
PERKIN-ELMER

05/32 SUPERVISOR CALL (SVC)
Reference Manual

48-038 FOO R01

The ttiformation fl1 fNi. document II sutfjeef td change wi,thout "otiC. and ,ho'tJfd 1T0f, b~
coruuued as " commitrn.nt by the '~rkJfi·e·lrtier Corporation. The Perkin· Elm',' Cd'fpo
ration aSsumet no respon.tbiFity far any .rrOfS that may appear In: thit docurnern.

The software deu;fibed in this docuMent'S furnished under a HCfme,lfnd it urt be' us«f or
copied only i" a tnSI'h1tU ",rmitted by thlft fiur'lse. Any copy of the desc',iBed .Oftware
must include fhe P.rkln·Etmer ~dP\lrlght nOfite. title to and owt'!ermip 01 the dElteribed
software and '/'tV c-Of)les tflel',of' sha~r r'M'in in The Perkt,,-errn., Corparatton.,

The Perkin-Elmer Co rporlt ion, .fumes' no resPOnsibility for the us. or reHabHity Of its
software on eqlilipmfnr that If nof su~pUed by Pf!rkin'-t:lmer.

rhe Perkin·Elmer Corporation, Data Systems Group, 2 Cresc'ent Place', Oceanport, New Jersev 0115>1

@ 19S1, 1982, 1983 by ihe Perldn-Elme-r Corpora1lol'l

Printed in the United Stat .. of America

TABLE OF CONTENTS

PREFACE

CHAPTERS

1 SUPERVISOR CALLS (SVCs)

1.1
1.1.1

1.2
1.2.1
1.2.2

INTRODUCTION
The Supervisor Call (SVC) Parameter Block

SUPERVISOR CALL (SVC) ERRORS
Supervisor Call (SVC) Error Messages
Supervisor Call (SVC) Status Codes

2 INPUT/OUTPUT (I/O) REQUEST SUPERVISOR CALL 1 (SVC 1)

2.1
2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.1.3
2.2.1.4
2.2.1.5
2.2.1.6
2.2.1.7
2.2.2
2.2.2.1
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.7.1
2.2.7.2
2.2.7.3

2.3
2.3.1
2.3.2
2.3.3

INTRODUCTION
SUPERVISOR CALL 1 (SVC 1)
Data Transfer Requests
Test and Set
Input/Output (I/O) Proceed
Queuing Input/Output (I/O) Requests
Conditional Proceed
Unconditional Proceed
Wait Input/Output (I/O)
Wait Only
Command Function Requests
Halt Input/Output (I/O)
Logical Unit (lu)
Device Independent Status
Device Dependent status
Buffer Start/Buffer End Address
Extended Options
Nonmagnetic Tape Devices
Magnetic Tape Devices
Device Dependent Status Codes for Magnetic
Tape Operations

GAPLESS INPUT/OUTPUT (I/O) OPERATIONS
Gapless Mode SVC 1 Parameter Block Format
Standard Function Code Format - Gapless Mode
Logical Unit (lu)

48-038 FOO ROI

xi

1-1
1-3

1-6
1-6
1-8

2-1
2-3
2 -5
2-8
2-14
2-14
2 --15
2--15
2-16
2-16
2--16
2-18
2-18
2-18
2-20
2--20
2-21
2-21
2-22

2-27

2-29
2-29
2-32
2-33

i

CHAPTERS (Continued)

2.3.4
2.3.5
2.3.6
2.3.6.1
2.3.6.2

2.3.7
2.3.8
2.3.9

Device Independent status Codes
Device Dependent status Codes
Buffer Queues
Using the Buffer Queue
Trap-Causing Events Resulting from Gapless
Input/Output (I/O) Operations
Buffer Length
Length of Last Buffer
Extended Options Field

3 GENERAL SERVICE FUNCTIONS SUPERVISOR CALL 2 (SVC 2)

3.1

3.2

3.3
3 .3. 1
3 . 3 . 2

3.4

3 . 5
3.5. 1
3.5.2

3.6

3.7

3.7.1
3.7.2
3.7.3
3.7.4

3.8
3.8.1
3.8.2
3.8.3
3.8.4
3.8.5
3.8.6
3.8.7
3.8.8

3.9
3.9.1
3.9.2
3.9.3
3.9.4

INTRODUCTION

SVC 2 CODE 1: PAUSE

SVC 2 CODE 2: GET STORAGE
SVC 2 Code 2, Option X'OO'
SVC 2 Code 2, Option X'80'

SVC 2 CODE 3: RELEASE STORAGE

SVC 2 CODE 4: SET STATUS
SVC 2 Code 4, Option X'OO'
SVC 2 Code 4, Option X'80'

SVC 2 CODE 5: FETCH POINTER

SVC 2 CODE 6: CONVERT BINARY NUMBER TO ASCII
HEXADECIMAL OR ASCII DECIMAL
SVC 2 Code 6, Option X'OO'+n
SVC 2 Code 6, Option X'40'+n
SVC 2 Code 6, Option X'80'+n
SVC 2 Code 6, Option X'CO'+n

SVC 2
SVC 2
SVC 2
SVC 2
SVC 2
SVC 2
SVC 2
SVC 2
SVC 2

7: LOG MESSAGE CODE
Code 7,
Code 7,
Code 7,
Code 7,
Code 7,
Code 7,
Code 7,
Code 7,

Option
Option
Option
Option
Option
Option
Option
Option

X'OO'
X'20'
X'40'
X'60'
X'80'
X'AO'
X'CO'
X'EO'

SVC 2 CODE 8: INTERROGATE CLOCK
SVC 2 Code 8, Option X'OO'
SVC 2 Code 8, Option X'80'
SVC 2 Code 8, Option X'40'
SVC 2 Code 8, Option X'CO'

2-33
2-35
2-36
2-37

2-38
2-38
2-38
2-39

3-1

3-5

3-7
3-9
3-11

3-13

3-16
3-18
3-19

3-20

3-23
3-25
3-25
3-26
3-26

3-27
3-29
3-30
3-30
3-30
3-30
3-32
3-32
3-32

3-33
3-34
3-35
3-36
3-37

ii 48-038 FOO ROl

CHAPTERS (Continued)

3.10

3.11

3.12

3.13

3 . 13 . 1
3. 13.2
3. 13 .3
3. 13.4

3.14
3.14.1
3.14.2
3. 14.3
3.14.4
3.14.5
3.14.6
3.14.7
3. 14. S
3.14.9

3. 15
3.15.1
3.15.2

3. 16
3.16.1
3.16.2

3.17
3.17.1
3.17.2
3.17.3
3.17.4
3.17.5

3.1S

3.19

3.20
3.20.1
3.20.2
3.20.3
3.20.4
3.20.5

3.21

SVC 2 CODE 9: FETCH DATE

SVC 2 CODE 10: TIME OF DAY WAIT

SVC 2 CODE 11: I N~rERVAL WA I T

SVC 2 CODE 15: CONVERT ASCII HEXADECIMAL
OR ASCII DECIMAL TO BINARY
SVC 2 Code 15, Option X'OO'
SVC 2 Code 15, Option X'40'
SVC 2 Code 15, Option X'SO'
SVC 2 Code 15, Option X'CO'

SVC 2 CODE 16: PACK FILE DESCRIPTOR
SVC 2 Code 16, Option X'OO'
SVC 2 Code 16, Option X'40'
SVC 2 Code 16, Option X'10'
SVC 2 Code 16, Option X'50'
SVC 2 Code 16, Option X'20'
SVC 2 Code 16, Option X'60'
SVC 2 Code 16, Option X'SO'
SVC 2 Code 16, Option X'CO'
SVC 2 Code 16 Options for Privileged Tasks

SVC 2 CODE 17: SCAN MNEMONIC TABLE
Building a Mnemonic Table
Executing SVC 2 Code 17

SVC 2 CODE lS: MOVE ASCII CHARACTERS
SVC 2 Code lS, Option X'OO'+n
SVC 2 Code lS, Option X'SO'+n

SVC 2 CODE 19: PEEK
Parameter Block for Option X'OO'
Parameter Block for Option X'Ol'
Parameter Block fot- opt ion X' 02'
Parameter Block for Option X'03'
Parameter Block for Option X'04'

SVC 2 CODE 20: EXPAND ALLOCATION

SVC 2 CODE 21: CONTRACT ALLOCATION

SVC 2 CODE 23: TIMER MANAGEMENT
SVC 2 Code 23 Parameter Block for Option X'OO'
SVC 2 Code 23 Parameter Block for Option X'SO'
SVC 2 Code 23 Parameter Block for Option X'40'
SVC 2 Code 23 Parameter Block for Option X'20'
SVC 2 Code 23 Parameter Block for Option X'10'

SVC 2 CODE 24: SET ACCOUNTING INFORMATION

4S-03S FOO R01

3-38

3-41

3-44

3-46
3-47
3-49
3-50
3-52

3-53
3-62
3-63
3·-64
3-65
3-66
3-67
3-68
3-71
3-72

3-74
3-76
3--76

3-82
3 ·-84
3-86

3-91
3~91

3-97
3-103
3-105
3-111

3-115

3 -117

3-11S
3-118
3-121
3-124
3-128
3-130

3-133

iii

CHAPTERS (Continued)

3.22 SVC 2 CODE 25: FETCH ACCOUNTING INFORMATION

3.23 SVC 2 CODE 29: UNPACK FILE DESCRIPTOR

4 END OF TASK SUPERVISOR CALL 3 (SVC 3)

4.1 INTRODUCTION

4.2 SVC 3: END OF TASK

5 FETCH OVERr~Y SUPERVISOR CALL 5 (SVC 5)

5. 1 INTRODUCTION

5.2 SVC 5: FETCH OVERLAY

6 IN'rr~R'rASK COMMUNICATIONS SUPERVISOR CALL 6 (SVC 6)

6.1

6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.4.1
6.2.4.2

6.2.5
6.2.6
6.2.7
6.2.7.1
6.2.7.2

6.2.7.3

6.2.8
6.2.8.1
6 .. 2.9
6.2.10
6.2.11
6.2.12
6.2.13
6.2.14
6.2.15
6.2.16
6.2.17
6.2.18
6.2.19
6.2.20

INTRODUCTION

SVC 6: INTERTASK COMMUNICATIONS
Function Code (SVC6.FUN)
Direction (SFUN.DOM,SFUN.DSM)
End Task (SFUN.ECM,SFUN.EDM)
Load Task Functions
Load Task (SFUN.LM)
Load Task with Extended Load Options
(SFUN.LXM)
Task Resident (SFUN.HM)
Suspend (SFUN.SM)
Send Data (SFUN.DB)
Send Data Message Buffer for Sending Task
Free Send Data Message Buffers for Receiving
Task
Sample Programs Using SVC 6 Send Data
Function
Send Message (SFUN.MM)
Message Buffers
Queue Parameter (SFUN.QM)
Change Priority (SFUN.PM)
Send Logical Unit (SFUN.XSM)
Receive Logical Unit (SFUN.XRM)
Connect (SFUN.OM)
Thaw (SFUN.TM)
S int (SFUN. 1M)
Freeze (SFUN.FM)
Unconnect (SFUN.UM)
Assign LPU (SFUN.LPU)
Transfer to LPU (SFUN.TL)
Transfer to CPU (SFUN.TC)

3-135

3-137

4-1

4-2

5-1

5-2

6-1

6-2
6-5
6-10
6-10
6-11
6-11

6-12
6-16
6-17
6-17
6-17

6-19

6-21
6-25
6-26
6-33
6-33
6-34
6-34
6-35
6-36
6-36
6-37
6-37
6-37
6-38
6-38

iv 48-038 FOO ROl

CHAPTERS (Continued)

6.2.21
6.2.22
6.2.23
6.2.24
6.2.25
6.2.26
6.2.27

6.2.28
6.2.29

6.2.30
6.2.31

Release (SFUN.RM)
Nonresident (SFUN.NM)
Rollable (SFUN.RLM)
Nonrollable (SFUN.NRM)
start (Bit Positions 29, 30, 31)
start Function for SVC 6 (SFUN.S1M)
start Function with start Options for
SVC 6 (SFUN.SOM)
Delay start Function for SVC 6 (SFUN.SOM)
Delay start Function with start Options
for SVC 6 (SFUN.SDM,SFUN.SOM)
Wait status Field (SVC6.TST)
Error Codes (SVC6.STA)

7 FILE HANDLING SERVICES SUPERVISOR CALL 7 (SVC 7)

7.1 INTRODUCTION

6-39
6-39
6-40
6-40
6-40
6-41

6-41
6-42

6-42
6-43
6-44

7-1

7.2 SVC 7: FILE HANDLING SERVICES 7-2
7.2.1 Function Code Field (SVC7.0PT) 7-5
7.2.1.1 Allocate Function 7-11
7.2.1.2 Assign Function 7-12
7.2.1.2.1 Temporary File Allocation and Assignment

Function 7-13
7.2.1.3 Change Access Privileges Function 7-14
7.2.1.4 Rename Function 7-15
7.2.1.5 Reprotect Function 7-15
7.2.1.6 Close Function 7-16
7.2.1.7 Delete Function 7-16
7.2.1.8 Checkpoint Function 7-17
7.2.1.9 Fetch Attributes Function 7-17
7.2.1.10 Vertical Forms Control (VFC) 7-20
7.2.1.11 Fetch Time and Date Attributes from Disk

Directory 7-21
7.2.1.12 Fetch Logical Attributer of Open File 7-24
7.2.1.13 Access Privileges 7-26
7.2.1.14 Data Communications Access Methods 7-27
7.2.1.15 File Types 7-28
7.2.1.16 Read/Write Key Fields (SVC7.RI<Y/SVC7.WKY) 7-29
7.2.1.17 File Size Field (SVC7.SIZ) 7-30
7.2.1.18 SVC 7 Error Codes 7-31

8 LOAD TASK STATUS WORD (TSW) SUPERVISOR CALL 9 (SVC 9)

8.1

8.2
8.2.1

INTRODUCTION

SVC 9: LOAD TASK STATUS WORD (TSW)
Function and Description of the Task
Status Word (TSW)

48-038 FOO R01

8-1

8-2

8-3

v

CHAPTERS (Continued)

9 OVERLAY LOADING SUPERVISOR CALL 10 (SVC 10)

9.1

9.2

SUPERVISOR CALL 10 (SVC 10)

MESSAGES

10 AUXILIARY PROCESSING UNIT (APU) CONTROL SUPERVISOR
CALL 13 (SVC 13)

10.1

10.2

10.3

10.4

10.5

INTRODUCTION

FETCHING LOGICAL PROCESSOR MAPPING TABLE
(LPMT)

FETCHING AUXILIARY PROCESSING UNIT (APU)
STATUS INFORMATION

AUXILIARY PROCESSING UNIT (APU) MAPPING
FUNCTIONS

AUXILIARY PROCESSING UNIT (APU) CONTROL
FUNCTIONS

11 USER SUPERVISOR CALL 14 (Sve 14)

11.1 SUPERVISOR CALL 14 (SVC 14)

12 DA'rA COMMUNICATIONS DEVICE DEPENDENT INPUT/OUTPUT (I/O)
SUPERVISOR CA.LL (SVC 15)

12.1

FIGURES

2-1
2-2
2-3

2-4

2-5

2-6

2-7

SUPERVISOR CALL 15 (SVC 15)

SVC 1 Parameter Block Format and Coding
Function Code Format for Data Transfer Requests
Extended Options Fullword Format for Nonmagnetic
Tape Devices
Extended Options Fullword Format for Magnetic
Tape I/O Operations
sve 1 Gapless Mode Parameter Block Format and
Coding
Function Code Format for Gapless Mode Data
Transfer Requests
IN-QUEUE or OUT-QUEUE Structure

9-1

9-1

10-1

10-2

10-2

10-2

10-3

11-1

12-1

2-3
2-5

2-21

2-23

2-30

2-32
2-36

vi 48-038 FOO ROI

FIGURES (Continued)

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-S
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-1S
3-19
3-20
3-21

3-22

3-23

3-24

3-25

3-26
3-27
3-2S

3-29

3-30

3-31

3-32

3-33
3-34
3-35
3-36

5-1

SVC 2 Code 1 Parameter Block Format and Coding
SVC 2 Code 2 Parameter Block Format and Coding
Task Impure Segment for SVC 2 Code 2, Option X'OO'
Task Impure Segment for SVC 2 Code 2, Option X'SO'
SVC 2 Code 3 Parameter Block Format and Coding
Task Impure Segment for SVC 2 Code 3
SVC 2 Code 4 Parameter Block Format and Coding
Program status Word (PSW)
SVC 2 Code 5 Parameter Block Format and Coding
SVC 2 Code 6 Parameter Block Format and Coding
SVC 2 Code 7 Parameter Block Format and Coding
SVC 2 Code S Parameter Block Format and Coding
SVC 2 Code 9 Parameter Block Format and Coding
SVC 2 Code 10 Parameter Block Format and Coding
SVC 2 Code 11 Parameter Block Format and Coding
SVC 2 Code 15 Parametel:= Block Format and Cod ing
SVC 2 Code 16 Parameter Block Format and Coding
Packed File Descriptor Area
SVC 2 Code 17 Parameter Block Format and Coding
SVC 2 Code IS Parameter Block Format and Coding
SVC 2 Code 19 Parameter Block Format and Coding
for Option X'OO'
SVC 2 Code 19 Parametet: Block Format and Cod ing
for Option X'Ol'
SVC 2 Code 19 Parametet: Block Format and Cod ing
for Option X'02'
SVC 2 Code 19 Parameter Block Format and Coding
for Option X'03'
SVC 2 Code 19 ParameteI' Block Format and Cod ing
for Option X'04'
SVC 2 Code 20 Parameter Block Format and Coding
SVC 2 Code 21 Parameter Block Format and Coding
SVC 2 Code 23 ParameteI' Block Format and Coding
for Option X'OO'
SVC 2 Code 23 Parameter Block Format and Coding
for Option X'SO'
SVC 2 Code 23 Parameter Block Format and Coding
for Option X'40'
SVC 2 Code 23 Parameter Block Format and Coding
for Option X'20'
SVC 2 Code 23 Parameter Block Format and Coding
for Option X'lO'
SVC 2 Code 24 Parameter Block Format and Coding
SVC 2 Code 25 Parameter Block Format and Coding
Area Receiving Accounting Information
SVC 2 Code 29 Parameter Block Format and Coding

SVC 5 Parameter Block Format and Coding

4S-03S FOO ROI

3-5
3 -7
3-10
3-12
3-13
3-15
3-16
3--17
3-20
3-23
3,-27
3-33
3-38
3-41
3-44
3-46
3-53
3·-57
3-74
3-82

3 -91

3-97

3-103

3-106

3-112
3-115
3-117

3-119

3-122

3-124

3-128

3-131
3-133
3-135
3-136
3-137

5-2

vii

FIGURES (Continued)

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11

7-1
7-2
7-3

7-4

7-5

7-6

7-7

7-8

8-1
8-2

TABLES

1-1

2-1

2-2
2-3
2-4
2-5

2-0
2-7
2-8

SVC 6 Parameter Block Format and Coding
SVC 6 Function Code Field
Extended Load Options Field
Send Data Message Buffer Format for Calling Task
Send Data Message Buffer Format for Directed Task
Message Buffer Format for Directed Task
Single Buffer Ring
Single Buffer Chain
Multiple Buffer Ring
Multiple Buffer Chain
Error status Field

SVC 7 Parameter Block Format and Coding
SVC 7 Function Code Field
SVC 7 Parameter Block Format and Coding for a
Fetch Attributes Function
SVC 7 Parameter Block Format and Coding for
VFC Function
SVC 7 X'FFOO', X'FFOI', or X'FF02' Parameter
Block Format and Coding for Fetch Time and Date
Attributes Function
SVC 7 X'FF03' Parameter Block Format and Coding,
for Fetch Time and Date Attributes Function .
SVC 7 X'FF04' Parameter Block Format and Coding
for Fetch Time and Date Attributes Function
SVC 7 X'FFOA' Parameter Block Format and
Coding for the Fetch Logical Attributes of
Open File Function

SVC 9 Parameter Block Format and Coding
Task status Word

OS/32 SUPERVISOR CALLS

FUNCTION CODE BIT POSITIONS FOR DATA TRANSFER
REQUESTS
FUNCTION CODES FOR COMMAND FUNCTION REQUESTS
DEVICE INDEPENDENT STATUS CODES
DEVICE DEPENDENT STATUS CODES
SVC 1 EX'rENDED OPTIONS FOR LOCAL AND REMOTE
COMMUNICATIONS
EXTENDED FUNCTION CODES FOR CONTROL OPERATIONS
MAXIMUM NUMBER OF BYTES ERASED
EXrrENDED FUNCTION CODES FOR DATA TRANSFER
OPERATIONS

6-2
6-6
6-13
6-18
6-20
6-26
6-27
6-28
6-29
6-30
6-44

7-2
7-6

7-18

7-21

7-22

7-23

7-24

7-25

8-2
8-4

1-1

2-5
2-17
2-19
2-20

2-22
2-23
2-24

2-25

viii 48-038 FOO ROl

TABLES (Continued)

2-9
2-10

2-11

2-12

3-1
3-2

3-3
3-4
3-5

6-1
6-2

6-3
6-4
6-5

7-1
7-2
7-3

7-4
7-5
7-6
7-7

8-1

9-1

10-1

INDEX

MAGNETIC TAPE DEVICE DJ!~PENDENT STATUS CODES
FUNCTION CODE BIT POSITIONS FOR GAPLESS MODE DATA
TRANSFER REQUESTS
MAGNETIC TAPE DEVICE DEPENDENT STATUS CODES
(GAPLESS ONLY)
EXTENDED FUNCTION CODES FOR GAPLESS I/O OPERArrION

SVC 2 FUNCTION CODES
TIME OF DAY VALUES CALCULATED IN SECONDS FROM
MIDNIGHT
TASK OPTIONS FROM THE TASK CONTROL BLOCK
SYSTEM OPTIONS FROM THE SYSTEM POINTER TABLE
TASK WAIT STATUS BIT DEFINITIONS

SVC6.FUN FUNCTIONS
DESCRIPTION OF FUNCTION CODE FIELD FOR SVC 6
CALLS
EXTENDED LOAD OPTIONS FIELD BIT DEFINITIONS
WAIT STATUS BIT DEFINITIONS
SVC 6 ERROR CODES

SVC 7 FUNCTION CODE BIT DEFINITIONS
ALLOWABLE ACCESS PRIVI!.EGE CHANGES
DESCRIPTION AND MASK VALUES OF THE DEVICE
ATTRIBUTES FIELD
ACCESS PRIVILEGES DEFINITIONS
DATA COMMON I CAT IONS ACCESS METHODS DEF I N I rr IONS
READ/WRITE PROTECTION KEYS DEFINITIONS
SVC 7 ERROR CODES

TASK STATUS WORD BIT DEFINITIONS

OVERLAY ERROR CODES AND MEANINGS

SVC 13 FUNCTION CODES

48-038 FOO R01

2-28

2-32

2-35
2-39

3-1

3-42
3-93
3-99
3-109

6-5

6-6
6-14
6-43
6--44

7-6
7-14

7-19
7-26
-/-28
7-30
7-32

8-4

9--3

10-1

Ind--1

ix

This manual
provide the
information
programmers
in an OS/32

PREFACE

describes the 03/32 supervisor calls (SVCs) that
task interface to OS/32 system services. The

in this manual is intended for assembly language
who design application level programs for operation
processing environment.

Chapter 1 presents an overview of all OS/32 SVCs, their
functions, and the data structure of the SVC parameter block.
Chapter 2 describes the Input/Output (I/O) Request Supervisor
Call, (SVC 1) that is used to request specific I/O services from
the OS/32 I/O supervisor. Chapter 3 details 22 general service
functions provided by SVC 2. Chapter 4 presents the format for
the End of Task Supervisor Call, (SVC 3) which is used to
terminate task execution. Chapter 5 provides information on
user-controlled loading of Link-generated overlays through the
Fetch Overlay Supervisor Call (SVC 5). Chapter 6 describes the
Intertask Communications Supervisor Call (SVC 6). Chapter 7
details the File Handling Services Supervisor Call (SVC 7) which
provides file and device handling functions supported by the file
manager and the data communications subsystem. Chapter 8
describes how SVC 9 is used to replace the current task status
word (TSW) located in the task control block (TCB) with a new
user-specified TSW. Chapter 9 provides information on SVC 10,
which handles the automatic loading of overlays generated by
Link. Brief descriptions of the Auxiliary Processing Unit (APU)
Control Supervisor Call (SVC 13), User Supervisor Call (SVC 14),
and the Data Communications Device Dependent I/O Supervisor Call
(SVC 15) are given in Chapters 10, 11, and 12 respectively.

Revision 01 includes a description of the SVC 2 code 29 for
unpacking file descriptors, the SVC 7 fetch logical attributes of
open file function, and the assign logical processing unit (LPU)
and transfer to LPU function of SVC 6. This manual also
introduces the APU Control Supervisor Call (SVC 13) that is used
by tasks running on the Perkin-Elmer 3200MPS multiprocessor
system.

This manual is intended for use with the OS/32 R06.2 software
release and higher. However, additional material specifically
related to the Model 3200MPS System has also been included.
These Model 3200MPS System features are supported by the OS/32
R07.1 software 'release and higher. Throughout the text these
features are identified as applicable only to the Model 3200MPS
System.

For information on the contents of all Perkin-Elmer 32-bit
manuals, see the 32-Bit Systems User Documentation Summary.

48-038 FOO ROI xi

1.1 INTRODUCTION

CHAPTER 1
SUPERVISOR CALLS (SVCs)

OS/32 provides each task with the support it needs to perform its
designated function. In addition to programs that allow a user
to design, implement, test, and execute tasks, 05/32 provides a
number of system services that can be accessed by a task during
execution. Included among these services are task timing,
interrupt handling, input and output to devices or files,
resource allocations, and intertask communication and control.

A task accesses a system resource
routine. An assembly program
issuing a supervisor call (SVC)~
access OS/32 system services for
divided into two groups:

by calling an 05/32 executor
calls an executor routine by
Table 1-1 lists the SVCs that
assembly tasks. These SVCs are

• SVCs for general use in both application and system level
programs,' and

• SVCs for use in system level programs only.

This manual describes the SVCs designed for general use. SVCs
designed exclusively for use in system level programs are
described in the OS/32 System Level Programmer Reference Manual.
These SVCs are indicated by an asterisk (*) or plus sign (+) in
Table 1-1.

TABLE 1-1 OS/32 SUPERVISOR CALLS

SUPERVISOR CALL I FUNCTION
==:==

SVC 0* User--wr itten SVC
SVC 1 Input/output (I/O) request
SVC 2 Code 0* Make journal entries
SVC 2 Code 1 Pause
SVC 2 Code 2 Get Btorage
SVC 2 Code 3 Release storage
SVC 2 Code 4 Set status
SVC 2 Code 5 Felch pointer

48-038 FOO ROl 1-1

1-2

TABLE 1-1 OS/32 SUPERVISOR CALLS (Continued)

SUPERVISOR CALL I FUNCTION
=======:~===~=============:==============~===~===

SVC 2 Code 6

SVC 2 Code 7
SVC 2 Code 8
SVC 2 Code 9
SVC 2 Code 10
SVC 2 Code 11
SVC 2 Code 14*
SVC 2 Code 15

SVC 2 Code 16
SVC 2 Code 17
SVC 2 Code 18
SVC 2 Code 19
SVC 2 Code 20

SVC 2 Code 21

SVC 2 Code 23
SVC 2 Code 24
SVC 2 Code 25
SVC 2 Code 26*
SVC 2 Code 27*
SVC 2 Code 29
sve 3
SVC 5
SVC 6+

SVC 7+
SVC 9
SVC 10
SVC 13*

SVC 14
SVC 15

Convert binary to ASCII
hexadecimal or ASCII decimal

Log message
Interrogate clock
Fetch date
Time of day wait
Interval wait
Internal reader
Convert ASCII hexadecimal
or ASCII decimal to binary

Pack file descriptor (fd)
Scan mnemonic table
Move ASCII characters
Peek
Reserved for sequential
tasking machines

Reserved for sequential
tasking machines

Timer management
Set accounting information
Fetch accounting information
Fetch device name
Memory Management
Unpack fd
End of task
Felch overlay
Intertask communication and
control

File handling services
Load task status word (TSW)
Overlay loading
Auxiliary Processing Unit

(APU) Control
Function determined by user
Communications device
dependent I/O

LEGEND

* Documented in OS/32 System Level Programmer
Reference Manual

+ Additional functions documented in 05/32 System
Level Programmer Reference Manual.

48-038 FOO ROl

Perkin-Elmer also provides run-time library (RTL) routines that
allow a program written in FORTRAN or Pascal to access system
services. These routines issue general user SVCs for the task.
A system macro library is also available that allows an assembly
program to issue an SVC through a system macro call. See the
OS/32 Application Level Programmer Reference Manual for an
overview of the methods used by the application programmer to
access system services.

1.1.1 The Supervisor Call (SVC) Parameter Block

Associated with each SVC (except SVC 3) is an operating system
data structure called a parameter block. The parameter block
contains the data required by the OS/32 executor. Each parameter
block has a specific length and format. The full length of a
parameter block must be reserved even if certain parameters are
not required by the particular SVC executor routine.

To issue an SVC, a task must spE~cify the identifying number of
the SVC and the address of the SVC parameter block as operands to
the call as follows:

Format:

SVC n,parblk

Operands:

n

parblk

is a decimal number specifying the SVC.

is the label or address of the parameter block
that contains the information necessary to
execute the call. All parameter blocks must
be fullword-boundary aligned.

Execution of an SVC causes an interrupt that is processed by the
Internal Interrupt Subsystem. See the 03/32 System Level
Programmer Reference Manual for a description of SVC processing
by the Internal Interrupt System.

When building a parameter block structure, use the standard
symbolic names that have been assigned to the fields and
functional values for the parameter block. To obtain these
standard names and their definitions, expand the appropriate data
structure macro. These macros are contained in the OS/32 system
macro library, SYSSTRUC.MLB. See the Common Assembly Language
Macro/32 Processor (CAL MACRO/32) and Macro Library utility
Reference Manuals. .

48-038 FOO ROI 1-3

Use the following macro library utility commands to display the
SYSSTRUC.MLB directory:

*L MLU32
*ST

CAL MACRO LIBRARY UTILITY/32 03-340ROO-OO
MLU)G SYSSTRUC.MLB/S
MLU)DIR
01/09/82

$DC.SS TeB SFCBS $REGSS UDL LIB IOB
$SVC1$ SERRCS $SVC13$ SAPS$ $SOPT $RREGS $EREGS
SUREGS SPSW $SPT $SPTE S$SPT $TAaL$ $lVT
SSTE SPDCB $OOCB SPSOCB SOOE $MAGOCB $VFOCS
$SOCB $EVN $TMQ $SDE $CTX $RCTX $TCB
$aCB $PSTCB $TSW $TOPT $TSTT $TWT $TLFL
$TFL $TPRC $LTCB $LIB $LOPT $LSG $RLST
$RSARCPY $VD $DrR SACB $FO $FOE $PFOS
$FeB $FFLG sceB $DATB $OFLG $OXFL $SVCl
$SlXO $SVCIERR $SVC4 $SVCS $SVC6 $SVC? $SVC13
$APST $UDL $IOB $IOBF SIOH $SPOL $TERMUSR
$AUF $Mrr~STE $ATF $GERC $EFMG $ESYS $EMIL
$M.r-:':RC $ORT SOOT $SPR $TQE $TQH $TQ27
IN''PCPARM $QH $IPCB SIRCB SICB $VFCHARS $TKQ
SAPS $APRC $APS $AOPT $TTS $LPMT $SYP
105 MACROS IN LIBRARY MTM:SYSSTRUC.MLB/S
MLU

Use the following macro library utility command to expand the
desired structure:

Format:

LIST fd,macro

1-4 48-038 FOO ROl

Example:

LX M300:MAR,$SVCl
MACRO

%SVCl

$SVCl
GBLB
AIF

%SVCl
(%SVC1) &SVCIX
1
2

SVCl.

SETB
SPACE
STRUC STRUCTURE OF SVC-l PARAMETER BLOCK
SPACE 1

SVCl.FC OS 0
SVCl.FUN OS 1
SVCl.LU OS 1
SVCl.STA OS 1
SVCl.DN OS 1

SPACE 1
SVCl.SAD OS ADC
SVCl.EAD OS ADC
SVCl.RAD OS ADC
SVCl.LXF OS 4

SVCIX
ENDS
STRUC
OS

SVCl.XIT OS
ENDS

SVC1.
4

SPACE 2

FUNCTION CODE
(ALTERNATE MNEMONIC)
LOGICAL UNIT
STATUS FIELD
DEVICE NUMBER

BUFFER START ADDR
BUFFER END ADDRESS
RANDOM ADDRESS
LENGTH OF LAST TRANSFER

EXTENDED ITAM OPTION BITS

* * * *
SPACE

SVl.CMDF EQU
SVI. READ EQU
SVl.WRIT EQU
SVl.BIN EQU
SVl.WAIT EQU
SVl.RAND EQU
SVl.UPRO EQU
SV1.IMG EQU
SV1.XIT EQU

THE SVC-l FUNCTION CODES
1

SV1.REW
SV1.BSR
SV1.FSR
SV1.WFM
SV1.FFM
SV1.BFM
SV1.DDF

SV1.HLT
SV1.SET
SV1.WO
SV1.TEST

SPACE
EQU
EQU
EQU
EQU
EQU
EQU
EQU
SPACE
EQU
EQU
EQU
EQU
SPACE

X'SO'
X'40'
X'20'
X'lO'
X'OS'
X'04'
X'02'
X' 01'
X' 01'
1
X'CO'
X'AO'
X'90'
X'SS'
X'S4'
X'S2'
X' S1'
1
X' SO'
X'60'
X'OS'
X'02'
1

COMMAND
READ
WRITE
BINARY
WAIT
RANDOM
UNCOND. PROCEED
IMAGE MODE
ITAM EXTENDED OPT

REWIND
BACKSPACE RECORD
FORWARD-SPACE RECORD
WRITE FILE-MARl{
FORWARD-SPACE FILE-MARl{
BACKSPACE FILE-MARl{
DEVICE DEPENDENT FUNCTION

HALT I/O
TEST & SET
WAIT ONLY
TEST I/O COMPLETION

* ***
&SVCIX ANOP

MEND
1 MACRO LISTED TO MAR:
MLU

48-038 FOO R01 1-5

1.2 SUPERVISOR CALL (SVC) ERRORS

The operating system informs the task of any error conditions
encountered during SVC processing. Depending on the kind of
error encountered, the operating system:

• pauses execution of the task and displays a message on the
system console, or

• stores an error code in the error status field of the SVC
parameter block and/or sets the condition code.

The first method is used when an error condition occurs as a
result of a programming error in the task code (e.g., alignment
or illegal instruction fault). If the user wishes the task to
handle these errors, the task can take a trap that causes
execution to branch to the task trap handling routine. See the
05/32 Application Level Programmer Reference Manual for more
information on trap handling.

The second method informs the user of the execution status of the
SVC executor.

1.2.1 Supervisor Call (SVe) Error Messages

When the user chooses not to take a trap when an illegal
instruction fault occurs, the illegal instruction trap bit is set
to 0 in the current task status word (TSW). On encountering an
SVC error, the operating system pauses the task and outputs a
message to the system console.

If the SVC error results from attempting to execute an undefined
or illegal SVC or from specifying an invalid code for an SVC 2,
the following message is displayed:

ILLEGAL SVC - INSTRUCTION AT xxxxxx(yyyyyy)

Where:

xxxxxx

yyyyyy

1-6

is the relative address of the SVC instruction
that caused the error.

is the physical address of the SVC instruction
that caused the error.

48--038 FOO ROl

If an address or alignment error occurs, the following message is
displayed:

Format:

SVC ADDRESS ERROR - INSTRUCTION AT xxxxxx(yyyyyy)
SVC PARAMETER BLOCK AT xxxxxx(yyyyyy)

Where:

xxxxxx

yyyyyy

is the relative address of the SVC
parameter block that caused the error.

is the physical address of the SVC
parameter block that caused the error.

Systems equipped
translator (MAT)
message when an
error occurs:

NOTE

with a memory address
di.splay the following

address or alignment

SVC ADDRESS ERROR-INSTRUCTION AT xxxxxx(yyyyyy)
SVC PARAMETER BLOCK AT xxxxxx(yyyyyy)
MEMORY FAULT ADDRESS = xxxxxx (yyyyyy)

or

or

An address or alignment error can result from anyone of the
following conditions:

1. The address specified for the SVC parameter block lics
outside task boundaries.

2. The address specified for the SVC parameter block is not
aligned on a fullword boundary.

3 . The address specified for the
within a writable segment,
particular SVC.

48-038 FOO ROl

SVC parameter block is not
which is required for that

1-7

1.2.2 Supervisor Call (SVC) Status Codes

When an SVC execution error occurs, the operating system:

• returns an error code to the status field of the SVC parameter
block, and/or

• sets bits in the condition code (CVGL) to reflect the results
of SVC execution.

The status code returned depends on the particular SVC. Each SVC
described in this manual has a defined set of status codes. The
condition code, if set for the SVC, depends on the particular
SVC. Generally, a condition code of 0 indicates successful
execution and termination.

A nonzero error code may be returned to the status field of the
SVC parameter block as a result of one of the following
conditions:

• 'rhe buffer to which the SVC parameter block is pointing is not
aligned on the proper boundary.

• An SVC parameter block that must point to a task writable
segment is pointing to a buffer outside a writable segment.

To test the condition code, use a branch mnemonic that tests for
a true condition.

Example:

BTC PSW.CC,ERROR

In this example, the condition code of the PSW is tested for the
conditions specified by the mask field PSW.CC. PSW.CC is equated
to X'F'. If any conditions tested are found to be true, a branch
is taken to the location ERROR. For more information on branch
instructions, see the Perkin-Elmer Processor User's Manual for
your installation.

1-8 48-038 FOO ROI

CHAPTER 2
INPUT/OUTPUT (I/O) REQUEST SUPERVISOR CALL 1 (SVC 1)

2.1 INTRODUCTION

SVC 1 executes all general I/O data transfer requests and
specific command function requests. General I/O data transfer
requests refer to either a read or write operation. Before any
data can be transferred, the user must specify whether it is a
read or write, the address and length of the I/O buffer that will
receive or send the data, and the logical unit (lu) assigned to
the device to which the I/O is directed. These specifications
are indicated through certain fields of the SVC 1 parameter
block.

When requesting a read or write operation, the user must describe
in the SVC 1 parameter block the data being transferred and the
environment during the transfer. For proper execution of a
simple data transfer request, specify:

• the structure of the file that a record is being transferred
to/from (sequential or random),

• the form the data is in when transferred (ASCII or binary,
formatted or image mode), and

• the state the calling task will be in during I/O (I/O proceed,
I/O wait, unconditional proceed).

If the device is busy when the data request is made, the user
must decide if task execution is to wait, whether to queue the
request and proceed, or whether to proceed and retry the I/O
request later. Link specifies the maximum number of I/O requests
that are to be queued at one time. The user also has the option
to start I/O and continue task execution and then decide to sLop
task execution until the I/O is completed. If the device is free
and the user wants exclusive access to a record or file (any file
type), the user should execute a test and set operation to inform
other tasks that the record or file is being used.

48-038 FOO ROl 2-1

Once the read or write operation is completed:

• test for I/O completion (check the condition code, status
fields, task queue, or execute a test I/O complete), and if
the status fields indicate that no error has occurred;

• check to verify that all of the specified data was actually
transferred (check length of data transfer field in the SVC 1
parameter block).

All testing and checking for I/O completion can be accomplished
through the SVC 1 parameter block.

Specific I/O command function requests that can be made through
SVC 1 inc lude:

• Rewind

• Backspace or forward space record

• Write filemark

• Backspace or forward space filemark

• User-specified driver dependent functions (reserved)

• Halt I/O

Before a command function request is issued, the desired command
must be specified, and the lu must be assigned to the device to
which the command is directed. These specifications are
indicated through the SVC 1 parameter block in Figure 2-1.

2-2 48-038 FOO ROl

I SVC 1 I

2.2 SUPERVISOR CALL 1 (SVC 1)

The SVC 1 parameter block must be 24 bytes long,
fullword-boundary aligned and located in a task writable segment.
Location within a writable segment is necessary so the status of
an I/O request can be returned to the status fields of the
parameter block. All fields in the parameter block are not
required for every I/O request but must be reserved (see Figure
2-1).

0(0) 11(1) 12(2) Device 13(3) Device
independent 1 dependent Function code: lu

4(4)

8(8)

l2(C)

16 (10)

20(14)

parblk

status status

Buffer start address

Buffer end address

Random address

Length of data transfer

Extended options

SVC l,parblk

ALIGN 4
DB
DB
OS
DC
DC
DC
OS
DC

X'function code'
X'lu'
2 bytes for status
A(buffer start)
A(buffer end)
4 bytes for random address
4 bytes for length of data transfer
Y 'extended options'

Figure 2-1 SVC 1 Parameter Block Format and Coding

48-038 FOO ROl 2-3

Fields:

2-4

Function
code

iu

Device
independent
status

Device
dependent
status

Buffer start
address

Buffer end
address

Random
address

Length of
data transfer

Extended
options

is a I-byte field indicating whether a request
is a data transfer or a command function, and
the specific operation to be performed. Bit
settings for data transfer requests are
described in Table 2-1. Hexadecimal function
codes for command function requests are
defined in Table 2-2.

is a I-byte field containing the logical unit
currently assigned to the device to which an
I/O request is directed.

is a i-byte field receiving the execution
status of an I/O request after completion.
The status received is not directly related to
the type of device used.

is a I-byte field receiving the execution
status of an I/O request after completion.
The status received contains information
unique to the type of device used.

is a 4-byte field used only for data
transfer requests and must contain the
starting address of the I/O buffer that
receives or sends the data being transferred.

is a 4-byte field used only for data
transfer requests and must contain the ending
address of the I/O buffer that receives or
sends the data being transferred.

is a 4-byte field containing the address
-of the logical record to be accessed for a
data transfer request; a legal hexadecimal
number must be specified in this field if bit
5 of the function code is set to 1 ..

is a 4-byte field used only for data
transfer requests.. It receives the number of
bytes actually transferred as a result of a
data transfer request. If an error occurs
during data transfer, this field is modified
with indeterminate data.

is a 4-byte field specifying device dependent
and independent extended functions that must
be executed by the device when it is servicing
a data transfer request.

48-038 FOO ROl

2.2.1 Data Transfer Requests

Figure 2-2 shows the function code format for data transfer
requests, and Table 2-1 defines each function code bit position.

Format Access Extended
Options

Test Wait Test I/~
and set only Complete

---~-- -~-- -~-- -
I 0 I R I W I

Bits:
o 1 2 3 4 5 6 7

Figure 2-2 Function Code Format for Data Transfer Requests

TABLE 2-1 FUNCTION CODE BIT POSITIONS FOR DATA TRANSFER
REQUESTS

BIT I
POSITION I BIT NAME BIT SETTING AND MEANING

o I Function code I 0 = data transfer request.

1

2

I type

I Read

I Write
I

I 1 - read operation. (Bit 2
must be set to 0.)

I 1 = write operation. (Bit 1
must be set to 0.)

1-2 Test and set III test if a specific record
in a file is being used by
another task.

48-038 FOO ROl 2-5

TABLE 2-1 FUNCTION CODE BIT POSITIONS FOR DATA TRANSFER
REQUESTS (Continued)

BIT I
I

POSITION I BIT NAME BIT SETTING AND MEANING
==========-========:================================~=======

3 ASCI I

Binary

o = the data to be transferred
is in ASCII format.

1 the data to be transferred
is in binary format.

If bit 7 of the function
code is set to indicate
image I/O transfer, the
setting of bit 3 is
ignored and the data is
transferred in image
format.

~ --
4 I/O proceed

Wait I/O

Wait only

2-6

o = If the device is not busy,
return control to the call
ing task after initiation
of data transfer to the
device. However, if the
device is busy, the request
is queued and task execu
tion continues.

I stop task execution, 1n1-
tiate data transfer to the
device, and wait until the
completion of I/O.

I = task execution stops and
waits until the completion
of all queued I/O proceed
requests to the specified
lu.

When a wait only request is
issued, bit 4 is the only
bit set in the function
code.

48-038 FOO ROl

TABLE 2-1 FUNCTION CODE BIT POSITIONS FOR DATA TRANSFER
REQUESTS (Continued)

BIT I
POSITION I BIT NAME BIT SETTING AND MEANING
===:===============~

5

6

48-038 FOO ROI

Sequential

Random

Conditional
proceed

Unconditional
proceed

Test I/O
complete

o = access the next logical
record.

1 access the logical record
specified by the hexadec
imal value in the random
address field of the para
meter block. The associa
tion of the hexadecimal
values with the logical
record must be established
before the data transfer
occurs.

o = after the I/O request is
issued, put the task into a
wait state if the requested
device is busy and the
total number of queued re
quests exceeds the maximum.
Once the I/O request is
completed, the task resumes
execution. If the maximum
number of queued requests
is 1, a pending request
causes the task to be
placed into a wait state.

1.

1

any I/O request made to a
device that is busy is re
jected if total number of
queued requests exceeds the
maximum, and task execution
continues.

test to check for the com
pletion of I/O to a speci
fied lu.

If a previous I/O proceed
request or queued I/O pro
ceed request does exist,
the condition code is set
to X'F'. However, if there
is no outstanding I/O pro
ceed request, the condition
code is set to X'D'.

2-7

2-8

TABLE 2-1 FUNCTION CODE BIT POSITIONS FOR DATA TRANSFER
REQUESTS (Continued)

BIlr I
POSITION I BIT NAME BIT SETTING AND MEANING

=================================-==========================

7 Format

Extended/
image options

When a test I/O complete
request is issued, bit 6
is the only bit in the
function code set. If bit 4
is set, it is ignored.

o = the data being transferred
is formatted as indicated
by the bit 3 setting of the
function code and according
to the device type speci
fied.

1 = tests the setting of the
XSVCl task option. If
XSVCl is off, an image I/O
transfer is performed. If
the option is on, the
extended options fullword
in the parameter block is
checked for specified
options.

When an image I/O is per
formed, the data being
transferred is in image
mode and is not formatted.
In effect, the user must
explicitly specify any con
trol characters such as
carriage returns or line
feeds on writes and will
receive exactly what is
input on reads.

48-038 FOO ROl

2.2.1.1 Test and Set

The test and set function can be used to write a program that
prevents multiple tasks from modifying a record simultaneously.
A task that issues an sve 1 with the test and set bit enabled
notifies other tasks that it is using a record by setting the
first bit of that record to 1. This bit setting is called a
one-bit record lock. Any task subsequently performing a test and
set on the record is informed that the record is being accessed
by another task.

To use the test and set function" set both bits land 2 of the
function code field to 1. If the test and set operation is used
to lock out a record written in binary image mode, make certain
that the first bit in the record is initially set to zero. In
addition, the size of the user buffer should match the size of
the file record. The following diagrams demonstrate how a test
and set operation is performed.

In the first diagram, the calling task issued an sve 1 with test
and set enabled to read a record into its user buffer specified
by the sve 1 parameter block. Notice that the bit setting for
the record lock bit is 0, indicat:ing that the record is not being
used by another task.

Record
on
Disk

Record
Transferred
to User
Buffer

48-038 FOO ROl

Record
lock
bit Record Length

tC:O-7 ~_n~ __ ._n ___ n __ -{ $-n ________ _

101
-----1 ~------------------~ ~----------
Bytes:
o 99 255

Record
lock
bit

J-----7
I 01
--------)
Bytes:
o

1 sector

J-----
I

.J------

99

2--9

After the record is read into the user buffer, the test and set
operation tests the record lock bit. If the bit is 0, the record
lock bit in the user buffer is then set to 1. The following
diagram shows the record lock bit settings after the test
operation is performed.

Record
on
Disk

User
Buffer

Record
lock
bit

*-----7 ~-----------------~ f-------------
10:: I
------~ ~-----------------~ ~-------------
Bits:
o

Record
lock
bit

t ___ , ___ ._~
III

99

f-------

--------~ ~-------
Bits:
o 99

255

After the record lock bit is tested, the SVC 1 test and set
function then sets the record lock bit on disk to 1 so that other
ta.sks attempting to modify the record are notified that the
record is in use. SVC 1 sets the record lock bit on disk by
copying the contents of the user buffer to the record's original
location on disk. In addition, SVC 1 sets the condition code to
X'O' and resets the record lock bit in the user buffer to O.

The following diagram shows the results of the completed test and
set operation.

Record
returned
to disk
with
record
lock bit
set

2-10

Record
lock
bit

t ____ -->

III
-------:S
Bytes:
o

~----------------1 ~---------
I ,

y----------------~ ~---------

99 255

48-038 FOO ROI

Record
lock
bit

t _____ ~
101

r-·------
User
buffer
with
record
lock bit
set to a

-------7 r-------
Bytes:
a 99

Condition Code

I C I v I GIL I
1======-----===-1
I a I a I a 1 a I

If the calling task had performed a test and set operation on a
record that had a record lock bit setting of 1, the condition
code would be set to X'F'. The following diagram shows the
record lock bit settings and condition code resulting from this
test and set operation.

Record
on disk
with
record
lock
bit set

User
buffer
with
record
lock bit
set to 1

48-038 Faa ROl

Record
lock
bit

t-----i
III
------~
Bytes:
a

Record
lock
bit

t _____ .,
III
--------5
Bytes:
o

~----------------1
I
I

~---------------~

99

f--'--'---'-

r-------

99

I
I

~------ ._---

r---------
255

I
I

2-11

Condition Code

I C I V I GIL I
1===============1
111111111

After a test and set operation, a record protection program
checks the condition code. If the condition code is zero, the
task can then proceed to modify the record. If the condition
code is X'F', the task should retry the test and set operation
before attempting to modify the record.

To unlock the record on disk, the task that set the record lock
bit should write the record in its user buffer back into its
original location on disk, whether or not the task modified the
record.

