
PERKIN-ELMER

MODEL 3205 SYSTEM INSTRUCTION SET
Reference Manual

50-022 ROO

The information in this document is sub1ect to change without notice and should not be

construed as a commitment by The Perkin-Elmer Corporation. The Perkin-Elmer Corpo­

ration assumes no responsibility for any errors that may appear in this document.

The hardware description in this document is intended solely for use in operation, installa­

tion, maintenance, or repair of Perkin-Elmer equipment. Use of this document for all other

purposes. without prior written approval from Perkin-Elmer is prohibited.

Any approved copy of this manual must include the Perkin-Elmer copyright notice.

Warning: This equipment generates, uses, and can radiate radio frequency

energy and if not installed and used in accordance with the instructions manual,

may cause interference to radio communications. It has been tested and found

to comply with the limits for a Class A computing device pursuant to Subpart J

of Part 15 of FCC Rules, which are designed to provide reasonable protection

against such interference when operated in a commercial environment. Opera­

tion of this equipment in a residential area is likely to cause interference in

which case the user at his own expense will be required to take whatever

measures may be required to correct the interference.

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757

© 1984 by The Perkin-Elmer Cor-poration

Printed in the United States of America

TABLE OF CONTENTS

PREFACE

CHAPTERS

1 SYSTEM DESCRIPTION

1.1

1.2
1. 2 .1
1.2.1.1
1.2.1.2
1.2.1.3
1. 2. 2
1. 2. 3

1. 3

1.4

1. 5
1. 5. 1
1. 5. 2
1. 5. 3
1. 5. 4
1. 5. 5

1. 6

1. 7

1. 8
1. 8. 1
1. 8. 2
1. 8. 3
1. 8. 4
1. 8. 5
1. 8. 6
1. 8. 7

1. 8. 8

50-022 ROO

INTRODUCTION

PROCESSOR
Program Status Word (PSW)
Register Set Select (R)
Condition Code (C, V, G, L)
Location Counter (LOC)
General Registers
Floating Point Registers

PROCESSOR INTERRUPTS

RESERVED MEMORY LOCATIONS

DATA FORMATS
Fixed Point Data
Floating Point Data
Logical Data
Decimal String Data
Alphanumeric String Data

DATA ALIGNMENT

INSTRUCTION ALIGNMENT

INSTRUCTION FORMATS
Branch Instruction Formats
Programming Examples
Register to Register (RR) Format
Short Form (SF) Format
Register and Indexed Storage One (RXl) Format
Register and Indexed Storage Two (RX2) Format
Register and Indexed Storage Three·(RX3)
Format
Register and Immediate storage One (Ril)
Format

xiii

1-1

1-4
1-4
1-5
1-6
1-7
1-7
1-7

1-7

1-8

1-9
1-9
1-10
1-10
1-10
1-10

1-11

1-11

1-11
1-14
1-14
1-16
1-17
1-18
1-20

1-23

1-25

i

CHAPTERS (Continued)

1. 8. 9

1. 8. 10

Register and Inunediate Storage Two (RI2)
Format
Register and Indexed Storage/Register and
Indexed Storage (RXRX) Format

2 SYSTEM CONTROL

2.1

2.2

2.3
2.3.l
2.3.2

2.4
2.4.1
2.4.2 -
2.4.3

2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.5.6
2.5.7

2.5.8

2.5.9

2 .. 5.10

2.5.11
2.5.12
2.5.13
2.5.14

2.6

2.7

INTRODUCTION

CONFIGURATION

CONSOLETTE SWITCHES AND INDICATORS
Key-Operated Security Lock
Control Switches

OPERATING INSTRUCTIONS
Power Up
Entering Console Service
Initial Program Load (IPL)

SYSTEM TERMINAL COMMANDS
Select an Address and Examine (@)
Increment and Examine Next Location (+)
Decrement and Examine Prior Location (-)
Modify Current Location (=)
Examine General Register (R)
Modify General Register (=)
Examine Single Precision Floating Point
Register (F)
Modify Single Precision Floating Point
Register (=)
Examine Double Precision Floating Point
Register (D)
Modify Double Precision Floating Point
Register (=)
Examine Program Status Word (PSW) (P)
Modify Program Status Word (PSW) (=)
Execute Single Instruction (>)
Enter Run Mode (<)

MEMORY INITIALIZATION

SYSTEM TERMINAL PROGRAMMING INSTRUCTIONS

3 LOGICAL OPERATIONS

3.1 INTRODUCTION

3.2 LOGICAL DATA FORMATS

ii

1-27

1-29

2-1

2-1

2-4
2-4
2-4

2-5
2-5
2-6
2-6

2-6
2-6
2-7
2-7
2-7
2-7
2-8

2-8

2-8

2-8

2-9
2-9
2-9
2-9
2-9

2-9

2-11

3-1

3-1

50-022 ROO

CHAPTERS (Continued)

3.3
3.3.1
3.3.2
3.3.3

3.4

3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6
3.5.7
3.5.8
3.5.9
3.5.10
3.5.11
3.5.12
3.5.13
3.5.14
3.5.15
3.5.16
3.5.17
3.5.18
3.5.19
3.5.20
3.5.21
3.5.22
3.5.23
3.5.24
3.5.25
3.5.26
3.5.27
3.5.28
3.5.29
3.5.30
3.5.31
3.5.32
3.5.33
3.5.34
3.5.35
3.5.36
3.5.37
3.5.38
3.5.39
3.5.40
3.5.41

50-022 ROO

OPERATIONS
Boolean Operations
Translation
List Processing

LOGICAL INSTRUCTION FORMATS

LOGICAL INSTRUCTIONS
Load (L, LR, LI)
Load Immediate Short (LIS)
Load Complement Short (LCS)
Load Halfword (LH, LHI)
Load Address (LA)
Load Real Address (LRA)
Load Halfword Logical (LHL)
Load Multiple (.LM)
Load Byte (LB, LBR)
Exchange Halfword Register (EXHR)
Exchange Byte Register (EXBR)
Store (ST)
Store Halfword (STH)
Store Multiple (STM)
Store Byte (STB, STBR)
Compare Logical (CL, CLR, CLI)
Compare Logical Halfword (CLH, CLHI)
Compare Logical Byte (CLB)
AND (N , NR, NI)
AND Halfword (NH, NHI)
OR (0 , OR, 0 I)
OR Halfword (OH, OHI)
Exclusive-OR (X, XR, XI)
Exclusive-OR Halfword (XH, XHI)
Test Immediate (TI)
Test Halfword Immediate (THI)
Shift Left Logical (SLL, SLLS)
Shift Right Logical (SRL, SRLS)
Shift Left Halfword Logical (SLHL, SLHLS)
Shift Right Halfword Logical (SRHL, SRHLS)
Rotate Left Logical (RLL)
Rotate Right Logical (RRL)
Test and Set (TS)
Test Bit (TBT)
Set Bit (SBT)
Reset Bit (RBT)
Complement Bit (CBT)
Cyclic Redundancy Check (CRC12, CRC16)
Translate (TI..ATE)
Add To List (ATL, ABL)
Remove From List (RTL, RBL)

3-2
3-2
3-2
3-3

3-4

3-4
3-7
3-8
3-9
3-10
3-11
3-12
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-27
3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-37
3-39
3-40
3-41
3-42
3-43
3-45
3-47
3-48
3-49
3-50
3-51
3-52
3-54
3-58
3-60

iii

CHAPTERS (Continued)

4 BRANCHING

4.1

4.2
4.2.1
4.2.2

4.3

4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5

4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6
4.5.7
4.5.8
4.5.9
4.5.10
4.5.11
4.5.12
4.5.13
4.5.14
4.5.15
4.5.16

INTRODUCTION

OPERATIONS
Decision Making
Subroutine Linkage

BRANCH INSTRUCTION FORMATS

BRANCH INSTRUCTIONS
Branch on True (BTC, BTCR, BTBS, BTFS)
Branch on False (BFC, BFCR, BFBS, BFFS)
Branch and Link (BAL, BALR)
Branch on Index Low or Equal (BXLE)
Branch on Index High (BXH)

EXTENDED BRANCH MNEMONICS
Branch on Carry (BC, BCR, BCS)
Branch on No Carry (BNC, BNCR, BNCS)
Branch on Equal (BE, BER, BES)
Branch on Not Equal (BNE, BNER, BNES)
Branch on Low (BL, BLR, BLS)
Branch on Not Low (BNL, BNLR, BNLS)
Branch on Minus (BM, BMR, BMS)
Branch on Not Minus (BNM, BNMR, BNMS)
Branch on Plus (BP, BPR, BPS)
Branch on Not Plus (BNP, BNPR, BNPS)
Branch on Overflow (BO, BOR, BOS)
Branch on No Overflow (BNO, BNOR, BNOS)
Branch on Zero (BZ, BZR, BZS)
Branch on Not Zero (BNZ, BNZR, BNZS)
Branch (Unconditional) (B, BR, BS)
No Operation (NOP, NOPR)

5 FIXED POINT ARITHMETIC

iv

5.1

5.2

5.3

5.4

5.5

5.6

5.7
5.7.1
5.7.2

INTRODUCTION

FIXED POINT DATA FORMATS

FIXED POINT NUMBER RANGE

OPERATIONS

CONDITION CODE

FIXED POINT INSTRUCTION FORMATS

FIXED POINT INSTRUCTIONS
Add (A, AR, AI, AIS)
Add H~lfword (AH, AHI)

4-1

4-1
4-1
4-2

4-2

4-2
4-3
4-5
4-7
4-9
4-11

4-13
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30

5-1

5-1

5-2

5-2

5-3

5-4

5-4
5-6
5-8

50-022 ROO

CHAPTERS (Continued)

5.7.3
5.7.4
5.7.5
5.7.6
5.7.7
5.7.8
5.7.9
5.7.10
5.7.11
5.7.12
5.7.13
5.7.14
5.7.15
5.7.16
5.7.17

Add to Memory (AM)
Add Halfword to Memory (AHM)
Subtract (S, SR, SI, SIS)
Subtract Halfword (SH, SHI)
Compare (C, CR, CI)
Compare Halfword (CH, CHI)
Multiply (M, MR)
Multiply Halfword (MH, MHR)
Divide (D, DR)
Divide Halfword (DH, OHR)
Shift Left Arithmetic (SLA)
Shift Left Halfword Arithmetic (SLHA)
Shift Right Arithmetic (SRA)
Shift Right Halfword Arithmetic (SRHA)
Convert to Halfword Value Register (CHVR)

6 FLOATING POINT ARITHMETIC

6.1

6.2

6.3
6.3.l
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8

6.4

6.5
6.5.1
6.5.2
6.5.3
6.5.4

6.5.5
6.5.6

6.5.7
6.5.8
6.5.9
6.5.10
6.5.11
6.5.12
6.5.13
6.5.14
6.5.15

50-022 ROO

INTRODUCTION

FLOATING POINT DATA FORMATS

FLOATING POINT NUMBER
Floating Point Number Range
Normalization
Equalization
'l1rue Zero
Exponent Overflow
Exponent Underflow
Guard Digits and R*Rounding
Conversion from Decimal

CONDITION CODE

FLOATING POINT INSTRUCTIONS
Load Unnormalized Floating Point (LU, LUR)
Load Floating Point (LE, LER, LEGR)
Load Positive Floating Point Register (LPER)
Load Complement Floating Point Register
(LCER)
Load Multiple Floating Point (LME)
Load General Register from Floating Point
Register (LGER)
Store Floating Point (STE)
Store Multiple Floating Point (STME)
Add Floating Point (AE, AER)
Subtract Floating Point (SE,SER)
Compare Floating Point (CE, CER)
Multiply Floating Point (ME, MER)
Divide Floating Point (DE, DER)
Fix Register (FXR)
Float Register (FLR)

5-10
5-12
5-14
5-16
5-18
5-20
5-22
5-24
5-26
5-30
5-33
5-35
5-36
5-38
5-39

6-1

6-2

6-3
6-4
6-5
6-6
6-7
6-8
6-8
6-9
6-10

6-11

6-11
6-14
6-15
6-17

6-19
6-20

6-21
6-22
6-23
6-24
6-26
6-28
6-29
6-31
6-33
6-35

v

CHAPTERS (Continued)

6.5.16

6.5.17

6.5.18

6.5.19

6.5.20

6.5.21

6.5.22
6.5.23

6.5.24
6.5.25

6.5.26

6.5.27

6.5.28

6.5.29
6.5.30
6.5.31

6.5.32

6.5.33

Load Unnormalized Double Precision Floating
Point (LW, LWR)
Load Double Precision Floating Point (LD,
LOR, LDGR)
Load Positive Double Precision Register
(LPDR)
Load Complement Double Precision Register
(LCDR)
Load Multiple Double Precision Floating
Point (LMD)
Load General Registers from Double Precision
Floating Point Register (LGDR)
Store Double Precision Floating Point (STD)
Store Multiple Double Precision Floating
Point (STMD)
Add Double Precision Floating Point (AD, ADR)
Subtract Double Precision Floating Point (SD,
SOR)
Compare Double Precision Floating Point (CD,
CDR)
Multiply Double Precision Floating Point (MD,
MOR)
Divide Double Precision Floating Point (DD,
DOR)
Fix Register Double Precision (FXDR)
Float Register Double Precision (FLOR)
Load Single Precision Floating Point
Register from Double (LED, LEDR)
Load Double Precision Floating Point Register
from Single (LOE, LDER)
Store Double Precision Floating Point Register
in Single Precision Memory (STDE)

7 STRING OPERATIONS

7.1

7.2
7.2.1
7.2.2

7.3

7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7

INTRODUCTION

DECIMAL DATA FORMAT DEFINITIONS
Packed Decimal
Unpacked (Zoned) Decimal

DECIMAL AND ALPHANUMERIC STRING INSTRUCTION
FORMATS

STRING INSTRUCTIONS
Load Packed Decimal String as Binary (LPB)
Store Binary as Packed Decimal String (STBP)
Move Translated Until (MVTU)
Move (MOVE, MOVEP)
Compare (CPAN, CPANP)
Pack and Move (PMV, PMVA)
Unpack and Move (UMV, UMVA)

6-37

6-38

6-39

6-40

6-41

6-42
6-43

6-44
6-45

6-47

6-49

6-50

6-52
6-54
6-55

6-56

6-57

6-58

7-1

7-1
7-1
7-2

7-3

7-3
7-4
7-5
7-6
7~8

7-10
7-12
7-14

vi 50-022 ROO

CHAPTERS (Continued)

8 HIGH-SPEED DATA HANDLING INSTRUCTIONS

8.1

8.2

8.3
8.3.1
8.3.2

INTRODUCTION

DATA HANDLING INSTRUCTION FORMATS

DATA HANDLING INSTRUCTIONS
Process Byte (PB)
Process Byte Register (PBR)

9 INPUT/OUTPUT (I/O) OPERATIONS

9.1

9.2
9.2.1
9.2.2
9.2.3

9.3

9.4

9.5

9.6

9.7
9.7.1
9.7.2
9.7.3

9.8

9.9
9.9.1
9.9.2
9.9.3
9.9.4
9.9.5
9.9.6
9.9.7
9.9.8

9.10

9.11
9. 11. 1
9. 11. 2
9. 11. 3
9. 11. 4

50-022 ROO

INTRODUCTION AND CONFIGURATION OF
INPUT/OUTPUT (I/O) SYSTEM

DEVICE CONTROLLERS
Device Addressing
Processor/Controller Conununication
Interrupt Queuing

INTERRUPT SERVICE POINTER TABLE (ISPT)

CONTROL OF INPUT/OUTPUT (I/O) OPERATIONS

STATUS MONITORING INPUT/OUTPUT (I/O)

INTERRUPT DRIVEN INPUT/OUTPUT (I/O)

SELECTOR CHANNEL (SELCH) INPUT/OUTPUT (I/O)
Selector Channel (SELCH) Devices
Selector Channel (SELCH) Operation
Selector Channel (SELCH) Progranuning

INPUT/OUTPUT (I/O) INSTRUCTION FORMATS

INPUT/OUTPUT (I/O) INSTRUCTIONS
Output Command (OC, OCR)
Sense Status (SS, SSR)
Read Data (RD, RDR)
Read Halfword (RH, RHR)
Write Data (WD, WDR)
Write Halfword (WH, WHR)
Autoload (AL)
Simulate Channel Program (SCP)

AUTO DRIVER CHANNEL

CHANNEL COMMAND BLOCK (CCB)
Subroutine Address
Buffers
Translation
Check Word

8-1

8-1

8-1
8-2
8-4

9-1

9-1
9-1
9-2
9-2

9-2

9-3

9-4

9-4

9-6
9-6
9-6
9-7

9-8

9-8
9-9
9-10
9-11
9-12
9-13
9-14
9-15
9-17

9-18

9-18
9-19
9-20
9-20
9-21

vii

CHAPTERS (Continued)

9. 11. 5
9. 11. 6
9. 11. 7

Channel Command Word (CCW)
Valid Channel Command Codes
General Auto Driver Channel Programming
Procedure

10 STATUS SWITCHING AND INTERRUPTS

10 .1

10. 2

10.2.1
10. 2. 1. 1
10.2.1.2
10. 2. 1. 3
10. 2. 1. 4
10. 2. 1. 5
10. 2. 1. 6
10. 2. 1. 7
10. 2. 1. 8

INTRODUCTION

PROGRAM STATUS WORD (PSW) AND RESERVED
MEMORY LOCATIONS
Program Status Word (PSW)
Catastrophic System Failure (CSF)
Memory Access Level Field (LVL)
Floating Point Masked Mode (FLM)
Interruptible Instruction in Progress (IIP)
Wait State (W)
Input/Output (I/O) Interrupt Mask (I)
Machine Malfunction Interrupt Enable (M)
Floating Point Underflow Interrupt Enable
(FLU)

10.2.1.9 Relocation/Protection Enable (R/P)
10.2.1.10 System Queue Service (SQS) Interrupt Enable

10. 2. 1. 11
10. 2. 1.12
10. 2. 1. 13
10.2.2

10.2.3

10.3
10.3.1
10.3.2
10.3.3
10.3.4

10.4
10.4.1
10.4.2
10.4.3

10.5
10.5.1
10.5.2
10.5.2.1
10.5.2.2
10.5.3
10.5.4
10.5.4.1

(Q)
Protect Mode Enable (P)
Register Set Select Field (R)
Condition Code (C, V, G, L)

Program Status Word (PSW) Location Counter
(LOC)
Reserved Memory Locations

INTERRUPT TIMING AND PRIORITY
Maskable and Nonmaskable Interrupts
Interrupt Timing
Interrupt Precedence
Interruptible Instructions

PROCESSOR MODES
Console Mode
Run Mode
Single Step Mode

STATUS SWITCHING
Illegal Instruction Interrupt
Data Format Fault Interrupt
Alignment Faults
Invalid Digit Faults
Relocation/Protection (MAT) Fault Interrupt
Machine Malfunction Interrupt
Early Power Fail (EPF) Detect and Automatic
Shutdown

9-21
9-23

9-25

10-1

10-1
10-3
10-3
10-3
10-3
10-4
10-4
10-5
10-5

10-6
10-6

10-6
10-7
10-7
10-8

10-8
10-9

10-10
10-10
10-12
10-12
10-13

10-14
10-14
10-15
10-16

10-17
10-18
10-18
10-19
10-19
10-20
10-20

10-22

viii 50-022 ROO

CHAPTERS (Continued)

10.5.4.2 Power Restore
10.5.4.2.1 If the Loader Storage Unit (LSU) Is

Disabled
10.5.4.2.2 If the Loader Storage Unit (LSU) Is

Enabled
10.5.4.3
10.5.4.4
10.5.5
10.5.5.1
10.5.5.2

10.5.6
10.5.7
10.5.8
10.5.9
10.5.10

10.6
10.6.1
10.6.2
10.6.3
10.6.4
10.6.5
10.6.6
10.6.7
10.6.7.1
10.6.7.2
10.6.7.3
10.6.7.4
10.6.7.5
10.6.7.6
10.6.7.7
10.6.7.8

10.6.7.9

Noncorrectable Memory Error
Nonconf igured Memory Address
Input/Output (I/O) Device Interrupts
Priority Levels
Immediate Interrupt - Auto Driver Channel
Operation
Simulated Interrupt (SINT)
System Queue Service (SQS) Interrupt
Supervisor Call (SVC) Interrupt
System Breakpoint Interrupt
Arithmetic Fault Interrupt

STATUS SWITCHING INSTRUCTIONS
Load Program Status Word (LPSW)
Load Program Status Word Register (LPSWR)
Exchange Program Status Register (EPSR)
Simulate Interrupt (SINT)
Supervisor Call (SVC)
System Breakpoint (BRK)
Privileged System Function (PSF)
Read Error Logger (REL)
Load Process Segment Table Descriptor (LPSTD)
Load Shared Segment Table Descriptor (LSSTD)
Store Process State (STPS)
Load Process State (LOPS)
Save Interruptible State (ISSV)
Restore Interruptible State (ISRST)
Store Byte, No Error Correction Code (ECC)
(XSTB)
Reset Memory Voltage Failure (RMVF)

11 MEMORY MANAGEMENT

11.1

11. 2

11. 3
11. 3. 1
11.3.1.1
11.3.1.2
11. 3. 2

INTRODUCTION

TRANSLATION FROM VIRTUAL TO REAL ADDRESS

ADDRESS SPACE
Virtual Address (VA)
Segment Field
Offset and Page Field
Selection of Virtual or Physical Addressing

11.4 SHARED AND PRIVATE SEGMENTS
11.4.1 Segment Table Descriptors (STDs) and Their

Use
11.4.1.1 Format of a Segment Table Descriptor (STD)

50-022 ROO

10-24

10-24

10-25
10-25
10-26
10-27
10-27

10-28
10-29
10-29
10-31
10-31
10-32

10-33
10-34
10-35
10-36
10-37
10-38
10-39
10--40
10-41
10-43
10-44
10-45
10-46
10-48
10-49

10-50
10-51

11-1

11-2

11-6
11-6
11-6
11-7
11-7

11-7

11-8
11-8

ix

CHAPTERS (Continued)

11. 4. 2

11. 5
11. 5. 1
11. 5. 2
11.5.3
11. 5. 4

11.6
11.6.1

11.6.1.1

11.6.1.2
11.6.1.3
11.6.1.4
11.6.1.5
11. 6. 2
11.6.3

11. 6. 4
11. 6. 5

Setting the Virtual Address Space Size

SEGMENT TABLE ENTRIES (STEs)
Segment Table Entry (STE) Size
Segment Tables
Hardware Segment Table Entry (HSTE)
Software Segment Table Entry (SWSTE)

MEMORY ADDRESS TRANSLATOR (MAT) FAULTS
Conditions that Cause Memory Address
Translator (MAT) Faults
Process Segment Table (PST) or Shared
Segment Table (SST) Size Exceeded Fault
Nonpresence Fault
Access Level Fault
Access Mode Faults
Segment Limit Fault
Fault Precedence
Memory Address Translator (MAT) Fault
Handling Routine
Reexecution of Faulting Instructions
Effect of System Initialization on the
Memory Address Translator (MAT)

11-8

11-9
11-10
11-10
11-10
11-13

11-17

11-17

11-17
11-18
11-18
11-18
11-19
11-19

11-19
11-20

11-21

11. 7
11. 7. 1
11. 7. 2

MEMORY MANAGEMENT INSTRUCTIONS 11-21
Load Process Segment Table Descriptor (LPSTD) 11-22
Load Shared Segment Table Descriptor (LSSTD) 11-23

APPENDIXES

A

B

c

D

E

F

FIGURES

1-l
1-2
1-3

x

OPCODE MAP

INSTRUCTION SUMMARY - ALPHABETICAL BY MNEMONIC

INSTRUCTION SUMMARY - NUMERICAL BY OPCODE

ARITHMETIC REFERENCES

INPUT/OUTPUT (I/O) REFERENCES

CONSOLE SERVICE ROUTINE FLOWCHART

Model 3205 Processor Block Diagram
Program SLatus Word
Register Set Numbering

A-1

B-1

C-1

D-l

E-1

F-1

1-3
1-4
1-6

50-022 ROO

FIGURES (Continued)

1-4
1-5
1-6

2-1
2-2

3-1
3-2
3-3
3-4
3-5
3-6
3-7

5-1

6-1
6-2

7-1
7-2

9-1
9-2
9-3

10-1
10-2

10-3

11-1
11-2
11-3
11-4
11-5
11-6
11-7

TABLES

1-1
1-2
1-3

2-1

4-1

Instruction Formats
Sample Program
RXRX Formats

Consolette
Model 6100 Keyboard Layout

Logical Data
Translation Table Entry
Circular List Definition
Circular List
LRA Example
Flowchart for CRC Generation
List Processing Instructions

Fixed Point Data Formats

Exponent Overflow
Exponent Underflow

Packed Decimal Format
Unpacked Decimal Format

Channel Conunand Block
Channel Command Word
Auto Driver Channel Flowchart

Program Status Word
Schematic Diagram of Interrupt System
Architecture
Machine Malfunction Status Word

Flowchart of MAT Process
PSTD and SSTD Registers
MAT Translation, Private Segment
MAT Translation, Shared Segment
Virtual Address
STE and SWSTE
Bit Representation of HSTE

PSW BITS
RESERVED MEMORY LOCATIONS
OPERAND ABBREVIATIONS

SYSTEM TERMINAL SUPPORT COMMAND SUMMARY

DECISION TABLE

50-022 ROO

1-13
1-15
1-31

2-1
2-3

3-1
3-2
3-3
3-4
3-15
3-53
3-61

5-1

6-8
6-8

7-1
7-2

9-19
9-22
9-26

10-2

10-11
10-22

11-2
11-3
11-4
11-5
11-6
11-9
11-10

1-5
1-8
1-12

2-2

4-1

xi

TABLE (Continued)

5-1

9-1
9-2

10-1
10-2

11-1

D-1
D-2
D-3
D-4
D-5
D-6
D-7

E-1
E-2
E-3

INDEX

xii

FIXED POINT FORMAT RELATIONS

VALID REDUNDANCY CHECKS
CHANNEL COMMAND WORD

PSW BITS
RESERVED MEMORY LOCATIONS

SEGMENT ACCESS FIELD SETTINGS

POWERS OF TWO
POWERS OF SIXTEEN
HEXADECIMAL ADDITION AND SUBTRACTION
HEXADECIMAL MULTIPLICATION AND DIVISION
MATHEMATICAL CONSTANTS
FRACTION CONVERSION
INTEGER CONVERSION

ASCII/HEXADECIMAL CONVERSION
ASCII/CARD CODE CONVERSION
STANDARD-PREFERRED ADDRESS TABLE

5-2

9-23
9-24

10-2
10-9

11-12

D-l
D-2
D-3
D-4
D-5
D-6
D-7

E-1
E-2
E-3

Ind-1

50-022 ROO

PREFACE

This manual provides programming and operating information for
the Perkin-Elmer Model 3205 System. The programmer is provided
with information on the 32-bit system architecture and the unique
memory management scheme, as well as a description of each

·instruction in the repertoire. The instruction descriptions
include valuable system-related information presented in the form
of programming notes and instruction examples.

Chapter 1 is a general description of the Model 3205 System,
processor interrupts, registers, instruction formats and reserved
memory locations. System control, including system commands,
operator and programming instructions, and memory initialization,
is discussed in Chapter 2. Chapter 3 is comprised primarily of
the logical instruction set with a brief description of logical
data formats and operations. Each instruction is outlined by its
assembler notation, opcode and format, accompanied by a
discussion of its operation, the status of its condition code and
an example. Chapter 4 details branching operation and
instructions. Chapters 5 and 6 list fixed and floating point
instructions, and Chapter 7 discusses string operations and
instructions. In Chapter 8, data handling instructions including
the process byte register are discussed. Chapter 9 deals with
the input/output (I/O) operations including status monitoring,
instruction formats and the channel command block (CCB). Chapter
10 discusses the program status word (PSW), reserved memory
locations, interrupt timing and priority, processor modes and
status switching. The bits and function of the memory address
translator (MAT) are described in Chapter 11.

Information pertaining to the system control terminal is given
mainly to show how to access memory, modify locations and single
step the system for troubleshooting.

For information on the contents of all Perkin-Elmer 32-bit
manuals, see the 32-Bit Systems User Documentation Summary.

50-022 ROO xiii

1.1 INTRODUCTION

CHAPTER l
SYSTEM DESCRIPTION

The Model 3205 Processor is designed to meet the needs for low
cost and reliability in a 32-bit minicomputer. The architecture
has improved error recovery capabilities for those applications
where fault tolerance is a necessity, and allows direct
addressing of up to 4Mb of memory implemented in the MOS

Through the use of 32-bit general registers and a comprehensive
instruction set, the Model 3205 Processor provides fullword data
processing and direct memory addressing up to a limit of 4Mb.
See Figure 1-1 for a block diagram of the system. The
instruction set includes:

• Load/store halfwords, fullwords and multiple words

• Fixed point arithmetic on halfwords and fullwords

• Logical operations (AND, OR, Exclusive-OR, compare and test)
on halfwords and fullwords

• Logical and arithmetic shifts and rotation on halfwords and
fullwords

• Bit manipulation

• Floating point arithmetic on single (32-bit) and double
(64-bit) precision operands

• List operations

• Data handling operations

• Input/output (I/O)

• Byte m~nipulations

• Privileged system functions

•. Storage-to-storage functions

• Decimal conversion

50-022 ROO 1-1

With this enriched repertoire and direct memory addressing,
coding and debugging time is reduced to a minimum.

Eight sets of sixteen 32-bit general registers are provided.
Register set selection is controlled by bits in the program
status word (PSW). Register to Register (RR) instructions permit
operations between any of the 16 registers in the current set,
eliminating redundant loads and stores. The multiple register
set organization reduces the overhead that would otherwise be
incurred in saving and restoring registers when responding to
interrupts.

The memory address translator (MAT) provides automatic program
segmentation, relocation and protection. The protect mode
enables detection of privileged instructions. These two features
are invaluable in process control, data communication and
time-sharing operations because they prevent a running program
from interfering with system integrity.

The Model 3205 System supports up to 4Mb of directly addressable
MOS memory. Error correction is standard and is performed across
every 16~bit halfword in memory using a 6-bit modified
hamming-code. All single bit errors are detected and corrected;
all double bit errors and most multiple bit errors are detected.
The memory error logger indicates the location of the latest
faulty memory chip.

The Model 3205 System microcode implements an autodriver channel
that automatically acknowledges all 1/0 interrupts and performs
much of the required overhead before activating an interrupt
service routine (ISR) if enabled. The autodriver channel can
perform data transfers with character translation, longitudinal
or cyclic redundancy checking (CRC), and data buffer chaining
transparent to the user.

1-2 50-022 ROO

(J"I

0
I

0
N
N

~
0
0

t-'
I

w

8059

JJ
CONTROL

STORE

INSTRUCTION REGISTER
~ ,...-

L
() MAIN
c MEMORY

MICRO- OP CODE c M ADDRESS - - 0 vsus- A RBUS - ADDRESS SEQUENCER

REGISTERS

*SEE NOTE 1

*NOTE 1

lj
MULTIPLIER

ALU&
SHIFTER

-vsus-

-

8 SETS 16-32 BIT REGISTERS
8 SPFP REGISTERS
8 DPFP REGISTERS

~

Rl

R2

M

B
u
s

~ u T N
T
E
R

DATA
~ ~

I --------- ERROR
.------------t CORRECTION 1--------'

r--------------------------------------

- 1 r -~
INTEGRATED ~ SYSTEM UNIVERSAL

SELCH rx~ -0 0 D
r __ J l l

-- 1/0 l MUX 6

:J06QQ
LINE MEDIA DISK

PRINTER
NOT PART OF PROCESSOR

Figure 1-1 Model 3205 Processor Block Diagram

1.2 PROCESSOR

The central processing unit (CPU), or processor, controls
activities in the system. It executes instructions in a specific
sequence and performs arithmetic and logical functions. The
processor's components include the following:

• PSW register

• General registers

• Hardware multiply and divide

1.2.1 Program Status Word (PSW)

The 64-bit PSW defines the state of the processor at any given
time (see Figure 1-2).

8061-1 I 0 ~ 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C:><:j40
LOCATION COUNTER

Figure 1-2 Program Status Word

Bits 0:31 are reserved for status information and interrupt
masks; bits 32:63 contain the location counter (LOC). Unassigned
PSW bits must not be used and must always be zero. Status
information and interrupt mask bits are defined in Table 1-1.
See Chapter 10 for details on the interrupt mask bits.

1-4 50-022 ROO

TABLE 1-1 PSW BITS

BIT I MNEMONIC I MEANING
!===

0 I CSF I Must be zero; IF SET, CATASTROPHIC
I SYSTEM FAILURE

1:9 I Unused; must be zero

10:11 I LVL I Memory access level

12 I Reserved; must be zero

13 I FLM I Floating point arithmetic masked mode

14 I IIP I Interruptible instruction in progress

15 I Reserved; must be zero

16 IW I Wait state

17 I I I 1/0 interrupt mask

18 IM I Machine malfunction interrupt mask

19 I FLU I Floating point arithmetic underflow mask

20 I Reserved; must be zero

21 I R/P I Relocation/protection interrupt mask

22 I Q I System queue interrupt mask

23 I P I Protect mode

24:27 I R I Register set select bits

28:31 I C,V,G,L I Condition code

32:39 I I Reserved; must be zero

40:63 I I Program address (LOC)

1.2.1.1 Register Set Select (R)

Bits 24:27 of the PSW are used to designate the current register
set. Register sets are numbered 0 through 15. The processor has
eight sets of general registers (see Figure 1-3).

50-022 ROO 1-5

558-2

REGISTER
SET DESIGNATION

NUMBER

0 RESERVED FOR INTERRUPTS

1
2
3 MAY BE ALLOCATED BY THE OS

4 FOR GENERAL PURPOSE USE

5
6

7
8
9
10 UNIMPLEMENTED

11 SETS

12
13
14

15 GENERAL PURPOSE

Figure 1-3 Register Set Numbering

1.2.1.2 Condition Code (C, V, G, L)

Bits 28:31 of the PSW contain the condition code. As part of the
execution of certain instructions, the state of the condition
code can be changed to indicate the nature of the result. Not
all instructions affect the condition code. The state of the
condition code can be tested with conditional branch
instructions. Each bit in the condition code is set if the
corresponding condition occurred as a result of the last
instruction that affected the condition code. The normal
interpretation of these bits is:

I c I V I G I L
!===============

1 0 0 0
0 l 0 0
0 0 1 0
0 0 0 1

1-6

Arithmetic carry, borrow or shifted carry
Arithmetic overflow
Greater than zero
Less than zero

50-022 ROO

1.2.1.3 Location Counter (LOC)

The LOC contains the address of the instruction currently being
executed by the processor and points to that instruction until it
has successfully completed execution. Once this execution is
completed, the LOC is incremented by 2, 4, 6, 8, 10 or 12
(depending upon the instruction executed). and the next
instruction is fetched. In the case of a branch instruction, the
LOC is loaded with the address to which control is being
transferred, and the next instruction is fetched from that
address.

If an instruction is not successfully completed due to a fault or
other interrupting condition, the LOC contains the address of the
faulting or interrupted instruction. When a program interruption
is due to an incorrect branch address, the LOC contains the
branch address and not the location of the branch instruction.

1.2.2 General Registers

The processor has eight register sets, numbered 0 through 6 and
7 through 15 (see Figure 1-3). There are 16 registers in each
set and each register is 32 bits wide. Register set selection is
determined by the states of bits 24:27 of the current PSW.
Registers 1 through 15 of any set can be used as inde~<~~~i~tJr.s.

When an intellJl.Pt occurs,_ th~- processor loads _EertJne~t
·information .Jnt.o 1-ri::esel_ected:- registers . of tfie .. register set
selected by the new PSW. See Chapter 10 for details of this
·operation.

1.2.3 Floating Point Registers

There are eight single precision floating point registers, each
32 bits wide. These registers are identified by the even numbers
0 through 14.

There are eight double precision floating point registers, each
64 bits wide. These registers are also identified by the even
numbers 0 through 14 and are separate from the single precision
floating point registers. Floating point operations must always
specify the registers with even numbers.

1.3 PROCESSOR INTERRUPTS

The PSW that is loaded in the processor at any point in time is
called the current PSW. If either the status word or both the
LOC and status word are changed, a status switch is said to have
occurred. This status switch can be caused explicitly by
executing special instructions, or it can be forced to occur by
an interrupt or fault. At the time of a status switch, the
current PSW that is saved is called the old PSW. The PSW that
replaces the current PSW is the new PSW.

50-022 ROO 1-7

Interrupt conditions cause the entire PSW to be replaced by a new
PSW, thus breaking the usual sequential flow of instruction
execution. When an interrupt condition occurs, the processor
saves its current PSW either in memory or in a pair of general
registers belonging to the register set selected by the new PSW.
The processor loads information related to the interrupt
condition in other registers of this same set. A new PSW is
loaded from a memory location reserved for the specific interrupt
condition. The immediate interrupt is an exception to the rule.
In this case, the status portion of the new PSW, bits 0:31, is
forced to a preset value, and the LOC is loaded from a memory
location reserved for that interrupting device. See Chapter 10
for details of interrupt processing.

1.4 RESERVED MEMORY LOCATIONS

Physical memory locations X'O' through X'2CF' are called reserved
memory locations. These locations contain the various new PSWs
and other information needed to handle interrupts, as shown in
Table 1-2.

TABLE 1-2 RESERVED MEMORY LOCATIONS

LOCATION MEANING
==

X'OOOOOO'-X'OOOOlF' ' Reserved; must be zero

X'000020'-X'000027'

X'000028'-X'00002B'

X'00002C'-X'00002F'

X'000030'-X'000037'

X'000038'-X'00003F'

X'000040'-X'000043'

X'000044'-X'000047'

X'000048'-X'00004F'

X'000050'-X'00007F'

X'000080'-X'000083'

X'000084'-X'000087'

J-8

Machine malfunction interrupt old PSW

Used by console service microcode

Machine malfunction load memory (LM)
block start address

Illegal instruction interrupt new PSW

Machine malfunction interrupt new PSW

Machine malfunction status word

Machine malfunction virtual (program)
address

Arithmetic fault interrupt new PSW

Bootstrap loader and device definition
table

System queue pointer

Power fail save area pointer

50-022 ROO

TABLE 1-2 RESERVED MEMORY LOCATIONS (Continued)

LOCATION MEANING
==!
X'000088'-X'00008F' System queue service interrupt new PSW

X'000090'-X'000097'

X'000098'-X'00009B'

X'00009C'-X'OOOOBB'

X'OOOOBC'-X'OOOOBF'

X'OOOOCO'-X'OOOOC7'

X'OOOOC8'-X'OOOOCF'
I
I ---

X' 0QQ0DQ' -X' 0002CF'

X'0002D0'-X'0004CF'

X'0004D0'-X'0008CF'

Relocation/protection interru~t new PSW

Supervisor call (SVC) new PSW status ~

SVC new PSW LOC values (16 halfwords)
~

Reserved; must be zero

Reserved; must be zero

Data format fault new PSW

Interrupt service pointer table

Expanded interrupt service pointer table

Expanded interrupt service pointer table

These reserved locations play an important role in both interrupt
and I/O processing (see Chapters 9 and 10).

All LOC values are subject to MAT relocation if the new PSW
enables the MAT (bit 21=1). All other pointers contain absolute
addresses not subject to MAT relocation.

1.5 DATA FORMATS

The processor performs logical operations on single bits, bytes,
halfwords, fullwords and doublewords. This data can represent a
fixed point number, a floating point number, logical information,
a bit or byte array, or a decimal or alphanumeric byte string.

50-022 ROO 1-9

1.5.l Fixed Point Data

Fixed point arithmetic operands can be either halfwords or
fullwords. In fullword multiply and divide operations,

doubleword operands are manipulated. Fixed point data is treated
as 15-bit signed integers in the halfword format. Positive
numbers are expressed in true binary form with a sign bit of 0.

Negative numbers are represented in two's complement form with a
sign bit of 1. The numerical value of zero is represented with
all bits 0. See Chapter 5 for details of fixed point data

representation.

In fixed point arithmetic and logical operations between a

fullword register and a halfword operand, the halfword operand is

expanded to a fullword by propagating the most significant bit
into the high-order bits before the operation is started. This

·permits the use of halfword-to-fullword operations with

consistent results and provides space economy, since small values

do not require fullword locations.

Arithmetic operations on fixed point halfword quantities can
produce results not entirely consistent with those obtained in a

16-bit processor. If this problem exists, the Convert to

~
Halfword Value Register {CHVR) instruction can be used to adjust
the result and the condition code, making them consistent with

the same operations in a 16-bit processor.

1.5.2 Floating Point Data

A floating point number consists of a 7-bit exponent in excess-64

notation and a signed fraction. The quantity expressed by this
numbe·r is the product of the fraction and the number 16 raised to

the power represented by the exponent. Each floating point value

requires a fullword or a doubleword, of which eight bits are used

for the sign and exponent. The remaining bits are used for the
fraction. See Chapter 6 for details of floating point data
representation.

Floating point operations take place between the contents of two

floating point registers, a floating point operand contained in

a fullword or doubleword in memory, or a general register or pair
of general registers.

1.5.3 Logical Data

Logical operations manipulate bytes, halfwords and fullwords. In
addition, it is possible to perform logical operations on single

bits located in bit arrays. See Chapter 3 for details of logical
data representation.

1-10 50-022 ROO

1.5.4 Decimal String Data

Decimal strings are strings of consecutive bytes in memory that
begin and end on byte boundaries. Information contained in a
decimal string can represent packed or unpacked decimal data.
See Chapter 7 for details of decimal data formats and operations.

1.5.5 Alphanumeric String Data

Alphanumeric strings are strings of consecutive bytes in memory
that begin and end on byte boundaries. Information contained in
an alphanumeric string can represent any character stream
including decimal string data. See Chapter 7 for details of
alphanumeric string data format and operations.

1.6 DATA ALIGNMENT

The following discussion is unique to the Model 3205 System
implementation and is presented for information only. Any
program that misuses a processor feature by taking advantage of
a peculiarity of one implementation cannot work on a different
implementation.

Locations in main memory are numbered consecutively, beginning at
address '000000'.

Bytes of information are addressed by their specific hexadecimal
address. Two bytes form a halfword. Halfwords have an even
address, whi~h is the address of the lower addressed byte in the
pair. Two halfwords comprise a fullword. A fullword address is
a multiple of four (four bytes) and is the address of the lower
addressed halfword in the pair. A data format fault is generated
if a fullword access is directed to an address that has bit 30 or
31 set, or if a halfword access is directed to an address that
has bit 31 set.

The common assembly language (CAL) assembler generates an error
flag if it sees halfword operations directed to an odd byte
address or if it sees fullword operations directed to an address
other than a fullword address.

1.7 INSTRUCTION ALIGNMENT

User level instructions are always aligned on halfword
boundaries. ~y halfword address is valid regardless of the
length of the instruction word. The CAL assembler generates
boundary errors if the assembled LOC for an instruction becomes
odd. At the machine level, an attempt to make the instruction
LOC odd by branching or causing a status switch results in a data
format fault.

50-022 ROO 1-11

1.8 INSTRUCTION FORMATS

Instruction formats provide a concise method of representing
required operations for easy interpretation by the processor.
Figure 1-4 shows the eight basic formats. Table 1-3 is a list of
abbreviations and their meanings as used in Figure 1-4.

TABLE 1-3 OPERAND ABBREVIATIONS

ABBREVIATION MEANING
:=======~====================~~======~==~==~===================

OP Operation code

Rl First operand register

R2 Second operand register

N A 4-bit immediate value

X2 Second operand, single index register

D2 Second operand displacement

FX2 Second operand, first index register

SX2 Second operand, second index register

A2 Second operand, direct address

12 I Second operand, immediate value

Ll Specifies the length of the first operand

L2 Specifies the length of the second operand
I
I

OP MOD Specifies a particular instruction within the:
class specified by OP

ADDl The effective first operand address

ADD2 The effective second operand address

Many instructions can be expressed in two or more formats. This
feature provides flexibility in data organization and instruction
sequencing.· When working with the CAL assembler, it is
unnecessary to specify the instruction format. The assembler
selects the most economical format and supplies the required bits
in the machine code. When double indexing is implied, the
assembler always chooses the RX3 format.

1-12 50-022 ROO

557
-i REGISTER-TO-REGISTER (RR)

0 7 11 15

I OP I R1 I R2 I
SHORT FORMAT (SF)
0 7 11 15

I OP I Rl I N I
REGISTER AND INDEXED STORAGE (RX1)

0 7 11 15 18 31

I OP I Rl I X2 I 0 Io I D2 I
REGISTER AND INDEXED STORAGE 2 (RX2)

0 7 11 15 17 31

I OP I Rl I X2 I 1 I D2 I
REGISTER AND INDEXED STORAGE 3 (RX3)

0 7 11 15

I 0 f: lo I J
24 47

I OP I Rl I FX2 SX2 I A2 ::=J
REGISTER AND IMMEDIATE STORAGE 1 (All)

0 7 11 15 31

I OP I Rl I X2 I 12 I
REGISTER AND IMMEDIATE STORAGE 2 (Rl2)

0 7 11 15 47

I OP I Rl I X2 I 12 ::=J
REGISTER AND INDEXED STORAGE, REGISTER AND INDEXED STORAGE (RXRX)

11 12 31/47 39/55 43/59 63/79/95

u I :J,___Aoo1--+--I OP-MOD_, --+L2 ~:Joo2 I OP

Figure 1-4 Instruction Formats

50-022 ROO 1-13

1.8.1 Branch Instruction Formats

Branch instructions use the Register-to-Register (RR), the Short
Form (SF) and all variations of the Register and Indexed Storage
(RX) formats. In the conditional branch instructions, however,
the Rl field does not specify a register; instead, it contains a
mask value (labeled Ml in the instruction descriptions). This
mask value is tested with the condition code. The CAL assembler
provides a series of extended branch mnemonics, making it
possible to identify a conditional branch without specifying the
mask value explicitly.

1.8.2 Programming Examples

Each of the following examples refers to the sample assembly
·language program shown in Figure 1-5. Note the use of symbolic
equivalents for general registers. The machine code generated
and the result of each instruction are dependent upon the
physical and logical placement of the instructions, respectively.

1-14 50-022 ROO

560 SERIES 3200 INSTRuCTION FORMAT EXA~~LES Pl GE 18:21:44 02/09/79
PROG: S3200 ASSEMBLED RY CAL 03-066R05-0l C 32 -B JT J

