
PERKIN- ELMER

OS/32
LH~K

Referenc1a Manual

48-005 FOO R01

The information in this document is subject to change without notice and should not be
construed as a commitment by the Perkin-Elmer Corporation. The Perkin-Elmer Corpo
ration assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Elmer.

The Perkin-Elmer Corporation, Computer Systems Division 2 Crescent Place, Oceanport, New Jersey 07757

© 1981 by The Perkin-Elmer Corporation

Printed in the United States of America

.I

TABLE OF CONTENTS

PREFACE

CHAPTERS

1 OS/32 LINK

2

1 • ?.

1. 3

1. 4
1. 4. 1
1. 4. 2

STARTING

2.1

2.2
2.2.1

INTRODUCTION

LINK FEATURES

LINK REQUIREMENTS

STATEMENT SYNTAX CONVENTIONS
Link Command Syntax
File Descriotors

LINK

BUILDING LINK

LOADING LINK
Loading Link from the Sy stem Con so le

2.2.2 Loading Link f rorn an MTM Terminal

2.3 STARTING LINK

j LINK COMMANDS ..J

3. 1 INTRODUCTION

3.2 BFILE COMMAND

3.3 BUILD COMMAND

3.4 DCMD COMMAND

3.5 END COMMAND

48-005 FOO R01

vii

1-1

1-1

1-2

1-2
1-3
1-4

2-1

2-1
2-1
2-)

2-2

3-1

3-4

3-5

3-8

3-9

i

CHAPTERS (Continued)

3.5 ESTABLISH COMMAND 3-10

. 3. 7 EXTERNAL COMMAND

3.8 FFILE COMMAND 3-14

3.9 INCLUDE COMMAND 3-15

3.10 LIBRARY COMMAND 3-17

3. 11 LOC.~L COMMAND 3-19

3.12 LOG COMMAND 3-20

3. 13 MAP COMMA1rn 3-21

3.14 NDCMD COMMAND 3-24

3.1S NLOG COMMAND 3-25

3.16 OPTION COMMAND 3-26

3.17 OVERLAY CO~MAND 3-32

3. 18 PAUSE COMMAND 3-34

3.19 POSITION COMMAND 3-35

3. 20 REWIND COMMAND 3-36

3.21 SHARED COMM~.ND 3-37

3.22 TITLE COMM~ND 3-40

3.23 VOLUME COMMAND 3-41

3.24 WFILE COMMAND 3-42

4 BUILDING EXAMPLES OF IMAGE LOAD MODULES USING LINK

ii

4. 1

4.2

4.3
4. 3. 1
4.3.2
4.3.3

INTRODUCTION 4-1

BUILDING A SIMPLE TASK IMAGE LOAD MODULE 4-1

BUILDING MORE COMPLEX TASK IMAGE LOAD MODULES 4-2
Building a COBOL Task Image Load Module 4-2
Building a FORTRAN Task Image Loai Module 4-2
Building a COBOL Task Image Load Module
with Link Commands Imbedded in Object
Modules 4-3

48-005 FOO R01

CHAPTERS (Continued)

4.4
4.L~.1

4.4.2

4.4.3

4.5

4.6

4.7

BUILDING OVERLAID TASK IMAGE LOAD MODULES
Building a Simple Overlaid Task Image Load
Module
Building a More Complex Overlaid rask
Image Load Module
Moving Co~mon Blocks

BUILDING SHARABLE SEGMENTS

BUILDING A TASK IMAGE LOAD MODULE
REFERENCING SHARABLE SEGMENTS

BUILDING AN OPERATING SYSTEM IMAGE LOAD
MODULE

APPENDIXES

A

B

c

D

LINK COMMAND SUMMARY

LINK MESSAGE SUMMARY

LINK TO TET COMPARISON

TET COMMANDS

D.1
D.2
D.3
D .. 4
D.4.1
D.4./.
D • 4 .. 3
D.4.4
D.4.5
D.4.6
D.4.7
D.4.8
D.L~.9

D.4.10
D.4.11
D.4.12
D.4.13
D.4.14
D.4.15
D.4.16
D.4.17
D.4.18
D.4.19
D.4.20

INTRODUCTION
SYSTEM REQUIREMENTS
AN FSTABLISHED TASK
TET COMMANDS
ABSOLUTE Command
AMAP CommanJ
BUILD Command
EDIT Command
END Command
ESTABLISH Command
EXPANu and GET Commands
INCLUDE Command
JOB Command
LBLCOM Command
LOG Command
MAP Command
MAXLU Command
MXSPACE Command
NOLOG Command
OPTIONS Command
OVERLAY '.:o!llmand
PAUSE Command
PRIORITY Command
QIO Command

48-005 FOO R01

4-4

4-5
4-8

4-9

4-10

4-11

A-1

B-1

C-1

D-1

D-1
D-1
D-2
D-5
D-6
D-7
D-8
D-10
D-11
D-12
D-14
D-15
D-16
D-17
D-19
D ... 20
D-22
D-2 3
D-24
D-25
D-29
D-30
D-31
D-32

iii

APPENDIXES (Continued)

D.4.21
D.4.22
D.4.23
D.4.24
D. LJ.. 25
D.U.26
D.4.27

D.5
D.5.1
D.S.2
D.5.3

D.6

I'. 7
D. 7. 1
D.7.2

D.7.3
D.7.4
D.7.5
D.7.6
D.7.7

D.7.8
D.7.9

D.8

REMOTE Command
RESOLVE Command
REWIND Command
TCOM Command
TSW Command
VOLUME Command
WFILE Command

OPERATING PROCEDURES
Logical Unit Assignments
Temporary File Operation
Command Input Sequence

AUTOMATIC ASSIGNMEN~

EXAMPLES OF TET CPERATICN
Establishjng a Simple Task
Establishing a Task with Pure
and Impure Segments
Establishing a Reentrant Library
Establishing a Complex Task with Overlays
Building·an Operating System Image
Establishin~ Compound Overlay Files
Establishing a Block Data Task
Common Segment
Establishing a Sharable Segment
Establishing Preinitialized Task Common

TET ERRO~ MESSAGES

TABLES

3-1 LINK COMMANDS

3-2 LINK END OF TA.SK CC DES

B-1 SVC 7 ERROR 1' Y P ES AND STATUS

B-? SVC 1 ERROR CODES AND STATUS

C-1 LINK TO TF.T COMPARISON

D-1 ADDRESS-SEGMENT RELATIONSHIP

D-2 TET LOGICAL UNIT ASSIGNMENTS

D-33
D-34
D-35
D-36
D-38
D-39
D-40

D-41
D-41
D-42
D-42

D-47

D-48
D-48

D-49
D-50
D-50
D-54
D-55

D-56
D-56
D-57

D-57

3-1

3-9

B-7

B-8

C-1

D-~

D-41

iv 48-0J5 FOO R01

TABLES (Continued)

D-3

D-4

D-5

FIGURES

i~-1

D-1

D-2

D-3

INDEX

LOGICAL TET COMMAND SEQUENCE

AUTOMATIC ASSIGNMENT OF FILE

OBJECT ITEM SIGNIFICANCE

Sample Overlay Structure

Establishing a Task with Pure
and Impure Segments

Graphic Description of a Task with
Two Overlays

~emory Map of Overlay Task Establishment

48-005 FOO R01

D-44

D-47

D-68

4-6

D-49

D-51

D-54

Ind-1

v

PREFACE

This manual describes the new linkage editor c~lled the
Perkin-Elmer OS/32 Link, which provides the user with the ability
tc link one or more object modules producing an image load
module. These load modules can be tasks, sharable segments, or
operating systems. The user should be familiar with the
Perkin-Elmer OS/32 and with the Perkin-Elmer OS/32 Multi-Terminal
Monitor (MTM) if Link is used in an MTM environment.

Chapter 1 provides an introduction and overview of the features
of Link. Chapter 2 describes how to build, load, and start the
linkage editor. Chapt~r 3 lists and describes the link-edit
commanJs. Chapter 4 guides the ne~ user and ex9lains the
fundamentals of producing image load modules. !ppendix A is a
command sum~ary. Appendix B is a message summary. Appendix C
compar~s Link to TET. Appendix D lists and describes the TET
cornwands.

Revision 01 of this manual adds support for these new features:
trap event, vertical forms control, and supervisor call (SVC)
interceptions. It also clarifies the LIBRARY command and
includes changes to the OPTIONS and SHARED commands. This ~anual
can be used with the OS/32 R06 and higher software release and
with Revision 00-01 of OS/32 LINK.

The user can refer to these publications:

MANUAL TITL2

OS/32 Operator Reference Manual

OS/32 Applicaticn Level Programmer
Reference Manual

OS/32 Multi-Terminal ~onitor CMTM) Referen=e

PUBLICArION
NUMBER

48-030

48-039

Manual 48-043

32-3it Systems UsPr Documentation Summary 50-003

For further information on
32-bit manuals, see the
Summary.

the contents of all Perkin-Elmer
32-Bit Systems User Documentation

48-005 FOO F01 vii

1.1 INTRODUCTION

CHAPTER 1
OS/32 LINK

The Perkin-Elmer OS/32 Link is a linkage editor that combines one
or more object modules produced by Perkin-Elmer language
processors and produces an image load module with all external
references resolved. This image load module then can be loaded
by the LOAD command.

1.2 LINK FEATURES

This linkage editor can build .image load modules in sizes up to
16Mb. Tasks can be unsegmented or segmented into pure and impure
segments which allow~ the user to share the pure code when more
than one copy of the task is loaded. Task options such as
floating-point requirements, workspace size, and priority can be
specified. Link also can build an operating system image from
the object module produced by the Perkin-Elmer OS/32 Library
Loader. The resulting ima7~ load module can be loaded into main
storaye using the Perkin-Elmer OS/32 Bootstrap Loader (BOOT) or
Loader Storage Unit CLSU).

Link automatically selects modules referenced by a user's t1sk
from specified object libraries, and links them to the main task.
The library search is performed so th~t the order of the ~odules
in the library has no effect on the link process.

The linkage editor can display raaps with the addresses of program
modules, entry points, common blocks, and overlays. A map can be
a build summary, or can h~ve symbols and addresses listed in
alphabetical or address order. In addition, a cross reference
listing of ~ntry points and program modules referencing them can
be included.

Link commands such as OPTION or POSITION, imbedded in an object
module, are executed whenever the module is linked to a main
task. The linkage editor can disable execution of thesa commands
if a particular Link command (NDCMD) is specified by the user.

Sharable segments, such as resident libraries or task commons,
are independently linked load modules that can be concurrently
used by more than one task. This linkage editor can build
sharable segments and link a task to the sharable segment.

48-005 FOO H01 1-1

Link also supports a tree-structured overlay feature. If the
user sp8cifies that routines are to be located in an overlay at
link time, the linkage editor provides for automatic loading when
the routine is referenced at execution time. Therefore, the
overlay structure does not have to be defined in the sour~e

module. A Link command can place common areas in the root node
or a specific node of the overlay structure.

1.3 LINK REQUIREMENTS

These resources are required for Link ~xecution:

• OS/32 5.2 or higher

• 1 disc device

• 64kb of main storage for Link

1.4 STATEMENT SYNTAX CONVENTIONS

These state~ent syntax conventions are used in all cummand and
instruction formats:

CONVENTION

Capital letters,
parentheses, and
punctuation marks

Lowercase letters

n

Underlining

fAUSE

Ellipsis

. . ..
pararn,, ••• ,params

Lettering with shading

1-2

USAGE

must be entered exactly as shown.

represent parameters or information
provided by the user.

i~dicates only the underlined por
tion of the entry is required.

represents an indefinite number of
parameters or a range of p~rameters •

represents a default option.

48-005 FOO ao1

CONVENTION

Braces

l !
Brackets

[J
Commas

,

Braces inside brackets

Comma preceding braces
inside brackets

[, ~ ~ J
Comma inside brackets

[, J

Comma outside brackets
except last parameter

[,[J,[J U]

Equal sign separating
Keyword from parameters

KEYWORD=param

1.4.1 Link Command Syntax

USAGE

represent required parameters from
which one must be chosen.

represent an optional parameter th~t
can be chosen.

separate parameters and substitute
missing positional parameters.

represent optional parameters fro~
which one can be chosen.

must be enterei if one of the
opti·onal para :ne ter s is chosen.

must be entered if the optional
parameter is chosen.

~ust be entered in place of missing
positional parameters an1 to
separate optional parameters that
are chosen. Commas are omitted f~r
trailing parameters and a =omm1 must
be entered with the last specified
parameter.

must be 8ntered to
parameter with keyword.

3.Ssociate

Multiple co~mands can be entered an one line if they are
separated by semicolons (;). ~hen multiple commands are entered
on the same line, they are executed sequentially. If a synt~x

error is detected in a command, that co~mand plus any subsequent
commands on the same line are ignored.

48-005 FOO R01 1-3

If thB specified parameters of a command in interactive mode
exceed one line, enter a comma as the last character and a
carriage return (CR) which causes this message to be displayed:

CONTINUE>

Continue entering the remaining parameters on the same line
following the greater than (>) symbol. In batch mode, para~eters
can be continued by entering a comma as the last character and
continuing the parameters on the following line.

Comments can be specified by entering an asterisk (*) before the
comment string and a CR or semic~lan at the end of the string.
A comment can be the only iata on a line or can follow a commani
on the same line. For example:

*THIS IS THE LINK ROUTINE

ESfABLISH fASK:*A TASK IS TO BE ESTABLISHED

1.4.2 File Descriptors

File descriptors, abbreviated as fd, are entered in a standard
format.

Format:

Parameters:

voln:

1-4

is a 1- to 4-character alphanumeric string
specifying the name of a disc volume. rhe
first character must be alPhabetic and the
remaining alphanumeric. If the volume name is
omitted, the default is the:

volullie specified by
command,

the Link. VOLUME

volume specified by the operator or MTct
VOLUMF command, or

volume specified as the oper~tinq system or
user default volume.

48-005 FOO R01

dev:

filename

.ext

act no

file ~lass

Functional Details:

is a 1- to 4-character
specifying a device name.
must be alphabetic
alphanumeric.

alphanumeric string
The first ch~racter

ani the remaining

is a 1- to 8-character alphanumeric string
specifying the name of a file. The first
character must he alphabetic and the remaining
alphanumeric. If a filenam~ is specified when
a device name is specified, the filename is
ignored.

is a 1- to 3-character alphanumeric string
specifying the extension to a filename. If
the period (.) and extension are o~itt2d, a
default extension appropriate to the
particular command in which the fd appears is
appended to the filename. If the perioj is
specified and the extension is omittad, tne
default is blanks.

is a deci~al number from 0 thr~ugh 255
specifying the account number associatei with
the file. Account nuffibers 1 through 240 are
used by MTM; account numb9rs 241 through 255
~re reserved. Account number 0 is used for
syste~ files and is the default for all
opP-rating system users. Specification of the
account number as Part of the fd can be
entered when running Link from the system
console.

is a 1-character alphabetic string specifying
the file class. The file classes are:

P for private file

G for group file

S for system file

If the file class is omitteJ, the default is
P when running Link fro~ an MTM termin~l dnd
S wh~n running Link from the system console.

See the OS/32 Progr~mmer Reference Manual for more information on
file descriptors.

48-005 FOO R01 1-5

2.1 BUILDING LINK

CHA PT :E:R 2
STARTING LINK

If the Perkin-Elmer supplied ready-to-execute version is to be
used, no build is necessary. However, if a new version of Link
is to be built, this sequence of commands builds Link as a
sharable segmented image load module by using the Ferkin-Elmer
supplied version of Link.

INCLUDE LINK
OPTION SEGMENTED,WORK=8000
BUILD LINK
END

The reserved workspace must be a minimum of 8kb. The more
workspace allocated, t~e less pa)ing to and from disc. The less
workspace allocated, the more paging to and from disc. rhe
amount of workspace specified can be overridden at load time.

2.2 LOADING LINK

Link must be a segmented image load module before being loaded
into main storage.

2.2.1 Loading Link from the System Console

This command loads LinK fr~m the system cons~le.

Format:

Lo AD ta s r. id [, £ d] [, s •=::!gs i z e increment]

Parameters:

taskid

48-005 FOO R01

is i 1- to 8-character alphanumeric string
specifying the name of the task after it is
loaded into the foreground segment in main
stora:,;e.

2-1

f d

segsize
increment

is the file descriptor of the device
containing the linkage editor image load
module to be loaded into main storage. If
this parameter is omitted, the. default is
taskid.TSK.

is a decimal number in kb specifying the
additional area to be added to the module's
impure segment. This val11e overrides the
WORK= option if specified when the module was
built.

2.2.2 Loading Link from an MTM Terminal

This command loads Link from an MTM ter~inal.

Format:

1.0A O fd G segsize incremEnt]

Parameters:

f d

se']size
increment

2.3 STARTING LINK

is the file descriptor of the
containing the linkage editor image
module to be loaded into main storage.

devi::e
load

is a decimal nu~ber in kb specifying the
additional area to be added to the module's
impure segment. This value overrides the
WORK= option if specified when the module was
built.

After Link is loaded int~ ~ain storage this command starts its
execution and assigns the command and log devices.

Format:

Parameters:

COMMAND=

2-2

fd1 specifies the input device from which
commands are to be enter8d. If this param~ter
is omitted, the default is the command input

48-005 FOO R01

LOG=

Functional Details:

device (CON:). If the command input device is
interactive, all commands entered an1 messages
generated are sent to the command input
device. If the command input device is batch,
the LOG parameter must be specified.

fd2 specifies the output device to which all
commands entered and messa~es generated are
recorded. If the command input device is
batch, this parameter must be specified. If
the log output device is a disc file, it must
have been previously allocated.

After the linkage editor is started, this message is iisplayed:

LINK Rnn-nn

The revision number (Rnn) indicates the revision level of Link,
and the upjate numb~r (-nn) indicates the updatA level of Link.
If the comman1 input device is interactive, the greater than (>)
symbol is then displayed as a prompt indicating the linkage
editor is c~ady to accept commands.

48-005 FOO R01 2-3

3.1 INTRODUCTION

CHAPTgR 3 i

LINK COMMANDp

There are three types of Link commands:

• Active

• Passive

• Environment

Active commands are executed as soon as they are entered and
cause an immediate action to the imaqe load module being built.
Passive commands are executed when the buil1 procass occurs.
Environment commands affect the link session instead of the image
load module being built.

Table 3-1 lists all the Link commands, categorizes the type, and
describes the function.

TABLE 3-1 LINK COMMANDS

TYPE
COMM.1\ND MEA:HNG

ACT PAS ENV
============ ===== ===== ===== ================================

EFILE

BUILD *

DCMD
*

END *

* Backspaces a magnetic tape or
contiguous file

Starts building the image load
module

Enables execution of Link
commands imbedded in objest
m.Jdules

Terminates the linkage editor
------------ ----- ----- ----- --------------------------------

ESTABLISH *

48-005 FOO R01

Specifies the type of image
load module to be built

3-1

I
I COMMAND
I
I============
I EXTERNAL
I
I

FFILE

INCLUDE

LIBRARY

LOCAL

LOG

r. A p

NDCMD

NLOG

OPTION

OVEB.LAY

f------------
1 PAUS~ , ___________ _

I POSITION
I 1------------
1 REWIND
I

3-2

TABLE 3-1 LINK COMMANDS {Continued)

A.CT
=====

*

*

*

TYPE
MEANING

PAS I ENV
=====1===== --

*
I
I
I

Specifies the name of the
common bl~ck to be referenced
outside a sharable segment

-----1-----
1
I

* Forward spaces a magnetic tape
or contiguous file

-----1-----

____

*

*

...._ ____
*

*

*

1
I
I

* -----

Specifies the object modules
to be included in the imaga
load module

Specifies the object libraries
to be searchei for unresolved
external references

,
Specifies entry points to be
refer.enced only within a
sharable segment

Enables logging all commands,
messages, and maps to the log
device

---~-----------~----·-----------
Generates a map when the image
load module is built

Disables exe=ution of LinK
commands imbedded in
object modules ----- ________________________________ ,

*
Disabl8s logqing all =ommands, I
messages, and maps to the log I
device I

----- ----------------------------~---!
Sets tdsk options I ----- ________________________________ ,
Defines an overl1y an1 I
specifies 1 level. I

-----1-----------------------~--------1
* I Pauses the linkage editor I

-----1--------------------------------1
f ~aves a common block intot
I a specific overlay node. I

-----1--------------------------------1
* I Rewinds a magnetic tape or I

I contiguous file I

48-0~5 FOO R01

I
I COMMAND
I
t============

SHARZD

TITLE

VOLUME

WFILE

TABLE 3-1 LINK COMMANDS (Continued)

TYPE

ACT PAS ENV
----- ----- ---------- ----- -----

*

*

*

*

MEANING

--
Spec:Lfies
referenced
task

a
by

segment c~n be
more than one

Specifies a title for the map

Specifies the
to be used for
file descriptors

default volume
all subsequent

Writes a filemark on a magnetic
tape or a contiguous file

* Indicates the type of Link command

48-005 FOO R01 3-3

BFILE

3.2 BFILE COMMAND

The backspace file (BFILE) command is an environment command that
backspaces·a magnetic tape or contiguous file a specified number
of filemarks.

