PERKIN-ELMER

COMMON ASSEMBLY LANGUAGE/32

(CAL/32)

Reference Manual

48-050 FOO ROO

The information in this document is subject to change without notice and should not be
construed as a commitment by The Perkin-Elmer Corporation. The Perkin-Eimer Corpor-
ation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license, Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Eimer Corporation.

The Perkin-Eimer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Elmer.

The Perkin-Elmer Corporation, Computer Systems Division 2 Crescent Place, Oceanport, New Jersey

(© 1981 by The Perkin-Elmer Corporation

Printed in the United States of Amaerica

07757

SPECIAL NOTICE TO
CAL/32 USERS

The CAL/32 assembler 'is not compatible with the CAL
assembler in the handling of unreferenced externals. In
order to support weak externals, object code will be
generated for unreferenced externals. Programs assembled
by CAL/32 and containing unreferenced externals to
nonexistent modules will receive an error message at Link
time. For compatibility with CAL, the NUREX start
option/assembler instruction has been introduced in
CAL/32.

PREFACE

CHAPTERS

TABLE OF CONTENTS

1 BASIC CONCEPTS

T¢1

P T YT N U N N Y
e © o & o o s o
DO
e O ¢ & 2 o o

NEWWN =2

- . PR Y
e o o o o
w w w ww
o o o o
& W N =

. N G Y
L] L] []
PR
L] .

N =

= &

-_—d A b
e o o o
Ut ,m
e o o
W N =

L
-

L]
-2

INTRODUCTION

THE PROCESSOR

Central Processing Unit (CPU)
Local Memory (Registers)
Program Status Word (PSW)

I/0 Interface

Main Memory

Software Relocation

Hardware Relocation

INSTRUCTION FORMATS (16-BIT)
Register-to-Register (RR) Instructions
Register and Indexed Storage (RX)
Instructions

Register and Immediate (RI) Instructions
Short Form (SF) Instructions

INSTRUCTION FORMATS (32-BIT)
Register-to-Register (RR) Instructions
Register and Indexed Storage One (RX1)
Instructions

Register and Indexed Storage Two (RX2)
Instructions

Register and Indexed Storage Thres (RX3)
Instructions

Register and Immediate One (RI1)
Instructions

Register and Immediate Two (RI2)
Instructions

Short Form (SF) Instructions

Register and Indexed Storage/Register
and Indexed Storage (RXRX) Instructions

VARIATIONS ON INSTRUCTION FORMATS
Conditional Branch Instructions
Branch and Link Instructions
Other Variations

u8-050 FO0O ROO

vii

-
| I |
-

P i T G SN Y
|
FEREWWNN 2

JEY
!
U n

-
]
~N Oy Oh

-
1
@®

1-15
1-15
1-15
1-15

CHAPTERS (Continued)

ii

SYMBOLIC REPRESENTATION

2.1 INTRODUCTION 2-1
22 SYMBOLS AND EXPRESSIONS 2-1
2.3 SYMBOLS AND THEiR VALUES 2-3
2.3.1 Implicit Symbols 2-3
2.3.2 Global Symbols 2-5
THE SOURCE PROGRAM
3.1 INTRODUCTION 3-1
3.2 COMMENT STATEMENTS 3-1
3.3 INSTRUCTION STATEMENTS 3-2
3.4 NAME FIELD 3-3
3.5 OPERATION FIELD 3=-4
3.6 OPERAND FIELD 3-5
3.6.1 Register-to-Register Instructions 3-5
3.6.2 Register and Indexed Storage Instructions 3-6
3.6.3 Register and Immediate Instructions 3-7
3.6.4 Register and Indexed Storage/Register

and Indexed Storage (RXRX) Instructions 3-8
3.7 MACHINE INSTRUCTIONS 3-10
3.8 ASSEMBLER INSTRUCTIONS 3-21
3.8.1 Symbol Definition Instructions 3-21
3.8.1.1 Equate (EQU) Instruction 3-22
3.8.1.2 External, Entry, Weak External, Weak

Entry, and Data Entry (EXTRN, ENTRY,

WXTBRN, WNTRY, and DNTRY) Instructioas 3-25
3813 Include (INCLD) Instruction 3-27
3.8.2 Data Definition Instructions 3-28
3.8.2.1 Define Storage (DS, DSH, D5F) Instruction 3-28
3.8.2.2 Define Constant (DC, DCF) Instruction 3-30
3e8.2«3 Hexadecimal Constants 3-31
3.8.2.4 Integer Constants 3-33
3.8.2.5 Address Constants 3-35
3.8.2.6 Floating Point Constants 3-37
3.8.2«7 Character Constants 3-38
3¢8+.2.8 Decimal String Constants 3-38
3.8.3 Define Byte (DB) Instruction 3-41
3.8.4 Define List (DLIST) Instruction 3-42
3.8.5 Define Command (DCMD) Instruction 3-43

48-050 FO0 ROD

Wwwwwww
o Mo oo o
e 6 o o o o o
OO OO
e o o o o o
AN LE W=

Wwwwwwwww
e o o ¢ o & o o o
O X o oo m®o
NN NNNNNNN
e 6 o © & & o o
XO-JNhNEWN

wWwwwww
e © o 0 & o
™ 00 O O m®
e & & o o 0
NNNONaN
e @ 2 o o 0
UK I N QT G Y Vo]
FWHN-=-20

w W
o o
@®
o o
o© o

3.8.9.2

3.8.10
3.8.10.1

3.8.10.2

3.8.10.3

3.9

CHAPTERS (Continued)

Location Counter Instructions
Pure (PURE) Instruction

Impure (IMPUR) Instruction
Origin (ORG) Instruction
Absolute (ABS) Instruction
Align (ALIGN) Instruction
Conditional No Operation (CNOP)
Instruction

Assembler Control Instructions
Target (TARGT) Instruction

End (END) Instruction

Copy Library (CLIB) Instruction
Copy (COPY) Instruction

File Copy (FCOPY) Instruction
Pause (PAUSE) Instruction
Squeeze (S5QUEZ) Instruction
Squeeze Related (NOSQZ, ERSQZ,
Instructions

Sequence Checking (SQCHK, NOSEQ) Instructions
Scratch (3CRAT) Instruction

Pass Pause (PPAUS) Instruction

Message (MSG) Instruction

Batch Assembly (BATCH, BEND) Instructions
Unreferenced Externals (UREX, NUREX)
Instructions

Conditional Assembly Instructions

NORX3)

Compound Conditional (IFx, ELSE, ENDC)
Instructions

Simple If (IF) Instruction

Do (DO) Instruction

Instructions for Data Structures
Structure Definition (COMN, STRUC, ENDS)
Instructions

Structure Initialization (BDATA, BORG)
Instructions’

Listing Control Instructions

Listing Identification (PROG, TITLE)
Instructions

Format Control (LCNT, EJECT, SPACE,

WIDTH) Instructions
Content Control (NLIST) Instructions

ASSEMBLY LISTING

COMMON MODE PROGRAMMING

4.1

h.2

INTRODUCTION
ADDRESS OPERATION INSTRUCTIONS

COMMON MODE IMMEDIATE OPERATIONS

48-050 FO0O0 ROO

iii

CHAPTERS (Continued)

COMMON MODE ASSEMBLER INSTRUCTIONS

4.4 4-3
4.4.1 Data Definition Instructions 44
4,404,741 Define ARddress Length Constant Instruction 4-4
4.4.1.2 Define Address Length Storage Instruction 4-4
L.4.2 Assembler Control Instructions 4-5
4.5 MIXED MODE COMPUTATIONS ' 4-5
4.6 GLOBAL SYMBOLS 4-6
4,7 SPECIAL INSTRUCTIONS 4-3
APPENDIXES

A COMMON ASSEMBLY LANGUAGE/32 (CAL/32) OPERATING
INSTRUCTIONS

B COMMON ASSEMBLY LANGUAGE/32 (CAL/32) ERROR CODES

C PERKIN-ELMER OBJECT CODE FORMAT

FIGURES
1-1 RR Format (16-Bit) 1-5
1-2 RX Format (16-Bit) 1-6
1-3 RI Format (16-Bit) 1-5
1-4 SF Format (16-Bit) 1-7
1-5 RR Format (32-Bit) 1-3
1-6 RX1 Format (32-Bit) 1-3
1-7 RX2 Format (32-Bit) 1-9
1-8 RX3 Format (32-Bit) 1-10
1-9 RI1 Format (32-Bit) 1-11
1-10 RI2 Format (32-Bit) 1-11
1-11 SF Format (32-Bit) 1-12
1-12 RXRX Format (32-Bit) 1-13
TABLES
3-1 SUMMARY OF MACHINE INSTRUCTIONS AND MNEMONICS 3-10
3-2 SUMMARY OF MACHINE INSTRUCTIONS AND MNEMONICS

EXTENDED FOR THE PERKIN-ELMER 3200 SERIES

PROCESSORS 3-18
3-3 EXTENDED BRANCH MNEMONICS 3-13
3-4 CONSTANT TYPES 3-31

iv 48-050 F00 ROO

TABLES (Continued)

4-1 COMMON MODE ADDRESS CPERATIONS 4-1
c-1 32-BIT LOADER ITEM DEFINITIONS C-2
Cc-2 16~-BIT LOADER ITEM DEFINITIONS C-4
INDEX Ind-1

48-050 F0O ROO

PREFACE

This manual describes the Perkin-Elmer Common Assembly
Language/32 (CAL/32). Chapter 1 is an introduction to the basic
concepts of the assembler, central processing unit (CPU), and
main memory. Also described are the instruction fcrmats for 16-
and 32-bit machines, as well as variations in the formats.
Chapter 2 introduces assembly language symbolic representation
and describes symbolic values. Chapter 3 defines the source
program and contains a list of machine dinstructions, mnemonics,
and a detailed description of assembler instructions. Common
mode programming and common mode operations are explained in
Chapter 4.

CAL/32 operating instructions are listed in Appendix A. Appendix

B contains CAL/32 error codes. Appendix C describes the

Perkin-Elmer 32-bit object code format and the Perkin-Elmer

16-bit object code format.

R0O0 of this manual can be used only with CAL/32 R09 and 0S/32 ROQ6

and higher. The following features are incorporated:

e Support of forward references in the operand of EQU, ORG, DS,
and DO

@ Fase of use (via DEL and temp files)

® Support of lowercase and underscore

e Faster symbol table paging

e Enhanced Copy

@ Ixternals with offsets

e New start options

The CAL/32 user should be familiar with the following 16- and
32-bit manuals:

PUBLICATION
MANUAL NAME NUMBER
Model 8/32 Processor User's Manual 29-428
Model 7/32 Processor User's Manual C29-405

48-050 F0OO ROO vii

PUBLICATION

MANUAL NAME NUMBER
16-BPit Processor User's Manual €29-509
Series Sixteen Processor User Manual C29-674
Model 3240 Processor User's Manual C29-685
Model 3220 Processor User's Manual C29-693
0S/16 MT2 Programmer's Reference Manual S29-429
0S/16 MT2 Operator’s Manual $29-430
0S/32 Operator Reference Manual 48-030
0S/32 Supervisor Call (SVC) Reference Manual 48-038
0S/32 Application Level Programmer Reference
Manual 48-039
32-Bit System User Documentation Summary 50-003

For further information on +the contents of all Perkin-Elmer
32-bit manuals, see the 32-Bit Systems User Documentation
Summarye.

viii 48-050 FO0O ROO

CHAPTER 1
BASIC CONCEPTS

1.1 INTRODUCTION

Like all assemblers, Common Assembly Language/32 (CAL/32)
simplifies the direct control of the processor by providing the
programmer with a way of representing actual machine operations
in an weasily understood symbolic form. Assemblers translate
symbolic representations of machine instructions into binary form
to be executed by the processor. CAL/32 also includes such
features as relocation, segmentation, complex data definitions,
and expression analysis. CAL/32 <can run on any Perkin-Elmer
processor and produce machine code for any Perkin-Elmer
processor.

Because assemnbly language rrogramming is so close to actual
machine operations, it 1is essential that the assembly language
programmer have a good understanding of the system architecture.
This <chapter contains introductory architectural descriptions,
and the programmer should read the appropriate processor
reference manuals for more information.

1.2 THE PROCESSOR

All Perkin-Elmer processors are stored-program, multi-register,
two-address machines. The major components are the central
processing unit (CPU) and main memory.

1.2.1 Central Processing Unit (CPU)

To many, the CPU is something of a black box that performs
arithmetic and logical operations in a precise and controlled
way. To the assembly 1language programmer, the CPU 1is not
completely opagqQue. Three of its components—--local memory or
registers, the program status word ' (PSHW), and the 1/0
interface--are accessible through assembly language programming.

48-050 FOO0 ROO 1-1

1211 Local Memory (Registers)

L1l Perkin-Elmer processors have some amount of local memory that
can be used as temporary storage, accumulators, or indices.
There are three types of local memory:

o General purpose registers
o Single precision floating point registers

o Double precision floating point registers

A1l processors have at least one set of 16 general purpose
registers. In the 16-bit processors, each general purpose
register holds 16 binary digits; in the 32-bit processors, 32
binary digitse. General purpose registers can be used for integer
arithmetic, address arithmetic, logical operations, and character
operations.

Floating point registers are wused only for floating point
arithmetic operations. Processors with floating point registers
have either eight single rrecision registers, or eight single
precision registers and eight double precision registers. The
single precision registers hold 32 binary digits. The double
precision registers hold 64 binary digits.

1.2.2 Program Status Word (PSW)

The PSW defines the current state of the processor. It consists
of three major parts:

® Status descriptor
e Condition code

@ Location counter

Individual bits and bit fields within the status descriptor
portion of the PSW define the current state of interrupts and
various hardware features of +the processor. By setting or
resetting bits within the status descriptor, the programmer can
enable or disable such interrupts as I/0, arithmetic fault, and
machine malfunction. On those processors with multiple sets of
general purpose registers, a field 1in the status descriptor
defines which set is currently in use. Programmers writing user
level programs, as opposed to operating system or stand-alone
programs, canhnot directly access the status descriptor. In this
case, the operating system maintains control of interrupts and
registers.

1-2 48-050 FO0O0 ROO

The condition code provides a means of controlling program flow,
based on the results of instruction execution. As certain
instructions are executed, the value in the condition code
changes to indicate the nature of the result. For example, if an
operation produces a 2zero result, the condition code may be
changed to a 2zero value. With branch instructions, the
programmer can test the value in the condition code and branch or
not, ~depending on that value. Not all instruction executions
affect the condition «ccde. See the appropriate processor
reference manual for more details.

The location counter controls the order of instruction execution.
Normally, the processor executes instructions sequentially and
uses the location counter to keep track of where the instructions
are in main memory, then fetches the instruction from the memory
location specified by the address contained in the location

counter. It executes that instruction, increments the location
counter by the length of the instruction, and fetches the next
instructione. Branch instructions, when executed, change the

contents of the location counter and thereby affect the branch.

In 32-bit machines, the PSW contains 64 binary digits, the last
24 of which are reserved for the location counter. 1In 16-bit
machines, the PSW contains 32 bhits; the last 16 are reserved for
the location counter.

123 I/0 Interface

The execution of <certain machine instructions allowvws the
programmer tc control external devices and to cause the transfer
of data between external devices and main memory or registers.
The actual programming of I/0 operations is very much hardware
dependant, both in the processor and +the peripherals. I/0
instructions are restricted to operating systems and stand-alone
programs. User programs can communicate with I/0 devices through
facilities provided by the operating system.

1¢2«3«1 Main Memory

To the assembly language programmer, main memory appears as a

block of contiguous storage locations. The smallest unit of
memory the programmer can reference is the byte (eight bits).
The programmer can also reference halfwords (two Dbytes),

fullwords (four bytes), and double words (eight bytes). Each
byte in memory is referenced by a unique address. Memory
addresses start with zero and are incremented by one for each

succeeding byte. Memory addresses in the 32-bit processors
always consist of 24 bits. In the 16-bit processors, memory
addresses <consist of 16 bits. When accessing bytes, any memory
address within the limits of the particular hardware
configuration is considered valid. Halfwords must be referenced
with halfword addresses. Fullwords must be referenced with
addresses that are multirles of four. Double words must be

referenced with addresses that are multiples of eight.

48-050 FOO ROO 1-3

1«2.4 Software Relocation

Programs written in CAL/32 can be absolute or relocatable. An
absolute program is one whose origin (starting location) is
specified at assembly time as a fixed halfword 1location in
MEemory. Subsequent addresses within the progranm, whether
referencing instructions or data, are fixed at assembly time.
For execution, absolute rrograms always must be loaded into
memory at the location specified as the origin. This type of
programming is wuseful in stand-alone applications and some
operating system situations.

Relocatable programs can be loaded for execution into any
halfword location in memory. The origin of a relocatable program
is assumed to be relocatable zero. The CAL/32 output for this
typre of program specifies all addresses in the program as
relative displacements frcm the origine. At 1link time, the
linkage editor resolves all addresses within the program by
adding a relocation value (the actual memory address for the
start of the program) to the relative addresses supplied by
CAL/32. Relocation applies only to addresses within the progranm.
Relocatable programs can contain absolute data.

2.5 Hardware Relocation

Some Perkin-Elmer processors and their operating systems support
hardware relocation and segmentation. Programs prepared for
these systems start out as relocatable. A linkage editor
processes the relocatable output from CAL/32 +to link in any
needed subprograms. The output of this process is an absolute
program that, because of the relocating hardware, can be loaded
at any memory address that is a multiple of 256 for memory access
controller (MAC) machines, c¢r 2048 for memory address translator

(MAT) machines. At run time, the relocating hardware adds the
regquired relocation value +to all addresses supplied by the
programe. This relocating hardware also provides for progran

segmentation, where the program is divided into pieces that can
be loaded into noncontigucus blocks of memory.

CAL/32 supports segmentation by allowing the programmer to divide
the program into pure and impure segments. The pure segment of
a program consists of machine instructions and constant data and
cannot be modified at run time. (The operating system and the
hardware prevent modification.) The impure segment consists of

the data base which can be modified at run time. Progranms
prepared as pure and Jimpure segments can be shared (executed
concurrently) by several wusers. Only one copy of +the ©pure

segment resides in memory during execution while there is one
copy of the impure segment for each user.

1-4 4L8-050 FOO ROO

1.3 INSTRUCTION FORMATS (16-BIT)

The 16-bit processors have four types of machine instructions:
register-to-register, register and indexed storage, register and
immediate, and short forme. The following abbreviations
illustrate the instruction formats:

OP Overation

R1 First operand register
R2 Second operand register
N A u-bpit immediate value

X2 Second operand index register
A2 Second operand direct address
I2 Second operand immediate value

Most instructions require two operands, the first of which 1is
contained in a register. The result wusually replaces the
contents of the first operand register. Exceptions to these
rules are noted in section 1.5.

1.3.1 Register-to-Register (RR) Instructions

Register-to-register instructions cause operations to take place
between operands contained in registers. Register-to-register
instructions are 16 bits long, as shown in Figure 1-1.

Figure 1-1 RR Format (16-Bit)

The first eight bits o¢f the instruction define the operatione.
The next four bits identify the first operand register. The
final four bits 1identify the second operand register. In most
register-to-register instructions, the specified operation takes
place Dbetween the contents of the first operand register and the
contents of the second operand register. The result of the
operation rerlaces the contents of the first operand register.

48-050 FOO ROO 1-5

1.3.2 Register and Indexed Storage (RX) Instructions

Register and indexed storage instructions cause an operation to
take place between a first cperand, contained in a register, and
a second operand, located in main menmory. These instructions
require 32 bits, as shown in Figure 1-2.

Figure 1-2 RX Format (16-Bit)

The first eight bits define the operation. The next four bits
identify the first operand register, and the next four bits
identify an optional 1index register. The remaining 16 bits
specify an address in main memorye. The operation takes place
between the contents of the first operand register and the
contents of the memory location specified. The actual address of
the second operand is determined by adding the contents of the
index register to the contents of the address field. If the
index field of the instruction contains zero, no indexing takes
place. In most cases, the result of the operation replaces the
contents of the first operand register.

1.3.3 Register and Immediate (RI) Instructions
These instructions cause cperations to take place between the
contents of a register and the contents of an immediate field

imbedded in the instructicn itself. They are 32 bits 1long, and
are shown in Figure 1-3.

Figure 1-3 RI Format (16-Bit)

1-6 48-050 FO0O0 ROO

The first eight bits specify the operation. The next four bits
identify the first operand register. The next four bits identify
an optional index register. The final 16 bits are the immediate
value. The first operand is the contents of the first operand

register. The second operand is obtained by adding the contents
of the index register to the contents of the immediate field. If
the index field contains zeroc, no addition takes place. The

result of the operation usually replaces the contents of the
first operand register.

1.3.4 Short Form (SF) Instructions

These instructions are variations on the register and immediate
instructions in which the second operand is small enough to be
expressed in four bits. Short form instructions require 16 bits,
as shown in Figure 1-4,

Figure 1-4 SF Format (16-Bit)

The first eight bits indicate the operation. The next four bits
identify the first operand register. The next four bits contain
the immediate value. Operations take place between the contents
of the first operand register. The result of the operation
usually replaces the contents of the first operand register.

1.4 INSTRUCTION FORMATS (32-BIT)

The 32-bit processors recognize seven different types of
instructions. These are: register-to-register, three variations
on register and indexed storage, two variations on register and
immediate, and short form. The following abbreviations are used
to illustrate instruction fcrmats:

CP Cperation

R1 First operand register

R2 Second operand register

N A U4-bit immediate value

X2 Second operand single index register
D2 Second operand displacement

FX2 Second operand first index register
SX2 Second operand second index register
A2 Second operand direct address

I2 Second operand immediate value

48-050 FOO ROO 1-7

Most instructions require two operands, of which the first is the
contents of a register. The result of the operation usually
replaces the contents of the first operand register. Exceptions
¢0 these rules are noted in Section 1.5.

14.1 Register-to-Register (RR) Instructions

The format and function of these instructions are the same as for
the 16-bit processors. They cause operations to take place
between operands contained in registers, and they require 16
bits. These instructions are shown in Figure 1-5.

- o o . W - — e e W T S s v G N R S R w e W YW WS G WP G Gm A WS R R W T W G D GS W D D e e e e M

Figure 1-% RR Format (32-Bit)

The first eight bits specify the operation. The next four bits
identify the first operand register, and the last four bits
identify the second operand register. The processor performs the
indicated operation between the contents of the first operand
register and the contents of the second operand register. In
most RR instructions, the result replaces the contents of the
first cperand register.

1ele2 Register and Indexed Storage One (RX1) Instructions
These instructions define an operation between the contents of a

register and the contents of a main memory location. They
require 32 bits, as shown in Figure 1-6.

B ekl R R R N e L e e L L L L T T e . -

Figure 1-6 RX1 Format (32-Bit)

1-8 48-050 FOO ROO

The first eight bits define the operation. The next four bits
identify the first operand register, and the next four bits
identify the index register. The next two bits, bits 16 and 17,
must be zeros. The next 14 bits constitute a direct progranm
address in a range from 0 to 16383,

The address of the second operand is obtained by adding the
contents of the 1index register +to the contents of the 14-bit
address field. If the index register field contains zero, this
addition does not take ©rplace, and the contents of the address
field are used as the address. The operation takes place between
the contents of the first operand register and the <contents of
the specified memory location. The result usually replaces the
contents of the first operand register.

1.4.3 Register and Indexed Storage Two (RX2) Instructions

These instructions define operations between the contents of a
register and the contents of a location in main memory. RX2
instructions are like the RX1 instructions; they require 32 bits.
They differ from the RX1 instructions in the method of
calculating the second operand address. See Figure 1-7.

.. ?._--
| OP | R1 | X2 I 1 A2 |
.. ?_-_
Bits: -5

0 78 11 12 15 16 17 31

Figure 1-7 EX2 Format (32-Bit)

The first eight bits define the operation. The next <four bits
identify the first operand register, and the next four bits
identify the index register. The next bit, bit 16, must be a
one. The remaining 15 bits are treated as a signed integer in
two's complement notation. Bit 17 is the sign bit which, if one,
indicates a negative quantity, and if zero, indicates a positive
quantity.

The address of the second orerand is obtained in two steps.

1 The signed integer, with sign bit extended ¢to produce a
32-bit integer, 1is added +to the contents of the index
register.

2. This intermediate result 1is added +to the value in the

incremented location ccunter. The result is truncated to 24
bits.

4g-050 FOO ROO 1-9

If the index register field is zero, the first addition does not

take place. The 3indicated operation takes place between the
contents of the first operand register and the contents of the
specified memory 1locaticn. The result usually replaces the

contents of the first operand register.

1.4.4 Register and Indexed Storage Three (RX3) Instructions

These instructions are analogous to the RX instructions in the
16-bit processors. They call for operations between the contents
of a register and the contents of an indexed memory location and
require 48 bits. See Figure 1-8.

