
The Intecolor 8051 DeskTop Computer

..

Intelligent Systems Corp.
5965 Peachtree Corners East

Norcross, Georgia 30071
Telephone 404/449-59-61

:>'

The Intecolor 8051
DeskTop C mputer

TAB L E o F CON TEN T S

PART 1

Specifications and RS232C Interface

Start-Up and Initialization

Summary of Control Codes

Summary of Escape Codes

Summary of Graphic Plot Submodes

CRT Refresh Memory

PART 11

Keyboard

Detail of Control Codes

Details of Escape Codes

Details of Graphic Plot Submodes

Light Pen Operation

APPENDIX A

Keyboard Layout
Intecolor@8001 Code Set
Input Flow Diagrams
Input Command Delays
CCI Code Assignments
Jl and J2 Pin Assignment
I/O Connector Layout

APPENDIX B

PAGE

1-3

4

5-6

7-8

9

10

11

12-18

19

25-37

38

A-I
A-2
A-3
A-4
A-5
A-6
A-7

Plot Mode Functions B-1
Plot Mode Characters and Codes B-2
X Point Plot and Y Point Plot B-3
XY Incremental Point Plot Movements B-4
X and Y Bar Graph Modes B-5
X Incremental Bar Graph, Y Incremental Bar Graph B-6
XoYoVector Plot Mode B-7

APPENDIX C

TMS 5501

APPENDIX D

TMS 8080

APPENDIX E

®
How to Align the Intecolor 8001.

(~ 1975

PROPRIETARY STATEMENT

This document, submitted in confidence,
contains proprietary information which
shall not be reproduced or transferred
to other documents or disclosed to others
or used for manufacturing or any other
purpose without prior written permission
of Intelligent Systems Corp.

PART I

SPECIFICATIONS

Introduction

The Intecolor@) 8001 is an eight color intelligent CRT data terminal
designed as a replacement for teletypes and black and white CRT data terminals.
It is a self'-cont,ained, desk top unit which offers, with the use of a modem,
t,wo-way dat,a communications over common voice telephone lines or teletype
compatible current loops. It can also be used in the stand alone mode as a
complete desk top computer if equipped with the proper options.

Basic System Specification

Power:

Temperature:

Humidity:

Package Size
Desk Mount
Version:

Keyboard
Dimensions:

Weight:

Screen
Size:

Display
Area:

Character
Format:

Character
Style:

105-125 volts, 60HZ, 250 watts
Option 11: 205-250 volts, 50-60 HZ

+lOoC to +40o C operating
-30o C to +70o C storage

o to 95% non-condensing

17 1/2" high
19 3/8" wide
22 1/2" long

3 1/4" high
14 1/16" wide x 5 1/2" deep

85 pounds

19" diagonal measure
186 sq. inch screen area
4x3 aspect ratio

120 sq. inches
(12.0" wide x 10.0" high)

80 characters per line, 25 lines per page
Option 16: 80 characters per line,

48 lines per page

64 ASCII Characters, 5x7 dot matrix
within a 6x8 dot pattern
Option 03: 32 Graphic Characters, 6x8 dot matrix
Option 17: 64 Graphic Characters, 6x8 dot matrix

1

Standard Interface

Standard I/O Ports

The standard Intecolor 8001 has two input ports.
One port, Jl, is an asynchronous serial RS 232C I/O, or if Option

07 is installed, a serial 20 rna current loop I/O. The other port, J2,
accepts parallel input data from the keyboard and provides an 8 bit parallel
output. The Intecolor~l8001 is furnished with a crystal clock and provides
a keyboard selectable baud rate of normal 110, 150, 300, 1200, 2400, 4800,
and 9600 baud, or a high speed option of 880, 1200, 2400, 9600, 19,200,
38,400, and 76,800 baud.

The serial input port is furnished without parity checking so
that when in the Plot Mode, or CCI Mode, eight data bits can be received.

The signals for the standard RS 232C I/O ports are shown on
page 3 and on Jl and J2 in Appendix A7.

Pin 2 of the Keyboard J2 connector signals the Data communications
equipment that the terminal has received a byte and is processing the last
byte received. The Unit's input port has a one byte buffer. So for maximum
speed, the communications equipment can send the next byte as soon as it
has detected the high to low transition on pin 2. The wave form is shown
below:

3.5v

o

Approx. 70 MICRO SECONDS

Next byte may be sent after high
to low transition.

2

Pin # Signal Line Nomenclature Direction

1 Protective Ground AA NA

2 Transmitted Data BA From ISC to DCE*

3 Received Data BB From DCE* to ISC

4 Request to Send CA From ISC to DCE*

5 Clear to Send CB From DCE* to ISC

w 7 Signal Ground AB NA

20 Data Terminal Ready CD From ISC to DCE*

*DCE - Data Communication Equipment

RS232C INTERFACE

Comments

Connect to Chassis Ground and
Pin 7 also

"111 Mark= -v
"0" Space= +V

"1" Mark= -v
"0" Space= +V

Conditions the DCE* for Transmission
Always +V if terminal is on

Not required by ISC

Connected to Pin 1 also

Signals the DCE* that the data
terminal is ready to transmit
ON=+V=Ready
OFF=-V=Not Ready

START-UP AND INITIALIZATION

Introduction

BEFORE ATTEMTPING TO OPERATE YOUR INTECOLOR69 800l , IT IS
SUGGESTED THAT THIS SECTION BE READ AND UNDERSTOOD. The power switch
(SWl) is located in the lower rear panel portion of the CRT case. Also
located on this panel are the various input and output port connections.
These are shown in Appendix A8. Connection diagrams are shown in Appendix
A7.

