0S/32 ASYNCHRONOUS COMMUNICATIONS

Reference Manual

Abstract

The information in this document is subject to change without notice and should not be construed as a commitment by the Perkin-Elmer Corporation. The Perkin-Elmer Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or copied only in a manner permitted by that license. Any copy of the described software must include the Perkin-Elmer copyright notice. Title to and ownership of the described software and any copies thereof shall remain in The Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its software on equipment that is not supplied by Perkin-Elmer.

CHAPTERS

1 GENERAL INFORMATION
1.1 INTRODUCTION 1-1

2 HARDWARE AND SOFTWARE CONFIGURATION PROCEDURES

2.1	HPRDWARE	2-1
2.1.1	Data Set Adapters	2-3
2.1.2	Strapping Options	2-3
$2 \cdot 1.3$	Terminals	2-5
2.1.4	Modems	2-5
$2 \cdot 1.5$	Cables	2-6
2.1 .6	DMA I/O Subsystem (DIOS)	2-7
2.2	SOFTWARE	2-8
2.2.1	Conversational VDU/TTY	2-3
2.2.2	Model 1200 Editing VDU	2-12
2.2 .3	Models 1250/1251 Point-to-Point VDU	2-13
2.2.4	Models 1250/1251 Multidrop VDU	2-13
2.2.5	Supervisor Call 15 (SVC 15) Only	
	Asynchronous Device	2-13
2.2 .6	Sigma 10 Terminal	2-14
2.2.7	Remote Line Printer	2-14
2.2.8	Module Specification	2-14

3 ASYNCHRONOUS LINE DRIVER
3.1 INTRODUCTION 3-1
3.2 ASYNCHRONOUS LINE DRIVER AND SVC 15 3-1
3.3 COMMANDS SUPPORTED 3-7
3.4 SPECIAL CHARACTER PROCESSING 3-16
3.5 DEFAULT VALUES 3-18
3.6 BUFFERS AND TRAPS 3-18
3.6.1 Puffer Types 3-20
3.6.2 Direct Buffers (Data Code $X^{\prime} 00^{\circ}$) 3-20
3.6.3 Indirect Buffers (Data Code X $\mathrm{X}^{\circ} 04^{\circ}$) 3-21
3.6.4 Chained Buffers (Data Code X'08') 3-22
3.6.5 Queued Buffers (Data Code $X^{\prime} 0 A^{\prime}$) 3-24
3.6.6 Traps 3-27
3.7 HOW TO USE THE ASYNCHRONOUS LINE DRIVER 3-29
4 TELETYPE (TTY) VIDEO DISPLAY UNIT (VDU) TERMINAL MANAGER

4. 1	INTRODUCTION	4-1
4.2	TERMINALS	4-2
$4 \cdot 3$	SUPPORTED ATTRIBUTES	4-3
4.4	SUPPORTED FUNCTIONS	4-3
4.5	THE PERKIN-ELMER CAROUSEL 300 TERMINAL	4-4
4.5.1	System Characteristics	4-10
4.5.1.1	Character Structure	4-10
4.5.1.2	Modem Connection	4-10
4.6	PERKIN-ELMER MCDEL 1100 VDU	4-11
4.6.1	Cperational Characteristics	4-11
4.6.2	Controls	4-12
4.6.3	Options (All Factory Installed)	4-13
4.6 .4	Principles of Cperation	4-14
4.6.5	Local Control Keys	4-14
4.6.6	Single-Character ASCII Functions	4-15
4.6.7	Multicode Sequences	4-17
4.7	ENCODED ERROR MESSAGES	4-19

5 MODELS $1200 / 1250 / 1251$ EDITING VIDEO DISPLAY UNIT (VDU) TERMINAL MANAGERS

5.1	INTRODUCTION	$5-1$
5.2	FUNCTIONAL DESCRIPTION	$5-1$
5.2 .1	DEViCE ASSignment	$5-1$
5.2 .1 .1	GENERATE Command	$5-2$
5.2 .1 .2	GENERATE Macro	$5-2$
5.2 .1 .3	XFMPCB MaCro	$5-4$
5.2 .1 .4	ELIMINATE Command	$5-5$
5.2 .1 .5	ELIMINATEMacro	$5-5$
5.2 .2	SVC 1 Interface	$5-5$
5.2 .3	SVC1 Extended Options	$5-6$

5.3	USING THE MODELS 1200/1250/1251 VDU TERMINAL MANAGERS	5-14
5.3.1	Models 1250/1251 Terminal Congiguration	5-14
5.3.2	Terminal Features and Special Character	
	Format	5-14
5.3.2.1	Multicode Sequence	5-15
5.3.2.2	Attribute Characters	5-16
5.3.2.3	Line Drawing Characters	5-17
5.3.2.4	Status and Option Bytes	5-18
5.3.2.5	Function Keys and Attention Identifier (AID) Characters	5-20
5.3.3	Modes of Operation	5-21
5.3.3.1	Conversational Mode	5-21
5.3.3.2.	Image Mode	5-22
5.3.3.3	Editing Mode	5-22
5.3.3.4	Concept of Request-to-Send (RQS) and Immediate	5-2 2
5.3.3.5	Types of Data Read Formats	5-23
5.3.3.6	Types of Data Write Formats	5-30
5.3.3.7	Cursor Addressing and Random Addressing	5-31
5.3.3.8	Horizontal Tabulation	5-31
5.3.3.9	Printer Options	5-32
5.3 .4	Sysgen and Environment	5-32
5.3.4.1	Special Parity Requirement	5-33
5.3.4.2	Extended Device Code Specification	5-33
5.3.4.3	Default Extended Eunctions/Options	5-34
5.3.4.4	Terminal Switch and Strap Settings	5-36
5.4	INTERNAL TERMINAL MANAGER DESIGN	5-36
5.4.1	Relationship to Operating System and Asynchronous Line Driver	5-36
5.4.2	Internal Structure	5-40
5.4.2.1	Initialization and Function Code Interpretation	5-41
5.4.2.2	Preparation for $1 / 0$, Control, and Enter SVC 15	5-41
5.4.2.3	Einal Clean Up	5-41
5.5	TYPICAL PROBLEM CHECKLIST	5-41
5.6	MULTIDROP FEATURE	5-42
5.7	LIGHT PEN	5-42
5.8	ENCODED ERROR MESSAGES	5-43

APPENDIXES

```
A DRIVER COMMAND WORD FCRMAT
B STANDARD ASCII CODE
C SAMPLE PRINTOUT
D SAMPLE MODEL }1200\mathrm{ PROGRAM
```


FIGURES

2-1	Functional Relationships of Device Dependent and Device Independent Asynchronous Support	2-2
2-2	Spectron MIS-3400 Strapping for the Model 1250	
	Video Display Unit (VDU) Multidrop Configuration	2-7
3-1	Supervisor Call 15 (SVC 15) Parameter Block	3-2
3-2	Function Code Format	3-2
3-3	Supervisor Call 15 (SVC 15) Status Halfword	3-4
3-4	Driver Command Word Format	3-6
3-5	Adapter Command 1 (CMD1)	3-13
3-6	Adapter Command 2 (CMD2)	3-15
3-7	Supervisor Call 15 (SVC 15) Data Field	3-19
3-8	Direct Buffer	3-21
3-9	Indirect Buffer	3-22
3-10	Chained/Queued Buffer Format	3-23
3-11	Chained/Queued Buffer Link Word Flag Byte	3-23
3-12	Conceptual Circular List and Format	3-26
3-13	Task Trap Format	3-28
4-1	Extended Device Code Halfword	4-2
4-2	Character Structure	4-10
5-1	Extended Options Fullword Format	5-6
5-2	Attribute Characters	5-17
5-3	Status Byte Format	5-19
5-4	Option Byte 1 Format	5-19
5-5	Option Byte 2 Format	5-20
5-6	Read All with Format Screen	5-24
5-7	Read All with Attribute Character Truncated	5-25
5-8	Read Unprotected Format (Model 1200 VDU)	5-26
5-9	Read Unprotected Format (Models 1250/1251 VDUs)	5-27
5-10	Read Modified Format (Model 1200 VDU)	5-29
5-11	Read Modified Format (Models 1250/1251 V DUs)	5-30
5-12	User Buffer Format Table for Horizontal Tabs	5-31
5-13	0S/32 Easic Data Communications Extended	
	Device Code Halfword	5-33

| 5-14 | Models 1200/1250/1251 Terminal Managers/
 Asynchronous Line Drivers Relationship
 (Point-to-Point) | |
| :--- | :--- | :--- | :--- |
| $5-15$ | Device Control Block (DCB) Fields for Models | $5-37$ |
| $5-16$ | 1200 and 1250/1251 VDUs | |

TABLES

2-1	ASYNCHRONOUS ADAPTERS	2-3
2-2	EXTENDED DEVICE COLES	2-9
2-3	COMMON TERMINAL LOGICAL RECORD LENGTHS	2-11
2-4	SPECIAL ASYNCHRONOUS CHARACTERS	2-11
3-1	ENCODED ERRORS AND DEFINITIONS	3-5
3-2	DRIVER COMMAND OPTIONS	3-6
3-3	SUPERVISOR CALL 15 (SVC 15) TRAPS	3-28
4-1	ADDRESSABLE HORIZONTAL TABULATION CODING CHART	4-6
4-2	ADDRESSABLE VERTICAL tabulation coding chart	4-7
4-3	FORM LENGTH CODING CHART	4-9
4-4	CURSCR ADDRESSING	4-19
4-5	ENCOLED ERRORS AND DEFINITIONS FOR TELETYPE (TIY) TERMINAL MANAGER	4-20
5-1	SVC 1 FUNCTION/FUNCTION MODIFIER OPTIONS	5-7
5-2	FUNCTION/FUNCTION MODIFIER COMBINATIONS	5-13
5-3	MULTICODE SEQUENCES	5-15
5-4	LINE DRAWING CHARACTERS	5-18
5-5	ATtention Identifier (aid) Characters	5-20
5-6	DEFAULT EXTENDED OPTIONS	5-35
5-7	ENCODED ERRORS AND DEFINITIONS FOR MODELS	
	1200/1250/1251 TERMINAL MANAGERS	5-43

INDEX
Ind-1

PREFACE

This manual is intended for users whose installations are configured with the following asynchronous devices:

- Model 550 videc display unit (VDU)
- Model 1100 VDU
- Carouse1 300
- Model 1200 VDU
- Models 1250/1251 VDUs
- Sigma 10 terminal
- Remote line printer
- Graphic display terminals

The reader should be familiar with the oS/32 basic data communications subsystem.

Chapter 1 defines asynchronous device support on a device independent level and a device dependent level. Chapter 2 discusses the hardware, software, and configuration procedures required for the terminal managers and the asynchronous line driver. Chapter 3 describes the asynchronous line driver that interfaces the communications adapter with the user program and allows the use of protocols not supported by a terminal manager, special buffering techniques, and data or command chaining. Chapter 4 describes the Teletype (TTY)/VDU terminal manager. Chapter 5 describes the features of the Models 1200/1250/1251 Editing VDU Terminal Managers, including multidrop, light pen, and downline load support.

This manual replaces $\mathrm{S} 29-542$ and provides device statements for the Sigma 10, Models 1250/1251 VDUs and the Perkin-Elmer remote line printer. It also adds information on the support of the current loop communications multiplexor (CLCM) and outlines the additional features supported by the terminal manager for use on the Models $1250 / 1251$ VDUs. This manual pertains to the 0S/32 6.0 software release and higher.

The following publications can be used in conjunction with this manual:

MANUAL TITLE

PUBLICATION NUMBER

For further information on the contents of all Perkin-Elmer 32-bit manuals, see the 32 -Bit Systems User Documentatiori Summary.

CHAPTER 1
GENERAL INFORMATION

1.1 INTRODUCTION

This reference manual describes asynchronous support of remote data terminals or computers via the 0S/32 communications subsystem. The communications subsystem supports asynchronous devices on two levels:

- Device independent (or device transparent) level
- Device dependent (or device sensitive) level

Device independent level of access is achieved by issuing supervisor call 1 (SVC 1) to a terminal manager. This can be done by a user READ or WRITE macro. A terminal manager contains the logic to initiate, maintain, and terminate transmissions to a logical device called a terminal. The terminal manager calls the asynchronous line driver, which controls the data adapter interface and transfers data over a communication line. Two terminal managers are described in this manual:

- Teletype (TTY)/Video Display Unit (VDU) Terminal Manager
- Perkin-Elmer Models 1200/1250/1251 Editing VDU Terminal Managers

Device dependent level of access is achieved by a communication user task (u-task) directly accessing the same asynchronous line driver via SVC 15. This line driver is described in Chapter 3 of this manual.

CHAPTER 2

HARDWARE AND SOFTWARE CONFIGURATION PROCEDURES

2.1 HARDWARE

This section presents the asynchronous devices supported by the data communications subsystem. Figure 2-1 shows the interrelationships of the software and hardware associated with asynchronous communications.

SVC 1
Assembly language FORTRAN COBOL

SVC 15
Assembly language task

or
special
RTL

Figure 2-1 Functional Relationships of Device Dependent and Device Independent Asynchronous Support

As shown in Figure 2-1, the first hardware device to respond to an SVC 1 or SVC 15 coming through the asynchronous line driver is one of the five data set adapters listed in Table 2-1.

TABLE 2-1 ASYNCHRONOUS ADAPTERS

1	PRODUCT	DEVICE
DEVICE	NUMBER	CODE
\| Programmable asynchronous line system	M47-102	144
1 (PALS)		
1		
\| Programmable asynchronous single line	M47-100	144
\| adapter (PASLA)		
1		
\| Two-1ine communications multiplexar	M47-104	144
(2-Line mux)		
1		
\| Eight-line communications multiplexor	M47-105	144
\| (8-Line mux)		
1		
\| Current loop communications multi-	M47-110	144
\| plexor (CLCM)		

NOTE
PALS cannot be used with the Perkin-Elmer 3200 Series processors, only with the Model $7 / 32$ or $8 / 32$ processor.

2.1.2 Strapping Options

Strapping options must be taken into account when performing system generation (sysgen). The PASLA and the PALS provide the following strapping options:

- Baud Rates:
- PASLA: 75 to 9600
- PALS: 75, 110, 134.49, 150, 300, 600, 1200, 1800 (others available on special request)

PASLA has two clocks, and PALS has four clocks. The user selects the rate at which data is transmitted to and from the terminal. For details on how to strap baud rates to the clocks, see the Programmable Asynchronous Line System (PALS) Maintenance Manual or the Programmable Asynchronous Single Line Adapter (PASLA) Maintenance Manual.

- Data set ready These can be strapped so that they appear in a constant ready state to the CPU. When connecting a terminal to a modem via a null modem cable, these options are normally disabled.
- Carrier
- Full duplex (4-Wire). This allows the user to transmit messages in two directions simultaneously. Full-duplex transmission also allows echoplex operation in dumb terminals. Most local applications (cable connected) and all Western Electric 103 modem applications should be strapped 4-wire, and the sysgen statement for that device must indicate 4 -wire.
- Half duplex (2-Wire). This is used for alternate send and receive mode when echoplexing is not required.
- Hardware address. This provides the program with the number of the communications line leading to a given hardware device. When strapped 4 -wire, the sysgen statement for that device must specify the even hardware address.

The 2-1ine and 8-line multiplexors provide the following strapping options:

- Baud rates: 50 to 19,200 baud with these strap/clock combinations:

	SET1	SET2	SET3	SET4
CLOCK A	50	75	150	300
CLOCK B	110	134.5	600	1200
CLOCK C	1800	2000	4800	7200
CLOCK D	2400	3600	9600	19200

- The strapping options for data-set-ready, clear-to-send, carrier, full duplex, half duplex, hardware address, and ring are similar to PALS/PASLA.

The CLCM board is normally strapped for $150 / 600 / 4,800 / 9,600$ baud rate operation. By modifying the board from the standard factory design, five alternative baud groupings are possible.

Each of the eight lines of the CLCM can be operated at one of 16 possible baud rates as follows: 50, 75, 110, 134.5, 150, 900. 600, 1,200, 1,800, 2,000, 2,400, 3.600, 4,800, 7.200, 9,600, or 19.200. A 4-bit code selects the baud rate for each line. Two bits of the code are programable, allowing the selection of 1 of 4 baud rates. The remaining two bits are switch selectable, providing four subsets of 4 baud rates each.

