TIMER1 was startéed and stopped since the last time it was
reset. The macro returns the value in R3 as a 32-bit unsigned
integer.

READTCNT TIMER1 ,R3

7-50 48-006 FOO RO2

{ STOPTIME |

7.7.6 STOPTIME (Stop Software Interval Timer) Macro

The STOPTIME macro ends a timing interval for the named software
interval timer. This macro saves and stores the results in a
user-specified register. If no register is specified, this macro
saves and restores the contents of its own register.

Format:
NAME i OPERATION i OPERAND
symbol H STOPTIME i name [,reqg]
Parameters:
name specifies a 1- to 8-character name of a timer
that must have been declared in a CRTIMERS
macro. This parameter is required.
reg specifies a register that can be used by the
macro as a working or scratch register. If a
register is not specified, the macro saves and
restores the contents of its own work
register. When the macro completes, the

original value is restored in the register.

Functional Details:
The named interval timer acts like a stopwatch. This macro stops

the theoretical stopwatch that was started by a STRTIME macro.
Otherwise, this macro has no effect on the interval timer.

Examples:
In this example, the STOPTIME macro stops TIMER2 using R2 as its
work register:

STOPTIME TIMERZ2 ,R2
This example shows how the STOPTIME macro saves and restores its
work register because a register parameter was not specified with

the macro:

STOPTIME TIMER1

48-006 FO0O ROZ2 7-51

CHAPTER 8
MISCELLANEOUS MACROS

8.1 INTRODUCTION

This chapter presents macros that generate a character constant
of a specified length or a message; compare the contents of two
fields for a specified length; load a range of registers from an
area; move characters; skip to a blank, dump of a storage area;
generate the subroutine for the SNAP macro; and save a range of
registers in storage.

The formats, parameter values, default values, required
parameters, programming considerations, examples, and error
messages are supplied for each macro presented in this chapter.

Section 1.4, Parameter Field Value Mnemonics, explains the
lowercase abbreviations that appear in the parameter field.

48-006 FOO RO2 8-1

8.2 GENERATE A CHARACTER CONSTANT OF A SPECIFIED LENGTH (CHAR)
The CHAR macro generates a character constant of a specified
length. The constant is padded with trailing blanks.
Format:

[symbol] CHAR string[,len]

Parameter Values:

string - 'guoted string'

len - absolute expression
Default Value:

len - length of the string
Programming Considerations:

A character constant is generated for the quoted string. If an
optional 1length 1is specified as an absolute expression, the
string is padded on the right with blanks. There is no limit to
the 1length of the string. No boundary alignment is required or
performed. If the length is less than the quoted string, the
quoted string 1is then generated. The length is effectively
ignored.

Example:

ALPHA CHAR 'STRING'
Generates 6 bytes

BETA CHAR 'STRING',9

Generates 9 bytes - STRINGbbb

8-2 48-006 FOO RO2

8.3 COMPARE LOGICAIL CHARACTER (CLC)

The CLC macro compares the contents of two fields for length.
The condition code is set as described in the Programming
Considerations section.

Format:
[symbol] CLC fieldl,field2, length

Parameter Values:

fieldl - addrx
- (reg)
field2 - addrx
- (reg)
length - absolute halfword expression

- (reg)
Required Parameters:

fieldl
field2
length

Programming Considerations:

The contents of fieldl are compared byte-by-byte to the contents
of field2. The comparison stops when the two fields are equal
and the length is exhausted, or when the two fields are not
equal. The resultant condition code is set as follows:

48-006 FOO RO2 8-3

{0i{Xi{0i0} Fieldl
fLiXi0f 1} Fieldl
LX)l Fieldl
{0{Xi0}1} Fieldl
10iXi1i0} Fieldl

is
is
is
is
is

equal to field2.
less than field2.
less than field2.
greater than field2.
greater than field2.

X = undetermined value

If (reg) or an INDEX register is specified for fieldl or field2,
the register value is repositioned to the unequal byte or to the
last equal byte. A zero length always results in equality.

Error Messages:

MNOTE CORRECT FORM IS CLC A,B,LEN

Return code = 4

48-006 F0OO RO2

8.4 DEFINE SYSTEM MACRO ENVIRONMENT (ENVIRON)

The ENVIRON macro defines the registers to be used 1in system
macro expansion. This macro also allows an error handling
subroutine, which 1is to be done 1in other modules, to be
generated.

