
PERKIN-ELMER

05/32 SYSTEM MACRO LIBRARY
Reference Manual

48-006 FOO R02

The information in this document is subject to change without notice and should not be
construed as a commitment by The Perkin-Elmer Corporation. The Perkin-Elmer Corpo
ration assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equ ipment that is not supplied by Perkin-Elmer.

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757

© 1979, 1983 by The Perkin-Elmer Corporation

Printed in the United States of America

TABLE OF CONTENTS

PREFACE

CHAPTERS

1 OVERVIEW OF 'rUE SYS'l IEM MACRO LIBRARY

1.1

1.2
1.2.1
1.2.1.1

1.2.1.2

1.2.2

1.3
1.3.1
1.3.2
1.3.3

1.4

1.5

1.6
1.6.1
1.6.1.1
1.6.1.2
1.6.1.3
1.6.2

1.7

1.8

I N'rRODUCT I ON

MACRO I NS'lIRUCT IONS
Macro Instruction Formatting
Fixed Formatting of Macro Instruction
statements
Free Formatting of Macro Instruction
statements
Macro Instruction Fields

PARAMETERS
Positional Parameters
Keyword Paramet.ers
Mixed Mode Parameters

PARAME'rER FIELD VALUE MNEMON I CS

MACRO EXPANSION ERRORS

CONs'rRUCTING PARAME'I'ER BLOCKS
Parameter Blocks for Supervisor Macros
Omitting the PCB= and FORM= Parameters
Code FORM=L (List Form)
Code PCB= (Execute Form)
Parameter Blocks for Input/Output, File
Management, Task Management, and Timer
Management Macros

ERROR HANDLING AND RECOVERY

MACROS IN CONDITIONAL ASSEMBLY

48-006 FOO R02

ix

1--1

1-1
1-1

1-2

1--2
1-3

1-4
1-4
1-4
1-5

1-5

1-9

1-10
1·--11
1-11
1-12
1-12

1·-13

1-16

1-17

i

CHAPTERS (Continued)

2

3

ii

SUPERVISOR MACROS

2 • 1 I NTRODUC'r I ON

2.2 END OF TASK (EOT)

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2. 14

2.15

2.16

2.17

2. 18

2. 19

FETCH DA'rE (FE'rOATE)

FETCH POINTER (FETPTR)

FETCH 'r IME (FETT IME)

GET STORAGE (GETSTORE)

GENERATE A GETSTORE STRUCTURE (GETSTORS)

BUILD A MNEMONIC TABLE (MNEM'rBL)

MOVE ASC I I (MVASC I I)

PACK NUMERIC DATA (PACK)

PACK A FILE DESCRIPTOR (PACKFD)

PAUSE A TASK (PAUS)

EXTRACT INFORMATION FROM SYSTEM TABLES (PEEK)

GENERATE A PEEK S'rRUCTURE AND EQUA'rES (PEEKS)

RELEASE STORAGE (RELS'rORE)

SCAN A MNEMONIC 'rABLE (SCAN)

SET s'rArrus (Sf'~TSTAT)

UNPACK BINARY NUMBER (UNPK)

WRI'rE TO OPERATOR--LOG MESSAGE (WTO)

F r LE MANAGEMEN'r MACROS

3 • 1 I NTRODUC'r I ON

3.2 PARAM,fo:'rERS FOR FILE MANAGEMEN'r MACROS

3.3 ALLOCA'rE AND ASSIGN A F rLE OR DEVICE (ALAS)

2-1

2·-2

2 .. -4

2-6

2·-8

2-10

2-12

2-13

2-14

2-17

2·-1.9

2·-22

2-23

2-24

2-26

2·-28

2-31

2-33

2-35

3--1

3-1

3'-6

48-006 FOO R02

CHAPTERS (Continued)

3.4

3.5 ASSIGN A FILE OR DEVICE (ASSIGN) 3--12

3.6 CHANGE ACCESS PR I V I LEGES (CHAP) 3 --15

3.7 CHECK THE ERROR srrAtfUS OF AN FMPCB (CHECKFM) 3 ···18

3.8 CHECKPOINT A LOG I CAL UNIT (CKPOIN1:') 3 -19

3.9 CLOSE A LOGICAL UNIT AND DELETE A FILE (CLDE) 3-21

3.10 CLOSE A LOGICAL UNIT (CLOSE) 3-23

3.11 DELETE A FILE (DEL.E'rE) 3 -- 2 5

3.12 GENERA'rE A FILE DESCRIP'rOR STRUC'l'URE (FOS) 3--27

3.13 FETCH Arrr:r'RIBU1:'ES OF A FILE OR DEVI CE ASS IGNf~D
Iro AN LU (FE'rATR) 3 ·-28

3.14 GENERA'I'E THE SUBROUT I NE rro CHECK 'PilE S'llATUS
OF AN FMPCB (FMERR) 3··-30

3.15 FETCH RETURN ADDRESS IN A USER ROU'fINE
FOR FILE MANAGEMENT ERRORS (FMERRE1.') 3-·31

3.16 GENERA1.'E A TABLE OF ADDRESSES FOR FM
ERROR HANDLING (FMERRTBL) 3-33

3. 17 GENERA'I'E A FILE MANAGEMENT PARAME'rER
CONTROL BLOCK (FMPCB) 3-35

3.18 GENERA'l'E AN FMPCB S'TRUC'l'URE AND EQUA'rES
(FMPCBS) 3--37

3.19 RETURN 'fUE R~-::LATIVE RECORD ADDRESS OF 'fHE
NEXT SEQUENTIAL RECORD (NOTE) 3-39

3.20 REPOS ITION A FILE TO A SPEC IF lED RELA'fIVE
RECORD ADDRESS (PO I N'f) 3 - 41

3.21 RENAME A FILE ASS I GNED 'I'O A LOG I CAL
UN 1'".P (RENAME) 3 - 43

3.22 REPRorl'EC'l' A FILE ASS I GNE!D 'fO A LOG I CAL
UNIT BY CHANGING 'fHE KEYS (REPRO'!') 3 .. 45

48-006 FOD RD2 iii

CHAPTERS (Continued)

4 INPUT/OUTPUT MACROS

iv

4.1 INTRODUCTION 4-1

4.2 PARAMETERS FOR I/O MACROS 4-1

4.3 BACKWARD TO FILEMARK ON A FILE OR
DEVICE (BFILE) 4-6

4.4 BACKSPACE ONE RECORD (BREC) 4-8

4.5 FORWARD TO FILEMARK ON A FILE OR
DEVICE (FFI[E) 4-9

4.6 FORWARD TO NEXT RECORD ON A FIL.E OR DEVICE
(FREC) 4·-10

4.7 HALT AN INPUT/OUTPUT PROCEED REQUEST (HALTIO) 4-11

4.8 GENERATE THE SUBROUTINE THAT CHECKS THE
STATUS OF AN IOPCB (IOERR) 4·-14

4.9 FETCH RETURN ADDRESS IN A USER ROUTINE
FOR INPUT/OUTPUT ERRORS (IOERRET) 4-15

4.10 GENERATE A TABLE OF ADDRESSES FOR
INPUT/OUTPUT ERROR USER HANDLING
ROUTINES (IOERRTBL) 4-16

4.11 GENERATE AN INPUT/OUTPUT PARAMETER CONTROL
BLOCK (IOPCB) 4-18

4. 1.2 GENERATE AN IopeB STRuc'rURE (IOPCBS) 4-20

4.13 READ A LOGICAL RECORD (READ) 4-21

4.14 REWIND A FIfE OR DEVICE (REWIND) 4-24

4.15 TEST FOR INPUT/OUTPUT COMPLETION (TESTIO) 4-25

4.16 WAIT FOR INPUT/OUTPUT COMPLETION (WAITIO) 4-26

4.17 WRlrrE F ILEMARK (WFM) 4-28

4.18 WRIrrE A LOGICAL RECORD (WRIrrE) 4-29

48'-006 FOO R02

CHAPTERS (Continued)

5 'rASK MANAGEMENT MACROS

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5. 13

5.14

5.15

5.16

5.17

5. 18

5.19

5.20

5.21

5.22

5.23

CANCEL A 'fASK (CANCEL)

CHANGE PRIORITY (CHPRIO)

CHECK 'fHE STATUS OF A 'rASK (CTASK)

CONNECT A TRAP'-GENERATING DEVICE TO A
TASK (CONNECT)

DISABLE IN'rERRUPTS ON A 'rRAP-GENERAT ING
DEVICE (FREEZE)

LOAD A TASK INTO MEMORY (LOAD)

LOAD A TASK STATUS WORD (LTSW)

MAKE A TASK NONRESIDENT (MAKNRES)

MAKE A TASK NONROLLABLE (MAKNROLL)

MAKE A 'fASK RESIDENT (MAKRES)

MAKE A 'rASK ROLLABLE (MAKROLL)

BUILD A MESSAGE RING OR CHAIN OF BUFFERS
(MSGRING)

ADD A PARAMETER TO THE 'rASK QUEUE (QUEPARM)

RECEIVE A LOGICAL UNIT FROM A TASK (RECVLU)

RELEASE A TASK (RELEASE)

RUN A TASK (RUN)

SEND A LOGICAL UNIT TO A TASK (SENDLU)

SEND A MESSAGE (SENDMSG)

INITIA,LIZE OR MODIFY A USER DEDICA'rED
LOCA'r I ON (S E'rUDL)

SIMULA'rE AN IN'I'ERRUPT ON A 'rRAP-GENERATING
DEVICE (SIMINT)

START EXECUTION OF A TASK (START)

PLACE A 'rASK IN THE WAI'r S'rA(rE (SUSPEND)

48-006 FOO R02

5-1

5-2

5'-4

5-6

5 --8

5-10

5-12

5-15

5-17

5-18

5,-19

5-20

5-21

5-22

5-24

5-26

5-27

5-30

5-32

5-34

5-36

5-38

5-42

v

CHAPTERS (Continued)

5. 24 ENABLE INTERRUP'rS ON A CONNECTED
TRAP -GENERA'rING DEVICE (THAW) 5--43

5.25 CONSTRUCT A TASK PARAMETER CONTROL BLOCK
(TMPCB) 5-45

5.26 EXIT TRAP EVENT SERVICE ROUTINE (TEXIT) 5-47

5.27 GENERATE A USER DEDICATED LOCATION
srrRUCTURE AND EQUArr'ES (UDLS) 5--48

5.28 DISCONNECT A TRAP-GENERA'rING DEVICE (UNCONN) 5-50

6 TIMER MANAGEM:ENT MACROS

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

INTRODUCTION

CANCJ-t:L frIME INTERVAL REQUEST (CANTIME)

SCHEDULE TRAPS CYCLICALLY AT DIFFERENT
TIMES (CYCTIME)

GENERArrE A GENTIME INTERVAL (GENTIME)

READ TIME REMAINING FOR AN IN'rERVAL
fro ELAPSE (READT IME)

BUILD A TABLE OF TIME INTERVALS FOR CYCTIME
(TIMETBL)

SCHEDUT.E AN IN'rERRUPT BY ADDING A PARAMETER
TO THE TASK QUEUE WHEN A SPECIFIED
INrrERVAL HAS ELAPSED crRAPT IME)

WAIT FOR A SPECIFIC IN'rERVAL TO ELAPSE
(WAI'rT IME)

6-1

6-2

6-3

6-5

6-7

6'-9

6,-10

6-12

7 MODEL 3 200MPS SYS'r~-:M MACROS

vi

7.1
7. 1. 1

7.2
7.2.1
7.2.2

7.2.3
7.2.4
7.2.5

INTRODUCTION
Chapter Organization

SUPPORT MACROS
APPCB (Build APU Parameter Block) Macro
APPERTBL (Build APU Error Recovery Table)
Macro
APPERR (APU Error Recovery) Macro
APPERRET (APU Error Return) Macro
APSTRUC (Control and Mapping Structures)
Macro

7'-1
7-1

7-2
7-3

7-5
7--8
7-10

7-12

48-006 FOO R02

CHAPTERS (Continued)

7.3
7.3.1
7.3.2

7.4
7.4.1

7.5
7.5.1
7.5.2

7.6
7.6.1
7.6.2

7.7
7.7.1

7.7.2

7.7.3

7.7.4
7.7.5

7.7.6

INFORMATION MACROS
FETLPU (Fetch LPU Map) Macro
APUSTAT (Fetch APU Status) Macro

MAP LPU TO APU MACROS
APUMAP (APU Mapping) Macro

TASK CON'rROL MACROS
APUCNTL (APU Control) Macro
REQUEUE (Requeue the APU Ready Queue) Macro

'fASK DIRECT I ON MACROS
SETCPU (Set CPU-Directed Task) Macro
SE'rLPU (Set LPU-Directed Task) Macro

'rASK TIMER MACROS
CRTIMERS (Creat.e Softwa.re Interva 1 Timer)
Macro
RESE'I'IME (Reset Software Interval 'rimer)
Macro
S'rRTlME (start Software Interval Timer)
Macro
GETlME (Read Software Interval Ti.mer) Macro
READTCNT (Read Software Interval Timer's
Count) Macro
STOPTIME (stop Software Interval Timer)
Macro

8 MISCELLANEOUS MACROS

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

48-006 FOO' R02

I N'l'RODUC'l' I ON

GF.;NERATE A CHARAC'rER CONS'rAN1' OF A
SPECIF lED LENG'rH (CHAR)

COMPARE LOGICAL CHARAC'1'ER (CLC)

DEFINE SYS'I'EM MACRO ENVIRONMENT (ENVIRON)

FETCH ACCOUN'l'ING INFORMATION (FE'rACCT)

GENERA'rE A MESSAGE (GENMSG)

LOAD A RANGE OF REGIS'I'ERS FROM AN AREA
(LDREG)

MOVE CHARAC'l'ER (MVC)

SET ACCOUNTING INFORMATION (SEtI'ACCT)

SK I P '1'0 BLANK (SK'l'B)

7-14
7-15
7--19

7-25
7--26

7-29
7-30
7'-36

7-38
7--39
7-41

7--44

7-46

7-47
7-49

7-50

7-51

8'-1

8--2

8-3

8-5

8-7

8-8

8-10

8-11

8-13

8-14

vii

CHAPTERS (Continued)

8.11

8.12

8.13

8.14

8.15

8.16

FIGURES

7-1
7-2
7·-3
7-4
7-5

TABLES

3-1
7-1
7-2

INDEX

vii i

SKIP TO CARRIAGE RETURN (SKTCR)

SKIP TO DELIMITER--BLANK, COMMA, CARRIAGE
RETURN (SKtrD)

SKIP TO NONB[~K (SKTNB)

TAKE A SNAPSHOT DUMP OF AN AREA OF STORAGE
(SNAP)

GENERA'rE THE SUBROUT INE FOR 'rHE SNAP MACRO
(SNAPSUB)

STORE A RANGE OF R.EGISTERS IN A GIVEN AREA
(STREG)

Buffer Data Returned for FETLPU Macro
Data Buffer Format for APUSTAT Macro
Valid Paths for an SVC Call
APU Hardware Response Bytes
Format Returned by CRTlMERS Macro

VALID ACCESS KEY COMBINATIONS
ERROR RECOVERY SUBROUTINE DESCRIPTIONS
ERROR COES FOR APU STATUS BYTE

8-15

8-17

8-18

8-19

8-21

8-22

7-17
7-21
7-25
7-32
7-45

3-17
7--9
7-33

Ind-1

48-006 FOO R02

PREFACE

This reference manual details the OS/32 System Macro Library.
The user should have an in-depth knowledge of the 08/32
Application Level Programmer Reference Manual and the CAL Macro
Processor and Macro Library utility Reference Manual.

Chapter 1, Overview of the System Macro Library, explains macro
instructions, parameters, parameter field value mnemonics, macro
expansion errors, constructing parameter blocks, and error
handling and recovery. The remaining seven chapters of this
manual explain the formats, parameter values, default values,
required parameters, programming considerations, examples, and
messages for all supervisor, task management, input/output (I/O),
file management, timer management, and miscellaneous macros.
Chapter 7 is a new chapter that explains the macros used for the
Perkin-Elmer Multiprocessor System (Model 3200MPS). This chapter
applies to the Model 3200MPS System only. The previous Chapter
7 is now Chapter 8.

This manual is intended for use with the OS/32 R07.l software
release or higher. Additional material specifically related to
the Model 3200MPS System has been included and is supported by
the OS/32 RQ7.1 software release and higher. Throughout the text
these features are identified as applicable only to the Model
3200MPS System.

For further information on
32-bit manuals, see the
Summary.

48-006 FOO R02

the contents of all Perkin-Elmer
32-Bit Systems User Documentation

ix

CHAPTER 1
OVERVIEW OF THE SYSTEM MACRO LIBRARY

1.1 INTRODUCTION

Irhis chapter explains macro instructions, parameters, parameter
field value mnemonics, macro expansion errors, constructing
parameter blocks, and error handling and recovery.

1.2 MACRO INSTRUCTIONS

A macro instruction, a single instruction that expands to a
series of instructions, is written like an assembler instruction;
but the output, when processed by the Common Assembler ~anguage
(CAL) Macro Processor, is in assembly language. The output of a
macro instruction can be machine instructions, another macro
instruction, assembler instructions, or a combination of these
instructions.

1.2.1 Macro Instruction Formatting

As with CAL instruction statements, macro instruction statements
are written in fixed or free format. A macro instruction
statement of either format has five separate fields:

• Name

• Operation

• Operand

• Comment

• Identification/sequence

48-006 FOO R02 1-1

1.2.1.1 Fixed Formatting of Macro Instruction statements

In fixed formatting, the macro instruction fields are normally
defined as:

COLUMNS

1 - 8
9

10 - 14
15

16- n
n+l

n+2 - 71
72

73 - 80

DEF IN I'rION

Name field
Blank
Operation field
Blank
Operand field
Blank
Comment field*
Continuation
Identification/sequence field

* Wherever possible, the comment field begins at column 36.

'rhe operand field can be continued by placing a nonblank
character into column 72. The operand field and the comment
field are variable in length; the first blank encountered after
column 16 delimits these two fields. Due to how the output
listings are tabulated, the comment field cannot contain more
than 37 characters; if it does, only the first 37 characters
appear on the listing.

1.2.1.2 Free Formatting of Macro Instruction statements

In free formatting, blanks delimit the five separate fields. For
example, if the name field is not used, a blank character in
column 1 indicates the start of the operation field. Similarly,
the first blank following the MACRO code in the operation field
indicates the start of the operand field. As in fixed
formatting, the first blank within the operand field indicates
the start of the comment field. Free formatting has three
restrictions:

• Comment length, including blanks, is limited to 37 characters.

• Unless the operand field is being continued, column 72 must
contain a blank.

• If present, the identification/sequence field must start in
column 73.

1-2 48-006 FOD RD2

1.2.2 Macro Instruction Fields

The following paragraphs detail the fields for free and fixed
format macro instructions:

• name field

jrhe name field contains a symbol or blanks. A symbol,
which must begin in column 1, is the name associated with
the firsL execuLable instruction or the first byte of a
generated table of constants. ·rhe name field is optional
with most insLructions; however, with some instructions, it
is required. trhe symbol can- be any valid CAL symbol, but
it must not begin with an @ sign because system macros use
this character as an internal symbol.

• operation field

·rhe operation field contains a mnemonic operation code for
a macro instruction. This mnemonic operation code is a
string of not more than 8 alphanumeric characters. The
first character must be alphabetic.

• operand field

·rhe operand field contains blanks, or one or more operands
separated by conunas. Blanks cannot be embedded within
operands, except when enclosed by apostrophes. The operand
field can be continued by placing a nonblank character in
column 72.

• conunent field

·rhe conunent field follows the operand field,
at least one blank column. This field
conunents.

• identification/sequence field

separated by
contains user

jrhe identif ication/sequence field occupies columns 73
through 80. The user has the option of identifying and
maintaining the sequence of the source field.

48-006 FOO R02 1-3

1. 3 PARAMETERS

Three types of parameters (positional, keyword, and mixed mode)
can be used in the operand field of a macro instruction. The
following sections explain each parameter type.

1.3.1 Positional Parameters

Postional parameters have a particular position within the
operand field. Positional parameters are represented with
lowercase characters; the user must supply a value or expressi.on
for the parameters. Positional parameters are processed by the
macro processor according to their positions, and positions are
maintained by separating commas. When entering or omitti.ng
pOSitional parameters, supply the separating commas to mark the
position of succeeding parameters. For example:

[symbol] MACRO operl,oper2,oper3

In this example, the parameter field consists of three positional
parameters. These are processed by pOSition, left-to-right. If
omitting:

• oper2, then write operl"oper3

• operl and oper2, then write "oper3

• the last parameter(s), then write either operl OR operl, OR
operl, ,

• all parameters, then leave blanks or insert commas

1.3.2 Keyword Parameters

Keyword parameters have no particular position within the operand
field. They consist of a keyword, immediately followed by an
equal sign (=) and a keyword value. Since the keyword uniquely
defines the parameter to the macro processor, the user can write
keyword parameters in any sequence within the parameter field.
If keyword parameters are omitted, their separating commas are
also omitted. Uppercase characters represent keyword parameters.
For example:

[symbol] MACRO KEYWORDl=expression,KEYWORD2=value

48·-006 FDa R02

1.3.3 Mixed Mode Parameters

An operand field is referred to as mixed mode when it contains
positional and keyword parameters. In mixed mode parameter
fields, all positional parameters must precede keyword
parameters:

(symbol] MACRO operl,oper2,KEYWORDl=A,KEYWORD2=B

The previously discussed rules for omitting positional and
keyword parameters also apply to mixed mode parameter fields:

• If omitting operl and KEYWORD2=B, write: ,oper2,KEYWORD1=A

• If omitting all positional parameters, then
"KEYWORD1=A,KEYWORD2=B or KEYWORD1=A,KEYWORD2=B

write:

Parameters are represented by lowercase or uppercase characters.
Lowercase charactel's represent positional parameters or
expressions, the values of which the user must supply_ Uppercase
characters represent keyword para.meters or option codes, which
the user must enter as shown.

1 . 4 PARAMETER FIELD VALUE MNEMON I CS

A value mnemonic is a lowercase abbreviation appearing in the
parameter field and representing an address, expression, or
value. The user must supply the actual value.

When macro instruction formats are presented in subsequent
sections of this manual, value mnemonics appear as parameter
values. Refer to this section for the description of these value
mnemonics:

• addr

The addr mnemonic represents a valid address-expression
that CAL evaluates at assembly time. The address that addr
references cannot be indexed.

Example:

[symbol] MACRO dest-addr,source-addr

Where the user
address-expressions:

48-006 FOO R02

might supply one of
A, LOOP, A-S, A-l6, or A+4.

these

1-5

• addrx

• reg

The addrx mnemonic represents a valid indexable address
expression that can be partially evaluated at assembly time
and (by adding the INDEX register) at execution time.
Targeted 32-bit assemblies permit double-indexing.

Example:

[symbol] MACRO dest-addrx,PCB-addrx

Where the user might
address-expressions: A,

supply one of these indexable
A+B, A(S), A+B(S), or 0(5).

The reg mnemonic represents a register-expression that CAL
can evaluate to a value between 0 and 15, corresponding to
one of the 16 general registers. By supplying a
register-expression for the reg mnemonic, the user
designates one of the general registers to be used for a
special function.

Example:

[symbol] MACRO pointer-reg,reg-reg

Where the user might specify one of these
register-expressions: 2, 0, R2, or RD.

• (reg)

1-6

The (reg) mnemonic represents a register-expression,
enclosed in parentheses that CAL can evaluate to a value
between 0 and 15. The register must contain the parameter
to be supplied to the macro.

Example:

[symbol] MACRO dest-(reg),PCB-(reg)

Where the user might specify one of these
register-expressions: (3), (R3), (7), or (R7).

48-006 FOO R02

• abs address exp

'rhe abs address exp mnemonic represets a return code
specifying the condition code that the operating system
returns after a task is terminated. The condition code can
refer to a parameter block size field; the bytes of
temporary storage released by a RELSTORE macro; a 4-byte
condition code setting in the program status word (PSW); or
the length (maximum 63) of a number to be converted by the
UNPK macro.

Example:

[symbol] UNPK num, dest [LEN=60]

• absexp

The absexp mnemonic represents an absolute expression that
CAL is to evaluate. It can be a byte or halfword
expression. If it is a byte expression, the mnemonic is
abs byte exp. If it is a halfword expression, the mnemonic
is abs halfword exp. It is evaluated by a load immediate
instruction; so, it can contain an INDEX register.

Example:

[symbol] MACRO size-absexp,LEN=absexp

Where the user
expressions: 3,

• 'string'

might
X' FF' ,

specify one
or C' ABC' .

of these absolute

'rhe 'string' mnemonic represents any string of characters
enclosed in apostrophes.

Example:

[symbol] MACRO msg'-' str. ing'

Where the user might supply this message: 'MY NAME IS
O"BRIEN'. (An apostrophe is specified as two consecutive
apostrophes.)

48'-006 FOO R02 1-7

SYSVOL

SYSVOLB

NOVOL

NOVOLB

SYSVOL

SYSVOLB

00

so

INT

1-8

'rhe SYSVOL mnemonic spec if ies the volume name
field of a packed file descriptor (fd).

The SYSVOLB mnemonic specifies the volume name
field of a packed fd with leading blanks
skipped.

The NOVOL mnemonic specifies that no volume
name is to be moved into the volume name field
of the packed fd. The default volume name is
moved into the packed fd.

'rhe NOVOLB mnemonic specifies that no volume
name and, therefore, the default volume name
with leading blanks skipped, is to be moved
into the packed fd.

'rhe SYSVOL mnemonic spec if ies the name of the
spool volume to be moved into the spool volume
name field of the packed fd.

The SYSVOL.B mnemonic specifies the name, wit~h
leading blanks skipped, of the spool volume
name field of the packed fd.

This abbreviation stands for other-directed
assignment of a logical processing unit (LPU)
number, where a task's LPU number is assigned
by another task. This option is used with the
OIR parameter of the Model 3200MPS System
SETLPU macro and others as well as with other
non-3200MPS System macros.

Example:

[symbol] S}i~'rLPU tmpcb, OIR=O

In the example, the SETLPU macro points to the
previously created tmpcb parameter block and
specifies that the task's LPU number is to be
set by another task.

This abbreviation specifies self-directed LPU
number assignment. It means that the task is
to assign its own LPU number. See Chapter 7
for an explanation of the Model 3200MPS System
macros.

This abbreviation specifies a table of
intervals in milliseconds from midnight. It
is used with the options parameter of the time
management macros.

48'-006 FOa R02

o

H

Example:

[symbol] CYCTIME NUMB INI'r=reg, OPT= INT

This abbreviation specifics a table of
intervals in seconds from midnight. It is
used with the option parameter of timer
management macros. See Chapter 6.

This abbreviation specifies decimal. DB
specifies decimal, skip leading blanks. It is
used with the options parameter of the PACK
macro and other macros. See Section 2.10.

This abbreviation specifies a hexadecimal
number. HB specifies hexadecimal, skip
leading blanks. It is used with the option
parameter of the PACK macro and with other
macros.

L This abbreviation specifies a list form-only,
build a parameter control block (PCB). It is
used with the form parameter of the CANTIME
macro and other timer management macros. See
Chapter 6.

1.5 MACRO EXPANSION ERRORS

Depending on their cause, macro expansion errors can be grouped
into several categories. 'rhe return code at macro processor end
of task determines the source of error.

• return code 0

A return code of 0 indicates that no errors or
were detected. (CAL can later detect such
invalid operation codes or undefined symbols.)

• return code I

warnings
errors as

A return code of I is a warning from one or more system
macros. An MNO'rE in the listing determines the default
action taken. The usual case is an invalid code.

48-006 FOO R02 1-9

• return code 2

A return code of 2 indicates that the macro processor
detected an error. Check the syntax of the macro; the most
common error is an invalid keyword.

• return code 4

A return code of 4 means the macro detected the error.
Look for an MNo'rE in the list ing to determine the cause.
The most common error is an omitted required parameter.

• execution time error messages

'rhe nonproceed input/output macros produce error messages
at execution time if an error occurs and the task pauses.
The operator can take appropriate action and continue. The
task continues at the RESTART address.

The file management macros also produce execution time
error messages. 'rhe ERR parameter, which specifies a table
of addresses that the FMERRrrBL macro built, traps each of
these errors. Any nontrapped error produces a message.
Depending on the PAUS flag in the error table, the task
will or will not pause. Whether or not the task pauses, it
continues at the RESTART address. If the task pauses for
either cause, the state of the user registers is:

REG ISrrERS s'rATUS

RO'-Rl3 same as when macro was issued

Rl4 pointer to PCB

R15 undefined

Upon continuation, Rl5 is restored to its original value.

1.6 CONSTRUCTING PARAMETER BLOCKS

Parameter blocks can be constructed in severa.l ways depend ing IOn
the type of macro. Because supervisor macros use small paramet.er
blocks of different formats and sizes, it is more efficient to
construct a block for each call. Because I/O, file management,
and Lask management macros use larger parameter blocks, it is
more efficient to construct the block once and reuse it for
different calls, modifying fields as required. Special macros
generate these blocks.

1-10 48·-006 FDD R02

1.6.1 Parameter Blocks for Supervisor Macros

Supervisor macros require miscellaneous services from the
operaLing system. Two mutually exclusive parameters, PCB: and
FORM~, control parameter block contruction for supervisor macros.

1.6.1.1 Omitting the PCB= and FORM= Parameters

When omitting both the PCB= and FORM~ parameters:

• If called from within a PURE segment, the macro switches to an
IMPURE segment, constructs the parameter block, and returns to
the PURE segment.

• If called from within an IMPURE segment, the macro constructs
the parameter block and branches around it.

In both cases, Rl4 (or th~ PCBREG from the ENVIRON macro) is set
pointing to the parameter block. CAL constructs any other
parameters that were coded as constants. Any other parameters
coded as indexed expressions or registers containing values are
constructed as zeros and code is generated to modify the
parameter block at execution time using Rl5 (or SCRREG from the
ENVIRON macro). Examples are:

• F E'I'DA'I'E ALP HA

constructs a FETDATE parameter block with an address
constant ALPHA, sets Rl4 pointing to the parameter block,
and executes the SVC.

• FETDATE ALPHA(R2)

constructs a FETDAfrE parameter block, generates an LOAI R15
and ALPHA(2) and a store into the block, and executes the
SVC.

• FE'I'OATE (R2)

generates a FETOATE parameter block, stores R2 into the
block, and executes the SVC.

48-006 FOO R02 1-11

1.6.1.2 Code FORM=L (List Form)

Only the parameter block is constructed. A label, if specified
in the NAME field, is associated with the first byte of the
aligned parameter block. Any other parameters coded as constants
are filled in as constants by CAL. Any other parameters coded as
indexed expressions or registers containing values are ignored.

Examples:

• BE'rA J.-' E'rDATE Ar ,PHA, FORM=L

constructs a FE'rDATE parameter block with the address
constant ALPHA. The symbol B~~TA is associated with the
first byte of the parameter block.

• GAMMA FETDATE FORM~L

constructs a FETDATE parameter block with zero in the
address field. This parameter block can be referenced by
another FE'rDA'rE macro by cod ing PCB = GAMMA .

1.6.1.3 Code PCB= (Execute Form)

Code PCB= executes a remote parameter block at the address that
the PCB parameter block specifies. Any other parameters; whether
they are constants, indexed expressions, or registers containing
values; generate code to store into the parameter block and then
execute the SVC. Rl4 is set to point to the parameter block. If
PCB= (reg) is coded, that register is used as the parameter block
pointer.

Example:

Sinc~ the parameter block at BETA had the address field coded,
R14 is set to point to the block and lhe SVC is executed.

Example:

li'E1'DA'PE ALPHA, PCB-""'GAMMA

R14 is set to point to the parameter block at GAMMA; ALPHA is
stored into the address field; and the SVC is executed.

1-12 48-006 FOO R02

Example:

[jDA I R3, GAMMA
F r.~II'DA'rE AI,P HA, PCB:: (R3)

'rhe address ALPHA is stored in the parameter block that R3 po int.s
to and the SVC is execut.ed. A subsequent ca 1.1 of FE1I'OATE, us ing
GAMMA as the parameter block address, has the address ALPHA
already stored in the block.

Example:

Once set in a paramet.er block, it remains unchanged until a
subsequent macro modifies the field.

1.6.2 Parameter Blocks for Input/Output, File Management,
Task Management, and Timer Management Macros

'rhe first positional parameter controls the construction of the
parameter blocks for the input/output, file management, and task
management macros.

• If the first positional parameter is coded, it is assumed that
the IOPCB, FMPCB, or TMPCB macros built the parameter block.
Several macros can use the same parameter block providing only
parameters change from call to call. Omitted operands are
left unchanged or revert to default values.

• If the macro is in a PURE segment and the first positional
parameter is omitted, the macro switches to an IMPURE segment,
constructs the parameter bl':>ck, and returns to the PURE
segment. If the macro is in an IMPURE segment and the first
positional parameter is omitted, the macro constructs the
parameter block and branches around it..

In both cases, R14 (or the PCBREG from the ENVIRON macro) is set
pointing to the parameter block. Any other parameters coded as
constants are constructed as constants by CAL. Any other
parameters coded as indexed expressions or registers containing
values are constructed as zeros and code is generated to modify
the parameter block at execution time using RlS (or the SCRREG
from the ENVIRON macro).

48-006 FOO R02 1-13

Example:

REWIND LU=2

The parameter block ropes is constructed as described and the
logical unit (lu) field is set to 2. The device attached to lu2
is rewound.

READ LU:l,ADDR=BUFFER,RECL=256
LDA 2, IO.TRANS(Rl4)

In this example, the parameter block 10PCB is constructed with
the appropriate fields filled in.. The READ SVC is then issued
with Rl4 pointing to the parameter block.. The actual number of
transferred bytes can be found at offset IO.TRANS past R14. The
10., FM., or TM. STRUCs are constructed as part of the
appropriate macros.

Example:

IOPARB[,K IOPCB ADDR=BUFFER, RECL=80
BUFFER DS 80

LOOP READ
WRITE
B

IOPARBLK,LU=l
IOPARBLK,LU=.-2
LOOP

In this example, the parameter block is constructed with the
IOPCB macro. The ADDR and REeL fields are filled in, while the
lu field is set to zero because it was omitted.. The READ macro
spec if ies IOPARBLK as the first pos it ional parameter. rrhe lu
field is modified; the ADDR and RECL fields are lefl unchanged.
Care must be exercised in reusing parameter blocks after
modi1:ying fields that were defined when the block was first
constructed.

1-14 48 '-006 FOO R02

Example:

IOPARSLK IOPCS LU=l, ...

LOOP READ IOPARBLK
WR['rE IOPARBLK, LU=2
B LOOP

'rhe R"~AD macro uses 1 in the LU field because it was def ined in
the [OPCS macro. 'rhe WR I 'rE macro mod if ies the LU f ie ld and
writes to LU 2. When READ is reexecuted, the LU field has been
modified and attempts to READ from LU 2.

NOTE

As a general principle, do not modify
fields that have been defined as
constants.

'rhis example is a more subtle representation of this principle:

LOOP READ LU= l, ...
WRITE 0(RI4),LU=2
B LOOP

'rhe R.EAD macro constructs the parameter block; the LU field is
set as a constant, and Rl4 points to the block. 'rhe f irsl READ
executes as des ired. WRlrrE reuses the same parameter block us ing
R14 as a pointer to it and modifying the LU field. When READ is
reexecuted, the LU field is not modified because it was
constructed as a constant.

Example:

LOOP
LIS R3,1
READ LU=(R3), ...
WRI'rE 0 (RI4) , LU=2
B LOOP

48-006 FOO R02 1-15

Even though the READ macro constructs the parameter block, the LU
field is not defined until execution time because it is coded as
a register. In this case, the LU field is modified for t.he READ
and WRITE macros as desired.

1.7 ERROR HANDLING AND RECOVERY

When an I/O or file management operation has completed, the
operating system writes a status code into the parameter block.
A zero stat.us indicates the operation was performed successfully;
a nonzero status means that an error was detected and the
operation was not successful.

When an I/O or file management macro is first encountered, a
subroutine is generated to check the status and take action. A
zero status results in the next instruction being executed. If
a nonzero status is detected, the ERR, PAUS, and RESTART
parameters determine the following sequence of events.

'rhe ERR parameter specifies the address of a table that the
IOERR'rBL or FM'ERRfrSL macros bu i It. The entr ies in th is table
specify branch addresses of user-written routines to handle each
specific error. The ERR parameter can be specified when the
parameter block is constructed or in a macro. If the ERR
parameter is specified in a macro, it replaces the address in the
block.

Example:

An ALLOCATE macro is issued and the file already exists.
the file exists, t.he program wants to delete the file:

DELETE

NAM:ERR

ALLOCAfrE FD= , FILE 1 ' ,ERR=NAMERR, ...

EQU *
FMERRET
DELr~'rE

ALLOCA'rE
BR
FM.ERR'rBL

12
(14)
(14)
12
NAME=DELETE

Since

When detecting the NAME error, the program branches to the label
DELEirE. I n the DELE'l'E rout ine, the progr am then de letes the file
by using the parameter block pointed to by R14 because this
parameter block contains t.he filename FILEI. The file can be
reallocated by using the same parameter block and returning to
the instruction following the original ALLOCATE macro.