Figure 1-8 RX3 Format (32-Bit)

The first eight bits specify the operation. The next four bits
identify the first operand register, and the next four bits
identify the first index register. Bit 16 must be zero. Bit 17
must be one. Bits 18 and 19 must be zero. The next four bits
identify the second index register. The next 24 bits contain a
direct memory address.

The address of the second operand 1is obtained by adding the
contents of the first 1index register to the contents of the
second index register. This intermediate result is then added to
the contents of the direct address field, and the final result is
truncated to 24 bits.

If either of the index register fields contains zero, that 1level
of indexing does not take place. If both are zero, no indexing
takes place. In most RX3 instructions, the operation takes place
hbetween the contents of +the first operand register and the
contents of the specified memory location. The result usually
replaces the contents of the first operand register.

1.4.5 Register and Immediate One (RI1) Instructions

These instructions are similar to the RI instructions in +the
16-kit processors. They specify operations that take place
between the contents of a register and the contents of a field
that is part of the instruction. They require 32 bits, as shown
in Figure 1-9.

1=10 48~050 FOO ROO

Figure 1-9 RI1 Format (32-Bit)

The first eight bits indicate the operation. The next four bits
identify the first operand register, and the next four bits
identify an index register. The second operand 1is obtained by
extending the contents of +the immediate field to 32 bits, by
propagating the sign bit, and then adding this quantity to the
contents of the index register. If the index register field is
zero, no addition takes place, and the extended immediate value
is the second operand. The operation takes place between the
contents of the first operand register and the immediate value.
The result usually replaces the contents of the first operand
register.

1.4.6 Register and Immediate Two (RI2) Instructions

These instructions are similar to the RI1 instructions, -except
that the field contains a 32-bit value, and the instruction
itself regquires 48 bits. See Figure 1-10.

Figure 1-10 RI2 Format (32-Bit)

The first eight bits define the operation. The next four bits
identify the first oprerand register. The next four bits identify
the index register. The second operand is obtained by adding the
contents of the index register to the contents of the immediate
field. If the 1index register field is zero, no addition takes
place, and the immediate value 1is the second operand. The
operation takes place between the contents of the first operand
register and the immediate value. The result wusually replaces
the contents of the first orerand register.

48-050 FO00O ROO 1-11

1.4.7 Short Form (SF) Instructions

Short form instructions are similar to the SF instructions in the
16-bit processors. They specify operations between the contents
of a register and the contents of an immediate field, whose value
is small enough to be expressed in four bits. These instructions
require 16 bits, as shown in Figure 1-11.

- - - — - —— - D e - ——————— W W TR R W WD S D WS TR G G G e mm G S WA D - v e -

Figure 1-11 SF Format (32~-Bit)

The first eight bits define the operation. The next four bits
identify the first operand register. The next four bits are the
immediate field. The operation then takes place between this
value and the contents of the first operand register. The result
usually replaces the contents of the first operand register.

1.4.8 Register and Indexed Storage/Register and Indexed
Storage (RXRX) Instructions

Register andi indexed storage/register and indexed storage (RXRX)
instructions resemble a rair of adjacent RX instructions, but
represent one cohesive string-processing instruction. An RXRX
instruction is comprised of two instruction members. FEach member
can be any one of the RX1, RX2, or RX3 machine formats,
independent of the other member's format. For example, the first
instruction member might be of the RX1 format, and the second
instruction member might be of the RX3 format, yielding a 10-byte
RXRX instruction. Thus, an RXRX instruction length might range
from 8, 10, or 12 bytes.

The first eight bits of the first instruction member, OP, specify
the operation class. The particular RXRX operation is specified
by the contents of the Operation-Modifier (OP-MOD) field in the
first eight bits of the second instruction member. OP-MOD is
actually generated by the assembler according to the specific
RXRX operation mnemonic and the R1/L1 or R2/L2 fields programmed
by the user in source code. Refer to Figure 1-12.

1-12 48-050 FO0O ROO

FIRST MEMBER SECOND MEMBER

4 TO 6 BYTES 4 TO 6 BYTES
0 7.8 112 s 31/47,0 78 112 31747
T

OPN1 OP-MOD OPN2

o R1
/ x2 Jo|o [}
. ‘L

X2 |1 D2

224

i [V] R2

12-16 16 17 310 1 23 ? 12-15 16-19 20-23 24
RX1/RX2 SAMPLE MEMBER RX3 SAMPLE MEMBER

8. 10, 12 BYTES

Figure 1-12 RYRX Format (32-Bit)

The next four bits in the first instruction member, R1/L1,
identify either R1, the string's length-specifying register, or
L1, +the string's actual 1length. The wuser specifies to the
assembler whether the value in the R1/L1 field is a register or
an immediate value.

The RK1/L1 field is assumed to be a register, unless an equal sign
(=) precedes the L1 source expression. In machine format, the
IL1 field is set when the =11 source field specifies an immediate
value as 1length. The IL2 field in machine format is reset when
the R1 field is used to specify a register +that contains the
string's 1length. When the length is an immediate value, its
value may range from 0 through 15. When the 1length is in a
register, the register may contain a length that ranges from O
through 224-1. A length of 0 indicates a null string.

The remaining bits, bits 12 through 31 or 12 through 47, of the
first instruction member, OPN1, contain the address/location of
thé lowest addressable byte of a string or its storage location.
The field, OPN1, is then similar to the indexed address portion
of an RX1, RX2, or RX3 machine format. See OPN2 below.

The first eight bits of the second instruction member, OP-MOD,
are an operation-modifier field containing OPN1's 1length
indicator, IL1, in bit 0; OFN2'"s length indicator, IL2, in bit 1;
a special circumstances bit, C, in bit 2; and in bits 3 through
7, FUNC, the specific function <code of the general operation
class, OP. As described above, IL1 and IL2 are determined by the
assembler. The special circumstances bit, C, and function code,
FUNC, are determined by the assembler from the
operation-mnemonic. The C bit is used by some RXRX instructions
to indicate that the result of the operation will be forced
positive.

The next four bits, bits 8 through 11, of the second instruction
memker, R2/L2, identify either R2, this string's
length-specifying register; or L2, the string's actual 1length.
Again, the user specifies 1in source format to the assembler
whether the value in the R2/L2 field 1is a register or an
immediate valve. The R2/L2 source format field is assumed to be
a register, unless an equal sign (=) precedes the L2 source
expression. In machine format, IL2 is set when the =L2 field is
used to specify an immediate value. IL2 is reset when R2 is used
to specify a register. When the length is an immediate value,
expressed as =L2, 4its value may range from 0 through 15. When
the length is in a register, its value may range from 0O through
224-1. A zero length indicates a null string.

The remaining bits, bits 12 through 31 or 12 through 47, of the
second instruction member, OPN2, contain the address/location of
the lowest addressable byte of a second member's string. Both
OPN1 and OPN2 are similar in format +to the indexed address
portion of an RX1, RX2, or EX3 machine format. The particular
format of either OPN1 or OPN2 is selectively generated by the
assembler, inderendently according to the user source program.

In RX1 machine format, bits 16 and 17 are zero. Bits 12 through
15 identify the index register, X2, the contents of which are
added to the absolute 14-bit value, D, to formulate the string's
address.

In RX2 machine format, bit 16 1is set. Bits 12 through 15
identify the index register, X2, the contents of which are added
to the 15-bit displacement value, D2, to formulate the string's
address.

In RX¥3 machine format, bits 16 through 19 are 0100 binary. Bits
12 through 15 identify the first index register, FX2; and bits 20
through 23 identify the second index register, SX2. The contents
of both are added to the 24-bit address value, A, to formulate
the string's address.

NOTES

1. HWhen the first member's OPN1
represents the string's address in
RX2 format, the displacement value,
D2, is relative to the end address of
the first instruction member, not to
the end of the full RXRX instruction.

2. When the second member's OPN2
represents the string's address in
RX2 format, the displacement value is
relative to the end of the second
instruction member, which is also the
end of the full RXRX instruction.

1-14 48-050 FO0O ROO

1.5 VARIATIONS ON INSTRUCTION FORMATS

Not all instructions follow the above instruction formats. In
some instructions the fields are redefined. Some instructions do
not require two operands. Some instructions do not change the
first operand, some instructions change the second operand, and
some instructions change neither operand.

1.5,1 Conditional Branch Instructions

Conditional branch instructions wuse formats that resemble
register-to-register, register and indexed storage, and short
form instructions. However, the interpretation of the fields
differs from the standard, as does the actual operation. 1In all
conditional branch instructions, the first operand identification
is interpreted as a mask that is ANDed with the condition <code.
If the result of this test indicates that the branch is to be
taken, then the second operand address is the location to which
the processor must go to cbtain the next instruction.

In the RR instructions, the second operand register contains the

branch address. In +the RX instructions, the branch address is
obtained by one of the standard methods £for obtaining second
operand addresses. In the SF instructions, the immediate field

is interpreted as a halfword displacement, either forward or
backward, from the current location counter. The branch address
is obtained by adding or subtracting this quantity from the
current location counter.

1.5.2 Branch and Link Instructions

These instructions facilitate branching to and returning fronm
subroutines. They wuse formats similar to RR and RX where the
first operand register is the link register. Before the branch
is taken, the address of the next memory location following the
branch instruction is placed in this register. In the RR
instructions, the branch location is the contents of the second
operand register. In the RX instruction, the branch address is
obtained by one of the usual methods for obtaining second operand
addressese.

1.5.3 Other Variations

Some instructions change the second operand rather than the
first. Most notable among these are the store instructions and
the instructions that add the contents of a register to the
contents of a memory location.

Test instructions and compare instructions change neither
operand. The indicated operation takes place between the two
operands, but neither is changed. The result of the operation is
indicated by the condition code.

48-050 F0O0 ROO 1

]
-
(63}

Certain other instructions, such as load PSW and simulate
interrupt, do not always require a first operand. 1In addition,
all of the I/0 instructions do not follow the general rules. For
detailed information on how these and other anomalous

instructions work, refer to the appropriate processor reference
marnuale.

1-1€ 48-050 FOO ROO

CHAPTER 2
SYMBOLIC REPRESENTATION

2.1 INTRODUCTION

When writing assembly language programs, the programmer uses
meaningful symbols to represent the binary language interpreted
by both Common Assembly Language/32 (CAL/32) and the processor.
Symbols consist of printable ASCII characters, either singly or
in combination. CAL/32 reccgnizes the complete set of printable
ASCII <characters., However, depending on the context, there can
be restrictions on the use of the complete set. See Chapter 3.

2.2 SYMBOLS AND EXPRESSIONS

Symbols represent addresses, register identifiers, absolute
values, operation identifiers, and constants. Examples of
symbols are:

A
Loop
BXLE
PART1
REG5
16

Symbols can be combined to form expressions. The arithmetic
operators: plus, minus, multiply, divide are represented in
CAL/32 by the symbols: +, -, *, /. They combine with other
symbols to form arithmetic expressions. Fxamples of these
arithmetic expressions are:

A+B
LAST-FIRST*TWO
=16

Blanks and parentheses are not permitted within an expression.
For example, the sequence:

A -B * (C + D)

48-050 FOO ROO 2-1

would not be interpreted by CAL/32 as an expression. Depending
on the context, CAL/32 might misinterpret the symbols, generate
incorrect code, and fail to detect the error. Where CAL/32 can
recognize the error, it generates an error message.

The evaluation of expressions takes place from left to right with
no rules of precedence. Thus, CAL/32 evaluates the expression:

LAST-FIRST*TWO

by subtracting the value of First from the value of Last, and
multiplying this result by the value of Two.

Logical expressions consist of symbols Jjoined by the 1logical
operators AND and inclusive OR. They are represented in CAL/32
by the symbols & and !. Examples of logical expressions are:

X&6Y!A
CHARENULL

Logical expressions are evaluated from 1left +to right with no
rules of precedence. Blanks and parentheses are not permitted in
logical expressionse.

Mixed expressions are formed by combining logical and arithmetic
operators. For example:

A-B!TWO

CAL/32 evaluates this expression by first subtracting the value
of B from +the value of A, and then ORing the result with the
value of Twoe. Mixed expressions are like arithmetic and 1logical
expressions in that blanks and parentheses are not allowed, and
the method of evaluation is from left to right with no rules of
precedence.

Symbols represent either absolute or relocatable quantities. At
assembly time, relocatable quantities have a value equal to their
displacement from some fixed point within the program, usually
but not necessarily, the origin or starting location. At 1load
time, +the relocatable gquantity is replaced by an absolute
gquantity whose value is calculated by adding the relocation value
to the relocatable quantity. Absolute guantities are Kknown to
the assembler at assembly time and are not changed at load time.

The operations: multiply, divide, AND, and COR are permitted only

between absolute data. The plus and minus operators can be used
on mixed data. The results of such operations are:

2-2 48-050 FOO ROO

CPERATION RESULT

Absolute + Absolute Absolute
Absolute - Absolute Absclute
Relocatable + Relocatable Invalid
Relocatable - Relocatable Absolute
Relocatable + Absolute Relocatable
Relocatable - Absolute Relocatable
Absolute + Relocatable Relocatable
Absolute - Relocatable Invalid

2.3 SYMBOLS AND THEIR VALUES

By definition, certain symbols used in CAL/32 programming have
implicit wvalues; that is, the value of the symbol is determined
by the way in which it is expressed and used. Examples of this
kind of symbol are the decimal, hexadecimal, and character
symbols used as ovrerands in instructions. There are also glosbal
symbols in CAL/32. These symbols have preset values that cannot
be redefined by the programmer. The programmer also can define
the value of a symbol explicitly by using the equate statement.
This section covers the use of implicit and global symbols.
Chapter 3 covers the explicit use and definition of symbols.

2.3.1 Implicit Symbols

When used in the correct context, a string of decimal digits is
automatically assigned the actual value of the number represented
by the string. For example, the expression:

A+14

has a value that the assembler determines by adding the gquantity
14 to the value A, which must be defined by some other means.

CAL/32 also recognizes the implicit value of special character
strings the programmer uses to represent decimal, hexadecimal,
and character values. These strings are made up of a single
letter that indicates the particular type, followed by a group of
characters enclosed in arpostrophes that represents the value.
The code characters are:

CODE CHARACTER TYPE

Halfword decimal
Fullword decimal
Halfword hexadecimal
Fullword hexadecimal
Character

[Rl e

48-050 FOO ROO 2-3

Decimal numbers consist of an optional sign (+ or -) followed by
decimal digits representing the actual value. Commas are not
allowed in the representation. Halfword decimal values can be
represented by from 1 tc 5 decimal digits, with a range from
-32,768 to +32,767. Fullword values can be represented by from
1 to 10 decimal digits, with a range from -2,147,483,648 to
+2,147,483,647. CAL/32 converts these decimal numbers into two's
complement binary integers. Examples of decimal symbols, with
their internal representation expressed in hexadecimal notation
are:

SYMBCL VALUE
H*125" 007D
H*32765" TFFD
H'+32765" 7FFD
H*'-15" FFF1
F*123123" 0001 EOF3
F'1° 0000 0001

Fr-2" FFFF FFFE

Hexadecimal symbols consist of the X or Y type code followed by
a string of hexadecimal digits enclosed in apostrophes. Halfword
symbols can use from one to four digits. Fullword symbols can
use from one t¢ eight digits. Leading zeros are not required,
and the value is right Justified. Examples of hexadecimal
symbols are:

SYMBOL VALUE
X'r! 000F
X*'DLE" ODUE
Y*030" 0000 0030
Y'A' 0000 OOOA
Y‘o* 0000 0000

Character symbols consist of from one to four ASCII <characters
enclosed in apostrophes and preceded by the +type code C,
Characters are right Jjustified, with zero fill. Depending on the
context, either a halfword or a fullword results. Examples of
character symbols are:

SYMBCL VALUE VALUE
(HALFWORD) (FULLWORE)
cr* 002R 0000 002A
cr12' 3132 00090 3132
C*'AB!* 4142 co00 4142
c'123u" 3334 3132 3334

2-4 48-050 FOO ROD

In the last example, where a halfword value was dgenerated, only

the rightmost two characters were used. Where the context
dictates a halfword, and a longer string is used, a truncation
error results. One final type of implicit assignment occurs in

the use of symbols as statement identifiers. Where a symbol is
used in the name field of a statement, it is automatically
assigned a value equal to the value of the <current 1location
counter. This tyre of assignment is covered in Chapter 4.

2.3.2 Global Symbols

Six symbols recognized by CAL/32 have predetermined values. They
are:

ADC
LAILC
PURETOP
IMPTOP
ABSTCP
*

The use of these symbols is somewhat restricted, and they cannot
be redefined by the programmer.

In programs written for 32-bit processors, the address length
constant (ADC) always has a value of U4, the length of an address
constant in bytes. (In 32-bit processors, addresses must be
contained in fullwords, even though the actual address is only 24
bits in length.) In programs for which CAL/32 is to generate
16-bit code, ADC has the value ¢of 2. °~ In programs written for
32-bit processors, the 1log (base 2) of the address length
constant (LADC) always has a value of 2. In programs for 16-bit
processors, LADC always has a value of 1. Both of these symbols,
ADC and LADC, are used most frequently in <common mode
programming. See Chapter 4.

The symbols PURETOP, IMPTOP, and ABSTOP have values equal to:

PURETOP The next available location in the pure segment
IMPTOP The next available location in the impure segment
ABSTOP The next available location in the absolute segment

Because these values change during assembly, the symbols must be
used carefullye. They can be used as second operand identifiers
in machine instructions and as cperands in assembler instructions
where they are treated as address values. They cannot be used in
assembler instructions that control the location counter.

48-050 F0O ROO 2-5

The asterisk symbol (*), used as an operand rather than as an
operator in an expression, always has a value equal to the value
of the <current 1location counter. Throughout the assembly
process, CAL/32 maintains a location counter analogous to the
hardware location counter contained in the <central processing
unit (CPU). Depending on the organization of the program, this
location counter can contain any one of several values. For
32-bit programs the 1location <counter may point to the current
location in the absolute segment, the pure segment, or the impure
segment. For 16-bit assemblies, the location counter may point
to the current absolute 1location or the current relocatable
location.

2-6 ' u8-050 FOO kKOO

CHAPTER 3
THE SOURCE PROGRAM

3.1 INTRODUCTION

The source program consists of a set of assembly language
statements that specify the operations to be performed by the
processor, define the constants and storage areas used by the
program, and control the assembly process to produce the desired
output. Source statements for Common Assembly Language/32
(CAL/32) are of two types: comment statements and instruction
statements. Instruction statements are further divided into
machine instructions and assembler instructions. FEach statement
consists of an 80-character record, in which symbols and
expressions identify the statement, and where necessary, indicate
the operation and locate the operands.

3.2 COMMENT STATEMENTS

Comment statements can appear anywhere in +the source progranm.
They allow the programmer to include easy-to-read documentation
in the source program listing. They produce no object code. The
assembler does not process comment statements except to check for
proper sequencing and scan for invalid characters.

Comment statements must always start with an asterisk (*) in the
first character position. Positions 2 through 71 can contain any
printable ASCII character, including 1lowercase alphabetic
characters. Blanks are ccnsidered to be "printable" <characters.
If a nonprintable character turns up in a comment statement,
CAL/32 replaces it with a pocund sign (#). Position 72 of a
comment statement must contain a blank character. Positions 73
through 80 can, at the programmer's option, be used for segquence
identification. The sequence field can contain any printable
ASCII character other than Jlowercase alphabetic <characters.
Where <sequence checking 1is requested, each successive sequence
jidentifier must be greater, in the ASCII collating sequence, than
the previous identifier. Examples of comments are:

POSITION

1 72 73
* THIS IS A COMMENT

* IT MAY APPEAR ANYWHERE IN THE PROGRAM

* SUBROUTINE GETCHAR GET10000
*MOVES A CHARACTER FRCM THE INPUT BUFFER GET10010
*AND RETURNS IT IN GENERAL REGISTER THREE GET 10020

48-050 ¥F00 ROO 3-1

3.3 INSTRUCTION STATEMENIS

Instruction statements can be written in fixed format or in free
format. For either format, there are five distinct fields in
each statement. In fixed format, these fields are:

CHARACTER POSITIONS DEFINITION
1 through 8 Name field
10 through 14 Operation field
16 through n Operand field
n+2 through 71 Comment field
73 through 80 Sequence field

Positions 9, 15, and 72 always must contain blank characters.
The operand field and the comment field are variable in length,
and the first blank character after position 16 serves as a
delimiter Dbetween the o¢perand field and the comment field.
Because of the way the output listing is tabulated, +the comment
field cannot contain mcre than 37 characters. If more than 37
characters appear, only the first 37 are printed on the output
listing.

CAL/32 does not require source statements to be written in fixed
format. It accepts free format source, in which blank characters
serve as delimiters. If, for example, the name field is not
used, a blank character in the first position indicates that the
next nonblank <character 1is the start of the operation field.
Similarly, if the operaticn field requires fewer than five
characters, the first blank character following the operation
code indicates that the next nonblank character is the first
character cf the operand field. As 1in the fixed format
statement, the first blank character following the operand field
indicates the end of that field and the beginning of the comment
field. There are three restrictions on the use of free format:

1 Comment length is limited to 37 characters, including blanks.
2. Position 72 must contain a blank character.

3., The sequence field must start in position 73.

The last restriction is because CAL/32 cannot distinquish between
a blank character as part of a comment and a blank character
intended to separate the comment from the sequence field.

If there are no nonblank characters in positions 1 through 20,
CAL/32 assumes that the statement is a comment and lists it as

such, with a warning note. If more than 15 blanks separate the
name field from the oreration field, CAL/32 assumes that the

3-2 48-050 FOO ROO

operation field is not present. Similarly, if more than 15
blanks separate the operation field from the operand field,
CAL/32 assumes that the operand field is not present. In both
cases, CAL/32 generates an error message.

When writing CAL/32 instruction statements, the programmer uses
symbolic representation in the name field, the operation field,

and the operand field. The following paragraphs describe the use
of symhols and expressions in these fields.

3.4 NAME FIELD

Where a symbol appears in the name field, it represents the value
of the current location counter for that particular instruction.
This allows the programmer to refer to specific locations
symbolically, without having to know the actual value of the

location counter. The following five restrictions apply to the
formation of names: :

1. The first character of a name must be an uppercase or
lowercase alphabetic character or one of the special
characters:

- at sign (3)
- dot (-)

- dollar sign (S)

- underscore (_)

NOTE
Lowercase letters are internally

converted to uppercase except 1in string
constants.

2 The remaining characters can be made up of any combination of
valid first characters, plus the numeric characters 0 through
9.

3. The name must consist of from one to eight characters.

4. The name must start in the first character position of the
source record.

5. Imbedded blanks are nct permitted.

48-050 FOO ROO 3-3

Examples of valid names are:

LABEL
LOOP1
«SIN
aGOTO
SSGETS

Examples of incorrect names are:

1L00P First character is numeric
LOOPCOUNTER More than eight characters
AB?C Questicn mark is illegal

As a general rule, a given symbolic string can appear only once
in the program where it defines a location. That is, the same
symbol may not appear in the name field of more than one
instruction. The exception to this is the equate instruction.
This is covered in the section on assembler instructions.

3.5 OPERATION FIELD

The use of symbols in the oreration field is severely restricted.
Only previously defined symbols can appear in this field. The
symbols that appear in the operation field are called mnemonics;
they represent operationns to be performed by the processor at run
time, or operations to be performed by the assembler. CAL/32
recognizes mnemonics that represent all machine operations for
all Perkin-Elmer processors. It also recognizes a large set of
assembler mnemonics that allows the programmer to control the
asserbly process.

Mnemonics can consist of no more than five characters. They are
formed 1in the same way as names and use the same character sete
CAL/32 permits wusers to define mnemonicse. This process is
described in the section that deals with the equate instruction.
Specific mnemonics that define machine operations and assembler
operations are described later in this chapter. Examples of
operation mnemonics are:

MNEMONIC TYPE MEANING
AR Machine Add register
S Machine Subtract
CLI Machine Compare logical immediate
ORG Assembler Set location counter

3-4 48-050 FOO ROO

3.6 OPERAND FIELD

CAL/32 permits the use of both symbols and expressions in the
operand field of instructions. Symbols used in the operand field
can be implicitly defined or can be explicitly defined. The
rules for forming operands for assembler instructions vary from
instruction to instruction, and each is described individually
later in this chapter.

Most machine instructions require two operands while some require
only one. Where two operands are required, the first is
separated from the second by a comma. Following are the general
rules for forming operands for machine instructions.