Format:

blank ENVIRON options [,PCBREG=][,SCRREG=]

Parameter Values:

options - ERRSUB (produces the error handling
subroutine in this module and sets its name
as an ENTRY)

- NERRSUB (the error handling subroutine 1is
defined in another module; the names are
def ined as EXTRN)

- SNAPSUB (the subroutine for the SNAP macro is
defined in this module; its name is ENTRY)

- NSNAPSUB (the subroutine for the SNAP macro
is defined in another module; the name is
defined as EXTRN)

PCBREG = reg (defines the register to be used as the
pointer to PCBs by other system macros)
SCRREG = reg (defines the register to be used as the

scratch register to modify the PCBs by other
system macros)

Default Values:
PCBREG = 14 (PCB pointer register)

Subroutines are defined in this routine; no linkage is provided.
SCRREG should not be 0 since it is wused for indexing and
branching.

48-006 FO0O0 RO2 8-5

Programming Considerations:

When writing a program as a series of independent routines to be
linked together, it is not desirable to have copies of the error
handling subroutines or the SNAP subroutine repeated in each
routine. The ENVIRON macro can be coded to define or not define
the subroutines in a given routine. If several routines are
written, the ENVIRON macro must then be coded in each routine.

When using system macros to modify existing programs, R14 and R15
might be needed for other purposes. The ENVIRON macro can
redefine these registers to other values. The subsequently
generated code from the system macros will use these registers.

Example:

Routine 1
ENVIRON ERRSUB

END

Routine 2
ENVIRON NERRSUB

END

Routine 3
ENVIRON NERRSUB

END

The error handling subroutine 1is generated in Routine 1 and
referenced in Routines 2 and 3.

ENVIRON PCBREG=2,SCRREG=4

causes system macros to use R2 as the PCB pointer and R4 as the
scratch register until another ENVIRON macro is encountered.

8-6 48-006 FOO ROZ2

8.5 FETCH ACCOUNTING INFORMATION (FETACCT)

The FETACCT macro fetches accounting information and stores it in
a user-gspecified, lb6-byte area. This area must be in a writable
segment.

Format:

[symbol] FETACCT actinfo [,PCB=][,FORM=]

Parameter Values:

actinfo - addrx (address or pointer to 1l6-byte area
area where accounting information is to be
stored)
- (reg) - address or pointer to 16-byte area
where accounting information is to be stored
PCB = addrx (address or pointer to PCB)
= (reg) - address or poiriter to PCB
FORM = L (list form; only generate PCB)

Programming Considerations:

The accounting information is returned as:

® 4 bytes for user time
e 4 bytes for operating system time
e 4 bytes for wait time
e 4 bytes for roll time

These 16 bytes must be fullword boundary aligned 1in a writable
segment.

48-006 FOO ROZ2 8-7

—— i — - - -

8.6 GENERATE A MESSAGE (GENMSG)
The GENMSG macro can generate a number of variable length
messages. The first byte of the message is the length of the

message including the 1length byte. Thus, a message of b
characters actually generates 7 bytes.

Format:

[symbol] GENMSG ‘quoted string'
[,'quoted string'...]

Programming Considerations:

For each string, a byte is generated containing the length of the
string plus one (for the byte itself), followed by the string.
No boundary alignment is performed. The maximum message length
is 255 characters.

GENMSG is useful for generating variable length messages. Find
the next message by adding the length byte to a register pointer.

Example:

MESSAGE GENMSG 'MESSAGE 1'
GENMSG 'MESG2‘', 'MSG 3'

3 megssages of different lengths

8-8 48-006 F0OO0 RO2

LDAI

LIS
LOOP EQU

CLB
BE
AlIS
BS
WRITE EQU
SIS

WRITE

48-006 FOO RO2

6 ,MESSAGE
4,0
x

5,0(6)
4,STATUS

WRITE
6,5
4,1
LOOP

*

5,1

Point R6 to beginning
of message table
Value of first status

Get length

STATUS is a byte with a
value between 0 through 2
Value found

Add length

Next status

Go back

Subtract 1 for actual
length of message

OUTPCB,ADDR=1(6) ,RECL=(5) Write message

—— - — ——— ——

8.7 LOAD A RANGE OF REGISTERS FROM AN AREA (LDREG)

The LDREG macro loads a range (any number) of registers from a
given area. If the END register is less than the START register,
a wrap-around feature is built in; that is, 14 through 2 loads
registers 14, 15, 0, 1, and 2.