48,-006 FOO R02

If the ~RR parameter is omitted from the parameter block or an
error occurs for which there is no entry in the table, then:

• An error message is written to the log device.

• The task does or does not pause depending on the PAUS:
parameter:

PAUS=N does not pause the task.

Omitting the PAUS: parameter causes the task to pause.

• The task resumes execution aC the RESTART= address. If
RESTART: is omitted:

Input/output macros retry the operation.

File management macros restart at the next instruction.

'rhe REs'rART parameter cannot be spec if ied in the rOPCB or FMPCB
macros. If the task pauses, all registers except R14 and R1S
contain the values prior to the macro. R14 points to the
parameter block. RlS is undefined.

1.8 MACROS IN CONDITIONAL ASSEMBLY

CAL conditional assembly, such as IFZ, IFNZ, cannot be evaluated
at macro processing time because the values of the EQUs are not
known to the CAL macro processor. Therefore, any macros within
conditional code will always be expanded regardless of whether
CAL will actually generate the expanded code. Usually, ~his
would not be a problem since CAL would not generate the expanded
code if the conditional fai.led. However, the PUR and IMPUR
macros also set global flags that are used by other macros.
These flags are set regardless of whether CAL includes the
statements in the assembly_ Therefore, the conditionals IFZ and
IFNZ should not be used with EQU flags to generate PURE or IMPURE
statements. Macros should be written with global macro flags to
alter the flow of controls.

Example:

Ff ,AG EQU 0
IFNZ FLAG
PURE
ENDC

48-006 FOO R02 1-17

In this example, CAL will not generate the PURE statement;
however, CAL macro will set a global flag within the PURE macro,
thus affecting other macros. An alternate approach follows:

Example:

%FLAG

&PURE

MACRO
SETFLAG
GBLB 'FLAG
SETB 0
MEND
MACRO
ISPURE
GBLS 'FLAG
SETFIAG
AIF (\Ff..AG)&PURE
MEXIT
PURE
MEND

FLAG SETTING

TO SET OR RESET THE
GLOBAL FLAG

A call to ISPURE with 'FLAG set to 0 will not generate the PURE
statement. A call to ISPURE with 'FLAG set to 1 will generate
the ,PURE statement..

1-18 48-006 FOO R02

2.1 INTRODUCTION

CHAPTER 2
SUPERVISOR MACROS

Supervisor macros are those macros that request services from the
operating system. These macros enable the user to access the
system calendar and clock, pause or end a task, build and search
a mnemonic table, and perform various other functions.

The following sections detail the formats, parameter values,
default values, required parameters, programming considerations,
examples, and error messages for all supervisor macros.

Section 1.4, Parameter
lowercase abbreviations
supervisor macros.

48-006 FOO R02

Field
that

Value Mnemonics, explains the
appear in the parameter fields of

2-1

EOT

2.2 END OF TASK (EOT)

The EOT macro enables the task to terminate in an orderly manner.
If the task has input/output (I/O) in progress, I/O is
terminated; write operations terminate normally; read operations
abort.

Format:

[symbol] EOT [RC=]

Parameter Values:

RC = abs address exp (return code)
addrx

Default Values:

RC = 0

Required Parameters:

none

Programming Considerations:

If a nonresident task issues an EOT, all of its files and
are closed, it is removed from memory, and all
~nformation pertaining to the task is deleted. If the
resident, its files are check-pointed, but not closed; it
removed from memory.

devices
control
task is
is not

The return code (RC) specifies the condition code that the
operating system returns after the task is terminated.

A parameter block is not associated with the EOT macro.

2-2 48-006 FOD RD2

Example:

EOT
EOT
EOT

RC=4
RC=0(9)

48-006 FOO R02

R9 contains the return code

2-3

I FETDATE

2.3 FETCH DATE (FETDATE)

The FETDATE macro returns the current date from the operating
system. The format of the returned date is MMDDYY or DDMMYY,
depending on the selection at system generation time.

Format:

[symbol] FETDATE dest[, PCB=] [,FORM=-]

Parameter Values:

dest addrx (destination)
(reg)

PCB addrx
(reg)

FORM = L

Default Values:

none

Required Parameters:

dest

Programming Considerations:

'rhe parameter, dest, gives the starting
buffer to receive the fetched date.
writable segment.

2-4

address of an 8-byte
This buffer must be in a

48-006 FOO R02

Example:

DATE
PLACE

ft1 E'rDA1'E
FETDA'rE
FETDA'rE

IMPUR

PLACE
0(9)
(8)

FETDA'I'E ABC, FORM=L
DS 8
PURE
I·'E'I'OA'rE PCB=DATE

Error Messages:

MNOTE NO ADDR.ESS SPECIFIED - NO EXPANSION
Return code = 4

48-006 FOO R02 2-5

FETPTR

2.4 FETCH POINTER (FETPTR)

The FETPTR macro fetches a painter to the task's user-dedicated
locations (UDLs). This pointer, or starting address, is returned
in a specific general register. Also, FETPTR copies the address
of UTOP, CTOP, and UBOT from the task's task control block (Tea)
into its UDL. The register where the pointer is returned is reg.

Format:

[symbol] FETPTR reg[,PCB-] [,FORM=]

Parameter Values:

reg reg (register pointer)

PCB = addrx
= (reg)

FORM = L

Default Values:

none

structure Generated:

UDLS

Required Parameters:

reg

Example:

FETPTR 6 (pointer returned in R6)

2-6 48 --006 FOO R02

Error Messages:

MNo'rE NO REGISTER SPECIFIED - NO EXPANSION
Return code = 4

48-006 FOO R02 2-7

I FETTlME

2.5 FETCH TIME (FETTIME)

The FETTIME macro fetches the current time of day from the
operating system and returns it in a 4- or a-byte buffer that the
destination address points to. This buffer must be in a writable
segment.

Format:

[syrnbo l] FETT I ME des t [, OPT=] [, PCB=-] [, FORM=]

Parameter Values:

dest addrx (destination)
(reg)

OPT = A (ASCII)
= B (binary)

PCB = addrx
= (reg)

FORM = L

Default Values:

OPT = A (ASCII)

Required Parameters:

dest

Programming Considerations:

OPT specifies ASCII or binary format for the receiving buffer.
If OPT=A, the default, the buffer must be g bytes long and
aligned on any byte boundary. The time stored within this buffer
is HH:MM:SS.

2-8 48-006 FDa R02

If OPT=B (binary), the buffer is 4 bytes long aligned on a
fullword boundary. The time stored has a binary value indicating
seconds from midnight.

'rhe operating system maintains a 24-hour clock, calibrated in
seconds from midnight. A zero value equals midnight. A decimal
value of 86,399 is equivalent to 23:59:59.

Example:

ABC

FETTIME ABC
r'ETT IME (9)

I MPUR
OS 8

48-006 FOO R02

TIME RETURNED TO ABC
R9 POINTS TO THE BUFFER

2-9

I GETSTORE I

2.6 GET STORAGE (GETSTORE)

The GETSTORE macro increases the user's storage by adjusting UTOP
upward according to the number of bytes specified in SIZE. Once
the UTOP address is adjusted, the starting address of the
reserved temporary storage area, which is the original or
previous UTOP, is stored in the register POINTER.

Format:

[symbol] GETSTORE pointer,size[,PCB=] [,FORM=]

Parameter Values:

pointer

size

PCB

FORM

reg (pOinter to storage)

abs address exp (size of storage)
ALL
(reg)

= addrx
- (reg)

= L

Default Values:

none

Structure Generated:

GETS TORS

Required Parameters:

2-10

pointer
size

48-006 FOO R02

:Programming Cons iderations:

If the SIZE is a negative value or' greater than the task's
current allocation size (task's current CTOP):

• UTOP's address is not adjusted.

• A zero address is returned in the user-specified register.

• The condition code is set to 4 (V bit set).

NOTE

The number of bytes should be specified
in fullword increments because UTOP's
address is rounded up to the nearest
fullword boundary.

If SIZE specif ies ALL, UTOP is adjusted to CrrOP+2 and the number
of bytes actually reserved is stored in the SIZE field of the
parameter block. In this case, the parameter block must be in a
writable segment. 'rhe reserved storage address is returned in
the register REG.

Example:

GETSTORE 3,600
GETSTORE 3,(4)

GETSTORE 3,ALL
LOA 4,GS.SIZE(l4)

R4 CONTAINS THE NUMBER
OF BYTES
GETS ALL STORAGE
NUMBER OF BYTES TO R4

NO'rE

Rl4 is pointing to the parameter block
and the operating system returns the
number of bytes into ·the GS. SIZE f ie Id of
the parameter block.

48-006 FOO R02 2-11

I GETSTORS I

2.7 GENERATE A GETSTORE STRUCTURE (GETSTORS)

The GETSTORS macro creates the structure that the GETSTORE macro
needs. This structure can only be generated once. Repeated
GETSTORS macros have no effect.

Format:

blank GE/rSTORS blank

structure Generated:

2-12

*' GETS/rORE PARBLK
*'
GE'rSTORS
GS.OPT
GS.REG
GS.SIZE

STRUC
DS
DS
DAS
ENDS

2
2
1

NOTE

OPTIONS
REGISTER
SIZE

GETSTORS is automatically gene~ated in
the expansion of the GETSTORE macro.

48·-006 FOO R02

I MNEMTBL

2.8 BUILD A MNEMONIC TABLE (MNEMTBL)

'rhe MNEMTBL macro builds a mnemonic table suitable for use with
the SCl~ macro.

Format:

[symbol] MNEMTBL (required,optional), ... [,EOT]

Programming Considerations:

Operands must be paired and enclosed in parentheses. For each
pair, the first parameter is the required portion of the mnemonic
and the second parameter is the optional portion. The required
portion of the mnemonic is the minimum number of characters that
must be supplied for the mnemonic to be recognized. The optional
portion completes the full spelling of the mnemonic and can or
cannot be specified for the mnemonic to be recognized. The
mnemonic separating character is inserted between each pair.
Coding EOT indicates the end of the table. If an optional
portion does not exist, the comma and parentheses can be omitted.

Example:

TAB MNEMTBL (PA,USE),(AS,SIGN),(END),(ST,ART),RW,EOT

'Where:

PA is required; USE is optional.
AS is required; SIGN is optional.
END is required; no optional portion.
ST is required; ART is optiunal.
RW is required; no optional portion.

In the first specified parameter, PA,
these character sequences are recognized
as the mnemonic: PA, PAU, PAUS, and
PAUSE.

To obtain the characters EOT as a
requ ired part, use: MNEM'rBL (EOT), EDT.

48-006 FOO R02 2-13

I MVASCI I

2.9 MOVE ASCI I (MVASCI I)

The MVASCII macro moves ASCII characters from an input string to
a specified address. The input string can include ending
characters for controlling the number of moved characters.

Format:

[symbol] MVASCII dest,source,len[,EC=][,OPT=]
[, PCB=] [,FORM=]

Parameter Values:

dest

source

len

EC

OPT

PCB

FORM

reg (destination pointer)

reg (source pointer)

abs byte exp (length)
(reg)

= addrx (ending character)
= (reg)

'quoted string'

EC (use ending character)

= addrx
= (reg)

= L

Default Values:

EC no ending characters

OPT no ending characters

Required Parameters:

2-14

dest
source
len

48-006 FOO R02

Programming Considerations:

The requ ired parameter, dest, ident if"ies the reg ister po int lng to
the start of the output string address. This output address must
be in a writable segment.

The required parameter, source, identifies the register pointing
to th~ start of the input string.

'rhe required parameter, len, gives the length (number of
characters) of the input string to be moved. Its value must be
less than or equal to 127.

OPT=EC signifies that "ending characters" are included within the
input string. These ending characters are located at the address
pointed to by EC=. OPT=EC is only required when EC= has been
specified in a remote FORM=L call, and PCB= and the parameter,
len, have both been specified in the current call.

EC= specifies a string of "ending characters" (within quotes) or
the address of the following block: DB ni
DB C'ending characters' where n is the number of ending
characters. If a single quote is one of the ending characters,
it should be coded as two consecutive single quotes but counted
as one.

If only the three required parameters (dest, source, and len) are
included with MVASCII, the number of characters specified are
moved. As each character is moved, the dest and source registers
are incremented to point to the location of the next character to
be moved. At termination, the registers are pointing one byte
past the characters moved and the condition code is set to zero
(cc=O).

If ending characters are used, as each input string character is
moved, it is checked against the ending characters. When the
input string character matches an ending character, it is not
moved; the MVASCI I terminates ,3.r,d the condition code is set to
zero (cc=O).

If the number of characters that the len parameter specifies have
been moved and an expected match is not found, MVASCII terminates
and the condition code is set to four (cc=4).

48-006 FOO R02 2-15

Example:

MVASCII 3,4,5
MVASC I I 3 ,4, 5, EC=' , / '

MVASCI I PCB=MOVEl
MVASCII ,,3,PCB=MOVEl,OPT=EC

MOVEl MVASCII ALPHA,BETA,5,EC=' ,/,FORM=L'

NOTE

Since a length was specified, the OPT=EC
is.required.

Error Messages:

2-16

MNOTE EC MUST BE REG OR ADDR WITH THIS OPTION
Return code = 1

48-006 FOO R02

PACK

2.10 PACK NUMERIC DATA (PACK)

The PACK macro converts an ASCII hexadecimal or decimal number to
its equivalent binary value. PACK includes an option for
skipping leading blanks in the input string.

Ji'ormat:

[symbol] PACK num[,OPT=][,PCB=][,FORM=]

l?ar ameter Values:

num

OPT
=
=
=

PCB
=

FORM =

Default Values:

reg (pointer to number to be packed)

DB (decimal - skip leading blanks)
D (decimal)
HB (hexadecimal - skip leading blanks)
H (hexadecimal)

addrx
(reg)

L

OPT = DB (decimal - skip leading blanks)

Required Parameters:

num

Programming Considerations:

'rhe requ ired parameter, num, is the reg ister number containing
'the input string address to be packed. At the termination of
PACK, register 0 (RO) contains the result and the pointer
register contains the address of the byte following the last
digit converted.

48-006 FOO R02 2-17

The valid ASCII hexadecimal numbers are 0 through 9 and A through
F. The valid ASCII decimal numbers are 0 through 9. Any
character, other than those specified ASCII hexadecimal or ASCII
decimal numbers, causes the conversion process to stop and the
nonconverted byte's address to be stored in the register.

The condition code setting is:

• A condition code of 1 indicates no characters processed; RO is
set to O.

• A condition code of 4 indicates the number processed was too
large to fit in a register. RO contains the least-significant
portion of the number processed.

Example:

PACK 4
STA 4, ALPHA

Register 4 (R4) is repositioned to point to the end of the
numeric string, while the converted number is placed in RD.

Error Messages:

2-18

MNOTE INVALID OPTION - DECIMAL SKIP BLANKS USED
Return code = 1

An invalid option was specified; PACK proceeded assuming
OP=DB.

48-006 FOO R02

PACKED

2.11 PACK A FILE DESCRIPTOR (PACKFD)

PACKFD permits the user to process
standard operating system syntax:

a file descriptor (fd)
VOLN: FILENAME. EXT / ACCOUNjr .

Format:

[symbol] PACKFD source,dest[,OPT=] [,FORMAT=]
[, PCB=] [, FORM=']

Parameter Values:

source

dest

OPT

FORMAT
=

PCB =
=

FORM =

Default Values:

OPT

FORMAT

reg (pointer to source string)

addrx (destinat.ion address)
(reg)

SYSVOLB (system volume- skip leading blanks)
SYSVOL (system volume)
NOVOLB (no volume - skip leading blanks)
NOVOL (no volume)
SPLVOI,B (spool volume - skip leading blanks)
SPLVOL (spool volume)

1
2

addrx
(reg)

L

SYSVOLB

1

Required Parameters:

source
dest

in

48-006 FOO R02 2-19

Programming Considerations:

If skip leading blanks is selected, the macro ignores all blanks
from the current position of the pointer to the first nonblank.
If skip leading blanks is not selected, it assumes that the fd to
be converted starts at the current pointer position.

The reg parameter specifies one of the general registers that
must point to the ASCII string of the unpacked fd.

The dest parameter points to a l6-byte receiving area aligned on
a fullword boundary in a writable segment. The format is
identical to the fd field of an FMPCB parameter block. The
receiving area can be such a field.

Format 1 is normally used. If P, G, or S is specified in the
unpacked fd, then a P, G, or S is returned in the packed fd,
respectively. If this field is omitted in the unpacked fd, an S
is then returned in the packed fd; however, P is returned for a
task running under multi-terminal monitor (MTM). Any value other
than P, G, or S in the account number field of an unpacked fd is
treated as a syntax error.

Format 2 is used if the account number (numeric) is specified in
the unpacked fd. When P, 0, or S is specified or the account
number field is omitted, the obtained result is the same as that
result obtained in format 1. However, if a numeric value is
found in the account number field of the unpacked fd, the G· bit
is set in the condition code and the numeric value is returned
into the packed fd.

The extended fd and account number field are only meaningful in
an MTM environment.

The pointer contained in register, reg, is returned pointing to
the first byte that is not part of the fd.

The condition code is set on return as:

• A condition code of 0 indicates normal return.

• A condition code of 1 indicates no volume name present in
input.

• A condition code of 2 indicates an account number rather than
a P, G, or S appeared in account number field.

• A condition code of 4 indicates a syntax error.

• A condition code of 8 indicates no extension present in input.

• A condition code of 9 indicates no extension or volume present
in input.

2-20 48·-006 FOO R02

If a syntax error occurs, the scan of the unpacked fd terminates
at the byte that caused the error. The contents of the area
receiving the packed fd are filled with indeterminate code.
Check the condition code to ensure that a syntax error has
occurred. If the volume name, filename, or extension is fewer
than 4, 8, or 3, respectively, the field is left-justified and
the unused characters are set to blanks. (The operating system
always sets the reserved character following the extension field
to blank.)

If no volume name is provided and a "default volume" option is
specified, the current default system volume name is moved into
the volume name field of the packed fd. If this option is not
specified, the contents of the volume name in the receiving field
are left unchanged.

NOTE

If the fd parameter is specified for file
management macros (ALLOCATE, ASSIGN,
RENAME, etc), a PACKFD macro is
automatically issued with the option
SYSVOLB and FORMAT=l.

E~rror Messages:

MNOTE INVALID OPTION - SYSVOLB USED
MNOTE INVALID FORMAT - FORMAT 1 USED
Return code = 1

MNOTE MISSING PARAMETER - NO EXPANSION
Return code = 4

48-006 FOO R02 2-21

PAUS

2.12 PAUSE A TASK (PAUS)

The PAUS macro places the task in the console wait state. A
message is issued to the system console. If the operator enters
a CONTINUE command at the system console, the task is restarted
at the next instruction.

Format:

[symbol] PAUS [PCB=] [,FORMe]

Parameter Values:

PCB

FORM

= addrx
= (reg)

= L

Default Values:

none

Required Parameters:

none

Programming Considerations:

Incomplete I/O requests continue to complete even when the task
is in the paused state.

2-22 48-006 FOO R02

PEEK

2.13 EXTRACT INFORMATION FROM SYSTEM TABLES (PEEK)

The PEEK macro obtains user-related information from the system
pointer table (SPT) . and task control block (TCB) and stores it in
a corresponding location in the parameter block.

Format:

[symbol) PEEK [OPT=][,PCB:][,FORM=]

Parameter Values:

OPT =

PCB

FORM

o returns the following information: number
of logical units, maximum priority, operating
system name, task name, current task status word
(TSW), and task options.

1 returns the following information: maximum
blocking factor, operating system name, operating
system update level, central processing unit (CPU)
model numbers, system options, user account number,
group account number, and system console name.

2 returns the following information: operating
system name, load volume, filename, extension, and
file class.

= addrx
II:: (reg)

= L

Structure Generated:

PEEKS

Programming Considerations:

If no option number is specified for the OPT- parameter, the
default is O.

The parameter block must be in a writable segment. The names of
the returned fields can be found in the PEEKS macro explained in
Section 2.14. For OPT=O use the TOPT. - equates. For OPT=l use
the SOPT. - equates.

48-006 FOO R02 2-23

PEEKS

2.14 GENERATE A PEEK STRUCTURE AND EQUATES (PEEKS)

The pgEKS macro generates the STRUC and EQUs required for the
PEEK macro.

Format:

blank PEEKS blank

structure Generated:

*
* PEEK PARBLK
* '"
PEEKS STRUC
PK.OPT DS 2
PK.NLU DS 1
PK.MPRI DS 1
PK.OSIO DS 8
PK.TSKID DS 0
PK.UPLVL OS 2

OS 2
PK.SOPT DS 4
PK.CTSW DS 4
PK.TOPT OS 2
PK.STAT DS 2

ENDS
*

Equates Generated:

* SYSTEM OPTION EQUATES

2-24

*
SOPT.FPB EQU
SOPT.FPM EQU
SOPT.USB EQU
SOPT.USM EQU
SOPT.DIB EQU
SOPT.DIM EQU
SOPT.DFB EQU
SOPT.DFM EQU
SOPT.WCB EQU
SOPT.WCM EQU
SOPT.ALB EQU
SOPT.ALM EQU

o
Y'80000000'
1
Y'40000000'
2
Y'20000000'
3
Y'lOOOOOOO'
4
Y'08000000'
5
Y'04000000'

OPTIONS
NUMBER OF LUs
MAXIMUM PRIORI'r'f
OS IDENTIFICATION
TASK IDENTIFIER (FORMAT 1)
OS UPDATE LEVEL (FORMAT 2)
RESERVED (FORMAT 2)
SYSTEM OPTIONS (FORMAT 2)
CURRENT TASK STATUS WORD
TASK OPTIONS
OPTIONS FROM TASK'S TeB

SYSTEM OPTION - SINGLE PRECISION
FLOATING POINT

SYSTEM OPTION-MMDDYY IF OFF
DDMMYY I F ON

SYS. OPT.-DISPLAY TIME ON PANEL
DISPLAY IF ON
SYSTEM OPTION-DOUBLE PRECISION

FLOATING POINT

WCS SUPPORT

ALIGNMENT ERROR CHECK

48-006 FOO ROZ

soP'r * DAB EQU
SOPT.DAM EQU
soP'r. I TB EQU
SOPlr.I'rM EQU
SOPT.SPB EQU
SOPT.SPM EQU
SOPT.RLB EQU
SOPT.RIM EQU
so p'r . TMB EQU
SOPT.TMM EQU
*'

6
Y'020aOOOO'
7
Y'OlOOOOOO'
8
Y'OoaOOooo'
9
Y'00400000'
10
Y'00200000'

*' TASK OPTION EQUATES
*'
'rOPT. ETB
TOPT.ETM
Toprr.ACB
Toprr .ACM
TOPT.FPB
TOPT.FPM
TOPT.MRB
TOPT.MRM
TOPT.CTB
TOPT.CIM
Topir. CMB
'roprr.CMM
TOPT.S6B
TOP'r. S6M
TOPT.DFB
TOPT.DFM
TOPT.RLB
TOPT. RIM
TOPT.OVB
'rOPT .OVM
'roP'r .SYB
TOPT.SYM
TOPT.CIB
'rOPT.CIM

TOP'r.FAB
'rOPT .FAM
'rOPT. LEB
TOPT.LEM
'rOPT. UVB
TOPT.UVM
TOPT.KCB
TOPT.KCM

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

o
x'aooo'
1
X'4000'
2
X'2000'
3
X'lOOO'
4
X'0800'
5
X'0400'
6
X'0200'
7
X'OlOO'
8
x'ooao'
9
X'0040'
10
X'0020'
11
X'OOlO'

12
X'0008'
13
X'0004'
14
X'0002'
15
X' 0001'

SYSTEM OPTION-DIRECT ACCESS

SYSTEM OPTION-SPOOL SUPPORT

SYSTEM OPTION-ROLL SUPPORT

SYSTEM OPTION-TEMPFILES

E-TASK

ARITHMETIC FAULT CON'rINUE

USING SINGLE FLOATING POINT

MEMORY RESIDENT

PREVENT SVC 6 CON'rROL CALL

PREVENT SVC 6 COMMUNICATION CArL

SVC 6 CONTINUE

USING DOUBLE FLOATING POINT

ALLOW ROLAL-OUT

USE OVERLAY

IN SYS'rEM GROUP

CONSOLE I/O IN'rERCEPT ENABL,E
(MTM)

FILE ACCOUNT PRIVILEGES

PREVENT E-TASK LOAD

UNIVERSAL

DO KEY CHECKS ON ASSIGN, E-TASK

NOTE

PEEKS is automatically generated in the
expression of the PEEK macro.

48-006 FOO R02 2-25

I RELSTORE I

2 • 15 RELEASE STORAGE (RELSTORE)

The RELSTORE macro releases the temporary storage in the unused
portion of the task's impure segment that a previous GETSTORE
macro reseyved. Releasing temporary storage does not decrease
the task's allocated memory size; but, it releases the unused
portion of the task's impure segment. This area is between the
UTOP and CTOP of a user's task.

Format:

[symbol] RELSTORE size[,PCB=] [,FORM=]

Parameter Values:

size abs address exp
(reg)

PCB = addrx
= (reg)

FORM = L

Default Values:

none

Required Parameters:

size

2-26 48-006 FOO R02

Programming Considerations:

The parameter block must be in a writable
field must contain the number of bytes to
number of bytes is not specified in fullword
address is adjusted by rounding down to
boundary. The condition code is set as:

segment. The size
be released. If the

increments, UTOpi s
the nearest fullword

• A condition code of 0 indicates normal termination.

• A condition code of 4 indicates the size parameter is a
negative value or greater than the task's current allocation
size.

48-006 FDD RD2 2-27

SCAN

2 . 16 SCAN A MNEMON I C TABLE (SCAN)

The SCAN macro permits the user to decode command mnemonics as
the operating system command processor does.

Format:

[symbol] SCAN TABLE=,SOURCE=,INDEX=[,PCB=][,FORM=]

Parameter Values:

TABLE = addrx
(reg)

SOURCE == reg

INDEX reg

PCB = addrx
= (reg)

FORM = L

Default Values:

none

Required Parameters:

TABLE
SOURCE
INDEX

Programming Considerations:

The source register must be pointing to the string to be scanned.
Leading blanks are accounted for in the source. Use the SKTNB
macro to ensure that this register actually points to the
beginning of the string. The SKTNB macro is discussed in Section
8.13.

2-28 48-006 FOO R02

The 'rABLE parameter is the address of a command table to be
recognized. This table can be built with the MNEMTBL macro. The
MNEMTBL macro is detailed in Section 2.8.

'rhe result, returned in the INDE!X reg ister, is a number that is
-1 if a match was not found; ot', 0 to n-l, where n is the number
of mnemonics in the table, if a match is found. This number
represents the matched mnemonic's position in the table, starting
with zero. Thus, if a match is found on the third item in the
table, the result returned in the INDEX register is 2.

The source register is returned pointing to the first nonblank
character that is usually a separator following the mnemonic in
the string being scanned. If a match is not found, the source
register is returned unchanged. The condition code is set as:

• A condition code of 0 indicates that a match is found.

• A condition code of 4 indicates that a match has not been
found.

Example:

'ro wr i te a command processor that recogn izes corrunands:

COPY, DELETE, ADD, STOP

JTAB
INBLK
COMMAND
BUF

READ
LDAI
SKTNB
SCAN
BO
SL.LS
LDA
BR

INBLK
3,BUF POINT TO BUFFER
3 POINT TO NONBLANK
SOURCE=3,INDEX=4,TABLE=COMMAND
CMDERR ERROR
4,lADC COMPUTE INDEX
4, J'rAB (4) GET BRANCH ADDRESS
4 VECTOR TO ROUTINE

DAC COPY,DELETE,ADD,STOP
IOPCB ADDR=BUF,LU=5,RECL=80
MNEMTBL (C,OPY),(D,ELETE),(A,DD),(S,TOP),EOT
DS 80

EQU

* Routine to handle command errors

48-006 FOO R02 2-29

The COpy command is recognized as:

• C

• CO

• COP

• COpy

Other commands can be abbreviated in a similar manner.

CIPY is detected as an error and branches to CMDERR.

2-30 48-006 FOO R02

I SETSTAT

2.17 SET STATUS (SETSTAT)

The SETs'rAT macro modifies the arithmetic fault (AF) interrupt
bit and the condition code settings in the program status word
(PSW). When the arithmetic fault interrupt bit setting is
modified, interrupts are enabled (E) or disabled (D). When the
condition code setting is modified, the current 4-bit setting is
replaced with a new 4-bit setting.

Format:

[symbol] SETSTAT [AF=][,CC=][,PCB=][,FORM=]

Parameter Values:

AF

CC

PCB

FORM

Default Values:

AF

E (arithmetic fault - enabled)
D (arithmetic fault - disabled)

aba byte exp (condition code)
(reg)

addrx
(reg)

r...

no change

CC = 0 (zero)

Required Parameters:

none

48-006 FOO R02 2-31

Programming Considerations:

If no parameters are coded, the condition code is set to zero and
the AF' bit is not changed.

If only CC= is coded, the condition code is set; but, the
arithmetic fault bit is not changed.

If only AF'= is coded, the arithmetic fault bit is changed and the
condition code is set to zero.

If CC= and AF'= are coded, the arithmetic fault bit and condition
code are changed.

If AF'=E, an interrupt occurs when any of these conditions result
during an arithmetic operation:

• fixed point quotient overflow

• fixed point division by zero

• floating point overflow and underflow

• floating point division by zero

If AF=D, all interrupts caused by an arithmetic fault are
ignored.

2-32 48-006 FOO R02

UNPK

2.18 UNPACK BINARY NUMBER (UNPK)

The UNPK macro converts an unsigned binary number located in a
register into an ASCII hexadecimal number or an ASCII decimal
number. Leading zeros can be included or replaced with blanks.
The binary number is moved to register 0 (RO) for conversion.

Format:

[symbol] UNPK num,dest[,LEN==][,OPT=][,PCB=][,FORM=]

Parameter Values:

num

dest

LEN

OPT

PCB

FORM

reg (number to be converted)

addrx (destination)
(reg)

= abs byte exp (length - maximum 63)
(reg)

D (decimal - leading blanks)
DZ (decimal - leading zeros)
H (hexadecimal - leading blanks)

= HZ (hexadecimal - leading zeros)

= addrx
= (reg)

= L

Default Values:

LEN 10 for D (dec imal)
== 8 for H (hexadecimal)

Required Parameters:

num
dest

48-006 FOO R02 2-33

Programming Considerations:

The required parameter, dest, must be in a writable segment. If
the number to be converted is too large for dest, t.he
most-significant digits are lost. The result is stored
right-justified in dest with the left-most-significant digits
filled with ASCII zeros or ASCII blanks, depending on the option.
The number can be in any register; however, it is moved to
register 0 (RO) before conversion.

Error Messages:

2-34

MNOTE INVALID OPTION - DECIMAL LEADING BLANKS USED
Return code = 1

48-006 FDD R02

WTO

2.19 WRITE TO OPERATOR--LOG MESSAGE (WTO)

The WTO macro writes a message to the operator's console or
system log device. It can output a message regardless of logical
unit (lu) assignments. The message can be a quoted string; or,
it can be stored in memory. WTO is treated as a proceed call;
consequently, the message can be modified or destroyed
immediately following the macro.

Format:

[symbol] WTO [msg] [,ADDR=] [,LEN=] [,OPT=] (,PCB=] [,FORM=]

Parameter Values:

msg 'quoted string' (must be used alone or with
OPT)

ADDR addrx
(reg)

LEN = abs halfword exp (must be used with'ADDR)
(reg)

OPT -. F (format mode)
= I (image mode)

PCB = addrx
(reg)

FORM = L

Default Values:

OPT F (format mode)

Required Parameters:

msg

or

ADDR and LEN

48-006 FOO R02 2-35

Programming Considerations:

When sent to the appropriate log device, the message is formatted
or in image mode. When a formatted message is sent to a device,
these operations occur:

• All trailing blanks in the buffer or at the end of the message
are eliminated.

• A carriage return line feed is automatically appended to the
message.

• The message terminates when the end of the buffer or the
message is reached, or when a carriage return is found in the
message.

When a message is sent to a device in image 'mode, it terminates
when the end of the buffer or message is reached.

When using image mode, a message with multiple lines can be sent
with a single WTO macro. However, each line should include a
carriage return and line feed at the end.

Error Messages:

2-36

MNOTE INVALID OPT - FORMAT USED
Return code = 1

MNOTE MISSING LENGTH - NO EXPANSION
Return code = 4

48-006 FOO R02

CHAPTER 3
FILE MANAGEMENT MACROS

3.1 INTRODUCTION

File management macros are those macros that manipulate files.
These macros can create or delete direct access files, rename
files, assign files or devices to a task's logical unit, modify
the access privileges of such assignments, close the assignments,
and fetch attributes.

'rhe following sections detail the parameters for all file
management macros and the formats, parameter values default
values, required parameters, programming considerations,
examples, and error messages for all file management macros.

Section 1.4 explains the lowercase abbreviations that appear in
the parameter fields of file management macros.

3.2 PARAMETERS FOR FILE MANAGEMENT MACROS

A parameter, coded in the FMPCB macro, sets a constant into the
parameter block. A parameter, coded in any other macro, replaces
the value in the parameter block; but, the RESTART parameter,
which cannot be coded in the FMPCB macro, can be coded in any
other macro. 'rhe default value is the next instruction.

Required parameters can be coded in the FMPCB macro or in
individual macros. It is more efficient to code those macros
that do not change as constants in the FMPCB macro. Coding these
in the individual macros generates code that stores the values in
the parameter block. Refer to Section 3.17 for more details on
the FMPCB macro .

• File Management Parameter Control Block (FMPCB)

FMPCB is specified as a file management parameter control
block address or it is omitted. If it is omitted, it is
constructed and filled in with remaining parameters. The
FMPCB address is placed in R14.

48-006 FOO R02 3-1

Example:

CLOSE
DELETE
ALLOCATE

LU=-2
PARBLK
0(2)

• File Descriptor (FD)

The FD is specified as the address of an unpacked file
descriptor in standard form. A PACKFD macro packs the FD
into the parameter block. PACKFD uses the default system
volume with skip leading blanks. If a register is coded,
it is repositioned to the byte after the last valid
character of the FD.

If a quoted string is coded in the FMPCB macro, it must be
a packed file descriptor. The volume name must be
specified; but, trailing blanks can be omitted. To
allocate a temporary file, use FD:'&'.

Example:

ASSIGN
ALLOCATE
ALLOCA'rE
FMPCB
FMPCB
AI.LOCATE

FD=- f CON: '
FD:(3)
FD=-' F ILEl f
FD='CON'
FD='VOL FILEl
F D= , &' , LU =- 2

CALP'

• Logical Unit (LU)

LU represents the logical unit to which the file or device
is attached.

Example:

ASSIGN
ALAS

LU=3
LU=(8)

• Record Length (RECL)

3-2

RECL is the logical record length of an index file to be
allocated.

48-006 FOO R02

Example:

A LLOCA'rE RECL=-8 0
ALLOCAtrE R.EeL: (4)

• Number of 256-Byte Buffers for Blocking (BLKSIZE)

When allocating an index file, BLKSIZE is the number of
256-byte buffers allocated in the operating system.
Logical records are packed into physical blocks of 256
bytes and then writ.ten to the file. BLKSIZE defaults to
one for an index file in the FMPCB macro.

Example:

ALLOCATE BLKSIZE=4
ALLOCA'rE BLKS I ZE= (7)

• Number of Index Blocks for an Index File (NDXSIZE)

When allocating an index file, NDXSIZE is
index blocks initially allocated. As
additional index blocks are automatically
FMPCB macro, NDXSIZE defaults to one.

Example:

ALLOCAjrE NDXS I ZE=4

• Number of Sectors for a Contiguous File (SIZE)

the number of
the file grows,
added. In the

When allocating a contiguous file, SIZE is the number of
sectors allocated. SIZE must be specified when allocating
a contiguous file.

Example:

ALLOCATE FT=CO,SIZE=20
A.LLOCATE FT=CO, S I ZE= (7)

48-006 FOO R02 3-3

• Access Privileges (AP)

When assigning a file, AP specifies access privileges
assoc iated with the file or dev ice. When cod ing a reg ister'
containing access privileges, the value must be in the
low-order byte and the remainder of the register must be
zero. Refer to this table:

CODE

SRO
ERO
SWO
EWO
SRW
SREW
ERSW
ERW

VALUE MEANING

X'OO' Sharable read-only
X'20' Exclusive read-only
X'40' Sharable write-only
X'60' Exclusive write-only
X'80' Sharable read-write
X'AO' Sharable read, exclusive write
X'CO' Exclusive read, sharable write
X'EO' Exclusive read-write

NOTE

An invalid code results in SRO
being used.

• File Type (FT)

When allocating a file, FT specifies the file type to be
allocated. When FT is coded in a register, the value must
be the low-order byte and the remainder of the register
must be zero. Refer to this table:

CODE

CO
IN
I TAM

VALUE

X'OO'
X'02'
X'07'

MEANING

Contiguous
Index
ITAM buffered terminal manager

NOTE

An invalid code results in IN being
used.

