
PERKIN-ELMER

COMMON ASSEMIBL Y LANGUAGE/32
(CAL/32)

Reference Manual

48-050 FOO ROO

The information in this document is subject to change without notice and should not be
construed as a commitment by The Perkin-Elmer Corporation. The Perkin-Elmer Corpor­
ation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Elmer.

The Perkin-Elmer Corporation, Computer Systems Division 2 Crescent Place, Oceanport, New Jersey 07757

© 1981 by The Perkin-Elmer Corporation

Printed in the United States of America

~ .

SPECIAL NOTICE TO
CAL/32 USERS

The CAL/32 assembler is not compatible with the CAL
assembler in the handling of unreferenced externals. In
order to support weak externals, object code will be
generated for unreferenced externals. Programs assembled
by CAL/32 and containing unreferenced externals to
nonexistent modules will receive an error message at Link
time. For compatibility with CAL, the NUREX start
option/assembler instruction has been introduced in
CAL/32.

TABLE OF CONTENTS

PREFACE

CHAPTERS

1 BASIC CONCEPTS

1 • 1

1. 2
1. 2. 1
1.2.1.1
1.2.2
1.2.3
1.2.3.1
1.2.4
1.2.s

1 • 3
1. 3. 1
1.3.2

1.3.3
1. 3. 4

1.4
1. 4. 1
1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7
1. 4. 8

1.5
1. 5. 1
1.s.2
1.5.3

INTRODUCTION

THE PROCESSOR
Central Processing Unit (CPU)
Local Memory (Registers)
Program Status Word (PSW)
I/O Interface
Main Memory
Software Relocation
Hardware Relocation

INSrRUCTIJN FORMATS (16-BIT)
Register-to-Register (RR) Instructions
Register and Indexed Ster.age (RX)
Instructions
Register and Immediate (RI) Instructions
Short Form (SF) Instructions

INSTRUCTION FORMATS (32-BIT)
Register-to-Register (RR) Instructions
Register and Indexed Stor~ge One (RX1)
Instructions
Register and Indexed Storage rwo CRX2)
Instructions
Register and Indexed Storage Three (RX3)
Instructions
Register and Immediate One (RI1)
Instructions
Register and Immediate Two (RI2)
Instructions
Short Form (SF) Instructions
Register and Indexed Storage/Register
and Indexed Storage (RXRX) Instru=tions

VARIATIONS ON INSTRUCTION FORMATS
Conditional Branch In~tructions
Branch an1 Link Instructions
Other Vari3.tions

48-050 FOO ROO

vii

1-1

1-1
1-1
1-2
1- 2
1-3
1-3
1-4
1-4

1-5
1-5

1-6
1-6
1-7

1-7
1-8

1-8

1-9

1-10

1-10

1-11
1-12

1-12

1-15
1-15
1-15
1-15

i

CHAPTERS (Continued)

2 SYMBOLIC REPRESENTATION

2.2

INTRODUCTION

SYMBOLS AND EXPRESSIONS

SYMBOLS AND THEIR VALUES
Implicit Symbols
Global Symbols

3 THE SOURCE PROGRAM

3.3

3.4

3.5

3.6
3.6.1
3.6.2
3.6.3
3.6.4

3.7

3.8
3.8.1
3.8.1.1
3.8.1.2

3.8.1.3
3.8.2
3.8.2.1
3.8.2.2
3.8.2.3
3.8.2.4
3.8.2.5
3.8.2.6
3.8.2.7
3.8.2.8
3.8.3
3.8.4
3.8.5

INTRODUCTION

COMMENT STATEMENTS

INSTRUCTIJN STATEMENTS

NAME FIELD

OPERATION FIELD

OPERAND FIELD
Register-to-Register Instructions
Register and Indexed Storage Instructions
RegLster and Immediate Instructions
Register ani Indexed Storage/Register
and Indexed Storage (RXRX> Instructions

MACHINE INSTRUCTIONS

ASSEMBLER INSTRUCTIONS
Symbol Definition Instructions
Equate (EQU) Instruction
External, Entry, Weak External, Weak
Entry, and Data Entry CErTRN, ENTRY,
WXTRN, WNrRY, and DNTRY) Instructions
Include (INCLD) Instruction
Data Definition Instructions
Define Storage CDS, DSH, DSF) Instruction
Define Constant (DC, DCF) Instruction
Hexadecimal Constants
Integer Constants
Address Constants
Floating Point Constants
Character Constants
Decimal String Constants
Define Byte (DB) Instruction
Define List (DLIST) Instruction
Define Command (DCMD) Instruction

2-1

2-1

2-3
2-3
2-5

3-1

3-1

3-2

3-3

3-4

3-5
3-5
3-6
3-7

3-8

3-10

3-21
3-21
3-22

3-25
3-27
3-28
3-28
3-30
3-31
3-33
3-35
3-31
3-38
3-39
3-41
3-42
3-43

ii 48-050 FC)O ROO

CHAPTERS (Continued)

3.8.6
3.8.6.1
3.8.6.2
3.8.6.3
3.8.6.4
3.8 .. 6.5
3.8.6.6

3.8.7
3.8.7.1
3.8.7.2
3.8.7.3
3.8.7.4
3.8.7.5
3.8.7.6
3.8.7.7
3.8.7.8

3.8.7.9
3.8.7.10
3.8.7.11
3.8.7.12
3.8.7.13
3.8.7.14

3.8.8
3.8.8.1

3.8.8.2
3.8.8.3
3.8.9
3.8.9.1

3.8.9.2

3.8.10
3.8.10.1

3.8.10.2

3.8.10.3

Location Counter Instructions
Pure (PURE) Insttuction
Impure (IMPUR) Instruction
Origin (ORG) Instruction
Absolute CABS) Instruction
Align (ALIGN) Instruction
Conditional No Operation (CNOP)
Instruction
Assembler Control Instructions
Target (TARGT) Instruction
End (END) Instruction
Copy Library (CLIB) Instruction
Copy (COPY) Instruction
File Copy CFCOPY) Instruction
Pause (PAUSE) Instruction
Squeeze (SQUEZ) Instruction
Squeeze Related (NOSQZ, ERSQZ, NORX3)
Instructions
Sequence Checking (SQCHK, NOSEQ) Instructions
Scratch (SCRAT) Instruction
Pass Pause CPPAUS) Instruction
Message (MSG) Instruction
Batch Assembly (BATCH, BEND) Instructions
Unreferenced Externals (UREX, NUREX)
Instructions
Conditional Assembly Instructions
Compound Conditional CIFx, ELSE, ENDC)
Instructions
Simple If (IF) Instruction
Do (DO) Instruction
Instructions for Data Structures
Structure Definition (COMN, STRUC, ENDS)
Instructions
Structure Initialization (BDATA, BORG)
Instructions·
Listing Control Instructions
Listing Iientification (PROG, TITLE)
Instructions
Format Control (LCNT, EJECT, SPACE,
WIDTH) Instructions
Content Control (NLIST) Instructions

ASSEMBLY LISTING

4 COMMON MODE PROGRAMMING

4. 11 INTRODUCTION

ADDRESS OPERATION INSTRUCTIONS

COMMON MODE IMMEDIATE OPERATIONS

48-050 FOO ROO

3-43
3-43
3-44
3-44
3-45
3-45

3-45
3-46
3-47
3-47
3-48
3-48
3-49
3-49
3-50

3-53
3-54
3-54
3-54
3-55
3-55

3-56
3-56

3-56
3-60
3-50
3-61

3-51

3-64
3-65

3-6 5

3-65
3-67

3-68

4-1

4-1

4-3

iii

CHAPTERS (Continued)

4.4 COMMON MODE ASSEMBLER INSTRUCTION5 4-3
4.4.1 Data Definition Instructions 4-4
4.4.1.1 Define Address Length Constant Instruction 4-4
4.4.1.2 Define Address Length Storage Instruction 4-~

4.4.2 Assembler Control Instructions 4-5

4.5 MIXED MODE COMPUTATIONS 4-5

4.6 GLOBAL SYMBOLS 4-6

4.7 SPECIAL INSTRUCTIONS 4-3

APPENDIXES

A COMMON ASSEMBLY LAN~UA~E/32 (CAL/32) OPERArING
INSTRUCTIONS

B COMMON ASSF.MBLY LA~GUAGE/32 CCAL/32) ERROR CODES

C PERKIN-ELMER OBJECT CODE FORMAT

FIGURES

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12

f ABLES

3-1
3-2

3-3
3-4

RR Format (16-Bit)
RX Format (16-Bit)
RI Format (16-Bit)
SF Format (1'5-Bit)
RB Format (32-Bit)
RX1 Format (32-Bit)
RX2 Format (32-Bit)
RX3 Format (32-Bit)
RI1 Format (32-Bit)
RI2 Format (32-Bit)
SF Format (32-Bit)
RXRX Format (32-Bit)

SUMMARY OF MACHINE INSTRUCTIONS AND MNEMONICS
SUMMARY OF MACHINE INSTRUCTIONS AND MNEMONICS
EXTENDED FOR rHE PERKIN-ELMER 3200 SERIES
PROCESSORS
EXTENDED BRANCH MNEMONICS
CONSTANT TYPES

1-5
1-6
1-5
1-7
1-a
1-8
1-9
1-10
1-11
1-11
1-12
1-13

3-10

3-18
3-19
3-31

iv 48-050 FOO ROO

TABLES (Continued)

4-1

C-1
C-2

INDEX

COMMON MODE ADDRESS OPERATIONS

32-BIT LOADER ITEM DEFINITIONS
16-BIT LOADER ITEM DEFINITIONS

48-050 FOO HOO

4-1

C-2
C-4

In:i-1

v

PREFACE

This manual describes the Perkin-Elmer Common Assembly
Language/32 (CAL/32). Chapter 1 is an introduction to the basic
concepts of the assembler, central processing unit (CPU), and
main memory. Also described are the instruction formats for 16-
and 32-bit machines, as well as variations in the formats.
Chapter 2 introduces assembly language symbolic representation
and describes symbolic values. Chapter 3 defines the source
program and contains a list of machine instructions, mnemonics,
and a detailed descriptiori of assembler instructions. Common
mode programming and common mode operations are explained in
Chapter 4.

CAL/32 operating instructions are listed in Appendix A. Appendix
B contains C~L/32 error codes. Appendix C describes the
Perkin-Elmer 32-bit object code format and the Perkin-Elmer
16-bit object code format.

ROO of this manual can be used only with CAL/32 R09 and OS/32 R06
and higher. The following features are incorporated:

• Support of forward references in the operand of EQU, ORG, DS,
and DO

• Ease of use (via DEL and temp files)

• Support of lowercase and underscore

• Faster symbol table paging

• Enhanced Copy

• Externals with offsets

• New start options

The CAL/32 user should be familiar with the following 16- and
32-bit manuals:

M~NUAL NAME

Model 8/32 Processor User's Manual

Model 7/32 Processor User's Manual

48-050 FOO ROO

PUBLICATION
NUMBER

29-428

C29-405

vii

MANUAL NAME

16-Eit Processor User's Manual

Series Sixteen Processor User Manual

Model 3240 Processor User's Manual

Model 3220 Processor User's Manual

OS/16 MT2 Programmer's Reference Manual

OS/16 MT2 Operator's Manual

OS/32 Operator Reference Manual

OS/32 Supervisor Call (SVC) Reference Manual

OS/32 Application Level Programmer Reference
Manual

32-Bit System User Documentation Summary

PUBLICATION
NUMBER

C29-509

C29-674

C29-685

C29-693

S29-429

529-430

48- 0 30

48-038

48-039

50-003

For further information on
:32-bit manuals, see the
Summary.

the contents of all Perkin-Elmer
32-Bit Systems User Documentation

viii 48-050 FOO ROO

1.1 INTRODUCTION

CHAPTER 1
BASIC CONCEPTS

Like all assemblers, Common Assembly Language/32 CCAL/32)
simplifies the direct control of the processor by providing the
programmer with a way of representing actual machine operations
in an easily understood symbolic form. Assemblers translate
symbolic representations of machine instructions into binary form
to be executed by the processor. CAL/32 also includes such
features as relocation, segmentation, complex data definitions,
and expression analysis. CAL/32 can run on any Perkin-Elmer
processor and produce machine code for any Perkin-Elmer
processor.

Because assembly language ~rogramming is so close to actual
machine operations, it is essential that the assembly language
programmer have a good understanding of the system architecture.
This chapter contains introductory architectural descriptions,
and the programmer should read the appropriate processor
reference manuals for more information.

1.2 THE PROCESSOR

All Perkin-Elmer processors are stored-program,
two-address machines. The major components
processing unit (CPU) and main memory.

1.2.1 Central Processing Unit (CPU)

multi-register,
are the central

To many, the CPU is something of a black box that performs
arithmetic and logical operations in a precise and controlled
way. To the assembly language programmer, the CPU is not
completely opaque. Three of its components--local memory or
registers, the program status word (PSW), and the I/0
interface--are accessible through assembly language programming.

48-050 FOO ROO 1-1

1.2.1.1 Local Memory CReQisters)

All Perkin-Elmer processors have some amount of local memory that
can be used as temporary storage, accumulators, or indices.
There are three types of local memory:

• General purpose registers

• Single precision floating point registers

• Double precision floating point registers

All processors have at least one set of 16 general purpose
registers. In the 16-bit processors, each general purpose
register holds 16 binary digits; in the 32-bit processors, 32
binary digits. General purpose registers can be used for integer
arithmetic, address arithmetic, logical operations, and character
operations.

Floating point registers are used only for floating point
arithmetic operations. Processors with floating point registers
have either eight single ~recision registers, or eight single
precision registers and eight double precision registers. The
single precision registers hold 32 binary digits. The double
precision registers hold 64 binary digits.

Program Status Word (PSW)

The PSW defines the current state of the processor. It consists
of three major parts:

• Status descriptor

• Condition code

• Location counter

Individual bits and bit fields within the status descriptor
portion of the PSW define the current state of interrupts and
various hardware features of the processor. By setting or
resetting bits within the status descriptor, the programmer can
enable or disable such interrupts as I/O, arithmetic fault, and
machine malfunction. On those processors with multiple sets of
general pllrpose registers, a field in the status descriptor
defines which set is currently in use. Programmers writing user
level programs, as opposed to operating system or stand-alone
programs, cannot directly access the status descriptor. In this
case, the operating system maintains control of interrupts and
registers.

1-2 48-050 FOO ROO

The condition code provides a means of controlling program flow,
based on the results of instruction execution. As certain
instructions are executed, the value in the condition code
changes to indicate the nature of the result. For example, if an
operation produces a zero result, the condition code may be
changed to a zero value. With branch instructions, the
programmer can test the value in the condition code and branch or
not, depending on that value. Not all instruction executions
affect the condition cede. See the appropriate processor
reference manual for more details.

The location counter controls the order of instruction execution.
Normally, the processor executes instructions sequentially and
uses the location counter to keep track of where the instructions
are in main memory, then fetches the instruction from the memory
location specified by the address contained in the location
counter. It executes that instruction, increments the location
counter by the length of the instruction, and fetches the next
instruction. Branch instructions~ when executed, change the
contents of the location counter and thereby affect the branch.

In 32-bit machines, the PSW contains 64 binary digits, the last
24 of which are reserved for the location counter. In 16-bit
machines, the PSW contains 32 bits; the last 16 are reserved far
the location counter.

1.2.3 I/O Interface

The execution of certain machine instructions allows the
programmer to control external devices and to cause the transfer
of data between external deviCE!S and main memory or registers.
The actual programming of I/O operations is very much hardware
dependant, both in the processor and the peripherals. I/0
instructions are restricted to operating systems and stand-alone
programs. User programs can communicate with I/O devices through
facilities provided by the operating system.

1.2.3.1 Main Memory

To.the assembly language programmer, main memory appears as a
block of contiguous storage locations. The smallest unit of
memory the programmer can reference is the byte (eight bits).
The programmer can also reference halfwords (two bytes),
fullwords (four bytes), and doable words (eight bytes). Each
byte in memory is referenced by a unique address. Memory
addresses start with zero and are incremented by one for each
succeeding byte. Memory addresses in the 32-bit processors
always consist of 24 bits. In the 16-bit processors, memory
addresses consist of 16 bits. When accessing bytes, any memory
address within the limits of the particular hardware
configuration is considered valid. Halfwords must be referenced
with halfword addresses. Fullwords must be referenced with
addresses that are multi~les of four. Double words must be
referenced with addresses that are multiples of eight.

48-050 FOO ROO 1-3

1.2.4 Software Relocation

Programs written in CAL/32 can be absolute or relocatable. An
absolute program is one whose origin (starting location) is
specified at assembly time as a fixed halfword location in
memory. Subsequent addresses within the program, whether
referencing instructions or data, are fixed at assembly time.
For execution, absolute programs always must be loaded into
memory at the location specified as the origin. This type of
programming is useful in stand-alone applications and some
operating system situations.

Relocatable programs can be loaded for execution into any
halfword location in memory. The origin of a relocatable program
is assumed to be relocatable zero. The CAL/32 output for this
type of program specifi~s all addresses in the program as
relative displacements frcm the origin. At link time, the
linkage editor resolves all addresses within the program by
adding a relocation value (the actual memory address for the
start of the program) to the relative addresses supplied by
CAL/32. Relocation applies only to addresses within the program.
Relocatable programs can contain absolute data.

1.2.5 Hardware Relocation

Some Perkin-Elmer processors and their operating systems support
hardware re 1 o ca ti on and s e gm en ta ti on • Pro g r a ms prep a red f or
these systems start out as relocatable. A lin~age editor
processes the relocatable output fron1 CAL/32 to link in any
needed subprograms. The output of this process is an absolute
program that, because of the relocating hardware, can be loaded
at any memory address that is a multiple of 256 for memory access
controller (MAC) machines, er 2048 for memory address translator
(MAT) machines. At run time, the relocating hardware adds the
required relocation value to all addresses supplied by the
program. This relocating hardware also provides for program
segmentation, where the program is divided into pieces that can
be loaded in~o noncontiguous blocks of memory.

CAL/32 supports segmentation by allowing the programmer to divide
the program into pure and impure segments. The pure segment of
a program consists of machine instructions and c-0nstant data and
cannot be modified at run time. (The operating system and the
hardware prevent modification.) The impure segment consists of
the data base which can be modlfied at run time~ Programs
prepared as pure and impure segments can be shared (executed
concurrently) by several users. Only one copy of the pure
segment resides in memory during execution while there is one
copy of the impure segment for each user.

1-4 48-050 FOO ROO

1.3 INSTRUCTION FORMATS (16-BIT)

The 16-bit processors have four types of machine instructions:
register-to-register, register and indexed storage, register and
immediate, and short form. The following abbreviations
illustrate the instruction formats:

OP Operation
R1 First operand register
R2 Second operand register
N A U-bit immediate value
X2 Second operand index register
A2 Second operand direct address
12 Second operand immediate value

Most instructions require two operands, the first of which is
contained in a register. The result usually replaces the
contents of the first operand register. Exceptions to these
rules are noted in section 1.5.

1.3.1 Register-to-Register (RB) Instructions

Register-to-register instructions cause operations to take place
between operands contained in registers. Register-to-register
instructions are 16 bits long, as shown in Figure 1-1.

Bits:
0

OP R1

7 8 11 12

Figure 1-1 RR Format (16-Bit)

R2

1 5

The first eight bits of the instruction define the operation.
The next four bits identify the first operand register. The
final four bits identify the second operand register. In most
register-to-register instructions, the specified operation takes
place between the contents of the first operand register and the
contents of the second operand register. The result of the
operation replaces the contents of the first operand register.

48-050 FOO ROO 1-5

1.3.2 Reoister and Indexed Storage CRX) Instructions

Register and indexed storage instructions cause an operation to
take Place between a first operand, contained in a register, and
a second operand, located in main memory. These instructions
require 32 bits, as shown in Figure 1-2.

--?
I OP I R 1 I X2 I I2

---?
Bits:

0 7 8 11 12 15 16

Figure 1-2 RX Format (16-Bit)

7----
1

7---
31

The first eight bits define the operation. The next four bits
identify the first operand register, and the next four bits
identify an optional index register. The remaining 16 bits
specify an address in main memory. The operation takes place
between the contents of the first operand register and the
contents of the memory location specified. The actual address of
the second operand is determined by adding the contents of the
index register to the contents of the address field. If the
index field of the instruction contains zero, no indexing takes
place. In most cases, the result of the operation replaces the
contents of the first operand register.

1.3.3 Register and Immediate (RI) Instructions

These instructions cause cperations to take place between the
contents of a register and the contents of an immediate field
imbedded in the instructicn itself. They are 32 bits long, and
are shown in Figure 1-3.

--~----------------·?
I OP I R 1 I X 2 I I 2

--~
Bits:

0 7 8 11 12 15 16

Figure 1-3 RI For•at (16-Bit)

7--­ ,
f----

31

1-6 48-050 FOO ROO

The first eight bits specify the operation. The next four bits
identify .the first operand register. The next four bits identify
an optional index register. The final 16 bits are the immediate
value. The first operand is the contents of the first operand
register. The second operand is obtained by adding the contents
of the index register to the contents of the immediate field. If
the index field contains zero, no addition takes place. The
result of the operation usually replaces the contents of the
first operand register.

1.3.4 Short Form (SF) Instructions

These instructions are variations on the register and immediate
instructions in which the second operand is small en~ugh to be
expressed in four bits. Short form instructions require 16 bits,
as shown in Figure 1-4.

Bits:
0

OP R1

7 8 11 12

Figure 1-4 SF Format (16-Bit)

N

1 5

The first eight bits indicate the operation. The next four bits
identify the first operand register. The next four bits contain
the immediate value. Operations take place between the contents
of the first operand register. The result of the operation
usually replaces the contents of the first operand register.

1.4 INSTRUCTION FORMATS (32-BIT)

The 32-bit processors recognize seven different types of
instructions. These are: register-to-register, three variations
on register and indexed storage, two variations on register and
immediate, and short form. The following abbreviations are used
to illustrate instruction fcrmats:

OP Operation
R1 First operand register
R2 Second operand register
N A 4-bit immediate value
X2 Second operand single index register
D2 Second operand displacement
FX2 Second operand first index register
SX2 Second operand second index register
A2 Second operand direct address
!2 Second operand immediate value

48-050 FOO ROO 1-7

Most instructions reguire two operands, of which the first is the
contents of a register. The result of the operation usually
replaces the contents of the first operand register. Exceptions
to these rules are noted in Section 1.5.

1.4.1 Register-to-Register CRR) Instructions

The format and function of these instructions are the same as for
the 16-bit processors. They cause operations to take place
between operands contained in registers, and they reguire 16
bits. These instructions are shown in Figure 1-5.

Bits:
0

OP R1

7 8 11 12

Figure 1-5 RR Format (32-Bit)

R2

15

The first eight bits specify the operation. The next four bits
identify the first operand register, and the last four bits
identify the second operand register. The processor performs the
indicated operation between the contents of the first operand
register and the contents of the second operand register. In
most RR instructions, the result replaces the contents of the
first operand register.

Register and Indexed Storage One CRX1) Instructions

'rhese instructions define an operation between the contents of a
register and the contents of a main memory location. They
reguire 32 bits, as shown in Figure 1-6.

--7 ~-----
1 OP I R 1 I X2 l O I O I D2 I
--f f-----

Bits:
0 7 8 11 12 15 16 17 18 31

Figure 1-6 RX1 Format (32-Bit)

1-8 48-050 FOO ROO

The first eight bits define the operation. The next four bits
identify the first operand register, and the next four bits
identify the index register. The next two bits, bits 16 and 17,
must be zeros. The next 14 bits constitute a direct program
address in a range from O to 16383.

The address of the second operand is obtained by adding the
contents of the index register to the contents of the 14-bit
address field. If the index register field contains zero, this
addition does not take place, and the contents of the address
field are used as the address. The operation takes place between
the contents of the first o~erand register and the contents of
the specified memory location. The result usually replaces the
contents of the first operand register.