3.6.1 Register-to-Register Instructions

Both the first and the second operand must be represented by
symbols or exbressions with values between 0 and 15 inclusive.
If the value is qreater than 15 or less than 0, the assembler
sets it to O, and generates an error message. For example, if
the symbols 1 and 2 appear in the operand field of the add
register instruction:

AR 1,2

CAL/32 generates the machine code to add the contents of register
2 to the contents of register 1 and store the result in register
T The use of 1 and 2 here is an example of how decimal numbers
have an implicit value when used in the proper context. Another
example:

AR X'1°,X'2°

shows how hexadecimal symbols can be used as register
identifiers. This is an exception to the previously stated rule
that hexadecimal symbols generate halfword or fullword values.
Where wused as register identifiers, decimal, hexadecimal, and
character symbols cause the assembler to generate 4-bpit values.

Expressions can be used in identifying registers, as in:

AR A+3,C*A*~-X'40"

where CAL/32 evaluates the expressions and uses the results as
the register identifierse. This 4is not a universally useful
feature of the language, although it has some applications in
commen mode programming.

48-050 FOO ROO 3-5

A more useful way to identify registers is to wuse explicitly
defined symbols. Suppose the symbols SUM and INC are defined to
have values of 1 and 2, respectively. Then the instruction:

AR SUM,INC
has the same effect as:
AR 1,2

yet the notation is more meaningful because registers 1 and 2 are
identified as the SUM and INC registers.

3.6.2 Register and Indexed Storage Instructions

If the first operand is required, it must be a valid register
identifier as described for register-to-register instructions.
The second operand, separated from the first by a comma, can be:

® a symbol,
® an expression, or

® =a symbol or an expression followed by an index register
identifier enclosed in parentheses.

Where indexing is used, identification of the registers follows
the same rules as those for specifying first or second operand
registers. In double-indexed instructions, the first and second
index identifiers are serarated by a comma. An example of how
register and indexed storage instructions are written is:

S 1,A

where the first operand is the contents of general register 1,
and the second operand is the value at location A in memory.
Another example:

S SUM,TABLE(PTR)

shows how single indexing is expressed. In this case, the first
operand is the value contained in the register identified by the
symbol SUM, and the second operand 1is the value at memory
location table plus the contents of +the index register PIR.

3-6 48-050 FOO ROO

Another example:

S SUM,LAST-FIRST(BASE,PTR)

shows the use of double indexing along with the use of an
expression in the operand field. A final example:

S SUM,0(ALLCR)

illustrates where an address of a second operand is contained in
the 1index register. Here, there must be a symbol in the address
field even if it is equal to zero.
3.6.3 Register and Immediate Instructions
The first operand must be specified by a valid register
identifier. The second orerand can be:
® a symbol,
® an expression, or
e a symbol or an expression followed by an index register

identifier enclosed in parentheses.
Example:

CLI STRNG,C*ABCD"*

causes the character string ABCD, represented internally as the
fullword character value 4142 4344, to be compared with the

contents of the register identified by +the symbol STRNG. In
another example:

CLI ADDR,LAST-FIRST(PTR)

the expression LAST-FIRST is evaluated by CAL/32 at assembly

time. At run time this value is added to the contents of the
index register before the comparison takes ©place. In another
example:

CLT ADDR,Y*2000°* (PTR)

the fullword, hexadecimal quantity 0000 2000, 1is added to the
contents of the index register. The result is then compared with
the contents of the register identified by the symbol ADDR.

48-050 F0OO ROO 3-7

3.6.u
(RXRX) Instructions

The RXRX instructions
of which is separated
operand field can be:

@ a valid register identifier,
defined absolute value in the

e an egqual sign (=) preceding a

defined absolute value in the

The second source operand field,
comma, can be:

@ a symbol or an expression

® a symbol
register

or an expression,

® a\symbol
index
rair enclosed in parentheses

or an expression,
register

The third source operand field,
comma, can be:

® a valid register identifier,
defined absolute value in the

e an equal sign (=) preceding a
defined absolute value in the

The fourth source operand field,
comma, can be:

¢ a symbol cor an expression

® a symbol or an expression,
register

e a symbol or an expression,
index register
pair enclosed in parentheses

Register and Indexed Storage/Register and Indexed Storage

have four basic source operand fields, each
from the other by a commae. The first
symbol, or expression with a
range 0 to 15
symbol or an expression with a
range 0 to 15
separated from the first by a
optionally followed by an index
identifier enclcsed in parentheses
optionally followed by a pair of
identifiers, separated by a comma, with the
separated from the second by a
symbol, or expression with a
range 0 to 15
symbol or an expression with a
range 0 to 15
separated from the third by a
optionally followed by an index
identifier enclcsed in parentheses
optionally followed by a pair of
identifiers, separated by a comma, with the

48-050 FOO ROO

Examples of how these instructions are written are:
MOVE =LENGTH2,HERE,=LENGTH1, THERE

which moves the string of length, LENGTH1, at location THERE to
the location HERE up to the number of bytes indicated by LENGTH2.
If LENGTH1 is less than LENGTH2, this instruction pads the extra
bytes with the right-justified <character in general register
Zero.

In the preceding example, the first operand field 1is the
immediate value of symbol LENGTH2. The equal sign that specifies
LENGTH2's value is an 1immediate value and not a register
identifier. The second operand field is the storage address at
location HERE. The third operand field is the immediate value of
symbol LENGTH1 (its immediacy is again indicated by the equal
sign). The fourth operand field is the string at location THERE.

Another example is:
MOVEP R7,PRINTOUT(LINE,CCL2),R8,MESSAGE(CLASSX,ERRINDX)

which moves +the string of the 1length specified in general
register R8, found at the memory location computed by summing the
address value of MESSAGE with the contents of both index
registers CLASSX and ERRINDX. The string is moved to a storage
location whose address value is computed by summing the address
value of PRINTOUT plus the contents of both index registers, LINE
and CCL2. The number of bytes to be filled 4is the 1length
specified in general register R7. If the length in R8 is less
than that in R7, the MOVEP instruction, by definition, pads the
extra bytes with the default character, a space.

In the preceding example, the first operand field is the register
identifier, R7; the second operand field is the storage address
at location PRINTCUT, as double indexed by the register
identifiers, LINE and COL2; the +third operand field is the
register identifier, R8; and the fourth operand field is the
string's location MESSAGE, as double indexed by the register
identifiers, CLASSX and ERRINDX.

Another example is:
PMV =8 ,DECSUMS(SALESIC),5,TCTALS(ORDERX)

which packs and moves the unpacked decimal data digit string
whose length is indicated in general register 5. Note that the
5 means a general register because no equal sign precedes it.
The wunpacked decimal data digit string is found at the memory
location computed by summing the address value of TOTALS with the

48-050 FOO ROO ~ 3-9

contents of the single index register identifier ORDERX. For
details on how this conversion takes place, refer to the
instruction definitions in the appropriate processor manuals.
Generally, the unpacked decimal data 1is converted to packed
decimal data up to the number of digits that may occupy the
reserved byte 1length, 4indicated by the =8 expression. In this
case, 8 bytes are reserved, providing storage for 15 decimal
packed digits and a position for the sign-indicator. The PHMV
instruction, by definition, has various safeguards for illegal
digit cases and overflow, and provides leading zeros as needed,
when the number of positicns available for either the unpacked
digits and the packed digits is of unegual length. The memory
location to which the converted digit data is moved 1is computed
by summing the address value of DECSUMS with the contents of the
single index register SALESIT.

In the preceding example, the first operand field 1is the
immediate value =8. Note that the equal sign specifies that 8 is
an immediate value and not a register identifier. The second
operand field is the address location DECSUMS as singly indexed
by the register identifier, SALESID. The third operand field is
the register identifier 5; and the fourth operand field 1is the
address location TOTALS, as indexed by the single index register
identifier ORDERX.

3.7 MACHINE INSTRUCTIONS

Table 3-1 lists the mnemonics for all machine instructions.
Where there is no entry in the format column, that instruction is
not available for that particular line of processors.

TABLE 3-1 SUMMARY OF MACHINE INSTRUCTIONS
AND MNEMONICS

I | 32-BIT | 16-BIT |

|

| INSTRUCTION | MNEMONIC | FORMAT | FORMAT |
| iR el e e e e~ S e S r] I
| Add | R | RX | RX* |
| Add DP Floating Point | AD | RX | RX |
j Add DP Floating Point | | | |
| Register { ALDR | RR | RR |
| Add to Bottom of list | ABL | RX | RX]
Add to Bottom of list			
Flagged	ABLF		RX**
I			
Add with Carry Halfwcrd	ACH		RX
Add with Carry Halfwcrd			
Register	ACHR		RR
Acknowledge Interrupt	ACK		RX
Acknowledge Interrupt			
Register	ACKR		RR
Add Floating Point	AE	RX	RX

3-10 48-050 FOO ROO

TABLE 3-1 SUMMARY OF MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

- D D TP R = G T G e W TR G G G P e S GS e OB G5 SR N GD GP WD AP D P G WD L S P T MR G G G R E e e = e -

| | | 32-BIT | 16-BIT |

| INSTRUCTION | MNEMONIC | FORMAT | FORMAT |
'======:===========================:===========:=========:'
| Add Floating Point I | | |
| Register | AER | RR | RR |
| Add Halfword | AH | RX | RX I
{ Add Halfword Immediate | AHI | RI1 | RI |
Rdd Halfword to Memory	AHM	RX	RX
Add Halfword Register	AHR	RR*	RR
Acknowledge Interrupt	AI		RX*
Add Immediate	AI	RI2	RI* i
Acknowledge Interrupt			
Register	AIR		RR
Add Immediate Short	AIS	SF	SF
Autoload	AL	RX	RX
			!
Add to Memory	AM	RX	RX
Add Register	AR	RR	RR
Add to;Top of List	ATL	RX	RX
Add to’ Top of List			(
Flagged -	ATLF		RX
Branch and Link	BAL	KX	RX
Branch and Link			
Register	BALR	RR	ERR
Branch to Control			
Storage	BIDCS	RX	RI
Branch on Equal Status			
High Speed	BESHS		RX**
		I	
Branch on False Condition			
Backward Short	BFBS	SF	SF i
Branch on False Condition	BFC	RX	RX
Branch on False Condition			
Register	BECR	RR	RR
Branch on False Condition			
Forward Short	BEFFS	SF	SF
Branch on Not Equal			
Status High Speed	BNSHS		RX**
{ Branch on True Conditicn			
Backward Short	BTBS	SF	SF
Branch on True Conditicn	BIC	RX	RX i
Branch on True Condition]		
Register	BTCR	RR	RR
Branch on True Conditicn			
Forward Short	BTFS	SF	SF
Branch on Index High	BXH	RX	RX]
Branch on Index Low or]			
Equal	BXLE	RX	RX]

48-050 FOO ROO 3-11

A — — — — — — i e . S— — — —— — St | — St it i it i, S o S i — — — — — ——— —— — —— —— — —— — — — ——— ——

TABLE 3-1

AND MNEMONICS (Continued)

Compare
Complement Bit
Compare DP Floating
Point
Compare [P Floating
Point Register
Compare Floating
Compare Floating
Register
Compare Halfword
Compare Halfword
Compare Halfword
Change to Halfword Value
Compare Immediate

Point
Point

Immediate
Register

Compare
Compare
Compare
Compare

Logical
logical
Logical
Logical

Byte
Halfword

Halfword .

Immediate
Compare Logical Halfword

Register
Compare Logical
Compare Logical Register
Compare Register

Cyclic Redundancy Check
MYodule 1?2

Cyclic Redundancy Check
Modulo 16

Decrement Counter High
Speed

Divide

Divide DP Floating Pcint
Divide DP Floating Point
Register

Point
Point

Divide Floating
Divide Floating
Register

Divide Halfword
Divide Halfword
Divide Register

Register

Immediate

CLR
CE

CER
CH
CHI
CHR
CHVR
CI
CL
CLB
CLH

CLHI
CLHR
CLI
CLR
CR

CRC12

CRC16
DCHS
DD
DLCR
DE
DER
DH

DHR
DR

32-BIT
FORMAT

RR
RX

RR
RX
RIN
RR*
RR
RI2
RX
RX
RX

‘RI1

RR*
RIN
RR
RR

RX
RX
RX
RX
RR
RX
RR
RX

RR*
RR

SUMMARY OF MACHINE INSTRUCTIONS

- . O W e e v v G S e G G W S W G W G W e G Gm G G GR D D WD Cm G R G R W G W SR R e e e G e e am e e

| 16-BIT |
| FORMAT |

RR
RX

RR
RX
RI
RR

RI*
RX*
RX
RX

RI

RR*
RR*

Rx**

Rx**

RX**
RX*
RX

RR
RX

RR
RX
RR

I
I
I
I
I
I
I
I
I
!
I
|
I
I
|
|
I
I
I
I
|
RR |
I
I
|
I
I
I
[
|
I
|
|
|
!
|
I
I
I
I
I
|
RR* |

!
I
I
I
|
I
I
I
I
I
I
|
I
I
I
|
I
|
|
I
I
|
| RI*
I
|
!
|
|
I
I
|
|
|
|
|
I
I
|
|
I
I
I
!

48-050 FO0O ROO

TABLE 3-1 SUMMARY OF MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

- - . - - D G W SN Em S . S WD T G T e Mm TS W N e e T R e W e T e S G e e W Gn S e G e

| | 32-BIT | 16-BIT

|
| INSTRUCTION | MNEMONIC | FORMAT | FORMAT
I::::::::::::::::::2::::::==::==‘=======::::::::::::::::::::
| Enter Control Storage i ECS | RINM | SF
| Exchange Program Status |] |
| Register | EPSR | RR | RR
| Exchange Byte Register | EXBR | RR] RR
| Exchange Halfword Register | EXHR | RR |
| Float DP Floating Point | | |
| Register | FLDR | RR | RR
| Float Register | FLR | RR | RR
| Fix DP Floating Point | | |
| Register | FXDR | RR | RR
| Fix Register | FXR | RR | RR
| Generate Inter-Process | | |
| Interrupt | GIPI | | RR*~*
| Load | L | RX | RX*
| Load Address | LA | RX | RI*
| Load Byte | LB | RX | RX
! | | |
| Load Byte High Speed | LBHS | | RI**
| Load Byte High Speed | | |
| Indirect | LBHSI | | RX**
| Load Byte Register | LBR | RR | RR
| | | [
| Load Complement Short | LCS | SF | SF
| Load DP Floating Point | LD | RX] RX
| Load TP Floating Point | | |
| Register | LDR | RR] RR
| Load Floating Point | LE | RX | RX
| Load Floating Point | | |
| Register | LER | RR | RR
| | | |
| Load Halfword | LH | RX | RX
| Load Halfword Immediate | LHI | RINM | RI
| Load Halfword Logical | LHL | RX | RX*
| Load Halfword Register | LHR | RR* | RR
| Load Halfword and Set | LHS | RX |
I | I |
| Load Immediate | LI | RI2 | RI*
| Load Immediate Short | LIS | SF | SF
| Load Multiple | LM | RX | RX
| Load Multiple DP Floating | | |
| Point | LMD | RX | RX
| Load Multiple Floating | (|
| Point | LME | RX | RX
| Load Program Status | LES | | RX
| Load Program Status | | |

| Register | LPSR | | RR
| Load PSW | LESW | RX | RX
| Load PSHW Register] LPSHWR | RR |
| Load Real Address | LRA | RX |

48-050 FO0O0 ROO

—— — — — —— — T — — —— —— — — ——— — n—— —— — — —— —— ———— — . — —— — —— v — — ——— mmm - — — —— — — — —— — —— — —— —

TABLE 3-1 SUMMARY OF MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

| | 32-BIT | 16-BIT |
INSTRUCTION | MNEMONIC | FORMAT | FORMAT |

T e e S e e W o e T S w e S i e T - S S S S S TR W S EE e e > S e S = am— e T = e S o e o ——
e R R e

|

Load Register | LR | RR | RR¥* |
Multiply | M | RX | RX* {
Multiply DP Floating | | | l
Point | ML | RX | RX |

Multiply DP Floating | | | |
Point Register | MLCR | RR | RR]

Multiply Floating Point | ME | RX | RX |
Multiply Floating Point | | | |
Register | MER | RR | KRR |

Multiply Halfword | MH i RX { RX |
Multiply Halfword Register | MHR | RR* | RR |
Multiply Halfword Unsigned | MHU | | RX |
Multiply Halfword Unsigned | | | |
Register | MHUR | | RR |

{ | | |

Move and Process Byte | | { |
String Register | MEBSR | RR | i

Multiply Register | MR | RR | RR* |
AND | N | RX | RX* |
AND Halfword | NH | RX | RX |
AND Halfword Immediate | NHI | RIM { RI |
| | | |

AND Immediate | NI | RI2 | RI*]
AND Halfword Register | NHR | RR* | ER |
AND Register | NR | RR | RR* i
OR | O | RX | RX* |
Output Command { ocC | RX | RX |
I | | |

Output Command Register] CCR | RR | RR |
OR Halfword | OH | RX | RX |
OR Halfword Immediate | OHI | RI1 | RI |
CR Halfword to Memory | CHHM | | RX** .|
OR Halfword Register { OHR | RR*] RR |
| | | |

OR Immediate | oI | RI2 | RI* |
OR Register] OR | RR | RR* |
Process Byte | PB | RX | |
Process Byte ERegister | PER | RR |]
Read Bleck | RB | RX | RX |
| | { |

Remove from Bottom of | | | |
List | RBL | RX | RX |

Eemove from Bottom of | | | |
List Flagged | RBLF | | RX** |

Read Block Register | REBR | RR | RR |
Reset Bit | RRBT | RX | |
Read Data | RD | RX | RX |

48-050 FO0O0 ROO

TABLE 3-1 SUMMARY OF MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

o - - G e W D WD R D . - - 4R D @SS D Em e D G D SR mm G M TR R W P e W A A S . e G - - -

| | | 32-BIT | 16-BIT

| INSTRUCTION | MNEMONIC | FORMAT | FORMAT
I =_===:===::===:===‘==========::===:=========================
| Read DCS | RLCCS | RR | RR

| Read Data High Speed | RDHS | | RX**
] Read Data High Speed | | i

| Register | RDRHS | | RR**
| Read Data Register | RLR | RR | RR

| Read Halfword | RH] RX | RX

| Read Halfword Register | RHR | RR | RR

| | | |

| Rotate Left Logical | RLL] RIM | RI

| Rotate Left Logical | i |

| Short | RLLS | | SF*x*
| Read Process Data High | | |

| Speed | REDHS | | RX**
| Replace PSW | RPSW | | RR**
| | | |

| Rotate Right Logical | RRL | RINM | RI

| Rotate Right Logical | | |

| Short | RRLS | | SE*x*
| Remove from Top of | |]

| List | RTL | RX | RX

| Remove from Top of | |]

| List Flagged | RTLF | | RX**
| Subtract | S | RX | RX*
I |] |

| Store Byte High Speed | | |

| Indirect | SBHSI | | RI**
| Set Bit | SBT | RX |

| Subtract with Carry | | |

| Halfworad | SCH | | RX

{ Subtract with Carry | | |

| Halfword Register | SCHR | | RR

| Simulate Channel Program | SCP | RX 1

| | | |

| Subtract DP Floating | | |

| Point | SLC | RX | RX

| Subtract DP Floating | | |

| .Point Register | SDR | RR | RR

| Subtract Floating Point | SE | RX | RX

| Subtract Floating Point | | |

| Register { SER | RR | RR

| Set Program Mask | SETHM | | RX

| | | |

| Set Program Mask Register | SETMR |] RR

| Subtract Halfword | SH | RX | RX

| Subtract Halfword Immediate| SHI | RI1 | RI

| Subtract Halfword from | | |

| Memory | SHM | | RX**

48-050 FOO ROO

—— — — — —— — —— —— — — — ——— — . — — ——— —— ——— — — — ——— ——— — — ———— —— — — ——— v S————— — —— — —

16

TABLE 3-1

AND MNEMONICS (Continued)

B g ——
S TS TS EE RS ===

Subtract Halfword Register

Immediate
Interrupt

Subtract
Simulate
Subtract

Shift Left Arithmetic
Shift Left Halfword
Arithmetic

Shift Left Halfword
Logical

Shift Left Logical

Shift Left Halfword
Logical Short

Shift Left Logical
Short

Store PSW

Subtract Register
Shift Right Arithmetic
Shift Right Halfword
Arithmetic
Shift Right
Logical
Shift Right

Halfword
Logical

Shift Right Halfword
Logical Short

Shift Right Logical
Short
Sense

Sense

Store

Status
Status Register

Byte

Byte High Speed
BEyte Register
DP Floating

Store
Store
Store
Store
Point
Store Floating Point
Store Halfword
Store Multiple
Store Multiple
Floating Point

DP

Store Multiple Floating

Point
Supervisor Call

Immediate Short

SLA

SLHA

SLHL
SLL

SLHLS

SLLS
SESHW

SR
SRA

SRHA
SRHL
SRL
SRHLS
SRLS
SsS
SSR
ST
STB
STBHS
STBR

STD
STE

STH
STH

STMD

STME
SvVC

— s —— — — —— — — — ——— — —— — —— — —— — — — — — ——— — — — — ——— ——— — ——— ——— —— —— i ——— — e —— w——

32-BIT
FORMAT

RIN
RI1

RI1
RI1

SF
SF
RR
RINM
RI1
RIN1
RI1
SF
SF
RX
RR
RX
RX
RR

RX
RX

RX
RX

RX

RX
RX

SUMMARY OF MACHINE INSTRUCTIONS

- " . S . T TP S SR R S R G D TR AP WD D RGP WU R S5 G D G e D WP WP W P wW G AP Wh TR N Gw AR WD W G e G G ww

| 16-BIT |
| FORMAT |

RI

RI
RI

RI

SF
RR * *

RR*
RI

I

I
|

[

I
I

I

|

|
I
I
I

I
I
I
I
I
I
I
I
| RI
I

| RI
| RI
!

I

| SF
I

| SF
| RX
| RR
| RX*
I

| RX
' RY*~*
| BRR
I
I
I
I
I
|
|
I
I
I
!

RX
RX

RX
RX

RX

RX
RX

48-050 FOO ROO

TABLE 3-1 SUMMARY OF MACHINE INSTRUCTIONS
AND MNEMONICS (Continued)

- - e T em . Gm Sm R e S S W= ww WS W e e G S G G e WP G G YR R G . S e R @ WE G R e S e e P Ge G Gn e e e

| | 32-BIT | 16-BIT

|

| INSTRUCTION | MNEMCNIC | FORMAT | FORMAT
' T T T T T S S S T L T SN ST S S N N e T S S o SN ESEEEEm=Ss======T
| Test Bit | TBT | RX |

| Test Halfword Immediate | THI | RI1 | RI

| Test Immediate | TI | RI2 | RI*
| Translate | TLATE | RX | RX**
| Test and Set | TS | RX |

| Unchain | UNC | | RR**
| Write Block | WB | RX | RX

| Write BRlock Register | WER | RR [RR

| Write Data] WD | RX | RX

| Write DCS | WDCS | RR | RR

| | | |

| Write Data Register | WLR | RR | RR

| Write Data High Speed | WLHS] | RX**
| Write Data High Speed | | |

| Register | WDRHS | | RR**
| Write Halfword | WH | BX | RX

| Write Halfword Register | WHR | RR | RR

| | | |

| Write Processed Data] | |

| High Speed | WPDHS | | RX**
| Exclusive OR | X | RX | RX*
| Exclusive OR Halfword | XH | RX | RX

| Exclusive OR Halfword |) |

] Immediate | XHI] RI1 | RI

| Exclusive OR Halfword | | |

| Register | XHR | RR* | RR

| | | |

| Exclusive OR to Memory | XHM | | RX**
| Exclusive OR Immediate | XI ! RI2 | RI*
| Exclusive OR Register | XR | RR | RR*

- - — . e G = S D - G G G S v G G SR R R R AR W S SR GE We R S Gm e R Gh G G R G G WD e S R e O en e am e e

* The indicated mnemcnic operation code is generated,
and the listing is flagged with a question mark to
indicate a vpotential error.

** Model 50 instruction set

48-050 F0O0 ROO

e — - — — — — —— T — — ——— —— —— — ——— ——— — — — —— ——— ——— —

Table 3-2 lists the mnemonics for machine

the Perkin-Elmer Model 3220 Processcrse.
applicable.

