
PRODUCT DESCRIPTION

The M8:3-111 is a truly high p(;rformance floating point

arithmcti1:.: unit for the Interdata 8/32-C Megarnini: hi~Jh

performance in number of instructions to control floating

point operations, in precision, and in speed. The Interdata

8/32 Mcgamini features a 32-bit word and up lo one mil
lion bytes of 750-nanosecond core memory. It gives large

scale computer performance at minicomputer prices.

Thirty in~;tructions provide Load, Store, and Compare in

addition to the standard floating point arithrnc!tic instruc

tions of /\dd, Subtract, Multiply, and Divide. Operands can
be either single or double precision. Both ope1·ands can be

located iri the floating point registers, or one operand can
be in the floating point registers and the othc;r in memory.

Load and Store have a third format for loadinq and storing

multiple =1oatin~J point registers.

Four additional instructions perform Fix and Float con

version between the standard single precision integer and

single or double precision floatin~J point formats_

PROCESSOR ENHANCEMENTS

High Performance
Floating Point

for the Model 8/32
Megamini®

Because the 8/32-C uses a 32-bit word, single precision

numbers are the equivalcmt of 7.2 decimal digits. Double

precision numbers arc lh(! (;quivalen L of 16. 7 clec1mal digi ls.

Speeds for sinqle precision floating point arith1rn·tic Jre

0-40 microsecond for Compare ~cqiswr, 1.00 ni:c~rosecond

for Add Register, 1. 75 microseconds for Multiply Register,

and 3.60 microseconds for Uivide Register_ Dr)uble prcci

sion arithmetic Limes arc 0.60 inicrosccond for Cumparc

R(;gister Double, 1.04 microseconds for /\dd He\iistcr

Double, 2.50 microseconds for Multiply Register Double,

and 6.70 for Divide Re~iistcr Duuble_ These tirm's arc th(~

fastest possible instruction c;><ecution times.

Table 1 lists all the floatinq point arithmetic instructions

with execution times.

FEATURES

• Single Precision (7.2 d(ximal diqits)

• Double Precision (16.7 decimal di~Jits)

• Thirty Floating Point Instructions

• Eight 32-Bi t Registers (si nqle precision)

• Eight 64-Bit Reqisters (double precision)

lntcrcfota flcgistcrcd Trademark

TABLE 1. HIGH PERFORMANCE FLOATING POINT INSTRUCTIONS

I 1 nstruction Mnemonic Instruction Format Execution Time, usec. *I
SINGLE PRECISION

Loaa Floating Point LE_ RX 1, RX2, RX3 1.39

Load Floating Point Rr;gister LLR RR 1.04

Load Floating Point Multiple !_ME RX 1, RX2, RX3 3.57 + 1.34n

Store Floating Point STE RX1,RX3, 2.23

RX2 2.60

Store Floating Point Multiple STME l~X 1, RX2, RX3 3.59 + 0.90n

/\dd Floating Point AE RX1, RX2, RX3 1.82

Add Floating Point Reqister AER RR 1.00

Subtract Floating Point SE RX 1, RX2, RX3 1.82

Subtract Floating Point Register SER RR 1.00

Multiply Floating Point ME RX1, RX2, RX3 2.50

Multiply Floating Point Register MER RR 1.75

Divide Floating Point DE RX 1, RX2, RX3 4.45

Divide Floating Point Register om RR 3.60

Compare Floating Point CE RX 1, RX2, RX3 1.45

Compare Floatinq Point Register cm RR 0.60

Fix Register FXR RR 5.35

Float Register FLR RR 2.00

DOUBLE PRECISION

Load Double Precision Floating Point LO RX1,RX3 2.91

RX2 3.28

Load Register Double Precision Floating Point LOR RR 1.04

Load Multiple Double Precision Floatinq Point LMD RX 1, RX2, RX3 3.69 + 2.19n

Store Double Precision Floatin~1 Point STD RX 1, RX2 2.75

RX3 2.81

Store Multiple Double Precision Point STMD RX 1, RX2, RX3 4.50 + 1.80n

Add Double Precision Floatinq Point AD RX1, RX3 3.38

RX2 3.75

Add Register Double Precision Floating Point ADR RR 1.04

Subtract Double Precision Floating Point SD RX1, RX3 3.38

RX2 3.75

Subtract Rcciister Double Precision Floating Point SOR RR 1.04

Multiply Double Precision Floating Point MD RX1,RX3 4.90

RX2 5.30

Multiply Register Double Precision Floating Point MOR RR 2.50

Divide Double Precision F loatin(J f)oin t DD RX1, RX3 9.20

RX2 9.65

Divide Register Double Precision F: loa ting Point DOR RR 6.70

Compare Double Precision Floating Point CD RX1,RX3 3.00

RX2 3.40
Compare Register Double Precision Floating Point CDR RR 0.60
Fix Register Double Precision FXDR RR 8.10
Float Register Double Precision FLOR RR 2.00

*Execution times vary depending on the data in the operands in rnany cases and on the instruction's location in the lookahead

stack for memory referencing instructions. In all cases, the listed time for an instruction is the fastest execution time. The

following factors can be used to adjust the execution times:

• Normalize result (Add, Subtract, Multiply, Divide, Float, Load) - 100 nanoseconds pc;r hexadecimal digit shifted.