1.4.3 Register and Indexed Storage Tvo CRX2) Instructions

These instructions define operations between the contents of a
register and the contents of a location in main memory. RX2
instructions are like the RX1 instructions; they require 32 bits.
They differ from the RX1 instructions in the method of
calculating the second operand address. See Figure 1-7.

---$' ?----
' OP I R1 I X2 I 1 IA2 I __ _, 7---

Bits:
0 7 8 11 12 15 16 17 31

Figure 1-7 BX2 Format (32-Bit)

The first eight bits define the operation. The next four bits
identify the first operand register, and the next four bits
identify the index register. The next bit, bit 16, must be a
one. The remaining 15 bits are treated as a signed integer in
two's complement notation. Bit 17 is the sign bit which, if one,
indicates a negative quantity, and if zero, indicates a positive
quantity.

The address of the second operand is obtained in two steps.

1 • The signed integer, with sign
32-bit integer, is added to
register.

This intermediate result is
incremented location ccunter.
bi ts.

48-050 FOO ROO

bit
the

extended
contents

to
Of

produce a
the index

added to the value in the
The result is truncated to 24

1-9

If the index register field is zero, the first addition does not
take place. The indicated operation takes place between the
contents of the first operand register and the contents of the
specified memory location. The result usually replaces the
contents of the first operand register.

1.4.4 Register and Indexed StoraQe Three CRX3) Instructions

These instructions are analogous to the RX instructions in the
16-bit processors. They call for operations between the contents
of a register and the contents of an indexed memory location and
require 48 bits. See Figure 1-8.

___ ., ~---

1 op I R1 I Fl2 I o I 1 I o I o I SX2 I 12 I
---1 ,. __ _ Bits&
0 7 8 11 12 15 16 17 18 19 20 23 24 4'7

Figure 1-8 RX3 Format (32-Bit)

The first eight bits specify the operation. The next four bits
identify the first operand register, awd the next four bits
identify the first index register. Bit 16 must be zero. Rit 17
must be one. Bits 18 and 19 must be zero. The next four bits
identify the second index register. The next 24 bits contain a
direct memory address.

The address of the second operand is obtained by adding the
contents of the first index register to the contents of the
second index register. This intermediate result is then added to
the contents of the direct address field, and the final result is
truncated to 24 bits.

If either of the index reQister fields contains zero, that level
of indexing does not take place. If both are zero, no indexing
takes place. In most RX3 instructions, the operation takes place
between the contents of the first operand register and the
contents of the specified memory location. The result usually
replaces the contents of the first operand register.

1.4.5 Register and Immediate One CRI1) Instructions

These instructions are similar to the RI instructions in
16-bit processors. They specify operations that take
between the contents of a register and the contents of a
that is part of the instruction. They require 32 bits, as
in Figure 1-9.

the
place
field
shown

1-10 48-050 FOO ROO

--~-{ ~---
' OP I R 1 I X2 I I2 I
--~ 7---

Bits:
0 7 8 11 12 15 16

Fioure 1-9 RI1 Format (32-Bit)

31

The first eight bits indicate the operation. The next four bits
identify the first operand register, and the next four bits
identify an index register. The second operand is obtained by
extending the contents of the immediate field to 32 bits, by
propagating the sign bit, and then adding this quantity to the
contents of the index register. If the index register field is
zero, no addition takes place, and the extended immediate value
is the second operand. The operation takes place between the
contents of the first operand register and the immediate value.
The result usually replaces the contents of the first operand
register.

1.4.6 Register and Immediate Two (RI2) Instructions

These instructions are similar to the RI1 instructions, except
that the field contains a 32-bit value, and the instruction
itself requires 48 bits. See Figure 1-10.

--?
,_ _______ ..,

7---
I OP I B 1 I X2 I I2

--·----------~ ' ,_ _______ ~ 1
tr---

Bits:
0 7 8 11 12 15 16 23 24

Figure 1-10 RI2 Format (32-Bit)

The first eight bits define the operation. The next four bits
identify the first operand register. The next four bits identify
the index register. The second operand is obtained by adding the
contents of the index register to the contents of the immediate
field. If the index register field is zero, no addition takes
place, and the immediate value is the second operand. The
operation takes place between the contents of the first operand
register and the immediate value. The result usually replaces
the contents of the first o~erand register.

48-050 FOO ROO 1-11

47

1.4.7 Short Form (SF) Instructions

Short form instructions are ~imilar to the SF instructions in the
16-bit processors. They specify operations between the contents
of a register and the contents of an immediate field, whose value
is small enough to be expressed in four bits. These instructions
require 16 bits, as shown in Figure 1-11.

Bits:
0

OP R1

7 8 11 12

Figure 1-11 SF Format (32-Bit)

N

15

The first eight bits define the operation. The next four bits
identify the first operand register. The next four bits are the
immediate field. The operation then takes place between this
value and the contents of the first operand register. The result
usually replaces the contents of the first operand register.

1.4.8 Register and Indexed Storage/Register and Indexed
Storage CRXRX) Instructions

Register and indexed storage/register and indexed storage (RXRX)
instructions resemble a ~air of adjacent RX instructions, but
represent one cohesive string-processing instruction. An RXRX
instruction is comprised of two instruction members. Each member
can be any one of the RX1, RX2, or RX3 machine formats,
independent of the other member's format. For example, the first
instruction member might be of the RX1 format, and the second
instruction member might be of the RX3 format, yielding a 10-byte
RXRX instruction. Thus, an RXRX instruction length might range
from 8, 10, or 12 bytes.

The first eight bits of the first instruction member, OP, specify
the operation class. The particular RXRX operation is specified
by the contents of the Operation-Modifier (OP-MOD) field in the
first eight bits of the second instruction member. OP-MOD is
actually generated by the assembler according to the specific
RXRX operation mnemonic and the R1/L1 or R2/L2 fields programmed
by the user in source code. Refer to Figure 1-12.

1-12 48-050 FOO ROO

[
8

z 1

0 '

11 12

X2

X2

FIRST MEMBER

• TO 6 BYTES

0 01
1

12-15 16 17

RX1/RX2 SAMPLE MEMBER

11•~0

I OPN1 OP-MOD

7--l
I F

D
I

:1 I u --.-----.
: L L C N

02 I

•1 2 -- 31 0 1 2 3

8 11

z L2

c

12

SECOND MEMBER

• TO 6 BYTES

FX2 0100 SX2

OPN2

12-1S 16-19 20-23 2•

31147
-,,7

A

----;t-----1
•1

__________ ,___ _______ R_X3_SA_M_PLE_~~~~~-R -----·--·---..

B. 10. 12 BYTES

Figure 1-12 RXRX Format (32-Bit)

The next four bits in the first instruction member, R1/L1,
identify either R1, the string's length-specifying register, or
11, the string's actual length. The user specifies to the
assembler whether the value in the R1/11 field is a register or
an immediate value.

The R1/11 field is assumed to be a register, unless an equal sign
(=) precedes the 11 source expression. In machine format, the
!11 field is set when the =11 source field specifies an immediate
value as length. The IL2 field in machine format is reset when
the R1 field is used to specify a register that contains the
string's length. When the length is an immediate value, its
value may range from O through 15. When the length is in a
register, the register may contain a length that ranges from o·
through 224-1. A length of O indicates a null string.

The remaining bits, bits 12 through 31 or 12 through 47, of the
first instruction member, OPN1, contain the address/location of
th~ lovest addressable byte of a string or its storage location.
The field, OPN1, is then similar to the indexed address portion
of an RX1, RX2, or BX3 machine format. See OPN2 below.

The first eight bits of the second instruction member, OP-MOD,
are an operation-modifier field containing OPN1's length
indicator, I11, in bit O; OPN2"s length indicator, !12, in bit 1;
a special circumstances bit, C, in bit 2; and in bits 3 through
7, FUNC, the specific function code of the general operation
class, OP. As described above, !11 and IL2 are determined by the
assembler. The special circumstances bit, C, and function code,
FUNC, are determined by the assembler from the
operation-mnemonic. The C bit is used by some RXRX instructions
to indicate that the result of the operation will be forced
positive.

48-050 FOO ROO 1-13

The next fou~ bits, bits 8 through 11, of the second instruction
member, R2/l2, identify either R2, this string's
length-specifying register; or 12, the string's actual length.
Again, the user specifies in source format to the assembler
whether the value in the R2/l2 field is a register or an
immediate value. The R2/l2 source format field is assumed to be
a register, unless an equal sign (=) precedes the 12 source
expression. In machine format, 112 is set when the =12 field is
used to specify an immediate value. !12 is reset when R2 is used
to specify a register. When the length is an immediate value,
expressed as =12, its value may range from 0 through 15. When
the length is in a register, its value may range from O through
224-1. A zero length indicates a null string.

The remaining bits, bits 12 through 31 or 12 through 47, of the
second instruction member, OPN2, contain the address/location of
the lowest addressable byte of a second member's string. Both
OPN1 and OPN2 are similar in format to the indexed address
portion of an FX1, RX2, or RX3 machine format. The particular
format of either OPN1 or OPN2 is selectively generated by the
assembler, independently according to the user source program.

In RX1 machine format, bits 16 and 17 are zero. Bits 12 through
15 identify the index register, X2, the contents of which are
added to the absolute 14-bit value, D, to formulate the strin~'s
address.

In RX2 machine format, bit 16 is set. Bits 12 through 15
identify the index register, X2, the contents of which are added
to the 15-bit displacement value, D2, to formulate the string's
address.

In RX3 machine format, bits 16 through 19 are 0100 binary. Bits
12 through 15 identify the first index register, FX2; and bits 20
through 23 identify the second index register, SX2. The contents
of both are added to the 24-bit address value, A, to formulate
the string's address.

NOTES

1. When the first member's OPN1
represents the string's address in
RX2 format, the displacement value,
D2, is relative to the end address of
the first instruction member, not to
the end of the full RXRX instruction.

2. When the second member's OPN2
represents the string's address in
RX2 format, the displacement value is
relative to the end of the second
instruction member, which is also the
end of the full RXRX instruction.

1-14 48-050 FOO ROO

1.5 VARIATIONS ON INSTRUCTION FORMATS

Not all instructions follow the above instruction formats. In
some instructions the fields are redefined. Some instructions do
not require two operands. Some instructions do not change the
first operand, some instructions change the second operand, and
some instructions change neithec operand.

1.5.1 Conditional Branch Instructions

Conditional branch instructions use formats that resemble
register-to-register, register and indexed storage, and short
form instructions. However, the interpretation of the fields
differs from the standard, as does the actual operation. In all
conditional branch instructions, the first operand identification
is interpreted as a mask that is ANDed with the condition code.
If the result of this test indicates that the branch is to be
taken, then the second operand address is the location to which
the processor must go to cbtain the next instruction.

In the RR instructions, the second operand register contains the
branch address. In the RX instructions, the branch address is
obtained by one of the standard methods for obtaining second
operand addresses. In the SF instructions, the immediate field
is interpreted as a halfword displacement, either forward or
backward, from the current location counter. The branch address
is obtained by adding or subtracting this quantity from the
current location counter.

1.5.2 Branch and Link Instructions

These instructions facilitate branching to and returning from
subroutines. They use formats similar to RR and RX where the
first operand register is the link register. Before the branch
is taken, the address of the next memory location following the
branch instruction is placed in this register. In the RR
instructions, the branch location is the contents of the second
operand register. In the RX instruction, the branch address is
obtained by one of the usual methods for obtaining second operand
addresses.

1.5.3 Other Variations

Some instructions change the second operand rather than the
first. Most notable among these are the store instructions and
the instructions that add the contents of a register to the
contents of a memory location.

Test instructions and compare instructions change neither
operand. The indicated operation takes place between the two
operands, but neither is changed. The result of the operation is
indicated by the condition code.

48-050 FOO ROO 1-15

Certain other instructions, such as load PSW and simulate
interrupt, do not always require a first operand. In addition,
all of the I/0 instructions do not follow the general rules. For
detailed information on how these and other anomalous
instructions work, refer to the appropriate processor reference
manual.

1-16 48-050 FOO ROO

2.1 INTRODUCTION

CHAPTER 2
SYMBOLIC REPRESENTATION

When writing assembly language programs, the programmer uses
meaningful symbols to represent the binary language interpreted
by both Common Assembly Language/32 (CAL/32) and the processor.
Symbols consist of printable ASCII characters, either singly or
in combination. CAL/32 recognizes the complete set of printable
ASCII characters. However, depending on the context, there can
be restrictions on the use of the complete set. See Chapter 3.

2.2 SYMBOLS AND EXPRESSIONS

Symbols
values,
symbols

rep resent
operation

are:

A
LOOP
BXLE
PART1
REG5
16

addresses, register identifiers, absolute
identifiers, and constants. Examples of

Symbols can be combined to form expressions. The arithmetic
operators: plus, minus, multiply, divide are represented in
CAL/32 by the symbols: +, -, *, /. They combine with other
symbols to form arithmetic expressions. Examples of these
arithmetic expressions are:

A+B
LAST-FIRST*TWO
P.-16

Blanks and parentheses are not permitted within an expression.
For example, the sequence:

A - B * (C + D)

48-050 FOO ROO 2-1

would not be interpreted by CAL/32 as an expression. Depending
on the context, CAL/32 might misinterpret the symbols, generate
incorrect code, and fail to detect the error. Where CAL/32 can
recognize the error, it generates an error message.

The evaluation of expressions takes place from left to right with
no rules of precedence. Thus, CAL/32 evaluates the expression:

LAST-FIRST*TWO

by subtracting the value of First from the value of Last, and
multiplying this result by the value of Two.

Loqical expressions consist of symbols joined by the logical
operators AND and inclusive OR. They are represented in CAL/32
by the symbols & and I. Examples of logical expressions are:

X&Y!A
CHAR&NULL

Logical expressions are evaluated from left to right with no
rules of precedence. Blanks and parentheses are not permitted in
logical expressions.

Mixed expressions are formed by combining logical and arithmetic
operators. For example:

A-B!TWO

CAL/32 evaluates this expression by first subtracting the value
of B from the value of A, and then ORing the result with the
value of Two. Mixed expressions are like arithmetic and logical
expressions in that blanks and parentheses are not allowed, and
the method of evaluation is from left to right with no rules of
precedence.

Symbols represent either absolute or relocatable quantities. At
aEsernbly time, relocatable quantities have a value equal to their
displacement from some fixed point within the program, usually
but not necessarily, the origin or starting location. At load
time, the relocatable quantity is replaced by an absolute
quantity whose value is calculated by adding the relocation value
to the relocatable quantity. Absolute quantities are known to
the assembler at assembly time and are not changed at load time.

The operations: multiply, divide, AND, and OR are permitted only
between absolute data. The plus and minus operators can be used
on mixed data. The results of such operations are:

2-2 48-050 FOO ROO

CFERATION

Absolute + Absolute
Absolute - Absolute
Relocatable + Relocatable
Relocatable - Relocatable
Relocatable + Absolute
Relocatable - Absolute
Absolute + Relocatable
Absolute - Relocatable

2.3 SYMBOLS AND THEIR VALUES

RESULT

Absolute
Absolute
Invalid
Absolute
Relocatable
Relocatable
Relocatable
Invalid

By definition, certain symbols used in CAL/32 programming have
implicit values; that is, the value of the symbol is determined
by the way in which it is expressed and used. Examples of this
kind of symbol are the decimal, hexadecimal, and character
symbols used as operands in instructions. There are also global
symbols in CAL/32. These symbols have preset values that cannot
be redefined by the programmer. The programmer also can define
the value of a symbol explicitly by using the equate statement.
This section covers the use of implicit and global symbols.
Chapter 3 covers the explicit use and definition of symbols.

2.3.1 Implicit Symbols

When used in the correct context, a string of decimal digits is
automatically assigned the actual value of the number represented
by the string. For example, the expression:

A+14

has a value that the assembler determines by adding the quantity
14 to the value A, which must be defined by some other means.

CAL/32 also recognizes the implicit value of special character
strings the programmer uses to represent decimal, hexadecimal,
and character values. These strings are made up of a single
letter that indicates the particular type, followed by a group of
characters enclosed in apostrophes that represents the value.
The code characters are:

CODE CHARACTER TYPE

H Halfword decimal
F Fullword decimal
x Halfword hexadec~mal
y Fullword hexadecimal
c Character

48-050 FOO ROO 2-3

Decimal numbers consist of an optional siqn (+ or -) followed by
decimal digits representing the actual value. Commas are not
allowed in the representation. Halfword decimal values can be
represented by from 1 to 5 decimal digits, with a range from
-32,768 to +32,767. Fullword values can be represented by from
1 to 10 decimal digits, with a range from -2,147,483,648 to
+2,147,483,647. CAL/32 converts these decimal numbers into two's
complement binary integers. Examples of decimal symbols, with
their internal representation expressed in hexadecimal notation
are:

SYMBCL VALUE

HI 125 I 007D
H'32765' 7FFD
H'+32765' 7FFD
H'-15' FFF1
F' 123123' 0001 EOF3
F ' 1 ' 0000 0001
F'-2' FFFF FFFE

Hexadecimal symbols consist of the X or Y type code followed by
a string of hexadecimal digits enclosed in apostrophes. Halfword
symbols can use from one to four digits. Fullword symbols can
use from one to eight digits. Leading zeros are not required,
and the value is right justified. Examples of hexadecimal
symbols are:

SYMBOL

X'F'
X' D4E'
'!'030'
Y'A'
y. 0.

VALUE

OOOF
OD4E
0000 0030
0000 OOOA
0000 0000

Character symbols consist of from one to four ASCII characters
enclosed in apostrophes and preceded by the type code c.
Characters are right justified, with zero fill. Depending on the
context, either a halfword or a fullword results. Examples of
character symbols are:

SYMBOL VALUE VALUE
(HALFWORD) (FULLWORB)

c I* I 002A 0000 002A
c I 12 I 3132 0000 313 2
C'AB' 4142 cooo 4142
C' 1234' 3334 3132 3334

2-4 48-050 FOO ROO

In the last example, where a halfword value was generated, only
the rightmost two characters were used. Where the context
dictates a halfword, and a longer string is used, a truncation
error results. One final type of implicit assignment occurs in
the use of symbols as statement identifiers. Where a symbol is
used in the name field of a statement, it is automatically
assigned a value equal to the value of the current location
counter. This ty~e of assignment is covered in Chapter 4.

2.3.2 Global Symbols

Six symbols recognized by CAL/32 have predetermined values. They
are:

ADC
LA~C

PURETOP
IMPTOP
ABSTOP

*

The use of these symbols is somewhat restricted, and they cannot
be redefined by the programmer.

In programs written for 32-bit processors, the address length
constant (ADC) always has a value of 4, the length of an address
constant in bytes. (In 32-bit processors, addresses must be
contained in fullwords, even though the actual address is only 24
bits in length.) In programs for which CAL/32 is to generate
16-bit code, ADC has the value of 2. - In programs written for
32-bit processors, the log (base 2) of the address length
constant (LADC) always has a value of 2. In programs for 16-bit
proGessors, LADC always has a value of 1. Both of these symbols,
ADC and LADC, are used most frequently in common mode
programming. See Chapter 4.

The symbols PURETOP, IMPTOP, and ABSTOP have values equal to: .

PURETOP
IMPTOP
AB STOP

The next available location in the pure segment
The next available location in the impure segment
The next available location in the absolute segment

Because these values change during assembly, the symbols must be
used carefully. They can he used as second operand identifiers
in machine instructions and as operands in assembler instructions
where they are treated as address values. They cannot be used in
assembler instructions that control the location counter.

48-050 FOO ROO 2-5

The asterisk symbol (*), used as an operand rather than as an
operator in an expression, always has a value equal to the value
of the current location counter. Throughout the assembly
proc~ss, CAL/32 maintains a location counter analoqous to the
hardware location counter contained in the central processing
unit (CPU). Depending on the organization of the program, this
location counter can contain any one of several values. For
32-bit programs the location counter may point to the current
location in the absolute segment, the pure segment, or the impure
segment. For 16-bit assemblies, the location counter may point
to the current absolute location or the current relocatable
location.

2-6 48-050 FOO ROO

CHAPTER 3
THE SOURCE PROGRAft

3.1 INTRODUCTION

The source program consists of a set of assembly language
statements that specify the operations to be performed by the
processor, define the constants and storage areas used by the
program, and control the assembly process to produce the desired
output. Source statements for Common Assembly Language/32
(CAL/32) are of two types: comment statements and instruction
statements. Instruction statements are further divided into
machine instructions and assembler instructions. Each statement
consists of an 80-character record, in which symbols and
expressions identify the statement, and where necessary, indicate
the operation and locate the operands.

3.2 COMMENT STATEMENTS

Comment statements can appear anywhere in the source program.
They allow the programmer to include easy-to-read documentation
in the source program listing. They produce no object code. The
assembler does not process comment statements except to check for
proper sequencing and scan for invalid characters.

Comment statements must always start with an asterisk (*) in the
first character position. Positions 2 through 71 can contain any
printable ASCII character, including lowercase alphabetic
characters. Blanks are considered to be "printable" characters.
If a nonprintable character turns up in a comment statement,
CAL/32 replaces it with a pound sign (#). Position 72 of a
comment statement must contain a blank character. Positions 73
through 80 can, at the programmer's option, be used for sequence
identification. The sequence field can contain any printable
ASCII character other than lowercase alphabetic characters.
Where sequence checking is requested, each successive sequence
identifier must be greater, in the ASCII collating sequence, than
the previous identifier. Examples of comments are:

POSITION
1
* THIS IS A COMMENT
* IT MAY APPEAR ANYWHERE IN THE PROGRAM
* SUBROUTINE GETCHAR
*MOVES A CHARACTER FR.CM THE INPUT BUFFER
*AND RETURNS IT IN GENERAL REGISTER THREE

48-050 FOO ROO

72 73

GET10000
GET10010
GET10020

3-1

3.3 INSTRUCTION STATEMENTS

Instruction statements can be written in fixed format or in free
format. For either format, there are five distinct fields in
each statement. In fixed format, these fields are:

CHARACTER POSITIONS

1 through 8
10 through 14
16 through n

n+2 through 71
73 through 80

DEFINITION

Name field
Operation field
Operand field
Comment field
Sequence field

Positions 9, 15, and 72 always must contain blank characters.
The operand field and the comment field are variable in length,
and the first blank character after position 16 serves as a
delimiter between the operand field and the comment field.
Because of the way the output listing is tabulated, the comment
field cannot contain more than 37 characters. If more than 37
characters appear, only the first 37 are printed on the output
listing.

CAL/32 does not require ~ource statements to be written in fixed
format. It accepts free format source, in which blank characters
serve as delimiters. If, for example, the name field is not
used, a blank character in the first position indicates that the
next nonblank character is the start of the operation field.
Similarly, if the operaticn field requires fewer than five
characters, the first blank character following the operation
code indicates that the next nonblank character is the first
character cf the operand field. As in the fixed format
statement, the first blank character following the operand field
indicates the end of that field and the beginning of the comment
field. There are three restrictions on the use of free format:

1. Comment length is limited to 37 characters, including blanks.

2. Position 72 must contain a blank character.

3. The sequence field must start in position 73.

The last restriction is because CAL/32 cannot distinquish between
a blank character as part of a comment and a blank character
intended to separate the comment from the sequence field.

If there are no nonblank characters in positions 1 through 20,
CAL/32 assumes that the statement is a comment and lists it as
such, with a warning note. If more than 15 blanks separate the
name field from the o~eration field, CAL/32 assumes that the

3-2 48-050 FOO ROO

operation field is not present~ Similarly,
blanks separate the operation field from
CAL/32 assumes that the operand field is not
cases, CAL/32 generates an error message.

if more than 15
the operand field,

present. In both

When writing CAL/32 instruction statements, the programmer uses
symbolic representation in the name field, the operation field,
and the operand field. The following paragraphs describe the use
of symbols and expressions in these fields.

