
PERKIN-ELMER

05/32
LINK

Reference Manual

48-005 FOO R02

The information in this document is subject to change without notice and should not be
construed as a commitment by the Perkin-Elmer Corporation. The Perkin-Elmer Corpo­
ration assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Elmer Corporation.'

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Elmer.

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757

CC> 1980, 1983 by the Perkin-Elmer Corporation

Printed In the United Stet .. of America

TABLE OF CONTENTS

PREFACE

CHAPTERS

1 OS/32 LINK

1.1

1.2

1.3

1.4

1.5

1.6

1.7
1.7.1

INTRODUCTION

IMAGE FILE FORMAT

LINK SYMBOL TABLE

OVERLAYING A PROGRAM USING LINK

USING LINK-DEFINED SYMBOLS

SYSTEM REQUIREMENTS

LINK COMMAND SYNTAX
File Descriptors

2 BUILDING AND STARTING LINK

2.1

2.2
2.2.1
2.2.2

2.2.3

2.3

2.4

BUILDING LINK

LOADING LINK
Loading Link from the System Console
Loading Link from a Multi-Terminal Monitor
(MTM) Terminal
Assigning Workspace for Link

LINK INPUT/OUTPUT (I/O) FILES

STARTING LINK

3 LINK COMMANDS

3.1 INTRODUCTION

3.2 BFlLE COMMAND

48-005 FOO R02

v

1-1

1-1

1-4

1-4

1-7

1-9

1-9
1-10

2-1

2-1
2-1

2-2
2-3

2-3

2-4

3-1

3-4

i

CHAPTERS (Continued)

3.3 BUILD COMMAND 3-5

3.4 DCMD COMMAND 3-8

3.5 END COMMAND 3-11

3.6 ESTABLISH COMMAND 3-12

3.7 EXTERNAL COMMAND 3-16

3.8 FFILE COMMAND 3-17

3.9 HELP COMMAND 3-18

3.10 INCLUDE COMMAND 3-20

3.11 LIBRARY COMMAND 3-22

3. 12 LOCAL COMMAND 3-24

3. 13 LOG COMMAND 3-25

3.14 MAP COMMAND 3-26

3. 15 NDCMD COMMAND 3-31

3.16 NLOG COMMAND 3,-32

3. 17 OPTION COMMAND 3-33

3.18 OVERLAY COMMAND 3-47

3.19 PAUSE COMMAND 3-49

3.20 POSITION COMMAND 3-50

3.21 RESOLVE COMMAND 3-52

3.22 REWIND COMMAND 3-57

3.23 TITLE COMMAND 3-58

3.24 VOLUME COMMAND 3-59

3.25 WFILE COMMAND 3-60

4 USING LINK

4.1 INTRODUCTION 4-1

4.2 BUILDING A TASK IMAGE 4-1

ii 48-005 FOO R02

CHAPTERS (Continued)·

4.3

4.3.1
4.3.2
4.3.3

4.4
4.4.1
4.4.2
4.4.3

4.5

4.6

4.7

BUILDING FORTRAN, COBOL, AND COMMON ASSEMBLY
LANGUAGE (CAL) TASK IMAGES
Building a COBOL Task Image
Building a FORTRAN Task Image
Building a Common Assembly Language (CAL)
Task Image Using Embedded Link Commands

BUILDING OVERLAYED TASK IMAGES
Building a Simple Overlayed Task Image
Building a More Complex Overlayed Task Image
Moving Common Blocks

BUILDING PARTIAL IMAGES

BUILDING A TASK IMAGE REFERRING TO PARTIAL
IMAGES

BUILDING AN OPERATING SYSTEM IMAGE

4--2
4-2
4-3

4-3

4-4
4-4
4-6
4··-8

4-9

4-11

4-12

5 VIRTUAL TASK MANAGEMENT (VTM)

5 .. 1

5.2

5.3

5.3.1

5.3.2

5.3.3

5.3.4
5.3.5

5.3.6
5.3.7
5.3.8

5.4

5.5

5.6

5.7

INTRODUCTION

SYSTEM REQUIREMENTS

USER INTERFACE TO VIRTUAL TASK
MANAGEMENT (VTM)
Declaring a Virtual Task Management
(VTM) Task
Virtual Task Management (VTM) Secondary
Storage
Including the Virtual Task Management (VTM)
Module
Virtual Task Management (VTM) Task Workspace
Example of Virtual Task Management (VTM)
Link Procedures

5-1

5-1

5·-1

5-1

5-2

5-2
5-2

5-3
Virtual Task Management
Rolling of Virtual Task
Absolute Code

(VTM) Logical Units 5-3
Management (VTM) Tasks 5-3

5-3

FORTRAN OPERATIONAL RULES 5-4

COMMON ASSEMBLY LANGUAGE (CAL) RESrrRICTIONS 5--4

PASCAL CODE RESTRICTIONS 5-4

PERFORMANCE MEASUREMENT 5-4

5.8 VIRTUAL TASK MANAGEMENT (VTM) ERROR CONDITIONS 5-4

48-005 FOO R02 iii

APPENDIXES

A LINK COMMAND SUMMARY

8 LINK MESSAGE SUMMARY

c VIRTUAL TASK MANAGEMENT (VTM) MESSAGE SUMMARY

D OBJECT MODULE FORMAT

FIGURES

1-1
1-2

3-1
3-2
3-3
3-4

4-1

TABLES

2-1

3-1
3-2

5-1

B-1
B-2

INDEX

Task Image File Format
Sample Program with Overlay Tree Structure

Example of Link Establishment Summary
Example of Link Alphabetic Map
Example of Link Address Map
Example of Link Cross-Reference Map

Sample Overlay Structure

LOGICAL UNITS ASSIGNED BY LINK

LINK COMMANDS
LINK END OF TASK CODES

VIRTUAL TASK MANAGEMENT (VTM) END OF TASK CODES

SVC 7 ERROR TYPES AND STATUS
SVC 1 ERROR TYPES AND s'rATUS

A-l

8-1

C-l

D-l

1-2
1-5

3-29
3-30
3-30
3-30

4-6

2-4

3-2
3-11

5-5

B-l1
8-12

Ind-1

iv 48-005 FOO R02

PREFACE

This manual describes the Perkin-Elmer linkage editor, 08/32
Link, which provides the user with the ability to link one or
more object modules to produce an executable image. An image can
be a task, a partial image, or operating system. This manual is
intended for all users who are developing programs for execution
on Perkin'-Elmer 32-bit computers. The user should be familiar
with the Perkin-Elmer OS/32 Multi-Terminal Monitor (MTM) if Link
is to be used in an MTM environment. See the OS/32
Multi-Terminal Monitor (MTM) Reference Manual.

Chapter 1 provides an introduction and overview of the features
of Link. Chapter 2 describes how to build, load, and start the
linkage editor. Chapter 3 lists and describes the active,
passive, and environment Link commands. Chapter 4 provides
examples of Link command sequences. Chapter 5 introduces and
explains virtual task management (VTM). Appendix A is the Link
command summary. Appendix B is the Link message summary.
Appendix C is the VTM message summary_ Appendix D explains the
format of an object module that is compatible with Link.

Revision 02 of this manual adds support for DEBUG/32 and VTM
details changes to the DCMO and the OPTIONS commands to support
the Perkin-Elmer Multiprocessor System (Model 3200MPS).

This manual is intended for use with the ROl version of 05/32
Link and the 08/32 R06.2 software release. Additional material
specifically related to the Model 3200MPS System has also been
included. These Model 3200MPS features are supported by the
OS/32 R07.1 software release. Throughout the text, these
features are identified as applicable to the Model 320DMPS System
only.

For information on the contents of other Perkin-Elmer 32-Bit
manuals, see the 32-Bit Systems User Documentation Summary.

48-005 FOD R02 v

1.1 INTRODUCTION

CHAPTER 1
OS/32 LINK

Perkin-Elmer OS/32 Link provides the user with the ability to
link one or more object modules to produce a task image or
partial image that can be loaded via the OS/32 LOAD command.

Link can also build an operating system image from the object
module produced by the Perkin-Elmer OS/32 Library Loader or
SYSGEN/32. The resulting image can be loaded into memory using
the Perkin-Elmer OS/32 Bootstrap Loader or Loader storage Unit
(LSU) .

This release of Link includes the DEBUG/32 tables (DTABLES) task
option and supports the virtual task manager (VTM). This option
allows Link to separate symbolic debug data from the object code
and build this data into the tables required by DEBUG/32. VTM
provides a user-transparent virtual memory capability that allows
some user tasks (u-tasks) consisting of up to 16MB of code and
data to execute in as little as 128k bytes of memory.

OS/32 Link can be used with both the Perkin-Elmer Uniprocessor
System and the Perkin-Elmer Multiprocessor System (Model
3200MPS). The multiprocessor system consists of one central
processing unit (CPU) and up to nine auxiliary processing units
(APUs). In a multiprocessor system, the operating system defines
a set of logical processing units (LPUs) that are used to direct
tasks to physical processors. An LPU is mapped to the CPU or an
APU, and each task is assigned an LPU. Link assigns the initial
LPU for each task. Link also sets APU control or mapping
privileges when building a task, and can optionally list comments
embedded in the object file. See the Link DCMO and OPTIONS
commands. Also see the Perkin-Elmer Model 3200MPS Overview
Manual for more information on using the Model 3200MPS.

1.2 IMAGE FILE FORMAT

Link allocates an image file on disk and builds an image into
this file or builds the image into an already existing file. The
format of the image file for a task is shown in Figure 1-1.

48-005 FOO R02 1-1

LOADER INFORMATION
BLOCK (LIB)

HISTORY
RECORDS

PRIVATE
IMAGE

OVERLAYS

OVERLAY DESCRIPTOR
TABLE (ODT)

SHARED
IMAGE

SYMBOLIC DEBUG
DATA

Impure object code

Pure object code

Figure 1-1 Task Image File Format

1-2 48-005 FDa R02

The first segment in the task image file is the loader
information block (LIB). The LIB tells the loader how to load
the image into memory. For example, the first byte of the LIB
indicates the type of image which is to be loaded. When the task
is loaded by the LOAD command, the LIB is kept in the loader's
private memory area, not in task memory, until the loader no
longer requires it.

Following the LIB is the history records area. This area is
defined by OS/32 PATCH; that is, any changes made to the task or
to its LIB v ia PATCH are store.d in this area of the file.

The task image that is actually loaded into memory consists of at
least one private image segment. Link creates this segment with
read, write, and execute privileges below the LIB. The private
image segment contains the impure code and, if the NSEGMENTED
option in the Link OPTION command was specified, the pure code
from the included object modules. Each user who loads the task
is provided with a copy of the private image. The first segment
of the private image is known as the root segment. The root
contains the user-dedicated location (UDL) , the primary task
workspace, and the task overlay areas defined by the OVERLAY
command, along with other user-selected items. In addition, any
absolute code found in the object modules is included in the
root.

The overlay descriptor table (ODT) following the overlay areas
contains instructions for loading the overlays. The ODT is
located in the task control block after the image is loaded.

If the SEGMENTED option was specified to Link, the pure code
belonging to the root node from the object modules is placed in
the shared image segment of the image file. This area has only
read and execute access privileges. When the task is first
loaded, the shared image is also loaded into memory. Users can
read and execute this segment but cannot write to it. Only one
copy of the shared image remains in memory during multiple
simultaneous executions of the task.

If the task is to be debugged using DEBUG/32, Link formats the
task data required by the symbolic debugger and places it in the
shared image.

External segments referenced by the task are known as partial
images. Partial images can contain any combination of one or
more shared segments and private segments that can be used by
many different programs; e.g., the Perkin-Elmer FORTRAN VII
Run-Time Library (RTL). A partial image is not formatted as a
complete task. Its image file consists only of the LIB followed
by a single shared segment. Instructions for resolving a partial
image referenced by a task are given by the RESOLVE command. See
Section 3.21.

48-005 FOO R02 1-3

The virtual address map of the link establishment summary defines
where the root, shared, and partial images will be loaded into
memory for the task. See the MAP command (Section 3.14) for more
information on the establishment summary.

1.3 LINK SYMBOL TABLE

Before Link actually builds the image into a file, Link builds a
symbol table of all of the information required to build the
image. This table is used in the image building and map
production steps.

As commands are entered, this table grows in memory_ When Link
runs out of available real memory, it allocates a temporary disk
file and copies this table out to the file. Parts of the table
are swapped between memory and the file, as required. The less
real memory available, the more swapping Link is required to
perform and the longer it takes Link to build an image.

To allocate more memory for the Link symbol table, load Link
using the workspace parameter of the LOAD command explained in
Section 2.2.

1.4 OVERLAYING A PROGRAM USING LINK

During its lifetime, a program may become very large. Link
provides a means to execute a program in an area of main storage
that is not actually large enough to contain the entire task at
one time. Link divides such a program into nodes, collections of
modules and common blocks, that are loaded as needed. Only one
private node, the root, must remain in main memory throughout the
execution of the program; the other nodes reside on disk, from
where they are fetched, when needed.

To ensure the integrity of the overlayed program, an overlay
structure must be carefully designed. This structure is a tree
that shows which nodes of a program occupy the same main memory
at different times. Figure 1-2 is a graphic example of an
overlay tree structure.

1-4 48-005 FOa R02

Samp.le E:r.og:r.am

Call B
Call C
Call X
END; MAIN

Subroutine B

Call X

END; B
-- - "- .~- - _ .. ,- -
Subroutine C

Call D

Call X

END; C

Subroutine D
Call X
Call E
Call F

END; D

Subroutine E
Global E_AND __ F
Call X

END; E

Subroutine F
Global E_AND_.F
Call X

END; F

Subroutine X

END; X

1 Main routine .MAIN
1 routine X

1- .- - - -- .- .- .-.. - - .- - ,- - - - - - - - - ' .. ". --- - .- - I

I
I

routine B
I
I

routine C
routine D

I
I

Global E_AND __ F
I - - ,- - - - - -- - - - - - -- - ... ,- - .-- - :

I I
I I

routine E routine F

Figure 1-2 Sample Program with Overlay Tree Structure

48-005 FOO R02 1-5

The sample program is composed of one main routine and six
subprograms; B, C, D, E, F, and X. The main routine calls Band
C. C, in turn, calls D which calls E and F. All routines call
X, and E and F share the global variable E-AND_F.

The main routine must reside in the root node throughout the
execution of the task. Also, X should be placed in the root
because all other routines call X in this sample program.

The execution of Band C are mutually exclusive; that is, they
never call each other directly or indirectly. Therefore, these
two subprograms can occupy the same address space. C must remain
in storage while D, E, and F are executing. However, there is
nothing to be gained by separating routines C and D since they
must be present simultaneously, so C and 0 can be placed in the
same node.

The following Link command sequence can be used to implement the
overlay structure in Figure 1-2.

INCLUDE MYPROG.OBJ,.MAIN
INCLUDE ,X
OVERLAY B, 1

INCLUDE ,B
OVERLAY CD,l

INCLUDE ,C
INCLUDE ,0
OVERLAY E,2

INCLUDE ,E
OVERLAY F, 2

INCLUDE ,F
LIBRARY MYLIB.OBJ
LIBRARY F7RTL.OBJ
BUILD MYPROG

The OVERLAY command specifies the start of a node and the node's
relative position within the tree structure. The two RTL files,
MYLIB and the standard Perkin-Elmer RTL, are searched by Link
(MYLIB first, then F7RTL.OBJ) for any routines containing entry
points matching the unresolved external references of the
program. Link places a copy of a library routine in the
referencing node unless an ancestor node already contains a copy.

Each node has a fixed length in bytes. The total size of a task
depends upon both the routine composition of each node and the
structure of the overlay tree. An overlay structure can be
represented by a set of parallel paths. A path can be defined as
a particular set of nodes (one at each level), each of which is
a descendent from the previous level. Therefore, the tot.al size
of a task is determined by the path in which the node sizes add
up to the greatest number of bytes. By using the cross-reference
map from Link, one can manually build a call-tree representation
of a program (similar to the one shown in Figure 1-2) as an aid
in determining the smallest possible task size.

1-6 48-005 FOD RD2

Normally, the placement of a common block or global block within
an overlayed task is determined by the locations that refer to
the block. Named common and global blocks, however, are
initially positioned by Link no closer to the root than any
particular reference to the block. In the sample program in
Figure 1-2, subprograms E and F both refer to the global
variables E_AND_F. Link will place E-AND_F in the node
containing subprograms C and D.

The first consequence is that named common and global entities
are initialized every time the overlay is fetched from disk. The
second consequence is that more than one copy of a common or
global entity can exist on separate paths in the program. That
is, two or more overlays can have their own separate and private
copies of a common or global entity. These copies could then
contain different values.

Link provides the POSITION command to reposition common or global
entities into an overlay closer to the root than they normally
would be positioned. Global E_AND_F, in the sample program, can
be forced into the root node by inserting into the sample Link
command sequence:

POS I T I ON Common=E_AND __ F , To= . ROOT

1~5 USING LINK-DEFINED SYMBOLS

Link defines seven symbols for general use:

• @TIMEl HH:M (hour and first digit of minute)

• @TIME2 M:SS (second digit of minute and second)

• @DATEI MM/D (month and first digit of day, assuming
default of DATE option is specified at system
generation)

• @DATE2 D/YY (second digit of day and year)

• @UBOT Address of the lowest byte in the image being
built. For tasks, this is always zero. For
partial images, this is the first byte of the
segment named in the ESTABLISH command.

• @UTOP Address of the first byte following the included
object code. It is rounded according to the ALIGN
option specified in the OPTION command.

• @CTOP Address of the last addressable halfword of the
image.

48-005 FOO R02 1-7

The following program shows how the time and date of a linkedit
session can be included in the task image by referencing the
symbols @TlME1, @TlME2, @DATE1, and @DATE2.

Example:

1-8

LINKDAY PROG Demonstration progr
EXTRN.@TlME1,@TlME2,@DATE
EXTRN @UTOP,@CTOP

START

PAUSE

PURE
SVC
LA
LA
SVC
SVC

2,LOGLINK
O,@UTOP
1,@CTOP
2, PAUSE
3,0

ALIGN ADC
DB 0,1

IMPUR
ALIGN ADC

LOGLINK DB 0,7,0,80
DB C'Linkedited at- ,

load linkdemo
start

DCF @TlME1,@TlME2

DB C' on '
DCF @DATE1,@DATE2

DB X'OD',O
END

Linkedited at -17:26:10 on OS/26/82
TASK PAUSED
d r

PSW
0-3
4-7
8-8
C-F

000077FO
00000150
00000000
00000000
00000000

continue

00000148
OOOOOlFE 00000000
00000000' 00000000
00000000 00000000
00000000 00000000

00000000
00000000
00000000
00000000

ROD -END OF TASK CODE= a CPUTlME=0.003/0.002

48-005 Faa R02

1.6 SYSTEM REQUIREMENTS

System requirements for Link ROl are:

• 05/32 5.2 or higher (if DEBUG/32 is used, Link requires OS/32
ROG.l or higher)

• 1 disk device

• l28kb of main storage for Link

1.7 LINK COMMAND SYNTAX

Multiple commands can be entered on one line if they are
separated by semicolons (;). M1en multiple commands are entered
on the same line, they are executed sequentially from left to
right. If a syntax error is detected in a command, that command
plus any subsequent commands on t.he same line are ignored.