Power

Plug the line cord into a l20VAC-60HZ outlet (230VAC-50-60 HZ
with Option 11). When the power switch is pushed up the terminal is
in the operating state. After the switch is turned on, a 60 second warm
up period is required before operating the terminal. The unit will come
up in the initialized state, So.

Initialized State - So

The unit will always come up in the initialized state-So when
power is turned on after being off for at least 30 seconds.

In State S the following conditions are true:
o

A. Visible foreground color white
B. Visible background color black
C. Reverse field flag "0"
D. Visible A7 bit = "0" (unless otherwise noted)
E. Plot Bit = "0"
F. Page Mode Operation (unless otherwise noted)
G. Terminal Mode = Local (unless otherwise noted)
H. Baud Rate = 9600 with one stop bit (unless otherwise noted)
I. Write left to right with visible cursor
J. Blind foreground color red
K. Blind background color black
L. Blind A7 Bit = "0"
M. Blind Plot Bit = "0"
N. Blind Cursor at home or top left corner of screen.

After the above conditions have been set, the cursor is moved
to the home position which is the top left hand corner of the screen, and
the position of the first character of the first line. The screen will
clear by an Erase Page command which effectively makes all 2000 (3840 with
80 character x 48 line option) characters; spaces (20 HEX) which are white, non­
blinking (07 HEX). The unit is now ready to accept commands from the keyboard
or the serial input if connected.

Convergence and Purity

The units convergence and purity may need adjusting when initially
received. Allow at least a 30 minute warm before setting the final convergence.
See Appendix C for convergence alignment.

4

SUMMARY OF CONTROL CODES
FOR INTECOLOR 8001

o NULL (control @) has no effect.

1 PROTECT (control A) has no effect.

2 PLOT (control B) enters graphic plot mode (see plot submodes).

3 CURSOR XY (control C) enters X-Y cursor address mode for either
visible cursor or blind cursor.

4 FREE (control D) not used - has no effect.

5 FREE (control E) not used - has no effect.

6 CCl (control F) the next character which follows provides the 8 bit
visible status word.

7 BELL (control G) provides a 150 ms tone.

8 HOME (control H) moves the cursor to top left corner of display.

9 TAB (control I) causes cursor to advance to next column - the tab
columns are every 8 characters.

10 - LINE FEED (control J) causes the cursor to move down one line.

11 - ERASE LINE (control K) causes the cursor to return to beginning of line
and causes the complete line to be erased.

12 - ERASE PAGE (control L) causes the complete screen to be erased and
the cursor moves to the home position.

13 - RETURN (control M) causes the cursor to move to the beginning of the
line it presently is on.

14 - A7 ON (control N) turns the A7 bit flag on.

15 - BLINK/A7 OFF (control 0) turns the blink bit and A7 bit off.

16 - BLACK KEY (control P) sets either foreground or background to color black.

17 - RED KEY (control Q) sets either foreground or background to color red.

18 - GREEN KEY (control R) sets either foreground or background to color green.

19 - YELLOW KEY (control S) sets either foreground or background to color yellow.

20 - BLUE KEY (control T) sets either foreground or background to color blue.

21 - VIOLET KEY (control U) sets either foreground or background to color violet.

5

22 - CYAN KEY (control V) sets either foreground or background to color cyan.

23 - WHITE KEY (control W) sets either foreground or background to color white.

24 - XMIT (control X) causes data to be transmitted from the visible cursor
to the end of page or until FF/OO is found in Refresh
RAM.

25 - CURSOR RIGHT (control Y) causes the cursor to move right 1 position.

26 - CURSOR LEFT (control Z) causes the cursor to move left 1 position.

27 - ESC (control C) provides an entry to the escape code table- must be
followed by one or more codes for proper operation.

28 - CURSOR UP (control") causes the cursor to move up one line.

29 - FG ON/FLAG OFF (control:J) sets the flag bit off.

30 - BG ON/FLAG ON (control/\) sets the flag bit on.

31 - BLINK ON (control _) sets the blink bit on.

6

5 BIT CODE

o

1

* 2

3

4

* 5

6

7

8

9

10

11

12

13

14

* 15

* 16

* 17

18

* 19

* 20

* 21

* 22

* 23

SUMMARY OF ESCAPE CODES

FOR INTECOLOR 8001

LETTER

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

o

P

Q

R

S

T

U

V

w

7

FUNCTION

Visible cursor mode

Blind cursor mode

Plot via color pad

Transmit cursor X,Y position

Not used

Re-entry to BASIC 8001

Sets full duplex mode

Not used

Sets half duplex mode

Not used

Set write vertical mode

Sets roll up and write left to right mode

Sets local mode

Not used

Not used

Re-entry to the CPU operating system

Initializes and transfers control to
the CPU operating system

Character insert mode

Baud rate selection mode
A7 on = 1 stop bit, A7 off 2 stop bit
Transfer control to the 8080 assembler