— — —— — — — — —— — —— — — — —— —— —— —— —— — —y T— —— —— ———— " — — ——— —— ———— —— —

formats

extended for

The 16-bit format is not

TABLE 3-2 SUMMARY OF MACHINE INSTRUCTIONS AND
MNEMONICS EXTENDED FOR THE PERKIN-ELMER
3200 SERIES PROCESSORS

-y - - - - - — - - . S TR GRS G- e W G e G e D M e S W G W G P S S we e - = - —

Breakpoint

Compare alphanumeric (RO=pad)
Compare alphanumeric and
default pad

Load interruptible state

Save interruptible state

Load complement SP register

Load complement DP register

Load DP register frcm SP memory
Load DP register frcm SP register
Load DP register frcm general
register pair

Load process state
Load SP register frcm DP memory
Load SP register frcm DP register
Load SP register frcm general
register
Load general register pair
from P register

Load general register
from SP register
Load packed decimal string
as binary
Load positive DP register
Load positive SP register
Load process segment table
descriptor

Load system segment table
descriptor

Move and pad (RO=pad)

Move and pad default rad
Move translated until

Pack and move

Pack and move absolute

Read error logger

Reset memory voltage failure

LGER

LPB
LPDR
LPER

LPSTD

LSSTD
MOVE
MOVEP
MVTU
PMV
PMVA
REL
RMVF

| 32-BIT |
| FORMAT |

RR

RX
RX
RR

RR

RX
RR
RR

RX

RX
RXRX
RXRX
RXRX
RXRX
RXRX
RX1 %% |
RX1 **% |

I I
| I
| |
| I
| |
| |
| I
I |
| |
| !
I I
| !
I |
I |
I |
| I
I |
I I
| RR |
| I
| RR |
| |
I |
| !
I |
| |
| |
| I
| |
| I
| !
| I
! I
| |
| I
| |
| !
| I
|

I

48-050 FO0O ROO

TABLE 3-2 SUMMARY OF MACHINE INSTRUCTIONS AND
MNEMONICS EXTENDED FOR THE PERKIN-ELMER
3200 SERIES PROCESSORS (Continued)

| | | 32-BIT |
| INSTRUCTIONS | MNEMONIC | FORMAT |
|===:=:= '
Store LP register in SP memory	STDE	RX
Store binary as packed decimal		
string	STPB	RX
Store process state	STPS	RX
Unpack and move	UMV	RXRX
Unpack and move absolute	UMVA	RXRX
Store byte with no ECC	XSTB	RX

*** No register or o¢ther operands allowed in source
format

In addition to the set of mnemonics listed in Tables 3-1 and 3-2,
CAL/32 recognizes a complete set of extended branch mnemonics.
These instructions allow the programmer to call for conditional
branch instructions without having to state explicitly the
condition code mask. Table 3-3 lists these instructions.

TABLE 3-3 EXTENDED BRANCH MNEMONICS

INSTRUCTION | MNEMONIC |

4443433 3 -3 ¥ 4 -Me ittt 3ttt it Fd l
Branch on carry BC

Branch on carry register BCR

Branch on carry short BCS

Branch on no carry BNC
Branch on no carry register BNCR
Branch on no carry short BNCS
Branch on egual

|
|
I
I
|
|
I
I
|
Branch on equal register | BER
|
I
|
|
I
I
|
I

Branch on equal short BES
Branch on not equal BNE
Rranch on not equal register BNER
Branch on not egual short BNES
Branch on low BL

Branch on low register BLR
Branch on low shcrt BLS

48-050 FOO RGO

w
|
-
O

TABLE 3-3 EXTENDED BRANCH MNEMONICS

(Continued)
INSTRUCTICN | MNEMONIC |
e p g e PRt] |
Branch on not low BNL
Branch on not low register BNLR
Branch on not low short BNLS
Branch on minus BM
Branch on minus register BMR
Branch on minus short BMS
Branch on not minus BNM
Branch con not minus register BNME
Branch on not minus short BN MS
Branch on plus BP
Branch on plus register BPR
Branch on plus short BPS
Branch on not plus BNP
Branch on not plus register BNPR
Branch on not plus short BNPS

Branch on overflcw register BOR
Branch on overflcw short BOS
Branch on no overflow BNO
Branch on no overflow register BNOR
Branch on no overflow short BNOS
Branch on zero BZ
Branch on zero register BZR
Branch on zero short BZS
BRranch on not zero BNZ
Branch on not zero register BNZR
Branch on not zero short BNZS
Eranch unconditicnal B
Branch unconditional register BR
Branch unconditional short BS
No operation NOP
No operation register NOPR

—— — . — St — — — — — T —— " o — N, ——— o — —— ——— —— —r— —— — — —— — — — — —— — —— —— — ——

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
I |
| |
| |
BRranch on overflow | BO]
| |
| |
| |
| |
| |
| |
| |
I |
| I
| |
| I
| |
| |
| I
| |
| |
I |
| |
I |
I |
I I

The extended branch instructions are essentially single operand
instructions where the first operand mask value is included in
the operation mnemonic. The programmer subplies only the second

3-20 48-050 FO0O0 ROO

operand or branch location. For sheort branches, the programmer
does not have to specify the forward or backward direction.
CAL/32 determines the direction of the branch and generates the
appropriate machine code. For example:

LOOP1 L STRNG,TABRLE(PTR) LOAD STRING FROM TABLE
CLR STRNG,INPUT COMPARE WITH INPUT
BES END EQUIVALENT FOUND
AIS PTR, 4 NOT FOUND INCREMENT PTR
BNZS LOOP1 GET NEXT STRING
XR STRNG,STRNG NOT FOUND END ,OF TABLE
END ST STRNG,RETURN RETURN VALUE

In this program, CAL/32 determines the locations of LOOP1 and END
and generates the redquired forward and backward branch
instructions.

Two more CAL/32 instructions that do not have direct machine
equivalents are:

INSTRUCTION MNEMONIC

Branch on true condition short BTCS
Branch on false conditicn short BFCS

With these instructions, the programmer must specify the mask
value and the branch location. CAL/32 determines the direction,
forward or backward, and the appropriate machine operation is
generated.

3.8 ASSEMBLER INSTRUCTIONS

Assembler instructions control the assembly process. Although
they may resemble machine instructions in form, they do not
generate any machine executable code. They are wused to define
symbols, reserve storage, generate data constants, and control
the final output.

3.8.1 Symbol Definition Instructions

Symbol definition instructicns allow the programmer to assign
values to symbols and set up communication paths between
separately assembled programs. The latter operation facilitates
the use of subroutines because they can be written and assembled
separately from the main prcgram. At l1load time, a linking loader
uses information supplied by CAL/32 to resolve addresses Dbetween
main programs and subroutines to set up the correct linkage.

48-050 K00 ROO 3-21

3.841.1 Equate (EQU) Instruction

This is one of the most commonly used assembler instructions. It
assigns values to symbols and it has the form:

NAME OPERATION CPERAND

A symbolic name EQU An expression

Examples of EQU instructicns are:

LOoCP EQU LCOP1
TOP EQU END-64
DELTA EQU BOTTOM-TOP
HERE EQU *
START EQU X*10FE"
SUM EQU 1
PTR FQU 2
EQU instructions can appear anywhere in the prograne. CAL/ 32

requires that each EQU instruction have a symbol in the name
field and treats the absence of this symbol there as an error.
The value assigned to a symbol by an EQU instruction is absolute
or relocatable, depending o¢n the type of expression in the
operand field. If +the cperand of an EQU statement contains a
forward reference, CAL/32 will perform any additional passes
regquired to define all symbols. CAL/32 does not reserve storage
for symbols defined by an EQU instruction. Wherever it
encounters the symbol in the program, CAL/32 replaces the symbol
with the value defined in the EQU instruction. For example:

STRNG EQU 1

PTR EQU 2

INPUT EQU 3

LooP1 L STRNG,TABLE(PTR) LOAD STRING FROM TABLE
CLR STRNG,INPUT COMPARE WITH INPOT

‘In this case, CAL/32 generates the code to load register 1 with
four bytes located at the address specified by TABLE, indexed by
register 2. The next instruction causes CAL/32 to generate the
code to compare the four bytes in register 1 with the contents of

register 3. The wuse <¢f the EQU instruction here allows the
programmer to assign meaningful names to the registers that hold
the character strings, and index into the table. It also
3-22 48-050 FOO ROO

provides a simple way to redefine the values assigned to these
symbols. By <changing the EQU instructions and reassembling, it
is possible to change the values assigned to the symbols without
doing extensive editing to change each individual statement where
these registers are used.

It is also possible, althcugh not recommended, to redefine a
symbol within a program. Fcr example:

LOOP1 EQU *

LOOP1 EQU *

When the symbol LOOP1 is encountered in the first EQU
instruction, CAL/32 assigns it the value of the current location
counter. Subsequent references to LOOP1 receive this value.
Following the second EQU instruction, the value of LOOP1T1 is
changed to the value of the new location counter. Because such
redefinitions might not be intentional, CAL/32 issues a warning
messagde wherever a symbol is redefined by an EQU instruction.
(In the example, the programmer might have intended to write
LOOP2 instead of LOOP1 in the second EQU instruction.)

The user must guard against circular location counter dependency,
as shown in the following example:

A EQU *
DS 1
DS B-A

B =QU *
END

CAL/32 will flag an "“M0O1 xxxTOP" error where xxx is PURE, 1IMP,
or ABS, depending upon the current location counter.

ks stated earlier, CAL/32 permits the user +to define operation
mnemonics within the programs. To do this, the user defines the
new mnemonic in an EQU instruction in which +the new operation
mnemonic is in the name field, and the operand field contains a
hexadecimal constant of the form X'nnxy'. Here, nn 1is the
machine language operation code, and x and y are descriptors that
tell CAL/32 how to handle the new mnemonic. The values of x and
y inform CAL/32 of the instruction format. The values are
defined as follows:

x =0, v = 8 RR or SF format
x =0, v = 2 RX or RI format
x =0, vy = 4 RI1 format
x = 0, v = 1 EI2 format

48-050 FOO ROO

w
I

23

To define extended branch mnemonics, x gets a value equal to the
‘R1 field (mask) and y gets cne of the following values:

3 RX format
C RR format
D SF format

o
nn

For example, in the instruction:
BTC 15,ADDR

the branch on true condition mnemonic and the mask field 15 can
be combined into an extended branch instruction as follows:

BTCF EQU X'42F3°

in which BTCF is the new mnemonic; U2 is the machine code for the
hbranch on true condition instruction; F is the mask value (15);
and 3 specifies RX format. Once this new mnemonic is defined,
the programmer can write:

RTCF ACDR
instead of:
BTC 12 ,ADDR

The new mnemonic definition remains 1in effect only for the
program in which_ it is defined. The new mnemonic must be
different frcm all other mnemonics recognized by CAL/32.

There are three things to remember in using equate statements:

1e The name field must always contain a valid symbol.

2. The ovrerand field must always contain a defined symbol or
expressione.

3. The symbol that appears in the name field of an equate

instruction must not appear in the name field of any other
instruction, except another equate instruction.

If any of these rules are violated, CAL/32 generates an
appropriate error message.

3=-2u 48-050 FOO ROO

3.8.1.2 External, Entry, Weak External, Weak Entry., and

Data Entry (EXTRN, ENTRY, WXTRN, WNTRY, and DNTRY)
Instructions

These 1instructions are 1listed together since they perform
corresponding functions to establish links between main programs
and subroutines, and between programs with a common data base.
These instruction forms are:

NAME OPERATICN CEERAND
Not used EXTRN Cne or more symbols
(illegal) separated by commas
Not used ENTRY Cne or more symbols
(illegal) separated by commas
Not used WXTRN One or more symbols
(illegal) separated by commas
Not used WNTRY Cne or more symbols
(illegal) separated by commas
Noct used DNTRY Cne or more symbols
(illegal) separated by commas

The EXTRN instruction identifies symbols referenced by the
program but defined outside the program. The ENTRY instruction
identifies symbols defined within +the ©program and referenced
externally. (They can be referenced internally as well.)

For example, consider two programs: one calculates the sine and
cosine of an angle, the other uses the sine and cosine. The
first is a general purpose program that could be used by many
other ©programse. The ENTRY and EXTRN instructions make this
possible without having to assemble the sine and cosine progranm
every time it 1is needed. The sine and cosine program would
contain an LENTRY instruction and entry points such as:

ENTRY SIN,COS
SIN EQU *

COoS EQU *

The symbols SIN and COS appear as operands in the ENTRY
instruction and as names in the EQU instructions. When CAL/32
assembles this program, CAL/32 informs the 1linking loader that
the locations identified by +he names SIN and COS are entry
points into the progranm.

48-050 F0O ROO 3-25

The program that uses sine and cosine would contain an external
statement and branch instructions such as:

EXTRN SIN,CCS

BAL LINK,SIN

BAL LINK,COS

-

At assembly time, CAL/32 generates object data to inform the
linkage editor that +the symbols SIN and COS are externally
defined. At link time, the linkage editor uses this information,
along with the information generated by the entry instruction in
the other program, to provide the necessary linkage.

The WXTRN instruction is essentially equivalent to the EXTRN
instruction. However WXTRN symbols are subject to the following
exception processing by Link:

@ An error condition does not arise if the symbol 1is not
resolved.

@ Object libraries are not searched in order to satisfy a weak
external.

e JTf a module containing an entry point referenced by a HWXTRN
symbol is included, then the entry point will be used to
catisfy WXTRN references to it in the normal fashion.

The WNTRY instruction is ecssentially equivalent +to the ENTRY
instructione. However, WNTRY symbols are subject to the following
exception processing by Link.

e Weak entry points are not examined when searching an object
librarye. Therefore, a program module containing a weak entry
roint is not included to satisfy an external reference,

e If a program module containing a weak entry point is included

from a module, the weak entry point will be used to satisfy
external references in the normal fashion.

3-26 ‘ 48-050 FD20 ROO

The DNTRY instruction is essentially equivalent to the ENTRY
instruction. However, symbols nominated by DNTRY are resolved
directly when building overlaid modules rather than resolved in
an SVC instruction. This instruction identifies a symbol defined
local to the program containing the DNTRY instruction.

To help protect references to data in higher 1level nodes, Link
automatically loads the entire path of overlays starting at the
overlay containing data and ending with the overlay making the
reference to a data entry point (DNTRY). A reference to a
program section positioned in a higher 1level node, via the
POSITION command, is treated the same waye. A reference to data
or a program section in the root will not cause a path of
overlays to be loaded.

If a DNTRY is referenced in a lower level node, an SVC 5 manual

overlay 1load might be required to ensure that the overlay is in

memory at the time of the reference.

Restrictions on the use of external and entry instructions are:

e The operand field of an external instruction must not contain
an expression, such as SIN+4.

e FExpressions involving externally defined symbols must be of
the form:

- External symbol + absclute expression

- Fxternal symbol - absolute expression
BAL LINK,SIN+4
is a legal use of an externally defined symbol.
e Fxternally defined symbols cannot be used internally as

instruction identifiers.

e Any symbol identified as an entry must appear internally in
the name of an instructione.

@ Symbols identified as entries cannot be redefined by multiple
equate instructions.

3.8.1.3 Include (INCLD) Instruction

This information provides Link with a mechanism to guarantee the

inclusion of object modules without other linkage references to
ite. It has the form:

48-050 F0O ROO 3

27

NAME OPERATION CPERAND

Not used INCLD One or more

(illegal) symbols
separated by
commas

The INCLD is used in the same fashion as the EXTRN +to 1linking
references. However, this instruction is wused to nominate
program modules rather than external symbols.

NOTE
CAL/32 will generate the same object as
in the past, provided none of the
following instructions are used:

external with offset, DCMD, DNTRY, WNTRY,
WXTRN, or INCLD. The assembly of any of
these instructicns will produce an cobject
that TET will reject. Link is required
to process modules containing this
extended object. These instructions are
only valid in a Target 32 assembly and
have no effect on 16-bit object
generation.

3.8.2 Data Definition Instructions

These instructions allow the programmer +to reserve areas of
memory to be used at run time. Some of these instructions allow
the programmer to specify values with which these areas can be
initialized at load time. Other data definition instructions
provide easy access to complex data structures.

3.8.2.1 Define Storage (DS, DSH, DSF) Instruction
This instruction causes CAL/32 to reserve a block of storage

within the proaram without initializing the reserved locations to
any value. It has the form:

NAME OPERARTION OPERAND
R symbol DS An absolute
({optional) expression
A symbol DSH An absolute
(optional) expression
A symbol DSF An absolute
(optional) expression

The DS mnemonic causes CAL/32 to reserve the specified block of
storage starting from the value of the current location counter.
In the DSH form, CAL/32 first aligns the location counter on a

3-28 48-050 FO0O0 ROO

halfword boundary and then reserves the storage. In the DSF
form, CAL/32 first aligns the location counter on a fullword
boundarye. Examples of the define storage instruction are:

BUF1 DS 100
BUF2 CSH 125
BUF3 DSF 16

In the first example, CAL/32 reserves 100 bytes of storage by
simply adding 100 to the location countere. In the second
example, CAL/32 reserves 125 halfwords (250 bytes) of storage.
CAL/32 does this by aligning the location counter on a halfword
boundary, if it is not already properly aligned, and then adding
250 to it. In the third example, CAL/32 ensures that the
location counter is aligned on a fullword boundary and then adds
64 (the byte equivalent of 16 fullwords) to it. If the operand
contains a forward reference, CAL/32 will perform any additional
passes required to define all symbols.

Define storage instructions are commonly used to reserve storage
areas for transient datae. Examples of this are I/0 buffers and
register save areas. For example:

ENTRY RSAVE
EXTRN SIN,CCS
LINK EQU 15

RSAVE DSF 16

BAL LINX,SIN

shows how a main program might set up a register save area within
itself. The code for the called program might look like:

ENTRY SIN,CCS
EXTRN RSAVE
RO EQU 0

R SIN EQU *
STM RO,RSAVE

48-050 FO0O ROO 3-29

where the subroutine stores the general registers in the
externally defined area, RSAVE. When wusing define =storage
instructions remember that:

@ The DSH and DSF forms cf the instruction ensure halfword and
fullword alignment.

@ The define storage instructions do not initialize memory to
any particular value.

© Cnly one operand is allowed in a define storage instruction,
and it must be a defined, absolute symbol or expression.

3.8.2.2 Define Constant (DC, DCF) Instruction

The define constant instruction allcws the programmer to reserve
areas of memory and at the same time specify the initial value to

be 1loaded into thenm. The define constant instruction has two
forms:
NAME OPERATION OPERAND
A symbol bBC One or more operands
(optional) separated by commas
A symbol DCF One or more operands
(optional) separated by commas

The DC mnemonic ensures that the first of the operands is aligned
on a halfword boundary. The DCF mnemonic ensures that the first
of the operands is aligned on a fullword boundary. Operands of
different +types <can be vused 1in the same define constant
instruction. However, where alignment is a concern, the
programmer must be careful in mixing operands of different types.
Types of operands are described below.

A single character code indicates the type of <constant. This
character code 1is not always required, and the exceptions are
noted as they occur. The assembler determines from the character
code how it is to interpret the constant and translate it into
the proper object format. Table 3-8 lists the character codes
recognized by CAL/32, their meanings, and the types of constants
generated.

3-30 48-050 FOO ROO

TABLE 3-4 CONSTANT TYPES

. e G e W= W e W e . . e A A P W G D n = R G P e T GE G Gm G G e G e S S e W - S e G . e -

string integer of 7-bit ASCII
encoded decimal digits
(8-bits per digit) in a
string of variable byte

length.

-y S - e G . E e WD Gm en W e WS G e e WS s . n T G G U G e W G TR R G R S e Em A = S P S e - e

| COLE | MEANING | MACHINE FORMAT |
':::::::::::::::: 4+ttt Tttt it 3t r+ 2 131 '
X	Hexadecimal	16-bit binary
X	Hexadecimal	32-bit binary
H	Integer] 16-bit signed binary	
{ F	Integer	32-bit signed binary
A	Address	32-bit value of address
Z	Address	16-bit value of address
T	Address	One half of 16-bit address
E	Single precisicn	32-bit floating point
	floating point	format
D	Double precision	64-bit floating point
	floating point	format
C	Character	An 8-bit code per
		character (7-bit ASCII)
P	Packed decimal	Fixed point sign-~coded
	string	integer of binary en-
		coded 4-bit decimal
		digits in a string of
	{ wvariable byte length.	
U	Unpacked decimal	Fixed point sign-coded
	I	
I	!	
	I I	

3.8.2.3 Hexadecimal Constants

A hexadecimal constant consists of one or more hexadecimal
digits, 0 through 9 and A through F, enclosed in apostrophes and
preceded by the type code X or Y. Where +the X type 1is used,
CAL/32 reserves two bytes of storage and generates the loader
information that will cause those two bytes to be initialized at
load time with the binary representation of the hexadecimal
number. The Y type <causes four bytes +to be reserved and
iritialized. Examples of hexadecimal constants are:

CONSTANT VALUE
DC X*1234° 1234
pC Y*i1234° 0000 1234
DCF X'20° 0020
DCF Y'co64’ 0000 0064

DC X*'1234ABC* 4ABC

48-050 FOO RGO 3-31

The first example shows a halfword hexadecimal constant which,
because of the DC operation code, is aligned on a halfword

boundary. The second example shows a fullword hexadecimal
constant. In this case, fullword alignment is not guaranteed.
The third example shows a halfword constant aligned on a fullword
boundary. The fourth example shows how to force fullword
alignment for a fullword constant. The last example shows what
happens when too many digits are given. CAL/32 truncates the

constant to the least significant digits and generates an error
message. The maximum number of digits for an X type constant is
four. The maximum number fcr a Y type constant is eight.

NOTE

Where fewer than the maximum number of
digits are given, CAL/32 right Jjustifies
the value in the location and fills in
the missing digits with zeros.

Two special mnemonics facilitate the building of hexadecimal
tables by eliminating the need to specify the X or Y type code.
They have the form:

NAME OPERATION OPERAND
A symbol DCX One or more operands
(optional) separated by commas
P symbol PCY One or more operands
(optional) separated by commas

Operands for these instructions consist of from one to four
hexadecimal digits for the LCX instruction and from one to eight

hexadecimal digits for the L[CCY instruction. Examples of these
constants are:

bCX 1,0,14AE,20,4040
DCY 1,2FFFE,64,80000000

The DCX instruction generates five halfword constants as follows:

0001
0000
T47AE
0020
houo

3-32 48-050 FOO ROO

The DCY instruction generates four fullword constants as follows:

0000 0001
0002 FFFE
0000 OO064
8000 0000

Before generating the constants, CAL/32 ensures that they are
properly aligned with halfword <constants aligned on halfword
boundaries and fullword ccnstants aligned on fullword boundariese.

3.8.2.4 Integer Constants

Integer constants can be either halfword or fullword. Halfword
constants are exrressed by the character code H followed by a
string of from 1 to 5 decimal digits enclosed in apostrophes.
Fullword constants are expressed by the character code F followed
by a string of from 1 to 10 decimal digits enclosed in
apostrophes. The range of halfword constants is from -32,768 to
+32,767. The range of fullword constants is from -2,147,483,64U8
to +2,147,483,647. The decimal strings used in these <constants
must not include commas or blanks. A sign, + or -, can precede
the string.

The internal representation of integer constants 1is two's
cocmrlement binary. In this notation, positive numbers and zero
have their true binary form. For example, a halfword integer
with a value of 25 1is represented internally (hexadecimal
notation) as:

00

Negative numbers are expressed in accordance with the formula:
Value = 2 - x

where n is the number of tits used to express the value, and x is
the absolute value of the number. Fcr example, to Trepresent
minus 10 in a halfword constant:

16 (104¢)
10 (Rq¢)
€

alu = 1000046 - A16 = FFF516

<X 2

48-050 FO0O RQO ' 3-33

Examples of integer constants are:

CONSTANT VALUE
DC H*32767" TFFF
DC H*-32768" 8000
LC F1° 0000 0001
DC H'-2" FFFE
DCF F'25° 0000 0019

The H and F codes themselves 40 not guarantee correct alignment.
To ensure that a fullword integer is aligned on a fullword
boundary, the programmer should use the DCF instruction.