3-4 48-006 FOO R02

• ITAM Access Method (AM)

When allocating an integrated telecommunications access
method (I·rAM) terminal manager, AM spec if ies the 1 ine type.
If AM is coded in a register, the value must be i.n the
low-order byte and the remainder of the register must be
zero. Refer to this table:

CODE VALUE

X'OO'
X'lB'

MEANING

Terminal level
Line level

NOTE

An invalid code results in ·rL being
used.

• Protection Keys (KEYS)

When assigning a file, the KEYS in the parameter block must
match the keys in the directory.

• Table of Routine Addresses to Handle Errors (ERR)

The ERR parameter specifies the address of a table of
routine addresses that handle errors returned by the file
management macros. The FMERRTBL macro builds this table.
The codes listed for each error message can be used in the
FMERRTBL macro to provide branch addresses for each error.

• Pause on Error (PAUS)

On any error not specified in the FMERRTBL table, which is
pointed to by the ERR parameter, the task will or will not
pause after writing a message to the log device, depending
on the PAUS flag.

• Location to Restart After Error (RESTART)

On any error not specified in the FMERRTBL table, which is
pOinted to by the ERR parameter, the task restarts after
writing a message to the log device. If the task pauses,
it continues at this address. The default is the next
instruction.

48-006 FOO R02 3--5

3.3 ALLOCATE AND ASS IGN A FILE OR DEVI CE (ALAS)

The AlAS macro is a combination of the ALLOCATE and ASSIGN
macros. It allocates and assigns a file or device.

Format:

[symbol] ALAS [fmpcb][,FD=][,LU=][,AP=][,RECL=][,FT=]
[, B LKS I ZE =] [, NDXS I ZE =] [, AM =] [, KE Y S =]
[,ERR=] [,RESTART=] [,PAUS=] [,SIZE=]

Parameter Values:

fmpcb addrx
(reg)

FD = addrx file descriptor
(reg)
'quoted string' (unpacked FD)

LU absolute byte expression
(reg)

AP SRO OOOxxxxx (access privilege)
ERa OOlxxxxx (access privilege)
SWO OlOxxxxx (access privilege)
EWO Ollxxxxx (access privilege)
SRW 100xxxxx (access privilege)
SREW 101xxxxx (access privilege)
ERSW 110xxxxx (access privilege)
ERW lllxxxxx (access privilege)
(reg)

REeL absolute halfword expression
(reg)

FT co xxxxxOOO (contiguous file)
IN xxxxx010 (index file)
I TAM xxxxxlli
(reg)

BLKSIZE -. absolute halfword expression
(reg)

NDXSIZE absolute halfword expression
(reg)

3-6 48-006 FOO R02

AM

KEYS

ERR
_.

RES'rART

PAUS

SIZE

Default Values:

FD

LU

AP

REeL

FT

BLKSIZE

IrL xxxOOxxx
LL xxxllxxx
(reg)

absolute halfword
(reg)

addrx
(reg)

addrx
(reg)

N

absolute fullword
(reg)

o

o

o

o

IN

(terminal level)
(line level)

expression

expression

1 for indexed files; or else 0

NDXSIZE = 1 for indexed files; or else 0

AM

KEYS o

ERR PAUS flag if NO DEFAULT in previous FMERRTBL

DEFAULT FMERRTBL of previous FMERRTBL

RESTART next instruction

PAUS pause if error

48-006 FOO R02 3-7

Required Parameters:

FD
LU
AP
RECL
FT
AM for ITAM
KEYS
SIZE for contiguous files
NDXSIZE and BLKSIZE for index files

Programming Considerations:

Any required parameter, not specified in the ALAS macro, must be
specified in the FMPCB macro. Section 3.17 details the FMPCB
macro. Any specified parameter replaces the field in the
parameter block.

Since the combined functions of the ALLOCATE and ASSIGN macros
are performed, an error terminates without the macro completing
the function. The error status cannot properly reflect the true
error. For example, if ALAS fails on the ALLOCA'rE function, the
ASSIGN function is not performed. The ALAS macro should only be
used if the user is certain of no errors.

Error Messages:

MNOTE INVALID ACCESS PRIV - SRO USED
MNOTE INVALID FILE TYPE - INDEX USED
MNOTE INVALID ACCESS METHOD - TL USED
Return Code = 1

Also refer to the ALLOCATE or ASSIGN macros explained in Sections
3.4 and 3.5, respectively.

3-8 48·-006 FOO R02

: ALLOCATE I

3.4 ALLOCATE A FILE (ALLOCATE)

The AI. .. LOCATE macro makes a directory entry and reserves space on
a direct access device specified in the file type (FT) parameter.
(Section 3.2 explains the FT parameter.) When allocating through
the Integrated Telecommunications Access Method (ITAM) buffered
terminal manager, ALLOCAjrE reserves a memory area for a 1. tne
control block.

Format:

(symbol] ALLOCATE [fmpcb](,FD=](,FT=][,RECL=][,SIZE=]
[,BLKSIZE=] [,NDXSIZE=] [,KEYS=]
[,ERR=](,RESTART=](,PAUS=](,LU=]

Parameter Values:

fmpcb

FO

FT

R.EeL

SIZE

BLKSIZE

NOXSIZE

KEYS

ERR

48-006 FOO R02

addrx
(reg)

addrx file descriptor
(reg)
'quoted string' (unpacked FO)

CO
IN
I TAM
(reg)

xxxxxOOO
xxxxxOlO
xxxxxlll

absolute halfwo'rd
(reg)

absolute fullword
(reg)

absolute halfword
(reg)

absolute halfword
(reg)

absolute halfword
(reg)

addrx
(reg)

(contiguous file)
(index file)

expression

expression

expression

expression

expression

3-9

RESTART = addrx
(reg)

PAUS = N

LU absolute byte expression
(reg)

Default Values:

(i'D = 0

FT IN

REeL = 0

SIZE = 0

BLKSIZE = 1 for indexed files; or else 0

NDXSIZE = 1 for indexed files; or else 0

KEYS 0

ERR = PAUS flag if NO DEFAULT in previous FMERRTBL

DEFAULT FMERRTBL of previous FMERRTBL

RESTART = next instruction

PAUS = pause if error

Required Parameters:

3-10

KEYS
REeL
FD
FT
SIZE for contiguous files
NDXSIZE and BIKSIZE for index files

NOTE

The FD parameter must specify an unpacked
file descriptor because a PACKFD macro is
generated.

48-006 FDD R02

Programming Considerations:

Any requ ired parameter, not spec if ied in the AL.LOCATE macro, must
be specified in the FMPCB macro. (Section 3.17 details the FMPCB
macro.) Any specified parameter replaces the field in the
parameter block.

When allocating contiguous files, a directory entry and a sector
or number of sectors are reserved. When a contiguous file is
allocated and the sectors are reserved, the filename, sector's
starting address, read/write keys, and file type are entered into
the directory. A contiguous file is not buffered.

When allocating a temporary file, the LU field must be filled in
for the assign function. Temporary files are assigned when they
are allocated by the AI.~LOCATE macro.

When allocating indexed files, only a directory entry is
reserved. When an index file is allocated, the filename, number
of logical records, read/write keys, and the file type are
entered into the directory. Two data buffers and one index
buffer are allocated in system space. Each data buffer equals
the file's index block size.

When allocating a line control block, system space in memory is
reserved. When a line control block is allocated and system
space is reserved, the buffered terminal's filename, logical
record length, and read/write keys are entered into the LCB. Two
data buffers are allocated in system space. Each data buffer
must equal the device's physical block size.

Error Messages:

CODE

IF
VOL
NAME
SIZE
PRIV
jrYPE
FD
SYS

MESSAGE

VOL:FD - IL.LEGAL FUNCTION - CANNOT ALLOCATE
VOL:FD - VOLUME NOT MOUNTED - CANNOT ALLOCATE
VOL:FD - EXISTS - CANNOT ALLOCATE
VOL:FD - NO ROOM ON DISC - CANNOT ALLOCATE
VOL:FD - PRIVILEGE ERROR - CANNOT A.L.LOCATE
VOL:FD - DEVICE NOT DIRECT ACCESS - CANNOT ALLOCATE
VOL:FD - INVALID FILENAME - CANNOT ALLOCAjrE
VOL: FD - ACCOUNT VIOLATION - CANNOT A.LLOCATE
XX - UNEXPECTED STATUS

MNo'rE INVALID ACCESS PRIV - SRO USED
MNOrrE INVA.LID FILE TYPE - INDEX USED
MNO'rE INVALID ACCESS METHOD - TL USED
Return code = 1

4:8-006 FOO R02 3-11

ASSIGN

3.5 ASSIGN A FILE OR DEVICE (ASSIGN)

The ASSIGN macro uses an LU to establish a logical ~onnection
between the task and file or device; or, it uses a logical
connection between an Integrated Telecommunications Access Method
(ITAM) line and buffered terminal.

Format:

[symbol] ASSIGN [fmpcb] [,LU=] [,FD=] [,KEYS=] (,AP=] (,AM=]
[, ERR= J (, RESTART=] [, PAUS=]

Parameter Values:

fmpcb

LU

FD

KEYS

AP

ERR

RESTART

PAUS

3-12

addrx
(reg)

= absolute byte expression
(reg)

;: addrx
= (reg)
= 'quoted string' (unpacked FD)

= absolute halfword expression
(reg)

=

=
=

=
=

SRO
ERO
SWO
EWO
SRW
SREW
ERSW
ERW
(reg)

OOOxxxxx
OOlxxxxx
OlOxxxxx
Ollxxxxx
100xxxxx
lOlxxxxx
llOxxxxx
lllxxxxx

= TL xxxOOxxx
= [L xxxllxxx

(reg)

=

=
=

=

addrx
(reg)

addrx
(reg)

N

(access privilege)
(access privilege)
(access privilege)
(access privilege)
(access privilege)
(access privilege)
(access privilege)
(access privilege)

(terminal level)
(line level)

48-006 FOO R02

Default Values:

LU _. 0

FO _. 0

KEYS = 0

AP SRO

AM -. TL

ERR = PAUS flag if NO DEFAULT in previous FMERRTBL

= DEFAULT FM:ERRTBL of previous FMERRTBL

RESjrART = next instruction

PAUS pause if error

Required Parameters:

LU
FD
KEYS
AP
AM for ITAM

NOTE

The FD parameter must specify an unpacked
file descriptor because a PACKFO macro is
generated.

Progranuning Considerations:

Any required parameter, not specified in the ASSIGN macro, must
be specified in the FMPCB macro. (Section 3.17 details the FMPCB
macro.) Any specified parameter replaces the field in the
parameter block.

When aSSigning to disk devices, the read/write keys corresponding
·to specified access privileges are compared to the read/write
keys in the file directory entry. If the appropriate keys match,
the file is assigned according to specified access privileges.

When assigning· to nondirect access devices, only the access
privileges are examined. If the access privileges are SWO or EWO
and the user issues an ASSIGN, the file is positioned at its
logical end (append mode). If an ASSIGN is not issued, the file
is positioned at the beginning.

48-006 FOO R02 3-13

Error Messages:

CODE MESSAGE

IF LU XXX
LU LU XXX
VOL LU XXX
NAME LU XXX
PROT LU XXX
PRIV LU XXX
BUF LU XXX

ASGN LU XXX
FD LU XXX
TGD LU XXX

VOL:FD - ILLEGAL FUNCTION - CANNOT ASSIGN
VOL:FD - ILLEGAL LU NUMBER - CANNOT ASSIGN
VOL:FD - VOLUME NOT MOUNTED - CANNOT ASSIGN
VOL:FD - DOES NOT EXIST - CANNOT ASSIGN
VOL:FD - PROTECTED BY KEYS - CANNOT ASSIGN
VOL:FD - PRIVILEGE ERROR - CANNOT ASSIGN
VOL:FD - BUFFER ERROR - NO ROOM IN OS -

CANNOT ASSIGN
VOL:FD - ASSIGNED - CANNOT ASSIGN
VOL:FD - INVALID FILENAME - CANNOT ASSIGN
VOL:FD - TRAP GENERATING DEVICE- CANNOT

ASSIGN
SYS LU XXX VOL:FD - ACCOUNT VIOLATION - CANNOT ASSIGN

XX - UNEXPECTED STATUS

3-14

MNOTE INVALID ACCESS PRIV - SRO USED
MNOTE INVALID FILE 'rYPE - INDEX USED
MNOTE INVALID ACCESS METHOD - TL USED
Return code = 1

48-006 FOO R02

CHAP

3.6 CHANGE ACCESS PRIVILEGES (CHAP)

The CHAP macro changes the current access privileges of an
assigned file or device to the access privileges that the AP
parameter specifies. The new access privileges must be
compatible with the existing ones~ if they are not compatible,
'the file's existing access privilege keys remain unchanged.

Format:

[s~nbol] CHAP [fmpcb](,LU=][,AP=](,ERR=]
[, RESTART=] [, PAUS=]

Parameter Values:

fmpcb addrx
(reg)

LU = absolute byte expression
(reg)

AP = SRO OOOxxxxx (access privilege)
= ERO OOlxxxxx (access pr ivi lege)
= SWO OlOxxxxx (access pr iv i lege)
-, EWO Ollxxxxx (access pr iv i lege)
= SRW lOOxxxxx (access privilege)
= SREW lOlxxxxx (access pr ivilege) _. ERSW 110xxxxx (access privilege)
= ERW lllxxxxx (access privilege)
= (reg)

ERR = addrx
= (reg)

RESTART addrx
(reg)

PAUS = N

48-006 FOO R02 3-15

Default Values:

LU = a

AP -. SRO

ERR = PAUS flag if NO DEFAULT in previous FMERRTBL

= DEFAULT FMERRTBL

RESTART = next instruction

PAUS = pause if error

Required Parameters.:

LU
AP

Programming Considerations:

of previous FMERRTBL

Any required parameter, not specified in the CHAP macro, must be
specified in the FMPCB macro. (Section 3.17 details the FMPCB
macro.) Any specified parameter replaces the field in the
parameter block. The valid access pr ivilege key combinat ions a.re
shown in Table 3-1.

3·-16 48-006 FDa R02

TABLE 3-1 VALID ACCESS KEY COMBINATIONS

--------------------------------------- _ ,w_ "." _ ,,~, .. _ " __ .. ' ,._ ",,,. .,,,_ "'_ ,_ "._ -- "- ,"._-
CHANGE I CHANGE 'ro I

FROM I SRO ERO SWO EWO SRW SREW ERSW ERW I

===~=r==~=~=====~~===~=r=~~==~~==-~rrr~-==~=~=~r~r~=~r=~~==

SRO Y Y N N N N N N

ERO Y Y N N N N N N

SWO N N Y Y N N N N

EWO N N Y Y N N N N

SRW Y Y Y Y Y Y Y Y

SREW Y Y Y Y Y Y Y 'l

ERSW Y Y Y Y Y Y Y Y

ERW Y Y Y Y Y Y Y Y

LEGEND

Y VALID REQUEST
N INVALID REQUEST

Error Messages:

CODE MESSAGE

LU LU XXX VOL:FD - ILLEGAL LU NUMBER - CANNOT CHANGE
ACCESS PRIVILEGES

PRIV LU XXX VOL:FD - PRIVILEGE ERROR - CANNOT CHANGE
ACCESS PR I V I I lEGES

ASGN LU XXX VOL:FD - NOT ASSIGNED - CANNOT CHANGE
ACCESS PRIVILEGES

XX - UNEXPEC'rED STATUS

MNOlrE INVALID ACCESS PRIV - SRO USED
MNO'rE INVALID F II...E 'rY-PE - INDEX USED
MNOlfE INVALID ACCESS ME'rHOD _. TL USED
Return code = 1

48-006 FOO R02 3-17

I CHECKFM

3.7 CHECK THE ERROR STATUS OF AN FMPCB (CHECKFM)

Irhe CHECKFM macro generates code that checks the status after a
file management function has been performed.

Format:

[symbol] CHECKFM [fmpcb] [,ERR=] [,RESTART=]

Parameter Values:

fmpcb

ERR

RESTART

addrx
(reg)

addrx
(reg)

addrx
(reg)

Default Values:

ERR

RESTART

3-18

PAUS flag if NO DEFAULT in previous FMERRTBL

DEFAULT FMERRTBL of previous FMERRTBL

= next instruction

NOTE

CHECKFM automatically occurs in the
expansion of all file management macros.

48-006 FOO R02

I CKPOINT

3.8 CHECKPOINT A LOGICAL UNIT (CKPOINT)

The CKPOINT macro copies file buffered data to the indexed file
or terminal buffered data to the terminal and updates the
directory entries. Issuing a CKPOINT macro to a contiguous,
nondirect access device or unbuffered file has the same effect as
a WAITIO macro. Section 4.16 explains the WAlrrIO macro.

Format:

[symbol] CKPOINT [fmpcb][,LU=][,AM=][,~RR=][,RESTART=]
[, PAUS=]

Parameter Values:

fmpcb

LU

AM

ERR

RESTART

PAUS

addrx
(reg)

absolute byte expression
(reg)

= TL xxxOOxxx
LL xxxllxxx
(reg)

addrx
(reg)

addrx
= (reg)

N

(terminal level)
(line level)

Default Values:

LU

AM

RESTART

ERR

PAUS

48-006 FOO R02

o

TL

next instruction

PAUS flag if NO DEFAULT in previous FMERRTBL

DEFAULT FM.ERR'rBL of prev ious FMERRTBL

pause if error

3-19

Required Parameters:

LU
AM for ITAM

Programming Considerations:

Any required parameter, not specified in the CKPOINT macro, must
be specified in the FMPCB macro. (Section 3.17 details the FMPCB
macro.) Any specified parameter replaces the field in the
parameter block.

After issuing a CKPOINT macro, the file pointer is not
repositioned to the beginning of the file as in a CLOSE macro.
CKPOINT should be used after a large amount or a considerably
important amount of data is saved to a buffered file because it
preserves the data by copying it to the file. If a system
failure occurs and data exists in the file buffers, all data up
to the last CLOSE or CKPOINT can be recovered; any data appended
after the last CLOSE or CKPOINT is lost.

Error Messages:

CODE MESSAGE

LU LU XXX VOL:FD - ILLEGAL LU NUMBER - CANNOT
CHECKPOINT

ASGN LU XXX VOL:FD - NOT ASSIGNED - CANNOT CHECKPOINT
XX - UNEXPECTED STATUS

3-20 48-006 FDD R02

CLDE

3.9 CLOSE A LOGICAL UNIT AND DELETE A FILE (CLDE)

The ernE macro closes an LU and deletes a file. It pe~forms the
comb ined funct ions of the CLOSE and DELE'rE macros.

Format:

[symbol] CLDE [fmpcb] [, FD=] [, LU=·] [, KEYS=] [, ERR=]
[,RESTART=] [,PAUS=]

Parameter Values:

fmpcb

FD

LU

KEYS

ERR

PAUS

addrx
(reg)

addrx file descriptor
:= (reg)

'quoted string' (unpacked FD)

absolute byte expression
= (reg)

absolute halfword expression
(reg)

addrx
(reg)

addrx
(reg)

N

Default Values:

FD o

LU o

KEYS = 0

48-006 FOO R02 3-21

ERR = PAUS flag if NO DEFAULT in previous FMERRTBL

= DEFAULT FMERRTBL of previous FMERRTBL

RESTART = next instruction

PAUS pause if error

Required Parameters:

FD
LU
KEYS

Programming Considerations:

Any required parameter, not specified in the CLDE macro, must be
specified in the FMPCB macro. (Section 3.17 details the FMPCB
macro.) Any specified parameter replaces the field in the
parameter block.

Since the combined functions of the CLOSE and DELETE macros are
performed, an error terminates the macro without completing the
function. The error status cannot properly reflect the true
error. For example, if CLDE fails on the close function, the
delete function is not performed. The CLDE macro should only be
used if the user is certain no errors exist.

Error Messages:

Refer to the error messages given for the CLOSE or DELETE macros
explained in Sections 3.10 and 3.11, respectively.

3-22 48-006 FOO R02

CLOSE

3.10 CLOSE A LOGICAL UNIT (CLOSE)

The CLOSE macro breaks the logical connection between the task
and file or between the device, or ITAM line, and terminal by
closing the currently assigned LU.

Format:

[symbo l] CLOSE [fmpcb] [, LU=] [, ERR=] [, RESil'ARir=] [, PAUS=]

Parameter Values:

fmpcb

LU

ERR

RESirART

PAUS

Default Values:

LU

ERR

addrx
(reg)

absolute byte expression
(reg)

addrx
(reg)

addrx
(reg)

N

o

PAUS flag if NO DEFAULT in previous FMERRTBL

DEFAULT FMERRTBL of previous FMERRTBL

RESTART = next instruction

PAUS pause if errOl"

Required Parameters:

LU

48-006 FOO R02 3-23

Programming Considerations:

Any required parameter, not specified in the CLOSE macro, must be
specified in the FMPCB macro. (Section 3.17 details the FMPCB
macro.) Any specified parameter replaces the field in the
parameter block.

When the LU is closed, all data in file buffers or terminal
buffers are copied to the user's file.

Error Messages:

CODE MESSAGE

LU LU XXX - ILLEGAL LU NUMBER - CANNOT CLOSE
ASGN LU XXX - NOT ASSIGNED - CANNOT CLOSE

XX - UNEXPECTED STATUS

3-24 48-006 FOO R02

3.11 DELETE A FILE (DELETE)

The UE[ETE macro removes the file directory entry and
the reserved space of a currently unassigned file on
access device. When deleting through the ITAM buffered
manager, a currently unassigned Line Control Block
removed from memory.

Format:

DEL.ETE

releases
a direct
t.erminal
(LeB) is

[symbo l] DELE'rE [fmpcb] (, FD=-] [, KEYS=] (, ERR=] [, RES'rART.::- J
(,PAUS=]

Parameter Values:

fmpcb

FD

KEYS

ERR

RESTART

PAUS .,

Default Values:

FD

KEYS

ERR

REs'rART

PAUS

48-006 FOD RD2

addrx
(reg)

addrx
(reg)
'quoted string' (unpacked FO)

absolute halfword expression
(reg)

addrx
(reg)

addrx
(reg)

N

o

o

PAUS flag if NO DEFAUL.T in previous FMRRRTBL

DEFAULT FMERR'rSL of prev tous FMERRTBL

next instruction

pause if error

3-25

Required Parameters:

FO
KEYS

NOTE

The FD parameter must specify an unpacked
file descriptor because a PACKFD macro is
generated.

Progranuning Considerations:

Any required parameter, not specified in the DEI~ETE macro, must
be specified in the FMPCB macro. (Section 3.17 details the FMPCB
ma.cro.) Any specified parameter replaces the field in the
parameter block.

If the contents of the parameter block's volume name, filename,
extension, ~nd read/write keys fields match the fields in the
file directory entry, the file is deleted. If the logical
terminal's name.matches the name in the LCB, the LCB is deleted.

Error Messages:

3-26

CODE

VOL
NAME
PROT
PRIV
ASGN
TYPE
FO
TGD
SYS

MESSAGE

VOL:FD - VOLUME NOT MOUNTED - CANNOT DELETE
VOL:FD - DOES NOT EXIST- CANNOT DELETE
VOL:FD - PROTECTED BY KEYS - CANNOT DELE'rE
VOL:FD - PRIVILEGE ERROR - CANNOT DELETE
VOL:FD - ASSIGNED - CANNOT DELETE
VOL:FD - DEVICE NOT DIRECT ACCESS - CANNOT DELETE
VOL:FD - INVALID FILENAME - CANNOT DELETE
VOL:FD .- TRAP GENERATING DEVICE - CANNOT Dr::LE1rE
VOL:FD - ACCOUNT VIOLATION - CANNOT DELE1rE
xx - UNEXPECTED StrATUS

48-006 FOD RD2

FDS

3.12 GENERATE A FILE DESCRIPTOR STRUCTURE (FDS)

The FDS macro generates the structure for a packed file
descriptor.

Format:

blank FDS blank

structure Generated:

FDS
FD.VOL
FD.FNAME
FD.EXT
FD.ACT

48-006 FOO R02

FILE DESCRIPTOR

STRUC
os 4
os 8
os 3
os 1
ENDS

VOLUME
FILENAME
EX'rENS IONS
PRIVATE,GROUP,SYSTEM

3-27

FETATR

3.13 FETCH ATTRIBUTES OF A FILE OR DEVICE ASSIGNED TO AN LV
(FETATR)

The FETATR macro sends to the parameter block the physical
attributes of the file or device currently assigned to the
specified LU. The parameter block must be in a writable segment.

Format:

[symbo l] FETATR [fmpcb] [, LUa-] [, ERR=] [, RESTART=] [, PAUS=]

Parameter Values:

fmpcb

LU

ERR

RESTART

PAUS

addrx
(reg)

absolute byte expression
(reg)

addrx
(reg)

= addrx
(reg)

= N

Default Values:

LU = o

ERR PAUS flag if NO DEFAULT in previous FMMERTBL

DEFAULT FMERRTBL of previous FMERRTBL

RESTART = next instruction

PAUS = pause if error

Required Parameters:

LU

3-28 48-006 FOO R02.

Programming Considerations:

Any requ ired parameter, not spec if ied in the ALLOCAlrE macro, must
be specified in the FMPCB macro. (Section 3.17 details the PMPCB
macro.) Any specified paramet.er replaces the field in the
parameter block.

Irhe FM.DC field receives a hexadecimal number indicating the file
or device type. Refer to the OS/32 System Planning and
Configuration Guide for a list of the devices and their codes.

Irhe FM.DATB field receives a hexadecimal number indicating
certain file or device attributes. See the FMPCBS macro, Section
3.18, for the code and equates.

The PM.RECL field receives the logical record length of the file
or physical record length of the device assigned to the specified
LU (e.g., 80-byte records for card readers and 120 or 132 - byte
records for line printers). If the device has variable length
records, a zero value is returned to this field (e.g., magnetic
tape). However, variable length record devices are normally used
as a fixed record length device. For direct access devices, a
record length, which is the file's logical record length
established at allocation time.

The PM. VOL, FM. FNAME , FM.EXT, and PM.ACT each receive the volume
name, filename, extension, and file class, respectively. Por a
nondirect access device, the device mnemonic is sent to the
FM.VOL field and the remaining fields are filled with blanks.

The FM.SIZE field receives an unsigned hexadecimal number
indicating the current size of a direct access file which is the
number of logical records in an index file and the number of
sectors in a contiguous file.

All other fields remain unchanged.

Error Messages:

CODE MESSAGE

LU LU XXX - ILLEGAL LU NUMBER - CANNOT FETCH ATTRIBUTES
ASGN LU XXX - NOT ASSIGNED - CANNOT FETCH ATTRIBUTES

XX - UNEXPECTED STATUS

48-006 FOO R02 3-29

FMERR

3.14 GENERATE THE SUBROUTINE TO CHECK THE STATUS OF AN FMPCB
(FMERR)

The FMERR macro generates the subroutine to check the error
status after the completion of a file management function. Refer
to Section 1.7, Error Handling and Recovery, for a description of
these functions.

Format:

blank FMERR blank

3-30

NOTE

The subroutine is only generated on the
first call of this macro. Subsequent
calls do not generate another copy of the
subroutine. FMERR is called by all file
management macros.

48-006 FOO R02

I FMERRET

3.15 FETCH RETURN ADDRESS IN A USER ROUTINE FOR FILE MANAGEMENT
ERRORS (FMERRET)

In a user-defined routine to handle file
return to the instruction following the
the error is obtained by using the FMERRET
register is the register where the address
routine can save this address before
management macros.

Format:

[symbol] FMERRET [reg]

Parameter Values:

reg register expression

Default Values:

reg 15

Example:

management errors, a
macro call that caused
macro. The optional
is returned. The user
issuing any other file

If a program wants to allocate a file that already exists, the
FM.ERRTBL macro specifies a return to delete the file and retries
the ALLOCATE. At the end of this routine, the user might want to
continue after the original ALLOCATE:

ALLOCATE NEWFILE,ERR=DELERR,FD=(3),FT=IN,
RECL=80

* R3 points to the unpacked file descriptor

ASSIGN NEWFILE,LU=4

DELERR FMERRTBL PAUS=N, NAME=:DEL

48-006 FOD R02 3-31

* if name error

DEL EQU
FMERRET
STA
LDAR

DELETE
ALLOCATE
LOA
SR

NEWF I LE FMPCS
RETSAV DAS

3-32

occurs, branch to DEL

*
12 GET RETURN ADDRESS
12,RETSAV
12,14 HOLD ADDRESS OF NEWFILE

WHICH IS IN R14
(12)
(12)
12,RETSAV
12 RETURN TO ASSIGN

1

48-006 FOO R02

: FMERRTBL I

3.16 GENERATE A TABLE OF ADDRESSES FOR FM ERROR HANDLING
(FMERRTBL)

The FMERRTBL macro generates a table of branch addresses to
user-written routines to handle errors returned by the file
management macros. Refer to Section 1.7, Error Handling and
Recovery, for a description of these functions.

Format:

[symbol] FMERRTBL [default] [, IF=] [,LU=] [,VOL=] [,NAME=]
[,SIZE=][,PROT=][,PRIV=][,BUF=]

Parameter Values:

default DEFAULT

IF addr

LU addr

VOL addr

NAME addr

SIZE = addr

PROT addr

PRIV = addr

BUF = addr

ASGN = addr

TYPE = addr

FD addr

TGD addr

SYS addr

48-006 FOO R02

[, ASGN=·:I [, TYPE=] [, FD=] [, TGD=] [, SYS=]
[, 10=] [I' PAUS =]

(use this FMERRTBL as the default
for all FMPCBs)

(illegal function)

(logical unit)

(volume)

(name)

(size)

(protection)

(privilege)

(buffer)

(assignment)

(type)

(file descriptor)

(trap-generating device)

(syste~m)

3-33

10 = addr (input/output)

PAUS N (no pause)

Default Values:

IF no entry in table

LU == no entry in table

VOL = no entry in table

NAME -. no entry in table

SIZE = no entry in table

PROT == no entry in table

PRIV no entry in table

BUF == no entry in table

ASGN == no entry in table

jrYPE =. no entry in table

FD = no entry in table

TGD = no entry in table

SYS = no entry in table

10 no entry in table

PAUS = pause if error

NOTE

If the DEFAULT parameter is specified,
the FMERRTBL macro is the default for all
FMPCB macros.

3-34 48-006 FOO R02

FMPCB

3. 17 GENERATE A F lLE MANAGEMEN~r PARAMETER CONTROL BLOCK (FMPCB)

trhe FMPCB macro constructs the parameter block for file
management macros. It can be constructed alone or as part of the
expansion of other file management macros.

Format:

symbol FMPCB [AP=] [, AM=] [, FT=] [, LU=] [, KEYS=] [, RECL=]
[,FD=][,NDXSIZE=][,BLKSIZE=][,SIZE=]
[,ERR=] [,PAUS=]

Parameter Values:

AP SRO OOOxxxxx (access privilege)
ERO OOlxxxxx (access privilege)
SWO OlOxxxxx (access privilege)

= EWO Ollxxxxx (access privilege)
SRW lOOxxxxx (access privilege)

- SREW lOlxxxxx (access privilege)
ERSW llOxxxxx (access privilege)
ERW lllxxxxx (access privilege)

= TL xxxOOxxx (terminal level)
= LL xxxllxxx (line level)

FT = CO xxxxxOOO (contiguous file)
IN xxxxxOlO (index file)
I TAM xxxxxlll

LU = absolute byte expression

KEYS absolute halfword expression

REeL absolute halfword expression

FD = 'quoted string" (packed FD)

SIZE = absolute fullword expression

NDXSIZE = absolute halfword expression

48-006 FOO R02 3-35

BLKSIZE = absolute halfword expression

ERR addr

PAUS = N

NOTE

The FD parameter must specify a packed
file descriptor because a PACKFD macro is
not generated.

Default Values:

AP SRO

AM TL

FT = IN

LU = 0

KEYS = 0

REeL = 0

FO = 0

NOXSIZE = 1 for indexed files; or else 0

BLKSIZE =. 1 for indexed files; or else 0

SIZE 0

ERR =: PAUS flag if NO DEFAULT in previous FMERRTBL

DEFAULT FMERRTBL of previous FMERRTBL

PAUS = pause if error

3-36 48-006 FOO R02

FMPCBS

3.18 GENERATE AN FMPCB STRUCTURE AND EQUATES (FMPCBS)

The FMPCBS macro generates the structure and equates for the
FMPCB parameter block.

Format:

blank FMPCBS blank

Structure Generated:

:k FM PARBLK

FMPCBS
FM.FC
FM.FUN
FM.DC
FM.MOD
FM.STAT
FM.LU
FM.DATB
FM.KEYS
FM.WRKY
FM.RDKY
FM.RECL
FM.FD
FM.VOL
FM.FNAME
FM.EXT
FM.ACT
FM.SIZE
FM.NDXSI
FM.BLKSI
FM. PAUS
FM.ERR
FM.RESTA

48-006 FOO R02

STRUC
DS 0
DS 1
DS 0
DS 1
DS 1
DS 1
DS 0
DS 0
DS 1
DS 1
DS 2
DS 0
DS 4
DS 8
DS 3
DS 1
DS 0
DS 2
DS 2
DS 4
DAS 1
DAS 1
ENDS

FUNCTION CODE
FUNCTION CODE
DEVICE CODE (FETATR)
MODIFIER
S'rATUS
LOGICAL UNIT
DEVICE ATTRIBUTES (FETATR)
KEYS
WRITE KEY
READ KEY
LOGICAL RECORD LENGTH
FILE DESCRIPTOR
VOLUME
FILENAME FIELD
EXTENSION
PRIVATE, GROUP, SYSTEM
FILE SIZE
INDEX BLOCK SIZE
DATA BLOCK SIZE
PAUSE FLAG
ERROR ADDRESS
RESTART ADDRESS

3-37

Equates Generated:

3-38

* DEVICE ATTRIBUTES EQUATES
*
DATB.INB EQU
DATB.INM EQU
DATB.RDB EQU
DA'rB . ROM EQU
DA'rB . WRB EQU
DATB . W'RM EQU
DATB.BIB EQU
DATB.BIM EQU
DA'rB . WAB EQU
DATB.WAM EQU
DATB.RNB EQU
DATB.RNM EQU
DATB.UPB EQU
DATB.UPM EQU
DATB. I ME EQU
DATB.IMM EQU
DATB.HIB EQU
DATB.HIM EQU
DATB.RWB EQU
DATB.RWM EQU
DA'rB . BRB EQU
DATB.BRM EQU
DATB . FRS EQU
DATB . F RM EQU
DATB.WFB EQU
DATB.WFM EQU
DATB.FFB EQU
DATB.FFM EQU
DATB.BFB EQU
DATB.BFM EQU
*

o
X'8000'
1
X'4000'
2
X'2000'
3
X'lOOO'
4
X'0800'
5
X'0400'
6
X'0200'
7
X'OlOO'
8
X'0080'
9
X'0040'
10
X'0020'
11
X'OOlO'
12
X'0008'
13
X'0004'
14
X'0002'

* DEVICE CODE EQUATES

DC.CO
DC. IN
DC.NUL

EQU
EQU
EQU

o
2
255

INTERACTIVE DEVICE

SUPPORTS READ

SUPPORTS WRITE

SUPPORTS BINARY

SUPPORTS WAIT I/O

SUPPORTS RANDOM

SUPPORTS UNCONDITIONAL PROCEED

SUPPORTS IMAGE

SUPPORTS HALT I/O

SUPPORTS REWIND

SUPPORTS BACKSPACE RECORD

SUPPORTS FORWARD SPACE RECORD

SUPPORTS WRITE FILEMARK

SUPPORTS FORWARD SPACE FILEMARK

SUPPORTS BACKSPACE FILEMARK

CONTIGUOUS FILE
INDEXED FILE
NULL DEVICE

NOTE

FMPCBS is automatically generated in the
expansion of any file management macro.

48-006 FOO R02

NOTE

3.19 RETURN THE RELATIVE RECORD ADDRESS OF THE NEXT SEQUENTIAL
RECORD (NOTE)

The NOTE macro returns the relative record address of the next
sequential record.

Format:

[labe l] NOIrE (iopcb] (, LU=] (, RECNUMB=]
(,RESTART=](,PAUS~](,ERR]

Parameter Values:

iopcb - addrx
(reg)

LU absolute byte expression
= (reg)

R.ECNUMB = record number
= (reg)

PAUS = N

ERR = addrx
= (reg)

Default Values:

iopcb -=

LU o

R.ECNUMB

RESTART = next instruction

PAUS = pause if error

ERR =

48-006 FOO R02 3-39

Programming Considerations:

A 256-byte sector is defined as one record for a contiguous file,
for which relative record is interpreted as relative sector. The
first record of a file is record O. A NOTE issued to a logical
unit (lu) that has had no I/O since being assigned will return a
relative record address of O.

If a NOTE is issued and a contiguous file is positioned at EOM or
an indexed file is positioned at EOF, an EOM or EOF status is
returned.