2.1.3 Terminals

RS232C or CLCM compatible devices supported are:

TERMINAL

Nonediting video display unit (VDU)
\quad (Models 550 and 1100)
Teletype (TTY) Keyboard/Printer (Carosue1 300)

147
Model 1200 Editing VDU 156
Models 1250/1251 Point-to-Point 157
or Multidrop
Graphic Display Terminals 158
Sigma 10 Terminal 146
Remote Line Printer 145

2.1.4 Modems

The only modems that should be used to interface the asynchronous devices to the software described in this manual are:

Western Electric 103A, 103J, 113D, or equivalent modem (4-wire switched or leased)

Null Modem, M46-106 (cable for direct connection)

The following options should be selected when a 103 J or 113 D is used:

- Receive space disconnect NO
- Send space disconnect No
- Loss-of-carrier disconnect NO
- CC indication
- $C B$ and CF indications

EARLY

- CC indication on a nalog loop

SEPARATE
ON

- Failsafe state of CN circuit

OFF

- Automatic answer Y ES
- Common grounds Y ES

2.1.5 Cables

A cable is supplied with the PASLA to connect it to the convenience panel of a Perkin-Elmer system cabinet. This cable is Perkin-Elmer Part Number 17-197.

An optional null modem cable, Perkin-Elmer Part Number 17-197, is used to connect the convenience panel with the PASLA 7-inch interface and the following video display units:

- Low-end VEU ($115 \mathrm{~V} / 60 \mathrm{~Hz}$)
- Low-end VDU ($240 \mathrm{~V} / 50 \mathrm{~Hz}$)
- Alphanumeric VDU

The typical length of the null modem cable is 50 feet. It has some unusual characteristics; e.g., some wires loop back, which sometimes require that it be modified for terminals other than those cited previously.

A 2 -line mux has one $17-463$ ribbon cable connected between the connector at the edge of the board and the cable entry panel. An 8-1ine mux can have up to four 17-463 ribbon cables connected between the four connectors at the edge of the board and the cable entry panel.

An optional cable, Perkin-Elmer Part Number 17-050F02R02 (Product Number M10-054), is used to connect one communications line from the $I / 0$ convenience panel to a modem.

Up to two 17-522 ribbon cables can be used to connect the CLCM to the processor entry panel. To connect the processor entry panel to the current loop adapter, select from the list below one cable that meets the required length.

PART NUMBER
LENGTH

17-535	F01	30.48 m	(100')
17-535	F02	76.20 m	(250')
17-535	F03	152.40 m	(500')
17-535	F04	304.80 m	(1.000°)
17-535	F05	762.00 m	$\left(2,500^{\circ}\right)$
17-535	F 06	1.524 .00 m	(5,000 ${ }^{\circ}$)

When using the Models $1250 / 1251$ Terminal Managers to support the Models 1250/1251 VDUs in a multidrop environment, Perkin-Elmer recommends that the Spectron MIS 3400 modem splitter be used to connect the 1250 terminals to the software. Figure 2-2 designates which segments of the MIS-3400 must be strapped to provide compatibility with the terminal manager.

2875

Figure 2-2 Spectron MIS-3400 Strapping for Models 1250/1251 Video Display Units (VDU) Multidrop Configuration

2.1.6 DMA I/O Subsystem (DIOS)

The Perkin-Elmer DMA I/O Subsystem can be used with an asynchronous system. This provides a significant gain for processor bandwidth. For Models 1200 and $1250 / 1251$ VDUs, DIOS microcode contains subroutines to process special read/write characters.

2.2 SOFTWARE

The recommended sysgen procedure for an 0S/32 configured with the communications subsystem is fourd in the $0 S / 32$ System Generation (SYSGEN) Reference Manual.

The device statements for asynchronous devices are given on the following pages. They must be specified as presented; no default is provided for the extended basic data communications options.

2.2.1 Conversational VDU/TTY

The VDU/TTY sysgen device statement format is:

1 dnem: adr,147, Xxdcod,1recl,Xrdcl,Xwtcl,pdseq1

Where:

dnem	dnem is the device mnemonic.
adr	i.s the device address.
dcod	specifies the device code; 147 is the device code for conversational TTY/VDU.
Xxdcod	specifies the basic data communications extended device code. This value can be specified in either decimal or hexadecimal. If using hexadecimal, precede the numeric value with an X. See Table 2-2 for a description of options.
1 rec 1	specifies terminal logical record length. Normally this length is the number of characters that can be printed on each line. See Table 2-3 for a list of common terminal logical record lengths.
Xrdcl	specifies activated read control characters. Changing this value permits the user to specify which special characters may be used to terminate a line, as a line delete, or as a backspace. This value may be specified in either decimal or hexadecimal. If using hexadecimal, precede the number with an X. See Table 2-4 for a description of options.
XWtcl	specifies activated write control characters. Changing this value permits the user to halt write on certain special characters, activate the carousel buffer overload protocol, or use an ESC character similar to a break. Normally, no halt characters are activated. Specify the carousel buffer overload protocol whenever a Carousel 300 series terminal is used. This value can be specified in either decimal or hexadecimal. See Table $2-4$ for a description of options.

specifies the length of the pad sequence appended to all conversational reads and writes. This value can range from 0 to 15. Normally, it should be set to 2 (LF, CR) for a VDU, or 3 (LF, CR, CR) for a TTY. For certain TTY devices, specify a larger pad count to allow adequate time for carriage return.

TABLE 2-2 EXTENDED DEVICE CODES

BIT	HEX MASK (DECIMAL VALUE)	1 MEANING
0	8000	\| Master/slave bit (processor-
		(to-processor link only)
		1
	8000 (32768)	Indicates that this end of
		\| processor-to-processor link
		\| is master
		1
	0000 (0)	\| Indicates that this end of
		\| processor-to-processor link
		is slave
		I
1-3	7000	\| Reserved - must be zero
4-5	0 COO	\| Line configuration bits
	0800 (2048)	Automatic dial-in or manual
		dial-out
	0400 (1024)	\| Leased line
		I
	0000 (0)	\| Directly connected (null
		modem cable)
		1
6-7	0300	I.ine protocol bits
		1 l
	0300 (768)	\| Half duplex 2-wire
		1
	0200 (512)	\| Simplex write *
		I
	0100 (256)	\| Simplex read *
		1
	0000 (0)	\| Half duplex 4-wire *
		I
8	0080	\| Explicit Connect Request bit
		1
	0000	\| Indicates system will do an
		\| automatic connect if an SVC1
		\| read/write request is issued

* Requires adapter-strapped full duplex
$\begin{array}{ll}\text { TABLE } 2-3 & \text { COMMON TERMINAL LOGICAL } \\ & \text { RECORD LENGTHS }\end{array}$

TABLE 2-4 SPECIAL ASYNCHRONOUS CHARACTERS

2.2.2 Model 1200 Editing VDU

The Model 1200 Editing VDU sysgen device statement format is:

1 dnem: adr,156,. Xxdcod,1rec1,., pdseq1

See Section 2.2.1 for descriptions of the variables in this device statement.

156 specifies device code 156, Model 1200 Editing VDU.
$x d c o d$
specifies the same communications extended device code as a conversational VDU. See Table 5-2 for additional Model 1200 VDU options.
2.2.3 Models $1250 / 1251$ Point-to-Point VDUs

The Models 1250-1251 Point-to-Point VDUs sysgen device statement \quad I format is:

1 dnem: adr, 157, Xxdcod,1rec1,., dseq1

See Section 2.2.1 for descriptions of the variables in this device statement.

157 specifies device code 157, Models $1250 / 1251$ Point-to-Point VDUs.

Xxdcod specifies the same communications extended device code as a conversational VDU. See Table 5-2 for additional Models 1250/1251 VDU options.
2.2.4 Models $1250 / 1251$ Multidrop VDU

The Models $1250 / 1251$ Multidrop VDU sysgen device statement format is:

1 dnem: adr, 158, Xxdcod,1rec1,., pdseq1

See Section 2.2.1 for descriptions of the variables in this device statement.

158 specifies device code 158. Models 1250/1251 Editing VDüs.

Xxdcod specifies the same communications extended device code as a conversational VDU. See Table 5-2 for additional Models $1250 / 1251$ VDU \mid options.
2.2.5 Supervisor Call 15 (SVC 15) Only Asynchronous Device The SVC 15 only asynchronous device sysgen device statement format is:

1 dnem: adr, 144, Xxdcod, X Xdc1,Xwtc1

See Section 2.2.1 for descriptions of the variables in this device statement.

144 specifies device code 144 , SVC 15 only asynchronous device.

2.2.6 Sigma 10 Terminal

The Sigma 10 Terminal sysgen device statement format is:

1 dnem: adr,146,. Xxdcod, 1rec1,Xrdc1,Xwtc1,pdseq1

See Section 2.2.1 for descriptions of the variables in this device statement. 146 specifies device code 146, Sigma 10 Terminal.

NOTE

For local operation of the Sigma 10 Terminal use the following format:

1 dnem: adr, 146,.,73
2.2.7 Remote Line Printer - DCOD 145

Format:

1 dnem: adr, 145,. Xxdcod,1recl,Xrdcl,Xwtcl,pdseq1

See Section 2.2.1 for descriptions of the variables in this device statement. 145 specifies device code 145 , Remote Line Printer.

NOTE

For local operation of the Remote Line Printer, use the following format:

1 dnem: adr,145,,132

2.2.8 Module Specification

An additional option is available for the module statements. This option can be used to request inclusion of a user-assembled communications subsystem module. Acceptable formats for the module statement now include:

ITAM. $x \mathrm{xx}$
where $x x x$ is a unique identifier. Currently supported options are ITAM.M01, the standard communications module, and ITAM.J00 for a user-assembled module.

CHAPTER 3
ASYNCHRONOUS LINE DRIVER

3.1 INTRODUCTION

This chapter discusses the asynchronous line driver that allows users to:

- access terminals usirg protocols or codes not supported by a terminal manager.
- use special buffering techniques, and
- use data or command chaining to achieve a higher throughput rate.

The reader should be familiar with the basic data communications concepts, particularly supervisor call 15 (SVE 15) , describei in the $0 S / 32$ Basic Communications Feference Manual.

The asynchronous line driver provides an interface between the user program and the PALS, PASLA, 2-1ine mux, 8-1ine mux, or current loop communcations multiplexor (CLCM) communications adapter which, in turn, support the terminals listed in Chapter 2. This line driver allows the user to specify the control sequences and data necessary to complete a transmission over a communications line.

To transmit or receive data over a communizations line with RS232C interface leads, the asynchronous line iriver communicates with PALS, PASLA, 2-line mux, or 8-line mux. To transmit or receive data over a communications line with current loop interface leads, the asynchronous line driver communiaates with CLCM. The driver does not have to be aware of what devices are downstream from these adapters. The terminal manager written to support the driver, however, must be given the device attributes.

3.2 ASYMCHRONOUS LINE DRIVER AND SVC 15

The asynchronous line driver is an SVC 15 line driver; i.e., it can be accessed by a user SVC 15 or by the terminal manager. SVC 15 access to the line driver provides greater control over adapters, devices, and formats than terminal manager azcess. A user task (u-task) makes an I / O call with the SVC 15 instruction and parameter block. See the $0 S / 32$ Basic Data Communications Reference Manual for a detailed description of this parameter
block. Figure 3-1 illustrates the SVC 15 parameter block structure.

Figure 3-1 Supervisor Call 15 (SVC 15) Parameter Block

The first byte in the parameter block is a function code provided by the u-task. This function code specifies certain ontions applicable to the entire SVC 15. Figure 3-2 illustrates these options.

2877

Figure 3-2 Function Code Format

0
$c c=1$ The halt $I / 0$ was not acsepted because the driver was not performing any $S V=15 \mathrm{I} / \mathrm{J}$ to the logical unit (lu) specified for the task at the time of the call. The status field is not changed. I/O may have terminated normally just prior to the halt I/O call.

COMMAND QUEUE ENTRY ENABLE
This bit must be set, along with the corresponding bit in the iriver command word (DCW) and the enable SVC 15 queue entry bit in the task status word (TSW), to allow a trap at the start of each DCW execution.
bUFFER QUEUE ENTRY ENABLE
This bit must be set, along with the corresponding bit in the DCW and the enable SVC 15 queue entry bit in the TSW, to allow a trap at the start of each buffer use associated with the DCW.
termination queue entry enable
This bit must be set, along with the enable SVC 15 quere entry bit of the TSW, to allow a
 SVC 15. A halt I/O call does not generate a trap; however, the call being halted does if it originally specified termination queue entry enable.

4-7 Reserved for future use.

The second byte is the lu, also provided by the u-task. Ihis byte specifies the device assigned for SVC 15 access.

The next halfword is for the communications subsystem status returned from the driver to the u-task. Figure 3-3 shows the SV 15 status halfword.

2878 Status bits

Figure 3-3 Supervisor Call 15 (SVC 15) Status Halfuord

$\begin{aligned} & \text { STATUS BIT } \\ & (\text { HEX) } \end{aligned}$	MEANING	DESCRIPTION
$0\left(X^{\prime} 8000^{\circ}\right)$	Error	Set for all error conditions and any termination code greater than 2 .
$1\left(\mathrm{X} \cdot 4000^{\circ}\right.$)	Busy	Driver is still busy with SVC 15 call. Can be cancellei via halt I/O.
$2\left(\mathrm{X} 200{ }^{\circ}\right.$)	Transfer not begun	This bit is reset after the first character is received or sent.
$3\left(X \cdot 1000^{\circ}\right)$	Timeout	Set for I/O timeout.
$4\left(x^{\prime} 0800{ }^{\circ}\right.$)	Parity	Set on detection of parity errors. If the encodel error is also parity, the driver terminated on the error.
6 ($\mathrm{X}^{\circ} 0200^{\circ}$)	Rack space error	Attempt to back space over buffer limits using =hained or queuel buffers.
$8\left({ }^{\prime} 0080^{\circ}\right)$	Line delete detect	Line delete character detected in input data.

Table 3-1 lists the termination codes resulting from a terminated SVC 15. These codes occur independently of the status bits defined for Figure 3-3.

TABLE 3-1 ENCODED ERRORS AND DEFINITIONS

Byte 4 indicates the number of commands executed. Inis information, returned by the driver to the u-task, consists of the number of DCWs fetched and executed (not necessarily error free).

The next three bytes, provided by the u-task, must contain the address of the first halfword of the user DCW =hain. A DCW chain consists of consecutive driver command halfwords with their respective chain option bits set. DCWs are halfwords, each of which specify to the driver a particular functional oparation to be performed, such as read or write. They also specify certain options applicable for the duration of the command. Figure 3-4 shows the format of the DCW.

Figure 3-4 Driver Command Word Format

Table 3-2 shows the options enabled by setting the appropriate bits in the flags field of the DCW.

TABLE 3-2 DRIVER COMMAND OPTIONS

FLAG	DESCRIPTOR	DESCRIPTION
Bit 0	Chain command	After this command is executed, if
		this bit is set, the next command
i		in sequence is executed. Other-
I		wise, the driver terminates.
Bit 1	Command trap	If set and enabled by the function
		code, a trap indizating command
		trap is generated to the calling
		task before this command is
		executed.

ELAG	DESCRIPTOR	1 DESCRIPTION
\mid Bit 2	Buffer trap	$===== \pm===$ - \| If set and enabled by the function
1		l code, a buffer trap is generated
1		\| after each buffer is transmitted
1		\| or filled.
1		
\| Bit 3	Timeout	If set, an error timer is
1		initialized before the commani is
1		\| executed. If the timer expires
1		\| before the command goes to comple-
1		\| tion, the entire SVC 15 is aborted
1		\| with a timeout status.
1		I
1		\| If not set, the timer is stopped
1		I and the command does not timeout.
I		1
1		There are separate error time
1		values for read and write.

The next fullword in the parameter block returned by the driver to the u-task consists of two halfwords. They indicate, respectively, the length of the last read and the length of the last write performed by this I/O call.

The remainder of the parameter block consists of data fialis required by the DCW chain. Each data field consists of a 1-byte code and a 3-byte data address. Data codes indicate the type of buffering desired. The data address always points to the iata required by the corresponding DCW. (This couli be no data or one or more data fields, depending on the particular command.) See Appendix A for the DCW halfword binary format. See the 05/32 Basic Data Communications Reference Manual for a detailed description of data codes and buffering techniques. Buffers are described later in this chapter.