In interactive mode, if the specified parameters of a command
exceed one line, entering a comma as the last character and a
carriage return (CR) causes the following message to be
displayed:

CONTINUE>

Continue entering the remaining parameters on the same line
following the greater than (» symbol. In batch mode, parameters
can be continued by entering a comma as the last character and
continuing the parameters on the following line.

Comments are specified by entering an asterisk (*) before the
comment string and placing a CR or semicolon at the end of the
string. A comment can be the only data on a line or can precede
or follow a command on the same line.

Examples:

*THIS IS THE LINK ROUTINE

ESTABLISH TASK;*A TASK IS TO BE ESTABLISHED

*A TASK IS TO BE ESTABLISHED;ESTABLISH TASK

Unless otherwise noted, if the syntax of a Link command includes
"number" as a parameter, the number specified is a positive whole
number.

48-005 FOO R02 1-9

1.7.1 File Descriptors

File descriptors, abbreviated as fd, are entered in a standard
format.

Format:

[t:~~: }] [fi lenameJ [. ext] [{
actno }]

/ file class

Parameters:

voln:

dev:

filename

.ext

1-10

is a 1- to 4-character alphanumeric string
specifying the name of a disk volume. The
first character must be alphabetic and the
remaining alphanumeric. If the volume name is
omitted, the default is the:

• volume specified by
command, or

the Link VOLUME

• volume specified by the operator or MTM
VOLUME command, or

• volume specified as the operating system or
user default volume.

is a 1- to 4-character alphanumeric string
specifying a device name. The first character
must be alphabetic and the remaining
alphanumeric.

is a 1- to 8-character alphanumeric string
specifying the name of a file. The first
character must be alphabetic and the remaining
alphanumeric. If a filename is specified when
a device name is specified, the filename is
ignored.

is a period (.) followed by a 1- to
3-character alphanumeric string specifying the
extension to a filename. If the period (.)
and extension are omitted, a default extension
appropriate to the particular command in which
the fd appears is appended to the filename.
If the period is specified and the extension
is omitted, the default is blanks.

48-005 FOO R02

actno

file class

Functional Details:

is a decimal number from 0 through 65,535
specifying the account number associated with
the file. Account numbers 1 through 65,535
(excluding 255) are supported by MTM. Account
number 255 is reserved for the authorized user
utility. Account number 0 is for system files
and is the default account number for all
operator commands.

NOTE

Account numbers can only be
specified as part of the fd when
Link is run from the system
console or when Link is run under
MTM from an account that has file
account privileges.

is a l-character alphabetic string specifying
the file class. The file classes are:

• P for private file

• G for group file

• S for system file

If the file class is omitted, the default is
P when running Link from an MTM terminal, and
S when running Link from the system console.

See the 05/32 Application Level Programmer Reference Manual for
more information on file descriptors.

48-005 FOO R02 1-11

CHAPTER 2
BUILDING AND STARTING LINK

2.1 BUILDING LINK

If the Perkin-Elmer supplied ready-to-execute version of Link is
to be used, no build is necessary. However, if a new version of
Link is to be built, this sequence of commands builds Link as a
segmented task using the Perkin-Elmer supplied version of Link:

ES TASK
OPTION ACPRIVIIEGE,SYSSPACE=XFFFF
oP'r I ON SEGMENTED, WORK= (X8000 , XCOOO)
INCLUDE LINK
MAP CON:ALPHABETIC,ADDRESS,XREF
BUILD LINK
END

The reserved workspace must be a minimum of 8kb. The more
workspace allocated, the less paging to and from disk occurs.
The less workspace allocated, the more paging to and from disk
occurs. The amount of workspace specified can be overridden when
Link is loaded.

2.2 LOADING LINK

Before Link can be loaded into main storage, it must be built as
a task image.

2.2.1 Loading Link from the System Console

The following system command loads Link from the system console:

Format:

LOAD taskid [, fdJ [,workspace]

48-005 FOO R02 2-1

Parameters:

taskid

fd

workspace

is a 1- to a-character alphanumeric string
specifying the name of the task after it is
loaded into main memory.

is the file descriptor of the device
containing the linkage editor image to be
loaded into main memory. If this parameter is
omitted, the default is taskid.TSK.

is a decimal number in kb specifying the
additional area to be added to the root node.
This value overrides the WORK= option if
specified when the image was built.

2.2.2 Loading Link from a Multi-Terminal Monitor (MTM) Terminal

The following MTM command loads Link from an MTM terminal:

Format:

LOAD fd [,workspace]

Parameters:

fd

workspace

2-2

is the file descriptor of
containing the linkage editor
loaded into main memory.

the device
image to be

is a decimal number in kb specifying the
additional area to be added to the root node.
This value overrides the WORK= option if
specified when the image was built.

48-005 FOO R02

2.2.3 Assigning Workspace for Link

The size of the workspace increment value given when Link is
loaded will control the maximum symbol table size generated by
Link as shown in the following table:

WORKSPACE SYMBOL
INCREMENT TABLE MAXIMUM

0 - 7 LINK will not run
8 - 15 32 kilobytes

16 - 31 64 kilobytes
32 - 63 96 kilobytes
64 - 95 128 kilobytes
96 - 127 256 kilobytes

128 - 255 1 megabyte
256 - or greater 4 megabytes

2.3 LINK INPUT/OUTPUT (I/O) FILES

Link requires the following I/O files:

• Object files containing the compiled source code.

• Task image file to which Link outputs the task image.

• Map file to which Link sends a listing of
summary and, optionally, all external
addresses.

the establishment
programs and their

• Log file which lists all Link commands issued and any Link
generated diagnostic messages.

• Command file containing commands to Link.

The Link command file can be built by a command substitution
system (eSS) procedure or built as a separate file that can be
specified in the START command. If no Link command file is
specified in the START command, Link accepts commands
interactively from the terminal or console. The BUILD command
for Link automatically allocates a file, if the file does not
already exist, for the task image using the filename entered,
followed by the extension corresponding to the type of image
(TASK, as, partial image) being built. The log file must be
preallocated by the user. The user can optionally preallocate a
map file. However, LINK will allocate the map file if it does
not exist.

Table 2-1 lists the logical unit (lu) assignments that are made
automatically by the Link commands.

48-005 FOO R02 2-3

TABLE 2-1 LOGICAL UNITS ASSIGNED BY LINK

LINK COMMAND

INCLUDE/LIBRARY
BUILD
MAP
START
,COMMAND=

, LOG=
HELP

I LOGICAL UNITS I
ASSIGNED

1
2
3

5

7

6
10

I/O FILE

Object
Task Image
Link Map

Link Command
Input
Link Command
Output
Log
Link Help
File

Link also assigns lu9 as needed for the temporary paging of its
symbol table.

2.4 STARTING LINK

After Link is loaded into main memory, the system START command
starts execution of the Link program and assigns the command and
log devices.

Format:

Parameters:

COMMAND=

2-4

fdl specifies the input device on which Link
commands are entered. If this parameter is
omitted, the default is the command input
device (CON:). If CON: is interactive, all
messages generated by Link are sent to CON:.
If the command input device is batch, all Link
messages are sent to the device specified by
the LOG parameter.

48-005 FOO R02

LOG=

Functional Details:

fd 2 specifies the output device to which all
conunands entered and messages generated are
recorded. If the conunand input device is
batch, this parameter must be specified. If
the log output device is a disk file, it must
have been previously allocated.

After the linkage editor is started, the following message is
displayed:

PERKIN-ELMER OS/32 LINKAGE 'EDITOR 03-242 Rnn-nn

The revision number (Rnn) indicates the revision level of Link,
and the update number (-nn) indicates the update level of Link.
If the conunand input device is interactive, the greater than (»
symbol is then displayed as a prompt indicating that the linkage
editor is ready to accept conunands.

48-005 FOO R02 2-5

3.1 INTRODUCTION

CHAPTER 3
LINK COMMANDS

There are three types of Link commands:

• Active

• Passive

• Environment

Active commands are executed as they are entered and have an
immediate effect on how the image is to be built. Passive
commands are executed during the build process, at which time
Link processes them, making symbol table entries, etc. Although
passive commands are not executed when entered, the order in
which passive commands are encountered might have an effect on
the image produced by Link. This is due to the order in which
items are entered into Link's internal symbol table. Environment
commands affect the link session instead of the image being
built. Environment commands ha.ve no affect on the image being
built, but do establish the environment.

Table 3-1 lists all the Link commands, categorizes the type, and
describes the function.

48-005 FOO R02 3-1

TABLE 3-1 LINK COMMANDS

TYPE
1-----------------1

COMMAND I ACT I PAS 1 ENV I MEANING
======================== __ ==_=======_=:====================_a __

BFILE

BUILD *
DeMO *

END *
ESTABLISH *

EX11ERNAL

FFILE

HELP

INCLUDE *

LIBRARY

LOCAL

LOG

MAP

3-2

*

*

*

*

*

*

I Backspaces a magnetic tape or
I contiguous file

1 starts building the image

Enables execution of Link
commands embedded in object
modules. Enables the listing
of embedded auxiliary process­
ing unit (APU) comments to the
log device in the Model
3200MPS System.

I Terminates the linkage editor

I Specifies the type of image
1 to be built

Specifies the names of common
block(s) to be externally vis­
ible from the partial image
being built.

I Forward spaces a magnetic tape
I or contiguous file

* Lists and describes all Link

*

I commands accepted by the
1 current revision of Link.

I Specifies the object modules
I to be included in the image

Specifies the object libraries
to be searched for unresolved
external references

Specifies entry
are not to be
outside of the
being built

points that
visible from

partial image

I Enables logging all commands,
I messages, and maps to the log
I device

I Generates a map when the image
I is built

48-005 FOO R02

COMMAND

NDCMD

NLOG

OPTION

OVERLAY

PAUSE

POSITION

RESOLVE

REWIND

SEGMENT

TITLE

VOLUME

WFILE

TABLE'3-1 LINK COMMANDS (Continued)

TYPE
I-----------------~
I ACT I PAS I ENV : MEANING

*

*

*

*

*

*

Disables execution of Link
commands embedded in object
modules. Disables listing of
embedded comments to the log
device in the Model 3200MPS
System.

I Disables logging of commands,
I messages, and maps to the log
I device

I Sets task and Link options

I Defines an overlay and a level
I for that overlay

* I Pauses the linkage editor

I Moves a common block into a
I specific overlay node

I Specifies a partial image that
I can be referred to by the task
I or image being built.

* I Rewinds a magnetic tape or
I contiguous file

*

*

*

I Reserved for future definition

I Specifies a title for the Link
I map

Specifies the default volume
I to be used for all subsequent
I file descriptors (fds)

I Writes a filemark on a mag­
I netic tape or a contiguous
I file

* Indicates the type of Link command

48-005 FOD RD2 3-3

SFILE

3.2 SFILE COMMAND

The backspace file (BFILE) command is an environment command that
backspaces a magnetic tape or contiguous file a specified number
of filemarks.

Format:

B£ ILE fd [{'~i }]
I

Par ameter s :

fd

n

Example:

SF MAGI:, 2

3-4

is the file descriptor of the device or file
to be backspaced the specified number of
filemarks.

is a decimal number specifying the number of
filemarks to space backwards. If this
parameter is omitted, I is the default.

48-005 FOO R02

BUILD

3.3 BUILD COMMAND

The BUILD command is an active command that builds the image from
the object modules specified in the INCLUDE command.

Format:

llUILD fd

Parameters:

fd

Functional Details:

is the file descriptor that is to receive the
image. If the extension is omitted, the
default extensions are:

.TSK for tasks

.IMG for partial images

.000 for operating systems

The linkage editor attempts to allocate and assign the file
specified in the BUILD command. If the file does not exist, the
linkage editor allocates the file. However, if an error occurs
during this process or the file is not specified in the BUILD
command, the following message is displayed:

ENTER FILE DESCRIPTOR FOR IMAGE)

Enter the fd of the device to receive the image.

If a file with the filename specified already exists, Link will
overwrite it automatically, without issuing any prompts.

By default, Link allocates a contiguous file for the image.
Saving an image to a contiguous file is significantly faster than
saving an image to an indexed file.

48-005 FOO R02 3-5

After the task is built, the Link maps are generated if the MAP
command was entered. If the MAP command was not entered, the
following message is displayed:

MAP?)

Enter YES(Y) or NO(N). If YES (Y) is entered, the following four
messages are displayed:

• ENTER FILE DESCRIPTOR FOR MAP)

Enter the fd of the device or file to receive the maps.

• SORTED BY ADDRESS?)

If YES is entered, a map with all symbols already in address
order is generated.

• CROSS REFERENCE?)

If YES is entered, a cross-reference map is generated. This
map lists all symbols in alphabetical order and the names of
all object modules that reference each symbol.

• SORTED ALPHABETICALLY?)

If YES is entered, a map with all symbols in alphabetical
order is generated.

If NO is entered for all of these messages, only an
establishment summary is generated. See Section 3.14.

After the BUILD command is executed, the linkage editor builds
the image. To only generate a Link map without saving the task
image to a file, specify NULL: as the fd to the BUILD command.

3-6 48-005 FOO R02

Examples:

BUILD COM.IMG

BUILD TASK

BUILD TASK.TSK

BUILD NULL:

48-005 FOO R02

NOTE

If Link is running in batch mode and
cannot allocate the file, the build
process is terminated.

3-7

DCMO

3.4 DCMO COMMAND

The define conunand (DCMO) conunand is an active conunand that, when
entered without parameters, enables execution of passive Link
commands in common assembly language (CAL) object modules
included in the image. This command, at the same time, enables
listing of embedded comments to the input or log device. In a
Model 3200MPS System, this command entered with parameters
enables or suppresses listing of APU comments to the log device.

Format:

Parameters:

APUCOMMENT

NAPUCOMMENT

enables listing of APU comments to the log
device.

disables listing of APU comments to the log
device. This is the default.

The DeMO command enables CAL and FORTRAN programs to contain
passive Link commands that will be executed when the image is
built. To embed passive Link commands in a CAL program, use the
CAL DeMO as follows:

3-8

DeMO C'linkedit command'

NOTE

This DCMO pseudo-op is not the same as
the DCMO command described under format.

48-005 FOD R02

Example of CAL code containing embedded passive Link commands:

MOD

EN-r'RY

PROG
ENTRY
EXTRN
EXTRN
EXTRN
DeMO
DCMO
DCMO
DeMO
PURE
L
ST
SAL
SVC
END

ENTRY
EXTRNA
EXTRNB
EXENTRY
C'OPTION FLOAT'
C ' MAP PR:, ALPHA I

C'*PATCH FOR SCR 1183, 1/24/83'
C'*APU MODULE MOD INVOKES SVC CALLS'

0, EXTRNA
0, EXTRNS
l3,EXENTRY
3,0

Embedded passive Link commands are treated as if they were part
of the Link command sequence. Embedded LIBRARY commands are
treated as if they were entered immediately before the BUILD
command; all other embedded commands are treated as if they were
entered after the INCLUDE command.

If a log device is specified in the START command, all embedded
passive Link commands are output to the log device with a plus
sign (+) in column 1.

The DCMO command entered without any parameters also enables
listing of embedded general comments to the log device. These
general comments can refer to patches applied to a particular
compiler or other general comments the user does not want
suppressed.

In a Model 3200MPS System, some language processors, such as
CAL/32 and FORTRAN VII, generate APU information comments
embedded in the object files of APU tasks. These APU comment
lines always begin with an asterisk (*) and the letters APU.
Listing or suppression of the APU comment lines is enabled by
entering the DCMO command with the APUCOMMENT or NAPUCOMMENT
parameter. If the APUCOMMENT parameter is entered, all comments,
including the general comments, are displayed. If the
NAPUCOMMENT parameter is entered, APU comments are suppressed,
but the general comments are still displayed.

48-005 FOO R02 3-9

When the program above is linked, the log listing will be:

ES TA
INCLUDE MOD
BUILD MOD

If the DCMO command with no parameters is entered, the log
listing will be:

DeMO
ES TA
INCLUDE MOD
+OPTION FLOAT
+MAP PR:, ALPHA
+*PATCH FOR SCR 1183, 1/24/83
BUILD MOD

If the DCMO command is ent.ered with the APUCOMMENT parameter, the
log listing will be:

ES TA
DeMO APUCOMMENT
INCLUDE MOD
+OPTION FLOAT
+MAP PR:, ALPHA
+*'PATCH FOR SCR 1183, 1/24/83'
+*APU 'MODULE MOD INVOKES SVC CALLS'
BUILD MOD

Only passive Link commands can be embedded in CAL object modules.
If active or environment commands are embedded in CAL object
modules, they will be ignored and this message will be output:

COMMAND NOT PERMITTED

Application users in a uniprocessor
command with its parameters for
System.

system can use the DCMO
developing a Model 3200MPS

If this command is not entered, all embedded passive Link
commands are executed. To turn this feature off, use the NDCMD
command explained in Section 3.15.

3-10 48-005 FOO R02

END

3 • 5 END COMMAND

The END command is an active command that terminates the linkage
editor.

Format:

END

Functional Details:

If a Link command sequence contains at least one INCLUDE command
and an END command sequence before the BUILD command is entered,
the following message is displayed:

BUILD IMAGE FROM PREVIOUS INPUT?>

Enter YES if the image is to be built. Enter NO if no image is
to be built and the task is to be terminated. See Table 3-2 for
the meaning of Link end of task codes.

TABLE 3-2 LINK END OF TASK CODES

END OF TASK I
CODE MEANING

~===

o

1

2

3

48-005 FOO R02

Terminated normally

An error occurred that did not affect
the building of the image.

An error occurred that affected the
building of the image.

A severe error occurred that caused
the linkage editor to abort.

3-11

I ESTABLISH I

3.6 ESTABLISH COMMAND

The ESTABLISH command is an active command that specifies the
type of image to be built and provides a package name to a
multiple segment image. The three types of images that can be
built are:

• task,

• operating system, and

• partial image

Format:

ESTABLISH

Parameters:

TASK

as

3-12

os
R

E

.IMAGE [ACCESS= Ill!][ADDRESS= {mo:OO}]
RW

RWE

[,NAME=package name]

specifies that a task image is to be built.
If the ESTABLISH command or the parameters
specifying the type of image are omitted, TASK
is the default.

specifies that an operating system image is to
be built.