A NOTE always returns the record or sector address immediately
following the last record referenced, or 0 if the file has not
been referenced or has just been rewound. If a NOTE is issued
and the returned record address is subsequently used in a POINT
request, the latter function will position the file to the exact
position it occupied when the NOTE request was issued. See POINT
macro, Section 3.20.

3--40 48-006 FOO R02

POINT

3.20 REPOSITION A FILE TO A SPECIFIED RELATIVE RECORD ADDRESS
(POINT)

'rhe POINT macro repositions a file to a specified relative record
address that is specified in the SVC 1 record address field.

Format:

(labe l] PO I NT [iopcb] [, LU=] [, RECNUMB=-]
[, RESTART=] [, PAUS=] [, ERR=-]

Parameter Values:

iopcb - addrx
(reg)

LU absolute byte expression
= (reg)

RECNUMB record number
= (reg)

PAUS = N

ERR = addrx
(reg)

Default Values:

iopcb =-

LU =- 0

RECNUMB =

RESTART = next instruction

ERR =

48-006 FOO R02 3-41

Programming Considerations:

A POINT request specifying the relative record address 0 is
equivalent to a rewind. If a POINT request specifies a record
position beyond EOF for an indexed file or beyond EOM for a
contiguous file, and EOM status is returned. The relative recoI'd
position is set to one position beyond the last record for
indexed files and one position beyond the last sector for
contiguous files.

If a NOTE request is issued and the returned record address is
subsequently used in a point request, the latter function will
position the file to the exact position it occupied when the note
request was issued.

3-42 48-006 FOD R02

RENAME

3.21 RENAME A FILE ASSIGNED TO A LOGICAL UNIT (RENAME)

'rhe RENAME macro changes a currently ass igned filename and
extension to the filename and extension specified in the FO
parameter. The filename must be on a direct access device and
assigned with ERW access privileges.

Format:

[symbol] RENAME [fmpcb][,LU=][,FD=][,ERR=] [,RESTART=]
[, PAUS=]

Parameter Values:

fmpcb

FO

LU

ERR

RESTART

PAUS

addrx
(reg)

= addrx
= (reg)

'quoted string' (unpacked FD)

= absolute byte expression
(reg)

addrx
= (reg)

= addrx
(reg)

= N

Default Values:

LU = a

FD a

ERR PAUS flag if NO DEFAULT in previous FMERRTBL

= DEFAULT FMERRTBL of previous FMERRTBL

REs'rART next instruction

PAUS pause if error

48-006 Faa R02 3-43

Required Parameters:

FD
LU

NOTE

The FD parameter must specify an unpacked
file descriptor because a PACKFD macro is
generated.

Programming Considerations:

Any required parameter, not specified in the RENAME macro, must
be specified in the FMPCB macro. (Section 3.17 details the FMPCB
macro.) Any specified parameter replaces the field in the
parameter block.

The RENAME macro ignores the volume name field. The filename and
extension replace the current filename and extension in the
directory.

Error Messages:

3-44

CODE

LU
NAME
PROT
PRIV
ASGN

FD
SYS

MESSAGE

LU
LU
LU
LU
LU
LU

xxx
XXX
XXX
XXX
XXX
XXX

VOL:FD - ILLEGAL LU NUMBER - CANNOT RENAME
VOL:FD - EXISTS - CANNOT RENAME
VOL:FD - PROTECTED BY KEYS - CANNOT RENAME
VOL:FD - PRIVILEGE ERROR - CANNOT RENAME
VOL:FD - NOT ASSIGNED - CANNOT RENAME
VOL:FD - DEVICE NOT DIRECT ACCESS - CANNOT

RENAME
LU XXX VOL:FD - INVALID FILENAME - CANNOT RENAME
LU XXX VOL:FD - ACCOUNT VIOLATION - CANNOT RENAME
XX - UNEXPECTED STATUS

48-006 FOO R02

REPROT

3.22 REPROTECT A FILE ASSIGNED TO A LOGICAL UNIT BY CHANGING
THE KEYS (REPROT)

The REPROT macro changes the read/write protection keys of a
currently assigned file to the contents of the KEYS parameter.
'rhe file must be on a direct access device and assigned with ERW
access privileges.

Format:

[symbol] REPROT [fmpcb][,LU=][,KEYS=][,ERR=][,RESTART=]
[,PAUS=]

Parameter Values:

fmpcb addrx
(reg)

LU = absolute byte expression
(reg)

KEYS = absolute halfw()rd expression
(reg)

ERR = addrx
= (reg)

RESTART = addrx
= (reg)

PAUS = N

Default Values:

LU = 0

KEYS = 0

ERR = PAUS flag if NO DEFAULT in previous FMERRTBL

DEFAULT FMERRTBL of previous FMERRTBL

RESTART = next instructi()n

PAUS pause if error

48-006 FOO R02 3-45

Required Parameters:

LU
KEYS

Programming Considerations:

Any required parameter not specified in the REPROT macro, must be
specified in the FMPCB macro. (Section 3.17 details the FMPCB
macro.) Any specified parameter replaces the field in the
parameter block.

When issuing the REPROT macro, the specified read/write keys
replace the current read/write keys of a specified file in the
device's directory.

Error Messages:

CODE MESSAGE

LU LU XXX

PRIV LU XXX

ASGN LU XXX
TYPE LU XXX

SYS LU XXX

XX -

3-46

VOL:FD - ILLEGAL LU NUMBER - CANNOT
REPROTECT

VOL:FD - PRIVILEGE ERROR - CANNOT
REPROTECT

VOL:FD - NOT ASSIGNED - CANNOT REPROTECT
VOL:FD - DEVICE NOT DIRECT ACCESS -

CANNOT REPROTECT
VOL:FD - ACCOUNT VIOLATION - CANNOT

REPROTECT
UNEXPECTED STATUS

48-006 FOO R02

4.1 INTRODUCTION

CHAPTER 4
INPUT/OUTPUT MACROS

Input/output (I/O) macros enable a task to sequentially or
randomly read and write records while -maintaining full control
over waiting for I/O to complete or to proceed and manipulate
filemarks.

Irhe following sections detail the parameters associated with
input/output macros. The formats, parameter values, default
values, required parameters, programming considerations,
examples, and error messages a.re also supplied for each I/O
macro.

Section 1.4, Parameter Field Value Mnemonics, explains the
lowercase abbreviations that appear in the parameter field.

4.2 PARAMETERS FOR I/O MACROS

A parameter, coded in the input/output parameter control block
(IOPCS) macro, sets a constant into the parameter block; an
omitted parameter sets a zero value for the field. A parameter,
coded in any other macro, replaces the value in the parameter
block. Two exceptions are record length (RECL) and location to
restart after error (RESTART). RECL computes the ending address
and it is not part of the paramet.er block passed to the operat ing
system. RESTART defaults to retry the I/O SVC.

'rhe requ ired parameters can be ceded in the 10PCS macro or in
individual macros. It is more ef~icient to code those parameters
that do not change as constants in the 10PCS macro. Coding these
parameters in individual macros results in generating code to
store values in the parameter block. Refer to Section 4.11 for
a detailed explanation of the 10PCS macro.

The following paragraphs detail the parameters for input/output
macros.

• Input/Output Parameter Control Slock (IOPCS)

The input/output parameter control block is specified as an
address of an IOPCB macro. If omitted, it is constructed
and filled in with remaining parameters. The 10PCB address
is placed in register 14 (R14).

48-006 FOO R02 4-1

Example:

PARBLK

READ PARBLK
WRITE PARBLK,ADDR=ALPHA
REWIND LU:2

IopeB LU=2,RECL=80,ADDR=BETA

• Log i cal Un it (r.tu)

..
LU is the logical unit where the I/O operation occurs.
This LU must be assigned prior to any I/O operation.

Example:

BFILE LU=4
WRITE PARBL.K,LU=2

• Address of Data to Be 'rransferred (ADDR)

AnDR is the I/O buffer address that sends or receives the
data be ing transferred. It is used only for READ and WRI1rE
macros. To specify the amount of data to be transferred,
refer to the REeL or ENDADDR parameters.

Example:

READ ADDR=ALPHA,RECL=80
WRITE ADDR=BETA, ENDADDR=BETA,t79

• Record Length (RECL)

4-2

RECL is the actual number of byles to be transferred in a
READ or WRITE macro.

Example:

READ ADDR=ALPHA,LU=3,RECL=132
WRITE ADDR=BETA,LU=5,RECL=(8)

48-006 FOO R02

• Address of the Last Byte to Be Transfe~red (RNDADDR)

Irhe ENDADDR parameter is the actual address of the last
byte to be transferred. If REeL is specified, this field
is computed as ADDRtRECL'-l and is automat ically set. Th is
address must be greater than or equal to ADDR.

• Actual Number of Bytes Tra.nsferred (TRANS)

II'RANS is the actual numbe~ of bytes that a READ or WRITE
macro transfers. If an error occurs during the data
transfer, this field is modified with indeterminate data.
It can be addressed as IO.lfRANS(l4) or IOPCB+IO.TRANS.

• Opt ions Used for READ and WRl1rE (OPlr)

If options other than the default options are needed, specify
them in every READ o~ WRI1rE macro. The opt ions are:

ASCI I (A) or Bina,ry (B)

The default for the ASCII or binary option is ASCII. If
image (I) is coded, this option is ignored.

Wait (W) or Proceed (P)

The default for wait and proceed modes is wait. In wait
mode, the task stops execution, initiates the data
transfer, and waits until I/O completion. If the device is
not busy in the proceed mode, the I/O is initiated and
returned to the calling task. If the device is busy, the
request is queued and contLol is or is not returned,
depending on the optionp CP and UP, to the calling task.
If the IOQ option is specified in the LTSW macro and I/O
has been completed, an item is added to the task queue.

Sequential (S) or Random (R) Access

In sequential and random access, the default is sequential
access. With sequential access, the next logical record is
accessed. With random access, the record in the RECNUMB
field is accessed.

48-006 FOO R02 4-3

4-4

Conditional Proceed (CP) or Unconditional Proceed (UP)

With conditional or unconditional proceeds, the default is
CP. If, after a proceed request, the device is busy and
the total number of requests exceeds the maximum, CP puts
the task in a wait state. Once the request has been queued
or initiated, the task resumes execution. If UP is coded
and the device is busy, the task resumes execution at the
UPEXIT address. UPEXIT must be coded in this case.

Format (F) or Image (I) Mode

With format and image modes, the default is format (F)
mode. In format mode, the data being transferred is
formatted according to the ASCII (A) or binary (B) options.
In image mode, the data is not formatted. The data does
not contain any control characters (carriage returns, line
feeds) that the user must supply for inclusion.

Extended Options for ITAM (XOPT)

'rhe XOPT parameter spec if ies the extended opt ions for
integrated telecommunications access method (ITAM)
requests.

Random Record Number (RECNUMB)

RECNUMB specifies the number of the next logical record to
be accessed. It is only used for READ and WRITE macros.
If RECNUMB is specified in READ or WRITE macros, OPT:R does
not have to be specified. If it is specified in only the
IOPCB macro, the OPT=R must be coded for random access.

End of File (EOF)

'rhe EOF parameter specifies the address to go to if an EOF
condition arises on an indexed file. It can be coded as
part of a macro or incorporated as part of the IORRRTBL
macro.

End of Medium (EOM)

The EOM parameter specifies the address to go to if an EOM
condition arises on a contiguous file. It can be coded as
part of a macro or it can be incorporated as part of the
IOERRTBL macro.

48-006 FOO R02

End of File or End of Medium (END)

The END parameter can be used in place of the EOF and EOM
parameters; it detects either condition. It is most useful
when the program goes to the same address in both cases.
It can be coded as part of a macro or incorporated as part
of the IOERRTBL macro.

Table of Routines to Handle Errors (RRR)

jrhe ERR parameter specifies the address of an address table
of routines that handles errors returned by I/O macros.
The IOERRTBL macro builds this table. The codes listed for
each error message can be used in the rOERRTBL macro to
provide branch addresses for each error.

Pause on Error (PAUS)

On any error not specified in the IOERRTBL table (pointed
to by ERR), the task does or does not pause after writing
a message to the log device.

Location at which to Restart After Error (RESTART)

On any error not specified in the rOERRTBL table (pointed
to by ERR), the task restarts after writing a message to
the log device. If the task pauses, it continues at this
address. The default is to retr~ the I/O operation.

48-006 FOO R02 4-5

BFILE

4 • 3 BACKWARD TO F I LENARt< ON AFt LE OR PEV ICE: (SF l LE)

The BFlLE macro backspaces the device or file assigned to the LU
over one filemark. For an indexed ti:J.e, thies backspacing is
equivalent to a rewind. For a contiguous file or magnetic tape,
the effect is to position to the end of the previous file.

Format:

[symbol] BFILE [iopcb][,LU=]

Parameter Values:

iopcb

LU

addrx
(reg)

= absolute byte expression
(reg)

Default Values:

LU = 0

Required Parameters:

LU

Programming Considerations:

If positioned at the beginning of a file, 8FILE has no effect.
BFILE to an indexed file has the same effect as a REWIND because
indexed files do not recognize filemarks.

4-6 48,-006 FDa R02

To reposition to the beginning of a file on magnetic tape or on
a contiguous file after reading a filemark, the issuing of two
BFILEs is required. The first BFILE positions the tape to the
end of the file before the filemark. The second BFILE positions
it to the beginning of the file if it is the first file on the
tape. If the file is not the first on the tape, the second BF[LE
positions over the beginning filemark to the end of the previous
file. To position to the beginning of the desired file, issue a
FFILE to position past the filemark. Section 4.5 details the
FFILE macro.

NOTE

BFILE is treated as a proceed call.
Refer to Section 4.16 for a detailed
explanation of the WAITIO macro.

48-006 FOO R02 4-7

BREC

4.4 BACKSPACE ONE RECORD (BREC)

The BREC macro backspaces an LU'to the previous record. If the
LU is ,at the beginning of the file ,backs,pacing does not 'occur.

Format:

(symbol] BREC [iopcb][,LU=]

Parameter Values:

iopcb addrx
(reg)

LU = absolute byte expression
= (reg)

Default Values:

LU = 0

Required Parameters:

LU

NOTE

BREC is treated as a proceed call. Refer
to Section 4.16 for a d~tailed

description of the WAITIO macro.

4-8 48-006 FOO R02

FFILE

4 .. 5 FORWARD TO FlLEMARK ON A FILE OR DEVICE (FFILE)

'rhe FF IL.E macro forward spaces over one f ilemark on the dev ice or
file ~ssigned to the LU. For an indexed file, the file is
positioned at the end of the file. For a contiguous file or
magnetic tape, the file is positioned after the filemark at the
beginning of the next file.

Format:

[symbol] FFILE [iopcb] [,LU·:]

Parameter Values:

iopcb

LU

Default Values:

LU

addrx
(reg)

absolute byte expression
(reg)

o

Required Parameters:

LU

Programming Considerations:

To position at the end of an indexed file in order to append,
issue a FFILE.. To position at the end of a contiguous file or
magnetic tape, issue a FFILE followed by a BFILE to position back
over the filemark. Section 4.3 explains the BFILE macro.

NOTE

FFILE is treated as a proceed call ..
Refer to the WAITIO macro discussed in
Section 4.16.

48-006 FOO R02 4-9

FREC

4.6 FORWARD TO NEXT RECORD ON A FILE OR DEVICE (FREC)

The FREC macro forward spaces an LU to the next logical record.
Spacing does not occur if the LU is positioned at the end of a
file or device.

Format:

[symbol] FREC [iopcb][,LU=]

Parameter Values:

iopcb

LU

Default Values:

LU

addrx
(reg)

absolute byte expression
(reg)

o

Required Parameters:

LU

NOTE

FREe is treated as a proceed call. Refer
to the WAITIO macro discussed in Section
4. 16.

48-006 FOO R02

HALTIO

4.7 HALT AN INPUT/OUTPUT PROCEED REQUEST (HALTIO)

jrhe HAL/rIO macro cancels a previously issued proceed 1/0 request.
(This action is useful on an in'teractive device.) If a HALTIO
macro is not used, an outstanding request must be satisfied
before any other I/O can be started on that LU.

Format:

[symbol] HALTIO [iopcb][,LU=][,ERR=][,RESTART=][,PAUS=]

Parameter Values:

iopcb

LU

ERR

RESjrART
=

PAUS -,

Default Values:

LU

ERR

REs'rART

PAUS

addrx
(reg)

absolute byte expression
(reg)

addrx
(reg)

addrx
(reg)

N

o

PAUS flag if no default in previous
IOERRTBL

o

pause if error

Required Parameters:

LU

48-006 FOO R02 4-11

Programming Considerations:

When a HALTIO macro is issued to an LU, any previous I/O proceed
requests, whether in progress or queued, are cancelled. When I/O
is terminated, the task that issued the I/O proceed request takes
a trap (if enabled); the parameter block address that issued the
I/O proceed request is placed on the task queue; and the I/O
operation status (data transfer or command function) is returned
to the status fields of both parameter blocks. The time of the
actual termination is asynchronous to when the HALTIO macro is
issued.

When an I/O request is issued to an LU and a previous I/O proceed
request exists for the same LU, the second request and any
subsequent requests to that LU cannot be serviced until the
previous I/O request has been completed. When issuing a HALTIO
macro, the first I/O request is cancelled, allowing I/O requests
issued after the cancellation to be started on the device.

If the QIO statement was specified at task establishment time and
at least one I/O request to a specified LU is on the user I/O
queue, executing a HALTIO macro cancels any I/O to that specified
LU already in progress and all requests to that specified LU on
the user I/O queue.

These devices support the HALTIO macro:

• card reader

• Carousel

• CRT

• cassette

• Owl 1100 CRT

• Owl 1200 CRT

• paper tape reader/punch

• printer

• Teletype keyboard/printer

4-12 48-006 FOO R02

The system returns status in the HALT and PROCEED blocks as
follows:

1. In the HALT block status 10.STAT(l4):

X'OO' indicates that the requested I/O termination has been
scheduled.

X'8l' indicates that an LU has not been assigned.

X'82' indicates that I/O is not ongoing for this LU.

The device number is placed in the IO.DN(l4) field.

2. The PROCEED block occurs when I/O actually terminates. X'82'
is returned in IO.STAT(14).

When a proceed I/O call is requested, the status field (a
halfword) is initialized to a positive value (1). The user
can sense (poll) this status to determine I/O completion.

Example:

BLK
BUF

10PCB
OS

READ

ADDR=BUF,RECL-80,LU=1
80

BLK,OPT=P

*R14 contains the address of BLK
*IO.STAT has been preset to plus 1

B
10DONE EQU

48-006 Faa R02

TEST
*

4-13

IOERR

4.8 GENERATE THE SUBROUTINE THAT CHECKS THE STATUS OF AN lopes
(IOERR)

The IOERR macro generates the subroutine that checks the error
status after completing an I/O function. Refer to Section 1.7,
Error Handling and Recovery, for a description of these
functions.

Format:

blank IOERR blank

NOTE

The subroutine is only generated on the
initial call of this macro. Subsequent
calls do not generate another copy of the
subroutine. IOERR is called by all
nonproceed 1/0 macro calls.

48-006 FOO R02

I IOERRET

4.9 FETCH RETURN ADDRESS IN A USER ROUTINE FOR INPUT/OUTPUT
ERRORS (IOERRET)

The rOERRET macro, used in a user-defined routine to handle I/O
errors, fetches the return address and enables the user to return
to the instruction following the macro that caused the error.
The optional register is the register where the address is
returned. The user routine can save this address before issuing
any other I/O macro.

Format:

blank IOERRET blank

Parameter Values:

reg register expression

Default Value:

reg 15

48-006 FOO R02 4-15

I IOERRTBL I

4.10 GENERATE A TABLE OF ADDRESSES FOR INPUT/OUTPUT ERROR USER
HANDLING ROUTINES (IOERRTBL)

The IOERRTBL macro generates a table of branch addresses to
user-written routines. This table handles errors that I/O macros
return. Refer to Section 1.7, Rrror Handling and Recovery, for
a description of these functions.

Format:

[symbol] IOERRTBL [default][,IF=][,LU=][,DU=][,EOM=]
[,EOF=][,UERR=][,RERR=][,UNERR=]
[,PAUS=][,END=]

Parameter Values:

default

IF =

LU

DU

gOM

EOF

UERR

RERR

UNERR

PAUS

END

4-16

DEFAULT (use this IOERRTBL as the default for
all I/O macros)

addr (illegal function)

addr (illegal or unassigned LU)

addr (device unavailable)

addr (end of medium)

addr (end of file)

addr (unrecoverable error)

addr (parity or recoverable error)

addr (unknown error)

N (no pause)

addr (end of file or medium)

48-006 FOO R02

Default Values:

IF no entry in table

LU no entry in table

DU no entry in table

EOM = no entry in table

EOF = no entry in table

END no entry in table

UERR no entry in table

RERR = no entry in table

UNERR no entry in table

PAUS pause if error

48-006 FOO R02 4-17

IOPCS

4.11 GENERATE AN INPUT/OUTPUT PARAMETER CONTROL SLOCK (IOPCS)

The IOPCB macro constructs the parameter block for I/O macros.
It can be constructed alone or as part of the expansion of other
I/O macros.

Format:

(symbol] IOPCS (FUN=] [, LU=] [, STAT=] [, ON=] [, ADOR=]
[,ENDADDR=] [,RECNUMS=] [,TRANS=]
[,XOPT=] [,RECL=] (,RESTART=] [,PAUS=]
[, ERR=]

Parameter Values:

4-18

It'UN absolute byte expression*

LU absolute byte expression

STAT = absolute byte expression*

ON = absolute byte expression*

ADDR relocatable address expression

ENDADDR relocatable address expression

RECNUMB = absolute fullword expression

'fRANS = absolute address expression*

XOPT absolute fullword expression

REeL absolute address expression

RESTART relocatable address expression*

PAUS N

ERR addr

* 'rhese parameters are usually not needed because maCl:OS or
the operating system set the fields.

48--006 FOO R02

Default Values:

FUN = 0

LU - a

SfrAfr 0

ON 0

ADDR a

ENDADDR ADDR+RECL-l if both are specified _. 0 otherwise

RECNUMB = 0

jrRANS -. a

XOPT 0

R.ECL 0

R.ESfrART 0

PAUS = pause if error

ERR PAUS flag if no default in previous IOfo~RRTBL

default IOERRTBL of previous IOERRTBL

48-006 Faa R02 4-19

lopeBS

4.12 GENERATE AN IOPCS STRUCTURE (IOpeBS)

The IOpeBS macro generates the STRUCs and equates for the lopes
parameter block ..

Format:

blank IOPCBS blank

structure Generated:

:t

IOPCBS
IO.FUN
IO.FC
IO.LU
IO.OINDS
IO.STAT
IO.DOEPS
IO.ON
IO.ADOR
IO.ENOAD
IO.RNDAD
IO.TRANS
IO.XOPT
IO.RECL
IO.PAUS
IO.ERR
IO.RESTA

4-20

STRUC
OS 0 FUNCTION CODE
OS 1 FUNCTION CODE
OS 1 LOGICAL UNIT
OS 0 DEVICE INDEPENDENT STAfrUS
OS 1 STATUS
OS 0 DEVICE OEPENDJo~NT STAfrUS
OS 1 DEVICE NAME
OS ADC STARTING ADDR
os ADe ENDING ADDR
OS 4 RANDOM ADDR
OS AOC TRANSFER LENGTH
OS 4 ITAM REQUESTS
OS ADC RECORD LENGTH
OS 4 PAUSE FLAG
DAS 1 ERROR TABLE POINTER
OS ADC RESTART ADDRESS
ENDS

NOTE

IOPCBS is automatically generated in any
I/O macro expansion.

48 -006, Foa R02

READ

4.13 READ A LOGICAL RECORD (READ)

'rhe R~:AD macro accesses the next log ical record accord ing to the
specified options. If RECNUMB or OPT=R is coded, the next random
record is accessed. Section 4.2 summarizes the parameters for
I/O macros.

Format:

[symbol] READ [iopcb][,LU=][,ADDR=][,RECNUMB=]
[,RECL=][,ENDADDR=][,EOF=][,EOM=]
[,OPT=][,ERR=][,END=] [,RESTART=]
[,UPEXIT=][,PAUS=][,XOPT=]

Parameter Values:

iopcb addrx
(reg)

LU _. absolute byte expression
(reg)

ADDR addrx
(reg)

RECL absolute address expression does not change
IO.RECL
(reg)

ENDADDR addrx
= (reg)

EOF addrx

EOM = addrx

OPT B (binary) specified in
P (proceed) any order
I (image) enclosed in
UP (unconditional proceed) parentheses

= R (random)

RECNUM.B absolute fullword expression
(reg)

ERR addrx

48-006 FOO R02 4-21

END addrx

RESTART -- addrx

UPEXIT :- addrx

XOPT =. absolute fullword expression
:. (reg)

PAUS = N

Default Values:

LU :: 0

ADDR = 0

RECNUMB = 0

REeL :: 0

ENDADDR ADDR+RECL-I if both are specified
= a otherwise

XOPT = 0

ERR = PAUS flag if no default in previous IOERRTBL

default IOERRTBL of previous IOERRTBL

RESTART retry the READ

PAUS :: pause if error

END :: addrx

Required Parameters:

4-22

ADDR
LU
REeL or ENDADDR

NOTE

On a proceed call, the status is set to
positive one for polling. RECNUMB= or
OPT=R, or both, cause a random READ.

48···-006 Faa R02

Error Messages:

CODE Mf~SSAGE

IF I/O ERROR COXX LU X '- ILLEGAL FUNCTION
DU I/O ERROR AOXX LU X '- DEVICE UNAVAILABLE
EOM I/O gRROR 90XX LU X .- END OF MEDIUM
EOF I/O ERROR 88XX LU X .- END OF FILE
UERR I/O ERROR 84XX LU X '- UNRECOVERABLE ERROR
RERR I/O ERROR 82XX LU X '- PARITY OR RECOVERABLE

ERROR
LU I/O ERROR 81XX LU X -- ILLEGAL OR UNASSIGNED

La

48-006 FOO R02 4-23

REWIND

4.14 REWIND A FILE OR DEVICE (REWIND)

The REWIND macro rewinds the file or device assigned to the LU.
The file or device is repositioned to its beginning whether or
not any filemarks are found.

Format:

[symbol] REWIND [iopcb][,LU=]

Parameter Values:

iopcb

LU

Default Values:

LU

addrx
(reg)

absolute byte expression
(reg)

o

Required Parameters:

LU

NOTE

REWIND is treated as a proceed call.
Refer to the WAITIO macro detailed in
Section 4.16.

4-24 48-006 FOO R02

TESTIO

4.15 TEST FOR INPUT/OUTPUT COMPLETION (TESTIO)

The TESTIO macro tests for I/O completion to a specified LU. If
a previous I/O proceed request or queued I/O proceed request does
exist, the condition code is set to X'F'. However, if no
outstanding I/O proceed request exists, the condition code is set
to X' O· •

Format:

[symbol] trESTIO [iopcb][,LU=]

Parameter Values:

iopcb

LU

addrx
(reg)

absolute byte expression
_. (reg)

Default Values:

LU o

48-006 FOO R02 4-25

WAITIO

4.16 WAIT FOR INPUT/OUTPUT COMPLETION (WAITIO)

The WAITIO macro puts the task in a wait state until all previous
1/0 proceed requests to the specified LU, which are in progress
or currently on the I/O queue, are serviced and all I/O has been
completed. Task execution then resumes. If an I/O proceed
request is not on the I/O queue, user-control is returned and
task execution continues. When 1/0 is completed, the previous
I/O proceed request status is returned to the status fields of
the parameter block that issued the I/O proceed request.

Format:

[symbol] WAITIO [iopcb][, IOPCB=] [,EOF=] [,EOM=] [,END=]
[,RESTART=] [,ERR=] [,PAUS=]

Parameter Values:

iopcb addrx (WAIT block)
(reg)

IOPCB addrx (PROCEED block)
(reg)

EOF addrx
(reg)

EOM addrx
(reg)

END addrx
(reg)

RESTART addrx
(reg)

ERR addrx
(reg)

PAUS N

4-26 48-006 FOO R02

Default Values:

REs·rART 0

ERR PAUS flag if no default in previous IOERRTBL

= default IOERRTBL of previous IOERRTBL

PAUS pause if error

Required Parameters:

rOpeB = PROCEED block

Programming Considerations:

The LU number from the PROCEED block is placed in the WAIT block
and the wait state is entered. The status is returned to the
PROCEED block and that status is checked after the task resumes
execution.

If RES·rART is omitted, the restart address is the same as
whatever address is in the PROCEED parameter block. 'fhe default
is to retry the proceed I/O request.

Error Messages:

CODE MESSAGE

IF I/O ERROR COXX LU X - ILLEGAL FUNCTION
DU I/O ERROR AOXX LU X - DEVICE UNAVAILABLE
EOM I/O ERROR 90XX LU X - END OF MEDIUM
EOF I/O ERROR 88XX LU X - END OF FILE
UERR I/O ERROR 84XX LU X - UNRECOVERABLE ERROR
RERR I/O ERROR 82XX LU X - PARITY OR RECOVERABLE

ERROR
LU I/O ERROR 81XX LU X - IrLEGAL OR UNASSIGNED
UNERR I/O ERROR XXXX LU X - UNKNOWN ERROR

48-006 FOO R02 4-27

WPM

4.17 WRITE F ILEMARK (WPM)

The WFM macro writes a filemark to the file or device assigned to
the specified LU. If it is an indexed file, no action occurs.

Format:

(symbol] WFM [iopcb][,LUz]

Parameter Values:

iopcb

LU

addrx
(reg)

= absolute byte expression
.. (reg)

Default Values:

LU .. 0

Required Parameters:

LU

NOTE

WFM is treated as a proceed call. Refer
to the WAITIO macro discussed in Section
4.16.

4-28 48-006 FOO R02

WRITE

4.18 WRITE A LOGICAL RECORD (WP.ITE)

The WRITE macro writes the next logical record according to the
specified options. If RECNUMB or OPT=R is coded, the next random
record is written. Refer to Section 4.1, Summary of Parameters
for Input/Output Macros, for a description of these functions.

Format:

[symbol] WRITE [iopcb][,LU=][,ADDR=][,RECNUMB=]
[,RECL=] [,ENDADDR=] [,EOF=][,EOM=]
[,OPT=][,ERR=][,END~][,RESTART:.]

(,UPEXIT=][,PAUS=][,XOPT=]

Parameter Values:

iopcb addrx
(reg)

LU = absolute byte expression
=: (reg)

ADDR addrx
:: (reg)

REeL = absolute address expression does not change
IO.REeL

=: (reg)

ENDADDR = addrx - (reg)

EOF = addrx

EOM = addrx

OPT B (binary) IspeCified in
= P (proceed) any order

I (image) enclosed in
= UP (unconditional proceed) parentheses

R (random)

RECNUMB = absolute fullword expression
= (reg)

ERR -- addrx

48-006 FOO R02 4-29

RESTART = addrx

UPEXIT addrx

XOPT = absolute fullword expression
= (reg)

PAUS = N

Default Values:

RESTART

FUN

LU

STAT

ON

ADOR

ENOADOR

RECNUMB

TRANS

XOPT

RECL

RESTART

PAUS

ERR

4-30

retry the WRITE

o

= o

o

= 0

:: 0

= ADDR+RECL-l if both are specified
= 0 otherwise

It: 0

:: 0

:: 0

= 0

= 0

= pause if error

= PAUS flag if no default in previous IOERRTBL

= default IOERRTBL of previous IOERRTBL

NOTE

On a proceed call, the status 1s set to
positive one for polling; RECNUMB~ or
OPT=R, or both, cause a random WRITE.

·48-006 FOD RD2

Error Messages:

CODE MESSAGE

IF I/O ERROR COXX LU X .- ILLEGAL FUNCTION
DU I/O ERROR AOXX LU X .- DEVICE UNAVAILABLE
EOM I/O ERROR 90XX LU X .- END OF MED I UM
EOF I/O ERROR 88XX LU X .- END OF FILE
UERR I/O ERROR 84XX LU X ,- UNRECOVERABLE ERROR
R.ERR I/O ERROR 82XX LU X - PARIiry OR RECOVERABLE

r~RROR

LU I/O ERROR 81XX LU X ,- ILLEGAL OR UNASSIGNED
UNERR I/O ERROR XXXX LU X - UNKNOWN ERROR

48-006 FOO R02 4-31

CHAPTER 5
TASK MANAGEMENT MACROS

5.1 INTRODUCTION

Task management macros manipulate tasks.
foreground tasks can extract control over
with other tasks.

Through these macros,
and can communicate

The formats, parameter values, default values,
parameters, programming considerations, examples,
messages are supplied for each task management macro.

required
and error

Section 1.4, Parameter
lowercase abbreviations
task management macros.

Field Value
that appear

Mnemonics, explains the
in the parameter field of

48-006 FOO R02 5-1

CANCEL

5.2 CANCEL A ~~K (CANCEL)

The CANCEL macro cancels a task; if it is nonresident, it removes
the task from memory.

Format:

[symbol] C,~CEL [tmpcb] [,TASKIO=] [,OrR=] [,OPT=]

Parameter Values:

tmpcb addrx (address or pointer to PCB)
(reg)

TASKID = addrx (address or pointer to TASKIO)
= (reg)

OIR - OT (direction - other task)
= SO (direction - self-directed)

OPT = S (save in memory)
= D (delete from memory)

Default Values:

tmpcb TMPCB built automatically

TASKIO = no change

orR = OT (other task)

OPT S

Prog~amming Considerations:

If tmpcb is specified, the function is set according to OIR=. If
a TASKIO is specified, it is moved into the tmpcb; if TASKID is
not specified, it is assumed to be in the tmpcb. The TASKID must
be left-justified in an 8-byte field padded with blanks and
fullword boundary aligned. If a tmpcb is not specified, it is
automat ically bu i It and set as prev ious ly stated. The "rMPCB
macro can build the tmpcb. Refer to Section 5.25 for an
explanation of the TMPCB macro.

5-2 48-006 FOO R02

R14 points to the tmpcb; R1S modifies it. Neither register can
be used for addressing. Task execution is halted. If the task
is resident and OPT=S, the task remains in memory and all task
LUs are checkpointed, not closed~

If the task is nonresident and OPT=S, the task is removed from
memory and all LUs are closed.

If the task is resident and OPT=D, the task is made nonresident
and removed from memory, and all LUs are closed.

If the task is nonresident and OPT=D, the task is removed from
memory and all LUs are closed.

48-006 FOO R02 5-3

CHPRIO

5.3 CHANGE PRIORITY (CHPRIO)

The CHPRIO macro changes the priority of a directed task.

Format:

[symbol] CHPRIO [tmpcb][,TASKIO=][,OIR=][,PRI=]

Parameter Values:

tmpcb

TASKIO

OIR

PRI

addrx (address or pOinter to PCB)
(reg)

= addrx (address or pointer to TASKIO)
= (reg)

= OT (direction - other task)
SO (direction - self-directed)

absolute byte expression
= (reg) - new priority

Default Values:

tmpcb TMPCB built automatically

TASKID = no change

OIR = OT (other task)

PRI = no change

5-4 48-006 FOO RDZ

Programming Considerations:

If tmpcb is specified, the function is set according to OIR. If
a TASKIO is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKIO must be
left-justified in an 8-byte field padded with blanks and fullword
boundary aligned. If a tmpcb is not specified, it is
automatically built and set as previously stated. The jrMPCB
macro can build the tmpcb.

Rl4 points to the tmpcb; RlS modifies it. Neither register can
be used for addressing.

The CHPRIO macro changes the directed task's current priority to
the user-specified priority, PRI.

48-006 FOO R02 5-5

CKTASK

5.4 CHECK THE STATUS OF A TASK (CKTASK)

The CKTASK macro checks the status of the directed task.

Format:

[symbol] CKTASK [tmpcb] [,TASKID=][,DIR=]

Parameter Values:

tmpcb addrx (address or pointer to PCB)
(reg)

TASKIO = addrx (address or pointer to TASKIO)
= (reg)

OIR =. OT (direction - other task)
= SO (direction - self-directed)

Default Values:

tmpcb TMPCB built automatically

TASKID = no change

DIR = OT (other task)

Programming Considerations:

If tmpcb is specified, the function is set according to orR. If
a TASKIO is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKID must be
left-justified in an a-byte field padded with blanks and fullword
boundary aligned. If a tmpcb is· not specified, it is
automatically built and set as previously stated. The TMPCB
macro can build the tmpcb. Rl4 points to the tmpcb; Rl5 modifies
it. Neither register can be used fo~ addressing.

5-6 48-006 FOO R02

The CKTASK macro checks the directed task status.
are set in the calling task's parameter block:

TM.TST
TM.RPI
TM.STA

wait status
current priority
error status

These fields

These fields are also set on any other task-directed macro. The
CKTASK macro provides no other functions.

48-006 FOO R02 5-7

I CONNECT

5.5 CONNECT A TRAP GENERATING DEVICE TO A TASK (CONNECT)

The CONNECT macro connects the trap-generating device that DMN
specifies to the directed task. CONNECT does not enable traps.
Refer to the THAW macro discussed in Section 5.24.