Format:

[symbol] LDREG start,end,area

Parameter Values:

start - decimal register number
end - decimal register number
area - addrx

Default Values:

none

Required Parameters:

start
end
area

Examples:

Load registers 2 through 8 from address ALPHA:

[.DREG 2,8,ALPHA

Load registers 14,15,0,1,2 from pointer 7:

LLDREG 14,2,0(7)

8-10 : 48-006 FOO RO2

8.8 MOVE CHARACTER (MVC)

The MVC macro moves the contents of a source
destination field byte-by-byte.

Format:

[symbol] MVC dest,source,length{,EC=]

Parameter Values:

dest - addrx
- (reg)
source - addrx
- (reg)
length - absolute halfword expression
- (reg)
EC = (immediate byte expression,...)

Default Values:

EC = no ending characters

Required Parameters:

dest
source
length

48-006 FOO RO2

field

into

a

11

Programming Considerations:

The source field is moved byte-by-byte into the destination field
starting at the left-most byte. Overlapping fields can occur.

If (reg) is specified or an INDEX register is used, the register
is adjusted to the byte immediately following the last byte

moved; that is, two MVCs using the same register result in
concatenating the fields without having to adjust the register.

Error Messages:

MNOTE CORRECT FORM IS MVC TO, FROM, LENGTH

8-12 48-006 F0OO0 RO2

| SETACCT |

8.9 SET ACCOUNTING INFORMATION (SETACCT)

The SETACCT macro provides a means of setting 8 bytes of

information into the AFT task completion or data overflow account
records.

Format:

[symbol] SETACCT wordl,word2([,PCB=][,FORM=]

Parameter Values:

wordl - addrx ('l-4 byte string'; address to first
fullword of information)
- reg (register containing first fullword of
information)
word2 - addrx ('l-4 byte string'; address to second
fullword of information)
- reg (register containing second fullword of
information)
PCB = addrx (address or pointer to PCB)
= (reg) - address or pointer to PCB
FORM = L (list form; only generate PCB)

Programming Considerations:

Both parameters, wordl and word2, must be specified. If PCB= 1is
coded, wordl and word2 do not have to be specified; the
information is assumed to be in the parameter block. If coded as
quoted strings, each can be 1- to 4-characters enclosed in
quotes. If specified as an addrx, the effective address must be
on a fullword boundary.

48-006 F0OO RO2 ' 8-13

—————_——— ——

8.10 SKIP TO BLANK (SKTB)
The SKTB macro repositions a register pointer to the next ASCII
blank. It is useful in parsing an input string.
Format:
[symbol] SKTB reg
Parameter Values:
reg - register expression
Default Values:
none
Required Parameters:
reg

Programming Considerations:

The register pointer is repositioned to point to the next blank
character. If the register is already pointing to a blank
character, it is left unchanged.

Error Message:

MNOTE NO REGISTER SPECIFIED - NO EXPANSION
Return code = 4

8-14 48-006 FOO RO2

8.11 SKIP TO CARRIAGE RETURN (SKTCR)
The SKTCR macro repositions a register pointer to the next ASCII
carriage return. It is useful in parsing an input command.
Format:
[symbol] SKTCR reg
Parameter Values:
reg - register expression
Default Values:
none
Required Parameters:
reg

Programming Considerations:

The register pointer is repositioned to point to the next
carriage return character. If the register is already pointing
to a carriage return, it is left unchanged.