48-005 FOO R02

IMAGE

ACCESS=

ADDRESS=

48-005 FOO R02

specifies that a partial image is to be built.
A partial image is a collection of task
segments that can be used by one or more
separate tasks. A partial image has no
user-dedicated location (UDL).

specifies the access privileges of the partial
image, as follows:

• R - specifies that all tasks can read data
within the partial image. Execution or
modification of data is not allowed. If
the ACCESS parameter is omitted, RE is the
default.

• E - specifies that all tasks can execute
code within the partial image.

• RE - specifies that all tasks can read data
and execute code within the partial image.
Modification of data is not allowed.

• RW - specifies that all tasks can read and
modify data within the partial image.
Execution of the data is not allowed.

• RWE - specifies that all tasks can read,
modify, and execute data within the partial
image.

mOOOO is the starting address of the partial
image segment. This address is the bias
address used to adjust relocatable addresses
to create the real addresses in the partial
image segment. The variable m is a
hexadecimal number from 0 through SF. If this
parameter is omitted, or ADDRESS = * is
specified, the partial image segment becomes
address-independent and can be assigned a
different starting address by each task that
refers to it. If relocatable addresses are
located in an address-independent partial
image segment, they are relocated as though
ADDRESS=OOOOO was specified, and a warning
message is issued.

3-13

NAME = specifies a package name for a multi-segmented
task, partial image or operating system. If
this parameter is not specified, the file
descriptor in the.BUILD command is used as the
package name. Package names assigned by this
parameter are independent of the names of the
individual segments within a multi-segmented
image.

package name is a filename.ext that identifies the partial
image after it is loaded into main memory.
This name is matched against the name
specified by the tasks that will refer the
partial image.

Functional Details:

If the ESTABLISH command is entered after active commands have
been entered and before BUILD is entered, the following message
is displayed:

BUILD IMAGE FROM PREVIOUS INPUT?)

Enter YES(Y) or NO(N). If YES is entered, the following message
is displayed:

EN'rER FILE DESCRIPTOR FOR IMAGE)

After fd is entered, the image is built.

If NO is entered, no build is performed, and the following
message is displayed:

*** ESTABLISHMENT ABORTED ***

Examples:

3-14

ES as

Establish an operating system image.

ES IMAGE,ACCESS=RE,AD=FOOOO,NAME=SEGI

Establish a partial image with RE access privileges and
a package name of SEGI.

48-005 FOO R02

ESTABLISH lMAGE,ACCESS=RE,ADDRESS=AOOOO

Establish a reentrant library image with RE access
privileges.

ESTABLISH lMAGE,ACCESS=RW,ADDR.ESS=*

Establish a task common image with RW access privileges.

48-005 FOO R02 3-15

I EXTERNAL

3 • 7 EXTERNAL COMMAND

The EXTERNAL command is a passive command that specifies the name
of one or more common blocks in a partial image that can be
referred to by tasks outside the partial image segment.

Format:

EXTERNAL common block name 1 E ... fcommon block name n]

Parameters:

common block
name

Functional Details:

is the name of a common
the partial image segment to
will be made.

block outside
which reference

Common blocks are local to a partial image that is shared by
other tasks unless specified by the EXTERNAL command. External
common blocks are matched against external common block
references in the same way external references are matched
against entry points in a segment.

3-16 48-005 FOO R02

FFlLE

3.8 FF lLE COMMAND

The forward file (FFILE) command is an environment command that
forward spaces a magnetic tape or contiguous file a specified
number of filemarks.

Format:

£EILE fd .[{:}]
il::

Parameters:

fd

n

Example:

FF MAGl:,2

48-005 FOO R02

is the file descriptor of the device or file
to be forward spaced the specified number of
filemarks.

is a decimal number specifying the number of
filemarks to space forward. If this parameter
is omitted, 1 is the default.

3-17

HELP

3.9 HELP COMMAND

The HELP command provides a list of all Link commands accepted by
the latest revision of Link. HELP also describes the syntax and
function of each command.

Format:

[

mnemonic1
HELP J

Parameters:

mnemonic

Functional Details:

is the mnemonic for a Link command that is to
be described by HELP.

lists all Link commands accepted by the latest
revision of Link. If no parameter is
specified, * is the default.

If a log device has been specified in the START command for Link,
HELP outputs all lists and descriptions of the Link commands to
the log device.

Examples:

3-18

help
BF (ILE)
ES(TABLISH)
IN(CLUDE)
MA(P)
OV(ERLAY)
RES (OLVE)
WF (ILE)
FOR HELP ON
MNEMONIC

SU(ILD)
EX (TERNAL)
LI (BRARY)
NO(CMO)
PA(USE)
SEG(MENT)

DC(MD)
FF (ILE)
LOC(AL)
NL(OG)
PO(SITION)
TI (TLE)

EN(D)
H(ELP)
LOG
OP(TION)
REW(INO)
VO(LUME)

ANY OF THE ABOVE COMMAND MNEMONICS, TYPE HELP

48-005 FOO R02

help map
MA(P) : This conunand is a passive conunand that displays a map

containing the names and addresses of symbols.

SYNTAX: MA(P) [(FD)] [,AL(PHABETIC)] [,AD(DRESS)] [,XR(EF)]

WHERE: (FD) is the file descriptor of the device to receive the
map. If this parameter is omitted, the map is sent to the log
device. If no log device has been specified, the maps are
output to the command device, in interactive mode, and to
device PR: in batch mode.

The 'ALPHABETIC' parameter specifies that the map is to contain
all symbols in alphabetic order.

The 'ADDRESS' parameter specifies that the map is to contain all
symbols in address order.

The 'XREF' parameter specifies that the map is to contain all the
names of the modules that reference each symbol, and the name
of the module in which the symbol is defined.

48-005 FOa R02 3-19

I INCLUDE

3.10 INCLUDE COMMAND

The INCLUDE command is an active command that specifies a file
containing object modules and the specific names of object
modules that are to be included in the image. The INCLUDE
command can be entered any number of times to include object
modules from many different files.

Format:

Parameters:

fd

module1

modulen

3-20

is the file descriptor of the file or device
containing the modules to be included. If
this parameter is omitted, a preassigned luI
or the fd specified in the last INCLUDE
command entered is used. If the extension is
omitted, the default is .OBJ.

is a 1- to a-character alphanumeric string
specifying the name of the next module of a
range of modules to be included in the image.
The first character of this string must be
alphabetic if "*" or "-" is not specified. If
an asterisk (*) is specified or this parameter
is omitted, the next module, relative to the
position of the file, is included.

is a 1- to 8-character alphanumeric string
specifying the name of the last module of a
range of modules to be included in the image.
The first character of this string must be
alphabetic if "*" or "-" is not specified. If
this parameter is omitted, module1 is
included. If an asterisk (*) or hyphen (-)
with no module name is specified, all modules
starting with module1 to the end of the file
are included.

48-005 FOO R02

Functional Details:

If no module names are specified, all modules in the file are
included.

Object code modules specified in this command can consist only of
the object code defined in Appendix D. Appendix D lists each
loader item accepted by Link and describes what data may follow
it.

Examples:

INCLUDE LIBRARY.OBJ

Include all modules in fd LIBRARY.OBJ.

INCLUDE LIBRARY.OBJ, FIRST

Include the object module FIRST in fd LIBRARY.OBJ.

INCLUDE ,SECOND-FOURTH

Include modules SECOND through FOURTH in the fd specified
in the previous INCLUDE command.

INCLUDE LIBRARY.OBJ,-FOURTH,SIXTH,TENTH-*

Include modules FIRST through FOURTH, then module SIXTH,
and module TENTH through the end of LIBRARY.OBJ

48-005 FOO R02 3-21

LIBRARY

3.11 LIBRARY COMMAND

The LIBRARY command is a passive command that specifies object
libraries to be searched at build time to resolve external
references. The libraries are searched in the order in which
they are specified.

Format:

LIBRARY fd 1 E ... ,fd n]

Parameters:

fd

Functional Details:

is the file descriptor of the Library to be
searched. If the extension is omitted, the
default is .OBJ.

The libraries specified by the LIBRARY command are searched for
entry points that match unresolved external references in the
image being built. When a match is found, the object module is
included. Only one pass is made through the list of libraries.

When writing programs in high level languages such as FORTRAN or
PASCAL, be sure to specify all user libraries before specifying
a standard Perkin-Elmer Run-Time Library (RTL). This ensures
that each user library routine gets resolved against the standard
RTL.

Also, remember that the domain of a LIBRARY command is the entire
Link command sequence; i.e., its domain is not restricted to any
overlay in which it might be placed. Only the order in which the
libraries are specified is significant to Link.

When a program is linked, external references that were not
resolved by the INCLUDE and RESOLVE commands are matched against
the library(ies) entry points. All external references generated
from modules included from the library cause the library modules
that resolve those external references to be included, regardless
of the order of the modules within the library.

3-22 48-005 FDD RD2

Weak external refere'nces generated by the WXTRN pseudo-op are not
matched against the library. These references are only resolved
against entry pOints to modules that have been explicitly
included, or have been included from a library through external
references that are not weak.

Nonlinking external references generated by the INCLD pseudo-op
are matched against module names in the library.

Weak entry points in the library generated by the WNTRY pseudo-op
are ignored during the library search.

A module is selected from a library for either of the following
two reasons:

1. The module is named in an INCLD pseudo-ope

2. The module contains an ENTRY or a DNTRY which can be matched
against an unresolved EXTRN in a previously included module.

Any weak entry pOints contained within this newly included module
also become known to Link. These weak entry points are resolved
against the list of unresolved, standard, and weak externals.

Example:

LI USER.LIB,F7RTL.OBJ

Specifies the user RTL and FORTRAN RTLs to be searched.

48-005 FOO R02 3-23

LOCAL

3.12 LOCAL COMMAND

The LOCAL command is a passive command that specifies one or more
entry points in a partial image that can be referred to only by
external references within that partial image. This command is
valid only when establishing a partial image.

Format:

LOCAL entry point1 ~ ... ,entry pOintn]

Parameters:

entry point

Functional Details:

is a 1- to 8-character alphanumeric string
specifying the entry point name. The first
character of the string must be alphabetic.

When a partial image is built, all entry points within that image
can be referred to by tasks external to the partial image, unless
the entry points are made local to that partial image by the
LOCAL command.

Example:

LOC ENTRYl

3-24 48-005 FOO R02

LOG

3.13 LOG COMMAND

The LOG command is an active comrnand that specif ies a new log
device or starts the logging process if it was previously
stopped. All command input, messages, and maps are sent to the
log device.

Format:

LOG fd

Parameters:

fd

Examples:

LOG PR:

is ~he file descriptor of the device or file
to receive command input, messages, and maps.

Commands, messages, and maps are to be sent to PR:

LOG M300:LOGFILE

Commands, messages, and maps are to be sent to the file
LOGFILE on volume M300:.

48-005 FOO R02 3-25

MAP

3.14 MAP COMMAND

The MAP command is a passive command that generates an
establishment summary and a map or maps containing the names and
addresses of program symbols.

Format:

MAP [fd] [,ALPHABETIC] [,ADDRESS] [,XREF]

Pat:ametet:s:

fd

ALPHABETIC

ADDRESS

XREF

is the file descriptor of the file or device
to receive the map. If this parameter is
omitted, the map is sent to the log device.
However, if a log device was not previously
specified, the maps are output to the command
input device in interactive mode and PR: in
batch mode. If the specified fd is not the
same as the log device, the map is sent to
both. If the specified file discriptor is not
preallocated, Link will allocate an indexed
file (logical record length 120) by that name
for the map.

specifies that the map is to contain all
symbols in alphabetical order.

specifies that the map is to contain all
symbols in ascending address order.

specifies that the map is to contain all the
names of the object modules that reference
each symbol, and the name of the module to
which the symbol is defined.

If none of these parameters are specified, only the establishment
summary is generated.

Functional Details:

The Link maps generated by the MAP command tell the user how the
image is structured and where each subprogram and RTL routine is
referenced by the program. These maps can be used to determine

3-26 48-005 FOO R02

whether a user-def'ined or Perkin-Elmer standard library routine
has been referred to or redefined by the program.

Three types of Link maps can be generated: alphabetic, address,
and cross-reference. The Link establishment summary precedes the
Link maps. Figure 3-1 shows an example of the Link establishment
summary. Numbered items contained in this summary are identified
as follows:

NUMBER LIST ITEM

1 File descriptor of image file

2 Number of records in image file

3 Image file and address space

4 Task options set by the Link OPTION command or by Link
default

5 Node map listing node characteristics as follows:

• LEVEL - indicates the overlay level for the node. (0
indicates that the node is not located in an overlay
area.)

• NAME - indicates the name of each segment within the
node.

• LENGTH - is a hexadec:imal number indicating the length
of each segment in bytes.

• PURE - is a hexadecimal number indicating the number
of bytes comprising a sharable task segment.

• IMPURE - is a hexadecimal number indicating the number
of bytes comprising a nonsharable task segment.

• COMMON - is a hexadec:imal number indicating the number
of bytes comprising a common data area.

• TABLES - is a hexadec:imal number indicating the number
of bytes of executable code set aside for Link overlay
tables.

6 Virtual address map listing the name, size, address
boundaries, and access privileges of each segment. Size
is expressed as a decimal number in lkb (l,204-byte)
units.

48-005 FOO R02 3-27

Following the establishment summary are the symbol maps specified
by the MAP command. If no map options are specified, the MAP
command outputs an establishment summary only. Symbol maps list
data areas and all subprograms and RTL routines called by the
program. If the ALPHABETIC option is chosen, symbols and their
corresponding nodes are arranged alphabetically as shown in
Figure 3-2. If the ADDRESS option is chosen, symbols are
arranged according to their addresses within each node as shown
in Figure 3-3. The address map also lists each overlay area
separately in the order each is defined. As shown in Figure 3-4,
if the XREF option is chosen, a cross-reference map is produced.
This map arranges symbols according to how they are referred to
by the program. For example, in Figure 3-4 the symbol ENTRY is
defined by the module INCLUDE while INCLUDE refers to GRABBED and
SPACE, which are, in turn, defined by GRAB IT.

All of the symbol maps precede each symbol name with a single
letter indicating the type of subprogram, routine, or data area
named by the symbol. C indicates a common data area.
D indicates the name of a data entry point; E is a standard entry
point name. P indicates the name of a program.

Following the address of each symbol name in the alphabetic
address map are the letters P, I, or A. P indicates that the
symbol is located in a pure segment. I indicates the symbol is
located in an impure segment, while A indicates an absolute data
area.

Examples:

3-28

MAP PR:

An establishment summary is to be output to the printer.

MAP MAPFILE,ADDR

An establishment summary and address map are to be output
to the file named MAPFILE.

MAP ,ALPHA

An establishment summary and alphabetic map are to be
output to the log device.

MAP PR:,XREF,ALPHA

An establishment summary and alphabetic and
cross-reference maps are to be output to the printer.

48-005 FOO R02

PERKIN-ELMER OS/32 LINKAGE EDITOR 03--242 R01-00 ESTABLISHMENT PAGE 1

._- IMAGE LINKED AT 14: 10: 45 ON MAY 17, 1982

}D
FILE NAME: M301:LNKTESTB.TSK/P -- RECORDS: 17~
UBOT: o -- UTOP: 130 -- CTOP:

TASK OPTIONS:

NOTABLES
AFPAUSE
NCOMMUNI CATE
ACCOUNTING
NUNIVERSAL

NXSVC1
NFLOAT
SVCPAUSE
NINTERCEPT
KEYCHECK

CFE -- SIZE:

NVFC
RESIDENT
NDFLOAT
NACPRIVILEGE
SEGMENTED

3.25 KB~

UTASK
NCONTROL
ROLL (4)
NOISC r

TEQSAVE=ALL LU=15 SYSSPACE=3000 WORK=(BOO,40000) ABSOLUTE=100
IOBLOCKS=l PRIORITY=(128,128) TSW=(0,50010) ALIGN=16

NODE MAP:

LEVEL NAME LENGTH PURE

0 . ROOT 130 0
0 . SHARED 30 30

(TOTALS) 160 30

V I RTUAL ADDRESS MAP:

FROM TO

000000 OOOCFF
050000 05002F

SEGMENT NAME

. ROOT

. SHARED

IMPURE COMMON
TABLEi!~

8 0
0 0
8 0

SIZE ACCESS~~
3.25 KB RWE
0.25 KB RE

Figure 3-1 Example of Link Establishment Summary

48-005 FOO R02 3-29

PERKIN-Er~R OS/32 LINKAGE EDITOR 03-242 R01-00 ALPHABETIC MAP PAGE 1

-- IMAGE LINKED AT 14:10:45 ON MAY 17, 1982 --

SYMBOL

E-ENTRY
P-GRABIT
E-SPACE

NODE

. SHARED

. SHARED

. ROOT

ADDRESS

050010-P
050000-P'
000110- I

SYMBOL

E-GRABBED
P-INCLUDE

NODE

. SHARED

. SHARED

Figure 3-2 Example of Link AlphabetiC Map

PERKIN-ELMER OS/32 LINKAGE EDITOR 03-242 R01-00

-- IMAGE LINKED AT 14:10:45 ON MAY 17, 1982 --

ADDRESS MAP

ADDRESS

050000-P
050010-P

PAGE

NODE: . ROOT - LEVEL: 0 - ADDRESS: 0 - SIZE: 130 - PARENT:

1

SYMBOL ADDRESS SYMBOL ADDRESS SYMBOL ADDRESS

P-GRABIT 000110-1 E-SPACE 000110-1 P-INCLUDE

NODE: . SHARED - LEVEL: 0 - ADDRESS: 50000 - SIZE: 30 - PARENT:

SYMBOL ADDRESS SYMBOL ADDRESS SYMBOL

P-GRABIT 050000-P E-GRABBED 050000-P P-INCLUDE
E-ENTRY 050010-P

Figure 3-3 Example of Link Address Map

PERKIN-Er~R OS/32 LINKAGE EDITOR 03-242 R01-00

-- IMAGE LINKED AT 14:10:45 ON MAY 17, 1982 --

SYMBOL

E-ENTRY
E-GRABBED
E-SPACE

DEFINED

INCLUDE
GRAB IT
GRAB IT

REFERENCED BY

INCLUDE
INCLUDE

CROSS-REFERENCE PAGE

Figure 3-4 Example of Link Cross-Reference Map

000120-1

ADDRESS

050010-P

1

3-30 48-005 FOO R02

NOCNO

3.15 NDCMD COMMAND

NDCMD is an active command that disables execution of passive
Link commands embedded in object modules included in the image.
This command also suppresses listing of general comments to the
log device.

Format:

NOCMD

Functional Details:

The DeMO command reenables execution of passive Link commands
embedded in object modules and reenables listing of embedded
general comments (see Section 3.4).

