
PERKIN-ELMER

UNIVERSAL OPTIMIZER

MAIN
PROG

CALL SUB A

CALL SUB A

PRODUCT DESCRIPTION

SUB A

SUB B

Perkin-Elmer 's family of FORTRAN VII products provides a
spectrum of capabilities for FORTRAN programmers on
Perkin-Elmer's 32-bit computer systems . State-of-the-art
optimization techn iques provide superior performance for
technical, industrial and scientific applications written in
industry standard FORTRAN. A suite of support software,
including a high speed development compiler, maximizes pro
grammer productivity during development and maintenance.

FORTRAN VII exceeds the American National Standard Full
FORTRAN language (ANSI X3.9-1978). In addition, carefully
selected language extensions provide increased programmer
convenience and permit full exploitation of the Perkin-Elmer
32-bit architecture .

FORTRAN VII is augmented by comprehensive run-time sup
port for user programs under OS/32 , OS/32 MTM and/or Reli
ance. The run-time subprogram library includes mathematical
functions , language extensions, real -time interfaces for multi
tasking and file access, and input/output. The ISA FORTRAN
extensions for industrial process ing and control are an inte
gral part of the library.

FEATURES

• State-of-the-art Optimizations

• Choice of Compilers:
- FORTRAN VII Z, Universal Optimizer
- FORTRAN VII 0, Global Optimizer
- FORTRAN VII D, Development Compiler

• Superior Operational Performance

• ANSI Full Standard Language with extensions

• Reentrant FORTRAN Programs

• Sharable, High-Speed Development Facility

• Comprehensive Run-Time Support

Perkin-Elmer is a regist ered t rademark of The Perkin-Elmer Corporation.

32-BIT SOFTWARE

The
FORTRAN VII

Family

UNIVERSAL OPTIMIZATION

FORTRAN VII Z provides a degree of optimization unparal
leled in the industry. Previously, the maximum scope available
from an optimizing compiler was Global, as is provided by
FORTRAN VII 0. Universal scope permits FORTRAN VII Z to
eliminate the inefficiencies of inter-module interfaces, and to
optimize subprograms within the context of the ir calls.

The results of this all encompassing scope are :

• Unexcelled Performance; FORTRAN VII programs, sub
jected to universal optimization outperform their globally
optimized equivalents by a factor of up to four, depending
on the complexity of the programs .

• Improved Programmer Productivity ; By exploiting the
power of the universal optimizer," programmers can write
highly structured FORTRAN that is easier to create and
debug . FORTRAN subprograms can be used in the same
way an assembler programmer might use Macros, with
comparable improvements in productivity.

• Reduced Life-Cycle Costs; The very same factors that con
tribute to programmer productivity during development,
assure that FORTRAN VII programs are easy to read and
maintain , thereby min im izing life-cycle maintenance and
enhancement costs .

LANGUAGE

The FORTRAN VII language is a powerful programming tool
which exceeds the ANSl -FORTRAN-77 Full Language stand
ard (X3 .9-1978). In addition, FORTRAN VII provides a num
ber of powerful extensions, which provide cost-effective por
tability of FORTRAN programs and allow the programmer to
make optimal use of Perkin-Elmer's powerful 32-bit architec
ture .

REAL and DOUBLE PRECISION variables are supported by the
processor floating point facilities, giving six digits of precision
for REAL numbers and 16 digits for DOUBLE PRECISION,
throughout the range ± 5.4x10-1• to ± 7 .2x1075

• In addition
to 1 6 general-purpose registers, 16 floating point registers
are available to the compiler for evaluating expressions and
for temporary storage. COMPLEX variables are represented
by two REAL values, or by two DOUBLE PRECISION values
(COMPLEX* 16).

Two forms of INTEGER are supported, fullword (* 4) and
halfword (* 2), allowing the programmer to choose between
the wide range of 32-bit values (± 2, 14 7 ,483,64 7) and the
space economy of the halfwords. LOGICAL variables are sup
ported as Fullwords or single bytes (LOGICAL* 1). Also pro
vided are HOLLERITH and HEXADECIMAL constants.

In addition to arithmetic types, FORTRAN VII supports CHAR
ACTER variables and expressions, including concatenation
and substring notation and a powerful set of intrinsic func
tions for string manipulation.

The mixed mode arithmetic facilities add even more power to
the generous repertoire of data types.