0000 0005
0000 0006
0000 0007
0000 0008
0000 0009
0000 OOOA
0000 0008

0000001 H5E

000002I 0865

0000041 4050 1000

0000081 4C56 OFF2

OOOOOCI
0000101
OOOOHI

4050 8004 =0000141
4300 8004 =0000181
0000 0000

000018! C890 8000

OOOOlCI C895 8000

0000201 F8AO 0000 8000

0000261 F8BA 0001 7FFE

00002CI 4050 FFE4 =0000141

0000301 4056 FF02 :0000061

0000341 5870 4001 0000

00003AI 5885 4601 FFE4
0000401 4300 FFBC =0000001

0000441
L_.-1

I
LOCATION OBJECT INFORMATION
COUNTER

50-022 ROO

1 s 32 00
2

PROG SERIES 3200 l~STRUCTION FORMAT EXl~PLES
CROSS

3

5 R5
6 u
7 R7
8 R8
9 ~9

10 ~10
11 Rll

13 SF

15 0

NORX3

EQU
EQU
EQU
EQU
f.QU
EQU
[QU

LIS

LR

17 RXl.EXl STH

19 Ul .[)(2 SHI

21 RX2.£Xl
22
23 LOCl

STH
B
DC

25 ~11.EXl UH

?1 Rll.£X2 LHl

29 RI2.EX1 LI

31 R 12 .EX2 LI

33 02 .EX2 STH

35 RX2.EX3 STH

37 Rll3.EX1 L

39 H3 .E X2 L
40 B

42 END
~~~ 

I LA~EL I 
STATEMENT OP-CODE 
NUMBER 

5 
f,, 

7 
8 
9 
10 
11 

R6tR5 

R51X•lOOO• 

R!>tX 1 0FF2'CR6) 

~5eLOC1 
Rll.El(t 
F• :> t 

R9,x•aooo• 

R91X•8000•CR5) 

R10,x•aooo• 

RlltY 117FFE•CR10J 

R5tLOC1 

R5tLOC1-HCR6) 

R71Y'lOOOO• 

GENERAL REGISTER 5 
GENERAL REGISTER 6 
GENERAL REGISTER 1 
GENERAL REGISTrR 8 
GENERAL REGISTER 9 
GENE~AL ~EGISTER 10 
GENERAL REGISTER 11 

<R5) : 1 0000000[• 

CR6J : '0000000£' 

CX•lOOO•) = x•oooE• 

CLOCU = x•oooE• 

TWO rlALFWO~DS OF STORAGE 

<RCJ) = Y•FFFF8000' 

CR9) : T•FFFF800Ft 

<RIO> = T•oooosooo• 

CR11> : Y•OOOlFFFE' 

CLOCU = x•oooE• 

CLOCl> : X1 000E' 

CR7> : CT•OlOOOO•) 

RB,v•20,oo•-2gcR51R6> <RB> = cv•o20000•> 
SF 

I 

OPERANDS 
I 

COMMENTS 

Figure 1-5 Sample Program 

1-15 



1.8.3 Register to Register (RR) Format 

561 

OP Rl I 11 12 R

2 

15

1 

0 

In this 16-bit format, bits 0:7 contain the operation code; bits 
8:11 contain the Rl field; and bits 12:15 contain the R2 field. 
In most RR instructions, the register specified by Rl contains 
the first operand, and the register specified by R2 contains the 
second operand . 

. Example: 

Machine Co.de Label Assembler Notatjon 

--~~~~~~~~~~~Load Register (LR) instruction opcode 

1-16 50-022 ROO 



1.8.4 Short Form (SF) Format 

562 0 7 8 1112 15 

I OP 

This 16-bit format provides space economy when working with small 
values. Bits 0:7 contain the operation code; bits 8:11 contain 
the Rl field; and bits 12:15 contain the N field. In arithmetic 
and logical operations, the register specified by Rl contains the 
first operand. The N field contains a 4-bit immediate value used 
as the second operand. 

Example: 

Machine .c.o.d..e Lab.al As.aemble~ Nata.Lian 

245E SF LIS RS,14 

jl-~~~~~~~~~~- Second operand 

.___~~~~~~~~~~-First operand 

Load Immediate Short (LIS) instruction 
opcode 

50-022 ROO 1-17 



1.8.5 Register and Indexed Storage One (RXl) Format 

~63 

OP R1 02 

311 0 

This is a 32-bit format in which bits 0:7 contain the operation 
code; bits 8:11 contain the Rl field; bits 12:15 contain the X2 
field; bits 16 and 17 must be zero; and bits 18:31 contain the D2 
field. In general, the register specified by Rl contains the 
first operand. The second operand is located in memory at the 
address obtained by adding the contents of the second operand 
index register (specified by X2) and the 14-bit absolute address 
contained in the 02 field. 

Example: 

Machine .Code. Label. Aaaemble~ Notation 

4050 1000 RXl.EXl STH R5,X'l000' l ~-~~~~~~~~Defines second operand address 

.._~~~~~~~~~~No index register specified 

.___~~~~~~~~~~-First operand 

.___~~~~~~~~~~~- Store Halfword (STH) instruction opcode 

The second operand address is calculated as follows: 

564-2 

BITS 16 19 20 23 24 27 28 31 

I 0 0 0 I 0 0 o o I a 0 o o Io 0 0 0 I 
~r 

I 
L 14-bit absolute address X'1000' 

Indicates RX1 format 

No indexing is specified; therefore, the second operand address 
is X'lOOO'. 

1-18 50-022 ROO 



Example: 

Machine .Cade Lab.el Aaaembl.er. Nat.at..i.on 

4056 OFF2 

TTT T 
RX1.EX2 STH R5,X'OFF2' (R6) 

I ----------Defines second operand address 

.... -----------Register 6 to be used for indexing 

.__ ___________ First operand 

'---~---------------------STH instruction opcode 

The second operand address is calculated as follows: 

565-1 

16 19 20 

1 1 

23 24 27 28 

1 1 0 1 

14-bit absolute address X'OFF2' 
Indicates RXl format 

Second operand address contents of D2 field + contents of index 
register 6 (see Figure 1-5) 
X'OFF2' + Y'OOOOOOOE' 
Y'00001000' 

50-022 ROD 1-19 



1.8.6 Register and Indexed Storage Two (RX2) Format 
~66 

0 

OP 

7 8 

R1 02 

This format provides relative addressing capability in a 32-bit 
instruction word. Bits 0:7 contain the operand code; bits 8:11 
contain the Rl specification; bits 12:15 contain the X2 
specification; bit 16 must always be one; and bits 17:31 contain 
the relative displacement, 02. 

In the RX2 format, the register specified by Rl contains the 

first operand. The address of the second operand, in memory, is 
calculated by adding the value contained in the incremented LOC 
(the address of the next sequential instruction) and the sum of 
(1) the 32-bit representatio.n of the 15-bit signed number 
contained in the 02 field, and (2) the contents of the index 
register specified by X2. Negative numbers in the 02 field are 
expressed in two's complement notation. 

Example 1: 

Machine .C.Od.e Label Aaaemb.lez. Notation 

4050 8004 RX2.EX1 STH R5,LOC1 

] --r--~~~~~~~~Defines second operand address 

..._ ___________ No index register specified 

------------- First operand 

..._ ________________ Store Halfword (STH) instruction opcode 

The second operand address is calculated as follows: 

567-1 
16 19 20 23 24 

I 1 0 0 0 I 0 0 0 0 I 0 

I ' 
Second operand address 

1-20 

27 28 31 

0 0 o I o o o I 
15-bit positive relative displacement 
Indicates RX2 format 

32-bit expansion of contents of 02 field 
+ contents of incremented LOC (see 
Figure 1-5) 
Y'00000004' + Y'OOOOOOlO' 
Y'00000014' 

50-022 ROO 



Example 2: 

Ma.c.hin.e. .C.od.e Lab.e.1 Aaae.mb.1.e~ NotaLion 
4050 FFE4 RX2.EX2 STH RS,LOCl 

"TT! ~-~~~~~~~-Defines second operand address 

. No index register specified 

First operand 

------------------------- STH instruction opcode 

The second operand address is calculated as follows: 

568
-
1 

16 19 20 23 24 27 28 31 

l~ ___ 1 __ 1 ___ 1 ___ 1 __ 1 ____ 1 ___ 1 __ 1_0__.l __ o __ 1_o __ o __ I 

1 · 15-bit negative relative displacement 
Indicates RX2 format 

Second operand address 32-bit expansion of contents of D2 field 
+ contents of incremented LDC (see 
Figure 1-5) 

50-022 ROO 

Y'FFFFFFE4' + Y'00000030' 
Y'00000014' 

1-21 



Example 3: 

Machin.a Cc.d.e Label Assembler Notation 

4056 FFD2 RX2 EX3 STH RS,LOCl-14 (R6) 

1 --r---~~~~~~~~Def~nes second operand address 

- Register 6 to be used for indexing 

---~~~~~~~~~~-First operand 

..._~~~~~~~~~~~-STH instruction opcode 

The second operand address is calculated as follows: 

569-1 

16 19 20 23 24 , , , I 

Second operand address 

1-22 

27 28 31 

1 S.bit negative relative displacement 

Indicates RX2 format 

32-bit expansion of D2 field + contents 
of incremented LOC + contents of index 
register 6 (see Figure 1-5) 
Y'FFFFFFD2' + Y'00000034' + Y'OOOOOOOE' 
Y'00000014' 

50-022 ROO 



1.8.7 Register and Indexed Storage Three (RX3) Format 

570 0 7 11 1 5 16 1 7 18 19 20 24 4 7 

I __ 0P ___ l_R1_l_Fx_2_lol1_lolo_ls_x2_l_A~<~ 

This is a 48-bit format in which double indexing is permitted. 
Bits 0:7 contain the operation code; bits 8:11 contain the Rl 
specification; bits 12:15 contain the first index specification, 
FX2; bit 16 must be zero; bit 17 must be one; bits 18 and 19 must 
be zero; bits 20:23 contain the second index specification, SX2; 
and bits 24:47 contain a 24-bit address, A2. Second level 
indexing is allowed even if first level indexing is not 
specified. 

In general, the first operand is contained in the register 
specified by Rl. The second operand is located in memory. Its 
memory address is obtained by adding the contents of the first 
index register and the contents of the second index register, 
then adding to this result the contents of the A2 field. 

Example 1: 

Mac.hin.e .Code Labe.l As.s.e.mb.le..r. Notat..ion 

5870 4001 0000 RX3.EX1 I. R7,Y'l0000' 

1----.1~------------Defines second operand address 

---------Second level indexing not specified 

....__ _________ Specifies RX3 format 

------------First level indexing not specified 

-------------First operand 

------------ Load (L) instruction opcode 

50-022 ROO 1-23 



The second operand address is calculated as follows: 

571-1 

BITS 16 20 24 28 31 32 36 

I a 1 0 ala a 0 + 0 0 + 0 a 1la 0 0 + 0 

LI 
24-bit absolute address Y'al aaOO' ~ 
No Second Level Index 

--------- Indicates RX3 format 

Second operand address contents of A2 field 
= Y'00010000' 

·Example 2: 

40 

0 + 0 

44 

0 + 

Machine .Co.de Lab.al As.sembler Notation 

47 

0 0 al 

5885 4601 FFE4 RX3.EX2 L R8,Y'20000'-28 (R5,R6) 

l~-~l~~~~----Defines second operand address 

-----------Register 6 to be used for second level 
indexing 

-----------Specifies RX3 format 

..._ __________ Register 5 to be used for first level 

indexing 

..__ ___________ F' i rs t operand 

...___ ____________ Load (L) instruction opcode 

The second operand address is calculated as follows: 

572-1 

BITS 16 20 24 28 31 32 36 40 44 

I a 1 0 + 1 1 + 0 0 + 0 a 1 , , 1 1 1 , , 1 1 1 I 1 1 1 + LI 
24-bit absolute address Y'01 FFE4' ~ 
Register 6 for Second Level Index 

Indicates RX3 format 

0 

47 

al 

Second operand address = contents of A2 field + contents of index 
register 6 + contents of index register 
(see Figure 1-5) 

1-24 

Y'0001FFE4' + Y'OOOOOOOE' + Y'OOOOOOOE' 
Y'00020000' 

50-022 ROO 



1.8.8 Register and Immediate Storage One (Ril) Format 

573 

0 7 8 11 12 15 16 31 

OP R1 X2 12 

This format represents a 32-bit instruction word. Bits 0:7 
contain the operand code; bits 8:11 contain the Rl specification; 
bits 12:15 contain the X2 specification; and bits 16:31 contain 
the 16-bit immediate value, I2. 

In this format, the register specified by Rl contains the first 
operand. The 32-bit effective second operand is obtained by 
adding together the 32-bit representation of the signed 16-bit 
value contained in the I2 field and the contents of the register 
specified by X2. 

Example 1: 

Ma.c.h.i.ne. .Code Lab.el. 

Ril.EXl I.HI R9,X'8000' 

....__ ________ 16-bit immediate value 

No index register specified 

First operand 

Load Halfword Immediate (LHI) instruction 
opcode 

'11he second operand is calculated as follows: 

574-1 16 

I 1 0 0 0 

Second operand 

50-022 ROO 

20 24 r: :11 I 0 0 0 o I 0 0 0 0 0 0 

Sign Bit 

32-bit representation of X'8000' 
Y'FFFF8000' 

1-25 



Example 2: 

Macbjne .c.o.d.e Label Assembler Notatjon 

C895 8000 Rll.EX2 LHI R9,X'8000'(R5) l T"---------16-bit immediate value 

--------------Index register 5 specified 

-------------First operand 

--------------LHI instruction opcode 

The second operand is calculated as follows: 

575-1 16 20 24 28 31 

I 0 0 o I 0 0 0 0 I 0 0 0 0 I 0 0 0 o I 
Sign Bit 

Second operand 32-bit representation of X'8000' + the contents 
of the index register 5 (see Figure 1-5) 
Y'FFFF8000' + Y'OOOOOOOE' 
Y'FFFF800E' 

1-26 50-022 ROO 



1.8.9 Register and Immediate Storage Two (RI2) Format 

576 

0 7 8 11 1 5 ;·$- 4 71 
J_~oP __ l_R1 __ I _x2_l __ 12~~~~---
This is a 48-bit instruction format. Bits 0:7 contain the 
operation code; bits 8:11 contain the Rl specification; bits 
12:15 contain the X2 specification; and bits 16:47 contain the 
32-bit immediate value, I2. 

The first operand is contained in the register specified by Rl. 
The second operand is obtained by adding the contents of the 
index register, specified by X2, and the 32-bit immediate value 
contained in the 12 field. 

Example 1: 

Machine .Code Label. Aa.s.embler Not.a.t..inn 

F8AO 0000 8000 RI2.EX1 LI Rl0,X'8000' l -------- 32-bit immediate field 

~-------------No index register specified 

..._ ___________ First operand 

-------------------------Load Immediate (LI) instruction opcode 

The second operand is calculated as follows: 

577-1 

16 20 

I 0 0 0 0 I 0 0 0 0] 
I 

I 

Second operand 

50-022 ROO 

24 28 32 

0 0 o ol o o o 0 I 1 0 

32-bit immediate value 

contents of 12 field 
Y'00008000' 

0 0(

6

0 of°o f4° 
0 :71 0 0 0 0 0 0 

I 

1-27 



Example 2: 

Machine .co.de Label Assembler Notatjon 

FSBA 0001 7FFE Rl2 EX2 LI Rll,Y'l7FFE' (RlO) 

IL.~~~~~~~~~~32-~it inunediate field 
Specifies index register 10 

--~~~~~~~~~~-First operand 

"-~~~~~~~~~~~- LI instruction opcode 

The second operand is calculated as follows: 

578-1 

16 20 

I o 0 0 o I 0 0 o o I 
i 

Second operand 

1-28 

24 28 32 36 , r~ 0 0 0 0 I o 0 0 d 0 1 1 1 I 1 1 1 

32-bit immediate value 

contents of 12 field + contents 
register 10 (see Figure 1-5) 
Y'00017FFE' + Y'00008000' 
Y'OOOlFFFE' 

44 :71 
1 1 I 1 1 

of index 

50-022 ROO 



1.8.10 Register and Indexed Storage/Register and Indexed Storage 
(RXRX) Format 

The RXRX format resembles a pair of adjacent RX format instructions, but represents only one instruction (see Figures 1-4 and 1-6). Each member of the instruction pair can have any one of the standard RX formats. For example, the first member might be RXl and the second member might be RX3, resulting in a 10-byte instruction. The particular RX format chosen by the assembler for one member is independent of that chosen for the other; thus, the instruction can require 8, 10 or 12 bytes. 

OP contains the operation code that defines the RXRX instruction class. The actual operation to be performed is defined by the 
OPMOD field. 

The Ll field specifies the length of the first operand string. If bit O of OPMOD is set, Ll is the length with a maximum value of 15. If bit 0 of OPMOD is zero, the general register specified by Ll contains the length. The L2 field specifies the length of the second operand string. If bit 1 of OPMOD is set, this field contains the length with a maximum value of 15. If bit 1 of OPMOD is zero, the general register specified by L2 contains the 
length. 

The effective address calculated for the first member is the address of the left-most (lowest address) byte of the first operand string. The effective address calculated for the second member is the address of the left-most byte of the second operand 
string. An RX2 displacement calculated for either member is with respect to the incremented LOC for that member. 

Example 1: 

Machine .CO.de. Lab.e..l Assembler Notation 

8C50 1000 0160 OFFO RXl.RXl MOVE R5,X'l000',R6,X'FFO' 

l T Defines second operand address 

~No second operand index 

......__ _____ Register 6 contains length of second 
operand 

------~OPMOD value for MOVE 

i-.-----~-- Defines first operand address 
.__ _________ ~No first operand index 

Register 5 contains length of first 
operand 

-------~-------- RXRX format opcode 

50-022 ROO 1-29 



In the above example, both members of the RXRX instruction use 
the RXl format. No indexing is specified for either member so 
the first operand address is X'lOOO', and the second operand 
address is X'OFFO'. 

Example 2: 

Mactl .ine .Code. Label. A.aaembler Not.at.inn 

8CA5 4601 FFE4 El60 4002 8000 RX3.RX3 . ., ,. -.... ~ r'T • .,L MOVEP =10,Y'lFFE4' 
(RS,R6),=6,Y'28000' 

Defines second operand address 

·No second operand second level 
indexing 

·Specifies RX3 format 

·No second operand first level 
indexing 

·Second operand length is 6 bytes 

OPMOD value for MOVEP, immediate 
lengths l and 2 

Defines first operand address 

·Register 6 is second level index 
for first operand 

·Specifies RX3 format 

Register 5 is first level index 
for first operand 

--~~~~~~~~~~~~~~~First operand length is 10 bytes 

In this example, both members of the RXRX instruction use the RX3 
format. Double indexing is specified for the first member and no 
indexing is specified for the second member. The first operand 
address is X'lFFE4' plus the contents of index registers 6 and 5. 
The second operand address is X'28000'. The length of the first 
operand is 10 bytes and the second operand is 6 bytes. 

1-30 50-022 ROO 



U'1 
0 
I 

0 
N 
N 

~ 
0 
0 

I-' 
I 

w 
I-' 

579 RX1 OR RX2 

r== 

I OP X2 02 L1 

RX1 OR RX2 

I OP L1 I X2 I 02 

RX3 

L 1 I FX2 ,0100 I SX2 I A2 

RX3 

OP A2 

~/" 

I OPMOD 

r OPMOD 

J OPMOD 

OPMOD 

RX1 OR RX2 

L2 I X21 02 

RX3 

L2 I FX2 I 0100 I sx2J 

RX1 OR RX2 

L2 X2 02 

RX3 

J 

A2 ) 

A:Z /[ 
·~~~--'--~---~--~--~--'--~~~~~~~~~~~~--~~~--'---~..__~--~-&.~--'--~~~~~~-~~~--~--' 

-~~~~~~----------~~~~~~~~~~~-/\.....~~~~~~~~~~~~- ~~~~~~~--~~~~~ 
FIRST MEMBER SECOND MEMBER 

Figure 1-6 RXRX Formats 



2.1 INTRODUCTION 

CHAPTER 2 
SYSTEM CONTROL 

Operator control is provided by the consolette and the system 
terminal, a microcode-supported device interfaced to the system 
by an asynchronous line controller. The system terminal can be 
used as the operating system's console device and can be a video 
display unit (VDU) or a printing terminal. The asynchronous 
interface must be strapped as device numbers X'lO' and X'll'. 

2.2 CONFIGURATION 

The consolette, shown in Figure 2-1, controls power to the system 
and initial program load (IPL). It also provides controls for 
system initialization, processor halt/run and single step. LEDs 
on the system console indicate the current state of the system. 

580-2 

SINGLE HALT/RUN ENABLE INIT 

DISABLE 

LOCK CD 
ON I 

STANDBY 

CPU MEMORY 
POWER POWER 

0 0 

Figure 2-1 Consolette 

WAIT FAULT 

0 0 

Keyboard commands through the system terminal allow the operator 
to examine and modify processor registers and main memory 
locations and begin program execution (see Figure 2-2). 
Hexadecimal characters and a number of special characters are 
recognized by the system terminal support microcode. Accepted 
characters and their meanings are shown in Table 2-1. No other 
characters are accepted; other characters cause a question mark 
(?) to be written to the system terminal. When not in use for 
operator control, the system terminal is available to a running 
program for use as an input/output (I/O) device. See Appendix F 
for a flowchart of the console service routine. 

50-022 ROO 2-1 



TABLE 2-1 SYSTEM TERMINAL SUPPORT COMMAND SUMMARY 

581-2 

KEY I 
COMMAND SEQUENCE I MEANING 

SYSTEM 
TERMINAL DISPIAY 

=======================-====--------==-------=-----------------------· 

2-2 

Select memory address 
and display halfword 
contents·. 

Select general register 
and display contents. 

Select single precision 
floating point register 
and display contents. 

Select double precision 
floating point register 
and display contents. 

Select program status 
word (PSW) and display 
contents. 

Increment memory 
, location counter (LOC) 

to display next sequen­
tial halfword. 

Decrement memory LOC 
to display previous 
halfword. 

Replace contents of 
currently selected 
memory location or 
register with new data. 

Begin program execution 
at current memory 
location. 

Delete command. 

Single step the in­
struction at current 
memory location. 

I 

.{@nnnnnn 
nnnnnnnn IIII 
.{ 

.{Rn 
IIIIIIII 
.{ 

.{Fn 
IIIIIIII 
.{ 

..{Dn 
IIIIIIII IIIIIIII 
.{ 

.{P 
IIIIIIII IIIIIIII 
.{ 

.{ + 
DDDDDDDD IIII 
.{ 

.{-

DDDDDDDD IIII 
.{ 

.!.=YYYY for memory 

.{ l 

.!.-YYYYYYYY for register I 

.{ 

.{( 

.{@101 

.{ 

.{) 

50-022 ROO 



8060 

1. 

NOTES 

Characters in boxes 
operational key strokes are 
for commands. 

indicate 
required 

2. The character symbol of lower-case n 
is used to indicate the hexadecimal 
address of memory or register. 

3. The character symbol of upper-case Y 
is used to indicate hexadecimal 
contents of memory or register. 

4. Underlined characters are those 
output from the system. Characters 
not underlined are those typed by the 
operator. 

5. A back arrow, underline (X'SF') or 
back space (X'08') character can be 
used to delete the previously input 
hexadecimal character. 

6. Space characters can 
desired; they are 
processor. 

be entered 
ignored by 

as 
the 

1-·------------------20.5"--------------------

ESC 

SHIFT z x 

/\ .. ( ) 
6 7 8 9 0 

u 

J 

c v B N M < > 
LINE 
FEED • 

CLR ::.~\ :::,~ BREAK 
DEL LINE LINE 

7 8 9 -
4 5 6 , 

I 2 3 E 
N 
T 

0 
E 
R 

0 

"POWER ON" LED 

Figure 2-2 Model 6100 Keyboard Layout 

-t 

7.0" 

50-022 ROO 2-3 



2.3 CONSOLETTE SWITCHES AND INDICATORS 

The following sections detail the functions of the consolette 
switches and indicators. 

2.3.1 Key-Operated Security Lock 

This is a 3-position (STANDBY-ON-LOCK), key-operated switch that 
controls primary power to the system. It can also disable (LOCK) 
the initialize and console switches, thereby preventing any 
accidental manual input to the system. The power indicator lamp 
(POWER) is on when the security lock is in the ON or LOCK 
position. 

2.3.2 Control Switches 

All the control switches, with the exception of the IPL switch, 
are enabled only when the key-operated security lock is in the ON 
position, and primary AC power is applied. 

SINGLE 

D 

HALT/RUN 

D 

2-4 

SINGLE STEP 

When in the UP position, control is automatically 
given to the system terminal support routine at 
the conclusion of each user level instruction. 
The PSW is displayed, including the address of the 
next sequential instruction (LOC). Execution of 
the next instruction is caused by pressing the 
HALT/RUN switch or by typing a less than character 
or greater than character (< or >) on the system 
terminal. To resume normal run mode execution, 
return the SINGLE STEP switch to the DOWN position 
and begin execution by pressing the HALT/RUN 
switch or by typing the less than character (<) on 
the system terminal. The SINGLE STEP switch is 
disabled when the security lock is in the LOCK 
position. Attempts to single step through 
instructions that I/O to the system terminal do 
not produce meaningful results. 

HALT/RUN 

This momentary contact switch causes program 
execution to be halted if the system was running 
or resumed if the system was halted. When halted, 
control is given to the system terminal support 
routine through which the memory or registers can 
be examined or modified and program execution 
restarted. If the processor was already in the 
system terminal support routine, program execution 
is started. This switch is disabled if the 
security lock is in the LOCK position. 

50-022 ROO 



ENABLE 

D 
DISABLE 

INIT 

D 

IPL 

This switch is not disabled by the security lock. 
When in the ENABLE position, an IPL from the 
loader storage unit (LSU) is performed after any 
of the following steps: 

• Turn the security lock from the STANDBY to the 
ON position. 

• Depress the initialize (INIT) switch. 

• Return AC power to the system. 

INITIALIZE 

This momentary contact switch causes the system to 
be initialized. The initialization sequence 
clears all device controllers on the I/O bus and 
resets certain functions in the processor. The 
fault lamp (FAULT) comes on when the switch is 
depressed and is extinguished with the completion 
of the initialization sequence. 

2.4 OPERATING INSTRUCTIONS 

The following sections detail operating instructions for power 
up, entering the console service and IPL. 

2.4.l Power Up 

To prevent IPL on power up, place the IPL switch in the DISABLE 
position. To power up the system, turn the key-operated security 
lock clockwise from the STANDBY to the ON position. The power 
lamp (POWER) lights up, and power is provided to the system. The 
fault lamp (FAULT) on the consolette also lights,. and the 
microdiagnostic routine is entered. This routine exercises 
internal data paths and registers. If main memory power has 
fallen out of regulation since the system was last running, 
locations X'OOOOOO' to X'07FFFF' are initialized. The diagnostic 
routine tests the lowest 512kb of memory before extinguishing the 
FAULT lamp. This diagnostic is limited in scope, serving only to 
indicate a go/no-go condition. If an error is detected in any 
portion of the microdiagnostic, the microcode loops indefinitely, 
and the FAULT lamp remains on. If no errors are detected, the 
FAULT lamp is turned off. 

50-022 ROO 2-5 



2.4.2 Entering Console Service 

If power was lost while the microcode was in the console service 
routine, control is returned to the console when the power-up 
sequence is complete, provided that IPL is not enabled. If the 
system was executing a program when power was lost, execution 
resumes when power returns, provided that IPL is not enabled. To 
enter console service in this case, depress the HALT/RUN switch. 

2.4.3 Initial Program Load (IPL) 

To perform IPL, place the IPL switch in the ENABLE position; then 
initialize the system by depressing the INIT switch momentarily. 
A power-down/power-up sequence is emulated, and diagnostics are 
performed. At the successful completion of the microdiagnostic 
sequence, an IPL from the LSU is performed. Control is 
transferred to the newly-loaded program. 

2.5 SYSTEM TERMINAL COMMANDS 

When the system terminal support routine is entered from power up 
or initialize, a carriage return (CR) and line feed (LF) sequence 
are output. The current value of the PSW status and LOC are 
output, followed by anoth~r CR and LF sequence. Finally, the 
less than operator prompt character (<) is output to indicate 
that the system is ready to receive operator commands. If memory 
power was lost, the LOC is set to X'OOFFFFFE', and the PSW is set 
to X'00008000'. In this case, the first 512kb of memory are 
written during power up to establish the error correction code 
(ECC) bits. 

Space characters can be used as desired in any of the described 
system terminal commands. Spaces are ignored by the console 
routine. 

2.5.1 Select an Address and Examine (@) 

The commercial "at" sign (@) places the system terminal support 
routine in the address mode. This character can be followed by 
up to six hexadecimal digits of address. Leading zeros are not 
required. If more than six digits are input, only the least 
significant six are used. A CR is used to signal the end of the 
address; the address input is then copied into the LOC. A CR and 
LF sequence are output, followed by the new value of the LOC and 
the halfword contents of that location. Note that the data fetch 
is subject to memory relocation if enabled by the current PSW. 
After this display, a CR and LF sequence are output, followed by 
a new operator prompt. 

If an invalid character is input by 
responds by outputting a question 
operator prompt. 

2-6 

the operator, the system 
mark (?), CR, LF and an 

50-022 ROO 



2.5.2 Increment and Examine Next Location (+) 

After examining a memory location, the plus character (+) can be 
used to advance the LOC by two. No other-operator input is 
required. A CR and LF are output, followed by the new LOC value 
and the halfword contents of that location. This memory access 
is subject to the relocation defined by the current PSW. After 
outputting another CR and LF, the operator prompt character is 
output. This procedure can be repeated to examine sequential 
memory locations. 

2.5.3 Decrement and Examine Prior Location (-) 

After examining a memory location, the minus character (-) can be 
used to decrement the LOC by two. No other operation is 
required. A CR and LF are output, followed by the new LOC value 
and the halfword contents of that location. This memory access 
is subject to the relocation defined by the current PSW. After 
outputting another CR and LF, the operator prompt character is 
output. This procedure can be repeated to examine sequential 
memory locations. 

2.5.4 Modify Current Location (=) 

After examining a memory location, the equal sign (=) can be used 
to put the system terminal support routine in the memory write 
mode. This character can be followed by up to four hexadecimal 
digits of data to be written. Leading zeros are not required. 
If more than four digits are input, only the least significant 
four are used. A CR is used to signal the end of the data. At 
that time, the accumulated data is written into the memory 
location currently addressed by the LOC. This memory write is 
subject to the relocation defined by the current PSW. The 
current LOC is incremented by two and a CR, LF and an operator 
prompt are output. This procedure can be repeated to modify 
sequential memory locations. 

2.5.5 Examine General Register (R) 

The character R causes the system terminal support routine to 
interpret subsequent hexadecimal input as the number of a general 
register (in the set selected by the current PSW) to be 
displayed. A CR is used to signal the end of hexadecimal input. 
At that time, the least significant four bits of the accumulated 
hexadecimal data are taken as the desired register number. The 
fullword contents of that register are output followed by a CR, 
LF and an operator prompt. Plus and minus commands are invalid 
for general registers. 

50-022 ROD 2-7 



2.5.6 Modify General Register (=) 

Immediately after examining a general register, the equal sign 
(=) can be used to change the contents of the currently selected 
register. The equal sign can be followed by up to eight 
hexadecimal digits of data. Leading zeros are not required. If 
more than eight digits are input, only the least significant 
eight are used. A CR is used to signal the end of the data 
input. At that time, the accumulated data is copied into the 
currently selected general register. A CR, LP and an operator 
prompt are then output. 

2.5.7 Examine Single Precision Floating Point Register (F) 

The character F causes the system terminal support routine to 
interpret subsequent hexadecimal input as the number of a single 
precision floating point register to be displayed. A CR is used 
to signal the end of hexadecimal input. At that time, the least 
significant four bits of the accumulated hexadecimal data are 
taken as the desired register number. If necessary, this number 
is rounded to the next lowest even number. The fullword contents 
of that register are output followed by a CR, LF and an operator 
prompt. Plus and minus commands are invalid for floating point 
registers. 

2.5.8 Modify Single Precision Floating Point Register (=) 

Immediately after examination of a single precision floating 
point register, that register is available for modification. 
Type an equal sign (=) followed by up to eight hexadecimal digits 
of data. Leading zeros are not required. If more than eight 
digits are input, only the least significant eight are used. A 
CR is used to signal the end of the data input. At that time, 
the accumulated data is copied into the currently selected single 
precision floating point register. This data is not tested for 
normalization; therefore, an unnormalized floating point number 
can be manually placed in the register. The system outputs a CR, 
LF and an operator prompt. 

2.5.9 Examine Double Precision Floating Point Register (D) 

The character D causes the system terminal support routine to 
interpret subsequent hexadecimal input as the number of a double 
precision floating point register to be displayed. A CR is used 
to signal the end of hexadecimal input. At that time, the least 
significant four bits of the accumulated hexadecimal data are 
taken as the desired register number. If necessary, this number 
is rounded to the next lowest even number. The doubleword 
contents of that register are output, followed by a CR, LF and an 
operator prompt. Plus and minus commands are invalid for 
floating point registers. 

2-8 50-022 ROO 



2.5.10 Modify Double Precision Floating Point Register (=) 

Immediately after examining a double precision floating point 
register, that register is available for modification. Type an 
equal sign (=) followed by up to 16 hexadecimal digits. Leading 
zeros are not required. If more than 16 digits are input, only 
the last 16 digits are used. A CR is used to signal the end of 
the data input. At that time, the accumulated data is copied 
into the currently selected double precision register. The data 
is not tested for normalization; therefore, an unnormalized 
floating point number can be manually placed in a double 
precision register. The system outputs a CR, LF and an operator 
prompt. 

2.5.11 Examine Program Status Word (PSW) (P) 

The character P puts the system terminal support routine into the 
PSW display mode. A CR is required to complete this command 
input. Upon receipt of the CR, the contents of the PSW are 
output followed by a CR, LF and an operator prompt. The plus and 
minus commands are invalid for the PSW. 

2.5.12 Modify Program Status Word (PSW) (=) 

Immediately after examining the PSW, the equal sign (=) can be 
used to change the contents of the PSW status field. The equal 
sign can be followed by up to eight hexadecimal digits of data. 
Leading zeros are not required. If more than eight digits are 
input, only the least significant eight are used. A CR is used 
to signal the end of the data input. At that tim~, the 
accumulated data is copied into the PSW, which is then displayed. 
A CR, LF and an operator prompt are then output. 

2.5.13 Execute Single Instruction (>) 

Entering the greater than character (>) causes the processor to 
execute the instruction indicated by the LOC in single step mode. 
After this execution, the console service routine displays the 
PSW and LOC, followed by a CR, LF and an operator prompt. 

2.5.14 Enter Run Mode (<) 

Entering the less than character (<) causes the processor to 
begin program execution, starting with the instruction indicated 
by the LOC. 

2.6 MEMORY INITIALIZATION 

The following example shows how to set up dedicated low memory 
for loading either the 32-bit relocating loader or the diagnostic 
loader from magnetic tape. 

50-022 ROO 2-9 



Example: 

8070 

007EFO 02073E 

002000 02073E 

000030 0000 

000032 8000 

000034 0000 

000036 0050 

000038 0000 

00003A 8000 

00003C 0000 

00003E 0050 

000040 4000 

000050 0500 

2-10 

Display PSW 

Current PSW and LOC 

Set PSW to X'002000', enabling machine 
malfunction interrupts 

Current PSW and LOC 

Select address X'30', the machine 
malfunction new PSW 

Location X'30' contains x•oooo• 

Change to BRK instruction 

Location X'32' contains X'8000' 

Change contents of X'32' to X'2000' 

Location X'34' contains X'OOOO', 
as desired 

Advance the next location 

Location X'36' contains X'OOSO' 

Change contents of X'36' to X'0030' 

Location X'38' contains X'OOOO' 

Change to BRK instruction 

Location X'3A' contains X'8000' 

Change contents of X'3A' to X'2000' 

Location X'3C' contains X'OOOO', 
as desired 

Advance to next location 

Location X'3E' contains X'OOSO' 

Change contents of X'3E' to X'0038' 

Location X'40' contains X'4000', 
which can be ignored 

Select address X'50' 

Location X'50' contains X'DSOO', the 
desired auto-load instruction 

50-022 ROO 



8071 

000052 OOCF 

~ [±] 

000054 4300 

~0 
000056 0080 

000078 Cl86 

00007A 0000 

~G 
00007C OOFO 

000050 0500 

Advance to next location 

Location X'52' contains X'OOCF', 
the usual auto-load ending address, 
which is desired 

Advance to next location 

Location X'54' contains X'43QO', part 
of a branch instruction, which is 
desired 

Advance to next location 

Location X'56' contains X'0080', 
the desired branch address 

Select address X'78' 

Location X'78' contains X'Cl86' 

Change contents of X'78' to X'85Al' 
the device number and command byte 
for the magnetic tape unit 

Location X'7A' contains X'OOOO' 

Advance to next location 

Location X'7C' contains the device 
address of the selector channel 
(SELCH), which might be used by the 
loader 

Select address X'50' 

Location X'50' contains X'D500' 

Start program execution 

After loading, the relocating loader relinquishes control of the 
processor to the loaded program. 

2.7 SYSTEM TERMINAL PROGRAMMING INSTRUCTIONS 

The system terminal uses a communication I/O board or 
multiperipheral controller (MPC). The MPC comprises the LSU, a 
universal clock (UCLOCK), a printer port and eight serial ports. 
Since the microprogram of the processor must communicate with the 
system terminal, the device address is fixed at X'OlO' and 
X'Oll'. The MPC supports only full-duplex operations. 

The microprogram programs the system terminal interface for 
highest clock rate, two stop bits per character, seven data bits 
and even parity. Echoplex is not turned on. 

50-022 ROO 2-11 



585 

3.1 INTRODUCTION 

CHAPTER 3 
LOGICAL OPERATIONS 

The set of logical instructions provides a means for manipulating 
binary data. Many of the instructions grouped with the logical 
set can also be used in arithmetic and other operations. These 
instructions include loads, stores, compares, shifts, list 
processing, translation and cyclic redundancy checks (CRCs). 

3.2 LOGICAL DATA FORMATS 

Logical data can be organized as bytes, halfwords, fullwords or 
bit arrays of up to 227 bits as shown in Figure 3-1. 

BYTE 7 

0 HALFWORD 15 

0 FULLWORD 31 

0 BIT ARRAY N 

I ____ _______.:~.____ __ ____..! 
Figure 3-1 Logical Data 

50-022 ROO 3-1 



3.3 OPERATIONS 

In logical operations between the contents of a general register 
and a halfword operand, the halfword operand is expanded to a 
fullword before the operation starts. The halfword is expanded 
by propagating the most significant bits through bits 0:15 of the 
fullword. For example, the halfword 'AOOO' is expanded to 
'FFFFAOOO' before participating in the operation. 

3.3.1 Boolean Operations 

The Boolean operators AND, OR and Exclusive-OR (XOR) operate on 
halfword and fullword quantities. All bits in both operands 
participate individually. The Boolean functions are defined as 
follows: 

0 AND 0 0 
0 AND 1 = 0 (logical product) 
1 AND 0 = 0 
1 AND 1 1 

0 OR 0 0 
0 OR 1 1 (logical sum) 
1 OR 0 1 
1 OR 1 1 

0 XOR 0 0 
0 XOR 1 1 (logical difference) 
1 XOR 0 1 
1 XOR 1 = 0 

3.3.2 Translation 

The Translate (TLATE) instruction is used to translate a 
character directly or to effect an unconditional branch to a 
special translate subroutine. Associated with the Translate 
instruction is a translation table. The entries in the table are 
halfwords, as shown in Figure 3-2. 

586 0 

I 1 I 
7 8 15 

CHARACTER 

(CHAR. HANDLING ROUTINE ADDRESS) /2 

ENTRY SPECIFYING TRANSLATED 
CHARACTER 

ENTRY SPECIFYING ADDRESS OF 
A CHARACTER HANDLING ROUTINE 

Figure 3-2 Translation Table Entry 

3-2 50-022 ROO 



587 

The character to be translated is a byte of logical data. This 
unsigned quantity is doubled and used as an index into the 
translation table. If the corresponding table entry has a one in 
bit position zero, then bits 8:15 contain the character to be 
substituted for the data character. If there is a zero in bit 
position zero, bits 1:15 contain the address, divided by two, of 
the translation routine. When the Translate instruction results 
in a branch, this value is doubled to produce the address of the 
routine. Because this result is a 16-bit address, the software 
routine must be located in the first 64kb of the program address 
space. The program can reside anywhere in memory if it is 
relocated by the memory address translator (MAT). The 
translation table can contain up to 256 entries. However, if the 
data characters are always less than eight bits, fewer entries 
are required. 

3.3.3 List Processing 

The list processing instructions manipulate a circular list as 
defined in Figure 3-3. 

0 15 16 31 

NUMBER OF SLOTS NUMBER USED 

CURRENT TOP NEXT BOTTOM 

SLOT 0 

SLOT 1 

'.:~~ 

T 
~ 

T SLOT N 

Figure 3-3 Circular List Definition 

The first four halfwords, called the list header, contain the 
list parameters. Inunediately following the header is the list 
itself. The first fullword in the list is designated Slot 0. 
The remaining slots are designated 1, 2, 3, etc., up to a maximum 
slot number, which is equal to the number in the list minus one. 
An absolute maximum of 65,535 fullword slots can be specified. 
(Slots are designated 0 through X'FFFE'.) 

50-022 ROD 3-3 



The first halfword of the header indicates the number of slots 
(fullwords) in the entire list. The second halfword indicates 
the current number of slots being used. When this halfword 
equals zero, the list is empty. When this halfword equals the 
number of slots in the list, the list is full. Once initialized, 
this halfword is maintained automatically. It is incremented 
when elements are added to the list and decremented when elements 
are removed. 

The third and fourth halfwords of the list header specify the 
current top of the list and . the next bottom of the list, 
respectively. These pointers are also updated automatically (see 
Figure 3-4). 

588 

OCCUPIED 
SECTION 

CURRENT TOP __..,. 

NEXT BOTTOM __... 

SLOT n 

SLOTO 

SLOT 1 

SLOT 2 

SLOT3 

SLOT4 

SLOT 5 

Figure 3-4 Circular List 

3.4 LOGICAL INSTRUCTION FORMATS 

The logical instructions use the Register to Register (RR), Short 
Form (SF), Register and Indexed Storage (RX), and Register and 
Immediate Storage (RI) instruction formats. 

3.5 LOGICAL INSTRUCTIONS 

The instructions described in this section are: 

3-4 

L 
LR 
LI 

LIS 

LCS 

Load 
Load Register 
Load Inunediate 

Load Immediate Short 

Load Complement Short 

50-022 ROO 



LH 
LHI 

LA 

LRA 

LHL 

LM 

LB 
LBR 

EXHR 

EXBR 

ST 

STH 

STM 

STB 
STBR 

CL 
CLR 
CLI 

CLH 
CLHI 

CLB 

N 
NR 
NI 

NH 
NHI 

0 
OR 
OI 

OH 
OHI 

x 
XR 
XI 

XH 
XHI 

50-022 ROO 

Load Halfword 
Load Halfword Immediate 

Load Address 

Load Real Address 

Load Halfword Logical 

Load Multiple 

Load Byte 
Load Byte Register 

Exchange Halfword Register 

Exchange Byte Register 

Store 

Store Halfword 

Store Multiple 

Store Byte 
Store Byte Register 

Compare Logical 
Compare Logical Register 
Compare Logical Immediate 

Compare Logical Halfword 
Compare Logical Halfword Immediate 

Compare Logical Byte 

AND 
AND Register 
AND Immediate 

AND Halfword 
AND Halfword Immediate 

OR 
OR Register 
OR Immediate 

OR Half word 
OR Halfword Immediate 

Exclusive-OR 
Exclusive-OR Register 
Exclusive-OR Immediate 

Exclusive-OR Halfword 
Exclusive-OR Halfword Immediate 

3-5 



3-6 

TI 

THI 

SLL 
SLLS 

SRL 
SRLS 

SLHL 
SLHLS 

SRHL 
SRHLS 

RLL 

RRL 

TS 

TBT 

SBT 

RBT 

CBT 

CRC12 
CRC16 

TLATE 

ATL 
ABL 

RTL 
RBL 

Test Inunediate 

Test Halfword Inunediate 

Shift Left Logical 
Shift Left Logical Short 

Shift Right Logical 
Shift R~ght Logical Short 

Shift Left Halfword Logical 
Shift Left Halfword Logical Short 

Shift Right Halfword Logical 
Shift Right Halfword Logical Short 

Rotate Left Logical 

Rotate Right Logical 

Test and Set 

Test Bit 

Set Bit 

Reset Bit 

Complement Bit 

Cyclic Redundancy Check Modulo 12 
Cyclic Redundancy Check Modulo 16 

Translate 

Add to Top of List 
Add to Bottom of List 

Remove from Top of List 
Remove from Bottom of List 

50-022 ROO 



3.5.1 Load (L, LR, LI) 

Load (L) 
Load Register (LR) 
Load Immediate (LI) 

Assembler Notation 

L .Rl,D2(X2) 
L Rl,A2(FX2,SX2) 
LR Rl,R2 
LI Rl,I2(X2) 

Operation: 

Opcode 

58 
58 
08 
F8 

Format 

RX1,RX2 
RX3 
RR 
RI2 

The second operand replaces the contents of the 
specified in Rl. 

Condition Code: 

I C I V I G I L I 
l===============i 
I o i o i o I o I 
I o I O I o I l I 
I O i O I l I O i 

Programming Notes: 

Value is zero 
Value is not zero 
Value is not zero 

register 

When the load instructions 
condition code indicates 
positive (G flag) value. 

operate on fixed point data, the 
zero (no flags), negative (L flag) or 

In the RR format, if Rl equals R2, the Load instruction functions 
as a test on the contents of the register. 

In the RX formats, the second operand must be located on a 
fullword boundary. 

50-022 ROO 3-7 



3.5.2 Load Immediate Short (LIS) 

Assembler Notation Opcode Format 

LIS Rl,N 24 SF 

Operation: 

The 4-bit second operand is expanded to a 32-bit fullword with 
high order bits forced to zero. This fullword replaces the 
contents of the register specified by Rl. 

Condition Code: 

I c I V I G I L I 
1===============1 
I o I O I O I o I 

I o I O I 1 I o I 

Programming Note: 

Value is zero 
Value is not zero 

When this instruction operates on fixed point data, the condition 
code indicates zero (no flags) or positive (G flag) value. 

Example: 

Assembler Notation Machine .code 

LIS REG4,15 244F 

Result of LIS Instruction: 

(REG4) = OOOOOOOF 
Condition code = 0010 (G=2) 

3-8 

Comments 

LOAD 15 INTO REG4 

50-022 ROO 



3.5.3 Load Complement Short (LCS) 

Aa..s.embler Notation 

LCS Rl,N 

Operation: 

.Qpc.c.de. 

25 

,Eormat 

SF 

The.4-bit second operand is expanded to a 32-bit fullword with 
high order bits forced to zero. The two's complement value of 
this fullword then replaces the contents of the register 
spec if ied by Rl. 

Condition Code: 

I C I V I G I L I 
!===============! 
I o I o I O I o I 

I o I o I o I 1 I 

Programming Note: 

Value is zero 
Value is not zero 

When this instruction operates on fixed point data, the condition 
code indicates zero (no flags) or negative (L flag) value. 

Example: 

Assembler Notation Machine Code. 

LCS REGS,7 25S7 

Result of LCS Instruction: 

(REGS) = FFFF FFF9 
Condition code = 0001 (L=l) 

50-022 ROO 

Comments 

LOAD -7 INTO REGS 

3-9 



3.5.4 Load Halfword (LH, LHI) 

Load Halfword (LH) 
Load Halfword Immediate (LHI) 

Assembler Notation 

LH 
LH 
LHI 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,12(X2) 

Operation: 

Opcode 

48 
48 
ca 

Format 

RX1,RX2 
RX3 
Rll 

The halfword second operand is expanded to a fullword by 
·propagating the most significant bit through bits 0:15. This 
fullword replaces the contents of the register specified by Rl. 

Condition Code: 

I c I V I G I L I 

1===============1 
I o I o I o I o I 
I o I o I o I 1 I 
I O I o I l I o I 

Programming Notes: 

Value is zero 
Value is not zero 
Value is not zero 

When the load halfword instructions operate on fixed point data, 
the condition code indicates zero (no flags), negative (L flag) 
or positive (G flag) value. 

In the RX formats, the second operand must be located on a 
halfword boundary. 

In the Ril format, the 16-bit I2 field is extended to a fullword 
by propagating the sign bit through bits 0:15. The contents of 
the index register specified by X2 are then added to form the 
fullword second operand. 

3-10 50-022 ROO 



3.5.5 Load Address (IA) 

LA 
LA 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

.Qpco.de 

E6 
E6 

P_c.unat. 

RX1,RX2 
RX3 

The effective address of the second operand (24 bits) replaces 
bits 8:31 of the register specified by Rl. Bits 0:7 of the 
register specified by Rl are forced to zero. 

Condition Code: 

Unchanged 

Programming Note: 

The length of the address quantity depends on the internal 
structure of the particular machine; in this processor the 
calculated address replaces bits 8:31 of the register specified 
by Rl, and bits 0:7 are replaced by zero. 

50-022 ROO 3-11 



3.5.6 Load Real Address (LRA) 

Assembler Notation 

LRA 
LRA 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

63 
63 

Format 

RX1,RX2 
RX3 

This instruction simulates 
register specified by Rl 
relocated). The second 

the operation of the MAT. The 
contains a program address (not 
operand address points to a 

relocation/protection module 
shown: 

parameter block, in the format 

BYTE 
OFFSET 0 1 14 15 31 

+0 I PSTD I (PST ENTRIES) -1 I A(PROCESS SEGMENT TABLE)/128 I 
1------1-------------------------1-------------------------------1 

+4 I SSTD l (SST ENTRIES) -1 I A(SHARED SEGMENT TABLE)/128 

The address contained in the register specified by Rl is 
relocated, using the appropriate parameters. The relocated 
address replaces the contents of the register specified by Rl. 

Condition Code: 

c I V I G I L 
=-============== 

1 
0 
0 
0 
0 

0 
l 
0 
0 
0 

0 
0 
l 
x 
0 

0 
0 
x 
1 
0 

Segment not mapped 
Nonpresent segment 
Write-protected segment 
Read- or execute-protected segment 
No restrictions 

The condition code is determined on a priority basis with segment 
table size exceeded checked first, nonpresent segment second, 
segment limit exceeded third and all protect keys (as a group) 
last. 

Programming· Notes: 

Segment tables must conform to the rules given in the section on 
memory management; otherwise, the results of the LRA instruction 
are undefined. 

3-12 50-022 ROO 



If the address is not mapped or not present, the register 
specified by Rl is unchanged. 

Segment table size exceeded or segment limit exceeded results in 
condition code 1000 (unmapped). 

The second operand must be located on a fullword boundary. 

Example: 

This example performs an address translation in the same manner 
as the MAT as implemented on this machine (4kb page size). The 
steps shown are not optimal and do not reflect the actual 
operation of the MAT. 

To set up for this example, register Rl contains X'053147', the 
program address to be translated. RELOCBLK is the address of a 
relocation/protection module parameter block. This block 
contains two fullwords. The first of these is the process 
segment table descriptor (PSTD), with the value X'OOOE06BF'. The 
second is the shared segment table descriptor (SSTD), with the 
value X'OOOC06CO'. Memory location X'035FA8' contains the 
process segment table entry (PSTE) to be used with the value 
X'588A0028'. Memory location X'036028' contains the shared 
segment table entry (SSTE) to be used with the value X'58126800'. 
The instruction proceeds as follows: 

LRA Rl,RELOCBLK TRANSLATE ADDRESS IN Rl 

1. The PSTD is fetched from RELOCBLK and ANDed with X'FFFEOOOO' 
to extract the segment table size field. The result, 
X'OOOEOOOO', is shifted right 17 bit positions, yielding 
X'00000007'. This value is the number of entries in the 
process segment table (PST) minus one. Therefore, the PST 
has entries for segments 0 through 7. 

2. The program address from register Rl, X'053147', is shifted 
right 16 bit positions to yield the specified segment number, 
X'00000005'. The segment number is compared with the PST 
size. If the PST size were less than the segment number, 
this would mean that no entry existed in the PST for the · 
specified segment, and that the segment was unmapped 
(condition code= 8). However, such is not the case, and the 
instruction proceeds. 

3. The PSTD is ANDed with X'OOOlFFFF' to extract the segment 
table address field. The result, X'000006BF', is shifted 
left seven bit positions to multiply it by 128. This yields 
the address of the PST, X'35F80'. 

50-022 ROO 3-13 



4. The segment number spec if ied by the p1:ogr aro a.ddr: Gss tn Rl 
(X'053147') is used as an index into the PST. Because each 
segment table entry (STE) requires eight bytes, the segment 
number, X'OOOOOOOS', is shifted left three bit positions, to 
multiply it by eight. The result, X'00000028', and the 
address of the PST, X'035F80', are added. The result is the 
address X'035FA8', and the PSTE at that address is fetched. 
This PSTE has the value X'588A0028' ~ 

The PSTE is ANDed with the value X'40000000' to test the 
presence bit in the STE. If the bit were zero, this would 
mean the segment was not present (condition code= 4). Such 
is not the case, however, and the instruction proceeds. 

5. The PSTE is then ANDed with X'00800000' to test the shared 
segment bit. If the bit were zero, the LRA instruction would 
use the data in the PSTE as data in the SSTE also a.nd perform 
the operations in Step 9 below; but such is not the case. 

The shared segment bit in the PSTE is set, which means that 
an entry from the shared segment table (SST) must also be 
used in translating the program address. The SSTD 
(X'OOOC06CO') is ANDed with X'FFFEOOOO' to extract the 
segment table size field. The result, X'OOOCOOOO', is 
shifted right 14 bit positions to yield X'00000030'. This 
value is the maximum SST offset, which is the offset in bytes 
from the start of the SST to the beginning of the last entry. 

6. The SSTD is ANDed with X'OOOlFFFF' to extract the segment 
table address field. The result, X'000006CO', is shifted 
left seven bit positions to yield the address of the SST, 
XI 036000 t • 

7. The PSTE is now ANDed with X'OOOlFFFF' to extract the segment 
relocation field (SRF). This field has the value 
X'00000028'. If this value exceeded the maximum SST offset, 
this would mean that no entry existed in the SST for the 
specified segment, and that the segment was unmapped 
(condition code= 8); but such is not the case, so the 
instruction proceeds. The SRF is added with the PST address, 
X'036000'. The SSTE pointed to by the PSTE is located at the 
resulting address, X'036028'. 

8. The SSTE is fetched, and its value found to be X'58126800'. 

9. 

3-14 

This value is ANDed with X'40000000' to test the STE presence 
bit. If the bit were zero, this would mean the segment was 
not present (condition code= 4); but such is not the case, 
and the instruction proceeds. 

The SSTE, with a value X'58126880', is ANDed with the 
X'003C0000' to extract the segment limit field (SLF). 
resulting value, X'00100000', is shifted right six 
positions, yielding an SLF value of X'00004000'. 

value 
The 
bit 

50-022 ROO 



The program address from Rl, X'053147', is ANDed with X'OOOOFOOO'. The resulting value, X'00003000', is compared 
to the SLF value, X'00004000'. If the SLF value were the lesser of the two values, this would indicate that the 
program address was in an unreachable part of the segment 
(segment limit violation), and thus unmapped (condition code = 8); but such is not the case, and the instruction proceeds. 

10. At this point, address translation can be perfo·rmed. The 
SSTE, with value X'58126800', is ANDed with the value 
X'OOOlFFFF' to extract the SRF. This field has the value X'00006800'. The SRF is shifted left seven bit positions, 
giving the relocation value X'00340000'. 

The program address from Rl, X'053147', is ANDed with the value X'OOOOFFFF', giving the value X'00003147'. To this 
value is added the relocation value, X'00340000'. The result 
is the translated program address, X'343147', which replaces 
the contents of register Rl. 

11. The PSTE, with value X'588A0028', and the SSTE, with value X'58126800', are ANDed, yielding the value X'58020000'. This 
value contains the combined segment access keys. If ANDing the keys with X'08000000' yielded a zero result, the G flag 
would be set in the condition code to indicate a 
write-protected segment. If ANDing the keys with X'lOOOOOOO' 
yielded a zero result, the L flag would be set in the condition code to indicate a read-protected segment; but 
neither is the case. ANDing the keys with X'04000000' does 
yield a zero result, and the L flag is set in the condition code to indicate that the segment is execute-protected. The 
LRA instruction terminates once these tests have been 
performed (see Figure 3-5). 

461-3 

Al= I 00053147 I VIRTUAL ADDRESS 

t L_BYTE OFFSET 
SEGMENT NUMBER 

SEGMENT NUMBER 

1 PST IAT X' 35FBO'I 
RELOCB,-LK_.,,,.............._, ---------------0 8-BYTES PSTD OOOE06BF 1- 1 8-BYTES SSTD OOOC06CO 2 

~ I--15FM : : 588A0028 

+ 
I I , _____________ / 

SEGMENT (AT 'X340000') 

~~ 

~ AT 343147 BYTE OFFSET= 3147 

Figure 3-5 LRA Example 

SHARED BYTE 
OFFSET=28 

50-022 ROO 3-15 



3.5.7 Load Halfword Logical (LHL) 

Assembler Notation 

LHL 
LHL 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

Opcode 

73 
73 

Format 

RX1,RX2 
RX3 

The halfword second operand replaces bits 16:31 of the register 

specified by Rl. Bits 0:15 of the register specified by Rl are 

replaced by zero. 

Condition Code: 

ICIVIGILI 
1===============1 
I o I o I o I o I 
I o I o I 1 I O I 

Programming Note: 

Value is zero 
Value is not zero 

The second operand must be located on a halfword boundary. 

3-16 50-022 ROD 



3.5.8 Load Multiple (I.M) 

Assembler No.t..a.tinn 

I.M 
I.M 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

Dl 
Dl 

Format 

RX1,RX2 
RX3 

Successive registers, starting with the register specified by Rl, 
are loaded from successive memory locations, starting with the 
location specified as the effective address of the second 
operand. Each register is loaded with a fullword from memory. 
The process stops when register 15 has been loaded. 

Condition Code: 

Unchanged 

Programming Notes: 

The second operand must be located on a fullword boundary. 

The second operand address is formed before any registers are 
loaded; therefore, X2, FX2 and SX2 can be among the registers 
loaded. 

In the event of a machine malfunction due to a noncorrectable 
memory error or MAT fault, the effective address calculated at 
the beginning of the instruction is available if a retry is 
desired. For details, see Chapters 10 and 11. 

50-022 ROO 3-17 



/ 
! 

3.5.9 Load Byte (LB, LBR) 

Load Byte (LB) 
Load Byte Register (LBR) 

Assembler Notation 

LB 
LB 
LBR 

Rl,02(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

Opcode 

03 
03 
93 

Format 

RX1,RX2 
RX3 
RR 

The 8-bit second operand replaces the least significant bits 
(bits 24:31) of the register specified by Rl. Bits 0:23 of the 
register are forced to zero. 

~~ -~-~· -··-- ------....__ 

-~c;~d it ion C~de ~ 

Unchanged// 

----~/ 
~-ogramming Note: 

In the LBR instruction, the second operand is 
least significant eight bits (bits 24:31) 
specified by R2. 

3-18 

taken from the 
of the register 

50-022 ROO 



3.5.10 Exchange Halfword Register (EXHR) 

Assemb~ Notation .Opcode Format 

EXHR Rl,R2 34 RR 

Operation: 

Bits· 0:15 of the register specified by R2 replace bits 16:31 of 
the register specified by Rl. Bits 16:31 of the register 
specified by R2 replace bits 0:15 of the register specified by 
Rl. 

Condition Code: 

Unchanged 

Programming Note: 

If Rl equals R2, the two halfwords contained within the register 
are exchanged. If Rl does not equal R2, the contents of R2 are 
unchanged. 

Example: 

Assembl~ Notation 

LI 
LI 
EXHR 

REG5,Y'OABCDEF9' 
REG7,Y'l2345678' 
REG5,REG7 

Machine Cc.de 

F850 OABC DEF9 
F870 1234 5678 
3457 

Result of EXHR Instruction: 

(REGS) = 56781234 
(REG7) = 12345678 
Condition code unchanged 

50-022 ROO 

Comment a 

(REGS) = OABCDEF9 
(REG7) = 12345678 

3-19 



3.5.11 Exchange Byte Register (EXBR) 

Assembler Notation Opcode Format 

EXBR Rl,R2 94 RR 

Operation: 

The two bytes contained in bits 16:31 of the register specified 
by R2 are exchanged and loaded into bits 16:31 of the register 
specified by Rl. Bits 0:15 of the register specified by Rl are 
unchanged. The register specified by R2 is unchanged. 

Condition Code: 

Unchanged 

Programming Note: 

Rl and R2 can specify the same register. 
bytes in bits 16:31 of the register 
exchanged. 

Example: 

Assembler Notation 

LI 
LI 
EXBR 

REG7,X'5A6B3C4D' 
REG3,Y'98761234' 
REG7,REG3 

Macbjne Co.de 

F870 5A6B 3C4D 
F830 9876 1234 
9473 

Result of E~BR Instruction: 

(REG7) = 5A6B3412 
(REG3) = 98761234 
Condition code unchanged 

3-20 

In this case, the 
specified by R2 

Comments 

(REG7) = 5A6B3C4D 
(REG3) = 98761234 

two 
are 

50-022 ROO 



3.5.12 Store (ST) 

Aasembler Notation 

ST 
ST 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

Opcode 

50 
50 

F.ormat 

RX1,RX2 
RX3 

The 32-bit contents of the register specified by Rl replace the 
contents of the fullword memory location specified by the 
effective address of the second operand. 

Condition Code: 

Unchanged 

Programming Note: 

The second operand must be located on a fullword boundary. 

50-022 ROO 3-21 



3.5.13 Store Halfword (STH) 

Assembler Notation 

STH 
STH 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

Opcode 

40 
40 

Format 

RX1,RX2 
RX3 

Bits 16:31 of the register specified by Rl replace the contents 
of the halfword memory location specified by the effective 
address of the second operand. 

Condition Code: 

Unchanged 

Programming Note: 

The second operand must be located on a halfword boundary. 

3-22 50-022 ROO 



3.5.14 Store Multiple (STM) 

Assembler NQtatjon 

STM 
STM 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

Ope.ode. 

DO 
DO 

F.ormat 

RX1,RX2 
RX3 

The fullword contents of registers, starting with the register 
specified by Rl, replace the contents of successive fullword 
memory locations, starting with the location specified by the 
effective address of the second operand. The process stops when 
register 15 has been stored. 

Condition Code: 

Unchanged 

Programming Note: 

The second operand must be located on a fullword boundary. 

50-022 ROO 3-23 



3.5.15 Store Byte (STB, STBR) 

Store Byte (STB) 
Store Byte Register (STBR) 

As.sembler Nat.at.inn 

STB 
STB 
STBR 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

D2 
D2 
92 

RX1,RX2 
RX3 
RR 

The least significant eight bits (bits 24:31) of the register 
specified by Rl are stored in the byte second operand location. 

Condition Code: 

Unchanged 

Programming Note: 

In the STBR instruction, the 8-bit quantity is stored in bits 
24:31 of the register specified by R2. Bits 0:23 of the register 
are unchanged. 

Example: 

The following example illustrates the 
instruction. 

Assemblei_ Notation 

LI REG4,Y'l3577531' 
LI REG3,Y'24688642' 

STBR REG4,REG3 

Machine ,Ce.dJ:t 

F840 1357 7531 
F830 2468 8642 

9243 

Result of STBR Instruction: 

(REG4) = 13577531 
(REG3) = 24688631 
Condition code unchanged 

3-24 

use of the STBR 

.Cnmmente 

(REG4) 
(REG3) 

13577531 
24688642 

50-022 ROO 



3.S.16 Compare Logical (CL, CLR, CLI) 

Compare Logical (CL) 
Compare Logical Register (CLR) 
Compare Logical Inunediate (CLI) 

Assembler Nc.La.t..ian 

CL 
CL 
CLR 
CLI 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 
Rl,I2(X2) 

Operation: 

.Opcode 

SS 
SS 
OS 
FS 

F:.ormat 

RX1,RX2 
RX3 
RR 
RI2 

The first operand, the contents of the register specified by Rl, 
is compared logically to the second operand. The result is 
indicated by the condition code setting. Neither operand is 
changed. 

Condition Code: 

I C I V I G I L I 
1===============1 
I o I x I o I o I 

r"1J1~0--;--r-1 
tr' 1---l-IA I l -ro-- -1 

IQ Ix l~I l I I I I/ I I 

o x I\ __ _!,- I o 

Programming Notes: 

First operand equal to second 
First operand less than second 
First operand less than second 
First operand greater than second 
First operand greater than second 

In the RX formats, the second operand must be located on a 
fullword boundary. 

The state of the V flag is undefined. 

If the second operand is zero, the C flag cannot set. 

S0-022 ROO 3-2S 



It is helpful to check the following condition code mask (Ml) 
after a logical comparison: 

MASK I TRUE/FALSE* I INFERENCE 
============================================================= 

3 False First operand equal to second 
3 True Fir.st operand not equal to second 
8 False First operand greater than or 

second 
8 True First operand less than second 

* See Chapter 4 for the true/false concept in branch 
instructions. 

3-26 

equal to 

50-022 ROO 



3.5.17 Compare Logical Halfword (CLH, CLHI) 

Compare Logical Halfword (CLH) 
Compare Logical Halfword Immediate (CLHI) 

Assembler Notation 

CLH 
CLH 
CLHI 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,I2(X2) 

Operation: 

Opcode 

45 
45 
cs 

Format. 

RX1,RX2 
RX3 
Rll 

The halfword second operand is expanded to a fullword by 
propagating the most significant bit through bits 0:15. The 
first operand, the contents of the register specified by Rl, is 
compared to this fullword. The result is indicated by the 
condition code setting. Neither operand is changed. 

Condition Code: 

c I v I G I L I 

============~-==-= 

0 
l 
l 
0 
0 

x 
x 
x 
x 
x 

0 
0 
1 
0 
1 

Programming Notes: 

0 
1 
0 
1 
0 

First operand equal to second 
First operand less than second 
First operand less than second 
First operand greater than second 
First operand greater than second 

In the RX formats, the second operand must be located on a 
halfword boundary. 

In the Ril format, the 16-bit I2 field is extended to a fullword 
by propagating the sign bit through bits 0:15. The contents of 
the index register specified by X2 are then added to form the 
fullword second operand. 

The state of the V flag is undefined. 

If the second operand is zero, the C flag cannot set. 

50-022 ROO 3-27 



It is helpful to check the following condition code mask (Ml) 
after a logical comparison: 

MASK I TRUE/FALSE* I INFERENCE 
============================================================= 

3 False First operand equal to second 
3 True Fi~st operand not equal to second 
8 False First operand greater than or 

second 
8 True First operand less than second 

* See Chapter 4 for the true/false concept in branch 
instructions. 

3-28 

equal to 

50-022 ROO 



3.5.18 Compare Logical Byte (CLB) 

Assemble~ Notation 

CLB 
CLB 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

Opcode 

D4 
D4 

Format 

RX1,RX2 
RX3 

The byte quantity, contained in bits 24:31 of the register 
specified by Rl, is compared with the 8-bit second operand. The 
result is indicated by the condition code setting. Neither 
operand is changed. 

Condition Code: 

I c I V I G I L I 
1===============1 
I o I x I o I o I 
I 1 I x I O I 1 I 
I O I x I 1 I O I 

Programming Notes: 

First operand equal to second 
First operand less than second 
First operand greater than second 

Both operands are treated as unsigned quantities. 

If the second operand is zero, the c flag cannot set. 

It is helpful to check the following condition code mask (Ml) 
after a logical comparison: 

MASK I TRUE/FALSE* I INFERENCE 
=========================================~=================== 

2 False First operand not greater than second 
2 True First operand greater than second 
3 False First operand equal to second 
3 True First operand not equal to second 
8 False First operand greater than or equal to 

second 
8 True First operand less than second 

-------------------------------------------------------------
* See Chapter 4 for the true/false concept in branch 

instructions. 

50-022 ROO 3-29 



3.5.19 AND (N, NR, NI) 

AND (N) 
AND Register (NR) 
AND Immediate (NI) 

Assembler Notation 

N 
N 
NR 
NI 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 
Rl,I2(X2) 

Operation: 

Opcode 

54 
54 
04 
F4 

Format 

RX1,RX2 
RX3 
RR 
RI2 

The logical product of the 32-bit second operand and the contents 
of the register specified by Rl replace the contents of the 
register specified by Rl. The 32-bit logical product is formed 
on a bit-by-bit basis. 

Condition Code: 

ICIVIGILI 
1===============1 
I o I o I o I o I 
I O I o I o I 1 I 
I o I O I 1 I 0 I 

Programming Notes: 

Result is zero 
Result is not zero 
Result is not zero 

In the RX formats, the second operand must be located on a 
fullword boundary. 

When operating on fixed point data, the condition code indicates 
zero (no flags), negative (L flag) or positive (G flag) result. 

3-30 50-022 ROO 



3.5.20 AND Halfword (NH, NHI) 

AND Halfword (NH) 
AND Halfword Immediate (NHI) 

Assembler Notation 

NH 
NH 
NHI 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,I2(X2) 

Operation: 

Opcode 

44 
44 
C4 

F..ormat 

RX1,RX2 
RX3 
Rll 

The halfword second operand is expanded to a fullword by 
propagating the most significant bit through bits 0:15. The 
logical product of this 32-bit quantity and the contents of the 
register specified by Rl replace the contents of the register 
specified by Rl. The 32-bit logical product is formed on a 
bit-by-bit basis. 

Condition Code: 

I c I V I G I L I 
1===============1 
i O I O I o I o I 
I o I o I o I 1 I 
I o I o I l I o I 

Programming Notes: 

Result is zero 
Result is not zero 
Result is not zero 

In the RX formats, the second operand must be located on a 
halfword boundary. 

In the Ril format, the 16-bit I2 field is extended to a fullword 
by propagating the sign bit through bits 0:15. The contents of 
the index register specified by X2 are then added to form the 
fullword second operand. 

When operating on fixed point data, the condition code indicates 
zero (no flags), negative (L flag) or positive (G flag) result. 

50-022 ROO 3-31 



3.5.21 OR (0, OR, 01) 

OR (O) 
OR Register (OR) 
OR Immediate (OI) 

Assembler Notation 

0 
0 
OR 
OI 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 
Rl,I2(X2) 

Operation: 

Opcode 

56 
56 
06 
F6 

Format 

RX1,RX2 
RX3 
RR 
RI2 

The logical sum of the 32-bit second operand and the contents of 
the register specified by Rl replace the contents of the register 
specified by Rl. The 32-bit logical sum is formed on a 
bit-by-bit basis. 

Condition Code: 

I c I V I G I L I 