Transfer control to the text editor

Insert one line

Delete one line

Initializes and transfers control to
BASIC 8001

5 BIT CODE LETTER FUNCTION

24 X Sets page mode and write left to right
mode

25 y Test mode - fill page with next character

26 Z Set write down on 45 degree mode

27 C Not used

28 '\ Sets write up on 45 degree mode

29 .:r Set unit up for Block receive mode

30 A Causes a jump to address 9FAI2lH

31 Transfer control to the CRT mode

* Must include certain option to be operational

8

RS-232 INPUT
CODE

255

254

253

252

251

250

249

248

247

246

245

244

243

242

241

240

SUMMARY OF GRAPHIC PLOT SUBMODES

FOR INTECOLOR 8001

PLOT
SUBMODE

Plot Mode Escape

Charactor Plot

x Point Plot

Y Point Plot

X-Y Incremental Point Plot

Xo of X Bar Graph

Y of X Bar Graph

X max of X Bar Graph

Incremental X Bar Graph

Yo of Y Bar Graph

X of Y Bar Graph

Y max of Y Bar Graph

Incremental Y Bar Graph

Xo Vector Plot

Yo Vector Plot

Incremental Vector Plot

NORMAL KEY­
BOARD CODE

Control ?

Control>

Control

Can tro 1 <::...

Control

Control

Control 9

Control 8

Control 7

Control 6

Control 5

Control 4

Control 3

Control 2

Control I

Control !2l

SUMMARY OF INCREMENTAL DIRECTION CODES
FOR INTECOLOR 8001

A Xl AYI AX2 AY2

If BIT = 1 A7 A6 A5 A4 A3 A2 Al

Direction + - + - + - +

Value 80 40 20 10 8 4 2

9

AO

-
1

OPTIONAL
FUNCTION

KEYBOARD CODE

F 15

F 14

F13

F 12

F 11

F 10

F 9

F 8

F 7

F 6

F 5

F 4

F 3

F 2

F 1

F !2l

CRT REFRESH MEMORY LAYOUT

The 2000 [384QJ * characters for display are stored in a 4096
[8194] word RAM memory beginning at 32,768 (8000 HEX) and ending at
36,767 (8F9F HEX) £:40,447 (9DFF HEXjJ • The first word is the
zero character stored as the A7 bit and then the 7 bit ASCII code
(A6 to AO)' The second word is the compositestatus for this character.
It is composed of Plot Character Bit (A7), Foreground Blink (A6), Back­
ground color code (AS' A4 , A3), and Foreground color code (A2 , AI' AO)'

Therefore, each screen character requires two 8 bit words in
memory, (the screen character and the character's compositestatus). The
RAM memory location 8FAO HEX[9FA~ to 8FFF HEX ~FFF HE!] are used for
scratch pad storages. Memory location 8FBO fjFBO HEg] and 8FBI L9FBU
are the locations of the Cursor character position and line number
r,espectively. with the Roll Mode (Option IS) memory location 8FB20FBD
provides the number of lines that the home position has been shifted or
rolled.

* [!ndicates value for 48 Line syste~

IA

REFRESH MEMORY WORD FOR ONE CHARACTER

EVEN ODD (EVEN +1)

ASC II Code

A7 bit BLINK FOREGROUND

IBIT I B G R COLOR

A7 A6 AS A4 A3 A2 Al AO I A7 I A6 I AS A4 A3 A2 Al AO

PLOT BITS PLOT I BACKGROUND I B G R
BIT I COLOR

10

PART II

Keyboard

The Intecolor 8001 has a detachable keyboard which presents
the standard ASCII four level code. (See Appendix A-l for keyboard layouts) .
The keyboard keys are optically encoded by means of phototransistors, a
light source and shutters attached to the keys. There are no switches
to wear out and the unit is RFI free. The Keyboard does not provide
two key rollover.

CPU Reset

The CPU Reset key provides a reset signal to the 8080 CPU.
Its primary function is to allow the operator to regain control of the
terminal if the software the customer has installed gets hung in an
endless loop. If the reset is operated properly the bell will issue a
short beep upon the release of the key. If automatically forces the
terminal to the So state. That is, just as if the power had been turned
off and then back on. If additional RAM memory is installed this memory
area is not cleared, but the scratch RAM area within the CRT Refresh RAM
card is cleared.

Control Key

The control key must be held down while the proper alpha numeric key
is depressed if a control function is desired. The control functions are either
color coded or have its desired results engraved on top of the key. Those keys
which have a name enclosed within a () parentheses indicate that they are also
standarized escape codes. The escape codes only require that the ESC key
be depressed then the () parentheses key desired.

Shift Key

The shift key must be held down while the proper alpha numeric key
is depressed if a shifted function is desired. Note that both the control and
shift key must be held down to generate certain codes from the keyboard using
the alpha numeric keys. See Appendix A-2 for the keyboard code set.

11

DETAIL OF CONTROL CODES

All of the display commands can be entered either through the
serial input port or the keyboard. The keyboard input port has the highest
priority of all inputs or outputs. The eight bit Intecolor 8001 code
set as shown in Appendix A-2 must be used for the serial input port. The display
control commands are a subset of the 32 ASCII control code set, and a flow
diagram of these commands is shown in Appendix A-3.