If the size of the user buffer is less than the size of the
record, the following will occur when the record in the user
buffer is written back to disk:

• If the record in the user buffer is written back to an indexed
file, the remaining bytes of the record will be filled with
zeros.

• If the record in the user buffer is written back to a
contiguous, nonbuffered indexed, or extendable contiguous
file, the last two bytes of the record will be propagated to
the right until the remaining bytes of the record are filled.

The following diagram illustrates how a user buffer: smaller than
a 256-byte contiguous file record is returned to disk. Notice
that the last two bytes of the record in the user buffer are
propagated to the right to fill a 256-byte sector on disk.

99-byte
Record
in
User
Buffer

2-12

Record
lock
bit
t ______ ?

Last two bytes
of record

T--~
10: 14DI501
--------1 ~--------
Bytes:
o 99

48-038 FOO ROl

99-Byte
Record
Returned
to Disk

Record
Lock
bit

t----7
101
------~
Bytes:
o

Last two bytes
of record

r~--------------~ S- -----.-.-.-----
, 14D 150 14D 150 14D 150140 I 140150 14D 150:
t---------------------~ ~-----------

99 255

The test and set operation can be executed as a wait I/O or I/O
proceed request. Setting the condition code during a test and
set operation occurs only when wait I/O is specified. (Bit 4 of
the function code is set to 1.) However, if an I/O proceed is
re~uested (bit 4 of the function code set to 0), setting the
condition code is not useful because it could be changed at any
time during task execution when data transfer and task execution
take place concurrently. Therefore, check the record lock bit in
the buffer to determine whether the record is currently being
used. See the OS/32 System Level Programmer Reference Manual for
the devices supporting test and set.

The following sample program demonstrates how the test and set
function can be used to wr 1,te a program that prov ides record
protection.

48-038 FOO ROl 2-13

Sample Program:

2-14

* TEST AND SET EXAMPLE

* PRIOR TO PROGRAM EXECUTION ASSIGN LU 1 AND LU 2
* TO A TEXT FILE CREATED BY EDIT32.

LU 1 AND LU 2 SIMULATE ACCESS OF THE FILE BY TWO
* TASKS.

TESTSET PROG TEST AND SET EXAMPLE
ENTRY TESTSET

TESTSET EQU

LIS 1,0
LOOP EQU

ST 1,PB1+IO.RECNU
ST 1, PB2+ IO. RECNU

SVC 1, PBl
BZ CONT05

SET UP FIRST RECORD NO.

FOR LU 1
FOR LU 2

READ & TEST RECORD ON LU
OK; RECORD I S NOT LOCKED

PAUS ERROR; RECORD IS LOCKED; SHOULD BE FREE
CONT05 EQU

LA 14, PBl PB ADR FOR EOF TEST
BAL 15,@IOERR CHECK FOR END-OF-FILE

CONTiO

1

EQU
SVC
BM
PAUS

1,PB2 READ AND TEST RECORD ON LU 2

*
*
CONT20

*
CONT30

*
CONT40

*

*

*

CONT20 OK;RECORD IS LOCKED
ERROR; RECORD I S FREE; SHOULD BE LOCKED

EQU *
L 2,B1S MANIPULATE RECORD DATA
ST 2,B1S
WR I TE RECORD BACK TO FLE AND UNLOCK IT
SVC 1, PB3

SVC 1, PB2 READ AND TEST RECORD ON LU 2
BZ CONT30 OK; RECORD IS FREE
PAUS ERROR; RECORD IS LOCKED; SHOULD BE FREE

EQU
SVC
BM
PAUS

1,PBl READ AND TEST RECORD ON LU 1
CONT40 OK; RECORD IS LOCKED
ERROR; RECORD IS FREE; SHOULD BE LOCKED

EQU *
L 3,B2S MANIPULATE RECORD DATE
ST 3,B2S
WR I TE RECORD BACK TO FILE AND UNLOCK IT
WRITE LU-2,RECNUMB-{l),ADDR-B2S,ENDADDR-B2E

AIS
B

1,1
LOOP

INCREMENT RECORD COUNTER
00 NEXT RECORD UNT I L EOF

PBl IOPCB FUNzX'76',LU-l,ADDR-B1S,ENDADDR-B1E,RESTART-CONT05
*
PB2 IOPCB FUN-X' 76' , LU-2, ADDR-B2S, ENDADDR-B2E

PB3 IOPCB FUN=X'36',LU-l,ADDR-B1S,ENDADDR-B1E,RECNUMB-{l)
*

BiS
B1E
*
*
B2S
B2E
*

ALIGN ADC
DS 80
EQU *-1

DS
EQU

END

80
*-1

BUFFER FOR LU 1

BUFFER FOR LU 2

48-038 FOO ROl

2.2.1.2 Input/Output (I/O) Proceed

An I/O proceed request is init ia.ted when bit 4 of the funct ion
code is set to 0 and a read or write operation is specified.

If the device is free when a dat.a transfer request is made wit~h

I/O proceed specified, task execution and data transfer take
place concurrently. When the I/O is completed, the status of the
data transfer is returned to the status fields in the parameter
block. An illegal function code or illegal lu causes the status
to be returned to the status fields before data transfer starts,
resulting in rejection of the I/O proceed request. Since task
execution and data transfer takE! place concurrently, the task
must check for the completion of I/O. There are four ways to
check for I/O completion:

1. Execute a test I/O complete operation.

2. Monitor the status fields in the SVC 1 parameter block
issuing the request.

3. Take a trap when I/O is completed and branch to a service
routine.

4. Issue a wait I/O request to the device specified by the SVC 1
making the request. This function will stop task execution
until I/O is completed.

5. Queue I/O requests by specifying the IOBLOCK parameter of the
Link OPTION command and issue the wait only function. This
will stop task execution until all queued requests to a
specified device are completed.

An SVC 1 I/O proceed request to an indexed file executes in a
different manner than an I/O proceed to other file types or
devices. See the OS/32 Applica1:ion Level Programmer Reference
Manual for more information on I/O operations to indexed files.

2.2.1.3 Queuing Input/Output (I/O) Requests

When SVC 1 issues an I/O proceed request to a device that is
busy, the request is placed on the calling task's I/O control
block, and task execution continues. The request is serviced
when the device is free. Normally, each task has only one I/O
control block on which to queue an I/O request. To queue more
than one request, use the IOBLOCK parameter of the link OPTION
command to assign more blocks to the task.

48-038 FOO ROI 2-15

Format:

OPTION ~QBLOCK={~}
It

Parameter:

b is a decimal number from 1 through 65,535
indicating the maximum number of I/O control
blocks assigned to a task. Each I/O control
block can contain one queued I/O request. If
this option is not specified by the user, Link
automatically assigns one I/O control block to
the task.

2.2.1.4 Conditional Proceed

If the number of queued requests exceeds the maximum number of
I/O blocks assigned to the task and bit 6 of the function code is
set to 0, SVC 1 places the task in a wait state until one of the
queued requests is serviced. Task execution resumes when the
number of queued requests equals the maximum number set by Link.

The number of I/O requests a task can issue before going into the
wait state is determined by the formula:

b + 1 + number of logical units assigned to task

Parameter b is the number of I/O control blocks assigned to the
task.

2.2.1.5 Unconditional Proceed

To prevent the task from going into the wait state when the
maximum number of requests specified by Link are queued, set bit
6 of the function code to 1. This code allows the task to reiect
all I/O requests made to a busy device after the maximum number
of requests are queued. When a request is rejected, a status of
o is sent to the device independent status field, and the
condition code is set to X'F'. The user can retry the rejected
I/O request during task execution.

2-16 48-038 FOO ROl

2.2.1.6 Wait Input/Output (I/O)

To stop task execution during a read or write operation, use the
wait I/O function. A wait I/O request is initiated when bit 4 of
the function code is set to 1 and. a read or write operation is
specified.

If the device is free when a data transfer request is made with
wait I/O specified, task execution stops, I/O is initiated, and
the task waits to resume until I/O is completed. status of the
data transfer is returned to the status fields when the I/O is
completed.

If the device is busy when a data transfer request is made with
wait I/O specified, the request is queued and task execution is
suspended until the queued request is serviced and I/O is
completed. Then, task execution resumes.

2.2.1.7 Wait Only

A wait only request stops task execution until all I/O proceed
requests to the specified lu (including queued requests) are
completed. When the last queued I/O proceed request is
completed, task execution continues. The status of the last
completed I/O proceed request is returned to the status field of
its respective SVC 1 parameter block.

To issue the wait only request, set the SVC 1 function code field
to X'08', and the lu field to the appropriate device. A nonzero
status code will be returned to the status field of the SVC 1
wait only parameter block if any of the following conditions
occur:

• Logical unit is illegal (code X'8l').

• Logical unit is unassigned (code X'81').

• Wait only request is issued for a pseudo device without SVC
interception (code X'CO').

2.2.2 Command Function Requests

All command function requests and task execution take place
concurrently. Queued requests are handled the same way as
conditional proceed data transfer requests. When the I/O is
completed, the status of the command function is returned to the
status fields in the parameter block. An illegal function code
or illegal lu causes the status to be returned to the status
fields before the command function starts. This results in
rejection of the command function request.

48-038 FOO ROl 2-17

Since task execution and command function requests take
concurrently, the task must check for I/O completion.
three methods are used to check for I/O completion:

place
These

1. Execute a test I/O complete operation.

2. Monitor the status fields in the parameter block for the
corrunand function status to be returned.

3. Issue a wait only request to the device specified by the SVC
1 making the request. This function will stop task execution
until I/O is completed.

'rable 2-2 def ines the function codes for command function
requests.

TABLE 2-2 FUNCTION CODES FOR COMMAND FUNCTION REQUESTS

: FUNcrrION :
CODE MEANING

:=====~====r=================== __ ~===================~====f
: XICO' : Rewind - a rewind operation is to occur on l

2-18

I the specified 1u. I
---------------.--I

X'AO' : Backspace record - The device assigned to I

X'90'

: the lu is to backspace one record length.

: Forward space record - The device assigned
: to the lu is to move forward one record
I length.

X'88' : Write filemark - a filemark is to be written
: at the current pointer position on the de-
: vice assigned to the lu. I

---I
X'84' : Forward space filemark - The device assigned I

X'82'

X'81'

X'80'

1 to the lu is to move forward past the next
I filemark to the beginning of the next file.

Backspace filemark - The device assigned to
the lu is to backspace to the previous
filemark. For disk files, this positions
the pointer to the beginning of the previous
file. For magnetic tape files, the tape is
positioned at the end of the previous file.

I Reserved for driver dependent functions.

: Halt I/O - Cancel all previous I/O proceed
I requests to the specified lu.

48-038 FOO R01

2.2.2.1 Halt Input/Output (I/O)

When a halt I/O request is issued, any previous I/O proceed
requests, whether they are in pl~ogress or queued to the specified
lu, are cancelled. When thE~ I/O is terminated, the task that
issued the I/O proceed request takes a trap (if enabled), the
request is queued, and the status of the I/O operation (data
transfer or command function) is returned to the status fields of
the parameter block issuing the request. The time of actual
termination is asynchronous to the time the halt I/O is issued.
The independent status codes are listed in Table 2-3, and the
dependent status codes are listed in Table 2-4.

When an I/O request is issued t() an 1u and a previous I/O proceed
request exists for that same lu, the second request and any
subsequent requests to that lu cannot be serviced until the
previous I/O request is completed. By issuing a halt I/O
request, the first I/O request is cancelled, allowing I/O
requests issued after the cancellation to be started on the
device.

If the IOBLoeR option was specified by Link and at least one I/O
request to a specified lu is queued, execution of a halt I/O
request cancels any I/O to that specified lu already queued or in
progress. See the OS/32 System Level Programmer Reference Manual
for the devices supporting the halt I/O request.

2.2.3 Logical Unit (lu)

An 1u is a decimal number ranging from 0 through 254. The
highest lu number to which a task can be assigned is determined
by the lu parameter of the Link OPTION command. After loading
the task into memory, the lu should be assigned to a particular
file or device through SVC 7 or an ASSIGN command. If no actual
I/O operation is desired, the lu should be assigned to NULL:,
causing a no-operation (no-op) to occur.

2.2.4 Device Independent Status

Logical units provide device independent I/O by causing all I/O
requests to be made directly to the lu and not to the device.
The execution status of an I/O request that is independent of the
physical characteristics of the device being used is returned to
the device independent status field of the parameter block. See
Table 2-3. The data remaining in this field from a previous I/O
request are not modified until a subsequent I/O is completed or
an error occurs.

48-038 FOO ROl 2-19

2-20

TABLE 2-3 DEVICE INDEPENDENT STATUS CODES

STATUS I
CODE MEANING

===-=
X'CO' Illegal function - An error is present in

the function code; the requested function
is not supported by the device or assigned
access privilege, or the buffer transfer
is too small. (When using tape, minimum
buffer size is four bytes.)

X'AO' I Device unavailable - The device is either
I inoperative or not configured into the
I system.

X'90' End of medium (EOM) - The I/O directed to
the lu reached the physical end of the
device; e.g., end of tape. During magnetic
tape operations this status may be com
bined with one of the next three status
codes, yielding X'98', X'94', and X'92'.

X'B8'

X'B4'

1 X'B2'

X'Bl'

X'OO'

I End of file (EOF) - The logical end of the
I file specified by the assigned lu was
I reached.

I Unrecoverable error - An error occurred
I and the I/O request, which terminates
I task execution, cannot be retried.

Parity - An even or odd parity error
occurred on a data transfer request.

Recoverable error - The I/O request is re
coverable and can be retried. A write
request was issued to a write-protected
device.

No I/O currently being processed - If a
halt I/O request is executed, this bit is
set, indicating that no I/O is being pro
cessed at this time.

I Illegal or unassigned lu - The lu
I specified in the parameter block is either
I incorrect or was not previously assigned.

I Normal execution - I/O is completed and
I no error occurred.

48-038 FOO ROI

2.2.5 Device Dependent status

The execution status of an I/O request that is directly related
to the unique characteristics of the device being used is
returned to the device dependent status field of the parameter
block. See Table 2-4. The data remaining in this field from a
previous I/O request are not modified until a subsequent I/O
request is completed or an error occurs.

TABLE 2-4 DEVICE DEPENDENT STATUS CODES

STATUS I
CODE MEANING

X' 85'

X'84'

X'83'

X'82'

X' 81'

X'OO'

I Exhausted retries on seeks - Seeks on disk
I devices have been retried the maximum
I number of times.

I Queued I/O terminated - A queued I/O
I request is terminated because a previous
I I/O request failed.

I Device is write-protected - A write opera
I tion to a write-protected device occurred.

I Read/write timeout - A read or write time
lout condition occurred.

I Terminated by Halt I/O - I/O was termina
I ted by a halt I/O operation.

I Normal execution - I/O completed and no
I error occurred.

2.2.6 Buffer Start/Buffer End Address

The buffer start/buffer end addresses specify the buffer to be
used for data transfer requests. The start address is the first
byte in the buffer. The end address is the last byte in the
buffer that is included in the transfer.

48-038 FOO ROl 2-21

starting
address
X'lSO' Data buffer

Ending
address
X, 19F'

~-----------------------~
~

r---------------------~-
I
I

-- - - - - - - - -- .. - - - .- - - - - - - - - - - -- ..,
Bytes:
o

2.2.7 Extended Options

y-----------------------
79

If bit 7 of the function code is set to 1 and the XSVCl option
was specified at Link time, the options specified by the SVC 1
extended option field are executed. The extended options
fullword format is dependent upon the device that an I/O request
is directed to. In general, there are two formats: one for
nonmagnetic tape devices and one for magnetic tape devices.

2.2.7.1 Nonmagnetic Tape Devices

If a device is supported by the data communications subsystem,
the extended options provide device dependent, communication
dependent, and device independent features when a read or write
operation is performed.

Figure 2-3 illustrates the fullword format of the extended
options field of the SVC 1 parameter block for devices supported
by the communications subsystem.

Bits:
o

Function modifiers Extended functions

15 16 25 26

Figure 2-3 Extended Options Fullword Format
for Nonmagnetic Tape Devices

31

Bits 0 through 15 are for general use in both local and remote
communications.

Bits 16 through 25 are used to expand a function's capability.
For example, the write edit function can be expanded to write
blinking by using a function modifier.

2-22 48-038 FOO ROl

Up to 64 device dependent I/O functions can be specified by bits
26 through 31. These extended functions are mutually exclusive;
however, an I/O with multiple requests or operations can be
performed.

Table 2-5 describes the SVC 1 extended options that can be
specified for both local and remote communications. See the
OS/32 Basic Data Communications Reference Manual for a listing of
device dependent extended functions along with their applicable
function modifiers.

TABLE 2-5 SVC 1 EXTENDED OPTIONS FOR LOCAL AND REMOTE
COMMUNICATIONS

BIT I
POSITIONS I

o

BIT NAME

Connect (CON)

BIT SETTING AND MEANING

1 = terminal manager answers a
telephone ring on a dial-in
line during a read or
write line initialization
sequence.

1 Disconnect
(OCT)

1 = terminal manager disconnects
from a switched line
following final data trans
fer

2

3-7

8

9-15

Image/format
(IMG/FMT)

o = data being transmitted is
in image mode and is not
formatted.

1 = terminal manager performs
normal record buffering,
inserts or deletes line
control characters, and
recognizes appropriate data
format control characters
on transmitted data~

I 00000 = these bits are reserved
I for future use.

I Vertical I
I forms control I
I (VFC)

1 = requests vertical forms
control option for an ASCII
I/O operation.

1.0000000 = reserved.

48-038 FOO ROl 2-23

2.2.7.2 Magnetic Tape Devices

The extended options fullword format differs when I/O is being
directed to a magnetic tape device. Figure 2-4 illustrates the
fullword format of the extended options field of SVC 1 parameter
blocks used for magnetic tape I/O operations.

Bits:
o

Extended function code

26 27 31

Figure 2-4 Extended Options Fullword Format for Magnetic Tape
I/O Operations

If the extended function code requires an additional parameter,
the most-significant bits (0-7) contain the parameter value.

Bits 8 through 26 are not used during magnetic tape I/O
operations. Bits 27 through 31 contain the extended function
code that indicates the type of I/O operation to be performed.
'rho extended function codes available for use in this field are
dependent upon the standard function code setting in the SVC 1
par.ameter block. Table 2-6 contains the extended function codes
available when the standard function code bit set~ing indicates
a control operation.

TABLE 2-6 EXTENDED FUNCTION CODES FOR CONTROL OPERATIONS

EXTENDED I
FUNCTION I

CODE OPERATION/EXPLANATION
=====~====:===

o

1-6

7

2-24

REWIND AND UNLOAD - The tape is rewound to begin
ning of tape and then unloaded. Requires hardware
support.

RESERVED

CREATE A GAP - The drive is instructed to erase a
section of tape (approximately 3 to 3.5 inches) in
the forward direction.

48-038 FOO ROl

TABLE 2-6 EXTENDED FUNCTION CODES FOR CONTROL OPERATIONS
(Continued)

EXTENDED I
FUNCTION I

CODE OPERATION/EXPLANATION
=================~==c=================:===========~=========~~~~

8 READ' DRIVE STATUS - A task can read 8 status
halfwords into the buffer space specified in the
SVC 1 parameter block. The status returned
depends on the type of drive in use. See the
High Per f ormance Ma.gnet i c Tape Sys tern (HPMTS) 125
Programming Manual for a list of the status
halfwords. Requires hardware support.

9 RESERVED

10 ERASE TAPE - Erases a variable length of tape,
beginning at the current position. The length of
tape erased is determined by the following formula:

11-31

No. of Bytes in User Buffer
Length of Tape Erased =-_._.-- -----,---- _._-_._._._- .-.-.----

Current Tape Density

The result is rounded up to a multiple of the
length of a hardware gap (approximately 3 to 3.5
inches). The maximum number of bytes that can be
erased depends upon the tape density (See
Table 2-7). If an erase tape request exceeds the
maximum number of bytes for the current tape
density, the OS will erase the maximum number of
bytes and then output a message indicating that the
remaining bytes in the buffer were not erased. The
erase tape function is illegal if the tape is at
load point.

NOTE

For device code 65, the current density
is assumed to be 800BPI. If the current
density for device code 65 is 1600BPI,
the length of tape erased is twice as
long as requested.

RESERVED

48-038 FOO ROI 2-25

TABLE 2-7 MAXIMUM NUMBER
OF BYTES
ERASED

TAPE
DENSITY

(BP I)
NUMBER

OF BYTES
========================

800
1600
6250

200,000
400,000

1,000,000

Table 2-8 contains the extended function codes available when the
standard function code bit setting indicates a data transfer
operation.

TABLE 2-8 EXTENDED FUNCTION CODES FOR DATA TRANSFER
OPERATIONS

gXTENDED I
FUNCTION I

CODE OPERATION/EXPLANATION
====~===:==~======-=======~===-========-=====-==============

2 --26

o NO EX'lIENDED FUNCTIONS

The bit settings of the standard function (byte
1 of the SVC 1 parameter block) are read and
used to determine the operation to be performed.

1 READ BACKWARD

The tape drive will read previous records on a
tape while the tape is moved in the backward
(rewind) direction. The task buffer is filled,
from start address to end address, with bytes
in the order they are read; i.e., reverse. If
an error occurs during a read backward operat
ion, the magnetic tape drive will perform re
tries on that operation up to a number of times
corresponding to the value set in the sysgen
macro library. (The read bit of the SVC 1
function code should be set.) Requires hard
ware support.

48-038 FOO ROl

TABLE 2-8 EXTENDED FUNCTION CODES FOR DATA TRANSFER
OPERATIONS (Continued)

EXTENDED I
FUNCTION I

CODE OPERATION/EXPLANATION _= ___ ~ _________ =_=== ___ =====e=====================~====~==_=
2

3

4

48-038 FOO ROl

GAPLESS OPERATION

The driver reads or writes multiple data buf
fers to or from magnetic tape with no interrec
ord buffers gaps, using only one SVC 1. Gap
less operation requires the use of a special
SVC 1 parameter block. The read or write bit
in this parameter. block should be set. Gapless
operation is explained in Section 2.3. Re
quires hardware support.

GAPLESS OPERATION WITH BUFFER TRANSFER REPORT
ING

The driver reads or writes multiple data
buffers to or from magnetic tape with no inter
record gaps, using only one SVC 1. The task
receives a buffer trap each time the driver
uses another buffer. Gapless operation re
quires the use of a special SVC 1 parameter
block. The read or write bit in this parameter
block should be set. Gapless operation is ex-
plained in Section 2.3. Requires hardware
support.

READ FORWARD AND IGNORE DATA TRANSFER ERRORS

The tape drive reads from the tape and ignores
data transfer errors if encountered. If a data
transfer error occurs, the status halfword is
set to indicate normal completion of the read.
The position of the tape after the read is the
same as if no el~ror had occurred. Since some
errors terminate data transfer, the user should
check the length of data transfer field to
verify that all of the specified data was
actually read. (The read bit of the SVc 1
function code should be set.)

2-27

TABLE 2-8 EXTENDED FUNCTION CODES FOR DATA TRANSFER
OPERATIONS (Continued)

EX(rENDED I
FUNCTION I

CODE OPERATION/EXPLANATION
=========~===========~=======a=====~========================

5

6

2-28

READ BACKWARD AND IGNORE DATA TRANSFER ERRORS

The tape drive will read previous records on a
tape while the tape is moved in the backward
(rewind) direction and will ignore data
errors if encountered. If a data error occurs,
the status halfword is set to indicate normal
completion of the read. The position of the
tape after the read is the same as if no error
had occurred. Since some errors terminate data
transfer, the user should check the length of
data transfer field to verify that all of the
specified data was actually read. The user
buffer is filled, from start address to end
address, with bytes in the order they are read;
i.e., reverse. (The read bit of the SVC 1
function code should be set.) Requires hardware
support.

USER CONTROL OF RETRIES FOR DATA TRANSFER
ERRORS

If an error occurs during a data transfer oper
ation, the magnetic tape drive will repeat the
operation up to the number of retries specified
by the user in the first byte of the extended
options field. The maximum number of retries
that can be specified for a read operation is
255. The maximum number of retries that can be
specified for a write operation is 45. (The
read or write bit of the SVC 1 function code
should be set.)

NOTE

If extended function code 6 is not
specified, the number of retries de
faults to the value set in the sysgen
macro library.

48-038 FOO ROl

TABLE 2-8 EXTENDED FUNCTION CODES FOR DATA TRANSFER
OPERATIONS (Continued)

EXTENDED I
FUNCTION I

CODE OPERATION/EXPLANATION
========-------=--=-==========================-==~=~=======~

7 READ BACKWARDS AND ALLOW USER CONTROL OF RE
TRIES FOR DATA TRANSFER ERRORS

8-31

The tape drive will read previous records on a
tape while the tape is moved in the backward
(rewind) direction. The user buffer is filled,
from start address to end address, with bytes
in the other they are read; i.e., reverse. If
an error occurs, the magnetic tape drive will
repeat the operation up to the number of
retries specified by the user in the first byte
of the extended options field. The maximum
number of retries that can be specified is 255.
(The read bit of the SVC 1 function code should
be set.)

RESERVED

In both cases, extended function codes are mutually exclusive,
that is, only one extended funct.ion code can be specified in a
single SVC 1.

2.2.7.3 Device Dependent Status Codes
Operations

for Magnetic Tape

The device dependent and device independent status fields of the
SVC 1 parameter block indicate the execution status of an I/O
operation performed to a magnetic tape. Table 2-9 lists the
status codes returned to these fields. Additional status codes
for gapless I/O operations are listed in Table 2-12. A magnetic
tape I/O operation will cease upon detection of most of these
errors.

48-038 FOO ROl 2-29

TABLE 2-9 MAGNETIC TAPE DEVICE DEPENDENT STATUS CODES

STATUS I
CODE MEANING

=====~===~======~

8282 Timeout A read or write timeout condition occur
red during data transfer.

8283 Device write-protected - A write, write filemark,
create gap, or erase tape operation was attempted to
a write-protected device.

82F9 Maximum buffer size exceeded The buffer for the
erase tape control operation is too large.

82FA Retries exhausted - A read, read backward, or write
operation was retried the maximum number of times.

82FC Timeout - A control operation timeout occurred.

82FD Timeout - A read, read backward, read drive status,
write or write filemark timeout condition occurred.

82FE Read backward at load point - Load point was reached
before a read backward operation terminated.

82FF Timeout A read, read backward, or write timeout
I condition occurred while waiting for a prior

operation to be completed.

8301 Short read - The buffer specified was too small for
the tape block. This status is only supported by
the high performance tape systems.

8400 Bottom of tape/end of tape check malfunction - An
error occurred during an attempt to position the
tape to determine whether the beginning or end of
tape was detected.

84FB SELCH malfunction The SELCH malfunctioned during
a read, read backward, or write operation.

AOOO

2-30

Retries exhausted for Write Filemark A write
filemark operation was retried the maximum number of
times.

Retry malfunction - An error occurred while attempt
ing to position the tape to retry a read, read back
ward, write, or write filemark operation that
resulted in a recoverable error.

Device unavailable - the device is either inopera
tive or not configured into the system.

48-038 FOO ROI

TABLE 2-9 MAGNETIC TAPE DEVICE DEPENDENT STATUS
CODES (Cont i.nued

STATUS I
CODE MEANING

======================_======a~==============================~~

COOO Illegal function - the function code indicated a
data transfer operation, but neither the read nor
write bit was set.

The function code indicated a control operation, but
none of the other bits in the function code were
set.

The function code indicated
operation, but the extended
disabled.

an extended control
SVC 1 task option was

The requested function is not supported by the
device or assigned access privileges.

Illegal extended function code - an
function, or a function not supported
specified tape driver was indicated.

undefined
by t~he

The extended function code indicated a
operation, but the standard function code has
write bit set.

read
the I

Buffer size too small - the buffer for a read, read
backward, or write operation was less than 4 bytes.
The buffer for the read drive status was smaller
than 16 bytes.

Erase tape at load point - an erase tape operation
was attempted when a tape was at load point.

User retries too large - the maximum number of
retries specified for a write operation was greater
than 45.

48-038 FOO ROl 2-31

2.3 GAPLESS INPUT/OUTPUT (I/O) OPERATIONS

Data transfer operations in gapless mode consist of a task
reading or writing data to or from a magnetic tape with no
interrecord gaps, using only one SVC 1. A task can have only one
ongoing gapless SVC 1 at a time. The format of a gapless mode
SVC 1 parameter block differs from the standard SVC 1 parameter
block. The gapless SVC 1 parameter block cannot be reused until
the gapless operation has been completed. To perform a gapless
I/O operation, the XSVCl Link option must be specified before an
I/O request is issued. Then, the task must issue an SVC 1 call
that specifies, among other things, a pair of buffer queues, the
IN-QUEUE and the OUT-QUEUE. The driver takes buffers from the
IN-QUEUE and returns used buffers to the OUT-QUEUE. The task
processes the buffers from the OUT-QUEUE and returns these
buffers to the IN-QUEUE for reuse by the driver.

The use and reuse of buffers during gapless I/O enables an amount
of data much greater than memory capacity to be transferred by
breaking the data into smaller segments, and then transferring
these small segments of data sequentially. The gapless mode SVC
1 parameter block can only be used for gapless I/O operations.

2.3.1 Gapless Mode Supervisor Call 1 (SVC 1) Parameter Block
Format

The gapless mode SVC 1 parameter block must be 24 bytes long,
fullword boundary aligned, and located in a task writable
segment. Location within a task writable segment is necessary so
thal the status of an I/O request can be returned to the status
fields of the SVC 1 parameter block. Figure 2-5 presents the
gapless mode SVC 1 parameter block and coding example.

2-32 48-038 FOD RDl

0(0 Function 11(1)
Code lu

12(2) Device
I independent

status

13(3) Device
dependent

status

4(4)
OUT-QUEUE start address

8(8)
IN-QUEUE start address

12(C)
Buffer length

16 (10)
Length of last buffer

20 (14)
Extended options

SVC 1,parb1k

ALIGN4
parblk DB x'function code'

DB x'lu'
DS 2 bytes for status
DC A (OUT-QUEUE buffer start address)
DC A (IN-QUEUE buffer start address)
DS 4 bytes for buffer length
DS 4 bytes for length of last buffer
DC Y 'extended options'

Figure 2-5 SVC 1 Gapless Mode Parameter Block Format and Coding

48-038 FOD RDl 2-33

Fields:

2-34

Function
code

lu

Device
independent
status

Device
dependent
status

OUT-QUEUE

IN-QUEUE

Buffer length

is a I-byte field indicating that the request
is a data transfer request, the specific
operation to be performed (read or write), and
the extended options pointer. Bit settings
for this field are presented in Table 2-8.

is a l-byte field containing the logical unit
currently assigned to the device where the I/O
request is directed.

is a I-byte field receiving the execution
status of an I/O request after completion.
The status received is not directly related to
the type of device u~ed. Table 2-3 presents
device independent status codes for gapless
operation.

is a I-byte field receiving the execution
status of a gapless I/O request after
completion. The status received contains
information unique to the type of device used.
Table 2-11 presents device dependent status
codes for gapless operation.

is a 4-byte field containing the fullword
address of a queue where the driver places the
starting address of each buffer used in a
gapless I/O operation. If the operation is a
gapless write, these buffers have been
successfully written to tape. If the
operation is a gapless read, these buffers
contain data read from the tape.

is a 4-byte field containing the fullword
address of a queue where the task places the
starting address of each buffer to be used in
a gapless I/O operation. If the operation is
a gapless write, these buffers will be written
to tape. If the operation is a gapless read,
these buffers will be filled with data read
off from a tape.

is a 4-byte field containing the length of
each buffer whose starting address is present
on the IN-QUEUE. Buffer length must be an
even number of bytes for both read and write
operations. All buffers, except the last,
must be the same length within a single
gapless I/O operation. However, the amount of
space used in the last buffer may vary.

48-038 FOO ROI

Length of
last buffer

is a 4-byte field whose contents depend upon
the operation (read or write) being performed.
If the operation is,a gapless read, the driver
fills this field with the length of the last
buffer read off tape. The length of the last
buffer may be optionally supplied by the task.
If the operation is a gapless write, the task
supplies the drive~ with the length of the
last buffer to be written.

Extended
options

is a 4-byte field containing one of two
possible extended function codes indicating
gapless mode I/O. Table 2-12 presents the
extended function codes available for gapless
mode I/O.

2.3.2 Standard Function Code Format - Gapless Mode

Figure 2-6 shows the standard function code format for a gapless
mode data transfer request, and Table 2-8 defines each function
code bit setting.

101 R I W I

Bits:
o 1 2 3 4 5

Extended
Option

6 7

Figure 2-6 Function Code Format for Gapless Mode Data Transfer
Requests

TABLE 2-10 FUNCTION CODE BIT POSITIONS FOR GAPLESS MODE DATA
TRANSFER REQUESTS

BIT
POSITION

o

1

2

BIT
NAME

I Function code
I type
I

I Read

Write

48-038 FOO ROl

BIT SETTING AND MEANING

o = data transfer request. Must
be set for gapless I/O
operations.

I 1 = read operation. (Bit 2
must be set to 0.)

1 = write operation. (Bit 1
must be set to 0.)

2-35

TABLE 2-10 FUNCTION CODE BIT POSITIONS FOR GAPLESS MODE DATA
TRANSFER REQUESTS (Continued)

BIT
POSITION

BIT
NAME

3 I Not used in
I gapless mode

4 I/O proceed

Wait I/O

Wait only

BIT SETTING AND MEANING

o = If the device is not busy,
return control to the call
ing task after initiation
of data transfer to the
device. However, if the
device is busy, the request
is queued and task execu
tion continues. Suggested
for gapless mode.

1 & stop task execution, ini
tiate data transfer to the
device, and wait until the
completion of I/O.

1 = task execution stops and
waits until the completion
of all queued I/O proceed
requests to the specified
lu.

When a wait only request is
issued, bit 4 is the only
bit set in the function
code.

;--J
5 I Not used in

I gapless mode
---1

6

2-36

Conditional
proceed

o - after the I/O request is
issued, put the task into a
wait state if the requested
device is busy and the
total number of queued re
quests exceed the maximum.
Once the I/O request is
completed, the task resumes
execution. If the maximum
number of queued requests
is 1, a pending request
causes the task to be
placed into a wait state.

48-038 FOO ROl

TABLE 2-10 FUNCTION CODE BIT POSITIONS FOR GAPLESS MODE DATA
TRANSFER REQUESTS (Continued)

BIT
POSITION

7

BIT
NAME

Unconditional
proceed

Test I/O
complete

BIT SETTING AND MEANING

1 = any I/O request made to a
device that is busy is re
jected if total number of
queued requests exceed the
maximum, and task execution
continues.

1 test to check for the com
pletion of I/O to a speci
f ied lu.

If a previous I/O proceed
request or queued I/O pro
ceed request does exist,
the condition code is set
to X'F'. However, if there
is no outstanding I/O pro
ceed request, the condition
code is set to X'O'.

When a test I/O complete
request is issued, bit 6 is
the only bit in the func
tion code set. If bit 4 is
set, it is ignored.

Extended option I 1 = tests to see if XSVCl
option was specified at
Link time. If set, the
extended options fullword
in the parameter block is
checked for specified gap
less option. Both the
XSVCI option and this bit
must be set for gapless
operation.

2.3.3 Logical Unit (lu)

An lu is a decimal number ranging from 0 through 254. The
highest lu number that a task can be assigned to is determined by
the Link OPTION command. After loading the task into memory, the
lu must be assigned to a tape drive which supports gapless I/O
(device codes 68-70) through SVC 7 or an ASSIGN command. If no
actual I/O operation is desired, the lu should be assigned to
NULL:, causing a no-operation (no-op) to occur.

48-038 FOO ROI 2-37

2.3.4 Device Independent status Codes

Logical units provide device independent I/O by causing all I/O
requests to be made directly to the lu and not to the device.
The execution status of a gapless I/O request that is independent
of the physical characteristics of the device being used is
returned to the device independent status field of the parameter
block. See Table 2-3. The data remaining in this field from a
previous I/O request is not mOdified until a subsequent I/O is
completed or an error occurs.

2.3.5 Device Dependent status Codes

The device dependent status field, together with the device
independent status field, indicates the execution status of a
gapless I/O request that is directly related to the unique
characteristics of the device being used. Tables 2-9 and 2-11
presents the error status codes for gapless operation. A gapless
operation will cease upon detection of anyone of these errors.

2-38

TABLE 2-11 MAGNETIC TAPE DEVICE DEPENDENT STATUS CODES
(GAPLESS ONLY)

MEANING
========~=====~=======~==========_=~=c=_=======_===_=1

X'8485' Read/write timeout - A read or write time
out condition occurred.

X'8487' The end address read/written by the SELCH
does not match the expected end address.

X'8489' End address returned from SELCH is greater
than the expected end address on gaplees
read.

X'C08l' No buffer is available on the task IN
QUEUE.

X'C082' Address provided by user on IN-QUEUE is
outside user's address space .

•
X'C083', Address of a queue is not on a ful1word

J ,
boundary.

X'C084': Length of buffer is an odd number of
bytes. Length of last buffer is an odd
number of bytes for a write operation.

48-038 FOO ROI

2.3.6 Buffer Queues

The OUT-QUEUE field and IN-QUEUE field are each 4-byte fields
that contain the address of a queue, where:

• the driver places the starting address of each buffer used in
a gapless operation (OUT-QUEUE)~

• the task places the starting address of each buffer to be used
in a gapless operation (IN-QUEUE).

The address of the IN-QUEUE must be greater than the address of
the OUT-QUEUE or the SVC 1 handler will reject the operation.
Figure 2-7 presents the format of both the OUT-QUEUE and
IN-QUEUE.

The user sets up a queue v ia thE~ DLIST xx command, where xx is
the total number of buffer entries allowed. See the Common
Assembly Language/32 (CAL/32) Reference Manual for instructions.

0(0)
Number of slots

4(4)
Current top

8(8)
Flags

12(C)
Flags

16 (10)
Flags

19(9)
I

113 (D)

117(11)

12(2)
Number used

16(6)
Next bottom

Address of first buffer

Address of second buffer

Address of third buffer

...;... - _.- - - - - - .- - - - - - - - -- - - - .- .- - - .. - -~

"'r\
I

'f\
I

1---:
I I
I I

I Flags Address of nth buffer
I
I

Figure 2-7 IN-QUEUE or OUT-QUEUE Structure

48-038 FOO ROI 2-39

Fields:

2-40

Number of
slots

Number used

Current top

Next bottom

Flags

Address of
nth buffer

These fields are standard list parameters
explained in the Common Assembly Language/32
(CAL/32) Reference Manual.

is a I-byte field. The setting of bit zero in
this field identifies whether the buffer is
the last buffer in the list. If bit zero is
set to 0, the buffer is not the last buffer.
If bit zero is set to 1, the buffer is the
last buffer in the queue. Under abnormal
conditions, the last buffer on the out-queue
may not have the flag bit set.

NOTE

To properly terminate a gapless
write operation, the flags field
for the address of the last buffer
to be written should have bit zero
set to 1. A gapless read
operation may be terminated in one
of two ways. If the user wishes
to only read part of a record, or
the user knows how long the record
is, the flags field for the
address of the last buffer read
should have bit zero set to 1. If
the user wishes to read the entire
record, but does not know how long
it is, the flags field for the
address of all buffers should have
bit zero set to O. In this case,
it is mandatory for the user to
retain buffers on the in-queue
until the I/O proceed has been
completed. If exactly the number
of buffers needed is placed on the
in-queue, the last buffer must be
so indicated.

is a 3-byte field containing the hexadecimal
starting address of a buffer.

48-038 FOO ROl

2.3.6.1 Using the Buffer Queue

Gap1ess operations should be specified as I/O proceed completion
operations; therefore, task execution can continue during gapless
I/O. One of the functions a task can perform during gapless I/O
is to prevent the task from running out of buffer space. The
task can accomplish this by removing buffer entries from the
OUT-QUEUE and placing them on the IN-QUEUE after a buffer
transfer is completed. For example, if a task is required to
write 440kb in gapless mode using only five 64k buffers, the
total buffer space available is 320K bytes (or l20K bytes less
than is required to complete the write operation). After the
first buffer has been written, the starting address of the buffer
will be placed on the OUT-QUEUE. While the second buffer is
being written, the task can transfer the address of the first
buffer from -the OUT-QUEUE to the IN-QUEUE. This gives the task
64K bytes more buffer space.

Similarly, the task can transfer the address of the second buffer
to the IN-QUEUE while the third buffer is being read. This
transfer provides the task with enough buffer space for the
remaining 56K bytes. Note that when the task transfers the
address of the second buffer from the OUT-QUEUE to the IN-QUEUE,
the zero bit of the flags field should be set to 1. The length
of the last buffer should be placed in the LENGTH OF LAST BUFFER
field of the SVC 1 parameter block prior to the start of the
operation.

The task should use an ABL instruction to add buffer entries to
the IN-QUEUE and an RTL instruction to remove buffer entries from
the OUT-QUEUE. See the Common Assembly Language/32 (CAL/32)
Reference Manual for more information on how to use the ABL and
RTL instructions.

2.3.6.2 Trap-Causing Events Resulting from Gapless Input/Output
(I/O) Operations

Because a gapless I/O operation should be specified as an I/O
proceed completion operation, the task can be notified that a
gapless read or write has been completed via a task queue trap.
If the SVC I extended function code 3 (gapless I/O with buffer
transfer reporting) has been specified, the task can also receive
a task queue trap each time a buffer address has been added to
the OUT-QUEUE.

Before a task can be notified of gapless I/O completion or a
buffer transfer, the task has to be prepared to receive and
handle a task queue handle trap. See the Application Level
Programmer Reference Manual for information on preparing a task
to handle traps.

48-038 FOO ROI 2-41

2.3.7 Buffer Length

The buffer length field is given to the driver by the task to
inform the driver of the length of the buffers whose starting
addresses are on the IN-QUEUE. Buffer length must equal an even
number of bytes for both read and write operations * All buffers
must be of the same length with the possible exception of the
last buffer. See Section 2.3.8.

2.3.8 Length of Last Buffer

The use of this field is dependent upon the gapless I/O operation
being performed (read or write). The length of this buffer
cannot be greater than that of the other buffers. If a gapless
write operation is being performed, this field will be given to
the driver by the task and contains the length of the last buffer
to be written. This information must be given even if the last
buffer is the same length as the previous buffers and should be
placed in the SVC 1 parameter block before the write is started.

On a gapless read operation, the driver fills this field with the
length of the last buffer read from the tape. For example, if a
150kb record is to be read gapless from a tape and 64kb buffers
are used, a total of three buffers will be required. The first
two buffers will contain l28kb of information; however the third
buffer will contain only 22kb of information. The value 22kb
will be returned to the length of last buffer field in this
example. If desired, this field may be given to the driver by
the task. If the last buffer is specified for a read; i.e.; the
flags field of the address has bit zero set to 1, this field must
be given to the driver by the task.

NOTE

If a gapless read does not reach a normal
completion (status code 0), the contents
of the length of last buffer field are
meaningless.

On a gapless write operation, the length of the last buffer must
be an even number of bytes.

2.3.9 Extended Options Field

The extended options field in a gapless mode SVC 1 parameter
block functions as detailed previously in Section 2.2.7.
However, only two extended function codes are recognized as valid
in a gapless mode SVC 1. These codes are presented in Table
2-12.

2-42 48-038 FOO ROI

TABLE 2-12 EXTENDED FUNCTION CODES FOR
GAPLESS I/O OPERATION

EXTENDED I
FUNCTION I

CODE I OPERATION

2 Gap1ess operation

3 Gapless operation with
buffer transfer reporting

Codes 0-1 and 4-31 are not used with the gapless mode SVC 1
parameter block.

48-038 FOO ROl 2-43

CHAPTER 3
GENERAL SERVICE FUNCTION,S SUPERVISOR CArL 2 (SVC 2)

3.1 INTRODUCTION

SVC 2 provides general service functions distinguished from one
another by a specific function code number. Each SVC 2 function
requires a specific parameter block for proper operation. Refer
to each individual code for its parameter block format and
required coding. Table 3-1 lis·ts all available SVC 2 function
codes with a brief description of each.

TABLE 3-1 SVC 2 FUNCTION CODES

SVC 2 CODE NAME FUNCTION

1------------------------------=----=----======-==========-===== , SVC 2 code 0*1 Make journal
I entries

SVC 2 code I I Pause

SVC 2 code 2 Get storage

SVC 2 code 3 Release storage

SVC 2 code 4 Set status

48-038 FOO ROI

I Makes an entry into the
I system journal from an
I executive task (e-task).

I Places the task in a
I suspended state.

Reserves a workspace area
in the task's address space
for external subroutines
called by the task during
execution.

Releases the temporary
storage locations obtained
by a previous SVC 2 code 2.

Gets storage by decreasing
the task UTOP by the
number of user-specified
bytes.

Modifies the arithmetic
fault interrupt bit and
condition code in the
program status word (PSW).

3-1

t

TABLE 3-1 SVC 2 FUNCTION CODES (Continued)

SVC 2 CODE NAME FUNCTION
====================-=------===================================

SVC 2 code 5

SVC 2 code 6

Fetch pointer

Convert binary
to ASCI I
hexadecimal or
ASCII decimal

Copies the address of UTOP,
CTOP, and UaOT from the
task control block (TCa) and
stores them in the task
user dedicated location
(UDL) _

Converts a binary number to
either an ASCII hexadecimal
or ASCII decimal number.

l---
SVC 2 code 7 I Log message Sends a message to the

SVC 2 code 8 Interrogate
clock

SVC 2 code 9 I Fetch date

SVC 2 code 101 Time of day
I wait

SVC 2 code 111 Interval wait

SVC 2 code
14*

Internal reader

SVC 2 code 151 Convert ASCII
hexadecimal or
ASCII decimal
to binary

3'-2

appropriate log device
regardless of the current
logical unit (lu) assign
ments.

Sends the user the current
time of day calculated in
seconds from midnight in
binary or in formatted
ASC I I .

I Sends the user the current
I date in formatted ASCII.

I Places the calling task in
I a wait state until a
I specific time of day_

Places the calling task in
a wait state for an
interval, which is specified
in milliseconds from the
time the call is executed.

Allows a foreground task
loaded from the system
console to invoke operator
and CSS commands.

Converts an ASCII hexa
decimal or ASCII decimal
number to a binary number.

48-038 FOO ROl

TABLE 3-1 SVC 2 FUNCTION CODES (Continued)

SVC 2 CODE NAME FUNCTION __ === _________________________ == ___ ======z=============== ____ ==

SVC 2 code 161 Pack file
I descriptor

SVC 2 code 171 Scan mnemonic
table

SVC 2 code 181 Move ASCII
characters

SVC 2 code 191 Peek

SVC 2 code 201 Expand a11oca
cation

Processes a user-specified
unpacked file descriptor
(fd) into a packed format to
be used by the operating
system.

Scans for an ASCII character
string in a mnemonic table
and compares it with the
user-specified ASCII charac
ter string for a match.

Moves a specified number of
ASCII characters in memory
from the sending location to
a receiving location.

I Obtains user-related infor
I mation from operating system
I data structures.

Reserved for sequential
tasking machines. Provides
for compatibility with
current 32-bit operating
systems.

SVC 2 code 211 Contract a1loca-1
I tion

Reserved for sequential
tasking machines. Provides
for compatibility with
current 32-bit operating
systems.

I
I

SVC 2 code 23 Timer
management

48-038 Faa R01

Schedules the addition of a
parameter to a task queue on
completion of a specified
interval or a repetitive
interval.

Puts a task in a wait state
until completion of an
interval.

Determines the time remaining
for a previously established
interval to expire.

Cancels a previously
established interval.

3-3

TABLE 3-1 SVC 2 FUNCTION CODES (Continued)

sve 2 CODE NAME FUNCTION
===~ ___ ==z== ____ a= ________ = _______ ==== ______ = ____ == __ =========_

sve 2 code 241 Set
accounting
information

sve 2 code 251 Fetch
accounting
information

sve 2 code
26*

sve 2 code
27*

Fetch device
name

Memory manage
ment

sve 2 code 291 Unpack file
descriptor (fd)

Stores eight bytes of user
supplied information in the
accounting transaction file
(ATF) on task completion or
data overflow of accounting
records.

Fetches accounting informa
tion and stores it in

I a user-specified receiving
1 area.

Searches the volume mnemonic
table for a user-supplied
volume name and returns the
name of the device on which
that volume is mounted.

Allows a user task (u-task)
to access and modify entries
(except shared ones) within
the private segment table
(PST) in its task control
block (Tea).

Converts a packed file
descriptor (fd) from the
file directory or an sve 7
parameter block to its un
packed format.

LEGEND

* indicates sve is documented in OS/32 System Level Programmer
Reference Manual.

3-4 48-038 FOO ROI

I SVC 2 I
1 CODEl I

3.2 SVC 2 CODE 1: PAUSE

SVC 2 code 1 stops task execution and places the task into a
suspended state. This is accomplished through the SVC 2 code 1
parameter block shown in Figure 3-1.

10(0) Il(1)
Option I Code

parblk

SVC 2,parblk

ALIGN 4
DB 0,1

Figure 3-1 SVC 2 Code 1 Par.ameter Block Format and Coding

This parameter block must be 2 bytes long, fullword-boundary
aligned, and does not have to be located within a task writable
segment. Following is a description of each field in the
parameter block.

Fields:

Option

Code

is a I-byte field that must contain a value of
o to indicate no options for this call.

is a I-byte field that must contain the
decimal value 1 to indicate code 1 of SVC 2.

After executing SVC 2 code 1, the following message is displayed
on the system console:

TASK PAUSED

48-038 FOO ROI 3-5

If the task is running under the multi-terminal monitor (MTM),
the above message is displayed on the user console.

While the
directed
continue
execution
2 code 1.