Format:

12.!: I L E f d ~ n]

Parameters:

f d

n

Examples:

BF MAG 1: , 2

3-4

is the file descriptor of the devi~e to be
backspaced the specified number of filemarks.

is a decimal number specifying the number of
filemarks to space backwards. If this
parameter is omitted, 1 is the default.

48-005 FOO R01

BUILD

3.3 BUILD COMMAND

The BUILD command is an active command that builds the imag3 load
module from the object modules specified in the INCLUDE command.

Format:

Parameters:

f d

Functional Details:

is the file descriptor that is to re=eive the
image load module. If the extension is
omitted, the default extensions are:

.TSK for tasks

.SEG for sharable segments

.ooo for operating systems

The linkage editor attempts to allocate and assign the file
specified in the BUILD command. If the file does not exist, the
linkage editor allocat~s the file. However, if an error occurs
during this process or the file is not specified in the BUILD
command, this message is displ~yed:

ENTER FILE-DESCRIPTOR OF IMAGE>

Enter· the fd of the device to receive the image load mo1ule. If
the linkage editor is in batch mode and an fd is required, the
build process is terminated. A pre-allocated empty indexed or
contiguous file with sufficient space can be specified as the fd.
If the file does not contain sufficient space, this message is
displayed:

FILE EXISTS - DO YQU WANT IT OVERWRITTEN?>

48-005 FOO ~01 3-5

If YES is entered, the file is deleted and re-allocated.
is entere1, this message is displayed:

ENTER FILE-DESCRIPTOR OF IMAGE>

If NO

Enter the fd to receive the image load module which causes the
allocation/assignment process to be repeated.

NOTE

Building an image load module on a
contiguous file is significantly faster
than building an image load module on an
indexed file.

After these messages are displayed, the maps are generated if the
MAP command was entered. If the MAP command was not entered,
this message is dis~layed:

MAP?>

If YES (Y) or NO (N) is entered, the following four messages are
displayed:

ENTER ~AP FILE DESCRIPTOR>

Enter the fd of the device or file to receive the maps.

SORTED ALPHABETICALLY?>

If YES is entered, a map with all sy~bols in 1lphabeti~al order
is generated:

SORTED BY ADDRESS?>

If YES is entered, a map with all sy~bols in address order is
generated:

CROSS REFERENCE?>

If YES is entered, a m~p with all symbols in ~lphabetical order

3-6 48-0J5 FOO R01

and the names of all modules that reference each symbol is
generated.

If NO was entered for all of these messages, only a build summary
is generated. See section 3.13.

After the BUILD command is executed, the linkage editor is ready
to build a new image load module.

Examples:

BU TASK

EU TASK.TSK

Messages:

n UNDEFINED EXTERNAL SYMBOL(S)

The specified number of undefined external symbols exist.

n MULTIPLE DEFINED FNTRY POINTS(S)

The specified number of entry points are defined more than
once in the same path.

n AMBIGUOUSLY DEFINED ENTRY POINT(S)

The specified number of entry points were defined in parallel
paths and referenced from a node common to both paths.

n COMMAND(S) ENCOUNTERED IN OBJECT CODE

The specified number of Link commands were encountered in the
object modules included in the image load module.

48-005 FOO R01 3-7

DCMD

3.4 DCMD COMMAND

The define command (DCMD} is an active command that enables
execution of passive Link commands in object modules included in
the image load module.

Format:

Functional Details:

When an object module with imbedded pass~ve Link commands is
included, the imbedded commands are treated as if they were
entered after the INCLUDE command was entered. Imbedded LIBRARY
commands ace treated as if thay were entered immediately before
the BUILD command was entered.

Link commands can te imbedded in an object module if the CAL DCMD
pseudo-op was used during a~ assembly. Joly passive Link
commands can be imbedded in object modules. Any active or
environment commands imbed1ed in object modules are rejected and
cause a message to be displayed. If a log device is specified,
all Link commands in the object module are sent to the log device
with a plus sign (+} in column 1. For example:

ES TA
INCLUDE MOD

+OPTION FLOAT
BUILD MOD

If an error occurs during execution of an imbedded command, a
message is displayed. The format of the CAL DCMD pseudo-op is:

DCMD C'linkedit command'

Examples:

DCMD C'OPTION FLOAT'

DCMD C'MAP PR:,ALPHA'

3-R 48-005 FOO R01

END

3.5 END COMMAND

The END command is an active command that terminates the, linkage
editor.

Format:

Functional Details:

If the END command is entered after passive Link commands are
entered but before the BUILD command is entered, this message is
displayed:

BUILD IMAGE FROM PREVIOUS rNPUT?>

Enter YES if the image load modiule is to be built. Enter NO if
no image load module is td be built an1 the task is to be
terminated. See Table 3-2 for ,the list and meaning of the link
end of task codes.

TABLE 3-2 LINK END OF TASK CODES

I END OF TASK I
I CODE I MEANING
!=========================~============================
I I) I Terl'Tlinated normally
I I
I 1 I An error occurred but dii not affect
I I the building of the image load module.
I t
t 2 I An error occurred that affected the
I I building of the image load module.
I I
I 3 I ~ severe error occurred that caused
I I the linkage editor to abort.

48-005 FOO R01 3-9

----·------
I ESTABLISH I

3.6 ESTABLISH COMMAND

The ESTABLISH command is an active command that specifies the
type of image load module to build. The three types of image
load modules are:

•t task.,

• sharable segment, and

• operating system.

Format:

£~TA BLISH

Parameters:

TAST<

OS

SHARED

ACCESS=

3-1G

E

R

§.!i~?ED ~.&.~CESS= RE] [• .&..QDRESS=r
0

:

00}J
RW

~ li~.M 2=seg men t]

srecifies that a task image loa1 moiule is to
~e built. If the ESTABLISH command is
omitted, fASK is the default.

specifies that an operating system image load
module is to be built.

specifies that a sharable segmented image load
module is to be built.

P specifies that the access privilege of the
sharable segment allows ac=ess of data within
the sharable segment. Execution or
modification of data is not allowed.

48-00S-FOO R01

ADDRESS=

NAME=

Functional Details:

E specifies that the access privilege of the
sharable segment allows task execution within
the sharable segment.

RF. specifies that the access privilege of the
sharable segment allows access to data and
task execution within the sharable segment.
Modification of data is not allowej. If the
ACCESS= parameter is omitted, the default is
RE.

RW specifies that the access Privilege of the
sharable segment allows access to data and
modification of data within the sharable
segment. Task execution is not allowed.

RWE specifies that the access privilege of the
sharable segment allows access to data,
modification of data, and task ex9cution
within the sharable se~ment.

mOOOO is the starting address of th~ sharable
segment. This address is the bi~s address
used to relocate relocatable addresses in the
sharable segment. The variable m is a
hexadecimal number from 1 through BF. If the
ADDRESS= parameter is omitted, or ADDRESS=* is
specified, the sharable segment becomes
address-independent and can be assigned a
djfferent starting address by each task tnat
references it. If relocatable addresses are
located in an address-independent sharable
segment, they are relocated as though
ADDRESS=OOOOO was specified and a warning
message is issued.

segname is a filename.ext that identifies the
sharable segment after it is loaded into main
storage. This name is m~tched against the
name s~ecified by the tasks that are to
reference the sharable segment. If the NAME=
para~eter is omitted, the segment name becomes
the filename.ext of the image load module.

If the ESTABLISH comman1 is entered after passive commands have
been entered, this message is displayed:

BUILD ~N IMAGE FROM PREVIOUS INPUT?>

48-005 FOO R01 3-11

If YES is ent8red, a build is performed. If NO is entered, no
build is performed and this message is displayed:

ESTABLISHMENT ABORTEC

Examples:

ES OS

Establish an operating system image load module.

ES SHARED,ACCESS=RE,AD=FOOOO,NAME=SEG1

Establish a sharable segmented image load module.

ESTABLISH SHAPED,ACCESS=RE,ADDRESS=AOOOO

Sstablish a reentrant library image load module.

ESTABLISH SHARED,ACCESS=RW,~DDRESS=*

Establish a task common image load module.

3-12 48-005 FOO R01

I EXTERNAL

3.7 EXTERNAL COMMAND

The EXTERNAL command is a passive command that specifies the name
of one or more common blocks to be referenced ~utside a shar~ble

segment.

Format:

£XTERNAL common block name 1 [, ••• ,common block namen]

Parameters:

co!nmon block
name

Functional Details:

is the name of a common block to be
referenced outside the sharable segm9nt. See
section 3.10.

Common blocks are local to a sharable segment unless specified by
the EXTERNAL command. External common blocks 3re matched against
external common block references in th~ same way external
references are matched against entry points in a segment.

48-00~5 FOO R01 3-13

FFILE

3.8 FFILE COMMAND

The forward file CFFILE) command is an environ~ent command that
forward spaces a magnetic tape or contiguous file a specifi~d

number of filemarks.

Format:

.[.[I L E f 1 ~ n J

Parameters:

f d

n

Examples:

:FF MAG 1: , 2

3-14

is the file descriptor of the devi=e to be
forward spaced the specified number of
filemarks.

is a decimal number specifying the number of
filemarks to space forward. If this parameter
is omitted, 1 is the default.

48-0~5 FOO R01

I INCLUDE

3.9 INCLUDE COMMAND

The INCLUDE command is an active command that specifies the file
containing the object modules and the specific names of object
modules that are to be included in the image load module.

Format:

Parameters:

f d

mod.ule 1

modulen

Functional Details:

is the file descriptor of the file or device
containing the modules to be included. If
this parameter is omitted, ~ preassigned lu 1
or the fd specified in the last INCLUDE
command entered is used. If the extension is
omitted, the default is .OBJ.

is a 1- to R-character alphanumeric string
specifying the name of the next module of a
range of modules to be included in the image
load module. If an asterisk (*) is specified
or this parameter is omittei, the next module,
relative to the position of the file, is
inclu1ed.

is a 1- to 8-character alphanumeric string
specifying the name of the last module of a
range of modules to be included in the image
load module. If this parameter is omittej,
module1 is .included. If an asterisk (1r) or
hyphen (-) with no module name is specified,
all modules starting with module1 to. the end
of the file ~re included.

If no module naffies are specified, all modules in the file are
included.

48-005 ~00 R01 3-15

Examples:

3-16

INCLUDE LIBRARY.OVY

Include all modules in fd LIBRARY.OVY.

INCLUDE LIBR11.RY,FIRST

Include the object module FIRST in fd LIBRARY.OBJ.

INCLUDE, SECOND-FOURTH

Include modules SECCND through FOURTH in the fd spe~ified
in the prevjous INCLUDE command.

INCLUDE LIBRARY.OBJ,-FOUPTH,SIXTH,TENTH-*

Include modules FIRST through FOURTH, SIXTH, and TENTH
through the end of LIBR~RY.OBJ.

48-005 FOO R01

LIBRARY

3.10 LIBRARY COMMAND

The LIBR~RY comMand is ~ passive command that sp8cifies object
libraries to be searched at build time to resolve external
references. The libraries are searched in the order th~y are
named.

Format:

1.l BR A R Y f d 1 G •• • , f d n J

Parameters:

f d is the file descriptor of the library to be
searched. If the extension is omitted, the
default is .OBJ.

Functional Details:

The libraries specified are searched f~r entry points that
external references in the image load module being built.
a match is found, the object modul8 is included. Only one
is made through the list of libraries.

m::ttch
flh en
pass

External references generated DY the EXTRN pseudo-op are m~tchej

against library entry points. All external references generated
from modules included from the library cause the library modules
that resolve the external references to also be included
regardless of the order of the modules.

Weak external references generated by the WXTRN pseudo-~p are not
matched against the library and are only resolved to entry points
in modules explicitly included or to modules included from a
library through external references that are not weak.

Non-linking external references generated by the INCLD pseudo-op
are matched against module names in the library.

Weak entry poicts in the library generated by the ~NTRY pseudo-op
are ignored during the library search.

A module is selectej from a library for the following two
reasons:

48-0C 5 FOO R01 3-17

1. The module is named in an INCLD pseudo-op.

2. The module contains an ENTRY or a DNTRY which can be resolved
against an EY.TRN in a previously included module.

Any weak entry points contained within this newly included mo1ule
also become known to LINK. Tnese weak entry points will be
resolved against the list of unresolved externals, inclu1ing both
the standard an1 the weak externals.

Examples:

3-18

LI USER.LIB,F7RTL.OBJ

Specifies the user run time library an1 FORTRAN run time
library to ~e searched.

48-005 FOO R01

LOCAL

3.11 LOCAL COMMAND

The LOCAL command is a passive command that specifies one or more
entry points in a sharable segment can only be referenced within
that segment. This command is valid only when establishing a
sharable segment.

Format:

1QG A L e n try Poi n t 1 G .•• , en try Poi n t n]

Parameters:

entry point

Functional Details:

is 1 1- to 8-character
specifying the entry
within that segment.

alphanumeric string
point to be referenced

When a sharable segment is built, all entry points can be
externally referenced by tasks unless the entry points are made
local to that segm8nt by the LOCAL command.

Examples:

LOC DTRY1

48-005 FOO E\01 3-19

LOG

3.12 LOG COMMAND

The LOG command is an active command that spe=ifies a ne~ log
device or statts the logging process if it was previously
stopped. All command input, messages, and maps are sent to the
leg device.

Format:

1QG f d

Parameters:

f d

Examples:

LO PP:

LO M300:LCGFILE

3-20

is the file descriptor of the device
to receive command input, messages,

or file
:tnd maps.

48-00 5 FOO RO 1

MAP

3.13 MAP COMMAND

The MAP command is a passive command that displays a map
containing the names and addresses of symbols.

Format.:

1:1a1? [f ct] [J:~:::::TICl]
LREF ~

Parameters:

f d

ALPHABETIC

ADDHESS

XHEF

Functional Details:

is the file descriptor of the 1evice to
receive the map. If this parameter is
omitted, the map is sent to the log device.
However, if a log device was not previously
specified, the maps are output to the command
input device in interactive mode and PR: in
batch mode. If the specified fd is not the
same as the log device, the map is sent to
both.

specifies that the map is to contain all
symbols in alphabetical order.

specifies that the map is to contain all
symbols in address order.

specifies that the maP is to contain all the
names of the modules that reference each
symbol.

When the MAP command is entered, a build summary map cont~ining

this information is generated:

• The name of the file to receive the image load module

• The nu~ber of loqical records the image load mo1ule contains

48-005 FOO R01 3-21

• The
and

size
pure

of each overlay which includes the size of its impure
segments, common blocks, overlay tables, and total

size

• A virtual address map containing the address and size of each
segment

• A list of any undefined symbols

• A list of any multiple defined symbols

• A list of any ambiguously defined symbols

Examples:

~AP PR:

The build summ1ry is sent to the line printer.

An address ~aP listing contains the:

• name of each symbol followed by an E (SNTRY),
(PROG), or C (COMMON),

D CDNrRY), p

• address of each symbol followed by a P (pure), I (impure), or
~ (absolute), and

• each overlay area grouped separately and in the order they
were defined.

Examples:

MA? MAP~ILF,ADDR

The ajdress m2p is sent to the file named MAPFILE.

An &lphabetic map listing contains the:

• nawe of each symbol followed by an r (~~TRY),
(PRC~), or C (COriMON),

D (DNT~Y), p

• address of each symbol followed by a P (pure), I (impure), or
A (absolute), and

• the name of the node containin~ the symbol.

3-22 48~005 FOO 201

Examples:

MAP ,ALPHA

The alphabetic map is sent to the\ log ievice.

The cross reference map listin~ contains the names of all comm~n

blocks and entry points followed by the name of the module in
which they were defined and a list of all modules that reference
the rn.

Examples:

MAP PR:,XREF

48-005 FOO R01 3-23

NDCMD

3.14 NDCMD COMMAND

The NDCMD is an active c~mmand that disables execution of Link
commands imbedded in object modules to be included in the image
load moiiule.

Format:

l!QCMD

Functional Details:

The DCMD command re-enables execution of Link commands imbedded
in object modules. See section 3.4.

3-24 48-005 FOO R01

NLOG

3.15 NLOG COMMAND

The no log (NLOG) command is an environment command and
terminates logging.

Format:

Ji10G

Functional Details:

Logging can be restarted by the LOG command. See secti~n 3.12.

48-005 FCO R01 3- 25

OPTION

3.16 OPTION COMMAND

The OPTION command is a passive command that sets task options
that occur at execution time.

Format:

3-26

Q£TION [t~~~~~}] H~~:::~:,E} J H~:~.:~: }] ~ { 1:~:.::::JJ
[·{~:::~}J u: ... :: ... n [{:,:;!.n [{~~~::;~:En
[{~:;;:::,:m}] [{:~:::rn}] [{::~z}] [{~::: .• }]
[·{:~~~:~$;} J G L'J=lu] [~xsmcE={~9.:.0J]

[,lQRK=([J ' i:::J)] [MSOLUTE~ 1:0 }] [•lQBLOCKS {:

[' £~IO R ITY = rn i : •• ;~ } J [{;!;,:.i}]) J
[,TSW=(ast:tus}] [tpadr}J)] (iWRY=entry point symbo~:

[{
~rnN F }] , I 1 Q s A VE= :.EA~,T I AL
<fk [' { :~~~;~ } J [{~~~~J J

[
{.:.: .•

I .. ··N··· :.·.·,r .. ·.·.·F·'·······.P· .····.·:·.c· · .. ·······£··· .··.?· .·.···T· ., .. '•.. }] [{ ix:::c:o.::=. J)\N.Alt:t::Rw: }] [{:K13:t\¢.H:J!.tC:K: }]
- ---- --. -_·:·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·,•.•,•,<,· ~......:-.-......... ·.·.·.-.·.· ... ·.•.·.·.·.·.·.

, , ,
\ltl.l!T $ltP:i:;~Jf: Ji.&.~~ O :J NT I N G .[K~ IC H EC K

48-005 FOO R01

Parameters:

FT ASK

UT ASK

NAFP~USE

AFPAUSE

RESIDENT

NRESIDENT

SE~MENTED

NSEGMENTED

NROLL

ROLL

COM

NCOM

CON

48-005 FOO R01

specifies that an executive task (e-t1sk)
image load module is to be built. An e-task
must contain only positional-indepenjent pure
and impure code and cannot reference sharable
segments.

specifies that a user task Cu-task) image lJad
module is to be built. If both task
parameters are omitted, UTASK is the default.

specifies that the task is to continue if an
arithmetic fault occurs during task execution.

specifies that the task is to pause if an
arithmetic fault occurs during task execution.
If both pause parameters are omittei, AFPA~SE
(arithmetic fault pause) is the default.

specifies that the task is to remain in mem~ry
when it is terminated.

specifies that the tas~ is to bA removed from
main storage when it is terminated. If both
parameters are omitted, NRESIDENT
(nonresident) is the default.

specifies that the pure segment of a task can
be shared when more than one copy of the task
is loadei (except e-tasks).

specifies that the pure segment of a task
cannot be shared when more than one copy of
the task is loaded (except e-tasks). If both
s~gmented parameters are omitted, NSEG~ENTED

(nonsegmented) is the default.

specifies that a task cannot be rolled in and
out of me~ory during task execution.

~pecifies that a task can be rolled in and out
of memory during task execution. If both roll
para~eters are omitted, ROLL is the iefault.

specifies that a task can issue intertask
co~munication.

specifies that a task cannot
communication. If both
parameters are omitted,
communication) is the default.

issue intertask
communication

NCJM (no

specifies that a task can issue intertask
control.

3-27

NCON

NSVCPAUSE

SVCPAUSE

UNIVERSAL

NUNIVERSAL

DISC

NDISC

ACP

NACP

FLOAT

NF LO AT

DFLOAT

3-28

specifies that a task cannot issue intertask
control. If both control parameters are
omitted, NCON (no control} is the default.

specifies that all intertask communication and
control macros entered are ignored and t1sk
execution continues.

specifies that all intertask communication and
control macros entered are ignored and task
execution is paused. If both pause parameters
are omitted, SVCPAUSE is the default.

spe=ifies that a task can communicate with all
other tasks in the system.

specifies that a task cannot communicate with
all other tasks in the system. If both
universal parameters are omitted, nonuniversal
(NUNIVERSAL} is the default.

specifies that a u-task has an extended disc
privilege and can assign a bare disc. If the
disc is on-line, assignments for
shar~d-read-only (StlO} are allowed. All other
assignments are rejected ani a message is
disolayed. If the disc is marked off-line,
all access privileges are allowed. See the
OS/32 Pr0gr~mmer Reference Manual for a
description of the access privileges.

specifies that a u-tasK has no extended
privileges. If both disc privileges
omitt~d, no disc (NDISC} is the default.

disc
are

specifies that a u-task has extended file
acc9ss privileqes and can specify an account
number instead of a file class for all filA
man~Jement functi0ns.

specifi~s that a u-task has no extended file
access P.rivile9es. If both access privilege
par~meters are omitted, no file access
privile~es (NACP) is the default.

specifies that a task c~n execute single
precision floating point instructions.

specifies that a task c~nnot execute single
precision floati~g point instru=tions. If
both float parameters are omitted, no float
(NFLOAT) is the default.

specifies that a task can execute double
precisi~n floating point instructions.