COMPILATION

The FORTRAN VII system provides two compilation modes:
operational mode, using the full facilities of either optimizer,
and developmental mode, which provides high throughput
compilation and debugging to multiple users of OS/32 MTM.

In operational mode, the VllZ or VllO compiler performs a
wide range of state-of-the-art optimizations . The user can
choose between global optimization, which operates one
module at a time, or universal optimization, which encom
passes up to the whole program. The resultant modules can
be mixed at run-time.

Optimizations are made at the FORTRAN-source level. The
compiler uses its knowledge of the rules of the language to
generate an equivalent, optimum representation of the origi
nal program. To do this, it analyzes all flow paths through a
user's program to ensure that program integrity is maintained
under any possible operating condition.

Having achieved an optimum machine-independent version of
the user's program, FORTRAN VII analyzes its execution
resource requirements and allocates the computer resources
to the elements of the program. Through these machine
dependent optimizations, FORTRAN VII ensures that the best
possible use is made of the 32-bit architecture . Finally FOR
TRAN VII selects tailored code sequences to take optimum
advantage of the powerful instruction repertoire for each sec
tion of the user's program .

In development mode, the FORTRAN VII programmer has a
variety of program development facilities which foster effi
cient implementation of FORTRAN VII programs. Develop
mental facilities are provided under the auspices of the OS/32
Multi-Terminal Monitor (MTM) which provides interactive pro
gram development to up to 64 terminal users simultaneously.

During program development, individual FORTRAN VII pro
grams are compiled, directly to linkable object code, in excess
of 3000 lines per minute. Under normal load, terminal users
will receive almost immediate turnaround for compilations.

OPTIMIZATIONS - Machine Independent

In common with most high-order languages, FORTRAN pro
vides many opportunities for optimization by a compiler.
Many of the constructions in the language lead to very ineffi
cient object code, if simplistically translated on an element
by-element basis.

The scope and scale of the optimizations performed by FOR
TRAN VII establish the state of the art in this field, and lead to
unequalled execution speeds for FORTRAN programs.

The algebraic transformations, CONSTANT COMPUTATION,
CONSTANT PROPAGATION, SYMBOLIC ARITHMETIC and
TYPE CONVERSIONS, are the simplest of the language level
optimizations. Their effects are simple in concept, but they
can be quite far reaching because of hidden arithmetic. The
introduction of the PARAMETER statement into ANSI-77 has
further increased the value of this class of optimization
because parameterized programs often have a larger propor
tion of constants. Universal optimization also benefits from
these transformations because of the frequency with which
subroutines are called with constant arguments.

Machine-independent optimizations performed by
FORTRAN VII are:

CONSTANT COMPUTATION

Expressions whose operands are explicit constants are
evaluated by the compiler. CONSTANT COMPUTATION
saves both time and space at run-time. This optimization is
of particular importance in programs that access multi
dimensional arrays within DO-loops. Other optimizations
frequently generate constant expressions, which are elimi
nated by CONSTANT COMPUTATION.

CONSTANT PROPAGATION

This optimization propagates throughout the program
values of any variables assigned to constants . CONSTANT
PROPAGATION is important for parameterized programs
and DO-loops. It often creates opportunities for CON
STANT COMPUTATION. Both run-time and space are
saved.

SYMBOLIC ARITHMETIC

Run-time and space are saved by applying simplifying
SYMBOLIC ARITHMETIC, particularly extraction of a com
mon multiplier (e.g ., K1 *X + K2*X becomes (K1 +
K2) * X) and simplification of expressions involving 0 and
1. SYMBOLIC ARITHMETIC is of value during DO-loop
degradation and in parameterized programs.

TYPE CONVERSIONS

Compile time TYPE CONVERSIONS save both time and
space. They are performed if the compiler can determine
the value of operands in a mixed mode expression . They
are most often valuable when integer constants are added
to REAL or DOUBLE PRECISION expressions.

The DO-loop is one of FORTRAN 's most powerful language
facilities. It enables repetitive operations to be performed on
logically associated data, for example, arrays. Frequently,
DO-loops are nested inside each other with the innermost

loop used to access multi-dimensional arrays. The next four
optimizations combine to eliminate large amounts of hidden
arithmetic.