3-6

task is paused, the operator can issue commands
to the paused task to change the task environment. To
task execution, enter the CONTINUE command. Task

resumes wtth the instruction immediately following SVC

48-038 FOO ROl

3.3 SVC 2 CODE 2: GET STORAGE

I SVC 2 I
1 CODE 2 I

SVC 2 code 2 reserves a workspace area for external subroutines
called by the task during execution (e.g., FORTRAN run-time
library (RTL) routines). This workspace is reserved in the
unused portion of the tasks impure segment between UTOP and CTOP.
For more information on this segment, see the OS/32 Application
Level Programmer Reference Manual.

The SVC 2 code 2 operation does not increase the task's allocated
memory size.

Figure 3-2 illustrates the parameter block for the SVC 2 code 2.

0(0)
Option

4(4)

parblk

II(1) 12(2) 13(3)
Code Reserved I User register

1

Number of' bytes

SVC 2,parblk

ALIGN 4
DB option,2,0
DB user register
DC F'number of bytes'

Figure 3-2 SVC 2 Code 2 Pal'ameter Block Format and Coding

This parameter block must be 8 bytes long, fullword-boundary
aligned, and located in a task writable segment when option X'80'
is used. A general description of each field in the parameter
block follows.

48-038 FOO ROl 3-7

Fields:

option

Code

Reserved

User
register

Number
of bytes

is a I-byte field that must contain one of the
following options:

• Option X'OO' ~ese~ves the use~-specified
number of bytes in fullword increments in
the unused portion of the task impu~e
segment between UTOP and CTOP.

• Option X'80' ~ese~ves all of the ~emaining
unused portion of the task impure segment
between UTOP and CTOP.

is a I-byte field that must contain the
decimal value 2 to indicate code 2 of sve 2.

is a ~ese~ved l-byte field that must contain
a ze~o.

is a I-byte field that must contain a decimal
number ranging from 0 th~ough 15 specifying
the ~egister to ~eceive the sta~ting address
of the reserved wo~kspace a~ea.

is a 4-byte field containing different
information for each option.

• Option X'OO' contains
numbe~ of bytes to
workspace area.

the use~-specified
be reserved for the

• Option X'80' ~eceives the numbe~ of bytes
actually reserved for the wo~kspace a~ea.

When a task is link-edited, the default task workspace (the
diffe~ence between CTOP and UTOP) should be large enough to
provide enough wo~kspace fo~ both the task and the external
subroutines. The task wo~kspace can be increased through the
WORK= paramete~ of the Link OPTION command, the LOAD command, or
an sve 6.

3-8 48-038 FOO ROI

After executing SVC 2 code 2, the condition code is set as
follows:

Condition codes

I C I V I GIL I
I------e--------I
101 0 I 0 1 0 I
1---------------1
101110101

Normal termination

User-specified number of bytes is a
negative value or a value greater than
the task's allocated memory size.

}IOTE

When SVC 2 code 2 is executed, and the
task UTOP changes ,. the UTOP address
stored in the task UDL is not updated to
contain the most current UTOP. SVC 2
code 5 updates the address in the UDL.

3.3.1 SVC 2 Code 2, Option X'OO'

If option X'OO' is specified, the address of the task's current
UTOP is adjusted to include the number of user-specified bytes in
the parameter block. Once the UTOP address is adjusted, the
starting address of the reserved workspace area, which is the
original or previous UTOP, is stored in the user-specified
register. This option can reserve new workspace areas until they
are needed during task execution in subsequent calls.

The number of bytes should be specified in fullword increments
because the UTOP address is rounded up to the nearest fullword
boundary.

Example:

SVC 2,GET

ALIGN 4
GET DB 0,2,0

DB 5
DC Y'600' 1.SK

This example is illustrated in Figure 3-3. A task is loaded with
a task workspace area of 4kb specified in the LOAD command.
After the task is loaded, UTOP is located at X'AOO' and CTOP is
located at X'l9FE'. After executing SVC 2 code 2, UTOP is
adjusted to X'lOOO'. The remaining unused portion (area between
X'AOO' and X'1AOO') can be used by subsequent routines when
needed during task execution.

48-038 FOO ROl 3-9

If the user-specified number of bytes for option X'OO' is a
negative value or greater than the task current allocated memory
size (CTOP):

• The UTOP address is not adjusted.

• An address of 0 is returned in the user-specified register.

• The condition code is set to 4 (V bit set).

5630

X'lAOO'
(ABOVE USER
TASK)

UTOP X'l 000'
(AFTER SVC 2
CODE 2 EXECUTION)

X'600' BYTES
(RESERVED BY
SVC 2 CODE 2)

UTOP X'AOO'
(AT LOAD TIME)

X'lOO'

UBOT X'O'

USER CODE

UDL

NOTES
It·

EXPANDED THROUGH
WORKSPACE FIELD OF
LOADCOMMAND--------~

X'19FE' CTOP
(AFTER LOAD TIME)

X'A54' CTOP
(BEFORE LOAD TIME)

UTOP is the starting address of the first
contiguous fullword outside the user
code. •

CTOP is the starting address of the
halfword within the allocated
address space.

last
task

Figure 3-3 Task Impure Segment for SVC 2 Code 2, Option X'OO'

3-10 48-038 FOD ROl

3.3.2 SVC 2 Code 2, Option X'SO'

If option X'SO' is specified, the parameter block must be located
in a writable segment. The address of the task's current UTOP is
adjusted to include all of the remaining unused portion in the
impure segment making UTOP equal CTOP+2. Once the UTOP address
is adjusted, the starting address of the reserved workspace area,
which is the address of the original or previous UTOP, is stored
in the user-specified register. Also, the number of bytes
actually reserved is stored in the number of bytes field in the
parameter block.

Example:

SVC 2,GET

ALIGN 4
GET DB X'BO',2,0

DB 5
OS 4

This example is illustrated in Figure 3-4. A task is linked with
a workspace of 4kb. After the task is loaded, UTOP is located at
X'AOO'. After executing SVC 2 code 2, UTOP is adjusted to
X'1900'.

48-038 FOO ROI 3-11

51531

UTOP X'1900'
(AFTER SVC 2

CODE 2 EXECUTION

X'FOO' BYTES

UTOP X'AOO'
(AT LOAD TIME)

USER CODE

EXPANDED THROUGH
THE LINK OPTION
COMMAND -----,

X'18FE' CTOP
(AFTER EXPANSION
BY LINK)

X'EOO' BYTES

X'AFE' CTOP
(BEFORE EXPANSION
BY LINK)

X'100'

UDL

UBOT X'O'

NOTE

UTOP is the starting address of the first
contiguous fullword outside the user
code.

CTOP is the starting address of the
halfword within the allocated
address space.

last
task

Figure 3-4 Task Impure Segment for SVC 2 Code 2, Option X'SO'

3-12 48-038 FOO ROl

I SVC 2 I
I CODE 3 I

3 . 4 SVC 2 CODE 3: RELEASE STORAGE

SVC 2 code 3 releases the workspace area in the unused portion of
of the task impure segment that had been reserved by a previous
SVC 2 code 2 (See Section 3.3). Releasing the reserved workspace
for external subroutines does not decrease the task's allocated
memory size. The SVC 2 code 3 parameter block is shown in Figure
3-5.

10(0)
1 Option

Il(1)
Code

12(2)
I
I

I
Reserved

1---
14(4)

Number of bytes

SVC 2,parblk

ALIGN 4
parblk DB 0,3

DC H'O'
DC F'number of bytes'

Figure 3-5 SVC 2 Code 3 Parameter Block Format and Coding

This parameter block is 8 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
description of each field in the parameter block follows.

Fields:

Option

Code

48-038 FOO ROl

is a I-byte field that contains a value of 0
to indicate no options for this call.

is a I-byte field that must contain the
decimal value 3 to indicate code 3 of SVC 2.

3-13

Reserved

Number
of bytes

is a reserved 2-byte field that must contain
zeros.

is a 4-byte field that must contain the
user -spec if ied number of bytes of the r·eserved
workspace to be released.

When executing this SVC, the address of the task's current UTOP
is adjus·ted to exclude the user-specif ied number of bytes of
reserved workspace. If the number of bytes is not specified in
fullword increments, the UTOP address is adjusted by rounding
down to the ne.arest fullword boundary. After executing SVC 2
code 3, the condition code is set as follows:

Condition codes .

1 C 1 V 1 GIL 1
1===============1
101 0 I 0 1 0 1 Normal termination
1---------------1
101 1 I 0 101 User-specified number of bytes is a

negative value or a value greater than
the task's allocated memory size.

Example:

SVC 2, RELEASE

ALIGN 4
RELEASE DB 0,3

DC H'O'
DC F'256'

Figure 3-6 illustrates this example.
workspace of 4kb and loaded into
loaded, UTOP is located at X'AOO' and
After executing SVC 2 code 2, UTOP is
executing SVC 2 code 3, 256 bytes
releat;sed, adjusting UTOP to X'ISOO'.

3-14

A task was linked with a
memory. After the task is

CTOP is located at X'lSFE'.
adjusted to X'l900'. After
of reserved storage are

48-038 FOO R01

5632

UTOP X'1900'
(AFTER SVC 2
CODE 2 EXECUTION)

X'lOO' BYTEJ

UTOP X'18aO' ·'1
(AFTER SVC 2
CODE 3 EXECUTION)

UTOP X'AOO'
(AT LOAD TIME)

X'lOO'

UBOT X'O'

USER CODE

UDL

NOTE

X'18FE' CTOP
(AFTE R EXPANSION
BY LINK)

X'EOO' BYTES

X'AFE' CTOP
(BEFORE EXPMJSION
BY LINK)

UTOP is the starting address of the first
contiguous fullword outside the user
code.

CTOP is the starting address of the
halfword wtthin the allocated
address space.

last
task

Figure 3-6 Task Impure Segment for SVC 2 Code 3

If the user-specified number of bytes is a negative number or is
more than the number specified by Link, the UTOP address is not
adjusted and the condition code is set to 4 (V bit set).

48-038 FOO ROl 3-15

I SVC 2 I
I CODE 4 I

3.5 SVC 2 CODE 4: SET STATUS

SVC 2 code 4 modifies the arithmetic fault interrupt bit and the
condition code settings in the program status word (PSW). Figure
3-8 shows the PSW and the bits affected by the set status
operation. When the arithmetic fault interrupt bit setting is
modified, interrupts are enabled or disabled. When the condition
code setting is modified, the current 4-bit setting is replaced
with a new 4-bit setting. This is accomplished through the SVC
2 code 4 parameter block shown in Figure 3-7.

10(0)
Option

parblk

11(1) 12(2)ArithmeticI3(3) Conditionl
Code fault code

parameter parameter

SVC 2,parblk

ALIGN 4
DB option,4
DB arithmetic fault parameter, condition

code parameter

Figure 3-7 SVC 2 Code 4 Parameter Block Format and Coding

This parameter block is 4 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

Fields:

Option

3-16

is a I-byte field that must contain one of the
following options:

• Option X'OO'-modifies the arithmetic fault
bit and condition code in the PSW.

• Option X'80'-modifies only the condition
code in the PSW. See Figure 3-8.

48-038 FOO ROl

Code

Arithmetic
fault
parameter

Condition
code
parameter

is a l-byte field that must contain the
decimal value 4 to indicate code 4 of SVC 2.

is a l-byte field that must contain one of
the following parameters when option X'OO' is
specified. For option X'80', this field must
contain zeros.

• X'OO'-disables all arithmetic fault
interrupts for model 7/32 and 8/32
processors. For series 3200 processors,
only arithmetic fault interrupts due to
floating point underflow are disabled.

• X'lO'-enables
interrupts ..

all arithmetic fault

is a l-byte field that must contain a
parameter with a hexadecimal value ranging
from X'OO' to X'OF'.

W 111M IA II IRPIQ IP C IV IG IL I

Bits:
o 15 16 17 18 19 20 21 22 23 24 27 28 29 30 31

Bits:
32

Reserved

---------------~ t----------------
Location I

---------------1 ~----------------

39 40 63

Figure 3-8 Program status Word (PSW)

48-038 FOO ROl 3-17

An arithmetic fault occurs during an arithmetic operation for any
of the following conditions:

• Fixed point quotient overflow

• Fixed point division by 0

• Flo,ating point ,overflow and underflow

• Floating point division by 0

The condition code (bits 28 through 31) is set after executing
certain instructions. Each bit in the condition code corresponds
to .a result or condition caused by executing an instruction. The
condition code settings for arithmetic operations are;

Condition codes

I C I V I GIL 1
I=======.:::=====:==-:
11101 0 I 0 Arithmetic carry, borrow, or shifted carry
1- .. --------------
: 0 I 1 I 0 I 0 Arithmetic overflow
1---------------
I 0 : 0 I I I 0 Greater than 0
1--- -----------
I 0 I 0 101 I Less than 0

These four bits have different meanings for logical operations,
branching operations, and I/O operations. For the definitions of
the bit settings for each particular operation, see the
appropriate processor manual.

3.5.1 SVC 2 Code 4, Option X'OO'

If the SVC 2 code 4 parameter block contains X'OO' in the option
field, X'OO' in the arithmetic fault field, and a value ranging
from X·OO· through X'OF' in the condition code field, all
arithmetic faults are ignored for model 7/32 and 8/32 processors.
For Series 3200 processors, only arithmetic faults resulting from
floating point underflow are ignored. For more information on
Series 3200 arithmetic fault interrupts, see the appropriate
Series 3200 processor manual. The current condition code value
in the PSW is replaced with the value specified in the condition
code field of the parameter block.

3-18 48-038 FOO ROl

If the SVC 2 code 4 parameter block contains X'OO' in the option
field, X'lO' in the arithmetic fault field, and a value ranging
from X'OO' through X'OF' in the condition code field, all
arithmetic fault interrupts are enabled. The current condition
code value in the PSW is replaced with the value specified in the
condition code field of the paralneter block.

3.5.2 SVC 2 Code 4, Option X'SO'

If option X'SO' is specified and the condition code parameter
field contains a value of X'OO' through X'OF', the current
condition code value of the PSW is replaced with the value
specified in the condition code field of the parameter block.
The arithmetic fault field is ignored.

48-038 FOO ROl 3-19

I SVC 2 I
I CODES I

3.6 SVC 2 CODE 5: FETCH POINTER

SVC 2 code 5 loads the starting address of a task's user
dedicated location (OOL) into a user-specified register. It then
stores the current addresses of UBOT, UTOP, and CTOP, located in
the task control block (TeB) into their corresponding locations
in the task OOL. This is accomplished through the SVC 2 code 5
parameter block shown in Figure 3-9.

10(0)
1 . Option
I
I

parblk

Il(1)
Code

SVC 2,parblk

ALIGN 4
DB 0,5,0
DB user register

12(2)
J Reserved
I
I

13 (3) 1
I User register I
I I
I I

Figure 3-9 SVC 2 Code 5 Parameter Block Pormat and Coding

This parameter block is 4 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
description of each field in the parameter block follows.

Fields:

option

Code

Reserved

3-20

is a I-byte field that must contain the value
o to indicate no options for this call.

is a l-byte field that must contain the
decimal number 5 to indicate code 5 of SVC 2.

is a reserved l-byte field that must contain
a o.

48-038 FOO ROI

User
register

is a l-byte field
decimal number from 0
the register that
address.

that must contain a
through 15 indicating

receives the UDL starting

When executing this call, the UDL starting address, which is
loaded into the user-specified register, varies for u-tasks and
executive tasks (e-task). The starting address for a u-task is
the relative address, which is always O. The starting address
for an e-task is the absolute address, which depends on the task
memory location.

If the user modified the UDL by changing address pOinters or if
UTOP was changed by a GET or RELEASE STORAGE, the contents of
CTOP, UTOP, and UBOT in the UDL might not be valid. sve 2 code
5 restores this data to a valid state by storing the current
values of CTOP, UTOP, and UBOT into the UOL.

Example:

UDL after execution of sve 2 code 2 and before execution of sve 2
code 5

5633

UTOP t------I X'14D'

USER CODE

I

\

X'100·1~-------.---------IIl
•
•

1
UDL 1

UBOTX'O' ~-X-'-lF-E-'~I--x-'l-2-8,--91---x-'o-,--'I~<~, -',,~I~--~I~: -----"71------1r--·--1]

CTOP UTOP UBOT + TSKO + MSG R SV14 t RESERVED RESERVED

48-038 FOO ROl

CTOP

X'IFE'

3-21

UOL after execution of SVC 2 code 5

5634

I CTOP
X'IFE'

USER CODE

UTOP 1 X'14D'

\ , \

x'loo'l • t
•
•

l X'IFE'

UDL

J I I I I I I I UBOT X'D'
X'14D' X'Q'

CTOP UTOP UBOT t TSKQ t MSGR SV14

t RESERVED RESERVED

For more information on the UOL, see the OS/32 Application Level
Programmer Reference Manual.

3,-22 48-038 FOO ROl

1 SVC 2
1 CODE 6 1

3 . 7 SVC 2 CODE 6: CONVERT BINARY NUMBER TO ASC I I HEXADEC I MAL OR
ASCI I DECIMAL

SVC 2 code 6 converts an unsigned 32-bit binary number located in
the user register 0 to an ASCII hexadecimal number or an ASCII
decimal number. This is accomplished through the SVC 2 code 6
parameter block shown in Figure 3-10.

0(0)
Option+n

4(4)

Il(1) 12(2)
Code Reserved

Address of receiving buffer

SVC 2,parblk

ALIGN 4
parblk DB option+n,6

DC H'O'
DCF A(receiving buffer)

Figure 3-10 SVC 2 Code 6 Parameter Block Format and Coding

This parameter block is 8 bytes long, fullword-boundary aligned,
and must be located in a task. writable segment. A general
description of each field in the parameter block follows.

48-038 FOO ROl 3-23

Fields:

Option+n

Code

Reserved

Address of
receiving
buffer

is a l-byte field that must contain the sum of
one of the following options and n (n
specifies a decimal number from 0 through 63
indicating the number of bytes in the buffer
specified in the SVC 2 code 6 parameter
block) .

• Option X'OO'+n converts a binary number to
ASCII hexadecimal.

• Option X'40'+n converts a binary number to
ASCI I hexadec imal, suppressing leading
zeros.

• Option X'80'+n converts a binary number to
ASCI I decimal.

• Option X'CO'+n converts a binary number to
ASCI I dec imal, supressing leading zeros.

is a l-byte field that mu~t contain the
decimal number 6 to indicate code 6 of SVC 2.

is a reserved 2-byte field that must contain
zeros.

is a 4-byte field that must contain the
address of the previously allocated buffer
that receives the converted number. This
address any byte can be located on any byte
boundary.

'rhe receiving buffer should be defined to receive the largest
number, which is 4,294,967,295 (2 -1), that can be converted
from register O. Allocate an 8-byte buffer for binary to ASCII
hexadecimal. Allocate a lO-byte buffer for binary to ASCII
decimal. If the user's largest number to be converted is less
than 2 -1, the receiving buffer can be less than the suggested
length of the buffer.

When the user-specified binary number located in register 0 is
converted, the result is stored right-justified in the receiving
buffer with the leftmost significant digits filled with ASCII
zeros. However, if the converted number is longer than the
buffer, the leftmost digits of the converted number are lost. If
suppression of leading zeros is requested, the leftmost zeros in
the receiving buffer are filled with spaces (hexadecimal 20).

3·-24 48-038 FOO ROl

3.7.1 SYC 2 Code 6, Option X'OO'+n

If option X'OO'+n is specified, the unsigned 32-bit binary number
located in the user register 0 is converted to an ASCII
hexadecimal number. The resulting number is stored
right-justified in the receiving buffer with the leftmost
significant digits filled. with i~CII zeros (hexadecimal 30).

Example:

LI 0,F'8520'

SYC 2, CONVERT

ALIGN 4
CONVERT DB X'00'+8,6

DC H'O'
DCF A(BUF)

aUF OS 8

Register 0 before and after execution of SVC 2 code 6

10 01 0 012 114 81 Hex

Receiving buffer after execution of sve 2 code 6

Zero filled

~--------------.--
13 01 3 013 013 013 213 113 413 81 Hex

3.7.2 SYC 2 Code 6, Option X'40'+n

If option X'40'+n is specified, the unsigned 32-bit binary number
located in the user register 0 is converted to an ASCII
hexadecimal number. The resulting number is stored
right-justified in the receiving buffer with the leftmost
significant digits filled with ASCII spaces (hexadecimal 20).

48-038 FOO ROI 3-25

3.7.3 SVC 2 Code 6, Option X'80'+n

If option X'80'+n is specified, the unsigned 32-bit binary number
located in the user register 0 is converted to an ASCII decimal
number. The resulting number is stored right-justified in the
buffer with the leftmost significant digits filled with ASCII
zeros (hexadecimal 30).

Example:

PROG CONVERT

LI 0,F'16322'

SVC 2 , CONVERT

ALIGN 4
CONVERT DB X'80'+10,6

DC H'O'
DCF A(BUF)

aUF OS 10

Register 0 before and after execution of SVC 2 code 6

10 01 0 013 FIC 21 Hex

Receiving buffer after execution of SVC 2 code 6

Zero-filled

13 01 3 013 013 013 013 113 613 313 213 21 Hex

3.7.4 SVC 2 Code 6, Option X'CO'+n

If option X'CO'+n is specified, the unsigned 32-bit binary number
located in the user register 0 is converted to an ASCII decimal
number. The resulting number is stored right-justified in the
receiving buffer with the leftmost significant digits containing
zeros filled with ASCII spaces (hexadecimal 20).

3-26 48-038 FOO ROI

3.8 SVC 2 CODE 7: LOG MESSAGE

I SVC 2 I
I CODE 7 I

SVC 2 code 7 sends a user-specified message to the system
console, user terminal, or user-specified log device, depending
on task environment. This is accomplished through the SVC 2 code
7 parameter block in Figure 3-11. Log devices for specific task
environments are:

• System console for background tasks

• System console for foreground tasks

• User MTM terminal for MTM terminal tasks

• User-specified log device for MTM batch task

If no user-specified log devj~'ce is allocated for MTM batch tasks,
the message is lost.

0(0)
Option

4(4)

Il(1) 12(2)
Code Length of message

Contents of message* or address of message buffer

parblk

SVC 2,parblk

ALIGN 4
DB option,7
DC H'length of message'
DC C'contents of message' or

A(message buffer)

* When the contents of message field is used, the size of
the parameter block can vary.

Figure 3-11 SVC 2 Code 7 Parameter Block Format and Coding

48-038 FOO ROl 3-27

This parameter block is 8 bytes long if the address of message
buffer field is used. It is variable in length if the contents
of message field is used. It must be fullword-boundary aligned
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

Fields:

option

3-28

Code

Length of
message

is a I-byte field that must contain one of the
following options:

• Option X'OO' indicates message contents,
formatted.

• Option X'20' indicates message contents are
formatted and sent to system console only.

• Option X'40' indicates message at specified
buffer address, formatted.

• Option X'60' indicates message at specified
buffer address is formatted and sent to
system console only.

• Option X'80' indicates message contents,
image mode.

• Option X'AO' indicates message contents are
sent in image mode to system console only.

• Option X'CO' indicates message at specified
buffer address, image mode.

• Option X'EO' indicates message at speicfied
buffer address is sent in image mode to
system console only.

is a I-byte field that must contain the
decimal number 7 to indicate code 7 of SVC 2.

is a 2-byte field that must contain a decimal
number indicating the number of bytes the
message occupies. The message can be
truncated by the log device driver. If the
message is being logged to the system console,
its maximum length is determined at system
generation (sysgen) time.

48-038 FOO ROl

contents
of message

is a variable-length field that must contain
the message to be sent to the log device.

Address of
message
buffer

is a 4-byte field that must contain the
starting address of the buffer that contains
the message to be sent to the log device.
This buffer can be on any byte boundary.

When the message is sent to the appropriate log device, it is
either formatted or in image mode. When a formatted message is
sent to a device:

• all trailing blanks in the buffer or at the end of the message
are eliminated,

• a carriage return line feed is automatically appended to the
message, and

• the message terminates when the end of the buffer or message
is reached or when a carriage return is found in the message.

When a message is sent to a device in image mode, the message
terminates when the end of the buffer or message is reached. If
in image mode, a message with multiple lines can be sent by
executing a single SVC: 2 code 7 for each line. However, each
line should include a carriage return and line feed at the end.
The image options should be used with caution because the amount
of time that must remain for a carriage return to occur differs
on various console devices.

3.8.1 SVC 2 Code 7, Option X'OO'

If option X'OO' is
parameter block is
device.

Example:

specified,
formatted

SVC 2,LOGMSG

ALIGN 4
WG~G DB X'OO',7

DC H'32'

the
and

message specified in the
sent to the appropriate log

DC C'OPERATOR-PLS MOUNT TP028 ON MAGI'

48-038 FOO ROl 3-29

Contents of message buffer before and after execution of SVC 2
code 7

14FI50145152101451521 15212DI5014CI5312014DI4FI5514EI5412015415013013213812014F14E1201.4D141146131 ASCII
;--~--------------
10 IP IE IR IA IT 10 IR 1- IP IL IS I 1M 10 IU IN IT I IT IP 10 12 18 I 10 IN I 1M IA 10 11

Log device after execution of SVC 2 code 7

OPERATOR-PLS MOUNT TP028 ON MAGI

3.8.2 SVC 2 Code 7, Option X'20'

If option X'20' is specified, the message specified in the
parameter block is formatted as for option X'OO'. The message is
then sent unconditionally to the system console.

option X'20' is used exclusively for tasks running under MTM.

3.8.3 SVC 2 Code 7, Option X'40'

If option X'40' is specified, the contents of the message buffer
pointed to by the address specified in the parameter block are
formatted and sent to the appropriate log device.

3.8.4 SVC 2 Code 7, Option X'60'

If option X'60' is specified, the contents of the message buffer
are formatted as for option X'40'. The message is then sent
unconditionally to the system console.

Opt.ion X'60' is used exclusively for tasks running under MTM.

3.8.5 SVC 2 Code 7, Option X'SO'

If option X'80'
parameter block
log device.

3-30

is specified, the message specified in the
is in image mode and is sent to the appropriate

48-038 FOO ROl

Example:

SVC 2,LOGMSGl
SVC 2,LOGMSG2

ALIGN 4
LOGMSG1 DB X'80',7

DC H' 32'
DC C'OPERATOR-PLS MOUNT TP028 ON MAG 1 ,
ALIGN 4

LOGMSG2 DB X'80',7
DC H'19'
DC C 'SET TAPE AT! 800 SP I '

contents of message buffer before and after execution of SVC 2
code 7

14FISOl4SIS2141lS414FIS212DISOl4CIS312014DI4FISSI4EI54120lS41S013013213812014FI4EI2014DI41146131 ASCII
1---
10 IP IE IR IA IT 10 IR 1- IP IL IS I 1M 10 IU IN IT I IT IP 10 12 18 I 10 IN I 1M IA 10 11

Contents of message buffer before and after execution of second
SVC 2 code 7

1531451541201541411501451201411541201381301301201421501491 ASCII
1--I
IS IE IT I IT IA IP IE I IA IT I 18 10 10 I IS IP II I

Log device after execution of second SVC 2 code 7

SET TAPE AT 800 BPI TP028 ON MAG1

(no line feed appended, message overwritten)

48-038 FOO R01 3-31

3.8.6 SVC 2 Code 7, Option X'AO'

If option X'AO' is specified, the message specified in the
parameter block is in image mode as for option X'80', but the
message is sent unconditionally to the system console.

option X'AO' is used exclusively for tasks running under MTM.

3.8.7 SVC 2 Code 7, Option X'CO'

If option X'CO' is specified, the contents of the message buffer
pointed to by the address specified in the parameter block are in
image mode and are sent to the appropriate log device.

3.8.8 SVC 2 Code 7, Option X'EO'

If option X'EO' is specified, the contents of the message buffer
are in image mode as for option X'CO', but the message is sent
unconditionally to the system console.

Option X'ED' is used exclusively for tasks running under MTM.

3-32 48-038 FOO ROl

3.9 SVC 2 CODE 8: INTERROGATE CLOCK

I SVC 2 I
I CODE 8 I

SVC 2 code 8 sends the current t.ime of day to a user-specified
buffer. This is accomplished t.hrough the SVC 2 code 8 parameter
block shown in Figure 3-12.

0(0)
Option

4(4)

parblk

Il(1) 12(2)
I Code Reserved

Address of receiving buffer

SVC 2,parblk

ALIGN 4
DB option,S
DC H'O'
DCF A(receiving buffer)

Figure 3-12 SVC 2 Code 8 Parameter Block Format and Coding

This parameter block is 8 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

48-038 FOO ROl 3-33

Fields:

option

Code

Reserved

Address of
receiving
buffer

This 1-byte field must contain one of the
following options:

• Option X'OO'-returns the time of day as two
fu1lwords of ASCII data in the form,
hh:mrn:ss

• Option X'80'-returns the time of day as a
ful1word of binary data indicating the
number of seconds past midnight.

• Option X'40'-returns
fu11words of ASCII
hh:mrn:ss.sss

the time as
data in the

three
form:

• Option X'CO'-returns the time as two
fu11words of binary data. The first
fu11word indicates the number of seconds
past midnight. The second fu11word
indicates the number of milliseconds past
midnight.

is a I-byte field that must contain the
decimal number 8 to indicate code 8 of SVC 2.

is a reserved 2-byte field that must contain
zeros.

is a 4-byte field that
starting address of the
the current time of day.

must
buffer

contain the
to receive

The current time of day is calculated as seconds from midnight
(midnight equals 0) and is taken from the line frequency clock
(LFC) maintained by the system.

3.9.1 SVC 2 Code 8, Option X'OO'

If option X'OO' is specified, the current time of day is returned
in ASCII format to a user-specified buffer located in a task
writable segment. This buffer must be at least 8-bytes long.
The current time of day is returned as follows.

Format:

hh:mrn:ss

3-34 48-038 FOO ROl

Parameters:

hh are two ASCI I characters representing the
number of hours.

mm are two ASCI I characters representing the
number of minutes.

ss are two ASCI I characters representing the
number of seconds.

Example:

Contents of buffer after execution of SVC 2 code 8 option X'OO'
when current time of day is 10:09:03

13 11 3 013 AI3 013 913 AI3 013 31 Hex
1--------------------------------
11101: 10191: 10131

hh ss

3.9.2 SVC 2 Code 8, Option X'SO'

If option X'80' is specified, the current time of day in seconds
from midnight is sent in binary format to a user-specified buffer
located in a task writable segment. This buffer must be at least
4 bytes long and aligned on a fu11word boundary.

Example:

Contents of buffer after execution of SVC 2 code 8 option X'BO'
when current time of day is 10:13:48

10 01 0 018 FID CI Hex

~
36828 - 10:13:48

(decimal)

The contents of this buffer represent 36,828 seconds from
midnight.

48-038 FOO R01 3-35

3.9.3 SVC 2 Code 8, Option X'40'

If option X'40' is specified, the current time of day is returned
in ASCII format to a user-specified buffer in a task writable
segment. This buffer must be at least 12-bytes long. The
current time of day is returned as follows.

Format:

hh:mm:ss:sss

Parameters:

hh are two ASCI I characters representing
number of hours.

mm are two ASCI I characters representing
number of minutes.

55 are two ASCI I characters representing
number of seconds.

sss are three ASCI I characters representing
number of milleseconds.

Example:

Contents of buffer after execution of SVC 2 code option X'40',
when current time of day is 10:41:32.8

the

the

the

the

: 31 1 30 1 3A I 34 1 31 I 3A I 33 I 32 I 3A I 38 I 30 I 30 1 Hex
1---1

1101: 14111: 13121: 1810 10 I

hh mm ss sss

3-36 48-038 FOO ROl

3.9.4 SVC 2 Code 8, Option X'CO

If option X'CO' is specified, the current time of day in seconds
and milliseconds from midnight is sent in binary format to to a
user-specified buffer located in a task writable segment. This
buffer must be 8 bytes long and aligned on a fullword boundary_

Example:

Contents of buffer after execution of SVC 2 Code 8 option X'CO'
when current time of day in ASCII is -10:41:32.8

I 00 I 00 I 96 I SC I 00 I 00 I 03 I 20 I Hex

ss sss

The contents of this buffer represent 38,492 seconds and 800
milliseconds from midnight.

48-038 FOO ROl 3-37

I SVC 2 f
I CODE 9 I

3.10 SVC 2 CODE 9: FETCH DATE

SVC 2 code 9 sends the current date to a user-specified buffer.
This is accomplished through the SVC 2 code 9 parameter block
shown in Figure 3-13.

0(0)
Option

4(4)

11 (1) 12(2)
Code Reserved

Address of receiving buffer

SVC 2,parblk

ALIGN 4
parblk DB 0,9

DC H'O'
DCF A(receiving buffer)

Figure 3-13 SVC 2 Code 9 Parameter Block Format and Coding

This parameter block is 8 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

3-38 48-038 FOO ROI

Fields:

option

Code

Reserved

Address
of receiving
buffer

is a l-byte field that must contain a 0 to
indicate no options for this call.

is a l-byte field that must contain the
decimal number 9 to indicate code 9 of SVC 2.

is a reserved 2-byte field that must contain
zeros.

is a 4-byte field that must contain
starting address of the buffer receiving
current date. The buffer must be 8 bytes
and located in a task writable segment.
buffer can be located on any boundary.

the
the

long
The

SVC 2 code 9 sends the current date to the receiving buffer in
either one of the following:

Format:

mm/dd/yy or dd/mm/yy

Parameters:

mm

dd

yy

are two ASCII characters representing the
month.

are two ASCII characters representing the day.

are two ASCII characters representing the
year.

When the system is installed, one of these formats is chosen as
the default for all operat,ions. To return the current date in
the alternate format, use the DATE command at sysgen time.

48-038 FOO ROl 3-39

Example:

DATE

PAUSE

SVC 2,DATE
SVC 2, PAUSE

ALIGN 4
DB 0,9
DC H'O'
DCF A(BUF)
ALIGN 4
DB 0,1

Contents of receiving buffer after execution of SVC 2 code 9
when the current date in ASCII is 07/06/81

13 01 3 712 FI3 013 612 FI3 813 11 Hex
1--------------------------------1
1 0 I 7 1 / 1 0 I 6 I / I 8 I 1 I ASCII

nun

3-40

~

dd yy

48-038 FOO ROl

I SVC 2
I, CODE 10

3.11 SVC 2 CODE 10: TIME OF DAY WAIT

SVC 2 code 10 suspends the SVC calling task until a
user-specified time of day occurs. Then the calling task resumes
execution. This is accomplished through the SVC 2 code 10
parameter block shown in Figure 3-14.

0(0)
Option

4(4)

parblk

11 (1) 12(2)
Code Reserved

Time of day

SVC 2,parblk

ALIGN 4
DB 0,10
DC H'O'
DC Y'time of day'

Figure 3-14 SVC 2 Code 10 Parameter Block Format and Coding

The SVC 2 code' 10 parameter block is 8 bytes long,
fullword-boundary aligned, and does not have to be located in a
task writable segment. A general description of each field in
the parameter block follows.

Fields:

Option

Code

Reserved

48-038 FOO ROI

is a I-byte field that must contain a 0 to
indicate no options for this'call.

is a I-byte field that must contain the
decimal number 10 to denote code 10 of SVC 2.

is a reserved 2-byte field that must contain
zeros.

3-41

Time of
day

is a 4-byte field that must contain a decimal
number from 0 through 268,435,455 (228 -1)
representing in seconds a specific time of day
when the calling task is to start execution.
The decimal number specified must be
calculated in seconds from midnight.

• 0 seconds equals 00:00:00 A.M.
of the current day

(midnight)

• 86,399 seconds equals 23:59:59 P.M. of the
current day

See Table 3-2 for a range of values in seconds
and their corresponding time of day. Any
value greater than 86,399 refers to days in
the future. If the specified time of day has
passed, the same time on the following day is
assumed.

TABLE 3-2 TIME OF DAY VALUES CALCULATED IN
SECONDS FROM MIDNIGHT

I TIME OF DAY I TIME OF DAY
I 00:00:00 HOURS I 23:59:59 HOURS

DAY (MIDNIGHT) (P.M.)

=========-~-----=----------------------------1st
(current)

2nd

2nd

4th

4th

6th

7th

3,l07th
(maximum)

0

86,400

172,800

259,200

345,600

432,000

518,400

268,358,400

86,399

172,799

259,199

345,599

431,999

518,399

604,799

268,435,455*
(maximum)

* 268,435,455 seconds equals 21:24:15 hours
of the final day

3-42 48-038 FOO ROI

After executing SVC 2 code 10, the
indicate if the call was successful.
settings are:

Condition codes

\ C \ V I GIL I
\=======---=--=-1

condition code is set to
The possible condition code

I 0 I 0 \ 0 I 0 \ Normal termination
1---------------\
1 0 I 1 I 0 \ 0 1 Sufficient system space is unavailable;
--------------- no wait occurred.

If this call is executed and insufficient system space exists, no
wait occurs and the condition code is set to 4 (V bit set).

Example:

WAITDAY.

PAUSE

SVC 2,WAITDAY.
SVC 2, PAUSE

ALIGN
DB
DC
DC
ALIGN
DB

4
0,10
H'O'
F' 12165'
4
0,1

48-038 FOO ROl

Equal to 03:22:45 A.M.

3-43

1 SVC 2 I
I CODE 11 I

3.12 SVC 2 CODE 11: INTERVAL WAIT

SVC 2 code 11 suspends the SVC calling task until a
user-specified interval occurs. When the specific interval
elapses, the calling task begins execution. This is accomplished
through the SVC 2 code 11 parameter block shown in Figure 3-15.

0(0)
Option

4(4)

parblk

Il(1) 12(2)
Code Reserved

Interval

SVC 2,parb1k

ALIGN 4
DB 0,11
DC H'O'
DC F'interva1'

Figure 3-15 SVC 2 Code 11 Parameter Block Format and Coding

This parameter block is 8 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

Fields:

option

Code

3-44

is a 1-byte field that must contain 0 to
indicate no options for this call.

is a l-byte field that must contain the
decimal number 11 to indicate code 11 of SVC
2.

48-038 FOO ROI

Reserved

Interval

is a reserved 2-byte field that must contain
zeros.

is a 4-byte field that must contain a decimal
number from 0 through 268,435,455 (228 -1)
representing in milliseconds the interval that
must elapse before the calling task resumes
execution. The interval starts when this call
is executed and ends after the specified
milliseconds elapse.

After executing SVC 2 code 11, the condition code is set to
indicate if the call was successful. The possible condition
codes are:

Condition codes

1 C 1 V 1 GIL 1
1-==============1
1 0 1 0 1 0 1 0 1 Normal termination
1---------------1
1 0 1 1 I 0 I 0 I Sufficient system space is unavailable;
--------------- no wait occurred.

If this call is executed and insufficient system space exists, no
wait occurs and the condition code is set to 4 (V bit set).

Example:

WAITINT

PAUSE

SVC 2,WAITINT
SVC 2, PAUSE

ALIGN
DB
DC
DC
ALIGN
DB

4
0,11
H'O'
F'32768'
4
0,1

48-038 FOO ROl

Equal to 32.768 seconds

3-45

I SVC 2 I
I CODE 15 I

3 . 13 SVC 2 CODE 15: CONVERT ASC I I HEXADEC I MAL OR ASCI I DEC I MAL
TO BINARY

SVC 2 code 15, the inverse of SVC 2 code 6, converts an ASCII
decimal or hexadecimal number to an unsigned 32-bit binary
number. Character strings can be input in either upper or
lowercase.

The result
accomplished
Figure 3-16.

10(0)
Option

parblk

is stored in the user register O. This is
through the SVC 2 code 15 parameter block shown in

11 (1)
Code

SVC 2,parblk

ALIGN 4
DB option,15,O
DB user register

12(2)
Reserved

13(3) I
I User register I
I I

Figure 3-16 SVC 2 Code 15 Parameter Block Format and Coding

This parameter block is 4 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

Fields:

option

3-46

is a I-byte field that must contain one of the
following options:

• Option X'OO' converts ASCII hexadecimal to
binary .

• Option X'40' converts ASCII hexadecimal to
binary, skip leading spaces.

48-038 FOO ROI

Code

Reserved

User
register

• Option X'80' converts ASCII decimal to
binary .

• Option X'CO' converts ASCII decimal to
binary, skip leading spaces.

is a l-byte field that must contain the
decimal number 15 to denote code 15 of SVC 2.

is a reserved l-byte field and must contain O.

is a l-byte field that must contain the user
specified register number. This register
should contain the address of the buffer that
contains the ASCII hexadecimal or ASCII
decimal number to be converted. This buffer
can be located on any boundary. After
executing SVC 2 code 15, register 0 contains
the result, and the user-specified register
contains the address of the byte following the
last number to be converted.

The valid ASCII hexadecimal numbers are 0 through 9 and A through
F. The valid ASCII decimal numbers are 0 through 9. Any
character, other than those ASCII hexadecimal and ASCII decimal
numbers specified, causes the conversion process to stop, the
nonconverted byte address to be stored in the user-specified
register, and the condition code to be set to O. The possible
condition code settings that can occur after executing SVC 2 code
15 are:

Condition codes

C I V I GIL
=============--
010 I 0 I 0

o I 0 I 0 I 1

o I 1 I 0 I 0

Normal termination

No numbers converted; register 0 contains
zeros.
Value of the number to be converted is
greater than 2,147,483,647 (2~ -1).

3.13.1 SVC 2 Code 15, Option X'OO'

If option X'OO' is specified, the ASCII encoded hexadecimal
number in the buffer, specified by the address in the user
register is converted to a binary number. The resulting number
is stored right-justified in register 0 with the leftmost
significant bits filled with zeros.

48-038 FOO ROl 3-47

Example:

Buffer before and after execution of SVC 2 code 15

starting
address Address
X'14E' X'151'
_i ___________ +_

13 614 114 614 DI ASCII
1---------------1
: 6 : A IF: M I

Register 0 after execution of SVC 2 code 15

10 DID 010 filA FI

User-specified register before execution of SVC 2 code 15

10 % % 114 EI Hex

User-specified register after execution of SVC 2 code 15

10 DID 010 1/5 11 Hex

If a number other than a valid ASCII number is
number is not converted, and the address
user-specified register.

specified, that
is stored in the

If an ASCII number is preceded by at least one space, no
processing takes place, the contents of the user-specified
register remain the same, register 0 contains all zeros, and the
condition code is set to 1.

If the value of the ASCII number is greater than 2,147,483,647
(231 -1), the number is converted, the resulting number is stored
right-justified in register 0 with the leftmost significant bits
truncated, and the condition code is set to 4 (V bit set).

3-48 48-038 FOO ROl

Example:

Buffer before and after execution of SVC 2 code 15

starting address Address
X'152' X'15C'

~~---------------------------------------~-
13 213 113 413 713 413 813 313 613 613 512 01 ASCII
1---1
12111 4 I 7 141 8 I 3 I 6 I 6 I 5 I

User-specified register before execution of SVC 2 code 15

10 010 010 115 21 Hex

Overflow
21

Register 0 after execution of SVC 2 code 15

14 714 813 616 51 ASCII

User-specified register after execution of SVC 2 code 15

10 010 010 115 CI Hex

Condition code

I C I V I GIL I
1-=-===-=-------1
I 0 I 1 I 0 I 0 I ASCI I number greater than 231 -1

3.13.2 SVC 2 Code 15, Option X'40'

ASCII encoded hexadecimal
by the address in the user

number with leading spaces
The resulting number is stored
the leftmost significant bits

If option X'40' is specified, the
number in the buffer, specified
register, is converted to a binary
ignored during the conversion.
right-justified in register 0 with
filled with zeros.

48-038 FOO ROl 3-49

Example:

Buffez befoze and after execution of SVC 2 code 15

starting
address Address
X'152' X'156'
_~ _______________ i_

12 013 614 114 612 01 ASCII
1-------------------1

I 6 I A I F I I

Register 0 after execution of SVC 2 code 15

10 010 010 61A PI Hex

User-specified register before execution of SVC 2 code 15

10 010 010 115 21 Hex

User-specified register after execution of SVC 2 code 15

10 010 010 115 61 Hex

Conditi.on code

I C I V I GIL I
1=========---=--1
I 0 I 0 I 0 I 0 I Normal termination

3.13.3 SVC 2 Code 15, Option X'SO'

If option X'80' is specified, the ASCII encoded decimal number in
the buffer, specified by the address in the user register, is
converted to a binary number. The resulting binary number is
stored right-justified in register 0 with the leftmost
significant bits filled with zeros.

If a character other than a valid ASCII decimal number is
specified, that character is not converted and the invalid
character address is stored in the user-specified register.

3-50 48-038 FOO ROl

Example:

Buffer before and after execution of SVC 2 code 15

starting Address of byte
address [not converted Address

X' 152 ' X' 154' X' 156 '
I _------.---.J _t_______ _ ______ t_

13 513 914 113 312 01 ASCII
1-------------------1
I 5 I 9 I A I 3 I I

Register a after execution of SVC 2 code 15

10 010 010 013 BI Hex

User-specified register before execution of SVC 2 code 15

10 010 010 115 21 Hex

User-specified register after execution of SVC 2 code 15

10 010 010 115 41 Hex

48-038 FOO R01 3-51

Condition codes

I C I V I GIL I

1;=--=-.--------1 I a I a I a I a 1 Normal termination
1---------------1
I a I 1 I a 1 a I ASCII number greater than 231 -1

If a decimal number represented in ASCII code is preceded by at
least one space, no processing takes place, the contents of the
user-specified register remain the sarne, register a contains all
zeros, and the condition code is set to 1.

If the value of the ASCII decimal number is greater than
2,147,483,647 (231 -1), the number is converted, the resulting
binary number is stored right-justified in register 0 with the
leftmost significant bits truncated, and the condition code is
set to 4 (V bit set).

3.13.4 SVC 2 Code 15, Option X'CO'

If option X'CO' is specified, the ASCII encoded decimal number in
the buffer, specified by the address in the user register, is
converted to a binary number, with leading spaces ignored during
the conversion. The resulting number is stored right-justified
in register a with the leftmost significant bits filled with
zeros.

3-52 48-038 Faa ROl

3.14 SVC 2 CODE 16: PACK FILE DESCRIPTOR

I SVC 2 I
I CODE 16 I

SVC 2 code 16 formats a user-specified unpacked file descriptor
(fd) to the packed format used within the SVC 7 parameter block
(see bytes 8 through 23 of the SVC 7 parameter block). Figure
3-17 illustrates the SVC 2 code 16 parameter block format.

0(0)
Option

4(4)

Il(1) 12(2)
Code User register

Address of packed fd area

SVC 2,parblk

ALIGN 4
parblk DB option, 16

DC H'user register number'
DCF A(packed fd area)

Figure 3-17 SVC 2 Code 16 Parameter Block Format and Coding

This parameter block is 8 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

48-038 FOO ROl 3-53

Fields:

option

OPTION

X'OO'

X'4Q'

X'lO'

X'50'

X'20'

X'GO'

X'8Q'

X'CO'

3-54

is a I-byte field that must contain one of the
following options:

MEANING

Default volume is the user volume.

Default volume is the user volume. Skip
leading spaces.

Default volume is the system volume.

Default volume is the system volume. Skip
leading spaces.

Default volume is the spool volume.

Default volume is the spool volume. Skip
leading spaces.

No default volume.

No default volume. Skip leading spaces.

In a non-MTM environment,
volume is the same as
volume. Options X'OO' or
since they are compatible
an MTM environment.

the default user
the default system

X'40' are preferred,
with normal usage in

NOTE

The above options are intended for
use by non-privileged u-tasks
only. These options pack file
descriptors that use the IP, IG,
or IS file classification. If a
privileged u-task or e-task uses
these options to pack an fd with
alP, IG, or IS file
classification, the resulting
packed fd will have an account
number in its file class field.
See Section 3.14.9 for the SVC 2
code 16 options for e-tasks or
privileged u-tasks.

48-038 FOQ ROl

Code is a I-byte field that must contain the
decimal number 16 to indicate code 16 of SVC
2.

User register is a 2-byte field that must contain the
user-specified register number containing the
unpacked fd address.

Address of
packed fd
area

is a 4-byte field that must contain the
address of the area that receives the packed
file descriptor.

The condition codes set after packing an fd are:

Condition codes

C I V I GIL

---------------a I a I a I a Normal termination

a I a I a I 1 No volume name present in unpacked fd

a I a I 1 I a An account number or file class present
in unpacked fd

a I 1 I a I a Syntax error present in unpacked fd

1 I a I a I a No extension present in unpacked fd

If more than one condition results from a pack fd operation, a
combination of condition codes a,re set.

NOTE

When a per iod fo,llowed by no val id
characters is specified in the unpacked
fd, it is treated as an explicit request
for an extension containing spaces. The
condition code is set to 8 (C bit set).

48-038 Faa ROI 3-55

All lowercase characters in the user-specified fd are converted
to their equivalent uppercase characters after the pack fd
operation occurs. The entire user-specified fd (unpacked format)
can be from 1 to 19 characters. Allowable characters are:

• A through Z (uppercase)

• a through z (lowercase)

• 0 through 9 (numerics)

• selected special characters (symbols)

The format of the user-specified fd is:

Format:

[{ d
VOevln} :l J [f i lename] ~ [ext]] [j~L]

Parameters:

voln or dev:

filename

.ext

P
G
S

actno

is a disk volume or device name from one to
four characters ..

is a filename from one to eight alphanumeric'
characters.

is the extension name of from one to three
characters, preceded by a period.

are single alphabetic characters representing
the file class. They are: P for private file;
G for group file; and S for system file.

is an account number ranging from 0 through
65,535.