48-005 FOO R02 3-31

NLOG

3.16 NLOG COMMAND

The no log (NLOG) command is an environment command that
te~minates the logging process.

Format:

NLOG

Functional Details:

Logging can be restarted by the LOG command explained in Section
3.13.

3-32 48-005 FOO R02

OPTION

3.17 OPTION COMMAND

The OPTION command is a passive command that sets the task
options that will be in effect during task execution.

CAUTIION

WHEN THE TASK IS LOADED UNDER MTM,
CERTAIN MTM CONFIGURATIONS CAN OVERRIDE
THE TASK OPTIONS SET BY THE OPTION
COMMAND. SEE THE OS/32 MULTI-TERMINAL
MONITOR (MTM) REFER.ENCE MANUAL FOR MORE
INFORMATION.

48-005 FOO R02 3-33

Format:

3-34 48-005 FOO R02

Parameters:

ABSOLUTE

a

NACCOUNTING

ACCOUNTING

ACPRIVILEGE

48-005 FOO R02

reserves a specified number of bytes of main
storage for absolute data. If this parameter
is not specified, Link reserves 256 (X'lOO')
bytes of main storage for absolute data.

is a 1- to 6-digit hexadecimal number
specifying the number of bytes of main storage
that are to be reserved by Link for absolute
data. XlOO is the default.

turns off the accounting facility for the task
if accounting was enabled at system generation
(sysgen). If this parameter is not specified,
ACCOUNTING is the default.

turns on the accounting facility for the task
if accounting was enabled at sysgen. The
accounting facility collects task related data
including the task's roll-time, wait-time, I/O
transfer count, and the end of task code. If
the accounting facility was not specified at
sysgen and ACCOUNTING is specified, no
accounting data will be collected. If this
parameter is specified and the accounting
facility was specified at sysgen, accounting
data is collected.

provides a user task (u-task) with extended
file access privileges as follows:

o a u-task can specify an account number
instead of a file class for all file
management functions

o a u-task can turn off the KEYCHECK option,
if set.

If this parameter is not specified,
NACPRIVILEGE is the default. This option
has no affect on executive tasks (e-tasks)
or diagnostic tasks (d-tasks).

WARNING

IF A TASK LOADED FROM THE SYSTEM
CONSOLE IS TO ACCESS FILES UNDER
AN ACCOUNT NUMBER OTHER THAN 0,
ACPRIVILEGE MUST BE SPECIFIED FOR
THAT TASK.

3-35

NACPRIVILEGE

ALIGN

value

APCONTROL

NAP CONTROL

APMAPPING

NAPMAPPING

APUONLY

NAPUONLY

3-36

specifies that a u-task has no extended file
access privileges. If the extended file
access privilege option is not specified,
NACPRIVILEGE is the default. This option has
no affect on e-tasKs or d-tasks.

specifies the byte boundary for aligning
object modules within segments. Unused bytes
between aligned modules are filled with zeros.
If this parameter is omitted, all object
modules begin on the next highest quadword
boundary (value=16), unless already on such a
boundary.

is a decimal number expressed as an even power
of two in the range from 4 to 2,048. If this
parameter is not specified, 16 bytes (one
quadword) is the default boundary alignment
value for all object modules.

specifies that the task can obtain APU control
privileges. This option is valid for a Model
3200MPS System only. Control of an APU by a
task is accomplished through the supervisor
call (SVC) 13 parameter blOCK. See the OS/32
Supervisor Call (SVC) Reference Manual. If
this option is omitted, NAP CONTROL is the
default.

specifies that the task cannot obtain APU
control privileges. This option is valid for
a Model 3200MPS System only and is the
default.

specifies that the task can obtain APU mapping
privileges. This option is valid for a Model
3200MPS System only. If this option is
omitted, NAPMAPPING is the default.

specifies that the task cannot obtain APU
mapping privileges. This option is valid for
a Model 3200MPS System only and is the
default.

specifies that the task can execute on an APU
only. Any transfer of control from the APU to
the CPU causes the task to pause. This option
is valid on a Model 3200MPS System only. If
this option is omitted, NAPUONLY is the
default.

specifies that the task can execute on an APU
or a cPU. This option is valid for a Model
3200MPS System only and is the default.

48-005 FOO R02

COMMUNICATE

NCOMMUNICATE

CONTROL

NCONTROL

DFLOAT

NDFLOAT

DISC

48-005 FOO R02

ipecifies that the task can perform the SVC 6
intertask communication functions. If this
parameter is not specified, the task cannot
communicate with other tasks.

prevents the task from issuing an
inter task commun icat ion. I f the

SVC 6 for
intertask

specified, communication option is not
NCOMMUNICATE is the default.

specifies that the task can perform the SVC 6
If this

task cannot
execution of

intertask control functions.
parameter is not specified, the
issue an SVC 6 to control the
another task.

prevents the task from issuing an SVC 6 for
intertask control. If the intertask control
option is not specified, NCONTROL is the
default.

specifies that a task can execute double
precision floating point instructions. If
this parameter is not specified, the task
cannot execute double precision floating point
instructions.

prevents the task from executing double
precision floating point instructions. If the
double precision option is not specified,
NDFLOAT is the! def au It.

is the bare disk I/O privilege option. This
option allows a u-task or diagnostic task
(d-task) to bypass the file manager and
directly assign I/O requests to a disk device.
If the disk is marked online, only assignments
for shared read only (SRO) are allowed. Any
other ass ignment is r ej ected,' and a pr i v i lege
error message is output. If the disk is
marked offline, all access privileges are
allowed. See the OS/32 Supervisor Call (SVC)
Reference Manual for a description of the
access privileges. This option has no affect
on e-tasks, since they have bare disk
privileges by definition.

3-37

NOIse

DTABLES

NOTABLES

ENTRY

main entry

debug entry

DTASK

3-38

prevents u- and d-tasks from directly
assigning I/O requests to a disk device. If
the bare disk I/O privilege is not specified,
NOIse is the default. This option has no
affect on e-tasks.

NOTE

If a task is loaded under MTM and
DISC is not specified, or DISC is
specified but the task loader has
the ETASK option disabled, the
image is loaded without the bare
disk I/O privilege.

causes the task loader to build the
appropriate debug tables for the s~nbolic

debug data contained in the image. This
option also increases the number of logical
units used by the task, by one. However,
LU=15 still appears on the Link map. If
DTABLES is not specified, debug tables are not
built.

prevents the task loader from building debug
tables so that all debug data contained in the
image is discarded. If this option is not
specified, debug tables are built.

specifies the name of an entry point in the
root node or the debug task where execution of
the task image is to begin. If this option is
omitted, the entry point is the starting
address specified when the task was assembled
or compiled.

1s a standard entry point known to Link while
the image is being built. Standard entry
points include those for partial images but
exclude data entry (ONTRY) points. If only
the main entry is specified, omit the
parentheses.

is the name of the entry point to the debug
task. ENTRY places the debug entry point into
the loader information block (LIB) for the
task. If the main entry is specified with the
debug entry, the main entry is moved to the
symbolic debug data table.

specifies that a d-task image is to be built.
A d-task has its own virtual address space but
can execute privileged instructions. If no
task type parameter is specified, UTASK is the
default.

48-005 FOO R02

ETASK

UTASK

FLOAT

NFLOAT

INTERCEPT

NINTERCEPT

IOBLOCKS

b

48-005 FOO R02

~pecifies that an e-task image is to be built.
An e-task contains only positional-independent
pure and impure code and cannot reference
partial images. An e-task can execute
privileged instructions. If no task type
parameter is specified, UTASK is the default.

specifies that a u-task image is to be built.
A u-task cannot execute privileged
instructions unless the task is linked with
option ACPRIVILEGE or is running under MTM
with specified privileges. MTM allows a user
to specify privileges for an account. Once
specified, all users on that account are
allowed to use those privileges. See the
05/32 Multi-Terminal Monitor (MTM) System
Planning and Operator Reference Manual. If no
task type parameter is specified, UTASK is the
default.

specifies that the task can execute single
precision floating point instructions. If
FLOAT is not specified, the task cannot
execute single precision floating point
instructions.

prevents the task from executing single
precision floating point instructions. If the
single precision option is not specified,
NFLOAT is the default.

specifies that the task can intercept an SVC
issued by another task before the SVC is
processed by the operating system. If this
option is not specified, the task cannot
intercept an SVC issued by another task. For
more information on SVC interception, see the
OS/32 System Level Programmer Reference
Manual.

prevents the task from intercepting an SVC
issued by another task. If the SVC
interception option is not specified,
NINTERCEPT is the default.

specifies the maximum number of I/O blocks
assigned to the task. Each I/O control block
can contain one queued I/O request. If this
option is not specified, Link automatically
assigns one I/O control block to the task.

is a decimal number from 1 through 65,535
indicating the number of I/O blocks assigned
to the task.

3-39

NKEYCHECK

KEYCHECK

LU

lu

LPU

lproc

NAFPAUSE

AFPAUSE

3-40

prevents the operating system from checking
the file protection keys of a u- or d-task
having accounting or bare disk I/O privileges.
If this option is not specified, the operating
system will check the file protection keys for
all privileged u-tasks. NKEYCHECK has no
affect on e-tasks.

causes the operating system to check the file
protection keys of a u- or d-task having
accounting or bare disk I/O pr ivileges. If
the file protection option is not specified,
KEYCHECK is the default. KEYCHECK has no
affect on e-tasks.

specifies the maximum number of logical units
that can be assigned to the task. If this
option is not specified, the maximum number of
logical units is 15.

is a decimal number from 0 through 255.

specifies the logical processing unit (LPU)
used to direct tasks to processors. Each task
is assigned an LPU. Each LPU is logically
mapped to a processor. Assignment of a
particular LPU number results in the
assignment of that task to the associated
processor. The default assignment is zero,
which specifies execution on the cpu. This
option is valid on a Model 3200MPS System
only.

specifies the LPU that the task is to be
assigned to. Legal values can range from
decimal zero to the maximum number of LPUs
present in the system (MAXLPU) up to maximum
of 255. MAXLPU is a sysgen parameter. See
the System Generation/32 (SYSGEN/32) Reference
Manual. This option is valid on a Model
3200MPS System only.

allows task execution to continue after an
arithmetic fault occurs. If NAFPAUSE is not
specified, task execution is suspended after
an arithmetic fault.

suspends task execution after an arithmetic
fault occurs. If the NAFPAUSE fault option is
not specified, AFPAUSE is the default.

48-005 FOO R02

PRIORITY

ipr i

mpri

RESIDENT

NRESIDENT

NROLL

ROLL

SEGMENTED

NSEGMENTED

48-005 FOO R02

specifies the initial and maximum priorities
of the task. If this option is not specified,
both the initial and maximum task priorities
are 128. See the OS/32 Operator Reference
Manual for an explanation of priority.

is a decimal number from 11 through 254
indicating the initial task priority. The
initial priority must be less than or equal to
the specified maximum priority (mpri). If
ipri is not specified, the default is 128.

is a decimal number from 11 through 254
indicating the maximum priority of the task.
If mpri is not specified, the maximum priority
is 128 (the value specified for the initial
priority).

specifies that the task is to remain in main
memory after task execution is terminated.
The task can then be restarted by the operator
without issuing an 05/32 LOAD command. If
this option is not specified, the task will be
removed from memory after task termination.

specifies that the task is to be removed from
main memory after task execution is
terminated. If the RESIDENT option is not
specified, NRE5IDENT is the default.

prevents the task from being rolled in and out
of main memory during task execution. If this
option is not specified, the task can be
rolled during execution.

specifies that the task can be rolled
out of memory during task execution.
NROLL option is not specified, ROLL
default.

in and
If the

is the

specifies that the pure segment of a u- or
d-task can be shared when more than one copy
of the u-task is loaded. If this option is
not specified, the pure segment cannot be
shared. SEGMENTED is incompatible with OPTION
ETASK.

specifies that the pure segment of a u- or
d-task cannot be shared when more than one
copy of the u- or d-task is loaded. If the
SEGMENTED opt:. ion is not spec if ied, NSEGMENTED
is the default. NSEGMENTED is incompatible
with OPTION ETA5K.

3-41

3-42

SYSSPACE specifies the maximum amount of system space
that a task can use during execution. If this
option is not specified, the maximum system
space that can be used is 12,288 (X3000)
bytes.

decimal value is a 1- to 7-digit decimal number specifying
the maximum amount of system space.

hexadecimal
value

NSVCPAUSE

SVCPAUSE

TSW

status

st adr

TEQSAVE

is a 1- to 6-digit hexadecimal number
preceded by an X specifying the maximum amount
of system space.

specifies that SVC 6 is treated as a
no-operation (NaP) (applies to .BG tasks
only). If a background task issues an SVC 6,
the operating system ignores that call and
continues execution of the task. If this
option is not specified, the operating system
pauses the execution of a background task that
issues an SVC 6.

specifies that SVC 6 is treated as an illegal
SVC (applies to .BG tasks only). If an SVC 6
is issued by a background task, the operating
system pauses execution of that task. If the
SVC 6 PAUSE option for background tasks is not
specified, SVCPAUSE is the default.

sets the task status and starting address
fields of the task status word (TSW) in the
LIB. An OR operation is performed on the
status field in the LIB before the TSW is
loaded into the final TSW for the task image.
This option overrides any starting address
specified by ENTRY.

is a 1- to 8-digit hexadecimal number
indicating the initial setting of the status
field of the TSW in the LIB. If the asterisk
(*) is specified, the current TSW is reset to
zero. If status is not specified, the initial
setting of the status field is zero.

is a 1- to 6-digit hexadecimal number
indicating the starting address for the task.
This address overrides the starting address
specified when the task was assembled or
compiled as well as any starting address
specified by the ENTRY option.

informs the operating system whether or not
the register contents should be saved and
restored when the task enters or exits a task
event service routine. The parameters of this
option are:

48-005 FOO R02

UNIVERSAL

NUNIVERSAL

WC

NVFC

WD

48-005 FOO R02

• NONE - specifies that no register contents
are saved and restored by OS/32 when the
task enters or exits a task event service
routine.

• PARTIAL - specifies that only the register
contents that are used by the task event
service routine are saved and restored when
the task enters or exits the routine.

• ALL - specifies that all register contents
are saved by OS/32 when the task enters or
exits a task event service routine.

If this option is not specified, ALL is the
default.

allows a task to communicate with all the
other tasks in the system. If this option is
not specified, a task can only communicate
with other tasks having the same group ID as
the task.

specifies that a task can communicate with
only those tasks in the system having the same
group 10 as the task. If the universal
communication option is not specified,
NUNIVERSAL is the default.

turns on vertical forms control (VFC) for all
task I/O operations. If this option is not
specified, we is turned off for all task I/O
operations.

turns off VFC for all I/O operations. If the
VFC option is not specified, NWC is the
default.

NOTE

A task can override the NVFC and
VFC options for specific devices
or I/O operations by issuing the
appropriate SVC 1 or SVC 7. See
the OS/32 Supervisor Call (SVC)
Reference Manual for more
information on using SVC 1 and SVC
7 for VFC.

specifies the secondary storage file for a
virtual task. If this option is not
specified, VTM will allocate a temporary file
at run-time.

3-43

fd

VTM

n

WORK

nominal
workspace

3-44

is a file descriptor for a contiguous file
that must occupy a minimum of CTOP/256 minus
255 sectors (plus 256 sectors if fd is the
task image file). If the fd is the task image
file itself, the task image is destroyed at
run-time.

WARNING

IF OPTION VFD=fd IS SPECIFIED,
MULTIPLE COPIES OF THE SAME TASK
IMAGE CANNOT BE RUN.

specifies that a virtual task image is to be
built.

is a decimal number from 2 through 127
specifying the number of resident 64kb working
pages available fo~ task memory management.
If n is not specified, the default is 4.

specifies the number of bytes of main memory
that can be added to the root node by the LOAD
command for task workspace.

is a

NOTE

Hexadecimal numbers specified by
the WORK option must be preceded
by an X; e.g., X40000.

I- to 6·-digit hexadecimal or
7-digit decimal number indicating

I- to
the

workspace to be added if the workspace
parameter in the LOAD command is not
specified. If nominal workspace is not
specified by the WORK option, 80 bytes (X50)
wi 11 be added by LOAD.

The nominal workspace value is added to any
nominal workspace values specified by previous
OPTION WORK = commands to obtain the total
nominal workspace.

If an asterisk (*) is specified, the nominal
workspace is reset to zero. If only nominal
workspace is specified, the parentheses are
not required.

48-005 FOO R02

maximum
workspace

XSVCl

NXSVCl

Examples:

i~ a 1- to 6-digit hexadecimal or 1- to
7-digit decimal number indicating the maximum
amount of workspace that can be added by the
LOAD command. If the maximum workspace is not
specified, 256K (X40000) is the maximum number
of bytes that can be added. The maximum
workspace value is added to the maximum
workspace values specified by previous OPTION
WORK= commands to obtain the total maximum
workspace.

indicates that if the task issues an SVC 1
with bit 7 of the function code set, the
options specified by the SVC 1 extended option
field are to be executed for all drivers which
use this field. If XSVCl is not specified, an
SVC 1 with bit 7 set performs an image I/O
transfer. See the OS/32 Supervisor Call (SVC)
Reference Manual for more information on the
SVC 1 function code and extended options.

indicates that if the task issues an SVC 1
with bit 7 of the function code set, an image
I/O transfer is performed. If the XSVCl
option is not specified, NXSVCl is the
default. See the 05/32 Supervisor Call (5VC)
Reference Manual for more information on the
SVC 1 function code and extended options.

OPTION ACPRIVILEGE,NKEYCHECK,.ALIGN=4,
DFLOAT,LU=10,PRIORITY=(,200),
SYSSPACE=X4000,VFC,XSVCl,
WORK=(X100,XlOOO)

In this example, the task is to be linked as a u-task with
extended file access privileges and without key checking. All
object modules will be aligned to the nearest fullword boundary.
The task can execute double precision floating point instructions
and assign up to ten logical units. Maximum task priority is
200; initial task priority is 128. VFC is in effect for all I/O
operations. The options specified by the SVC 1 extended option
field are to be executed for all drivers that use this field.
The task can be loaded with a maximum workspace of 4,096 bytes.
If workspace is not specified in the LOAD command, the task wi.ll
be loaded with 256 bytes. Note that X precedes the hexadecimal
numbers in the WORK option. Maximum system space that can be
used by this task is 16,384 bytes.

48-005 FOO R02 3-45

OPTION DTABLES,ENTRY=(,DEBUG32)

In this example, the u-task is to be debugged using DEBUG/32.
OTABLES builds the required debug tables needed to run DEBUG/32
while ENTRY specifies the name of the entry point to the debug
task.