3.4 NAME FIELD

Where a symbol appears in the name field, it represents the value
of the current location counter for that particular instruction.
This allows the programmer to refer to specific locations
symbolically, without having to know the actual value of the
location counter. The followl.ng five restrictions apply to the
formation of names:

1 • The first character of
lowercase alphabetic
characters:

at sign (@)

dot (.)

dollar sign ($)

underscore (_)

a name must
character or

NOTE

Lowercase letters are
converted to uppercase except
constants.

be an
one of

uppercase or
the special

internally
in string

2. The remaining characters can be made up of any combination of
valid first characters, plus the numeric characters 0 through
9.

3. The name must consist of from one to eight characters.

4. The name must start in the first character position of the
source record.

s. Imbedded blanks are net permitted.

48-050 FOO ROO 3-3

Examples of valid names are:

LABEL
LOOP1
.SIN
@GOTO
$$GETS

Examples of incorrect names are:

1LOOP
LOOPCOUNTER
AB?C

First character is numeric
More than eight characters
Question mark is illegal

As a general rule, a given symbolic string can appear only once
in the program where it defines a location. That is, the same
symbol may not appear in the name field of more than one
instruction. The exception to this is the equate instruction.
This is covered in the section on assembler instructions.

3.5 OPERATION FIELD

The use of symbols in the o~eration field is severely restricted.
Only previously defined symbols can appear in this field. The
symbols that appear in the operation field are called mnemonics;
they represent operations to be performed by the processor at run
time, or operations to be performed by the assembler. CAL/32
recognizes mnemonics that represent all machine operations for
all Perkin-Elmer processors. It also recognizes a large set of
assembler mnemonics that allows the programmer to control the
asse~bly process.

Mnemonics can consist of no more than five characters. They are
formed in the same way as names and use the same character set.
CAL/32 permits users to define mnemonics. This process is
described in the section that deals with the equate instruction.
Specific mnemonics that define machine operations and assembler
operations are described later in this chapter. Examples of
operation mnemonics are:

3-4

MNEMONIC

AR
s
CL!
ORG

TYPE

Machine
Machine
Machine
Assembler

MEANING

Add register
Subtract
Compare logical immediate
Set location counter

48-050 FOO ROO

3.6 OPERAND FIELD

CAL/32 permits the use of both symbols and expressions in the
operand field of instructions. Symbols used in the operand field
can be implicitly defined or can be explicitly defined. The
rules for forming operands for as~embler instructions vary from
instruction to instruction, and each is described individually
later in this chapter.

Most machine instructions requirE~ two operands while some require
only one. Where two operands are required, the first is
separated from the second by a comma. Following are the general
rules for forming operands for machine instructions.

3.6.1 Register-to-Register Instructions

Both the first and the second operand must be represented by
symbols or expressions with values between O and 15 inclusive.
If the value is greater than 15 or less than O, the assembler
sets it to O, and generates an error message. For example, if
the symbols 1 and 2 appear in the operand field of the add
register instruction:

AR 1,2

CAL/32 generates the machine code to add the contents of register
2 to the contents of register .1 and store the result in register
1. The use of 1 and 2 here is an example of how decimal numbers
have an implicit value when used in the proper context. Another
example:

AR x•1•,x•2•

shows how hexadecimal symbols can be used as register
identifiers. This is an exception to the previously stated rule
that hexadecimal symbols generate halfword or fullword values.
Where used as register identifiers, decimal, hexadecimal, and
character symbols cause the assembler to generate 4-bit values.

Expressions can be used in identifying registers, as in:

AR A+3,C'A'-X'40'

where CAL/32 evaluate·s the expressions and uses the results as
the register identifiers. This is not a universally useful
feature of the language, although it has some applications in
common mode programming.

48-050 FOO ROO 3-5

A more useful way to identify registers is to use explicitly
defined symbols. Suppose the symbols SUM and INC are defined to
have values of 1 and 2, res~ectively. Then the instruction:

AR SUM,INC

has the same effect as:

AR 1,2

yet the notation is more meaningful because registers 1 and 2 are
identified as the SUM and INC registers.

3.6.2 Register and Indexed Storage Instructions

If the first operand is required, it must be a valid register
identifier as described for register-to-register instructions.
The second operand, separated from the first by a comma, can be:

• a symbol,

• an expression, or

• a symbol or an expression followed by an index register
identifier enclosed in parentheses.

Where indexing is used, identification of the registers
the same rules as those for specifying first or second
registers. In double-indexed instructions, the first and
index identifiers are se~arated by a comma. An example
register and indexed storage instructions are written is:

S 1, A

follows
operand

second
of how

where the first operand is the contents of general register 1,
and the second operand is the value at location A in memory.
Another example:

S SUM,TABLE(PTR)

shows how single indexing is expressed. In this case, the first
operand is the value contained in the register identified by the
symbol SUM, and the second operand is the value at memory
location table plus the contents of the index register PIR.

3-6 48-050 FOO ROO

Another example:

S SUM,LAST-FIRST(BASE,PTR)

shows the use of double indexing along with the use of an
expression in the operand field. A final example:

S SUM,O(ABDR)

illustrates where an address of a second operand is contained in
the index register. Here, there must be a symbol in the address
field even if it is equal to zero.

3.6.3 Register and Immediate Ins.true tions

The first operand must be specified by a valid register
identifier. The second operand can be:

• a symbol,

• an expression, or

• a symbol or an expression followed by an index register
identifier enclosed in parentheses.

Example:

CL! STRNG,C'ABCD'

causes the character string ABCD, represented internally as the
fullword character value 4142 4344, to be compared with the
contents of the register identified by the symbol STRNG. In
another example:

CLI ADDR,LAST-FIRST(PTR)

the expression LAST-FIRST is evaluated by CAL/32 at assembly
time. At run time this value is added to the contents of the
index register before the comparison takes place. In another
example:

CLI ADDR,Y'2000'(PTR)

the fullword, hexadecimal quantity 0000 2000, is added to the
contents of the index register. The result is then compared with
the contents of the register identified by the symbol ADDR.

48-050 FOO ROO 3-7

3.6.4 Register and Indexed Storage/Register and Indexed Storage
CRXRX) Instructions

The RXRX instructions have four basic source operand fields, each
of which is separated from the other by a comma. The first
operand field can be:

• a valid register identifier, symbol, or expression with a
defined absolute value in the range 0 to 15

• an equal sign (=) preceding a symbol or an expression with a
defined absolute value in the range 0 to 15

The second source operand field, separated from the first by a
comma, can be:

• a symbol or an expression

• a symbol or an expression, optionally followed by an index
register identifier enclcsed in parentheses

• a symbol or an expression, optionally followed by a pair of
index register identifiers, separated by a comma, with the
~air enclosed in parentheses

The third source operand field, separated from the second by a
comma, can be:

• a valid register identifier, symbol, or expression with a
defined absolute value in the range 0 to 15

• an equal sign (=) preceding a symbol or an expression with a
defined absolute value in the range O to 15

The fourth source operand field, separated from the third by a
comma, can be:

• a symbol er an expression

• a symbol or an expression, optionally followed by an index
register identifier enclcsed in parentheses

•

3-8

a symbol or an expression, optionally followed by a
index register identifiers, separated by a comma,
pair enclosed in parentheses

pair of
with the

48-050 FOO ROO

Examples of how these instructions are written are:

MOVE =LENGTH2,HERE,=LENGTH1,THERE

which moves the string of length, LENGTH1, at location THERE to
the location HERE up to the number of bytes indicated by LENGTH2.
If LENGTH1 is less than LENGTH2, this instruction pads the extra
bytes with the right-justified character in general register
zero.

In the preceding example, the first operand field is the
immediate value of symbol LENGTH2. The equal sign that specifies
LENGTH2's value is an immediate value and not a register
identifier. The second operand field is the storage address at
location HERE. The third operand field is the immediate value of
symbol LENGTH1 (its immediacy is again indicated by the equal
sign). The fourth operand field is the string at location THERE.

Another example is:

MOVEP R7,PRINTOUT(LINE,COL2),R8,MESSAGE(CLASSX,ERRINDX)

which moves the string of the length specified in general
register RB, found at the memory location computed by summing the
address value of MESSAGE with the contents of both index
registers CLASSX and ERRINDX. The string is moved to a storage
location whose address value is computed by summing the address
value of PRINTOUT plus the contents of both index registers, LINE
and CCL2. The number of bytes to be filled is the length
specified in general register R7. If the length in R8 is less
than that in R7, the MOVEP instruction, by definition, pads the
extra bytes with the default character, a space.

In the preceding example, the first operand field is the register
identifier, R7: the second operand field is the storage address
at location PRINTOUT, as double indexed by the register
identifiers, LINE and COL2; the third operand field is the
register identifier, R8; and the fourth operand field is the
string's location MESSAGE, as double indexed by the register
identifiers, CLASSX and ERRINDX.

Another example is:

PMV =8,DECSUMS(SALES!t),5,TOTALSCORDERX)

which packs and moves the unpacked decimal data digit string
whose length is indicated in general register s. Note that the
5 means a general register because no equal sign precedes it.
The unpacked decimal data digit string is found at the memory
location computed by summing the address value of TOTALS with the

48-050 FOO ROO 3-9

contents of the single index register identifier ORDERX. For
details on how this conversion takes place, refer to the
instruction definitions in the appropriate processor manuals.
Generally, the unpacked decimal data is converted to packed
decimal data up to the number of digits that may occupy the
reserved byte length, indicated by the =8 expression. In this
case, 8 bytes are reserved, providing storage for 15 decimal
packed digits and a position for the sign-indicator. The PMV
instruction, by definition, has various safeguards for illegal
digit cases and overflow, and provides leading zeros as needed,
when the number of positions available for either the unpacked
digits and the packed digits is of. unequal length. The memory
location to which the converted digit data is moved is computed
by summing the address value of DECSUMS with the contents of the
single index register SALESID.

In the preceding example, the first operand field is the
immediate value =8. Note that the equal sign specifies that 8 is
an immediate value and not a register identifier. The second
operand field is the address location DECSUMS as singly indexed
by the register identifier, SALESID. The third operand field is
the register identifier 5; and the fourth operand field is the
address location TOTALS, as indexed by the single index register
identifier ORDERX.

3.7 MACHINE INSTRUCTIONS

Table 3-1 lists the mnemonics for all machine instructions.
Where there is no entry in the format column, that instruction is
not available for that particular line of processors.

3-10

TABLE 3-1 SUMMABY OF MACHINE INSTRUCTIONS
AND MNEMONICS

INSTRUCTION
I I 32-BIT I 16-BIT
I MNEMONIC I FORMAT I FORMAT

--~-----------
Add
Add DP Floating Point
Add DP Floating Point
Register

Add to Bottom of list
Add to Bottom of list

Flagged

Add with Carry Halfword
Add with Carry Halfword
Register

Acknowledge Interrupt
Ac knowledge Interrupt
Register

Add Floating Point

A
AD

ADR
ABL

ABLF

ACH

ACHR
ACK

ACKR
AE

RX
RX

RR
RX

RX

RX*
RX

RR
RX

RX**

RX

RR
~x

RR
RX

48-050 FOO R.00

TABLE 3-1 SUMMARY OF MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

INSTRUCTION

II I 32-BIT I 16-BIT
1 MNEMONIC I FORMAT I FORMAT

==
Add Floating Point
Register

Add Halfword
Add Halfword Immediate
Add Halfword to Memory
Add Halfword Fegister
Acknowledge Interrupt
Add Immediate
Acknowledge Interrupt
R~gister

Add Immediate Short
Autoload

Add to Me111ory
Add Register
Add to: Top of Li st

x
Add to· Top of Li st

Flagged
Branch and Link
Branch and Link

Register
Branch to Control
Storage

Branch on Equal Status
High Speed

Branch on False Condition
Backward Short

Branch on False Condition
Branch on False Condition
Register

Branch on False Condition
Forward Short

Branch on Not Equal
Status High Speed·

Branch on True Conditicn
Backward Short

Branch on True Condition
Branch on True Condition
Register

Branch on True Condition
Forward Short

Branch on Index High
Branch on Index Low or

Equal

48-050 FOO ROO

AER
AH
AH!
AHM
AHR
AI
AI

AIR
AIS
AL

AM
AR
ATL

ATLF
BAL

BALR

BDCS

BES HS

BFBS

BFC

BFCR

BFFS

BNSHS

BTBS

BTC

BTCR

BTFS
BXH

BXLE

RR
RX
RI 1
RX
RR*

RI2

SF
RX

RX
RR
RX

RR

RX

SF

RX

RR

SF

SF

RX

RR

SF
RX

RX

RR
RX
RI
RX
RR
RX*
RI*

RR
SF
RX

RX
RR
RX

RX
HX

RR

RI

RX**

SF

RX

RR

SF

RX**

SF

RX

RR

SF
RX

RX

3-11

TABLE 3-1 SUMMARY OF MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

---~-------------
I I 32-BIT I 16-BIT

INSTRUCTION I MNEMONIC I FORMAT I FORMAT
I
I

===!
Campa re c RX RX*
Complement Bit CBT RX
Compare DP Floating

Point Ct RX RX
Com pa re DP Floating
Point Register. CCR RR RR

Compare FloatinQ Point CE RX RX
Campa re Floating Point
Register CER RR RR

Compare Halfword CH RX RX
Compare Halfword Immediate CHI RI1 RI
Com pa re Halfword Register CHR RR* RR
Change to Halfword Value CHVR RR
Compare Immediate CI RI 2 RI*
Compare Logical CL RX RX*
Compare Logical Byte CLB RX RX
Compare Logical Half word CLH RX RX
Compare Logical Halfword

Immediate CLHI RI 1 RI

Com pa re Logical Halfword
Register CLHR RR* RR

Compare Logical Immediate CL! RI1 RI*
Compare Logical Register CLR RR RR*
Compare Register CR RR R 'R *
Cyclic Redundancy Check

:1odu le 1 7 CRC12 RX RX**

Cyclic Redundancy Check:
Modulo 16 CRC16 RX RX**

Decrement Counter High
Speed OCHS RX**

Divide D RX RX*
Divide DP Floating Pc int DD RX RX
Divide DP Floating Point
Register DDR RR RR

Divide Floating Point DE RX RX
Divide Flaa ting Point
Register DER RR RR

Divide Halfword DH RX RX
Divide Halfword Register DHR RR* RR
Divide Register DR RR .R 'R *

3-12 48-050 FOO ROO

TABLE 3-1 SUMMABY OF MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

---------------------------~-----------------------------
I I I 32-BIT I 16-BIT I
I INSTRUCTION I MNEMONIC I FORMAT I FORMAT I
=============================~==========================='
.Enter Control Storage
Exchange Program Status
Register

Exchange Byte Register
Exchange Halfword Register
Float DP Floating Point
Register

Float Register
Fix DP Floating Point
Register

Fix Register
Generate Inter-Process
Interrupt

Load
Load Address
Load Byte

Load Byte High Speed
Load Byte High Speed
Indirect

Load Byte Register

Load Complement Short
Load DP Floating Point
Load DP Floating Point
Register

Load Floating Point
Load Floating Point
Hegister

Load Halfword
Load Halfword Immediate
Load Halfword Logical
Load Half word Register
Load Half word and Set

Load Immediate
Load Immediate Short
Load Multiple
Load Multiple DP Floating

Point
Load Multiple Floating
Point

Load Program Status
Load Program Status
Ftegister

Load PSW
Load PSW Register
Load Real Address

48-050 FOO ROO

ECS

EPSR
EXBR
EXHR

FLDR.
FLR

FXDR
FXR

GIPI
L
LA
LB

LBHS

LBHSI
I.BR

LCS
I,D

I.DR
LE

LER

LH
LHI
LHL
LHR
LHS

LI
LIS
LM

LMD

LME
LPS

LPSR
LPSW
LPSWR
LRA

RI1

RR
RR
RR

RR
RR

RR
RR

RX
RX
RX

RR

SF
RX

RR
RX

RR

RX
RI 1
RX
RR*
RX

RI2
SF
RX

RX

RX

RX
RR
RX

SF

RR
RR

RR
RR

RR
RR

RR**
RX*
RI*
RX

RI**

RX**
RR

SF
RX

RR
RX

RR

RX
RI
RX*
RR

RI*
SF
RX

RX

RX
RX

RR
RX

1
I
I
I
I
I
I
I

' I I
I

3-13

TABLE 3-1 SUMMARY OF MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

-----------------------------~-----------------~---------
I I 32-BIT I 16-BIT

INSTRUCTION I MNEMONIC I FORMAT I FORMAT
===

Load Register LR RR RR*
Multiply M RX RX*
Multiply DP Floating

Point M~ RX RX
Multiply DP Floating
Point Register MDR RR RR

Multiply Floating Point ME RX RX
Multiply Floating Point
Register MER RR RR

Multiply Halfword MH I RX RX
Multiply Halfword Register MHR RR* RR
Multiply Halfword Unsigned MHU RX
Multiply Halfword Unsigned
Register MHUR RR

Move and Process Byte
String Register MFBSR RR

Multiply Register MR RR RR*
AND N RX RX*
AND Halfword NH RX RX
AND Halfword Immediate NHI RI1 RI

AND Immediate NI RI2 RI*
AND Halfword Register NHR RR* RR
AND Register NR RR RR*
OR 0 RX RX*
Output Command QC RX RX

Output Command Register OCR RR RR
OR Half'folord OH RX RX
OR Halfword Immediate OHI RI1 RI
CR Halfword to Memory CHM RX**
OR Halfword Register OHR RR* RR

OR Immediate or RI2 RI*
OR Register OR RR RR*
Process Byte PB RX
Process Byte Register PBR RR
Read Block RB RX RX

Remove from Bottom Of
List RBL RX RX

Remove from Bottom Of
List Flagged RBLF RX**

Read Block Register RBR RR RR
Reset Bit RBT RX
Read Data RD RX RX

3-1U 48-050 FOO ROO

TABLE 3-1 SUMMARY or MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

INSTRUCTION

I I 32-BIT I 16-BIT
I MNEMONIC I FORMAT I FORMAT

===
Bead DCS
Read Data High Speed
Read Data High Speed
Register

Read Data Register
Read Halfword
Read Half word Register

Rotate Left Logical
Rotate Left Logical
Short

Read Process Data High
Speed

Replace PSW

Rotate Right Logical
Rotate Right Logical

Short
Remove from Top of

:L.i st
Remove from Top of

:List Flagged
Subtract

Store Byte High Speed
Indirect

Set Bit
Subtract with Carry

Halfword
Subtract with Carry

Half word Register
Simulate Channel Program

Subtract DP Floating
· Point
Subtract DP Floating

Point Register
Subtract Floating Point
Subtract Floating Point

Hegister
Set Program Mask

Set Program Mask Register
Subtract Halfword
Subtract Halfword Immediate
Subtract Halfword from

Memory

48-050 FOO ROO

RI:CS
RDHS

RDRHS
RCR
RH
RHR

RLL

RLLS

RPDHS
RPSW

RRL

RRLS

RTL

RTLF
s

SBHSI
SET

SCH

SCHR
SCP

sr;

SDR
SE

SER
SETM

SET MR
SH
SHI

SHM

RR

RR
RX
RR

RI 1

RI 1

RX

RX

RX

RX

RX

RR
RX

RR

RX
RI1

RR
RX**

RR**
RR
RX
RR

RI

SF**

RX**
RR**

RI

SF**

RX

RX**
RX*

RI**

RX

RR

RX

RR
RX

RR
RX

RR
RX
RI

RX**

3-15

TABLE 3-1 SUMMARY OF MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

------------~--
I I 32-BIT I 16-BIT

INSTRUCTION I MNEMONIC I FORMAT I FORMAT
===
Subtract Halfword Register SHR RR* RR
Subtract Immediate SI RI 2 RI*
Si'llulate Interrupt SINT RI 1 RI
Subtract Immediate Short SIS SF SF

Shift Left Arithmetic SLA RI1 RI
Shift Left Halfword

Arithmetic SLHA RI 1 ~I
Shift Left Half word

Logical SLHL RI1 RI
Shift Left Logical SLL RI 1 RI
Shift Left Halfword

Logical Short SLHLS SF RI
Shift Left Logical
Short SLLS SF SF

Store PSW SPSW RR**

Subtract Register SR RR RR*
Shift Right Arithmetic SRA RI1 RI
Shift Right Half word

Arithmetic SRHA RI1 RI
Shift Right Half word

Logical SRHL RI1 RI
Shift Right Logical SRL RI 1 RI

Shift Right Half word
Logical Short SRHLS SF SF

Shift Right Logical
Short SBLS SF SF

Sense Status SS RX RX
Sense Status Register SSR RR RR
Store ST RX RX*

Store Byte STB RX RX
Store Byte High Speed STBHS RX**
Store Byte Register STBR RR RR
Store DP Floating

Point STD RX RX
Store Floating Point STE RX RX

Store Halfword STH RX RX
Store Multiple STM RX RX
Store Multiple DP

Floating Point STMD RX RX
Store Multiple Floating

Point STM E RX RX
Supervisor Call SVC RX RX

3-16 48-050 FOO ROO

TABLE 3-1 SUMMARY OF MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

I I 32-BIT I
INSTRUCTION I MNEMONIC I FORMAT I

16-BIT
FORMAT

==
Test Bit TBT RX
Test Halfword Immediate THI RI 1 RI
Test Immediate TI RI2 RI*
Translate TLATE RX RX**
Test and Set TS RX
Unchain UNC RR**
Write Block WB RX RX
Write Block Register WER RR RR
Write Data WD RX RX
Write DCS WDCS RR RR

Write Data Register WDR RR RR
Write Data High Speed WtHS RX**
Write Data High Speed
Register WDRHS RR**

Write Halfword WH RX RX
Write Halfword Register WHR RR RR

Write Processed Data
High Speed WPDHS RX**

Exclusive OR x RX RX*
Exclusive OR Halfword XH RX RX
Exclusive OR Halfword

Immediate XHI RI 1 RI
Exclusive OR Halfword
Register XHR RR* HR

Exclusive OR to Memory XHM RX**
Exclusive OR Immediate XI RI2 RI*
Exclusive OR Register XR RR RR*

* The indicated mnemonic operation code is generated,
and the listing is flagged with a question mark to
indicate a notential error.

** Model 50 instruction set

48-050 FOO ROO 3-17

Table 3-2 lists the mnemonics for machine
the Perkin-Elmer Model 3220 Processors.
applicable.

formats extended for
The 16-bit format is not

3-18

TABLE 3-2 SUMMARY O·F MACHINE INSTRUCTIONS AND
MNEMONICS EXTENDED FOR THE PERKIN-ELMER
3200 SERIES PROCESSORS

INSTRUCTIONS
I I 32-BIT
I MNEMONIC I FORMAT

-------------------------~--
Breakpoint BRK RR
Compare alphanumeric (RO=pad) CPAN RXRX
Compare alphanumeric and
default pad CPANP RXRX

Load interruptible state ISRST RX
Save interruptible state ISSV RX

Load complement SP :cegister LCER RR
Load complement DP register LCDR RR
Load DP register f rcm SP memory LDE RX
Load DP register fr cm SP register LDER RR
Load DP register f rcm general
register .P~ir LDGR RR

Load process state LDPS RX
Load SP register fr cm DP memory LED RX
Load SP register f rcm DP register LEDR RR
Load SF register f rcm general
register LEGR RR

Load general register pair
from I:P register LGDR RR

Load general register
from SP register LGER RR

Load packed decimal string
as binary LPB RX

Load positive DP register LPDR RR
Load positive SP register LPER RR
Load process segment table
descriptor 1PSTD RX

Load system segment table
descriptor LS STD RX

Move and Pad (RO=pad) MOVE RXRX
Move and pad default i;:ad MOVEP RXRX
Move translated until MVTU RXRX
Piick and move PMV RXRX
Pac.K and move absolute PMVA. RXRX
Read error logger REL RX1 ***
Reset memory voltage failure RMVF RX1 ***

48-050 FOO ROO

TABLE 3-2 SUMMARY OF MACHINE INSTRUCTIONS AND
MNEMONICS EXTENDED FOR THE PERKIN-ELMER
3200 SERIES PROCESSORS (Continued)

-------------------------------~-----------------------
I I 32-BIT I

f INSTRUCTIONS I MNEMONIC I FORMAT f
1===1
I Store DP register in SP memory I STDE I RX I
I Store binary as packed decimal I I I
I string I STPB I RX I
I Store process state I STPS I RX I
I Unpack and move I UMV I RXRX I
I Unpack and move absolute I UMVA I RXRX I
I Store byte with no ECC I XSTB I RX I

*** No register or ether operands allowed in source
format.

In addition to the set of mnemonics listed in Tables 3-1 and 3-2,
CAL/32 recognizes a complete set of extended branch mnemonics.
These instructions allow the programmer to call for conditional
branch instructions without having to state explicitly the
condition code mask. Table 3-3 lists these instructions.