With some display commands, such as the Graphic Plot Mode,
delays may be experienced at the higher baud rates. A chart for these
delays is shown in Appendix A4.

ff) .
The Intecolor 8001 dlsplay commands has been expanded by

an addi tiona I' 32 commands via the ESC, character sequence as shown in
Appendix 5. The terminal employs two input pointer flags, one for the
keyboard and one for the RS232C input. Each flag may point to a
different Mode of operation and thus the terminal can act differently
from the keyboard as compared to the RS232 input. (See blind cursor
operation Code 1 on page 19 .)

Code ~

Code 1

Code 2

Null (Control @)

Has no effect upon the display

Protect (Control A)

Not presently implemented so it has no effect upon the
unit.

Graphic Plot Mode (Control B) (Option 02)

The general Graphic Plot Mode is entered by a
binary code 2 or a Control Code B. (See Appendix B). It should be
noted that the XY Plot Mode is also entered at the same time. If a
plot mode other than XY Point Plot is desired, the next word that follows
should then be a binary code from 240 to 255. These codes represent
the various plot submodes as shown in the summary of Graphic Plot Submodes.

An additional feature is available to allow a graphic plot to
be erased by simply setting the Flag bit on before entering the plot mode.
This causes an XOR function to exist when plotting. Therefore, if you
plot the same point, bar or vector twice, the second time erases the
original.

Once in the general Plot Mode, any of the plot submodes
may be entered by sending the corresponding code to the terminal. When
this code is received, a flag internal to the terminal, known as PLOFL,
is set placing the terminal in the appropriate plot submode. It should
be noted that in many of the plot submodes, PLOFL is automatically set to
a different value upon completion of the operation of that submode causing
the terminal to enter a new submode. This is done to make coding and
operation of the terminal in the various plot functions easier for the
operator. The various submodes and their interactions are explained in
detail in Appendix B.

12

Code 3 Cursor X-Y (Control C)

The visible cursor may be positioned any where on the
screen simply by sending a 3-word sequence beginning with 03. The
next two words that follow determine that X character position (0-79)
and Y line position (0-24) for 25 line unit or [9-47J for 48 line unit.
Both X and Y values must be in binary form with the range indicated.
The cursor home position (i.e., the top left hand corner) is position 0, 0
while the bottom right hand corner is (79, 24) or (j9, 411.

If the cursor is positioned at X = 80 binary (50 HEX) then the cursor will
disappear. But if a character is typed it will be positioned at the
beginning of the line specified by Y + 1, the cursor then reappears in
character position 1. Any cursor command will automatically force the
cursor to reappear at the proper position in relation to character position
0, line Y + 1.

If the cursor X values is 81 binary (51 HEX) or larger then
the CRT ignores this as the visible cursor X values and sends the
unit into the blind cursor addressing mode. Once in the blind cursor
X-Y addressing mode three (3) additional words must be sent. They are
blind cursor X value, blind cursor Y value, and the blind status word.
The blind X value must be in the range of 0-79 and the blind Y value
must be in the range of 0-24 or [9-41]. The blind status word must
be in the same format as required in the CCI mode (control F). See the next
page,

The blind A7 bit will be set on by sending from 128 binary to
255 binary instead of 81 binary when qoinq from the visible cursor
X,Y mode to the blind cursor X,Y mode. The Blind A7 bit will be set off
anytime a binary number between 81 and 127 is used to get into the blind
X,Y mode.

It should be noted that the X and Y cursor values received
are masked to 0-127 and 0-31 fQ-6~ respectively. Then, if the value is
still out of range, the X value has 80 subtracted and the Y values has 25
Q-~J subtracted.

When exitinq from the blind cursor X-Y mode the terminal is
left in the blind cursor mode for what ever input device caused the
mode to be entered. That is if after CPU reset is operated the keyboard
causes the blind cursor XY to be addressed then the keyboard will be
left in the blind cursor mode while the RS232 serial is still in the
visible cursor mode.

Code 4 EOT (Control D)

Has no effect upon the display

Code 5 (Control E)

Has no effect upon the display

13

Code 6 CCI (Control F)

When this code is received the system accepts the next
eight bit word from the serial input as the new compositestatus for the
characters which follow. See CRT Refresh Memory Section.

The first three bits represents the Foreground Color with
RedF=AO' GreenF=Al , and Blue =A2 . The next three bits represent the
Background Color (optional) with RedB=A3 , GreenB=A4, and BlueB=AS . The next
bit, A6 is the Blink bit for the Foreground Color and the last bit, A7 is Plot
Character bit which causes the display to interpret the ASCII word as a 2x4 plot
array.

Code 7 Bel;L (Control G)

When this code is received a tone will sound for about lSO MS.

Code 8 Home (Control H)

When this code is received the cursor moves to 0,0 or the
top left hand corner of the screen.

Code 9 Tab (Control I)

When this code is received the cursor moves horizontally
to the next tab position. The tab positions are fixed and are at
every eight positions from zero.

Code 10 Line Feed (Control J)

When this code is received the cursor moves down one line.
This is the only code used for cursor down.

Code 11 Erase Line (Control K)

When this code is received a carriage return is initiated and
the characters from the beginning to the end of the line are replaced with
spaces and have the same color and status as the present visible CCI
status. The cursor is always positioned at the beginning of the line.

Code 12 Erase Page (Control L)

When this code is received the complete screen is replaced
with spaces that have the same color and composite status as the present
visible CCI status. The cursor always returns to the Home position. The blind
cursor is also positioned at home.

Code 13 Carriage Return (Control M)

When this code is received, the cursor returns to the beginning
of the line that it presently is on.