CAL/32 does not require that integer constants be defined with
the <character codes and decimal strings enclosed in apostrophes.
A simple decimal string can be used. For example:

LC 1
DC -7

The 1length of +the integer constants generated by these
instructions depends on the processor on which the program is to
run. For 32-bit processors such instructions generate fullword
constants, such as:

CONSTANT VALUE
DC 1 0000 0001
LCF =7 FFFF FFFOQ

For 16-bit processors, these 1instructions generate halfword
constants, such as:

CONSTANT VALUE
pC 1 0001
LC -1 FFF9

It is possible to force a fullword alignment by using the DCF
mnemonic with a simple decimal string. The wuse of a DCF
instruction affects only the alignment of the first of the
integer constants; the length of the constant is determined
solely by the processor on which the program is to be run. Thus,
when using these instructions with operands which are simple
decimal strings, 1t is not possible to generate a halfword
constant for a 32-bit processor.

w

-3 48-050 FOO ROO

3.8.2.5 Address Constants

Address constants «consist of a single <character type code
followed by a symbol or an expression enclosed in parentheses.
The three types of address constants are A, Z, and T. Type A
constants generate fullword address constants in programs
intended to be run on 32-bit processors; they generate halfword
address constants in programs intended to be run on 16-bit
processors. Types Z and T address constants always generate
halfword values. Examples of address constants are:

DC A(CLOOP+2)

LC A(TABLE)

DC A(TOP-BOTTOM)
DC Z(ICVECTOR)

LC T(ALPHATAR)

For 32-bit processors, the first three examples cause CAL/32 to
reserve a fullword of storage, initialized at 1locad time to
contain the value of the expression or symbol enclosed in
parentheses. This value can be absolute or relocatable,
depending on the nature of the expression. The address quantity
is right Jjustified in the least-significant 24 Dbits of the
fullword, and the most-significant 8 bits are forced to =zero.
However, i1t is possible toc use the most-significant bits for some
purpose. They might be used as flag bits as in the example:

FARAM Ds 4

ADDR LC A(PARAM+Y'A0O000000")
EXTRN SIN

LINK EQU 15

ADREG EQU 14

STE RO, PARAM
L ADREG,ATLLCR
BAL LINK,SIN

At the time of the branch and 1link instruction, register 14
contains the address of the location PARAMNM in the
least~significant 24 bits. The most-significant 8 bits contain
the value X'AQ0'. The subrcocutine can use the address portion and
the flag portion independently, as:

48-050 FOO KOO 3

35

SIN EQU *

LE E4,0(ADREG) GET PARAMETER
TI ADREG,Y'AR0000000" TEST FLAGS

The 7Z type address constants generate halfword values. They can
be wused in programs for 32-bit processors if the programmer is
certain that the actual address cannot exceed 65,535, the maximum
unsigned value that can be expressed in a halfword.

The T type address constants are used as entries in translation
tables. These instructions cause CAL/32 to reserve a halfword of
storage initialized with one half of the actual address, right
justified. The most significant bit is zero. These constants
are intended for use with the translation tables associated with
the translate instruction and with the auto driver channel.

Address constants can be written without the type <code and
parentheses, as in:

TABLE DS 16

BUFFA1 DS 64

ADTCA DC TABLE ADDRESS OF TABLE

ADD2 DC BUFF1 ADDRESS OF BUFFER ONE

Where this convention is used, the size of the generated constant

depends on the processor for which the program is written. For
32-bit ascsemblies, CAL/32 generates fullword constants. For
16-bit assemblies, CAL/3Z generates halfword constants. The

programmer can force halfwcrd constants to be generated by using
the mnemonic LCZ, as:

LCZ TRBLE,BUFF1

which causes a series o¢f halfword address c¢onstants to be
generated.

3-36 48-050 FOO ROO

3.8.2.6 Floating Point Constants

The source form for floating point constants consists of a
decimal number enclosed in apostrophes and preceded by the letter
E for single precision, or the letter D for double precision.
The decimal number consists of:

e an optional plus sign or minus sign,

@ cne or more decimal digits that may include a decimal point,
and

e an optional F character followed by an optional plus sign or
minus sign, followed by one or two decimal digits denoting a
power of 10.

Single precision floating pcint constants require a fullword of
storage. Double precision floating point constants require a
doubleword of storage. Internally, floating point constants are
represented in excess 64 notation. In this kind of notation,
each floating point number consists of a sign, an exponent, and
a fraction. The first tit of the number is the sign bit. If
this bit is a 1, the number is negative; if it is a 0, the number
is positive. The next 7 bits represent the exponent, expressed
in excess 64 notation. This field can contain any value between
0 and 127 inclusive. The remaining bits, 24 for single precision
and 56 for double precision, represent the fraction with an
implied radix point before the first bit.

The true value of the floating point number 1is obtained by
multiplying the fraction by 16 raised to the power indicated by
the exponent field. In excess 64 notation, this power is
determined by subtracting 64 from the value in the exponent
field. In this way, values equal tc or greater than 64 produce
a O or positive power. Raising 16 to this power and then
multiplying by the fraction produces values between .0625 and 7.5
x 16. Exponent field values that are less than 64 produce a
negative power and values between .06249... and 5.4 x 10- .
Floating point 0 is represented by a fullword or a double word of
ZeYCESe

Examples of floating point constants are:

CONSTANT INTERNAL REPRESENTATION
LC E*1! 4110 0000

DC E‘C.0" c000 0000

bC E*T7.2E74" 7F19 7817

BC b*10.5" 41A8 0000 0000 0000
DC D*S5.4E~79" 0010 01D1 33A9 L4OI9F6
DC D*7.2E+75" 7FFE BOE3 AD97 8760

48-050 FOO ROO

w
{

37

In the internal representation of floating point constants, the
fractional part can consist of from 1 to 6 hexadecimal digits for
single precision, and up to 14 hexadecimal digits for double
precision. If the decimal number exceeds this degree of
accuracy, the magnitude <¢f the number is preserved but the
precision is lost. 1In performing the conversion from decimal to
internal floating point, CAL/32 carries guard digits to ensure 6
hexadecimal digit accuracy for single precision and 14
hexadecimal digit accuracy for double precision. The programmer
must ensure proper alignment.

3.8.2.7 Character Constants

Character constants consist of the single letter code C followed
by a string of ASCII characters enclcsed in apostrophes. All
characters are translated into 7-bit ASCII, in which the most
significant bit 1is always O. Examples of character constants
are:

DC C*'NANE'
DC C*AFCSTROPHE = ** °*

The second example shows how an apostrophe 1is included in a
character constant. Between enclosing apostrobhes, a double
apostrophe is treated as a single character. The maximum number
of <characters that can be defined in a single character constant
is 64. If the number of characters in a constant is odd, CAL/32
appends a blank character at +the end +to maintain halfword
alignment. '

3.8.2.8 Decimal String Constants

The source format for decimal string constants consists of a
decimal number enclosed in apostrophes and preceded by the letter
P for packed decimal =string constants, or by the letter U for
unpacked decimal string constants. The decimal number is an
integer and consists of an optional plus sign or minus sign,
followed by 1 to 31 decimal digits.

The machine internal repnresentation of the packed decimal string
constant 1is a fixed-point, sign-coded integer, where each digit
occupies # bits and each byte holds 2 digits. That is, each
decimal digit, O through 9, is binary encoded in a U4-bit
hexadecimal digit. As the number of decimal digits varies from
1 to 31, the length in bytes of the decimal string varies from 1
to 16 bytes. The last hexadecimal digit contains a uU4-bit code
for sign; a hexadecimal C fcr plus, or a hexadecimal D for minus.
The integer representation is right-justified within the variable
length <string, so the 1least-significant digit of the decimal
number occupies the hexadecimal digit Jjust preceding the sign
ccde. Each digit is thus <consecutively packed, with the

3-38 48-050 FO0O ROO

most-significant digit (zero or nonzero) in bit positions 0
thrcugh 3 of the leftmost byte of the string. Refer to the
examples that follow fcr the differences in internal
representation, when the packed decimal string constant 1is
defined by either the define constant (DC) instruction or the
define byte (DB) instruction.

The machine internal representation of the wunpacked decimal
string constant is a fixed-point, sign-coded integer, where each
zoned digit occupies a byte. That 1is, each decimal digit, 0O
through 9, is encoded in 7-bit ASCII with the leftmost bit 0;
providing an B8-bit byte with the 1left hexadecimal digit
containing a zone <code of 3 and the right hexadecimal digit
containing the binary encoded decimal digite As +the number of
decimal digits varies from 1 to 31, the length in bytes of the
decimal string varies frc 1 to 31 bytes. The integer
representation is right-justified within the variable length
string. The rightmost byte gontains the least significant digit
in its rightmost hexadecimal digit and the sign code in its
leftmost hexadecimal digit. The sign <code 1is a U4-bit <code,
described atove with a hexadecimal C for plus, and a hexadecimal
D for minus. Each digit is thus consecutively coded into bytes,
with the most-significant digit (zoned zero or zoned nonzero).
Refer to the following examples for the differences in internal
representation, when the unpacked decimal string constant is
defined by either the DC instruction or the DB instruction.

The address of the string is the address of the 1leftmost byte
containing the most-significant digit (zero or nonzero). The
address generated for either the packed decimal string constant
or the unpacked decimal string constant is that associated with
the .label of the source statements and the current 1location
counter. Examples of the PDS constants are:

INTERNAL

REPRESENTATION
SOURCE FORMAT (HEXADECIMAL)
LB p'1! 1C
DB P'+50° 050C
DB P'-879" 879D
CB P'+1234° 0123 4C
DB P*'-12345" 1234 5D

DB P'1234567890123u4567890123u45678901"' 1234 5678 9012 3456
7890 1234 5678 901C

pc pB'1! 001C
LC P'+50° 050C
pcC Pp'-879" 879D
CC PpP'+1234° 0001 234C
CC P*12345° 0012 3u45C

DC P*1234567890123456789012345678901"' 1234 5678 9012 3456
7890 1234 5678 901C

48-050 FOO ROO 3-39

Note that as string-processing instructions are intended to
operate at the lowest addressable 1level, on byte-addressable
locations these constants are most efficiently generated by the
DB instructions, described in the define byte instruction
section. If the ILC instruction is used, an extra byte of leading
zeros is generated, when the number of digits is a multiple of 4,
or is an odd number of digits not divisible by 3. Examples of
unpacked decimal string (zoned) constants are:

INTERNAL

REPRESENTATION
SOURCE FORMAT (HEXADECINMAL)
DB U*'1' C1
CB U'+50° 35C0
LB U'-879° 3837 D9
DB U'+123u° 3132 23Cu
CB U'"12345" 3132 3334 D5

DB U*1234567890123456789012345678901* 3132 3334 3536 3738
3930 3132 3334 3536
3738 3930 3132 3334
3536 3738 3930 C1

LCC U'1° 30C1

LC U'+50" 35C0

cc u*'-879° 3038 37D9

LC U'+1234" 3132 33Cu

LC U"-12345" 3031 3233 34D5

DC U0*1234567890123456789012345678901"' 3031 3233 3435 3637
3839 3031 3233 3435
3637 3839 3031 3233
3435 3637 3839 30C1

As string processing instructions require programm=ed 1length

attributes, familiarization with the internal storage
requirements for both packed decimal string and unpacked decimal
string <constants is advieable. In the previous examples, the

relationship of number of digits to byte length is as follows:

CONSTANT DEFINED BY BYTE LENGTH
Packed DR (integer of n/2) + 1
Facked bC 2*(integer of n/4) + 2
Unpvacked DB n

Unpacked CC n, for n even

n + 1, for n odd

where n is the number of decimal digits in the source formats of
the decimal constantse.

3-40 48-050 FOO ROO

3.8.3 Define Byte (DB) Instruction

This instruction defines consecutive 8-bit bytes of data. It has
the form:

NAME OPERATION OFPERAND
A symbol DB Cne or more operands
(optional) separated by commas

The symbol used in the name field of +the DB instruction 1is
assigned the value of the current location counter. There is no
autcmatic alignmente. The programmer must ensure proper alignment
wvhere the symbolic name of a DB instruction is used as an operand
jdentifier in an instruction requiring its operand to be 1located
on a halfword, fullword, c¢r double word boundary.

The operand field can contain one or more operands, separated by
COomm&as. There can be an even or an odd number of operands. The
orerands can be any symbol or expression value. For any operand,
other than character or decimal string expressions, the 1least
significant eight bits of the operand value are used to generate
one byte of data. Examples of the DB instructions are:

DB X*'F7°

DB 128

DB -1

LB C'A’

DB C*ABCDEFG®

As shown in the examples, the operand of a DB instruction can be
a <signed integer. In this case, the integer can have any value
between -128 and +127, inclusive.

A special form of the DB instruction:

DB *

forces alignment of the location couanter to a halfword boundary.
If, when this instruction is encountered, the location counter
contains an odd value, one byte of zero value is generated, and
the location counter 1is made even. If the location counter is
already even, this instruction has no effect.

48-050 FOO ROO 3-41

3.8.4 Define List (DLIST) Instruction

This instruction provides a simple means for defining circular
lists used by the machine instructions:

e Add to top of 1list

e Add to bottom of list

® Remove from top of 1list

e PRemove from bottom of 1list

The define list instruction has the form:

NAME OPERATION OPERANT
A symbol DLIST An absolute
(optional) expression

The absolute expression in the operand field specifies the number
of slots in the list. For 32-bit assemblies, CAL/32 reserves
four halfwords of storage for 1l1list pointers, followed by the
specified number of fullwords (slots). The first halfword 1list
pointer is initialized with a value equal to the number of slots
in the list. The remaining three ©pointers are initialized to
ZE€ro. For 16-bit assemblies, CAL/32 reserves four bytes of
storage for 1list pointers, followed by the specified number of
halfwords. The first byte pointer is initialized to a value
equal to the number of slcts in the 1list. The remaining byte
pointers are initialized to zero. An example of the DLIST
instruction is:

LIST1 DLIST 100

In a 32-bit assembly, this has the csame effect as:

LIST1 LCF X'64°,X*'0",X°0°*,Xx*0"
DS Loo

The DLIST instruction forces alignment to a fullword boundary in
32-bit assemblies. It forces alignment to a halfword boundary
for 16-bit assemblies.

3-u42 48-050 FOO ROO

3.8.5 Define Command (DCMD) Instruction

This instruction causes the string within the set of apostrophes
to be passed directly to the object code.

NAME OPERATICN CFERAND
A symbol DCMD C ‘'command
(optional) string®

The operand of the DCMD instruction 1is subject to the sanme
syntactic rules as any other character string. CAL/32 performs
no syntax checking on the command string.

CAL/32 will generate the same object as in the past, provided the
DCMD instruction is not used. The assembly of this instruction
will produce an object that TET will reject. Link is required to
process modules <containing this extended object. The DCHMD
instruction is valid only in a Target 32 assembly and has no
effect on the 16-bit object generation.

3.8.6 Location Counter Instructions

These instructions allow the programmer to select the current
location counter and set 1its value. For 32-bit assemblies,
CAL/32 maintains three 1location <counters: pure, impure, and
absolute. For 16-bit assemblies, it maintains two location
counters: relocatable and absolute. At any given time, only one
location counter can be in use. With these 1instructions, the
programmner can control the program segmentation and relccatione.

3.8.6.1 Pure (PURE) Instruction

This instruction causes all subsequent machine instructions to be
assembled as part of the rure segment., It has the form:

NAME OPERATION CPERAND
A =symbol PURE None
(optional) (ignored)

The current location counter 1is saved, and the new 1location
counter 1is set to point to the next halfword boundary beyond the
most recently used location in the pure segment. If a PURE
instruction occurs in a relccatable 16-bit program, it has no
effectes If it occurs in an absclute 16-bit program, it causes a
switch to the relocatable lccation counter.

48-050 FO0O ROO

w
!

43

—— —— i

3.8.6.2 Impure (IMPUR) Instruction

This instruction <causes all subsequent instructions to be
assembled as part of the impure segment. It has the form:

NANME OPERATION OPERAND
A symbol IMPUR None
(optional) (ignored)

The current location counter 1is saved, and the new halfword
boundary is set beyond the most recently us2d impure address. In
16-bit assemblies, this instruction has no effect if the progran
is already in relocatable mcde. If it is in absolute mode, the
location counter is switched to relocatable.

NOTE

Unless otherwise specified by the
programmer, impure mode is assumed.

3.8.6.3 Origin (ORG) Instruction

This instruction selects a location counter and sets it to a
defined value. It has the form:

NAME OPFRATION OPERAND
AR symbol ORG A symbol or
(optional) expression

The operand of the origin instruction determines which 1location
counter 1is selected and the value it is given. If the value of
the operand is pure, impure, absolute, or relocatable, the
corresponding location counter is selected and set to the operand
value. If the operand contains a forward reference, CAL/32 will
perform any additional passes required to define all symbols.

The user must guard against circular location counter dependency,
as in the following exampleée:

ORG
LIS
A EQU
LIS
B EQU

END

= >

* £ w
~
o

3-44 48-050 FO0O0 ROO

CAL/32 will flag an "M0O1 xxxTOQOP" erfor, where xxx is PURE, 1IMP,
or ABS depending on the current location counter.

NOTE

If no ORG 1instruction appears at the
beginning of a program, CAL/32 assumes it
to be relocatable starting at relocatable
Zeroe. For 32-bit programs it also
assumes the impure segment.

3.8.6.4 Absolute (ABS) Instruction

This instruction causes the location counter to be put in the
absclute mode. Jt has the form:

NAME OPERATION OPERAND
A symbol ABS None
(optional) (ignored)

The current location counter is saved, and the new location
counter 1is set to point to the next halfword boundary beyond the
most recently used absolute location. If the absolute 1location
counter was not previously used, it is set to zero.

3.8.6.5 Align (ALIGN) Instruction

This instruction aligns the current location counter to a power
of 2. It has the form:

NAME OPFRATION COPERAND
A symbol ALIGN A symbol or
(optional) expression

The value contained in the cperand field determines the type of
alignment. Symbols used in the operand field must be previously
defined. The value in the cperand field must be absolute and
equal to either +two, four, or eight. If the operand value is
two, CAL/32 adjusts the 1lccation counter to ensure that it
contains a halfwerd address. CAL/32 forces fullword alignment if
the operand value is four, and double word alignment if the value
is eighte. If at ¢the +time of this instruction, the location
counter is already properly aligned, CAL/32 does not <change it.

48-050 FOO ROO 3-45

If it is not properly aligned, CAL/32 increments it by the
minimum amount necessary to force proper alignment. A symbol, if
used 1in the name field, receives the value of the location
counter after the alignment is performed.

NOTE

If +the value o¢f the operand is not
absolute, or if it is not <correctly
defined, CAL/32 forces fullword
alignment, and generates an error
message.

3.8.6.6 Conditional No Operation (CNOP) Instruction

This instruction is similar to the ALIGN instruction in that it
aligns the location counter to a power of 2. It has the form:

NAME OPERATION OPERANTD
A symbol CNOP A symbol or
(optional) expression

The CNOP differs from the ALIGN instruction in that instead of
merely incrementing the location counter, it actually inserts no
operation instructions into the program stream. The value of the
operand must he absolute and egqual to two, four, or eight.
Symbols used in the operand field must have been previously
defined. If at the time this instruction is encountered, +the
location <counter is on an odd boundary, CAL/32 increments it by
one to make it even, inserts the required number of CNOP
instructions to force alignment, and generates an error message.
This instruction has no effect if the location counter is already
prorperly aligned. A symbol, if used in the name field, receives
the value ¢f the location counter associated with the first CNOP
instruction generated.

3.8.7 Assembler Control Instructions
These instructions allow the programmer to control +the assenmbly
process 1itself, identify the type of processor on which the

program is to be run, halt the assembly operation temporarily,
and request a limited amount of optimization.

3-u46 48-050 FOO ROO

3.8.7.1 Target (TARGT) Instruction

This instruction identifies the type of processor on which the
program is to be rune. It has the form:

NAME OPERATION OPERAND
A symbol TARGT A symbol or
(optional) expression

The value of the operand expression must be either 16 or 32,
absolute. Symbols used in the operand field must be previously
defined. If the operand value is 16, CAL/32 generates object
code for 16-bit processors. If the value is 32, it generates
object code for 32-bit processors. If +the value 1is anything
else, CAL/32 generates a varning message and generates code for
the same type of processor cn which it is running. If there is
no TARGT instruction in the program, CAL/32 assumes the target
machine to be the same as the machine on which the assembly is
running.

NOTE
The TARGT instruction must precede any

PURE or IMPUR instructions or any
instruction that generates machine code.

3.8.7.2 End (END) Instruction

The END instruction indicates the end of the source inpute. It
has the form:

NAME OPFERATION CPERAND
R symbol END A symbol or
(optional) expression (optional)

Because of its function, this statement must be the 1last
instruction in the source input file. The optional operand, if

used, identifies the starting location of the progran. For
example:

MAIN EQU *

LAST END MAIN

48-050 F0OO ROO 3

47

The END instruction, with the operand MAIN, causes CAL/32 to
output information identifying the location MAIN as the starting
location of the program. The loader and the operating system use
this information to ensure that +the program starts at the
requested location. If there is no operand, the END instruction
merely terminates the assembly process without outputting any
loader information. The END instruction 1is required in all
CAL/32 programs.

3.8.7.3 Copy Library (CLIB) Instruction
This instruction allows the user to specify or change 1library
files from within a program. It has the form:

CLIB vol:fname.ext

Each CLIB statement logically concatenates the new library file
(operand of CLIB) +to any existing 1library file. If the new
library file cannot be assigned, CAL/32 will log an error message
and pause.

3.8.7.4 Copy (COPY) Instruction
This instruction allows the programmer to insert source code from

library files into the source <code received from the regular
source input file. It has the form:

NAME CPERATICN CGPERAND
A symbol COPY A symbol[,vol:fname.ext]
(optional) (required)

CAL /32 assumes that the library file was assigned to 1lu 7 (see
Appendix A). CAL/32 also assumes that the file is made up of
80-character records. It =searches through the 1logical file,
looking only at the first 10 characters of each record until it
finds a file label of the form:

RECORD PCSITION CONTENTS
1 and 2 * *
3 through 10 A valid symbolic name of

from 1 to 8 characters

in which the symbolic name exactly matches +the symbol in the
operand field. If the search is unsuccessful, CAL/32 logs the
nessage:

CCEY ERRCR: XXXXXXXX

3-4% 48-050 FOO ROO

in which xxxxxxxx 1s replaced by the name of the file being
soughte. This might happen 1in the case of 1incorrect file
assignment. The oberator can change the assignment and resume
the assembly process frcm the location of the COPY instruction.
The COPY instruction allows only one operand. The progranmer
must provide one COPY instruction for each file to be copied into
the source strean.

If the optional second operand is supplied, CAL/32 will assign
and search only that physical file and ignore any files logically
attached by CLIB. If the file cannot be assigned, CAL/32 will
log an error message and pause.

The cory process terminates when an END statement is encountered
in the file, or when a record with either /* or /& in the first
two character positions is encountered. Where an END instruction
is encountered in the copy file, it does not mean the end of the
source file but only the end of the copy file. At this point,
CAL/32 resumes reading frem the source input file. COPY
instructions may not appear in files which are themselves being
included in a source program by means of a COPY instruction.

3.8.7.5 File Copy (FCOPY) Instruction
The assembler instruction FCOPY allows the user to copy an entire
library file. It has the fcrm:

FCOPY vol:fname.ext

When FCOPY is in effect, a /* starting in column 1 or an END 1in
the op code field will be skipped, and copying will continue
until an end of file is reached. If the file cannot be assigned,
CAL/32 will log an error message and pause.

3.8.7.6 Pause (PAUSE) Instruction

The PAUSE instruction allows the programmer to halt the assembly
process. It has the form:

NAME OPERATION OPERAND
A symbol PAUSE None
(optional) (ignored)

The PAUSE instruction temrorarily halts the assembly process.
When the assembler encounters a PAUSE instruction, the assenmbler
requests the operating system under which it 1is running to
suspend execution. The =system notifies the operator. The
operator can resume execution of the assembler at the instruction

48-GS50 FOO ROO 3-49

— — —— —

immediately following the PAUSE instruction by using the
operating system command CONTINUE. For example, the PAUSE
instruction can be used by the operator to reassign a copy file,
such as:

COPY REGEQUS COPY REGISTER EQUATES
PAUSE
COPY COMBLKS COPY COMMON BLOCKS

3.8.7+.7 Squeeze (SQUEZ) Instruction

The SQUEZ instruction puts CAL/32 into a mode in which it
performs a limited amount of space optimization. It has the
form:

NAME OPERATION OPERAND
A symbol SQUEZ A symbol or
(optional) expression (optional)

When in optimization mode, CAL/32 makes multiple passes over the
source input. During each pass, 1t attempts to reduce long
instructions (48 and 32 bits) to shorter forms (32 and 16 bits).
The value of the operand expressions sets the maximum number of
passes. If CAL/32 can complete the optimization in fewer passes,
it stops the optimization process and completes the assembly.

The value of the operand expression must be an absolute number
hetween 1 and 99. Any symbols used in the expression must have
been previously defined. If the operand value is 0, or if there
is no operand, CAL/32 assumes a maximum of 9 passes. :

NOTE

If +there are user induced errors in the
source stream (illegal mnemonics or
undefined symbols), CAL/32 terminates the
squeeze operation and goes on to produce

the final assenmbler output. Some
instructions in this ocutput may have been
squeezed, depending on where in the

process the errors vwere discovered.

CAL/32 performs three types of space optimization:

1. Changes RX3 instructions to RX2 or RX1

2. Changes operation codes to allow the use of an eqguivalent,
tut shorter, instruction

3. Eliminates unconditional branch 1instructions +to the next
halfword location

3-50 48-050 FOO ROO

An example of the first type of optimization 1is the forward
reference instruction. In this Ainstruction, the operand is
defined in the program at some point beyond the instruction to
which it refers.