OPTION INTERCEPT,TEQSAVE=PARTIAL

This example shows the task options that apply to a u-task that
is to be linked with the SVC interception software. INTERCEPT
allows the u-task to intercept an SVC of another task.
TEQSAVE=PARTIAL indicates that all register contents used by the
task event service routine are to be saved and restored. See the
OS/32 System Level Programmer Reference Manual for more
information on SVC interception and the task event service
routine.

OPTION VTM=5,VFD=PROG1.VTM

This example shows the task options that apply when a u--task is
to run under the virtual memory manager. See Chapter 5. VTM
specifies that a virtual image is to be built; VPO specifies that
PROG1.VTM is to be used as a secondary storage file by the
virtual task.

OPTION FL,RES,LU=10,WORK=X3000,TSW=(,B020),APC,APM

This example shows the task options that can apply when the task
is to run on the APU of a Model 3200MPS System. The task can
execute single precision floating point instructions; is
resident; has a maximum of 10 logical units that can be assigned
to it; has a maximum workspace of X3000 bytes; has a starting
address field of XB020 in the LIB; can obtain APU control
privileges, and APU mapping privileges in a multiprocessor
system. The APC and APM options are valid on a Model 3200MPS
System only.

3-46 48-005 FOO R02

OVERLAY

3.18 OVERLAY COMMAND

The OVERLAY command is an active command that defines an overlay
area and specifies a level for the overlay.

Format:

Parameters:

overlay name

level

Functional Details:

is an a-character alphanumeric string
specifying the name of the overlay to be
loaded into main storage. The name . ROOT is
reserved for the root segment.

is a decimal number from 1 through 256
specifying the number of overlays between the
overlay being defined and the root
(inclusive). The number specified must be no
more than one greater than the previous level.
If this parameter is omitted, the default is
1.

This command is entered after all modules to be included in the
root segment have been specified. Object modules to be
positioned in an overlay area are included following the OVERLAY
command. The sequence of defining overlays must specify the
overlay and all its descendants before defining other overlays at
the same level. Overlayed tasks generated by Link result in
automatic loading of overlays (see Section 4.4). However,
user-controlled loading of overlays is done by using SVC 5. See
the OS/32 Supervisor Call (SVC) Reference Manual.

48-005 FOO R02 3-47

Example:

3-48

INCLUDE ROOT.OBJ
OVERLAY ONE, 1
INCLUDE A.OBJ

OVERLAY THREE, 2
INCLUDE D.OBJ
INCLUDE E.OBJ
OVERLAY FOUR,2
INCLUDE F.OBJ

OVERLAY TWO, 1
INCLUDE B.OBJ
INCLUDE C.OBJ

OVERLAY FIVE, 2
INCLUDE G.OBJ

48-005 FOO R02

-~---------
PAUSE

3.19 PAUSE COMMAND

The PAUSE command is an environment . command that pauses the
linkage editor.

Format:

UUSE

Functional Details:

The linkage editor can be continued by entering the OS/32
CONTINUE command.

48-005 FOO R02 3-49

I POSITION

3.20 POSITION COMMAND

The POSITION command is a passive command that repositions common
blocks into a node closer to the root segment than Link would
normally position them.

Format:

Parameters:

COMMON =

TO=

Functional Details:

name is a 1- to 8-character alphanumeric
string specifying the name of the common block
to be moved. If an asterisk (*) is specified,
all common blocks are moved.

node name is a 1- to 8-character alphanumeric
string specifying the name of the node to
which the blocks are to be moved. If this
parameter is omitted, the blocks are moved to
the overlay node in which the POSITION command
is encountered. If .ROOT is specified, the
blocks are moved to the root segment.

Normally, the placement of a common block within an overlayed
task is determined by placement of the locations that refer to
the block. A blank common is always positioned in . ROOT. A
named common block, however, is initially positioned by Link no
closer to the root than any particular reference to the block.

3-50 48-005 FOO R02

There are two consequences to this positioning policy. The first
is that named common blocks are initialized each time an overlay
is fetched from disk. The second consequence is that more than
one copy of a common entity can exist on separate paths in the
program; i.e., two or more overlays can have their own separate
and private copies of a common entity. These copies could then
contain different values.

Example:

ES TASK
INCLUDE ROOT
POSITION COMMON=(A,B)
OVERLAY OVLY1,1
INCLUDE SUBI
INCLUDE SUB2
OVERLAY OVLY2,1
INCLUDE SUB3

48-005 FOO R02 3-51

RESOLVE

3 • 21 RESOLVE COMMAND

The RESOLVE command is an active command that specifies the name
of a partial image to be referred to by the task image. The
partial image can be a global entity generated at the console by
the OS/32 TCOM command, a sharable segment created by Link ROO,
or a partial image created by Link ROI.

Format:

RESOLVE

Parameters:

fd

3-52

[fdJ [,NAME=package name]

,ACCESS= G ADDRESS =mO 0 0 OJ

~STRUCTURE= ~amel [(size l] ~ ... ,namen [lsizenJJ)]

GalZE= [min , max]]

is the file descriptor of the partial image.
If fd is not specified, the default partial
image is the global task common defined by the
TCOM command. If the file extension for a
partial image created by Link ROI is not
specified, the default extension is .IMG.
Because the default extension for sharable
segments created by Link ROO is .SEG, the file
extension should be specified when these
segments are resolved.

48-005 FOO R02

NAME =

package name

ACCESS=

48-005 FOO R02

NOTE

Link cannot get the size of a task
common segment defined by TCOM
from an image file; therefore,
when the partial image is a global
task common, the size of the
partial image must be specified by
the SIZE or STRUCTURE parameter in
the RESOLVE command ..

specifies the package name of the partial
image.. I f this parameter is omitted, fd must
be specified, and the default package name is
the package name assigned to the partial image
when it was established.. When the task is
loaded, the package name is matched against
the names of any partial images already in
main memory. If a partial image with the
specified package name is not found in memory
when the task is loaded, the package name is
converted into an fd which is then used to
locate and load a partial image ..

is a filename.ext that identifies the partial
image after it is loaded into memory. This
name is matched against either the name of the
global entity specified by TCOM or the package
names of sharable segments or partial images.

specifies the access privilege of the partial
image as follows:

R

E

RE

RW

specifies that the task can read data
within the partial image.. Execution
or modification of data is not
allo~,ed ..

specifies that the task can execute
code within the partial image but
cannot read or modify data within the
image.

specifies that the task can read data
and execute code within the partial
image. Modification of data is not
allowed. If the ACCESS= parameter is
omitted, the default is RE.

speci.fies that the task can read and
modify data within the partial image.
Code execution is not allowed.

3-53

ADDRESS =

STRUCTURE=

RWE specifies that the task can read and
modify data and execute code within
the partial image.

mOOOO is the starting address of the partial
image. If the RESOLVE command specifies an fd
for a partial image that is not
address-independent, the specified address
must match the address specified in the LIB of
the partial image. If ADDRESS = is not
specified, and the address was not specified
when the partial image was established, Link
automatically assigns an address to the
partial image. The variable m is a
hexadecimal number in the range from D through
BF.

structures task common blocks
partial image specified by fd.
specified, this parameter is used
global task common defined by
command.

within the
If fd is not
to structure

the TCOM

name1 ... namen is an 8-character alphanumeric string
specifying the name of the task common block
to be structured.

size1 ... sizen is a 1- to 6-digit hexadecimal number or a 1-
to 7-digit decimal number specifying the
length in bytes of the task common block.
(Hexadecimal numbers must be preceded by an X;
e.g., XFD.) This number must be greater than
or equal to the size of the task common block
specified by the program. If this number is
smaller than the size specified by the
program, Link outputs a warning message and
uses the size specified by the program. The
program size is also used if this parameter is
omitted.

SIZE= specifies the minimum and maximum number of
bytes of main memory that the partial image
can occupy. If SIZE= and fd are not
specified, the default size of the partial
image is that specified by the STRUCTURE
parameter. If SIZE is not spec if ied but fd
is, the default size of the partial image is
the si~e obtained form the LIB of the partial
image specified by fd.

min is a 1- to 6-digit hexadecimal number or a I­
to 7-digit decimal number specifying the
minimum number of bytes of main memory that
the partial image can occupy. (A hexadecimal
number must be preceded by an X; e.g., XFD.)

3-54 48-005 FOO R02

max

Punctional Details:

is a 1- to 6-digit hexadecimal number or a 1-
to 7-digit decimal number specifying the
maximum number of bytes that the partial image
can occupy. If the max is less than the min,
Link will replace max with min and continue
without displaying an error message. If a
hexadecimal number is specified, it must be
prefixed with an X.

When Link resolves an external reference against a partial image,
all of the segments within that partial image are involved. At
least one segmentation register is reserved in the image being
built for each segment in the partial image. It is assumed that
a partial image requires all of its segments, even though the
image making the references does not call entry points in each
segment of the partial image.

Each entry point to the partial image is entered into the symbol
table which Link creates as it processes the commands and builds
the image~ All entry points are entered into the symbol table
whether or not the entry symbol is ever referred to by the image
being built. If a partial image is never referred to, Link may
delete it from the table before the map is produced.

When the task making references to the partial image is loaded,
the user-specified minimum and maximum size values are compared
with the actual size of the partial image. If the actual size is
smaller than the specified minimum value, a message is displayed
and the task is not loaded. If the actual size is larger than
the specified maximum value, only the specified maximum value is
available. If the partial image refers to other partial images,
these references are automatically included in the image's LIB.
These secondary references need not be specified again by the
RESOLVE command.

48-005 FOO R02 3-55

Examples:

3-56

ESTABLISH lMAGE,NAME=SEGMENT.ACC,ACCESS=RW
I NCLUDE COM}{
BUILD COM}{
END

ESTABLISH TASK
RESOLVE COMX,STRUCTURE=(COMX/XOA)
INCLUDE PROGl
BUILD PROGl
END

ESTABLISH lMAGE,NAME=SEGMENT.ACC,ACCESS=RE,ADDRESS=EOOOO
INCLUDE LIBl
INCLUDE LIB2
BUILD LIBX
END

ESTABLISH TASK
RESOLVE LIBX
INCLUDE PROGl
BUILD PROGl
END

48-005 FOO R02

REWIND

3 • 22 REWIND COMMAND

The REWIND command is an environment command that rewinds a
magnetic tape or contiguous file4

Format:

REWIND fd

Parameters:

fd

Example:

REWIND MAG 1 :

48-005 FOO R02

is the file descriptor of the device or file
to be rewound.

3-57

TITLE

3.23 TITLE COMMAND

The TITLE command is an environment command that specifies the
heading to be printed at the top of all maps.

Fo:cmat:

Parameters:

title

Functional Details:

is a 1- to 60-character alphanumeric string
specifying the title to be printed at the top
of all maps. If the title contains a blank,
comma, or semicolon, the title must be
enclosed within single quotation marks (').
If this command and this parameter are not
specified, no title is printed at the top of
the maps.

The TITLE command remains in effect until a subsequent TITLE
command is specified.

Examples:

TI PERKIN-ELMER
TI 'DEPARTMENT 3086'

48-005 FOO R02

VOLUME

3.24 VOLUME COMMAND

The VOLUME command is an environment command that specifies the
volume to be used by the linkage editor when no volume is
specified in an fd.

Format:

~LUME [vo In]

Parameters:

voln

Functional Details:

by the
If this
default

input

is the name of the volume to be used
linkage editor as the default.
parameter is omitted, the current
volume is displayed on the command
device.

The VOLUME command remains in effect until a subsequent VOLUME
command is specified.

Example:

VO M300

48-005 FOO R02 3-59

WFILE

3.25 WFILE COMMAND

The WFILE command is an environment command that writes a
filemark on a magnetic tape or contiguous file.

Format:

Parameters:

fd

n

Example:

WF MAGI:, 2

3-60

is the file descriptor of the device or file
to which a filemark is to be written.

is a decimal number specifying the number of
filemarks to be written. If this parameter is
omitted, 1 is the default.

48-005 FDD RD2

4.1 INTRODUCTION

CHAPTER 4
USING LINK

This chapter provides examples of Link command sequences used to
build task and operating system images. See Chapter 3 for
detailed information on the Link commands.

4.2 BUILDING A TASK IMAGE

The following example builds a task image from an object module
called MODl.OBJ produced by the common assembly language (CAL)
assembler. MOD1.OBJ has no external references.

Example:

ES TASK
INCLUDE MODl
MAP PR1:
BUILD MODl
END

The INCLUDE command specifies that all the object modules in the
input file MODl.OBJ are to be included in the image. The file
extension .OBJ is the default extension for the INCLUDE command.
Because INCLUDE is an active command, it is executed immediately.

The MAP command specifies that an es~ablishment summary is to be
output to PRl:. The MAP command is a passive command that is
executed only when the BUILD command is entered.

The BUILD command builds the image and stores it in file
MODI.TSK. The file extension .TSK is the default extension for
the BUILD command. The BUILD command is an active command that
is executed immediately.

The END command is an active command that terminates the linkage
editor.

48-005 FOO R02 4-1

4.3 BUILDING FORTRAN, COBOL, AND COMMON ASSEMBLY LANGUAGE (CAL)
TASK IMAGES

This section provides examples for building COBOL, FORTRAN and
CAL task images, linking subroutine libraries, outputting Link
maps, using the OPTION command, and imbedding Link commands in
object modules.

4.3.1 Building a COBOL Task Image

The following example builds a task image from the COBOL object
module MOD2.0BJ containing external references. The task image
is to include the single precision floating point capability. A
map is to be generated listing the names and locations of all
modules and entry points in address order.

Example:

ES TASK
INCLUDE MOD2
LIBRARY COBOL. LIB
OPTION FLOAT
MAP PRl:, ADDRESS
BUILD MOD2.TSK
END

The INCLUDE command specifies that all the object modules in the
input file MOD2.0BJ are to be included in the image.

The LIBRARY command specifies that the COBOL run-time library
(RTL) file COBOL.LIB is to be searched, and any routines that
contain entry points matching external references are to be
included in the task image. The LIBRARY command is a passive
command that causes the specified library to be searched when the
image is built.

The OPTION command specifies that the single precision floating
point capability is to be included as part of the task image.

The MAP command specifies that an establishment summary and a
listing of the names and locations of all modules and entry
points in address order are to be generated.

The BUILD command builds the task image and stores it in file
MOD2.TSK.

The END command terminates the linkage editor.

4-2 48-005 FOO R02

4.3.2 Building a FORTRAN Task Image

The following example builds a task image from the FOR/fRAN object
module MOD3.0BJ containing external references. The image is to
include both single and double precision floating point
capabilities and additional workspace for the user and
Perkin-Elmer standard RTLs.

Both cross-reference and alphabetic Link maps are to be output to
the printer.

Example:

INCLUDE MOD3
LIBRARY USERLIB,F7RTL
OPTION DFLOAT,FLOAT,WORK=XAOO
MAP PR1:,ALPHABETIC,XREF
BUILD MOD3
END

The INCLUDE command specifies that the object modules in the
input file MOD3.0BJ are to be included in the image.

The LIBRARY command specifies that the user library file
USERLIB.OBJ and Perkin-Elmer FORTRAN RTL file F7RTL.OBJ are to be
searched in the order that th1ey are named and that any routines
containing entry points matching external references are to be
included in the task image.

The OPTION command specifies that the single and double precision
floating point capabilities and additional workspace for the RTLs
are to be included as part of the task image.

The MAP command generates an establishment summary, an alphabetic
map listing the names and locations of all modules and entry
points and a cross-reference map of all entry points and modules
referencing them.

The BUILD command builds the task image and stores it in file
MOD3.TSK.

The END command terminates the linkage editor.

4.3.3 Building a Common Assembly Language (CAL) Task Image Using
Embedded Link Commands

The following example builds a task image from the CAL object
module, MOD4.0BJ, containing external references and imbedded
Link commands. The image will include single and double
precision floating point capabilities. An establishment summary
and cross-reference and alphabetic maps are to be output to the
printer.

48-005 FOO R02 4-3

Execution of all imbedded Link commands in MOD4 is disabled by
the NDCMO command; Link commands imbedded in the user library are
enabled by the DCMO command. Two commands are entered on one
line separated by a semicolon. Comment lines are specified by
preceding each comment with an asterisk.

Example:

NDCMO;*IGNORE IMBEDDED COMMANDS IN MOD4
INCLUDE MOD4; LIBRARY USERLIB
OPTION DFLOAT,FLOAT,WORK=XAOO
MAP PRl:,ALPHABETIC,XREF
DCMD;*PROCESS IMBEDDED COMMANDS IN LIBRARY MODULES
BUILD MOD4
END

Link accepts passive commands that have been compiled or
assembled into an object module. These commands are treated as
if they occurred at the point where the module is included.
Therefore, passive commands imbedded in object modules specified
by an INCLUDE command are treated as if they were entered
immediately after the INCLUDE command. Commands imbedded in
object modules specified by a LIBRARY command are treated as if
they were entered immediately before the next BUILD command. The
NDCMD command causes all subsequent imbedded commands to be
ignored and the DCMO command enables this feature.

4.4 BUILDING OVERLAYED TASK IMAGES

This section discusses building overlayed task images using
subroutines, root segments, overlay areas, root nodes, and
overlay nodes. The overlay feature allows a task to be broken
into sections so it can be executed using less main storage than
its total size.

4.4.1 Building a Simple Overlayed Task Image

The following example builds a task image from the object file
MOD5.0BJ which consists of a main program that calls three
subroutines (SUBA, SUBB, and SUBC). These subroutines do not
reference each other and overlay 10kb of the same main storage
area if each subroutine is loaded only when needed. The main
program occupies lOkb of memory, while the largest overlay
occupies lOkb of memory which is a total of 20kb for the whole
task. This task would occupy 40kb of memory without using the
overlay feature. The MAP command specifies that an establishment
summary and address map are to be generated. All the routines
are contained in file MOD5.0BJ.

4-4 48-005 FOO R02

Example:

INCLUDE M300:MODS.OBJ,MSP
OVERLAY A
INCLUDE ,SUBA
OVERLAY B
INCLUDE ,SUBB
OVERLAY C
INCLUDE ,SUBC
MAP PRl:, ADDRESS
BUILD MODS
END

The first INCLUDE command specifies that the object module MSP in
the input file MODS.OBJ is to be included in the image 4 Because
MSP is not specified by an OVERLAY command, it is placed in the
root node.

The first OVERLAY command defines an overlay area named A. The
INCLUDE command specifies that the object module called SUBA is
part of overlay A. It is contained in the object file most
recently specified in an INCLUDE command (MODS.OBJ), and it will
be automatically loaded into memory when MODS calls SUBA if it is
not already in memory.

The second OVERLAY command defines an overlay area named B. The
INCLUDE command specifies that the object module called SUBB is
part of overlay B and will be automatically loaded into the same
memory area previously occupied by overlay A, if SUBB is not
already loaded when MODS calls it.

The third OVERLAY and INCLUDE commands define an overlay area
named C and include the object module called SUBC as part of
overlay c.