1===============1 
I o I o I o I o I 
I o I o I o I 1 I 
I O I O I 1 I O I 

Programming Notes: 

Result is zero 
Result is not zero 
Result is not zero 

In the RX formats, the second operand must be located on a 
fullword boundary. 

When operating on fixed point data, the condition code indicates 
zero (no flags), negative (L flag) or positive (G flag) result. 

3-32 50-022 ROO 



3.5.22 OR Halfword (OH, OHi) 

OR Halfword (OH) 
OR Halfword Irrunediate (OHI) 

Aasembler Nat.atjon 

OH 
OH 
OHI 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,I2(X2) 

Operation: 

Opcode 

46 
46 
C6 

F.a.rmat. 

RX1,RX2 
RX3 
Ril 

The halfword second operand is expanded to a fullword by 
propagating the most significant bit through bits 0:15. The 
logical sum of this 32-bit quantity and the contents of the 
register specified by Rl replace the contents of the register 
specified by Rl. The 32-bit logical sum is formed on a 
bit-by-bit basis. 

Condition Code: 

1,-. !UI ('!IT I 
i ""' I • f '*tJ ~ ...._, f 

1============~==1 
i 0 : 0 : J : 0 : 
I o I o I o I l I 
I o I o I l I o I 

Progranuning Notes: 

Result is ~ero 
Result is not zero 
Result is not zero 

In the RX formats, the second operand must be located on a 
halfword boundary. 

In the Rll format, the 16-bit 12 field is extended to a fullword 
by propagating the sign bit through bits 0:15. The contents of 
the index register specified by X2 are then added to form the 
fullword second operand. 

When operating on fixed point data, the condition code indicates 
zero (no flags), negative (L flag). or positive (G flag) result. 

50-022 ROO 3-33 



3.5.23 Exclusive-OR (X, XR, XI) 

Exclusive-OR (X) 
Exclusive-OR Register (XR) 
Exclusive-OR Immediate (XI) 

Assembler Notation 

x 
x 
XR 
XI 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 
Rl,I2(X2) 

Operation: 

Opcode 

57 
57 
07 
F7 

Format 

RX1,RX2 
RX3 
RR 
RI2 

The logical difference of the 32-bit second operand and the 
contents of the register specified by Rl replace the contents of 
the register specified by Rl. The 32-bit logical difference is 
formed on a bit-by-bit basis. 

Condition Code: 

I C I V I G I L I 
1===============1 
I o I O I O I O I 
I O I O I O I l I 
I o I o I l I o I 

Programming Notes: 

Result is zero 
Result is not zero 
Result is not zero 

In the RX formats, the second operand must be located on a 
fullword boundary. 

When operating on fixed point data, the condition code indicates 
zero (no flags), negative (L flag) or positive (G flag) result. 

3-34 50-022 ROO 



3.5.24 Exclusive-OR Halfword (XH, XHI) 

Exclusive-OR Halfword (XH) 
Exclusive-OR Halfword Immediate (XHI) 

Assembler Notation 

XH 
XH 
XHI 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,I2(X2) 

Operation: 

Opcode 

47 
47 
C7 

RX1,RX2 
RX3 
RI 1 

The halfword second operand is expanded to a fullword by 
propagating the most significant bit through bits 0:15. The 
logical difference of this 32-bit quantity and the contents of 
the register specified by Rl replace the contents of the register 
specified by Rl. The 32-bit logical difference is formed on a 
bit-by-bit basis. 

Condition Code: 

I c I V I G I L i 
1===============1 
I o I o I o I o I 
I O I O I O I l I 
I o I o I l I o I 

Programming Notes: 

Result is zero 
Result is not zero 
Result is not zero 

In the RX formats, the second operand must be located on a 
halfword boundary. 

In the Ril format, the 16-bit I2 field is extended to a fullword 
by propagating the sign bit through bits 0:15. The contents of 
the index register specified by X2 are then added to form the 
fullword second operand. 

When operating on fixed point data, the condition code indicates 
zero (no flags), negative (L flag) or positive (G flag) result. 

50-022 ROO 3-35 



3.5.25 Test Immediate (TI) 

Assembler Notation 

TI Rl,I2(X2) 

Operation: 

Each bit of the second 
corresponding bit in 
operand is changed. 

Condition Code: 

I C I V I G I L I 
1===============1 
I O I O I O : O I 
I o I o I o I 1 I 
I o I o I 1 I o l 

Prograrmning Notes: 

Opcode 

F3 

operand is 
the register 

Format 

RI2 

logically 
specified 

Result is zero 
Result is not zero 
Result is not zero 

ANDed with the 
by Rl. Neither 

When operating on fixed point data, the condition code indicates 
zero (no flags), negative (L flag) or positive (G flag) result. 

This instruction works the same as the AND Immediate instruction 
(NI) except that the first operand is not changed. 

Example: 

This example tests if bit 16 of register 9 is set. 

Aasembler No.tation 

'I' I 
BNZ 

Where: 

REG9,Y'00008000' 
I ABEL 

(REG9) 7EFBC230 

Result of TI Instruction: 

(REG9) unchanged 

.Comments 

Test bit 16 
Branch if bit is set 

Condition code = 0010 (G=l) 
The conditional branch is taken. 

3-36 50-022 ROD 



3.5.26 Test Halfword Immediate (THI) 

Assembler Notation' .Opcode Format 

THI Rl,12(X2) C3 Ril 

Operation: 

The halfword second operand is expanded to a fullword by 
propagating the most significant bit through bits 0:15. Each bit 
in this quantity is logically ANDed with the corresponding bit 
contained in the register specified by Rl. Neither operand is 
changed. 

Condition code: 

I c I V I G I L I 
1===============1 
I o I o I o I o I 
I O I O I o I l I 
I o l O I 1 I o I 

Progranuning Notes: 

Result is zero 
Result is not zero 
Result is not zero 

When operating on fixed point data, the condition code indicates 
zero (no flags), negative (L flag) or positive (G flag) result. 

In the Ril format, the 16-bit 12 field is extended to a fullword 
by propagating the sign bit through bits 0:15. The contents of 
the index register specified by X2 are then added to form the 
fullword second operand. 

This instruction works the same as the AND Halfword Immediate 
instruction (NHI) except that the first operand is not changed. 

50-022 ROO 3-37 



Example: 

This example tests if any of bits 0:16 of register 9 are set. 

Assembler Notation 

THI 
BNZ 

Where: 

REG9,X'8000' 
IABEL 

(REG9) 80800000 

Comments 

Test bits 0:16 
Bra,nch if any set 

Result of THI Instruction: 

(REG9) unchanged 
Condition code = 0001 (L=l) 
The conditional branch is taken. 

3-38 50-022 ROO 



3.5.27 Shift Left Logical (SLL, SLLS) 

Shift Left Logical (SLL) 
Shift Left Logical Short (SLLS) 

Assembler Notation 

SIL 
SILS 

Rl,I2(X2) 
Rl,N 

Operation: 

Qpc.a_cie 

ED 
11 

Ril 
SF 

The first operand, the contents of the register specified by Rl, 
is shifted left the number of places specified by the second 
operand. Bits shifted out of position 0 are shifted through the 
carry (C) flag of the condition code and then lost. The last bit 
shifted remains in the c flag. Zeros are shifted into position 
31. 

Condition Code: 

I c i V I G I L I 
!===============: 

x o I o o 
x 0 0 l 
x 0 l 0 
1 0 x x 

Progranuning Notes: 

Result is zero 
Result is not zero 
Result is not zero 
Carry 

In the Ril format, the shift count is specified by the least 
significant five bits of the second operand. The maximum shift 
count is 31. 

In the SF format, the maximum shift count is 15. 

The state of the C flag indicates the state of the last bit 
shifted out of position 0. 

If the second operand specifies a shift of zero places, the 
condition code is set in accordance with the value contained in 
the register. The c flag is zero in this case. 

When the register specified by Rl contains fixed point data, the 
L flag set indicates a negative result and the G flag set 
indicates a positive result. 

50-022 ROO 3-39 



3.5.28 Shift Right Logical (SRL, SRLS) 

Shift Right Logical (SRL) 
Shift Right Logical Short (SRLS) 

Assembler Notation 

SRL 
SRLS 

Rl,I2(X2) 
Rl,N 

Operation: 

Opcode 

EC 
10 

Format 

Ril 
SF 

The first operand, the contents of the register specified by Rl, 
is shifted right the number of places specified by the second 
operand. Bits shifted out of position 31 are shifted through the 
c flag of the condition code and then lost. The last bit shifted 
remains in the c flag. Zeros are shifted into position 0. 

Condition Code: 

-· --------------
c I v I G I L I I I 

=============== 
x 0 0 0 Result is zero 
x 0 0 1 Result is not zero 
x 0 1 0 Result is not zero 
1 0 x x Carry 

---------------

Programming Notes: 

In the Ril format, the shift count is specified by the 
least significant five bits of the second operand. The maximum 
shift count is 31. 

In the SF format, the maximum shift count is 15. 

The state of the C flag indicates the state of the last bit 
shifted out of position 31. 

When the register specified by Rl contains fixed point data, the 
L flag set indicates a negative result; the G flag set indicates 
a positive result. 

If the second operand specifies a shift of zero places, the 
condition code is set in accordance with the value contained in 
the register. The c flag is zero in this case. 

3-40 50-022 ROO 



3.5.29 Shift Left Halfword Logical (SLHL, SLHLS) 

Shift Left Halfword Logical (SLHL) 
Shift Left Halfword Logical Short (SLHLS) 

Assembler Notation 

SLHL 
SLHLS 

Rl,12(X2) 
Rl,N 

Operation: 

Opcode 

CD 
91 

Rll 
SF 

Bits 16:31 of the register specified by Rl are shifted left the 
number of places specified by the second operand. Bits shifted 
out of position 16 are shifted through the carry flag and lost. 
The last bit shifted remains in the C flag. Zeros are shifted 
into position 31. Bits 0:15 of the first operand remain 
unchanged. 

Condition Code: 

I c I V l G I L I 
:===============! 
I x I o I o o I 

x 0 0 l 
x 0 l 0 
1 0 x x 

Prograrmning Notes: 

Result is zero 
Result is not zero 
Result is not zero 
Carry 

The condition code setting is based on the halfword (bits 16:31) 
result. 

In the Ril format, the shift count is specified by the 
least significant four bits of the second operand. The maximum 
shift count is 15. 

In the SF format, the maximum shift count is 15. 

The state of the C flag indicates the state of the last bit 
shifted out of position 16. 

When the register specified by Rl contains fixed point data, the 
L flag set indicates a negative result; the G flag set indicates 
a positive result. 

If the second operand specifies a shift of zero places, the 
condition code is set in accordance with the value contained in 
bits 16:31 of the register. The c flag is zero in this case. 

50-022 ROO 3-41 



3.5.30 Shift Right Halfword Logical (SRHL, SRHLS) 

Shift Right Halfword Logical (SRHL) 
Shift Right Halfword Logical Short (SRHLS) 

Assembler Notation 

SRHL 
SRHLS 

Rl,I2(X2) 
Rl,N 

Operation: 

Opcode 

cc 
90 

Format 

RI! 
SF 

Bits 16:31 of the register specified by Rl are shifted right the 
number of places specified by the second operand. Bits shifted 
out of position 31 are shifted through the C flag and lost. The 
last bit shifted remains in the C flag. Zeros are shifted into 
position 16. Bits 0:15 of the first operand remain unchanged. 

Condition Code: 

I C I V I G I L I 
1===============1 

x 0 0 0 
x 0 0 l 
x 0 1 0 
l 0 x x 

Programming Notes: 

Result is zero 
Result is not zero 
Result is not zero 
Carry 

The condition code setting is based on the halfword (bits 16:31) 
result. 

In the Rll format, the shift count is specified by the 
least significant four bits of the second operand. The maximum 
shift count is 15. 

In the SF format, the maximum shift count is 15. 

The state of the C flag indicates the state of the last bit 
shifted out of position 31. 

When the register specified by Rl contains fixed point data, the 
L flag set indicates a negative result; the G flag set indicates 
a positive result. 

If the second operand specifies a shift 
condition code is set in accordance 
contained in bits 16: 31 of the reg.ister. 
this case. 

3-42 

of zero placesf the 
with the halfword value 
The C flag is zero in 

50-022 ROO 



3.5.31 Rotate Left Logical (RLL) 

Aaaembler No.t.atjoo 

RLL Rl,12(X2) F.B RI l 

Operation: 

The 32-bit first operand, contained in the register specified by 
Rl, is shifted left, end around, the number of positions 
specified by the second operand. Bits shifted out of position 0 
are shifted into position 31. 

Condition Code: 

I c I V I G I L I 
1===============1 
I o I o I o I o I 
I o I o I O I 1 I 
: 0 : 0 : l : 0 : 

Programming Notes: 

Result is zero 
Result is not zero 
Result is not zero 

The shift count is specified by the least significant five bits 
of the second operand. The maximum shift count is 31. 

When the register specified by Rl contains fixed point data, Lhe 
L flag set indicates a negative result; the G flag set indicates 
a positive result. 

If the second operand specifies a shift of zero places, the 
condition code is set in accordance with the value contained in 
the register specified by Rl. 

Example 1: 

Aasembler Not.at.ion 

LI REG9,Y'56789ABC' 
RLL REG9,X'0004' 

Machine .Code 

F890 56789ABC 
EB90 0004 

Result of RLL Instruction: 

(REG9) = 6789ABC5 
Condition code = 0010 (G=l) 

50-022 ROO 

.Comment.a 

(REG9)=56789ABC 

3-43 



Example 2: 

Assembler Notation 

LI REG9,Y'88880000' 
RLL REG9,X'03' 

Machine CQda 

F890 8888 0000 
EB90 0003 

Result of RLL Instruction: 

(REG9) = 44400004 
Condition code = 0010 (G=l) 

3-·44 

Corrunents 

(REG9)=88880000 

50-022 ROO 



3.5.32 Rotate Right Logical (RRL) 

Assemblez_ Notation .Opcode F..ormat 

RRL Rl,I2(X2) EA Rll 

Operation: 

The 32-bit first operand, which is contained in the register 
specified by Rl, is shifted right, end around, the number of 
positions specified by the second operand. Bits shifted out of 
position 31 are shifted into position 0. 

Condition Code: 

I c I V I G I L I 
1===============1 
I O I O I O I o I 
I o I O I O I l I 
I o I o I l I o I 

Programming Notes: 

Result is zero 
Result is not zero 
Result is not zero 

The shift count is specified by the least significant five bits 
of the second operand. The maximum shift count is 31. 

When the register specified by Rl contains fixed point data, the 
L flag set indicates a negative result; the G flag set indicates 
a positive result. 

If the second operand specifies a shift of zero places, the 
condition code is set in accordance with the value contained in 
the register specified by Rl. 

Example 1: 

Assemble~ Notation 

LI REG4,Y'l2345678' 
RRL REG4,X'04' 

Machine .Cade 

F840 1234 5678 
EA40 0004 

Result of RRL Instruction: 

(REG4) = 81234567 
Condition code = 0001 (L=l) 

50-022 ROO 

.Comments 

(REG4) = 12345678 

3-45 



Example 2: 

Assembler Notation 

LI REG4,Y'00001111' 
RRL REG4,X'Ol' 

Result of RRL Operation: 

Machine .cc.de. 

F840 0000 1111 
EA40 0001 

( REG4) = '8000008'88' 
Condition code = 0001 (L=l) 

3-·46 

Comments 

(REG4) = 00001111 

50-022 ROO 



3.5.33 Test and Set (TS) 

Assembler Notation 

Ts· 
TS 

D2(X2) 
A2(FX2,SX2) 

Operation: 

.Opcode 

EO 
EO 

Format 

RX1,RX2 
RX3 

The halfword operand is read from memory and, on the same cycle, 
written back with the most significant bit set. The other 
bits in the halfword are unchanged. On the read cycle, the 
most significant bit of the operand is tested. The condition 
code reflects the state of this bit at the time of the memory 
read. 

Condition Code: 

I c I V I G I L I 

1===============1 
I x I x I x I o I 
I x I x I x I l I 

Most significant bit is zero 
Most significant bit is set 

Programming Notes: 

The second operand must be located on a halfword boundary. 

The TS instruction provides a mechanism for software 
synchronization and can be used in a single processor environment 
as follows: two or more user tasks (u-tasks) running under an 
operating system share a halfword. This halfword is located in 
a memory area referred to as task common. Each task can access 
the halfword using the TS instruction. The synchronization 
sequence can be as follows: 

TASK 1 

TASK 2 

50-022 ROO 

sets the most significant bit using the TS 
instruction. 

senses the most significant bit using the TS 
instruction, sees that it is set, and performs 
the necessary software synchronization. 

3-47 



3.5.34 Test Bit (TBT) 

Assembler Notation 

TBT 
TBT 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

Opcode 

74 
74 

Format 

RX1,RX2 
RX3 

The second operand address points to a bit array starting on a 
byte boundary. The value contained in the register specified by 
Rl is the bit displacement into the at·ray. Bits in the array are 
counted from left to right starting with bit 0. The argument bit 
is located and tested. The test does not change the bit. 

Condition Code: 

I c I V I G I L I 
1===============1 
I O I o I o I O I 
I o I o I 1 I O I 

Tested bit is zero 
Tested bit is one 

Programming Note: 

For software compatibility with other processors, the bit array 
should start on a halfword boundary. 

Example: 

Assembler Notation 

LIS 
TBT 

REGS,3 
REGS,LABEL 

Machine .c.ad.e 

24S3 
74SO OBC4 

Result of TBT Instruction: 

Memory location X'BC4' unchanged 
(REGS) unchanged 

Comments 

(REGS) = 3 
LABEL = halfword 
in memory at location 
X'OBC4'. It contains 
X 'B34A'. 

Condition code= 0010 (G=l) ... Bit 3 of location X'BC4' is set. 

3-48 50-022 ROO 



3.5.35 Set Bit (SST) 

As.sembler Notation 

SBT 
SBT 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

Opcode 

75 
75 

E.ormat 

RX1,RX2 
RX3 

The second operand address points to a bit array starting on a 
byte boundary. The value contained in the register specified by 
Rl is the bit displacement into the array. Bits in the array are 
counted from left to right starting with bit 0. The argument bit 
is located and set to one. 

Condition Code: 

I c I V I G I L I 
1===============1 
I o I o I o I O I 
I O I o I l I O I 

Programming Note: 

Previous state of bit was zero 
Previous state of bit was one 

For software compatibility with other processors, the bit array 
should start on a halfword boundary. 

Example: 

Assembler Notation 

LIS 
SBT 

REG5,8 
REG5,IABEL 

Machine .co.d.a 

24S8 
7S50 1520 

Result of SBT Instruction: 

Contents of IABEL = 21B4 
(REGS) unchanged 
Condition code = 0000 (G=O) 

S0-022 ROO 

Comments 

(REGS) = 8 
LABEL located at 
X'lS20'. It contains 
X'2134'. 

3-49 



3.5.36 Reset Bit (RBT) 

Assembler Notation 

RBT 
RBT 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

Opcode 

76 
76 

Format 

RX1,RX2 
RX3 

The second operand address points to a bit array starting on a 
byte boundary. The value contained in the register specified by 
Rl is the bit displacement into the a~ray. Bits in the array are 
counted from left to right starting with bit zero. The argument 
bit is located and forced to zero (reset). 

Condition Code: 

I c I V I G I L I 
1======----=--=-1 
I O I O I O I O I 
I O I O I 1 I O I 

Programming Note: 

Previous state of bit was zero 
Previous state of bit was one 

For software compatibility with other processors, the bit array 
should start on a halfword boundary. 

Example: 

Aasembler Naca.t.ion 

LIS 
RBT 

REG2,3 
REG2,IABEL 

Machine Code 

2423 
7620 1A42 

Result of RBT Instruction: 

Contents of LABEL = 2143 
(REG2) unchanged 
Condition code = 0010 (G=l) 

3-50 

Comment.a 

(REG2) = 3 
LABEL located 
at X'lA42' 
contains X'3143'. 

50-022 ROO 



3.5.37 Complement Bit (CBT) 

CBT 
CBT 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

Ope.ode 

77 
77 

Format 

RX1,RX2 
RX3 

The second operand address points to a bit array starting on a 
byte boundary. The value contained in the register specified by 
Rl is the bit displacement into the array. Bits in the array are 
counted from left to right starting with bit 0. The argument bit 
is located and complemented. 

Condition Code: 

I c I V I G I L I 
1===============1 
I o I o I o I o I 
I O I O I l I o I 

Programming Note: 

Previous state of bit was zero 
Previous state of bit was one 

For software compatibility with other processors, the bit array 
should start on a halfword boundary. 

Example: 

Aa.s.embler Notation 

LIS 
CBT 

REG9,3 
REG9,IABEL 

Machine Co.de. 

2493 
7790 OC4A 

Result of CBT Instruction: 

Contents of IABEL = 3813 
(REG9) unchanged 
Condition code = 0000 (G=O) 

50-022 ROO 

.Comments 

(REG9) = 3 
LABEL located at 
X'C4A'. It contains 
X'2813'. 

3-51 



3.5.38 Cyclic Redundancy Check (CRC12, CRC16) 

Cyclic Redundancy Check Modulo 12 (CRC12) 
Cyclic Redundancy Check Modulo 16 (CRC16) 

AsselDhler Notation 

CRC12 
CRC12 
CRC16 
CRC16 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

Opcode 

S;E 
SE 
SF 
SF 

Format 

RX1,RX2 
RX3 
RX1,RX2 
RX3 

These instructions are used to generate either a 12-bit or a 
16-bit CRC residual halfword. The register specified by Rl 
contains, in bits 24:31, the data character to be included in the 
CRC residual. The second operand is the accumulated (old) CRC 
residual. The polynomial used for the 12-bit CRC generation is: 

x12 + x11 + x3 + x2 + x + 1 

The polynomial used for the 16-bit CRC generation is: 

x1s + x1s + x2 + 1 

The halfword second operand is replaced by the generated CRC 
residual. 

Condition Code: 

Unchanged 

Programming Notes: 

The register specified by Rl remains unchanged. 

The second operand must be located on a halfword boundary. 

Figure 3-6 illustrates a flowchart for CRC generation. 

3-52 50-022 ROO 



589-1 

START 

ITCUD\ .........__ID 1 -- - _ \ /7:\. l"'\I n /"'DI"' 
\1'-IYll ,..,..---,,,, ;[t):Jl' \J VLUvnv 

(TEMP) 

(COUNT)+--6 

SHIFT RIGHT 

BY 1 
(TEMP) 

YES 

STEP 

2 

3 

(TEMP) ... •~- (TEMP)0 X'OFOl' 4 

(COUNT) (COUNT) - 1 
5 

NO 

SECOND OPERAND .,.•t---- (TEMP) 6 

END 

CRC12 ALGORITHM SHOWN 

FOR CRC 16 ALGORITHM, USE: Rl 24:31 INSTEAD OF R126:31 IN STEP 1 
8 INSTEAD OF 6 IN STEP 2 

X'AOOl' INSTEAD OF X'OF01' IN STEP 4 

Figure 3-6 Flowchart for CRC Generation 

50-022 ROO 3-53 



3.5.39 Translate (TIATE) 

Assembler Notation 

TL.ATE 
TL.ATE 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

Opcode 

E7 
E7 

Format 

RX1,RX2 
RX3 

The least significant eight bits (bits 24:31) of the register 
specified by Rl contain the character to be translated. The 
fullword location specified by the second operand address 
contains the address of a translation table. The table is made 
up of 256 halfwords. The character contained in the register 
specified by Rl is used as an index into the table. 

If bit O of the table entry corresponding to the index character 
is one, bits 8:15 of the table entry replace the index character, 
and the next sequential instruction is executed. 

If bit 0 of the table entry is zero, bits 1:15 of the table entry 
contain the address, divided by two, of a special character 
handling routine. In this case, no translation takes place. The 
address contained in bits 1:15 is shifted left by one (multiplied 
by two). This address replaces the current LOC, thereby 
effecting an unconditional branch to the special character 
handling routine. Translation of character string data may also 
be performed using the MVTU instruction (see Chapter 7). 

Condition Code: 

Unchanged 

Programming Notes: 

The second operand must be located on a fullword boundary. 

0 7 8 15 

11 I TRANSLATED CHARACTER I 

10 I (CHAR. HANDLING ROUTINE ADDRESS)/2 

3-54 50-022 ROO 



Example: 

This example illustrates the use of the TLATE instruction. The 
translation table must either be initialized or assembled to 
contain up to a total of 256 halfword entries. In this example, 
the table contains two entries. 

Label 

TABADR 

Assembler Notatjon 

LHI 
STH 
LA 
SRLS 
STH 

DC 

REGS, X'8052' 
REGS,TABLE 
REG7,TRANLAB 
REG7,l 
REG7,TABLE+4 

A(TABLE) 

Commerits 

LOAD TABLE ENTRY INTO REGS 
PUT ENTRY INTO TABLE 
LOAD ANOTHER TABLE ENTRY 
DIVIDE BY 2 
PUT ENTRY INTO TABLE 

Alternatively, this table can be assembled with the proper 
constant values. The T type constant can be used to assemble 
subroutine addresses in the proper format. For example: 

ALIGN 2 
TABLE EQU * 

DO 256 
DC H'O' 
ORG TABLE+4 
DC T(TRANLAB) 
ORG TABLE+512 

Since a program is normally assembled as a relocatable program, 
the address of TRANI.AB is not known, but for illustrative 
purposes, assume the address of TRANI.AB is X'864'. 

50-022 ROO 3-55 



0 15 

TABLE+O 

TABLE+2 

TABLE+4 8 0 5 2 

TABLE+6 

TABLE+8 

TABLE+lO 0 4 3 2 

TABLE+l2 

TABLE+508 

TABLE+lO contains the address of TRANLAB divided by 2 (X'864'/2). 

Example 1: 

Using the above table, the following example translates the 
character in register 2. 

Label Assembler Notatjoo Comments 

LIS 
TlATE 

REG2,2 
REG2,TABADR 

(REG2) = 0000 0002 

Result of TLATE Instruction: 

(REG2) = 0000 0052 
Condition code unchanged 

The entry used Data at address of (2 times contents of REG2) 
+ TABLE 

= Data at address TABLE + 4 
X'8052' 

Since the first bit of the entry is 1, direct translation is used 
and the contents of REG2 are replaced by x•oooo 0052'. 

3-56 50-022 ROO 



Example 2: 

Using the above table, the following example shows how the TLATE 
instruction can be used to branch to a special character handling 
routine. 

Labe.l 

TRANLAB 

Assembler Notation 

LIS 
TLATE 

LR 
LB 

REGS,S 
REGS,TABADR 

R6,RS 
R3,0(R6) 

Result of TIATE Instruction: 

(REGS) = 0000 0005 
Condition code unchanged 

.Comments 

(REGS) = 0000 OOOS 

THESE INSTRUCTIONS 
OPERATE ON THE 
SPECIAL CHARACTER. 

Control is transferred to the subroutine at address TRANLAB 
( x' 864' ) . 

The entry used Data at address of (2 times contents of REGS) 
+ TABLE 
Data at address TABLE + A 
X'0432' 

Since the first bit of the entry is 0, the entry is multiplied by 
2, a transfer occurs to TRANLAB (at address X'864'), and the 
processor executes instructions from the new address. 

S0-022 ROO 3-S7 



3.5.40 Add To List (ATL, ABL) 

Add to Top of List (ATL) 
Add to Bottom of List (ABL) 

Assembler Notation 

ATL 
ATL 
ABL 
ABL 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

Opcode 

64 
64 
65 
65 

Format 

RX1,RX2 
RX3 
RX1,RX2 
RX3 

The register specified by Rl contains the fullword element to be 
added to the list, which is located in memory at the address of 
the second operand. The tally of the number of slots used is 
compared with the number of slots in the list. If the number of 
slots used equals the number of slots in the list, an overflow 
condition exists. The element is not added to the list and the 
overflow flag in the condition code is set. 

If the tally of the number of slots used is less than the number 
of slots in the list, it is incremented by one, the appropriate 
pointer is changed, and the element is added to the list. See 
Figure 3-4. 

Condition Code: 

i c I V I G I L I 
1===============1 
I O I O I O I O I 
! o I 1 I o I o I 

Programming Notes: 

Element added successfully 
List overflow 

These instructions manipulate circular lists as described in the 
introduction to this chapter. 

The second operand must be located on a fullword boundary. 

The ATL instruction manipulates the current top pointer in the 
list. If no overflow occurs, the current top pointer, which 
points to the last element added to the top of the list, is 
decremented· by one. The element is inserted in the slot pointed 
to by the new current top pointer. If the current top pointer 
was zero on entering this instruction, the current top pointer is 
set to the maximum slot number in the list. This condition is 
referred to as list wrap. 

3-58 50-022 ROO 



The ABL instruction manipulates the next bottom pointer. If no 
overflow occurs, the element is inserted in the slot pointed to 
by the next bottom pointer, and the next bottom pointer is 
incremented by one. If the incremented next· bottom pointer is 
greater than the maximum slot number in the list, the next bottom 
pointer is set to zero. This condition is referred to as list 
wrap. 

For the nonoverflow situation, pointer halfwords in the list 
header are not manipulated until after the element has been 
successfully added. This facilitates error recovery in the event 
of a memory fault. 

See the examples in Section 3.5.41. 

50-022 ROO 3-59 



3.5.41 Remove From List (RTL, RBL) 

Remove from Top of List (RTL) 
Remove from Bottom of List (RBL) 

Assembler Notation 

RTL 
RTL 
RBL 
RBL 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

Opcode 

66 
66 
67 
67 

Format 

RX1,RX2 
RX3 
RX1,RX2 
RX3 

The element removed from the list replaces the contents of the 
register specified by Rl. The list is located at the address of 
the second operand. If, at the start of the instruction 
execution, the tally of the number of slots used is zero, then 
the list is already empty and the instruction terminates with the 
overflow flag set in the condition code. This condition is 
referred to as list underflow; in this case, Rl is undefined. If 
underflow does not occur, the appropriate pointer is changed, the 
element is extracted and placed in the register specified by Rl, 
and the number of slots used tally is decremented by one. 

Condition Code: 

I c I V I G I L I 
1===============1 

o o o I O I 
I o I o I l I O I 
I o I 1 I o I o I 

Programming Notes: 

List now empty 
List is not yet empty 
List was already empty 

These instructions manipulate circular lists as described in the 
introduction to this chapter. 

The second operand must be located on a fullword boundary. 

In the case of list underflow, the contents of the register 
specified by Rl are unchanged. 

3-60 50-022 ROO 



The RTL instruction manipulates the current top pointer. If no 
underflow occurs, the current top pointer points to the element 
to be extracted. The element is extracted and placed in the 
register specified by Rl. The current top pointer is incremented 
by one and compared to the maximum slot number. If the current 
top pointer is greater than the maximum slot number, the current 
top pointer is set to zero. This condition is referred to as 
list wrap. 

The RBL instruction manipulates the next bottom pointer. If no 
underflow occurs and the next bottom pointer is zero, it is set 
to the maximum slot number (list wrap); otherwise, it is 
decremented by one, and the element now pointed to is extracted 
and placed in the register specified by Rl. 

For the nonunderflow situation, pointer halfwords in the list 
header are not manipulated until after the element has been 
successfully removed. The register specified by Rl is not 
modified until the header has been updated. This facilitates 
error recovery in the event of a memory fault. 

Examples: 

The following are examples of the use of the four list processing 
instructions (ATL, ABL, RTL, RBL). 

The original list is normally set up as shown in Figure 3-7. 

590 

LIST 0005 0000 WHERE HALFWORDS AT 

0000 ()()()() LIST MAXIMUM# OF SLOTS 

SLOTO UNDEFINED 5 (IN THIS EXAMPLE) 

SLOT 1 UNDEFINED LIST+ 2 # OF ENTRIES USED 

SLOT 2 UNDEFINED 0 

SLOT3 UNDEFINED LIST+ 4 CURRENT TOP OF LIST 

SLOT4 UNDEFINED SLOTO 

l LIST+ 6 NEXT BOTTOM OF LIST 

SLOTO 

Figure 3-7 List Processing Instructions 

50-022 ROO 3-61 



Assembler Notation 

LIS REGO,O 

STH REGO,LIST+2 

ST REGO,LIST+4 

LIS REGl, 1 

LIS REG2,2 

LIS REG3,3 

LIS REG4,4 

LIS REG5,5 

LIS REG6,6 

STH REG5,LIST 

REF! ATL REGl,LIST 

3-62 

Results .and Comments 

INITIALIZE NUMBER OF ENTRIES 
USED TO 0 

INITIALIZE POINTERS TO 0 

REGISTERS 1 THROUGH 6 CONTAIN 
1 THROUGH 6 RESPECTIVELY 

TOTAL NUMBER OF ENTRIES = 5 

LIST ooos I 0001 
------1------

0004 : 0000 (List Wrap) 

SLOT 0 UNDEFINED 

SLOT 1 UNDEFINED 

SLOT 2 UNDEFINED 

SLOT 3 UNDEFINED 

SLOT 4 0000 : 0001 

Condition code = 0000 
Current top pointer = Slot 4 
Next bottom pointer = Slot 0 

50-022 ROO 



REF2 ATL REG2,LIST 

REF3 ATL REG3,LIST 

50-022 ROO 

LIST 0005 I 0002 
------1------

0003 I 0000 

SLOT 0 UNDEFINED 

SLOT l UNDEFINED 

SLOT 2 UNDEFINED 

SLOT 3 0000 I 0002 
------1------

SLOT 4 0000 I 0001 

Condition code = 0000 
Current top pointer Slot 3 
Next bottom pointer = Slot 0 

LIST 0005 I 0003 
------1------

0002 I 0000 

SLOT 0 UNDEFINED 

SLOT l UNDEFINED 

SLOT 2 0000 I 0003 
------1------

SLOT 3 0000 I 0002 
------1------

SLOT 4 0000 I 0001 

Condition code = 0000 
Current top pointer = Slot 2 
Next bottom pointer = Slot 0 

3-63 



REF4 ABL REG4,LIST 

REFS ABL REGS,LIST 

3-64 

LIST ooos l 0004 I 
------1------1 

0002 I 0001 I 
------1------1 

SLOT 0 0000 I 0004 I 
-------------' 

SLOT 1 UNDEFINED 

SLOT 2 0000 I 0003 
------1------

SLOT 3 0000 I 0002 
------1------

SLOT 4 0000 I 0001 

Condition code = 0000 
Current top pointer = Slot 2 
Next bottom pointer = Slot 1 

LIST 

SLOT 0 

SLOT 1 

SLOT 2 

SLOT 3 

SLOT 4 

-------------
0005 0005 

------ ------
0002 0002 

------ ------
0000 0004 __ .,. ____ ------
0000 0005 

------ ------
0000 0003 

------ ------ ' 0000 ; 0002 I 
------1------1 

0000 I 0001 I 

Condition code = 0000 
Current top pointer Slot 2 
Next bottom pointer = Slot 2 

50-022 ROO 



REF6 ABL REG6,LIST 
-------------

LIST 0005 0005 I 
I 

------ ------1 
0002 0002 I 

I 

- ----- ------' 
SLOT 0 0000 0004 

------ -----··-
SLOT l 0000 0005 

------ ---- --
SLOT 2 0000 0003 

---- -- ------
SLOT 3 0000 0002 

------ -------
SLOT 4 0000 0001 

-------------

Condition code = 0100 (List overflow) 
Current top pointer Slot 2 
Next bottom pointer = Slot 2 

REF? RTL REG7,LIST LIST 0005 : 0004 

50-022 ROO 

------'------' 0003 I 0002 
------:------

SLOT 0 0000 ! 0004 
------ ------

SLOT l 0000 0005 
------ ------

SLOT 2 X 0000 0003 
------ ------

SLOT 3 0000 0002 
------ ------

SLOT 4 0000 0001 

(REG7) = 0000 0003 
Condition code = 0010 
Current top pointer Slot 3 
Next bottom pointer Slot 2 

NOTE 

X indicates an entry was removed from 
the list and is not accessible through 
further manipulation of list 
instructionss 

3-65 



REF8 RBL 

REF9 RTL 

3-66 

REG8,LIST 
-------------

LIST 0005 0003 
------ ------

0003 0001 
------ ------

SLOT 0 0000 0004 
------ ------

SLOT l x 0000 0005 
------ ------

SLOT 2 x 0000 0003 
------ ------

SLOT 3 0000 0002 
------ ------

SLOT 4 0000 0001 
-------------

(REG8) = 0000 0005 
Condition code = 0010 
Current top pointer Slot 3 
Next bottom pointer Slot 1 

NOTE 

X indicates an entry was removed from 
the list and is not accessible through 
further manipulation of list 
instructions. 

REG9,LIST 
-------------

LIST 0005 0002 
------ ------

0004 0001 
-··----- ------

SLOT 0 0000 0004 
-~----- ------

SLOT l x 0000 0005 
------ ------

SLOT 2 x 0000 0003 
------ ------

SLOT 3 x 0000 0002 
------ ------

SLOT 4 0000 0001 
-------------

(REG9) = 0000 0002 
Condition code = 0010 
Current top pointer Slot 4 
Next bottom pointer = Sl0t 1 

50-022 ROO 



REFlO RBL REGlO,LIST LIST 0005 0001 I 
I 

REFll RTL 

-·----- -·-----I 

0004 0000 
------ -·-----

SLOT 0 X 0000 0004 
------ - -----

SLOT l X 0000 0005 
------ -------

SLOT 2 X 0000 0003 
------ ------

SLOT 3 X 0000 0002 
------1------

SLOT 4 0000 I 0001 

(REGlO) = 0000 0004 
Condition code = 0010 
Current top pointer 4 
Next bottom pointer 0 

NOTE 

I 
.I 

X indicates an entry was removed from 
the list and is not accessible through 
further manipulation of list 
instructions. 

REGll,LIST 
-------------

LIST 0005 0000 
------ ------

0000 0000 
------ ------

SLOT 0 x 0000 0004 
------ ------

SLOT l x 0000 0005 
------ ------

SLOT 2 x 0000 0003 
------ ------

SLOT 3 x 0000 0002 
1------:------

SLOT 4 x I 0000 I 0001 I I 

-------------

(REGll) = 0000 0001 
Condition code = 0000 (List is now empty) 
Current top pointer O 
Next bottom pointer = 0 

50-022 ROO 3-67 



REF12 RTL REG12,LIST LIST 0005 I 0000 

3-68 

0000 0000 

SLOT 0 X 0000 0004 

SLOT 1 X 0000 0005 
------,------

SLOT 2 X 0000 I 0003 
------1------

SLOT 3 X 0000 I 0002 
---·---- ! ------

SLOT 4 X 0000 I 0001 

(REG12) = UNDEFINED 
Condition code = 0100* 
Current top pointer = 0 
Next bottom pointer = 0 

* List was already empty 

NOTE 

X indicates an entry was removed from 
the list and is not accessible through 
further manipulation of list 
instructions. 

50-022 ROD 



4.1 INTRODUCTION 

CHAPTER 4 
BRANCHING 

In normal operations, the processor executes instructions in 
sequential order. The branch instructions allow this sequential 
mode of operation to be varied, so that programs can loop, 
transfer control to subroutines, or make decisions based on the 
results of previous operations. 

4.2 OPERATIONS 

The second operand of a branch instruction is the address of the 
memory location to which control is transferred. The address can 
be contained in a register, or it can be specified in the 
instruction as the second operand address or as a displacement. 

4.2.l Decision Making 

The conditional branch instructions permit the program to make 
decisions based on some result. In these instructions, the Rl 
field contains a 4-bit mask, Ml, which is tested by ANDing it 
with the condition code. The result of the test determines 
whether the branch is taken, or the next sequential instruction 
is executed. 

Table 4-1 shows previous condition codes, masks specified in a 
branch instruction, and the results of the test on which the 
branch or no branch decision was made. 

I 
I 

CONDITION I 
CODE 

TABLE 4-1 DECISION TABLE 

I I 
I I 

I RESULT l (TRUE/ 
MASK(Ml) I OF TEST I FALSE) 

I BRANCH 
I TRUE 
I TAKEN 

I BRANCH 
I FALSE 
I TAKEN 

============================================================ 
0000 0010 0000 I (False) I No Yes 

0001 1010 0000 I (False) I No Yes 

1001 1000 1000 I (True) Yes No 

50-022 ROD 4-1 



TABLE 4-1 DECISION TABLE (Continued) 

I 
I 

CONDITION I 
CODE 

I I 
I I 

I RESULT I (TRUE/ 
MASK(Ml) I OF TEST I FALSE) 

I BRANCH 
I TRUE 
I TAKEN 

I BRANCH 
I FALSE 
I TAKEN 

=================================================-=-====-=== 
0100 0100 I . 0100 I (True) Yes No 

1010 0010 0010 I (True) Yes No 

0010 0011 0010 I (True) Yes No 

0010 0000 0000 I (False) I No Yes 

4.2.2 Subroutine Linkage 

The branch and link instructions allow branching to subroutines 
in such a way that a return address is passed to the subroutine. 
For these instructions, the address of the memory location 
immediately following the branch instruction is saved in the 
register specified by Rl. 

4.3 BRANCH INSTRUCTION FORMATS 

The branch instructions use the Register-to-Register (RR), Short 
Form (SF), and Register and Indexed Storage (RX) formats. 

4.4 BRANCH INSTRUCTIONS 

The instructions described in this section are: 

BTC Branch on True Condition 
BTCR Branch on True Condition Register 
BTBS Branch on True Condition Backward Short 
BTFS Branch on True Condition Forward Short 

BFC Branch on False Condition 
BFCR Branch on False Condition Register 
BFBS Branch on False Condition Backward Short 
BFFS Branch on False Condition Forward Short 

BAL Branch and Link 
BALR Branch and Link Register 

BXLE Branch on Index Low or Equal 

BXH Branch on Index High 

4-2 50-022 ROO 



4.4.1 Branch on True (BTC, BTCR, BTBS, BTFS) 

Branch on True Condition (BTC) 
Branch on True Condition Register (BTCR) 
Branch on True Condition Backward Short 
Branch on True Condition Forward Short 

Assembler Notation .Opcode 

BTC 
BTC 
BTCR 
BTBS 
BTFS 

Ml,D2(X2) 
Ml,A2(FX2,SX2) 
Ml,R2 
Ml,N 
Ml,N 

Operation: 

42 
42 
02 
20 
21 

(BTBS) 
(BTFS) 

Format 

RX1,RX2 
RX3 
RR 
SF 
SF 

The condition code of the program status word (PSW) is tested for 
the conditions specified by the mask field, Ml. If any 
conditions tested are found to be true, a branch is taken to the 
second operand location. If none of the conditions tested are 
found to be true, the next sequential instruction is executed. 

Condition Code: 

Unchanged 

Programming Notes: 

In the RR format, the branch address is contained in the register 
specified by R2. 

In the SF format, the N field contains the number of halfwords to 
be added to or subtracted from the current location counter (LOC) 
to obtain the branch address. 

In the RR and RX formats, the branch address must be located on 
a halfword boundary. 

50-022 ROO 4-3 



Example: 

The following example illustrates the use of the BTC instruction. 

Assembler Notation 

LH 
BTC 

4-4 

Rl,X'l00' 
3,LOC 

Machine .c.ad.e. 

4810 0100 
42~0 ABCO 

Comments 

Load halfword (X'l234') 
located at X'lOO'. Condi­
tion code is set to CVGL 
= 0010. Mask is 3 (i.e., 
Ml= 0011). Perform logi­
cal AND between CVGL and 
Ml (i.e., 0010 AND 0011). 
The result is 0010 (i.e., 
true); therefore, a 
branch is taken to LDC. 

50-022 ROO 



4.4.2 Branch on False (BFC, BFCR, BFBS, BFFS) 

Branch on False Condition (BFC) 
Branch on False Condition Register (BFCR) 
Branch on False Condition Backward Short (BFBS) 
Branch on False Condition Forward Short (BFFS) 

Assembler Notation 

BFC 
BFC 
BFCR 
BFBS 
BFFS 

Ml,D2(X2) 
Ml,A2(FX2,SX2) 
Ml,R2 
Ml,N 
Ml,N 

Operation: 

Opcode 

43 
43 
03 
22 
23 

Format 

RX1,RX2 
RX3 
RR 
SF 
SF 

The condition code of the PSW is tested for the conditions 
specified in the mask field, Ml. If all conditions tested are 
found to be false, a branch is taken to the second operand 
location. If any of the conditions tested are found to be true, 
the next sequential instruction is executed. 

Condition Code: 

Unchanged 

Programming Notes: 

In the RR format, the branch address is contained in the register 
specified by R2. 

In the SF format, the N field contains the number of halfwords to 
be added to or subtracted from the current LOC to obtain the 
branch address. 

In the RR and RX formats, the branch address must be located on 
a halfword boundary. 

50-022 ROO 4-5 



Example: 

The following example illustrates the use of the BFC instruction. 

Assembler Notation 

LCS 
BFC 

4-6 

Rl,2 
9,LOC 

Machine CQde. 

2512 
43~0 ABCO 

Comments 

(Rl) : FFFFFFFE. Condi­
tion code is set to CVGL = 
0001. Mask is 1001. Per­
form logical AND between 
Ml and CVGL (i.e., 1001 
AND 0001). The result is 
0001 (i.e., true); there­
fore, a branch is not 
taken to LOC. 

50-022 ROO 



4.4.3 Branch and Link (BAL, BALR) 

Branch and Link (BAL) 
Branch and Link Register (BALR) 

Assemble~ Notation 

BAL 
BAL 
BALR 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

Opcode 

41 
41 
01 

F..ormat 

RX1,RX2 
RX3 
RR 

The address of the next sequential instruction is saved in the 
register specified by Rl, and a branch is taken to the second 
operand address. 

Condition Code: 

Unchanged 

Programming Notes: 

The second operand must be located on a halfword boundary. 

The branch address is calculated before the register specified by 
Rl is changed. Rl can specify the same register as X2, FX2, SX2 
or R2. 

Example: 

The following example illustrates the use of the BAL instruction. 
This instruction causes control to be transferred to a subroutine 
called SUBROUT. After completion of the subroutine, the linking 
register is used to branch back to the next sequential 
instruction after the BAL; i.e., the instruction labeled RETURN. 

50-022 ROO 4-7 



Label 

BEGIN 

MAIN RETURN 

PROG 

SUBROUT 

SUBROUTINE 

RTNEND 

Assembler Notation 

BAL REG4,SUBROUT 

XR R6,R6 

STH R6,LAB+4 

LHL R8,LOC 

AHI R8,10 

BR REG4 

NOTE 

Comments 

TRANSFER TO SUBROUT 

THE RETURN ADDRESS 
OF THE SUBROUTINE 
IS IN REG4 

RETURN TO XR INST. 

The linking register (REG4 in the 
example) should not be used within the 
subroutine. 

Result of BAL Instruction: 

(REG4) = Address of instruction at SUBROUT 
Condition code unchanged 

4-8 50-022 ROO 



4.4.4 Branch on Index Low or Equal (BXLE) 

Assembler Notation Opcode Format 

BXLE 
BXLE 

Set Up: 

Rl 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 

0 

Cl 
Cl 

Starting index value 

RX1,RX2 
RX3 

31 

1-----------------------------------1 
Rl+l I Increment value I 

1-----------------------------------1 
Rl+2 I Limit or final value I 

Before execution of this instruction, the register specified by 
Rl must contain a starting index value. The register specified 
by Rl+l must contain an increment value. The register specified 
by Rl+2 must contain a comparand (limit or final value). All 
values can be signed. 

Operation: 

Execution of this instruction causes the increment value to be 
added to the index value, creating a new index value. The result 
is compared logically to the limit or final value. If the new 
index value is less than or equal to the limit value, a branch is 
taken to the second operand location. If the new index value is 
greater than the limit value, the next sequential instruction is 
executed. 

Condition Code: 

Unchanged 

Progranuning Notes: 

The incremented index value replaces the contents of the register 
specified by Rl. 

Any three consecutive registers of the same set can be used by 
this instruction as specified by Rl .. These registers can be 6, 
7, 8; or 14, 15, O; or 15, 0, l; etc. 

The second operand must be located on a halfword boundary. 

50-022 ROO 4-9 



The branch address is calculated before incrementing the starting 
index value contained in the register specified by Rl. 

Rl can specify the same register as X2, FX2 or SX2. 

Example: 

Transfer 10 bytes in memo~y starting at the memory location 
labeled BUFO to the memory location labeled BUFl. 

Label 

AGAIN 

LABEL 

BUFO 
BUFl 

Assembler Notation 

LIS 
LIS 
LIS 

LB 
STB 
BXLE 

DS 
DS 

REG3,0 
REG4,l 
RS,9 

REGO,BUFO(R3) 
REGO,BUFl(Rl) 
R3,AGAIN 

10 
10 

Result of BXLE Instruction: 

Comments 

(REG3)=STARTING INDEX VALUE=O 
(REG4)=INCREMENT VALUE 
(REGS)=FINAL VALUE=9 

(REGO)=l BYTE FROM BUFO 
COPY 1 BYTE TO BUFl 
IF (REG3)>(REG5),DONE 

Code between the instructions labeled AGAIN and LABEL is executed 
ten times. 

Condition code unchanged by BXLE instruction 
(REG3) = OOOOOOOA 
(REG4) = 00000001 
(REGS) = 00000009 

4-10 50-022 ROO 



4.4.5 Branch on Index High (BXH) 

Assembl.aL. Nat.atjon 

BXH 
BXH 

Set Up: 

Rl 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 

0 

co 
co 

Starting index value 

RX1,RX2 
RX3 

3.1 

I 
I 

1-----------------------------------1 
Rl+l I Increment value 

1-----------------------------------1 
Rl+2 I Limit or final value I 

Before execution of this instruction, the register specified by 
Rl must contain a starting index value. The register specified 
by Rl+l must contain an increment value. The register specified 
by Rl+2 must contain a comparand (limit or final value). All 
values can be signed. 

Operation: 

Execution of this instruction causes the increment value to be 
added to the index value, creating a new index value. The result 
is logically compared to the limit or final value. If the new 
index value is greater than the limit value, a branch is taken to 
the second operand location. If the new index value is less than 
or equal to the limit value, the next sequential instruction is 
executed. 

Condition Code: 

Unchanged 

Programming Notes: 

The incremented index value replaces the contents of the register 
specified by Rl. 

Any three consecutive registers of the same set can be used by 
this instruction as specified by Rl. These registers can be 6, 
7, 8; or 14, 15, O; or 15, 0, l; etc. 

The second operand must be located on a halfword boundary. 

50-022 ROO 4-11 



The branch address is calculated before incrementing the starting 
index value contained in the register specified by Rl. 

Rl can specify the same register as X2, FX2 or SX2. 

Example: 

The following example shows how to set up a counter (1-9) using 
the BXH instruction. 

Label 

BEGIN 

LABEL 

Assembler Notation 

LIS 
LIS 
LIS 
BXH 
LH 

B 
LA 
ST 

REGl,l 
REG2,l 
REG3,9 
REGl,LABEL 
R6,COUNT 

BEGIN 
R8,RTN 
R8,MEM 

Result of BXH Instruction: 

Comment 

(REGl)=OOOO 0001 (INDEX) 
(REG2)=0000 0001 (INCREMENT) 
(REG3)=0000 0009 (COMPARAND) 
COMPARE INDEX WITH COMPARAND 

BRANCH TO BXH INSTRUCTION 
EXIT FROM BXH 

Code between the instructions labeled BEGIN and LABEL is executed 
nine times. 

Condition code unchanged by BXH instruction 
(REGl) 0000 OOOA 
(REG2) 0000 0001 
(REG3) = 0000 0009 

4-12 50-022 ROO 



4.5 EXTENDED BRANCH MNEMONICS 

The common assembly language (CAL) assembler supports 47 extended 
branch mnemonics that generate the branch opcode (true or false 
conditional) and the condition code mask required. The 
programmer must supply the second operand address (symbolic or 
absolute). In the case of SF branch instructions, the second 
operand branch address must be within 15 halfwords of the LOC. 
The CAL assembler determines the backward or forward relationship 
of the second operand address and generates the appropriate 
operation code. 

The instructions described in this section are: 

BC Branch on Carry 
BCR Branch on Carry Register 
BCS Branch on Carry Short 

BNC Branch on No Carry 
BNCR Branch on No Carry Register 
BNCS Branch on No Carry Short 

BE Branch on Equal 
BER Branch on Equal Register ---
BES Branch on Equal Short 

BNE Branch on Not Equal 
BNER Branch on Not Equal Register r 
BNES Branch on Not Equal Short 

BL Branch on Low 
BLR Branch on Low Register ( 

BLS Branch on Low Short 

BNL Branch on Not Low 
BNLR Branch on Not Low Register ~ BNLS Branch on Not Low Short 

BM Branch on Minus 
BMR Branch on Minus Register 
BMS Branch on Minus Short 

BNM Branch on Not Minus 
BNMR Branch on Not Minus Register 
BNMS Branch on Not Minus Short 

BP Branch on Plus 
BPR Branch on Plus Register 
BPS Branch on Plus Short 

BNP Branch on Not Plus 
BNPR Branch on Not Plus Register 
BNPS Branch on Not Plus Short 

50-022 ROD 4-13 



BO Branch on Overflow 
BOR Branch on Overflow Register 
BOS Branch on Overflow Short 

BNO Branch on No Overflow 
BNOR Branch on No Overflow Register 
BNOS Branch on No Overflow Short 

BZ Branch on Zero 
BZR Branch on Zero Register 
BZS Branch on Zero Short 

BNZ Branch on Not Zero 
BNZR Branch on Not Zero Register 
BNZS Branch on Not Zero Short 

B Branch (Unconditional) 
BR Branch Register (Unconditional) 
BS Branch Short (Unconditional) 

NOP No Operation 
NOPR No Operation Register 

4-14 50-022 ROO 



4.5.1 Branch on Carry (BC, BCR, BCS) 

Branch on Carry (BC) 
Branch on Carry Register (BCR) 
Branch on Carry Short (BCS) 

Assemble~ Notat.i.o.n 

BC 
BC 
BCR 
BCS 

D2(X2) 
A2(FX2,SX2) 
R2 
A 

Operation: 

Qpcode+Ml 

428 
428 
028 
208 (Backward) 
218 (Forward) 

RX1,RX2 
RX3 
RR 
SF 

If the carry (C) flag in the condition code is set, a branch is 
taken to the second operand location. If the C flag is zero, the 
next sequential instruction is executed. 

Condition Code: 

Unchanged 

Programming Notes: 

The branch destination must be located on a halfword boundary. 

In the RR format, the branch address is contained in the register 
specified by R2. 

Example: 

The following example illustrates the use of the BCS instruction. 

Assembler Notation 

SHIFT SLLS 
BCS 

50-022 ROD 

R9,l 
SHIFT 

Machjne Cc.de 

1191 
2081 

Comments 

Register 9 is 
left until the 
zero bit is 
out of position 0. 

shifted 
first 

shifted 

4-15 



4.5.2 Branch on No Carry (BNC, BNCR, BNCS) 

Branch on No Carry (BNC) 
Branch on No Carry Register (BNCR) 
Branch on No Carry Short (BNCS) 

Assembler Notation 

BNC 
BNC 
BNCR 
BNCS 

D2(X2) 
A2(FX2,SX2) 
R2 
A 

Operation: 

Opcode+Ml 

438 
438 
038 
228 (Backward) 
238 (Forwat:d) 

..F.ormat 

RX1,RX2 
RX3 
RR 
SF 

If the C flag in the condition code is zero, 
the second operand location. If the c flag 
sequential instruction is executed. 

a branch is taken to 
is set, the next 

Condition Code: 

Unchanged 

Programming Notes: 

The branch destination must be located on a halfword boundary. 

In the RR format, the branch address is contained in the register 
specified by R2. 

4-16 50-022 ROO 



4.5.3 Branch on Equal (BE, BER, BES) 

Branch on Equal (BE) 
Branch on Equal Register (BER) 
Branch on Equal Short (BES) 

Assembl.ez. Notation 

BE 
BE 
BER 
BES 

D2(X2) 
A2(FX2,SX2) 
R2 
A 

Operation: 

Qpcode-t-Ml 

433 
433 
033 
223 (Backward) 
233 (Forward) 

.Format 

RX1,RX2 
RX3 
RR 
SF 

If the greater than (G) and less than (L) flags are both zero in 
the condition code, a branch is taken to the second operand 
location. If either flag is set, the next sequential instruction 
is executed. 

Condition Code: 

Unchanged 

Programming Notes: 

The branch destination must be located on a halfword boundary. 

In the RR format, the branch address is contained in the register 
specified by R2. 

Example: 

The following example illustrates the use of the BE instruction. 

Assemblez:. Notation 

CLHI 
BE 

R4,X'23' 
OPT IN 

50-022 ROO 

Machine Cade 

C540 0023 
4330 OAOO 

Comments 

If R4 contains X'23', 
a branch is taken to 
location X'AOO'. If not, 
the next sequential 
instruction is executed. 

4-17 



4.5.4 Branch on Not Equal (BNE, BNER, BNES) 

Branch on Not Equal (BNE) 
Branch on Not Equal Register (BNER) 
Branch on Not Equal Short (BNES) 

Assembler Notation 

BNE 
BNE 
BNER 
BNES 

D2(X2) 
A2(FX2,SX2) 
R2 
A 

Operation: 

Opcode+Ml 

423 
423 
023 
203 (Backward) 
213 ( Forwaird) 

Format 

RX1,RX2 
RX3 
RR 
SF 

If the G or L flag is set in the condition code, a branch is 

taken to the second operand location. If both flags are ze'I'.o·, 

the next sequential instruction is executed. 

Condition Code: 

Unchanged 

Programming Notes: 

The branch destination must be located on a halfword boundary. 

In the RR format, the branch address is contained in the register 
specified by R2. 

4-18 50-022 ROO 



4.5.5 Branch on Low (BL, SLR, BLS) 

Branch on Low (BL) 
Branch on Low Register (BLR) 
Branch on Low Short (BLS) 

Aasemblet NoLa.L.ion 

BL 
BL 
BLR 
BLS 

D2(X2) 
A2(FX2,SX2) 
R2 
A 

Operation: 

.Qpcode-t-Ml 

428 
428 
028 
208 (Backward) 
218 (Forward) 

.F_ounat. 

RXl, RX2 
RX3 
RR 
SF 

If the c flag in the condition code is set, a branch is taken to 
the second operand address. If the C flag is zero, the next 
sequential instruction is executed. 

Condition Code: 

Unchanged 

Programming Notes: 

The branch destination must be located on a halfword boundary. 

In the RR format, the branch address is contained in the register 
specified by R2. 

Example: 

The following example illustrates the use of the BL instruction. 

Assembler Notation 

CLHI 
BL 

Rl,X'FF' 
RESTART 

50-022 ROO 

Machine Cade. 

C510 OOFF 
4280 OAOO 

.Comments 

(Rl) is compared to 
X'OOFF'. If (Rl) is less 
than X'OOFF', a branch 
is taken to memory 
location X'OAOO'. 

4-19 



4.5.6 Branch on Not Low (BNL, BNLR, BNI.S) 

Branch on Not Low (BNL) 
Branch on Not Low Register (BNLR) 
Branch on Not Low Short (BNLS) 

Assembler Notation 

BNL 
BNL 
BNLR 
BNLS 

D2(X2) 
A2(FX2,SX2) 
R2 
A 

Operation: 

Opcode+Ml 

438 
438 
038 
228 (Backward) 
238 (Forward) 

RXl, RX2 
RX3 
RR 
SF 

If the C flag in the condition code is zero, a branch is taken to 
the second operand address. If the C flag is set, the next 
sequential instruction is executed. 

Condition Code: 

Unchanged 

Progranuning Notes: 

The branch destination must be located on a halfword boundary. 

In the RR format, the branch address is contained in the register 
specified by R2. 

4-20 50-022 ROO 



4.5.7 Branch on Minus (BM, BMR, BMS) 

Branch on Minus (BM) 
Branch on Minus Register (BMR) 
Branch on Minus Short (BMS) 

Assemb~ Notation 

BM 
BM 
BMR 
BMS 

D2(X2) 
A2(FX2,SX2) 
R2 
A 

Operation: 

Qgcode+Ml 

421 
421 
021 
201 (Backward) 
211 (Forward) 

.F.ormat 

RX1,RX2 
RX3 
RR 
SF 

If the L flag in the condition code is set, a branch is taken to 
the second operand location. If the L flag is zero, the next 
sequential instruction is executed. 

Condition Code: 

Unchanged 

Programming Notes: 

The branch destination must be located on a halfword boundary. 

In the RR format, the branch address is contained in the register 
specified by R2. 

Example: 

The following example illustrates the use of the BM instruction. 

Assembler Notation 

SIS 
BM 

R3,l 
CONTINUE 

50-022 ROD 

Machine Cade 

2631 
4210 lOAO 

Comments 

If (R3) is 
after the 
a branch 
x I lOAO I. 

less than 0 
subtraction; 

is taken to 

4-21 



4.5.8 Branch on Not Minus (BNM, BNMR, BNMS) 

Branch on Not Minus (BNM) 
Branch on Not Minus Register (BNMR) 
Branch on Not Minus Short (BNMS) 

Assembler Notation 

BNM 
BNM 
BNMR 
BNMS 

D2(X2) 
A2(FX2,SX2) 
R2 
A 

Operation: 

Opcode+Ml 

431 
431 
031 
221 (Backward) 
231 (Forward) 

Format 

RXl, RX2 
RX3 
RR 
SF 

If the L flag in the condition code is zero, a branch is taken to 
the second operand location. If the L flag is set, the next 
sequential instruction is executed. 

Condition Code: 

Unchanged 

Progranuning Notes: 

The branch destination must be located on a halfword boundary. 

In the RR format, the branch address is contained in the register 
specified by R2. 

4-22 50-022 ROO 



4.5.9 Branch on Plus (BP, BPR, BPS) 

Branch on Plus (BP) 
Branch on Plus Register (BPR) 
Branch on Plus Short (BPS) 

Assembler Notation 

BP 
BP 
BPR 
BPS 

D2(X2) 
A2(FX2,SX2) 
R2 
A 

Operation: 

Qpcode+Ml 

422 
422 
022 
202 (Backward) 
212 (Forward) 

Format 

RX1,RX2 
RX3 
RR 
SF 

If the G flag in the condition code is set, a branch is taken to 
the second operand location. If the G flag is zero, the next 
sequential instruction is executed. 

Condition Code: 

Unchanged 

Programming Notes: 

The branch destination must be located on a halfword boundary. 

In the RR format, the branch address is contained in the register 
specified by R2. 

50-022 ROO 4-23 



4.5.10 Branch on Not Plus (BNP, BNPR, BNPS) 

Branch on Not Plus (BNP) 
Branch on Not Plus Register (BNPR) 
Branch on Not Plus Short (BNPS) 

Assembler Notation 

BNP 
BNP 
BNPR 
BNPS 

D2(X2) 
A2(FX2,SX2) 
R2 
A 

Operation: 

Opcode+Ml 

432 
432 
032 
222 (Backward) 
232 (Forwat:d) 

Format 

RX1,RX2 
RX3 
RR 
SF 

If the G flag in the condition code is zet:o, a branch is taken to 
the second operand location. If the G flag is set, the next 
sequential instruction is executed. 

Condition Code: 

Unchanged 

Programming Notes: 

The branch destination must be located on a halfword boundary. 

In the RR fot:mat, the branch address is contained in the register 
specified by R2. 

4-24 50-022 ROO 



4.5.11 Branch on Overflow (BO, SOR, BOS) 

Branch on Overflow (BO) 
Branch on Overflow Register (BOR) 
Branch on Overflow Short (BOS) 

Assemblez. Nota.L.ian 

BO 
BO 
BOR 
BOS 

D2(X2) 
A2(FX2,SX2) 
R2 
A 

Operation: 

.Qpcode+Ml 

424 
424 
024 
204 (Backward) 
214 (Forward) 

For:: mat 

RXl, RX2 
RX3 
RR 
SF 

If the overflow (V) flag in the condition code is set, a branch 
is taken to the second operand location. If the V flag is zero, 
the next sequential instruction is executed. 

Condition Code: 

Unchanged 

Progranuning Notes: 

The branch destination must be located on a halfword boundary. 

In the RR format, the branch address is contained in the register 
specified by R2. 

50-022 ROO 4-25 



4.5.12 Branch on No Overflow (BNO, BNOR, BNOS) 

Branch on No Overflow (BNO) 
Branch on No Overflow Register (BNOR) 
Branch on No Overflow Short (BNOS) 

Assembler Notation 

BNO 
BNO 
BNOR 
BNOS 

D2(X2) 
A2(FX2,SX2) 
R2 
A 

Operation: 

Opcode±Ml 

434 
434 
034 
224 (Backward) 
234 (Forward) 

Format 

RX1,RX2 
RX3 
RR 
SF 

If the V flag in the condition code is zero, a branch is taken to 

the second operand location. If the V flag is set, the next 

sequential instruction is executed. 

Condition Code: 

Unchanged 

Programming Notes: 

The branch destination must be located on a halfword boundary. 

In the RR format, the branch address is contained in the register 

specified by R2. 

4-26 50-022 ROO 



4.5.13 Branch on Zero (BZ, BZR, BZS) 

Branch on Zero (BZ) 
Branch on Zero Register (BZR) 
Branch on Zero Short (BZS) 

BZ 
BZ 
BZR 
BZS 

D2(X2) 
A2(FX2,SX2) 
R2 
A 

Operation: 

Qg.codfLt.M.l. 

433 
433 
033 
223 (Backward) 
233 (Forward) 

RXl, RX2 
RX3 
RR 
SF 

If the G and L flags are both zero in the condition code, a 
branch is taken to the second operand location. If the G or L 
flag is set, the next sequential instruction is executed. 

Condition Code: 

Unchanged 

Programming Notes: 

The branch destination must be located on a halfword boundary. 

In the RR format, the branch address is contained in the register 
specified by R2. 

50-022 ROO 4-27 



4.5.14 Branch on Not Zero (BNZ, BNZR, BNZS) 

Branch on Not Zero (BNZ) 
Branch on Not Zero Register (BNZR) 
Branch on Not Zero Short (BNZS) 

Assembler Notation 

BNZ 
BNZ 
BNZR 
BNZS 

D2(X2) 
A2(FX2,SX2) 
R2 
A 

Operation: 

Opcode+Ml 

423 
423 
023 
203 (Backward) 
213 (Forward) 

Format 

RX1,RX2 
RX3 
RR 
SF 

If the G or L flag in the condition code is set, a branch is 
taken to the second operand address. If the G and L flags are 
both zero, the next sequential instruction is executed. 

Condition Code: 

Unchanged 

Progranuning Notes: 

The branch destination must be located on a halfword boundary. 

In the RR format, the branch address is contained in the register 
specified by R2. 

4-28 50-022 ROO 



4.5.15 Branch (Unconditional) (B, BR, BS) 

Branch (Unconditional) (B) 
Branch Register (Unconditional) (BR) 
Branch Short (Unconditional) (BS) 

Assembler Notation 

B D2(X2) 
B A2(FX2,SX2) 
BR R2 
BS A 

Operation: 

.Qp.code+Ml 

430 
430 
030 
220 (Backward) 
230 (Forward) 

RXl, RX2 
RX3 
RR 
SF 

A branch is unconditionally taken to the second operand address. 

Condition Code: 

Unchanged 

Programming Notes: 

The branch destination must be located on a halfword boundary. 

In the RR format, the branch address is contained in the register 
specified by R2. 

This instruction is assembled as a Branch on False Condition 
instruction with no condition specified (Ml= 0); therefore, the 
branch test is always false and the branch is always taken. 

Example: 

The following example illustrates the use of the B instruction. 

Assembler N.o.tatjon 

B OPTIN 

50-022 ROO 

4300 OAOO 

Comments 

An unconditional branch 
is taken to location 
X' OAOO' . 

4-29 



4.5.16 No Operation (NOP, NOPR) 

No Operation (NOP) 
No Operation Register (NOPR) 

Assembler Notation 

NOP 
NOP 
NOPR 

D2(X2) 
A2(FX2,SX2) 
R2 

Operation: 

Opcode+Ml 

420 
420 
020 

Format 

RX1,RX2 
RX3 
RR 

The next sequential instruction is executed. 

Condition Code: 

Unchanged 

Programming Notes: 

D2(X2) or A2(FX2,SX2) and R2 are ignored and usually equal zero. 

This instruction is assembled as a Branch on True Condition 
instruction with no condition specified (Ml= O); therefore, no 
branch is taken and the next instruction is fetched and executed. 

Example: 

The following example illustrates the use of the NOP and NOPR 
instructions. 

As.aembler Notation 

NOP 
NOP 
NOPR 

4--30 

0(0,0) 
0 

Machine Code 

4200 4000 0000 
4200 0000 
0200 

Comments 

No operation 
No operation 
No operation 

50-022 ROD 



CHAPTER 5 
FIXED POINT ARITHMETIC 

5.1 INTRODUCTION 

Fixed point arithmetic instructions provide a complete set of 
operations for calculating addresses and indices, counting, and 
general-purpose fixed point arithmetic. 

5.2 FIXED POINT DATA FORMATS 

There are three formats for fixed point data: the halfword, the 
fullword and the doubleword. In each of these formats, the most 
significant bit (bit 0) is the sign bit. The remaining 15, 31 or 
63 bits represent the magnitude. See Figure 5-1. 

599 

0 HALFWORD 15 

FULLWORD 

0 1 DOUBLE WORD 63 

l~sl~~~-----4::~: ~~~--1 
Figure 5-1 Fixed Point Data Formats 

Positive values are represented in true binary form with a sign 
bit of zero. Negative values are represented in two's complement 
form with a sign bit of one. To change the sign of a number, the 
two's complement of the number can be produced by subtracting the 
number from zero. Other ways would be.to: 

• change all zeros to ones, and all ones to zeros, or 

• add one. 

50-022 ROO 5-1 



5.3 FIXED POINT NUMBER RANGE 

Fixed point numbers represent integers. Table 5-1 shows 
relations between different formats, along with decimal values. 

TABLE 5-1 FIXED POINT FORMAT RELATIONS 

DOUBLEWORD I FULLWORD HALFWORD DECIMAL 
========================================================================= 

8000000000000000 I 
(most negative) 

I -9 223 372 036 854 775 808 

I 80000000 
I (most 
I negative) 

I 8000 
I (most 
I negative) 

I 
I 

-2 147 483 648 

I -32 768 

•-------------------------------------------------------------------------
FFFFFFFFFFFFFFFF I FFFFFFFF I FFFF (least I -1 

I negative) 

0000000000000000 I 00000000 I 0000 I O 

0000000000000001 I 00000001 I 0001 (least I 1 
I negative) 

I 7FFFFFFF 
I (most 
I positive) 

I 7FFF (most 
I negative) 

I 32 767 
I. 
I 

2 147 483 647 

7FFFFFFFFFFFFFFF I I 9 223 372 036 854 775 807 

5.4 OPERATIONS 

Fixed point instructions include both fullword and halfword 
operations. Fullword operations take place between the contents 
of two general registers, between the contents of a general 
register and a fullword stored in memory, or between the contents 
of a general register and a fullword obtained from the 
instruction stream. Fullword multiply produces a doubleword 
result that is contained in two adjacent registers. Fullword 
divide operates on doubleword data contained in two adjacent 
registers. 

5-2 50--022 ROO 



Halfword operations take place between a fullword contained in 
one of the general registers and a halfword contained in memory. 
Before the operation is started, the halfword in memory is 
expanded to a fullword by propagating the most significant bit 
(sign bit) into the high-order bits of the fullword. The 
halfword multiply and divide instructions are exceptions to this 
rule. 

5.5 CONDITION CODE 

All fixed point arithmetic instructions, except multiply and 
divide, affect the condition code to indicate the outcome of the 
operation on the 32-bit result. 

In fixed point add and subtract operations, the arguments are 
represented in two's complement form; therefore, all bits, 
including sign, participate in forming the result. Consequently, 
the occurrence of a carry or borrow has no real arithmetic 
significance. 

For example, an add operation between a minus one (FFFF FFFF) and 
a plus two (0000 0002) produces the correct result of plus one 
(0000 0001) and a Carry (C). The condition code is set to 1010 
(C=l and G=l). C means that the complete result, which in this 
case would have been 1 0000 0001, would not fit in 32 bits. 

An Overflow (V) occurs when the result does not fit in 31 bits. 
Note that bit zero must be reserved for the sign of the result. 
For example, adding one to the largest positive fixed point value 
produces a V: 

7FFF FFFF 
+0000 0001 

8000 0000 

The resulting condition code is 0101 (V=l and L=l). 

The result, 8000 0000, is logically correct, but because the sign 
bit is negative when the result should be positive, the V 
condition exists. 

The columns of the condition code table given for each 
instruction description show the state of the C, V, greater than 
(G) and less than (L) flags for the possible results. 

An 'X' in a condition code column means that the particular flag 
is not defined and can be either O.or 1. Hence, no inference 
should be drawn by testing that particular flag. 

50-022 ROO 5-3 



5.6 FIXED POINT INSTRUCTION FORMATS 

The fixed point instructions use Register-to-Register (RR), Short 
Form (SF), Register and Indexed Storage (RX), and Register and 
Immediate (RI) instruction formats. 

5.7 FIXED POINT INSTRUCTIONS 

The fixed point instructions described in this section are: 

5-4 

A 
AR 
AI 
AIS 

AH 
AHI 

AM 

AHM 

s 
SR 
SI 
SIS 

SH 
SHI 

c 
CR 
CI 

CH 
CHI 

M 
MR 

MH 
MHR 

D 
DR 

DH 
OHR 

SLA 

SLHA 

Add 
Add Register 
Add Immediate 
Add Immediate Short 

Add Halfword 
Add Halfword Immediate 

Add to Memory 

Add Halfword to Memory 

Subtract 
Subtract Register 
Subtract Immediate 
Subtract Immediate Short 

Subtract Halfword 
Subtract Halfword Immediate 

Compare 
Compare Register 
Compare Immediate 

Compare Halfword 
Compare Halfword Immediate 

Multiply 
Multiply Register 

Multiply Halfword 
Multiply Halfword Register 

Divide 
Divide Register 

Divide Halfword 
Divide Halfword Register 

Shift Left Arithmetic 

Shift Left Halfword Arithmetic 

50-022 ROD 



SRA 

SRHA 

CHVR 

50-022 ROO 

Shift Right Arithmetic 

Shift Right Halfword Arithmetic 

Convert to Halfword Value Register 

5-5 



5.7.1 Add (A, AR, AI, AIS) 

Add (A) 
Add Register (AR) 
Add Immediate (AI) 
Add Immediate Short (AIS) 

Aa.aembler Nat..at.i.an 

A 
A 
AR 
AI 
AIS 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 
Rl,I2(X2) 
Rl,N 

Operation: 

SA 
SA 
OA 
FA 
26 

Format 

RXl, RX2 
RX3 
RR 
RI2 
SF 

The second operand is added algebraically to the contents of the 
register specified by Rl. The result of this 32-bit addition 
replaces the contents of the register specified by Rl. 

Condition Code: 

c I V I G I L I 
===============: 

X I O I O I O I 
x 0 0 l 
x 0 l 0 
x l x x 
l x x x 

Programming Notes: 

Result is zero 
Result is less than zero 
Result is greater than zero 