Error Message:

MNOTE NO REGISTER SPECIFIED - NO EXPANSION
Return code = 4

48-006 FOO RO2 | 8

15

Example:

These macros are useful for parsing an input line and isolating
the operands. If R3 points to a buffer containing operands
separated by blanks or commas, a carriage return terminates the
line, and the length of an operand is to be computed:

READ INPCB,ADDR-LINE Read the line

LDAI 3,LINE Point to beginning of
the line

LDAR 4,3

SKTCR 4 R4 now points to

carriage return at
end of line

SKTNB 3 R3 points to the first
non-blank; it can be
beginning of line

ILDAR 5,3 Hold pointer

SKTD 5 Now R3 is at the beginning
and R5 is one byte past
the operand

SAR 5,3 R5 now has the length of
operand

8-16 48-006 F0OO RO2

8.12 SKIP TO DELIMITER--BLANK, COMMA, CARRIAGE RETURN (SKTD)

The SKTD macro repositions a register pointer to the

next ASCII

blank, comma, or carriage return if there are no user-specified

delimiters or up to three user-specified delimiter
useful in pausing an input command.

Format:
[symbol] SKTD reg[.,D=]
Parameter Values:
reg - register expression
D - up to three absolute byte expressions
enclosed in parentheses
Default Values:
None
Required Parameters:
reg
Programming Considerations:

The register pointer is repositioned to point to
delimiter defined as one of the following:

e Blank, comma, or carriage return if there
user—-specified delimiters

® Up to three user-specified delimiters

s. It

the

are

is

next

no,

If the register is pointing to a delimiter, it is left unchanged.

Error Message:

MNOTE NO REGISTER SPECIFIED - NO EXPANSION
Return code = 4

48-006 FOO RO2

8.13 SKIP TO NONBLANK (SKTNB)

The SKTNB macro repositions a register pointer to the next byte
which 1is not an ASCII blank. It is useful in parsing an input

command.

Format:

[symbol] SKTNB reg

Parameter Values:

reg - register expression

Default Values:

None

Required Parameters:

reg

Programming Considerations:

The register pointer is repositioned
nonblank character. If the register
character, it is left unchanged.

Error Message:

to point to the next
is pointing to a nonblank

MNOTE NO REGISTER SPECIFIED - NO EXPANSION

Return code = 4

48-006 FO0OO RO2

8.14 TAKE A SNAPSHOT DUMP OF AN AREA OF STORAGE (SNAP)

The SNAP macro writes the storage area's contents to the console
or an LU in hexadecimal or ASCII format. It is useful in
debugging a program. '

Format:
[symbol] SNAP area,len{,LU=]

Parameter Values:

area - addrx
- (reqg)

len - absolute halfword expression
- (regq)

LU = absolute halfword expression

Default Values:
none
Required Parameters:

area
len

Programming Considerations:

A storage area is written to the console or LU in hexadecimal and
ASCII format. The area address is rounded down to the nearest
fullword. The length is then rounded up to the next 16 bytes.
The length is specified in bytes; thus, the minimal area snapped
is 16 bytes. If an LU is not specified, SNAP uses the WTO macro.
If an LU is specified, an LU must be preassigned. LU=0 cannot be
used. Nonprintable characters are printed as a period. The SNAP
macro automatically generates the required subroutine by issuing
the SNAPSUB macro.

48-006 FOO RO2 ‘ 8-19

Example:

SNAP ALPHA, 17 would snap 32 bytes
starting at the nearest
fullword less than or
equal to address ALPHA.

Exrror Messages:

MNOTE INVALID NUMBER OF PARAMETERS - CORRECT FORM IS
SNAP AREA,LEN

Return code = 4

8-20 48-006 F0O RO2

| SNAPSUB |

8.15 GENERATE THE SUBROUTINE FOR THE SNAP MACRO (SNAPSUB)

The SNAPSUB macro generates the subroutine required for the SNAP
macro. :

Format:
blank SNAPSUB blank
Programming Considerations:

The SNAP macro issues SNAPSUB; thus, it is not required to issue
this macro unless the user wants the subroutine in an impure
segment. Only one copy of the subroutine can be generated. The
label on the subroutine is SNAPSUB.

48-006 FOO RO2 ‘ - 8-21

8.16 STORE A RANGE OF REGISTERS IN A GIVEN AREA (STREG)

The STREG macro stores a range (any number) of registers 1in a
given area. If the END register is less than the START register,
a wrap-around feature is built in; that is, 14 through 2 stores
registers 14, 15, 0, 1, and 2.