3.3 COMMANDS SUPPORTED

The asynchronous line iriver supports the following commands:

- Null type:
- XFER
- CXFER
- WAIT
- NOP
- Control type:
- EXAMINE
- RING WAIT
- ANSWER
- DISCONNECT
- Read type; using standard data communications subsystein buffer management:
- READ
- READ1
- READ2
- Prepare type; for one single character:
- PREPARE
- Write type; using standard data communications subsystem buffer management:
- WRITE
- WRITE1
- WRITE2
- Hold type:
- HOLD space (transmit break)
- Moje type; used to modify certain programable ajapter options, allowing one asynchronous line driver to communicate with different types of asynchronous terminals:
- TOUT
- CMD2
- RCMD
- WCMD
- RDISABLE
- JDISABLE
- DISC
- TRANSL
- SPCHAR

A11 mode commands receive an address from a data field. This address points to a byte, halfword, or fullword field zontaining an output instruction or an error timeout value. The contents of this field are stored in the DCB for use by the asynchronous line đriver.

If the default values specified in the $D C B$ are acceptable, no mode commands need be executed. Once a value is changed by a mode command, the only means of restoring the default conition is by a mode command specifying the correct value. It is necessary to coordinate such modification if access is being shared by more than one program.

The chain command and command trap bits of the DCW can be used in conjunction with the mode commands.

These commands are described in detail below:

	MODIFIER/
COMMAND	
COMMAND BYTE (HEX)	

 consecutive halfworis. The first halfword is a mask that is ANDed with the present status of the coinmunications subsystem. The second halfword is compared with the result from above. If equal, the next command address is specified by the second data field. If unequal, the next command in sequence is executed. This command must be chained.

This command obtains one data field that specifies the address of a halfword containing a timeout count in units of 100 milliseconds. This delay is performed before continuing with command word chain processing.

This command obtains one data field, which is ignored. It is useful for reserving space in both the comand chain and the DCW chain. The data field of this command must specify a valid address.

This command obtains one data field. The value obtained specifies the address of a writable byte into which the status of the device is stored. The last known device status is fetched from a byte in

RING WAIT XX09

ANSWER

DISCONNECT XX19

READ
memory that is maintained by the driver during I/0 activity. If the byte is nonzero, its contents are returned to the user and it is reset to 0 . If the byte is 0 , a sense status is performed on the device and the device status is returned to the user.

This command fetches no data fields. Interrupts from the ajapter are enabled; however, the data terminal ready lead to the modem is not. The command terminates when an interrupt is received with ring status set. If chain command is set, execution continues with the next command otherwise, the ariver terminates. If timeout is set, the command only waits as long as the value specified in the write error time value. If this interval expires, timeout error status is set. If timeout is not set, the command waits indefinitely.

For nonswitched lines ani switched lines already connected, this command immediately terminates. For dial-in lines that are unconnected, the data terminal ready leai to the modem is enabled, causing the modem to answer when the data set indicates it is ready for I/O. Timeout and chain commands are handled as described in the RING WAIT command.

This command disables the data terminal ready lead to the modem, causing a disconnect on a switched line. Ihe command waits for one seconi, then continues to the next command (if chain command is set) or terminates (if reset).

This command obtains either one or two data fields, depending on which one of the three standard data communications buffer management techniques is specified in the data code of the first lata fieli obtained. For indirect and chained buffers, one data field is obtained; for direct and queued buffers, two fielis are obtained. All buffers must be in the same logical segment of the task as the address contained in the first fata fiald of the parameter block. The command terminates normally when all buffers are
exhmusted or a termination character is received. If timeout is requested and the $I / 0$ does not terminate normally before the timer expires, then I / J is aborted and timeout status is returned. The special characters recognized iuring read and their enable mask values are shown in Table 2-4.

READ1

READ2
XXOA

XX 12

PREPARE XXO 3

This command obtains one data field that specifies the address of a writable byte into which a character is read. Ihe command terminates aftar reading one character. If timeout is requested in the command, the read error time value (changeable by a MODE command) is used.

This command is similar to the above command except that two bytes are read and stored.

This command obtains one data fiald that specifies the address of a 1-byte lata area. Characters are read from the adapter, and the command terminates when a character is read equal to the contents of the data area. The characters read are not stored and are lost.

Receipt of break can optionally fulfill the requirements of the PREPARE command (controlled by the special character write enable bit X'0001'). When the prepare criterion is fulfilled (correct character received, or break if enabled) the command is considered executed and the next command, if chained, is executed. If timeout is specified in the command, then the read time value is used. The entire SVC 15 terminates with timeout status if the PREPARE command is not satisfied within the allowei time.

NOTE

The special case of PREPARE chained to a READ results in a lookahead to set up the read buffer. In this way, an input stream can be searched for a special key character and then the text that follows can be read.

WRITE	XXO4	This command obtains either one or two data fields based on the same criterion as in READ. The command terminates normally when all buffers are exhausted or a termination charazter is detected in the data being transmitted. The asynchronous line driver performs special character recognition during write operations in an analogous fashion to the read. Each character is enabled via a halfword bit mask changed via the mode $S P C H R$ command. Backspace and line delete chara二ters are of no practical value in a write situation, and none are defined. The ending characters for write and their enable masks are shown in Table 2-4.
WRITE1	XXOC	This command obtains one data field that specifies the address of a byte of data transmitted to the adapter. The command terminates after the character is transmitted.
WRITE2	XX 14	Same as WRITE1, except two characters are transmitted. If detected in a data stream being transmitted, the ending character is transmitted and tne write is terminated.

NOTE
If echoplex is specifiei for
READ, an extra oad character
(X'FF') is sent after the last
Character is written for all
WRITEs. (The pad is not sent
if the image translation table
is specified.)

HOLD
XX 05
Chain command and command trap are the valid flag bits. This command obtains one data field that specifies the aldress of a halfword containing a timesut count in units of 100 milliseconds. The driver transmits a continuous space (line break or a character equal to zerol for the specified interval, after which the command terminates. Clock resolution is $+0,-1$ clock unit of 100 .

This command obtains the addrass of the byte specifying the asynchronous friver adapter command used for read operations. This command is then stored in the DCB. MOCR field. The asynchronous iriver communicates with the adapter through this command. For example, whenever an adapter is to perform a read operation, the driver issues the read command stored in the DCB.MOCR field by RCMD. (See Figure 3-5).

For read operations the adapter command should normally specify:

ENABLE+
DATA TERMINAL READY + (DTR)
The proper combination for read and (optionally) echoplex. See the OS/32 Basic Data Communications Reference Manual.

This must be consistent with the adapter type, its particular strapping, and the modem. If the echoplex is usel (normally only on 4-wire) it shouli be specified only in the READ command. See Figure 3-5.

This command obtains the address of the byte containing the adapter command that is stored in the DCB.DJCR field for use by the driver. This adapter command disables interrupts from the read side of the adapter after each completed DCW READ and WRITE command and after any error conditions. It should normally leave the adapter and modem in the real mode and specify:

DISABLE +
DATA TERMINAL READY+
Proper combination for READ. See Eigure 3-5. See the OS/32 Basic Data Communications Referenこe Manual.

This command obtains the address of the write adapter commands that are stored in the DCB.MOCW and DCB.DJCW fields for use by the asynchronous driver.

The write commands WCMD and WDIS are used similarly to the READ Commands and should normally specify:

WCMD: ENABLE+
DATA TERMINAL READY+
Proper combination for WRITE

See the 0S/32 Basic Data Communications Reference Manual.

```
WDIS: DISABLE+
    DATA TERMINAL READY+
    Proper combination for WRITE
```

See Figure 3-5 and the OS/32 Basic Data Communications Reference Manual.

The write conmands leave (or disable) the line in the write state, with data terninal ready; while the read commanis disable the line in the read state, with data terminal ready. This allows the user to string several write or read commands together so the disable at the end of each command does not result in dropping and/or subsequent raising of request to send (RQ2S), unless the command does indicate a change of state.

The format of the $I / 0$ command byte 2 obtained by the mode CMD2 command is shown in Figure 3-6. Because programmable adapter options an be set via the mode CMD2 command, the bit pattern for the CMD2 is determined by the user's particular installation. Setting bit 7 to 0 allows the user to select the following clock adapter options: number of bits, number of stops, and parity (odd, even, or none).

No.

Figure 3-6 Adapter Command 2 (CMD2)

TRNSL XXOO This command allows the user to modify the default translation table. It obtains the address of a one-byte field specifying the type of translation table to be used by the driver. This byte can contain the following values:

X'00' Normal translation (7-bit ASCII, strip off and ignore parity)

X'01' 8-bit image translation

The address of the translation table to be used is stored in the DCB.XLI field.

The only ending characters recognized by the image translation table are CR (X'OD' or $X^{\prime} 8 D^{\circ}$) and ETX (X'03' or $X^{\circ} 83^{\circ}$). The characters must be enabled to become effective.

SPCHR XX4E
This command obtains the address of a fullword field specifying the spezial character enable mask halfwords for read and write operations. SPCHR stores the halfwords in the DCB.SPCR and DCB.SPCW fields for use by the asynchronous line driver. The first halfword is the read enable mask, and the second halfword is the write enable mask. The format of each mask is shown in lable 2-4.

3.4 SPECIAL CHARACTER PROCESSING

The special characters that can be used during read or write operations are livided into four major categories:

- Ending or Terminating Characters - These Charactars, when encountered in the data stream, are storad in the buffer or sent down the communications line and result in termination of that particular READ or WRITE command. If the command is chained, the next command is executed. See Table 2-4.
- Line Delete Characters - When these characters are detected in the input data stream, the line delete special character bit is set in the status halfword. If the line delete is also enabled as a terminating character, the entire SVC 15 is aborted with the encoded status indicating line delete. See Table 2-4.
- Backspace Characters - These characters, when encountered in the input stream, result in the equivalent of a backspace; i.e., the previous character is backspaced over. See Table 2-4.
- Miscellaneous Other Characters - Miscellaneous characters have variable meanings, depending on the type of terminal involved. These characters can be used to turn off or on a specific operating character for a predefined terminal. See rable 2-4.

Since several terminal or line procedures use different characters for the previous purposes, the asynchronous line driver recognizes several characters in each category. Speaial character recognition for each character aan be separately
enabled or disabled by a bit mask. The mask consists of two halfwords that indicate the characters this particular device allows for a given purpose on read and write. rhese two halfwords are modified by the mode SPCHR command explained in the description of the mode commands.

When using chained or queued buffers, it is not possible to backspace over buffer limits. (The data communications subsystem allows the user to manipulate buffers other than those currentiy in use by the driver.) If a backspace that would back over a buffer limit (except the first buffer) is attempted, the backspace function is disabled and the backspace over buffer limit status is set. The result is that this and all future backspace characters are stored in the buffer. Reissue the read or attempt to perform user backspace handing if this status occurs.

Setting the escape bit allows receipt of ESC during a write to be treated as if a break were received. Escape is ignored if this bit is reset.

BUFFER CONTROL

NOTE
The control characters DC1 and DC3 used by the remote printer are handled in the same manner as DC2 and DC3, respectively.

3.5 DEFAULT VALUES

The default values, assembled in DCB144, DCB145, DCB146, DCB147, DCB148, DCB149 and DCB150 for the previous mode commanis are shown below:

TOUT	DC	$\mathrm{H}^{\prime} 30^{\circ}$, $\mathrm{H} \cdot 30^{\circ}$	30 seconds for read, 30 seconds for write
CMD2	DB	X'38'	8-bit data characters, no parity, 2 stop bits
RCMD	DB	X'71'	ENABLE, DTR, ESHOPLEX, READ
WCMD	DB	X'63'	ENABLE, DTR, WRITE
RDIS	DB	X'A1'	DISABLE, DTR, READ
WDIS	DB	X'A3'	DISABLE, DTR, WRITE
DISC	DB	X'B1'	DISABLE, READ
TRNSL	DB	0	7-bit ASCII, strip off parity
SPECCHAR	DCX	$81 \mathrm{E} 8,0000$	All characters enabled

The special character format for DCB144 is:

SPECCHAR DCX F9ED,6004

Ending sequence count for DCB149 and 150 is:

SYCT DB X'2 ${ }^{\circ}$ LF, CR as ending sequence

3.6 BUFFERS AND TRAPS

The following information on buffers appears in Chapter 3 of the 0S/32 Basic Data Communications Reference Manual.

SVC 15 specifies the first entry in each of the following two related chains used to define the request:

1. The DCW chain, which specifies the sequence of operations to be performed by the driver; i.e., READ, WRITE, etc
2. The data field chain, which specifies the arguments required by each driver command in the DCW chain

SVC 15 activates the line driver which fetches and exezutes the first DCW in the DCW shain. Once autonomous iriver execution is started, control is returned to the user task with the condition code indicating the result of the call. If no error is encountered in initiating the operation specified by the first DCW, the status field of the SVC 15 parameter block is set to indicate that the line driver is active with the request. For the remainder of the I/O request, as each command operation is
completed, the next operation specified in the DCN chain is fetched and executed by the line driver at the priority of the calling task. This sequence of fetch and execute is repeated until the entire DCW chain is interpreted or an error conition is encountered.

To monitor the progress of SVC 15 and provile facilities for buffer management, the task can specify that a trap is to be generated at the start of the driver command execution, at the time the line driver starts to use a buffer, and/or at termination of SVC 15. These traps allow the task to synchronize execution with the concurrent processing of the SVC 15 request. When traps are enabled, and a trap-causing event occurs, the task trap handiing routine is given control before any subsequent task level instruction can be executed. Remember that the trap-handling routines are operating at a lower priority than the line driver; thus, several entries can be made to the task queue before the trap handing routine completes processing a single entry.

Both the DCW and data field chains are usually interpreted by fetching the next required entry from the memory location immediately following the last entry processed. Special entries allow each chain to be contained in nonadjacent areas in memory. There is a DCW chain entry specifying that the data field points to the next DCW chain entry. Similarly, there is a data field chain entry pointing to the next entry in the data field chain instead of containing the address of a data area. The only restriction is that all buffers specified in one SVC 15 request must be contained in the same logical program segment. See the 0S/32 Application Level Programmer Reference Manual for a discussion of program segments.

The user uses the SVC 15 parameter block to specify a control sequence to be performed by pointing to a DCW chain. Through the SVC 15 parameter block, the user also specifies the data areas associated with each driver command by pointing to a chain of data fields. A data field, illustrated in Figure 3-7, consists of a 1-byte code indicating the data field type and a 3-byte pointer to the data described by the data field.

2882

Figure 3-7 Supervisor Call 15 (SVC 15) Data Field

DATA CODE (HEX)
00
04
08
OA

CONTENTS
Address of direct buffer Address of indirect buffer Address of chained buffer Address of queued buffer 1ist

3.6.1 Buffer Types

There are three buffer types used by the asynchronous line driver:

- Direct
- Indirect
- Chained or Queued

These buffer types and their respective data codes are described in the following sections.

3.6.2 Direct Buffers (Data Code X'00')

A direct buffer requires two data fields in the lata fiəld shain. These data fields contain the start and end addresses of the buffer. A direct buffer is similar to an SVC 1 data buffer. The start address points to the first data charactar; the end address points to the last data character. A 1-character buffer has a start address equal to the end address. Direct buffers can begin on any byte boundary. See Figure 3-8.

3.6.3 Indirect Buffers (Data Code X'04')

An indirect buffer is specified by one data field containing its start address. The buffer itself contains all required size information. The first halfword indicates the number of bytes available in the buffer. The second halfword of the buffer is updated by the driver; it indicates how many bytes of lata were actually transferred by the $I / 0$ operation. An indirect buffer can be aligned on a halfword boundary. See Figure 3-9.

Figure 3-9 Indirect Buffer

3.6.4 Chained Buffers (Data Code X'08')

Chained buffers are specified by one data field containing the address of the first buffer in the chain. Chained buffers are like indirect text buffers but have an additional fullword at the beginning. This fullword is called the link word and can contain the address of another chained buffer. Thus, two or more buffers can be linked together into a chain. The last buffer in a chain of linked buffers contains a zero link word indicating the end of the chain. Chained buffers can also be configured ints a closed chain (a ring) if the last buffer links back to the first buffer. See Figure 3-10.

Figure 3-10 Chained/Queued Buffer Format

The first byte of the link word is used for certain flags indicating conditions or ontions within the buffer. Chained buffers must be aligned on a fullword boundary. See Figure 3-11.

A task can manipulate the links and data of chained buffers while I/O activity is in progress. Bits 0-7 of the link word (the flag byte) are used to coorinate driver and u-tasks as shown in Figure 3-11.

2886
Busy Done

Figure 3-11 Chained/Queued Buffer Link Word Flag Byte

0	A buffer is available for use by the driver. The link word contains a valid address or zero.
1	

The user task must not change:

- Data
- Size values
- Link word
- Flags

1

0

1

1

The driver has finished using the buffer. The driver will not begin to use this buffer again should it reoccur in the chain. A u-task can change any value, and the bytes used field reflects actual transfer.