14

Code 14 !27 On (Control N)

Upon receiving this code, the characters which are to be
displayed have A7 forced to a "1". This bit is used to allow 2X
character sizes for 48 line units. This effectively doubles the number of
displayable character types from 128 to 256.

Code 15 Blink - !27 - OFF (Control 0)

When this code is received the characters which follow have
A7 set to "0" (Le., opposite to !27 On as above) and also have the
Blink bit, A6 of the composite status for the character set to "0"
(i.e., the opposite of Blink-On per Code 31.)

Code 16 to 23 or Color Keys There are eight color keys

A2 Al AO

Black (Control P) Code 16 0 0 0
Red (Control Q) Code 17 0 0 1
Green (Control R) Code 18 0 1 0
Yellow (Control S) Code 19 0 1 1
Blue (Control T) Code 20 1 0 0
Magenta (Control U) Code 21 1 0 1
Cyan (Control V) Code 22 1 1 0
White (Control W) Code 23 1 1 1

When one of these eight codes is received then one of two
things happens, depending upon the Flag bit. If the Flag is off then
the key that is depressed will change the compositestatus to that
Foreground Color code.

If the Flag is on, then the key that is depressed will change
the compositestatus to the Background Color code. If Background
Color option is used, then it will display that color. If Background Color
option is not supplied, then no effect will be noticed.

Note that when the plot via color pad is selected, one of the eight color
select keys will select one of the eight plot blocks. The plot option 2 is installed
See Escape B section for details.

Code 24 Transmit (Control x)

Whenever control X is received the terminal starts transmission
from the visible cursor present position to the end of the screen, or
until it detects a FF, ~~ Hex sequence in the Refresh memory.

The transmission sequence is terminated by a carriage return,
either ~D Hex or 8D Hex at the customer option. It should be noted that
there may be many ~D Hex or 8D Hex imbedded in the data transmission
since these are legal words in the refresh memory.

15

The transmission sends each 8 bit word in memory in
sequence. That sequence is the ASCII character, then the status of that
character, followed by the next ASCII character and then its status until
the FF, 00 sequence is detected.

The best way to have this data sent back to the terminal
is via the ESC] or block receive mode.

Code 25 Cursor Right - (Control Y)

Moves the cursor right one character without destroying
any information.

Code 26 Cursor Left (Control Z)

Moves the cursor left one character without destroying
any information.

Code 27 Escape (Control [)

The Escape command effectively expands the control code
set by 32 additional code capabilities. This requires at least a two
code sequence (ESC, letter) which then performs a given function. At
present only 26 of the 32 additional command capabilities have been
enabled. These commands are given in the following table. (For Detail see
the Escape Code Section).

SEE ESCAPE CODE TABLE Page 17

16

OPTIONS

*

*

*

*
*

*

*
*
*
*
*

DECIMAL
CODE

a
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

ESCAPE CODE TABLE

LETTER

@

A

B

C
D

E

F

G

H

I

J
K

L
M

N

o
P

Q
R

S
T
U

V

W
x
Y

Z

C (ESC)

"-
:J
1\

FUNCTION

Visible Cursor Operation
Blind Cursor Operation
Plot Via Color Pad
Transmit Cursor X,Y position
Not Used
Re-Entry Control to BASIC 8001 system
Sets unit to Full Duplex
Not Used
Sets Unit to Half Duplex
Not Used
Sets Unit to Write Vertical
Sets Unit to Roll up Mode & write Left to Right
Sets Unit to Local Mode
Not Used
Not Used
Re-Entry control to the CPU Operating System
Initializing & Transfers Control to the CPU

Operating System
Allows Operation in Character Insert Mode
Allows Selection of 1 of 7 Baud Rates
Transfers Control to the 8080 Assembler
Transfers Control to the Text Editor
Inserts one line (80 blanks)
Deletes one line (80 blanks)
Transfers Control to BASIC 8001 Software
Sets unit to Write Left to Right & Page Mode
Test Mode-Fills Screen with Next Character
Sets Unit to Write Down on 45 Degrees
Not Used
Sets Unit to Write Up on 45 Degrees
Sets Unit to Block Receive Mode
Causes a Jump to Ram Address 9FA~H
Transfers Control to the CRT Mode

The letters are presented for easy reference; i.e., (full
duplex mode requires ESC, F sequence). It should be noted that the Escape
control codes can be any 8 bit value so long as the 5 least significant
bits are correct for the operation desired. The terminal simply masks off
the undesired higher order bits. The Keyboard and RS232C input port has
separate and independent Flags which determine some of the CRT modes.
Therefore, the Keyboard may be in the character input mode while the RS232
input may be in the Plot mode or vise versa. The input port and the Keyboard
can operate completely independently of each other. See Details of Escape Codes
section for more information.

17

Code 28 Cursor Up (Control")

Moves the cursor up one line without destroying any
information. This is effectively the opposite of a Line Feed operation.

Code 29 Flag Off - (Control:J)

When this code is received the Reverse Field flag is
set to "0". Effects the special character codes (96 to 127) and the
color codes (16 to 23).

Code 30 Flag On (Control A)

When this code is received the Reverse Field flag is
set to one. Effects the special character codes (96 to 127) the color
codes (16 to 23) i and the plot modes.

Code 31 Blink On (Control

When this code is received the Blink bit A6 of the
composite status is set to a "1".