The area receiving the packed fd must
fullword-boundary aligned, and located
segment. See Figure 3-18. Since this area
8 through 23 of the SVC 7 parameter block,
designated as the receiving area.

be 16 bytes long,
in a task writable
is identical to bytes
these bytes can be

3-56 48-038 FOO ROI

0(0)

4(4)

8(8)

12(C)

Volume name or device name

Filename

Extension
11S(F)
I File class/
IAccount number

Figure 3-18 Packed File Descriptor Area

Fields:

Volume name
or
device name

Filename

Extension

48-038 Faa ROl

is a 4-byte field that receives the packed
format of the volume name or device name. If
the volume or device name is less than 4
bytes, .it is left-justified with spaces
(X'20'). If no volume or device name is
specified, the user-specified option
determines the result.

is an 8-byte field that receives the
format of the user-specified filename.
filename is less than 8 bytes,
left-justified with spaces (X'20').
filename is specified, this field is
with spaces.

packed
If the
it is
If no
filled

is a 3-byte field that receives the packed
format of the user-specified extension. If
the extension is less than 3 bytes, it is
left-justif ied with spaces (X' 20'). If no
extension is specified, this field is filled
with spaces.

3-57

File class/
account
number

is a I-byte field that receives the packed
format of the user-specified file class. Any
value other than P, G, or S in the file
class field of the unpacked fd causes a syntax
error. If no file class is specified in the
unpacked fd, an S is returned in the class
field of the packed fd when running under the
operating system. P is returned in the class
field of the packed fd when running under MTM.

NOTE

If the SVC 2 code 16 options for
privileged tasks are used, an account
number is returned to this field. (See
Section 3.14.9.)

After the pack fd operation occurs, the user-specified register
contains the address of the byte following the unpacked fd. If
a syntax error is detected, the use~-specified register contains
the address of the first byte of the unpacked fd. The following
examples show the results of issuing an SVC 2 code 16 for a task
running under MTM. The default system volume is M300.

When a device name is encountered in the user-specified fd, the
pack fd operation returns spaces to the filename, extension, and
file class/account number fields of the packed fd.

Example 1:

Unpacked fd
address Address
X'llS' X'126' _i ___ t_
14 DI3 313 013 013 Ais 315 614 313 212 EI3 113 612 PIS 012 01 ASCII
1---1
1 M 1 3 I 0 I 0 1 : I S I VIC I 2 1 . 111 6 1/1 P I I

User-specified register before packing fd

1001001011181 Hex

Packed fd

/4 0/3 3/3 0/3 015 315 614 313 212 012 012 012 013 113 612 015 OIASCII

/---1'
/M/31010ISIVICI21 I I I 11161 IPI
--- ,

3--58 4S-038 FOD RDl

User-specified register after packing fd

1001001011261 Hex

Condition code

1 C I V I GIL I
1===============1
I 0 I 0 I 0 I 0 I Normal termination

Example 2:

Unpacked fd
address Address
X'llS' X'llD' _ t ___________________ .+ ___ . ___ .. _ ______ ._._. _____ ._. _________ ._._
14 DI3 313 013 013 AI3 115 614 313 212 EI3 113 612 FI5 01 ASCII
1---I
IMI310 1 0 I: III VI C 121.11161/ I P I

User-specified register before packing fd

10010010111S1 Hex

Packed fd

14 DI3 313 013 012 012 012 012 012 012 012 012 012 012 012 012 01 ASCII
1---1
I M I 3 I 0 I 0 I I I I I I I I

User-specified register after packing fd

10010010111S1 Hex

Condition code

I C I V I GIL I
1===========-===1
11111 0 I 0 I

4S-03S FOO ROl

No extension present in unpacked fd;
syntax error present in unpacked fd

3-59

The unpacked fd contains a character that was interpreted as a
field separator.

Example 3:

Unpacked fd
address Address
X'llS' X'llP'
_~ ___________________________ t ________________________ _

14 DI3 3/3 013 0/3 A/S 3/5 6/2 613 2/2 E/3 1/3 612 F/S 0/ ASCII
1---I

MI3 10 101 : IS IVI & / 21.11161/: P:

User-specified register before packing fd

10010010111S1 Hex

Packed fd

14 DI3 313 013 015 315 612 012 012 012 0/2 012 012 012 012 015 01 ASCII
I--------------~--1
IMI31010lSlVI I I I I I

User-specified register after packing fd

/00:001011181 Hex

Condition code

/ C I V I GIL I
/===========-==-1
I 1 I 1 I 0 / 0 I No extension present in unpacked fd;

syntax error present in unpacked fd

The above example shows an illegal character within the filename.

3-60 4S-038 FOO R01

Example 4:

Unpacked fd

14 315 214 415 212 EI ASCII
1-------------------1
ICIRIDIRI.I

14 013 313 013 014 315 214 415 212 1012 012 012 012 012 012 015 01 ASCII

1 M 1 3 1 0 1 0 1 C 1 RID 1 R I 1 P I

Condition code

1 C 1 V I GIL 1
1====--=--------1
I 0 I 0 I 0 I 1 I No volume name present in unpacked format

The example above shows a default volume option with an explicit
request for an extension containing spaces.

Example 5:

Unpacked fd

15 014 314 213 313 212 FIS 31 ASCII
\---------------------------1
\ PIC \ B I 3 1 2 I / lSI

Packed fd
--

14 013 313 013 015 014 314 213 313 212 012 012 012 012 012 015 31 ASCII
1---1
I M I 3 1 0 1 0 1 PIC I B I 3 121 1 lSI
--

Condition code

I C 1 V \.G 1 L 1
\===============1
\ 1 I 0 \ Oil 1

48-038 FOO ROI

No extent ion present in unpacked fd;
no volume name present in unpacked fd

3-61

If a syntax error occurs, the scan of the unpacked fd terminates
at the byte that caused the syntax error and the area receiving
the packed fd is filled with indeterminate code. Check the
condition code to determine if a syntax error occurred.

3.14.1 SVC 2 Code 16, Option X'OO'

If option X'OO' with no volume name is specified, the default is
the system volume. The first byte of the unpacked fd (currently
pointed to by the user-specified register) is the starting
location of the pack fd operation.

The following examples use M67A as the default system volume.

Example 1:

Unpacked fd

14 314 813 215 015 214 DI2 EI3 613 113 312 F\4 71 ASCII
1---\
I C I H 1 2 I P I RIM I . 161 1 1 3 I / I G I

Packed fd

14 DI3 613 714 114 314 813 215 015 214 DI2 012 013 613 113 314 71 ASCII
1---1
I M I 6 I 7 I A I C I H I 2 I P I RIM I 161 1 I 3 I G I

Condition code

I C I V I GIL I
1====-=--=-==---\
I a I a I 0 I 1 I No volume name present in unpacked fd

Example 2:

Unpacked fd

12 014 013 313 013 114 314 813 215 015 214 012 EI3 613 113 312 FI4 71 ASCII
1---1
I I M I 3 101 1 I C I H I 2 I P I RIM I . 161 1 I 3 I / I G I

3-62 48-038 FDa ROi

Packed fd

14 013 613 714 112 012 012 012 012 012 012 012 012 012 012 012 01 ASCII
1---1
I M I 6 I 7 I A I 1 1 1 1 I

Condition code

I C I V I GIL 1
1-==------=-----1
I 1 1 1 1 0 1 1 1 No extension present in unpacked fd;
--------------- syntax error present in unpacked fd;

no volume name present in unpacked fd

As shown in the above example, 1.f the first character in the
unpacked fd is not valid, processing stops. The system volume
name is the default, and the filename, extension, and class
fields are modified to blanks.

3.14.2 SVC 2 Code 16, Option X'40'

If option X'40' with no volume name is specified, the default
user volume and all preceding spaces are ignored. All spaces are
ignored from the first byte of the unpacked fd (currently pointed
to by the user-specified register) to the first character in the
unpacked fd.

The following example uses M67A as the default system volume.

Example:

Unpacked fd

12 014 314 813 215 015 214 012 EI3 613 113 312 FI4 71 ASCII
1---1

1 C 1 H 1 2 I P I RIM I • 161 1 1 3 1 / 1 G 1

Packed fd

14 013 613 714 114 314 813 215 015 214 012 012 013 613 113 314 71 ASCII
1---1
1 M 1 6 1 7 1 Ale I H I 2 1 p 1 RIM 1 I 161 113 1 G I

48-038 FOO ROl 3-63

Condition code

, C , V I GIL I
1========-------1
1 0 : 0 1 0 , 1 I No volume name present in unpacked fd

3.14.3 SVC 2 Code 16, Option X'lO'

If option X'lO' with no volume name is specified, the default is
the system volume. The first byte of the unpacked fd (currently
pointed to by the user-specified register) is the starting
location of the pack fd operation.

The following examples use M300 as the default volume.

Example 1:

Unpacked fd

15 315 614 313 2/2 EI3 113 612 FIS 01 ASCII
1-----------------------------------1
I S I V : C I 2 I . III 6 1 / I P I

Packed fd

14 013 313 013 015 315 614 313 212 012 012 012 013 113 612 015 01 ASCII
1---1
IMI31010lSlVICI21 I I I 11161 IPI

Condition code

: C I V I GIL I
1=====~==_a====_1

: 0 I 0 : 0 I 1 I No volume name present in unpacked fd

Example 2:

Unpacked fd

12 014 013 613 714 113 AIS 315 614 313 212 EI3 113 612 FIS 01 ASCII
1---1

IM,617IAI: ISIVICI21.11161/IPI

3--64 48-038 FOO ROl

Packed fd

14 013 313 013 012 012 012 012 012 012 012 012 012 012 012 012 01 ASCII
1--1
I M I 3 I a I a I I I I I I I I I

Condition code

I C I V I GIL I
1---------------1
I 1 I 1 I 0 I 1 I No extension present in unpacked fd;
--------------- syntax error present in the unpacked fd;

no volume name present in the unpacked fd

As shown in this example, if the first character in the unpacked
fd is not valid, processing stops. The system volume name is the
default and the filename, extension, and class fields are
modified to blanks.

3.14.4 SVC 2 Code 16, Option X'50'

If option X'50' with no volume name is specified, the default
system volume and all preceding spaces are ignored. All spaces
are ignored from the first byte of the unpacked fd (currently
pointed to by the user-specified register) to the first character
in the unpacked fd.

The following example uses M300 as the default system volume.

Example:

Unpacked fd

12 012 012 015 415 312 EI4 315 315 312 FI4 71 ASCII
1---1
I I 1 ITISI.ICISISI/IGI

Packed fd

14 013 313 013 015 415 312 012 012 012 012 012 014 315 315 314 71 ASCII
1---1
1 M I 3 I a I a I TIS I 1 I I 1 I I CIS I S I G I

48-038 FOO ROI 3-65

Condition code

1 C 1 V 1 GIL I
1======--==-----1
I a I a 1 all 1 No volume name present in unpacked fd

3.14.5 SVC 2 Code 16, Option X'20'

If option X'20' with no volume name is specified, the default is
the spool volume. The first byte of the unpacked fd (currently
pointed to by the user-specified register) is the starting
location of the pack fd operation.

Example 1:

Unpacked fd

15 315 614 315 415 315 412 EI4 314 114 CI ASCII
1---------------------------------------1
1 S I V I CIT 1 SIT 1 • 1 CIA 1 L 1

Packed fd

15 313 313 013 015 315 614 315 415 315 412 012 014 314 114 CIS 01 ASCII
1---1
1 s 1 3 1 0 1 0 1 s 1 VIC 1 TIS 1 Til 1 C I AIL 1 P 1

Condition code

I C I V 1 GIL I
1======-------==1
1 a 1 a 1 a 1 1 1 No volume name present in unpacked fd

Example 2:

Unpacked fd

12 012 015 315 614 315 415 315 412 EI4 314 114 CI ASCII
:---1

: S 1 VIC 1 TIS I T I . 1 C I A I L I

3-66 48-038 Faa ROl

Packed fd

15 313 313 013 012 012 012 012 012 012 012 012 012 012 012 012 01 ASCII
1----------------------------------·-----------------------------1
I S I 3 I 0 1 0 1 1 I 1 I I I I I

Condition code

1 C 1 V 1 GIL I
1-=--------==---1
111110111

No extension p~esent in unpacked fd;
syntax e~~o~ in unpacked fd;
no volume name in unpacked fd

As shown in this example, if no volume name is specified and the
filename is p~eceded by at least one space, the spool volume is
the default and the filename, ext.ension, and class fields a~e
modified to blanks.

3.14.6 SVC 2 Code 16, Option X'50'

If option X'60' with no volume name is specified, the default is
the spool volume and all preceding spaces are ignored. All
spaces are ignored from the first byte of the unpacked fd
(currently pointed to by the user-specified register) to the
first character in the unpacked fd. The default volume for the
following examples is S300.

Example 1:

Unpacked fd

14 914 CIS 415 315 412 EI5 415 314 BI2 FI5 31 ASCII
1---1
1 IlL I TIS 1 T 1 . I TIS I K 1 / I S I

Packed fd

15 313 313 013 014 914 CIS 415 315 412 012 012 015 415 314 SIS 31 ASCII
1---1
I S I 3 1 0 101 I I LIT 1 SIT I 1 I I TIS 1 K I S I

48-038 FOO ROl 3-67

Condition code

I C I V I GIL I
I=====~=========I
1 0 1 0 I 0 I 1 1 No volume name present in unpacked fd

Example 2:

Unpacked fd

:2 014 914 Cl5 415 315 412 EI5 415 314 BI2 FI5 31 ASCII
1--1

I IILITISITI.ITISIKI/ISI

Packed fd

14 013 313 013 014 914 CIS 415 315 412 012 012 015 415 314 815 31 ASCII
1---1
I S I 3 101 a 1 I I LIT I SIT I I I TIS I K I S I

Condition code

I C t V I GIL I
1===============1
I 0 I 0 I 0 I 1 I No volume name present in unpacked fd

If no volume name is specified and the filename is preceded by at
least one space, all preceding spaces are ignored and the default
is the spool volume. The spool volume name and remaining fd are
packed.

3.14.7 SVC 2 Code 16, Option X'SO'

If option X'80' with no volume name is specified, the contents of
the volume name field before executing the pack fd operation is
used as the volume name. The first byte of the unpacked fd
(currently pointed to by the user-specified register) is the
starting location of the pack fd operation.

3-68 48-038 POO ROI

Example 1:

Unpacked fd

14 FI5 015 413 813 012 EI4 314 114 CI ASCII
1-----------------------------------1
101 PIT I 8 I 0 I . I C I A I L I

Packed fd location contents before pack fd operation

13 013 013 013 015 714 814 115 414 515 614 515 214 514 CIS 314 51 ASCII
1---1
I 0 I 0 I 0 I 0 I W I H I A I,T I E I V I E I R I ElL I S I E I

Packed fd after pack fd operation

13 013 013 013 014 FIS 015 413 813 012 012 012 014 314 114 CIS 01 ASCII
1---1
I 0 I 0 I 0 I 0 I 0 I PIT I 8 101 I C I A I LIP I

Condition code

1 c 1 V : G : L :
1===-===--------1
1 0 I 0 1 0 I 1 I No volume name present in unpacked fd

If a volume name is specified and is preceded by at least one
space, that volume name is ignored and the contents remaining in
the volume name field before executing the pack fd operation are
used as the volume name. The filename, extension, and class
fields are modified to blanks as shown in Example 2.

Example 2:

Unpacked fd

12 012 014 013 113 014 113 AI4 FIS 015 413 813 012 EI4 314 114 CI ASCII
1---1
I I IMllIOIAI: IOIPITI8101.ICIAILI

48-038 FOO ROl 3-69

Packed fd location contents before pack fd operation

15 313 313 013 015 714 814 115 414 515 614 515 214 514 CIS 314 51 ASCII
I--~------------1
1 S I 3 I 0 I 0 I W I H I A I TIE I V I E I R I ElL I S I E I

Packed fd after pack fd operation

15 313 313 013 012 012 012 012 012 012 012 012 012 012 012 012 01 ASCII
1---1
I S I 3 I 0 I 0 I I I I I I I I I I I I I

Condition code

I C I V : GIL I
1=========-====='
1 1 III OIl I

No extension present in unpacked fdi
syntax erroz present in unpacked fdi
no volume name present in unpacked fd

If no volume name is specified and the filename is preceded by at
least one space, the contents remaining in the volume name field
before executing the pack fd operation are used as the volume
name. The filename, extension, and class fields are modified to
blanks as shown in Example 3.

Example 3:

Unpacked fd

12 014 FI5 015 413 813 012 EI4 314 114 CI ASCII
1---------------------------------------1

10: PIT I 8 I 0 : . I C I A I L I

Packed fd location contents before pack fd operation

14 013 213 512 015 714 814 115 414 515 614 515 214 514 CIS 314 51 ASCII
1---1
1 M I 2 I 5 1 I W 1 H 1 A I TIE I V I E I R I ElL I S lEI

Packed fd after pack fd operation

14 013 213 512 012 012 012 012 012 012 012 012 012 012 012 012 01 ASCII
1---1
I M I 2 I 5 I 1 I 1 I 1 1 I

3-70 48-038 FOO ROl

Condition code

I C I V I GIL I
I==========--_a-I
111110111

No extension present in unpacked fd;
syntax error present in unpacked fd;
no volume name present in unpacked fd

3.14.8 SVC 2 Code 16, Option X'CO'

If option X'CO' with no volume name is specified, the contents of
the volume name field before executing the pack fd ope~ation are
used as the volume name and all preceding spaces are ignored.
All spaces are ignored from the first byte of the unpacked fd
(cu~rently pointed to by the user-specified register) to the
first character in the unpacked fd.

Example 1:

Unpacked fd

15 015 214 DI2 EI3 613 113 312 Fis 01 ASCII
:-----------------------------------:
: P: RIMI. 1611131/1 PI

Packed fd contents before pack fd operation

14 415 314 313 315 714 814 115 414 515 614 515 214 514 CIS 314 51 ASCII
1--1
I DIS 1 C I 3 I W I H I A I TIE I V lEI R I ElL 1 S 1 E I

Packed fd after pack fd operation

14 415 314 313 315 015 214 DI2 012 012 012 012 013 613 113 315 01 ASCII
1--1
I DIS I C I 3 1 P I RIM I I I I 161 1 I 3 I P 1

Condition code

I C 1 V I GIL 1
1==========-===-1
1 0 1 0 I a I 1 1 No volume name present in unpacked fd

48-038 FOO ROl 3-71

If a volume name is specified and is preceded by at least one
space, all preceding spaces are ignored and that volume name and
remaining fd are packed as shown in Example 2:

Example 2:

Unpacked fd

12 012 014 013 613 714 113 AIS 015 214 012 EI3 613 113 312 FIS 01 ASCII
1---1

I M I 6 I 7 I A I : I P 1 RIM I . 161 1 I 3 1 / I P I

Packed fd

14 013 613 714 115 015 214 012 012 012 012 012 013 613 113 315 01 ASCII
1---1
1 M I 6 I 7 1 A I P 1 RIM I 161 1 I 3 1 P I

Condition Code

: C : V I G : L I
I=====~:=====:==I

o I 0 I 0 I 0 I Normal termination

3.14.9 SVC 2 Code 16 Options for Privileged Tasks

Only privileged u-tasks, e-tasks, and privileged d-tasks are
allowed to pack an fd so that the resulting packed fd has an
account number in its file class/account number field. Au-task
becomes privileged if the account privileges task option
(ACPRIVILEGE) is specified when the task is link-edited.
ACPRIVILEGE allows u-tasks to access files by account number
rather than file class. The range of account numbers available
to the task is 0-65,535, excluding 255. To access files on
account 255, the bare disk I/O task option (DISC) must also be
specified when the task is link-edited.

E-tasks always have account privileges.

3-72

CAUTION

IF THE OS/32 TASK LOADER HAS THE E-TASK
LOAD OPTION DISABLED, ALL U-TASKS WILL BE
DENIED ACCOUNT PRIVILEGES REGARDLESS OF
THE TASK OPTIONS SPECIFIED BY LINK.

48-038 FOO ROl

The following SVC 2 code 16 options are used by an e-task,
privileged d-task, or privileged u-task to produce a packed fd
that has an account number in its file class/account number
field:

OPTION MEANING

X'OS' Default volume is the user volume

X'4S' Default volume is the user volume; skip
leading spaces

X'IS' Default volume is system volume

X'SS' Default voluml9 is system volume; skip leading
spaces

X'2S' Default volume is spool volume

X'6S' .Default volume is spool volume; skip leading
spaces

X'SS' No default volume

X'CS' No default volume; skip leading spaces

When a privileged task uses one of the above options to pack an
fd that has either an account number or file class in its file
class/account number field, SVC 2 code 16 returns an account
number to the resulting packed fd and sets the G bit in the
condition code.

If neither an account number nor a file class is specified in the
unpacked fd, the file is packed with account number 0 (if the
task is running at the system console) or the user's private
account number (if the task is running under MTM).

48-03S Faa ROI 3-73

I SVC 2 I
I CODE 17 I

3.15 SVC 2 CODE 17: SCAN MNEMONIC TABLE

SVC 2 code 17 compares a user-specified mnemonic character string
to a table of previously defined mnemonic strings. If a match is
found, the user-specified mnemonic character string is accepted
as a valid mnemonic. The SVC 2 code 17 parameter block is shown
in Figure 3-19.

0(0)
Option

4(4)

parblk

Il(1)
Code

12(2)
User

register 1

Address of mnemonic table

SVC 2,parblk

ALIGN 4
DB 0,17

13(3)
User

register 2

DB user register 1, user register 2
DCF A(rnnemonic table)

Figure 3-19 SVC 2 Code 17 Parameter Block Format and Coding

This parameter block is 8 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

3-74 48-038 Faa ROI

Fields:

option

Code

User
register 1

User
register 2

Address of
mnemonic
table must

is a I-byte field that must contain 0 to
indicate no options for this call.

is a I-byte
decimal number
2.

field that must contain the
17 to indicate code 17 of SVC

is a I-byte field that must contain a user
specified register number. This register
should contain the starting address of the
buffer with the user-specified mnemonic
character string. After executing SVC 2 code
17, this register contains the address of the
byte following the user-specified mnemonic
string, or the unchanged starting address.

is a I-byte field that must contain a user
specified register number. This register
receives a decimal number from -1 through
2,147,483,647 (2~ -1) corresponding to the
position of the mnemonic within the table that
matches thE~ user-specif ied mnemonic character
string. If no match is found, this register
receives a value of -1. The first position in
the mnemonic table corresponds to a value of
O.

is a 4-byte field that must contain the
starting address of the mnemonic table. This
be defined before executing SVC 2 code 17.

The user-specified mnemonic character string can be any length
but can contain only the following characters:

• A through Z (uppercase)

• a through z (lowercase)

• 0 through 9 (can be used only after the first byte of the
mnemonic)

• Special characters (can be used only as the first byte of the
mnemonic) .

All lowercase characters that
mnemonic character string are
equivalent.

48-038 FOO ROI

appear in
accepted

the user-specified
as their uppercase

3-75

3.15.1 Building a Mnemonic Table

The mnemonic table to be used in SVC 2 code 17 must be defined in
a standard format. The mnemonics entered in the table can be any
length but can contain only certain legal characters:

• A through Z (uppercase alphabetics)

• a through 9 (numerics can be used only after the first byte of
the mnemonic)

• Special charactors can be used only as the first byte of the
mnemonic)

The characters for each mnemonic in the table must be in
contiguous order, beginning with the first character and ending
with the termination indicator, X'OO'. Every mnemonic entered in
the table has a minimum abbreviation. Each character required
for the minimum abbreviation must have an X'BO' added to the
character when the mnemonic is defined. The mnemonic table must
be terminated by an X'OO' after the last mnemonic entry. See the
example below.

Example:

TABLE EQU
DB
DB

*
C'G'+X'SO',C'ET',X'OO'
C'R'+X'SO',C'E'+X'SO',C'W'+X'SO',C'IND',X'OO'

DB C'S'+X'SO',C'T'+X'SO',C'ART',X'OO'
DB X'OO'

When the table is assembled, a logical OR operation is performed
on X'SO' and the character associated with it. This sets bit 0
of each character on which the OR operation was performed to 1.
A bit setting of 1 indicates that it is a required character;
whereas, a bit setting of a indicates that it is not a required
character.

3.15.2 Executing SVC 2 Code 17

When executing this call, the user-specified mnemonic character
string is compared to each entry in the mnemonic table until a
match is found. Once a match is found, the address of the byte
following the user-specified mnemonic character string is stored
in user register 1 specified in the parameter block.

3-76 4S-03S FOO ROl

The mnemon ic 's pos it ion (dec ima,l number) with in the tab le that
matched the user-specified mnemonic character string is stored in
user register 2, specified in the parameter block. After
executing SVC 2 code 17, the condition code is set.

Condition codes

I C I V I GIL 1
I=============~=I
1 0 I 0 1 0 I 0 I Normal termination
1---------------1

o 1 1 1 0 1 0 1 User-specified mnemonic character string
does not match any mnemonic in the table.

Example:

SCAN

STRING

PAUSE
TABLE

LA 3,STRING
SVC 2,SC.l\N
SVC 2, PAUSE

ALIGN
DB
DB
DC
DB
ALIGN
DB
EQU
DB
DB
DB
DB

4
0, 17
3,5
A(TABLE)
C'map'
4
0,1
*
C' A' +X' SO' , elL' +X' SO' , C' LOCATE' , X' 00'
C'M'+X'SO',C'A'+X'SO',C'P'+X'SO',X'OO
C'T'+X'SO',C'YPE',X'OO'
X'OO'

User-specified mnemonic string before and after execution of
SVC 2 code 17

Starting
address
X'15S'
_t ________ _

16 016 117 01 ASCII
1-----------1
I m 1 a I p 1

4S-03S FOO ROl 3-77

Table (after assembly) before and after execution of SVC 2 code
17.

C llC CI4 CI4 FI4 314 115 414 510 OIC DIC 110 010 0

A I L I L I 0 I C I A I TIE 10 01 M I A I P 10 0

D 415 915 014 510 010 01

T I YIP I E 10 010 01

User register 1 before execution of SVC 2 code 17

10 010 010 115 81 Hex

User register 1 after execution of SVC 2 code 17

10 010 010 115 BI Hex

User register 2 after execution of SVC 2 code 17

10 010 010 010 11 Hex

Condition code

I C I V I GIL I
1==============-1
10101 0 101

If the user-specified mnemonic character string is compared to
each entry in the mnemonic table and no match is found, the
starting address of the buffer containing the user-specified
mnemonic character string remains unchanged in user register 1.
A decimal value of -1 is stored in user register 2 and the
condition code is set to 4 (V bit set).

3-78 48-038 FOO ROl

Example:

LA 3,STRING
SVC 2,SCAN
SVC 2, PAUSE

SCAN

S'rRING

PAUSE
TABLE

ALIGN
DB
DB
DB
DC
ALIGN
DB
EQU
DB
DB
DB

4
0,17
3,5
A(TABLE)
ClASt
4
0,1
*
C'A'+X'80',C'L'+X'SO',C'LOCATE',X'00'
C'M'+X'SO',C'A'+X'SO',C'P'+X'SO',X'OO'
C'T'+X'SO',C'YPE',X'OOOO'

User-specified mnemonic string before and after execution of
SVC 2 code 17

Starting
address
X'1SS'
_t ____ " __

1 4 11 5 3 1 ASC I I
1 "-------1
1 A I S I

Table (after assembly) before and after execution of SVC 2
code 17

C llC CI4 CI4 FI4 314 115 414 510 OIC DIC 110 010 0

A I L I L I 0 I C I A I TIE 10 01 MIA 1 P 10 0

D 415 915 014 510 010 01

T I YIP I E 10 010 01

User register 1 before and after execution of SVC 2 code 17

10 010 010 115 SI Hex

4S-03S FOO ROI 3-79

User register 2 after execution of SVC 2 code 17

IF FIF FIF FIF FI Hex

Condition code

I C I V I GIL I
1===============1
10111 a 101

If a nonalphanumeric character follows the first character in a
user-specified mnemonic string, the nonalphanumeric character is
treated as the end of the mnemonic. The address of the
nonalphanumeric character is returned to user register 1.

Example:

SCAN

STRING

PAUSE

TABLE

LA 3,STRING
SVC 2,SCAN
SVC 2, PAUSE

ALIGN 4
DB
DB
DC
DB
ALIGN
DB
ALIGN
EQU
DB
DB
DB

0,17
3,5
A(TABLE)
C'TY&E'
4
0,1
4
*
C'A'+X'80',C'L'+X'80',C'LOCATE',X'OO'
C'M'+X'80',C'A'+X~80',C'P'+X'80',X'OO'

C'T'+X'80',C'YPE',X'OOOO'

User-specified string before and after execution of SVC 2 code 17

3-80 48-038 FOO ROl

Starting
address
X'lS8' X'15A'
_t _______ t ____ _

15 415 912 614 51 ASCII
1---------------1
I T I Y I & I E I

Table (after assembly) before and after execution of SVC 2 code
17

C llC CI4 CI4 FI4 314 115 414 510 OIC DIC lID 010 0

A I L I L I 0 I C I A I TIE 10 01 M I A I P 10 0

D 415 915 014 510 010 01

T I YIP I E 10 010 01

User register 1 before execution of SVC 2 code 17

10 010 010 115 81 Hex

User register 1 after execution of SVC 2 code 17

10 010 010 115 AI Hex

User register 2 after execution of SVC 2 code 17

10 010 010 010 21 Hex

Condition code

I C I V I GIL I
1===============1
I 0 I 0 I 0 I 0 I

In the above example, the user-specified mnemonic "TY&E" is
treated as "TY". The address of the byte following the
user-specified mnemonic string mnemonic string is then X'lSA',
which is returned to user register 1. A decimal value of 2 is
stored in user register 2, and the condition code is set to o.

48-038 FOO ROI 3-81

I SVC 2 I
I CODE 18 I

3.16 SVC 2 CODE 18: MOVE ASCII CHARACTERS

SVC 2 code 18 moves a specified number of ASCII characters from
a sending buffer to a receiving buffer in memory. The SVC 2 code
18 parameter block is shown in Figure 3-20.

0(0)
Option+n

11 (1)
Code

12(2)
User

register 1

13(3)
User

register 2

4(4)
Address of terminating character string

SVC 2,parblk

ALIGN 4
parblk DB option+n,18

DB user register 1, user register 2
DCF A(terminating character string)

Figure 3-20 SVC 2 Code 18 Parameter Block Format and Coding

This parameter block is 8 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

3-82 48-038 FOO ROl

Fields:

Option+n

Code

User
register 1

User
register 2

Address of
terminating
character

4S-03S FOO ROl

is a l-byte field that must contain the
addition of the hexadecimal number specified
for the option and the decimal number
specified as n.

• n is a decimal number ranging from 0
through 127 indicating an explicit number
of bytes in the ASCII character string that
are to be moved to the receiving buffer in
memory.

• Option X'OO'+n means no terminating
character string is used.

• Option X'SO'+n means a terminating
character string is used.

is a I-byte
decimal number
2.

field that must contain the
lS to indicate code IS of SVC

is a I-byte field that must contain a user
specified register number. This register must
contain the starting address of the buffer
containing the user-specified ASCII character
string to be moved. After executing SVC 2
code lS, this register contains the address of
the byte in the sending buffer that follows
the last moved character.

is a l-byte field that must contain a user
specified register number. This register must
contain the starting address of the buffer
that receives the user-specified number of
ASCII characters being sent. This buffer must
be located in a task writable segment. After
executing SVC 2 code IS, this register
contains the address of the byte in the
receiving buffer that follows the last
character received.

is a 4-byte field that must contain the
starting address of the user-specified string
of terminating characters. Each character of
this string can be used to indicate the end of
the ASCII character string to be moved. This
field is only used when option X'SO' is
specified.

3-S3

When SVC 2 code 18 is executed, the specified number of ASCII
characters are moved to the receiving buffer. The starting
addresses of the sending and receiving buffers located in the
user-specified registers are changed to the address following the
last byte sent in the sending buffer and the last byte received
in the receiving buffer. The condition code is also set after
executing SVC 2 code 18. The possible condition code settings
are:

Condition code

I C I V I GIL I
1===============1
I a I a I a 1 a 1 Normal termination
1---------------1
I a 1 1 I a I a I No terminating character found in
-------------.-- the ASCII character string

3.16.1 SVC 2 Code 18, Option X'OO'+n

If option X'OO'+n is used with a user-specified decimal number,
that decimal number determines the number of bytes moved from the
ASCII character string to the receiving buffer. After executing
SVC 2 code 18, user register 1 contains the address of the byte
in the sending buffer that follows the user-specified number of
ASCII characters that were moved. User register 2 contains the
address of the byte in the receiving buffer that follows the
user-specified number of ASCII characters just received. The
condition code is set to O.

Example:

LA 1,ASTRING
LA 2,RECBUF
SVC 2,MOVECHAR

ALIGN 4
MOVECHAR DB X'00'+17,18

DB 1,2
OS 4

ASTRING DB C'FLORIOA***VERMONT'
RECBUF OS 17

User register 1 before execution of SVC 2 code 18

10 010 010 116 21 Hex

3-84 48-038 FOO ROl

User register 2 before execution of SVC 2 code 18

10 010 010 117 31 Hex

ASCII character string before and after execution of SVC 2 code 18

starting address Last byte Address
X'162' to be move~'173' _f ___________________________________ . ________________________________ ,_
14 614 CI4 FIS 214 914 414 112 AI2 AI2 AIS 614 515 214 DI4 FI4 EIS 412 01 ASCII
/--1
I F I L I 0 I R I I I D I A I * I * I * I VIE I RIM I 0 I NIT /

Receiving buffer after execution of SVC 2 code 18

starting address Address
X'173' X'184'

-~---~------------------------~-
14 614 CI4 FIS 214 9/4 414 112 AI2 AI2 A/S 614 515 214 DI4 FI4 EIS 4/2 01 ASCII
1------------------------------------_·_---------------------------------1
1 F 1 L / 0 1 R I I I D I A I * 1 * I * I VIE I RIM / 0 I NIT I

User register 1 after execution of SVC 2 code 18

10 010 010 117 31 Hex

User register 2 after execution of SVC 2 code 18

10 010 010 118 41 Hex

Condition code

I C I V I GIL 1
1===============1
10101 0 101

48-038 FOO R01 3-85

3.16.2 SVC 2 Code lS, Option X'SO'+n

If option X'SO'+n is specified, each character in the ASCII
string is compared to each character in the terminating string
before it is moved. A match indicates that the end of the ASCII
character string to be moved was reached and the decimal number
n, which specifies the number of characters to be moved, is
ignored. The character or characters in the ASCII string that
match the character or characters in the terminating string are
not moved, and the SVC terminates. The condition code is set to
o.

The string of terminating characters can be any length and can
contain any character but must be specified by the user as
follows:

Format:

label DB m,C'xxx ... x'

Parameters:

label

DB

m

C'xxx ... x·

3-86

is the name of the terminating character
string the user specifies.

is the operation code, define byte.

is a decimal number indicating the number of
characters in the terminating character
string.

is a character string indicating that the data
enclosed in the single quotation marks are
characters.

48-038 FOD RDl

Example:

PAUSE

MOVE CHAR

TSTRING
ASTRING
RECBUF

LA 3,ASTRING
LA 5,RECBUF
SVC 2,MOVECHAR
SVC 2, PAUSE

ALIGN 4
DB 0,1
ALIGN 4
DB X' 80' + 17 , 18
DB 3,5
DC A(TSTRING)
DB 3,C'/&*'
DB C'FLORIDA*&/VERMONT'
DB 17

ASCII character string before and after execution of SVC 2 code 18

starting
address Characters ma'tching Address
X'162' terminating character string X'173'

-~-------------------------~----------------------------_.-
14 614 CI4 FI5 214 914 414 112 AI2 612 FI5 614 515 214 DI4 FI4 EI5 412 01 ASCII
1---1
I F ILl 0 1 R I I I D I A 1 * 1 & I / I VIE 1 RIM 1 0 I NIT 1

User register 1 before execution of sve 2 code 18

10 010 010 116 21 Hex

User register 2 before execution of sve 2 code 18

10 010 010 117 31 Hex

48-038 FOO ROl 3-87

Receiving buffer after execution of SVC code 18

starting address Address
X'173' X'17A'

-+---------------------------,---
14 614 CI4 FIS 214 914 DI4 112 012 012 012 012 012 012 012 012 012 012 01 ASCII
1---1
IFILIOIRIIIDIAI I I I I I I I I I I

User register 1 after execution of SVC 2 code lS

10 010 010 116 91 Hex

User register 2 after execution of SVC 2 code lS

10 010 010 117 AI Hex

Terminating character string before and after execution of SVC 2
code lS

12 AI2 612 FI ASCII
1-----------1
1/1 & : * :

Condition code

I C 1 V I GIL I
1-====-=--------1
I 0 1 0 I 0 101

If option X'SO' is specified and the ASCII character string does
not contain any characters that match any terminating character,
the decimal number specified as m determines the number of bytes
to be moved. The condition code is set to 4 (V bit set).

3-S8 4S-03S FOO R01

Example:

PAUSE

MOVE CHAR

TSTRING
ASTRING
RECBUF

LA 3,ASTRING
LA 5,RECBUF
SVC 2,MOVECHAR
SVC 2, PAUSE

ALIGN 4
DB 0,1
ALIGN 4
DB X'80' + 17, 18
DB 3,5
DC A(TSTRING)
DB 3,C' ,$:'
DB C'FLORIDA*&/VERMONT'
OS 17

ASCII character string before and after execution of SVC 2 code 18

starting
address Last byte Address
X'162' to be moved~'173'
_t ____________________________________ . _______________ ----------------t-

14 614 CI4 FIS 214 914 414 112 AI2 612 PIS 614 515 214 DI4 FI4 EIS 412 01 ASCII
1---1
I F ILl 0 I R I I I D I A 1 * I & I / I VIE 1 RIM I 0 1 NIT 1 I

User register 1 before execution of SVC 2 code 18

10 010 010 116 21 Hex

User register 2 before execution of SVC 2 code 18

10 0:0 DID 117 31 Hex

48-038 FOO R01 3-89

Receiving buffer after execution of SVC code 18

starting
address Address
X'173' X'184' _t ___ ,_
14 614 CI4 FIS 214 914 414 112 AI2 612 FIS 614 515 214 014 FI4 EIS 412 01 ASCII
1---1
I F I L I 0 I R I I I 0 I A I * I & I / I V I E I RIM I 0 I NIT I

User register 1 after execution of SVC 2 code 18

10 DID DID 117 41 Hex

User register 2 after execution of SVC 2 code 18

10 010 010 118 41 Hex

Terminating character string

12 712 413 AI ASCII
1------------1
I , I $ I : I

Condition code

1 c : V : G : L I
1-========------1
1011: 0 101

3-90 48-038 FOO ROi

3.17 SVC 2 CODE 19: PEEK

I SVC 2 I
I CODE 19 I

SVC 2 code 19 provides four parameter block options that can be
used to obtain and store task related information. Each
parameter block option obtains a different set of information
from the system pointer table (SPT) and the task control block
(TCB). Figures 3-21 through 3-25 illustrate the five peek
parameter block option formats.

3.17.1 Parameter Block for Option X'OO'

If SVC 2 code 19 is executed with option X'OO' specified in the
parameter block option field, use the parameter block format in
Figure 3-21. This option is used to obtain task information.

0(0) 11(1) 12(2) Number ofI3(3) Maximum
Option Code I logical units I priority

1 1 (NLU) 1 (MPRI) 1
---------------------------.--------------------------------1
4(4) 1

1
Name of operating system I

--------------- (OSlO) ----------------1
8(8)

12 (C) .

16(10)

20(14)

24(18)

Task name

Current task status word
(CTSW)

Task options
(OPT)

SVC 2,parb1k

ALIGN 4

126(lA)
I Logical

Processor
Unit (LPU)

parb1k DB X'00',19
OS 25
DB 0

127(lB)
I
1 Reserved
1

Figure 3-21 SVC 2 Code 19 Parameter Block Format and Coding
for Option X'OO'

48-038 FOO ROI 3-91

This parameter block must be 2a bytes long, fullword-boundary
aligned, and located in a task writable segment. A general
description of each field in the parameter block follows.

Fields:

3-92

option

Code

Number of
logical units
(NLU)

Maximum
priority
(MPRI)

Name of
operating
system
(OSlO)

Task name

Current task
status word
(CTSW)

Task options
(OPT)

Logical
processing
Unit (LPU)

Reserved

is a I-byte field that must contain the
hexadecimal number X'OO'.

is a l-byte
decimal number
2.

field that must contain the
19 to indicate code 19 of SVC

is a l-byte field that receives from the Tca
the maximum logical unit number which can
be assigned to a task. This hexadecimal
number ranges from 0 through 254 (X'FE').

is a l-byte field that receives from the Tca
the highest priority number at which the
assigned task can execute. This hexadecimal
number ranges from 10 (X'04') through 249
(X'F9').

is an a-byte field that receives from the
SPT the operating system name in ASCII.

is an a-byte field that receives from the Tca
the name of the task in ASCII.

is a 4-byte field that receives from the Tca
the hexadecimal number representing bits 0
through 31 of the CTSW.

is a 2-byte field that receives the
hexadecimal number representing bits 16
through 31 of the option field in the TCB.
Bits 0 through 15 are accessible through
option X'03' of SVC 2 code 19. Table 3-4
lists task options.

is a l-byte field that receives the hex
adecimal number of the task's current LPU
assignment from the TCB. The value of this
number ranges from X'OO' through X'09'; X'OO'
indicates the central processing unit (CPU).

is a reserved 2-byte field that must contain
zeros.

48-038 FOO ROl

TABLE 3-3 TASK OPTIONS FROM THE TASK CONTROL BLOCK

I BIT I
I POSITION I

BIT NAME
AND MASK BIT SETTING AND MEANING

o I Diagnostic taskl 0 - task determined by bit 16
I (d-task) I 0 = task is ad-task
I (Y' 8000 0000') I

1 I APU only I 0 = task can run on CPU or APU
I (Y'4000 0000') I 1 = task cannot run on CPU

2 I APU I 0 = no APU mapping allowed
I mapping option I 1 = task can perform APU
I (Y'2000 0000') I mapping functions

3 I APU I 0 = no APU control allowed
I control option I 1 = task can perform APU

4

5

6

I (Y'1000 0000') I mapping functions

Dynamic
priority
scheduling
(Y'0800 0000')

I Prompts
I (Y' 04000000')

Vertical forms
control
(Y'02000000')

o = dynamic priority
scheduling disabled

1 = dynamic priority
scheduling enabled

I 0 = MTM prompts disabled
I 1 = MTM prompts enabled

o = except where specified,
all I/O interpreted
without forms control

1 = all I/O interpreted with
vertical forms control

7 Extended SVC 1 I 0 = SVC 1 extended parameter

8

9

parameter b10ckl block not used (excludes
(Y'OlOOOOOO') communications I/O).

Task event
service
(Y'00800000')

1 = extended SVC 1 parameter
block used

o = new TSW for task event

1
service
no new TSW for task event
service

o = all register contents
saved and restored

Task event
registers save
(Y'00400000') 1 = only contents of registers

that contains task event
data are saved and re
stored

10

48-038 FOO ROl

Task event
register save
(Y'00200000')

o = task event register not
saved

1 = task event register saved

3-93

TABLE 3-3 TASK OPTIONS FROM THE TASK CONTROL BLOCK (Continued)

BIT I
POSITION I

BIT NAME
AND MASK BIT SETTING AND MEANING

====================-====-===--=-=-===----=--==============-

3-94

11

12

13

I System group
I (Y' 00100000 ')

I Console I/O
I intercept
I (Y' 00080000 ')

Universal
status report
(Y'00040000')

I 0 = not in system group
I 1 = in system group

I 0 = no console I/O interrupt
I 1 = console I/O interrupt

enable (MTM)

o universal task status re
ports not allowed

1 = universal task status re
ports allowed

14 I Executive task I 0 = allow e-task load

15

: load : 1 = prevent e-task load
I (Y'00020000')

: Queued I/O
: (Y' 00010000')

o queued I/O not purged on
error

1 = queued I/O purged on error.

16 : Executive task : 0 = task is au-task

17

18

I (Y'80000000') I 1 = task is an e-task

Arithmetic
fault
(Y'400000000')

Single
precision
floating point
(Y'20000000')

o task abnormally terminates
on arithmetic fault

1 = task continues execution
on arithmetic fault

o = task does not support
single precision floating
point

1 = task does support single
precision floating point

19 I Memory resident: 0 = task is nonresident

20

21

I (Y'lOOOOOOO') : 1 = task is resident in memory

SVC 6 control
functions
(Y'08000000')

SVC 6 communi
cation func
tions
(Y'04000000')

o = task can execute all SVC
6 control functions

1 all SVC 6 control functions
are prevented

o = task can execute all SVC
6 communication functions

1 = all SVC 6 communication
functions are prevented

48-038 FOO ROl

TABLE 3-3 TASK OPTIONS FROM THE TASK CONTROL BLOCK (Continued)

: BIT :
I POSITION I

BIT NAME
AND MASK BIT SETTING AND MEANING

1~======== ___________ ===~_===_=B======~==~=_===a=============
22

23

24

25

26

Illegal SVC 6
(Y'02000000')

Double
precision
floating point
(Y'OlOOOOOO')

I Rollable
: (Y' 00800000 ')

Overlays
(Y'00400000')

I Accounting
I facility
: (Y'00200000')

o = task abnormally terminates
on an illegal SVC 6

1 = task continues execution
on an illegal SVC 6

o = task does not support
double precision floating
point

1 = task does support double
precision floating point

I 0 - task is not rollable
I 1 - task is rollable

o task does not support the
use of overlays

1 = task does support the use
of overlays

o = disable accounting
facility

1 = enable accounting facility

27 Intercept calls: 0 task cannot issue intercept

28

29

30

31

48-038 FOO ROi

(Y' 04000000') I calls

Account number
privileges
(Y'00080000')

Bare disk I/O
privilege
(Y'00040000')

Universal
communications
task
(Y'00020000')

Executive task
keys
(Y'OOOlOOOO')

1 - task can issue intercept
calls

o = task does not have file
account number privileges

1 = task has file account
number privileges

o = task cannot directly
assign to a disk device

1 = task can directly assign
to a disk device for bare
disk I/O~ See Chapter 8

o

1

task is not a universal
task
task is a universal task

o no keys are checked on an
assign for an e-task.

1 = keys are checked on an
assign for an e-task

3-95

Example:

PEEK

SVC 2,PEEK

ALIGN 4
DB X'00',19
DS 25
DB 0

Parameter block before execution of SVC 2 code 19

00 :13 :00 :00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

Parameter block after execution of SVC 2 code 19

00 : 13 : OF : 81

o S 3 2

M T o 6

M A R

00 00 00 00

SVC 6 communication call prevented.

Task is rollable.

SVC 6 load of executive task prevented.

3-96 48-038 FOO ROi

3.17.2 Parameter Block for Option X'D1'

To execute SVC 2 code 19 with option X'Dl' specified in the
parameter block option field, use the parameter block format in
Figure 3-22.

0(0)
Option

4(4)

8(8)

l2(C)

Il(1) 12(2)
Code Maximum blocking factor

Name of operating system
(OSlO)

114(E)
Operating system update

level (OSUP)
CPU model numbers

16 (10)

20(14)

System options
(SOPT)

122(16)
User account number

(UACT)
Group account number

(GACT)

24 (18)
System console name

SVC 2,parblk

ALIGN 4
parblk DB X'01',19

OS 26

Figure 3-22 SVC 2 Code 19 Parameter Block Format and Coding
for Option X'Dl'

This parameter block must be 28 bytes long, fullword-boundary
aligned, and located in a task writable segment. A general
description of each field in the parameter block follows.

48-038 FOO ROI 3-97

Fields:

3-98

option

Code

Maximum
blocking
factor

Name of
operating
system
(OSlO)

Operating
system update
level (OSUP)

CPU model
numbers

System
options
(SOPT)

is a I-byte field that must contain the
hexadecimal number X'Ol'.

is a I-byte
decimal number
2.

field that must contain the
19 to indicate code 19 of SVC

is a 2-byte field that receives a number
ranging from X'Ol' to X'FF'. This number
indicates the maximum number of 256-byte
segments that can be specified in an ALLOCATE
command or an SVC 7 for the data block size of
ind~xed files, and for the indexed block size
for indexed, nonbuffered indexed, and
extendable contiguous files. This blocking
factor must be set at sysgen. See the System
Generation/32 (Sysgen/32) Reference Manual.

is an 8-byte field that receives from
SPT the operating system name in ASCII.

the

is a 2-byte field that receives from the
SPT the current update level of the operating
system in ASCII in the form: nne

is a 2-byte field that receives from the SPT
the model numbers in hexadecimal of the CPU
used in the system. They are:

• Model 7/32 has a value of X'0007'.

• Model 8/32 has a value of X'0008'.

• Model 3200MPS has a value of X'OC80'

• Model 3210 has a value of X'OC8A'

• Model 3220 has a value of X'OC94'.

• Model 3230 has a value of X'OC9E'.

• Model 3240 has a value of X'OCA8'.

• Model 3250 has a value of X'OCB2'

is a 4-byte field that receives the
hexadecimal value of bits 0 through 31 of the
options field in the SPT. Table 3-4 lists
system options.

48-038 FOO ROl

User account
number
(UACT)

is a 2-byte field that receives the user
account number from the TCB. This hexadecimal
number is right-justified with zeros filling
the leftmost portion.

Group account
number

is a 2-byte field that receives the group
account number from the TCB. This hexadecimal
number is right-justified with zeros filling
the leftmost portion.

(GACT)

System
console name

is a 4-byte field that receives the name of
the device that is acting as the system
console.

TABLE 3-4 SYSTEM OPTIONS FROM THE SYSTEM POINTER TABLE

I BIT I
I POSITION I

BIT NAME
AND MASK BIT SETTING AND MEANING

1=========== ___ ================ ____ =========== __ ==============
o

1

2

3

4

5

Single
precision
floating point
(Y'8000 0000')

Form date is
displayed
(Y'4000 0000')

Time display
(Y'2000 0000')

Double
precision
floating point
(Y'lOOO 0000')

Writable
control store
(WCS)
(Y'0800 0000')

Address align
ment error
checking
(Y'0400 0000')

48-038 FOO ROI

o = system does not support
single preCision floating
point

1 = system does support single
precision floating point

o = date is displayed in the
form: mmddyy

1 = date is displayed in the
form: ddmmyy

o = time is displayed on
output device specified
by the user

1 = time displayed on panel

o = system does not support
double precision floating
point

1 - system does support double
precision floating point

o system does not support WCS

1 system does support WCS

o - hardware does not support
address alignment error
checking

1 - hardware supports address
alignment error checking

3-99

TABLE 3~4 SYSTEM OPTIONS FROM THE SYSTEM POINTER TABLE
(Continued)

BIT I
POSITION I

BIT NAME
AND MASK BIT SETTING AND MEANING

=================--=---=----==-=-------=-====================;
6

7

Direct access
(Y'0200 0000')

I TAM
(Y'OlOO 0000')

o = system does not support
I direct access
I 1 = system supports direct

access

o system does not support
communications

1 = system supports communica
tions.