Format:
[symbol] STREG start,end,area

Parameter Values:

start - decimal register number
end - decimal register number
area - addrx

Default Values:

none

Required Parameters:

start
end
area

Example:

Save registers 2 through 8 in address ALPHA:

STREG 2,8,ALPHA

Save registers 14, 15, 0, 1, and 2 in address pointer 7:

STREG 14,2,0(7)

8-22 48-006 FOO RO2

A

Absolute expression
Access key combinations
Account records

data overflow
Accounting information
Address

start options field
Address-expression
ALAS macro

ALLOCATE macro

APPCB macro

appcb parameter block
building

APPERR macro

APPERRET macro

APPERTBL macro

APSTRUC macro

APU
ready queue
status
APU information
APU status byte
error codes
APUCNTL macro
APUMAP macro
APUSTAT macro
data buffer format for
ASSIGN macro

Auxiliary processing unit.

See APU.

BFILE macro
Branch addresses
table of
BREC macro
Buffer
chain
ring

CANCEL macro
CANTIME macro
CHAP macro

CHAR macro
Character constant

generation of

CHECKFM macro
CHPRIO macro
CKPOINT macro
CKTASK macro

CLC macro

48-006 FOO RO2

|
NN

w
~

© ©
w

[L]
o

NWWWwE o
WO D

L I |
[s=]

NNNNNNN
O oW

N

(54}

©

[
Vo]

WORARN NN

QUwnwe wWwoWwm

INDEX

CLDE macro
CLOSE macro

Code FORM=L

Code PCB-

Comment field

Conditional assembly
macros in

CONNECT macro

Control
functions
privileges

COPY command

Counter overflow condition

CRTIMERS macro

Current access privileges

Current task
preemption. of
rescheduling

CYCTIME macro

DET.ETE macro
Delimiters
user-specified
Device
disconnecting
Directed task
status of

END register
ENVIRON macro

EOT macro
Equates
defining
Error handling and recovery
Error linkage macro
Errors
execution time
macro expansion
ERW access privileges

FDS macro
FETACCT macro
FETATR macro
FETDATE macro
FETLPU macro
buffer data returned for
FETPTR macro
FETTIME macro
FFILE macro

3-21
3-20
3-23
1-12
1-12
1-2

1-17
5-8

7-30
7-30
2-30
7-49
7-44
3-15

7-36
7-36
6-3

N = 0o
[
N

[=]

W NN
|]
(=] [8]

I N}
~

[+]

L L L
~ v

SN WO W
[}
VOO HREANIN

IND-1

Field
destination
NAME
OPERAND
OPERATION
source
File descriptor
to process
File managemerit
errors
parameter control block
File management macros
parameters for
FMERR macro
FMERRET macro
FMERRTBL macro
FMPCB macro

FMPCBS macrtro
FORM=parameters
FREC macro
FREEZE macro

GENMSG macro
GENTIME macro
GETIME macro
GETSTORE macro

GETSTORS macro
Global flags

HALTIO tacro

I,J

I/0 proceed request

Information macros

Input command
parsing

Input /output macros
parameter block
parameters for

Interrupt
disabling
simulating

Interrupt bit
arithmetic fault

Interval timer
activating
initializing
reading
recording
resetting
stopping

IOERR macro

IOERRET macto

IOERRTBL macro

IOPCB macro

IND-2

L I T | | S T T
LWWooRFLWWWHENFEW
~N o W= 0O [

FWWwwwwwwwrkww
I

i
~
=

4-26
7-14

8-18

4-18
4-1

5-10
5-36

2-31

7-44
7-44
7-44
7-44
7-44
7-44
4-14
4-15
4-16
4-18

IOPCBS macro

K

Keyword parameters

L

L.LDREG macro
Line control block
Link APU mapping option
LOAD macro
Logical processing unit.
See LPU.
Logical unit
closing

transferring -
LPU assignment
other-directed

self-directed

LPU-directed status
resett ing

LPU-directed task state
setting

LPU information

LTSW macro

M

Macro expansion errors
Macro instruction
fields
fixed formatting
formatting
free formatting
Macro instruction fields
comment
indentif ication/sequence
name
operand
operation
Macros
ALAS