TABLE 3-3 EXTENDED BRANCH MIEMOHICS

INSTRUCTION I MNEMONIC
==

Branch on carry BC
Branch on carry register BCR
Branch on carry short BCS

Branch on no carry BNC
Branch on no carry reqister BNCR
Branch on no carr:y short BNCS

Branch on equal BE
Branch on equal :register BER
Branch on equal short BES

Branch on not equal BNE
Branch on not equal re!gister BNER
Branch on not equal short BNES
Branch on low BL
Branch on low register BLR
Branch on low short BLS

48-050 FOO ROO 3-19

TABLE 3-3 EXTENDED BRANCH MNEMONICS
(Continued)

INSTRUCTICN I MNEMONIC
--

Branch on not low BNL
Branch on not 1011 register BNLR
Branch on not low short BNLS

Branch on minus BM
Branch on minus register BMR
Branch on minus short BMS

Branch on not minus BNM
Branch on not minus register BNMR
Branch on not minus short BNMS

Branch on plus BP
Branch on plus register BPR
Branch on plus short BPS

Branch on not plus BNP
Branch on not plus register BNPR
Branch on not plus short BNPS
Branch on overflow BO
Branch on overf lcw register BOR
Branch on overf lcw short BOS

Branch on no overflow BNO
Branch on no overflow register BNOR
Branch on no overflow short BNOS

Branch on zero BZ
Branch on zero register BZR
Branch on zero short BZS

Branch on not zero BNZ
Branch on not zero register BNZR
Branch on not zero short BNZS

P ranch unconditional B
Branch unconiitional register BR
Branch unconditional short BS

No operation NOP
No operation register NOPR

--

The extended branch instructions are essentially single operand
instructions where the first operand mask value is included in
the operation mnemonic. The programmer supplies only the second

3-20 48-050 FOO ROO

operand or branch location. For short branches, the programmer
does not have to specify the forward or backward direction.
CAL/32 determines the direction of the branch and generates the
appropriate machine code. For example:

LOOP1

END

L
CLR
BES
AIS
BNZS
XR
ST

STRNG,TAELE(PTR)
STRNG,INPUT
END
PTR,4
LOOP1
STRNG,S!RNG
STRNG,RETURN

LOAD STRING FROM TABLE
COMPARE WITH INPUT
EQUIVALENT FOUND
NOT FOUND INCREMENT PTR
GET NEXT STRING
NOT FOUND END pF TABLE
RETURN VALUE

In this program, CAL/32 determines the locations of LOOP1 and END
and generates the required :forward and backward branch
instructions.

Two more CAL/32 instructions that do not have direct machine
equivalents are:

INSTRUCTION

Branch on true condition short
Branch on false conditicn short

MNEMONIC

BTCS
BFCS

With these instructions, the programmer must specify the mask
value and the branch location. CAL/32 determines the direction,
forward or backward, and the appropriate machine operation is
generated.

3.8 ASSEMBLER INSTRUCTIONS

Assembler instructions control the assembly process. Although
they may resemble machine instructions in form, they do not
generate any machine executable code. They are used to define
symbols, reserve storage, generate data constants, and control
the final output.

3.8.1 Symbol Definition Instructions

Symbol definition instructicns allow the programmer to assign
values to symbols and set up communication paths between
separately assembled programs. The latter operation facilitates
the use of subroutines because they can be written and assembled
separately from the main program. At load time, a linking loader
uses information supplied by CAL/32 to resolve addresses between
main programs and subroutines to set up the correct linkage.

48-050 FOO ROO 3-21

3.8.1.1 Equate (EQU) Inst~uction

This is one of the most commonly used assembler instructions. It
assigns values to symbols and it has the form:

NAME OPERATION OPERAND

A symbolic name EQU An expression

Examples of EQU instructicns are:

LOOP EQU LOOP1
TOP EQU END-64
DELTA EQU BOTTOM-'IOP
HERE EQU *
START EQU X'10FE'
SUM EQU 1
PTR FQU 2

EQU instructions can appear anywhere in the program. CAL/32
requires that each EQU instruction have a symbol in the name
field and treats the absence of this symbol there as an error.
The value assigned to a symbol by an EQU instruction is absolute
or relocatable, depending on the type of expression in the
operand field. If the cperand of an EQU statement contains a
forward reference, CAL/32 will perform any additional passes
required to define all symbols. CAL/32 does not reserve storage
for symbols defined by an EQU instruction. Wherever it
encounters the symbol in the program, CAL/32 replaces the symbol
with the value defined in the EQU instruction. For example:

STRNG
PTR
INPUT

LOOP1

EQU
EQU
EQU

L
CLR

1
2
3

STRNG,TABLECPTR)
STRNG,INPUT

LOAD STRING FROM TABLE
COMPARE WITH INPUT

·rn this case, CAL/32 generates the code to load register 1 with
four bytes located at the address specified by TABLE, indexed by
register 2. The next instruction causes CAL/32 to generate the
code to compare the four bytes in register 1 with the contents of
register 3. The use cf the EQU instruction here allows the
programmer to assign meaningful names to the registers that hold
the character strings, and index into the table. It also

3-22 48-050 FOO ROO

provides a simple way to redefine the values assigned to these
symbols. By changing the EQU instructions and reassembling, it
is possible to change the values assigned to the symbols without
doing extensive editing to change each individual statement where
these registers are used.

It is also possible, although not recommended, to redefine a
symbol within a program. Fer example:

LOOP1 EQU *

LOOP1 FQU *

When the symbol LOOP1 is encountered in the first EQU
instruction, CAL/32 assigns it the value of the current location
counter. Subsequent references to LOOP1 receive this value.
Following the second EQU instruction, the value of LOOP1 is
changed to the value of the new location counter. Because such
redefinitions might not be intentional, CAL/32 issues a warning
message wherever a symbol is redefined by an EQU instruction.
(In the example# the programmer might have intended to write
LOOP2 instead of LOOP1 in the second EQU instruction.)

The user must guard against circular location counter dependency,
as shown in the following example:

A EQU *
DS 1
DS B-A

B F.QU *
END

CAL/32 will flag an "M001 xxxTOP" error where xxx is PURE, IMP,
or ABS, depending upon the current location counter.

As stated earlier, CAL/32 permits the user to define operation
mnemonics within the program. To do this, the user defines the
new mnemonic in an EQU instruction in which the new operation
mnemonic is in the name field, and the operand field contains a
hexadecimal constant of the form X'nnxy•. Here, nn is the
machine language operation code, and x and y are descriptors that
tell CAL/32 how to handle the new mnemonic. The values of x and
y inform CAL/32 of the instruction format. The values are
defined as follows:

x = o, y = 8 RR or SF format
x = 0, y = 2 RX or RI format
x = o, y = 4 RI1 format
x = o, y = 1 RI2 format

48-050 FOO ROO 3-23

To define extended branch mnemonics, x gets a value equal to the
.R1 field (mask) and y gets cne of the following values:

y = 3 RX format
y = c RR format
y = D SF format

For example, in the instruction:

BTC 15,ADDR

the branch on true condition mnemonic and the mask field 15 can
be combined into an extended branch instruction as follows:

BTCF EQU X'42F3'

in which RTCF is the new mnemonic; 42 is the machine code for the
branch on true condition instruction; F is the mask value (15);
and 3 specifies RX format. Once this new mnemonic is defined,
the programmer can write:

BTCF At DR

instead of:

BTC 15,ADDF

The new mnemonic definition remains in effect only for the
program in which it is defined. The new mnemonic must be
different frcm all other mnemonics recognized by CAL/32.

There are three things to remember in using equate statements:

1. The name field must always contain a valid symbol.

2. The operand field must always contain a defined symbol or
expression.

3. The symbol that appears in the name field of an equate
instruction must not appear in the name field of any other
instruction, except another equate instruction.

If any of these rules are violated, CAL/32 generates an
appropriate error message.

3-2U 48-050 FOO ROO

External, Entry, Weak External,
Data Entry (EXTRM, ENTRY, WXTRN,
Instructions

Weak Entry, and
WNTRY, and DNTRY)

These instructions are listed together since they perform
corresponding functions to establish links between main programs
and subroutines, and between programs with a common data base.
These instruction forms are:

NAME OPERATION OPERAND

Not used EXTRN Cne or more symbols
(illegal) separated by commas
Not used ENTRY Cne or more symbols
(illegal) separated by commas
Not used WXTRN One or more symbols
(illegal) separated by commas
Not used WNTRY Cne or more symbols
(illegal) separated by commas
Not used DNTRY Cne or more symbols
(illegal) separated by commas

The EXTRN instruction identifies symbols referenced by the
program but defined outside the program. The ENTRY instruction
identifies symbols defined within the program and referenced
externally. (They can be referenced internally as well.)

For example, consider two programs: one calculates the sine and
cosine of an angle, the other uses the sine and cosine. The
first is a general purpose program that could be used by many
other programs. The ENTRY and EXTRN instructions make this
possible without having to a~semble the sine and cosine program
every time it is needed. The sine and cosine program would
contain an ENTRY instruction and entry points such as:

ENTRY SIN,COS

SIN EQU *

cos EQU *

The symbols SIN and COS appear as operands in the ENTRY
instruction and as names in the EQU instructions. ~hen CAL/32
assembles this program, CAL/32 informs the linking loader that
the locations identified by the names SIN and COS are entry
points into the program.

48-050 FOO ROO 3-25

The program that uses sine and cosine would contain an external
statement and branch instructions such as:

EXTRN SIN,CCS

BAL LINK,SIN

BAL LINK, COS

At assembly time, CAL/32 generates object data to inform the
linkage editor that the symbols SIN and COS are externally
defined. At link time, the linkage editor uses this information,
along with the information generated by the entry instruction in
the other program, to provide the necessary linkage.

The WXTRN instruction is essentially equivalent to the EXTRN
instruction. However WXTRN symbols are subject to the following
exception processing by Link:

• An error condition does not arise if the symbol is not
resolved.

• Object libraries are net searched in order to satisfy a weak
external.

• If a module containing an entry point referenced by a WXTRN
symbol is included, then the entry point will be used to
satisfy WXTRN references to it in the normal fashion.

The WNTRY instruction is essentially equivalent to the ENTRY
instruction. However, WNTRY symbols are subject to the following
exception processing by Link.

• Weak entry points are not examined when searching an object
library. Therefore, a program module containing a weak entry
point is not included to satisfy an external reference.

• If a program module containing a weak entry point is included
from a module, the weak entry point will be used to satisfy
external references in the normal fashion.

3-26 48-050 F~O ROO

The DNTRY instruction is essentially equivalent to the ENTRY
instruction. However, symbols nominated by DNTRY are resolved
directly when building overlaid modules rather than resolved in
an SVC instruction. This instruction identifies a symbol defined
local to the program containing the DNTRY instruction.

To help protect references to data in higher level nodes, Link I
automatically loads the entire path of overlays starting at the I
overlay containing data and ending with the overlay making the I
reference to a data entry point CDNTRY). A reference to a I
program section positioned in a higher level node, via the I
POSITION command, is treated the same way. A reference to data I
or a program section in the root will not cause a path of I
overlays to be loaded. I

If a DNTRY is referenced in a lower level node, an SVC 5 manual
overlay load might be required to ensure that the overlay is in
memory at the time of the reference.

Restrictions on the use of external and entry instructions are:

• The operand field of an external instruction must not contain
an expression, such as SIN+4.

• Expressions involving externally defined symbols must be of
the form:

External symbol + absolute expression

External symbol absolute expression

BAL LINK,SIN+4

is a legal use of an externally defined symbol.

• Externally defined symbols cannot be used internally as
instruction identifiers.

• Any symbol identified as an entry must appear internally in
the name of an instruction.

• Symbols identified as entries cannot be redefined by multiple
equate instructions.

3.8.1.3 Include (!NCLD) Instruction

This information provides Link with a mechanism to guarantee the
inclusion of object modules without other linkage references to
it. It has the form:

48-CSO FOO ROO 3-27

NAME

Not used
(illegal)

OPERATION

INCLD

OPERAND

One or more
symbols
separated by
commas

The INCLD is used in the same fashion as the
references. However, this instruction is
program modules rather than external symbols.

EXTRN to linking
used to nominate

NOTE

CAL/32 will generate the same object as
in the past, provided none of the
following instructions are used:
external with offset, DCMD, DNTRY, WNTRY,
WXTRN, or INCLD. The assembly of any of
these instructicns will produce an object
that TET will reject. Link is required
to process modules containing this
extended object. These instructions are
only valid in a Target 32 assembly and
have no effect on 16-bit object
genera ti on.

3.8.2 Data Definition Instructions

These instructions allow the programmer to reserve areas of
memory to be used at run time. Some of these instructions allow
the programmer to specify values with which these areas can be
initialized at load time. Other data definition instructions
provide easy access to complex data structures.

Define Storage CDS, DSH, DSF) Instruction

This instruction causes CAL/32 to reserve a block of storage
within the proaram without initializing the reserved locations to
any value. It has the form:

NAME OPERJ\ TI ON OPERAND

A symbol DS An absolute
(optional) expression
A symbol DSH An absolute
(optiona 1) expression
A symbol DSF An absolute
(optional) expression

The DS mnemonic causes CAL/32 to reserve the specified block of
storage starting from the value of the current location counter.
In the DSH form, CAL/32 first aligns the location counter on a

3-28 48-050 FOO ROO

halfword boundary and then reserves the storage. In the DSF
form, CAL/32 first aligns the location counter on a fullword
boundary. Examples of the define storage instruction are:

BUF1
BUF2
BUF3

DS
DSH
DSF

100
125
16

In the first example, CAL/32 reserves 100 bytes of storage by
simply adding 100 to the location counter. In the second
example, CAL/32 reserves 125 halfwords (250 bytes) of storage.
CAL/32 does this by aligning the location counter on a halfword
boundary, if it is not already properly aligned, and then adding
250 to it. In the third example, CAL/32 ensures that the
location counter is aligned on a fullword boundary and then adds
64 (the byte equivalent of 16 fullwords) to it. If the operand
contains a forward reference, CAL/32 will perform any additional
passes required to define all symbols.

Define storage instructions are commonly used to reserve storage
areas for transient data. Examples of this are I/0 buffers and
register save areas. For example:

LINK

RS AVE

ENTRY RSAVE
EXTRN SIN,CCS
EQU 15

DSF 16

BAL LINK,SIN

shows how a main program might set up a register save area within
itself. The code for the called program might look like:

RO

SIN

48-050 FOO ROO

ENTRY SIN,CCS
EXTRN RSAVE
EQU 0

EQU
STM

*
RO,RSAVE

3-29

where the subroutine stores the
externally defined area, RSAVE.
instructions remember that:

general registers
When using define

in the
storage

• The DSH and DSF forms cf the instruction ensure halfword and
fullword alignment.

• The define sto~age instructions do not initialize memory to
any particular value.

• Cnly one operand is allowed in a define storage instruction,
and it must be a defined, absolute symbol or expression.

3.a.2.2 Define Constant CDC, DCF) Instruction

The define constant instruction allcws the programmer to reserve
areas of memory and at the same time specify the initial value to
be loaded into them. The define constant instruction has two
forms:

NAME OPERATION

A symbol DC
(optional)
A symbol DCF
(optional)

OPERAND

One or more operands
separated by commas
One or more operands
separated by commas

The DC mnemonic ensures that the first of the operands is aligned
on a halfword boundary. The DCF mnemonic ensures that the first
of the operands is aligned on a fullword boundary. Operands of
different types can be used in the same define constant
instruction. However, where alignment is a concern, the
programmer must be careful in mixing operands of different types.
Types of operands are described below.

A single character code indicates the type of constant. This
character cod~ is not always required, and the exceptions are
noted as they occur. The assembler determines from the character
code how it is to interpret the constant and translate it into
the proper object format. Table 3-4 lists the character codes
recognized by CAL/32, their meanings, and the types of constants
generated.

3-30 48-050 FOO ROO

TABLE 3-4 CONSTANT TYPES

CODE f MEANING MACHINE FORMAT
==
x
.Y
H
F
A
z
T
E

D

c

p

u

Hexadecimal
Hexadecimal
Integer
Integer
Address
Add res~
Address
Single precision
floating point

Double precision
floating point

Character

Packed decimal
string

Unpacked decimal
string

·16-bi t binary
32-bit binary
16-bit signed binary
32-bit signed binary
32-bit value of address
16-bit value of address
One half of 16-bit address
32-bit floating point

format
64-bit floating point
format

An 8-bit code per
character {7-bit ASCII)

Fixed point sign-coded
integer of binary en­
coded 4-bit decimal
digits in a string of
variabl~ byte length.

Fixed point sign-coded
integer of 7-bit ASCII
encoded decimal digits
(8-bits per digit) in a
string of variable byte
length.

---~-----------------------·---------------------~-----

3.8.2.3 Hexadecimal Constants

A hexadecimal constant consists of one or more hexadecimal
digits, O through 9 and A through F, enclosed in apostrophes and
preceded by the type code X or Y. Where the X type is used,
CAL/32 reserves two bytes of storage and generates the loader
information that will cauEe those two bytes to be initi~lized at
load time with the binary representation of the hexadecimal
number. The Y type causes four bytes to be reserved and
initialized. Examples of hexadecimal constants are:

CONSTANT VALUE

DC X' 1234' 1234
DC Y'1234' 0000 1234
DCF X'20' 0020
DCF Y'0064' 0000 0064
DC X' 12.34ABC' 4 A.BC

48-050 FOO ROO 3-31

The first example shows a halfword hexadecimal constant which,
because of the DC operation code, is aligned on a halfword
boundary. The second example shows a fullword hexadecimal
constant. In this case, fullword alignment is not guaranteed.
The third example shows a halfword constant aligned on a fullword
boundary. The fourth example shows how to force fullword
alignment for a fullword constant. The last example shows what
hap~ens when too many digits are given. CAL/32 truncates the
constant to the least significant digits and generates an error
message. The maximum number of digits for an X type constant is
four. The maximum number fer a Y type constant is eight.

NOTE

Where fewer than the maximum number of
digits are given, CAL/32 right justifies
the value in the location and fills in
the missing digits with zeros.

Two special mnemonics facilitate the building of hexadecimal
tables by eliminating the need to specify the X or Y type code.
They have the form:

NAME

A symbol
(optional)
A symbol
(optional)

OPERATION

DCX

DCY

OPER~ND

One or more operands
separated by commas
One or more operands
separated by commas

Operands for these instructions consist of from one to four
hexadecimal digits for the tCX instruction and from one to eight
hexadecimal digits for the ~CY instruction. Examples of these
constants are:

DCX 1,0,14AE,20,4040
DCY 1,2FFFE,64,80000000

The DCX instruction generates five halfword constants as follows:

3-32

0001
0000
14AE
0020
4040

48-050 FOO HOO

The DCY instruction generates four fullword constants as follows:

0000 0001
0002 FFFE
0000 0064
8000 0000

Before generating the constants, CAL/32 ensures that they are
properly aligned with halfword constants aligned on halfword
boundaries and fullword ccnstants aligned on fullword boundaries.

3.8.2.4 Integer Constants

Integer constants can be either halfword or fullword. Halfword
constants are expressed by the character code H followed by a
string of from 1 to 5 decimal digits enclosed in apostrophes.
Fullword constants are expressed by the character code F followed
by a string of from 1 to 10 decimal digits enclosed in
apostrophes. The range of halfword constants is from -32,768 to
+32,767. The range of fullword constants is from -2,147,483,648
to +2,147,483,647. The decimal strings used in these constants
must not include commas or blanks. A sign, + or -, can precede
the string.

The internal representation of integer constants is two's
complement binary. In this notation, positive numbers and zero
have their true binary form. For example, a halfwori integer
with a value of 25 is represented internally (hexadecimal
notation) as:

00

Negative numbers are expressed in accordance with the formula:

Va 1 ue = 2 - x

where n is the number of bits used to express the value, and x is
the absolute value of the number. For example, to represent
minus 10 in a halfword constant:

n = 16 (1016>
x = 10 CA16)
Value = 1000016 - A16 = FFF616

48-050 FOO ROO 3-33

Examples of integer constants are:

CONSTANT VALUE

DC H'32767' 7FFF
DC H'-32768' 8000
DC FI 1 ' 0000 0001
DC H'-2' FFFE
DCF F'25' 0000 0019

The H and F codes themselves do not guarantee correct alignment.
To ensure that a fullword integer is aligned on a fullword
boundary, the programmer should use the DCF instruction.

CAL/32 does not require that integer constants be defined with
the character codes and decimal strings enclosed in apostrophes.
A simple decimal string can be used. For example:

DC 1
DC -7

The length of the integer constants generated by these
instructions depends on the processor on which the program is to
run. For 32-bit processors such instructions generate fullword
constants, such as:

CONSTANT

DC 1
DCF -7

VALUE

0000 0001
FFFF FFF9

For 16-bit processors, these instructions generate halfword
constants, such as:

CONSTANT

DC
LC

1
-7

VALUE

0001
FFF9

It is possible to force a fullword alignment by using the DCF
mnemonic with a simple decimal string. The use of a DCF
instruction affects only the alignment of the first of the
integer constants; the length of the constant is determined
solely by the processor on which the program is to be run. Thus,
when using these instructions with operands which are simple
decimal strings, it is not possible to generate a halfword
constant for a 32-bit processor.

3-34 48-050 FOO ROO

3.a.2.s Address Constants

Address constants consist of a single character type code
followed by a symbol or an expression enclosed in parentheses.
The three types of address constants are A, z, and T. Type A
constants generate fullword address constants in programs
intended to be run on 32-bit processors; they generate halfword
address constants in programs intended to be run on 16-bit
processors. Types Z and T address constants always generate
halfword values. Examples of address constants are:

DC A(LOOP+2)
DC AC TABLE)
DC A(TOP-BOTTOM)
DC Z(IOVECTOR)
DC T(ALPHATAB)

For 32-bit processors, the first three examples cause CAL/32 to
reserve a fullword of storage, initialized at load time to
contain the value of the expression or symbol enclosed in
parentheses. This value can be absolute or relocatable,
depending on the nature of the expression. The address quantity
is right justified in the least-significant 24 bits of the
fullword, and the most-significant 8 bits are forced to zero.
However, it is possible to use the most-significant bits for some
puLpose. They might be used as flag bits as in the example:

FAR AM
ADDR

LINK
A DREG

DS
DC
EXTRN
EQU
EQU

4
A(PARAM+Y'AOOOOOOO')
SIN
15
1 4

STE RO,PARAM
L ADREG,A[tR
BAL LINK,SIN

At the time of the branch and link instruction, register 14
contains the address of the location PARAM in the
least-significant 24 bits. The most-significant 8 bits contain
the value X'AO'. The subroutine can use the address portion and
the flag portion independently, as:

48-050 FOO ROO 3-35

SIN EQU

LE
TI

*

R4,0(ADREG)
ADREG,Y'AOOOOOOO'

GET PARAMETER
TEST FLAGS

The Z type address constants generate halfword values. They can
be used in programs for 32-bit processors if the programmer is
certain that the actual address cannot exceed 65,535, the maximum
unsigned value that can be expressed in a halfword.

The T type address constants are used as entries in translation
tables. These instructions cause CAL/32 to reserve a halfword of
storage initialized with one half of the actual address, right
justified. The most significant bit is zero. These constants
are intended for use with the translation tables associated with
the translate instruction ann with the auto driver channel.