This bit is turned off when the Blink-Protect-Off key
is operated (see Code 15).

Code 32 to 95 - Numbers and Letters

These provide the standard printing ASCII Upper Case
characters, punctuations and numbers. See Appendix A-2 for code set of the
the Intecolo~ 8001.

Code 96 to 127 Special Characters

These codes provide either 32 special characters (such as
lower case ASCII characters) or 64 special characters. The 64 special characters
are actually two groups of 32 special characters. A group is selected depending
upon the condition of the Flag bit. If the flag bit is off then the codes are not
changed when they are placed in the CRT refresh RAM. If the flag bit is on then
these codes have 96 subtracted from them before they are replaced in the CRT
refresh RAM. Therefore they are mapped into a to 31 within the CRT refresh memory.

18

DETAILS OF ESCAPE CODES

@ or Code 0 Visible Cursor Mode

This is the terminal's normal mode of operation and
it is also the startup state. A received character is placed at the visible cursor
location. The cursor then advances to the right one position awaiting the
next character. All normal cursor operations are applicable to placing
the cursor at a different location.

A or Code 1 Blind Cursor Mode

This optional mode provides for a dual cursor operation.
That is, normally the host computer will operate in the blind cursor
mode and the keyboard in the visible cursor mode. The two modes will
not interact with each other. There is also a blind status which may be
different than the visible status. The only blind cursor movements allowed are
a subset of the cursor X-Y positioning. See Code 3 or control C. This mode
allows operation without delay for ASCII TEXT at rates up to 38.4 K Baud.

B or Code 2 Character Plot Via Color Pad

When the plot option is installed then this plot mode
will be available. It will normally be used via the color pad, but can
be used without it. It provides a mix between the Plot Mode and the normal
ASCII Character Mode. Instead of responding as described in
Character Plot, this mode uses only eight codes to intensify each of the
eight blocks within a character. These intensifying codes are the normal
color select codes (Control P through W).

This option normally uses the
The pad is arranged as shown below.

color select pad on the keyboard.

Black Blue

Red Magenta

Green Cyan

Yellow White

Color Selection
Pad

One
Character Plot

Aray

One Plot Block Selected by Green

Figure 2.5.6.1
19

From the above it is easy to see the one to one
correspondence between the 2x4 color select pad and the 2x4 character
plot blocks. Thus, this mode is designed especially for use by the
keyboard to simplify the drawing of graphs or the correcting of graphs.
Once in this mode a block at the top right hand corner of the cursor
present position can be intensified by pushing the top right hand corner
key in the color select pad, (in this case the blue key or Control T or
Code 20). Once that plot block has been intensified, any other plot
block at that same character location can also be intensified since the
cursor does not automatically advance. If the blue key was to be pushed
the second time, then the already intensified plot block will be
extinguished. This effectively allows anyone plot block to be erased.
After all desired plot blocks have been either intensified or extinguished,
the cursor may be conventionally moved without escaping from this
special text and character plot mode. In fact, all of the control codes
are effective while in this mode except the color select control codes,
and any of the ASCII Text characters can be entered and displayed. Any
code that requires a two key or more sequence (such as cursor X-Y, CCI,
and ESC) will terminate the mode. It should be noted that the ASCII
Character when entered and displayed advances the cursor as previously
done in the visible mode, but the plot blocks (generated by the color
pad) do not advance the cursor. Therefore, when a character position has
been used to display plot blocks a cursor command must be given to
advance the cursor to the next character position.

C or Code 3 Transmit Cursor X,Y

When this code is selected the terminal sends out the
following 7 word sequence:

03, X, Y, 06, Status, ASCII Character, CR.

The X and Y values represents the cursor position on the screen. The
status is the status of the ASCII character at that cursor location. The
CR may be either a ~D or,an 8D HEX at the customer request.

This sequence of transmission is the same that the light pen
would provide if the unit is so equipped.

E or Code 5 Re-Entry to BASIC 8001

Return to BASIC 8001 without destroying the BASIC 8001
source program which is in Ram memory.

F or Code 6 Full Duplex Mode

When this mode is selected then the Keyboard characters
are only sent to the RS232C serial port. They are not processed by the
terminal. Therefore, once the unit is put in the full duplex mode via
the keyboard, then the only "normal" way the mode can be changed to
local or half duplex is via the RS232C serial port. There are two other
ways that have been provided to regain local control. One way is to
operate the CPU Reset key on the Keyboard, which will initialize the
terminal as if power has been just turned on. The other way is to

20

operate the break key on the keyboard. When this is done a break of 150 MS
will be transmitted on the RS232C serial port, and the terminal will be
forced into the half duplex mode.

H or Code 8 Half Duplex Mode

When this mode is selected then the keyboard
characters are not only processed by the terminal but are also sent to the
RS232C serial port.

J or Code 10 Write Vertical Mode

This effects the visible cursor mode only and causes
the terminal to enter characters vertically one below the other. All
other cursor movements are possible via the cursor mode. After a character
is entered the cursor is moved down one character awaiting the next
character. Upon reaching the last line the next character will be on
the top line, i.e. wrap around occurs.

K or Code 11 Roll Mode (option 15) Write left to right

When this mode is selected the terminal will cause a page roll
up when the last line has been filled. Al148 line units roll two lines at a time
while 25 line units roll only one line. Note the plot mode and blind cursor mode
only work in non-roll mode. This mode also sets the visible cursor to write left to
right.