8 I Spool I 0 system does not support

9

: (Y'0080 0000'): spooling

Roll
(Y'0040 0000')

1 - system supports spooling

o = system does not support
rollin, rollout

1 system supports rollin,
rollout

10 Temporary files: 0 = system does not support

11

12

13 I
I
I
I
I
I

(Y'0020 0000'): temporary files

Multiple
register sets
(Y'OOlO 0000')

Univers~l
reporting
(Y'00080000')

General error
recording
(Y'0004 0000')

1 - system supports temporary
files

o system does not support
multiple register sets

1 = system supports multiple
register sets

o = intertask reporting between
universal tasks off

1 = intertask reporting between
universal tasks on

0 = general error recording off

1 = general error recording on
.---

14

15

16

3-100

I Memory error I
I recording I
I (Y'0002 0000') I

: Reserved

Load real
address
(Y'OOOO 8000')

0 = memory error recording

1 = memory error recording

I 0 - reserved for future use

o = load real address not
supported

off

on

1 - load real address supported

48-038 FOO ROl

TABLE 3-4 SYSTEM OPTIONS FROM THE SYSTEM POINTER TABLE
(Continued)

BIT I
POSITION I

BIT NAME
AND MASK BIT SETTING AND MEANING

====e __ == __ ============================ __ ==_= __ ==========_=_=
17 Memory

diagnostics
(Y'OOOO 4000')

o

1

memory diagnostics
supported
memory diagnostics
not supported

18 Processor model I 0 = Model 7/32, 8/32 processors
(Y'OOOO 2000')

1 = Model 3210, 3220, 3230,
3240, 3250, 3200MPS
processors

19 I MAT hardware I 1. system has MAT hardware

20

21

31

Example:

PEEK

PAUSE

I (Y'OOOO 1000') I 0 = system does not have MAT
I hardware

Single pre
cision float
ing point
traps
(Y'OOOO 0800')

Double precis
ion floating
point traps
(Y'OOOO 0400')

I System debug
I mode
I (Y '0000 0001')

SVC 2,PEEK
SVC 2, PAUSE

ALIGN 4
DB X, 01' ,19
OS 26
ALIGN 4
DB 0,1

1 = single precision floating
point software traps
present

o single precision floating
point software traps not
present

1 - double precision floating
point software traps
present

o = double precision floating
point software traps not
present

o - normal operation mode

1 = system debug mode

48-038 FOO ROl 3-101

Parameter block before execution of SVC 2 code 19

01 113 100 00

00 00 00 00

00 00 00 00

00 00 100 00

00 00 00 00

00 00 100 00

00 00 00 00

Parameter block after execution of SVC 2 code 19

01 113 lOa FF I
___ . ____________ 1

o S 3 2

M T a 6

a 2 :00 08

{ ~2--;~--~~--~~-
1---------------
IDa 91 IDa 91
1----------------
leo N

B2E08000= Single precision floating point

Time display on hexadecimal display panel

Double precision floating point

Direct access support

Spooler option

Roll option

Temporary file support

Multiple register set support

Load read address support

3-102 48-038 FOO ROl

3.17.3 Parameter Block for Opti.on X' 02'

If SVC 2 code 19 is executed with option X'02' specified in the
parameter block option field, use the parameter block format in
Figure 3-23.

0(0)
Option

Il(1)
Code

12(2)
Reserved

4(4)

8(8)

12(C)

16(20)

20(24)

24(28)

parblk

I

Name of operating system -----------------
(OSID)

Load volume

Filename

127(31)
Extension File class

SVC 2,parblk

ALIGN 4
DB X' 02' , 19
DC H'O'
DS 24

Figure 3-23 SVC 2 Code 19 Pa.rameter Block Format and Coding
for Option X'02'

48-038 FOO ROl 3-103

This parameter block must be 28 bytes long, fullword-boundary
aligned, and located in a task writable segment. A general
description of each field in the parameter block follows:

Fields:

option

Code

Reserved

Name of
operating
system (OSlO)

Load volume
Filename
Extension
File class

Example:

Pft~EK

PAUSE

3-104

svc
SVC

ALIGN
DB
DC
OS
ALIGN
DB

is a l-byte field that must contain the
hexadecimal number X'02'.

is a l-byte
decimal number
2.

field that must contain the
19 to indicate code 19 of SVC

is a 2-byte field that is reserved and must
contain zeros.

is an 8-byte field that receives from the
SPT the operating system name in ASCII.

is the fd from which the task was loaded. The
fd can be used for subsequent assignments.

2,PEEK
2,PAUSE

4
X'02',19
H'O'
24
4
0,1

48"-038 FOD RDl

Parameter block before execution of SVC 2 code 19

02 113 100 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 100

Parameter block after execution of SVC 2 code 19

02 113 100 00

o s 3 2

M T o 6

M 3 o o

s u P R

v I S R

o v Y I S

3.17.4 Parameter Block for Option X'03'

To execute SVC 2 code 19 with option X'03' specified in the
parameter block option field, use the parameter block format in
Figure 3-24. This option is used to obtain extended information
on a task.

48-038 FOO R01 3-105

Figure 3-24

3-106

0(0)
Option

4(4)

8(8)

12 (C)

16(10)

20(14)

24(18)

28(lC)

32(20)

36(24)

40(28)

44(2C)

48(30)

52(34)

56(38)

,60(3C)

1(1)
Code

2(2) Number
of logical
units (lu)

Taskid (TID)

Task name

Current task status word (CTSW)

Task options (OPT)

Task waits

User account number

Group account number (GACT)

Load volume

Filename

Extension

Monitor task name

13(3) Maximum
I priority

(MPRI)

151(33)
I File class

1 Originating user console device (legacy)

1----------------------------
164(40) 165(41)
I Task I Reserved

Priority

SVC 2,parblk

ALIGN 4
parblk DB X' 03' ,19

OS 2
DC y'utask'
OS 57
DB 0
OS 1
DB 0

66(42)
LPU

67(43)
Reserved

SVC 2 Code 19 Parameter Block Format and Coding
for Option X'03'

48-038 FOO R01

This parameter block must be 68 bytes long, fullword-boundary
aligned, and located in a task writable segment. A general
description of each field in the parameter block follows.

Fields:

option

Code

Number of
logical units
(lu)

Maximum
priority
(MPRI)

Taskid
(TID)

Task name

Current task
status
word (CTSW)

Task
options
(OPT)

48-038 FOO ROl

is a I-byte field that must contain the
hexadecimal number X'03'.

is a l-byte field that must contain the
decimal number 19 to indicate code 19 of SVC
2.

is a I-byte field that receives from the
TCB the maximum number of logical units
which can be assigned to a task. This
hexadecimal number ranges from 0 (X' 00 ')
through 254 (X' FE ') .

is a l-byte field that receives from the
TCB the highest priority number at which the
assigned task can execute. This hexadecimal
number ranges from 10 (X'OA') through 249
(X'F9').

is a 4-byte field that contains a hexadecimal
number, supplied by the user, that identifies
the task for which the extended task
information is being requested. The user
obtains this number using the SVC intercept
software. See the OS/32 System Level
Programmer Reference Manual. The user's own
task can be examined by setting the TID field
to O.

is an 8-byte field that receives from the TCB
the name in ASCII of the task for which the
extended task information is being requested.
If the supplied TID is invalid, or the task no
longer exists, the task name field is set to
binary zeros.

is a 4-byte field that receives from the
TCB the hexadecimal number representing bits
o through 31 of the CTSW.

is a 4-byte field that receives from Tca
the hexadecimal number representing bits 0
through 31 of the task option field in the
TCB. Table 3-4 lists task options.

3-107

Task waits

User account
number (UACT)

Group account
number (GACT)

Load volume
Filename
Extension
File class

Monitor task
name

Originating
user console
device
(legacy)

Task priority

Reserved

Logical
processing
unit (LPU)

Reserved

3-108

is a 4-byt~ field that receives the
hexadecimal number representing bits 0 through
31 of the task wait field in the TCB. Table
3-6 lists the wait status bit definitions.

is a 4-byte field that receives the user
account number from the TCB. This hexadecimal
number is right-justified.

is a 4-byte field that receives the group
account number from the TCB. This hexadecimal
number is right-justified.

is the fd from which the task was loaded.
After the task is loaded, the fd can be
assigned to subsequent tasks.

is an 8-byte field
the task that is
task.

that receives the name of
monitoring the specified

is a 4-byte field that receives the name of
the MTM console from which the specified
task was loaded. If the task is not running
under MTM, this field contains zeros.

is a I-byte field indicating the priority of
the specified task at the time this call is
executed.

is a l-byte field that must contain zeros.

is a I-byte field
decimal number of
assignment from the
number ranges from
indicates the cPU.

that receives the hexa
the task's current LPU

TCB. The value of this
X'OO' through X'Og'; X'OO'

is a I-byte reserved field that must contain
zeros.

48-038 FOO ROI

TABLE 3-5 TASK WAIT STATUS BIT DEFINITIONS

I BIT I
I POSITION I BIT MASK MEANING I=z_= _____________ ~=_====== __ .. ________________ = ____ === _____ _

0-14 I Y'OOOO 0000' I Reserved

15 I Y'OOOl 0000' I Intercept wait

16 I Y'OOOO 8000' 1 I/O wait

17 I Y'OOOO 4000' I Any lOB wait

18 I Y'OOOO 2000' I Console wait (paused)

19 I Y'OOOO 1000' I Load wait

20 I Y'OOOO 0800' 1 Dormant

21 1 Y'OOOO 0400' I Trap wait

22 I Y'OOOO 0200' 1 Time of day wait

23 I Y'OOOO 0100' I Suspended

24 L Y'OOOO 0080' I Interval wait

25 'I Y'OOOO 0040' 1 Terminal wait

26 I Y'OOOO 0020' 1 Roll pending wait

27 I Y'OOOO DOlO' 1 Interrupt initialization (MTM)

28 I Y' 0000 0008' I Interrupt terminat ion (MTM)

29 I Y'OOOO 0004' I System resource connection wait

30 I y'OOOO 0002' I Accounting wait

31 I Y'OOOO 0001' I Reserved

NOTE

If bits 0 to 30 are set to 0, the task is
active.

48-038 FOO ROl 3-109

Example:

SVC 2,PEEK
SVC 2, PAUSE

ALIGN 4
PEEK DB X'03',19

DS 2
DC Y'OO'
DS 57
DB 0
DS 1
DB 0

Parameter block before execution of SVC 2 code 19

03 110 100 lOa

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 100

00 00 00 00

00 00 00 00

00 00 00 00

00 100 IDa 100

3-110 48-038 FOO ROl

Parameter block after execution of SVC 2 code 19

03 113 IOF 181

00 00 00 00

p E E K

p E E K

00 00 00 00

DC 03 08 Al

00 00 00 00

00 00 00 91

00 00 00 91

M 3 o o

s u p R

v I S p

o v Y I S

M T M

o I 1 8

81100101 fOO

3.17.5 Parameter Block for Option X'04'

Option X'04' accesses the license number and current sysgen
version of the operating system that is currently running on the
system. To execute option X'04' of SVC 2 code 19, use the
parameter block format shown in Figure 3-25.

48-038 FOO R01 3-111

0(0) 11 (1) 12(2)
option Code Reserved

4(4)

8(8)

12(C)

16(10)
as

20(14)
License Number

24(18)

28(1C)

32(20)

36(24)

as Version Number
40(28)

SVC 2,parb1k

ALIGN 4
parb1k DB X'04',19

DC H'O'
OS 40

Figure 3-25 SVC 2 Code 19 Parameter Block Format
and Coding Option X'04'

----_.

3-112 48-038 FOO R01

This parameter block must be 44 bytes long, fu11word-boundary
aligned, and located in a task, writable segment. A general
description of each field in the parameter block follows.

Fields:

option

Code

Reserved

as License
Number

as Version
Number

48-038 FOO ROl

is a 1-byte field that contains the
hexadecimal number X'04' indicating option 4
of SVC 2 code 19.

is a 1-byte field that contains the decimal
number 19 ind.icating code 19 of SVC 2.

is a 2-byte field that should contain zeros.

is a 32-byte (8 fu11words) alphanumeric field
that receives the license number of the
operating system: e.g., License E-0178. Data
in this field is left-justified with trailing
ASCII blanks (X'20').

is an 8-byte (2 fullwords) alphanumeric field
that receives the version of the operating
system that was specified by the user at
sysgen: e.g., 613C.8l9. Data in this field
is left-justified with trailing ASCII blanks
(X'20') ..

3-113

I SVC 2 I
I CODE 20 I

3.1B SVC 2 CODE 20: EXPAND ALLOCATION

SVC 2 code 20 affects only those tasks running under previous
32-bit operating systems and should not be used in a multitasking
environment. This SVC provides for compatibility with existing
programs; no action is performed. The parameter block for this
call is shown in Figure 3-26.

10(0)
Option

parblk

11 (1) 12(2)
Code Number of 256'-byte blocks

SVC 2,parblk

ALIGN 4
DB option,20
DC H'number of 256-byte blocks'

Figure 3-26 SVC 2 Code 20 Parameter Block Format and Coding

This parameter block is 4 bytes long, fullword-boundary aligned,
and located in a task writable segment for option X'BO'. A
general description of each field in the parameter block follows.

Fields:

option

Code

Number of
2S6-byte
blocks

3-114

is a l-byte field that must contain option
X'OO' or X'80'.

is a I-byte field that must contain the
decimal number 20 to indicate code 20 of SVC
2.

is an unused 2 byte field.

48-038 FOO R01

The condition code is set after executing SVC 2 code 20.
Possible condition codes are:

Condition codes

I C 1 V I GIL 1
1===============1
101 0 101 1 1
1---------------1
10111 0 I 0 I

48-038 FOO ROl

Normal termination with option X'80'
specified
Normal termination with otion X'OO'
specified

3-115

1 SVC 2 1
I CODE 21 1

3.19 SVC 2 CODE 21: CONTRACT ALLOCATION

SVC 2 code 21 affects only those tasks running under previous
32-bit operating systems and should not be used in a multitasking
environment. This call provides for compatibility with existing
user programs; no action is performed. The parameter block for
this call is shown in Figure 3-27.

10(0)
Option

parblk

Il(1) 12(2)
Code Number of 256-byte blocks

SVC 2,parblk

ALIGN 4
DB 0,21
DC H'number of 256-byte blocks'

Figure 3-27 SVC 2 Code 21 Parameter Block Format and Coding

This parameter block is 4 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

Fields:

option

Code

Number of
256-byte
blocks

3-116

is a I-byte field that must contain a 0 to
indicate no options for this call.

is a I-byte field that must contain the
decimal number 21 to indicate code 21 of SVC
2.

is an unused 2-byte field.

48-038 FOO ROl

I SVC 2 I
I CODE 23 I

3.20 SVC 2 CODE 23: TIMER MANAGEMENT

SVC 2 code 23 performs five timer management functions used in
coordination with real time operations:

1. Schedules the addition of a parameter to a task queue when a
specified interval has elapsed (option X'OO')

2. Waits until completing a specified interval (option X'80')

3. Schedules repetitive additions to a task queue as specified
intervals elapse (option X'40')

4. Reads time remaining for the specified interval (option
X'20')

5. Cancels a previous interval request (option X'lO')

Since the five options
parameter block formats
separate parameter blocks.
through the SVC 2 code 23
through 3-32.

perform different functions, their
and coding differ and are shown as

These operations are accomplished
parameter blocks shown in Figures 3-28

3.20.1 SVC 2 Code 23 Parameter Block for Option X'OO'

When specifying option X'OO', a timer interval is set up
concurrently with the subsequent task executions. Then, an item
with a reason code of X'Og' is added to the calling task queue
when the user-specified interval elapses. This is accomplished
through the SVC 2 code 23 parameter block for option X'OO' shown
in Figure 3-28. See the OS/32 Application Level Programmer
Reference Manual for information on the task queue.

48-038 FOO ROI 3-117

0(0)
Option

4(4)

parblk

11(1)
Code

12(2)
Reserved

Increment of time+count

SVC 2,parblk

ALIGN 4
DB X'OO',23,O
DB user register

13(3)
IUser register

DC Y'increment of time'+F'count'

Figure 3-28 SVC 2 Code 23 Parameter Block Format and Coding
for Option X'OO'

This parameter block is 8 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

Fields:

option

Code

is a l-byte field that must contain the
hexadecimal number X'OO'.

is a l-byte field that must contain the
decimal number 23 to indicate code 23 of SVC
2.

Reserved is a l-byte field that must contain a zero.

User register is a l-byte field that must contain a user
specified register number. Bits 8 through 31
of this register must contain the parameter
portion of the item that is added to the task
queue when the interval elapses.

3-118 48-038 FOO R01

Increment of
time+count

is a 4-byte field that indicates the number
of seconds or milliseconds that must elapse
before an item is added to the task queue.

The first four bits contain a hexadecimal
number indicating how the time period is to be
calculated:

• Y'OOOOOOOO'
calculated
of day) .

indicates that the time is
in seconds from midnight (time

• Y'IOOOOOOO' indicates that the time is
calculated in milliseconds from the time
this call is executed (interval timing).

The remaining bits contain
decimal number indicating
seconds or milliseconds.

the
the

count
number

or
of

A decimal number greater than 86,399 indicates
days in the future. For a detailed
explanation of time of day and interval
timing, see Sections 3.11 and 3.12.

Before executing this call, prepare the task to handle a task
queue trap. See the OS/32 Application Level Programmer Reference
Manual.

After the interval is started and the condition code is set, the
task continues processing or enters a trap wait state. Possible
condition codes are:

Condition codes

I C 1 V I GIL 1
1===============1
I 0 I 0 I 0 I 0 1 Interval started; normal termination
1---------------1
I 0 1 1 1 0 1 0 I Insufficient system space available

48-038 FOO ROl 3-119

Example:

LI 3,C'ABC'
SVC 2,TIMRQ
SVC 9,TRAPWAIT

ALIGN 4
TIMRQ DB X'00',23,0

DB 3
DC Y'10000000'+F'30000'
ALIGN 4

TRAPWAIT DC y'88000200'
DC yeo'

If this call is executed and insufficient system space is
available, no time period elapses, no item is added to the task
queue, and the condition code is set to 4 (V bit set). If this
call is executed and the task is unprepared to handle this trap,
no item is added to the task queue and the task has effectively
lost an interrupt.

If queue overflow occurs after the specified interval elapses,
the end of task code is set to 1000 and the task terminates
abnormally.

If the interval is calculated as time of day and that specified
time has already passed, the same time on the following day is
assumed.

3.20.2 SVC 2 Code 23 Parameter Block for Option X'80'

If option X'80' is specified, the calling task is placed in a
timer wait state until a specified interval elapses. Nothing is
added to the calling task queue. This is accomplished through
the SVC 2 code 23 parameter block for option X'80' shown in
Figure 3-29.

3-120 48-038 FOO ROl

0(0)
Option

(4)

parblk

: l(1) 12(2)
Code Reserved

Increment of time+count

SVC 2,parblk

ALIGN 4
DB X' SO' ,23
DC H'O'
DC Y'increment of time'+F'count'

Figure 3-29 SVC 2 Code 23 Parameter Block Format
and Coding for Option X'SO'

This parameter block is S bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows.

Fields:

option

Code

Reserved

4S-038 FOO ROl

is a I-byte field that must contain the
hexadecimal value X'SO'.

is a I-byte field that must contain the
decimal number 23 to indicate code 23 of SVC
2.

is a reserved 2-byte field that must contain
zeros.

3-121

Increment of
time+count

is a 4-byte field that indicates the number
of seconds or milliseconds that must elapse
before the task is released from the wait
state. The first four bits contain a
hexadecimal number indicating how the time is
to be calculated:

• Y'OOOOOOOO'
calculated
of day) .

indicates that the time is
in seconds from midnight (time

• Y'lOOOOOOO' indicates that the time is
calculated in milliseconds from the time
this call is executed (interval timing).

The remaining bits contain the count or
decimal number indicating the number of
seconds or milliseconds. A decimal number
greater than 86,399 indicates days in the
future.

After the specified interval elapses, the task resumes execution
with the instruction following SVC 2. The possible condition
codes are:

Condition codes

: c : V I G : L I
:===============:
: a I a I a 10:
\---------------\
10111 a I a I

Internal started; normal termination

Insufficient system space available;
no wait occurred

If this call is executed and insufficient system space is
available, no interval elapses, no item is added to the task
queue, and the condition code is set to 4 (V bit set).

If the interval is calculated as time of day and that specified
time has already passed, the same time on the following day is
assumed.

3-122 48-038 Faa ROl

3.20.3 SVC 2 Code 23 Parameter Block for Option X'40'

If option X'40' is specified, items with reason code X'Og' are
repetitively added to the calling task queue at user-defined
intervals within a specific time period until the task terminates
or cancels the time interval request with SVC 2 code 23 option
X'lO. The user-defined intervals that are within a specific time
period must all be specified the same way, either as time of day
intervals or as interval timing intervals. This is accomplished
through the SVC 2 code 23 parameter block for option X'40' shown
in Figure 3-30.

0(0)
Option

4(4)

11 (1) 12(2)
Code Number of intervals

defined in table

Increment of t ime+addI:ess of interval table

SVC 2,parblk

ALIGN 4
parblk DB X'40' ,23

DC H'number of intervals defined in table'
DC Y'increment of time'+A(interva1 table)

Figure 3-30 SVC 2 Code 23 Parameter Block Format and Coding
for Option X'40'

This parameter block is 8 bytes long, ful1word-boundary aligned,
and does not have to be located in a task writable segment. A
descr iption of each field in thE~ parameter block follows.

48-038 FOO R01 3-123

Fields:

option

Code

Number of
intervals
defined in
table

Increment of
time+address
of interval
table

is a I-byte field that must contain the
hexadecimal number X'40'.

is a I-byte field that must contain the
decimal number 23 to indicate code 23 SVC 2.

is a 2-byte field that must contain
decimal number indicating the number
intervals the user defined in the table.

the
of

is a 4-byte field that indicates the address
of the table containing all the user-defined
intervals within a specified time period. The
first four bits contain a hexadecimal number
indicating how the time designated by the
interval table is to be calculated:

• y'OOOOOOOO'
calculated
of day) .

indicates that the time is
in seconds from midnight (time

• Y'IOOOOOOO' indicates that the time is
calculated in milliseconds from the time
this call is executed (interval timing).

The remaining bits contain a hexadecimal number indicating the
address of the interval table. This table must be
fullword-boundary aligned and defined as follows.

Format:

table

3-124

DC
DC
DC
DC

DC
DC

P'count'
P'parameter'
P'count'
P'parameter'

F'count'
P'parameter'

Pirst interval

Second interval

Last interval

48-038 POO ROl

Parameters:

table

DC

F

count

parameter

is the user-specified name for the interval
table.

is the operation code, define constant, for
the instruction.

is the type
instruction.

code, fullword, for the

is the decimal number indicating how many
seconds or milliseconds must elapse before an
item is added to the task queue. The decimal
numbers specified for time of day intervals
can be any number except 0 and must be
specified in ascending order with each count
at least one greater than the previous count.
The decimal number for interval timing
intervals can be any decimal number except O.
This decimal value occupies bits 4 through 31
of the count field.

is the item to be added to the task queue when
its associated interval elapse. This item
occupies bits 8 through 31 of one slot of the
task queue. The first byte contains reason
code X'09 1

• See the OS/32 Application Level
Programmer Reference Manual.

The time period in which the user-defined intervals occur differs
for time of day intervals and interval timing intervals. The
time period for time of day intervals ranges from the day on
which the first interval occurs through and including the day on
which the last interval occurs. The time period is the sum of
days on which the intervals occur. In the following example, the
total time period is 3 days.

Example:

ALIGN 4
INTABLE DC F'54000' 1500 hours of current day

DC F'l'
DC F'l40399' 1500 hours of second day
DC F ' 2'
DC F'227798' 1500 hours of third day
DC F ' 3 '
DC F'23l498' 1600 hours of third day
DC F'4'

The time period for interval timing is the sum of all intervals
in the table.

48-038 FOO ROl 3-125

Example:

ALIGN 4
INTABLE DC F'18000' first interval

DC F'Al'
DC F'36000'
DC F'A2' second interval

In the above example, the time period is equal to 54000 ms. The
time period is repetitively executed until the task cancels the
time interval request via SVC 2 code 23 option X'lO' or goes to
end of task. Before executing this call, prepare the task to
handle this trap as described in the OS/32 Application Level
Programmer Reference Manual.

As the specified intervals are elapsing, the task can continue
processing. After executing this call, the condition code is set
to these possible settings:

Condition codes

I C I V 1 GIL 1
1===============1
101 010 1 0 1 Normal termination
1---------------1
101110101 Insufficient system space available;

no wait occurred

If this call is executed and insufficient system space is
available, no interval elapses, nothing is added to the task
queue, and the condition code is set to 4 (V bit set).

If this call is executed and the task is not prepared to handle
this trap, nothing is added to the task queue. The task has
effectively lost an interrupt.

If queue overflow occurs after one
elapses, the end of task code
terminates abnormally.

of
is

the
set

specified intervals
to 1000 and the task

If the time period is calculated as time of day and the specified
time for the first interval has already passed, the same time in
the following period is assumed.

If the time period is calculated as time of day and one of the
specified intervals in the interval table is 0 or not in
ascending order, the task is paused and a message is displayed.

3-126 48-038 FOO ROl

3.20.4 SVC 2 Code 23 Parameter Block for Option X'20'

SVC 2 code 23 reads the time remaining until the interval
previously established with option X'OO' or X'40' elapses. This
is accomplished through the SVC 2 code 23 parameter block for
option X'20' shown in Figure 3-37.

10(0)
Option

Il(1)
Code

12(2)
Reserved

13(3)
IUser register

1---
14(4)

Time returned

SVC 2,parblk

ALIGN 4
parblk DB X'20',23,0

DB user register
DC Y'increment of time returned'

Figure 3-31 SVC 2 Code 23 Parameter Block Format and Coding
for Option X'20'

This parameter block must be 8 bytes long, fullword-boundary
aligned, and located in a task writable segment. A general
description of each field in the parameter block follows.

Fields:

Option

Code

Reserved

48-038 FOO ROl

is a I-byte field that must contain the
hexadecimal number X'20'.

is a I-byte field that must contain the
decimal number 23 to indicate code 23 of SVC
2.

is a I-byte field that must contain a O.

3-127

User register is a I-byte field that must contain the user
register number. Bits 8 through 31 of this
register should contain the parameter
associated with the desired starting interval.

Time returned is a 4-byte field that contains a hexadecimal
number indicating how the time will be
returned for the type of interval being read,
as follows:

• y'OOOOOOOO' indicates the number of seconds
from midnight specified for the time of day
wait interval in the parameter block for
option X'OO' of SVC 2 code 23 .

• Y'lOOOOOOO' indicates the milliseconds
remaining from the time this call is
executed to the completion of the time
interval specified in the parameter block
for option X'40' of SVC 2 code 23.

NOTE

If the timer entry that is being
read is set for a time-of-day wait
interval (option X'OO'), only the
value for the time-of-day interval
can be read. An interval timing
readout cannot be made for this
task. Similarly, if the task is
set for interval timing (option
X'40'), only an interval readout
can be made.

The register in the user register field specifies the parameter
associated with the interval to be read. When executed, this
call finds the value of the time-of-day wait interval or the
milliseconds remaining for a timing interval by searching for the
parameter associated with the interval on the timer queue. The
value read is stored in bits 4 through 31 of the Time Returned
field. Bits 0 through 3 remain unchanged. Hence, the final
value in the time returned field after execution of the SVC can
be represented as follows:

Time returned = increment of time + count

If the interval was started with option X'40' specified and more
than one interval in the table has the same parameter associated
with it, the current time in the desired interval might not be
the one that is read. Each interval must have a unique parameter
associated with it.

3-128 48-038 FOO ROI

After executing this call, the condition code is set to these
possible condition codes:

Condition codes

I C I V 1 GIL I
I======_==_=~_=RI

101 0 I 0 I 0 1 Normal termination
1---------------1
10111 0 I 0 I No interval associated with parameter 2

located in user specified register

Example:

TESTl

RDTlME

TIMRQ

TRAPWAIT

EQU
LI
SVC
SVC
SVC

ALIGN
DB
DC
ALIGN
DB
DC
ALIGN
DC
DC

1
3,TESTl
2,TIMRQ
2,RDTIME
9,TRAPWAIT

4
X'20',23,0,3
Y'lOOOOOOO'
4
X'OO',23,O,3
Y'10OOOOOO'+P'90000'
4
Y'88000200'
'i'0'

3.20.5 SVC 2 Code 23 Parameter Block for Option X'lO'

This SVC cancels an interval request that was previously
established with option X'OO' or X'40'. This is accomplished
through the SVc 2 parameter block for option X'lO' shown in
Figure 3-32.

48-038 FOO ROl 3-129

0(0)
Option

4(4)

parblk

11(1)
Code

12(2)
Reserved

Increment of time cancelled

SVC 2,parblk

ALIGN 4
DB X'10',23,0
DB user register

13(3)
IUser register

DC Y'increment of time cancelled'

. Figure 3-32 SVC 2 Code 23 Parameter Block Format and Coding
for Option X'lO'

This parameter block is 8 bytes long, fullword-boundary aligned,
and does not have to be located in a task writable segment. A
general description of each field in the parameter block follows:

Fields:

Option

Code

is a l-byte field that must contain the
hexadecimal number X'lO'.

is a l-byte field that must contain the
decimal number 23 to indicate code 23 of SVC
2.

Reserved is a i-byte field that must contain a O.

User register is a l-byte field that must contain the user
register number. Bits 8 through 31 of this
user register contain the parameter associated
with the interval to be cancelled.

3-130 48-038 FOD RDi

Increment of
time
cancelled

is a 4-byte field that must contain a
hexadecimal number indicating how time is
being calculated for the interval to be
cancelled. The increments of time are:

• Y'OOOOOOOO' indicates seconds from midnight
(time of day) .

• Y'lOOOOOOO' indicates milliseconds from the
time this call is executed (interval
timing).

When this call is executed, all previous interval requests that
match both the increment of time specified and the parameter
located in the user register are cancelled. If the interval to
be cancelled is part of a periodic group, the entire time period
is cancelled.

After executing sve 2 code 23, the condition code is set to these
possible conditions:

Condition codes

I C I V I GIL I
1===============1
101 a 101 a 1
1---------------1
101 1 1 a 101

48-038 Faa ROI

Normal termination

No previous interval request exists that
matches the parameter provided

3-131

I SVC 2 I
I CODE 24 I

3.21 SVC 2 CODE 24: SET ACCOUNTING INFORMATION

SVC 2 code 24 stores eight bytes of user-supplied information in
the A'rF task completion or data overf low account records of the
accounting transactions file (ATF). This is accomplished through
the SVC 2 code 24 parameter block shown in Figure 3-33.

0(0)
Reserved

4(4)

11 (1) :2(2)
Code Reserved

User-supplied information
8(8)

SVC 2,parblk

ALIGN 4
parblk DB 0,24

DC H'D'
DC D'user-supplied information'

Figure 3-33 SVC 2 Code 24 Parameter Block Format and Coding

This parameter block is 12 bytes long, fullword-boundary aligned,
and does not have to be in a task writable segment. A general
description of each field in the parameter block follows.

3-132 48-038 FOO ROl

Fields:

Reserved

Code

Reserved

User-supplied
information

is a l-byte field that must contain a 0 to
indicate no options for this call.

is a l'-byte
dec imal number
2.

field that must contain the
24 to indicate code 24 of SVC

is a reserved 2-byte field that must contain
zeros.

is an 8-byte field that must contain the user
supplied information to be stored in the ATF
task completion or data overflow account
records.

If more than one SVC 2 code 24 is executed by a task, the
user-supplied information in the last SVC 2 code 24 executed is
stored in the ATF. The condition code is always set to O.

48-038 FOO ROl 3-133

I SVC 2 1
1 CODE 25 1

3.22 SVC 2 CODE 25: FETCH ACCOUNTING INFORMATION

SVC 2 code 25 fetches task accounting information and stores it
into a user-specified area. The accounting information accessed
is:

• User CPU time

• Operating system CPU time

• Wait time

• Roll time

'rhis is accomplished through the SVC 2 code 25 parameter block
shown in Figure 3-34.

:0(0)
Reserved

11 (1)
Code

SVC 2,parblk

ALIGN 4
parblk DB 0,25

DB 0
DB user register

12(2)
Reserved

13(3) I
IUser register I
I

Figure 3-34 SVC 2 Code 25 Parameter Block Format and Coding

This parameter block is 4 bytes long, fullword-boundary aligned,
and does not have to be in a task writable segment. A general
description of each field in the parameter block follows.

3-134 48-038 FOO ROl

Fields:

Reserved

Code

Reserved

is a I-byte field that must contain a 0 to
indicate no options for this call.

is a I-byte field that must contain the
decimal number 25 to indicate code 25 of SVC
2.

is a reserved l-byte field that must contain
a O.

User register is a l-byte field that must contain a user
specified number of the register that contains
the starting address of the area to receive
the accounting information. This area is
16-bytes long, fullword-boundary aligned, and
must be located in a task writable segment, as
shown in ·Figure 3-35. The condition code is
always set to O.

10(0)
User CPU time (lOOu)

4(4)
Operating system CPU time (lOOu)

8(8)
Wait time (lOOu)

12(C)
Roll time (lOOu)

Figure 3-35 Area Receiving Accounting Information

48-038 FOO ROl 3-135

I SVC 2 I
I CODE 29 I

3.23 SVC 2 CODE 29: UNPACK FILE DESCRIPTOR

SVC 2 code 29 converts a packed file descriptor from the file
directory or an SVC 7 parameter block to its unpacked format.
The format for the SVC 2 code 29 parameter block is shown in
Figure 3-36.

0(0) 11 (1)
Option

(UPFD.OPT)
Code

(UPFD.COD)

12(2) Source
Register

(UPFD.SRC)

13(3) Destina
Ition Register

(UPFD.DST)

4(4)

8(8)

parblk

Source Pointer for option X'Ol'
(UPFD.SAD)

Destination Pointer for option X'Ol'
(UPFD.DAD)

SVC 2,parblk

ALIGN 4
DB
DB
DB
DAC
DAC

option,29
source t:egister
destination register
A(packed fd)
BUFFADR

Figure 3-36 SVC 2 Code 29 Pat:ameter Block Format and Coding

This parameter block is 12 bytes long, fullword-boundary aligned,
and located in a task wt:itable segment. A general description of
each field on the parameter block follows.

3-136 48-038 FOO R01

Fields:

option
(UPFD.OPT)

is a I-byte field that contains a hexadecimal
number indicat.ing one or more of the following
SVC 2 code 29 option codes:

OPTION
CODE

X'80'

X'40'

X'20'

FUNCTIONAL
EQUATE

UPFO.NNN

UPFO.PGS

NOTE

MEANING

Forces an
(nnn) into
even if
allocated
privileges.

account number
the unpacked fd

the file was
without account

Forces alP, IG, or IS
account designation into the
unpacked fd even if the file
was allocated with account
privileges. If the account
number in the packed fd
cannot be converted to a P,
G, or S file class, P is
returned to the unpacked fd
and the G bit of the
condition code is set.

If neither X'80' nor X'40' is specified,
the fd will be packed according to the
account privileges in effect when the
file was allocated.

UPFO.NOV

NOTE

Unpacks the fd in the file
directory entry specified in
the UPFD.SAD field. When
unpacked, the fd does not
include a volume name.

If X'20' is not specified, SVC 2 code 29
will unpack the fd contained in the SVC
7 parameter block whose address is
specified by the UPFD.SRC or UPFD.SAD
field. When unpackbd, the fd includes a
volume name. !

48-038 FOO ROI 3-137

X'lO' UPFO.WID

X'OS' UPFO.BLA

X'Ol' UPFO.ADR

NOTE

The unpacked fd includes any
blanks that exist in the
packed fd. If option X'lO'
is not specified, all blanks
are suppressed.

The unpacked fd is formatted
with blanks. If X'OS' is
not specified, the unpacked
fd is formatted in the
standard unpacked fd format
including a colon (:),
period (.), and slash (f).

The source address of the
packed fd is specified by
the UPFD.SAD field of the
SVC 2 code 29 parameter
block. The unpacked fd is
to be stored in the address
location specified by the
UPFD.DAD field of the
parameter block.

If X'Ol' is not specified, the source and
destination addresses are to be found in
the registers specified by the UPFD.SRC
and UPFD.DST fields, respectively.

Code
(UPFD.COD)

Source
Register
(UPFD.SRC)

Destination
Register
(UPFD.DST)

3-l3S

i~ a I-byte field that contains the decimal
number 29 indicating code 29 of SVC 2.

is a I-byte field that specifies the number of
the register that contains the address of the
file directory entry or SVC 7 parameter block
that contains the source of the packed fd.

is a I-byte field that specifies the number of
the register that contains the address of a
24-byte buffer in a task writable segment
where the unpacked fd is to be stored.

NOTE

If option X'Ol' has been
specified, the source register and
destination register fields must
be filled with zeros.

4S-03S Faa ROl

Source
pointer for
option X'Ol'
(UPFD.SAD)

Destination
pointer for
option X'Ol'
(UPFD.DAD)

is a 4-byte f~eld that contains the address of
the file direqtory entry or SVC 7 parameter
block that co~tains the source of the packed
fd. This fie~d is used only if option X'Ol'
has been spec~fied.

I
is a 4-byte f~eld that specifies the address
of a 24-byte tiuffer in a task writable segment
where the unpacked fd is to be stored. This
field is used only if option X'Ol' has been
specified.

The following examples demonstrate the use of SVC 2 code 29.

Example 1:

SVC229 PROG SVC 2,29 EXAMPLE - UNPACK FD
SVC 2,UFD UNPACK FO
SVC 2, PAUSE

ALIGN 4
PAUSE DB 0,1,0,0 PAUSE
UFO DB X'A1',29,0,0 NNN, FD, : . / , SQUEZ, AODR

DAC SOURCE PACK FD INPUT
OAC OEST UNPACK FD OUTPUT

SOURCE DB C'TEST CSS' ,71 INPUT PACKED FD

DEST DS 24 OUTPUT UNPACKED FD
END

48-038 FOO ROl 3-139

Example 2:

SVC229A PROG SVC 2,29 EXAMPLE - UNPACKED FD
NLSTM
$SVC7
LA 1,SVC7PBLK ADDRESS OF SOURCE
LA 2,DEST ADDRESS OF DESTINATION
SVC 2,UFD UNPACK FD
SVC 2,PAUSE

ALIGN 4
PAUSE DB 0,1,0,0 PAUSE
UFO DB X'58',29,1,2 PGS, SVC7, BLANKS, BIANKS, REG

DAC 0
DAC 0

SVC7PBLK DS SVC7. INPUT PACKED FD
ORG SVC7PBLK+SVC7.VOL
DC C'MTM '
DC C'TEST
DB C'CSS'
DB C'G'

DEST OS 24 OUTPUT UNPACKED FD
END

3-140 48-038 FOO ROl

CHAPTER 4
END OF TASK SUPERVI SOR CALL 3 (SVC 3)

4.1 INTRODUCTION

SVC 3 terminates task execution. This is accomplished through
the SVC 3 format.

48-038 FOO R01 4-1

I SVC 3 I

4.2 SVC 3: END OF TASK

FOl:mat:

SVC 3,n

Fields:

SVC

3

n

4-2

is the mnemonic used as an operation code
indicating that it is a supervisor call.

is a decimal number indicating it is SVC 3.

is a decimal number ranging from 0 through 2bb
used as the end of task code when the task
terminates. If this number is greater than
255, it is truncated to eight bits. End of
task codes greater than 255 are reserved for
system use. The end of task code can be used
in subsequent corrunand substitution system
(eSS) conditional testing. The following
standard end of task codes are used:

• 0 indicates normal termination.

• 255 indicates
cancellation.

termination caused by

•

•

•

•

•

•

1000 indicates termination caused
queue overflow on expiration
interval.

1100 indicates mapping error
segment during rollin.

1101 indicates mapping error
segment during rollin.

1102 indicates pure segment was
during rollin.

1105 indicates I/O error on roll
impure segment.

1106 indicates I/O error on roll
pure segment.

by task
of time

in impure

in pure

not found

file for

file for

48-038 FOO ROl

• 1200 indicates termination
expiration of CPU time limit.

caused by

• 1210 indicates termination caused by
expiration of I/O transfer limit.

In addition, the end of task code can be stored in a register.
For example, to generate a code of 4, use the following sequence:

LH I R8, 4
SVC 3,0(R8)

If I/O is in progress when an SVC 3 is executed, write operations
continue until completed and then terminate normally; read
operations terminate immediately.

For all logical units, read operations and SVC 15 operations are
halted via an SVC 1 halt I/O. If the task is resident, an SVC 7
checkpoint is executed. If the task is nonresident, an SVC 7
close is executed.

For more information on using end of task codes in CSS, refer to
the 09/32 Operator Reference Manual.

48-038 FOO ROl 4-3

CHAPTER 5
FETCH OVERLAY SUPERVISOR CALL 5 (SVC 5)

S.l INTRODUCTION

SVC 5 permits user-controlled loading of overlays generated by
Link or TET. Loading of overlays is accomplished through the SVC
5 parameter block in Figure 5-1. The SVC 5 parameter block is 12
bytes long, fullword-boundary aligned, and must be in a task
writable segment.

48-038 FOO ROl 5-1

I SVC 5 I

5.2 SVC 5: FETCH OVERLAY

0(0)

4(4)

Overlay name
(SYC5. IO)

8(8) 19(9) 110(A) lu
Error status 1 Options assigned to overlay file

(SYCS.LU) (SYCS.STA) (SYCS.OPT)

SYC S,parblk

ALIGN 4
parblk DC C t 8 character overlay name'

OS 1
DB 'option'
DC H'lu'

Figure S-l SVC 5 Parameter Block Format and Coding

Fields:

Overlay name
(SYCS. IO)

is an 8-byte field specifying the name of
overlay to be loaded. If the overlay
requires less than eight characters, the
in this field must be left-justified
trailing spaces.

the
name
data
with

5-2 48-038 FOO ROl

Error status
(SVC5.STA)

Options
(SVC5.0PT)

Logical unit
assigned to
overlay file
(SVC5.LU)

48-038 FOO ROl

For overlays generated by TET, the overlay
name field is matched against the overlay name
in the loader information block (LIB) of the
overlay file. For overlays generated by Link,
this field is matched against the overlay name
in the overlay descriptor table (ODT) of the
task image file. The ODT contains the
information needed by Link to process the
overlay. If -the overlay name is found in the
ODT, loading of the overlay proceeds as if an
automatic overlay load occurred.

is a l-byte field that receives the
appropriate error code when an error occurs
during the execution of SVC 5. The status
returned is one of the following:

• X'OO' indicates overlay loaded
successfully.

• X'lO' indicates load failed.

• X'20' indicates a mismatch on overlay name.

• X'40' indicates overlay would not fit in
allocated memory. This error code applies
to overlays generated by TET only.

is a l-byte field that must contain one of the
following options:

• Option X'OI' indicates load from logical
unit (lu) without positioning.

• Option X'04' indicates load from lu after
rewind.

The option byte is not required for overlays
generated by Link.

is a 2-byte field containing the device to
which the overlay file must be assigned and
must be positioned to the first byte of the
LIB for the overlay generated by TET. This
field is not required for overlays generated
by Link.

5-3

The calling task is placed in a wait state until the overlay is
loaded. If the overlay is successfully loaded, the calling
program can branch and link to the overlay.

Certain messages might be generated as a result of loading
overlays created by Link. These messages are discussed in the·
08/32 Link Reference Manual.

Example:

parblk

5-4

SVC 5,parblk

ALIGN 4
DC
DB
DB
DC

CIMARIANNEI
o
1
HI21

Initialize status to 0
Load without print
Overlay assigned to lu 2

48-038 FOO ROl

CHAPTER 6
INTERTASK COMMUNICATIONS SUPERVISOR CALL 6 (SVC 6)

6.1 INTRODUCTION

SVC 6 provides a task with the ability to communicate with and
control another task. The task that issues an SVC 6 is known as
the calling task. An SVC 6 can be directed to any task within
the calling task's execution environment, including the calling
task itself. The task to which the SVC 6 is directed is called
the directed task.

Before a calling task can issue an SVC 6, that task must be
linked with one of the following task options:

• COMMUNICATE - this option allows a calling task to perform
SVC 6 intertask communication functions. See Section 6.2.1.

• CONTROL - this option allows a calling task to perform SVC 6
intertask control functions. See Section 6.2.1.

In an OS/32 real-time environment, only foreground tasks can
issue an SVC 6. If a background (BG) task attempts to issue this
call, the OS will treat the call as an illegal call or NOP,
depending on the SVCPAUSE task option in effect. See the OS/32
Link Reference manual for more information on the task options
that apply to SVC 6.

NOTE

SVC 6 cannot be executed in a
multi-terminal monitor (MTM) environment
unless specified as an MTM option at
system generation (sysgen).

48-038 FOO ROl 6-1

SVC 6

6.2 SVC 6: INTERTASK COMMUNICATIONS

Communication and control between tasks are accomplished through
the SVC 6 parameter block shown in Figure 6-1.

6-2

Name of task
receiving SVC 6

(SVC6. ID)

Function code
(SVC6.FUN) I

-- ----~I
12(C) 114(E)

Wait status I Error status
(SVC6.TST) 1 (SVC6.STA)

---~------------ -----1
16(10) 1u 117(11) Change 11S(12) CurrentI19(13) Assign 1
to load task I priority I priority 1 Logical Pro

(SVC6.LU) I (SVC6.PRI) I (SVC6.RPI) 1 cessing Unit

20(14)

I 1 1 (LPU)
1 (SVC6. LPU)

Starting address of directed task
(SVC6.SAD)

24(lS) Incre- 125(19)
ment of time 1

(SVC6.TIM) 1
Count

(SVC6.CNT)

2S(lC)

32(20)
Reserved

36(24)

Address of load image fd or
device mnemonic

(SVC6.DMN)

133(21)
1 Task queue parameter

(SVC6.PAR)

Address of message buffer or address of start options

40(2S)

(SVC6.MSG) (SVC6.S0P)

Segment size increment
(SVC6.SEG)

44(2C)
Calling 1u
(SVC6.CLU)

145(2D)
1 Directed 1u

(SVC6.DLU)

146(2E)
I Extended load options

(SVC6.ELO)

parb1k

SVC 6,parb1k

ALIGN
DC
DC
OS
OS
DB
DB
DS
DB
DC
DC
DC
DC
DC
DC
DB
DB
OS

4
C'S-byte name of task receiving SVC 6'
Y'function code'
2 bytes for wait status
2 bytes for error status
1 byte for lu to load task
1 byte for change priority
1 byte for current priority
1 byte for logical processing unit
A(start)
Y'increment of time+count'
C'4-byte device mnemonic' or A(fd)
Y'task queue parameter'
A(message buffer or start options)
Y'segment size increment'
1 byte for calling lu number
1 byte for directed 1u number
2 bytes for extended load options

Figure 6-1 SVC 6 Parameter Block Format and Coding

48-038 Foa ROl

This parameter block must be 48 bytes long, fullword-boundary
aligned, and located in a task writable segment. 'For a detailed
description of the functions of each field in the parameter
block, refer to the appropriate section in this chapter. A brief
description of each field in the parameter block follows.

Fields:

Name of ta~k
receiving
SVC 6
(SVC6.ID)

Function
code
(SVC6.FUN)

Wait status
(SVC6.TST)

Error status
(SVC6.STA)

lu to load
task
(SVC6.LU)

Change
priority
(SVC6.PRI)

Current
priority
(SVC6.RPI)

48-038 FDa ROl

is an 8-byte field that contains the task
name to which SVC 6 is directed. If SVC 6 is
a self-directed call, this field is not
required. The name must consist of one to
eight alphanumeric characters with the first
character always alphabetic. It is
left-justified in the field with spaces.
is a 4-byte field that contains the
hexadecimal number indicating the function to
be performed.

is a 2-byte field that receives the
hexadecimal value of bits 16 through 31 of the
directed task's wait status fullword when a
SVC 6 is executed. If the calling task wants
to check the wait status of the directed task
at any time, an SVC 6 can be issued with bits
o and 1 of the function code set to 10 or 11
and the remaining bits set to O.

is a 2-byte field that receives the
appropriate error code when an error occurs
during execution of the SVC 6. If no error
occurs, a value of 0 is stored in this field.

is a l-byte field used only when a load
operation is requested. This field must
contain the user-specified hexadecimal number
indicating the logical unit currently assigned
to the directed task that is to be loaded.

is a I-byte field used only when a change
priority operation is requested. This field
must contain a user-specified hexadecimal
number indicating the new priority to which
the task is to be changed. The hexadecimal
number must have a decimal value ranging from
10 through 249.

is a l-byte priority field that receives a
hexadecimal number indicating the priority
at which the task is executing when an SVC 6
is executed. If the calling task wants to
check the current priority of the directed
task at any time, an SVC 6 can be issued with
bits 0 and 1 of the function code set to 10 or
11 and the remaining bits set to o.