ARRAY LINEARIZATION

This optimization is used to simplify the run-time calculations
associated with accessing multi-dimensional arrays. The
compiler replaces the complex calculations needed to access
a multiple dimension array with the simpler calculation
needed to access the equivalent one dimensional vector.

INVARIANT CODE MOTION

Frequently within loops code is included that does not depend
on any other code in the loop. Such code is said to be invari
ant and is moved to just before the loop . INVARIANT CODE
MOTION has no impact on space requirements, but can have
a dramatic effect on run-time . Note that this optimization
operates on any type of loop, not just DO-loops.

STRENGTH REDUCTION

Within DO-loops, many operations are dependent on the con
trol variable. STRENGTH REDUCTION takes advantage of the
repetitive nature of operations within DO-loops by using
equivalent operations that execute faster. For example, multi
plication by the control variable is replaced by addition to the
value the last time around the loop.

TEST REPLACEMENT

A result of STRENGTH REDUCTION can be that a DO-loop
control variable is no longer explicitly referenced within a
loop. If so, TEST REPLACEMENT saves both time and space
by eliminating the original control variable and replacing it
with the most commonly used variable generated by
STRENGTH REDUCTION.

The following optimizations are of value anywhere in a
FORTRAN program:

SCALAR PROPAGATION

Most assignments of the form X =Ya re eliminated and all
uses of X are replaced by Y. SCALAR PROPAGATION saves
both space and time.

FOLDING

FOLDING saves both space and time by eliminating inter
mediate assignments to unnecessary local variables .

COMMON SUBEXPRESSION ELIMINATION

Common sub-expressions are consolidated by this optimi
zation, eliminating repeated calculation of the same value.
Saves both time and space.

DEAD CODE ELIMINATION

Many of FORTRAN Vll's optimizations can result in redun
dant or unreachable code. DEAD CODE ELIMINATION
saves both space and execution time by eliminating such
code.

The power of the language level optimizations is further
enhanced by the algorithm used to apply them. Many of the

optimizations create opportunities to further improve execu
tion performance. For this reason the optimizations are
applied repetitively until no further improvement is achieved.

OPTIMIZATIONS - Machine Dependent

These optimizations are performed to ensure that the object
code generated by FORTRAN VII makes best possible use of
the processing capabilities of the Perkin-Elmer 32-bit
architecture.

EXPRESSION REORDERING

The sequence for evaluating expressions is ordered to mini
mize the number of registers for temporary storage of inter
mediate results.

REGISTER ALLOCATION

FORTRAN VII makes optimum use of the powerful register
structure of the 32-bit architecture . The compiler minimizes
memory accesses and takes best possible advantage of effi
cient register-to-register instructions. For smaller programs,
FORTRAN VII keeps all variables and constants in registers,
and for larger programs, those variables that are used most
often are given priority.

INSTRUCTION STRENGTH REDUCTION

Many times, FORTRAN statements are written in a form
which if directly translated , leads to inefficiencies. By per
forming some simplifying strength reductions at the instruc
tion level, faster sequences of instructions are used to exe
cute these common occurrences.

MACHINE INSTRUCTION CHOICE

Each sequence of instructions chosen by the FORTRAN VII
code generator is carefully selected to ensure optimum effi
ciency for the Perkin-Elmer 32-bit architecture .

DEVELOPMENT

FORTRAN VII is a language system for use in developing large
FORTRAN programs, whose execution speeds are required to
be as fast as possible. It is expected that in most situations
these FORTRAN programs will be developed by teams of
cooperating programmers.

The FORTRAN VII developmental facilities promote swift
implementation, testing and debugging of program modules
and systems. The development environment is provided by
OS/32 MTM, the multi-terminal timesharing system that sup
ports a job mix of up to 64 interactive and batch users. The
compiler is segmented Pure/Impure and is automatically
shared by any number of concurrent users.

During program development, FORTRAN VII programs are
compiled at speeds exceeding 3000 lines per minute directly
into linkable object code. ALOtomatic job control allows FOR
TRAN VII programs to be compiled , linked, loaded and exe
cuted with a single command input.

Creation of FORTRAN source programs is performed using
standard operating system facilities. OS/32 EDIT is a power
ful interactive editor ideally suited to the terminal user. The
input spooler can be used to create disc files from card decks.