Example:

A R1,VALUE

VALUE DCF F*125°

When CAL/32 processes the ALD instruction, it cannot tell if the
location of the second cperand, identified by the symbol VALUE,
is within the range of either an RX1 or RX2 instruction. It has
to assume that an RX3 instruction 1is necessarye. By making
additional passes over the source input after all addresses have
been resolved, CAL/32 has the needed information to determine if
the reference to VALUE is within the range of either an RX1 or an
BRX2 instruction and make the substitution.

An example of the second tyre of optimization is:
LT k3,-1
In the optimization mode, CAL/32 reduces this instruction to:

LCS R3,1

which reduces the langth of the instruction from 48 bits to 16
bits, without <changing the effect. Depending on the processor,
the substituted instruction might be faster or slower than the
original instruction.

NOTE
CAL/32 <changes an operation code only in
the object outpute. The original
instruction remains in the 1listing,

flagged with an asterisk.

ug-050 FOO ROO 3-51

The third type of optimization does not occur in normal
programming, but it does sometimes appear in compiler generated
CAL/32. For example:

ST R1,SAVE
B CONTINUE
CONTINUE L R1,TEMP

In this case, CAL/32 simply eliminates +the unnecessary branch
instruction, although the branch instruction does appear in the
assembly listing, flagged with an asteriske.

More than one SQUEZ instruction can appear in the progranm. The
first SQUEZ instruction sets the number of additional passes.
Subsequent SQUEZ instructions put CAL/32 back into optimization
node after a NO SQUEZ instruction (described below) took it cut
of the optimization mode. Operands may appear in the subsequent
SQUEZ instructions, but they are ignored.

Because CAL/32 looks at only one instruction at a time, and
because its global data is limited to the symbol table, squeezing

might introduce errors intc the progranm. This is most likely to
happen when data and instructions are mixed.

Example:

BTC 8,L00P1

L.OOP1 EQU *

BFC 0,L00EF2

LS 26

ALIGN 4
CONST LC F*256"
LOOP2 EQU *

[y

—59 48-050 FOO ROO

If on one pass, CONST is already aligned on a fullword boundary.,
the branch to LOOP2 can be converted to a short format branch.
A subsequent pass may allcew the branch to LOOP1 to be shortened.
When this happens, CONST is no longer on a fullword boundary, and
CAL/32 adds two to the location counter to align it properly.
This forces LOOP2 out of the range of a short branch instruction.
CAL/32 will recover from this situation by changing the branch
instruction back to its original format and marking it internally
as unsqueezatkle.

3.8.7.8 Squeeze Related (NOSQZ, ERSQZ, NORX3) Instructions

There are three additional instructions that <can be used to

control squeezing and oprtimization of the source input file.
They have the form:

NAME OPERATION OPERANTL
A symbol NOSQZ Not used
(optional) (ignored)
A symbol ERSQZ Not used
(optional) (ignored)
A symbol NORX 3 Not used
(optional) (ignored)

The no squeeze instruction (NOSQZ) has the effect of turning off
the optimization processes initiated by a previous SQUEZ
instruction. Optimization <can bhe restarted by a subsequent
sgqueeze statement. NOSQZ overrides a squeeze start option.

The error squeeze instructiocn, (ERSQZ) can be used with the SQUEZ
instruction. It forces CAL/32 to continue squeezing even after
assembly errors are detected.

The no RX3 instruction (NOR¥3) provides a simpler form of
optimization during a ncrmal Z-pass assembly.\ Once this
instruction is encountered, CAL/3Z forces RX instructions to the
RX1 or RX2 format. RX3 instruction formats are still generated
if double indexing is specified, or if the instruction references
an element of a common blcck or an externally defined symbol.
This instruction can be safely used in programs that are smaller
than 16kbe. It must not be vused in segmented (pure and impure),
programse.

ug-050 FOO ROO

w

-53

3.8.7.9 Sequence Checking (SQCHK, NOSEQ) Instructions

The sequence checking instructions enable and disable the
sequence checking of source. They have the form:

NAME OPERATION OPERANTD
A symbol SQCHK Not used
(optional) (ignored)
A symbol NOSEQ Not used
(optional) (ignored)

The sequence check instruction (SQCHK) causes CAL/32 to compare
each source statement sequence number with the number of the
preceding statemente. Each successive number must be greater in
the ASCII collating sequence than the preceding one. CAL/32's
initial seguence value is equal to eight spaces, so that numbers
can be right Jjustified in the field without leading zeros. If a
source statement contains a value equal to or 1iess than +the
preceding statement, CAL/32 generates an error message. The
sequence fields of statements included in the program by a COPY
instruction are not checked.

The no seqguemnce check instruction (NOSEQ) disables the segquence
checking process. The sequence field of this instruction is
checked, if sequence checking was in effect at the time. The
default mode of CAL/32 is NOSEQ.

3.8.7.10 Scratch (SCRAT) Instruction

The scratch instruction causes CAL/32 to copy the source input
file to a scratch device during pass one. It has the form:

NAME OPERATION OPERAND
AR symbol SCRAT Not used
(optional) (ignored)

Subsequent passes over the source input file are read from the
scratch device. Since no statement preceding the SCRAT
instruction can be copied, the SCRAT instruction should be the
first statement in the prcgranm.

3.8.7.11 Pass Pause (PPAUS) Instruction

This instruction causes CAL/32 to issue a pause Tregquest to the
operating system at the end of each pass. It has the form:

NAME OPEEATION OPERAND
A symbol PPAUS Not used
(ignored) (ignored)

w
!

54 48-050 FOO ROD

The purpose of the PPAUS instruction is to allow the operator to
reset the source input file to the beginning for the next pass.
This is useful in situaticns where no scratch file is available,
and the source input file is not rewindable.

NOTE
Where neither the SCRAT instruction nor
the PPAUS instruction 1is used, CAL/32
issues a rewind command to the source
input 1lu at the end of each pass.

3.8.7.12 MNessage (MSG) Instruction

The message instruction allcws the programmer to log a message to
the system console. It has the form:

NAME OPERATION OPERANTL
A symbol MSG Text
(optional)
The operand field contains the text of +the message. All
characters following the ©operation field, up to and including
position 71, are sent to the system console as a message. This

instruction <can appear anywhere in the program, and the message
is logged on every pass.

3.8.7.13 Batch Assembly (BATCH, BEND) Instructions
The batch assembly instructions provide a means for assembling

more than one complete program in a batch streame. They have the
form:

NANME CPERATICN CPERANT
None PATCH Not used
(illegal) (ignored)
None BEND Not used
(illegal) (ignored)

The batch instruction (BATCH) initiates the batch stream. It has
the effect of redefining the END instruction so CAL/32 does not
terminate itself at the end of the required number of passes.
Rather, CAL/32 terminates the assembly of that particular
program, reinitializes itself, and starts reading the next
program from the source input file. The BATCH instruction must

4e-050 FQCO ROO 3=55

be the first statement in the stream of programs. If it is used,
CAL/32 assumes that there is a scratch device. Options specified
in the operating system START command remain in effect for the
entire batch assembly (see Appendix A).

The batch end instruction (BEND) terminates the batch assembly.
It must appear immediately following the END instruction in the
last program cf the stream. The BEND instruction tells CAL/32 to
go to end of task when final assembly is completed. The end of
task code returned is equal to the highest code generated during
the batch assemblies. CAL/32 will also terminate a Dbatch
assembly normally if end of file or end of medium status is
detected when attempting to read the first statement after the
END of an assembly.

3.8.7.14 Unreferenced Externals (UREX, NUREX) Instructions

These instructions permit or suppress the output of object code
for unreferenced externals.- The default state is UREX. They
have the fcrm:

NAME OPERATION OPERAND
Not used UREX Not used
(ignored) (ignored)
Not used NUREX Not used
(ignored) (ignored)

3.8.8 Conditional Assembly Instructions

These instructions allow the programmer to include in the progranm
code seguences that may or may not be assembled, depending on
some condition. By . simply reassembling the program and
redefining the conditions, a single program can be made to serve
more than one purpose.

3.8.8.1 Compound Conditional (IFx, ELSE, ENDC) Instructions

There are three instructions in this set. They have the form:

NAME OPERATION OPERAND
A symbol IFx A symbol or
(optional) expression
A symbol ELSE A symbol or
(optional) expression
(ignored)
A symbol ENDC A symbol or
(optional) expression

(ignored)

3-56 48-050 FOO ROO

The compound conditional instructions are used to provide
complete conditional assembly capability. A symbol used in the
name field of an IF instruction is defined if the condition
described by the instruction is true. A symbol used in the name
field of an ELSE instruction is defined if the correspondng if
condition is false. Symbols wused in the name fields of end
condition instructions are always defined.

In the first instruction, the compound IF instruction, X
represents the actual condition.. Following 1is a list of the
various mnemonics for these instructions:

MNEMONIC MEANING MNEMONIC MEANING
IFZ If zero IFNM If nonminus
IFNZ If nonzeroc IFE If even
IFP If plus IFO If odd
IFNP If nonplus IFU If undefined
IFN If minus IFD If defined

CAL/32 tests the value of the operand when processing compound IF
instructions. If the operand meets the <condition specified by
the operation, the instructions immediately following the IF
instruction are assembled. If the operand does not meet the
specified condition, the instructions immediately following the
IF¥ instruction are not assembled.

The FLSE instruction reverses the state of the assembler as set
by a previous compound IF statement. If the assembler was not
assembling code because a previous IF statement turned off the
assembly process, the aprearance of an ELSE instruction would
cause the assembler to resume assembling, starting with the
instruction immediately fcllowing the ELSE instruction. If the
ascsembler was assembling code because a previous if condition was
met, the appearance of the ELSE instruction would cause the
instructions immediately following the else instruction not to be
assembled. An ELSE instruction is not required to appear in a
block of conditionally assembled code.

The third instruction of this set 1s the end condition
instruction (ENDC) which terminates the presently active
condition. Normal assembly process resumes with the next
instruction. Any compound IF instruction used in the program

must have a corresponding ENDC instruction. If the end of the
source file 1is reached before an existing condition terminates,
CAL/32 terminates the condition, generates an error message, and
resumes normal assembly cn the next pass. If the operand of the
IFx contains a forward reference, CAL/32 will perform any
additional ©passes reaguired to define all symbols. As an example
of conditional assembly, consider a subroutine that can receive
its parameters in either of two ways: first, the parameters are
located by referencing a list of addresses
immediately following the branch and 1link instruction in the main

48-050 FOO ROO 3-57

program; second, the address of the actual parameter 1list 1is
contained 1in register 14. The subroutine could handle both of
these situations with conditional assembly, as follows:

IFZ CALLA1

SUB LH R1,0(RF) GET FIRST PARAMETER ADDRESS
LH R1,0(R1) GET FIRST PARAMETER
LH R2,2(RF) GET SECOND PARAMETER ADDRESS
LK R2,0(R2) GET SECOND PARAMETER
AIS RF, 4 ADJUST RETURN ADDRESS
ELSE LIST NOT IN LINE
SUB LH R1,0(RE) GET FIRST PARAMETER
LH R2,2(RE) GET SECOND PARAMETER
ENDC
RETURN BR RF RETURN TO CALLER

If at assembly time, the value of CAL1 is zero, the instructions
between the IF instruction and the ELSE instruction are
assembled, and the instructions between the ELSE instruction and
ENDC instruction are not assembled. If the value of CAL1 is
other than 2zero, only the instructions between the ELSE
instruction and the ENDC instruction are assembled.

Another example of conditional assembly shows how conditions can
be nested:

IFNP LGTH CONDITION #1

* ERROR 1 LGTH IS NOT POSITIVE
ELSE CONDITION #1
IFZ SRC-DST CONDITION #2

* ERROR 2 SRC IS EQUAL TO DST
ELSE CONDITION #2
LHI R1,LGTH
IFP SRC-DST CONDITION #3

LHI R2,SRC

LHI R3,DST .

ELSE CONDITION #3
LHI £2,DST

LHT R3,SRC

ENDC END CONDITION #3
ENDC END CONDITION #2
ENDC END CONDITION #1

3-58 48-050 FOO ROO

This set of nested conditionals depehds on the values of three
symrbols: LGTH, SRC, and DST. If LGTH is negative or zero, only
the comment:

* FERROR 1 LGTH IS NOT POSITIVE

is produced. If LGTH is positive, and SRC is equal to DST, only
the second comment:

* ERRCR 2 SRC IS EQUAL TO DST

is produced. If LGTH is positive, and SRC is greater than DST,
the following instructions:

LHI R1,LGTH
LHI R2,SRC
LHI R3,DSC

are assembled. If LGTH is rositive, and SRC is less than DST,
the following instructions are assembled:

LHI R1,LGTH
LHI R2,DST
LHI R3,SRC

The user must be careful, when using a forward reference in the
operand field of the IFU instruction, to avoid the following type
of code:

IFU A

B EQU 8
ENDC

A EQU 1
IFNZ B
LS 10
ENDC

B EQU 0
END

48-05C FOO ROO : 3-59

—— s —— — —

CAL/32 will flag this code with an "M001 xxxTOP" error where XxxX
is PURE, I¥P, or ABS, depending upon the location counter used.

NOTE

A condition once set by an IF instruction
remains in effect until the corresponding
ENDC instruction is encountered. Thus,
when the first condition was met, the
first comment was precduced. The ELSE
instruction reversed this state, and no
subsequent code was assembled.

3.8.8.2 Simple If (IF) Instruction

The simple IF instruction is retained in CAL/32 to maintain
compatibility with previous assemblers. It has the form:

NAME CPERATICN CPERANTD
A symbol IF A symbeol or
(optional) expression

What CAL/32 does on encountering an IF instruction depends on the
value of the cperand. If the operand has a nonzero value, CAL/32
assembles all statzments following the IF instruction, until the
end of the source file 1is reached, or until another 1IF
instruction is encountered in which the operand value is zero.
At this point, CAL/32 stops assembling the source input until the
END instruction, or another IF instruction with a nonzero operand
value, 1is encountered. If the operand contains a forward
reference, CAL/32 will perform any additional passes reguired to
define all symbols.

NOTE

Co not wuse simple IF instructions and
compound IF instructions in the same
vrogram. Simple IF instructions must not
be used in nested conditionals.

3.8.8.3 Do (LO) Instruction

The DO instruction provides a form of conditional and multiple
assembly capability. It has the form:

NAME OPERATION OPERAND
A symbol DO A symbol or
(optional) expression

3-6C 48-050 FO0O ROO

The PO instruction causes the statement immediately following it
to be assembled as many times as specified by the value of the
operand. The value of the cperand must be between 0 and 32,767.
If the value of +the operand 1is 0, the next instruction is
skipped. If the operand contains a forward reference, CAL/32
will perform any additional passes required to define all
symbols.

The user must guard against circular location counter dependency,
as in the following example:

A EQU *
bo B-A
DS 2

B EQU *
END

CAL/32 will flag an "M0O1 xxxTOP" error, where xxx is PURE, 1IMP,
or ABS, depending upon the current location counter.

3.8.9 1Instructions for Data Strucfures

These instructions allow the programmer to define complex data
structures. Some of these instructions allow the programmer to
define and initialize data blocks compatible with FORTRAN common.
3.8.9.1 Structure Definition (COMN, STRUC, ENDS) Instructions

Structure definition instructions are used to define data
structures. They have the form:

NAME OPERATION OPERAND
A symbol COMN Not used
(optional) (ignored)
A symbol STRUC Not used
(optional) (ignored)
A symbol ENLS Not used
(optional) (ignored)

The common instruction (CCMN) defines FORTRAN compatible common
blockse. The structure instruction (STRUC) defines other types of
data structures. The end structure instruction (ENDS) terminates
both common definitions and data definitions.

The symbol in the name field of a COMN or STRUC statement
contains the absolute wvalue of the length of the structure or
commen blocke The symbol specified with the ENDS instruction is
associated with the current value of the offset counter.

48-050 FOO ROO 3-61

— e —— e

A symbol 1is always required in the name field of a COMN
instruction. To define FORTRAN compatible blank common, a
special symbol consisting of two slashes (//) must appear in the
first two positions of the name field. The remaining positions
must be blank. If the name field is blank, CAL/32 will assume
{(//) was intended for a FORTRAN blank common.

The scope of the common block consists of all the storage
definitions between the COMN instruction itself and the next ENDS
statement. Only define storage, origin, and equate instructions
are perritted between a COMN and its corresponding ENDS
instruction. The define storage instructions included within the
common block definition do not actually reserve storage; they
define offsets within the common block. Origin statements can be
used to modify the offset ccunter. The equate instructions can
be wused to define symltols relative to elements in the common
block. Common blocks cannot be nested within other common blocks
or within other structure definitions.

The following 1is an example of the definition of FORTRAN
compatible common blocks:

c FORTRAN PRCGRAN
INTEGER*2 I,J,K,KK,K2,L
COMMON AC10), I, J(3,20)
COMMON/COMONE/B(30), K(4), KK
CCMMON/COMTWO/X,Y,Z,K2,L(24)

The CAL/32 code to define these common blocks is:

/7 COMN CEFINE BLANK COMMON
A DS 40 TEN FLOATING POINT NUMBERS
I ps 2 ONE TWO-BYTE INTEGER
J DS 120 SIXTY TWO-BYTE INTEGERS
ENDS END OF BLANK COMMON DEFINITION
COMONE COMN DEFINE COMMON BLOCK COMONE
B) 120 THIRTY FLOATING POINT NUMBERS
K DS 8 FOUR TWC-BYTE INTEGERS
KK DS 2 ONE TWO-BYTE INTEGER
ENDS END COMMON BLOCK COMONE
COMTWO COMN - DEFINE COMMON BLOCK COMTWO
X DS 4 ONE FLOATING POINT NUMBER
Y DS 4 ONE FLOATING POINT NUMBER
Z LS 4 ONE FLOATING POINT NUMBER
K2 DS 2 CNE TWO-BYTE INTEGER
L LS usg TWENTY FOUR TWO-BYTE INTEGERS
ENDS
Common block definitions must precede any statements that
reference the common block. Referencing a common element plus a
displacement is permitted in the operand of a machine

instruction, in a define constant instruction, or in a block data
origin instruction defined Lelow.

3-62 48-050 FOO ROO

STRUC is used to define general purpose data structures. The
score ©of this data structure consists of all the storage
definitions between the structure instruction and its
corresponding ENDS instruction. Only define storage, origin, and
equate instructions «can be used in a structure definition. The
define storage instructions do not actually reserve storage; they
define offsets within the data structure. Origin statements can
be used to modify the value of the offset counter. Equa te
statements can be used to define names relative +to elements in

the data structure. Data structures cannot be nested within
other data structure definitions or within common block
definitionse.

To define a linked 1list structure, each node of which contains a
2-byte forward pointer, a 2-byte backward pointer, six bytes, and
a set of values such as: four bytes, one byte, one byte and six
bytes, the programmer might write:

NODE STRUC
FWD DS 2 DEFINE FORWARD POINTER
EAK DS 2 DEFINE BACKWARD POINTER
VALA LS 4 DEFINE FOUR-BYTE VALUE
VALB DS 1 DEFINE ONE-BYTE VALUE
VALC DS 1 DEFINE ONE-BYTE VALUE
VALD DS 6 DEFINE SIX-BYTE VALUE
ENDS

The effect of this definiticn is the same as:

NOLE EQU 16
FWD EQU 0
EAK EQU 2
VALA EQU 0
VALB EQU 8
VALC EQU 9
VALD EQU 10

Once NODE ics defined, it can be used as follows:

-

LHT R5,POCL GET ADDRESS OF POOL

LB RO,VALB(RS) GET VALUE B OF FIRST NODE

LH R5, FWE(RS) GET POINTER TO NEXT NODE
POOL DS 1G0*NODE

48-050 FO0O ROO 3-63

Data structure definitions must precede any references to their
elements in RX3 format instructions, unless the NORX3 instruction
or the SQUE7 instruction was used.

3.8.9.2 Structure Initialization (BDATA, BORG) Instructions
Structure initialization instructions define FORTRAN compatible

block data subprograms that consist of labeled common blocks.
They have the form:

NAME OPERATION CPERAND
A symbol BDATRA Not used
(optional) (ignored)
A symbol BORG Not used
(optional) (ignored)

The block data instruction (BDATA) must precede any statements
that generate data, and the block data subprogram must not
contain any executable code. The common blocks to be initialized
must be defined at the beginning of the block data subprogram.
Once they are defined, the block origin instruction (BORG) is
used to initialize the data elements of the common blocks. The
operand of the block origin instruction consists of the common
block name followed immediately by the element name or its
disrlacement enclosed in parentheses. Only one operand 1is
allowed. The following is an example of a block data subprogram:

EDATA
*
* COMMON BLOCK DEFINITION
*
BLK CCHN
A DS 4
R DS 40
Y DS 20
Z DS 4
ENDS
*
* INITIALIZE ELEMENTS A, B+8, AND Z
*
BORG BLK(A) REFERENCE BY NAME
DC E*10°
BORG BLK(64) REFERENCE BY DISPLACEMENT
DC E'20"
BOKG BLK(B+8) REFERENCE BY NAME AND
DISPLACEMENT
DC E*30°
END

This program initializes A to a floating point value of 10; Z to
a floating point value <o¢f 20; and the third fullword, B, to a
floating point value of 30.

3-6U 48-050 FQOO ROO

3.8.10 Listing Control Instructions

These instructions allow the programmer to exercise some control
over the format and the content of the source listing produced by
CAL/32 on the final pass of the assembly.

3.8.10.1 Listing Identification (PROG, TITLE) Instructions
Listing identification instructions are used to force CAL/32 to

rrint header information at the top of each page of the source
listing. They have the fcrm:’

NAME OPERATION OPERAND
A symbol PROG Text
(optional)
A symbol TITLE Text

(optional)

The program instruction (FROG) specifies the primary heading for
each page of the listinge. In addition, it causes the symbcl in
the name field to be placed at the beginning of the object file
for program identification. On 16-bit assemblies, only the first
six characters of the name field are put in the object file.

All characters in the operand field (a maximum of 56) up to and
including position 71 are printed in the primary header line of
each page of the listing. If more than one PROG instruction is
encountered 1in a module, the last PROG instruction will override
all previous ones.

The title instruction (TITLE) is a way to specify subheadings
that <can be changed within the programe. The text contained in
the operand field up to and including position 71, is printed on
the 1line immediately below the heading produced by the PROG
instruction. As many TITLE instructions as required <c¢an appear
in the source input file. Fach time a TITLE instruction is
encountered, CAL/32 starts a new listing page with the new
subheading when the next printable gstatement is processed.
Subsequent pages contain this same subheading, until another
TITLE instruction appears. If two or more TITLE instructions
occur together in seguence, only the last TITLE instruction
affects the subheading content since a new page will be printed
only when a printable statement is encountered.

TITLE instructions themselves are not printed although they are
included in the statement count.

48-050 FOO ROO 3-65

3.8.10.2 Format Control (LCNT, EJECT, SPACE, WIDTH) Instructions

Format control instructions allow the programmer to control the
format of the listing. They have the form:

NAME OPERATION OPERAND
A symbol LCNT A symbol or
(optional) expression
A symbol EJECT A symbol or
(optional) expression
A symbol SPACE A symbol or
(optional) expression
A symbol WIDTH A symbol or
(optional) expression

The operand field of the line count instruction (LCNT) specifies
the number of 1lines to be printed on each page of the listing.
The operand value must be an absolute number no greater than 99
and no less than 10. The default value of the line count is 58.

Whenever the eject instruction (EJECT) appears, it overrides the
specified or default line count, and causes CAL/32 to start a new
page when the next printable statement is processed. The new
page starts with whatever headings are in use. This statement is
included in the statement count, but it is not printed. If one
or more EJECT instructicns occur together in sequence, only one
page i1s advanced since the actual advance occurs only when a
printable instruction is encountered. EJECT instructions
themselves are not printed although they are included 1in the
statement count.

The operand field of the space instruction (SPACE) specifies the
number of lines to be =skirped in the listing. The value of the
cperand must be absolute. If the number of lines to be skipped
exceeds the number of 1lines remaining on the page, this
instruction has the same effect as an EJECT instruction and is
included in the statement ccunt, but not printed.

The operand field of the width instruction (WIDTH) specifies the
number of coclumnhs to be rrinted across the page. The value of
the operand field must be an absolute number, not greater than
132 and not less than 64. The default value is 132.

(98]

-6€ 48-050 FO0O ROO

3.8.10.3 Content Control (NLIST) Instructions

The content control 4instructions control the content of the
listinge. They have the form:

NAME OPERATION OPERAND
A symbol NLIST Not used
(optional) (ignored)
A symbol LIST Not used
(optional) (ignored)
A symbol LSTC Not used
(optional) (ignored)
A symbol NLSTC Not used
(optional) (ignored)
A symbol ERLST "Not used
(optional) (ignored)
A symbol LSTM Not used
(optional) (ignored)
A symbol NLSTHM Not used
(optional) (ignored)
A symbol FREZE Not used
(optional) (ignored)
R symbol NFEEZ Not used
(optional) (ignored)
A symbol CROSS Not used
(optional) (ignored)
A symbol NCROS Not used
(optional) (ignored)
A symbol LSTUR Not used
(optional) (ignored)
A symbol NLETU Not used
(optional) (ignored)
A symbol WARN Not used
(cptional) (ignored)
A symbol NWARN Not used
(optional) (ignored)

The no list instruction (NLIST) suppresses listing of the source
program. Only those statements that contain errors are printed.