The MAP command specifies that an establishment summary and a
listing of the names and locations for each overlay are to be
produced in address order.

The BUILD command builds the image called MODS.TSK which consists
of a root segment and an overlay area large enough to contain the
largest overlay (A, B, or C).

The END command terminates the linkage editor.

48-005 FOO R02 4-5

4.4.2 Building a More Complex Overlayed Task Image

The following example builds an overlayed task image from the
object file MOD6.0BJ which consists of a main program that calls
two subroutines (SUBA and SUBB). Subroutine SUBA calls two more
subroutines (SUBAI and SUBA2). Subroutine SUBB also calls two
more subroutines (SUBBI and SUBB2). In addition to SUBA and SUBS
overlaying each other, SUBAI and SUBA2 are to be overlayed when
SUBA is in memory. SUBB calls SUBBI and SUBB2, and SUBBI and
SUBB2 are to be overlayed when SUBB is in memory. This overlay
process can be accomplished by using another level of overlay
areas. Figure 4-1 illustrates the overlay structure for this
example.

Level
1

1 LFP :
I (root node) I

-------------1-------------

1 SUBA 1
1 (node A) I

------1------

: SUBB :
I (node D) I

------1--------

Level I SUBAl I I SUBA2 1
I (node C) :

I SUBBl I
: (node E) I

I SUBB2 I
I (node F) I 2 : (node B) :

Figure 4-1 Sample Overlay Structure

A path is defined as a set of nodes (a group of routines loaded
at one time is a node), one at each level, each of which is a
descendant of the node at the previous level. For example, node
D and node E form a path. Only nodes in the same path can be in
memory at the same time and, therefore, a routine can only call
routines in nodes that are in the same path as the node
containing the calling routine.

4-6 48-005 FOO R02

The overlay nodes can be different sizes, and the total overlay
area required at anyone time is the total size of all the nodes
in the current path. The size of the overlay area for the task
is determined by the path requiring the largest overlay area.

In the following example all subroutines are
MOD6.0BJ. utility routines called in
USERLIB.OBJ.

Example:

INCLUDE M300:MOD6.0BJ,LFP
OVERLAY A, I
INCLUDE ,SUBA

OVERLAY B,2
INCLUDE ,SUBAI
OVERLAY C,2
INCLUDE ,SUBA2

OVERLAY 0, I
INCLUDE ,SUBB

OVERLAY E,2
INCLUDE ,SUBBI
OVERLAY F, 2
INCLUDE ,SUBB2

LIBRARY USERLIB
MAP PRl:, ADDRESS
BUILD MOD6
END

contained
the task

in file
are in

The INCLUDE command specifies that the object module LFP in the
input file MOD6.0BJ is to be included in the image. LFP resides
in the root node.

The first OVERLAY command defines an overlay area named A with a
depth level of one. The INCLUDE command specifies that the
object module called SUBA is part of overlay A. All descendants
of overlay A must be specified before any other overlays with a
depth level of one are defined.

The second and third OVERLAY commands define overlay areas named
Band C with a depth level of two which indicates that these
overlays are descendants of overlay A.

The fourth OVERLAY command defines an overlay area named D with
a depth level of one.

The fifth and sixth OVERLAY commands define overlay areas named
E and F with a depth level of two, indicating that these overlays
are descendants of overlay D.

48-005 FOO R02 4-7

The LIBRARY command specifies that the user library file
USERLIB.OBJ is to be searched for any routines containing entry
points matching unresolved external references. These entry
points are to be included in the overlay structure being built.
If a particular overlay area contains external references to a
routine in the user library, a copy of that routine is placed in
the referencing overlay area unless that overlay area is a
descendant an overlay area already containing a copy of the
requested routine.

If modules SUBAl and SUBA2 refer to a routine called TAG located
in the user library, a copy of routine TAG is included in overlay
areas Band C. However, if modules SUBB and SUBBI reference
routine TAG, a copy of the routine is only included in overlay
area D. If the main program LFP MOD6 references routine TAG, a
copy of the routine is only included in the root segment
regardless of any other overlay areas referring to it. However,
if two copies of a routine are to be included in two overlay
areas (one being a descendant of the other), each routine must be
explicitly included by the INCLUDE command.

The MAP command specifies that an establishment summary and a
listing of the names and locations for each overlay in address
order are to be generated.

The BUILD command builds the image which consists of the root
segment, overlay areas, and the subroutines.

The END command terminates the linkage editor.

4.4.3 Moving Common Blocks

Normally, the placement of common blocks in a task is determined
by the locations of references to them. For example, if ALPHA is
a common block referred to by routines in a pa.rticular node,
ALPHA is included in that node.

If ALPHA is referred to by routines in more than one overlay
node, ALPHA is included in the numerically lowest level node of
the path in which each node refers to ALPHA. This is subject to
the restriction that reference to ALPHA is not made in a
numerically higher level node than the one in which ALPHA is
placed.

If SUBAl and SUBA2 both reference ALPHA, ALPHA is placed in node
A. If routines SUBA2 and SUBBI reference ALPHA, ALPHA is placed
in the root node.

In some cases, it is desirable to place a common block in a node
other than one that makes reference to it. For example, placing
a common block in the root node prevents the data in it from
being reinitialized each time the node which makes reference to
it is loaded.

4-8 48-005 FOO R02

The following example moves a common block called BETA, which is
referred to by routines in modules SUBA2 and SUBBl in Figure 4-1,
to the root node in the overlay structure by using the POSITION
command.

Example:

INCLUDE M300:LFP.OBJ,MOD6
OVERLAY A,l

LIBRARY USERLIB
POSITION COMMON=BETA,TO=.ROOT

END

The POSITION command in the above example specifies that the
common block named BETA is to be placed in the root node. Only
one copy of a common block can occur in a task. An error results
if an attempt is made to position a common block in a node that
is at a numerically higher level or is not in the same path as
the node in which it would normally be placed.

4.5 BUILDING PARTIAL IMAGES

Partial images, such as blockdata modules and RTLs, must be
separately built by Link to be used or referenced by established
tasks. The following example includes two blockdata object
modules called BDALPHA.OBJ and BDBETA.OBJ to initialize common
blocks called ALPHA and BETA.

This example also includes an object file called F7RTL.OBJ to be
included in a second partial image that includes local and
external entry points.

Example:

ESTABLISH IMAGE,ACCESS=RW,NAME=COMMONS
INCLUDE BDALPHA.OBJ
INCLUDE BDBETA.OBJ
EXTERNAL ALPHA, BETA
BUILD COMMONS.IMG
*THIS COMMAND SEQUENCE STARTS THE SECOND BUILD
ESTABLISH lMAGE,ACCESS=RE,ADDRESS=FDOOD
INCLUDE F7RTL.OBJ
LOCAL .DI,.DO,.TGD,.TASKID,.HYDEX,.HYEXP
BUILD F7RTL. IMG
END

48-005 FOD R02 4-9

The first ESTABLISH command specifies that the partial image to
be built is called COMMONS.IMG with read/write access privileges.
The ACCESS and NAME parameters provide information that is
verified against the parameters specified in a RESOLVE command
for a task making reference to the partial image. For example,
if a RESOLVE command in a task referring to the partial image
specifies read-only access, the access is allowed because it is
a subset of the maximum access privileges specified in the
previous example. A request for execute access is rejected.

The first two INCLUDE commands include the blockdata object
modules called BDALPHA.OBJ and BDBETA.OBJ.

The EXTERNAL command specifies that the two common blocks ALPHA
and BETA can be referred to by tasks outside the partial image.

Normally, common blocks are considered local. Note that either
the STRUCTURE parameter in a subsequent RESOLVE command in the
task making reference or the EXTERNAL command, not both, are
required to match external references to the common with the
initialized common blocks in COMMONS. The EXTERNAL command is
passive.

The first BUlrD command builds the partial image and stores it in
file COMMONS.IMG.

The second ESTABLISH command specifies that a partial image,
F7RTL.IMG, is to be built with read-execute access privileges
only. The ADDRESS parameter specifies that this segment is to
start at XFOOOO in the address space of any task which references
it. If the ADDRESS parameter is not specified, or the task
making reference does not specify an address in the RESOLVE
command, Link automatically locates the partial image within the
address space of the task making reference.

The third INCLUDE command includes all the FORTRAN RTL routines
in F7RTL.OBJ in the partial image to be built.

The LOCAL command prevents the
.TASKIO, .HYDEX, and . HYEXP
outside the partial image.

entry points .01, .00, .TGO,
from being referred to by tasks

The second BUILD command builds the partial image and stores it
in file F7RTL.IMG.

The END command terminates the linkage editor.

The operator TCOM command creates common areas within the
system's task space. A task can use this common area instead of
the partial image. See the OS/32 Operator Reference Manual for
an explanation of the TCOM command.

4-10 48-005 FOO R02

4.6 BUILDING A TASK IMAGE REFERRING TO PARTIAL IMAGES

OS/32 allows multiple tasks to share a single copy of a partial
task. In particular, shared common blocks allow data to be
shared or communicated among tasks. Shared copies of RTLs allow
more efficient use of main memory.

The following example builds a FORTRAN task image. MOD7.0SJ is
a FORTRAN program that refers to two partial images, COMMONS and
F7RTL. COMMONS contains two common blocks, DELTA and GAMMA.
F7RTL contains the Perkin-Elmer FORTRAN RTL.

Example:

INCLUDE MOD7
RESOLVE COMMON.IMG,NAME=COMMONS,ACCESS=R,
CONTINUE>STRUCTURE=(DELTA/X1000,GAMMA/X80)
RESOLVE F7RTL.IMG
MAP PRl:,ADDRESS
BUILD MOD7
END

The INCLUDE command specifies that the object module MOD7.0SJ is
to be included in the image.

The first RESOLVE command specifies that COMMON.IMG is the file
containing a partial image called COMMONS, which consists of the
two common blocks DELTA and GAMMA. The access privileges are
read-only. Because a comma is the last cha.racter entered on the
line, the CONTINUE> prompt is displayed in interactive mode and
the remaining parameters are entered. The STRUCTURE parameter
specifies that the first 4,096 bytes of the partial image COMMONB
are to be allocated for the common block DELTA. The next 128
bytes after the first 4,096 bytes are to be allocated for the
common block GAMMA. The parame'ters in the RESOLVE command are
compared with the information in the file COMMON.IMG. Any
information not provided by the parameters is taken from the file
or defaulted. At run-time, the preinitialized partial image is
loaded from the file.

The second RESOLVE command specifies that another partial image
is to be loaded from the file F7RTL.IMG. All of the other
parameters default to information contained in the file.

The MAP command specifies that an establishment summary and a
listing of the names and locations of all modules and entry
points in address order are to be generated.

48-005 FOO R02 4-11

The BUILD command builds the task image and stores it in the file
MOD7.TSK. The partial images are referenced to resolve external
references and to determine the placement of cornmon blocks. The
partial images are stored as separate image files and are not
included as part of the task image that references them.

The END command terminates the linkage editor.

4.7 BUILDING AN OPERATING SYSTEM IMAGE

The following example builds an operating system image from the
object module MTSYSTEM.OBJ produced by the library loader.
MTSYSTEM.OBJ contains no external references. A map is to be
generated listing the names and locations of all symbols, tasks,
and entry points in alphabetical and address order.

Example:

ESTABLISH OS
INCLUDE MTSYSTEM.OBJ
MAP PRl:,ADDRESS,ALPHABETIC
BUILD OS32ROn.000
END

The ESTABLISH command specifies that an operating system image is
to be built.

The INCLUDE command specifies that the input file MrSYSTEM.OBJ
contains the object module to be included in the image.

The MAP command specifies that an establishment summary and a
listing of the names and locations of all modules and entry
points in alphabetical and address order are to be generated and
sent to PRl:.

The BUILD command builds the operating system image and stores it
in the file OS32ROn.000 which can be loaded into memory by the
bootstrap loader or the loader storage unit (LSU).

The END command terminates the linkage editor.

4-12 48-005 FOO R02

CHAPTER 5
VIRTUAL TASK MANAGEMENT (VTM)

5.1 INTRODUCTION

The VTM provides a user-transparent virtual memory capability for
large FORTRAN tasks. User tasks (u-tasks) consisting of up to
16Mb of code and data can execute in as little as l28kb of user
task memory. VTM also supports common assembly language (CAL)
and PASCAL programs with some code restrictions.

VTM uses the memory address translator (MAT) to optimize run-time
performance. It contains run-time algorithms to provide
performance for the widest possible scope of u-task
characteristics. VTM employs a least recently used working set
algorithm. The virtual activity of a VTM task is independent of
the operating system and does not impact other tasks in the
system. VTM tasks are nonrollable by default but can be made
rollable ..

5.2 SYSTEM REQUIREMENTS

The minimum requirements for use of this feature are any
Perkin-Elmer processor equipped with MAT hardware, and OS/32 6.2
and higher.. Perkin-Elmer processor Models 7/32, 8/32, and 3220
are not supported ..

5.3 USER INTERFACE TO VIRTUAL TASK MANAGEMENT (VTM)

The following sections describe how to use VTM.

5.3 .. 1 Declaring a Virtual Task Management (VTM) Task

The user declares a virtual task at Link via the Link OPTION
command:

OPTION VTM[=nJ

where n is the number of 64kb working pages desired for task
memory management.

48-005 FOO R02 5-1

The minimum value of n is 2, the default is 4, and the maximum is
127. The number of working pages needed for reasonable
performance varies depending upon the user's applications and
needs.

NOTE

The VTM option and the Link overlay
feature are incompatible and must not be
used in the same task.

5.3.2 Virtual Task Management (VTM) Secondary storage

An additional option may also be specified via the Link OPTION
conunand:

OPTION [VFO-fd]

where fd is a contiguous file to be used as secondary or external
storage for the virtual task.

If the VFO option is not entered, VTM allocates a temporary file
at run-time.

The specified file descriptor (fd) may be the task image file
itself, in which case the task image file might be destroyed at
run-time. When OPTION VFO is specified, multiple copies of the
same task image cannot be run concurrently. The fd must be a
mlnlmum of CTOP divided by 256 minus 255 sectors (plus 256
sectors if fd is the task image file).

5.3.3 Including the Virtual Task Management (VTM) Module

Prior to including any task modules, the user must include the
VTM object module supplied with the operating system package.
The VTM module is approximately 8kb in size.

5.3.4 Virtual Task Management (VTM) Task Workspace

All logical workspace required for the execution of a virtual
task must be requested at Link time via the WORK option of the
Link OPTION conunand. Additional memory cannot be obtained via
the LOAD conunand.

5-2 48-005 FOO R02

5.3.5 Example of Virtual Task Management (VTM) Link Procedures

The following Link command sequence ,demonstrates how to build a
VTM task.

Example:

OPTION VTM=5
OPTION DFLOAT,FLOAT,WORK=X3000
INCLUDE VTM32
INCLUDE MAIN
INCLUDE SUB1
INCLUDE SUB2
LIBRARY F7RTL
MAP PR:
BUILD FORTTASK
END

FORTTASK executes in five working pages, using a temporary file
as secondary storage.

5.3.6 Virtual Task Managment (VTM) Logical Units

For a VTM task, the two highest numbered valid task logical units
are reserved for VTM use. For example, if OPTION LU is not
specified, logical units 13 and 14 are reserved for VTM.

5.3.7 Rolling of Virtual Task Management (VTM) Tasks

VTM tasks are nonrollable by default. A user can specify roll
eligibility after loading and before starting the task by
modifying the memory location which specifies roll eligibility.

Example:

MOD 104,1

5.3.8 Absolute Code

Absolute-original code or data cannot extend beyond X'400' in a
VTM task.

48-005 FOO R02 5-3

5.4 FORTRAN OPERATIONAL RULES

The following FORTRAN operational rules are for the VTM feature:

• The u-task workspace requested by the WORK option should not
exceed 64kb in a virtual task. Input/Output (I/O) transfers
are limited to 64kb.

• Nonlanguage I/O calls made through the use of SYSIO fall under
the CAL coding restrictions.

5.5 COMMON ASSEMBLY IANGUAGE (CAL) RESTRICTIONS

SVC 1 I/O buffers and SVC parameter blocks should not
logical 64kb boundaries to ensure proper execution.
suggested that the buffers be placed in the first 64kb
task to avoid this possibility.

5.6 PASCAL CODE RESTRICTIONS

cross
It is

of the

To ensure proper execution, file variables should be declared
before any other variables in the global variable declarations of
the main program. The total size of the file buffers, plus 80
bytes of control data for each file, should not exceed 64kb.

5 . 7 PERFORMANCE MEASUREMENT

The user can analyze the relative performance of a virtual task
with different numbers of working pages using the data available
in the OS/32 DISPLAY ACCOUNTING command.

NOTE

Certain tasks, by their nature, do not
perform well in a virtual environment.
Tasks with extensive compute bound array
access in which a working set cannot be
contained in the number of specified
working pages might operate poorly as VTM
tasks.

5.8 VIRTUAL TASK MANAGEMENT (VTM) ERROR CONDITIONS

All VTM error conditions result in the u-task being cancelled
with end of task code 1 or one of the end of task codes explained
in Table 5-1. A summary of VTM error messages is presented in
Appendix c.

5-4 48-005 FOQ RQ2

TABLE 5-1 VIRTUAL TASK MANAGEMENT (VTM) END OF TASK CODES

END OF I
TASK CODE I MEANING
===========-=========~_== ______ =============2~

00 SVC address error

01 Execute protect error

02 Write protect error

03 Read protect error

04 Access level error

07 Shared segment table size error

08 Private segment table size error

48-005 FOO R02 5-5

APPENDIX A
LINK COMMAND SUMMARY

.BUILD fd

DC~[{~}J

..
.os.

E

ESTABLISH .llfAGE [ACCESS= •][ADDRESS= {mO~OO}]
RW

RWE

[,NAME-package name]

EXTERNAL common block name 1 E ... ,common block name n]

aILE fd [{.~ .. }J I

48-005 FOO R02 A-I

[[{mOdUle1}] [{mOdUlen}], ... ,mOdUlex]
lllCLUDE [fdJ ' . -

* *

L.l.BRARY fd 1 E ... , fd nJ
LOCAL entry point1 ~ ... ,entry pOintn]

LOG fd

NDCMD

NLOG

OETION [AaSOLUTEiJ;~~}] [{:::;:G}] [{:;~:~;:E}J
[ALlGN-t~ue}] [{::;;;}] [{~PPING ,}]

[{::;l}J [{=;~}] [{~}] [{~}J
[(::;~}J [{:::S}] [EHTRY=(main entry,debug entry)]

[{~:., .. ,.,T. ~ ~ ".}J [{ .. E.L , "' .. O ... ,.A,, ,T, lJ [{llIT E ... ,R .. C, E., .. P .. T .. , :}] ['.lQBLOCKSj~ ... l] ~K ,~~T)w.NTERCEPT. . lRf

[{:::;K}] [LU-~;}J [LPU-tp~oc}] U=}]
[~~,pri~U [{mpri}]J~ [{.RESIDENT}] [{HRQLL}] ,.fBI ORI TY- , , ,

~T ·,,:~'r .: ·Ii : ;:,1 II. "",IIIm'."~

A-2 48-005 FOO R02

[{
leVel}]

.mlERLAY over lay name '1\

.E.AUSE

RESOLVE [t'dJ [,NA,ME=package name]

,ACCESS= GADDRESS-mOOOOJ

~STRUCTURE= ~amel I!size lJ ~ ... ,namen I!sizenJJ)]
~s..lZE= [min ,max]]

REWIND fd

TITLE title

YQLUME [VO In]

48-005 FOO R02 A-3

APPENDIX B
LINK MESSAGE SUMMARY

ADDRESS OVERFLOW AT xxxxxx

A halfword relocatable address was larger than 64kb.

