
PERKIN-ELMER

OS/32

MULTI-TERMINAL MONITOR (MTM)
Reference Manual

48-043 FOO R01

The information in this document is subject to change without notice and should not be
construed as a commitment by the Perkin-Elmer Corporation. The Perkin-Elmer Corpo
ration assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Elmer.

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757

® 1983 by The Perkin-Elmer Corporation

Printed In the United States of America

TABLE OF CONTENTS

PREFACE

CHAPTERS

1 GENERAL DESCRIPirION

Ll

1. 2

l. 3
1. 3. 1
1. 3. 2
1. 3. 3
1. 3. 4
1. 3. 5

1. 4
1. 4 .1
1.4.1.1

1. 5

1. 6
1. 6. 1
1. 6. 2
1. 6. 3
1. 6. 4
1. 6. 5
1. 6. 6

1. 7
1. 7 .1
1. 7. 2
1.7.2.1
1. 7. 3
1. 7 .4
1.7.4.1
1.7.4.2
1.7.4.3
1. 7 .4.4

I NTRODUC'r I ON

MUL'rI-'I1ERMINAL MONITOR (MrM) OPERATION

USER INFORMATION
Multi-'rerminal Monitor (MTM) Devices
Authorization
Privileged Users
Transmitting Messages
Number of Terminal Users

MULTI-'I1ERMINAL MONITOR (MTM) ENVIRONMENTS
Mu.lti-'re:r.minal Monitor (MTM) Terminal Modes
Interactive Task to Terminal Mode

LOADING A TASK

MULTI-TERMINAL MONITOR (MTM) SPECIAL FEATURES
Command Substitution System (CSS)
The Help Facility
Program Development Commands
Spooling
Security and Access Protection of Disks
Signon Command Substitution System (CSS)

CONVENTIONS
Prompt Conventions
Terminal Conventions
Using the Break Key
Command Conventions
File Conventions
Private Account Numbers
Group Account Numbers
System Account Numbers
File Descriptors (fds)

48-043 FOO ROl

h:

l···l

l·-·l

1···2
1---3
1···3
1···3
1--·4
1 4

1-·4
l·-·6
1···6

1···7

1--7
1--7
1--7
1···8
1--8
1--8
1-·8

1--9
1-·9
1-·10
1-·10
1-·11
1-·ll
1-·ll
1-··ll
1-·12
1-·12

i

CHAPTERS {Continued)

2 MULTI-TERMINAL MONITOR (MTM) USft~R COMMANDS

2.1 INTRODUCTION 2-1

2.2 ALLOCA'I1E COMMAND 2-2

2.3 ASSIGN COMMAND 2-6

2.4 BFILE COMMAND 2-12

2.5 BIAS COMMAND 2-13

2.6 BREAK COMMAND 2·-14

2.7 BRECORD COMMAND 2-15

2.8 BUILD AND ENDS COMMANDS 2-16

2.9 CANCEL COMMAND 2-18

2 .10 CLOSE COMMAND 2-19

2.11 CONTINUE COMMAND 2-20

2.12 DELETE COMMAND 2-21

2. 13 DISPLAY COMMAND 2-22

2. 14 DISPLAY ACCOUNTING COMMAND 2-24

2. 15 DISPLAY DEVICES COMMAND 2-25

2. 16 DISPLAY DFLOAT COMMAND 2-27

2.17 DISPLAY FILES COMMAND 2-28

2 .18 DISPLAY FLOAT COMMAND 2-34

2.19 DISPLAY LU COMMAND 2-35

2.20 DISPLAY PARAMETERS COMMAND 2-.37

2.21 DISPLAY REGISTERS COMMAND 2-42

2.22 DISPLAY TIME COMMAND 2-43

2.23 DISPLAY USERS COMMAND 2·-44

2.24 ENABT .E COMMAND 2-·45

2.25 EXAMINE COMMAND 2-·46

2.26 FF I LE COMMAND 2-48

ii 48-043 FOO ROl

CHAPTERS (Continued)

2.27

2.28

2.29

2.30

2.31

2.32

2.33

2.34

2.35

2.36

2.37

2.38

2.39

2.40

2.41

2.42

2.43

2.44

2.45

2.46

2.47

2.48

2.49

2.50

2.51

2.52

2.53

FRECORD COMMAND

HJ:t~LP COMMAND

INIT COMMAND

LOAD COMMAND

LOG COMMAND

MESSAGE COMMAND

MODIFY COMMAND

OP'rIONS COMMAND

PASSWORD COMMAND

PAUSE COMMAND

PREVEN'r COMMAND

PRINT COMMAND

PUNCH COMMAND

$RELEASE COMMAND

RENAME COMMAND

Rl<~PRO'rECT COMMAND

REWIND AND RW COMMANDS

RVOLUME COMMAND

SEND COMMAND

SET GROUP COMMAND

SET KEYOPERATOR COMMAND

SET PRIVA1rE COMMAND

SIGNOFF COMMAND

SIGNON COMMAND

SPOOLFlLE COMMAND

START COMMAND

TASK COMMAND

48-043 FOO ROl

2··49

2-·50

2-·52

2 ··53

2-·55

2-·57

2-·58

2-·60

2-·61

2·-·62

2-·63

2·-·64

2 .. ··66

2-·68

2·-·70

2-·71

2-·72

2-·73

2-·76

2-·77

2-·79

2-·81

2 ···83

2-84

2-86

2-89

2··-90

iii

CHAPTERS (Continued)

2.54 TEMPFILE COMMAND

2.55 VOLUME COMMAND

2.56 WFILE COMMAND

2.57 XALLOCA'rE COMMAND

2.58 XDELE'rE COMMAND

3 MTM/NON-MTM TASK INTERFACES

3.1

3.2
3.2.1

3.3

3.4

INTRODUCTION

INTERFACING WITH A FOREGROUND TASK
Programming Details

HASP INTERFACE

ITC/RELIANCE INTERFACE

4 PROGRAM DEVELOPMENT

4.1

4.2
4.2.1

4.3

4.4

4.5

4.6

4.7

4.8

4.9
4.9.1
4.9.2
4.9.3
4.9.4
4.9.5
4.9.6
4.9.7
4.9.7.l
4.9.8

INTRODUCTION

CREATING A SOURCE PROGRAM
Creating a Data File

EXECUrING A PROGRAM

MODIFYING A PROGRAM

RE-EXECU'rING A MODIFIED PROGRAM

EXECUTING MULTIPLE PROGRAMS AS A SINGLE
PROGRAM

HOW TO RECOVER FROM ERRORS

ASSIGNING LOGICAL UNITS

PROGRAM DEVELOPMENT COMMANDS
ADD Command
COMPILE Command
COMPLINK Command
EDIT Command
ENV Command
EXEC Command
LINK Command
Link Sequences
LIST Command

2-91

2-94

2-96

2-97

2-100

3-1

3-1
3-2

3-4

3-5

4·-1

4-1
4·-4

4-4

4-5

4-5

4-6

4-10

4-10

4-11
4-12
4-14
4-18
4-21
4-23
4-25
4-28
4-29
4·-32

iv 48-043 FOO ROl

CHAPTERS (Continued)

4.9.9
4.9.10

REMOVE Command
RUN Command

SAMPLE PROGRAM DEVELOPMENT SESSIONS

5 MCJI .. 'rI-'11f~RMINAL MONITOR (M'rM) BATCH PROCESS ING

5.1

5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6

5.4

5.5

5.6

I NTRODCJC'r I ON

BA'rCH COMMANDS
INQUIRE Command
LOG Command
PURGE Command
SIGNOFF Command
SIGNON Command
SUBMIT Command

BATCH JOB SUBMISSION USING THE SPOOLER

ERROR HANDLING

BATCH TASK PAUSE OPTION

EFFECT OF RESTRrc·rED DISKS ON BA'rCH JOBS

6 COMMAND SUBS'r I TUT I ON s YS'rf.!~M (css)

6.1

6.2

6.3

6.4
6.4.1

6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5

6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.6.6
6.6 .. 6.l

GENERAL DESCRIPTION

CALLING A CSS FILE

USE OF PARAMETERS

USE OF KEYWORDS
Referencing Keywords Within the CSS

USE OF VARIABLES
Types of Variables
Naming Local or Global Variables
Naming New Global or New Internal Variables
CSS Line Expansion
Reserved Variables

COMMANDS EXECUTA.BLE WITHIN A CSS FILE
(% ••• %) Character Replacement Corrunand
$BUILD and $ENDB Commands
$CLEAR Command
$ CON'r I NUE Command
$COPY and $NOCOPY Commands
$DEFINE Command
File Descriptor Operators

48-043 FOO ROl

4····33
4-·34

4-·36

5···1

5-·l
5·-·3
5 ·-·5
5-·7
5··-·8
5-·9
5-·ll

5-13

5-·13

5-13

5-14

6·-1

6-·2

6-3

6-5
6-7

6-9
6-9
6-10
6-10
6-12
6-13

6-13
6-14
6-18
6-20
6-21
6-22
6-23
6-24

v

CHAPTERS (Continued)

vi

6.6 .. 6.1.1
6.6.6.1.2
6.6.6.1.3
6.6.6.1.4
6.6.6.2
6.6.6.3
6 .. 6 .. 6 .. 3.1
6.6.6.3.2
6.6.6.3.3
6.6.6.3.4
6.6.6.4
6.6.6.4.1
6.6.6.4.2
6.6.6.4 .. 3
6.6.6.4 .. 4
6.6.6.4.5
6.6.6.4.6
6.6.7
6.6.8
6.6.9
6.6.10
6.6.11
6.6.12
6.6.13
6.6.14
6.6.15
6.6.16
6.6.17
6.6.18
6.6.19

6.7
6.7.1
6.7.2
6.7.3
6.7.4

6.8

6.9

6. 10

6.11
6. 11. 1
6. 11. 2
6. 11. 3

ACCOUNT Operator
EXTENSION Operator
FILENAME Operator
VOLUMENAME Operator
Logical Operators
Computation and Conversion Operators
DCOMPUTE Operator
DHCONVERT Operator
HCOMPUTE Operator
HDCONVERT Operator
Other Operators
CLEAR Operator
CURRENT Operator
DVOLUMENAME Operator
REQUIRED Operator
SEARCH Operator
STRING Operator
$EXIT Command
$FREE Command
$GLOBAL Command
$JOB and $TERMJOB Commands
$LOCAL Command
$PAUSE Command
PRIOR Command
$REL.EASE Command
$SE'r Command
SET CODE Command
$SKIP Command
$WAIT Command
$WR r •rE Command

LOGICAL IF COMMANDS
End of Task Code Testing Commands
File Existence Testing Commands
Parameter Existence Testing Commands
$ELSE Command

$Go·ro AND $LABEL COMMANDS

$ I F ft~ X'I1ENS I ON COMMAND

$IFVOLUME COMMAND

LOGICAL IF COMMANDS COMPARING ·rwo ARGUMEN'fS
$IF ... EQUAL, $IF NEQUAL Commands
$ IF ... GREA'rER, $IF ... NGREA'rER Commands
$IF ... LESS, $IF ... NLESS Commands

6-24
6-25
6-26
6-28
6-2.9
6-30
6-30
6-32
6-33
6-34
6-35
6-36
6-37
6-38
6-39
6-40
6-43
6-45
6-46
6-47
6-48
6-50
6-51.
6-52
6-53
6-55
6-56
6-57
6-58
6·-59

6'·-60
6-61
6-62
6-62
6-63

6-64

6-66

6·-67

6-68
6-69
6-69
6-70

48-043 FOO ROl

CHAPTERS (Continued)

7 SPOOLING

7.1

7.2
7.2.1
7.2.2
7.2.2 .. 1
7.2.2.2
7.2.3
7.2.4

7.3
7.3.l

I N'rRoDuc·r I ON

'rHE OS/32 SPOOLER
Input Spooling
Input Spooling Control Card Statements
The /@ INPUT Control Statement
The /@ SUBMIT Control Statement
Output Spooling
Spooling Errors

THE SPL/32 SPOOLER
SPL/32 and MTM Interaction

APPENDIXES

A

B

c

D

E

F

G

H

M'I1M COMMAND SUMMARY

PROGRAM DEVELOPMEN'r COMMAND SUMMARY

CSS COMMAND SUMMARY

MrM MESSAGE SUMMARY

CSS MESSAGE SUMMARY

PROGRAM DEVELOPMEN'r MESSAGE SUMMARY

MTM/NON-MTM TASK INTERFACES

G.l

G.2

$FOREGROUND TASK INTERFACE MESSAGES

HASP INTERFACE MESSAGES

CONTROL SUMMARY FOR BI-DIRECTIONAL INPUT/OUTPUT
CONTROL (BIOC) CRT DRIVER

FIGURES

4-1 COMPILE Command Functions in the Language

4-2

4-3

Environment
COMPILE Command Functions in the Multi-Module
Environment
COMPLINK Command Functions i.n the Language
Environment

48-043 FOO ROl

7 -1

7·-1
7 -2
7-2
7-2
7 -3
7 -5
7 ·-6

7-7
7 .. -8

A·-1

a .. -1

c .. -1

D·-1

E--1

F ·-1

G--1

G--1

G-·2

H-·l

4-·16

4-·17

4-·19

vii

FIGURES

4-4

4-5

4-6

4-7

4-8

4-9

4-10

H-1

TABLES

1-1
1-2

2-1
2-2
2-3
2-4

4-1
4-2
4--3

4·-4

H-1

INDEX

viii

(Continued)

COMPLINK Command Functions in the Multi-Module
Environment
EXEC Command Functions in the Language
Environment
f!~XEC Command Functions in the Multi-Module
Environment
LINK Command Functions in the Language
Environment
LINK Command Functions in the Multi-Module
Environment
RUN Command Function in the Language
Environment
RUN Command Function in the
Environment

Perkin-Elmer Model 1200 Mode

M'rM PROMP'r CONVENTIONS
TERMINAL CONVENTIONS

Multi-Module

Selectors

ACCESS PRIVCLEGE COMPATIB ILI'rY
DISPLAY PARAMETERS COMMAND FIELDS
'rASK OPTION BIT DEFINITIONS
WAIT S'rATUS BIT DEF IN IT IONS

PROGRAM DEVJo~LOPMl~NT LANGUAGE COMMANDS
PROGRAM Dr~VFn OPMgNT COMMAND AVAILA.B IL I TY
PROGRAM DEVELOPMENT DEFAULT VARIABLE SETTINGS
AND LOG I CAL UN I 'r ASS I GNMEN1rs
PROGRAM DEVgLOPMENT COMMANDS THAT COMPILE,
LINK, AND EXECUTE

LINE DISPLAY COMBINATIONS

4-20

4-26

4-27

4-30

4-31

4-3.5

4-3.S

H-2

1-9
1-10

2-8
2-37
2-38
2·-40

4·-1
4·-8

4-10

4-36

H-4

Ind·-1

48-043 FOO ROl

PREFACE

The information about the Perkin-Elmer Multi-Terminal Monitor
(WrM) in this manual is written for the MTM user and can also be
helpful to the system operator and system programmer.

Chapter 1 is a general descr ipti.on of the MTM system, containing
information on MTM system requirements, MTM features, and various
conventions. Chapter 2 describes MTM user commands. Chapter 3
describes MTM to non-MTM task i.nterfaces that allow users to
transfer control of their terminal between MTM and other non-·MTM
tasks (HASP, ITC/Reliance, Foreground) and return to MTM in an
orderly fashion. Chapter 4 describes the program development
commands. Chapter 5 describes batch processing under M'I'M.
Chapter 6 describes the command substitution system (CSS) and the
CSS commands. Chapter 7 describes spooling and br ie~f ly
elucidates the two spoolers (OS/32 and SPL/32) available to users
of OS/32 and MTM.

Appendix A summarizes the MTM user commands. Appendix B ie~ a
summary of the program development commands. Append h: C
summarizes the CSS commands. Appendix D is an MTM command
message summary. Appendix E is a summary of CSS messagres.
Append ix F is a summary of progt·am development command messagres.
Appendix G is a summary of MTM to non-MTM task interf'ace
messages. Appendix H is a contt·ol summary for the Bidirectic•nal
Input/Output Control (BIOC) CRT driver.

Revision ROl of this manual adds two new file types to the
ALLOCATE, 1rEMPF ILE, and XAILOCATE commands. New soft.ware dens: ity
selection options are added to the ASSIGN command. MTM now
supports up to a maximum of 65,535 accounts. A new type of user
(a PRIVILEGED user) is introduced along with new commands (SET
GROUP, SET PRIVATE, PRIOR) that enable the privileged user to
access any account on the system. A new PASSWORD command has
been added to allow users to alter their own password to enhance
account security. Two new variable types have been added to
MTM's CSS processor: new global and new internal variables. A
command to define these new variable types, the $DEFINE command,
.has been added. Also, a new command to release these new
variable types, the $RELEASE command, has been added. MTM also
has the capability to use keywords and positional parameters in
CSS calls and reference them within CSS routines. A powerful
character replacement command (%-~-%)has been added to enable
replacement of characters within CSS lines on a call-by-call
basis. New interface protocols between MTM and non-MTM tasks are
available.

48-043 FOO ROl ix

Changes were made to the DISPLAY DEVICES, DISPLAY FILES, DISPLAY
LU, PRINT, and PUNCH commands, and control information for the
new BIOC CRT driver is presented. A new command (SPOOLFILE
command) has been added to enable users of the new spooler,
SPL/32, to request spooling functions at the CSS or terminal
level.

This manual is intended for use with the OS/32 R06.2 software
release and higher.

For information on the contents of all Perkin-Elmer 32-bit
manuals, see the 32-Bit Systems User Documentation Summary.

x 48--043 FOO ROl

1.1 INTRODUCTION

CHAPTER 1
GENERAL DESCRIPTION

Multi-Terminal Monitor (MTM) permits several terminal users to
share system resources. Each user perceives that a computer is
at his or her disposal.

Concurrent access from online terminals is useful during
application task development because it reduces turnaround time.
Other advantages are that concurrent access can be used to extend
the type of data processing at an installation. Using the
system-supplied interactive software means that editing, task
development, and documentation can be done simultaneously.
Furthermore, if the system-supplied interactive tasks are
supplemented by customer-written tasks, MTM application becomes
limitless, supporting a mixture of terminal users such as clerks,
software development, and operations personnel.

1.2 MULTI-TERMINAL MONITOR (MTM) OPERATION

Like all general purpose, multi·-access, time sharing systems, MTM
requires operations involvement from the installation using it.
This involvement includes those functions that accompany MTM ~hen
it is tailored to a specific installation along with dynamic
functions performed when MTM is operating.

Examples of the MTM tailoring functions are:

• Cataloguing authorized users

• System generation (sysgen)

• Establishing an installation's procedures

Examples of dynamic functions are:

• System console control

• Peripheral device supervision

• Spooled output dissemination

48-043 FOO ROl 1-1

Generally, tailoring functions are performed and maintained by
the customer's system support group responsible for making
computing facilities available to system users. The dynamic
functions are performed by a system operator during system
operation and are distinct from those functions performed by
terminal users.

The system operator can perform all the functions described in
the OS/32 Operator Reference Manual, together with operator
functions required to administer MTM. At any time the system
operator may be initiating and controlling multiple foreground
tasks and one background task while operating MTM.

1.3 USER INFORMATION

Under MTM control, a terminal user can:

• load and execute interactive tasks,

• submit multiple batch job requests,

• perform program development,

• perform program debugging,

• create, edit, and manipulate files,

• build, modify, and execute command streams,

• use spooling functions,

• communicate with other terminal users, and

• communicate with the system operator.

A terminal user is either interacting with MTM itself, via
commands, or interacting with tasks supplied with the system or
developed by the installation. All of the vendor-supplied
language translators can be operated as interactive tasks by a
terminal user. Additionally, a terminal user can use the
vendor-supplied support software programs such as: OS/32 Edit,
OS/32 Copy, and OS/32 AIDS. It is the MTM software that performs
multiple online accessibility; e.g., time sharing, resource
management, batch scheduling, etc.

The terminal user can be local or remote. The interactive
terminals for local users are directly connected to the computer
and do not require telecommunication devices. Interactive
terminals for remote users require connection via
telecommunication equipment and data communications software.
Basic data communications supports both dedicated and dial-up
telecommunication terminals.

1-2 48·-043 FOO ROl

1.3.1 Multi-Terminal Monitor (MTM) Devices

These devices can be used at any local or remote installation:

• Video Display Unit (VDU) 5508

e VDU 1100

• VDU 1200

e VDU 1250

• VDU 1251

• Perkin-Elmer SIGMA 10 terminal

• M33 Teletype

• M35 Teletype

• Nonediting VDU

• Carousel

• Carousel 300 and 300 EFC

1.3.2 Authorization

The user must be authorized to use MTM facilities. During the
signon procedure, the user must supply an account number and a
password that were previously cataloged within an MTM file called
the authorized user file (AUF). The AUF is updated and
maintained by an M'rM-supplied task that can be initiated only by
the system operator. The terminal user can then interact with
MTM from a terminal.

1.3.3 Privileged Users

A variety of new capabilities, called privileges, are now
available to the MTM user. These privileges are associated with
an account through the AUF utility and are thereafter available
to any user that signs on to that account. For the purpose of
delineation throughout the remainder of this manual, any user
that is signed on to an account which has any or all of these new
capabilities enabled is called a privileged user.

48-043 FOO ROl 1-3

Privileged users may have, in addition to all standard MTM
capabilities, extended MTM capabilities such as:

• display all jobs in the batch queue,

• move between private accounts without knowing passwords (SET
PRIVATE Command),

• change group account numbers (SET GROUP Command),

• set the priority of a subsequently loaded task via a private
CSS (PRIOR Command),

• interface with a HASP protocol and return to MTM control as
desired ($HSP), and

• interface with a foreground task from an MTM terminal and
return to MTM control as desired ($FRGND).

For information on the specific privileges available through MTM
and the procedures for enabling these privileges on an account
basis, refer to the OS/32 Multi-Terminal Monitor (MTM) System
Planning and Operator Reference Manual.

1.3.4 Transmitting Messages

MTM can transmit messages between terminal users, between a
terminal user and the system operator, and from the system
operator to all or designated terminal users.

1.3.5 Number of Terminal Users

An installation can have up to 64 terminal users or 64 concurrent
batch streams. The sum of terminal users and batch streams
cannot exceed 64.

1.4 MULTI-TERMINAL MONITOR (MTM) ENVIRONMENTS

The WrM terminal user controls a single task at the terminal and
has the ability to run jobs through batch streams. Using the
facilities provided by MTM, the user can load a task, start the
task, and then interact with the task during its execution. MI'M
provides interactive and batch user environments.

In an interactive environment, the user has the ability to
interact with a task executing at the terminal. In this
environment, a dialogue is carried on between the user and the
task. The interactive task receives user commands and processes
them.

48-043 FOO ROl

Only one interactive task at a time can be initiated by each MTM
termtna.L However, all interactive tasks initiated by M'rM
terminal users are executed concurrently. During interactive
task execution, a terminal user can direct a command to and
receive a response from MTM itself.

In a batch environment, a number of jobs are run under a full set
of automated procedures. Once a batch job is accepted for
execution, no further interaction takes place with the initiating
terminal user. Requests for multiple batch jobs can be submitted
by a user, and the same terminal can be used to initiate an
interactive task.

Unlike interactive tasks, requests for batch jobs will not
necessarily be initiated immediately to MTM. Instead, batch jobs
are queued by the system, and then the queue of submitted batch
jobs awaiting execution is serviced by the system. The number of
batch jobs that can be executing concurrently is specified by the
system operator.

A terminal user can request one or more batch jobs to be run.
M'I'M maintains a queue of submitted batch jobs and concurrently
processes a number of batch jobs specified during MTM sy:stem
start-up. A terminal user can monitor the progress of a batch
job by interrogating the MTM batch queue. 'rhe returned status
will be either:

AWAITING EXECUTION

or

EXECUTING

If a job already has completed execution, the returned status
will be:

NO JOBS FOUND

48-043 FOO ROl 1-5

1.4.1 Multi-Terminal Monitor (MTM) Terminal Modes

An active terminal is defined to be in one of six terminal modes.
The current mode of the terminal determines which, if any, MTM
terminal commands can be accepted. Thus, it is important for the
terminal user to be aware of the current mode of the terminal.
The user terminal is defined to be in one of the following six
modes:

• Command mode: No task is loaded, CSS procedure is not
executing and BUILD is not in effect. All non-task related
commands are accepted. An "*" is the default prompt displayed
in this mode.

• Task loaded mode: The task was loaded but was not started, or
is paused. An "*" is the default prompt displayed in this
mode.

• Task executing mode: A task was started and is executing. If
started from a CSS, CSS mode is suspended. A "-" is the
default prompt displayed in this mode. If an interactive task
was started and a data input is requested by the task, then a
">" is the default prompt displayed to the terminal user.

• css mode: A CSS procedure is being built or executed. A " - "
is the default prompt displayed in this mode. When a css
terminates, the terminal returns to command mode and a "*"
prompt is output. When BUILD is in effect, a "B>" is the
default prompt displayed.

• Foreground task mode: the terminal has been transferred to
the control of a foreground task. When the f oregound task is
completed the terminal will return under control of M11M. MTM
commands are not recognized when in the foreground task mode.

• Hasp interface mode: the terminal is interfaced with a HASP
task. The hasp mode prompt is a " and all commands entered
while in this mode are sent to the specified HASP task.

1.4.1.1 Interactive Task to Terminal Mode

When a task issues an SVC 1 I/O operation to an active terminal
that is in task executing mode and a previous I/O operation to
that terminal is still pending, MTM treats the I/O as a wait
operation. This is of no concern for tasks that do SVC 1 wait
I/O. However, users with tasks that issue SVC 1 proceed I/O
(read or write) should be aware that MTM suspends the task until
the I/O is completed. Then MTM posts an SVC 1 proceed I/O
completion trap on the task's task queue and allows the task to
continue. Completion trap posting occurs only if the appropriate
bit is set in the TSW.

1-6 48~-043 FOO ROl

1.5 LOADING A TASK

·rhe dynamic nature of OS/32 memory management. guarantees loading
of a task irrespective of its size unless the task is greater
than the available task memory. If not enough memory is free to
load a task, then some other task is temporarily rolled out if
roll support is included in the operating system at sysgen time.
If MTM is sysgened with roll influence enabled, then MTM
continually monitors the state of the roll queue to ensure that
rolled out tasks are given the opportunity to be rolled back in.
MTM ensures equity for all its terminal operators by assigning
all the interactive tasks an equal priority. Batch tasks can
have user assigned priorities.

1.6 MULTI-TERMINAL MONITOR (MTM) SPECIAL FEATURES

The following features are designed to make M'rM easier and more
efficient to use:

• Command substitution system (CSS)

• Help facility

• Program development commands

• Spooling

• Security and access protection of disks

• S .ignon CSS

1.6.1 Command Substitution System (CSS)

A terminal user can build a command file on a disk. Once buJLlt,
a simple directive .to MTM will cause MTM to obtain its directllves
from the command file. When invoking the command file, the
terminal user can supply parameters to the command file Lhat can
be used to dynamically modify command execution. ThereforE~, a
single terminal input can easily initiate complex operations.

1.6.2 The Help Facility

The Help facility provides a user online access to documentation
for MTM and program development commands. This information is
obtained by entering the HELP command.

48-043 FOO ROl 1-7

1.6.3 Program Development Commands

The program development conunands are an integrated set of
standard CSS procedures that perform two major functions:

• maintain information that remains constant throughout a
development effort, and

• keep files current throughout a development effort in terms of
checking source, object, and image modules to ensure that
their dates are current.

1.6.4 Spooling

Both input and output spooling are provided for terminal users.
Tasks never need to be delayed awaiting card readers, ca·rd
punching, or line printing because a batch job can be submitted
via the Spooler. The job runs unattended and output goes to the
Spooler.

1.6.5 Security and Access Protection of Disks

Privately owned disks can be marked non-restricted by thei system
operator to offer an MTM user complete security and access
protection of files. The owner of the disk can restrict or
enable access of the disk to other MTM users, the syst.em
operator, and non-MTM tasks.

1.6.6 Signon Command Subsitution System (CSS)

MTM users can build a special CSS file, USERINIT.CSS, within
their private accounts. The CSS file can contain commands to
load and start a terminal session, assign logical units, and
specify a language environment. At signon time, MTM searches all
online disks within the user's private account for the file
USERINIT.CSS and automatically executes it.

1-8 48-043 FOO ROl

1.7 CONVENTIONS

These conventions used by MTM are detailed in the following
sect.ions:

• Prompt conventions

• Terminal conventions

• Command conventions

• Statement syntax conventions

• File conventions

1.7.1 Prompt Conventions

A prompt is output to a terminal device to indicate that the M'I'M
system is ready to accept input from the user. The default
prompts displayed on the terminal devices are shown in Table 1-1.

TABLE 1-1 MTM PROMPT CONVENTIONS

PROMPT I USE
= = = = =· = = = ·- = = = =, = = ::e ===:a:=====·======·===·=========·=;..-::

Indicates MTM system is ready to
accept a command.

> Indicates a request for input
data.

B> Indicates a request for input
data to be copied to a BUILD
file.

48-043 FOO ROl

1 Indicates that the system is
ready to accept a command while
an interactive task is active or
a CSS is running. A new CSS can
not be initiated at this time. A
user can instruct MTM to suppress
or enable the appearance of this
prompt wh i. le an interactive task
is running, but not while CSS is
running.

" Indicates that the terminal is in
HASP mode.

1-9

1.7.2 Terminal Conventions

The conventions in effect for various terminal devices are shown
in ·rable l·-2.

TABLE 1-2 TERMINAL CONVENTIONS

OPERATION CONVENTION
=================================~======================~==~===:
Delete a line

Delete a character

End an input line

Communicate with MTM

To delete a line, simultaneously de- 1

press the CTRL and character x keys
for all terminals except TEC 455 VDU,
which uses the number sign(#). Basic
communications support both :Jt and
CTRL x for line deletion for asynchro·
nous remote devices.

To delete a character, depress the
Backspace key. For terminals without a
Backspace key, simultaneously depress
the CTRL and character h keys.

To process an input line, depress the
carriage return (CR) key.

To communicate with MTM while an
interactive task is executing or when
a BUILD command is active, depress the
Break key and enter a comma.nd.

1.7.2.1 Using the Break Key

If the data request prompt (>) or a BUILD request prompt (B>) is
displayed and the user wishes to communicate with MTM, depress
the Break key and the system is ready to accept a command.

If input or output to the terminal is in progress, the Break key
interrupts the process. For example, if the DISPLAY or EX.AMINE
command was entered and the output is in progress, depressing the
Break key halts the output in progress. The system is then ready
to accept a command.

If a CSS is currently running, the Break key interrupts the
execution of the CSS. The system is then ready to accept a
command. Once the command has executed, the CSS will resume
operation unless the entered command affects the status of the
css.

1-10 48--043 FOO ROl

1.7.3 Conunand Conventions

Commands are accepted one line at a time. Multiple commands can
appear on the same line, but each must be separated by a
semicolon. Multiple commands are executed sequentially. If an
error is encountered in a multiple command line that was entered
from a terminal, the commands following the command in error are
ignored by MrM. For a command line entered from a CSS ,. the
commands on the command line a.re skipped until a $'rERMJOB is
found. A character string preceded by an asterisk in column 1 is
a comment.

1.7.4 File Conventions

A file is a collection of data stored on a direct access storage
device. MTM provides terminal users with the capability of
creating and editing files in an interactive manner. Once
created, files remain on the system until they are deleted by the
owner. However, during the Life of a file, ownership can change,
based on the needs of an installation or project. File ownership
is established and maintained by MTM via an account number
mechanism.

1.7.4.1 Private Account Numbers

During the signon procedure a terminal user must supply a private
account number in addition to the correct pas sword. Wheneve!r a
terminal user allocates a file during an M'rM session, the! M'rM
system automatically associates the file with the terminal user's
account number. A file associated with the terminal user's
account number is referred to as a private file.

The owner of a private file has unrestricted access to that file
and can update, execute, access, or delete it as required.
Furthermore, no other terminal user except users with the cor·rect
privilege (privileged user) can gain access to another user's
private files. However, to supply greater flexibility for file
sharing, MTM supports the concept of group files.

1.7.4.2 Group Account Numbers

Authorized MTM terminal users are assigned both a private acc:ount
number and a group account number within the AUF. Unlike the
private account number, a terminal user is not required to submit
the group account number during the signon procedure. In fact,
a terminal user does not need to know the group account nurrIDer.
The group account number will generally be the private account
number of a different authorized terminal user. By using the
RENAME command and supplying the letter 'G' in the account field,
a terminal user can change a private file to a group file.

48-043 FOO ROl 1-11

As an illustration of the use of group files within an
installation, consider a normal devclopmenl activily consisling
of two or more members working under a projecl leader's controL
Dur i.ng the early development phase, each member would probably
work alone, using privale f il~s. However, during the project
integration phase, the majority o(lhe private files would be
switched to the project leader's private account number, which
was defined as the group account for the individual members.

Once a private file has been switched to a group file, the
original private owner no longer possesses unrestricled file
manipulation capability. Instead, the file can be read or
executed by the original owner and any other terminal user with
the same group number. Updating or deleting the file can now be
performed by any terminal user who signs on with the group
account. number.

Although t.he use of group files provides a somewhat flexible file
sharing capability, it. does not address the problem of universal
shar.ing. For this purpose, MTM supports the concept of system
files.

1.7.4.3 System Account Numbers

In a way similar to switching a private file to a group file, a
terminal user can supply the letter 'S' in the file account field
instead of t.he letter 'G'. The letter •sv indicates that
this private file is now considered a system file. System files
have an account number of 0. They can be read or loaded by any
aut.horized MTM terminal user. However, updating or deleting a
system file can be performed only by the system operator.

Within an M'rM environment, t.he system operator is viewed a.s more
privileged than t.ermina.l users with respect to file ownership.
The system operator can allocate files on any account in the
system and can also change the account number of any f ilc in the
syst.em to any other account number. Si.mi lar t.o a terminal user,
the system operator uses the RF.NAME command to change file
ownership.

1.7.4.4 File Descriptors (fds)

File descriptors are required with some commands.
descriptor for M'rM generally includes four fields:

• Disk volume name or device name

• f'i.lename

• File exlension

• File class

A file

1-12 48-043 POO ROl

Format:

voln:

Parameters:

voln:

filename

.ext

p

lJ filename[. [exQ] [ffj]

is the name of the disk volume on which the
file resides, or the name of a device. Voln
can be from one to four characters. The first
character must be alphabetic and the remaining
alphanumeric. This parameter need not be
specified. If this parameter is not
specified, the default user volume is used.
When voln is not specified, the colon
separating voln and filename must not be
entered. Where voln refers to a device name,
a colon must follow the device name, and
neither the filename nor the extension is
entered.

is the name of a file. A filename cons isU1 of
from one to eight alphanumeric characters, the
first of which must be alphabetic.

is a 1- to 3-character alphanumeric string
preceded by a period specifying the extem~ion
to a filename. If the period (.) and
extension are omitted, a default extension is
appended to the filename if appropriate foi~ a
particular command, otherwise, it remains
blank. If the period is specified and the
extension is omitted, the default is blanks.

indicates a private file. A private file has
the same account number as the terminal usetr 's
current private account number. All of the
facilities for file manipulation are available
to the owner of this file. No other user has
access to this file unless the user has
certain standard file access privileges
(privileged user) or, the file is also a group
file. That is, the user's private account
number is the same as some ct.her user's group
account number. P · is the default value~ if
neither P, G, nor S is indicated in the
command.

48-043 FOO ROl 1-13

G

s

n

Examples:

PACK:FRED.TSK

FRED.TSK

ABC:FOO/G

CARD:

A:B.C/G

rrEXT. F IL/87

indicates a group file. A group file, (wh .ich
may also be some other user's private file),
is accessible to members of that group fot:
read only purposes. The group file account
number in the AUF indicates to the system
which users can access this group file.

indicates a system file. A system file has
account number 0. A terminal user can only
read a system file.

privileged users that have the privilege to
specify account numbers instead of account
class designators (P, G, and S) can do so for
some corrunands such as ASSIGN, LOAD, RENAME,
and CSS calls. Access is limited to SRO if n
is not the user's private account.

is a private file FRED.TSK on volume
PACK.

is the same file as in the previous.
example, if PACK is the default user
volume (private file).

is a group file with filename FOO
with default extension, on volume
ABC.

is a device name.

is a group file B, with extension c
on volume A.

is a f i.le on the default user volume
in account 87.

48-043 FOO ROl

CHAPTER 2
MULTI-TERMINAL MONITOR (MTM) USER COMMANDS

2.1 INTRODUCTION

The following steps comprise a basic MTM terminal session:

SIGNON MAR,118,SWDOC

V M300

LOAD EDIT32

S'rART

S FIL.El

SIGNOF

48-043 FOO ROl

Identify yourself to MTM by si9ning
on to the system. Enter your
trner id, account number, and a val id
password.

Establish the volume you will be
working on by entering the VOLUME
command and a valid volume name ..

Load the editor task into memory by
entering LOAD and the task name ..

Initiate execution of the task
by entering the START command.

Save all data appended to your file
by entering the SAVE command.

Terminate execution of the task by
entering END.

End the terminal session by signing
of' f.

2-1

ALLOCATE

2.2 ALLOCATE COMMAND

The AL1LOCATE command creates a direct access file or a
communications line control block for a buffered terminal
manager.

Format:

ALLOCATE fd,

Parameters:

f d

CONTIGUOUS

fsize

2·-2

EC Ht:ze}]] Ht~ze}]] [[{;;}J]
moEx [[{1;1}] J [{t~ze}J J ~[f8~ze}] J [[{;;}]]
NB [[{1;1}J] ~[t;ze}J] ~[fsize}J] [[{;;}]]
llAM [[{1;1}J] f[{bsize}J] [[{;;}]]

is the file descriptor of the device or file
to be allocated.

specifies that the file type to be allocated
is contiguous.

is a decimal number indicating file size which
is required for contiguous files. It
specifies the total allocation size in
256-byte sectors. This size may be any value
up to the number of contiguous free sectors
existing on the specified volume at the time
the command is entered.

48·-043 FOO ROl

keys

EC

bsize

is ize

INDEX

lrecl

NB

ITAM

48-043 FOO ROl

specifies the write and read protection keys
for the file. These keys are in the form of
a hexadecimal halfword, the left byte of which
signifies the write key and the right byte,
the read key. If this parameter is omitted,
both keys default to 0.

specifies that the file type to be allocated
is extendable contiguous.

is a decimal number specifying the number of
256-byte sectors contained in a physical block
to be used for buffering. This parameter
cannot exceed the maximum block size
established at sysgen time. If baize is
omitted, the default value is one sector for
indexed files and 64 sectors for extendable
contiguous (EC) and nonbuffered (NB) indexed
files. When the file type is ITAM, bsize is
the buffer size in bytes.

is a decimal number specifying the indexed
block size. If isize is omitted, the default
value is one sector for indexed files and
three sectors for EC and NB files. Like
bsize, isize cannot exceed the maximum block
size established at sysgen time.

specifies that the file type to be allocated
is indexed.

is a decimal number specifying the 109ical
record length of an indexed file, nonbuffered
indexed file, or I 1rAM device. It canno.t
exceed 65,535 bytes. Its default is 126
bytes. It may optionally be followed by a
slash (/) which delimits lrecl from baize.
For NB files, this number must be even.

specifies that the file type to be allocated
is nonbuffered indexed.

specifies that the device to be allocated is
a communications device.

2-3

Functional Details:

The MTM user can only allocate files in their private account ..
To assign an indexed file, sufficient room must exist in system
space for two buffers, each of the stated size. Therefore, if
bsize or isize is very large, the file might not be assignable in
some situations. At sysgen time, a maximum block size parameter
is established in the system, and bsize cannot exceed this
constant.

To assign an EC or NB file, sufficient room must exist in system
space to contain only the index block of the stated size. The
data blocks for EC and NB files are not buffered in system space
and thus are not constrained to the sysgened block size.

The ALLOCATE command can be entered in command mode, task loaded
mode, and task executing mode.

Examples:

AL JANE.TSK,C0,64

AL M300:AJM.BLK,IN,132/4

AL THISFILE,IN,256/4/2

AI ... VOLl: AJM. OBJ, IN, 126

2-4

Allocates, on the default user
volume, a contiguous file named
JANE.TSK whose total length is 64
sectors (16kb) with protection
keys of 0.

Allocates, on volume M300, an
indexed file named AJM.BfK with
logical record length of 132
bytes, data block size of four
sectors, and default isize of one
sector. The protection keys
default to 0. When this file is
assigned, the system must have
2.25kb of available system space
for buffers.

Allocates, on the default user
volume, an indexed file named
THISFI~E (blank extension) with a
logical record length of 256
bytes, a data block size of four
sectors, an index block size of
two sectors, and protection keys
of 0.

Allocates, on volume VOLl, an
indexed file named AJM.OBJ whose
logical record length is 126
bytes. The buffer size and
indexed block size default to one
sector and the protection keys
default to 0.

48-043 FOO ROl

AL VOl:AJM.OBJ,lN,126//3 Allocates, on volume VOl, an
indexed file named AJM.OBJ with
logical record length ·of 126
bytes. The data block size
defaults to one sector, the index
block size is three sectors, and
the protection keys default to 0.

AL SYS:XFILE.DTA,EC allocates on volume SYS an
extendable contiguous file named
XFILE.DTA with default data block
size of 64 and index block size of
3 sectors. The file initially
contains no records, and has a
record length of one sector (same
as a contiguous file).

AL YFILE .. DAT,NB,240/250/5 allocates on the default volume a
nonbuffered indexed file named
YFILE.DAT with logical record
length of 240 bytes, data block
size of 250 sectors, and index
block size of 5 sectors. The file
initially contains no records.

48-043 FOO ROl 2-5

ASSIGN

2.3 ASSIGN COMMAND

The ASSIGN command assigns a device, file, or communications
device to one of a task's logical units.

Format:

AS.SIGN lu,fd

Parameters:

2-6

lu

f d

access
privileges

keys

SVC15
SVCF
VFC

, HI
LOW
MEDIUM

is a decimal number specifying the logical
unit number to which a device or file is to be
assigned.

is the file descriptor of the device or file
to be assigned.

are the desired access privileges.
default access privileges are:

SRW for contiguous files

The

SREW for indexed, nonbuffered indexed, and
extendable contiguous files

SRO for any files that are not the users'
private files

ERW for devices (except the users' console.
This has SRW.)

signifies the read/write protection keys of
the file or device to be assigned.

48·-043 FOO ROl

SVC15
SVCF

VFC

HI

LOW

MEDIUM

signifies that the specified device is to be
assigned for SVC 15 access. SVCF is the
hexadecimal equivalent of SVClS and can also
be specified. This option pertains to
communications devices only. If SVC 15 access
is specified, neither vertical forms control
nor tape density can be specified.

specifies the use of vertical forms control
for the assigned lu. If this parameter is
specified, SVC15 access or tape density
selection cannot be specified. If this
parameter is omitted, there is no vet·t ical
forms control for the device assigned to the
specified lu (unless the task was linked with
the VFC opt ion) .

indicates that the assigned magnetic tape will
operate at the GCR density rate of 6250 bpi.

indicates that the assigned magnetic tape will
operate at the NRZI density rate of 800 bpi.

indicates that the assigned magnetic tape will
operate at the PE density rate of 1600 bpi.

Functional Details:

If the access privileges and keys parameters are omitted and VFC,
SVC15, HI, LOW, or MEDIUM are specif.led, the positional commas
belonging to the omitted parameters can be omitted.

If the access privileges and VFC, SVC15, HI, LOW, or MgDIUM
parameters are specified and the keys parameter is omitted,r the
positional comma belonging to the keys parameter can be omitted.

Access privileges can be one of the following:

SRO
ERO
swo
EWO
SRW
SREW
ERSW
ERW

sharable read-only
exclusive read-only
sharable write-only
exclusive write-only
sharable read/write
sharable read, exclusive write
exclusive read, sharable wr.ite
exclusive read/write

If the file is not in the user's private account, only the SRO
access privilege is valid.

When the SVC15 option is specified, only SRW, SREW, ERSW, and ERW
access privileges are accepted.

48-043 FOO ROl 2-7

The DISPLAY LU corrunand can be used to determine the current
access privileges of all assigned units.

The ASSIGN corrunand is rejected if the requested access privilege
cannot be granted.

When a task assigns a file, it might want to prevent other tasks
from accessing that file while it is being used. For this
reason, the user can ask for exclusive access privileges, either
for read or for write, at assignment time. This is called
dynamic protection because it is only in effect while the file
remains assigned.

A file cannot be assigned with a requested access privilege if it
is incompatible with some other existing assignment to that file.
A request to open a file for exclusive write-only is compatible
with an existing assignment for SRO or ERO, but is incompatible
with any existing assignment for other access privileges. Table
2-1 illustrates compatibilities and incompatibilities between
access privileges.

2-8

TABLE 2-1 ACCESS PRIVILEGE COMPATIBILITY

I ERSW I ERO I SRO I SRW I SWO I EWO I SREW I ERW
==========~===================~~=======~================

*

ERSW

ERO

SRO

SRW

swo *
EWO

SREW

ERW

LEGEND

compatible
incompatible

*

*

*

* *

* * * * *

* * *

* * *

*

*

48-043 FOO ROl

'rhe keys format is a 4-digit hexadecimal number.. 'rhe left two
digils signify the write protection key and the right two digit:s,
the read protection key.. If omitted, the default is 0000. These
keys are checked against the appropriate existing keys for the
file or device.. The command is rejected if the keys are inva.lid ..
The keys associated with a file are specified at file allocation
time. They may be changed by a REPR01rECT command or through an
SVC 7 reprotect function call.

If the values of the keys are within the range X'Ol' to X'FE',
the file or device cannot be assigned for read or write access
unless the requesting task supplies the matching keys.. If a key
has a value of X'OO', the file or device is unprotected for that
access mode. Any key supplied is accepted as valid. If a key
has a value of X'FF', the file is unconditionally protected for
that access mode. It cannot be assigned for that access mode to
any user task, regardless of the key supplied ..

Examples:

WRI'rE READ
KEY KEY

00 00

FF FF

07 00

FF A7

00 FF

27 32

MEANING

Completely unprotected

Unconditionally protected

Unprotected for read, conditionally
protected for write (user must
supply write key=X'07')

Unconditionally protected for write,
conditionally protected for read

Unprotected for write, uncon-
ditionally protected for read

Conditionally protected for both
read and write

An assigned direct access file is positioned at the end of the
file for access privileges SWO and EWO.. It is positioned at the
beginning of the file for all other access privileges.. The
command is rejected if the specified lu is already assigned. To
reassign an lu for an active task, the lu must first be closed.

If one of the HI, LOW, or MEDIUM parameters is not chosen when
assigning to a mag tape device, the standard default density is
used. The default used is dependent upon the type of tape drive
in use. Note that if this parameter is used to select the
density of the assigned mag tape, SVC 15 or VFC access cannot be
spectfied. The HI, LOW, and MEDIUM parameter options are
positionally independent.

48-043 FOO ROl 2-9

The ASSIGN corrunand can be entered in task loaded mode.

Examples:

AS 2,FILE.DAT,EW0,99AA

AS 2, 1I1EST. JOB, VFC

AS 2,TEST.JOB,,,VFC

AS 2,TEST.JOB,,VFC

AS 2,TEST.JOB,SRO,VFC

AS 2 , MAG 1: , LOW

AS 2,MAGl:,SRW,MEOIUM

AS 2,MAGl:,,,HI

2-10

Assigns a disk file to lu2. The EWO
access privilege causes the file to
be positioned at the end. It is
conditionally protected with write
and read keys of 99AA. New records
are appended.

Assigns a disk file to
Vertical forms control is in
Access privileges and
parameters are omitted along
their respective commas.

Assigns a disk file to
Vertical forms control is in
Access privileges and
parameters are omitted
positional commas are specified.

Assigns a disk file to

lu2.
use.
keys
with

lu2.
use.
keys
but

lu2.
Vertical forms control is in use.
The positional comma belonging to
the omitted access privileges
parameter must be specif iedo

Assigns a disk file to lu2.
Vertical forms control is in effect.
The keys parameter, along with the
positional comma, is omitted. The
privilege is shared read only.

Assigns a mag tape drive to lu2.
The LOW parameter indicates that the
drive will operate at the NRZI
density rate of 800 bpi.

Assigns a mag tape drive to
The MEDIUM parameter indicates
the drive will operate at
Perkin-Elmer density rate of
bpi.

lu2.
that
the

1600

Assigns a mag tape drive to lu2.
The HI parameter indicates that the
drive will operate at the GCR
density rate of 6250 bpi. Access
privileges and keys parameters are
omitted, but positional commas are
specified.

48·-043 FOO ROl

Invalid Examples:

AS 2, TES'r. JOB, OOFF, VFC Invalid assignment because the
positional comma belonging to the
omitted access privileges parameter
must be specified.

AS 2, TES'r. JOB, SRO, VFC, SVC15

Invalid assignment because vertical
forms control and SVC 15 access are
mutually exclusive and cannot be
specified in the same assignment.

AS 2,MAGl:,SRW,LOW,SVCF Invalid assignment because tape
density and SVCF access are mutually
exclusive and cannot be specified in
the~same ASSIGN command.

48-043 FOO ROl 2-11

BF ILE

2.4 BFILE COMMAND

The BFILE command backspaces to the preceding f ilemark on
magnetic tapes, cassettes, and direct access files.

Format:

Parameters:

f d

lu

Functional Details:

is the file descriptor of the device or file
to be backspaced to a f ilemark.

is the lu to which the file is assigned. If
lu is specified without fd, the operation is
performed on the lu regardless of what is
assigned to it.

The BFILE command can be entered in task loaded mode.

Examples:

BF 1

BF M300:AJM.OBJ,4

2-12

Causes the device or file assigned
to lul to backspace one f ilemark.

Causes file AJM.OBJ, that is
assigned to lu4 on volume M300:, to
backspace one f ilemark.

48-043 FOO ROl

BIAS

2.5 BIAS COMMAND

The BIAS command sets a base addt:ess fo·r the EXAMINE and MODIFY
commi;..nds.

Format:

{
address}

.BIAS
*

Parameters:

address

*

Functional Details:

is a hexadecimal bias to be added to the
address given in any subsequent EXAMINE or
MODIFY command. For a u-task, the addretss
must be a valid address that exists for the
u-task. For an e-task, the address can be any
valid address in the system. The addresses
must be aligned on a halfword boundary. If
address is omitted, it is assumed to be the
beginning of the task.

sets bias to 0 for a u-task and to the
physical load address for an e-task.

A BIAS command overrides all prev· ious BIAS commands. ?he us.er
should enter a BIAS command if the current value is unknown.

The BIAS command can be entered in task loaded mode and ta.sk
executing mode.

Example:

BI 100 Sets bias to 100

48·-043 FOO ROl 2·-13

BREAK

2.6 BREAK COMMAND

The BREAK command returns a break status (X'8200') to a task with
an outstanding I/O on the MTM terminal.

Format:

BREAK

Functional Details:

The BREAK command can be entered in task executing mode.

2-14 48--043 FOO ROl

BRECORD

2.7 BRECORD COMMAND

•rhe BRECORD conunand backspaces to the preceding record on
magnetic tapes, cassettes, and direct access files.

Format:

.B.RECORD [fd ,] lu

Parameters:

f d

lu

Functional Details:

is the file descriptor of the device or file
to be backspaced one record.

is the lu to which the file is assigned. If
lu is specified without fd, the operation is
performed on the lu regardless of what is
assigned to it.

•rhe BRECORD conunand can be entered in task loaded mode.

Examples:

BR 1

BR M300:AJM.OBJ,4

48-043 FOO ROl

Causes the device or file assigned
to lul to backspace one record.

Causes the file AJM.OBJ, assigned to
lu4 on volume M300, to backspace one
record.

2-·15

BUILD
AND ENDB

2.8 BUILD AND ENDS COMMANDS

The BUILD and ENDB conunands copy data from the command input
device to the fd apecif ied in the BUILD command.

Fo-rmat:

WILD f :: } [,APPEND J

ENDB

Parameters:

f d

lu

APPEND

2-16

is the file descriptor of the device or file
to which data is copied. If fd does not
contain an extension, .CSS is used as a
default. If a blank extension is desired, the
period following the filename must be typed.
If fd refers to a direct access file, an
indexed file by that name is allocated with a
logical record length equal to the conunand
buffer length established at sysgen time, a
blocksize of 1, and keys of 0000. If the
specified fd already exists, that fd is
deleted and a new fd is allocated.

is the lu to which data is to be copied. A
temporary file is allocated and the BUILD data
is copied to it. When the ENDS is
encountered, the temporary file is assigned to
the specified lu of the loaded task. This
form of the BUILD command is only valid when
a task is loaded.

allows the user to append data to an existing
fd. If the fd does not exist, it is
allocated.

48 ·-·043 FOO RO 1

Functional Details:

Lines entered from the terminal after the BUILD command are
treated as data, and are copied to the specified device or file
until an ENDB command is encountered. ENDB may be followed by
other commands in the command line. Data following the ENDB
command is treated as a command. If any data follows the BUILD
commdnd on the same line, it is treated as a comment and no
action is taken. The BUILD command can be entered from the
terminal only if a CSS is not active. It can be entered in
command, task loaded, and task executing modes.

Example:

BUILD ASSN
AS 1, CR:
AS 2, OUT.OBJ
AS 3, PR:
AS 5, CON:
ENDB

48-043 FOO ROl 2-17

CANCEL

2.9 CANCEL COMMAND

The CANCEL command terminates a task with an end of task code of
255.

Format:

CANCEL

Functional Details:

The normal response to this command is:

Signon name END OF TASK CODE=255 CPUTIME=utime/ostime

The CANCEL command can be entered in task loaded mode and task
executing mode.

2-18 48··-043 FOO ROl

CLOSE

2.10 CLOSE COMMAND

The CLOSE command closes (unassigns) one or more files or devices
assigned to the currently selected task's logical units.

Format:

! lu1
..CLOSE

ALL

Parameters:

lu

ALL

Functional Details:

decimal numbers signifying t.he logical un:its
to be closed.

specifies that all logical units of the task
are to be closed.

Closing an unassigned lu does not produce an error message. A
CLOSE command can only be entered if the task is dormant or
paused.

The CLOSE command can be entered in task loaded mode.

Examples:

CL 1,3,5

CLOSE A

48-043 FOO ROl

Closes logical units 1, 3, and 5 of
the task.

Closes all logical units of the
task.

2--19

CONTINUE

2.11 CONTINUE COMMAND

The CONTINUE command causes a paused task to resume operation.

Format:

CONTINUE [address]

Parameter:

address

Functional Details:

is a hexadecimal number that specifies where
the task is to resume operation. If this
parameter is not specified or is 0, the task
resumes at the instruction following the
pause.

The CONTINUE command can be entered in task loaded mode.
Executing this conwand causes the terminal mode to be switched
from task loaded mode to task executing mode.

2-20 48-043 FOO ROl

DELETE

2.12 DELETE COMMAND

·rhe DELETE command deletes a direct access file.

Format:

Parameter:

f d identifies the file(s) to be deleted.

Functional Details:

The file being deleted must not be currently assigned to an lu of
any task. A file can be deleted only if its write and rE~ad
protection keys are 0 (X'OOOO'). If the keys are nonzero, they
can be changed using the REPROTECT command. Only private files
can be deleted.

The DELETE conunand can be entered in conunand mode, task loaded
mode, and task execllting mode.

48-043 FOO ROl 2-21

DISPLAY

2.13 DISPLAY COMMAND

The DISPLAY conunand is used to display new global or new internal
variables currently defined by the user. This command will not
display local variables or global variables.

Format:

! .GVARIABLEl
.QI SPLAY

l..VARIABLE

Parameters:

GVARIABLE

I VARIABLE

n

ALL

f d

2-22

indicates that the variables to be displayed
are new global variables.

indicates that the variables to be displayed
are new internal variables.

specifies that all variables (of the type
selected via the preceding parameter) between
the range n 1 to n 2 be displayed. Where n is
a decimal number between 1 and the maximum
value allowed at M'rM sysgen for the variable
type selected.

is the decimal number of a specific variable.
n must be between 1 and the maximum value
allowed at MTM sysgen for the variable type
selected.

specifies that all new global or new internal
variables be displayed. This is the default
if no specific variable numbers are entered.

is a file descriptor of a file or device to
which the display is to be output. The
default for this parameter is the users
console.

48-043 FOO ROl

Functional Details:

The DISPLAY command can be used in command mode, task loaded
mode, and task executing mode.

The current value of each variable is displayed in the DISPLAY
command display.

Examples:

Example 1 illustrates a means of displaying all new global
variables currently defined by the user.

*DISPLAY GVARIABLE

GV# NAME VALUE .. .
GOl SOURCE TEST.FTN/P
G03 LISTDEV SCRT:TEST.LST/P
G04 BATCH OPTIM XREF

Example 2 illustrates a means of displaying information about new
global variable 3.

*DISPLAY GVARIABLE, 3

GV# NAME VALUE .. .
G03 LISTDEV SCRT:TEST.LST/P

Example 3 illustrates a means of displaying all new global
variables between 2 and 5.

*DISPLAY GVARIABLE, 2/5

GV#
G03
G04

NAME VALUE ..
LISTDEV SCRT:TEST.LST/P

BATCH OPTIM XREF

48-043 FOO ROl 2·-23

I.
I

DISPLAY
ACCOUNTING

2.14 DISPLAY ACCOUNTING COMMAND

The DISPLAY ACCOUNTING command displays accounting data collected
for a currently running or previously run task.

Format:

DISPLAY ACCOUNTING [l f d

Parameter:

f d is the file descriptor to which the accounting
information is displayed. The user console is
the default.

Functional Details:

The DISPLAY ACCOUNTING command displays this information:

USER
SVC
WAIT
ROLL
I/O
ROLLS

TIME hh:mm:ss.rns
TIME hh:mm:ss.ms
TIME hh:mm:ss.rns
TIME hh:mm:ss.ms

n
n

The DISPLAY ACCOUNTING command can be entered in command mode,
(providing at least one task has been run during the current
terminal session), task loaded mode, and task executing mode.

2-24 48·-043 FOO ROl

DISPLAY
DEVICES

2.15 DISPLAY DEVICES COMMAND

The DISPLAY DEVICES command displays to the specified fd the
physical address, keys, online/offline state, and the volume name
(for online direct access devices) of all devices in the system.

Format:

Parameter:

f d

Functional Details:

is the file descriptor specifying the file or
device to which the display is routed. If fd
is omitted, the default is the user console.

The DISPLAY DEVICES command can be entered in command mode, task
loaded mode, and task executing mode.

48-043 FOO ROl 2-25

Example:

D D

NAME DN KEYS
NULL 0 0000 D300 FC 0000 M300 CD
0301 DC 0000 M301 CD D67A EC 0000 M67A CD
D67B ED 0000 MTM SYS CD DOSA C6 0000 OFF
DOSS C7 0000 FIXD CD MAG2 9S 0000
MAG3 cs 0000 MAG4 DS 0000
CON 2 0000 CR 4 0000
PRT 63 0000 PR 0 0000 SPOL
PRl 0 0000 SPOL CT34 34 0000
CT36 36 0000 CT3C 3C 0000
CT42 42 0000 CT46 46 0000
CT4C 4C 0000 CT72 72 0000
CT74 74 0000 CT7A 7A 0000
CT7C 7C 0000 IT7E 7E 0000 ITAM
DI 18 18 0000 ITAM BI 18 18 0000
BQLA BB 0000 ITAM BQ2A BS 0000 ITAM
BQ3A BB 0000 ITAM BQPA BS 0000 ITAM
BQLB BC 0000 ITAM BQ2B BC 0000 ITAM
BQ3B BC 0000 ITAM BQPB BC 0000 ITAM
IRDR:********.***

In the DISPLAY DEVICES output the screen or page is divided in
half in order to display more devices per page (or screen). The
definition of the columns is applicable to either half of the
display. Columns 1, 2, and 3 contain the device name, device
number (address), and keys, respectively. Column 4 is only
defined for pseudo-print (spool), ITAM (communications), and
direct access devices. The characters SPOL specify that the
devices are pseudo-print devices used in spooling.

For direct access devices, column 4 contains the characters OFF
to indicate that the device is off line. If online, the volume
name is output in column 4. For write-protected disks, column 5
contains the characters PROT. For MTM users, if the disk is
write-protected, column 5 contains the characters SYS. If the
disk is restricted, column S contains the characters RES.. If the
secondary directory option is enabled, the last column contains
the characters CD.

Pseudo devices created by the SVC intercept facility are
displayed as a file descriptor with asterisks filling the
filename and extension fields. As an example, all SPL/32 spooler
pseudo devices are displayed in this manner.

2-26 48-043 FOO ROl

DISPLAY
DFLOAT

2.16 DISPLAY DFLOAT COMMAND

The DISPLAY DFLOAT conunand displays
contents of the double precision
associated with the loaded task.

to the specified fd the
floating point registers

Format:

Parameter:

f d

Functional Details:

is the file descriptor specifying the file or
device to which the contents of the double
precision floating point registers associated
with a user-specified task are displayed. If
fd is omitted, the default is the user
console.

The user-specified task should have been built with the DFLOAT
option at Link time.

The DISPLAY DFLOAT conunand can be entered in task loaded and task
executing mode.

Example:

D DFL
0,2 00000000 00000000 00000000 00000000
4,6 00000000 00000000 00000000 00000000
8 ,A 00000000 00000000 00000000 00000000
C,E 00000000 00000000 00000000 00000000

48-043 FOO ROl 2-·27

DISPIAY FILES

2.17 DISPIAY FILES COMMAND

The DISPIAY FILES command permits information from the directory
of one or more direct access files to be output to a specified
fd.

Format:

DISPLAY £ILES, ldefa::~n~ser voli [filename] ~[ext]]

Parameters:

voln:

2-28

NOTE

Please see Functional Details for
variations on the DISPLAY FILES command
syntax.

specifies that all files with the user account
number be displayed regardless of what volume
they reside on. Entering the colon with part
of a filename limits the file search to
filenames with the specified characters.

is a 1- to 4-character name of a disk volume.
The first character must be alphabetic, the
remaining alphanumeric. If voln is omitted,
the default is the user volume.

48-043 FOO ROl

filename

ext

p

s

G

N

0

L

f d

Functional Details:

is a 1- to 8-character name of a file.
first character must be alphabetic,
remaining, alphanumeric.

The
the

is a 1- to 3-character extension to the
filename.

indicates that information is requested for a
private file ..

indicates that information is requested on a
system file; default is private files only ..

indicates that information is requested for a
group file; default is private files only ..

indicates that information is requested for
private and group files.

indicates that information is requested for
group and system files.

indicates that information is requested for
private and system files.

is the file descriptor specifying the file or
the device to which the display is output. If
fd is omitted, the default is the user
console ..

A hyphen (-) in the command format requests that all files
starting with the characters preceding the - or following the -
are displayed, subject to any restrictions specified in the
extension, account _number, and fd fields.. For example:

CAL32-

CAL32.-

-.MTM

CH-.043

48-043 FOO ROl

displays all files whose first five characters
are CAL32.

displays all files named CAL32 with
extension.

a.ny

displays all files with the the extension MTM ..

displays all files beginning with CH, with an
extension of 043.

2-29

The character * requests that all files with matching characters
in the same position(s) as those entered are displayed. For
example:

CAL32***

CAL**CAL

****32.0BJ

displays all files between five
characters in length whose
characters are CAL32.

and
first

eight
five

displays all files, with a filename eight
characters long, whose first three and last
three characters are CAL.

displays all files with a filename containing
six characters whose fifth and sixth
characters are 32 and whose extension is .OBJ.

An asterisk in the account position indicates that all accounts
are to be searched for a match. If the user is a privileged
user, every account on the system is checked. If the user is a
nonprivileged user, the P, G, and S accounts are checked.

The characters * and - can be combined in the conunand format, as
described previously, to further delimit files displayed. For
example:

CA.L**l-

****32.0-

displays
characters
is 1.

all f .iles whose first three
are CAL, and whose sixth character

displays all files, eight
whose last two characters
extension begins with an 0.

characters long,
are 32 and whose

A colon entered with part of a filename and a dash displays all
filenames with the user account number starting with the
specified characters, regardless of what volume they reside on:

D F, :JM-

A colon entered with a specified extension displays all files
under the user account number with the specified extension,
regardless of what volume they reside on:

D F,:.JM

2-30 48-043 FOO ROl

An example of the dis play produced by the DISPLAY F ILfi:S commaLnd
from a privileged user is:

M300:-.-

VOLUME= M300
FI LEt!i'.\ME TY OBS/I BS RECL. RECORDS CREATED LAST WRITTEN .. KEYS
SYSEDIT .CMD/00205 IN 1/1 80 1 11/10/82 22:30 11/10/82 22: 30 0000
TEST .CSS/00205 IN 1/1 132 2 11/15/82 11: 30 11/15/82 11: 30 0000
CONTIG /00205 co 35 11/15/82 11:35 11/15/82 11:35 0000
IN /00205 IN 10/3 50 0 11/15/82 11: 3 5 11/15/82 11:35 0000

An example of the same DISPLAY FILES command from a nonprivile9ed
user is:

D F, M300:-.-/P

VOLUME= M300
FILENAME TY OBS/IBS RECL. RECORDS CREATED LAST WRITTEN .. KEYS I
SYSEOIT .CMD/P IN 1/1 80 1 11/10/82 22:30 11/10/82 22:30 0000'
TEST .CSS/P IN 1/1 132 2 11/15/82 11:30 11/15/82 11: 30 0000:
CONTIG /P co 35 11/15/82 11: 35 11/15/82 11: 35 0000
IN /P IN 10/3 50 0 11/15/82 11: 35 11/15/82 11: 35 0000

For contiguous files, TYPE (TY) is CO, and RECORDS is the size of
the file in (decimal) sectors.

For indexed files, TYPE is IN, followed by the data and index
blocking factors, RECL is the logical record length in (decimal)
bytes, and RECORDS is the number of logical records (in decimal)
in the file.

For nonbuffered indexed files, TY'PE is NB, RECL is logical reco1rd
length in (decimal) bytes, and RECORDS is the number of logical
records (in decimal) in the file.

For extendable contiguous files, TYPE is EC, and RECORDS is the
length of the file in sectors (i.e., the size of the file).

Spool and temporary files are named as *SPOOLFILE* and *TEMPFILE*
respectively (unless the user has the privilege to see the actual
filenames, in which case, the names are displayed).

48-043 FOO ROl 2-·31

The DISPLAY FILES command can be entered in command mode, task
loaded mode, and task executing mode.

NOTE

If a DISPLAY FILES command is entered by
a privileged user, the account number of
each file is displayed. Nonprivileged
MTM users see the account class (P, G, or
s) •

Examples:

D F

D F,CAL32.TSK/-

D F,-/-

D F, ,MAGl:

D F,M300:

D F,M300:A-.TSK

D F,-.,PRl:

D F,CAL**l-.-

2·-32

displays to the user terminal all
files with the user's account number
on the default user volume.

displays file CAL32.TSK in the
private, group, and system accounts.

displays all files in the private
group and system accounts on the
default user volume.

displays, to the device MAGl, all
files with the user's account number
on the default user volume.

displays, to the user's terminal,
all files with the user's account
number on volume M300.

displays all files on volume M300
with first character A and extension
TSK in the user's account number.

displays all files on the default
user volume in the user's account
number with blank extension,
regardless of filename. The display
is routed to device PRl:.

displays, to the user's terminal,
all files that start w:ith CAL,
contain the character 1 in the sixth
position, have any extension and are
in the user's account number.

48·-043 FOO ROl

D F, M-: 'rASK. 5 *

D F,-:TASK.-

D F,-:EDIT-/*

D F,-/N

48-043 FOO ROl

displays to the user's terminal the
files named TASK that have one or
two character extensions starting
with the character 5. A separate
display of these files is done t:or
each online disk volume whose name
starts with the letter M.

displays to the user's terminal the
files named TASK, with any
extension. A separate display of
these files is done for each online
disk volume in the system.

displays all files that start with
the four characters EDIT, on all
volumes, in all accounts, regardless
of the extension. If the user is
not privileged, only matching files
in the private, group, and system
accounts are displayed.

displays all files
private and group
default users volume.

in the
account

us et·' s
on the

2-33

DISPLAY FLOAT

2.18 DISPLAY FLOAT COMMAND

The DISPLAY FLOAT corrunand displays
contents of the single precision
associated with the loaded task.

For.mat:

DISPLl\Y ~WAT [{~}]

Paramete·c:

to the specified fd the
floating point registers

f d is an optional file descriptor specifying the
file or device to which the display is output.
If fd is omitted, the display is output to the
user's terminal.

Functional Details:

The user-specified task must be- built with the FLOAT option
specified at Link time.

The DISPLAY FLOAT corrunand can be entered in task loaded mode.

Example:·

2.~34

D FL
0,2
4,6
8,A
C,E

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

48-043 FOO ROl

DISPLAY LU

2.19 DISPLAY LU COMMAND

The DISPLAY LU conunand displays to the specified fd all assigned
logical units of the loaded task.

For:mat:

[

f d

D Is PL.A y r.,,,u , llllllll'.IJ }]
Par: ameter: :

f d is an optional file descriptor specifying the
file or device to which the assigned logical
units are to be displayed. If fd is omitted,
the default is the user console.

Functional Details:

•rhe lu number, file or device name, current access privilegets,
current r:ecord number, and percentage thru file are displayeid.
•rhe current record number and percentage thru file are d ispla}'red
only for files.

LU FILE/DEVICE RECORD THRO
1 M67A:RADPROC.CSS/OOO,SRO 30 15.0%
3 CON: ,SRW
5 CON: ,SRW
6 CON: ,SRW

1 M67A:RADPROC.CSS/OOO,SRO 200 100.0%
3 CON: ,SRW
4 M67A:&2614586.001/000,SREW 1 100.0%
5 CON: ,SRW
6 CON: ,SRW

48-043 FOO ROl 2-·35

The DISPLAY LU command can be entered in task loaded mode and
task executing mode.

Example:

DISP LU,PR:

2·-36

Displays assigned logical units to
the printer device (PR:).

48-043 FOO ROl

2.20 DISPLAY PARAMETERS COMMAND

DISPLAY
PARAMETERS

'rhe DISPLAY PARAMETERS corrunand di.splays the parameters of the
loaded task.

Format:

D [S PT..AY l'ARAMETERS [, {
f d

Parameter:

f d is an optional file descriptor specifying the
file or device to which the display is output.
If fd is omitted, the default is the user
console.

Functional Details:

Table 2-2 lists the field addresses and data displayed when the
DISPLAY PARAMErrERS corrunand is entered.

TABLE 2-2 DISPLAY PAR.AMETERS COMMAND FIELDS

FIELD I VALUE

TASK xxxxxxxx

CTSW xxxxxxxx

CLOC xxxxx

STAT xxxxx

TOP'r xxxxxxx

USSP xxxxx

48-043 FOO ROl

MEANING

Task name, also user signon
name

Status portion of current TSW

Curre:nt location

Task wait status

Task options

Current used system space

2-37

TABLE 2-2 DISPLAY PARAMETERS COMMAND FIELDS
(Continued)

FIELD I VALUE

MUSP xxxxx

MXSP xxxxx

CTOP xxxxx

UTOP xxxxx

UBOT xxxxx

SLOC xxxxx

NLU xxx

MPRI xxx

SVOL xx xx

MEANING

Maximum used system space

Maximum allowed system space

Task CTOP

Task UTOP

Task UBOT

Task starting location

Number of logical units
(decimal)

Maximum priority (decimal)

Default volume ID

The addresses displayed as CTOP, UTOP, and UBOT, are not physical
addresses, but addresses within the task's own program space.
CLOC may be a program space address or a physical address in a
system subroutine being executed on behalf of the task. NLU is
given in decimal. SVOL is the ASCII default volume ID. The
fields CTOP, UTOP, UBOT, and SLOC are described in detail in the
OS/32 Application Level Programmer Reference Manual.

TOPT is given in hexadecimal. The definitions of task option
bits are listed in Table 2-3.

TABLE 2-3 TASK OPTION BIT DEFINITIONS

BIT I MASK MEANING
===~====~===!

4 0800 0000 0 Dynamic scheduling disabled
1 Dynamic scheduling enabled

5 0400 0000 0 Prompt disabled
1 Prompt enabled

6 0200 0000 0 = I/O interpreted without VFC
1 = All I/O interpreted with VFC

2-38 48·-043 FOO ROl

TABLE 2-3 TASK OPTION BIT DEFINITIONS (Continued)

BIT I MASK

7 0100 0000

8 0080 0000

9 0040 0000

10 0020 0000

16 0000 8000

17 0000 4000

18 0000 2000

19 0000 1000

20 0000 0800

21 0000 0400

22 0000 0200

23 0000 0100

24 0000 0080

25 0000 0040

26 0000 0020

27 0000 0010

48-043 FOO ROl

0

1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

MEANING

No extended SVC 1 parameter blocks
used (excludes communications I/O)
Extended SVC 1 parameter blocks
used

New TSW for task event service
No new TSW for task event service

Task event all registers saved
Task event partial registers saved

Task event no register saved
Task event register saved

U-task
E-task

AF PAUSE
AF CONT

NOFLOA'r
Single floating point

NONRESIDENT
RESIDENT

SVC 6 control call
Prevent SVC 6 control call

SVC 6 communication call
Prevent SVC 6 communication call

SVC PAUSE
SVC CONT

NOD FLOAT
DFLOAT

NO ROLL
ROLL

No overlay
Use overlay

Accounting disabled
Accounting enabled

Task can issue intercept call
Task cannot issue intercept call

2-39

TABLE 2-3 TASK OPTION BIT DEFINITIONS (Continued)

BIT I MASK MEANING

28 0000 0008 0 No account privileges
1 File account privileges

29 0000 0004 0 Bare disk assign not allowed
1 Bare disk assign allowed

30 0000 0002 0 Not universal
1 Universal

31 0000 0001 0 No keychecks
1 = Do keychecks

STAT is given in hexadecimal. The definitions of wait status
bits are shown in Table 2-4.

TABLE 2-4 WAIT STATUS BIT DEFINITIONS

BIT I MASK MEANING I

===~=========~====~===~=============~~~==•=======r:

15 0001 0000 Intercept wait

16 0000 8000 I/O wait

17 0000 4000 (Any) I OB/WAIT

18 0000 2000 Console wait (paused)

19 0000 1000 Load wait

20 0000 0800 Dormant

21 0000 0400 Trap wait

22 0000 0200 Time of day wait

23 0000 0100 Suspended

24 0000 0080 Interval wait

25 0000 0040 Terminal wait

26 0000 0020 Roll pending wait

2-40 48-043 FOO ROl

TABLE 2-4 WAIT STATUS BIT DEFINITIONS (Continued)

BIT MASK MEANING

27 0000 0010 Intercept initialization (MTM}

28 0000 0008 Intercept termination (MTM)

29 0000 0004 System resource connection wait

30 0000 0002 Accounting wait

NOTE

Zero status indicates an active task.

CTSW is expressed in hexadecimal.
portion of the TSW, see the OS/32
Reference Manual.

For a definition of the status
Application Level Progranuner

·rhe DISPLAY PARAMETERS command can be entered in task loaded mode
and task executing mode.

Example:

·rhe following is an example of the output generated in response
to a DISPLAY PARAME 1I'ERS command:

*DISPLAY PARAMETERS

TASK
CTSW
CLOC
STAT
TOPT
USSP
MUSP
MXSP
CTOP
UTOP
UBOT
SLOC
NLU
MPRI
SVOL

M'rMUSER
00001000

F2B7C
2000

10021
14F8
2208
3000
24FE
2370

0
FOOOO

15
128

M67A

48-043 FOO ROl 2-·41

DISPLAY
REGISTERS

2.21 DISPLAY REGISTERS COMMAND

The DISPLAY REGISTERS corrunand displays to the specified fd the
contents of the general purpose user registers associated with a
loaded task.

Format:

DISPLAY REGISTERS [

Parameter:

f d

Functional Details:

is the file descriptor to which the contents
of the general purpose user registers are
displayed. If fd is omitted, the display is
output to the user console.

The DISPLAY REGISTERS corrunand can be entered in task loaded mode
and task executing mode.

Example:

2-42

D R
PSW
0-3
4-7
8-B
C-F

NOTE

The contents of each register will be 0
until the task has started.

OOOD77FO
00000000
OOOOE83C
OOOOE8CB
OOOOE804

OOOOE588
00000000
00000000
00000000
OOOOE9DO

00000000
00000000
OOOOE848
OOOOE584

00004801
OOOOD2EA
00000028
OOOOEOSE

48·-043 FOO ROl

DISPLAY TIME

2.22 DISPLAY TIME COMMAND

The DISPLAY 'rIME command displays the current date and time to a
spec i.f ied fd.

Format:

DISPLAY .'.l'IME [{
f d

J
Parameter:

f d specifies the file or device to which the
display is to be output. If fd is omitted,
the default is the user console.

Functional Details:

The display has the following format:

mm/dd/yy hh:mm:ss

or alternatively (by sysgen option):

dd/mm/yy hh:mm:ss

The DISPLAY TIME command can be entered in command mode, task
loaded mode, and task executing mode.

48-043 FOO ROl 2-43

DISPLAY USERS

2.23 DISPLAY USERS COMMAND

The DISPLAY USERS command displays the userid, terminal device
names, and the operating mode of all users currently signed on
under MTM. Additionally, all active batch jobs are displayed.

Format:

DISPLAY .USERS [.{ J
Parameter:

f d specifies the file or device
display is output. If fd
default is the user console.

to which the
is omitted, the

Functional Details:

This command can be entered in command mode, task loaded mode,
and task executing mode.

Example:

2-44

DU
R-NULL:@$HASPOO
LFS-CT26:)MTM-MODE
GRAY-CT2C:@MTM-MODE
DAVE-CT3A:>MTM-MODE

BG-CT22:@MTM-MODE
JON-CT32:@ECM-MODE
LYNDA-NULL:@$STAT
BRI-CT3E:>MTM-MODE

NERD-NULL:@$STAT
VAL-CT2A:>MTM-MODE
BJM-CT30:@MTM-MODE
JOB3-BATCH>MTM-MODE

> ·- denotes nonpr iv i leged MTM user
@ - denotes privileged MTM user

MTM-MODE - standard MTM usage
ECM-MODE - environmental control monitor mode

$ -- foreground task mode and HASP mode
BATCH ·- denotes an active batch job

48-043 FOO ROl

ENABLE

2.24 ENABLE COMMAND

The ENABLE conunand
suppressed by the
console.

Format:

MESSAGE

EROMPT
.EN.ABLE

E'I'M

allows the prompt or messages previously
PREVENT conunand to be dis played on the ue1er

iY'.ARIABLE

Parameters:

MESSAGE

PROMP'r

ETM

$VARIABLE

Functional Details:

allows other MTM users to send messages to the
user terminal.

requests the system to print the hyphen (-)
prompt in task executing mode. The hyphen (-)
is the default prompt for task executing mode.

displays the end of task message.

enables variable processing of local
global variables on a per user basis.

and

The ENABLE conunand does not affect operator messages.

Local and global variable support is included in the target
sysgen option SGN.VAR.

48-043 FOO ROl 2-45

EXAMINE

2.25 EXAMINE COMMAND

The EXAMINE command examines the contents of a memory location in
the loaded task.

Format:

Parameters:

address

n

f d

Functional Details:

}]

indicates the starting and ending addresses in
memory whose contents are to be displayed in
hexadecimal. All addresses specified are
rounded down to halfword boundaries by the
system.

is a decimal number specifying the number of
halfwords to be displayed. If n is omitted,
one halfword is displayed.

is the file descriptor specifying the file or
device to which the contents of memory are
displayed. If omitted, the default is the
user console.

Specifying only address 1 causes the contents of memory at that
location (as modified by any previous BIAS command) to be
displayed. Specifying address 1 and address2 causes all data from
the first to the second address to be displayed.

The EXAMINE command can be entered in task loaded mode and task
executing mode.

Any memory that can be accessed by the loaded task can be
examined with the EXAMINE command. For example, if a task uses
a PURE segment that is mapped to segment register F, then
examining addresses at FOOOO or greater will display the contents
of the PURE segment.

2-46 48 ·-043 FOO RO 1

Example:

BI 8100
gxA 100,10

48-043 FOO ROl

Examines 10 halfwords starting at
relative address 100 (absolute
address 8200) within the task.

2-·47

FF ILE

2.26 FFILE COMMAND

The FFILE command forward spaces to the next f ilemark on magnetic
tapes, cassettes, and direct access files.

Format:

.fF. ILE [f d ,] lu

Parameters:

f d

lu

Functional Details:

is the file descriptor of the device or file,
to be forward spaced one f ilemark.

is the lu to which the file is assigned. If
lu is specified without fd, the operation is
performed on the lu regardless of what is
assigned to it.

The FFILE command can be entered in task loaded mode.

Examples:

FF 1

FF M300:AJM.OBJ,4

2-48

Causes the file or device
to lul to forward
f ilemark.

assigned
space one

Causes the file AJM.OBJ on volume
M300 that is assigned to lu4, to
forward space one f ilemark.

48~043 FOO ROl

FRECORD

2.27 FRECORD COMMAND

•rhe PR.ECORD command forward spaces one record on magnetic tap,es,
caseottes, and direct access files.

Format:

.FRECORD [f d J lu

Parameters:

f d

lu

Functional Details:

is the file descriptor of the device or file
to be forward spaced one record.

is the lu to which the device or file is
assigned. If lu is specif Led without fd, the
operation is performed on the lu regardless of
what is assigned to it.

The FRECORD command can be entered in task loaded mode.

Examples:

FR 1

FR M300:AJM.OBJ,4

48-043 FOO ROl

Causes the device or file assigned
to lul to forward space one record.

Cause~ file M300:AJM.OBJ
M300 that is assigned
forward space one record.

on volume
to lu 4 to

2-49

HELP

2.28 HELP COMMAND

The HELP command displays information on MTM user and program
development commands.

Format:

Parameters:

mnemonic

*

Functional Details:

is any valid MTM or program
command mnemonic.

development

causes a list of
development commands
list device.

all
to

MTM and program
be displayed to the

The HELP command is implemented as a css procedure. When a
mnemonic or command is entered, information on how to use that
particular command is displayed to the list device. If
parameters are omitted, information on how to use the HELP
command is displayed to the list device.

Examples:

HELP LOG

HELP COMP I LE

HELP

2.-50

Displays to
information on
LOG command.

the
how

list device
to use the MTM

Displays to the list device
information on how to use the
program development command,
COMPILE.

Displays to
information on
command.

the list device
how to use the HELP

48-043 FOO ROl

Example:

HELP *
ADD
BI (AS)
CAL
COMMAND
DE (LE1rE)
gNDB
FF (ILE)
FOR'rZ
LINK
MACRO
PASCAL
PRI (N'r)
REN(AME)
RUN
SE(T)
ST(AR'r)
WF (ILE)
CNQ(CJIRE)

AL (LOCA'rE)
BR.EA(K)
CA(NCEL)
COMPILE
D(!SPLAY')
ENV
FILgDESC
FR(f.~CORD)
r....Is·r
ME(SSAGE)
PAS(SWORD)
PUN(CH)
R.EP(ROTECT)
RW
SIGNOF(F)
T(ASK)
XAL (LOCA'rE)
PUR{GE)

AS(SIGN)
BR(ECORD)
CL(OSE)
COMPLINK
EDIT
EXA(MINE)
FORT
HELP
L(OAD)
MO(DIFY')
P(AUSE)
R.EL(EASE)
REW(IND)
RVOL(UME)
S (IGNON)
TE{MPFILE)
XDE(LETE)

BF ([LE)
BU(ILD)
COBOL
CO (N'r INUE)
ENA(BLE)
RXEC
FOR TO
INIT
LOG
O(P1rION)
PRE(VENT)
REMOVE
RPG
SEN(D)
SPOOLFILE
V(OLUME)
SUB(MIT)

For HRLP on any of the above command mnemonics, type HELP
<command>

Example:

HELP PASSWORD

PASSWORD: The PASSWORD command enables any user who has the
PASSWORD privilege to alter his own signon password.

FORMAT:

(PAS)SWORD CURRENT PASSWORD, NEW PASSWORD

PARAMETERS:

CURRENT PASSWORD

NEW PASSWORD

48-043 FOO ROl

must exactly match the user's current
account password.

specifies the new account password.
This password replaces the current
password in the authorized user file.
The password can be up to 12
characters long; remaining characters
are truncated. All alphabetic,
numeric, and special characters
except blanks, commas, or semicolcms
are allowed.

2--51

INIT

2.29 INIT COMMAND

The INIT (file initialization) command initia.lizes all data on a
contiguous file to 0.

Format:

[{
segs,ize increment}]

INIT fd , .,
:;

Parameters:

f d

segsize
increment

Functional Details:

is the file descriptor of any unassigned,
unprotected, contiguous file.

is the size of the buffer space used.
default is lkb.

The

INIT is implemented with a CSS procedure that loads and starts
the File Manager Support Utility as a task.

The INIT command can be entered in command mode.

Examples:

INIT DATA.FIL

IN IT DA'rA2. FIL, 50

2-52

Initializes the file DATA.FIL.

Initializes the file DATA2.FIL using
a SOkb buffer.

48-043 FOO ROl

LOAD

2.30 LOAD COMMAND

'rhe LOAD command is used to load a user's task into memory.

Format:

l"'OAD [taskidJ fd [, segs ize increment] G.S.CTASK]

Parameters:

task id

f d

segsize
increment

Functional Details:

specifies the name of the task to be loaded.

specifies the file or device the task is being
loaded from.

kb (above the
needs for
(via Link),

specifies amount of memory in
memory size) that the task
processing. When a task is built
the OPTION WORK=n command adds
memory to a task. The size field
command overrides the amount
specified by Link. The size is
.25kb increments.

additional
in the LOAD
of memory
accepted in

specifies that the task is to be loaded as an
SPL/32 spooler subcontrol task. See the
SPL/32 Administration and Reference Manual for
information on subcontrol tasks and their
function. If the SPL/32 spooler is not the
spooler being used on the system, the
attempted use of this parameter will generate
an error message.

In order to maintain CSS compatibility, the taskid (.BG) can be
used. However, the system will ignore it. Any valid taskid can
be entered but will be ignored.

48-043 FOO ROl 2-53

If a task is loaded from a direct access device, the system first
searches the user volume or the specified volume under the user's
account. If the file is not found in the search, the system will
search the SYS volume in the SYS account if an account or a
volume designator was not specif led in the LOAD command. Only
values that the user does not explicitly specify will
subsequently be searched for. If an ext~nsion is not specified
in the LOAD command, the extension .TSK is assumed. The LOAD
command can be entered in command mode.

An error might occur if a user ID under MTM is the same as the ID
of a task loaded from the system console. If a load or fd error
is displayed, sign off and sign on again with a different user
ID.

A privileged user can specify an account number in the 1Ed. All
other users can only specify an account class designator (P, G,
s).

Examples:

L VOL:CAL

L PTRP:

2-54

Load the task from file VOL:CAL.TSK.

Load a task from the paper tape
reader punch device.

48--043 FOO ROl

LOG

2.31 LOG COMMAND

The LOG command logs all user i.nput and M"rM responses to a
specjfied fd.

Formats:

LQG [fq] rn=yrn ' [r }]
SET LQG [fa] w NOCOPY}]] ' [r J]

Parameters:

f d

COPY

NOCOPY

n

48-043 FOO ROl

is the file descriptor of the log file or
device. If no fd is spec if ied, logging is
terminated. If fd is a file, it must be
previously allocated. F .i les are assigned E:wo
privileges so that logged output is added to
the end of the file. If a log is active when
another LOG command is entered, the old log is
closed and the new one is initiated.

specifies that all output is written to both
the terminal and the log device.

specifies that all output (except messages) is
written to the log device and not to the
terminal. Messages from other users and the
operator are written to both the terminal and
the log device. If this parameter is omitted,
COPY is the default.

is a decimal number from 0 through 65,535
specifying the number of lines after which the
user log file is to be checkpointed. If this
parameter is omitted, the default is 15 lines.
If n is specified as 0, no checkpointing will
occur.

2-55

Functional Details:

The LOG command and the SET LOG command are the same. The
command can be entered either way, and both formats perform the
same function.

Checkpointing may be done on any type of file. Since indexed
files are buffered, checkpointing may be useful at any time the
file is being written to. Checkpointing nonbuffered indexed
files and extendable contiguous files is useful only if the file
is being expanded. Checkpointing to a contiguous file is
meaningless (no operation is performed). The LOG command can be
entered in conunand mode, task loaded mode, and task executing
mode.

Example:

LOG LOG.FIL,COPY,10

2-56 48·-043 FOO ROl

MESSAGE

2.32 MESSAGE COMMAND

r.rhe MESSAGE command sends a message to a spec if ied user.

Format:

{

user id }
MESSAGE

..... OPERATOR
message

Parameters:

user id is the name of the user the message is belng
sent to. This id can be obtained from the
DI SPLAY USERS command. A user id of . OPERA'l~OR
sends a message to the system console.

message is the text of the message that the user wants
to send.

Functional Details:

The user receiving the message receives the userid of the sender
as well as the message.

This command can be entered in command mode, task loaded mode,
and task executing mode.

Example:

The following message is sent to userid "AVE" from userid "TK".
The format of the message sent is:

ME AVE HELLO MTM USER

The format of the message received is:

TK-HELLO MTM USER

48-043 FOO ROl 2-·57

MODIFY

2.33 MODIFY COMMAND

The MODIFY command modifies the contents of a memory location in
the loaded task.

Format:

[{
data1 }]

MQDIFY address, . [,data2 , ••• ,datan]

Parameters:

address

data

Functional Details:

is the halfword boundary address at which the
contents of memory are to be modified.

is a data field consisting of zero to four
hexadecimal digits that represent a halfword
to be written into memory starting at the
location specified by address. Any string of
data less than four characters is
right-justified and left-zero filled. If the
comma is entered but data is omitted, 0 is
entered into one halfword.

This command causes the contents of the halfword location
specified by address (modified by any previous BIAS command) to
be replaced with data. The modify address must be aligned on a
halfword boundary.

The MODIFY command can be entered in task loaded mode and task
executing mode.

Any segment (impure, shared, or task common) to which a u-task
has write access can be modified. Only the impure segment can be
modified for an e-task.

2-58 48 ·-043 FOO RO 1

Examples:

BIAS 0
MOD 12F0,4,0,4,0

MOD 00000,4

48-043 FOO ROl

Modifies four halfwords at location
12FO to contain 0004 0000 0004
0000.

Modifies the first halfword of the
task conunon linked to the task using
segment register D to 4.

2·-59

OPTIONS

2.34 OPTIONS COMMAND

The OPTIONS command allows an MTM user to change the task options
of the currently loaded task.

Format:

[{
AF.F.AUS E }]

OPTIONS
AF.CONTINUE [{

S'.\lC.fAUSE }] . . G NQNRES I DEN'I]
SY-C.CONTINUE

Parameters:

AF PAUSE

AFCONTINUE

SVCPAUSE

SVCCONTINUE

NON RES I DENrr

Functional Details:

specifies that the task is to pause after any
arithmetic fault.

specifies that if the arithmetic fault (AF)
trap enable bit is set, a trap is taken. If
the bit is not set, the task continues after
an arithmetic fault occurs, and a message is
sent to the log device.

specifies that SVC 6 is treated as an illegal
SVC (applies to background tasks only). If an
SVC 6 is executed within a background task,
the task is paused.

specifies that SVC 6 is treated as a NO-OP
(applies to background tasks only). If an SVC
6 is executed within a background task, the
task is continued.

specifies that the task is to be removed from
memory at end of task.

The OPTIONS command can be entered in task loaded mode.

Example:

OPT AFC,SVCC

2.-60 48-043 FOO ROl

PASSWORD

2.35 PASSWORD COMMAND

•rhe PASSWORD conunand enables any M'rM users with the PASSWORD
privilege (privileged user) to alter their own signon passwords.

Format:

.f .. ASSWORD current password, new password

Parameters:

current password must exactly match the user's
account password.

current

new password

Functional Details:

specifies the new account password. This
password replaces the current password in
the authorized user file. The password can
be up to 12 characters long; remaining
characters are truncated. All alphabetic,
numeric, and special characters except
blanks, conunas, or semicolons are allowed.

If a user without the PASSWORD privilege enters the PASSWORD
command, a MNEM-ERR message is generated.

48-043 FOO ROl 2-61

PAUSE

2.36 PAUSE COMMAND

The PAUSE command pauses the currently running task.

Format:

£AUSE

Functional Details:

Any I/O proceed, ongoing at the time the taek is paused, is
allowed to go to completion. This command is rejected if the
task is dormant or paused at the time it is entered.

The PAUSE command can be entered in task loaded mode and task
executing mode.

2-62 48-043 FOO ROl

PREVENT

2.37 PREVENT COMMAND

The PREVEN'r command suppresses
executing prompt (the hyphen
interactive task is running.

either
(-) is

messages or the task
the default) while an

Format:

MESSAGE

EROMPT
PREVENT

E.TM

$.YARIABLE

If a user did not input any of these parameters the terminal will
receive both messages and task executing prompts. The task
executing prompt indicates that either a task or CSS is
executing.

Parameters:

MESSAGE

PROMPT

E'I1M

$VARIABLE

Functional Details:

prevents other MTM users from being able to
send messages to the user terminal.

suppresses the printing of the task executing
prompt (the hyphen (-) is the default) during
task executing mode.

supresses the display of end of task message.

disables variable processing on a per user
basis.

If the MTM system includes variable support and the $VARIABLE
parameter is entered, the overall performance of MTM increases.

48-043 FOO ROl 2-·63

PRINT

2.38 PRINT COMMAND

1rhe PRINT conunand sends the file to be printed to the Spooler for
subsequent printing.

Format:

£R1NT fd [,.DEY.ICE=pseudo device] [,CQP IES=r!] G.DELETE] GYfC]

Parameters:

f d

DEVICE=

COPIES=

Dfi:Lr~'I'E

VFC

Functional Details:

is the name of the file to be printed.

pseudo device specifies the print device. If
this parameter is omitted, output is directed
to any available print device.

n allows the user to specify the number of
copies of the file fd to be output. From 1 to
255 copies can be made. If this argument is
omitted, one copy is the default.

speclfies the file fd is to be deleted after
the output ope rat ion is completed. If th is
argument is omitled and the file is not a
spool file, the file is retained.

specif i-0s that vertical forms control is in
use. Currently, the card punch driver does
not support VFC.

If the spool option was not selected at OS/32 sysgen lime, this
conunand results in an error.

2-64 48--(J43 FOO ROl

The PRINT command can be entered in command mode, task loaded
mode, and task executing mode.

NOTE

If the SPL/32 spooler is in use on the
system, the MTM user has additional
options available for use with the PRINT
command. See the SPL/32 Administration
and Reference Manual for a detailed
description of these additional options.

48-043 FOO ROl 2-65

PUNCH

2.39 PUNCH COMMAND

The PUNCH command indicates to the Spooler that the specified
file is to be punched.

Format:

.fUNCH fd [,DEVI CE=pseudo device] [,.COP I ES=n] [,DELE'rE] [, VFCJ

Parameters:

f d

DEVICE=

COPIES=

DELE'rE

VFC

Functional Details:

is the name of the file to be punched.

pseudo device specifies the name of the pseudo
output device. If the DEVICE= parameter is
omitted, punch output is directed to any
available punch device.

n is the number of copies desired. From 1 to
255 copies can be made. If the
COPIES= parameter is omitted, only one copy
is output.

specifies that the fd is to be
the output operation is
omitted, the file is retained.

deleted a.f ter
performed. If

specifies that vertical forms control is in
use. Currently, the card punch driver does
not support VFC.

If the spool option was not selected at OS/32 sysgen time, this
command will result in an error.

2-66 48-043 FOO ROl

The PUNCH command can be entered in command mode, t.ask loaded
mode, and task executing mode.

NOTE

If the SPL/32 spooler is in use on the
system, the M1rM user has additional
options available for use with the PUNCH
command. See the SPL/32 Administration
and Reference Manual for a detailed
descripion of these additional options.

48 ·-043 FOO RO 1 2-67

$RELEASE

2.40 RELEASE COMMAND

The $RELEASE command is used to release a new global or new
internal variable. It also releases the variable's associated
buffer. This command has no effect on local or global variables
created with the $SET command.

Format:

[1
n1 /n2 !] .GVARIABLE

.S.RELEASE { } , n 1 [, •... • • , nnl
.I.VARIABLE ~ -

Parameters:

GVARIABLE

I VARIABLE

Af.L

Functional Details:

indicates that the variables to be released
are new global variables.

indicates that the variables to be released
are new internal variables. J

specifies that all variables (of the type
selected via the preceding parameter) between
the range of n 1 /n 2 be released. Where n is a
decimal number between 1 and the value allowed
at MTM sysgen for the selected variable type.

n is a decimal number of a var.iable (either
new global or new internal) or variables to be
released. n must be within the range of 1 and
the maximum value allowed at M':rM sysgen for
the selected variable type.

specifies that all new internal or new global
variables be released. This is the default if
no specific variable numbers are specified.

·rhis command may be entered in command mode, t.ask loaded mode,
task executing mode, and CSS mode.

2-68 48 --043 FOO ROl

In order to reduce buffer overhead, variables that are no longer
bei.ng used should be released. If this command is directed to a
vari.able that was already released, the command is ignored and no
error message is generated.

New internal variables that have a null or zero value are
automatically released.

Examples:

$RELEASE GVARIABLE,1/5 All new global variables from 1
through 5 are released.

$RELEASE IVARIABLE,16,19,18,25

The new internal variables numbered
16, 19, 18, and 25 are released.

$RELEASE IVARIABLE,ALL All new internal
released.

NOTE

variables

•rhis command does not release local and
global variables created with the $SET
command.

48-043 FOO ROl

are

2-69

RENAME

2.41 RENAME COMMAND

The RENAME command changes the name of an unassigned, direct
access file.

Format:

RENAME oldfd,newfd

Parameters:

oldfd is the current file descriptor of the file to
be renamed.

newf d is the file descriptor of the renamed file.

Functional Details:

The volume id field of the new file
omitted. A file can only be
protection keys are 0 (X'OOOO').

descriptor (newfd) may be
renamed if its write and read

The RENAME command can be entered in command mode, task loaded
mode, and task executing mode.

The user can only rename private files.

Example:

2-70

RJ:t~N VOL: AJM. CUR, AJM. NEW Renames file AJM. CUR to AJM. NEW on
volume VOL.

48-043 FOO ROl

RE PROTECT

2.42 REPROTECT COMMAND

The REPROTEc·r command modi.fies the protect ion keys of an
unassigned, direct access file.

Format:

REEROTECT fd,new keys

Parameters:

f d

new keys

Functional Details:

is the file descriptor of the file to be
reprotected.

is a hexadecimal halfword whose left byte
signifies the new write keys and whose right
byte signifies the new read keys.

Unconditionally protected files can be conditionally reprotect.ed
or unprotected.

The RgPROTEC'r command can be entered in command mode, task loaded
mode, and task executing mode.

The user can only REPROTECT private files.

48-043 FOO ROl 2-·71

REWIND AND RW

2.43 REWIND AND RW COMMANDS

The REWIND and RW commands rewind magnetic tapes, cassettes, and
direct access files.

Format:

REWIND [fd J lu

or

RW [fdJ lu

Parameters:

f d

lu

Functional Details:

is the file descriptor of the device or file
to be rewound.

is the logical unit to which the device or
file is assigned. If lu is specified without
fd, the operation is performed on the lu
regardless of what is-assigned to it.

·rhe REWIND and RW commands can be entered in task loaded mode.

Examples:

REW 1

REW M300:AJM.OBJ,4

2-72

Causes the file or device assigned
to lul to be rewound.

Causes file AJM.OBJ, as assigned to
lu4 on volume M300, to be rewound.

48-043 FOO ROl

RVOLUME

2.44 RVOLUME COMMAND

The RVOLCJME command enables an MTM user to allow/dis al low accE~ss
to a privately owned disk.

Fo'tmat:

.RYQLUME voln,

Pa't amete't s:

voln

ADD

act no

48-043 FOO ROl

ADD,

~ actno 1

REMOVE, l

[

~ actno l]
!]SERS T~tno1 actno 2 ~

is the volume name of the restricted disk.

indicates that the specified accounts will
have access to the restricted disk.

is a decimal number from 0 through the maximum
account number allowed on the system (limit
65,535) indicating the accounts
allowed/disallowed access to the restricted
disk. If ALL is spec if ied, accounts 0 through
the maximum account number allowed on the
system (limit 65,635) have access to the
restricted disk.

2-·73

RW

RO

REMOVE

USERS

Functional Details:

indicates that the specified account has
read/write access to the restricted disk. If
this argument is omitted, the default is read
only.

indicates that the specified account has
only access to the restricted disk.

read

indicates that the specified accounts are
disallowed access to the restricted disk. If
ALL is specified, all accounts having access
to the restricted disk are disallowed access
with the exception of the owner's account.

displays all accounts having access to the
restricted disk along with the access
privileges.

A disk marked on as a system disk is treated as a restricted
disk. Account number 255 is the owner.

The owner of a private disk can allow/disallow other MTM users,
the system operator, and other non-MTM tasks access to the
restricted disk.

If an owner enters a REMOVE parameter specifying a private
account, access will be denied to the disk; the owner can still
add accounts, remove accounts, and display accounts that have
access, along with the respective access privileges.

For a user with RW access to a restricted disk, accessing
private, group, and system files is exactly the same as accessing
files on any other disk.

For a user with RO access to a restricted disk, accessing group
and system accounts is the same as accessing files on any other
disk. Files within the user's private account can only be
assigned SRO or ERO. The user cannot allocate, rename,
reprotect, or delete any files.

2-74 48-043 FOO ROl

Examples:

·•
RVOL MTM,U

00000/RW 00001-00017/RO
00255/RW 00256-·01023/RO

RVOL M'l1M, A, 87 /RW
RVOL M'I1M, U

00000/RW 00001-00017/RO
00087/RW 00088-00254/RO

RVOL M'l'M, U, 87
00087/RW

RVOL M'l1M,R,87
RVOL M'rM, U

00018/RW 00019--002 54/RO

00018/RW 00019-00086/RO
002S5/RW 00256-01023/RO

00000/RW 00001-00017 /RO 00018/RW 00019-0008f)/RO
00088-00254/RO 00255/RW 00256-01023/RO

RVOL MTM,A,87
RVOL M'I1M, U

00000/RW 00001-00017/RO
00255/RW 00256-01023/RW

00018/RW 00019-00254/RO

RVOL M'rM, U, 87·-1200
ACCT-ERR POS=87-1200
RVOL MTM, U, 87·-1000
00087-00254/RO

48··-043 FOO RO 1

error since account
limit was 1023

00255/RW 00256-·01000/RO

2·-75

SEND

2.45 SEND COMMAND

The SEND conunand sends a message to the currently selected task.

Format:

SEN.D message [;]

Parameters:

message is a 1- to 64-character alphanumeric string.

Functional Details:

The message is passed to the selected task the same way as an SVC
6 send message. Following standard SVC 6 procedures, the message
consists of an 8-byte taskid identifying MTM as the sender,
followed by the user-supplied character string. The message
passed to the selected task begins with the first nonblank
character following SEND and ends with a carriage return (CR) or
semicolon (;) as a line terminator. A message cannot be sent to
a task currently rolled out.

The receiving task must have intertask message traps enabled in
its TSW and must have an established message buffer area. Refer
to the OS/32 Supervisor Call (SVC) Reference Manual for more
information on SVC 6.

The SEND conunand can be entered in task executing mode.

Example:

SEND CLOSE LU2,ASSIGN LU3

The following is received by the task:

• M'l1M CLOSE LCJ2, ASSIGN LU3

2-76 48·-043 FOO ROl

SET GROUP

2.46 SET GROUP COMMAND

The SET GROUP comrnand enables a privileged user to change the
group account number associated with the account the user is
currently on. This enables a privileged user to specify any
account in the system as the current group account. This command
is only valid when issued by a privileged user.

Format:

.S.ET .GROUP n

Parameters:

n

Functional Details:

is a dee imal number specifying the new
account to be associated with the
current account. This number must be
the range of 0 and the maximum account
set in AUF (cannot exceed 65,535).

gre>up
use1~ 's
within
number

The SF~T GROUP comrnand can be entered in command mode, task loaded
mode, task executing mode, or from a CSS. If a task is loaded or
executing, MTM also modifies the group account number i.n the task
control block (TCB).

If a nonpr ivileged user enters this comrnand the following messciLge
is generated:

MNEM-ERR POS=GROUP

A user may not set his group account to 255.

48-043 FOO ROl

Example:

The user signs on to account 205 (with privilege option). The
group account number associated with account 205 is 240. A
DISPT....AY FILES conunand of the following formal will cause the
files in account 240 (account 205's group account) to be
displayed:

D F -.-/G

A privileged user can then change the group account with the SET
GROUP conunand:

SET GROUP 220

Now the same DISPLAY FILES conunand will cause the files in
account 220 (account 205's new group account) to be displayed.

The new group account association only exists for the length of
the current signon session. The group-private account
associations specified with the authorized user utility are not
changed by this conunand. The privileged user may change group
numbers as many consecutive times as is desired.

2-78 48-043 FOO ROl

I SET KEYOPERATOFt I

2.47 SET KEYOPERATOR COMMAND

'rhe SET KEYOPERATOR command is used to change the operator
character used when defining keywords in a CSS call. When
entered without parameters, this command will display the curre~nt
operator character.

Format:

.S.E'r KEYOPERATOR [characte~

Parameters:

character

Functional Details:

is any one of the following characters which
will be used for defining keywords in CSS
calls:

>

%
&

If no character is entered, the
keyword operator is displayed.

curn~nt

At signon, the default keyword operator is the equal (=} si9n.
When this operator is changed via the SET KEYOPERATOR command,
the new operator remains in effect until signoff or until another
SET KEYOPERATOR command is entered.

48-043 FOO ROl 2--79

NOTE

The SET KEYOPERATOR command only changes
the operator used when defining keywords
in a CSS call. It has no effect on the
operator used when referencing keywords
within a CSS.

If the character designated as the keyword
passed as part of a character string in a
placed within single or double quotes.

If the keyword operator is used in a CSS call
quotes (single or double), and is not a valid
the following error message is generated.

KEYW-ERR POS=

operator
css call,

and is
keyword

is to be
it must be

not within
assignment,

(x) MUST BE WITHIN 'OR" IF NOT USED AS A KEYWORD OPERATOR.

The SET KEYOPERATOR command can be entered in CSS mode, task
loaded, task executing, and command mode.

2-80 48-043 FOO ROl

SET PRIVATE

.2. 48 SET PRIVATE COMMAND

·rhe SE'r PRIVNI'E command enables a privileged user to change the
priva~e account that the user is currently in without knowing the
password of the new account. This enables a privileged user to
access any account on the system as their private account. This
command is only valid when issued by a privileged user.

:Format:

SET .f.R I VA'rE n

:Parameter:

n

Functional Details:

is a decimal number specifying the new private
account number the user wants access to,
except account 255. Account 255 can only be
accessed v.ia SIGNON. n is within the range 1of
O to the maximum account number set in the
authorized user file (cannot exceed 65,535).

'The privileges of the user's original signon account remain in
effect regardless of the account the user is currently in. A
user can neither gain nor lose privileges when moving from
account to account~

'The SET PRIVATE command can be entered in command mode, ta:Sk
loaded mode, task executing mode, and from a CSS. If a task is
loaded or executing when a SET PRIVATE command is entered, M'rM
also modifies the private account number in the TCB.

If a nonprivileged user enters this command, the following
message is generated:

MNEM-ERR

48-043 FOO ROl 2-81

Example:

The user is signed on to account number 255. A
command would display all files in account 255.
the current account with a SET PRIVATE command:

SET PRIVATE 210

DISPLAY FILES/P
The user changes

The current account number becomes 210. The group account number
remains unchanged. A DISPLAY FILES/P command would display all
files in account 210. The user may alter private accounts as
often (consecutively) as is desired. Note that account times and
usage information used by the accounting reporting utility use
the original signon account number regardless of the account the
user is in at signoff time.

2-82 48-043 FOO ROl

SIGNOFF

2.49 SIGNOFF COMMAND

The SIGNOFF command terminates the terminal session. If a user
signs off when a task is loaded, the task is cancelled.

Format:

.SIGNOF.F

Functional Details:

When a termi.nal user signs off the system, these messages ar.:e
displayed:

r.~LAPSED 1r I ME=hh: mm: SS

s I GNON LEF"r=hh: mm: s s
·rrME OFF=mm/dd/yy hh:nun:ss

CPU'r IME=ut ime/ost ime
CPU LE!FT=hh: nun: ss

The SIGNOFF command cari be entered in command mode, task loaded
mode, and ~ask executing mode. It cannot be followed by another
command on the same command line.

48-043 FOO RO! 2-·83

SIGNON

2.50 SIGNON COMMAND

The SIGNON command allows a user to communicate with MTM. No
conunands are accepted until a valid SIGNON command is entered.

Format:

[
,ENVIRONMENT= l fd ll

NULL[!]
SIGNON userid,actno,password

[..cF.UTlME=maxt ime J
[class id= iocount1 [... ,class id= iocount32JJ

Parameters:

user .id

act no

password

ENVIRONMENT=

2-84

is a 1- to a-character alphanumeric string
specifying the terminal user's identification.

is a 1- to 5-digit decimal number specifying
a valid account number (defined in the AUF).
If the number is greater than the current
account limit (set in the AUF) or is not an
established account, an error message is
generated.

is a 1- to 12-character alphanumeric string
specifying the terminal user's password.

fd is the file descriptor specifying an
existing file that will establish the user's
environment at signon time.

NULL specifies that the signon CSS routine,
USERINIT.CSS, should be ignored and the user
will establish the environment after signing
on.

If the entire keyword parameter is omitLed,
M'rM searches all online disks for the signon
CSS procedure USERINIT.CSS/P. The system
account, on the system volume, is searched
last. If USERINI'r.css is found, M'l'M calls the
CSS and executes the routine. If it is not
found, MTM enters command mode.

48~043 FOO ROl

CPCJ'r IME..:-

class id"-

to count

Functional Details:

If the user does not have ~he ENV= privilege
(privilege to enter ENV"'-'" at s ignon), M'I'M w i 11
ignore this parameter and force the
USERINIT.CSS to be executed (if found).

maxtime is a decimal number specifying the
maximum CPU time to which the session is
limited. l f this parameter is omitted, the
default established at sysgen time is used.
If 0 is specified, no limits are applied. The
parameter can be specified as:

mmnun:ss
hhhh:mm:ss
ssss

is one of the 4-character alphanumeric
mnemonics specified at sysgen time associated
with each specified device or file class.

is a decimal number specifying the maximum
number of I/O transfers associated wiUl a
particular device class to which the job is
limited. If this parameter is omitted, the
default established at sysgen time is used.
If 0 is specified, no limits are applied to
that class.

The SIGNON command can be entered in command mode.
followed by another command on the same line.

It cannot be

When E:NVIRONMENT=NULL is specified, the colon is optional. This
allows the user the ability to specify the null device (NULL:).

The ENVIRONMEN'l1= parameter may be ignored by the
depending on the user's account privileges.

Examples:

SIGNON ME,12,PASSWD

S IGNON ME, 118, SWDOC, ENV"""'NULL

SIGNON ME,118,SWDOC,ENV=XYZ

48-043 FOO ROl 2-85

SPOOLFILE

2.51 SPOOLFILE COMMAND

This corrunand is valid only on systems which are using the SPL/32
spooler. Systems on which the OS/32 spooler is being used may
not use the spoolf ile corrunand.

The SPOOL.FILE command allows a user to allocate a spool file on
behalf of a specified pseudo device and assign that file Lo a
specified lu of the currently selected task. ·rhis conunand makes
all spooling options available at a terminal or command
substitution system (CSS) level.

Format:

Parameters:

lu

lul

pseud dev

FORM.,..,.

2-86

is a decimal number
unit to which the
assigned.

specifying the logical
pseudo device is to be

indicates that lu is to be assigned to the
same spool file as lul. lul musl be the first
lu assigned to the spool file.

is the 1- to 4-character name of a pseudo
device. The first character must be
alphabetic; the remaining alphanumeric.

is a desired prepr.inted form name that can be
specified here. If the form specified was not
previously enabled using a FORM command, an
error message is sent to the monitoring
conLrol or subcontrol task and the requesl is
processed using the default standard form
name , S 'I'D .

48-043 FOO ROl

VFC

NOVFC

COPIES=

HOLD

RELEASE

BLOCK

blocksize

indexsize

DELETE

NODELETE

PRIORITY:p

48-043 FOO ROl

specifies lhe use of vertical forms control
for the assigned lu. ~1en VFC is used, the
first character of each record is interpreted
as a vertical forms control character. If VFC
is not included, there is no vertical forms
control for the device assigned to the
specified lu.

turns the vertical forms control option off
for the assigned lu. This is the default
option.

identifies the number of copies to be output.
It must be between 1 and 255 or an error
message is sent.

causes the specified file to remain on the
spool queue until a RELEASE request is issued.

enables a spool file for output when the lu is
closed.

specifies the index and/or data block size.

is a decimal number specifying the physical
block size in 256-byte sectors, to be used for
buffering and debuffering operations involving
the file. The default size is 1 or the value
entered using the BLOCK command. If this
value exceeds the maximum block size
established at sysgen time, an error will be
printed when attempting to allocate the file.

is a decimal number specifying the index block
size in 256-byte sectors. The default size is
1 or the value entered using the BLOCK
command. Index size cannot exceed the maximum
index block size established at sysgen time or
an error will occur when attempting to
allocate the file.

the file is deleted after output. This is the
default option.

the file is not deleted after output.

p is the desired print priority. If this
option is not specified, the print priority
becomes the same as the priority of the task
from which the spool file assign originated.

2-87

Functional Details:

The SPOOLFILE command can be used to make an assignment to a
pseudo device from the terminal or CSS level. If two conflicting
parameters are entered in a single SPOOLFILE command,, such as
DELETE and NODELETE, the second parameter is executed and an
error· message is generated. ..rhe SPOOLF ILE command can be entered
in task loaded mode.

Example:

SPOOLFILE 4,pdl:,VFC,DELETE

This example causes a spool file to be allocated for pseudo
device pdl: and assigns that file to logical unit 4 of the
current task. Vertical forms control has been specified for the
specified lu and the DELETE option has been selected, which means
the file will be deleted after output.

2-88 48~043 FOO ROl

START

2.52 START COMMAND

1rhe S'l1ART command initiates execution of a dormant task.

Format:

S.l'ART [~ J [• parameter1 , ••• , parametern]

Parameters:

address

parameter

Functional Details:.

specifies the address at which task execution
is to begin. For user tasks, this is not a
physical address but an address within the
task's own program. For executive tasks, it
is a physical address. If address is omitted
or is 0, the loaded task is started at the
t.ransfer address specified when the task was
established.

specifies optional parameters to be passed to
the task for its own decoding and processing.
All user specified parameters are moved to
memory beginning at u·roP. If no parameters
are specified, a carriage return is stored at
UTOP.

The S'rART command can be entered in task loaded mode ..

Examples:

s·r 138

s·r 100 'NOSEG, SCRA'r

ST ,1000,ABC

4S-043 FOO ROl

Starts the currently selected task
at X' 138'.

Starts the currently selected task
at X'lOO' and passes NOSEG,SCRAT to
the task.

Starts the currently selected task
at transfer address and passes
1000,ABC to the task.

2-89

TASK

2.53 TASK COMMAND

The TASK command maintains CSS
operating system. No specific
command.

compatibility of M'rM
action is performed

to the
by this

Format:

[{
taskid }]

.'.r.ASK
_._B.QROUND

Parameters:

task id

.BGROUNO

Examples:

•r .BG

T COPY

2-90

is the name of the taskid that has been loaded
into the foreground segment of memory.

indicates that the task has been loaded as a
background task.

48-043. FOO ROl

TEMPFILE

2.54 TEMPFILE COMMAND

·rhe 't1EMPF ILE command al locales and assigns a temporary file to an
lu for.the currently selected task. A temporary file exists only
for Lhe duration of the assignment. When a temporary file is
closed, it is deleted.

Format:

.1.'.r~MP F r LE 1 u ,

Parameters:

lu

CONTIGUOUS

fsize

48-043 FOO ROl

~QNTIGUOUS,fsize

is a decimal number specifying the lu number
to which a temporary file is to be assigned .

. specifies that the file type to be allocated
is contiguous.

is a decimal number specifying the total
allocation size in 256-byte sectors. This
size can be any value up to the number of
contiguous free sectors existing on the
specified volume at the time the command is
entered.

specifies that the file type to be allocated
is extendable contiguous.

2-91

bsize

isize

INDRX

lrecl

NB

Functional Details:

is a decimal number specifying the physical
block size to be used for buffering and
debuffe~ing operations. bsize represents the
block size in sectors of the physical data
blocks containing the file. For INDEX files,
this parameter cannot exceed the maximum block
size established by the system generation
(sysgen) procedure. For EC and NB files, this
parameter mav be any value between l and 255
inclusive. Jf bsize is omitted, the default
value for LNuEX files is 256 bytes (one
sector). For EC and NB files, the default is
64 sectors.

is a decimal number specifying the index block
size. For INDEX files, the default value is
one sector (256 bytes). For EC and NB files,
the default value is three sectors (768
bytes). The index block size cannot exceed
the maximum disk block size established by the
sysgen procedure. isize may not exceed 255.

specifies that the file type to be allocated
is indexed ..

is a decimal number specifying logical record
length in bytes. It cannot exceed 65,535
bytes; its default is 126. The logical record
length is meaningful only for indexed and
nonbuffered indexed files.

specifies that the file type to be allocated
is nonbuffered indexed~

A temporary file is allocated on the temporary volume.

To assign this file, sufficient room must exist in system space
for three buffers, each of the stated size. Therefore, if baize
or isize is very large, the file cannot be assigned in some
situations. A maximum block size parameter is established in the
system at sysgen time. The bsize and isize cannot exceed this
constant.

To assign an EC or NB file, sufficient room must exist in system
space to contain only the index block of the stated size. The
data blocks for EC and NB files are not buffered in system space
and thus are not constrained to the sysgened block size.

The ·rEMPF ILE command can be entered in task loaded mode and task
executing mode.

2-92 48-043 FOO ROl

Examples:

TE 2,C0,64

TE 14,IN,126

TE 5,EC

TE 7,NB,240/250/5

48-043 FOO ROl

Allocates, on the temporary
volume, a contiguous file with a
total length of 64 sectors (16kb)
and assigns it to the loaded
task's lu2.

Allocates, on the temporary
volume, an index file with a
logical record length of 126
bytes. The buffer size and index
block size default to one sector.
The file is assigned to lul4 of
the loaded task.

Allocates, on the temporary
volume, an extendable contiguous
file with default data block size
of 64 and index block size of 3
sectors. The file initially
contains no records, and has a
record length of one sector (same
as a contiguous file). The file
is assigned to lu5 of the task.

Allocates, on the default
temporary volume, a temporary
nonbuffered indexed file with
logical record length of 240
bytes, data block size of 250
sectors, and index block size of
5 sectors. The file initially
contains no records. The file is
assigned to lu7 of the task.

2-93

VOLUME

2.55 VOLUME COMMAND

1rhe VOLUME command sets or changes the name of the default user
volume. It may also be used to query the system for the current
names associated with the user, system, roll, spool, or temporary
volume ..

Format:

YOLUME voln

Parameter:

voln

Functional Details:

is a 4-character volume .identifier. If this
parameter is omitted, all current default
user, system, roll, spool, and temporary
volume names are displayed.

Any commands that do not explicitly specify a volume name use the
default user volume. No test is made to ensure that the volume
is actually online at the time the command is entered. If voln
is not specified, the names of the current default volumes are
output to the user console.

The default user volume is initially set to the system volume or
the default user volume (set at MTM sysgen time) when the user
signs on. If no volume was specified at MTM sysgen, the default
is the system volume. This command may be entered in command
mode, task executing mode, and task loaded mode.

Example:

2-94

VOL
USR=M'rM SYS=MTM SPL=M67B 'rEM=M301 RVL=MTM

48-043 FOO ROl

When MTM is used in conjunction with the new spooler, SPL/32, the
spool volume is not displayed by the VOLUME corrunand.

Example:

VOL
USR=MTM SYS=MTM

48-043 FOO ROl

TEM=M301 RVL=MTM

2-95

WFILE

2.56 WFILE COMMAND

•rhe WF ILE command writes a f i lemark on magnetic tapes, cassettes,
and direct access files.

Format:

.Wf. I LE [f d ,] 1 u

Parameters:

f d

lu

Functional Details:

is the file descriptor of the file or device
to which a f ilemark is to be written.

is the lu to which the device or file is
assigned. If lu is specified without fd, the
operation is performed on the specified lu
regardless of what is assigned to it.

The WFILE command can be entered in task loaded mode.

Examples:

WF 1

WF M300:AJM.OBJ,4

2-96

Causes a f ilemark to be written on
the device or file assigned to lul.

Causes a f ilemark to be written on
file AJM.OBJ, which is assigned to
lu4 on volume M300.

48-043 FOO ROl

XALLOCATE

2.57 XALLOCATE COMMAND

The XALLOCATE conunand is used to create a direct access file.

Format:

Parameters:

f d

CONTIGUOUS

fsize

48-043 FOO ROl

is the file descriptor of the file to be
allocated.

specifies that the file type to be allocated
is contiguous.

is a decimal number indicating file size which
is required for contiguous files. It
specifies the total allocation size in
256-byte sectors. This size may be any value
up to the number of contiguous free sectors
existing on the specified volume at the time
the conunand i.s entered.

2-97

keys

EC

baize

is ize

INDEX

lrecl

NB

ITAM

2-98

specifies the write and read protection keys
for the file. These keys are in the form of
a hexadecimal halfword, the left byte of which
signifies the write key and the right byte the
read key. If this parameter is omitted, both
keys default to 0.

specifies that the file type to be allocated
is extendable contiguous.

is a decimal number specifying the physical
block size to be used for buffering and
debuffering operations on indexed files or
data communications devices. When INDEX, EC,
or NB is specified, baize represents the block
size in sectors of the physical data blocks
containing the file. When ITAM is specified,
bsize represents the buffer size in bytes.
For INDEX files and ITAM buffers, this
parameter cannot exceed the maximum block size
established by the system generation (sysgen)
proc~dure. For EC and NB files, this
parameter may be any value between 1 and 255
inclusive. If baize is omitted, the default
value for INDEX files and ITAM buffers is 256
bytes (one sector). For EC and NB files, the
default is 64 sectors.

is a decimal number specifying the index block
size. For INDEX files, the default value is
one sector (256 bytes). For EC and NB files,
the default value is three sectors (768
bytes). The index block size cannot exceed
the maximum diskblock size established by the
sysgen procedure. Neither baize nor isize may
exceed 255.

specifies that the file type to be allocated
is indexed.

is a decimal number specifying the logical
record length of an indexed file or
communications device. It cannot exceed
65, 535 bytes. Its default is 126 bytes. It
may optionally be followed by a slash (/)
which delimits lrecl from bsize.

specifies that the file type to be allocated
is extendable contiguous.

specifies that the fd to be allocated is an
ITAM buffered communications device.

48-043 FOO ROl

Functional Details:

The XALLOCATE corrunand is different from the ALLOCATE command in
that if fd is an existing file, it is deleted and reallocated.
If fd does not exist, it is allocated.

If the fd to be allocated is a device name instead of a filename,
a DEL-ERR TYPE=VOL occurs ..

The XALLOCATE corrunand can be entered in corrunand mode, task loaded
mode, and task executing mode.

48-043 FOO ROl 2-99

XDELETE

2.58 XDELETE COMMAND

The XDELETE command is used to delete one or more files. If the
file does not exist, no error is generated.

Format:

.XOELE'rE fd1 [fd2 ... , fdn]

Parameter:

f d is the file descriptor of the file to be
deleted.

Functional Details:

A file can only be deleted if it is not currently assigned to a
task and its write and read protection keys are 0 (XfQQQQf).

An MTM user can only delete private files.

Example:

XDEL FIXD:OS323240.817,RADPROC.FTN

2-100 48-043 FOO ROl

3.1 INTRODUCTION

CHAPTER 3
MTM/NON-MTM TASK INTERFACES

Multi-Terminal Monitor (MTM) allows the terminal user to trane1fer
control of a terminal to tasks other than MTM and then return the
terminal to MTM con tr o 1 in an orderly fashion. ·rh is orde~r ly
transfer of control is accomplished via the use of interface
protocols that are invoked by specific MTM commands. The MTM
terminal user can interface with:

• foreground tasks,

• HASP tasks, and

e ITC/RELIANCE tasks.

3.2 INTERFACING WITH A FOREGROUND TASK

The foreground interface allows an MTM user to connect an MTM
terminal to any specified foreground task selected via the
following command:

Format:

$foreground task-id

Parameter:

foreground task-id is a task-id of 1- to 7-characters
specifying the selected foreground task
to which the M'rM terminal is to be
connected. The following task-ids are
restricted and cannot be used:

48-043 FOO ROl

HASP
.MTM
.SPL
ECM

3-1

Functional Details:

This feature is available to all MTM users that have the
$foreground privilege.

·rhis command can be entered in command mode as long as no CSS is
active. This command is not available in batch mode. While a
terminal is connected to a foreground task, all MTM messages to
that terminal are ignored.

The foreground task to which this command is directed must have
particular characteristics and options enabled in order to
establish, maintain, and terminate the interface. The foreground
task must be linked with option UNIVERSAL and must be able to
send and receive messages via SVC 6. For further information
regarding SVC 6 use, refer to the OS/32 Supervisor Call (SVC)
Reference Manual.

Example:

$XYZ

In this example, the MTM terminal issuing the $XYZ command
becomes connected to the foreground task identified as XYZ.

A subsequent DISPLAY USERS command from an MTM terminal will
display the terminal transferred to the foreground task's (XYZ)
control as shown:

DAVE - NULL:@$XYZ

3.2.1 Programming Details

The foreground task selected with the $FGRND command must have
the following interface and a message buffer ring with message
entries enabled. The task-id may have no more than seven
characters.

The selected task gets the following message from .MTM:

ADD terminal-dn,priv-acc,group-acc,userid <CR>

The foreground task must now assign the terminal with terminal-dn
and immediately send the following message to .MTM:

$STA terminal-dn, status <CR)

3-2 48-043 FOO ROl

To return the terminal to MTM control, the foreground task should
close the terminal and send the following message to .MTM:

$END terminal-dn<CR>

MTM assigns the terminal and the user returns to MTM control.

Parameters:

terminal-dn

pr iv-ace

group-ace

user id

status

(CR)

Functional Details:

device name of the user's terminal (variable
length from two to five characters including
" : ti)

user's private account number (fixed length of
five characters, right justified, leading
zeros.)

user's group account number (fixed length of
five characters, right justified, leading
zeros)

userid under MTM (fixed length of
characters left justified)

returned from foreground task:

eight

X'30' all OK - foreground task has assigned
the terminal.

X'31' assign-errors terminal was not
assigned by the foreground task (.MTM
reports TASE .. -ERR to the user).

X'39' space error terminal would have
exceeded the maximum number of allowed
terminals. (.MTM reports TSPC-ERR to
the user.)

carriage return (X'OD')

Every ten seconds, MTM tries to reassign the terminal; i.e., if
the foreground task closes the terminal or goes to end of task
without sending a $END message, the user terminal remains
unassigned no longer than 10 seconds.

48-043 FOO ROl 3-3

3.3 HASP INTERFACE

The HASP interface allows an MTM user to communicate with a
specified HASP control task in the foreground. The option for
the HASP interface must be enabled at MTM sysgen in order for it
to be available to MTM users. When the HASP task is started, the
optional start parameter OUT*/MTM must be used to allow messages
to be output to MTM.

Format:

Parameters:

xx

Functional Details:

is a two-character alphanumeric extension of
the HASP control tasks foreground id.

OpLion UNIVERSAL is required when linking the HASP task. Once
the $HASP conunand has been executed, the M'rM terminal is then in
HASP mode. The HASP mode read prompt is:

"

All commands entered on the terminal are sent to the specified
HASP task. All corrunands starting with a $ are prefixed with the
HASP message corrunand and then sent to the specified HASP task.
All messages sent by HASP to the terminal are displayed ·1n the
following format:

HASPxx> message

When the user is ready to return the terminal to MTM control, the
following corrunand is used:

.S.M'I'M

The terminal is then returned to MTM control.

3--4 48-043 FOO ROl

The $HASPxx command can be entered in command mode only. No task
can be loaded or executing, no CSS active, and the user must not
be in batch mode. While in HASP mode MTM messages from other
users and the system operator can be displayed on the HASP
terminal.

The specified HASP task is set to the same private and group
account number as the user. If $MTM is entered, the specified
HASP task remains on these accounts and continues sending
messages to the user terminal until another user connects to the
same HASP task or until signoff.

Example:

$HASP03

This example selects the HASP task with the taskid HASP03 in the
foreground. The terminal is now in HASP mode (if no errors
occurred.)

3.4 ITC/RELIANCE INTERFACE

The environmental control monitor (ECM) provides facilities for
terminal users to transfer control of their terminals between
Reliance and MTM, or between different Reliance environments,
without use of the system console or a Reliance controller's
terminal. For details about the use of the ECM, refer to the
Environmental Control Monitor/32 (ECM/32) Systems Programming and
Operations Manual.

48-043 FOO ROl 3-5

4.1 INTRODUCTION

CHAPTER 4
PROGRAM DEVELOPMENT

This chapter is written as a program development tutorial session
for new to intermediate users. The program development commands
enable you to easily create a program and modify, maintain, and
execute it from the terminal.

4.2 CREATING A SOURCE PROGRAM

To create a source program that will exist in a single source
file (language environment), enter a program development language
command with a user-specified filename. Source filename
extensions are program-supplied and language dependent. The
language command entered must be consistent with the language of
the source file. When a language command is entered, a file is
allocated (if it does not already exist) with the user-specified
filename and program-supplied filename extension, and the editor
is loaded and started. If the file exists, it is set as the
current program (EDIT is not loaded.)

Table 4-1 lists the program development language command syntax
and program-supplied filename extensions.

TABLE 4-1 PROGRAM DEVELOPMENT LANGUAGE COMMANDS

PROGRAM
I DEVELOPMENT

LANGUAGE COMMAND SYNTAX IFILENAME EXTENSIONS
==~===:=~============

CAL/32

CAL Macro/32

FORTRAN VI I

FORTRAN VI I

48-043 FOO ROl

CAL [[voln:] filename]

MACRO [[voln:] filename]

FORT [[voln:] filename]
(using development
compiler)

FORTO [[voln:] filename]
(using optimizing
compiler)

.CAL

.MAC

.FTN

.FTN

4-1

TABLE 4-1 PROGRAM DEVELOPMENT LANGUAGE COMMANDS (Continued)

LANGUAGE

FORTRAN VI I

COBOL

REPORT
PROGRAM
GENERATOR

Pascal

COMMAND SYNTAX

FORTZ [[voln:] filename]
(using the universal
compiler)

COBOL [[voln:} filename]

RPG [[voln:} filename]

PASCAL [[voln:) filename]

PROGRAM
I DEVELOPMENT
!FILENAME EXTENSIONS

.FTN

.CBL

.RPG

.PAS

Program development language commands automatically set up
certain processes that will be used for the remainde~ of the
development effort. These processes are:

• Assignment of the standard source file language extensions,

• The compiler or assembler to be used,

• The standard Perkin-Elmer run time libraries to be linked, and

• The language tab character, a back slash, (\), and tab
settings pertinent to the specified language, (displayed when
the editor is entered).

These automatic specifications free you from constantly having to
remember them. The user-supplied filename with the
program-supplied extension will identify the source file
throughout the program development session.

Once the editor is loaded and started, the full range of Edit
commands are available to create the source file. See the OS/32
Edit User Guide.

4-2 48-043 FOO ROl

Example:

*FORT PROGl
** NEW PROGRAM
-EDIT
-G PROGL FTN
-0 TA= \,7,73
-0 COM = CON:

(edit session)

>SAVE*
>END
-WORK FILE = M67B: PROGL 000/P
-RENUMBERED INPUT FILE AVAILABLE, M67B: PROGl.FTN/P

In this example, the FORTRAN language command entered with a
user-supplied filename allocates an empty file, PROGl.FTN, and
loads and starts the editor. The FORTRAN tab settings are set
and displayed. The filename you specify is set as the current
program and is always accessed and/or executed if you do not
specify another filename. You can start to enter your program
after these messages are displayed:

** NEW PROGRAM
-EDIT
)

You can also create a source file by entering a language conunand
without a filename. Then enter the EDIT command with a f ilenaLme.
The EDIT command allocates a file and loads and starts the
editor. You can employ all of the Edit commands to create your
source file.

Example:

*FORT
*EDIT PROGl
-EDIT - PROGl.FTN

(edit session)

>SAVE*
>END

48-043 FOO ROl 4-3

The FORT command creates the language environment. The EDIT
command entered with PROGl loads and starts the editor and
allocates PROGl.FTN for the source file that will be created via
the Edit commands. PROGl.FTN is saved and the edit session is
ended.

4.2.1 Creating a Data File

To create a data file, save the source program file to disk, and
clear the edit buffer by deleting all lines currently in the
buffer ..

Example:

)SAVE*
>DELE'rE 1-
>AP

(use the editor to create PROGl.DTA)

>SAVE PROGLDTA
>END

In this example, PROGl.FTN is saved and then cleared from the
edit buffer. The Edit APPEND command allows data to be entered
in the data file. The data file is saved, and the edit session
is terminated with the END command.

4.3 EXECUTING A PROGRAM

The program development r.~X.EC command loads and runs the current
program.

Example:

*EX.EC
** EXECUTION OF PROGl.FTN FOLLOWS:
-END OF 1rASK CODE=O

This example assumes that PROGl.FTN already exists as the current
program. The EXEC command loads and runs the current program,
PROGl.FTN, and displays a zero end of task code (if no errors
occurred). A nonzero end of task code indicates an error was
encountered.

4-4 48·-043 FOO ROl

4.4 MODIFYING A PROGRAM

To modify your program, enter the appropriate language command
with the filename of the source file to be modified. Enter the
EDIT command to access the editor.

Example:

*FORT PROGl
*EDIT
-EDIT - PROGl.FTN

(edit session to modify PROGl)

>SAVE*
>END

In this example, the FORTRAN language command is entered with the
filename PROGl. The editor is accessed via the EDIT command, and
the name of the current program is displayed. The editor is used
to modify the source file, PROGl.

4.5 RE-EXECUTING A MODIFIED PROGRAM

When the EXEC command is issued, the source program is compiled,
linked, and executed, creating object and image modules. If the
source file is subsequently modified, the dates assigned to the
previously compiled object and previously linked image modules
will not be current.

Dates and times are assigned to source, object, and image modules
when they are created. The dates are stored in the system
directory.

The EXEC command causes the object and image modules to be
datechecked. They are then compiled and/or linked if they are
out of date. The EXEC command then loads and runs the image
program.

Example:

*EXEC PROGl I

-FORTRAN PROGl.FTN
-END OF TASK CODE=O
-LINK PROGLOBJ
-END OF TASK CODE=O
** EXECUTION OF PROGl FOLLOWS:
-END OF TASK CODE=O

48-043 FOO ROl 4-5

This example assumes that PROGl.FTN already exists. The EXEC
command, entered with PROGl, compiles, links, and then executes
the image program. A zero end of task code is displayed after
each process if no errors were encountered.

The program development RUN conunand can also be used to execute
a program. The RUN command does not datecheck, compile, or link.
It simply runs a program that was already compiled and linked.

ExampJ.e:

*RUN PROGl
** EXECUTION OF PROGl FOLLOWS:
-END OF '• i.SK CODE=O

If the EXEC or 'lhe RUN command is entered without a filename, the
current program is executed. If there is no current program,
this message is displayed:

** CURRENT PROGRAM NOT SPECIFIED

If you only want to compile a program without linking or
executing it, the program development COMPILE command can be
used. The program development COMPLINK command compiles and
links a program, if necessary, but does not execute it. The
n~oqram development LINK command links the object program but
does not execute it. These conunands are explained fully in their
respec~ive sections.

4 h EXECUTING MULTIPLE PROGRAfl.'9 AS A SINGLE PROGRAM

source program exists in multiple source files (multi-module
environment), you must include the file descriptors (fd) of each
source file in an environment descriptor file (EDF). The EDF
retains the identity of all the source files in the multi-module
environment that will be used to create a program.

When you enter the program development ENV conunand, you indicate
that your source program exists in more than one file and is to
be created in a mult i--module environment. The ENV command
creates the multi-module environment and allocates an EDF to
contain the fds of the source files.

Example:

*ENV ALLPROG
** NEW ENVIRONMENT

4-6 48-043 FOO ROl

In this example the ENV command with the user-specified EDF name,
ALLPROG, creates the multi-module environment.

No language extension is specified with the EDF filename since
each module can be written in a different language. Attempting
to enter an extension will cause an error. The user-specified or
default volume is searched for ALLPROG. If it is not found, an
empty file named ALLPROG is allocated, and the message, NEW
ENVIRONMENT, is displayed. The EDF is now ready to receive the
fds of the multiple source files. The program development ADD
command is used to add source program fds to the the multi-module
environment.

Example:

*ENV ALLPROG
** NEW ENVIRONMENT
*ADD PROGL F'rN
*ADD PROG2.CBL

The multi-module environment is created and an EDF, ALLPROG, is
allocated via the ENV command. The ADD command adds the fds,
PROGl.FTN and PROG2.CBL, to the multi-module environment.

When the ADD command is entered with a user-specified fd, the EDF
is searched for that fd. If the fd does not already exist in the
multi-module environment, it is added. If it already is in the
multi-module environment, this message is displayed:

** FILENAME CONFLICT - ENTRY NOT ADDED

You must rename the file or remove the existing entry from the
environment.

The program development LIST command displays the fds in the
multi-module environment, and the program development REMOVE
command removes fds from the multi-module environment.

48-043 FOO ROl 4-7

Example:

*LIST
** CURRENT ENVIRONMENT • ALLPROG
-PROGl. FTN
-PROG2.CBL
*REMOVE PROG2
*LIST
** CURRENT ENVIRONMENT = ALLPROG
-PROGl.FTN
*EXEC
* * EXEC UT I ON OF AT LPROG FOLLOWS:
** END OF TASK CODE=O
>

·rhe LIST command displays PROGl.FTN and PROG2.CBL as the fds in
the multi-module environment. The REMOVE command removes PROG2.
CBL and the LIST command displays the contents of the
multi-module environment. The EXEC command runs the program,
ALLPROG.

If the ADD or REMOVE command is entered without an fd or if the
fd is incorrect, this message is displayed:

** SYNTAX ERROR

Not all program development commands are available in both
language and multi-module environments. Table 4-2 shows the
commands that are available in the environments.

4-8

TABLE 4-2 PROGRAM DEVELOPMENT
COMMAND AVAILABILITY

I I MULTI-
COMMAND I LANGUAGE I MODULE

ADD x
COMPILE x x
COMPLINK x x
EDIT x x
ENV x
EXEC x x
LINK x x
LIST x
REMOVE x
RUN x x

48-043 FOO ROl

If a conunand that is meaningful only in a multi-module
environment is entered in a language environment, this message! is
displayed:

** NOT IN MULTI-MODULE ENVIRONMENT

In order to re-access a source program, modify the source f i.le,
and include it in a multi-module environment, enter the ENV
conunand followed by the EDIT conunand and use the editor to modify
the source file.

Example:

*ENV ALLPROG
*ADD PROG 1. F'l'N
*LIST
** CURRENT ENVIRONMENT = AI .. LPROG
-PROG2.CBL
-PROGl.FTN
*EDIT PROGl.FTN
-EDIT PROGL FTN

(edit session)

>SAVE*
)END
*EXEC
-PERKIN-ELMER OS/32 LINKAGE EDITOR 03/242 R00-01
-END OF TASK CODE = 0
** EXECUTION OF ALLPROG FOLLOWS:
-END OF TASK CODE = 0
>

The multi-module environment is entered via the ENV command and
the EDF name, ALLPROG. PROGl.FTN is added to the multi-module
environment. The LIST conunand displays the filenames remembE!red
in the EDF. The EDIT conunand accesses the editor to modify
PROGl.FTN. When the edit session is ended, the EXEC command
executes all the modules as one program, displaying an end task
code of 0 after successful execution (if no errors were
encountered).

48-043 FOO ROl 4-9

4.7 HOW TO RECOVER FROM ERRORS

If an error occurs in
process aborts, and
message are displayed.

program compilation or execution, the
a nonzero end of task code and an error

Example:

** COMPILE ERRORS, LISTING ON PR:

Program development makes it easy for the user to recover from
errors. Compile errors are printed in the listing of the source
file containing the error.

Use the editor to correct the error and re·-execute the program.
The EXEC command will recompile only the modified modules.

In some instances the EXEC command will recompile a successfully
compiled module if the time between the creation of the source
and object is less than one minute.

See the OS/32 Link Reference Manual for an explanation of link
error messages.

4.8 ASSIGNING LOGICAL UNITS

Program development defines and sets global variables that are
associated with particular devices. These devices have default
logical unit (lu) assignments. The global variable names and
settings are displayed when the user signs on. Table 4-3 shows
the variable names, their default settings, and lu assignments.

4-10

TABLE 4-3 PROGRAM DEVELOPMENT
DEFAULT VARIABLE
SETTINGS AND LU
ASSIGNMENTS

VARIABLE I I LOGICAL
NAME I DEVICE I UNIT

SSYSIN CON: 1

SSYSOU1r CON: 2

SSYSPRT PR: 3

SSYSCOM CON: 5

SSYSMSG CON: 7
~- ·- ···- - - - - - - - ... _ ··- - - ·- .. _ -~- ··- - - ·- ~- ·- ·- - ·- -- -

48-043 FOO ROl

Before running a program, ensure that the default variable and lu
settings are appropriate. The input device can be changed from
the console (default) to a pre-allocated file.

Example:

*SSYS IN FILE. IN

Listings can be sent directly to a file rather than to the
printer (default).

Example:

*SSYSPRT FILE.OUT

The user has the option to specify lu assignments unique to a
particular session. This is accomplished by creating a file, via
the editor, that contains the new lu assignments. This file must
be saved with the extension .ASN, and the last line in the file
must be a $EXIT statement. The program development software will
first search for a file with the extension .ASN. If no file is
found, the default lu assignments are used. •rhe HELP command
provides all the information needed to create a new assignment
file.

Any variable settings you change supercede the default variable
settings and are in effect until you change them again or s,ign
off.

4.9 PROGRAM DEVELOPMENT COMMANDS

This section describes the functions of each of the following
program development conunands:

• ADD

• COMP If,E

• COMPLINK
• EDIT

• ENV

• EXEC
• LINK
• LIST
• REMOVE

• RUN

48-043 FOO ROl

ADD

4.9.l ADD Conunand

·rhe ADD command adds the fds of source programs to the
multi-module environment. These fds are remembered in the EDF.
The ADD command is valid in the multi-module environment 1only.

Format:

ADD f d [, cssproc:!]

Parameters:

f d

cssprod

is the file descriptor of the source file to
be added to the multi-module environment.

is the name of the CSS procedure to be used
when nonstandard compilation is required.

Functional Details:

The ADD command causes the current EDF to be searched for the
specified fd. If the specified fd is not found, it is added to
the n.Hllti-module environment. If the fd currently exists in the
environment, the following message is displayed:

* * F [Lr~NAME CONFLICT - EN'rRY NOT ADDl-~D

lf the fd is omitted, or is in an incorrect format, this message
is displayed:

* * SYN1rAX ERROR

If the fd is entered without an extension, this message is
displayed:

** EXTENSION OMCTTED

4--1.2 48-043 FOO ROl

'rhe cssprod parameter must be used if the extension of the
specified file differs from the language extensions listed in
•rable 4--1. If this parameter is omitted when you are usin9 a
nonstandard extension, the following messages are displayed:

* * NONS'rANDARD EXTENSION
** AL'I'ERNATE CSS REQUIRED

The alternate CSS cannot be specified by just a volume name. It
must contain at least a filename.

48-043 FOO ROl 4-13

I COMPILE

4.9.2 COMPILE Conunand

The COMPILE command compiles a source module and creates an
object module if an up-to-date object module does not already
exist in the language environment. The COMPILE command
conditionally compiles when the ALL parameter is specified in the
multi-module environment. 'rhe COMP ILE command does not execute
a program.

Language Format:

voln:

Multi-Module Format:

COMPILE [

Parameters:

voln:

filename

ALL

4-14

filename
voln:

ALL

is a 1- to 4-character alphanumeric name
specifying the volume on which the source file
resides. If Ulis parameter is omitted, the
default is the user volume.

is a 1- to a-character
specifying the source file.
is omitted, the current
default.

alphanumeric name
If this parameter
program is the

specifies that all files in the multi-module
environment whose fds are remembered in the
~OF are to be compiled, if necessary. When
this parameter is specified, the COMPILE
command conditionally compiles all the files
that are in the multi-module environment.

48-043 FOO ROl

Functional Details:

A successful compilation ends with a zero end of task code. An
end of task code other than zero indicates a compilation error
that will be printed on the listing created as a result of
compile.

If the environment is not set when you enter the COMPILE command,
this message is displayed:

** ENVIRONMENT NOT SET

If a filename is not entered and a current program is not
specified, this message is displayed:

* * CURRENT PROGRAM NO'r SET

If a specified filename does not exist, the following message is
displayed:

** f .ile NOT FOUND

The COMPILE conunand functions are illustrated in Figures 4-1 and
4-2.

48-043 FOO ROl 4-15

4-16

SOURCE MODULES BEFORE COMPILE
:~=====~=~=~===============~==~======~==================~
I
I

ALLPROG. r.~DF

l PROGL FTN l
->l

6/20

IPROG2.CBLl
-> I

6/20

=~~~======~=====~====~~=====~==============~============

OBJECT AND SOURCE MODULES AF 1rER COMP ILE

lPROGl.FTNI lPROGl.OBJl

6/20 6/20

IPROG2.CBLl IPROG2.0BJI

6/20 6/20

/\
I
1--. ----

COMPILE

NO
E:XECUTION

Figure 4-1 COMPILE Command Functions in the Language
Environment

48-043 FOO ROl

SOURCE AND OBJECT MODULES BEFORE COMPILE ALL

I PROGL FTN I
I

->I 6/20
ALI. .. PROG. EDF ----- .. -~---

->IPROG2.CBLI IPROG2.0BJI

6/20 I · 6/15

SOURCE AND OBJECT MODULES AFTER COMPILE ALL
==~========~==~=r======

I PROGL FTN I

6/20

IPROG2.0BJI

6/20 6/15

I\
I I
I - .. ··--·-···---··-·····-·-·· .. -·-·-·· .. -· ... - ... · -- I

DATECHECK

I PROGL FTN I I PROGl. OBJ I
I - -·->I

6/20 6/20
- - ···------ NO

EXECUTION

IPROG2.CBLI IPROG2.0BJI
I----> I

6/20 6/20

I\
I I
I --·--·-- -----·-- ... - ··----···-·- I

COMPILE

Figure 4-2 COMPILE Command Functions in the Multi-Module
Environment

48-043 FOO ROl 4-17

I COMPLINI< I

4.9.3 COMPLINI< Conunand

The COMPLINK command performs a conditional compile and a
conditional link by datechecking source, obiect, and image
modules in language and multi-module environments. If all
modules are up-to-date, this command does not perform any
function. This command does not execute the program.

Language Format:

}]
Multi-Module Format:

COMPLINK

Parameters:

voln:

filename

Functional Details:

is a 1- to 4-character alphanumeric name
specifying the volume on which the source file
resides. If this parameter is omitted, the
default is the user volume.

is a 1- to 8-character alphanumeric name
specifying the source file. If this parameter
is omitted, the current program is the
default. Filename specification is meaningful
in a language environment only.

When the COMPLINK command is used in a multi-module environment,
all the fds contained in the EDF are datechecked, compiled if
necessary, and linked.

If the specified source file is not found, the COMPLINK sequence
terminates, and this message is displayed:

** fd NOT FOUND

4-18 48-043 FOO ROl

If you specify any arguments in a multi-module environment, this
message is displayed:

* * TOO MANY ARGUMEN'rS

The COMPLINK command functions are shown in Figures 4-3 and 4-4.

SOURCE, OBJEC'r, AND IMAGE MODULES BEFORE COMPLINK

IPROG4.CBLI IPROG4.0BJI IPROG4.TSKI

6/20 6/15 6/15

SOURCE, OBJECT, AND I MAGE MODULES AF'11ER COMPL INK

IPROG4.CBLI IPROG4.0BJI IPROG4.TSKI

6/20 6/15 6/15

A /\
I I I
I -· -····-·-··-·· "'··--·· ····-· I-················-- . ··-· I

DA'rECHECK

IPROG4.CBLI IPROG4.0BJI IPROG4.TSKI
I·-> I I - > I

6/20 6/20 6/20

I\ I\
I I I
I--·-·-- .. _ - _ •...•.•. I -· -· .. - .. --.. - I

COMPILE LINK

NO
EXft:cu·r I ON

Figure 4-3 COMPLINK Command Functions in the Language
Environment

48-043 FOO ROl 4-19

SOURCE, OBJECT, AND IMAGE MODULES BEFORE COMPLINK

I PROGL FTN I
I
I

1 PROGL OBJ I
I

ALLPROG. EDF ·- > l 6/20 6/10

6/8
->IPROG2.CBLI IPROG2.0BJI

6/20 6/10

SOURCE, OBJEC'r, AND IMAGE MODULES AF'I1ER COMPLINK

I PROGl. F'rN I
I

I PROGl. OBJ I
I -- > I

I

6/20 6/10 ALLPROG.TSKI

I PROG2. CBL I I PROG2. OBJ I->
6/8

6/20 6/10

/\ I /\
I I I I
I-.......... - - . I 1- _ .. -····- ... - -··-·I

DA'PECHECK

I PROG.l. F'I'N I - > I PROGl. OBJ I - > I

6/20 6/20 I I
I I

11\T .LP ROG. TSK I
I
I

IPROG2.CBLl->IPROG2.0BJl->I

6/20

I
I - ... - -·· -

COMP IT_jE

6/20

/\
I

. I

6/20

/\
I I
I - -·- I

LINK

NO
gxECU'rION

Figure 4-4 COMPLINK Command Functions in the Multi-Module
Environment

4-20 48-043 FOO ROl

EDIT

4.9.4 EDIT Command

The program development language commands load and start the
editor for you to create a source or datafile. You can also
enter the EDIT command to create or modify a source or data f lle.

Format:

voln:

Parameters:

voln:

filename

Functional Details:

filename

is a 1- to 4-character alphanumeric name
specifying the volume on which the source file
resides. If this parameter is omitted, the
default is the user volume.

is a 1- to 8-character alphanumeric name
specifying the file to be created or edited.
If this parameter is omitted, the current
program is the default.

A language command entered with a filename loads and starts the
editor if the file does not exist. However, if the language
command is entered without a filename, enter the r~DIT command
with a filename to access the editor and create or modify a
source file.

If this command
character is
set.

is
set

entered in a NULL environment, the tab
and displayed, but the language tabs are not

If this command is entered with a filename not contained in a
multi-module environment, this message is displayed:

** FILENAME NOT IN ENVIRONMENT

48-043 FOO ROl

If this command is entered without a filename in the multi-module
environment and there is no current program, this message is
displayed:

** CURRENT PROGRAM NOT SPECIFIED

If this command is entered without a filename when there is a
current program in the multi-module environment, the name of the
current program is displayed:

** r~DI'r - current program

For information on the Edit commands, see Section 1.6.2, or the
OS/32 Edit User Guide.

4-22 48-043 FOO ROl

ENV

4.9.5 ENV Command

The ENV command entered with an EDF name creates the mult i·-module
environment and allocates the user-specified EDF, if necessary.
This command can also be used to clear the current environment.

Multi-Module Format:

voln:

NULL

Parameters:

voln:

filename

NULL

Functional Details:

is a 1- to 4-character alphanumeric
specifying the volume on which the
resides. If this parameter is omitted,
default is the user volume.

name
iE~DF
the

is a 1- to 8-character alphanumeric name
specifying the EDF, filename. EDF. If tlh is
parameter is omitted, the default is the
current program. The EDF extension is
automatically appended and must not be entered
by the user.

clears the current environment.

If the filename parameter is entered with an extension, this
message is displayed:

** SYNTAX ERROR

If the ENV command is entered without a parameter, the name of
the current environment is displayed:

** CURRENT ENVIRONMENT = xxxxxxxx

48-043 FOO ROl 4-23

If the environment was not set or the NULL parameter was
specified, this message is displayed:

** NO CURRENT ENVIRONMENT

4-24 48-043 FOO ROl

EXEC

4.9.6 EXEC Command

The EXEC command datechecks source, object, and image modules in
language and multi-module environments and compiles or links them
if they are outdated. When the image program is current, it is
loaded and run.

Format:

EXEC [
voln:

Parameters:

voln:

filename

"start
parameters"

Functional Details:

}][{ filename .. J J ~"start parameters" J

is a l·- to 4-character alphanumeric name
specifying the volume on which the source file
resides. If this parameter is omitted, the
default is the user volume.

is a 1- to 8-character alphanumeric name
specifying the program to be run. If this
parameter is omitted, the current program or
EDF name is the default.

are parameters particular to the program
to be used. These parameters, usually
spec if ied with the operator S'rART command, can
now be specified with the program development
EXEC command. Start parameters must. be
entered with beginning and ending quotation
marks.

When the EXEC command is entered in a multi-module environment,
all modules contained in the EDF are compiled and linked if they
are outdated. The task is then loaded and run.

If start parameters are entered, they are invoked every time the
task is executed.

Start parameters must be entered with beginning and ending
quotation marks.

48-043 FOO ROl 4-25

EXEC conunand functions are shown in Figures 4-5 and 4-6.

SOURCE, OBJECT, AND IMAGE MODULES BEFORE EXEC
l•===~==========••=•=••==•=m•••=e=•==•••m••••==z:=========
I
I
I

IPROGl.FTNI IPROGl.OBJI IPROGl.TSKI
I

6/20 6/18 6/18

=======================·=-~===·=·=·==··-·================

SOURCE, OBJECT, AND IMAGE MODULES AFTER EXEC
========================·=·===·==========================

1: PROGl. FTN I I PROGl. OBJ I I PROGl. TSK I
I

6/20 I 6/18 6/18

/\ IA I
I

1--··-·--·------·-·· ___ f 1-------·---· I
DATECHECK

I PROGl. PTN I I PROOl. OBJ I J PROGl,, TSI< l
1->I J->l I-> TASK

6/20 I I 6/20 I f 6/20 EXECUTION

I A A.

'·-··-····-·--...... ___ , I: I
I---·-·---·---- I

COMPILE LINK

Figure 4-5 EXEC Command Functions in the Language
Environment

4-26 48-043 FOO ROl

SOURCE, OBJECT, AND IMAGE MODULES BEFORE EXEC

_______ ., _____ --------- ---·------
->I PROGL FTN I I PROGL OBJ I

ALLPROG.EDF 6/20 6/15
--------- ---------
-·-------- ----··--·---

->IPROG2.CBLI IPROG2.0BJI

6/20 6/15
----·-·------ --·------- ---------

SOURCE, OBJECT, AND IMAGE MODULES AFTER EXEC

IPROGl.FTNI IPROGl.OBJI
1->

6/20 6/15

IPROG2.CBLI IPROG2.0BJI
1->

6/20 6/15

/\ I /\

ALLPROG.TSK

6/5

I I I I
I--··-·· .. ----·-·---... - .. I 1--------·--· .. ·----.. ···· .. --·--··· I

DATE CHECK

IPROGl.FTNI IPROGl.OBJI
1->1 1->

6/20 6/20

/\ I

IPROG2.CBLI IPROG2.0BJI

6/20
1->I 1->

6/20

/\ I
I

ALLPROG.TSK -> TASK
EXECU~rroN

6/20

/\
I I I I
I---·---------·· I I --···--.. ---------1

COMPILE LINK

Figure 4-6 EXEC Command Functions in the Multi-Module
Environment

48-043 FOO ROl 4-27

LINK

4.9.7 LINK Command

The LINK command links the object module to yield the image
module in language and multi-module environments. If no object
module exists, the LINK command compiles the source module to
yield the object module. The LINK command does not datecheck,
load, nor execute a program.

Language Format:

filename

.}]

Multi-Module Format:

LINK

Parameters:

voln:

filename

Functional Details:

is a 1- to 4-character alphanumeric name
specifying the volume on which the source file
resides. If this parameter is omitted, the
default is the user volume.

is a 1- to 8-character alphanumeric name
specifying the files to be compiled and/or
linked. If this parameter is omitted, the
current program is the default. A filename is
meaningful only in a language environment.

When the LINK command is entered in a multi-module environment
and no object module exists, all source file fds contained in the
EDF ate compiled. The resulting object modules are then linked.
If a link error occurs, the link sequence aborts, and this
message is displayed:

** LINK ERRORS:EXECUTION ABORTED

4-28 48-043 FOO ROl

If a LINK command is entered when no environment was set, this
message is displayed:

** NO ENVIRONMENT SPECIFIED

If there is a compilation error, the process ends with a nonzero
end of task code, the link procedure never starts, and the process
is aborted. This message is then displayed:

** COMPILE ERROR - LINK NOT EXECUTED

The LINK command also links all of the standard Perkin·-Elmer run
time libraries specified by the language extension assigned when
the source file was created.

4.9.7.l Link Sequences

The user can specify a link sequence by building a link file that
must have the extension .LNK. When the link sequence is
specified, the system searches the default user volume for a file
with the .LNK extension with a filename matching the EDF namet or
the current program. When it is found, it is executed.

Example:

*BUILD JOB.LNK
B>ESTABLISH TASK
B)INCLUDE PROGl.OBJ
B)INCLUDE PROG2.0BJ
B)LIBRARY F7RTL,COBOL.LIB
B>MAP PR:,AD,AL,XREF
B)BUILD PROG.TSK
B)END
B)ENDB

If the user-spe~ified link file is not found, the system uses the
default link sequence. There is a default link sequence for E~ach
language environment. Following is an example of a default
FORTRAN link sequence:

)ESTABLISH TASK
>INCLUDE current program
)INCLUDE LIBRARY F7RTL.OBJ/S
>OP DFLOAT, FLOAT, WORK=X3072
>BUILD f ilename.TSK
)END

48-043 FOO ROl j~-29

The LINK command functions are shown in Figures 4-7 and 4-8.

4-30

SOURCE AND OBJECT MODULES BEFORE LINK
I===============•===•=#•=============================

I PROGL FTN I IPROGLOBJI

6/20 6/20

SOURCE AND OBJECT MODULES AF'rER LINK

I PROGl. F'rN I I PROGL OBJ I IPROGl.TSKI
1->1

6/20 6/20 6/20

~ A
t I
I·--·-·-·--·------------- I

LINK

SOURCE PROGRAM BEFORE LINK

NO
EXECUTION

==

PROGLFTN

6/20

SOURCE PROGRAM AFTER LINK
:==============~==~=~========================~=======

I PROGL FTN I I PROGL OBJ l I PROGL TSK I
1->: 1->1

6/20 6/20 6/20

A A
I I I
I·--·--·--··--···--·---------·· I --··· --· .. ··-··· --------·-- I

COMPILE LINK

NO
EXECUTION

Figure 4-7 LINK Command Functions in the Language
Environment

48-043 FOO ROl

SOURCE AND OBJECT PROGRAMS BEFORE LINK

I-> I PROGL FTN I
I
I 6/20

ALLPROG. EDF I ·- --- -·- ---
1
I -- --- --·--
I-> I PROG2. CBL I
I

6/20

I PROGl. OBJ I
I
I 6/20

IPROG2.0BJI
I

6/20

l•••••••••••••••••••••e••e••••••••••••••••••••••••••••••••••e•••••••••
SOURCE AND OBJECT PROGRAMS AFTER LINK

I PROGl. FTN I

6/20

IPROG2.CBLI
I I

6/20 I

IPROG2.0BJI
I I->
I 6/20

IPROG2.0BJI
I I->

I
I

ALLPROG.TSKI

I 6/20 6/20

/\

LINK

NO
EXECUTION

-------------------------------···-----------------------------------1 SOURCE MODULE BEFORE LINK

I PROGl. FTN I
1->1

I I 6/20
IALLPROG.EDFI ---------
1 I

I ---------
I-> I PROG2. CBL I
I I

6/20

••••••••••••••••••••••••••••••••~••••••••••••••••••••••••c•••••••••••

SOURCE MODULE AFTER LINK
••••••••••••••••••••••••••••••••~•••••••a••••••••••••••••••••••••••••

Figure 4-8

48-043 FOO ROl

IPROGl.FTNI
I

6/20 I

IPROG2.CBLI

6/20

I PROGL OBJ I
1->1

6/20
I
I

IALLPROG.TSK

~PROG2.0BJI
I-> I

6/20 6/20

I A /\
I I I I

1-------·- •
, _______ ,

COMPILE LINK

NO
EXECUTION

LINK Command Functions in the Multi-Module
Environment

,4-31

LIST

4.9.8 LIST Conunand

The LIST conunand lists the fds of all the multi-module
environment programs that are contained in the current EDF.

Format:

LIST

Functional Details:

The LIST command causes a listing to be sent to the list device
specified by SSYSPRT when lu assignments were made. When this
command is entered, this message is displayed:

** CURRENT ENVIRONMENT = current EDF

If the LIST command is entered and no fda are in the multi-module
environment, the following message is displayed:

** ENVIRONMENT EMPTY

If an argument is specified with the LIST command, this message
is displayed:

* * 'rOO MANY ARGUMEN'rS

4-32 48-043 FOO ROl

REMOVE

4.9.9 REMOVE Conunand

The REMOVE command deletes specified source fds from the current
multi-module environment.

Format:

REMOVE f d

Parameters:

f d

Functional Details:

is a file descriptor of a
contained in the EDF.

source file

When the REMOVE command is entered, the current EDF is searc:hed
for the specified fd. When found, the fd is removed from the
multi-module environment. If the fd is not found, the following
message is displayed:

** FILENAME NOT IN ENVIRONMENT

If the fd is omitted or is in an incorrect format, this message
is displayed:

** SYNTAX ERROR

When all of the fds have been removed from the multi-module
environment, this message is displayed:

** ENVIRONMENT EMPTY

48-043 FOO ROl

RUN

4.9.10 RUN Command

The RUN command loads and runs the image program in language and
multi-module environments. This command does not datecheck,
compile, or link.

Format:

RUN [{lillvJolllflnl:

Parameters:

voln:

f .ilename

"start
parameters"

Functional Details:

}] [,"start parameters"]

is a 1- to 4-character alphanumeric name
specifying the volume on which the image
module resides. If this parameter is omitted,
the default is the user volume.

is a 1- to 8-character name specifying the
image module. If this parameter is omitted,
the default is the current program.

are parameters particular to the assembler
or compiler being used. These parameters,
usually specified with the operator START
command, now can be specified with the program
development RUN command.

If a filename is not entered with the RUN command and a task with
the filename of the current program does not exist in the
language environment, this message is displayed:

** fd NONEXISTENT

See Section 4.9.6 for more information on start parameters.

4-34 48-043 FOO ROl

Figures 4-9 and 4-10 illustrate the RUN command functions.

IMAGE MODULE BEFORE RUN

I PROGl.TS.KI

6/20

---------------------------IMAGE MODULE AFTER RUN

-------------=-------------
IPROGl.TSKI
I I-> TASK

6/20 EXECUTION

RUN

Figure 4-9 RUN Conunand Function in the Language Environment.

IMAGE MODULE BEFORE RUN

ALLPROG.TSK

6/20

-----------------------------IMAGE MODULE AFTER RUN

-> TASK
AILPROG.TSK EXECUTION

6/20

RUN

Figure 4-10 RUN Command Function in the Multi-Module Environment

48-043 FOO ROl 1~-35

Table 4-4 sununarizes the functions of the conunands used to
compile, link, and run a program.

TABLE 4-4 PROGRAM DEVELOPMENT COMMANDS THAT
COMPILE, LINK, AND EXECUTE

COMMAND FUNCTION
===

COMPILE I Compiles source module into object
I module when object module does not

COMPLINK

LINK

EXEC

I exist or is outdated.

Datechecks source, object, and image
modules, and compiles and/or links
them if outdated to form image
program.

Compiles source module into object
module when object module does not
exist. Then links object module and
standard run time libraries to form
image program.

Datechecks image, object, and source
modules. Compiles and links them if
outdated. Loads and runs up-to-date
image program.

RUN I Loads and runs image program without
I datechecking, compiling, or linking.

4.10 SAMPLE PROGRAM DEVELOPMENT SESSIONS

This section presents coding examples
developmenL conunands.

using the program

4-36

*FORT 'rEST
** NEW PROGRAM
-EDIT

(edit session)

SAVE*
>END

Create FORTRAN language
environment with the
FORT language command.

Specify TEST as filename
to be allocated. FORT com
mand loads and starts
editor with TEST.FTN as
current program.

48-043 FOO ROl

*SSYSIN CON:

*SSYSOUT CON:
*SSYSLIST PR:
*EXEC TEST
-FORTRAN:TEST
** COMPILE ERRORS, LISTING ON PR:

*EDIT
-EDIT - TEST.FTN

(edit session)

SAVE*
>END

*EXEC
-FORTRAN - TEST

(compilation sequence)

-END OF TASK CODE=O
-LINK - TEST

(link sequence)

-END OF TASK CODE=O

** EXECUTION OF TEST FOLLOWS:

(execution sequence)

-END OF TASK CODE=O

48-043 FOO ROl

Define and set new global
variables.

Execute TEST.FTN.
Compile TEST.FTN.
Compilation errors in TEST.

Find and correct errors.

Execute current program.

Compile.

Sucessful compilation.
Link the newly created
object module TEST.OBJ.

Successful link. New task
now exists.

Run the new task TEST.TSK.

4-37

4-38

*EXEC

** EXECUTION OF TEST FOLLOWS:

(execution sequence)

-END OF TASK CODE • 0
*RUN

** EXECUTION OF TEST FOLLOWS:

(execution sequence)

-END OF TASK CODE-0

*EXEC NEWPROG
** FILE NEWPROG.FTN NOT FOUND

*MACRO

*EXEC NEWPROG
-MACRO - NEWPROG
-CAL - NEWPROG
-LINK - NEWPROG

(link sequence)

** EXECUTION OF NEWPROG FOLLOWS:

(execution sequence)

-END OF TASK CODE•O

Successful execution.
Re-execute.
Ensure program is compiled
and linked.
Compile, link unnecessary.
Object and image up-to-date.

Successful execution.

Rerun.

Execute NEWPROG.
System finds NEWPROG.MAC.
Cannot find NEWPROG.FTNe
Specif iy MACRO command to
access NEWPROG.MAC and enter
a new language environment.

Execute NEWPROG.MAC.
Expand.
Assemble.
Link.

Successful execution.

48-043 FOO ROl

*EDIT .
EDIT-NEWPROG.MAC

(edit session)

SAVE*
>END

*EXEC
-MACRO - NEWPROG
-CAL - NEWPROG
-LINK - NEWPROG

(link sequence)

** EXECUTION OF NEWPROG FOLLOWS:

(execution sequence)

-END OF TASK CODE=O

Edit current program.

Execute current program.
Expand.
Assemble.
Link.

Successful execution.

Create multi-module envi
ronment with ENV command.

*ENV BIGTASK BIGTASK.EDF allocated.
** NEW ENVIRONMENT
*ADD SUB. CAL Add 3 module names to l~DF .
*ADD MACRTY.CAL
*ADD FTOR.FTN
*LIST List all modules in EDJ:;'.
** CURRENT ENVIRONMENT=BIGTASK.EDF
-SUB.CAL
-MACRTY.CAL
-FTOR.FTN
*ADD SUBFUNC. FTN Add 2 more modules to l~DF.

*ADD YSUB.MAC

48-043 FOO ROl 4-39

4-40

*REMOVE SUB.CAL
*FORT SUBFUNC
-EDIT - SUBFUNC

(edit session)

SAVE*
>END
*EDIT YSUB

(edit session)

SAVE*
>END
*ENV BIGTASK

*EXEC
-FORTRAN - FTOR.FTN
-FORTRAN - SUBFUNC.FTN
-MACRO - YSUB.MAC
-CAL - ·MACRTY.CAL
-LINK - BIGTASK

(link sequence)

END OF TASK CODE•O

** EXECUTION OF BIGTASK FOLLOWS:

(execution sequence)

-END OF TASK CODE=2

Remove fd from EDF.

Make changes to SUBFUNC.FTN.

Make changes to YSUB.MAC.

Create multi-module envi
ronment
Execute modules remembered
in BIGTASK.EDF.
FTOR.OBJ and YSUB.OBJ
modules are outdated.

Link BIGTASK.

All objects are linked;
appropriate RTLs are also linked.

Execution errors traced to YSUB.

48-043 FOO ROl

*MAC
*EDIT YSUB

(edit session)

SAVE*
>END

*ENV BIGTASK
*EXEC
-MACRO:YSUB.MAC

-CAL - YSUB.MAC
-LINK - BIGTASK

(link sequence)

** EXECUTION OF BIGTASK FOLLOWS:

(execution sequence)

-END OF TASK CODE•O

48-043 FOO ROl

Create language environment.
Correct errors in YSUB.MAC.

Enter multi-module environment.

YSUB.MAC object is outdated.
Expand, assemble, and linkedit.

CHAPTER 5
MULTI-TERMINAL MONITOR (MTM) BATCH PROCESSING

5.1 INTRODUCTION

In addition to interactive processing capabilities, MTM also
supports concurrent batch processing, allowing the user to run
multiple batch jobs from a single batch queue. This feature
enables the user to effectively utilize the capabilities of the
system with minimal interference to the interactive users.

The number of concurrent batch jobs allowed at any time under MTM
is set by the operator from the system console. This number
cannot exceed 64. If more batch jobs are submitted than there
are active jobstreams, MTM queues the requests until a jobstream
becomes available.

The batch queue is an indexed file containing the file descriptor
(fd) of the jobs to be processed. Each job is identified in the
queue by the fd of the command file. The batch queue is ordered
in priority order and in first-in/first-out (FIFO) basis within
a priority.

Tasks executing in the batch environment run at a priority lower
than or equal to the tasks in the terminal environment. Thus, a
batch job executes when the system is not occupied with work from
a terminal user. Batch jobs use the processor's idle time and
therefore increase the efficiency of the system.

5.2 BATCH COMMANDS

The batch job file cons is ts of a series of MTM user commaLnds
and/or command substitution system (CSS) calls. The commands
presented in this section are unique to the batch environment.

To submit a batch job a user must have created a batch job file
on disk. This file must have a SIGNON command as the f i.rst
record, and a SIGNOFF command as the last record. The only valid
commands to be used between the SIGNON and SIGNOFF commands are
MTM user commands (Chapter 2), program development commalnds
(Chapter 4), batch processing conmmands, and calls to a CSS t:ile
(Chapter 6). A batch job file is not a CSS. Therefore, CSS
commands, with the exception of $IF ... , $ELSE, and $ENDC, are
invalid. Any command that can be used at a terminal can be used
in the batch job file .

•

48-043 FOO ROl 5-1

Example:

of a single batch job file:

SIGNON TESTl,l,PWD
L TEST 1
ST
SIGNOFF

Example:

CSS to build a batch job file and submit job:

* * ASM. CSS [MODULE]
**
**
**

@ 1 (MODULE TO BE ASSEMBLED)

** EXAMPLE: ASM EXIN
**
$BU @LJOB
SIGNON @l
XAL @l.LOG,IN,80
LOG @LLOG,5
ASM/G @l
$IFE 0

MESS LEE *** @l.JOB COMPLETE ***
$ELSE
MESS LEE *** @l.JOB ERROR ***
-$ENDC
SIGNOFF
$ENDS
SUB @l.JOB,DEL
INQ
$EXIT

5-2 48-043 FOO ROl

I INQUIRE I

5.2.1 INQUIRE Command

The INQUIRE command queries the status of a job on the ba.tch
queue.

Format:

iNQUIRE [fd {~}_]
Parameters:

f d

f dl

Functional Details:

identifies the job for which the status is
desired. If fd is not specif led, all jobs
with account numbers the same as the usc:?r 's
are displayed.

specifies the file or device to which the
display is output. If this parameter is
omitted, the default is the user console.

When this command is entered by a privileged user, information
about all jobs on the system is displayed. Standard MTM wsers
see just the jobs related to the user's private account. This
command can be entered in command mode, task loaded mode, and
task executing mode.

Possible responses to the INQUIRE command are:

JOB f d NOT FOUND

JOB fd EXECUTING

JOB fd WAITING BEHIND=n

NO JOBS WITH YOUR ACCOUNT

48-043 FOO ROl 5-3

Examples:

INQ

INQUIRE TASK.JOB

5-4

All jobs with the user
number are displayed.

account

The status of TASK.JOB is displayed.

48-043 FOO ROl

LOG

5.2.2 LOG Command

The user can invoke a batch job to produce a log of its commands
by including the LOG command and the $COPY command within the
batch stream.

Format:

LQG [fd] [[{:~;PY}]]• [{~}]

SET LQG [fd] [[{::PY}]}[{;.}]
Parameters:

f d

COPY

NO COPY

n

48-043 FOO ROl

is the file descriptor of the log file or
device. If no fd is specified, logging is
terminated. If fd is a file, it must be
previously allocated. Files are assigned EWO
privileges so that logged output is added to
the end of the file. If a log is active when
a second LOG command is entered, the old log
is closed and the new one is initiated.

specifies that all output is written to both
the terminal and the log device.

specifies that all output, except messages, is
written to the log device and not· the
terminal. Messages from other users and the
operator are written to both the terminal and
the log device.

is a dee imal number from 0 through 65 ,r 535
specifying the number of lines after which the
log file is to be checkpo inted. If th is
parameter is omitted, the default is 15 lines.
If n is specified as 0, no checkpointing
occurs.

5-5

Functional Details:

The LOG and the SET LOG commands are the same.
be entered either way, and both formats
function.

The conunand can
perform the same

Checkpointing may be done on any type of file. However, on
contiguous files, the checkpoint operation is treated as a
no-operation. On nonbuffered indexed and extendable contiguous
files, the checkpoint operation is useful only if the file is
being expanded. On indexed files it is possible that a
significant amount of time may elapse between the time the data
to be written to the disk leaves the user's buffer and the time
that it is physically transferred to the disk. In these cases,
checkpointing "flushes" the system buffers, as well as updating
the file size in the directory. In general, checkpointing is
justifiable only under very specific circumstances, such as when
a very large amount of data is written to an indexed file over an
extended period of time, without the file being closed.

Example:

LOG PR:

5-6 48-043 FOO ROl

PURGE

5.2.3 PURGE Command

The PURGE command purges a submitted job from the batch queue.

Format:

£URGE f d

Parameter:

f d

Functional Details:

is the file descriptor of the job to be
purged. Only jobs with the user account
number can be purged.

If the specified job is executing, it will be cancelled or
terminated. If the job is waiting to be run it will be removed
from the batch queue.

Example:

PURGE TASK.JOB TASK.JOB is purged.

48-043 FOO ROl 5-7

I SIGNOFF I

5.2.4 SIGNOFF Command

The last command in a batch stream must be the SIGNOFF command.

Format:

Sl.GNQE.F

Functional Details:

When a terminal user signs off the system, these messages are
displayed:

ELAPSED TIME=hh:mm:ss
SIGNON LEFT=hh:mm:ss
TIME OFF=mm/dd/yy hh:mm:ss

CPUTIME=utime/ostime
CPU LEFT=hh :mm.: ss

The SIGNOF'F command can be entered in command mode, task loaded
mode, and task executing mode.

5-8 48-043 FOO ROl

I SIGNON

5.2.5 SlGNON Command

SIGNON must be the first command in a batch job.

Format:

SIGNON userid ,actno,password [,ENY:IRONMENT=lfd l]
NULL[]

[, .Cf.UTIME=maxt ime J

[,class id= iocount1 [, ... , class id= iocount32J]

Parameters:

user id

actno

password

ENVIRONMENT=

48-043 FOO ROl

is a 1- to 8-character alphanumeric string
specifying terminal user identification.

is a 5-digit decimal number specifying the
terminal user's account number. This must be
a valid account number in the AUF file and can
never exceed 65,535. If this parameter is
omitted, the password parameter should also1 be
omitted. MTM will use the account number of
the user submitting the batch job.

is a 1- to 12-character alphanumeric string
specifying the terminal user's password. This
parameter should be omitted if the ac:tno
parameter is omitted. MTM will use the
password of the user submitting the job.

fd is the file descriptor specifying the file
that will establish the user's environment at
signon time.

NULL specifies that the signon CSS procedure,
USERINIT.CSS, should be ignored and the user
will establish the environment at signon time.
If the entire keyword parameter is omitted,
MTM searches all online disks for the si9non
CSS procedure, USERINIT.CSS/P. The system
volume, system account, is searched last. If
USERINIT.CSS is found, MTM calls the CSS and
executes the routine. If it is not found, MTM
enters command mode.

5-9

CPUTIME=

class id=

iocount

Functional Details:

maxtime is a decimal number specifying the
maximum CPU time to which the batch job is
limited. If this parameter is omitted, the
default established at sysgen is used. If 0
is specified, no limits are applied. The
parameter can be specified as:

nunrnrn: SS

hhhh:mm:ss
ssss

is one of the 4-character alphanumeric
mnemonics, specified at sysgen, associated
with each specified device or file class.

is a decimal number specifying the maximum
number of I/O transfers associated with a
particular device class to which the batch job
is limited. If this parameter is omitted, the
default established at sysgen is used. If 0
is specified, no limits are applied to that
class.

Between the SIGNON and SIGNOFF commands, any command or CSS call
that is valid from the terminal is allowed. A SIGNON command
cannot be followed by another command, on the same line,
separated by semicolons. When ENVIRONMENT=NULL is specified, the
colon is optional. This allows the user the ability to specify
the null device (NULL:).

The account number and password can be omitted if a batch job is
submitted from a user terminal. If a batch job is submitted from
the system console or via the Spooler, the account number and
password must be specified.

The ENVIRONMENT= parameter may be ignored, depending on the user
account's privileges.

Examples:

SIGNON ME

S ME,12,PSWD,CPUTIME=2:30:00,DEV1=150

S ME,CPUTIME=l20

S ME,ENV=NULL,CPUTIME=l20

S ME,ENV=XYZ

5-10 48-043 FOO ROl

I SUBMIT

5.2.6 SUBMIT Conunand

The terminal user adds a job to the batch queue with the SUBMIT
command.

Format:

SUB.MIT fd [,DELETE] [,.E.RIORITY=pr ior ity J

Parameters:

f d

DELETE

PRIORITY=

Functional Details:

is the file descriptor of the file submitted
to batch.

deletes the batch job file created to submit
the batch job. If this parameter is omitted,
the batch job file remains on the user volume.

priority is a dee imal number which spec if: ies
the priority at which a batch job will run.
The range of valid priority numbers is
dependant upon the user's account privileges,
sysgen options, and MTM's priority. The
maximum range allowable is MTM's priority + 1
through 255. If this parameter is omitted,. a
batch job will run at the default batch
priority (the default batch priority is 12
lower than MTM's priority plus the value
specified at MTM sysgen time for batch
priority) or the Link priority (the priority
established when the task was built),
whichever is lower.

The priority at which a batch job runs is relative to M'I'M's
priority and the default batch priority established at MTM syf:Jgen
time. The u-task priorities are established at link time and can
be reset with the PRIORITY parameter of the SUBMIT command.
Interactive tasks run at the default priority of 12 priorities
lower than MTM. Batch jobs run at the default pr·ior ity o1C 12
lower than MTM plus the value specified at MTM sysgen time. If
the MTM sysgen priority is set to equal 1 and MTM's prio1rity
equals 128, interactive jobs will run at priority +12 (140), or
12 lower than MTM; batch jobs will run at priority +13 (141), 13
lower than MTM.

48-043 FOO ROl 5-11

The rules for establishing priorities are:

• Batch jobs can run at the same priority as interactive tasks
but not higher than interactive tasks if the user account has
this privilege enabled; otherwise they are run at (maximum)
one priority lower than interactive tasks.

• If a valid priority is specified, the batch job runs at that
priority or the link priority, whichever is lower.

• If the specified priority is invalid, the default priority is
assigned by MTM, and the following message is displayed:

WARNING - REQUESTED PRIORITY n ILLEGAL, n USED

• If the specified priority is greater than 255, 255 is used.

• If no u-task priority is specified with
the batch job runs at the default
priority, whichever is lower.

the SUBMIT command,
priority or the link

The SUBMIT command can be entered in command mode, task load 1ed
mode, and task executing mode.

Example:

Create a batch job stream from the terminal via the BUILD ... ENDB
sequence:

BUILD TEST.JOB
SIGNON ME,ENV=NULL
LOG PR:
L TEST.TSK
AS 3, PR:
START
SIGNOF
ENDS

Submit the job from the terminal for batch processing:

SUBMIT '!'EST. JOB

5-12 48-043 FOO ROl

Submit a batch job file and have it deleted after the batch job
execution is complete:

SUBMIT XYZ.JOB, DELETE

Submit a batch job and have it run at the same priority as an
interactive job:

SUBMIT XYZ.JOB, P=l29

5.3 BATCH JOB SUBMISSION USING THE SPOOLER

The Spooler is also used to submit batch jobs to the batch queue
for execution under MTM. Batch jobs submitted through the
Spooler later can be resubmitted as a batch job through the
terminal.

5.4 ERROR HANDLING

Any error that occurs in a batch job file causes automatic
termination of the job, and a message is written to the log file
or device. If a batch task pauses, the task is cancelled by M'I'M
with an end of task code of 255, and the job is terminated,
unless the batch task pause option was enabled at MTM sysgen.
See Section 5.5. When a batch task completes, the end of task
code can be tested by subsequent commands in the batch stream to
determine if the task completed normally.

5.5 BATCH TASK PAUSE OPTION

This option allows a batch task to pause without being cancelled
immediately by MTM. MTM logs the following message to the system
console if a batch task enters the paused state:

hh:nn:SS .MTM > task id BTCH TSK PAUSED

In this message task id is the name of the batch task that has
paused. The system operator has the option to cancel or continue
the paused batch task.

48-043 FOO ROl 5-13

5.6 EFFECT OF RESTRICTED DISKS ON BATCH JOBS

When accounts with access to restricted disks are given
read/write access, batch jobs are not affected. If read-only or
no access is specified, messages are not displayed on the user
console. If a submit file for a batch job is on a restricted
disk and account 0 does not have read/write access, the following
message is displayed on the system console:

.MTM:BATCH ASGN-ERR TYPE=PRIV JOB=fd

5-14 48-043 FOO ROl

CHAPTER 6
COMMAND SUBSTITUTION SYSTEM (CSS)

6.1 GENERAL DESCRIPTION

The command substitution system (CSS) is an
OS/32 command language enabling the user to
dynamically modifiable commands that can be
terminal or other css files and executed
sequence. In this way, complex operations can
the terminal user within only a few commands.

extension to the
establish files of
called from the
in a predefined

be carried out by
CSS provides:

• the ability to switch the command input stream to a file or
device,

• a set of logical operators to control the precise sequence of
commands,

• the ability to pass both positional parameters and keyword
parameters to a CSS file so that general sequences take~ on
specific meaning when the parameters are substituted or the
keyword encountered in the CSS,

• the ability to specify replacement characters within a CSS
line to alter the function of the line when executed,

• the ability to perform decimal and hexadecimal computation and
conversion within a CSS line (addition, subtraction,
multiplication, and division),

• the ability to use standard local and global variables or new
global and new internal variables that introduce extended
power and flexibility to variable usage within a CSS,

• the ability to perform searches within specified CSS calls to
subtract specific sections of the call and use them as
replacements within the CSS, and

• the ability for one CSS file to call another, in the manner of
a subroutine, so complex command sequences can be developed.

48-043 FOO ROl 6-1

A CSS file is simply a sequential text file. It can be a deck of
cards, a magnetic tape, or a disk file. An example of a simple
CSS file is:

*THIS IS AN EXAMPLE OF A CSS FILE
LOAD TEST.TSK/G,5
ALLOCATE XXXDIX.DTA,C0,40
AS 1, INPUT .OTA
AS 2,XXXDIX.DTA;AS 5, CON:
ASSIGN 3,PRT:;*LU3-LINEPRINTER
START
$EXIT

NOTE

Blank lines are ignored. The semicolon
allows more than one command to be
entered on the same line. Null CSS
commands (;;) a.re ignored. An asterisk
introduces a comment.

6.2 CALLING A CSS FILE

A css file is called and executed from the terminal by specifying
the file descriptor (fd) of the CSS file. If only the filename
is specified, MTM appends the extension.CSS and first searches
the user default volume in the u~er's private account. If the
file is not found, the system volume system account is searched.
If the volume name or account class is specified by the user, a
system default will not be tried. A user must have the CSS
privilege in order to call CSS files in the user's private
account or group. If not privileged he may only call system
CSS's. If the user also has the privilege to specify account
numbers instead of classes, he may call a CSS in any account. If
the leading characters of a CSS fd are the same as a command, M'rM
assumes a command:

Example:

CLO.CSS
AS3.CSS

CLOSE
ASSIGN 3

MTM assumes the CLOSE comma.nd.
MTM assumes the ASSIGN command.

By specifying a volume name and/or extension, a CSS file that
otherwise would conflict with an MTM command can be called.

6-2 48-043 FOO ROl

Example:

M300:CLOSE
M300:CLOSE.CSS

6.3 USE OF PARAMETERS

The css call can have parameters. The parameters are entered
after the CSS fd and are separated from it by one character
space. If there is more than one parameter, each is separated by
commas. If a parameter contains the double quote character ("),
or single quote character (') all parameters up to the next
double quote character are passed as one parameter. Null
parameters are permitted.

Example:

ABC Pl, "P2A, P2B" calls CSS file ABC.CSS on the default volume
with two parameters. Parameter 1 is Pl. Parameter 2 is P2A,
P2B.

JUMP ,,C calls CSS file JUMP.CSS on the default volume with three
parameters; the first two are null.

Within a CSS file, a parameter is referenced by the use of the
special symbol "@n" where n is a decimal integer number
indicating which parameter the user is referencing. Parameters
are numbered starting with 1. Parameter 0 has special meaning
and is defined later in this section. The first parameter is
referenced by @l, the second @2, etc. A straightforward text
substitution is employed.

Example:

A CSS file ROG consists of:

LOAD
START

@l
@3,@2

It is called as follows:

ROG PROGRAM,NOLIST,148

48-043 FOO ROl 6-3

Before each line of the CSS file is decoded, it is preprocessed,
and any reference to a parameter is substituted with the
corresponding text. Thus, the file ROG with the previous call is
executed as:

LOAD PROGRAM
START 148,NOLIST

@l is replaced with PROGRAM (the 1st parameter in the CSS call).
@3 is replaced with 148 (the 3rd parameter in the CSS call).
@2 is replaced with NOLIST (the 2nd parameter in the CSS call).

Example:

All of the following references to Parameter 12 are valid
expressions:

@12 or @12ABC or @12.EXT

This mechanism allows concatenation. For instance, if the first
command in file ROG were LOAD @l.TSK, only those files with the
extension .TSK would be presented to the loader. Concatenation
of numbers requires care. 123@1 references Parameter 1, but
@1123 is a reference to Parameter 1123. A reference to a
nonexistent parameter is null.

·rhe multiple @ facility enables a css file to access parameters
of higher level files. CSS files can call each other to a
maximum depth specified at sysgen time. Thus, @@2 in a CSS file
refers to the second parameter of the calling file.

Example:

Given the CSS call:

CSSl argl,arg2

and assuming that in file CSSl there is another call:

CSS2 arg3,arg4

6-4 48-043 FOO ROl

the following references can be made in CSS2:

@l arg3
@2 arg4
@@l = argl
@@2 arg2

If a multiple @ sequence is such that the calling level referred
to is nonexistent, the parameter is null.

Parameter @0 is.a special parameter used to reference the name of
the CSS file in which it is contained. Parameter @0 is replaLced
during the preprocessing of the command line with precisely the
same fd used to call the file.

Example:

A CSS file consists of:

AS l,@O
$EXIT

If this file is called from the card reader (CR:), then lul is
assigned to the card reader (CR:). Likewise, a call from the
magnetic tape (MAGl:) results in:

AS l,MAGl:

6.4 USE OF KEYWORDS

In the previous section the usage of positional parameters was
presented. The CSS language also provides a means of passing
keywords in a CSS call. Again a straightforward substitution
procedure is applied. Keywords enable the user to explicitly
specify a value that is subsequently substituted for each
reference of the keyword encountered within the CSS. The value
of a keyword is defined in the CSS call in the following format:

Format:

keyword [parameter]

48-043 FOO ROl 6-5

Parameters:

keyword

=

parameter

is the 1- to a-character name of a keyword.
The characters must be alphabetic (A-Z).

is a required delimiter between a keyword and
its assigned value for the CSS call. This
delimiter must immediately follow the keyword
(no blanks allowed).

is a character string which replaces the
keyword reference with the CSS. Null
parameters are allowed.

Functional Details:

The following rules apply for the use of keywords
file and the relationships between keywords
parameters.

within a CSS
and positional

• The leading blanks of a keyword parameter are skipped unless
they are included with the parameter through the use of single
(' ... ')or double(" ... ") quotes.

• All characters between single or double quotes belong to the
same parameter. This allows the user to define a parameter
with leading blanks, semicolons, commas, or an equal sign. A
carriage return is not allowed within the parameter
definition.

• An equal sign (=) (by default) marks the keyword. This equal
sign can be altered (via the SET KEYOPERATOR conunand) to one
of six other characters. Therefore, if you want to define a
parameter with an equal sign in it the equal sign must be
delimited by single or double quotes or the key operator must
be changed to a character other than the equal sign.

• A keyword must never be followed by a positional parameter.
All positional parameters must be passed first in the CSS
call, then all keywords may follow. Positional parameters and
keywords must be separated with commas.

Examples:

These are valid examples of CSS calls using positional parameters
and keywords:

TEST ABC. F'rN, , BA, OP=BATCH, LI =CON:
TEST SOURCE=ABC.FTN,LI=CON:

6-6 48-043 FOO ROl

These are examples of illegal CSS calls using
parameters and keywords:

positional

I ILEGAL CSS CALLS REASON

TEST A,B,FTNOPTION=HOLL
TEST A,B,OP=HOLL,D

keyword is greater than 8 characters
positional parameter D is after a
keyword

TEST B,,OP=LNCT=60
TEST B,,=HOLL
TEST A'='B,C'=D

double equal signs not valid
keyword name missing
second quote not matched

6.4.1. Referencing Keywords Within the CSS

Within a CSS file, a keyword parameter is referenced by the use
of the @= symbol (similar to the @ symbol usage for positional
parameters.

Format:

[@ [@ ... @J] @=/[keyword]/

Parameters:

@=

keyword

48-043 FOO ROl

is the symbol which notifies the preproces.sor
that a reference to a keyword parameter is
being made. The use of additional @ symbols
is allowed to access keywords of a h igrher
level CSS (same as with positional
parameters).

is a 1- to 8-character keyword (excluding
period). The user has the option to define a
minimum set of required characters for a
keyword. This is accomplished by separating
the required characters and the optional
characters with a period. Required characters
precede the period; optional characters follow
the period.

6-7

For example, defining a keyword
following manner:

@=/OP.TION/

indicates

• the keyword is OPTION, and

in the

• the minimum required character set to
reference OPTION is OP.

Functional Details:

If the same keyword mnemonic is passed more than once in a CSS
call, the first keyword match found is used in substitution
(scanning from left to right in the call).

References to non-existing keywords or to higher CSS levels which
do not exist are not expanded, as well as references without a
keyword. References with a keyword expand in the usual manne1~.
The following examples show the result of putting keyword
references in a CSS file and then passing keyword parameters in
the CSS call.

Examples:

CSS file with keyword references:

BUILD ·rEST
$WR [@=/OP.'rION/] [@=/LI .ST/][@=//]
$EX
ENDB

Some calls to the CSS TEST and the results of these calls:

CALL

'l1EST
TEST A, LIST=PR:
TEST OP'r I ON=AA, OP=BB, LI =CON:
TEST A, OP=LNCT'='62,LIST=,.AB'@'"

6-8

RESULT

) [] [] []
> [] [PR:] []
> [AA l [CON : l []
[LNCT=62][AB'@'] []

48-043 FOO ROl

Note that in example 3 the first keyword definition for OPTION
(AA) is used even though OP=BB is specified. Note also in
example 4 that an equal sign can be passed as part of the keyword
value as long as it is bracketed with single or double quotes.
Single quotes can also be passed as part of the keyword value as
long as they are bracketed by double quotes and vice-versa.

6.5 USE OF VARIABLES

MTM and batch users can allocate a specified number of variables
to be used within a CSS. In general there are two types of
variables, variables that exist from signon to signoff and
variables that only exist within a particular CSS level while the
CSS is active. There are now further distinctions between the
types of variables available with MTM.

6.5.1 Types of Variables

There are now four types of variables within MrM:

• Global variables

• Local variables

• New global variables

• New internal variables

The first two types - global and local variables should be
familiar to all users of previous releases of MTM. Global
variables exist from signon to signoff or until they are freed
via the $FREE command. Local variables can be used only within
the CSS levels in which they are defined. When a particular CSS
level is exited, all local variables defined within it are freed.

The maximum number of global and local variables
defined is established at MTM sysgen time.
Multi-Terminal Monitor (MTM) System Planning
Reference Manual.

that can be
See the OS/32
and Operator

The third and fourth variable types - new global and new internal
- are new with this release of MTM. •rhese variables are simi.lar
to the local and global variables in terms of usage. However,
the way in which they are defined, released, and the capabilities
available when defining these variables make them much more
powerful and flexible than the previous variables.

48-043 FOO ROl 6-9

New global variables exist from signon through signoff or until
they are released via the $RELEASE command or if defined by the
$DEFINE command as an undefined value. The number of new global
variables allowed in a system is determined at MTM sysgen
(maximum of 99). No new·global variables are allowed in the
system if the new global option is disabled at MTM sysgen.

New internal variables exist only within the CSS level in which
they are defined. New internal variables are released
automatically on return to the console level. The user may
release new internal variables via the $RELEASE command or by
using an undefined value via a $DEFINE command. The maximum
number of new internal variables that can be used is set at MTM
sysgen time. The maximum/limit allowed is 99.

NOTE

Users should familiarize themselves with
usage of both new global and new internal
variables. These variable types will
eventually replace the local or global
variables usage. Local and global
variable support will eventually be
phased out in future releases.

6.5.2 Naming Local or Global Variables

A local or global variable name can consist of 1-to
and must be preceded by the commercial @ sign.
following the@ sign must be alphabetic (A-Z);
characters can be alphanumeric.

a-characters
The character

the r· ema in ing

Examples:

@A
@819
@ABCDl.234

Local variables are named via the $LOCAL command.
variables are named via the $GLOBAL command.

6.5.3 Naming New Global or New Internal Variables

GLOBAL

A new global or new internal variable name can consist of 1- to
a-characters. The first character must be alphabetic, the
remaining characters can be alphanumeric.

6-10 48-043 FOO ROl

Examples:

GD
SS12
51234567

New global and new internal variables are named
command and at that time are associated with
The variable can then be referenced by name or
CSS. The following conventions apply to the
global or new internal variable within a CSS:

via the $DEFINE
a decimal number.
number within a

expansion of a new

To reference the value of a new global or new internal variable,
the following formats can be used;

Where:

G

I

n

name

specifies a reference to a new global variable

spec if ies
variable.

a reference to a new
This is the default.

internal

specifies the number of the variable to be
referenced

specifies the name of the variable

To obtain the name of a new variable use the following format:

48-043 FOO ROl 6-11

Where:

G

I

n

Examples:

@*G3

@*/VOLUME/

@*N3

specifies a new global variable.

specifies a new internal variable.

specifies the number of the variable whose
name is being requested.

references global variable number
3 .

references the
name VOLUME.

internal variable

references the name of
variable number 3.

internal

6.5.4 CSS Line Expansion

The MTM preprocessor expands the entire CSS line in one step.
Because of this, the user is advised to be careful when using the
new global or new internal variable name/value in the CSS line
after redefining them with a $DEFINE command.

The following illustrates how the preprocessor handles these
occurrences:

$DEFINE1,,ST(ORIGINAL)
$0EFINE1,,ST(NEW);$DEFINE3,,ST(@*l)

This expands to:

$0EFCNE1,,ST(NEW);$DEFINE3,,ST(ORIGINAL)

The value of the new internal variable 3 is not the expected
string NEW, but the string ORIGINAL.

6-12 48-043 FOO ROl

6.5.5 Reserved Variables

Variable names starting with the character string @SYS are
reserved for system use. A user cannot define variables starting
with @SYS. However, a user does have read and write access to
@SYS variables.

The global variable @SYSCODE is reserved and contains the value
of the last end of task code for a particular session.

6.6 COMMANDS EXECUTABLE WITHIN A CSS FILE

All of the MTM supported commands can be used in a CSS file, as
well as a number of commands specifically associated with the CSS
facility.

Most of the CSS commands start with the $ character with the
exception of the SET CODE and PRIOR commands.

The css commands entered within a CSS file are described
following sections. Refer to Appendix E for CSS
descriptions.

NOTE

If a task is started when CSS is running,
CSS becomes dormant until the task is
terminated. Execution of the CSS stream
will resume after the task terminates.

48-043 FOO ROl

in the
message

6-13

% ... %

6.6.1 Character Replacement Command% ... %

The character replacement command (% ... %) enables a user to
define and replace up to four different characters within a
specified CSS line. The user must indicate the line in which
replacement is to occur, the new characters, and the characters
to be replaced. Unless otherwise specified, every occurrence of
a specified character within the line will be replaced.

Format:

l charlchar21 [charlchar22 ••• charlchar2~ %\
% % new delimiter

Parameters:

6-14

%

charlchar~
... charlchar24

% new delimiter

is the initial current replacement string
delimiter. This indicates the start of
the character replacement specification.

is the specification of the character to
be replaced (charl) and the character to
be used as the replacement (char2). Up
to four of these replacement
specifications can be specified. The
preprocessor translates this statement
as: replace the character specified by
charl with the character specified by
char2. If more than one replacement
specification is present there must be no
blanks between them. If charl and char2
are the same, charl is deleted from the
CSS line.

this indicates that a new replacement
delimiter (by default the % sign)
follows. The new delimiter is the first
character after the % sign and is active
for the remainder of the css line (or
until a new delimiter is specified).

48-043 FOO ROl

Functional Details:

Character replacement operations are only performed in lines
which have a percent sign (%) in column 1 of the line. This
percent sign (%) is not part of the character replacement
command, it merely flags lines eligible for character
replacement.

Character replacement is only allowed within a CSS.

The only legal use of blanks within the character replacement
delimiters is as replacement ch~racters. The initial replacement
delimiter is always reset to % at the beginning of each css line
and previous replacement characters are deleted. In effect, each
CSS line with replacement information is treated as a single
entity.

Each usage of the character replacement command resets all
previously defined replacement characters. When a new
replacement delimiter is specified, all other replacement strings
are cleared. The $COPY command suppresses the display or
printing of replacement string delimiters and replacement
strings.

NOTE

Replacing a character with an @ symbol
will result in an additional
preprocessing step for that line in order
to expand the @ symbol with the
appropriate substitution parameter if
possible.

The following examples are used to illustrate the baLsic
functionality of the character replacement command. Obvious.ly,
the uses of this command are not limited to those shown below.
The command becomes extremely powerful as the user introdutces
more involved substitution and replacement within the same line.

48-043 FOO ROl 6-15

CHARACTER REPLACEMENT
CSS LINE

%LO %',%F7D'20

%LO %%\\',\F7D'20

%LO F7D%',A280%'AB

INTERPRETATION

I Replace the single quote character
I (')with the comma(,) in the
I string F7D'20.

Change the replacement delimiter
I from % to the \, and replace the
I single quote character (')with
I the comma (,) in the string
I F7D'20.

Replace the single quote character
, (') with a comma (,) replace A
I with 2, replace B with a 0 in the
I character string 'AB. The string
I F7D remains unchanged.

RESULT AFTER
PROCESSING

>LO F7D,20

%LO %',%F7D'20;%%%$W'A', Replace the single quote character ' >LO F7D,20;$W'A'
with the comma character in the
string F7D'20. Then reset the
line (clear all replacement
instructions for the balance of
the line). Because of this the
single quotes around A are not
replaced.

Another use of the character replacement conunand is the
combination of character replacement and parameter substitution.

Example:

$BUILD 'I1ES'r

~, % % \ \ * @\%%+@%$WR @ 1
$EX
$F~NDB

This example will result in three preprocessing passes through
the line in order to complete the requested functions. A step by
step analysis will show this. Assume TEST CSS is called with the
following call:

TEST *2,+3,'3RD USED'

·rhe 'first preprocessing pass through the line causes the conunand
delimiter to be changed from % to \, the first parameter in the
css call (*2) replaces the @ 1 reference in the CSS, and the * is
replaced with an @ symbol. The line now looks like this:

%%+@%$WR @2

6-16 48-043 FOO ROl

The replace to an @ sign requires a second preprocessor pass
through the line in order to expand the reference. On the second
preprocessing pass through the line, the second parameter in the
CSS call (+3) replaces the @2 reference in the CSS line, and then
the + is replaced by an @ symbol according to the second
character replacement specif icaion. The line now looks like
this:

$WR @3

The replace to an @ sign reference requires a third preprocessor
pass through the line in order to expand the parameter reference.
On this pass the third parameter in the CSS call (3RD USED) is
substituted for the @3 reference within the CSS. The line now
looks like this:

$WR 3RD USED

No further preprocessing of the line is required. The final
output of this CSS when called as detailed previously would be:

-3RD USED

48-043 FOO ROl 6-17

$BUILD AND
$ENDB

6.6.2 $BUILD and $ENDB Commands

The $BUILD command causes succeeding lines to be copied to a
specified file up to, but excluding, the corresponding $ENDB
command. Before each line is copied, parameter substitution is
performed.

Format:

$ENDS

Parameters:

f d

lu

APPEND

6-18

is the output file. If fd does not exist, an
indexed file is allocated with a logical
record length equal to the command buffer
length. If the fd specified does not contain
an extension, .CSS is the default. If a blank
extension is desired, the period following the
filename must be specified.

specifies that a temporary file is to be
created and the $BUILD data is copied to it.
When $ENDB is encountered, the file is
assigned to the specified logical unit of the
loaded task. The lu option is valid only when
a task is loaded.

allows the user to add data to an existing fd.
If the fd does not exist, it is allocated.

48-043 FOO ROl

Functional Details:

The $BUILD conunand must be the last command on its input line.
Any further information on the line is treated as a corrunent and
is not copied to the file.

The $ENDB conunand must be the first conunand in the command line,
but it need not start in column 1. Other conunands can follow
$ENDB on the command line, but nesting of $BUILD and $ENDB is not
permitted.

48-043 FOO ROl 6-19

$CLEAR

6.6.3 $CLEAR Conunand

The $CLEAR command terminates a CSS stream, closes all CSS files,
and deactivates CSS.

Format:

1.CLEAR

Functional Details:

The $CLEAR command can be entered in command mode, task loaded
mode, and task executing mode.

6-20 48-043 FOO ROl

$CONTINUE

6.6.4 $CONTINUE Command

The $CONTINUE command resumes execution of a CSS procedure
suspended by a $PAUSE or $WAIT command.

Format:

.lCQNTINUE

48-043 FOO ROl fi-21

$COPY AND
SNOCOPY

6.6.5 $COPY and SNOCOPY Commands

The $COPY and $NOCOPY conunands control the listing of CSS
conunands on the terminal or log device (if from batch). $COPY
initiates the listing and all subsequent conunands are copied to
the terminal before being executed. The $NOCOPY conunand
deactivates the listing, but is itself listed. The $COPY conunand
is an aid in debugging CSS job streams.

Format:

.iCQE.Y

.iNQCOPY

6-22 48-043 FOO R.01

$DEFINE

6.6.6 $DEFINE Command

The $DEFINE command is used to define or to redefine new global
or new internal variables.

Format:

Parameters:

GVARIABLE

I VARIABLE

n

name

operator1

[op er ator2 ••• ope r ato rrll

specifies that a new global variable is being
defined. (not allowed if new global option is
set off at MTM sysgen).

specifies that a new internal variable is
being defined. This is the default.

is the new variable number. The allowed range
is between 1 and the maximum value set at M'I'M
sysgen.

is the new global variable or new internal
variable name. It is 1- to a-characters long
and can consist of any character A - Z or any
number 0 - 9.

oper ator2 ••• oper ator0

48-043 FOO ROl

is one or more of the following operators
which selects a particular function to be
performed to determine the variable's value.

File Descriptor Operators

ACCOUNT
FILENAME
EXTENSION
VO LUMEN AME

E>-23

Logical Operators

LOGICAL GO
LOGICAL LO
LOGICAL LU
LOGICAL TD
LOGICAL TU

Computation and Conversion Operators

DCOMPUTE
DH CONVERT
HCOMPUTE
HDCONVERT

Other Operators

CLEAR
CURRENT
DVOLUMENAME
REQUIRED
SEARCH
STRING

The following sections define the format and function of each of
these operators within the $DEFINE command.

6.6.6.1 File Descriptor Operators

The following four operators can be used to determine the
account, filename, extension, or volumename of a specified file
descriptor and then assign the determined portion of the fd as
the value of the variable being defined.

6.6.6.1.1 ACCOUNT Operator

The ACCOUNT operator of the $DEFINE command enables a user to
determine the account designator of a specified file descriptor
and assign the designator as the value of the variable being
defined.

Format:

6-24 48-043 FOO ROl

Parameters:

f d

=

Functional Details:

is the file descriptor of the file or device
for which the account designator is to be
determined.

specifies that the current total result for
this $DEFINE command is used to determine the
account designator.

The value returned is /P, /G, or /S depending upon the specified
account. If no account is specified, /P is returned for
filenames and undefined is returned for devices. If the user has
the account number privilege, the account number, rather than an
account class, is returned.

Example:

The following CSS is built:

$BUILD TEST
$DEFINE 6,,ACCOUNT (@l)
$WR @*6
$EX
$ENDS

The above CSS is called with the following call:

TEST ABC.FTN/G

The result of $WR @*6 is:

/G

6.6.6.1.2 EXTENSION Operator

The EXTENSION operator of the $DEFINE command enables the use:r to
determine the extension of a given file descriptor and return
that extension as the value of the variable being defined.

48-043 FOO ROl 6-25

Format:

EXTENSION ({ :d })

Parameters:

f d is the file descriptor of the file or device
for which the extension is to be determined.

the current total result for this $DEFINE
conunand is used to determine the extension.

Functional Details:

•rhe returned value will contain a leading period if an extension
was specified, otherwise the value of the variable is undefined.

Example:

BUILD 'l'EST
$DEFINE 10,,EXTENSION(@l)
$WR @*10
$EX
ENDB

When called with the following CSS call:

TEST FORrrRAN. F'rN

The $WR @*10 would output .FTN

6.6.6.1.3 FILENAME Operator

The FILENAME operator of the $DEFINE conunand enables the user to
determine the filename of a given file descriptor and return that
value as the defined variable.

6-26 48-043 FOO ROl

Format:

Parameters:

f d is the file descriptor of the file or device
for which the filename is to be determined.

= the current total result for this $DEFINE
command is used to determine the filename.

Functional Details:

If a file descriptor was specified in the FILENAME operator, the
returned value is the filename.

If a device name was specified in the FILENAME operator, the
returned value is undefined.

Example:

BUILD TEST
$DEFINE 10,,FILENAME(@l)
$WR @*10
$EXIT
ENDS

When called with the following CSS call:

TEST M30l:TCHFIN12.FTN

the $WR @*10 result is TCHFIN12

48-043 FOO ROl 6-27

6.6.6.1.4 VOLOMENAME Operator

The VOLUMENAME operator of the $DEFINE command enables the user
to determine the volume name of a given file descriptor and
assign that value to the variable being defined.

Format:

Parameters:

f d

Functional Details:

is a file descriptor of the file for which the
volumename is to be determined.

the current total result for this $DEFINE is
used to determine the volumename.

The new variable value returned is the specified volume name, or
the user's private volume name under MTM. The volume name is
always followed by a colon (:).

Example:

BUILD TEST.CSS
$DEFINE 20,, VOLUMENAME (M30l:SOURCE.FTN)
$WR @*20
$EX
ENDS

Calling the above CSS with the following call:

*'rEST

The value of $WR @*20 is:

-M301:

6-28 48-043 FOO ROl

6.6.6.2 LOGICAL Operators

The LOGICAL operators of the $DEFINE command enable the user to
test the current or last result as defined, exit from the $DEFINE
command, or skip operators within the $DEFINE command.

Format:

GQn

L{:} tna:J
~ {:} {$n~J

Parameters:

GO

n

L

T

D

u

$name

48-043 FOO ROl

specifies an unconditional skip of operators
or an exit from within the $DEFINE command ..

is a decimal number between 0 and 999.

Where:

0 exit the $DEFINE command.
1-999 - skip this number of operators

specifies that the result of the last operator
is to be tested. The test performed depends
upon whether the D or U option follows.

the current total result of the $DEFINE
command is tested. The test performed dep 1ends
upon whether the D or U option follows.

tests to see if the result specified by the L
or T parameters is defined.

tests to see if the result specified by the L
or T parameters is undefined.

is a name defined via the $LABEL command. If
a skip is specified, the skip will be done to
this label.

6-29

Example:

BUILD TEST.CSS
$DEFINE 5,, ST (@l) EXT(=) LU2 CL(L) GOO ST(.FTN)
$WR @*5
$EX
ENDB

This $DEFINE command perfoms a check to see if the first
positional parameter in the css call contains a filename
extension. If it does, the following two operations ar.e
performed to clear the result of the EXT operator and the $DEFINE
is exited.

If no filename extension is specified the following two operators
are skipped and an extension is attached.

6.6.6.3 Computation and Conversion Operators
'\

The computation and conversion operators are used to perform
decimal or hexadecimal computation and decimal to hexadecimal (or
vice-versa) conversion, and then assign the result as the value
of the variable specified in the $DEFINE command.

6.6.6.3.1 DCOMPUTE Operator

The DCOMPUI1E operator of the $DEFINE command is used to perform
decimal computation within a CSS line. The computed value then
becomes the value of the variable defined in the $DEFINE command.

Format:

· [{#dig its}] .QCOMPUTE I! , operand0 [(?perator1 operand 1] (?peratornoperandnJ]

Parameters:

#digits

operand

6-30

specifies the number of digits for the decimal
result with leading zeros and including the
sign column (+ or -). If not specified the
default number of digits used (including sign)
is 4.

is the operand (in decimal) with optional sign
(+ or -). The range is absolute up to
Y'OFFFFFFF'.

48 .. -043 FOO ROl

operator

Functional Details:

is the computational operator:

+

*
I

(addition)
(subtraction)
(multiplication)
(division)

The maximum value allowed for an operand or a result is absolute
Y'OFFFFFFF'. Values outside this range generate the following
message.

DEF6-ERR

Mathematical computation is performed from left to right, and the
intermediate result is combined with the next operator and the
following operand. Computation is performed according to the
fixed point integer rules of rounding.

Examples:

$DEFINE 7,,DCOMPUTE (-33)

-033 becomes the value of variable 7(@*7). The default numbe1r of
digits (4) is used.

$DEFINE 4,,DCOMPUTE (6,-2+5/-2*4)

-00004 becomes the value of variable 4 (@*4).
digits in the result is defined as 6.

$DEFINE 5,,DC(@*4*@*7+100)

The number of

+232 becomes the value of variable 5(@*5). This is determined by
multiplying the value of variable 4 (@*4), which is defined
above, as -4 with the value of variable 7(@*7), which is defined
as -33 above then adding 100 to the result. The default number
of digits (4) is used.

48-043 FOO ROl 6-31

6.6.6.3.2 DHCONVERT Operator

The DHCONVERT operator of the $DEFINE command is used to perform
decimal computation and then convert the result to hexadecimal.
This hexadecimal result is then assigned as the value of the
variable specified in the $DEFINE command.

Format:

Parameters:

#digits

operand

operator

Functional Details:

specifies the number of digits for the
hexadecimal result with. leading zeros and
excluding the sign designator. If not
specified the default number of digits is 4.

is the operand (in decimal). Negative numbers
are not allowed. The range is absolute up to
Y'OFFFFFFF'.

is the computational operator:

t

*
I

(addition)
(subtraction)
(multiplication)
(division)

·rhe maximum value allowed for an operand or a result is absolute
Y'OFFFFFFF'. Values outside this maximum generate the following
message:

DEF7-ERR

Mathematical computation is performed from left to right and the
immediate result is combined with the next operator and the
following operand. Computation is performed according to the
fixed point integer rules of rounding.

6-32 48-043 FOO ROl

Examples:

$DEFINE 7,,DHCONVERT(-33) the value of variable
7(@*7) becomes hexadecimal
0021.

$DEFINE 4,,DHCONVERT(6,-2+5/-2*-4) the value of variable
4(@*4) becomes a
hexadecimal 000004.

$DEFINE 5,,DHCONVERT(4*@*7+100) the value of variable 5
becomes a hexadec i.mal
0088. (4x2.l) + 100 = 184l
0088 in hex.

6.6.6.3.3 HCOMPUTE Operator

The HCOMPUTE operator of the $DEFINE command enables a user to
perform hexadecimal computation within the $DEFINE command and
return the result as the defined variables value.

Format:

Parameters:

#digits

operand

operator

48-043 FOO ROl

defines the number of digits for the
hexadecimal result with leading zeros. If not
specified the default number of digits is 4.

is an operand in hexadecimal without sign (all
values are assumed positive), the maximum
value being absolute up to Y'OFFFFFFF'.

is one of
operators:

the

+

*
I

(addition)
(subtraction)
(multiplication)
(division)

following mathematical

6-33

Functional Details:

The range allowed for an operand or a result is up to absolute
Y'OFFFFFFF' otherwise the following message is generated:

DEF6-ERR

If the hexadecimal result is negative, the following meelsage is
generated:

DEF7-ERR

Computation within an HCOMPUTE operator is from left to right;
the intermediate result is combined with the next operator and
the following operand.

Examples:

$DEFINE 7,,HCOMPUTE(AEO)

$DEFINE 4,,HCOMPUTE(6,C0/20+18)

@*7 = OAEO

@*4 = OOOOlE

6.6.6.3.4 HDCONVERT Operator

'rhe HDCONVERT operator of the $DEFINE command enables the user to
perform hexadecimal computation within a $DEFINE command. The
result is converted to decimal and is returned as the value of
the defined variable.

Format:

Parameters:

#digits

6-34

specifies the number of digits for the decimal
result with leading zeros and the sign (+ or
-). If not specified the default number of
digits is 4.

48-043 FOO ROl

operand is a hexadecimal operand without sign. The
maximum value allowed is absolute Y'OFFFFFFF'.

operator is one of
operators:

the following

+

*
I

Functional Details:

(addition)
(subtraction)
(multiplication)
(division)

The maximum allowable value for
absolute Y'OFFFFFFF'. Values
generate the following message:

an operand
greater than

DEF6-ERR

or
the

mathematical

a result. is
maximum wi.11

A negative hexadecimal operand will generate the following
message:

DEF7-ERR

Computation within the HDCONVERT operator is from left to ri9ht,
and the intermediate result is always combined with the next
operator and the following operand.

Examples:

$DEFINE 7,,HDCONVERT(AO) @*7 +160

$DEFINE 4,,HDCONVERT(6,C0/20+18) @*4 = +00030

6.6.6.4 Other Operators

The following sections detail various miscellaneous operators for
the $DEFINE conunand.

48-043 FOO ROl 6-35

6.6.6.4.1 CLEAR Operator

The CLEAR operator of the $DEFINE command enables the user to
clear the current total result or the last result determined in
the $DEFINE command.

Format:

Parameters:

L

T

Functional Details:

specifies that the last result determined is
to be reset.

the current total result is to be reset.

Use of the CLEAR (L) form of this operator resets the last
result, even if a skip was performed. The last result depends on
the value the last operator (except logical operators)
determined.

Example:

The following is an example of how to add the default extension
.FTN to a file descriptor. The file descriptor passed in the CSS
call is allowed with or without an extension.

BUILD TEST.CSS
$DEFINE 5,,ST(@l) EXT(=) LU2 <L(L) GO 0 ST(.FTN)
$WR @*5
$EX
ENDB

This example CSS tests to see if an extension is included in the
CSS call. If an extension is specified it is not changed. If no
extension is specified, the default extension .FTN is added. If
this CSS was called with the following:

6-36

TEST SYS:ABC
TEST BBBB.XYZ

the result @*5 = SYS:ABC.FTN
the result @*5 = BBBB.XYZ

48-043 FOO ROl

6.6.6.4.2 CURRENT Operator

The CURRENT operator of the $DEFINE command is used to determine
current information within the user's environment and to assign
that information as the value of the variable being defined.

Format:

.CURRENT

Parameters:

BATCH

DATE

EOT

GROUP

.BATCH
DATE
EQT
G.ROUP
.UlTERACTIVE
.F..RIVATE
.Tl.ME
llS.ERNAME

in batch mode the value returned is the batch
job file descriptor; in interactive mode the
value is undefined.

the value returned is the current date in the
format MM/DD/YY or DD/MM/YY depending on the
format selected at OS/32 system generation.

the value returned is the last end of task
code generated. A maximum of four digits is
allowed. Leading zeros are dropped.

the value returned is the 5 digit current
group account number with leading zeros.

INTERACTIVE in interactive mode the value returned is the
interactive device name, in batch mode the
value is undefined.

PRIVATE

TIME

USERNAME

48-043 FOO ROl

the value returned is the 5 digit current
private account number with leading zeros.

causes the current time (HH:MM:SS) to be
returned.

causes the current username to be returned.

6-37

Example:

BUILD TIME.CSS
$DEFINE 5,,CURRENT(TIME)
$WR @*5
$EX
ENDS

Execution of this CSS will cause the current time to be written
as @*S.

6.6.6.4.3 DVOLUMENl\ME Operator

·rhe DVOLUMENAME operator of the $DEFINE command enables the user
to determine default volume names such as SYSTEM volume, SPOOL
volume, etc. and assign the name as the value of the defined
variable.

Format:

DVOLUMENAME

Parameters:

PRIVATE

ROLL

SPOOL

SYSTEM

TEMP

ERIVATE
ROLL
SEOOL
SYSTEM
TEMP

returns
volume.

returns

returns

returns

returns

Functional Details:

the volume name of the users default

the volume name of the ROLL volume.

the volume name of the SPOOL volume.

the volume name of the SYSTEM volume.

the volume name of the TEMP volume.

The volume name returned is always followed by a colon(:).

6-38 48-043 FOO ROl

Examples:

Assume that volume SCRT/TEMP has been set at the system console.

$DEFINE 6,TEMPVOL,DVOLUMENAME(TEMP)

$WR @*6

$WR @*/TEMPVOL/

reference by variable would return
SCRT:

reference by variable name wc•uld
also return SCRT:

6.6.6.4.4 REQUIRED Operator

The REQUIRED operator of the $DEFINE command enables a user to
designate a new internal variable as required; that is, the
variable must have a defined value. If the new internal variable
designated as REQUIRED is not defined within the CSS, execution
of the CSS is paused and the user is prompted at the user's MTM
console to supply a definition for the required variable.

Format:

.REQUIRED [([nameJ)]

Parameters:

name

Functional Details:

is an optional 1- to 8-character name for the
required new internal variable that MTM will
use when the user is prompted at the user's
MTM terminal. This name may be composed of
any of the letters A through z.

The REQUIRED operator must be the last operator in a $DEPINE
command. All blanks between the parentheses and between the name
are dropped.

48-043 FOO ROl f>-39

The name for the required new internal variable that is d:Lsplayed
to the user console is one of the following (in order of
precedence):

• The name specified in the name field of the REQUIRED operator,

• The name used in the $DEFINE conunand, or

• The number specified in the $DEFINE conunand.

Examples:

BUILD TEST.CSS
$DEFINE 3,LISTDEV,REQUIRED
$DEFINE 4,0PTION,REQUIRED (NEWNAME)
$DEFINE 5,,REQUIRED
$EXIT
ENDS

The above css identifies three new internal variables (3, 4, and
5) as required variables. If this CSS is called as follows, the
following message prompts will be issued at the users console:

*TEST
-GIVE LISTDEV=

-GI VE NEWNAME=:

-GIVE IVAR 005-

CSS call without parameters
Prompt for the first required variable,
the variable name is used in the name
field
Prompt for second required variable, the
name in REQUIRED field is used
Prompt for third required variable, the
variable number is used

6.6.6.4.5 SEARCH Operator

The SEARCH operator of the $DEFINE conunand enables the user to
perform string searches for matches with specified keywords
passed in the css call. On each match found, the string
(including the keyword) is moved to the value of the new variable
defined in the $DEFINE conunand.

Format:

~ 'd2 I l
SEARCH del imiter1 {• d, +} .[keyword1 ~ keyword2 ' ••• 'keywordnJ], [•tr ing1 [d2 string2J) delimiter,

6-40 48-043 FOO ROl

Parameters:

delimiter1

keyword1
[.. keywordn]

str ing1
[.. str ingn]

48-043 FOO RO!
'

is one of the following character pairs used
to delimit the SEARCH operator specifications:

delimiter1 ... delimiter1 = # tt

+ +

()

The character pair chosen as the specification
delimiter must not appear in the SEARCH
operator specifications or as a string
delimiter (d2).

is the string delimiter which is used to
separate the strings to be searched. The
string delimiter may be any character except
carriage return or semicolon. If the 'd2 '
option is used, the delimiter (d2) following
the matched string is not included when the
string is moved, if the 'd2 + delimiter is
used, the delimiter (d 2) is included when the
string is moved.

is a 1- to 8-- character (A through Z) keywC>rd.
A keyword specification can be further def :i.ned
to show the minimum number of characters that
can be used to reference the keyword. This is
accomplished by separating the required
char act er s of the keyword and the opt i<)nal
characters of the keyword with a period. For
example:

OP.TION

The keyword name is OPTION but a call
specifying OP= will reference this keywiord.
Multiple keywords may be defined in a SE.P1RCH
operator, all strings are searched for matches
with each defined keyword. Multiple keywords
are separated by a ' mark.

is a character string which may contain
any character except carriage return or
semicolon. Null strings are allowed. The
specified string is searched for any matches
with keywords. If a positional parameter
reference is specified (@l, @2) the string to
be searched can be passed in the CSS call.

6-41

Functional Details:

The beginning of a string is tested for a match with the
specified keywords. The search for a match begins with the first
string. If one of the defined keywords matches a string entry,
this string is moved to the new variable's value. The move
includes leading blanks, the keyword, and all following
characters up to the next string delimiter (d2) or including the
string delimiter if the 'd2 + delimiter was specified. This
process is repeated for each string to be searched. For example:

If the keyword is:

OPTION

and the string delimiter (d2) is:

' # '

and the string to be searched is:

... #OPT HOLL BATCH# ...

the new variable being defined has a value of:

OPT - HOLL BATCH

Examples:

BUILD TEST.CSS
$DEF 5,,SEARCH('#',OP.TION'BA.TCH, @l)
$WR @*5
$EX
ENDS

The above css identifies the pound sign as the string delimiter;
keywords are OP.TION and BA.TCH; the string to be searched is @1,
the first parameter passed in the CSS call.

When calling the above CSS with the following call:

TEST OP/AAAAI BATCH # SOURCE

6-42 48-043 FOO ROl

The first string searched is OP/AAAA. A match with the t:irst
keyword is found OP.TION. OP/AAAA is moved to the varictbles
value.

The next string searched is BATCH. A match with the second
keyword is found BA.TCH. BATCH is moved to the variables Vctlue.
next string searched is SOURCE. No match is found.

The subsequent value of $WR @*S. is OP/AAAA BATCH

If calling TEST.CSS with the following:

TEST xx # BATCH # BA/AAA # YY # OPTI

The first string searched (xx) has no match. The second string
searched (BATCH) matches a keyword. The third string sesLched
(BA/AAA) matches a keyword. The fourth string (YY) has no maLtch.
The fifth string searched (OP'rI) matches a keyword.

The subsequent value of $WR @*5 = BA'rCH BA/AAA OPTI

6.6.6.4.6 STRING Operator

The STRING operator of the $DEFINE command enables the valuei of
the new variable being defined to be a user specified string.

Format:

STRING delimiter1 string delimiter1 [••• delimiternstring delimitern]

Parameters:

delimiter is any of the following characters that
delimits the beginning and end of the stri.ng:

•.. #
I I

+ •.• +
(. . .)

The character used as the delimiter should
never appear within the string.

48-043 FOO ROl 6-43

string is a character string which may contain any
characters except carriage return or the
delimiter character. This string becomes the
value of the new variable being defined in the
$DEFINE conunand. Leading and/or trailing
blanks are included.

Example:

BUILD TEST
$DEFINE 7,, STRING (ABC) ST# A($$) A#
$WR [@*7]
$EX
ENDS

Calling the above CSS with the following call:

*TEST

The resulting output of the $WR @*7 statement is:

[ABC A ($$) A]

6-44 48-043 FOO ROl

$EXIT

6.6.7 $EXIT Command

The $EXIT command terminates a CSS procedure. Control is
returned to the calling CSS procedure or the terminal if the CSS
procedure was called from the terminal. All commands on the
lines after the $EXIT command are ignored.

Format:

liXIT

48-043 FOO ROl 6-45

$FREE

6.6.8 $FREE Command

The $FREE conunand frees one or more local or global variables.
This conunand has no effect on new global or new internal
variables.

Format:

$FREE varname1 [, ••• ,varnarnen]

Parameters:

var name

Example:

$FREE @A

6-46

is a 1- to 8-character name specifying the
variable whose name and value are to be freed.

48-043 FOO ROl

$GLOBAL

6.6.9 $GLOBAL Command

The $GLOBAL command names a global variable and specifies the
maximum length of the variable to which it can be set by the $SET
command.

Format:

Parameters:

var name

length

Example:

$GLOBAL @A(6)

48-043 FOO ROl

is a 1- to 8·-character name (the first
character is alphabdtic) preceded by the @
sign, identifying a global va.riable.

is a decimal number from 4 through 32
specifying the length of the variable defined
by the $SET command. If this parameter is
omitted, the default is 8.

6-47

$JOB AND
$TERMJOB

6.6.10 $JOB and $TERMJOB Conunands

The $JOB and $TERMJOB commands set the boundaries of a CSS job.
The $JOB command indicates the start, and the $TERMJOB command
indicates the end of a CSS job that contains all the user CSS
commands.

Format:

.i.J.OB
.C.EU!lME=maxt ime

G class id= iocount ~ E ... , class id= iocount32]

.i'.rERMJOB

Parameters:

CPUTIME=

class id=

iocount

6-48

maxtime is a decimal number specifying the
maximum CPU time to which the CSS routine is
limited. If this parameter is omitted, the
default established at MTM sysgen is used. If
0 is specified, no limits are applied.

is one of the 4-character alphanumeric
mnemonics specified at MTM sysgen that is
associated with each specified device or file
class.

is a decimal number specifying the maximum
number of I/O transfers to which the CSS
routine is limited for that class. If this
parameter is omitted, the default established
at sysgen time is used. If 0 is specified, no
limits are applied to that class.

48-043 FOO ROl

Functional Details:

The $JOB and $TERMJOB conunands are not necessary in a CSS
procedure. However, they help prevent errors in one CSS job from
affecting other CSS jobs. If a CSS job contains an error, the
statements remaining in that job are skipped until a $TERMJOB
command is found. The next command executed is the first command
found after a $TERMJOB conunand. If the next conunand is a ~POB
conunand signifying the start of a new CSS job, it could be
skipped because the system is looking for a $TERMJOB that
signifies the end of the CSS job containing the error.

The CSS job containing an error is aborted, and the end of task
code is 255. The $JOB conunand resets the end of task code to 0
for the next css job.

Interactive jobs have no default limits established at sysgen
time. However, the user can specify CPU time and I/O transfer
limits for a particular job through the $JOB command.

Any limits in the $JOB conunand found in a batch stream are
ignored if limits were already specified in the SIGNON command.

48-043 FOO ROl 6-49

$LOCAL

6.6.11 $LOCAL Command

The $LOCAL command names
maximum length variable
command.

a local variable and specifies the
to which it can be set by the $SET

Format:

Parameters:

var name

length

Example:

$LOCAL @A(4)

6-50

is a 1- to a-character name (the first
character is alphabetic) preceded by the @
sign, identifying a local variable.

is a decimal number from 4 through 32
specifying the length of the variable defined
by the $SET command. If this parameter is
omitted, the default is 8.

48-043 FOO ROl

$PAUSE

6.6.12 $PAUSE Command

The $PAUSE command suspends execution of a CSS procedure.

Format:

.S.F..AUSE

Functional Details:

When $PAUSE is entered, the CSS procedure remains suspended until
the $CONTINUE command is entered or the $CLEAR command is entered
to terminate a procedure suspended by a $PAUSE.

48-043 FOO ROl 6-51

PRIOR

6.6.13 PRIOR Conunand

The PRIOR command is used in CSS files to set the priority for a
subsequently loaded task. This command is available in CSS files
from the system account and from privileged users of MTM (to
raise or lower the priority of a susbsequently loaded task) and
to nonprivileged MTM. users (to lower the priority of a
subsequently loaded task relative to the user's MTM priority.)
However, nonprivileged users of MTM cannot use the PRIOR command
to raise the priority of a task above their MTM priority.

Format:

.PJUQ.R n

Parameter:

n

Functional Details:

is a decimal number specifying the priority of
the susbsequently loaded task relative to the
priority of MTM. n may range from 1 through
255 when the PRIOR command is in a CSS file
from the system account or from a privileged
user. n may range from 12 through 255 when
the PRIOR command is in a CSS file from a
nonprivileged ~rM user.

The PRIOR command can be entered from CSS files only. If the
task loaded subsequent to a PRIOR command generates a load error
or goes to end of task, the priority specified in the PRIOR
command is reset to the default MTM priority.

If an invalid priority number is specified
(i.e. 1-11 by a nonprivileged user),
specification is ignored, no message is
default ~rM priority is used.

6-52

in a PRIOR command
the invalid priority
generated, and the

48-043 FOO ROl

$RELEASE

6.6.14 $RELEASE Command

The $RELEASE command is used to release a new global or new
internal variable from its current value and delete the released
variable's associated buffer. This command has no effect on
local or global variables.

Format:

{
GVARIABLE}

.(RELEASE
_I.VARIABLE l n1 /n2 l

, n1 , ~ .. , nn

Parameters:

GVARIABLE

I VARIABLE

ALL

48-043 FOO ROl

•Iii

indicates that the variables to be released
are new global .variables.

indicates that the variables to be released
are new internal variables.

indicates that all variables (of the type
selected via the preceding parameter) between
the range n 1 /nn be released. Where n is a
decimal number between 1 and the maximum value
allowed at MTM sysgen for the specified
variable type.

n is a decimal number of a variable (either
new global or new internal) or variables to be
released. n must be within the range 1 and
the maximum value allowed at MTM sysgen for
the specified variable type.

specifies that all new internal or new global
variables be released. This is the default if
no specific variable numbers are specif iedl.

6-53

Functional Details:

This command may be entered in command mode, task loaded mode,
task executing mode, and CSS mode. In order to reduce buffer
overhead, variables that are no longer being used should be
released. If this command is directed to a variable that was
already released, the command is ignored and no error message is
generated.

Examples:

$RELEASE GVARIABLE, 1/5

All new global variables from 1 through 5 are released.

$RELEASE IVARIABLE, 16, 19, 18, 25

The new internal variables numbered 16, 19, 18, and 25 are
released.

$RELEASE IVARIABLE, ALL

All new internal variables are released.

6-54

NOTE

This command does not release local and
global variables created with the $SET
command.

48-043 POO ROl

$SET

6.6.15 SSET Command

The SSET command establishes the value of a named local or global
variable. This command has no effect on new global or new
internal variables.

Format:

$SET varname=e

Parameter:

var name= e is an expression, variable, or parameter
established as the value of the variable.

Functional Details:

Expressions for this command are concatenations of variables,
parameters, and character strings. No operators are allowed in
an expression. If a character string is included in an
expression, it must be enclosed between apostrophes ('). If an
apostrophe is part of the character string, it must be
represented as two apostrophes ('').

The initial value of the variable is
$IFNULL and $IFNNULL commands to
value.

Examples:

$SET @A @Al@A2

$SET @A = @l

$SET @A 'A' 'B'

48-043 FOO ROl

blanks. This allows the
test for a null or not null

6-55

SET CODE

6.6.16 SET CODE Command

The SET CODE conunand modifies the current end of task code.

Format:

.S.E.T .CODE n

Parameter:

n is a decimal number from 1 through 254.

6-56 48-043 FOO ROl

$SKIP

6.6.17 $SKIP Command

The $SKIP command is used between the $JOB and $TERMJOB commands.
The $SKIP command indicates that subsequent commands are to be
skipped until a $TERMJOB command is found. The end of task c::ode
is set to 255.

Fo:rmat:

..S.SKIP

48-043 FOO ROl 6-57

SWAIT

6.6.18 SWAIT Command

The $WAIT command suspends execution of a CSS for a specified
period of time.

The $CONTINUE command can be used to override this command and
continue the CSS.

Format:

Parameter:

n

Functional Details:

is a decimal number from 1 through 900
specifying the number of seconds CSS execution
will be suspended. If this parameter is
omitted, the default is 1 second.

The $WAIT command will only function from a CSS routine.

The $CONTINUE command can be used to override this command and
continue the CSS.

6-58 48-043 FOO ROl

$WRITE

6.6.19 $WRITE Command

The $WRITE command writes a message to the terminal or log device
for both interactive and batch jobs.

Format:

.1WRITE text [;]

Functional Details:

The message is output to the terminal or log device. It begins
with the first nonblank character after $WRITE and ends with a
semicolon or carriage return. The semicolon is not printed.

48-043 FOO ROl 6-59

6.7 LOGICAL IF COMMANDS

The logical IF conunands all start with the three characters, $IF,
and al.low one argument; e.g., $IFE 225, $IFX B.CSS, $IFNULL @l.

Each logical IF conunand establishes a condition that is tested by
the CSS processor. If the result of this test is true, commands
up to a corresponding $ELSE or $ENDC conunand are executed. If
the result is false, these same conunands are skipped.

The $ENDC conunand delimits the range of a logical IF; however,
nesting is permitted so each $IF must have a corresponding $ENDC.

In the following examples, the ranges of the various logical IF
commands are indicated by brackets:

[$IF $IF $IF

$E~DC [$IF $IF

[E~DC $ENDC

[$IF $ENDC

$ENDC

$ENDC

There is no restriction on the depth of nesting. Logical IF
commands are used within a CSS file. However, they differ from
previous CSS commands in that each one tests a specific built-in,
defined condition rather than causes a specific action.

'rhe logical IF commands fall into three categories:

• End of task code testing

• File existence testing

• Parameter existence testing

6-60 48-043 FOO ROl

6.7.1 End of Task Code Testing Commands

The end of task code is a halfword quantity maintained for each
user by the system. It is set or reset in any of the following
ways:

The

SET CODE n This command, which can be included in a CSS
file or entered at the terminal, sets the end
of task code to n.

$JOB As part of its start job function, this
command resets the end of task code for the
current CSS task to 0.

Command error A command error causes the CSS mechanism to
skip to $TERMJOB assuming that a $JOB was
executed. (If no $JOB was executed, CSS
terminates.) To indicate that the skip took
place, the end of task code is set to 255.

$SKIP

End of task
(SVC 3,n)

CANCEL

six conunands

This command has the same effect as a command
error.

When any task terminates by executing the end
of task program conunand (SVC 3,n), the end of
task code for that task is set to n.

When a task is cancelled, the end of task code
is set to 255.

available for testing the current end of task
code are as follows:

$IFE n Test if end of task code is equal to n.
$IFNE n Test if end of task code is not equal to n.
$IFL n Test if end of task code is less than n.
$IFNL n Test if end of task code is not less tha.n n.
$IFG n Test if end of task code is greater than n.
$IFNG n Test if end of task code is not greater

than n.

In all cases, if the results of the test are "false", CSS skips
conunands until the corresponding $ELSE or $ENDC. If a. css
attempts to skip beyond EOF, a command error is generated.

48-043 FOO ROl 6-61

6.7.2 File Existence Testing Commands

There are two commands dealing with file existence:

$IFX fd

.ll.F_NX fd

Test fd for existence

Test fd for nonexistence

If the result of the test is false, CSS skips to the
corresponding $ELSE or $ENDC command. If a CSS attempts to skip
beyond EOF, an error is generated.

If the file descriptor is omitted when entering $IFX, the result
is always considered false. If $IFNX is entered without the fd,
the result is always considered true.

6.7.3 Parameter Existence Testing Commands

There are two commands dealing with the existence of parameters:

.$IE.NULL @n

.ilE'NNULL @n

Test if @n is null

Test if @n is not null

If the result of the test is false, CSS skips to the
corresponding $ELSE or $ENDC command. If such skipping attempts
to skip beyond EOF, a command error is given.

The use of the multiple @ notation to test for the existence of
higher level parameters is permitted. In addition, a combination
of parameters can be tested simultaneously.

Example:

$IFNU @1@2@3

In effect, this tests the logical AND of @l, @2, and @3 for
nullity. If any of the three is present, the test result is
false.

6-62 48-043 F'OO ROl

SELSE

6.7.4 SELSE Conunand

The $ELSE command is used between the $IF and $ENDC command to
test the opposite condition of that tested by $IF. Thus, if the
condition tested by $IF is true, $ELSE causes commands to be
skipped up to the corresponding $ENDC. If the condition is
false, $ELSE terminates skipping and causes command execution to
resume.

Format:

J.ELSE

48-043 FOO ROl 5-63

$GOTO AND
$LABEL

6.8 $GOTO AND $LABEL COMMANDS

The $GOTO command is used to skip forward within a CSS procedure.
The $LABEL is used to define the object of a $GOTO.

Format:

.iG.OTO label

.s.LABEL label

Parameters:

label is from 1- to a-alphanumeric characters, the
first of which must be alphabetic.

Functional Details:

The $GOTO command causes all subsequent commands to be ignored
until a $LABEL command with the same label as the $GOTO command
is encountered. At that point, command execution resumes.

·rhe $GOTO cannot branch into a logical IF command range but can
branch out from one.

An example of an illegal $GOTO is:

$IF
$GOTO

$ENDC
$IF
$LABEL

Condition
OUT IF

Condition
OUT IF

The $LABEL occurs within an IF block (the second IF condition)
that was not active when $GOTO was executed.

6-64 48-043 FOO ROl

The following is valid, however:

$IF
$GOTO

$ENDC
$IF

$ENDC
$LABEL

Condition
OUT IF

Condition

OUT IF

48-043 FOO ROl 6-65

I SIFEXTENSION I

6.9 SIFEXTENSION COMMAND

The $IFEXTENSION conunand is used to test for the existence of an
extension for a given fd. If the extension exists, subsequent
commands are executed up to the next $ELSE or $ENDC conunand. If
an extension does not exist, subsequent commands are skipped up
to the next $ELSE or $ENDC command.

Format:

.il F.EXTENS I ON f d

Parameter:

f d

Functional Details:

is the file descriptor to be tested
determine if an extension is included.

to

$IFEX (with no fd) is always considered false. $IFNEX (with no
fd) is always considered true.

6~66 48-043 FOO ROl

$IFVOLUME

6.10 $IFVOLUME COMMAND

The $IFVOLUME command tests for the existence of a volume name in
an fd. If a volume exists, subsequent commands are executed up
to the next $ELSE or $ENDC command. If the volume is omitted in
the fd, subsequent commands are skipped up to the next $F.LSE or
$ENDC command.

Format:

liF..~OLUME f d

Parameter:

f d

48-043 FOO ROl

is the file descriptor tested to determine if
a volume name is included.

6-67

6.11 LOGICAL IF COMMANDS COMPARING TWO ARGUMENTS

The following logical IF conunands are used to compare two
arguments. They differ from the other logical IF commands in
that they do not test specific built-in conditions but, rather,
test conditions provided by the user. These conunands are
available only with MTM.

$IF .
$IF .
$IF
$IF
$IF .
$IF .

. . EQUAL

. . NEQUAL
. GREATER
. NGREATER

. . LESS

. . NLESS

For each of the logical
according to the mode.

• Character

• Decimal

• Hexadecimal

commands, two arguments are
There are three valid modes:

compared

For character mode, the comparison is left-to-right and is
terminated on the first pair of characters that are not the same.
If one string is exhausted before the other, the short string is
less than the long string. If both strings are exhausted at the
same time, they are equal. For character mode, the arguments can
be enclosed in double quotes if they contain blanks. The quotes
are not included in the compare.

For decimal and hexadecimal mode, the comparison is performed by
comparing the binary value of the numbers.

If after comparing the arguments for each of the commands, the
condition is determined to be true, subsequent commands are
executed up to the corresponding $ELSE and $ENDC. If the
condition is false, commands are skipped up to the corresponding
$ELSE or $ENDC.

6-68 48-043 FOO ROl

$IF

6.11.l $IF ... EQUAL, $IF ... NEQUAL Commands

The $IF ... EQUAL command is used to determine if two arguments are
equal, while the $IF ... NEQUAL is used to determine if two
arguments are not equal.

Format:

.c.HARACTER

$IF DECIMAL arg 1 EQUAL arg 2

J:lEXADEC IMAL

.CHARACTER

$IF DECIMAL arg1 NE.QUAL arg2

HEXADECIMAL

6.11.2 $IF ... GREATER, $IFo .. NGREATER Commands

•rhe $IF ... GREATER command is used to determine if arg1 is greater
than arg2 .. The $IF ... NGREATER command is used to determine if
arg1 is not greater than arg2 •

Format:

$IF

$IF

.CHARACTER

DECIMAL

HEXADECIMAL

.CHARACTER

.DECIMAL

HEXADECIMAL

48-043 FOO ROl

arg1 GREATER arg2

arg 1 NGREATER arg 2

6-69

6.11.3 $IF ... LESS, $IF ... NLESS Commands

1rhe $IF ... LESS command is used to determine if arg1 is less tha.n
arg2 • 'rhe $IF ... NLESS command is used to determine if arg1 i.s
not less than arg2 •

Format:

.CHARACTER

$IF llECIMAL arg1 LESS arg 2

HEXADECIMAL

.CHARACTER

$IF .DECIMAL arg1 NLESS arg 2

HEXADECIMAL

6-70 48-043 FOO ROl

7.1 INTRODUCTION

CHAPTER 7
SPOOLING

The OS/32 Package (Revision 6.2 or higher) now comes with two
spooler tasks:

• the OS/32 spooler, and

• the SPL/32 spooler

Both spoolers offer input and output spooling capabilites to the
MTM user. The SPL/32 spooler offers a more extensive range of
features and capabilities than the OS/32 spooler. The system
administrator determines which spooler will be used on a sy~3tem
by selecting the appropriate sysgen statement. Only one spo()ler
can be active on the system at any given time. The OS/32 System
Generation (SYSGEN) Reference Manual presents detailed
information regarding the procedures for sysgening either
spooler.

NOTE

The manner in which pseudo devices are
specified and used in the spooling
environment differs among the two
spoolers. Pseudo devices created for the
OS/32 spooler are not compatible with
pseudo devices created for the SPL/32
spooler. Do not attempt to mix the
various pseudo device types.

7.2 THE OS/32 SPOOLER

The OS/32 spooler is Perkin-Elmer's first generation spooler and
until this release was the only spooler available with OS/32.
This spooler provides basic input and output spooling services
with minimal flexibility and control over the spooling
environment. The following sections detail the manner in which
an MTM user can utilize the spooling capabilities of OS/32
spooling.

48-043 FOO ROl 7·-1

7.2.1 Input Spooling

Input spooling is a process whereby a card deck of information
(such as source programs, operator commands, command substitution
system (CSS) files, or user data, is copied into a disk file for
immediate or subsequent processing.

7.2.2 Input Spooling Control Card Statements

Each batch of cards to be spooled to disk must be preceded by a
control card statement. This statement specifies the fd to which
the input data (card file) is to be spooled. The OS/32 spooler
provides two such control statements:

e /@INPUT

e /@SUBMI'r

7.2.2.1 The /@INPUT Control Statement

The /@INPUT conlrol statement is used to copy a card file to a
specified fd on disk. The resulting file can be explicitly
assigned and read by the user in order to access the spooled
information.

Format:

/@.JNPU'r fd/actno [,DELETE]

Parameters:

f d

act no

Df~f .E'l'E

7-2

is the file descriptor of the disk file in the
form of voln:f ilename.ext. The only required
field is filename. If voln is omitted, the
default spool volume is used.

is the account number the terminal user signs
on with.

specifies that if a file with the same name
and account number already exists, that file
is deleted and reallocated.

CAUTION

IF 1rHE WRONG ACCOUNT NUMBER IS ENTft~RED,

·rHE USER MIGHT DELETE ANOTHER USER FILE.

48-043 FOO ROl

Example:

A task requires five input data records in order to
the following example, TEST.OTA in account 12 is
the file to which the five data records are to be
the file TEST.OTA currently exists on disk it will
reallocated as specified by the DELETE option
statement.

/@IN TEST.DTA/12,0ELETE
4 INPUT TEST
122736
545627
889710
632192
/@

7.2.2.2 The /@SUBMIT Control Statement

execute. In
identified as
spooled. If

be deleted and
in the /@INPUT

The spooler can also be used to submit batch jobs to MTM. 'rh is
is done through the /@SUBMIT control statement. This statement
copies a card file to disk and then submits the file as a batch
job. The commands located within the spooled batch file are
executed in sequence. The file remains on the disk after
execution.

To add batch jobs to the batch queue via the spooler, submit a
control statement card with the following format:

Format:

L.@.SUBMIT fd/actno (;DELETE]

Parameters:

f d

act no

DELETE

is the name of the command file; i.e., the
batch job, that is to be placed on the batch
queue.

is the account number the terminal user signs
on with.

specifies that if a file with the same name
and account number exists, that file is to be
deleted and reallocated.

The end of a card file is signified by placing the symbols /@ in
columns 1 and 2 of the last card in the file.

48-043 FOO ROl 7-3

Refer to the OS/32 System Support Utilities Reference Manual for
more detailed information on the OS/32 spoole~.

The following examples are presented to illustrate two methods of
submitting a batch job through the OS/32 spooler.

Method 1:

First, a CSS file named DATA is copied from a card file to a disk
file named TEST.CSS on account number 12 on the default spool
volume. If TEST.CSS already exists, it is deleted and
reallocated. This is done as follows:

/@INPUT TEST.CSS/12,DELETE
LO DATA
AS 1, DATA. OTA
AS 3,PR:
AS 5 ,MAGl:
START
/@

The CSS file TEST.CSS created with the previous /@INPUT statement
now can be submitted as a batch job named TEST.JOB via the
/@SUBMIT control statement. If a file already exists on the disk
with the name TEST.JOB, it is deleted and reallocated. When
running concurrent batch jobs, each signon ID must be unique.

/@SUBMIT TEST.JOB/12,DELETE
SIGNON ME,12,PASSWD
LOG PR:
,, .~ST. CSS
SIGNOFF
/@

Method 2:

'fhe procedures shown in Method 1 can also be performed in one
step, as the following example shows. In this example the
process of creating a CSS file and then submitting the CSS file
as a batch job is combined into one step. If the file TEST.JOB
already exists on the disk, it is deleted and reallocated. After
Lhis batch job completes, the file TEST.JOB remains on the disk.

48-043 FOO ROl

/@SUBMIT TEST.JOB/12,DELETE
SIGNON ME,12,PASSWD
LOG PR:
LO DATA
AS l,DATA.DTA
AS 3,PR:
AS 5,MAGl:
START
SIGNOFF
I@

7.2.3 Output Spooling

Output spooling is a process in which information destined for a
physical output device, such as a printer or card punch, is
initially copied to a disk file. This file is then copied by the
spooler to the physical output device on a task priority bas,is.
This process enables multiple tasks to be generating output for
the same output device since output is not routed directly to the
device as it is generated.

To make use of the output OS/32 spooler, assign any logical units
(lu) to be printed or punched to one or more pseudo devices. As
soon as the lu is closed, the OS/32 spooler automatically will
print or punch the results. Printing or punching may be delayed
because of a backlog to the device.

There is no limit to the number of tasks or logical units that
can be assigned to a pseudo device. After the user makes an lu
assignment to a pseudo device, the following occurs internally:
the operating system automatically intercepts all assignments to
that pseudo device and allocates an indexed file called a spool
file on the spool volume. Subsequent output calls cause data to
be written to this file and not to the device. The spooler
supports both image and formatted writes.

When the lu assigned to the spool file is closed, the ~filename,
task name, and priority are placed into the spooler print or
punch queue. The queue is maintained as a file on the spool
volume. If there is an entry on the queue, the output spooler
begins printing or punching and stays active as long as there is
something on the queue. Files are spooled and output on a task
priority basis. The user must ensure that sufficient disk space
is available to accommodate output spooling. The user tasl< is
responsible for handling end of medium (EOM) status while writing
to spool files within their own standard I/O error recovery
routines.

Printing multiple copies of a disk file or punching multiple
copies of a card deck is accomplished through use of the spooler.
To print or punch a disk file using the spooler, issue a command
through MTM from the terminal. This is done with the PRINT and
PUNCH commands. See Sections 2.38 and 2.39.

48-043 FOO ROl 7-5

If the device specified in a PRINT or PUNCH
support printed output or output punching
output will be generated in the way that is
specified device.

command does not
respectively, the

supported on the

For print files, a header page precedes each file printed. The
header page has the format:

USER ID

ACCOUN'r NUMBER

TIME OF DAY

DA'rE

When a file is directed to a card punch file, each output record
is 80 bytes in length. A header card precedes the punched
output; a trailer card terminates the punched output. Header
suppression is not supplied.

Example:

To list and punch a file named TEST.CSS in account number 12 on
the volume MTM using the OS/32 spooler, enter:

SIGNON ME,12,MEPASS
PRINT MTM:TEST.CSS
PUNCH MTM:TEST.CSS
SIGNOFF

·rhe header page for the pr int examples reads:

·rEs'r
AC=00012
14:36:50
07/08/77

7.2.4 Spooling Errors

The following message is generated by the operating system in
response to a spooler command.

FILE voln:f ilename.ext/acct NOT ENTERED ONTO PRINT QUEUE

7-6 48-043 FOO ROl

A spool file was closed but the spooler task was not loaded or
started. The system operator can reenter a .SPL PRlNT command
when the spooler is started.

7.3 THE SPL/32 SPOOLER

The SPL/32 spooler is the latest spooling product offered with
the OS/32 operating system. SPL/32 will only execute on systems
running Revision R06.2 or higher of OS/32.

SPL/32 offers increased flexibility in creating and controlling
the spooling environment of a system. Some of the features of
SPL/32 include:

• The number of output devices is dependent only on the amount
of available memory.

• Capability of retaining a spooled output file after it is sent
to a device.

• Capability of holding spooled files from output processing.

• The option to backspace, forward space, or rewind a file that
is currently being output by the spooler, and then resume
output.

• The option to produce up to 255 copies of an output file.

• The option to print informative header and trailer pages to
identify output files.

• The capability of using preprinted forms and testing for form
alignment before output.

• The capability to alter the output requirements of a file
waiting to be output.

• The capability to alter the order in which files are output.

• The capability to control devices within the output spooling
environment.

• The capability to quiesce the entire output spooling function
or individual devices in an orderly fashion.

• The capability to add or drop spool devices dynamically.

48-043 FOO ROl 7-7

7.3.1 SPL/32 and MTM Interaction

The SPL/32 capabilities available to an MTM terminal user are
directly dependent upon the manner in which the spooling
environment is configured. MTM users of SPL/32 should refer to
the SPL/32 Administration and Reference Manual for specific
details on the commands and conf igurational considerat:ions of
using SPL/32.

In general, MTM should be designated the primary control task for
SPL/32. This will enable all SPL/32 spooling facilities at the
MTM terminal level.

7-8 48-043 FOO ROl

APPENDIX A
MTM COMMAND SUMMARY

EC Hr;ze}]] Hr~ze}J] [[{;;}]]
ALWCATE fd, ~EX [[{1;1}J] [{ts~ze}J] Ht~ze}J] [[{;;}]]

.BF. ILE [f d ,] lu

Ha [[{1;1}J] ~[t~ze}J] Ht~ze}J] [[{;;}J]
ilAM [[{1;1}J] Ht~ze}J] [[{:;}J]

.fiRECORD [fd ,] lu

48-043 FOO ROl A·-1

B!lIT..D {::} [,APPEND]

ENDB

.cANCEL

{

lu1 [, lu2 , ... lun]}
.CLOSE

ALL

CQNTINUE [address]

DELE'I'E f d1 [r f d2 , ... , f dn]

{

O.VARIABLE}
DISPLAY'. ,

JVARIABLE

DISPLAY ACCOUNTING [• {
1
... ·.··lll.l!llfld .,,}]

'»'*

DISPLAY DEVICES [.
f d

%}]
...

DI SPLA y .QF_LJ)AT [{1······1lllltJl!1!flJdlll }]

A-2 48-043 FOO ROl

[f d
DISPLAY .FLOAT

DISPLAY LU [.
f d

DISPLAY EARAME:TERS [.{

DI SPLAY REGISTERS ["

DISPLAY .TIME [·{

DISPLAY USERS [.

48-043 FOO ROl

f d

·· .. JJ
.}]

f d

J

J

}]

J

A-3

.ENABLE

MESSAGE

£ROMPT

ETM

$YARIABLE

.f'_E'. I LE [f d,] lu

.F.RECORD [fd ,] lu

HELP [{ mne:onic} J

INIT fd [{segsize ~ncrement}]

[{

'fd1
J.NQU I RE fd •. · }]
LOAD [task id,] fd G segs ize increment] [,aCTASK]

LQG 1/4] rn::y}]]' [{ ~} J

SET LQG [fd] rn;~OC~~y}]], [r }]
MESSAGE { u.ser id } message

j_QPERA'rOR

A-4 48-043 FOO ROl

[{
data1 }]

MODIFY address, .•. [,data2 , ••• , datan]

[{
AE.EAUSE }]

.OPTIONS
AF.CONTINUE

l{SYCEAUSE }] [NONRESIDENT]
L S~ONTINUE

£AaSWORD current password, new password

.E.AUSE

.MESSAGE

.f.ROMPT
.f.RE.VENT

$YARIABLE

£R.1NT fd [,D..E.YICE=pseudo device] [,.CQP IES=n] [,.DELE'rE] [VFC]

.E.UNCH fd [,D..E.~ICE=pseudo device] [,.CQPIES=n] [,.DELETE] CvFc]

.E.U.RGE f d

[l n1 /n2 l] .GVARIABLE
.I.RELEASE { } , n1 [, •• ·,· , nn]

.l.VARIABLE

RENAME oldfd,newfd

.REEROTECT fd,new keys

.REWIND [fd J lu

or

RW [fdJ lu

48-043 FOO ROl A-5

.fillQLUME voln,

ADD,

) actno 1

REMOVE, l

[

) actno l]
.USERS 'lactno1 actno 2 ~

SEND message [;]

SET .GROUP n

.S.ET KEYOPERATOR [character]

.SET .PR I VA'rE n

.S.IGNON userid,actno,password [• ,ENYIRONMENT= l fd ll
NULL[:] ·

[CTUT.I.ME=maxt ime J
[class id= iocount1 G ... , class id•iocounta2JJ

SPOOLF I LE lu& lul, pseud dev, FORM•f ormname [{~=C "~ J
[~GE}][~}] [,CQPIES=n] [tHOLD J]
[awcK= blocksize/indexsize] [C~~~~TE}] G 2 RIORITY=p]

A-6 48-043 FOO ROl

[SUB.MIT fd ,DELETE] [,.E.RIORITY=pr ior ity]

[{
taskid }~

.TASK
....B.GROUND

CQNTIGUOUS,fsize

YOLUME [voln]

,WF..ILE [fd,] lu

48-043 FOO ROl A-7

APPENDIX B
PROGRAM DEVELOPMENT COMMAND SUMMARY

ADD fd [, cssprod]

COMPILE[{.::.}] [t filename .,}]

COMPLINK [. voln: J][~}]
EDIT[{.::_}] [{ filename J]

~~J ENV l voln: l
UlllJ!:t.tmllll

NULL

filename

EXEC [~] [{ filename }] G "start parameters•]

LINK [~}] [{.:::._}]
LIST

REMOVE f d

filename
}] G "start parameters"]

48-043 FOO ROl B-1

APPENDIX C
CSS COMMAND SUMMARY

{

char lchar 21 [char 1 char 22 ••• char lchar 24 J % }

% % new delimiter

ilUILD {::}[,APPEND]

$ENDB

.S.C.LEAR

.$.CONTINUE

.S.C.O.PY

{
GVARIABLE }

J.QEl' INE - n , [name J, operator1 [oper ator2 ••• opera torn J

J.ELSE

.SENDC

.lE.XIT

$FREE varname1 [, ••• ,varnamen]

48-043 FOO ROl C-1

.iG:OTO label

.iLABEL label

l
.C.HARACTER !

$IF DECIMAL arg1

.HEXADECIMAL

.EQUAL arg2

l
.CHARAC'rI<::R !

$IF DECIMAL arg 1 NEQUAL arg2

1iEXADECIMAL

l
.CHARAC'rER !

$IF DECIMAL arg 1

HEXADECIMAL

.GREATER arg2

l .C:AECRAIMAC'rLgR !
$IF JJ. arg1 NGR.EATER arg2

HEXADECIMAL

l
.CHARACTER !

$IF DECIMAL arg 1 LESS arg2

HEXADECIMAL

l
.C.HARAC'rER !

$IF DECIMAL arg1 NLESS arg 2

Hr~XADEC I MAL

.$. .LF_E n

.$.lF..EX'rENS I ON f d

c--2 48-043 FOO ROl

.11.F.G n

$IFL n

$IFNE n

$IFNG n

$IFNL n

.llf.liULL @n

.llf.NNULL @n

J_.I.f_¥0LUME f d

$IFX fd

liENX f d

.S.J.OB
.C.FUTIME=maxt ime

[,class id= iocount1 J [, , class id= iocount32J

.lTERMJOB

.S.NQCOPY

llAUSE

.E.R.1-0.R n

48-043 FOO ROl C-3

{
Q:VARIABLE} [l J..RELEASE , n1
.I.VARIABLE

$SET varnarne=e

.SET ..CODE n

_$.SKIP

.iWRI'fE text [;]

C-4 48-043 FOO ROl

APPENDIX D
MTM MESSAGE SUMMARY

ACCESS PRIVILEGE ADDRESS ERROR AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

An attempt was made to access a valid segment in an invalid
mode; i.e., store into a write protected segment; execute
instructions from an execute protected segment; load from a
read protected segment.

ACCT-ERR

The account number specified is not a valid account.

ALIGNMENT FAULT INSTRUCTION AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

Data instruction not properly aligned to specific fields for
fullword or halfword alignment. The memory fault address is
the memory location that is not properly aligned. The memory
fault address is given only on Perkin-Elmer Series 3200
Machines.

AL.LO-ERR TYPE=NAME

A desired filename currently exists on the specified volume.

The block size of an indexed file exceeds limit established
at sysgen time.

For an indexed file, a zero logical record length or data
block size was specified.

ALLO-ERR TYPE=TYPE

The· volume specified is not a direct access device.

ALLO-ERR TYPE=VOL

The volume name specified, or the name it defaulted to, is
not the name of any of the disks currently online.

48-043 FOO ROl D-1

ACCT-ERR

The account number specified is not valid.

ARGS-ERR

The amount of space between CTOP and UTOP is insufficient for
placement of START conunand arguments by the command
proceaaor.

ARITHME'rrc FAULT AT xxxxxx

A fixed or floating point error was detected at address
xxxxxx, or an attempt was made to divide by zero. This only
occurs on Perkin-Elmer Models 7/32 and 8/32 machines.

ASGN-ti:RR

The assign failed for reason denoted by TYPE field.

ASGN-ERR TYPE=BUFF

An attempt was made to assign a file when there was
insufficient system space available to acconunodate the FCB.

ASGN-ERR TYPE=LU

An attempt was made to assign to an lu that is greater than
the maximum lu number specified at Link time.

ASGN-ERR TYPE=NAME

An assignment is being directed to a nonexistent file.

ASGN-ERR TYPE=PRIV

D-2

The privilege to assign the file or device cannot be granted.
The access privileges may be incompatible with other current
assignments to the same fd,

or, a request was made to assign to a disk when bare disk
privileges are not enabled,

or, requested privileges may conflict with user's file access
privileges (e.g., assigning system file EWO when only SRO is
valid).

48-043 FOO ROl

ASGN-ERR TYPE=PROT

The file being assigned to is unconditionally protected (read
and/or write keys=X'FF') or the read/write keys specified in
the ASSIGN command do not correspond to those associated with
the file, and the file is conditionally protected (read
and/or write keys not X'OO' or X'FF').

ASGN-ERR TYPE=SIZE

An indexed file is being assigned and there is not enough
room on the disk to allocate a physical block.

ASGN-ERR TYPE=SPAC

An assign is refused because the available task system ~~pace

was exceeded.

ASGN-ERR TYPE=TGD

An attempt was made to assign a trap generating device.

ASGN-ERR TYPE=VOL

Volume name specified or defaulted to is not the name of any
of the disks currently online.

BTCH-ERR

The batch capability was not started and is not availabl•~ for
a SUBMIT command.

BUFF-ERR

The expanded CSS line overflowed CSS buffer size.

CLOS-ERR

Close failed for reason denoted by TYPE field.

DELE-ERR TYPE=ACCT

An attempt was made to delete a file not on the u~~er's
private account.

48-043 FOO ROl D-3

DEL-ERR TYPE=ASGN

An attempt is being made to delete a file that is currently
assigned, or is being processed by the CSS processor.

DELE-ERR TYPE=BUFF

There is insufficient memory available in system space to
perform a delete function.

DELE-ERR TYPE=DU

An attempt was made to delete a file from a device that is
not. on line.

Df~LE·-ERR TYPE= IO

An I/O error was encountered while attempting to delete a
file.

Dft:LE -r~RR TYPE=NAME

File with a specified name was not found.

OEfE-ERR TYPE=PROT

An at.tempt is being made to delete a file with nonzero
protection keys.

Dr~LE-ERR 'rYPE='rYPE

·rhe volume name spec if ied or defaulted to is not a direct
access device.

D~LE-ERR TYPE=VOL

The volume name specified or defaulted to is not the name of
any of the disks currently online.

DCJPLICA'rE USERNAME

Userid is already in use.

FD-ERR

0-4

The file descriptor is syntactically incorrect or invalid, or
a program on the disk is being loaded without enough system
space.

48-043 FOO ROl

fd IS NOT A CONTIGUOUS FILE

The INIT command can only be used to initialize contiguous
files.

FILE voln: filename. ext/acct NOT ENTERED ONTO PRINT QUEUE

A spool file was closed but the spooler task was not loaded
or started.

FIXED POINT-ZERO DIVIDE ERROR A'r X.XXXXX
NEXT INSTRUCTION AT XXXXX.XX

An attempt was made to divide by zero. Current instruction
aborted, and next instruction at address xxxxxx.

FIXED POINT-OVERFLOW ERROR AT XXXXXX
NEXT INSTRUCTION AT XXXXXX

Fixed point arithmetic result is too large to be represented.
Instruction aborts. Next instruction at xxxxxx.

FLOATING POINT-UNDERFLOW ERROR AT XXXXXX
NEXT INSTRUCTION AT XXXXXX

Results of floating point operation are too small to be
represented. Instruction aborts. Next instruction at
xxxxxx.

FLOATING POINT-OVERFLOW ERROR AT XXXXXX
NEXT INSTRUCTION AT XXXX.XX

Floating point arithmetic procedure is too large to be
represented. Instruction aborts. Next instruction at
xxxxxx.

FLOATING POINT-ZERO DIVIDE ERROR AT XXXXXX
NEXT INSTRUCTION AT XX.XX.XX

An attempt was made to perform a floating point divide by
zero.

FORM-ERR

The command format is invalid or invalid account number
specified.

48-043 FOO ROl D-5

GOTO-ERR

A $LABEL that is terminating the range of the $GOTO is
branching into an IF group.

ILLEGAL INSTRUCTION AT XXXXXX

The user task attempted to execute an illegal instruction at
location XXXXXX.

ILLEGAL SVC-INSTRUCTION AT XXXXXX
SVC PARAMETER BLOCK AT XXXXXX

The user task attempted to execute an illegal SVC at location
xxxxxx.

INVALID SEGMENT ADDRESS ERROR AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

An attempt was made to access a memory location not within a
valid mapped segment; i.e., an attempt to access a memory
location outside of the task space.

INVALID ACCOUNT

Invalid or unrecognized account number.

INVALID PASSWORD

Password is invalid.

I/0-ERR

A device/file being accessed by MTM is returning a nonzero
I/O status.

I /0-ERR 'rYPE=DU

The device is unavailable.

I/0-ERR TYPE=EOM I/0-ERR TYPE=EOF

D-6

The device reached an EOM or EOF before completing the
operation.

48-043 FOO ROl

I/0-ERR TYPE=FUNC

An invalid operation is being directed toward a device; e .. g.,
attempting to write to a read-only device.

I/0-ERR TYPE=LU

An illegal or unassigned lu.

I/0-ERR TYPE=PRTY

A parity or other recoverable error occurred.

1/0-ERR TYPE=UNRV

An unrecoverable error occurred.

JOBS-ERR

A $JOB statement was encountered following another $JOB
statement but prior to a $TERMJOB statement.

JOB NOT FOUND

The fd of job to be purged is invalid or is not in the batch
job queue.

LOAD-ERR TYPE=ASGN

Load could not be accomplished because the specified fd is
already exclusively assigned or could not be found.

LOAD-ERR TYPE=DU

Attempt was made to load from an unavailable device.

LOAD-ERR 'rYPE= I /0

An I/O error was generated during the load operation.

LOAD-ERR TYPE=LIB

The data in the loader information block is invalid. This
error most frequently occurs when an attempt is made to load
a task which was not built with Link.

48-043 FOO ROl D-7

LOAD-ERR TYPE=LOPT

Task options are incompatible with the system environment
that attempts to load the task; i.e., attempt to load an
e-task under MTM where e-task loading under MTM is not
enabled.

LOAD-ERR 1rYPE=MEM

A load was attempted without enough memory spec if ied ·for the
task's work space.

LOAD-ERR ·rYPE=MTCB

The maximum number of tasks specified at sysgen time was
exceeded.

LOAD·-ERR TYPE=NOFP

A task requiring floating point support is being loaded, and
the required floating point option is not supported in the
system.

LOAD·-ERR TYPE=SEG

A task requiring a task common area (TCOM) and/or a run-time
library (RTL) is being loaded. The TCOM/RTL is not in the
system and cannot be loaded.

LOAD-ERR TYPE=ROIO

There is an I/O error on the roll volume.

LOAD-gRR TYPE=RVOL

There is a roll file allocation or assignment error.

LU-ERR

An lu specified in an assign statement is invalid.

L.VL-ERR

'rhe number of sysgen CSS levels was exceeded.

0-8 48-043 FOO ROl

MEMORY ERROR ON DATA FETCH AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

Attempt was made to retrieve or to load data from a failing
memory area on Perkin-Elmer Series 3200 machines. If
affected memory is within task space and the operating syBtem
has memory diagnostic support, the affected page is
automatically marked off, and this message is displayed:

AFFECTED MEMORY PAGE MARKED OFF AT XXXXXX

MEMORY ERROR ON INSTRUCTION FETCH AT XXXXXX
MEMORY FAULT ADDRESS=X.X.XXXX

A Perkin-Elmer Series 3200 machine attempted to execute an
instruction from an area of memory that is failing. If
affected memory is within task space and the operating sy~:;tem
has memory diagnostic support, the affected page is
automatically marked off, and this message is displayed:

AFFECTED MEMORY PAGE MARKED OFF AT XXXXXX

MEMORY PARITY ERROR AT XXXXXX

Attempt made to access nonexistent or bad memory on Models
7/32 and 8/32 machines.

MISSING PASSWORD

Password omitted.

MNEM-ERR

'rhe command mnemonic entered is unrecogni.zable or a
non-privileged user attempted to use a command that requires
privileged status.

NOFP-ERR

No floating point support exists in the system.

NON EXISTENT SEGMENT ERROR (PST) AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

An attempt was made to access a memory location greater than
the maximum valid program address; i.e., an attempt to access
a memory location outside of the task space.

48-043 FOO ROl D-9

NOPR-ERR

A command was entered that required more parameters than
specified in the command line.

PACKED FORMAT-SIGN ERROR AT XXXXXX
MEMORY FAULT ADDRESS•XXXXXX

An illegal sign digit was detected in a packed decimal number
at xxxxxx for Perkin-Elmer Series 3200 machines only.

PACKED FORMAT-DATA ERROR AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

A data error was detected in a packed decimal number at
xxxxxx for Perkin-Elmer Series 3200 machines only.

PARM--ERR

A command was entered with invalid or missing parameters.

PR IV-ERR

'rhe access privilege mnemonic is syntactically incorrect, or
an M'rM user without access privileges tried to access a
restricted file.

RENM--ERR 11Y PE=NAME

A filename already exists in the volume directory.

Rr~NM---ERR ·rYPE=-PRIV

The file/device cannot be assigned
perform the rename) because the
assigned to at least one lu.

for ERW (required to
file/device is currently

RENM-ERR TYPE = PROT

The protection keys of the file to be renamed are not
X'OOOO'.

REPR-ERR TYPE=PRIV

D-10

The file/device cannot be assigned for ERW (required to carry
out the reprotection) because the file/device is currently
assigned to at least one lu.

48-043 FOO ROl

ROLL-ERR

The task is currently rolled out.

SEGMENT LIMIT ADDRESS ERROR AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

An attempt was made to access a memory location within a
valid mapped segment, but the page number in the segment. is
greater than the largest val id page number for the segmeint;
i.e., an attempt to access a memory location outside of the
task space.

SEQ-ERR

A command was entered out of sequence or when user was not in
the appropriate mode (e.g., CSS call in task loaded mode).

SIGNON REQUIRED

Attempt to enter a command before signon or a mistake in the
SIGNON command.

SKIP-ERR

An attempt was made to skip beyond the end of a CSS job.

SPAC-ERR

Task exceeds established maximum system space.

SVC ADDRESS ERROR-INSTRUCTION AT XXXXXX
SVC PARAME'rER BLOCK AT XXXXXX

Incorrect address of SVC parameter block at xxxxxx. The SVC
parameter block must be on a fullword boundary.

SVC6-ERR 'rYPE=ARGS

There is insufficient room between UTOP and CTOP to contain
the start option string.

SVC6-ERR TYPE=DORM

A command was issued to a specified task that is dormant.

48-043 FOO ROl D-11

SVC6-ERR TYPE=NMSG

The directed task could not receive a message trap.

SVC6-ERR TYPE=PRES

The directed task is not present in memory.

SVC6-ERR TYPE=QUE

The message could not be queued to the directed task.

rrASK-ERR

A task-related command was entered and there is no currently
loaded task.

·r IME -ERR

A task cannot be loaded because the user account CPU limit
expired.

UNDEFINED DA'rA FORMAT FAULT AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

An undefined data format/alignment fault was detected at
xxxxxx for Perkin-Elmer Series 3200 machines.

USER-ERR

An invalid userid was entered in a MESSAGE command.

VOLN-ERR

The volume specified is not online or the volume name is
invalid.

xxxx ERROR ON fd SECTOR n

0-12

An I/O error occurred while attempting to initialize secto·r
n of file fd. xxxx is the type of error; it may be
unrecoverable I/O, recoverable 1/0, or device unavailable.

48-043 FOO ROl

APPENDIX E
CSS MESSAGE SUMMARY

BUFF-ERR

indicates an expanded conunand line exceeds the CSS buffer.
The task skips to $TERMJOB.

DBUF-ERR

The operators of a $DEFINE conunand create a result that is
greater than 110 characters or the command buffer
size-whichever is smaller.

DEFO-ERR

more than 8 characters specified for a keyword or a required
name in the REQUIRED operator.

DEFl-ERR

an illegal character is specified in a keyword or a required
name specification. A through Z are the only valid
characters and they must be capital letters.

DEF2-ERR

an empty additional keyword after a quote was used in a
SEARCH operator specification.

DEF3-ERR

the specified variable name is already in use.

DEF4-ERR

the REQUIRED operator must be the last operator specified in
a $DEFINE command.

DEFS-ERR

divide by zero attempted.

48-043 FOO ROl E-1

DEF6-ERR

arithmetic fault - result is greater than Y'OFFFFFFF'.

DEF7-ERR

a negative hexadecimal value was specified.
values are allowed.

Only positive

illegal or invalid file descriptor, or indicates not enough
space to build an fd, or required file support is not in
system. The task skips to $TERMJOB.

FORM-ERR

indicates a command syntax is invalid.
$TERMJOB.

The task skips to

GO'rO-ERR

indicates a $LABEL occurred inside an IF block that was not
active at the time of the $GOTO command. The task skips tio
$'rERMJOB.

I/0-ERR

indicates an EOF was found while skipping to $ENDC, an EO.F
was found before a $ENDB while building a file, or a $TERMJOB
was found while skipping to $ENDC within a job. The CSS
skips to $TERMJOB, end of task code is set to 255, and job is
ended.

JOBS-ERR

indicates a second $JOB was found before a $TERMJOB wa:s
found.

KgYW-ERR

E-2

a syntax error detected in a keyword, in a keyword parameter,
or a positional parameter appears after a keyword.

48-043 FOO ROl

LVL-ERR

indicates the CSS levels required
established at sysgen time.

MNEM-ERR

exceed

indicates the command entered is not recognized.
skips to $TERMJOB.

NOPR-ERR

required operand for a command was not specified.

PAIR-ERR

the ' or " symbols are not matched.

PARM-ERR

the number

The task

indicates a command was entered with invalid or missing
parameters or a variable number is not in allowed range.

REQS-ERR

REQUIRED operator is not allowed when used
variables in a $DEFINE command, or a
detected in a REQUIRE operator.

SEQ-ERR

with new global
syntax error was

indicates a command was entered out of sequence o~r a
privileged command was used by a non-privileged user.

TASK-ERR

indicates a task-related command was entered and there is no
currently loaded task. The task skips to $TERMJOB.

%REP-ERR

invalid replacement string definition or more than 4
replacement strings defined in a single character replacement
command.

48-043 FOO ROl E-3

@SYSXXXX VARIABLE ERROR, ILLEGAL NAME

indicates that a variable was
reserved characters @SYS or
system variable.

defined beginning with the
an attempt was made to free a

@XXXX-VARIABLE ERROR, ALREADY EXISTS

indicates an attempt was made to define a local variable that
already exists.

@XXXX·-VARIABLE ERROR, EXCEEDS USER LIMIT

indicates that the variable limit set at sysgen was exceeded.

@XXXX-VARIABLE ERROR, DEFINITION TOO LONG

indicates that the length of the defined variable is greater
than 32.

@XXXX-VARIABLE ERROR, DOES NOT EXIST

indicates an attempt to set, free, or access the value of a
nonexistent variable. Also, during CSS execution, a variable
definition is required.

@XXXX-VARIABLE ERROR, DEFINITION DOES NOT EXIST

indicates an attempt to set the value of a variable to the
value of a second nonexistent variable.

@SYSCODE-VARIABLE ERROR, UNABLE TO ACCESS PAGE-FILE

indicates that at signon time MTM was unable to access the
variable page file.

VARIABLE ERROR, VARIABLE PROCESSING NOT SUPPORTED

E-4

indicates that one of the following variable related conunands
was entered into a system that does not support variable
processing:

$FREE
$GLOBAL
$LOCAL
$SET

48-043 FOO ROl

VARIABLE ERROR, VARIABLE PROCESSING DISABLED

indicates that one of the following variable related comma.nds
was entered into a system with variable processing support
that is disabled:

$FREE
$GLOBAL
$LOCAL
$SET

48-043 FOO ROl E-5

APPENDIX F
PROGRAM DEVELOPMENT MESSAGE SUMMARY

* * AL'rERNATE css REQU I Rr~D

The fd entered with the ADD command contains a non-standard
extension, and the cssprod parameter was not specified.

** COMPILE ERROR - LINK NOT EXECUTED

In a complink process, a compilation error was found, and the
process aborted before the link procedure began.

** COMPILE ERRORS, LISTING ON PR:

Errors were encountered while compiling.
listed on the specified pr:"

** CURRENT ENVIRONMENT - filename

These errors are

The ENV command, entered without a filename, causes the name
of the current environment to be displayed.

** CURRENT PROGRAM NOT SET

A filename was not specified, or no current program exist:s.

* * ED IT ·- f i lename. ext

In the multi-module environment, the EDIT command was ent.,ered
without a filename. The fd of the current source program is
displayed.

** ENVIRONMENT EMPTY

The LIST command was entered, but there are no fds in the
EDF.

** EXTENSION OMITTED

A filename entered with the ADD or REMOVE command did not
contain the required extension.

48-043 FOO ROl F-1

** EXECUTION OF filename FOLLOWS:

An image program is loaded and is executing.

** FILE fd NOT FOUND

The specified filename cannot be found in the language
environment.

** fd NONEXISTENT

A specified fd does not exist in the environment.

** FILENAME CONFLICT - ENTRY NOT ADDJ-o::D

An attempt was made to add an already existing fd to the EDF.

** FILENAME NOT IN ENVIRONMENT

An fd specified with the REMOVE command does not exist in the
goF.

** LANGUAGE ENVIRONMENT NOT SET

A development command such as EDIT,
EXEC was entered without first
environment.

** LINK ERRORS - EXECUTION ABORTED

COMPILE,
setting

COMPLINK, or
the language

Program execution aborted when a link error was encountered.

** NEW ENVIRONMENT

An empty EDF has been allocated.

** NEW PROGRAM

An empty source file is
environment.

** NO CURRENT EDF

allocated in the language

'rhe ENV command was entered without an EDF name, or there is
no current EDF.

F-2 48-043 FOO ROl

** NON-STANDARD EXTENSION

An attempt was made to add an fd with a non·-standard language
extension to the EDF without specifying a cssprod parameter.

** NOT IN MULTI-MODULE ENVIRONMENT

A command that is only meaningful in a multi-modlule
environment was specified in a language environment.

** SOURCE FILE NOT FOUND

The specified source file cannot be found.

** SYNTAX ERROR

An fd was not specified with the ADD or REMOVE corrunand.

** TASK fd NOT FOUND

The specified task cannot be found.

** TOO MANY ARGUMENTS

Arguments were specified in a multi-module environment.

48-043 FOO ROl F-3

APPENDIX G
MTM/NON-MTM TASK INTERFACE MESSAGES

G.l $FOREGROUND TASK INTERFACE MESSAGES

xxxx-ERR SND'rID sender task-id MSGE: received message

Where:

xxxx can be any of the following error statuses:

PARM

TNEX

TASE

DSTA

DENO

MSTA

MEND

MNEM-ERR

MOSQ·-ERR

NTSK-ERR

SEQ-ERR

SMGS-ERR

bad syntax in terminal-dn

specified terminal-dn not known by MTM

terminal not in correct mode

terminal assign error on $END message (still
assigned to FOREGROUND task?)

duplicate $STA message
terminal-dn received

duplicate $END message
terminal-dn received

missing $STA message

missing $END message

for the

for the

interface not available for normal M'I'M users

mode sequence error - terminal not in normal
MTM mode

same

same

selected task not in foreground or restricted task
name

task loaded, task executing, command substitution
system (CSS), or batch mode

send message error

48-043 FOO ROl G-1

#MST-ERR

#MEN-ERR

TASE-ERR

TSPC-ERR

missing $STA message from FOREGROUND task terminal
reassigned

missing $END message from FOREGROUND task - terminal
reassigned

FOREGROUND task assign-error

FOREGROUND task has no more space to add the users
terminal, try again later

G.2 HASP INTERFACE MESSAGE

MNEM-ERR

SEQ-ERR

NTSK -r~RR

USED-ERR

TSPC-fo:RR

SMGS·-ERR

G-2

nonpr iv ileged user entered the $HASPx.x conunand

terminal in CSS, batch mode, task loaded or executing

no such HASPxx task-id found in foreground

selected HASPxx currently being used by another MTM
user

no HASP-TUB available (more HASP tasks than specified
by SGN.$HSP at MTM sysgen time)

error on sending message to HASPxx

48-043 FOO ROl

APPENDIX H
CONTROL SUMMARY FOR BIDIRECTIONAL INPUT/OUTPUT CONTROL (BIOC)

CRT DRIVER

Bidirectional input/output control (BIOC) is a standard OS/32
terminal driver. Listed in this appendix are function control
codes for the BIOC, the standard control characters generated by
the use of the codes, and the functions performed. On terminals
that do not generate standard control characters for any of the
function keys, it is necessary to determine which key will
produce the required control characters in order to invoke a
desired function.

When a combination of the control key and an ASCII key cannot be
accepted, BIOC will reject that combination and respond with a
bell code. An example of this would be a "cancel" request
(CTRL-X) on a line that has no character on it. ASCII control
characters for the BIOC will not be echoed (displayed to the
console) to prevent confusion between BIOC functions and terminal
functions.

ASC I I READ MODE:

CTRL-A (SOH) Adjust Baud Rate

The baud rate adjust function must be enabled by the system
programmer before the CTRL-A can be used. When connection to
a terminal is made over a dial-up line, the adjust baud rate
mode is automatically entered.

To change the baud rate on a Perkin-Elmer Model 1200
terminal, for example, locate the front panel and remove the
cover. It is important to know which baud rates have been
made available to your terminal at system generation (sysgen)
time. When th is is known, depress C'rRL-A and then change the
baud rate setting inside the panel, using the scale depicted
on the inside of the panel cover (see Figure H-1). By
depressing the carriage return (CR) key repeatedly, the user
will synchronize communication at the new baud rate. BIOC
then responds with an asterisk (*) and continues with the
mode that was in use at the time the adjust routine was
begun.

48-043 FOl ROl H-1

6428

ggggggggg~~
ON ONE FULL ON ON

I I I ~~Zo I I CONCOo:tCONCOMN..-
O'J r-. '<::!" N ,..... ..-

OFF TWO HALF <(O::WO OFF I I I I I I I I I I I Cl..<(> 0 OFF
(/) 2 w

BAUD RATE
PROG. STOP

DUPLEX PARITY
AUTO INV.

MODE BIT TAB VID.

Figure H-1 Perkin-Elmer Model 1200 Mode Selectors

CTRL-B (STX) Backspace (Nondestructive)

This code causes the cursor to backspace one character for
each time the code is used. To be effective, CTRL-B cannot
be entered at the first character position on a line. When
the cursor has been backspaced to the desired character
position, the line may be changed by typing the desired
characters. All other characters backspaced over can be
restored and the cursor brought back to the end of the line
in one of two ways:

• CTRL-F, moves the cursor forward one character at a time

• CTRL-Z, "zooms" the cursor immediately to the end of the
line

CTRL-C (ETX) Capture the Last Line Entered

Entering this code will cause the last line entered (maximum
of 80 characters) to be displayed on the console. By using
C'rRL-C repeatedly, char act er strings can be concatenated. If
an insert or delete function is performed, the CTRL-C code
will be rejected and a bell will sound to remind you that the
buffer has now been overwritten. c·rRL-C will also be
rejected if the display of data to the console has been
suppressed by the use of CTRL-E.

CTRL-D (EQT) Device Control -- Echo Only

H-2

The next character entered after the CTRL-D code will be
echoed to the terminal but will not be stored in the input
buffer. This function could be helpful, for example, if an
auxiliary peripheral is used that requires certain control
characters to be entered at the console. The c 1rRL-D code
would prevent the peripheral control characters from being
interpreted as program input.

48·-043 FOl ROl

CTRL-E (ENQ) Echo Toggle

Each entry of CTRL-E will change the current echo state from
ON to OFF, or from OFF to ON. This means that data display
to the console screen can be controlled. Suppression of data
display is useful for entering passwords without others being
able to observe them. All functions will work with echo off
except CTRL-C, C'rRL-R, CTRL-W, CTRL-], CTR.L-A, and C'rRL--·.
A CTRL-M (carriage return), buffer full, or CTRL·-X wi 11 turn
echo back on. A CTRL-E will be rejected if the insert mode
is selected.

CTRL-F (ACK) Forward Space and Restore

This code is used to restore a line that has been backspaced
over by the CTRL-B, CTRL-W, or c·rRL-] code. After the cursor
has been moved to the desired position and the correction has
been made, CTRL-F will move the cursor forward one character
position at a time until it reaches the end of the line.
CTRL-F will be rejected if there are no characters to be
restored.

CTRL-H (BS) Backspace (Destructive)

This code is used to delete a character or characters.
Unlike CTRL-B, however, any character(s) backspaced over by
using the the CTRL-H code cannot be restored by using the
CTRL-F or CTRL-Z codes and must be retyped. If they are not
retyped, blank spaces will appear in those character
positions. CTRL-H will be rejected if attempted at the first
character position in a line. On most terminals the C'rRL-H
code can be generated by the "backspace" key.

CTRL-L (FF) Set Page Pause Line Count

To set the CRT screen display for a specific number of lines,
the CTRL-L code is entered, followed by depressing the
control key again with another ASCII character. The numeric
value of the ASCII character will set the number of lines to
be displayed. To select a count for a 24-line CRT, enter the
sequence: CTRL-L, CTRL-X (.X has a decimal value of 24).

The following table shows the proper combinations for line
displays ranging from 1 to 24.

48-043 FOl ROl H-3

H-·-4

TABLE H-1 LINE DISPLAY
COMBINATIONS

l NUMBER
SEQUENCE l OF LINES

==========================
CTRL-L CTRL-A 1
CTRL-L CTRL-B 2
CTRL-L C'rRL-C 3
CTRL-L CTRL-D 4
CTRL-L CTRL-E 5
CTRL-L CTRL-F 6
CTRL-L CTRL-G 7
CTRL-L CTRL-H 8
CTRL-L CTRL-I 9
CTRL-L CTRL-J 10
CTRL-L CTRL-K 11
CTRL-L CTRL-L 12
CTRL-L CTRL-M 13
CTRL-L CTRL-N 14
c·rRL-L CTRL-0 15
CTRL-L CTRL-P 16
CTRL-L CTRL-Q 17
CTRL-L CTRL-R 18
CTRL-L CTRL-S 19
CTRL-L CTRL-T 20
c·rRL-L CTRL-U 21
CTRL-L CTRL-V 22
CTRL-L CTRL-W 23
CTRL-L CTRL-X 24

Each display of the requested number of lines is terminated
with a bell sound. At this point the user may continue to
the next page by entering a carriage return (CR). This will
cause the same number of lines to appear; each CR will, in
fact, produce that number of lines until the page pause line
count is changed. To change the count, terminate write by
entering ESC or Break, and enter a different sequence for the
desired new line count (e.g., CTRL-L CTRL-0 = 15 lines,
etc.) .

·ro cancel the page pause mode, use the sequence C'rRL-L
C'rRL-@. If the page pause mode is not terminated within :5
minutes, BIOC will automatically continue output to prevent
the terminal from being permanently tied up.

48-043 FOl RO!

CTRL-M (CR) Terminate Read

This function is a carriage return. Entering C'rRL-M
indicates to B IOC that read should be terminated. If C'I.1RL-M
is entered at a location other than the end of the line, BIOC
will perform a zoom to the end of the line (EOL) before
storing the carriage return and terminating the read request.

CTRL-N (SO) Neutralize Selected Options Back to Default

This code is entered to reset options back to their default
values. CTRL-N can be entered during read operations, duri.ng
write operations, or between read and write operations.
Entering CTRL-N performs the following functions:

• resets page pause to zero

• resets backspace prompt character to C'rRL·-H

• resets ASCII read prompt character to sysgen default

• resets backspace and CR/LF protocol to sysgen default

• resets output mode to print-on state

CTRL-0 (SI) Toggle Output Between Print-on and Print-off

To suppress output in the write mode, CTRL-0 is used. To
resume output, this code is used again. Alternately
depressing CTRL-0 will cause output to terminate and resume;
hence, the "toggle" characteristic. When using CTRL-0 to
select the print-off mode, a prompt can be immediately
received by a terminate read (CTRL-M). If this is not done
within 15 seconds after output ceases, BIOC will prompt and
reinstate the print-on mode automatically. The print-on mode
will also be reinstated upon a successful completion of a
read request, or upon entering CTRL-N for a neutralize
function.

CTRL-P (DLE) Set ASCII Read Prompt Character

By entering c·rRL-P and any ASCII character, that character
becomes the designated prompt. When making the selection,
the ASCII character is not displayed to the console, but is
output by BIOC upon receipt of an ASCII read request. The
read prompt function can be turned off by the sequence CTRL-P
CTRL-X. To reset the ASCII read prompt character to the
sysgen default, enter CTRL-N.

48-043 FOl ROl H-5

CTRL-Q (DCl) Removed from Input to Allow X-ON/X-OFF Flow Control

CTRL-R (DC 2) Reprint Entered Line

When this code is entered, the current cursor location within
the line will determine the number of characters that will be
reprinted on the next line. All characters, including blank
spaces; to the left of the cursor will be reprinted. The
CTRL-R function will be rejected if the echo state is turned
off (see CTRL-E).

·rhe C'rRL-R function is especially useful for hardcopy
terminals where corrections are made over the existing typed
lines. To view a "clean" line after all corrections have
been made, CTRL-P is used.

CTRL-S (DC 3) Removed from Input to Allow X-ON/X-OFF Flow Control

CTRL-T (DC4) Single Character Transparent Mode

The use of this code will allow the entry of function control
characters into the input buffer. The next character entered
after a CTRL-T will be entered directly into the input
buffer.

CTRL-W (ETB) Word Backspace (Nondestructive)

C'rRL-W causes the cursor to be backspaced (nondestructively)
to the nearest nonalphabetic character. Thus, CTRL-W allows
the cursor to backspace over one complete word, rather than
one character, as with CTRL-B. Words backspaced over may be
restored by the use of CTRL-F or CTRL-Z. CTRL-W will be
rejected if attempted at the beginning of a line.

CTRL-X (CAN) Cancel Current Input Line

All characters previously entered on the current line will be
deleted upon use of the code. Characters may not be restored
with the CTRL-F or C'rRL-Z functions. If no characters are on
the line, CTRL-X will be rejected. CTRL-X will turn echo
back on if it has been turned off with CTRL-E.

CTRL-Z (SUB) "Zoom" to Furthest End of Line

H-6

CTRL-Z can be used to restore a line that has been backspaced
over by CTRL-B, CTRL-W, or CTRL-]. CTRL-Z will cause the
cursor to "zoom" to the end of the line, but will be rejected
if there are no characters to be restored.

48-043 FOl ROl

CTRL-] (GS) Backward Character Search (Nondestructive)

This code serves to locate a specific character on the
current line. For example, to find the character $, enter
C'rRL-] $. Broe wi 11 backspace unt i 1 the first $ is found. To
find any additional dollar signs on the same line, the code
must be entered again for each time the $ symbol appears.
Characters backspaced over may be restored by using CTRL-P or
CTRL-Z. CTRL-] will be rejected if attempted at the
beginning of the line.

CTRL-A (RS) Toggle Between Insert-on and Insert-off

Each CTRL-A toggles from insert-on to insert-off or from
insert-off to insert-on. When the insert mode is selected,
characters typed will be inserted in front of the character
currently over the cursor. The insert mode may be selected
only when the cursor is positioned at a location other than
the end of the line and the echo state is on. The insert
mode w i 11 be terminated by another CTRL·-A or by a.ny corrunand
that takes the cursor position to the end of the line (e.g.,
C'rRL-Z). The C'rRL-C and CTRL-E functions are not. valid while
in the insert mode. All other functions are valid if the
cursor is not in mot ion. All data entered while the cu1rsor
is in motion will be ignored until the cursor has stopped.

CTRL-_ (US) Delete Character

Each CTRL-__ deletes the character currently over the cur:sor.
The delete code is valid only when the cursor is positioned
at a location other than the end of the line and the echo
state is on. Characters entered while the cursor i:s in
motion will be ignored.

WRITE MODE:

BREAK

This key terminates write with the Break status.

ESC

This key terminates write with the Break status.

CTRL-Q

This code resumes write after write has been suspended by
CTRL-T or CTRL-S functions.

48-043 FOl ROl H-7

CTRL-R

This code resumes write after write has been suspended by
CTRL-T or CTRL-S functions.

CTRL-S

This code suspends write until write is resumed by CTRL-R or
CTRL-Q or until the BREAK or ESC key is depressed.

CTRL-T

·rhis code suspends write until write is resumed by CTRL-R 0['

CTRL-Q or until the BREAK or ESC key is depressed.

H-8 48-043 FOl ROl

/@INPUT control statement
/@SUBMIT control statement

A

Access privileges
compatibility

Access protection of disks
ACCOUNT operator
ADD command
ALLOCATE command
ASSIGN command
Assigning logical unite
Authorization

B

Batch commands
INQUIRE
LOG
PURGE
S IGNOFF
SIGNON
SUBMIT

Batch job error handling
Batch job priority

establishing
Batch job submission

using the spooler
Batch jobs
Batch processing

affect of restricted
disks on

batch task pause option
commands
error handling
introduction

Batch task pause option
BFILE command
BIAS command
Bidirectional input/output
control

control summary for
BIOC. See bidirectional

input/output control.
BREAK command
Break key

using the
BRECORD command
BUILD command
$BUILD command

c

CAL
Calling a CSS file

use of parameters
CANCEL command
Character replacement command

48-043 FOO R02

INDEX

7-2
7-3

2-6
1-8
6-24
4-12
2-2
2-6
4-10
1-3

5-3
5-5
5-7
5-8
5-9
5-11
5-13

5-12

5-13
7-3

5-13
5-13
5-1
5-13
5-1
5-13
2-12
2-13

H-1
H-1

2-14

1-10
2-15
2-16
6-18

4-1
6-2
6-3
2-18
6-14

Checkpointing

CLEAR operator
CLOC
CLOSE.command
COBOL
Command conventions
Command mode
Command substitution system

ACCOUNT operator
call parameters
calling a CSS file
character replacement

command
CI..EAR operator
command summary
commands
computation operator
conversion operator
CURRENT operator
DCOMPUTE operator
DHCONVERT operator
DVOLUMENAME operator
end of task code testing

commands
EXTENSION operator
file descriptor operators
file existence testing

commands
F IT..ENAME operator
general description
HCOMPUTE operator
HDCONVERT operator
line expansion
logical IF commands
LOGICAL operators
message summary
mode
other operators
parameter existence
testing

PRIOR command
REQUIRED operator
SEARCH operator
SET CODE command
signon
STRING operator
use of keywords
VOLUMENAME operator
$BUILD command
$CLEAR command
$CONTINUE command
$COPY command
$DEFINE command
$ELSE command
$ENDB command
$EXIT command
$FREE command
$GLOBAL command
$GOTO command
$IF ... EQUAL command

2-S6
5-6
6-36
2-37
2-19
4-2.
1-11
1-61

6-.tt4
6-3
6-.tt

6-14
6-36
C-JL
6-13
6-30
6-30
6-37
6-~IO
6-212
6-38

6-61
6-.tt5
6-.tt4

6-62
6-.it6
6-l.
6-33
6-34
6-12
6-60
6-.tt9
E-1
1-6
6-~15

6-62
6-S2
6-39
6-4~0
6-~i6
1-7
6-4~3
6-S
6-.t~8

6-18
6-.w
6-2:1
6-2:2
6-2:3
6-613
6-18
6-4,5
6-4,6
6-4,7
6-64
6-69

IND-1

Command substitution system
(Continued)
$IF ... GREATER command
$IF ... LESS command
SIF ... NEQUAL command
$IF ... NGREATER command
SIF ... NLESS command
SIFEXTENSION command
SIFVOLUME command
$JOB command
$LABEL command
$LOCAL command
$NOCOPY command
$PAUSE command
$RELEASE command
$SET command
$SKIP command
$TERMJOB command
$WAIT command
$WRITE command

Commands
introduction

COMPILE command
COMPilE command

language format
COMPILE command

multi-module format
COMPLINK command

language format
multi-module format

Computation operator
DCOMPUTE
DH CONVERT
HCOMPUTE
HDCONVERT

CONTINUE command
Conversion operator

DCOMPUTE
DH CONVERT
HCOMPUTE
HDCONVERT

Creating a data file
Creating a source program
CRT driver. See also BIOC.
css. See command
substitution system.

CTOP
CTSW
CURRENT operator
$CLEAR command
$CONTINUE command

$COPY command

D

DCOMPUTE Operator
Default lu assigfiments
Default variable ~@ttings
DELETE command
DHCONVERT operatot
DISPLAY ACCOUNTING command
DISPLAY command

IND-2

6-69
6-70
f>-69
6-69
6-70
6-66
6-67
6-48
6"'"64
6-50
6-22
6-'51
6-53
6-55
6-57
6-48
6-58
6-59

2-1
4-14

4-14

4-14

4-18
4-18
6-30
6-30
6-32
6-33
6-34
2'-20
6-30
6-30
6~32
6-33
6-34
i\""-4
4-"l

:2-j8
2-37
6-37
6-20
6-21
6-58
6"'"2.2

6-30
4-10
4-10
2--21
6-32
2-24
2-22

DISPLAY DEVICES command
sample display

DISPLAY DFLOAT command
DISPLAY FILES command
DISPLAY FLOAT command
DISPLAY LU command
DISPLAY PARAMETERS command

fields
task option bit
definitions

DISPLAY REGISTERS command
DISPLAY TIME command
DISPLAY USERS command
DVOLUMENAME operator
$DEFINE command

ACCOUNT operator
CLEAR operator
computation operator
conversion operator
CURRENT operator
DCOMPUTE operator
DHCONVERT operator
DVOLUMENAME operator
EXTENSION operator
file descriptor operators
FILENAME operator
HCOMPUTE operator
HDCONVERT operator
LOGICAL operators
other operators
REQUIRED operator
SEARCH operator
STRING operator
VOLUMENAME operator

E

ECM. See environmental
control monitor.

EDF. See environment
descriptor file.

EDIT command
ENABLE command
End of task code testing
End of task code testing

commands
$IFE n
$IFG n
$IFL n
$IFNE n
$IFNG n
$IFNL n

ENDB command
ENV command

Environm~nt descriptor file
ENVIRONMENT• parameter
Environmental control monitor
EXAMINE command
EXEC

EXEC command

2-25
2-25
2-27
2'-28
2-34
2-35

2-37

2-38
2-42
2-43
2-44
6-38
6-10
6-11
6-23
6-24
6-36
6-30
6-30
6-37
6-30
6-32
6-38
6-25
6-24
6-26
6-33
6-34
6-29
6-35
6-39
6-40
6-43
6-28

4-21
2-45
6-60

6-61
6-61
6-61
6-61
6-61
6-61
6-61
2-16
4-6
4-23
4-6
5-10
3-5
2-46
4-4
4-5
4-25

48-043 FOO R02

Executing a program
Executing multiple programs
as a single program

EXTENSION operator
$ELSE
$ELSE command
$ENDS command
$ENDC
$EXIT command

F

fds. See file descriptors.
FFILE command
File conventions
File descriptor operators

EXTENSION
FILENAME
VO LUMEN AME

File descriptors
format
parameters

File existence testing
File existence testing

commands
$IFNX
$IFX

File initialization. See
INIT command.

Filename operator
Foreground task

interfacing with
programming details
restricted task-ids

Foreground task mode
FORT
FOR TO
FORTZ
FRECORD command
$FOREGROUND task interface
messages

$FREE command

G

Global variables
Group account numbers
$GLOBAL command

$GOTO command

H

Hasp interface
linking the HASP task

Hasp interface messages
Hasp interface mode
HCOMPUTE operator
HDCONVERT operator
HELP command
Help facility

48-043 FOO R02

4-4

4-6
6-25
6-60
6-63
6-20
6-60
6-45

2-48
1-11
6-24
6-25
6-26
6-28
1-12
1-13
1-13
6-60

6-62
6-62
6-62

6-26

3-1
3-2
3-1
1-6
4-1
4-1
4-1
2-49

G-1
6-46

6-9
1-11
6-10
6-47
6-64

3-4
G-2
1-6
6-33
6-34
2-50
1-7

INIT command
Input spooling

/@INPUT control statement
/@SUBMIT control
statement

control card statements
INQUIRE command
Interactive task to terminal
mode

ITC/RELIANCE interface
$IF ... EQUAL command
$lF ... GREATER command
$lF ... LESS command
$IF ... NEQUAL command
$lF ... NGREATER command
$IF ... NLESS command
$IFE n
$IFEXTENSION command
$IFG n
$IFL n
$IFNE n
$IFNG n
$IFNL n
$IFNNULL
$IFNULL
$IFNX
$lFVOLUME command
$IFX

$JOB command

Keywords
defining

J

K

examples of illegal
referencing within the
css

rules for use of
valid examples of

L

Language tab character
LINK command

link sequences
LIST command
LOAD command
Loading a task
Loading tasks. See TASK

command.
Local variables
LOG command

checkpointing
Logical IF commands

comparing two arguments
end of task code testing

2-5;~

7-2
7-2

7-3
7-2
5-3

1-6
3-5
6-69
6-69
6-70
6-69
6-69
6-70
6-61
6-6f)
6-61
6-61
6-61
6-61
6-61
6-6:~
6-6:~
6-62
6-67
6-62

6-48

6-5
6-7

6-7
6-6
6-6

4-2
4-2:8
4-29
4-3.2
2-53
1-7

6-9
2-55
5-5
2-56
6-60
6-6;8
6-6!0

IND-3

Logical IF commands
(Continued)
file existence testing
parameter existence
testing

$ELSE
$ENDC
$IF ... EQUAL
$IF ... GREATER
$IF ... LESS
$1F ... NEQUAL
$IF ... NGREATER
$IF ... NLESS command

LOGICAL operators
$T .ABEL command
$LOCAL command

M

MACRO
MESSAGE command
MODIFY command
Modifying a program
MPRI
MTM. See multi-terminal
monitor.

MTM/non-MTM task interface
messages

Multi-terminal monitor
ALLOCATE command
ASSIGN command
authorization

IND-4

BFILE command
BIAS command
BREAK command
BRECORD command
BUILD command
CANCEL command
CLOSE command
command summary
CONTINUE command
DELETE command
devices
DISPLAY ACCOUNTING

command
DISPLAY command
DISPLAY DEVICES command
DISPLAY DFLOAT command
DISPLAY FILES command
DISPLAY FLOAT command
DISPLAY LU command
DISPLAY PARAMETERS

command
DISPLAY REGISTERS command
DISPLAY TIME command
DISPLAY USERS command
dynamic functions
ENABLE command
ENDS command
environments
EXAMINE command
FFILE command
FRECORD command
HELP command

6-60

6-60
6-60
6-60
6-69
6-69
6-70
6-69
6-69
6-70
6-29
6-64
6-10
6-50

4-1
2-57
2-58
4-5
2-38

G-1

2-2
2-6
1-3
2-12
2-13
2-14
2-15
2-16
2-18
2-19
A-1
2-20
2-21
1-3

2-24
2-22
2-25
2-27
2-28
2-34
2-35

2-37
2-42
2-43
2-44
1-1
2-45
2-16
1-4
2-46
2-48
2-49
2-50

Multi-terminal monitor
(Continued)
INIT command
introduction
LOAD command
LOG command
MESSAGE command
message summary
MODIFY command
operation
OPTIONS command
PASSWORD.command
PAUSE command
PREVENT command
PRINT command
priority
privileged users
PUNCH command
RENAME command
REPROTECT command
REWIND command
RVOLUME command
RW command
SEND command
SET GROUP command
SET KEYOPERATOR command
SET LOG command
SET PRIVATE command
SIGNOFF command
SIGNON command
SPOOLFILE command
START command
tailoring functions
TASK command
TEMPFILE command
transmitting messages
user commands
user information
VOLUME command
WFILE command
XALLOCATE command
XDELETE command
$RELEASE command

Multi-terminal monitor
environments

batch
interactive

MUSP
MXSP

N

Naming global variables
Naming local variables
Naming new global variables
Naming new internal variables
New global variables

referencing the value of
New internal variables

referencing the value of
NLU
$NOCOPY command

2-52
1-1
2-53
2-55
2-57
D-1
2-58
1-1
2-60
2-61
2-62
2-63
2-64
6-52
1-3
2-66
2-70
2-71
2-72
2-73
2-72
2-76
2-77
2-79
2-56
2-81
2-83
2-84
2-86
2-89
1-1
2-90
2-91
1-4
2-1
1-2
2-94
2-96
2-97
2-100
2-68

1-5
1-4
2-38
2-38

6-10
6-10
6-10
6-10
6-9
6-10
6-11
6-11
6-9
6-10
6-11
6-11
2-38
6-22

48-043 FOO R02

0

OPTIONS command
OS/32 spooler
Other operators

CLEAR
CURRENT
DVOLUMENAME
REQUIRED
SEARCH
STRING

Out.put spooling
assigning logical units

P,Q

Parameter existence testing
Parameter existence testing

commands
$IFNNULL
$IFNULL

PASCAL
PASSWORD command
PAUSE command
PREVENT command
PRINT command
PRIOR command
Private account numbers
Privileged users
Program development

assigning logical units
command availability
command summary
commands
creating a datafile
creating a source program
default lu assignments
default variable settings
error recovery
executing a program
executing multiple

programs
language commands
language tab character
message summary
modifying a program
re-executing a modified

prgoram
sample sessions
source file language
extensions

Program development commands
ADD
COMPILE
COMPLINK
EDIT
ENV
EXEC
LINK
LIST
REMOVE
RUN

Prompt conventions
PUNCH command
PURGE command
$PAUSE command

48-043 FOO R02

2-60
7-1
6-35
6-36
6-37
6-38
6-39
6-40
6-43
7-5
7-5

6-60

6-62
6-62
6-62
4-2
2-61
2-62
2-6:3
2-64
6-52
1-11
1-3

4-10
4-8
B-1
1-8
4-4
4-1
4-10
4-10
4-10
4-4

4-6
4-1
4-2
F-1
4-5

4-5
4-36

4-2
4-11
4-12
4-14
4-18
4-21
4-2:3
4-25
4-28
4-32
4-33
4-34
1-9
2-66
5-7
6-51

R

Re-executing a modified
program

REMOVE command
RENAME command
REPROTECT command
REQUIRED operator
Reserved variables
Restricted task-ids
REWIND command
RPG
RUN command
RVOLUME command
RW command
$RELEASE command

s

Sample program development
sessions

SCTASK
SEARCH operator
Security
SEND command
SET CODE command
SET GROUP command
SET KEYOPERATOR command

SET LOG command
SET PRIVATE command
SIGNOFF command

SIGNON command

SLOC
Source file language

extenaions
SPL/32 and MTM interaction
SPL/32 spooler

MTM interaction
SPOOLFILE command

SPL/32 spooler
Spooling

/@INPUT control statement
/@SUBMIT control
statement

control card statements
errors
input
OS/32 spooler
output
SPL/32 and MTM

interaction
SPL/32 spooler

START command
STAT
STRING operator
SUBMIT command

batch job priority
SVOL
System account numbers

~l-5

4,-33
2:-70
2:-71
6-39
6-13
3-1
2:-12
4,-2
4,-34
2:-73
2:-12
2~-68
fa-10
Ei-53

4.-36
2:-53
Ei-40
1.-8
2:-76
Ei-56
2.-77
2.-79
6-6
2.-56
2.-81
2.-83
5-8
2.-84
5-9
2:-38

4-2
7-8
2-86
7-1
7-7
7-8

2-86
1-8
7-2

7-3
7-2
7-6
7-2
7-1
7-5

7-8
7-1
7-7
2-89
2-37
6-43

5-11
2-38
1-12

IND-5

$SET command
$SKIP command

T

TASK command
Task executing mode
Task interfaces

foreground tasks
HASP tasks
ITC/RELIANCE tasks
messages
non-MTM

Task loaded mode
TEMPFILE command
Terminal conventions
Terminal modes

command mode
css mode
foreground task mode
hasp interface mode
interactive task to
terminal

task executing mode
task loaded mode

Terminal users
number of

TOPT
Transmitting messages
$TERMJOB command

u

UBOT

IND-6

6-55
6-57

2-90
1-6

3-1
3-1
3-1
G-1
3-1
1-6
2-91
1-10
1-6
1-6
1-6
1-6
1-6

1-6
1-6
1-6

1-4
2-37
1-4
6-48

2-38

USERINIT.CSS
USSP
UTOP

Variables
global
local

v

naming global
naming local
naming new global
naming new internal
new global
new internal
reserved
types of
use of

VOLUME command
VOLUMENAME operator

w

Wait status bit definitions
WFILE command
$WAIT command
$WRITE command

X,Y,Z

XALLOCATE command
XDELETE command

2-84
2-37
2-38

6-9
6-9
6-10
6-10
6-10
6-10
6-9
6-9
6-13
6-9
6-9
2-94
6-28

2-40
2-96
6-58
6-59

2-97
2-100

48-043 FOO R02

w
z
:J
(!)
z
0
..J
<(

I
::>
(.)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PUBLICATION COMMENT FORM

Please use this postage-paid form to make any comments, suggestions, criticisms, etc. concerning
this publication.

From------------------ Date ------------------

Title--------------- Publication Title-------------

Company _______________ Publication Number ------------

Address -------------

FOLD FOLD

Check the appropriate item.

D Error Page No. Drawing No.---------

D Addition Page No. Drawing No. ________ _

D Other Page No. Drawing No. ---------

Explanation:

FOLD FOLD

Fold and Staple
No postage ne:cessary if mailed in U.S.A.

6434

STAPLE STAPLE
I
I
I
I
I
I
I
I
I
I
I

FOLD FOLD I
----------------------------~

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

POSTAGE WILL BE PAID BY ADDRESSEE

PERKIN-ELMER
Computer Systems Division
2 Crescent Place
Oceanport, NJ 07757

TECH PUBLICATIONS DEPT. MS 322A

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~OL~--------------------------FOL~-,

STAPLE

I
I
I
I
I
I
I
I
I
I
I
I

STAPLE I
I 643

I
PERKI~-ELMER

Technical Syatems Division
r·

[

~

D 0 C U M E N T A T I 0 N C H A N G E N 0 T I C E

The purpose of this document~tion change notice (DCN) is to
provide a quick and efficient way of making technical changes to
manuals before they are formally updated or revised.

The manual affected by these chariges is:

il. -.0.43. £QQ .RQl OS./ .3..2 Mult 1-Te.:r..m.ina..l Mo.n.ito.r. (MTM)
Manual

.Ref. e.r.e.nc.e

• Page 2-87

In the Parameters column, add IMAGE directly under VFC.
change the last sentence of the VFC paragraph to:

Then

If IMAGE is specified, there is no VFC for the device assigned
to the specified lu.

• Page 2-87

In the Parameters column, add NOIMAGE directly above NOVJPC.
Then change the paragraph to:

turns the VFC option or IMAGE option off for the assigned lu.
NOVFC is the default option.

• Page 2-87

Add the following parameters and descriptions before COPIES=:

CHi4:CKPOINT

NOCHECKPOINT

48-043 FOO ROlA

turns on check,pointing for the
This is the default option.
checkpoint option must be on.

assigned lu.
The global

turns off cherikpointing for the assigned lu.

1