6-3

6-4

Assign
logical
processing
unit (LPU)
(SVC6.LPU)

starting
address of
directed
task
(SVC6.SAD)

Increment of
time
(SVC6.TIM)

Count
(SVC6.CNT)

Address of
load image fd
or

device
mnemonic
(SVC6.DMN)

Reserved

Task queue
parameter
(SVC6.PAR)

is a I-byte field used only when an LPU
assignment operation is requested. It con
tains a user specified hexadecimal number
indicating the LPU assigned to the task
(0 . . . max LP U) .

is a 4-byte field used only when a start
operation is requested. This field must con
tain a user-specified hexadecimal number
indicating the address where the directed
task is to start execution.

is a I-byte field used in conjunction with the
count field only when the delay-start
operation is requested. This field must
contain a user-specified hexadecimal number
indicating how the time is to be calculated.
These hexadecimal numbers are:

• Option X'OO' indicates
midnight (time of day) .

seconds from

• Option X'IO' indicates milliseconds from
the time this call is executed (interval
timing) .

is a 3-byte field used in conjunction with the
increment time field only when a delay-start
operation is requested. This field must
contain a user-specified decimal number
indicating how many seconds or milliseconds
must elapse before the directed task starts
execution.

is a 4-byte field that contains a user
specified device mnemonic of a trap generating
device when the connect, thaw, sint, freeze,
or
unconnect operations are requested. If a
task is to be loaded with bit 3 (load and
proceed) of the extended load option field
set, this field should contain the address of
the fd of the file containing the task to be
loaded.

is a reserved I-byte field that must contain
a o.

is a 3-byte field used only when the add to
task queue or connect to trap generating
device operations are requested. This field
must contain the user-specified parameter that
is to be added to the task queue of the
directed task.

48-038 FOO ROl

Address of
message
buffer
(SVC6.MSG)
or
address of
start options
(SVC6.S0P)

Segment si~e
increment
(SVC6.SEG)

Calling lu
(SVC6.CLU)

Directed lu
(SVC6.DLU)

Extended
load options
(SVC6.ELO)

is a 4-byte field used only when a oend
message operation or start operation is
requested. For the send message operation,
this field must contain a user-specified
hexadecimal number indicating the address of
the buffer containing the message to be sent
to the directed task. For the start operation,
this field must contain the address of the
start options to be included at run time.

is a 4-byte field used only when a load
operation is requested and must contain the
user-specified hexadecimal number indicating
the number of bytes used to expand the task's
allocated memory.

is a I-byte field that must contain the
user-specified hexadecimal number representing
the logical unit of the calling task.

is a I-byte field that must contain the
user-specified hexadecimal number representing
the logical unit of the directed task.

is a 2-byte field used only when the extended
load options are requested. This field must
contain a user-specified hexadecimal number
indicating one or more options listed in Table
6-3.

6.2.1 Function Code (SVC6.FUN)

SVC6.FUN has 21 functions for intertask communication and
control. These functions are listed in Table 6-1.

TABLE 6-1 SVC6.FUN FUNCTIONS

COMMUNI CA.T ION
FUNCTIONS

Send data
Send message
Add to task queue

48-038 FOO ROI

CONTROL FUNCTIONS

Direction
End task
Load task
Resident task
Suspend
Change priority
Send Iu
ReceivE~ lu
Connect
Thaw
Sint

Freeze
Unconnect
Assign LPU
Transfer to LPU
Transfer to CPU
Release
Nonresident
Rollable
Nonroliable
Start

6-5

These functions are specified by setting the appropriate bits in
the function code field shown in Figure 6-2. Each bit setting
and its corresponding function are listed in Table 6-2.

Reserved

~ ~~~ ~~;

D E ;... ~ - L I C I HIS I SDI M I Q I P : B : V :

Bits:
a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reserved

, 0 IT; I I FlU I API TLI TCI R : N I Y I Z A

Bits:
6 17 18 19 20 21 22 23 24 25 26 27 28 29 31

Figure 6-2 SVC 6 Function Code Field

TABLE 6-2 DESCRIPTION OF FUNCTION CODE FIELD FOR SVC 6 CALLS

BIT I FUNCTIONS AND I
POSITIONS I MASK NAMES MEANING BIT SETTINGS

=====--------=-----=====--------=-----==--==-========--========
a (D)
1

Direction
(SFUN.DOM=10)
(SFUN.DSM=ll)

The task to
which SVC 6
is directed.

I I
I I

00
01
10
11

illegal
illegal
other task
self direc
ted

---1

6-6

2 (E) End task End or term- 00 = no function
3 (SFUN.ECM=Ol) inate task requested

(SFUN.EDM=lO execution. 01 cancel
or =11) 10 delete dir-

ected task
11 = delete dir

ected task

48-038 FOO ROI

TABLE 6-2 DESCRIPTION OF FUNCTION CODE FIELD FOR SVC 6 CALLS
(Continued)

BIT : FUNCTIONS AND I
POSITIONS I MASK NAMES MEANING BIT SETTINGS

========-=-=-------=----~-=-===-~=-------=-=-.=-----===--=======.
4
5

IN/A I Reserved 1 00 :: reserved I ,

---1
6 (L)
7 (C)

8 (H)

9 (S)

10 (SD)

11 (M)

Load task
(SFUN.LM=10
SFUN . LXM=O 1)

Resident task
(SFUN.HM)

Suspend
(SFUN.SM)

Send data
(SFUN.DM)

Send message
(SFUN.MM)

Load directed
task.

Mak'e directed
task resident
in memory.

Put directed
task into a
wait state.

The calling
task sends a
variable
length mes
sage to di
rected task.

The calling
task sends a
64-byte mes
sage the di
rected task.

00 = no function
requested

01 illegal
10 load task
11 load task

(10) with
extended
load options
(01)

o .= no function
requested

1 make task
resident

o = no function
requested

1 put task
into wait
state

o = no function
requested

1 send message

o .= no function
requested

1 = send message

---l
12 (Q) : Add to task I Add parameter: 0 = no function :

I queue I to directed requested
I (SFUN.QM) I task queue. 1 = add to task

queue
--------------------------------~------------------------------1

13 (P) Change Change 0 = no function
priority priority of requested
(SFUN.PM) directed 1 = change the

task. priority

48-038 FOO ROI 6-7

TABLE 6-2 DESCRIPTION OF FUNCTION CODE FIELD FOR SVC 6 CALLS
(Continued)

I BIT I FUNCTIONS AND I
I POSITIONS I MASK NAMES MEANING BIT SETTINGS
1 __ _

14 (B)

15 (V)

16 (0)

17 (T)

18 (I)

Send lu
(SFUN.XSM-I0)

Receive lu
(SFUN.XRM-Ol)

Connect
(SFUN.OM)

Thaw
(SFUN.TM)

Sint
(SFUN.IM)

Calling task's
lu is assigned
to the
directed task.
Directed
task's lu is
assigned
to calling
task.

A trap gener
ating device
is connected
to directed
task.

Enable inter
rupts on trap
generating
device
connected to
directed
task.

Simulate
interrupt on
trap genera-
ting device
to directed
task.

00 - no function
requested

10 send lu

01 == receive Iu
11 illegal

o = no function
requested

1 connect
device to
task

o = no function
requested

1 = enable inter
rupts

o == no function
requested

1 = simulate
interrupt

---1
19 (F) I Freeze I Disable inter- 0 no function

(SFUN.FM) rupts on trap requested
generating 1 = disable
device interrupts
connected to
directed task.

---:
20 (U) Unconnect

(SFUN.UM)
Disconnect : 0
specified trap:
generating 1
device from I
directed task.:

no function
requested
disconnect
device from
task

---:
21 (AP) : Assign LPU Assign LPU to I 0 no function

(SFUN.LPM) directed task I requested
I 1 - assign LPU

6-8 48-038 FDa ROl

TABLE 6-2 DESCRIPTION OF FUNCTION CODE FIELD FOR SVC 6 CALLS
(Continued)

I BIT : FUNCTIONS AND I
f POSITIONS: MASK NAMES MEANING BIT SETTINGS
=================~========~===c~=~=~~==~====~============~~====

22 (TL)

23 (TC)

24 (R)

25 (N)

26 (Y)

Transfer to
~PU
(SFUN.XLM)

Transfer to
CPU
(SFUN.XCM)

Release
(SFUN.RM)

Nonresident
(SFUN.NM)

Rollable
(SFUN. RLM)

Make task
LPU-directed

Make task
CPU-directed

Remove
directed task
from wait
state.

Make directed
task nonresi
dent.

o = no function
1 == set LPU
directed status
in TCB

o

1

no function
requested
reset LPU
directed
status in Tea

o == no function
requested

1 remove task
from state

o no function
requested

1 == make task
nonresident

Make directed I 0 = no function
task rollable.1 requested

I make task
rollable

---,------------;
27 (Z) Nonrollable Make directed I 0 == no function I

(SFUN.NRM) I task nonroll- I requested
I able. : 1 = make task

nonrollable

28 I N/A I Reserved I 0 == reserved
1---

29 start Start 000 no function
30 (A) (SFUN.SIM=OlO) execution of requested
31 (SFUN.SOM=Oll) directed 001 illegal

(SFUN.SDM=lOO) task. 010 start
or =110) 011 start with

start
option

100 = delay start
101 = delay start

with start
option

110 = delay start

48-038 FOO ROI 6-9

6.2.2 Direction (SFUN.DOM,SFUN.DSM)

The direction function identifies the task to be affected by the
SVC 6 call. The name of this task is located in the task name
field. The required parameter block fields for this function
are:

• Task name field

• Bits 0 and 1 of the function code field

If the bit setting equals 10 (SFUN.DOM), the call is directed to
any system task whose name must be specified in the task name
field. If the bit setting equals 11 (SFUN.DSM), the call is
self-directed or directed to the task initiating the call. A
self-directed call does not require a name in the task name
field. A call can also be self-directed by setting the bits to
10 and specifying the calling task name in the task name field of
the parameter block. Other bit settings for bit positions 0 and
1 are illegal and cause an error code to be stored into the error
status field of the parameter block.

6.2.3 End Task (SFUN.ECM,SFUN.EDM)

The end task function abnormally terminates or cancels execution
of the directed task. The required parameter block fields are
the task name field and bit positions 0, 1, 2, and 3 of the
function code field. When the bit setting equals 01 (SFUN.ECM)
and the directed task is resident, these operations occur:

• Task execution is cancelled.

• The task remains in memory.

• All the task's assigned files and devices are checkpointed,
not closed.

When the bit setting equals 01 (SFUN.ECM) and the directed task
is nonresident, these operations occur:

• Task execution is cancelled.

• The task is removed from memory.

• All the task's assigned files and devices are closed.

6-10 48-038 FOa ROl

When the bit setting equals 10 or 11 (SFUN.EDM) and the directed
task is resident, these operations occur:

• Task execution is cancelled.

• The task is made nonresident.

• The task is removed from memory_

• All the task's assigned files and devices are closed.

When the bit setting equals 10 or 11 (SFUN.EDM) and the directed
task is nonresident, these operations occur:

• Task execution is cancelled.

• The task is removed from memory.

• All the task's assigned files and devices are closed.

If this call is self-directed, SVC 6 is immediately terminated.
After the call is executed, an end of task code 255 indicating
abnormal termination is returned to the user.

6.2.4 Load Task Functions

The load task function loads the directed task into memory.
Options are provided for the calling task to wait until the load
is completed or to continue execution and receive a trap when the
load is completed.

When a task is loaded, the operating system reads the loader
information block (LIB) of the task to see if any needed shared
segments are already in memory. If they are not in memory, the
auto-loader feature automatically loads them, provided sufficient
memory exists. See the OS/32 Operator Reference Manual. When
all shared segments named in the LIB are memory resident, the
operating system builds linkages to them.

6.2.4.1 Load Task (SFUN.LM)

'The required parameter block fields for bit setting 10 (SFUN.LM)
are:

• Task name field

• Bits 0, 1, 6, and 7 of the function code field

• lu to load task field

48-038 FOQ ROl 6-11

Before executing this call, the lu specified in the parameter
block must be assigned to the file or device containing the
directed task image file. This call is processed as a load wait.

The lu must be positioned to the first byte of the task LIB.
When this call is executed, the directed task is loaded from the
specified lu into a memory area large enough to hold the task.
If such an area does not exist and the roll option is specified,
the directed task is rolled out to a file on the roll volume and
placed in a wait state. While the directed task is being loaded,
the calling task is placed in a wait state. When the directed
task is loaded, its task name becomes the name specified in the
task name field of the parameter block. The calling task is
released from the wait state, and the lu is positioned to the
byte following the loaded task. If the same task is to be
reloaded from other than a direct access device with the same lu
assigned, the lu must be rewound by using SVC 1 prior to each
subsequent load.. For direct access devices the load task
function intitializes the start address to zero.

If the following error conditions occur, SVC 6 is rejected, and
an error code is stored in the error status field of the
parameter block:

• The receiving task is already loaded into memory.

• The task name specified in the parameter block is invalid.

• The call is self-directed.

• The system does not have a memory area large enough to hold
the receiving task and does not support the roll option.

• The requested memory size specified in the segment size
increment field is larger than the total system memory space.

• The directed task is a background task. (Background tasks can
be loaded only from the system console.)

• The lu is not positioned to the LIB or the LIB is invalid.

6.2.4.2 Load Task with Extended Load Options (SFUN.LXM)

The extended load options can be specified at load time and are
located in the extended load options field of the parameter
block. See Figure 6-3.

6-12 48-038 FOO ROI

Reserved

ICM IRP ISZ IPR lET ICT IRL lAC

Bits:
o 1 2 3 4 5 6 7 8

F i.gure 6-3 Extended Load Options Field

15

The required parameter block fields for bit setting 7 (SFUN.LXM)
are:

• Task name

• Bits 0, 1, 6, and 7 of the function code field

• lu to load task field (required when the load wait extended
option is specified)

• Address of load image fd or device mnemonic field (required
when load and proceed extended option is specified)

• Extended load options field

• Segment size increment field. This field is required only
when the task to be loaded needs a memory area larger than the
task image size. The extended load option SELO.SZM must be
set.

When a task is loaded with the SFUN.LXM enabled, any options
specified in the extended load options field are in effect during
execution of the directed task. See Table 6-3 for a list of the
available options.

When the extended load and proceed option is requested, the
calling task continues executing while the directed task is
loaded. The directed task is loaded from the file indirectly
specified by the device mnemonic field in the SVC 6 parameter
block. This field should contain the address of the fd of the
task image file to be loaded. If the roll option had been
specified when the directed task was link-edited, the private
image segment of the task is rolled out to disk if sufficient
memory space is not available.

48-038 FOO ROl 6-13

When bit 3 (load and proceed) of the extended load options field
is not set, execution of the calling task is suspended during
loading of the directed task. This is called a load wait
operation. After a load wait operation is completed, the calling
task is released from suspension and the lu assigned to the
directed task image file is positioned at the byte following the
last byte of the task image. If the task is again loaded from
the same lu, an SVC 1 rewind operation should be performed on the
task image file prior to that load.

TABLE 6-3 EXTENDED LOAD OPTIONS FIELD BIT DEFINITIONS

BIT I OPTION AND
POSITION I MASK NAME MEANING

---, o (CM) Intertask If bit 0 equals 1, the directed I

1 (RP)

2 (SZ)

6-14

communication task that was loaded into memory I
(SELO.CMM) can execute the SVC 6 comrnunica- I

tion functions ..

Subtask
reporting
(SELO.RPM)

Segment size
Increment
(SELO.SZM)

If bit 0 equals 0 and the loaded
receiving task issues an SVC 6
communication function, the call
is rejected, and an error code is
stored in the error status field
of the parameter block.

If bit 1 equals 1, the calling
task becomes a monitor task and
the directed task becomes a sub
task. This causes the subtask to
report all status changes during
execution to monitor the task
through task traps.

If bit 1 equals 0, the directed
task is not a subtask. No subtask
status changes are reported.

If bit 2 equals 1, the size of the
task workspace is increased by
adding a user-specified number of
bytes. This hexadecimal number
must be located in the parameter
block segment size increment field.

If bit 2 equals 0, the workspace
set by the WORK= parameter of the
LINK OPTION command is used.

48-038 FOO ROI

TABLE 6-3 EXTENDED LOAD OPTIONS FIELD BIT DEFINITIONS
(Continued)

I BIT I OPTION AND
I POSITION I MASK NAME MEANING
,========---=-------=----==-===----------========-==-=-=========

3 (PR)

4 (ET)

5 (CT)

Load and
p~oceed
(SELO.PRM)

Prevent
e-task or
d-task
(SELO.ETM)

Intertask
control
(SELO.CTM)

48-038 FOO ROI

If bit 3 equals 1, the calling
task continues executing while
the directed task is being loaded
from the file specified by the
device mnemonic field of the SVC 6
parameter block. A trap to the
calling task occurs if bit 20 of
its task status word (TSW) equals
1 (load and proceed comlete). When
the trap occurs, the reason code
X'7' and the SVC 6 parameter block
address are added to the task
queue.*

If bit 3=0, the calling task is
suspended while the directed task
is loaded from the specified lu.
This lu must be assigned to the
file or device from which the task
is to be loaded.

If bit 4 equals 1, any directed
task that is an e-task or d-task
is not loaded. If the calling
task issues an SVC 6 call to load
an e-task or d-task with this bit
set, the call is rejected, and an
error code is stored in the para
meter block error status field.
If the loading task has bit 4 set
and the directed task was linked
with ACPRIVILEGE, DISC, or the
INTERCEPT task option, the task
will be loaded but these options
will be disregarded.

If bit 5 equals 1, the directed
task that was loaded into memory
can execute the control functions
of SVC 6.

If bit 5 equals 0 and the directed
task that was loaded issues an SVC
6 control function, the call is
rejected, and an error code is
stored into the error status field
of the parameter block.**

6-15

TABLE 6-3 EXTENDED LOAD OPTIONS FIELD BIT DEFINITIONS
(Continued)

BIT I OPTION AND
POSITION I MASK NAME MEANING

===1

x

6 (RL) Roll I If bit 6 equals 1, the directed I

7 (Ae)

(SELO.RLM) I task is forced to be a rollable

Accounting
(SELO.AEM)

task regardless of the roll option
established by Link.

If bit 6 equals 0, the directed
task uses the roll option estab
lished by Link.

If bit 7 equals 1, the directed
task that was loaded into memory
is given the accounting option.
This setting will override the
NOACCOUNT option established by
Link.

If bit 7 equals 0, the directed
task uses the accounting option
established by Link.

When bit 3 equals 1, all other sve 6 functions are ignored
except the start function and send start options. If the
calling task terminates while the directed task is being
loaded, the load continues, no trap occurs, and no status is
stored in the parameter block error status field.

xx Self-directed trap generating device (TGO) functions can be
executed if bit 5 equals I.

6.2.5 Task Resident (SFUN.HM)

The task resident function makes the directed task memory
resident regardless of what options were specified by Link. At
end of task, the open logical units of a resident task are
checkpointed and the task remains in memory_ A resident task can
be rollable. The required parameter block fields are:

• Task name field

• Bits 0, 1, and 8 of the function code field

6-16 48-038 FOO ROl

6.2.6 Suspend (SPUN.SM)

The suspend function places the directed task into a wait state.
The required parameter block fields are:

• Task name receiving SVC 6 field

• Bits 0, 1, and 9 of the function code

The directed task remains
releasing the suspended
executed. If this call is
task to suspend itself.
wait state, another task
release it.

in the wait state until an SVC 6
task (bit 24 of the function code) is
self-directed, it causes the calling

To release the calling task from the
must be available to subsequently

This function can be used to suspend execution of APU active or
ready tasks. See the OS/32 System Level Programmer Reference
Manual for more information on using SVC 6· in a Model 3200MPS
multiprocessing system.

6.2.7 Send Data (SPUN.DB)

Blocks of data that are communicated from one task to another are
called messages. The send data function allows a task to send
variable length messages to another task.

6.2.7.1 Send Data Message Buffers for Sending Task

To pass a message from one task to another via the send data
function, certain data structures are required. The most
important of these structures is the send data message buffer.
The structure of this message buffer allows the directed task to
receive a variable length message in the format in which it was
sent. The maximum length of a message that can be sent is
determined by the size and number of the message buffers set up
by the directed task to receive the message. However, the actual
length of the message is determined by the number and size of
message buffers set up by the task issuing the SVC 6.

Hence, two data structures are required by the calling task, the
SVC 6 parameter block and the send data message buffer. The
required SVC 6 parameter block fields for this function are:

• Task name field

• Bit 10 of the function code field

• Address of the buffer containing the message to be sent (if a
chain of buffers is to be sent, only the address of the first
buffer in the chain is required.)

48-038 FDD ROl 6-17

The format of the send data buffer for the calling task is shown
in Figure 6-4.

0(00) 11(01)
Function Code
(SBF.FC)

4(04)

8(08)

Reserved
(SBF.MLEN)

16(10)

24(18)

I
I

Buffer Link Address
SBF.NXT

6(06)
Message Field Length

(SBF.LEN)

Reserved (1st Buffer Only)
or

Beginning of Message
(SBF.DATA)

Reserved for Sending Task Name
(1st Buffer Only)

or
Continuation of Message

Message
~
I
I

Header

Body
of
Message

Figure 6-4 Send Data Message Buffer Format for Calling Task

Each send data message buffer can be variable in length provided
that the buffer is aligned on a fullword boundary and its total
length is equal to an integer number of fullwords. Note that the
message buffer consists of two parts: the header and the body of
the message. The message body holds the data that is to be sent.
Because the send data function allows the size of a message to be
variable, the length of the body is determined only by the
quantity of data that is to be sent by SVC 6.

6-18 48-038 FOO ROI

Note that if the buffer is the only buffer containing the message
to be sent (or the first buffer in a chain), the first 16 bytes
of the message body are reserved and filled with zeros. When the
message is transferred to the directed task buffer, the first 8
bytes of the message body of the directed task buffer are filled
with zeros, the next 8 bytes are filled with the sending task's
name (left-justified and padded with blanks). All remaining
buffers in the ,chain use these first 16 bytes of the message body
to hold data.

A description of the fields in the message header follows:

Function code
(SBF.FC)

Buffer link
address
(SBF.NXT)

RESERVED
(SBF.MLEN)

Message field
length
(SBF .. LEN)

is a I-byte field indicating whether the
buffer is the only buffer to be sent, or is a
member of a message buffer chain. The
function codes are:

• X'OO' - indicates that the buffer is an
intermediate buffer in a chain.

• X'lO' - indicates that the buffer is the
last buffer in a chain.

• X'20' - indicates that the buffer is the
first buffer in a chain.

• X' 30' - indicates that the buffer is the
only buffer to be sent.

is a 3-byte buffer indicating the address of
the next buffer in the chain.. The as ignores
this field in buffers with a function code of
X '10 or X' 30 u ..

is a 2-byte field reserved for use by the
directed task.

is a 2-byte field indicating the length of the
message body for that buffer.

6.2.7.2 Free Send Data Message Buffers for Receiving Task

Before a directed task can receive a message, the following
structures must be contained within the task address space:

• Free send data message buffers

• Free buffer list queue

• Task queue

48-038 FOQ ROI 6-19

• UDL containing the address of the task queue, free buffer list
queue, and TSW with address of send data trap service routine

• TSW initialized to enable send data traps

The total length of the free send data message buffers should be
sufficient to hold the entire message transferred to those
buffers by the calling task. The format of the free send data
message buffers is shown in Figure 6-5.

0(00)
Reserved
(SBF.FC)

4(04)

11(01)
Reserved
(SBF.NXT)

6(06)
Maximum Message Length
(SBF.MLEN)

Reserved
(SBF.LEN)

8(08)

16 (10)

24(18)

rT'
f

Reserved (1st Buffer Only)
or

Beginning of Message
(SBF.DATA)

Sending Task Name
(1st Buffer Only)

or
Continuation of Message

Message

Header

Body
of
Message

Figure 6-5 Send Data Message Buffer Format for Directed Task

Like the calling task's message buffers, each free message buffer
can be variable in length as long as the buffer is aligned on a
fullword boundary and the total length in bytes is an even
number ..

When initialized, the maximum message length field contains the
number of bytes that are available for the body of the message.
The remaining fields of the message header are reserved.

6-20 48-038 FOD RDl

The address of each of the free message buffers is placed on a
standard Perkin-Elmer circular list established in the task
address space. This list is known as the free buffer list queue.
The address of the queue is placed in the UDL.SDQ field of the
UDL.

When a calling task issues an SVC 6 to send a message, the as
takes the address of the free buffer list queue from the UDL and
then takes a free buffer address off the queue. Once the free
buffer is found, the as sets the reserved field of the message
body to blanks" and enters the name of the calling task in the
sending task name field (left-justified and padded with blanks).
After the buffer is filled with the data from the calling task's
message buffer, the os places the number of bytes of the message
body (including the reserved and sending task name fields) into
SBF.LEN.

If the entire message has not been transferred, the as fetches
the address of another free message buffer, places the address of
this buffer in the SBF.NXT field and sets the function code. It
then begins transferring message data to the free message buffer,
the address of which is now specified by SBF.NXT. However, this
time the message data begins at the first fullword following the
SBF.LEN field. After this buffer is filled, the length of the
message body is placed in the SBF.LEN field. The value in this
field can never be larger than the maximum message length field.

The as continues to fetch and fill the directed task's free
buffers until the entire message is tranferred or until no
buffers are left on the queue. If the directed task runs out of
buffers to hold the message data, the entire message is returned
to the calling task buffers. The addresses of the directed task . I
buffers are returned to the queue. The as outputs an error
message indicating no message was sent.

If the entire message is successfully transferred, the as places
reason code X'06' and the address of the first filled message
buffer on the task queue of the directed task. If the directed
task has been properly initialized to receive a task queue trap,
the task then branches to a trap handling routine to process the
message. It is good practice to have the trap handling routine
return each message buffer address to the free buffer list queue
after the data in that buffer is processed. See the OS/32
Application Level Progranuner Reference Manual for more
information on preparing directed tasks to handle send data
traps.

If the directed task trap structures have not been properly
initialized (e.g., no task queue has been established), the
message will be returned to the calling task.

6.2.7.3 Sample Programs Using sve 6 Send Data Function

The following sample programs demonstrate the data structures
used to send a message via the sve 6 send data function.

48-038 FOO ROl 6-21

. I
I

Sample send data application: Sending Task

SEND
SENDE

MES1

MES2

MES3

START

ERROR

6-22

MLIBS
$SVC6
DS
EQU
ORG
DB
ORG
DC
ORG
DC
ORG

EQU
DC
DC
DC
DS
DS
DC
DC

8,9

SVC6.
*
SEND+SVC6. I D
C'RECDATA'
SEND+SVC6.FUN
SFUN.DOM!SFUN.DM
SEND+SVC6.MSG
A(MES1)
SENDE

*
Y'20000000'+A(MES2)
H'O'
H'80'
8
8
C'THIS IS A MESSAGE
C'WITH THE SEND'

START THE PCB
END OF PCB
GO INTO THE I.D. FIELD
STORE THE TASKID
GO TO THE FUNCTION FIELD
SEND DATA:OTHER TASK
GO TO ADDR OF DATA FIELD
STORE THE ADDR OF THE 1ST BUFFER
GO TO THE END OF THE PCB

ADDR OF 1ST BUFFER
1ST BUFF+ADDR OF 2ND
NOT USED BY CALLER
OF BYTES WE ARE SENDING
RESERVED FIELD FOR 1ST BUFFER
SENDING TASK NAME FOR 1ST BUFFER
FROM ANOTHER TASK.'

DC C' , TOTAL 80 BYTES
ALIGN 4
EQU
DC
DC
DC
DC
DC
DC

*
Y'0'+A(MES3)
H'O'
H'80'
C' DATA FUNCTION
C'VARIABLE LENGTH
C'THIS EXAMPLE'

ADDR,OF 2ND BUFFER
MIDDLE BUFFER + ADDR OF NEXT BUFF
NOT USED BY CALLER
OF BYTES WE ARE SEND I NG

WE CAN SEND '
MESSAGES TO TASKS.

DC C' TOTAL 80 BYTE BUFFER
ALIGN 4
EQU
DC
DC
DC
DC
DC
DC
DC

EQU
SVC
LH
BNZ
SVC
EQU
SVC
END

* ADDR OF 3RD BUFFER
Y'10000000' LAST BUFFER IN CHAIN CODE
H'O' NOT USED BY CALLER TASK
H'80' # OF BYTES WE ARE SENDING
C' SENT 3 BUFFERS AS ONE MESSAGE '
C'FROM ONE TASK TO ANOTHER'
C'AS ONE MESSAGE'
C'

*
6,SEND
1,SEND+SVC6.STA
ERROR
3,0
*
3,1
START

LET'S GO
SEND THE DATA
GET THE STATUS
AND BRANCH IF AN ERROR OCCURRED
EaT

RETURN CODE OF 1 ON ERROR
TRANSFER ADDR

48-038 FOO ROI

Sample send data application: Receiving Task

MBF
SBF.FC
SBF.NXT
SBF.MLEN
SBF.LEN
SBF.DATA

MYUDL
MYUDLE

START

*

MLIBS
$VOL
$SVCl
$TSW
STRUC
EQU
DS
DS
DS
EQU
ENDS
DS
EQU
ORG
DC
ORG
DC
ORG
DC
DC
ORG
EQU
LA
ABL
LA
ABL
LA
ABL
SVC

QSERVICE EQU
RBL
LR
NI
CI
BNE

DATA EQU
L
NI
CI
BE
CI
BE
CI
BE

8,9

*
4
2-
2

*
256

*
MYUDL+UDL.TSKQ
A(TRAPQ)
MYUDL+UDL.SDQ
A(QUEUE)
MYUDL+UDL.TSKN
o
A(QSERVICE)
MYUDLE
*
1, BUFF 1
1, QUEUE
l,BUFF2
1,QUEUE
1,BUFF3
l,QUEUE
9,TSW

*
3,TRAPQ
2,3
2,Y'FFOOOOOO'
2,TRC.SDTA
ERROR
*
2,0(3)
2,Y'FFOOOOOO'
2,Y'20000000'
FIRST
2,Y'lOOOOOOO'
LAST
2,Y'30000000'
ONLY

48-038 FOO ROl

STRUCTURE FOR 'I'HI!; MESSAGE BUFFER FORMAT
FUNCTION CODE FIELD
ADDR OF NEXT BUFFER
MAX LENGTH OF BUFFER
I£NGTH OF DATA TRANSFER
START OF DATA AREA

START OF UDL
END OF UDL
GO TO TASK Q ADDR
STORE ADDR OF TASK QUEUE
GO TO ADDR OF FREE BUFFER LIST
STORE ADDR OF FREE BUFFER LIST
GO TO NEW TSW AREA FOR Q SERVICE
STATUS OF NEW TSW
LOCATION COUNTER OF NEW TSW
GO TO END OF THE UDL
LET'S GO
GET THE ADDR OF BUFFl
ADD TO BOTTOM OF FREE LIST
GET THE ADDR OF BUFF2
ADD TO BOTTOM OF FREE LIST
GET THE ADDR OF BUFF3
ADD TO FREE LIST
E:NTER TRAP WAIT

'l~RAP ROUT I NE
GET THE REASON CODE
STORE IT IN 2
CLEAR THE FIELD
IS IT A SEND DATA REASON CODE
BRANCH IF NOT

GET THE FUNCTION CODE
STRIP OFF THE ADDR
IS IT THE FIRST BUFFER

IS IT THE LAST BUFFER

IS IT THE ONLY BUFFER

6-23

NEXT EQU *
LA 8,MBF(3) GET THE STARTING ADDR OF BUFF
LHL 9,SBF.LEN(3) GET THE LENGTH OF DATA TRANSFER
AR 9,8 ADD STARTING ADDR
SIS 9,1 SUBTRACT ONE FROM ENDING ADDR
ST 8,WRITE+SVC1.SAD STORE THE STARTING ADDR
ST 9,WRITE+SVC1.EAD ENDING ADDR
SVC 1,WRITE WRITE THE NEXT BUFFER
L 2,0(3) GET THE ADDR OF THIS BUFFER
LR 3,2 STORE IN THREE
B DATA CONTINUE

FIRST EQU *
LA 8,MBF+16(3) GET THE STARTING ADDR OF DATA
LHL 9,SBF.LEN(3) GET THE LENGTH OF DATA TRANSFER
AR 9,8 ADD THE STARTING ADDR
SIS 9,1 SUBTRACT ONE FROM ENDING ADDR
ST 8,WRITE+SVC1.SAD STORE THE STARTING ADDR
ST 9,WRITE+SVC1.EAD STORE THE ENDING ADDR
SVC 1,WRITE WRITE THE FIRST BUFFER
L 2,0(3) GET ADDR OF FIRST BUFFER
LR 3,2 SAVE IN THREE
B DATA CONTINUE

LAST EQU *
LA 8,MBF(3) GET THE STARTING ADDR
LHL 9,SBF.LEN(3) GET THE # OF BYTES TRANS
AR 9,8 ADD TO MAKE END I NG ADDR
SIS 9,1 SUBTRACT ONE FROM END
ST 8, WRITE+SVC1. SAD STARTING ADDR
ST 9,WRITE+SVC1.EAD ENDING ADDR
SVC 1,WRITE WRITE OUT THE LAST BUFFER

ONLY EQU *
LA 8,MBF+16(3) GET THE STARTING ADDR
LHL 9,SBF.LEN(3) GET THE # OF BYTES TRANS.
AR 9,8 GET AN ENDING ADDR
SIS 9,1 SUBTRACT ONE
ST 8,WRITE+SVC1.SAD STARTING ADDR
ST 9,WRITE+SVC1.EAD ENDING ADDR
SVC 1,WRITE WRITE THE ONLY BUFFER

FINI EQU *
* THE OS REMOVES FROM THE TOP OF THE FREE LIST

LA 1,BUFFl ADDR OF 1ST BUFF
ABL 1, QUEUE ADD TO FREE LIST
LA 1,BUFF2 ADDR OF 2ND BUFF
ABL 1, QUEUE ADD TO FREE LIST
IA 1,BUFF3 ADDR OF 3RD BUFF
ABL 1, QUEUE ADD TO FREE LIST
LIS 1,0 GET A ZERO
ST 1,UDL.TSKO ZERO THE STATUS
SVC 9,UDL.TSKO LOAD A TSW

ERROR EQU *
SVC 3,2 RETURN CODE OF 2

*
ALIGN 4

WRITE DS SVC1. START OF PCB

6-24 48-038 FOO ROl

WRITEE EQU * END OF PCB
ORG WRITE+SVCl.FC GO TO THE FUNCTION CODE FIELD
DB SVl.WRIT!SVl.WAIT WRITE AND WAIT
ORG WRITE+SVCl.LU GO TO THE LU FIELD
DB 2 LU 2 FOR A WRITE
ORG WRITEE GO TO END OF PCB
ALIGN 4

TSW EQU * NEW TSW
DC TSW.WTM!TSW.TSKM!TSW.SDM WAIT,Q TRAP,SEND DTA
DC 0 LOCATION COUNTER
ALIGN .4

QUEUE DLIST 3 FREE LIST SIZE
TRAPQ DLIST 3 TASK QUEUE SIZE
BUFFI EQU * 1ST BUFF

DS 4 FUNCTION CODE AND LINK ADDR
DC H'SO' MAX SIZE OF THIS BUFFER
DC H'O' # OF BYTES TRANS. SET BY OS
DS 16 RESERVED FIELD FOR 1ST BUFFER
DS SO # OF BYTES WE CAN ACCEPT IN BUFF

BUFF2 EQU *
DS 4 FUNCTION CODE AND LINK ADDR
DC H'SO' MAX SIZE OF THIS BUFFER
DC H'O' # OF BYTES TRANS SET BY OS
DS SO # OF BYTES WE CAN ACCEPT IN BUFF

BUFF3 EQU * 3RD BUFF
DS 4 FUNCTION CODE AND LINK ADDR
DC H'SO' MAX SIZE OF THIS BUFFER
DC H'O' # OF BYTES TRANS SET BY OS
DS SO # OF BYTES WE CAN ACCEPT IN BUFF
END START TRANSFER ADDR

6.2.S Send Message (SFUN.MM)

The send message function allows calling task to send a 64-byte
message to the directed task. SVC 6 appends the calling task
name to the message, finds the address of the receiving task
buffer in the UDL of the directed task, fills the receiving
buff.er, and places the address of that buffer on to the directed
task queue.

The required sve 6 parameter block fields are:

• Task name field

• Bits 0, 1, and 11 of the function code field

• Address of message buffer field

To prepare a directed task to accept the message sent by the
sve 6 send message function:

• Allocate message buffers to receive the message. (Use message
buffer format described in Section 6.2.S.l.)

4S-03S FOO ROl 6-25

• Write a routine to service task queue traps as described in
the OS/32 Application Level Programmer Reference Manual.

• store the address of the
address of the message
directed task.

receiving message buffer in the
buffer ring field in the UDL of the

6.2.8.1 Message Buffers

When allocating receiving message buffers for the send message
function, use the buffer format shown in Figure 6-6.

,-----------
~ffer
full
bit

76 bytes

------~------~

~--~
I I I I
101 Link I Calling task I
: I addressJ name I

Message

---~
Bytes:
o 3 4 11 12

5----
I
I
I

5-----

75

Figure 6-6 Message Suffer Format for Directed Task

This message buffer must be 76 bytes long and aligned on a
fullword boundary. A description of each field in the message
buffer format follows.

Fields:

6--26

Buffer-full
bit

is a I-bit field indicating whether or not the
buffer can receive the message being sent from
the calling task.

If bit 0 equals 0, the buffer is available to
receive the message.

If bit 0 equals 1, the buffer is full and the
message is rejected. After the message sent
by the calling task is stored in the message
buffer, the system sets the buffer-full bit to
1 to indicate the message buffer is full.
After the directed task processes the message,
the user must reset the buffer-full bit to 0
to indicate that it is available to receive
the next message.

48-038 Faa ROl

Link address is a 4-byte field containing the address of
the subsequent message buffer to receive the
next message sent by the calling task. If
this field contains an invalid address, the
call is rejected.

Calling
task name

Message

is an 8-byte field receiving the
task's name from the system.

calling

is a 64-byte field receiving the message sent
by the calling task.

Using the Link address field, the user can construct the
following structures from the basic message format:

1. Single buffer ring

2. Single buffer chain

3. Multiple buffer ring

4. Multiple buffer chain

A single buffer ring consists of one buffer as shown in Figure
6-7. The buffer-full bit initially should be set to 0, and the
link address field should contain the buffer's own starting
address (points to itself). When a message is sent to a single
buffer ring, the system sets the buffer-full bit to 1. All
subsequent messages are rejected until the user resets the
buffer-full bit to o.

Starting
address
X'lSO'

-------------------------------1 ~------------------
I I
I I

101
I I
, I

150

Bytes:
o

I
Data

I I
------------------------~ ~------------------

3 4 75

Figure 6-7 Single Buffer Ring

48-038 FOO ROl 6-27

A single buffer chain consists of one buffer as shown in Figure
6-8. The buffer-full bit initially should be set to 0, and the
link address field should contain zeros (terminating the chain).
When a message is sent to a single buffer chain, the system sets
the buffer-full bit to 1 and stores the link address field
contents into the address of the message ring field of the UDL of
the directed task. All subsequent messages are rejected until·
the user stores the empty buffer address into the UDL address of
the message ring field and resets the buffer-full bit of the
empty message buffer to o.

starting
address
X'ISO' i ______________________________ _
I I
I I

101 000
I I
I I

Bytes:
o

Data

3 4

Figure 6-8 S1ngle Buffer Chain

75

A multiple buffer ring consists of a variable, unlimited number
of buffers. Each buffer-full bit initially should be set to 0,
and each link address field should contain the address of a
subsequent buffer. The last buffer's link address field should
contain the first buffer's address (forming a ring). When a
message is sent to a multiple buffer ring, the first buffer,
pointed to by the address stored in the UDL address of the
message ring field, receives the message if the buffer-full bit
is O.

The system then stores the contents of the first buffer link
address field into the UDL address of the message ring field.
That UDL field now points to the second buffer in the ring. If
the calling task sends another message, the second buffer
receives the message if the buffer-full bit is O.

The system stores the contents of the second buffer link address
field into the UDL address of the message ring field, which now
pOints to the third buffer in the ring. When the last buffer in
the ring receives a message and the contents of the link address
field are stored into the UDL, that UDL field points to the first
message buffer in the ring. If the calling task sends another
message, the first buffer receives the message if the buffer-full
bit is reset to 0; otherwise, the message is lost. See Figure
6-9.

6-28 48-038 FDD ROI

Address
X'lSO'

~---
I I I
101 lC8 ,
I I I

Address
X'2B4'

~---
I I I
101 150 I

I

Data

Data

Address
X'lCS'

~-----------------

Address
X'23C'

I I I
101 23C I
I I I

~-----------------
I I
101 2B4 I Data
, I
~------------

Data

I
I

I

Figure 6-9 Multiple Buffer Ring

A multiple buffer chain consists of a variable, unlimited number
of buffers. Each buffer-full bit initially should be set to 0,
and each link address field should contain a subsequent buffer
address. The last buffer link address field should contain zeros
(terminating the chain). When a message is sent to a multiple
buffer chain, the first buffer, pointed to by the UDL address of
the message ring field, receives the message if the buffer-full
bit is o.

The system then stores the contents of the first buffer link
address field into the UDL address of the message ring field.
That UDL field now points to the second buffer in the chain. If
the calling task sends another message, the second buffer
receives the message if the buffer-full bit is o.

4S-038 FaD ROI 6-29

The system then stores the contents of the second buffer link
address field into the UDL address of the message ring field.
That UDL field points to the third buffer in the chain. When the
last buffer in the chain receives a message and the system stores
the contents of the link addres,s field into the UDL, all
subsequent messages are rejected until the user stores an empty
buffer address into the UDL address of message ring- field and·
resets the buffer-full bit of that message buffer. See Figure
6-10.-

Address
X'lSO'