Format:

[symbol] CONNECT (tmpcb] [,TASKID-](,DIR-]
(,DMN=] [,PARM=]

Parameter Values:

tmpcb

'rASKID

OIR

OMN

PARM

addrx (address or pointer to PCB)
(reg)

- addrx (address or pointer to TASKID)
(reg)

- OT (direction - other task)
= SD (direction - self-directed)

=addrx (address or pointer to 4-byte device
mnemonic)

= (reg)

= absolute address expression
(reg) - register containing parameter

Default Values:

tmpcb TMPCB built automatically

TASKID == no change

OIR = OT (other task)

DMN = no change

PARM = no change

5-8 48-006 FOa R02

Programming Considerations:

If tmpcb is specified, the function is set according to DIR. If
a TASKID is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKID must be
left-justified in an 8-byte field padded with blanks and fullword
boundary aligned. If tmpcb is not specified, it is automatically
built and set as previously stated. The TMPCB macro can build
the tmpcb.

Rl4 points to the tmpcb; Rl5 modifies it. Neither register can
be used for addressing.

Before the connection is made, these conditions must exist:

• DMN must be a trap-generating device.

• DMN must not currently be connected to the directed task or
any other task. It can be connected to only one task at a
time; however, a task can be connected to more than one
trap-generating device at the same time.

• The directed task must set up the UDL with a SETUDL macro with
the DIQ code specified in the TSKN option and then enable
traps with a LTSW macro.

Example:

SETUDL TSKN=(DIQ,addrx),TSKQ=addrx

LTSW DIQ,TSKE

48-006 FOO R02 5-9

FREEZE

5.6 DISABLE INTERRUPTS ON A TRAP-GENERATING DEVICE (FREEZE)

The FREEZE macro disables interrupts on DMN that are connected to
the directed task. The system first ensures that the
trap-generating device and directed task are connected. It then
disables interrupts. When the FREEZE macro disables interrupts,
the trap-generating device remains connected; but, all generated
interrupts are lost. If interrupts are already disabled, FREEZE
has no effect.

Format:

(symbol] FREEZE [tmpcb],[,TASKID-][,DIR-][,DMN-]

Parameter Values:

tmpcb addrx (address or pOinter to PCB)
(reg)

TASKID - addrx (address or pointer to TASKID)
= (reg)

OIR - OT (direction - other task)
= SD (direction - self-directed)

OMN :: addrx (address or pointer to 4-byte device
mnemonic)

= (reg)

Default Values:

tmpcb TMPCB built automatically

TASKIO - no change

OIR OT (other task)

DMN = no change

5-10 48·-006 FOO R02

Programming Considerations:

If tmpcb is specified, the function is set according to DIR. If
a TASKID is specified, it
specified, it is assumed to
left-justified in an a-byte
boundary aligned. If
automatically built and set
macro can build the tmpcb.

is moved into the tmpcb; if it is not
be in the tmpcb. The TASKID must be
field padded with blanks and fullword
a tmpcb is not specified, it is

as previously stated. The TMPCB

Rl4 points to the tmpcb; Rl5 modifies it. Neither register can
be used for addressing.

48-006 FOO R02 5-11

LOAD

5 .. 7 LOAD A TASK INTO MEMORY (LOAD)

The LOAD macro loads a task into memory. It does not start the
task. Refer to the StrART macro discussed in Section 5 .. 22.

Format:

[symbol] LOAD [tmpcb] [,TASKID=] [,DIR-][,LU-]
[, OPT-] [, SIZE-]

Parameter Values:

tmpcb addrx (address or pointer to PCS)
(reg)

TASKID = addrx (address or pointer to TASKID) - (reg)

DIR == OT (direction - other task)

LU = absolute byte expression
(reg) - logical unit

OPT = CM (intertask communication)
= RP (subtask reporting) - SZ (segment size increment)
= PR (load and proceed)

ET (prevent E-task load) - CT (intertask control)
= RL (roll)

NO (no option)
= (reg) - register containing the options

SIZE - absolute address expression
(reg) - increment size

5-12 48-006 FOO R02

Default Values:

tmpcb 'rMPCB built automatically

'rASKID = no change

DIR OT (other task)

LU = no change

OPT no change

SIZE no change

Programming Considerations:

If tmpcb is specified while the directed task is being loaded,
the function is set according to DIR. If a TASKID is specified,
it is moved into the tmpcb; if it is not specified, it is assumed
to be in the tmpcb. The TASKID must be left-justified in an
8-byte field padded with blanks ~nd fullword boundary aligned.
If a tmpcb is not specified, it is automatically built and set as
previously stated. The TMPCB macro can build the tmpcb.

Rl4 points to the tmpcb; Rl5 modifies it. Neither register can
be used for addressing.

Before issuing the LOAD macro, the directed task must be assigned
to the LU with an ASSIGN macro. The LU must be positioned to the
first byte of the task's LIB. When the LOAD macro is executed,
the directed task is loaded from the specified LU into a memory
area large enough to hold the task. If that area does not exist
and the roll option is specified, the directed task is rolled out
to a file on the roll volume and is placed in a wait state.
While the directed task is being loaded, the calling task is
placed in a wait state. When the directed task is loaded, its
task name becomes the name specified in the TASKID parameter or
the name specified in the task name field of the parameter block.

The calling task is released from the wait state and the LU is
positioned to the byte following the loaded task. If the same
task is to be reloaded with the s~e assigned LU, the LU must be
rewound by using the REWIND macro prior to each subsequent load.

48-006 FOO R02 5-13

If these error conditions occur, LOAD is rejected and an error
code is stored in the parameter block's error status field:

• The receiving task is already loaded into memory.

• The specified task name is invalid.

• The macro is self-directed.

• The system does not have a large enough memory area to hold
the receiving task and it does not support the roll option.

• The requested memory size specified where the task is to be
loaded, is larger than the system's total memory space.

• The directed task is a background task. (Background tasks can
only be loaded from the system console.)

• The LU is not positioned to LIB, or LIB is invalid.

• The following options can be specified in any order enclosed
in parentheses. If only one option is coded, the parentheses
must be omitted:

CM

RP

SZ

PR

ET

CT

NO

5-14

indicates that the loaded directed task can
execute communications functions.

indicates that the calling task becomes a
monitor task and the directed task becomes
a subtask, causing the subtask to report
all status changes during execution to the
monitor task through task traps.

indicates that the task's impure segment
size is increased by adding the number of
bytes the SIZE parameter specifies.

indicates that the calling task continues
executing while the directed task is being
loaded. If the latest LTSW macro specifies
the LODQ option, a trap to the calling task
occurs when loading is completed.

indicates that the directed task cannot be
an E-task.

indicates that
into memory can
functions.

the directed
issue SVC

task loaded
6 control

indicates that no options are desired.

48-006 FOO R02

LTSW

5.8 LOAD A TASK STATUS WORD (LTSW)

'rhe L'rSW macro sets or replaces the current task status word
(TSW) located in the task's Tca with a new user-specified TSW.

Format:

[symbol] LTSW [option, ... ,option][,CC=][,LOC-=](,PCB=]
[,FORM=]

Parameter Values:

option

CC

(reg)
absolute fullword expression
WT (trap wait)
PWRE (power restore trap enable)
ARFE (arithmetic fault trap enable)
S14E (SVC 14 trap enable)
TSKE (task queue service trap enable)
MAFE (memory access fault trap enable)
lITE (illegal instruction trap enable)
SUQ (enable subtask queue entries for

subtask state change)
DIQ (enable task queue on device

interrupt)
TCQ (enable task queue entry on task

call)
TMQ (enable task queue entry on task

message)
LODQ (enable task queue entry on

completion of load and proceed)
10Q (enable task queue entry on I/O

completion)
TMCQ (enable task queue entry on time out

completion)
ITQ (enable task queue entry on SVC 15

buffer transfer command execution,
termination or halt I/O)

TETS (enable trap event service routines)

condition code (absolute expression less
than 16)

LOC = addrx (transfer location)
(reg)

48-006 FOO R02 5-15

PCB

FORM

= addrx
(reg)

= L

Default Values:

option bits not set

LOC = 0

Programming Considerations:

If specified as codes, the options are specified as positional
parameters in any order. They cannot be used with (reg) or an
absolute fullword expression. The condition code (CC) can only
be specified with the codes. If CC is specified without any
codes, all interrupts are disabled; that is, all code bits are
reset to zero. The condition code cannot be specified if the
codes are specified in (reg) or as an absolute expression.

If FORM=L is specified, the parameter block is built according to
the options. IF LOC= is omitted, the parameter block is set to
zero.

If PCB= is specified, an existing parameter block is assumed. If
specified, the options set new options, regardless of previous
options in the existing block. If specified, LOC= replaces the
previous transfer location; if it is not specified, the existing
transfer location is used. The new TSW is loaded.

If neither PCB= nor FORM=L are specified, a parameter block is
built according to the options, LOC= and FORM=L, and the new TSW
is loaded.

5-16 48-006 FOO R02

I MAKNRES

5.9 MAKE A TASK NONRESIDENT (MAKNRES)

The MAKNR.ES macro makes the directed task nonresident regardless
of the options specified at Link time. Once nonresident, the
task can be rolled if the system supports the roll option.

Format:

[symbol] MAKNRES [tmpcb][,TASKID-][,DIR=]

Parameter Values:

tmpcb addrx (address or pointer to PCS)
(reg)

TASKID -, addrx (address or pointer to TASKID)
(reg)

DIR OT (direction _. other task)
= SD (direction _. self-directed)

Default Values:

tmpcb TMPCS built automatically

TASKID no change

OIR = OT (other task)

Programming Considerations:

If tmpcb is specified, the function is set according to DIR. If
a TASKID is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKID must be
left-justified in an 8-byte field padded with blanks and fullword
boundary aligned. If a tmpcb is not specified, it is
automat ically bu i It and set as prev ious ly stated. The 'rMPCB
macro can build the tmpcb.

Rl4 points to the tmpcb; Rl5 modifies it. Neither register can
be used for addressing.

48-006 FOO R02 5-17

I MAKNROLL I

5.10 MAKE A TASK NONROLLABLE (MAKNROLL)

The MAKNRO[L macro restricts the directed task from being rolled.

Format:

[symbol] MAKNROLL [tmpcb] [,TASKIO=](,DIR=]

Parameter Values:

tmpcb addrx (address or pOinter to PCS)
(reg)

'rASKIO = addrx (address or pOinter to TASKID)
(reg)

DIR OT (direction - other task)
SO (direction - self-directed)

Default Values:

tmpcb TMPCS built automatically

TASKID - no change

OIR OT (other task)

Programming Considerations:

If tmpcb is specified, the function is set according to OIR. If
a TASKID is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKIO must be
left-justified in an 8-byte field padded with blanks and fullword
boundary aligned. If a tmpcb is not specified, it is
automatically built and set as previously stated. The TMPCB
macro can build the tmpcb.

R14 points to the tmpcb; RlS modifies it. Neither register can
be used for addressing.

5-18 48-006 FOO R02

MAKRES

5.11 MAKE A TASK RESIDENT (MAKRES)

The MAKRES macro makes the directed task resident regardless of
what options were specified at Link time. Once resident, the
task cannot be rolled.

Format:

[symbol] MAKRES [tmpcb] [,TASKID=·] [,DIR=]

Parameter Values:

tmpcb addrx (address or pointer to PCB)
(reg)

TASKID = addrx (address or pOinter to TASKID)
(reg)

DrR = OT (direction - other task)
SD (direction - self-directed)

Default Values:

tmpcb TMPCB built automatically

TASKID no change

DrR OT (other task)

Programming Considerations:

If tmpcb is specified, the function is set according to OIR. If
a TASKID is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKlD must be
left-justified in an 8-byte field padded with blanks and fullword
boundary aligned. If a tmpcb is not specified, it is
automatically built and set as previously stated. The TMPCB
macro can build the tmpcb.

R14 points to the tmpcb; R15 modifies it. Neither register can
be used for addressing.

48-006 FOO R02 5-19

I MAKROLL

5.12 MAKE A TASK ROLIABLE (MAKROLL)

The MAKROLL macro makes the directed task rollable. However, if
resident, the task is not rolled.

Format:

[symbol] MAKROLL [tmpcb] [,TASKID-] [,OIR-]

Parameter Values:

tmpcb addrx (address or pointer to PCB)
(reg)

TASKIO - addrx (address or pointer to TASKIO)
= (reg)

DIR - OT (direction - other task)
SO (direction - self-directed)

Default Values:

tmpcb TMPCB built automatically

'"fASKIO - no change

DIR OT (other task)

Programming Considerations:

If tmpcb is specified, the function is set according to OIR. If
a TASKID is specified, it is moved into the tmpcb; if it is not
speci.fied, it is assumed to be in the tmpcb. The TASKIO must be
left-justified in an 8-byte field padded with blanks and fullword
boundary aligned. If a tmpcb is not specified, it is
automatically built and set as previously stated. The frMPCB
macro can build the tmpcb.

R14 points to the tmpcb; RlS modifies it. Neither register can
be used for addressing.

5-20 48-006 FOO R02

l MSGRING

5.13 BUILD A MESSAGE RING OR CHAIN OF BUFFERS (MSGRING)

The MSGRING macro builds a ring or chain of 76-byte buffers and
sets the link addresses. In a ring buffer, the link address of
the last buffer points to the first buffer. In a chain buffer,
the link address of the last buffer is set to O. Any number of
buffers can be built.

Format:

[symbol] MSGRING [number][,code][,LEN=]

Parameter Values:

number

code

integer constant (number of 76-byte buffers)

R (ring buffers)
C (chain buffers)

LEN :: integer constant (length of buffer plus link)

Default Values:

code

number

LEN

48-006 FOO R02

R

1

76 (for 32·-bit assembl ies)
74 (for 16-bit assemblies)

5-21

I QUEPARM

5.14 ADD A PARAMETER TO THE TASK QUEUE (QUEPARM)

The QUEPARM macro adds a user-specified parameter to the directed
task's task queue. The directed task must set up the UDL to
receive a parameter with a SETUDL macro and enable traps with a
LTSW macro.

Format:

[symbol] QUEPARM [tmpcb][,TASKID=][,DIR=][,PARM=]

Parameter Values:

tmpcb addrx (address or pointer to PCB)
(reg)

TASKID = addrx (address or pointer to TASK[O)
(reg)

OIR = OT (direction - other task)
:: so (direction - self-directed)

PARM = absolute address expression
:: (reg) - register containing parameter

Default Values:

tmpcb TMPCB built automatically

TASKID :: no change

DIR = OT (other task)

PARM - no change

5--22 48-006 FOO R02

Programming Considerations:

If tmpcb is specified, the function is set according to OIR. If
a TASKID is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The 'rASKID must be
left-justified in an 8-byte field padded with blanks and fullword
boundary aligned. If a tmpcb is not specified, it is
automatically built and set as previously stated. jfhe TMI?CB
macro can build the tmpcb.

R14 points to the tmpcb; R15 modifies it. Neither register can
be used for addressing.

Example:

SETUDL TSKN=(TCQ,addrx),TSKQ=addrx

L'rsw TCQ, 'rSKE

48-006 FOO R02 5--23

RECVLU

5.15 RECEIVE A LOGICAL UNIT FROM A TASK (RECVLU)

The RECVLU macro tJransfers the LU currently ass igned to the
directed task to the calling task and then closes the LU assigned
to the directed task. The calling task's LU must not be
assigned. The directed task must be in a dormant or paused wait
state or suspended by a SUSPEND macro.

Format:

[symbol] RECVLU [tmpcb][,TASKID=][,DIR=][,CLU=][,OLU=]

Parameter Values:

tmpcb addrx (address or pointer to PCS)
(reg)

TASKID addrx (address or pointer to TASKID)
.:: (reg)

DIR = OT (direction - other task)
= SD (direction - self-directed)

CLU = absolute byte expression
= (reg) - calling LU

DLU = absolute byte expression
= (reg) - directed LU

Default Values:

tmpcb TMPCB built automatically

TASKID = no change

OIR OT (other task)

CLU no change

DLU = no change

5-24 48-006 FOO R02

Programming Considerations:

If tmpcb is specified, the function is set according to OIR. If
a TASKIO is specified, it
specified, it is assumed to
left-justified in an 8-byte
boundary aligned. If
automatically built and set
macro can build the tmpcb.

is moved into the tmpcb; if it is not
be in the tmpcb. The 'rASKID must be
field padded with blanks and fullword
a tmpcb is not specified, it is
as . prey ious ly stated. The 'rMPCB

R14 points to the tmpcb; R1S modifies it. Neither register can
be used for addressing.

48-006 FOO R02 5-25

I RELEASE

5.16 RELEASE A TASK (RELEASE)

The RELEASE macro releases the directed task, currently suspended
by a previous SUSPEND macro, by taking it out of the task wait
state. Once released, the directed task continues to execute.
If the task is not in another wait state, executing occurs with
the instruction that follows the instruction executed before the
task was suspended.

Format:

[symbol] RELEASE [tmpcb][,TASKID=][,DIR~]

Parameter Values:

tmpcb addrx (address or pointer to PCB)
(reg)

TASKID - addrx (address or po int'er to TASKIO)
(reg)

DIR OT (direction - other task)
= SD (direction - se lf --d irected)

Default Values:

tmpcb TMPCB built automatically

TASKID = no change

DrR OT (other task)

Programming Considerations:

If tmpcb is specified, the function is set according to OIR. If
a TASKID is specified, it is moved into the trnpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKID must be
left-justified in an 8-byte field padded with blanks and fullword
boundary al igned. I f a tmpcb is not spec if ied, it is
automat ically bu i it and set as prev ious ly stated. The f['MPCB
macro can build the trnpcb.

Rl4 points to the trnpcb; R15 modifies it. Neither register can
be used for addressing.

5-26 48-006 FOO RD2

RUN

5.17 RUN A TASK (RUN)

jrhe RUN macro is a combination of the LOAD and START macros; it
loads a task into memory and causes that loaded task to be
executed. Both functions are performed with a single call.
Refer to the LOAD macro explained in Section 5.7 and the START
macro explained in Section 5.22.

Format:

[symbol] RUN [tmpcb] [,TASKIO=·] [,OIR:] [,LU=] [,OPT~]
[,SIZE=][,TOO=][,INT=][,SAD~]
[,SOP=]

Parameter Values:

tmpcb

TASKIO

OIR

LU

OPT

SIZE

TOO

addrx (address or pOinter to PCB)
(reg) - address or pointer to PCB

= addrx (address or pointer to TASKIO)
= (reg)

= OT (direction - other task)
= SO (direction - self-directed)

- absolute byte expression
(reg) - logical unit

- S (start option)
= 0 (delay start)

CM (intertask communication)
RP (subtask reporting)

= S2 (segment size increment)
PR (load and proceed)

= ET (prevent E-task load)
= CT (intertask control)

RL (roll)
NO (no options)

= (reg) - register containing options

= absolute address
(reg) - increment size

- time expression (time of day to start)
= (reg) - register containing the time of day

in seconds from midnight. See Section 6.5.

48-006 FOO R02 5-27

INT

SAD

SOP

Default Values:

tmpcb

rrASKIO

DIR

OPT

TOO

SIZE

TOO

INT

SAD

SOP

= time expression (interval of delay start)
(reg) - register containing interval in mil
liseconds of delay to start

addrx (task starting address)
(reg) - register containing the starting ad
dress

addrx (address of start options field)
(reg) - pointer to start options field

= TMPCB built automatically

= no change

- aT (other task)

start immediate (no load options)

= no change

no change

no change

no change

no change

no change

Progranuning Considerations:

If tmpcb is specified while the directed task is being loaded,
the function is set according to OIR. If a TASKIO is specified,
it is moved into the tmpcbi if it is not specified, it is assumed
to be in the tmpcb. The TASKIO must be left-justified in an
a-byte field padded with blanks and fullword boundary aligned.
If tmpcb is not specified, it is automatically built and set as
previously stated. The TMPCB macro can build the tmpcb.

Rl4 points to the tmpcbi Rl5 modifies it. Neither register can
be used for addressing.

5-28 48-006 FOO R02

The OPT parameter must specify S, or 0, or both. If specified,
Sand 0 must be enclosed in parentheses and separated by a comma
in either order. To leave t.he par ameter block (set by a frMPCB
macro) unchanged, specify a null parameter (OPT=,). If OPT is
omitted, an immediate start is requested. If OPT=,s is specified,
SOP must be coded or a valid start option address must be
specified in the parameter block. If OPT=D is specified, 'roo or
INT, but not both, must be specified. See the GEN'rIME macro
(Section 6.4) for a definition of a time-expression. Refer to
the LOAD and START macros, Sections 5.7 and 5.22, respectively,
for a more detailed explanation.

48-006 FOO R02 5-29

SENDLU

5.18 SEND A LOGICAL UNIT TO A TASK (SENDLU)

The SENDLU mac~o sends to the directed taek the LU currently
assigned to the calling task and then closes the LU assigned to
the calling task. The directed task must not have the LU
currently assigned and must be in the dormant or paused wait
state or suspended by a SUSPEND macro.

Format:

[symbol] SENDLU [tmpcb] [,rrASKID~] (,DIR~] (,CLU-=] (,OLU=]

Parameter Values:

tmpcb

rrASKID

DrR

CLU

DLU

addrx (address or pointer to PCB)
(reg)

= addrx (address or pointer to TASKID)
(reg)

OT (direction - other task)
= SO (direction - self-directed)

= absolute byte expression
(reg) - calling LU

= absolute byte expression
(reg) - directed LU

Default Values:

tmpcb TMPCB built automatically

'rASKID = no change

OIR OT (other task)

CL .. U = no change

DLU = no change

5-30 48--006 FDO R02

Programming Considerations:

If tmpcb is specified, the function is set according to OIR. If
a trASKID is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be i.n the tmpcb. frhe trASKID must be
left-justified in an 8-byte field padded with blanks and fullword
boundary aligned. If a tmpcb is not specified, it is
automatically built and set as previously stated. trhe trMPCB
macro can build the tmpcb.

R14 points to the tmpcb; R15 modifies it. Neither register can
be used for addressing.

48-006 FOO R02 5-31

I SENDMSG

5.19 SEND A MESSAGE (SENDMSG)

The SENDMSG macro sends a message from the calling task to the
directed task by transferring the message to the directed task·s
message buffer and by putting an item on the directed task's task
queue. The message must be 64 bytes long and fullword boundary
aligned. Before sending the message to the directed task, the
system appends the calling task's a-byte TASKID to the beginning
of the message. The message is sent in binary format and image
mode.

Format:

[symbol] SENDMSG [tmpcb] [,TASKIO=] [,OIR:] [,MSGc,,"]

Parameter Values:

tmpcb

TASKID

orR

MSG

addrx (address or pointer to PCB)
(reg)

- addrx (address or pointer to TASKID)
(reg)

OT (direction - other task)
SO (direction - self-directed)

addrx (address or pointer to message buffer)
(reg) - address or pointer to message buffer

Default Values:

tmpcb TMPCB built automatically

TASKID = no change

OIR OT (other task)

MSG = no change

5-32 48-006 Faa R02

Programming Considerations:

If tmpcb is specified, the function is set according to OIR. If
a TASKID is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. Irhe 'rASKID must be
left-justified in an 8-byte field padded with blanks and fullword
boundary aligned. If a tmpcb is not specified, it is
automatically built and set as previously stated. The IfMPCB
macro can build the tmpcb.

R14 points to the tmpcb; Rl5 modifies it. Neither register can
be used for addressing.

Example:

The directed task must accept a message by setting up the UDL
with a SETUDL macro and enable message traps with a LTSW macro:

SE/fUDL IrSKN=(PMQ,addrx) ,TSKQ;.~addrx

Lfrsw PMQ, frSKE

48-006 FOO R02 5-33

SETUDL

5.20 INITIALIZE OR MODIFY A USER DEDICATED LOCATION (SETUDL)

The SETUDL macro dynamically sets or modifies the user dedicated
locations (UDLs) with addresses of user-supplied trap routines
and new task status words to service the various traps.

Format:

[symbo 1] SETUDL [rrSKQ=] (, MSGR=] (, PWRN=] (, ARFN=]
(,S14N=][,TSKN=](,MAFN=][,IITN=)

Parameter Values:

TSKQ = addrx (task queue address)
(reg) - pointer to task queue

~ integer constant (task queue size)

MSGR = addrx (message ring address)
(reg) - pointer to message ring
integer constant (number of 76-byte buffers
in message ring)

PWRN = addrx (power restore address; new TSW)
-= (code, ... ,code,addrx) power restore new TSW

ARFN = addrx (arithmetic fault address; new TSW)
(code, ... ,code,addrx) arithmetic fault new TSW

S14N = addrx (SVC 14 address; new TSW)
(code, ... ,code,addrx) SVC 14 new TSW

rrSKN = addrx (task queue address; serv ice rout ine trSW)
(code, ... ,code,addrx) - task queue service
routine TSW

MAFN = addrx (memory access fault address; new TSW)
= (code, ... ,code,addrx) - memory access fault new

rrsw

IITN = addrx (illegal instruction address; new TSW)
(code, ... ,.code,addrx) - illegal instruction new
'rsw

5-34 48-006 FOO R02

where code is any of these stales:

w'r
PWRE
ARFE
S14E
TSKE
MAFE
I I'rE
SUQ
DIQ
rrcQ
TMQ
LODQ

trap wait
power restore trap enable
arithmetic fault trap enable
SVC 14 trap enable
task queue service trap enable
memory access fault trap enable
illegal instruction trap enable
enable subtask queue entry
enable device interrupt task queue entry
enable task call task queue entry
enable task message task queue entry
enable completion of load and proceed task queue
entry
enable I/O completion task queue entry
enable time out completion task queue entry

IOQ
TMCQ
I IrQ enable SVC 15 buffer transfer, termination or wait

I/O task queue entry

Programming Considerations:

The SETUDL macro can initialize or modify the UDL. If the
operand of the TSKQ parameter is an address or register pointer,
assume a DLIST assembler instruction built the actual queue. The
address of the DLIST assembler instruction is stored in the UDL.
If an integer constant is specified, DLIST is automatically
generated and branched around. The DLIST address is stored in
the UDL. The program can access this address by:

LOA Rl,UDL.TSKQ
R'rL R2, 0 (Rl)

If the parameter of the MSGR pointer specifies an address or a
register pOinter, assume that a MSGRING macro built the message
ring. That value is stored in the UDL. If an integer constant
is specified, that number of buffers is built into a ring,
branched around, and the first buffer's address is stored in the
UDL. The buffers' link fields are set into a ring.

I f the operand of any PWRN, ARFN, Sl4N, 'rSKN, MAFN, I'r'rN
parameter is an address, assume the list form of the LTSW macro
built the new TSW and that the TSW is stored in the UOL. If the
parameter is spec if ied as (code, ... code, addr x), a 'rsw is bu i lt in
R14 and Rl5 and stored in the UDL.

48-006 FOO R02 5-35

SIMINT

5.21 SIMULATE AN INTERRUPT ON A TRAP-GENERATING DEVICE (SIMINT)

The SIMINT macro simulates an interrupt on a specified
trap-generating device connected to the directed task. The THAW
macro must have been issued to the directed task. If interrupts
are disabled, there is no effect. The system ensures that the
trap-generating device and the directed task are connected. It
then simulates interrupts.

Format:

[symbol] SIMINT [tmpcb] [,frASKID=] [,DIR=] [,DMN=-]

Parameter Values:

tmpcb

TASKID

orR

OMN

addrx (address or pointer to PCB)
(reg)

= addrx (address or pOinter to TASKIO)
(reg)

= OT (direction - other task)
SO (direction - self-directed)

addrx (address or pointer to 4-byle
device mnemonic)
(reg) - address or pointer to 4-byte
device mnemonic

Default Values:

tmpcb TMPCB built automatically

TASKID no change

orR OT (other task)

OMN no change

5-36 48-006 FOO R02

Programming Considerations:

If ~mpcb is specified, the function is set according to orR. If
a TASKID is specified, it is moved into the tmpcb; if i~ is not
specified, it is assumed to be in the tmpcb. The TASKID must be
left-justified in an a-byte field padded with blanks and fullword
boundary aligned. If a tmpcb is not specified, i~ is
automatically built and set as previously slaled.

R14 pOints ~o the tmpcb; R15 modifies it. Neilher register can
be used for addressing.

48-006 FOO R02 5-37

START

5.22 START EXECUTION OF A TASK (START)

'rhe START macro causes a task, which has been loaded into memory,
to be executed. Options enable a delayed start, a start at a
specific time of day or after an interval, a start at a specific
address, and the passing of start options to the task.

Format:

[symbol] START [tmpcb][,TASKID=][,DIR=][,OPT=]
[,TOD=][,INT=][,SAD=][,SOP=]

Parameter Values:

5-38

tmpcb

TASKID

OIR

addrx (address or pointer to PCS)
(reg)

addrx (address or pointer to TASKID)
(reg)

OT (direction - other task)
SD (direction - self-directed)

OPT = S (start options)

TOO

o (delay start)

time expression (time of day to start)
(reg) - register containing time of day in
seconds from midnight. See Section 6.5.

INT = time expression (interval of delay to start)

SOP

(reg) - register containing interval in milli
seconds of delay to start. See Section 6.5.

addrx - (task starting address)
(reg) - register containing starting address

addrx - address or pointer to start options field
(reg) - address or pointer to start options field

48-006 FOO R02

Default Values:

tmpcb TMPCB built automatically

TASKID no change

OIR OT (other task)

OPT start inunediate

TOD no change

INT no change

SAD no change

SOP no change

Programming Considerations:

If tmpcb is specified, the function is set according to OIR. If
a TASKIO is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKIO must be
left-justified in an 8-byte field padded with blanks and fullword
boundary aligned. If a tmpcb is not specified, it is
automat ically bu i lt and set as prev ious ly stated. The rrMPCB
macro can build the tmpcb.

R14 points to the tmpcb; Rl5 modifies it. Neither register can
be used for addressing.

The OPT parameter must specify S, or 0, or both. If specified,
Sand 0 must be enclosed in parentheses and separated by a comma
in either order. To leave the parameter block (which was set by
a 'rMPCB macro, or some other macro) unchanged, spec ify a nu 11
parameter (OPT=,). If OPT is omitted, an immediate start is
requested. If OPT:S is specified, SOP must be coded or a valid
start option address must be specified in the parameter block.
If OPT=D is specified, TOO or INT, but not both, must be
specified. See the Gft::N'rIME macro (Section 6.4) for a definition
of a time-expression.

• start immediate - no start options

The OPT par ameter mus t be om it ted. The SAD pa.r amet.er
specifies the directed task starting . address. If the
starting address is 0, the task is started at the address
established at Link time.

48-006 FOO R02 5-39

• sta.rt immediate with start options

start options, optionally specified in certain languages
and utility programs at execution time, are also included
as run-time information when the directed task starts
execution. When the start function is executed, start
options located at the address specified in the parameter
block are stored into the directed task's user top of
program (UTOP) area. If sufficient memory is not available
between UTOP and core top of memory (CTOP), the macro is
rejected and an error code is stored in the parameter
block's error status field. The task should then be
reloaded into a larger segment using the SIZE parameter of
the LOAD macro. Refer to Section 5.7 for a detailed
explanation of the LOAD macro.

The user-specified start options must be loaded on a
fullword boundary. The maximum length of start options are
defined at SYSGEN time through the CMDLENGTH option. If
the start options' length is greater than that length
specified at SYSGEN time or a carriage return is present
within start options, only those characters up to the
maximum number or the carriage return are stored in the
task's UTOP area.

NOTE

The start options field address is
also the message buffer field
address in the parameter block.
crhe contents of this field are
always assumed to be the start
option address when the start
function is specified.

• delayed start

5,-40

The directed task starts execution after a user-specified
interval elapses. The interval can be specified as time of
day (TOO) or an interval in milliseconds (INT). If neither
TOO or INT are specified, the interval is assumed to be in
the parameter block.

Before the start function can be executed for the directed
task, bytes 192 through 251 of the UDL must be reserved for
the delayed start function's use.

When the start function is executed, the directed task is
immediately placed into a time wait state. When the
interval elapses, the directed task starts execution.

48-006 FOO R02

• delay start function with start options

When this function is specified, the directed task starts
execution after a user-specified interval elapses. This
interval, which is located in the parameter block's
increment of time and count fields, can be specified as
time of day or interval timing interval.

Before this start function can be executed for the directed
task, bytes 192 through 251 of the UDL must be reserved for
the delay start function's use.

When this start function is executed, the start options,
located at the address specified in the parameter block,
are stored into the directed task's UTOP area and the
directed task is immediately placed into a time wait sLate.
If sufficient memory is not available between UTOP and
CTOP, this call is rejected and an error code is stored in
the parameter block's error status field. The task should
then be reloaded into a larger segment using the SIZE
parameter of the LOAD macro. Refer to Section 5.7
deta i 1 ing the [.. OAD macro.

The user-specified start options must be located on a
fullword boundary. The maximum length of the start options
is defined at SYSGEN time through the CMDI..ENGTH option. If
the length of the start options is greater than that length
specified at SYSGEN time or a carriage return is present
within the start options, only those characters up to the
maximum number or the carriage return are stored in the
task's UTOP area. Since the start options' field address
is also the message buffer field address in the parameter
block, this field's contents are always assumed to be the
start options address when the start function is specified.
When the user-specified interval elapses, the directed task
starts execution.

48--006 FOO R02 5-41

I SUSPEND

5.23 PLACE A TASK IN THE WAIT STATE (SUSPEND)

The SUSPEND macro places the directed task in the task wait
state. The directed task remains in the wait state until another
task releases it. If the task is self-directed, it causes the
calling task to suspend itself. To release the calling task from
the task wait state, another task must be available to
subsequently release it.

Format:

[symbol] SUSPEND (tmpcb](,TASKID=][,DIR=]

Parameter Values:

tmpcb addrx (address or pOinter to PCB)
(reg)

TASKID = addrx (address or pOinter to TASKIO)
(reg)

OIR OT (direction - other task)
=- SO (direction - self-directed)

Default Values:

tmpcb TMPCB built automatically

TASKID no change

OIR = OT (other task)

Programming Considerations:

If tmpcb is specified, the function is set according to orR. If
a TASKIO is specified, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKID must be
Iefl'-justif ied in an 8-byte field padded with blanks and fullword
boundary al igned. I f a tmpcb is not spec if ied, it is
automatically built and set as previously stated. The TMPCB
macro can build the tmpcb.

R14 points to the tmpcb; R15 modifies it. Neither register can
be used for addressing.

5-42 48-006 FOO R02

THAW

5.24 ENABLE INTERRUPTS ON A CONNECTED TRAP-GENERATING DEVICE
(THAW)

The THAW macro ensures that the trap-generating device and the
directed task are connected. Refer to the CONNECT macro detailed
in Section 5.5. The THAW macro then enables interrupts. The UDL
can be established by using the SETUDL macro. Interrupts are
disabled when the directed task terminates or if an UNCONN or
FR}t~EZE macro is directed to the task. If a l'rHAW macro is issued
when interrupts are already enabled, the macro has no effect.

Format:

[symbol] IrHAW [tmpcb] [,TASKIO=] [,OIR=] [,DMN=] [, PARM:]

Parameter Values:

tmpcb

'rASKID

addrx (address or pointer to PCS)
(reg)

addrx (address or pointer to TASKIO)
(reg)

orR = OT (direction - other task)
SO (direction - self-directed)

OMN = addrx - address or pointer to 4-byte
device mnemonic

PARM = absolute address expression
(reg)- register containing parameter

Default Values:

tmpcb TMPCB built automatically

'rASKID no change

DrR - OT (other task)

DMN no change

PARM no change

48-006 FOO R02 5-43

Programming Considerations:

If tmpcb is specified, the function is set according to OIR. If
a crASKID is spec if ied, it is moved into the tmpcb; if it is not
specified, it is assumed to be in the tmpcb. The TASKIO must be
left-justified in an a-byte field padded with blanks and fullword
boundary aligned. If a tmpcb is not specified, it is
automatically built and set as previously stated. The irMPCB
macro can build the tmpcb.

R14 points to the tmpcbj R15 modifies it. Neither register can
be used for addressing.

5-44 48-006 FDa R02

TMPCB

5.25 CONSTRUCT A TASK PARAMETER CONTROL BLOCK (TMPCB)

'rhe rrMPCB macro constructs the parameter block for task
management macros. It can be constructed alone or as part of the
expansion of other task management macros.

Format:

[symbol] 'rMPCB ['rASKIO=] [,DIR=] [,OPT:-] [,PRI=] [,DMN=]
[,PARM=][,L(J=][,SIZE=][,MSG=][,SAD=]
[,TOO=][,INT=][,CLU=][,OLU=][,SOP=]

Parameter Values:

TASKID 'quoted string' (the task's name specified as
1- to a-alphanumeric characters, the first
of which must be a letter)

OIR = OT (other task)

OPT

= SD (direction - self-directed)

CM
RP

=- SZ
PR

= r~T

-- CT
= RL

S
D

(intertask communication)
(subtask reporting)
(segment size increment)
(load and proceed)
(prevent E-task load)
(intertask control)
(roll)
(start options for LOAD)
(delayed start)

PRI abs byte exp (priority)

DMN 'quoted str ing' (one"- to four-character device
mnemonic)

PARM addr (address of para.meter to be queued)

LU - abs byte exp (logical unit number)

SIZE - abs addr exp (size increment)

MSG addr (message buffer address)

SAD addr (start address)

48-006 FOO R02 5-45

TOO -= time expression (time of day to start)

INT = time expression (increment of time to start)

CLU abs byt.e exp (calling LU)

DLU :: abs byt.e exp (directed LU)

SOP addr . (address of start options)

5-46 48·-006 FOO R02

TEXIT

5.26 EXIT TRAP EVENT SERVICE ROUTINE (TEXIT)

A task event service routine is executed as a result of a task
event trap. To terminate the execution of a task event service
routine, issue the TEXIT macro.