Invalid setting. The driver treats it as if both busy and done bits were set to one.

3.6.5 Queued Buffers (Data Code X'OA')

Queued buffers are specified by two data fields. Each data field contains the address of a standard Perkin-Elmer circular list. The first list (list 1) specifies a queue of buffers from whizh the basic communications subsystem removes buffers for input/output operations. The second list (list 2) specifies a queve of buffers that the basic communications subsystem returns to the applications program following I/O activity. List 1 may coincide with list 2. Figure 3-14 illustrates the standard Perkin-Elmer circular list. The basic communiations subsystem removes buffers from the top of list 1 by executing a remove from top of list (RTL) instruction and returns buffers to the bottom of list 2 by executing an add to bottom of list (ABL) instruction.

The format of each individual queued buffer, whose address is contained in the list, is identical to the format of a chained buffer. As with other buffer types, the circular list definition, and all buffers included within the list, must be in the same logical segment. Restrictions on modification of the buffer control fields during I/O apply equally to queued buffers and chained buffers.

When an I / O buffer is removed from list 1 by the basic communications subsystem, the link address field is =leared to prevent error verification ambiguity, and the adiress of the
buffer is maintained solely within driver control storage. Ihe buffer is, in effect, not available to the applications program during $\mathrm{I} / \mathrm{O}_{\mathrm{o}}$

The busy and done bits within the flag byte are used analogous to chained buffers. When $I / 0$ is complete, the buffer is returned to the bottom of list 2. Simultaneously with I/O operation, the applications task can add new I/O buffers to the bottom of list 1 or remove completed buffers from the top of list 2. Jnly list processing instructions (RTL, RBL, ATL, ABL) can be used by the applicatons task to modify a circular list. Any other zttempt to modify circular list control fields could result in a loss of control.

Should the communications subsystem attempt to return a buffer to list 2 and not be able to complete the action because the list is full, a queue overflow ($X^{\prime} \mathbf{2 4}^{\circ}$) error termination results. Ihe addresses of any buffers currently being used for I / J are then chained to the bottom buffer in list 2 to return them to the applications task. As the list address field is initialized to zero at the start of I / O, a nonzero link field should be checked by the applications task to detect buffers returned due to a queue overflow error condition.

The buffer trap mechanism is available for queued buffers. ro conserve processor time, this mechanism is generated only when a buffer is added to a previously empty list 2, indicated by the status returned by the last RTI or RBL. This technique requires an application program to process all buffers in list 2 whenever a trap interrupt occurs. See Figure 3-12.

2887

Figure 3-12 Conceptual Circular List and Format

The first two fullwords contain the list parameters. Immediately following the parameter block is the list itself. Thefirst fullword in the list is designated slot 0 . The remaining slots are designated $1,2,3$, etc., up to a maximum slot number equal to the number in the list minus one. An absolute maximum of 65,535 fullword slots can be specified. (Maximum slot designation is equal to X'FFFE'.)

The first parameter halfword indicates the number of slots (fullwords) in the entire list. The second parameter halfword indicates the current number of slots being used. When this halfword equals zero, the list is empty. When this halfword equals the number of slots in the list, the list is full. nnce initialized, this halfword is automatically maintained. It is incremented when elements are added to the list and decremented when elements are removed.

The third and fourth halfwords of the list parameter block specify the current top-of-the-list and the next bottom-of-the-1ist, respectively. These pointers are also automatically updated.

3.6.6 Traps

Two things are required to perform a trap when using the task queue service method:

1. In the TSW of the user-dedicated locations (UDL), the sVC queue entry enable bit must be set.
2. In the SVC 15 function code and in the DCW, the appropriate bits must be enabled for the particular trap desired. See Figure 3-2 and Figure 3-4.

When a condition causes a trap, the current TSW (status and location) is saved in the appropriate area of the UDL. A new ISW (status location counter) is loaded from the appropriate area in the UDL. The new TSW controls the traps or task queue entries to be allowed during the execution of the trap service routine. The trap routine must save general and floating point registers as necessary prior to servicing the trap. An SVC 9 (load TSW) is used to load the saved (old) TSW, returning control to the normal execution sequence.

The SVC 15 parameter block with the trap bits enabled can be added to the user task queue, causing a trap. All traps are transmitted to the calling task before execution of the command. The format of the items added to the task queue is shown in Figure 3-13.

2888

Figure 3-13 Task Trap Format

The code indicates the reason the entry was placed on the queue. The SVC 15 reason code for each of the four kinds of traps is shown in Table 3-3. The parameter entered on the task quaue is the address of the SVC 15 parameter block in all cases.

TABLE 3-3 SUPERVISOR CALL 15 (SVC 15) TRAPS

3.7 HOW TO USE THE ASYNCHRONOUS LINE DRIVER

The asychronous line driver can be used to build a data file by working interactively with ar editing VDU. The user begins by providing the information specified by the format appearing on the screen. When the user onters the data required (refer to Appendix C for a sample printout), the interactive prozess begins. The system continues presenting formats on the screen for user response. lhis interactive process continues until it is terminated by the user.

CHAPTER 4

TELETYPE (TTY)/VIDEO DISPLAY UNIT (VDU) TERMINAL MANAGER

4.1 INTRODUCTION

This chapter describes the $0 S / 32$ Basic Data Commuications TTY/VDU terminal manager (INITMASY), which requires the asynchronous line driver.

The TTY/VDU terminal manager is a nonbuffered terminal manager that supports remote asynchronous teletypes, non-editing VDUs, graphic displays, or Carousel 300 terminals in a user program compatible with the local TTY/VDU driver. It provides a device independent supervisor call 1 (SVC 1) access capability featuring data optimization on output and automatic special-aharacter processing on input. It processes the extended options format, connects and disconnects, and is supported by high-level languages.

The TTY/VDU terminal manager occupies approximately 950 bytes; and the $D C B / C C B, 400$ bytes.

In addition, the terminal manager requires support from the asynchronous SVC 15 line driver and the system support module. As no data buffering is performed, a line control block (LCB) is not required.

A terminal manager has the logic to initiate, maintain, and terminate transmission to a logical device called a terminal. This level of support allows:

- A user program to access local or remote peripherals without recompilation
- User access to remote facilities without regard to the line protocols, codes, and functions of those facilities.
- A user application to be supported by a standard terminal manager without implementing special purpose software

4.2 TERMINALS

The TTY/VDU terminal manager and hardware interfaces support the following remote terminals and any otner terminal that meets EIA RS232C interface specifications:

- ASR-33 TTY keyboard/printer
- ASR-35 TTY keydoard/printer
- Nonediting VDU
- Graphic display terminal
- Carousel 300 terminal
- Carousel 300 terminal with electronic format control
- Models 550 and $550 / B$ nonediting terminals
- Model 1100 nonediting terminal

This is a nonbuffered terminal manager that supports the ASII character set only.

The extended device code (DCB. XDCD) must be initialized at system generation (sysgen) time. A description of the communications subsystem extended device code is shown in Figure 4-1.

Figure 4-1 Extended Device Code Halfword

LINE CODE
Line Status
Direct connection 0
Leased line
Dial in/manual dial
decimal Value

1024
2048

Line Protocol
Half duplex 4-wire
0
Half duplex 2-wire 768
Simplex read 256
Simplex write 512
Explicit connect reguired 128
Clock Selection
Clock A 0
Clock B 15
Clock C 32
Clock D 48

4.3 SUPPORTED ATTRIBUTES

This terminal manager supports read, write, halt $I / 0$, wait, unconditional proceed, image, variable record lengths up to 72 characters (M33), 74 characters (graphic display terminal), 80 characters (M35 or nonediting VDU), and 132 characters (Carousel 300). All other I/O transfer requests are returned as errors. All command requests are ignored.

4.4 SUPPDRTED FUNCTIONS

The $0: / 32$ Basic Data Communications Try/VDU rerminal Manager supports the functions of read ASCII, write ASCII, and raad or write image. For more information of device indepentent functions (SVC 1), see the $0 S / 32$ Supervisor Call (SVC) Programmer Reference Manual.

Read ASCII

Write ASCII

Read or Write Image

Data read is masked to 7-bit ASCII. Data is read until the buffer is full or a carriage return is found, whichever oceurs first. Upon termination, a carriage return/line feed sequence is sent to the printer. ryping the character \# causes the line input to be ignored, an LF/CR/CR sequence to be output, and the read operation to be restarted. Typing the character (shift-J), BS (ASCII backspace), or cursor left causes the previous character entered to be ignored.

The buffer is scanned to eliminate trailing blanks. Data is output until the buffer is exhausted or until a carriage return is found in the data stream. A line feed is automatically appended to the deleted CR. If no $C R$ is detected, an LF/CR/CR sequence is output.

None of the previous formatting actions occur. The amount of data requested is typed out or read in, without masking, to 7-bit

ASCII, eliminating trailing blanks, checking for \# characters, or detecting or appending carriage returns or line feeds. On image read, however, an ASCII CR is letected as an end of line terminating control character.

4.5 THE PERKIN-ELMER CAROUSEL 300 TERMINAL

The TTY/VDU terminal manager supports the Perkin-Elmer Carousel 300 terminal with or without electronic format control. The Carousel 300 is a versatile, high quality, 30 -character per second computer terminal designed for timesharing, data commuications, and special applications requiring the availability of a local or remote terminal. The terminal consists of the carousel serial impact printing mechanism, a 76-key alphanumeric keyboard with a 10-key numeric pad, a control panel, a power supply, and a molded cover case. Interfacing to the communications line or local processor is accomplishei via the standard RS232C interface. Refer to the Perkin-Elmer Carousel 300 Programming Manual. Other features include:

- 132-character print line at 10 characters per inch
- 15-inch forms width capability
- 128-character line buffer
- 32-character keyboard buffer to increase system throughput
- Independently addressable horizontal and vertical print positions in increments of $1 / 10$ inch and 1/43 inch, respectively
- A peak speed of 40 こps

The $\operatorname{ITY} / V D U$ terminal manager passes through to the terminal any of the following escape character sequences requested by SVZ 1:

ESC 0

ESC 1
Horizontal tab set - Electronically sats the current print position as a tab stop

ESC 2	Horizontal tab clear - Electronically clears the current print position as a tab stop
ESC 3	Clear all tabs - Clears all previously set tabs
FSC 4	Ribbon $u p$ - Raises ribbon to printing position with a single-color ribbon or restores ribbon to black printing position from red when using a two-color ribbon
$\operatorname{ESC} 5$	Ribbon down - Lowers ribbon to stencil position with a single-color ribbon ra to rad ribbon position when using a two-color ribbon
ESC 7	Reverse line feed - Moves paper $1 / 6$ inch to the previous line
ESC P	Inhibit escapement - Causes print carriage to remain at last printed column position
ESC P	Restore escapement - Restores printing pitch to 10 characters per inch
CONTROL L	Top of form - The control logic monitors the passage of a standard 11-inch, 65-1ine form through the printer. The form an be skipped in whole or in part when the code is received. Movement stops at the end of the 11-inch form and corresponds to the top of the next form.
	The initial setting of the top-of-form position is automatic and only requires the first manual positioning of the form with the plater knob. If power is turned off, the top of the form must be redefined when power is restored.
Addressable horizontal	The control logic allows firect forward and reverse tabulation of the print carriage to any of the 132 printing positions. Each tabulation position is reached by inputting a 3 -code sequence from the data source. See Table 4-1 for coding.

NOTE

The firmware presets every eighth \quad olumn as a tab stop when power is first turned on.

Addressable vertical tabulation

The control logic allows the direct addressing of 127 vertical tabulation positions. Forward, up ard/or reverse, down, movement of the paper or form can be achieved by entering the appropriate codes as shown in Table 4-2.

2908

Vertical line The following codes are used to move the platen increments in increments of $1 / 48$ inch:

NOTE

$$
\begin{aligned}
& \text { The } 11 \text {-inch top-of-form value is } \\
& \text { restored only on power down/power up or } \\
& \text { by entering the proper codes. }
\end{aligned}
$$

4.5.1 System Characteristics

The Carousel 300 terminal responds to the input of serial ASCII data. When operating at 150 or 300 baud, each character is composed of a 1-unit start bit, which is always space, followed by seven units of information bits, a 1-unit parity bit, and a 1-unit stop bit, which is always mark.

4.5.1.1 Character Stracture

The total character structure consists of 10 units (see Figure 4-2). At 110 baud, the character structure consists of 11 units, the extra unit being assigned to a second stop bit. Characters are transmitted with the low order bit first and the eighth bit (parity bit) last; i.e., serial, bit-by-bit.

Figare 4-2 Character Structure

4.5.1.2 Modem Connection

External modems, supplied by either the common carrier or the terminal user, are connected to the Carousel 300 internal RS232C interface via an extender cable. This 8-foot cable attaches to the rear of the cover case and terminates in a standari $25-\mathrm{pin}$ male EIA connector.

Another device supported by the terminal manager is the
 ASR-33 TTY and the Carousel 50, 30, and 35.

The basic unit operates on $115 \mathrm{~V}, 60 \mathrm{~Hz}$. Available options are 230 V , 50 Hz .

The hardware for the VDU product family is assembled from basic building blocks designed around the Motorola 6800 Micro-Processor and the various peripheral and communication interface chips.

4.6.1 Operational Characteristics

General specifications for the Model 1100 VDU are:

- Screen capacity, characters
- Characters per line
- Number of lines
- Tube size (diagonal)
- Phosphor
- Displayable characters (upper/lower case, numbers, punctuation, control)
- Character matrix
- Character generation
- Number of scans
- Refresh rate (noninterlaced)

80
24
12 inches
P4
128
9×12
7×9
12
60 hz (50)

- Character code: ASCII (Expanded through multi=ode sequences)
- Keyboard layout: ASCII (Bit pairing)
- Repeat key rate: $15 \mathrm{CPS}(60 \mathrm{~Hz})$ or $12.5 \mathrm{CPS}(50 \mathrm{~Hz})$
- Cursor, blinking-reverse video block cursor with blinking disable strap.
- Single key cursor controls: space, backspace, retarn, line feed, tab, back-tab.
- Multicode cursor control sequences: up, down, left, right, home, direct cursor addressing.
- Scroll mode (switch selectable): See section 4.6.3.2
- Tab: Tab stops are set every eighth position on initial power-on. Tab stops can be set for positions 1 to 80 on all lines.
- Transparent mode: All data received is stored in display memory and displayed without an initiating control function.
- Audible signal: $2 \mathrm{KHz}, 166.7 \mathrm{~ms}$. duration (60 Hz) 2 r 200 ms . duration (50 Hz)

The Model 1100 VDJ communications interface features:

- Communication options that are read only during the power-up sequence. Changing switch settings while the unit is powered-on is not recognized by the terminal until the next power-up cycle, or the clear-all key is depressed.
- Asynchronous serial interface conforming to RS232C and CCITT V. 24.
- Stop bits - switch selectable: one to two stop bits.
- Baud rates - switch selectable: 75-110 - 200 - 300 - 600 1200 - 1800 - 2400 - 4800 - 9600 baud.
- Transmit/receive mode: half or full duplex, switch selectable.
- Switch-selectable parity: odd, even, always marking or always spacing. Characters received with parity errors are displayed as an alternate dotted rectangle.

4.6.2 Controls

The Model 1100 VDU supports the following operator control functions:

- Clear all
- Power on/off
- Intensity
- Stop bit select (one/two)
- Baud rate selection
- Mode selection (full/half duplex)
- Parity selection: odd-even-zero-cne
- Local (A)
- Auto/LF (A)
- U/C (A)
$A=A 1 t e r n a t e$ action switch
- Break (M)
$M=$ Mamentary switch
- Scroll enable
(A)
- New line enable (A)
- Here is (M)

The Model 1100 VDU supports the following internal straps and switches (on the VDU controller board):

- Disable blinking block cursor
- Selection of display mode through switch on PC board: normal or reverse video
- Multicode character selection by means of 7 straps: default condition is ESC
- Permanent or switched DTR: if strap is installed, the data terminal ready lead to the modem is disabled when terminal is in local mode

4.6.3 Options (All Factory Installed)

The following options are availatle with the Model $1100 \mathrm{VDU}:$

- Current loop interface (20 ma), active or passive, strap selectable (for use with CLCM when using OS/32 Basia Data Communications).
- Here-is ROM with a maximum 32-character here-is message.
- Auxiliary serial interface
- Additional RS232C compatible serial interface with baud rate and stop-bit strapping selection.
- Current loop option (20 ma), active or passive, for aditional RS232C interface.
- Optional $230 \mathrm{~V}+10 \% 50 \mathrm{~Hz}$.
- Optional numeric pad with keys $0: 9$ and . (period) and. (comma).
- Anti-glare screen
- VDU-to-modem cable: connects visual display unit to RS232C compatible modem
- Optional underline zursor (block standard).