L or Code 12 Local Mode

When this mode is selected then the keyboard characters
are displayed on the terminal, but they are not sent tothe RS232C serial
port. In this mode the RS232C serial input port can receive data or change
this mode. The terminal can be made to transmit out of the RS232C port,
while in the local modeby typing Control X or ESC C.

o or Code 15 Re-Entry to CPU Operating System Mode

Causes the same result as Code 16 below but does not
reinitialize the I/O Byte or the second RS232C channel Baud rate.

P or Code 16 Initialize CPU Operating System Mode

When this optional mode is selected the terminal enters
into the CPU Operating System. It then obeys all the commands that
are allowed in the CPU Operating System. See the CPU Operating System Manual.

Q or Code l7 Character Insert Mode

Once in this mode the CRT acts exactly like the normal
visible cursor system for all control commands except for those requiring
a 2 or more character sequence (such as Cursor XY, CCI, and ESC).
When any character is typed or received via the RS232C input, it is inserted
within the line at the cursor present position and every character

21

after the cursor to the end of the line is shifted right one character
position. The last character on the line is lost forever. The cursor
is also advanced one position. The above is trueexcept for control codes,
and "Delete" or (shift' ') keys (code 127).

When the "delete" key is depressed or code 127 is
received via the RS232 input port then the character at the cursor present
position is deleted and all characters to the end of the line are
shifted left one character position. The last character on the line
becomes a space. The cursor does not advance.

When the "ESC" key is depressed then the character
insert-delete mode is terminated after the second character is se'lected. The
terminal then normally returns to the visible character mode.

L;

R or Code 18 Baud Rate Selection Mode

When this mode is entered the unit then accepts the
next character as one of seven baud rates. It does this by looking at
only the first three bits. Therefore, any 8 bit character that has the
desired 3 lower order bits will do. Normally the keyboard numbers 1 to
7 are used. The baud rates and the corresponding numbers are indicated in

, }

the table below:

Number 1 2 3 4 5 6 7

Normal Baud llO 150 300 1200 2400 4800 ·9600
Rate

--
High Speed 880 1200 2400 9600 19,200 38,400 76,800

Baud Rate

The unit is initialized with power up at normally 9600
baud, with one stop bit. This initialized baud rate can be specified by
the customer at any of the fourteen above rates when ordered. It
should be noted that only in certain modes (blind cursor mode) can the
38,400 Baud be used with delays. In no case can 76,800 Baud be used
without delays. The unit may be ordered with either normal baud rates
or with the High Speed Baud rates. The two different rate systems cannot
be mixed.

The number of stop bits will be determined when the baud rate
is set by the condition of the A7 flag. If A7 was on before the rate is selected,
1 stop bit is selected; if A7 was off before the rate is selected 2 stop bits
are selected.

S or Code 19 8080 Assembler Mode

When this optional mode is selected the terminal enters
into the 8080 Assembler Mode. It then obeys all the commands that are
allowed in the 8080 Assembler. At present this option is not available.

22

T or Code 20 Text Editor Mode

When this optional mode is selected the terminal enters
into the Text Editor Mode. It then obeys all the commands that are
allowed in the Text Editor. At present this option is not available.

U or Code 21 Insert Line Mode

When this mode is selected the cursor moves to the
beginning of the line it is presently on and this line and all lines to
the end of the page is shifted down by one line. Then a new line
of 80 spaces (or blanks) are inserted with the cursor
remaining at the beginning of that new line.

Normally the cursor will be at the beginning of the
line to be inserted when this mode is used. After a line has been inserted
the terminal returns to the normal visible character mode.

V or Code 22 - Delete Line Mode

When this mode is selected the cursor moves to the
beginning of the line it is presently on and this line is deleted. All
lines to the end of the page are shifted up by one line. Then a new
line of 80 spaces (or blanks) are inserted at the bottom of the page.
The cursor will remain at the beginning of the line that had been deleted.
After a line has been deleted the terminal returns to the normal visible
character mode.

W or Code 23 BASIC 8001 Language Mode

When this optional mode is selected the terminal enters
into the BASIC 8001 Language mode. It then obeys all the commands that
are allowed in Basic 8001. See the "BASIC 8001 Manual".

X or Code 24 Page Mode Write Left to Right

When this mode is selected the terminal will not roll
up when the last line has been filled, but will begin at home again. The
terminal is also placed in the write left to right mode. This is the
normal power up mode. This mode affects all modes that use the visible
cursor. The blind cursor and plot modes will only operate in the page mode.

Y or Code 25 TEST Mode

When this mode is selected the next character that follows
causes the complete screen to be filled with that character. Note use ESC,
!,. for a convergence test pattern.

23

Z or Code 26 Write Down 45 Mode

When this mode is selected the terminal will place
the character at the present visible cursor and will then cause a cursor
right followed by a line feed to occur. Therefore, the next character
entered will be to the right and down one position from the previous
character. When the bottom of the page is reached the next character
will appear on the top of the screen, i.e., wrap around occurs.

c: or ESC or Code 27 No Effect Code

Performs a return to visible character mode.

'\. or Code 28 - Write Up 45 Mode

When this mode is selected the terminal will place the
character at the present visible cursor and will then cause a cursor right
followed by a cursor up to occur. Therefore, the next character entered
will be to the right and up one position from the previous characters.
When the top of the page is reached the next character will appear on
the bottom of the screen, i.e., wrap around occurs.