Format:

[symbol] TEXIT [PCB=] [FORM=]

Parameter Values:

PCB

FORM

addrx (address or pointer to parameter control
block)
(reg) - address or pointer to parameter control
block

L (list form - only build PCB)

Programming Considerations:

When the jI'EXIT macro is issued, the following sequence takes
place:

• TSW location that was saved at the time of interruption is
restored.

• Registers are restored according to the selected Link options
NONE, ALL, 'rEQSAVE.

48-006 FOO R02 5-47

UDLS

5.27 GENERATE A USER DEDICATED LOCATION STRUCTURE AND EQUATES
(UDLS)

The UDLS macro generates the STRUC and EQUs for user dedicated
locat ions (UDL).

Format:

blank UDLS blank

structure Generated:

5-48

UOLS
UDL.CTOP
UDL.UTOP
UOL.UBOT

UDL.TSKQ

UDL.MSGR
UDL.SVl4

UDL.PWRO
UDL.PWRN
UDL.ARFO
UOL.ARFN

UOL.S140
UDL.Sl4N
UDL.TSKO
UDL.TSKN
UDL.MAFO
(JDL.MAFN
UOL. I ITO
UOL. IITN

UOL.AIDS

STRUC
os 4
OS 4
OS 4
os 4
os 4
OS 4
os 4
os 4
OS 16
OS 8
os 8
os 8
os 8
os 8
os 8
OS 8
OS 8
os 8
OS 8
os 8
os 8
os 8
os 8
OS 16*2
OS 64
ENDS

CTOP
UTOP
UBOT
RESERVED
A(TASK QUEUE)

A(MESSAGE RING)
A(SVC 14 ARG)
RESERVED
POWER RESTORATION OTjD TSW
POWER RESTORATION NEW TSW
ARITHMETIC FAULT OLD TSW
ARI'rHMETIC FAULT NEW rrsw

SVC 14 OLD TSW
SVC 14 NEW TSW
TASK QUEUE SERV I CE OLD 'rsw
TASK QUEUE SERVICE NEW TSW
MEMORY ACCESS FAULT OLD TSW
MEMORY ACCESS FAULT NEW TSW
ILLEGAL INSTRUCTION OLD TSW
ILLEGAL INSTRUCTION NEW TSW
RESERVED
RESERVED FOR AIDS

48-006 FOO R02

Equates Generated:

*
*
*

'rASK STATUS WORD EQUA'rr~S

'rsw. WTM EQU
'rsw . WTB EQU
TSW . PWRM EQU
'rsw. PWRB EQU
TSW.AFM EQU
TSW.AFB EQU
TSW.S14M EQU
TSW.S14B EQU
TSW.TSKM EQU
TSW.TSKB EQU
TSW.MAFM EQU
TSW.MAFB EQU
TSW. IITM EQU
TSW. I ITB EQU
TSW.SUQM EQU
TSW.SUQB EQU
TSW.DIQM EQU
TSW.DIQB EQU
TSW.TCM EQU
TSW.TCB EQU
TSW.PMM EQU
(rsw. PMB EQU
TSW.LODM EQU
TSW.LODB EQU
'rsw. 10M EQU

'rsw. lOB EQU
TSW.TMCM EQU
TSW.TMCB EQU
TSW.ITM EQU
TSW.ITB EQU
(rsw. LOC EQU

Y'SOOOOOOO' TRAP WAIT
o
Y'40000000' POWER RESTORATION TRAP ENABLE
1
Y' 20000000' ARITH FAULT 'rRAP ENABLE
2
Y' 10000000' SVC 14 rI'RAP ENABLE
3
Y , OSOOOOOO ' TASK QUEUE SERV ICE 'rRAP ENABLE
4
Y' 04000000' MEMORY ACCESS FAULT 'rRAP ENABLE
5
Y' 02000000' ILLEGAL INSTRUCTION 'rRAP ENABLE
6
Y'OOOlOOOO' SUBTASK QUEUE ENTRY ENABLE
15
Y'00008000' QUEUE ENTRY DEVICE INTERRUPT
16
Y' 00004000 • QUEUE EN'rRY 'rASK CALL
17
Y' 00001000 ' QUEUE EN'rRY pg~~R TASK MESSAGE
19
Y'00000800' LOAD PROCEED QUEUE ENTRY ENABLE
20
Y'00000400' QUEUE ENTRY I/O PROCEED

TERMINATION
21
Y' 00000200' QUEUE EN'rRY TIMEOUT COMPLETION
22
Y'OOOOOlOO' ITAM BIT
23
4 DISPLACEMENT OF LOC FULLWORD

NOTE

UDLS is automatically generated in the
expansion of the FETPTR macro.

4S-006 FOO R02 5-49

UNCONN

5.28 DISCONNECT A TRAP-GENERATING DEVICE (UNCONN)

The UNCONN macro disconnects a specified DMN that is connected to
the directed task. The system first ensures that the
trap-generating device and directed task are connected. It then
disables all interrupts and disconnects the device from the
directed task. The device can now be connected to another task.

Format:

[symbol] UNCONN [tmpcb] [,TASKIO:] [,DIR=][,DMN=]

Parameter Values:

tmpcb addrx (address or pointer to PCB)
(reg)

'rASKID = addrx (address or pointer to TASKIO)
(reg)

OIR = orr (direction .- other task)
SO (direction - self-directed)

DMN addrx (address or pointer to 4-byte device
mnemonic)
(reg)

Default Values:

tmpcb TMPCB built automatically

TASKIO = no change

DIR - OT (other task)

DMN no change

5-50 48-006 FOO R02

Programming Considerations:

If tmpcb is specified, the function is set according to OIR. If
a TASKIO is specified, it is moved into the tmpcb~ if it is not
specified, it is assumed to be in the tmpcb. The IrASKIO must be
left-justified in an a-byte field padded with blanks. No
boundary alignment is required. If a tmpcb is not specified, it
is automat ically bu i It and set as prev lous ly stated. The -rMPCB
macro can build the tmpcb.

Rl4 points to the tmpcb; Rl5 modifies it. Neilher register can
be used for addressing.

48-006 FOO R02 5-51

CHAPTER 6
TIMER MANAGEMENT MACROS

6.1 INTRODUCTION

Timer management macros can cancel time interval requests,
schedule traps cyclically at different times, read the remaining
time for an interval to elapse, generate a time interval, build
a table of time intervals, schedule an interrupt by adding a
parameter to a task queue when a specified interval has elapsed,
and wait for a specific interval to elapse.

'rhe formats, parameter values, default values,
parameters, programming considerations, examples,
messages are supplied for each timer management macro.

required
and error

Section 1.4, Parameter
lowercase abbreviations
timer management macros.

Field
that

Value Mnemonics, explains the
appear in the parameter fields of

48-006 FOO R02 6-1

I CANTlME

6.2 CANCEL TIME INTERVAL REQUEST (CANTIME)

The CANTIME macro cancels all previous interval requests that
match the increment of time specified in OPT and the parameter
located in PARM.(PARM is the parameter associated with the
interval to be cancelled.) If the interval to be cancelled is
part of a cyclic group, the entire time cycle is cancelled.

Format:

[symbol] CANTIME [PARM=][,OPT=][,PCB=][,FORM=]

Parameter Values:

PARM

oP'r

PCB

FORM

absexp
(reg)

TOO (code to indicate time-of-day interval
to be cancelled)
INT (code to indicate interval to be cancelled)

addrx (address or pointer to parameter
control block)
(reg)- address or pointer to parameter
control block

L (list form - only build PCB)

The possible condition codes are:

• A condition code of 0 indicates normal termination.

• A condition code of 4 indicates that no previous interval
request exists that matches the provided parameter.

Example:

CYCT IME NUMB INT=3, 'rABLE=-ALPHA, OPT= INT

CANTIME PARM~2,OPT=INT CANCEL THE GROUP

ALPHA 'rIME'rBL (10,1), (20,2), (30,3) ,OPT=INT

6-2 48·-006 FOO R02

I CYCTlME

6.3 SCHEDULE TRAPS CYCLICALLY AT DIFFERENT TIMES (CYCTIME)

(rhe CYC'rIME macro repetitively adds items to the calling task's
queue at user-defined intervals within a specific time cycle
until the task terminates or issues a CANTIME macro specifyi.ng
any parameter in the table. 'rhe user·-def ined intervals within a
specific time cycle must be specified as all TOO intervals or all
INT intervals.

Format:

[symbol] CYCTIME [NUMBINT=] [,TABLE=][,OPT=][,PCB=]
[, FORM=]

Parameter Values:

TABLE

oP'r

abs halfword exp (number of intervals
defined in the table)
(reg) - register containing number of
intervals defined in the table

addrx (address or pointer to the table
of intervals)
(reg) - address or pointer to the table
of intervals

TOO (table of intervals in seconds from
midnight)

INT (table of intervals in milliseconds
from now)

PCB addrx (address or po.inter to parameter
control blo(:k~

FORM

-. (reg) - address or po.inter to paramet.er
control block

L (list form - only build PCB)

Programming Considerations:

The table can be built with the TIMETBL macro. The option in the
TIMETBL macro must agree with the option in the CYCTIME macro;
that is, both must be TOO or both must be INT. Section 6.6
details the TIMETBL macro.

48-006 FOO R02 6-3

None of the intervals can be zero. If the intervals are
specified as T90, each interval must minimally be one greater
than the preced ing i.nterval.

The time cycle, in which the user-defined intervals must occur,
differs for time-of-day intervals and interval timing intervals.
The cycle for time-of-day intervals ranges from the day on which
the first interval occurs through and including the day on which
the last interval ,occurs. The time cycle is the sum of days on
which the intervals occur. The time period for interval timing
is the sum of intervals in the table.

Example:

TODTABLE TIMETBL (15:00:00,1),(1:15:00:00,2),
(2:15:00:00,3),(2:16:00:00,4),OPT=TOD

The intervals are:

15:00 hours of current day
15:00 hours of second day
15:00 hours of third day
16:00 hours of third day
15:00 hours of fourth day

The time cycle is three days.

I NrrrrASLE 'r IMEfrBL (: 18, 1) , (: 36,2) , OPT= INT

The first interval is 18 seconds or 18000 rns.
The second interval is 36 seconds or 36000 rns.
The third interval is 18 seconds or 18000 rns.

The time cycle is 54 seconds or 54000 ms.

48-006 FOO R02

I GENTIME

6.4 GENERATE A GENTIME INTERVAL (GENTIME)

The GENTIME macro converts a time expression to seconds from
midnight or milliseconds from now; but, it does not convert a
time expression to both. If INT is specified and OPT is omitted,
bits 0 through 3 of the word generated are set to 0001. If INT
is specified and OPT is not omitted, bits 0 through 3 are not
set. jrhe macro generates a CAL DC instruction at the symbol.

Format:

[symbol] GENTIME [TOD=][,lNT=][,OPT=]

Parameter Values:

TOO time expression (specifies the time of day)

INT : time expression (specifies the time interval)

OPT any character (to prevent bits 0 through 3 from
being set)

Programming Considerations:

The time expression is expressed as:

DAY: HOUR: MINUTE: SECOND ft FRACT I ON·-OF -SECOND

The expression is evaluated from right to left. If TOO is
specified, the macro converts it to seconds from midnight and the
fraction-of-second is ignored. If INT is specified, the time is
converted to milliseconds.

48-006 FOO R02 6-5

Example:

6-6

GENTIME
GENTIME
GEN'rIME
GENTIME
GENTIME
GEN'rIME
GENTIME
G:r~NT IME
GENTIME
GENTIME
GEN'rIME
GEN'rIME

IN'r=.005
INT=.05
I Nfr= . S
IN'r= 1.5
IN'f=2: 0.5
'rOD=-. 5
TOD=25
TOD=l:O:O
TOD=60:
TOD=2: :
'rOD=-120:
TOD=-3: : :

5MS
50MS

SOOMS
lSOOMS

120500MS
MIDNIGHT
25 SECONDS AFTER MIDNIGHT
lAM
lAM
2AM
2AM
3 DAYS FROM MIDNIGHT

48,,-006 FOO R02

I READTIME I

6.5 READ TIME REMAINING FOR AN INTERVAL TO ELAPSE (READTIME)

The READ'rIME macro reads the curJ:ent remain 1.ng t tme assoc iated
with the parameter in PARM. PARM is the parameter associated
with the desired interval when the interval was started. The
time is returned in 4 bytes past the beginning of the PCB that
R14 points to ..

Format:

[symbo l] READ'r IME [PA.RM=] [, oP'r=] [, PCB=-] [, FORM:.-]

Par ameter Va. lues :

PARM absexp
(reg)

OPT r TOO (time of day returned in seconds from

PCB

FORM

midnight)
INT (time returned in milliseconds from now)

addrx (address or poi.nter to parameter
cont,rol block)
(reg) - address or pointer to parameter
conlrol block

L (list form - only bui.ld PCS)

Programming Considerations:

If the interval was scheduled with a CYCTIME macro and more than
one interval in the table had t.he same parameter associated with
it, the current time during the desired interval cannot be the
time that is read. Each interval should have a unique parameter
associated with it. 'rhe condition code is set as:

• A condition code of 0 indicates normal termination.

• A condition code of 4 indicates that no interval is associated
with PARM.

48-006 FOO R02 6-7

Example:

TRAPTlME
STA

LOA
READTIME

INT=4,PARM=l
l5,HOr.D

5,HOLD
PCB=(5),PARM=l

Four second interval
Hold pointer to PCB

Recover pointer to PCB
Read the time

Since the same parameter block used in the TRAPTIME macro reads
the time, it is returned into the parameter block in the same
form.

6-8 48-006 FOO R02

I TIMETBL

6.6 BUIID A TABLE OF TIME INTERVALS FOR CYCTIME (TIMETBl..)

The TIMETBL macro builds a table of time intervals and associated
parameters for use with the CYCTIME macro. Refer to the GENTIME
macro, Section 6.4, for a definition of a time expression.

Format:

(symbol] TIMETBL (interval,parm) ... ,OPT=

Parameter Values:

int.erval

parm

time expression (the int.erval of time)

absolute expression (the parameter associated
wit.h the interval)

OPT : TOO (interval is time of day)

INT (interval in milliseconds)

48-006 FOO R02 6-9

I TRAPTlME I

6. 7 SCHEDUT.,E AN INTERRUPT BY ADDING A PARAMETER TO THE TASK
QUEUE WHEN A SPECIFIED INTERVAL HAS ELAPSED (TRAPTIME)

The TRAPTIME macro concurrently sets up a timer interval with the
task's subsequent execution. An item is then added to the
calling task's task queue when the user-specified interval has
elapsed.

Format:

[symbol] 'rRAPTIME [TOD=][,INT=][,PARM=][,PCB=]
[,FORM=]

Parameter Values:

TOO

INT

PARM

PCB

FORM

6-10

~ time expression
interrupt)

(time of day to schedule

(reg) - register containing the time of day in
day in seconds from midnight to schedule
interrupt

time expression (interval of time to wait)
(reg) - register containing interval in
milliseconds

absexp (parameter that is added to the task
queue)

= (reg) - parameter that is added to the task
queue

addrx (address or pointer to parameter.
control block)
(reg) - address or pointer to parameter
control block

L (list form - only build PCB)

48-006 FOO R02

Programming Considerations:

Before executing the TRAPTIME macro, these steps must be
performed so traps are serviced as they occur:

1. Define a trap-service routine.

2. Initialize the UDL with the SETUDL macro:

SETUDL TSKN=(TMCQ,addrx),TSKQ-addrx

3. Initialize the current TSW with the LTSW macro:

LTSW TSKE,TMCQ

After the interval has started and the condition code is set, the
task can continue processing or enter a trap wait state. The
possible condition codes are:

• A condition code of 0 indicates that the interval has started;
normal termination .

• A condition code of 4 indicates a sufficient amount of system
space is unavailable.

48-006 FOO R02 6-11

I WAITTIMEj

6.8 WAIT FOR A SPECIFIC INTERVAL TO ELAPSE (WAITTIME)

The WAITTlME macro places the task in
specified time-of-day or interval
GENT IM.E macro, Sect ion 6 .4, for
expression.

Format:

a
has

the

wait state until the
elapsed. Refer to the

definition of a time

[symbol] WAITTIME [TOD=][,INT=][,PCB=][,FORM=]

Parameter Values:

TOO time expression
(reg)

INT = time expression
= (reg)

PCB addrx
= (reg)

FORM = L (list form - only build PCB)

Programming Considerations:

Time of day (,rOO) is the time when a task, currently in a wait
state, resumes execution. If TOO is specified, the time is
converted to seconds from midnight and the fraction-of-second is
ignored. If INT is specified, the time is converted to
milliseconds from the time the WAITTIME macro was executed. PCB
is the address or pointer to the parameter control block.

Examples:

WAITTIME INT=5 is converted to 5000ms.

WAITTIME INT=.OOS is converted to 5ms.

6-12 48-006 FOO R02

CHAP'rER 7
MODEL 3200MPS SYSTEM MACROS

7.1 INTRODUCTION

The Perkin-Elmer Multiprocessing System (Model 3200MPS System)
consists of a central processing unit (CPU), up to nine auxiliary
processing units (APUs), and a number of logical processing units
(LPUs) used to assign (map) tasks to the CPU or an APU.

Tasks can run on an APU or on the CPU and must be able to
conununicate with, obtain status information about, and have
control over other tasks in the Model 3200MPS System.
Conununications between and control of tasks running on the CPU or
the APU are performed by supervisor call (SVC) 6 and the new SVC
13. The Model 3200MPS System macros detailed in this chapter
make the SVC services available to a task and ensure the proper
timing and use of these services. These macros are applicable to
the Model 3200MPS System only. They are divided into the
following categories:

• Support macros. Included in this category are the APpeB,
APPERTBL, APPERR, APPERRE'l', and APs'rRUC macros.

• Information macros. In this group are the FE'l'LPU
macros.

• A macro used to map the LPU to the APU. 'rhis is
macro.

• Task control macros that inc lude the APUCNrrL and
macros.

• Task direction macros. This category consists of
and SETLPU macros.

• Task timer macros that include t.he CR'rIMERS,
STARTIME, GE'rIME, READTCN'r, and s'rOPTlME macros.

7.1.1 Chapter Organization

and APUS'l'A'l'

the APUMAP

the REQUEUE

the SETCPU

RESETIME,

This chapter explains the functions of the Model 3200MPS System
macros and details their format, parameters, and functional
details. Examples and explanations for using each of the macros
are included.

48-006 FOO R02 7-1

Each macro is presented in an easily-readable format that in a.ll
cases shows the user-supplied name or symbol (in lower case) in
the NAME field, the operation in the OPERATION field, and the
parameters in the OPERAND field. When a parameter is enclosed in
brackets, it is opt ional. An operand enter'ed without brackets is
a required operand. The operands a.re separated by commas and can
continue on more than one line.

Example:

NAM.E OPERATION OPERAND

symbol APUSTAT I APN=n [,BUF=n] [,LEN=n]

In this example, symbol designates a user-supplied name and
APUSTAT is the macro name. The APN parameter is required. The
BUF and LEN parameters are optional, shown by their enclosing
brackets. Each parameter except the first one must be entered
with its preceding comma. The value of the character to be
entered after the keyword equal sign (,BUF=n) is explained under
the Parameters: heading in each macro section. The keyword
parameters are nonpositional.

7.2 SUPPORT MACROS

The Model 3200MPS System support macros build a parameter block
for use by the other macros; generate tables of branch addresses
to user-written error routines; handle input/output (I/O) errors;
enable a task to return to the instruction following a macro that
caused an error; generate subroutines that check error status
after completing an I/O function; and generate structures and
define equates for the appcb parameter block built by the APPCB
macro' or built automatically by other macro calls.

Support macros are called automatically from the information,
mapping, and control macros, or the user can directly call the
support macros and, thereby, override the timing and default
values set by the other macros. The support macros are:

• APPCB

• APPERTBL

• APPERR

• APPERRET

• APs'rRUC

7-2 48-006 FOO R02

APPCB

7.2.1 APPCB (Build APU Parameter Block) Macro

The APPCB macro builds the appcb parameter block for use by the
APU information, mapping, and task control macros and fills the
parameter block fields with the appropriate information. This
macro also can be called automatically from the FETLPU, APUSTAT,
APUMAP, APUCNTL, and REQUEUE macros.

Format:

NAME

symbol

Parameters:

FUN=

OPT=-

48-006 FOO R02

OPERATION OPERAND

APPCB [FUN=] [,OPT=n] [,DOPT=n]
[,APN=n] [,ERR=n] [,BUF=n]
[,LEN=n] [,USE=n]

This optional parameter sets up the function
field in the appcb parameter block. A user
can enter any of the following four function
field des igna.tors with this parameter:

1. LPMT.FUN (entered as FUN=LPMT.FUN) returns
the logical processor mapping table (LPMT)
in the user buffer. The LPMT lists which
LPUs are mapped to which APUs.

2. STAT .FUN returns APU task status
informati:::>n.

3. MAP. FUN performs the LPU/APU mapping
functions.

4. CTRL.FUN performs the APU control
functions.

n specifies the mapping or control function to
be performed. The available options are any
byte expression.

Example:

oP'r=x' FF'

7-3

DOPT=

APN=

HSTAT=

ERR=

BUF=

r.EN=

USE=

Functional Details:

n specifies the command to be issued or the
LPU number to be mapped to.

n specifies the number of the processor for
which status information is being requested.
The range is from 0 through 9, with 0 always
designating the cpu.

n specifies in bytes the data to be sent to
the APU for a link check in one's complement
of the APU status byte.

n specifies the return error code.

n specifies the address of the user buffer.

n specifies in byles the maximum length of the
user buffer.

n spec if i es the length in bytes of t..he btl f f er
actually used.

If the APSTRUC macro (Section 7.2.5.) that generates structures
and defines equates for the appcb parameter block was not
expanded by the time the APPCB macro is called, the APPCB macro
expands the APS'l'RUC macro and uses the symbolic names generated
for the parameter block.

If the paramater block is generated by the ma.cro using it, the
parameter block wi 11 be po inted to by the reg ister def i.ned by t,he
ENVIRON macro (See Section 8.4) as the PCBREG parameter
immediately following the macro execution. 'rhe default value for
this register is the contents of Register 14 (Rl4).

If the APPCB macro is expanded in a pure section of code, the
macro allocates the required storage space at the next impure
location that . is ful1word aligned, constructs the parameter
block, and returns to the pure segment.

Example:

In this example, the APPCB macro builds a parameter block to
obtain the status for APUl and uses the storage space called
BUFFER. The storage space (BUFFER) is 128 bytes long.

PARMBf..lK APPCB APN=l, BUF=BUFFER, LEN=128

7-4 48-006 FOO R02

I APPERTBL :

7.2.2 APPERTBL (Build APU Error Recovery Table) Macro

The APPERTBL macro builds a table of branch addresses to
user·-written error recovery routines that handle specific errors
returned by the APU task control macros.

The value the user gives each parameter with this macro specifies
the branch address of the error recovery subroutine written by
the user.

Format:

NAME

symbol

Parameters:

BAE=

BNW=

IBS=-

ITO=-

PNG-:-

48-006 FOO R02

OPERA'rION

APPERTBL

OPERAND

[r BAE=-n] [, BNW=-n] [, I as=-n]
[,ITO=n] [,PNG=-n] [,IAN::n]
[,ILN=n] [,IOS=n] [,COP=-n]
[,ONX=-n] [,DIS=n] [,NTS=n]
["NMR=-n] [,NDS=n] [,ENE=-n]
[,NOF=-n] [,NET=-n] [,EIX=n]
[,NTQ=n] [,ELSE=-n]

n specifies the address of a routine to remedy
errors if the data buffer is not fullword
aligned. This and all of the following
parameters are optional with the APPERTBL
macro. If none of these parameters are
entered, the default error routine address
table (@ERR.~AB) is built.

n specifies the address of a routine to remedy
errors if the data buffer is not located in a
writable segment.

n specifies the address of a routine to remedy
errors if the data buffer is not long enough
(Insufficient. Buffer Space).

n specifies the address of a routine to remedy
errors if task options prevent granting of
privileges (Illegal Task Options).

n specifies the address of a routine to remedy
errors if the recovery address for Privileges
was Not Granted.

7-5

IAN=

ILN=·

10S=·

COP=

ONX=

DIS=

NTS=

NMR=

NOS=

ENE=

NOF=

EIX=

N'rQ=

ELSE=

7-6

n specifies the address of a routine to remedy
errors if an Invalid APU Number was specified.

n specifies the address of a routine to remedy
errors if an Invalid LPU Number was specified.

n specifies the address of a routine to remedy
errors if an Invalid Option byte was
Specified.

n specifies the address of a routine to remedy
errors if requested pcivileges are currently
owned by another task (Currently Owned
Privileges) .

n specifies the address of a routine to remedy
error if the APU cannot be marked On-EXclusive
from the On state.

n specifies the address of a routine to remedy
errors if a request was denied because the APU
was Disabled.

n specifies the address of a routine to remedy
errors if status cannot be returned because
the queue is locked.

n specifies the address of a routine to remedy
errors if No Mapping Rights were granted.

n specifies the address of a routine to remedy
errors if the APU is Not in the Disabled
State.

n specifies the address of a routine to remedy
Errors if the the APU is Not Enabled.

n specifies the address of a routine to remedy
errors if the APU is Not marked Off.

n specifies the address of a routine to remedy
errors if the exclusive task is not in the
system, or if the APU is not marked On.

n specifies the address of a routine to remedy
errors encountered during command
transmission.

n specifies the address of a routine to remedy
errors if the preemptive task was not on the
ready queue.

n specifies the address of a routine to remedy
any errors other than those specified above.

48-006 FOO R02

Functional Details:

The APPERTBL macro is automatically expanded by the APPERR macro.
See Section 7.2.3. The user can call the APPERTBL macro prior to
calling the APPERR macro, and the APPERR macro will not expand
the APPERTBL macro. Once the APPERTBL macro is expanded, any
macro needing the error recovery routine address table will refer
to it. To use a user-defined error routine address table, the
APPERTBL macro must be expanded by the user before it is expanded
by the first occurrance of the APPERR macro. The name of the
default error routine address table is @ERR.TAB.

jrhe ELSE keyword parameter provides a way for the user to handle
all errors except for the ones whose entry points were identified
by the standard keyword parameters. If none of the keyword
parameters (including ELSE) is specified, the default error
recovery subroutine is executed.

The user can specify the error conditions with user-written
recovery procedures by including the keyword for the specific
error followed by the error recovery entry point. The macro
starts execution at these pOints when the error occurs. Whenever
the ELSE parameter is specified, the ELSE handler must be able to
handle all error conditions except those specifically referred to
by the keyword parameters used.

Example:

jrhis is an example of a user-written routine to handle four
different types of errors: the condition of the APU ready queue
is locked (NTS); the status buffer is not fullword aligned (BAE);
the status buffer is not long enough (IBS); the requested rights
are currently owned by another task (COP).

'rA.BLENAME APPER1rBL NTS=R.ETRY lMS, BAE=ALI GNBUF , I BS=SHORTBUF
,COP=RETrv.1MS

48-006 FOO R02 7-7

APPERR

7.2.3 APPERR (APU Error Recovery) Macro

The APPERR macro is an error linkage macro that references branch
addresses in the error table bu tlt by the APPER'rSL macro. The
APPERR macro generates default error recovery and error linkage
procedures to the user-written subroutine if that subroutine was
specified.

:Format:

NAM.E OPERATION OPERAND

symbol APPERR

,Parameters:

'There are no optional or required parameters for this macro.

Functional Details:

This macro is expanded automatically by the first call to the
.FE'fLPU, APUSTAT, APUMAP, APUCNTL, or REQUEUE macro. After the
first expansion of this macro, all subsequent macro calls
generate a linkage to the subroutine.

If the APPERTBL macro was not expanded by the user, it is
expanded using the default values. The default error recovery
procedure used by the system will release control or mapping
rights to an APU after the function completes. The RELEASE=-N
parameter with the APUMAP and APUCNTR macros has no effect on the
default error recovery procedure.

'The default error procedure for any error is to display an error
message. The task is paused when an error is encountered. To
restore all of the user registers and continue executing the user
code at the line following the macro call producing the error,
enter the operator CONTINUE command.

'rable 7-1 shows the error messages produced by the default System
Error Recovery Subroutine and the conditions causing the errors.

7-8 48-006 FOO R02

TABLE 7-1 ERROR RECOVERY SUBROUTINE DESCRIPTIONS

----~---
ERROR I REASONS FOR ERROR
==========================-===========~=-===--======-===

BAE
BNW
IBS
ITO

PNG
IAN
ILN
lOS
COP

ONX

DIS
NTS
NMR

NDS
ENE
NOF
NET

EIX
NTQ

ELSE

Examples:

Data buffer not aligned on fullword boundary.
Data buffer not located in writable segment.
Insufficient space in data buffer.
Link option prohibits granting requested pri-
vilege.

Task was not granted the requested privilege.
APU number greater than the ma,x imum allowed.
LPU number greater than the maximum allowed.
An invalid option specified for the function.
Requested option was specified for this
function.

APU cannot be marked On-Exclusive from the
On state ..

Function rejected, APU is in disabled state.
Access to APU ready queue not obtainable.
No mapping rights for LPU currently mapped to
the APU.

Cannot enable the APU more than once.
APU could not pass the power up link check.
Disable the APU from the Off state only.
Exclusive task is not in the system. APU is
not on.

Error encountered in transmission of command.
The preemptive task was not on the ready queue.
All other errors except those specified.

Since there are no parameters tL3.t must be entered with this
macro, simply entering the macro name causes the error linkage
function to occur:

APPERR

48-006 FOO R02 7-9

f APPERRET I

7.2.4 APPERRET (APU Error Return) Macro

The APPERRET macro is the return error linkage macro that permits
the user to recover from an error and return to the user-level
code and continue the main program at the instruction following
the APU macro that caused the error.

Format:

NAME OPERATION OPERAND

symbol APPERRET

Parameters:

There are no required or optional parameters for this macro.

Functional Details:

While in the user-defined error recovery procedure, a user can
use any of the general purpose registers without affecting the
normal execution of the main program, with the exception of the
link register. The link register is defined by the SCRREG
parameter of the ENVIRON macro. See Section 8.4. The default
value is R15.

7-10

NOTE

The return register pOints back to the
error recovery subroutine, NOT back to
the instruction following the macro.

48-006 FOa R02

Examples:

This is an example of a user-written routine to recover from a
buffer alignment error. The algorithm used is to round the
buffer address up to the next fullword location and decrease the
length of the buffer by the alignment factor. Assume the buffer
address to be in location STATBUF, and the buffer length to be in
LENGTH.

ALIGNBUF
L
LR
AIS
NHI
ST
NHI
SIS
L
AR

EQU *
Rl, STATBUF
R2,Rl
Rl,3
Rl,X'FFFC'
Rl,STATBUF
R2,3
R2,4
Rl, LENGTH
Rl,R2

ST Rl,LENGTH
APPERRET

GET ADDRESS OF STATUS BUFF
SAVE THE ADDRESS
ROUND UP TO NEXT FULLWORD

SAVE THE NEW BUFFER ADDRESS
SAVE THE ODD BITS
SUBTRACT ALIGNMENT FACTOR
GE'T IrHE BUFFER LENGTH
ADD NEGATIVE VALUE TO
I.ENGTH
SAVE THE SHORTER VALUE
RETURN TO USER TO TRY
AG.AIN

This is an example of a user-written routine to ignore an error,
which is 'status buffer too short in length for the data to be
returned' .

SHORTBUF EQU *
LIS RO,O
APPERRgT

48-006 FOO R02

SET CONDITION CODE TO ZERO
RETURN TO CAL ERROR

7-11

I APSTRUC

7.2.5 APSTRUC (Control and Mapping structures) Macro

The APSTRUC macro generates structures and defines equates for
the appcb parameter block used by the FETLPU, APUSTAT, APUMAP and
APUCNTL macros.

Format:

NAME OPERATION OPERAND

symbol APSTRUC

Parameters:

There are no requi.red or optional parameters for this macro.

Functional Details:

This macro is automatically invoked by
call. Once this macro is expanded,
again.

the first APPCB macro
it will not be expanded

Examples:

These are examples of the structures that are defined by this
macro:

SVCl3.STRUC SVC 13 PARAMETER BLOCK

SVl3.0PT DS 1 OPTIONS
SVl3.FUN DS 1 FUNCTION CODE
SVl3.DOP DS 1 DIRECTIVE OPTION
SVl3.APN DS 1 APU NUMBER
SV13.APS DS 2 APU STATUS
SVl3.ERR OS 2 ERROR STATUS
SV13.BUF OS 4 DATA BUFFER START ADDRESS
SVl3.USE OS 2 BUFFER USft~D

SV13.LEN DS 2 LENGTH OF BUFFER

'rHE SVC13 FUNCTION 1 BUFFER DEFINITION STRUCTURE

FlB. STRUC STRUCTURE OF FUNCTION 1 BUFFER

7-12 48-006 FOO R02

F 1B . APUN OS 1
F 1B . LPUN OS 1
FIB.NTSK OS 2
F 1B . s'rAT os 2
FlB.OPTS OS 2
FlB.CURT OS 8
FIB.CNTL OS 8
FIB.MAPT OS 8
FIB.RDYQUEUE OS 8

1-BY'I'E FOR APU NUMBER
1-BY'rE FOR LPU NUMBER
2 By/rES FOR NUMBER OF READ TASKS
2 BYTES APU STATUS
2 BYTES OF OPTIONS
NAM:E OF CURRENtrLY ACTIVE TASK
NAME OF TASK WITH CONTROL RIGH'rS
NAME OF TASK WITH MAPPING RIGHTS
FIRST trASK NAME ON READY QUEUE

APU STA/rE MNEMONICS DEF INITION

APS.DISA EQU 0 APU IS DISABLED
APS.MOFF EQU 1 APU IS MARKED OFF
APS.MONX EQU 2 APU IS MARKED ON EXCLUSIVE
APS.MON EQU 3 APU IS MARKED ON NORMALLY
APS.WATX EQU 6 APU WAITING FOR EXCLUSIVE TASK
APS.WAIT EQU 7 APU IS WAITING FOR NORMAL TASK

APU MAPPING MNEMONICS DEFINITION

MAP.GMP EQU X'80' GAIN MAPPING PRIVILEGES
MAP.MOX EQU X'40' MARK APU ON, EXCLUSIVE
MAP.MON EQU X'20' MARK APU ON
MAP.MAP EQU X'10' MAP APU INTO LPMT AT r. ... PU"X"
MAP.REM EQU X'08' REMOPVE ALL REFERENCES TO APU
MAP.MOF EQU X'02' MARK APU OFF
MAP.RMP EQU X'01' RELEASE MAPPING PRIVILEGES

APU CON'rROL OPTIONS MNEMONICS DEFINITION

COPT.GCR EQU X'80' GAIN APU CONtrROL RIGHTS
COPT.ENA EQU X'40' ENABLE APU
COPT.ECF EQU X'08' EXECUTE CONTROL FUNCTION
COPT.DIS EQU X'02' DISABLE MARKED OFF APU
COPT.RCR EQU X'01' RELEASE CONTROL RIGHTS

APU CONTROL COMMAND MNEMONICS

CCMD.STR EQU X' 01' STlRT THE APU
CCMD.SST EQU X'02' SINGLE STEP THE APU
CCMD.TTH EQU X'04' 'rRANSFER TASK TO CPU
CCMD.RPF EQU X'07' RELOAD POWER FA I L I MAGE
CCMD.SPF EQU X'08' STORE POWER FAIL IMAGE
CCMD.RTS EQU X'80' RTSM CHECK
CCMD.RES EQU X'83' RESCHEDULE ON APU
CCMD.STO EQU X'8S' STOP THE APU
CCMD.STA EQU X'86' SEND APU STATUS
CCMD.CHK EQU X'8A' CHECK POINT THE CURRENT TASK

SVC 13 FUNCTION CODES

LPMT.FUN EQU X'OO'
STAT.FUN EQU X'01'
MAP.FUN EQU X'02'
c'rRL.FUN EQU X'03'

48-006 FOO R02 7-13

7.3 INFORMATION MACROS

Tasks in a Model 3200MPS System must be able to obtain" status
information about the LPUs and APUs in the system. This
information is available to the tasks through SVC 13. By use of
t~he APU information macros that utilize the SVC services, LPU and
APU information is available to all tasks in the system. The
information macros are FETLPU and APUSTAT. They allow a task to
gain information regarding the:

•• Maximum number of LPUs and APUs

•• Logical Processor Mapping Table (LPMT)

.~ Number of LPUs mapped for the selected APU

• Number of tasks in the ready queue for the selected APU

•• status of the selected APU

.~ Task names associated with the selected APU, which include:

the active, control, and mapping tasks

- what task the selected APU is wait.ing for

- APU number

all ready tasks in queue order

- task options

1-14 48-006 FOO R02

FETLPU

7.3.1 FETLPU (Fetch LPU Map) Macro

The FETLPU macro returns APU and LPU information to the
requesting task and stores the information in a user-specified
buffer. This information consists of:

• Maximum number of APUs and LPUs

• A copy of the Logical Processor Mapping Table (LPMT)

The LPMT contains one entry for each LPU number, starting at LPUO
and ending with LPUn, where n represents the maximum number of
LPUs that can be configured in the system at system generation.
See the System Generation/32 (SYSGEN/32) Reference Manual. By
convention, LPUO always represents the CPU

Format:

NAME

symbol

Parameters:

appcb

BUF=

48-006 FOO R02

OPERATION OPERAND

FETLPU I [appcb] [,BUF=n] [,LEN=n]

specifies the address or pOinter to the appcb
parameter block or to a register that will
contain the address of the parameter block.

n specifies the starting address of the
user-specified buffer to receive the requested
data. The buffer length can be variable, but
must begin on a fullword boundry and be
located in the task's writable segment. This
parameter can be supplied in the FETLPU macro
or in the APPCB macro if the parameter block
is expanded separately. The buffer address
can also be passed to the FETLPU macro in a
register in the format BUF=(R4). A data
buffer is not required for mapping or control
macros.