Arithmetic overflow 
Carry 

The second operand tor the AIS 
expanding the 4-bit data field, 
forcing the high-order bits to zero. 

instruction is obtained by 
N, to a 32-bit fullword by 

In t.he RI2 format, the contents of the index register specified 
by X2 are added to the 32-bit 12 field to form the fullword 
second operand. 

In the RX formats the second operand must be located on a 
fullword boundary. 

~-6 50-022 ROO 



Example 1: 

This example of the A instruction adds the contents of memory 
location LAB to the contents of register 4. 

Asaembie~ Not.a.Lion .Comment..a 

A REG4 ,IAB ADD (LAB) TO (REG4) 

Where: 

REG4 contains X'7F341.234' 
Fullword in memory at LAB contains X'7124321' 

Result of A Instruction: 

(REG4) = X'FE46555S' 
(LAB) unchanged by this instruction 
Condition code = 0101 (V=l, L=l) 

Example 2: 

This example of the A instruction adds the contents of memory 
location LAB to the contents of register 5. 

A.asembler Notation 

A REGS ,LAB ADD (LAB) TO (REGS) 

Where: 

REGS contains X'8000 0001' 
Fullword in memory at LAB contains X'80000002' 

Result of A Instruction: 

(REGS) = X'00000003' 
(LAB) unchanged by this instruction 
Condition code = 1110 (C=l, V=l, G=l) 

S0-022 ROO 5-7 



5.7.2 Add Halfword (AH, AHi) 

Add Halfword (AH) 
Add Halfword Immediate (AHI) 

Assembler No.tat.ion 

AH 
AH 
AHI 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,I2(X2) 

Operation: 

Opcode 

4A. 
4A 
CA 

Format 

RX1,RX2 
RX3 
Rll 

The 16-bit second operand is expanded to a 32-bit fullword by 
propagating the most significant bit through bits 0:15 of the 
fullword. The fullword operand is added to the fullword contents 
of the register specified by Rl. The result replaces the 
contents of the register specified by Rl. 

Condition Code: 

I c I v I G I L 
=.========'======= 
x 
x 
x 
x 
l 

0 
0 
0 
l 
x 

0 
0 
l 
x 
x 

Programming Notes 

0 
l 
0 
x 
x 

Result is zero 
Result is less than zero 
Result is greater than zero 
Arithmetic overflow 
Carry 

In the RX formats, the second operand must be located on a 
halfword boundary. 

In the Rll format, the 16-bit 12 field is extended to a fullword 
by propagating the sign bit through bits 0:15. The contents of 
Lhe index register specified by X2 are then added to form the 
fullword second operand. 

5-8 50-022 ROO 



Example 1: 

This example of the AH instruction adds the halfword at memory 
location LAB to the contents of register 4 . 

.Comments. 

AH REG4,LAB ADD (LAB) TO (REG4) 

Where: 

REG4 contains X'00230002' 
Halfword at memory location LAB contains X'FFFF' 

Result of AH Instruction: 

(REG4) = X'00230001' 
(LAB) unchanged by this instruction 
Condition code = 1010 (C=l, G=l) 

Example 2: 

This example of the AH instruction adds the halfword at memory 
location LAB to the contents of register 5. 

Assembler Nat.at.ion .Comments 

AH REGS,LAB ADD (LAB) TO (REGS) 

Where: 

REGS contains X'FFFF FFFS' 
LAB contains X'FFF2' 

Result of AH Instruction: 

(REGS) = 'FFFF FFE7' 
(LAB) unchanged by this instruction 
Condition code = 1001 (C=l, L=l) 

S0-022 ROO 5-9 



5.7.3 Add to Memory (AM) 

Aaaembler Notation 

AM 
AM 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

.Opcode 

51 
51 

Format 

RX1,RX2 
RX3 

The first operand contained in the register specified by Rl is 
added algebraically to the fullword second operand. The result 
replaces the fullword second operand in memory. The contents of 
the register specified by Rl are not changed. 

Condition Code: 

C I V I G I L 
===-==========-==: 

x 
x 
x 
x 
l 

0 
0 
0 
l 
x 

0 
0 
l 
x 
x 

Progranuning Note: 

0 
l 
0 
x 
x 

Result is zero 
Result is less than zero 
Result is greater than zero 
Arithmetic overflow 
Carry 

The second operand must be located on a fullword boundary. 

Example 1: 

This example of the AM instruction adds the contents of register 
8 to m~mnYV lnr~~inn Tnr ............ _.._I ..................... ~ _..._.. •• --- • 

.Comments 

AM REG8,LOC ADD (REGS) TO (LOC) 

Where: 

REGB contains X'00000008' 
f'ullword in memory at LOC contains X' 034289AB' 

5- 10 50-022 ROO 



Result of AM Instruction: 

(REGS) unchanged by this instruction 
(LOC) = X'034289B3' 
Condition code = 0010 (G=l) 

Example 2: 

This example of the AM instruction adds the contents of register 
7 to memory location LOC. 

Assembler Not.a.t..i.on .Comments 

AM REG7,LOC ADD (REG7) TO (LOC) 

Where: 

REG7 contains X'7F341234' 
Fullword in memory at LOC contains X'7F124321' 

Result of AM Instruction: 

(REG7) unchanged by this instruction 
(LOC) = X'FE465555' 
Condition code = 0101 (V=l, L=l) 

50-022 ROD 5-11 



5.7.4 Add Halfword to Memory (AHM) 

Aas.embler Notation 

AHM 
AHM 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

Opcode 

61 
61 

Format 

RX1,RX2 
RX3 

The halfword second operand is added algebraically to the least 
significant 16 bits (bits 16:31) of the register specified by Rl. 
The 16-bit result replaces the contents of the memory location 
specified by the effective address of the second operand. The 
contents of the register specified by Rl are not changed. 

Condition Code: 

C I V I G I L 
-:::.=-======':==-==== 
x 
x 
x 
x 
l 

0 
0 
0 
1 
x 

0 
0 
1 
x 
x 

Programming Notes: 

0 
1 
0 
x 
x 

Result is zero 
Result is less than zero 
Result is greater than zero 
Arithmetic overflow 
Carry 

The second operand must be located on a halfword boundary. 

The condition code settings are based on the halfword result. 

Example 1: 

This example of the AHM instruction adds the contents of register 
5 to the contents of memory location LAB. 

A.aaemb.le.r. Not.at.ion .Comments 

AHM REGS,LAB ADD (REGS) TO (IAB) 

Where: 

REGS contains X'00230002' 
Halfword in memory at LAB contains X'FFFF' 

5-12 50-022 ROO 



Result of AHM Instruction: 

(REG5) unchanged by this instruction 
(LAB) = 0001 
Condition code = 1010 (C=l, G=l) 

Example 2: 

This example of the AHM instruction adds the contents of register 
6 to the contents of memory location LAB. 

Aasembler Nc.t.at..inn .Comments 

AHM REG6,l.AB ADD (REG6) TO (LAB) 

Where: 

REG6 contains X'FFFF FFFS' 
IAB contains X'FFF2' 

Result of AHM Instruction: 

(REG6) unchanged by this instruction 
(LAB) -: FFE7 
Condition code = 1001 (C=l, L=l) 

50-022 ROO 5-13 



5.7.5 Subtract (S, SR, SI, SIS) 

Subtract (S) 
Subtract Register (SR) 
Subtract Immediate (SI) 
Subtract Immediate Short (SIS) 

As..aembl.ez. Notation 

s 
s 
SR 
SI 
SIS 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 
Rl,I2(X2) 
Rl,N 

Operation: 

Opcode 

SB 
SB 
OB 
FB 
27 

Format 

RX1,RX2 
RX3 
RR 
RI2 
SF 

The fullword second operand is subtracted algebraically from the 

contents of the register specified by Rl. The result replaces 

the contents of the register specified by Rl. 

Condition Code: 

C : V I G I L I 
===============! 
x 0 0 0 
x 0 0 l 
x 0 1. 0 
x l x x 
1 x x x 

Programming Notes: 

Result is zero 
Result is less than zero 
Result is greater than zero 
Arithmetic overflow 
Borrow 

The second operand for the SIS 
expanding the 4-bit data field, 
forcing the high-order bits to zero. 

instruction is obtained by 
N, to a 32-bit fullword by 

In the RI2 format, the contents of the index register specified 

by X2 are added to the 32-bit 12 field to form the fullword 

second operand. 

In the RX formats, the second operand must be located on a 
fullword boundary. 

5-14 50-022 ROO 



Example 1: 

This example of the S instruction subtracts the fullword at 
memory location LOC from the contents of register 9. 

Assemble~ Notation 

s REG9,LOC SUBTRACT (LOC) FROM (REG9) 

Where: 

REG9 contains X'44444444' 
IDC contains X'44444444' 

Result of S Instruction: 

(REG9) = 0 
(LOC) unchanged by this instruction 
Condition code = 0000 

Example 2: 

This example of the S instruction subtracts the fullword at 
memory location LOC from the contents of register 9. 

Aaaembler Notation .Comments 

s REG9,LOC SUBTRACT (LOC) FROM (REG9) 

Where: 

REG9 contains X'23456789' 
LOC contains X'FFFF4321' 

Result of S Instruction: 

(REG9) = 23462368 
(LOC) unchanged by this instruction 
Condition code = 1010 (C=l, G~l) 

50-022 ROO 5-15 



5.7.6 Subtract Halfword (SH, SHI) 

Subtract Halfword (SH) 
Subtract Halfword Inunediate (SHI) 

SH 
SH 
SHI 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,I2(X2) 

Operation: 

4B. 
4B 
CB 

Format 

RX1,RX2 
RX3 
RI 1 

The 16-bit second operand is expanded to a 32-bit fullword by 
propagating the most significant bit through bits 0:15. This 
fullword is subtracted from the contents of the register 
specified by Rl. The result replaces the contents of the 
register specified by Rl. 

Condition Code: 

I c I v I G I L I 
===============: 
x 0 0 0 
x 0 0 l 
x 0 l 0 
x l x x 
l x x x 

Programming Notes: 

Result is zero 
Result is less than zero 
Result is greater than zero 
Arithmetic overflow 
Borrow 

In the RX formats, the second operand must be located on a 
halfword boundary. 

In the Rll format, the 16-bit 12 field is extended to a fullword 
by propagating the sign bit through bits 0:15. The contents of 
the index register specified by X2 are then added to form the 
fullword second operand. 

5-16 50-022 ROO 



Example 1: 

This example of the SH instruction subtracts the halfword at 
memory location LOC from the contents of register 9. 

Aaaemble.r. Not..acion .C.omme.nt..s. 

SH REG9,LOC SUBTRACT (l.OC) F'ROM (REG9) 

Where: 

REG9 contains X'00123456' 
LOC contains X'FFF4' 

Result of SH Instruction: 

(REG9) = 00123462 
(LOC) unchanged by this instruction 
Condition code = 1010 

Example 2: 

This example of the SH instruction subtracts the halfword at 
memory location LOC from the contents of register 9. 

As.semble.~ NOLaL.io.n .Comments 

SH REG9,LOC SUBTRACT (LOC) FROM (REG9) 

Where: 

REG9 contains X'FFFF4567' 
LDC contains X'2345' 

Result of SH Instruction: 

(REG9) ~ FFFF2222 
(IDC) unchanged by this instruction 
Condition code = 0001 

50-022 ROO 5-17 



5.7.7 Compare (C, CR, CI) 

Compare (C) 
Compare Register (CR) 
Compare Immediate (CI) 

Assembler Notation 

c 
c 
CR 
CI 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 
Rl,I2(X2) 

Operation: 

59 
59 
09 
F9 

Format 

RX1,RX2 
RX3 
RR 
RI2 

The first operand contained in the register specified by Rl is 

compared algebraically to the 32-bit second operand. The result 

is indicated by the condition code setting. Neither operand is 

changed. 

Condition Code: 

I C I V I G I L l 
1===============1 
I O I X I O I O I 
: l I x I o l l l 
! o I x I 1 I O I 

Programming Notes: 

First operand is equal to second 
First operand is less than second 
First operand is greater than second 

In the RX formats, the second operand must be located on a 

fullword boundary. 

The state of the V flag is undefined. 

5-18 50-022 ROO 



Example: 

This example of the 
register 3 to the 
LAB. 

C instruction compares the contents of 
contents of the fullword in memory location 

Aaaembie~ Not.at.ion .Comment.a 

c REG3,LAB COMPARE ( REG3) TO (IAB) 

Where: 

REG3 contains X'44567894' 
F'ullword at IAB contains X'04321243' 

Result of C Instruction: 

(REG3) unchanged by this instruction 
(LAB) unchanged by this instruction 
Condition code = 0010 (G=l) 

50-022 ROO 5-19 



5.7.8 Compare Halfword (CH, CHI) 

Compare Halfword (CH) 
Compare Halfword Immediate (CHI) 

Aasembler No..t...a..t..iQil 

CH Rl,D2(X2) 
CH Rl,A2(FX2,SX2) 
CHI Rl,12(X2) 

Operation: 

Opcode 

49 
49 
C9 

Eormat 

RX1,RX2 
RX3 
Ril 

The halfword second operand is expanded to a fullword by 
propagating the most significant bit through bits 0:15. The 
first operand, the contents of the register specified by Rl, is 
compared algebraically to the effective second operand. The 
result is indicated by the condition code setting. Neither 
operand is changed. 

Condition Code: 

I c I V I G I L I 
1===============1 
I o I x I o I o I 
I l I x I o I l I 
I O : x I 1 I O I 

Programming Notes: 

First operand is equal to second 
First operand is less than second 
First operand is greater than second 

In the RX formats, the second operand must be located on a 
halfword boundary. 

In the Ril format, the 16-bit 12 field is extended to a fullword 
by propagating the sign bit through bits 0:15. The contents of 
the index register specified by X2 are then added to form the 
fullword second operand. 

Condition code settings are based on the fullword comparison. 
The state of the V flag is undefined. 

5-20 50-022 ROO 



Example: 

This example of the CH instruction compares Lhe contenLs of 
register 8 to the halfword at memory location LAB . 

.Comment.a 

CH REG8,IAB COMPARE (REGS ) '110 (LAB) 

Where: 

REGS contains X'F4567S91' 
Halfword at LAB contains X'3123' 

Result of CH Instruction: 

(REGS) unchanged by this instruction 
(LAB) unchanged by this instruction 
Condition code = 1001 (C=l, V=l) 

50-022 ROO 5-21 



5.7.9 Multiply (M, MR) 

Multiply (M) 
Multiply Register (MR) 

Assembler Notation 

M 
M 
MR 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

Opcode 

SC 
SC 
lC 

Format 

R.Xl,RX2 
RX3 
RR 

The fullword first operand contained in the register specified by 
Rl+l is multiplied by the fullword second operand. The 64-bit 
result is stored in the registers specified by Rl and Rl+l. The 
sign of the result is determined by the rules of algebra. 

Condition Code: 

Unchanged 

Progranuning Notes: 

The Rl field of these instructions must specify an even-numbered 
register. If the Rl field of these instructiona is odd, the 
result is undefined. 

In the RX formats, the second operand must be located on a 
fullword boundary. 

The most significant bits of the result are placed in the 
register specified by Rl; the least significant bits are placed 
in the register by Rl+l. 

S-22 50-022 ROO 



Example 1: 

This example of the M instruction multiplies the contents of 
register 9 by the contents of memory location ·LOC and places the 
result in registers Sand 9 (64 bits). 

Aaaemb.lat. No.tat.ion .Comment.a 

M REGS,LOC MULTIPLY (REG9) BY (LOC) 

Where: 

REGS contains unknown data 
REG9 contains X'00002431' 
F'ullword at location LOC contains X'43120000' 

Result of M Instruction: 

REGS and REG9 together contain the result 
(REGS, REG9) = 0000 097B, 5E72 0000 
(IDC) unchanged by this instruction 
Condition code unchanged by this instruction 

Example 2: 

This example of the MR instruction multiplies the contents of 
register 9 by the contents of register S and places the result in 
registers Sand 9 (64 bits). 

Assembler Notation ..Comments 

MR REGS,REGS MULTIPLY (REG9) Bi' (REGS) 

Where: 

REGS contains X'OOOlOOOO' 
REG9 contains X'l234567S' 

Result of MR Instruction: 

REGS and REG9 together contain the result 
(REGS, REG9) = 0000 1234, 5678 0000 
Condition code unchanged by this instruction 

50-022 ROO 5-23 



5.7.10 Multiply Halfword (MH, MHR) 

Multiply Halfword (MH) 
Multiply Halfword Register (MHR) 

Assemble~ Notation 

MH 
MH 
MHR 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

Opcode 

4C 
4C 
oc 

Format 

RX1,RX2 
RX3 
RR 

The first operand, contained in bits 16:31 of the register 
specified by Rl, is multiplied by the 16-bit second operand, 
taken from memory or from bits 16:31 of the register specified by 
R2. Both operands are 16-bit signed two's complement values. 
The 32-bit result replaces the contents of the register specified 
by Rl. The sign of the result is determined by the rules of 
algebra. 

Condition Code: 

Unchanged 

Progranuning Note: 

In the RX formats, the second operand must be located on a 
halfword boundary. 

Example 1: 

This example of the MH instruction multiplies the halfword 
contents of register 8 by the halfword in memory location LAB. 

Aaa.embl.e~ Notation 

MH REG8,LAB 

Where: 

.Comments 

MULTIPLY LEAST SIGNIFICANT HALF 
OF (REGS) BY (LAB) 

REG8 contains X'ABCD 0045' 
Halfword at memory location LAB contains X'8674' 

5-24 50-·022 ROO 



Result of MH Instruction: 

(REGS) = FFDF3D44 
(LAB) unchanged by this instruction 
Condition code unchanged by this instruction 

Example 2: 

This example of the MHR instruction multiplies the contents of 
register 11 by the halfword contents of register 4. 

Assemble~ Na.tat.ion ~omments 

MHR REG11,REG4 MULTIPLY LS HALF OF (REGll) 
BY LS HALF OF (REG4) 

Where: 

REGll contains X'37210004' 
REG4 contains X'FFFF0307' 

Result of MHR Instruction: 

(REGll) = OOOOOClC 
(REG4) unchanged by this instruction 
Condition code unchanged by this instruction 

50-022 ROD 5-25 



5.7.11 Divide (D, DR} 

Divide (D) 
Divide Register (DR) 

Aasembler Notation 

D 
D 
DR 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

Opcode 

SD 
SD 
lD 

RX1,RX2 
RX3 
RR 

The 64-bit signed dividend contained in the two registers 
specified by Rl and Rl+l is divided by the signed fullword second 
operand. The 32-bit signed remainder replaces the contents of 
the register specified by Rl. The signed 32-bit quotient 
replaces the contents of the register specified by Rl+l. 

The sign of the quotient is determined by the rules of algebra. 
The sign of the remainder is the same as the sign of the 
dividend. 

Condition Code: 

Unchanged 

Programming Notes: 

The Rl field of these instructions must specify an even-numbered 
register. If the Rl field of these instructions is odd, the 
result is undefined. 

The most significant bits of the dividend must be contained in 
the register specified by RL. The least significant bits of the 
dividend must be contained in the register specified by Rl+l. 

In the RX formats, the second operand must be located on a 
fullword boundary. 

If the divisor is equal to zero, the instruction is not executed, 
the operand registers remain unchanged, and the arithmetic fault 
interrupt is taken. 

If the value of the quotient is more positive than X'7FFFFFFF' or 
more negative than x•aooooooo•, quotient overflow is said to 
occur. If quotient overflow occurs, the operand registers remain 
unchanged, and the arithmetic fault interrupt is taken. 

S-26 50-022 ROO 



Example 1: 

This example 
registers S 
LOC. 

of 
and 

the D instruction divides the contents of 
9 by the fullword contents of memory location 

.Comment.a 

D REGS,LOC DIVIDE (REG8,9) BY (LOC) 

Where: 

REGS contains X'l234567S' 
REG9 contains X'9S765432' 
LOC contains X'34343434' 

Result of D Instruction: 

(REGS) = lElElElE = Remainder 
(REG9) = 59455459 = Quotient 

Most significant half of dividend 
Least significant half of dividend 
Divisor 

(LOC) unchanged by this instruction 
Condition code unchanged by this instruction 

Example 2: 

This example of a D instruction divides the contents of registers 
S and 9 by the fullword contents of memory location LOC . 

Aas.emb.leL. No..t.atjon .Comments 

D REGS,LOC DIVIDE (REG8,9) BY (LOC) 

Where: 

REGS contains X'FFFF1234' 
REG9 contains X'OOOOOOOO' 
LOC contains X'l234567S' 

Result of D Instruction: 

(REGS) = F250D9EO = Remainder 
(REG9) = FFF2EFFC = Quotient 

Most significant half of dividend 
Least significant half of dividend 
Divisor 

LOC unchanged by this instruction 
Condition code unchanged by this instruction 

50-022 ROO 5-27 



Example 3: 

This example of a D instruction divides the contents of registers 
S and 9 by the fullword contents of memory location LOC. 

Assembler Notation .Comments 

D REGS,LOC DIV.IDE (REGS,9) BY (LOC) 

Where: 

REGS contains X'43657S9S' 
REG9 contains X'l2123456' 
LOC contains X'OOOOOOOO' 

Result of D Instruction: 

Most significant half of dividend 
Least significant half of dividend 

= Divisor 

Division by zero causes arithmetic fault to be taken. Operands 
and condition code remain unchanged by this instruction. 

Example 4: 

This example of a D instruction divides the contents of registers 
S and 9 by the fullword contents of memory location LOC. 

Aasembler Not.at..io.n .Comments 

D REGS,LOC DIVIDE (REGS,9) BY (LOC) 

Where: 

REGS contains X'SOOOOOOO' = Most significant half of dividend 
REG9 contains X'OOOOOOOl' Least significant half of dividend 
LOC contains X'OOOOOOOl' Divisor 

Result of D Instruction: 

Quotient overflow causes arithmetic fault to be taken. Operands 
and condition code remain unchanged by this instruction. 

5-28 50-022 ROO 



Example 5: 

This example of Lhe DR instruction divides Lhe contents of 
register Sand 9 by the contents of register 2.· 

Comments 

DR REGS,REG2 DIVIDE (REGS,9) BY (REG2) 

Where: 

REGS contains X'FFFFFFFF' = 
REG9 contains X'FFFFFFFD' = 
REG2 contains X'FFFFFFFE' 

Most significant half of dividend 
Least significant half of dividend 
Divisor 

Result of DR Instruction: 

(REGS) = FFFFFFFF = Remainder 
(REG9) = 00000001 = Quotient 
(REG2) unchanged by this instruction 
Condition code unchanged by this instruction 

50-022 ROD 5-29 



5.7.12 Divide Halfword (DH, DHR) 

Divide Halfword (DH) 
Divide Halfword Register (OHR) 

Assembler NQ.tatjon 

DH 
DH 
DHR 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

Opcode 

4D 
4D 
OD 

Format 

RX1,RX2 
RX3 
RR 

The 32-bit signed dividend contained in the register specified by 

Rl is divided by the 16-bit signed second operand. The 16-bit 

signed remainder is copied to Rl (bits 16:31) and the halfword 

value is converted to a fullword value. The 16-bit signed 

quotient is copied to the register specified by Rl + 1 after 

conversion to a fullword value. 

The sign of the quotient is determined by the rules of algebra. 

The sign of the remainder is the same as the sign of the 

dividend. 

Condition Code: 

Unchanged 

Programming Notes: 

In the RX formats, the second operand must be located on a 

halfword boundary. In the RR format, the second operand is taken 

from bits 16:31 of the register specified by R2. 

If the divisor is equal to zero, the instruction is not executed, 

the operand registers remain unchanged, and the arithmetic fault 

interrupt is taken. 

If the value of the quotient is more positive than X'7FFF' or 

more negative than X'8000', quotient overflow is said to occur. 

If quotient overflow occurs, the operand registers remain 

unchanged, and the arithmetic fault interrupt is taken. 

5-30 50-022 ROO 



Example 1: 

This example of the DH instruction divides the contents of register 7 by the halfword contents of memory location LOC. 

Comments 

DH REG7,LOC DIVIDE (REG7) BY (LOC) 

Where: 

REG7 contains X'OOOO 0054' 
LOC contains X'0008' 

Result of DH Instruction: 

(REG7) = 0000 0004 = Remainder 
(REGS) = 0000 OOOA = Quotient 

Dividend 
Divisor 

(LOC) unchanged by this instruction 
Condition code unchanged by this instruction 

Example 2: 

This example of the DH instruction divides the contents of register 7 by the halfword contents of memory location LOC. 

Assembler Notation Comments 

DH REG7,LOC DIVIDE (REG7) BY (LOC) 

Where: 

REG7 contains X'l234 5678' 
LOC contains X'OOOO' 

Result of DH Instruction: 

Dividend 
Divisor 

Division by zero causes arithmetic fault to be taken. Operands 
and condition code remain unchanged by this instruction. 

50-022 ROO 5-31 



Example 3: 

This example of the DH instruction divides the contents of 

register 7 by the halfword contents of memory location LOC. 

Assemble~ Notation Comments 

DH REG7,LOC DIVIDE (REG7) BY (LOC) 

Where: 

REG7 contains X'8000 0002' 
LOC contains X'OOOl' 

Result of DH Instruction: 

Dividend 

Quotient overflow causes arithmetic fault to be taken. Operands 

and condition code remain unchanged by this instruction. 

5-32 50-022 ROO 



5.7.13 Shift Left Arithmetic (SIA) 

Aaaemb.ler Notation .Op.code 

SLA Rl,I].(X2) EE Ril 

Operation: 

Bits 1:31 of the first operand, contained in the register 
specified by Rl, are shifted left the number of places specified 
by the second operand. The sign bit (bit 0) remains unchanged. 
Bits shifted out of position 1 are shifted through the carry flag 
and then lost. The last bit shifted remains in the carry flag. 
Zeros are shifted into position 31. 

Condition Code: 

c I V I G I L I 
===============I 
x 
x 
x 
1 

0 
0 
0 
0 

0 
0 
l 
x 

Programming Notes: 

0 
l 
0 
x 

Result is zero 
Result is less than zero 
Result is greater than zero 
Carry 

The state of the C flag indicates the state of the last bit 
shifted. 

The shift count is specified by the least significant five bits 
of the second operand. The maximum shift count is 31. 

A shift of zero places causes the condition code to be set in 
accordance with the value contained in the register specified by 
Rl. The c flag is zero in this case. 

50-022 ROO 5-33 



Example: 

This example of the SLA instruction shifts the bits in register 
S left by the number specified by the second operand. 

Aflsembler Net.at.inn Comments 

SLA REGS,4 SHlFT (REGS) LEFT 4 PLACES 

Where: 

REGS contains X'8000S647' 

Result of SLA Instruction: 

(REGS) = 800S6470 
Condition code = 0001 (L=l) 

5-34 50-022 ROO 



5.7.14 Shift Left Halfword Arithmetic (SLHA) 

SLHA Rl,12(X2) CF Rll 

Operation: 

Bits 17:31 of the register specified by Rl are shifted left the 
number of places specified by the second operand. Bit 16 of the 
register, the halfword sign bit, remains unchanged. Bits shifted 
out of position 17 are shifted through the c flag and then lost. 
The last bit shifted remains in the C flag. Zeros are shifted 
into position 31. Bits 0:15 of the first operand register remain 
unchanged. 

Condition Code: 

C l V l G l L l 
===============: 
x 0 0 0 
x 0 0 l 
x 0 1 0 
1 0 x x 

Programming Notes: 

Result is zero 
Result is less than zero 
Result is greater than zero 
Carry 

The condition code settings are based on the halfword (bits 
16:31) result. 

The state of the C flag indicates the state of the last bit 
shifted. 

The shift count is specified by the least significant four bits 
of the second operand. The maximum shift count is 15. 

A shift of zero places causes the condition code to be set in 
accordance with the halfword value contained in bits 16:31 of the 
register specified by Rl. The C flag is zero in this case. 

50-022 ROD 5-35 



5. 7 .15 Shift Right Arithmetic (S,RA) 

Assembler Notation Opcode Format 

SRA Rl,12(X2) EE Rll 

Operation: 

Bits 1:31 of the first operand, contained in the register 
specified by Rl, are shifted right the number of places specified 
by the second operand. The sign bit (bit 0) remains unchanged 
and is propagated right as many positions as specified by the 
second operand. Bits shifted out of position 31 are shifted 
through the c flag and lost. The last bit shifted remains in the 
C flag. 

Condition Code: 

C IVIGILI 
===============I 
x I o I o I o I 
x 0 0 l 
x 0 1 0 
1 0 x x 

Programming Notes: 

Result is zero 
Result is less than zero 
Result is greater than zero 
Carry 

The state of the c flag indicates the state of the last bit 
shifted. 

The shift count is specified by the least significant five bits 
of the second operand. The maximum shift count is 31. 

A shift of zero places causes the condition code to be set in 
accordance with the value contained in the register specified by 
Rl. The C flag is zero in this case. 

5-36 50-022 ROO 



Example: 

This example of the SRA instruction shifts the contents of 
register 9 right the number of places specified by the second 
operand. 

Comments 

SRA REG9,8 SHIFT (REG9) RIGHT 8 PLACES 

Where: 

REG9 contains X'800004256' 

Result of SRA Instruction: 

(REG9) = X'FF800042' 
Condition code = 0001 (L=l) 

50-022 ROO 5-37 



5.7.16 Shift Right Halfword Arithmetic (SRHA) 

Assembler Notation Opcode Format 

SRHA Rl,12 (X2) CE Ril 

Operation: 

Bits 17:31 of the register specified by Rl are shifted right the 
number of places specified by the second operand. Bit 16 of the 
register, the halfword sign bit, remains unchanged and is 
propagated right the number of positions specified by the second 
operand. Bits shifted out of position 31 are shifted through the 
C flag and lost. The last bit shifted remains in the C flag. 
Bits 0:15 of the first operand register remain unchanged. 

Condition Code: 

C I V I G I L 
-===';:.=========-== 

x 
x 
x 
1 

0 
0 
0 
0 

0 
0 
1 
x 

Programming Notes: 

0 
1 
0 
x 

Result is zero 
Result is less than zero 
Result is greater than zero 
Carry 

The condition code settings are based on the halfword (bits 
16:31) result. 

The state of the c flag indicates the state of the last bit 
shifted. 

The shift count is specified by the least significant four bits 
of the second operand. The maximum shift count is 15. 

A shift of zero places causes the condition code to be set in 
accordance with the halfword value contained in bits 16:31 of the 
register specified by Rl. The C flag is zero in this case. 

S-38 50-022 ROO 



5.7.17 Convert to Halfword Value Register (CHVR) 

Ope.ode. 

CHVR Rl,R2 12 RR 

Operation: 

The halfword second operand, bits 16:31 of the register specified 
by R2, is expanded to a fullword by propagating the most 
significant bit (bit 16) through bits 0:15. This fullword 
replaces the contents of the register specified by Rl. 

Condition Code: 

---------------
c I v I G I L I I I 

-=============== 
x x 0 0 Result is zero 
x x 0 1 Result is less than zero 
x x l 0 Result is greater than zero 
x l x x Source operand cannot be represented by a 

16-bit signed number 
l x x x Carry flag was set in previous condition 

code 
0 x x x Carry flag was zero in previous condition 

--------------- code 

Programming Notes: 

The V flag is set when bit 15 of the second operand is not the 
same as bit 16 of the second operand. The G and L flags reflect 
the algebraic value of bits 16:31 of the second operand. 

Execution of this instruction following halfword operations 
guarantees the same results as those obtained if the program were 
run on a 16-bit machine. For example, if location A in memory 
contains the halfword value of X'7FFF' (decimal 32767) then: 

LH 
AIS 

50-022 ROO 

Rl,A 
Rl,l 

Rl contains X'00007FFF' 
Rl contains X'00008000' 

5-39 



Following the add operation, the condition code is: 

I C I V I G I L I 
1===============1 
I o I o I 1 I o I 

indicating a result greater 
fullword operations. If 

than zero, which is correct for 
the same sequence were executed on a 

16-bit processor: 

LH 
AIS 

Rl,A 
Rl,l 

Rl contains X'7FFF' 
Rl contains X'8000' 

Following this, the condition code in the halfword processor is: 

I C I V I G I L I 
!===============: 
I o I l I o I l I 

indicating overflow and a negative result. Going 
original sequence and adding the convert to 
register instruction produces the following: 

LH 
AIS 
CHVR 

Rl,A 
Rl,l 
Rl, Rl 

Rl contains X'00007FFF' 
Rl contains X'00008000' 
Rl contains X'FFFF8000' 

Following this sequence, the condition code is: 

I C I V I G I L I 
:===============! 
I O I l I o f l I 

back to the 
halfword value 

which is identical to that of the 16-bit processor and can be 
tested in the same manner. 

S-40 50-022 ROO 



6.1 INTRODUCTION 

CHAPTER 6 
FLOATING POINT ARITHMETIC 

Floating point arithmetic instructions provide a means for rapid 
handling of scientific data expressed as floating point numbers. 
Single and double precision floating point instructions, as well 
as mixed mode floating point instructions, are described in this 
chapter. The comprehensive set of instructions includes load and 
store floating point numbers; add, subtract, multiply, divide and 
compare two floating point numbers; convert fixed point to 
floating point and vice versa; and mixed mode operations that 
translate single precision to double precision and vice versa. 

Floating point is a means of representing a quantity in any 
numbering system. For example, the decimal number 123 (base 10), 
can be represented in the following forms: 

123.0 
1.23 
0.123 
0.0123 

x io0 

x 10 2 

x 103 

x 104 

In this example, the decimal point moved; this is called a 
floating point. In actual floating point representation, the 
significant digits are always fractional and are collectively 
referred to as fractions. The power to which the base number is 
raised is called the exponent. For example, in the number .45678 
x 102 , 45678 is the fraction and 2 is the exponent. Both the 
fraction and the exponent can be signed. If there is a floating 
point representation such as: 

(sign of fraction) x (exponent) x (fraction) 

the following representation applies. 

50-022 ROD 6-1 



NUMBER FLOATING POINT 

+ 32.94 +.3294 x 102 + I +2 I 3294 I 
----------------1 

-23760000.0 -.2376 x 108 - I +8 : 2376 I 
----------------1 

+0.000059 +.59 x 10-4 + : -4 : 59 I 
----------------1 

-·0. 0000000092073 - . 92.073 x lo- 0 - I -8 I 92073 I 

Large or small numbers can be easily expressed in floating point, 
making it ideally suitable for scientific computation. Note the 
compactness of floating point notation in the above examples. 

Floating point representation in the processor is similar to the 
above representation. The differences are: 

• Hexadecimal, instead of decimal, numbering system is used. 

• Physical size of the number is limited; therefore, the 
magnitude and precision are limited. 

6.2 FLOATING POINT DATA FORMATS 

Floating point numbers occur in one of two formats: single and 
double precision. The single precision format requires a 
fullword (32 bits). When such a value is contained in memory, it 
must exist on a fullword address boundary. The sign (S), 
exponent (X) and fraction (consisting of the digits Fl, F2, F3, 
F4, F5 and F6) fields are designated as follows: 

602 

0 

I I 
Is I 

7 8 

x 

11 12 15 16 

F1 F2 

19 20 23 24 27 28 31 

F3 F4 F5 F6 

The double precision format requires a doubleword (64 bits). 
When two general registers hold a double precision value, an 
even/odd pair of general registers must be used. The 
even-numbered register contains the most significant 32 bits, and 
the next sequential odd register contains the least significant 
32 bits. The sign (S), exponent (X) and fraction (consisting of 
digits Fl through F14) fields are designated as follows. 

6-2 50-022 ROO 



603 0 1 

Is I x 

32 35 36 

F7 

7 8 

I F1 

11 12 

I F3 19120 
F4 

23 

(

4 

F5 

39 40 43 44 47 48 51 52 55 56 

F8 F9 F10 Fl 1 F12 F13 

NOTE 

Floating point uses sign/magnitude 
notation rather than the two's complement 
notation used for integers. 

27 28 31 

I F6 I 
59 60 63 

F14 

6.3 FLOATING POINT NUMBER 

In the processor, a floating point number is represented in the 
following form: 

I Sign I Exponent Fraction 

Sign 

Exponent 

is the most significant bit of a floating 
point number. The sign bit is zero for 
positive numbers and one for negative numbers. 
The floating point value of zero always has a 
positive sign. 

is the 7-bit field, bits 1:7, that is 
designated as the exponent field. The 
exponent is expressed in excess-64 notation. 
The number in this field contains the true 
value of the exponent plus X'40' (decimal 64). 
This helps to represent very small magnitudes 
between 0 and 1. Examples of the exponent 
values follow. 

EXPONENT IN I TRUE I TRUE I 
EXCESS-64 I EXPONENT IN I EXPONENT IN I MULTIPLY 
NOTATION I HEXADECIMAL I DECIMAL FRACTION BY 

============~~~=======~===============~==============~= 

00 -40 -64 16-64 
3F -1 -1 16-1 

40 0 0 16° 
41 l l 161 

7F 3F 63 1663 

50-022 ROD 6-3 



Fraction 

The exponent field for true zero is always 00. 

is the fraction field that contains six 
hexadecimal digits for single precision 
floating point numbers and 14 hexadecimal 
digits for double precision floating point 
numbers. As in any other fraction, the 
floating point fraction is expressed with 
greatest precision when the most significant 
hexadecimal digit (not necessarily the most 
significant bit) is nonzero. The floating 
point number with such a fraction is called a 
normalized floating point number. In the 
Perkin-Elmer Series 3200 Processors, 
normalized numbers are always used to obtain 
the maximum possible precision. See Appendix 
D for hexadecimal fraction conversion. 

The following examples illustrate the sign, exponent and fraction 
concept of a floating point number. 

NUMBER IN 
HEXADECIMAL 

INTEGER-FRACTION 
NOTATION 

SIGN EXPONENT/ 
FRACTION SHOWN 

F'OR CLARITY 
SINGLE PRECISION 

FLOATING POINT NUMBER 
============================================================ 

+1.3A25678 
I -·6.89F2C 

+1A.C39D21 
-3ClDF.82A3 
+ABCDEF12.9AC 
+0.0032A9CF2 
-0.000002C7B5 

0 41 13A25678 
l 41 689F2C 
0 42 1AC39021 
l 45 3ClDF82A3 
0 48 ABCDEF129A 
0 3E 32A9CF2 
l 3B 2C7B5 

4113A256 
Cl689F2C 
421AC39D 
C53ClDF8 
48ABCDEF 
3E32A9CF 
BB2C7B50 

6.3.1 Floating Point Number Range 

The range of magnitude (M) of a normalized floating point number 
is as follows: 

Single precision: 
Double precision: 
Approximately for both: 

16-65 .{ M ~. ( 1 - 16-6 ) * 1663 

16-65 .{ M .{ (l -- 16-14 ) * 1663 

5. 4 * 10-79 _{ M .{ 7. 2 * 1079 

The following diagram shows the floating point range in relation 
to the fixed point range along with the decimal values. 

6-4 50-022 ROD 



609-2 

LEAST NEGATIVE LEAST POSITIVE 
8010 0000 0010 0000 

MOST NEGATIVE (-5.4 * 1019) TRUE (5.4 x 1079 ) MOST POSITIVE 
FFFF FFFF ~ ZERO / 7FFF FFFF 
(-7.2 * 10

75
) C880 0000 ""' 0000 0000 / 4110 0000 (7.2 * 10

75
) 

/
. (<·11 \ (OI / (+11) \ 

1---~~~~1~~~-----11!-1 ~~~--1-~~~~--1 
FLOATING POINT 

TRUE 
MOST NEGATIVE ZERO MOST POSITIVE 
8000 0000 0000 0000 

~47 483 6481 (~I 
I • • ---------t 
LEAST NEGATIVE/ '-LEAST POSITIVE 

FFFF FFFF 
(-1) 

6.3.2 Normalization 

0000 0001 
(+1) 

FIXED POINT INTEGER 

Normalization is a process of making the most significant digit 
(Fl) of the fraction of a floating point number nonzero. In the 
normalization process, the floating point fraction is shifted 
left hexadecimally (i.e., four bits at a time), and its exponent 
is decremented by one for each hexadecimal shift until the most 
significant digit (not necessarily the most significant bit) of 
the fraction is nonzero. 

607 
FRACTION 

EXPONENT Fl F2 F3 F4 F5 F6 

I SHIFT LEFT FRACTION HEXADECIMALLY UNTIL F1>0 

DECREMENT EXPONENT BY ONE FOR EACH SHIFT 

Except for the load instructions, all floating point operations 
assume and require normalized operands for consistent results. 
The load instructions normalize an unnormalized operand. 

50-022 ROO 6-5 



Examples: 

OPERAND AFTER NORMALIZATION 

1. 42012345 41123450 

2. 21000ABC lEABCOOO 

3. C900FE12 C7FE1200 

4. 6COOOOOO 00000000 (true zero) 

5. 82000Ab7 00000000 (exponent underflow) 

In Example 4, the fraction of the operand is zero. During the 
normalization process, such a fraction is detected, and the 
floating point number is set to true zero. 

In Example 5, the exponent of the operand is very small. During 
the normalization process, the exponent is decremented from 00 to 
7F. Such a transition results in exponent underflow, and the 
floating point number is set to true zero. 

Normalized results are always produced in floating 
operations, provided that the operands are normalized. 
of operations between unnormalized numbers are undefined. 

6.3.3 Equalization 

point 
Results 

Equalization is a process of equalizing exponents of two floating 
point numbers. The fraction of the floating point number with 
the smaller exponent is shifted right hexadecimally (i.e., four 
bits at a time), and its exponent is incremented by one for each 
hexadecimal shift until the two exponents are eq~al. 

608 

1 SHIFT FRACTION RIGHT HEXADECIMALLY UNTIL EXPONENTS EQUAL 

INCREMENT EXPONENT BY ONE FOR EACH SHIFT 

EXPONENT Fl F2 F3 F4 F5 F6 

FRACTION 

During floating point addition and subtraction, the two floating 
point operands are equalized. 

50-022 ROO 



Examples: 

OPERAND 

1. 43123456 
3F789ABC 

2. C7FE1234 
4956789A 

AFTER EQUALIZATION 

43123456 
43000078 

C900FE12 
4956789A 

In this example, normalized floating point numbers are shown 
because addition and subt~action require normalization. If the 
exponents differ by more than six for single precision or more 
than 14 for double precision, the representable significance of 
the lower exponent floating point number is lost in the process 
of equalization. Digits shifted out are shifted through the 
guard digits and can still have an effect on the result, sum or 
difference. 

6.3.4 True Zero 

A floating point number is true zero when the exponent and the 
fraction fields are all zeros; therefore, all data bits must be 
zero. A zero value always has a positive sign. In general, zero 
values participate as normal operands in all floating point 
operations. 

A. true zero can be used as an operand. It can also result from 
an arithmetic operation that caused an exponent underflow, in 
which case the entire number may be forced to true zero. If an 
arithmetic operation produces a result in which the fraction 
digits are all zeros (sometimes referred to as loss of 
significance), the entire number is forced to true zero. 

Examples: 

NUMBER OPERATION RESULT REASON 

1. 030000AB Normalization 0000 0000 Exponent 
underflow 

2. 41ABCDEF Subtraction 0000 0000 Loss of 
significance 

50-022 ROO 6-7 



6.3.5 Exponent Overflow 

In floating point operations, exponent overflow occurs when a 
resulting exponent is greater than +63. If overflow occurs, the 
result register is unchanged. The condition code is set to 
reflect the overflow situation and the resulting sign. An 
arithmetic fault interrupt is also taken. Exponent overflow 
interrupts cannot be disabled. Figure 6-1 illustrates exponent 
overflow using a line repr~sentation of numbers. 

609 

MOST NEGATIVE TRUE MOST POSITIVE 
NUMBER ZERO NUMBER 

• 
FFFFFFFF 

I 
0 7FFFFFFF 

I I 

'-------"' 
~XPONENT = 7F J UNDERFLOW [EXPONENT = 7F J = 6310 RANGE 

OVERFLOW OVERFLOW 

Figure 6-1 Exponent Overflow 

6.3.6 Exponent Underflow 

The normalization process, during a floating point operation, may 
produce an exponent underflow. This underflow occurs when a 
result exponent is less than -64. Figure 6-2 illustrates 
exponent underflow using a line representation of numbers. 

610 

LEAST NEGATIVE TRUE LEAST POSITIVE 
NUMBER ZERO NUMBER 

• II • • • f' ;, • 
80100000 0010000 

[EXPONENT = 00 J 
= -6410 

[EXPONENT~ 00 J 
- -6410 

UNDERFLOW UNDERFLOW 

Figure 6-2 Exponent Underflow 

6-8 50-022 ROO 



If underflow occurs, an .arithmetic fault interrupt is taken if 
enabled by the current program status word (PSW). Both operands 
remain unchanged. If underflow is disabled by the current PSW, 
the result is forced to zero (the closest possible answer), the 
V flag in the condition code is set, and the next sequential 
instruction is executed. 

6.3.7 Guard Digits and R* Rounding 

When an intermediate floating point result has been formed, it 
consists of a sign, an exponent and a fraction field. The 
fraction field is extended by a number of guard digits containing 
the least significant fraction digits of the intermediate result. 
Before the result is copied to a destination, it is rounded to 
compensate for the loss of the guard digits in the final result. 

Quotients are simple-rounded rather than R* rounded. R* (or 
nonbiased) differs from simple-rounded only when the truncated 
fraction is precisely one-half. Nonbiased rounding is 
statistically important for the accuracy of additions and 
subtractions: it is not important for division since the 
truncated fraction is hardly ever exactly one-half. 

The following are rules for the R* Rounding scheme: 

• If the most significant guard digit is hexadecimal 7 or less, 
no rounding is performed (see Example 1). 

• If the most significant guard digit is hexadecimal 8, and all 
other guard digits are 0, the least significant bit of the 
final result is forced to 1 (see Example 2). 

• If the most significant guard digit is hexadecimal 8, and 
another guard digit is nonzero, or if the most significant 
guard digit is hexadecimal 9 or greater, 1 is added to the 
fraction field of the final result (see Example 3). If this 
addition produces a carry out of the fraction field (i.e., 
fraction field was all ones), the result exponent is 
incremented by 1, the most significant fraction digit (Fl) is 
set to hexadecimal 1, and all other fraction digits are set to 
0 (see Example 4). Note that exponent overflow could occur as 
the result of rounding. 

50-022 ROO 6-9 



Examples: 

FINAL 
INTERMEDIATE RESULT SINGLE PRECISION 

GUARD 
DATA DIGITS RESULT 

1. 42ABCD12 32680000 42ABCD12 

2. Cll83756 80000000 Cll83757 

3. 3E265739 80100000 3E26573A 

4. 41FFFFFF FOOOOOOO 42100000 

6.3.8 Conversion from Decimal 

To convert a decimal number into the excess-64 notation used 
internally by the processor, the following steps must be taken. 

1. Separate the decimal integer from the decimal fraction. 

182.37510 = (182 + .375)10 

2. Convert each part to hexadecimal by referring to the integer 
conversion table and the fraction conversion table in 
Appendix D. 

3. Combine the hexadecimal integer and fraction. 

4. Shift the radix point. 

~- Add 64 (X'40') to the exponent. 

6-10 50-022 ROO 



6. Convert the exponent f ~eld and fractions to binary allowing 
1 bit for the sign, 7 bits for exponent field, and 24 or 56 
bits for the fraction. 

42866 0100 0010 1011 0110 0110 0000 0000 0000 

6.4 CONDITION CODE 

Most floating point operations affect the condition code. 
each instruction description, the possible condition 
settings are shown. 

6.5 FLOATING POINT INSTRUCTIONS 

For 
code 

All floating point instructions are illegal when PSW bit 13 (FLM) 
is set. Floating point instructions cannot be executed when the 
processor is in the floating point masked (FLM) mode. 

Floating point instructions use the Register-to-Register (RR) and 
the Register and Indexed Storage (RX) instruction formats. In 
all of the RR formats, except for the fix and float instructions, 
the Rl and R2 fields each specify one of the floating point 
registers. There are eight single precision floating point 
registers and eight double precision floating point registers 
numbered 0; 2; 4, 6, 8; 10; 12 and 14. Floating point 
instructions must specify even-numbered floating point registers, 
or the results of the instructions are undefined. Except for the 
FXR, FXDR, LGER and LGDR instructions, the Rl field always 
specifies a floating point register. 

Floating point arithmetic operations, excluding loads and stores, 
require normalized operands to ensure correct results. If the 
operands are not normalized, the results of these operations are 
undefined. Floating point results are normalized. The floating 
point load instructions normalize the floating point data 
presented as the second operand. 

The single precision floating point instructions described in 
this section are: 

LU 
LUR 

LE 
LER 
LEGR 

LPER 

LCER 

LME 

50-022 ROO 

Load Unnormalized Floating Point 
Load Unnormalized Floating Point Register 

Load Floating Point 
Load Floating Point Register 
Load Floating Point from General Register 

Load Positive Floating Point Register 

Load Complement Floating Point Register 

Load Floating Point Multiple 

6-11 



LGER 

STE 

STME 

AE 
AER 

SE 
SER 

CE 
CER 

ME 
MER 

DE 
DER 

FXR 

FLR 

Load General Register from Floating Point 
Register 

Store Floating Point 

Store Floating Point Multiple 

Add Floating Point 
Add Floating Point Register 

Subtract Floating Point 
Subtract Floating Point Register 

Compare Floating Point 
Compare Floating Point Register 

Multiply Floating Point 
Multiply Floating Point Register 

Divide Floating Point 
Divide Floating Point Register 

Fix Register 

Float Register 

The double precision floating point instructions described in 
this section are: 

6-12 

LW 
LWR 

LD 
LDR 
LDGR 

LPDR 

LCDR 

LMD 

LGDR 

STD 

STMD 

AD 
ADR 

Load Unnormalized Double Precision 
Load Unnormalized Double Precision Register 

Load Double Precision Floating Point 
Load Register Double Floating Point 
Load Double Precision Floating Point from 
General Register 

Load Positive 
Floating Point 

Register Double Precision 

Load Complement Register Double Point Multiple 

Load Double Precision Floating Point Multiple 

Load General Register from Double Precision 
Floating Point Register 

Store Double Precision Floating Point 

Store Multiple Double Precision Floating Point 

Add Double Precision Floating Point 
Add Register Double Precision Floating Point 

50-022 ROO 



SD 
SDR 

CD 
CDR 

MD 
MDR 

DD 
DDR 

FXDR 

FLOR 

Subtract Double Precision Floating Point 
Subtraci Register Double Precision Floating 
Point 

Compare Double Precision Floating Point 
Compare Register Double Precision Floating 
Point 

Multiply Double Precision Floating Point 
Multiply Register Double Precision Floating 
Point 

Divide Double Floating Point 
Divide Register Double Precision 
Point 

Floating 

Fix Register Double Precision Floating Point 

Float Register Double Precision Floating Point 

The mixed mode floating point instructions described in this 
section are: 

LED 

LEDR 

LOE 

LOER 

STDE 

50-022 ROO 

Load Single Precision Floating Point from 
Double Precision Point 

Load Register Double Precision Floating Point 
from Single Precision Floating Point 

Load Double Precision Floating Point from 
Single Precision Floating Point 

Load Register Single Precision Floating Point 
from Double Precision Floating Point 

Store Double Precision Floating Point 
Single Precision Floating Point 

in 

6-13 



6.5.1 Load Unnormalized Floating Point (LU, LUR) 

Load Unnormalized Floating Point (LU) 
Load Unnormalized Floating Point Register (LUR) 

Assembler Notatjon 

LU Rl,D2(X2) 
LU Rl,A2(FX2,SX2) 
LUR Rl,R2 

Operation: 

Opcode 

4E 
4E 
lE 

Format 

RX1,RX2 
RX3 
RR 

The fullword second operand is placed 
floating point register specified 
performed. 

in the single precision 
by Rl. No normalization is 

Condition Code: 

ICIVIGILI 
1===============1 

Result is zero I o I O I O I o I 
I o I o I o I 1 I 
I o I o I 1 I o I 

Result is less than zero 
Result is greater than zero 

Programming Notes: 

In the RX formats, the second operand must 
fullword boundary. This instruction is 
manipulation only. Floating point operations 
register loaded in this manner may not 
results. 

6-14 

be located on a 
intended for data 
using data in a 

produce predictable 

50-022 ROO 



6.5.2 Load Floating Point (LE, LER, LEGR) 

Load Floating Point (LE) 
Load Floating Point Register (LER) 
Load Floating Point from General Register (LEGR) 

A.asernbler No..t.at..ion Qp.c.o.de F_ormat. 

LE Rl,D2(X2) 68 RX1,RX2 
LE Rl.,A2(FX2,SX2) 68 RX3 
LER Rl,R2 28 RR 
LEGR Rl,R2 AS RR 

Operation: 

The floating point second operand is normalized, 
and placed in the single precision floating 
specified by Rl. 

Condition Code: 

: C : V : G : L l 
---------------i ---------------, 

if necessary, 
point register 

0 
0 
0 

0 
0 
0 

0 
0 
l 

0 
l 
0 

Floating point result is zero 

0 l 0 

Programming Notes: 

0 

Floating point result is less than zero 
Floating point result is greater than 
zero 
Exponent underflow 

If the argument fraction is zero, the entire result is forced to 
zero, X'OOOO 0000'. 

Normalization can produce exponent underflow. If PSW bit 19 is 
set, an arithmetic fault interrupt is taken, and the register 
specified by Rl is unchanged. If an exponent underflow occurs, 
and bit 19 of the current PSW is zero, no arithmetic fault 
occurs. Zeros replace the contents of the register specified by 
Rl. 

In the RX formats, the second operand must be located on a 
fullword boundary. 

50-022 ROO 6-15 



Example: 

This example of the LE instruction normalizes data taken from the 
fullword at memory location LOC and places it in floating point 
register S. 

Assembler Notation Comments 

LE REGS,LOC LOAD FROM LOC AND NORMALIZE 

Where: 

Floating point REGS contains unknown data. 
LOC contains X'4200 1000' 

Result of LE Instruction: 

(REGS) = X'4010 0000' 
(LOC) unchanged by this instruction 
Condition code = 0010 

6-16 50-022 ROO 



6.5.3 Load Positive Floating Point Register (LPER) 

Aaaemb.le.r. No~ation 

I.PER Rl,R2 

Operation: 

.a.pc.ode 

13 RR 

The floating point second operand data from the single precision 
floating point register specified by R2 is forced positive 
normalized, if necessary, and placed in the single precision 
floating point register specified by Rl. 

Condition Code: 

C I V I G I L 
-==-========='::::=== 

0 
0 

0 

0 
0 

l 

0 
l 

0 

Prograrmning Notes: 

0 
0 

0 

Floating point result is zero 
Floating point result is greater than 
zero 
Exponent underflow 

If the argument fraction is zero, the entire result is forced to 
zero, x•oooo 0000•. 

Normalization can produce exponent underflow. If PSW bit 19 is 
set, an arithmetic fault interrupt is taken, and the register 
specified by Rl is unchanged. If an exponent underflow occurs, 
and bit 19 of the current PSW is zero, no arithmetic fault 
occurs. Zeros replace the contents of the register specified by 
Rl. 

Example: 

Assembl..er Notation 

LPER REG6,REGS 

Where: 

Comments 

LOAD REG6 WITH 
POSITIVE OF (REGS) 

Floating point REG6 contains unknown data 
Floating point REGS contains X'Cll921FB' 

50-022 ROO 6-17 



Result of LPER Instruction: 

(REG6) = X'411921FB' 
(REGS) unchanged by this instruction 
Condition code = 0010 

6-18 50-022 ROO 



6.5.4 Load Complement Floating Point Register (LCER) 

Aa.s_embler Notation Opcode Format 

LCER Rl,R2 17 RR 

Operation: 

The sign of the floating point second operand data from the 
single precision floating point register specified by R2 is 
complemented. The resulting floating point number is normalized, 
if necessary, and placed in the single precision floating point 
register specified by Rl. 

Condition Code: 

I C I V I G I L 
!=============== 

0 0 0 0 
0 0 0 l 
0 0 l 0 

0 l 0 0 

Programming Notes: 

Floating point result is zero 
Floating point result is less than zero 
Floating point result is greater than 
zero 
Exponent underflow 

If the argument fraction is zero, the entire result is forced to 
zero, X'OOOO 0000'. 

Normalization can produce exponent underflow. If PSW bit 19 is 
set, an arithmetic fault interrupt is taken, and the register 
specified by Rl is unchanged. If an exponent underflow occurs, 
and bit 19 of the current PSW is zero, no arithmetic fault 
occurs. Zeros replace the contents of the register specified by 
Rl. 

50-022 ROO 6-19 



6.5.5 Load Multiple Floating Point (LME) 

Assembler Notatjon 

LME 
LME 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

Opcode 

72 
72 

Format 

RX2,RX2 
RX3 

Successive single precision floating point registers, starting 
with the register specified by Rl, are loaded from successive 
fullword memory locations starting with the address of the second 
operand. The process stops when floating point register 14 has 
been loaded. 

Condition Code: 

Unchanged 

Programming Notes: 

Values loaded into the floating point registers are assumed to be 
normalized, and no test or adjustment is performed. 

The second operand must be located on a fullword boundary. 
Loading a register with a "dirty zero" using this instruction 
will result in a load of true zero. 

6-20 50-022 ROO 



6.5.6 Load General Register from Floating Point Register (LGER) 

Aaaembler Natat.ian 

LGER Rl,R2 

Operation: 

Q~.e 

15 

Format 

RR 

The floating point second operand, contained in the single 
precision floating point register specified by R2, is placed in 
the general register specified by Rl. The second operand is 
unchanged. 

Condition Code: 

l C l V l G I L l 
1===============1 
: o I o l o : o : 
I O I o I O I l I 
: 0 : 0 : l : 0 l 

50-022 ROO 

Result is zero 
Result is less than zero 
Result is greater than zero 

6-21 



6.5.7 Store Floating Point (STE) 

Assembler Notation 

STE 
STE 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

Opcode 

60 
60 

Format 

RX1,RX2 
RX3 

The floating point first operand, contained in the single 
precision floating point register specified by Rl, is placed in 
the fullword memory location specified by the second operand 
address. The first operand is unchanged. 

Condition Code: 

Unchanged 

Programming Note: 

The second operand must be located on a fullword boundary~ 

6-22 50-022 ROD 



6.5.8 Store Multiple Floating Point (STME) 

Assembler Notation 

STME Rl, D2 (X2) 
STME Rl,A2(FX2,SX2) 

Operation: 

Opcode 

71 
71 

F.ormat 

RX1,RX2 
RX3 

The contents of successive single precision floating point 
registers, starting with the even-numbered register specified by 
Rl, are stored in successive fullword memory locations, starting 
with the address of the second operand. The operation stops when 
the contents of floating point register 14 have been stored. 

Condition Code: 

Unchanged 

Programming Note: 

The second operand must be located on a fullword boundary. 

50-022 ROO 6-23 



6.5.9 Add Floating Point (AE, AER) 

Add Floating Point (AE) 
Add Floating Point Register (AER) 

Assembler Notation 

AE 
AE 
AER 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

Opcode 

6A. 
6A 
2A 

Format 

RX1,RX2 
RX3 
RR 

The two operand exponents are compared. If the exponents differ, 
the fraction with the smaller exponent is shifted right 
hexadecimally (four bits at a time), and its exponent is 
incremented by one for each hexadecimal shift, until the two 
exponents are equal. The hexadecimal digits (of four bits each) 
are shifted through the guard digits for additional precision. 
If no equalizing shifts are required, the guard digits remain 
zero. The fractions are then algebraically added. The guard 
digits participate in this addition. 

If the addition of fractions produces a carry out of Fl, the 
exponent of the result is incremented by one, and the fraction of 
the result is shifted right one hexadecimal digit. The carry bit 
is shifted back into the most significant hexadecimal digit of 
the fraction, producing a normalized result. This result is then 
R*-rounded and replaces the contents of the single precision 
floating point register specified by Rl. 

If the addition of fractions does not produce a carry, the result 
is normalized, if necessary, and R*-rounded. This result 
replaces the contents of the single precision floating point 
register specified by Rl. 

Condition Code: 

---------------
c I v I G I L I I I 

==============-= 
0 0 0 0 Floating point result is zero 
0 0 0 l Floating point result is less than zero 
0 0 1 0 Floating point result is greater than 

zero 
0 1 0 1 Exponent overflow, result is less than 

zero 
0 l· l 0 Exponent overflow, result is greater than 

zero 
0 1 0 0 Exponent underflow 

---------------

6-24 50-022 ROO 



Programming Notes: 

If an exponent overflow is detected, an arithmetic fault 
interrupt is taken and the contents of the register specified by 
Rl remain unchanged. 

Normalization of the result can produce exponent underflow. If 
PSW bit 19 is set, an arithmetic fault interrupt is taken, and 
the register specified by Rl is unchanged. If exponent underflow 
occurs and bit 19 of the current PSW is zero, no arithmetic fault 
occurs. Zeros replace the contents of the register specified by 
Rl. 

In the RX formats, the second operand must be located on a 
fullword boundary. 

Example: 

This example of the AE instruction adds the contents of LOC to 
the contents of LOC floating point register 8 and places the 
result in floating point register 8. 

Assembler Notation Comments 

AE REG8,LOC ADD (LOC) TO (REGS) 

Where: 

Floating point REGS contains X'7EFF FFFF'. 
LOC contains X'7EFF FFFF' 

Result of AE Instruction: 

(Floating point REGS) = 7FlF FFFF 
(LOC) unchanged by this instruction 
Condition code - 0010 

50-022 ROO 6-25 



6.5.10 Subtract Floating Point (SE, SER) 

Subtract Floating Point (SE) 
Subtract Floating Point Register (SER) 

Assembler Notation 

SE 
SE 
SER 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

Opcode 

6B 
6B 
2B 

Format 

RX1,RX2 
RX3 
RR 

The two operand exponents are compared. If the exponents differ, 
the fraction with the smaller exponent is shifted right 
hexadecimally (four bits at a time), and its exponent is 
incremented by one for each hexadecimal shift until the two 
exponents are equal. The hexadecimal digits (of four bits each) 
are shifted through the guard digits for additional precision. 
If no equalizing shifts are required, the guard digits remain 
zero. The second operand fraction is then subtracted 
algebraically from the first operand fraction. The guard digits 
participate in this subtraction. 

If the subtraction of fractions produces a carry out of Fl, the 
exponent of the result is incremented by one, and the fraction of 
the result is shifted right one hexadecimal digit. The carry bit 
is shifted back into the most significant hexadecimal digit of 
the fraction, producing a normalized result. This result is then 
R*-rounded and replaces the contents of the single precision 
floating point register specified by Rl. 

If the subtraction of fractions does not produce a carry, the 
result is normalized, if necessary, then R*-rounded. This result 
replaces the contents of the single precision floating point 
register specified by Rl. 

Condition Code: 

6-26 

C I V I G I L I 
===============! 

0 0 0 0 
0 0 0 1 
0 0 1 0 

0 l 0 l 

0 l 1 0 

0 l 0 0 

Floating 
Floating 
Floating 
zero 
Exponent 
zero 
Exponent 
zero 
Exponent 

point result is zero 
point result is less than zero 
point result is greater than 

overflow, result is less than 

overflow, result is greater than 

underflow 

50-022 ROO 



Programming Notes: 

If an exponent overflow is detected, an arithmetic fault 
interrupt is taken and the contents of Rl remain unchanged. 

Normalization of the result can produce exponent underflow. If 
PSW bit 19 is set, an arithmetic fault interrupt is taken, and 
the register specified by Rl is unchanged. If exponent underflow 
occurs and bit 19 of the current PSW is zero, no arithmetic fault 
occurs. Zeros replace the contents of the register specified by 
Rl. 

In the RX formats, the second operand must be located on a 
fullword boundary. 

Example: 

This example of the SE instruction subtracts the contents of LOC 
from the contents of floating point register S and places the 
result in floating point register S. 

Assembler Notation Cornments 

SE REG8,LOC SUBTRACT (LOC) FROM (REGS) 

Where: 

Floating point REGS contains X'7EFF FFFF' 
LOC contains X'7Al0 0000' 

Result of SE Instruction: 

(Floating point REGS) = 7EFF FFEF 
(LOC) unchanged by this instruction 
Condition code = 0010 

50-022 ROD 6-27 



6.5.11 Compare Floating Point (CE, CER) 

Compare Floating Point (CE) 
Compare Floating Point Register (CER) 

Assembler Notation 

CE 
CE 
CER 

Rl,D2(X2) 
Rl,D2(FX2,SX2) 
Rl,R2 

Operation: 

Opcode 

69 
69 
29 

F..ormat 

RX1,RX2 
RX3 
RR 

The first and second operands are compared. Comparison is 
algebraic, and the sign, fraction and exponent of each number 
must be considered. The result is indicated by the condition 
code setting. Neither operand is changed. 

Condition Code: 

I C I V I G I L I 
:===============: 
I o I x I o I o I 
: l I x : o I 1 I 
I o : x : l : o : 

Programming Notes: 

First operand is equal to second 
First operand is less than second 
First operand is greater than second 

The state of the V flag is undefined. 

In the RX formats, the second operand must be located on a 
fullword boundary. 

6-28 50-022 ROO 



6.5.12 Multiply Floating Point (ME, MER) 

Multiply Floating Point (ME) 
Multiply Floating Point Register (MER) 

ME 
ME 
MER 

Rl, D2 (X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

Op.code 

6C 
6C 
2C 

F.or..ma.t 

RX1,RX2 
RX3 
RR 

The exponents of each operand, as derived from the excess-64 
notation used in floating point representation, are added to 
produce the exponent of the result. This exponent is converted 
back to excess-64 notation, and the fractions are then 
multiplied. 

If the product is zero, the entire floating point value is forced 
to zero, X'OOOO 0000'. If the product is not zero, the result is 
normalized. The sign of the result is determined by the rules of 
algebra. The R*-rounded result replaces the contents of the 
single precision floating point register specif 1ed by Rl. 

Condition Code: 

----·---- --- ----·-
c I v I G I L I I I 

:.=='============ 
0 0 0 I 0 Floating point result is zero 
0 0 0 l Floating point result is less than zero 
0 0 l 0 Floating point result is greater than 

zero 
0 l 0 1 Exponent overflow, result is less than 

zero 
0 l l 0 Exponent overflow, result is greater than 

zero 
0 l 0 0 Exponent underflow 

---------------

Programming Notes: 

Multiplication of two 6-hexadecimal digit fractions effectively 
produces a result of six hexadecimal digits and six guard digits. 
The guard digits participate in the R*-rounding of the final 
result. 

The addition of exponents can produce exponent overflow. In this 
case, an arithmetic fault interrupt is taken, and both operands 
remain unchanged. 

50-022 ROO 6-29 



The addition of exponents or the normalization process can 
produce exponent underflow. If PSW bit 19 is set, an arithmetic 
fault interrupt is taken and the register specified by Rl is 
unchanged. If exponent underflow occurs and bit 19 of the 
current PSW is zero, no arithmetic fault occurs. Zeros replace 
the contents of the register specified by Rl. 

In the RX formats, the second operand must be located on a 
fullword boundary. 

Example: 

This example of the ME instruction multiplies the contents of 
floating point register S by the contents of memory location LOC 
and places the result in floating point register S. 

Assemb.J..e.r. Notation Comments 

ME REGS,LOC MULTIPLY (REGS) BYS (LOC) 

Where: 

Floating point REGS contains X'SFFF PFFF' 
LOC contains X'60FF FFFF' 

Result of ME Instruction: 

(Floating point REGS) = 7FFF FFFE 
(LOC) unchanged by this instruction 
Condition code = 0010 

6-30 50-022 ROO 



6.5.13 Divide Floating Point (DE, DER) 

Divide Floating Point (DE) 
Divide Floating Point Register (DER) 

Assembler Noca.t:.ion 

DE 
DE 
DER 

Rl,D2 (X2) 
Rl,A2 (FX2,SX2) 
Rl,R2 

Operation: 

6D 
6D 
2D 

RX1,RX2 
RX3 
RR 

The exponents of each operand, as derived from the excess-64 
notation used in floating point representation, are subtracted to 
produce the exponent of the result. This exponent is converted 
back to excess-64 notation. 

The first operand fraction is then divided by the second operand 
fraction. Division continues until the quotient is normalized, 
adjusting the exponent for each additional division required. 

No remainder is returned. The sign of the quotient is determined 
by the rules of algebra. The simple-rounded quotient replaces 
the contents of the single precision floating point register 
specified by Rl. 

Condition Code: 

--... -------------
c I v I G I L I I I 

=============== 
0 0 0 0 Floating point result is zero 
0 0 0 l Floating point result is less than zero 
0 0 1 0 Floating point result is greater than 

zero 
0 l 0 l Exponent overflow, result is less than 

zero 
0 1 1 0 Exponent overflow, result is greater than 

zero 
0 1 0 0 Exponent underflow 
l 1 0 0 Divisor equal to zero 

---------------

Programming Notes: 

Before starting the divide operation, the divisor is checked. If 
it is equal to zero, the operation is aborted, and the arithmetic 
fault interrupt is taken. Neither operand is changed. 

50-022 ROO 6-31 



Subtraction of exponents can produce exponent overflow. In this 
case, an arithmetic fault interrupt is taken, and both operands 
remain unchanged. 

The subtraction of exponents or the division process can produce 
exponent underflow; normalization of the result can produce 
exponent underflow. If PSW bit 19 is set, an arithmetic fault 
interrupt is taken, and the register specified by Rl is 
unchanged. If exponent underflow occurs and bit 19 of the 
current PSW is zero, no arithmetic fault occurs. Zeros replace 
the contents of the register specified by Rl. 

The 6-hexadecimal digit first operand fraction is divided by the 
6-hexadecimal digit second operand, effectively producing the 
6-hexadecimal digit quotient along with a number of guard digits. 
The guard digits participate in the rounding of the final result. 

In the RX formats, the second operand must be located on a 
fullword boundary. 

Example: 

This example of the DE instruction divides the contents of 
floating point register 4 by the contents of memory location LOC 
and places the result in floating point register 4. 

Assembler Notation Comment..a 

DE REG4,LOC DIVIDE (REG4) BY (LOC) 

Where: 

Floating point REG4 contains X'44FF FFFF' 
LOC contains X'0611 1111' = Divisor 

Result of DE Instruction: 

(Floating point REG4) = 7FFO 0000 
(LOC) unchanged by this instruction 
Condition code = 0010 

6-32 

Dividend 