Address constants can be written without the type code and
parentheses, as in:

TABLE
BUFF1

ADD1
ADD2

DS
DS

DC
DC

16
64

TABLE
BUFF1

ADDRESS OF TABLE
ADDRESS OF BUFFER ONE

Where this convention is used, the size of the generated constant
depends on the processor for which the program is written. For
32-bit assemblies, CAL/32 generates fullword constants. For
16-bit assemblies, CAL/32 generates halfword constants. The
programmer can force halfwcrd constants to be generated by using
the mnemonic DCZ, as:

DCZ TABLE,EUFF1

which causes a series of halfword address constants to be
generated.

3-36 48-050 FOO ROO

3.8.2.6 Floating Point Constants

The source form for floating point constants consists of a
decimal number enclosed in apostrophes and preceded by the letter
E for single precision, or the letter D for double precision.
The decimal number consists of:

• an optional plus sign or minus sign,

• cne or more decimal digits that may include a decimal point,
and

• an optional E character followed by an optional plus sign or
minus sign, followed by one or two decimal digits denoting a
power of 10.

Single precision floating point constants require a fullwor1 of
storage. Double precision floating point constants require a
doubleword of storage. Internally, floating point constants are
represented in excess 64 notation. In this kind of notation,
each floating point number consists of a sign, an exponent, and
a fraction. The f{rst bit of the number is the sign bit. If
this bit is a 1, the number is negative; if it is a O, the number
is positive. The next 7 bits represent the exponent, expressed
in excess 64 notation. This field can contain any value between
O and 127 inclusive. The remaining bits, 24 for single precision
and 56 for double precision, represent the fraction with an
implied radix point before the first bit.

The true value of the floating point number is obtained by
multiplying the fraction by 15 raised to the power indicated by
the exponent field. In excess 64 notation, this power is
determined by subtracting 64 from the value in the exponent
field. In this way, values equal tc or greater than 64 produce
a O or positive power. Raising 16 to this power and then
multiplying by the fraction produces values between .0625 and 7.5
x 10. Exponent field values that are less .than 64 produce a
negative power and values between .06249 ••• and 5.4 x 10- •
Floating point O is represented by a fullword or a double word of
zercs.

Examples of floating point constants are:

CONSTANT INTERNAL REPRESENTATION

DC E' 1 ' 4110 0000
DC E'O.O' 0000 0000
DC E'7.?.E74' 7F19 7B17
DC D'10.5' 41A8 0000 0000 0000
DC D'5.4E-79' 0010 0·1D1 33A9 49F6
DC D'7.2E+75' 7FFE BOE3 AD97 8760

48-050 FOO ROO 3-37

In the internal representation of floating point constants, the
fractional part can consist of from 1 to 6 hexadecimal digits for
single precision, and up to 14 hexadecimal digits for double
precision. If the decimal number exceeds this degree of
accuracy, the magnitude cf the number is preserved but the
precision is lost. In performing the conversion from decimal to
internal floating point, CAL/32 carries guard digits to ensure 6
hexadecimal digit accuracy for single precision and 14
hexadecimal digit accuracy for double precision. The programmer
must ensure ~roper alignment.

3.8.2.7 Character Constants

Character constants consist of the single letter code C followed
by a string of ASCII characters enclosed in apostrophes. All
characters are translated into 7-bit ASCII, in which the most
significant bit is always o. Examples of character constants
are:

DC C'NAME'
DC C'AFOSTROPHE = ''

The second example shows how an apostrophe is included in a
character constant. Between enclosing apostrophes, a double
apostrophe is treated 1s a single character. The maximum number
of charact~rs that can be defined in a single character constant
is 64. If the number of characters in a constant is odd, CAL/32
appends a blank character at the end to maintain halfword
alignment.

3.8.2.8 Decimal String Constants

The source format fur decimal string constants consists of a
decimal number enclosed in apostrophes and preceded by the letter
P tor packed decimal string constants, or by the letter U for
unpacked decimal string constants. The decimal number is an
integer and consists of an optional plus sign or minus sign,
followed by 1 to 31 decimal digits.

The machine internal r~presentation of the packed decimal string
constant is a fixed-point, sign-coded integer, where each digit
occupies 4 bits and each byte holds 2 digits. That is, each
decimal digit, O through 9, is binary encoded in a' 4-bit
hexadecimal digit. As the number of decimal digits varies from
1 to 31, the length in byt~s of the decimal string varies from 1
to 16 bytes. The last hexadecimal digit contains a 4-bit code
for sign; a hexadecimal C for plus, or a hexadecimal D for minus.
The integer representation is right-justified within the variable
length string, so the least-significant digit of the decimal
number occupies the hex~decimal digit just preceding the sign
code. Each digit is thus consecutively packed, with the

3-38 48-050 FOO ROO

most-significant digit (zero or nonzero) in bit positions 0
thrcugh 3 of the leftmost byte of the string. Refer to the
examples that follow fer the differences in internal
representation, when the packed decimal string constant is
defined by either the define constant (DC) instruction or the
define byte (DB) instruction.

The machine internal representation of the unpacked decimal
string constant is a fixed-point, sign-coded integer, where each
zoned digit occupies a byte. That is, each decimal digit, 0
through 9, is encoded in 7-bit ASCII with the leftmost bit O;
providing an 8-bit byte with the left hexadecimal di~it
containing a zone code of 3 and the right hexadecimal digit
containing the binary encoded decimal digit. As the number of
decimal digits varies fro! 1 to 31, the length in bytes of the
decimal string varies frc 1 to 31 bytes. The integer
representation is right-ju tified within the variable length
string. The rightmost byte ontains the least significant digit
in its rightmost hexadeci al digit and the sign code in its
leftmost hexadecimal digit. The sign code is a 4-bit code,
described above with a hexadecimal C for plus, and a hexadecimal
D for minus. Each digit is thus consecutively coded into bytes,
with the most-significant digit (zoned zero or zoned nonzero).
Refer to the following exam~les for the differences in internal
representation, when the unpacked decimal string constant is
defined by either the DC instruction or the DB instruction.

The address of the string is the address of the leftmost byte
containing the most-significant digit (zero or nonzero). The
address generated for either the packed decimal string constant
or the unpacked decimal string constant is that associated with
the .label of the source statements and the current location
counter. Examples of the PDS constants are:

SOURCE FORMAT

DB p. 1 •
DB P'+50'
DB P'-879'
DB P'+123LJ'
DB p•-12345•
DB P' 1234567890123L~S6789012345678901'

DC F' 1 '
DC P'+50'
DC P'-879'
DC P'+1234'
DC P' 12345'
DC P'1234567890123456789012345678901'

48-050 FOO ROO

INTERNAL
REPRESENTATION
(HEXADECIMAL)

1C
osoc
879D
0123 4C
1234 SD
1234 5678 9012
7890 1234 5678
001C
osoc
879D
0001 234C
0012 345C
1234 5678 9012
7890 1234 5678

3456
901C

3456
901C

3-39

Note that as string-processing instructions are intended to
operate at the lowest addressable level, on byte-addressable
locations these constants are most efficiently generated by the
DB instructions, described in the define byte instruction
section. If the DC instruction is used, an extra byte of leading
zeros is generated, when the number of digits is a multiple of 4,
or is an odd nuruber of digits not divisible by 3. Examples of
un~acked decimal string (zoned) constants are:

INTERNAL
REPRESENTATION

SOURCE FORMAT (HEXADECIMAL)

DB u I 1 I C1
DB U'+50' 35CO
DB U'-879' 3837 D9
DB 0'+1234' 3132 33C4
DB u· 12345• 3132 3334 DS
DB U'1234567890123456789012345678901' 3132 3334 3536 37 38

3930 3132 3334 3536
37 38 3930 3132 3334
3536 3738 3930 C1

r:c U I 1 t 30C1
LC u• +so• 35CO
DC U'-879' 3038 37D9
LC U'+1234' 3132 33C4
.cc U'-12345' 3031 3233 34D5
DC u· 1234567890123456789012345678901• 3031 3233 3435 3637

38 39 3031 3233 3435
3637 3839 3031 3233
3435 3637 3839 30C1

As string processing instructions require programmed length
attributes, familiarization with the internal storage
requirements for both Packed decimal string and unpacked decimal
string constants is advisable. In the previous examples, the
relationship of nu~ber of digits to byte length is as follows:

CONSTANT DEFINED BY BYTE LENGTH

Packed DB (integer of n/2) + 1

Packed DC 2*(integer of n/4) + 2

Unpacked DR n

Unpack~d tc n, for n even
n + 1, for n odd

where n is the number of decimal digits in the source formats of
the decimal constants.

3-40 48-050 FOO ROO

3.8.3 Define Byte (DB) Instruction

This instruction defines consecutive 8-bit bytes of data.
the form:

NAME

A symbol
(optional)

OPERATION

DB

OPERAND

One or more operands
separated by commas

It has

The symbol used in the name field of the DB instruction is
assigned the value of the current location counter. There is no
automatic alignment. The programmer must ensure proper alignment
where the symbolic name of a DB instruction is used as an operand
identifier in an instruction requiring its operand to be located
on a halfword, fullword, er double word boundary.

The operand field can contain one or more operands, separated by
commas. There can be an even or an odd number of operands. The
operands can be any symbol or expression value. For any operand,
other than character or decimal string expressions, the least
significant eight bits of the operand value are used to generate
one byte of data. Examples of the DB instructions are:

DB X'F7'
DB 128
DB -1
DB C'A'
DB C'ABCDEFG'

As shown in the examples, the operand of a DB instruction can be
a signed integer. Ia this case, the inteqer can have any value
between -128 and +127, inclusive.

A special form of the DB instruction:

DB *

forces alignment of the locatlon counter to a halfword boundary.
If, when this instruction is encountered, the location counter
contains an odd value, one byte of zero value is generated, and
the location counter is made even. If the location counter is
already even, this instruction has no effect.

48-050 FOO ROO 3-41

3.8.4 Define List CDLIST) Instruction

This instruction provides a simple means for defining circular
lists used by the machine instructions:

• Add to top of list

• Add to bottom of list

• Remove from top of list

• Remove from bottom of list

The define list instruction has the form:

NAME OPERATION

A symbol DLIST
(optiona U

OPERANt

An absolute
expression

The absolute expression in the operand field specifies the number
of slots in the list. For 32-bit assemblies, CAL/32 reserves
four half words of storage for list pointers, followed by the
specified nurr.ber of fullwords (slots). The first halfword list
pointer is initialized with a value equal to the number of slots
in the list. The remaining three pointers are initi~lized to
zero. For 16-bit assemblies, CAL/32 reserves four bytes of
storage for list pointers, followed by the specified number of
halfwords. The first byte pointer is initialized to a value
equal to the number of slctE in the list. The remaining byte
pointers are initialized to zero. An example of the DLIST
instruction is:

LIST1 DLIST 100

In a 32-bit assembly, this has the same effect as:

LIST1 LCF
DS

X'64' ,x•cr• ,x·o· ,x•o•
uoo

The DLIST instruction forces alignment to a fullword boundary in
32-bit assemblies. It forces alignment to a halfword boundary
for 16-bit assemblies.

3-42 48-050 FOO ROO

3.8.5 Define Command (DCMD) Instruction

This instruction causes the string within the set of apostrophes
to be passed directly to the object code.

NAME

A symbol
(optional)

OPERATICN

DCMD

OPERAND

C 'command
string•

The operand of the DCMD instruction is subject to the same
syntactic rules as any other character string. CAL/32 performs
no syntax checking on the command string.

CAL/32 will generate the same object as in the past, provided the
DCMD instruction is not used. The assembly of this instruction
will produce an object that TET will reject. Link is required to
process modules containing this extended object. The DCMD
instruction is valid only in a Target 32 assembly and has no
effect on the 16-bit object generation.

3.8.6 Location Counter Instructions

These in str11 ction s allow the programmer to select the current
location counter and set its value. For 32-bit assemblies,
CAL/32 maintains three location counters: pure, impure, and
absolute. For 16-bit assemblies, it maintains two location
counters: relocatable and absolute. At any given time, only one
location counter can be in use. With these instructions, the
programmer can control the ~rogram segmentation and relocation.

3.8.6.1 Pure (PURE) Instruction

This instruction causes all subsequent machine instructions to be
assembled as part of the pure segment. It has the form:

NAME OPEPATION

A symbol PURE
(optional)

OPEHAND

None
(ignored)

The current location counter is saved, and the new location
counter is set to point to the next halfword boundary beyond the
most recently used location in the pure segment. If a PURE
instruction occurs in a relocatable 16-bit program, it has no
effect. If it occurs in an absolute 16-bit program, it causes a
switch to t~e relocatable lccation counter.

48-050 FOO ROO 3-43

3.8.6.2 Impure CIMPUR) Instruction

This instruction causes all subsequent instructions to be
assembled as part of the im~ure segment. It has the form:

NAME OPERATION

A symbol IMPUR
(optional)

OPERAND

None
(ignored)

The current location counter is saved, and the new halfword
boundary is set beyond the roost recently used impure address. In
16-bit assemblies, this instruction has no effect if the program
is already in relocatable mcde. If it is in absolute mode, the
location counter is switched to relocatable.

NOTE

Unless otherwise specified by the
programmer, impure mode is assumed.

3.8.6.3 Orioin (ORG) Instruction

This instruction selects a location counter and sets it to a
defined value. It has the form:

NAME

A symbol
(optional)

OPERATION

ORG

OPERAND

A symbol or
expression

The operand of the origin instruction determines which location
counter is selected and the value it is given. If the value of
the operand is pure, impure, absolute, or relocatable, the
corresponding location counter is selected and set to the operand
value. If the operand contains a forward reference, CAL/32 will
perform any additional passes required to define all symbols.

The user must guard against circular location counter dependency,
as in the following example:

ORG A
LIS 4,4

A EQU B
LIS 4,4

B EJU *
E~D

3-44 48-050 FOO ROO

CAL/32 will flag an "M001 xxxTOP" error, where xxx is PURE, IMP,
or ARS depending on the current location counter.

NOTE

If no ORG instruction appears at the
beginning of a ~rogram, CAL/32 assumes it
to be relocatable starting at relocatable
zero. For 32-bit programs it also
assumes the impure segment.

3.8.6.4 Absolute CABS) Instruction

This instruction causes the location counter to be put in the
absolute mode. It has the form:

NAME OPERATION

A symbol ABS
(optional)

OPERAND

None
(i9nored)

The current location counter is saved, and the new location
counter is set to point to the next halfword boundary beyond the
most recently used absolute location. If the absolute location
counter was not previously u~ed¥ it is set to zero.

3.8.6.5 Align (ALIGN) Instruction

This instruction aligns the current location counter to a power
of 2. It has the form:

NAME

A symbol
(optional)

OPERATION

ALIGN

OPERAND

A symbol or
expression

The value contained in the cperand field determines the type of
ali~nment. Symbols used in the operand field must be previously
defined. The value in the cperand field must be absolute and
equal to either two, four, or eight. If the operand value is
two, CAL/32 adjusts the lccation counter to ensure that it
contains a halfword address. CAL/32 forces fullword alignment if
the operand value is four, and double word alignment if the value
is eight. If at the time of this instruction, the location
counter is already properly aligned, CAL/32 does not chanqe it.

48-050 FOO ROO 3-45

If it is not properly aligned, CAL/32 increments it by the
minimum amount necessary to force proper alignment. A symbol, if
used in the name field, receives the value of the location
counter after the alignment is performed.

NOTE

If the value of the
absolute, or if it
defined, CAL/32

operand is not
is not correctly
forces fullword

alignm~nt, and generates an error
message.

3.8.6.6 Conditional No Operation (CROP) Instruction

This instruction is similar to the ALIGN instruction in that it
aligns the location counter to a power of 2. It has the form:

NAME OPERATION

A symbol CNOP
(optional)

OPERA NC

A symbol or
expression

The CNOP differs from the ALIGN instruction in that instead of
merely incrementing the location counter, it actually inserts no
operation instructions into the program stream. The value of the
operand must he absolute and equal to two, four, or eight.
Symbols used in the operand field must have been previously
defined. If at the time this instruction is encountered, the
location counter is on an odd boundary, CAL/32 increments it by
one to make it even, inserts the required number of CNOP
instructions to force alignment, and generates an error message.
This instruction has no effect if the location counter is already
properly aligned. A symbol, if us8d in the nam~ field, receives
the value cf the location counter associated with the first CNOP
instruction generated.

3.8.7 Assembler Control Instructions

These instructions allow the programmer to control the assembly
process itself, identify the type of processor on which the
program is to be run, halt the assembly operation temporarily,
and request a limited amount of optimization.

3-46 48-050 FOO ROO

3.8.7.1 Target (TARGT) Instruction

This instruction identifies the type of processor on which the
program is to be run. It has the form:

NAME

A symbol
(optional)

OPERATION

TARGT

OPERAND

A symbol or
expression

The value of the operand ex;ression must be either 16 or 32,
absolute. Symbols used in the operand field must be previously
defined. If the operand value is 16, CAL/32 generates object
code for 16-bit processors. If the value is 32, it generates
object code for 32-bit processors. If the value is anything
else, CAL/32 generates a ~arning message and generates code for
the same type of processor en which it is running. If there is
no TARG~ instruction in the program, CAL/32 assumes the target
machine to be the same as the machine on which the assembly is
running.

NOTE

The TARGT instruction must precede any
PURE or IMPUR instructions or any
instruction that generates machine code.

3.8.7.2 End (END) Instruction

The END instruction indicates the end of the source input. It
has the form:

NAME OPERATION

A symbol END
{optional)

OPERAND

A symbol or
expression (optional)

Because of its function, this statement must be the last
instruction in the source input file. The optional operand, if
used, identifies the starting location of the program. For
example:

MAIN EQU *

LAST END MAIN

48-050 FOO ROO 3-47

The END instruction, with the operand MAIN, causes CAL/32 to
output information identifying the location MAIN as the starting
location of the program. The loader and the operating system use
this information to ensure that the program starts at the
requested location. If there is no operand, the END instruction
merely terminates the assembly process without outputting any
loader information. The END instruction is required in all
CAL/32 programs.

3.8.7.3 Copy Library (CLIB) Instruction

This instruction allows the user to specify or change library
files from within a program. It has the form:

CLIB vol:fname.ext

Each CLIB statement logically concatenates the new library file
(operand of CLIB) to any existing library file. If the new
library file cannot be assigned, CAL/32 will log an error message
and pause.

3.8.7.4 Copy (COPY) Instruction

This instruction allows the programmer to insert source code from
library files into the source code received from the regular
source input file. It has the form:

NAME

A symbol
(optional)

CPERATICN

COPY

OPERAND

A symbol[,vol:fname.ext]
(required)

CAl/32 assumes that the library file was assigned to lu 7 (see
Appendix A). CAL/32 also assumes that the file is made up of
SO-character records. It searches through the logical file,
looking only at the first 10 characters of each record until it
finds a file label of the form:

RECORD POSITION

1 and 2
3 through 10

CONTENTS

**
A valid symbolic name of
from 1 to 8 characters

in which the symbolic name exactly matches the symbol in the
operand field. If the search is unsuccessful, CAL/32 logs the
rnes~age:

CCFY ERRCR: xxxxxxxx

3-48 48-050 FOO ROO

in which xxxxxxxx is replaced by the name of the file being
sought. This might happen in the case of incorrect file
assignment. The operator can change the assignment and res~me

the assembly process from the location of the COPY instruction.
The COPY instruction allows only one operand. The programmer
must provide one COPY instruction for each file to be copied lnto
the source stream.

If the optional second operand is supplied, CAL/32 will assign
and search only that Physical file and ignore any files logically
attached by CLIB. If the file cannot be assigned, CAL/32 will
log an error message and pause.

The copy process terminates when an END statement is encountered
in the file, or when a record with either /* or /& in the first
two character positions is encountered. Where an END instruction
is encountered in the copy file, it does not mean the end of the
source file but only the end of the copy file. At this point,
CAL/32 resumes reading from the source input file. COPY
instructions may not appear in files which are themselves being
included in a source program by means of a COPY instruction.

3.8.7.5 File Copy (FCOPY) Instruction

The assembler instruction FCOPY allows the user to copy an entire
library file. It has the fcrm:

FCOPY vol:fname.ext

When FCOPY is in effect, a /* starting in column 1 or an END in
the op code field will be skipped, and copying will continue
until an end of file is reached. If the file cannot be assigned,
CAL/32 ~ill log an error message and pause.

3.8.7.6 Pause (PAUSE) Instruction

The PAUSE instruction allows the programmer to halt the assembly
process. It has the form:

NAME OPERATION

A symbol PAUSE
(optional)

OPERAND

None
(ignored)

The PAUSE instruction tem~orarily halts the assembly process.
When the assembler encounters a PAUSE instruction, the assembler
requests the operating system under which it is running to
suspend execution. The system notifies the operator. The
operator can resume execution of the ass8mbler at the instruction

48-CSO FOO ROO 3-49

immediately following the PAUSE instruction by using
operating system command CONTINUE. For example, the
instruction can be used by the operator to reassign a copy
such as:

COPY
PAUSE
COPY

REGEQUS

COMBLKS

COPY REGISTER EQUATES

COPY COMMON BLOCKS

3.8.7.7 Squeeze (SQUEZ) Instruction

the
PAUSE
file,

The SQUEZ instruction puts
performs a limited amount
form:

CAL/32 into a mode in
of space optimization.

which ·it
It has the

NAME OPERATION

A symbol SQUEZ
(optional)

OPERAND

A symbol or
expression (optional)

When in optimization mode, CAL/32 makes multiple passes over the
source input. During each pass, it attempts to reduce long
instructions (48 and 32 bits) to shorter forms (32 and 16 bits).
The value of the operand expressions sets the maximum number of
passes. If CAL/32 can complete the optimization in fewer passes,
it stops the optimization process and completes the assembly.

The value of the operand expression must be an absolute number
between 1 and 99. Any symbols used in the expression must have
been previou~ly defined. If the operand value is O, or if there
is no operand, CAL/32 ~ssumes a maximum of 9 passes.

NOTE

If there are user induced errors in the
source stream (i~legal mnemonics or
undefined symbols), CAL/32 terminates the
squeeze operation and goes on to produce
the final assembler output. Some
instructions in this output may have been
squeezed, depending on where in the
process the errors were discovered.

CAL/32 performs three typEs of space optimization:

1. Changes RX3 instructions to RX2 or RX1

2. Changes operation coies to allow the use of an equivalent,
but shorter, instruction

3. Eliminates unconditional branch instructions to the next
halfword loc~tion

3-50 48-050 FOO ROO

An example of the first type of optimization
reference instruction. In this instruction,
defined in the program at some point beyond the
which it refers.

is the forward
the operand is
instruction to

Example:

•

A R1,VALUE

VALUE DCF F' 1 25'

When CAL/32 processes the ACD instruction, it cannot tell if the
location of the second operandT identified by the symbol VALUE,
is within the range of either an RX1 or RX2 instruction. It has
to assume that an RX3 instruction is necessary. By making
additional passes over the source input after all addresses have
been resolved, CAL/32 has the needed information to determine if
the reference to VALUE is within the range of either an RX1 or an
RX2 instruction and make the substitution.

An example of the second ty~e of optimization is:

LI f-<3,-1

In the optimization mode, CAL/32 reduces this instruction to:

LCS B3,1

which reduces the length of the instruction from 48 bits to 16
bits, without changing the effect. Depending on the processor,
the substituted instruction might be faster or slower than the
original instruction.

NO'rE

CAL/32 changes an operation code only in
the obj~:ir.t output. The original
instructio~ remains in the listing,
flagged with an asterisk.

48-050 FOO ROO 3-51

The third type of optimization does not occur in normal
programming, but it does sometimes appear in compiler generated
CAL/32. For example:

ST
B

CONTINUE L

R1,SAVE
CONTINUE
R1,TEMP

In this case, CAL/32 simply eliminates the unnecessary branch
instruction, although the branch instruction does appear in the
assembly listing, flagged with an asterisk.