AILLOCATE

APPCB
APPERR
APPERRET
APPERTBL
APSTRUC
APUCNTL
APUMAP
APUSTAT
ASSIGN

BFILE
BREC
CANCEL

48-006 FOO RO2

8-10
3-25
7-28
5-12

o i
i FE
NN W

|

b b
i
WWWWww

L L
o

i

| I I
ORrON

M dWWdNNNSNNSNNOWLWWwWw
i
NMNOOHFOFRENRFRFOFOWORROO

[
N

Macros (Continued) Macros (Continued)

]
]

CANT[ME 6-2 ! PEEKS 2-24

6-3] POINT 3-41
CHAP 3-15 | QUEPARM 5-22
CHAR 8-2] READ 4-21
CHECKFM 3-18 | READTCNT 7-50
CHPRIO 5-4 H READT IME 6-7
CKPOINT 3-19 | RECVLU 5-24
CKTASK 5-6 ! RELEASE 5-26
CLC 8-3 H RENAME 3-43
CIL.DE 3-21 | REPROT 3-45
CLOSE 3-22 | REQUEUE 7-36

3-23 | RESETIME 7-46
CONNECT 5-8 ! REWIND 4-24
CRTIMERS 7-44 | RUN 5-27
CYCTIME 6-3 i SCAN 2-28
DELETE 3-22 | SENDLU 5-30

3-25 | SENDMSG 5-32
ENVIRON 8-5 H SETACCT 8-13
EOT 2-2 H SETCPU 7-39
FDS 3-27 | SETLPU 7-41
FETACCT 8-7 ! SETSTAT 2-31
FETATR 3-28 | SETUDL 5-34
FETDATE 2-4 ! SIMINT 5-36
FETLPU 7-15 | SKTB 8-14
FETPTR 2-6 H SKTCR 8-15
FETTIME 2-8 ! SKTD 8-17
FFILE 4-9 ! SKTNB 8-18
FMERR 3-30 | SNAP 8-19
FMERRET 3-31 | SNAPSUB 8-21
FMERRTBL 3-33 | START 5-27
FMPCB 3-35 | 5-38
FMPCBS 3-37 | STOPTIME 7-51
FREC 4-10 | STREG 8-22
FREEZE 5-10 | STRTIME 7-47
GENMSG 8-8 H SUSPEND 5-42
GENTIME 6-5 } TESTIO 4-25
GETIME 7-49 | TEXIT 5-47
GETSTORE 2-10 |} THAW 5-36

2-26 |} 5-43
GETSTORS 2-12 |} TIMETBL 6-9
HALTIO 4-11 | TMPCB 5-45
1/0 1-16 | TRAPTIME : 6-10
IOERR 4-14 | uDLS 5-48
IOERRET 4-15 | UNCONN 5-50
IOERRTBL 4-16 | UNPK 2-33
IOPCB 4-18 | WAITIO 4-26
IOPCBS 4-20 | WAITTIME 6-12
LDREG 8-10 | WFM 4-28
LOAD 5-12 | WRITE 4-29

5-27 | WTO 2-35
LTSW 5-15 | Macros, types
MAKNRES 5-17 | file management 3-1
MAKNROLL 5-18 | input /output 4-1
MAKRES 5-19 |} Model 3200MPS System 7-1
MAKROLL 5-20 | supervisor 2-1
miscellaneous 8-1] task management 5-1
MNEMTBL 2-13 | timer management 6-1
MSGRING 5-21 | MAKNRES macro 5-17
MVASCII 2-14 | MAKNROLL macro 5-18
MVC 8-11 | MAKRES macro 5-19
NOTE 3-39 | MAKROLL macro 5-20
PACK 2-17 | Map LPU to APU macros 7-25
PACKFD 2-19 | Mapping privileges 7-25
PAUS 2-22 | 7-26
PEEK 2-23 H

48-006 FOO RO2 ' IND-3

Mapping table

logical processor
Max imum APU number
Miscellaneous macros
Mixed mode parameters
Mnemonic table
MNEMTBL, macro

Model 3200MPS System macros

information

mapping

support

task control

task direction

task timer
MSGRING macro
Multiprocessing system
MVASCII macro
MVC macro

NOTE macro

0

Operating system
clock
Other-directed task

PACK macro
PACKFD macro

Parameter blocks
constructing
file management
input /output
task management
timer management