50-022 ROO 



6.5.14 Fix Register (FXR) 

E.o.r.mat 

FXR Rl,R2 2E RR 

Operation: 

Rl and R2 specify a general-purpose register and a floating point 
register, respectively. The normalized floating point number 
contained in the floating point register is converted to a two's 
complement notation integer value by shifting and truncating. 
The result is stored in the general register specified by Rl. 

Condition Code: 

l c I V I G I L I 
1===============1 

Result is zero or underflow 
Result is less than zero 
Result is greater than zero 

x 
x 
x 
x 
x 

0 
0 
0 
l 
l 

0 
0 
l 
0 
l 

0 
l 
0 
l 
0 

Overflow, result is less than zero 
Overflow, result is greater than zero 

Programming Notes: 

The range of floating point magnitudes (M) that produces a 
nonzero integral result is: 

+X'4110 0000'~ M ~ +X'4880 0000' 

Floating point magnitudes greater than +X'487F FFFF' or -X'4880 
0000' cause overflow. The result is forced to X'7FFF FFFF' if 
positive or to X'8000 0000' if negative. The V flag is set in 
the condition code along with either the G or L flag, depending 
on the sign of the result. 

Floating point magnitudes less than +X'4110 0000' 
underflow, and the result is forced to zero. 

cause 

In the event of overflow or underflow, no arithmetic fault 
interrupt is taken, even if enabled in the current PSW. 

50-022 ROO 6-33 



Example: 

This example of the FXR instruction converts the contents of 
floating point register S to a fixed point number and places it 
in register 3. 

Aaaembler Notation Comments 

FXR REG3,REGS CONVERT (REGS) TO FIXED POINT 

Where: 

Floating point REGS contains X'46FF FFOO' 
REG3 contains unknown data 

Result of FXR Instruction: 

(REG3) = OOFFFFOO 
(Floating point REGS) unchanged by this instruction 
Condition code = 0010 

6-34 50-022 ROO 



6.5.15 Float Register (FLR) 

FLR Rl,R2 

Operation: 

Qp.c..ode 

2F 

F .. or.mat. 

RR 

Rl and R2 specify a floating point register and a general-purpose 
register, respectively. The integer value contained in the 
general register specified by R2 is converted to a floating point 
number and stored in the single precision floating point register 
specified by Rl. 

Condition Code: 

l C l V l G l L l 
:===============: 
I x : o I o : o : 
: x : o I o I l : 
: x l o I 1 l o I 

Programming Note: 

Floating point result is zero 
Floating point result is less than zero 
Floating point result is greater than 
zero 

The full range of fixed point integer values can be converted to 
floating point. The fixed point value X'7FFF FFFF', the largest 
positive integer, converts to the floating point value X'487F 
FFFF'. The fixed point value x•sooo 0000', the most negative 
integer, converts to the floating point value X'C880 0000'. The 
result in Rl is normalized and truncated, if necessary, to fit in 
the six fraction digits. 

Example: 

This example of the FLR instruction converts the fixed point 
contents of register 4 to a floating point number and places it 
in floating point register 8. 

..Comments 

FLR REG8,REG4 CONVERT (REG4) TO FLOATING POINT 

Where: 

REG4 contains X'7FFF FFFO' 
Floating point REGS contains unknown data 

50-022 ROO 6-35 



Result of FLR Instruction: 

(Floating point REG8) = 487FFFFF 
(REG4) unchanged by this instruction 
Condition code = 0010 

6-36 50-022 ROO 



6.5.16 Load Unnormalized 
(LW, LWR) 

Double Precision Floating Point 

Load Unnormalized Double Precision Floating Point (LW) 
Load Unnormalized Double Precision Floating Point Register (LWR) 

As.aemble..r.. NQtatjoo 

LW Rl,D2(X2) 
IW Rl,A2(FX2,SX2) 
LWR Rl,R2 

Operation: 

4F 
4F 
lF 

RX1,RX2 
RX3 
RR 

The doubleword second operand is placed in the double precision 
floating point register specified by Rl. No normalization is 
performed. 

Condition Code: 

: c l V I G I L I 
1===============1 

Result is zero I o I O I O I O I 
l O I o I O I 1 I 
I O I O I 1 I O I 

Result is less than zero 
Result is greater than zero 

Programming Notes: 

In the RX formats, the second operand must 
fullword boundary. This instruction is 
manipulation only. Floating point operations 
register loaded in this manner may not 
results. 

50-022 ROO 

be located on a 
intended for data 
using data in a 

produce predictable 

6-37 



6.5.17 Load Double Precision Floating Point (LD, LDR, LDGR) 

Load Double Precision Floating Point (LO) 
Load Register Double Precision Floating Point (LDR) 
Load Double Precision Floating Point Registers from General 
Registers (LDGR) 

Assembler Notation 

LD 
LD 
LDR 
LDGR 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 
Rl,R2 

Operation: 

Opcode 

78 
78 
38 
A6 

Format 

RX1,RX2 
RX3 
RR 
RR 

The floating point second operand is normalized, 
and placed in the double precision floating 
specified by Rl. 

if necessary, 
point register 

Condition Code: 

CIVIGIL 
=============== 

0 
0 
0 

0 

0 
0 
0 

1 

0 
0 
1 

0 

Programming Notes: 

0 
1 
0 

0 

Double precision result is zero 
Double precision result is less than zero 
Double precision result is greater than 
zero 
Exponent underflow 

If the argument fraction is zero, the entire result is forced to 
zero, X'OOOO 0000 0000 0000'. 

Normalization can produce exponent underflow. If PSW bit 19 is 
set, the arithmetic fault interrupt is taken, and the register 
specified by Rl remains unchanged. If exponent underflow occurs, 
and bit 19 of the current PSW is zero, no arithmetic fault 
occurs. Zeros replace the contents of the register specified by 
Rl. 

In the RX formats, the second operand must be located on a 
fullword boundary. 

The R2 field for LDGR must specify the even member of an even/odd 
pair of general registers. The register specified by R2 contains 
the most significant 32 bits, and R2+1 contains the least 
significant 32 bits. If R2 does not specity an even-numbered 
register, unpredictable results occur. 

6-38 50-022 ROO 



6.5.18 Load Positive Double Precision Register (LPDR) 

Opcode F.o..r.mat 

LPDR Rl,R2 33 RR 

Operation: 

The double precision floating point second operand contained in 
the double precision floating point register specified by R2 is 
forced positive. The result is normalized if necessary and 
placed in the double precision floating point register specified 
by Rl. 

Condition Code: 

: C ·1 V I G I L 
!=============== 

0 
0 

0 

0 
0 

l 

0 
1 

0 

Programming Notes: 

0 
0 

0 

Double precision result is zero 
Double precision result is greater than 
zero 
Exponent underflow 

If the argument fraction is zero, the entire result is forced to 
zero, X'OOOO 0000 0000 0000'. 

Normalization of the result can produce exponent underflow. If 
PSW bit 19 is set, the arithmetic fault interrupt is taken, and 
the register specified by Rl remains unchanged. If exponent 
underflow occurs, and bit 19 of the current PSW is zero, no 
arithmetic fault occurs. Zeros replace the contents of the 
register specified by Rl. 

50-022 ROO 6-39 



6.5.19 Load Complement Double Precision Register (LCDR) 

Assembler Notation Opcode Format 

LCDR Rl,R2 37 RR 

Operation: 

The sign of the double precision floating point second operand 
contained in the double precision floating point register 
specified by R2 is complemented. The result is normalized, if 
necessary, and placed in the double precision floating point 
register specified by Rl. 

Condition Code: 

c I V I G I L 
========'===='==== 

0 
0 
0 

0 

0 
0 
0 

l 

0 
0 
l 

0 

Programming Notes: 

0 
l 
0 

0 

Double precision result is zero 
Double precision result is less than zero 
Double precision result is greater than 
zero 
Exponent underflow 

If the argument fraction is zero, the entire result is forced to 
zero, X'OOOO 0000 0000 0000'. 

Normalization can produce exponent underflow. If PSW bit 19 is 
set, the arithmetic fault interrupt is taken and the register 
specified by Rl remains unchanged. If an exponent underflow 
occurs and bit 19 of the current PSW is zero, no arithmetic fault 
occurs. Zeros replace the contents of the register specified by 
Rl in this case. 

6-40 50-022 ROO 



6.5.20 Load Multiple Double Precision Floating Point (LMD) 

Assembiez. No.tatjon 

LMD Rl,D2(X2) 
LMD Rl,A2(FX2,SX2) 

Operation: 

7F 
7F 

F.crmat 

RXl, RX2 
RX3 

Successive double precision floating point registers, starting 
with the register specified by Rl, are loaded from successive 
fullword memory location pairs, starting with the address of the 
second operand. The process stops when double precision floating 
point register 14 has been loaded. 

Condition Code: 

Unchanged 

Programming Notes: 

Values loaded into the double precision floating point registers 
are assumed to be normalized, and no test or adjustment is 
performed. 

The second operand must be located on a fullword boundary. 
Loading a register with a "dirty zero" using this instruction 
will result in a load of true zero. 

50-022 ROO 6-41 



6.5.21 Load General Registers from Double Precision Floating 
Point Register (LGDR) 

Assembler Notation Opcode Format 

LGDR Rl,R2 16 RR 

Operation: 

The double precision floating point second operand, contained in 
the double precision register specified by R2, is placed in the 
general register pair specified by Rl. The second operand is 
unchanged. 

Condition Code: 

I c I V I G I L I 
1===============1 
I o I o I o I o I 
: o I o I o l l I 
I O I O I l I o I 

Programming Notes: 

Result is zero 
Result is less than zero 
Result is greater than zero 

The Rl field must specify the even member of the even/odd pair of 
general registers receiving the result. The even-numbered 
register receives the most significant 32 bits while the next 
sequential odd numbered register receives the least significant 
32 bits. 

If Rl and R2 do not specify even-numbered registers, 
unpredictable results occur. 

6-42 50-022 ROO 



6.5.22 Store Double Precision Floating Point (STD) 

Aaa.emb.1.eL. Notat.ion 

STD Rl,D2(X2) 
STD Rl,A2(FX2,SX2) 

Operation: 

Opcode 

70 
70 

RX1,RX2 
RX3 

The floating point first operand, contained in the double 
precision floating point register specified by Rl, is placed in 
the doubleword memory location specified by the second operand 
address. The first operand is unchanged. 

Condition Code: 

Unchanged 

Programming Note: 

The second operand must be located on a fullword boundary. 

50-022 ROO 6-43 



6.5.23 Store Multiple Double Precision Floating Point (STMD) 

Assembler Notation Opcode Format 

STMD 
STMD 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

7E 
7E 

The contents of successive 
registers, starting with the 
Rl, are stored in successive 
starting with the address of 
stops when the contents of 
register 14 have been stored. 

Condition Code: 

Unchanged 

Programming Note: 

RX1,RX2 
RX1,RX2 

double precision floating point 
even-numbered register specified by 
fullword memory location pairs, 
the second operand. The operation 
double precision floating point 

The second operand must be located on a fullword boundary. 

6-44 50-022 ROO 



6.5.24 Add Double Precision Floating Point (AD, ADR) 

Add Double Precision Floating Point (AD) 
Add Register Double Precision Floating Point (ADR) 

Aaaembler Notation 

AD 
AD 
ADR 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

Opcode 

7A 
7A 
3A 

F_ormat 

Format 
RX3 
RR 

The two operand exponents are compared. If the exponents differ, 
the fraction with the smaller exponent is shifted right 
hexadecimally (four bits at a time), and its exponent is 
incremented by one for each hexadecimal shift until the two 
exponents are equal. Hexadecimal digits are shifted through the 
guard digits to retain precision. The fractions are then added 
algebraically. 

If the addition of fractions produces a carry out of Fl, the 
exponent of the result is incremented by one and the fraction of 
the result is shifted right one hexadecimal position. The carry 
bit is shifted back into the most significant hexadecimal digit 
of the fraction, producing a normalized result. This result is 
R*-rounded and replaces the contents of the double precision 
floating point register specified by Rl. 

If the addition of fractions does not produce a carry, the result 
is normalized, if necessary, and placed in the double precision 
floating point register specified by Rl. 

Condition Code: 

CIVIGILI 
===============I 

0 0 0 1 
0 0 1 0 

0 1 0 1 

0 1 1 0 

0 1 0 0 

50-022 ROO 

Double precision result is less than zero 
Double precision result is greater than 
zero 
Exponent overflow, result is less than 
zero 
Exponent overflow, result is greater than 
zero 
Exponent underflow 

6-45 



Programming Notes: 

If an exponent overflow is detected, an arithmetic 
interrupt is taken and both operands remain unchanged. 

fault 

Normalization of the result can produce exponent underflow. If 
PSW bit 19 is set, an arithmetic fault interrupt is taken, and 
the register specified by Rl is unchanged. If exponent underflow 
occurs and bit 19 of the current PSW is zero, no arithmetic fault 
occurs. Zeros replace the contents of the register specified by 
Rl. 

In the RX formats, the second operand must be located on a 
fullword boundary. 

6-46 50-022 ROO 



6.5.25 Subtract Double Precision Floating Point (SD, SDR) 

Subtract Double Precision Floating Point (SD) 
Subtract Register Double Precision Floating Point (SOR) 

As.sembler. No..t.atjon 

SD 
SD 
SDR 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

7B 
7B 
3B 

Format 

RX1,RX2 
RX3 
RR 

The two operand exponents are compared. If the exponents differ, 
the fraction with the smaller exponent is shifted right 
hexadecimally (four bits at a time), and its exponent is 
incremented by one for each hexadecimal shift until the two 
exponents are equal. Hexadecimal digits are shifted through the 
guard digits to retain precision. The second operand fraction is 
then subtracted algebraically from the first operand fraction. 

If the subtraction of fractions produces a carry out of Fl, the 
exponent of the result is incremented by one and the fraction of 
the result is shifted right one hexadecimal position. The carry 
bit is shifted back into the most significant hexadecimal digit 
of the fraction producing a normalized result. This result is 
R*-rounded and replaces the contents of the double precision 
floating point register specified by Rl. 

If the subtraction of fractions does not produce a carry, the 
result is normalized, if necessary, then R*-rounded and placed in 
the double precision floating point register specified by Rl. 

Condition Code.: 

---------------
c I v I G I L I I I 

============='== 
0 0 0 0 Double precision result is zero 
0 0 0 l Double precision result is less than zero 
0 0 l 0 Double precision result is greater than 

zero 
0 1 0 l Exponent overflow, result is less than 

zero 
0 1 1 0 Exponent overflow, result is greater than 

zero 
0 l 0 0 Exponent underflow 

---------------

50-022 ROO 6-47 



Programming Notes: 

If an exponent overflow is detected, an arithmetic fault is taken 
and the contents of Rl remain unchanged. 

Normalization of the result can produce exponent underflow. If 
PSW bit 19 is set, an arithmetic fault interrupt is taken, and 
the register specified by Rl is unchanged. If exponent underflow 
occurs and bit 19 of the current PSW is zero, no arithmetic fault 
occurs. Zeros replace the contents of the register specified by 
Rl. 

In the RX formats, the second operand must be located on a 
fullword boundary. 

6-48 50-022 ROO 



6.5.26 Compare Double Precision Floating Point (CD, CDR) 

Compare Double Precision Floating Point (CD) 
Compare Register Double Precision Floating Point (CDR) 

Aaaembl..e.r. Not.at.ion 

CD 
CD 
CDR 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

.Qpc.o.d..e 

79 
79 
39 

F-ormat 

RX1,RX2 
RX3 
RR 

The first and second operands are compared. Comparison is 
algebraic, taking into account the sign, exponent and fraction of 
each number. The result is indicated by the condition code 
setting. Neither operand is changed. 

Condition Code: 

I c : V I G I L I 
!===============! 
I o I x I o I o I 
: l I x I o I l I 
I O I X l l I O I 

Programming Notes: 

First operand is equal to second 
First operand is less than second 
First operand is greater than second 

The state of the overflow flag is undefined. 

In the RX formats, the second operand must be located on a 
fullword boundary. 

50-022 ROO 6-49 



6.5.27 Multiply Double Precision Floating Point (MD, MDR) 

Multiply Double Precision Floating Point (MD) 
Multiply Register Double Precision Floating Point (MDR) 

Assembler Notation 

MD 
MD 
MDR 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

Opcode 

7C 
7C 
3C 

Format 

RX1,RX2 
RX3 
RR 

The exponents of the two operands, as derived from the excess-64 
notation used in floating point representation, are added to 
produce the exponent of the result. This exponent is converted 
back to excess-64 notation. The fractions are then multiplied. 

If the product is zero, the entire double precision value is 
forced to zero, X'OOOO 0000 0000 0000'. If the product is not 
zero, the result is normalized, if necessary. The sign of the 
result is determined by the rules of algebra. The R*-rounded 
result replaces the contents of the double precision floating 
point register specified by Rl. 

Condition Code: 

---------------
c i v i G I L I I I 

-==========~=='== 

0 0 0 0 Double precision result is zero 
0 0 0 1 Double precision result is less than zero 
0 0 1 0 Double precision result is greater than 

zero 
I'\ , I'\ , 

~-------L 
_____ c, ___ ---··,L is 

, ___ LL--u .J.. u .J.. .C.X.E:JUllt::lll.. UVt::L .L ..LUW, Lt::::SU..Ll.. ..L t::::S ::s l..lld.11 

zero 
0 1 1 0 Exponent overflow, result is greater than 

zero 
0 1 0 0 Exponent underflow 

---------------

Programming Notes: 

Multiplication of two 14-hexadecimal digit fractions effectively 
produces a result of 14 hexadecimal digits and 14 guard digits. 
The guard digits participate in the R*-rounding of the final 
result. 

The addition of exponents can produce exponent overflow. 
case, an arithmetic fault interrupt is taken and both 
remain unchanged. 

In this 
operands 

6-50 50-022 ROO 



Normalization of the result can produce exponent underflow. If 
PSW bit 19 is set, an arithmetic fault interrupt is taken, and 
the register specified by Rl is unchanged. If exponent underflow 
occurs and bit 19 of the current PSW is zero, no arithmetic fault 
occurs. Zeros replace the contents of the register specified by 
Rl. 

In the RX formats, the second operand must be located on a 
fullword boundary. 

50-022 ROO 6-51 



6.5.28 Divide Double Precision Floating Point (DD, DDR) 

Divide Double Precision Floating Point (DD) 
Divide Register Double Precision Floating Point (DDR) 

Assembler Notation 

DD 
DD 
DDR 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

Opcode 

7D 
7D 
7D 

Format 

RX1,RX2 
RX3 
RR 

The exponents of the two operands, as derived from the excess-64 
notation used in floating point representation, are subtracted to 
produce the exponent of the result. This exponent is converted 
back to excess-64 notation. 

The first operand fraction is then divided by the second operand 
fraction. Division continues until the quotient is normalized, 
adjusting the exponent for each additional division required. 

No remainder is returned. The sign of the result is determined 
by the rules of algebra. The simple-rounded quotient replaces 
the contents of the double precision floating point register 
specified by Rl. 

Condition Code: 

- - - - ----------·-
c I v I G I L I I I 

'===-======-====-== 
0 0 0 0 Double precision result is zero 
0 0 0 l Double precision result is less than zero 
0 0 l 0 Double precision result is greater than 

zero 
0 l 0 l Exponent overflow, result is less than 

zero 
0 l 1 0 Exponent overflow, result is greater than 

zero 
0 l 0 0 Exponent underflow 
l l 0 0 Divisor equal to zero 

---------------

Programming Notes: 

Before starting the divide operation, the divisor is checked. If 
it is equal to zero, the operation is aborted, and the arithmetic 
fault interrupt is taken. Neither operand is changed. 

6-52 50-022 ROO 



The subtraction of exponents can produce exponent 
this case, an arithmetic fault interrupt is 
operands remain unchanged. 

overflow. In 
taken and both 

Subtraction of exponents or the division process can produce 
exponent underflow. Normalization of the result can produce 
exponent underflow. If PSW bit 19 is set, an arithmetic fault 
interrupt 1~ taken, and the register specified by Rl is 
unchanged. If exponent underflow occurs and bit 19 of the 
current PSW is zero, no arithmetic fault occurs. Zeros replace 
the contents of the register specified by Rl. 

The 14-hexadecimal digit first operand fraction is divided by the 
14-hexadecimal digit second operand fraction, effectively 
producing the 14-hexadecimal digit quotient along with a number 
of guard digits. The guard digits participate in the rounding of 
the final result. 

In the RX formats, the second operand must be located on a 
fullword boundary. 

50-022 ROO 6-53 



6.5.29 Fix Register Double Precision (FXDR) 

Assembler Notation Opcode Format 

FXDR Rl,R2 3E RR 

Operation: 

Rl and R2 specify a general-purpose register and a double 
precision floating point register, respectively. The normalized 
floating point number contained in the floating point register is 
converted to an integer value by shifting and truncating. The 
result is placed in the general register specified by Rl. 

Condition Code: 

I c I V I G I L 
!=============== 

x 0 0 0 
x 0 0 1 
x 0 l 0 
x 1 0 l 
x 1 1 0 

Programming Notes: 

Result is zero or underflow 
Result is less than zero 
Result is greater than zero 
Overflow, result is less than zero 
Overflow, result is greater than zero 

The range of the floating point magnitude (M) that produces a 
nonzero integral result is: 

+ X'4110 0000 0000 0000' ~ M ~ + X'4880 0000 0000 0000' 

Double precision floating point magnitudes greater than +X'487F 
FFFF FFFF FFFF' or -X'4880 0000 0000 0000' cause overflow. The 
result is forced to X'7FFF FFFF' if positive or to X'8000 0000' 
if negative. The V flag is set in the condition code along with 
either the G or L flag, depending on the sign of the result. 

Double precision floating point magnitudes less than +X'4110 0000 
0000' cause underflow, and the result is forced to zero. 

In the event of overflow or underflow, no arithmetic fault 
interrupt is taken even if enabled in the current PSW. 

6-54 50-022 ROO 



6.5.30 Float Register Double Precision (FI.DR) 

Assembler Notation Opcode Format 

FLDR Rl,R2 3F RR 

Rl and R2 specify a double precision floating point register and 
a general-purpose register, respectively. The integer value 
contained in the general register specified by R2 is converted to 
a floating point number and placed in the double precision 
floating point register specified by Rl. 

Condition Code: 

I c I V I G I L I 
1===============1 
I x I o I O I O I 
I x I o I o I l I 
I x I O I l I O I 

Programming Notes: 

Double precision result is zero 
Double precision result is less than zero 
Double precision result is greater than 
zero 

The full range of fixed point integer values can be converted to 
double precision floating point. The fixed point value X'7FFF 
FFFF', the largest positive integer, converts to a double 
precision floating point value of X'487F FFFF FFOO 0000'. The 
fixed point value X'8000 0000', the most negative integer, 
converts to a double precision floating point value of X'C880 
0000 0000 0000'. 

The result in Rl is normalized. 

50-022 ROD 6-55 



6.5.31 Load Single Precision Floating Point Register from Double 
(LED, LEDR) 

Load Single Precision Floating Point Register from Double 
Precision Memory (LED) 
Load Single Precision Floating Point Register from Double 
Precision Register (LEDR) 

Assembler Notation 

LED 
LED 
LEDR 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

Opcode 

84 
84 
A4 

Format 

RX1,RX2 
RX3 
RR 

Double precision floating point data from the second operand 
location is R*-rounded to single precision accuracy, and placed 
in the single precision floating point register specified by Rl. 

Condition Code: 

---------------
c I v I G I L I I I 

=-============'== 
0 0 0 0 Floating point result is zero 
0 0 0 1 Floating point result is less than zero 
0 0 1 0 Floating point result is greater than 

zero 
0 1 0 0 Exponent underflow 
0 1 0 1 Exponent overflow, result is less than 

zero 
0 1 1 0 Exponent overflow, result is greater than 

-·-------------- zero 

Programming Notes: 

Rl and R2 must specify even-numbered registers. 

Rounding of the result can cause exponent 
case, the register specified by Rl is 
arithmetic fault interrupt is taken. 

overflow. 
unchanged, 

In this 
and the 

Normalization of the result can produce exponent underflow. If 
enabled by PSW bit 19, the arithmetic fault interrupt is taken, 
and the register specified by Rl remains unchanged. If bit 19 of 
the current ·PSW is zero, zeros replace the contents of the 
register specified by Rl. 

In the RX formats, the second operand must be located on a 
fullword boundary .. 

6-56 50-022 ROO 



6.5.32 Load Double Precision Floating Point Register from Single 
(LOE, LDER) 

Load Double Precision Floating Point Register from Single 
Precision Memory (LOE) 
Load Double Precision Floating Point Register from Single 
Precision Register (LDER) 

Assembler Notation 

I.OE 
LOE 
IDER 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

Opcode 

87 
87 
A7 

RX1,RX2 
RX3 
RR 

Single precision floating point data from the second operand 
location is converted to double precision data by appending 
trailing zeros. The result replaces the contents of the double 
precision floating point register specified by Rl. 

Condition Code: 

I c I V I G I L I 
!-=============-== 
I o I o I o I o 

0 0 0 l 
0 0 l 0 

0 l 0 0 

Progranuning Notes: 

Double precision result is zero 
Double precision result is less than zero 
Double precision result is greater than 
zero 
Exponent underflow 

The registers specified by Rl and R2 must be even-numbered 
registers. 

Normalization of the result can produce exponent underflow. If 
enabled by PSW bit 19, the arithmetic fault interrupt is taken, 
and the register specified by Rl remains unchanged. If bit 19 of 
the current PSW is zero, no arithmetic fault occurs. Zeros 
replace the contents of the register specified by Rl. 

In the RX formats, the second operand must be located on a 
fullword boundary. 

50-022 ROO 6-57 



6.5.33 Store Double Precision Floating Point Register in Single 
Precision Memory (STDE) 

Assembl~ Notation 

STDE ·Rl,D2(X2) 
STDE Rl,A2(FX2,SX2) 

Operation: 

Opcode 

82 
82 

RX1,RX2 
RX3 

Data from the double precision floating point register specified 
by Rl is R*-rounded to single precision accuracy and stored in 
the fullword second operand location. 

Condition Code: 

Unchanged 

Programming Notes: 

The register specified by Rl must be an even-numbered register. 

Normalization of the rounded result can produce exponent 
underflow. In this case, zero, X'OOOO 0000', replaces the 
contents of the second operand location. 

Rounding of the result can cause exponent overflow. In this 
case, the contents of the second operand location remain 
unchanged, and the arithmetic fault interrupt is taken. 

The second operand must be located on a fullword boundary. 

6-58 50-022 ROO 



7.1 INTRODUCTION 

CHAPTER 7 
STRING OPERATIONS 

String operations deal 
consecutive bytes in 
boundaries. Information 
packed decimal data or 
unpacked decimal data. 

with operands that are strings of 
memory beginning and ending on byte 
contained in such a string can represent 
ASCII character information including 

7.2 DECIMAL DATA FORMAT DEFINITIONS 

Decimal operands can be in either packed or unpacked (zoned) 
format. The decimal operands are considered as right-aligned 
integers. The address of a decimal operand specifies the address 
of the left-most or most significant byte of the operand. 

7.2.1 Packed Decimal 

A number represented in packed decimal format is a fixed point, 
signed integer and consists of from 1 to 16 consecutive bytes 
(see Figure 7-1). Each byte is divided into two digit fields; 
thus each byte, except for the right-most in the string, contains 
two decimal digits represented in binary code. The only values 
allowed in a decimal digit field are 0 through 9. The right-most 
byte in the string contains the least significant decimal digit 
and the sign digit. 

611 

BYTE 1 BYTE 2 BYTE 3 I I BYTE14 BYTE15 BYTE16 

___ o_, __ 1 __ 0_2~ ___ 0_3 __ 1 __ 0_4___..__o_s __ ~l--0_6 __ 1 ....... : l...._0_2_1_.. __ 0_2s___. __ 0_2_9--. __ 03_0___. __ 0_3_1 _____ s __ _ 

D1, D2, D3, .... D30• D31 =DECIMAL DIGITS 
S =SIGN DIGIT 

Figure 7-1 Packed Decimal Format 

50-022 ROO 7-1 



There are two standard values for the sign S: hexadecimal C for 
plus and hexadecimal D for minus. However, the hexadecimal 
values 3, A, E and F are also recognized for plus, and 
hexadecimal B is recognized for minus. Other values, 0 through 
2 and 4 through 9, are illegal in the S position. 

A packed decimal number contains an odd number of decimal digits. 
The most significant digit (zero or nonzero) of the number is in 
bit positions 0 through 3 of the left-most byte. The least 
significant digit occupies bit positions 0 through 3 of the 
right-most byte of the string, inunediately preceding the sign 
digit, s. Any unused digit at the beginning of the string is 
filled with a leading zero. 

7.2.2 Unpacked (Zoned) Decimal 

A number represented in unpacked decimal format is a fixed point 
signed integer, and consists of from 1 to 31 consecutive bytes 
(see Figure 7-2). Each byte, with the exception of the 
right-most byte, is assumed to contain the 7-bit ASCII equivalent 
of a decimal digit. Thus, the top four bits in each byte contain 
zone information and the bottom four bits contain the binary 
equivalent for a decimal digit from 0 through 9. 

When the processor generates an unpacked decimal byte string, the 
zone digit is always 3. However, any zone value is accepted in 
an unpacked decimal operand, since the zone has no effect on the 
operation of the instructions and is not examined. In the 
right-most byte of the string, S is the sign digit. Acceptable 
values for the sign digit are the same as those defined for 
packed decimal data. 

612 

BYTE 1 BYTE 2 BYTE 3 BYTE 29 I BYTE 30 BYTE 31 I 
lzoNE 
I 

I ZONE I D2 
I I 

I ZONE I DJ 
II 

I I 
I ZONE I D29 I ZONE I l DJo s D31 
I I 

ZONE 

D1 I 02, DJ, ... , D30, D31 
s 

JI I I 

ZONE DIGIT 
DECIMAL DIGITS 
SIGN DIGIT 

Figure 7-2 Unpacked Decimal Format 

I 

The most significant digit of an unpacked decimal number occupies 
the left-most byte of the string. The least significant digit 
occupies the right-most byte of the string. 

7-2 50-022 ROO 



7.3 DECIMAL AND ALPHANUMERIC STRING INSTRUCTION FORMATS 

The two binary/decimal conversion instructions use the standard 
RX format. The remaining string operations use the RXRX format. 

In the instruction descriptions, the RXRX format is diagrammed as 
follows: 

OP { Rl } {D2(X2) } {R2 } {D2(X2) } 
=Ll , A2(FX2,SX2) , =L2 , A2(FX2,SX2) 

where any field can have either one of the options shown in the 
braces. Rl/=Ll refers to the first operand length and R2/=L2 
refers to the second operand length. Length of operand strings 
is always expressed as a number of bytes. These can vary from 0 
to 15 for immediate length formats, and from 0 to maximum memory 
for register length. See Section 1.8.10 for further details of 
the RXRX instruction format. 

7.4 STRING INSTRUCTIONS 

The string instructions are interruptible and use the scratchpad 
registers. If an interrupt occurs during the execution of a 
string instruction, bit 14 (IIP) is set by the processor in the 
old program status word (PSW) to indicate that the scratchpad 
registers contain information pertinent to the interrupted 
instruction. See Section 10.3.4 for further information. 

The instructions described in this section are: 

LPB 

STBP 

MVTU 

MOVE 
MOVEP 

CPAN 
CPANP 

PMV 

PMVA 

UMV 

UMVA 

50-022 ROO 

Load Packed Decimal String as Binary (convert 
from decimal to binary) 

Store Binary as Packed Decimal String (convert 
from binary to decimal) 

Move Translated Until 

Move and Pad 
Move and Pad with Default Pad 

Compare Alphanumeric 
Compare Alphanumeric with Default Pad 

Pack and Move (convert unpacked decimal string 
to packed decimal string) 
Pack and Move Absolute (force positive result) 

Unpack and Move (convert packed decimal string 
to unpacked decimal string) 
Unpack and Move Absolute (force positive 
result) 

7-3 



7.4.1 Load Packed Decimal String as Binary (LPB) 

Assembler Notatjon 

LPB Rl,D2(X2) 
LPB Rl,A2(FX2,SX2) 

Operation: 

Opcode 

6F 
6F 

Format 

RX1,RX2 
RX3 

The second operand address points to the left-most byte of a 
packed decimal string of length 16 bytes (31 packed decimal 
digits plus sign). Digits of the operand are checked for 
validity as the operand is converted to a 64-bit, two's 
complement binary number. The result replaces the contents of 
the even/odd general register pair specified by Rl and Rl+l. 

Condition Code: 

c I V I G I L 
=================== 

0 
0 
0 
0 

0 
0 
0 
1 

0 
0 
1 
0 

Programming Notes: 

0 
1 
0 
0 

Result is zero 
Result is less than zero 
Result is greater than zero 
Overflow 

This instruction is interruptible. 

Rl must specify an even-numbered register, or unpredictable 
results will occur. 

If an illegal decimal digit or sign digit is detected during 
conversion, the registers specified by Rl and Rl+l remain 
unchanged, and a data format fault interrupt is taken. 

The largest positive number that can be processed without 
overflow is 9,223,372,036,854,775,807. 

7-4 50-022 ROO 



7.4.2 Store Binary As Packed Decimal String (STBP) 

Assembl..er. Notation 

STBP Rl,D2(X2) 
STBP Rl,A2(FX2,SX2) 

Operation: 

Opcode 

6E 
6E 

F.ormat 

RX1,RX2 
RX3 

The contents of the even/odd general register pair specified by 
Rl and Rl+l are converted and stored in memory as a packed 
decimal string of length 16 bytes (31 packed decimal digits plus 
sign). The left-most byte is stored at the address specified by 
the second operand. 

Condition Code: 

I c I V I G I L I 
1===============1 
I O I o I o I O I 
I O I O I O I l I 
: o i o I l I o i 

Programming Notes: 

Result is zero 
Result is less than zero 
Result is greater than zero 

This instruction is interruptible. 

Rl must specify an even-numbered register, or unpredictable 
results will occur. 

50-022 ROO 7-5 



7.4.3 Move Translated Until (MVTU) 

Assembler Notation 

{ Rl} jD2(X2) } { R2} {D2(X2) } 
MVTU =Ll ,lA2(FX2,SX2) , =L2 , A2(FX2,SX2) 

Operation: 

Op­
.c.od£ 

SC 

Function 
Co.d.a Format 

00 RXRX 

General register 0 contains the escape character whose occurrence 
causes the instruction to terminate. General register 2 contains 
the address of a translation table. This translation table is a 
simple list of 256 single byte entries, not to be confused with 
the table used by the Translate instruction. The first operand 
string begins at the address specified by the first operand 
address. The length of this string is equal to either the 
contents of the register specified by Rl or the value of Ll. The 
second operand string begins at the address specified by the 
second operand address. The length of this string is equal to 
either the contents of the register specified by R2 or the value 
of L2. 

Successive bytes from the second operand string are moved to the 
first operand string, as follows: 

1. A byte is fetched from the second operand string (this is the 
argument byte). The contents of general register 2 are 
tested. If general register 2 contains zero, no translation 
occurs. If general register 2 does not contain zero, it 
contains the address of a translation table of maximum size 
256 bytes. In this case, the argument byte fetched from the 
second operand string is used as an index into the 
translation table, and the byte at the resulting address is 
fetched and used as the argument byte. 

2. The argument byte is compared w1tn tne escape character 
contained in bits 24:31 of general register 0. If the bytes 
are the same, the C flag is set in the condition code, and 
the instruction terminates. Otherwise, the argument byte is 
stored in the first operand string, and the next successive 
byte is processed. This operation is repeated until either 
the escape character is encountered, the first operand string 
has been filled, or the second operand string has been 
exhausted. 

3. When the instruction terminates, the address of the next byte 
to be moved from the second operand string is returned in 
general register 1. 

7-6 50-022 ROO 



Condition Code: 

I c I v I G I L 
=============== 

0 
0 

l 

0 
l 

0 

0 
0 

0 

Programming Notes: 

0 
0 

0 

Escape string moved 
First operand filled before entire string 
moved 
Escape character encountered 

This instruction is interruptible. 

The contents of general register 1 can change during instruction 
execution, but are not valid until instruction termination. 

Bytes are moved from the second operand string to the first 
operand string in a left-to-right sequence. If the strings 
overlap such that the source is to the left of the destination, 
unpredictable results occur. 

50-022 ROO 7-7 



7.4.4 Move (MOVE, MOVEP) 

Move and Pad (MOVE) 
Move and Pad with Default Pad (MOVEP) 

Op- Function 
Assembler Notation ..c.c.d.e ..c.c.d.e Format 

{ Rl} jD2 (X2) } { R2} {D2 (X2) } BC 
=Ll ,lA2(FX2,SX2) , =L2, A2(FX2,SX2) 

01 RXRX MOVE 

MOVEP ' Rlt {D2 (X2) } { R2} {D2 (X2) } BC 
'=Llf, A2(FX2,SX2) , =L2 , A2(FX2,SX2) 

01 RXRX 

Operation: 

The first operand string begins at the address specified by the 
first operand address and has a length equal either to the 
contents of the register specified by Rl or to the value of Ll. 
The second operand string begins at the address specified by the 
second operand address and has a length equal either to the 
contents of the register specified by R2 or to the value of L2. 

Successive bytes from the second operand string are moved to the 
first operand string. If the second operand string is exhausted 
before the first operand string is filled, the remaining bytes in 
the first operand string are filled using the pad character. If 
MOVE is specified, the pad character is contained in bits 24:31 
of general register 0. If MOVEP is specified, the remainder of 
the first operand is filled with ASCII space characters (X'20'). 
If the first operand string is filled before the second operand 
string is exhausted, overflow results, and the operation is 
terminated. 

When the instruction terminates, the address of the next byte to 
be moved from the second operand string is returned in general 
register l. 

Condition Code: 

7- 8 

I c I V I G I L I 
l===============l 
I O I O I O I O I 
I O I 1 l o I o I 

Entire string moved 
First operand filled before entire string 
moved 

50-022 ROO 



Programming Notes: 

These instructions are interruptible. 

The contents of general register l can change during instruction 
execution, but are not valid until instruction termination. 

If MOVEP is specified, the contents of general register 0 are 
ignored. 

Bytes are moved from the second operand string to the first 
operand string in a left to right sequence. If the strings 
overlap such that the source is to the left of the destination, 
unpredictable results occur. 

50-022 ROO 7-9 



7.4.5 Compare (CPAN, CPANP) 

Compare Alphanumeric (CPAN) 
Compare Alphanumeric with Default Pad (CPANP) 

Op- Function 
Assembler Notation .c.ad.e ..co.dil Format 

CPAN 
{ Rl} { D2 (X2) } { R2} {D2 (X2) } BC 
=Ll , A2(FX2,SX2) , =L2 , A2(FX2,SX2) 

02 RXRX 

CPANP I Rl} { D2 (X2) ) { R2) { D2 (X2) ) BC 
)=Ll , A2(FX2,SX2)f, =L2f ,)A2(FX2,SX2)/ 

02 RXRX 

Operation: 

The first operand string begins at the address specified by the 
first operand address and has a length equal either to the 
contents of the register specified by Rl or to the value of Ll. 
The second operand string begins at the address specified by the 
second operand address and has a length equal either to the 
contents of the register specified by R2 or to the value of L2. 

The two strings are compared a byte at a time until the first 
unequal byte pair is found, or until the length of both strings 
is exhausted. 

If the strings are of unequal length, the shorter string is 
logically extended to the length of the longer string. If CPAN 
is specified, this is done by using the pad character contained 
in bits 24:31 of general register 0. If CPANP is specified, the 
ASCII space character (X'20') is used as the default pad 
character. 

Upon termination, general register 1 is set equal to one less 
than the number of second operand bytes in memory that 
successfully matched corresponding bytes in the first operand 
string. This count (or offset) includes pad characters if the 
second operand string was longer than the first. 

For example, a first operand string of three bytes in length 
contains the characters ABC. A second operand string of six 
bytes in length contains the characters ABCDDD. 

A CPANP instruction returns a condition code of 0001 (first 
operand string less than second operand string) and general 
register 1 is set equal to 2. The first nonmatching character 
was the character 'D' in the second operand string. Given the 
same operand strings, a CPAN instruction with general register O 
set equal ·to a pad character of 'D' returns a condition code of 
0000 (strings are equal including pad characters), and general 
register 1 is set equal to 5. 

7-10 50-022 ROO 



Condition Code: 

I c I V I G I L I 

l===============I 
I O I o I 0 I O I 

I o I o I l I O I 

I l I O I O I l I 

Programming Notes: 

Strings are equal 
First operand string greater than second 
First operand string less than second 

If CPANP is specified, the contents of general register 0 are 
ignored. If CPAN is specified, bits 0:23 of general register 0 
are ignored. 

These instructions are interruptible. 

50-022 ROO 7-11 



7.4.6 Pack and Move (PMV, PMVA) 

Pack and Move (PMV) 
Pack and Move Absolute (PMVA) 

Assembler Notatjon 
Op­
.cnd.e. 

PMV 
{ Rl} { D2 ( X2) } { L2} { D2 ( X2) } BC 
_=Ll , A2(FX2,SX2) , =L2 , A2(FX2,SX2) 

PMVA j Rl} {D2(X2) } { R2} {D2(X2) l BC 
t=Ll , A2(FX2,SX2) , =L2 , A2(FX2,SX2)f 

Operation: 

Function 
.c.ade 

03 

03 

Format 

RXRX 

RXRX 

The first operand string begins at the address specified by the 
first operand address. The length of this string in bytes is one 
greater than either the contents of the register specified by Rl 
or the value of Ll. The second operand string begins at the 
address specified by the second operand address. The length of 
this string in bytes is one greater than either the contents of 
the register specified by R2 or the value of L2. 

The second operand string consists of unpacked decimal data 
digits with a sign digit. Data in this string is packed and 
replaces the first operand string. Leading zeros are supplied as 
required to fill the higher order positions of the first operand 
string. The sign of the first operand string is forced to a 
standard value (C or D)~ 

Condition Code: 

CIVIGIL 
=-=============-= 

0 
0 
0 
0 
l 

0 
x 
x 
1 
x 

0 
0 
l 
l 
x 

Programming Notes: 

0 
l 
l 
l 
x 

Result is zero 
Result is less than zero 
Result is greater than zero 
Overflow 
Invalid digit in second operand string 

PMVA causes the sign digit of the first operand string to be 
forced positive. 

7-12 50-022 ROO 



Overflow occurs if the length of the first operand string is not 
sufficient to contain the packed representation of the second 
operand string. The V flag is set in the condition code, and the 
specified number of digits in the first operand string receive 
packed data from the second operand string. Higher order digits 
of packed data are lost in this case. 

Leading zero digits do not cause overflow. They are truncated if 
necessary. 

These instructions are interruptible instructions. 

Since packing is done conceptually from right to left with any 
overlapping allowed, the instruction PMV can be used to check the 
validity of decimal data. 

If the destination string is to the left of the source string 
such that the signed byte of the destination string is taken as 
data from the source string, the sign digit is found to be an 
illegal data digit, and the C flag is set at completion of the 
instruction. 

50-022 ROO 7-13 



7*4=7 Unpack and Move (UMV, UMVA) 

Unpack and Move (UMV) 
Unpack and Move Absolute (UMVA) 

Op- Function 
Assembler Notation ..c..ad.a Co.de. Format 

UMV 
{ Rl} {D2(X2) } { R2} {D2(X2) } 8C 

=Ll , A2(FX2,SX2) , =L2 , A2(FX2,SX2) 
04 RXRX 

UMVA 
{ Rl} {D2 (X2) } { R2} {D2 (X2) } 8C 

=Ll , A2(FX2,SX2) , =L2 , A2(FX2,SX2) 
24 RXRX 

Operation: 

The first operand string begins at the address specified by the 
first operand address. The length of this string in bytes is one 
greater than either the contents of the register specified by Rl 
or the value of Ll. The second operand string begins at the 
address specified by the second operand address. The length of 
this string in bytes is one greater than either the contents of 
the register specified by R2 or the value of L2. 

The second operand string consists of packed decimal data digits 
with a sign digit. Data in this string is unpacked and replaces 
the first operand string. Leading zeros are supplied as required 
to fill the higher order positions of the first operand string. 
The sign of the first operand string is forced to a standard 
value (C or D). 

Condition Code: 

C I V I G I L 
====='='====='==== 

0 
0 
0 
0 
1 

0 
x 
x 
l 
x 

0 
0 
1 
x 
x 

Programming Notes: 

0 
1 
0 
x 
x 

Result is zero 
Result is zero 
Result is greater than zero 
Overflow 
Invalid digit in second operand string 

UMVA causes the sign digit of the first operand string to be 
forced positive. 

7-14 50-022 ROO 



Overflow occurs if the length of the first operand string is not 
sufficient to contain the unpacked representation of the second 
operand string. The V flag is set in the condition code, and the 
specified number of digits in the first operand string receive 
unpacked data from the second operand string. Higher order 
digits of unpacked data are lost in this case. 

Leading zero digits do not cause overflow. They are truncated if 
necessary. 

These instructions are interruptible instructions. 

Since unpacking is done conceptually from right to left with any 
overlapping allowed, the instruction UMV can be used to check the 
validity of decimal data. 

If the destination string is to the left of the source string 
such that the signed byte of the destination string is taken as 
data from the source string, the sign digit is found to be an 
illegal data digit, and the ~ flag is set at the completion of 
the instruction. 

50-022 ROO 7-15 



CHAPTER 8 
HIGH-SPEED DATA HANDLING INSTRUCTIONS 

8.1 INTRODUCTION 

The data handling instructions are used to compute 
error check redundancy characters, as used by 
conununications protocols. Conununications protocols 
include, but are not limited to, the following: 

polynomial 
most data 

supported 

• Binary Synchronous Communications (BISYNC 
widely accepted half-duplex protocol 
redundancy check (CRC) BISYNC error check 
x1s + x2 + 1) . 

or BSC) 
uses the 

polynomial 

IBM's* 
cyclic 

( x1s + 

• Synchrooous Data Link Control (SDLC) IBM's full-duplex 
protocol uses the CRC SDLC error check polynomial ( x16 + x12 

X 5 + 1). 

e Advanced Data Conununications Control Procedure (ADCCP) 
ANSI's proposed National Standard full-duplex protocol uses 
CRC SDLC. 

• High Level Data Link Control (HDLC) 
Standard Organization's (ISO) full-duplex 
SDLC. 

8.2 DATA HANDLING INSTRUCTION FORMATS 

The International 
protocol uses CRC 

The data handling instructions use the Register-to-Register (RR) 
and Register and Indexed Storage (RX) formats. 

8.3 DATA HANDLING INSTRUCTIONS 

The instructions described in this section are: 

PB Process Byte 

PBR Process Byte Register 

* IBM is a registered trademark of International Business Machines 
Co~poration 

50-022 ROO 8-1 



8.3.1 Process Byte (PB) 

Assembler Notation 

PB 
PB 

Rl,D2(X2) 
·Rl,A2(FX2,SX2) 

Set Up: 

0 7 8 

Opcode 

62 
62 

15 16 

Format 

RXl, RX2 
RX3 

23 24 31 

Rl x I Check code I x Data byte 

Bits 24:31 of the register specified by Rl contain the data byte 
to be processed. Bits 8:15 of the register specified by Rl 
contain a check code to indicate the type of processing. This 
byte is interpreted as follows: 

x•oo• 
x' 01' 
X'02' 

Cumulative check zero (CRC BISYNC) 
Cumulative check one (CRC SDLC) 
Cumulative check two longitudinal redundancy 
check (LRC) 

The second operand address points to a halfword residual checksum 
to be included in the cumulative check. 

Operation: 

If CRC BISYNC is specified, the data byte and the old residual 
checksum participate in the generation of a new residual checksum 
based on the evaluation of the polynomial (X 16 + x 15 + x2 + 1). 

If CRC SDLC is specified, a similar operation is performed, using 
the polynomial ( x 16 + x 12 + x 5 + 1). 

In both of these cases, the new residual checksum replaces the 
old residual checksum at the second operand location. 

If LRC is specified, the Exclusive-OR of the data byte with the 
old residual checksum replaces the old residual checksum at the 
second operand location. 

Condition Code: 

Unchanged 

8-2 50-022 ROO 



Programming Notes: 

Bits 0:7 and 16:23 of the register specified by Rl are ignored. 

The register specified by Rl remains unchanged. 

The second operand must be located on a halfword boundary. 

Undefined check codes should not be used. 
results are undefined. 

If they are used, the 

Example: 

This example performs a process byte instruction and stores the 
residue in RESIDUE. 

Assembler Notation Comment a 

PB Rl,RESIDUE RESIDUE on halfword boundary 

Where: 

Register 1 contains X'0001007A' where 01 
and 7A = DATA BYTE 

Residue contains X'D053' = old residue 

Result of PB Instruction: 

(Rl) unchanged by this instruction 
(RESIDUE) = X'BC13' = new residue 
Condition code unchanged by this instruction 

50-022 ROO 

CRC SDLC, 

8-3 



8.3.2 Process Byte Register (PBR) 

Assembler Notatjon Opcode Format 

PBR Rl,R2 32 RR 

Set Up: 

0 7 8 15 16 23 24 31 

Rl X I Check code I X I Data byte 
:------------------------------------------------------: 

R2 0 Residual checksum 

Bits 24:31 of the register specified by Rl contain the data byte 
to be processed. Bits 8:15 of the register specified by Rl 
contain a check code indicating the type of processing. This 
byte is interpreted as follows: 

X'OO' 
X' 01' 
X'02' 

Cumulative check zero (CRC BISYNC) 
Cumulative check one (CRC SDLC) 
Cumulative check two (LRC) 

and is a fullword contained in the register specified by R2. 
Bits 16:31 of the second operand contain the residual checksum to 
be included in the processing. 

Operation: 

If CRC BISYNC is specified, the data byte and the 
checksum participate in the generation of a 
checksum, based on the evaluation 
polynomial (X16 + X15 + X2 + 1). 

old residual 
new residual 

of the 

If CRC SDLC is specified, a similar operation is performed, using 
the polynomial (X16 + X12 + xs + 1). 

In both of these cases, the new residual checksum replaces the 
contents of bits 16:31 of the register specified by R2. 

If LRC is specified, the Exclusive-OR of the data byte with the 
old residual checksum replaces the old residual checksum in the 
second operand. 

Condition Code: 

Unchanged 

8-4 50-022 ROO 



Progranuning Notes: 

Bits 0:7 and 16:23 of the register specified by Rl are ignored. 
The register specified by Rl remains unchanged. Bits 0:15 of the 
register specified by R2 are not used and must be zero. 

Undefined check codes should not be used. 
results are undefined. 

50-022 ROO 

If they are used, the 

8-5 



CHAPTER 9 
INPUT/OUTPUT (I/O) OPERATIONS 

9.1 INTRODUCTION AND CONFIGURATION OF INPUT/OUTPUT (I/O) SYSTEM 

I/O operations, as defined for the processor, provide a versatile 
means for the exchange of information between the processor, 
memory and external devices. Communication between the processor 
and external devices is accomplished over the I/O bus. Data 
transfers over the I/O bus require processor intervention, either 
programmed or automatic, for each item transferred. 

The Model 3205 processor board includes one selector channel 
(SELCH). There is no provision for additional SELCHs. 

Direct data transfers between external 
accomplished over the private I/O 
processing can proceed concurrently. 

devices and memory are 
bus, and other program 

9.2 DEVICE CONTROLLERS 

The basic functions of a device controller are to: 

• Provide synchronization with the processor. 

• Provide device address recognition. 

• Transmit operational commands from processor to device. 

• Translate device status into meaningful information for the 
processor. 

• Request processor attention when required. 

In addition, a controller can generate parity, convert serial 
data to parallel, buffer incoming or outgoing data, or perform 
other device-dependent functions. 

9.2.1 Device Addressing 

The system design allows as many as 1,022 external devices. Each 
device must have its own address or device number, ranging from 
X'OOl' to X'3FF' but not including X'OFO' (reserved for SELCH) 
(device number X'OOO' is not assigned). The minimum system 
provides for 255 device numbers. Larger systems can have either 
511 or 1,022. 

50-022 ROO 9-1 



9.2.2 Processor/Controller Communication 

Device controllers can communicate with the processor either 
directly, using the I/O bus, or indirectly through the SELCH. 
Communication between the processor and controller is a 
bidirectional, request/response operation. 

The processor can initiate communication by sending the device 
address out onto the I/O bus. When a controller recognizes its 
address, it returns a synchronization signal to the processor and 
remains ready to accept commands from the processor. (All other 
devices become deselected.) The processor waits up to 50ms for 
the synchronization signal. If no signal is received within this 
period, the processor aborts the operation and notifies the 
controlling program. In this case, the status returned is X'04', 
known as False Sync. The condition code in the program status 
word (PSW) is also set to X'4' (V flag-1). Controller 
malfunction and software failure (incorrect device address) are 
the most common causes of this type of time-out. 

A controller can initiate communication with the processor by 
generating an attention signal. If the processor is in an 
interruptible state as defined by PSW bit 17, this signal causes 
the processor to temporarily suspend the normal "fetch 
instruction/execute/fetch next instruction" operation at the end 
of the execute phase, and to transmit an acknowledge signal over 
the I/O bus. The controller requesting attention responds with 
a synchronization signal and transmits its device number to the 
processor. 

9.2.3 Interrupt Queuing 

Any device controller attempting to interrupt the processor 
activates the attention line and holds that line active until the 
processor acknowledges the interrupt. Requests for attention are 
asynchronous, and more than one request may be pending at any 
time. The system resolves these conflicts according to device 
priority, which is determined by the physical placement of the 
device controller on the I/O bus. When two or more device 
controllers request attention at the same time, the controller 
nearest to the processor in the RACKO/TACKO priority wiring 
pattern captures the acknowledge signal from the processor and is 
serviced first. All other interrupting controllers of lower 
priority must wait for the next acknowledge signal from the 
processor. 

9.3 INTERRUPT SERVICE POINTER TABLE (ISPT) 

Device requests for service can result in either an immediate 
interrupt or an auto driver channel operation. The processor 
chooses one of these options according to information contained 
in the ISPT. 

9-2 50-022 ROO 



The ISPT is an ordered list containing one entry for each 
possible device number in the system. The table starts at memory 
location X'OOOODO' and contains a halfword entry for each device 
number in the system. For a minimum system (255 device numbers), 
the table extends through memory location X'0002CF'; for a 
maximum system (1,022 device numbers), the table extends through 
memory location X'0008CF' The software controlling I/O 
operations must set up the table. 

When the processor receives the device address after 
acknowledging a request for service, it adds twice the device 
address to X'OOOODO'. The result is the address, within the 
table, of the entry reserved for the device requesting attention. 

If the entry in the table is even (bit 15 equals 0), the 
processor takes an inunediate interrupt and transfers control to 
the software interrupt service routine (ISR) at the address 
contained in the table. If the entry in the table is odd (bit 15 
equals 1), the processor transfers control to the auto driver 
channel, without interrupting the currently running program. 

At the time the processor transfers control to the software ISR, 
the old PSW (current at the time of the device request) is saved 
in registers 0 and 1 of the new register set. The device number 
is saved in register 2 and the status in register 3. The status 
portion of the current PSW is replaced by the value X'0000280X', 
where X is the least significant four bits of the device status. 
Machine malfunction interrupts are enabled and all other 
interrupts are disabled. The entry in the ISPT is now the new 
location counter (LOC). 

9.4 CONTROL OF INPUT/OUTPUT (I/Oj OPERATIONS 

The I/O structure allows several data transfers depending on the 
particular application and on the characteristics of the external 
devices. Primary methods of data transfer between the processor 
and external devices are listed below. 

• One byte or one halfword to or from any of the general 
registers 

• One byte or one halfword to or from memory 

• A block of data to or from memory under control of the 
integrated SELCH 

• Multiplexed blocks of data to or from memory under control of 
the auto driver channel 

50-022 ROO 9-3 



Standard device controllers require a predetermined sequence of 
commands to effect data transfers. These commands address the 
device, put it in the correct mode, and cause data to be 
transferred. Because all I/O instructions are privileged 
operations, I/O control programs must run in the supervisor mode, 
i.e., with PSW bit 23 of the current PSW zero. I/O control 
programs should disable immediate interrupts or enable only 
higher level interrupts, as controlled by PSW bits 17 and 20. 

9.5 STATUS MONITORING INPUT/OUTPUT (I/O) 

The simplest form of I/O programming is status monitoring I/O. 
In this mode of operation, only one device is handled at a time, 
and the processor cannot overlap other operations with the data 
transfer. The sequence of operations in this type of programming 
is shown below. 

1. Address the device and set the proper mode (output command 
instruction). 

2. Test the device status (sense status instruction). 

3. Loop back to the sense status instruction until the status 
byte indicates that the device is ready (conditional branch 
instruct ion) . 

4. When the device is ready, transfer the data (read or write 
instruction). 

5. If the transfer is not complete, branch back to the sense 
status instruction. If it is complete, terminate. 

9.6 INTERRUPT DRIVEN INPUT/OUTPUT (1/0) 

Interrupt driven I/O allows the processor to cope with the 
disparity in speed between itself and the external devices being 
controlled. With status monitoring, the processor spends time 
waiting for the device. With interrupt driven programming, the 
processor can use this time performing other functions. This 
kind of programming establishes at least two levels of operation. 
On one level are the interrupt service programs. On the other 
level are interruptible programs that run with the immediate 
interrupt enabled. 

Before starting interrupt driven operations, the ISPT must be set 
up. This table starts at memory location X'OOOODO' and must 
contain a halfword address entry for every possible device. The 
table is ordered according to device addresses so that X'OOOODO' 
plus two times the device address equals the memory address of 
the table entry reserved for that device. The value placed in 
the location reserved for a device is the addreds of the ISR for 
the device. 

9-4 50-022 ROO 



For example, if a terminal is connected at an address of X'lO' 
and the interrupt routine resides in memory at address X'3000', 
the setup involves writing X'3000' at memory location X'FO'. 
Note that X'FO' = X'DO' + 2 times the terminal -address. 

Although there may be gaps in device address assignments, the 
ISPT should be completely filled= Entries for nonexistent 
devices should point to an error recovery routine. This 
precaution prevents system failure in the event of spurious 
interrupts caused by hardware malfunction or by improper use of 
the simulate interrupt instruction. 

The next step is to prepare the device for the transfer, 
preferably with the inunediate interrupts disabled. Once the 
table pointer has been set up and the device prepared, the 
processor can move on to an interruptible program. 

The sequence of operations in this type of program is listed 
below. 

1. Set up the ISPT to vector to error addresses for undefined 
devices. 

2. Store the address of the software ISR at two times the device 
number plus X'DO' (X'DO' is starting address of service 
pointer table). 

3. Set up the software ISR. 

4. Set up the device and enable device interrupts. 

5. Enable I/O interrupts in the PSW. 

When the device signals a need for service, the processor saves 
its current state and transfers control to the ISR at the 
location specified in the ISPT. At this time, the current PSW 
has a status that indicates running state, machine malfunction 
interrupt enabled, higher level I/O interrupts enabled and all 
other interrupts disabled. The condition code contains bits 4:7 

'of the device status. Registers 0 and 1 of the new set contain"' 
the old PSW, indicating the status and IOC::ation· of the 

.L. interrupted program. Register 2 of that set contains the device 
address. Register 3 contains the device status. 

\.. 

The ISR should: 

• check the device status in register 3, and if satisfactory, 

• make the transfer, and 

• return to the interrupted program by reloading the old PSW 
from registers 0 and 1 (LPSWR RO). 

50-022 ROO 9-5 



The ISR should not enable I/O interrupts. This would allow other 
interrupt requests to be acknowledged, and the contents of 
registers 0:4 could be lost. If it is necessary to enable 
immediate interrupts, the routine should save the register set, 
switch to a different register set, save it if necessary, and 
then enable immediate interrupts. 

9.7 SELECTOR CHANNEL (SELCH) INPUT/OUTPUT 

The integrated SELCH controls the transfer of data directly 
between high-speed devices and memory. As many as 16 devices can 
be attached to the SELCH, only one of which can be operating at 
any one time. The advantage in using the SELCH is that other 
program processing can proceed simultaneously with the transfer 
of data between the external device and memory. This is possible 
because the SELCH accesses memory through the processor, 
permitting the processor and the channel to share memory. 
Execution time of the program in progress may be affected, 
depending on the rate at which the SELCH and processor compete 
for memory cycles. 

In the Model 3205 System, a single SELCH is integrated on the 
processor board. It has a simulated I/O bus device number X'FO', 
which the processor recognizes. Like I/O device controllers, it 
can request processor attention through the immediate interrupt. 

9.7.1 Selector Channel (SELCH) Devices 

The SELCH has a private bus similar to the processor's 1/0 bus. 
Controllers for the devices associated with the SELCH are 
attached to this bus. When the SELCH is idle, its private bus is 
connected directly to the I/O bus. If this condition exists, the 
processor can address, command and accept interrupt requests from 
the devices attached to the SELCH. When the SELCH is busy, this 
connection is broken. All communication between the processor 
and devices on the SELCH is cut off. Pu1y attempt by the 
processor to address a device on the channel when the channel is 
busy results in instruction time-out. 

9.7.2 Selector Channel (SELCH) Operation 

Two registers in the SELCH hold the current memory address and 
the final memory address. With the use of write instructions, 
the control software places the address of the first byte of the 
data buffer into the current address register and the address of 
the last byte into the final address register. This is done 
before starting a SELCH operation. During the data transfer, the 
channel increments the current address register by two for each 
halfword transferred. When the transfer count indicates the last 
byte has been transferred, the channel terminates. 

9--6 S0-022 ROD 



The SELCH accesses memory a minimum of one halfword at a time. 
The starting address of the data buffer must always be on an even 
byte (halfword) boundary. The starting address must be less than 
the final address. 

Upon termination, the software should issue a STOP command to the 
SELCH, then read back from the SELCH the address contained in the 
current address register. If this address is not equal to the 
final address specified for the transfer, and if ·the buffer 
limits were properly checked before the transfer, this condition 
indicates a device malfunction or an unusual condition within the 
device. For example, crossing a cylinder boundary on a disk can 
result in an abnormal termination. The reason for the 
termination is indicated in the SELCH status or the device 
status. 

9.7.3 Selector Channel (SELCH) Programming 

The usual method of programming with the SELCH uses the immediate 
interrupt. The first step in the operation is to check the 
status of the SELCH. If the SELCH is not busy, the address of 
the termination ISR is placed in the location within the ISPT 
reserved for the SELCH. The program should then proceed as 
follows: 

1. Give the SELCH a command to stop. This command initializes 
the SELCH registers and assures an idle condition with the 
private bus connected to the I/O bus, so that the device can 
be set up for data transfer. 

2. Give the SELCH the starting and final addresses. 

3. Prepare the device for the transfer with the required 
commands and information. 

4. Give the SELCH the command to start. 

With the start command, the SELCH breaks the connection between 
its private bus and the processor's I/O bus and provides a direct 
path between memory and the last device addressed over its bus. 
When the device becomes ready, the channel starts the transfer, 
which proceeds to completion without further progranuned 
intervention on a cycle-steal basis. Once the start command has 
been given, the processor can proceed with the execution of 
concurrent programs. 

Upon termination, the channel signals the processor that it 
requires service. The processor subsequently takes an immediate 
interrupt, transferring control to the SELCH ISR. ~t this time, 
registers 0:3 of the new set are set up as for any other 
lmmediate interrupt. 

50-022 ROO 9-7 



If a power fail/restore sequence occurs while using the SELCH, 
the contents of the SELCH's internal registers are undefined. 

9.8 INPUT/OUTPUT (I/O) INSTRUCTION FORMATS 

I/O instructions use the Register to Register (RR) and the 
Register and Indexed Storage (RX) instruction formats. 

9.9 INPUT/OUTPUT (I/O) INSTRUCTIONS 

Following most I/O instructions, the V flag in the condition code 
indicates instruction time-out. This means that the operation 
was not completed, either because the device did not respond at 
all, or because it responded incorrectly. 

In the sense status (SS) and autoload (AL) instructions, the V 
flag can also mean examine status. To distinguish between these 
two conditions, the program should test bits 0:3 of the device 