ATTEMPT TO POSITION x IN A DIFFERENT PATH

An attempt was made to position a common block to a node that
is not in the same path as is the node referring to i~.

ATTEMPT TO POSITION x IN LOWER LEVEL NODE

An attempt was made to reposition a common block program in
a lower level node.

ATTEMPT TO REFERENCE ADDRESS number
ADDRESS OUTSIDE OF ADDRESS SPACE FOR IMAGE
-FILE: vol:filename.ext/a -MOIJULE:module
-RECORD:number - BYTE:number

The task image being built refers to an address outside the
address space of any of the known segments or partial images
of the task. This message identifies the file, module,
record number, and byte number of the object code that caused
the error.

BUILD NOT SUPPORTED ON THIS DEVICE

A file other than an indexed, nonbuffered indexed, contiguous
or extended contiguous file, or the null device was specified
for building the image.

48-005 FOO R02 B-1

CHECKSUM ERROR FILE: X MODULE: y RECORD: z

An invalid checksum was detected while reading an object
file.

COMMAND NOT PERMITTED

Command is not valid for the type of build or is not
permitted in a common assembly language (CAL) object module.

COMMON x ENCOUNTERED IN MORE THAN ONE PARTIAL IMAGE

The same common block was specified in more than one of the
partial images referred to by the task.

COMMON BLOCK x, UNREFERENCED

The common block named was never referred to.

COMMON BLOCK x SPECIFIED IN POSITION COMMAND IS PART OF PARTIAL
IMAGE

An attempt was made to reposition a common block that was
part of a partial image by using the POSITION command.

CONTINUATION NOT PERMITTED

An attempt was made to continue a command imbedded in the CAL
object code.

ENTRY POINT x SPECIFIED IN ENTRY OPTION NOT FOUND

The ENTRY parameter of the OPTION command specified a
nonexistent entry point or an entry point in other than the
root node.

ENTRY POINT x SPECIFIED IN LOCAL COMMAND NOT DEFINED

The entry point named was never defined.

B-2 48-005 FOO R02

ESTABLISHMENT ABORTED

A serious error occurred that prevented the image from being
built. Link is cleared as if an image was built with all
options reset to initial load values.

EXTERNAL REFERENCE TO OVERLAY CONTAINS OFFSET AT xxxxxx

An external reference with offset cannot be resolved because
the corresponding entry point is an overlay.

EXTRA RIGHT PARENTHESIS

Either an extra right parenthesis or a
parenthesis was encountered.

fd IS NOT A PARTIAL IMAGE

missing left

The file descriptor (fd) specified by the RESOLVE command is
not a partial image.

fd NOT FOUND

An assignment error occurred when Link attempted to assign
the specified file.

INSUFFICIENT WORK SPACE

Link was not loaded with en'ough workspace. It will return to
command mode, clear itself as if an image had been built with
all options reset to initial load values.

INVALID CHARACTERS IN NAME

Invalid characters in an entry point, common block, or
overlay node name were encountered.

INVALID COMBINATION OF OPERANDS

A particular combination of operands was invalid.

48-005 FOO R02 B-3

I NVAL I 0 COMMAND

An invalid command was specified.

INVALID DELIMITER

A delimiter that was unknown was found at the end of a
parameter or where a parameter should have been.

INVALID FILE-DESCRIPTOR

A syntax error occurred in the specified fd.

INVALID KEYWORD

Misspelled keyword.

INVALID NUMERIC VALUE

A numeric value was expected but was not encountered.

INVALID PARAMETER

An invalid parameter was specified in a command.

INVALID PARAMETER LENGTH

The length of the value of an operand was longer or shorter
than expected.

INVALID POINTER TO LOCATION xxxxxx ENCOUNTERED IN
REFERENCE CHAIN FOR xxxxxx AT LOCATION xxxxxx
THIS INVALID POINTER ERROR OCCURRED IN
- F I L,E: vo 1: filename. ext/ a - MODULE: modu le
- RECORD: number - BYTE:number

8-4

Link encountered an invalid link in an address chain. When
Link resolves a chain of references, it traces back through
the chain, link by link, replacing the chain pointer with the
resolved address of the object. If a chain has a forward
pointer within a module or if a pointer indicates an area
outside of the module, Link ceases to follow this chain,
leaves the remainder of the chain unresolved, and prints the
error message above.

48-005 FOO R02

LOCATION COUNTER number WAS DEFlNED PREVIOUSLY
THIS ERROR OCCURRED IN
-FILE: vol:filename.ext/a -MODULE:module
-RECORD: number -BYTE:number

The specified location counter (LOC) number in the object
code was already defined by Link and cannot be redefined
within this object module. To correct this error, recompile
the module identified by this message.

LOCATION COUNTER number WAS NOT DEFINED PREVIOUSLY
THIS ERROR OCCURRED IN
-FILE: vol:filename.ext/a -MODULE:module
-RECORD: number -BYTE:number

The object code did not define the specified LOC for Link.
To correct this error, :recompile the module identif ied by
this message.

M.ISSING PARAMETER

A required parameter was no·t specified.

MISSING RIGHT PARENTHESIS

A left parenthesis was encountered for which no matching
right parenthesis was encountered.

MODULE INCOMPLETE FILE: x MODULE:· y

An end of file condition was detected before the end of
program loader item in an object module.

48-005 FOO R02 B-5

MODULE xxxxxx ATTEMPTS TO INITIALIZE xxxxxx THAT IS IN A PARTIAL
IMAGE

While a task is being linked, the task cannot initialize any
common blocks within the partial images that are resolved
with the task. Consequently, if the task attempts to perform
an initialization; e.g., through a BLOCKDATA statement, Link
will build the image but no initialization of that common
block is performed. After the task image is built, the task
common will contain the data that was present when the
partial image was built. The above message indicates which
object module tried to perform the initialization of the
specified block within the partial image.

MODULE xxxxxxx NOT FOUND

A module specified in an INCLUDE command was not found.

MORE THAN 192 SEGMENTATION REGISTERS REQUIRED

More segmentation registers are required than the maximum
192.

n AMBIGUOUSLY DEFINED SYMBOLS

Entry points were defined in parallel paths and were referred
to by a node common to both paths. This message appears in
the establishment summary of the Link maps and is followed by
a list of the ambiguously defined entry pOints.

n COMMAND(S) ENCOUNTERED IN OBJECT CODE

The specified number (n) of Link commands imbedded in the CAL
object modules included in the image were encountered.

n MULTIPLY DEFINED SYMBOLS

The specified number (n) of entry points were encountered
which were defined more than once in the image being built.

n UNDEFINED EXTERNAL SYMBOLS

This message is output if any standard external symbols
remain unresolved after the image is built.

n UNDEFINED WEAK EXTERNAL SYMBOL(S)

8-6

This message is output if any weak external symbols remain
unresolved after the image is built.

48-005 FOO R02

name SPECIFIED IN POSITION COMMAND NOT FOUND

The named common block that was specified by a POSITION
command could not be found.

NODE is NOT SUITABLE FOR OVERLAYS

This message indicates that
attempting to overlay the
segment.

the Link command sequence is
task in a partial image or pure

NUMERIC VALUE OUT OF RANGE

A numeric operand was greater than the maximum permissible
value or less than the minimum permissible value.

OBJECT CODE ERROR (n) FILE: x MODULE: y RECORD: z BYTE m

An object code error occurred. If n=l, an invalid object
code item exists in object record. If n=2, the object code
item overflows the record. If n=3, a load program address
item was expected but not encountered.

PROGRAM TRANSFER ADDRESS IN PROGRAM module IN AN OVERLAY

A program transfer address (PTA)(starting address) was
specified for the task in a module that is in an overlay
node. Link ignores the specified PTA and calculates the
task's starting address by another method.

OVERLAY DEFINED OUT OF ORDER

An OVERLAY command specified a level inconsistent with the
rules for defining overlays.

RECORD LENGTH FOR MAP DEVICE/FILE < 64 BYTES

The device or file specified for the output of the maps has
a record length of less than 64 bytes.

SEGMENT AT x OVERLAPS PREVIOUSLY DEFINED SEGMENT

The end address of an impure, pure, or shared logical segment
was greater than the beginning address of another segment.
See the establishment summary for the names of the segments.

48-005 FOO R02 B-7

SEQUENCE ERROR FILE x MODULE: y RECORD: z

A sequence number error was detected while reading an object
module.

SIZE OF SEGMENT TRUNCATED TO PHYSICAL SIZE

The maximum length of the partial image specified by the SIZE
parameter in the RESOLVE command is larger than any existing
segment for that image. This message indicates that Link is
using the size of the existing segment for the maximum
partial image size rather than the maximum specified by SIZE.

TOO MANY OPERANDS

More operands than allowed were encountered.

VTM TASK WORKSPACE IS GREATER THAN 64K BYTES

When a FORTRAN task is linked as a virtual task, the user
task workspace requested by the WORK option should not exceed
64kb. This message indicates that the WORK option for the
FOR'fRAN task be ing 1 inked exceeds 64kb.

VIRTUAL SYMBOL TABLE SPACE LIMIT EXCEEDED

More than 256kb of symbol table space required.

WARNING: ABSOLUTE SPACE LESS THAN 100

Less than 100 bytes of absolute code were reserved for the
UOL.

WARNING: ADDRESS OF PARTIAL IMAGE SEGMENT FOR fd DOES NOT MATCH
ADDRESS SPECIFIED ON RESOLVE COMMAND

This warning is output if the RESOLVE command specifies an fd
and an address for an address-dependent partial image, and
that address does not match the address in the loader
information block (LIB) for that partial image. Link uses
the address specified in the partial image's LIB.

WARNING: COMMON xxxxxx APPEARS MOR.E THAN ONCE IN STRUCTURE
COMMAND

B-8

In the STRUCTURE parameter of the RESOLVE command, the user
attempted to use the same name to define two separate common
blocks. Common block names within a partial image must be
unique.

48-005 FOO R02

WARNING: ITEM NOT PERMITTED IN AN ADDRESS INDEPENDENT SEGMENT
-FILE: vol:filename.ext/a -MODU[... E:module
-RECORD: number -BYTE:number

The loader item encountered cannot be properly processed
while building an address independent partial image segment.
Loader items involving relocatable data or items which set
the LOC to an absolute value cause this message to be
displayed.

WARNING: ITEM NOT PERMI'rTED IN E-TASK
-FILE: vol:fi1ename.ext/a -MODULE:module
-RECORD: number -BYTE:number

The loader item encountered is not allowed in an executive
task (e-task) establishment.

WARNING: LOGICAL UNIT 254 IS RESERVED FOR DEBUG PROGRAM

This message is displayed of 1u=255
DTABLES option. If the program is
DEBUG/32, logical unit (lu) 254 cannot
program.

is entered with the
to be debugged using

be assigned by the

WARNING: MORE THAN 16 SEGMENTA,TION REGISTERS REQUIRED

More than 16 segmentation registers were used, making this
image loadable only on a processor with greater than 1Mb of
memory.

WARNING: n AMBIGUOUS REFERENCES

External references were encountered that could be resolved
to more than one entry point.

WARNING: NAME OF PARTIAL IMAGE FOR fd DOES NOT MATCH NAME
SPECIFIED IN RESOLVE COMMAND

The name given to a partial image when it was linked does not
match the name specified in the NAME parameter of the RESOLVE
command. The package name specified in the RESOLVE command
overrides the name found in the LIB of the partial image
file.

WARNING: OPTION UNSEGMENTED" HAS BEEN SELECTED

An invalid segmentation opt.ion was selected. Link builds a
nonsegmented task.

48-005 FOO R02 B-9

WARNING: OPTION "VTM" HAS BEEN DISABLED.
SPECIFIED

INCOMPATIBLE OPTIONS

User selected task options that are incompatible with VTM.

WARNING: OPTION "VTM" HAS BEEN DISABLED.
GREATER THAN X400.

TASK ABSOLUTE AREA

VTM will not run if the task absolute area is greater than
X' 400' .

WARNING: OPTION "VTM" HAS BEEN DISABLED. VIRTUAL CTOP EXCEEDS
ACTUAL CTOP OF TASK.

Number of allocated VTM pages exceeds the actual size of the
task. Increase task workspace or decrease number of VTM
pages.

WARNING: OPTION "VTM" HAS BEEN DISABLED. VTM OBJECT MODULE NOT
FOUND

User omitted INCLUDE command for VTM32.0BJ.

WARN I NG: OVERR I DE SIZE FOR COMMON BLOCK x SMALLER THAN AC'rUAL
SIZE

The override size specified in the STRUCTURE parameter of the
RESOLVE command was smaller than the largest definition of
the common block.

WARNING: PREASSIGNMENT FOR LU NOT USED

After Link was loaded, the user assigned an lu that could not
be used as an input/output (I/O) file for Link.

WARNING: TASK REQUIRES MORE THAN 1M ADDRESS SPACE

The task being built requires more than 1Mb of memory address
space.

WARNING: TASK REQUIRES MORE THAN 12M ADDRESS SPACE

B-IO

The task being built requires more than 12Mb of memory
address space.

48-005 FOO R02

x (ERROR y) ON z TO fd

An SVC 7 error occurred. Variable x is the type of error, y
is the hexadecimal status, z is the SVC 7 function, and fd is
the file. See Table a-l for the error types and status.

TABLE B-1 SVC 7 ERROR TYPES AND STATUS

FUNCTION I ERROR TYPE I HEX S'rArrUS I
z x y MEANING

=============_z_=_======a __ ==~~_==== __ =====================~==_
ALLOCAjrE
ASSIGN

CLOSE

DELETE

FETCH
ATTRIBUTES

VOLUME

NAME

DISC SPACE

PROTECTION I
KEY

ACCESS
• PRIVILEGE

SYSTEM
SPACE

ASSIGNMENT I

DEVICE
TYPE

FILE I
DESCRIPTOR I

TRAP
GENERATING
DEVICE

GROUP/
SYSTEM
FILE

48-005 FOO R02

3

4

1:' ..)

6

7

8

9

A

B

c

D

I Volume was not specified

I Filename does not exist
I on specified volume

I Insufficient disk space
I available to allocate or
I assign a file

I File being assigned had
I non-zero protection keys

I Specified access privi­
I leges could not be
I granted

I Insufficient system
I space available

I lu is already assigned
I or device is offline

I Specified volume is not
I a direct access device

I The fd format is
I incorrect

Specified trap genera­
ting device does not
exist in the system, is
not a connectable device,
or is busy and cannot be
connected

I Allocation or deletion
I was attempted on a
I system or group file

8-11

x (ERROR y) ON z TO LU n FILE fd

An SVC 1 error occurred. Variable x is the type of error, y
is the hexadecimal status, z is the function that was being
performed, and n is the lu number. See Table B-2 for the
error types and status.

TABLE B-2 sve 1 ERROR TYPES AND STATUS

I ,
FUNCTION I ERROR TYPE

z x

I HEX I
I STATUS I

y MEANING
==========-===================================:=============

READ

WRITE

COMMAND

8-12

DEVICE
UNAVAILABLE

END OF MEDIUM I

END OF FILE

UNRECOVERABLE I

RECOVERABLE

AD

90

88

84

82

I Device has been turned
I off (set offline)

I End of tape or disk
I encountered

I End of tape or disk
I encountered

I An unrecoverable error
I occurred

I A recoverable error
I occurred

48-005 FDa R02

APPENDIX C
VIRTUAL TASK MANAGEMENT (VTM) MESSAGE SUMMARY

INSUFFICIENT VTM WORKING PAGES

For this task, at least one additional working page is
required for VTM execution.

MEM.FAULT AT xxxxxx INSTR AT xx:xxxx CODE=xx (task paused)

Task memory access fault. xx is the SVC 7 error status.

TASK FO ASGN-ERR - CODE=xx

Error in assigning task file. xx is the SVC 7 error status.

VIRT FO ALLO-ERR - CODE=xx

Error in allocating temporary file. xx is the SVC 7 error
status.

VIRT FO ASGN-ERR - COOE=xx

Error in assigning VFD file. xxx is the sve 7 error status.

VIRT FO NOT CONTIG

Specified file is not contiguous.

VIRT FO TOO SMALL

Specified file is too small.

VTM RD-ERR STAT=xxxx (task paused)

Unrecoverable read error on a virtual I/O transfer. xxxx is
the SVC 1 status halfword; a device independent status of 00
indicates a length of transfer error.

48-005 FOO R02 C-l

VTM WT-ERR STAT=xxxx (task paused)

C-2

Unrecoverable write error on a virtual I/O transfer. xxxx is
the SVC 1 status halfword; a device independent status of 00
indicates a length of transfer error.

48-005 FOO R02

APPENDIX D
OBJECT MODULE FORMAT

Object modules accepted by Link are stored in indexed files with
a record length of 126 bytes. Each record contains a sequence
number, a checksum, and at least one loader item.

The sequence number is contained in the first two bytes of the
record. The first record of the module has a sequence number of
-1 (hexadecimal value FFFF). For each record following, one is
subtracted from the sequence number. Record two has the sequence
number -2, or FFFE. Record three has -3, or FFFD. This
continues until the last record in the object module is reached
or until a loader item is encountered which resets the sequence
number to -1.

The second two bytes of the record contain the checksum for the
record. It is calculated by performing an EXCLUSIVE-OR operation
on each' halfword of data in the ~ecord (excluding the sequence
number) .

'rhe remainder of the record contains loader items. A loader item
is a command byte, followed by zero or more bytes of data. The
command byte informs Link how to interpret the data which follows
or requests Link to perform some specific action.

For example, loader item 11 is followed by six bytes of data.
The first three are to be loaded directly into the image at the
current location in the image. The last three are to be used as
an address offset from the beginning of the impure area for this
object module. The absolute address of the impure area is to be
added to this offset. The least-significant three bytes of the
resulting sum are to be stored in the image immediately following
the first three bytes. The current location is to be incremented
by six bytes.