The 1list instruction (LIST) reverses this situation, and all
source statements are printed. The assembler default is to print
all source statements.

The list conditiomals instructicn (LSTC) permits printing of
unacssembled conditional assembly statements. This is the normal
default mode of the assembler.

The no list conditionals instruction (NLSTC) suppresses printing
of unassembled conditidnal cstatements.

48-050 F0OO ROO 3

67

The error list instruction (ERLST) causes CAL/32 to print all
assembly errors by tvype, along with number of each statement on
which the error occurred, immediately after symbol table listing.

The 1list macro instruction (LSTM) permits printing of all macro
expansions that are part of the source input file. The macro
instruction, the expanded scurce code, and the generated object
code are printed. & plus character (+) precedes each statement
number in the expanded source to identify those statements as
part of a macro. This is the normal mode of the assembler.

The no list macro instruction (NLSTM) suppresses printing of
macro expansions. Only the macro statement itself is printed.

The freeze (FREZE) instructicn halts incrementing of the
statement counter when a copy file or macro expahsion are
included in the source inrut file. All statements in the copy
file or macro exransion receive the same statement number as that
of the COPY instruction. This is the normal mode of the
assembler.

The no freeze (NFREZ) 1instruction increments the statement
counter for every statement encountered in the source input.

The cross reference (CR0OSS) instruction uses CAL/32 to generate
and print a cross reference listing of all the symbols used in
the program. Fach symbol is listed in alphabetical order, along
with identification of the statements in which it is referenced.
The statement in which it is defined is flagged with an asterisk.
This is the normal mcde of the assembler.

The nc cross (NCROS) instruction prevents +the generation of a
cross reference listing.

The 1ist wunreferenced symbols (LSTUR) instruction causes
unreferenced <symbols to bhe listed in the symbol list. This is
the normal mode of the assenmbler,

The no list unreferenced symbols (NLSTU) instruction suppresses
+he listing ¢f unreferenced symbols in the symbol list.

The warning (WARN) instruction allows CAL/32 to flag warnings in
the listing and tally the number of warnings encountered. This
is the normal mode of the assembler.

The no warning (NWAKN) instruction suppresses both the warnings
and the warning count from the listing.

3.9 ASSEMBLY LISTING

The assembly listing consists of two sections: the source and
object program statements and the symbol cross reference table.
The format for printing the source and object program statements
is basically the same fcr either 16-bit assemblies or 32-bit
assemblies. The only difference is in the number of characters
printed for the location counter and the object data.

3-68 US-OSO-FOO ROO

¢ In 16-bit assemblies, only four hexadecimal digits are printed
for the location counter, and a maximum of eight hexadecimal
digits for the data. The letter R is appended to the location
counter value if the relocatable location counter is being
used.

e In 32-bit assemblies, six hexadecimal digits are printed for
the location counter and a maximum of 12 hexadecimal digits
for the object data. In addition, the actual second operand
address of RX2 and SF instructions is printed next to the
object data. This address is preceded by an equal 3ign (=).
The letter I is aprended to the location counter if the impure
location counter is being used. The letter P is appended to
the location counter if the pure 1location counter 1is Dbeing
used.

@ In both 16- and 32-bit assemblies, the letter F is appended to
the data field to indicate that the statement references an
externally defined symbol, a symbol in a common block, or an
undefined symbol.

The statement number is a decimal number between 1 and 99999.
Fach source statement read by the assembler is assigned a
unique statement number, beginning with 1, =xcept for source
statements from a copy file or macro expansion with the FREZE
instruction. The first column of the listing can contain any
of the following characters:

CHARACTER MEANING

1 The name field of this instruction contains a
symbol that was redefined by an EQUATE
instruction.

? A machine instruction not available on the
target machine was used; an equivalent
instruction existed and was substituted, or

a machine dependent instruction was wused in
assembling a common mode program, oOr

an assembler instruction was used with an
improper but assemblable operand, or

a SCRAT card was encountered as other than the
first statement or when batch mode is in
effact, or

an EXTRN/ENTRY sywmbonl is 1longer than 6
characters for target 16, or

a DS instruction was encountered in a ©pure
section.

* A machine 1instruction was shortened or
mcdified by squeezing.

48-050 FOO ROO ‘ 3-69

The following information is printed at the beginning of the
cross reference listing:

® Start options in the START command

® The number of errors detected by the macro processor if the
program assembled was generated by the macro processor.

® Number of CAL/32 errors and the page number of the last error

® Number of CAL/32 warnings and the page number of the last
warning

® Number of passes
® Message indicating the use of symbol table paging to disk

® Message indicating abncrmal termination of squeezing because
of squeeze-induced errors

® Message indicating the amount of required tahle space

Following this, each symbol used in the program is 1listed in
alphabetical order along with its value. If a cross reference
was requested, the statement number of each statement containing
a reference to the symbol is printed following the value. The
statement number in which the symbol is defined is printed with
an asterisk (*) following. Associated with each symbol is a flag
used to indicate one of the following:

FLAG MEANING

¥ Properly defined local symbol
M Multiply defined symbol

U Undefined symbol

< Entry syrbol

<U Undefined entry

> Externally defined symbol

>H Multiply defined external

* % Unreferenced external

The flag is rrinted in the first column of +the 1line <containing
the symbol.

If an error is detected in a source statement, +the following
message is printed immediately after the error statement:

Annn

R indicates the general type of error, and nnn 1is a decimal
number that further identifies the error. Appendix B contains a
conplete list of CAL/32 error codes.

3-70 48-050 FCO ROO

CHAPTER 4
COMMON MODE PROGRAMMING

4.1 INTRODUCTION

A useful feature of Common Assembly Language/32 (CAL/32) is mode
programming where a single source file can be used to produce
object code for either 16-bit processors or 32-bit processors.
In creating a common mode source file, the programmer must be
aware of certain restrictions and safeguards and, in some <cases,
must use special operaticn mnemonics that can be translated into

either 16-bit or 3Z-bit operationse.

4.2 ADDRESS OPERATION INSTRUCTIONS

Addresses for 16-bit processors coccupy 16 bits, a halfword. For
the 32-bit processors, addresses occuby the least-significant 24
bits of a fullword. In ncrmal mode, CAL/32 makes no distinction
between operations on address quantities and operations on other
data types. However, when writing in common mode, the programmer
must use svecial operation mnemonics for address operations so
CARL/32 can translate them into the correct target machine code.
Table 4-1 lists these instructions, their nmnemonics, and the
target machine translations.

TABLE 4-1 COMMON MODE ADDRESS OPERATIONS

I ~ I
] | | TRANS- | TRANS- |
| INSTRUCTION | MNEMONIC | LATION | LATION |
| el — i oAl il fimeeffiipe e el i e~ — I
Add Address AA A AH
Add Addrecs=s Immediate AAI ATl AHI

=
[o})
Q

I I ! |

o I | I

Address RR | AAR | AR | AHR [
I I I !

I | I I

Add Address to Memory AAM AM AHM

Compare Address CA C CH
R e |
| Compare Address Immediate | CAI | CI | CHI |
| Compare Address RR | CAR | CR | CHR I
| Compare Logical Address | CLA | CL | CLH |
| Compare Lcgical Address | | | |
| Immediate | CLAT | CLI | CLHI I
| Corpare logical Address RR | CLAR | CLR | CLHR |
| Immediate | CLAI | CLI | CLHI |

48-G50 FOO RCO 4-1

TABLE 4-1 COMMON MODE ADDRESS OPERATIONS (Continued)

- wh an e e . . - — e - . . e e G S Gw G G M M S e e . S e e = e T W T WS G dn e e AN G am e . A G - -

I |
| | | TRANS- | TRANS- |
I I

INSTRUCTION | MNEMONIC | LATION | LATION
'::::::::::::::::::::::::::=:::::::::===============::==:=::z:: '
Load Address LDA L LH
Load Address Immediate LDAI LA LHI

I I I |
I | I |
Load Address RR | LDAR | LR | LHR |
I | | I
I | | |

AND Address NA N NH

AND Address Immediate NAT NI NHI
|-==-===m- e |

AND Address RR NAR NR NHR

OR Address OA 0 OH

| | | |

| | | |
OR Address Immediate | OAI | OI | OHI

| | | |

| | | |

— e — — — —

OR Address RR OAR OR OHR
Subtract Address SA S SH
... I
Subtract Address Immediate SAI ST SHI
Subtract Address RR SAR SR SHR

| | | |
| | | |
Shift Left Address Arithmetic | SLAA | SLA | SLHA |
|] | |
| | | |

Shift Left Address Logical SLAL SLL SLHL
Shift Right Address Arithmetic SRAA SRA SRHA
___ I
Shift Right Address Logical SRAL SRL SRHL
Store Address STA ST STH

| | |

| I |
Test Address Immediate | TAI | TI | THI

| | I

| | |

Exclusive OR Address XA X XH
£xclusive OR Address Immediate XAI XI XHI
Exclusive OR Address RR XAR XR XHR
Multiply Address MA M

Civide Address
LCivide Address KR

— e — — — — —— — — — —— —— — o— — ——— —

=
jo =l

| | I

| | |
Multiply Address RR | MAR | MR | MHR

| | |

| | |

CAL/32 translates these instructions into halfword or fullword
instructions, depending on the target machine. For example:

LDA R1,ADLC1

AR R1,DISP
ADD1 bDC A(TABLE)
CISP LC 2

4-2 48-050 FOO ROO

When CAL/32 assembles these instructions for 16-bit execution, it
produces object code that wculd normally correspond to:

LH R1,ADD1
AH R1,DISP

For 32-bit prcgrams, CAL/32 rroduces code that would correspond
to:

R1,ADLC1
E1,DISP

e e @

Translation is at the object code 1level; CAL/32 prints the
original common mode code on the listing.

4.3 COMMON MODE IMMEDIATE COPERATIONS

CAL/32 provides a common mode immediate operation for the 1load
immediate LDI instruction. Depending on the target machine, the
LDI is translated into a fullword-referencing LI instruction for
the 32-bit machine, or a halfword-referencing LHI instruction for
the 16-bit machine, as follcws:

COMMON 32-BIT 16-BIT
INSTRUCTION MNEMCNIC TRANSLATION TRANSLATION
Load Immediate LDI LI LHI

4,4 COMMON MODE ASSEMBLER INSTRUCTIONS

In addition to all of the regular assembler instructions
described in Chapter 3, CAL/32 recognizes four assembler
instructions primarily for use in common mode programminge. Two

of these are data definition type instructions; the other two are
assembler control type instructions.

48-050 FOO ROO 4-3

4.4.1 Data Cefinition Instructions

The common mode data definition instructions are: detfine address
length constant and define address length storage. They have the
form:

NAME OFPERATICN OPERAND
A syhbol DAC One or more operands
(optional) separated by commas
A symbol DAS A symbol or
(optional) expression

4,4.,1.1 Define Address Length Constant Instruction

The define address length constant instruction is equivalent to

the define constant instruction. It is used in common mode
rrogramming to reserve storage to be initialized with address
length constantse. For 3Z-bit assemblies, the constants are

fullwords aligned on fullword boundaries. For 16-bit assemblies,
the constants are halfwords aligned on halfword boundaries.

4.4,1.2 Define Address Length Storage Instruction

The define address length storage instruction 1is equivalent to

the define storage instruction. In 32-bit assemblies, the
instruction reserves the specified amount of fullwords aligned on
a fullword boundary. In 16-bit assemblies, it reserves the

specified amount of halfwords aligned on a halfword boundary.
Examples of the use of these instructions are:

DAC A(TABLE)
CAS 16

44 48-050 FOO ROO

When assembled for 32-bit execution, the define address 1length
constant instruction generates a fullword containing the address
of TABLE. The define address length storage instruction reserves
16 fullwords of storage. When assembled for 16-bit execution,
these instructions cause CAL/32 to generate a halfword containing
the address of TABLE, along with a storage area of 16 halfwords.

NOTE
Define address length storage instruc-
tions can be used in common block and
structure definitions.

4.,4.2 Assembler Control Instructions

Two special assembler instructions control error checking. Their
form is:

NAME OPERATICN ~ OPERAND
A symbol CAL/3Z Not used
(optional) (ignored)
A symbol NCCAL Not used
(optional) (ignored)

The first of these instructions (CAL/32) establishes the common
mode and enables common mode error checking. In this mode, any
machine dependent instructicn causes a nonfatal error, and a
warning flag is printed on the assembly listing.

The NOCAL/32 instruction disables the common mode and its error
checking mechanisms until the next CAL/32 instruction is
encountered. This is the assembler default mode in which an
operation code mnemonic, not valid for the targeted processor but
for which there 1is a valid equivalent, is assembled using the
valid equivalent. A guestiocn mark (?) 1is then printed in the
left hand margin of the listing.

4,5 MIXED MOLE COMPUTATICNS

On 32-bit processors, mixed mode computations, such as adding a
halfword guantity to an address length guantity contained in a
register, can be performed. In general, any halfword arithmetic
or logical operation can be performed on address 1length
guantities contained in registers. The exceptions are: shifts,
multiply, and divide. The halfword forms of these instructions
should never be used with address 1length gquantities. Instead,
use the special address oreration instructions.

48-050 FOO ROO 4-5

4.6 GLOBAL SYMBOLS

The global symbols, ADC and LADC, are used primarily in common
mode programming. In 32-bit assemblies, ADC has a value of four,
the 1length in bytes of an address length constant. LADC has a
value of two, the log (base 2) of the address length. In 16-bit
assenmblies, ADC has a value of two, and LADC has a value of one.
Illustrated are these symbol uses in which a main program calls
a subroutine and passes parameters to the subroutine in a l1list of
addresses immediately following the branch and link instruction:

BAL RF,SUB
DAC A(PARM1),A(PARM2) ,A(PARM3)
RETURN EQU *

The subroutine picks up the parameters and calculates the return
address as followe:

SUB RIS RF,LALC ADJUST RF FOR
NAT PF,-ALC ALIGNMENT
LDA R1,0(RF) ADDRESS OF FIRST PARAMETER
LDA KE2,ADC(RF) ADDRESS OF SECOND PARAMETER
LDR R3,2*ADC(RF) ADDRESS OF THIRD PARAMETER
SUBEND 3*ADC(RF) RETURN TO CALLER

e ¢ THe o

The add immediate short instruction and the add address immediate
instruction are needed in the subroutine because alignment of
address constants in 3Z-bit assemblies can cause a halfword of
filler to be inserted between the branch and 1link instruction and
the first address constant. In this case, the address in
register 15 is +the address of this halfword, and these
instructions increment the address in register 15 to make it
point to the first address constant. If no filler is required,
because the first constant is naturally aligned on a fullword
boundary, register 15 points to the first constant, and these two
instructions have no effect.

4-6 48-050 FOO ROO

Another use of LADC is in shift instructions where a byte pointer
must be converted into an address pointer, as:

LB R1,INDEX GET BYTE POINTER

SLAL R1,LALC CONVERT TO ADDRESS POINTER
LDA R2,TABLE(R1) GET ADDRESS FROM TABLE

BR R2

In 16-bit assemblies, LADC has a value of one, and the shift left
logical instruction has the effect of doubling the value of the
byte pointer, converting it into a halfword pointer. In 32-bit
assemblies, LADC has a value of two, and the shift instruction
has the effect of gquadrupling the value of the byte pointer,
converting it into a fullword pointer.

The LADC symbol can also be used where machine dependent code
must be written within a common mode program. For example:

IFNZ LADC-1 IF TRUE USE 32 BIT CODE

L RF,A LOAD FULLWORD IN RF

A RF,B ADD FULLWORD B

ST RF,A STORE IN A

FLSE LADC~-1 IS FALSE USE 16 BIT
LM RE,A LOAD FULLWORD IN RE AND RF
RH RF,B+2 ADD LOW ORDER B

ACH RE,B ADD HIGH ORDER B

STHM RE,A STORE IN A

ENDC

shows how fullword addition, reguiring double registers in 16-bit
assemblies and single registers in 32-bit assemblies, <can be
handled in a common mode programe.

48-050 FOO ROO 4-7

4.7 SPECIAL INSTRUCTIONS

By definition, the instructions load multiple, store multiple,
and load PSW, operate on address length data. This is why there
are no address operation mnemonics for these instructions. Where
these instructions are used in common mode programming, the data
on which they operate must be defined by 'the define address
length constant and the define address length storage
instructions. For example:

-

LPSW NEWPSW

L]

START STM RO, 35AVE
LM RO, PARAMN
NEWPSW DAC STATUS,A(START)
RSAVE DAS 16
FARAMY DAC CON1,CON2, .0

-
.

List processing instructicns operate on address length quantities
within the list. There is some incompatibility between the 16-
and the 32-bit versions of these instructions. The 16-bit list
instructions reguire byte pocinters at the head of the list. The
32-bit list instructicns regquire halfword ©pointers. List
instructions can be used in common mode programming as 1long as
the number of slots in the list does not exceed 255.

4-8 48-050 FOO ROO

Lists always should be defined with the define list instruction.
Use byte instructions where it is necessary to refer to the list
pointers in the

pointer fields in terms of the LADC -symbol. For example:

SLOTS
USED
CTOP
NBOT

LIST

EQU
EQU
EQU
EQU

DLI

In this example,
value of CTOP to access the current top pointer in the list.

48-050 FO0O ROO

programe. Cefine displacement into the 1list

LADC-1 . NUMBER OF SLOTS
2*LADC-1 NUMBER USED
3*LADC-1 CURRENT TOP
4U*LADC-1 _ NEXT BOTTOM
R1,LIST+CTOP

ST 32

the load byte instruction is used along with the

—— a— — —— — — — — — —— — — — — — — — — —— —— —— — — — ——— —————— ——— ——

APPENDIX A
COMMON ASSEMBLY LANGUAGE/32
(CAL/32) OPERATING INSTRUCTIONS

The CAL/32 assembler reguires a minimum of one lu and up to a
maximum of 11 logical units for operation, depending on the
options selected and the features invoked by the source progranme.
R1ll of these logical units can be assigned by the user. However,
if an lu is needed and not assigned, CAL/32 will allocate
temporary system files for logical units 4, 5, 6, 8, 9, 12, and
13. CAL/32 will delete and reallocate permanent files for
logical units 2 and 3, provided they were not previously assigned
and the DEL start option was specified. The logical units used
are:

] | LOGICAL | ALLOCATED | REQUIRED |
Lu | USE | RECORD | BY CAL/32 | FOR |
1ttt 1t Tttt Tttt ittt ittt ittt ittt 33t 1t I
1 Source input device.
The source input to Dbe
assembled 1is read from
this device on pass
one. This device is re-
wound prior to each
subsequent pass unless
BATCH is specified and
the source input is not
on a random access
device, or SCRAT or
PPAUS is specified.

108 T=16
126 T=32

| |
| |
| |
| |
| |
| |
[|
| |
| |
| |
| |
| i
| |
Binary output device. | If DEL | A1l
Assembled object pro- | specified |
gram is written to this | |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
[|

device on last pass.

b4 - 132 If DEL

specified

Assembly listing output All
device. Assembly list-
ing is written to this
device on the last pass.
80 SCRAT

BATCH

Source scratch device. Yes
The source input 1is
copried to this device
during pass one. The
source input 1is read
from this device on all

subsequent passese.

. — — — — — A — — — — — — ——— — — — — — —— — — — — —— — —

48-050 F00 ROO A-1

— D v . A —— — — — — —— — — — —— — oy i o —— m —— —— Ti— —— - —— — i — ——— — — — ——— — — — ——— — — i T t—— —— — —— e o — ——

ALLOCATED | REQUIRED |

Symbol cross reference
scratch device. Cross
reference information
is built on this device
during the last pass. A
device assigned to this
lu must support randon
access.

Symbol table paging
device. Symbol table
information is paged to
this device during all

passes. A device
assigned to this 1lu
must support random
accesse.

Source 1library input

device. Source inform-
ation to be included in
the main assembly is
read from this device

on each pass unless
SCRAT or BATCH was
specified. Then the

library is searched and
read on pass one only.

Forward equate scratch
device. This 1lu can ke
used if forward refer-
enced equates exist in
the source input. This
device must support
random access.

Error tabulation device
Error messages and
their associated 1line
numbers are written in
binary to this device
during the 1last rass
and written to 1lu 3
after completion of the
assembly and symbol
table listing.

LOGICAL

RECORD	BY CAL/32	FOR
256	Yes	CROSS
]	
		I
} 512	Yes	Insuffi-
]		cient
		memory
I		
	! I	
!		
]]		
80 { No	COPY	
I		
		I
]	
]		
I		
]	I I	
256	Yes	Forward
		equates
I	I	
I		
80	Yes	ERLST
		I
		I
		I
]
I		
	I I	
I | ! |

48-050 FOO ROO

random access.

| | LOGICAL | ALLOCATED | KEQUIRED |

LU | | RECORD | BY CAL/32 | FOR |
33— -3 43S S—F 2 242 tP-P it RS-t -2 P2 A 2 S 2 LA 2 2 4 2t 3 A0ttt ‘
12 | PCB file directory | 256 | Yes | CLIB |
| scratch device. This | | | |

| device support | | | [

| random access. | | | |

| | | | |

13 | PCB nanme directory | 256 | Yes | COPY |
| scratch device. This | | | |

| device support | | | I

| | | | |

When an assembly terminates, an end of task code is passed to the

operating

systen

in the operand field of the SVC 3 instruction.

The meanings of the possible end of task codes are:

END OF
TASK CODE

48-050 FO00 ROO

MEANING

Assembly complete without errors.

Tllegal option passed with the START command.
Assenmbly is aborted after logging the illegal
options to the <console. The user should
retry.

One or more errors detected during the

assembly. This end of task code is also used
if errors are detected in one or more programs
of a batch assembly.

Misplaced BEND.

Symbol table overflow.

When
opti
spac
spec

operating

unde

r 0S/32, CAL/32 accepts <certain control

ons as arguments of the START command. Any combination of

es and/or
jfication:

START
OPTION

PPAUS
CROSS
NLIST
NORXT
SQUEZ
SQCHK
SCRAT
TARGT
WIDTH
LCNT
ERLST
ERSQZ
NLSTC
CAL
NLSIM
BATCH
FREZE

NLSTU
NOCAL
NQSQ7Z
NOSEQ
NUREX
NWARN
NORX3

comma

None
None
None
None
Numbe
None
None
16 or
Width
Lines
None
None
None
None
None
None
None
None
None

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None

s cah separate or follow the options

OPERANDS

(alias for NORX3)
r of passes (1-99)

32
of listing
per page (10-99)

(inhibits symbol table paging to disk)
(prevents CAL/32 from making
extra passes to fix sgqueeze-induced errors)

Start options have the following form:

option [=operand]

48-050 FO0O ROO

A typical start command for a CAL/32 assembly with start options
is:

ST ,DEL,SQUEZ=99, NCROSS

The delete start options (DEL, NDEL) enable or disable CAL/32
from deleting and reallocating object and listing files when
needed. If the DEL option is in effect and lu 2 and 1lu 3 are
unassigned, CAL/32 will delete, reallocate, and assign them to
fname.0OBJ and fname.LST, respectively.. The default option is
NDFL, in which case CAL/32 will simply log an 8100 error to the
console and pause. In the event that lu 1 is not assigned to a
direct access device, the DEL option will have no effect, and
CAL/32 will issue an 8100 error before pausing.

When CAL/32 encounters conflicting start options such as CROSS
and NCROS, it will regard the last option encountered as the
intended option. This allows the user to redefine +the default
start options via CS5S. For example:

LO CAL32

AS 1,SOURCE.CAL
ST ,NCROSS DEL a1
SEXIT

The above CSS effectiveyy changes the default options to NCROSS
and delete unless overridden by the parameter a21.

OPERATING INSTRUCTIONS FOR 0S/32

CAL/32 will not run on a 16-bit machine, however it will still
produce 16-bit object code if requested.

Before using CAL/32 under 0S/32, the relocatable object supplied
must be established as an 0S/32 task, using Link. A typical
command sequence using Link to establish CAL/32 is:

L0 .BG,LINK
T .BG

ST

>ES TA
>0P work=5000, SYS=FFFFF, SEG,ROL
>IN CAL32
>BU CAL32
>END

48-050 FO0O ROO A-5

— — — — — —— — —

CAL/32 is segmented into pure and impure code for shared use with
0S/32 systems that support this capability. To establish CAL/32
as a nonsharable task, remove the SEG option from the above
command sequence. TET can be used instead of Link provided the
source does not <contain any of the following instructions:
external with offset, DNTRY, WNTRY, WXTRN, INCLD, DCMD.