4.6.4 Principles of Operation

The Morel 1100 VDU is controlled by data received over the communications line and from the keyboard.

In $E D X$ or $H D X$ mode, data characters received over the line are stored in display memory and displayed on the screen. Control characters ($X^{\prime} 00^{\prime}-X^{\prime} 1 F^{\prime}$) and DEL ($X^{\prime} 7 F^{\prime}$) are not stored unless the display is in transparent mode or the character is preceded by a multicode character. ASCII control characters and ajaz initiated at the keyboard are transmitted over the line in $H D X$ or FDX mole. In HDX or local mode, the same actions take place when the key is depressed as occur when the character is received over the line. In FDX mode, the other end device must retransinit characters received from the terminal (echoplex) if they are to affect the display.

In transparent mode, all control characters stored in memory are displayed.

In normal mode, control characters are not displayed. Singleand multi-character control sequences cause appropriate action to take place, except when the display is in transparent mode. Local control keys do not transmit data, but cause the appropriate actions to take place when depressed. They also enable a condition for alternate action type keys.

4.6.5 Local Control Keys

Here Is

Upper Case Only

Transmits contents of the answer-back ROM, maximum 32-charaこters.

Lower case alphabetic charazters are converted to upper case, plus the following punctuation marks are converted: a to ${ }^{\circ}$, [to $\{$, to *,] to $\}$, and ${ }^{\wedge}$ to \sim.

Conversion takes place when a character enters from the keyboard or line; lower case characters already in memory are not converted.

A CR automatically advances the cursor to the first position of the next line.

New Line Enable

Scroll Enable

Local

Repeat

Clear All

Print

Back Tab
4.6.6 Single-Character ASCII Functions

Line Feed

Return

Moves the cursor down one line, except when the $V D U$ is in the scroll enable mode and the cursor is in line 24. The display rolls up one line. If the terminal is not in scroll enable mode, and the cursor is in line 24 , the cursor wraps around to line 1.

Moves the cursor to position 1 of the current line. If auto/LF is enabled, a line feed function is performed in addition to the return function.

Space and All Other Displayable Characters

Backspace (BS)

Tab (HT)

Break

Multicode

Bel1.

Form Feed

Enquiry (ENQ)

Data Link Escape (DLE)

Writes a character at the current position and moves the cursor one position to the rigit. The cursor remains at position 80 unless new line enable is selected.

Moves the cursor to the left one position. The cursor remains at position 1 for any adiitional $B S$ unless new line enable is selected. Then $B S$ wraps around to position 80 of the previous line. The cursor does not move beyond Home (first \quad haracter, first line).

Moves the cursor to the next tab position. If new line enable is not set and the cursor is past the last tab position, tab moves the cursor to position 80. If new line enable is selected and the cursor is past the last tab position, tab moves the u ussor to the first tab position on the next line. If there are no tabs set, tab moves the cursor to position 80; if new line enable is also set, the cursor moves to line 24.

Ca uses the communications line to go to a space (break) for as long as the key is depressed.

Initiates a special function sequence (multicode character defined by straps). Default is ESC.

Causes the audible alarm to sound for $166.7 \mathrm{~ms}(60 \mathrm{~Hz})$ or $200 \mathrm{~ms}(50 \mathrm{~Hz})$.

If scroll is enabled, form feei has the same effect as line feed. If scroll is not enabled, form feed erases the screen and moves the cursor to home.

Causes the contents of the answer-back ROM to be transmitted.

Ignored unless followed by SIX, in which case it causes the display to enter transparent mode. In transparent mode, a11 characters including control are stored in memory and displayed. New line is enabled; scroll is disabled. If DLE is received in transparent mode, the
next character is examined. If FIX is received, the display is returned to normal mode; otherwise \quad reseived character is stored and displayed.

4.6.7 Multicode Seguences

Multicode-A

Multicode-B

Multicode-C

Multicode-D

Multicode-H

Multicode-X

Cursor Up (\uparrow)

Moves the cursor up one line. If in line 1, the cursor wraps around to line 24

Cursor Down (\downarrow)

Moves the cursor down one line. If in line 24 , the cursor wraps around to line 1

Cursor Right (\rightarrow)
Moves the cursor one position to the right. When the cursor is moved beyond position 80 , the cursor wraps around to position 1 of the following line if the terminal is in new-line-enable mode. If new line is not enabled, the zursor remains in column 80 (line 1 follows line 24).

Cursor Left ($\leftarrow)$
Moves the cursor one position to the left. When the cursor is moved beyond position 1, the cursor wraps around to position 80 on the previous line if the terminal is in new-line-enable mode. If new line is not enabled, the cursor remains in column 1 .

Cursor Home (H)
Moves the cursor to position 1, line 1 (home)

Direct Cursor Address - Line Position
Moves the cursor vertically to any line as specified by the =haracter following X, as shown in Table $4-4$

Multicode-Y	```Direct Cursor Address - Character```
	Moves the cursor horizontally to any position on a line. The character following Y specifies the horizontal character position, as specified in Table 4-4. .
Multicode-Z	Read Cursor Address
	Causes the terminal to transmit the line and character position of the u ursor, as specified in Table 4-4
Multicode-1	Set Tab
	A tab stop is set at the cursor position. Tab stops can be set in $\begin{aligned} & \text { ny }\end{aligned}$ of the 24 lines of the iisplay and are effective for all lines.
Multicode- ${ }^{\text {a }}$	Clear Tab
	The tab stop at the cursor lozation is cleared.
Multicode-3	Clear All Tabs
	All tab stops are cleared.
Multicode-K	Clear All
	Clears the display memory to nulls. All tab stops are cleared.
Multicode-I	Clear Line
	Clears line (reset to nulls) starting with the present cursor position to the end of line
Mu1ticode-J	Clear Display
	Clears the display (reset to nulls). Except for tab stops, the entire display is cleared from the present cursor location to the and of the page.

4.7 ENCODED ERROR MESSAGES

Encoded messages are displayed indicating the status of an $1 / 0$ operation occurring under the control of the TTY/VDU terininal manager. Table 4-5 lists these messages.

$\left\lvert\, \begin{gathered} \text { STATUS CODE } \\ (\text { HEX }) \end{gathered}\right.$	1 MEANING
10000	\| No errors
1	1
18402	(Line delete caused termination furing read
18203	\| Break detected during write
\| 8204	\| Break detected during read
18205	\| Terminated by data error (see parity bits)
\|	1
18208	\| Framing or stop-bit error
18409	\| Reverse channel error
1 200A	\| Lost carrier on read
1200 B	\| Lost clear-to-send on write
1 200C	I Data set not ready
18400	\| Device unavailable; adapter not present
\| 820E	\| Character overfiow
\| 840 F	\| Ring status detected during data transfer
18410	\| Busy and/or done bits in chained buffers
1	\| bad; may indicate priority too low
18411	\| Number of commands executed greater than
1	\| 255
1	1
\| 8412	\| Task queue full, invalid or nonexistent
\| 8413	\| Buffer-management-routine error; may indi-
18282	\| Timeout ${ }^{\text {cate priority too low }}$
\| 8281	\| Halt I/O request aborted I/O
\| 8418	\| Invalid command or modifier
1	1
\| 8419	\| Memory fault in referencing lata
1	1
\| 841A	\| Memory fault in referencing buffer
1	1
\| 811B	\| Logical unit illegal
1	1
18410	\| Illogical device status
1	1
\| A010	\| Power failure
1	1
\| 841 E	\| Illegal software condition
1	1
\| 841 F	\| Illegal translation table
1	1
\| 8225	\| Timesut during connect sequence
!	1
18426	1 ESC. R not received on R2S

The first byte of each status code listed in rable 4-5 refers to the device independent status of the error. These zoles are defined as follows:

CODE
DEFINITION

CO	Illegal function
$A C$	Device unavailable; sign off user. If switched line, reissue call.
90	End of medium
88	End of file
84	Unrecoverable error; report to operator
81	Illegal or unassigned lu
82	Parity or recoverable error: reissue the call
20	Device unavailable or parity error sent to recovery routine

CHAPTER 5

MODELS $1200 / 1250 / 1251$ EDITING VIDED DISPLAY UNIT (VDU) TERMINAI. MANAGERS

5.1 INTRODUCTION

This chapter describes the functions of the Moiels 1200/1250/1251 Editing VDU Terminal Manager. This terminal manager operates within 0S/32 (R06 software release and higher). The Models 1200/1250/1251 terminal managers provide the user with the full range of editing features and programmable operations that are available with these models. These features include the multidrop and light pen capabilities of the Models 1250/1251.

User programs can communicate with these VDUs via supervisor call 1 (SVC 1). The terminal manager supports local and remote point-to-point communications as well as standari utility programs.

Because the Models $1200 / 1250 / 1251$ terminal managers support all features of INITMASY, the terminal manager can replace INIPMAsY when Models 1200 or $1250 / 1251$ VDUs are being adied to existing teletype (TTY) configured systens.

5.2 FUNCTIONAL DESCRIPTION

5.2.1 Device Assignment

The Models $1200 / 1250 / 1251$ Editing VDUs can be assigned to a user task (u-task) logical unit (1u) by one of two methods:

1. The operator ASSIGN command, or
2. The SVC 7 assign function.

Refer to the 0S/32 Supervisor Call (SVC) Reference Manual and the 0S/32 Basic Data Communications Reference Manual for detailed assignment procedures.

To assign the Models 1250/1251 VDUs to an $1 u$ in a multidrop environment, use the GENERATE command or macro in the user program. The GENERATE command or macro generates system structures associated with the terminal name; the ELIMINATE command or macro is used to eliminate them.

5.2.1.1 GENERATE Command

The GENERATE command builds system structures within system space | for the Models 1250/1251 VDUs.

Format:

GENERATE tn, cnum

Parameters:

tn	is a file descriptar (fd) specifying the name
	of the terminal. This stanjard fd, defined by
	the designer/operator, has the format of
	voln:filename.ext, where voln is the sysgened
	device mnemonic of the communications line
	and filename.ext is the name of the terminal.
cnum	is a decimal number from 0 through 127 (except
	for codes listed in Appendix B) specifying the
	terminal address that corresponds to
	poll/select address for the terminal. A
	system operator obtains a value for anum from
	the system design

Example:

```
LOAD EGU.TSK
TA EGU
ST, COM=CON:,IOG=PRT2:, ERR=GENERR:EGU
GENERATE BSCO:DISPLAY.001,0
GENERATE BSCO:DISPLAY.002,1
GENERATE BSC1:DISPLAY.001,2
GENERATE BSC1:PRINTER.002,3
END
```


5.2.1.2 GENERATE Macio

The GENERATE macro, issued from within a task, builis system structures within system space for the Models $1250 / 1251$ VDUs.

Format:

Parameters:

xadr is the symbolic or indexed address of a previously constructed parameter control block (PCB). If this parameter is omitted, the parameter control block is automatically built, and its address is placed in register 14.
$X P C B=$
$F D=$

CNUM $=$
xadrx is the symbolic or indexed address of an extended parameter control block. If this parameter and the xadr parameter are omitted, the extended PCB is automatically built and linked to the previously constructed $P C B$.
(reg) is a register expression spezifying a decimal value from 0 through 15 that indicates the register containing the address of an extended PCB.
'fd' is the unpacked file lescriptor of the terminal for which the $P C B$ is being generated. This fd corresponds to the terminal name (tn) in the generate command. If this parameter is omitted, the fd must have been previously specified in the FMPCB macro.
absexp is an absolute byte expression specifying the decimal value from 0 through 127 that designates the terminal poll/select address. If this parameter is onitted, it must have been previously specified in the XFMPCB macro, See Section 5.2.1.3.

Before execution of the GENERATE macro, the PCB must zontain a value for $F D$, and the extended portion of this pCB built by the XFMPCB macro must contain a value for CNUM. If the PCB Joes not contain these values, they must be specified with the GENERATE macro.

Example:

GENERATE FM. PCB, CNUM=(R2)

5.2.1.3 XFMPCB Macro

The XFMPCB macro constructs an extended portion for the file management $P C B$.

Format:

Parameter:

CNUM= absexp is an absolute byte expression specifying the decimal value from 0 through 255 that corresponds to the ASCII character code for the terminal poll/select adiress. If this parameter is omitted, it must have been previously specified in the GENERATE macro.
(reg) is a register expression spezifying a decimal value from 0 through 15 that indicates the register containing the poll/select address.

Functional Details:

If symbol is specified, it becomes the symbolic address. Whether or not symbol is specified, the macro places the extended $P C B$ address into register 14.

The extended $P C B$ must contain a value for CNJM before the GENERATE macro can be expanded. If omitted from the XFMPCB macro, CNUM must be included with the GENERATE macro.

5.2.1.4 ELIMINATE Command

The ELIMINATE command eliminates system structures from system space that were previously built for the Models 1250/1251 VDUs.

Format:

ELIMINATE t n

Parameter:

tn is an fd specifying the name of the terminal to be eliminated. See the GENERATE command for a detailed description of this parameter.

Example:

LOAD EGU.TAK
TA EGU
ST, LOG=PRT2:, ERR=SENERR.EGU,COM=CON:
ELIMINATE BSC2:DISPLAY. 001
END

5.2.1.5 ELIMINATE Macro

The ELIMINATE macro eliminates system structures within system space previously generated for the Models $1250 / 1251$ VDUs.

Format:

Operands:

xadr	is the symbolic or indexed address of a previously constructed PCB. If this parameter
is omitted, the PCB is automaticaliy built,	
and its address is placed in register 14.	

Functional Details:

Before execution of the EIIMINATE macro, the PCB must contain a value for $F D$, and the logical unit (lu) to which the file descriptor is assigned must be closed.

Example:

> ELIMINATE FM.PCB1,FD-MDCB.DISPLAY.002

5.2.2 SVC 1 Interface

SVC 1 is used to initiate I / O for both local and remote devices. See the 0s/32 Supervisor Call (SVC) Reference Manual for a detailed iescription of the SVC 1 parameter block.

| 5.2.3 SVC 1 Extended Options

The extended options field of the SVC 1 parameter block speaifies to the $0 S / 32$ data communications subsystem the $I / 0$ fun=tions to be supported for the Models 1200/1250/1251 VDUs. When this field is used, bit 7 of the SVC 1 function code ani bit 5 of the task option word located in the task contral block (TCB) are set to 1.
| Figure 5-1 illustrates the fullword format of the extended options field of the SVC 1 parameter block.

Bits 0 through 15 are for general use in both local and remote communications. Bits 15 through 25 are used as function modifiers, while bits 26 through 31 can be used to specify up to 64 device dependent I / J functions, 41 of which are used in Models 1200 and $1250 / 1251$ communications. Available extended functions and function modifiers for the SVC 1 extended options fullword are listed and described in Table 5-1.

TABLE 5-1 SVC 1 FUNCTION/FUNCTION MODIFIER OPTIONS

TABLE 5-1 SVC 1 FUNCTION/FUNCTION MODIFIER OPTIONS (Continued)

TABLE 5-1 SVC 1 FUNCTION/FUNCTION MODIFIER OPTIONS (Continued)

NOTE
Extended option bits 3 through 7, 9 through 15, and 25 are reserved and must be set to 0 .

SVC 1 extended functions are mutually exclusive; however, an $1 / 0$ with multiple requests or operations can be performed. The function modifiers are used to expand a function's capability. For example, the write edit function can be expanded to write blinking, write protected, write reverse video, or write low-intensity by a function modifier. However, not all function modifiers apply to each extended function. Table 5-2 lists the possible function/function modifier combinations.

TABLE 5-2 FUNCTION/FUNCTION MODIFIER COMBINATIONS

2912

[^0] situation.
15.3 USING THE MODELS $1200 / 1250 / 1251$ VDU TERMINAL MANAGERS

Programmers can encounter various levels of complexity in using the Models $1200 / 1250 / 1251$ VDU terminal managers. If the Molels 1200 and $1250 / 1251$ VDUs are used as replacements for IrY terminals in an interactive environment, the terminal manager is interfaced with the standard Basic Data Communications Try/VDU Terminal Manager. However, if the terminals are usad to take advantage of all their features, the programmer should be aware of both the hardware features and the logical interface procedures used to access the terminal manager for each model.

The following sections describe the hardware capabilities, the operation modes, software and hardware enviroament requirements, and general system generation (sysgen) procedures for the Models
11200 and 1250/1251 VDUs.
| 5.3.1 Models 1250/1251 Terminal Configuration
\mid The Models $1250 / 1251$ VDUs must be configured through a terminal configuration procedure to operate in a multi-terminal monitor (MTM) or integrated transaction controller (ITC) environment. Configuration can be performed in two ways:
\| 1. at the terminal end (user configuration), and
1 2. at the host end (downline load configuration).
| If the Models $1250 / 1251$ VDUs are configured at the terminal end, the user selects and enters desired options from sets of functions called menus. If the Models 1250/1251 VDUs are configured at the host end, the host performs downline loading by sending the appropriate multicode sequences to the terminal.
| For detailed information concerning user and downline load configurations, refer to the Models 1250/1251 Visual Display Units (VDU) Terminal Configuration User Guide and the Models 1250/1251 Visual Display Units (VDU) User's Manual.

5.3.2 Terminal Features and Special Character Format

| The following sections describe special character sequenaes interpreted by the Models 1200 and 1250/1251. Multicode, attribute, and certain line character sequences can also be included within the user buffer to activate specifiz terminal features. The description of the input AID character, status bytes, and option bytes can be used to interpret the special sequences received from the terminals through terminal manager extended functions.

5.3.2.1 Multicode Sequence

Multicode sequences are used to inplement such terminal operations as cursor movement, lock-out, setting tabs, field or screen clearing, editing and setting attribute bytes and print options.

The standard method for executing multicode operations from the host computer involves transmission of a multicode character to the terminal, immediately followed by a character jesignated unique to the function being performed. See Table 5-3 for a list of some common multicode sequence characters. For example, by transmitting the sequence $E S C$ A (where ESC has been defined as the multicode character), the host commands the terminal to move the cursor up one line. Most multicode sequences on the Model 1200 can also be initiated from the keyboard by depressing the multicode key and then depressing the designated character key.

The ESC character is normally used as the multicode chara=ter for Models 1200/1250/1251 terminal configurations. However, the Models 1250/1251 terminal configuration allows the programmer to designate any ASCII character as the multicode character in the event that the ESC character is dedicated to another system function. In order to store a multicode character as itself, it must be entered through the keyboard or transmitted over the communications line twice.

TABLE 5-3 MULTICODE SEQUENCES

* These multicode sequences require time delays in the transmission stream. The user should have NULL fill characters following the multicode sequence in the transmission buffer. For further information, refer to the Model 1200 and Models 1250/1251 User Manuals.

5.3.2.2 Attribute Characters

Attribute characters are used to define the start of a field and the mode in which the field is displayed. The end of a field is defined by a second attribute entry that defines the start of the next field.

Programmers can send attribute characters to the VDU by sending ESC ! (Hex 1B, 21) followed by the attribute character, and issuing a write edit with the attribute character generated. Also, programmers can issue a write-edit function call with the function modifiers such as write blink, write protect, write reverse video, and write low intensity. Figure 5-2 shows the format of the attribute character.
| These Models $1200 / 1250 / 1251$ commands are specified by an esazpe character (Hex 1B) plus the ASCII values shown in the column to the left of each command. See Appendix B for ASCII codes.

Figure 5-2 Attribute Characters

BIT

0	Parity
1	$0=$ normal field
	1=blinking field
2	Modified data tag identifiers (modified field
	for read/send modified transmissions)
	$0=$ not modified
	1=modified
3	0=display field
4	O=normal video
	$1=$ inverse video
5	$0=$ normal intensity
	1=1ow intensity
6-7	00=alphanumeric
	$01=$ numeric entry only ($1-9 . .+$ - ${ }^{\text {a }}$
	$10=$ protected field
	11=graphics (bits 1-5=graphic =haracters)

5.3.2.3 Line Drawing Characters

User programs can cause the terminal to enter the graphic mode by sending a shift out character (SO, Hex 'OE'). The =haracters following are then interpreted as line drawing characters. Refer to Table 5-4. User programs can exit the graphic mode by sending a shift in character (SI, Hex "OF').

User programs can also cause the terminal to enter the graphic mode by sending an attribute character (with bits 5 ani 7 set to one) to be interpreted as a line drawing character. The graphic mode is exited immediately after outputting this attribute character.

5.3.2.4 Status and Option Bytes

\mid The Models 1200 and $1250 / 1251$ allow the user to read the status byte and two option bytes. The status byte is shown in Figure 5-3. The option bytes for the 1200 are shown in Figures 5-4 and | 5-5. The option bytes returned from the Models 125J/1251 are | always null.

Figure 5-3 Status Byte Format

```
0-Parity bit (set accordingly)
1-0verrun-1
2-Parity error=1
3-Printer error=1
4-Printer busy=1
5-Keyboard locked=1
6-Command error=1
7-3ackground busy=1
```

2891

Figure 5-4 Option Byte 1 Format

```
0-Parity bit (set zccordingly)
1-Send page terminator, ETX=0, EOT=1
2-CR line terminator enabled=1
3-Uppercase only (U/C)=1
4-AUTO LF enabled=1
5-Scroll enable=1
6-Full/partial screen, full=1
7-Conversational mode=1
```


Figure 5-5 Option Byte 2 Format

```
0-Parity bit (set accordingly)
1-Transmission mode (nonconversational)
2-Send immediate all=00
    Send immediate unprotected=01
    Send immediate modified=10
    Request to send=11
3-Parity option-space=00
4-Mark=01, even=10, odd=11
5-Null suppress al1=1
6-Send line terminator enable=1
7-Send line terminator EOT=1, ETX=0
```


5.3.2.5 Function Keys and Attention Identifier (AID) Characters

| As an option, the Model 1200 offers 15 user-defined function control keys. The Models $1250 / 1251$ offer 12 usermefined keys. The number of control codes generated can be expanded to 32 and 24, respectively, by depressing shift. These keys generate a multicode sequence followed by an $A I D$ character which is returned to the user buffer following an RQS function. Table 5-6 lists the function control keys and their associated AID characters for the Model 1200. Only keys 1-12 apply to the Models 125J/1251.

The three send functions listed in Table 5-5 are available on three separate keys on the Model 1200 keyboard. The Models 1250/1251 have one SEND key which can be designated as Send Line, Send Message, or Send Page.

TABLE 5-5 ATTENTION IDENTIFIER (AID) CHARACTERS

5.3.3 Modes of Operation

5.3.3.1 Conversational Mode

Conversational mode enables the Model 1200 and $1250 / 1251$ VDUs to \mid transmit and receive data on a character-by-character basis. Conversational mode supports read ASCII and write ASCII.

In conversational mode, the terminal manager provides the same logical capability as the TTY/VDU Terminal Manager.

During read ASCII all data is read until the buffer is full or a carriage return (CR) is found, whichever occurs first. When the read terminates, $C R$ and $a n$ LF sequence are sent to the terminal. When the character \# is entered at the keyboard, the current line is ignored. When a backspace character is entered at the keyboard, the last character entered is ignored.
 buffer is empty or a CR is found. An LF is automatically appended to the detected CR. If no $C R$ is found, an LF CR sequence is output to the terminal.

5.3.3.2 Image Mode

| When operating in image mode, the Models 1200/1250/1251 terminal managers perform no special character recognition. Data is read or written until the buffer is empty. User tasks (u-task) must ensure that the I/O device is under control. To perforn an imaga I/O, the SVC 1 function code must have the standari/extended options bit set and the extended option fullword format bit reset.

5.3.3.3 Editing Mode

The editing mode allows the applications programmer to use the editing capabilities of the Model 1200 and Models $1250 / 1251$ VDUs. In the editing mode, the terminal can function as follows:

1. The application program outputs to the sareen providing a fill-in-the-blanks form or data to be edited.
2. The terminal operator enters data to the terminal while the terminal is in local mode and indicates scraen-update completion by depressing a send or function key.
3. The CPU receives screen data in a single buffered read.

Execution of data transmission from the terminal varies depending on whether the read is performed in read-immediate mode or send immediate mode, and on which of the three types of read formats (read all, read modified, or read unprotected) is requested. In addition, certain special output functions (clear screan, insert tabs, move cursor) permit modification of the screan image; certain special input functions (read cursor position, read status) permit determination of current sareen state. The concepts behind these functions are detailed in the following section.

5.3.3.4 Concept of Request to Send (RQS) and Immediate

In immediate mode, data is entered from the keyboard and stored in terminal memory until the operator depresses a send key. Ihe stored data is then transmitted to the host CPJ. Ihis mode is subdivided into three programmable transmission modes:

- Send immediate all
- Send unprotected
- Send modified

These modes permit, respectively, transmission of all data in terminal memory, only data in unprotected fielis, or only data in fields modified by the operator. The operator, in turn, can select transmission of a single line, a messaga starting at the termination of the last message, or an entire page.

The FQS mode allows the system designer to fully optimize the allocation of host CPU memory. As in immediate mode, no data is transmitted while the operator is editing a page to be entered. However, when a send key is depressed, the terminal transmits a RQS sequence only. This sequence informs the program of which send key was depressed; e.g., send line, send message, or any of the 16 special function keys. The program then identifies the depressed key, allocates the necessary buffer storage, and issues the required read multicode sequence to initiate transmission. The RQS mode permits all of the preceding at the discretion of the host CPJ. In addition, the programmer can use a send-key-override command to permit the program to select the correct send mode if the operator's choice of keys is unacceptable.

5.3.3.5 Types of Data Read Formats

Four types of data read formats are passible: Read All, Read All With Attribute Character Truncated, Read Modified, and Read Unprotected. The description of each of these data read formats follows:

1. Read All. Based on the setting of the full/partial scraen selector, data is transferred starting from home or the current cursor position. If the null-suppress-all-option is enabled, nulls are suppressed, and the end of a line is indicated by transmission of a CR character ($X^{\prime} O D^{\prime}$). The character LF (X'OA') is transmitted following a CR if AUTO/LF is enabled. There is no specific format for the data read in the buffer. All data displayed on the VDU is filled into the user program buffer. The data format is illustrated in Figure 5-6.

2893

Figure 5-6 Read All with Format Screen
2. Kead All with Attribute Character Truncated. The terminal manager throws away the ESC ! (X'1B', X'21') received and sends the following character (by setting the parity bit) as an attribute character. There is no specific format for the data in the user buffer. All characters except ESC ! are sent into the user buffer. Ihe data format is illustrated in Figure 5-7.

Figure 5-7 Read All with Attribute Character Truncated
3. Read Unprotected. If the screen is unformatted; (i.e., contains no fields) this operation has the same effect as read/send all. If the screen is formattel, only unprotected fields are transmitted; nulls are suppressed. A field containing all nulls is indicated by a single group separator (GS) on the Model 1200 or a single Formatted-Send Modified. Send Unprotected-Field Terminator on the Models 1250/1251. The data formats are illustrated in figure 5-3 and 5-9.

Figure 5-8 Read Unprotected Format (Model 1200 VDU)

Figure 5-9 Read Unprotected Format (Models 1250/1251 VDUs)

Execution of send line with a formatted screen transmits only the first field of the current cursor line following the current cursor position.
4. Read Modified. This operation is legal only on a formatted screen. Read modified transmits only those fields for which the modified data tag is set in the field attribute character. A modified data tag is set when data is enterod in a non-light pen field or if the designator character of a light pen field has been altered by light pen fetection. Transmission starts with an SOH , followed by a 2 -character cursor address sequence, and then the modified fields. Each field is preceded by a GS character and the buffer address of the first data character in the field for the Molel 1200. For the Models 1250/1251, the Formatted-Send Modified, Send Unprotected-Field Terminator preceeds each field. Nulls are suppressed. \quad lodel 1200 terminates transmission with an ETX character; Models 1250/1251 use the Send Modified, Send Unprotected Fage Terminator. These formats are illustrated in Figures 5-10 ani 5-11 where it is assumed that fields 1 and 3 have been modified, and field 2 has not. Figure 5-11 also assumes that there are no light-pen fields. Light pen fields transmit only the address of the field rather than the address and the data.

Figure 5-10 Read Modified Format (Model 1200 VDU)

Figure 5-11 Read Modified Format (Models 1250/1251 VDUs)

5.3.3.6 Types of Data Write Formats

Two types of edit data write formats are provided: eift write and write edit with attribute character generated.

- Edit Write. The terminal manager sets the Molels 1200 or 1250/1251 in normal mode and disables echoplex. The data in the user buffer is sent to the VDU.
- Write Edit with Attribute Character Generated (WAG). When the terminal manager receives a character with parity bit set, it generates an ESC ! multicode sequence to set the attribute character. The character received is considered as an attribute character to be sent to the VDU.

5.3.3.7 Cursor Addressing and Random Addressing

The terminal manager enables user programs to read cursor address (line 00-23/column 00-79), to home cursor, and to set aursor positions provided as line/column in the user buffer.

The terminal manager also handles random $I / 0$ by setting the cursor position first (for read case) or the VDU display buffer (for write case) before issuing I/O. The line/column is provided in the random field (first two bytes) of the SVC 1 parameter block.

The user can also imbed the control sequence in the data to be sent to the terminal to achieve cursor adiressing and raniom address. See Table $5-6$ for multicode sequence. The linelcolumn format of the cursor or display buffer in the embedded data is ($x x, x x$). Refer to Table 4-4.

5.3.3.8 Horizontal Tabulation

Figure 5-12 provides 80 bytes for the user task to specify tab-stop location. Each byte contains a hexadecimal tab-stop position ($0-4 E$) corresponding to the column (1-80) of the VDU Which is being specified as a tab-stop location. Ea=h byte is sequentially scanned until an FF is encountered, which ends the setting of tab stops. Otherwise, since the screen has only 90 columns, 80 is the maximum number to scan.

2899
DEC

Figure 5-12 User Buffer Format Table for Horizontal Tabs

5.3.3.9 Printer Options

The character following multicode is an ASCII ligit fron 1 to 5 (X'31' to $X^{\prime} 3^{\prime}$) that determines the operation of the auxiliary serial interface, if enabled. On all printouts, the attribute characters, line characters, and fields specified as nondisplay are printed as spaces.

- No printout. The printout currently in progress is allowei to finish, and then printing stops.
- Print screen from home. The entire screen is printed, up to the end of the screen.
- Print screen from cursor. The screen is printed from the current cursor position to the end of the screen.
- Simulprint (FF control). On receipt of a form-feed sharacter, the contents of the screen are printed. If read-status-when-ready is in effect, a status byte is transmitted when printing is complete. The normal affect of the form feed (clear unprotected and home sursor) takes place until printing is complete.
- Simulprint (continuous). In this mode, characters are simultaneously printed and displayed as they are received from the line. If the printer is running too slowly for the line, it transmits a DC4 control character to request that the host pause transmission. A PC 2 control character is transmittei to indicate that the host can resume transmission.

5.3.4 Sysgen and Environment

Models 1200/1250/1251 terminal managers support is obtained by specifying Model 1200 or Models 1250/1251 at sysgen. The terminal is configured just as any local device such as a line printer or card reader.

The only restriction on the required order of modules in the library is that the $D C B$ for all devices supported by a particular driver or terminal manager must precede the driver or terminal manager.

The system software required to support the terminal manager includes:

- 0S/32 R06 and higher
- Systern support module
- Asynchronous line driver

5.3.4.1 Special Parity Reauirement

The terminal manager uses even parity to output all data and control sequerices to the Model 1200 or Models 1250/1251 VDUs. The terminal manager also expects all input data and control sequences received from the terminal to have even parity. Tnese procedures require that the switch on the Model 1200 be set in the even-parity position or the parity be dynamically defined for the Models 1250/1251. Failare to do so results in I/O parity errors.

5.3.4.2 Extended Device Code Specification

The method of system generation used for the Model 1200 uses the default option index (bits 12 to 15 of the extended device code halfword). The format of the extended device code halfword is shown in Figure 5-13. The extended device code is initialized at sysgen time by using CUP/32. Consult the 0S/32 System planning and Configuration Guide for operation of this program.

Devices other than the Models 1200 and $1250 / 1251$ VDUs that can be used with this terminal manager require the master bit (bit o) of the extended device code to be set in the configuration utility program input deck. Setting this bit direats the terminal manager not to send the ESC G sequence to the terminal on conversational salls.

When bit 0 of the device code halfwordis not set, an $I / 0$ request cannot be halted while certain 2-character control sequences are being output, such as Enter Conversation or Edit Mode. If the Models 1200 or $1250 / 1251$ terminals are set for conversational mode during power-up, the Halt I / O feature can be initiated by setting bit 0. See the Model 1200 Terminal Installation and Programming Manual for power-up and mode-setting procedures.

2900

Figure 5-13 0S/32 Basic Data Communications Extended Device Code Halfword

dectmal value heyadecimal (MASK)
 VALUE

```
Model Code
    Terminal is Model 1200 or 0 0000
        Models 1250/1251
    Terminal is not Model 1200 32768
        or Models 1250/1251
Line Status Code
    Direct connection J 0000
    Leased line 1024 040)
    Dia1-in manual dial 2048 0800
Line Protocol Code
    Half-duplex 4-wire
    Half-duplex 2-wire (Model 768 030J
        1200 on1y)
    Simplex read (Model 1200 only) 256 0100
    Simplex write (Model 1200 512 0200
Clock Selection
    Clock A 0
    0000
    Clock B 16 0010
    Clock C 32 0020
    Clock D
    4 8
0 0 3 0
Default Option Index Fefer to Table 5-7
5.3.4.3 Default Extended Functions/Options
If the extended option bit (bit 7) is set in the SVC 1 function
code, the terminal manager further examines the extended
functions/options the user provides. Jtherwise, a table of
default-extended functions/options is provided. See rable 5-6.
The particular entry of this table is selected according to the
encoded value of bits 12-15 of the extended device code
(DCB.XDCD).
```

EXTENDED DEVICE CODE		DEFAULT
		EXTENDED OPTIJNS SELECTED
OPT	HEX VALUE	DESCRIPTION
0	0	Conversational. formatted I/J, un-
		lock keyboard after I/J
1	1	Same as encoded value 0 case, plus
		enable upper case only
2	2	Same as encoded value 0 case, plus
		nontermination on $C R$
3	3	Conversational, formatted I/J, lock
		keyboard after I/O
4	4	Same as encodej value 3 case, plus
		enable upper case only
5	5	Same as encoded value 3 case, plus
		nontermination on CR
6	5	Combination of encoled value 1, 2
7	7	Combination of encoled value 4,5
8	8	Unused, can be source SYSGENed by
		user
9	9	Unused, can be source SYSGENad by
		user:
10	A	Unused, can be source SYSGENed by
		user:
11	B	Unused, can be source SYSGENed by
		user:
12	C	Unused, can be source SYSGENad by
		user
13	D	Unused, can de sourze SiSGENed by
		user
14	E	Jnused, can be source SYSGENed by
		user
15	F	Unused, can be source SYSGENed by
		user

It is imperative that certain Model 1200 strap and switch settings be in a specific position, while others can be set in | various positions according to system needs. Ihese settings are I dynamically defined for the Models 1250/1251. A set of required/optional terminal switch settings, strap settings, and dynamic definitions follows:

- Multicode character selection = "ESC" - Required
- Send line terminator = "ETX" - Required
- Send page or send message terminator = "ETX" - Required
- Send line terminator enable, ETX follows CR at end of send Line (unformatted) - Required
- Strap to enable transmission of

CR at end of every line in unformatted send page or send message - Optional

- Disable blinking block cursor - Optional
- Parity selection - must be in even position
- Required

5.4 INTERNAL TERMINAL MANAGER DESIGN

| The Models $1200 / 1250 / 1251$ terminal manager enables user programs to communicate with the VDU via SVC 1 supervisor calls (with | extended functions/options). The Models 1200/1250/1251 terminal | managers support read, write, wait, procaed, unconditional proceed, image I / C, random addressing, and user-extended
\mid functionsloptions. Four operational modes of the Molels
| 1200/1250/1251 terminal managers are supportei: conversational mode, image mode, data-dependent editing mode, and data-independent editing mode.

5.4.1 Relationship to Operating System and Asynchronous Line Driver

1 The device-independent support of the Model 1200 and Models 1250/1251 VDUs in a point-to-point environment is provided by the Models 1200/1250/1251 terminal managers. The terminal manager calls the asynchronous driver to perform user-desired I/O. However, a user SVC 1 enters the terminal manager only via the SVC 1 executor of the $0 S$. Refer to Eigare 5-14 for the relationships to 0 and the Asynchronous Line Driver.

2901

1

Figure 5-14 Models 1200/1250/1251 Terminal Manager/Asynchronous Line Driver Relationship (Point-to-Point)

The terminal manager is initially entered from the SVC 1 executor which validates the SVC 1 function call, sets up the $0 S$ environment, and sets up the $0 S / 32$ Basic Data Communications environment. The asynchronous line driver provides the interface between the terminal manager and an asynchronous communications adapter connected to the VDU. Figure 5-15 lists the DCB Fields | For the Model 1200 and Models $1250 / 1251$ VDUs.

Figure 5-15 Device Control Block (DCB) Fialds for Models 1200 and 1250/1251 VDUs

2903

Figure 5-15 Device Control Block (DCB) Fields for Models 1200 and 1250/1251 VDUs (Continued)

These fields must follow the BASIC DCB and the communications subsystem DCB fields described in the $05 / 32$ Basic Data Communications Reference Manual.

Following is a description of the Models 1200/1250/1251 related DC5 fields:

DCB.BRK Outgut command for break
DCB.RECS Transparent record size
DCB.SPCR Special character mask for read

DCB.SPCW	Special character mask for write
DCB.XLT	Translate table adress
DCB.PDCT	Count of trailing (pad) charazters
DCB.SUBR	Subroutine return address save area
DCB. WORK	Working storage used by terminal manager
DCB.FDCT	First device control table
DCB.LDCT	Last device control table
DCB.FNQH	First device control table in function queue
DCB.FNQT	Last device control table in function queue
DCB.TMLH	Logical timerchain head PTR
DCB.BFPT	Pointer to buffer in system space
DCB.CDAT	Current date
DCB.CMDM	Pit mask of invalid extended function
DCB.EXIT	Returnaddress initialized
DCB.LINK	Link address initialized
DCB.INDX	Extended option index initialized
DCB.SVFR	Returnaddress for MSVD WTB/DO.SVFI
DCB.PTMV	Timer value for poll cycle

5.4.2 Internal Structure

Following is a functional description of the three major components of the Models 1200/1250/1251 terminal managers. See the flow diagram, Figure 5-16.

Figure 5-16 Kernel Terminal Manager Flow Diagram

5.4.2.1 Initialization and Function Code Interpretation

This component provides the entry for SVC 1 execution, sets up data communications environments, decodes the $\operatorname{jVC} 1$ function code with extended functions/options, sets the default extensions as required, validates extended functions/options, and jumps to various routines to handle various I / O preparations.

From the initialization decoding process, various routines are provided in this component. Validation of extended functions/options in the individual case is also performed. After all preparations and the SVC 15 data/command chain are built, actual entering of SVC 15 is initiated. This component also provides control sequences.

5.4.2.3 Final Clean Up

This component provides termination return of JVC 15, hanales errors, returns status to the user, and sets up or restores data communications control.

5.5 TYPICAL PROBLEM CHECKLIST

The user should exercise caution in using the Model 1200 and the
| Models 1250/1251 point-to-point VDUs. Users aan run stand-alone diagnostics or call castomer service if the following error checklist entries are not responded to in the $=0 r r^{\prime}$ manner:

1. Model 1200 switch is not in even parity position or even parity is not defined for Models 1250/1251.
2. Read immediate does not follow request to send.
3. Failure to provide randon address (X,Y coordinates) in user SVC 1 parameter block for random read/write
4. Failure to provide tab-stop positions in the user buffer
5. Failure to provide cursor position (00-17, for line \#, 00-4F for column \#) for setting cursor position in the user buffer
6. Failure to supply a buffer. A valid buffer address is required for all calls.
7. Incorrect PALS/PASLA cable
8. Terminal is not online.
Q. Incorrect speed match between terminal switch settings, PALS/PASLA clock strapping and CUP OS/32 Basic Data Communications extended device code
9. Terminal switch was set without performing aither a powerup/down or clear all.
10. Auto line feed, new line, or scroll enable switch definitions are inconsistent with data output.
11. Failure to provide null characters following zertain ambedded escape sequences
12. Failure to activate CPU clock prior to telephone answer sequences
13. Fin 25 is not cut on PALS/PASLA cable.
14. Incorrect Bell modem options were specifiei.

5.6 MULTIDROP FEATURE

The terminal manager supports the mutliarop feature only on the Models 1250/1251 VDUs. This feature allows multiple Models 1250/1251 VDUs to share a single communications line by using the poll and select technicue. Since cnly one terminal can transmit data at any one time in a multidrop environment, terminal response is delayed longer than in a point-to-point environment.

Multidrop support includes:

- dynamic generation of necessary data structures,
- transparent access to multidrop devices at the device independent $I / 0$ level.
- support of all multiarop functions limited to block mode, and
- remote connections support via Be11* 212A, 103J, or 113D series modems.

5.7 LIGHT PEN

The terminal manager also supports the use of the light pen on the Models 1250/1251. The light pen is a light-sensitive pen connected to the terminal that detects variations in light emitted by the data characters on the screen. Refer to the Models $1250 / 1251$ VDUs User's Manual for a detailed description of the light pen feature.

5.8 ENCODED ERROR MESSAGES

Encoded messages are displayed as the result of an error occurring when a READ or WRITE macro is issued. Table 5-7 lists the messages that can be generated.

TABLE 5-7 ENCODED ERRORS AND DEFINITIONS FOR MODELS $1200 / 1250 / 1251$ TERMINAL MANAGERS

STATUS CODE (HEX)	MEAN工NG
0000	No errors
8402	Line delete caused termination during reai
8203	Break detected during write
8204	Break detected during read
8205	Terminated by data ercor (see parity bits)
8203	Framing or stop-bit error
8409	Reverse channel error
2004	Lost carrier on read
2003	Lost clear-to-send on write
200 C	Data set not ready
840 D	Device unavailable; adapter not present
200E	Character overflow
840 F	Ring status detected during data transfer
8410	Busy and/or done bits in chained buffers
	bad; may indicate priority to low
8411	Number of commands executed greater than
	255
8412	Task gueue full, invalid, or nonexistent.
8413	Buffer-management-routine ercor; may indi-
	cate priority too low
8282	Timeout
8281	Halt $1 / 0$ request aborted $\mathrm{I} / 0$
8481	Illegal command or modifier
8419	Memory fault in referencing data
841A	Memory fault in referencing buffer
8113	Lu illegal
821 C	Illogical device status
A 010	Power failure
841 E	Illegal software condition
8415	Illegal translation table
8225	Timeout during connect sequence

TABLE 5-7 ENCODED ERRORS AND DEFINITIONS FOR MODELS 1200/1250/1251 TERMINAL MANAGERS (Continued)

* Applies to Models $1250 / 1251$ only

The first byte of each status code listed in rable 5-1 refers to the device independent status of the error. These codes are defined as follows:

CODF:
DEFINITIJN

C0 Illegal function
AC Device unavailable, signoff user. If switched line, reissue call.

20
Device unavailable or parity error sent to recovery routine

End of medium

End of file
Unrecoverable error: report to operator
Parity or recoverable error; reissue the call. | Illegal or anassigned $1 u$

APPENDIX A
 DRIVER COMMAND WORD (DCW) FORMAT

2519

APPENDIX B
STANDARD ASCII CODE

* Standard 96-charaこter ASCII Set
** 64-character ASCII Set displayed when U/C Switch is enablei. (DEL is as legal character in this mode aad is displayai as a quadrangle with alternate dots.)
*** In transparent mode, all control codes are disolayed as shown in sample display. In normal display mode, control characters are not displayed.

APPENDIX C SAMPLE PRINTQUT


```
2524
```



```
2526
```



```
2527
BUिFEND EQU *-I
ALIGN ADC FOU * FORMS BUFFER=BUF7
    ZQU Z(BUF7END-RUF7DATA),X"O' AVAIL BYTES.BYTES USED
    OB LF,LF,CR
    LB C'NAME: -
    OB EPS
        iLIST
            DB X'20*
            LIST
            1,B SPS
            FB LF.CR
            LIB COSTREET ADDRESS: -
            OB EPS
            MLIST
            10
            L'B
            LB SPS
            LB LF.CR
            UB C'CITY: -
            CB EPS
            HLIST
            10 20
            11B X'20'
            LIST
            SPS
            LF,CR
            C'STATE,ZIP COUE: -
            EPS
                LIST
            4.O 20
            1; X.200
            HIST
            IHB SPS
            I.E LF.CR
            I;B C.ACCT.NO: -
            UB EPS,UNLK,PC
BUF7END EOU *-1
***************************************)
|LIG!i ADC
R&AD1 &OU *
            EOU * *'10.,1 FC.LU
            CCX 0
            GAC DCWRDI
                            STATUS
                                    CMD NO,RD1 CMO ADDR
            UCX 0
            LLR
            I:AC BUFB+DIRECT
                            LLW
            DAC BUFBEND+DIRECT
            SPACE 2
            ALIGN ADC
DCWRD1 LQU *
            ECX 0002 READ BUFFER CMI
            ALIG!: ADC
*
BUFB &QU *
            MLIST
            LO CHARS*MAXLINES
            UB X.20'
            LIST
BIFBEND EQU *-1
```



```
*
```

2528

```
* SVC 15 EDITING CRT READ PARAMETER BLOCK
    SPACE 2
    ALIGN ADC
CRTREAD EQU
    MB
    OCX 0
    IAC BUF1+PARAM
    UAC BUF2+INDIRECT
    [IAC BUF3+DIRECT
    UAC BUF3END+DIRECT
    I:AC BUF4+PARAM
    LAC BUF5+PARAM
```

* SVC 15 DRIVER COMMAND WORD(DCW) READ CMD CHAIN PARAMETER BLOCK
ALIGH ADC
$\begin{array}{lll}\text { DCWRD EQU } & \text { \# } \\ & \text { DCX } & 8016 \text { MODE-RCMD-CHAINED }\end{array}$
$\begin{array}{lll}\text { DCX } & 8016 & \text { MODE-RCMD-CHAINED } \\ \text { DCX } & 8004 & \text { WRITE BUFFER COMMAND-CHAINED }\end{array}$
OCX 8002 READ RUFFER COMMAND-CHAINED
LCX 8014 WRITE2 COMMAND CHAINED
UCX 0016 MODE-RCMD-UNCHAINED
*

$\begin{array}{lll} & \text { ALIG: ADC } \\ & \text { IQU } & * \\ & \text { LA } & \text { NOECHO }\end{array}$
QUF2 ALIGNADC
EQU *
DCX 3.0 BYTES AVAIL•BYTES USED
!日 LK,PC,XMWR LOCK KEYBOARD,POS CURSOR,XMIT

* init bliffer to chafs*maxlines blanks
BUF3 EQU *
NLIST
ro CHARS*MAXLINES
CR $\quad X^{\circ}<0^{\circ}$
LIST
RUFSEND EQU *-1
ALIGN ADC
BUF4 EQU F PC.UNLK POS CURSOR.UNLOCK KE.YBOARD
ALIGi: ADC
BUF5 EQU *
DB ECHO ECHOPLEX
ALIG ${ }^{\text {A }}$ ADC
UNPACK EQU * UO=ERROR STATUS
LB $\quad x^{\circ} 00^{\circ}+4.6$
UAC BFUNPK
* PblK to print i/o error message
* ON lu7
LQU *
$\begin{array}{lll}\text { LB } & 0.1 & \text { FC.LU } \\ \text { DB } & 0.0 & \text { STATUS } \\ \text { IIAC } & \text { SPCCMD } & \text { COMMAND }\end{array}$
DCX 0 .
DAC BUF9+PARAM

2529

This appendix contains a sanple program which uses the Model 1200, plus illustrations of screen formats output to a print device connected to the Model 1200, and hex dumps of data read from the Model 1200. A description of these items follows:

- Sample Program - See the comments included within the program for detailed descripticn. All screen format printers were called by this program, and all hex dumps show data received by the erogram.
- Read Template (Eigure $\mathrm{D}-1$) - This is a printout of the fill-in-the-blanks form received by the Model 1200.
- Read After Initial Input (Figure D-2) - This is a printout of the screen after data was input by the operator.
- Fead After Modification (Figure D-3) - This is a printout of the screen after data was modified by the operator. The only change is the middle initial of the input name.
- Read All (Figure D-4) - This is a hex dump of data received by a read-all of the screen image shown in Figure $D-2$.
- Read Unprotected (Figure D-5) - This is a hex dump of data received by a read-uncrotected of the screen image shown in Figure $\mathrm{C}-2$.
- Read Modified (Figure D-5) - This is a hex dump of data received \quad y a read-modified of the screen image shown in Figure E - 3 .