I I I
101 ICa I
I I I

Data

~~~~:~~~~~~~~~~~~~~ 
I I I I 
101 23C I Data I 
I I I I 

~~~~~~~~~~~~~~~~~ 
I I I I
101 2B4 1 Data I
I I I

~~~~:~~~~~~~~~~~~~ 
I I I I 
101 000 I Data I 
I I I I 

Figure 6-10 Multiple Buffer Chain 

The following sample programs demonstrate the data structures 
used to send a message via the SVC 6 send message function. 

6-30 48-038 FOO ROI 



Sample send message application: Sending task 

SEND PROG SVC 6 EXAMPLE - SEND MESSAGE 
* 
* 
* 
* 

This task sends a message to task RECEIVE. 

SEND 

NLSTM 
NLSTU 
SSVC6 
SREG$ 

EQU 
SVC 
LB 
SVC 

* 
6,SVC6 SEND THE MESSAGE 
RIS,SVC6+SVC6.STA+I GET ERROR STATUS 
3,O(RIS) END OF TASK 

4 
SVC6 

ALIGN 
DS 
ORG 
DC 
ORG 
DC 
ORG 
DC 

SVC6. 
SVC6+SVC6.ID 
C'RECEIVE ' 
SVC6+SVC6.FUN 
SFUN.DOM!SFUN.MM 
SVC6+SVC6.MSG 
A(MESSAGE) 

RESERVE SPACE FOR SVC 6 PBU 
NAME OF TASK MESSAGE IS SENT TO 

SEND MESSAGE TO ANOTHER TASK 

ADDRESS OF MESSAGE TO BE SENT 

MESSAGE DC 
DC 
DC 
END 

C'Message from SEND to RECEIVE ' 
C' 
e' 
SEND 

Sample send message application: Receiving task 

RECEIVE PROG SVC 6 EXAMPLE - RECEIVE MESSAGE 
* 
* * This task receives a message sent to it by another 
* task. The message is logged to the console device. 
* 
* 

* 
* 

NLSTM 
NLSTU 
$UDL$ 
$REGS 

* Set up UDL and link message buffers into a message ring. 
* 
* 

48--038 FOO ROI 6-31 



RECEIVE EQU 
SVC 
LI 
IA 
STM 
IA 
ST 
IA 
ST 

LHI 
IA 

LINKRING EQU 
SIS 
BNP 
IA 
ST 
LR 
B 

LINKDONE EQU 
IA 
ST 

* 
* 

SVC 

* 
2,FETCHPTR 
R14,TSW~PMM 

R15,QSERVICE 
R14,UDL~TSKN(R01) 
R15,TSKQ 
R15,UDL.TSKQ(R01) 
R15,MESSQ 
R15,UDL.MSGR(R01) 

R15,NMESS 
R14,MESSQ 
* 
R15,1 
LINKDONE 
R13,76(R14) 
R13, 0 (R14) 
R14,R13 
LINKRING 

* 
R13,MESSQ 
R13,0(R14) 

9,TRAPENA 

* 
* 
* 

Service task queue traps 

QSERVICE EQU 
RTL 
BO 
IA 
SRL 
CLHI 
BNE 
IA 
ST 
SVC 
L 
NI 
ST 
L 
CLI 
BNE 
SVC 

QEMPTY EQU 
SVC 

TRAPENA 

6-32 

* 
R02,TSKQ 
QEMPTY 
R15,0(R02) 
R02,24 
R02,6 
QSERVICE 
R14,4(R15) 
14,LOGMESS+4 
2,LOGMESS 
ROO,0(R1S) 
ROO,Y'7FFFFFFF' 
ROO,0(R1S) 
ROO,12(R1S) 
ROO,C'STOP' 
QSERVICE 
3,0 

* 
9,TRAPWAIT 

ALIGN 4 
DC TSW.PMM,O 

GET ADDRESS OF UDL IN ROl 
ALLOW MESSAGES TO BE QUEUED 
ADDRESS OF QUEUE SERVICE ROUTINE 
SAVE TASK QUEUE NEW TSW 
ADDRESS OF TASK QUEUE 

ADDRESS OF MESSAGE BUFFER RING 

NUMBER OF MESSAGES IN RING 
HEAD OF MESSAGE RING 

GET ADDRESS OF NEXT BUFFER 
LINK NEXT TO CURRENT 
CURRENT IS NEXT 
CONTINUE LINKING OF RING 

ADDRESS OF FIRST MESSAGE 
LINK FIRST TO lAST 

ENABLE RECEIVE OF MESSAGES 

A ITEM ON THE TASK QUEUE? 
NO - ENTER TRAP WAIT 
GET PARAMETER 
ISOLATE REASON CODE 
MESSAGE RECEIVED? 
NO - IGNORE IT 
SKIP OVER MESSAGE LINK 
ADDRESS OF MESSAGE TO BE LOGGED 
LOG SENDER ID AND MESSAGE 
RESET MESSAGE ACTIVE FLAG 

GET FIRST FOUR BYTES OF MESSAGE 
IS IT "STOP"? 
NO - CHECK FOR MORE MESSAGES 
YES - STOP TASK 

ENTER TRAP WAIT 

48-038 FOO ROl 



TRAPWAIT DC TSW.WTM!TSW.TSKM!TSW.PMM,0 

FETCHPTR DB 0,5,O,ROl FETCH UDL POINTERS 

LOGMESS DB X' 40' , 7 
DCX 72 
DC 0 

TSKQ DLIST 5 TASK QUEUE 

NMESS EQU 3 NUMBER OF MESSAGE BUFFERS 
MESSQ DS 76*NMESS MESSAGE BUFFERS 

END RECE lVE 

6.2.9 Queue Parameter (SPUN.QM) 

The queue parameter function adds the user-specified parameter, 
located in the task queue parameter field of the parameter block, 
to the directed task queue. The required parameter block fields 
are: 

• Task name field 

• Bits 0, 1, and 12 of function code field 

• Task queue parameter field 

Before the directed task can receive the parameter sent from the 
calling task, the directed task must prepare to service traps as 
described in the OS/32 Application Level Programmer Reference 
Manual. 

If the directed task queue is full, the call is rejected, the 
parameter is lost, and an error code is stored into the error 
status field of the parameter block. 

6.2.10 Change Priority (SPUN. PM) 

The change priority function changes the directed task's current 
priority to the user-specified priority located in the parameter 
block change priority field. It then stores the change priority 
value at which the directed task is now executing into the 
current priority field of the parameter block. The required 
parameter block fields are: 

• Task name field 

• Bits 0, 1, and 13 of the function code field 

• Change priority field 

48-038 FDD ROl 6-33 



If the change priority value specified in the parameter block is 
greater than the maximum priority value established by Link, that 
maximum priority is used. However, if the change priority value 
the user specified is outside the range of 10 through 249, the 
call is rejected, and an error code is storad in the parameter 
block error status field. See Table 6-5. 

6.2.11 Send Logical Unit (SFUN.XSM) 

The send logical unit function assigns to the specified lu of the 
directed task the device or file currently assigned to the 
specified lu of the calling task, and then closes the lu assigned 
to the calling task. The required parameter block fields are: 

• Task name field 

• Bits 0, 1, and 14 of the function code field 

• Calling lu field 

• Receiving lu field 

Before the directed task accepts the lu that the calling task 
sends: 

• the directed task's lu must not be aSSigned, and 

• the directed task must be in either a dormant or paused wait 
state or be suspended by an SVC 6. 

6.2.12 Receive Logical Unit (SFUN.XRM) 

The receive logical unit function assigns to the specified lu of 
the calling task the device or file currently aSSigned to the 
specified lu of the directed task, and then closes the lu 
assigned to the directed task. The required parameter block 
fields are: 

• Task name field 

• Bits 0, 1, and 15 of the function code field 

• Calling lu field 

• Receiving lu field 

6-34 48-038 FDD ROI 



Before the calling task accepts the lu that· the directed task 
sends: 

• the calling task's lu must not be assigned, and 

• the directed task must be in either a dormant or paused wait 
state or be suspended by an SVC 6. 

6.2.13 Connec~ (SPUN.OM) 

The connect function connects the trap generating device 
specified in the device mnemonic field of the parameter block to 
the directed task. The required parameter block fields are: 

• Task name field 

• Bits 0, 1, and 16 of the function code field 

• Device mnemonic field 

• Task queue parameter field 

Before the connection is made: 

• The user-specified device must be a trap generating device. 

• The device must not be currently connected to the directed 
task or any other task; it can be connected to only one task 
at a time. However, a task can be connected to more than one 
trap generating device at the same time. 

• The directed task must be prepared as described in the 05/32 
Application Level Programmer Reference Manual if traps are to 
be serviced as they occur. 

When the connection is made and the thaw function is 
an interrupt occurs, and the user-specified parameter 
the task queue parameter field of the parameter block 
on the directed task queue with a reason code of O. 
function does not enable interrupts. 

48-038 FOO ROI 

specified, 
located in 
is placed 

The connect 

6-35 



6.2.14 Thaw (SFUN.TN) 

The thaw function enables interrupts from the specified trap 
generating device connected to the directed task. The required 
parameter block fields are: 

• Task name field 

• Bits 0, 1, and 17 of the function code field 

• Device mnemonic field 

Before this function is effected, the task should be prepared to 
handle traps as described in the OS/32 Application Level 
Programmer Reference Manual. 

When the thaw function is executed, the system first ensures that 
the trap generating device is connected to the directed task 
specified in the parameter block; it then enables interrupts. 
Interrupts are disabled when the directed task terminates or if 
an unconnect or freeze function is specified. If a thaw function 
is executed when interrupts are already enabled, this call has no 
affect. 

6.2.15 Sint (SFUN.IM) 

The sint function simulates an interrupt from the specified trap 
generating device connected to the directed task only if the thaw 
function was specified. If interrupts are disabled, this call 
has no affect. The required parameter block fields are: 

• Task name field 

• Bits 0, 1, and 18 of the function code field 

• Device mnemonic field 

When the simulate function is executed, the system first ensures 
that the trap generating device is connected to the directed task 
specified in the parameter block; it then simulates an interrupt 
from the specified device. 

6-36 48-038 FOO ROI 



6.2.16 Freeze (SFUN.FM) 

The freeze function disables interrupts from the specified trap 
generating device connected to the directed task. The required 
parameter block fields for this function are: 

• Task name field 

• Bits 0, 1, and 19 of the function code field 

• Device mnemonic field 

When the freeze function is executed, the system first ensures 
that the trap generating device is connected to the directed task 
specified in the parameter block; it then disables interrupts 
from the specified device. When the freeze function disables 
interrupts, the trap generating device and directed task remain 
connected, but all generated interrupts are lost. If interrupts 
are already disabled, this call has no affect. 

6.2.17 Unconnect (SFUN.UM) 

Irhe unconnect function disconnects the specified trap generating 
device from the directed task. The required parameter block 
fields for this function are: 

• Task name field 

• Bits 0, 1, and 20 of the function code field 

• Device mnemonic field 

When the unconnect function is executed, the system first ensures 
that the trap generating device is connected to the directed task 
specified in the parameter bloCK; it then disables all interrupts 
and disconnects the specified device from the directed task. The 
device can now be connected to another task. 

6.2.18 Assign LPU (SFUN.LPU) 

The assign LPU function assigns a logical processing unit number 
to the directed task. This assignment has no effect until the 
directed task is transferred by the task dispatcher. The 
required parameter block fields for this function are: 

• Task name field 

• Bits 0, 1, and 21 of the function code field 

• LPU assignment field 

48-038 FOO ROl 6-37 



6.2.19 Transfer to LPU (SFUN.TL) 

The transfer to LPU function sets the LPU-directed status field 
in the TCB of the directed task. As a result, the directed task 
is transferred to its assigned LPU the next time the task is 
dispatched, provided that all requirements for transfer are met. 
See the OS/32 System Level Programmer Reference Manual for more 
information on the task dispatcher. If this function is 
self-directed and the calling task is executing on an APU, no 
transfer occurs. If a calling task executing on the CPU directs 
this function to itself, the LPU-directed status field in the TCB 
is set and the calling task is dispatched to its assigned LPU. 
If the LPU is mapped to the CPU, no transfer occurs. If the LPU 
is mapped to an APU, a transfer to the APU occurs. 

The required parameter block fields for this function are: 

• Task name field 

• Bits 0, 1, and 22 of the function code field. 

NOTE 

If both bits 22 (SFUN.TL) and 23 
(SFUN.TC) are set in the same SVC 6 
parameter block, only bit 23 is 
recognized when the call is complete. 

6.2.20 Transfer to CPU (SFUN.TC) 

The transfer to CPU function resets the LPU-directed status field 
in the TCB. As a result, the next time the task is dispatched 
from the CPU ready queue, it will execute on the CPU regardless 
of its LPU assignment and eligibility. If the calling task 
directs this function to a task that is active or ready on an 
APU, the LPU directed status is reset after the task is returned 
to the CPU for processing. 

If a calling task executing on the CPU directs this function to 
itself, no transfer occurs. If a calling task operating on the 
APU directs this function to itself, the calling task is 
transferred to the CPU. Normally, APU processing continues after 
the task is transferred unless the wait bit in the SVC NEW PSW 
field of the APU trap block has been set. In this case, APU 
processing is explicitly suspended while the task executes on the 
CPU until: 

• the task is explicitly transferred back to the APU via SVC 6, 
or 

• the task is assigned to a different APU through an LPU 
assignment, or 

6-38 48-038 FOO ROl 



• the task is cancelled or goes to end of task, or 

• LPU mapping for the task's LPU is changed. 

See the OS/32 Application Level Reference Manual for more 
information on setting the trap block to suspend APU processing. 
The required parameter block fields for this function are: 

• Task name field 

• Bits 0, 1, and 23 of the function code field 

NOTE 

If both bits 22 (SFUN.TL) and 23 
(SFUN.TC) are set in the same SVC 6 
parameter block, only bit 23 is 
recognized when the call is completed. 

6.2.21 Release (SFUN.RM) 

The release function releases a directed task currently suspended 
by a previous SVC 6 by taking it, out of a wait state. Once 
released, the task continues executing with the instruction 
following the instruction executed before the task was suspended 
if the task is not in another wait state at thlS time. The 
required parameter block fields for this function are: 

• Task name field 

• Bits 0, 1, and 24 of the function code field 

6.2.22 Nonresident (SFUN.NM) 

The nonresident function makes the directed 
regardless of the Link options specified. 
task goes to end of task, it is removed from 
required parameter block fields are: 

• Task name field 

• Bits 0, 1, and 25 of the function code field 

48-038 FOO ROl 

'task nonresident 
When a nonresident 
the system. The 

6-39 



6.2.23 Rollable (SPUN.RLM) 

The rollable function makes the directed task rollable. The 
directed task must have been linked as a rollable task. If this 
function is directed to a task linked as nonrollable, an error 
status is returned. The required parameter block fields are: 

• Task name field 

• Bits 0, ,I, and 26 of the function code field 

6.2.24 Nonrollable (SPUN.NRM) 

The nonrollable function prevents the directed task from being 
rolled. The required parameter block fields are: 

• Task name field 

• Bits 0, 1, and 27 of the function code field 

If both rollable and nonrollable functions are specified, only 
the nonrollab1e function is recognized. 

6.2.25 start (Bit Positions 29, 30, 31) 

The start function starts execution of the directed task. This 
call is rejected if it is self-directed. -Four methods of 
starting are: 

1. start (bit setting equals 010) 

2. start with start options (bit setting equals all) 

3. Delay start (bit setting equals 100 or 110) 

4. Delay start with start options (bit setting equals 101) 

The required parameter block fields are: 

• Task name field 

• Bits 0, 1, 29, 30, and 31 of the function code field 

• Address of start options field (only required when start with 
start options or delay start with start options is specified 
in the function code) 

6-40 48-038 FOD ROI 



• Increment of time field (only required when delay start or 
delay start with start options is specified) 

• Count field (only required when delay start or delay start 
with start options is specified) 

• Starting address of directed task field 

Before the start function is executed, the directed task must be: 

• loaded or present in memory, and 

• in a dormat or console wait state. 

6.2.26 start Function for SVC 6 (SFUN.SIN) 

When this function is specified, execution of the directed task 
is started at the address in the parameter block starting address 
of the directed task field. However, if the user-specified 
starting address is 0, the directed task is started at the 
default start address specified by Link. If the user-specified 
starting address is outside the established task boundaries, this 
call is rejected, and an error code is stored in the parameter 
block error status field. 

6.2.27 start Function with start Options for SVC 6 (SPUN. SON) 

When this function is specified, the start options, optionally 
specified in certain language and utility programs at execution 
time, are also included as run time information when the directed 
task starts execution. When the start function is executed, the 
start options located at the address specified in the parameter 
block are stored into the directed task UTOP area. If sufficient 
memory is not available between UTOP and CTOP, this call is 
rejected and an error code is stored in the parameter block error 
status field. The task should then be reloaded into a larger 
segment using the extended load option segment size increment 
field. 

The user-specified start options must be located on a fullword 
boundary. The maximum length of the start options are defined at 
system generation (sysgen) time through the CMDLENGTH option. If 
the length of the start options is greater than that specified at 
sysgen time or a carriage return is present within the start 
options, only those characters up to the maximum number or the 
carriage return are stored in the task UTOP area. 

Since the address of the start options field is also the address 
of the message buffer field in the parameter block, this field's 
contents are always assumed to be the start option address when 
the start function is specified. 

48-038 FOO ROI 6-41 



6.2.28 Delay start Function for SVC 6 (SFUN.SDM) 

When this 
execution 
parameter 
interval 
interval. 

function is specified, the directed task starts 
after a user-specified interval located in the 

block increment of time and count fields elapses. The 
can be specified as a time of day or interval timing 

When this start function is executed for the directed task, bytes 
192 through 251 of the UDL are used by the as for SVC 6 delay 
start function use. 

When this start function is executed, 
immediately placed into a time 
user-specified interval elapses, the 
execution. 

the directed task is 
wait state. When the 
directed task starts 

6.2.29 Delay start Function with start Options for SVC 6 
(SFUN.SDM,SFUN.SOM) 

When this 
execution 
parameter 
interval 
interval. 

function is specified, the directed task starts 
after a user-specified interval located in the 

block increment of time and count fields elapses. The 
can be specified as a time of day or interval timing 

When this start function is executed for the directed task, bytes 
192 through 251 of the UDL are used by the os for SVC 6 delay 
start function use. 

When the start function is executed, the start options located at 
the address specified in the parameter block are stored into the 
directed task UTOP area, and the directed task is immediately 
placed into a time wait state. If sufficient memory is not 
available between UTOP and CTOP, this call is rejected, and an 
error code is stored in the parameter block error status field. 
The task should then be reloaded into a larger segment using the 
extended load option segment size increment field. See Section 
6.2.4.2. 

The user-specified start options must be located on a fullword 
boundary. The maximum length of the start options is defined at 
sysgen through the CMDLENGTH option. If the length of the start 
options is greater than that specified at sysgen or a carriage 
return iR present within the start options, only those characters 
up to the maximum number or the carriage return are stored in the 
task UTOP area. Since the address of the start options field is 
also the address of the message buffer field in the parameter 
block, this field's contents are always assumed to be the address 
of the start options when the start function is specified. When 
the user-specified interval elapses, the directed task starts 
execution. 

6-42 48-038 FOO ROI 



6.2.30 Wait status Field (SVC6~TST) 

The wait status is sent to the wait status field in the parameter 
block each time SVC 6 is executed. 

If the calling task wants to check the wait status of the 
directed task, an SVC 6 should be executed with bits 0 and 1 of 
the function code set to 10 and the remalnlng bits set to O. 
This operation also causes the current priority field of the 
directed task to be returned to the current priority field in the 
parameter block. Table 6-4 lists the wait status bit 
definitions. 

TABLE 6-4 WAIT STATUS BIT DEFINITIONS 

I BIT I WAIT STATUS I 
1 POSITION I FIELD MASK MEANING ================ ________________ a ________________________ _ 

o (10) I X' 8000 ' 

1 (CN) I X'4000' 

2 (CW) I X'2000' 

3 (LW) I X'lOOO' 
I 

4 (OM) I X'0800' 

5 (TW) I X' 0400 ' 

6 ( TO) I X' 0200 ' 

I I/O queue wait 

I Connection wait 

I Console wait (task paused) 

I Load wait; calling task waiting 
I for receiving task to be loaded 

I Dormant; task not started or at 
I end of task 

I Trap wait 

I Time of day wait __________________________________________________________ I 

7 (TK) I X'OIOO' I Task suspended 

8 (TM) I X'0080' I Interval wa it 

9 (TR) I X'0040' I Terminal wait 

10 ( RO) I X ' 0020 ' I Roll pending wait 

11 (II) I X'OOlO' I Intercept initialization 

12 (I T) I X' 0008 ' I Intercept termination 

13 ( CO) I X' 0004 ' I Connection wait 

14 (AC) I X'0002' I Accounting wait 

15 I X'OOOl' I Reserved for future use 

48-038 FOO ROI 6-43 



6.2.31 Error Codes (SVC6.STA) 

If an error occurs, execution of the current SVC 6 function 
stops, and any other functions specified in the function code to 
the right of the current function are not executed. The position 
of the function code bit, which indicated the function being 
executed when the error occurred, is stored in bits 0 through 7 
of the parameter block error status field. The bit position 
value ranges from 0 through 31. The error code indicating the 
error type is stored in bits 8 through 15 of the parameter block 
error status field shown in Figure 6-11. Table 6-5 lists SVC 6 
error codes. 

Function code 
bit position 

Bits: 
o 

Error code 

7 8 

Figure 6-11 Error status Field 

TABLE 6-5 SVC 6 ERROR CODES 

ERROR IFUNCTION CODE: 
CODE IBIT POSITIONS: 

15 

HEXADECIMAL: CAUSING THE I 
(DECIMAL): ERROR MEANING 

==============-=====--------------========----------=--==-==== 
o All 

1 All 

2 All 

3 6 (L) 

6-44 

: No error occurred. All 
I requested functions terminated 
I normally. 

Syntax error present in 
parameter block task name field. 
This error does not include self
directed calls. 

I Illegal function code 

: Directed task is already loaded 
I into memory. 

48-038 FOO ROI 



TABLE 6-5 SVC 6 ERROR CODES (Continued) 

ERROR IFUNCTION CODE I 
CODE IBIT POSITIONS I 

HEXADECIMALl CAUSING THE I 
(DECIMAL) I ERROR MEANING 

---=--===-=-=-------------------------------------------------4 All except 

5 

6 

7 

8 

9 

A (10) 

B (11) 

C (12) 

48-038 FOO ROI 

6 (L) 

6 (L) 

13 (P) 

6 (L) 

9 (S) 

14 (B) 
15 (V) 
29 
30 (A) 
31 

11 (M) 
29 
30 (A) 
31 

All 

29 
30 (A) 
31 

11 (M) 
10 (SO) 

10 (SO) 
11 (M) 
12 (Q) 

I The specified directed task is not 
I present in the calling task 
I environment. 

The directed task is not present, 
but the calling task has the SVC6 
intertask control function dis
abled. 

I The specified priority is outside 
I the range of 10 through 249. 

I The directed task requires float
I ing point facilities that are not 
I sysgened into the system. 

The specified directed task is 
dormant, paused, or suspended. 
The specified directed task is not 
dormant, paused, or suspended. 

The message is not aligned on a 
fullword boundary or an invalid 
starting address was specified for 
a directed task. 

I The calling task cannot execute 
I SVC 6 control or communication 
I functions. 

I The values specified for the 
I increment of time and count 
I fields are invalid. 

I The calling task message was not 
I sent to the directed task. 

Task queue service in the directed 
task TSW is disabled. The 
directed task queue is full. The 
directed task has no queue. 

6-45 



TABLE 6-5 SVC 6 ERROR CODES (Continued) 

ERROR IFUNCTION CODE; 
CODE IBIT POSITIONS I 

HEXADECIMAL; CAUSING THE I 
(DECIMAL) I ERROR MEANING 

=====------=--------------------------------------------------D (13) 

E (14) 

F (15) 

10 (16) 

11 (17) 

12 (18) 

13 (19) 

14 (20) 

16 (22) 

17 (23) 

6-46 

16 (0) 
17 (T) 
18 (I) 
19 (F) 
20 (U) 

16 (0) 
17 (T) 
18 (I) 
19 (F) 
20 (U) 

16 (0) 

17 (T) 
18 (I) 
19 (F) 
20 (U) 

6 (L) 

14 (B) 
15 (V) 

14 (B) 
15 (V) 

14 (B) 
15 (V) 

29 
30 (A) 

26 (Y) 

The device mnemonic specified in 
the parameter block does not exist 
in the system. 

The device mnemonic specified in 
the parameter block is not a con
nectable device. 

; The device mnemonic specified in 
I the parameter block is busy and 
I cannot be connected. 

The device mnemonic specified in 
the parameter block is not con
nected to the specified directed 
task. 

I The lu specified in the lu'to load 
I task field of the parameter is 
I invalid. 

; The lu the calling task sends or 
; receives is greater than the 
I maximum allowed value. 

: The directed task is currently 
I assigned to an lu during a send lu 
I operation. 

I The calling task is currently 
I assigned to an lu during a receive 
; lu operation. 

; The specified directed task to be 
I started is currently rolled out. 

The directed task did not specify 
the roll option by Link and 
therefore cannot be rolled out. 

48-038 FOO ROI 



TABLE 6-5 sve 6 ERROR CODES (Continued) 

ERROR IFUNCTION CODE I 
CODE :BIT POSITIONS: 

HEXADECIMAL: CAUSING THE : 
(DECIMAL) I ERROR MEANING 

----=-----------------------~---------------------------------18 (24) 

19 (25) 

IB (27) 

21 (23) 

42 (66) 

43 (67) 

44 (68) 
45 (69) 

46 (70) 

47 (71) 

29 
30 (A) 
31 

18 (I) 

6 (L) 

6 (L) 

6 (L) 

6 (L) 

6 (L) 
6 (L) 
14 (B) 
15 (V) 
29 
30 (A) 
31 

6 (L) 

6 (L) 

I There is insufficient room between 
I the task UTOP and CTOP to store 
I the task specified start options. 

I An interrupt cannot be simulated 
I on the specified device. 

Loading the direct task will 
exceed the maximum number of 
sysgen-established tasks that can 
be present in the system at one 
time. 

: An error occurred while loading a 
I pure segment. 

I The RTL or a TCOM required by the 
I directed task is not present at 
I load time. 

The calling task specified load 
options and the directed task 
specified link options are not the 
same. 

The LIB format is invalid. 
Insufficient system space exists 
to load or start the directed 
task. There is insufficient 
system space in the directed task 
to accept the lu of the calling 
task being sent .. 

Attempt was made to load tree
structured overlays from a device 
that does not support random 
access. 

I System does not support loading 
: of tree-structured overlays. 

1---------------------------------------------------------------
48 (72) 6 (L) Data in the overlay descriptor 

48-038 FOO ROI 

I table (ODT) of a tree structured 
I overlay is invalid. 

6-47 



TABLE 6-5 SVC 6 ERROR CODES (Continued) 

ERROR IFUNCTION CODE! 
CODE !BIT POSITIONS! 

HEXADECIMAL: CAUSING THE : 
(DECIMAL): ERROR MEANING 

======--------------------------------------------------------49 (73) 6 (L) 

4A (74) 6 (L) 

50 (80) 6 (L) 

Memory does not have a large 
enough area into which the 
directed task can be loaded. The 
roll option was not specified as a 
Link option. 

: Error occurred while mapping a 
: shared segment. Previously mapped 
I or shared segment table was full. 

I The allocation of or assignment to 
I the specified roll file is invalid, 
I and the task cannot be loaded. ______________________________________________________ --______ 1 

51 (81) 

52 (82) 

53 (83) 

54 (84) 

55 (85) 

80-FF 
(128-255) 

6 (L) 

6 (L) 

6 (L) 

21 (AP) 

21 (AP) 
23 (IC) 

6 (L) 

An I/O error occurred when the 
directed task was rolled out 
(written) to the roll volume; it 
cannot be loaded back into memory. 

I The physical size of a sharable 
I segment was smaller than the 
I minimum size required. 

I The access privileges of a 
I sharable segment were incompatible 
I with those requested by the task. 

I The LPU number is outside the 
I range specified by the MAXLPU 
: parameter at sysgen. 

I The directed task is an APU-only 
I task and cannot be transferred to 
I the CPU. 

An I/O error occurred when the 
directed task was being loaded 
(read) into memory_ An SVC 1 
error occurred. 

The calling task can check the parameter block for functions the 
directed task executed before the error occurred and for 
functions that were not executed. 

6-48 48-038 FOO ROI 



CHAPTER 7 
FILE HANDLING SERVICES SUPERVISOR CALL 7 (SVC 7) 

7.1 INTRODUCTION 

SVC 7 provides file and device handling functions supported by 
the file ma,nager and the data communications subsystem. These 
functions are accomplished through the SVC 7 parameter block 
shown in Figure 7-1. For a description of the OS/32 file 
management services, see the OS/32 Application Level Programmer 
Reference Manual and the OS/32 Basic Data Communications 
Reference Manual. 

48-038 FOO ROI 7-1 



, SVC 7 I 

7.2 SVC 7: FILE HANDLING SERVICES 

0(0) 12(2) 13(3) 
Function code I Error status I lu 
(SYC7.0PT) I (SYC7.STA) (SYC7.LU) 

-----------------------------------------------------------1 
4(4) 15(5) 16(6) J 

Write key Read key I Logical record length J' 
(SYC7.WKY) (SYC7.RKY)1 (SVC7.LRC) I 

----------------------------~~--~-~------~-~---------~~----I 
8(8) 

12(C) 

16 (10) 

20(14) 

24 (18) 

parblk 

Volume name or device mnemonic 
(SVC7.YOL) 

Filename 
(SYC7.FNM) 

Extension 
(SYC7.EXT) 

SVC 7,parblk 

ALIGN 4 

File size 
(SYC7.SIZ) 

X'function code' 
1 
lu 
'write key' 
'read key' 
H'record length' 

123(17) File 
1 class/account 
I (SYC7 . ACT) 

DC 
DS 
DB 
DB 
DB 
DC 
DC C'4-character volume name or device 

mnemonic' 
DC C'8-character filename' 
DC C'3-character extension' 
DB C'file class' 
DC F'file size' 

Figure 7-1 SVC 7 Parameter Block Format and Coding 

7-2 48-038 FOO ROl 



This parameter block must be 28 bytes long, fullword-boundary 
aligned, and located in a task writable segment. A description 
of each field in the parameter block follows: 

Fields: 

Function 
code 
(SVC7.0PT) 

Error 
status 
(SVC7.STA) 

lu 
(SVC7.LU) 

Write key 
(SVC7.WKY) 

Read key 
(SVC7.R.KY) 

Logical 
record 
length 
(SVC7.LRC) 

48-038 FOO ROl 

is a 2-byte field that contains the 
hexadecimal number indicating the function to 
be performed. 

is a I-byte field that receives the 
appropriate error code when an error occurs 
while executing SVC 7. If no error occurs, a 
value of 0 is stored in this field. 

is a I-byte field that contains a hexadecimal 
number indicating the logical unit used for 
all SVC7 functions (except the allocate and 
delete functions). 

is a I-byte field that contains a hexadecimal 
number indic1ating the write protection keys 
for direct access and data communications 
files and devices when the allocate, assign, 
reprotect and delete functions are executed. 

is a I-byte field that contains a hexadecimal 
number indicating the read protection keys for 
direct access and data communications files 
and devices when the allocate, aSSign, 
reprotect, and delete functions are executed. 

When executing the SVc 7 fetch attributes 
function, the device and file attributes are 
stored in the write and read key fields of the 
parameter block. 

is a 2-byte field that contains a decimal 
number indicating the logical record length 
for indexed files, nonbuffered indexed files, 
or buffered logical terminal manager 
(communications). 

When executing a fetch attributes function, 
this field receives a hexadecimal number 
indicating a file logical record length or a 
device physical record length. 

7-3 



7-4 

Volume name 
or device 
mnemonic 
(SVC7.VOL) 

Filename 
(SVC7.FNM) 

Extension 
(SVC7.EXT) 

File class/ 
account 
(SVC7.ACT) 

is a 4-byte field that contains ASCII code 
indicating the volume name of a direct access 
device, the device mnemonic of a nondirect 
access device or name of the data 
communications access line, when the allocate, 
assign, delete, and fetch attributes functions 
are executed. 

is an 8-byte field that must contain the ASCII 
code indicating: 

• A filename on a direct access device when 
the allocate, assign, rename, and delete 
functions are executed. A filename is not 
required for nondirect access devices. 

• The buffered logical terminal described by 
the LCB that is being allocated or 
assigned. 

When executing a fetch attributes function, 
this field receives the filename from the 
direct access or data communications device 
currently assigned to the lu specified in the 
parameter block. If it is a nondirect access 
device, this field is blank. 

ia a 3-byte field that contains the ASCII code 
indicating further identification of the 
filename or the file type (.CAL, .OBJ, .TSK, 
.CSS) on direct access devices. 

is an optional I-byte field that contains the 
account or class to which the file is 
allocated. If SVC 7 is issued by an e-task or 
a u-task that was link-edited with the 
ACPRIVILEGE option, an account number can be 
specified in this field. 

NOTE 

To allocate a file with an account 
number, the file descriptor (fd) 
must be packed into the sve 7 
parameter block using SVC 2 code 
16 (See Section 3.14.9.) The 
account number can range from 0 
through 65,535. 

48-038 FOO ROl 



File size 
( SVC7' . S I Z ) 

If SVC 7 is issued by a u-task that was 
link-edited with the NACPRIVILEGE option, the 
file class is specified as follows: 

• P indicates file is allocated under a 
private account. 

• G indicates file is allocated under a 
group account. 

• S indicates file is allocated under a 
system account. 

See the OS/32 Link Reference Manual for more 
information on the account privileges task 
option. 

is a 4-byte field that contains a hexadecimal 
number indicating the file size established 
when a file is allocated to a direct access 
device. 

7.2.1 Function Code Field (SVC7.0PT) 

SVC 7 has nine functions specified by the first byte of the 
function code, called the command byte, and has three modifier 
fields specified by the second byte of the function code, called 
the modifier byte. The modifier fields are: 

• access privileges for the allocate function and change access 
privilege function, 

• access method (data communications only) for the assign 
function, and 

• file types for the allocate function, 

• density selection for the assign function (magnetic tape 
drives) . 

There are no modifier fields for the rename, reprotect, close, 
delete, checkpoint, and fetch attributes functions. 

These functions and modifier fields are specified through 
different function code bit settings shown in Figure 7-2. The 
functions specified in the function code are executed from left 
to right. 

48-038 FOO ROl 7-5 



Corrunand byte Modifier byte 

I A I A I C I R I RIC I D I C I Access IAccess I 
I LIS I H I NIP I L I L I K Iprivileges Imethod I 

F i.1e 
types 

Bits: 
o 1 2 3 4 5 6 7 8 10 11 12 13 15 

Figure 7-2 SVC 7 Function Code Field 

The function of each bit setting in the SVC 7 function code field 
is explained in Table 7-1. 

BIT 
POSITION 

TABLE 7-1 SVC 7 FUNCTION CODE BIT DEFINITIONS 

1 MEANING 
1--------------------------------1 

I DATA 1 
FUNCTION DEVICE/FILE I COMMUNICATION I BIT SETTING ===_= _________________________________________________ =a_=_c __ ===_= __ == 

a (AL) 

1 (AS) 

2 (CH) 

7-6 

Allocate 

Assign 

Change 
access 
privi
lege 

Reserves space 
on a direct 
access device 

Assigns an lu 
to a device 
or file 

Changes the 
user's current 
access privi
lege to a new 
access privi
lege 

Reserves a 
line control 
block (LCB) I 
for a buffered' 
terminal man
ager 

Assigns an 
lu to line 
driver (SVC 
15) and 
terminal 
managers 
(SVC 1) 

Changes the 
communica
tions user 
current 
access privi
lege to a new 
access privi
lege 

a=no function 
requested 

l=reserve 
space 

a=no function 
requested 

l-assign an 
lu 

a=no function 
requested 

l==change 
access 
privilege 

48-038 FOO ROl 



TABLE 7-1 SVC 7 FUNCTION CODE BIT DEFINITIONS (Continued) 

BIT 
POSITION FUNCTION 

MEANING 
1--------------------------------1 1 DATA I 

DEVICE/FILE 1 COMMUNICATION I BIT SETTING 
1 ______ ----------------------------=------------------_____________ = ___ _ 

3 (RN) 

4 (RP) 

5 (CL) 

6 (DL) 

Rename 

Repro
tect 

Close 

Delete 

Changes the 
current file
name to a new 
user-specified 
filename 

Changes the 
files current 
read/write 
protection keys 
to new protec
tion keys 

Closes an III 
assignment for 
a particular 
device or file 

Releases re-
served space 
on a direct 
access device 

.. 

Changes the 
name of the 1 

1 

communications I 
line (SVC 15) 
or terminal 
(SVC 1) 

Changes the 
read/write 
protection 
keys of the 
communi
cations line 
(SVC 15) or 
terminal 
(SVC 1) to 
new protec
tion keys 

Closes an lu I 
assignment forI 
a particular 
line driver 
or terminal 
manager 

Releases a 
reserved line 
control 
block 

O=no function 
requested 

l=change 
filename 

O=no function 
requested 

l=change 
protection 
keys 

O=no function 
requested 

l=close an lu 

O-no function 
requested 

l=release 
reserved 
space 

-----------------------------------------------------------------------
7 (CK) Check

point 

48-038 FOO ROI 

Copies bufferedl 
file data to a 
direct access 
device 

Copies buff
ered file 
data to a 
logical 
terminal 

O-no function 
requested 

l=copy 
buffered 
file data 

7-7 



TABLE 7-1 SVC 7 FUNCTION CODE BIT DEFINITIONS (Continued) 

BIT 
POSITION 

MEANING 
1--------------------------------1 1 DATA I 

FUNCTION DEVICE/FILE I COMMUNICATION 1 BIT SETTING 

=====-=--------------------------------------------------------====----
8 
9 
10 

11 
12 

7--8 

Access 
privi
leges 

Access 
method 

Specifies a 
a file's read
ing and writing 
restrictions 

Specifies VFe 
for devices 
that support 
VFe 

Specifies the 
terminal's 
reading and 
writing 
restrictions 

Indicates 
file access 
method for 
data 
communications 

OOO=shared 
read only 
(SRO) 

OOl=exclusive 
read only 
(ERO) 

OlO=shared 
write only 
(SWO) 

Oll=exclusive 
write only 
(EWO) 

100=shared 
read/write 
(SRW) 

101-shared 
read, 
exclusive 
write 
(SREW) 

110=exclusive 
read, 
shared 
write 
(ERSW) 

Ill-exclusive 
read/write 
(ERW) 

OO=terminal 
level 
(SVe 1) 
access 

Ol-terminal 
level 
(SVC 1) 
access 
with ver
tical forms 
control 

10=reserved 
ll=line level 

(SVe 15) 
access 

48-038 FOO ROI 



TABLE 7-1 SVC 7 FUNCTION CODE BIT DEFINITIONS (Continued) 

-----------------------------------------------------------------------
MEANING 1 

1--------------------------------1 
I I DATA I BIT 

POSITION FUNCTION I DEVICE/FILE I COMMUNICATION 1 BIT SETTING 

-----------------------------------------------------------------------13 
14 
15 

File 
types or 
software 
density 
selec
tion 

48-038 FOO ROi 

Indicates 
file type or 
magnetic tape 
density being 
used 

Indicates if 
buffered 
terminal or 
line access 
is being used 

ODD-contiguous 
files or 
enable 
manual 
density 
selection 
on Telex 
magnetic 
tape 
drives. 
No action 
on other 
magnetic 
tape 
drives 

OOl=extendable 
contiguous 
files 

DID-indexed 
files 

Oll=nonbuffer
ed indexed 
files 

100-select 800 
BPI NRZI 
density 
(STC and 
Telex 
drives 
only) 

101-Select 
1600 BPI 
PE density 
(STC and 
Telex 
drives 
only) 

7--9 



TABLE 7-1 SVC 7 FUNCTION CODE BIT DEFINITIONS (Continued) 

BIT 
POSITION FUNCTION 

I 
I MEANING 
1--------------------------------1 
I I DATA I 

DEVICE/FILE I COMMUNICATION I BIT SETTING ====== ___________________________________________________ 2 _________ ==== 

13 
14 
15 

(Contin
ued) 

0-15 

0-15 

0-15 

7 -10 

I Fetch 
I attri
I butes 

Vertical 
forms 
control 
(VPC) 

Fetch 
time and 
date 
attri
butes 
from 
disk di
rectory 

I Returns the physical attri-
I butes of a file or device to 
I the parameter block. 

Turns VPC on or off for de
vices that support VPC. 

Returns time and date disk 
file was created and last 
written to. 

110=select 
6250 BPI 
GCR density 
(STC and 
Telex 
drives 
only) 

lll=communi
cations 
buffered 
terminal 
manager 

X'OOOO'=fetch 
attributes 

X'FF20'= VPC 
on 

X'FF2l'''' VFe 
off 

X'FFOO- re
turns time 
and date 
in sysgen 
format 

X'FF01'· re
turns time 
and date 
in 
mm/dd/yy; 
hr:min:sec 
format 

X'FF02'· re
turns time 
and date 
in 
dd/mm/YYi 
hr:min:sec 
format 

48-038 FDa ROl 



TABLE 7-1 SVC 7 FUNCTION CODE BIT DEFINITIONS (Continued) 

1 MEANING I 

1--------------------------------\ 
\ \ DATA 1 BIT 

POSITION FUNCTION DEVICE/FILE \ COMMUNICATION I BIT SETTING 

-----------------------------------------------------------------------0-15 
(Contin
ued) 

0-15 Fetch 
logical 
attri
butes 
of open 
file 

Returns current total logical 
records, current logical 
record pOSition, index 
blocksize, and data 
blocksize 

7.2.1.1 Allocate Function 

X'FF03'- re
turns time 
and date 
in Julian 
format 

X'FF04'- re
turns time 
and date 
in direc
tory for
mat 

X'FFOA' 

'rhe allocate function makes a directory entry and reserves space 
on a direct access device for the file type specified in the 
modifier byte. The required parameter block fields for this 
function are: 

• Bits 0, arid 13 through 15 of the function code 

• Write key field 

• Read key field 

• Logical record length field 

• Volume name field 

• Filename field 

• Extension field 

• File class field 

• File size field 

48-038 FOO ROI 7-11 



When a contiguous file is allocated, the file sectors are 
reserved; and the filename, sector starting address, read/write 
keys, file type, and dates created and written are entered into 
the directory. A contiguous file is not buffered. When an 
indexed file is allocated, the filename, number of logical 
records, read/write keys, file type, and dates created and 
written are entered into the directory_ 

When an extendable contiguous file or nonbuffered indexed file is 
allocated, the file directory is set up as for an indexed file. 

When doing an allocation using a data communications terminal 
manager, two data buffers, each equal to the device physical 
block size, are reserved in memory for the line control block 
(LCB). The buffered terminal filename, logical record length, 
and read/write keys are entered into the LCB. See the OS/32 
Basic Data Communications Reference Manual. 

7.2.1.2 Assign Function 

The assign function uses an lu to establish a logical connection 
between the task and file or device, and the communications line 
and buffered terminal. The required fields in the parameter 
block are: 

• Bits 1, and 8 through 12 (and 13 through 15 for magnetic tape 
drives) of the function code 

• Logical unit field 

• Write key field* 

• Read key field* 

• Volume name field 

• Filename field* 

• Extension field* 

• File class field 

* Used for direct access devices 

7-12 48-038 FOO ROl 



When assigning to disk devices, the user-specified read/write 
keys corresponding to the specified access privileges are 
compared to the read/write keys in the file directory entry. If 
there is a match, the file is assigned according to the specified 
access privileges. If the access privileges are SWO or EWO and 
the user executes an assign function, the file is positioned at 
its logical end (append mode); otherwise, the file is positioned 
at the beginning. The access method '01' specifies the use of 
vertical forms control VFC. 

When assigning to nondirect access devices, only the access 
privileges are examined. If the file is an indexed file, two 
data buffers and one indexed buffer are allocated in system space 
when the file is assigned. Each data buffer equals the file data 
block size; the index buffer equals the file index block size. 
If the file is an extendable contiguous file or nonbuffered 
indexed file, one index buffer is allocated in system space when 
the file is assigned. 

7.2.1.2.1 Temporary File Allocation and Assignment Function 

The allocation and assignment function can also reserve space 
temporarily on a direct access device for the file type specified 
in the modifier byte. Such a file is temporary because it exists 
only while the file is assigned to an lu and is deleted when the 
file is closed. The required parameter block fields for this 
function are: 

• Bits 0, 1, 8 through 10, and 13 through 15 of the function 
code field 

• Logical unit field 

• Logical record length field 

• File size field 

To allocate a temporary file, specify 'an allocate or an assign 
function and an ampersand (&) as the first character of the 
filename. When the temporary file is allocated, a directory 
entry is made for the filename, and the file is placed by default 
on the temporary volume. The temporary file is then assigned to 
the lu specified in the parameter block. A temporary file also 
can be allocated and assigned from the system console through the 
TEMPFILE system command. See the OS/32 Operator Reference 
Manual. 

48-038 Faa ROI 7-13 



7.2.1.3 Change Access Privileges Function 

The change access privileges function changes the current access 
privileges of an assigned file or device to the access privileges 
specified in the parameter block. The new access privileges must 
be compatible with the existing ones; otherwise, the existing 
access privileges of the file remain unchanged. For example, if 
the device is assigned with read only privileges, a change to 
write access privileges is not permitted. Table 7-2 illustrates 
allowable access privilege requests relative to current access 
privileges, exclusive of other assignments to the same fd. The 
required parameter block fields for this function are: 

• Bits 2, and 8 through 10 of the function code field 

• Logical unit field 

TABLE 7-2 ALLOWABLE ACCESS PRIVILEGE CHANGES 

I CHANGE TO 
CHANGE 1-------------------------------------------------

FROM I SRO I ERO 1 SWO I EWO I SRW I SREW I ERSW I ERW 

=-=----------------------------------------==----------=-= SRO x x 

ERO x x 

SWO x x 

EWO x x 

SRW x x x x x x x x 

SREW x x x x x x x x 

ERSW x x x x x x x x 

ERW x x x x x x x x 

LEGEND 

x indicates allowable change 

7-14 48-038 FOO ROI 



7.2.1.4 Rename Function 

The ~ename function causes the filename and extension identifie~s 
cu~rently in effect to be changed to the filename and extension 
identifiers specified in the pa~ameter block. The file must be 
cu~rently assigned to the specified lu with ERW access privileges 
and exist on a direct access storage device. The required 
pa~amete~ block fields fo~ this function are: 

• Bits 3, and 8 through 10 of the function code field 

• Logical unit field 

• Filename field 

• Extension field 

• File class/account field 

When executing the ~ename function, the parameter block volume 
name is ignored, and the specified filename and extension replace 
the current filename and extension in the device directory. 

NOTE 

An e-task is allowed to ~ename a device. 
See the OS/32 Syst.em Level P~ogrammer 
Reference Manual for more info~mation. 

7.2.1.5 Reprotect Function 

The ~eprotect function changes the read/write protection keys of 
a currently assigned file to the contents of the ~ead and write 
key fields. The file must be on a direct access device and 
assigned to the specified lu with access privileges. The 
requi~ed pa~ameter block fields are: 

• Bits 4, and 8 through 10 of the function code field 

• Logical unit field 

• Write key field 

• Read key field 

48-038 FOO RDI 7-15 



When executing the reprotect function, the specified read/write 
keys replace the current read/write keys of a specified file in 
the device directory. 

NOTE 

An e-task is allowed to reprotect a 
device. See the OS/32 System Level 
Programmer Reference Manual for more 
information. 

7.2.1.6 Close Function 

The close function breaks the logical connection between the task 
and file or between the device or a data communication line and 
terminal by closing the currently assigned lu. The parameter 
block's required fields are: 

• Bit 5 of the function code field 

• Logical unit field 

When the lu is closed, all data in file buffers or terminal 
buffers are copied to the user file. 

7.2.1.7 Delete Function 

The delete function removes the file directory entry and releases 
the reserved space of a currently unassigned file on a direct 
access device. When deleting through the communications buffered 
terminal manager, a currently unassigned LCB is removed from 
memory. The required parameter block fields are: 

• Bit 6 of the function code field 

• Write key field 

• Read key field 

• Volume name field 

• Filename field 

• Extension field 

• File class/account field 

7-16 48-038 FOO ROl 



If the contents of the parameter block volume name, filename, 
extension, and read/write keys fields match the fields in the 
file directory entry, the file is deleted. If the logical 
terminal name matches the name in the LCB, the LCB is deleted. 

7.2.1.8 Checkpoint Function 

The checkpoint function copies the buffered file data to the 
indexed file or the buffered terminal data to the terminal and 
updates the directory entries. Executing a checkpoint function 
on a nonbuffered indexed file or extendable contiguous file 
updates the directory entries for the file. Executing a 
checkpoint function on a contiguous, nondirect access device or 
unbuffered file has the same effect as an SVC 1 wait only call. 
The required parameter block fields for this function are: 

• Bit 7 of the function code field (bits 11 and 12 for data 
communications) 

• Logical unit field 

After executing a checkpoint function, the file pointer is not 
repositioned to the beginning of the file as in a close function. 
If a system failure occurs and data exists in the file buffers, 
all data up to the last close or checkpoint function is 
recoverable; any data appended after the last close or checkpoint 
function is lost. Therefore, to prevent loss of data, use the 
checkpoint function frequently, especially after a large amount 
of data and/or important data has been written to a buffered 
file. 

7.2.1.9 Fetch Attributes Function 

The fetch attributes function sends to the SVC 7 parameter block 
the physical attributes of the file or device currently assigned 
to the specified lu. These attributes include the device 
mnemonic or volume name, filename, extension, file class, and 
file si'ze which are sent to their respective fields in the SVC 7 
parameter block. Device codes are sent to the modifier byte of 
the function code field. Device attributes are stored in the 
write and read key fields. The logical record length field can 
receive either a file logical record length or a device physical 
record length. These field differences for the fetch attributes 
function are illustrated in Figure 7-3. 

48-038 FOO ROI 7-17 



0(0) 11(1) 12(2) 13(3) 
Command byte I Device codes I Error status I lu 

I I 

4(4) 16(6) 
Device attributes Physical record length 

8(8) 

l2(C) 

16(10) 

20(14) 

24(18) 

parblk 

Volume name or device mnemonic 

Filename 

123(17) 
Extension 

File size 

SVC 7,parblk 

ALIGN 
DB 
DS 
DB 
DS 

4 
0,0 
1 
lu 
24 bytes for device attributes 

File class 

Figure 7-3 SVC 7 Parameter Block Format and Coding 
for a Fetch Attributes Function 

When executing this function, the device codes field receives a 
hexadecimal number indicating the file or device type. The OS/32 
System Generation (Sysgen/32) Reference Manual lists all the 
devices and their device codes. The command byte, error status, 
and lu fields are the same as those defined in Section 7.2. 

The device attributes field receives a hexadecimal number 