More than one SQUEZ instruction can appear in the program. The
first SQUEZ instruction sets the number of additional passes.
Subsequent SQUEZ instructions put CAL/32 back into ~ptimization

mode after a NO SQUEZ instruction (described below) took it out
of the optimization mode. Operands may appear in the subsequent
SQUFZ instructions, but they are ignored.

Because CAL/32 looks at only one instruction at a time, and
because its global data is limited to the symbol table, squeezing
might introduce errors intc the program. This is most likely to
happen when data and instructions are mixed.

Example:

BTC 8,LOOP1

LOOP1 EQU *

BFC O,LOOF2
r:~ u 26
ALIGN 4

CONST DC F'256'
LOOP2 EQU *

3-52 48-050 FOO ROO

If on one pass, CONST is already aligned on a fullword boundary,
the branch to LOOP2 can be converted to a short format branch.
A subsequent pass may allow the branch to LOOP1 to be shortened.
When this happens, CONST is no longer on a fullword boundary, and
CAL/32 adds two to the location counter to align it properly.
This forces LOOP2 out of the range of a short branch instruction.
CAL/32 will recover from this situation by changing the branch
instruction back to its original format and marking it internally
as unsgueezable.

3.8.7.8 Squeeze Related (NOSQZ, ERSQZ, NORX3) Instructions

There are three additional instructions
control squeezing and optimization of
They have the form:

NAME OPERATION OPERAND

A symbol NOSQZ Not used
(optional) (ignored)
A symbol ERSQZ Not used
(optional) (ignored)
A symbol NORX3 Not used
(optional) (ignored)

that can be used to
the source input file.

The no squeeze instruction (NOSQZ) has the effect of turning off
the optimization processes initiated by a previous SQUEZ
instruction. Optimization can be restarted by a subsequent
squeeze statement. NOSQZ overrides a squeeze start option.

The error squeeze instruction, (ERSQZ) can be used with the SQUEZ
instruction. It forces CAL/32 to continue squeezing even after
assembly errors are detected.

The no RX3 instruction (NORX3) provides a simpler form of
optimization during a ncrmal 2-pass assembly. Once this
instruction is encountered, CAL/32 forces RX instruciions to the
RX1 or RX2 format. RX3 instruction formats are still generated
if double indexing is specified, or if. the instruction references
an element of a common blcck or an externally defined symbol.
Thie instruction can be safely used in programs that are smaller
than 16kb. It must not be used in segmented (pure and impure),
programs.

48-050 FOO ROO 3-53

3.8.7.9 Sequence Checking (SQCHK, NOSEQ) Instructions

The sequence checking instructions enable and disable the
sequence checking of source. They have the form:

NAME

A symbol
(optional)
A symbol
(option a 1)

OPERATION

SQCHK

NO SEQ

OPERAND

Not used
(ignored)
Not used
(ignored)

The sequence check instruction (SQCHK) causes CAL/32 to compare
each source statement sequence number with the number of the
preceding statement. Each successive number must be greater in
the ASCII collating sequence than the preceding one. CAL/32's
initial sequence value is equal to eight spaces, so that numbers
can be right justified in the field without leading zeros. If a
source statement contains a value equal to or less than the
preceding statement, CAl/32 generates an error message. The
sequence fields of statements included in the program by a COPY
instruction are not checked.

The no sequence check instruction (NOSEQ) disables the sequence
checking process. The sequence field of this instruction is
checked, if sequence checking was in effect at the time. The
default mode of CAL/32 is NOSEQ.

3.8.7.10 Scratch (SCRAT) Instruction

The scratch instruction causes CAL/32 to copy the source input
file to a scratch device durinq pass one. It has the form:

NAME

A symbol
(optional)

OPERATION

SC RAT

OPERAND

Not used
(ignored)

Subsequent passes over the source input file are read from the
scratch device. Since no statement preceding the SCRAT
instruction can be copied, the SCRAT instruction should be the
first statement in the program.

3.8.7.11 Pass Pause (PPAUS) Instruction

This instruction causes CAL/32 to issue a pause request to the
operating system at the end of each pass. It has the form:

3-54

NAME

A symbol
(ignored)

OPERATION

PP AUS

OPERAND

Not used
(ignored)

48-050 FOO ROO

The purpose of the PPAUS instruction is to allow the operator to
reset the source input file to the beginning for the next pass.
This is useful in situations where no scratch file is available,
and the source input file i~ not rewindable.

NOTE

Where neither the SCRAT instruction nor
the PPAUS instruction is used, CAL/32
issues a rewind command to the source
input lu at the end of each pass.

3.8.7.12 Message (MSG) Instruction

The message instruction allcws the programmer to log a message to
the system console. It has the form:

NAMF.

A symbol
(optional)

OPERATION

MSG

OPERA NC

Text

The operand field contains the text of the message. All
characters following the operation field, up to and including
position 71, are sent to the system console as a message. This
instruction can appear anywhere in the program, and the message
is logged on every pass.

3.8.7.13 Batch Assembly (BATCH, BEND) Instructions

The batch assembly instructions provide a
more than one complete program in a batch
form:

NAME CPERATICN OPERA NL

None PATCH Not used
(illegal) (ignored)
None BEND Not used
(illegal) (ignored)

means for assembling
stream. They have the

The batch instruction (R~TCH) initiates the batch stream. It has
the effect of redefining the END instruction so CAL/32 does not
terminate itself at the end of the required number of passes.
Rather, CAL/32 terminates the assembly of that Particular
program, reinitializes itself, and starts reading the next
program from the source input file. The BATCH instruction must

48-050 FOO ROO 3-55

be the first statement in the stream of programs. If it is used,
CAL/32 assumes that there is a scratch device. Options specified
in the operating system START command re~ain in effect for the
entire batch assembly (see Appendix A).

The batch end instruction (BEND) terminates the batch assembly.
It must appear immediately following the END instruction in the
last program cf the stream. The BEND instruction tells CAL/32 to
go to end of task when final assembly is completed. The end of
task code returned is equal to the highest code generated during
the batch assemblies. CAL/32 will also terminate a batch
assembly normally if end of file or end of medium status is
detected when attempting to read the first statement after the
END of an assembly.

3.8.7.14 Unreferenced Exte~nals (UREX, NUREX) Instructions

These instructions permit or suppress the output of object
for unreferenced externals.· The default state is UREX.
have the form:

NAME OPERATION OPERAND

Not used UREX Not used
(ignored) (ignored)

Not used NUREX Not used
(ignored) (ignored)

3.8.8 Conditional Assembly Instructions

code
They

These instructions allow the programmer to include in the pro~ram
code sequences that may or may not be assembled, depending on
some condition. By. simply reassembling the program and
redefining the conditions, a single program can be made to serve
more than one purpose.

J.a.a.1 Compound Conditional CIFx, ELSE, ENDC) Instructions

There are three instructions in this set. They have the form:

3-56

NAME

A symbol
(optional)
A symbol
(optiona 1)

A symbol
(optiona 1)

OPERATION

!Fx

ELSE

ENDC

OPERAND

A symbol or
expression
A symbol or
expression
(ignored)
A symbol or
expression
(ignored)

48-050 FOO ROO

The compound conditional instructions are used to provi1e
complete conditional assembly capability. A symbol used in the
name field of an IF instruction is defined if the condition
described by the instruction is true. A symbol used in the name
field of an ELSE instruction is defined if the correspondng if
condition is false. Symbols used in the name fields of end
condition instructions are always defined.

In the first instruction, the compound IF
represents the actual condition. Following
various mnemonics for these instructions:

MNEMONIC MEANING MNEMONIC

IFZ If zero IFNM If
IFNZ If nonzero IFE If
IFP If plus IFO If
IFNP If nonplus IFU If
IFM If minus IFD If

instruction, x
is a list of the

MEANING

nonminus
even
odd
undefined
defined

CAL/32 tests the value of the operand when processing compound IF
instructions. If the operand meets the condition specified by
the operation, the instructions immediately following the IF
instruction are assembled. If the operand does not meet the
specified condition, the instructions immediately following the
IF instruction are not assembled.

The ELSE instruction reverses the state of the assembler as set
by a previous compound IF statement. If the assembler was not
assembling code because a previous IF statement turned off the
assembly process, the aP~earance of an ELSE instruction would
cause the assembler to resume assembling, starting with the
instruction immediately fellowing the ELSE instruction. If the
assembler was assembling code because a previous if condition was
met, the appearance of the ELSE instruction would cause the
instructions immediately following the else instruction not to be
assembled. An ELSE instruction is not required to appear in a
block of conditionally assembled code.

The third instruction of this set is the end condition
instruction (ENDC) which terminates the presently active
condition. Normal assembly process resumes with the next
instruction. Any compound IF instruction used in the program
must have a corresponding ENDC instruction. If the end of the
source file is reached before an existing condition terminates,
CAL/32 terminates the condition, generates an error message, and
resumes normal assembly en the next pass. If the operand of the
!Fx contains a forward reference, CAL/32 will perform any
additional passes reauired to define all symbols. As an example
of conditional assembly, consider a subroutine that can receive
its parameters in either of two ways: first, the parameters are
located by referencing a list of addresses
immediately following the bLanch and link instruction in the main

48-050 FOO ROO 3-57

program; second, the address of the actual parameter list is
contained in register 14. The subroutine could handle both of
these situ~tions with conditional assembly, as follows:

IFZ CALL1
SUB LH R1,0(RF) GET FIRST PARA MET ER ADDRESS

LH R1,0(R1) GET FIRST PARAMETER
LH R2,2(RF) GET SECOND PARAMETER ADDRESS
LH R2,0(R2) GET SECOND PARAMETER
AIS RF,4 ADJUST RETURN ADDRESS
ELSE LIST NOT IN LINE

SUB I.H R1,0(RE) GET FIRST PARAMETER
LH R2,2(RE) GET SECOND PARAME~ER
ENDC

RETURN BR RF RETURN TO CALLER

If at assembly time, the value of CAL1 is zero, the instructions
between the IF instruction and the ELSE instruction are
assembled, and the instructions between the ELSE instruction and
ENDC instruction are not assembled. If the value of CAL1 is
other than zero, only the instructions between the ELSE
instruction and the ENDC instruction are assembled.

Another exam~le of conditional assembly shows how conditions can
be nested:

IFNP LGTH CONDITION #1
* ERROR 1 LGTH IS NOT POSITIVE

ELSE CONDITION #1
IFZ SRC-DST CONDITION #2

* ERROR 2 SRC IS EQUAL TO DST
ELSE CONDITION #2
tHI R1,LGTH
IFP SRC-DST CONDITION #3
LHI R2,SRC
LHI R3,DST
'SLSE CONDITION #3
tHI P.2,DST
LH I R3,SRC
ENDC END CONDITION #3
ENDC END CONDITION #2
EN DC END CONDITION #1

3-58 48-050 FOO ROO

This set of nested conditionals depends on the values of three
symbols: LGTH, SRC, and DST. If LGTH is negative or zero, only
the comment:

* ERROR 1 LGTH IS NOT POSITIVE

is produced. If LGTH is positive, and SRC is equal to DST, only
the second comment:

* ERRCR 2 SRC IS EQUAL TO DST

is produced. If LGTH is positive, and SRC is greater than DST,
the following instructions:

LHI R1,LGTH
LHI R2,SRC
LHI R3,DSC

are assembled. If LGTH is ~ositive, and SRC is less than DST,
the following instructions are assembled:

LHI R1,LGTH
LHI R2,DST
LHI R3,SRC

The user must be careful, when using a forward reference in the
operand field of the IFU instruction, to avoid the following type
of code:

IFU A
B EQU 8

ENDC
A EQU 1

IFNZ B
DS 10
ENDC

B EQU 0
END

48-050 FOO ROO 3-59

CAL/32 will flag this code with an "~001 xxxTOP" error where xxx
is PURE, IMP, or ABS, depending upon the location counter used.

NOTE

A condition once set by an IF instruction
remains in effect until the corresponding
ENDC instruction is encountered. Thus,
when the first condition was met, the
first comment was produced. The ELSE
instruction reversed this state, and no
subsequent code was assembled.

3.8.8.2 Simple If (IF) Instruction

The simple IF instruction is retained
compatibility with previous assemblers.

in CAL/32 to maintain
It has the form:

NAME

'fi.. symbol
(optional)

CPERATICN

IF

OPERAND

A symbol or
expression

What CAL/32 does on encountering an IF instruction depends on the
valu~ of the cperand. If the operand has a nonzero value, CAL/32
assembles all statements following the IF instruction, until the
end of the source file is reached, or until another IF
instruction is encountered in which the operand value is zero.
At this point, CAL/32 stops assembling the source input until the
ENr instruction, or another IF instruction with a nonzero operand
value, is encountered. If the operand contains a forward
referencA, CAL/32 will perform any additional passes required to
define all symbols.

NOTE

~o not use simple IF instructions and
compound IF instructions in the same
program. Simple IF instructions must not
be used in nested conditionals.

3.8.8.3 Do (CO) Instruction

The DO instruction provides a form of conditional and multiple
assembly capability. It has the form:

3-60

NAME

P.. symbol
(optional)

OPERATION

DO

OPERAND

A symbol or
expression

48-050 FOO ROO

The DO instruction causes the statement immediately following it
to be assembled as many times as specified by the value of the
operand. The value of the cperand must be between 0 and 32,767.
If the value of the operand is o, the next instruction is
skipped. If the operand contains a forward reference, CAL/32
will perform any additional passes required to define all
symbols.

The user must guard against circular location counter dependency,
as in the following example:

A EQU *
DO B-A
DS 2

B EQU *
END

CAL/32 will flag an "M001 xxxTOPw error, where xxx is PURE, IMP,
or ABS, depending upon the current location counter.

3.8.9 Instructions for Data Structures

These instructions allow the programmer to define complex data
structures. Some of these instructions allow the programmer to
define and initialize data blocks compatible with FORTRAN common.

3.8.9.1 Structure Definition (COMN, STRUC, ENDS) Instructions

Structure definition instructions are used to define
structures. They have the form:

NAME OPERATION OP EH AND

A symbol COMN Nvt used
(optional) (ignored)
A symbol STRUC Not used
(optional) (ignored)
A symbol ENDS Not used
(optional) (ignored)

data

The common instruction (CCMN) defines FORTRAN compatible common
blocks. The structure instruction (STRUC) defines other types of
data structures. The end structure instruction (ENDS) terminates
both common definitions and data definitions.

The symbol in the name field of a COMN or STRUC statement
contains the absolute value of the length of the structure or
commcn block. The symbol specified with the ENDS instruction is
associated with the current value of the offset counter.

48-050 FOO ROO 3- 61

A symbol is always required in the name field of a COMN
instruction. To define FORTRAN compatible blank common, a
special symbol consisting of two slashes Cll) must appear in the
first two positions of the name field. The remaining positions
must be blank. If the name field is blank, CALl32 will assume
<II> was intended for a FORTRAN blank common.

The scope of the common block consists of all the storage
definitions between the COMN instruction itself and the next ENDS
statement. Only define storage, origin, and equate instructions
are permitted between a COMN and its corresponding ENDS
instruction. The define storage instructions included within the
common block definition do not actually reserve storage; they
define offsets within the common block. Origin statements can be
used to modify the offset ccunter. The equate instructions can
be used to define symtols relative to elements in the common
block. Common blocks cannot be nested within other common blocks
or ~ithin other structure definitions.

The following is an example of the definition of FORTRAN
compatible common blocks:

C FORTRAN PRCGRAM
INTEGER*2 I,J,K,KK,K2,L
COMMON AC10), I, J(3,20)
COMMONICOMONEIEC30), K(4), KK
CCMMONICOMTWOIX,Y,Z,K2,L(24)

The CAL/32 code to define these common blocks is:

II COMN DEFINE BLANK COMMON
A DS 40 TEN FLOATING POINT NUMBERS
I DS 2 ONE TWO-BYTE INTEGER
J DS 120 SIXTY TWO-BYTE INTEGERS

ENDS END OF BLANK COMMON DEFINITION
COMO NE COMN DEFINE COMMON BLOCK COMONE
B DS 120 THIRTY FLOATING POINT NUMBERS
K DS 8 FOUR TWO-BYTE INTEGERS
KK DS 2 ONE TWO-BYTE INTEGER

ENDS END COMMON BLOCK COMONE
CO MT WO COMN DEFINE COMMON BLOCK COMTWO
x DS 4 ONE FLOATING POINT NUMBER
y DS 4 ONE FLOATING POINT NUMBER
z DS 4 ONE FLOATING POINT NUMBER
K2 DS 2 CNE TWO-BYTE INTEGER
L DS U8 TWENTY FOUR TWO-BYTE INTEGERS

ENDS

Common block definitions must precede any statements that
reference the common block. Referencing a common element plus a
displacement is permitted in the operand of a machine
instruction, in a define constant instruction, or in a block data
origin instruction defined telow.

3-62 48-050 FOO ROO

STRUC is used to define general purpose data structures. The
scope of thiE data structure consists of all the storage
definitions between the structure instruction and its
corresponding ENDS instruction. Only define storage, origin, and
equate instructions can be used in a structure definition. The
define storage instructions do not ~ctually reserve storage; they
define off sets within the data structure. Origin statements can
be used to modify the value of the offset counter. Equate
statements can be used to define names relative to elements in
the data structure. Data structures cannot be nested within
other data structure definitions or within common block
definitions.

To define a linked list structure?, each node of which contains a
2-byte forward pointer, a 2-byte backward pointer, six bytes, and
a set of values such as: four bytes, one byte, one byte and six
bytes, the programmer might write:

NODE STRUC
FWD DS 2 DEFINE FORWARD POINTER
BAK DS 2 DEFINE BACKWARD POINTER
VALA DS 4 DEFINE FOUR-BYTE VALUE
VALB DS 1 DEFINE ONE-BYTE VALUE
VALC DS 1 DEFINE ONE-BYTE VALUE
VALD DS 6 DEFINE SIX-BYTE VALUE

ENDS

The effect of this definiticn is the same as:

NODE EQU 16
FWD EQU 0
EAK EQU 2
VALA EQU 4
VALB EQU 8
VALC EQU 9
VALD EQU 10

Once NODE is defined, it can be used as follows:

POOL

48-050 FOO ROO

LHI
LB
LH

DS

R5,POCL
PO,VALB(R5)
RS.,FW'C(RS)

100*NODE

GET ADDRESS OF POOL
GET VALUE B OF FIRST NODE
GET POINTER TO NEXT NODE

3-63

Data structure definitions must precede any references to their
elements in RX3 format instructions, unless the NORX3 instruction
or the SQUEZ instruction was used.

3.8.9.2 Structure Initialization CBDATA, BORG) Instructions

Structure initialization instructions define FORTRAN compatible
block data subprograms that consist of labeled common blocks.
They have the form:

NAME OPERA~ION

A symbol BDATA
(optiona 1)

A symbol BORG
(optional)

CPERAND

Not used
(ignored)
Not used
(ignored)

The block data instruction (BDATA) must precede any statements
that generate data, and the block data subprogram must not
contain any executable code. The common blocks to be initialized
must be defined at the beginning of the block data subprogram.
Once they are defined, the block origin instruction (BORG) is
used to initialize the data elements of the common blocks. The
operand of the block origin instruction consists of the common
block name followed immediately by the element name or its
dis~lacement enclosed in parentheses. Only one operand is
allowed. The following is an example of a block data subprogram:

BDATA
*
* COMMON BLOCK DEFINITION
*
BLK CCMN

A DS 4
B DS 40
y DS 20
z DS 4

ENDS
*
* INITIALIZE ELEMENTS A, B+8, AND z
*
BORG BLK(A) REFERENCE BY NAME
DC EI 1 0 I
BOPG BLK(64) REFERENCE BY DISPLACEMENT
DC E'20'
BORG BLK(B+8) REFERENCE BY NAME AND

DISPLACEMENT
DC E'30'
END

This program initializes A to a floating point value of 10: Z to
a floating point value of 20~ and the third fullword, B, to a
floating point value of 30.

3-6 4 48-050 FOO ROO

3.8.10 Listing Control Instructions

These instructions allow the programmer to exercise some control
over the format and the content of the source listing produced by
CAL/32 on the final pass of the assembly.

3.8.1-0.1 Listing Identification CPROG, TITLE) Instructions

Listing identification instructions are used to force CAL/32 to
print header information at the top of each page of the source
listing. They have the form:·

NAME

A symbol
(optional)
A symbol
(optional)

OPERATION OPERAND

PROG Text

TITLE Text

The program instruction {FROG) specifies the primary heading for
each page of the listing. In addition, it causes the symbol in
the name field to be placed at the beginning of the object file
for program identification. On 16-bit assemblies, only the first
six characters of the name field are put in the object file.

All characters in the operand field (a maximum of 56) up to and
including position 71 are printed in the primary header line of
each page of the listing. If more than one PROG instruction is
encountered in a module, the last PROG instruction will override
all previous ones.

The title instruction (TITLE) is a way to specify subheadings
that can be changed within the program. The text contained in
the operand field up to and including position 71, is printed on
the line immediately below the heading produced by the PROG
instruction. As many TITLE instructions as required can appear
in the source input file. Each time a TITLE instruction is
encountered, CAL/32 starts a new listing page with the new
subheading when the next printable statement is processed.
Subsequent pages contain this same subheading, until another
TITLE instruction appears. If two or more TITLE instructions
occur together in sequence, only the last TITLE instruction
affects the subheading content since a new page will be printed
only when a printable statement is encountered.

TITLE instructions themselves are not printed although they are
included in the statement count.

48-050 FOO PQQ 3-65

3.8.10.2 Format Control (LCNT, EJECT, SPACE, WIDTH) Instructions

Format control instructions allow the programmer to control the
format of the listing. They have the form:

NAME OPERATION OPERAND

A symbol LCNT A symbol or
(optional) expression
A symbol EJECT A symbol or
(optional) expression
A symbol SPACE A symbol or
(optional) expression
A symbol WIDTH A symbol or
(optional) expres·sion

The operand field of the line count instruction (LCNT) specifies
the number of lines to be printed on each page of the listing.
The operand value must be an absolute number no greater than 99
and no less than 10. The default value of the line count is 58.

Whenever the eject instruction (EJECT) appears, it overrides the
specified or default line count, and causes CAL/32 to start a new
page when the next printable statement is processed. The new
page starts with whatever headings are in use. This statement is
included in the statewent count, but it is not printed. If one
or more EJECT instructions occur together in sequence, only one
page is advanced since the actual advance occurs only when a
printable instruction is encountered. EJECT instructions
themselves are not printed although they are included in the
statement count.

The operand field of the space instruction (SPACE) specifies the
number of lines to be ski~ped in the listing. The value of the
operand must be absolute. If the number of lines to be skipped
exceeds the number of lines remaining on the page, this
instruction has the same effect as an EJECT instruction and is
included in the statement ccunt, but not printed.

The operand field of the width instruction (WIDTH) specifies the
number of columns to be ~rinted across the page. The value of
the operand field must be an absolute number, not greater than
132 and not less than 64. The default value is 132.

3-66 48-050 FOO ROO

3.8.10.3 Content Control (NLIST) Instructions

The content control instructions control the content of the
listing. They have the form:

NAME OPERATION OPERAND

A symbol NLIST Not used
(optional) (ignored)
A symbol LIST Not used
(optional) (ignored)
A symbol LSTC Not used
(optional) (ignorea)
A symbol NLS'I' C N·:)t used
(optional) (ignored)
A symbol ERLST Not used
(optional) (ignored)
A symbol LSTM Not used
(optiona 1) (ignored)
A symbol NLSTM Not used
(optional) (ignored)
A symbol FREZE Not used
(optional) (ignored)
A symbol NFREZ Not used
(optional) (ignored)
A symbol CROSS Not used
(optional) (ignored)
A symbol NCR OS Not used
(optional) (ignored)
A symbol LSTUR Not used
(optlonal) (ignored)
A symbol NLSTU Not used
(optional) (ignored)
A symbol WARN Not used
(optional) (ignored)
A symbol NWARN Not used
(optional) (ignored)

The no list instruction (NLIST) suppresses listing of the source
program. Only those statements that contain errors are printed.