2530
SAMFLE PROGKAM FUR SIMF'LE PET12U0 ACCESS IIVUER ITAM PAGF $1 \quad 18: 17: 38$ 07/19/77
PROG $=$ UEMUCRT ASSEMBLED BY CAL 03-006RO4-01 (डZ-HIT)

113	*	SPEC	CHARA	EQUATES
115	ESC	EQU	$\mathrm{X}^{\circ} 1 \mathrm{H}^{\prime}$	ESCAPE CHARACTER
116	ATRB	EOU	$x^{\prime} 21^{\prime}$	ATIRIBUTE CHARACTER FOLLOWS
117	ETX	EGU	X'03'	ENU OF TEXT SENTINAL
119	NORMAL	EQU	x.00'	NOKMAL TEXT
120	PKOTECT	EOU	$x^{\prime} 02^{\prime}$	PRUIECTEO FIELD
121	REVIOEO	EQU	$x \cdot 081$	KEVERSE VIUEO UISPLAY
122	LIGHIINT	EQU	$x \cdot 04^{\prime}$	LIGHT INIENSITY
123	HLINK	EQU	$x \cdot 40^{\circ}$	BLINKING

0000081		127		ALIGN	ADC	
	00000008 I	128	OUTBUF	EQU	*	
0000081	1 F 210 A	129	NAME	DB	ESC, ATRR,	PHOTECT+REVIULO
00000 BI	$504 C 4541$	130		D3	CPPLEASE	TYPE NAME:
	$\begin{aligned} & 53452054 \\ & 59504520 \end{aligned}$					

2531
SAMPLE PRUGKAM FOR SIMPLE PET1200 ACCESS UNUER ITAM PAGE 3 18:17:40 07/19/77 EOUATES + BUFFERS

1ヶO * INPUT HUFFERS

152		$A L I G N$	$A D C$			
153	INBLF	DS	2500	INHUT HUFFER TO RECEIVE FROM SCREEN		
154	INRUFE	EQU	$*-1$			
165		$A L I G N$	$A D C$			
156	DUMBUF	OS	4			
157	DUMBUFE	EQU	$*-1$			

2532
SANPLE PKOGRAM FOR SIMPLE PET1200 ACCESS UNOER ITAM PAGE 4 16:17:43 07/19/77
rARAMATEK BLOCKS

$000 C 5 C I$	0000	$U C 5 C I$
$000 C 5 C I$	2901	
$000 C 5 E I$	0000	
$000 C 6 U I$	0000	$U C 58 I$
$000 C 64 I$	0000	$U C 58 I$
$000 C 681$	0000	$U 000$
$000 C 6 C I$	0000	0000
$000 C 70 I$	2000	$000 E$

$000 C 74 I$		
	0000	$0 C 74 I$
$000 C 74 I$	2901	
$000 C 76 I$	0000	
$000 C 78 I$	0000	$U C 58 I$
$000 C 7 C I$	0000	$0 C 58 I$
$000 C 80 I$	0000	0000
$000 C 84 I$	0000	0000
$000 C 88 I$	2000	0015

170	$A L I G N$	$A L C$		
171	CLEARTAB EQU	$*$	CLEAR TABS P-BLOCK	
172	DCX	2901		
173	DCX	0		
174	DAC	DUMBUFF		
175	DAC	UUMBUF		
176	DAC	0		
177	OAC	0		
178	IC	$Y .90000015^{\circ}$		

OOOCBCI		OCBCI	180	WRITESCN	ALIGN	ADC	WKITE	OUTPU	BUFFER	TO	SCREEN
	0000		181		EQU	*					
000C8CI	2901		182		DCX	2901					
000C8EI	0000		183		DCX	0					
000C901	0000	00081	184		DAC	OUT BUF					
000 C 941	0000	U2931	185		DAC	OUTBUFE					
0000981	0000	0000	186		DAC	0					
000C9CI	0000	0000	187		DAC	0					
OOOCAOI	2000	U008	188		DC	Y-20000008'					

O00CA4 I			190		ALIGN	ALC	CLEAR	MODIFIED	DATA	FLAGS
	0000	$0 C A 41$	191	CLEARMDT	EQU	*				
000CA4I	2901		192		DCX	2901				
$000 C A 61$	0000		193		DCX	0				
OOOCA8I	0000	UC581	194		DAC	DumizuF				
OOOCACI	0000	UC581	195		DAC	Dumauf				
000CBOI	0000	0000	196		DAC	0				

SAMFLE PRUGHAM FUR SIMPLE PET1200 ACCESS UNUER ITAM PAGE 5 18:17:44 07/19/77

PARAMATER BLOCKS

```
G00CB41 000U 0000 197
000CHBI 2000 0U19
```

000 CECI
0000 UCRCI
coocter 4901
OOOCBEI 0000
OOOCCUI VOUO UC58I
$000 C C 41$ 0000 UCS8I
000 CCBI 0000 U000
OOOCCCI OOUO OUOO
anocuol 2000 U001

$000 C U 4]$	0000	$0 C 04 I$
$000 C U 4 I$	4901	
$000 C U 6 I$	0000	
$000 C D 8 I$	0000	$0294 I$
$000 C U C I$	0000	$0 C 57 I$
$000 C L 0 I$	0000	0000
$000 C E 4 I$	0000	0000
$000 C E 8 I$	2000	0004

210		ALIGN
211	READALL	EQU

OOOCECI		UCECI	220	READMOD	ALIGN	ADC	KEAU	MODIFIED FIELDS
	0000		221		EQU	*		
OOOCECI	4901		222		OCX	4901		
OOOCEEI	0000		223		OCX	0		
OOOCFUI	0000	02941	224		DAC	INBUF		
000 CF 4 I	0000	UC571	225		DAC	INRUFE		
000 CF 9 I	0000	0000	226		DAC	0		
000 CFCI	0000	0000	227		DAC	0		
0000001	2000	4003	228		DC	Y-20000003*		
000004 I			230		ALIGN	AUC		
	0000	U0041	231	READUNP	EGU	*	HEAS	UNPHOTECTEU FIELDS
0000041	4901		232		DCX	4901		
0000061	0000		233		DCX	0		
0000041	0000	U294 I	234		DAC	INBUF		

1534
SANPLE FRUGRAM FOR SIMPLE PET1200 ACCESS UNDER ITAM PAGE 6 18:17:44 07/19/77
PAKAMATLK BLOCKS

$00000 C 1$	0000	UC57I	235	DAC	INEIJFE
0000101	0000	0000	236	DAC	0
$000 D 14 I$	0000	0000	237	DAC	0
$000018 I$	2000	0002	238	OC	$Y .20000002$,

00001CI	0000	UU1CI	$\begin{aligned} & 240 \\ & 241 \end{aligned}$	HRINT	$\begin{aligned} & \text { ALIGN } \\ & \text { EQU } \end{aligned}$	$\underset{*}{A D C}$	HRINT SCREEN
00001 Cl	2901		24%		DCX	2901	
O00D1EI	0000		243		OCx	0	
000020 I	0000	UC581	244		DAC	LumpzuF	
000024 I	0000	0C581	245		CAC	DUNBUF	
000028 I	0000	0000	246		DAC	0	
00002 CI	0000	0000	247		DAC	0	
0000301	2000	U01B	248		DC	Y'20000018'	

2535
SANIPLE PRUGKAM FOR SIMPLE PET1200 ACCESS UNDER ITAN:
PAGE 7 18:17:45 07/19/77
MAINLINE HKUGRAM


```
PLEASF; TYPE NAME
```

PLEASE TYPE ADDRESS

Figure $D-1$ Read Template

Figure $D-2$ Read After Initial Input

PIEASE TYPE NAME JOHN A. TESTER
PLEASE TYPE ADCRESS 2 INTERDATA PLACE TINTON FALLS, NEW JERSEY

Figure D-3 Read Modifiod Screen Image
 5354455220 20 20 20 20 20 $201 R 210 A 504 C 45415345205459$ 50452041444452455353 1B21 $203220494 E 5445524441544120504 C 4143452020$ $\begin{array}{lllllllllllllll}2020 & 2020 & 2020 & 2020 & 2020 & 2020 & 2020 & 2020 & 2020 & 2020 & 2020 & 2020 & 2020 & 2020 & 2020 \\ 2020\end{array}$ 2054494 E
 20 20 20 20 20 20 20 20 $202 n 2020202020201821$ OE 00 00 00 00 00 00 00 00 00000000000000000000000000000000 0000.0000 0000 000000000000000000000 00 00 00 00 00 00 00 00000000.00 00 00 00 0000000700 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0000000700 00 00 $00000000 \quad 00$ 0000000000000000000003

Figure D-4 Read All

2537

$104 A$	$4 F 48$	$4 E 20$	$502 E$	2054	4553	4445	5220	2020	2020	2020	2020	2020	2020	2020	2020
2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2010
3220	$494 E$	5445	5244	4154	4120	$504 C$	4143	4520	2020	2020	2020	2020	2020	2020	2020
2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
2020	2020	2020	2020	2020	2020	2020	2020	5449	$4 E 54$	$4 F 4 E$	2046	$414 C$	$4 C 53$	$2 C 20$	$4 E 45$
5720	$4 A 45$	5253	4559	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	$2020 \cdot$
2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2003		

Figure D-5 Read Unprotected

0120	3910	2032	4A4F	484E	2041	2E20	5445	5354	4552	2020	2020	2020	2020	2020	2020
2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
2020	2020	03													

Figure D-6 Read Modified

A	
Asynchronous line driver	3-1
buffers and traps	$3-29$ $3-18$
commands supported	$3-18$ $3-7$
default values	3-18
special character processing	3-16
SVC 15 access	3-1
terminal manager access	3-1
B	
Baud rates,	
8-1ine multiplexor	2-4
PALS	2-3
PASLA	2-3
2-1ine multiplexor	2-4
Buffer types	3-20
chained	3-20
	3-22
direct	3-20
indirect	3-20
	3-21
queued	3-20
	3-24
traps	3-27
Buffers and traps	3-18
buffer management	3-19
buffer types	3-20
data field chain	3-18
DCW chain	3-18
direct buffers	3-20
indirect buffers	3-21
C	
Cables	2-6
Carousel 300 terminal	4-4
character structure	4-10
modem connection	4-10
system characteristics	4-10
chained/queued buffer link	
word flag byte	3-23
chained/gueued format	3-23
Commands, asynchronous line	
Commands, Models 1200/1250/1251	
editing VDU terminal manager,	
ELIMINATE	5-5
GENERATE	5-2
Common terminal logical record	
Configuration procedures,	2-1
software	2-7

Conversational VDU/TTY sysgen device statement	$\begin{aligned} & 2-8 \\ & 2-8 \end{aligned}$
D	
Data read formats, Models	
1200/1250/1251 VDUs	5-23
read all	5-23
read all with attribute character truncated	5-24
read modified	5-28
read unprotected	5-26
Data set adapters	2-3
Data write formats, Models	
1200/1250/1251 VDUs	5-30
edit write	5-30
write edit with attribute character generated (WAG)	5-30
Default values	3-18
for mode commands	3-18
Device dependent access	1-1
Device independent access	1-1
Direct buffers	3-20
format	3-21
DMA I/O subsystem (DIOS)	2-7
E F	
ELIMINATE command	5-5
Encoded error messages, Models	
1200/1250/1251 VDUs	5-43
Extended device codes	2-9
G	
GENERATE command	5-2
GENERATE macro	5-2
H	
Hardware configuration procedures,	
cables	2-6
data set adapters	2-3
DIOS	2-7
Spectron MIS-3400 modem	
splitter	2-7
strapping options	2-3
terminals	2-5
I J K	
Indirect buffers	3-21
format	3-22

L	
Light pen	5-43
M N O	
Macros, Models 1200/1250/1251 editing VDU terminal manager,	
editing VDU terminal manager, GENERATE	
XFMPCB	5-4
Model 1100 VDU communications interface	
	4-13
internal strapping,	
local control keys	4-14
modes	4-14
multicode sequences	4-17
operation	4-14
operational characterstics	4-11
operator control functicns	4-12
single character ASCII	
Model 1100 VDU, operational	
modes,	
FLX	4-14
HDX	4-14
normal	4-14
transparent	4-14
Modems	2-5
options	2-5
Module specification	2-14
Model 1200 editing VDU	2-12
sysgen device statement	2-12
Models 1250/1251 point-to-coint	
VEUs	2-13
sysgen device statement	2-13
Models 1250/1251 terminal	
configuration	5-14
downline load	5-14
user configuration	5-14
Models 1200/1250/1251 editing	
VLU terminal manager	5-1
commands	5-2
cursor addressing	5-31
data read formats	5-23
data write formats	5-30
```default extended functions/ options```	5-34
device assignment	5-1
encoded error messages	5-43
extended device code	
specification	5-33
horizontal tabulation	5-31
internal design	5-36
internal structure	5-40
INITMASY	5-1
light pen	5-43
macros	5-2
Models 1250/1251 terminal configuration	
multidrop feature	5-43
printer options	5-32
random addressing	5-31
required software	5-32
special character format	5-14
special parity requirement	5-33



Special asynchronous character	2-11
Special character processing	3-16
backspace characters	3-16
bit mask	3-16
ending or terminating characters	3-16
line delete characters	3-16
miscellaneous characters	3-16
special characters	3-16
Spectron MIS-3400 modem	2-7
Strapping options	2-3
CLCM strapping	2-4
clocks	2-4
8-1ine multiplexor baud rates	2-4
PALS baud rates	2-3
PASLA baud rates	2-3
2-line multiplexor baud	
rates	2-4
Supervisor call 15 (SVC 15)	3-1
data field	3-19
driver command options	3-6
driver command word format	3-6
encoded errors and	
definitions	3-5
line driver access	3-1
parameter block	3-2
status halfword	3-4
terminal manager access	3-1
traps	3-28
SVC 15 only,	
asynchronous device	2-13
sysgen device statement	2-13
SVC 15 parameter block	3-2
function code format	3-2
SVC 1,	
extended options	5-6
interface	5-6
SVC 1 extended options	5-6
extended functions	5-7
fullword format	5-6
function modifiers	5-7

Special asynchronous characters 2-11
Special character processing 3-16
space characters
ending or terminating
ine delete characters
3-16
3-16
3-16
2-7
2-4
2-4
2-4
PALS baud rates 2-3
2-1ine multiplexor baud rates
data field
driver command options 3-6
driver command word format
3-5
line driver access 3-1
parameter block 3-2
terminal manager access 3-1
15 only.
asynchronous device 2-13
$C$ is parameter block $\quad 3-2$
function code format 3-2
extended options
interface
5-6
5-6
5-6
function modifiers
5-7

Sysgen device statements	$2-8$
conversational VDU/TTY	$2-8$
Model 1200 editing VDU	$2-12$
Models $1250 / 1251$ point-to-	
point VIUs	$2-13$
remote line printer	$2-14$
sigma 10 terminal	$2-14$
SVC 15 only asynchronous	
device	$2-13$

T U V W
Terminal managers,
Models $1200 / 1250 / 1251$
editing VDU
$\begin{array}{ll}\text { editing VDU } & 5-1 \\ \text { TTY/VDU } & 4-1\end{array}$
Terminals, supported by data
communications subsystem
Traps
3-27
task trap format 3-28
TSW 3-27
TTY/VDU terminal manager 4-1
Carousel 300 terminal 4-4
data optimization 4-1
encoded error messages $\quad 4-19$
Model 1100 VDU 4-11
special-character processing 4-1
supported attributes 4-3
supported functions 4-3
supported terminals 4-2
SVC 1 access 4-1
TTY/VDU terminal manager, $\quad 4-3$
supported functions
READ ASCII 4-3
read or write image 4-3
WRITE ASCII 4-3
X Y Z
XFMPCB macro 5-4

## PUBLICATION COMMENT FORM

Please use this postage-paid form to make any comments, suggestions, criticisms, etc. concerning this publication.

From $\qquad$ Date $\qquad$
Title $\qquad$ Publication Title $\qquad$
Company $\qquad$ Publication Number $\qquad$
Address $\qquad$
$\qquad$


FOLD
FOLD

Check the appropriate item.

Page No. $\qquad$ Drawing No. $\qquad$ Explanation:

FOLD

FOLD FOLD


## BUSINESS REPLY MAIL

FIRST CLASS
PERMIT NO. 22
OCEANPORT, N.J.
POSTAGE WILL BE PAID BY ADDRESSEE
PERKIN-ELMER
Computer Systems Division
2 Crescent Place
Oceanport, NJ 07757

TECH PUBLICATIONS DEPT. MS 322A




[^0]:    An asterisk indicates a valid function function/modifier combination. $X$ indicates an invalid function function/modifier combination. A blank box indizates the function modifier does not apply to that particular function