status byte. If all of these bits are zero, device time-out has 
occurred. 

The instructions described in this section are: 

oc Output Command 
OCR Output Command Register 

SS Sense Status 
SSR Sense Status Register 

RD Read Data 
RDR Read Data Register 

RH Read Halfword 
RHR Read Halfword Register 

WD Write Data 
WDR Write Data Register 

WH Write Halfword 
WHR Write Halfword Register 

AL Auto load 

SCP Simulate Channel Program 

9-8 50-022 ROO 



9.9.1 Output Command (OC, OCR) 

Output Command (OC) 
Output Command Register (OCR) 

AasAmblAr Nnt::at;nn 

oc 
QC 
OCR 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

.Opcode 

DE 
DE 
9E 

RX1,RX2 
RX3 
RR 

Bits 22:31 of the register specified by Rl contain the 10-bit 
device address. The processor addresses the device and transfers 
an 8-bit command Q}'te from the second operand location to the 
device. Neither operand is changed. 

Condition Code: 

I C I V I G I L I 
!===============: 
i o i o I o I o i 
: o I l : o I o I 

Programming Notes: 

Operation successful 
Instruction time-out (FALSE SYNC) 

In the RR format, bits 24:31 of the register specified by R2 
contain the device command. 

These instructions are privileged operations. 

50-022 ROO 9-9 



9.9.2 Sense Status (SS, SSR) 

Sense Status (SS) 
Sense Status Register (SSR) 

Assembler Notation 

SS 
SS 
SSR 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

Opcode 

DD 
DD 
9D 

Format 

RX1,RX2 
RX3 
RR 

Bits 22:31 of the register specified by Rl contain the 10-bit 
device address. The device is addressed, and the 8-bit device 
status is transferred to the second operand location. The 
condition code is set equal to the least significant four bits of 
the device status byte. The first operand is unchanged. 

Condition Code: 

Bits 4:7 of the device status byte are copied into the condition 
code. See the appropriate device manual for a description of 
this status. 

If the device is not in the system, the condition code is set to 
0100 (false sync). In this case, the status byte returned is 
X'04'. 

Programming Notes: 

In the RR format, the device status byte replaces bits 24:31 of 
the register specified by R2. Bits 0:23 are forced to zero. 

These instructions are privileged operations. 

9-10 50-022 ROO 



9.9.3 Read Data (RD, RDR) 

Read Data (RD) 
Read Data Register (RDR) 

Aasembler Notation 

RD 
RD 
RDR 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

DB 
DB 
9B 

Format 

RX1,RX2 
RX3 
RR 

Bits 22:31 of the register specified by Rl contain the 10-bit 
device address. The processor addresses the device and transfers 
an 8-bit data byte from the device to the second operand 
location. 

Condition Code: 

I c I V I G I L I 
1===============1 
I o I o I O I o I 
I o I 1 I o I o I 

Programming Notes: 

Operation successful 
Instruction time-out (FALSE SYNC) 

In the RR format, the 8-bit data byte replaces bits 24:31 of the 
register specified by R2. Bits 0:23 of the register are forced 
to zero. 

These instructions are privileged operations. 

Instruction time-out does not prevent the second operand location 
from being modified. 

50-022 ROO 9-11 



9.9.4 Read Halfword (RH, RHR) 

Read Halfword (RH) 
Read Halfword Register (RHR) 

Assembler Notation 

RH 
RH 
RHR 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

Opcode 

D9 
D9 
99 

Format 

RX1,RX2 
RX3 
RR 

Bits 22:31 of the register specified by Rl contain the 10-bit 
device address. The processor addresses the device. If the 
device is halfword-oriented, the processor transfers 16 bits of 
data from the device to the second operand location. If the 
device is byte-oriented, the processor transfers two 8-bit bytes 
in successive operations. 

Condition Code: 

I c I V I G I L I 

1===============1 
I O l O I O l O I 
I o I l I o I o I 

Programming Notes: 

Operation successful 
Instruction time-out (FALSE SYNC) 

If the device is byte-oriented, it must be capable of supplying 
both bytas without intervening status checks. This instruction 
does not perform status checking between the two byte transfers. 

In the RR format, the data transferred from a halfword device 
replaces bits 16:31 of the register specified by R2. Bits 0:15 
are forced to zero. The first byte of data from a byte device 
replaces bits 16:23 of the register specified by R2 and the 
second byte replaces bits 24:31. Bits 0:15 of the register 
specified by R2 are forced to zero. 

In the RX format, the second operand must be located on a 
halfword boundary. The first byte of data from a byte device 
replaces bits 0:7 of the halfword operand in memory and the 
second byte replaces bits 8:15. 

These instructions are privileged operations. 

Instruction time-out does not prevent the second operand location 
from being modified. 

9-12 50-022 ROO 



9.9.5 Write Data (WD, WDR) 

Write Data (WD) 
Write D_ata Register (WDR) 

WD 
WD 
WDR 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

.Opcode 

DA 
DA 
9A 

Format 

RX1,RX2 
RX3 
RR 

Bits 22:31 of the register specified by Rl contain the 10-bit 
device address. The processor addresses the device and transfers 
an 8-bit data byte from the second operand location to the 
device. Neither operand is changed. 

Condition Code: 

I c I V I G I L I 
1===============1 
I O I o I O I O I 
I o I 1 I O I O I 

Programming Notes: 

Operation successful 
Instruction time-out (FALSE SYNC) 

In the RR format, the 8-bit data byte is transferred from bits 
24:31 of the register specified by R2. 

These instructions are privileged operations. 

50-022 ROO 9-13 



9.9.6 Write Halfword (WH, WHR) 

Write Halfword (WH) 
Write Halfword Register (WHR) 

Assembler Notatjon 

WH 
WH 
WHR 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 
Rl,R2 

Operation: 

DB 
DB 
9B 

RX1,RX2 
RX3 
RR 

Bits 22:31 of the register specified by Rl contain the 10-bit 
device address. The processor addresses the device. If the 
device is halfword-oriented, the processor transfers 16 bits of 
data from the second operand location to the device. If the 
device is byte-oriented, the processor transfers two B-bit data 
bytes in successive operations. 

Condition Code: 

I c I V I G I L I 
1===============1 
I o I O I O I O I 
I o I 1 I O I O I 

Programming Notes: 

Operation successful 
Instruction time-out (FALSE SYNC) 

If the device is byte-oriented, it must be capable of accepting 
both bytes without intervening status checks. This instruction 
does not perform status checking between the two byte transfers. 

In the RR format, data is transferred to a halfword device from 
bits 16:31 of the register specified by R2. The first byte of 
data is transferred to a byte device from bits 16:23 of the 
register specified by R2; the second byte comes from bits 24:31. 

In the RX format, the second operand must be located on a 
halfword boundary. The first byte of data is transferred to a 
byte device from bits 0:7 of the halfword operand in memory and 
the second byte is transferred from bits B:l5. 

These instructions are privileged operations. 

9-14 50-022 ROO 



9.9.7 Autoload (AL) 

As.sembler Notation 

AL 
AL 
AL 
AL 

D2(X2) 
Rl,D2 (X2) 
A2(FX2;SX2) 
Rl,A2(FX2,SX2) 

Operation: 

DS 
DS 
DS 
DS 

F.ormat 

RX1,RX2 
RX1,RX2 
RX3 
RX3 

The AL instruction loads memory with a block of data from an 
input device. The 8-bit input device address is specified by 
memory location X'000078'. The device command byte is specified 
by memory location X'000079'. 

If the Rl field of this instruction is not specified or contains 
zero, the default value X'000080' is used for the start address 
of the data block in memory and the second operand address is 
used for the end of the data block. If the Rl field of this 
instruction contains a value other than zero, then the contents 
of the general registers specified by Rl and Rl+l are used for 
the start and end of the data block, respectively. I! the start 
address is greater than the end address, the instruction is 
aborted. 

The address of a SELCH is specified by memory location X'00007D'. 
If the byte at this location contains zero, the SELCH is not used 
by this instruction. In this case, data is transferred a byte at 
a time from the input device to successive memory locations, 
beginning with the specified block start address. If any blank 
or zero bytes are input before the first nonzero byte, these 
bytes are considered to be leader and are ignored. All other 
zero bytes are stored as data. When a data byte has been stored 
at the specified block end address, the instruction terminates. 

If the SELCH address specified by memory location X'00007D' is 
X'FO', the SELCH is used to transfer data from the input device 
to successive memory locations, beginning with the specified 
block start address. All data bytes are transferred; no checking 
for leading zero bytes can be made. The instruction terminates 
when data has been stored at the specified block end address. 

Condition Code: 

i C i V i G i L I 
!===============! 

0 : 0 0 0 
x I 1 x x 
x x 1 x 
x x x 1 

50-022 ROO 

Operation successful or aborted 
Examine status or time-out 
End of medium (EOM) 
Device unavailable 

9-15 



Programming Notes: 

This instruction may be used only with devices whose addresses 

are less than or equal to X'FF'. 

This instruction is a privileged operation. 

Bad status termination results if any of the least significant 

three bits of the device status are set. 

If the Rl field of this instruction is used, it must specify the 
even member of an even/odd register pair. 

9-16 50-022 ROO 



9.9.8 Simulate Channel Program (SCP) 

A.s_aembler Notation 

SCP 
SCP 

Rl,D2(X2) 
Rl,A2(FX2,SX2) 

Operation: 

.Qpc.o.de. 

E3 
E3 

F...o:r.ma.t. 

RX1,RX2 
RX3 

The second operand address is the address of a channel control 
block (CCB). The buffer switch bit of the channel command word 
(CCW) specifies the buffer to be used for the data transfer. If 
this bit is set, buffer 1 is used. If it is zero, buffer 0 is 
used. If the byte count field of the current buffer is greater 
than zero, the V flag in the condition code is set, and the next 
sequential instruction is executed. If the byte count field is 
not greater than zero, the following data transfer operation is 
performed. 

If the CCW specifies read, a byte of data is moved from bits 
24:31 of the register specified by Rl to the appropriate buffer 
location. If the CCW specifies write, a byte of data is moved 
from the appropriate buffer location to bits 24:31 of the 
register specified by Rl. Bits 0:23 are forced to zero. 

After a byte has been transferred, the count field of the 
appropriate buffer is incremented by one. If the count field is 
now greater than zero, and if the fast bit of the CCW is zero, 
the buffer switch bit of the CCW is complemented. 

Condition Code: 

CIVIGIL 
==============-== 

0 
0 
0 
0 

0 
0 
0 
l 

0 
0 
l 
0 

Programming Notes: 

0 
l 
0 
0 

Count field is now zero 
Count field is now less than zero 
Count field is now greater than zero 
Count field was greater than zero 

If the CCW specifies fast mode, buffer 1 can be used, but the 
buffer bit is not switched when the count field becomes greater 
than zero. 

The second operand must be located on a fullword boundary. 

This instruction is a privileged operation. 

50-022 ROO 9-17 



9.10 AUTO DRIVER CHANNEL 

The auto driver channel provides a means for multiplexing block 
data transfers between memory and low- or medium-speed I/O 
devices. The channel operation is similar, in some respects, to 
interrupt driven I/O. The channel is activated as a result of a 
service request from a device on the I/O bus. Upon receipt of 
such a request, the processor uses the device number to index 
into the ISPT. If the value contained in the table is even, the 
processor transfers control to the interrupt service routine. If 
the value is odd, it transfers control to the auto driver 
channel. 

To the auto driver channel, the address in the ISPT is the 
address plus one (making it odd) of a CCB. The CCB is a channel 
program consisting of a description of the operation to be 
performed and a list of parameters associated with the operation. 
In addition to the functions of read and write, the channel can 
also: 

• translate characters, 

• test device status, 

• chain buffers, 

• calculate longitudinal and cyclic redundancy check (CRC) 
values, and 

• transfer control to software routines to take care of unusual 
situations. 

9.11 CHANNEL COMMAND BLOCK (CCB) 

The CCB, as shown in Figure 9-1, consists of a CCW (16 bits) that 
describes the function, count fields (16 bits each) for two 
buffers, final addresses (32 bits each) for two buffers, a check 
word (16 bits) for the longitudinal redundancy check (LRC) or 
CRC, the address (32 bits) of a translation table, and the 
address (16 bits) of a software routine. The CCB requires 22 
bytes of memory. 

Many ISRs can be available at any time to service device 
requests. There can also be many CCBs in the system ready to 
handle data transfers as required. Each CCB must be aligned on 
a fullword boundary. The CCB address plus one must be placed in 
the ISPT location for the device involved in the transfer. 

9-18 50-022 ROO 



617 

0 
2 

4 

8 

10 

12 

16 

20 

0 

CHANNEL COMMAND WORD 

BUFFER BYTE COUNT 

BUFFER 0 END ADDRESS 

CHECK WORD 

BUFFER 1 BYTE COUNT 

BUFFER 1 END ADDRESS 

TRANSLATION TABLE ADDRESS 

SUBROUTINE ADDRESS 

15 

(HALFWORD) 

(HALFWORD) 

(FULLWORD) 

(HALFWORDi 

(HALFWORD) 

(FULLWORD) 

(FULLWORD) 

(HALFWORD) 

Figure 9-1 Channel Command Block 

9.11.1 Subroutine Address 

To handle special situations, channel control is transferred to 
the software subroutine, whose address is contained in the CCB. 
When this occurs, registers 0:4 of the appropriate set have 
already been set up by the processor to contain the old PSW, the 
device number, the device status and the address of the CCB. The 
current PSW status specifies run state, machine malfunction 
interrupt enabled, higher level I/O interrupts enabled and all 
other interrupts disabled. 

The channel transfers control to the subroutine unconditionally 
(controlled by a bit in the CCW) because of bad device status, 
special character translation, or because it has reached the 
limit of a buffer. It indicates its reason for transferring 
control by adjusting the condition code as follows: 

I c I V I G I L I 
1===============1 

0 I 0 I O I 0 I 
I o I O I O I 1 I 
I o I o I 1 I o I 

Unconditional transfer of special character 
Bad status 
Buff er limit 

The subroutine address in the CCB is a 16-bit physical address. 
For this reason, the subroutine at that address, or at least the 
first instruction of the subroutine, must reside in the 64kb of 
memory. 

50-022 ROO 9-19 



9.11.2 Buffers 

There is a space in the CCB to describe two data buffer areas. 
The data areas can be located anywhere in memory. The limits of 
each data area are described by an address field and a count 
field. The address field contains the physical address of the 
last byte in the data area. This address is right-justified in 
the fullword provided. If the device being controlled is a 
halfword-oriented device, the final address must be odd. If the 
device is a byte-oriented device, the address can be either odd 
or even. The active buffer is selected by a bit in the CCW. 
When one buffer has been exhausted, the channel may reverse the 
state of this bit and switch to the alternate buffer. Automatic 
buffer switching is available only for byte-oriented devices and 
if the fast bit of the ccw is zero. If the fast bit is set, 
buffer 0 is always used. 

The count field, in most operations, contains a negative number 
whose absolute value is equal to one less than the number of 
bytes to be transferred. The one exception is the case of a 
single data transfer, for which the count field contains zero. 

During data transfers, the channel adds the value contained in 
the count field to the final address in order to obtain the 
current address. It makes the transfer, using the current 
address, then increments the value in the count field by one for 
a byte device or by two for a halfword device. When the count 
field becomes greater than zero, the channel sets the G flag in 
the condition code and transfers control to the specified 
software subroutine. If the count field is greater than zero 
upon channel activation, the channel makes no transfer and 
relinquishes control of the processor. 

9.11.3 Translation 

The translation feature is available only for byte-oriented 
devices or if the fast bit in the CCW is zero. If translation is 
specified, the fullword provided in the CCB must contain the 
address, which is right-justified, of a translation table. This 
table, which must be aligned to a halfword boundary, can contain 
up to 256 halfword entries. The format of this table is 
identical to that used by the Translate (TLATE) instruction (see 
Section 3.3.2). During data transfers, the channel multiplies 
the data byte by two and adds this value to the translation table 
address. The result is the address within the translation table 
of the halfword entry corresponding to the data byte. 

The channel tests this entry, and, if bit 0 of the halfword is 
set, it substitutes bits 8:15 of the halfword for the data byte 
and proceeds with the operation. If bit 0 of the halfword is a 
zero, the channel: 

• does not increment the byte count for the appropriate buffer; 

9-20 50-022 ROO 



• puts the data byte, untranslated, in bits 24:31 of register 3 
of the appropriate set and forces bits 0:23 of register 3 to 
zero; and 

• multiplies the value contained in the translation table by two 
and transfers control to the software special character 
translation routine located at the resulting address. 

Upon transfer to the translation subroutine, registers 0 and 1 
contain the old PSW; register 2 contains the device number; 
register 3 contains the untranslated character; and register 4 
contains the address of the CCB. The current PSW indicates run 
state, machine malfunction interrupt enabled, higher level 1/0 
interrupts enabled and all other interrupts disabled. The 
condition code is zero. 

9.11.4 Check Word 

The check word in the CCB contains the accumulated residual for 
LRC or CRC. The initial value for the check word is usually 
zero. (There are data-dependent exceptions, e.g., where initial 
characters are not to be included in the check.) 

The longitudinal check is an Exclusive-OR of the character with 
the check word. 

The CRC uses the formula for CRC16: 

x1s + x1s + x2 + 1 

If the data communication option is equipped, the CRC can 
optionally use the formula for CRC SDLC: 

x1s + x12 + xs + 1 

On input, if both redundancy checking and translation are 
required, the character is translated first, then the CRC is done 
using the original character input rather than the translated 
character. On output, the translated character participates in 
the redundancy check. Redundancy checking can be used only with 
byte devices and is only performed if the fast bit of the CCW is 
zero. 

9.11.5 Channel Command Word (CCW) 

The CCW, as shown in Figure 9-2, consists of two parts. Bits 0:7 
contain a status mask. Bits 8:15 describe the channel operation. 

50-022 ROO 9-21 



618 
0 7 8 9 12 15 

STATUS MASK E 

FAST 

TRANSLATE 

EXECUTE READ/WRITE (0/1) 

BUFFER SWITCH 

REDUNDANCY CHECK TYPE 

Figure 9-2 Channel Command Word 

Status Mask 

On every channel operation, if the execute bit is set, the status 
mask is ANDed with the device status. This operation does not 
change the status mask. If the result is zero, the channel 
proceeds with the operation. If the result is nonzero, the 
channel sets the L flag in the condition code and transfers 
control to the specified software subroutine. 

Execute Bit (E) 

If this bit is zero, the channel unconditionally transfers 
control to the specified subroutine without taking any other 
action. The condition code is zero. If this bit is set, the 
channel continues with the operation as specified in the CCW. 

Fast Bit (F) 

If this bit is set, the channel performs the I/O transfer in the 
fast mode. In this mode, buffer switching, redundancy checking 
and translation are not allowed. This bit must be set for 
halfword devices. If this bit is set, buffer 0 is always used. 

Read/Write Bit (R/W) 

This bit indicates the type of operation. If this bit is zero, 
a byte or a halfword is input from the device. If this bit is 
set, a byte or a halfword is output to the device. 

9-22 50-022 ROO 



Translate Bit (T) 

If this bit is 
translates the 
the CCB. 

set and the fast bit is zero, the channel 
data byte using the translation table defined in 

Redundancy Check Type Bits (RC) 

These two encoded bits specify the type of redundancy check 
required. No check is performed if the fast bit is set. Table 
9-1 contains the valid types of checks. 

TABLE 9-1 VALID REDUNDANCY CHECKS 

BIT I-BIT I 
10 I 11 I REDUNDANCY CHECK TYPE 

============================================= 
0 
0 
l 
l 

0 
1 
0 
l 

Buffer Switch Bit (B) 

LRC 
CRC BISYNC 
Reserved; must not be specified 
CRC SDLC 

When zero, this bit specifies that buffer 0 is to be used for the 
transfer. If it is set, buffer 1 is us.ed. The channel chains 
buffers when the count field becomes greater than zero by 
complementing the buffer switch bit before transferring control 
to the specified software routine. Buffer 0 is always used if 
the fast bit in the ccw is set. 

9.11.6 Valid Channel Conunand Codes 

Table 9-2 is a list of valid codes for the CCW, bits 8:15. Note 
that only the first three can be used with halfword devicesa 

50-022 ROO 9-23 



TABLE 9-2 CHANNEL COMMAND WORD 

I HEXADECIMAL I BINARY MEANING 
·~===~================================-==========================~ 

00 
Bl 
BS 
BO 
B2 
B4 
B6 
BB 
BA 
SC 
BE 
90 
92 
94 
96 
98 
9A 
9C 
9E 
BO 
B2 
B4 
B6 
BB 
BA 
BC 
BE 

00000000 
10000001 
10000101 
10000000 
10000010 
10000100 
10000110 
10001000 
10001010 
10001100 
10001110 
10010000 
10010010 
10010100 
10010110 
10011000 
10011010 
10011100 
10011110 
10110000 
10110010 
10110100 
10110110 
10111000 
10111010 
10111100 
10111110 

Transfer to subroutine 
Read fast mode 
Write fast mode 
LRC, Buffer 0, read 
LRC, Buffer 0, read, translate 
LRC, Buffer 0, write 
LRC, Buffer 0, write, translate 
LRC, Buffer 1, read 
LRC, Buffer 1, read, translate 
LRC, Buffer 1, write 
LRC, Buffer 1, write, translate 
CRC BISYNC, Buffer 0, read 
CRC BISYNC, Buffer 0, read, translate 
CRC BISYNC, Buffer 0, write 
CRC BISYNC, Buffer 0, write, translate 
CRC BISYNC, Buffer 1, read 
CRC BISYNC, Buffer 1, read, translate 
CRC BISYNC, Buffer 1, write 
CRC BISYNC, Buffer 1, write, translate 
CRC SDLC, Buffer 0, read 
CRC SDLC, Buffer 0, read, translate 
CRC SDLC, Buffer 0, write 
CRC SDLC, Buffer 0, write, translate 
CRC SDLC, Buffer 1, read 
CRC SDLC, Buffer 1, read, translate 
CRC SDLC, Buffer 1, write 
CRC SDLC, Buffer 1, write, translate 

9.11.7 General Auto Driver Channel Programming Procedure 

The following steps describe 
progranuning procedure. See 
procedure. 

the general auto driver channel 
Figure 9-3 for a flowchart of the 

l. Set up ISPT to vector to error routines for undefined 
devices. 

2. Set up address of CCW + 1 (odd) in table at two times device 
number plus X'DO' (start of ISPT). 

3. Set up complete CCB. 

4. Set up device and enable device interrupt. 

5. Enable I/O interrupts in PSW (auto driver channel performs 
I /0 operation). 

9-24 50-022 ROO 



6. 

620 

Check for good termination of auto driver channel 
when the subroutine defined in the CCB is entered. 

operation 

CHANNEL 

OUTPUT DATA 
HALFWORD, 
INCREMENT 

BUFFER 0 BYTE 
COUNT BY 2 

y 

R4-AICCB), 
FORCED EVEN 

ADD BYTE COUNT 
TO BUFFER 0 END 

ADDRESS, TO 
FIND ADDRESSED 

DATA BYTE 

OUTPUT DATA 
BYTE, 

INCREMENT 
BUFFER 0 BYTE 

COUNT BY 1 

"AND" STATUS 
MASK WITH 
INTERRUPT 

STATUS 

EXAUTO 

RESTORE 
ENTRY 

PSW & LOC 

N 

TWAIT 

TEST WAIT BIT 

INPUT DATA 
BYTE, 

INCREMENT 
BUFFER 0 BYTE 

COUNT BY 1 

>---y-~0 EXSUB2 

EXAUTO 

NO 

y 

EXSUBO 

Psw-­
'2BNO' 

EXSUBl 

PSW.­
'28N1' 

EXSUB2 

EXIT 

EXECUTE AT 
SUBROUTINE 

ADDRESS 

INPUT DATA 
HALFWORD, 
INCREMENT 

BUFFER 0 BYTE 
COUNT BY 2 

NOTES: 

PSW-­
'28N2' 

ON ENTRY FROM AUTOIO. 
PSW = '000028NX' 

Loc-ccB 
SUBROUTINE 

ADDRESS 

y 

QUEUE FLAG 
FOR 

MALFUNCTION 
IN CHANNEL 

MMFINT 

MACHINE MALFUNCTION 
INTERRUPT 

WHERE N =ATTENTION LINE CAUSING INTERRUPT 
X = 4 LS DEVICE STATUS BITS 
RO= OLD PSW 
Rl =OLD LOC 
R2 =INTERRUPT DEVICE ADDRESS 
RJ =INTERRUPT DEVICE STATUS 
MPE STATUS IS TRUE IF A 
MACHINE MALFUNCTION 
OCCURRED WITHIN THE CHANNEL 

Figure 9-3 Auto Driver Channel Flowchart 

50-022 ROO 9-25 



619 

9-26 

SET UPTO 
USE 

BUFFER 0 

ADD BYTE COUNT 
TO BUFFER END 

ADDRESS, TO 
FIND ADDRESSED 

DATA BYTE 

OUTPUT 
BYTE 

SUBROUTINE. 
REDCHK 

INCREMENT 
BYTE 

COUNT 
BY 1, WRITE 
TO MEMORY 

COMPLEMENT 
CCB 

BUFFER BIT 

y 

EXSIJB2 

N 

Figure 9-3 

SET UP TO 
USE 

BUFFER 1 

EXAUTO 

SUBROUTINE 
TRANSL 

EXAUTO 

REDCHK 

EXCLUSIVE OR 
DATA WITH 

CHECKWORD. 
REWRITE TO 

MEMORY 

RETURN 

NFREAD 

INPUT 
DATA BYTE 

SIJBROIJTINE 
REDCHK 

WRITE BYTE 
TO 

MEMORY 

TRANSL 

2 TIMES DATA BYTE 
IS TRTBL 

INDEX. READ 
ENTRY 

GENERATE 
NEW CHECKWORD 

USING COMM 
ASSIST UNIT. 

WRITE TO MEMORY 

RETURN 

N 

NOTE: BYTE USED IN 1/0 FIGURES 
IN CHECKWORD 

y 
SUBROUTINE 

TRANSL 

FETCH 
TRANSLATION 

BYTE 

RETURN 

N 

GENERATE NEW 
CHECKWORD USING 
CRC16 ALGORITHM 

IN MICROCODE, 
WRITE TO MEMORY 

Loc-2 TIMES 
TABLE ENTRY 
!ADDRESS OF 

TRANSLATION 
ROUTINE) 

EXIT 

NOTE USER SOFTWARE 
MUST UPDATE BUFFER 
BYTE COUNT AS 
APPROPRIATE. 

Auto Driver Channel Flowchart (Continued) 

50-022 ROO 



CHAPTER 10 
STATUS SWITCHING AND INTERRUPTS 

10.1 INTRODUCTION 

The processor's interrupt system provides a mechanism for escape 
from the normal processing sequence to handle external and 
internal events. The software routine that is executed in 
response to an interrupt is called an interrupt service routine 
(ISR). Before transferring control to a service routine, the 
current state of the processor is preserved so that, upon 
completion of the service routine, the execution of an 
interrupted program can be resumed. 

Interrupts can be classified as being synchronous or 
asynchronous, depending on whether they occur in fixed 
relationship to the execution of instructions or at random times 
due to events external to the processor, respectively. Examples 
of asynchronous interrupts include power fail, console attention 
and peripheral device interrupts. 

Synchronous interrupts occur due to fault conditions or, in the 
case of software interrupts, may be progranuned to occur. 
Examples of fault conditions that cause synchronous interrupts 
include noncorrectable memory errors, illegal instructions and 
arithmetic faults. 

Software interrupts occur when the Supervisor Call (SVC) or 
Simulate Interrupt (SINT) instructions are executed, or as a 
result of adding an entry to the system queue. The Breakpoint 
(BRK) instruction causes program execution to be suspended so 
that the system console terminal may be activated. See Chapter 
2. 

Each interrupt condition is reset when 
interrupt is serviced by the processor. 

the corresponding 

10.2 PROGRAM STATUS WORD (PSW) AND RESERVED MEMORY LOCATIONS 

The PSW shown in Figure 10-1 is a 64-bit quantity that controls 
the operation of the processor. The PSW provides information 
about various states and conditions affecting the operation of 
the processor. The PSW is composed of two fullwords: bits 0:31 
are the status word, and bits 32:63 are the location counter 
(LOC). The various PSW fields are described in Table 10-1. 

50-022 ROO 10-1 



8061-1 lot><" 10 1112 13 14 1s 1s 111s 19 20 21 22 23 24 

t?>«:j40 
LOCATION COUNTER 

Figure 10-1 Program Status Word 

TABLE 10-1 PSW BITS 

BIT I MNEMONIC I MEANING 
~===================================================

=~========= 

0 I CSF 

1:9 

10:11 I LVL 

12 

13 I FLM 

14 I I IP 

15 

16 

17 I I 

18 , IM 

19 I FLU 

20 

I Must be zero; IF SET, CATASTROPHIC 
I SYSTEM FAILURE 

I Unused; must be zero 

I Memory access level 

I Reserved; must be zero 

I Floating point arithmetic masked mode 

I Interruptible instruction in progress 

I Reserved; must be zero 

I Wait state 

I I/O interrupt mask 

I Machine malfunction interrupt mask 

I Floating point arithmetic underflow mask 

I Reserved; must be zero 

21 I R/P I Relocation/protection interrupt mask 

1---------------------------------------------------------------
22 I Q I System queue interrupt mask 

1---------------------------------------------------------------
23 I P I Protect mode 

1---------------------------------------------------------------
24:27 I R I Register set select bits 

10-2 50-022 ROO 



TABLE 10-1 PSW BITS (Continued) 

BIT I MNEMONIC I MEANING 
===============================================================! 

28:31 I C,V,G,L I Condition code 
---------------------------------------------------------------: 

32:39 I I Reserved; must be zero 
----------------------------------------------------------------! 

40:63 I I Program address (LOC) 

10.2.1 Program Statue Word (PSW) 

Bits 0:31 of the PSW are called the status word. This word 
controls interrupts, defines the status of the processor, and 
contains the condition code. The following sections provide 
detailed definitions of various states of the processor and how 
the status word controls them. Unused bits of the status word 
must always be zero, with the exception of bit 20. 

10.2.1.1 Catastrophic System Failure (CSF) 

Bit 0 of the PSW is known as the CSF indicator and must not be 
set by the user. If the hardware detects a failure previously 
identified as impossible to recover from reliably, the system 
will pull a break to the console service routine and set this 
bit. 

10.2.1.2 Memory Access Level Field (LVL) 

When PSW bit 21 (R/P) is set, PSW bits 10 and 11 participate in 
an access level check for any memory access attempted by the 
current program. The LVL field of PSW is compared numerically to 
the access level field of the appropriate segment table entry. 
If the LVL field contains a lesser value than the access level 
field, a MAT fault interrupt occurs. 

When PSW bit 21 is zero, PSW bits 10 and 11 are ignored, and no 
access level check is performed. 

10.2.1.3 Floating Point Masked Mode (Fu.t) 

When bit 13 of the current PSW is zero, a program can execute any 
legal floating point instruction. 

50-022 ROO 10-3 



When bit 13 of the current PSW is set, the processor is in the 
FLM mode. A program running in this mode is not allowed to 
execute floating point arithmetic instructions. If execution of 
any floating point arithmetic instruction is attempted in FLM 
mode, an illegal instruction interrupt occurs. ~I~f;__.t~h~e~_,_ .................. ........,..__.~ 
is in FLM mode when a context switch is made b 
program and tfie processor s a the contents of 
the floating point registers This results in 
a faster context switch. 

10.2.1.4 Interruptible Instruction in Progress (IIP) 

PSW bit 14 is set by the processor while an interruptible 
instruction is in progress and is zero when the interruptible 
instruction terminates. This bit is set by the processor to 
indicate that the scratchpad registers contain valid parameters 
for the interruptible instruction and that these parameters need 
not be recalculated before resuming the interrupted instruction. 

If bit 14 of the current PSW is set when the processor transfers 
control to a software ISR, that routine must not allow the 
contents of the scratchpad registers to be modified before the 
interruptible instruction is resumed* The STPS, LOPS, ISSV and 
ISRST instructions provide the means for saving and restoring 
these registers if they must be used by the ISR. 

10.2.1.5 Wait State (W) 

When PSW bit 16 is set, the processor is in the wait state. In 
the wait state, the normal fetch instruction/execute 
instruction/fetch next instruction sequence is suspended. While 
in the wait state, the processor is responsive to console 
attention interrupts and primary power fail (PPP), as well as any 
interrupts .specifically enabled by the current PSW. 

PSW bit 16 is zero when the processor is executing instructions. 
This bit is forced to zero whenever the single step, run switch 
or system console terminal is used to initiate instruction 
execution. This bit is not forced set by entry to the console 
mode. 

If an interrupt occurs, PSW bit 16 is set according to the new 
PSW defined for servicing the interrupt. Bit 16 of the new PSW 
for any I/O interrupt is zero. 

Except for an I/O interrupt, the state of bit 16 of the new PSW 
is tested as the PSW is loaded. If bit 16 of the newly loaded 
PSW is set, the processor enters the wait state, provided that no 
interrupt is still pending. All pending interrupts are serviced 
before the processor enters the wait state. 

10-4 50-022 ROO 



10.2.1.6 Input/Output (I/O) Interrupt Mask (I) 

PSW bit 17 is used to enable or disable recognition of interrupt 
requests generated by peripheral devices on any of the interrupt 
levels, as detailed below: 

BIT 17 

0 
1 

MEANING 

Disabled . / ..,__ 
I/O interrupts enabled ~ f A 

<-")'' ( {.J ,,,r- ) 
An I/O interrupt request is queued until the processor 
acknowledges the interrupt unless the request is programmed 
reset, or power fail occurs. The state of PSW bit 17 is ignored 
by the Simulate Interrupt (SINT) instruction. 

10.2.1.7 Machine Malfunction Interrupt Enable (M) 

PSW bit 18 is used to enable and disable detection of various 
malfunction conditions within the processor and the resulting 
machine malfunction interrupt. When this bit is set, any of the 
following conditions results in a machine malfunction interrupt. 

• Early power failure (EPF) 

• Power restore 

• Noncorrectable memory data error 

• Nonconf igured memory address 

• Register Set (REX) or MAT parity failure 

The processor is designed with the concept that all software 
enable the machine malfunction interrupt for maximum 
integrity. Unlike other processors, this does not require 
this interrupt ever be disabled. The processor resets 
detected interrupt condition as it occurs. 

must 
data 
that 
each 

While performing a machine malfunction interrupt PSW swap, the 
processor sets PSW bit 18 to allow error detection for the new 
PSW data fetched from memory. If the new PSW cannot be fetched 
correctly, the processor effectively stops by entering the 
console mode. This prevents a runaway situation in the event of 
a double fault. 

50-022 ROD 10-5 



If PSW bit !.8-is zero, any noncorrectable memory data error is 
J;~ed by the ~or logger. Acceef~es ·Ea-memory using a 
ru>n.conf igured memory address result in undefined data, with no 
error indication. No machine malfunction interrupt occurs for 
any of the reasons given above. A machine malfunction due to EPF 
is queued until PSW bit 18 is set by software, or until automatic 
shutdown occurs. The interrupt is not queued for any other 
reason. 

10.2.1.8 Floating Point Underflow Interrupt Enable (FLU) 

PSW bit 19 controls response of the processor to an arithmetic 
underflow resulting from a single or double precision floating 
point arithmetic operation. 

If this bit is set when the underflow occurs, an arithmetic fault 
interrupt occurs, and the participating floating point registers 
remain unchanged. 

If this bit is zero when the underflow occurs, the result of the 
operation is replaced by zero, and the condition code is set to 
0100 (V flag only), as defined in the description of the specific 
floating point instruction. 

10.2.1.9 Relocation/Protection Enable (R/P) 

PSW bit 21 is used to enable and disable the relocation and 
protection progranuned into the MAT. When this bit is set, 
relocation, protection and the MAT fault interrupt are enabled. 
When this bit is zero, relocation, protection and the MAT fault 
interrupt are disabled. 

10.2.1.10 System Queue Service (SQS) Interrupt Enable (Q) 

If bit 22 of the new PSW loaded by any of the instructions listed 
below is set, the state of the system queue is tested. If the 
system queue is not empty, an SQS interrupt occurs. If the 
system queue is empty, the next instruction is fetched and 
executed, according to the newly loaded PSW. 

If bit 22 of the newly loaded PSW is zero, the SQS interrupt is 
disabled. 

The following instructions test the state of the system queue: 

10-6 

MNEMONIC 

EPSR 
LOPS 
LPSW 
LPSWR 

MEANING 

Exchange Program Status Register 
Load Process State 
Load Program Status Word 
Load Program Status Word Register 

50-022 ROO 



10.2.1.11 Protect Mode Enable (P) 

When PSW bit 23 is set, the processor is in the protect mode. Any attempt by a program running in this mode to execute a 
privileged instruction causes an illegal instruction interrupt to occur. The processor does not attempt to execute the offending 
instruction. The BRK instruction is a privileged instruction. 

When PSW bit 23 is zero, the processor is in privileged mode. A program running in privileged mode can execute any legal 
instruction within the constraints imposed by the system 
configuration and the state of PSW bit 13 (FLM). 

10.2.1.12 Register Set Select Field (R) 

Bits 24, 25, 26 and 27 of the current PSW select the active 
general register set. Although 16 different sets can be 
specified by using the four bits of this field, only eight sets 
of general registers are implemented in this processor. The implemented sets are numbered 0, 1, 2, 3, 4, 5, 6 and 15. 

Set 0 is automatically selected by the processor in handling an 
I/O interrupt. Registers 0 throug~of that set are used to maintain information pertaTnlng to the I/O interrupt request. 
Therefore, set 0 should not be used for general-purpose processing. This set can, however, be used for processing 
internal interrupts, which use registers 11 through 15 of the selected set to maintain information pertaining to--the Interrupt. 

Sets 1, 2, 3, 4, 5, 6 and 15 can be allocated according to 
processing needs without special consideration. Sets 7 through 
14 are not implemented. (An attempt to select a set that is not implemented can result in the selection of any set without any 
special indication of the error.) I. 

When a new PSW is loaded, the specified register set becomes the active set for the next instruction executed. 

PSW BITS SELECTED 
24 25 26 27 REGISTER SET 

0 0 0 0 0 
0 0 0 l 1 
0 0 1 0 2 
0 0 1 1 3 
0 1 0 0 4 
0 1 0 1 5 
0 1 1 0 6 
1 1 1 1 15 

50-022 ROO 10-7 



10.2.1.13 Condition Code (C, V, G, L) 

PSW bits 28:31 contain the condition code. As part of the 
execution of certain instructions, the state of the condition 
code can be updated to reflect the nature of the result. Not all 
instructions affect the condition code. 

For most interrupts, bits 28:31 of the new PSW are simply copied 
to the condition code. For immediate interrupts, the least 
significant four bits of the status byte for the interrupting 
device are copied to the condition code after the new PSW has 
been loaded. No restrictions are imposed on the condition code 
field of a new PSW contained in a memory location or register. 
Any condition code value can be specified. 

The condition code of the current PSW can be tested by the 
conditional branch instructions described in Chapter 4. 

10.2.2 Program Status Word (PSW) Location Counter (LOC) 

PSW bits 32:63 comprise the LOC, which contains the address 
following the instruction currently being executed by the 
processor. When the current instruction is successfully 
completed, the value contained in the LOC is used, and the 
instruction at the resulting address is fetched. 

An instruction which results in a branch being taken causes the 
contents of the LOC to be replaced with the effective branch 
address; i.e., with the address of the instruction to which 
control is to be transferred. The instruction at the new address 
is the next instruction to be fetched and executed. 

When an interrupt occurs, the entire PSW, bits 0:63, is replaced. 
If bit 16 of the new PSW (the wait bit) is set, the instruction 
indicated by the new contents of the LOC is not fetched. Manual 
intervention is required to cause the wait bit to be zero, and 
the instruction to be fetched and executed. If an interrupt 
causes the PSW with the wait bit set to be replaced by another 
new PSW that has the wait bit zero, the instruction indicated by 
the LOC of that new PSW is fetched and executed. 

If an instruction has not been successfully completed when an 
interrupt PSW swap occurs, the 64-bit PSW in effect for the 
instruction being executed at the time of the interrupt is saved 
before the interrupt handler is entered. The LOC in the saved 
PSW points to the instruction being executed at the time the 
interrupt occurred. If the interrupt occurs after the successful 
completion of one instruction and before beginning another, the 
LOC in the saved PSW points to the next instruction to be 
executed. 

See Section 10.5 for an explanation of old, current and new PSWs, 
and of the use of these PSWs by the processor in scheduling ISRs. 

10-8 50-022 ROO 



10.2.3 Reserved Memory Locations 

Physical memory locations X'OOOOOO' through X'0002CF' are 
reserved memory locations. For systems with expanded I/O 
interrupt service pointer tables (ISPTs), physical memory 
locations X'0002DO' through X'0004CF' or X'0002DO' through 
X'0008CF' are also reserved memory locations. These locations 
contain assorted information used in servicing interrupts, as 
shown in Table 10-2. Use of data in these locations as the 
result of an interrupt is detailed in the section describing the 
interrupt. 

TABLE 10-2 RESERVED MEMORY LOCATIONS 

- - - - - - - _.. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - -· - -· - - -/t-..... .:...."_ - -
I.OCATION I 

I MEANING ( t ..... 

l===================================================F~=========== 
I X'OOOOOO' X'OOOOlF' Reserved; must be zero 

X'000020' - X'000027' 

X'000028' - X'00002B' 

X'00002C' X'00002F' 

X'000030' - X'000037' 

X'000038' - X'00003F' 

X'000040' - X'000043' 

X'000044' - X'000047' 

X'000048' - X'00004F' 

I X'OOOOSO' - X'00007F' 

X'000080' - X'000083' 

Machine malfunction interrupt old PSW 

Used by console service microcode 

LM effective address word 

Illegal instruction interrupt new PSW 

Machine malfunction interrupt new PSW 

Machine malfunction status word 

Machine malfunction virtual (program) 
address word 

Arithmetic fault interrupt new PSW 

Bootstrap loader and device definition 
table 

System queue pointer 

X'000084' - X'000087'\,t-{/Power fail save area pointer 

X'000088' - X'00008F' 

X'000090' - X'000097' 

I 

System queue service interrupt new PSW 

Relocation/protection (MAT fault) new 
PSW 

X'000098' - X'00009B' , SVC new PSW status word 

X'00009C' - X'OOOOBB' SVC new PSW LOC values 

X'~OOOBC' - X'OOOOC7' Reserved - must be zero 

50-022 ROD 10~9 



TABLE 10-2 RESERVED MEMORY LOCATIONS (Continued) 

LOCATION MEANING 
!================================================================ 
I X'OOOOC8' - X'OOOOCF' Data format fault new PSW 

X'OOOODO' - X'0002CF' 

X'0002DO' - X'0004CF' 

X'0004DO' - X'0008CF' 

Interrupt service pointer table 

Expanded interrupt service pointer 
table 

Expanded interrupt service pointer 
table 

10.3 INTERRUPT TIMING AND PRIORITY 

The following sections discuss interrupt timing and priority 
features. 

10.3.1 Maskable and Nonmaskable Interrupts 

Maskable interrupt conditions are controlled by bits in the PSW. 
When a request to interrupt due to a maskable condition occurs, 
~he corresponding control bit in the PSW is examined. If the 
control bit indicates that the interrupt is enabled, an interrupt 
is taken and control is transferred to the appropriate service 
routine. The section describing each interrupt provides details 
about the control bit(s), how the interrupt is enabled or 
disabled, and the effects of enabling or disabling an interrupt. 

Nonmaskable interrupts are those which have no corresponding 
control bits in the PSW. Examples of nonmaskable interrupts are 
SVC, SINT Illegal instruction, and console attention. Sections 
describing each interrupt provide further details. 

Figure 10-2 
interrupts. 

10-10 

shows the various maskable and nonmaskable 

50-022 ROO 



t;n 
C::> 

II 

C::> ,...., 
,...., 

622 9 
NOTES 

al NUMBERS IN CIRCLES INDICATE THE PRIORITY OF 
INTERRUPTS. 1 REPRESENTS THE HIGHEST PRIORITY. 

(c) SYNCHRONOUS INTERRUPTS ARE RECOGNIZED AS 
THEY OCCUR. ASYNCHRONOUS INTERRUPTS ARE 
RECOGNIZED BETWEEN THE COMPLETION OF 
CURRENT INSTRUCTION AND THE INITIATION OF 
THE NEXT INSTRUCTION. INTERRUPTS 

I 

1b) FAUL TS ABORT THE CURRENT INSTRUCTION. THE 
OLD PSW POINTS TO THE FAUL TING INSTRUCTION. 
OTHER INTERRUPTS ARE RECOGNIZED AT THE END 
OF THE CURRENT INSTRUCTION ANO OLD PSW 
POINTS TO THE FOLLOWING INSTRUCTION. 

F.11.ULTS 

I ISEE NOTE lb)) 

~l 
MACHINE ARITHMETIC 

MALFUNCTION FAULT 
INTERRUPT 

IMHIORY MALFUNC 

MACHINE 
MALFUNCTION 

ARITHMETIC 
FAULT 

(d) SOS MAY OCCUR ONLY AS PART OF THE LPSW. 
LPSWR, EPSR. AND LOPS INSTRUCTIONS. 

I 
NONMASKABLE 

I 

ILLEGAL 
INSTRUCTION 

FAULT 

NONMASKABLE 

n 
DATA MEMORY SUPERVISOR 

FORMAT ADDRESS CALL (SVC) 

l 
I 

SOFTWARE rTERRUPTS n 
nn 

SIMULATE 
INTERRUPT 

ISINT) 

MASK ABLE 

SYSTEM MACHINE CONSOLE MACHINE 1/0 INTERRUPTS 
QUEUE MALFUNCTION ATTENTION MALFUNCTION 
S~~~fE INTERRUPT INTERRUPT © 

SYSTEM ISEE NOTE ldll @ © 
BRE~~':31NT 0 

TION FAULT) l ~:;::::~:=+-NON 
CORRECT ABLE 
MEMORY 
ERROR 

NON 
CONFIGURED 
MEMORY 
ADDRESS 

FLOATING 
POINT 
EXPONENT 
UNDERFLOW 

REGISTER 
PARITY FAULT 

MATPARln 
FAULT 

Figure 10-2 

FLOATING· 
POINT 
EXPONENT 
OVERFLOW 

FIXED-PT 
QUOTIENT 
OVERFLOW 

DIVIDE 
BY ZERO 
FLOATING-PT 

DIVIDE 
BY ZERO 
FIXED-PT 

ILLEGAL 
OP-CODE 

ILLEGAL 
SUB FUNCTION 

PRIVILEGED 
INSTRUCTION 
IN PROTECT 
MODE 

FLOATING-
POINT 
INSTRUCTION 
IN FLT. PT 
MASKED 
MODE 

PACKED DATA 

INVALID 
DATA DIGIT 
PACKED DATA 

HALFWORD 
ALIGNMFNT FAULT 

FULLWORD 
ALIGNMENT F"ULT 

SEGMENT NONPRESENT 
F~IJL T 

SEGMENT LIMIT FAULT 

WRITE PROTECT VIOLATION 

EXECUTE PROTECT VIOLATION 

READ PROTECT VIOLATION 

ACCESS LEVEL VIOLATION 

SST SIZE ERROR 

PST SIZE ERROR 

AUTOMATIC 
SHUTDOWN 
!POWER FAILI 

AUTOMATIC RESTART 

!POWER RESTORATION! 

Schematic Diagram of Interrupt System Architecture 

EARLY 
POWER 
FA!L 
DETECT 

POWER 
RESTORATION 
DETECT 



10.3.2 Interrupt Timing 

Asynchronous interrupts are normally permitted to occur only 
after execution of an instruction has been completed, and before 
execution of the next instruction begins. However, asynchronous 
interrupts are permitted to occur at the end of any iteration 
while an interruptible instruction is being executed. 

A synchronous interrupt is permitted to occur at the time the 
condition causing the interrupt is detected. The SQS interrupt, 
which occurs at some indefinite time following addition of an 
entry to the system queue, is called a deferred synchrano11 s 
interrupt. A synchronous interrupt due to a fault causes the 
offending instruction to be aborted with no modification of the 
contents of registers or memory locations generally resulting 
from execution of that instruction. Fixed and floating point 
Load/Store Multiple and Store Double Precision are exceptions to 
this rule. In the case of an interruptible instruction, the 
current iteration of the instruction is aborted by such an 
interrupt without modification of the contents of registers or 
memory as a result of the faulted iteration. 

For all interrupts, the old PSW LOC presented to the interrupt 
handler points to the next logically executed instruction in the 
interrupted program. If the interrupt is caused by a fault, the 
instruction causing the fault was not completed and ~ logically 
the next instruction to be executed. The old PSW LOC presented 
to the fault ISR, therefore, always points to the instruction 
that caused the fault. 

Multiple memory accesses are required for the manipulation of a 
circular list structure using the ATL, ABL, RTL or RBL 
instruction. For each of these instructions, the list header is 
not updated until the body of the list has been successfully 
accessed. For the RTL and RBL instructions, no registers are 
modified unless the list element has been successfully accessed 
and the list header has been successfully updated. 

10.3.3 Interrupt Precedence 

Considering the instant of instruction fetch request as the time 
of reference, interrupts have the following precedence (highest 
to lowest): 

Synchronous 
Interrupts 

Asynchronous 
Interrupts 

10-12 

INTERRUPT PRECEDENCE TABLE 

{
Fault interrupts 
System queue service 

l
rPrimary power fail/restore 

Console attention 
Early power fail 
I/O interrupts 

50-022 ROO 



Fault interrupts are caused by various conditions that have the 
following logical precedence in descending priority order. 

• Register parity error 

• MAT parity error 

• Relocation/protection fault on an instruction fetch 

• Machine malfunction fault due to memory malfunction on an 
instruction fetch 

• Illegal instruction fault 

• Illegal subfunction fault 

• Data format fault due to alignment error on a data read/write 
operation 

• Relocation/protection fault on a data read/write operation 

• Machine malfunction fault due to memory malfunction on a data 
read/write operation 

• Data format fault for other than boundary alignment error 

• Arithmetic fault 

For a memory malfunction, a nonconf igured memory address fault 
takes precedence over a noncorrectable memory data fault. 

Since any fault interrupt causes execution of an instruction to 
be aborted at the point of the fault interrupt condition, no more 
than one fault interrupt condition can occur at a time. However, 
other interrupts in the synchronous and asynchronous interrupt 
classes given in the preceding interrupt precedence table can 
occur simultaneously. In such a case, the order given in the 
list above governs the servicing sequence for the interrupts. 

10.3.4 Interruptible Instructions 

For any interruptible instruction, execution consists of the 
following phases: instruction fetch, instruction decode, an 
iterative loop and termination. An interrupt during any phase of 
an interruptible instruction does not affect the operation of the 
instruction. It can simply be reexecuted~nce the 'nterru t __ has 
been serviced. An interrupt during the iterative phase of 'the 
Instruction causes the processor to resume the iterative phase 
when the instruction is reexecuted, as though the interrupt never 
occurred. If the interrupt was caused by a fault, the iteration 
that resulted in the interrupt is repeated when the instruction 
is reexecuted. 

50-022 10-13 



To abort an interruptible in~uction when it is inter~upted, PSW 
01t 14 must be f ~rcea to zero before any subseq~ent interruptible 
instruction is attempted. 

CAUTION 

SOFTWARE MUST NEVER SET PSW BIT 14 UNLESS 
RESUMING EXECUTION OF THE INTERRUPTIBLE 
INSTRUCTION THAT CAUSED BIT 14 OF THE PSW 
TO BE SET. RESUMPTION OF ANY 
INTERRUPTIBLE INSTRUCTION MUST NEVER BE 
ATTEMPTED IF THE CONTENTS OF THE 
SCRATCHPAD REGISTERS ARE NOT KNOWN TO 
HAVE BEEN PRESERVED BETWEEN INSTRUCTION 
INTERRUPTION AND RESUMPTION. 

10.4 PROCESSOR MODES 

At any given time, the processor can be in the console mode or 
run mode. The single step mode provides a means for alternating 
between the console and run modes. Wait and run states only have 
meaning for the run mode. 

10.4.1 Console Mode 

While the processor is dedicated to communicating with the system 
console terminal, it is said to be in the console mode. In this 
mode, program execution is suspended so that the user can examine 
and modify the data contained in certain registers and memory 
locations. 

Appendix F provides a flowchart for the console service routine. 
The console mode can be entered in any of the ways listed below. 

• The BRK instruction is executed by a running prograiu when PSW 
bit 23 is zero. 

• Execution of an instruction is completed while in the single 
step mode. 

• The HALT/RUN or SINGLE switch is depressed momentarily while 
the processor is in the run mode. 

• Following a system initialization sequence, back-up power to 
memory is found not to have been maintained within regulation, 
and the loader storage unit (LSU) is not enabled when the 
sequence is complete. 

10-14 50-022 ROO 



• Following a system initialization sequence, if back-up power 
to memory was maintained within regulation but the LSU is not 
enabled, then the contents of physical memory location 
X'000028' indicate that the processor was in the console mode 
when system initialization occurred. 

• An attempt to fetch a machine malfunction interrupt new PSW 
results 1n a noncorrectable memory error. In this case, the 
console service routine will display the PSW with the CSF bit 
set and LOC at the time of the failure. 

Note that system initialization occurs when the power supply 
detects that AC line voltage is failing; when the initialize 
(INIT) switch on the consolette is momentarily depressed; or when 
the key-operated LOCK/ON/STANDBY switch is moved to the STANDBY 
position. The initialization sequence completes when power is 
restored to the processor. System initialization resets all 
pending interrupts for the system console and other I/O devices 
in the system. Direct memory access (DMA) operations are also 
terminated. 

While the processor is in the console mode, interrupt conditions 
are not handled in the same manner as they are wh~n detected 
during execution of a program. 

Interrupt requests for the system console terminal and all 
I/O devices remain queued until the run mode is entered. 
operations are not affected by changing processor modes. 

other 
DMA 

PSW bit 16 is always forced to zero before the run mode is 
entered from the console mode. 

Fault conditions caused by memory accesses while in the console 
mode are reset when they occur and do not cause interrupts when 
the run mode is entered. If a fault condition occurs while 
attempting to modify a memory location, that location cannot be 
changed. If a fault occurs while attempting to examine a memory 
location, the console service routine is aborted and restarted. 

System initialization while in the console mode results in 
automatic shutdown with no machine malfunction interrupt due to 
power failure. 

10.4.2 Run Mode 

When the processor is not dedicated to communicating with the 
system console terminal, it is in the run mode. In this mode, 
program execution is controlled by the contents of the 64-bit 
PSW. While the processor is in the run mode, it can be in either 
the wait state (PSW bit 16 is set) or the run state (PSW bit 16 
is zero). In the run state, the processor performs a repetitive 
fetch instruction/execute instruction/fetch next instruction 
sequence. In the wait state, this sequence is suspended. 

50-022 ROO 10-15 



The run mode can be entered in any of the following ways: 

• The less than (<) prompt character is entered from the system 
console terminal when the processor is in the console mode. 

• The HALT/RUN switch is depressed momentarily while the 
processor is in the console mode. 

• The LSU is installed and enabled when a system initialization 
sequence is completed. In this case, the program loaded from 
the LSU is given control of the processor. 

• The greater than (>) single step character is entered from the 
system console terminal when the processor is in the console 
mode. This causes the instruction to be executed in single 
step mode, regardless of the position of the SINGLE switch. 

Interrupt conditions cannot cause the processor to enter the run 
mode from the console mode, with the following two exceptions: 

• An initialization sequence performed while the processor is in 
the console mode causes a program to be loaded from the 
enabled LSU. Control of the processor is given to that 
program. 

• The HALT/RUN switch is depressed momentarily while the 
processor is in the console mode. 

10.4.3 Single Step Mode 

When the SINGLE switch is in the SINGLE position, the processor 
is in the.single step mode. In this mode, whenever execution of 
an instruction is completed, the processor leaves the run mode 
and enters the console mode. Manual intervention is normally 
required to execute the next instruction. 

Interrupts are handled according to the methods detailed in the 
previous sections. If the processor is in the single step mode 
and the run state when an interrupt request occurs, the processor 
completes the current instruction (or iteration) and then 
performs the interrupt PSW swap. The first instruction of the 
ISR is not executed. 

If system initialization occurs while in the single step mode, 
any instruction in progress (or the current iteration of an 
interruptible instruction) completes. When the initialization 
sequence is complete, a maximum of one instruction is executed 
before the processor again enters the console mode. 

10-16 50-022 ROO 



If the processor is in the run state when the SINGLE switch is 

placed in the SINGLE position, the console mode is entered. Note 

that in the single step mode PSW bit 16 is always forced to zero 

before entering the run mode to fetch a user instruction. 

NOTE 

If interrupts are enabled at the system 
control terminal interface by uoftware, 
entering the console mode causes 
interrupts to be queued from device 
X'Oll' (the write side). Depression of 
any key at the console may cause an 
interrupt to be queued from device X'OlO' 
(the read side). 

10.5 STATUS SWITCHING 

The PSW that is loaded in the processor at any given time is 

called the current PSW. The register set selected by this PSW, 

the data contained in the general, floating point or scratchpad 

registers accessible by the user program, and the machine status 

defined by the PSW collectively constitute the process state. If 

the status word or both the LOC and status word are changed, a 

status switch has occurred. A status switch can be caused 

explicitly by executing a status switching instruction or may be 

forced to occur by an interrupt. When the value of the PSW that 

was current at the time of a status switch is saved, that value 

is called the old PSW. 

The scheduling of ISRs is based upon the concepts of old PSW, 

current PSW and new PSW. When an interrupt occurs, the following 

status switch takes place: the current PSW becomes the old PSW; 

the new PSW defined for the interrupt is loaded and becomes the 

current PSW. 

For a status switch resulting from an interrupt, the old PSW is 

stored in dedicated registers of the set specified by the new PSW 

defined for the interrupt. The machine malfunction interrupt is 

the exception to this rule; for this interrupt, the old PSW is 

stored in dedicated memory locations. 

For meaningful processor response to multiple interrupts, it is 

important that the new PSW defined for a particular interrupt 

class does not enable interrupts of the same class. 

The various 
processor to 
sections. 

interrupts that 
each interrupt 

can occur and the response of the 
are described in the following 

10-17 



10.5.1 Illegal Instruction Interrupt 

The illegal instruction interrupt occurs if an attempt is made to 
execute an instruction whose operation code is not one of those 
permitted by the system. This interrupt can occur for any of the 
reasons listed below. 

• The operation code is undefined for the system. 

• The operation code has several possible subfunction 
specifications, and the subfunction specified is undefined. 

• The instruction is a privileged instruction, and PSW bit 23 is 
set. 

• The instruction is a floating point instruction, anq PSW bit 
13 is set. 

The illegal instruction interrupt cannot be disabled. No attempt 
is made by the processor to execute an illegal instruction. 

When an illegal instruction interrupt occurs, the following 
actions are taken: 

1. The current PSW is stored in registers 14 and 15 of the set 
selected by the illegal instruction interrupt new PSW, found 
in memory at physical address X'000030'. 

2. The illegal instruction interrupt new PSW becomes the current 
PSW. 

The__olcL~$W~ __ _p~-~~_ented to t~!S~ in r~g is __ tt:.r(~?~-"=~- _!-_he 
illegal instruct ion. ----. ---------- - - -----. -----

10.5.2 Data Format Fault Interrupt 

The data format fault interrupt occurs if the required halfword 
or fullword alignments are violated for memory accesses, or if it 
is otherwise determined that data is not properly aligned to the 
specified fields. The data format fault interrupt cannot be 
disabled. When a data format fault interrupt occurs, the 
following actions are taken: 

1. The current PSW is stored in registers~nd 15 Qf.) the set 
selected by the data format fault new -----found in memory at 
physical address X'OOOOC8'. 

10-18 50-022 ROO 



2. Register 13 of the selected set is loaded 
indicate the reason for the interrupt, 
following list: 

CODE REASON FOR INTERRUPT 

0 Reserved code 
1 Reserved code 
2 Invalid sign digit, packed data 
3 Invalid data digit, packed data 
4 Reserved code 
5 Reserved code 

with a code to 
as shown in the 

6 Fullword or halfword alignment fault 

3. If the interrupt was caused by a halfword or fullword 
alignment fault, register l.4Aif the selected set is loaded 
with the nonaligned virtual address causing the fault. 

4. The data format fault interrupt new PSW becomes the current 
PSW. 

The old PSW LOC presented to the ISR in register 15 points to the 
instruction being executed when the fault occurred. A data 
format fault causes the current instruction, or the current 
iteration of an interruptible instruction, to be aborted 
immediately. 

10.5.2.1 Alignment Faults 

An attempt to fetch a fullword of data from memory, or to write 
a fullword of data to memory, using a virtual address (VA) that 
does not have zeros as its two least significant bits causes a 
fullword alignment fault. 

An attempt to read a halfword of data from memory using a program 
address that does not have zero as its least significant bit 
causes a halfword alignment fault. The processor does not 
distinguish between fullword and halfword alignment faults. 

If an alignment fault occurs while attempting to write to memory, 
the fullword or halfword at the next lower aligned address can be 
modified. 

10.5.2.2 Invalid Digit Faults 

If an invalid sign or data digit is encountered while processing 
numeric string data, it is presumed that the data is not aligned 
to the specified fields. Additional information can be found in 
the description of the instruction used to process the numeric 
string. 

50-022 ROO 10-19 



10.5.3 Relocation/Protection (MAT) Fault Interrupt 

This fault interrupt occurs if an executing program violates any 
of the relocation and protection conditions programmed into the 
MAT. MAT error checking and the MAT fault interrupt are enabled 
when PSW bit 21 is set. MAT faults are not queued. 

When a MAT fault interrupt occurs, the following actions are 
taken: 

1. The current PSW is stored in registers 14 and 15 of the set 
selected by the MAT fault interrupt new PSW, found in memory 
at physical address X'000090'. 

2. Register 13 of the selected set is loaded with a code to 
indicate the reason for the interrupt. This code is copied 
from the MAT status register while simultaneously resetting 
the fault. 

CODE 

0 
1 
2 
3 
4 
5 
6 
7 
8 

REASON FOR INTERRUPT 

Reserved code 
Execute protect violation 
Write protect violation 
Read protect violation 
Access level fault 
Segment limit fault 
Nonpresent segment 
Shared segment table (SST) size exceeded 
Process segment table (PST) size exceeded 

3. Register 12 of the selected set is loaded with the program 
addres~ that caused the fault. 

4. If the fault occurred on a data fetch while attempting to 
load the general registers using the Load Multiple (I.M) 
instruction, register 11 of the selected set is loaded with 
the effective second operand address calculated at the start 
of the LM instruction. 

5. The MAT fault interrupt new PSW becomes the current PSW. The 
old PSW LOC presented to the ISR in register 15 points to the 
instruction being executed when the fault occurred. Further 
information on memory management may be found in Chapter 11. 

10.5.4 Machine Malfunction Interrupt 

The machine malfunction interrupt occurs when any one of the 
following conditions is detected: 

• Register or MAT parity failure 

10-20 50-022 ROO 



e EPF 

• Power restore 

• Noncorrectable memory data error 

• Nonconf igured memory address 

Detection of the listed conditions and the machine malfunction 
interrupt are enabled when PSW bit 18 is set. An EPF interrupt 
is queued until PPF occurs if PSW bit 18 is zero. All other 
malfunction conditions are ignored, and the interrupts are lost. 

When a machine malfunction interrupt occurs, the following 
actions are taken: 

1. The current PSW is stored in memory beginning at physical 
address X'000020'. 

2. The machine malfunction status word at physical address 
X'000040' is loaded with a code to indicate the reason for 
the interrupt. Only one bit is set in this code. 

BITS 

0 
1 
2 

3 

4 

5 

6 ---7 

8 
9 

MNEMONIC 

PF 
PR 
NCD 

NCI 

NCA 

NVD 

NVI 

NVA 

RPF 
MPF 

REASON FOR INTERRUPT 

Power failure 
Power restoration 
Noncorrectable memory error during 
data fetch 
Noncorrectable memory error during 
instruction fetch 
Noncorrectable memory error during 
auto driver channel operation 
Nonconf igured memory address during 
data fetch 
Nonconf igured memory address during 
instruction fetch 
Nonconf igured memory address during 
auto driver channel operation 
Register parity failure 
MAT parity failure 

3. If the interrupt was caused by a noncorrectable memory error 
or nonconf igured memory address, the VA used for the memory 
access is stored in the machine malfunction VA word at 
physical address X'000044'. Otherwise, the contents of this 
word are undefined. 

50-022 ROO .. """' "" .. J.U-~ J. 



4. If the interrupt was caused by a noncorrectable memory error 
or nonconfigured memory address, and the fault occurred on a 
data fetch while attempting to load the general registers 
using the LM instruction, the effective second operand 
address calculated at the start of that instruction is stored 
in the LM effective addreae word at physical address 
X'00002C'. Otherwise, the contents of this word are 
undefined. 

5. The machine malfunction interrupt new PSW, found at physical 
address X'000038', becomes the new PSW. 

If the interrupt was caused by executing an instruction, the old 
PSW LOC presented to the ISR points to the offending instruction. 
Otherwise, the old PSW I.DC presented to the ISR points to the 
instruction to be executed once the interrupt has been serviced. 

If the interrupt was caused by executing the LM instruction, bits 
2 and 5 of the machine malfunction status word can be used to 
determine if any registers were modified before the interrupt 
occurred. If the old PSW LOC points to an LM instruction, and if 
bits 2 and 5 of the machine malfunction status word (MMSW) are 
both zero, no registers were modified. If bit 2 or bit 5 of the 
machine malfunction status word is set, then: 

• If the data stored at physical addresses X'000044' and 
X'00002C' are equal to one another, no registers were modified 
by the instruction before the fault occurred. 

• If the data stored at physical addresses X'000044' and 
X'00002C' are not equal to one another, at least one register 
was modified by the instruction before the fault occurred. 
The number of registers modified may be determined by taking 
the difference of the data stored at physical addresses 
X'000044' and X'00002C' and dividing the result by four. 

Figure 10-3 Machine Malfunction Status Word 

10.5.4.1 Early Power Fail (EPP) Detect and Automatic Shutdown 

EPF detect occurs when the PPF sensor detects a low voltage, the 
power switch is turned from the ON to STANDBY position, or the 
INIT switch is depressed. 

10-22 50-022 ROO 



At the end of execution of the current instruction or ~he current 
iteration of the current interruptible instruction, a machine 
malfunction interrupt is taken if PSW bit 18 is set. 

Following EPF detect, software has one millisecond before the 
automatic shutdown proced-uie otE.he i>io-cessc>r··-tak-~is-·co-ntror·as a 