The list instruction (LIST) reverses this situation, and all
source statements are printed. The assembler default is to print
all source statements.

The list conditionals instruction (LSTC) permits printing of
unaEsembled conditional assembly statements. This is the normal
default mode of the assembler.

The no list conditionals instruction (NLSTC) suppresses printing
of unassembled conditi6nal statewents.

48-050 FOO ROO 3-67

The error list instruction CERLST) causes CAL/32 to print all
assembly errors by type, along with number of each statement on
which the error occurred, immediately after symbol table listing.

The list macro instruction (LSTM) permits printing of all macro
expansions that arc part of the source input file. The macro
instruction, the expanded source code, and the generated object
code are printed. A plus character (+) precedes each statement
number in the expanded source to identify those statements as
part of a macro. This is the normal mode of the assembler.

The no list macro instruction (NLSTM) suppresses printing of
macro expansions. Only the macro statement itself is printed.

The freeze (FREZE) instruction
statement counter when a copy
included in the source in~ut file.
file or macro expansion receive the
of the COPY instruction. This
assembler.

halts incrementing of the
file or macro expansion are
All statements in the copy
same statement number as that
is the normal mode of the

The no freeze CNFBEZ) instruction increments the statement
cou~ter for every statement encountered in the source input.

The cross reference (CROSS) instruction uses CAL/32 to generate
and print a cross reference listing of all the symbols used in
the program. Each symbol is listed in alphabetical order, along
with identification of the statements in which it is referenced.
The statement in which it is defined is flagged with an asterisk.
This is the normal mode of the assembler.

The nc cross (NCROS) instruction prevents the generation of a
cross reference listing.

The list unreferenced symbols (LSTUR) instruction causes
unreferenced symbols to be listed in the symbol list. This is
the normal mode of the assembler.

The no list unreferenced symbols (NLSTU) instruction suppresses
the listing cf unreferenced symbols in the symbol list.

The warning (WARN) instruction allows CAL/32 to flag warnings in
the listing and tally the number of warnings encountered. This
is the normal mode of the assembler.

The no warning (NWA~N) instruction suppresses both the warnings
and the warning count from the listing.

3.9 ASSEMBLY LISTING

The assembly listing consists of two sections: the source and
object program statements and the symbol cross reference table.
The format for printing the source and object program statements
is basically the same fer either 16-bit assemblies or 32-bit
assemblies. The only difference is in the number of characters
printed for the location counter and the object data.

3-68 48-050 FOO ROO

• In 16-bit assemblies, only four hexadecimal digits are printed
for the location counter, and a maximum of eight hexadecimal
digits for the data. The letter R is appended to the location
counter value if the relocatable location counter is being
used.

• In 32-bit assemblies, six hexadecimal digits are printed for
the location counter artd a maximum of 12 hexadecimal digits
for the object data. In addition, the actual second operand
address of RX2 and SF instructions is printed next to the
object data. This address is preceded by an equal sign (=).
The letter I is appended to the location counter if the impure
location counter is being used. The letter P is appended to
the location counter if the pure location counter is being
used.

• In both 16- and 32-bit assemblies, the letter Fis appended to
the data field to indicate that the statement references an
externally defined symbol, a symbol in a common block, or an
undefined symbol.

The statement number is a decimal number between 1 and 99999.
Each source statement read by the assembler is assigned a
unique statement number, beginning with 1, except for source
statements from a copy file or macro expansion with the FREZE
instruction. The first column of the listing can contain any
of the following characters:

CHARACTER

?

48-050 FOO ROO

MEANING

The name field of this instruction contains a
symbol that was redefined by an EQU~TE

instruction.

A machine instruction not available on the
target machine was used~ an equivalent
instruction existed and was substituted, or

a machine dependent instruction was used in
assembling a common mode program, or

an assembler instruction was used with an
improper but assemblable operand, or

a SCRAT card was encountered as other than the
first statement or when batch mode is in
ef fact, or

an EXTRN/ENTRY symb~l is longer
characters for target 16, or

than 6

a DS instruction was encountered in a pure
section.

* A machine instruction was shortened or
modified by squeezing.

3-69

The following information is printed at the beginning of the
cross reference listing:

• Start options in the START command

• The number of errors detected by the macro processor if the
program assembled was generated by the macro processor.

• Number of CAL/32 errors and the page number of the last error

• Number of CAL/32 warnings and the page number of the last
warning

• Number of passes

• Message indicating the use of symbol table paging to disk

• Message indicating abnormal termination of squeezing because
of squeeze-induced errors

• Message indicating the amount of required table space

Following this, each symbol used in the program is listed in
alphabetical order along with its value. If a cross reference
was requested, the statement number of each statement containing
a reference to the symbol is printed following the value. The
statement number in which the symbol is defined is printed with
an asterisk (*) following. Associated with each symbol is a flag
used to indicate one of the following:

FLAG

~
M
u
<
<U
>
>M
**

MEANING

Properly defined local symbol
Multiply defined symbol
Undefined symbol
Entry syrrbol
Undefined entry
Externally defined symbol
~ultiply defined external
Unreferenced external

The flaa is ~rint~d in the first column of the line containing
the symbol.

If an error is detected in a source statement, the following
message is printed immediately after the error statement:

Annn

A indicdtes the qeneral type of error, and nnn is a decimal
number that further identifies the error. Appendix B contains a
complete list of CAL/32 error codes.

3-70 48-050 FOO ROO

CH APT ER 4
COMMON MODE PROGRAMMING

4.1 INTRODUCTION

A useful feature of Common Assembly Language/32 (CAL/32) is mode
programming where a single source file can be used to produce
object code for either 16-bit processors or 32-bit processors.
In creating a common mode source file, the programmer must be
aware of certain restrictions and safeguards and, in some cases,
must use special operaticn mnemonics that can be translated into
either 16-bit or 32-bit operations.

4.2 ADDRESS OPERATION INSTRUCTIONS

Addresses for 16-bit processors occupy 16 bits, a halfword. For
the 32-bit processors, addresses occupy the least-significant 24
bits of a fullword. In normal mode, CAL/32 makes no distinction
between operations on address quantities and operations on other
data types. However, when writing in common mode, the programmer
must use special operation mnemonics for address operations so
CAL/32 can translate them into the correct target machine code.
Table 4-1 lists these instructions, their mnemonics, and the
target machine translations.

TABLE 4-1 COMMON MODE ADDRESS OPERATIONS

INSTRUCTION

I 32-BIT I 16-BIT
I TRANS- I TRANS­

MNEMONIC I LATION I LATION
===

Add ~ddress AA A AH
1'. d d Address I rnmedia.te AAI AI AHI
Add Add re SS RR AAR AR AHR
Add Address to Memory AAM AM AHM
Compare Address CA c CH

Compare Address ImmediatE CAI CI CHI
Compare Address RR CAR CR CHR
Compare I,ogical Address CLA CL CI.H
Compare Lcgical Address

Immediate CLAI CL! CLHI
Compar:e I.ogica 1 Address RR CLAR CLR CLHR

Immediate CL.A. I CL! CLHI

48-G50 FOO ROO 4-1

TABLE 4-1 COMMON MODE ADDRESS OPERATIONS (Continued)

-------------------------~---------------------------------~-

INSTRUCTION

I 32-BIT I 16-BIT
I TRANS- I TRANS­

MN EMONIC f LATION I LATION
--

Load Address
Load Address Immediate
Load Address RR
AND Ad1ress
AND Address Immediate

AND Address RR
OR Address
OR Address Immediate
OR Address RR
Subtract Address

Subtract Address Immediate
Subtract Address RR
Shift Left Address Arithmetic
Shift Left Address Logical
Shift Right Address Arithmetic

LDA
LDAI
LOAR
NA
NA!

NAR
OA
OAI
OAR
SA

SA!
SAR
SLAA
SLAL
SRAA

L
LA
LR
N
NI

NR
0
or
OR
s

SI
SR
SLA
SLL
SRA

LH
LHI
LHR
NH
NH!

NHR
OH
OHI
OHR
SH

SHI
SHR
SLHA
SLHL
SRHA

Shift Right Address Logical SRAL SRL I SRHL
Store Address STA ST I STH
Test Address Immediate TAI TI I THI
Exclusive OR Address XA X I XH
Exclusive OR Address Immediate XAI XI I XHI

-----------------------~--~---------------------~---~--------
Exclusive OR Address RR XAR XR I XHR
Multiply Address ~A M I MH
Multiply Address RR MAR MR I MHR
rivide Address DA D I DH
tivide Address RR DAR DR I DHR

CAL/32 translates these instructions into halfword or fullword
instructions, depending on the target machine. For example:

4-2

ADD1
I:ISP

LDA R1,ADC1
AA R1,DISP

DC
DC

A(TABLE)
2

48-050 FOO ROO

When CAL/32 assembles these instructions for 16-bit execution, it
produces object code that wculd normally correspond to:

LH R1,ADD1
AH R1,DISP

For 32-bit programs, CAL/32 ~reduces code that would correspond
to:

L R1,ADr1
A P1,DISP

Translation is at the object code level; CAL/32 prints the
original common mode code on the listing.

4.3 COMMON MODE IMMEDIATE OPERATIONS

CAL/32 provides a common mode immediate operation for the load
immediate LDI instruction. Depending on the target machine, the
LDI is translated into a fullword-referencing LI instruction for
the 32-bit machine, or a halfword-referencing LHI instruction for
the 16-bit machine, as follcws:

INSTRUCTION

Load Immediate

COMMON
MNEMCNIC

LDI

32-BIT
TRANSLATION

LI

4.4 COMMON MODE ASSEMBLER INSTRUCTIONS

16-BIT
TRANSLATION

LHI

In addition to all of the regular assembler instructions
describAd in Chapter 3, CAL/32 recognizes four assembler
instructions primarily for use in common mode programming. Two
of these are data definition type instructions; the other two are
assembler control type instructions.

48-050 FOO ROO 4-3

4.4.1 Data Definition Instructions

Tht common mode data definition instructi~ns are:
length constant and define address length storage.
forM:

NAME

A symbol
(optional)

A symbol
(optional)

OPERATICN OPERAND

DAC One or more operands
separated by commas

DAS A symbol or
expression

4.4.1.1 Define Address Length Constant Instruction

define addre3s
They hav8 the

The define address length constant instruction is equivalent to
the define constant instruction. It is used in common mode
programming to reserve storage to be initialized with address
length constants. For 3~-bit assemblies, the constants are
fullwords aligned on fullword boundaries. For 16-bit assemblies,
the constants are halfwords aliqned on halfword boundaries.

4.4.1.2 Define Address Length Storage Instruction

The define address length storage instruction is equivalent to
the define storage instruction. In 32-bit assemblies, the
instruction reserves the specified amount of fullwords aligned on
a fullword boundary. In 16-bit assemblies, it reserves the
specified amount of halfwords aligned on a halfword boundary.
Examples of the use of these instructions are:

4-4

DAC
DAS

ACTABlE)
1 6

48-050 FOO ROO

When assembled for 32-bit e·xecution, the define address length
constant instruction generates a fullword containing the addr8ss
of TABLE. The define address length storage instruction reserves
16 fullwords of storage. When assembled for 16-bit execution,
these instructions cause CAL/32 to generate a halfword containing
the address of TABLE, along with a storage area of 16 halfwords.

NOTE

Define address length
tions can be used in
structure definitions.

storage instruc­
common block and

4.4.2 Assembler Control Instructions

Two special assembler instructions control error checking. Their
form is:

NAME

A symbol
(optional)

A symbol
(optional)

OPERATICN

CAL/32

NOCAL

OPERAND

Not used
(ignored)

Not used
(ignored)

The first of these instructions (CAL/32) establishes the common
mode and enables common mode error checking. In this mode, any
machi~e dependent instructicn causes a nonfatal error, and a
warning flag is printed on the assembly listing.

The NOCAL/32 instruction disables the common mode and its error
checking mechanisms until the next CAL/32 instruction is
encountered. This is the assembler default mode in which an
operation code mnemonic, not valid for the targeted processor but
for which there is a valid equivalent, is assembled using the
valid equivalent. A question mark (?) is then printed in the
left hand margin of the listing.

4.5 MIXED MODE COMPUTATICNS

On 32-bit processors, mixed mode computations, such as adding a
halfword quantity to an address length quantity contained in a
register, can be performed. In general, any halfword arithmetic
or logical operation can be performed on address length
quantities contained in registers. The exceptions are: shifts,
~ultiply, and divide. The halfword forms of these instructions
should never be used with address length quantities. Instead,
use the special ~ddress o~eration instructions.

48-050 FOO ROO 4-5

4.6 GLOBAL SYMBOLS

The global symbols, ADC and LADC, are used primarily in common
mode programming. In 32-bit assemblies, ADC has a value of four,
the length in bytes of an address length constant. LADC has a
value of two, the log (base 2) of the address length. In 16-bit
assemblies, ADC has a value of two, and LADC has a value of one.
Illustrated are these symbol uses in which a main program calls
a subroutine and passes parameters to the subroutine in a list of
addresses immediately following the branch and link instruction:

RETURN

BAL
DAC
EQU

RF,SUB
A(PARM1),A(PABM2),A(PARM3)
*

The subroutine picks up the parameters and calculates the return
address as follows:

SUB

SU BEND

AIS
NAI
LDA
LDA
LDA

p

RF,LAtC
PF,-A~C

R1,0CRF)
R2,ADC(BF)
R3,2*ADCCRF)

3*ADC(RF)

ADJUST RF FOR
ALIGNMENT
ADDRF.SS OF FIRST PARAMETER
ADDRESS OF SECOND PARAMETER
ADDRESS OF THIRD PARAMETER

RETURN TO CALLER

The add immediate short instruction and thB add address immediate
instruction are needed in the subroutine because alignment of
address constants in 32-bit assemblies can cause a halfword of
filler to be inserted between the branch and link instruction and
the first address constant. In this case, the address in
register 15 is the addres~ of this halfword, and these
instructions increment the address in register 15 to make it
point to the first address constant. If no filler is required,
because the first constant is naturaily aligned on a fullword
boundary, register 15 points to the first constant, and these two
instructions have no effect.

4-6 48-050 FOO ROO

Anothe.r use of LADC is in shift· instructions where a byte pointer
must be converted into an address pointer, as:

LB
SLAL
LDA
BR

R1,INDEX
R1,LAtC
R2,TABLE(R1)
R2

GET BYTE POINTER
CONVERT TO ADDRESS POINTER
GET ADDRESS FROM TABLE

In 16-bit assemblie~, LADC has a value of one, and the shift left
logical instruction has the effect of doubling the value of the
byte pointer, converting it into a halfword pointer. In 32-bit
assemblies, LADC has a value of two, and the shift instruction
has the effect of quadrupling the value of the byte pointer,
converting it into a fullword pointer.

The LADC symbol can also be used where machine dependent code
must be written within a common mode program. For example:

IFNZ
L
~.

ST
FLSE
LM
AH
ACH
STM
ENDC

LADC-1
RF,A
RF,B
RF,A

RE, A
RF,B+2
RE, B
RE,A

IF TRUE USE 32 BIT CODE
LOAD FULLWORD IN RF
ADD FULLWORD B
STORE IN A
LADC-1 IS FALSE USE 16 BIT
LOAD FULLWORD IN RE AND RF
ADD LOW ORDER B
ADD HIGH ORDER B
STORE IN A

shows how fullword addition, requiring double registers in 16-bit
assemblies and single registers in 32-bit assemblies, can be
handled in a common mode ~rogram.

48-050 FOO ROO 4-7

4.7 SPECIAL INSTRUCTIONS

By definition, the instructions load multiple, store multiple,
and load PSW, operate on address len9th data. This is why there
are no address operation mnemonics for these instructions. Where
these instructions are used in common mode programming, the data
on which they operate must be defined by 'the define address
length constant and the define address length storage
instructions. For example:

START

NEWPSW
RS AVE
FA RAM

LPSW NEWPSW

STM
LM

DAC
DAS
DAC

RO, SAVE
RO, PAR AM

STATUS,A(START)
16
CON1,CON2, •••

List processing instructions operate on address length quantities
within the list. There is some incompatibility between the 16-
and the 32-bit versions of these instructions. The 16-bit list
instructions require byte pointers at the head of the list. The
32-bit list instructicn5 require halfword pointers. List
instructions can be used in common mode programming as long as
the number of slots in the list does not exceed 255.

4-8 48-050 FOO ROO

Lists always should be defined with the define list instruction.
Use byte instructions where it is necessary to refer to the list
pointers in the program. Define displacement into the list
pointer fields in terms of the LADC·symbol. For example:

SLOTS EQU LADC-1 NUMBER OF SLOTS
USED EQU 2*LADC-1 NUMBER USED
CTOP EQU 3*LADC-1 CURRENT TOP
NBOT EQU 4*LADC-1 NEXT BOTTOM

•

•
LB R1,LIST+CTOP

LIST DLIST 32

In this example, the load byte instruction is used along with the
value of CTOP to access the current top pointer in the list.

48-050 FOO BOO 4-9

APPENDIX A
COMMON ASSEMBLY LANGUAGE/32

CCAL/32) OPERATING INSTRUCTIONS

The CAL/32 assembler re~uires a minimum of one lu and up to a
maximum of 11 logical units for operation, depending on the
options selected and the features invoked by the source program.
All of these logical units can be assigned by the user. However,
if an lu is needed and not assigned, CAL/32 will allocate
temporary system files for logical units 4, 5, 6, 8, 9, 12, and
13. CAL/32 will delete and reallocate permanent files for
logical units 2 and 3, provided they were not previously assigned
and the DEL start option was specified. The logical units used
are:

I I
I LU I USE

LOGICAL I ALLOCATED I REQUIRED
RECORD I BY CAL/32 I FOR

1

2

3

4

Source input device.
The source input to be
assembled is read from
this device on pass
one. This device is re­
wound prior to each
subsequent pass unless
BATCH is specified and
the source input is not
on a random access
dev~ce, or SCRAT or
PPAUS is specified.

Binary output device.
Assembled object pro­
gram is written to this
device on last pass.

Assembly listing output
device. Assembly list­
ing is written to this
device on the last pass.

Source scratch device.
The source input is
copied to this device
during pass one. The
source input is read
from this device on all
subsequent Passes.

48-050 FOO ROO

80

108 T=16
126 T=32

64 - 132

80

No

If DEL
specified

If DEL
specified

Yes

All

All

All

SCRAT
BATCH

A-1

--------------------------------------~~---------~--~-----------
I

LU I USE
LOGICAL I ALLOCATED I REQUIRED
RECORD I BY CAL/32 I FOR

==
5 Symbol cross reference

scratch device. Cross
reference information
is built on this device
during the last pass. A
device assigned to this
lu must support random
access.

6 Symbol table paging
device. Symbol table
information is paged to
this device during all
passes. A device
assigned to this lu
must support rand om
access.

7 Source library input
device. Source inform-
ation to be included in
the main assembly is
read from this device
on each pass unless
SCRA'I' or BATCH was
specified. Then the
library is searched and
read on pass one only.

8 Forward equate scratch
device. This lu can be
used if forward refer-
enced equates exist in
the source input. This
device must support
rand om access.

9 Error tabula ti on device.
Error messages and
their associated line
numbers are written in
binary to this device
during the la st pass
and written to lu 3
after completion of the
assembly and symbol
table listing.

A-2

256 Yes

512 Yes

80 No

256 Yes

80 Yes

I
I
I
I
I
I
I
I
I
I
l

CROSS

Insuffi­
cient
memory

COPY

Forward
equates

ERL ST

48-050 FOO ROO

I
LU I USE

LOGICAL I ALLOCATED I REQUIRED
HE C 0 R D I BY .C AL I 3 2 I F 0 R

==
12 PCB file directory 2 !56 Yes CLIB

scratch device. This
device ll'USt support
random access.

13 PCB name directory 256 Yes COPY
scratch device. This
device must support
random access.

--------------------------------·-------------------------------

When an assembly terminates, an end of task code is passed to the
operating system in the operand field of the SVC 3 instruction.
The meanings of the possible end of task codes are:

END OF
TASK CODE

0

1

2

3

4

48-050 FOO ROO

MEANING

Assembly complete without errors.

Illegal option passed with the START command.
Assembly is aborted after logging the illegal
options to the console. The user should
retry.

One or more errors detected during the
assembly. This end of task code is also used
if errors are detected in one or more programs
of a batch assembly.

Misplaced BEND.

Symbol table overflow.

A-3

When operating under
options as arguments
spaces and/or commas
specification:

OS/32, CAL/32 accepts certain control
of the START command. Any combination of
can separate or follow the options

START
OPTION

£PAUS
~ROSS

l!11ST
!fQRXT
2.QJlEZ
SQ~HK
2_~RAT

IARG·r
,RIDTH
,LCNT
ER1ST
.EB~QZ
N.L.~TC
~_aL

N1~.I1:1
~ATCH
f:REZE
Ji.QI~~
liII!

Q~1
1!.ST
1.SI~
L..SI11
1~I!!R
!l.R EX
_R_a RN
li~ROS
!f.QEL
l!IREZ
HL.~I!l.
!iQ~AL
N.QSQ.Z
!'!Q~.£;Q
li!l.R EX
!RA RN
lLQR X3

None
None
None

OPERANDS

None (alias for NORX3)
Number of passes (1-99)
None
None
16 or 32
Width of listing
Lines per page (10-99)
None
None
None
None
None
None
None
None (inhibits symbol table paqing to disk)
None (prevents CAL/32 from making

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None

extra passes to fix squeeze-induced errors)

Start options have the following form:

option [=operand]

A-4 48-050 FOO ROO

A typical start command for a CAL/32 assembly with start options
is:

ST ,DEL,SQUEZ=99,NCROSS

The delete start options (DEL, NDEL) enable or disable CAL/32
from deleting and reallocating object and listing files when
needed. If the DEL option is in effect and lu 2 and lu 3 are
unassigned, CAL/32 will delete, reallocate, and assign them to
£name.OBJ and fname.LST, respectively.. The default option is
NDFL, in which case CAL/32 will simply log an 8100 error to the
console and pause. In the ~vent that lu 1 is not assigned to a
direct access device, the DEL option will have no effect, and
CAL/32 will issue an 8100 error before pausing.

When CAL/32 encounters cdnf licting start options such as CROSS
and NCROS, it will r~gard the last option encountered as the
intended option. This allows the user to redefine the default
start options via CSS. For example:

LO CAL32
AS 1,SOURCE.CAL
ST ,NCROSS DEL @1
$EXIT

The above CSS effective~y changes the default options to NCROSS
and delete unless overridden by the parameter @1.

OPERATING INSTRUCTIONS FOR OS/32

CAL/32 will not run on a 16-bit machine, however it will still
produce 16-bit object code if requested.

Before using CAL/32 under OS/32, the relocatable object
must be established as an OS/32 task, using Link.
command sequence using Link to establish CAL/32 is:

LO .BG,LIN~

T .BG
ST
>ES TA
>OP work=SOOO, SYS=FFFFF, SE ROL
>IN CAL32
>BU CAL32
>END

supplied
A typical

48-050 FOO ROO A-5

CAL/32 is segmented into pure and impure code for sharej use with
OS/32 systems that support this capability. To establish CAL/32
as a nonsharable task, remove the SEG option from the above
command sequence. TET can be used instead of Link provided the
source does not contain any of the following instructions:
external with offset, DNTRY, WNTRY, WXTRN, INCLD, DCMD.

A typical command sequence to establish CAL/32 using TEr is:

LO .BG,TET12
AS 5,CON:
AS 7,CON:

Load TET32
Assign interactive device

AL TETSCRT,IN
AS 4,TETSCP.T
ST

Allocate and assign scratch

ES TA
IN CAL32.0EJ
F.XP 80
BU TA,CAL/.32
MAP PR:
END

Establish task command
Read CAL/32 object
Get 20kb for symbol table
Build CAL/32 task
Obtain map

The established CAL/32 task can then be loaded
command and devices or files a~signed as required.