B typical command sequence to establish CAL/32 using TET is:

L0 .BG,TET32 Load TET32

AS 5,CON: Assign interactive device
AS 7,CON:

AL TETSCRT,IN Allocate and assign scratch
AS 4,TETSCRT ‘

ST

ES TA Establish task command

IN CAL32.0RJ Read CAL/32 object

FXP 80 Get 20kb for symbol table
BU TA,CAL/32 Build CAL/32 task

MAP PR: Obtain map

END

The established CAL/32 task can then be loaded with the LOAD
command and devices or files assigned as required, For example:

10 .BG,CAL32

T .BG

AS 1,PROGRAM.CAL,SRO Scurce input

AS 3,PR: Assign listing device
ST ,DEL,SQUEZ Start assembly

When assembly is completed, CAL/32 terminates through the
operating system, which logs the message:

END OF TASK n

where n is the end of task code.

The files used for scratch, cross reference, paging, forward
equates, PCB file directory, PCB name directory, and error
summary will be allocated by CAL/32 as temporary operating system
files if they are needed and were not previously assigned by the
usere.

A-6€ V | 48-050 F0O ROO

A001

ROO2

AOO3

B0OOC1

B0O2

€001

D001

ECO1

Foc1

Fo02

FCO3

Foou

APPENDIX B

COMMON ASSEMBLY LANGUAGE/32 (CAL/32) ERROR CODES

the address

the address

the operand

alignment

alignment

common mode

data structure

END placement

missing operand

register
specification

invalid source
field

invalid symbol

4g-050 FOO RCO

The address is out of range for the
specified instruction format.

The address is out of range for an
RX2 instruction.

The operand of a previously squeezed
instruction was changed making the
squeezed instruction invalid.

The address of the operand is on an
incorrect boundary for the
instruction specifiede.

An odd address used in a T constant
location counter was not even when
the instruction was specified.

An opcode that is not part of the
common mode set is used in a common
mode assembly.

An illegal statement appears in a
STRUC or COMN definition.

An ENL statement was encountered
within a STRUC or COMN definition or
within an unterminated conditional.

A register value 1is not in the
range of 0 to 15, or an odd register
value is used where an even value is
regquired.

Invalid label 1in the source field,
a label in the name field 1is not
followed by a space, or a reguired
label is wmissing; e.g., on EQU.

More than 8 characters were
specified in a symbol.

FO0S5

FOO06

Foec?7

FO008

F009

Fo10

FO11

FO12

EXTRN

immediate field

ENTRY

delimiter

invalid expression

apostrophe

invalid oprerand

improper statement

An invalid type for EXTRN; e.g.,
common block, or EXTRN was used in
an expression.

The value of data is too large to
fit into the immediate field. A
fullword EXTRN 1is used in RI1
instruction. A character string
used as an immediate field is too
long.

A symbol declared as an ENTRY is
undefined. Improper type for ENTRY:;
€«ge, common block name.

Operands are not separated by
commas. Unrecognizable operator.
The last operand is not followed by
a CR or a blank. Unbalanced
parentheses. Opcode is not followed
by a space or a CR.

Expression uses common element names
not in the same block.

No ending apostrophe in (C,D,E,F,
H,?,0,X, or Y <constant. Illegal
character encountered in
c,0,E,F,H,P,U,%X, or Y constant prior
to the ending apostrophe.

T constant was specified in TARGT 16
assembly. Argument mode of T
constant is not ABS, PURE, or
IMPURE. Illegal data specified in
BDATA program. Fullword EXTRN used
as an operand of DCZ. Value of DB
operand must be absolute. Value of
DS, DSk, DSH. Invalid symbol used
for ENTRY name. Symbol wused as
ENTRY must be ABS, PURE, IMPURE, or
Relocatable. Invalid symbol used
for EXTRN name. Invalid data in
BORG. Operand of CNOP or ALIGN is
not absolute. Operand of DLIST is
not absolute.

Improper type for EXTRN operand;
€+«ge, common block name. Transfer
address on END statement is an
improper type; e.g., EXTRN. Illegal
operand on EQU.

Label only

48-050 FOO ROO

F013

Fo14

F015

1001

M001

M0oO2

0001

P0O1

PCO2

R0O1

5001

S002

S003

file descriptor

missing string

invalid character

conditional

symbol definition

symbol definition

illegal opcode

location counter

reentrancy check

relocation error

sequence check

COPY

invalid option
sequence

ug-050 FOO ROO

Syntax error on fd of a COPY, FCOPY,
or CLIB statement

No characters between apostrophes of
c,E,D,F,H,P,U,X or Y constant

Illegal character encountered
between apostrophes of an E or D
constante.

An ELSE or ENDC statement found
without a matching IFx

The symbol in the name field is also
used in the name field of another
statement. The value or type of a
symbol changed from its definition
on a previous pass. (This can occur
by illegal use of conditionals, ORG,
Do, LS, or a misplaced SCRAT
statement.)

An attempt was made to redefine a
symbol with an EQU that is the name
field of a statement.

The opcode used is totally
unrecognizable or 1illegal for the
specified TARGT.

The location counter exceeded 216 on
a TARGT-16 or 224 on a TARGT-32
assembly.

The instruction attempts to modify
PURE code.

An invalid combination of
relocatable terms in an expressione.
A relocatable operand follows a
unary minus.

The value in the sequence numbers
field is not greater than the
previous sequence number.

COPY statement appears within a file
being copied. An invalid synmbol
used as COPY operand. The operand
of CCPY is not followed by a space,
comma, or CR.

A COPY, PAUSE, MSG, or DO
statement immediately follows a DO
statement.

So04

S005

TCO1

T002

TCO3

TOO4

U001

U002

uoe3

uooy

U005

invalid option

PROG

overflow

floating point

value

divisor
not used

undefined symbol

undefined symbol

An argument 1is not absolute or
exceeds 32767. An argument of LCNT
is in the range of 10 to 99. An

argument of WIDTH is not in the
range of 64 to 132. An argument of
TARGT does not evaluate to either 16
or 32. An argument of SQUEZ is not
in the range of 1 to 99.

Multiple PROG statements were
encountered in a programe.

The intermediate or final result of
an arithmetic expression exceeded
231 - 1.

An overflow occurred during

conversion of floating point
constante.

The data item exceeds the range for
specified type; e.ge., X"12345°'.

A division by 0 is attempted.

A referenced symbol is not defined
in the progranm.

An attempt was made +to circularly
define a symbol; e.g.:

A EQU B
B EQU A

File specified as an operand of
FCOPY, CLIB, or COPY does not exist.

Program name is not found in any of
the PCB libraries.

48-050 FOO ROOQ

APPENDIX C
PERKIN-ELMER OBJECT CODE FORMAT

Modules in Perkin-Elmer okject code format produced by CAL/32 are
divided into records. Each record contains 126 bytes of
information for 32-bit object codes, or 108 bytes of information
for 16-bit object coda. The first 4 bytes of each record of the
object code feormat are organized as follows:

—————————————— I st e e e
| Sequence number | Checksum |
it I L LT e D ——--
Bits:

0 15 16 31

The sedquence numbers are sequential negative integers -1, -2, -3,
etc., represented in two's complemnent form. The first record in
a program must have sequence number -1. Subsequent records must
be in proper order to be loaded.

The checksum is an exclusive OR sum of all halfwords in the
record, except itself, plus a halfword of all 1's.

The remainder of the record is a sequence of items; an item is a
byte of loader information. Thers are two types of items--loader
jtems and data items. Each loader item is followed by a certain
number (which can be 0) of data items. The 1loader items and
their meanings are listed in Tables C-1 and C-2.

48-050 FOO ROO C-1

—— — — — — — i —

— i — — —— —— — —— — — — —— —— —— —— —— —— — —— — — — — i — — — — — — — — o— — — — —— ——— — —— — —— —— — sttt .

TABLE C-1 32-BIT LOADER ITEM DEFINITIONS

—— - ———— - e - G W% W G P WD AN GR TN R WA G G W T G S D WS SR W SR G ER A% TR W P W A% S W ST SE GE AR G em me M WS W Gm W .

| LOADER | { NUMBER OF DATA |
| ITEM | MEANING ! ITEMS FOLLOWING |
l::::::::::::: ::::::::::::zn:z===z==:=aunxuzzn:xzn;zzx;z:::x::::'
O	End of record	None
1	End of progranm None	
2	Reset sequence number	None
3	Block data indicator	8-byte name,
!	3-byte displacement,	
		any absolute data
		item (20-5BR) I
o	Absolute program address	3~byte address
5	Pure relocatable progranm	3-byte address
	address	
6	Impure relocatable program	3-byte address
	address	i
7	2 bytes of pure relocatable	2-byte address]
	data	
8	2 bytes of impure	2=-byte address
	relocatable data	
9	& bytes of pure relocatable	#4-hyte address
I	data	
A	4 bytes of impure	4-byte address l
	relocatable data	1
B	Common reference	8-byte address l
])	3-byte displacement
] C	EXTRN	8-byte name, fol-
		lowed by item 4,
I	I 5, or 6 I	
D	ENTRY	8-byte name fol-
		lowed hy item 4,
		5, or 6
E	Common definition	8-byte name fol-
		lowed by a 3 byte
		length
F	Program label	8-character name
{ 10	3 bytes absolute and 3	6 bytes
	bytes pure relocatable	
11] 3 bytes absolute and 3	6 bytes	
'	bytes impure relocatable	
12	Toad program transfer	Item 4, 5, or 6
13	Nefine start of chain	Item 4, 5, or 6 i
	(reference)	
14	Load chain definition	Item 4, 5, or 6 {
	address	
{ 15	2 bytes absolute and 2 bytes	U bytes]
	pure relocatable	
16	2 bytes absolute and 2 bytes	4 bytes
	impure relocatatle	
c-2 48-050 FOO ROO

- — . — — . —— ——— — —— — — — — T —— . —— — — — ——— — ———— —— — — — —— —— —— ——— ——— — ——

48-Ct0 FOO

TABLE C-1

s G - - an S e Gn e e W - - - = e T e G R R G GR G R WD D G WS G G G G G S G e G G G G G GG Gn Ee e e .

LOADER
ITEM

- S S P - T T T

19
13
1B
1C

1D

1E
1F
20
21
22
23

5B
5C-64
65

66

67

——— - - o WL . - . . e e S G G S e S G W S Y s S A e e - S e = em e e e S WR - e wm e e e RS e e =

Short form EXTRN

Length of impure
segments

Perform
Perform

fullword
halfword

No operation
2-byte pure translation
table address :
2-byte impure translation
table address

Not used
byte absolute data

bytes
bytes
bytes
bytes

e s OOV N -

absolute
absolute
absolute
absolute

and pure

chain
chain

data
data
data
data

120 bytes absolute data
Future use
Extended EXTRN reference

Extended entry

Link commands

ROO

32-BIT LOADER ITEM DEFINITIONS (Continued)

NUMBER OF DATA
ITEMS FOLLOWING

8-byte name and

IJtem 4, 5, or 6
3-byte impure length
and 3-byte pure
length

None

None

None

2 bytes

2 bytes

1 byte
2 bytes
4 bytes
6 bytes
8 bytes
1

20 bytes

8-byte external
symbol name
1-byte flag
xxxx xXx00 standard
EXTRN
weak
EXTRN
include
EXTRN
L-byte offset
Item 4, 5, or 6
8-byte entry symbol
1-byte flag

xxxx xx01

xxxx xx10

xxxx xx00 standard
entry
xxxx xx01 data
entry
xxxx xx10 weak
entry
Item 4, 5, or 6

1-byte length
1-80 characters
of command

— — —

——— — —— — m— ——— —— ——" — — — — — —" — — — — — —— — — —— a— — —— — — — — — — — — —— — —— ———— — — t—— — — —

@]

TABLE C-2

16-BIT LOADER ITEM DEFINITIONS

- e - e WE A D e WR R G WP ED W G S AN G D NE G AR M G G AL R WS SR WD WL OB G S A M e e M e B e G e A e W e e e e e e e s

NUMBER OF DATA [
ITEMS FOLLOWING |

| LOADER

(s s le Vo ~ BEN Bo NN) ¥ ol

o0

F2

E3

Fu
£S5
E6

MEANING

End of record

End of program

Perform chain

Toggle absolute/relocatable
mode

Transfer address

Load program address (ORG)

Load reference address

Load definition value

2 bytes absolute data

?2 bytes relocatable data

4 bytes absolute data

2 bytes absolute and 2 bytes

relocatable data
EXTRN reference
ENTRY definitiocon
Decode next itenm
Declare common blcck

Load common block

definition value
2 bhytes absolute block data

4 bytes absolute block data

Reset seguence number to -1
1 byte absolute data
1 byte absolute tlock data

Program label

4 bytes
4 bytes

6-byte

6-byte

Next it
6-byte

2-byte

6-byte

2-byte

6-byte

2-byte

2 bytes
6-byte

2-byte

4 bytes
None

1 byte

6-byte

2-byte

1 byte

6-byte

address
address
address
address
data
data
data
data

name
name
em
name
size
name
offset
name
offset
data
name
offset
data

data
name
offset
data
name

——— ——— e S M . et e €S W S e G P SR M R GD W G G A G R G WS G S M A S G G D S . e G A

All items are given in
a compound item whose

follows.
control itenm,

hexadecimal.

interpretation
Item E and
however,

This effectively allows mcre than 16
though most of them reguire only 1 nibble.

Note that item E is

depends
the following item are considered
and cannot be split across object
different

on the

control

actually
item it
a single
records.

items,

48-050 FOO ROO

INDEX

A | ERSQZ 3-53
. | EXTRN 3-25
Absolute (ABS) instructicn 3-45 | FCOPY 3-49
Absolute programs 1-4 l FREZE 3-67
Absolute quantities 2-2 ' 1F 3-60
ABSTOP 2= IFx 3-56
ARddress length 2-5 | IMEUR 3-44
Address length constant (ALC) 2-c | INCLD 3-27
U-6 LCNT 3-66
Rddress oreration instructions, ' LIST 3-€7
address orerations 4=-1 | LSTC 3-67
assembler 4-3 | LSTH 3-67
immediate operations : 4-3 | LSTUR 3-67
Align (ALIGN) instruction 3-45 | KSG 3-85
Alignment, i NCROS 3-67
ADC, effect on i 4-6 | NFREZ 3-67
CNOP, effect on 3-u6 | NLIST 3-67
Arithmetic expressions 2-1 | NLSTC 3-€7
Arithmetic operators 2-1 | NLSTHM 3-67
Assembler control instructions 3-46 | NLSTU 3-67
y-< 1 NORX3 3-£3
Assembler instructions, | NOSEQ 3-54
ABS 3-45 " NCSQ¢Z 3-£3
ALIGN 3-45 | NUREX 3-%6
EATCH 3-£5 ’ NWARN 3-67
BDATA 3-6U | ORG 3-uy
BEND 3-55 | PAUSE 3-49
- -
cL1B e | PRCE. ies
CNCP 3-46 | FURE 3-43
CCHN 3-€1 I reserved storage 3-21
CRoss e SPACE e
gigsd e ' SQCHK 3-54
CAS 4-4 ' SQUEZ 3-£0
DR 3-41 | STRUC 3-61
LC 3-30 | TARGT 3-47
CCF 3-30 | TITLE 3-€5
CCMB 3-43 UREX 3-56
CLIST 3-42 ' WARN 3-67
DNTRY 3-25 | WILTH 3-66
Lo 3-60 [WNTRY 3-25
DS 3-28 WXTRN 3-25
DSF 3-28 : Assembly listing 3-63
DSH 3-28 Asterisk, used as operand 2-6
EJECT 3-66 |
ELSE 3-56 {
END 3-47 | B
ENCC 3-56
ENLS 3-61 l Batch assembly instructicns,
ENTRY 3-25 | BATCH 3-c5
EQU 3-22 | BEND 3-55
ERLST 3-67 | 3-56
|

48-050 F0OO ROO Tnd-1

Batch end (BEND) instruction
Batch (BATCH) instruction

Binary language symbols,
absolute values
addresses
constants
cperation identifiers
register identifiers
Blcck data (BLATA) instruction
Branch and link instructions

c

CAl/32 instructions
Central processing unit (CEU),
1/C interface
local memory
FSW
registers
Character symbols
Comment statements,
nonprintable characters
printable characters
Commcn blocks
Common (CCHMN) instruction
Common mode rrogramming
Compound conditional
instructions,
ELSE
ENCC
IFx
Condition code
Conditional assembly
instructions
Conditional branch instructions
Conditional no operation (CNQOP)
instruction
Content control instructions,
CRCSS
ERLST
FREZE
LIST
LSTC
LSTHM
LSTUR
NCROS
NFREZ
NLIST
NLSTC
NLSTM
NLSTU
NWARN
WARN
Cornstant
Constants,
address
character
decimal string
double precision floating
point '
hexadecimal,
DCX
CCY
integer,
fullword
halfword
internal representation

Ind-2

3-£6
3-£t5
3-%6

—2wWNDODNNMN
'

P o QU QU (Y T G 3

nE

[NG P e
1
R S N NN

ST wwww
]
s (o QI
-

- Wl Ww
11
N U n (n

[« 0N W,

— —— . " —— — —— — — — —— — — — — — — —— ————— ——— —————— — — — — ——— —— —— — — —— — ——— ——— — — — ——

length
packed decimal string
single precision floating
point
unpacked decimal string
Constant tyres
Copy (CCPY) instruction
Copy (CLIB) 1library
instruction
Crcss reference (CRCSS)
instruction

D

Data definition instructions,
CAC
CAS
LC
CCF
DS
LSF
USH
Data structures
Cecimal symboecls
Define address length constant
(CAC) instruction

Define address length stcrage
(CAS) instruction

Define byte (DB) instructicn
Cefine command (DCMD)
instruction .
Define list (DLIST) instruction
Define storage (LS) instruction
CEL

Pelete start options

DCF instruction

DCX instruction

CCY instruction

DNTKY instruction

Co (LO) instruction

E

Eject (EJECT) instruction
ELSE instruction

End condition (ENDC)
instruction

End (END) instruction

End of task codes

End structure (ENDS)
instruction

ENTRY instruction

Equate instruction

Errcr codes

Error list (ERLST) instruction
Frror squeeze (FRSQZ)
irstruction

Fxtended branch mnemonics
EXTRN instruction

Fields,
name
orerand
operation

48-050 FoOO

3-43
3-42
3-63
A-Z

A-5

3-34
3-32
3-33
3-25
3-60

3-53
3-19
3-25

www
1
& nw

ROO

File copy (FCCPY) instruction
Format contrcl instructicns,
EJECT
LCNT
SPACE
WIDTH
Freeze (FREZE) instructicn

G

Glcbal symbols,
RBSTCP
ALCC

IMFTCP
LACC

PURETOP

H

Hexadecimal symbols

IJK

Implicit symbols
IMETOF
Impure (IMPUR) instructicn
Impure csegments
Include (INCLD) instruction
Instruction statements,
fixed format
free format
Instructions,
address crerations, ccmmcen
mode
assembler
assembler, common mode
immediate operations,
ccmmon mcde
cperating
16-bit machine

32-bit machine

Integer constants,
fullword
halfword
internal representation
I/C interface

LALC
Line count (LCNT) instruction
Linked list structures
List conditionals (LSTC)
instruction
Listing control instructions
Listing identification
instructions,
FROG
TITLE

48-050 F0O ROO

3-49

3-66
3-66
3-66
3-656
3-68

NENNNDNDENVND
t
Mmooy Un

i

w=w N
i

N Eeow

~ =

w W
i
NN

s we
1
wN -
-

]

] [}
-~ =N = W
o

o

W= W o
I 1

-Wwww
1
www

1
- W W W

List (LIST) instruction
List macro (L3TM) instruction
List unreferenced symbols
(LSTUR) instruction
Load multiple instruction
Load PSHW instruction
Local memory (registers)
double precision floating
point
general purpose
single precision floating
Ecint
Location counter,
‘absolute
impure
Lure
Lcgical expressions

Machine instructions,
mnemonics

Main memory

Message (MSG) instruction

Mixed exprescsions

Mixed mode computations

N

Name field

NDEL

NOCAL/32 instruction

No cross (NCROS) instructicn

No freeze (NFREZ) instruction

No 1list conditionals (NLSTC)
instruction

No 1list (NLIST) instruction

No list macro (NLSTM)
instruction

No list unreferenced symbols
(NLSTU) instruction

No RX3 (NORX3) instructicn

Nc sequence check instructicn

No squeeze (NOSQZ) instruction

No warning (NWARN) instruction

9]

Object code formats

Operand fields, rules

Operating instructions
for 0S/32

Operaticn fields,
mnemonics
restrictions

Optimization mode

Crigin (ORG) instruction

PQ

Pass pause (PPAUS) instruction
Pause (PAUSE) instruction
Program (PROG) instructicn

[«

EN W Ww
1
MA) (N =
[$2]

> wh
1
[§, NS, QY

t

'
weE o

Ww www
1]
Lo T NS I i]

3-E4
3-49
3-65

Ind-3

Prcgram segmentation
Prcgram status word (PSW),
condition code
location counter
status descriptor
Pure (PURE) instruction
Pure segments
FURETCP

Register and immediate (RI)

Register and immediate one
(RI1)

Register and immediate two
(RI2)

Register and indexed storage
(RX)

Register and indexed storage/
register and indexed stcrage
(PXRX)

Register and indexed storage
one (RX1) !
Register and indexed storage
two (RX2)
Register and indexed storage
three (RX¥3)
Registers,
double precision floating
point
general purpocse
single precision floating
point
Register-to-register (RR)

Relocatable programs
Relocatable quantities

S

Scratch (SCRAT) instruction
Sequence check (SQCHK)
instruction

Short form (SF) instruction

Simple if (IF) instructicn
16-bit machine instructicns,
register and immediate (RI)
register and indexed
storage (RY)
register-to-register (KR)
short form (SF)
Source program,
comment statements
instruction statements
Space (SPACE) instruction
Sequence checking instructions,
NCSEQ
SQCHK
Sqgueeze (SQUEZ) instruction
Squeeze related instructions,
ERSQZ
NOSQZ
NCRX3

-
5
ou
1
=

Py
]
~

N = W= -3
[
m s SN N

-
1
NN

1 11
MNME GOSN

N) =2 W -2 =
]

———— ——— — — — —— —— —— — —— — t— T—— — —— ——— —— — — — 0, ———— —— . w— — — — — —— — — — — —— — — — — — — — —— — — — —— — — — O—

Start option
Statements,

comment

instruction
Status descrirtor
Store multirle instructicn
Structure definition
instructions,

COMN

ENLS

STRUC
Structure initialization
instructions,

BCATA

EORG

Structure (STRUC) instructicn
Symbol definition instructicns

Symbolic representation
Synrbols,

character

decimal

fullword

global

halfword
hexadecimal
implicit

System architecture,
CPU
main memory

T

Target (TARGI) instructicn

32-bit machine instructicns,
register and immediate cne

(RI1)

register and immediate two

(RI2)

register and indexed stcrage

one (RX1)

register and indexed stcrage

three (RX3)

register and indexed stcrage

two (RX2)
register and indexed
storage/register and
indexed storage (RXRX)
register-to-register
short form (SF)
Title instructions

uv

Unreferenced externals
instructions,

NUREY

UREX

WXYZ
Warming (WARN) instruction
Width (WICTH) instruction
WNTRY instructions

WXTBEN instructions

48-050 FO0O

o aWww
]
® AN

3-61
3-61
3-61

3-64
3-64
3-€1
3-21

DPONNNDDNONNDN
[}
[P L IS S I]

-
L
PEENEN

3-€8
3-66
3-25
3-26
3-25
3-26

ROO

PUBLICATION COMMENT FORM

Please use this postage-paid form to make any comments, suggestions, criticisms, etc. concerning
this publication.

From Date

Title Publication Title

Company . , Publication Number

Address

FOLD FOLD

Check the appropriate item.

] Error Page No. —— . Drawing No.

[} Addition PageNo..________ Drawing No.

3 [other PageNo._________ Drawing No.
4

2 Explanation:

3

z

3

5

FOLD v FOLD

Fold and Staple
No postage necessary if mailed in U.S.A.

STAPLE

BUSINESS REPLY MAIL

STAPLE

FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

POSTAGE WILL BE PAID BY ADDRESSEE

PERKIN-ELMER

Computer Systems Division
2 Crescent Place
Oceanport, NJ 07757

TECH PUBLICATIONS DEPT. MS 322A

STAPLE

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
]
L]
 ————— |
L]
L]
R
]
L]
L]
L]
L]
L]
]
|
FOLD

STAPLE