result of PPF. During this procedure, the following actions 
occur: 

1. The fullword power fail save area pointer is fetched from 
location X'000084'. 

2. The following information is saved by firmware in the power 
fail save area: 

DATA 
OFFSET IN SAVE 
AREA (IN BYTES) 

Current PSW 0-7 

The eight general register 
sets (in order, 0 through F) 8-519 

Interruptible instruction 
state (scratchpad registers) 520-583 

Optional floating point 
registers, single and double 584-679 

3. The processor waits for power restore. 

50-022 ROO 

NOTES 

1. If the pointer found in location 
X'000084' does not specify a save 
area aligned to a full~qr4 boundary, 
the processor ···--·---··rorces ···--·correct. 
alignment by replacing the two least 
significant bits of the pointer with 
zeros. 

2. The floating point masked mode bit in 
the PSW has no effect on the saving 
of the floating point registers. 

3. The IIP bit in the PSW has no effect 
on the saving of the scratchpad 
registers. 

10-23 



10.5.4.2 Power Restore 

When power restore occurs, a simple go/no go self-test of various 
internal buses and registers is performed. If the back-up supply 
voltages to memory were not maintained within margins between 
shutdown and power restore, the first 512kb of memory are filled 
with a data pattern to prevent spurious -noncorrectable memory 
error indications, and the general registers, scratchpad 
registers and floating point registers are 'loaded with 
predetermined data. 

The first 512kb of memory are then tested to see if data can be 
held. This test does not modify the data contained in memory. 
Failure of self-test or the memory test causes that test to loop 
as long as the failure persists. During the test, the processor 
is responsive only to a PPF, which results in an automatic 
shutdown, and the FAULT lamp on the consolette switch panel is 
on. 

When memory testing is complete, the FAULT lamp is turned off, 
and the state of the LSU is tested. In all cases, bit 1 of the 
machine malfunction status word at physical address X'000040' is 
set to indicate power restore. 

10.5.4.2.1 If the Loader Storage Unit (LSU) Is Disabled 

If the back-up voltages to memory were not maintained within 
margins between shutdown and power restore, then memory is 
assumed not to contain valid data. In this case, a PSW status of 
'00008000' (wait bit only) and LOC of 'OOFFFFFE' are loaded and 
displayed on the system console terminal. Manual intervention is 
required to restart the processor. The memory voltage failure 
(MVF) indication is reset in this case. MVF is discussed in 
Section 10.5.4.2.2. 

If the back-up voltages to memory were maintained, the data saved 
in the power fail save area by the automatic shutdown procedure 
is reloaded. 

If the data in memory at 
that the processor was 
reloaded PSW is displayed, 
console terminal resumes. 

physical address X'000028' indicates 
in console mode when power failed, the 
and communication with the system 

If the processor was not in console mode when power failed, bit 
18 of the reloaded PSW is tested. If t~e bit is set, a machine 
malfunction interrupt occurs. 

10-24 50-022 ROO 



If bit 18 of the reloaded PSW is 
resumed using the reloaded PSW. 
bit (bit 16) of the PSW is 
instruction. 

zero, program execution is 
Note that the state of the wait 
tested before executing any 

NOTE 

Data in the MAT and selector channel 
(SELCH) control registers is volatile and 
must be considered invalid following any 
power fail/restore sequence. 

10.5.4.2.2 If the Loader Storage Unit (LSU) Is Enabled 

After the FAULT lamp is turned off, the program in the LSU is 
loaded, and control is transferred to it using the PSW specified 
in the program. If the memory start address is greater than the 
memory end address specified for the LSU program, the program is 
not loaded, and the console mode is entered. 

An MVF indication is available to the processor if memory 
voltages are not maintained within margins between shutdown and 
power restore. MVF is reset when the console mode is entered or 
the Reset Memory Voltage Failure (RMVF) instruction is executed. 

If MVF is indicated following power restore, it is assumed that 
memory does not contain an executable program. The MVF 
indication is retained until reset as described above, even if 
multiple shutdown/power restore sequences occur. Software loaded 
via the optional LSU should execute the RMVF instruction once the 
load is complete and all interrupt new PSWs have been 
established. Proper use of the RMVF instruction prevents a 
potential runaway condition in the event of multiple power 
failures. 

10.5.4.3 Noncorrectable Memory Error 

During write operations to memory, an error correction code (ECC) 
is generated. This code enables the memory system to correct any 
single bit error detected on a subsequent read operation in each 
halfword of memory. If the operation is only a byte or halfword 
write to memory, the memory system reads and updates the ECC for 
the halfword of memory that contains the byte or halfword that is 
being written. 

Each time data is read from memory, the ECC is recreated and 
compared to the code generated when data was last written to any 
part of the halfword memory location. If a data error is 
detected and the error is a single bit error, it is corrected 
transparent to the processor. If, however, a multiple bit error 
is detected, a memory malfunction fault is generated, since 
multiple bit errors cannot be corrected. 

50-022 ROO 10-25 



Note that data with three or more bits in error may not result in 
a fault. Detection of any error causes a bit to be set in the 
error logger for subsequent readouts using the REL instruction. 

If PSW bit 18 is zero when the error occurs, the error is ignored 
but is logged in the error logger. 

If PSW bit 18 is set, occurrence of a noncorrectable memory error 
causes the current instruction (or the current iteration of an 
interruptible instruction) to be aborted immediately, and a 
machine malfunction interrupt occurs. Bit 2, 3 or 4 of the 
machine malfunction status word at physical address X'000040' is 
set to indicate the reason for the interrupt. The program 
address used for the memory access is stored in the machine 
malfunction address word at physical address X'000044'. 

If the error occurs on a data fetch while attempting to load the 
general registers using the LM instruction, the effective second 
operand address calculated at the start of the LM instruction is 
stored in the LM effective address word at physical address 
X'00002C'. This data allows the instruction to be simulated in 
the event that the specified index registers were modified. 

If the error occurs while fetching an instruction, the old PSW 
LOC, presented to the ISR, points to the first halfword of the 
instruction being fetched. 

If the error occurs during an auto driver channel operation, 
registers 0 and 1 of the set indicated by the old PSW presented 
to the ISR contain the PSW for the instruction interrupted by the 
I/O interrupt that activated the channel. Register 4 of the set 
indicated contains the address of the channel command block (CCB) 
that was being executed when the error occurred. 

10.5.4.4 Nonconfigured Memory Address 

The processor tests the physical address used for each memory 
access, if PSW bit 18 is set. When access to memory assigned to 
a memory controller not physically in the system is attempted, a 
machine malfunction interrupt occurs. The current instruction 
(or the current iteration of an interruptible instruction) is 
immediately aborted. Bit 5, 6 or 7 of the machine malfunction 
status word at physical address X'000040' is set to indicate the 
reason for the interrupt. The program address used for the 
memory access is stored in the machine malfunction address word 
at physical address X'000044'. 

If the error occurs on a data fetch while attempting to load the 
general registers using the LM instruction, the effective second 
operand address calculated at the start of the LM instruction is 
stored in the LM effective address word at physical address 
X'00002C': This data allows the instruction to be simulated in 
the event specified index registers were modified. 

10-26 50-022 ROD 



If the error occurs while fetching an instruction, the old PSW 
LOC, presented to the ISR, points to the first halfword of the 
instruction being fetched. 

If the error occurs during an auto driver channel operation, 
registers 0 and 1 of the set indicated by the old PSW presented 
to the ISR contain the PSW for the instruction interrupted by the 
I/O interrupt that activated the channel. Register 4 of the 
indicated set contains the address of the CCB that was being 
executed when the error occurred. 

10.5.5 Input/Output (I/O) Device Interrupts 

The following sections detail I/O device interrupts. 

10.5.5.1 Priority Levels 

Interrupt requests from I/O devices can occur on only one 
priority level. Acknowledgement of interrupt requests is enabled 
by PSW bit 17, as shown below. 

PSW BIT 17 

0 
1 

MEANING 

Disabled 
I/O interrupts enabled 

A unique register set is selected for I/O interrupt requests 
acknowledged on each priority level 0. For example, when an 
interrupt request is acknowledged at priority level 0, register 
set 0 is selected by the processor for handling the interrupt 
request. If the request results in entry to a software ISR, 
register set 0 is selected by the PSW in effect at the time the 
routine is entered, and information pertaining to the interrupt 
is contained in registers 0 to 3 or 0 to 4 of that set. 

Enabling of interrupts is dependent upon the state of PSW bit 17. 
When an interrupt request occurs but is not acknowledged by the 
processor, the request remains queued until one of the following 
occurs: 

• The interrupt request is acknowledged by the processor when 
enabled by the current PSW. 

• The interrupt request is programmed reset by the software. 

• System initialization occurs. 

50-022 ROO 10-27 



When the processor acknowledges an I/O interrupt request, the 
result can be either an auto driver channel operation or an 
immediate interrupt. In either case, register set O is used in 
processing the interrupt. 

For further information on programming a device interrupt request 
reset, see the programming manual for the specific device. This 
feature is not available for all I/O devices. 

10.5.5.2 Immediate Interrupt - Auto Driver Channel Operation 

An interrupt request by an I/O device is acknowledged only when 
interrupts are enabled as defined by the state of PSW bit 17. 

The processor recognizes I/O interrupts between the execution of 
instructions or at the end of an iteration of an interruptible 
instruction. When an I/O interrupt is recognized, the following 
actions occur: 

1. The c~rrent PSW is saved in registersl'Q"and~f set O (PSW 
bits 0:31 are saved in register 0 a~ts :63 in register 
1) . 

2. The PSW status word is loaded 
This status enables machine 
note that the MAT is disabled. 

with the value Y'00002800'. 
malfunction interrupts. Also 

3. The I/O interrupt request is acknowledged and reset. The 
address of the interrupting device is placed in register~ 
set 0, The s~s~yte !~the interrupting device rep~S­
the contents 6rregiSte~ The device number and status are 
placed in the least significant bit positions in the 
register; the most significant bit~orced to zero. The 
f£>Ur l~ast~i_gn~_E_!c~nt bits of ~-- tat!-JS of the interruE!-:__ing 
device "'fire placed in---ule cond it ~_Qn __ cq_~ 

----~-----

4. The Q._evice number is added twic...e to X'OOOODO', the start of 
the ISPT, to-·obtain the""aaaress within the table that 
corresponds to the interrupting device. The contents of this 
halfword of memory are fetched and examined to see if the 
inter"tupt is EO 6e treate"d asan:Immediate--interru12€ or -as~ 
auto ariv;r channel oceratio~. If bit 15 of the halfword is 
zero, an immediate interrupt is~e ired. If bit 15 of the 
halfword is one (the halfword i odd) an auto driver channel 
operation is required. If t interrupt is an immediate 
interrupt, the value in the table becomes the LOC p9rtion. 9f _ 
the cur.rent PS~. If the interrupt is an auto driver channel 
operation, then the least significant bit of the halfword is 
replaced by zero and the resulting value is placed in 
register/'4)of set 0. The auto driver channel is then 
act iv a tea:" 

10-28 50-022 ROO 



10.5.6 Simulated Interrupt (SINT) 

The SINT results from executing a SINT instruction when PSW bit 
23 is zero. SINT is a privileged instruction and cannot be 
executed when PSW bit 23 is set. 

Execution of the SINT instruction causes the processor to 
simulate acknowledgement of an enabled 1/0 interrupt request from 
an external device. The device address for the SINT is specified 
by the operands of the SINT instruction. 

The state of PSW bit 17 is ignored by the SINT instruction. For 
purposes of the SINT, I/O interrupts are assumed to be enabled. 
No pending device interrupt request is actually acknowledged by 
the processor as a result of executing the SINT instruction. 
With the exception of the differences described here, the SINT 
request is handled as detailed in Section 10.5.5. 

CAUTION 

DUE TO THE FACT THAT THE SINT INSTRUCTION 
IGNORES THE STATE OF PSW BIT 17, IT 
SHOULD BE USED CAREFULLY BY PROGRAMS THAT 
RUN IN REGISTER SET 0. FOR EXAMPLE, IF 
A PROGRAM EXECUTING IN REGISTER SET 0 
DISABLES INTERRUPTS, DATA IN THE 
REGISTERS OF SET 0 ARE NOT NORMALLY 
SUBJECT TO CHANGE AS A RESULT OF AN I/O 
INTERRUPT. HOWEVER, IF THE PROGRAM 
EXECUTING IN REGISTER SET 2 DOES A SINT, 
AN INTERRUPT OCCURS REGARDLESS OF THE 
STATE OF PSW BIT 17. IF AN I/O INTERRUPT 
REQUEST OCCURRED, IT WOULD BE HONORED, 
CAUSING REGISTERS 0, 1, 2 AND 3 (AND 
POSSIBLY 4) OF SET 0 TO BE OVERWRITTEN. 

IF THESE REGISTERS ARE NOT STORED BEFORE 
THE SINT INSTRUCTION IS EXECUTED, DATA IN 
THE REGISTERS IS LOST, AND SYSTEM 
SOFTWARE COULD BE LEFT IN AN 
INDETERMINATE STATE. 

The SINT is a software interrupt. 

10.5.7 System Queue Service (SQS) Interrupt 

When any of the instructions listed below are executed, as 
instruction completes, bit 22 of the new PSW loaded by 
instruction is tested. If the bit is zero, the SQS interrupt 
disabled, and program execution continues according to the 
PSW loaded. 

the 
the 

is 
new 

50-022 ROO 10-29 



MNEMONIC 

EPSR 
LOPS 
LPSW 
LPSWR 

MEANING 

Exchange Program Status Register 
Load Process State 
Load Program Statue Word 
Load Program Status Word Register 

If bit 22 of the new PSW loaded by any of these instructions is 
set, the state of the system queue (the physical address of which 
is found at physical location X'000080') is tested. The system 
queue is assumed to be maintained according to the circular list 
format. The number used field is fetched from the list header. 
If this field contains zero, the system queue is assumed to be 
empty, and program execution continues according to the new PSW 
loaded. 

If the number used field for the system queue is not zero when it 
is tested, the following actions are taken to cause an SQS 
interrupt. 

1. The current PSW, which was loaded by execution of one of the 
listed instructions, is stored in registers 14 and 15 of the 
set selected by the SQS interrupt new PSW, found in memory at 
physical address X'000088'. 

2. Register 13 of the selected set is loaded with the address of 
the system queue. 

3. The SQS interrupt new PSW becomes the current PSW. 

If the SQS interrupt occurs as a result of executing an EPSR 
instruction, the old PSW LOC presented to the ISR in register 15 
points to the instruction following the EPSR instruction. If the 
interrupt occurs as a result of executing any of the other listed 
instructions, the old PSW LOC contains the value loaded by the 
instruction causing the interrupt. 

Items can be added to the system queue while the SQS interrupt is 
enabled or disabled. The Add to Top of List (ATL) and Add to 
Bottom of List (ABL) instructions are normally used for this 
purpose. The fact that the items have been added to the system 
queue is recorded in the list header. Only when a new PSW is 
loaded that enables the SQS interrupt is the state of the queue 
tested and an interrupt allowed. 

The system queue has a maximum size, as determined by the list 
header established by system software. If an attempt is made to 
add an item to the queue when it is already full, the data can be 
lost. This could result in system software being left in an 
indeterminate state. 

Note that the address of the system queue contained in the system 
queue pointer must be aligned to a fullword boundary. 

10-30 50-022 ROO 



See Section 10.6 for a description of the EPSR, LOPS, LPSW and 
LPSWR instructions. 

The SQS interrupt is a deferred synchronous software interrupt. 

10.5.8 Supervisor Call (SVC) Interrupt 

The SVC interrupt occurs when the SVC instruction is executed. 
This instruction and the resulting interrupt provide a means for 
any program to conununicate with system software. 

When the SVC instruction is executed, the processor takes the 
following actions: 

1. The current PSW is saved in registers 14 and 15 of the set 
selected by the SVC interrupt new PSW, found in memory at 
physical address X'000098'. 

2. Register 13 of the selected set is loaded with the effective 
second operand address calculated for the SVC instruction 
executed. This is normally the address of an SVC parameter 
block, aligned to a fullword boundary. 

3. The SVC interrupt new PSW becomes the current PSW, with a new 
LOC value chosen from the ordered list of halfwords at 
physical location X'9C'. 

The old PSW LOC presented to the ISR in register 15 points to the 
instruction following the SVC instruction. 

The SVC interrupt is a software interrupt and cannot be disabled. 

10.5.9 System Breakpoint Interrupt 

A system breakpoint results if a BRK instruction is executed when 
PSW bit 23 is zero. BRK is a privileged instruction and cannot 
be executed when PSW bit 23 is set. 

Execution of the BRK instruction causes the processor to enter 
the console mode. In this mode, the processor is dedicated to 
conununication with the system console terminal. Various 
registers and memory locations can be examined or modified by the 
user from the system console terminal while in this mode. 

When the BRK instruction is executed, no registers or memory 
locations are modified. The PSW status and LOC are not modified 
by the BRK instruction. The LOC, at entry to the console mode, 
points to the BRK instruction. 

10-31 



When the run mode is entered from the console mode, PSW bit 16 is 
forced to zero, so that an instruction is fetched and executed. 
If the run mode is entered immediately after a BRK instruction is 
executed, the same BRK instruction results in another system 
breakpoint. 

The system breakpoint interrupt is a software interrupt. 

10.5.10 Arithmetic Fault Interrupt 

The arithmetic fault interrupt results from either a fixed point 
or a floating point arithmetic operation when the magnitude of 
the result is too large to be represented within the required 
number of bits. Division by zero is a special case and always 
results in an arithmetic fault interrupt. Interrupts for any of 
these reasons cannot be disabled. 

Floating point underflow occurs when the normalized result of a 
floating point load, conversion or other arithmetic operation is 
not zero, but is so small that it cannot be represented within 
the floating point number system defined for the processor. 

If PSW bit 19 is zero when floating point underflow occurs, no 
arithmetic fault interrupt results. In this case, the result of 
the operation is set to true zero. This means that every bit of 
the result is forced to zero as the result is copied to its 
destination. If PSW bit 19 is set when floating point underflow 
occurs, an arithmetic fault interrupt does occur. 

When an arithmetic fault interrupt occurs, the following actions 
are taken: 

1. The instruction causing the interrupt is aborted before the 
data in any register or memory location is modified. 

2. The current PSW is stored in registers 14 and 15 of the set 
selected by the arithmetic fault interrupt new PSW, found in 
memory at physical address X'000048'. 

3. Register 13 of the selected set is loaded with a code to 
indicate the reason for the interrupt. 

10-32 

CODE 

0 
1 
2 
3 
4 

REASON FOR INTERRUPT 

Fixed point division by zero 
Fixed point quotient overflow 
Floating point division by zero 
Floating point exponent underflow 
Floating point exponent overflow 

50-022 ROO 



4. Register 12 of the selected set is loaded with the address of 
the instruction following the instruction causing the 
interrupt. 

5. The arithmetic fault interrupt new PSW becomes the current 
PSW. 

The old PSW LOC presented to the ISR in register 15 points to the 
instruction that caused the interrupt. 

10.6 STATUS SWITCHING INSTRUCTIONS 

Status switching instructions provide for software control of the 
system's interrupt structure. They also allow user-level 
programs to communicate efficiently with control software. All 
status switching instructions, except the SVC instruction, are 
privileged operations; therefore, all interrupt handling routines 
must run in the supervisor mode. 

The status switching instructions described in this section are: 

LPSW Load Program Status Word 

LPSWR Load Program Status Word Register 

EPSR Exchange Program Status Register 

SINT Simulate Interrupt 

SVC Supervisor Call 

BRK System Breakpoint 

PSF Privileged System Function 

50-022 ROO 10-33 



10.6.1 Load Program Statue Word (LPSW) 

Assembler Notation 

LPSW 
LPSW 

D2(X2) 
Al(FX2,SX2) 

Operation: 

Opcode 

C2 
C2 

RX1,RX2 
RX3 

The 64-bit second operand replaces the current PSW. 

Condition Code: 

Determined by the new PSW (bits 28:31). 

Programming Notes: 

The Rl field of this instruction must be zero. 

The second operand must be aligned to a fullword boundary. 

This instruction is a privileged operation. 

This instruction may be used to change register sets. The new 
set becomes active for execution of the next instruction. 

If bit 22 of the new PSW is set, the state of the system queue is 
tested. If the queue is not empty, an SQS interrupt occurs. In 
this case, the newly loaded PSW is saved as the old PSW when the 
SQS interrupt occurs. 

10-34 50-022 ROO 



10.6.2 Load Program Statue Word ~egieter (LPSWR) 

Assembler Notation Opcode Format 

LPSWR R2 18 RR 

Operation: 

The contents of the register specified by R2 replace bits 0:31 of 
the current PSW. The contents of the register specified by R2+1 
replace bits 32:63 of the current PSW. 

Condition Code: 

Determined by the new PSW (bits 28:31). 

Programming Notes: 

The Rl field of this instruction must be zero. 

The R2 field of this instruction must specify an even-numbered 
register. 

This instruction can be used to change register sets. The new 
set becomes active for execution of the next instruction. 

This instruction is a privileged operation. 

If bit 22 of the new PSW is set, the state of the system queue is 
tested. If the queue is not empty, an SQS interrupt occurs. In 
this case, the newly loaded PSW is saved as the old PSW when the 
SQS interrupt occurs. 

50-022 ROO 10-35 



10.6.3 Exchange Program Status Register (EPSR) 

AsselDhler Notation Opcode Format 

EPSR Rl,R2 95 RR 

Operation: 

Bits 0:31 of the current PSW replace the contents of the register 
specified by Rl. The contents of the register specified by R2 
then replace bits 0:31 of the current PSW. 

Condition Code: 

Determined by the new PSW (bits 28:31). 

Programming Notes: 

Rl and R2 can specify any general-purpose registers. 

If Rl and R2 specify the same register, bits 0:31 of the current 
PSW are copied into the register specified by R2, but otherwise 
remain unchanged. 

This instruction can be used to change register sets. The new 
set becomes active for execution of the next instruction. 

This instruction is a privileged operation. 

If bit 22 of the new PSW is set, the state of the system queue is 
tested. If the queue is not empty, an SQS interrupt occurs. In 
this case, the newly loaded PSW is saved as the old PSW when the 
SQS interrupt occurs. 

10-36 50-022 ROO 



10.6.4 Simulate Interrupt (SINT) 

Assembler Notation 

SINT 
SINT 

12(X2) 
Rl,I2(X2) 

Operation: 

Qpcode 

E2 
E2 

Format 

Rll 
Rll 

The least significant 10 bits of the second operand are presented 
to the interrupt handler as a device number. The device number 
is used to index into the ISPT, simulating an interrupt request 
from an external device. The result is either an inunediate 
interrupt or an auto driver channel operation. 

Condition Code: 

The condition code is determined by the status of 
device in the case of the inunediate interrupt, or 
driver channel at termination. 

Programming Notes: 

the addressed 
set by the auto 

It is assumed that an interrupt from level 0 is required, and 
register set 0 is selected. 

This instruction is a privileged operation. 

This instruction causes the processor to load registers 0 through 
3 or 0 through 4 of the new set as for a real interrupt request. 

During the execution of this instruction, the device is addressed 
and the status byte is returned in register 3 of the new set. 

If the specified device does not respond to the status request, 
register 3 of the new set contains X'00000004' due to time-out. 
If an inunediate interrupt is being simulated, the V flag is also 
set in the condition code as a result of the time-out. 

The SINT instruction does not cause any pending interrupt to be 
acknowledged. 

50-022 ROO 10-37 



10.6.5 Supervisor Call (SVC) 

Assembler Notation 

SVC 
SVC 

N,D2(X2) 
N,A2(FX2,SX2) 

Operation: 

Opcode 

El 
El 

Format 

RX!, RX2 
RX3 

The second operand (normally the program address of an SVC 
parameter block) replaces bits 8:31 of register 13 of the set 
designated by the SVC new PSW status. Bits 0:7 of this register 
are forced to zero. The current PSW replaces the contents of 
registers 14 and 15 of that set. The fullword quantity located 
at X'000098' in memory replaces bits 0:31 of the current PSW. 
The 4-bit N field is doubled and added with X'00009C'. The 
halfword quantity located at the resultant address becomes the 
current LOC. 

Condition Code: 

Determined by the new PSW (bits 28:31). 

Programming Note: 

This instruction provides a means to switch from the protect mode 
to the supervisor mode. It is used by a program running under an 
operating system to initiate certain functions in the supervisor 
program. The second operand address is normally a pointer to the 
memory location of parameters needed by the supervisor program to 
perform the specified function. Such a pointer must indicate a 
parameter block aligned to a fullword boundary. The type of SVC 
is specified in the N field of the instruction. Sixteen 
different calls are provided for. Return from the supervisor is 
made by executing an LPSWR instruction specifying the stored old 
PSW in registers 14 and 15 of the set selected by the SVC 
interrupt new PSW (LPSWR Rl4). 

10-38 50-022 ROO 



10.6.6 System Breakpoint (BRK) 

Assembler Notation Opcode Format 

BRK 88 SF 

Operation: 

The BRK instruction causes the processor to enter the console 
mode. 

Programming Notes: 

The LOC is not incremented. 

This instruction is a privileged instruction. 

50-022 ROO 10-39 



10.6.7 Privileged System Function (PSF) 

Assembler Notation 

PSF 
PSF 

N,D2(X2) 
N,A2(FX2,SX2) 

Operation: 

Opcode 

DF 
DF 

Format 

RX1,RX2 
RX3 

The PSF instruction can perform any one of 16 functions, as 
specified by the value contained in the N field. The assembler 
recognizes extended mnemonics that cause the proper value to be 
specified in the N field of this instruction. The nature of the 
specified function can vary from processor to processor. The 
following paragraphs detail PSF operations performed by this 
processor. 

VALUE 
OF N 

0 
1 
2 
3 
4 
5 
6 
7 
8 

EXTENDED 
PSF 

MNEMONIC 

REL 
LP STD 
LS STD 
STPS 
LDPS 
ISSV 
ISRST 
XSTB 
RMVF 

Programming Notes: 

MEANING 

Read Error Logger 
Load Process Segment Table Descriptor 
Load Shared Segment Table Descriptor 
Store Process State 
Load Process State 
Save Interruptible State 
Restore Interruptible State 
Store Byte, no ECC 
Reset Memory Voltage Failure 

This instruction is a privileged instruction. 

PSF functions selected by values of N other than those listed 
above are undefined for this processor and result in an illegal 
instruction interrupt. 

10-40 50-022 ROO 



10.6.7.1 Read Error Logger (REL) 

Assembler Notatjon Opcode Format 

REL R2 DFO RX! 
(see programming notes) 

Operation: 

Data read from the error logger replaces the contents of the 
register specified by R2+1. Bit 16 of the data is copied to the 
L flag in the condition code. Once the data has been read from 
the error logger location, the status flag (bit 16) is set to 
zero. 

The format of the data read from the error logger is shown below. 

0 

0 

BITS 

0:15 

16 

17:20 

21:25 

26:31 

50-022 ROO 

15 16 17 20 21 25 26 31 

I I I SIP ROW I 
I S I 1 1 1 1 I ADDRESS I SYNDROME 

MEANING 

are always zero. 

is the status bit. If this bit is set to one, 
an error has been logged. 

are always set to one. 

are the SIP row address. In a multiprocessor 
system, bits 21 and 22 are zero, and bits 23, 
24 and 25 point to the row that had a failure. 
If the status flag is not set, the SIP row 
address is undefined and has no meaning. 

are the syndrome bits. These bits describe 
the SIP within the row which last had a 
failure. (See the Model 3205 System Theory of 
Operation and Maintenance Manual for table.) 
If the status flag is not set, the syndrome 
bits are undefined and have no meaning. 

10-41 



Condition Code (after reading error logger status): 

I C I V I G I L I 
1===============1 
I x I x I x I O I 
I x I x I x I 1 I 

No new error bits in error logger 
New error bit in error logger 

Programming Notes: 

This instruction is a privileged instruction. 

The R2 field of this instruction must specify an even-numbered 
register. 

Reading error logger status sets the error bit to zero, but does 
not necessarily zero the error logger bits at any syndrome 
address. · 

REL is assembled as an RXl format instruction in which the 
displacement field is always zero. 

REL is an extended PSF mnemonic. 

10-42 50-022 ROO 



10.6.7.2 Load Process Segment Table Descriptor (LPSTD) 

Assembler Notation Opcode Format 

LP STD 
LP STD 

D2(X2) 
A2(FX2,SX2) 

DFl 
DFl 

RX1,RX2 
RX3 

Operation: 

The second operand address points to a fullword process segment 
table descriptor (PSTD), which has the following format: 

0 1 2 14 15 31 

10 10 I SEGMENT TABLE SIZE SEGMENT TABLE ADDRESS 

BITS 

0:1 

2: 14 

15: 31 

MEANING 

are reserved and must be zero. 

contain the number of doubleword entries in 
the process segment table (PST), minus one. 
This number defines the maximum valid program 
address (MVPA) for the executing program 
(process). 

contain the absolute address of the PST in 
main memory, divided by 128. 

The data in the PST is used in translation of program addresses 
from program to physical address space when PSW bit 21 is set. 

Condition Code: 

Unchanged 

Programming Notes: 

The operand address must be aligned to a fullword boundary. 

The LPSTD instruction can be executed regardless of the state of 
PSW bit 21. 

The new PST is available for execution of the next instruction 
that is executed with PSW bit 21 set. 

This instruction is a privileged instruction. 

LPSTD is an extended PSF mnemonic. 

50-022 ROO 10-43 



10.6.7.3 Load Shared Segment Table Descriptor (LSSTD) 

Assembler Notatjon 

LS STD 
LS STD 

D2(X2) 
A2(FX2,SX2) 

Operation: 

Opcode 

DF2 
DF2 

Format 

RX1,RX2 
RX3 

The second operand address points to a fullword shared segment 
table descriptor (SSTD), which has the following format: 

0 1 2 14 15 31 

10 10 I SEGMENT TABLE SIZE SEGMENT TABLE ADDRESS 

BITS 

0:1 

2:14 

15:31 

MEANING 

are reserved and must be zero. 

contain the number of doubleword entries in 
the shared segment table (SST), minus one. 

contain the absolute address of the SST in 
main memory, divided by 128. 

The data in the SST is used in translation of program addresses 
from program to physical address space when PSW bit 21 is set if 
the PST entry specifies that the segment is shared. 

Condition Code: 

Unchanged 

Programming Notes: 

The operand address must be aligned to a fullword boundary. 

The LSSTD instruction can be executed regardless of the state of 
PSW bit 21. 

The new SST is available for execution of the next instruction 
that is executed with PSW bit 21 set. 

Following an LSSTD instruction, the PSTD must be loaded, using 
the LPSTD or LOPS instruction, before attempting MAT translation 
with the newly defined SST. 

This instruction is a privileged instruction. 

LSSTD is an extended PSF mnemonic. 

10-44 50-022 ROD 



10.6.7.4 Store Process State (STPS) 

Assembler Notation 

STPS D2(X2) 
STPS A2(FX2,SX2) 

Operation: 

Opcode 

DF3 
DF3 

Format 

RX1,RX2 
RX3 

The process state, defined by the old PSW in registers 14 and 15 
of the current set, is saved in the area of memory starting at 
the address specified by the operand. The area has the following 
format: 

NORMAL 
OFFSET (BYTES) 

0-7 

8-11 

12-75 

76-139 

STORED DATA 

Process PSW 

Reserved; not used 

Process general registers 

Process interruptible state 

140-235 Single and double precision floating point 
registers 

Condition Code: 

Unchanged 

Programming Notes: 

The operand address must be aligned to a fullword boundary. 

This instruction is a privileged instruction. 

STPS is an extended PSF mnemonic. 

The process general register set is specified by the old PSW in 
register 14 when this instruction is executed. 

If bit 14 of the process PSW in register 14 is zero, the process 
interruptible state is not saved, and the save area is compacted 
accordingly. In this case, the process' floating point registers 
are saved beginning at an offset of 76 bytes from the specified 
operand address. 

If bit 13 of the process PSW in register 14 is set, the floating 
point registers are not saved, and the save area is compacted 
accordingly. 

50-022 ROO 10-45 



10.6.7.5 Load Process State (LOPS) 

Assembler Notation 

LDPS 
LDPS 

D2(X2) 
A2(FX2,SX2) 

Operation: 

Opcode 

DF4 
DF4 

Format 

RX1,RX2 
RX3 

Data from the area of memory specified by the operand replaces 
the current process state. The area has the following format: 

NORMAL 
OFFSET (BYTES) 

0-7 

8-11 

12-75 

STORED DATA 

Process PSW 

PSTD 

Process general registers 

76-139 Process interruptible state (if bit 14 in 
saved PSW is set) 

140-235 Process single and double precision 
floating point registers (if bit 13 in 
saved PSW is zero) 

The new PSW at the operand address specifies the general register 
set, which is loaded from the save area. If bit 14 of 
PSW is set, the interruptible state is loaded from the 
If bit 13 of the new PSW is zero, then the single 
precision floating point registers are loaded from the 
If bit 21 of the new PSW is set, the PSTD is loaded. 
the new PSW at the operand address becomes the current 

Programming Notes: 

the new 
save area. 
and double 
save area. 

Finally, 
PSW. 

The operand address must be aligned to a fullword boundary. 

This instruction is a privileged instruction. 

LOPS is an extended PSF mnemonic. 

If bit 14 of the new PSW is zero, 
is not loaded, and the save area 
accordingly. In this case, 
registers are loaded from memory 
bytes from the specified operand 

10-46 

the process interruptible state 
is assumed to be compacted 

the process's floating point 
beginning at an offset of 76 
address. 

50-022 ROO 



If bit 13 of the new PSW is set, 
registers are not loaded, and 
compacted accordingly. 

the process's floating point 
the save area is assumed to be 

If bit 22 of the new PSW is set, the state of the system queue is 
tested before testing the wait bit (bit 16). If the queue is not 
empty, an SQS interrupt occurs. In this case, the newly loaded 
PSW is saved as the old PSW when the SQS interrupt occurs. 

The state of the wait bit (PSW bit 16) is tested before the next 
instruction is executed. 

The process register set is selected in order to load the process 
general registers. All data is fetched from the save area before 
the process PSW is loaded. If a fault occurs during the 
execution of this instruction, one or more of the specified 
registers may have been modified. The old PSW presented to the 
fault ISR in register 14 can select the general register set 
specified by the process PSW in the save area, but is otherwise 
the same as the PSW in effect when this instruction is fetched 
and executed. The old PSW LOC presented to the ISR in register 
15 points to the LOPS instruction. 

50-022 ROO 10-47 



10.6.7.6 Save Interruptible State (ISSV) 

Assembler Notation 

ISSV 
ISSV 

D2(X2) 
A2(FX2,SX2) 

Operation: 

Opcode 

DFS 
DFS 

Format 

RX1,RX2 
RX3 

The contents of the interruptible instruction scratchpad 
registers are stored in the 16 fullwords of memory starting at 
the address specified by the operand. 

Condition Code: 

Unchanged 

Progranuning Notes: 

The operand address must be aligned to a fullword boundary. 

This instruction is a privileged instruction. 

ISSV is an extended PSF mnemonic. 

10-48 50-022 ROO 



10.6.7.7 Restore Interruptible State (ISRST) 

As.sembler Notation 

ISRST 
ISRST 

D2(X2) 
A2(FX2,SX2) 

Operation: 

Opcode 

DF6 
DF6 

Format 

RX1,RX2 
RX3 

The interruptible instruction scratchpad registers are loaded 
from the 16 fullwords in memory starting at the address specified 
by the operand. 

Condition Code: 

Unchanged 

Progranuning Notes: 

The operand address must be aligned to a fullword boundary. 

This instruction is a privileged instruction. 

ISRST is an extended PSF mnemonic. 

50-022 ROO 



10.6.7.8 Store Byte, No Error Correction Code (ECC) (XSTB) 

Assembler Notation 

XSTB 
XSTB 

D2(X2) 
A2(FX2,SX2) 

Operation: 

Opcode 

DF7 
DF7 

Format 

RX1,RX2 
RX3 

The contents of bits 24:31 of general register 0 are stored in 
memory at the address specified by the operand without changing 
the ECC bits for the specified memory location. 

Condition Code: 

Unchanged 

Programming Notes: 

This instruction is a privileged instruction. 

XSTB is an extended PSF mnemonic. 

This instruction can be used in conjunction with the REL 
instruction to test the operation of the ECC. 

10-50 50-022 ROO 



10.6.7.9 Reset Memory Voltage Failure (RMVF) 

Aaaembler Notation Opcode Format 

RMVF DFB RXl 
(See programming notes) 

Operation: 

The processor's internal MVF indication is reset. The MVF 
indication is set only as a result of the voltages to main memory 
not being maintained within acceptable margins during a power 
fail/restore sequence. 

Condition Code: 

Unchanged 

Programming Notes: 

This instruction should be executed by software loaded via the 
LSU after all interrupt new PSWs have been established. Proper 
use of this instruction prevents a potential runaway condition in 
the event of multiple power fail/restore sequences. 

MVF is reset by the processor when the console mode is entered. 

This instruction is a privileged instruction. 

RMVF is an extended PSF mnemonic. 

RMVF generates an RXl format instruction 
displacement field is always zero. 

50-022 ROO 

in which the 

10-51 



11.l INTRODUCTION 

CHAPTER 11 
MEMORY MANAGEMENT 

The memory address translator (MAT) supports: 

• 4Mb physical address space 

• 16Mb virtual address (VA) space 

• Segmentation 

• Shared segments 

• Read, write and execute protection 

• Four levels of hardware controlled access to segments 

The purpose of the MAT is to translate a VA (used by the program) 
into a real address (RA) (used by physical memory). This 
translation frees programs from many of the limitations imposed 
by the hardware's configuration. This allows the operating 
system to respond efficiently to the changing memory needs of 
user programs. This is particularly important in multitasking 
environments where several independent programs are run 
concurrently. 

Virtual memory has several significant advantages over other 
memory systems. They include the following: 

• Each program runs in its own address space, thereby protecting 
memory from access or modification by other programs. 

• A program can be loaded anywhere in physical memory without 
the appearance of requiring relocation. The memory assigned 
to a program does not need to be contiguous. 

Figure 11-1 provides a simplified model of the translation from 
a VA to an RA and should aid in an understanding of the MAT 
process. 

50-022 ROO 11-1 



8063 

READ HSTE FROM 
SEGMENT TABLE 

128*PSTD + B*SEGMENT 

YES 
BIT 8 = 1 

NO 
BIT 8 = 0 

CALCULATE 
REAL ADDRESS 

128*SRF + PAGE&OFFSET 

READ HSTE 
FROM SHARED 

SEGMENT TABLE 
128*SSTD + B*SSN 

Figure 11-1 Flowchart of MAT Process 

11. 2 TRANSLATION FROM VIRTUAL TO REAL .ADDRESS 

The mapping of VA space to RA space is accomplished by using 
information supplied in a segment table. The table must be 
aligned with a 128-byte boundary in physical memory and can 
contain from 1 to 256 doubleword entries. Each doubleword entry, 
called a segment table entry (STE), is indexed by the segment 
number field of the VA. 

11-2 50-022 ROO 



The translation is controlled by two tables in main memory: the 
process segment table (PST) and the shared segment table (SST). 
The central processing unit (CPU) locates these tables using two 
special descriptor registers: the process segment table 
descriptor (PSTD), which points to the PST, and the shared 
segment table descriptor (SSTD), which points to the SST. The 
PSTD and SSTD are inititialized at the beginning of each task by 
the operating system. A description of the PSTD and SSTD 
registers is shown in Figure 11-2. 

8064 

PSTD: PROCESS SEGMENT TABLE DESCRIPTOR REGISTER 
0 6 7 14 15 

0 MAXIMUM 
SEGMENT 

SSTD: SHARED SEGMENT TABLE DESCRIPTOR REGISTER 
0 1 

0 MAXIMUM SSN 
(SHARED SEGMENT NUMBER) 

14 15 

PST TABLE ADDRESS/128 

SST TABLE ADDRESS/128 

Figure 11-2 PSTD and SSTD Registers 

31 

31 

The PST contains two types of entries: shared and private. 
Depending on whether the segment is shared or private, varying 
processes are implemented. In either case, the eight most 
significant bits of the VA are added to the PSTD, giving the 
resultant address of the hardware segment table entry (HSTE). 
The HSTE is read by the operating system to determine whether the 
segment is shared or private. If bit 8 is set, then the segment 
is shared and the entry points to an entry in the SST. 
Otherwise, the segment is private. 

In order to obtain a real address using a private segment, the 
least significant sixteen bits of the virtual address are added 
to the segment relocation field (SRF) (see Figure 11-3). 
However, if bit 8 is set and the segment is shared, then two 
further operations occur. In the first operation, the SSN is 
multiplied by 8 and added to the SSTD in order to obtain the 
shared hardware segment table entry. In the second operation, 
the SRF is added to the offset. The final result is a translated 
real address, as shown in Figure 11-4. 

50-022 ROO 11-3 



8065 

VIRTUAL ADDRESS 

0 78 15 16 19 31 

UNUSED SEGMENT I PAGE I OFFSET 

VIRTUAL PAGE 

PSTD - PROCESS SEGMENT TABLE DESCRIPTOR 
ERROR~ 8 IF SEGMENT> MAX. SEG 

0 6 7 14 15 31 

0 MAX.SEG 

I 
8 

ERROR #5 IF PAGE> SLF 

8 24 25 31 

SRF 0000000 

'PAGE I OFFSET 

+ 

REAL PAGE OFFSET 

8 1920 31 

TRANSLATED REAL ADDRESS 

4096•PAGE 

OFFSET { 
(0 .. 4095] 

SEGMENT TABLE 

MEMORY SEGMENT 

0 

RSN 

Figure 11-3 MAT Translation, Private Segment 

11-4 

SWSTE 

31 

50-022 ROO 



8066·1 

VIRTUAL ADDRESS 

0 78 1516 1920 31 

I UNUSED SEGMENT IPAGE I OFFSET 

VIRTUAL PAGE 

PSTD ·PROCESS SEGMENT TABLE DISCRIPTOR 
ERROR# 8 IF SEGMENT>MAX. SEG 

0 6 7 14 15 31 

0 MAX.SEG TABLE.ADDR/128 0000000 

SEGMENT looo 

ADDRESS OF HSTE 

8 

SSTD- SHARED SEGMENT TABLE DESCRIPTOR 
ERROR #7 IF SSN > MAX.SSN 
0 1 14 15 

11 
MAX.SSN TABLE.ADDR/128 

31 

8•SSN 

0000000 

SEGMENT TABLE 

SHARED SEGMENT TABLE 

0 

31 

31 

000 HSTE 

SWSTE 

31 

31 

00000 HSTE 

SSN 
+ 

.._ _______________ looo_~j swsTE 

ADDRESS OF HSTE 

8 

ERROR #5 IF PAGE> SLF 

8 16 19 20 24 25 31 

SRF I 00000 I 0000000 

I PAGE I OFFSET 

"-------+ 

REAL PAGE OFFSET 

8 1920 31 

TRANSLATED REAL ADDRESS 

OFFSET 
(0 .. 4095) 

MEMORY SEGMENT 
0 31 

•1---------------------~ 

Figure 11-4 MAT Translation, Shared Segment 

50-022 ROO 11-5 



11.3 ADDRESS SPACE 

This processor supports management of a 4Mb RA or 16Mb VA space. 
When RA or VA are manipulated, they are treated as 24-bit 
quantities. In general, 32-bit c.qpuantities are available to the 
processor for address caUculation. When intermediate 
calculations are complete, bits 0 through 7 of the 32-bit 
effective result are forced to zero or discarded, giving a 
calculated address 24 bits in length, which occupies bits 8 
through 31 of the 32-bit effective result. 

In some instances, an address consisting of less than 24 bits can 
be used by the processor. Such an address is extended to 24 bits 
in length by forcing the most significant bits to zero. 

11.3.1 Virtual Address (VA) 

The VA consists of three fields: segment, page and offset. The 
segment and page comprise the virtual page address, which is 
translated into a real page address by the MAT hardware. The 
offset portion is not affected by the translation. See Figure 
11-5 for a diagram of the VA. 

VIRTUAL PAGE ADDRESS 
8067 

0 31 

(UNUSED) SEGMENT PAGE OFFSET 

Figure 11-5 Virtual Address 

11.3.1.l Segment Field 

The VA contains a maximum program address (PA) space of 16Mb that 
is divided into 256 segments of 65,536 bytes each. A particular 
64kb segment is selected by the most significant eight bits of 
the VA to make up what is known as the segment field. 

For example, VA in the range Y'OOOOOO' to Y'OOFFFF' select 
segment 0, as the most significant eight bits of each address are 
zero. VA in the range Y'4F0000' to Y'4FFFFF' select segment 
4F1s (79 10 ), as the most significant eight bits of the address 
are 4F16 • 

11-6 50-022 ROO 



11.3.1.2 Offset and Page Field 

The offset and page fields are comprised of the least significant 
16 bits of the VA, and this value is used as a byte off set into 
the selected segment. The offset field of the VA has no special 
significance to the MAT except with respect to segment limit 
checking. 

11.3.2 Selection of Virtual or Physical Addressing 

Program status word (PSW) bit 21, the relocation/protection bit, 
controls selection of virtual or real addressing. When bit 21 is 
zero, the MAT is disabled. In this mode, all addresses generated 
are physical addresses. No segment table is used; hence, no 
level checking, access mode checking, etc., is performed. Bits 
10 and 11 of the PSW (the access level bits) are ignored in the 
physical mode. 

The user of the physical mode must be careful when modifying 
memory. The fact that a data area has been modified is not 
recorded by hardware. If it is desired to reflect the 
modification information in the segment tables, this must be done 
explicitly by the program running in the physical mode. 

When PSW bit 21 is set, the MAT is enabled. All addresses 
generated are VAs, which are translated to RAs using the segment 
tables. System software must ensure that segment table addresses 
have been specified via the Load Process Segment Table Descriptor 
(LPSTD) and Load Shared Segment Table Descriptor (LSSTD) 
instructions. 

When the MAT is enabled, bits 10 and 11 of the PSW indicate the 
level at which the program is running. When a VA is generated, 
the access level specified in the segment table entry (STE) is 
compared to the contents of bits 10 and 11 of the PSW. If the 
value of bits 10 and 11 is greater than or equal to the access 
level specified in the STE, then access to the segment is 
permitted; otherwise, a MAT fault occurs. System software should 
set· bits 10 and 11 of the PSW according to the level at which the 
process is running to ensure protection of segments. 

11.4 SHARED AND PRIVATE SEGMENTS 

There can be a number of processes resident in the system at any 
given time. Each of these processes has its own VA space 
requirements, reflected in the PST associated with that process. 
Consequently, there can be several PSTs in memory concurrently, 
although only one, the segment table for the active process, may 
be known to the MAT at any given time. 

50~022 ROO 11-7 



Segments of the VA space of a process that are used only by that 
process are called private segments. Other segments of the VA 
space that can be shared with other processes may exist; these 
segments are consequently called shared segments. Although the 
STE describing a shared segment may be replicated in the segment 
tables associated with each process using the segment, it is 
preferable to maintain a separate SST. For a shared segment, the 
private STE has an indication that the segment's description is 
not found in the PST, but rather in the SST. 

The data contained in a segment must be stored in contiguous 
locations in physical memory. This is called unpaged allocation. 
For unpaged allocation, each segment must be aligned to a 4,096 
byte boundary in physical memory. 

11.4.l Segment Table Descriptors (STDs) and Their Use 

The MAT is enabled only when PSW bit 21 is set. Prior to 
enabling the MAT, the locations and sizes of the PST and SST to 
be used must be identified to the system by loading the 
appropriate descriptor registers. These registers can be changed 
while the MAT is enabled. To specify the address of the PST to 
the system, the LPSTD instruction is used; to specify the address 
of the SST, the LSSTD instruction is used. 

11.4.l.l Format of a Segment Table Descriptor (STD) 

Bits 0 and 1 of the STD are reserved and must always be zero. 
Bits 2 through 14 specify the segment table size, minus 1. For 
example, if the segment table size were 4, this field would have 
a value of 3. For a PSTD, this field has a maximum value of 255 
(Y'FF'). For an SSTD, this field has a maximum value of 8,191 
( Y' lFFF') . 

Bits 15 through 31 of the STD specify the segment table RA, 
divided by 128. A segment table must be aligned to a 2-byte 
boundary in physical memory. For example, if a segment table 
starts at location Y'035F80', then bits 15:31 of the STD contain 
Y'06BF' (Y'035F80'; divided by 128). The value of 0 for this 
field is a reserved value and, therefore, no segment table can 
start at physical address 0. 

11.4.2 Setting the Virtual Address Space Size 

When a PSTD is loaded, its segment table size field determines 
the maximum valid VA. The maximum valid virtual address (MVVA) 
is defined by the following formula: 

MVVA (number of segment table entries-l)*(Y'lOOOO')+X'FFFF' 

11-8 50-022 ROO 



The MVVA includes address space for the zeroth STE. For example, 
if the specified segment table size in the STD is 5 (requiring 
six segment table entries), then VAs in the range Y'OOOOOO' to 
Y'05FFFF' are considered valid. If a VA is generated that is 
greater than the MVVA, a MAT fault occurs (see Section 11.6). 

Within the valid VA space, there may be segments that are not 
used. For example, a VA space of a process uses segments 0, 1, 
2 and 5, while segments 3 and 4 are unused in that process. In 
this case, the segment table must contain entries for segments 3 
and 4. To indicate that each of these segments is unused, its 
STE indicates that it is nonpresent and unused (see Section 
11.5.4). 

11. 5 SEGMENT TABLE ENTRIES (STEs) 

Figure 11-6 represents an STE. The STE consists of 64 bits; bits 
0:31 describe the hardware portion and bits 32:63 comprise the 
software entry. Entries in the SST and the PST have the same 
format with minor differences, which are detailed in the 
following sections. 

8068 

HSTE: HARDWARE SEGMENT TABLE ENTRY 
S = 1: SHARED SEGMENT, INDEX INTO SST 

0 1 2 3 5 6 7 8 9 14 15 

ACCESS 
R p D 

RolwRlEx 
\. ,,. 

R - REFERENCED 
P - PRESENCE 

LEVEL 
L 

D - DIRTY (WRITTEN) 
RD - READ ENABLE 
WR - WRITE ENABLE 
EX - EXECUTE ENABLE 

s 
1 

ACCESS - SWSTE. ACCESS AND PSTE. ACCESS 
LEVEL - MINIMUM (SWSTE. LEVEL, PSTE. LEVEL) 

SWSTE: SOFTWARE SEGMENT TABLE ENTRY 

PUN 

SHARED SEGMENT NUMBER 
0 <= SSN <= 16383 

RSN 

Figure 11-6 STE and SWSTE 

31 

000 

50-022 ROO 11-9 



11.5.1 Segment Table Entry (STE) Size 

An STE is a 64-bit quantity. Bits 0:31 are the HSTE .and bits 
32:63 are the SWSTE. The HSTE contains the necessary information 
to enable hardware to ·perform VA to RA translation. 

The SWSTE contains information used by system software to manage 
the private address space and keep track of segment history. 

11.5.2 Segment Tables 

The tables contain two words for each segment: the HSTE and the 
SWSTE. The HSTE is used by the microcode to translate the VA. 
The SWSTE is used only by the memory management program. 

11.5.3 Hardware Segment Table Entry (HSTE) 

Bits 0:31 of the STE contain the HSTE, which is comprised of 
several fields as shown in Figure 11-7. There are eight bits· in 
the HSTE for memory management. These bits allow the operating 
system to: 

• specify which tasks have access to a segment 

• specify acceptable operations on a segment, and 

• keep a record of whether a segment was accessed, written to or 
existing. 

Reserved fields of the HSTE must always contain zero. A list of 
the bits and their function follows. 

8069 

H::>I t: HARDWARE SEGMENT TABLE ENTRY 
S = 0: POINTER TO SEGMENT. (IN PST OR SST.) 

0 1 2 3 5 6 7 8 9 10 13 14 
ACCESS LEVEL s SLF SRF: SEGMENT ADDRESS/128 

A p D 
Ro}wRJex L 0 0 ... 15 0 

l SEGMENT RELOCATION FIELD 0000 

R - REFERENCED 
P- PRESENCE 

(SEGMENT MUST BE ALIGNED TO PAGE BOUNDARY.) 

D - DIRTY (WRITIEN) 
RD - READ ENABLE 
WR - WRITE ENABLE 
EX - EXECUTE ENABLE 

Figure 11-7 

S=O PRIVATE SEGMENT 
S=l SHARED SEGMENT (INDEX INTO SSN) 
SLF - SEGMENT LENGTH FIELD 

(MAXIMUM PAGE NUMBER IN SEGMENT) 

Bit Representation of HSTE 

31 

11-10 50-022 ROO 



Reference Bit (R) 

Bit 0 of the HSTE is called the reference (R) bit. This bit of 
the HSTE is set by the hardware when a reference is made to the 
segment by software; i.e., when an attempt is made to read, write 
or execute the contents of the segment. OMA I/O does not set the 
reference bit for the participating segment. 

Presence Bit (P) 

Bit 1 of the HSTE is the presence (P) bit. The presence bit is 
set when the segment described by the STE is in memory; it is 
zero when the segment is not present in memory. A segment is 
said to be present when any portion of the segment is in memory. 
When P=O, hardware ignores the contents of the rest of the HSTE 
(bits 2 through 31), but the R bit is set as a result of the 
attempted access. Referencing a segment that is not present 
(P=O) causes a fault (see Section 11.6.1.2). 

Dirty Bit (D) 

Bit 2 of the HSTE is called the dirty (D) bit. This bit of the 
HSTE is set by the hardware when a program modifies (writes into) 
a segment. This bit is not set by DMA I/O operations that modify 
the segment. If P=O, attempts to modify the segment do not 
affect the dirty bit. If the PST STE indicates that the segment 
is shared, the D bit is set in both the SST STE and the PST STE 
for a write. 

Access Mode Bits (A) 

Bits 3 through 5 of the HSTE are called the access mode (A) bits. 
These bits determine the allowed modes of access to the segment. 
The three modes of access to a segment are: read access, write 
access and execute access. If an attempt is made to access a 
segment in a manner not permitted by the setting of the access 
mode bits, a MAT fault occurs. For example, instructions cannot 
be fetched from a segment unless execute access is enabled. See 
Section 11.6 for a detailed definition of all MAT faults. Table 
11-1 defines access field settings and the types of access that 
are enabled. 

50-022 ROD 11-11 



TABLE 11-1 SEGMENT ACCESS FIELD SETTINGS 

BIT I ACCESS MODE FIELD SETTING I 

===•===••==•••==••====•••=•============•=•=====I 
3 Read enabled 0 = Read protected 

4 Write enable 0 = Write protected 

5 Execute enable 0 = Execute protected 
-~~-----~----~~~~~~~------------~--------------

Access Level Bits (L) 

Bits 6 to 7 of the HSTE are called the access level (L) bits. 
The L field is used in conjunction with bits 10 and 11 of the PSW 
to determine if a program can access a segment. If the value 
represented by the contents of PSW bits 10 and 11 is greater than 
or equal to the L bits, then access to the selected segment is 
allowed; otherwise, a fault occurs. The L bits are checked 
before the A bits. See Section 11.6 for a detailed description 
of MAT faults. 

Shared Segment Bit (S) 

Bit 8 of the HSTE is called the shared segment (S) bit. If this 
bit is zero, the MAT performs protection and relocation functions 
as defined for a private segment. The S bit must be zero for all 
STEs in the SST. 

If the s bit is set in a PSTE, the selected segment is a shared 
segment. In this case, the segment relocation field (SRF) of the 
PST STE is used as a byte offset into the SST. The SST STE found 
at the resulting addres·s is used by the ?'..AT in performing 
protection and relocation functions, as follows: the values of 
the A fields in the PST STE and the SST STE are ANDed to 
determine the allowed access modes; all other MAT protection and 
relocation functions are performed using data from the SST STE. 

Segment Limit Field (SLF) 

Bits 10 through 14 of the HSTE are called the SLF. The SLF 
indicates the size of a segment, according to the following 
formula: 

SLF (size of segment) divided by (4kb) - 1 

11-12 50-022 ROO 



For example, for a segment of size 4kb, the SLF would contain 0. 
When a VA is generated, the contents of bits 8:12 of the VA is 
compared to the SLF. If the SLF is less than this number, a MAT 
fault occurs (see Section 11.6). 

The granularity of memory allocation is 4kb (4,096). This means 
that memory must be allocated in 4kb units. 

Segment Relocation Field (SRF) 

Bits 15 through 31 of the HSTE are called the SRF. The 
interpretation of the SRF depends upon the setting of the S bit. 
If S is set in the PST, the PST SRF contains a byte offset into 
the SST at which the STE for the segment can be found. If the 
value contained in the PST SRF is greater than the size in bytes 
of the SST, a MAT fault occurs. See Section 11.4 for a detailed 
description of MAT faults. 

If s is zero in the PST, the SRF contains the RA of the segment 
in memory, divided by 128. For example, if the segment starts at 
RA Y'l46000', the SRF of the HSTE should contain X'28CO'. 

Note that for a shared segment, the least significant three bits 
of the SRF in a PST HSTE must be zero, as the indicated SST HSTE 
is aligned to a doubleword boundary. The least significant five 
bits must be zero for the SRF in all other cases, as the SRF is 
the address of a segment aligned to a 4kb boundary divided by 28. 
If the MAT attempts to use an SRF that has a one in any of these 
trailing bits, the results are undefined. 

11.5.4 Software Segment Table Entry (SWSTE) 

Bits 32:63 of the STE are called the SWSTE. These bits are used 
by software in managing the VA space and have no hardware 
significance to the processor. 

The information presented in this section details one possible 
scheme for software management of memory. The fullword SWSTE is 
available for any sqftware memory management scheme. 

1. Usage mode bits - Bits 0 and 1 of the SWSTE (bits ·32 and 33 
of the STE) are called the usage mode (U) bits. In 
conjunction with the P bit in the HSTE, these bits indicate 
the state of each segment. 

50-022 ROO 
, , , ":> 
J..J. - J..:> 



Possible states of a segment are: 

BIT STATUS p u 

Unused 0 00 
Used 0 01 
Loading 0 10 
Unloading 0 11 
Active 1 00 
I/O ongoing 1 01 
Unload pending 1 10 

• Unused state - If a segment is logically an invalid portion 
of the VA space of a process, then it is said to be in the 
unused state. For example, if a process has data in 
segments 0, 1, 2 and 5, but has no data in segments 3 and 
4, references to segments 3 and 4 are invalid. Since 
segments 3 and 4 must each have an STE, the fact that these 
segments represent an invalid portion of the VA space · of 
the process is indicated by setting P=O and U=O for the 
unused state. Since P=O in the HSTE, any references to 
such a segment cause a MAT fault. The fault handler, using 
the U field, may determine that the fault was caused by a 
reference to an invalid portion of the private VA space and 
can take appropriate action. 

• Used state - If a segment is logically a valid part of the 
private VA space, but is not physically present in memory, 
that segment is said to be in the used state. When a 
reference is made to such a segment, a MAT fault occurs 
since P=O in the HSTE. The fault handler, using the U 
field, may determine that the fault was caused by a 
reference to a used segment, and then take action to load 
the segment. 

When a used segment is to be loaded, the segment state is 
changed by software from used to loading as explained in 
the next paragraph. 

• Loading state - If a segment that is logically part of the 
VA space of the process is being moved from backing store 
into physical memory, it is said to be in the loading 
state. If a reference is made to a segment that is in the 
loading state, a fault occurs since P=O in the HSTE. The 
fault handler normally places the process that made the 
reference into a wait state, pending completion of the 
loading operation. 

11-14 

When a segment has successfully been loaded, software 
normally changes its state from loading to active. At this 
point, any process that faulted because it made reference 
to the segment in the loading state and was consequently 
put into a wait state, may resume execution. 

50-022 ROD 



• Unloading state - When a segment that is logically part of 
the VA space of the process is being temporarily removed 
from physical memory and copied to back-up store, it is 
said to be in the unloading state. Any reference to such 
a segment causes a MAT fault, because P=O in the HSTE. 
When a MAT fault occurs and the U field indicates that it 
was caused by a segment in an unloading state, the fault 
handler has a choice of actions it can take. For example, 
if the segment was unloaded to make physical memory space 
available, the process that made the reference can be put 
into a wait state. When the unload completes, the 
physical memory that the segment occupies may be retained, 
and the segment put into an active state. If it is 
desired to give the physical memory that the segment 
occupied to another segment, then the unloaded segment 
should be put into the used state and the fault should be 
treated in the same manner as faults that occur in a used 
state. 

In some systems, a segment might be unloaded because it is 
being removed from physical memory and is also being 
removed logically from the VA space of the process. A 
dynamically attached and detached buff er segment is an 
example of such a segment. If a segment in an unloading 
state is being logically removed from the VA of the 
process, the segment enters an unused state at the 
completion of the unloading operation. Faults generated 
by references to such segments are normally errors. 

• Active state - When a segment is logically in the VA space 
of a process, physically resident in memory, and free to 
be used by the process within the restrictions placed by 
the A and L fields, it is said to be in the active state. 
The active state is the normal state for a segment that is 
being used by a process. 

• I/O ongoing state When I/O operations are being 
performed upon the contents of an active segment, the 
segment is put into the I/O ongoing state. The physical 
memory occupied by the segment cannot be deallocated and 
reassigned to another segment. The segment should not be 
unloaded until all I/O operations terminate. 

A segment should be in I/O ongoing state until all I/O 
operations performed upon the contents of the segment have 
been completed. At this point, the segment can be 
returned to the active state. 

50-022 ROO 11-15 



• Unload pending state - If it is determined that a segment 
is to be unloaded and the segment is in the I/O ongoing 
state, the segment must be placed in an unload pending 
state, which indicates that it is to be unloaded when all 
I/O operations terminate. When the last I/O operation 
completes, the segment can be placed in an unloading state 
and can then be unloaded. If the decision to unload the 
segment is changed while the segment is in an unload 
pending state, the state should be changed back to either 
I/O ongoing, if there are still outstanding I/O 
operations, or active, if all I/O operations have 
completed. · 

2. Reference history bits - Bits 34 and 35 of the STE (bits 2 
and 3 of the SSTE) are called the reference history (R) bits. 
The H field is used to manage replacement algorithms. At 
given intervals, the state of the R and D bits in the HSTE 
are recorded in the H field and are reset in the HSTE. 

The state of the R bit is retained only between intervals. 
For example, if the R bit is reset at the time it is 
examined, the H field will indicate that the last state of 
the R bit was reset (0). In contrast to this, once D has 
been set in the HSTE, that fact is retained in the H field 
until either the segment is unloaded or a copy of the 
modified state of the segment is made. 

The H field is comprised of two bits. The most significant 
bit of the H field will always be set equal to the value of 
R at the time the HSTE was last scanned and reset. 

The least significant bit of the H field will be an OR of its 
previous contents and the setting of D in the HSTE the last 
time D was scanned. This results in four possible values for 
the H field: 

• NO reference to the segment in last interval, unmodified 
(H=OO) 

• Reference to the segment in last interval, unmodified 
( H= 10) 

• Reference to the segment in last interval, modified (H=ll) 

• No reference to the segment in last interval, modified (at 
some previous time) (H=Ol) 

3. Reserved field - Bits 36 and 37 of the STE (bits 4 and 5 of 
the SWSTE) are reserved. These bits must be set to 0. 

11-16 50-022 ROO 



4. Disk address - Bits 38 through 63 of the STE (bits 6 through 
31 of the SWSTE) contain the disk address (DA) field. This 
field contains two subfields: the paging unit number (PUN), 
which is contained in bits 38 through 43 of the STE (bits 6 
through 11 of the SWSTE), and the relative sector number 
(RSN), which is contained in bits 44 through 63 of the STE 
(bits 12 through 31 of the SWSTE). A paging unit is a 
randomly accessible device that can be read from or written 
to. This unit is used to load and unload segments. The PUN 
is used as an index into a page device table (PDT), which is 
used to translate the PUN into a physical device. The PDT 
entry contains a physical device address and a device 
starting sector. The RSN in the SWSTE is added to the 
starting sector specified in the PDT entry to compute the 
actual sector number at which segment can be found. 

There can be up to 32 paging units used in a system at any 
given time. The PDT allows independence of the logical 
paging unit from the physical paging unit. For example, a 
given physical device could be divided into multiple paging 
units or several physical devices could be combined to be a 
single paging unit. , 

11. 6 MEMORY ADDRESS TRANSLATOR (MAT) FAULTS 

Previous sections of this manual have stated that certain 
conditions result in MAT faults. A fault is an indication that 
some exception condition has occurred and that system software 
should take some action in response. Some faults (such as access 
violation) are indicative of error, while other faults (such as 
presence fault) can be used for management of the software 
system. 

11.6.1 Conditions that Cause Memory Address Translator (MAT) 
Faults 

The conditions that cause MAT faults to occur are described in 
the· following sections. 

11.6.1.1 Process Segment Table (PST) or Shared Segment Table 
(SST) Size Exceeded Fault 

The LPSTD or LOPS instruction defines 
11.7.1). If an address is generated that 