indicating certain file or device attributes. Table 7-3 lists 
all supported attributes and corresponding masks. 

7-18 48-038 FOO ROI 



TABLE 7-3 DESCRIPTION AND MASK VALUES OF THE DEVICE 
ATTRIBUTES FIELD 

BIT I 
POSITION I MASK ATTRIBUTES 

==============-----------------=--------=------------o 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

X'8000' 

X'4000' 

X'2000' 

X'lOOO' 

X'0800' 

X'0400' 

X'0200' 

X'OlOO' 

X'0080' 

X'0040' 

X'0020' 

X'0010' 

X'0008' 

X'0004' 

X'0002' 

X'OOOl' 

Interactive device 

Supports read* 

Supports write* 

Supports binary 

Supports wai~ I/O 

Supports random access 

Supports unconditional proceed 

Supports image mode and 
extended options 

Supports halt I/O 

Supports rewind 

Supports backspace record 

Supports forwardspace record 

Supports write filemark 

Supports forwardspace filemark 

Supports backspace filemark 

Device dependent function 

* Indicates the current access privilege. 

The physical record length field receives the logical record 
length of the file or physical record length of the device 
assigned to the specified lUi e.g., 80-byte record for card 
readers and 120- or 132-byte record for line printers. If the 
device has variable length records, a value of 0 is returned to 
this field; e.g., magnetic tape. However, variable length record 
devices are normally used as fixed record length devices. 

48-038 FOO ROl 7-19 



For d'irect access devices, contiguous and extendable contiguous 
files may be treated as having either a sector-length record size 
(256 bytes) or a variable length record. Indexed and nonbuffered 
indexed files have a fixed record length which is the file's 
logical record length established at allocation time. 

The direct access device volume name, filename, extension, and 
file class are sent to their corresponding fields in the 
parameter block. For a nondirect access device, the device 
mnemonic is sent to the volume name field and the filename, 
extension, and file class fields of the parameter block are 
filled with blanks. 

For direct access devices, the file size field receives an 
unsigned hexadecimal number indicating the current size of a 
direct access file. For indexed and nonbuffered indexed files, 
this field contains the number of logical records in the file. 
For contiguous or extend~ble contiguous files, this field 
contains the number of sectors in the file. 

For bare disk devices, the first two bytes of the file size field 
contain the controller device address if the bare disk is 
attached to a controller. If the bare disk is not attached to a 
controller, the first two bytes equal zero. The remaining two 
bytes of this field contain the SELCH device address if the disk 
is accessed via a SELCH device; otherwise; this 2-byte field 
contains a zero. 

124(18) 
Controller Device 

Address 

126(LA) 
SELCH Device 

Address 

After executing a fetch attributes call, the file size field 
receives the current size of a file on a direct access device. 
The file size field is not used for nondirect access devices. 

7.2.1.10 Vertical Forms Control (VPC) 

The VFC option turns the VFC function on or off for a particular 
device. To execute this function, only the first four bytes of 
the SVC 7 parameter block are required as shown in Figure 7-4. 

7-20 48-038 FOO ROI 



10(0) 11(1) 
I Command byte I Modifier 
I I byte 

parblk 

SVC 7,parblk 

ALIGN 4 
DB 
DB 
DS 
DB 

X'FF' 
X'20' or '21' 
1 
lu 

12(2) 13(3) 
I Error status I lu 

Figure 7-4 SVC 7 Parameter Block Format and Coding 
for VFC Function 

This parameter block must be fullword-boundary aligned and 
located in a task writable segment. 

To turn on the use of the VFC function for a particular device, 
set the modifier byte to X'20'. To turn the function off, set 
the modifier byte to X'2l'. The error status and lu fields are 
the same as for all SVC 7 services. 

7.2.1.11 Fetch Time and Date Attributes from Disk Directory 

The fetch time and date attributes function returns to the SVC 7 
parameter block the date and time the disk file was created and 
last written to. 

FUNCTION 
CODE 

X'FFOO' 

X'FF01' 

X'FF02' 

X'FF03' 

X'FF04' 

FORMAT 

Defined by sysgen 

Month/day/year 
hours:minutes:seconds 

Day /month/yea.r 
hours:minutes:seconds 

Julian 

Directory 

The parameter block fields for receiving the first three options 
are shown in Figure 7-5. Sysgen can define either format 
designated by function code X'FF01' or X'FF02'. 

48-038 FOO ROl 7-21 



0(0) 11(1) 12(2) 13(3) 
Command byte I Modifier byte I Error status I 1u 

4(4) 

8(8) 

12(C) 

16(10) 

20(14) 

24 (18) 

28(lC) 

32(20) 

parb1k 

I I 

Created date 

Created time 

Last written date 

Last written time 

SVC 7,parb1k 

DB 
DB 
DS 
DB 
DS 
DS 
DS 
OS 

X'FF' 
X'On' n-O,l, or 2 
1 
1u 
8 bytes for created date 
8 bytes for created time 
8 bytes for last written date 
8 bytes for last written time 

Figure 7-5 SVC 7 X'FFOO', X'FF01', or X'FF02' Parameter 
Block Format and Coding for Fetch Time and 
Date Attributes Function 

7-22 48-038 FOO ROl 



The SVC 7 parameter block fields for receiving the Julian format 
are shown in Figure 7-6. The date is represented by a five-digit 
number. The first two digits indicate the year; the last three 
digits indicate the number of days since January 1. The time is 
the number of minutes since midnight. Both the date and time are 
returned as binary numbers. 

0(0) 11(1) 12(2) 13(3) 
Command byte I Modifier byte I Error status I iu 

I 

4(4) 
Created date 

8(8) 
Created time 

12(C) 
Last written date 

16(10) 
Last written time 

SVC 7,parb1k 

parb1k DB X'FF' 
DB X'03' 
OS 1 
OB lu 
OS 4 bytes for created date 
OS 4 bytes for created time 
OS 4 bytes for last written date 
OS 4 bytes for last written time 

Figure 7-6 SVC 7 X'FF03' Parameter Block Format 
and Coding for Fetch Time and Date 
Attributes Function 

The SVC 7 parameter block fields for receiving the dates and 
times exactly as they appear in the directory are shown in Figure 
7-7. 

48-038 FOO ROI 7-23 



0(0) 11(1) 12(2) 13(3) 
Command byte I Modifier byte I Error status I lu 

I I I 

4(4) 
Created date and time 

I 

------------------------------------------------------------1 
8(8) I 

parblk 

Last written date and time 

SVC 7,parblk 

DB 
DB 
DS 
DB 
DS 
DS 

X'FF' 
X'04' 
1 
lu 
4 bytes for created date and time 
4 bytes for last written date and time 

Figure 7-7 SVC 7 X'FF04' Parameter Block Format 
and Coding for Fetch Time and Date 
Attributes Function 

7.2.1.12 Fetch Logical Attributes of Open File 

The fetch logical attributes of open file function returns the 
following attributes for an open file to the SVC 7 parameter 
block: 

• total logical records currently in the file, 

• current logical record position if the file is accessed 
sequentially, 

• index blocksize of indexed, nonbuffered 
extendable contiguous open files, and 

indexed, and 

• data blocksize of indexed, nonbuffered indexed, and extendable 
contiguous open files. 

7-24 48-038 FOO ROI 



The function code for this SVC 7 is X'FFOA. Figure 7-8 shows the 
SVC 7 parameter block fields for receiving the logical attributes 
of an open file. 

0(0) 11(1) 12(2) 13(3) 
Command byte I Modifier byte I Error status I LU 

I I I 

4(4) 
Total Logical Records 

8(8) 
Current Logical Records 

l2(C) Il4(E) 

parblk 

Index Blocksize I Data Blocksize 

SVC 7,parblk 

DB 
DB 
OS 
DB 
OS 
OS 
OS 
OS 

X'FF' 
X'OA' 
1 
lu 
4 bytes for total records 
4 bytes for current logical record 
2 bytes for index blocksize 
2 bytes for data blocksize 

Figure 7-8 SVC 7 X'FFOA' Parameter Block Format and 
Coding for the Fetch Logical Attributes 
of Open File Function 

48-038 Faa ROI 7-25 



7.2.1.13 Access Privileges 

This 3-bit modifier field contains the access privileges 
indicating the file's current reading and writing restrictions 
and is required for these functions: 

• Assign 

• Change access privilege 

• Rename 

• Reprotect 

Access privileges allow other tasks to access an assigned file or 
prevent such access. Table 7-4 lists access privileges and their 
meanings that are established when the file is assigned and 
subsequently changed through the change access privilege 
function. The rename and reprotect functions require the file to 
have an assigned ERW access privilege before executing. 

TABLE 7-4 ACCESS PRIVILEGES DEFINITIONS 

ACCESS 
PRIVILEGE MEANING 

I BIT 
I SETTING 

===========--========----=====-----=-======================-= 
Shared read 
only (SRO) 

Exclusive read 
only (ERO) 

Shared write 
only (SWO) 

7-26 

This task can read from the 
assigned file but cannot write 
to it. Other tasks can read 
from and write to the assigned 
file. 

This task can read from the 
assigned file but cannot write 
to it. Other tasks can write 
to but cannot read from the 
assigned file. 

This task can write to the 
assigned file but cannot read 
from it. Other tasks can read 
from and write to the assigned 
file. 

OOO=SRO 

OOI=ERO 

OlO=SWO 

48--038 FDD ROI 



TABLE 7-4 ACCESS PRIVILEGES DEFINITIONS (Continued) 

ACCESS 
PRIVILEGE MEANING 

I BIT 
I SETTING 

============-===-==========------==-=------=-----==----------
Exclusive write 
only (EWO) 

Shared read 
write (SRW) 

Shared read 
exclusive 
write (SREW) 

Exclusive read 
shared write 
(ERSW) 

Exclusive read 
write (ERW) 

This task can write to the 
assigned file but cannot read 
from it. Other tasks can read 
from but cannot write to the 
assigned file. 

Oll=EWO 

I Tasks can read from and write I lOO=SRW 
I to the assigned file. This is I 
I the default. 

This task can read from and 
write to the assigned file. 
Other tasks can read from but 
cannot write to the assigned 
file. 

This task can read from and 
write to the assigned file. 
Other tasks can write to but 
cannot read from the assigned 
file. 

This task can read from and 
write to the assigned file. 
Other tasks cannot read from 
or write to the assigned file. 

lOl=SREW 

110=ERSW 

111=ERW 

7.2.1.14 Data Communications Access Methods 

This 2-bit modifier field contains the access methods used by 
data communications. The access methods are listed in Table 
7-5. See the OS/32 Basic Data Communications Reference Manual. 

48-038 FOO ROl 7-27 



TABLE 7-5 DATA COMMUNICATIONS ACCESS METHODS DEFINITIONS 

. DATA I 
COMMUNICATIONS I 

ACCESS METHOD I MEANING BIT SETTING =======_=== _____________________________ w _________ = ____________ _ 

Tet:minal level 
access 

Line level 
access 

This device independent support 
of a communications tet:minal 
through the data communications 
tet:minal manager is in both 
buffered and unbuffered mode. 
This is accomplished through 
SVC 1. 

This is the device dependent 
support of a communications 
line through the data communi
cations driver. This is accom
plished through SVC 15. 

7.2.1.15 File Types 

00 =tet:minal 
level 
access 

01 =tet:minal 
level 
access 
with 
vertical 
fot:ms 
control 

11 -·line 
level 
access 

This 3-bit modifier field contains file types used and t:equired 
by the allocate function. The file types are: 

• Contiguous files 

• Extendable contiguous files 

• Indexed files 

• Nonbuffered indexed files 

• Data communications buffered tet:minal manager 

7-28 48-038 FOD RDI 



The file type field is also used to select the density of write 
operations to a magnetic tape drive. This selection is made 
when the magnetic tape driver is assigned to an lu through the 
SVC 7 assign function. The software density selections 
available to the assign function are described below. 

BIT 
SETTING 

000 

100 

101 

110 

DENSITY SELECTION 

Manual density (Telex drives only) 

800 BPI NRZI density (STC and Telex drives only) 

1600 BPI PE density (STC and Telex drives only) 

6250 BPI GCR density (STC and Telex drives only) 

For STC and Telex drives neither software density selection nor 
manual density selection has any effect on read operations. The 
tape is always read at the density at which it was recorded. 

For drives that require software enabling of manual density 
selection (i.e., Telex drives), a value of zero should be placed 
in the file type field if manual density selection is desired. 
For drives that require manual enabling of software density 
selection (i.e., STC), software select should be enabled on the 
operator panel before the first output operation is attempted. 
Otherwise, the tape will be written at the manually selected 
density. In addition, if the magnetic tape drive does not 
support software selection of density and the file type field 
does not contain zero, the drive will not be assigned and status 
code X'09' will be returned in the SVC 7 parameter block. 

7.2.1.16 Read/Write Key Fields (SVC7.RKY/SVC7.WKY) 

The read/write key fields should contain the hexadecimal number 
indicating a file or the device read/write protection keys 
established at allocation time. When a task is assigned to a 
file or device through an lu, the read/write protection keys 
specified at assign time are compared to the keys established at 
allocation time for a match. If they match, the condition is 
met, and the task can be assigned for the protected access mode 
(conditionally protected). Files and devices can be 
unprotected, allowing any ke'y specified at assign time to be 
accepted. Files and devices can also be unconditionally 
protected, causing rejection of any keys specified at assign 
time. Table 7-6 lists the read/write protection keys. 

48-038 FOO ROl 7-29 



TABLE 7-6 READ/WRITE PROTECTION KEYS DEFINITIONS 

KEYS MEANING 

=-----=-=----------------------------------------=~~-----=-----00 

01 through FE 

FF 

Unconditionally unprotected; the file or 
device is unprotected for the specified 
access mode (read or write). Any key 
specified at assign time is accepted. If no 
keys are specified, this key is the default. 

Conditionally protected; the file or device 
is protected for the specified access mode 
(read or write). Matching keys must be 
specified at assign time to gain access to 
the device or file. 

Unconditionally protected; the file or device 
is protected for the specified access mode 
(read or write). No user task (u-task) can 
assign for protected access mode. 

7.2.1.17 File Size Field (SVC7.SIZ) 

The file size field must contain a hexadecimal number indicating 
the file size established at allocation time on a direct access 
device. For contiguous files, this field must contain the 
number of sectors in the file. 

124(18) 
Number of sectors 

For indexed, nonbuffered indexed, and extendable contiguous 
files, the first two bytes of the file size field must contain 
the index block size in increments of sectors (256 bytes); the 
remaining two bytes of the file size field must contain the data 
block size in increments of sectors. 

124(18) Index block size 
(sectors) 

(SVC7.ISZ) 

7-30 

126(LA) Data block size 
(sectors) 
(SVC7.DSZ) 

48-038 FOO ROI 



For data communications buffered terminals, this field must 
contain the physical block size in bytes. 

124(18) 
I Physical block size (bytes) 

For bare disk devices, the first two bytes of the file size 
field contain the controller device address if the bare disk is 
attached to a controller. If the bare disk is not attached to 
a controller, the first two bytes equal zero. The remaining two 
bytes of this field contain the SELCH device address if the disk 
runs from a SELCH device; otherwise, this 2-byte field contains 
a zero. 

124(18) 
Controller Device 

Address 

126 (lA) 
I SELCH Device 

Address 

After executing a fetch attributes call, this field receives the 
current size of a file on a direct access device .. This field is 
not used for nondirect access devices. 

7.2.1.18 SVC 7 Error Codes 

If an error occurs during execution of an SVC 7 function, 
execution of the current function stops, and any other functions 
to the right of the current function are not executed. The 
error code indicating the type of error is stored in the error 
status field of the parameter block. See Table 7-7 for the list 
of SVC 7 error codes. 

48-038 FOO ROl 7-31 



7-32 

TABLE 7-7 SVC 7 ERROR CODES 

ERROR I FUNCTIONS 
CODE I AFFECTED MEANING 

=-----------------------------------------------------=-o I All I Normal termination 

1 I All I Illegal function code 

2 I All except I Illegal lu specified 
I allocate 

3 I All except I Specified volume is not mounted. 

4 

5 

6 

7 

I rename I 

Allocate 
Rename 

Assign 

Allocate 

I Assign 
I 

Allocate 

Assign 

Change 
access 
privilege 

Reprotect 

Delete 

Rename 

Specified filename already exists 
on specified volume. 

Specified filename does not exist 
on specified volume. 

I Insufficient space exists on 
I specified volume to allocate 
I a file of the specified size. 

I Read/write protection keys do 
I not match. 

Entire disk is currently assigned 
as ERW. 

Specified filename or device 
cannot be assigned because 
requested access privileges 
cannot be granted. 

Current access privileges are 
not changed to new access 
privileges because the specified 
new privileges are not compatible 
with existing ones. See Table 
7.2. 

File not assigned ERW 

File not assigned ERW 

File aSSigned to another task 
(not closed). 

Read/Write Protection Keys do not 
match. File not assigned ERW. 

48-038 FOO ROl 



TABLE 7-7 SVC 7 ERROR CODES (Continued) 

ERROR I FUNCTIONS 
CODE I AFFECTED MEANING 

========== _________ ===z====_==_========================= 
8 

9 

A 

B 

C 

D 

Assign 

Close 

Delete 

Assign 

Rename 
Reprotect 
Close 
Fetch 
attributes 
Change 
access 
privileges 
VFC 

: Allocate 
I Rename 

I Reprotect 
I All 

Assign 

I Allocate 
: Delete 

E-7F I N/A 

80-FF I N/A 

48-038 FOO ROI 

Insufficient space for file 
control block (FCB) and buffers 
System space pointer or pointers 
have become corrupted. 

Task has exhausted its allocation 
of dynamic system space determined 
by Link. 

The lu is already assigned or 
device is offline. 
Magnetic tape drive does not 
support software density selecion. 

The lu is not assigned. 

I Specified volume is not a direct 
: access device. 

: The fd format is incorrect. 
I 

Specified trap generating device 
does not exist in the system, is 
not a connectable device, or is 
busy and cannot be connected. 

: Allocation or deletion was 
: attempted on a system or 
: group file. 

: Reserved 

: SVC I I/O error. See Tables 2-3 
I and 2--4. 

7-33 





CHAPTER 8 
LOAD TASK STATUS WORD (TSW) SUPERVISOR CALL 9 (SVC 9) 

8.1 INTRODUCTION 

SVC 9 sets the initial TSW or replaces the current TSW located in 
the task control block (TCB) with a new user-specified TSW. The 
SVC 9 parameter block is shown in Figure 8-1. Other methods used 
for setting the TSW are: 

• The TSW is optionally specified by Link. 

• A resident task terminates by reaching end of task, which 
causes the current TSW to be replaced with zeros. 

• A task trap occurs causing a TSW swap. 

storing TSW values into the user dedicated location (UDL) does 
not change the current TSW. 

48-038 FOO R01 8-1 



I SVC 9 I 

8.2 SVC 9: LOAD TASK STATUS WORD (TSW) 

WI I I 
I I 

al Trap enable/ I Reserved I 
Queue entry 

enable/disable 
bits 

Condition 
code 

[4] 
il disable bits [6] 
tl [8] 

parblk 

[13 ] 

Location counter 
[32] 

SVC 9,A(parblk) 

ALIGN 4 
DC Y'bits 0 through 31' 
DCF A(location counter) 

The decimal 
brackets [ ] 
indicate the 
contains. 

NOTE 

numbers enclosed within 
in the parameter block 

number of bits the field 

Figure 8-1 SVC 9 Parameter Block Format and Coding 

This parameter block must be 8 bytes long and fullword-boundary 
aligned. A description of each field in the parameter block 
follows: 

Fields: 

Wait 

8-2 

is a I-bit field indicating whether the task 
is to enter a suspended state or is currently 
waiting for a trap. This field corresponds to 
bit 0 of the TSW. 

48-038 FOD RDl 



Trap 
enable/ 
disable bits 

Reserved 

Queue entry 
enable/ 
disable bits 

Condition 
code 

Location 
counter 

is a 7-bit field that must indicate, through 
its trap bit settings, whether a trap is 
to be taken when a trap-causing condition 
occurs. This field corresponds to the trap 
enable/disable bits of the TSW. 

is a reserved 7-bit field that must contain 
zeros. 

is a l3-bit field that must indicate, through 
its queue bit settings, whether an item is to 
be added to the task queue when a queue entry 
causing condition occurs. This field 
corresponds to the queue entry enable/disable 
bits of the TSW. 

is a 4-bit field stored in the processor 
condition code. For an explanation of the 
For an explanation of the condition code, see 
the appropriate processor user manual. This 
field corresponds to the condition code bits 
of the TSW. 

is a 4-byte field that must contain the 
address where task execution is to start or 
resume. This field corresponds to the 
location counter of the TSW. 

8.2.1 Function and Description of the Task status Word (TSW) 

The TSW consists of two fullwords. See Figure 8-2. The first 
fullword, the status portion of the TSW, contains the: 

• trap wait bit, 

• trap enable/disable bits, 

• reserved bits, 

• queue entry enable/disable bits, and 

• condition code bits. 

The second fullword of the TSW contains the location counter. 

SVC 9 allows the user to enable or disable the trap wait, trap, 
and queue entry bits in the status portion of the TSW. It also 
allows the user to set the condition code setting in the status 
portion and the location counter in the location counter portion 
of the TSW. See Table 8-1 for the TSW bit definitions. 

48-038 FOO ROI 8-3 



5616-2 

CC 

BITS o 1 2 3 4 5 6 7 8 14 15 16 17 18 19 20 21 22 23 24 26 27 28 

LOC 

BITS 32 43 44 

Figure 8-2 Task status Word 

TABLE 8-1 TASK STATUS WORD BIT DEFINITIONS 

BIT I 
POSITION I BIT NAME AND MASK MEANING 

=====================---------------=------------_._-------==== o (W) 

1 (P) 

2 (A) 

3 (S) 

I Trap wait (TSW.WTM) 
I (Y , 80000000 ' ) 

Power restoration 
trap enable/disable 
(TSW. PWRM) 
(Y'40000000') 

Arithmetic fault 
trap enable/disable 
(TSW.AFM) 
(Y'20000000') 

SVC 14 execution 
trap enable/disable 
(TSW.S14M) 
(Y'lOOOOOOO') 

I Task is suspended until a 
I trap occurs or until 
I cancelled. 

A trap occurs when power is 
restored after a power fail
ure. 

After power is restored, all 
outstanding timer traps are 
lost. Any trap wait or time 
wait conditions in effect 
are lost, and task execution 
continues with the instruc
tion following the one that 
caused the trap. 

A trap occurs when an arith
metic fault occurs. 

Allows execution of SVC 14. 

31 

63 

8-4 48-038 FOO ROl 



TABLE 8-1 TASK STATUS WOM) BIT DEFINITIONS (Continued) 

BIT 1 
POSITION I BIT NAME AND MASK MEANING 
====~~~~====_=~===============e====~============c=======~=====r 

4 (Q) 

5 (M) 

6 (I) 

7 (R) 

8(C) 

9-14 

15 (K) 

16 (D) 

17 (T) 

Task queue service 
trap enable/disable 
(TSW.TSKM) 
(Y'08000000') 

Memory access fault 
trap enable/disable 
(TSW.MAFM) 
(Y'04000000') 

Illegal instruction 
trap enable/disable 
(TSW. IITM) 
(Y'02000000') 

Data format trap 
enable (TSW.DFFM) 
(Y'OlOOOOOO') 

CPU-override status 
(TSW.CPOM) 
(Y'00800000') 

1 Reserved 

Subtask queue entry 
enable/disable 
(TSW.SUQM) 
(Y'OOOlOOOO') 

Device interrupt 
queue enable/ 
disable (TSW.DIQM) 
(Y'00008000') 

Task call queue 
entry enable/ 
disable (TSW.TCM) 
(Y'00004000') 

48-038 FOO ROI 

A trap occurs when an item 
is added to the task queue. 

A trap occurs when the task 
attempts to access memory 
outside its task boundaries. 

A trap occurs when the task 
tries to execute an illegal 
instruction. 

A trap is taken when the task 
executes an instruction that 
causes a data format or 
alignment fault. 

Task is executed on the CPU 
and cannot be transferred to 
an APU for processng. (This 
bit applies only to tasks 
running. on the Model 
3200MPS. ) 

1 Must contain zeros. 

An item is added to the 
monitor task queue each time 
the subtask status changes. 

An item is added to the task 
queue when a trap generating 
device connected to a task 
interrupts task execution, 
or when an SVC 6 sint func-

,I tion is directed to a task. 

An item is added to the task 
queue when an SVC 6 queue 
parameter function is 
directed to this task. 

8-5 



TABLE 8-1 TASK STATUS WORD BIT DEFINITIONS (Continued) 

BIT I 
POSITION I BIT NAME AND MASK MEANING 
=====----=----------------------========================~====== 

18 (AP) 

19 (E) 

20 (L) 

21 (0) 

22 (Z) 

23 (F) 

24-25 

26 (TE) 

8-6 

Queue entry on 
Signal from APU 
(TSW,APTM) 
Y'OOOO 2000' 

Adds a parameter to the task 
queue when an APU signals 
the cpu. 

Task message queue I An item is added to the task 
entry enable/disable I queue when an SVC 6 send mes-
(TSW.PMM) sage function is directed to 
(Y'OOOOlOOO') a task. 

Load and proceed 
completion queue 
entry enable/ 
disable (TSW.LODM) 
(Y'00000800') 

I/O completion 
entry enable/ 
disable (TSW.IOM) 
(Y'00000400') 

Time interval 
completion queue 
enable/disable 
(TSW.TMCM) 
(Y'00000200') 

SVC 15 function 
SVC 1 buffer trans
fer completion 
(TSW.ITM) 
(Y'OOOOOlOO') 

I Reserved 

Event queue 
service enable/ 
disable (TSW.TESM) 
(Y'00000020') 

An item is added to the task 
queue when an SVC 6 load and 
proceed function is executed 
and the load is completed. 

An item is added to the task 
queue when an SVC 1 I/O and I 

proceed function is executed 
and the I/O is completed. 

An item is added to the task 
queue when an SVC 2 code 23 
is executed and the interval 
has elapsed. 

An item is added to the task 
queue when an SVC 15 function 
is completed. See the OS/32 
Basic Data Communications 
Reference Manual. An item is 
added to the task queue each 
time the magnetic tape driver 
adds a buffer to the OUT
QUEUE. 

I Must contain zeros. 

A trap occurs when an item 
is added to the system event 
queue or when at least one 
item exists on that queue. 
For more information on the 
event queue service enable/ 
disable, see the OS/32 System 
Level Programmer Reference 
Manual. 

48-038 FOO ROI 



TABLE 8-1 TASK STATUS WORD BIT DEFINITIONS (Continued) 

BIT I 
POSITION I BIT NAME AND MASK MEANING 
========~~========~======~=====~=================~============= 

27 (SO) 

28-31 
(CC) 

32-63 
(LOC) 

Queue entry on send 
data call enable 
(TSW.SDM) 
(Y'OOOOOOlO) 

Condition code 

I Location counter 
I (TSW. LOC) 

An item is added to the 
queue when an SVC 6 send 
message function is directed 
to the task. 

I The condition code following 
I SVC 9 is set from these bits. 

I Contains the current location 
I counter. 

NOTE 

See the 05/32 Application 
Programmer Reference Manual 
description of the items that 
added to the task queue. 

Level 
for a 

can be 

If execution of an SVC 9 loads a TSW with the 
enabled, the task is placed in a suspended state 
traps that are enabled in the same TSW occurs. 
task is placed in a suspended state and all other 
disabled in the same TSW, the task remains in a 
indefinitely or until it is cancelled. 

trap wait bit 
until one of the 

However, if the 
trap bits are 
suspended state 

If execution of an SVC 9 loads a TSW with one of the trap bits 
enabled and that trap occurs, the trap is handled as described in 
the OS/32 Application Level Programmer Reference Manual. 

If execution of an SVC 9 loads a TSW with one of the queue entry 
bits enabled and a previously allocated item is placed on the 
task queue, no trap occurs unless the queue service trap bit of 
the TSW is enabled. 

48-038 FOO ROI 8-7 



When a TSW swap occurs and the current TSW is replaced with a new 
TSW, task execution resumes with the instruction located at the 
address specified by the location counter of the new TSWM If the 
address of the new TSW is 6utside the task boundaries, the task 
is paused and a message is displayed. If execution of an SVC 9 
loads a TSW that has zeros in the location counter field, 
execution resumes with the instruction following the SVC 9. 

When SVC 9 loads a new TSW, the condition code of the new TSW 
becomes the current condition code. Any value ranging from 0 
through 15 (X'OO' to X'OF') is legal. If the TSW being loaded 
was previously saved as an old TSW during a TSW swap, the 
condition code is restored. 

8-8 48-038 FOO ROI 



CHAPTER 9 
OVERLAY LOADING SUPERVISOR CALL 10 (SVC 10) 

I SVC 10 I 

9.1 SUPERVISOR CALL 10 (SVC 10) 

SVC 10 is an 
loading of 
to users. 

internal call that provides for the automatic 
overlays generated by Link. SVC 10 is not available 

If an overlay load fails to occur, a message indicating the 
reason for the failure is displayed to the log device. Overlay 
load failure can result from an input/output (I/O) error or 
faulty coding that destroys the overlay control structure. For 
example, user code can be written in such a way as to destroy 
data in the overlay reference table (ORT). This table, which 
forms a part of the root segment and of each overlay area, 
contains pointers into the task overlay descriptor table (DDT) 
which contains the information needed to process the overlay. 
Without this information, SVC 10 cannot perform the load 
function. 

The overlay descriptor table entry (OOTE) is part of the ORT and 
represents the position in the OOT that contains processing 
information for the overlay to be loaded. Both the ORT and the 
OOT are OS system data structures and are defined in the system 
macro library. 

9.2 MESSAGES 

This message is displayed when a load failure occurs as a result 
of an I/O error: 

Format: 

I/O ERROR xxxx LOADING OVERLAY nnnnnnnn 
FAULT LOCATION yyyyyy (zzzzzz) 

48-038 FOO ROl 9-1 



Fields: 

xxxx 

nnnnnnnn 

yyyyyy 

zzzzzz 

is the I/O error status. See Table 9-1. 

is the name of the overlay that was being 
processed when the error occurred. 

is the virtual address of the SVC that caused 
entry into the SVC 10 handler. 

is the physical address of yyyyyy. 

This message is displayed when an overlay load failure occurs as 
a result of faulty coding within an overlay control structure: 

Format: 

OVERLAY ERROR xx NAME = nnnnnnnn 
FAULT LOCATION yyyyyy (zzzzzz) 

Fields: 

xx 

nnnnnnnn 

yyyyyy 

zzzzzz 

is the error status. See Table 9-1 for error 
definitions. 

is the name of the overlay that was being 
processed when the error occurred. If it 
cannot be determined whether the error 
occurred in the root or in an overlay, NAME = 
nnnnnnnn is omitted from the message. 

is the virtual address of the SVC that caused 
entry into the SVC 10 handler. 

is the physical address of yyyyyy. 

If the overlay load failure resulted from a malfunction of SVC 
10, the task is paused with the current program status word (PSW) 
pointing to the SVC 10 instruction causing the failure. 

9-2 48-038 FDO RDl 



TABLE 9-1 OVERLAY ERROR CODES AND MEANINGS 

I ERROR I 
I CODE MEANING 
I================================_========z========~===~=== 
I *10 .ODTE exists outside the range of the ODT range. 

20 User space violation of overlay start address 

21 User space violation of overlay end address 

22 Highest level OVL required by this SVC was not 
found. 

23 OVL size is less than 10 bytes. Eight bytes for 
2 fullword ORT entry pointers plus a 2-byte 
instruction (BR) is the minimum size for an 
overlay. 

30 User space violation of ORT table address in ODT 
entry 

*31 Pointers to ORT entries are unreliable. The 
address difference between these pointers must 
be 0 or an even multiple of 8 bytes. 

*32 User space violation of ORT entry pointers 

*33 .ODTE index in ORT is out of ODT range. 

* Indicates possible destruction of data. 

48-038 FOO ROO 9-3 





CHAPTER 10 
AUXILIARY PROCESSING UNIT (APU) CONTROL 

SUPERVISOR CALL 13 (SVC 13) 

10.1 INTRODUCTION 

SVC 13 provides tasks running on the Perkin-Elmer Model 3200MPS 
System with the ability to: 

• map APUs into the logical processor mapping table (LPMT), 

• control the processing of all APUs within the system, and 

• obtain processing status information on each APU in the 
system. 

Table 10-1 lists the SVC 13 function codes that allow the task to 
access 05/32 system services for the Model 3200MPS 
multiprocessing system. 

TABLE 10-1 SVC 13 FUNCTION CODES 

FUNCTION CODE MEANING 
==================~==-~--=-===-====-==-==:===I 

SVC 13 code 0 Fetch LPMT 

SVC 13 code 1 Fetch APU status 

SVC 13 code 2 Execute APU mapping option 

SVC 13 code 3 Execute APU control option 

The following sections outline the functions provided by each of 
the SVC 13 function codes. For more information on how to use 
SVC 13 in a multiprocessing environment, see the OS/32 System 
Level Programmer Reference Manual. 

48-038 FOO ROl 10-1 



10.2 FETCHING LOGICAL PROCESSOR MAPPING TABLE (LPMT) 

SVC 13 function code 0 can be used by all tasks in a Model 
3200MPS System to retrieve information about the APUs within the 
system. This information includes: 

• the maximum number of logical processing unit (LPUs), 

• the maximum number of APUs, and 

• the LPMT. 

The LPMT contains one entry for each LPU. This entry specifies 
the APU to which the LPU is mapped. 

10.3 FETCHING AUXILIARY PROCESSING UNIT (APU) STATUS INFORMATION 

SVC 13 function code 1 can be used by all tasks in a Model 
3200MPS System to retrieve information about the status of a 
specified APU within the system. This informaion includes: 

• the number of LPUs mapped to the specified APU, 

• the number of tasks in the ready queue of the specified APU, 

• the status of the specified APU, and 

• the names of the tasks associated with the specified APU. 
These tasks include the task actively executing on the APU, 
the task with control rights over the APU, the task with 
mapping rights over the APU, and all the tasks waiting in the 
APU's ready queue. 

10.4 AUXILIARY PROCESSING UNIT (APU) MAPPING FUNCTIONS 

Using sve 2 code 2, a task linked with the auxiliary processing 
unit mapping privileges (APM) option can request mapping 
privileges for a specified APU in the system. These privileges 
allow a task to: 

• mark the APU on, 

• map the APU into the LPMT, 

• remove all references to the APU from the LPMT, and 

• mark the APU off. 

10-2 48-038 FOO ROI 



10.5 AUXILIARY PROCESSING UNIT (APU) CONTROL FUNCTIONS 

Using SVC 13 code 3, a task linked with the auxiliary processing 
unit control privileges (APe) option can request control 
privileges over a specified APU. These privileges allow a task 
to: 

• initialize an APU that is waiting for power-up link check, 

• stop APU execution, 

• start normal execution (if stopped), and 

• preempt the currently active task on an APU. 

48-038 FOO ROl 10-3 





CHAPTER 11 
USER SUPERVISOR CALL 14 (SVC 14) 

I SVC 14 I 

11.1 SUPERVISOR CALL 14 (SVC 14) 

SVC 14 gives a user-written task a means of accepting an SVC from 
a part of itself; e.g., a subroutine or other module. 

Format: 

SVC 
Svc 

14,A(X2) or 
14,A(FX2,SX2) 

RX1,RX2 FORMATS 
RX3 FORMAT 

The address field of SVC 14 is not interpreted by OS/32 but can 
be defined by the task. Normally, it might be used to point to 
a parameter block. 

If the user SVC trap enable bit in the current task status word 
(TSW) is enabled, SVC 14 is enabled; otherwise, SVC 14 is 
considered an illegal SVC. 

When SVC 14 is executed, the operating system stores the 
effective program address of the SVC 14 second argument into the 
SVC 14 address pointer location in the task user dedicated 
location (UDL). A TSW swap then occurs, using the SVC 14 TSW 
swap area in the UDL. The interpretation of this SVC is then 
left to the user. The effective program address is calculated as 
for an RX1, RX2, or RX3 instruction. This facility permits the 
user to build a virtual executive task (e-task) within a single 
task environment. 

OS/32 AIDS, the OS/32 debugging utility, makes use of SVC 14; 
consequently, a task should not use SVC 14 while the OS/32 AIDS 
software is in operation. 

See the OS/32 Application Level Programmer Reference Manual for 
more information on enabling and handling SVC 14 task traps. 

48-038 FOO ROl 11-1 





.CHAPTER 12 
DATA COMMUNICATIONS DEVICE DEPENDENT INPUT/OUTPUT (I/O) 

SUPERVISOR CALL 15 (SVC 15) 

I SVC 15 I 

12.1 SUPERVISOR CALL 15 (SVC 15) 

SVC 15 allows a user-written task to access data communications 
devices at the device dependent level. See the OS/32 Basic Data 
Communications Reference Manual for more information. 

48-038 FOO ROl 12-1 





A 

ABL instruction 
Access method 
Access privileges 

Account privileges 
Accounting information 
Accounting transaction file 
Address error 
Alignment error 
Allocate function 

APU. See auxiliary 
processing unit. 

Arithmetic fault 
fixed point division by 0 
fixed point quotient 
overflow 

floating point division 
by 0 

floating point overflow 
and underflow 

Arithmetic fault field 
Arithmetic fault interrupt 
bit 

ASSIGN command 

Assign function 

temporary file 
allocation and assignment 

Assign LPU SFUN.LPU 
ATF. See accounting 
transaction file. 

Auxiliary processing unit 
control 
control functions 
mapping functions 
status information 

B 

Bare disk devices 
controller device address 
SELCH device address 

Buffer-full bit 

Buffer length 
Buffer queues 

extended options field 
length 
length of last buffer 
trap-causing events, 
gaplcos I/O 

using 

48-038 FOO ROi 

INDEX 

2-41 
7-5 
7-5 
7-26 
3-72 
3-134 
3-132 
1-7 
1-7 
7-5 
7-11 

3-18 

3-18 

3-18 

3-18 
3-18 

3-16 
2-19 
2-37 
7-5 
7-12 

7-13 
6-37 

10-1 
10-3 
10-2 
10-2 

7-20 
7-31 
7-31 
6-26 
6-27 
6-28 
6-29 
6-30 
2-42 
2-39 
2-42 
2-42 
2-42 

2-41 
2-41 

Buffer start/buffer end 
address 

Building a mnemonic table 

C 

Calling task 
Change access privilege 
function 

Change priority SFUN.PM 
Checkpoint 
Checkpoint function 
Close 
Close function 
CMDLENGTH option 
Command byte 
Command function requests 

COMMUNICATE 
Condition code settings for 
arithmetic operation 

Condition codes 
convert ASCII to binary 
expand allocation 
get storage 
interval wait 
move ASCII characters 
pack file descriptor 
release storage 
scan mnemonic table 
set statue 
testing 
time of day wait 
t imeor management 

Conditional proceed 
Connect SFUN.OM 
Contiguous files 

CONTINUE 
CONTRACT ALLOCATION 
CONTROL 
CONVERT ASCII TO BINARY 
CONVERT BINARY TO ASCII 
CPU model numbers 
CTOP 

2-21 
3-76 

6-1 

7-5 
7-14 
6-33 
7-5 
7-17 
7-5 
7-16 
6-41 
7-5 
2-2 
2-17 
6-1 

3-18 

3-47 
3-115 
3-9 
3-45 
3-84 
3-55 
3-14 
3-77 
3-18 
1-8 
3-43 
3-119 
3-122 
3-126 
3-129 
3-131 
2-16 
6-35 
7-12 
7-20 
7-28 
3-6 
3-116 
6-1 
3-46 
3-23 
3-98 
3-7 
3-8 
3-9 
3-10 
3-11 
3-14 
3-20 
3-21 
6-41 
6-42 

IND-l 



D 

Data conununicat.ions 
access methods 
buffered terminal manager 
buffered terminals 
device dependent I/O 
subsystem 

Data transfer requests 
conditional proceed 
I/O proceed 
queuing I/O requests 
test and set 
unconditional proceed 
wait I/O 
wait only 

DATE conunand 
Default task workspace 
Delay start for SVC 6 
Delete 
Delete function 
Density selections 

manual 
software 

Device attributes 
Device dependent status 
Device independent status 
Directed task 
Direction SFUN.DOM,SFUN.DSM 
DLIST xx conunand 

E 

End of task 
End of task codes 
End task SFUN.ECM,SFUN.EDM 
Error codes SVC6.STA 
Executing SVC 2 code 17 
EXPAND ALLOCATION 
Extendable contiguous files 

Extended function codes 
control operations 
data transfer operations 
gapless operations 
local and remote 
conununications 

Extended options 
conununication dependent 
device dependent 

IND-2 

device independent 
field 
magnetic tape devices 
nonmagnetic tape devices 
status codes for mag 
tape use 

7-27 
7-28 
7 -31 

12-1 
2-22 
7-1 
2-1 
2-16 
2-15 
2-15 
2-9 
2-16 
2-17 
2-17 
3-39 
3-8 
6-42 
7-5 
7-16 
7-5 
7-29 
7-29 
7-18 
2-21 
2-19 
6-1 
6-10 
2-39 

4-1 
4-2 
6-10 
6-44 
3-76 
3-114 
7-12 
7-13 
7-20 
7-28 
7-30 

2-24 
2-26 
2-43 

2-23 

2-22 
2-22 
2-22 
2-42 
2-24 
2-22 

2-29 

F 

FETCH ACCOUNTING INFORMATION 
Fetch attributes 
Fetch attributes function 
FETCH DATE 
Fetch logical attributes of 

open file 
Fetch overlay 
FETCH POINTER 
Fetch time and date 
attributes 

Fetching APU mapping 
functions 

Fetching logical processor 
mapping table 

File and device handling 
functions 

File handling services. See 
SVC 7. 

File manager 
File size field SVC7.SIZ 
File types 

contiguous 

data conununications 
buffered terminal manager 

extendable contiguous 

indexed 

nonbuffered indexed 

Free buffer list queue 
Free send data message 
buffers, receiving task 

Freeze SFUN.FM 
Function code SVC6.FUN 
Function codes 

conunand function requests 
data transfer requests 
file handling services 
gapless mode data 
transfer 

general service functions 
inter task communications 

G 

Gapless I/O operations 
buffer queues 
device dependent status 
device independent status 
logical unit 
standard function code 

format 
Gapless mode parameter block 

format 
General service functions. 

See SVC 2. 
GET STORAGE 

3-134 
7-5 
7-17 
3-38 

7-24 
5-1 
3-20 

7-21 

10-2 

10-2 

7-1 

7-1 
7-30 
7-5 
2-12 
7-28 

7-28 
2-12 
7-28 
2-12 
7-28 
2-12 
7-28 
6-21 

6-19 
6-37 
6-5 

2-18 
2-5 
7-5 

2-35 
3-1 
6·-5 

2-32 
2-39 
2-38 
2-38 
2-37 

2-35 

2-32 

3-7 

48-038 FOD RDl 



H 

Halt I/O 

I ,J ,K 

I/O control blocks 

I/O proceed 

I/O request. See SVC 1. 
Impure segment 

IN-QUEUE 

Indexed files 

Internal interrupt system 
INTERROGATE CLOCK 
Intertask communications. 
See SVC 6. 

INTERVAL WAIT 
IOSLOCK 

L 

LENGTH OF LAST BUFFER 
LIB. See loader information 
block. 

Link address field 

Link OPTION command 

LOAD command 
Load task functions 

extended load options 
SPUN.LXM 

load task SFUN.LM 
Load task status word 
Loader information block 
Location counter 
Log devices 
LOG MESSAGE 
Logical processor mapping 
table 

Logical unit 

LPMT. See logical processor 
mapping table. 

48-038 FOQ ROl 

2 -19 

2-15 
2-16 
2-13 
2-·15 
2-19 
2-41 

3-7 
3-8 
3-13 
2-32 
2-39 
2-41 
2-15 
7-12 
7:13 
7-20 
7-28 
7-30 
1-3 
3-33 

3-44 
2-15 
2-19 

2-41 

6-27 
6-28 
6-30 
2-15 
2-19 
2-37 
3-8 
3-8 

6-12 
6-11 
8-1 
6-11 
8-3 
3-27 
3-27 

10-1 
2-19 
2-37 

M 

Magnetic tape 

Magnetic tape devices 
density selection 

Manual enabling of software 
density selection 

Message buffers 
buffer format 

Minimum abbreviation 
Modifier byte 
Modifier fields 
MOVE ASCII CHARACTERS 
Multiple buffer chain 

Multiple buffer ring 

N 

Nonbuffered indexed files 

Nonmagnetic tape devices 
Nonresident SFUN.NM 
Nonrollable SFUN.NRM 
Nonzero error code 
Nonzero status code 
NUlL: 

o 

ODT. See overlay descriptor 
table. 

ODTE. See overlay 
descriptor table entry. 

ORT. See overlay reference 
table. 

OS/32 AIDS 
OS/32 debugging utility 
OUT-QUEUE 

Overlay control structure 
Overlay descriptor table 
Overlay descriptor table 
entry 

Overlay loading 
Overlay reference table 

P 

PACK FILE DESCRIPTOR 
PAUSE 
PEEK 
Program status word 
Protection keys, read/write 
PSW. See program status 
word. 

2-24 
2-32 
7-29 
2-24 
7-29 

7-29 

6-26 
3-76 
7-5 
7-5 
3-82 
6-27 
6-29 
6-27 

7-12 
7-13 
7-20 
7-28 
7-30 
2-22 
6-39 
6-40 
1-8 
2-17 
2-19 
2-37 

11-1 
11-1 

2-32 
2-39 
2-41 
9-1 
9-1 

9-1 
9-l 
9-1 

3-53 
3-5 
3-91 
3-16 
7-29 

INO-3 



Q 

Queue parameter SFUN.QM 
Queuing I/O requests 

R 

Read key 
Read/write key fields 

SVC7.RKY/SVC7.WKY 
Read/write protection keys 
Receive logical unit SFUN.XRM 
Record lock bit 
Release SFUN.RM 
RELEASE STORAGE 
Rename 
Rename function 
Reprotect 
Reprotect function 
Rollable SFUN.RLM 
RTL. See run-time library. 
Run-time library 

instruction 

S 

Sample applicatlons 
send data, receiving task 
send data, sending task 
send message, receiving 
task 

send message, sending 
task 

test and set 
unpack file descriptor 

SCAN MNEMON I C TABLE 
Send data message buffers, 

sending task 
Send data SFUN.DB 
Send logical unit SFUN.XSM 
Send message SFUN.MM 
SET ACCOUNTING INFORMATION 
SET STATUS 
Single buffer chain 
Single buffer ring 
S int SFUN. 1M 
Software enabling of manual 
density selection 

SPT. See system pointer 
table. 

Standard function code 
format, gapless mode 

Start bit positions 29, 30, 
31 

Start function for SVC 6 
Status codes 

device dependent 

device dependent, gapless 

INO'-4 

6-33 
2-15 

7-3 

7-29 
7-29 
6-34 
2-9 
6-39 
3-13 
7--5 
7-15 
7-5 
7-15 
6-40 

1-2 
3-7 
2-41 

6-23 
6-22 

6-31 

6-31 
2-14 
3-139 
3-140 
3-74 

6-17 
6-17 
6-34 
6-25 
3-123 
3-16 
6-27 
6-27 
6-36 

7-29 

2-35 

6-40 
6-41 

2-21 
2-29 
2-38 
2-38 

Status codes (Continued) 
device dependent, 

magnetic tape 
device independent 

device independent, 
gapless 

fetch overlay 
file handling services 
intertask communications 
overlay loading 
supervisor calls 

STC drives 
Structure macro 
Suspend SFUN.SM 
SVC 

error messages 
errors 
parameter block 
status codes 

SVC 1: I/O REQUESTS 
command function requests 
data transfer 
gapless I/O operations 
parameter block, gap less 
parameter block, standard 

SVC 2: GENERAL SERVICE 
FUNCTIONS 

contract allocation 
convert ASCII to binary 
convert binary to ASCII 
expand allocation 
fetch accounting 

information 
fetch date 
fetch pointer 
get storage 
interrogate clock 
interval wait 
log message 
move ASCII characters 
pack file descriptor 
pause 
peek 
release storage 
scan mnemonic table 
set a':counting 

information 
set status 
time of day wait 
timer management 
unpack file descriptor 

SVC 2 code 1: PAUSE 
SVC 2 code 2: GET STORAGE 

option X'OO' 
option X'80' 

SVC 2 code 3: RELEASE STORAGE 
SVC 2 code 4: SET STATUS 

option X'OO' 

option X'80' 

SVC 2 code 5: FETCH POINTER 
SVC 2 code 6: CONVERT B1NARY 

TO ASCI I 
option X'OO'+n 
option X'40'+n 
option X'80'+n 
option X'COI+n 

2-29 
2-19 
2-38 

2-38 
5-3 
7-31 
6-44 
9-3 
1-8 
7-29 
1-3 
6-17 
1-1 
1-6 
1-6 
1-2 
1-8 
2-1 
2-17 
2-5 
2-32 
2-32 
2-3 

3-1 
3-116 
3-46 
3-23 
3-114 

3-135 
3-38 
3-20 
3-7 

3-33 
3-44 
3-27 
3-82 
3-53 
3-5 
3 --91 
3-13 
3--74 

3 -132 
3-16 
3-41 
3-117 
3-136 
3 -5 

3-9 
3-11 
3-13 
3-16 
3-16 
3-18 
3-16 
3-19 
3-20 

3-,25 
3-25 
3-26 
3-26 

48-038 FOO ROl 



SVC 2 code 7: LOG MESSAGE 
option X'OO' 
option X'20' 
option X'40' 
option X'60' 
option X'80' 
option X'AO' 
option X'CO' 
option X'EO' 

SVC 2 code 8: INTERROGATE 
CLOCK 

option X'OO' 
option X'40' 
option X'80' 
option X'CO' 

SVC 2 code 9: FETCH DATE 
SVC 2 code 10: TIME OF DAY 

WAIT 
SVC 2 code 11: INTERVAL WAIT 
SVC 2 code 15: CONVERT ASCII 

TO BINARY 
option X'OO' 

option X'40' 

option X'80' 

option X'CO' 

SVC 2 code 16: PACK FILE 
DESCRIPTOR 

option X'OO' 
option X'lO' 
option X'20' 
option X'40' 
option X'50' 
option X'60' 
option X'80' 
option X'CO' 
privileged task options 

SVC 2 code 17: SCAN MNEMONIC 
TABLE 

SVC 2 code 18: MOVE ASCII 
CHARACTERS 

option X'OO'+n 

option X'80'+n 

SVC 2 code 19: PEEK 
option X'OO' 

opt ion X' 01' 
option X'02' 
option X'03' 
option X'04' 

SVC 2 code 20: EXPAND 
ALLOCATION 

SVC 2 code 21: CONTRACT 
ALLOCATION 

SVC 2 code 23: TIMER 
MANAGEMENT 

option X'OO' 
option X'lO 
option X'20 
option X'40' 
option X'80' 

SVC 2 code 24: SET 
ACCOUNTING INFORMATION 

SVC 2 code 25: FETCH 
ACCOUNTING INFORMATION 

48-038 FDO ROl 

3-29 
3-30 
3-30 
3-30 
3-30 
3-32 
3-32 
3-32 

3-34 
3-36 
3-35 
3,-37 
3-38 

3-41 
3-44 

3-46 
3-47 
3-46 
3-49 
3-47 
3-50 
3-47 
3-52 

3-62 
3-64 
3-66 
3-63 
3-65 
3-67 
3-68 
3-71 
3-72 

3-74 

3-83 
3-84 
3-83 
3-86 

3-91 

3-97 
3-103 
3-105 
3-111 

3-115 

3-117 

3-117 
3-129 
3-127 
3-123 
3-120 

3-133 

3-135 

SVC 2 code 29: UNPACK FILE 
DESCRIPTOR 

SVC 3: END OF TASK 
SVC 5: FETCH OVERLAY 
SVC 6: INTERTASK 

COMMUNICATIONS 
assign LPU SFUN.LPU 
change priority SFUN.PM 
connect SFUN.OM 
delay start functions 
direction 

SFUN.DOM,SFUN.DSM 
end task 

SFUN.ECM,SFUN.EDM 
error codes SVC6.STA 
freeze SFUN.FM 
function code SVC6.FUN 
load task functions 
nonreSident SFUN.NM 
nonrollable SFUN.NRM 
parameter block 
queue parameter SFUN.QM 
receive logical unit 

SFUN.XRM 
release SFUN.RM 
rollable SFUN.RLM 
send data SFUN.DB 
send logical unit 

SFUN.XSM 
send message SFUN.MM 
s int SFUN. 1M 
start bit positions 29, 

30, 31 
start function, SFUN.SIM 
start options, SFUN.SOM 
suspend SFUN.SM 
task resident SFUN.HM 
thaw SFUN. TM 
transfer to CPU SFUN.TC 
transfer to LPU SFUN.TL 
unconnect SFUN.UM 
wait status field 

SVC6'. TST 
SVC 7: FILE HANDLING SERVICES 

access privileges 
allocate 
assign 
change access privileges 
checkpoint 
close 
data communication 
access method 

delete 
error codes 
fetch attributes 
fetch logical attributes 
fetch time and date 
attributes 

function code field 
SVC7.0PT 

rename 
reprotect 
temporary 
allocation/assignment 

vertical forms control 
SVC 9: LOAD TASK STATUS WORD 
SVC 10: OVERLAY~ LOADING 
SVC 13: APU CONTROL 
SVC 14: USER SUPERVISOR CM~L 

14 
SVC 15: DEVICE DEPENDENT I/O 

3-137 
4-1 
5-1 

6-1 
6-37 
6-33 
6-35 
6-42 

6-10 

6-10 
6-44 
6-37 
6-5 
6-11 
6-39 
6-40 
6-3 
6-33 

6-34 
6-39 
6-40 
6-17 

6-34 
6-25 
6-36 

6-40 
6-41 
6-41 
6-17 
6-16 
6-36 
6-38 
6-38 
6-37 

6-43 
7-1 
7-26 
7-11 
7-12 
7-14 
7-17 
7-16 

7-27 
7-16 
7-31 
7-17 
7-24 

7-21 

7-5 
7-15 
7-15 

7-13 
7-20 
8-1 
9-1 

10-1 

11-1 
12-1 

IND-5 



System macro library 
System pointer table 

T 

Task control block 

'raak res ident SFUN. HM 
Task status word 
TeB. See task control block. 
Telex drives 
TEMPFILE system command 
Temporary file allocation 

and assignment 
Test and sot 
Thaw SFUN.TM 
TIME OF DAY WAIT 
TIMER MANAGEMENT 
Transfer to CPU SFUN.TC 
Transfer to LPU SFUN.TL 
Trap-causing events, gapless 

I/O 
TSW. See task status word. 

U 

UBO'l' 

Unconditional proceed 
Unconnect SFUN.UM 
UNPACK FILE DESCRIPTOR 
User Supervisor Call 14 
Using the buffer queue 

IND-6 

1-2 
3-91 

3-20 
3-91 
6-16 
8-1 

,]-29 
7-13 

7-13 
2-9 
6-36 
3-41 
3-117 
6-38 
6-38 

2-42 

3-20 
3-21 
2-16 
6-37 
3 -136 

11-1 
2-41 

I 
.1 

UTOP 

v 

Vertical forms control 

VFC. See vertical forms 
control. 

W 

Wait I/O 

buffer start/buffer end 
address 

device dependent status 
device independent status 
extended options 
logical unit 

Wait only 
Wait status field SVC6.TS~ 
Write key 

X,Y,Z 

XSVCl Link option 

3-7 
3-a 
3-9 
3--10 
3-11 
3-20 
3-21 
6-41 
6-·42 

7-13 
7-20 

2-13 
2-17 

2-21 
2-21 
2-19 
2-22 
2-19 
2-17 
6-43 
7-3 

2-32 

48-038 FOO ROI 



PUBUCATION COMMENT FOAM 

We try to make our publications easy to understand and free of errors. Our 
users are an Integral source of Information for Improving future revisions. 
Please use this postage paid form to send us comments. corrections. 
suggestions.. ect. 

1. Publication number ____________ . ______________________________ _ 

2. Title of publlcatlon ________________________________________ _ 

3. Describe.. providing page numbers. any technical errors you 
found. Attach additional sheet if neccessary. 

4. Was the publication easy to understand? If not. why? 

5. Were illustrations adequate? ___ . __________________________ _ 

6. What additions or deletions would you suggest? _________________ _ 

7. Other comments: _________________________________________ _ 

-----~------------------------------------~------------~---

From ______________ . ______________ Date 

Position/Title __________________ . __ _ 

Company _______________ - _________ _ 

Address 

641.7 



STAPLE STAPLE 

FOLD FOLD 

----------------------------~ 

ATTN: 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J. 

POSTAGE WILL BE PAID BY ADDRESSEE 

PERKIN-ELMER 
Data Systems Group 
106 Apple Street 
Tinton Falls, NJ 07724 

TECHNICAL SYSTEMS PUBLICATIONS DEPT. 

FOLD 

STAPLE 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

STAPLE 

I 643 