7-15

LEN= n specifies a decimal number that expresses
the maximum usable length of the data buffer
in bytes. This parameter can be supplied in
the FETLPU macro or in the APPCB macro if the
parameter block is expanded separately. The
length can also be passed to the FETLPU macro
in a register in the format LEN=(Rl). The
maximum length is 65,535 bytes, and the
minimum is 4.

NOTE

The maximum required buffer length
can be calculated as follows:

LEN = «#LPUs + 1) * TABLEWIDTH) + 4

#LPUs = The maximum number of LPUs
in the system. TABLEWIDTH
always equals 1.

The maximum buffer length ever
required is:

LEN = «255 + 1) * 1) + 4 = 260 bytes

When this call is successfully completed, the following parameter
block fields are defined:

• SV13.ERR - This error status field can contain any of the
following values:

Zero means no error, successful completion.

BAE means a buffer alignment error, because the starting
address of the data buffer is not fullword aligned.

BNW means a buffer not writable error because the data
buffer is in a nonwritable program segment.

IBS means insufficient buffer space error because the data
buffer is not large enough to contain all the data.

The data buffer field shows the data that was returned to the
buffer in bytes in the format shown in Figure 7-1.

7-16 48-006 FOO R02

0(0)
(Reserved)

4(4)

11 (1)
I Maximum APO

Number

12(2)
Maximum CPU

Number

13(3)
LPMT Table

Width

Copy of Logical Processor Mapping Table (LPMT)

Figure 7-1 Buffer Data Returned for FETLPU Macro

Maximum This field contains a binary number with a
APU Number value that can range from 0 through 9,

representing the total number of APUs that can
be in the current system configuration.

Maximum This field contains a binary number with a
LPU Number value that can range from 1 to 255,

representing the total number of LPUs that can
be in the current system configuration.

LPMT
Table Width

LPUl
through
LPUn

Functional Details:

This field is for future expansion.
always has a value of one.

It now

These fields contain the APU number that the
LPU is mapped to. The value can range from 0
through 9, the maximum APU number. A value of
zero always signifies that the LPU is mapped
to the cPU. The LPU number is determined by
the byte position in the data buffer and can
be calculated hy the following:

LPUI = Byte Position - 4

The first byte in the buffer starts at zero.

If the appcb parameter is not entered with this macro, the appcb
parameter block is automatically built and the required
parameters are assigned to the appropriate fields.

If any required parameter is not specified in the FETLPU macro,
it must have been previously specified in the APPCB macro. Any
required parameter specified with an existing appcb pa.rameter
block replaces the old value in that field.

48-006 FOO R02 7-17

The buffer address (BUF) must begin on a fullword boundary and be
located in the task's writable segment.

]!:xamples:

In the following example, the user wants to access the maximum
LPU number, the maximum APU number, and the LPMT.

FETLPU
LB
LB
LA

ALIGN 4

, BUF=BUFFER,LEN=260
Rl,BUFFER+l
R2,BUFFER+2
R3,BUFFER+4

Rl=Maximurn APU Number
R2:Maximum LPU Number
R3=Address of LPMT

BUFFER DS 260

NOTE

If an error occurs, it is handled by the
default error recovery procedure, the
APPERR macro.

In this example, the user wants to use a named parameter block
for this FETLPU macro call.

PROGRAM

FETLPU
LB

PARMBLK APPCB
ALIGN

BUFFfo~R DS

7-18

PARMBLK
Rl, BUl"FER+ 1 Rl=Maximum APU Number

FUN=MAP.FUN,BUF=BUFFER,LEN=260
4
260

48-006 Faa R02

I APUSTAT

7.3.2 APUSTAT (Fetch APU status) Macro

The APUSTAT macro allows a task to access APU status information
by returning information for the specified APU to the requesting
task. The returned status information is stored in the
user-specified buffer and consists of the:

• APU number, state, and options

• Number of tasks in the APU ready queue

• Number of LPUs mapped to the APU

• Name of the task having control and mapping rights of the APU

• Name of the task currently active on the APU

• Name of the task the APU is waiting for

• List of tasks in the APU ready queue in order of execution

Format:

NAME I OPERAT I ON I OPERAND
----------1--------------1-----------------------------------
symbol APUSTAT 1 [appcb] [,APN=n] [,BUF=n] [,LEN=-n]

Parameters:

appcb

APN=

48-006 FOO R02

Specifies th~ address or pOinter to the appcb
parameter block or to a register that will
contain the address of the parameter block.

n specifies the APU number about which
information is desired. The number can be
supplied in this macro or in the APPCB macro
if the parameter block is built separately_
The APU number can also be passed to the
APUSTAT macro in bits 24 through 31 of a
register. The format for this is APN=(R4).

7-19

BUF~

LEN=

n specifies the starting address of the
user-specified data buffer or register. This
buffer can be variable in length, but must
begin on a fullword boundary and be located in
the task's writable segment. This parameter
can be supplied in the APUSTAT macro or in the
APPCB macro if the parameter block is expaned
separately. The buffer address can also be
passed to the APUSTAT macro in a register in
the format BUF=(R2). A data buffer is not
required for mapping or control macros. This
is a required parameter.

n specifies a decimal number that expresses
the maximum usable length of the data buffer
in bytes. This parameter can be supplied in
the APUSTAT macro or in the APPCB macro if the
parameter block is expanded separately. The
length can also be passed to the APUSTAT macro
in a register in the format LEN=(R9). The
maximum length is 65,535 bytes and the minimum
is 8. This is a required parameter.

The data buffer field receives the status information in the
format shown in Figure 7-2.

7-20 48-006 FOO R02

10(0) 11(1) I 2(2)
APU number Number of Number of tasks

LPUs ma.pped
I------~---
14(4)
I APU.STAT APU.OPTS
1--
8(8)

12(C)

16 (10)

20(14)

24(18)

28(c)

32(20)

Active task name:
or

Waiting task name

Control task name

Mapping task name

Ready task names (1)
or

Exclusive task name

Ready task names (N)

Figure 7-2 Data Buffer Format for APUSTAT Macro

48-006 FOO R02 7-21

Fields:

7--22

APU number

Number of
LPUs mapped

Number of
tasks'

APU.STAT

is a l-byte field containing the decimal
number of the APU to which the status
information applies. The number can be from
o through 9, with 0 designating the CPU.

is a l-byte field containing the number of
LPMT entries that are mapped to the specified
APU.

is a 2-byte field containing the number of
waiting tasks in the specified APU ready
queue. The active task, if there is one, is
not included in this count.

is a 2-byte field containing bit settings that
indicate the current software status of the
APU, the status after the last power fail, and
whether or not the writable control store
(WeS) is initialized or loaded for the
specified APU. The specific bits used are
identified below.

~
Bits:
o 1

wes
state

5 6 7 13 14 15

status current
after 1.ast status

power failure

If bit 0 is set, the wes has been initialized.
If bit 1 is set, the WCS has been loaded.

The current status and status after last power
failure may contain one of the following
settings:

7 = APU on, and watting for task
6 = APU on exclusive, and waiting for task
3 APU on
2 APU on, exclusive
1 APU off
0 _. APU disabled

48-006 FOO R02

APU.OPTS

Active task
name

Control task
name

Mapping task
name

Ready task
names

Examples:

is a l6-bit field specifying any special APU
configuration options. If bit 0 of the
halfword is set, the APU has no WCS support.
If bit 1 is set, the APU has no floating point
support. If bit 2 is set, the APU will stop
and wait for a task; i.e., trap block wait
convention. Other bits are reserved for
future options.

is an 8-byte field containing the name of the
currently active task. It may also contain
the waiting task name if the APU is stopped
and waiting for a task. The task name is
left-justified in the field and padded with
blanks, if necessary. If there is no
currently active or waiting task, the field is
entirely filled with blanks.

is an 8-byte field containing the name of the
task that has been granted control rights over
this APU. If no control task exists, the
field is entirely filled with blanks.

is an 8-byte field containing the name of the
task that has been granted mapping rights over
this APU. If no mapping task exists, the
field is entirely filled with blanks.

is a variable length table of 8-byte fields
containing the name of each task in this APU
ready queue. The currently active task, if
any, does not appear in this table. The
number of entries in this table is given in
the number of tasks field. The order of
entries corresponds to the order of the tasks
on the ready queue.

If the current status setting for the APU is
set to X'2' marked On-Exclusive the APU ready
queue is alw~7s empty. The ready task names
field contains the name 'of the task that has
exclusive rights to the APU.

This is an example of a user-written routine to get APU status.
The routine could be part of the main body of code or a
subroutine. Assume that the data buffer address is in location
SjrA'rBUF; the buf fer length is in locat ion LENGTH; and the APU
number is passed in Rl:

48-006 FOO R02 7-23

GETSTAT EQU *
LIS R3,2 INITIALIZE RETRY COUNTER
ST R3,RETRYCNT
L R2,STATBUF GET THE BUFFER ADDRESS
L R3 , LENG1rH GET THE BUFFER LENGTH

RETRY APUSTAT APN=1,BUF-(R2),LEN=(R3)
SP R.ETRY SOFT ERROR TRY AGAIN
BZ CONTINUE GOOD RETURN

If the condition code came back as a minus, there was an
unrecoverable error and the main routine must handle this
situation.

WTO 'UNRECOVERABLE ERROR TRY I NG TO
GET APU STATUS'

EOT RC=l

This is the logic path for no errors:

CONTINUE EQU
EOT
END

*
RC=O

In this example, the user requests the APU status for APU 1:

APUSTAT
LHL
LA
LB
LB
LH
LH
LH
LA
LA

LA
LA

,APN=1,BUF=BUFFER,IEN=112
RO,SV13.APS(R14) RO=APU HIS Status
Rl,BUFFER Rl=Data Buffer Address
R2,F1B.APUN(Rl) R2=APU Number
R3,FIB.LPUN(Rl) R3= # LPUs Mapped
R4,F1B.NTSK(Rl) R4= # of Tasks
RS,FIB.STAT(Rl) RS=APU Mapping State
R6,FIB.OPTS(Rl) R6=APU Options
R7,F1B.CURT(Rl) R7=Current Task Address
R8,FIB.CNTL(Rl) R8=Controlling Task

R 9 , F lB . MAPT (R.l)
RA, F lB. RDYQ(Rl)

Address
R9=Mapping Task Address
RA=Address of Task on

the Ready Queue

A.LIGN 4
BUFFER DS 1].2

7·-24 48-006 FOO R02

7 . 4 MAP LPU TO APU MACROS

Tasks in a Model 3200MPS System can request the mapping
privileges of a specified APU through the APUMAP macro. If no
other task was granted that privilege, and if permitted by the
task's established options, mapping privileges are granted to ~he
requesting task, giving the task the right to:

• Mark the APU on or off

• Map the APU into the LPMT

• Remove all references to the APU from the LPMT

• Request and release mapping privileges

Via the LPMT, an LPU can be mapped to one, and only one, APU.
However, an APU can be mapped to more than one I~U.

Figure 7-3 shows the valid paths for the SVC call.

6432

Mark
ON

ON
State

DISABLED
State

Mark
ON

Mark
DISABLE
(Control)

Mark
ENABLE
(Control)

ON
EXCLUSIVE

State

Mark
OFF

OFF
State

Mark
ON EXCLUSIVE

Mark
ON EXCLUSIVE

Mark
OFF

Figure 7-3 Valid Paths for an SVC Call

48-006 FOO R02 7-25

APtJMAP·

7.4.1 APUMAP (APU Mapping) Macro

The APUMAP macro is used by a task to gain mapping privileges to
and perform mapping functions on the specified APU, and to
reLease or not release the mapping privileges of a specified APU
after completion of this macro function.

Format:

NAME

symbol

Parameters:

appcb

APN=

LPN=

MAPFN=

OPERATION

APUMAP

OPERAND

[appcb] [,APN=n] [,LPN=n]
[, MAPFN= [mapfnl, ... , mapfnn l']
[,RELEASE=(Y/N)] [,TASKID=]

is the address or pOinter to the appcb
parameter control block (PCB). If this
parameter is omitted, the parameter block will
be built automatically.

n specifies the number of the APU that the
mapping request is directed to or specifies a
register. This is a required parameter if
MLPU is specified in the MAPFN parameter.

n specifies the LPU number or a register. If
MLPU is specified, this parameter is required.

name specifies the name of the APU for which
mapping privileges are requested. A user can
choose anyone of the following four
designators with this parameter:

1. APUON indicates that the specified APU is
to be marked On.

2. MLPU means map the specified APU into the
LPMT, which will contain the mapping
arrangement between the LPU and the APU,
at the LPU number specified with the LPN
parameter. The LPMT contains one entry
for each LPU number.

7-26 48-006 FOO R02

RELEASE =

TASKID=

3. APUOFF means mark the specified APU off.

4. REMAPU means remove all references to the
APU from the LPMT.

5. APUEXCL means mark the specified APU on
exclusively to the task whose name must be
specified with the TASKID parameter.

YIN indicates yes or no. Yes means the task
is to release mapping privileges after
completion of this macro function. No
indicates mapping privileges are not to be
released after completion of this macro
function. Yes is the default parameter.

specifies the address of the buffer containing
the task name to which this APU is to be
marked on exclusively. It must be fullword
aligned and 8 bytes long. The task name must
be left justified, and any remaining bytes (if
task name is less than 8 characters) must be
filled with blanks.

NOTE

A buffer filled with all blanks
means mark the APU on exclusively
to the task issuing the macro.

Upon completion of the APUMAP macro, the following parameter
block fields are defined:

• SV13.ERR - error status

byte 1

byte 2

48-006 FOO R02

contains the bit position of the option being
executed when the error occurred.

contains the error code indicating the type of
error. It will contain one of the following:

Zero means no errors.

BAE means the buffer is not
aligned.

fullword

IBS means the buffer size is too small.

ITO means an error, task options prevent
granting of privilege.

7-27

Functional Details:

PNG means the task has not been granted
privileges required to perform the option.

IAN means an invalid APU number.

ILN mean.s, an invalid LPU number ..

IDS means an invalid option specified.

COP means an error, privilege is currently
owned by another task.

ONX means the APU cannot be
On-exclusive from the On state.

marked

DIS means the APU is not enabled (disable
state) .

NTS means the APU queue access is denied.

NMR means the task has not been granted
mapping rights over the APU that is
currently mapped to the specified LPU.

NET means APU could not be marked
On-Exclusive because the exclusive task
could not be found in the system.

If appcb is not specified, the parameter block is automatically
built and the required information is assigned to the appropriate
fields. If appcb is specified, all the required information not
specified with the macro is assumed to be in the parameter block.

To successfully execute this macro the task must be established
with the link APU mapping option. See the OS/32 Link Reference
Manual.

If more than one mapping function is specified, each must be
enclosed in parentheses and separated by commas.

The value of N for the RELEASE parameter, will allow a task to
retain mapping privileges to the specified APU after the macro
call has completed. All other tasks in the system wil.l be
prohibited from sending mapping commands to that APU, including
the command processor, until the mapping privileges are released
by the task holding them. The control.ling task releases mapping
privileges by reentering the APUMAP macro and specifyi.ng Yes with
the RELEASE parameter.

7-28 48-006 FOO R02

Examples:

In this example, the APUMAP macro maps all tasks directed to r.,PUl
to execute on APU1:

APUMAP ,APN=l ,LPN=1 ,MAPFN=MLPU

This example shows how the APUMAP macro marks APU2 into the OFF
state:

APUMAP ,APN=2 ,MAPFN=APUOFF

7.5 TASK CONTROL MACROS

A task in a Model 3200MPS System must be able to control other
tasks in the system. A task can request the control privilege of
a specified APU. If no other task was granted that privilege,
and if permitted by the task's options, control privi.leges are
granted to the requesting task giving the task the right to:

• Initialize an APU if it is waiting for power up link check

• Preempt current task

• Start normal APU execution (if stopped)

• Otherwise control the APU

• Disable APU

• Perform a power up link check on the APU

• stop APU execution

48-006 FOO R02 7-29

I APUCNTL

7.5.1 APUCNTL (APU Control) Macro

The APUCNTL macro is used by a task to gain control privileges to
and perform control functions upon the specified APU, and to
release or not release control privileges to the specified APU.

Format:

NAME

symbol

Parameters:

appcb

APN=

CNTRFN=

OPERATION

APUCN'rL

OPERAND

I [appcb] [,APN=n] [,CNTRFN=n]
I [,DATA=n] [,RELEASE=Y/N]

specifies the address or pointer to
parameter block or a register.

the

n specifies the number of the APU for which
the control request is made, o~ it specifies
a register containing the APU parameter.

n specifies the code command to be sent to the
APU. A user can choose anyone of the
following seven control codes:

1. from idle state, STRTAPU means
normal APU execution.

start

2. from idle state, SSTEP means single step
through a user instruction at the current
task.

3. from idle state, TRHOST means transfer the
current task to the host cpu.

4. from idle state, LNKCH means send data to
APU; receive one's compliment
(d iagnost ic) .

5. from idle state, RSCH means reschedule
current task at the end of APU queue.

6. STOPAPU means stop APU execution.

7. FETAPU means fetch APU status.

7-30 48-006 FOO R02

DATA =

R.ELEASE=

n specifies the data sent to the APU during
the link check or specifies the register to
receive the returned value. This parameter
must be on a halfword boundary in the task's
writable segment. Bits 8-15 contain the data
that is sent to the APU. Bits 0-7 contain the
data returned by the APU. This parameter is
used only if LNKCH is entered with the CN/rFRN
parameter.

YIN specifies yes or no. Yes means control
rights are to be released after completion of
the macro function. Other tasks in the system
can then gain control rights to the specified
APU when this macro completes. This is the
default.

No means the user does not want to release
control rights after completion of this macro
function. No allows the user to keep control
rights to the specified APU after the macro
completes. All other tasks in the system are
then prohibi'ted from sending commands to that
APU, including the command processor until the
controlling task releases those privt1eges by
reentering the APUCNTL macro and specifying
Yes with the RELEASE parameter. Yes is the
default.

Upon completion of the APUCNTL macro, the following parameter
block fields are defined:

• SVl3.ERR - error status

byte 1

byte 2

contains the bit position of the option being
executed when the error occurred.

contains the error code indicating the type of
error.

• SVl3.APS receives the APU response status returned after
execution of this macro call. The APU status consists of a
response byte followed by an error code byte. The response
and error code bytes have the format shown tn Figure 7-4.

48-006 FOO R02 7-31

7-32

P
A
R

Bits:
a

PAR

RUN

RESPONSE BYTE

R I I W
U INON-I A
N ITASKI I

T

R
E
S
P

E
R
R
o
R

M
o
D
1

M
o
D
2

7 8

ERROR CODE

ERROR CODE

Figure 7-4 APU Hardware Response Bytes

1.5

is the parity bit that ensures the status byte
has odd parity.

is set if the APU is rllnn.ing, it is reset tf
the APU is idle.

NON-TASK is set if the current program status word
(PSW) bit 15 is set and indicates that no
context save area is available. If the bit is
reset, the current task must be defined and
its task context be ready to accept the
current task state active in the APU.

WAIT

RESP

ERROR

MODI,

MOD2

is set if the current PSW bit 16 is set or if
the APU is working in an internal service
state; i.e., scheduling a task. If the bit is
reset, the APU is executing instructions.

is set if the APU is responding to a command
from the cpu. If the bit is reset, the APU is
generating its own signal indicating a change
in APU state.

is set if the APU detects an error condition
which causes the APU to stop_ An error code
must be read from the APU to identify the
error and to release the APU from the
IDLE-ERROR state.

are set depending on the state of RESP and
ERROR.
They are encoded to identify one of the
following specific conditions:

48-006 FaD R02

R.ESP
Signal,
No __ error 0

Signal,

o
o
o

Error 0
o
o
o

Response,
No_error 1

1
1
1

Response,
Error 1

1
1
1

ERROR

o
o
o
o

1
1
1
1

o
o
o
o

1
1
1
1

MOD 1

o
o
o
1

o
o
1
1

o
o
1
1

o
o
1
1

MOD 2

o
1
o
1

o
1
o
1

o
1
o
1

o
1
o
1

Meaning

Undefined
APU entering Queue Wait state
Task rescheduled to APU Queue
Task rescheduled to CPU

General error status
Error while in Queue Wait
Error while locking queue
Undefined

General response status
Task is waiting on APU Queue
APU trying to lock a queue
Command Sequence Error

Error as result of command
Response, error in Queue Wait
Response, error in Queue Lock
Error as result of command
sequence

The error codes defined for the second byte are presented in
Table 7-2.

TABLE 7-2 ERROR CODES FOR APU STATUS BYTE

ERROR CODE DESCRIPTION

X'SO' No error
STA.IDFS EQU X' 01 APUID DEVICE FALSE SYNC
STA.ZID EQU X'02 ZERO APUID RETURNED BY RTSM
STA.MPCR EQU X'S3 CANNOT FETCH WORDS X'C4'-ECC

STA.MAPU EQU X'04' APUID > MAX APU @X'C7'
STA.NDIR EQU X'SS' BAD A(AFB-DIR)-ECC/ZERO/ALIGN
STA.MAPP EQU X'S6' BAD A(AFB) - ECC/ZERO/ALIGN
STA.MAPN EQU X'07' BAD APB(FLAGS:APBI) WORD-ECC

STA.WAPB EQU X'OS' WRONG APB NUMBER IN APB
STA.APBK EQU X'Sg' ABP PASSBACK
STA.CMDR EQU X' SA' UNR.ECOGNIZED COMMAND
STA.NTCB EQU X'OB' BAD APB A(CTCB)-ECC/ZERO/ALIGN

X'SC' NOT USED
STA.QTIM EQU X'OD' QUEUE LOCK TIMEOUT
STA.SUSP EQU X'OE' EXECUTION SUSPENDED (TRAP

PSW WAIT)
STA.NSST EQU X'SF' BAD SSTD - ECC

4S-006 FOO R02 7-33

TABLE 7-2 ERROR CODES FOR APU STATUS BYTE (Continued)

ERROR

STA.NCTX EQU
STA.NCTS EQU
STA.NPFI EQU
STA.SPFI EQU

STA.NPST EQU
STA.NPFP EQU
STA.HDST EQU
STA. wC1rp EQU

STA.NCNT EQU
STA.QFPT EQU
STA.TCNT EQU
STA.QUNP EQU

STA.NHQP EQU

STA.NQTP EQU
STA.WAPQ EQU
STA.NBPT EQU
STA.NBFP EQU

STA.NBFP EQU
StrA. FLNK EQU
STA.NFPT EQU
STA.NFBP EQU
STA.BLNK EQU
STA. FLBT.., EQU

STA.FBPT EQU
STA.BFPT EQU

STA.WBFP EQU
STA.QOVF EQU
STA.TIMI EQU
STA.TIM2 EQU
STA.STIM EQU

StrA. ST 1M EQU
STA.NRTC EQU
STA.TMOV EQU
STA.PEND EQU I

STA.NPND EQU

SlrA.NPND EQU
STA.XINT EQU
StrA. PFPS EQU
STA.PFSS EQU

7-34

CODE

X'lO'
X' 91'
X'92'
X'13'

X'94'
X'lS'
X' 16'
X'97'

X'9S'
X'19'
X'lA'
X'9B'

X'le'

X'9D'
X'9E'
X' IF'
X'20'

X'20'
X' AI'
X'A2'
X'23'
X'A4'
X'2S'

X'26'
X'A7'

X'AS'
X'29'
X'2A'
X'AS'
X'2C'

X'2C'
X'AD'
X'AE'
X'2F'
X'BO'

X'BO'
X'31'
X' 32'
X'B3'

DESCRIPTION

CANNOT LOAD TASK CONTEXT
CANNOT STORE TASK CONTEXT
CANNOT LOAD PWB FAIL IMAGE
CANNOT STORE POWER FAIL IMAGE

CANNOT LOAD PSTD - ECC
BAD APB PFAIL PTR-ECC/ZERO
BAD APB MMF NEW PSW-FCC/ZERO LOC
BAD CTCB CTX PTR-ECC/ZERO/ALIGN

BAD APB TCB CNT WORD - ECC
BAD A(APU FRONT TCB)-ECC/ZERO/ALIGN
FRONT TCB PRT, TCB AND CNT DISAGREE
QUEUE TCB CNT UNDERFLOW

BAD APB A(CPU QUEUE) - EeC/ZERO/
ALIGN
BAD TCB QHPTR - ECC/ZERO/ALIGN
INCORRECT TCB QUEUE HEAD PTR
BAD TCB BPTR - ECC/ZERO/ALIGN
BAD BACK TCB FPTR - ECC/ZERO/

BAD BACK TCB FPTR - ECC/ZERO/ALIGN
BACK TCB FPTR NOT TO FRONT Tca
BAD FRONT TCB FPTR-ECC/ZERO/ALIGN
BAD FWD TCB BPTR-ECC/ZERO/ALIGN
FWD TCB BPTR NOT TO FRONT TCB
INCONSISTENT FRONT TCB FPTR
AND BPTR
BAD FRONT Tca PTR-ECC/ZERO/ALIGN
BAD BACK TCB FPTR-ECC/ZERO/ALIGN

BACK TeB FPTR NOT TO FRONT TCB
TCB QUEUE OVERFLOW (CPU OR APU)
BAD MSH TIME ACCUMULATOR - ECC
BAD LSH TIME ACCUMULATOR - ECC
BAD TCB START TIME WORD - ECC

BAD TCB START TIME WORD - ECC
CANNOT READ RTSM CLOCK DATA
TCB ELAPSED TIME OVERFLOW
TCB PENDING FLAGS SET ON QUEUE
BAD PEND ING FLAGS WORD - ECC
OR CTCB

BAD PENDING FLAGS WORD - ECC
INTERRUPT FROM RTSM XMTR
CANNOT LOAD PFAIL PSTD - ECC
CANNOT LOAD PFAIL SSTD - ECC

4S-006 Faa R02

Functional Details:

If appcb is not specified, the parameter block is automatically
built and the required parameters are assigned to the appropriate
fields. If appcb is specified, all the required parameters not
specified in the macro command are assumed to be in the parameter
block.

To successfully execute this macro, the task must be established
with the APU Control (APC) link option. No other task can have
the APU control rights granted to it.

Example:

In this example, the APUCNTL mac~ro enables APUl:

APUCNTL ,APN=l ,CNTRFN=ENABLE

In the following example, the APUCNTL macro performs a link check
on the APU specified in Rl. It sends the data byte located in
bits 24-31 of R3 and receives the returned data in bits 16-23 of
R3.

Example:

APUCN'rL ,APN= (Rl) , CN'rRFN=LNKCH ,DATA= (R3)

48-006 FOO R02 7-35

I REQUEUE

7.5.2 REQUEUE (Requeue the APU Ready Queue) Macro

The REQUEUE macro gives a task the ability to preempt or
reschedule the current task and select the next task on an APU
ready queue. The optional parameters allow a task limited
ability to reorder the APU ready queue.

Format:

NAME

symbol

Parameters:

appcb

APN=

TASKID=

RESCHED=

RESTART=-

7-36

OPERATION

REQUEUE

OPERAND

[appcb] [,APN=n] [,TASKID=n]
[,RESTART=Y/N] [,RESCHED=Y/N]
[, RELEASE=Y/N]

is the address or pointer to the appcb
parameter block or a register containing the
address of the parameter block.

n specifies the number of the APU to which
this function is directed. The task must be
assigned to a nonzero LPU, which, in turn must.
be mapped to a nonzero APU. APU 0 indicates
the cpu.

n specifies the address or pointer to a valid
task name or the register containing the
address of the valid task name.

YIN specifies Yes or No. Yes means the
currently active task is to be rescheduled
back on the APU ready queue before the queue
pointer is changed. No means the currently
active task is not to be rescheduled on the
APU ready queue before the queue pointer is
moved. Yes is the default value.

YIN specifies Yes or No. Yes is the default
and restarts the APU after the APU at the top
of the ready queue was changed. No specifies
that the APU is not to be restarted.

48-006 FOO R02

R.ELEASE=

Functional Details:

YIN specifies Yes or No. Yes is the default
and means that the control rights to the
specified APU are to be released. No means
the control rights are not to be released and
no other task in the system (including the
command processor) can have control of the
APU.

If appcb is not specified, the paramater block is aut.omatically
built by the APPCB macro.

The TASKID parameter must point to a valid task name. This task
name must be left-justified, padded with blanks, if necessary,
and must start on a fullword boundary. The task name must be on
the APU ready queue. If a valid task name is not specified, the
task at the head of the queue is assumed to be the task to be
preempted.

The RESCHED parameter entered wi'th yes keeps the currently active
task in the same position relative to all of the other tasks in
the APU ready queue. No causes the currently active task to be
positioned just behind a valid task name specified when the
current task is finally put back on the queue and gives the user
the ability to reorder the ready queue.

The REQUEUE macro could result in anyone of the following error
conditions:

ITO

IAN

lOS

COP

DIS

48-006 FOO R02

The task option prevents granting of control
rights. Relink the program using the OPTION
APCONTROT... command. See the OS/32 Link
Reference Manual.

An invalid APU number was specified. Verify
that the APU number has a value from 7.ero
through the highest APU number on t.he system.

An inval id op,t ion by.te was spec if ied. Check
location SVl3.0PT'in the parameter block to
verify the contents.

The requested control rights are held by
another task. There is no recovery from this
error except to wait for the other task to
release the control rights and try this call
again.

Request is denied because the APU is disabled.
The APU must be made active before this call
is entered. The optional TASKID parameter
secifying the valid task name also must be on
the APU ready queue.

7-37

EIT

NTQ

Error occurred in the transmission of a
command. This error is significant of
hardware failures. Retry and, if the error
recurs, call the customer engineer.

The task name in the TASKID field was not
found on the APU ready queue. Reenter this
macro. If the error disappears, the desired
task was probably executing an SVC calIon the
cpu. If the error remains, check the task
name and the location of the task in the
system.

Examples:

In this example, the REQUEUE macro stops the APU whose number is
contained in R2. The pointer to the next task on the ready queue
is changed to point to the task whose name is located in BUFFER
(TASKNAME). The APU is then restarted:

REQUEUE ,APN=(R2) ,TASKID=BUFFER

ALIGN 4
BUFFER DB C'TASKNAME'

7.6 TASK DIRECTION MACROS

~rhe Model 3200MPS System task direction macros direct a task to
an APU or from an APU back to the cpu. In order to direct a task
1:0 a particular APU or from a particular APU back to the CPU, the
LPU has to be aSSigned to the processor where the task is to
execute. The LPU must be assigned to an APU with a nonzero
number because only the cpu can have a zero designation. The
1:.ask direction macr'os utilize the tmpcb parameter block built by
the TMPCB macro or built automatically. See Section 5.23. There
are two ways to assign the LPU to an APU.

e. Self-directed assignment of an LPU where a task sets its own
LPU assignment. Self-directed assignment does not require a
task name in the task name field of the parameter block built
by the TMPCB macro. However, the LPU must be specified in the
parameter block.

e. Other -d i r ected as s ignment of an LPU wher e the LPU is ass igned
by the task, but the behavior of the task is not affected
until the task is transferred from the cpu.

The task direction macros are SETCPU and SETLPU.

7-38 48-006 FOO R02

SETCPU

7.6.1 SETCPU (Set CPU-Directed Task) Macro

If a task is set to run on an APU and the user wants it set to
the CPU, the SETCPU macro will direct task execution to the CPU
by resetting the LPU-directed status.

Format:

NAME

symbol

Parameters:

tmpcb

TASKID=

DIR=

OPERATION OPERAND

SETCPU I [tmpcb] ,TASKID=n [,DIR=n]

specifies the address or pointer to the
parameter block built by the TMPCB macro, or
to a register that holds the parameter block
address. This is the default if the tmpcb
parameter block is built automatically. .

n specifies the address or pointer to a valid
task name or to a register containing the
address of the valid task name. When a valid
task name is specified, it is moved into the
tmpcb parameter block. If no valid task name
is specified, it is assumed to already be in
the tmpcb parameter block. This parameter is
required only if the tmpcb is not entered.

n specifies the type of assignment: S means
self-directed assignment and a means
other-directed assignment. Other-directed
assignment is the default.

Functional Details:

If tmpcb is not specified, the parameter block is automatically
built by calling the TMPCB macro and the functions are set
according to the OIR parameter. The TMPCB macro is then called
to build the tmpcb parameter block.

48-006 FOO R02 7-39

The valid task name specified with the TASKID parameter must be
left-justified in an 8-byte field, padded with blanks, and
fullword boundary aligned. When the SETCPU macro is called for
other than a self-directed task, the SUSPEND function (see
Section 5.23) is called to place the directed task in the task
wait state; the LPU-directed status of the task is reset; and the
RELEASE function (see Section 5.16) is called to release the
directed task from the suspend wait state.

Example:

This example shows how the execution of the SETCPU macro
redirects the task whose name is located in BUFFER (TASKNAME) to
execute on the cpu. This is an example of other-directed
assignment:

SETCPU ,DIR=OT ,TASKID=BUFFER

BUFFER DB C'TASKNAME'

7-40 48-006 FOO R02

SETLPU

7.6.2 SETLPU (Set LPU-Directed Task) Macro

The SETLPU macro sets the LPU-directed task state. It can also
assign a new LPU to the task. If the task is self-directed on
its default LPU, it duplicates the function of the CAL/32
reschedule task (RSCH 2) instruction. See the Common Assembly
Language/32 (CAL/32) Reference Manual.

Format:

NAME

symbol

Parameters:

tmpcb

DIR=

LPU=

TASKID=

OPERATION

SETLPU

OPERAND

I [tmpcb] [,DIR=n] [,LPU=n]
I ,TASKID=n

is the address or pOinter to the tmpcb
parameter block or to a register containing
the address or pOinter to the parameter block.
This is the default if the tmpcb parameter
block is built automatically.

n specifies the type of LPU assignment which
is either self-directed, where a task sets its
own LPU number; or other-directed, where the
macro sets the LPU number of the task
specified in the TASKID parameter.

n specifies the LPU or the register to which
the task is reassigned.

the address or the pointer to a
name or to a register containing

of a valid task name. This
required only if tmpcb is not

n specifies
valid task
the address
parameter is
specified.

Functional Details:

If tmpcb is not specified, the parameter block is automatically
built by calling the TMPCB macro and the functions are set
according to the DIR parameter. The TMPCB macro is then called
to build the tmpcb parameter block.

48-006 FOO R02 7-41

If a valid task name is specfiied, it is moved into the tmpcb
parameter block. If a task name is not specified, it is assumed
to be in the tmpcb. The TASKID must be left-justified in an
a-byte field, padded with blanks, and fullword boundary aligned.

When the SETLPU macro is invoked for an othe·r-directed task, the
following steps take place:

• The SUSPEND macro is invoked to place the directed task in the
task wait state.

'. The directed task's LPU is reassigned to the LPU specified
with the LPU parameter.

• The directed task is marked for transfer to LPU ..

• The RELEASE macro is entered to release the directed task from
the task wait state.

If the task is self-directed, or the called task has a higher
priority than the calling task, the called task is immediately
dispatched to the LPU specified.

Examples:

'rhis example shows how execution of the SETLPU macro sets its own
(self-directed) LPU number to 2:

SETLPU ,DIR=SD ,LPU=2

H!xecution of the SETLPU macro shown in the following example sets
it.he LPU number of the task specif ied in location BUFFER
(TASKNAME) to 3. This other task must already be in the system:

SETLPU ,DIR=OT ,LUP-3 ,TASKID=BUFFER

BUFFER DB C'TASKNAME'

7-42 48-006 FOD R02

7.7 TASK TIMER MACROS

The Model 3200MPS System task timer macros measure real-time
performance for a system configured with a real-time support
module (RTSM). These macros use the CAL/32 RRTC instruction and
allow a user to instrument a program and measure its real-time
performance. See the Common Assembly Language/32 (CAL/32)
Reference Manual for information on the RRTC instruction. These
macros measure real-time performance by:

• Creating a parameter block used by the other software interval
timer macros.