FORTRAN VII includes optional debugging facilities which
provide FORTRAN source level testing of programs. Versatile
trace facilities and run-time array bounds checking provide
immediate feed-back on program problem areas.

RUN-TIME LIBRARY

The comprehensive FORTRAN VII run-time library gives
exemplary run-time support to FORTRAN VII programs .

The mathematical functions employ modern numerical tech
niques and take full advantage of the power and flexibility of
the 32-bit processors to provide results as accurate as is
practical in the shortest possible time .

The accuracy is better than five decimal digits for the REAL
functions and better than 14 decimal digits for DOUBLE
PRECISION.

As an option, many commonly used mathematical functions
are implemented as microcode * , for execution in Writable
Control Store at approximately twice the speed .

The language extensions provide FORTRAN VII programmers
with access to data types and operations not available within
the language itself. These include the ISA logical facilities:

- Logical operations on bit strings

- Logical shift operations in integers

- Manipulation of individual bits

- Byte processing

- Queueing and pushdown operations on Perkin-
Elmer circular list structures.

The real time extensions give FORTRAN VII programs access
to the real -time facilities of OS/32. Real-time application sys
tems of FORTRAN written tasks are a practical reality with
FORTRAN VII in the OS/32 multi-tasking environment. The
facilities, based on the ISA proposals, include:

- Intertask communication and control

- Interaction with external events

- Time of day and interval clock awareness

- File creation and access

- Analog/Dig ital conversion and Digital 1/0

- Internal fault detection and response

PERKIN-ELMER

Computer Operations
2 Crescent Place
Oceanport,N.J.07757
(201) 870-4712
(800) 631-2154

The input/output system supports FORTRAN READ, WRITE,
PRINT, TYPE, and ACCEPT statements for performing format
ted, unformatted, binary, list-directed, and NAMELIST 1/0, as
well as extremely flexible auxiliary 1/0 statements. (OPEN,
CLOSE, and INQUIRE) which support access to the operating
system file manager. The formatter performs run-time execu
t ion of pre-t ranslated FORMAT statements to provide conver
sion arTd editing of information between internal representa
t ion and external character strings . The pre-translat ion of the
FORMAT statements ensures maximum run-time efficiency
and reduces run-time memory requ irements. The formatter
also provides support for ANSI-FORTRAN 77 internal files
which provide storage-to-storage data manipulations as well
as the ENCODE and DECODE statements which are part of
the defacto industry standard FORTRAN.

OPERATING ENVIRONMENTS

FORTRAN VII is fully integrated with other Perkin-Elmer
32-bit software products. The development mode of opera
tion is ideally suited to the OS/32 MTM terminal user. The
compiler requires approximately 1 OOKB over and above the
operating system, and each concurren~ user needs from 5 to
1 OKB for compilations. Automatic job control facilities sim
plify the operation of the compilation process, through the OS
Command Substitution System .

Optimizing compilations are best performed as a sequence of
batch jobs, either under cont rol of MTM or directly under OS/
32. The compiler requires approximately 200KB over and
above the operating system, plus up to 500KB table space . In
addition , FORTRAN VII requires 1 200KB of disc space for
overlays. All compilers automatically page tables to disc if
allocat ed memory is not sufficiently large to compile in
memory.

PRODUCT NUMBER

580-225*
580-216

Universal FORTRAN Language System
Global FORTRAN Language System

RELATED DOCUMENTATION

S8~225BCM} .
580

_
216

BCM Documentation Package

• Not available Models 7 /32 and 8/32 .

The information contained herein is intended to be a general
description and is subject to change with product enhancement .

Manufacturing facilities and Sales/Service of fices located throughout the w orld; major subsidiaries locat ed in AUSTRA LI A: Adelaide, Albury, Brisbane, Canberra, Melbourne, Perth, Sydney,
and Wellington, New Zealand ; CANADA: Calgary, Mont real, Ottawa, Toronto, Vancouver; ENGLAND: Manchester, Slough; FRANCE: Arcuei l, Bordeaux, Grenoble, Lille, Lyon , Perigueux, Tou
louse; WEST GERMANY: Dusseldorf. Frankfurt , Munich. and Vienna, Aust ria ; NETHERLANDS: Gouda; SINGAPORE: Singapore, Hong Kong; JAPAN: Tokyo. Other countries are serviced by a
net work of distributors.

Printed in U.S.A . January, 1982