Loader items must end in the record in which they begin. They
may not begin in one record and finish in the following record.

This appendix lists the object code loader items accepted by LINK
R01. Each loader item is followed by a description of the data
to be associated with it.

48-005 FOO R02 D-l

LOADER I
ITEM

DATA
FORMAT DESCRIPTION

====:===--==--
o

1

2

3

4

5

6

7

8

9

A

B

C

o

E

F

10

11

0-2

(none)

(none)

(none)

8 bytes name
3 bytes displacement
any of these loader items:

7, 8, 9, A, 10, 11, 15,
16, lB, lC, 10, IF-5B,
60, 61, 62, 63, 64

3 bytes address value

3 bytes address value

3 bytes address value

2 bytes address data

2 bytes address data

4 bytes address data

4 bytes address data

8 bytes common name
3 bytes displacement

8 bytes external name
address loader item

(4, 5, 6, or SF)

8 bytes entry name
address loader item

(4, 5, 6, or SF)

8 bytes common name
3 bytes length

8 bytes program name

3 bytes absolute data
3 bytes address data

3 bytes absolute data
3 bytes address data

End of record

End of object module

Reset sequence number

Block data item

Absolute program address

Pure relocatable address

Impure relocatable address

Pure relocatable address

Impure relocatable address

Pure relocatable address

Impure relocatable address

Common reference

External reference
EXTRN

Entry point definition

Common block definition

Program name

Instruction with pure
relocatable address

Instruction with impure
relocatable address

48-005 FOO R02

LOADER I
ITEM

12

13

14

15

16

17

18

DATA
FORMAT

address loader item
(4, 5, 6, or 5F)

address loader item
(4 , 5, 6, or 5F)

address loader item
(4, 5, 6, or 5F)

2 bytes absolute data
2 bytes address data

2 bytes absolute data
2 bytes address data

8 bytes external name
address loader item

(4, 5, 6, or 5F)

3 bytes impure length
3 bytes pure length

19) (none)

lA (none)

18 (none)

lC 2 bytes address data

lD 2 bytes address data

lE

IF 1 byte absolute data

20 2 bytes absolute data

21 4 bytes absolute data

22 6 bytes absolute data

23 8 bytes absolute data

24 10 bytes absolute data

25 12 bytes absolute data

26 14 bytes absolute data

48-005 FOa R02

DESCRIPTION

Load program start address

start of reference chain

Chain definition address

Instruction with pure
relocatable address

Instruction with impure
relocatable address

Short (halfword) external
reference

Length of pure and impure
segments

t Perform fullword chain

Perform halfword chain

No operation

Pure translation table
address

Impure translation table
address

Not used

Absolute data

Absolute data

Absolute data

Absolute data

Absolute data

Absolute data

Absolute data

Absolute data

D-3

--~--~~--~-----~
LOADER I DATA I

ITEM FORMAT DESCRIPTION

==============-----====-------=-------------=---------------------27 16 bytes absolute data Absolute data

28 18 bytes absolute data Absolute data

29 20 bytes absolute data Absolute data

2A 22 bytes absolute data Absolute data

2B 24 bytes absolute data Absolute data

2C 26 bytes absolute data Absolute data

2D 28 bytes absolute data Absolute data

2E 30 bytes absolute data Absolute data

2F 32 bytes absolute data Absolute data

30 34 bytes absolute data Absolute data

31 36 bytes absolute data Absolute data

32 38 bytes absolute data Absolute data

33 40 bytes absolute data Absolute data

34 42 bytes absolute data Absolute data

35 44 bytes absolute data Absolute data

36 46 bytes absolute data Absolute data

37 48 bytes absolute data Absolute data

38 50 bytes absolute data Absolute data

39 52 bytes absolute data Absolute data

3A 54 bytes absolute data Absolute data

3B 56 bytes absolute data Absolute data

3C 58 bytes absolute data Absolute data

3D 60 bytes absolute data Absolute data

3E 62 bytes absolute data Absolute da.ta

3F 64 bytes absolute data Absolute data

40 66 bytes absolute data Absolute data

0-4 48-005 FOO R02

-----------------------~--

LOADER I DATA I

ITEM FORMAT DESCRIPTION
============E======_R_==W. __ ~ __ ==_m=====~=~=====_==================

41 68 bytes absolute data Absolute data

42 70 bytes absolute da.ta Absolute data

43 72 bytes absolute data Absolute data

44 74 bytes absolute data Absolute data

45 76 bytes absolute data Absolute data

46 78 bytes absolute data Absolute data

47 80 bytes absolute data Absolute data

48 82 bytes absolute data Absolute data

49 84 bytes absolute data Absolute data

4A 86 bytes absolute data Absolute data

4B 88 bytes absolute data Absolute data

4C 90 bytes absolute data Absolute data

4D 92 bytes absolute data Absolute data

4E 94 bytes absolute data Absolute data

4F 96 bytes absolute data Absolute data

50 98 bytes absolute data Absolute data

51 100 bytes absolute data Absolute data

52 102 bytes absolute data Absolute data

53 104 bytes absolute data Absolute data

54 106 bytes absolute data Absolute data

55 108 bytes absolute data Absolute data

56 110 bytes absolute data Absolute data

57 112 bytes absolute data Absolute data

58 114 bytes absolute data Absolute data

59 116 bytes absolute data Absolute data

5A 118 bytes absolute data Absolute data

48-005 FOO R02 D-5

LOADER I
ITEM

DATA
FORMAT DESCRIPTION

===================-------------------------------=---------------5B

5C

50

5E

SF

60

61

62

63

64

65

D-6

120 bytes absolute data

1 byte location counter
number
8 bytes section name
8 bytes data pool name

reserved for future use

reserved for future use

1 byte location counter
number
3 bytes address data

1 byte location counter
number
2 bytes address data

1 byte location counter
number
4 bytes address data

1 byte location counter
number
2 bytes absolute data
2 bytes address data

1 byte location counter
number
3 bytes absolute data
3 bytes address data

reserved for future use

8 bytes external name
1 byte reference type

00 - Standard
01 - Weak
10 - INCLD

4 bytes address offset
address loader item

(4 , 5, 6, or SF)

Absolute data

Define PURE location
counter

Reserved

Reserved

Load program address

Defined counter
relocatable address

Defined counter
relocatable address

Instruction with
address based on a
defined location
counter

Instruction with an
address based on a
defined location
counter

Reserved

Extended external
reference

48-005 FOO R02

LOADER I
ITEM

DATA
FORMAT DESCRIPTION

=======================~======================z===~===~=====~=====

66

67

68-FF

8 bytes entry name
1 byte entry type

00 - Standard
01 - Data
10 - Weak

address loader item
(4, 5, 6, or 5F)

1 byte character count
1-80 bytes of conunand

reserved for future use

48-005 FOO R02

Extended entry
point definition

Imbedded LINK
corrunands

Reserved

D-7

A

Accounting facility
APU. See auxiliary
processing unit

Arithmetic fault
Auxiliary processing unit

comments
control privileges
mapping privileges

B

Background task
Backspace file command
Bare disk I/O privileges

BFlLE command
BU I LD command

LOG
MAP

Building a task image

C

CAL object modules
Central processing unit
Command file
Commands

BFlLE

BUILD

DCMO

END

ESTABLISH

EXTERNAL

FFlLE

HELP

INCLUDE

48-005 FDD RD2

3-35

3-40
1-1
3-46
3-8
3-36
3-36

3-42
3-4
3-37
3-40
3-4
3-5
4-2
2-3
2-3
4-1

3-10
1-1
2-3

3-2
3-4
2-3
3-2
3-5
4-2
3-2
3-8
3-2
3-11
4-1
3-2
3-12.
3-54
3-2
3-16
3-2
3-17
3-2
3-18
3-2
3-5
3-20
3-22
4-1
4-2

INDEX

Commands (Continued)
LIBRARY

LOCAL

LOG

MAP

NDCMO

NLOG

OPTION

OVERlAY

PAUSE

POSITION

RESOLVE

REWIND

SEGMENT
TITLE

VOLUME

WFlLE

Common blocks
placement of
shared

Complex overlayed task image
building of

Contiguous file
filemark

D

DCMO command
Debug tables
Define command

E

Embedded Link commands

3-2
3-22
4-2
3-2
3-24
3-2
3-25
3-2
3-6
3-19
3-26
4-1
4-2
3-3
3-31
3-3
3-32
3-3
3-33
4-2
1-6
3-3
3-47
3-3
3-49
1-7
3-3
3-50
3-3
3-22
3-52
3-3
3-57
3-3
3-3
3-58
3-3
3-59
3-3
3-60

4-8
4-11

4-6

3-60

3-8
3-38
3-8

4-3

IND-l

END command

End of task codes
Entities

common
global

Entry point
ESTABLISH command

Establishment summary

EXTERNAL command
External references

nonlinking
unresolved
weak

FF lLE command

F

File access privileges
extended

File protection keys
FORTRAN operational rules

CAL restrictions
PASCAL restrictions
performance measurement

FORTRAN task image
Forward file command

G

General comments
embedded

Global entity

H

HELP command

I, J,K

I/O control block
Image

operating system
partial
task

Image I/O transfer
INCLUDE command

Input/output files
Intertask communication

control

L

LIB. See loader information
block

IND--2

3-11
4-1
3-11

1-7
1-7
3-38
3-12
3-54
2-3
3-26
3-16
3-24
3-55
3-23
3-22
3-23

3-17

3-35
3-40

5-4
5-4
5-4
4-12
3-17

3-9
3-52

3-18

3-39

3-12
3-12
3-12
3-45
3-5
3-20
4-1
4-2
2-3

3-37

LiBRARY command

Link command syntax
LINK commands

active
environment
passive

Link maps

address
alphabetic
cross-reference

Link symbol table
Loader information block

LOCAL command
LOG command
Log device
Logical processing unit

Logical unit
maximum number

Logical unit (lu)
assignments

LPU. See logical processing
unit

M

Magnetic tape
filemark

Map
heading

MAP command

MAT. See memory address
translator

Memory address translator

NOCNO command
NLOG command

N

o

Object modules
default boundary

alignment
included in the image

ODT. See overlay descriptor
table

Operating system image
building of

OPTION command

Overlay
descriptor table
nodes

3-22
4-2
1-9

3-1
3-1
3-1
3-10
3-6
3-26
3-27
3-27
3-27
1-4
1-3
3-38
3-42
3-24
3-25
3-25
1-1
3-40

3-40

2-3

3-60

3-58
3-6
3-26
4-1
4-2

5-1

3-31
3-32

3-36
3-20

4-12
3-33
4-2

1-3
4-7

48-005 FDD RD2

Overlay (Continued)
structure

OVERLAY corrunand

Overlay structure
Overlayed task

Overlayed task image
building of

P,Q

Partial image

access privileges of
building of
corrunon blocks in
entry points
referred by the task

image
Passive Link corrunands

embedded
execution of

PAUSE corrunand
Perkin-Elmer multiprocessor
system

POSITION corrunand

Private image segment

R

RESOLVE corrunand
REW I NO corrunand
Root node

Root segment

Run-time performance

S

Segment
shared

Segmented task
Simple overlayed task image

building of
SVC 1

extended option field
SVC 6
SVC interception

48-005 FOO R02

4-6
1-6
3-47
1-4
1-7
3-47
3-50

4-4

1-3
3-53
3-13
4-9
3-16
3-24

3-52

3-9
3-8
3-31
3-49

1-1
1-7
3-50
1-3

3-52
3-57
1-6
4-6
4-8
1-3
3-47
3-50
5-1

3-41
2-1

4-4

3-45
3-42
3-39

Symbol maps
Symbolic debugger
Symbols

link-defined

T

Task
rolling
status word

Task corrunon blocks
global
structure

Task event service routine
Task image

CAL
COBOL
FORTRAN

Task image file
format

Task image referring to
partial images

building of
Task memory management
Task options

setting
Task priority

initial
maximum

TITLE corrunand
TSW. See task status word

U

UOL. See user-dedicated
location

User-dedicated location

v

Vertical forms control
VFC. See vertical forms
control

Virtual task
Virtual task management

end of task codes
error conditions
object module
rolling of tasks

VOLUME corrunand

W-z

WF ILE corrunand
Workspace increment

3-28
1-3

1-7

3-41
3-42

3-54
3-54
3-42

4-2
4-2
4-2

1-2

4-11
3-44

3-33

3-41
3-41
3-58

1-3

3-43

3-43
5-1
5-5
5-4
5-2
5-3
3-59

3-60
2-3

IND-3

PUBUCATION COMMENT FORM

We try to make our publications easy to understand and free of errors. Our
users are an integral source of information for improving future revisions.
Please use this postage paid form to send us comments. corrections.
suggestions. ect.

1. Publication number __ _

2. Title of publlcatlon ____________ . _____________________________ _

3. Describe. providing page numbers. any technical errors you
found. Attach additional sheet If neccessary.

4. Was the publication easy to understand? If not. why?

5. Were Illustrations adequate? ______ ~ ___________________________ _

6. What additions or deletions would you suggest? __________________ _

7. Other comments: ___ _

From _____________________________ Date _________________ . ____ -_

Position/Title _____________________ . __

Company _______ . __________________ _

Address

6417

APLE STAPLE

ILD FOLD

---------------------------~

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

rTN:

POSTAGE WILL BE PAID BY ADDRESSEE

PERKIN-ELMER
Data Systems Group
106 Apple Street
Tinton Falls, NJ 07724

:CHNICAL SYSTEMS PUBLICATIONS DEPT.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~~ - - - -- - - - - - - - - - - - -- -- - - - - -- FOL~ -,

\PLE

I
I
I
I
I
I
I
I
I
I
I
I

STAPLE I
I 6433-

. PERkiN-ELMER ..
Technical Systems Division

!
1

DOC U MEN TAT ION C HAN G E NOT ICE

The purpose of this documen~ation change notice (DCN) is to
provide a quick and efficient way of making technical changes to
manuals before they are formally updated or revised.

The manual affected by these changes is:

_. __ . __ ,, ___ . ___ ,_~_ .. _____ ___ ~._, ----~ .. ,--.. ".--.----.--.. -.----------;i>~_._ .. , ________ _..._ .. _, __ .. _
~a-.llQ5. EOa RQ2. .05/.3.2. Link Reff~rence Manua.l

i

For conversion purposes, a Compatible Link Utility (R02) is
included with the OS/32 Software Package. This utility is
des igned to allow users who havE~ extens ive Link command files
built using the Link ROl commahd syntax to continue to use those
Link command sequences and also be able to use all of the new
enhancements included in the RO~ revision of Link.

The users who elect to use the . Compatible Link Utility should
note that there are f ive commi~nds with formats that differ from
the formats documented in the Rb2 release of Link. The formats
of these commands are the sj~e as those documented in the ROI
Link Manual.

The differences between the l~Ol and R02 versions of these
commands are as follows. Keep in mind that the ROl versions of
these commands are those supported by the Compatible Link
Ut ility.

• BUILD Command

The BUILD command fd has a d~fault extension of .rMO in the
Link ROl version, and an R02 default extension of .SEC,
documented on Pages 3-5 and A-l of the R02 version.

48-005 FOO R02A 1

• ESTABLISH Command

2

The ESTABLISH command in the RDl manual has a SHARED option.
The RDl version of the ESTABLISH command is:

E

.E~TABLISH R

~l!ARED G A£CESS= RE JGAQDRESS=ro:oO} J

RW

RWE

~l!AME=seg men t]

On Pages 3-12 and A-1 of the RD2 manual, the ESTABLISH command
has an IMAGE option instead of the SHARED option in the ROI
version. The RD2 version is:

E.S.TABLI SH

·1111

.as.

R

E

lllAGE [.M:CESSZ • J[ADDRESS~ { mo:oo}]
RW

RWE

[,HAME-package name]

48-005 FOa R02A

• OPTION Command

The OPTION command has diffeJ:ent values for the ENTRY, WORK,
and SYSSPACE options. TheROl version of the OPTION command
is:

[,{:~:.}] GLU=lu] [~lSSPACE={a.:~}J

['~QRK=(I::n~ , I :.J)] tMSOLUTE{.;'}] [,IQBLOCKS {.~
[,gRIORITY,=(~i::}] [{;l:l}]]
[,Tsw=(Gst:tus}] [ft•adr}])] GUrRY=entry point symbol

48-005 FOO R02A 3

The R02 version of the OPTION command, that appears on Pages 3-33
and A-2, is:

4 48-005 FDD R02A

• SHARED Command

The SHARED command in the ROl manual is replaced by the
RESOLVE command on Pages 3-52 and A-3 in the R02 manual. The
SHARED command syntax is:

§.!!ARED ltd] Gli~ME=s~.~nameJ

R

,ACCESS= RE

RW

RWE

~SI.RUCTUR E~ (name, ~size]
r~IZ E= ([min f 'Oax]])]

E·· · , O!L me n [i size ~J)J

The R02 RESOLVE command syntax is:

BESOLVE [fd] [,HAME=pac::kage name]

, ACCESS- GADDRESS-mOOOOJ

RWE

~s:rRUCTURE- ~am'91 [{s ize,J E ... , namen [(SiZen]])]

GSlZE= [min ,ma~J

The rest of this DCN refers to errors that must be corrected
in the R02 version of the Link Manual. This portion of the
DCN is not related to the Compatible Link Utility.

48-005 FOO R02A 5

• Page iv

Please delete reference to Table 5-1, and add the following
reference after B-2:

C-1 VIRTUAL TASK MANAGEMENT (VTM) MEMORY FAULT CODES

with a page reference of C-1.

• Page 5·-3

In the last sentence, please change:

Absolute-original code ... to:

Absolute-origined code ...

• Page 5-4

In the last paragraph, please change:

or one of the end of task codes explained in Table 5-1.

to:

or one of the memory fault codes explained in Table C-l.

• Page 5-5

Please delete Table 5-1 from Page 5-5. This table will appear
on Page C-l.

• Page C-l

6

After the second message, please insert the table from Page
5-5, with the following changes:

TABLE C-l VIRTUAL TASK MANAGEMENT (VTM) MEMORY FAULT CODES

48-005 FDa R02A

i
~

Please change the' heading for the first column of this table
from:

END OF TASK CODES

to:

MEMORY FAULT CODES

• Page C-l

After the second message (MEM: FAULT AT ...), please delete the
sentence that reads:

xx is the SVC 7 error status.

and replace it with the following sentence:

xx spec if ies the code tha.t descr ibes the type of memory
error fault that occurred. These codes are defined in
Table C-l.

• Page C-l

In the explanation for the
ASGN-ERR ...), please change:

xxx is the SVC ...

to:

xx is the SVC ...

48-005 FOO R02A

fifth message (VIRT

7

• Page INO-3

8

Under the alphabetical heading V, in the 6th line, please
change:

end of task codes

to:

memory fault codes

·with a page reference of C-l.

48-005 FOO R02A