• Equalile exponents (/\dd, Subtract) - 100 nanoseconds per hexadecimal digit shifted.

• Data with alternate l's and O's (Multiply only) - can increase time by up to 700 nanoseconds for single precision oper

ands and by 1600 nanoseconds for double precision operands.
• Position of instruction in lookahead stack (all memory referencing instructions) - can increase execution time by 400

nanoseconds (maximum), if the instruction read causes the stack to try to refill from memory, or if the~ stack is already

being filled from memory.

FLOATll\IG POINT DATA FORMATS

The data forrr1ats for floating point operands are based on

hexadecimal digits. [ach operand consists of a sign, an

exponent, and a fraction. The sign is one bit that designates

the sign oi the fraction: zero (0) for positive fraction and
one (1) for negative fraction. The exponent is a 7-bit field

that expresses the floating point number's exponent in

hexadecimal excess 64 notation. r=or example, 64 (x '40')

in the exponent field represents an exponent of ;ero,

63 (x '3F:') in the exponent field represents an exponent of

minus one (-1), and 65 (x '41') in the exponent field

represents an exponent of plus one (+1). The fraction
consists oi six (single precision) or fourteen (double preci
sion) hexadecimal digits expressed in absolute form.

The exponent of true zero (all ;cros in fraction) is 1ero. The

sign of true ;cro is always 1ero (positive). Figu1'c 1 illustrates

the floating point formats.

-··---rJ. B ______ ._
------ 31 ~2 - 64

IF (Cont'dl-1
X F

--- ---

~,ul ")"FEJ
VALUE OF THE FRACTION (first word)
= Fl.16-l + F2.16" 2 • F3.16-3 t F4.16·4

+ F5.16·5 + F6.16-6

Double Pr..:_d

VALUE OF THE FRACTION (second word - double precision only)
= F7.16-l + FB.16-8 + F9_16.g + F10.16·l0

; • F11.16·l l + F12.16· 12 + F13.16· 13 + F14.16· 14

! __ EXPONENT IN EXCESS 64 NOTATION

EQUIVALENTS
~XCESS 64 _HEXADECIMAL
00 TO 3F -40 TO - 1

40 0
41 TO 7F 1 TO 3F

.DECIMAL
64 TO

1TO63

SIGN= 0 POSITIVE FLOATING POINT NUMBER
= 1 NEGATIVE FLOATING POINT NUMBER

FIGURE 1. FLOATING POINT ARITHMETIC DATA FORMATS

Because of the hexadecimal format, normalized numbers can

have up to three leading 1eros in the fraction. Minimum

precision for single precision operands is equivalent to 21

bits in binary format or 6.2 decimal digits. Minimum pre

cision for double precision operands is equivalent to 83 bits

binary format or 15.9 decimal digits.

Results of all floating point operations includinn the Float

instructions arc normalized in hexadecimal format. All

Load instructions except Load Mu!tiple normali1e numbers

transferred into the floating point registers. Other floating

point insH Jctions assume normali;ed operands.

The result of a single precision floating point arithmc;tic

operation is rounded up rather than truncated. The resu It

is calculated to 7 hexadecimal digits (the seventh digit is

called a guard digit). If the seventh hexadecimal digit is

equal to B or above, a one (1) is added to the six th hexa

decimal diqit. The result of a double precision arithmetic

operation is simply truncated.

CONDITION CODES

The Condition Code (CC) bits arc se1 for the floati_ng point

arithmetic operations and for Fix and Float instructions

to indicate the characteristics ot the result. They are:

• Result is zero

• Result is less than ;ero

• Result is greater than 1ero
• Exponent overflow (greater than t-63), result is negative

• [xponent overflow (greater than 163), result is positive

Result is forced to maxirrnJm value (all 1's).

• [xponent underflow (less than -64). Result is forced

to Lero.

Divide has one additional condition code settinq:

• Divisor equal to 1ero.

1=or Fix instructions, Exponent Underflow does not occur.