MVVA, a PST size exceeded fault occurs. 

the MVVA (see Section 
is greater than the 

The LSSTD instruction defines a size for the SST. If an STE in 
the PST specifies an SST offset greater than the size of the SST, 
an SST size exceeded fault occurs. 

50-022 ROO 11-17 



If the 'W/VA is exceeded for the PST, then no reference to memory 
is made. If the fault is caused by exceeding the valid size of 
the SST, then only the PST will have been referenced. 

11.6.1.2 Nonpresence Fault 

The nonpresence fault occurs when reference is made to an STE 
having its presence bit reset (0). The VA that caused the fault 
is returned to systems software. The R bit of the STE is set, 
but the contents of the segment and the D bit in the STE are not 
modified as a result of a reference to a nonpresent segment. 

If the nonpresent segment can be loaded, the instruction that 
caused the fault may be reexecuted after the segment is loaded. 
For certain instructions, software intervention may be required 
to allow correct reexecution. Section 11.6.4 contains a detailed 
description of how to recover from a nonpresence fault. 

11.6.1.3 Access Level Fault 

An access level fault occurs when the access level specified by 
bits 10 and 11 of the PSW is less than the access level specified 
in an STE to which a reference is made. The R bit of the 
referenced STE is set; the contents of the segment and the D bit 
in the STE are not modified as a result of a reference to the 
segment, which causes an access level fault. 

If system software can correct the 
instruction may be reexecuted with 
Section 11.6.4 for details). 

fault, the faulting 
certain restrictions (see 

11.6.1.4 Access Mode Faults 

There are three access mode faults: 
and execute access fault. Each 
access is attempted to a segment 
attempted mode of access. 

read 
fault 
that 

access, write access 
occurs when a mode of 
does not allow the 

The R bit of the referenced STE is set; but the contents of the 
segment and the D bit in the STE are not modified as the result 
of an attempted access resulting in the access mode fault. 

If system software can correct the fault, the instruction can be 
reexecuted with certain restrictions (see Section 11.6.4 for 
details). 

11-18 50-022 ROD 



11.6.1.5 Segment Limit Fault 

A segment limit fault occurs when the value contained in bits 
8:12 of.a VA is greater than the value specified in the SLF field 
of the HSTE. The R bit of the STE is set; but the contents of 
the segment and the D bit in the STE are not modified as the 
result of an attempted access resulting in a segment limit fault. 

If the system software can correct the fault, then the 
instruction that caused the fault may be reexecuted with certain 
restrictions (see Section 11.6.4 for details). 

11.6.2 Fault Precedence 

While some faults can be physically checked for in parallel by 
the hardware, there is a logical priority in which faults are 
checked (descending order): 

• Segment table size exceeded 

• Nonpresent segment 

• Segment limit violation 

• Access level violation 

• Access mode violation 

Detection of any of the listed MAT faults causes the user 
instruction to be aborted immediately. The reason for the abort 
is reported to system software as detailed in Section 11.4.3. 
Only one MAT fault can occur for a single memory operation. 

11.6.3 Memory Address Translator (MAT) Fault Handling Routine 

When a MAT fault occurs, the MAT fault handling routine pointed 
to by the MAT fault handler new PSW (physical location X'000090') 
is entered. 

The PSW in effect at the time the fault occurs is placed in 
registers 14 and 15 of the set selected by the MAT fault handler 
new PSW. The LUC of the old PSW (register 15) contains the 
address of the instruction that caused the fault. 

50-022 ROO 11-19 



Register 13 of the selected set 
indicate the reason for the fault. 

is loaded with a value 
The possible values are: 

VALUE 

0 
1 
2 
3 
4 
5 
6 
7 
8 

MEANING 

Reserved code 
Access mode fault - execute attempted 
Access mode fault - write attempted 
Access mode fault - read attempted 
Access level fault 
SLF 
Nonpresent segment fault 
SST size exceeded 
PST size exceeded 

to 

Register 12 of the selected set is loaded with the VA that caused 
the fault. 

If the fault occurred during execution of the Load Multiple (LM) 
instruction, the calculated address of the start of the data 
block is placed in register 11 of the selected set. 

11.6.4 Reexecution of Faulting Instructions 

In general, an instruction that caused a correctable MAT fault 
can simply be reexecuted after the fault is corrected. 

The LM instruction in some cases cannot simply be reexecuted, but 
must be simulated. When an LM instruction faults, register 11 of 
the set specified by the MAT interrupt new PSW is loaded with the 
VA calculated by the hardware as the effective second operand 
address of the instruction. If that address is the same as the 
VA that caused the fault (contained in register 12), then the 
instruction can be reexecuted once the fault has been corrected; 
no registers were modified by the LM instruction. 

If the addresses in register 11 and register 12 are not equal, at 
least one register was modified by the LM instruction. Once the 
fault has been corrected, system software should build and 
execute an instruction sequence to load the required registers, 
using the calculated VA in register 11. 

If the addresses are not equal, then the difference in the 
addresses, D, should be computed. The last register modified, M 
= (D/4) - 1 + Rl, should be calculated. If M is less than the 
contents of the X2 field in an RXl or RX2 instruction, or is less 
than the contents of both the FX2 and SX2 fields in an RX3, the 
instruction may be reexecuted. If this is not the case, then 
system software must build an instruction sequence to load the 
remaining registers from the appropriate memory locations. The 
location portion of the old PSW should then be incremented by the 
length of the faulted instruction. At this point, normal 
execution can be resumed by loading the old PSW. 

11-20 50-022 ROO 



11.6.5 Effect of System Initialization on the Memory Address 
Translator (MAT) 

When the initialize switch (INIT) on the display panel is 
depressed or the processor is powered up, all segmentation, 
relocation, protection and MAT interrupts are disabled regardless 
of the state of bit 21 in the current PSW. The contents of the 
SST and PST descriptor registers must be restored by software 
after power fail. 

The MAT remains disabled until an LPSTD instruction is issued. 
At this time, the MAT is enabled or remains disabled, according 
to the state of bit 21 of the current PSW. 

11.7 MEMORY MANAGEMENT INSTRUCTIONS 

Instructions are provided to control the MAT. These instructions 
are: 

LP STD Load Process Segment Table Descriptor 

LS STD Load Shared Segment Table Descriptor 

50-022 ROO 11-21 



11.7.l Load Process Segment Table Descriptor (LPSTD) 

Assembler Notation 

LP STD 
LP STD 

D2(X2) 
A2(FX2,SX2) 

Operation: 

Opcode 

DFl 
DFl 

Format 

RX3 
RX3 

The operand specifies the address of the fullword PSTD. This 
descriptor is loaded and its contents define the PST to be used 
in VA to RA translation when bit 21 of the PSW is set. 

Condition Code: 

Unchanged 

Programming Notes: 

This instruction is a privileged instruction. 

The operand address must be aligned to a fullword boundary. 

A PSTD can be loaded while PSW bit 21 is set or zero. 

LPSTD is an extended PSF mnemonic. 

11-22 50-022 ROO 



11.7.2 Load Shared Segment Table Descriptor (LSSTD) 

Assembler Notation 

LS STD 
LS STD 

D2(X2) 
A2(FX2,SX2) 

Operation: 

Opcode 

DF2 
DF2 

Format 

RX1,RX2 
RX3 

The operand specifies the address of the fullword SSTD. This 
descriptor is loaded and its contents define the SST to be used 
in virtual to physical address translation when bit 21 of the PSW 
is set. 

Condition Code: 

Unchanged 

Programming Notes: 

This instruction is a privileged instruction. 

The operand address must be aligned to a fullword boundary. 

An SSTD can be loaded while PSW bit 21 is set or zero. 

LSSTD is an extended PSF mnemonic. 

Following an LSSTD instruction, the PSTD must be loaded, using 
the LPSTD or IDPS instruction, before attempting MAT translation 
with the newly defined shared segment table. 

50-022 ROO 11-23 



635-6 

MsD-

LSD 
0 

2 

3 

4 

5 

6 

8 

9 

A 

B 

c 

0 

E 

F 

0 

4 

BALR 

4 
BTCR 

4 
BFCR 

NR 

CLR 

OR 

XR 

LR 

CR 

AR 

SR 

MHR 

OHR 

1 

SRLS 

SLLS 

CHVR 

1 
LPER 

LGER 
1 

LGDR 
1 

LCER 
1 

LPSWR . 

MR 

DR 

LUR 
1 

LWR 
1 

2 3 

BTBS 

BTFS 

2 
BFBS PBR 

1 
BFFS LPDR 

LIS EXHR 

LCS 

AIS 

SIS LCDR 
1 

LER LOR 
1 1 

CEA CDR 
1 1 

AER ADR 
1 1 

SER SOR 
1 1 

MER MOR 

1 1 

DER DOR 
1 1 

FXR FXOR 
1 1 

FLR FLOR 
1 1 

1. FLOATING POINT INSTRUCTION 

4 5 

4 3 
STH ST 

4 3 
BAL AM 

4 
BTC 

4 
BFC 

4 3 
NH N 

4 3 
CLH CL 

4 3 
OH 0 

4 3 
XH x 

4 3 
LH L 

4 3 
CH c 

4 3 
AH A 

4 3 

SH s 

4 3 
MH M 

4 3 
OH 0 

4 
LU CRC12 

1 

4 
LW CRC16 

1 

2. HIGH-SPEED DATA HANDLING INSTRUCTION 

6 

STE 

AHM 

PB 

LRA 

ATL 

ABL 

RTL 

RBL 

LE 

CE 

AE 

SE 

APPENDIX A 
OPCODE MAP 

7 8 9 

3 3 
STD SRHLS 

1 1 

4 3 
STME SLHLS 

1 

2 3 3 
LME STDE STBR 

4 1 1 

3 4 
LHL LBR 

3 3 
TBT LED EXBR 

1 

3 
SBT EPSR . 

3 
RBT 

3 3 
CBT LOE 

1 

3 J 
LO BAK WHR 

1 1 . . 
3 3 

co AHR 
1 1 . 
3 3 

AD WDR 
1 1 . 
3 3 

SD RDA 
1 1 . 
3 3 5 

ME MD RXRX 
1 1 

3 3 
DE DD SSA 

1 1 . 
5 3 

STBP STMD OCR 
1 . 

5 3 
LPB LMD 

1 

3. SECOND OPERAND ADDRESS MUST BE FULLWORD ALIGNED 
4. SECOND OPERAND ADDRESS MUST BE HALFWORD ALIGNED 
5. USES SCRATCHPAD REGISTERS 
' PRiViU:GED INSTRUt;TION 

50-022 ROO 

A B c D E F 

4 3 4 
BXH STM TS 

4 3 3 
BXLE LM SVC 

3 
LPSW STB SINT . . 

3 
THI LB SCP Tl . 

LEDR NHI CLB NI 
1 . 

LEGR CLHI AL CLI 

1 . 
LDGR OHi LA 01 

1 

3 
LDER XHI TLATE XI 

1 

4 
LHI ~H LI 

4 
CHI RH Cl . 
AHi WO RRL Al . 
SHI RO ALL SI . 
SAHL SAL 

SLHL SS SLL . 
SAHA oc SRA . 
SLHA PSF SLA . 

A-1 



636-1 

RXRX SUB FUNCTIONS 

MSD--+ 

0 1 2 3 

4 5 6 7 IMMEDIATE LENGTH SECOND OPERAND 

8 9 A B IMMEDIATE LENGTH FIRST OPERAND 

c D E F IMMEDIATE LENGTH BOTH OPERANDS 

LSD 

0 MVTU 

w 1 MOVE MOVEP 
0 
0 
(.) 

z 
0 2 CPAN CPA NP USE SCRATCHPAD REGISTERS 
j:: 
(.) 
z 
:::::> 
u. 3 PMV PMVA 

4 UMV UMVA 

PRIVILEGED SYSTEM FUNCTIONS (PSF) 

OP-CODE MNEMONIC MEANING 

DFO REL READ ERROR LOGGER 
DFl LPSTD LOAD PROCESS SEGMENT TABLE DESCRIPTOR 
DF2 LSSTD LOAD SHARED SEGMENT TABLE DESCRIPTOR 
DF3 STPS SAVE PROCESS STATE 
DF4 LOPS LOAD PROCESS STATE 
DFS ISSV SAVE INTERRUPTIBLE STATE 
DF6 ISRST RESTORE INTERRUPTIBLE STATE 
DF7 XSTB STORE BYTE WITHOUT ECC 
DF8 RMVF RESET MEMORY VOLTAGE FAILURE 

A-2 50-022 ROO 



MNEMONIC 

A 
ABL 
AD 
ADR 
AE 
AER 
AH 
AHI 
AHM 
AI 
AIS 
AL 
AM 
AR 
ATL 

B 
BAL 
BALR 
BC 
BCR 
BCS 
BCS 
BE 
BER 
BES 
BES 
BFBS 
BFC 
BFCR 
BFFS 
BL 
BLR 
BLS 
BLS 
BM 
BMR 
BMS 
BMS 
BNC 
BNCR 
BNCS 
BNCS 
BNE 

50-022 ROO 

APPENDIX B 
INSTRUCTION SUMMARY - ALPHABETICAL BY MNEMONIC 

OPCODE 

5A 
65 
7A 
3A 
6A 
2A 
4A 
CA 
61 
FA 
26 
05 
51 
OA 
64 

430 
41 
01 
428 
028 
208 
218 
433 
033 
223 
233 
22 
43 
03 
23 
428 
028 
208 
218 
421 
021 
201 
211 
438 
038 
228 
238 
423 

INSTRUCTION 

Add 
Add to Bottom of List 
Add DPFP 
Add DPFP Register 
Add SPFP 
Add SPFP Register 
Add Halfword 
Add Halfword Immediate 
Add Halfword to Memory 
Add Immediate 
Add Immediate Short 
Auto load 
Add to Memory 
Add Register 
Add to Top of List 

Branch Unconditional 
Branch and Link 
Branch and Link Register 
Branch on Carry 
Branch on Carry Register 
Branch on carry Short (Backward) 
Branch on Carry Short (Forward) 
Branch on Equal 
Branch on Equal Register 
Branch on Equal Short (Backward) 
Branch on Equal Short (Forward) 
Branch on False Condition Backward Short 
Branch on False Condition 
Branch on False Condition Register 
Branch on False Condition Forward Short 
Branch on Low 
Branch on Low Register 
Branch on Low Short (Backward) 
Branch on Low Short (Forward) 
Branch on Minus 
Branch on Minus Register 
Branch on Minus Short (Backward) 
Branch on Minus Short (Forward) 
Branch on No Carry 
Branch on No Carry Register 
Branch on No Carry Short (Backward) 
Branch on No Carry Short (Forward) 
Branch on Not Equal 

B-1 



MNEMONIC 

BNER 
BNES 
BNES 
BNL 
BNLR 
BNLS 
BNLS 
BNM 
BNMR 
BNMS 
BNMS 
BNO 
BNOR 
BNOS 
BNOS 
BNP 
BNPR 
BNPS 
BNPS 
BNZ 
BNZR 
BNZS 
BNZS 
BO 
BOR 
BOS 
BOS 
BP 
BPR 
BPS 
BPS 
BR 
BRK 
BS 
BS 
BTBS 
Mml"'f 
01\-

BTCR 
BTFS 
BXH 
BXLE 
BZ 
BZR 
BZS 
BZS 

c 
CBT 
CD 
CDR 
CE 
CER 
CH 
CHI 

B-2 

OPCODE 

023 
203 
213 
438 
038 
228 
238 
431 
031 
221 
231 
434 
034 
224 
234 
432 
032 
222 
232 
423 
023 
203 
213 
424 
024 
204 
214 
422 
022 
202 
212 
030 
88 
220 
230 
20 
42 
02 
21 
co 
Cl 
433 
033 
223 
233 

59 
77 
79 
39 
69 
29 
49 
C9 

INSTRUCTION 

Branch on Not Equal Register 
Branch on Not Equal Short (Backward) 
Branch on Not Equal Short (Forward) 
Branch on Not Low 
Branch on Not Low Register 
Branch on Not Low Short (Backward) 
Branch on Not Low Short (Forward) 
Branch on Not Minus 
Branch on Not Minus Register 
Branch on Not Minus Short (Backward) 
Branch on Not Minus Short (Forward) 
Branch on No Overflow 
Branch on No Overflow Register 
Branch on No Overflow Short (Backward) 
Branch on No Overflow Short (Forward) 
Branch on Not Plus 
Branch on Not Plus Register 
Branch on Not Plus Short (Backward) 
Branch on Not Plus Short (Forward) 
Branch on Not Zero 
Branch on Not Zero Register 
Branch on Not Zero Short (Backward) 
Branch on Not Zero Short (Forward) 
Branch on Overflow 
Branch on Overflow Register 
Branch on Overflow Short (Backward) 
Branch on Overflow Short (Forward) 
Branch on Plus 
Branch on Plus Register 
Branch on Plus Short (Backward) 
Branch on Plus Short (Forward) 
Branch Unconditional Register 
Breakpoint 
Branch Unconditional Short (Backward) 
Branch Unconditional Short (Forward) 
Branch on True Condition Backward Short 
Branch on True Condition 
Branch on True Condition Register 
Branch on True Condition Forward Short 
Branch on Index High 
Branch on Index Low or Equal 
Branch on Zero 
Branch on Zero Register 
Branch on Zero Short (Backward) 
Branch on Zero Short (Forward) 

Complement Bit 
Compare 
Compare Double Floating Point 
Compare Double Floating Point Register 
Compare Floating Point 
Compare Floating Point Register 
Compare Halfword 
Compare Halfword Immediate 

50-022 ROO 



MNEMONIC 

CHVR 
CI 
CL 
CLB 
CLH 
CLHI 
CLI 
CLR 
CPAN 
CPANP 
CR 
CRC12 
CRC16 

D 
DD 
DOR 
DE 
DER 
DH 
OHR 
DR 

EPSR 
EXBR 
EXHR 

FLR 
FLOR 
FXDR 
FXR 

ISRST 
ISSV 

LA 
LB 
LBR 
LCDR 
LCER 
LCS 
LO 
LOE 
LOER 
LDGR 
LOPS 
LOR 
LE 
LED 
LEDR 
LEGR 
LER 
LH 
LHI 

50-022 ROO 

OPCODE 

12 
F9 
55 
04 
4S 
cs 
FS 
OS 
BC/02 
BC/22 
09 
5E 
SF 

50 
70 
30 
6D 
2D 
40 
OD 
10 

95 
94 
34 

2F 
3F 
3E 
2E 

DF6 
DFS 

E6 
03 
93 
37 
17 
25 
78 
87 
A7 
A6 
DF4 
38 
68 
84 
A4 
AS 
28 
48 
CB 

INSTRUCTION 

Convert Halfword Value Register 
Compare Immediate 
Compare Logical 
Compare Logical Byte 
Compare Logical Halfword 
Compare Logical Halfword Immediate 
Compare Logical Immediate 
Compare Logical Register 
Compare Alphanumeric 
Compare Alphanumeric and Pad 
Compare Register 
Cyclic Redundancy Check Modulo 12 
Cyclic Redundancy Check Modulo 16 

Divide 
Divide Double Precision Floating Point 
Divide Double Floating Point Register 
Divide Floating Point 
Divide Floating Point Register 
Divide Halfword 
Divide Halfword Register 
Divide Register 

Exchange Program Status Register 
Exchange Byte Register 
Exchange Halfword Register 

Float Register 
Float Register Double Precision 
Fix Register Double Precision Floating Point 
Fix Register 

Interruptible State Restore 
Interruptible State Save 

Load Address 
Load Byte 
Load Byte Register 
Load Complement Double Floating Register 
Load Complement Floating Point Register 
Load Complement Short 
Load Double Precision Floating Point 
Load Double Floating Point From Single 
Load Double From Single Register 
Load Double From General Register 
Load Process State 
Load Double Precision Register 
Load Floating Poin~ 
Load Floating From Double Precision 
Load Floating From Double Register 
Load Floating From General Register 
Load Floating Point Register 
Load Halfword 
Load Halfword Immediate 

B-3 



MNEMONIC 

LHL 
LI 
LIS 
I.lei 
LMD 
I.HE 
LPB 
LPDR 
LPER 
LP STD 
LPSW 
LPSWR 
LR 
LRA 
LS STD 
LU 
LUR 
LW 

LWR 

M 
MD 
MDR 
ME 
MER 
MR 
MHR 
MOVE 
MOVEP 
MR 

N 
NH 
NHI 
NI 
NOP 
NOPR 
NR 

0 
oc 
OCR 
OH 
OHI 
OI 
OR 

PB 
PBR 
PMV 
PMVA 

8-4 

OPCODE 

73 
F8 
24 
Dl 
7F 
72 
6F 
33 
13 
DFl 
C2 
18 
08 
63 
DF2 
4E 
lE 
4F 

lF 

SC 
7C 
3C 
6C 
2C 
4C 
oc 
SC/01 
SC/21 
lC 

54 
44 
C4 
F4 
420 
020 
04 

56 
DE 
9E 
46 
CG 
F6 
06 

62 
32 
8C/03 
SC/23 

INSTRUCTION 

Load Halfword Logical 
Load Immediate 
Load Immediate Short 
Load Multiple 
Load Multiple Double Precision Floating Point 
Load Multiple Floating Point 
Load Packed Binary 
Load Positive Double Floating Register 
Load Positive Floating Register 
Load Process Segment Table Description 
Load Program Status Word 
Load Program Status Word Register 
Load Register 
Load Real Address 
Load Shared Segment Table Descriptor 
Load Unnormalized Floating Point 
Load Unnormalized Floating Point Register 
Load Unnormalized Double Precision Floating 
Point 
Load Unnormalized Double Precision Floating 
Point Register 

Multiply 
Multiply Double Floating Point 
Multiply Double Floating Register 
Multiply Floating Point 
Multiply Floating Point Register 
Multiply Halfword 
Multiply Halfword Register 
Move 
Move and Pad 
Multiply Register 

AND 
AND Halfword 
AND Halfword Immediate 
ANU Immediate 
No Operation 
No Operation Register 
AND Register 

OR 
Output Command 
Output Command Register 
OR Halfword 
OR Halfword Immediate 
OR Immediate 
OR Register 

Process Byte 
Process Byte Register 
Pack and Move 
Pack and Move Absolute 

50-022 ROO 



MNEMONIC 

RBL 
RBT 
RD 
RDR 
REL 
RH 
RHR 
RLL 
RMVF 
RRL 
RTL 

s 
SBT 
SCP 
SD 
SOR 

SE 
SER 
SH 
SHI 
SI 
SINT 
SIS 
SLA 
SLHA 
SLHL 
SLHL 
SLL 
SLLS 
SR 
SRA 
SRHA 
SRHL 
SRHLS 
SRL 
SRLS 
SS 
SSR 
ST 
STB 
STBP 
STBR 
STD 
STDE 
STE 
STH 
STM 
STMD 

STME 
STPS 
SVC 

50-022 ROD 

OPCODE 

67 
76 
DB 
9B 
DFO 
09 
99 
EB 
DF8 
EA 
66 

SB 
75 
E3 
7B 
3B 

GB 
2B 
4B 
CB 
FB 
E2 
27 
EF 
CF 
CD 
91 
ED 
11 
OB 
EE 
CE 
cc 
90 
EC 
10 
DD 
90 
50 
02 
GE 
92 
70 
82 
60 
40 
DO 
7E 

71 
DF3 
El 

INSTRUCTION 

Remove from Bottom of List 
Reset Bit 
Read Data 
Read Data Register 
Read Error Logger 
Read Halfword 
Read Halfword Register 
Rotate Left Logical 
Reset Memory Voltage Fault 
Rotate Right Logical 
Remove from Top of List 

Subtract 
Set Bit 
Simulate Channel Program 
Subtract Double Precision Floating Point 
Subtract Register Double Precision Floating 
Point 
Subtract Floating Point 
Subtract Floating Point Register 
Subtract Halfword 
Subtract Halfword Immediate 
Subtract Immediate 
Simulate Interrupt 
Subtract Immediate Short 
Shift Left Arithmetic 
Shift Left Halfword Arithmetic 
Shift Left Halfword Logical 
Shift Left Halfword Logical Short 
Shift Left Logical 
Shift Left Logical Short 
Subtract Register 
Shift Right Arithmetic 
Shift Right Halfword Arithmetic 
Shift Right Halfword Logical 
Shift Right Halfword Logical Short 
Shift Right Logical 
Shift Right Logical Short 
Sense Status 
Sense Status Register 
Store 
Store Byte 
Store Binary as Packed 
Store Byte Register 
Store Double Precision Floating Point 
Store Double Precision in Single Precision 
Store Floating Point 
Store Halfword 
Store Multiple 
Store Multiple Double Precision Floating 
Point 
Store Multiple Floating Point 
Save Process State 
Supervisor Call 

B-5 



MNEMONIC 

TBT 
THI 
TI 
TIATE 
TS 

UMV 
UMVA 

WD 
WDR 
WH 
WHR 

x 
XH 
XHI 
XI 
XR 
XSTB 

B-6 

OPCODE 

74 
C3 
F3 
E7 
EO 

8C/04 
8C/24 

DA 
9A 
D8 
98 

57 
47 
C7 
F7 
07 
DF7 

INSTRUCTION 

Test Bit 
Test Halfword Immediate 
Test Immediate 
Translate 
Test and Set 

Unpack and Move 
Unpack and Move Absolute 

Write Data 
Write Data Register 
Write Halfword 
Write Halfword Register 

Exclusive-OR 
Exclusive-OR Halfword 
Exclusive-OR Halfword Immediate 
Exclusive-OR Immediate 
Exclusive-OR Register 
Store Byte, No ECC 

50-022 ROO 



APPENDIX C 
INSTRUCTION SUMMARY - NUMERICAL BY OPCODE 

OPCODE MNEMONIC INSTRUCTION 

* 
+ 

01* 
02* 
03* 
04 
05 
06 
07 
08 
09 

OA 
OB 
OC* 
OD* 

10 
11 
12 
13+ 
15+ 
16+ 
17+ 
18 

lC* 
10* 
lE+ 
lF+ 

20* 
21* 
22* 
23* 
24 
25 
26 
27 
28+ 
29+ 

BALR 
BTCR 
BFCR 
NR 
CLR 
OR 
XR 
LR 
CR 

AR 
SR 
MHR 
OHR 

SRLS 
SLLS 
CHVR 
LPER 
LGER 
LGDR 
LCER 
LPSWR 

MR 
DR 
LUR 
LWR 

BTBS 
BTFS 
BFBS 
BFFS 
LIS 
LCS 
AIS 
SIS 
LER 
CER 

Branch and Link Register 
Branch on True Condition Register 
Branch on False Condition Register 
AND Register 
Compare Logical Register 
OR Register 
Exclusive OR Register 
Load Register 
Compare Register 

Add Register 
Subtract Register 
Multiply Halfword Register 
Divide Halfword Register 

Shift Right Logical Short 
Shift Left Logical Short 
Convert to Halfword Value Register 
Load Positive Floating Point 
Load General Register from Floating 
Load General from Double Floating 
Load Complement Floating Register 
Load Program Status Word Register 

Multiply Register 
Divide Register 
Load Unnormalized Floating Point Register 
Load Unnormalized Double Precision Floating 
Point 

Branch on True Condition Backward Short 
Branch on True Condition Forward Short 
Branch on False Condition Backward Short 
Branch on False Condition Forward Short 
Load Immediate Short 
Load Complement Short 
Add Immediate Short 
Subtract Immediate Short 
Load 
Compare Floating Point 

Does not change condition code 
Floating point instruction 

50-022 ROO C-1 



OPCODE 

2A+ 
2B+ 
2C+ 
2D+ 
2E+ 
2F+ 

32* 
33+ 
34* 

37+ 
38+ 
39+ 

3A+ 
3B+ 

3C+ 

3D+ 

3E+ 
3F+ 

40* 
41* 
42* 
43* 
44 
45 
46 
47 
48 
49 

4A 
4B 
4C* 
40* 
4E+ 
4F+ 

50* 
51 

MNEMONIC 

AER 
SER 
MER 
DER 
FXR 
FLR 

PBR 
LPDR 
EXHR 

LCDR 
LDR 
CDR 

ADR 
SDR 

MDR 

DDR 

FXDR 
FLOR 

STH 
BAL 
BTC 
BFC 
NH 
CLH 
OH 
XH 
LH 
CH 

AH 
SH 
MH 
DH 
LU 
LW 

ST 
AM 

INSTRUCTION 

Add Floating Point Register 
Subtract Floating Point Register 
Multiply Floating Point Register 
Divide Floating Point Register 
Fix Register 
Float Register 

Process Byte Register 
Load Positive Double Register 
Exchange Halfword Register 

Load Complement Double Register 
Load Register Double Precision Floating Point 
Compare Register Double Precision Floating 
Point 

Add Register Double Precision Floating Point 
Subtract Register Double Precision Floating 
Point 
Multiply Register Double Precision Floating 
Point 
Divide Register Double Precision Floating 
Point 
Fix Register Double Precision Floating Point 
Float Register Double Precision Floating Point 

Store Halfword 
Branch and Link 
Branch on True Condition 
Branch on False Condition 
AND Halfword 
Compare Logical Halfword 
OR Halfword 
Exclusive-OR Halfword 
Load Halfword 
Compare Halfword 

Add Halfword 
Subtract Halfword 
Multiply Halfword 
Divide Halfword 
Load Unnormalized Floating Point 
Load Unnormalized Double Precision Floating 
Point 

Store 
Add to Memory 

* 
+ 

Does not change condition code 
Floating point instruction 

C-2 50-022 ROO 



OPCODE MNEMONIC 

54 N 
55 CL 
56 0 
57 x 
58 L 
59 c 

5A A 
5B s 
5C* M 
50* D 
5E* CRC12 
5F* CRC16 

60*+ STE 
61 AHM 
62* PB 
63 LRA 
64 ATL 
65 ABL 
66 RTL 
67 RBL 
68+ LE 
69+ CE 

6A+ AE 
6B+ SE 
6C+ ME 
6D+ DE 
6E STBP 
6F LPB 

70*+ STD 
71*+ STME 
72*+ LME 
73 LHL 
74 TBT 
75 SBT 
76 RBT 
77 CBT 
78+ LD 
79+ CD 

7A+ AD 
7B+ SD 
7C+ MD 
7D+ DD 
7E*+ STMD 
7F*+ LMD 

INSTRUCTION 

AND 
Compare Logical 
OR 
Exclusive-OR 
Load 
Compare 

Add 
Subtract 
Multiply 
Divide 
Cyclic Redundancy Check Modulo 12 
Cyclic Redundancy Check Modulo 16 

Store Floating Point 
Add Halfword to Memory 
Process Byte 
Load Read Address 
Add to Top of List 
Add to Bottom of List 
Remove from Top of List 
Remove from Bottom of List 
Load Floating Point 
Compare Floating Point 

Add Floating Point 
Subtract Floating Point 
Multiply Floating Point 
Divide Floating Point 
Store Binary as Packed 
Load Packed Binary 

Store Double Precision Floating Point 
Store Floating Point Multiple 
Load Floating Point Multiple 
Load Halfword Logical 
Test Bit 
Set Bit 
Reset Bit 
Complement Bit 
Load Double Precision Floating Point 
Compare Double Precision Floating Point 

Add Double Precision Floating Point 
Subtract Double Precision Floating Point 
Multiply Double Precision Floating Point 
Divide Double Precision Floating Point 
Store Multiple Double Precision Floating Point 
Load Multiple Double Precision Floating Point 

* 
+ 

Does not change condition code 
Floating point instruction 

50-022 ROO C-3 



OPCODE 

82*+ 

84+ 
87+ 
88* 
BC 
BC/00 
8C/01 
BC/02 
BC/03 
8C/04 
8C/21 
BC/22 
BC/23 
8C/24 

90 
91 
92* 
93* 
94* 
95 

98 
99 

9A 
9B 

9D 
9E 

A4+ 
AS+ 
A6+ 
A7+ 

CO* 
Cl* 
C2 
C3 
C4 
cs 
C6 
C7 
ca 
C9 

MNEMONIC 

STDE 

LED 
LOE 
BRK 

(RXRX) 
MVTU 
MOVE 
CPAN 
PMV 
OMV 
MOVEP 
CPANP 
PMVA 
UMVA 

SRHLS 
SLHLS 
STBR 
LBR 
EXBR 
EPSR 

WHR 
RHR 

WDR 
RDR 

SSR 
OCR 

LEDR 
LEGR 
LDGR 
LDER 

BXH 
BXLE 
LPSW 
THI 
NHI 
CLHI 
OHI 
XHI 
LHI 
CHI 

INSTRUCTION 

Store Double Precision in Single 

Load Floating from Double Precision 
Load Double from Floating Point 
Breakpoint 
RXRX class designator 
Move Translated Until 
Move 
Compare Alphanumeric 
Pack and Move 
Unpack and Move 
Move and Pad 
Compare Alphanumeric and Pad 
Pack and Move Absolute 
Unpack and Move Absolute 

Shift Right Halfword Logical Short 
Shift Left Halfword Logical Short 
Store Byte Register 
Load Byte Register 
Exchange Byte Register 
Exchange Program Status Word 

Write Halfword Register 
Read Halfword Register 

Write Data Register 
Read Data Register 

Sense Status Register 
Output Command Register 

Load Floating from Double Register 
Load Floating from General Register 
Load Double from General Register 
Load Double from Floating Register 

Branch on Index High 
Branch on Index Low or Equal 
Load Program Status Word 
Test Halfword Immediate 
AND Halfword Immediate 
Compare Logical Halfword Immediate 
OR Halfword Immediate 
Exclusive-OR Halfword Immediate 
Load Halfword Immediate 
Compare Halfword Immediate 

* 
+ 

Does not change condition code 
Floating point instruction 

C-4 50-022 ROO 



OPCODE 

CA 
CB 
cc 
CD 
CE 
CF 

DO* 
Dl* 
02* 
03* 
04 
05 

08 
09 

DA 
DB 

DD 
DE 
OF 

DFO 
DFl* 
DF2* 
DF3* 
DF4 
DFS* 
DF6* 
DF7* 
DF8* 

EO 
El 
E2 
E3 

E6* 
E7* 

EA 
EB 
EC 
ED 
EE 
EF 

MNEMONIC 

AHi 
SHI 
SRHL 
SLHL 
SRHA 
SLHA 

STM 
LM 
STB 
LB 
CLB 
AL 

WH 
RH 

WO 
RD 

SS 
oc 

(PSF) 

REL 
LP STD 
LS STD 
STPS 
LOPS 
ISSV 
ISRST 
XSTB 
RMVF 

TS 
SVC 
SINT 
SCP 

LA 
TLATE 

RRL 
RLL 
SRL 
SLL 
SRA 
SLA 

INSTRUCTION 

Add Halfword Inunediate 
Subtract Halfword Inunediate 
Shift Right Halfword Logical 
Shift Left Halfword Logical 
Shift Right Halfword Arithmetic 
Shift Left Halfword Arithmetic 

Store Multiple 
Load Multiple 
Store Byte 
Load Byte 
Compare Logical Byte 
Auto load 

Write Halfword 
Read Halfword 

Write Data 
Read Data 

Sense Status 
Output Conunand 
PSF Class Designator 

Read Error Logger 
Load Process Segment Table Descriptor 
Load Shared Segment Table Descriptor 
Save Process State 
Load Process State 
Interruptible State Save 
Interruptible State Restore 
Store Byte, No ECC 
Reset Memory Voltage Fault 

Test and Set 
Supervisor Call 
Simulate Interrupt 
Simulate Channel Program 

Load Address 
Translate 

Rotate Right Logical 
Rotate Left Logical 
Shift Right Logical 
Shift Left Logical 
Shift Right Arithmetic 
Shift Left Arithmetic 

* Does not change condition code 
+ Floating point instruction 

50-022 ROO 



OPCODE 

F3 
F4 
FS 
F6 
F7 
F8 
F9 

FA 
FB 

MNEMONIC 

TI 
NI 
CLI 
OI 
XI 
LI 
CI 

AI 
SI 

Test Inunediate 
AND Inunediate 

INSTRUCTION 

Compare Logical Inunediate 
OR Inunediate 
Exclusive-OR Inunediate 
Load Inunediate 
Compare Inunediate 

Add Immediate 
Subtract Inunediate 

* 
+ 

Does not change condition code 
Floating point instruction 

C-6 50-022 ROO 



637-1 

APPENDIX D 
ARITHMETIC REFERENCES 

TABLE D-1 POWERS OF '1WO 

1 0 1.0 
2 1 0.5 
4 2 0.25 
8 3 0.125 

16 
32 
64 

128 

256 
512 

4 
5 
6 
7 

8 
9 

0.062 
0.031 
0.015 
0.007 

0.003 
0.001 

5 
25 
625 
812 5 

906 25 
953 125 

1 024 10 0.000 976 562 5 
2 048 11 0.000 488 281 25 

4 096 12 0.000 244 140 625 
8 192 13 0.000 122 070 312 5 

16 384 14 0.000 061 035 156 25 
32 768 15 0.000 030 517 578 125 

65 536 16 0.000 01 5 258 789 062 5 
131 072 17 0.000 007 629 394 531 25 
262 144 18 0.000 003 814 697 265 625 
524 288 19 0.000 001 907 348 632 812 5 

1 048 576 20 
2 097 152 21 
4 194 304 22 
8 388 608 23 

16 777 216 24 
33 554 432 25 
67 108 864 26 

134 217 728 27 

268 435 456 28 

536 870 912 29 
1 073 741 824 30 
2 147 483 648 31 

4 294 967 296 32 
8 589 934 592 33 

0.000 000 953 674 316 406 25 
0.000 000 476 837 158 203 125 
0.000 000 238 418 579 101 562 5 
0.000 000 119 209 289 550 781 25 

0.000 
0.000 
0.000 
0.000 

0.000 

0.000 
0.000 
0.000 

000 059 604 644 775 390 625 
000 029 802 322 387 695 312 5 
000 014 901 161 193 847 656 25 
000 007 450 580 596 923 828 125 

000 003 725 290 298 461 914 062 5 
000 001 862 645 149 230 957 031 25 
000 000 931 322 574 615 478 515 625 
000 000 465 661 287 307 739 257 812 5 

000 000 232 830 643 653 869 628 906 25 
000 000 116 415 321 826 934 814 453 125 

17 179 869 184 34 
34 359 738 368 35 

0.000 
0.000 
0.000 
0.000 

000 000 058 207 660 913 467 407 226 562 5 
000 000 029 103 830 456 733 703 613 281 25 

68 719 476 736 36 
137 438 953 472 37 
274 877 906 944 38 
549 755 813 888 39 

099 r4 4 ,.._.,...., 

01 I U~/ 

50-022 ROO 

..,..,~ An 
I IU "'tU 

0.000 
0.000 
0.000 
0.000 

nnnn u.uuu 

000 000 014 551 915 228 366 851 806 640 625 
000 000 007 275 957 614 183 425 903 320 312 5 
000 000 003 637 978 807 091 712 951 660 156 25 
000 000 001 818 989 403 545 856 475 830 078 125 

nnn nnn nnn nnn Al'\.A ""7n.4 
UUU UUU UUU ~'7 "'t'7"'t I U I 

D-1 



TABLE D-2 POWERS OF SIXTEEN 

638 

16" n 

1 0 
16 1 

256 2 
4 096 3 

65 536 4 
1 048 576 5 

16 777 216 6 
268 435 456 7 

4 294 967 296 8 
68 719 476 736 9 

099 511 627 776 10 
17 592 186 044 416 11 

281 474 976 710 656 12 
4 503 599 627 370 496 13 

72 057 594 037 927 936 14 
152 921 504 606 846 976 15 

DECIMAL VALUES 

D-2 50-022 ROO 



TABLE D-3 HEXADECIMAL ADDITION AND SUBTRACTION 

EXAMPLES: 5 +A= F; 18 - D = B; A+ B = 15 

639 

1 2 3 4 5 6 7 8 9 A B c D E F 

1 2 3 4 5 6 7 8 9 A B c D E F 10 1 

2 3 4 5 6 7 8 9 A B c D E F 10 11 2 

3 4 5 6 7 8 9 A B c D E F 10 11 12 3 

4 5 6 7 8 9 A B c D E F 10 11 12 13 4 

5 6 7 8 9 A 8 c D E F 10 11 12 13 14 5 

6 7 8 9 A B c D E F 10 11 12 13 14 15 6 

7 8 9 A 8 c D E F 10 11 12 13 14 15 16 7 

8 9 A 8 c D E F 10 11 12 13 14 15 16 17 8 

9 A 8 c D E F 10 11 12 13 14 15 16 17 18 9 

A 8 c D E F 10 11 12 13 14 15 16 17 18 19 A 

8 c D E F 10 11 12 13 14 15 16 17 18 19 1A 8 

c D E F 10 11 12 13 14 15 16 17 18 19 1A 18 c 

D E F 10 11 12 13 14 15 16 17 18 19 1A 18 1C D 

E F 10 11 12 13 14 15 16 17 18 19 1A 18 1C 10 E 

F 10 11 12 13 14 15 16 17 18 19 1A 18 1C 10 1E F 

1 2 3 4 5 6 7 8 9 A B c D E F 

50--022 ROD D-3 



TABLE D-4 HEXADECIMAL MULTIPLICATION AND DIVISION 

EXAMPLES: 5 x 6 = lE; 75+0 = 9; 58-:-8 = 8; 9 x C = 6C 

640 

1 2 3 4 5 6 7 s 9 A 8 c 0 E F 

1 1 2 3 4 5 6 7 s 9 A 8 c 0 E F 1 

2 2 4 6 s A c E 10 12 14 16 lS lA lC lE 2 

3 3 6 9 c F 12 15 18 18 1E 21 24 27 2A 20 3 

4 4 s c 10 14 18 lC 20 24 2S 2C 30 34 38 3C 4 

5 5 A F 14 19 1E 23 2S 20 32 37 3C 41 46 48 5 

6 6 c 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A 6 

7 7 E 15 1C 23 2A 31 3S 3F 46 40 54 58 62 69 7 

s s 10 1S 20 28 30 3S 40 4S 50 SS 60 68 70 78 s 

9 9 12 18 24 20 36 3F 48 51 SA 63 6C 75 7E S7 9 

A A 14 1E 2S 32 3C 46 50 SA 64 6E 7S S2 SC 96 A 

8 8 16 21 2C 37 42 40 SS 63 6E 79 84 SF 9A AS 8 

c c 1S 24 30 JC 4S 54 60 6C 7S 84 90 9C AS 84 c 

0 0 1A 27 34 41 4E 58 68 75 S2 SF 9C A9 86 C3 0 

E E 1C 2A 3S 46 54 62 70 7E SC 9A AS 86 C4 02 E 

F F 1E 20 3C 48 5A 69 7S S7 96 A5 84 C3 02 El F 

1 2 3 4 5 6 7 s 9 A 8 c 0 E F 

D-4 50-022 ROO 



TABLE D-5 MATHEMATICAL CONSTANTS 

641-2 

CONSTANT DECIMAL VALUE 
HEXADECIMAL 

FLOATING POINT VALUE 
VALUE 

DOUBLE PRECISION 

~ 
SINGLE PRECISION 
~ 

7r 3.14159 26535 89793 23846 3.243F 6A89 4132 43F6 A888 5A31 

7r-1 03.1830 98861 83790 67153 0.517C C187 4051 7CC1 8727 2208 

..;-:; 1.77245 38509 05516 02729 1.C58F 891C 41 lC 58F8 9184 EF68 

Ln 7r 1.4472 98858 49400 17414 1.2500 048F 4112 5000 48E7 A180 

y'3 1.73205 08075 68877 29353 1.B67A E858 4118 67AE 8584 CAA7 

e 2.71828 18284 59045 23536 2.87E1 5163 4128 7E15 1628 AE03 

e -1 0.36787 94411 71442 32159 0.5E2D 5809 405E 2058 0883 8CDF 

Ve 1.64872 12707 00128 14680 1.A612 98E2 41 lA 6129 8E1E 069C 

log10e 0.43429 44819 03251 82765 0.6F20 EC55 406F 2DEC 5498 9439 

log2e 1.44269 50408 88963 1.7154 7653 4117 1547 652 ---

'Y 0.57721 56649 01532 86060 0.93C4 67E4 4093 C467 E37D BOC8 

Ln"{ -0.54953 93129 81644 82233 -0.8CAE 98C1 co8c AE98 C11F 5A60 

V2 1.41421 35623 73095 04880 1.6A09 E668 4116 A09E 667F 3BCD 

Ln2 0.69314 71805 59945 30941 0.8172 17F8 4081 7217 F7D1 CF7A 

109102 0.30102 99956 63981 19521 0.4010 4042 4040 1040 4270 E7FC 

VTif 3.16227 76601 68379 33200 3.2988 075C 4132 9880 7584 86A5 

Ln10 2.30258 50929 04945 68401 2.4076 3777 4124 0763 776A AA28 

50-022 ROO D-5 



TABLE D-6 

642 

Hexadecimal ond Decimal Fraction Conversion Tobie 

BYTEO 

81TS 0123 4567 
--1------

Hex Decimal Hex Decimal 

.0 .0000 .00 .0000 0000 

.l .0625 .01 .0039 0625 
;? .ID<r :oz~ ~ tl5Ct 
.3 .1875 ~ .0117 18!~ ... ·"°° .04 .0156 2500 
.5 }:I~ ~ .O~_ 1115 
.6 .3750 .06 .023' 3750 
.7 . .4375 _(11 .0273 .4375 

.8 1_000 ~ ]!I:! 5000 

.9 .56~ .09 .0351 56_1_5 

.A .6250 .OA .0390 6250 

.8 .6875 .08 .0429 6875 

.c .7500 .OC .°"68 7500 

.D .8125 .00 .0507 8125 

.E .8750 . <I: .0546 8750 

.F .9375 -~ .0585 9375 

I 2 

TO CONVERT .A8C HEXADECIMAL TO DECIMAL 

Find .A in position I .6250 

Find .08 in position 2 .0429 6875 

Find .OOC in position 3 .0029 2968 7500 

. ABC Hex is equal to .6708 9843 7500 

TO CONVERT .13 DECIMAL TO HEXADECIMAL 

1 . Find . 1250 next lowest to 
subtract 

.1300 
-.1250 

2, Find .0039 0625 next lo-st to .0Q50 0000 
-.0039 0625 

Hex 

.000 

.001 

.OOi 

.003 

.OCM 

.005 

.006 

.007 

.008 

.009 

.OOA 

.008 

.ooc 

.000 

.OOE 
.OOF 

3. Find .0009 7656 2500 . 0010 9375 0000 
-.0009 7656 2500 

4. Find .0001 0681 1523 .4375 . 0001 1718 7500 0000 

FRACTION CONVERSION 

HALFWORD 

.0000 

.0002 

.0094. 

.0007 

.0009 

.001:! 

.0014 

.0017 
~lT 
.OOJ_I 
.0024 
.00_!6 
.0029 
.0031 
.003' 
.0036 

3 

= .2Hex 

= .01 

= .OCM 

BYTE1 

0123 4567 
t----- -

Decimal Hex Decimal Equivalent 

0000 

""" ~ 
1fil 
_1656 
~ 
6* 
0898 
_R12 
_fil! 
4140 
8554 
2968 
7382 
1196 
6210 

()()()() .0000 .0000 0000 0000 0000 
0625 .0001 .0000 1525 87i9 06~ 
l2» j -~ ·~ 3'm. --1.ua IDO 

18~ ~ .0000 J.Sn 6~ ~ 
2500 .0004 .0000 6103 5156 2500 
].~ .0005 .0080 ~6'1! J945 ~ 
}750 .0006 -~ 9155 2734 3750 

.4375 .CX1J7 .0001 0681 U23 437~ 

.5000 .0008 .0001 2207 0312 .5000 

5~ .0009 .0001 ¥E_ _!!Q_l '6iC 

6250 .OOOA .0001 5258 7890 62j() 

6875 .0008 .0001 6_~ 6679._ 61 
7500 .QQCK .0001 ~10 ~ 7, 

8125 .0000 .0001 9836 4257 81 

8750 .OOOE .0002 1362 3CM6 -~ 
9375 .OOOF .0002 2888 183~ 93: 

4 

T 9 convert froctions beyond the capacity of table, use techniques below: 

HEXADECIMAL FRACTION TO DECIMAL 

Convert the hexadecimal fraction to its decimal equivalent using the same 
technique os for integer numbers. Divide the results by 16n (n is the 

number of fraction positions) . 

Example: .8A7 = .SllJnl 10 

8A716 • 221510 .S11Jn1 
163 = "4096 -4096 I 221 5 . 000000 

DECIMAL FRACTION TO HEXADECIMAL 

Collect integer parts of product in the order of calculation. 

-.0001 0681 1523 .4375 = .0007 

Exalnf>le: .540810 = .8A716 

.5408 
xl6 

. 0000 1037 5976 5625 "' . 2147 Hex 

5. 13 Decimal is approximately equal to--------· 

D-6 

1

8 ~ [!}.6528 
x16 

A 4-- (g.4448 
1 - x16 

+7 ~ ~.1161 

50-022 ROO 



TABLE D-7 INTEGER CONVERSION 

643 

Hexadecimal and Decimal ln .. ger Conversion Table 

BYTEO BYTE 1 BYTE 2 BYTE 3 
liTS: 0123 Oi23 Oi23 Oi23 

Hex Decimal Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal Hex Decimal 

6 IL610,6l2,7J6 6 100. ~1 7Wo 6 6,29~ 6 J ,,, 6 24,~ 6 1 ,536 6 96 6 6 

A. W1 A. 167,~~ A 10,41',760 A. 6 A ~960 A 2,560 A. 1~ A. I_! 
_l 'O,,Jl6 .! lM wv :rn _l l_l,,34.336 9 2 _l "5,°'6 I 2.816 _!_ 1 J: 11 
c 3 1 •. "·"72 c 201..L.326 592 c 12..L.512..._912 c 716..._'32 c 49..._152 c 3..._072 c 192 c 12 

F 4,020,:JJl ,IMO T 2:Jl ,6'8,2«J T f!,721,640 F 913,040 F 61,~ F 3,840 F 2«> F 1-S-

a 1 6 s 4 3 2 

TO CONVUT HEXADECIMAL TO DECIMAL 

1. Locate the column of decimal numbers con.sponding to 
the left-most digit or letter of the hexadecimal; •lect 
from this column and record the number that corTesponds 
to the position of the hexadecimal digit or lett.r. 

2. Repeat step I for the next (•cond from the left) 
position. 

3. Repeat step 1 for the unih (third from the left) 
position. 

"· Add the numben .. 1ected from the table to form the 
decimat number. 

TO CONVERT DECIMAL TO HEXADECIMAL 

1 • (o) Select from the table the highest decimal number 
that is equal to or leu than the number to be con­
verted. 
(b} Record the hexadecimal of the column containing 
the .. t.c'9d number. 
(c) Subtract the .. t.cNd decimal from the number to 
be converted . 

2. Uti"tl the remainder from step l(c) repeat oll ofstep 1 
to develop the •cond position of the hexadecimal 
(and a remainder). 

3. Using the remainder from step 2 repeat of I of 1'9p 1 to 
deYefop the units position of the hexadecimal . 

4. Combine terms to form the hexcxt.cimal number. 

50-022 ROD 

EXAMPL£ 

Convenion of 
Hexadecimal Value 

1. D 

2. 3 

3. 4 

4. Decimal 

EXAMPL£ 

Conversion of 
Decimal Value 

1. D 

2. 3 

3. " 
"· Hexadecimal 

DJ.4 

3328 

48 

4 

3380 

3380 

-3328 
52 

~ 
4 

D~ I 

To convert integer numben greater than t!le capacity of 
table, use the .. chnique1 below· 

HEXADECIMAL TO DECIMAL 

Succe•ive cumulative multiplication from left to right, 
adding unih position. 

Example: 03416 = 338010 

DECIMAL TO HEXADECIMAL 

0 = 13 

~ 
208 

3 .. + 3 
2iT 
xl6 

3376 
.. :c: .... 

3380 

Divide and collect the remainder in revene order. 

D-7 



644-1 

b3 

+ 
0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

BITS 

b2 

+ 
0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

bl bo 

+ 
0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

NUL 
SOH 
STX 
ETX 
EQT 
ENO 
ACK 
BEL 
BS 
HT 
LF 
VT 
FF 
CR 
so 
SI 

+ 
0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

50-022 ROO 

APPENDIX E 
INPUT/OUTPUT (I/O) REFERENCES 

TABLE E-1 ASCII/HEXADECIMAL CONVERSION 

b5 0 
bs 0 

b4 0 

~ D 0 

0 NUL 

1 SOH 

2 STX 

3 ETX 

4 EQT 

5 ENO 

6 ACK 

7 BEL 

8 BS 

9 HT 

A LF 

B VT 

c FF 

D CR 

E so 
F SI 

Null 
Start of heading 
Start of text 
End of text 
End of transmission 
Enquiry 
Acknowledge 
Audible signal 
Backspace 
Horizontal tabulation 
Line feed 
Vertical tabulation 
Form feed 
Carrier return 
Shift out 
Shift in 

0 0 
0 1 

1 0 

1 2 

OLE SP 

DC1 ! 

DC2 " 

DC3 # 

DC4 $ 

NAK % 

SYN & 

ETB , 

CAN ( 

EM ) 

SUB * 

ESC + 

FS , 

GS -

RS 

us I 

0 
1 

1 

3 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

, 

< 
= 
> 
? 

DLE 
DC1-4 
NAK 
SYN 
ETB 
CAN 
EM 
SUB 
ESC 
FS 
GS 
RS 
us 
SP 
DEL 

1 1 1 
0 0 1 

0 1 0 

4 5 6 

@ p ' 
A 0 a 

B R b 

c s c 

D T d 

E u e 
F v f 

G w g 
Li v h n /\ 

I y i 

J z j 

K [ k 

L \ I 

M ] m 

N " n 

0 - 0 

Data link escape 
Device control 
Negative acknowledge 
Synchronous idle 
End of transmission block 
Cancel 
End of medium 
Start of special sequence 
Escape 
File separator 
Group separator 
Record separator 
Unit separator 
Space 
Delete/Idle 

1 
1 

1 

7 

p 

q 

r 

s 

t 

u 

v 

w 

x 

y 

z 

{ 

I 
I 

} 

-
DEL 

E-1 



TABLE E-2 ASCII/CARD CODE CONVERSION 

64!>-I 

7-BrT 
CARD 

7-BIT 
CARD 

GRAPHIC ASCII GRAPHIC ASCII 

CODE 
CODE CODE 

CODE 

SPACE 20 BLANK @ 40 8-4 

t 21 11-8-2 A 41 12-1 

" 22 8-7 B 42 12-2 

# 23 8-3 c 43 12-3 

$ 24 11-8-3 D 44 12-4 

% 25 0-8-4 E 45 12-5 

& 26 12 F 46 12-6 
I 27 8-5 G 47 12-7 

( 28 12-8-5 H 48 12-8 

) 29 11-8-5 I 49 12-9 

* 2A 11-8-4 J 4A 11-1 

+ 28 12-8-6 K 48 11-2 

' 
2C 0-8-3 L 4C 11-3 

- 2D 11 M 4D 11-4 

2E 12-8-3 N 4E 11-5 

I 2F 0-1 0 4F 11-6 

0 30 0 p 50 11-7 

1 31 1 Q 51 11-8 

2 32 2 R 52 11-9 

3 33 3 s 53 0-2 

4 34 4 T 54 0-3 

5 35 5 u 55 0-4 

6 36 6 v 56 0-5 

7 37 7 w S7 0-6 

8 38 8 x S8 0-7 

9 39 9 y S9 0-8 

3A 8-2 z SA 0-9 

' 
38 11-8-6 [ S8 12-8-2 

< 3C 12-8-4 \ 5C 0-8-2 

= 3D 8-6 1 SD 12-8-7 

> 3E 0-8-6 t 5E 11-8-7 

? 3F 0-8-7 +- SF 0-8-5 

E-2 50-022 ROO 



U'1 
0 
I 

0 
N 
N 

:::tJ 
0 
0 

til 
I 

w 

TABLE E-3 STANDARD-PREFERRED ADDRESS TABLE 

646-1 

LSD- 0 2 3 4 5 6 

MSDO 

t 

3 

4 

5 

6 

8 

9 

A 

B 

c 

D 

E 

TTY 
RESERVED CAROUSEL 

15, 30 
CRT ON CLI 

CARD 
READER 

LOADER 
STORAGE 

UNIT 
RESERVE D 

j.-- COMM MUX -

---------------- 8-LINE INTERRUPT MODULE ___ . _____ _ 
(ADAS 20 TO 27) 

~··--·-.-----.,..-.---------------------T~ 
CONTACT 
CLOSURE !+------- 1/0 BUS SWITCH ----·--•.,. 
MODULE 

-t--·----·-+-----+--------...-----~---~------4--

~·-------+--------+-------+------+-----+------4--

·-
·-

~---·-----+-·-----+-----·+-----+-----+------4--·-----

RELAY 
DRIVER 

MODULE 

LINE 
Pl~INTERS 

·--1 _..,____·--·--+--·-------- _L 
+------ ~· ·-1------L-----...._ ______ _ -

MICROBUS 
ADAPTER 

SELECTOR 

FLOPPY 
DISK 

CHANNELS _____ _ 

AIC =ANALOG INPUT CONTROLLER 
AOC= ANALOG OUTPUT CONTROLLER 
DIO =DIGITAL 1/0 CONTROLLER 

CONVERSION 
EQUIPMENT 

556/800 
BPI 

MAG TAPE ...___. ·-

t 

1600 BPI 
MAG TAPE 

~ 

·-1---· 
REMOVAB 
CARTRID 
DISK CON 

LE 
GE 
T 
·-

DISK 0 

t--- ·-
DISK 1 

t---- ·-
DISK 2 

1----

DISK 3 

QSA = QUAD SYNCHRONOUS ADAPTER 
ULI =UNIVERSAL LOGIC INTERFACE 
MDIO =MEMORY DISPATCHED 1/0 

7 8 9 A B c D 

MDIO 

SECOND 8-LINE INTERRUPT MODULE 
(ADAS 28 TO 2F) 

DIGITAL 
MUX 

UNIVERSAL 
CLOCK 

VARIABLE 60 Hz 

--··· 
AIC ULI 

AOC 

I+--- 010 --I 
i. QSA 

FIXED 
DISK 0 

FIXED 
DISK 1 

FIXED 
DISK 2 

FIXED 
MSM DRIVE DRIVE 

DISK 3 
DISK 0 1 

SYSTEM 

E F 

201/301 201/301 
DATA SET DATA SET 

HDX FOX 

360/370 360/370 
AUX. INF INF 

801 
DIALER 

DRIVE DRIVE 
2 3 



647-1 

CONSER 

SET UP FOX 
LOCAL 

TERMINAL; 
DISPLAY PSW, 

LOCATION COUNTER, 
SET "CONSOLE 
MODE" FLAG 

DISPLAY 
OPERATOR 

PROMPT 

ACCEPT 
ONE 

CHARACTER 

50-022 ROO 

APPENDIX P 
CONSOLE SERVICE ROUTINE FLOWCHART 

RESET "CONSOLE 
MODE" FLAG 

RESET PSW 
BIT 16 

ACCEPT 
NEW LDC 

ACCEPT REGISTER 
ADDRESS, OPEN & 
DISPLAY GENERAL 

REGISTER, CURRENT SET 

ACCEPT REGISTER 
ADDRESS, FORCE 

EVEN, OPEN & DISPLAY 
SPFP REGISTER.* 

ACCEPT REGISTER 
ADDRESS, FORCE 

EVEN, OPEN & DI SPLAY 
DPFP REGISTER.* 

ACCEPT CARRIAGE 
RETURN, DISPLAY 

ENTIRE PSW. 
OPEN PSW STATUS. 

ENTER RUN 
MODE WITH 

CURRENT 
PSW & LDC 

Loc----­
Loc +2 

OPEN & DISPLAY 
CELL ADDRESSED 
BY LOC. DISPLAY 
PROMPT. ACCEPT 
ONE CHARACTER 

Loc­
Loc -2 

UNRECOGNIZED. 

DISPLAY PROMPT 
ACCEPT ONE 
CHARACTER 

EXIT 

DECODE 

DISPLAY 
CARRIAGE RETURN, 

LINE FEED 
QUESTION MARK 

NEXTREQ 

NOTES: 

1. ALL RECEIVED CHARACTERS ECHOED BY PROCESSOR. 
2. LOWER-CASE CHARACTERS INTERPRETED AS UPPER·CASE. 
3. SPACE CHARACTERS IGNORED. 

ACCEPT DATA, 
MODIFY OPEN 

REGISTER 

NEXTREO 

ACCEPT DATA, 
MODIFY OPEN 

HALFWORD 
CELL 

IS. PLUS 

4. BACKSPACE, UNDERLINE, DELETE CAUSE PREVIOUS NUMERIC CHARACTER TO BE IGNORED. 
* IF HARDWARE FLOATING POINT IS NOT AVAILABLE, DISPLAYS ARE ALL "F"s AS CONTENTS. 

F-1 



A 

Access level bits (L) 
Access level fault 
Access mode bits (A) 
Access mode faults 
Add (A) 
Add double precision 
floating point (AD) 

Add floating point (AE) 
Add floating point register 

(AER) 
Add halfword (AH) 
Add halfword immediate (AHi) 
Add halfword to memory (AHM) 
Add immediate (AI) 
Add immediate short (AIS) 
Add register (AR) 
Add register double precision 
floating point (ADR) 

Add to bottom of list (ASL) 
Add to memory (AM) 
Add to top of list (ATL) 
Address space 

offset and page field 
page field 
segment field 

Alignment faults 
Alphanumeric 

byte string 
string data 
string instruction 
formats 

AND (N) 
AND halfword 
AND halfword (NH) 
AND immediate (NI) 
AND register (NR) 
Arithmetic 

fault interrupt 
operands 
references 

Array 
bit 
byte 

Auto driver channel 
CRC 
data buff er chaining 
operation 
programming procedure 

Autoload (AL) 

B 

Bit array 
Branch (unconditional) (B) 
Branch and link (BAL) 
Branch and link register 

(BALR) 

50-022 ROO 

INDEX 

11-12 
11-18 
11-11 
11-18 

5-6 

6-45 
6-24 

6-24 
5-8 
5-8 
5-12 
5-6 
5-6 
5-6 

6-45 
3-58 
5-10 
3-58 

11-7 
11-7 
11-6 
10-19 

1-9 
1-11 

7-3 
3-30 
3-31 
3-31 
3-30 
3-30 

10-32 
1-10 
D-1 

1-9 
1-9 
9-18 
1-2 
1-2 

10-28 
9-24 
9-15 

1-9 
4-29 
4-7 

4-7 

Branch instruction formats 
programming examples 
Rll 
Rl2 
RR 

RX 
RXl 
RX2 
RX3 
RXRX 
SF 

Branch instructions 
BAL 
BALR 
BFBS 
BFC 
BFCR 
BFFS 
BTBS 
BTC 
BTCR 
BTFS 
BXH 
BXLE 

Branch on carry (BC) 
Branch on carry register 

(BCR) 
Branch on carry short (BCS) 
Branch on equal (BE) 
Branch on equal register 

(BER) 
Branch on equal short (BES) 
Branch on false condition 

(BFC) 
Branch on false condition 

backward short (BFBS) 
Branch on false condition 

forward short (BFFS) 
Branch on false condition 
register (BFCR) 

Branch on index high (BXH) 
Branch on index low or equal 

(BXLE) 
Branch on low (BL) 
Branch on low register (BLR) 
Branch on low short (BLS) 
Branch on minus (BM) 
Branch on minus register 

(BMR) 
Branch on minus short (BMS) 
Branch on no carry (BNC) 
Branch on no carry register 

(BNCR) 
Branch on no carry short 

(BNCS) 
Branch on no overflow (BNO) 
Branch on no overflow 
register (BNOR) 

1-14 
1-25 
1-27 
1-14 
1-16 
1-14 
1-18 
1-20 
1-23 
1-29 
1-14 
1-17 
4-2 
4-7 
4-7 
4-5 
4-5 
4-5 
4-5 
4-3 
4-3 
4-3 
4-3 
4-11 
4-9 
4-15 

4-15 
4-15 
4-17 

4-17 
4-17 

4-5 

4-5 

4-5 

4-5 
4-11 

4-9 
4-19 
4-19 
4-19 
4-21 

4-21 
4-21 
4-16 

4-16 

4-17 
4-26 

4-26 

IND-1 



Branch on no overflow short 
(BNOS) 

Branch on not equal (BNE) 
Branch on not equal register 

(BNER) 
Branch on not equal short 

(BNES) 
Branch on not low (BNL) 
Branch on not low register 

(BNLR) 
Branch on not low short 

(BNLS) 
Branch on not minus (BNM) 
Branch on not minus register 

(BNMR) 
Branch on not minus short 

(BNMS) 
Branch on not plus (BNP) 
Branch on not plus register 

(BNPR) 
Branch on not plus short 

(BNPS) 
Branch on not zero (BNZ) 
Branch on not zero register 

(BNZR) 
Branch on not zero short 

(BNZS) 
Branch on overflow (BO) 
Branch on overflow register 

(BOR) 
Branch on overflow short 

(BOS) 
Branch on plus (BP) 
Branch on plus register (BPR) 
Branch on plus short (BPS) 
Branch on true condition 

(BTC) 
Branch on true condition 

backward sort (BTBS) 
Branch on true condition 

forward short (BTPS) 
Branch on true condition 
register (BTCR) 

Branch on zero (BZ) 
Branch on zero register (BZR) 
Branch on zero short (BZS) 
Branch register 

(unconditional) (BR) 
Branch short (unconditional) 

(BS) 
Breakpoint (BRIC) 
Buffers 
Bytes 

array 

c 

CAL 
Catastrophic system failure. 

See CSP. 
CCB 

buffers 
ccw 

IND-2 

check word 
subroutine address 

4-26 
4-18 

4-18 

4-18 
4-20 

4-20 

4-20 
4-22 

4-22 

4-22 
4-24 

4-24 

4-24 
4-28 

4-28 

4-28 
4-25 

4-25 

4-25 
4-23 
4-23 
4-23 

4-3 

4-3 

4-3 

4-3 
4-27 
4-27 
4-27 

4-29 

4-29 
10-1 
9-20 
1-11 
1-9 

1-11 

9-18 
9-20 
9-21 
9-21 
9-19 

CCB (Continued) 
translation 

ccw 
buffer switch bit (B) 
execute bit (E) 
fast bit (F) 
read/write bit (R/W) 
redundancy check type 
bits (RC) 

status mask 
translate bit (T) 
valid channel command 

codes 
Central processing unit. 
See CPU. 

Channel conunand block. See 
CCB. 

Channel conunand word. See 
ccw. 

Check word 
Circular list 

definition 
Conunon assembly language. 
See CAL. 

Compare (C) 
Compare alphanumeric (CPAN) 
Compare alphanumeric with 
default pad (CPANP) 

Compare double precision 
floating point (CD) 

Compare floating point (CE) 
Compare floating point 
register (CER) 

Compare halfword (CH) 
Compare halfword immediate 

(CHI) 
Compare immediate (CI) 
Compare logical (CL) 
Compare logical byte (CLB) 
Compare logical halfword 

(CLH) 
Compare logical halfword 

inunediate (CLHI) 
Compare logical immediate 

(CLI) 
Compare logical register(CLR) 
Compare register (CR) 
Compare register double pre= 
cision floating point (CDR) 

Complement bit (CBT) 
Condition code 

Console service routine 
entering 
flowchart 

Consolette 
halt/run 
single step 
STANDBY-ON-LOCK switch 
system initialization 

Control switches 
HALT/RUN 
INITIALIZE 
IPL 
SINGLE STEP 

9-20 
9-21 
9-23 
9-22 
9-22 
9-22 

9-23 
9-22 
9-23 

9-23 

9-21 
3-4 
3-3 

5-l8 
7-10 

7-10 

6-49 
6-28 

6-28 
5-20 

5-20 
5-18 
3-25 
3-29 

3-27 

3-27 

3-25 
3-25 
5-18 

6-49 
3-51 
1-6 
6-11 

10-8 

2-6 
F-1 

2-1 
2-1 
2-4 
2-1 

2-4 
2-5 
2-5 
2-4 

50-022 ROO 



Conversion from decimal 
Convert to halfword value 
register (CHVR) 

CPU 
CRC 
CSF 
Cyclic redundancy check 

modulo (CRC12) 
Cyclic redundancy checking. 

See CRC. 
Cyclic redundancy module 16 

(CRC16) 

D 

Data alignment 
bytes 
fullwords 
halfwords 

Data buff er chaining 
Data format faults 

alignment 
invalid digit 

Data formats 
alphanumeric string 
decimal string 
fixed point 
floating point 
logical 

Data handling instructions 
formats 
PB 
PBR 

Decimal byte string 
Decimal data 

packed 
string 
unpacked 

Decimal string instruction 
formats 

Decision making 
conditional branch 

instructions 
decision table 

Decrement and examine prior 
location (-) 

Device addressing 
Device controllers 

device addressing 
interrupt queuing 

Dirty bit (D) 
Divide (D) 
Divide double precision 
floating point (DD) 

Divide floating point (DE) 
Divide floating point 
register (DER) 

Divide halfword (DH) 
Divide halfword register 

(OHR) 
Divide register (DR) 
Divide register double pre­

cision floating point (DDR) 
Double indexing 

50-022 ROO 

6-10 

1-10 
5-39 
1-4 
1-2 

10-3 

3-52 

3-52 

1-11 
1-11 
1-11 
1-2 
1-11 

10-19 
10-19 

1-9 
1-11 
1-11 
1-10 
1-10 
1-10 
8-1 
8-1 
8-2 
8-4 
1-9 
7-1 
1-11 
1-11 
1-11 

7-3 

4-1 
4-1 

2-7 
9-1 
9-2 
9-1 
9-2 

11-11 
5-26 

6-52 
6-31 

6-31 
5-30 

5-30 
5-26 

6-52 
1-12 

Double precision floating 
point register 

examine (D) 
modify (-) 

E 

Early power fail. See EPF. 
Enter run mode (>) 
Entering console service 
EPP 
Equalization 
Error correction 
Error correction code. See 

ECC. 
Examine 

double precision floating 
point register (D) 

general register (R) 
PSW (P) 
single precision floating 
point register (F) 

Exchange byte register (EXBR) 
Exchange halfword register 

(EXHR) 
Exchange program status 
register (EPSR) 

Exclusive-OR (X) 
Exclusive-OR halfword (XH) 
Exclusive-OR halfword 

immediate (XHI) 
Exclusive-OR inmediate (XI) 
Exclusive-OR register (XR) 
Execute single instruction 

( >) 
Exponent 

overflow 
underflow 

Extended branch instructions 
B 
BC 
BCR 
BCS 
BE 
BER 
BES 
BL 
.BLR 
BLS 
BM 
BMR 
BMS 
BNC 
.BNCR 
BNCS 
BNE 
BNER 
BNES 
BNL 
BNLR 
BNLS 
BNM 
BNMR 
BNMS 
BNO 

2-8 
2-9 

2-9 
2-6 

10-22 
6-6 
1-2 

2-8 
2-7 
2-9 

2-8 
3-20 

3-19 

10-36 
3-34 
3-35 

3-35 
3-34 
3-34 

2-9 

6-8 
6-8 

4-29 
4-15 
4-15 
4-15 
4-17 
4-17 
4-17 
4-19 
4-19 
4-19 
4-21 
4-21 
4-21 
4-16 
4-16 
4-16 
4-18 
4-18 
4-18 
4-20 
4-20 
4-20 
4-22 
4-22 
4-22 
4-26 

IND-3 



Extended branch instructions 
(Continued) 
BNOR 
BNOS 
BNP 
BNPR 
BNPS 
BNZ 
BNZR 
BNZS 
BO 
BOR 
BOS 
BP 
BPR 
BPS 
BR 
BS 
BZ 
BZR 
BZS 
NOP 
NOPR 

F 

Faults 
access level 
access mode 
MAT 

nonpresence 
precedence 
PST or SST size exceeded 
reexecution of faulting 

instructions 
segment limit fault 

Fix register (FXR) 
Fix register double 
precision (FXDR) 

Fixed point 
arithmetic 
data 
data formats 
number ,,....,, .... ""'.a.. ,,.. ~ .... ,,.. ..... 
a &WlllAJ~ .L .L GU I~ g 

operations 

Fixed point instructions 
A 
AH 
AHi 
AHM 
AI 
AIS 
AM 
AR 
c 
CH 
CHI 
CHVR 
CI 
CR 
D 

IND-4 

4-26 
4-26 
4-24 
4-24 
4-24 
4-28 
4-28 
4-28 
4-25 
4-25 
4-25 
4-23 
4-23 
4-23 
4-29 
4-29 
4-27 
4-27 
4-27 
4-30 
4-30 

11-17 
11-18 
11-18 
11-17 
11-19 
11-21 
11-18 
11-19 
11-17 

11-20 
11-19 

6-33 

6-54 

5-1 
1-10 
5-1 
1-9 
S-2 
1-10 
5-2 
5-4 
5-6 
5-8 
5-8 
5-12 
5-6 
5-6 
5-10 
5-6 
5-18 
5-20 
5-20 
5-39 
5-18 
5-18 
5-26 

Fixed point instructions 
(Continued) 
DH 
OHR 
DR 
formats 
M 
MH 
MHR 
MR 
s 
SH 
SHI 
SI 
SIS 
SLA 
SLHA 
SR 
SRA 
SRHA 

FU( 
Float register (FLR) 
Float register double 
precision (FIDR) 

Floating point 
arithmetic 
condition code 
data 
data formats 
equalization 
exponent overflow 
exponent underflow 
guard digits and R* 

rounding 
instructions 
normalization 
number 

number range 
registers 
true zero 

Floating point instructions 
AD 
ADR 
AE 
AER 
CD 
CDR 
CE 
CER 
DD 
DOR 
DE 
DER 
FIDR 
FLR 
FXDR 
FXR 
LCDR 
LCER 
ID 
IDER 
LDGR 
IDR 

LE 

5-30 
5-30 
5-26 
5-4 
5-22 
5-24 
5-24 
5-22 
5-14 
5-16 
5-16 
5-14 
5-14 
5-33 
5-35 
5-14 
5-3~ 
5-38 

10-3 
6-35 

6-55 

6-i 
6-11 
1-10 
6-2 
6-6 
6-8 
6-8 

6-9 
6-1 
6-5 
1-9 
6-3 
6-4 
1-7 
6-7 
6-11 
6-45 
6-45 
6-24 
6-24 
6-49 
6-49 
6-28 
6-28 
6-52 
6-52 
6-31 
6-31 
6-55 
6-35 
6-54 
6-33 
6-40 
6-19 
6-38 
6-57 
6-38 
6-38 
6-57 
6-15 

50-022 ROO 



Floating point instructions 
(Continued) 
LED 
LEDR 
LEGR 
LER 
LGDR 
LGER 
LMD 
LME 
LPDR 
LPER 
LU 
LUR 
LW 
I.WR 
MD 
MOR 
ME 
MER 
SD 
SOR 
SE 
SER 
STD 
STDE 
STE 
STMD 
STME 

Floating point masked mode. 
See PIM. 

Floating point underflow 
interrupt enable (FLU) 

Flowchart of MAT process 
Fullwords 

G 

General register 
examine (R) 
modify (•) 

Guard digits 

H 

Halfwords 
~ardware segment table 
entry. See HSTE. 

HSTE 

access level bits (L) 
access mode bits (A) 
dirty bit (D) 
presence bit (P) 
reference bit (B) 
segment limit field 
shared segment bits (S) 
SRF 
SWSTE 

50-022 ROO 

6-56 
6-56 
6-15 
6-15 
6-42 
6-21 
6-41 
6-20 
6-39 
6-17 
6-14 
6-14 
6-37 
6-37 
6-50 
6-50 
6-29 
6-29 
6-47 
6-47 
6-26 
6-26 
6-43 
6-58 
6-21 
6-44 
6-23 

10-6 
11-2 

1-11 

1-7 
2-7 
2-8 
6-9 

1-11 

11-3 
11-10 
11-12 
11-11 
11-11 
11-11 
11-11 
11-12 
11-12 
11-13 
11-13 

I ,J ,K 

I/O device interrupts 
immediate 
priority levels 

I/O instructions 
AL 
oc 
OCR 
RD 
RDR 
RH 
RHR 
SCP 
SS 
SSR 
WD 
WDR 
WH 
WHR 

I/O interrupt mask (I) 
I/O operations 

control of 
device controllers 
I/O bus 
instruction formats 
instructions 
interrupt driven 1/0 
ISPT 
SELCH I/O 
status monitoring I/O 

I/O references 
I IP 
Increment and examine next 
location (+) 

Initial program load. See 
IPL. 

Input/output. See I/O. 
Instruction formats 

alphanumeric string 
branch instructions 
decimal string 

Instruction sunwnary 
alphabetical by mnemonic 
numerical by opcode 

Instructions 
alignment 
BRIC 
SINT 
SVC 
user level 

Interrupt 
arithmetic fault 
data format faults 
driven 
illegal instruction 
instructions 
machine malfunction 
maskable 
nonmaskable 
precedence 
queuing 
relocation/protection 

(MAT) fault 
simulated 

10-28 
10-27 
9-8 
9-15 
9-9 
9-9 
9-11 
9-11 
9-12 
9-12 
9-17 
9-10 
9-10 
9-13 
9-13 
9-14 
9-14 

10-5 

9-3 
9-1 
9-1 
9-8 
9-8 
9-4 
9-2 
9-6 
9-4 
E-1 

10-4 

2-7 

1-12 
7-3 
1-14 
7-3 

B-1 
C-1 

1-11 
10-1 
10-1 
10-1 

1-11 

10-32 
10-18 
9-4 

10-18 
10-13 
10-20 
10-10 
10-10 
10-12 
9-2 

10-20 
10-29 

iND-5 



Interrupt (Continued) 
SQS 
SVC 
system breakpoint 
timing 

Interrupt service pointer 
table. See ISPT. 

Interrupt service routine. 
See ISR. 

10-29 
10-31 
10-31 
10-12 

Interrupt timing and priority 10-12 
interruptible 
instructions 

maskable 
nonmaskable 

Interruptible instruction in 
progress. See IIP. 

Invalid digit faults 
IPL 

ISPT 

ISR 

L 

List processing 
Load (L) 
Load address (IA) 
Load byte (LB) 
Load byte register (LBR) 
Load complement double 
precision register (LCDR) 

Load complement floating 
point register (LCER) 

Load complement short (LCS) 
Load double precision float­

ing point register from 
single precision register 
(LOER) 

Load double precision float­
ing point register from 
single precision memory 
(LOE) 

Load double precision float­
ing point register from 
general registers (LDGR) 

.Load double precision 
floating point (LD) 

Load floating point (LE) 
Load floating point from 
general register (LEGR) 

Load floating point register 
(LER) 

Load general register from 
double precision floating 
point register (LGDR) 

Load general register from 
floating point register 
(LGER) 

Load halfword (LH) 
Load halfword immediate (LHI) 

IND-6 

10-13 
10-10 
10-10 

10-19 
2-1 
2-6 
9-2 
9-5 
9-18 
1-2 
9-3 
9-5 

10-1 

3-3 
3-7 
3-11 
3-18 
3-18 

6-40 

6-19 
3-9 

6-57 

6-57 

6-38 

6-38 
6-15 

6-15 

6-15 

6-42 

6-21 
3-10 
3-10 

Load halfword logical (LHL) 
Load immediate (LI) 
Load-immediate short (LIS) 
Load multiple (~) 
Load multiple double pre­
cision f loatng point (I.MD) 

Load multiple floating point 
(I.ME) 

Load packed decimal string 
as binary (LPB) 

Load positive double 
precision register (LPDR) 

Load positive floating point 
register (LPER) 

Load process segment table 
descriptor (LPSTD) 

Load process state (LOPS) 
Load program status word 

(LPSW) 
Load program status word 
register (LPSWR) 

Load real address (LRA) 
Load register double pre­
cision floating point (LOR) 

Load register (LR) 
Load single precision float­

ing point register from 
double precision register 
(LEDR) 

Load single precision float­
ing point register from 
double precision memory 
(LED) 

Load shared segment table 
descriptor (LSSTD) 

Load unnormalized double 
precision floating point 
register (LWR) 

Load unnormalized double 
precision floating point 
(LW) 

Load unnormalized floating 
point (LU) 

Load unnormalized floating 
point register (LUR) 

Loader storage unit. See 
LSU. 

Loader storage unit. See LPU. 
LOC 

Location counter. See LOC. 
Logical data 

formats 
Logical information 
Logical instructions 

ABL 
ATL 
CBT 
CL 
CLB 
CLH 
CLHI 

3-16 
3-7 
3-8 
3-17 

6-41 

6-20 

7-4 

6-39 

6-17 

10-43 
11-22 
10-46 

10-34 

10-35 
3-12 

6-38 
3-7 

6-56 

6-56 

10-44 
11-23 

6-37 

6-37 

6-14 

6-14 

1-4 
1-7 

10-8 

1-10 
3-1 
1-9 
3-4 
3-58 
3-58 
3-51 
3-25 
3-29 
3-25 
3-27 

50-022 ROG 



Logical instructions 
(Continued) 

CLI 
CLR 
CRC12 
CRC16 
EXBR 
EXHR 
formats 
L 
IA 
LB 
LBR 
LCS 
LH 
LHI 
LHL 
LI 
LIS 
LM 
LR 
LRA 
N 
NH 
NHI 
NI 
NR 
0 
OH 
OHi 
01 
OR 
RBL 
RBT 
RLL 
RRL 
RTL 
SBT 
SLHL 
SLHLS 
SU.. 
su..s 
SRHL 
SRHLS 
SRL 
SRLS 
ST 
STB 
STBR 
STH 
STM 
TBT 
THI 
TI 
TI.ATE 
TS 
x 
XH 
XHI 
XI 
XR 

LSU 

LVL 

3-25 
3-25 
3-52 
3-52 
3-20 
3-19 
3-4 
3-7 
3-11 
3-18 
3-18 
3-9 
3-10 
3-10 
3-16 
3-7 
3-8 
3-17 
3-7 
3-12 
3-30 
3-31 
3-31 
3-30 
3-30 
3-32 
3-33 
3-33 
3-32 
3-32 
3-60 
3-50 
3-43 
3-45 
3-60 
3-49 
3-41 
3-41 
3-39 
3-39 
3-42 
3-42 
3-40 
3-40 
3-21 
3-24 
3-24 
3-22 
3-23 
3-48 
3-37 
3-36 
3-54 
3-47 
3-34 
3-35 
3-35 
3-34 
3-34 
2-5 

10-24 
10-25 
10-3 

M 

Machine malfunction interrupt 10-20 
Machine malfunction 

interrupt enable (M) 
Machine malfunction status 

word 
MAT 

faults 
process flowchart 
real address 

MAT (Continued) 
virtual address 

Memory 
initialization 
reserved locations 

Memory access level field. 
See LVL. 

Memory address translator. 
See MAT. 

Memory management 
MAT 

Memory management 
instructions 

LP STD 
LS STD 

Mode 
console 
run 
single step 

Modify 
current location (•) 
double precision floating 
point register (•) 

general register (•) 
PSW (=) 
single precision floating 
point register (•) 

Move and pad (MOVE) 
Move and pad with default 

pad (MOVEP) 
Move translated until (MVTU) 
Multiple double precision 
floating point (MD) 

Multiply (M) 
Multiply floating point (ME) 
Multiply floating point 
register (MER) 

Multiply halfword (MH) 
Multiply halfword register 

(MHR) 
Multiply register (MR) 
Mulitply register double pre­

cision floating point (MOR) 

N 

No operation (NOP) 
No operation register (NOPR) 
Nonconf igured memory address 
Noncorrectable memory error 
Nonpresence fault 
Normalization 

10-5 

10-22 
1-2 
3-13 

11-17 
11-2 
11-1 

11-1 

2-9 
1-8 

11-1 

11-21 
11-22 
11-23 

10-14 
10-15 
10-16 

2-7 

2-9 
2-8 
2-9 

2-8 
7-8 

7-8 
7-6 

6-50 
5-22 
6-29 

6-29 
5-24 

5-24 
5-22 

6-50 

4-30 
4-30 

10-26 
10-25 
11-18 
6-5 

IND-7 



0 

Opcode map 
Operands 

arithmetic 
Operations 

Boolean 
list processing 
translation 

OR (0) 
OR halfword (OH) 
OR halfword immediate (OHi) 
OR immediate (01) 
OR register (OR) 
Output command (OC) 
Output command register (OCR) 

P,Q 

Pack and move (PMV) 
Pack and move absolute (PMVA) 
Packed 

decimal data 
format 

Physical address 
selection of 

Power restore 
LSU 

Presence bit (P) 
Private segments 
Privileged system function 

(PSF) 
Process byte (PB) 
Process byte register (PBR) 
Process segment table 
descriptor. See PSTD. 

Process segment table. See 
PST. 

Processor block diagram 
Processor interrupts 

PSW 
status switch 
status word 

Processor modes 
console 
l::Ufi 

single step 
Processor/controller 

communication 
Program status word. See 

PSW. 
Protect mode enable (P) 
PST 
PSTD 
PSW 

IND-8 

condition code 

CSP 
examine (P) 
Fu.! 
FLU 
I/O interrupt mask (I) 
I IP 
interrupt masks 
LOC 

LVL 

A-1 

1-10 

3-2 
3-3 
3-2 
3-32 
3-33 
3-33 
3-32 
3-32 
9-9 
9-9 

7-12 
7-12 

1-11 
7-1 

11-7 

10-24 
10-25 
11-11 
11-7 

10-40 
8-2 
8-4 

1-3 

1-7 
1-7 
1-7 

10-14 
10-15 
10-16 

9-2 

10-7 
11-3 
11-3 

1-2 
10-3 
1-6 

10-8 
10-3 

2-9 
10-3 
10-6 
10-5 
10-4 
1-4 
1-4 

10-1 
10-8 
10-3 

PSW (Continued) 
machine malfunction 
interrupt enable (M) 

modify (•) 
protect mode enable (P) 
register set select 
register set select 
field (R) 

relocation/protection 
enable (R/P) 

reserved memory locations 
SQS interrupt enable (Q) 
status information 
status word 
wait state (W) 

R 

R* rounding 
Read data (RD) 
Read data register (RDR) 
Read error logger (REL) 
Read halfword (RH) 
Read halfword register (RHR) 
Real address 
Reference bit (B) 
Register and indexed storage/ 
register and indexed stor­
age. See RXRX. 

Register and immediate 
storage one. See Rll. 

Register and immediate 
storage two. See RI2. 

Register and indexed storage 
one. See RXl. 

Register and indexed storage 
three. See RX3. 

Register and indexed storage 
two. See RX2 . 

Register and indexed 
storage. See RX. 

Register set select field (R) 
Register to register. See 

RR. 
Registers 

floating point 
general 

Relocation/protection (MAT) 
fault interrupt 

Relocation/protection enable 
(R/P) 

Remove from bottom of list 
(RBL) 

Remove from top of list (RTL) 
Reserved memory locations 

Reset bit (RBT) 
Reset memory voltage failure 

(RMVF) 
Restore interruptible state 

(LSRST) 
Rll format 
RI2 format 
Rotate left logical (RLL) 
Rotate right logical (RRL) 
RR 

format 

instruction 
Run mode (<) 
RX format 

10-5 
2-9 

10-7 
1-5 

10-7 

10-6 
10-9 
10-6 
1-4 

10-1 
10-4 

6-9. 
9-11 
9-11 

10-41 
9-12 
9-12 

11-1 
11-i'l 

10-7 

1-7 
1-7 

10-20 

10-6 

3-60 
3-60 
1-8 

10-9 
3-50 

10-51 

10-49 
1-25 
1-27 
3-43 
3-45 

1-14 
1-16 
1-2 
2-9 
1-14 

50-022 ROO 



RXl format 
RX2 format 
RX3 format 
RXRX format 

s 

Save interruptible state 
( ISSV) 

Segment limit fault 
Segment limit field 
Segment relocation field. 

See SRP. 
Segment table descriptor. 

See STD. 
Segment table entry. See 

STE. 
SELCH 

devices 
operation 
programming 

Select an address and 
examine (@) 

Selector channel. See SELCH. 
Sense status (SS) 
Sense status register (SSR) 
Set bit (SBT) 
SF format 

Shared segment bit (S) 
Shared segment table 
descriptor. See SSTD. 

Shared segment table. See 
SST. 

Shared segments 
Shift left arithmetic (SI.A) 
Shift left halfword 
arithmetic (SLHA) 

Shift left halfword logical 
(SLHL} 

Shift left halfword logical 
short (SLHLS) 

Shift left logical (SIL) 
Shift left logical short 

(SLLS) 
Shift right arithmetic (SRA} 
Shift right halfword 

arithmetic (SRHA) 
Shift right halfword logical 

(SRHL) 
Shift right halfword logical 
short (SRHLS) 

Shift right logical (SRL) 
Shift right logical short 
. (SRLS) 
Short form. See SF. 
Signed integers 
Simulate channel program 

(SCP) 
Simulate interrupt (SINT) 

Simulate interrupt. See 
SINT. 

Single instruction 
execute (>) 

50-022 ROO 

1-18 
1-20 
1-23 
1-29 

10-48 
11-19 
11-12 

9-6 
9-6 
9-7 

2-6 

9-10 
9-10 
3-49 
1-14 
1-17 

11-12 

11-7 
5-33 

5-35 

3-41 

3-41 
3-39 

3-39 
5-36 

5-38 

3-42 

3-42 
3-40 

3-40 

1-10 

9-17 
10-1 

10-37 

2-9 

Single precision floating 
point register 

examine (F) 
modify (•) 

SINT 
Software segment table 
entry. See SWSTE. 

SQS interrupt 
SQS interrupt enable (Q) 
SRP 

SST 
SSTD 
Status monitoring 
Status switching 

data format fault 
interrupt 

illegal instruction 
interrupt 

Status switching instructions 
BRIC 
ECC XSTB 
EPSR 
ISRST 
ISSV 
LOPS 
LP STD 
LPSW 
LPSWR 
LS STD 
PSF 
REL 
RMVP 
SINT 
STPS 
SVC 

STD format 
STE 

HSTE 
segment table 
size 
SWSTE 

Store (ST) 
Store binary as packed 

decimal string (STBP) 
Store byte, no ECC (XSTB) 
Store byte (STB) 
Store byte register (STBR) 
Store double precision float-

ing point register in single 
precision memory (STDE) 

Store double precision 
floating point (STD) 

Store floating point (STE) 
Store halfword (STH) 
Store multiple (STM) 
Store multiple double pre­
cision floating point (STMD) 

Store multiple floating 
point (STME) 

Store process state (STPS) 
String 

alphanumeric byte 
decimal byte 

String instructions 
CPAN 
CPANP 

2-8 
2-8 

10-29 

10-29 
10-6 
11-3 
11-13 
11-3 
11-3 
9-4 

10-17 

10-18 

10-18 
10-33 
10-39 
10-50 
10-36 
10-49 
10-48 
10-46 
10-43 
10-34 
10-35 
10-44 
10-40 
10-41 
10-51 
10-37 
10-45 
10-38 
11-8 
11-9 
11-10 
11-10 
11-10 
11-13 

3-21 

7-5 
10-50 

3-24 
3-24 

6-58 

6-43 
6-22 
3-22 
3-23 

6-44 

6-23 
10-45 

1-9 
1-9 
7-3 
7-10 
7-10 

IND-9 



String instructions 
(Continued) 
LPB 
MOVE 
MOVEP 
MVTU 
PMV 
PMVA 
STBP 
UMV 
UMVA 

String operations 
packed decimal data 
unpacked decimal data 

Subroutine address 
Subroutine linkage 

branch 
link 

Subtract (S) 
Subtract double precision 
floating point (SD) 

Subtract floating point (SE) 
Subtract floating point 
register (SER) 

Subtract halfword (SH) 
Subtract halfword immediate 

(SHI) 
Subtract immediate (SI) 
Subtract immediate short 

(SIS) 
Subtract register (SR) 
Subtract register double pre­
cision floating point (SOR) 

Supervisor call (SVC) 

Supervisor call. See SVC. 
SVC interrupt 
SWSTE 

disk address 
ref erepce history bits 
reserved field 
usage mode bits 

System 
breakpoint interrupt 
initialization on MAT 
terminal 
terminal commands 
terminal support command 

summary 
System breakpoint (BRIC) 

System queue service. See 
SQS. 

T 

Terminal 
system commands 

IND-10 

7-4 
7-8 
7-8 
7-6 
7-12 
7-12 
7-5 
7-14 
7-14 

7-1 
7-1 
9-19 

4-2 
4-2 
5-14 

6-47 
6-26 

6-26 
5-16 

5-16 
5-14 

5-14 
5-14 

6-47 
10-1 
10-38 

10-31 

11-17 
11-16 
11-16 
11-13 

10-31 
11-21 

2-1 
2-6 

2-2 
10-39 

2-6 

Terminal (Continued) 
system support command 

summary 
Test and set (TS) 
Test bit (TBT) 
Test immediate (TI) 
Test immediate halfword (THI) 
Translate (TI.ATE) 
Translation 

True zero 

u 

Unpack and move (UMV) 
Unpack and move absolute 

(UMVA) 
Unpacked 

decimal data 
format 
zoned decimal 

Usage mode bits 
active state 
I/O ongoing state 
loading state 
unload pending state 
unloading state 
unused state 
used state 

User level instructions 

v 

VDU 
Video display unit. See VDU. 
Virtual address 

offset field 
page field 
segment field 
selection of 
setting space size 
translation to real 

address 

Virtual memory 

w-z 

Wait state (W) 
Write data (WD) 
Write data register (WDR) 
Write halfword (WH) 
Write halfword register (WHR) 

2-2 
3-47 
3-48 
3-36 
3-37 
3-54 
3-2 
9-20 
6-7 

7-14 

7-14 

1-11 
7-1 
7-2 

11-13 
11-15 
11-15 
11-14 
11-16 
11-15 
11-14 
11-14 

1-11 

2-1 
2-1 

11-1 
11-6 
11-7 
11-7 
11-6 
11-7 
11-8 

11-2 
11-3 
11-1 

10-4 
9-13 
9-13 
9-14 
9-14 

50-022 ROO 


	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	03-63
	03-64
	03-65
	03-66
	03-67
	03-68
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	10-47
	10-48
	10-49
	10-50
	10-51
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	E-01
	E-02
	E-03
	F-01
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10