• Initializing a software interval timer

• Starting a timer

• Returning the total time accumulated

• Returning the total number of times a timer is started or
stopped

• Stopping a timer

The Model 3200MPS System timer macros are:

• CRTIMERS

• RESETlME

• STARTIME

• GETIME

• READTCNT

• STOPTlME

48-006 FOO R02 7-43

I CRTIMERS I

7.7.1 CRTIMERS (Create Software Interval Timer) Macro

The CRTIMERS macro creates a parameter block that will be used by
the other software interval timer macros in the program to reset
the interval timer, initialize it, record the total time
accumulated by the timer, read the number of times the timer was
activated, and stop the timer. The generated information is
stored in the appropriate fields of the parameter block after
each of the timer macro functions is completed. This macro does
not generate executable code.

Format:

NAME

symbol

Parameters:

name

OPERATION OPERAND

CRTlMERS I namel(,name2, ... ,namen]

specifies a
representing a
timer name must
program. This
GETIME, READTCNT

1- to 8-character name
software interval timer. Each

be unique within the user
name is used by the RESET IME "
and STOPTIME macros.

Functional Details:

The CRTIMERS macro uses 24 bytes for each name specified and must
be called in a program segment with read and write access.

The parameter block created by this macro is shown in the
examples.

Examples:

In this example, the CRTlMERS macro creates a parameter block
with storage space that is 6 words long, on a fullword boundary
in the impure segment of code. The format of the parameter block
the CRTIMERS macro creates is shown in Figure 7-5.

7-44 48-006 FOO R02

0(0)
Reserved

4(4)

11 (1)
I Timer Name
1

12(2)
Count

Accumulator Save Area

13(3)
I start Value
I

Figure 7-5 Format Returned by CRTlMERS Macro

This is an example of how the CRTlMERS macro sets up three
software interval timers:

1* MLI BS 8, 9, 10
2 NLIST
5 LIST
6 CRTlMERS TlMER1,TlMER2,TIMER3

000000:1 6+ ALIGN 4
0000 0000:1 6+ TumRl EQU

000000 5449 4045 5231 2020 6+ OB C'TlMERl TIMER NAME FIF.rn
000008 0000 0000 6+ OCF a TIMER COUN'l'ER WORD
OOOOOC 0000 0000 6+ OCF a TIMER START VALUE
000010 0000 0000 6+ OCF a ACCUMULA'rEO T I ME
000014 0000 0000 6+ OCF a REGISTER SAVE AREA

0000 0018: I 6+ TlMER2 EQU
000018 5449 4045 5232 2020 6+ OB C'TlMER2 TIMER NAME FIF.;rn
000020 0000 0000 6+ OCF a TIMER COUN'rER WORD
000024 0000 0000 6+ OCF a TIMER START VALUE
000028 0000 0000 6+ OCF a ACCUMULA'rEO T I ME
00002C 0000 0000 6+ OCF a REGISTER SAVE AREA

0000 0030: I 6+ TlMER3 EQU
000030 I 5449 4045 5233 2020 6+ OB C'TIMER3 TIMER NAME F IELO
000038 I 0000 0000 6+ OCF a TIMER COUNTER WORD
00003C I 0000 0000 6+ OCF a TIMER START VALUE
000040 I 0000 0000 6+ OCF a ACCULA'['EO TIME
000044 I 0000 0000 6+ OCF a REGISTER SAVE AREA
000048 1 7 ENO

48-006 FOO R02 7-45

I RESETlME I

7.7.2 RESETIME (Reset Software Interval Timer) Macro

The RESETIME macro initializes the named software interval timer
that will measure the real-time performance of a task running on
a CPU or an APU. Each time the interval timer's count is
initialized by the RESETIME macro, its count is set to zero.

Format:

NAME

symbol

Parameters:

name

OPERATION OPERAND

RESETIME I name1 (,name2, ... ,namen]

specifies a 1- to 8-character name of an
interval timer that must have been defined by
a CRTIMERS macro. This is a required
parameter.

Functional Details:

The named timer's count, accumulated time, and state are reset to
zero when initialized by this macro.

Examples:

In this example, the RESET macro resets timers TIMER1, TIMER2,
and TIMER3 back to their initial value of zero.

RESETIME TIMER1 ,TIMER2 ,TIMER3

7-46 48-006 FOO R02

I STRTIME

7.7.3 STRTIME (start Software Interval Timer) Macro

The S'rRTIME macro begins a timing interval for the named software
interval timer. The interval timer will measure the real-time
performance of a task running on a CPU or an APU.

Format:

NAME

symbol

Parameters:

name

reg

OPERATION OPERAND

STRTIME I name (,reg]

specifies a 1- to 8-character name for a timer
that must have been declared in a CRTIMERS
macro.

specifies a register that can be used by the
macro for a working or scratch register. If
this parameter is not specified, the macro
will select, save and restore the contents of
its own work register.

Functional Details:

The named timer acts like a stopwatch. This macro starts the
theoretical stopwatch, but has no effect if this named timer was
already started by a previous STRTIME macro.

This macro reads the current value of the real-time counter and
saves it in the named timer parameter block. It also sets a
start timer flag.

48-006 FOO R02 7-47

Examples:

This is an example of how the STRTIME macro starts
interval timer named TIMERl. Since no work
specified, this macro saves its own register and
original values when it completes:

the software
register was
restores the

In this example, the macro starts a timer and passes it to a
specified work register:

STRTIME TIMER2,R2

7-48 48-006 FOO R02

GETIME

7.7.4 GETlME (Read Software Interval Timer) Macro

The GETlME macro returns the total time accumulated, in
microseconds, for the named software interval timer and stores
the accumulated time in a user-specified register.

Format:

NAME

symbol

Parameters:

name

reg

OPERA'rION OPERAND

GETIME I name ,reg

specifies a 1- to a-character name of a timer
that must have been declared in a CRTIMERS
macro. This parameter must be entered.

specifies the user register that will receive
the accumulated time. This is a required
parameter.

Functional Details:

If the named timer is active,
the current interval, but
completed intervals.

it does not include the time for
only the time for all previously

The 32-bit time value returned by this macro is treated as an
unsigned integer. Its range is approximately 68 minutes.

There is no check for a counter overflow condition in the
specified register. It is the user's responsibility to identify
overflow conditions.

Examples:

This example shows how the GETIME macro obtains the accumulated
amount of time for a timer named TIMERl and returns the time in
R2. The time returned is a 32-bit unsigned integer and is in
microseconds.

GETIME TIMERl ,R2

48-006 FOO R02 7-49

I READTCNT I

7.7.5 READTCNT (Read Software Interval Timer's Count) Macro

The READTCNT macro returns a number that shows how many times the
named software interval timer was activated (started and stopped)
since the last time it was reset and stores the resulting 32-bit
unsigned integer in a user-specified register.

Format:

NAME OPERATION OPERAND

symbol

Parameter Values:

name

reg

READTCNT name , reg

specifies a 1- to 8-character name that must
have been declared in a CRTIMERS macro. This
parameter is required.

specifies the user register that will receive
the interval timer's count. This is a
required parameter.

Functional Details:

The 32-bit value returned represents the number of time intervals
measured. The accumulated time for this timer divided by the
timer's count represents the average time interval for this
timer.

The module count of this counter is 2,147,483,647. There is no
check in the macro to identify an overflow condition. It is the
user's responsibility to identify the overflow condition.

Examples:

In this example, the READTCNT macro obtains the number of times
that TIMERl was start~d and stopped since the last time it was
reset. The macro returns the value in R3 as a 32-bit unsigned
integer.

READTCNT TIMERl ,R3

7-50 48-006 FOO R02

I STOPTlME I

7.7.6 STOPTlME (stop Software Interval Timer) Macro

The STOPTIME macro ends a timing interval for the named software
interval timer. This macro saves and stores the results in a
user-specified register. If no register is specified, this macro
saves and restores the contents of its own register.

Format:

NAME

symbol

Parameters:

name

reg

OPERATION OPERAND

STOPTIM:E I name [,reg]

specifies a 1- to 8-character name of a timer
that must have been declared in a CRTIMERS
macro. This parameter is required.

specifies a register that can be used by the
macro as a working or scratch register. If a
register is not specified, the macro saves and
restores the contents of its own work
register. When the macro completes, the
original value is restored in the register.

Functional Details:

The named interval timer acts like a stopwatch. This macro stops
the theoretical stopwatch that was started by a STRTIME macro.
Otherwise, this macro has no effect on the interval timer.

Examples:

In this example, the STOPTlME macro stops TIMER2 using R2 as its
work register:

STOPTIME TIMER2 ,R2

This example shows how the STOPTlME macro saves and restores its
work register because a register parameter was not specified with
the macro:

STOPTIME TIMERI

48-006 FOO R02 7-51

8.1 INTRODUCTION

CHAPTER 8
MISCELLANEOUS MACROS

This chapter presents macros that generate a character constant
of a specified length or a message; compare the contents of two
fields for a specified length; load a range of registers from an
area; move characters; skip to a blank, dump of a storage area;
generate the subroutine for the SNAP macro; and save a range of
registers in storage.

The formats, parameter values, default values, required
parameters, programming considerations, examples, and error
messages are supplied for each macro presented in this chapter.

Section 1.4, Parameter Field Value Mnemonics, explains the
lowercase abbreviations that appear in the parameter field.

48-006 FOO R02 8-1

CHAR

8.2 GENERATE A CHARACTER CONSTANT OF A SPECIFIED LENGTH (CHAR)

The CHAR macro generates a character constant of a specified
length. The constant is padded with trailing blanks.

Format:

[symbol] CHAR string(,len]

Parameter Values:

string 'quoted string'

len absolute expression

Default Value:

len length of the string

Programming Considerations:

A character constant is generated for the quoted string. If an
optional length is specified as an absolute expression, the
string is padded on the right with blanks. There is no limit to
the length of the string. No boundary alignment is required or
performed. If the length is less than the quoted string, the
quoted string is then generated. The length is effectively
ignored.

Example:

ALPHA CHAR 'STRING'

Generates 6 bytes

BETA CHAR • STRING' ,9

Generates 9 bytes - 3TRINGbbb

8-2 48-006 FOO R02

8.3 COMPARE LOGICAL CHARACTER (CLC)

The CLC macro compares the contents of two
The condition code is set as described
Considerations section.

Format:

[symbol] CLC fieldl,field2,length

Parameter Values:

f ieldl

field2

length

addrx
(reg)

addrx
(reg)

absolute halfword expression
(reg)

Required Parameters:

f ieldl
field2
length

Programming Considerations:

CLC

fields for length.
in the Programming

The contents of fieldl are compared byte-by-byte to the contents
of field2. The comparison stops when the two fields are equal
and the length is exhausted, or when the two fields are not
equal. The resultant condition code is set as follows:

48-006 FOO R02 8-3

CIVIGIL

OIXIOIO
IIXIOII
IIXIIII
OIXIOII
OIXIIIO

Fieldl is equal to field2.
Fieldl is less than field2.
Fieldl is less than field2.
Fieldl is greater than field2.
Fieldl is greater than field2.

X undetermined value

If (reg) or an INDEX register is specified for fieldl or field2,
the register value is repositioned to the unequal byte or to the
last equal byte. A zero length always results in equality_

Error Messages:

8·-4

MNOTE CORRECT FORM IS CLC A,B,LEN
Return code = 4

48-006 FOO RO,2

r ENVIRON

8.4 DEFINE SYSTEM MACRO ENVIRONMENT (ENVIRON)

The ENVIRON macro defines the registers to be used in system
macro expansion. This macro also allows an error handling
subroutine, which is to be done in other modules, to be
generated.

Format:

blank ENVIRON options [,PCBREG-] [,SCRREG=]

Parameter Values:

options

PCBREG

SCRREG

Default Values:

ERRSUB (produces the error handling
subroutine in this module and sets its name
as an ENTRY)

NERRSUB (the error
defined in another
defined as EXTRN)

handling
module;

subroutine is
the names are

SNAPSUB (the subroutine for the SNAP macro is
defined in this module; its name is ENTRY)

NSNAPSUB (the subroutine for the SNAP macro
is defined in another module; the name is
defined as EXTRN)

reg (defines the register to be used as the
pointer to PCBs by other system macros)

- reg (defines the register to be used as the
scratch register to modify the PCBs by other
system macros)

PCBREG = 14 (PCB pointer register)

Subroutines are defined in this routine; no linkage is provided.
SCRREG should not be 0 since it is used for indexing and
branching.

48-006 FOO R02 8-5

Programming Considerations:

When writing a program as a series of independent routines to be
linked together, it is not desirable to have copies of the error
handling subroutines or the SNAP subroutine repeated in each
routine. The ENVIRON macro can be coded to define or not define
the subroutines in a given routine. If several routines are
written, the ENVIRON macro must then be coded in each routine.

When using system macros to modify existing programs, R14 and R15
might be needed for other purposes. The ENVIRON macro can
redefine these registers to other values. The subsequently
generated code from the system macros will use these registers.

Example:

Routine 1
ENVIRON ERRSUB

Routine 2
ENVIRON NERRSUB

END

Routine 3
ENVIRON NERRSUB

END

The error handling subroutine is generated in Routine 1 and
referenced in Routines 2 and 3.

ENVIRON PCBREG=2,SCRREG=4

causes system macros to use R2 as the PCB pointer and R4 as the
scratch register until another ENVIRON macro is encountered.

8-6 48-006 FOO R02

I FETACCT

8.5 FETCH ACCOUNTING INFORMATION (FETACCT)

The FE'rACCT macro fetches accounting information and stores it in
a user-specified, l6-byte area. This area must be in a writable
segment.

Format:

[symbol] FETACCT actinfo [,PCBr][,FORM=]

Parameter Values:

act info addrx (address or pointer to l6-byte area
area where accounting information is to be
stored)

(reg) - address or pointer to l6-byle area
where accounting information is to be stored

PCB

FORM

addrx (address or pOinter to PCB)
r (reg) - address or pointer to PCB

L (list form; only generate PCB)

Programming Considerations:

The accounting information is returned as:

• 4 bytes for user time

• 4 bytes for operating system time

• 4 byles for wait time

• 4 bytes for roll time

These 16 bytes must be ful.1word boundary aligned in a writable
segment.

48-006 FOO R02 8-7

GENMSG

8.6 GENERATE A MESSAGE (GENMSG)

The GENMSG macro can generate a number of variable length
messages. The first byte of the message is the length of the
mes sage inc lud ing the length byte. Thus, a mes sage of 15
characters actually generates 7 bytes.

Format:

[symbol] GENMSG 'quoted string'
[,'quoted string· ...]

Programming Considerations:

For each string, a byte is generated containing the length of the
string plus one (for the byte itself), followed by the string.
No boundary alignment is performed. The maximum message length
is 255 characters.

GENMSG is useful for generating variable length messages. Find
the next message by adding the length byte to a register pointer.

Example:

MESSAGE GENMSG 'MESSAGE l'
GENMSG 'MESG2','MSG 3'

3 messages of different lengths

8-8 48-006 FOO R02

LOA I 6,MESSAGE Point R6 to beginning
of message table

LIS 4,0 Value of first status
LOOP EQU *

La 5,0(6) Get length
CLB 4,STATUS STATUS is a byte with a

value between 0 through 2
BE WRITE Value found
AAR 6,5 Add length
AIS 4,1 Next status
BS LOOP Go back

WRITE EQU *
SIS 5,1 Subtract 1 for actual

length of message
WRITE OUTPCB,ADDR=1(6),RECL=(5) Write message

48-006 FOO R02 8-9

LDREG

8.7 LOAD A RANGE OF REGISTERS FROM AN AREA (LDREG)

The LDREG macro loads a range (any number) of registers from a
given area. If the END register is less than the START register,
a wrap-around feature is built in; that is, 14 through 2 loads
registers 14, 15, 0, 1, and 2.

Format:

(symbol] LDREG start, end, area

Parameter Values:

start decimal register number

end decimal register number

area addrx

Default Values:

none

Required Parameters:

start
end
area

Examples:

Load registers 2 through 8 from address ALPHA:

LDREG 2,8,ALPHA

Load registers 14,15,0,1,2 from pointer 7:

LDREG 14,2,0(7)

8-10 48-006 FOO R02

MVe

8.8 MOVE CHARACTER (MVC)

The MVC macro moves the contents of a source field into a
destination field byte-by-byte.

Format:

[symbol] MVC dest,source,length[,EC=]

Parameter Values:

dest

source

length

EC

Default Values:

addrx
(reg)

addrx
(reg)

absolute halfword expression
(reg)

(immediate byte expression, ...)

EC = no ending characters

Required Parameters:

dest
source
length

48-006 FOO R02 8-11

Programming Considerations:

The source field is moved byte-by-byte into the destination field
starting at the left-most byte. Overlapping fields can occur.

If (reg) is specified or an INDEX register is used, the register
is adjusted to the byte immediately following the last byte
moved; that is, two MVes using the same register result in
concatenating the fields without having to adjust the register.

Error Messages:

MNo'rE CORRECT FORM IS MVC TO, FROM, LENGTH

8-12 48-006 FDO R02

I SETACCT

8.9 SET ACCOUNTING INFORMATION (SETACCT)

The SETACCT macro provides a means of setting 8 bytes of
information into the AFT task completion or data overflow account
records.

Format:

[symbol] SETACCT word1,word2[,PCB=] [,FORM=]

Parameter Values:

word1

word2

PCB

FORM

addrx ('1-4 byte string'; address to first
fu11word of information)
reg (register containing first fu11word of
information)

addrx ('1-4 byte string'; address to second
fu11word of information)
reg (register containing second fullword of
information)

addrx (address or pOinter to PCB)
= (reg) - address or pointer to PCB

= L (list form; only generate PCB)

Programming Considerations:

Both parameters, wordl and word2, must be specified. If PCB= is
coded, word1 and word2 do not have to be specified; the
information is assumed to be in the parameter block. If coded as
quoted strings, each can be 1- to 4-characters enclosed in
quotes. If specified as an addrx, the effective address must be
on a fullword boundary.

48-006 FOO R02 8-13

SKTB

8.10 SKIP TO BLANK (SKTB)

The SKTB macro repositions a register pointer to the next ASCII
blank. It is useful in parsing an input string.

Format:

[symbol] SKTB reg

Parameter Values:

reg register expression

Default Values:

none

Required Parameters:

reg

Programming Considerations:

The register pointer is repositioned to point to the next blank
character. If the register is already pointing to a blank
character, it is left unchanged.

Error Message:

8-14

MNOTE NO REGISTER SPECIFIED - NO EXPANSION
Return code = 4

48 ·-006 FOO R02

SKTCR

8.11 SKIP TO CARRIAGE RETURN (SKTCR)

The SKTCR macro repositions a register pointer to the next ASCII
carriage return. It is useful in parsing an input command.

Format:

[symbol] SKTCR reg

Parameter Values:

reg register expression

Default Values:

none

Required Parameters:

reg

Programming Considerations:

'rhe register pointer is repositioned to point to the next
carriage return character. If the register is already pointing
to a carriage return, it is left unchanged.

Error Message:

MNOTE NO REGISTER SPECIFIED - NO EXPANSION
Return code = 4

48-006 FOO R02 8-15

Example:

These macros are useful for parsing an input line and isolating
the operands. If R3 points to a buffer containing operands
separated by blanks or commas, a carriage return terminates the
line, and the length of an operand is to be computed:

8-16

READ INPCB,ADDRrLINE

LDAI 3,LINE

LDAR 4,3
SKTCR 4

SKTNB 3

LDAR 5,3

SKTD 5

SAR 5,3

Read the line

Point to beginning of
the line

R4 now points to
carriage return at
end of line

R3 points to the first
non-blank; it can be
beginning of line

Hold pointer

Now R3 is at the beginning
and R5 is one byte past
the operand

R5 now has the length of
operand

48-006 FOO R02

SKTD

8.12 SKIP TO DELIMITER--BLANK, COMMA, CARRIAGE RETURN (SKTD)

The SKTD macro repositions a reg'ister pOinter to the next ASCII
blank, comma, or carriage return if there are no user-specified
delimiters or up to three user-specified delimiters. It is
useful in pausing an input command.

Format:

[symbol] SKTD reg[,D=]

Parameter Values:

reg

D

Default Values:

None

register expression

up to three absolute byte expressions
enclosed in parentheses

Required Parameters:

reg

Programming Considerations:

The register pointer is repositioned to point to the next
delimiter defined as one of the following:

• Blank, comma, or carriage
user-specified delimiters

return

• Up to three user-specified delimiters

if there are no,

If the register is pointing to a delimiter, it is left unchanged.

Error Message:

MNOTE NO REGISTER SPECIFIED - NO EXPANSION
Return code = 4

48-006 FOO R02 8-17

SKTNB

8.13 SKIP TO NONBLANK (SKTNB)

The SKTNB macro repositions a register pOinter to the next byte
which is not an ASCII blank. It is useful in parsing an input
command.

Format:

[symbol] SKTNB reg

Parameter Values:

reg register expression

Default Values:

None

Required Parameters:

reg

Programming Considerations:

The register pointer is repositioned to point to the next
nonblank character. If the register is pointing to a nonblank
character, it is left unchanged.

Error Message:

8-18

MNOTE NO REGISTER SPECIFIED - NO EXPANSION
Return code = 4

48-006 FOO R02

SNAP

8.14 TAKE A SNAPSHOT DUMP OF AN AREA OF STORAGE (SNAP)

The SNAP macro writes the storage area's contents to the console
or an LU in hexadecimal or ASCII format. It is useful in
debugging a program.

Format:

[symbol] SNAP area,len[,LU=]

Parameter Values:

area addrx
(reg)

len absolute
(reg)

LU = absolute

Default Values:

none

Required Parameters:

area
len

halfword

halfword

Programming Considerations:

expression

expression

A storage area is written to the console or LU in hexadecimal and
ASCII format. The area address is rounded down to the nearest
fullword. The length is then rounded up to the next 16 bytes.
The length is specified in bytes; thus, the minimal area snapped
is 16 bytes. If an LU is not specified, SNAP uses the WTO macro.
If an LU is specified, an LU must be preassigned. LU-O cannot be
used. Nonprintable characters are printed as a period. The SNAP
macro automatically generates the required subroutine by issuing
the SNAPSUB macro.

48-006 FOO R02 8-19

Example:

SNAP ALPHA,l7

Error Messages:

would snap 32 bytes
starting at the nearest
fullword less than or
equal to address ALPHA.

MNo'rE INVALID NUMBER OF PARAMETERS - CORRECT FORM IS
SNAP AREA, LEN

Return code = 4

8·-20 48-006 FOO R02

I SNAPSUB

8.15 GENERATE THE SUBROUTINE FOR THE SNAP MACRO (SNAPSUB)

The SNAPSUB macro generates the subroutine required for the SNAP
macro.

Format:

blank SNAPSUB blank

Programming Considerations:

The SNAP macro issues SNAPSUB; thus, it is not required to issue
this macro unless the user wants the subroutine in an impure
segment. Only one copy of the subroutine can be generated. The
label on the subroutine is SNAPSUB.

48-006 FOO R02 8-21

STREG

8.16 STORE A RANGE OF REGISTERS IN A GIVEN AREA (STREG)

The STREG macro stores a range (any number) of registers in a
given area. If the END register is less than the START register,
a wrap-around feature is built in; that is, 14 through 2 stores
registers 14, 15, 0, 1, and 2.

Format:

[symbol] STREG start,end,area

Parameter Values:

start decimal register number

end decimal register number

area addrx

Default Values:

none

Required Parameters:

start
end
area

Example:

Save registers 2 through 8 in address ALPHA:

STREG 2,8,ALPHA

Save registers 14, 15, 0, 1, and 2 in address pointer 7:

s'rR.EG 14,2, a (7)

8-22 48-006 Faa R02

A

Absolute expression
Access key combinations
Account records

data overflow
Accounting information
Address

start options field
Address-expression
ALAS macro

ALLOCA'rE macro
APPCB macro
appcb parameter block

building
APPERR macro
APPERRET macro
APPERTBL macro
APSTRUC macro

APU
ready queue
status

APU information
APU status byte

error codes
APUCNTL macro
APUMAP macro
APus'rAT macro

data buffer format for
ASSIGN macro

Auxiliary processing unit.
See APU.

B

BFILE macro
Branch addresses

table of
BREC macro
Buffer

chain
ring

CANCEL macro
CANTIME macro
CHAP macro

C

CHAR macro
Character constant

generation of
CHECKFM macro
CHPRIO macro
CKPOINT macro
CKTASK macro
CLC macro

48-006 FOO R02

INDEX

1-7
3-17

8-13
8-7

5-40
1-6
3-6
3-8
3-9
7-3

7-3
7-8
7-10
7-5
7-4
7-12

7-19
7-19
7-15

7-33
7-30
7-26
7-19
7-21
3-12
5-13

4-6

7-5
4-8

5-21
5-21

5-2
6-2
3-15
8-2

8-2
3-18
5-4
3-19
5-6
8-3

CLDE macro
CLOSE macro

Code FORM=L
Code PCB=-
Comment field
Conditional assembly

macros in
CONNECT macro
Control

functions
privileges

COPY command
Counter overflow condition
CRTIMERS macro
Current access privileges
Current task

preemption_of
rescheduling

CYCTIME macro

o

DELETE macro
Delimiters

user-specified
Device

disconnecting
Directed task

status of

END register
ENVIRON macro

EOT macro
Equates

defining

E

Error handling and recovery
Error linkage macro
Errors

execution time
macro expansion

ERW access privileges

FDS macro
FETACCT macro
FETATR macro
FETDATE macro
FETLPU macro

F

buffer data returned for
FETPTR macro
FETTIME macro
FFILE macro

3-21
3-20
3-23
1-12
1-12
1-2

1-17
5-8

7-30
7-30
2-30
7-49
7-44
3-15

7-36
7-36
6-3

3-25

8-17

5-50

5-6

8-10
1-11
8-5
2-2

7-12
1-16
7-8

1-10
1-9
3-43

3-27
8-7
3-28
2-4
7-15
7-17
2-6
2-8
4-9

IND-l

F' 1e ld
destination
NAME
OPE!RAND
OPERATION
source

File descriptor
to process

File management
errors
parameter control block

File management macros
parameters for

FMERR macro
FMERRET macro
F'MERRTBL macro
FMPCB macro

FMPCBS macro
FORM=parameters
FREC macro
FREEZE macro

G

GENMSG macro
GENTlME macro
GETIME macro
GETSTORE macro

GETSTORS macro
Global flags

H

HALTIO macro

I,J

I/O proceed request
Information macros
Input command

parsing
Input/output macros

parameter block
parameters for

Interrupt
disabling
Simulating

Interrupt bit
arithmetic fault

Interval timer
activating
initializing
reading
recording
resetting
stopping

IOERR macro
IOERRET macro
IOERRTBL macro
IOPCB macro

IND-2

8-11
7-2
7-2
7-2
8-11

2-19

3-31
3-1
2-21
3-1
3-30
3-31
3-33
3-1
3-8
3-35
3-37
1-11
4-10
5-10

8-8
6-5
7-49
2-10
2-12
2-12
1-17

4-11

4-26
7-14

8-18

4-18
4-1

5-10
5-36

2-31

7-44
7-44
7-44
7-44
7-44
7-44
4-14
4-15
4-16
4-18

IOPCBS macro

K

Keyword parameters

L

LDREG macro
Line control block
Link APU mapping option
LOAD macro
Logical processing unit.

See LPU.
Logical unit

closing

transferring
LPU assignment

other-directed

self-directed

LPU-directed status
resetting

LPU-directed task state
setting

LPU information
LTSW macro

M

Macro expansion errors
Macro instruction

fields
fixed formatting
formatting
free formatting

Macro instruction fields
comment
indentification/sequence
name
operand
operation

Macros
ALAS

ArLOCATE

APPCB
APPERR
APPERRET
APPERTBL
APSTRUC
APUCNTL
APUMAP
APUSTAT
ASSIGN

BF ILE
BREC
CANCEL

4-20

1-4

8-10
3-25
7-28
5-12

5-24
5-30
5-24
7-41
7-38
7-39
7-38
7-39

7-39

7-41
7-15
5-15

1-9

1-3
1-2
1-1
1-2

1-3
1-3
1-3
1-3
1-3

3-6
3-6
3-6
3-9
7-3
7-8
7-10
7-5
7-12
7-30
7-26
7-19
3-6
3-12
4-6
4-8
5-2

48-006 FOO R02

Macros (Continued) Macros (Continued)
CAN'rrME 6-2 PEEKS 2-24

6.-3 POINT 3-41
CHAP 3-15 QUEPARM 5-22
CHAR 8-2 READ 4-21
CHECKFM 3-18 READTCNT 7-50
CHPRIO 5-4 READTlME 6-7
CKPOINT 3-19 RECVLU 5-24
CKTASK 5-6 RELEASE 5-26
CLC 8-3 RENAME 3-43
Cr..DE 3-21 REPROT 3-45
CLOSE 3-22 REQUEUE 7-36

3-23 RESETlME 7-46
CONNECT 5-8 REWIND 4-24
CRTIMERS 7-44 RUN 5-27
CYCTlME 6-3 SCAN 2-28
DELETE 3-22 SENDLU 5-30

3-25 SENDMSG 5-32
ENVIRON 8-5 SETACCT 8-13
EOT 2-2 SETCPU 7-39
FDS 3-27 SETLPU 7-41
FETACCT 8-7 SETSTAT 2-31
FETATR 3-28 SETUDL 5-34
FETDATE 2-4 SIMINT 5-36
FETLPU 7-15 SKTB 8-14
FETPTR 2-6 SKTCR 8-15
FETTlME 2-8 SKTD 8-17
FFILE 4-9 SKTNB 8-18
FMERR 3-30 SNAP 8-19
FMERRET 3-31 SNAPSUB 8-21
FMERRTBL 3-33 START 5-27
FMPCB 3-35 5-38
FMPCBS 3-37 STOPTlME 7-51
FREC 4-10 STREG 8-22
FREEZE 5-10 STRTlME 7-47
GENMSG 8-8 SUSPEND 5-42
GENTlME 6-5 TESTIO 4-25
GETlME 7-49 TEXIT 5-47
GETSTORE 2-10 THAW 5-36

2-26 5-43
GETS TORS 2-12 TIME'rBL 6-9
HALTIO 4-11 TMPCB 5-45
1/0 1-16 TRAPTlME 6-10
IOERR 4-14 UDLS 5-48
IOERRET 4-15 UN CONN 5-50
IOERRTBL 4-16 UNPK 2-33
IOPCB 4-18 WAITIO 4-26
10PCBS 4-20 WAITTlME 6-12
LDREG 8-10 WFM 4-28
LOAD 5-12 WRITE 4-29

5-27 WTO 2-35
LTSW 5-15 Macros, types
MAKNRES 5-17 file management 3-1
MAKNROLL 5-18 input/output 4-1
MAKRES 5-19 Model 3200MPS System 7-1
MAKROLL 5-20 supervisor 2-1
miscellaneous 8-1 task management 5-1
MNEMTBL 2-13 timer management 6-1
MSGRING 5-21 MAKNRES macro 5-17
MVASCI I 2-14 MAKNROLL macro 5-18
MVC 8-11 MAKRES macro 5-19
NOTE 3-39 MAKROLL macro 5-20
PACK 2-17 Map LPU to APU macros 7-25
PACKFD 2-19 Mapping privileges 7-25
PAUS 2-22 7-26
PEEK 2-23

48-006 FOO R02 IND-3

Mapping table
logical processor

Maximum APU number
Miscellaneous macros
Mixed mode parameters
Mnemonic table
MNEMTBL macro

Model 3200MPS System macros
information
mapping
support
task control
task direction
task timer

MSGRING macro
Multiprocessing system
MVASC I I macro
MVe macro

N

NOTE macro

o

Operating system
clock

Other-directed task

P

PACK macro

PACKFD macro

Parameter blocks
constructing
file management
input/output
task management
timer management

Parameter fields
mixed mode
value mnemonic

Parameters
FORM""
keyword
PCB=
positional

PAUS macro
PCB=parameters
PEEK

equates
structure

PEEK macro
PEEKS macro
POINT macro
Positional parameters
Procedure

IND-4

error linkage
error recovery

7-15
7-17
8-1
1-5
2-13
2-13
2-29

7-1
7-1
7-1
7-1
7-1
7-1
5-21
7-1
2-14
8-11

3-39

2-9
7-42

1-9
2-17
2-19
3-10

1-10
1-13
1-13
1-13
1-13

1-5
1-5

1-11
1-4
1-11
1-4
2-22
1-11

2-24
2-24
2-23
2-24
3-41
1-4

7-8
7-8
7-10

Proceed call
Proceed I/O request
Program debugging
Protection keys

changing

Q

QUEPARM macro

R

READ macro
READTCNT macro
READTlME macro
Real-time performance

measurement of
RECVLU macro
Register

END
START

Register-expression
Register pointer

repositioning
RELEASE macro
RELSTORE macro

RENAME macro
REPROT macro
REQUEUE macro
RESETlME macro
Return error linkage macro
REWIND macro

RUN macro

S

SCAN macro
Self-directed task
SENDLU macro
SENDMSG macro
SETACCT macro
SETCPU macro
SETLPU macro

SETSTAT macro
SETUDL macro

SIMINT macro
SKTB macro
SKTCR macro
SKTD macro
SKTNB macro
SNAP macro

SNAPSUB macro
Software interval timer

initializing
START macro
START register
STOPTIME macro
S'rREG macro

4-22
4-11
8-19

3-45

5-22

4-21
7-50
6-7

7-43
5-24

8-22
8-22
1-6

8-14
5-26
1-7
2-26
3-43
3-45
7-36
7-46
7-10
4-24
5-13
5-27

2-28
7-42
5-30
5-32
8-13
7-39
1-8
7-41
2-31
5-22
5-34
5-36
8-14
8-15
8-17
8-18
8-1
8-19
8-21
7-44
7·-46
5-38
8-10
7-51
8-22

48-006 FOO R02

s'rR'r IME macro
structures

generating
Subroutines

error recovery
Supervisor macros

parameter blocks for
Support macros
SUSPEND macro

SVC 13
services

Syntax error
System macro expansion

registers for
System pointer table (SPT)

T

Task
console wait state
execution
loading
nonresident
releasing
resident
rollable
rolled

Task control macros
Task direction macros
Task management macros
Task status word
Task timer macros
Task wait state

Temporary storage
releasing

"rESTIO macl.'O
TEXIT macro
THAW macro
Time expression

conversion
Time interval request

48-006 FOO R02

7-47

7-1.2

7-9
2-1
1-11
7-2
5-26
5-42

7-14
2-21

8-5
2-23

2-22
5-38
5-27
5-17
5-26
5-19
5-20
5-18
7-29
7-38
5-1
5-15
7-43
4-26
5-42
6-12

2-26
4-25
5-47
5-43

6-5
6-1
6-2

Time intervals
number of
table of

Timer interval
setting up

Timer management macros
TIMETBL macro
Timing interval

beginning
ending

TMPCB macro
Trap event service routine
Trap-generating device

TRAPTlME macro

UDLS macro
UNCONN macro
UNPK macro

U

Unsigned binary number
converting

User-dedicated location
modifying
setting

User-defined routine
User-written routine

UTOP address

v

Value mnemonics

w-z

WAITIO macro
WAITTlME macro
WFM macro
WRITE macro
WTO macro

7-50
6-9

6-10
6-1
6-9

7-47
7-51
5-45
5-47
5-8
5-43
6-10

5-48
5-50
1-7
2-33

2-33
2-6
5-34
5-34
4-15
3-33
7-11
2-10
2-27

1-5

4-26
6-12
4-28
4-29
2-35

IND-5

w
Z
....J
(!)
Z
o
....J
<{

I
:::>
u

PUBLICATION COMMENT FORM

Please use this postage-paid form to make any comments, suggestions, criticisms, etc. concerning
this publication.

From ____________________________ __ Da te ________________________________ _

Title ____________________________ _ Publica tion Title _____________________ _

Company _________________________ _ Publication Number ________________ _

Address _______________________ _

FOLD FOLD

Check the appropriate item.

D Error Page No. Drawing No. --------------

D Addition Page No. Drawing No. ____________ _

D Other Page No. Drawing No. ____________ _

Explanation:

FOLD FOLD

Fold and Staple
No postage necessary if mailed in U.S.A.

6434

ST APLE

FOLD

POSTAGE WILL BE PAID BY ADDRESSEE

PERKIN-ELMER
Computer Systems Division
2 Crescent Place
Oceanport, NJ 07757

TECH PUBLICATIONS DEPT. MS 322A

FOLD

STAPLE

111111
NO POSTAGE
NECESSARY
IF MAILED

STAPLE

FOLD

-l
I
I

IN THE
UNITED STATES

I

FOL~ -,

I
I
I
I
I
I
I
I
I
I
I
I

STAPLIE I
I 64:

