PERKIN-ELMER

0S/32 SUPERVISOR CALL (SVC)

Reference Manual

48-038 FOO RO1




Fhe iiformation in this document Is subsject t0 change without notice and should not be
construed as a comintitment by the Perkin-Eimer Corporation. The Perkin-Elmér Corpo-
ration assumes¢ ne responsibility for any errars that may appear it this documiefit,

Tte software described in this document i§ furnished under a license, and it can be used or
copied only it @ mdaner permitied by that ficense, Any copy of the descritied software
must include the Perkin-Efmer copyright notice. Title 10 and ownersitip of the deseribéd
software and any copies therdof shall remdin in The Perkin-Eimer Corporstiorns.

ThHe Perkin-Etrter Corporation sesummes rio résponsibility for the use or reliability of its
softwdre on equipment that is not supplied by Perkin-Elmer.

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757

© 1981, 1982, 1983 by The Perkin-Elrvier Corporation

Printed in the United States of America




PREFACE

CHAPTERS

TABLE OF CONTENTS

SUPERVISOR CAILLS (SVCs)

N

N R i
NN

INTRODUCTION
The Supervisor Call (SVC) Parameter Block

SUPERVISOR CAILL (SVC) ERRORS
Supervisor Call (SVC) Error Messages
Supervisor Call (SVC) Status Codes

INPUT/OUTPUT (I/0) REQUEST SUPERVISOR CALL 1 (SVC 1)

NNOMNMNNDNDMNMDMDNMNMNMNNMDMDNMNNDMMDNDMDNDN R

NOOdWN

'_l

NNNNOTODWONNNHFRRMBRE A

.

NNMMNMNNMNNRNNMNMNDNMNNDDMDNDNNDNNDDNDNDNDDNDNODN

w N

INTRODUCTION

SUPERVISOR CALL 1 (SVC 1)

Data Transfer Requests

Test and Set ’

Input /Output (I/0) Proceed

Queuing Input/Output (I/0O) Requests
Conditional Proceed

Unconditional Proceed

Wait Input/Output (I/0)

Wait Only

Command Function Requests

Halt Input/Output (I/O)

Logical Unit (1lu)

Device Independent Status

Device Dependent Status

Buffer Start/Buffer End Address
Extended Options
Nonmagnetic Tape Devices
Magnetic Tape Devices
Device Dependent Status
Tape Operations

Codes for Magnetic

GAPLESS INPUT/OUTPUT (I/0) OPERATIONS
Gapless Mode SVC 1 Parameter Block Format
Standard Function Code Format - Gapless Mode
Logical Unit (1lu)

48-038 F0O0 ROl

xi



CHAPTERS (Continued)

NN N
wwwww
(o002 B o T 54 0

Device Independent Status Codes
Device Dependent Status Codes
Buffer Queues
.1 Using the Buffer Queue
.2 Trap-Causing Events Resulting from Gapless

Input/Output (1/0) Operations

oo
www
O 0o

Buffer Length
Length of Last Buffer
Extended Options Field

3 GENERAL SERVICE FUNCTIONS SUPERVISOR CALL 2 (SVC 2)

PAUSE

GET STORAGE
Option X'00'
Option X'80'
RELEASE STORAGE
SET STATUS
Option X'0O'
Option X'80'
FETCH POINTER

CONVERT BINARY NUMBER TO ASCII

HEXADECIMAL OR ASCII DECIMAL

3.1 INTRODUCTION
3.2 svC 2 CODE

3.3 SVCe 2 CODE 2
3.3.1 SVC 2 Code 2
3.3.2 SVC 2 Code 2
3.4 sSVvC 2 CODE

3.5 sVC 2 CODE 4
3.5.1 SVC 2 Code 4
3.5.2 SVC 2 Code 4
3.6 SVC 2 CODE

3.7 SVC 2 CODE b6:
3.7.1 SVC 2 Code 6,
3.7.2 sSVC 2 Code b6
3.7.3 SVC 2 Code 6
3.7.4 SVC 2 Code b6
3.8 sSVvC 2 CODE 7
3.8.1 SVC 2 Code 7
3.8.2 SVC 2 Code 7
3.8.3 SVC 2 Code 7
3.8.4 SVC 2 Code 7
3.8.5 SVC 2 Code 7
3.8.6 SVC 2 Code 7
3.8.7 SVC 2 Code 7
3.8.8 SVC 2 Code 7
3.9 SVC 2 CODE 8
3.9.1 SVC 2 Code 8
3.9.2 SVC 2 Code 8
3.9.3 SVC 2 Code 8
3.9.4 SVC 2 Code 8

ii

’

’

’

L N T T Y

-~ % N~ s

Option X'00'+n
Option X'40'+n
Option X'80'+n
Option X'CO'+n

LOG MESSAGE
Option X'00'
Option X'20'
Option X'40'
Option X'60'
Option X'80'
Option X'AO'
Option X'CO'
Option X'EO'

INTERROGATE CLOCK
Option X'0O'
Option X'80'
Option X'40'
Option X'CO'

48-038

2-33
2-35
2-36
2-37

2-38
2-38
2-38
2-39

3-23
3-25
3-25
3-26
3-26

3-27
3-29
3-30
3-30
3-30
3-30
3-32
3-32
3-32

3-33
3-34
3-35
3-36
3-37

FOO ROl



CHAPTERS (Continued)

3.10

3.20

3.20.1
3.20.2
3.20.3
3.20.4
3.20.5

SVC 2 CODE

9:

FETCH DATE

SVC 2 CODE 10: TIME OF DAY WAIT

SVC 2 CODE 11: INTERVAL WAIT

SVC 2 CODE 15: CONVERT ASCII HEXADECIMAL
OR ASCII DECIMAL TO BINARY

SVC 2 Code 15, Option X'00’

SVC 2 Code 15, Option X'40'

SVC 2 Code 15, Option X'80'

SVC 2 Code 15, Option X'CO'

SVC 2 CODE 16: PACK FILE DESCRIPTOR

SVC 2 Code 16, Option X'00’

SVC 2 Code 16, Option X'40'

SVC 2 Code 16, Option X'l0'

SVC 2 Code 16, Option X'50'

SVC 2 Code 16, Option X'20'

SVC 2 Code 16, Option X'60'

SVC 2 Code 16, Option X'80'

SVC 2 Code 16, Option X'CO'

SVC 2 Code 16 Options for Privileged Tasks
SVC 2 CODE 17: SCAN MNEMONIC TABLE

Building a

SVC 2 CODE
SVC 2 Code
SVC 2 Code

SVC 2 CODE
Parameter
Parameter
Parameter
Parameter
Parameter

svc CODE

svce CODE

svC CODE

Mnemonic Table
Executing SVC 2 Code 17

18:
18’
18,

19:
Block
Block
Block
Block
Block

MOVE ASCII CHARACTERS
Option X'00'+n
Option X'80'+n

PEEK
for
for
for
for
for

X'00'
X'o1’
X'02'
X'03’
X'04'

Option
Option
Option
Option
Option

20: EXPAND AILLOCATION

21:

23:

CONTRACT AIL.LOCATION

TIMER MANAGEMENT

svC
svC
svc
svc
svc

svC

48-038 F00 RO1l

2
2
2
2
2
2
2
2

Code
Code
Code
Code
Code

CODE

23
23
23
23
23

24:

Parameter
Parameter
Parameter
Parameter
Parameter

Block for
Block for
Block for
Block for
Block for

X'00'
X'80'
X'40'
X'20'
X'10'

Option
Option
Option
Option
Option

SET ACCOUNTING INFORMATION

3-46
3-47
3-49
3-50
3-52

3-53
3-62
3-63
3-64
3-65
3-66
3-67
3-68
3-71
3-72

3-74
3-76
3-76

3-82
3-84
3-86

3-91
3-91
3-97
3-103
3-105
3-111

3-115
3-117
3-118
3-118
3-121
3-124

3-128
3-130

3-133

iii



CHAPTERS (Continued)

iv

3.22 SVC 2 CODE 25: FETCH ACCOUNTING INFORMATION

3.23 SVC 2 CODE 29: UNPACK FILE DESCRIPTOR

END OF TASK SUPERVISOR CALL 3 (SVC 3)
4.1 INTRODUCTION

4.2 SVC 3: END OF TASK

FETCH OVERI.LAY SUPERVISOR CALL 5 (SVC 5)
5.1 INTRODUCTION

5.2 SVC 5: FETCH OVERLAY

INTERTASK COMMUNICATIONS SUPERVISOR CALL 6 (SVC b6)

6.1 INTRODUCTION

6.2 SVC 6: INTERTASK COMMUNICATIONS

6.2.1 Function Code (SVC6.FUN)

6.2.2 Direction (SFUN.DOM,SFUN.DSM)

6.2.3 End Task (SFUN.ECM,SFUN.EDM)

6.2.4 Load Task Functions

6.2.4.1 Load Task (SFUN.LM)

6.2.4.2 Load Task with Extended Load Options
(SFUN.LXM)

6.2.5 Task Resident (SFUN.HM)

6.2.6 Suspend (SFUN.SM)

6.2.7 Send Data (SFUN.DB)

6.2.7.1 Send Data Message Buffer for Sending Task

6.2.7.2 Free Send Data Message Buffers for Receiving
Task

6.2.7.3 Sample Programs Using SVC 6 Send Data
Function

2.8 Send Message (SFUN.MM)
2.8.1 Message Buffers

.2.9 Queue Parameter (SFUN.QM)
2.1

2.1

2.1

0 Change Priority (SFUN.PM)

1 Send Logical Unit (SFUN.XSM)
2 Receive Logical Unit (SFUN.XRM)
Connect (SFUN.OM)

.2.14 Thaw (SFUN.TM)

.2.15 Sint (SFUN.IM)

.2.16 Freeze (SFUN.FM)

.2.17 Unconnect (SFUN.UM)

.2.18 Assign LPU (SFUN.LPU)

.2.19 Transfer to LPU (SFUN.TL)
.2.20 Transfer to CPU (SFUN.TC)

oocooccooco0o0 o000 O
N
'—J
w

3-135

3-137

48-038 FOO ROl



6.2.21
6.2.22
6.2.23
6.2.24
6.2.25
6.2.26
6.2.27
6.2.28
6.2.29
6.2.30
6.2.31
F

7.1

7.2
7.2.1
7.2.1.1
7.2.1.2
7.2.1.2
7.2.1.3
7.2.1.4
7.2.1.5
7.2.1.6
7.2.1.7
7.2.1.8
7.2.1.9
7.2.1.1
7.2.1.1
7.2.1.1
7.2.1.1
7.2.1.1
7.2.1.1
7.2.1.1
7.2.1.1
7.2.1.1

LOAD TASK STATUS WORD (TSW) SUPERVISOR CALL 9 (SVC 9)

8.1

8.2
8.2.1

oONOOTRWN = O

CHAPTERS (Continued)

Release (SFUN.RM)

Nonresident (SFUN.NM)

Rollable (SFUN.RLM)

Nonrollable (SFUN.NRM)

Start (Bit Positions 29, 30, 31)

Start Function for SVC 6 (SFUN.SIM)
Start Function with Start Options for
SVC 6 (SFUN.SOM)

Delay Start Function for SVC 6 (SFUN.SDM)
Delay Start Function with Start Options
for SVC 6 (SFUN.SDM,SFUN.SOM)

Wait Status Field (SVC6.TST)

Error Codes (SVC6.S8TA)

ILE HANDLING SERVICES SUPERVISOR CALL 7 (SVC 7)

INTRODUCTION

SVC 7: FILE HANDLING SERVICES
Function Code Field (SVC7.0PT)
Allocate Function

Assign Function

.1 Temporary File Allocation and Assignment

Function

Change Access Privileges Function

Rename Function

Reprotect Function

Close Function

Delete Function

Checkpoint Function

Fetch Attributes Function

Vertical Forms Control (VFC)

Fetch Time and Date Attributes from Disk
Directory

Fetch Logical Attributer of Open File
Access Privileges

Data Communications Access Methods

File Types

Read/Write Key Fields (SVC7.RKY/SVC7.WKY)
File Size Field (SVC7.S12Z)

SVC 7 Error Codes

INTRODUCTION

SVC 9: LOAD TASK STATUS WORD (TSW)
Function and Description of the Task
Status Word (TSW)

48-038 FO0OO ROl

6-39
6-39
6-40
6-40
6-40
6-41

6-41
6-42

6-42
6-43
6-44

NNNN
[
~ = oN

N

i

7-13
7-14
7-15
7-15
7-16
7-16
7-17
7-17
7-20

7-21
7-24
7-26
7-27
7-28
7-29
7-30
7-31



CHAPTERS

(Continued)

9 OVERLAY LOADING SUPERVISOR CALL 10 (SVC 10)

9.1

9.2

SUPERVISOR CALL 10 (sVvC 10)

MESSAGES

10 AUXILIARY PROCESSING UNIT (APU) CONTROL SUPERVISOR

CALL
10.1

10.2

10.3

10.4

10.5

11 USER

11.1

13 (svC 13)
INTRODUCTION

FETCHING LOGICAL PROCESSOR MAPPING TABLE
(T.PMT)

FETCHING AUXILIARY PROCESSING UNIT (APU)
STATUS INFORMATION

AUXILIARY PROCESSING UNIT (APU) MAPPING
FUNCTIONS

AUXILIARY PROCESSING UNIT (APU) CONTROL
FUNCTIONS
SUPERVISOR CALL 14 (SVC 14)

SUPERVISOR CALL 14 (SVC 14)

10-1

10-2

10-2

10-2

10-3

11-1

12 DATA COMMUNICATIONS DEVICE DEPENDENT INPUT/OUTPUT (I/0)
SUPERVISOR CALL (SVC 15)

12.1

SUPERVISOR CALL 15 (SVC 15)

SVC 1 Parameter Block Format and Coding
Function Code Format for Data Transfer Requests
Extended Options Fullword Format for Nonmagnetic
Tape Devices

Extended Options Fullword Format for Magnetic
Tape 1/0 Operations

SVC 1 Gapless Mode Parameter Block Format and
Coding

Function Code Format for Gapless Mode Data
Transfer Requests

IN-QUEUE or OUT-QUEUE Structure

48-038

12-1

FOO ROl



FIGURES (Continued)

3-1 SVC 2 Code 1 Parameter Block Format and Coding 3-5
3-2 SVC 2 Code 2 Parameter Block Format and Coding 3-7
3-3 Task Impure Segment for SVC 2 Code 2, Option X'00' 3-10
3-4 Task Impure Segment for SVC 2 Code 2, Option X'80' 3-12
3-5 SVC 2 Code 3 Parameter Block Format and Coding 3-13
3-6 Task Impure Segment for SVC 2 Code 3 3-15
3-7 SVC 2 Code 4 Parameter Block Format and Coding 3-16
3-8 Program Status Word (PSW) 3-17
3-9 SVC 2 Code 5 Parameter Block Format and Coding 3-20
3-10 SVC 2 Code 6 Parameter Block Format and Coding 3-23
3-11 SVC 2 Code 7 Parameter Block Format and Coding 3-27
3-12 SVC 2 Code 8 Parameter Block Format and Coding 3-33
3-13 SVC 2 Code 9 Parameter Block Format and Coding 3-38
3-14 SVC 2 Code 10 Parameter Block Format and Coding 3-41
3-15 SVC 2 Code 11 Parameter Block Format and Coding 3-44
3-16 SVC 2 Code 15 Parameter Block Format and Coding 3-46
3-17 SVC 2 Code 16 Parameter Block Format and Coding 3-53
3-18 Packed File Descriptor Area 3-57
3-19 SVC 2 Code 17 Parameter Block Format and Coding 3-74
3-20 SVC 2 Code 18 Parameter Block Format and Coding 3-82
3-21 SVC 2 Code 19 Parameter Block Format and Coding

for Option X'00' 3-91
3-22 SVC 2 Code 19 Parameter Block Format and Coding

for Option X'0O1' 3-97
3-23 8VC 2 Code 19 Parameter Block Format and Coding

for Option X'02' 3-103
3-24 SVC 2 Code 19 Parameter Block Format and Coding

for Option X'03' 3-106
3-25 SVC 2 Code 19 Parameter Block Format and Coding

for Option X'04' 3-112
3-26 SVC 2 Code 20 Parameter Block Format and Coding 3-115
3-27 SVC 2 Code 21 Parameter Block Format and Coding 3-117
3-28 SVC 2 Code 23 Parameter Block Format and Coding

for Option X'00' 3-119
3-29 SVC 2 Code 23 Parameter Block Format and Coding

for Option X'80' 3-122
3-30 SVC 2 Code 23 Parameter Block Format and Coding

for Option X'40' 3-124
3-31 SVC 2 Code 23 Parameter Block Format and Coding

for Option X'20' 3-128
3-32 SVC 2 Code 23 Parameter Block Format and Coding

for Option X'1l0' 3-131
3-33 SVC 2 Code 24 Parameter Block Format and Coding 3-133
3-34 SVC 2 Code 25 Parameter Block Format and Coding 3-135
3-35 Area Receiving Accounting Information 3-136
3-36 SVC 2 Code 29 Parameter Block Format and Coding 3-137
5-1 SVC 5 Parameter Block Format and Coding 5-2

48-038 F0O0 RO1 vii



FIGURES (Continued)

I I O

i

oo oo

[T R B |
FRCONOTULReWN
- O

| t

i

~N N
i
w N

viii

SVC 6 Parameter Block Format and Coding

SVC 6 Function Code Field

Extended Load Options Field

Send Data Message Buffer Format for Calling Task
Send Data Message Buffer Format for Directed Task
Message Buffer Format for Directed Task

Single Buffer Ring

Single Buffer Chain

Multiple Buffer Ring

Multiple Buffer Chain

Error Status Field

SVC 7 Parameter Block Format and Coding

SVC 7 Function Code Field

SVC 7 Parameter Block Format and Coding for a
Fetch Attributes Function

SVC 7 Parameter Block Format and Coding for

VFC Function

SVC 7 X'FF00', X'FFOl', or X'FF02' Parameter
Block Format and Coding for Fetch Time and Date
Attributes Function

SVC 7 X'FF03' Parameter Block Format and Coding
for Fetch Time and Date Attributes Function

SVC 7 X'FF04' Parameter Block Format and Coding
for Fetch Time and Date Attributes Function

SVC 7 X'FFOA' Parameter Block Format and

Coding for the Fetch Logical Attributes of

Open File Function

SVC 9 Parameter Block Format and Coding
Task Status Word

0S/32 SUPERVISOR CALLS

FUNCTION CODE BIT POSITIONS FOR DATA TRANSFER
REQUESTS

FUNCTION CODES FOR COMMAND FUNCTION REQUESTS
DEVICE INDEPENDENT STATUS CODES

DEVICE DEPENDENT STATUS CODES

SVC 1 EXTENDED OPTIONS FOR LOCAL AND REMOTE
COMMUN I CATIONS

EXTENDED FUNCTION CODES FOR CONTROL OPERATIONS
MAXIMUM NUMBER OF BYTES ERASED

EXTENDED FUNCTION CODES FOR DATA TRANSFER
OPERATIONS

2-5

2-17
2-19
2-20
2-22
2-23
2-24

2-25

48-038 FOO ROl



TABLES (Continued)

www w w
[ 1
0w N

oo
! [ |
o w N

NN o O
i i
WM

NN
! Vol

[0}
I I
[ [ N OO0 b

O
i

=

o
]

=

INDEX

MAGNETIC TAPE DEVICE DEPENDENT STATUS CODES

FUNCTION CODE BIT POSITIONS FOR GAPLESS MODE DATA

TRANSFER REQUESTS
MAGNETIC TAPE DEVICE DEPENDENT STATUS CODES
(GAPL.ESS ONLY)

EXTENDED FUNCTION CODES FOR GAPLESS I/0 OPERATION

SVC 2 FUNCTION CODES

TIME OF DAY VALUES CALCULATED IN SECONDS FROM
MIDNIGHT

TASK OPTIONS FROM THE TASK CONTROL BLOCK
SYSTEM OPTIONS FROM THE SYSTEM POINTER TABLE
TASK WAIT STATUS BIT DEFINITIONS

SVC6.FUN FUNCTIONS

DESCRIPTION OF FUNCTION CODE FIELD FOR SVC 6
CALLS

EXTENDED LOAD OPTIONS FIELD BIT DEFINITIONS
WAIT STATUS BIT DEFINITIONS

SVC 6 ERROR CODES

SVC 7 FUNCTION CODE BIT DEFINITIONS

ALLOWABLE ACCESS PRIVILEGE CHANGES

DESCRIPTION AND MASK VALUES OF THE DEVICE
ATTRIBUTES FIELD

ACCESS PRIVILEGES DEFINITIONS

DATA COMMUNICATIONS ACCESS METHODS DEFINITIONS
READ/WRITE PROTECTION KEYS DEFINITIONS

SVC 7 ERROR CODES

TASK STATUS WORD BIT DEFINITIONS
OVERLAY ERROR CODES AND MEANINGS

SVC 13 FUNCTION CODES

48-038 FOO ROl

3-42
3-93
3-99
3-109

Ind-1

ix






PREFACE

This manual describes the 05/32 supervisor calls (SVCs) that
provide the task interface to 0S/32 system services. The
information in this manual 1is intended for assembly language
programmers who design application level programs for operation
in an 0S/32 processing environment.

Chapter 1 presents an overview of all 0S/32 5VCs, their
functions, and the data structure of the SVC parameter block.
Chapter 2 describes the Input/Output (I/0) Request Supervisor
Call, (SVC 1) that is used to request specific 1/0 services from
the 0S/32 1/0 supervisor. Chapter 3 details 22 general service
functions provided by SVC 2. Chapter 4 presents the format for
the End of Task Supervisor Call, (SVC 3) which 1is wused to
terminate task execution. Chapter 5 provides information on
user-controlled loading of Link-generated overlays through the
Fetch Overlay Supervisor Call (SVC 5). Chapter 6 describes the
Intertask Communications Supervisor Call (SVC 6). Chapter 7
details the File Handling Services Supervisor Call (SVC 7) which
provides file and device handling functions supported by the file
manager and the data communications subsystem. Chapter 8
describes how SVC 9 is used to replace the current task status
word (TSW) located in the task control block (TCB) with a new

user-specified TSW. Chapter 9 provides information on SVC 10,
which handles the automatic loading of overlays generated by
Link. Brief descriptions of the Auxiliary Processing Unit (APU)

Control Supervisor Call (SVC 13), User Supervisor Call (SVC 14),
and the Data Communications Device Dependent I1/0 Supervisor Call
(SVC 15) are given in Chapters 10, 11, and 12 respectively.

Revision 01 includes a description of the SVC 2 code 29 for
unpacking file descriptors, the SVC 7 fetch logical attributes of
open file function, and the assign logical processing unit (LPU)
and transfer to LPU function of 8SVC 6. This manual also
introduces the APU Control Supervisor Call (SVC 13) that is used

by tasks running on the Perkin-Elmer 3200MPS multiprocessor
system.

This manual is intended for use with the 08/32 R06.2 software
release and higher. However, additional material specifically
related to the Model 3200MPS System has also been included.
These Model 3200MPS System features are supported by the 0S/32
R0O7.1 software release and higher. Throughout the text these
features are identified as applicable only to the Model 3200MPS
System.

For information on the contents of all Perkin-Elmer 32-bit
manuals, see the 32-Bit Systems User Documentation Summary.

48-038 FO0 RO1 xi

— - —— - - ——






CHAPTER 1
SUPERVISOR CALLS (SVCs)

1.1 INTRODUCTION

0S/32 provides each task with the support it needs to perform its
designated function. In addition to programs that allow a user
to design, implement, test, and execute tasks, 0S/32 provides a
number of system services that can be accessed by a task during
execution. Included among these services are task timing,
interrupt handling, input and output to devices or files,
resource allocations, and intertask communication and control.

A task accesses a system resource by'calling an 0S/32 executor

routine. An assembly program calls an executor routine by
issuing a supervisor call (SVC). Table 1-1 lists the SVCs that
access O08/32 system services for assembly tasks. These SVCs are

divided into two groups:

e SVCs for general use in both application and system level
programs, and

® SVCs for use in system level programs only.

This manual describes the SVCs designed for general use. SVCs

designed exclusively for use 1in system level programs are

described in the 05/32 System Level Programmer Reference Manual.

These SVCs are indicated by an asterisk (*) or plus sign (+) in
Table 1-1.

TABLE 1-1 O0S/32 SUPERVISOR CALLS

{ SUPERVISOR CALL | FUNCTION |
=======================================z===zr===z=:
sSvC O User—-written SVC
sve 1 Input /output (I/0) request
svec Code 0O* Make journal entries

Release storage
Set status

i
!
i
Pause ‘ i
!
i
i
Fetch pointer i

i
|
i
i
{ Get storage
i
!
=

48-038 F0O ROl 1-1

—— e - - ——



——— e dmer Wman dmie GmEn . mE mmem e mmen Emen e Eem A S mam mam M Amen Amem e mees mAm M e M e e e emem mmen e e e -

TABLE 1-1 08/32

SUPERVISOR CALLS (Continued)

SUPERVISOR CALL |

FUNCTION

********* R o o R R o :

SvC

sSVvC
svC
SVC
svC
svc
svcC
svceC

sSvC
svC
svcC
svC
SvC

svec

svec
svc
svC
svc
svc
sSvC
sSvVC
sSvC
svC

SVC
svcC
svc
SVC

SvC
sSvC

2

NMNNNMNMNNNDDND

[NSINACI (S (U ]

N

CowdhdhdNNbNND
+

10
13

14
15

Code

Code
Code
Code
Code
Code
Code
Code

Code
Code
Code
Code
Code

Code

Code
Code
Code
Code
Code
Code

4

6 { Convert binary to ASCII
! hexadecimal or ASCII decimal
7 { Log message
8 i Interrogate clock
9 i Fetch date
10 i Time of day wait
11 | Interval wait
14* | Internal reader
15 | Convert ASCII hexadecimal
{ or ASCII decimal to binary
16 { Pack file descriptor (fd)
17 | Scan mnemonic table
18 { Move ASCII characters
19 i Peek
20 i Reserved for sequential
{ tasking machines
21 i Reserved for sequential
i tasking machines
23 { Timer management ‘
24 i Set accounting information
25 | Fetch accounting information
26* | Fetch device name
27* | Memory Management
29 { Unpack fd
]
;
:
=
I
:
=
}
:
:
;
:

End of task
Fetch overlay

Intertask communication and

control

File handling services
Load task status word (TSW)

Overlay loading

Auxiliary Processing Unit

(APU) Control

Function determined by user
Communications device

dependent [/0

e e e e o —— e e — " 7 7 A i - T — i -

* Documented

LEGEND

in 05/32 System Level

Reference Manual

Programmer

+ Additional functions documented in 0S/32 System
Level Programmer Reference Manual.

48-038 FOO RO1



Perkin-Elmer also provides run-time library (RTL) routines that
allow a program written in FORTRAN or Pascal to access system
services. These routines issue general user SVCs for the task.
A system macro library is also available that allows an assembly
program to issue an SVC through a system macro call. See the
0S8/32 Application Level Programmer Reference Manual for an
overview of the methods used by the application programmer to
access system services.

1.1.1 The Supervisor Call (SVC) Parameter Block

Associated with each SVC (except SVC 3) is an operating system
data structure called a parameter block. The parameter block
contains the data required by the 0S/32 executor. Each parameter
block has a specific length and format. The full 1length of a
parameter block must be reserved even if certain parameters are
not required by the particular SVC executor routine.

To issue an SVC, a task must specify the identifying number of
the SVC and the address of the SVC parameter block as operands to
the call as follows:

Format:

SVC n,parblk

Operands:
n is a decimal number specifying the SVC.
parblk is the label or address of the parameter block

that contains the information necessary to
execute the call. All parameter blocks must
be fullword-boundary aligned.

Execution of an SVC causes an interrupt that is processed by the
Internal Interrupt Subsystem. See the 0S/32 System Level
Programmer Reference Manual for a description of SVC processing
by the Internal Interrupt System.

When building a parameter block structure, use the standard
symbolic names that have been assigned to the fields and
functional values for the parameter block. To obtain these
standard names and their definitions, expand the appropriate data
structure macro. These macros are contained in the 0S/32 system
macro library, SYSSTRUC.MLB. See the Common Assembly Language
Macro/32 Processor (CAL MACRO/32) and Macro Library Utility
Reference Manuals. ’

48-038 FO0O ROl 1-3



—— m e e mar mmem v W e e W wan e EmE e e e e Wl Amew ek e = -

Use the following macro library utility commands to display the
SYSSTRUC.MLB directory:

*L, MLU32

*gT _

CAL. MACRO LIBRARY UTILITY/32 03-340R00-00
MLU >G SYSSTRUC.MLB/S

MLU >DIR '

01/09/82
$DCBS $TCBS $FCBS $REGSS $UDLS $LIBS $I0B%
$SVC1l$ $ERRCS $5VC13§ S$APBS $SOPT $RREGS $EREGS
SUREGS $PSW $SPT $SPTE F$SPT $TABLS $IVT
$STE $PDCB $DDCB $PSDCB $DDE $MAGDCB §$VFDCB
$SDCB $EVN $T™MQ $SDE $CTX $RCTX $TCB
$0CB FPSTCB $TSW $TOPT $TSTT $TWT $TLFL
FTFL $TPRC $LTCB $LIB FLOPT $LSG $RLST
$RSARCPY $VD $DIR $ACB $FD $FDE $PFOB
$FCB $FFLG $CCB $DATB $DFLG $DXFL $§SVC1
$S1X0 §SVC1ERR $SVC4 $5VCH §SVCH $SVC7 $5VC13
$APST $UDL $10B $IOBF $IOH $SPOL $TERMUSR
$AUF SMTMSTE $ATF $GERC SEFMG FESYS $EMIL
FMERC $ORT $ODT $SPR $TOE $TQH $TQ27
INTCPARM $QH $IPCB $IRCB §ICB $VFCHARS $TKQ
FAPB $APRC $APS $AOPT $TTB $LPMT $SYP
105 MACROS IN LIBRARY MTM:SYSSTRUC.MLB/S

MIL.U

Use the following macro library utility command to expand the
desired structure:

Format:

I.LIST f£d4d,macro

1-4 48-038 F0O RO1



Example:

LI M300:MAR,$SVCl
MACRO
$SVCl
GBLB $%SVCl
AIF (%$SVCl)&svelX

gsvel SETB 1
SPACE 2
svel. STRUC STRUCTURE OF SVC-1 PARAMETER BLOCK
SPACE 1
SVC1.FC DS 0 FUNCTION CODE
SVC1.FUN DS 1 (ALTERNATE MNEMONIC)
SVC1.LU DS 1 LOGICAL UNIT
SVC1.STA DS 1 STATUS FIELD
SVC1.DN DS 1 DEVICE NUMBER
SPACE 1
SVC1.SAD DS ADC BUFFER START ADDR
SVC1.EAD DS ADC BUFFER END ADDRESS
SVC1.RAD DS ADC RANDOM ADDRESS
SVC1.LXF DS 4 LENGTH OF LAST TRANSFER
ENDS
SVC1X STRUC
DS svel.
SVC1l.XIT DS 4 EXTENDED ITAM OPTION BITS
ENDS ~
SPACE 2
ok x % THE SVC-1 FUNCTION CODES
SPACE 1
SV1.CMDF EQU X'80' COMMAND
SV1.READ EQU X'40' READ
SV1.WRIT EQU X'20' WRITE
SV1.BIN EQU X'l0' BINARY
SV1.WAIT EQU X'08°' WAIT
SV1.RAND EQU X'04' RANDOM
SV1.UPRO EQU X'02' UNCOND. PROCEED
SV1.IMG EQU X'Ol' IMAGE MODE
SV1.XIT EQU X'Ol' ITAM EXTENDED OPT
SPACE 1
SV1.REW EQU X'CO' REWIND
SV1.BSR EQU X'AO' BACKSPACE RECORD
SV1.FSR EQU X'90' FORWARD-SPACE RECORD
SV1.WFM EQU X'88° WRITE FILE-MARK
SV1.FFM EQU X'84' FORWARD-SPACE F ILE-MARK
SV1.BFM EQU X'82' BACKSPACE FILE-MARK
SV1.DDF EQU X'81° DEVICE DEPENDENT FUNCTION
SPACE 1
SV1.HLT EQU X'80' HALT I1/0
SV1.SET EQU X'60' TEST & SET
SV1.WO EQU X'08' WAIT ONLY
SV1.TEST EQU X'02' TEST I/0 COMPLETION
SPACE 1

Kk ok ok ke ek s s ok ok e ok ok ok ok sk ok ok ok ok ok ok K ok ok ok o ok ok 3 ok ok k ok 3 3k 3 ok Dk ke ok ok ok ok ok dk ok ok ok ki ok 3k ok ok ok ok

&SVC1X ANOP

MEND
1 MACRO LISTED TO MAR:
MLU

48-038 FOO ROl 1-5



UL R U U p——

1.2 SUPERVISOR CALL (SVC) ERRORS

The operating system informs the task of any error conditions
encountered during SVC processing. Depending on the kind of
error encountered, the operating system:

e pauses execution of the task and displays a message on the
gsystem console, or
¢ stores an error code in the error status field of the SVC

parameter block and/or sets the condition code.

The first method is used when an error condition occurs as a
result of a programming error in the task code (e.g., alignment

or illegal instruction fault). If the user wishes the task to
handle these errors, the task can take a trap that causes
execution to branch to the task trap handling routine. See the

0S/32 Application Level Programmer Reference Manual for more
information on trap handling.

The second method informs the user of the execution status of the
SVC executor.

1.2.1 Supervisor Call (SVC) Error Messages

When the user chooses not to take a trap when an illegal
instruction fault occurs, the illegal instruction trap bit is set
to 0 1in the current task status word (TSW). On encountering an
SVC error, the operating system pauses the task and outputs a
message to the system console.

If the SVC error results from attempting to execute an undefined

or 1illegal S8VC or from specifying an invalid code for an SVC 2,
the following message is displayed:

ITLEGAL SVC - INSTRUCTION AT xxxxxx(YyYYYYY)

Where:
XXXXXX is the relative address of the SVC instruction
that caused the error.
YYYYYY is the physical address of the SVC instruction

that caused the error.

1-6 48-038 F0O RO1



If an address or alignment error occurs, the following message 1is
displayed:

Format:

SVC ADDRESS ERROR - INSTRUCTION AT xxxxxx(YyyyYYY)

SVC PARAMETER BLOCK AT XXXXXX(YYYYYY)

Where:
XXXXXX is the relative address of the sSvC or
parameter block that caused the error.
YYYYYY is the physical address of the sveC or

parameter block that caused the error.

NOTE

Systems equipped with a memory address
translator (MAT) display the following
message when an address or alignment
error occurs:

SVC ADDRESS ERROR-INSTRUCTION AT xxxxxX(yyyyYY)
SVC PARAMETER BLOCK AT xxxxxXx(YYYYYY)
MEMORY FAULT ADDRESS = xxxxxx(YyyyYYYY)

An address or alignment error can result from any one of the
following conditions:

1.

The address specified for the SVC parameter block 1lies
outside task boundaries.

The address specified for the SVC parameter block 1is not
aligned on a fullword boundary.

The address specified for the S8SVC parameter block is not
within a writable segment, which 1is required for that
particular SVC.

48-038 FOO ROl 1-7



1.2.2 Supervisor Call (SVC) Status Codes

When an SVC execution error occurs, the operating system:

e returns an error code to the status field of the SVC parameter
block, and/or

e sets bits in the condition code (CVGL) to reflect the results
of SVC execution.

The status code returned depends on the particular SVC. Each SVC
described in this manual has a defined set of status codes. The
condition code, if set for the SVC, depends on the particular
SVC. Generally, a condition code of 0 indicates successful
execution and termination.

A nonzero error code may be returned to the status field of the
SVC parameter block as a result of one of the following
conditions:

e The buffer to which the SVC parameter block is pointing is not
aligned on the proper boundary.

® An SVC parameter block that must point to a task writable
segment is pointing to a buffer outside a writable segment.

To test the condition code, use a branch mnemonic that tests for
a true condition.

Example:

BTC PSW.CC,ERROR

In this example, the condition code of the PSW is tested for the
conditions specified by the mask field PSW.CC. PSW.CC is equated
to X'F'. If any conditions tested are found to be true, a branch
is taken to the location ERROR. For more information on branch
instructions, see the Perkin-Elmer Processor User's Manual for
your installation.

1-8 48-038 FOO0 RO1



CHAPTER 2
INPUT/OUTPUT (I,/0) REQUEST SUPERVISOR CALL 1 (SVC 1)

2.1 INTRODUCTION

SVC 1 executes all general 1/0 data transfer requests and
specific command function requests. General I/0 data transfer
requests refer to either a read or write operation. Before any
data can be transferred, the user must specify whether it is a
read or write, the address and length of the I/0 buffer that will
receive or send the data, and the logical unit (lu) assigned to
the device to which the 1/0 is directed. These specifications
are indicated through certain fields of the SVC 1 parameter
block.

When requesting a read or write operation, the user must describe
in the SVC 1 parameter block the data being transferred and the
environment during the transfer. For proper execution of a
simple data transfer request, specify:

® the structure of the file that a record is being transferred
to/from (sequential or random),

e the form the data is in when transferred (ASCII or binary,
formatted or image mode), and

e the state the calling task will be in during I/0 (I/O proceed,
I/0 wait, unconditional proceed).

If the device is busy when the data request is made, the user
must decide 1if task execution is to wait, whether to queue the
request and proceed, or whether to proceed and retry the 1/0
request later. Link specifies the maximum number of I/0 requests
that are to be gueued at one time. The user also has the option
to start I/0 and continue task execution and then decide to stop
task execution until the I1/0 is completed. If the device is free
and the user wants exclusive access to a record or file (any file
type), the user should execute a test and set operation to inform
other tasks that the record or file is being used.

48-038 FOO ROl 2-1



Once the read or write operation is completed:

test for 1/0 completion (check the condition code, status
fields, task qgueue, or execute a test I/0 complete), and if
the status fields indicate that no error has occurred;

check to verify that all of the specified data was actually
transferred (check length of data transfer field in the SVC 1
parameter block).

All testing and checking for [/0 completion can be accomplished
through the SVC 1 parameter block.

Specific I/0 command function requests that can be made through
SVC 1 include:

Rewind

Backspace or forward space record

Write filemark

Backspace or forward space filemark

User-specified driver dependent functions (reserved)

Halt /0

Before a command function request is issued, the desired command
must be specified, and the lu must be assigned to the device to
which the command 1is directed. These specifications are
indicated through the SVC 1 parameter block in Figure 2-1.

48-038 FOO ROl



2.2 SUPERVISOR CALL 1 (SVC 1)

The SVC 1 parameter block must be 24 bytes long,
fullword-boundary aligned and located in a task writable segment.
Location within a writable segment is necessary so the status of
an 1/0 request can be returned to the status fields of the
parameter block. All fields in the parameter block are not
required for every I/0 request but must be reserved (see Figure
2-1).

0(0) | 11(1) | 12(2) Device

! 13(3) Device |
! Function code] 1lu |  independent | dependent |
| H H status ! status H
= e e e -
14(4) :
| Buffer start address '
1 1
e S |
18(8) |
i Buffer end address '
] [}
e |
112(C) !
| Random address |
[} |
I 1
= o o - - T — o o T~k o o " o W = ) > s oot o i o o o e e e o Vi S o o e o e b it o nom um win e o m :
116(10) |
! Length of data transfer :
] |
[} t
=._. ___________________________ U O LU :
120(14) i
H Extended options '
] [}
] !

svc 1l,parblk

ALIGN 4

parblk DB X'function code’

DB X'lu'

DS 2 bytes for status

DC A(buffer start)

DC A(buffer end)

DC 4 bytes for random address

Ds 4 bytes for length of data transfer

DC Y 'extended options’

Figure 2-1 8SVC 1 Parameter Block Format and Coding

48-038 F0O ROl 2-3



Fields:

Function
code

1lu

Device
independent
status

Device
dependent
status

Buffer start
address

Buffer end
address

Random
address

Length of
data transfer

Extended
options

is a l-byte field indicating whether a request

is a data transfer or a command function, and
the specific operation to be performed. Bit
settings for data transfer requests are
described in Table 2-1. Hexadecimal function
codes for command function requests are
defined in Table 2-2.

is a l-byte field containing the logical unit

currently assigned to the device to which an
1/0 request is directed.

is a 1l-byte field receiving the execution
status of an I/0 request after completion.
The status received is not directly related to
the type of device used.

is a l-byte field receiving the execution
status of an I/0 request after completion.
The status received contains information
unique to the type of device used.

is a 4-byte field used only for data
transfer requests and must contain the
starting address of the 1I/0 buffer that

receives or sends the data being transferred.

is a 4-byte field used only for data
transfer requests and must contain the ending
address of the 1I1/0 buffer that receives or
sends the data being transferred.

is a 4-byte field containing the address
of the logical record to be accessed for a
data transfer request; a legal hexadecimal
number must be specified in this field if bit
5 of the function code is set to 1.

is a 4-byte field used only for data
transfer requests. It receives the number of
bytes actually transferred as a result of a
data transfer request. If an error occurs
during data transfer, this field is modified
with indeterminate data.

is a 4-byte field specifying device dependent
and independent extended functions that must
be executed by the device when it is servicing
a data transfer request.

48-038 F0O ROl



2.2.1 Data Transfer Requests

Figure 2-2 shows the function code format for data transfer
requests, and Table 2-1 defines each function code bit position.

Format Access Extended

Options
Test Wait |Test I/0
and set only |Complete
el Vo V¥
POYRIW L L
Bits:

Figure 2-2 Function Code Format for Data Transfer Requests

TABLE 2-1 FUNCTION CODE BIT POSITIONS FOR DATA TRANSFER

REQUESTS

i BIT | | i
| POSITION | BIT NAME | BIT SETTING AND MEANING '
; E 2% & 3 2§ 3 8 3 & R 3 _F X 2 3 3 2 § J _2-3 3 _§ £ 8 33 _F_F 3 F & _B_§ B8 _F_& 3 ='====-:==.r==r:=‘:====:=:=:‘r:
H 0 | Function code | 0 = data transfer request. |
! i type | !
= e e e e e e e S i
! 1 ! Read ! 1 = read operatlon (Blt 2 !
: ! ! must be set to O. ) !
: ____________________________________________________________________ :
i 2 | Write { 1L = write operation. (Bit 1

' | | must be set to 0.) |
o e e e e e e e e e e e e e = m i

1-2 Test and set 11 = test if a spec1f1c record

{ 1
] i
| in a file is being used by |
| another task. H

48-038 F0OO ROl : 2-5



TABLE 2-1 FUNCTION CODE BIT POSITIONS FOR DATA TRANSFER
REQUESTS (Continued)

i - o — - —— o o —— 1 —— T ——— i W - A= - S b o

BIT
POSITION

T T TN S T O N T R N T T T S N T N T S T T R T S R T T T S TN IR NIRRT

3

BIT NAME

ASCI1I

Binary

o e - i ——— "t i i S ok S e - " — . ———— T

1/0 proceed

Wait I/0

Wait only

0

0]

BIT SETTING AND MEANING

the data to be transferred
is in ASCII format.

the data to be transferred
is in binary format.

If bit 7 of the function
code is set to indicate
image I/0 transfer, the
setting of bit 3 is
ignored and the data is
transferred 1in image
format.

If the device is not busy,
return control to the call-
ing task after initiation
of data transfer to the
device. However, if the
device is busy, the request
is queued and task execu-
tion continues.

stop task execution, ini-
tiate data transfer to the
device, and wait until the
completion of I/0.

task execution stops and
waits until the completion
of all queued 1/0 proceed
requests to the specified
lu.

When a wait only request is
issued, bit 4 is the only
bit set in the function
code.

48-038 FO0O RO1

. e A e e - —— - — ——— —— —— - —— - e ————

- e - . w—an mN e G A GmAE e e Emee e e Eaan e e e wmdn wmes b ———



TABLE 2-1

FUNCTION CODE BIT POSITIONS FOR DATA TRANSFER
REQUESTS (Continued)

— i it o ot e i o Ao o o o T — " I A Aok i e me Nem han LAk e e b e Aem e et e m e iw e va rh e wm ow e

BIT
POSITION

A 3 R 2 A1 1 2]

5

e - wmem m—em e wmen wem Ehim MR e S S SMEE R MEer MM AR R MR MRGe Ve AR fmee e e s e e e M Gee weem me

48-038 F00 RO1

BIT NAME

Sequential

Random

Conditional
proceed

Unconditional
proceed

Test 1/0
complete

access the next logical
record.

access the logical record
specified by the hexadec-
imal value in the random
address field of the para-
meter block. The associa-
tion of the hexadecimal
values with the logical
record must be established
before the data transfer

issued, put the task into a
wait state if the requested
device is busy and the
total number of gueued re-
guests exceeds the maximum.
Once the I/0 request is
completed, the task resumes
execution. If the maximum
number of gueued requests
is 1, a pending request
causes the task to be
placed into a wait state.

any I/0 regquest made to a
device that is busy is re-
jected if total number of
queued requests exceeds the
maximum, and task execution
continues.

test to check for the com-
pletion of 1/0 to a speci-
fied lu.

If a previous I/0 proceed
request or queued I/0 pro-
ceed request does exist,
the condition code is set
to X'F'. However, if there
is no outstanding I/0 pro-
ceed request, the condition
code is set to X'0'.



TABLE 2-1 FUNCTION CODE BIT POSITIONS FOR DATA TRANSFER
REQUESTS (Continued)

BIT H
POSITION | BIT NAME BIT SETTING AND MEANING
i i When a test I/0 complete
i ! request is issued, bit 6
P ! is the only bit in the
H ]
i i

function code set. If bit 4
is set, it is ignored.
Format 0 = the data being transferred

is formatted as indicated
by the bit 3 setting of the
function code and according
to the device type speci-
fied.

Extended/
image options

i

i

i

i

i

i

i

{ 1 = tests the setting of the
! XSVCl task option. If

i XSVCl is off, an image 1/0
! transfer is performed. If
| the option is on, the

| extended options fullword
i in the parameter block is
i checked for specified

H options.

i
i
i
|
i
i
i
i
i
i
i
|

When an image I/0 is per-
formed, the data being
transferred is in image
mode and is not formatted.
In effect, the user must
explicitly specify any con-
trol characters such as
carriage returns or line
feeds on writes and will
receive exactly what is
input on reads.

48-038 F0OO ROl



2.2.1.1 Test and Set

The test and set function can be used to write a program that
prevents multiple tasks from modifying a record simultaneously.
A task that issues an SVC 1 with the test and set bit enabled
notifies other tasks that it is using a record by setting the
first bit of that record to 1. This bit setting 1is called a
one-bit record lock. Any task subsequently performing a test and
set on the record is informed that the record is being accessed
by another task.

To use the test and set function, set both bits 1 and 2 of the
function code field to 1.  If the test and set operation is used
to lock out a record written in binary image mode, make certain
that the first bit in the record is initially set to zero. In
addition, the size of the user buffer should match the size of
the file record. The following diagrams demonstrate how a test
and set operation is performed.

In the first diagram, the calling task issued an SVC 1 with test
and set enabled to read a record into its user buffer specified
by the SVC 1 parameter block. Notice that the bit setting for
the record lock bit is 0, indicating that the record is not being
used by another task.

Record
lock
bit  Record Length
e —\
Record {-———5 e e S S
on 10} ! !
Disk = 6m===- D e S At
Bytes:
0 99 255
1l sector
Record
lock
bit
Record . QU - fm———-
Transferred i 0} |
to User = -—--—-- - -
Buffer Bytes:
0] 99

48-038 FOO ROl 2-9



— i —

e A e - -

—

After the record is read into the user buffer, the test and set
operation tests the record lock bit. If the bit is 0, the record
lock bit in the wuser buffer is then set to 1. The following
diagram shows the record 1lock bit settings after the test
operation is performed.

Record

Record * ----- I e b I —-—
on 10} | H

Disk 0 0m===-- I 4 e

Record
lock
bit

User &M“______S -

Buffer 114 i

After the record lock bit is tested, the SVC 1 test and set
function then sets the record lock bit on disk to 1 so that other
tasks attempting to modify the record are notified that the
record is in use. SVC 1 sets the record 1lock bit on disk by
copying the contents of the user buffer to the record's original
location on disk. In addition, SVC 1 sets the condition code to
X'0' and resets the record lock bit in the user buffer to O.

The following diagram shows the results of the completed test and
set operation.

Record

lock

bit
Record = =  Fo———- e S - e —————
returned i1 i !
to disk = ------ T B D
with Bytes:
record 0 99 255
lock bit
set

2-10 48-038 FO00O RO1



lock
bit
_______ S

User 10 i
buffer = = | —=====- 4 e
with Bytes:
record 0 99
lock bit
set to O

Condition Code

If the calling task had performed a test and set operation on a
record that had a record lock bit setting of 1, the condition
code would be set to X'F'. The following diagram shows the
record lock bit settings and condition code resulting from this
test and set operation.

Record

lock

bit
Record = T-eee- 4 - e e ————
on disk 11 H !
with = === ) m— e 4 e
record Bytes:
lock 0 99 255
bit set

Record

lock

bit

& ______ _5 f __________
User R '
buffer -—----- ~+ fem—————
with Bytes:
record 0 99
lock bit
set to 1

48-038 FOO ROl 2

11



— —————

Condition Code

e - — 1

After a test and set operation, a record protection program
checks the condition code. If the condition code is zero, the
task can then proceed to modify the record. If the condition
code 1is X'F', the task should retry the test and set operation
before attempting to modify the record.

To unlock the record on disk, the task that set the record 1lock
bit should write the record in its user buffer back into its
original location on disk, whether or not the task modified the
record.

If the size of the user buffer is less than the size of the
record, the following will occur when the record in the user
buffer is written back to disk:

e If the record in the user buffer is written back to an indexed
file, the remaining bytes of the record will be filled with
Zeros.

e If the record in the user buffer 1is written back to a
contiguous, nonbuffered indexed, or extendable contiguous
file, the last two bytes of the record will be propagated to
the right until the remaining bytes of the record are filled.

The following diagram illustrates how a user buffer smaller than
a 256-byte contiguous file record is returned to disk. Notice
that the last two bytes of the record in the user buffer are
propagated to the right to fill a 256-byte sector on disk.

Recorad Last two bytes
lock of record
99-byte bit
Record
in Y .{ j—__m
User 10} 14D} 50}
Buffer = -—--e——- 4 fmmm—————
Bytes
0 99

2-12 48-038 F0O0 RO1



Record Last two bytes

Lock of record
bit
99-Byte
Record = = Yo———o- SRS iy S
Returned 10} {4D{50{4D}|50{4D|5014D} {4D{50{4D}50}
to Disk = ------ S e B S S
Bytes:
0 99 255

The test and set operation can be executed as a wait 1/0 or 1/0
proceed request. Setting the condition code during a test and
set operation occurs only when wait 1/0 is specified. (Bit 4 of
the function code 1is set to 1.) However, if an I/0 proceed is
requested (bit 4 of the function code set to 0), setting the
condition code is not useful because it could be changed at any
time during task execution when data transfer and task execution
take place concurrently. Therefore, check the record lock bit in
the buffer to determine whether the record is currently being
used. See the 0S/32 System Level Programmer Reference Manual for
the devices supporting test and set.

The following sample program demonstrates how the test and set

function can be wused to write a program that provides record
protection.

48-038 F00O ROl 2-13



Sample Program:

LR R N IR .2 B A

TESTSET

TESTSET
*

LOOP

CONTOS

*
*

CONT10

*
*

CONT20

*
*

CONT30

*
*

CONT40

TEST AND SET EXAMPLE

PRIOR TO PROGRAM EXECUTION ASSIGN LU 1 AND LU 2
TO A TEXT FILE CREATED BY EDIT32.

LU 1 AND LU 2 SIMULATE ACCESS OF THE FILE BY TWO
TASKS.

PROG TEST AND SET EXAMPLE
ENTRY TESTSET

EQU x

LIS 1,0 SET UP FIRST RECORD NO.
EQU x

ST 1,PB1+I0.RECNU FOR LU 1

ST 1,PB2+10.RECNU FOR LU 2

svc 1,pBl READ & TEST RECORD ON LU 1
BZ CONTOS OK; RECORD IS NOT LOCKED
PAUS ERROR; RECORD IS LOCKED; SHOULD BE FREE

EQU *

LA 14,PB1 PB ADR FOR EOF TEST

BAL 15, pIOERR CHECK FOR END-OF-FILE

EQU *

svC 1,pPB2 READ AND TEST RECORD ON LU 2
BM CONT20 OK;RECORD IS LOCKED

PAUS ERROR; RECORD IS FREE; SHOULD BE LOCKED

EQU *
L 2,B18 MANIPULATE RECORD DATA
ST 2,B18

WRITE RECORD BACK TO FLE AND UNLOCK IT

svc 1,PB3

svVC 1,pPB2 READ AND TEST RECORD ON LU 2
BZ CONT30 OK; RECORD IS FREE
PAUS ERROR; RECORD IS LOCKED; SHOULD BE FREE

EQU x
svC 1,pPB1 READ AND TEST RECORD ON LU 1
BM CONT40 OK; RECORD IS LOCKED

PAUS ERROR; RECORD IS FREE; SHOULD BE LOCKED

EQU *

L 3,B28 MANIPULATE RECORD DATE
ST 3,B28

WRITE RECORD BACK TO FILE AND UNLOCK IT

WRITE LU=2,RECNUMB=(1),ADDR=B2S, ENDADDR=B2E

AIS 1,1 INCREMENT RECORD COUNTER
B LooP DO NEXT RECORD UNTIL EOF
IOPCB FUN=X'76',LU=1,ADDR=B1S, ENDADDR=B1E, RESTART=CONTO5

I0PCB FUN=X'76',LU=2,ADDR=B2S, ENDADDR=B2E

10PCB FUN=X'36"',LU=1,ADDR=B1S, ENDADDR=B1E, RECNUMB=(1)

ALIGN ADC

DS 80 BUFFER FOR LU 1
EQU  *-1

DS 80 BUFFER FOR LU 2
EQU  *-1

END

48-038 FOO

RO1



2.2.1.2 Input/Output (1,/0) Proceed

An I/0 proceed request is initiated when bit 4 of the function
code is set to 0 and a read or write operation is specified.

If the device is free when a data transfer request is made with
1/0 proceed specified, task execution and data transfer take
place concurrently. When the I1/0 is completed, the status of the
data transfer is returned to the status fields in the parameter
block. An illegal function code or illegal lu causes the status
to be returned to the status fields before data transfer starts,
resulting 1in rejection of the I/0 proceed request. Since task
execution and data transfer take place concurrently, the task
must check for the completion of 1/0. There are four ways to
check for 1/0 completion:

1. Execute a test 1/0 complete operation.

2. Monitor the status fields in the SVC 1 parameter block
issuing the request.

3. Take a trap when 1/0 is completed and branch to a service
routine.

4. Issue a wait I/0 request to the device specified by the SVC 1
making the request. This function will stop task execution
until I/0 is completed.

5. Queue I/0 requests by specifying the IOBLOCK parameter of the
Link OPTION command and issue the wait only function. This
will stop task execution until all queued requests to a
specified device are completed.

An SVC 1 I1/0 proceed request to an indexed file executes 1in a
different manner than an I/0 proceed to other file types or
devices. See the 0S/32 Application Level Programmer Reference
Manual for more information on 1/0 operations to indexed files.

2.2.1.3 Queuing Input/Output (I/0) Requests

When SVC 1 issues an /0 proceed request to a device that is
busy, the request 1is placed on the calling task's I/0 control

block, and task execution continues. The request 1is serviced
when the device 1is free. Normally, each task has only one I1/0
control block on which to queue an 1/0 request. To gueue more

than one request, use the IOBLOCK parameter of the link OPTION
command to assign more blocks to the task.

48-038 F00 ROl 2-15



Format:

b
OPTION lQBLOCK={ }

Parameter:

b is a decimal number from 1 through 65,535
indicating the maximum number of I/0 control
blocks assigned to a task. Each 1I1/0 control
block can contain one queued I1/0 request. If
this option is not specified by the user, Link
automatically assigns one I[/0 control block to
the task.

2.2.1.4 Conditional Proceed

If the number of gqueued requests exceeds the maximum number of
I/0 blocks assigned to the task and bit 6 of the function code is
set to 0, SVC 1 places the task in a wait state until one of the
queued requests is serviced. Task execution resumes when the
number of queued requests equals the maximum number set by Link.

The number of /0 requests a task can issue before going into the
wait state is determined by the formula:

b + 1 + number of logical units assigned to task

Parameter b is the number of I/0 control blocks assigned to the
task.

2.2.1.5 Unconditional Proceed

To prevent the task from going 1into the wait state when the
maximum number of requests specified by Link are queued, set bit
6 of the function code to 1. This code allows the task to reject
all I/0 requests made to a busy device after the maximum number
of requests are queued. When a request is rejected, a status of
0 is sent to the device independent status field, and the
condition code 1is set to X'F'. The user can retry the rejected
I/0 request during task execution.

2-16 48-038 FO00O ROl



2.2.1.6 Wait Input/Output (1/0)

To stop task execution during a read or write operation, use the
wait I/0 function. A wait I/0 request is initiated when bit 4 of
the function code 1is set to 1 and a read or write operation is
specified.

If the device is free when a data transfer request is made with
wait I/0 specified, task execution stops, I/0 is initiated, and
the task waits to resume until 1/0 is completed. Status of the
data transfer 1is returned to the status fields when the 1/0 is
completed.

If the device is busy when a data transfer request is made with
wait 1I1/0 specified, the request is queued and task execution is
suspended until the gqueued request is serviced and I1/0 is
completed. Then, task execution resumes.

2.2.1.7 Wait Only

A wait only request stops task execution until all 1/0 proceed
requests to the specified 1lu (including queued requests) are
completed. When the 1last queued 1I1/0 proceed request is
completed, task execution continues. The status of the last
completed I/0 proceed request is returned to the status field of
its respective SVC 1 parameter block.

To issue the wait only request, set the SVC 1 function code field
to X'08', and the 1lu field to the appropriate device. A nonzero
status code will be returned to the status field of the SVC 1
wait only parameter block if any of the following conditions
occur:

e Logical unit is illegal (code X'81').
® Logical unit is unassigned (code X'81').

® Wait only request is issued for a pseudo device without SVC
interception (code X'CO0').

2.2.2 Command Function Requests

All command function requests and task execution take place
concurrently. Queued requests are handled the same way as
conditional proceed data transfer requests. When the 1/0 is
completed, the status of the command function is returned to the
status fields in the parameter block. An illegal function code
or 1illegal 1lu causes the status to be returned to the status
fields before the command function starts. This results 1in
rejection of the command function request.

48-038 F0O RO1 2-17



Since task execution and command function requests take place
concurrently, the task must check for I/0 completion. These
three methods are used to check for I/0 completion:

1. Execute a test I/0 complete operation.

2. Monitor the status fields in the parameter block for the
command function status to be returned.

3. Issue a wait only request to the device specified by the SVC
1 making the request. This function will stop task execution
until I/0 is completed.

Table 2-2 defines the function codes for command function
requests.

TABLE 2-2 FUNCTION CODES FOR COMMAND FUNCTION REQUESTS

{ FUNCTION | i
] CODE i MEANING i
= ;'::'.'===:.=::=::“:':-.'====~;==:==========—:==z=====_===========—====ﬂ=}
| X'CO0' | Rewind - a rewind operation is to occur on |
' { the spec1f1ed lu. H
T T e e e e e e e e e e e e e e i
| X'AO' | Backspace record - The device assigned to |
] i the lu is to backspace one record length. H
: ___________________________________________________________________ =
i X'90"' | Forward space record - The device a551gned H
' i to the lu is to move forward one record i
' i length. i
e bt e ettt bk dedesb b e et ]
' X'88' | Write ﬁllemark - a fllemark is to be written |
' i at the current pointer position on the de- ]
i { vice assigned to the 1lu. i
b e e e e !
{ X'84' | Forward space fllemark - The dev1ce a531gned !
! { to the lu is to move forward past the next |
d i fllemark to the beginning of the next file. |
: _________________________________________________________________ %
H X'g82' | Backspace filemark - The device asslgned to |
i { the lu is to backspace to the previous |
i i filemark. For disk files, this positions |
| { the pointer to the beginning of the previous |
] { file. For magnetic tape files, the tape is |
| i 9081t10ned at the end of the previous file. |
= _________________________________________________________________ ‘
' X'81l' | Reserved for drlver dependent functions. i
; ____________________________________________________________ :
Halt I1/0 - Cancel all previous I/0 proceed

b
(o]
o

|
[}
| requests to the spec1f1ed lu.

2-18 48-038 FOO ROl



2.2.2.1 Halt Input/Output (1/0)

When a halt I/0 request is 1issued, any previous I/0 proceed
requests, whether they are in progress or queued to the specified
lu, are cancelled. When the I/0 is terminated, the task that
issued the 1/0 proceed request takes a trap (if enabled), the
request 1is queued, and the status of the 1/0 operation (data
transfer or command function) is returned to the status fields of
the parameter block issuing the request. The time of actual
termination is asynchronous to the time the halt I/0 is issued.
The independent status codes are listed in Table 2-3, and the
dependent status codes are listed in Table 2-4.

When an I/0 request is issued to an lu and a previous I/0 proceed
request exists for that same 1lu, the second request and any
subsequent requests to that 1lu cannot be serviced until the
previous I1/0 request 1is completed. By issuing a halt 1/0
request, the first I/0 request 1is cancelled, allowing 1/0
requests issued after the cancellation to be started on the
device.

If the IOBLOCK option was specified by Link and at least one 1/0
request to a specified 1lu is queued, execution of a halt 1/0
request cancels any I/0 to that specified lu already queued or in
progress. See the 0S/32 System Level Programmer Reference Manual
for the devices supporting the halt I/0 request.

2.2.3 Logical Unit (lu)

An lu is a decimal number ranging from O through 254. The
highest 1lu number to which a task can be assigned is determined
by the lu parameter of the Link OPTION command. After loading
the task into memory, the lu should be assigned to a particular
file or device through SVC 7 or an ASSIGN command. If no actual
I/O operation 1is desired, the 1lu should be assigned to NULL:,
causing a no-operation (no-op) to occur.

2.2.4 Device Independent Status

Logical units provide device independent 1/0 by causing all 1/0
requests to be made directly to the lu and not to the device.
The execution status of an I/0 request that is independent of the
physical characteristics of the device being used is returned to
the device independent status field of the parameter block. See
Table 2-3. The data remaining in this field from a previous 1/0
request are not modified until a subsequent 1/0 is completed or
an error occurs.

48-038 FOO ROl 2-19



TABLE 2-3 DEVICE INDEPENDENT STATUS CODES

- —— . —— A " - —— e —_— - —— i e - ———_—— — " — ot o o

STATUS |
CODE | MEANING
X'co! | Illegal function - An error is present in
i the function code; the requested function
i is not supported by the device or assigned
| access privilege, or the buffer transfer
{ is too small. (When using tape, minimum
{ buffer size is four bytes.)
| Device unavailable - The device is either
| inoperative or not configured into the
{ system.
{ End of medium (EOM) - The 1/0 directed to
i the lu reached the physical end of the
{ device; e.g., end of tape. During magnetic
{ tape operations this status may be com-
[
|

bined with one of the next three status
codes, yielding X'98' X'94', and X'92°'.
{ End of file (EOF) - The logical end of the
i file specified by the assigned lu was
! reached.
{ Unrecoverable error - An error occurred
i and the I/0 request, which terminates
i task executlon, cannot be retried.
Parity - An even or odd parity error
occurred on a data transfer request.

- e e man —— ——

i

i

i

i Recoverable error - The I/0 request is re-
| coverable and can be retried. A write

| request was issued to a write-protected

{ device.
i
i
i
|
i

No I/0 currently being processed - If a
halt I/0 request is executed, this bit is
set, indicating that no [I/0 is being pro-
cessed at this time.
{ [llegal or unassigned lu - The lu
| specified in the parameter block is either
i incorrect or was not previously assigned.
X'00' | Normal execution - I/0 is completed and
i no error occurred.

48-038 F0OO RO1



2.2.5 Device Dependent Status

The execution status of an I/0 request that is directly related
to the wunique characteristics of the device being used is
returned to the device dependent status field of the parameter
block. See Table 2-4. The data remaining in this field from a
previous I/0 request are not modified until a subsequent 1/0
request is completed or an error occurs.

TABLE 2-4 DEVICE DEPENDENT STATUS CODES

\ STATUS | '
! CODE |} MEANING !
= ======E=========2==£======-333E=H2€§8=2=====2====;.‘:‘r==".3:
i X'85' | Exhausted retries on seeks - Seeks on disk |
H i devices have been retried the maximum i
H ! number of times. !
= ________________________________________________________________ :
i X'84' | Queued I/0 terminated - A gueued I/O i
! | request is terminated because a previous !
| { 1/0 request failed. |
= ________________________________________________________________ :
{ X'83' | Device is wrlte protected - A write opera- |
! | tion to a write-protected device occurred. |
= e e i
1 X'82' !\ Read/write timeout - A read or write tlme— H
! i out condition occurred i
T e e e e e e i
i X'81l' | Terminated by Halt I/O - 1/0 was termina- |
! | ted by a halt 1/0 operation. !
e e bl H

error occurred.

- —— - —— . ———— 7o i Vi M bo o o et a o o R —— A W . - Aih et M A B e S e e e e A

i X'00°! | Normal execution - I/0 completed and no
] ]
] ]

2.2.6 Buffer Start/Buffer End Address

The buffer start/buffer end addresses specify the buffer to be
used for data transfer requests. The start address is the first
byte in the buffer. The end address is the 1last byte in the
buffer that is included in the transfer.

48-038 FOO ROl 2-21



Starting Ending

address address
X'1l50" Data buffer X"19F'

o e e e et et e e e e e o e e e e I et ':f‘."

' i i i
___________________________ -5 j_....._.____..__-_-___..._____._
Bytes:

0 79

2.2.7 Extended Options

If bit 7 of the function code is set to 1 and the XSVCl option
was specified at Link time, the options specified by the SVC 1

extended option field are executed. The extended options
fullword format is dependent upon the device that an I/0 request
is directed to. In general, there are two formats: one for

nonmagnet ic tape devices and one for magnetic tape devices.

2.2.7.1 Nonmagnetic Tape Devices

If a device is supported by the data communications subsystem,
the extended options provide device dependent, communication
dependent, and device independent features when a read or write
operation is performed.

Figure 2-3 1illustrates the fullword format of the extended
options field of the SVC 1 parameter block for devices supported
by the communications subsystem.

Function modifiers Extended functions

e e i o e ok i o A — o —— - —_ Vo o -~ A - — o ——

o o ot e o At ot i i —— i — i = o o —— —  — — —— —————— —————— iy 7o b ot o

Figure 2-3 Extended Options Fullword Format
for Nonmagnetic Tape Devices

Bits O through 15 are for general use in both local and remote
communications.

Bits 16 through 25 are used to expand a function's capability.
For example, the write edit function can be expanded to write
blinking by using a function modifier.

2-22 48-038 FOO RO1



Up to 64 device dependent I/0 functions can be specified by bits
26 through 31. These extended functions are mutually exclusive;
however, an 1/0 with multiple requests or operations can be
performed.

Table 2-5 describes the SVC 1 extended options that can be
specified for both 1local and remote communications. See the
0s5/32 Basic Data Communications Reference Manual for a listing of
device dependent extended functions along with their applicable
function modifiers.

TABLE 2-5 SVC 1 EXTENDED OPTIONS FOR LOCAIL, AND REMOTE
COMMUNICATIONS

| BIT i
{ POSITIONS | BIT NAME ! BIT SETTING AND MEANING
:====-u:=--n-aawnsa-nnu:zn:zm==- R T T T T R T N T T T T T I T TSI I I SN ST IS ST T
! 0 { Connect (CON) |} 1 = terminal manager answers a
i | telephone ring on a dial-in
! H line during a read or
i ! write line initialization
i ] sequence.
I ____________________________________________________ rm e v - a1 -
Disconnect { 1 = terminal manager dlsconnects
(DCT) ! from a switched line

! following final data trans-

! fer
Image/format 0 = data belng transmltted is
( IMG/FMT) in image mode and is not

formatted.

i
i
i
|
{ 1 = terminal manager performs
! normal record buffering,
H inserts or deletes line
! control characters, and
! recognizes appropriate data
| format control characters
! on transmitted data.
3-7 H ! 00000 = these bits are reserved
for future use.
! Vertical i 1 = requests vertical forms
| forms control | control option for an ASCII
i (VFC) ! I1/0 operation.

— - Aar Gmes s wmEm wmes wmam Emen e ——— ———

O
1
’—J
(6,
o
o
o
o
(=]
o
o
[
]
o
(¢}
[}
H
<
[0}
Q,

48-038 F0OO ROl 2

23



2.2.7.2 Magnetic Tape Devices

The extended options fullword format differs when 1I/0 is being
directed to a magnetic tape device. Figure 2-4 illustrates the
fullword format of the extended options field of SVC 1 parameter
blocks used for magnetic tape I/0 operations.

Extended function code

Figure 2-4 Extended Options Fullword Format for Magnetic Tape
I/0 Operations

If the extended function code requires an additional parameter,
the most-significant bits (0-7) contain the parameter value.

Bits 8 through 26 are not wused during magnetic tape 1/0
operations. Bits 27 through 31 contain the extended function
code that indicates the type of I/0 operation to be performed.
The extended function codes available for use in this field are
dependent upon the standard function code setting in the SVC 1
parameter block. Table 2-6 contains the extended function codes
available when the standard function code bit setting indicates
a control operation.

TABLE 2-6 EXTENDED FUNCTION CODES FOR CONTROL OPERATIONS

section of tape (approximately 3 to 3.5 inches) in
the forward direction.

| EXTENDED |

{ FUNCTION |

| CODE H OPERATION/EXPLANATION

: Pl - R - - S R A F-F-E S-S B SR S S J 252 F & 2 2 _F S 2 2 R 8 3 _F-F_RF -5 5§ S ¥ & g% 3
| 0 i REWIND AND UNLOAD - The tape is rewound to begin-
i i ning of tape and then unloaded. Requires hardware
i | support. '

1 ]

) 1

H 1-6 ! RESERVED

] 1

1 |

| 7 | CREATE A GAP - The drive is instructed to erase a
1 1

| |

{ |

2-24 48-038 F0O ROl



TABLE 2-6 EXTENDED FUNCTION CODES FOR CONTROL, OPERATIONS
(Continued)

EXTENDE
FUNCTIO
CODE i OPERATION/EXPLANATION
8 READ DRIVE STATUS - A task can read 8 status
halfwords into the buffer space specified in the
SVC 1 parameter block. The status returned
depends on the type of drive in use. See the
High Performance Magnetic Tape System (HPMTS) 125
Programming Manual for a list of the status
halfwords. Requires hardware support.

20

h

RESERVED
10 ERASE TAPE - Erases a variable length of tape,
beginning at the current position. The length of
tape erased is determined by the following formula:

No. of Bytes in User Buffer
Length of Tape Erased = ----—-—--—mmm e o

Current Tape Density

The result is rounded up to a multiple of the
length of a hardware gap (approximately 3 to 3.5
inches). The maximum number of bytes that can be
erased depends upon the tape density (See

Table 2-7). If an erase tape request exceeds the
maximum number of bytes for the current tape
density, the 0S will erase the maximum number of
bytes and then output a message indicating that the
remaining bytes in the buffer were not erased. The
erase tape function is illegal if the tape is at
load point.

NOTE

For device code 65, the current density
is assumed to be 800BPI. If the current
density for device code 65 is 1600BPI,
the length of tape erased is twice as
long as requested.

—— e Ghan G Emee WS e GEEr W e e e A e dmen e Weee en e b e SRR EREE MEA G S MR MASE GRGE SPes TEEE WP WRam Gmen Wee men WG SRdn MRAL GRGe Rew men wmem mmem

e e G G MmAE WmEr Whem Ger GEe GrE AN e eh Gkl Gheh SRR GG GRAE e Ghe TR MAR GRS MRS MRS SRR MEA MmO e e She A Gas Gee e e S Gmes e

RESERVED

- . ———— e T o o —— o S o i i B e e A M aem vem e A - — o o A i b arm e e e w i e m e o

48-038 FO0O ROl 2-25



TABLE 2-7 MAXIMUM NUMBER

OF BYTES
ERASED

| TAPE | :
{ DENSITY | NUMBER |
|  (BPI) | OF BYTES |
:======S§===========’!=====:
: 800 { 200,000 |
i 1600 | 400,000 |
| 6250 { 1,000,000 |

Table 2-8 contains the extended function codes available when the
standard function code bit setting indicates a data transfer
operation.

TABLE 2-8 EXTENDED FUNCTION CODES FOR DATA TRANSFER
OPERATIONS

| EXTENDED |
i FUNCTION |
i CODE ] OPERATION/EXPLANATION
| T R T S T T I S D I N N T T N T T T N TS T T T N I T T TSNS ES ST ST ST
0 NO EXTENDED FUNCTIONS
The bit settings of the standard function (byte
1l of the SVC 1 parameter block) are read and
used to determine the operation to be performed.
1 READ BACKWARD

|
i
i
i
i
i
i
i
{ The tape drive will read previous records on a
| tape while the tape is moved in the backward
! (rewind) direction. The task buffer is filled,
| from start address to end address, with bytes

| in the order they are read; i.e., reverse. If
i an error occurs during a read backward operat-
{ ion, the magnetic tape drive will perform re-

| tries on that operation up to a number of times
| corresponding to the value set in the sysgen

| macro library. (The read bit of the SVC 1

i function code should be set.) Requires hard-

| ware support.

2-26 48-038 FO0 RO1



TABLE 2-

EXTENDED |
FUNCTION |
CODE H

2 |

—— . e - G e . GEen SmAn GEE GEEr WEE SEeT WG RGN WEAE SR GG GEen EEG GRGr BN WEeE GEE R e T mae e Wher R GNee e Gman e e e

48-038 FOO ROl

8 EXTENDED FUNCTION CODES FOR DATA TRANSFER
OPERATIONS (Continued)

OPERATION/EXPLANATION

L2 g X F R F ¥ 3 & F 3 § 3 3 2 B3 JF_E _E_F £ R JX_F 3.2 F EE 3 3 3 F E N E Nk E R -k} N At

GAPLESS OPERATION

The driver reads or writes multiple data buf-
fers to or from magnetic tape with no interrec-
ord buffers gaps, using only one SVC 1. Gap-
less operation requires the use of a special
SVC 1 parameter block. The read or write bit
in this parameter block should be set. Gapless
operation is explained in Section 2.3. Re-
quires hardware support.

GAPLESS OPERATION WITH BUFFER TRANSFER REPORT-
ING

The driver reads or writes multiple data
buffers to or from magnetic tape with no inter-
record gaps, using only one SVC 1. The task
receives a buffer trap each time the driver
uses another buffer. Gapless operation re-
quires the use of a special SVC 1 parameter
block. The read or write bit in this parameter
block should be set. Gapless operation is ex-
plained in Section 2.3. Requires hardware
support.

READ FORWARD AND IGNORE DATA TRANSFER ERRORS

The tape drive reads from the tape and ignores
data transfer errors if encountered. If a data
transfer error occurs, the status halfword is
set to indicate normal completion of the read.
The position of the tape after the read is the
same as 1f no error had occurred. Since some
errors terminate data transfer, the user should
check the 1length of data transfer field to
verify that all of the specified data was
actually read. (The read bit of the S8SVC 1
function code should be set.)



§

28

TABLE

EXTENDED
FUNCTION
CODE

2-

8 EXTENDED FUNCTION CODES FOR DATA TRANSFER
OPERATIONS (Continued)

READ BACKWARD AND IGNORE DATA TRANSFER ERRORS

The tape drive will read previous records on a
tape while the tape is moved in the backward
(rewind) direction and will ignore data
errors if encountered. If a data error occurs,
the status halfword is set to indicate normal
completion of the read. The position of the
tape after the read is the same as if no error
had occurred. Since some errors terminate data
transfer, the user should check the length of
data transfer field to verify that all of the
specified data was actually read. The user
buffer is filled, from start address to end
address, with bytes in the order they are read;
i.e., reverse. (The read bit of the SVC 1
function code should be set.) Requires hardware
support.

USER CONTROL OF RETRIES FOR DATA TRANSFER
ERRORS

If an error occurs during a data transfer oper-
ation, the magnetic tape drive will repeat the
operation up to the number of retries specified
by the user in the first byte of the extended
options field. The maximum number of retries
that can be specified for a read operation is
255. The maximum number of retries that can be
specified for a write operation is 45. (The
read or write bit of the SVC 1 function code
should be set.)

NOTE

If extended function code 6 is not
specified, the number of retries de-
faults to the value set in the sysgen
macro library.

48-038 FOO ROl



TABLE 2-8 EXTENDED FUNCTION CODES FOR DATA TRANSFER
OPERATIONS (Continued)

EXTENDE
FUNCTIO |
CODE | OPERAT ION/EXPLANAT ION

20

7 READ BACKWARDS AND ALLOW USER CONTROL OF RE-

TRIES FOR DATA TRANSFER ERRORS

)

i

i

i

| The tape drive will read previous records on a
{ tape while the tape 1is moved in the backward
{ (rewind) direction. The user buffer is filled,

{ from start address to end address, with bytes
{ in the other they are read; i.e., reverse. If
| an error occurs, the magnetic tape drive will
{ repeat the operation up to the number of
i retries specified by the user in the first byte
| of the extended options field. The maximum
{ number of retries that can be specified is 255.

! (The read bit of the SVC 1 function code should
| be set.)

i

i

e amTm 4mes Eme M R GRee WA AEGR AR Amen GaGE WRen SmEm W W ves fmem SR wme A e

RESERVED

In both cases, extended function codes are mutually exclusive,
that is, only one extended function code can be specified in a
single SVC 1.

2.2.7.3 Device Dependent Status Codes for Magnetic Tape
Operations

The device dependent and device independent status fields of the
SVC 1 parameter block indicate the execution status of an [/0
operation performed to a magnetic tape. Table 2-9 1lists the
status codes returned to these fields. Additional status codes
for gapless I/0 operations are listed in Table 2-12. A magnetic
tape 1/0 operation will cease upon detection of most of these
errors.

48-038 F0O ROl 2-29



Y i e s i i W e Aais wets WM WaEw Sman e MEEr AR MEem EE am MR e e s e M Gmen WS G S S e MmEr MR ARG TR AR e Emee e Eme Wt mETe Mmer e Mwm M e GmEn e Gmem e e Sem

TABLE 2-9 MAGNETIC TAPE DEVICE DEPENDENT STATUS CODES

1
i
{ CODE

82FA

8ZFC

82FD
82FE

82FF
8301

8400

84FB

A0O0O

Timeout - A read or write timeout condition occur-
red during data transfer.

Device write-protected - A write, write filemark,
create gap, or erase tape operation was attempted to
a write-protected device.

Maximum buffer size exceeded - The buffer for the
erase tape control operation is too large.

Retries exhausted - A read, read backward, or write
operation was retried the maximum number of times.

Timeout - A control operation timeout occurred.

Timeout - A read, read backward, read drive status,
write or write filemark timeout condition occurred.

Read backward at load point - Load point was reached
before a read backward operation terminated.

Timeout - A read, read backward, or write timeout
condition occurred while waiting for a prior
operation to be completed.

Short read - The buffer specified was too small for
the tape block. This status is only supported by
the high performance tape systems.

Bottom of tape/end of tape check malfunction - An
error occurred during an attempt to position the
tape to determine whether the beginning or end of
tape was detected.

SELCH malfunction - The SELCH malfunctioned during
a read, read backward, or write operation.

Retries exhausted for Write Filemark - A write
filemark operation was retried the maximum number of
times.

Retry malfunction - An error occurred while attempt-
ing to position the tape to retry a read, read back-
ward, write, or write filemark operation that
resulted in a recoverable error.

Device unavailable - the device is either inopera-
tive or not configured into the system.

48-038 FOO ROl

e wmem wan e e . han mman Sham Gm ——. WS —an R bt R ARR WEeR GRe SmAn s MR AR TEEE e W e MR Wmar S e Sen M e e Sem e e e e e e e e = e ——



t
1
1
1
1
]
!
]
!
!
1
1
]
|
]
1
1
1
]
i
i
i
|
|
]
i
|
I
]
!
{
t
'
|
]
|
!
1
[}
]
]
1
[}
1
[}
!
]
]
!
!
1
!
|
1
]
!
H
!
1
1
1
t
!
1
[
1
1
|
1
i
]
!
1
]

STATUS |
CODE | MEANING
CO000 |} Illegal function - the function code indicated a

TABLE 2-9 MAGNETIC TAPE DEVICE DEPENDENT STATUS

—— s SR e e mem . Gee e —— —— . Ghe SEEE G GmGN EEe MR s mes T e wman e em WeEn he— mee Weem e Gmen nes Mmen mme

48-038 FOO ROl

CODES (Continued

data transfer operation, but neither the read nor
write bit was set.

The function code indicated a control operation, but
none of the other bits in the function code were
set.

The function code indicated an extended control
operation, but the extended SVC 1 task option was
disabled.

The requested function is not supported by the
device or assigned access privileges.

Illegal extended function code - an undef ined
function, or a function not supported by the
specified tape drive, was indicated.

The extended function code indicated a read
operation, but the standard function code has the
write bit set.

Buffer size too small - the buffer for a read, read
backward, or write operation was less than 4 bytes.
The buffer for the read drive status was smaller
than 16 bytes.

Erase tape at load point - an erase tape operation
was attempted when a tape was at load point.

User retries too large - the maximum number of
retries specified for a write operation was greater
than 45.



2.3 GAPLESS INPUT/OUTPUT (I/0) OPERATIONS

Data transfer operations in gapless mode «consist of a task
reading or writing data to or from a magnetic tape with no
interrecord gaps, using only one SVC 1. A task can have only one
ongoing gapless SVC 1 at a time. The format of a gapless mode
SVC 1 parameter block differs from the standard SVC 1 parameter
block. The gapless SVC 1 parameter block cannot be reused until
the gapless operation has been completed. To perform a gapless
I1/0 operation, the XSVC1l Link option must be specified before an
1/0 request 1is issued. Then, the task must issue an SVC 1l call
that specifies, among other things, a pair of buffer queues, the
IN-QUEUE and the OUT-QUEUE. The driver takes buffers from the
IN-QUEUE and returns used buffers to the OUT-QUEUE. The task
processes the buffers from the OUT-QUEUE and returns these
buffers to the IN-QUEUE for reuse by the driver.

The use and reuse of buffers during gapless /0 enables an amount
of data much greater than memory capacity to be transferred by
breaking the data into smaller segments, and then transferring
these small segments of data sequentially. The gapless mode SVC
1 parameter block can only be used for gapless 1/0 operations.

2.3.1 Gapless Mode Supervisor Call 1 (SVC 1) Parameter Block
Format

The gapless mode SVC 1 parameter block must be 24 bytes long,
fullword boundary aligned, and 1located in a task writable
segment. Location within a task writable segment is necessary so
that the status of an I/O request can be returned to the status
fields of the SVC 1 parameter block. Figure 2-5 presents the
gapless mode SVC 1 parameter block and coding example.

2-32 48-038 F0OO ROl



1(1) " 12(2) Device

10(0 Function | 13(3) Devic !
H Code ' lu { independent 1 dependent |
i ! ! status ! status |
; _______________________________ . 72 o o 7 o o o o o e o e e e o e e e o o o :
14(4) ,
] OUT-QUEUE start address |
] 1
oo |
18(8) :
| IN-QUEUE start address i
[]

e e !
112(C) |
] Buffer length !
] ]
e ;
116(10) ;
H Length of last buffer '
] ]
e s
120(14) !
b Extended options i
| '

SVC 1,parblk

AL IGN4

parblk DB x'function code'’
DB x'lu’

DS 2 bytes for status

DC A (OUT-QUEUE buffer start address)
DC A (IN-QUEUE buffer start address)
DS 4 bytes for buffer length

DS 4 bytes for length of last buffer
DC Y 'extended options'

Figure 2-5 SVC 1 Gapless Mode Parameter Block Format and Coding

48-038 F0OO ROl 2-33



Fields:

Function
code

1u

Device
independent
status

Device
dependent
status

OUT-QUEUE

IN-QUEUE

Buffer length

is a l-byte field indicating that the request
is a data transfer request, the specific
operation to be performed (read or write), and
the extended options pointer. Bit settings
for this field are presented in Table 2-8.

is a l-byte field containing the logical unit
currently assigned to the device where the 1/0
request is directed.

is a l-byte field receiving the execution
status of an I/0 request after completion.
The status received is not directly related to
the type of device used. Table 2-3 presents
device 1independent status codes for gapless
operation.

is a l-byte field receiving the execution
status of a gapless 1/0 request after
completion. The status received contains
information unique to the type of device used.
Table 2-11 presents device dependent status
codes for gapless operation.

is a 4-byte field containing the fullword
address of a queue where the driver places the
starting address of each buffer used in a
gapless I/0 operation. If the operation is a
gapless write, these buffers have been
successfully written to tape. If the
operation 1is a gapless read, these buffers
contain data read from the tape.

is a 4-byte field containing the fullword
address of a queue where the task places the
starting address of each buffer to be used in
a gapless I/0 operation. If the operation is
a gapless write, these buffers will be written
to tape. If the operation is a gapless read,
these buffers will be filled with data read
off from a tape.

is a 4-byte field containing the length of
each buffer whose starting address is present
on the IN-QUEUE. Buffer 1length must be an
even number of bytes for both read and write
operations. All buffers, except the 1last,
must be the same 1length within a single
gapless I/0 operation. However, the amount of
space used in the last buffer may vary.

48-038 FOO RO1



Length of
last buff

Extended
options

er

is a 4-byte field whose contents depend upon
the operation (read or write) being performed.
If the operation is. a gapless read, the driver
fills this field with the length of the last
buffer read off tape. The length of the last
buffer may be optionally supplied by the task.
If the operation is a gapless write, the task
supplies the driver with the length of the
last buffer to be written.

is a 4-byte field containing one of two
possible extended function codes indicating
gapless mode 1[/0. Table 2-12 presents the
extended function codes available for gapless
mode I1/0.

2.3.2 8Standard Function Code Format - Gapless Mode

Figure 2-6 shows the standard function code format for a gapless

mode

code bit setting.

data transfer request, and Table 2-8 defines each function

Extended

Option

!\t
oY RIW L L4
Bits

Figure 2-6 Function Code Format for Gapless Mode Data Transfer
Requests

TABLE 2-10 FUNCTION CODE BIT POSITIONS FOR GAPLESS MODE DATA
TRANSFER REQUESTS

- — i ———— e Y ————— " " L - b = .V om e = N e et A . s e o a e -

BIT i BIT | i

POSITION | NAME ' BIT SETTING AND MEANING i

=====B==S====l=====ﬂﬂ=========-=’=========:z====================

0 | Function code { 0 = data transfer request. Must |

| type ! be set for gapless 1/0 i

i H operations. !

_______________________________________________________________ =

1 | Read { 1 = read operation. (Bit 2 |

| ' must be set to 0.) i

________________________________________________________________ =
2 | Write 1l = write operation. (Bit 1

48-038 FO0O ROl

]
]
H must be set to 0.)



e hah mmn e i i G em e i e dma— i mmen iem e e Gmer mem Emem Ao mmee Smem mmes e wme—

- - —em - - e - men e Eae A Eede hem e Gt Gmen e hem e Sl e e ANee Smam S Seme e e SEER MM EmER SR e e M Abee Ghan Gmen mman Eeak Mbe e S
—

TABLE 2-10 FUNCTION CODE BIT POSITIONS FOR GAPLESS MODE DATA
TRANSFER REQUESTS (Continued)

e —— T —— — o — T — S —— i ——_— o o — s o < o b ot o e

BIT ! BIT | H
POSITION | NAME H BIT SETTING AND MEANING !
=:========'======='Eg,¥-‘-‘la=========B=============2=B===B=t¥l‘====x===
3 i Not used in H

(]

]

{ gapless mode
I/0 proceed i 0 = If the device is not busy,
H return control to the call-
H ing task after initiation
H of data transfer to the
i device. However, if the
i device is busy, the request
i is queued and task execu-
i tion continues. Suggested
' for gapless mode.
1
i .
Wait I/0 i 1 = stop task execution, ini-
| tiate data transfer to the
' device, and wait until the
i completion of I/0.
1
i
Wait only i 1 = task execution stops and
! waits until the completion
i of all gqueued I/0 proceed
i requests to the specified
H lu.
:
:
=
1
[}
i

When a wait only request is
issued, bit 4 is the only
bit set in the function
code.

e Ao Wedn Uman G W dmen waen e Mhem Ween wean A ween Gmen Amen e ween e Emem men Emen e e e W e

5 ! Not used in !
| gapless mode !

. . ——

Conditional
proceed

i 0 = after the I/0 request is

| issued, put the task into a
i wait state if the requested
| device is busy and the

i total number of queued re-
i quests exceed the maximum.

i Once the I/0 request is

i completed, the task resumes
H execution. If the maximum
H number of gueued requests

| is 1, a pending request

i causes the task to be

| placed into a wait state.

——— .- - e e e e e e . men Smae

2-36 48-038 F0O0O ROl



TABLE 2-10 FUNCTION CODE BIT POSITIONS FOR GAPLESS MODE DATA
TRANSFER REQUESTS (Continued)

BIT i BIT
POSITION | NAME BIT SETTING AND MEANING

i Unconditional 1 = any I/0 request made to a

proceed device that is busy is re-
jected if total number of
queued requests exceed the
maximum, and task execution
continues.

Test 1/0
complete

1 = test to check for the com-
pletion of I/0 to a speci-
fied lu.

[]

f

i

|

|

i

|

!

i

i

i

i

| If a previous 1/0 proceed
H request or queued I/0 pro-
! ceed request does exist,

i the condition code is set
H to X'F'. However, if there
i is no outstanding I/0 pro-
H ceed request, the condition
! code is set to X'0'.

]

!

=

E

g

=

When a test I1/0 complete
request is issued, bit 6 is
the only bit in the func-
tion code set. 1If bit 4 is
set, it is lgnored

= ______________________________________________________________________
Extended option | 1 = tests to see if XSVCl

i option was specified at

! Link time. If set, the

i extended options fullword

H in the parameter block is
[}

|

=

=

=

checked for specified gap-
less option. Both the
XSVCl option and this bit
must be set for gapless
operation.

2.3.3 Logical Unit (1lu)

An lu is a decimal number ranging from 0 through 254. The
highest lu number that a task can be assigned to is determined by
the Link OPTION command. After loading the task into memory, the
lu must be assigned to a tape drive which supports gapless 1/0
(device codes 68-70) through SVC 7 or an ASSIGN command. If no
actual I/0 operation is desired, the lu should be assigned to
NULL:, causing a no-operation (no-op) to occur.

48-038 FOO ROl 2-37



-

2.3.4 Device Independent Status Codes

Logical units provide device independent [/0 by causing all 1/0
requests to be made directly to the lu and not to the device.
The execution status of a gapless I/0 request that is independent
of the physical characteristics of the device being used is
returned to the device independent status field of the parameter
block. See Table 2-3. The data remaining in this field from a
previous [/0 request is not modified until a subsequent 1/0 is
completed or an error occurs.

2.3.5 Device Dependent Status Codes

The device dependent status field, together with the device
independent status field, indicates the execution status of a
gapless I1/0 request that is directly related to the unique
characteristics of the device being used. Tables 2-9 and 2-11
presents the error status codes for gapless operation. A gapless
operation will cease upon detection of any one of these errors.

TABLE 2-11 MAGNETIC TAPE DEVICE DEPENDENT STATUS CODES
(GAPLESS ONLY)

e o o e - o ——— o —— ——— ot — o | o — o — " -

bytes. Length of last buffer is an odd
number of bytes for a write operation.

Ao e s A o o e e it o ot ol it M o M v e e s | — — i — 1y o " —————— {— _ o — e v ——

{ STATUS | ]
t CODE | MEAN ING i
{ X'8485'| Read/write timeout - A read or write time- |
H | out condition occurred. |
] ] I
1 I ¥
| X'8487'} The end address read/written by the SELCH |
' i does not match the expected end address. H
i ] [
t [} ¥
{ X'8489'] End address returned from SELCH is greater |
i | than the expected end address on gapless i
] | read. !
i i ]
{ X'CO81l'| No buffer is available on the task IN- |
| | QUEUE. i
] i 1
| | !
i X'C082'} Address provided by user on IN-QUEUE is H
i { outside user's address space. !
] ] 1
| t ]
| X'C083'| Address of a gqueue is not on a fullword i
i i boundary. ;
1 1 ]
1 t ]
i X'C084'} Length of buffer is an odd number of i
1 | 5
| | |

2-38 48-038 FOO RO1



2.3.6 Buffer Queues

The OUT-QUEUE field and IN-QUEUE field are each 4-byte fields
that contain the address of a queue, where:

e the driver places the starting address of each buffer used in
a gapless operation (OUT-QUEUE) ;

e the task places the starting address of each buffer to be used
in a gapless operation (IN-QUEUE).

The address of the IN-QUEUE must be greater than the address of
the OUT-QUEUE or the S8VC 1 handler will reject the operation.
Figure 2-7 presents the format of both the OUT-QUEUE and
IN-QUEUE.

The user sets up a queue via the DLIST xx command, where xx 1is

the total number of buffer entries allowed. See the Common
Assembly Language/32 (CAL/32) Reference Manual for instructions.

10(0) 12(2) '
] Number of slots | Number used |
] | [
A |
14(4) 16(6) ' :
| Current top ! Next bottom !
i 1 ]
] i t
: _________________________________________________________________ =
18(8) 19(9) '
! Flags H Address of first buffer !

] i
e |
112(C) 1 13(D) |
H Flags i Address of second buffer H
i 1 |
S |
116(10) 117(11) '
| Flags ] Address of third buffer |
| ' |
| e e e :
A N
n n
| . |
b e e |
| i i
' Flags ] Address of nth buffer ]
] 1 ]
[} 1 [

Figure 2-7 IN-QUEUE or OUT-QUEUE Structure

48-038 FOO ROl 2-39



e wmer Eem e mer e mmam Tmem myem MEem e e Emem Weem mem whem Amem emae meen e

Fields:

Number of
slots

Number used
Current top
Next bottom

Flags

Address of
nth buffer

These fields are standard list parameters
explained in the Common Assembly Language/32
(CAL/32) Reference Manual.

is a l-byte field. The setting of bit zero in
this field identifies whether the buffer is
the 1last buffer in the list. If bit zero is
set to 0, the buffer is not the 1last buffer.
If bit zero 1is set to 1, the buffer is the
last buffer in the queue. Under abnormal
conditions, the 1last buffer on the out-queue
may not have the flag bit set.

NOTE

To properly terminate a gapless
write operation, the flags field
for the address of the last buffer
to be written should have bit zero

set to 1. A gapless read
operation may be terminated in one
of two ways. If the user wishes

to only read part of a record, or
the user knows how long the record
is, the flags field for the
address of the 1last buffer read
should have bit zero set to 1. If
the user wishes to read the entire
record, but does not know how long
it is, the flags field for the
address of all buffers should have
bit zero set to 0. In this case,
it is mandatory for the wuser to
retain buffers on the in-queue
until the I/0 proceed has been
completed. If exactly the number
of buffers needed is placed on the
in-queue, the last buffer must be
so indicated.

is a 3-byte field containing the hexadecimal
starting address of a buffer.

48-038 F0O ROl



2.3.6.1 Using the Buffer Queue

Gapless operations should be specified as I/0 proceed completion
operations; therefore, task execution can continue during gapless
I1/0. One of the functions a task can perform during gapless I/0
is to prevent the task from running out of buffer space. The
task can accomplish this by removing buffer entries from the
OUT-QUEUE and placing them on the IN-QUEUE after a buffer
transfer 1is completed. For example, if a task is required to
write 440kb in gapless mode using only five 64k buffers, the
total buffer space available is 320K bytes (or 120K bytes less
than is required to complete the write operation). After the
first buffer has been written, the starting address of the buffer
will be placed on the OUT-QUEUE. While the second buffer is
being written, the task can transfer the address of the first
buffer from -the OUT-QUEUE to the IN-QUEUE. This gives the task
64K bytes more buffer space.

Similarly, the task can transfer the address of the second buffer
to the IN-QUEUE while the third buffer is being read. This
transfer provides the task with enough buffer space for the
remaining 56K bytes. Note that when the task transfers the
address of the second buffer from the OUT-QUEUE to the IN-QUEUE,
the zero bit of the flags field should be set to 1. The 1length
of the last buffer should be placed in the LENGTH OF LAST BUFFER
field of the SVC 1 parameter block prior to the start of the
operation.

The task should use an ABL instruction to add buffer entries to
the IN-QUEUE and an RTL instruction to remove buffer entries from
the OUT-QUEUE. See the Common Assembly Language/32 (CAL/32)
Reference Manual for more information on how to use the ABL and
RTL, instructions.

2.3.6.2 Trap-Causing Events Resulting from Gapless Input/Output
(I/0) Operations

Because a gapless I/0 operation should be specified as an 1I/0
proceed completion operation, the task can be notified that a
gapless read or write has been completed via a task queue trap.
If the 8SVC 1 extended function code 3 (gapless I/0 with buffer
transfer reporting) has been specified, the task can also receive
a task queue trap each time a buffer address has been added to
the OUT-QUEUE.

Before a task can be notified of gapless 11/0 completion or a
buffer transfer, the task has to be prepared to receive and
handle a task queue handle trap. See the Application Level
Programmer Reference Manual for information on preparing a task
to handle traps.

48-038 F0O0 RO1l 2-41



-

2.3.7 Buffer Length

The buffer length field is given to the driver by the task to
inform the driver of the length of the buffers whose starting
addresses are on the IN-QUEUE. Buffer length must equal an even
number of bytes for both read and write operations. All buffers
must be of the same length with the possible exception of the
last buffer. See Section 2.3.8.

2.3.8 Length of Last Buffer

The use of this field is dependent upon the gapless I/0 operation
being performed (read or write). The length of this buffer
cannot be greater than that of the other buffers. If a gapless
write operation is being performed, this field will be given to
the driver by the task and contains the length of the last buffer
to be written. This information must be given even if the last
buffer is the same length as the previous buffers and should be
placed in the SVC 1 parameter block before the write is started.

On a gapless read operation, the driver fills this field with the
length of the last buffer read from the tape. For example, if a
150kb record 1is to be read gapless from a tape and 64kb buffers
are used, a total of three buffers will be required. The first
two buffers will contain 128kb of information; however the third
buffer will contain only 22kb of information. The value 22kb
will be returned to the 1length of last buffer field in this
example. If desired, this field may be given to the driver by
the task. If the last buffer is specified for a read; i.e., the
flags field of the address has bit zero set to 1, this field must
be given to the driver by the task.

NOTE

If a gapless read does not reach a normal
completion (status code 0), the contents
of the length of last buffer field are
meaningless.

On a gapless write operation, the length of the last buffer must
be an even number of bytes.

2.3.9 Extended Options Field

The extended options field in a gapless mode SVC 1 parameter
block functions as detailed previously in Section 2.2.7.
However, only two extended function codes are recognized as valid
in a gapless mode SVC 1. These codes are presented in Table
2-12.

2-42 48-038 FOO0 ROl



TABLE 2-12 EXTENDED FUNCTION CODES FOR
GAPLESS I/0 OPERATION

{ EXTENDED | !
{ FUNCTION | i
| CODE | OPERATION |
= -2 3 2 & § 2 2 3% 3 3 F ¥ 3 & & 2 o4 R 2R3 % 3 F 3 B 3 B B 3 3B & 3§ 3§ :
| 2 | Gapless operation i
i i i
! 3 | Gapless operation with '
[} | ]
[} 1 i

oQ

uffer transfer reporting

Codes 0-1 and 4-31 are not used with the gapless mode SVC 1
parameter block.

48-038 F00 ROl 2-43






CHAPTER 3
GENERAL SERVICE FUNCTIONS SUPERVISOR CALL 2 (SVC 2)

3.1 INTRODUCTION

SVC 2 provides general service functions distinguished from one
another by a specific function code number. Each SVC 2 function
requires a specific parameter block for proper operation. Refer
to each individual code for its parameter block format and
required coding. Table 3-1 lists all available SVC 2 function
codes with a brief description of each.

TABLE 3-1 SVC 2 FUNCTION CODES

SVC 2 CODE | NAME i FUNCTION

‘ !
e r 2 2 3 P 7y 3§ F F 7 1 2 2 3 2 2 2 £ F 2 3 £ 3 7 7 2 F FF 27 X X 3 1 2 F 2 25 23 F 2 F 2 E 3 B 22 R K 22 3 F 3 3 7] =
| SVC 2 code 0*| Make journal | Makes an entry into the !
! ! entries { system journal from an !
] 1 ]
] 1 ]
]

executive task (e-task).

| e e e e e S i
| SVC 2 code 1 | Pause ! Places the task 1in a H
! o i suspended state. |
|- e o i . o o o e o . o i o o e o =
| Reserves a workspace area |
| in the task's address space |
| for external subroutines '
| called by the task during |
| execution. !

—— - —— w—en - E—

Release storage Releases the temporary
storage locations obtained

by a previous SVC 2 code 2.

the task UTOP by the
number of user-specified
bytes.

Set status i Modifies the arithmetic i
{ fault interrupt bit and i
1 1
: :
1 I

—— wmee e e e wm e e wwa -

i
]
]
i
i
Gets storage by decreasing ]
]
|
i
|

condition code in the
program status word (PSW).

48-038 FOO ROl 3-1



— wmaw - ———

————— A —_— i ———— T ————- —— o 1 o oo o — S S ———— o ———— 7 — o —

SVC 2 CODE

i 2 &+ 2 Fr P X2 3+ T 2 £ 3 2 2 2 2 2 2 0 F 1 3 2 R 2 2 2 2 F 2 2 2 2 2 4 3 3 2 £ 3 F 3 & 3 7

SVC 2 code 5

I

TABLE 3-1 SVC 2 FUNCTION CODES (Continued)

NAME

Fetch pointer

Convert binary
to ASCII
hexadecimal or
ASCII decimal

clock

wait

Convert ASCII

hexadecimal or
ASCII decimal

to binary

FUNCTION

Copies the address of UTOP,
CTOP, and UBOT from the
task control block (TCB) and
stores them in the task

user dedicated location
(UDL) .

Converts a binary number to
either an ASCII hexadecimal
or ASCII decimal number.

- - - — ——— — o —— T —_——— - ——— T —— — —_——— " 7 — 7 o 2o S

Sends a message to the
appropriate log device
regardless of the current
logical unit (lu) assign-
ments.

Sends the user the current
time of day calculated in
seconds from midnight in
binary or in formatted
ASCII.

Sends the user the current
date in formatted ASCII.

Places the calling task in
a walt state until a
specific time of day.

vy T ——— o~ —— ————— o —— ————————_ 17— ——" s — o g o W o o o

Places the calling task in
a wait state for an
interval, which is specified
in milliseconds from the
time the call is executed.

—— i S————— — T — 1 ———— o S - P e - T > = . — A ——— - ——

Allows a foreground task
loaded from the system
console to invoke operator
and CSS commands.

Converts an ASCII hexa-
decimal or ASCII decimal
number to a binary number.

48-038 FOO ROl

—— e amew man Wem WG WEum WNOR WEAR em Ghan mhen e G W

— e me ——



TABLE 3-1 S8SVC 2 FUNCTION CODES (Continued)

—— e Emar e wre ween Wman Ween mmem Gmen Gmew M Gmem Gmem Weew ween

48-038 F00 ROl

descriptor

Scan mnemonic
table

Move ASCII
characters

Expand alloca-
cation

Contract alloca-
tion

Timer
management

svCc 2 CODE { NAME H FUNCTION
SVC 2 code 16} Pack file | Processes a user-specified

unpacked file descriptor
(£d) into a packed format to
be used by the operating
system.

Scans for an ASCII character
string in a mnemonic table
and compares it with the
user—-specified ASCII charac-
ter string for a match.

Moves a specified number of
ASCII characters in memory
from the sending location to
a receiving location.

Obtaing user-related infor-
mation from operating system
data structures.

————— . -~ ——— - — - T — T —— ——— e e i ot i ot o o i o o B it

Reserved for sequential
tasking machines. Provides
for compatibility with
current 32-bit operating
systems.

Reserved for sequential
tasking machines. Provides
for compatibility with
current 32-bit operating
systems.

Schedules the addition of a
parameter to a task queue on
completion of a specified
interval or a repetitive
interval.

Puts a task in a wait state
until completion of an
interval.

Determines the time remaining
for a previously established
interval to expire.

Cancels a previously
established interval.



—— e e w—e Gae S e S R e ehes mmen e G - —

TABLE 3-1 SVC 2 FUNCTION CODES (Continued)

SVC 2 CODE | NAME { FUNCTION
SVC 2 code 24} Set | Stores eight bytes of user-
| accounting supplied information in the

]

1
I ]
{ information | accounting transaction file
H | (ATF) on task completion or
| | data overflow of accounting
| | records.

SVC 2 code 25| Fetch { Fetches accounting informa- |
| accounting { tion and stores it in |
| information | a user-specified receiving |
| | area. |

SVC 2 code { Fetch device | Searches the volume mnemonic |
26% { name { table for a user-supplied !
| | volume name and returns the |
| { name of the device on which |
H | that volume is mounted. i
________________________________________________________________ :
SVC 2 code Memory manage- Allows a user task (u-task)
27% ment to access and modify entries

H

{

| (except shared ones) within
i the private segment table
{ (PST) in its task control
| block (TCB).

Unpack file { Converts a packed file
descriptor (fd) | descriptor (fd) from the

| file directory or an SVC 7
i

|

parameter block to its un-
packed format.

LEGEND

* indicates SVC is documented in 0S/32 System Level Programmer
Reference Manual.

3-4 48-038 F0O ROl



3.2 8VC 2 CODE 1l: PAUSE
SVC 2 code 1 stops task execution and places the task into a

suspended state. This is accomplished through the SVC 2 code 1
parameter block shown in Figure 3-1.

- ——————— o D IS . e e - —

svC 2,parblk

ALIGN 4
parblk DB 0,1

Figure 3-1 SVC 2 Code 1 Parameter Block Format and Coding

This parameter block must be 2 bytes long, fullword-boundary
aligned, and does not have to be located within a task writable
segment. Following is a description of each field 1in the
parameter block.

Fields:
Option is a l-byte field that must contain a value of
0 to indicate no options for this call.
Code is a 1l-byte field that must contain the

decimal value 1 to indicate code 1 of SVC 2.

After executing SVC 2 code 1, the following message is displayed
on the system console:

TASK PAUSED

48-038 F0O ROl 3-5



If the task is running under the multi-terminal monitor (MTM),
the above message is displayed on the user console.

While the task 1is paused, the operator can issue commands
directed to the paused task to change the task environment. To
continue task execution, enter the CONTINUE command. Task
execution resumes with the instruction immediately following SVC
2 code 1.

3-6 48-038 F0O RO1



3.3 8VC 2 CODE 2: GET STORAGE

SVC 2 code 2 reserves a workspace area for external subroutines
called by the task during execution (e.g., FORTRAN run-time
library (RTL) routines). This workspace 1is reserved in the
unused portion of the tasks impure segment between UTOP and CTOP.
For more information on this segment, see the 0S/32 Application
Level Programmer Reference Manual.

The SVC 2 code 2 operation does not increase the task's allocated
memory size.

Figure 3-2 illustrates the parameter block for the SVC 2 code 2.

——— — ————— i - T —— T — o — o o o — . — -

10(0) 11(1) 12(2) 13(3) |
1 Option | Code ] Reserved | User register|
i | i i i
o e e e e e e e e e e i
L 4(4) ,
H Number of bytes i
' i

svce 2,parblk

ALIGN 4

parblk DB option, 2,0
DB user register

DC F'number of bytes'
Figure 3-2 8SVC 2 Code 2 Parameter Block Format and Coding
This parameter block must be 8 bytes long, fullword-boundary
aligned, and located in a task writable segment when option X'80'

is used. A general description of each field 1in the parameter
block follows.

48-038 F0O ROl 3-7



———

-—

Fields:

Option is a l-byte field that must contain one of the
following options:

® Option X'00' reserves the user-specified
number of bytes in fullword increments in
the unused portion of the task impure
segment between UTOP and CTOP.

® Option X'80' reserves all of the remaining
unused portion of the task impure segment
between UTOP and CTOP.

Code is a l-byte field that must contain the
decimal value 2 to indicate code 2 of SVC 2.

Reserved is a reserved l-byte field that must contain
a zero.

User is a 1l-byte field that must contain a decimal

register number ranging from 0 through 15 specifying

the register to receive the starting address
of the reserved workspace area.

Number is a 4-byte field containing different
of bytes information for each option.

e Option X'00' contains the user-specified
number of bytes to be reserved for the
workspace area.

e Option X'80' receives the number of bytes
actually reserved for the workspace area.

When a task is 1link-edited, the default task workspace (the
difference between CTOP and UTOP) should be large enough to
provide enough workspace for both the task and the external
gsubroutines. The task workspace can be increased through the
WORK= parameter of the Link OPTION command, the LOAD command, or
an SVC 6.

3-8 48-038 FOO ROl



After executing SVC 2 code 2, the condition code 1is set as
follows:

Condition codes

fcltviG | L}
=-=-=-—=--sn=---‘
i 0} 0O} 0} 0O} Normal termination

i 01 14} 0| 0| User-specified number of bytes is a
——————————————— negative value or a value greater than
the task's allocated memory size.

NOTE

When SVC 2 code 2 is executed, and the
task UTOP changes, the UTOP address
stored 1in the task UDL is not updated to
contain the most current UTOP. svec 2
code 5 updates the address in the UDL.

3.3.1 S8SVC 2 Code 2, Option X'00°

If option X'00' is specified, the address of the task's current
UTOP is adjusted to include the number of user-specified bytes in
the parameter block. Once the UTOP address is adjusted, the
starting address of the reserved workspace area, which is the
original or previous UTOP, 1is stored 1in the user-specified
register. This option can reserve new workspace areas until they
are needed during task execution in subsequent calls.

The number of bytes should be specified in fullword increments
because the UTOP address is rounded up to the nearest fullword
boundary.

Example:

svC 2,GET

.

ALIGN 4

GET DB 0,2,0
DB 5
DC Y'600" 1.5K

This example is illustrated in Figure 3-3. A task is loaded with
a task workspace area of 4kb specified in the LOAD command.
After the task is loaded, UTOP is located at X'A00' and CTOP is
located at X'19FE'. After executing S8VC 2 code 2, UTOP is
adjusted to X'1000'. The remaining unused portion (area between
X'AOO0' and X'1lA00') can be used by subsequent routines when
needed during task execution.

48-038 F0O0 ROl 3-9



If the user-specified number of bytes for option X'00' 1is a
negative value or greater than the task current allocated memory
size (CTOP):

e The UTOP address is not adjusted.

® An address of 0 is returned in the user-specified register.

e The condition code is set to 4 (V bit set).
5630

EXPANDED THROUGH

WORKSPACE FIELD OF
X'1A00" - . LOAD COMMAND
(ABOVE USER — : 1%
TASK) X“19FE* CTOP
(AFTER LOAD TIME)
UTOP X"1000°
(AFTER SVC 2 i . 4kb v
CODE 2 EXECUTION]
X'600' BYTES
(RESERVED BY
SVC 2 CODE 2) : é
, X'AB4‘ CTOP
UTOP X'A00 (BEFORE LOAD TIME)
(AT LOAD TIME) L
USER CODE
X100’
uDL
UBOT X0’
NOTES

UTOP is the starting address of the first
contiguous fullword outside the user
code. ¢

CTOP is the starting address of the last

halfword within the allocated task
address space.

Figure 3-3 Task Impure Segment for SVC 2 Code 2, Option X'0O'

E

3-10 48-038 FOO ROl



3.3.2 8VC 2 Code 2, Option X'80°

If option X'80' is specified, the parameter block must be located
in a writable segment. The address of the task's current UTOP is
adjusted to include all of the remaining unused portion in the
impure segment making UTOP equal CTOP+2. Once the UTOP address
is adjusted, the starting address of the reserved workspace area,
which is the address of the original or previous UTOP, is stored
in the user-specified register. Also, the number of bytes
actually reserved is stored in the number of bytes field 1in the

parameter block.

Example:
svc 2,GET
ALIGN 4
GET DB X's80',2,0
DB 5
DS 4

This example is illustrated in Figure 3-4. A task is linked with
a workspace of 4kb. After the task is loaded, UTOP is located at
X'AOO0'. After executing SVC 2 <code 2, UTOP is adjusted to

X'1900"'.

48-038 F0O ROl 3-11



5631

UTOP X*1900'
(AFTER SVC 2

CODE 2 EXECUTION

X'FO0' BYTES

UTOP X'A00°
(AT LOAD TIME)

USER CODE
X100
uDL
UBOT X'0°
NOTE
UTOP is the starting address of the
cont iguous fullword outside the
code.

CTOP is the starting address of the
halfword within the allocated
address space.

EXPANDED THROUGH
THE LINK OPTION
COMMAND

X xgre cToP

(AFTER EXPANSION
BY LINK)

X'E00’ BYTES

~ X'AFE’ CTOP
(BEFORE EXPANSION
BY LINK)

first
user

last
task

Figure 3-4 Task Impure Segment for SVC 2 Code 2, Option X'80'

48-038 F0O0 ROl




3.4 SVC 2 CODE 3: RELEASE STORAGE

SVC 2 code 3 releases the workspace area in the unused portion of
of the task impure segment that had been reserved by a previous
SVC 2 code 2 (See Section 3.3). Releasing the reserved workspace
for external subroutines does not decrease the task's allocated
memory size. The SVC 2 code 3 parameter block is shown in Figure
3-5.

10(0) f1(1) 12(2) i
1 Option | Code i Reserved i
| ' | |
b= e e e e oo :
14(4) ,
H Number of bytes !
] ]
| [}

svC 2,parblk

ALIGN 4

parblk DB 0,3
DC H'0'

DC F'number of bytes'

Figure 3-5 8SVC 2 Code 3 Parameter Block Format and Coding

This parameter block is 8 bytes long, fullword-boundary aligned,

and does not have to be located in a task writable segment. A
description of each field in the parameter block follows.

Fields:
Option is a 1l-byte field that contains a value of O
to indicate no options for this call.
Code is a 1l-byte field that must contain the

decimal value 3 to indicate code 3 of SVC 2.

48-038 F0O ROl 3-13



Reserved is a reserved 2-byte field that must contain

zeros.
Number is a 4-byte field that must contain the
of bytes user-specified number of bytes of the reserved

workspace to be released.

When executing this SVC, the address of the task's current UTOP
is adjusted to exclude the user-specified number of bytes of
reserved workspace. If the number of bytes is not specified in
fullword increments, the UTOP address is adjusted by rounding
down to the nearest fullword boundary. After executing SVC 2
code 3, the condition code is set as follows:

Condition codes

t Oy 0O}y O} O} Normal termination

{01 1} 0| 0} User-specified number of bytes is a
——————————————— negative value or a value greater than
the task's allocated memory size.

Example:
SvC 2, RELEASE
ALIGN 4
RELEASE DB 0,3
DC H'O'

DC F'256"

Figure 3-6 illustrates this example. A task was linked with a
workspace of 4kb and loaded into memory. After the task is
loaded, UTOP is located at X'AO00' and CTOP is located at X'1l8FE'.
After executing SVC 2 code 2, UTOP is adjusted to X'1900°'. After
executing SVC 2 code 3, 256 bytes of reserved storage are
released, adjusting UTOP to X'1800°'.

3-14 48-038 FOO ROl



5632

UTOP X'1900'
(AFTER SVC 2
CODE 2 EXECUTION)

Y
o X'18FE’ CTOP
X'100° BYTES (AFTER EXPANSION

BY LINK)

UTOP X’1800°

(AFTER SVC 2

CODE 3 EXECUTION)
X'EO0° BYTES

L X'AFE’ CTOP

(BEFORE EXPANSION
UTOP X*AQ0’ BY LINK)
(AT LOAD TIME)
USER CODE
X'100°
ubDL
UBOT X0’
NOTE

UTOP is the starting address of the first
contiguous fullword outside the wuser
code.

CTOP is the starting address of the last
halfword within the allocated task
address space.

Figure 3-6 Task Impure Segment for SVC 2 Code 3
If the user-specified number of bytes is a negative number or is

more than the number specified by Link, the UTOP address is not
adjusted and the condition code is set to 4 (V bit set).

48-038 FOO ROl 3-15



3.5 SVC 2 CODE 4: SET STATUS

SVC 2 code 4 modifies the arithmetic fault interrupt bit and the
condition code settings in the program status word (PSW). Figure
3-8 shows the PSW and the bits affected by the set status
operation. When the arithmetic fault interrupt bit setting is
modified, interrupts are enabled or disabled. When the condition
code setting 1is modified, the current 4-bit setting is replaced
with a new 4-bit setting. This is accomplished through the SVC
2 code 4 parameter block shown in Figure 3-7.

10(0) 11(1) 12(2)Arithmetic{3(3) Condition|
' Option ) Code ! fault H code |
i i i parameter | parameter |
sSvce 2,parblk
ALIGN 4
parblk DB option,4
DB arithmetic fault parameter, condition

code parameter

Figure 3-7 8VC 2 Code 4 Parameter Block Format and Coding

This parameter block is 4 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

Fields:

Option is a l-byte field that must contain one of the
following options:

e Option X'00'-modifies the arithmetic fault
bit and condition code in the PSW.

e Option X'80'-modifies only the condition
code in the PSW. See Figure 3-8.

3-16 48-038 FOO ROl



Code

Arithmetic
fault
parameter

Condition
code
parameter

Reserved

is a 1l-byte field that must contain

the

decimal value 4 to indicate code 4 of SVC 2.

is a 1l-byte field that must contain one of

the following parameters when option X'00'

is

specified. For option X'80', this field must

contain zeros.

e X'0OO'-disables all arithmetic
interrupts for model 7/32 and

fault
8/32

processors. For series 3200 processors,
only arithmetic fault interrupts due to

floating point underflow are disabled.

e X'lO'-enables all arithmetic
interrupts.

is a 1l-byte field that must contain

fault

a

parameter with a hexadecimal value ranging

from X'00' to X'OF"'.

Arithmetic fault Condition
Interrupt Bit Reserved Code

—— i ——— " ——— —— o= v =

15 16 17 18 19 20 21 22 23 24 27 28 29 30 31

Reserved

Figure 3-8 Program Status Word (PSW)

48-038 FOO ROl




An arithmetic fault occurs during an arithmetic operation for any
of the following conditions:

e Fixed point quotient overflow

e Fixed point division by O

#® Floating point overflow and underflow

e Floating point division by 0O

The condition code (bits 28 through 31) is set after executing
certain instructions. Each bit in the condition code corresponds

to a result or condition caused by executing an instruction. The
condition code settings for arithmetic operations are:

Condition codes

Arithmetic carry, borrow, or shifted carry

ot S i o o 2

0} 14} 01} 0} Arithmetic overflow

1 —s

P P U R —
i <
—————

-

-
-
-
o

Greater than 0

-
-
-
:

Less than 0

e e e e n e o can

These four bits have different meanings for logical operations,
branching operations, and I/0 operations. For the definitions of
the bit settings for each particular operation, see the
appropriate processor manual.

3.5.1 8VC 2 Code 4, Option X'00'

If the SVC 2 code 4 parameter block contains X'00' in the option
field, X'00' 1in the arithmetic fault field, and a value ranging
from X'00' through X'OF' in the condition code field, all
arithmetic faults are ignored for model 7/32 and 8/32 processors.
For Series 3200 processors, only arithmetic faults resulting from
floating point underflow are ignored. For more information on
Series 3200 arithmetic fault interrupts, see the appropriate
Series 3200 processor manual. The current condition code value
in the PSW is replaced with the value specified in the condition
code field of the parameter block.

3-18 48-038 F00O ROl



If the SVC 2 code 4 parameter block contains X'00' in the option
field, X'l0' in the arithmetic fault field, and a value ranging
from X'00' through X'OF' in the condition code field, all
arithmetic fault interrupts are enabled. The current condition
code value in the PSW is replaced with the value specified in the
condition code field of the parameter block.

3.5.2 8SVC 2 Code 4, Option X'80'

If option X'80' is specified and the condition code parameter
field contains a value of X'00' through X'OF', the current
condition code value of the PSW is replaced with the value
specified in the condition code field of the parameter block.
The arithmetic fault field is ignored.

48-038 F0O0 ROl 3-19



——— o T o

3.6 SVC 2 CODE 5: FETCH POINTER

SVC 2 code 5 1loads the starting address of a task's user
dedicated location (UDL) into a user-specified register. It then
stores the current addresses of UBOT, UTOP, and CTOP, located in
the task control block (TCB) into their corresponding locations
in the task UDL. This is accomplished through the SVC 2 code 5
parameter block shown in Figure 3-9.

. — - _— - —— — o ——— o ol D — W i il ol o o i - e 2 7 100

10(0) 11(1) 12(2) 13(3) |
| Option | Code | Reserved | User register|
i i i i i
svc 2,parblk
ALIGN 4
parblk DB 0,5,0
DB user register

Figure 3-9 SVC 2 Code 5 Parameter Block Format and Coding

This parameter block is 4 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
description of each field in the parameter block follows.

Fields:
Option is a l-byte field that must contain the value
0 to indicate no options for this call.
Code is a 1l-byte field that must contain the
decimal number 5 to indicate code 5 of SVC 2.
Reserved is a reserved l-byte field that must contain

a 0.

3-20 48-038 F0OO RO1



User is a l-byte field that must contain a

register decimal number from 0 through 15 indicating
the register that receives the UDL starting
address.

When executing this call, the UDL starting address, which Iis
loaded into the user-specified register, varies for u-tasks and
executive tasks (e-task). The starting address for a u-task is
the relative address, which is always 0. The starting address
for an e-task is the absolute address, which depends on the task
memory location.

If the user modified the UDL by changing address pointers or if
UTOP was changed by a GET or RELEASE STORAGE, the contents of
CTOP, UTOP, and UBOT in the UDL might not be valid. SVC 2 code
5 restores this data to a valid state by storing the current
values of CTOP, UTOP, and UBOT into the UDL.

Example:

UDL after execution of SVC 2 code 2 and before execution of SVC 2
code 5

5633

l cTopP
X‘IFE’
USER CODE
uToP
X'14D
\ Q\
xwoo']\ \r
A . 1\
[ ]
®
W\ © uUDL 'Y
usoT x'or | XTFE" | X128 X0 fooo [ IVﬂ;]
CTOP  UTOP UBOT A 1k d  wmsGr  svia

RESERVED RESERVED

48-038 FOO RO1 3-21



UDL after execution of SVC 2 code 5

5634

For more information on the UDL,

!

Programmer Reference Manual.

cTop
X‘IFE’
USER CODE
A .
X14D’
\ § A
xwow}: :[
[ ]
[ ]
[ ]
T uDL v
X1FE" | x"14D X0’ N "7i31
. UBOT X0’ e
CTOP  UTOP  UBOT 4 ke 4 MSGR  SV14
RESERVED RESERVED

see the 0S5/32 Application Level

48-038 F00 RO1



3.7 8SVC 2 CODE 6: CONVERT BINARY NUMBER TO ASCII HEXADECIMAL OR
ASCII DECIMAL

SVC 2 code 6 converts an unsigned 32-bit binary number located in
the user register 0 to an ASCII hexadecimal number or an ASCII
decimal number. This is accomplished through the SVC 2 code 6
parameter block shown in Figure 3-10.

10(0) 11(1) 12(2) |
] Option+n ! Code | Reserved i
i H I i
= e e :
14(4) ;
1 Address of receiving buffer i
] [}
] |

sve 2,parblk

ALIGN 4

parblk DB option+tn,b
DC H'O'

DCF A(receiving buffer)

Figure 3-10 SVC 2 Code 6 Parameter Block Format and Coding

This parameter block is 8 bytes long, fullword-boundary aligned,
and must be located in a task writable segment. A general
description of each field in the parameter block follows.

48-038 FOO ROl 3-23



Fields:

Option+n is a l-byte field that must contain the sum of
one of the following options and n (n
specifies a decimal number from O through 63
indicating the number of bytes in the buffer
specified in the SVC 2 code 6 parameter
block).

e Option X'00'+n converts a binary number to
ASCII hexadecimal.

e Option X'40'+n converts a binary number to
ASCII hexadecimal, suppressing leading
zZeros.

e Option X'80'+n converts a binary number to
ASCII decimal.

e Option X'CO0'+n converts a binary number to
ASCII decimal, supressing leading zeros.

Code is a 1l-byte field that must contain the
decimal number 6 to indicate code 6 of SVC 2.

Reserved is a reserved 2-byte field that must contain
zeros.

Address of is a 4-byte field that must contain the

receiving address of the previously allocated buffer

buffer that receives the converted number. This
address any byte can be located on any byte
boundary.

The receiving buffer should be defined to receive the largest
number, which is 4,294,967,295 (2 -1l), that can be converted
from register 0. Allocate an 8-byte buffer for binary to ASCII
hexadecimal. Allocate a 10-byte buffer for binary to ASCII
decimal. [f the user's largest number to be converted 1is 1less
than 2 -1, the receiving buffer can be less than the suggested
length of the buffer.

When the user-specified binary number located in register 0 is
converted, the result is stored right-justified in the receiving
buffer with the leftmost significant digits filled with ASCII
zeros. However, if the converted number 1is longer than the
buffer, the leftmost digits of the converted number are lost. If
suppression of leading zeros is requested, the leftmost zeros in
the receiving buffer are filled with spaces (hexadecimal 20).

3-24 48-038 F0OO ROl



3.7.1 8VC 2 Code 6, Option X'00'+n

If option X'00'+n is specified, the unsigned 32-bit binary number
located in the user register 0 1is converted to an ASCII
hexadecimal number . The resulting number is stored
right-justified in the receiving buffer with the leftmost
significant digits filled. with ASCII zeros (hexadecimal 30).

Example:

LI 0,F'8520'
SvC 2 ,CONVERT
ALIGN 4

CONVERT DB X'00'+8,6
DC H'O'
DCF A(BUF)

BUF Ds 8

Register 0 before and after execution of SVC 2 code 6

10 0 0 0i2 1/4 8} Hex
Receiving buffer after execution of SVC 2 code 6

Zero filled

3.7.2 8VC 2 Code 6, Option X'40'+n

If option X'40'+n is specified, the unsigned 32-bit binary number
located in the wuser register 0 1is converted to an ASCII
hexadecimal number . The resulting number is stored
right-justified in the receiving buffer with the leftmost
significant digits filled with ASCII spaces (hexadecimal 20).

48-038 FOO RO1 3-25



3.7.3 8VC 2 Code 6, Option X'80'+n

If option X'80'+n is specified, the unsigned 32-bit binary number
located in the user register 0 is converted to an ASCII decimal
number . The resulting number is stored right-justified in the
buffer with the leftmost significant digits filled with ASCII
zeros (hexadecimal 30).

Example:

PROG CONVERT
LI 0,F'16322"
svc 2, CONVERT
ALIGN 4

CONVERT DB X'80'+10,6
DC H'O'
DCF A (BUF)

BUF DS 10

Register 0O before and after execution of SVC 2 code 6

{0 0} 0 0{3 FIC 2} Hex

Receiving buffer after execution of SVC 2 code 6

Zero-filled

i3 0/ 303 0}{3 013 03 1i3 6{3 3|3 2|3 2| Hex

o o t o — T — " o e - —

3.7.4 8VC 2 Code 6, Option X'CO'+n

If option X'CO'+n is specified, the unsigned 32-bit binary number
located in the user register 0 is converted to an ASCII decimal
number. The resulting number is stored right-justified in the
receiving buffer with the leftmost significant digits containing
zeros filled with ASCII spaces (hexadecimal 20).

3-26 48-038 FO0O ROl



3.8 8VC 2 CODE 7: LOG MESSAGE

SVC 2 code 7 sends a user-specified message to the system
console, user terminal, or user-specified log device, depending
on task environment. This is accomplished through the SVC 2 code
7 parameter block in Figure 3-11. Log devices for specific task
environments are:

e System console for background tasks

e System console for foreground tasks

e User MTM terminal for MTM terminal tasks

e User-specified log device for MIM batch task

If no user-specified log device is allocated for MTM batch tasks,
the message is lost. :

10(0) 11(1) 12(2) i
H Option | Code | Length of message '
] 1 ] )
.S |
14(4) :
i Contents of message* or address of message buffer g
1 1
| ]

svc 2,parblk

ALIGN 4

parblk DB option,7
DC H'length of message'
DC C'contents of message' or

A(message buffer)

* When the contents of message field is used, the size of
the parameter block can vary.

Figure 3-11 SVC 2 Code 7 Parameter Block Format and Coding

48-038 FOO ROl

w
i

27



This parameter block is 8 bytes long if the address of message
buffer field is used. It is variable in length if the contents
of message field is used. It must be fullword-boundary aligned
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

Fields:
Option is a l-byte field that must contain one of the
following options:

e Option X'00' indicates message contents,
formatted.

e Option X'20' indicates message contents are
formatted and sent to system console only.

e Option X'40' indicates message at specified
buffer address, formatted.

e Option X'60' indicates message at specified
buffer address is formatted and sent to
system console only.

e Option X'80' indicates message contents,
image mode.

e Option X'AO' indicates message contents are
sent in image mode to system console only.

e Option X'CO' indicates message at specified
buffer address, image mode.

e Option X'EO' indicates message at speicfied
buffer address is sent in image mode to
system console only.

Code is a 1l-byte field that must contain the

decimal number 7 to indicate code 7 of SVC 2.

Length of is a 2-byte field that must contain a decimal
message number indicating the number of bytes the
message occupies. The message can be
truncated by the log device driver. If the

message is being logged to the system console,
its maximum length is determined at system
generation (sysgen) time.

3-28 48-038 F0O0 ROl



Contents is a variable-length field that must contain

of message the message to be sent to the log device.

Address of is a 4-byte field that must contain the
message starting address of the buffer that contains
buffer the message to be sent to the log device.

This buffer can be on any byte boundary.

When the message is sent to the appropriate 'log device, it 1is
either formatted or in image mode. When a formatted message is
sent to a device:

e all trailing blanks in the buffer or at the end of the message
are eliminated,

e a carriage return line feed is automatically appended to the
message, and

e the message terminates when the end of the buffer or message
is reached or when a carriage return is found in the message.

When a message is sent to a device in image mode, the message
terminates when the end of the buffer or message is reached. If
in image mode, a message with multiple 1lines can be sent by
executing a single SVC. 2 code 7 for each line. However, each
line should include a carriage return and line feed at the end.
The image options should be used with caution because the amount
of time that must remain for a carriage return to occur differs
on various console devices.

3.8.1 8SVC 2 Code 7, Option X'00°'

If option X'00' is specified, the message specified in the
parameter block is formatted and sent to the appropriate log
device.

Example:
sve 2,LOGMSG
ALIGN 4
LOGMSG DB X'o00',7
DC H'32'
DC C'OPERATOR-PLS MOUNT TP028 ON MAG1l'

48-038 F00O ROl 3-29



Contents of message buffer before and after execution of svC 2
code 7

14F|5014515210{45}52{152}2D}50/4C|53{20}4D|4F|55/4E!54{20154150{30132{38}20! 4FI4EI20K4D'41!46!31' ASCII

o P |E {R |A {T |O |{R |- {P |L IS8 | M |O |UIN T ! |IT |P |0 |2 {8} O IN| 'MlA'G‘l;
Log device after execution of SVC 2 code 7

OPERATOR-PLS MOUNT TP028 ON MAG1

3.8.2 8VC 2 Code 7, Option X'20'

If option X'20' 1is specified, the message specified in the
parameter block is formatted as for option X'00'. The message 1is
then sent unconditionally to the system console.

Option X'20' is used exclusively for tasks running under MTM.

3.8.3 8VC 2 Code 7, Option X'40"'

If option X'40' is specified, the contents of the message buffer
pointed to by the address specified in the parameter block are
formatted and sent to the appropriate log device.

3.8.4 8SVC 2 Code 7, Option X'60'

If option X'60' is specified, the contents of the message buffer
are formatted as for option X'40'. The message is then sent

unconditionally to the system console.

Option X'60' is used exclusively for tasks running under MTM.

3.8.5 8SVC 2 Code 7, Option X'80'
If option X'80' is specified, the message specified 1in the

parameter block is in image mode and is sent to the appropriate
log device.

3-30 48-038 FOO RO1



Example:

SVC 2,LOGMSG1
svC 2,LOGMSG2

ALIGN 4
LOGMSGl DB X'80',7
DC H'32'
DC C'OPERATOR-PLS MOUNT TP028 ON MAG1'
ALIGN 4
LOGMSG2 DB X'80',7
DC H'19'

DC C'SET TAPE AT 800 BPI'

Contents of message buffer before and after execution of SVC 2
code 7

lO%PIEIR'A'TIOIR!—IPIL:S{ IM O {U |N T | IT |P {10 {2 |8 | {0 IN | iM'AIGIlI

Contents of message buffer before and after execution of second
SVC 2 code 7

—— ——— . . - Y. - - ——— o — S vn e m S o — o — v~ — o o

'53'45{54'20'54:41'50'45'20'41!54'20'38‘30'30'20'42'50'49} ASCII

IS IE IT | T A {P |E | A IT | {8 {0 {0 | (B |P |I |

Log device after execution of second SVC 2 code 7
SET TAPE AT 800 BPI TP028 ON MAG1

(no line feed appended, message overwritten)

48-038 F00 ROl 3-31



3.8.6 8SVC 2 Code 7, Option X'A0’

If option X'A0O' is specified, the message specified in the
parameter block is in image mode as for option X'80', but the
message is sent unconditionally to the system console.

Option X'AO' is used exclusively for tasks running under MTM.

3.8.7 8VC 2 Code 7, Option X'CO'

If option X'C0' is specified, the contents of the message buffer
pointed to by the address specified in the parameter block are in
image mode and are sent to the appropriate log device.

3.8.8 8VC 2 Code 7, Option X'EO'

If option X'EO' is specified, the contents of the message buffer
are in 1image mode as for option X'CO', but the message is sent

unconditionally to the system console.

Option X'EO' is used exclusively for tasks running under MTM.

w
i

32 48-038 F0O0O ROl



3.9 8SVC 2 CODE 8: INTERROGATE CLOCK
SVC 2 code 8 sends the current time of day to a wuser-specified

buffer. This is accomplished through the SVC 2 code 8 parameter
block shown in Figure 3-12.

10(0) 11(1) 12(2) |
/ Option } Code ! Reserved !
i i i |
| e e e e e e o e e = = o = = = —————_ " — o~ — 7 o P T2 o =~ — . v o v o o o — o — [}
I !
14(4) ,
| Address of receiving buffer |
] ]
! |

sveC 2,parblk

ALIGN 4

parblk DB option,8
DC H'O'

DCF A(receiving buffer)

Figure 3-12 SVC 2 Code 8 Parameter Block Format and Coding

This parameter block is 8 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

48-038 FOO ROl 3-33



Fields:

Option This l-byte field must contain one of the
following options:

e Option X'00'-returns the time of day as two
fullwords of ASCII data in the form,
hh:mm:ss

® Option X'80'-returns the time of day as a
fullword of binary data indicating the
number of seconds past midnight.

® Option X'40'-returns the time as three
fullwords of ASCII data in the form:
hh:mm:ss.sss

e Option X'CO'-returns the time as two
fullwords of binary data. The first
fullword indicates the number of seconds

past midnight. The second fullword
indicates the number of milliseconds past
midnight.
Code is a 1l-byte field that must contain the
decimal number 8 to indicate code 8 of SVC 2.
Reserved is a reserved 2-byte field that must contain
zeros.
Address of is a 4-byte field that must contain the
receiving starting address of the buffer to receive
buffer the current time of day.

The current time of day is calculated as seconds from midnight
(midnight equals 0) and is taken from the line frequency clock
(LFC) maintained by the system.

3.9.1 8sVC 2 Code 8, Option X'0O0'

If option X'00' is specified, the current time of day is returned
in ASCII format to a user-specified buffer located in a task
writable segment. This buffer must be at least 8-bytes long.
The current time of day is returned as follows.

Format:

hh:mm:ss

3-34 48-038 FOO RO1



Parameters:

hh ~are two ASCII characters representing the
number of hours.

mm are two ASCII characters representing the
number of minutes.

ss are two ASCII characters representing the
number of seconds.

Example:

Contents of buffer after execution of SVC 2 code 8 option X'00'
when current time of day is 10:09:03

3.9.2 8SVC 2 Code 8, Option X'80'

If option X'80' is specified, the current time of day in seconds
from midnight is sent in binary format to a user-specified buffer
located in a task writable segment. This buffer must be at least
4 bytes long and aligned on a fullword boundary.

Example:

Contents of buffer after execution of SVC 2 code 8 option X'80'
when current time of day is 10:13:48

o ———————————— - -

{0 0} 0 0{8 FID C| Hex

36828 = 10:13:48
(decimal)

The contents of this buffer represent 36,828 seconds from
midnight.

48-038 FO0O ROl 3-35



-—

3.9.3 8VC 2 Code 8, Option X'40'

If option X'40' is specified, the current time of day is returned
in ASCII format to a user-specified buffer in a task writable

segment. This buffer must be at 1least 12-bytes long. The
current time of day is returned as follows.
Format:
hh:mm:s8s:s88s
Parameters:
hh are two ASCII characters representing the
number of hours.
mm are two ASCII characters representing the
number of minutes.
ss are two ASCII characters representing the
number of seconds.
sss are three ASCII characters representing the
number of milleseconds.
Example:

Contents of buffer after execution of SVC 2 code option X'40',

when current time of day is 10:41:32.8
{ 31 30 { 3A | 34 |} 31 { 3A | 33 | 32 | 3A | 38 { 30 | 30 | Hex
e i
1+ 0ot =4 447 14 =4 3%+ 2% 4 841 01 0}
e — T O TTTTR ———— T T T TTTTTTY e ——

hh mm ss sss
3-36 48-038 F0O RO1



3.9.4 8VC 2 Code 8, Option X'CO
If option X'CO' is specified, the current time of day in seconds
and milliseconds from midnight is sent in binary format to to a

user-specified buffer located in a task writable segment. This
buffer must be 8 bytes long and aligned on a fullword boundary.

Example:

Contents of buffer after execution of SVC 2 Code 8 option X'CO'
when current time of day in ASCII is '10:41:32.8

———— v ———— o~ ——— -~ B~ - — . ———— - - ——— o ———

The contents of this buffer represent 38,492 seconds and 800
milliseconds from midnight.

48-038 F0OO ROl 3-37



o ——————

3.10 S8VC 2 CODE 9: FETCH DATE
SVC 2 code 9 sends the current date to a user-specified buffer.

This is accomplished through the SVC 2 code 9 parameter block
shown in Figure 3-13.

e e e e e e e e e . = e e e e - A R S T R e S A S A e o A e M S A o e o A o -

10(0) 11(1) 12(2) i
! Option | Code ! Reserved H
i i i i
| T T T T e e e e e e e e e e e e e e i
14(4) i
i Address of receiving buffer i
1 ]
| !

svec 2,parblk

ALLIGN 4

parblk DB 0,9
DC H'O'

DCF A(receiving buffer)

Figure 3-13 SVC 2 Code 9 Parameter Block Format and Coding

This parameter block is 8 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

3-38 48-038 F00O RO1



Fields:

Option is a l-byte field that must contain a 0 to
indicate no options for this call.

Code is a 1l-byte field that must contain the
decimal number 9 to indicate code 9 of SVC 2.

Reserved is a reserved 2-byte field that must contain
zeros.

Address is a 4-byte field that must contain the

of receiving starting address of the buffer receiving the

buffer current date. The buffer must be 8 bytes long
and located in a task writable segment. The

buffer can be located on any boundary.

SVC 2 code 9 sends the current date to the receiving buffer in
either one of the following:

Format:

mm/dd/yy or dd/mm/yy

Parameters:

mm are two ASCII characters representing the
month.

ad are two ASCII characters representing the day.

YY are two ASCII characters representing the
year.

When the system is installed, one of these formats is chosen as
the default for all operations. To return the current date in
the alternate format, use the DATE command at sysgen time.

48-038 F00O ROl , 3-39



Example:

svC 2,DATE
svcC 2,PAUSE

ALIGN 4
DATE DB 0,9
DC H'O'
DCF A(BUF)
ALIGN 4
PAUSE DB 0,1

Contents of receiving buffer after execution of SVC 2 code 9
when the current date in ASCII is 07/06/81

i3 0/ 3 7{2 Fi3 013 62 F|{3 8{3 1| Hex

fo 4}V 741/ 104164/ 18 1 11 ASCII

3-40 48-038 F00 RO1



i svC 2 |
i CODE 10 |

i

3.11 SVC 2 CODE 10: TIME OF DAY WAIT

SVC 2 <code 10 suspends the
user-specified time of day occurs.

svcC

calling task until a
Then the calling task resumes

execution. This 1is accomplished through the S8SVC 2 code 10
parameter block shown in Figure 3-14.
10(0) 11(1) 12(2) |
| Option i Code ! Reserved i
i | I i
| = m :
14(4) |
| Time of day |
i i
svc 2,parblk
ALIGN 4
parblk DB 0,10
DC H'O!'

DC Y'time of day'

Figure 3-14 8SVC 2 Code 10 Parameter Block Format and Coding

The sve 2 code 10

parameter

block is 8 bytes 1long,

fullword-boundary aligned, and does not have to be located 1in a

task writable segment.
the parameter block follows.

A general description of each field in

Fields:
Option is a l-byte field that must contain a 0 to
indicate no options for this call.
Code is a 1l-byte field that must contain the
decimal number 10 to denote code 10 of SVC 2.
Reserved is a reserved 2-byte field that must contain
zeros.
48-038 F00 ROl 3-41



Time of
day

is a 4-byte field that must contain a decimal
number from O through 268,435,455 (2”’—1)
representing in seconds a specific time of day
when the calling task is to start execution.
The decimal number specified must be
calculated in seconds from midnight.

e O seconds equals 00:00:00 A.M.
of the current day

(midnight)

® 86,399 seconds equals 23:59:59 P.M.
current day

of the

See Table 3-2 for a range of values in seconds
and their corresponding time of day. Any
value greater than 86,399 refers to days in
the future. If the specified time of day has
passed, the same time on the following day is
assumed. :

TABLE 3-2 TIME OF DAY VALUES CALCULATED IN

SECONDS FROM MIDNIGHT

TIME OF DAY

i TIME OF DAY
i 00:00:00 HOURS
]

23:59:59 HOURS

i i

| i

DAY i (MIDNIGHT) ! (P.M.) H
======—S-aﬂﬂls“gaﬂt‘-S-I’--"-------"-ﬂ--ﬂ-g
lst ! ] |
(current) | 0 i 86,399 i
] 1 [}

1 ] ]

2nd | 86,400 ' 172,799 |

] 1 1

] ] ]

2nd ! 172,800 ! 259,199 H

] ] 1

1 1 ]

4th ! 259,200 ! 345,599 !

i | i

4th 1 345,600 i 431,999 !

i ! H

6th i 432,000 ! 518,399 !

! ! 1

7th ! 518,400 H 604,799 H

] 1 ]

| : | : |

. i . i i

. i - i - i

i i i

3,107th | 268,358,400 | 268,435,455* |
(maximum) | | (max imum) !

x 268,435,455

seconds equals
of the final day

21:24:15 hours

48-038 F0OO0 RO1



After executing SVC 2 code 10, the condition code 1is set to
indicate if the call was successful. The possible condition code
settings are:

Condition codes

i ———

FciviGe i L

========m-==a====

{0y 0} 04 0} Normal termination

|- i

i 01 1} 0} 0} sSufficient system space is unavailable;

——————————————— no wait occurred.

If this call is executed and insufficient system space exists, no
wait occurs and the condition code is set to 4 (V bit set).

Example:

sve 2 ,WAITDAY
svc 2,PAUSE
ALIGN 4

WAITDAY DB 0,10
DC H'O!
DC F'12165" Equal to 03:22:45 A.M.
ALIGN 4

PAUSE DB 0,1

48-038 F0O0 ROl 3-43



| 8VC 2
{ CODE 11

3.12 8SVC 2 CODE 1ll: INTERVAL WAIT

SVC

2 code

11

user-specified
elapses, the calling task begins execution. This is accomplished
through the 8VC 2 code 1l parameter block shown in Figure 3-15.

suspends the SVC calling task until a
interval occurs. When the specific interval

G e o ———— o —— i — ——— —————————— o — - —— - — T ——— - ——— " o ot o

parblk

1(1) 12(2) :
Code i Reserved i
] ]
e ;
!
Interval '
]
{
svC 2,parblk
ALIGN 4
DB 0,11
DC H'0O!
DC F'interval'

Figure 3-15 S8SVC 2 Code 11 Parameter Block Format and Coding

This

parameter block is 8 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

Fields:

Option

Code

is a l-byte field that must contain 0 to
indicate no options for this call.

is a 1l-byte field that must contain the

decimal number 11 to indicate code 11 of SVC
2.

48-038 F0OO ROl



Reserved is a reserved 2-byte field that must contain
zeros.

Interval is a 4-byte field that must contain a decimal
number from O through 268,435,455 (228 -1)
representing in milliseconds the interval that
must elapse before the calling task resumes
execution. The interval starts when this call
is executed and ends after the specified
milliseconds elapse.

After executing SVC 2 code 1ll1l, the condition code 1is set to
indicate if the call was successful. The possible condition
codes are:

Condition codes

i CcCiviG i L
=================
! 0} 0} 0O} 0O} Normal termination
1 ]

] !
{01 1} 0} 0} sufficient system space is unavailable;
——————————————— no wait occurred.

If this call is executed and insufficient system space exists, no
wait occurs and the condition code is set to 4 (V bit set).

Example:

svc 2,WAITINT
SvC 2,PAUSE
ALIGN 4

WAITINT DB 0,11
DC H'O'
DC F'32768' Equal to 32.768 seconds
ALIGN 4

PAUSE DB 0,1

48-038 F0O ROl 3-45



| svC 2 |

3.13 SVC 2 CODE 15: CONVERT ASCII HEXADECIMAL OR ASCII DECIMAL
TO BINARY

SVC 2 code 15, the inverse of SVC 2 code 6, converts an ASCII
decimal or hexadecimal number to an unsigned 32-bit binary
number. Character strings can be input in either upper or
lowercase.

The result 1is stored in the wuser register O. This is

accomplished through the SVC 2 code 15 parameter block shown in
Figure 3-16.

10(0) 11(1) 12(2) 13(3) |
| Option H Code | Reserved | User register|
i i i ! i
svC 2,parblk
ALIGN 4
parblk DB option, 15,0
DB user register

Figure 3-16 SVC 2 Code 15 Parameter Block Format and Coding

This parameter block is 4 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

Fields:

Option is a l-byte field that must contain one of the
following options:

e Option X'00' converts ASCII hexadecimal to
binary.

e Option X'40' converts ASCII hexadecimal to
binary, skip leading spaces.

3-46 48-038 FOO ROl



e Option X'80' converts ASCII decimal to
binary.

e Option X'CO' converts ASCII decimal to
binary, skip leading spaces.

Code is a 1-byte field that must contain the
decimal number 15 to denote code 15 of SVC 2.
Reserved is a reserved l-byte field and must contain O.
User is a l-byte field that must contain the user-
register specified register number. This register

should - contain the address of the buffer that
contains the ASCII hexadecimal or ASCII
decimal number to be converted. This buffer
can be located on any boundary. After
executing SVC 2 code 15, register 0 contains
the result, and the user-specified register
contains the address of the byte following the
last number to be converted.

The valid ASCII hexadecimal numbers are 0 through 9 and A through
F. The valid ASCII decimal numbers are 0 through 9. Any
character, other than those ASCII hexadecimal and ASCII decimal
numbers specified, causes the conversion process to stop, the
nonconverted byte address to be stored in the user-specified
register, and the condition code to be set to O. The possible
condition code settings that can occur after executing SVC 2 code
15 are:

Condition codes

Normal termination

-
-
-
::

No numbers converted; register 0 contains
zeros.

Value of the number to be converted is
——————————————— greater than 2,147,483,647 (2% -1).

-
.:
-
-

3.13.1 8VC 2 Code 15, Option X'00'

If option X'00' is specified, the ASCII encoded hexadecimal
number in the buffer, specified by the address in the user
register is converted to a binary number. The resulting number
is stored right-justified in register 0 with the leftmost
significant bits filled with zeros.

48-038 F0OO ROl 3-47



Example:

Buffer before and after execution of SVC 2 code 15

Starting
address Address
X'14E"® X'1l51"

{0 0{0 0{0 6{A F|

User-specified register before execution of SVC 2 code 15

{0 0{0 0i{0 114 E| Hex

User-specified register after execution of SVC 2 code 15

{0 010 0}{0 1i5 1} Hex

If a number other than a valid ASCII number 1is specified, that
number 1is not converted, and the address 1is stored in the
user-specified register.

If an ASCII number 1is preceded by at least one space, no
processing takes place, the contents of the user-specified
register remain the same, register 0 contains all zeros, and the
condition code is set to 1.

If the value of the ASCII number is greater than 2,147,483,647
(2% -1), the number is converted, the resulting number is stored
right-justified in register 0 with the leftmost significant bits
truncated, and the condition code is set to 4 (V bit set).

3-48 48-038 F0O0 ROl



Example:

Buffer before and after execution of SVC 2 code 15

Starting address Address
X'1l52! X'15cC’

13 293 113 413 713 43 8{3 3{3 6{3 6J3 5{2 0} ASCII

Ooverflow —————mmmmmme o
21 14 714 8!3 6!6 5! ASCII

ASCII number greater than 2 1

3.13.2 8SVC 2 Code 15, Option X'40°'

If option X'40' is specified, the ASCII encoded hexadecimal
number in the buffer, specified by the address in the user
register, is converted to a binary number with leading spaces
ignored during the conversion. The resulting number is stored
right-justified in register 0 with the leftmost significant bits
filled with zeros.

48-038 F0O ROl 3-49



Example:

Buffer before and after execution of SVC 2 code 15

Starting
address Address
X'152" X'156"

{0 0{0 0{0 61A F| Hex

User-specified register before execution of SVC 2 code 15

10 010 010 115 2} Hex

Q
<

(=)
o

Normal termination

3.13.3 8VC 2 Code 15, Option X'80°'

If option X'80' is specified, the ASCII encoded decimal number in
the buffer, specified by the address in the user register, is
converted to a binary number. The resulting binary number is
stored right-justified in register 0 with the leftmost
significant bits filled with zeros.

If a character other than a wvalid ASCII decimal number 1is

specified, that character 1is not converted and the invalid
character address is stored in the user-specified register.

3-50 48-038 FOO ROl



Example:

Buffer before and after execution of SVC 2 code

Starting Address of byte

address not converted = Address
xi152‘ I—_ X'154' X'*SB'

{3 513 914 1i{3 3}2 0} ASCII

: ___________________ [}
15191 A3 |

{0 0}{0 0{0 1i{5 2} Hex

User-specified register after execution of SVC 2 code 15

{0 0{0 0{0 1{5 4} Hex

48-038 F00 ROl

15

51



Condition codes

o . —— -

Normal termination

{0t 14} 0} 0} ASCII number greater than 2% -1

If a decimal number represented in ASCII code is preceded by at
least one space, no processing takes place, the contents of the
user-specified register remain the same, register 0 contains all
zeros, and the condition code is set to 1.

If the value of the ASCII decimal number is greater than
2,147,483,647 (2% -1), the number is converted, the resulting
binary number is stored right-justified in register 0 with the
leftmost significant bits truncated, and the condition code is
set to 4 (V bit set). I

3.13.4 8VC 2 Code 15, Option X'CO’

If option X'CO' is specified, the ASCII encoded decimal number in
the buffer, specified by the address in the user register, is
converted to a binary number, with leading spaces ignored during
the conversion. The resulting number is stored right-justified
in register 0 with the leftmost significant bits filled with
zZeros.

3-52 48-038 F0O ROl



i SVC 2 |
{ CODE 16 |

3.14 SVC 2 CODE 16: PACK FILE DESCRIPTOR

SVC 2 code 16 formats a user-specified unpacked file descriptor
(fd) to the packed format used within the SVC 7 parameter block
(see bytes 8 through 23 of the 8VC 7 parameter block). Figure
3-17 illustrates the SVC 2 code 16 parameter block format.

10(0) 11(1) 12(2) i
' Option ' Code ! User register !
] ] ] [}
S |
14(4) ,
! Address of packed fd area |
i 1
' §

svc 2,parblk

ALIGN 4

parblk DB option, 16
DC H'user register number'’

DCF A(packed fd area)

Figure 3-17 8SVC 2 Code 16 Parameter Block Format and Coding

This parameter block is 8 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

48-038 F00 ROl ‘ ’ 3-53



Fields:

Option

OPTION
X'00'

X'40"

X'10'

X'50"

X'20'

X'60

X'80'

X'co’

is a l-byte field that must contain one of

following options:

Defaul

Defaul
leadin

Defaul

Defaul
leadin

MEAN ING
t volume is the user volume.

t volume is the user volume. Skip
g spaces.

t volume is the system volume.

t volume is the system volume. Skip
g spaces.

Default volume is the spool volume.

Defaul
leadin

No def

No def

t volume is the spool volume. Skip
g spaces.

ault volume.

ault volume. Skip leading spaces.

In a non-MTM environment, the default

volume
volume

the

user

is the same as the default system
. Options X'00' or X'40' are preferred,
since they are compatible with normal usage in
an MTM environment.

NOTE

The above options are intended for
use by non-privileged u-tasks
only. These options pack file
descriptors that use the /P, /G,
or /S file classification. If a
privileged u-task or e-task uses
these options to pack an fd with
a /P, /G, or /S file
classification, the resulting
packed fd will have an account
number in its file class field.
See Section 3.14.9 for the sVC 2
code 16 options for e-tasks or
privileged u-tasks.

48-038 FO0 ROl



Code

User register

Address of
packed fd
area

is a 1l-byte field that must contain
decimal number 16 to indicate code 16 of
2.

is a 2-byte field that must contain
user-specified register number containing
unpacked fd address.

the
sSvC

the
the

is a 4-byte field that must contain the
address of the area that receives the packed

file descriptor.

The condition codes set after packing an fd are:

Condition code

s

{01 01
| 010
RN
11101010

Normal termination

i No volume name present in unpacked fd

| An account number or file class present
e it be bbby i in unpacked fd

| Syntax error present in unpacked fad

i No extension present in unpacked fd

If more than one condition results from a pack fd

combination of condition codes are set.

When

NOTE

a period followed by no valid

characters is specified in the unpacked

fd

14

it is treated as an explicit request

for an extension containing spaces. The
condition code is set to 8 (C bit set).

48-038 FOO ROl

operation,

55



All lowercase characters in the user-specified fd are converted
to their equivalent uppercase characters after the pack fd
operation occurs. The entire user-specified fd (unpacked format)
can be from 1 to 19 characters. Allowable characters are:

e A through Z (uppercase)

e a through z (lowercase)

e 0 through 8 (numerics)

e selected special characters (symbols)
The format of the user-specified fd4d is:

Format:

{vom}: [f ilename] E[éxt]] /{(Z:}

dev
actno
Parameters:

voln or dev: is a disk volume or device name from one to
four characters.

f ilename is a filename from one to eight alphanumeric
characters.

.ext is the extension name of from one to three
characters, preceded by a period.

P are single alphabetic characters representing

G the file class. They are: P for private file;

S G for group file; and S for system file.

actno is an account number ranging from 0 through

65,535.

The area receiving the packed fd must be 16 bytes long,
fullword-boundary aligned, and 1located in a task writable
segment. See Figure 3-18. Since this area is identical to bytes
8 through 23 of the SVC 7 parameter block, these bytes can be
designated as the receiving area.

3-56 48-038 F00 ROl



Filename @ 2  ————— e

1 15(F) |
Extension i File class/ |
}Account number |

Figure 3-18 Packed File Descriptor Area

Fields:

Volume name
or
device name

Filename

Extension

48-038 FOO ROl

is a 4-byte field that receives the packed
format of the volume name or device name. If
the volume or device name 1is 1less than 4
bytes, it is left-justified with spaces
(X'20'). If no volume or device name is
specified, the user-specified option
determines the result.

is an 8-byte field that receives the packed
format of the user-specified filename. If the
f ilename is less than 8 Dbytes, it is
left-justified with spaces (X'20'). If no
filename is sgpecified, this field is filled
with spaces.

is a 3-byte field that receives the packed

format of the user-specified extension. If
the extension is less than 3 bytes, it is
left-justified with spaces (X'20'). If no

extension is specified, this field is filled
with spaces.



File class/ is a l-byte field that receives the packed

account format of the user-specified file class. Any
number value other than P, G, or 8 in the file
class field of the unpacked fd causes a syntax
error. If no file class is specified in the

unpacked fd, an S is returned in the class
field of the packed fd when running under the
operating system. P is returned in the class
field of the packed fd when running under MTM.

NOTE

If the SVC 2 <code 16 options for
privileged tasks are used, an account
number is returned to this field. (See
Section 3.14.9.)

After the pack fd operation occurs, the user-specified register
contains the address of the byte following the unpacked fd. If
a syntax error is detected, the user-specified register contains
the address of the first byte of the unpacked fd. The following
examples show the results of issuing an SVC 2 code 16 for a task
running under MTM. The default system volume is M300.

When a device name is encountered in the user-specified f£fd, the

pack fd operation returns spaces to the filename, extension, and
file class/account number fields of the packed fd.

Example 1:

Unpacked fd
address Address
X'118" X'126°'

{4 DI3 3{3 0{3 0/3 Al5 3|5 6/4 3{3 2|2 E|{3 1|3 6|2 F|5 0}2 02 ASCII
i

‘00‘00'01'18‘ Hex

Packed fd

- 1 —— " —— T — T - — - — —— — —— " ————— - —

3-58 48-038 F0O RO1



User-specified register after packing fd

'00'00'01'26‘ Hex

Normal termination

Example 2: i

Unpacked fd
address Address
X'118"' X'11D’

 ——— o — o 7

" —— v —— -

i4 D|3 3|3 0{3 02 012 0}2 012 0|12 0}2 012 02 0'2 012 012 0'2 0! ASCII

No extension present in unpacked fd;
——————————————— syntax error present in unpacked fd

48-038 FO0O0 ROl 3-59



The unpacked fd contains a character that was interpreted as a
field separator.

Example 3:

Unpacked fd
address Address
X'118° X'1llF'

R S S

{4 DI3 3{3 0{3 013 A}5 3|5 6{2 6{3 2{2 E{3 1{3 6i{2 F{5 0} ASCII
] .

a i m —— —— —— i A —— - —— o ——————— i S — = - ——— - O ———

———— i ————————— -~ ——_——_—_——— . ——————————— ——_ ———_——————

'4 Di{3 3{3 0{3 05 3i{5 612 0{2 0{2 0{2 0{2 0i2 0{2 0i2 0}2 0O}5 0' ASCII

e — ———————— ——————_——_———————————— ———— —— - — - ———

User—specified register after packing fd

100} 00‘01'18‘ Hex

r CH1 ViIG L |
=================
i1} 1| 0| 0} No extension present in unpacked fd;

————————— —————— syntax error present in unpacked fd

The above example shows an illegal character within the filename.

3-60 48-038 FOO ROl



Example 4:

Unpacked fd

‘4 315 214 4|5 2}2 E| ASCII

14 013 3{3 0}3 04 3|5 24 415 2|2 012 012 0{2 042 0}2 012 05 0} AsCII

- ————— T ———————— —————— — i —— o — — ——— e ————— ——— o o — — —— ———— —— 1_-— ——

No volume name present in unpacked format

The example above shows a default volume option with an explicit
request for an extension containing spaces.

Example 5:

Unpacked fd

15 014 314 2}3 313 212 F{5 3} ASCII

No extention present in unpacked £f4;
———————————————— no volume name present in unpacked fd

48-038 F0O ROl 3-61



If a syntax error occurs, the scan of the unpacked fd terminates
at the byte that caused the syntax error and the area receiving
the packed fd is filled with indeterminate code. Check the
condition code to determine if a syntax error occurred.

3.14.1 8SVC 2 Code 16, Option X'00'

If option X'00' with no volume name is specified, the default is
the system volume. The first byte of the unpacked fd (currently
pointed to by the user-specified register) is the starting
location of the pack fd operation.

The following examples use M67A as the default system volume.

Example 1:

Unpacked fad

i4 D|3 613 714 114 3/4 8{3 2|5 0}5 2|4 D|2 0}2 0{3 6!/3 1}3 3{4 7| ASCII

No volume name present in unpacked fd

Example 2:

Unpacked fd

12 0/4 DI3 3{3 0{3 1|4 314 8{3 2|5 0!5 2{4 Di2 E{3 6{3 1|3 3|2 Fi{4 7| ASCII

3-62 48-038 FOO ROl



Packed fd

———— e —— - —— ——— — T — - —— ——— —— - T —— —— — ———— i — i — ——— — —_———— —— -

{4 D|{3 613 7i{4 112 0{2 0}2 0}2 0{2 0{2 0}{2 0{2 0}2 0j2 0}2 0j2 0O} ASCII

No extension present in unpacked fd;
——————————————— syntax error present in unpacked fd;
no volume name present in unpacked fd

As shown in the above example, if the first character in the
unpacked fd is not valid, processing stops. The system volume
name is the default, and the filename, extension, and class
fields are modified to blanks.

3.14.2 8VC 2 Code 16, Option X'40'

If option X'40' with no volume name is specified, the default
user volume and all preceding spaces are ignored. All spaces are
ignored from the first byte of the unpacked fd (currently pointed
to by the user-specified register) to the first character in the
unpacked fd.

The following example uses M67A as the default system volume.

Example:

Unpacked fd

—— i ——————————_—————— - - ——— —— v L - - o o —— o o o

'2 0i4 314 813 2|5 05 2/4 D{2 E|3 6{3 1i{3 3/2 Fi{4 7| ASCII

—————— ————— o —— o ————— ————— — i ——_———— " - —————— - ———————— ———————-_— -

48-038 F0O0 ROl 3-63



Condition code

B et I ——

No volume name present in unpacked fd

3.14.3 SVC 2 Code 16, Option X'10'
If option X'10' with no volume name is specified, the default is
the system volume. The first byte of the unpacked fd (currently

pointed to by the user-specified register) 1is the starting
location of the pack fd operation.

The following examples use M300 as the default volume.

Example 1:

Unpacked fd

}5 3:5 614 3{3 2{2 E{3 1|3 612 F|5 0} ASCII

1
rsivicti 2y .16 /1P|

- — ot " ————— o ————————_ T ————_—— - ———— -~ — 1 ot

No volume name present in unpacked fd

Example 2:
Unpacked fd

————————————— - ———————— " — T ———— ———— ]~ ——— T —— - —— —— ———— ———

3-64 48-038 FOO RO1



Packed fd

4 DI3 3{3 0|3 012 012 0}2 0{2 0{2 0}j2 0|2 0|2 012 0}2 012 0}2 O} AsCII

No extension present in unpacked £d;
——————————————— syntax error present in the unpacked fd;
' no volume name present in the unpacked fd

As shown in this example, if the first character in the unpacked
fd is not valid, processing stops. The system volume name is the
default and the filename, extension, and class fields are
modified to blanks.

3.14.4 8VC 2 Code 16, Option X'50°'

If option X'50' with no volume name is specified, the default
system volume and all preceding spaces are ignored. All spaces
are ignored from the first byte of the unpacked fd (currently
pointed to by the user-specified register) to the first character
in the unpacked fA4.

The following example uses M300 as the default system volume.
Example:

Unpacked fd

12 012 0{2 0}5 4|5 3{2 E}{4 3}5 3|5 3}/2 Fi{4 7| ASCII
]

o — v — o —— ————— - S > (ot T — Yt o 7 ot

—— i ———— —————_———— - > - —————— T ————— T ————— " —————— T~ —— T

48-038 FO0O ROl 3-65



Condition code

No volume name present in unpacked fd

3.14.5 8SVC 2 Code 16, Option X'20'

If option X'20' with no volume name is specified, the default is
the spool volume. The first byte of the unpacked fd (currently
pointed to by the user-specified register) 1is the starting
location of the pack fd operation.

Example 1l:

Unpacked fd

e om o o o —- —— T  tt T— t rs (o i o i " — iy " —

15 3%5 614 3'5 415 3{5 412 E{4 314 1i4 C}| ASCII

. o ——————— i A T o o — T\ T

e —————— o ———— — T — o — - " —— — ——— - ———— N ——— P — T S W — T v —— - ——— -

e e e - —— — A ——— ——————— —— ——— —— ——— T — T - — " ——— - ——— -

No volume name present in unpacked fd

Example 2:

Unpacked fd

82 0i2 0{5 3}5 6{4 3{5 4|5 3|5 412 E{4 314 1}4 C}| ASCII

3-66 48-038 FOO ROl



Packed fd

—————— o ——— ——————————————— T ——— -t ——— —— ——— T —— ] ———— —————

i CI1 ViG | L |

| =e=mee=ce=-====| NO extension present in unpacked fd;
i 1114} 01} 1| syntax error in unpacked fd;
——————————————— no volume name in unpacked fd

As shown in this example, if no volume name is specified and the
filename 1is preceded by at least one space, the spool volume is
the default and the filename, extension, and class fields are
modified to blanks.

3.14.6 S8SVC 2 Code 16, Option X'60'

If option X'60' with no volume name is specified, the default is
the spool volume and all preceding spaces are ignored. All
spaces are ignored from the first byte of the unpacked fd
(currently pointed to by the user-specified register) to the

first character in the unpacked fd. The default volume for the
following examples is S300.

Example 1:

Unpacked fd

'4 9i4 C}5 4|5 3{5 412 E{5 4|5 314 B|2 F'5 3} ASCII

- ——— ———— ——— ———— T —— ——— T ——— o — . — —— = — T ———— - ——— ——— — T —— ——

67

48-038 FOO ROLl 3



Condition code

No volume name present in unpacked fd

Example 2:

Unpacked fd

it — i ——————— i — ——— - —— o~ — T ———_ - — —— —

12 014 914 Ci5 4|5 3i5 412 E|{5 4|5 314 B}{2 F{5 3| ASCII

o i i A ——— i ——— i — —— —— — —— _—— " ————— = o—

i4d D{3 3{3 0!3 014 9/4 C!5 4|5 3|5 4{2 0}{2 0{2 0}{5 4}5 3|4 B!5 3} ASCII
== e e |

i S 1 3 0 P 0O TPy T ST ] i i TI S 1 Ki{ S|

i —— " ——— —————— ——————— ——— —— T ——— - - . —_— > = = - —_——

No volume name present in unpacked fd

If no volume name is specified and the filename is preceded by at
least one space, all preceding spaces are ignored and the default
is the spool volume. The spool volume name and remaining fd are
packed.

3.14.7 8VC 2 Code 16, Option X'80'

If option X'80' with no volume name is specified, the contents of
the volume name field before executing the pack fd operation is
used as the volume name. The first byte of the unpacked fd
(currently pointed to by the user-specified register) is the
starting location of the pack fd operation.

3-68 48-038 FOO ROl



Example 1:

Unpacked fd

‘4 Fi5 0}{5 4{3 8{3 0{2 E{4 3|4 1i4 C| ASCII

—— i ——— T —— o —— A " - e e e mde L Gam e G e e

—— i ——————————— T —— — ——— T~ ———— —_———— " ———————— —————— ———— ———— T ———_— ——

No volume name present in unpacked fd

If a volume name is specified and is preceded by at 1least one
space, that volume name is ignored and the contents remaining in
the volume name field before executing the pack fd operation are
used as the volume name. The filename, extension, and class
fields are modified to blanks as shown in Example 2.

Example 2:

Unpacked fd

{2 02 0}/4 Di3 1!3 0i4 1i3 Ai4 Fi5 0'5 413 813 0{2 E|4 3!4 1i4 C| ASCII

48-038 FO0O ROl 3-69



Packed fd location contents before pack fd operation

——————————— —— T —_——————_——— ] —— T — " —— - - - ————

——— —————— —————————— —————_—— i ——— ————————_— "~ — o~ —— o ——

—————— T — - - ———— —————— o ————— ——————— i — - ——— ——— o ———

{15 313 313 0/3 0i2 012 0{2 012 O0l2 012 012 012 012 012 012 012 0O} AsCII

it Ci1viG | L

|s=====s=rx=====| No extension present in unpacked fd;

i 11 1} 0} 1| syntax error present in unpacked fd;
——————————————— no volume name present in unpacked fd

If no volume name is specified and the filename is preceded by at
least one space, the contents remaining in the volume name field
before executing the pack fd operation are used as the volume
name. The filename, extension, and class fields are modified to
blanks as shown in Example 3.

Example 3:

Unpacked fd

12 0{4 F{5 0{5 4}3 83 0i2 E{4 314 1i{4 C| ASCII

o —— A o ot oy T o o —

I4 0I3 213 5/2 015 714 814 1|5 414 5|5 6{4 5|5 2|4 5|4 C|5 3|4 5| AsSCII

14 D!3 2}3 5}2 0}{2 0}{2 0{2 0}{2 0}{2 0]2 0}{2 0}2 0}2 0}2 0}2 0}2 0O} ASCII

3-70 48-038 FOO0 ROl



Condition code

t CH VI G L

{============mecx| NO extension present in unpacked fd4d;

i 11 1} 0} 1} syntax error present in unpacked fd;
——————— =—-==-=--- no volume name present in unpacked fd

3.14.8 8SVC 2 Code 16, Option X'CO'

If option X'CO' with no volume name is specified, the contents of
the volume name field before executing the pack fd operation are
used as the volume name and all preceding spaces are ignored.
All spaces are ignored from the first byte of the unpacked fd
(currently pointed to by the wuser-specified register) to the
first character in the unpacked fd.

Example 1:

Unpacked fd

15 0i5 24 D'2 E{3 6{3 1i{3 3{2 F{5 0} ASCII

e " o P - " "~ " — —— — — " ——— —— — — ———

14 415 3}]4 3|3 3|5 7/4 8}4 1|5 4|4 5|5 6|4 5|5 2|4 5{4 C|5 34 5' ASCII

{4 415 314 3|3 3|5 0|5 2{4 D}|2 0}2 0}2 0}2 0}2 0}3 6{3 1{3 3|5 O} ASCII

No volume name present in unpacked fad

48-038 FOO ROL 3-71



If a volume name is specified and is preceded by at 1least one
space, all preceding spaces are ignored and that volume name and
remaining fd are packed as shown in Example 2:

Example 2:

Unpacked fd

o — —— —————————————————————— ————_—-_——_—— - Y— - ————————

—— - - —— - ——— T ——— — ————— o ——————— ———— W —— o " o - ———

o e - ——————— ————_——_—————— —— T — —— " T W — ———— = -~~~

14 Di3 63 714 1|5 05 2}4 Di2 0{2 0{2 0f{2 0{2 0{3 613 1|3 3|5 0} AsCII

o —— i ——— i —— T ———————————————— o —————————— —— - ——— - "

i
0 0} O} O | Normal termination

3.14.9 8SVC 2 Code 16 Options for Privileged Tasks

Only privileged u-tasks, e-tasks, and privileged d-tasks are
allowed to pack an fd so that the resulting packed fd has an
account number in its file class/account number field. A u-task
becomes privileged if the account privileges task option
(ACPRIVILEGE) is specified when the task is link-edited.
ACPRIVILEGE allows u-tasks to access files by account number
rather than file class. The range of account numbers available
to the task 1is 0-65,535, excluding 255. To access files on
account 255, the bare disk I/0 task option (DISC) must also be
specified when the task is link-edited.

E-tasks always have account privileges.

CAUTION

IF THE O0OS/32 TASK LOADER HAS THE E-TASK
LOAD OPTION DISABLED, ALL U-TASKS WILL BE
DENIED ACCOUNT PRIVILEGES REGARDLESS OF
THE TASK OPTIONS SPECIFIED BY LINK.

3-72 48-038 FOO RO1



The following SVC 2 code 16 options are used by an e-task,
privileged d-task, or privileged u-task to produce a packed fd
that has an account number in its file c¢lass/account number
field:

OPTION MEANING
X'o8' Default volume is the user volume
X'48" Default volume is the wuser volume; skip

leading spaces

X'18' Default volume is system volume

X'58' Default volume is system volume; skip 1leading
spaces

X'28' Default volume is spool volume

X'e8' .Default volume is spool volume; skip leading
spaces

X'88"’ No default volume

X'cs' No default volume; skip leading spaces

When a privileged task uses one of the above options to pack an
fd that has either an account number or file class in its file
class/account number field, SVC 2 code 16 returns an account
number to the resulting packed fd and sets the G bit in the
condition code.

If neither an account number nor a file class is specified in the
unpacked fd, the file is packed with account number 0 (if the
task 1is running at the system console) or the user's private
account number (if the task is running under MTM).

48-038 FOO RO1 3-73



| 8vC 2
| CODE 17

3.15 SVC 2 CODE 17: SCAN MNEMONIC TABLE

SVC 2 code 17 compares a user-specified mnemonic character string
to a table of previously defined mnemonic strings. If a match is
found, the user-specified mnemonic character string is accepted
as a valid mnemonic. The SVC 2 code 17 parameter block is shown
in Figure 3-19.

10(0) 11(1) 12(2) 13(3) |
i Option | Code i User i User i
i i | register 1 | register 2 |
| o T T T T e e e e e e s —e e %
14(4) =
| Address of mnemonic table i
! i
i [}

svc 2,parblk

ALIGN 4

parblk DB 0,17
DB user register 1, user register 2

DCF A(mnemonic table)

Figure 3-19 8SVC 2 Code 17 Parameter Block Format and Coding

This parameter block is 8 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

3-74 48-038 FOO ROl



Fields:

Option is a 1l-byte field that must contain 0 to
indicate no options for this call.

Code is a 1l-byte field that must contain the
decimal number 17 to indicate code 17 of SVC
2.

User is a l-byte field that must contain a user-

register 1 specified register number. This register
should contain the starting address of the
buffer with the user-specified mnemonic

character string. After executing SVC 2 code
17, this register contains the address of the
byte following the wuser-specified mnemonic
string, or the unchanged starting address.

User is a l-byte field that must contain a user-
register 2 specified register number. This register
receives a decimal number from -1 through
2,147,483,647 (2% -1) corresponding to the
position of the mnemonic within the table that
matches the user-specified mnemonic character
string. If no match is found, this register
receives a value of -1. The first position in
the mnemonic table corresponds to a value of

0.
Address of is a 4-byte field that must contain the
mnemonic starting address of the mnemonic table. This
table must be defined before executing SVC 2 code 17.

The user-specified mnemonic character string can be any 1length
but can contain only the following characters:

e A through Z (uppercase)

e a through z (lowercase)

e O through 9 (can be used only after the first byte of the
mnemonic)

e Special characters (can be used only as the first byte of the
mnemonic).

All 1lowercase characters that appear 1in the user-specified
mnemonic character string are accepted as their uppercase
equivalent.

48-038 FOO ROl 3-75



3.15.1 Building a Mnemonic Table

The mnemonic table to be used in SVC 2 code 17 must be defined in
a standard format. The mnemonics entered in the table can be any
length but can contain only certain legal characters:

e A through Z (uppercase alphabetics)

e O through 9 (numerics can be used only after the first byte of
the mnemonic)

e Special charactors can be used only as the first byte of the
mnemonic)

The characters for each mnemonic in the table must be in
contiguous order, beginning with the first character and ending
with the termination indicator, X'00'. Every mnemonic entered in
the table has a minimum abbreviation. Each character required
for the minimum abbreviation must have an X'80' added to the
character when the mnemonic is defined. The mnemonic table must
be terminated by an X'00' after the last mnemonic entry. See the
example below.

Example:

TABLE EQU *
DB C'G'+X'80',C'ET',X'00"
DB C'R'+X'80',C'E'+X'80',C'W'+X'80',C'IND',X'00'

bB C'S'+X'80',C'T'+X'80',C'ART"',X'00'
DB X'oo'

When the table is assembled, a logical OR operation is performed
on X'80' and the character associated with it. This sets bit 0
of each character on which the OR operation was performed to 1.
A bit setting of 1 indicates that it is a required character;
whereas, a bit setting of 0 indicates that it is not a required
character.

3.15.2 Executing SVC 2 Code 17

When executing this call, the user-specified mnemonic character
string is compared to each entry in the mnemonic table until a
match is found. Once a match is found, the address of the byte
following the user-specified mnemonic character string is stored
in user register 1 specified in the parameter block.

3-76 48-038 FOO ROl



The mnemonic's position (decimal number) within the table that
matched the user-specified mnemonic character string is stored in
user register 2, specified 1in the parameter block. After
executing SVC 2 code 17, the condition code is set.

Condition codes

Normal termination

—— amew w—a— ——

i Ot 11 01} O} User-specified mnemonic character string
————————————————— does not match any mnemonic in the table.

Example:

LA 3,STRING
svc 2,SCAN
svc 2,PAUSE
ALIGN 4

SCAN DB 0,17
DB 3,5
DC A(TABLE)

STRING DB C'map'
ALIGN 4

PAUSE DB 0,1

TABLE EQU
DB C'A'+X'80',C'L'+X'80"',C'LOCATE',X'00"
DB C'M'+X'80',C'A'+X'80"',C'P'+X'80"',X'00
DB C'T'+X'80',C'YPE',X'00"
DB X'00'

User-specified mnemonic string before and after execution of
SVC 2 code 17

Starting
address
X'158'

48-038 F0OO ROl 3-77



Table (after assembly) before and after execution of sSVC 2
17.

e e ————— ———— i ——— —— - ——— o — =W - - oo ——— -

iC 1{C Ci{4 Ci4 Fi{4 3}4 1i5 4i/4 5{0 O0iC Di{C 1{D 0{0 O}

code

User register 1 Dbefore execution of SVC 2 code 17

10 010 0{0 1{5 8!

Hex

{0 0i0 0!0 1}5 B

Hex

User register 2 after execution of SVC 2 code 17

{0 0/0 0}0 0!{0 1! Hex
Condition code
¢t viyicec it Lo
t 0t 04 01 0|

If the user-specified mnemonic character string is compared to

each entry in the mnemonic table and no match is found, the
starting address of the buffer containing the user-specified
mnemonic character string remains unchanged in user register 1.

A decimal value of -1 is stored 1in user
condition code is set to 4 (V bit set).

register 2 and the

48-038 FOO ROl



Example:

SCAN

STRING

PAUSE
TABLE

User-specified mnemonic string before and after execution of

SVC 2 code 17

Starting
address
X'158"

i4 115 3| ASC

svcC
svcC

-

ALIGN
DB

DB

DB

DC
ALIGN
DB
EQU
DB

DB

DB

Il

3,STRING
2,SCAN
2,PAUSE

4

0,17
3,5
A(TABLE)
C'AsS'

4

0,1
*

C'A'+X'80',C'L'+X'80',C'LOCATE' ,X'00"
C'M'+X'80',C'A'+X'80"',C'P'+X"'80"',X'00"

c'T'+X'80',C'YPE’',X"'0000"

Table (after assembly) before and after execution of SVC 2

code 17

fC 1LiC Ci{4 Ci4 Fi4 3!4 1|5 44 5|0 0jC DiC 1i{D 0i0 O

10 010 0J0 1{5 8}

48-038 FOO ROl

Hex

code 17



User register 2 after execution of SVC 2 code 17

\F F|{F F{F FI|F F| Hex

o
H
o

If a nonalphanumeric character follows the first character in a
user-specified mnemonic string, the nonalphanumeric character is
treated as the end of the mnemonic. The address of the
nonalphanumeric character is returned to user register 1.

Example:

LA 3,STRING
svc 2,SCAN
svc 2,PAUSE
ALIGN 4

SCAN DB 0,17
DB 3,5
DC A(TABLE)

STRING DB C'TY&E'
ALIGN 4

PAUSE DB 0,1
ALIGN 4

TABLE EQU x

DB C'A'+X'80',C'L'+X'80',C'LOCATE' ,X'00'
DB C'M'+X'80',C'A'+X'80',C'P'+X'80',X'00"
DB C'T'+X'80',C'YPE’',X'0000"

User-specified string before and after execution of SVC 2 code 17

3-80 48-038 F0O0 RO1



Starting
address

X'158' X'15A°

Table (after assembly) before and after execution of SVC 2 code
17

iC 1licC C'4 Ci4 Fi4 314 115 414 50 0jC DiC 1iD 0|0 O}

execution of SVC 2 code 17

execution of SVC 2 code 17

10 0‘0 0i0 0}/0 2} Hex
Condition code
r CHvViG L
====.—.=========== :
i 010} 0} 0|
In the above example, the user-specified mnemonic "TY&E" is
treated as "TY". The address of the byte following the

then X'15A°',
A decimal value of 2 is
and the condition code is set to O.

user-specified mnemonic string mnemonic string is
which is returned to user register 1.
stored in user register 2,

48-038 FO0O ROl

w
1

81



| svCc 2 |

3.16 8SVC 2 CODE 18: MOVE ASCII CHARACTERS
SVC 2 code 18 moves a specified number of ASCII characters from

a sending buffer to a receiving buffer in memory. The SVC 2 code
18 parameter block is shown in Figure 3-20.

10(0) 11(1) 12(2) 13(3) i
i Option+n ! Code ! User ] User i
i g | register 1 | register 2 |
| T T T e e e e e e e e e e e e e e |
14(4) |
H Address of terminating character string i
] 1
] 1

SvC 2,parblk

ALIGN 4

parblk DB option+n, 18
DB user register 1, user register 2

DCF A(terminating character string)

Figure 3-20 SVC 2 Code 18 Parameter Block Format and Coding

This parameter block is 8 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

3-82 48-038 FO0O ROl



Fields:

Option+n

Code

User
register 1

User
register 2

Address of
terminating
character

48-038 FOO ROl

is a 1l-byte field that must contain the
addition of the hexadecimal number specified
for the option and the decimal number
specified as n.

e n is a decimal number ranging from O
through 127 indicating an explicit number
of bytes in the ASCII character string that
are to be moved to the receiving buffer in
memory.

e Option X'00"'+n means no terminating
character string is used.

® Option X'80'+n means a terminating
character string is used.

is a 1l-byte field that must contain the
decimal number 18 to indicate code 18 of SVC
2.

is a 1l-byte field that must contain a user-
specified register number. This register must
contain the starting address of the buffer
containing the user-specified ASCII character
string to be moved. After executing SVC 2
code 18, this register contains the address of
the byte 1in the sending buffer that follows
the last moved character.

is a 1l-byte field that must contain a user-
specified register number. This register must
contain the starting address of the buffer
that receives the user-specified number of
ASCII characters being sent. This buffer must
be located in a task writable segment. After
executing svc 2 code 18, this register
contains the address of the byte in the
receiving buffer that follows the last
character received.

is a 4-byte field that must contain the
starting address of the user-specified string
of terminating characters. Each character of
this string can be used to indicate the end of
the ASCII character string to be moved. This
field 1is only used when option X'80' is
gspecified.



When SVC 2 code 18 is executed, the specified number of ASCII
characters are moved to the receiving buffer. The starting
addresses of the sending and receiving buffers located in the
user-specified registers are changed to the address following the
last byte sent in the sending buffer and the last byte received
in the receiving buffer. The condition code is also set after
executing SVC 2 code 18. The possible condition code settings
are:

Condition code

! 0} 0O} O} 0} Normal termination

]

{

i 0} 1| 0| 0} No terminating character found in
———————————————— the ASCII character string

3.16.1 SVC 2 Code 18, Option X'00'+n

If option X'00'+n is used with a user-specified decimal number,
that decimal number determines the number of bytes moved from the
ASCII character string to the receiving buffer. After executing
SVC 2 code 18, user register 1 contains the address of the byte
in the sending buffer that follows the user-specified number of
ASCII characters that were moved. User register 2 contains the
address of the byte in the receiving buffer that follows the
user-specified number of ASCII characters Jjust received. The
condition code is set to O.

Example:
LA 1,ASTRING
LA 2 ,RECBUF
sSvC 2 ,MOVECHAR
ALIGN 4
MOVECHAR DB X'00'+17,18
DB 1,2
DS 4
ASTRING DB C'FLORIDAX**VERMONT'
RECBUF DS 17

User register 1 before execution of SVC 2 code 18

{0 010 010 116 2| Hex

3-84 48-038 FO0O ROl



User register 2 before execution of SVC 2 code 18

i0 010 00 1}7 3} Hex

ASCII character string before and after execution of SVC 2 code 18

Starting address Last byte Address
X'162'

to be moved\X' 173!
i \

Receiving buffer after execution of SVC 2 code 18

Starting address Address
X'173" X'184'

'4 614 Ci4 F|5 2{4 9{4 4i4 112 A}2 A|l2 A|5 614 5|5 2|4 Di|4 Fi{4 E|{5 4|2 0‘ ASCII

48-038 F0OO RO1l 3-85



3.16.2 8SVC 2 Code 18, Option X'80'+n

If option X'80'+n is specified, each character in the ASCII
string 1is compared to each character in the terminating string
before it is moved. A match indicates that the end of the ASCII
character string to be moved was reached and the decimal number
n, which specifies the number of characters to be moved, is
ignored. The character or characters in the ASCII string that
match the character or characters in the terminating string are
not moved, and the SVC terminates. The condition code is set to
0. 1

The string of terminating characters can be any 1length and can
contain any character but must be specified by the user as
follows:

Format:
label DB m,C'xxx...x'

Parameters:

label is the name of the terminating character
string the user specifies.

DB is the operation code, define byte.

m is a decimal number indicating the number of
characters in the terminating character
string.

C'xxx...x' is a character string indicating that the data
enclosed in the single quotation marks are
characters.

3-86 48-038 FOO ROl



Example:

LA 3,ASTRING
LA 5, RECBUF
svcC 2 ,MOVECHAR
svC 2,PAUSE

ALIGN

4

PAUSE DB 0,1

ALIGN 4
MOVECHAR DB X'80'+17,18

DB 3,5

DC A(TSTRING)
TSTRING DB 3,C'/&*" '
ASTRING DB C'FLORIDA*&/VERMONT' !
RECBUF DB 17

ASCII character string before and after execution of SVC 2 code 18

Starting
address Characters matching Address
X'le2' terminating character string X'173"

e e s o e e e - e - " = —— - = - =~ ——— "~ - ———— — ——

{0 010 0}0 117 3| Hex

48-038 FOO RO1l 3-87



Receiving buffer after execution of SVC code 18

Starting address Address
X'173" X'17A°

- - —————— -~ —— " —_—— i ——— " = ————— —— —————

User register 1 after execution of SVC 2 code 18
User register 2 after execution of SVC 2 code 18

Terminating character string before and after execution of SVC 2
code 18

If option X'80' is specified and the ASCII character string does
not contain any characters that match any terminating character,
the decimal number specified as m determines the number of bytes
to be moved. The condition code is set to 4 (V bit set).

3-88 48-038 FOO ROl



Example:

LA 3,ASTRING
LA 5, RECBUF
svC 2 ,MOVECHAR
svce 2 ,PAUSE

ALIGN

4

PAUSE DB 0,1

ALIGN 4
MOVECHAR DB X'80' + 17,18

DB 3,5

DC A(TSTRING)
TSTRING DB 3,C',$:"
ASTRING DB C'FLORIDA*&/VERMONT'
RECBUF DS 17

ASCII character string before and after execution of SVC 2 code 18

Starting
address Last byte Address
X'l62' to be moved\‘x' 173"

|4 64 Ci{4 F|5 214 914 4/4 112 A2 6{2 F|5 614 5|5 2|4 Di4 Fi4 E|5 4}2 0' ASCI1I

{0 040 0O1}O0 1:7 31 Hex

48-038 F0O ROl 3-89

- -



Receiving buffer after execution of SVC code 18

Starting
address
X'173"

Address
X'184"'

12 712 413 A} ASCII

i CIViIiG L
==========="--=l
i 0O 110} 0]

execution of SVC 2 code 18

execution of SVC 2 code 18

string

48-038 F00 ROl



| 8svC 2 |
| CODE 19 |

3.17 SVC 2 CODE 19: PEEK

SVC 2 code 19 provides four parameter block options that can be
used to obtain and store task related information. Each
parameter block option obtains a different set of information
from the system pointer table (SPT) and the task control block
(TCB). Figures 3-21 through 3-25 1illustrate the five peek
parameter block option formats.

3.17.1 Parameter Block for Option X'00'
If SVC 2 code 19 is executed with option X'00' specified in the

parameter block option field, use the parameter block format in
Figure 3-21. This option is used to obtain task information.

10(0) 11(1) 12(2) Number of}{3(3) Maximum |
| Option H Code {logical units | priority |
: ! | (NLU) | (MPRI) !
____________________________________________________________ ‘
14(4) ]
H : |
H Name of operating system |
|- (0sIp) 0 mmmmmmmm———m—m - |
18(8) ]
1 i
] |
o e e e e e e e e e e e e e i
112(c) i
| i
| i
o Task name = =  ---=--=-----—---- |
116(10) |
! i
! '
e e e e |
120(14) !
H Current task status word i
| (CTSW) |
ettt e e et et ]
124(18) 126(1A) 127(1B) ]
' Task options | Logical | }
| (OPT) | Processor | Reserved |
! 1 Unit (LPU) | |

svec 2,parblk

ALIGN 4

parblk DB X'00',19
DS 25
DB 0

Figure 3-21 8SVC 2 Code 19 Parameter Block Format and Coding
for Option X'00*

48-038 FOO ROl : 3-91



This parameter block must be 28 bytes 1long, fullword-boundary
aligned, and located in a task writable segment. A general
description of each field in the parameter block follows.

Fields:

Option

Code

Number of
logical units
(NLU)

Max imum
priority
(MPRI)

Name of
operat ing
system
(0OS1ID)

Task name
Current task
status word

(CTSW)

Task options
(OPT)

Logical
processing
Unit (LPU)

Reserved

w
]

92

is a l-byte field that must contain the
hexadecimal number X'00°'.

is a l-byte field that must contain the
decimal number 19 to indicate code 19 of SVC
2.

is a 1l-byte field that receives from the TCB
the maximum 1logical unit number which can
be assigned to a task. This hexadecimal
number ranges from 0 through 254 (X'FE').

is a 1l-byte field that receives from the TCB
the highest priority number at which the
assigned task can execute. This hexadecimal
number ranges from 10 (X'04') through 249
(X'F9').

is an 8-byte field that receives from the
SPT the operating system name in ASCII.

is an 8-byte field that receives from the TCB
the name of the task in ASCII.

is a 4-byte field that receives from the TCB
the hexadecimal number representing bits 0
through 31 of the CTSW.

is a 2-byte field that receives the
hexadecimal number representing bits 16
through 31 of the option field in the TCB.
Bits O through 15 are accessible through
option X'03' of 8VC 2 code 19. Table 3-4
lists task options.

is a 1l-byte field that receives the hex-
adecimal number of the task's current LPU
assignment from the TCB. The value of this
number ranges from X'00' through X'09'; X'00'
indicates the central processing unit (CPU).

is a reserved 2-byte field that must contain
zeros.

48-038 F0O RO1



TABLE

3-3 TASK OPTIONS FROM THE TASK CONTROL BLOCK

BIT
POSITION

!
|
|
!
R E Y Y 1 3y
]
I
[
|
]
I

48-038 FOO ROl

BIT NAME
AND MASK

Diagnostic task
(d-task)
(Y'8000 0000’ )

APU only !
(¥Y'4000 0000') |

APU i
mapping option |
(¥'2000 0000') |

APU i
control option |
(Y 1000 0000') |

Dynamlc i
priority |
scheduling '
(Y'0800 0000') |

Prompts
(Y'04000000"')

Vertical forms |
control |
(Y'02000000") !
]
|

Extended SVC 1 |
parameter block]
(Y'01000000"') |

Task event ]
service |
(Y'00800000"') }
)
]

Task event 1
registers save |
(Y'00400000°) |
1
|
i

Task event '
register save |
(¥Y'oo200000"') |

task determlned by bit 16
task is a d-task

task can run on CPU or APU |
]
]

task cannot run on CPU

no APU mapping allowed
task can perform APU
mapping functions

no APU control allowed
task can perform APU
mappxng functions

dynamic priority
scheduling disabled
dynamic priority
scheduling enabled

MTM prompts disabled
MTM prompts enabled

except where specified,
all I/0 interpreted
without forms control
all I/0 interpreted with
vertical forms control

SVC 1 extended parameter
block not used (excludes
communications 1/0).
extended SVC 1 parameter
block used

new TSW for task event
service

no new TSW for task event
service

all register contents
saved and restored

only contents of registers

that contains task event
data are saved and re-
stored

task event register not
saved
task event register saved

— e wmin b mem e bE Gra Gven Wte W Emar e SEAE WSS Shem SR MEMm W W EEGe Whee Mee S e Wean Ee S MRS MReR Mhen Meem Smie Gmen whee Whes AR WEGE Wen EEeR TEGE AT MEee BN WSS Emee e s W e e e - ——



e e e e e . G - T W e e GG SR A N WSS Mmee SN GRS Geen MmEs AEEE SMAN GEAr MR GmAR e SeAn EmER AR e MEAn e R e Wmem Mmee e GheA GEEE Neee MG AEeR Shen Geee Gmen S = amas

TABLE 3-3 TASK OPTIONS FROM THE TASK CONTROL BLOCK (Continued)

' BIT | BIT NAME ! {

{ POSITION | AND MASK 1 BIT SETTING AND MEANING |

i 11 { System group i 0 = not in system group 1

! ! (Y'OOlOOOOO') i 1 = in system group }

s i
12 Console 1/0

i i 0 = no console I/0 interrupt H
{ intercept { 1 = console 1/0 interrupt }
i (Y'00080000') | enable (MTM) !
1
t

| 13 i Universal i 0 = universal task status re- |
i { status report | ports not allowed H
g i (Y'00040000') | 1 = universal task status re- |
' i H ports allowed i
| T T T T e e e e e e e — = i
i 14 | Executive task | 0 = allow e-task load |
i i load i 1 = prevent e-task load i
i { (Y'00020000') | !
| T T e e e e e e e e e e i
i 15 i Queued 1/0 i 0 = queued I/0 not purged on i
| i (Y¥Y'00010000') | error '
i i i 1 = queued I/0 purged on error.:
s T e e e e e e e e e e o i
| 16 | Executive task | 0 = task is a u-task i
' i (Y'80000000') | 1 = task is an e-task i
| T T T e e e e e e o —m— e i
d 17 i Arithmetic i 0 = task abnormally terminates |
i { fault | on arithmetic fault !
' ! (¥Y'400000000') | 1 = task continues execution !
H | | on arithmetic fault H
[ T T T e e e e e e e e e - i
' 18 i Single i 0 = task does not support H
i | precision i single precision floating |
! i floating point | point !
i i (Y'20000000') | 1 = task does support single H
i | ' precision floating point !
| T T T T e e e e e e e e e e e i
| 19 i Memory resident| 0 = task is nonresident {
' { (Y¥'1l0000000") ! 1 = task is resident in memory !
| T T T e e e e e e e e e e e e - e i
i 20 i SVC 6 control | 0 = task can execute all SVC i
i { functions H 6 control functions H
i i (Y'08000000') | 1 = all SVC 6 control functionsj|
i H H are prevented H
‘ _______________________________________________________________ :
i 21 { SVC 6 communi- | 0 = task can execute all SVC H
H ! cation func- H 6 communication functions |
H { tions 1 = all SVC 6 communication i
i { (Y¥Y'04000000") ' functions are prevented H

i — —————— i —————— — —— A — v —— v —— i ————— " —na i e e -

3-94 48-038 F0O ROl



TABLE 3-3 TASK OPTIONS FROM THE TASK CONTROL BLOCK (Continued)

BIT H
POSITION |

BIT NAME
AND MASK

R R 2 A2 2 & % 2 % 3 & 32 3 -2 B B _S-_N_J & % _§ 3

[}
!
i
i
| 22 i
i
i
i

Illegal SVC 6
(Y'02000000"')

Double
precision
floating point
(Y'01000000"')

Rollable
(¥'00800000"')

Over lays
(Y'00400000"')

Accounting
facility
(Y'00200000"')

Intercept calls
(Y'04000000"*)

Account number
privileges
(Y'00080000")

Bare disk I/0
privilege
(Y'00040000"')

Universal
communications
task
(Y'00020000")

Executive task
keys
(¥'00010000")

BIT SETTING AND MEANING

R R T e T N T T EERE SRS SIS EETE TS

0

task abnormally terminate
on an illegal SVC 6
task continues execution
on an illegal SVC b6

task does not support
double precision floating
point

task does support double
precision floating point

task is not rollable
task is rollable

- —— i ——— - —————————— - —————— S T — o —— i —— o~ —— —

task does not support the
use of overlays

task does support the use
of overlays

disable accounting
facility

enable accounting facility

task cannot issue intercept

calls
task can issue intercept
calls

task does not have file
account number privileges
task has file account
number privileges

task cannot directly
assign to a disk device
task can directly assign
to a disk device for bare
disk I/0. See Chapter 8

task is not a universal
task
task is a universal task

no keys are checked on an
assign for an e-task.
keys are checked on an
assign for an e-task

S

48-038 F00 ROl

—— ———— - s Ao Emin M G e EEGE GBE TmTe WBEN Eme MEGm Sban M e Emen e mm i MRS She- - B TR e SRem e e Gmen mnem MAG MR et Amee WEAN MRAE mmee SmEn MM Smer Emee e e e amen



Example:

SvVC 2,PEEK

ALIGN 4
PEEK DB X'00',19

DS 25

DB O

Parameter block before execution of SVC 2 code 19

100 }13 {00 }00

-
- e e w—a— ——

(@]
(o]
o
o
o
o
o
o

Parameter block after execution of SVC 2 code 19

— e - - ———

(o]
o
o
(@]
o
o
o
(@

0C84= SVC 6 control call prevented.
SVC 6 communication call prevented.
Task is rollable.

SVC 6 load of executive task prevented.

48-038 FO0O RO1



3.17.2 Parameter Block for Option X'01’
To execute SVC 2 code 19 with option X'0Ol' specified in the

parameter block option field, use the parameter block format in
Figure 3-22.

i ——— - ———— 7 — = - —— — - — T ————— " ——— > — - — o - — o —

10(0) t1(1) 12(2) i
i Option | Code d Maximum blocking factor |
] ] ] 1
b e e e e !
1 [}
14(4) i
i i
i Name of operating system H
e (0OSID) = mmmmmmmmmm——m———— i
1 8(8) '
i i
i i
e e e e e e e e e e e e e — - i
112(C) 1 14 (E) |
i Operating system update H CPU model numbers i
i level (OSUP) ! !
T T T e e e e e e e e e e e e e e e i
116(10) :
! System options i
! (SOPT) i
| T T e e e e e e e e e e e e e e e e e e i
120(14) 122(16) i
H User account number ! Group account number |
i (UACT) | (GACT) !
: ______________________________________________________________ =
124(18) '
' System console name i
] ]
1 t

svec 2,parblk

ALIGN 4

parblk DB X'01l',19
DS 26

Figure 3-22 8SVC 2 Code 19 Parameter Block Format and Coding
for Option X'01'

This parameter block must be 28 bytes 1long, fullword-boundary
aligned, and 1located in a task writable segment. A general
description of each field in the parameter block follows.

48-038 FO0O ROl 3-97



Fields:

Option

Code

Max imum
blocking
factor

Name of
operating
system
(0OSID)

Operating
system update
level (0OSUP)

CPU model
numbers

System
options
(SOPT)

is a l-byte field that must contain the

hexadecimal number X'01°'.

is a 1l-byte field that must contain the
decimal number 19 to indicate code 19 of SVC
2.

is a 2-byte field that receives a number
ranging from X'0Ol' to X'FF'. This number
indicates the maximum number of 256-byte

segments that can be specified in an ALLOCATE
command or an SVC 7 for the data block size of
indexed files, and for the indexed block size
for indexed, nonbuffered indexed, and
extendable contiguous files. This blocking
factor must be set at sysgen. See the System
Generation/32 (Sysgen/32) Reference Manual.

is an 8-byte field that receives from the
SPT the operating system name in ASCII.

is a 2-byte field that receives from the
SPT the current update level of the operating
system in ASCII in the form: nn.

is a 2-byte field that receives from the SPT
the model numbers in hexadecimal of the CPU
used in the system. They are:

e Model 7/32 has a value of X'0007°'.

® Model 8/32 has a value of X'0008"'.

e Model 3200MPS has a value of X'0OC80'

® Model 3210 has a value of X'OC8A'

® Model 3220 has a value of X'0C94"'.

e Model 3230 has a value of X'OCSE'.

e Model 3240 has a value of X'OCAS8'.

® Model 3250 has a value of X'0OCB2'

is a 4-byte field that receives the
hexadecimal value of bits 0 through 31 of the

options field in the SPT. Table 3-4 1lists
system options.

48-038 FO0O RO1



User accou
number
(UACT)

Group acco
number
(GACT)

System

nt

unt

console name

is a 2-byte field that receives the user
account number from the TCB. This hexadecimal
number is right-justified with zeros filling
the leftmost portion.

is a 2-byte field that receives the group
account number from the TCB. This hexadecimal
number is right-justified with zeros filling
the leftmost portion.

is a 4-byte field that receives the name of
the device that is acting as the system
console.

TABLE 3-4 SYSTEM OPTIONS FROM THE SYSTEM POINTER TABLE

' BIT ' BIT NAME ] ]
{ POSITION | AND MASK | BIT SETTING AND MEANING H
i 0 { Single i 0 = system does not support i
| | precision | single precision floating |
i i floating point | point '
| i (Y'8000 0000') | 1 = system does support single |
i H H precision floating point |
| e e e e e e e e e e e —— - T m—me s i
! 1 { Form date is i 0 = date is displayed in the i
| | displayed i form: mmddyy i
] | (Y'4000 0000') | 1 = date is displayed in the '
' ! ' form: ddmmyy i
| T T T T e e e e e e e e e e e e e e e e — e ——— e i
! 2 | Time display i 0 = time is displayed on i
H ! (Y'2000 0000') | output device specified !
| i | by the user !
d i | 1 = time displayed on panel '
T T e e e e e e e e e e e e e e e e i
! 3 { Double i 0 = system does not support i
! | precision | double precision floating |
! { floating point | point |
i { (¥'1000 0000') | 1 = system does support double |
i i | precision floating point '
| m T T e S e b i
' 4 | Writable { 0 = system does not support WCS |
| | control store | H
1 i (WCS) i 1 = system does support WCS H
i i (¥Y'0800 0000') | !

_____________________________________________________________ =

5 Address align- 0 = hardware does not support

48-038 F0OO ROl

ment

(Y'0400 0000"')

i
|
checking H checking
]
i

error address alignment error

1 = hardware supports address
alignment error checking



TABLE 3-4 SYSTEM OPTIONS

(Continued)

FROM THE SYSTEM POINTER TABLE

BIT

POSITION

3-100

Direct access
(Y'0200 0000')

I TAM
(¥Y'0100 0000"')

Spool
(Y'0080 0000"')

Roll
(¥Y'0040 0000"')

Temporary files
(Y'0020 0000"')

Multiple
register sets
(Y'0010 0000')

Universal
reporting
(Y'0008 0000')

General error
recording
(Y'0004 0000')

Memory error
recording
(¥'0002 0000"')

Load real
address
(Y'0000 8000"')

BIT SETTING AND MEANING

does not
access
supports

system
direct
system
access

system does not
communications

system supports
tions.

system does not
spooling
system supports

system does not
rollin, rollout
system supports
rollout

system does not
temporary files
system supports
files

system does not

multiple register sets

system supports
register sets

intertask reporting between

universal tasks

intertask reporting between

universal tasks

W e W e M e T ——— — —————— o o o o

general error recording off
general error recording on

14 | Memory error | 0 = memory error recording off
memory error recording on

load real address not

supported

load real address supported

support

direct

support

communica-

support

spooling

support

rollin,

o
o
3
o)
o)
R
o
R
B

support

multiple

of £

on

48-038 FOO ROl



TABLE 3-4 SYSTEM OPTIONS FROM THE SYSTEM POINTER TABLE

(Continued)

BIT i
POSITION |

17 |

——— o —— v ——— —— TV — o et A i - —— T — i T ot a7

=
O

Memory

diagnostics
(Y'0000 4000')

Processor model
(¥Y'0000 2000"')

MAT hardware
(¥Y'0000 1000°')

Single pre-
cision float-
ing point
traps

(Y'0000 0800')

Double precis-
ion floating
point traps
(Y'0000 0400')

System debug
mode
(Y'0000 0001')

R E R ¥ 3 3-8 ¥ 2 2 3 2 4 3 2 2 & & F 2 & 2 3 3 0 F 2 3 3 & 34

BIT SETTING AND MEANING

memory diagnostics
supported

memory diagnostics
not supported

Model 7/32, 8/32 processors

Model 3210,
3240, 3250,
processors

3220, 3230,
3200MPS

system has MAT hardware
system does not have MAT
hardware

single precision floating
point software traps
present

single precision floating
point software traps not
present

double precision floating
point software traps
present

double precision floating
point software traps not
present

normal operation mode

system debug mode

—— ame e m——— e ———

Example:

S

SvC

vC 2, PEEK

2, PAUSE

PEEK

PAUSE

ALIGN 4

DB X'01',19
Ds 26

ALIGN 4

DB 0.1

48-038 F0O0 ROl

3-101



Parameter block before execution of SVC 2 code 19

501 {13 {00
00 00 00
EOO 00 00
00 00 100
100 00 00
00 00 100
{00 00 00

EOl 113 |00
0o s 3
E M T 0
i 0 2 100

| » B2E08000=

3-102

Single precision floating point

Time display on hexadecimal display panel
Double precision floating point

Direct access support

Spooler option

Roll option

Temporary file support

Multiple register set support

Load read address support

48-038 F0O RO1



3.17.3 Parameter Block for Option X'02'
If SVC 2 code 19 is executed with option X'02' specified in the

parameter block option field, use the parameter block format in
Figure 3-23.

10(0) 11(1) 12(2) i
i Option | Code | Reserved 1
i i i i
| e :
14(4) i
' i
: :
bbb bt Name of operating system ----------—-—------- i
18(8) (0S1ID) i
i i
i i
s i
112(C) ,
i Load volume i
| ]
e ;
116(20) :
i i
i i
jmmm - Filename =  -—-—-----——--——--=——- i
120(24) !
i i
i i
| e e e e e e e e e e e e —— o |
124(28) 127(31) i
H Extension i File class i
] 1 1
! I !

svc 2,parblk

ALIGN 4

parblk DB X'02',19
DC H'O'
DS 24

Figure 3-23 SVC 2 Code 19 Parameter Block Format and Coding
for Option X'02'

48-038 FOO RO1 3-103



This parameter block must be 28 bytes long, fullword-boundary
aligned, and located in a task writable segment. A general
description of each field in the parameter block follows:

Fields:
Option

Code

Reserved

Name of
operat ing
system (OSID)

Load volume
Filename
Extension
File class

Example:

SVC
sve

ALIGN
PEEK DB

DC

DS

ALIGN
PAUSE DB

3-104

is a l-byte field that must contain the
hexadecimal number X'02°'.

is a 1l-byte field that must contain the
decimal number 19 to indicate code 19 of SVC
2.

is a 2-byte field that is reserved and must
contain zeros.

is an 8-byte field that receives from the
SPT the operating system name in ASCII.

is the fd from which the task was loaded. The
fd can be used for subsequent assignments.

2,PEEK
2,PAUSE

4
X'02',19
H'O'

24

4

0,1

48-038 FOO ROl



Parameter block before execution of SVC 2 code 19

{02 {13 {00 0O
i

102 113 j00 00

1
1

<
w o
x =~

.;
<
<
.;

3.17.4 Paramete

To execute SVC 2

parameter block

Figure 3-24.
on a task.

48-038 F00 ROl

after execution of SVC 2 code 19

r Block for Option X'03°'

code 19 with option X'03' specified

in the

option field, use the parameter block format in

This option is used to obtain extended

information

3-105



10(0) 11(1) 12(2) Number 13(3) Maximum
i Option i Code i of logical | priority
| | units (lu) | (MPRI)
5 ___________________________________________________________
14(4)
| Taskid (TID)
]
b e e e e e e m
18(8)
1
{
{———mm - Task name = =  —---------=----
112(C)
i
{
gy
t16(10)
t Current task status word (CTSW)
:
120(14)
| Task options (OPT)
1
124(18)
i Task waits
i
128(1C)
i User account number
1
e
132(20)
| Group account number (GACT)
e
136(24)
{ Load volume
e
140(28)
=
:
o Filename =  —-------------
144(2C)
1
!
: ___________________________________________________________
148(30) 151(33)
H Extension { File class
i i
| = m e e
152(34)
|
1
f—mmmm Monitor task name = = ------~-------
156(38)
;
:
: ___________________________________________________________
160(3C)
| Originating user console device (legacy)
i
164(40) 165(41) | 66(42) | 67(43)
} Task ! Reserved H LPU | Reserved
1 Priority ) | |
sveC 2,parblk
ALIGN 4
parblk DB X'03',19
DS 2
DC Y'utask'
Ds 57
DB 0
Ds 1
DB o]

Figure 3-24 SVC 2 Code 19 Parameter Block Format and Coding
for Option X'03'

3-106

48-038 F00O ROl



This parameter block must be 68 bytes 1long, fullword-boundary
aligned, and 1located in a task writable segment. A general
description of each field in the parameter block follows.

Fields:

Option

Code

Number of
logical units
(1lu)

Max imum
priority
(MPRI)

Taskid
(TID)

Task name

Current task
status
word (CTSW)

Task

options
(OPT)

48-038 F00O ROl

is a 1l-byte field that must contain the
hexadecimal number X'03°'.

is a 1l-byte field that must contain the
decimal number 19 to indicate code 19 of SVC
2.

is a l-byte field that receives from the
TCB the maximum number of 1logical wunits
which can be assigned to a task. This
hexadecimal number ranges from 0 (X'00')
through 254 (X'FE').

is a l-byte field that receives from the
TCB the highest priority number at which the
assigned task can execute. This hexadecimal
number ranges from 10 (X'0OA') through 249
(X'F9').

is a 4-byte field that contains a hexadecimal
number, supplied by the user, that identifies
the task for which the extended task

information 1is being requested. The wuser
obtains this number using the SVC intercept
software. See the 0s/32 System Level

Programmer Reference Manual. The user's own
task can be examined by setting the TID field
to O.

is an 8-byte field that receives from the TCB
the name in ASCII of the task for which the
extended task information is being requested.
If the supplied TID is invalid, or the task no
longer exists, the task name field is set to
binary zeros.

is a 4-byte field that receives from the
TCB the hexadecimal number representing bits
0 through 31 of the CTSW.

is a 4-byte field that receives from TCB
the hexadecimal number representing bits O
through 31 of the task option field in the
TCB. Table 3-4 lists task options.

3-107



Task waits

User account
number (UACT)

Group account
number (GACT)

Load volume
Filename
Extension
File class

Monitor task

name

Originating
user console
device
(legacy)

Task priority

Reserved
Logical

processing
unit (LPU)

Reserved

3-108

is a 4-byte field that receives the
hexadecimal number representing bits 0 through
31 of the task wait field in the TCB. Table
3-6 lists the wait status bit definitions.

is a 4-byte field that receives the user
account number from the TCB. This hexadecimal
number is right-justified.

is a 4-byte field that receives
account number from the TCB.
number is right-justified.

the group
This hexadecimal

is the fd from which the task was
After the task is loaded, the fd
assigned to subsequent tasks.

loaded.
can be

the name of
specified

is an 8-byte field that receives
the task that 1is monitoring the
task.

is a 4-byte field that receives the name of
the MTM console from which the specified
task was loaded. If the task is not running
under MTM, this field contains zeros.

is a l-byte field indicating the priority of
the specified task at the time this call is
executed.

is a 1l-byte field that must contain zeros.

is a 1l-byte field that receives the hexa-
decimal number of the task's current LPU
assignment from the TCB. The value of this
number ranges from X'00' through X'09'; X'00'
indicates the CPU.

is a l-byte reserved field that must
zeros.

contain

48-038 F0O0 RO1



TABLE 3-5 TASK WAIT STATUS BIT DEFINITIONS

' BIT ' 3

e e e s 2
% 0-14 { Y'0000 0000' | Reserved

| 15 | Y'0001 0000' | Intercept wait
| 16 | v'0000 8000' | 1/0 wait '
| 17 | Y'0000 4000' | Any 0B wait |
| 18 | Y'0000 2000' | Console wait (paused) |
| 19 { Y'0000 1000' | Load wait
| 20 | Y'0000 0800' | Dormant '
| 21 | Y'0000 0400' | Trap wait i
i 22 | Y'0000 0200' | Time of day wait |
;"""'55'""'?'576666'61687'?‘;;;;;;5;5 """"""""""""""""" |
| 24 | Y'0000 0080' | Interval wait
| 25 | Y'0000 0040' | Terminal wait '
| 26 | Y'0000 0020' | Roll pending wait '
| 27 | ¥'0000 0010' | Interrupt initialization (MTM)
| 28 | Y'0000 0008' | Interrupt termination (MTM)
| 29 | Y'0000 0004’ | System resource connection wait |
| 30 | Y'0000 0002' | Accounting wait
i 31 | ¥'0000 0001' | Reserved '

NOTE
If bits 0 to 30 are set to 0, the task is
active.

48-038 FOO ROl

3-109



Example

2, PEEK
2,PAUSE

ALIGN 4

svC
SVC

X'03',19

DB
2

PEEK

Y'00'
57

DS
DC
DS

0
1
0

DB
DS
DB

Parameter block before execution of SVC 2 code 19

00
00
00
0]0)

00

00 00
00
{00
00

00
00 00 o0
00 00
6o 00
00 00 00
00 00
00 00 00
00 00 00
]
1

|
00
00
00 06 00 OO0
(0]0]
00 00
00 00
00 00 00

00 00

00
00 00
00 00
00
00
0]
00
00
00
00
00

1O

48-038 FOO ROl

3-110



Parameter block after execution of SVC 2 code 19

3.17.5 Parameter Block for Option X'04'

Option X'04' accesses the 1license number and current sysgen
version of the operating system that is currently running on the
system. To execute option X'04' of SVC 2 code 19, use the
parameter block format shown in Figure 3-25.

48-038 FOO ROl 3-111



Reserved

12(2)
License Number

0S Version Number

Code

11(1)

20(14)
24(18)
32(20)
36(24) )
40(28)

0s

10(0)
4(4)
8(8)
12(C)
16(10)
28 (10)

L (o)}
~ ~
b -
1 ¥ -
o < -
Q oo
-~ - = O
o~ X I
2z
(4]
(8] bt
> Hmaowm
wm - LQAQAQ
L
~
Q
LS
d
Q,

SVC 2 Code 19 Parameter Block Format

and Coding Option X'04'

Figure 3-25

48-038 FOO ROl

3-112



This parameter block must be 44 bytes long, fullword-boundary
aligned, and located in a task writable segment. A general
description of each field in the parameter block follows.

Fields:

Option is a l-byte field that contains the
hexadecimal number X'04' indicating option 4
of SVC 2 code 19.

Code is a 1l-byte field that contains the decimal
number 19 indicating code 19 of SVC 2.

Reserved is a 2-byte field that should contain zeros.

OS License is a 32-byte (8 fullwords) alphanumeric field

Number that receives the license number of the
operating system: e.g., License E-0178. Data
in this field is left-justified with trailing
ASCII blanks (X'20').

0S Version is an 8-byte (2 fullwords) alphanumeric field

Number that receives the version of the operating

system that was specified by the user at
sysgen: e.g., 613C.819. Data in this field
is left-justified with trailing ASCII blanks
(X'20').

48-038 FOO ROl 3-113



i svCc 2 |

3.18 SVC 2 CODE 20: EXPAND ALLOCATION

SVC 2 code 20 affects only those tasks running under previous
32-bit operating systems and should not be used in a multitasking
environment. This SVC provides for compatibility with existing
programs; no action is performed. The parameter block for this
call is shown in Figure 3-26.

2(2)

O
e
=4
’-d
[e]
3
o)
o)
Q
o
2z
c
3
o2
]
=
o
P
N
o
o
1
e}
=
o+
o
o]
'—-I
o]
0
~
)

ALIGN 4
parblk DB option, 20
DC H'number of 256-byte blocks'

Figure 3-26 8SVC 2 Code 20 Parameter Block Format and Coding
This parameter block is 4 bytes long, fullword-boundary aligned,

and located in a task writable segment for option X'80'. A
general description of each field in the parameter block follows.

Fields:

Option is a 1l-byte field that must contain option
X'00' or X'80"'.

Code is a 1l-byte field that must contain the
decimal number 20 to indicate code 20 of SVC
2.

Number of is an unused 2 byte field.

256-byte

blocks

3-114 48-038 FO0O0 ROl



The condition code is set after executing SVC 2 code 20.
Possible condition codes are:

Condition codes

fFctivicec it L

=================

{01 0} 01} 1} Normal termination with option X'80'
e bttt i specified

! 01 17 0} 0} Normal termination with otion X'00'

_______________ specified

48-~-038 FOO ROl 3-115



i 8svC 2
{ CODE 21

3.19 SVC 2 CODE 21: CONTRACT ALLOCATION

SVC 2 code 21 affects only those tasks running under previous
32-bit operating systems and should not be used in a multitasking
environment. This call provides for compatibility with existing
user programs; no action is performed. The parameter block for
this call is shown in Figure 3-27.

2(2)

O
o]
o
[
o}
=}
Q
o
Q
(U]
2
:
(Y
~
o
L]
]
o
o
1
g
%
(o
o
o)
-
(o]
Q
A
[¢/]

svcC 2,parblk

ALIGN 4
parblk DB 0,21
DC H'number of 256-byte blocks'

Figure 3-27 SVC 2 Code 21 Parameter Block Format and Coding
This parameter block is 4 bytes long, fullword-boundary aligned[

and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

Fields:

Option is a l-byte field that must contain a 0 to
indicate no options for this call.

Code is a 1l1l-byte field that must contain the
decimal number 21 to indicate code 21 of SVC
2.

Number of is an unused 2-byte field.

256-byte

blocks

3-116 ' 48-038 F00O RO1



svc 2 |
CODE 23 |

3.20 8SVC 2 CODE 23: TIMER MANAGEMENT

SVC 2 code 23 performs five timer management functions used in

coordination with real time operations:

1. Schedules the addition of a parameter to a task queue when a
specified interval has elapsed (option X'00')

2. Waits until completing a specified interval (option X'80')

3. Schedules repetitive additions to a task queue as specified
intervals elapse (option X'40')

4. Reads time remaining for the specified interval (option
X'20")

5. Cancels a previous interval request (option X'10')

Since the five options perform different functions, their
parameter block formats and coding differ and are shown as
separate parameter blocks. These operations are accomplished

through the SVC 2 code 23 parameter blocks shown in Figures 3-28
through 3-32.

3.20.1 8VC 2 Code 23 Parameter Block for Option X'00'

When specifying option X'00', a timer interval 1is set up
concurrently with the subsequent task executions. Then, an item
with a reason code of X'09' is added to the calling task queue
when the user-specified interval elapses. This is accomplished
through the SVC 2 code 23 parameter block for option X'00' shown
in Figure 3-28. See the 08/32 Application Level Programmer
Reference Manual for information on the task queue.

48-038 F0OO ROl 3-117



10(0) t1(1) 12(2) 13(3) :
i Option i Code l Reserved iUser register |
] i ] 1 ]
S :
| 1
14(4) :
i Increment of time+count i
1 i
[ 1

svce 2,parblk

ALIGN 4

parblk DB X'00',23,0
DB user register
DC Y'increment of time'+F'count'

Figure 3-28 S8SVC 2 Code 23 Parameter Block Format and Coding
for Option X'00'

This parameter block is 8 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

Fields:

Option

Code

Reserved

User register

3-118

is a l-byte field that must contain the
hexadecimal number X'00°'.

is a 1l-byte field that must contain the
decimal number 23 to indicate code 23 of SVC
2.

is a l-byte field that must contain a zero.

is a l-byte field that must contain a user-
specified register number. Bits 8 through 31
of this register must contain the parameter
portion of the item that is added to the task
queue when the interval elapses.

48-038 FOO ROl



Increment of is a 4-byte field that indicates the number
time+count of seconds or milliseconds that must elapse
before an item is added to the task queue.

The first four bits contain a hexadecimal
number indicating how the time period is to be
calculated:

e Y'00000000' indicates that the time is
calculated in seconds from midnight (time
of day).

e Y'10000000° indicates that the time 1is
calculated in milliseconds from the time
this call is executed (interval timing).

The remaining bits contain the count or
decimal number indicating the number of
seconds or milliseconds.

A decimal number greater than 86,399 indicates
days in the future. For a detailed
explanation of time of day and interval
timing, see Sections 3.11 and 3.12.

Before executing this call, prepare the task to handle a task
queue trap. See the 0S/32 Application Level Programmer Reference
Manual.

After the interval is started and the condition code is set, the

task continues processing or enters a trap wait state. Possible
condition codes are:

Condition codes

Interval started; normal termination

[}
i 0} 1) 01} 0} Insufficient system space available

48-038 FOO ROl 3-119



Example:

LI 3,C'ABC'
sSvC 2, TIMRQ
SvC 9, TRAPWAIT

ALIGN 4

TIMRQ DB X'00',23,0
DB 3
DC Y'10000000"'+F'30000"
ALIGN 4
TRAPWAIT DC Y'88000200'"
DC Y'o'

If this call 1is executed and insufficient system space is
available, no time period elapses, no item is added to the task
queue, and the condition code is set to 4 (V bit set). If this
call 1is executed and the task is unprepared to handle this trap,
no item is added to the task queue and the task has effectively
lost an interrupt.

If queue overflow occurs after the specified interval elapses,
the end of task code 1is set to 1000 and the task terminates
abnormally.

If the interval is calculated as time of day and that specified
time has already passed, the same time on the following day is
assumed.

3.20.2 8SVC 2 Code 23 Parameter Block for Option X'80'

If option X'80' is specified, the calling task 1is placed in a
timer wait state until a specified interval elapses. Nothing is
added to the calling task queue. This is accomplished through
the SVC 2 code 23 parameter block for option X'80' shown in
Figure 3-29.

3-120 48-038 FOO RO1



10(0) 11(1) 12(2) :
' Option H Code ' Reserved '
: : : :
D e e i o e v - . = - A o Y (A o S o A b v e . S S v e K ah e m e s Ao i o o o o v i e e o s i
| !
| (4) |
i Increment of time+count {
[] ]
i [}

sSve 2,parblk

ALIGN 4

parblk DB X'80',23
DC H'O'
DC Y'increment of time'+F'count'

Figure 3-29 SVC 2 Code 23 Parameter Block Format

and Coding for Option X'80°'

This parameter block is 8 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

Fields:

Option

Code

Reserved

48-038 FOO ROl

is a 1l-byte field that must contain the
hexadecimal value X'80°'.

is a 1l-byte field that must contain the
decimal number 23 to indicate code 23 of SVC
2.

is a reserved 2-byte field that must contain
zeros.

3-121



Increment of is a 4-byte field that indicates the number

timet+count of seconds or milliseconds that must elapse
before the task 1is released from the wait
state. The first four bits contain a

hexadecimal number indicating how the time is
to be calculated:

e Y'00000000' indicates that the time |is
calculated in seconds from midnight (time
of day).

e Y'1l0000000' indicates that the time 1is
calculated in milliseconds from the time
this call is executed (interval timing).

The remaining bits contain the count or
decimal number indicating the number of
seconds or milliseconds. A decimal number
greater than 86,399 indicates days 1in the
future.

After the specified interval elapses, the task resumes execution
with the instruction following SVC 2. The possible condition
codes are:

Condition codes

10} 0O} 0} 0O Internal started; normal termination
________________ =

y} 0} 1L} O} 0O Insufficient system space available;
———————— mm—————— no wait occurred

If this call is executed and insufficient system space is
available, no interval elapses, no item is added to the task
queue, and the condition code is set to 4 (V bit set).

If the interval is calculated as time of day and that specified

time has already passed, the same time on the following day is
assumed.

3-122 48-038 F0O RO1



3.20.3 8VC 2 Code 23 Parameter Block for Option X'40'

If option X'40' is specified, items with reason code X'09' are
repetitively added to the calling task queue at user-defined
intervals within a specific time period until the task terminates
or cancels the time interval request with SVC 2 code 23 option
X'10. The user-defined intervals that are within a specific time
period must all be specified the same way, either as time of day
intervals or as interval timing intervals. This is accomplished
through the SVC 2 code 23 parameter block for option X'40' shown
in Figure 3-30.

10(0) 11(1) 12(2) !
i Option i Code | Number of intervals i
i i ' defined in table !
:- ___________________________________________ o e o o :
14(4) i
' Increment of time+address of interval table !
1 1
1 I

svC 2,parblk

ALIGN 4

parblk DB X'40',23
DC H'number of intervals defined in table'’
DC Y'increment of time'+A(interval table)

Figure 3-30 S8SVC 2 Code 23 Parameter Block Format and Coding
for Option X'40'

This parameter block is 8 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
description of each field in the parameter block follows.

48-038 F00 ROl 3-123



Fields:

Option

Code

Number of
intervals
defined in
table

Increment of
time+address
of interval
table

is a 1l-byte field that must contain the
hexadecimal number X'40°'.

is a 1l-byte field that must contain the
decimal number 23 to indicate code 23 8VC 2.

is a 2-byte field that must contain the
decimal number indicating the number of
intervals the user defined in the table.

is a 4-byte field that indicates the address
of the table containing all the user-defined
intervals within a specified time period. The
first four bits contain a hexadecimal number
indicating how the time designated by the
interval table is to be calculated:

e Y'00000000' indicates that the time is
calculated in seconds from midnight (time
of day).

e Y'10000000' indicates that the time 1is
calculated in milliseconds from the time
this call is executed (interval timing).

The remaining bits contain a hexadecimal number indicating the

address of the

interval table. This table must be

fullword-boundary aligned and defined as follows.

Format:
table DC
DC
DC
DC
DC
DC
3-124

F'count' First interval
F'parameter'
F'count' Second interval

F'parameter’

F'count' Last interval
F'parameter'

48-038 F0O RO1



Parameters:

table is the user-specified name for the interval
table.
DC is the operation code, define constant, for

the instruction.

F is the type code, fullword, for the
instruction.
count is the decimal number indicating how many

seconds or milliseconds must elapse before an
item is added to the task queue. The decimal
numbers specified for time of day intervals
can be any number except 0 and must be
gspecified 1in ascending order with each count
at least one greater than the previous count.
The decimal number for interval timing
intervals can be any decimal number except O.
This decimal value occupies bits 4 through 31
of the count field.

parameter is the item to be added to the task queue when
its associated interval elapse. This item
occupies bits 8 through 31 of one slot of the
task queue. The first byte contains reason
code X'09'. See the 0S/32 Application Level
Programmer Reference Manual.

The time period in which the user-defined intervals occur differs
for time of day intervals and interval timing intervals. The
time period for time of day intervals ranges from the day on
which the first interval occurs through and including the day on
which the 1last interval occurs. The time period is the sum of
days on which the intervals occur. In the following example, the
total time period is 3 days.

Example:
ALIGN 4
INTABLE DC F'54000" 1500 hours of current day

DC F'Ll'

DC F'140399"' 1500 hours of second day
DC F'2'

DC F'227798! 1500 hours of third day
DC F'3"

DC F'231498"' 1600 hours of third day
DC F'4'

The time period for interval timing is the sum of all intervals
in the table.

48-038 FO0O ROl 3-125

—— - ——— —— -



Example:

ALIGN 4
INTABLE DC F'18000° first interval
DC F'Al’
DC F'36000"
DC F'A2' second interval
In the above example, the time period is equal to 54000 ms. The

time period 1is repetitively executed until the task cancels the
time interval request via SVC 2 code 23 option X'l0' or goes to
end of task. Before executing this call, prepare the task to
handle this trap as described in the 0S/32 Application Level
Programmer Reference Manual.

As the specified intervals are elapsing, the task can continue
processing. After executing this call, the condition code is set
to these possible settings:

Condition codes

t 01 0} 0} 0! Normal termination

i 0} 1§01} 0} Insufficient system space available;
————————————————— no wait occurred

If this call 1is executed and insufficient system space is
available, no interval elapses, nothing is added to the task
queue, and the condition code is set to 4 (V bit set).

If this call is executed and the task is not prepared to handle
this trap, nothing 1is added to the task queue. The task has
effectively lost an interrupt.

If queue overflow occurs after one of the specified intervals
elapses, the end of task code 1is s8et to 1000 and the task
terminates abnormally.

If the time period is calculated as time of day and the specified
time for the first interval has already passed, the same time in
the following period is assumed.

If the time period is calculated as time of day and one of the

specified intervals in the interval table 1is 0 or not in
ascending order, the task is paused and a message is displayed.

3-126 48-038 FOO ROl



3.20.4 8SVC 2 Code 23 Parameter Block for Option X'20'

SVC 2 code 23 reads the time remaining until the interval
previously established with option X'00' or X'40' elapses. This
is accomplished through the SVC 2 code 23 parameter block for
option X'20' shown in Figure 3-37.

10(0) 11(1) 12(2) 13(3) :
i Option | Code i Reserved iUser register |
] ] 1 1 1
S S, S S ;
14(4) !
| Time returned {
i i

svce 2,parblk

ALIGN 4

parblk DB X'20',23,0
DB user register
DC Y'increment of time returned’

Figure 3-31 8VC 2 Code 23 Parameter Block Format and Coding
for Option X'20'

This parameter block must be 8 bytes long, fullword-boundary
aligned, and located in a task writable segment. A general
description of each field in the parameter block follows.

Fields:
Option is a 1l-byte field that must contain the
hexadecimal number X'20°'.
Code is a 1l-byte field that must contain the
decimal number 23 to indicate code 23 of SVC
2.
Reserved is a l-byte field that must contain a O.

48-038 F00O ROl 3-127



—— e ——— - —— — - ——

User register is a l-byte field that must contain the user
register number. Bits 8 through 31 of this
register should contain the parameter
associated with the desired starting interval.

Time returned 1is a 4-byte field that contains a hexadecimal
number indicating how the time will be
returned for the type of interval being read,
as follows:

e Y'0O0000000' indicates the number of seconds
from midnight specified for the time of day
wait interval in the parameter block for
option X'00' of SVC 2 code 23.

e Y'l0000000' indicates the milliseconds
remaining from the time this call is
executed to the completion of the time
interval specified 1in the parameter block
for option X'40' of SVC 2 code 23.

NOTE

If the timer entry that is being
read is set for a time-of-day wait
interval (option X'00'), only the
value for the time-of-day interval
can be read. An interval timing
readout cannot be made for this
task. Similarly, if the task is
set for interval timing (option
X'40'), only an interval readout
can be made.

The register in the user register field specifies the parameter
associated with the interval to be read. When executed, this
call finds the value of the time-of-day wait interval or the
milliseconds remaining for a timing interval by searching for the
parameter associated with the interval on the timer queue. The
value read is stored in bits 4 through 31 of the Time Returned
field. Bits 0 through 3 remain unchanged. Hence, the final
value in the time returned field after execution of the S8VC can
be represented as follows:

Time returned = increment of time + count

If the interval was started with option X'40' specified and more
than one interval in the table has the same parameter associated
with it, the current time in the desired interval might not be
the one that is read. Each interval must have a unique parameter
associated with it.

3-128 48-038 F0O RO1



After executing this call, the condition code is set to these
possible condition codes:

Condition codes

fCct vViIiG | L |

;========='======

i 0y 04} 0} 0O} Normal termination

| = i

i 01 1L} 0} 01} No interval associated with parameter 2

——————————————— located in user specified register
Example:

TEST1 EQU 1
LI 3, TEST1
sve  2,TIMRQ
SVC  2,RDTIME
SVC 9, TRAPWAIT

ALIGN 4
RDTIME DB X'20',23,0,3
DC Y'10000000"
ALIGN 4
TIMRQ DB X'o0',23,0,3
DC Y'10000000'+F'90000"

ALIGN 4
TRAPWAIT DC Y'88000200"
DC Y'o’

3.20.5 8VC 2 Code 23 Parameter Block for Option X'1l0'

This SVC cancels an interval request that was previously
established with option X'00' or X'40'. This is accomplished
through the SVC 2 parameter block for option X'1l0' shown in
Figure 3-32.

48-038 FOO ROl 3-129



10(0) 11(1) 12(2) 13(3) |
H Option i Code i Reserved {User register |
1 ] ] | |
b e e e :
[ |
14(4) ,
! Increment of time cancelled H
[} 1
[ i

svcC 2,parblk

ALIGN 4

parblk DB X'10',23,0
DB user register
DC

Y'increment of time cancelled'

. Figure 3-32 8SVC 2 Code 23 Parameter Block Format and Coding
for Option X'10'

This parameter block is 8 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows:

Fields:

Option

Code

Reserved

User register

3-130

is a l-byte field that must contain the
hexadecimal number X'10°'.

is a 1l-byte field that must contain the
decimal number 23 to indicate code 23 of SVC
2.

is a l-byte field that must contain a O.
is a l-byte field that must contain the user
register number. Bits 8 through 31 of this

user register contain the parameter associated
with the interval to be cancelled.

48-038 FOO ROl



Increment of is a 4-byte field that must contain a

time hexadecimal number indicating how time is

cancelled being calculated for the interval to be
cancelled. The increments of time are:

e Y'00000000' indicates seconds from midnight
(time of day).

e Y'l0000000' indicates milliseconds from the
time this call is executed (interval
timing).

When this call is executed, all previous interval requests that
match both the increment of time specified and the parameter
located in the user register are cancelled. If the interval to
be cancelled is part of a periodic group, the entire time period
is cancelled.

After executing SVC 2 code 23, the condition code is set to these
possible conditions:

Condition codes

¢y vice L

================:

i1 01 0} 0} 0} Normal termination

e |

i 0} 1} 0} 0| No previous interval request exists that

——————————————— matches the parameter provided

48-038 F0O ROl 3-131



| 8VC 2
| CODE 24 |

3.21 SVC 2 CODE 24: SET ACCOUNTING INFORMATION

SVC 2 code 24 stores eight bytes of user-supplied information in
the ATF task completion or data overflow account records of the
accounting transactions file (ATF). This is accomplished through
the SVC 2 code 24 parameter block shown in Figure 3-33.

10(0) 11(1) 12(2) i
i Reserved i Code | Reserved 1
i i i i
: __________________________________________________________________ :
14(4) i
i i
i i
j———— - User-supplied information ------—------ '
18(8) |
i i
i i

svC 2,parblk

ALIGN 4

parblk DB 0,24
DC H'O' ;
DC D'user-supplied information'

Figure 3-33 8SVC 2 Code 24 Parameter Block Format and Coding

This parameter block is 12 bytes long, fullword-boundary aligned,
and does not have to be in a task writable segment. A general
description of each field in the parameter block follows.

3-132 48-038 F0O RO1



Fields:

Reserved

Code

Reserved

User-supplied
information

is a l-byte field that must contain a 0 to
indicate no options for this call.

is a 1l-byte field that must contain the
decimal number 24 to indicate code 24 of SVC
2.

is a reserved 2-byte field that must contain
Zeros.

is an 8-byte field that must contain the user-
supplied information to be stored in the ATF
task completion or data overflow account
records.

If more than one SVC 2 code 24 is executed by a task, the
user-supplied information in the last SVC 2 code 24 executed is

stored in the ATF.

48-038 F0OO ROl

The condition code is always set to O.

3-133



| 8vVC 2
{ CODE 25

3.22 8VC 2 CODE 25: FETCH ACCOUNTING INFORMATION

SVC 2 code 25 fetches task accounting information and stores it
@nto a user-specified area. The accounting information accessed
is:

e User CPU time

® Operating system CPU time

® Wait time

e Roll time

This is accomplished through the SVC 2 code 25 parameter block
shown in Figure 3-34.

10(0) 1 1(1) 12(2) 13(3) i
i Reserved i Code H Reserved {User register |
i | i ! i
sve 2,parblk
ALIGN 4
parblk DB 0,25
DB 0
DB user register

Figure 3-34 SVC 2 Code 25 Parameter Block Format and Coding

This parameter block is 4 bytes long, fullword-boundary aligned,
and does not have to be in a task writable segment. A general
description of each field in the parameter block follows.

3-134 48-038 F00 ROl



Fields:

Reserved

Code

Reserved

User register

Figure 3-35

48-038 FOO ROl

—— - ————— i ——— o — o — T o

is a l-byte field that must contain a 0 to
indicate no options for this call.

is a 1-byte field that must contain the
decimal number 25 to indicate code 25 of SVC
2.

is a reserved l-byte field that must contain
a 0.

is a 1l-byte field that must contain a user-
specified number of the register that contains
the starting address of the area to receive
the accounting information. This area is
l6-bytes long, fullword-boundary aligned, and
must be located in a task writable segment, as
shown in Figure 3-35. The condition code is
always set to O.

[end
0
[}
"
Q
o]
a
o
-
3
(0]}
—~~
’—l
o
o
=}

=
o
-
.—J
(.1.
-
3
o
=
(=
o
c
N

Area Receiving Accounting Information

3-135



i SvC 2 |
{ CODE 29 |

3.23 SVC 2 CODE 29: UNPACK FILE DESCRIPTOR

SVC 2 code 29
directory or

Figure 3-36.

converts a packed file descriptor from the file
an SVC 7 parameter block to its unpacked format.
The format for the SVC 2 code 29 parameter block is shown in

10(0) {1(1) 12(2) Source 13(3) Destina- |
H Option H Code i Register |tion Register|
i (UPFD.OPT) { (UPFD.COD) | (UPFD.SRC) | (UPFD.DST) |
| T T T T T e e e e e e e e e e e e i
14(4) :
i Source Pointer for option X'0Ol' i
| (UPFD.SAD) |
| = |
18(8) !
i Destination Pointer for option X'0Ol' |
i (UPFD.DAD) |

svC 2,parblk

ALIGN 4

parblk DB option, 29
DB source register
DB destination register

DAC A(packed fd4d)
DAC BUFFADR

Figure 3-36 SVC 2 Code 29 Parameter Block Format and Coding

This parameter block is 12 bytes long,

and located i

n a task writable segment.

fullword-boundary aligned,
A general description of

each field on the parameter block follows.

3-136

48-038 F00O ROl



Fields:

Option is a l-byte field that contains a hexadecimal
(UPFD.OPT) number indicating one or more of the following
SVC 2 code 29 option codes:
OPTION FUNCTIONAL

CODE EQUATE MEANING

X'80' UPFO.NNN Forces an account number
(nnn) into the unpacked fd
even if the file was
allocated without account
privileges.

X'40" UPFO.PGS Forces a /P, /G, or /S
account designation into the
unpacked fd even if the file
was allocated with account
privileges. If the account
number in the packed fd
cannot be converted to a P,
G, or S file <class, P is
returned to the unpacked £d
and the G bit of the
condition code is set.

NOTE
If neither X'80' nor X'40' is specified,
the fd will be packed according to the
account privileges in effect when the
file was allocated.

X'20' UPFO.NOV Unpacks the fd in the file
directory entry specified in
the UPFD.SAD field. When
unpacked, the fd does not
include a volume name.

NOTE
If X'20' is not specified, SVC 2 code 29

will unpack the fd contained in

7 parameter
specified by the
field.
volume name.

48-038 F0O ROl

the 8VC
block whose address 1is
UPFD.SRC or UPFD.SAD

When unpackgd, the fd includes a

3-137




X'10'

X'os'

X'or’

UPFO.WID The unpacked fd includes any
blanks that exist in the
packed fd. If option X'10'
is not specified, all blanks
are suppressed.

UPFO.BLA The unpacked fd is formatted
with blanks. If X'08' is
not specified, the unpacked
fd 1is formatted in the
standard unpacked fd format
including a colon (:),
period (.), and slash (/).

UPFO.ADR The source address of the
packed fd is specified by
the UPFD.SAD field of the
svc 2 code 29 parameter
block. The unpacked fd |is
to be stored in the address
location specified by the
UPFD.DAD field of the
parameter block.

NOTE

If X'01*' is not specified, the source and
destination addresses are to be found in
the registers specified by the UPFD.SRC
and UPFD.DST fields, respectively.

Code
(UPFD.COD)

Source
Register
(UPFD.SRC)

Destination
Register
(UPFD.DST)

3-138

is a l-byte field that contains the decimal
number 29 indicating code 29 of SVC 2.

is a l-byte field that specifies the number of
the register that contains the address of the
file directory entry or SVC 7 parameter block
that contains the source of the packed fd.

is a l-byte field that specifies the number of
the register that contains the address of a
24-byte buffer 1in a task writable segment
where the unpacked fd is to be stored.

NOTE
If option X'ol’ has been
specified, the source register and

destination register fields must
be filled with zeros.

48-038 F0O ROl



Source is a 4-byte field that contains the address of

pointer for the file diredtory entry or SVC 7 parameter
option X'01' block that contains the source of the packed
(UPFD.SAD) fd. This field is used only if option X'01l'
has been specified.
Destination is a 4-byte field that specifies the address
pointer for of a 24-byte buffer in a task writable segment
option X'0Ol' where the unpacked fd is to be stored. This
(UPFD.DAD) field is used only if option X'0Ol' has been

specified.

The following examples demonstrate the use of SVC 2 code 29.

Example 1:

svC229 PROG
svcC
SvC

ALIGN
PAUSE DB
UFD DB

DAC

DAC

SOURCE DB

DEST DS
END

48-038 FOO ROl

SVC 2,29 EXAMPLE - UNPACK FD

2,UFD
2,PAUSE

4

0,1,0,0
X'al',29,0,0
SOURCE

DEST

C'TEST css',71

24

UNPACK FD

PAUSE

NNN, FD, :./, SQUEZ, ADDR
PACK FD INPUT

UNPACK FD OUTPUT

INPUT PACKED FD

OUTPUT UNPACKED FD

3-139



—— e - —— ——

Example 2:

SVC229A PROG
NLSTM
$svc7

LA
LA
svC
SvC

ALIGN

PAUSE DB

UFD DB
DAC
DAC

SVC7PBLK DS
ORG
DC
DC
DB
DB

DEST DS
END

3-140

SVC 2,29 EXAMPLE - UNPACKED FD

1,SVC7PBLK

SvC7.

SVC7PBLK+SVC7.VOL

C'MT™M '
C'TEST !
c'css!

c'G'

24

ADDRESS OF SOURCE
ADDRESS OF DESTINATION
UNPACK FD

PAUSE
PGS, SVC7, BI.ANKS, BLANKS, REG

INPUT PACKED FD

OUTPUT UNPACKED FD

48-038 F00 RO1



CHAPTER 4
END OF TASK SUPERVISOR CALL 3 (SVC 3)

4.1 INTRODUCTION

SVC 3 terminates task execution.
the SVC 3 format.

48-038 FOO ROl

This

is

accomplished through



4.2 SVC 3:

Format:

svC

Fields:

svC

END OF TASK

is the mnemonic used as an operation code
indicating that it is a supervisor call.

is a decimal number indicating it is SVC 3.

is a decimal number ranging from 0 through 255
used as the end of task «code when the task
terminates. If this number is greater than
255, it is truncated to eight bits. End of
task codes greater than 255 are reserved for
system use. The end of task code can be used
in subsequent command substitution system
(CSS) conditional testing. The following
standard end of task codes are used:

@ 0 indicates normal termination.

e 255 indicates termination caused by
cancellation.

e 1000 indicates termination caused by task
queue overf low on expiration of time
interval.

e 1100 indicates mapping error 1in impure
segment during rollin.

e 1101 indicates mapping error in pure
segment during rollin.

o 1102 indicates pure segment was not found
during rollin.

® 1105 indicates I1/0 error on roll file for
impure segment.

® 1106 indicates I1/0 error on roll file for
pure segment.

48-038 FOO RO1



e 1200 indicates termination caused by
expiration of CPU time limit.

e 1210 indicates termination caused by
expiration of I/0 transfer limit.

In addition, the end of task code can be stored 1in a register.
For example, to generate a code of 4, use the following sequence:

LHI R8, 4
sve 3,0(R8)

If I/0 is in progress when an SVC 3 is executed, write operations
continue until completed and then terminate normally; read
operations terminate immediately.

For all logical units, read operations and SVC 15 operations are
halted via an SVC 1 halt I1/0. 1If the task is resident, an SVC 7
checkpoint is executed. If the task 1is nonresident, an S8SVC 7
close is executed.

For more information on using end of task codes in CSS, refer to
the 0S/32 Operator Reference Manual.

48-038 F00 ROl 4-3






CHAPTER 5
FETCH OVERLAY SUPERVISOR CALL 5 (SVC 5)

5.1 INTRODUCTION

SVC 5 permits user-controlled loading of overlays generated by
Link or TET. Loading of overlays is accomplished through the SVC
5 parameter block in Figure 5-1. The SVC 5 parameter block is 12
bytes 1long, fullword-boundary aligned, and must be in a task

writable segment.

48-038 FOO ROl



Mo v —— " - A . T S MM M e e e A ey - m— —

10(0) :
i i
| Overlay name H
e m———— (sves.1D) mmmmmmee i
14(4) |
i i
i i
T e e e e e e e e e — - i
18(8) 19(9) 110(A) lu !
! Error status | Options | assigned to overlay file |
i  (SVC5.8TA) | (svC5.0PT) | (SVC5.LU) |

svc 5,parblk

ALIGN 4

parblk DC C'8 character overlay name’

DS 1l

DB 'option'

DC H'lu'

Figure 5-1 SVC 5 Parameter Block Format and Coding
Fields:

Over lay name
(SVC5.1ID)

is an 8-byte field specifying the name of the
overlay to be loaded. If the overlay name
requires 1less than eight characters, the data
in this field must be left-justified with
trailing spaces.

48-038 F0O ROl



Error status
(SVC5.8TA)

Options
(SVC5.0PT)

Logical unit
assigned to
overlay file
(SVC5.LU)

48-038 FOO ROl

For overlays generated by TET, the overlay
name field is matched against the overlay name
in the Jloader information block (LIB) of the
overlay file. For overlays generated by Link,
this field is matched against the overlay name
in the overlay descriptor table (ODT) of the
task image file. The ODT contains the
information needed by Link to process the
overlay. If the overlay name is found in the
ODT, loading of the overlay proceeds as if an
automatic overlay load occurred.

is a l-byte field that receives the
appropriate error code when an error occurs
during the execution of SVC 5. The status
returned is one of the following:

e X'00' indicates overlay loaded
successfully.

e X'l0' indicates load failed.
e X'20' indicates a mismatch on overlay name.

e X'40' indicates overlay would not fit in
allocated memory. This error code applies
to overlays generated by TET only.

is a l-byte field that must contain one of the
following options:

e Option X'0Ol' indicates 1load from logical
unit (lu) without positioning.

e Option X'04' indicates load from 1lu after
rewind.

The option byte is not regquired for overlays
generated by Link.

is a 2-byte field containing the device to
which the overlay file must be assigned and
must be positioned to the first byte of the
LIB for the overlay generated by TET. This
field 1is not required for overlays generated
by Link.



The calling task is placed in a wait state until the overlay is
loaded. If the overlay is successfully loaded, the calling
program can branch and link to the overlay.

Certain messages might be generated as a result of loading
overlays created by Link. These messages are discussed in the.
0S8/32 Link Reference Manual.

Example:
3VC 5,parblk
ALIGN 4
parblk DC C'MARIANNE' .
DB 0 Initialize status to O
DB 1 Load without print
DC H'2' Overlay assigned to 1lu 2

5-4 48-038 F00 ROl



CHAPTER 6
INTERTASK COMMUNICATIONS SUPERVISOR CALL 6 (SVC 6)

6.1 INTRODUCTION

SVC 6 provides a task with the ability to communicate with and
control another task. The task that issues an SVC 6 is known as
the calling task. An SVC 6 can be directed to any task within
the calling task's execution environment, including the calling
task itself. The task to which the SVC 6 is directed 1is called
the directed task.

Before a calling task can issue an SVC 6, that task must be
linked with one of the following task options:

e COMMUNICATE - this option allows a calling task to perform
SVC 6 intertask communication functions. See Section 6.2.1.

® CONTROL - this option allows a calling task to perform SVC 6
intertask control functions. 8See Section 6.2.1.

In an 08/32 real-time environment, only foreground tasks can
issue an SVC 6. 1If a background (BG) task attempts to issue this
call, the 0S8 will treat the call as an illegal call or NOP,
depending on the SVCPAUSE task option in effect. See the 0S/32
Link Reference manual for more information on the task options
that apply to SVC 6. :

NOTE
SVC b6 cannot be executed in a
multi-terminal monitor (MTM) environment

unless specified as an MTM option at
system generation (sysgen).

48-038 F0OO ROl - b-1



{ SVC &

6.2 SVC 6: INTERTASK COMMUNICATIONS

Communication and control between tasks are accomplished through

the SVC

6 parameter block shown in Figure 6-1.

10(0)
I
i
1 Name of task
== e receiving SVC 6 = -----------------
14(4) (SVC6.1D)
'
;
: ___________________________________________________________
18(8)
i Function code
| (SVC6.FUN)
‘ ___________________________________________________________
112(C) 114 (E)
{ Wait status i Error status
| (SVC6.TST) ; (SVC6.STA)
116(10) 1u 117(11) Change }18(12) Current}19(13) Assign
| to load task | priority | priority i Logical Pro-
| (8SVC6.LU) | (SVC6.PRI) | (SVC6.RPI) | cessing Unit
' | | i (LPU)
i i H i (SVC6.LPU)
120(14)
Starting address of directed task
| (SVC6.5AD)
l ___________________________________________________________
124(18) Incre- |25(19)
{ ment of time | Count
| (8VC6.TIM) | (SVC6.CNT)
128(1C) Address of load image fd or
| device mnemonic
{ (SVC6 .DMN)
132(20) 133(21)
! Reserved | Task queue parameter
{ H (SVC6.PAR)
136(24)
1 Address of message buffer or address of start options
| (SVC6.MSG) (SVC6.50P)
‘ ___________________________________________________________
140(28)
' Segment size increment
| (8VC6.SEG)
: ___________________________________________________________
144(2C) 145(2D) 146 (2E)
|} Calling lu | Directed lu | Extended load options
| (SVC6.CLU) | (SVC6.DLU) ! (SVC6.ELO)
sve 6,parblk
ALIGN 4
parblk DC C'8-byte name of task receiving SVC 6'
nc Y'function code’
DS 2 bytes for wait status
DS 2 bytes for error status
DB 1 byte for lu to load task
DB 1 byte for change priority
Ds 1 byte for current priority
DB 1 byte for logical processing unit
DC A(start)
DC Y'increment of time+count'
DC C'4-byte device mnemonic' or A(fd)
DC Y'task queue parameter’
DC A(message buffer or start options)
DC Y'segment size increment'
DB 1 byte for calling lu number
DB 1 byte for directed lu number
DS 2 bytes for extended load options

Figure 6-1 SVC 6 Parameter Block Format and Coding

48-038 F0O0 ROl



This parameter block must be 48 bytes 1long, fullword-boundary
aligned, and located in a task writable segment. For a detailed
description of the functions of each field in the parameter
block, refer to the appropriate section in this chapter. A brief
description of each field in the parameter block follows.

Fields:

Name of task
receiving
SVC b6
(8VC6.ID)

Function
code
(SVC6.FUN)

Wait status
(SVCH6.TST)

Error status
(SVC6.8TA)

lu to load
task
(SVC6 .LU)

Change
priority
(SVC6.PRI)

Current
priority
(SVC6.RPI)

48-038 FOO0 RO1

is an 8-byte field that contains the task
name to which SVC 6 is directed. If SVC 6 is
a self-directed call, this field 1is not
required. The name must consist of one to
eight alphanumeric characters with the first
character always alphabetic. It 1s
left-justified in the field with spaces.

is a 4-byte field that contains the
hexadecimal number indicating the function to
be performed.

is a 2-byte field that receives the
hexadecimal value of bits 16 through 31 of the
directed task's wait status fullword when a
SVC b6 is executed. If the calling task wants
to check the wait status of the directed task
at any time, an SVC 6 can be issued with bits
0 and 1 of the function code set to 10 or 11
and the remaining bits set to 0.

is a 2-byte field that receives the
appropriate error code when an error occurs
during execution of the SVC 6. If no error

occurs, a value of 0 is stored in this field.

is a l-byte field used only when a load
operation is requested. This field must
contain the user-specified hexadecimal number
indicating the logical unit currently assigned

to the directed task that is to be loaded.

is a 1l-byte field used only when a change
priority operation is requested. This field
must contain a user-specified hexadecimal
number indicating the new priority to which
the task is to be changed. The hexadecimal
number must have a decimal value ranging from
10 through 2469.

is a l-byte priority field that receives a
hexadecimal number indicating the priority
at which the task is executing when an SVC 6
is executed. If the calling task wants to
check the current priority of the directed
task at any time, an SVC 6 can be issued with
bits 0 and 1 of the function code set to 10 or
11 and the remaining bits set to 0.

(o]
1
w



Assign
logical
processing
unit (LPU)
(SVC6.LPU)

Starting
address of
directed
task
(SVC6.SAD)

Increment of
time
(SVC6.TIM)

Count
(SVC6.CNT)

Address of
load image fd
or

device
mnhemonic
(8SVC6 .DMN)

Reserved

Task queue
parameter
(SVC6.PAR)

is a l-byte field used only when an LPU
assignment operation is requested. It con-
tains a user specified hexadecimal number
indicating the LPU assigned to the task
(0...max LPU).

is a 4-byte field used only when a start
operation is requested. This field must con-
tain a user-specified hexadecimal number
indicating the address where the directed
task is to start execution.

is a l-byte field used in conjunction with the
count field only when the delay-start
operation is requested. This field must
contain a user-specified hexadecimal number
indicating how the time is to be calculated.
These hexadecimal numbers are:

e Option X'o0’ indicates seconds from
midnight (time of day).

e Option X'10' indicates milliseconds from
the time this call is executed (interval
timing).

is a 3-byte field used in conjunction with the
increment time field only when a delay-start
operation is requested. This field must
contain a user-specified decimal number
indicating how many seconds or milliseconds
must elapse before the directed task starts
execution.

is a 4-byte field that contains a user-
specified device mnemonic of a trap generating
device when the connect, thaw, sint, freeze,
or

unconnect operations are requested. If a
task is to be 1loaded with bit 3 (load and
proceed) of the extended 1load option field

gset, this field should contain the address of
the fd of the file containing the task to be
loaded.

is a reserved l-byte field that must contain
a 0.

is a 3-byte field used only when the add to
task queue or connect to trap generating
device operations are requested. This field
must contain the user-specified parameter that
is to be added to the task queue of the
directed task.

48-038 F0OO ROl



Address of
message
buffer
(SVC6.MSG)

or

address of
start options
(SVC6.80P)

Segment size
increment
(SVC6.SEG)

Calling lu
(SVC6.CLU)

Directed 1lu
(sVCe6 .DLU)

Extended
load options
(8SVC6.ELO)

is a 4-byte field used only when a send
message operation or start operation is
requested. For the send message operation,
this field must contain a user-specified
hexadecimal number indicating the address of
the buffer containing the message to be sent
to the directed task. For the start operation,
this field must contain the address of the

start options to be included at run time.

is a 4-byte field used only when
operation 1is requested and must
user-specified hexadecimal number indicating
the number of bytes used to expand the task's
allocated memory.

a load
contain the

is a 1l-byte field that must contain the
user-specified hexadecimal number representing
the logical unit of the calling task.

is a 1-byte field that must contain the
user-specified hexadecimal number representing
the logical unit of the directed task.

is a 2-byte field used only when the extended
load options are requested. This field must
contain a user-specified hexadecimal number
indicating one or more options listed in Table
6-3.

6.2.1 Function Code (SVC6.FUN)

SVC6.FUN has 21 functions for intertask communication and
control. These functions are listed in Table 6-1.
TABLE 6-1 SVC6.FUN FUNCTIONS

! COMMUNICATION H i

! FUNCTIONS } CONTROL FUNCTIONS H

= 1 ¢ % % 7 - F F ¥ B 3 F & F F 3 3 3 F 3§ F 3§ 2 3 P F £ ¥F ¥ 3 $- ¥ 22 F 5 ¥F B $F ¥§ 3 X-F J-J3 3 _F 3 ¥} ;

| Send data i Direction i Freeze H

{ Send message { End task ! Unconnect !

| Add to task queue | Load task { Assign LPU H

! ! Resident task \ Transfer to LPU |

i { Suspend { Transfer to CPU |

i i Change priority | Release H

] !} 8Send lu i Nonresident H

i { Receive 1lu { Rollable H

} { Connect i Nonrollable ;

i { Thaw | Start ]

! i Sint 1 H
48-038 F0OO ROl 6-5

—— e —



These functions are specified by setting the appropriate bits in
the function code field shown in Figure 6-2. Each bit setting
and its corresponding function are listed in Table 6-2.

Reserved

6 17 18 19 20 21 22 23 24 25 26 27 28 29 31

Figure 6-2 SVC 6 Function Code Field

TABLE 6-2 DESCRIPTION OF FUNCTION CODE FIELD FOR SVC 6 CALLS

—— o — o — . — ——— o ————— —— - ——— — —— — — T W M S . M ——a —— e i i Sy S i o — T S o — -

i BIT | FUNCTIONS AND | ! i
{ POSITIONS | MASK NAMES ! MEANING H BIT SETTINGS H
i 0 (D) { Direction ! The task to i 00 = illegal i
H 1 ! (SFUN.DOM=10) | which SVC 6 i} 01 = illegal i
H { (SFUN.DSM=11l) | is directed. { 10 = other task i
H H ; { 11 = self direc- H
i i H i ted i
T e e e e e e e e e e e e e e e e i
[ 2 (E) { End task { End or term- | 00 = no function |
! 3 { (SFUN.ECM=01) | inate task ! requested !
; { (SFUN.EDM=10 | execution. { 01 = cancel i
H { or =11) i it 10 = delete dir- |
! ! ! ! ected task i
/ ! 1 i 11 = delete dir- |
| ] ] 1 |
1 ] i } '

ected task

6-6 48-038 F00 ROl



TABLE 6-2 DESCRIPTION OF FUNCTION CODE FIELD FOR SVC 6 CALLS

(Continued)
i BIT i FUNCTIONS AND | H
{ POSITIONS | MASK NAMES | MEAN ING ] BIT SETTINGS
:==========s:a==n==g===a========a==-=====a===-==na======n=======
i 4 i N/A | Reserved i 00 = reserved
i 5 ! i i
g o e o e e e e
i 6 (L) i Load task i Load directed | 00 = no function
| 7 (C) i (SFUN.LM=10 i task. ' requested
i { SFUN.LXM=01) ! i 01 = illegal
| H ! i 10 = load task
H H H { 11 = load task
i i i i (10) with
i H H H extended
i H | | load options
i | | i (01)
]
1

A —— t— ————— o —— T ——— - ———— - ————— - —————— — — - ——————— o~ ——— i~ —

H 8 (H) | Resident task | Make directed { 0 = no function

H i (SFUN.HM) | task resident | requested

i i { in memory. i 1 = make task

i ] i i resident

; _______________________________________________________________
; 9 (8) { Suspend i Put directed | 0 = no function

i i (SFUN.SM) { task into a 1 requested

H ] { wait state. i 1 = put task

' i i i into wait

i i 1 ] state

b e -
{ 10 (SD) { Send data { The calling i 0 = no function

| i (SFUN.DM) i task sends a |} requested

| | { variable i 1 = send message
i | { length mes- i

| H { sage to di- H

i H { rected task. |

: _______________________________________________________________
{11 (M) { Send message | The calling { 0 = no function

i { (SFUN.MM) { task sends a | requested

i H { 64-byte mes- | 1 = send message
H H { sage the di- |

H H | rected task. !

= _______________________________________________________________
12 (Q) { Add to task { Add parameter | 0 = no function

i { queue i to directed i requested

! { (SFUN.QM) { task queue. { 1 = add to task

| | | i queue

: ________________________________________________________________
i 13 (P) i Change { Change i 0 = no function

i | priority | priority of i requested

I i (SFUN.PM) | directed i 1 = change the

} ; | task. 1 priority

48-038 FOO ROl 6-7



TABLE 6-2 DESCRIPTION OF FUNCTION CODE FIELD FOR SVC 6 CALLS
(Continued)

BIT | FUNCTIONS AND |
[} ]
i

POSITIONS | MASK NAMES MEANING H BIT SETTINGS

i
i
i
14 (B) ! Send lu | Calling task's| 00 = no function |
| (SFUN.XSM=10) | lu is assigned| requested H
! i to the { 10 = send lu H
| i directed task.| H
15 (V) | Receive 1lu { Directed i 01 = receive 1lu H
| (SFUN.XRM=01) | task's 1lu is | 11 = illegal i
i | assigned ! !
[ i to calling H i
! | task. | H
_______________________________________________________________ :
16 (0) | Connect { A trap gener- | O = no function |
i (SFUN.OM) i ating device | requested i
| { is connected | 1 = connect |
i i to directed t device to ]
; ! task. g task i
_______________________________________________________________ :
17 (T) ! Thaw i Enable inter- | 0 = no function |
{ (SFUN.TM) | rupts on trap | requested H
i { generating i 1 = enable inter-|
i { device i rupts H
i { connected to | i
H { directed H H
H { task. 1 '
_______________________________________________________________ ;
18 (I) { Sint { Simulate { 0 = no function |
i (SFUN.IM) { interrupt on | requested H
i i trap genera- | 1 = simulate H
i \ ting device i interrupt |
H i to directed i i
i i task. i i
_______________________________________________________________ :
19 (F) { Freeze i Disable inter-{ 0 = no function |
{ (SFUN.FM) | rupts on trap | requested H
i i generating i 1 = disable !
H i device i interrupts i
H { connected to | i
| | directed task.| |
-
20 (U) { Unconnect { Disconnect i 0 = no function i
{ (SFUN.UM) i specified trapi requested i
H i generating i 1 = disconnect H
| { device from H device from H
[ i directed task. | task i
____________________ :

21 (AP) Assign LPU Assign LPU to 0 = no function

i ] ] i
1 [} ) ]
{ (SFUN.LPM) i directed task | requested H
i i i 1 = assign LPU !

6-8 48-038 FO0O RO1



TABLE 6-2 DESCRIPTION OF FUNCTION CODE FIELD FOR SVC 6 CALLS
(Continued)

——————— - —— - ———— o ——— T i - — 8 W —— - —— — - T — " S —— s T— " T o

i BIT { FUNCTIONS AND | i

{ POSITIONS | MASK NAMES | MEAN ING i BIT SETTINGS

: R R R S T N N I T S T R S T R S T R T S S T e T T S TS S S S T e s T S SE=mS==m==x
i 22 (TL) { Transfer to ! Make task i 0 = no function

| i LPU } LPU-directed | 1 = set LPU-

i i (SFUN.XLM) ' i directed status

i ' | | in TCB

: ________________________________________________________________
i 23 (TC) i Transfer to { Make task i 0 = no function

! ! CPU i CPU-directed | requested

! ! (SFUN.XCM) i { 1 = reset LPU-

i i | ! directed

| H i i status in TCB
: ________________________________________________________________
i 24 (R) { Release i Remove ! 0 = no function

H ! (SFUN.RM) | directed task | requested

H H i from wait i 1 = remove task

{ i | state. H from state

: ______________________________ s ——————— — o~ 1 ———— 1 —— i ——_—————
1 25 (N) ! Nonresident ! Make directed | 0 = no function

i i (SFUN.NM) { task nonresi- | requested

H H i dent. i 1 = make task

i H i H nonresident

‘ _______________________________________________________________
1 26 (Y) { Rollable { Make directed | 0 = no function

i { (SFUN.RLM) | task rollable. | requested

i | H i 1 = make task

H H H H rollable

: ________________________________________________________________
T 27 (Z) { Nonrollable ! Make directed | 0 = no function

H { (SFUN.NRM) { task nonroll- | requested

| ! { able. { 1 = make task

H H ! | nonrollable

: _______________________________________________________________
| 28 i\ N/A { Reserved i 0 = reserved

| e e e
129 { Start | Start { 000 = no function
{ 30 (A) | (SFUN.SIM=010)| execution of | requested

i 31 ! (SFUN.SOM=011)} directed { 001 = illegal

H { (SFUN.SDM=100), task. {1 010 = start

{ { or =110) ! { 011 = start with

H ! ! i start

! ! ! H option

! ! H { 100 = delay start
| ! H { 101 = delay start
! ! ] ! with start

| | | | option

] i H |

110 = delay start

——— - —— —————_—— ————— — ———— — —— ———— — - ——— - T - t— " —— o — - —————— - ——

48-038 F00 RO1 6-9

—— e e wma wmen = -

- s ween e v w——



6.2.2 Direction (SFUN.DOM,SFUN.DSM)

The direction function identifies the task to be affected by the
sSvC 6 call. The name of this task is located in the task name
field. The required parameter block fields for this function
are:

® Task name field

® Bits 0 and 1 of the function code field

If the bit setting equals 10 (SFUN.DOM), the call is directed to
any system task whose name must be specified in the task name
field. If the bit setting equals 11 (SFUN.DSM), the call is
self-directed or directed to the task initiating the call. A
gself-directed call does not require a name in the task name
field. A call can also be self-directed by setting the bits to
10 and specifying the calling task name in the task name field of
the parameter block. Other bit settings for bit positions 0 and
l are illegal and cause an error code to be stored into the error
status field of the parameter block.

6.2.3 End Task (SFUN.ECM,SFUN.EDM)

The end task function abnormally terminates or cancels execution
of the directed task. The required parameter block fields are
the task name field and bit positions 0, 1, 2, and 3 of the
function code field. When the bit setting equals 01 (SFUN.ECM)
and the directed task is resident, these operations occur:

® Task execution is cancelled.

® The task remains in memory.

e All the task's assigned files and devices are checkpointed,

not closed.

When the bit setting equals 01 (SFUN.ECM) and the directed task
is nonresident, these operations occur:

® Task execution is cancelled.
e The task is removed from memory.

e All the task's assigned files and devices are closed.

6-10 48-038 FOO ROl



When the bit setting equals 10 or 11 (SFUN.EDM) and the directed
task is resident, these operations occur:

® Task execution is cancelled.

® The task is made nonresident.

® The task is removed from memory.

e All the task's assigned files and devices are closed.

When the bit setting equals 10 or 11 (SFUN.EDM) and the directed
task is nonresident, these operations occur:

® Task execution is cancelled.

® The task is removed from memory.

® All the task's assigned files and devices are closed.

If this call is self-directed, SVC 6 is immediately terminated.
After the call 1is executed, an end of task code 255 indicating
abnormal termination is returned to the user.

6.2.4 Load Task Functions

The load task function loads the directed task into memory.
Options are provided for the calling task to wait until the load
is completed or to continue execution and receive a trap when the
load is completed.

When a task is loaded, the operating system reads the loader
information block (LIB) of the task to see if any needed shared
segments are already in memory. If they are not in memory, the
auto-loader feature automatically loads them, provided sufficient
memory exists. See the 0S/32 Operator Reference Manual. When
all shared segments named in the LIB are memory resident, the
operating system builds linkages to them.

6.2.4.1 Load Task (SFUN.LM)

The required parameter block fields for bit setting 10 (SFUN.LM)
are:

e Task name field

e Bits 0, 1, 6, and 7 of the function code field

® lu to load task field

48-038 FOO KOl 6-11



Before executing this call, the lu specified in the parameter
block must be assigned to the file or device containing the
directed task image file. This call is processed as a locad wait.

The lu must be positioned to the first byte of the task LIB.
When this call is executed, the directed task is loaded from the
specified lu into a memory area large enough to hold the task.
If such an area does not exist and the roll option is specified,
the directed task is rolled out to a file on the roll volume and
placed in a wait state. While the directed task is being loaded,
the calling task is placed in a wait state. When the directed
task is loaded, its task name becomes the name specified in the
task name field of the parameter block. The calling task is
released from the wait state, and the lu is positioned to the
byte following the loaded task. If the same task is to be
reloaded from other than a direct access device with the same 1lu
assigned, the 1lu must be rewound by using SVC 1 prior to each
subsequent 1load. For direct access devices the 1load task
function intitializes the start address to zero.

If the following error conditions occur, SVC 6 is rejected, and
an error code 1is stored in the error status field of the
parameter block:

e The receiving task is already loaded into memory.

e The task name specified in the parameter block is invalid.

® The call is self-directed.

® The system does not have a memory area large enough to hold
the receiving task and does not support the roll option.

e The requested memory size specified in the segment size
increment field is larger than the total system memory space.

e The directed task is a background task. (Background tasks can
be loaded only from the system console.)

@ The lu is not positioned to the LIB or the LIB is invalid.

6.2.4.2 Load Task with Extended Load Options (SFUN.LXM)
The extended load options can be specified at load time and are

located in the extended 1load options field of the parameter
block. See Figure 6-3.

6-12 48-038 F0O0 ROl



Reserved

iICM {RP |SZ |PR |ET |CT |RL |

Figure 6-3 Extended Load Options Field

The required parameter block fields for bit setting 7 (SFUN.LXM)
are:

® Task name
e Bits 0, 1, 6, and 7 of the function code field

e lu to load task field (required when the load wait extended
option is specified)

® Address of load image fd or device mnemonic field (required
when load and proceed extended option is specified)

e Extended load options field

e Segment size increment field. This field 1is required only
when the task to be loaded needs a memory area larger than the
task image s8size. The extended load option SELO.SZM must be
set.

When a task is loaded with the SFUN.LXM enabled, any options
specified in the extended load options field are in effect during
execution of the directed task. See Table 6-3 for a list of the
available options.

When the extended load and proceed option is requested, the
calling task continues executing while the directed task is
loaded. The directed task is loaded from the file indirectly
specified by the device mnemonic field in the SVC 6 parameter
block. This field should contain the address of the fd of the
task image file to be loaded. If the roll option had been
specified when the directed task was 1link-edited, the private
image segment of the task is rolled out to disk if sufficient
memory space is not available.

48-038 F0O ROl 6-13

- -



When bit 3 (load and proceed) of the extended load options field
is not set, execution of the calling task is suspended during
loading of the directed task. This is called a load wait
operation. After a load wait operation is completed, the calling
task 1is released from suspension and the lu assigned to the
directed task image file is positioned at the byte following the:
last byte of the task image. If the task is again loaded from
the same lu, an SVC 1 rewind operation should be performed on the
task image file prior to that load.

TABLE 6-3 EXTENDED LOAD OPTIONS FIELD BIT DEFINITIONS

BIT { OPTION AND 1
POSITION | MASK NAME i MEANING
0 (CM) i Intertask { If bit 0 equals 1, the directed
communication task that was loaded into memory
(SELO.CMM) can execute the SVC 6 communica-
tion functions.

receiving task issues an SVC b
communication function, the call

is rejected, and an error code is
stored in the error status field

of the parameter block.

Subtask i If bit 1 equals 1, the calling
reporting | task becomes a monitor task and
(SELO.RPM) | the directed task becomes a sub-

{ task. This causes the subtask to

| report all status changes during

{ execution to monitor the task
]
|
:
:
;

]
=
=
}
:
| If bit 0 equals 0 and the loaded
]
2
i
i
i

an s mme W W W W Ere e Ween e e See b T

through task traps.

If bit 1 equals 0, the directed
task is not a subtask. No subtask
status changes are reported.
Segment size | If bit 2 equals 1, the size of the
Increment | task workspace is increased by
(SELO.SZM) | adding a user-specified number of
| bytes. This hexadecimal number

i must be located in the parameter

[}

|

:

s

i

- —n e dman mean wman mmen Gmen e i w—a—

block segment size increment field.

If bit 2 equals O, thé workspace
set by the WORK= parameter of the
LINK OPTION command is used.

6-14 48-038 FOO ROl



TABLE 6-3 EXTENDED LOAD OPTIONS FIELD BIT DEFINITIONS

(Continued)
BIT | OPTION AND
POSITION | MASK NAME MEANING

3 (PR) { Load and
proceed
(SELO.PRM)

If bit 3 equals 1, the calling
task continues executing while

the directed task is being loaded
from the file specified by the
device mnemonic field of the SVC 6
parameter block. A trap to the
calling task occurs if bit 20 of
itgs task status word (TSW) equals
1 (load and proceed comlete). When
the trap occurs, the reason code
X'7' and the SVC 6 parameter block
address are added to the task
gueue. *

If bit 3=0, the calling task is
suspended while the directed task
is loaded from the specified 1lu.
This lu must be assigned to the
file or device from which the task
is to be loaded.

Prevent i If bit 4 equals 1, any directed
e-task or | task that is an e-task or d-task
d-task | is not loaded. If the calling
(SELO.ETM) i task issues an SVC 6 call to load
i an e-task or d-task with this bit
{ set, the call is rejected, and an
| error code is stored in the para-
| meter block error status field.
]

;
=

=

=

‘

e - —— - ———— - - - - e e e o e ] ————

If the loading task has bit 4 set
and the directed task was linked
with ACPRIVILEGE, DISC, or the
INTERCEPT task option, the task
will be loaded but these options
will be disregarded.
Intertask If bit 5 equals 1, the directed
control task that was loaded into memory
(SELO.CTM) can execute the control functions
of SVC 6.

e wm—. W . E—— . R bee - h—n e Sman e

task that was loaded issues an SVC
6 control function, the call is
rejected, and an error code is
stored into the error status field

i
|
i
'
i
i If bit 5 equals 0 and the directed
]
|
;
;
{ of the parameter block.**

15

48-038 F0O ROl 6



TABLE 6-3 EXTENDED LOAD OPTIONS FIELD BIT DEFINITIONS

(Continued)
i BIT { OPTION AND i
| POSITION | MASK NAME | MEANING
: -+ F 3 2 5 £ £ 3 2 2 3 3 £ 3 5 3 7 3 2 2 3 3 7 F F X F 2 3 3 F 5 F 32 52 3 3 -3 5 2 2 5 4 F F ¥ 3 34
i 6 (RL) | Roll | If bit 6 equals 1, the directed
' { (SELO.RLM) { task is forced to be a rollable
H H | task regardless of the roll option
| | { established by Link.
] 1 i
1 ! ]
| i | If bit 6 equals 0, the directed
] i | task uses the roll option estab-
| H | lished by Link.
= _______________________________________________________________
7 (AC) Accounting If bit 7 equals 1, the directed
(SELO.AEM) task that was loaded into memory

i

!

|} is given the accounting option.
i This setting will override the
{ NOACCOUNT option established by
| Link.
i
i
i
i

If bit 7 equals 0, the directed
task uses the accounting option
established by Link.

* When bit 3 equals 1, all other SVC 6 functions are ignored
except the start function and send start options. If the
calling task terminates while the directed task is being
loaded, the load continues, no trap occurs, and no status is
stored in the parameter block error status field.

**x Self-directed trap generating device (TGD) functions can be
executed if bit 5 equals 1.

6.2.5 Task Resident (SFUN.HM)

The task resident function makes the directed task memory
resident regardless of what options were specified by Link. At
end of task, the open 1logical units of a resident task are
checkpointed and the task remains in memory. A resident task can
be rollable. The required parameter block fields are:

® Task name field

e Bits 0, 1, and 8 of the function code field

3]
|

16 48-038 FOO ROl



6.2.6 Suspend (SFUN.SM)

The suspend function places the directed task into a wait state.
The required parameter block fields are:

e Task name receiving SVC 6 field

® Bits 0, 1, and 9 of the function code

The directed task remains in the wait state until an SVC 6
releasing the suspended task (bit 24 of the function code) is
executed. If this call is self-directed, it causes the calling
task to suspend itself. To release the calling task from the
wait state, another task must be available to subsequently
release it.

This function can be used to suspend execution of APU active or
ready tasks. See the 0S/32 System Level Programmer Reference
Manual for more information on using SVC 6. in a Model 3200MPS
multiprocessing system.

6.2.7 8Send Data (SFUN.DB)

Blocks of data that are communicated from one task to another are
called messages. The send data function allows a task to send
variable length messages to another task.

6.2.7.1 8Send Data Message Buffers for Sending Task

To pass a message from one task to another via the send data
function, certain data structures are required. The most
important of these structures is the send data message buffer.
The structure of this message buffer allows the directed task to
receive a variable length message in the format in which it was
sent. The maximum length of a message that can be sent is
determined by the size and number of the message buffers set up
by the directed task to receive the message. However, the actual
length of the message is determined by the number and size of
message buffers set up by the task issuing the SVC 6.

Hence, two data structures are required by the calling task, the
SVC 6 parameter block and the send data message buffer. The
required SVC 6 parameter block fields for this function are:

e Task name field

e Bit 10 of the function code field

'@ Address of the buffer containing the message to be sent (if a

chain of buffers is to be sent, only the address of the first
buffer in the chain is required.)

48-038 FOO RO1 6-17



—— ma Eren T e e . e G - e i e mER MEee SRR WS M G GmAm men SRR Tmen Mmes Gmem een ema ——

The format of the send data buffer for the calling task is shown
in Figure 6-4.

10(00) {1(01) :

| Function Code | Buffer Link Address |

{ (SBF.FC) H SBF .NXT { Header

Rttt a

14(04) | 6(06) |

i Reserved i Message Field Length |

| (SBF .MLEN) | (SBF .LEN) !

| T T e e e e e e e e e e e e e ——— - |

18(08) Reserved (1lst Buffer Only) ]

| or |

H Beginning of Message i

i (SBF .DATA) |

oo oo oo |

116(10) Reserved for Sending Task Name !

| (1lst Buffer Only) { Body

| or | of

i Continuation of Message { Message

| e e e e e e e e e e e e i

124(18) |

i |

1 L
Message

Figure 6-4 Send Data Message Buffer Format for Calling Task

Each send data message buffer can be variable in length provided
that the buffer is aligned on a fullword boundary and its total
length is equal to an integer number of fullwords. Note that the
message buffer consists of two parts: the header and the body of
the message. The message body holds the data that is to be sent.
Because the send data function allows the size of a message to be
variable, the 1length of the body is determined only by the
quant ity of data that is to be sent by SVC 6.

6-18 48-038 FOO ROL



Note that if the buffer is the only buffer containing the message
to be sent (or the first buffer in a chain), the first 16 bytes
of the message body are reserved and filled with zeros. When the
message is transferred to the directed task buffer, the first 8
bytes of the message body of the directed task buffer are filled
with 2zeros, the next 8 bytes are filled with the sending task's
name (left-justified and padded with blanks). All remaining
buffers in the chain use these first 16 bytes of the message body
to hold data.

A description of the fields in the message header follows:

Function code 1is a l-byte field indicating whether the

(SBF.FC) buffer is the only buffer to be sent, or is a
member of a message buffer chain. The
function codes are:

® X'00' - indicates that the buffer is an
intermediate buffer in a chain.

e X'l0' - indicates that the buffer is the
last buffer in a chain.

@ X'20' - indicates that the buffer 1is the
first buffer in a chain.

® X'30' - indicates that the buffer is the
only buffer to be sent.

Buffer link is a 3-byte buffer indicating the address of

address the next buffer in the chain. The 0S ignores

(SBF .NXT) this field in buffers with a function code of
X'10 or X'30"'.

RESERVED is a 2-byte field reserved for use by the

(SBF .MLEN) directed task.

Message field 1is a 2-byte field indicating the length of the

length . message body for that buffer.

(SBF .LEN)

6.2.7.2 Free Send Data Message Buffers for Receiving Task
Before a directed task can receive a message, the following
structures must be contained within the task address space:

e Free send data message buffers

'® Free buffer list queue

e Task queue

48-038 F00O ROl 6-19



e UDL containing the address of the task queue, free buffer 1list
queue, and TSW with address of send data trap service routine

e TSW initialized to enable send data traps
The total length of the free send data message buffers should be
sufficient to hold the entire message transferred to those

buffers by the calling task. The format of the free send data
message buffers is shown in Figure 6-5.

o ————————————— T — o ————— o —— T ————_——— ——————— -~

10(00) 11(01) :
! Reserved | Reserved |
| (SBF.FC) ! (SBF .NXT) | Header
| e e e e e e e e e e e e e e e e e e — - ]
14(04) | 6(06) |
H Maximum Message Length | Reserved i
! (SBF .MLEN) | (SBF .LEN) |
| T T e e e e e e e e e e — e — - i
18(08) Reserved (1lst Buffer Only) |
; or i
! Beginning of Message H
, (SBF .DATA) |
| e e e e e e e e e e e e e e i
116 (10) Sending Task Name H
i (1st Buffer Only) | Body
i or | of
i Continuation of Message | Message
| T e e e e e e e e e e e e e e e e e i
124(18) |
! i
L A
Message
° +
i
i

i —————— - ———————— o ————_ o ——_——_ - T ————— - - —————————

Figure 6-5 Send Data Message Buffer Format for Directed Task

Like the calling task's message buffers, each free message buffer
can be variable in length as long as the buffer is aligned on a
fullword boundary and the total 1length 1in bytes 1is an even
number .

When initialized, the maximum message length field contains the

number of bytes that are available for the body of the message.
The remaining fields of the message header are reserved.

6-20 48-038 FOO RO1



The address of each of the free message buffers is placed on a
standard Perkin-Elmer circular 1list established in the task
address space. This list is known as the free buffer list queue.
The address of the queue is placed in the UDL.SDQ field of the
UDL.

When a calling task issues an SVC 6 to send a message, the O0S
takes the address of the free buffer list queue from the UDL and
then takes a free buffer address off the queue. Once the free
buffer is found, the 0S sets the reserved field of the message
body to blanks and enters the name of the calling task in the
sending task name field (left-justified and padded with blanks).
After the buffer is filled with the data from the calling task's
message buffer, the 0S places the number of bytes of the message
body (including the reserved and sending task name fields) into
SBF .LEN.

If the entire message has not been transferred, the O0S fetches
the address of another free message buffer, places the address of
this buffer in the SBF.NXT field and sets the function code. It
then begins transferring message data to the free message buffer,
the address of which is now specified by SBF.NXT. However, this
time the message data begins at the first fullword following the
SBF.LEN field. After this buffer is filled, the 1length of the
message body is placed in the SBF.LEN field. The value in this
field can never be larger than the maximum message length field.

The 0S continues to fetch and fill the directed task's free
buffers until the entire message 1is tranferred or until no
buffers are left on the gqueue. If the directed task runs out of
buffers to hold the message data, the entire message is returned
to the calling task buffers. The addresses of the directed task
buffers are returned to the queue. The 0S outputs an error
message indicating no message was sent.

If the entire message is successfully transferred, the 0OS places
reason code X'06' and the address of the first filled message
buffer on the task queue of the directed task. If the directed
task has been properly initialized to receive a task queue trap,
the task then branches to a trap handling routine to process the
message. It 1is good practice to have the trap handling routine
return each message buffer address to the free buffer list queue
after the data in that buffer is processed. See the 0S/32
Application Level Programmer Reference Manual for more
information on preparing directed tasks to handle send data
traps.

If the directed task trap structures have not been properly
initialized (e.g., no task gqueue has been established), the
message will be returned to the calling task.

6.2.7.3 Sample Programs Using SVC 6 Send Data Function

The following sample programs demonstrate the data structures
used to send a message via the SVC 6 send data function.

48-038 FOO ROl 6-21



Sample send data application: Sending Task

SEND
SENDE

MES1

MES2

MES3

START

ERROR

MLIBS
$5VCH
DS
EQU
ORG
DB
ORG
DC
ORG
DC
ORG

EQU
DC
DC
DC
DS
DS
DC
DC
DC
ALIGN
EQU
DC
DC
DC
DC
DC
DC
DC
ALIGN
EQU
DC
DC
DC
DC
DC
DC
DC

EQU
svcC -
LH
BNZ
SvC
EQU
svC
END

8,9

SVC6b. START THE PCB

x END OF PCB

SEND+SVC6. ID GO INTO THE [.D. FIELD
C'RECDATA' STORE THE TASKID

SEND+SVC6 .FUN GO TO THE FUNCTION FIELD
SFUN.DOM!SFUN.DM SEND DATA:0THER TASK

SEND+SVC6 .MSG GO TO ADDR OF DATA FIELD

A(MES1) STORE THE ADDR OF THE 1ST BUFFER
SENDE GO TO THE END OF THE PCB

X

ADDR OF 1ST BUFFER

Y'20000000'+A(MES2) 1ST BUFF+ADDR OF 2ND

H'O'
H'80'
8

8

NOT USED BY CALLER

# OF BYTES WE ARE SENDING
RESERVED FIELD FOR 1ST BUFFER
SENDING TASK NAME FOR 1ST BUFFER

C'THIS IS A MESSAGE FROM ANOTHER TASK.'
C'WITH THE SEND'

c' ' TOTAL 80 BYTES

4

x ADDR OF 2ND BUFFER

Y'O'+A(MES3) MIDDLE BUFFER + ADDR OF NEXT BUFF
H'O' NOT USED BY CALLER

H'80' # OF BYTES WE ARE SENDING

C' DATA FUNCTION WE CAN SEND °*
C'VARIABLE LENGTH MESSAGES TO TASKS. '
C'THIS EXAMPLE'

c’ ! TOTAL 80 BYTE BUFFER

4

* ADDR OF 3RD BUFFER
Y'10000000" LAST BUFFER IN CHAIN CODE
H'O' NOT USED BY CALLER TASK
H'80' # OF BYTES WE ARE SENDING

C' SENT 3 BUFFERS AS ONE MESSAGE '
C'FROM ONE TASK TO ANOTHER '
C'AS ONE MESSAGE'

Cl t

x LET'S GO

6,SEND SEND THE DATA

1,SEND+SVC6.S5TA GET THE STATUS

ERROR AND BRANCH IF AN ERROR OCCURRED
3,0 EOT

x

3,1 RETURN CODE OF 1 ON ERROR

START TRANSFER ADDR

48-038 F00 RO1



Sample send data application: Receiving Task

MLIBS 8,9
$VOL
$svCl
$TSW
MBF STRUC STRUCTURE FOR THE MESSAGE BUFFER FORMAT
SBF.FC EQU  * FUNCTION CODE FIELD
SBF.NXT DS 4 ADDR OF NEXT BUFFER
SBF .MLEN DS 2 MAX LENGTH OF BUFFER
SBF.LEN DS 2 LENGTH OF DATA TRANSFER
SBF.DATA EQU  * START OF DATA AREA
ENDS
MYUDL DS 256 START OF UDL
MYUDLE EQU  * END OF UDL
ORG  MYUDL+UDL.TSKQ GO TO TASK Q ADDR
DC A(TRAPQ) STORE ADDR OF TASK QUEUE
ORG  MYUDL+UDL.SDQ GO TO ADDR OF FREE BUFFER LIST
DC A(QUEUE) STORE ADDR OF FREE BUFFER LIST
ORG  MYUDL+UDL.TSKN GO TO NEW TSW AREA FOR Q SERVICE
DC 0 STATUS OF NEW TSW
DC A(QSERVICE) LOCATION COUNTER OF NEW TSW
ORG  MYUDLE GO TO END OF THE UDL
START EQU  * LET'S GO
LA 1,BUFF1 GET THE ADDR OF BUFF1
ABL  1,QUEUE ADD TO BOTTOM OF FREE LIST
LA 1,BUFF2 GET THE ADDR OF BUFF2
ABL  1,QUEUE ADD TO BOTTOM OF FREE LIST
LA 1,BUFF3 GET THE ADDR OF BUFF3
ABL  1,QUEUE ADD TO FREE LIST
SVC  9,TSW ENTER TRAP WAIT
x
QSERVICE EQU  * TRAP ROUTINE
RBL  3,TRAPQ GET THE REASON CODE
LR 2,3 STORE IT IN 2
NI 2,Y'FF000000" CLEAR THE FIELD
cI 2, TRC.SDTA IS IT A SEND DATA REASON CODE
BNE  ERROR BRANCH IF NOT
DATA EQU  *
L 2,0(3) GET THE FUNCTION CODE
NI 2,Y'FF000000" STRIP OFF THE ADDR
CI 2,Y'20000000" IS IT THE FIRST BUFFER
BE FIRST
cI 2,Y'10000000' IS IT THE LAST BUFFER
BE LAST
c1 2,Y'30000000" IS IT THE ONLY BUFFER
BE ONLY

48-038 F00 ROl 6-23



NEXT EQU
LHL

SIS
ST
ST
svcC

FIRST EQU
LHL

SIs

LAST EQU

sve
ONLY EQU

LHL

SIS
ST
ST
svc

FINI EQU

* THE

ABL
ABL

ABL
LIS

ST

sve

ERROR EQU
sve

ALIGN

WRITE Ds

%X
8,MBF (3)
9,SBF.LEN(3)

9,8

9,1

8, WRITE+SVC1.SAD
9,WRITE+SVC1.EAD
1,WRITE

2,0(3)

3,2

DATA

*

8,MBF+16(3)
9,SBF.LEN(3)

9,8
9,1
8,WRITE+SVC1.SAD
9, WRITE+SVC1.EAD
1,WRITE

2,0(3)

3,2

DATA

®

8,MBF (3)
9,SBF.LEN(3)

9,8

9,1
8,WRITE+SVC1.SAD
9, WRITE+SVCL.EAD
1,WRITE

4

8,MBF+16(3)
9,SBF .LEN(3)
9,8
9,1

8, WRITE+SVC1.SAD
9,WRITE+SVC1.EAD
1,WRITE

*x

1,BUFF1
1,QUEUE
1,BUFF2

L. TSKO
L.TSKO

> ggo

GET THE STARTING ADDR OF BUFF
GET THE LENGTH OF DATA TRANSFER
ADD STARTING ADDR

SUBTRACT ONE FROM ENDING ADDR
STORE THE STARTING ADDR

ENDING ADDR

WRITE THE NEXT BUFFER

GET THE ADDR OF THIS BUFFER
STORE IN THREE

CONTINUE

GET THE STARTING ADDR OF DATA
GET THE LENGTH OF DATA TRANSFER
ADD THE STARTING ADDR

SUBTRACT ONE FROM ENDING ADDR
STORE THE STARTING ADDR

STORE THE ENDING ADDR

WRITE THE FIRST BUFFER

GET ADDR OF FIRST BUFFER

SAVE IN THREE

CONTINUE

GET THE STARTING ADDR
GET THE # OF BYTES TRANS
ADD TO MAKE ENDING ADDR
SUBTRACT ONE FROM END
STARTING ADDR

ENDING ADDR

WRITE OUT THE LAST BUFFER

GET THE STARTING ADDR
GET THE # OF BYTES TRANS.
GET AN ENDING ADDR
SUBTRACT ONE

STARTING ADDR

ENDING ADDR

WRITE THE ONLY BUFFER

OS REMOVES FROM THE TOP OF THE FREE LIST

ADDR OF 1ST BUFF
ADD TO FREE LIST
ADDR OF 2ND BUFF
ADD TO FREE LIST
ADDR OF 3RD BUFF
ADD TO FREE LIST
GET A ZERO

ZERO THE STATUS
LOAD A TSW

RETURN CODE OF 2

START OF PCB

48-038 FOO ROl



WRITEE EQU x END OF PCB

ORG WRITE+SVC1l.FC GO TO THE FUNCTION CODE FIELD
DB SV1.WRIT!SV1.WAIT WRITE AND WAIT
ORG WRITE+SVC1.LU GO TO THE LU FIELD
DB 2 LU 2 FOR A WRITE
ORG WRITEE GO TO END OF PCB
ALIGN 4
TSW EQU * NEW TSW
DC TSW.WTM!TSW.TSKM!TSW.SDM WAIT,Q TRAP,SEND DTA
DC 0] LOCATION COUNTER
ALIGN 4
QUEUE DLIST 3 FREE LIST SIZE
TRAPQ DLIST 3 TASK QUEUE SIZE
BUFF1 EQU x 1ST BUFF
DS 4 FUNCTION CODE AND LINK ADDR
DC H'80"' MAX SIZE OF THIS BUFFER
DC H'O' # OF BYTES TRANS. SET BY OS
DS 16 RESERVED FIELD FOR 1ST BUFFER
DS 80 # OF BYTES WE CAN ACCEPT IN BUFF
BUFF2 EQU o
DS 4 FUNCTION CODE AND LINK ADDR
DC H'80"' MAX SIZE OF THIS BUFFER
DC H'O' # OF BYTES TRANS SET BY 0S
DS 80 # OF BYTES WE CAN ACCEPT IN BUFF
BUFF3 EQU x 3RD BUFF
DS 4 FUNCTION CODE AND LINK ADDR
DC H'80' MAX SIZE OF THIS BUFFER
DC H'O' # OF BYTES TRANS SET BY OS
DS 80 # OF BYTES WE CAN ACCEPT IN BUFF
END START TRANSFER ADDR

6.2.8 Send Message (SFUN.MM)

The send message function allows calling task to send a 64-byte
message to the directed task. SVC 6 appends the calling task
name to the message, finds the address of the receiving task
buffer in the UDL of the directed task, fills the receiving
buffer, and places the address of that buffer on to the directed
task queue.

The required SVC 6 parameter block fields are:

® Task name field
e Bits 0, 1, and 11 of the function code field

e Address of message buffer field

To prepare a directed task to accept the message sent by the
SVC 6 send message function:

'® Allocate message buffers to receive the message. (Use message
buffer format described in Section 6.2.8.1.)

48-038 FOO ROl 6-25



@ Write a routine to service task gueue traps as described in
the 0S/32 Application Level Programmer Reference Manual.

e Store the address of the receiving message buffer in the
address of the message buffer ring field in the UDL of the
directed task.

6.2.8.1 Message Buffers

When allocating receiving message buffers for the send message
function, use the buffer format shown in Figure 6-6.

full
bit

* _____________________________________________ 4 f--—-
P | |

0} Link | Calling task | Message !
| | address| name | |
_____________________________________________ 4 b=
Bytes:

0 34 11 12 75

Figure 6-6 Message Buffer Format for Directed Task

This message buffer must be 76 bytes long and aligned on a
fullword boundary. A description of each field in the message
buffer format follows.

Fields:
Buffer-full is a 1-bit field indicating whether or not the
bit buffer can receive the message being sent from

the calling task.

If bit 0 equals 0, the buffer is available to
receive the message.

If bit 0 equals 1, the buffer is full and the
message is rejected. After the message sent
by the calling task is stored in the message
buffer, the system sets the buffer-full bit to
1 to indicate the message buffer is full.
After the directed task processes the message,
the user must reset the buffer-full bit to 0
to indicate that it is available to receive
the next message.

6-26 48-038 F00 RO1



Link address is a 4-byte field containing the address of
the subsequent message buffer to receive the
next message sent by the calling task. If
this field contains an invalid address, the
call is rejected.

Calling is an 8-byte field receiving the calling
task name task's name from the system.
Message is a 64-byte field receiving the message sent

by the calling task.

Using the Link address field, the wuser can construct the
following structures from the basic message format:

1. Single buffer ring
2. 8Single buffer chain
3. Multiple buffer ring

4. Multiple buffer chain

A single buffer ring consists of one buffer as shown in Figure
6-7. The buffer-full bit initially should be set to 0, and the
link address field should contain the buffer's own starting
address (points to itself). When a message is sent to a single
buffer ring, the system sets the buffer-full bit to 1. All
subsequent messages are rejected until the wuser resets the
buffer-full bit to O.

Starting
address
X'1l50"

.....O.--
[
S
o
5
ct
o

Figure 6-7 8Single Buffer Ring

48-038 FOO RO1 6-27

— -



A single buffer chain consists of one buffer as shown in Figure
6-8.  The buffer-full bit initially should be set to 0, and the
link address field should contain zeros (terminating the chain).
When a message is sent to a single buffer chain, the system sets
the buffer-full bit to 1 and stores the link address field
contents into the address of the message ring field of the UDL of
the directed task. All subsequent messages are rejected until.
the user stores the empty buffer address into the UDL address of
the message ring field and resets the buffer-full bit of the
empty message buffer to O.

Starting
address
X'150"

-
=
=
=
O
»
ct
®

Figure 6-8 8ingle Buffer Chain

A multiple buffer ring consists of a variable, unlimited number
of buffers. Each buffer-full bit initially should be set to O,
and each 1link address field should contain the address of a
subsequent buffer. The last buffer's link address field should
contain the first buffer's address (forming a ring). When a
message is sent to a multiple buffer ring, the first buffer,
pointed to by the address stored in the UDL address of the
message ring field, receives the message if the buffer-full bit
is O.

The system then stores the contents of the first buffer 1link
address field into the UDL address of the message ring field.
That UDL field now points to the second buffer in the ring. If
the calling task sends another message, the second buffer
receives the message if the buffer-full bit is 0.

The system stores the contents of the second buffer link address
field into the UDL address of the message ring field, which now
points to the third buffer in the ring. When the last buffer in
the ring receives a message and the contents of the link address
field are stored into the UDL, that UDL field points to the first
message buffer in the ring. If the calling task sends another
message, the first buffer receives the message if the buffer-full
bit 1is reset to 0; otherwise, the message is lost. See Figure
6-9.

6-28 48-038 FOO ROl



Address
X'1c8'

—=-
N
w
Q
o
]
ot
o

Address
X'23¢C!

-5
N
o
»
o
o
ﬁ
)

Figure 6-9 Multiple Buffer Ring

A multiple buffer chain consists of a variable, unlimited number
of buffers. Each buffer-full bit initially should be set to O,
and each 1link address field should contain a subsequent buffer
address. The last buffer link address field should contain zeros
(terminating the chain). When a message is sent to a multiple
buffer chain, the first buffer, pointed to by the UDL address of
the message ring field, receives the message if the buffer-full
bit is O.

The system then stores the contents of the first buffer 1link
address field into the UDL address of the message ring field.
That UDL field now points to the second buffer in the chain. If
the calling task sends another message, the second buffer
receives the message if the buffer-full bit is O.

48-038 F0O ROl - 6-29



The system then stores the contents of the second buffer 1link
address field into the UDL address of the message ring field.
That UDL field points to the third buffer in the chain. When the
last buffer in the chain receives a message and the system stores
the contents of the 1link address field into the UDL, all
subsequent messages are rejected until the user stores an empty
buffer address into the UDL address of message ring field and
resets the buffer-full bit of that message buffer. See Figure
6-10.-

Address
X'150°

Address
X'23C!

Figure 6-10 Multiple Buffer Chain

The following sample programs demonstrate the data structures
used to send a message via the SVC 6 send message function.

6-30 48-038 F00 ROl



Sample send message application: Sending task

SEND PROG SVC 6 EXAMPLE - SEND MESSAGE

*x

* This task sends a message to task RECEIVE.

%

X
NLSTM
NLSTU
$SVC6
$REGS

SEND EQU ol
svc 6,SVC6 SEND THE MESSAGE
LB R15,8VC6+SVC6.STA+1 GET ERROR STATUS
svc 3,0(R15) END OF TASK
ALIGN 4

SVC6 DS SVC6. RESERVE SPACE FOR SVC 6 PBLK

ORG SVC6+S8VC6. ID

DC C'RECEIVE '

ORG SVC6+SVC6 .FUN

DC SFUN.DOM!SFUN.MM
ORG SVC6+SVC6 .MSG

DC A (MESSAGE)

SEND MESSAGE TO ANOTHER TASK

MESSAGE DC C'Message from SEND to RECEIVE '
DC c' '
DC c' '
END SEND

Sample send message application: Receiving task

RECEIVE PROG SVC 6 EXAMPLE - RECEIVE MESSAGE

* % % % % %

¥ % X% X% %

48~-038 FOO ROl

This task receives a message sent to it by another
task. The message is logged to the console device.

NLSTM
NLSTU
$UDLS$
$REGS

Set up UDL and link message buffers into a message ring.

ADDRESS OF MESSAGE TO BE SENT

i

NAME OF TASK MESSAGE IS SENT TO

31



RECEIVE

LINKRING

LINKDONE

* % X % %

QSERVICE

QEMPTY

TRAPENA

EQU
sve
LI
LA
ST™M
LA
ST
LA
ST

LHI
LA
EQU
SIS
BNP
LA
ST
LR
B

EQU
LA
ST

svC

EQU
RTL
BO
LA
SRL
CLHI
BNE
LA
sT
SvC
L
NI
ST
L
CLI
BNE
svc

EQU
sve

*

2,FETCHPTR
R14,TSW.PMM
R15,QSERVICE
R14,UDL.TSKN(RO1)
R15,TSKQ
R15,UDL.TSKQ(RO1)
R15,MESSQ
R15,UDL.MSGR(RO1)

R15,NMESS
R14 ,MESSQ
*

R15,1
LINKDONE
R13,76(R14)
R13,0(R14)
R14,R13
LINKRING

x

R13,MESSQ
R13,0(R14)

9, TRAPENA

Service task queue traps

*

RO2, TSKQ
QEMPTY
R15,0(R0O2)
RO2,24

RO2,6
QSERVICE
R14,4(R15)
14, LOGMESS +4
2,LOGMESS
ROO,0(R15)
ROO,Y' 7FFFFFFF"
ROO,0(R15)
ROO, 12 (R15)
ROO,C'STOP"
QSERVICE

3,0

*

9, TRAPWAIT

ALIGN 4
DC TSW.PMM, O

GET ADDRESS OF UDL IN ROl

ALLOW MESSAGES TO BE QUEUED
ADDRESS OF QUEUE SERVICE ROUTINE
SAVE TASK QUEUE NEW TSW

ADDRESS OF TASK QUEUE

ADDRESS OF MESSAGE BUFFER RING

NUMBER OF MESSAGES IN RING
HEAD OF MESSAGE RING

GET ADDRESS OF NEXT BUFFER
LINK NEXT TO CURRENT
CURRENT IS NEXT

CONTINUE LINKING OF RING

ADDRESS OF FIRST MESSAGE
LINK FIRST TO LAST

ENABLE RECEIVE OF MESSAGES

A ITEM ON THE TASK QUEUE?

NO - ENTER TRAP WAIT

GET PARAMETER

ISOLATE REASON CODE

MESSAGE RECEIVED?

NO - IGNORE IT

SKIP OVER MESSAGE LINK

ADDRESS OF MESSAGE TO BE LOGGED
LOG SENDER ID AND MESSAGE

RESET MESSAGE ACTIVE FLAG

GET FIRST FOUR BYTES OF MESSAGE
IS IT "STOP"?

NO - CHECK FOR MORE MESSAGES
YES - STOP TASK

ENTER TRAP WAIT

48-038 F0O RO1



TRAPWAIT DC TSW.WTM! TSW.TSKM! TSW.PMM, O

FETCHPTR DB 0,5,0,RO01 FETCH UDL POINTERS
LOGMESS DB X'40',7

DCX 72

DC 0
TSKQ DLIST 5 TASK QUEUE
NMESS EQU 3 NUMBER OF MESSAGE BUFFERS
MESSQ DS 76 *NMESS MESSAGE BUFFERS

END RECEIVE

6.2.9 Queue Parameter (SFUN.QM)

The queue parameter function adds the user-specified parameter,
located in the task queue parameter field of the parameter block,

to the directed task queue. The required parameter block fields
are:

e Task name field

e Bits 0, 1, and 12 of function code field

e Task queue parameter field

Before the directed task can receive the parameter sent from the
calling task, the directed task must prepare to service traps as

described in the 0S/32 Application Level Programmer Reference
Manual.

If the directed task queue is full, the call is rejected, the
parameter 1is lost,  and an error code is stored into the error
status field of the parameter block.

6.2.10 Change Priority (SFUN.PM)

The change priority function changes the directed task's current
priority to the user-specified priority located in the parameter
block change priority field. It then stores the change priority
value at which the directed task 1is now executing into the
current priority field of the parameter block. The required
parameter block fields are:

® Task name field

® Bits 0, 1, and 13 of the function code field

'® Change priority field

48-038 FOO ROl 6-33



If the change priority value specified in the parameter block is

greater than the maximum priority value established by Link, that

maximum priority is used. However, 1if the change priority value

the user specified is outside the range of 10 through 249, the

call is rejected, and an error code is stored in the parameter

block error status field. See Table 6-5.

6.2.11 Send Logical Unit (SFUN.XSM)

The send logical unit function assigns to the specified lu of the

directed task the device or file currently assigned to the

specified lu of the calling task, and then closes the lu assigned

to the calling task. The required parameter block fields are:

e Task name field

e Bits 0, 1, and 14 of the function code field

e Calling 1lu field

® Receiving lu field

Before the directed task accepts the lu that the calling task

sends:

e the directed task's lu must not be assigned, and

e the directed task must be in either a dormant or paused wait
state or be suspended by an SVC 6.

6.2.12 Receive Logical Unit (SFUN.XRM)

The receive logical unit function assigns to the specified lu of

the calling task the device or file currently assigned to the

specified lu of the directed task, and then closes the 1lu

assigned to the directed task. The required parameter block

fields are:

e Task name field

e Bits 0, 1, and 15 of the function code field

e Calling 1lu field

® Receiving lu field

6-34 48-038 FO0O ROl



Before the calling task accepts the lu that . the directed task

sends:

® the calling task's lu must not be assigned, and

® the directed task must be in either a dormant or paused wait
state or be suspended by an SVC 6.

6.2.13 Connect (SFUN.OM)

The connect function connects the trap generating device

specified 1in the device mnemonic field of the parameter block to

the directed task. The required parameter block fields are:

e Task name field

e Bits 0, 1, and 16 of the function code field

e Device mnemonic field

e Task queue parameter field
Before the connection is made:

e The user-specified device must be a trap generating device.

e The device must not be currently connected to the directed
task or any other task; it can be connected to only one task
at a time. However, a task can be connected to more than one
trap generating device at the same time.

® The directed task must be prepared as described in the 0S/32
Application Level Programmer Reference Manual if traps are to
be serviced as they occur.

When the connection is made and the thaw function is specified,
an interrupt occurs, and the user-specified parameter located in
the task queue parameter field of the parameter block is placed
on the directed task queue with a reason code of 0. The connect
function does not enable interrupts.

48-038 FO00 RO1 - 6-35



6.2.14 Thaw (SFUN.TM)

The thaw function enables interrupts from the specified trap
generating device connected to the directed task. The required
parameter block fields are:

® Task name field
e Bits 0, 1, and 17 of the function code field

® Device mnemonic field

Before this function is effected, the task should be prepared to
handle traps as described in the 0S/32 Application Level
Programmer Reference Manual.

When the thaw function is executed, the system first ensures that
the trap generating device is connected to the directed task
specified in the parameter block; it then enables interrupts.
Interrupts are disabled when the directed task terminates or if
an unconnect or freeze function is specified. If a thaw function
is executed when interrupts are already enabled, this call has no
affect.

6.2.15 8Sint (SFUN.IM)

The sint function simulates an interrupt from the specified trap
generating device connected to the directed task only if the thaw
function was specified. If interrupts are disabled, this call
has no affect. The required parameter block fields are:

® Task name field

e Bits 0, 1, and 18 of the function code field

® Device mnemonic field

When the simulate function is executed, the system first ensures
that the trap generating device is connected to the directed task

specified in the parameter block; it then simulates an interrupt
from the specified device.

6-36 48-038 FOO0 RO1



6.2.16 Freeze (SFUN.FM)

The freeze function disables interrupts from the specified trap
generating device connected to the directed task. The required
parameter block fields for this function are:

e Task name field

e Bits 0, 1, and 19 of the function code field

e Device mnemonic field

When the freeze function is executed, the system first ensures
that the trap generating device is connected to the directed task
gspecified 1in the parameter block; it then disables interrupts
from the specified device. When the freeze function disables
interrupts, the trap generating device and directed task remain
connected, but all generated interrupts are lost. If interrupts
are already disabled, this call has no affect.

6.2.17 Unconnect (SFUN.UM)

The unconnect function disconnects the specified trap generating
device from the directed task. The required parameter block
fields for this function are:

e Task name field

e Bits 0, 1, and 20 of the function code field

e Device mnemonic field

When the unconnect function is executed, the system first ensures
that the trap generating device is connected to the directed task
specified in the parameter block; it then disables all interrupts
and disconnects the specified device from the directed task. The
device can now be connected to another task.

6.2.18 Assign LPU (SFUN.LPU)

The assign LPU function assigns a logical processing unit number
to the directed task. This assignment has no effect until the
directed task 1is transferred by the task dispatcher. The
required parameter block fields for this function are:

e Task name field

e Bits 0, 1, and 21 of the function code field

e LPU assignment field

48-038 F0O RO1 6-37



— v o P e e e b he ——

— - - —— ——

6.2.19 Transfer to LPU (SFUN.TL)

The transfer to LPU function sets the LPU-directed status field
in the TCB of the directed task. As a result, the directed task
is transferred to its assigned LPU the next time the task is
dispatched, provided that all requirements for transfer are met.
See the 0S/32 System Level Programmer Reference Manual for more
information on the task dispatcher. If this function is
self-directed and the calling task is executing on an APU, no
transfer occurs. If a calling task executing on the CPU directs
this function to itself, the LPU-directed status field in the TCB
is set and the calling task is dispatched to its assigned LPU.
If the LPU is mapped to the CPU, no transfer occurs. If the LPU
is mapped to an APU, a transfer to the APU occurs.

The required parameter block fields for this function are:

e Task name field

e Bits 0, 1, and 22 of the function code field.

NOTE

If both bits 22 (SFUN.TL) and 23
(SFUN.TC) are set 1in the same SVC 6
parameter block, only bit 23 is
recognized when the call is complete.

6.2.20 Transfer to CPU (SFUN.TC)

The transfer to CPU function resets the LPU-directed status field
in the TCB. As a result, the next time the task is dispatched
from the CPU ready queue, it will execute on the CPU regardless
of its LPU assignment and eligibility. If the calling task
directs this function to a task that is active or ready on an
APU, the LPU directed status is reset after the task is returned
to the CPU for processing.

If a calling task executing on the CPU directs this function to
itself, no transfer occurs. If a calling task operating on the
APU directs this function to itself, the calling task is
transferred to the CPU. Normally, APU processing continues after
the task is transferred unless the wait bit in the SVC NEW PSW
field of the APU trap block has been set. In this case, APU
processing is explicitly suspended while the task executes on the
CPU until:

® the task is explicitly transferred back to the APU via SVC 6,
or

e the task is assigned to a different APU through an LPU
assignment, or

6-38 48-038 FOO RO1



e the task is cancelled or goes to end of task, or

e LPU mapping for the task's LPU is changed.

See the 0S/32 Application Level Reference Manual for more
information on setting the trap block to suspend APU processing.
The required parameter block fields for this function are:

e Task name field

e Bits 0, 1, and 23 of the function code field

NOTE

If both bits 22 (SFUN.TL) and 23
(SFUN.TC) are set in the same S8SVC 6
parameter block, only bit 23 is
recognized when the call is completed.

6.2.21 Release (SFUN.RM)

The release function releases a directed task currently suspended
by a previous SVC 6 by taking it out of a wait state. Once
released, the task continues executing with the instruction
following the instruction executed before the task was suspended
if the task 1is not in another wait state at this time. The
required parameter block fields for this function are:

e Task name field

e Bits 0, 1, and 24 of the function code field

6.2.22 WNonresident (SFUN.NM)

The nonresident function makes the directed task nonresident
regardless of the Link options specified. When a nonresident
task goes to end of task, it is removed from the system. The
required parameter block fields are:

e Task name field

e Bits 0, 1, and 25 of the function code field

48-038 FOO RO1

(o))
I

39



[ .

-

6.2.23 Rollable (SFUN.RLM)

The rollable function makes the directed task rollable. The
directed task must have been linked as a rollable task. If this
function is directed to a task linked as nonrollable, an error
status is returned. The required parameter block fields are:

® Task name field

e Bits 0, 1, and 26 of the function code field

6.2.24 Nonrollable (SFUN.NRM)

The nonrollable function prevents the directed task from being
rolled. The required parameter block fields are:

e Task name field

e Bits 0, 1, and 27 of the function code field

If both rollable and nonrollable functions are specified, only
the nonrollable function is recognized.

6.2.25 8Start (Bit Positions 29, 30, 31)

The start function starts execution of the directed task. This
call 1is rejected if it is self-directed. ‘Four methods of
starting are:

1. Start (bit setting equals 010)

2. Start with start options (bit setting equals 011)

3. Delay start (bit setting equals 100 or 110)

4. Delay start with start options (bit setting equals 101)
The required parameter block fields are:

e Task name field
e Bits 0, 1, 29, 30, and 31 of the function code field
® Address of start options field (only required wﬁen start with

start options or delay start with start options is specified
in the function code)

6-40 48-038 F00 RO1



® Increment of time field (only required when delay start or
delay start with start options is specified)

e Count field (only required when delay start or delay start
with start options is specified)

® Starting address of directed task field
Before the start function is executed, the directed task must be:

® loaded or present in memory, and

® in a dormat or console wait state.

6.2.26 8Start Function for SVC 6 (SFUN.SIM)

When this function is specified, execution of the directed task
is started at the address in the parameter block starting address
of the directed task field. However, if the user-specified
starting address is 0, the directed task 1is started at the
default start address specified by Link. If the user-specified
starting address is outside the established task boundaries, this
call is rejected, and an error code is stored in the parameter
block error status field.

6.2.27 Start Function with Start Options for SVC 6 (SFUN.SOM)

When this function is specified, the start options, optionally
specified in certain language and utility programs at execution
time, are also included as run time information when the directed
task starts execution. When the start function is executed, the
start options 1located at the address specified in the parameter
block are stored into the directed task UTOP area. If sufficient
memory is not available between UTOP and CTOP, this call is
rejected and an error code is stored in the parameter block error
status field. The task should then be reloaded into a larger
segment using the extended load option segment size increment
field.

The user-specified start options must be located on a fullword
boundary. The maximum length of the start options are defined at
system generation (sysgen) time through the CMDLENGTH option. If
the length of the start options is greater than that specified at
sysgen time or a carriage return is present within the start
options, only those characters up to the maximum number or the
carriage return are stored in the task UTOP area.

Since the address of the start options field is also the address
of the message buffer field in the parameter block, this field's
contents are always assumed to be the start option address when
the start function is specified. ‘

48-038 F0O0 RO1 6-41



6.2.28 Delay Start Function for SVC 6 (SFUN.SDM)

When this function is specified, the directed task starts
execution after a user-specified interval located in the
parameter block increment of time and count fields elapses. The
interval can be specified as a time of day or interval timing
interval.

When this start function is executed for the directed task, bytes
192 through 251 of the UDL are used by the 0S for SVC 6 delay
start function use.

When this start function 1is executed, the directed task is
immediately placed into a time wait state. When the
user-specified interval elapses, the directed task starts
execution.

6.2.29 Delay Start Function with Start Options for S8VC 6
(SFUN.SDM, SFUN.SOM)

When this function 1is specified, the directed task starts
execution after a user-specified - interval located in the
parameter block increment of time and count fields elapses. The
interval can be specified as a time of day or interval timing
interval.

When this start function is executed for the directed task, bytes
192 through 251 of the UDL are used by the 0S for SVC 6 delay
start function use.

When the start function is executed, the start options located at
the address specified in the parameter block are stored into the
directed task UTOP area, and the directed task is immediately
placed into a time wait state. If sufficient memory is not
available between UTOP and CTOP, this call is rejected, and an
error code is stored in the parameter block error status field.
The task should then be reloaded into a larger segment using the
extended load option segment size increment field. See Section
6.2.4.2.

The user-specified start options must be located on a fullword
boundary. The maximum length of the start options is defined at
sysgen through the CMDLENGTH option. If the length of the start
options is greater than that specified at sysgen or a carriage
return is present within the start options, only those characters
up to the maximum number or the carriage return are stored in the
task UTOP area. Since the address of the start options field is
also the address of the message buffer field in the parameter
block, this field's contents are always assumed to be the address
of the start options when the start function is specified. When
the user-specified interval elapses, the directed task starts
execution.

6-42 48-038 F0O0O RO1



6.2.30 Wait Status Field (SVC6.TST)

The wait status is sent to the wait status field in the parameter
block each time SVC 6 is executed.

If the calling task wants to check the wait status of the
directed task, an SVC 6 should be executed with bits 0 and 1 of
the function code set to 10 and the remaining bits set to O.
This operation also causes the current priority field of the
directed task to be returned to the current priority field in the
parameter block. Table 6-4 1lists the wait status bit
definitions.

TABLE 6-4 WAIT STATUS BIT DEFINITIONS

| BIT { WAIT STATUS | |
| FOSITION | FILD MASK | oo SIS ]
; c (I0) i X'8000" i I/0 gqueue wait §
;"E'ZEQJ"I'QTZBBST""'I'ESSRQZEI;;';;IE """"""""" i
| 2 (CW) | X'2000' | Console wait (task paused) §
{ 3 (LW) | X'1000' | Load wait; calling task waiting !
i | | _for receiving task to be loaded |
;__;_ZBQ;—_?_ETBQBBT _____ { Dormant; task not started or at ;
b dendetbes i
E 5 (TW) | X'0400' i Trap wait E
i & (TD) | X'0200' | Time of day wait |
;'"5‘2%&}‘“?‘%751657""_I'E;;L';Gégéﬁééé """""""""""""" |
| 8 (TM) | X'0080' i Intervalwait |
| 9 (TR) | X'0040' | Terminalwait i
| 10 (RO) { X'0020' | Roll pending wait i
| 11 (I) | X'0010' | Intercept initialization |
| 12 (IT) | X'0008' | Intercept termination |
| 13 (CO) | X'0004' | Commection wait |
| 1a (Ac) | X'0002' | Accounting wait ;
{151 x'0001' | Reserved for future use !

———— T —————— ———— ————————— i - M o T ——— " _——— i — - —— o ———————

48-038 FOO ROl 6-43



6.2.31 Error Codes (SVC6.S8TA)

If an error occurs, execution of the current S8SVC 6 function
stops, and any other functions specified in the function code to
the right of the current function are not executed. The position
of the function code bit, which indicated the function being
executed when the error occurred, is stored in bits 0 through 7
of the parameter block error status field. The bit position
value ranges from O through 31. The error code indicating the
error type is stored in bits 8 through 15 of the parameter block
error status field shown in Figure 6-11. Table 6-5 lists SVC 6
error codes.

— i ——————————— o ———— —————— o ————

{ Function code |
i bit position | Error code

Figure 6-11 Error Status Field

TABLE 6-5 SVC 6 ERROR CODES

ERROR {FUNCTION CODE |

i H
H CODE {BIT POSITIONS | H
{HEXADECIMAL,| CAUSING THE | }
i (DECIMAL) | ERROR H MEANING |
| 0 i All i No error occurred. All i
| H { requested functions terminated H
! ! | normally. H
o e e e e e e e e e e e e e e e e 1
! 1 ! All { Syntax error present in !
H H { parameter block task name field. H
' i i This error does not include self- |
! i ! directed calls. !
o e e e e e e e e e e e e e i
i 2 : All i Illegal function code !
| e :
6 (L) Directed task is already loaded

I
i
i into memory.

6-44 48-038 FOO ROl



TABLE 6~5 8SVC 6 ERROR CODES (Continued)

ERROR {FUNCTION CODE|

CODE {BIT POSITIONS|
HEXADECIMAIL.{ CAUSING THE |
(DECIMAL) | ERROR H MEANING

:
:
:
:
;
' 4 i All except | The specified directed task is not
i i & (L) i present in the calling task
i i | environment.
i | T e e e e e e e e e e e e -
! ! 6 (L) i The directed task is not present,
i i { but the calling task has the SVC6
i i | intertask control function dis-
i i ! abled.
= ______________________________________________________________
' 5 i 13 (P) i The specified priority is outside
H H | the range of 10 through 249.
= ______________________________________________________________
i 6 | 6 (L) i The directed task requires float-
i H i ing point facilities that are not
i ] i sysgened into the system.
= ______________________________________________________________
' 7 H 9 (8) | The specified directed task is
H H { dormant, paused, or suspended.
I H 14 (B) |\ The specified directed task is not
i H 15 (V) | dormant, paused, or suspended.
i i 29 i
{ H 30 (A) 1
i i 31 i
: ______________________________________________________________
8 11 (M) The message is not aligned on a
29 fullword boundary or an invalid

H '
i i
! 30 (A) | starting address was specified for
' !

31 a directed task.
e ___
! 9 i All i The calling task cannot execute
' ' i SVC 6 control or communication
i i i functions.

: ______________________________________________________________

| A (10) | 29 i The values specified for the

i | 30 (A) i increment of time and count

i i 31 | fields are invalid.

: ______________________________________________________________

' B (11) | 11 (M) i The calling task message was not

i | 10 (SD) | sent to the directed task.

: ______________________________________________________________

C (12) 10 (SD) Task queue service in the directed

task TSW is disabled. The

]
1
[
[}
12 (Q) | directed task queue is full. The
i directed task has no queue.

48-038 FOO ROl 6-45



TABLE 6-5 SVC 6 ERROR CODES (Continued)

ERROR {FUNCTION CODE|

CODE {BIT POSITIONS|
HEXADECIMAL,| CAUSING THE |
(DECIMAL) | ERROR 4 MEANING

3 3+ ¥ X3 3 F XY XYY IYFEYYEFE OS2 R £ 3 % 3 32 3 2 & 2R 23 3 b 2 £ f F 2 7 2 3 £ 3 3 3 3 X J

D (13) | 16 (0) | The device mnemonic specified in
i 17 (T) | the parameter block does not exist
i 18 (I) ! in the system.
i 19 (F) :
| 20 (V) s
______________________________________________________________ g
E (14) | 16 (0) | The device mnemonic specified in !
i 17 (T) { the parameter block is not a con- |
i 18 (I) | nectable device. H
i 19 (F) i i
P20 (U) | |
______________________________________________________________ :
F (15) i 16 (0O) i The device mnemonic specified in i
! | the parameter block is busy and H
| | cannot be connected. i
______________________________________________________________ :
10 (16) | 17 (T) i The device mnemonic specified in i
! 18 (I) \ the parameter block is not con- !
H 19 (F) | nected to the specified directed i
i 20 (U) | task. i
______________________________________________________________ :
11 (17) | 6 (L) | The lu specified in the lu to load |
| i task field of the parameter is i
i | invalid. ]
______________________________________________________________ =
12 (18) 14 (B) The lu the calling task sends or

] ]

) []

i 15 (V) { receives is greater than the
i { maximum allowed value.

—— e wma -

13 (19) i 14 (B) { The directed task is currently H

! 15 (V) { assigned to an lu during a send lu |

i | operation. !

______________________________________________________________ ‘

14 (20) H 14 (B) | The calling task is currently H

H 15 (V) | assigned to an lu during a receive |

i i lu operation. !

______________________________________________________________ ’

16 (22) H 29 { The specified directed task to be |

H 30 (A) { started is currently rolled out. !

______________________________________________________________ ‘
17 (23) 26 (Y) The directed task did not specify

]

]

i the roll option by Link and

! therefore cannot be rolled out.

6-46 48-038 F0OO ROl



TABLE 6-5 8VC 6 ERROR CODES (Continued)

—— - ——— T —————— T - A — A — . e e P T M MR R IR A e M M e e e - i — ———

ERROR { FUNCTION CODE |

CODE {BIT POSITIONS|
HEXADECIMAL.; CAUSING THE

18 (24) | 29 There is insufficient room between

i

[]

|

H H

i (DECIMAL) | ERROR ! MEANING
]

i

| i H

i ! 30 (A) ! the task UTOP and CTOP to store
] ] I

| ] ]

31 the task specified start options.
: ______________________________________________________________
i 19 (25) ! 18 (I) { An interrupt cannot be simulated
i ' | on the specified device.
: _______________________________________________________________
i 1B (27) ] 6 (L) { Loading the direct task will
i i { exceed the maximum number of
i | { sysgen-established tasks that can
i H i be present in the system at one
i ! { time.
= ______________________________________________________________
121 (23) i 6 (L) i An error occurred while loading a
i i { pure segment.
: _______________________________________________________________
1 42 (686) ! 6 (L) { The RTL or a TCOM required by the
i H { directed task is not present at
i | i load time.
s ______________________________________________________________
i 43 (67) | 6 (L) | The calling task specified load
H ' { options and the directed task
i ' { specified link options are not the
i H { same.
: ______________________________________________________________
! 44 (68) | 6 (L) { The LIB format is invalid.
i 45 (69) | 6 (L) i Insufficient system space exists
' | 14 (B) i to load or start the directed
| i 15 (V) | task. There is insufficient
' | 29 | system space in the directed task
H i 30 (A) i to accept the lu of the calling
H i 31 { task being sent.
: ______________________________________________________________
! 46 (70) H 6 (L) | Attempt was made to load tree-
H H | structured overlays from a device
i H ! that does not support random
] i | access.
= _____________________________________________________________
i 47 (71) | 6 (L) | System does not support loading
] i i of tree-structured overlays.
: _______________________________________________________________
48 (72) 6 (L) Data in the overlay descriptor

]
i
| table (ODT) of a tree structured
! overlay is invalid.

— e - - - w—— = e

48-038 FO0O RO1 - 6-47



—— e ————— —— —

TABLE 6-5 SVC 6 ERROR CODES (Continued)

ERROR {FUNCTION CODE |

i i
| CODE {BIT POSITIONS| i
{HEXADECIMAL,| CAUSING THE | i
{ (DECIMAL) | ERROR i MEANING i
= L 1 ¥+ 2 3 F 3 ¥ ¥ 2 F > ¥ ¥ 3 F 2 2 & 1T 22 Y P F TR IR E Y Y83 £ 3 FF L ¥ ;
i 49 (73) | 6 (L) i Memory does not have a large ]
i i i enough area into which the i
1 { { directed task can be loaded. The |
i | | roll option was not specified as a |
! | { Link option. i
T T T e e e e e e e e e e e - i
i 4A (74) { 6 (L) i Error occurred while mapping a /
H H { shared segment. Previously mapped |
i | i or shared segment table was full. |
e :
i 50 (80) | 6 (L) i The allocation of or assignment to |
! H i the specified roll file is invalid, |
i H | and the task cannot be loaded. ]
| oo oo e R :
i 51 (81) | 6 (L) i An I/0 error occurred when the i
H H { directed task was rolled out {
i i i (written) to the roll volume; it !
H i { cannot be loaded back into memory. |
T e e e e e e e e e e e e e e i
{ 52 (82) { 6 (L) i The physical size of a sharable !
{ i { segment was smaller than the |
i H | minimum size required. i
e e e i
i 53 (83) | 6 (L) i The access privileges of a |
H H { sharable segment were incompatible |
H i { with those requested by the task. |
| T e e e e e e e e e e e e e e e i
i 54 (84) H 21 (AP) i The LPU number is outside the H
i i | range specified by the MAXLPU |
H | | parameter at sysgen. i
T e e e e e e e e e e e e e e e e i
i 55 (85) ! 21 (AP) i The directed task is an APU-only H
H | 23 (IC) ! task and cannot be transferred to |
i i i the CDU. !
T T e e e e e e e e e e e e e — i
80-FF 6 (L) An I/0 error occurred when the

(read) into memory. An SVC 1
error occurred.

i
| directed task was being loaded
]
E

The calling task can check the parameter block for functions the
directed task executed before the error occurred and for
functions that were not executed.

6-48 48-038 F00 ROl



CHAPTER 7
FILE HANDLING SERVICES SUPERVISOR CALL 7 (SVC 7)

7.1 INTRODUCTION

SVC 7 provides file and device handling functions supported by
the file manager and the data communications subsystem. These
functions are accomplished through the SVC 7 parameter block
shown in Figure 7-1. For a description of the 0S/32 file
management services, see the 0S/32 Application Level Programmer
Reference Manual and the 08/32 Basic Data Communications
Reference Manual.

48-038 F00 ROl 7-1



0(0) 12(2) 13(3) |
Function code | Exrror status | lu !
(8VC7.0PT) | (8VC7.8TA) i (8VC7.LU) 1

___________________________________________________________ ’

4(4) 15(5) 16(6) i

Write key | Read key | Logical record length e
(SVC7.WKY) | (SVC7.RKY) | (SVC7.LRC) |
___________________________________________________________ }
8(8) |
Volume name or device mnemonic }

(8VC7.VOL) !
___________________________________________________________ x
12(C) i
!

i

------ Filename ———===]
16 (10) (SVC7.FNM) !
1

|

___________________________________________________________ =

20(14) 123(17) Flile !

Extension ! class/account |
(SVC7.EXT) | (8VC7.ACT) !
____________________________________________________________ =
24(18) |
File size H
(8VC7.812) i
sve 7,parblk
ALIGN 4
parblk DC X'function code'
DS 1
DB lu
DB ‘'write key'
DB 'read key'
DC H'record length'
DC C'4-character volume name or device
mnemonic'
DC C'8-character filename'
DC C'3-character extension'
DB C'file class'
DC F'file size'
Figure 7-1 8VC 7 Parameter Block Format and Coding

48-038 F0OO ROl



This parameter

block must be 28 bytes long, fullword-boundary

aligned, and located in a task writable segment. A description
of each field in the parameter block follows:

Fields:

Function
code
(8VC7.0PT)

Error
status
(SVC7.8TA)

1lu
(SVC7.LU)

Write key
(SVC7.WKY)

Read key
(SVC7.RKY)

Logical
record
length
(SVC7.LRC)

48-038 F00 ROl

is a 2-byte field that contains the
hexadecimal number indicating the function to
be performed.

is a l-byte field that receives the
appropriate error code when an error occurs
while executing SVC 7. If no error occurs, a
value of 0 is stored in this field.

is a l-byte field that contains a hexadecimal
number indicating the logical wunit wused for
all 8VC7 functions (except the allocate and
delete functions).

is a l-byte field that contains a hexadecimal
number indicating the write protection keys
for direct access and data communications
files and devices when the allocate, assign,
reprotect and delete functions are executed.

is a l-byte field that contains a hexadecimal
number indicating the read protection keys for
direct access and data communications files
and devices when the allocate, assign,
reprotect, and delete functions are executed.

When executing the SVC 7 fetch attributes
function, the device and file attributes are
stored in the write and read key fields of the
parameter block.

is a 2-byte field that contains a decimal
number indicating the logical record length
for indexed files, nonbuffered indexed files,
or buffered logical terminal manager
(communications).

When executing a fetch attributes function,
this field receives a hexadecimal number
indicating a file logical record length or a
device physical record length.



Volume name
or device
mnemonic
(8VC7.VOL)

Filename
(SVC7 .FNM)

Extension
(SVC7 .EXT)

File class/
account
(8SVC7.ACT)

is a 4-byte field that contains ASCII code
indicating the volume name of a direct access
device, the device mnemonic of a nondirect
access device or name of the data
communications access line, when the allocate,
assign, delete, and fetch attributes functions
are executed.

is an 8-byte field that must contain the ASCII
code indicating:

e A filename on a direct access device when
the allocate, assign, rename, and delete
functions are executed. A filename is not
required for nondirect access devices.

e The buffered logical terminal described by
the LCB that is being allocated or
assigned.

When executing a fetch attributes function,
this field receives the filename from the
direct access or data communications device
currently assigned to the lu specified in the
parameter block. If it is a nondirect access
device, this field is blank.

is a 3~-byte field that contains the ASCII code
indicating further identification of the
filename or the file type (.CAL, .OBJ, .TSK,
.C8S) on direct access devices.

is an optional l-byte field that contains the
account or class to which the file is
allocated. If SVC 7 is issued by an e-task or
a u-task that was 1link-edited with the
ACPRIVILEGE option, an account number can be
gspecified in this field.

NOTE

To allocate a file with an account
number, the file descriptor (fd)
must be packed into the S8SvC 7
parameter block using SVC 2 code
16 (See Section 3.14.9.) The
account number can range from O
through 65,535.

48-038 F00 ROl



If sVvC 7 is 1issued by a u-task that was
link-edited with the NACPRIVILEGE option, the
file class is specified as follows:

@ P indicates file is allocated under a
private account.

® G indicates file 1is allocated under a
group account.

® S8 indicates file 1s allocated under a
system account.

See the 05/32 Link Reference Manual for more
information on the account privileges task

option.
File size is a 4-byte field that contains a hexadecimal
(SVC7.812) number indicating the file size established
when a file 1is allocated to a direct access
device.

7.2.1 Function Code Field (SVC7.0PT)

SVC 7 has nine functions specified by the first byte of the
function code, called the command byte, and has three modifier
fields specified by the second byte of the function code, called
the modifier byte. The modifier fields are:

® access privileges for the allocate function and change access
privilege function,

® access method (data communications only) for the assign
function, and

e file types for the allocate function,

e density selection for the assign function (magnetic tape
drives).

There are no modifier fields for the rename, reprotect, close,

delete, checkpoint, and fetch attributes functions.

These functions and modifier fields are specified through

different function code bit settings shown in Figure 7-2. The

functions specified in the function code are executed from left
to right.

48-038 F00 RO1 7-5



Command byte Modif ier byte

{iAl A} C|J]R{|R}| C}D}J C 1} Access |Access | i
f L1 S}t H|N}| P | L} L /| K |privileges |method | types |
Bits: v

0 1 2 3 4 5 6 7 8 10 11 12 13 15

Figure 7-2 SVC 7 Function Code Field

The function of each bit setting in the SVC 7 function code field
is explained in Table 7-1.

TABLE 7-1 SVC 7 FUNCTION CODE BIT DEFINITIONS

BIT i DATA
POSITION | FUNCTION | DEVICE/FILE { COMMUNICATION |

I
i
]
!
]
1
O0=no function |
1
E
H
!
H

BIT SETTING

0 (AL) | Allocate | Reserves space | Reserves a i

i | on a direct { line control | requested

| | access device | block (LCB) { l=reserve

i i i for a buffered] space

i 1 | terminal man- |

| i | ager i
I e e e e e e e e e e e e e e  —— —m———————m e i
i 1 (AS) i Assign | Assigns an lu | Assigns an { 0=no function |
i i { to a device i lu to line i requested i
i i | or file | driver (SVC { l=assign an i
! i ! { 15) and i lu !
{ i i | terminal ! i
H ! H | managers H !
i ! H I (8VC 1) | i
| =TT e e e e e e e e e — o |
{ 2 (CH) | Change | Changes the { Changes the { O0=no function |
{ | access | user's current | communica- H requested !
H ! privi- | access privi- | tions user i l=change !
| | lege ! lege to a new | current | access |
i H | access privi- | access privi- | privilege !
i i | lege ! lege to a new | !
! ' | | access privi- | !
| | | | lege i i
7-6 48--038 FOO ROl



TABLE 7-1 SVC 7 FUNCTION CODE BIT DEFINITIONS (Continued)

BIT
POSITION | FUNCTION

3 (RN) | Rename
!
1
|
i
|
{ 4 (RP) | Repro-
i | tect
! i
| |
i |
| !
i '
i !
i |
i i
i i
{ 5 (CL) { Close
] 1
i |
' i
] |
i |
| 6 (DL) | Delete
§ 2
i |
] !
|
7 (CK) Check-
point

48-038 FOO ROl

DEVICE/FILE H

Changes the |
current file- |
name to a new |
user-specified |
filename |

!

Changes the H
files current |
read/write |
protection keys|
to new protec- |
tion keys !
|
i
!
!

Closes an lu !
assignment for |
a particular |
device or file |
!
]

Releases re- |
served space !
on a direct ]
access device |
]
]

Copies buffered|
file data to a |
direct access |
device |

1

DATA !
COMMUNICATION |

Changes the {
name of the !
communications)
line (SVC 15) |
or terminal

(sve 1) !

Changes the |
read/write H
protection !
keys of the |
communi- !
cations line |
(SVC 15) or i
terminal !
(SVC 1) to |
new protec- '
tion keys H

Closes an lu |
assignment for|
a particular |
line driver '
or terminal H
manager 1

Releases a !
reserved line |
control 1
block i
(]
|

Copies buff- |
ered file !
data to a }
logical !
terminal H

BIT SETTING

O0=no function
requested

l=change
filename

O0=no function
requested

l=change
protection
keys

0O=no function
requested
l=close an lu

O0=no function
requested

l=release
reserved

0=no function
requested

l=copy
buffered
file data



TABLE

7-1 S8SVC 7 FUNCTION CODE BIT DEFINITIONS (Continued)

- —— ——— A ———————————— o — o T ———— o ————

BIT
POSITION

8
9
10

- = T e - e M M W e 4 e e AR e mie e A MMGe T MG M A mem G A R e e e e ——

—— e - e " - — o —

FUNCTION

Access
privi-
leges

Access
method

- ——— o —— T — - —— - - —— - — i —

DEVICE/FILE

Specifies a

a file's read-
ing and writing
restrictions

Specifies VFC
for devices
that support
VFC

DATA
COMMUNICATION

Specifies the
terminal's
reading and
writing
restrictions

Indicates

file access
method for
data
communications

BIT SETTING

000=shared
read only
(SRO)
00l=exclusive
read only
(ERO)
010=shared
write only
(SWO)
Oll=exclusive
write only
(EWO)
100=shared
read/write
(SRW)
10l=shared
read,
exclusive
write
(SREW)
110=exclusive
read,
shared
write
(ERSW)
lll=exclusive
read/write
(ERW)

00=terminal
level
(svC 1)
access
Ol=terminal
level
(SVC 1)
access
with ver-
tical forms
control
10=reserved
ll1=line level
(SVC 15)
access

48-038 FO0O ROl



TABLE 7-1 SVC 7 FUNCTION CODE BIT DEFINITIONS

(Continued)

|
1
[
BIT !
)
i

DEVICE/FILE

DATA
COMMUNICATION

BIT SETTING

POSITION FUNCTION

13 File

14 types or

15 software
density
selec-
tion

48-038 F0OO ROLl

Indicates
file type or
magnetic tape
density being
used

Indicates if
buffered
terminal or
line access
is being used

000=cont iguous
files or
enable
manual
density
selection
on Telex
magnetic
tape
drives.
No action
on other
magnetic
tape
drives
00l=extendable
cont iguous
files
010=indexed
files
O0ll=nonbuffer-
ed indexed
files
100=select 800
BPI NRZI
density
(STC and
Telex
drives
only)
l01=Select
1600 BPI
PE density
(STC and
Telex
drives
only)



- e e~ dme e M mmee W e M e e - - W - - ———

TABLE 7-1 SVC 7 FUNCTION CODE BIT DEFINITIONS

BIT
POSITION

13
14
15

(Contin-
ued)

———— T — T — T —— T —— - — o —— i — 1 ——— - ————— -t ] ————— —

—— - —_—— —————— " ———_—————— - ——— — ——— {——— -~ ——— - —— - — " ———— G ——

FUNCTION

Vertical
forms
control
(VFC)

disk di-
rectory

DEVICE/FILE

DATA
COMMUNICATION

Returns the physical attri-
butes of a file or device to
the parameter block.

Turns VFC on or off for de-
vices that support VFC.

Returns time and date disk
file was created and last

written to.

(Continued)

BIT SETTING

1l10=select
6250 BPI

GCR density

(8TC and
Telex
drives
only)
lll=communi-
cations
buffered
terminal
manager

X'0000'=fetch
attributes

X'FF20'= VFC
on
X'FF21'= VFC
of £

X'FF00= re-
turns time
and date
in sysgen
format

X'FFOl'= re-
turns time
and date
in
mm/dd/yy;
hr:min:sec
format

X'FF02'= re-
turns time
and date
in
dd/mm/yy;
hr:min:sec
format

48-038 FOO ROl



TABLE 7-1 SVC 7 FUNCTION CODE BIT DEFINITIONS (Continued)

e o - — —— e e e A I - R e S - W S e W e W S - - — - —— - —

i ] | MEANING ]

H | o |

! BIT { | | DATA |

{ POSITION | FUNCTION | DEVICE/FILE | COMMUNICATION | BIT SETTING

= s 2 2 2 £ 3 £ 2 X R 2 £ 2 2 £ £ F £ £ 2 K F £ B X B 2 2 £ 2 X F X B ¥ 2 2 2 £ 2 2 2 X &2 B : :E 2 ZF 38R IR YIS RE RGO
i 0-15 | ! | X'"FF03'= re-

i (Contin- | | | . turns time
| ued) i t ! and date

i | ! ! in Julian
! ! H ! format

| ! ! | X'FF04'= re-

! | | ] turns time
| H H | and date

i ! { | in direc-
] ! ] | tory for-
' | ! | mat

: _______________________________________________________________________
! 0-15 | Fetch | Returns current total logical | X'FFOA'

! | logical | records, current logical H

| | attri- | record position, index |

| | butes | blocksize, and data |

} | of open | blocksize |

H { file | !

7.2.1.1 Allocate Function

The allocate function makes a directory entry and reserves space
on a direct access device for the file type specified in the
modifier byte. The required parameter block fields for this
function are:

e Bits 0, and 13 through 15 of the function code

e Write key field

® Read key field

e Logical record length field

e Volume name field

e Filename field

e Extension field

e File class field

e File size field

48-038 FOO ROl 7-11



When a contiguous file 1is allocated, the file sectors are
reserved; and the filename, sector starting address, read/write
keys, file type, and dates created and written are entered into
the directory. A contiguous file 1is not buffered. When an
indexed file 1is allocated, the filename, number of logical
records, read/write keys, file type, and dates created and
written are entered into the directory.

When an extendable contiguous file or nonbuffered indexed file is
allocated, the file directory is set up as for an indexed file.

When doing an allocation using a data communications terminal
manager, two data buffers, each equal to the device physical
block size, are reserved in memory for the 1line control block
(LCB). The buffered terminal filename, logical record length,
and read/write keys are entered into the LCB. See the 0s/32
Basic Data Communications Reference Manual.

7.2.1.2 Assign Function

The assign function uses an lu to establish a logical connection
between the task and file or device, and the communications line

and buffered terminal. The required fields in the parameter
block are:

e Bits 1, and 8 through 12 (and 13 through 15 for magnetic tape
drives) of the function code

e Logical unit field

e Write key field*

® Read key field*

e Volume name field

e Filename field*

e Extension field*

e File class field

* Used for direct access devices

7-12 48-038 FOO ROl



When assigning to disk devices, the user-specified read/write
keys corresponding to the specified access privileges are
compared to the read/write keys in the file directory entry. If
there is a match, the file is assighed according to the specified
access privileges. If the access privileges are SWO or EWO and
the user executes an assign function, the file is positioned at
its logical end (append mode); otherwise, the file is positioned
at the beginning. The access method '0l' specifies the use of
vertical forms control VFC.

When assigning to nondirect access devices, only the access
privileges are examined. If the file is an indexed file, two
data buffers and one indexed buffer are allocated in system space
when the file is assigned. Each data buffer equals the file data
block size; the index buffer equals the file index block size.
If the file 1is an extendable contiguous file or nonbuffered
indexed file, one index buffer is allocated in system space when
the file is assigned.

7.2.1.2.1 Temporary File Allocation and Assignment Function

The allocation and assignment function can also reserve space
temporarily on a direct access device for the file type specified
in the modifier byte. Such a file is temporary because it exists
only while the file is assigned to an lu and is deleted when the
file is closed. The required parameter block fields for this
function are:

e Bits 0, 1, 8 through 10, and 13 through 15 of the function
code field

e Logical unit field
e Logical record length field

e File size field

To allocate a temporary file, specify an allocate or an assign
function and an ampersand (&) as the first character of the
filename. When the temporary file is allocated, a directory
entry is made for the filename, and the file is placed by default
on the temporary volume. The temporary file is then assigned to
the lu specified in the parameter block. A temporary file also
can be allocated and assigned from the system console through the
TEMPFILE system command. See the 0S8/32 Operator Reference
Manual.

48-038 FOO ROl 7-13



7.2.1.3 Change Access Privileges Function

The change access privileges function changes the current access
privileges of an assigned file or device to the access privileges
specified in the parameter block. The new access privileges must
be compatible with the existing ones; otherwise, the existing
access privileges of the file remain unchanged. For example, 1if
the device 1is assigned with read only privileges, a change to
write access privileges is not permitted. Table 7-2 illustrates
allowable access privilege requests relative to current access
privileges, exclusive of other assignments to the same fd. The
required parameter block fields for this function are:

e Bits 2, and 8 through 10 of the function code field

e Logical unit field

TABLE 7-2 ALLOWABLE ACCESS PRIVILEGE CHANGES

i - o o T — T A e A A o Mmn e e A g MED e g S M e i M A M e e e el M M e T T — i o

CHANGE | === === === = m o o e o e e e e
FROM | SRO | ERO | SWO | EWO | SRW | SREW | ERSW | ERW

SRO | x | x | i ( i i i
\ ERO 1 ox | x {1 1 1 1 &
e 1 1 0 x 1 x0T
Cmo 0 x x0T
| SRW x4 ox § o x | x | x | x | x 1 x |
| SREW | x 1 x | x | x | x [ x 1 x | x |
| ERSW 1 x & x | x | x | x | x | x | x |
| ERW L x | ox | x | x | x | x { x | x I
LEGEND

x indicates allowable change

7-14 48-038 F00 RO1



7.2.1.4 Rename Function
The rename function causes the filename and extension identifiers
currently in effect to be changed to the filename and extension
identifiers specified in the parameter block. The file must be
currently assigned to the specified lu with ERW access privileges
and exist on a direct access storage device. The required
parameter block fields for this function are:
e Bits 3, and 8 through 10 of the function code field
e Logical unit field
® Filename field
e Extension field
e File class/account field
When executing the rename function, the parameter block volume
name is ignored, and the specified filename and extension replace
the current filename and extension in the device directory.
NOTE

An e-task is allowed to rename a device.

See the 0S/32 System Level Programmer

Reference Manual for more information.
7.2.1.5 Reprotect Function
The reprotect function changes the read/write protection keys of
a currently - assigned file to the contents of the read and write
key fields. The file must be on a direct access device and
assigned to the specified 1lu with access privileges. The
required parameter block fields are:
e Bits 4, and 8 through 10 of the function code field
e Logical unit field
o Write key field

e Read key field

~
|

48-038 F00O RO1 15



When executing the reprotect function, the specified read/write
keys replace the current read/write keys of a specified file in
the device directory.
NOTE

An e-task 1is allowed to reprotect a

device. See the 08/32 System Level

Programmer Reference Manual for more

information.
7.2.1.6 Close Function
The close function breaks the logical connection between the task
and file or between the device or a data communication 1line and
terminal by closing the currently assigned lu. The parameter
block's required fields are:
e Bit 5 of the function code field
® Logical unit field
When the lu is closed, all data 1in file buffers or terminal
buffers are copied to the user file.
7.2.1.7 Delete Function
The delete function removes the file directory entry and releases
the reserved space of a currently unassigned file on a direct
access device. When deleting through the communications buffered
terminal manager, a currently unassigned LCB is removed from
memory. The required parameter block fields are:
e Bit 6 of the function code field
e Write key field
® Read key field
® Volume name field
e Filename field

® Extension field

e File class/account field

7-16 48-038 FOO ROl



If the contents of the parameter block volume name, filename,
extension, and read/write keys fields match the fields in the
file directory entry, the file is deleted. If the 1logical
terminal name matches the name in the LCB, the LCB is deleted.

7.2.1.8 Checkpoint Function

The checkpoint function copies the buffered file data to the
indexed file or the buffered terminal data to the terminal and
updates the directory entries. Executing a checkpoint function
on a nonbuffered indexed file or extendable contiguous file
updates the directory entries for the file. Executing a
checkpoint function on a contiguous, nondirect access device or
unbuffered file has the same effect as an SVC 1 wait only call.
The required parameter block fields for this function are:

e Bit 7 of the function code field (bits 11 and 12 for data
communications)

e Logical unit field

After executing a checkpoint function, the file pointer is not
repositioned to the beginning of the file as in a close function.
If a system failure occurs and data exists in the file buffers,
all data up to the last <c¢lose or checkpoint function is
recoverable; any data appended after the last close or checkpoint
function is lost. Therefore, to prevent loss of data, use the

checkpoint function frequently, especially after a large amount

of data and/or important data has been written to a buffered
file.

7.2.1.9 Fetch Attributes Function

The fetch attributes function sends to the SVC 7 parameter block
the physical attributes of the file or device currently assigned
to the specified lu. These attributes include the device
mnemonic or volume name, filename, extension, file class, and
file size which are sent to their respective fields in the SVC 7
parameter block. Device codes are sent to the modifier byte of
the function code field. Device attributes are stored in the
write and read key fields. The logical record length field can
receive either a file logical record length or a device physical
record 1length. These field differences for the fetch attributes
function are illustrated in Figure 7-3.

48-038 FOO ROl 7-17



10(0) i1(1) 12(2) 13(3) i
| Command byte | Device codes | Error status | lu |
[}

S S R i
14(4) 16(6) i
i Device attributes ' Physical record length i
{ i i
{—m e e e e e |
18(8) ,
! Volume name or device mnemonic !
i !
o e e e e e e e e e e e e  — —————————m———— |
112(C) !
i !
i i
jmmmm - Filename =  =—=======—- i
116(10) =
i i
! !
T T e e e e e e e e e e e e i
120(14) , 123(17) i
i Extension ! File class |
i ]
. B —— |
124(18) i
H File size 1
| i

svc 7,parblk

ALIGN 4

parblk DB 0,0
DS 1
DB lu

DS 24 bytes for device attributes

Figure 7-3 SVC 7 Parameter Block Format and Coding
for a Fetch Attributes Function

When executing this function, the device codes field receives a
hexadecimal number indicating the file or device type. The 0S/32
System Generation (Sysgen/32) Reference Manual 1lists all the
devices and their device codes. The command byte, error status,
and lu fields are the same as those defined in Section 7.2.

The device attributes field receives a hexadecimal number

indicating certain file or device attributes. Table 7-3 lists
all supported attributes and corresponding masks.

7-18 48-038 F0O ROl



TABLE 7-3 DESCRIPTION AND MASK VALUES OF THE DEVICE
ATTRIBUTES FIELD

' BIT i ! i
e mm e e m b nn s am———n e meonmam————————]
E 0 E X'8000° E Interactive device E
E 1 % X'4000' E Supports read* E
i 2 E X'2000' g Supports writex* E
E 3 % X'l000' i Supports binary %
i 4 ; X'0800' % Supports wait I/0 %
i 5 ; X'0400' E Supports random access E
E 6 ; X'0200' E Supports unconditional proceed E
; 7 ; X'0100" E Supports image mode and ;
E E E extended options i
E 8 E X'0080° E Supports halt I/0 ;
§ 9 § X'0040'° % Supports rewind ;
E 10 i X'0020' ! Supports backspace record ;
E 11 g X'0010° ; Supports forwardspace record ;
E 12 E X'0008' E Supports write filemark E
% 13 % X'0004" % Supports forwardspace filemark i
% 14 E X'0002' E Supports backspace filemark :
; 15 ; X'o001! ; Device dependent function :

* Indicates the current access privilege.

The physical record length field
length of the file or physical record 1length of the device
assigned to the specified 1lu; e.g., 80-byte record for card
readers and 120- or 132-byte record for line printers. If the
device has variable length records, a value of 0 is returned to
this field; e.g., magnetic tape. However, variable length record
devices are normally used as fixed record length devices.

receives the logical record

48-038 F0O0 RO1 7-19



For direct access devices, contiguous and extendable contiguous
files may be treated as having either a sector-length record size
(256 bytes) or a variable length record. Indexed and nonbuffered
indexed files have a fixed record length which is the file's
logical record length established at allocation time.

The direct access device volume name, filename, extension, and
file class are sent to their corresponding fields in the
parameter block. For a nondirect access device, the device
mnemonic is s8ent to the volume name field and the filename,
extension, and file class fields of the parameter block are
filled with blanks.

For direct access devices, the file size field receives an
unsigned hexadecimal number indicating the current size of a
direct access file. For indexed and nonbuffered indexed files,
this field contains the number of logical records in the file.
For contiguous or extendable contiguous files, this field
contains the number of sectors in the file. '

For bare disk devices, the first two bytes of the file size field
contain the controller device address if the bare disk is
attached to a controller. 1If the bare disk is not attached to a
controller, the first two bytes equal zero. The remaining two
bytes of this field contain the SELCH device address if the disk
is accessed via a SELCH device; otherwise; this 2-byte field
contains a zero.

124(18) |
H Controller Device ] SELCH Device
} Address { Address

— —— T — i ————————————_—_——— 7 ——— _——— — A At ————— - ———n v —— —— -

After executing a fetch attributes call, the file size field
receives the current size of a file on a direct access device.
The file size field is not used for nondirect access devices.

7.2.1.10 Vertical Forms Control (VFC)
The VFC option turns the VFC function on or off for a particular

device. To execute this function, only the first four bytes of
the SVC 7 parameter block are required as shown in Figure 7-4.

7-20 48-038 F0O0 ROl



10(0) 11(1) 2(2) ‘
{ Command byte | Modifier Error status | 1u
i | byte '

e e Sl TR Y LS D v - o TEn b iR e BYm e R S U M G MR YR e i e M O e s e e A e M A S A wem L - . —

—— e ——
—— - —

svc 7,parblk

parblk ALIGN 4

DB X'FF'

DB X'20' or '21'
DS 1

DB lu

Figure 7-4 8SVC 7 Parameter Block Format and Coding
for VFC Function

This parameter block must be fullword-boundary aligned and
located in a task writable segment.

To turn on the use of the VFC function for a particular device,
set the modifier byte to X'20'. To turn the function off, set
the modifier byte to X'21'. The error status and lu fields are
the same as for all SVC 7 services.

7.2.1.11 Fetch Time and Date Attributes from Disk Directory
The fetch time and date attributes function returns to the SVC 7

parameter block the date and time the disk file was created and
last written to.

FUNCTION
CODE FORMAT

X'FFOO' Def ined by sysgen

X'FFO1' Month/day/year
hours:minutes:seconds

X'FF02' ’ Day/month/year
hours:minutes:seconds

X'FF03'! Julian

X'FFO4' Directory

The parameter block fields for receiving the first three options
are shown in Figure 7-5. Sysgen can define either format
designated by function code X'FFOl' or X'FF02'.

48-038 F0O ROl 7-21



0(0)

Command byte

11(1)
| Modifier byte

2(2)

Created date

Created time

Last written date

Last written time

Error status

-
e

- e - ——— - —————— - ——— . — - T~ — -~ — T - ——— > o Mt — -

- — - —

- a——

i i — ] T b - —— " ——— o " (M T ——— ] — A Lo At b L My o e i A i o G S A -

]
14(4)
i
i
: ____________
18(8)
i
i
]
112(C)
=
:
= ____________
116(10)
=
=
]
120(14)
]
!
: ____________
124(18)
=
:
1
128(1C)
H
H
= ____________
132(20)
]
i
sSve
parblk ﬁB
DB
DS
DB
DS
DS
DS
DS
Figure 7-5
7-22

7,parblk

X'FF!

X'on' n=0,1, or 2

1

lu

8 bytes for created date
8 bytes for created time
8 bytes for last written
8 bytes for last written

sSvC 7 X'FF00', X'FFOl', or

date
time

X'FF02' Parameter

Block Format and Coding for Fetch Time and

Date Attributes Function

48-038 F0O0 ROl



The SVC 7 parameter block fields for receiving the Julian format
are shown in Figure 7-6. The date is represented by a five-digit
number. The first two digits indicate the year; the 1last three
digits indicate the number of days since January 1. The time is
the number of minutes since midnight. Both the date and time are
returned as binary numbers.

0(0)
Command byte

1(1)
Modifier byte

2(2) !
Error status | 1lu
|

—— w—— —

X% D Ton T A - — o - — i —— . T o — - - {7 o — v ——

14(4) !
| Created date i
] ]
e e mn |
18(8) !
H Created time }
] ]
A |
112(C) !
H Last written date H
1 (]
e e e |
16(10

C
o
7]
(-f
g
~
| dd
ﬂ-
Iy
o
o
rr
| ot
3
o

svC 7,parblk

parblk DB X'FF'

DB X'03’

DS 1

DB 1lu

DS 4 bytes for created date

DS 4 bytes for created time

DS 4 bytes for last written date
DS 4 bytes for last written time

Figure 7-6 SVC 7 X'FF03' Parameter Block Format
and Coding for Fetch Time and Date
Attributes Function

The SVC 7 parameter block fields for receiving the dates and
times exactly as they appear in the directory are shown in Figure
7-7.

48-038 FO0O ROl

~
|

23



— e —— —— e mem mmee W e Gnan E—am - —— —— mn w—en e mae wE Eme e

—————— — i —— 7 —————— - —— v~ ——————— ——— ————— - T~ —— ] o ——

10(0) 11(1) 12(2) 13(3) :
i Command byte | Modifier byte | Error status | 1lu i
] ] ]
S S ;
14(4) |
H Created date and time H
] 1
S — |
18(8) '
H Last written date and time ]
i i

svc 7,parblk

parblk DB  X'FF'

DB X'04'

DS 1

DB 1u

DS 4 bytes for created date and time

DS 4 bytes for last written date and time

Figure 7-7 8SVC 7 X'FF04' Parameter Block Format
and Coding for Fetch Time and Date
Attributes Function

7.2.1.12 Fetch Logical Attributes of Open File

The fetch logical attributes of open file function returns the
following attributes for an open file to the SVC 7 parameter
block:

e total logical records currently in the file,

e current logical record position if the file 1is accessed
sequentially,

® 1index blocksize of indexed, nonbuffered indexed, and
extendable contiguous open files, and

® data blocksize of indexed, nonbuffered indexed, and extendable
contiguous open files.

7-24 48-038 F0O0 ROl



The function code for this 8SVC 7 is X'FFOA.

Figure 7-8 shows the

SVC 7 parameter block fields for receiving the logical attributes

of an open file.

—— i ——— - — o ——— o — " 20 Wide - —— - T T —— T ————— i — o ot

L~
(o]
[o]]
H-
h
H-
[
~
o
N
(T
o

I~
2]
[
o]
~
0]
o
V]
o
c
(/]
e
(]

————————————— T B ——— S —— i r— > G T i - - - > —— on - —

parblk DB
DB
DS
DB
DS
DS
Ds
DS

Figure 7-8

48-038 F00 ROl

X'FF'
X'0A'

1

1lu

4 bytes
4 bytes
2 bytes
2 bytes

for
for
for
for

total records

current logical record
index blocksize

data blocksize

SVC 7 X'FFOA' Parameter Block Format and
Coding for the Fetch Logical Attributes
of Open File Function

— e - —————— wnan - ——

25

—— ——— me mme e G S e Sman e mer Eme e Amas Mo e —— —— —— —



7.2.1.13 Access Privileges

This 3-bit modifier field contains the access privileges
indicating the file's current reading and writing restrictions
and is required for these functions:

° Assign

[ Change access privilege

® Rename

° Reprotect

Access privileges allow other tasks to access an assigned file or
prevent such access. Table 7-4 lists access privileges and their
meanings that are established when the file 1is assigned and
subsequently changed through the change access privilege

function. The rename and reprotect functions require the file to
have an assigned ERW access privilege before executing.

TABLE 7-4 ACCESS PRIVILEGES DEFINITIONS

{ ACCESS | ! BIT !
! PRIVILEGE ! MEAN ING ! SETTING |
= ==========2==========‘-=====BSB=--====================B=====xg
i Shared read i This task can read from the | 000=SRO |
{ only (SRO) | assigned file but cannot write | !
H ! to it. Other tasks can read | !
i i from and write to the assigned | |
H | file. i i
o e e e e e e e e e e e H
| Exclusive read | This task can read from the | 001=ERO |
i only (ERO) { assigned file but cannot write | !
! i to it. Other tasks can write | !
| { to but cannot read from the | !
! | assigned file. ! |
b e e e o o o o o o 7o o o T~ — o o T —— o P " o D St v o o o P M o o A oo ks S o - A s b A o :
Shared write This task can write to the 010=8SWO

1 ]
[ i
only (SWO) | assigned file but cannot read |
! from it. Other tasks can read |
| from and write to the assigned |
! i

file.

7-26 48-038 FOO ROl



TABLE 7-4 ACCESS PRIVILEGES DEFINITIONS (Continued)

S o e R N R M G W TS S AN A O e M M LA W S N he S De S e e R e N M (e AN A O NS e S A el e e A o e M e Saa e Mem e e - -

ACCESS i
PRIVILEGE i

Exclusive write |
only (EWO)

Shared read !
write (SRW) H
]
]

Shared read !
exclusive !
write (SREW) H
]
i

1
]
shared write !
(ERSW) f
]
|

Exclusive read
write (ERW)

MEANING

This task can write to the
assigned file but cannot read
from it. Other tasks can read
from but cannot write to the
assigned file.

Tasks can read from and write
to the assigned file. This is
the default.

This task can read from and
write to the assigned file.
Other tasks can read from but
cannot write to the assigned
file.

This task can read from and
write to the assigned file.
Other tasks can write to but
cannot read from the assigned
file.

This task can read from and
write to the assigned file.
Other tasks cannot read from
or write to the assigned file.

BIT
SETTING

011=EWO

. - ——— T A — D —n W S S vam e A R MmO e B A — T — A R

7.2.1.14 Data Communications Access Methods

This 2-bit modifier field contains the access

data communications.

48-038 F00 RO1

methods

used by

The access methods are listed in Table
7-5. See the 08/32 Basic Data Communications Reference Manual.



TABLE 7-5 DATA COMMUNICATIONS ACCESS METHODS DEF INITIONS

. DATA
COMMUNICATIONS
ACCESS METHOD

Terminal level
access

Line level
access

1
t
]
f
]
i
1
1
|
1
1
1
|
i
1
i
1
!
1
[

MEANING

This device independent support
of a communications terminal
through the data communications
terminal manager is in both
buffered and unbuffered mode.
This 1is accomplished through
svC 1.

This is the device dependent
support of a communications
line through the data communi-
cations driver. This is accom-
plished through SVC 15.

i 00

0l

11 =line

{ BIT SETTING

=terminal]
level
access

=terminal
level
access
with
vertical
forms
control

level
access

o ————— T ————— T — i —— — o ——" T o - " ————————— o - —— T G LED i e M M G = W G

7.2.1.15 File Types

This 3-bit modifier field contains file types used
by the allocate function. The file types are:

e Contiguous files

e Extendable contiguous files

e Indexed files

o Nonbuffered indexed files

e Data communications buffered terminal manager

and

required

48-038 F00O RO1



The file type field is also used to select the density of write
operations to a magnetic tape drive. This selection is made
when the magnetic tape driver is assigned to an lu through the
svC 7 assign function. The software density selections
available to the assign function are described below.

SEgéiNG DENSITY SELECTION
(a]0]s] Manual density (Telex drives only)
100 800 BPI NRZI density (STC and Telex drives only)
101 1600 BPI PE density (STC and Telex drives only)
110 6250 BPI GCR density (STC and Telex drives only)

For STC and Telex drives neither software density selection nor
manual density selection has any effect on read operations. The
tape is always read at the density at which it was recorded.

For drives that require software enabling of manual density
selection (i.e., Telex drives), a value of zero should be placed
in the file type field if manual density selection is desired.
For drives that require manual enabling of software density
selection (i.e., STC), software select should be enabled on the
operator panel before the first output operation is attempted.
Otherwise, the tape will be written at the manually selected
density. In addition, if the magnetic tape drive does not
support software selection of density and the file type field
does not contain zero, the drive will not be assigned and status
code X'09' will be returned in the SVC 7 parameter block.

7.2.1.16 Read/Write Key Fields (SVC7.RKY/SVC7.WKY)

The read/write key fields should contain the hexadecimal number
indicating a file or the device read/write protection keys
established at allocation time. When a task is assigned to a
file or device through an lu, the read/write protection keys
specified at assign time are compared to the keys established at
allocation time for a match. If they match, the condition |is
met, and the task can be assigned for the protected access mode
(conditionally protected). Files and devices can be
unprotected, allowing any key specified at assign time to be
accepted. Files and devices can also be unconditionally
protected, causing rejection of any keys specified at assign
time. Table 7-6 lists the read/write protection keys.

48-038 FOO RO1 7-29



TABLE 7-6 READ/WRITE PROTECTION KEYS DEFINITIONS

KEYS ] MEANING
(0] 0] | Unconditionally unprotected; the file or

t
| device 1is unprotected for the specified
| access mode (read or write). Any key
| specified at assign time is accepted. If no
| keys are specified, this key is the default.
| Conditionally protected; the file or device
| is protected for the specified access mode
| (read or write). Matching keys must be
| specified at assign time to gain access to
! the device or file.

| Unconditionally protected; the file or device
| is protected for the specified access mode
i (read or write). No user task (u-task) can
| assign for protected access mode.

7.2.1.17 File Size Field (SVC7.S8S12)

The file size field must contain a hexadecimal number indicating
the file size established at allocation time on a direct access
device. For contiguous files, this field must contain the
number of sectors in the file.

-4
:
o]
L]
]
m
]
(]
Q
(.1.
]
"
@

For indexed, nonbuffered indexed, and extendable contiguous
files, the first two bytes of the file size field must contain
the index block size in increments of sectors (256 bytes); the
remaining two bytes of the file size field must contain the data
block size in increments of sectors.

124(18) Index block size 26(1lA) Data block size
. (sectors) (sectors)
i (SVC7.182) (SVC7.D82)

7-30 48-038 F00 ROl



For data communications buffered terminals, this field must
contain the physical block size in bytes.

124(18)

| Physical block size (bytes)
]

]

For bare disk devices, the first two bytes of the file size
field contain the controller device address if the bare disk is
attached to a controller. If the bare disk is not attached to
a controller, the first two bytes equal zero. The remaining two
bytes of this field contain the SELCH device address if the disk
runs from a SELCH device; otherwise, this 2-byte field contains
a zero.

124 (18) 126 (1A)
! Controller Device ! SELCH Device
! Address ! Address

—— —— w——

After executing a fetch attributes call, this field receives the
current size of a file on a direct access device. This field is
not used for nondirect access devices.

7.2.1.18 8VC 7 Error Codes

If an error occurs during execution of an S8SVC 7 function,
execution of the current function stops, and any other functions
to the right of the current function are not executed. The
error code indicating the type of error is stored in the error
status field of the parameter block. See Table 7-7 for the list
of SVC 7 error codes.

48-038 FOO ROl 7-31

-— e een e wem w—— -



TABLE 7-7 8SVC 7 ERROR CODES

ERROR | FUNCTIONS |
]

.

CODE | AFFECTED | MEANING §
"0 1AL 1 Normal termination |
"1 [ ALl | Illegal function code
"2 | All except | Illegal lu specified |

]
)
| allocate !

i
g
________________________________________________________ g
3 | All except | Specified volume is not mounted. |
| rename i i
________________________________________________________ =
4 | Allocate | Specified filename already exists |
{ Rename | on specified volume. H
i i |
| Assign | Specified filename does not exist |
H | on specified volume. ]
________________________________________________________ }
5 | Allocate | Insufficient space exists on i
| | specified volume to allocate |
| i a file of the specified size. !
________________________________________________________ =
6 { Assign i Read/write protection keys do |
' i not match. !
________________________________________________________ g
7 Allocate | Entire disk is currently assigned |
i as ERW. |
=T e e m—— i — i
Assign i Specified filename or device !
| cannot be. assigned because H
| requested access privileges |
| cannot be granted. H
o e e mmmmm e !

Change Current access privileges are

access not changed to new access

i
i
privilege | privileges because the specified
| new privileges are not compatible
| with existing ones. See Table

i 7.2.

|

|

'

File not assigned ERW

Reprotect | File not assigned ERW !

(not closed).

]
]
Delete i File assigned to another task
]
i

Rename | Read/Write Protection Keys do not
| match. File not assigned ERW.

48-038 F00O ROl



TABLE 7-7 SVC 7 ERROR CODES (Continued)

i ERROR | FUNCTIONS | i
| CODE | AFFECTED ! MEANING 5
' 8 i Assign i Insufficient space for file |
i ! i control block (FCB) and buffers i
i { Close | System space pointer or pointers |
i | i have become corrupted. i
| i | |
i i Delete i Task has exhausted its allocation |
| ' | of dynamic system space determined]
i i { by Link. '
| i ! !
| 9 | Assign i The lu is already assigned or i
i ! i device is offline. i
i i | Magnetic tape drive does not i
i i | support software density selecion.|
[ [} l
| : o =
i | Rename | The lu is not assigned. |
{ i Reprotect | '
i i Close | '
| i Fetch i '
! { attributes | i
i { Change i i
i | access i i
i | privileges | |
: | VFC : :
f o T S —— o |
' A i Allocate | Specified volume is not a direct |
i i Rename | access device. i
| =TT oo —— o |
i B | Reprotect | The fd format is incorrect. i
| | ALl : |
i sttt |
| c | Assign | Specified trap generating device |
| | | does not exist in the system, is |
i i | not a connectable device, or is |
i i | busy and cannot be connected. i
| T T T T T e e s ———— e |
! D i Allocate | Allocation or deletion was i
i i Delete i attempted on a system or i
! | | group file. |
| =TT T e oo |
| E-7F | N/A { Reserved |
= _________________________________________________________ H
N/A |

]
SVC 1 I/0 error. See Tables 2-3 |
and 2-4. i

—— et ———— " (o —— o ——— T —————— o — o — i ——— o — o —— o o=

48-038 F0OO RO1






CHAPTER 8
LOAD TASK STATUS WORD (TSW) SUPERVISOR CALL 9 (SVC 9)

8.1 INTRODUCTION

SVC 9 sets the initial TSW or replaces the current TSW located in
the task control block (TCB) with a new user-specified TSW. The
SVC 9 parameter block is shown in Figure 8-1. Other methods used
for setting the TSW are:

e The TSW is optionally specified by Link.

e A resident task terminates by reaching end of task, which
causes the current TSW to be replaced with zeros.

e A task trap occurs causing a TSW swap.

Storing TSW values into the user dedicated 1location (UDL) does
not change the current TSW.

48-038 FO0O RO1 8-1



8.2 8SVC 9: LOAD TASK STATUS WORD (TSW)

iWi i i Queue entry i 1
ial Trap enable/ |Reserved| enable/disable ! Condition |
iil disable bits | [6] | bits | code ]
it [8] i | [13] i [4] |
i i

—— o - —— AR S WS AR N e M e TR M e S S A ———— > " —— T—— T — T — o ——

H Location counter
i [32]
1
]

svC 9,A(parblk)

ALIGN 4
parblk DC Y'bits 0 through 31’
DCF A(location counter)

NOTE

The decimal numbers enclosed within
brackets [ ] 1in the parameter block
indicate the number of bits the field
contains.

Figure 8-1 SVC 9 Parameter Block Format and Coding

This parameter block must be 8 bytes long and fullword-boundary
aligned. A description of each field in the parameter block
follows:

Fields:

Wait is a l1l-bit field indicating whether the task
is to enter a suspended state or is currently
waiting for a trap. This field corresponds to
bit 0 of the TSW.

8-2 48-038 F0O RO1



Trap is a 7-bit field that must indicate, through

enable/ its trap bit settings, whether a trap 1is
disable bits to be taken when a trap-causing condition
occurs. This field corresponds to the trap

enable/disable bits of the TSW.

Reserved is a reserved 7-bit field that must contain
zeros.

Queue entry is a 13-bit field that must indicate, through

enable/ its queue bit settings, whether an item is to

disable bits be added to the task queue when a queue entry
causing condition occurs. This field

corresponds to the queue entry enable/disable
bits of the TSW.

Condition is a 4-bit field stored in the processor

code condition code. For an explanation of the
For an explanation of the condition code, see
the appropriate processor user manual. This
field corresponds to the condition code bits
of the TSW.

Location is a 4-byte field that must contain the

counter address where task execution is to start or
resume. This field corresponds to the

location counter of the TSW.

8.2.1 Function and Description of the Task Status Word (TSW)

The TSW consists of two fullwords. See Figure 8-2. The first
fullword, the status portion of the TSW, contains the:

e trap wait bit,

e trap enable/disable bits,

® reserved bits,

® gqueue entry enable/disable bits, and

e condition code bits.

The second fullword of the TSW contains the location counter.

SVC 9 allows the user to enable or disable the trap wait, trap,
and gqueue entry bits in the status portion of the TSW. It also
allows the user to set the condition code setting in the status
portion and the location counter in the location counter portion
of the TSW. See Table 8-1 for the TSW bit definitions.

48-038 FO0O RO1 8-3



65616-2

BITS

BITS

o ——————— o — T _— " - > — - —— — - —— i ——— o — o — o —— o~ — v -

32

BIT

0 (W)

AE o F TS
DIT|p L Z Elp cC
14 15 16 17 18 19 20 21 22 23 24 26 27 28 31

LOC

43 44

Figure 8-2 Task Status Word

TABLE 8-1 TASK STATUS WORD BIT DEFINITIONS

Trap wait (TSW.WTM)
(Y'80000000"')

Power restoration
trap enable/disable
(TSW.PWRM)
(Y'40000000"'")

Arithmetic fault
trap enable/disable
(TSW.AFM)
(¥'20000000"')

sSvVC 14 execution
trap enable/disable
(TSW.S14M)
(Y'10000000"')

MEANING
Task is suspended
trap occurs or u
cancelled.

A trap occurs when

until a
ntil
power is

restored after a power fail-

ure.

After power is rest
outstanding timer t
lost. Any trap wai
wait conditions in

are lost, and task

continues with the

tion following the

caused the trap.

A trap occurs when
metic fault occurs.

Allows execution of

ored, all
raps are
t or time
effect
execution
instruc-
one that

an arith-

svC 14.

63

48-038 FO0O0 ROl




TABLE

8-1 TASK STATUS WORD BIT DEFINITIONS (Continued)

i — o " — — o ) —— o ——— i e M an - o v -t A i e e AN - M " o i - o

BIT
POSITION

LA B R 2 % 2 -k X § 3 B _R_§ F_2_J _§ 3 3 R R J_F_§

4 (Q)

BIT NAME AND MASK

Task queue service
trap enable/disable
(TSW.TSKM)
(Y'08000000")

MEANING
trap occurs when an item
is added to the task queue.

HPII

A i S . v o S AN A e S e MMS e SN L . W M e S e e b e e A T e e e e M e L M A e e M. e i b — . —

Memory access fault
trap enable/disable
(TSW.MAFM)
(Y'04000000"')

A trap occurs when the task
attempts to access memory
outside its task boundaries.

. —————— T oy — A —— oy i - - W — . o — " ——— o W - — -

Illegal instruction
trap enable/disable
(TSW.IITM)
(Y'02000000"')

A trap occurs when the task
tries to execute an illegal
instruction.

i M — I T iy e - . S —— . T i oo An . -t iy - —— - . - —— i ——

Data format trap
enable (TSW.DFFM)
(Y'01000000"')

A trap is taken when the task
executes an instruction that
causes a data format or
alignment fault.

CPU-override status
(TSW.CPOM)
(Y'00800000°')

Task is executed on the CPU
and cannot be transferred to
an APU for processng. (This
bit applies only to tasks
running on the Model
3200MPS )

———————— ———— - ——— i, t— —— " - . S —~ - . ———— - —— - ———— ] — T — o o —

Subtask queue entry
enable/disable
(TSW.SUQM)
(Y'00010000")

An item is added to the
monitor task queue each time
the subtask status changes.

i - ———————— T — - — o —— o . — e - i ——— o — T ——— i ———— t———— - ———

Device interrupt
queue enable/
disable (TSW.DIQM)
(Y'00008000"')

An item is added to the task
gueue when a trap generating
device connected to a task
interrupts task execution,
or when an SVC 6 sint func-
tion is directed to a task.

——— i o Y —— i —— . —— M T - — T = v e M A (e e S . A - e

Task call queue
entry enable/
disable (TSW.TCM)
(¥'00004000"')

48-038 F0O0 RQO1

An item is added to the task
gqueue when an SVC 6 dgueue
parameter function is
directed to this task.

— o —— - —— ——



TABLE 8-1 TASK STATUS WORD BIT DEFINITIONS (Continued)

. ———— i — A ————— T — " —— T — o — " ¢ o} -

! BIT | i
{ POSITION | BIT NAME AND MASK | MEANING
} e & 22 3 3 2 & 2 % X_3 _J§_32 3 _32 3 X 32 ¥ § B F_B_§ B -3 B 2 3 B B B3 B B 3 3 B B -_F B - R -3 R _F 2B RS -3 8 3 ok 3 X 3 % 3§
i 18 (AP) | Queue entry on { Adds a parameter to the task
i | signal from APU { queue when an APU signals
H i (TSW,APTM) | the CPU.
! i Y'0000 2000' i
= _______________________________________________________________
i 19 (E) | Task message queue | An item is added to the task
' { entry enable/disable| queue when an SVC 6 send mes-
i i (TSW.PMM) | sage function is directed to
i { (¥'00001000"') | a task.
= ________________________________________________________________
i} 20 (L) { Load and proceed } An item is added to the task
! { completion queue | gqueue when an SVC b6 load and
i { entry enable/ i proceed function is executed
| | disable (TSW.LODM) | and the load is completed.
| i (Y'00000800"') |
= __________________________________________________________________
i 21 (0) { I/0 completion { An item is added to the task
i | entry enable/ | gqueue when an SVC 1 I/0 and
H { disable (TSW.IOM) i proceed function is executed
H i (Y¥Y'00000400"') H and the 1/0 is completed
: _________________________________________________________________
i 22 (2) | Time interval i An item is added to the task
i { completion gueue i queue when an SVC 2 code 23
H i enable/disable i is executed and the interval
i i (TSW.TMCM) | has elapsed.
i i (Y'00000200"') i
: ________________________________________________________________
{ 23 (F) j 8VC 15 function { An item is added to the task
i | SVC 1 buffer trans- | queue when an SVC 15 function
i { fer completion { is completed. See the 05/32
! i (TSW.ITM) | Basic Data Communications
H i (¥'00000100") | Reference Manual. An item is
i i { added to the task queue each
i i i time the magnetic tape driver
H i { adds a buffer to the OUT-
! ! | QUEUE.
3 _______________________________________________________________
i 24-25 { Reserved i Must contain zeros

26 (TE) Event queue A trap occurs when an item

service enable/
disable (TSW.TESM)
(¥Y'00000020"')

is added to the system event
queue or when at least one
item exists on that gqueue.
For more information on the
event queue service enable/
disable, see the 08/32 System
Level Programmer Reference
Manual.

48-038 F00 ROl



TABLE 8-1 TASK STATUS WORD BIT DEFINITIONS (Continued)

| BIT |
i POSITION | BIT NAME AND MASK

=
&l
z
4
Q

li
[
]
]
il
L]
[]
]
L]
|
I
L]
L]
]
]
li
]
]
]
]
i
]
L]
]
[
]
i
]
]
i
L]
"
]
]
L]
n
Y
il
]
]
!
]
L]
0
[l
i
[l
0
]
|
!
]
1
[l
]
1]
1l
]
]
|
[l
L]
L]

i 27 (SD) | Queue entry on send | An item is added to the i
| | data call enable i queue when an SVC 6 send |
H i (TSW.SDM) | message function is directed |
| i (Y¥'00000010) i to the task. |
g ______________________________________________________________ ern e o e e e s I
| 28-31 i Condition code i The condition code following |
i (CC) | | SVC 9 is set from these bits.|
= ____________________________ S G o i o e e e 2 e e o e o o o e I
i 32-63 i Location counter i Contains the current location]
i (LOC) i (TSW.LOC) i counter. H
NOTE
See the 0S/32 Application Level

Programmer Reference Manual for a
description of the items that can be
added to the task queue.

If execution of an SVC 9 loads a TSW with the trap wait bit
enabled, the task is placed in a suspended state until one of the
traps that are enabled in the same TSW occurs. However, if the
task is placed in a suspended state and all other trap bits are
disabled in the same TSW, the task remains in a suspended state
indefinitely or until it is cancelled.

If execution of an SVC 9 loads a TSW with one of the trap bits
enabled and that trap occurs, the trap is handled as described in
the 0S/32 Application Level Programmer Reference Manual.

If execution of an SVC 9 loads a TSW with one of the queue entry
bits enabled and a previously allocated item is placed on the
task queue, no trap occurs unless the queue service trap bit of
the TSW is enabled.

48-038 F0O0 ROl 8-7



When a TSW swap occurs and the current TSW is replaced with a new
TSW, task execution resumes with the instruction located at the
address specified by the location counter of the new TSW. If the
address of the new TSW is outside the task boundaries, the task
is paused and a message is displayed. If execution of an SVC &
loads a TSW that has zeros 1in the location counter field,
execution resumes with the instruction following the SVC 9.

When SVC 9 loads a new TSW, the condition code of the new TSW
becomes the current condition code. Any value ranging from O
through 15 (X'00' to X'OF') is legal. If the TSW being 1loaded
was previously saved as an old TSW during a TSW swap, the
condition code is restored.

8-8 48-038 FOO ROl



CHAPTER 9
OVERLAY LOADING SUPERVISOR CALL 10 (SVC 10)

9.1 SUPERVISOR CALL 10 (SVC 10)

SVC 10 is an 1internal call that provides for the automatic
loading of overlays generated by Link. S8SVC 10 is not available
to users.

If an overlay load fails to occur, a message indicating the
reason for the failure is displayed to the log device. Overlay
load failure can result from an input/output (1/0) error or
faulty coding that destroys the overlay control structure. For
example, user code can be written in such a way as to destroy
data in the overlay reference table (ORT). This table, which
forms a part of the root segment and of each overlay area,
contains pointers into the task overlay descriptor table (ODT)
which contains the information needed to process the overlay.
Without this information, SVC 10 cannot perform the load
function.

The overlay descriptor table entry (ODTE) is part of the ORT and
represents the position in the ODT that contains processing
information for the overlay to be loaded. Both the ORT and the
ODT are OS system data structures and are defined in the system
macro library.

9.2 MESSAGES

This message is displayed when a load failure occurs as a result
of an I/0 error:

Format:

I/0 ERROR xxxx LOADING OVERLAY nnnnnnnn
FAULT LOCATION yyyyYy (z2zzz2Z)

48-038 FOO ROl S-1



Fields:

XXXX

nnnnnnnn

yYYYyYy

Z2Z22Z22Z22

is the 1/0 error status. See Table 9-1.

is the name of the overlay that was being
processed when the error occurred.

is the virtual address of the SVC that caused
entry into the SVC 10 handler.

is the physical address of yyyyyy-

This message is displayed when an overlay load failure occurs as
a result of faulty coding within an overlay control structure:

Format:

OVERLAY ERROR xx NAME = nnnnnnnn
FAULT LOCATION yyyyyy (zz2z22Z)

Fields:

XX

nnnnnnnn

YYYYYY

222222

is the error status. See Table 9-1 for error
definitions.

is the name of the overlay that was being
processed when the error occurred. If it
cannot be determined whether the error
occurred 1in the root or in an overlay, NAME =
nnnnnnnn is omitted from the message.

is the virtual address of the 5VC that caused
entry into the SVC 10 handler.

is the physical address of yyyyyy.

If the overlay load failure resulted from a malfunction of SVC
10, the task is paused with the current program status word (PSW)
pointing to the SVC 10 instruction causing the failure.

48-038 F0OO ROl



TABLE 9-1 OVERLAY ERROR CODES AND MEANINGS

i ERROR |

{ CODE | MEAN ING

{ *10 i .ODTE exists outside the range of the ODT range.
] 1

i ]

i 20 i User space violation of overlay start address

{ {

i '

i 21 i User space violation of overlay end address

| ¢

1 ]

i 22 { Highest level OVL required by this SVC was not
i i found.

] 1

] !

i 23 | OVL size is less than 10 bytes. Eight bytes for
i i 2 fullword ORT entry pointers plus a 2-byte
] { instruction (BR) 1is the minimum size for an
i | overlay.

[ 1

i ]

i 30 i User space violation of ORT table address in ODT
i i entry

] ]

} ]

I *¥31 { Pointers to ORT entries are unreliable. The
| { address difference between these pointers must
i { be 0 or an even multiple of 8 bytes.

t ]

¥ !

| *32 | User space violation of ORT entry pointers

1 i

[} )

i *33 i .ODTE index in ORT is out of ODT range.

* Indicates possible destruction of data.

48-038 FOO

ROO






CHAPTER 10
AUXILIARY PROCESSING UNIT (APU) CONTROL
SUPERVISOR CALL 13 (SVC 13)

10.1 INTRODUCTION

SVC 13 provides tasks running on the Perkin-Elmer Model 3200MPS
System with the ability to:

e map APUs into the logical processor mapping table (LPMT),
e control the processing of all APUs within the system, and

® obtain processing status information on each APU in the
system.

Table 10-1 lists the SVC 13 function codes that allow the task to
access 0s/32 system services for the Model 3200MPS
multiprocessing system.

TABLE 10-1 SVC 13 FUNCTION CODES

i FUNCTION CODE | MEANING

- 2 3 2 2 32 2 i i 2 3t i 2 32 F 2 2 3 2 3 2 2 0 3 F 2 5 3 2 2 3 4 3 3 ]

SVC 13 code O Fetch LPMT
SVC 13 code 1

SVC 13 code 2

i
|
:
=
:
Fetch APU status i
]
!
Execute APU mapping option |

|

!

SVC 13 code 3 Execute APU control option

The following sections outline the functions provided by each of
the SVC 13 function codes. For more information on how to use
SVC 13 in a multiprocessing environment, see the 0S/32 System
L.evel Programmer Reference Manual.

48-038 F0O0 RO1 10-1



—— - ——

10.2 FETCHING LOGICAL PROCESSOR MAPPING TABLE (LPMT)

SVC 13 function code 0 can be used by all tasks 1in a Model

3200MPS System to retrieve information about the APUs within the

system. This information includes:

e the maximum number of logical processing unit (LPUs),

e the maximum number of APUs, and

e the LPMT.

The LPMT contains one entry for each LPU. This entry specifies

the APU to which the LPU is mapped.

10.3 FETCHING AUXILIARY PROCESSING UNIT (APU) STATUS INFORMATION

SVC 13 function code 1 can be used by all tasks in a Model

3200MPS sSystem to retrieve information about the status of a

gspecified APU within the system. This informaion includes:

e the number of LPUs mapped to the specified APU,

o the number of tasks in the ready queue of the specified APU,

o the status of the specified APU, and

e the names of the tasks associated with the specified APU.
These tasks include the task actively executing on the APU,
the task with control rights over the APU, the task with
mapping rights over the APU, and all the tasks waiting in the
APU's ready queue.

10.4 AUXILIARY PROCESSING UNIT (APU) MAPPING FUNCTIONS

Using SVC 2 code 2, a task linked with the auxiliary processing

unit mapping privileges (APM) option can request mapping

privileges for a specified APU in the system. These privileges

allow a task to:

e mark the APU on,

e map the APU into the LPMT,

® remove all references to the APU from the LPMT, and

e mark the APU off.

10-2 : 48-038 FOO RO1



10.5 AUXILIARY PROCESSING UNIT (APU) CONTROL FUNCTIONS

Using SVC 13 code 3, a task linked with the auxiliary processing
unit control privileges (APC) option can request control
privileges over a specified APU. These privileges allow a task
to:

e initialize an APU that is waiting for power-up link check,

e stop APU execution,

e start normal execution (if stopped), and

e preempt the currently active task on an APU.

48-038 F00 KO1 10-3






CHAPTER 11
USER SUPERVISOR CALL 14 (SVvC 14)

11.1 SUPERVISOR CALL 14 (SVC 14)

SVC 14 gives a user-written task a means of accepting an SVC from
a part of itself; e.g., a subroutine or other module.

Format:
svc 14,A(X2) or RX1l,RX2 FORMATS
sve 14,A(FX2,8X2) RX3 FORMAT

The address field of SVC 14 is not interpreted by 0S/32 but can
be defined by the task. Normally, it might be used to point to
a parameter block.

If the user SVC trap enable bit in the current task status word
(TSW) is enabled, 8SVC 14 1is -enabled; otherwise, SVC 14 is
considered an illegal SVC.

When SVC 14 1is executed, the operating system stores the
effective program address of the SVC 14 second argument into the
SVC 14 address pointer 1location in the task user dedicated
location (UDL). A TSW swap then occurs, using the SVC 14 TSW
swap area in the UDL. The interpretation of this SVC 1is then
left to the user. The effective program address is calculated as
for an RX1l, RX2, or RX3 instruction. This facility permits the
user to build a virtual executive task (e-task) within a single
task environment.

0S/32 AIDS, the 08/32 debugging utility, makes use of SVC 14;
consequently, a task should not use SVC 14 while the 0S/32 AIDS
software is in operation.

See the 0S/32 Application Level Programmer Reference Manual for
more information on enabling and handling SVC 14 task traps.

48-038 F00 RO1 11-1






.CHAPTER 12
DATA COMMUNICATIONS DEVICE DEPENDENT INPUT/OUTPUT (I1/0)
SUPERVISOR CALL 15 (SVC 15)

12.1 SUPERVISOR CALL 15 (SVC 15)

SVC 15 allows a user-written task to access data communications
devices at the device dependent level. See the 0S/32 Basic Data
Communications Reference Manual for more information.

48-038 FO0O0 ROl 12-1






A

ABL instruction
Access method
Access privileges

Account privileges
Accounting information
Accounting transaction file
Address error

Alignment error

Allocate function

APU. See auxiliary
processing unit.
Arithmetic fault
fixed point division by O
fixed point quotient
overf low
floating point division
by 0
floating point overflow
and underflow
Arithmetic fault field
Arithmetic fault interrupt
bit
ASSIGN command

Assign function

temporary file
allocation and assignment
Assign LPU SFUN.LPU
ATF. See accounting
transaction file.

Auxiliary processing unit

control

control functions

mapping functions

status information

B

Bare disk devices
controller device address
SELCH device address
Buffer-full bit

Buffer length

Buffer queues
extended options field
length
length of last buffer
trap-causing events,
gaplcss [/0
us ing

48-038 F00 ROl

INDEX

[ |
[

[
wwnh o
[\

NN FRFOWwNNSND
|
FPONNFEESNNDOOD

i

10-1
10-3
10-2
10-2

7-20
7-31
7-31
6-26
6-27
6-28
6-29
6-30
2-42
2-39
2-42
2-42
2-42

2-41
2-41

Buffer start/buffer end
address
Building a mnemonic table

Calling task
Change access privilege
function

Change priority SFUN.PM
Checkpoint

Checkpoint function

Close

Close function

CMDLENGTH option

Command byte

Command function requests

COMMUN I CATE
Condition code settings for
arithmetic operation
Condition codes
convert ASCII to binary
expand allocation
get storage
interval wait
move ASCII characters
pack file descriptor
release storage
scan mnemonic table
set status
testing
time of day wait
timer management

Conditional proceed
Connect SFUN.OM
Contiguous files

CONTINUE

CONTRACT ALLOCATION
CONTROL

CONVERT ASCII TO BINARY
CONVERT BINARY TO ASCII
CPU model numbers

CTOP

[ I
w b

i)

NN NONNNNONN
LI R |

HFHENMOAEEORROWEHOM
= o

IND-1



D

Data communicat.ions
access methods

buffered terminal manager

buffered terminals
device dependent [/0
subsystem

Data transfer requests
conditional proceed
I/0 proceed
queuing I/0 requests
test and set
unconditional proceed
wait I/0
wait only

DATE command

Default task workspace

Delay start for SVC 6

Delete

Delete function

Density selections
manual
software

Device attributes

Device dependent status

Device independent status

Directed task

Direction SFUN.DOM,SFUN.DSM

DLIST xx command

End of task

End of task codes

End task SFUN.ECM,SFUN.EDM
Error codes SVC6.STA
Executing SVC 2 code 17
EXPAND ALLOCATION
Extendable contiguous files

Extended function codes
control operations
data transfer operations
gapless operations
local and remote
communications

Extended options
communicat ion dependent
device dependent
device independent
field
magnetic tape devices
nonmagnhetic tape devices
status codes for mag
tape use

IND-2

7-27
7-28
7-31
12-1
2-22
7-1
2-1
2-16
2-15
2-15
2-9
2-16
2-17
2-17
3-39
3-8
6-42

[ T T R Y T I A |
OUr~,OWWYW O

i

NOONRNNNNNNN
1
WHRFEFNFENNDO =0

(ol ]

F

FETCH ACCOUNTING INFORMATION
Fetch attributes

Fetch attributes function
FETCH DATE

Fetch logical attributes of
open file

Fetch overlay

FETCH POINTER

Fetch time and date
attributes

- Fetching APU mapping

functions
Fetching logical processor
mapping table
File and device handling
functions
File handling services. See
svec 7.
File manager
File size field SVC7.SI12
File types
cont iguous

data communications
buffered terminal manager
extendable contiguous

indexed
nonbuffered indexed

Free buffer list queue
Free send data message
buffers, receiving task
Freeze SFUN.FM
Function code SVC6.FUN
Function codes
command function requests
data transfer requests
file handling services
gapless mode data
transfer
general service functions
intertask communications

G

Gapless I/0 operations
buffer queues
device dependent status
device independent status
logical unit
standard function code
format
Gapless mode parameter block
format
General service functions.
See SVC 2.
GET STORAGE

48-038 F00 RO1

2-32
2-39
2-38
2-38
2-37

2-35

2-32



Halt I/0

I1,J3,K
I/0 control blocks

I/0 proceed

I/0 request.
Impure segment

See SVC 1.

IN-QUEUE

Indexed files

Internal interrupt system
INTERROGATE CLOCK
Intertask communications.
See SVC 6.

INTERVAL WAIT

IOBLOCK

L

LENGTH OF LAST BUFFER

LIB. See loader information
block.

Link address field

Link OPTION command

LOAD command
Load task functions
extended load options
SPUN.LXM
load task SFUN.LM
Load task status word
Loader information block
Location counter
Log devices
LOG MESSAGE
Logical processor mapping
table
Logical unit

LPMT. See logical processor
mapping table.

48-038 FO0 ROl

3-44
2-15
2-19

M

Magnetic tape

Magnetic tape devices
density selection
Manual enabling of software
density selection
Message buffers
buffer format
Minimum abbreviation
Modifier byte
Modifier fields
MOVE ASCI! CHARACTERS
Multiple buffer chain

Multiple buffer ring

N

Nonbuffered indexed files

Nonmagnetic tape devices
Nonresident SFUN.NM
Nonrollable SFUN.NRM
Nonzero error code
Nonzero status code

NULL:
o
ODT. See overlay descriptor
table.
ODTE. See overlay

descriptor table entry.
ORT. See overlay reference
table.
0s/32 AIDS
0S/32 debugging utility
OUT-QUEUE

Overlay control structure

Overlay descriptor table

Overlay descriptor table
entry

Overlay loading

Overlay reference table

P
PACK FILE DESCRIPTOR
PAUSE
PEEK

Program status word
Protection keys, read/write
PSW. See program status
word.

2-24
2-32
7-29
2-24

~ ~
I i
N N
O [ts]

o
oo

OO WNNWO
1
NNV OOTONN

NoNaN

7-12
7-13
7-20
7-28
7-30
2-22
6-39
6-40
1-8

2-17
2-19
2-37

3-53
3-5

3-91
3-16
7-29

"IND-3



Q

Queue parameter SFUN.QM
Queuing /0 requests

R

Read key

Read/write key fields
SVC7.RKY/SVC7.WKY
Read/write protection keys
Receive logical unit SFUN.XRM
Record lock bit

Release SFUN.RM

RELEASE STORAGE

Rename

Rename function

Reprotect

Reprotect function
Rollable SFUN.RLM

RTL. See run-time library.
Run-time library

instruction

S

Sample applications

send data, receiving task
send data, sending task
send message, receiving
task

send message,
task

test and set
unpack file descriptor

sending

SCAN MNEMONIC TABLE

Send data message buffers,
sending task

Send data SFUN.DB

Send logical unit SFUN.XSM
Send message SFUN.MM

SET ACCOUNTING INFORMATION
SET STATUS

Single buffer chain

Single buffer ring

Sint SFUN.IM

Software enabling of manual
density selection

SPT. See system pointer
table.

Standard function code
format, gapless mode

Start bit positions 29,
31

Start function for SVC 6

Status codes

device dependent

30,

device dependent, gapless

IND-4

6-33
2

6-23
6-22

6-31

6-31
2-14
3-139
3-140
3-74

6-17
6-17
6-34
6-25
3-123
3-16
6-27
6-27
6-36

6-40
6-41

2-21
2-29
2-38
2-38

Status codes (Continued)
device dependent,
magnetic tape
device independent

device independent,
gapless
fetch overlay
file handling services
intertask communications
overlay loading
supervisor calls
STC drives
Structure macro
Suspend SFUN.SM
svC
error messages
errors
parameter block
status codes
SVC 1: I/0 REQUESTS
command function requests
data transfer
gapless [/0 operations
parameter block, gapless
parameter block, standard
SVC 2: GENERAL SERVICE
FUNCTIONS
contract allocation
convert ASCII to binary
convert binary to ASCII
expand allocation
fetch accounting
information
fetch date
fetch pointer
get storage

interrogate clock
interval wait
log message
move ASCII characters
pack file descriptor
pause
peek
release storage
scan mnemonic table
set accounting
information
set status
time of day wait
t imer management
unpack file descriptor
SVC 2 code 1l: PAUSE
SVC 2 code 2: GET STORAGE
option X'00'
option X'80"'
SVC 2 code 3: RELEASE STORAGE
SVC 2 code 4: SET STATUS
option X'00*

option X'80°'

SVC 2 code 5: FETCH POINTER
SVC 2 code 6: CONVERT BINARY
TO ASCI1I
option
option
option
option

X'00'+n
X'40'+n
X'80'+n
X'CO'+n

48-038

| I TR E IR Y B |
0 S

~

[ U R R B I B )
[ (Sl I

MNNNOMNN R ERFAORNHFORNON
[
WWWOeORHEFONOOFHWNOWAWWLWW

3-1
3-116
3-46
3-23
3-114

3-135
3-38
3-20
3-7
3-33
3-44
3-27
3-82
3-53
3-5
3-91
3-13
3-74

3-132
3-16
3-41
3-117
3-136
3-5

3-9

3-11
3-13
3-16
3-16
3-18
3-16
3-19
3-20

3-25
3-25
3-26
3-26

FOO ROl



SVC 2 code 7: LOG MESSAGE

A

SVC 2 code 29: UNPACK FILE

]
option X'00" 3-29 DESCRIPTOR 3-137
option X'20' 3-30 H SVC 3: END OF TASK 4-1
option X'40° 3-30 |} SVC 5: FETCH OVERLAY 5~-1
option X'60' 3-30 | SVC 6: INTERTASK
opt?on X'80' 3-30 COMMUNICATIONS 6-1
opt*on X'ao' 3-32 i assign LPU SFUN.LPU 6-37
OPE}OH §:gg: 3-32 E changetp;iggity SFUN.PM 6-33
option 3-32 | connec FUN.OM 6-35
SVC 2 code 8: INTERROGATE i delay start functions 6-42
CLOCK | direction
option X'00' 3-34 | SFUN.DOM, SFUN.DSM 6-10
option X'40' 3-36- | end task
option X'80°' 3-35 | SFUN.ECM, SFUN.EDM 6-10
option X'CO' 3-37 | error codes SVC6.STA 6-44
SVC 2 code 9: FETCH DATE 3-38 | freeze SFUN.FM 6-37
SVC 2 code 10: TIME OF DAY ! function code SVC6.FUN 6-5
WAIT 3-41 | load task functions 6-11
SVC 2 code 1ll: INTERVAL WAIT 3-44 | nonresident SFUN.NM 6-39
SVC 2 code 15: CONVERT ASCII i nonrollable SFUN.NRM 6-40
TO BINARY | parameter block 6-3
option X'00' 3-46 | gueue parameter SFUN.QM 6-33
3-47 | receive logical unit
option X'40' 3-46 | SFUN.XRM 6-34
3-49 | release SFUN.RM 6-39
option X'80°' 3-47 | rollable SFUN.RLM 6-40
3-50 | send data SFUN.DB 6-17
option X'CO' 3-47 | send logical unit
3-52 | SFUN. XSM 6-34
SVC 2 code 16: PACK FILE ! send message SFUN.MM 6-25
DESCRIPTOR ! sint SFUN.IM 6-36
option X'00' 3-62 | start bit positions 29,
option X'10' 3-64 | 30, 31 6-40
option X'20' 3-66 | start function, SFUN.SIM 6-41
option X'40°' 3-63 | start options, SFUN.SOM 6-41
option X'50' 3-65 | suspend SFUN.SM 6-17
option X'60' 3-67 | task resident SFUN.HM 6-16
option X'80' 3-68 | thaw SFUN.TM ) 6-36
option X'CO' 3-71 | transfer to CPU SFUN.TC 6-38
privileged task options 3-72 | transfer to LPU SFUN.TL 6-38
SVC 2 code 17: SCAN MNEMONIC ! unconnect SFUN.UM 6-37
TABLE 3-74 | wait status field
SVC 2 code 18: MOVE ASCII ! SVC6.TST 6-43
CHARACTERS | SvC 7: FILE HANDLING SERVICES 7-1
option X'00'+n 3-83 | access privileges 7-26
3-84 | allocate 7-11
option X'80'+n 3-83 | assign 7-12
3-86 | change access privileges 7-14
SVC 2 code 19: PEEK ' checkpoint 7-17
option X'00' 3-91 | close 7-16
: . data communication
option X'01l"* 3-97 | -
option X'02° 3-103 | g2gcess method 7oAl
option X'03' 3-105 4 esrgrecodes 7-31
1 L] -
option X'04 3-11 fetch attributes 7-17
SVC 2 code 20: EXPAND i fetch logical attributes 7-24
ALLOCATION 3-115 | fetch time and date
SVC 2 code 21: CONTRACT i attributes 7-21
ALLOCATION 3-117 function code field
MANAGEMENT H rename 7-15
option X'00" 3-117 | ) reprotect 7-15
option X'10 3-129 | temporary
option X'20 3-127 | allocation/assignment 7-13
option X'40' 3-123 | vertical forms control 7-20
svc°gtl°3 xzio SET 3-120 : SVC 9: LOAD TASK STATUS WORD  8-1
code :
SVC 10: OVERLAY. LOADING 9-1
] SVC 14: USER SUPERVISOR CAIL
SVC 2 code 25: FETCH ) 14 11-1
ACCOUNTING INFORMATION 3-135 | SVC 15: DEVICE DEPENDENT I,/0 12-1
48-038 F0O RO1



System macro library 1-2 , UTOP 3-7
System pointer table 3-91 3-8
! 3-9
E 3-10
T H 3-11
. 3-20
Task control block 3-20 3-21
3-91 ! 6-41
Task resident SFUN.HM 6-16 6-42
Task status word 8-1 ;
TCB. See task control block. .
Telex drives 7-29 v
TEMPF ILE system command 7-13 ;
T::go;:;{gﬁéistallocatlon 4_13 | Vertical forms control 7-13
- | 7-20
¥§§5 g?gus;; é—gs ! VFC. See vertical forms
- - 1
TIME OF DAY WAIT 3-q1 | control.
TIMER MANAGEMENT 3-117
Transfer to CPU SFUN.TC 6-38 |
Transfer to LPU SFUN.TL 6-38 |
Trap-causing events, gapless ! W
/0 2-42 ! .
TSW. See task status word. : Wait 1/0 ?‘i;
t ) ~
i buffer start/buffer end
| address . 2-21
i device dependent status 2-21
H device independent status 2-19
1 extended options 2-22
U i logical unit 2-19
i Wait only 2-17
UBOT 3-20 1 Wait status field SVC6.TST 6-43
3-21 | Write key 7-3
Unconditional proceed 2-16 |
Unconnect SFUN.UM 6-37 |
UNPACK FILE DESCRIPTOR 3-136 | X,Y,2
User Supervisor Call 14 11-1 !
Using the buffer queue 2-41 | XSVCl Link option 2-32
1
]

IND -6 48-038 F0OO ROl



PUBLICATION COMMENT FORM

We try to make our publications easy to understand and free of errors. Our
users are an integrai source of information for improving future revisions.
Please use this postage paid form to send us comments., corrections,
suggestions. ect.

1.

Publication number

2. - Title of publication

3. Describe. providing page numbers, any technical errors you
found. Attach additional sheet if neccessary.

4. Was the publication easy to understand? If not, why?

5. Woere illustrations adequate?

6.‘ What additions or deletions would you suggest?

7. Other comments:

From Date

Position/Title
Company

Address

6417



STAPLE STAPLE

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

POSTAGE WILL BE PAID BY ADDRESSEE

PERKIN-ELMER

Data Systems Group
106 Apple Street
Tinton Falls, NJ 07724

ATTN:
TECHNICAL SYSTEMS PUBLICATIONS DEPT.

STAPLE STAPLE