For Float instructions, neither E..xponent Overfluw nor

Underflow occurs. All the Load instructions except the

l_oad Multi pie instructions use the same condition :.::odes

as the ari th rnetic instructions, but Exponent Overflow docs

not occur. Load Multiple instructions leave the condition

codes unchanged from the previous operation.

/\II the Store instructions also leave the condition codes

unchanged from the previous operations.

The Compare instructions use the condition code st:ttinqs

to indicate the following character1st1cs of the result:

• Operands arc equal.

• First operand is less than second operand.

• First operand is greater than second operand.

All Exponent Underflow or Overflow conditions except as

the result of a Fix instruction qcnerate an Arithmetic Fault
Interrupt. A Fix instruction Exponent Overflow condition

does not generate an interrupt.

INSTRUCTION FORMATS

The M83-111 High Performance Floating Point CJption uses
four register formats: Rq1ister-to-Heqister (RH), Register and
Indexed Storage 1 (RX 1), F:egister and I 11dexcd Sturaqc 2

(RX2), and Register and Indexed Storage 3 (RXJ). The Fix

and Float instructions use only the RR format. All other
instructions use all four formats. Figure 2 illustrJtt:s the

instruction formats.

In the RR format except for Fix and Float instructions, R1

and R2 select floating point registers. Registers are even

numbered for both single and double precision: 0, 2, 4, 6, 8,
A, C, and E. For the Fix instructions, R 1 selects a tJeneral

purpose register and R2 selects a floating point register. For

the Float instructions, R1 selects a floating point register

and R2 selects one of the general purpose rcgiste1s.

For the RX 1, RX2, and RX3 instruction formats, R 1 selects
a floating point register that contains one operand. The

second operand resides in memory. The contents of the

general purpose register X2 is used as a base added to the
02 displacement to form the memory address of the second

operand. In the RX3 format, the contents of two general

purpose registers can be used with A2 to calculate the
memory address of the second operand.

KEGISHR TO REGISTLK !llHI

HEGISTER AND INDEXcD STOHAGF 1 !f1X1!

OP

I~ 1_1i_ _1_51, I t 18

l H1 , x2 !o al
.. J l j j

RECilSTER AND INDEXED STORAGE 2 IRX2!

10 't 111 _ 1~L r17
l - OP -- l R 1 _l x 2 \ 1 I
RcGISTER AND INDEXED STORAGE 3 IRX31

71 R1

11
r __ l~I J17+ l]20

OP _____ l ____ _J FX2 .. oj 1joj0 SX2

OP Operiit1on Code

H1 First operand rcq1ster

H2 Second operand register

X2 Second operand sin~Jle index register

02 Second operand displacement
F X2 Second opcranrt first index register

SX2 Ser:ond opcrilnr1 second index register

A? Second operand direct address

D2

3~

D2 _J

A2 --.,Y) 471
~F-----_J

FIGURF 2. FLOATING POINT INSTRUCTION FORMATS

The information contained h-f~-r:~~~-~tcr~~c~~-~:--t~~~;~~~--1
description and is su~)ject to chanqe with produc1 cnhancerncn~

Printed in U.S.A.

SOFTWARE SUPPORT

The OS/32MT02 Multitasking Operating System and the

FORTRAN VI compiler support the M83-111 Hinh Perfor

mance Floating Point option.

OS/32MT is a real-time, event-driven operating system. It
provides fast real-time response in the foreground. The back

ground can be used for batch processing or to develop

programs for on-line tasks or applications computation.

The background can be used for batch processing or to
develop programs for on-line tasks or applications computa
tion.

OS/32MT supports three file structures, 255 levels of task

priority, and dynamic memory segmentation and relocation.

FORTRAN VI is a full ANSI standard language implementa
tion with full Purdue/I SA extensions for real-time processing.

The compiler includes a re-entrant run-time librarv. It can

handle large arrays and programs.

MANUAL CONTROL

The Hexadecimal Display Panel (see Figure 3) can display

the contents of the floating point registers. The FLT key

selects the single precision floating point register set if it is
preceded by depressing the FN (Function) Key with num

ber 2. The FLT key preceded by depress1 ng F N key with

number 3 selects the double precision floating point register
set for display. The hexadecimal keys select which register
is displayed. For double precision, odd numbers select the

least significant 32-bit register and even numbers the most
significant 32-bit register. For single precision, only even
numbers have meaning and depressing an odd number
selects the next lower even number register. Registers are
numbered, 0, 2, 4, 6, 8, A, C, and E.

INTERDATA PRODUCT NUMBER

M83-111 High Performance Floating Point Option for the

Model 8/32

9761033