Parameter fields
mixed mode
value mnemonic

Parameters
FORM=
keyword
PCB=
positional

PAUS macro

PCB=parameters

PEEK
equates
structure

PEEK macro

PEEKS macro

POINT macro

Positional parameters

Procedure
error linkage
error recovery

IND~-4

[
~N o

ot

]
N b = O

i
O Www

| I |
[

OO NN NN d NN NN
I

!
FERNE R

S

1-9

2-17
2-19
3-10

1-10
1-13
1-13
1-13
1-13

Proceed call
Proceed I1/0 request
Program debugging
Protection keys
changing

Q
QUEPARM macro

READ macro
READTCNT macro
READTIME macro
Real-time performance
measurement of
RECVLU macro
Register
END
START
Register-expression
Register pointer
repositioning
RELEASE macro
RELSTORE macro

RENAME macro
REPROT macro
REQUEUE macro
RESETIME macro

Return error linkage macro

REWIND macro

RUN macro

SCAN macro
Self-directed task
SENDLU macro
SENDMSG macro
SETACCT macro
SETCPU macro
SETLPU macro

SETSTAT macro
SETUDL macro

SIMINT macro
SKTB macro
SKTCR macro
SKTD macro
SKTNB macro
SNAP macro

SNAPSUB macro

Software interval timer
initializing

START macro

START register

STOPTIME macro

STREG macro

48-006 FOO ROZ2

4-22
4-11
8-19

3-45

8-14

2-26
3-43
3-45
7-36
7-46
7-10
4-24
5-13
5-27

2-28
7-42
5-30
5-32
8-13
7-39
1-8

7-41
2-31
5-22
5-34
5-36
8-14
8-15
8-17
8-18
8-1

8-19
8-21
7-44
7-46
5-38
8-10
7-51
8-22

STRTIME macro
Structures

generating
Subroutines

error recovery
Supervisor macros

parameter blocks for
Support macros
SUSPEND macro

sve 13
services

Syntax error

System macro expansion
registers for

System pointer table (SPT)

T

Task
console wait state
execution
loading
nonresident
releasing
resident
rollable
rolled
Task control macros
Task direction macros
Task management macros
Task status word
Task timer macros
Task wait state

Temporary storage
releasing

TESTIO macro

TEXIT macro

THAW macro

Time expression
conversion

Time interval request

48-006 FOO RO2

2-22
5-38
5-27
5-17
5-26
5-19
5-20
5-18
7-29
7-38
5-1

5-15
7-43
4-26
5-42
6-12

2-26

Time intervals
number of
table of
Timer interval
setting up
Timer management macros
TIMETBL macro
Timing interval
beginning
ending

~ TMPCB macro

Trap event service routine
Trap-generating device

TRAPTIME macro

9)

UDLS macro
UNCONN macro
UNPK macro

Unsigned binary number
converting
User-dedicated location
modifying
getting
User-defined routine
User-written routine

UTOP address

v

Value mnemonics

W-2

WAITIO macro
WAITTIME macro
WFM macro
WRITE macro
WTO macro

d
|

o o,
o

o

|
o RO O =
Noed

ow

U uU~NN oo
1

2-33

5-34
5-34
4-15
3-33
7-11
2-10
2-27

4-26
6-12
4-28
4-29
2-35

IND-5

CUT ALONG LINE

PUBLICATION COMMENT FORM

Please use this postage-paid form to make any comments, suggestions, criticisms, etc. concerning
this publication.

From Date

Title Publication Title

Company Publication Number

Address

FOLD

Check the appropriate item.

D Error Page No. — Drawing No.

[] Addition PageNo.___ Drawing No.

D Other Page No.__________ Drawing No.

Explanation:

FOLD

Fold and Staple
No postage necessary if mailed in U.S.A.

FOLD

FOLD

6434

STAPLE

STAPLE

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

POSTAGE WILL BE PAID BY ADDRESSEE

PERKIN-ELMER

Computer Systems Division
2 Crescent Place
Oceanport, NJ 07757

TECH PUBLICATIONS DEPT. MS 322A

NO POSTAGE

NECESSARY

IF MAILED
IN THE

UNITED STATES

STAPLE

STAPLE