48-005 FOO R01

NDFLOAT

LU=

SYSSPACF.=

WORK=

ABSOLTJTE=

IOkI.OCKS=

PHI ORI TY=

48-005 FOO R01

specifies that a task cannot execute double
precision floating point instructions. If
both double float parameters are omitted, no
double float (NDFLOAT) is the default.

lu is a decimal number from 1 through 254
indicating the maximum quantity of logical
units that can be. assigned to a tasl{.

s is a 1- to 6-digit hexadecimal number
indicating the maximum amount of system space
that a task can use at run time. If this
parameter is omitted, X'3000' is the default.

min is a 1- to 6-digit hexadecimal number
indicating the number of bytes of main storage
to be adied to the eni of a task for
workspace. Each time a number is specified,
it is added to the current minimum value. If
an asterisk (*) is specified, the minimu~
value is reset to zero. If this param'?ter is
never specified, 80 bytes CX'50') is the
default. When a sharable segment is being
built, the d~fault is o.

wax is a 1- to 6-digit hexadecimal number
indicating the maximum amount (kb) of main
storage that can be added to the end of a task
for workspac~. If this parameter is omitted,
256kb (X'40000') is the default.

a specifies a 1- to 6-digit hexadeci~al number
indicating the number of bytes of main storage
to reserve for absolute data. If this
parameter is omitted, the def1ult is 256 bytes
(X' 100').

b is a decimal number from O through 65,535
indicating the maximum number of I/0 control
blocks assigned to a task. Each I/J control
block can contain one queued proceed I/O
request. If this parameter is omitted, the
nef3.ult is one.

ipri is a decimal number fr~m 11 through 254
indicating the initial priority -~f a task.
The initial priority must be less than or
equal to the specified maximum priority. If
this parameter is omitted, the default is 128.

mpri is a decimal number from 11 throuqh 254
indicating the maximum priority of a task. If
this paramet8r is omitted, the default is the
value used for the initial priority.

3-29

TSW=

ENTRY=

TEQSAVF.=

XSVC1

NXSVC1

3-30

status is ~ 1- to 8-digit hexadecim~l number
indicating the initial setting of the status
portion of a task's task status word CTSW).
An OR operation is performed on all status
word specifications to form the final status
word for the image load module. If the
asterisk (*) is specified, the current TSW is
reset to zero. If this parameter is omitted,
the default is zero.

st adr is a 1- to 6-digit hexadecimal number
indicating the starting address of the address
portion of a task's TSW. This ajdress
overrides the starting address at assembly or
compilation time and the starting address in
the ENTRY= Parameter if specified in a
previous OPTION comman1.

entry point symbol is the name of an entry
noint in the root node where task execution is
to start. Specification of an entry point
overrides the starting address specified at
assembly or compilation time.

NONE specifies that no register contents are
saved and restored by OS/32 when entering and
exiting a task event service roQtine. If this
parameter and the PARTIAL parameter are
omitt~d, ALL is the default.

PARTIAL specifies that only the contents of
registers containing event data are saved and
restored when entering anj exiting a task
event routine. If this parameter and the NONE
parameters are omitted, ALL is the default.

ALL specifies that all register contents are
saved and restored by OS/32 when entering and
exiting a task event service routine. If this
parameter, the NONE parameter, and the PARTIAL
parameter are omitted, ALL is the default.

specifies that the meaning of the least
significant bit of an SVC1 function code being
set is th1t an ~xtended options fullwori
exists. This option must be specified to use
such features as gapless mode on. a 6250
magnatic tape drive or to control the use of
VFC on ~n individual I/J basis.

specifies that the meaning of the least
significant bit of an SVC1 function ::ode being
set is that image I/0 is to be used.
Currently, only the line printer and magnetic
tape drivers use this option. ITAM drivers
always operate ·3. s if XSVC1 is in effect.
Oth~r drivers always assume NXSVC1.

48-005 FOO R01

VFC

NVFC

INTERCEPT

NINTERCEPT

.i\CCOUNTI NG

NACCOUNTING

KEYCHECK

NKEYCHECK

Examples:

specifies that a task uses the verti=al forms
control option in 311 I/O operations. If VFC
is omitted, NVFC (no VFC) is the default.

specifies that a task does not use the
vertical forms control option in all I/0
operations. If the VFC and NVFC parameters
are omitted, NVFC is the default. Vertical
forms control may still be invoked on a per LU
basis and, if XSVC1 is specified, on a per I/O
basis.

specifies that this task can intercept cert~in
SVCs of another task before the SVC goes to
the operating system for processing. If this
parameter is omitted, NINTERCEPT is the
default.

specifies that this task cannot intercept
SVC of another task before the SVC goes to
operating system for processing. If
INTERCEPT and NI~TERCEPT parameters
omitted, the default is NINrERCEPT.

the
the
the
are

specifies that OS/32 task accounting features
are to be enabled. If this parameter is
omitted, ACCOUNTING is the default.

specifies that OS/32 task accounting features
are disabled. If the ACCOUNTING and
NACCOUNTING parameters are omitted, the
default is ACCOUNTING.

specifies that the task option keys are I
checked for a privileged u-task or an E-task. I
If th i s r. a r a m \~ t e r i s om i t t e d , th e de fa u 1 t is I
KEYCHEC~. I

specifies that no task option keys are checked
for a privileged u-task or an e-task. IE this
parameter and the KEYCHECK parameter are
omitted, the default is KEYCHECK.

OP FL,RES,NAF,LU=10,WORK=3000,TSW=(,B020)

48-005 FOO R01 3- 31

OVERLAY

3.17 OVERLAY COMMAND

The OVERLAY command is an active command that defines an overlay
area and specifies a level.

Format:

Parameters:

overlay name

lev~d

Functional Details:

is an 8-character alphanumeric string
specifying the na~e of the overlay to be
loaded into main storage. rhe name .ROOT is
reserved for the root segment.

is a decimal number from 1 thr:>ugh 2 56
specifying the number of overlays between the·
overlay being defined and the root
(in~lusive). The number specified rnust be at
most one greater than the previous level. If
this parameter is omitted, the default is 1 •

This command is entere1 after all modules to be includei in the
root segment have ~een specified. Object modules to be
positioned in an ovPrlay area are included following the OVERLAY
command. The sequence of defining overlays must specify the
overlay and all its descendants before defining other overlays at
the same level. Overlaid tasks generated by Link result in
automatic loading cf overlays (see Section 4.4). However,
user-con trolled loading of c ve r lays is done by using SVC. 5. See
the OS/32 Application Level Programmer Qeferen=e Manual.

3-32 4 8- 0 0 5 F 0 0 R 0 1

Examples:

INCLUDE ROOT.OBJ
OVERLAY ONE,1
INCLUDE A.OBJ

OVERLAY THREE,2
INCLUDE D.OBJ
INCLUDE E.OB,J
OVERLAY FOUR,2
INCLUDE F.OBJ

OVERLAY TW0,1
INCLUDE B.OBJ
INCLUDE C.OBJ

OVERLAY FIVE, 2
INCLUDE G.OBJ

48-005 FOO R01

...

3-33

PAUSE

3.18 PAUSE COMMAND

Th€ PAUSF. commar:d is an environment command that Pauses the
linkage editor.

Format:

Functional Details:

The linkage editor can be continued by ~ntering the CONTINUE
command.

3-34 48-005 FOO R01

I POSITION

3.19 POSITION COMMAND

The POSITION command is a passive command that moves common
blocks from their original location closer to the root segment
and places them in a node that will not be initialized when an
overlay is loaded.

Format:

Parameters:

COMMON=

TO=

FunctionaJ Details:

name is a 1- to 8-char~cter alphanumeric
string specifying the name of the common block
to be moved. If an asterisk (*) is specified,
all common blocks are moved.

node name is a 1- to 8-character alphanumeric
string specifying the name of the node to
which the blocks are to be moved. If this
parameter is omitted, the blocks ar9 moved to
the overlay node in which the POSITION ccmmand
is encountered. If .ROOT is specified, the
blocks are moved to the root segment.

The placement of common blocks in a task is ietermined by the
locatio~ in which the blocks arP referenced. A common block is
initially placed no closer to the root segment than any
particular reference to the common block.

Examples:

ES ·rASK
INCLUDE ROOT
POSITION COMMON=(A,B)
OVERLAY OVLY 1, 1
INCLUDE SUR1
INCLUDE SUB2
OVERLAY OVLY2, 1
INCLUDE SUB3

48-005 FOO R01 3-35

REWIND

3.20 REWIND COMMAND

The REWI~D command is an environment com~and that rewinds a
magnetic tape or contiguous file.

Format:

,h_& WIND :f d

Parameters:

f d

Examples:

RE MAG1:

3-36

is the file descriptor of the devi=e to be
rewound.

48-005 FOO R01

SHARED

3.21 SHARED COMMAND

The SHARED command
of the sharable
module.

Format:

~HA~ ED

is an active command that specifies
segment to be referenced by the

the
image

name
load

,8_k.CESS= RE

Parameters:

f d

NAME=

ACCESS=

RW

RWE

~ i?_!ll UCTU RE= (name 1 [(size 1] ~ ••• ,name n [!size 0JJ) J
[iiIZE= ([min G maxJ]) J

is the file descriptor of the sharable
segment. If this parameter is omitted, the
default is a. non-established task common
!:.~gment def in1:?d by the operator TCOM command.

segname is a filename.ext specifying the name
of the sharable segment. If this parameter is
omitted, fd must be specified, and the default
is the name assigned to the sharable segment
when it was created. This name is matched
agai~st the name of any sharable segments
already in main storage when the task is
loaded. If a sharable segment with this n~me
is not found w~en the task is loaded, the
segment name is treated as a file iescriptor
and is used to load a sharable segment.

8 sp~cif ies that the access privileg9 of the
sharable segment allows access of data within
the sharable segment. Execution or
modification of data is not allowed.

48-005 FOO ~01 3- 37

ADDRESS=

STRUCTURE=

SI 7. £:-:

3-38

F specifies that the ~ccess privilege of the
sharable segment allows task execution within
the sharable segment.

RE specifies the access privilege of the
sharable segment allows access t~ data and
task execution within the sharable segment.
Modification of data is not allowei. If the
ACCESS= parameter is omitted, default is RE.

RW specifies that the access privilege of the
sharable segment allows access to data and
wodification of data within the sharable
segment. Task execution is not allowed.

RWE specifies that the access privilege ~f the
sharable seqment allows ~ccess to dat1,
modification of data, and task execution
within the sharable segment.

mOOOO is the starting address of the sharable
segment. If the sharable segment specifies a
file descriptor and the sh~rable segment is
not address independent, the specified address
must match the address specified in the
sharable segment. If this parameter is
omitted or not specified in the sharable
segment, Link assigns an address to the
sharable segment.

na~e is an 8-character alphanumeric string
specifying the name of the task common block
to be placed in the sharable segment.

size is a hexadecimal number specifying the
l 4? r• g t n o f th e t as k c o mm on b 1 o c k • T h i s n um b e r
~ust be greater than or equal to the size of
the common block. If this number is smaller
than the current size of the task com~on

block, a message is displayed and the size of
the task common block is used. If this
paramet~r is omitted, the iefault is the size
of the task common block.

min is a 1- to 6-digit hexadecim1l number
specifying tli8 minimum number of bytes of main
storage to be occupied by the sharable
s~qment. If this parameter an1 the fd
parameter are om~tted, the defaJlt is the
total number of bytes of all common blocks
specified in the STRUCTURE= parameter or the
size of se1ment ~s established. If this
parameter is omitted and the fd paLameter is
specified, the default is the nu~ber of bytes
specified when the sharable segment was built.

48-005 FOO R01

Functional Details:

max is a 1- to 6-digit hexadecimal nu~oer
specifying the maxi~um number of bytes of ~ain
storage to be occupied by the sharable
~egment. If this parameter and the fd
parameter are omitted, the default is the
total number of bytes of all common blocks
specified in the STRUCTURE= parameter. If
this parameter is omitted and the fd par1meter
is specified, the default is the number of
bytes specified when the sharable segment was
built.

When the task referencing the sharable segment is loaded, the
user-specified minimum and maximum values are comparei with the
actual size of the sharable segment. If the actual size is
smaller than the specified minimum value, a message is displayed
and the task is not loaded. If the actual size is larger than
the specified maximum value, only the specified maximum value is
available. If the sharable segment references other sharable
segments, th-ese references are automatically included in the
image load module. However, these secondary references need not
be declared again by using the SHARED command.

Examples:

ESTABLISH SHAREr,NAME=SEGMENT.ACC,ACCESS=RW
INCLUDE COMX
BUILD COMX
END

ESTABLISH TASK
SHARED COMX,STRUCTURE=(COMX)
INCLUDE PROG1
BUILD PROG1
END

ESTABLISH SHARED,NAME=SEGM~MT.ACC,ACCESS=RE,ADDRESS=EOOOO
INCLUDE LI B1
INCLUDE LIB2
BUILD LIBX
END

ESTABLISH TASK
SHARED LIBX
INCLUDE PROG1
BUILD PROG1
END

48-005 FOO R01 3-39

TITLE

3.22 TITLE COMMAND

The TITLE command is an environment command that specifies the
heading to be printed ~t the top of all maps.

Format:

II.TLE title

Parameters:

title

Functional Details:

is a 60-character alphanumeric string
specifying the title to be printed at the top
of all maps. If the title contains a blank,
comma, or semicolon, it must be enclosed
within single quotation marks.

The TITLE command remains in effect until a subsequent TirLE
command is specified.

Examples:

TI PERKIN-ELMER
TI 'DEPARTMENT 3086'

3-40 48-0'.)5 FOO R01

VOLUME

3.23 VOLUME COMMAND

The VOLUME command is an environment command that specifies the
volume to be used by the linkage editor when a volume is omitted
in a file descriptor.

Format:

YQLU!1E ~o ln]

Parameters:

voln

Functional Details:

is the name of the volume to be usej by the
linkage editor as the default. If tais
parameter is omitted, the current default
volume is displayed on the command input
device.

The VOLUME command remains in effect until a subsequent VOLUME
command is specified.

Examples:

VO :1'30')

48-('Q5, FOO £<01 3-41

WFILE

3.24 WFILE COMMAND

The WFILE command is an environment command that writes a
filemark on a magnetic tape or contiguous file.

Format:

RI I L E f d G n J

Parameters:

f d

n

Examples:

WF MAG1:,'2

3-42

is the file descriptor of the device to which
a filemark is to be written.

is a decillial number specifying the number of
filemarks to be written. If this parameter is
omitted, 1 is the default.

48-005 FOO H01i

CHA~TER 4
BUILDING EXAMPLES OF IMAGE LOAD MODULES USING LINK

4.1 INTRODUCTION

This chapter explains the basic concepts required to use the
linkage editor through examples showing sample command build
sequences. See Chapter 3 for detailed information on the Link
commands.

4.2 BUILDING A SIMPLE TASK IMAGE LOAD MODULE

This example includes an object module with no external
refere~ces called MOD1.CBJ, produced by the CAL Assembler, and
builds a task image load module. For example:

INCLUDE ~OD1

MAP P~1:

BUILD MOD1
END

The INCLUuE command specifies that all the object modules in the
input file MOD1.0BJ are to be included in the build. The file
extension .OBJ is the default extension for the INCLUDE command
which is an active command and is executed immediately.

The MAP command specifies that a build summary is to be printed
on tho. output device (PR1:). The MAP command is a passive
command and is executed only when the BUILD command is entered.

The BUILD command builds the i~age load module and stores it in
file MOD1.TSK. The file extension .TSK is the default extension
for the BUILD command. The BUILD command is an active command
and is ex 0 cuted irnm8diately.

The END corn~and is an active command and terminates the linkage
editor.

48-0GS FOO R01 4-1

4.3 BUILDING MORE COMPLEX TASK IMAGE LOAD MODULES

This section discusses building COBOL and FORTRAN task image load
modules, using subroutine libraries, maps, the OPTION command,
and object modules containing imbedded Link commands.

4.3.1 Building a COBOL Task Image Load Module

containing external
COBOL compiler. The

This example includes an object m~dule

references called MOD2.0SJ produced by the
task i~age load module to be built is
single-precision floating point capability.
generated listing the names and locations of
entry p8ints in address order.

INCLUDE MOD2
LIBR~RY COBOL.LIB
OP'rION FLOP.T
MAP PR1:,ADDRESS
BUILD MOD2.TSK
END

to include the
A map is to be·

all moiules and

The INCLUDE command £pecifies that all the object modules in the
input file M0.02.0BJ are to be included in the build.

The LIBRARY command specifies that the COBOL run tima library
file COBOL.LIB is t~ be searched, an1 any routines th1t contain
entry points matching unresclv~d external references are to be
included in the task ima~e load module. The LIBRARY ~ommand is
a Passive command and causes the specified library to be searched
when the build process occurs.

The OPTION command specifies that the single-precision floating
point c~nability is to be included as part of the task image l~ad

module.

The MA? comma~d specifies that a build summary and a listing of
the ndrees and locations of all modules and entry Points in
address order ~re to be generat~d.

Th~ PUILD command builds the t~sk image load m~dule and stores it
in file MUD2.TSK.

The SND command terminates the linkage editor.

4.3.2 Building a FORTRAN Task Image Load Module

This example includes an obje~t module containing external
references called MOD3.03J produced by the OS/32 FJRTRAN VII
Compiler and builds an image load module. The image lo~d module
to be built is to include both single and double precision
f loatinq point capa~ilities, and additional Jorkspace for the

4-2 4a-oos :oo ao1

user and FORTRAN run time libraries. A map is to be generated
listing the names and locations of all modules, common blocks,
and entry points in alphabetical order. Also a cross reference
of all entry points an1 the modules referencing them is to be
generated.

INCLUDE MOD3
LIBRARY US~RLIB,F7RTL

OPTION DFLOAT,FLOAT,WORK=AOO
MAP PR1:,ALPHABETIC,XREF
BUILD MOD3
END

The INCLUDE command specifies that the main task in the input
file MOD3.09J is to be included in the build.

The LIBRARY command specifies that the user library file USERLIB
and FORTRAN run time library file F7RTL are to be searched in tne
order that they are named and that any routines containing entry
points matching unresolved ext~rnal references are to be included
in the task imaqe load module.

The OPTION command specifies that the single- and
double-precision floating point capabilities and additional
workspace for the run time libraries are to be included as part
of the task i~a1e load module.

The MAP command specifies that a build summary and an
alphabetical listing ·of the names and locations of all modules
and entry points are to be generated. ~ cross reference of all
entry points and modules referencing them is also to be
generat9d.

The BUILD command builds the task image load module and stores it
in file MOD3.TSK and the END command terminates the linkage
editor.

4.3.3 Building a COBOL Task Image Load Module with
Commands Imbedded in Object Modules

Link

This example includes an object module, ~004.0BJ, containing
external references and imbedded Link commands p~oduced by the
COBOL compiler, and builds an image load module. The image load
module to be built will include single- and double-precision
floating point capabilities and additional workspace for the user
and COBOL run time libraries. An alphabetical map will be
generated listing the names and locations of all modules, common
blocks, and entry points. Also a cross reference of all entry
points and the modules referencing them will be 1enerated.
Execution of all imbedded Link commands is dis~bled in MOD4 by
the NDCMD command and enabled by the DC~D command in the library
modules. Multiple ccmmands are entered on one line separat~d by
a semicolon, and comment lines are used by preceding the comment
with an asterisk.

48-0C5 FOO P01 4-3

NDC~D;*IGNCRF IMBEDDED COMMANDS IN MOD4
INCLUDE MOD4;LIBRARY USERLIB,COBOL.LIB
OPTION DFLOAT,FLOA~,WORK=AOO

MAP PR1~,ALPHABETIC,XREF

DCMD;*PROCESS IMBEDDED COMMANDS IN LIBRARY ~ODULES

BUILD MOD4
END

Link accep~s p~ssive commands that have been compiled or
assembl~d into an object module. These commands are treated as
if they occurr~d at the point where the module is included.
Therefore, passive commands imbedded in object modules refArenced
by an INCLUDE commanj are treated as if they were entered
im~ediately after the INCLUDE command. Commands imbedded in
object modules referenced by ~ LIBRARY commani are treited as if
they wer8 entered immediately before the next BUILD command. The
NDCMD command causes all subsequent imbedde1 comman1s to be
ignored and the DCMD command reenables this feature.

4.4 BUILDING OVERLAID TASK IMAGE LOAD MODULES

This section discusses building overlaid task image loa1 modules
using subroutines, root segments, overlay areis, root nodes, and
overlay nodes. This overlay feature allows a task to be broken
into sections so jt can be executed using less main storage than
its tot~l size.

4.4.1 Building a Simple Overlaid Task Image Load Module

This example includes an object module called MODS.OBJ which
consists of a main task that calls three subroutines (SUBA, SUBB,
and SORC). These subroutines do not reference each other and
overlay 10kb of the same main storage area if each subr~utine is
loaded only when needed. The main task occupies 10kb of main
storage, and the largest overlay occupies 10kb of main storage
which is a total of 20kb f~r the whole task. This task would
occupy 40kb of main storage without using the overlay fe3ture.
The MAP command specifies that a build summary and a listing of
the namPs and locations of all modules and entry points in
address order are to be generated. It is assumed th~t all the
routines are contain€d i~ file MSP.OBJ.

4-4

INCLUDE M300:MSP.ORJ,MOC5
OVF.~LAY A
INCLUDE ,SUBA
OVERLAY B
INCLUDE ,SUBB
OVF.RLAY C
INCLUDE ,SUBC
MAP PR1:,ADDRESS
BUILD MODS
END

48•005 FOO R01

The INCLUDE command specifies that the object module MOD5.0RJ in
the input file MSP.OBJ is to be included in the build. Because
no overlays have been specified by the OVERLAY command, MOD5.JBJ
becomes the main task (root segment) and is placed in the r~ot
node.

The first OVERLAY command defines an overlay are1 namei ~. rhe
INCLUDE command specifies that the object module called SUBA is
part of overlay A and will be automatically lo~ded into m~in

storage if it is not already loaded when MODS calls SUBA. The
overlay can be explicitly loaded by issuing an SVC 5 in ass8mbly
language or CALL !FETCH in FORTRAN.

The second OVERLAY command defines an overlay ~rea named B. rhe
INCLUD~ command specifies that the object mojule callad SUBR is
part of overlay B and will be a~tomatically lo~ded into the same
main storage area previously occupied by overlay A, if SUBB is
not already loaded when MODS calls it.

The third OVERLAY and INCLUDE commands define an overlay area
named C and includes the object module called 3URC as part of
overlay c.

The MAP command specifies that a build su~mary and a listing of
the names and locations of the main task (root segment) and all
subroutines (overlay areas) in add~ess order are to be generated.
A map of each overlay area is also produced.

The BUILD command tuil1s the im8ge load module callei MOD5.TSK
which consists of a root segmant (MODS.OBJ), an overlay area
large encugh to contain the largest overlay (A, B, and C), and
the subroutines (SUBA, SURA, and SUBC). The END commacj
tPrmjnates the linkage editor.

4.4.2 Building a More Complex Overlaid Task Imaqe Load Module

This example includes an cbject module callej fil2 LFF.OBJ.
which co~sists of a ~ain task that calls two s~broutines (S~BA
and SUB?). Subroutine SUBA calls two more subroutines (SUBA1 and
SUBA2). Subroutine SUBB also calls two more subroutines (SUBB1
and SUBR2). In addition to SUBA and 3UBB overlaying each other,
SU9A1 and SUBA2 are to be overlaid when SUBA is in main storage,
and SU3B1 anct SUBB2 are tQ bP overlaid when SUBB is in main
storag~. This overlHY process can be accomplished by using
another level of overlay areas. Figure 4-1 illustrates the
overlay structure for thiE examcle.

48-C05 FOO R01

Level
1

Level
2

I MOD6
I (root node)

I
I
1
I
I

--------------'--------------
' I

I SUBA I
I (node A) I

' I I
------'------

' I
f SU BA 1
I (node B)

I SUBA2 I
I {node C) I

I SUBB
I (node D)

I
I
I

------'------
' I

I SUBB1 I
I (node E) I

I SUBB2
I {node F)

Figure 4-1 Sample Overlay Structure

A Path is defined as a set of nodes {a group of routi~es loaded
at one time is a node), one at each level, each of which is a
descendant of the no1e at the previous level. For example, the
root node, ~od8 D, and node E form a path. Only nodes in the
same path may he in memory at the same time and, therefore, a
routine may only call routines in nodes which are in the same
path as the node containing the calling routine.

The overlay nodes may be different sizes and the total overlay
area required at any one time is the total size of all the nodes
in the current path. The size of the overlay area for the task
is determined by the path with the largest total size.

It is assumed that all the subroutines are contained in file
LFP.OBJ. Utility routines called in the task are in USERLIB.OBJ.

4-6

I~CLUDE M300:LFP.OBJ,MOD6
OVERLAY A,1
INCLUDE ,SUBA

OVERLAY B,2
I~CLUDE ,SUBA1
OVERLAY C,2

48-005 FOO R01

INCLUDE ,SUBA2
OVERLAY D,1
INCLUDE ,SUBB

OVERLAY E,2
INCLUDE ,SUBB1
OVERLAY F,2
INCLUDE ,SUBB2

LIBRARY USERLIB
MAP PR1:,ADDRESS
BUILD MOD6
END

The INCLUDE command specifies that the object module MOD6 in the
input file LFP.OBJ is to be included in the build. MOD6 becomes
the main task (root segment).

The first OVERLAY command defines an overlay area named A with a
depth level of one. The INCLUDE command specifies that the
object module called SUBA is part of overlay A. All descendants
of overlay A must be specified before any other overlays ~ith a
depth level of one are defined.

The second and third OVERLAY commands define overlay areas named
B and C with a depth level of two which indicates that these
overlays are descendants of overlay A.

The fourth OVERLAY command defines an overlay area named D with
a depth level of one.

The fifth and sixth OVERLAY commands define overlay areas n~med
E and F with a depth level of two which indicates that these
overlays are descendants of overlay D.

The LIBRARY command specifies that the user library file USERLIB
is to be searched and any routines containing entry points
matching unresolved external references are to be included in the
overlay structure being built. If a particular overlay area
contains external references to a routine in the user library, a
copy of that routine is placed in the referen=ing overlay area
unless the referencing overlay area is a descendant of an overlay
area that alre3dy contains a copy of that particular routine.

If modules SUBA1 and SUBA2 reference a routine called TAG located
in the user library, a copy of routine TAG is included in overlay
areas B and c. However, if modules SUBB an:i SUBB1. reference
routine TAG, a copy of the routine is only included in overlay
area D. If the main task MOD6 references routine TAG, a copy of
the routine is only included in the root segment reg~rdless of
any other overlay areas referencing it. However, if two copies
of a routine are to be included in two overlay areas (one beinJ
a descendant of the other), that routine must be explicitly
included by the INCLUDE command.

The MAP command specifies that
the nam~s and locations of

48-005 FOO R01

a build summary and a listing
the main task (MOD6) and

of
all

4-7

subroutines (SUBA, SUBA1, SUBA2, SUBB,
address order are to be generated.

SUBB1, and SUBB2) in

The BUILD command builds the image load module which consists of
the root segment, overlay areas, atid the subroutines. The END
coremand terminates the linkage editor.

4.4.3 Moving Common Blocks

Normally, the placement of common blocks in a task is determined
by where they are referenced. For example, if ALPHA is a common
block referenced by routines in a particular node, ALPHA is
included in that node.

If ALPHA is referenced by routines in more than one overlay node,
ALPHA is included in the numerically highest level node of the
path in with each node references ALPHA. This is subject to the
restriction that ALPHA is not referenced in a numerically lower
level node than the one in which it is placed.

If SUBA1 and SUBA2 both reference ALPHA, it is placed in node A.
If routines SUBA2 an1 SUBB1 reference ALPHA, ALPHA is placei in
the root node.

In some cases, it is desirable to place a common block in a node
other than the one in ~hich it would normally be place1 which is
where it is referenced. For example, Placing a common block in
the root node prevents the data in it from being reinitialized
each time the node in which it is located is loaded.

This example moves a common block called BETA, which is
referenced by routines in modules SUBA2 and SUBB1 in Figure 4-1,
to the root node in the overlay structure by using the POSITION
command.

INCLUDE M300:LFP.OBJ,MOC6
OVERLAY A,1

LIBRARY USERLIB
POSITION COMMON=BETA,TO=.ROOT

END

This co~mand specifies that the common block named ALPHA is to be
placed in the root node. Only one copy of a common block can
occur in a task and an error results if an attempt is made to
position a common block in a node that is at a numerically higher
level or not in the same path as the node in which it would
normally be placed.

4-8 48-005 FOO R01

4.5 BUILDING SHARABLE SEGMENTS

Sharable segments, such as blockdata modules and run time
libraries, must be separately built by Link to be used or
referenced by established tasks. This example includes two
blockdata object modules called BDALPHA.OBJ and BDBETA.OBJ to
initialize common blocks called ALPHA and BETA.

This example also includes an object file called F7RTL.OBJ to be
included in a second build. The shared segment to be built is to
include local and external entry points and additional workspace
for the FORTRAN run time library.

ESTABLISH SHARED,ACCESS=RW,NAME=COMMONS
INCLUDE BDALPHA.OBJ
INCLUDE BDBETA.OBJ
EXTERNAL ALPHA,BETA
BUILD COMMONS.SEG
*THIS COMMAND SEQUENCE STARTS THE SECOND BUILD
ESTABLISH SHARED,ACCESS=RE,ADDRESS=FOOOO
INCLUDE F7RTL.OBJ
LOCAL .DI,.DO,.TGD,.TASKID,"HYDEX,.HYEXP
OPTION WORK=AOO
BUILD F7RTL.SEG
END

The first ESTABLISH command specifies that the sharable segment
to be built is called COMMONS.SEG with read/write access
privileges. The ACCESS and NAME parameters provide information
that is verified a~ainst the parameters specified in a
referencing task's SHARED command or the defaults if no SHARED
command is specified in a referencing task. For example, if a
subsequent SHARED command in a referencing task specifies
read-only access and a name of COMMONS, the access is allowed
because it is a subset of the maximum access specifie1 in the
previous example and the name COMMONS matches the name specified
in the previous example. A request for execute access would be
rejected.

The first two INCLUDE commands include the blockdata object
modules called BDALPHA.OBJ and BDBETA.OBJ.

The EXTERNAL command specifies that the two common blo=ks ALPHA
and BETA are to be known outside the sharable segment •.

Normally, common blocks are considered local. Note that either
the STRUCTURE parameter in a subsequent SHARED co~mand in a
referencing task or the EXTERNAL command ,not both, are required
to match up the common references in a task with the initialized
common blocks in the sharable segment named COMM8NS. The
EXTERNAL command is passive.

The first BUILD command builds the sharable segment in file
COMMONS.SEG.

48-005 FOO R01 4-9

The second ESTABLISH command specifies that a new sharable
segment is to be built called F7RTL.SEG with read-execute access
privileges only and a starting address of X'FOOOO' within the
task referencing it. The ADDRESS parameter specifies that this
segment is to start at FOOOO in the address space of any task
which references it. Segments that do not specify an address in
either the SHARED command of the referencing task or the
ESTABLISH command of the segment are address independent and may
be allocated anywhere within the address space of tasks which
reference them.

The third INCLUDE command includes
library routines in F7RTL.CBJ in
built.

all
the

the FORTRAN run time
sharable segment to be

The LOCAL command defines that the entry points .DI, .DO, .T~D,

.TASKID, .HYDEX, and .HYEXP are local to the segment and cannot
be referenced by tasks referencing the sharable segment.

The OPTION command specifies that additional workspace for the
run time library is to be included in the sharable segment when
any task references this segment.

The second BUILD command builds the sharable sagment and stores
it in file F7RTL.SEG. The END command terminates the linkage
editor.

Sharable segments can also be created by the operator at the
system console if it is to be used as an area for common blocks.
These sharable segments do not require loading into main storage
or initialization before they can be referenced by other tasks.

4.6 BUILDING A TASK IMAGE LOAD MODULE REFERENCING SHARABLE
SEGMENTS

Link provides the capability of sharing one copy of a segment
containing code and/or data areas among multiple tasks. - In
particular, shared common blocks allow data to be shared or
communicated among tasks. Shared copies of run time libraries
allow more efficient use of main storage.

This example builds a FORTRAN task. MOD7.0BJ is ~ FORTRAN
program that references a sharable segment containing two common
blocks called DELTA and GAMMA and the FORTRAN run time libr3ry.

U-10

INCLUDE MOD?
SHARED COMMON.SEG,NAME=COMMONS,ACCESS=R,
CONTINUE>STRUCTURE=(DELTA/1000,GAMMA)
SHARED F7RTL.SEG
MAP PR1:,ADDRESS
BUILD MOD7
END

48-005 FOO R01

The INCLUDE command specifies that the object module MOD7.0BJ is
to be included in the build.

The first SHARED command specifies that COMMON.SEG is the file
containing a sharable segment called COMMONS which consists of
the two common blocks, DELTA and GAMMA. The ~ccess privileges
are read-only. Because a comma is the last character entered on
the line, the CONTINUE> prompt is displayed in interactive mode
and the remaining parameters are entere1. The STRUCTURE
parameter specifies that the first 1000 bytes of the segment
COMMONS is to be allocated for the common block DELTA, regardless
of the size of DELTA in the program. The area after the first
1000 bytes is to be allocated for the common block GAMMA. The
parameters in the SHARED command are compared against the
information in the file COMMON.SEG. Any information not provided
by the parameters is taken from the file or defaulted. At run
time, the pre-initialized segment is loaded from the file.

The second SHARED command specifies that another shared segment
is to be loaded from the file F7RTL.SEG. All of the other
parameters default to information contained in the file.

The MAP command specifies that a build summary and a listing of
the names and locations of all modules 1nd entry points in
address order are to be generated.

The BUILD command builds the task image load module and stores it
in the file MOD7.TSK. The sharable segments ~re referenced to
resolve external references and to determine the pl~cement of
common blocks. The sharable segments are stored as separate
files and are not included as part of the load module. The END
command terminates the linkage editor.

4.7 BUILDING AN OPERATING SYSTEM IMAGE LOAD MODULE

This example includes an object module called MTSYSTEM.OBJ with
external references produced by the Library Loader and builds an
image load mod~le. A map is to be generated listing the names
and locations of all symbols, tasks, and entry points in
alphabetical and address order.

ESTABLISH OS
INCLUDE MTSYSTEM.OBJ
MAP PR1:,ADDRESS,ALPHABETIC
BUILD OS32ROn.OOO
END

The ESTABLISH command specifies that the image load module to be
built is to be an operating system load module.

The INCLUDE command specifies that the input file MTSYSTEM.OBJ
contains th~ object module to be included in the build.

48-005 FOO R01 4-11

The MAP command specifies that a build summary and a listing of
the names and locations of all modules and entry points in
alphabetical and address order are to be gener.~ted.

The BUILD c6mmand builds the operating system image load module
and stores it ip the file OS32ROn.OOO which can be lQaded into
main storage by the BOOT or LSU. The END comm~nd terminates the
linkage editor.

4 12 48-005 FOO R01

APPENDIX A
LIMK COftKAND SUMMARY

.!iI I I. E f d [, n J

.£.!l IL D t ~

];~TA BLISH R

(),-E

~HARED Ga~c2ss=< RE

)

RW

{
mOOOO}

] ~ !QDRESS= *]

RWE
\.

~ E . .&. ~ E = se g men t.J

1;! T FR N A L co in m on b 1 o c k. n a :TH 1 [, , comm on b 1 o c it n a me n J

f £I L 2 f d [' r]

1!. H R AR Y f d 1 ~ • • • , f J n]

1.Q.~ I'\ L r~ n t r Y po i n t 1 ~ • • • , ~ n tr. Y p o i n t n J

48-005 FOO R01 -. 1' "\-1

1.QG f d

l£QC~D

1!10G

[{
DFLOAT }] [{ s }] , -- GLU=lu] ,~,XSSPACE= ·.
::•::~•:J\D\AA't :3:QJUl: ·&.•6'.:·.·.·.·.·.· ... ·.·.·.·.·,;~:.. ············

A-2 48-005 FOO R01

QYERLA Y overlay name [t;t} J
gausE

R~WIND fd

2,[ARED (td] Gli~ME=se·;Jname]

R

,ACCESS=

t S'.I.R UCTUR E= (name 1 ~size J
r §IZ E= ([min ~'ft ax]])]

ll'l'LE title

YQLLTME [yolil)

!{[ILE fd (!n]

48-005 FOO R01 A-3

APPENDIX B
LINK MESSAGE SUMMARY

ACCESS PRIVILEGE CONFLICT IN SHARABLE SEGMENT

Access privileges of a segment being referenced should be a
higher privilege level than the access privileges specified
when the segment was defined.

ADDRESS OVERFLOW AT xxxxxx

A halfword relocatable address was larger than 64kb.

ATTEMPT TO POSITION x IN A DIFFERENT PATH

An att~mpt was made to position a common block that is in a
different path than the node referencing it.

ATTEMPT TO POSITION x IN LOWER LEVEL NODE

An attempt was made to reposition a common block program in
a lower level node.

BUILD NOT SUPPORTED ON THIS DEVICE

Other than an indexed or contiguous file was specified for
building the image.

CHECKSUM ERROR FILE: x MODULE: y RECORD: z

An invalid checksum was detected while reading an object
file.

COMMAND NOT PERMITTED

Command is not valid for the type of build or not permitted
in a DCMD statement.

US-005 FOO R01 B-1

COMMON BLOCK x ENCOUNTERED IN MORE THAN ONE SHARABLE SEGMENT

The same common block was specified in more than one SEGMENT
command.

COMMON BLOCK x, NOT REFERENCED

The common block named was never referenced.

COMMON BLOCK x SPECIFIED IN POSITION COMMAND IS PART OF SHARABLE
SEGMENT

An attempt was made to reposition a common block that was
part of a sharable segment by using the POSITION command.

CONTINUATION NOT PERMITTED

An attempt was made to continue a command imbeddei in the
object code.

ENTRY POINT x SPECIFIED IN ENTRY OPTION NOT FOUND

The FNTRY parameter of the OPTION command specified a
nonexistant entry point or an entry point in other than the
root node.

ENTRY POINT x, SPECIFIED I~ LOCAL COMAND, NOT DEFINED

The entry point named was never defined.

ESTABLISHMENT ABORTED

A serious error occurred, and the image module cannot ~e

built. Link is cleared as if a module was built.

EXTERNAL REFERENCE TO OVERLAY CONTAINS OFFSET AT xxxxxx

An external reference with off set cannot be resolved because
the corresponding entry point is an overlay.

EXTRA RIGHT PAFENTHESIS

B-2

Either an extra right parenthesis or a
par~nthesis condition occurred.

missing left

~8-005 FOO R01

fd NOT FOUND

An assignment error occurred while Link attempted to assign
the specified file.

INCORRECT PARAMETER LENGTH

The length of the value of an operand was longer or shorter
than expected.

INSUFFICIENT WORK SPACE

There was not enough workspace for Link. It will return to
command mode and clear itself as if an image had been built.

INVALID CHARACTERS IN NAME

Invalid characters in an entry point, common block, or
overlay node name ~ere encountered.

INVALID COMBINATION OF OPERANDS

A particular combination of operands was invalid.

INVALID COMMAND

An invalid command was specified.

INVALID DELIMITER

A delimiter that was unknown was found at the end of a
parameter or where a parameter should have been.

INVALID FILE-DESCRIPTOR

A syntax error occurred in the fd entered.

INVALID KEYWORD

Misspelled keyword.

INVALID NUMERIC VALUE

A numeric value was expected but was not encountered.

48-005 FOO k01 B-3

INVALID PARAMETER

An invalid parameter was specified in a command.

INVALID POINTER TO LOCATION xxxxxx ENCOUNTERED IN
REFERENCE CHAIN FOR xxxxxx AT LOCATION xxxxxx
THIS INVALID POINTER ERROR OCCURRED IN
- FILE: vol:filename.ext/a - MODULE: module
- RECORD: number - BYTE number

LINK encountered an invali1 link in an address chain. When
LINK resolves a chain of references, it traces back through
the chain, link by link, replacing the chain pointer with the
resolved address of the object. If a chain has a forward
pointer within a module or if a pointer indicates an area
outside of the module, LINK ceases to follow this chain,
leaving the remainder of the chain.unresolved, and prints the
error message above.

ITEM NOT PERMITTED IN E-TASK FILE: x MODULE: y RECORD: z
BYTE: m

The loader item encountered is not allowed in an e-task
establishment.

MISSING PARAMETER

A required parameter was not specified.

MISSING RIGHT PARENTHESIS

A left parenthesis ~as encountered for which no matching
right parenthesis was encountered.

MODULE INCOMPLETE FILE: x MODULE: y

An end-of-file condition was detected
end-of-proqram item in an object module.

MODULE xxxxxxx NOT FOUND

before

A module specified in an INCLUDE command was not found.

MORE THAN 192 SEGMENTATION REGISTERS REQryIRED

More than 192 segmentation registers are required.

the

B-4 48-005 FOO R01

n MULTIPLY DEFINED SYMBOLS

Entry points were encountered that were defined more than
once in the same path.

n UNDEFINED EXTERNAL SYMBOLS

This message is output at build time if any standard external
symbols remain unresolved.

*** nnn UNDEFINED WEAK EXTERNAL SYMBOL(S)***

This message is output at build time if any weak external
symbols remain unresolved.

name SPECIFIED IN POSITION COMMAND NOT FOUND

A common block that was specified on a POSITION command could
not be found.

NUMERIC VALUE OUT OF RANGE

A numeric operand was greater than the maximum permissable
value or less than the minimum permissable value.

OBJECT CODE ERROR (n) FILE: x MODULE: y RECORD: z BYrE m

An object code error occurred. If n=1, an invalid object
code item exists in object record. If n=2, the object code
item overflows record. If n=3, a load program address item
was expected but not encountered.

OVERLAY DEFINED OUT OF ORDER

An OVERLAY command specifies a level that is not consistent
with the rules for defining overlays.

RECORD LENGTH FOR MAP LESS THAN 64 DEVICE/FILE

The device or file specified for the output of the maps has
a record length less that 64 bytes.

SEGMENT AT x OVERLAPS NEXT SEGMENT

An impure, pure, or sharable segment's end adiress was
greater than the end address of another segment. See the
build summary map for the names of the segments.

48-005 FOO R01 B-5

SEQUENCE ERROR FILE x MODULE: y RECORD: z

A sequence number error was detected while reading an object
module.

TOO MANY OPERANDS

More operands than were expected were encountered.

VIRTUAL SYMBOL TABLE SPACE LIMIT EXCEEDED

More than 256K sy~bol table space required.

WARNING: ABSOLUTE SPACE LESS THAN 100

Less than 100 bytes of absolute code was reserved for the
UDL.

WARNING: MORE THAN 16 SEGMENTATION REGISTERS REQUIRED

More than 16 segmentation registers were used, making this
image l.oadable only on a processor with greater than 1MB of
memory.

WARNING: n AMBIGUOUS REFERENCES

External references were encountered that could be resolved
to more than one entry point.

WARNING: OVERRIDE SIZE FOR COMMON BLOCK x SMALLER THAN ACTUAL
SIZE

The override size specified in the STRUCTURE parameter of the
SEGMENT command was smaller than the largest definition of
the common block.

WARNING: NAME OF SHARABLE SEGMENT x DOES NOT MATCH NAME
SPECIFIED IN SHARED COMMAND

The name given to a sharable segment when it was linked does
not match the name specified in the NAME parameter of the
SHARED command. The name specified in the SHARED command is
used.

x ERROR (y) ON z TO fd

B-6

An SVC 7 error occurred. Variable x is the type of error, y
is the hexadecimal status, z is the SVC 7, and fd is the
file. See Table B-1 for the error types and status.

48-005 FOO R01

TABLE B-1 SVC 7 ERROR TYPES AND STATUS

FUNCTION I ERROR TYPE I HEX STATUS I
z I x I Y I MEANING

-------------------------------·---
ALLOCATE
ASSIGN

CLOSE

DELETE

E'ETCH
ATTRIBUTES

VOLUME

DISC SPACE

PROTECTION I
KEY I

ACCESS
PRIVILEGE

SYSTEM
SPACE

SVC 7

3

5

6

7

8

I Volume was not specified.

I Insufficient disc space
I available to allocate or
I assign a file.

1· Fi le being a ssiQned had
I nonzero protection keys.

I Specified access privi-
1 leges could not be
I granted.

I Insufficient system
I space available.

9-FF I An SVC 7 error occurred
I other than the error~
I specified above.

x ERROR (y) ON z TO LU n FILE fd

An SVC 1 error occurred. Variable x is the type of error, y
is the hexadecimal status, z is the function that was being
performed, and n is the lu number. See Table B-2 for the
err~r types and status.

48-005 FOO R01 B-7

TABLE B-2 SVC 1 ERROR CODES AND STATUS

FUNCTION I ERROR TYPE
z I x

I HEX STATUS I
I y I MEANING

===
READ

WRITE

COMMAND

DEVICE I
UN~.VAILABLE I

END O~
MEDIUM

END OF
FILE

UNRECOVERABLE I
I

RECOVERABLE

x IS NOT A SHARABLE SEGMENT

AO

90

88

84

82

I Device has been turned
I off.

I End of tape or disc
I encountered.

I End of tape or disc
I encountered.

I An unrecoverable error
I occurred.

I A recoverable error
I occurred.

A file named in the SEGMENT command as a sharable segment was
not a valid sharable segment.

B-8 48-005 FOO R01

APPENDIX C
LINK TO TET COMPARISON

This table compares Link to TET, the utility previously used to
establish and build image load modules under OS/32. The Link
commands are listed with the corresponding TET comman1s 1s a
guide to converting from TET to Link.

TABLE C-1 LINK TO TET COMP~RISON

LINK TET I
COMMANDS I COMMANDS I MEANINGS I

===!
BFILE I I I

---!
BUILD I BUILD I * I

DCMD

END I END *

ESTABLISH I ESTABLISH *

EXTEFNAL

FFILE I I
1---
1 INCLUDE I INCLUDE I *
!---
' LIBRARY I EDIT I *
1---
1 LOCAL I I
!------------------------------·---------------------------------
' LOG I LOG I *
1------------------------------·----------------~----------------
I MAP I MAP I Generates a map with symbols in
1 I I address order
I 1--
I I AMAP I Generates a map with symbols in
I I I alphabetical order
1--
1 N DCMD I I
1--
1 N LOG I NLOG I *

48-005 FOO R01 C-1

TABLE C-1 LINK TC TET COMPARISON (Continued)

LINK TET I
I COMMANDS I COMMANDS I MEANINGS I
l===t
I OPTION OPTIONS I Specifies task options I
I -- ----- -- ---- ------ -- -- ---------- -- ------------~-- - I
I MAXLU I Specifies maximum number of task's l
~ I logical units I
i --
~ MXSPACE I Sets maximum size of task's system
1 I space
ij --
1 ABSOLUTE I Sets size of absolute memory to
I I precede impure segment
I --

QIO

PRIORITY

GET

EXPAND

TSW

OVEFLAY I OVERLAY

PAUSE I PAUSE

I Sets maximum number of I/0 proceed
I requests that can be queued by a
I task

I Sets task priorities

I Adds additional task memory

I Adds additional task memory

I Sets task's initial rsw

*

*
------------------------~------~-----------------------~-------

POSITION

REWIND I REWIND *

SHARED ** I RESOLVE I Resolves external references to a
I I sharable seqmeu t
1--
1 TCOM I Defines a task common segment
1--
1 LBLCOM I Def in es a labeled common seQment

----------------~--~-----
TITLE I JOB *
---~-~-~-------

VOLUME I VOLUME *

WFILE I WFILE *
--~---P-~----------

COMMAND
parameter
in START
command

C-2

REMOTE

48-005 FOO R01

* Indicates that the meanings for both Link and TET
commands are the same.

** Link does not recognize previously generated TET
shared seQments. These shared segments must be
reestablished usinq Link.

48-005 FOO R01 C-3

D.1 INTRODUCTION

APPENDIX D
TET COMMANDS

This chapter describes the OS/32 Task Establisher Task CTET).
Any task, reentrant library, or preinitialized task c~mmon must
be established using TET before it can run under OS/32. The
functions of TET and the commands used to control it, are fully
described in this manual. Examples are provided to sho~ how TET
is used to establish tasks in various environments. The user
should refer to the OS/32 ~pplication Level Progra~mer Referenr.e
Manual for detailed information about task preparation within an
OS/32 environment.

A task may be a single program or a group of programs linked
together. TET processes object code programs, links external
references, and produces a memory image task for lo~ding and
running under OS/32. External references to task common and to
previously established reentrant library segments are also
processed.

When a task is established by executing TET, the result is one or
more load modules of memory image code that can be loaded
directly into memory using the OS/32 Resident Loader. The
command stream directing TET activity can be input in batch mode
or interactively. An operator uses the commands to specify
programs for inclusion in the task, as well as task options. The
establishment procedure requires two passes of the object coie.
On the first pass, TET compiles a symbol table of external
references and definitions. On the second pass, the actual load
module is built.

TET can also be used to build a memory image of OS/32 on disc.
The operating system image produced by TET may be loaded into
memory by the 32-bit Direct Access Bootstrap Loader, or by the
Loader Storage Unit (LSU).

D.2 SYSTEM REQUIREMENTS

TET requires 25kb of memory space, plus approximately 2kb for
dynamic operations, and as much space as is required to house a
dictionary of all external references and definitions in the
programs of the task being established. TET may build task
modules in memory or use a contiguous diic file as work storage.

48-005 FOO R01 D-1

If the task is built in memory, there also must be enough space
to hold the largest load module built. This workspace can be
allocated at establishment time or load time. In either case,
the amount of memory for workspace can be approximated as
follows:

FUNCTION

For each entry in program

For each program definition

For each TET command entered

If image built in memory

Plus

MEMORY

16 bytes

16 bytes

16 bytes

256 bytes and
largest load module

2kb

To allocate this amount of working storage at establishment time,
the TET EXPAND and GET commands are used. Refer to Section D.4.7
for information. To allocate this amount of working storage at
task load time, the segment size increment field of the LOAD
command should be used. For example:

LOAD TET,TET32.TSK,10

Required devices include input and output binary devices for the
input object code and output image code, an ASCII device for TET
command input, and an ASCII print device for error warning and
messages to prompt the operator. ASCII device requirements can
be met by multiple assignments of a CRT or TTY, but high-speed
devices are recommended for binary input and output. A temporary
file is a recommended option to hold pass one input programs for
use during pass two. If a temporary file is not used, the object
code input file is processed twice. It is also recommended that
the task be Astablished on disc, because building in memory may
require a very large memory se~ment.

D.3 AN ESTABLISHED TASK

An established task consists of at least a main (impure) segment
made up of one or more object code programs. A task can also
includ~ a sharable (pure) segment, one or more task common
segments, and one or more reentrant library segments. Certain
run time task conditions can be established by TEr. These

D-2 48-005 FOO R01

include limits on the task's use of system space, the number of
logical units (LUs) it may assign, its priority, and its initial
task status. Most present options can be overridden on=e a task
is loaded into memory. Those options that cannot be changed,
except by reestablishment of the task, are noted in the command
descriptions.

Task address space is divided into one or more
sets of contiguous logical program addresses
boundary. All program segments are classified
contents. That is, they are either pure or
common or reentrant library.

An established task may consist of:

program segments,
starting on a 64kb
according to their

impure and task

• Cne main (impure) segment (with optional user overlay)

• One sharable (pure) segment

• One or more task common seg~~nts (up to 15)

• One or more reentrant library segments (up to 15)

The inclusion of a pure segment, reentrant library segments, or
task common segments is a user option depending on the task to be
established. A maximum of 16 segments is available for task
establishment. Table D-1 shows the relationship of the segment
numbers to the start addresses.

48-005 FOO R01 D-3

T~BLE D-1

SEGMENT
NUMBER

ADDRESS-SEGMENT RELATIONSHIP

STARTING PROGRAM
ADDRESS OF THE

SEGMENT (HEXADECIMAL)

======::;;:=====;================
0 Y'OOOOO'

1 Y'10000'

2 Y'20000'

3 Y'30000'

4 Y'40000'

5 Y'50000'

6 Y'60000'

7 Y'70000'

8 Y'80000'

9 Y'90000'

10 y. AOO 00 I

1 1 Y'BOOOO'

12 Y'COOOO'

13 Y'DOOOO'

14 Y'EOOOO'

15 Y'FOOOO'

Two types of common are supported under OS/32: local common and
task common. Local common is contained entir9ly within the main
segment. It is referenced via EXTBNS by the main segment program
as well as the subroutines of a task (e.g., FORTRAN common). TET
allocates space for local common in the task's impure segment as
defined by the included programs. Task common allows common
references among OS/32 tasks and is symbolically referenced the
same as local common. ~ particular common block is designated as
a task common by the TET TCOM =ommand.

D-4 48-005 FOO R01

Overlays established for a task use a single overlay area. The
area required by the largest overlay is noted and ma1e part of
the impure segment. All overlays of a task are loaded at the
same address in the segment. Overlays of a task may be built
onto a single file or different overlay files. Jverlays may not
call one another~ i.e., nested overlays are not permitted.

A TET-load module consists of a loader information block (LIB)
followed by the memory image of the task in 256-byte records.
The LIB contains data required by the operating system to load
the task in preparation fer execution.

D.4 TET COMMANDS

These TET commands can be specified at task establishment time:

ABSOLUTE
AMAP
BUILD
EDIT
END
ESTABLISH
EXPAND
GET
INCLUDE
JOB
LBLC0}1
LOG
MAP
MAXLU

48-005 FOO R01

MXSPACE
NO LOG
OPTIONS
OVERLAY
PAUSE
PRICRITY
QIO
R EMOT F
RESOLVE
REWIND
TCOM
TSW
VOLUME
WFILE

D-5

~ ABSOLUTE

D.4.1 ABSOLUTE Command

The ABSOLUTE command is optional. If this command is omitted, a
256-byte user dedicated location CUDL) area precedes the impure
task segment. If the ABSOLUTE command is included, it specifies
an absolute amount of memory which should precede the impure
segment in place of the UDL.

Format:

AR~OLUTE xxxxx

Parameter:

xxxxx

Functional Details:

is a hexadecimal number of up to five digits
specifying the number of bytes of absolute
addressed code or absolute data to be included
in the task.

ABSCLUTE establishes a bias of the specified number of bytes
between address O and the start of relocatable code. In the
absence of this command, TET automatically reserves 256 bytes
(X'100') for the UDL. If less than 256 bytes is specified, a
warning message is printed, but TET biases the impure segment by
the specified amount. A task's UDL may be deleted with an ABS O
command. This command applies to task establishment only.

D-6
48-005 FOO R01

D.4.2 AMAP Command

The AMAP command requests a map
order rather than address order.
the MAP command.

Format:

Parameter:

AMAP

with symbols in alphabetical
Otherwise, it is identical to

f d is the file descriptor of the file or device
that the map is written to.

48-005 FOO R01
D-7

[BUILD

D.4.3 BUILD Command

The BUILD command indicates the end of pass one and the beginning
of pass two. This command causes the load module to be built.

Format:

'.!::\SK (, f d J
E1 ~ [fd] ~ [sname] [, segnoJJ]

!H!ILD
.QYLY ~fd]

I~OM ~ [td J [,snarneJ]

Parameters:

TASK

RL

segno

D-8

indicates a task load module is to be built.
The output is to the specified fd. If the
previous ESTABLISH command specified pure, two
segments are built, ond for a pure and one for
an impure segment. If pure was not specified,
then only one i~pure segment is built. If fd
is not specified, LU 2 is assumed.

causes one sharable reentrant library segment
load module to be built, with output to the
specified fd. RL load modules require seg~ent
names. The resident loader checks the name
when the console operator loads a task to see
if the library segment in memory is the one
reQuired by the task. All library segments
should be resident. The RL segment name can
be specified with the sname parameter, which
is in this format: filename .ext. If sname
is not specified, TET uses the filename.ext
portion of fd.

specifies the segment number to be allocated
for this library segment. The default is
segment 15. RL segments must contain only
pure relocatable code and must not reference
task common or another RL segment.

48-005 FOO R01

OVLY

TCOM

sname

Functional Details:

causes an overlay module to be output to the
specified fd. A BUILD OVLY command must be
entered for, and correspond sequentially to,
each OVERLAY command entered during pass one.
Overlays can be built on one file or separate
files, and are loaded by SVC 5 run time calls
by the main segment.

causes a task common segment to be built and
output to the file. BUILD TCOM should be used
when establishing an initialized task common
segment with a block data program or absolute
data program. See Section D.4.24.

in the BUILD TCOM command specifies an
override segment name. If sname is omitted
when building a block data TCOM, the common
definition name is selected as the segment
name. If sname is omitted when building a
nonblock data TCOM, the segment name is
derived from the first included file
containing a program label.

The BUILD command reads the input program file in the same order
as the first pass. If a temporary file is being used, the system
rewinds it, if possible. Otherwise, the operator is prompted by
a message to reposition the device. If a temporary file is not
being used, the operator is prompted to load each program in
sequence.

If the file specified by fd or assigned to LU 2 is a contiguous
disc file, TET builds the load module directly on that file. If
the file is not a contiguous disc file, TET builds in memory and
out~uts the load module to the file. If the form of the fd
parameter is valid for a disc file, but the file does not exist,
TET allocates and assigns a contiguous file with a size
sufficient to hold the task. '.rhe output file should not be
preallocated (or assigned) and TET should allocate and assign the
output file.

48-005 FOO R01 D-9

[EDIT

D.4.4 EDIT Command

The EDIT command is used to edit a file after inclusion of one or
more programs. EDIT includes all programs having program labels
referenced by the already included code. This command can be
used when a task reQuires a number of subroutines contained
within a subroutine library.

For•at:

J?araaeter:

f d

D-10

is the optional file descriptor from
additional programs are to be included.
is not specified, LU 1 is assumed.

which
If fd

48-005 FOO R01

END

D.4.5 END Command

The required END command terminates TET processing and returns
control to the operating system.. If the operator wishes to stop
in the middle of an establishment process, and END command must
be issued and TET reentered via the operating system START
command to begin another establishment. Restarting TET is
necessary to initialize TET pointers and work areas.

Format:

UR-005 FOO R01 D-11

ESTABLISH

D.4.6 ESTABLISH Command

The ESTABLISH command initializes TET task pro=essing.

Format:

_E~T .I.BLISH

Parameters:

TASK
TCOM
RL

PURE

IMPURE

NJBDATA

BDATA

D-12

E1

indicate whether a task, reentrant library
or task common segment, respectively, is to
he established. The defaults for TASK and
TCOM are IMPURE and BDATA, respectively.

indicates that any code assembled as pure, via
the CAL assembler pseudo-op PURE, is
est~b]ished in a ~eparate segment. The pure
segment can then be shared by several copies
of the same task at tas~ execution.

specifies that the pure and impure code are
established in the same impure segment. The
pur~ code of such an established task is not
sharable. If no parameter is specified,
IMPURE is the default.

pertains only when establishing TCOM. It
allows any absolute data (e.g., DS, DC, or DB
types of statements), not a bl~ck data
program, to be included as part of the TCJM
segment.

specifies that a block data program is to be
established. If no parameter is specified,
BDATA is the default.

48-0JS FOO R01

Functional Details:

If a text editor is established ~ith the code body as pure and
data areas and buffers as impure, several editing tasks can be
run simultaneously, each sharing the pure code bo1y of the
editor. The loader checks that the necessary pure segment is
already in memory when the tasK is loaded. The parameter PURE is
valid only when establishing a task, and is ignored for RL ~nd

TCOM.

The EST~BLISH TCOM command is used to separately establish a task
common segment with initialized data, i.e., block data or
absolute data. TET does not allow mixing block data with
absolute data (nonblock data) in a single TCOM segment
establishment. An initialized TCOM segment can contain either
block 1ata only or nonblock data only. The distinction is made
via the BDATA/NOBDATA optional parameter. If a task co~mon

segment does not contain initialized data, it need not be
established and need only be declared by the TCOM command when
establishing the task.

TET allocates contiguous memory for the impure code st1rting at
segment o. If the impure code is greater than 64kb, TET
allocates the next contiguous segment for the impure t~sk area.
TET allocates contiguous memory for the pure code, starting at
the highest available segment, after all library and task common
segments are resolved.

48-005 FOO R01 D-13

EXPAND
GET

D.4.7 EXPAND and GET Commands

The EXPAND and GET commands are used to add memory to a task
beyond what is required to hold the code body. For example, if
a task requires an area of memory for processing, such as for a
symbol table, GET and EXPAND move CTOP upward. They increase the
minimum memory area in which a task can run.

Formats:

EXPAND xxxx

~~T yyyyy

Parameters:

xx xx

yyyyy

Functional Details:

is a 4-digit decimal number specifying the
number of 256-byte blocks to be reserved
beyond the end of the defined task.

is a hexadecimal number of up to five digits,
specifying the number of bytes to be reserved.

If nPither of these commands is specified, and overlays are
produced, a default value of X'300' bytes is assumed (the amount
necessary for executing a FORTRAN program). If a task has no
ovetlays, the default allocation is o.

The GET command can be given with a parameter of 0 to save space
if no GET STORAGE calls are to be issued. The total number of
bytes specified by GET and EXPAND is rounded upward to a 256-byte
boundary. The GET and EXPAND commands can appear anywhere
between the ESTABLISH and BUILD commands.

D-1U 48-005 FOO R01

INCLUDE

D.4.8 INCLUDE Command

The INCLUDE command is required to specify that program(s) from
a file are to be included into a task (reentrant library or task
common).

Format:

IJiCLU DE [fd J ~ pro;sram label]

Pa:ramete:rs:

f d

progam label

Functional Details:

is the optional file descriptor of the input
device. If fd is not specified, LU 1 is
assumed, in which case the fd should be
preassigned to LU 1.

specifies the program name in the input file
and causes this program to be located and
included. If a progam label is not specified,
the entire file is included up to end-of
medium or end-of-file.

As the input file is read, TET creates a dictionary of external
program references. A copy of the included program(s) is written
to the temporary file, if present.

48-005 FOO R01 D-15

L JOB

D.4.9 JOB Command

The JOB command allows the operator to title the TET output nap.
This command is permitted any time during the execution of TET.

Foraat:

!!QB title

Parameter:

title

D-1 fi

is the title given to the TET map. Any
characters are permitted in this 1- to
12-character field. All characters beyond the
twelfth position are ignored.

48-005 FOO R01

LBLCOM

D.4.10 LBLCOM Command

fhe LBL:OM command can be used to stru=ture ~ tas~ =~mmJn sagnant
for more than one n~mei =ommon block. rhe LBL:JM =om~ini =ausas
TET to construct references to a task commJn se~mant for ~i=h

named common that appears in a LBLCOM command ani is refecen=a1
in the task. The LBLCJM commanl must be use1 in :onjun=tion witn
a TCJM comman1. A TC1M =ommand must be enterei first for avary
task co~mon segment; one or more LBLCOM commanis may ba e~tarei

with the sane s~qment number.

Format:

mcoM nm1 /sem1 t{:~} [1size 1J]

[nm. /segno. H~:} ~sizen J]]
Parameters:

seqno

HW -:tnd RO

spe=ifies a 1- to 8-:hiractar name of l n1nei
common.

is the segment number of th3 task =~n~on. If
the se.Jno i::; not the s1me is thr?.! s21:i::> in tile
TCOM co~manj for that seJmant, th3 LBL:JM
~omm~nd is rejecte1. rh: ness1~~ ILLE;~L
SEGMENT ~O is printei. If =~nmani input is
not remote, TET ac=apts i LBLCJM =~n~an1 ~ith
the =orrect segment number.

spe=ify the access privilegas, reai/1rite ~ni

r0a1 only, ro~pectively. If R~ ini aJ are
'.) m i t t? d , t a ~ 1 e f d u 1 t i s .i fl • r h. ~ :i c :; a s s
privileges ~ust be the Sima as spa:;ifiei i~

the TCJM =~mmand for th!t seqme1t. 'ny
~onf lict in access privileges =1uses the
warning message ACCESS PRIVILE;E :oNFLI:r t~

be orinted. rh8 ac=ess pcivilaJas aca set
e~u1l t~ those entered with the r:J~ =~mnini

for that seJment. TEr is t1en reaiy t~ !:;:apt
the next coumand.

48-005 FOO R01 D-17

size

Functional Details:

is a decimal number specifying the number of
256-byte blocks. If size is omitted or
specified as o, the common block's size is as
defined within the task. The first task
definition of the common block determines the
size. The size of any subsequent task
definition of the same common block must be
less than or equal to the size of the first
definition; otherwise, a TCOM TOO BIG is
generated and task establishment is aborted.
A specified size overrides the actual size as
encountered in the common definition during
task establishment. This size must be greater
than or equal to any common definition for
that named common in the task; otherwise, a
TCOM TOO BIG is generated and task
establishment is aborted.

The name given to the task common segment is the name of the
first named common block encountered in the task that matches the
name field in a TCOM or LBLCOM command for that segment. The
amount of memory associated with a task common segment at task
load time is the sum of the common block sizes for that segment.
If a TCOM or LBLCOM command specifies an override size for the
first named common block that is encountered while building the
task, the segment size is considered to be an override size by
the system loader.

D-18 48-005 FOO R01

LOG

D.4.11 LOG Command

The LOG command causes all operator commands to be copied to a
specified output unit. This command is generally used when the
REMOTE command is used.

Format:

Parameter:

f d specifies the unit to contain the commands.

48-005 FOO R01 D-19

[MAP

D.4.12 MAP Command

The MAP command outputs a display of the symbol table that TET
has built during processing of the program. If the command is
entered during pass one, the user may obtain a list of undefined
symbols to determine which files are yet required. However, MAP
is most useful at the end of pass two when the establishment is
com~lete. The items are output in address order.

Format:

Paraaeter:

f d

Functional Details:

is the device on which to display the contents
of the dictionary. If fd is not specified, LU
3 is the default.

The following list is a description of each item in a TET map.
Individual headings are not printed unless there is an item to be
printed under that heading. Sample maps are included in Appendix
G.

CTOP

UTOP

MIN CORE SI'l.E

D-20

A hexadecimal value representing the
last halfword location in the user's
required memory space. This value
is always the last halfword in a
255-byte block, i.e., xxxxFE.

A hexadecimal value representing the
first fullword location above the
user's established task. .It is, in
effect, the next available location
in the user's space.

A decimal value representing the
minimum memory size in kilobytes
required by this segment: e.g.,
4.00kb=X'1000' bytes (impure segment
size in a task plus expand and get
storage).

48-005 FOO R01

PROGRAM SEGMENTS

PROGRAM LABELS

TASK ENTRY POINTS

LOCAL COMMON BLOCKS

UNDEF-SYM FULLWORD

UNDEF-SYM HALFWORD

LIBRARY ENTRIES

TASK COMMON BLOCKS

OVERLAY

48-005 FOO R01

All program segments def ine1 or
referenced by this task are listed.
For each segment, the segment n1me
and size are listed. During pass
two, the segment number is also
listed for each segment. This
section of the map does not ~ppear

when establishinJ reentrant
libraries or task common segments.

Entcies in this list
hexadecimal addresses
the corresponding
program label.

are 6-digit
followed by
8-character

Each label
represents a program
program address.

label and its

Entries in this list are 6-di~it

hexadecimal addresses and their
associated symbolic names of all
symbols processed within the
established program.

This section lists the components of
local common area of the user task.
An entry is a 6-digit hexadecimal
ad1ress field followed by the local
common symbol name.

A list of all fullword external
references f0r which no definiti0ns
have been encountered.

A list of all halfword external
references for which no definitions
have been encountered.

A list of all resolved references.
The address fields in this list
reflect referencei reentrant library
segments.

A list of all task common blocks and
their addresses.

Each overlay of a t~sk is listed on
a separate page after the root has
been mapped. The name of the
ov~rl~y is followed by all entry
points and undefined symbols
contained in the overlay.

D-21

MAX LU

D.4.13 MAXLU Command

The optional MAXLU command specifies the maximum number of LUs
that a task can assiqn.

Format:

~A!LU lu

Parameter:

lu

Functional Details:

is a decimal number between 0
specifying the number of LUs.

and 2 5.4

If this command is omitted, the default value is 15. Note that
when taking the default or specifying 14 LUs, only 0 through 14
are available to the task. The command may be entered anywhere
in pass one. The value of MAXLU determines the size of the
task's LU table, a dynamic system data structure defined at task
load time. In memory bound situations, the value of MAXLU should
be as small as possible to avoid wasting space. Four bytes of
memcry are required for each LU in the table.

D-2? 48-005 FOO R01

MXSPACE

D.4.14 MXSPACF Command

The optional MXSPACE command sets a limit on the amount of system
space that a run time task can use· for dynamic system 1ata
structures (file control block, etc.) during execution.

Format:

11XSPACE xxxxx

Parameter:

xxxxx

Functional Details:

is a hexadecimal number of up to five digits
specifying the number of bytes of system
space.

A default assumption of 12kb is made if the MXSPACE command is
omitted. This command can be entered anywhere between ESTABLISH
and BUILD commands.

48-005 FOO ~01 D-23

~ NO LOG

Dg4.15 NOLOG Command

The NOLOG command halts the LOG command operation.

For•at:

!Q10G

D-24 48-005 FOO ~01

OPTIONS

D.4.16 OPTIONS Commant

rhe oPrIONS command specifies one or mor3 of th3 09tions
associated with a task.

Paramet.ers:

ur

AFPA.USE

AFCONTINUE

NJNRESIDENr

RE~~IDENT

SVCPAUSF

48-005 FOO R01

Norm~l user task

An 2xecutive task CE-task) that :an eKa=ate
privileged instructions. ~n E-t~sk nust
=ont~in only positionally in1epanient =oie
(RX2 instruction f~r memlrf reference) aJi
=ann~t reference reentrant library or t~sk

cnmmon segm3nts. The ET opti::>n =onfli=t3 with
the PURE anJ ROLL options.

If an arith~etic fault ~::ucs iurin1 task
exe:ution, the task is to b3 pausei.

If 3n ~rith~etic fault o::u~s iuring tisk
exe=ution, the task is t~ c~ntinue. If a t1sk
is to take arithmetic fault traps, it must be
est1blished with the AFCONrINUE opti~n.

At ani-~f-t~sk CEOT), the task is ieletei fc::>m
mem::>ry.

At EQT, the task ramains in n3nory. ~

resident task cannot be a Ciniiiate f~c coll.

If ~n SVC 6 execution is ~ttAraDtei, tha tisk

D-25

SVCCONTINUE

ROLL

NOROLL

COM

NO COM

CON

NOCON

UNIVERSAL

NONUNIVERSAL

FLOAT

DFLOAT

D-2f>

should be paused. This option applies only to
the background segment.

If an SVC 6 execution is attempted, the call
is ignored and task execution continues. This
option applies only to the background segment.

The task is a candidate for a roll-out/roll-in
operation during its execution. If a task of
higher priority requires the memory occupied
by this ta~k, it can be written (rolled-out)
to a direct-access device and its execution
suspended until sufficient memory becomes
available. The ROLL option conflicts with the
ET and RES options.

The task is not a candidate for a roll-out/
roll-in operation.

This task
communication
parameter).

can issue SVC
calls (send

The task cannot issue SVC
communication calls (send
parameter).

6 intertask
message, queue

6 intertask
message, queue

The task can issue . SVC 6 intertask control
calls (all SVC 6 functions except send
message, queue parameter).

The task cannot issue SVC 6 intertask control
calls (all SVC 6 functions except send
message, queue parameter).

Specifies that the task has the privilege of
communicating with all other tasks in the
system. In a system containing the
multi-terminal monitor (MTM), intertask
communication is not permitted between the
foreground and the terminal environment.
However, a t~sk that is established (using
TET) as a universal task can be loaded into
the fore~round and can communicate with the
terminal environment, using SVC 6 queue
parameter and send message requests.

Communications o~tions are not universally
allowed.

Specifies that a task can execute
single-precision floating point instructions.

Specifies that a task can execute
double-precision floating point instructions.

48-0·JS FOO R01

NOFLOAT

ACCOUNTING

NACCOUNTING

ACP

NOACP

DISC

NO DISC

Functional Details:

Specifies that a task cannot
floating point instructions.
DFLOAT, and NOFLOAT parameters
NOFLOAT is the default.

Specifies that the accounting
enabled for a task.

Specifies that the accounting
disabled for a task.

execute any
If the FLOAT,
are omitted,

function is

function is

Specifies that a user task has extended file
access privileges and can specify an account
number instead of a file class for all SVC 7
functions.

Specifies that a user task has no extended
file access privileges. If both access
privilege parameters are omited, NOACP is the
default.

Specifies that a user task has an extended
disc privilege and can assign to a bare disc
file. If the disc is on-line, assignments for
SRO are allowed. All other assignments are
rejected and a message is displayed. If the
disc is marked off-line, all access privileges
are allowed. See the OS/32 Programmer
Reference Manual for a description of the
access PLivileges.

Specifies that a user task has no extended
disc privileges. If both disc privilege
parameters are omitted, NODISC is the default.

This command is optional, but if entered, it must follow the
ESTABLISH command and precede the INCLUDE command. The OPTIONS
command is not valid when establishing a reentrant library or
task common. The option information is placed in the task LIB,
and eventually, into the task control block (TCB) at run time.

Refer to the OS/32 Programmer Reference Manual for a more
detailed description of each option. If two conflicting options
are specified in one OPTIONS command, e.g., OPTIONS ROLL,ET, the
entire OPTIONS command is r~!jected. If a successive OPTIONS
command is in conflict with a preceding OPTIONS command, one of
the following occurs:

• The second command takes precedence. This occurs if the
second command is the direct opposite of the previous command.
For example:

48-005 FOO R01 D-27

OPT AFP
OPT AFC

No error is generated. The arithmetic fault CONTINUE command
takes precedence.

• The. second command results in an error. This occurs if the
second command is inconsistent with the previous command. For
example:

OPT RES
OPT ROLL

The second command is rejected with an error. The task is not
:rollab le.

The OS/32 operator OPTIONS command may be used to change certain
of these options. Refer to Chapter 3 for details.

D-28 48-005 FOO R01

OVERLAY

D.4.17 OVERLAY Command

The OV.ERLAY command is used to indicate that an overlay is to be
included in a task being established.

Foraat:

QIERLAY name

Parameter:

name

Functional Details:

is the name of the overlay. This name must be
from one to eight alphanumeric characters,
with the first character alphabetic.

TET interprets this statement as ending the definition of a main
segment (or previous overlay), and starting the definition of an
overlay. Each overlay must be completely defined (with INCLUDE
and EDIT statements) before another OVERLAY statement is
presented in the command stream. After all overlays are defined,
the overlay area is set to the size of the largest area
requested, starting at the end of the main segment.

Only one overlay area is reserved in the task's impure segment,
no matter how many OVERLAY commands are entered. The OVERLAY
command must precede the INCLUDE and EDIT commands that define
its contents, and these must precede any other OVERLAY statement
or the BUILD command.-

48-005 FOO R01

[PAUSE

D.4.18 PAUSE Command

The PAUSE command temporarily suspends TET operations and returns
control to the operating system. The operating system CONTINUE
command is used to return control to TET.

Format:

gAUSE

D-30 48-0C>S FOO R01

PRIORITY

D.4.19 PRIORITY Command

The optional PRIORITY command sets the initial and maximum
pricrities for the task at run time. This command may be entered
during pass one, after the ESTABLISH command.

Format:

£.ftIORITY ip,mp

Parameters:

ip

mp

Functional Details:

is a decimal number between 10 and 249
indicating the initial priority of the task.

is a decimal number between 10 and 249
indicating the maximum priority of the task.

The number specified as m~ must be less than or equal to that
specified as ip. If mp is not less than or equal to ip, the
command is rejected. If this command is not specified the
default value of 128 is assumed for both parameters.

48-005 FOO R01 D- 31

[010

D.4.20 QIO Comman1

The QIO command 1llows the user to specify the m1Kimum number ~f

proceed I/O requests th1t may be enqueued by a t1sk.

foraat:

QIO n

Parameter:

n is 1n integer from J throug1 65,535.

Functional Details:

If this command is omitted, the value of n det1ults tJ O, and
proceed I/~ raquests are process8d 1s in Q3/32 R03-)1. r1sks
establish~d using R03-J2 of TET assume a 0 val~e for n. When n
is set to O, pro=eed raguests behave exa=tly is in Rela~se 03-J1
of OS/32, e.g., a proceed I/0 request for an LU with in
outstaniing re~uest =~uses the t1sk t~ enter a ~lit state u~til
the first request is cJnplete, unless un=onditional pro:e~d is
specified, in which case the request is rejectei. Thd number ~f

I/O requests a task may issue before the queue is sataratai is
e~ual to n plus the number of LU's with active I/J ongoing.

D-32 48-005 FOO R01

REMOTE

D.4.21 REMOTE Command

The REMOTE command is used during batch mode (CSS input), to
instruct TET to abort processinq if an error is detected, as no
operator is present to reposition, rewind, etc.

For•at:

Functional Details:

This command can be issued at any point in the sequence, and
takes effect immediately. Once entered, TET executes to
completion in this mode. To return to an interactive mode, TET
must be terminated and restarted.

In this mode, the use of a temporary file is recommended.
to Section D.6.2 for further information.

48-005 FOO P.01

Ref er

D-33

[RESOLVE

D.4.22 RESOLVE Command

The RESOLVE command is used to resolve external references to a
previously established reentrant library segment (such as FORTRAN
run time library).

Format:

R.E~OL VE [f d]

Parameter:

f d

Functional Details:

is the optional file descriptor on which the
reentrant library load module is to be found.
The default is to LU 1.

This command is used after the program referring to the reentrant
library (RL) has been included. The RESOLVE command resolves all
references to programs found in the reentrant library load
module. The task's LIB s~ecifies the reentrant library that is
required for the task to run. The task aborts during l~ading if
its required reentrant library is not present.

D- 3 Ll 48-005 FOO R01

REWIND

D.4.23 REWIND Command

The REWIND command assigns a file to LU 1 and rewinds the file.

Format:

llE!!I ND [f d]

Parameter:

f d

Functional Details:

is the optional file descriptor of the file to
be assigned to LU 1 and rewound. If fd is not
specified, LU 1 is rewound.

The REWIND command is used preceding an EDIT command so that the
entire file can be edited. In addition, REWIND is used to ready
a file for pass two, if no temporary file is used. ·

48-C05 FOO RC1 f>-35

[TCOM

D.4.24 TCCM Command

The TCOM command causes TET to construct
common segment for each named common
command, and is referenced in the task.

references to a task
that appears in a TCOM

ltormat:

!£OM name 1 /se7no 1 H::} ~size 1]]

[,name. /segnon H::} [/size.] J]
Para•eters:

name

segno

RW and RO

size

D-36

specifies a 1- to a-character name of a named
common.

is the segment number of the task common,
specified as a decimal number from 1 throuqh
15. ThLs field causes TET to position the
task common in the appropriate area of the
task's address space.

specify the access privileges
read only respectively. If
omitted, the default is RW.

read/write and
RW and RO are

is a decimal number specifying the number of
256-byte blocks. This size overrides the
actual size as encountered in the common
definition during task establishment. This
size must be greater than that qiven by the
common definition, otherwise TET fails to
establish the task. If this parameter is
omitted or specified as O, TET takes the size
from the common definition.

48-005 ~00 R01

Functional Details:

Any named common definition in a task is potentially a task
common. Any named common which does not appear in a TCOM or
LBLCOM command is considered to be local common, and is included
in the impure segment. See Section D.4.10 for a description of
the LBLCOM command. A single TCOM command may describe several
task commons, or several TCOM commands may be entered, each
describing one or more task commons. All TCOM commands must be
entered prior to any INCLUDE commands, and after the ESTABLISH
command.

If a TCOM and LBLCOM command specifies an override size for the
first named common block that is encountered while building the
task, the task common segment size is considered to be an
override size by the system loader. If no TCOM command is given,
but TSKCOM is referenced by the task, TET assumes:

TCOM TSKCCM/14/RW

However, if a TCOM command is given, TET does not recognize the
name TSKCOM unless it appears in a TCOM command.

NOTE

The name symbol, generated by the FORTRAN
V compiler for a common block, consists
of the user-specified name with a period
(.) appended. To provide a compatible
linkage for the CAL user, TET ignores the
period generated by FORTRAN.
Specifically, TET removes the period from
all common block names (both local and
task common) that contain one.
Therefore, the name specified in the TCOM
command should not contain a final
period, and a CAL program should not
contain two common blocks whose names
differ only by a final period.

48-005 FOO R01 D-37

[TSW

D.4.25 TSW Command

The TSW command specifies initial setting of the task's run time
task status word CTSW), and optionally provides a start address
for the task. The TSW defines trap conditions for which the task
is responsible.

Format:

I§.R status [,start address]

Paraaeters:

status is an 8-digit hexadecimal number indicating
the setting for the TSW.

start address is an optional 6-digit hexadecimal number
indicating the starting address for the task.

Functional Details:

If the start address parameter is omitted, the last transfer
address found in the included code is used as the starting
address. If no transfer address is found, X'100' (the file
location immediately following the UDL) is assumed. If a
transfer address is found within the overlay, it is ignored.

For a detailed description of the TSW see the OS/32 Programmer
Reference Manual.

D-38 48-005 FOO R01

VOLUME

D.4.26 VOLUME Command

The VOLUME command assigns an override of the system default
volume used by TET during its execution.

Format:

J:OLUME voln

Parameter:

voln

Functional Details:

is any legitimate volume name of up to four
characters. Whenever a file descriptor that
does not specify a volume name is encountered,
voln is used.

The VOLUME command can be entered more than once, if desired, and
takes effect immediately. It can appear anywhere in the
sequence. Refer to Chapter 3 for a description of the operator
command VOLUME.

48-005 FOO R01 D- 39

[WFILE

D.4.27 WFILE Command

The WFILE command assigns a file descriptor to LU 2 and writes a
filemark to the file. This command is generally ~sed to separ~te
the main segment from the overlays when they ~r~ ogtpQt on
magnetic tape or the sa~e contiguous file.

Format:

Hf I LE [fd]

Parameter:

f d

D-1~0

is the file descriptor to be assigne~ to LU 2.
If fd is not specified, a filemark is written
to LU 2, which is left positioned p~st the
f ilemark..

48-005 FOO R01

D.5 OPERATING PROCEDURES

TET is run as an established task under OS/32 a~d is executed by
use of LOAD and START commands.

D.5.1 Logical Unit Assignments

Six LUs are used by TET. Table D-2 contains information relating
to each unit. LUs 1, 2, and ·3 can be assignej by TET comm~nd

parameters or by the operating system ASSIGN command prior to
starting TET. LUs 5 and 7 must be assigned before starting TET.
If a temporary file is used, it also must be assigned to LU 4
before starting. A TEMP file can also be usei as a temporary
file. TEMP files are automaticallt deleted wnen they are closed
at EOT.

TABLE D-2 TET LOGICAL UNIT ASSIGNMENTS

----~---

LOGICAL
UNIT

DATA
TYPE USE

DEVICE
EXAMPLES

I.OGICAL
RECORD
LENGTH

===
1

2

3

4

Binary 0 b j e C t - C 0 d E~
input,
Image RL
input

Binary I Image load
I module

ASCII

Binary

I output

Memory
map output,
Command
logging

Temporary
file
(optional)

Paper tape,
Mag tape,
Di SC

I Pa per tape,
I Mag tape,
I Disc

Console,
line printer,
VDU

Rewindable
device, i.e.,
mag tape,
di SC I etc.

Object 126
Image 256

256

Variable,
up to 120

126

5 I ASCII

I
I Command
I input

I Card reader,
I Console, VDU

80

-------------------------------·-----~-~---~-------·----------
7 ASCII

48-005 F'OO R01

Error
messages,
warning~,

prompts tu
operator

Console,
line printer,
VDU

Vari3.ble,
up to 80

D-41

D.5.2 Te~porary File Operation

The use of a temporary file is a recommenied option as it
minimizes the possibility of errors and allows rapid
establishment. Because TET uses two passes of the command
stream, the temporary file contains th~ programs input during
pass one for use during pass two. If a temporary file is not
used and the input file(s) is not a direct-access file, the
operator must reload each of the _input files for the BUILD
process during pass two. If a temporary file is not used, the
following message is output to prompt the operator to load
programs:

LOAD PROGRAMS fd

and the prograw pauses. Progr~ms included from a magnetic tape,
pa~er tape, or cassette must be repositioned. TEr should then be
resumed by the operator co~mand CONTINUE.

If a temporary file is used, it is rewound at the beginning of
pass one. At the end of pass one, a filemark is written to the
temporary file and it is rewound for pass two. If a
nonrewindable device is used, the operator is prompted via a
message to reposition the temporary file. At EOT, the temporary
file is rewound, which allows one temporary device to be used for
successive TET runs without operator intervention.

NOTE

If TET is paused during pass two, a
DISPLAY LU command entered at the system
console reflects the TET reassignment of
LUs.

D.5.3 Command Input Sequence

Certain LU considerations constrain the TET command sequence.
The commands for establishing a task are input from LU D. If LU
5 is assigned to an interactive device, TET executes in the
interactive mode. Otherwise, TET executes in a batch mode. The
input mode determines the response to error conditions. rET
error messages are summarized in Appendix 4.

Table D-3 lists the TET commands in recommended order and the
commands permitted when performing a particular operation. Task
establishment is begun by the ESTABLISH comman1 with a parameter
specifying TASK, RL, or TCOM. This command must precede all
other commands except REMOTE, JOB, LOG, NOLOG, VJLUME, and MAP,
which can appear at any ~oint in the stream. The REMOrE command
prevents TEf from pausing in batch mode. This facilitates batch
processing with minimal operator intervention.

D-42 48-005 FOO R01

Particular operations are:

TA Building a task

RL Building a reentrant library

TC Building a task common

OV Building an overlay

All commands are optional except EST~BLISH, INCLUDE, BUILD, and
END.

48-005 FOO R01 D-43

COMMAND
VERB

TABLE D-3 LOGICAL TET COMMAND SEJUENCE

SEQUENCE CONSIDERATIONS TA RL TC av

====================:==
REMOTE

JOB

LOG

NC LOG

VOLUME

F.STAELISH

QIO

OPTIONS

ABSOLUTE

TCOM

LBLCOM

INCLUDE

REWIND

EDIT

GET

OVERLAY

RESOLVE

EXPAND

MXSPACE

D-44

Anywhere

Anywhere, ncrmally before MAP and
AMAP

Anywhere

Anywhere

Anywhere

Must precede all commands, except
those which may be specified any
where

Between ESTABLISH and BUILD

RP.tween ESTABLISH and first INCLUDE

rust precede INCLUDE

Between ESTABLISH and first INCLUDE

Between the associated TCOM and
BUILD

Between ESTABLISH and BUILD or
between OVERLAY 1n1 BUILD

Anywhere

Must follow at least one INCLUDE

Retween ESTABLISH and BUILD

After Main segment definition; must
be followed by INCLUDE or EDIT

AftPr INCLUDE or EDIT

Between ESTABLISH and BUILD

Between ESTABLISH and first
BUILD/OVERLAY

* * * *

* * * *

* * * *

* * * *

* * * *

* * * *

*

*

*

*

*

* * * *

* * * *

* * *

*

* *

* *

*

*

48-005 FOO R01

TABLE D-3 LOGICAL TET COMMAND SEQUENCE (Continued)

COMMAND
VERB SEQUENCE CONSIDERATIONS TA RL TC OV

=====================================~==========================
MAX LU

PRIORITY

TSW

BUILD

PAUSE

WFILE

AMAP

MAP

END

Between ESTABLISH and first
BUILD/OVERLAY

Between ESTABLISH and BUILD

Between ESTABLISH and BUILD

Must follow all INCLUDE, EDIT and
OVERLAY

Anywhere

Anywhere, nor ma ll)r after BUILD

Anywhere, normally after BUILD

Anywhere, normally after BUILD

Anywhere, ncrmall:r last

NOTES

1. The BUILD command marks the beginning
of pass two for building the load
module. This command is input only
once for each load module. Tasks
with overlays should contain one
BUILD command for each corresponding
overlay.

2. The ESTABLISH command marks the

3.

beginning of pass one. This command
can be input only once during a TET
session.

The OVERLAY command terminates the
definition of the task• s segments
(impure and pure) during pass one and
marks the beginning of an overlay
definition during pass one. This
command is input once for each
overlay.

48-005 FOO R01

*

*

*

* * * *

* * * *

* * * *

* * * *

* * * *

* * * *

D-45

TET defines the task on the first Pass and constructs the task
load module on the second pass. Therefore, before including any
task ~ode, TET must know if the task is an E-task or if absolute
address space is to be reserved. As a result, the OPTIONS and
ABSOLUTE commands must be entered before any INCLUDE comman1.

The distinction between named common and task common is made by
the TCOM command. References to named common blocks, iesignated
as task common by a TCOM command, are relocated to the proper
program address. The TCOM command must be entered before any
INCLUDE command. The task's program contents must then be
processed. INCLUDE and EDIT commands are used to select the
input object code programs that are part of the task, task common
or library. One INCLUDE statement must occur first, to bring in
a single relocatable progra~ or an entire file. Any number of
INCLUDE statements may follow. If a sin~le program is included,
the input read operation stops at the end of that program
allowing the next inclusion from the same file or another file.

The EDIT statement reads the entire edit file, and marks for
inclusion any programs that have program labels referen~ed by the
already included code. If a temporary file is present, the
entire edit file is copied to it, but only the required programs
are used during the build operation. EDIT statements can be
repeated, allowing an EDIT to bring in programs referenced in
code included by a previous EDIT. The user can select programs
from multiple files by varying the fd parameters of successive
EDIT and INCLUDE statements. See examples of this in Section
D.7.

TET resolves all references from one included proqram to another
in a task's included code, but· references to a reentrant library
are unresolved until the input of a RESOLVE command. The RL
referenced must be previously established. The RL being resolved
need not be the one currently loaded in the system under which
TET is running. TET reads the LIB of the RL load module, and
finds the ENTRY symbols that are the same as the referenc~ng
EXTRNs in the task. A message indicating that the unresolved
labels exist is output at the beginning of pass two, in addition
to a table (via the MAP or AMAP commands) which lists these
symbols.

Overlays are indicated and named by OVERL\Y statements, and
defined by INCLUDE and EDIT statements, after their main segments
have been completely defined (by INCLUDE and EDIT statements).
Space required beyond the area where the task is loaded,. for an
expanding operation such as a symbol table or SVC get storage
calls, can be reserved with a GET or EXPAND command. ~ET or
EXPAND can be entered at any point. The GEr or EXP~ND area is
located above the overlay area within the task's memory space.
After an ESTABLISH TA command within ~ET's first pass, the
MXSPACE, MAXLU, PRIORITY, and TSW commands can also be entere1.

D-46 48-005 FOO R01

The first pass ends and the second pass starts when a BUILD
command is encountered. Any unresolved references remaining are
reported by a message to the OPE!rator., A BUILD command creates
an image load module for a task, overlay, task common block, or
reentrant library using the resolutions and spacificatj.ons of the
first pass. Each overlay module ot a task requires a separate
BUILD command. The RESOLVE command satisfies all references from
included programs to previously establishei reentrant library
segments. A message indicating that unresolved labels exist is
output at the beginning of pass two. A RESJLVE command may be
issued for as many library seg~ents as are referenced by the
included program.

D.6 AUTOMATIC ASSIGNMENT

Specifying a file de~criptor in certain TET comm~nds

automatically causes the file to be assigned to one of the rET
LUs. Table D-4 summarize3 the action of the specific commands.

TABLE D-4 AUTCMATIC ASSIGNMENT OF FILE

'
I

COMMA.!'iD I FD ASSIGN1rn TO I DEFAULT EXTENSION
I I
1------------ ·------------------------------------
'

INCLUDE LU 1 '.)3J

I
I EDIT LU 1 :::>BJ
I
I RESOLVE LU 1 RTL
I

'
BUILD TF.SK J,U 2 rsK

BUILD RL LU 2 RTL

BUILD OVLY LU 2 'JVY

BUILD TCOM LU "I rcM .£.

WFIL~ LU 2 NONE

MAP LU 3 NONE
1·

AMAP LU 3 I NONE
I

LOG LU 3 I NONE
I

REWIND LU 1 I NONE

48-005 FOO R01 D-47

Various parts of the fd, or the entire fd, can be omitted by the
user. Typically, if fd is omitted, TET uses the default LU that
should be assigned for that function until a reassignment occurs.
For example, assume the user has assigned LU 1 to the p~per tape
reader/vuhch (PTRP:) before starting TET:

ES TASK
IN
IN
IN
IN MAG1:
IN
IN
IN PTRP:
IN FIL EB
IN FILE~, PRO GA
BU TA, TETOUT

When TST finds no file descriptor in the first INCLUDE command,
it uses the device already assigned to LU 1. If no device is
assigned, TET outputs the message LU 1 NOT ASSIGNED. In this
case, the paper tape unit is assigned to LU 1, and TET reads data
from LU 1. The paper tape unit is used for each IN command until
the IN MAG1: command, where TET closes LU 1 ann then assigns the
mag tape unit to LU 1. Data is read from the mag tape for each
INCLUDE command (the IN PTRP:), where TET switches LU 1 to the
paper tape unit again.

If the user does not specify the volume na~e, and if the VOLUME
command has been issued, TET substitutes the volume name
specified in the VOLUM~ command. If the VOLUME command has not
been issu~d, as in this example, the default system volume is
used. If the user o~its the extension field, TET supplies a
default extension. The default is selected according to the
command being executed and the data being processed. rable D-4
lists the default extensions. If the fd specified in the BUILD
command is a disc file, TET ~!locates a contiguous file of proper
size to build the load module. If a file with the same name
already exists, that file is not deleted.

D.7 EXAMPLES OF TET OPERATION

The following examples show the command sequence .used to
establish tasks under a variety of conditions. In all these
examples, use of a temporary file is assumed (LU 4 is assigned
prior to starting TET).

D.7.1 Establishing a Simple Task

This example illustrates how to establish a simple task.
contains the object program(s).

FIL EA

D-48 48-005 FOO R01

ESTABLISH TASK
INCLUDE FILEA
BUILD TASK, FILEA.TSK
MAP
END

Produces a map of the task
Returns control to the system

D.7.2 Establishing a Task with Pure and Impure Segments

This example illustrates how to establish a task from a file that
contains programs (segmented in pure and impure form), some of
which are not required by this task. Programs A, C, and D are to
be included in the task. Figure D-1 is a description of the
input and output files.

PROGRAM H

PROGRAM G

PROGRAM F

PROGRAM E

PROGB1\M D

PROGRAM C

PROGRAM B

PROGRAM A

FILE A

CONTAINS EXTERNAL
REFERENCES TO
PROGRAMS A,D, & H

CONrAINS EXTERNAL
REFERENCES TO
PROGRAM F

(INPUT FILE OBJECT CODE)

I PROGRAM H I
1-----------1
I PROGRAM F I
1-----------1
I PROGRAM D I
1-----------1
I PROGRAM C I
1-----------1
I PROGRAM A I

LOAD MODULE OF
ESTARLISHED TASK
(OUTPUT FILE IMAGE
CODE)

Figure D-1 Establishing a Task with Pure and Impgre Segments

The required command sequence is as follows:

ESTABLISH TASK, PURE
INCLUDE FILEA,PROGRAMA
INCLUDE, PROGRAMC
INCLUDE,PROGFAMD

4 8- 0 0 5 F 0 0 R 01 D-49

EDIT

BUILD TASK

MAP

END

Includes PROGRAM F referenced by
PROGRAM A, and PROGRAM H referenced
by PROGRAM c. Programs A and D are
already included.

As no fd is specified, and assu~ing

that LU 2 is not assigned to a
contiguous disc file, this task is
built in memory ana output to LU 2.

Produces a map of the task

Returns control t~ the system

D.7.3 Establishing a Reentrant Library

This example describes the establishment of the FORTRAN run time
library. The example assumes that the run time library is input
to TET on five paper tapes.

ESTABLISH RL Specifies that a reentrant library
loa1 module be established

INCLUDE PTRP: Includes
INCLUDE PTFP:
INCLUDE PTRP:
INCLUDE PTRP:
INCLUDE PT?.P:
BUILD RL,FORT.RTL,RELIBRY,10

Builds
module
seqment

five paper tapes

a reentrant library load
with the name RELI3RY, using
10.

MAP Produces a map of the completed
mo1ule

END Returns control to the system

D.7.4 Establishing a Complex Task with Overlays

The task comprises all three programs from File A and, initially,
one program from File C (Program D). However, Program D has
references to Programs A, B, and F in the same file. rherefore,
the main (impure) segment ccntajns sevPn programs. Two overlays
are necessary for the task. The first overlay is from File C
(Program E with the two references, Programs B and C in File B).
The second overlay is File B Program A. Figure D-2 is a graphic
Lepresentation of the task.

D-50 48-0)5 FOO R01

PROGRAM A

PROGRAM B

PROGRAM C

FILE A

VOA:FILEA.EX1

PROGRAM A

PROGRAM B

PROGRAM C

PROGRAM D

FILE B

VOB:FI LEB.EX1

PROGRAM A
INCLUDES LIBRARY

REFS

PROGRAM B

PROGRAM C

PROGRAM D
INCLUDES REFS TO
PROGRAMS A,B,&F

IN THIS FILE

PROGRAM E
INCLUDES REFS TO

PROGRAMS B&C
IN FILE B

PROGRAM F

FILE C
VOA:FI LEC.EX1

l

1

y

PROGRAM F FROM FILE C

PROGRAM B FROM FILE C

PROGRAM A FROM F.ILE C

PROGRAM D FROM FILE C

PROGRAM C FROM FILE A

PROGRAM B FROM FILE A

PROGRAM A FROM FILE A

DESIRED MAIN SEGMENT

STRUCTURE

PROGRAM C FROM Fl LE B

PROGRAM B FROM FILE B

PROGRAM E FROM FILE C

DESIRED STRUCTURE FOR
OVERLAY ONE

PROGRAM A FROM
FILE B

DESIRED STRUCTURE FOR
OVERLAY TWO

Figure D-2 Graphic Dascription of a Task with Two Overlays

48-005 FOO R01 D-51

This command sequence shows the establishment of a task with
overlays, references to reentrant libraries, and task common
segments. The main segment and each overlay are built on a
separate file. Automatic file allocation is used.

The command sequencG to establish the task is as follows:

D-52

REMO't'E

VOLUME VOA

ESTABLISH TASK ABS 200

TCOM GLOBAL/13/RW

TCOM CO~ALL/12//16

INCLUDE FILEA.EX1

INCLUDF. FILEC.EX1,
PROGRAMD

REWIND FILEC.EX1

EDIT FILEC.EX1

RESOLVE MAG1:
RESOLVE LIB2

MXSPACF. 2400

MAXLU 20

PRIORITY 20,14

Specifies that TET should not pause;
command input Ls batch.

VOA is the default
de sc r i pt or •

Provides X'200' bytes of absolute
address space before beginning the
impure relocatabl~ code.

Designated common block named ~LOBAL
as task common; positions GLOBAL in
segment 13, program address DOOOO.
Segment has read/write access
privileges.

Designates common block named COMALL
as task common, positions ~OMALL in
segment 12, ~rogram address COOOO.
Segment has read/write access
privile1es as default overriie
s~gment size=4kb.

Includes all of FILEA.

Includes PROGRAM D of FILEC.

Rewinds FILEC for editing.

E1its FILEC to in=lude programs A,
B, and F in the temporary file.

The RESOLVE command reads the RL
LIBs and satisfies the r~ferences.

The libraries have been previously
~staolished.

Allows the task to use up to X'2400'
bytes of system space for file
control blocks.

Allows the task to use LUs numbered
between O and 20.

Specifies
priority

that
20.

the
The

task. runs at
priority may be

48-005 FOO R01

EXPAND 4

OVERLAY OVONE

INCLUDE FILEC.EX1,
PROGRAME

EDIT VOB:FILEB.EX1

OVERLAY OVTWO

INCLUDE VOB:FILEB.EX1,
PROGRAMA

BUILD TASK,FILED.TSK

BUILn OVLY,FILEG.OVY

BUILD OVLY,FILEH.OVY

MAP

END

changed during run time, but may not
be set higher than 14.

Allows 1024 bytes for get storage
calls in the main segment.

Terminates definition of the main
segment; names and initiates
definition of first overlay.

First overlay contains PROGRAME from
FitEC. EX 1/

Edits FILEB for programs referenced
by PROGRAME. Includes PROGRAMB and
PROGRAMC from FILEB.

Terminates first overlay definition
and initiates second.

Second overlay contains PROGRAMA
from VOB:FILE.EX1.

Initiates pass two processing and
starts building the load module of
the task's main segment, using
temporary files. The fd of the l~ad
module is VOA:FILED.TSK. The exten
sion field can be any three
characters such as TSK.

Builds first overlay load module
whose fd is VOA:FILEG.OVY.

Builds second overlay lo~d module
whose fd is VOA:FILEH.OVY.

Produces a map of entire task

Returns control to the system

The impure main seg~ent is built with the absolute address area
first, followed by the main and local common areas, an overlay
area large enough for the longest overlay, and the EXPAND
requested area. At run time the system places the CTOP indicator
at the top of the EXPAND ar~a, rounded up to a 256-byte boundary.

The following illustration describes how the task is organized
when loaded into memory. Note that the tw0 libraries were
previously established. Segment 15 was allocated for the library
on MAG1:, and segment 14 was allocated for the library on file
LIE2.RTL.

48-005 FOO R01 D-53

RL SF.GMENTS (15)

(1 4)

TCOM SE~MENTS (13)

(1 2)

IMPURE SEGMENT (0)

E'OOOO

EOOOO

DOOOO

coooo
CTOP

fJTCP

200

0

I LIBRARY FROM MAG1:

I LIBRARY FROM LIB2

I TASK COMMON NAMED 'GLOBAL'

I TASK COMMON NAMED 'COMALL'

! EXPAND AREA (1024 BYTES) , ______________________________ _

I
I OVERLAY AREA
I
I LOCAL COMMON
I
I
I
I
I
I

IMPURE CODE/DATA AREA TASK'S
MAIN
(ROUT)
SEGMENT

1- - - - - - - - - - - - - - - -f
I USER DEDICATED LOCATIONS

Figure D-3 Memory Map of Overlay Task Establishment

D.7.5 Building an Operating System Image

This command sequence builds an operating system image on a
contiguous file. The OS image produced c~n be loaded by the
32-bit direct address bootstrap loader or the loader storage
unit. The operating system snould be generated in object format
using CUP/MT and the library loader, as outlined in the OS/32
System Planning and Configuration Guide. TET processes the
object module produced by the library loader by using the
following command stream:

o-c:4 48-005 FOO R01

ESTABLISH 'rASK

ABSOLUTE xxxxx

xxxxx is the address of UBOT from the library loader map.

INCLUDE MTSYSTEM.OBJ

Includes the output of the library loader (assumes the object
is contained on file MTSYSTE:M.OBJ)'.

BUILD TASK,OS32MT.301

END

TET allocates a contiguous file of the proper size and builds
an OS image.

Returns control to the system

/

NOTE

To be loadable by either the boot loader
or the LSU, the fd of the file containing
the OS image must be of the form:

OS32xxxx.hhh

xxxx can be any four ASCII characters;
hhh must he a hexadecimal number between
X'COO' and X'FFF'.

D.7.6 Establishing Compound Overlay Files

The nser can build overlays sequentially on a single file. When
buiidinq overlays to single disc files, default allocation of the
files by TET is not sufficientn The user must allocate the file
before starting TET. To determine the exact length of the
required file, lengths of the individual images, expressed as the
number of 256-byte blocks, must be summei to arrive at the
approximate total image length. In addition, a single LIB sector
for each image to be contained in the file, plus four sectors for
work soace, are required by TET~ The follo~in~ numerical example
is provided:

Overlay 1

Overlay 2
Overlay 3

50 0 hex

2200 hex
1500 hex

round up to the nearest X'100'
byte boundary

The segment length expressed in sectors is:

48-005 FOO B01 D-55

Overlay 1 500/100 = 5 sectors
Ov~rlay 2 2200/100 = 22 sectors
Overlay 3 1500/100 = 15 sectors

TOTAL = 3C sectors {hex)
+ 3 sectors {L!Bs)
+ 4 sectors {workspace)

TOT~L = 43 sectors (hex)
or

67 sectors (decimal)

When generating compound disc files, it is not always permissible
to change output units durin~ the process. Consider a task with
four overlays, where ov~rlays 1, 2, and 4 are directed to one fd,
and overlay 3 is directed to another. Overlays 1 and 2 are built
sequentially. LU 2 assignment is changed for overlay 3, and when
reassigned for overlay 4, the disc file is rewound. Overlay 4
overwrites those previously built on that file. It is
recomrnend~d that all overlays for one task be built/on the same
file, or each ov~rlay be built on a separate file.

D.7.7 Establishing a Block Data Task Common Segment

The following example illustrates how to establish a block data
task common segment. Block data is used to initialize the task
common area.

ESTABLISH TCOM second parameter iefaults to BD~TA

INCLUDE FILEA.FX1,PROGR
INCLUDE FILEC.FX9
BUILD TCOM,COMMO~BK.TCM
END

PROGB in FILEA.EX1 is a block data subprogram containing a common
block definition named COMMONBK that initializes several items.
FILEC.EX9 contains several block data subprograms, where each
program declares common block COMMONBK and initializes or
reinitializes items in that block.

D.7.8 Establishing a Sharable Segment

As~ume fjle EDIT.OBJ is a text editor whose code body and
absolute data are assembled as pure and whose buffers and save
areas (any variable data) are assembled as impure. The following
command sequence establishes a pure and impure segment for the
editor task:

D-56 48-005 FOO R01

ESTABLISH TASK,PURE
INCLUDE EDIT.OBJ
BUILD TASK,EDIT.TSK
MAP
END

The first time EDIT.TSK is loaded by the operating system loader,
both the pure and impure segments ar~ loaded into memory.
Subsequent loads of EDIT.TSK result in only the impure segment
being loaded, assuming the pure segment is still in memory. All
editing tasks share the same pure segment, saving a considerable
amount of memory.

D.7.9 Establishing Preinitialized Task Common

A load module of a task common can be generated by including
nonblock data (absolute and variable data) programs as in this
example:

ESTABLISH TCOM,NOBD~TE
INCLUDE MAG1:
INCLUDE PTRP:
BUILD TCOM,PTRP:,TSKCCM

MAP CON:
END

D.8 TET ERROR MESSAGES

'IET001 symbol NOT FOUND

Reads all programs on mag tape
Reads all programs on paper tape
Load module is output on paper tape
punch. Name of task common is
TSKCOM.
Outputs a map on console device

Search for a program label has failed

TET001 ABS LESS THAN 100

Warning that ABS request overlaps UDL

TET001 ACCESS PRIVILEGE CONFLICT

Warning that access privileges in a LBLCOM command do not
match the corresponding access privileges in a TCOM Co~mand.

TET001 ADRS OFLO AT xxxxxx

Halfword address computation greater than FFFF.
address in program where overflow has occurred.

48-005 FOO R01

xxxxxx is

D- 57

TET002 AD~S OFLO AT xxxxxx

Fullword address computation greater than FFFFFF. xxxxxx is
address in program where overflow has occurred.

I'ET001 CKSM EPF

Checksum error on input object file

T ET 0 0 1 DEV EN D

~nd-of-f ile or end-of-medium encounterej on an LU

T ET 0 0 2 DEV E N. D

Device unavailable (hardware error)

T ET 0 0 1 · :~ 0 rvr

End-of-~edium on LU 1

TET001 EXP TOO BIG

Expand request makes task greater than X'100000'

TET001 FCB AREA FULL

Attempt to assign a file h~s failed

TETG01 F;:J SYNTF.X

File descriptor syntax is incorrect

TET001 FILE ERP: xxxx fd

Error while closing
(fd)=filena1'11e

T FT 0 0 2 FI L E BRR : xx xx f d

Error while opening
(fd)=filename

T ET 0 0 3 FILE ERR : xx xx f d

file. xxxx=SVC

file. xxxx=SVC

7

7

status, lu

st1tus, lu

Error while allocating file. xxxx=SVC 7 status, an1 lu (fd)=
filename

D-58 48-005 FOO R01

TET001 HW EXTRN ABOVE LIMIT

Half word reference corresponding definition lies above 64kb
adJr.ess

TET001 ILLEGAL SEGMENT NO.

Segment number in a LBLCOM command is not used in a previous
TCOM command

TET001 ILG ABS ADRS

ABS code higher than specified in ABSOLUTE command found in
this task

TET002 ILG ABS ADRS

ABS code found in reentrant library segment /

TET003 ILG ABS ADRS

ABS code in E-task

TET001 ILG CMD

Command verb is not valid

TET001 ILG CMD PARM

Improper command argument

TET002 ILG CMD PAEM

Illegal second parameter in a command

TET003 ILG CMD PARM

Illegal third parameter in a command

TETOC4 ILG CMD PARM

Illegal fourth parameter in a command

TET001 ILG CMD SEQ

Command not legal at this point in TET operation

48-0C5 FOO qo1 D-59

TET001 ILG COMN DEFN

TET has encountered common loader items while building a
reentrant library segment

TET002 IL~ COHN DEFN

TET has encounterej common loader items while building an
E-task

TET003 ILG COMN DF.FN

TET has encountered common loader items for block ddta in
task common

TFT004 ILG COMN DEFN

TET has encountered common loader items for block data in an
overlay

TET005 ILG COMN DEFN

TET has encountered common loader items; blank
definition found when building BDATA-TCOM

common

TET006 ILG ~OMN DEFN

TET has encountered common loader items; more than one common
definition in block data subprogra~

TET001 ILG DELIMITER x

Commaad syntax error; a delimiter other than x is required

TET001 ILG OBJ ITEM xx

Loader item from an input object progra~ is illegal (xx=item,
see Table A4-1)

TET002 ILG OBJ ITEM xx

D-60

Loader item from an input object program is illegal when
building RTL (xx=item, see Table D-5)

48-005 FOO R01

TET003 ILG OBJ ITEM xx

Loader item from an input object proqram is illegal when
building BDATA-TCOM (xx=item, see Table A4-1)

TET004 ILG OBJ ITEM xx

Loader item from an input object program is illegal when
building NOBDATA-TCOM (xx=item, see Table A4-1)

TET001 ILG OPTION

Poll with F.-t3sk, roll with resident

TFT001 IMP IN RTL

Impure code encountered while processin~ an RTL segment

TET~01 I/O DEV FRROR xxdd (fd)

~n I/O error encountered while reading commands: fd=device
file descriptor or LU 5 not assigned

TET002 I/0 DEV ERROR xxdd (fd)

An I/0 error encountered while reading input
fd=device file descri~tor or LU 5 not assiJned

TET003 I/0 DEV ERROR xxdd (fd)

recor1s;

An I/0 error encountered while reading an LIB; fd=device fi1.e
dr~scriptor or l.H 5 not assigned

TET004 I/0 DEV ERROR xxdd (fd)

An I/0 error encountered whila writing to ~ temporary device;
fd=device descriptor or LU 5 not assigned

TETOOS I/O DEV ERROR xxdd (fd)

An I/0 error encountered while outputing a load module;
fd=device descriptor or LU 5 not assigned

TFT006 I/0 DEV ERROR xxdd (fd)

An I/0 error encountered while printing a map; fd=jevice
descriptor or Lll :: not assi.gned

48-005 FOO R01 D- 61

TET007 I/0 DEV FRROR xxdd (fd)

An I/0 error encountered; SVC 7 fails during prepar1tion for
pass two; fd=device descriptor or LU 5 not assigned

TET001 LCOM IN OVLY

Common definition in overlay segment is not previously
defined in main segment

TET001 LCOM TOO BIG

Labeled common too large

TET002 LCOM TOO BIG

Blank common too large in overlay

TET001 LCOM IN RTL

Encountered common loader item while building reentrant LIB
segment

TET001 LOAD PROGFAMS fd

Prompts operator to load program if temporary device is not
being used, or to rewind input fd

TET001 LU (lu) NOT ASSIGNED

No device assigned to this LU

TET001 MEM FULL

TET ~ork area has been exhausted. ~o room to build first LIB

TETOC2 MEM FULL

TET work area has been exhausted.
subse~uent LTBs

TET001 MULT DEFD symbol

Multiple definition of the same symbol

D-62

No room to build

48-0JS FOO R01

TET001 NO DCHN END xxxxxx

xxxxxx is the def address. Address dechaining has exceeded
200,000 links

TET001 NO ENTRIES IN RTL

No entry definition found when building RTL

TET001 OUTSIDF AVAIL MEM

Internal TET error.
available user space

Attempt to store image code above

TET002 OUTSIDE AVAIL MEM

Internal TET error. Attempt to store image code halow user
space

TET001 OV NAME MULT DEFD

More than one overlay with same name

TFT001 OV MULT DEFD symbol

Two or more overlays define a symbol referenced by the main
seqm8nt

TET001 TCOM ACCESS PBIV ERR xxxx

Access privilege in TCOM command not RO or RW (xxxx=task
common name)

TET001 PROG TOO BIG

Task greater than X'100000'

TETC02 PROG TOO BIG

RL greater than 64kb

TET003 PROG TOO BIG

TCOM size greater than X'100000'

48-005 FOO R01 D-63

.~ -

TET001 REFOSITION SCRATCH

Messaqe to operator when using nonrewindable temporary device

TET001 RESOLVE ERR

Input file not an RL file

TET002 RESOLVE ERR

Input file not the same name as in a previous RESOLVE command

TET001 SEGMENT ADDRESSING ERRO~

Error while mapping logical segment into task address space;
segment start address plus size greater than Y'100000'

TET002 SEGMENT ADDFESSING ERROR

Error while mapping logical segment into task address space;
segment addresses overlap

TET003 SEGMENT ADDRESSING ERROR

Error while mapping logical segment into task address ~pace;

not enough contiguous space for a segment

TETOC1 SEQ ERP

Sequence number erroc on input object file

TET001 SHORT RECOPD

Record J.ength of build fila is less than 256

TET002 SHORT RECORD

Record length of temporary file is less than 126

TETC01 TCOM ADRS OUT OF RANGE xxxx

Segment number in TCOM command is less than 1 or 1reater than
15. (xxxx=task common name)

D-6U 48-005 FOO R01

TET001 TCOM MULT DEFD xxxx

Name xxxx in TCOM command has been used previously in rcoM
command

TET001 TCOM NAME SYNTAX ERROR xxxxx

Name xxxx in TCGM command longer than eight characters or not
terminated by /.

TET001 TCOM TOO BIG

Second task common definition larger than first

TETC02 TCOM TOO BIG

Override size in rcoM command smaller than in
definition

T ET 0 0 1 T ST 3 2 A B 0 RT E D

common

An unrecovPrable coniition has been detected in b~tch moje~

oper~tor action is required

TE~002 T~T 32 ABOPTED

An unrecoverable condition h~s been detected ~hen building;
no impure or pure code

TETC03 TST 32 ABORTED

An unrecoverable condition has been detected; pass two
com~ani not found in dictionary

TET004 TET 32 ABORTED

~n unrecoverable coniition has been detected, eiit table
overflow; more than 8192 programs processed by EDIT

TET005 I'ET 32 ABORTED

An unrecoverable condition has b9en detected, common
ref~rence; no corresponding definition

48-0QC:, FOO K01 D-65

TET006 TET 32 ABORTED

An unrecoverable condition has been detected, block data; no
corresponding definition

TET007 TET 32 ABORTED

An unrecov~rable condition has been detected,
includP.d not found in dictionary

ov<?rlays

TETOOB TET 32 ABORTED

An unrecovPrable condition has been detected,
overlay; overlay not found in dictionary

b11iljing

TET009 TET 32 ABORTFD

An unrecoverable conditi0n has been detect2d, object record
read routine failed

TET010 TET 32 ABORTED

An unrecoverable condition has been detected; segm~nt tanle
validation error

TETC11 TEr 32 ABORTFD

An unrecoverable condition has been detected; invalid command
in error format tabla

TET012 TET 32 ABOPTFD

An unrecoverable condition has been detected; a common bl~ck

defined in a TCOM c0mmand contains block data.

TET001 TOO MANY SF.GMENTS

More than 16 program segm~nts

TET001 TOO MANY TCOMS xxxx

Only 15 task commons can be named in TCOM =ommands (xxxx=tasK
common name)

.TET001 UNDEFINED SYMBOLS

Operator warning that undefined symbols exist

D-66 48-005 FOO R01

TET001 WRONG PROG

Program encountered on pass two is in wrong order; sym~ol not
in dictionary

TET002 WRONG PROG

Program encountered on pass two is in wrong order; symbol has
wrong address

TET003 WRONG PROG

Program encountered on pass two is in wrong order~

symbol in common DEF's

TET004 WRONG FROG

no such

Program encountered on pass two is in wronJ order~ block jata
subprogram not included when building BDATA-TCOM

TETOOS WRONG PROG

Program encountered on pass two is in
relocatable address in ~ass two beyond limit

TET006 WRONG PROG

wrong order~

Program encountered on pass two is in wrong order; module
size not same as pass one size

48-005 FOO R01 D-67

OBJECT
ITEMxx

TABLE D-5 OBJECT ITEM SIGNIFICANCE

MEANING

==:===========
0 End-of-recor1

1 End-of-program

2 Reset sequence number

3 Block data indicator

4 Absolute pro1ram address

5 Pure relocatable program address

6 Impure relocatable program address

7 Two bytes of pure relocatable data

8 Two bytes of impure relocatable data

9 Four bytes of pure relocatable data

A Four bytes of impure relocatable data

B Common reference

C EXT RN

D ENT RY

F Common dgf inition

f Program label

10 Three bytes A3S and three bytes pure relocatable
data

11 Three bytes Aas and three bytes impure relocatable
1 a ta

12 Load proqram transfer address

D-68 48-005 FJO R01

OSJEC't
ITEMxx

V .. BLE D-5 OBJECT ITEM SIGNIFICANCE (Continued)

MEANING

==
13 nefine start of chain

14 Load chain 1efinition address

15 Two bytes AB3 an1 two bytes pure relocatable data

16 ~wo byt~s ABS and two bytes impure relocatable dat~

17 Short form EXTRN

18 Length of i~pure and pure segments

19 Perform fullword chain

1A Perform halfword chain

1B No operation

1C 2-byte pure translation table address

1D 2-byte impure translation table address

1£ Illegal

1F One byte ABS data

20 Two bytes Aas data

21 Four bytes ABS data

22 Six bytes ABS data

23 Eight bytes ABS data

120 bytes A3S data

5C
to IllPgal
FF

48-CO:> FOO R01 D-69

A

Absolute

Absolute data
Access privilege,

E
R
RE
RW
RWE

Accounting
Active LINK commands

Arithmetic fault pause

B

Backspace file (BFILE) command
BUILD command

allocation
assignment
contiguous file
indexed file
maps

Building image load modules,
COBOL task
COBOL task, commanis

imbedded
FORTRAN task
operating system
overlaid task, complex
overlaid task, simple
referencing sharable

segments
simple task

Building sharable segments

COMMON
Common blocks

external
local
moving

c

D

Define command (DCMD)
imbedded commands
pseudo-op

DNTRY

48-005 FOO R01

3-22
3-29
3-29

3-10
3-10
3-10
3-10
3-10
3-31
3-1
3-2
3-3
3-27

3-4
3-5
3-6
3-6
3-5
3-5
3-6

4-2

4-3
4-2
4-11
4-5
4-4

4-10
4-1
4-9
4-10

3-22
3-13
3-13
3-13
4-8

3-8
3-8
3-8
3-22

IHDEX

E

END command
End of task codes
ENTRY
Entry point symbol
Environment LINK commands

ESTABLISH command
Executive task
Extended disc privilege
Extended file access
privilege

Extended options fullword
EXTERNAL command

common blocks

F G H

Fi 1 e de sc r i Pt ors
Floating point instructions,

double precision
single precision

Forward file (FFILF) command

I J

Image I/O
Image load modules,

building
operating system
sharable segment
task

IMPURE
INCLUDE command

object modules
Intercept
Intertask communication
Intertask control
I/O control blocks

K

Keycheck

L

LIBRARY command
entry points
external references
EXTRN pseudo-op
non-linking external
references

object libraries
weak entry points
weak external references

3-9
3-9
3-22
3-30
3-1
3-2
3-3
3-10
3-27
3-28

3-28
3-30
3-13
3-13

1-4

3-28
3-28
3-14

3-30

4-1
3-10
3-10
3-10
3-22
3-15
3-15
3-31
3-27
3-27
3-29

3-31

3-17
3-17
3-17
3-17

3-17
3-17
3-17
3-17

Ind-1

LINK,
building
commands
command summary
command syntax
comparison to TET
features
file descriptors
loading
messaoe summary
requirements
starting

Loading LINK,
from MTM terminal
from system console

LOCAL command
entry point
sharable segment

LOG command
command input
maps
messages

Logical uni ts

MAP command
address
ADDRESS
ALPHABETIC
build summary
XR EF

Map listings

N

NDCMD command
No log (NLOG) command

0

Operating system image load
module

OPTION command
ABSOLUTE
ACCOUNTING
ACP
AFPAUSE
COM
CON
DFLOAT
DISC
ENTRY
ETA SK
FLOAT
INTERCEPT
IO BLOCKS
KEYCHECK
LU
NACCOU~TING
NACP
NAFPAUSE
NCOM
NCON
NDFLOAT
NDISC
NHOAT

Ind-2

2-1
3-1
A-1
1-3
C-1
1-1
1- 4
2-1
B-1
1-2
2-1

2-2
2-1
3-19
3-19
3-19
3-20
3-20
3-20
3-20
3-29

3-21
3-22
3-21
3-21
3-22
3-21
3-22

3-24
3-25

3-10
3-26
3-29
3-31
3-28
3-27
3-27
3-27
3-28
3-28
3-30
3-27
3-28
3-31
3-29
3-31
3-29
3-31
3-28
3-27
3-27
3-27
3-29
3-28
3-28

NINTERCEPT
NKEYCH ECK
NRESIDENT
NROLL
NSEGMENTED
NSVCPAUS E
NUNIVERSAL
NVFC
NXSVC1
PRIORI TY
RESIDENT
ROLL
SEGMENTED
SVCPAUSE
SYSSPACE
TEQSAVE
TSW
UT ASK
VFC
WORK
XSVC1

Overlay command
level
overlaid tasks
overlay name
root segment

Overlay structure

p Q

Passive LINK commands

PAUSE command
POSITION command

common blocks
root segment

Priority of task,
initial
maximum

PROG
PURE

RESIDENT
REWIND command
ROLL

R

s

SEGMENTED
Sharable segment

access privilege
building

SIZE
starting address
task common block

Sharable segmented image load
module

SHARED command
access privilege
sharable segment
task common block

3-31
3-31
3-27
3-27
3-27
3-28
3-28
3-31
3-30
3-29
3-27
3-27
3-27
3-28
3-29
3-30
3-30
3-27
3-31
3-29
3-30
3-32
3-32
3-32
3-32
3-32
4-6

3-1
3-2
3-3
3-34
3-35
3-35
3-35

3-29
3-29
3-22
3-22

3-27
3-36
3-27

3-27
1-1
3-10
3-10
4-9
4-10
3-38
3-11
3-38

3-10
3-37
3-37
3-37
3-38

48-005 FOO R01

Shared-read-only assignments
Starting LINK
Statement syntax conventions
System space

T

Task image load module
Task status word,

address portion
status portion

TET,
automatic assignment
commands
error messages
established task
examples of opera ti on
operating assignments
system requirements

48-005 FOO R01

3-28
2-3
1-2
3-29

3-10

3-30
3-30

D-47
D-5
D-57
D-2
D-48
D-41
D-1

TITLE command
TSW

UNIVERSAL
User task

u

v
Vertical forms control (VFC)
option

VOLUME command

w x y z
WFILE command
Workspace

3-40
3-30

3-28
3-27

3-31
3-41

3-42
3-29

Ind-3

I
J
I
I
I
I
I
I

~I
.J

' '?

5
.J
~

-::>
.)

PUBUCATION: COMMENT FORM

Please use this postage-paid form to make any comments, suggestions, criticisms, etc. concerning
this publication.

Title---------------- Publication Title ------------

Company ___ ~~~----~-------~- Publication Number -----------

Address --------------,

FOLD FOLD

Check the appropriate item.

D Error Page No. ---- Drawing No.----------

D Addition Page No. ---- Drawing No.---------

0 Other Page No. ___ _ Drawing No. ---------

Explanation:

FOLD FOLD

·Fold and Staple
No postage necessary if mailed in U.S.A.

STAPLE

FOLD

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

POSTAGE WILL BE PAID BY ADDRESSEE

PERKIN-ELMER
Computer Systems Division
2 Crescent Place
Oceanport. NJ 07757

TECH PUBLICATIONS DEPT. MS 322A

FOLD

STAPLE

STAPLE

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

FOLD

FOLD

STAPLE