LO .BG,CAL32
T • BG
AS 1,PROGRAM.CAL,SRO
AS 3,PR:
ST ,DEL,SQUEZ

Source input
Assign listing device
Start as:c:;embly

with the LOAD
For example:

When assembly is completed, CAL/32 terminates through the
operating system, which logs the message:

END OF TASK n

where n is the end of task code.

The files used for scratch, cross reference, paging, forward
equates, PCB file directory, PCB name directory, and error
sumwary will be allocated by CAL/32 as temporary operating system
files if they are needed and were not previously assigned by the
user.

A-6 48-050 FOO ROO

APPENDIX B
COMMON ASSEMBLY LANGUAGE/32 (CAL/32) ERROR CODES

A001

A002

A003

B001

B002

C001

D001

E001

F001

F002

F003

F004

the address

the address

the operand

a. li gn men t

alignment

common mode

data structure

END placement

missing operand

register
specification

invalid source
field

invalid symbol

48-050 FOO ROO

The address is out of range for the
specified instruction format.

The address is out of range for an
RX2 .instruction.

The operand of a previously squeezed
instruction was changed making the
squeezed instruction invalid.

The address of the operand is on an
incorrect boundary for the
instruction specified.

An odd address used in a T constant
location counter was not even when
the instruction was specified.

An opcode that is not part of the
common mode set is used in a common
mode assembly.

An illegal statement appears in a
STRUC or COMN definition.

An END statement was encountered
within a STRUC or COMN definition or
within an unterminated conditional.

A register value is not in the
range of 0 to 15, or an odd register
value is used whPre an even value is
required.

Invalid label in the source field,
a label in the name field is not
followed by a space, or a required
label is missing; e.g., on EQU.

More than 8 characters were
specified in a symbol.

B-1

FOOS EXT RN

F006 immediate field

FOO? ENTRY

FOOR delimiter

F009 invalid expression

F010 apostrophe

F011 invalid operand

F012 improper statement

E-2

An invalid type for EXTRN; e.g.,
common block, or EXTRN was used in
an expression.

The value of data is too
fit into the immediate
fullword EXTRN is used

large to
field. .~

in RI1
instruction. A character string
used as·an immediate field
long.

is too

A symbol declared as an ENTRY is
undefined. Improper type for ENTRY;
e.g., common block name.

Operands are not separated by
commas. Unrecognizable operator.
The last operand is not followed by
a CR or a blank. Unbalanced
parentheses. Opcode is not followed
by a space or a CR.

Expression uses common element names
not in the same block.

No ending
H,P,U,X, or
character

apostrophe in
Y constant.

encountered

C,D,E,F,
Illegal

i.n
C,D,E,F,H,P,U,X, or Y constant prior
to the ending apostrophe.

T constant was specified in TARGT 16
assembly. Argument mode of T
constant is not ABS, PURE, or
IMPURE. Illegal data specified in
BDATA program. Fullword EXTRN used
as an oper~nd of DCZ. Value of DB
operand must be absolute. Value of
DS, DSF, DSH. Invalid symbol used
for ENTRY name. Symbol used as
ENTRY must be ABS, PURE, IMPURE, or
Relocatable. Invalid symbol used
for EXTRN name. Invalid data in
BORG. Operand of CNOP or ALIGN is
not absolute. Operand of DLIST is
not ab~.olute.

Improper type for EXTRN
e.g., common block name.
address on END statement
improper type; e.g., EXTRN.
operand on EQU.

I.abel only

operand;
Transfer
is an
Illegal

48-050 FOO ROO

F013

F014

F015

I001

M001

M002

0001

P001

P002

H001

soo 1

S002

S003

file descriptor

missing string

invalid character

conditional

symbol definition

symbol definition

illegal opcode

location counter

reentrancy check

relocation error

sequence check

COPY

invalid option
sequence

48-050 FOO ROO

Syntax error on fd of a COPY, FCOPY,
or CLIB statement

No characters between apostrophes of
C,E,D,F,H,P,U,X or Y constant

Illegal character
between apostrophes
constant.

encountered
of an E or D

An ELSE or ENDC statement found
without a matching IFx

The symbol in the name field is also
used in the name field of another
statement. The value or type of a
symbol changed from its definition
on a previous pass. (This can occur
by illegal use of conditionals, ORG,
DO, ts, or a misplaced SCRAT
stat E! men t.)

An attempt was made to redefine a
symbol with an EQU that is the name
field of a statement.

The opcode used
unrecognizable or
specified TARGT.

is
illegal

totally
for the

The location counter exceeded 216 on
a TARGT-16 or 224 on a TARGT-32
assembly.

The instruction attempts to modify
PURE code.

An invalid combination of
relocatable terms in an expression.
A relocatable operand follows a
unary minus.

The value in the sequence numbers
field is not greater than the
previous sequence number.

COPY statement appears within a file
being copied. An invalid symbol
used as COPY operand. The operand
of CCPY is not followed by a space,
comma, or CR.

A COPY, PAUSE, MSG, or DO
statement immediately follows a DO
statement.

B-3

5004 invalid option

SOOS PROG

T001 overflow

T002 floating point

T003 value

T004 divisor

U001 not used

U002 u~def ined symbol

U003 undefined symbol

U004

uoos

B-4

An argument is not absolute or
exceeds 32767. An argument of LCNT
is in the range of 10 to 99. An
argument of WIDTH is not in the
range of 64 to 132. An argument of
TARGT does not evaluate to either 16
or 32. An argument of SQUEZ is not
in the range of 1 to 99.

Multiple PROG statements were
encountered in a program.

The intermediate or final result of
an arithmetic expression exceeded
231 - 1.

An overflow
conversion of
constant.

occurred
floating

during
point

The data item exceeds the range for
specified type; e.g., X'12345'.

A division by 0 is attempted.

A referenced symbol is not defined
in the program.

An attempt was made to circularly
define a symbol; e.g.:

A EQU B
B EQU A

File specified
FCO'DY, CLIB, or

as an operand of
COPY does not exist.

Program name is not found in any of
the PCB libraries.

48-050 FOO ROO

APPENDIX C
PERKIN-ELMER OBJECT CODE FORMAT

Modules in Perkin-Elmer otject code format produced by CAL/32 are
divided into records. Each recqrd contains 126 bytes of
information for 32-bit object code, or 108 bytes of information
for 16-bit object code. The first 4 bytes of each record of the
object code format are organized as follows:

--------------~ f----------------------------~ f-------------
1 Sequence number I Checksum I

--------------~ ~----------------------------~ ~---------~---
Bi ts:

0 15 16 31

The sequenc8 numbers are sequential negative integers -1, -2, -3,
etc., repr8sented in two's comple~ent form. The first record in
a program must have sequencR number -1. Subsequent records must
be in proper order to be loaded.

The checksum is an exclusive OR sum of all halfwords in the
record, except itself, plus a halfword of all 1's.

The remainder of the record is a sequence of items; an item is a
byte of loader information. There are two types of items--loader
items and data items. Each loader item is followed by a certain
number (which can be 0) of data items. The loader items and
their meanings are listed in Tables C-1 and C-2.

48-050 FOO ROO C-1

LOADER f
ITEM I

C-2

0
1
2
3

4
5

6

7

8

9

A

E

c

D

E

F
10

1 1

12
13

14

15

16

TABLE C-1 32-BIT LOADER ITEM DEFINITIONS

MEANING

End of record
End of program
Feset sequence number
Block data indicator

Absolute program address
Pure relocatable program
address

Impure relocatable program
address

2 bytes of pure relocatable
data

2 bytes of impure
relocatable data

4 bytes of pure relocatable
data

4 bytes of impure
relocatable data

Common reference

EXT RN

ENTRY

Common definition

Program label
3 byte~ absolute and 3
bytes pure relocatable

3 bytes absolute and 3
bytes impure relocatable

load program transfer
Define start of chain

(reference)
Load chain definition
address

2 bytes absolute and 2
pure relocatable

1
I

bytes I

~ bytes absolute and 2
impure relocatatle

I
bytesf

I

NUMBER OF DATA
ITEMS FOLLO~ING

None
None
None
8-byte name,
3•byte displacement,

any absolnte 1ata
item (20-SB)

3-byte address
3-byte addi:ess

3-byte address

2-byte address

2-byte address

4-byte address

4-byte address

8-byte address
3-byte displacement
8-byte name, fol-

lowed by item 4,
5, or 6

8-byte name fol­
lowed by item 4,
5, or 6

8-byte name fol­
lowed by a 3 byte
length

a-character name
6 bytes

6 bytes

Item 4, 5, or 6
Item 4, 5, or 6

Item 4, 5, or 6

4 bytes

4 bytes

48-050 FOO ROO

TABLE C-1 32-BIT LOADER ITEM DEFINITIONS (Continued)

I LOADER I
I ITEM I MEANING

NUMBER OF DATA
ITEMS FOLLOWING

--·----------------
17

18

19
1A
1E
1C

1D

1E
1F
20
21
22
23

SB
5C-64
65

66

67

Short form EXTRN

Length of impure and pure
segments

Perform fullword chain
Perform halfword chain
No opera ti on
2-byte pure translation
table address

2-byte impure translation
table address

Not used
1 byte absolute data
2 bytes absolute data
4 bytes absolute data
6 bytes absolute data
8 bytes absolute data

120 bytes absolute data
Future use
Extended EXTRN reference

Extended entry

Link commands

8-byte name and
Item 4, 5, or 6
3-byte impure length

and 3-byte pure
length

NonP
None
None
2 bytes

2 bytes

N/A
1 byte
2 bytes
4 bytes
6 bytes
8 byt.es

120 bytes

8-byte external
symbol name

1-byte flag
xxxx xxOO standard

EXT RN
xxxx xx01 weak

EXT RN
xxxx xx10 include

EXTRN
4-byte off set
Item 4, 5, or 6
8-byte entry symbol
1-byte flag

xxxx xxOO standard
entry

xxxx xx01 data
entry

xxxx xx10 weak
entry

Item 4, 5, or 6
1-byte length
1-80 characters
of command

48-C50 FOO ROO C-3

TABLE C-2 16-BIT LOADER ITEM DEFINITIONS

----------------------------~-~----~-~~~~~~~~~~~~~~~---~~--~-
LOADER I

ITEM I MEANING
NUMBER OF DATA
ITEMS FOLLOWING

===e====~======I
0 End of record None
1 End of program None
2 Perform chain None
3 Toggle absolute/relocatable None

4
5
6
7
8
9
A
B

c
D
E
~o

E1

F2

E3

E4
~5

f 6

F

mode
Transfer address
Load program addr@ss (ORG)
Load reference address
Load definition value
2 bytes absolute data
?. bytes relocatable data
4 bytes absolute data
2 bytes absolute and 2 bytesf
relocatable data

EXTRN reference
ENTRY d@finition
Decode next item
Declare common block

Load common block
definition value

2 bytes absolute block data

4 bytes absolute block data

Reset sequence number to -1
1 byte absolute data
1 byte absolute tlock data

Program label

2-byte address
2-byte addregs
2-byte address
2-byte address
2 bytes data
2 bytes data
4 bytes data
4 bytes data

6-byte name
6-byte name
Next item
6-byte name
2-byte size
6-byte name
2-byte off set
6-byte name
2-byte offset
2 bytes data
6-byte name
2-byte off set
4 bytes data
None
1 byte data
6-byte name
2-byte off set
1 byte data
6-byte name

All items are given in hexadecimal. Note that item E is actually
a compound item whose interpretation depends on the item it
follows. Item E and the following item are considered a single
control item, however, and cannot be split across object records.
This effectively allows mere than 16 different control items,
thnugh most of them require only 1 nibble.

C-4 48-050 FOO ROO

A

AbEolute CABS) instructicn
Absolute programs
AbEolute quantities
ABSTOP
Address length
Address length constant (A[C)

Address operation instructions,
address operations
assembler
immediate operations

Align (ALIGN) instruction
Alignment,

ADC, effect on
CNOP, effect on

Arithmetic ex~ressions
Arithmetic operators
Assembler control instructions

Assembler instructions,
ABS
ALIGN
BATCH
BDATA
BEND
BORG
CLIB
CNCP
CCMN
COPY
CROSS
DAC
DAS
DE
tc
tCF
tCMB
tLIST
DNTRY
to
DS
DSF
DSH
EJECT
ELSE
ENt
ENtC
ENtS
ENT"RY
EQU
ERL ST

48-050 FOO ROO

3-45
1-1.l
2-2
2-5
2-5
2-5
4-6

4-1
4-3
4-3
3-1.lS

4-6
3-46
2-1
2-1
3-46
4-5

3-45
3-45
3-55
3-64
3-55
3-64
3-48
3-Ll6
3-€1
3-48
3-67
4- 4
4-4
3-41
3-30
3-30
3-43
3-42
3-25
3-60
3-28
3-28
3-28
3-66
3-56
3-47
3-56
3-61
3-25
3-22
3-67

INDEX

ERSQZ
FXTRN
FCOPY
FREZE
IF
IFx
IHFUR
(NCLD
LCNT
LIST
LSTC
LSTM
LSTUR
l'!SG
NC ROS
NFREZ
NL I ST
NLSTC
NLSTM
NLSTU
NORX3
NO SEQ
NCSQZ
NU REX
NWARN
ORG
PAUSE
PPAUS
FRCG
FURE
reserved storaqe
SC RAT
SP~.CE

SQCHK
SQUEZ
STRUC
TARGT
TITLE
UREX
WARN
WitTH
WNTRY
WX'IRN

Assembly listing
Asterisk, used as operand

B

Batch assembly instructicns,
BATCH
BEND

3-53
3-25
3-49
3-67
3-60
3-56
3-44
3-27
3-66
3-67
3-67
3-67
3-r,1
3-55
3-67
3-67
3-67
3-€7
3-67
3-(;7
3-53
3-54
3-53
3-56
3-67
3-44
3-49
3-54
3-65
3-43
3-21
3-':4
3-66
3-54
3-50
3-61
3-47
3-65
3-56
3-67
3-66
3-25
3-25
3-68
2-6

3-55
3-55
3-56

Ind-1

Batch end (BEND) instruction
Batch (BATCH) instruction

Binary language symbols,
abEolute values
addresses
constants
operation identifiers
register identifiers

Bleck data (RDATA) instruction
Branch and link instructions

c
CAl/32 in~tructions
Central processing unit CCFU),

I/C interface
local memory
FS\.i
registers

Character symbols
Comment statements,

nonprintable characters
printable characters

Commcn blocks
Common (COMN) instruction
Common mode ~rogramming
Compound conditional
instructions,

ELSE
EN'CC
IFx

Condition code
Conditional assembly
instructions

Conditional branch instructions
Conditional no operation (CNOP)
instruction

Content control instructions,
CRCSS
ERL ST
FREZE
LIST
LSTC
LSTM
LSTUR
NCHOS
NFREZ
NL I ST
NLSTC
NLSTM
NLSTU
NWARN
wARN

Cor.stant
Constants,

address
character
decimal string
double precision floating

point
hexadecimal,

DCX
CCY

integer,
fullword
half word
internal representation

Ind-2

3-56
3-55
3-56

2-1
2-1
2-1
2-1
2-1
3-64
1-15

4-5

1-1
1-1
1-1
1- 1
2-4

3-1
3- 1 ,
3-61
3-61
4-1

3-56
3-56
3-56
1-2

3-56
1-15

3-46

3-67
3-67
3-(51
3-67
3-€7
3-67
."3-67
3-67
3-€7
3-67
3-67
3-€7
3-67
3-67
3-67
2-5

3-35
3-38
3-38

3-37

3- 32
3-32

3-33
3-33
3-33

length
packed decimal string
single precision floating

point
unpacked decimal string

Constant tyi;:es
Copy (COPY) instruction
Copy (CLIB) library
instruction

Cress reference (CRCSS)
instruction

D

Data definition instructions,
CAC
CAS
cc
CCF
DS
tSF
DSU

Data structures
tecimal symbols
Define address length cor.stant

(tAC) instruction

Define address length stcrage
('CAS) instruction

Define byte (DB) instructicn
tefine command (DCMD)

3-34
3-38

3-37
3-38
3-31
3- 48

3-48

3-68

4-4
4-4
3-30
3-30
3-28
3-28
3-28
3-61
2-2

4-4
4-8

4-4
3- 41

instruction 3-43
Define list (DLIST) instruction 3-42
Define storage (CS) instruction 3-63
DEL A-~
Delete start options A-5
DCF instruction 3-34
DCX instruction 3-32
DCY instruction 3-33
DNTRY instruction 3-25
Co (CO) instruction 3-60

E

Eject (EJECT) instruction
ELSE instruction
End condition (ENDC)
instruction

End (END) instruction
End of task codes
End structure (ENDS)
instruction

ENTRY instruction
Equate instruction
Errcr codes
Error list CERLST) instruction
F.rror squeeze (FRSQZ)
instruction

Extended branch mnemonics
EXTRN instruction

Fields,
name
operand
O[:eration

F

3-66
3-57

3-57
3-47
A-3

3-61
3-:25
3-63
E-1
3-68

3-53
3-19
3-25

3-3
3-5
3-4

48-050 FOO ROO

File copy (FCCPY) instruction
Format control instructions,

EJEC'I
lCNT
SPACE
WIDTH

Freeze (FREZE> instruction

G

Global :::ymbols,
ABSTCP
ADC

IMFTCP
LHC

PURETOP

H

Hexadecimal symbols

I J K

Implicit symbols
IMFTOF
Impure (I~PUR) instruction
lm[:ure segments
Include (INCLD) instruction
Instruction statements,

fixed format
free format

Instructions,
address c[:erations, ccmrrcn

mode
assembl-.P.r
assembler, common mode
immediate operations,

ccmmon mcde
cpi:!rating
16-bit machine

32-bit machine

Integer constants,
fullword
halfword
internal representation

I/C interface

L

LAL'C
Line count (LCNT) instruction
Linked list structures
List conditionals (LSTC)
instruction

Listing control instructions
Listing identification
instructions,

FROG
TITLE

48-050 FOO ROO

3-49

3-66
3-66
3-66
3-65
3-68

2-5
2-5
4-6
2-5
2-5
4-€
2-5

2-· 4

2- 3
2-5
3-44
1-4
3-27

3-2
3-2

4-1
3-21
4-3

4- 3
A-1
1-5
3-10
1-7
3-10

3-33
3-33
3-33
1- 1

2-5
3-66
3-63

3-67
3-65

3-65
3-65

List (LIST) instruction
LiEt macro (L3TM) instruction
List unreferenced symbols

(LSTUR) instruction
Load multiple instruction
Load PSW instruction
Local memory (registers)

double precision floating
point

general i;:urpose
single precision floating

pcint
Location counter,

absolute
impure
pure

Logical expressions

M

Machine instructions,
mnemonics

Main memory
Message (MSG) instruction
Mixed expressions
Mixed mode computations

Name field
NDEL

N

NOCAL/32 instruction
No cross {NCROS) instructicn
No freeze CNFREZ) instruction
No list conditionals CNLSTC)
instr:uction

No list (NLIST) instruction
No list macro (NLSTM)
instruction

No list unr:ef erenced symbols
(NLSTU) instruction

No RX3 (NORX3) instr:ucticn
No sequence check instruction
No squeeze (NOSQZ) instruction
No war:ning (NWARN) instruction

0

Object code formats
Operand fields, rules
Operating instructions

for OS/32
Operation fields,

mnemonics
restrictions

Optimization mode
Crigin (ORG) instruction

PO
Pass pause CPPAUS) instr:uction
Pause (PAUSE) instruction
Program (PROG) instruction

3-67
3-68

3-68
4-8
4-8
1-2

1-2
1-2

1-2

3-43
3-43
3-43
2-2

3-10
1-1
3-55
2-2
4-':

3-3
A-5
4-5
3-68
3-68

3-67
3-67

3-68

3-68
3-53
3-54
3-5 .3
3-68

C-1
3-5
A-1
A-5

3-4
3-4
3-50
3-44
3-63

3-54
3-49
3-65

Ind-3

Prcgram segmentation
Prcgram status word (PSW),

con1ition code
location counter
status descriptor

Pure (PURE) instruction
Pure segments
FUFETCP

R

Register and immediate

Register and immediate
(RI 1)

Register and immediate
(R!2)

(RI)

one

two

Register and indexed storage
(BX)

Register and indexed storage/
register and indexed stcrage
CPXRX)

Register and indexed storage
one (F x 1)

Register and indexed storage
two (RX 2)

Register and indexed storage
three (RX 3)

Registers,
double precision floating

point
general t:urpose
single precision floating
point

Register-to-register (RR)

Relocatable programs
Relocatable quantities

s
Scratch (SCRAT) instruction
Sequence check (SQCHK)
instruction

Short form (SF) instruction

Simple if (IF) instructicn
16-bit machine instructicns,

register and immediate (RI)
register and indexed
storage (PX)

register-to-register (RR)
short form (Sf)

Source program,
comment statements
instruction statements

Space (SPACE) instruction
Sequence checking instructions,

NOSEQ
SQCHK

Squeeze (SQUEZ) instruction
Squeeze rAlated instructions,

ERSQZ
NOSQZ
NCFX3

Ind - LI

1-4

1-2
1-2
1-2
3-43
1-4
2-~

1- 5
3-7

1-10

1-11

1-6
3-6

1-12
3-8

1-8

1-9

1-10

1-2
1-2

1-2
1-5
1-7
3-5
1-4
2-2

3-54

3-54
1-7
1-12
3-60

1-5

1-5
1-5
1-:

3-1
3-1
3-66

3-54
3-54
3-50

3-53
3-53
3-53

Start option
Statements,

comment
instruction

Status descriptor
Store multi~le instructicn
Structure definition
instructions,

COMN
ENDS
S'l'RUC

Structure initialization
instt:uctions,

Er:ATA
BORG

Structure (S1RUC) instructicn
Sywbol definition instructicns
Symbolic representation
Syrr.bols,

character
decimal
fullword
global

halfword
hexadecimal
implicit

System architectnre,
CPU
main memory

T

Target CTAPGT) instructicn
32-bit machine instructicns,

register and immediate cne
(RI 1)

register and immediate two
CRI2)

register and indexed stcrage
one (RX 1)

register and indexed storage
three (RX 3)

register and indexed stc.rage
two (RX2)

register and indexed
storage/register ~nd
indexed storage (RXRX)

register-to-register
short form (SF)

Title instructions

UV

Unreferenced externals
instructionE=,

NU.REX
UR EX

w x y z
WarrrinJ (WARN) instruction
Width (WICTH) instruction
WNTRY instructions

WXTRN instructions

A-4

3-1
3-2
1- :2
4-8

3-61
3-61
3- 61

3-64
3-64
3- 151
3-21
2- ·1

2-1.J
2-2
2-4
2-3
2-5
2-1.J
2-4
2-3

1-1
1-11

3-47

1-10

1-11

1-8

1-10

1-9

1-12
1-8
1-12
3-65

3-56
3-56

3-€8
3-66
3-25
3-26
3-25
3-26

48-050 FOO ROO

u
~
::;

' ,. 5
.J

I
I
:I
I
I
I
I

: I
3 I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

I

PUBLICATim~ COMMENT FORM

Pleas·e use this postage-paid form to make any comments, :suggestions, criticisms, etc. concerning
this publication.

From--------------- Date ------------------

Title--------------- Publication Title ------------

Company _____________ _
Publication Number -----------

Address ------------------

FOLD

Check the app.ropriale item.

D faror Page No.----

D
:o

Addition Page No., ___ _

Other Page No. ___ _

Explanation:

FOLD

Drawing No.-----------

Drawing No. ________ _

Drawing No. ---------

Fold and Staple
No postage necessary if mailed in U.S.A.

FOLD

FOLD

STA.PLE

FOLD

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

POST AGE WILL BE PAID BY ADDRESSEE

PERKIN-ELMER
Computer Systems Division
2 Crescent Place
Oceanport, NJ 07757

TECH PUBLICATIONS DEPT. MS 322A

STAPLE

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

FOLD

FOLD FOLD

STAPLE
STAPLE

I
I
I