::J or Code 29 Block Receive Mode

Causes the unit to enter into the block receive mode.
Uses the blind cursor to position the data. Looks for a (FF), (00)
HEX sequence to terminate back to the visible cursor mode. Note this
is same format as when control (x) or page transmit is requested. Note
page transmit starts at visible cursor and ends at end of page or when
an (FF), (00) HEX sequence is found .

. /\ or Code 30 Jump to RAM 9FA9IH

When this code is received the CRT O.S. branches to
location 9FA9IH. Therefore, the user must patch into RAM address 9FA9IH
a jump to his program.

- or Code 31 Transfers Control to the CRT Operating System

CRT O.S. mode.
message will be

When this code
If Option 34, the
printed saying:

is received, the unit is forced to the
CPU O.S., ~is also installed, then a

YOU ARE NOW IN THE 8001 CRT MODE

24

DETAIL OF GRAPHIC PLOT SUBMODES

Code 2 Graphic Plot Mode (Control B) (Option 02)

The general Graphic Plot Mode is entered by a
binary code 2 or a Control Code B. (See Appendix B). It should be
noted that the XY Plot Mode is also entered at the same time. If a
plot mode other than XY Point Plot is desired, the next word that follows
should then be a binary code from 240 to 255. These codes represent
the various plot submodes as shown in the summary of Graphic Plot Submodes.

An additional feature is available to allow a graphic plot to
be erased by simply setting the Flag bit on before entering the plot mode.
This causes an XOR function to exist when plotting. Therefore, if you
plot the same point, bar or vector twice, the second time erases the
original.

Once in the general Plot Mode,' any of the plot submodes
may be entered by sending the corresponding code to the terminal. When
this code is received, a flag internal to the terminal, known as PLOFL,
is set placing the terminal in the appropriate plot submode. It should
be noted that in many of the plot submodes, PLOFL is automatically set to
a different value upon completion of the operation of that submode causing
the terminal to enter a new submode. This is done to make codi'ng and
operation of the terminal in the various plot functions easier for the
operator. The various submodes and their interactions are explained in
detail in Appendix B.

In addition to being able to enter the plot submodes
from the general Plot Mode, any plot submode may be entered from any other
plot submode with the exception 0:: the Character Plot Mode.

25

Colors may be defined on a character by character basis only
and the color of an individual plot block as well as all other intensified
plot blocks within a character will be the most recent color defined when
a new block is intensified in that character. To change a color, it is
required that the Plot Mode or plot submode be terminated, the color
changed, and the Plot Mode be re-entered.

The character grid is made up of 80 characters wide by 25 ~8J
lines high. The a reference point for all plotting is always the lower
left corner. Each character is further broken up into 2 blocks wide
by 4 blocks high which then causes the plot grid to be 160 blocks
wide by 100 1}9~blOCkS high. All plot submodes operate on this size grid
and have the same reference point. positive direction is considered up
and to the right and negative direction is considered down and to the left.

All plot submodes and the general Plot Mode are terminated
or exited by the binary code, 255. Whenever this code is received,
the modes are terminated and must be re-entered as described above.

Appendix B-2 gives a convenient summary of the codes
required to enter the Plot Mode and the various plot submodes as well as
the status of PLOFL before and after each operation and the ranges of each
operation.

Plot Mode Escape (255 binary)

This code is used to exit from the Plot Mode or any
of the plot submodes. The control "?"or F15 is used to escape from
the Plot Mode from the Keyboard.

Character Plot (254 binary)

The Character Plot is entered by a 254 after the general
Plot Mode, "2" or Control Code B, is entered. From the Keyboard use
Control ">" or F14. It may also be entered directly from any of the
other plot submodes. After entering the Character Plot, the next word
will be treated as a plot character except for code 255 binary or (FF)
hexadecimal (Le. all eight bits are "1' s"). See Appendix B-

The general Plot Mode and the Character Plot terminate
upon receipt of a 255 code. The above procedure must be repeated after
a 255 code terminates the Plot Mode and the plot submodes.

Other plot submodes may not be entered from the Character
Plot. To enter other plot submodes, the Character Plot must be terminated,
the general Plot Mode entered and the plot submode entered with its associated
code.

26

The procedures for entering and exiting the Character
Plot are shown below.

Function

Plot Mode
Character Plot
Plot Character 1

Plot Character n
Plot Escape

Code

2
254
o to 254

o to 254
255

The Character Plot causes the 6 wide by 8 high dot
matrix to be divided into 8 blocks organized 2 blocks wide by 4 blocks
high. Each block consists of a sub-dot matrix of 3 dots wide by 2 dots
high. Each block may be individually intensified by defining the bit
(one of eight bits) associated with the block in the plot character.
Bits may by "ORed" together for a combination of blocks in a plot character,
creating a form of graphics for plotting data or drawing diagrams.
Large characters may also be created by utilizing the blocks of several
character positions to create a large 5x7 dot matrix.

x Point Plot (binary 253)

The X Point Plot is automatically entered upon receipt
of the general Plot Mode code, binary code 2, or Control Code B. It
also may be entered directly from any of the other plot submodes except
Character Plot. From the Keyboard use Control "= " or F13. After
entering the X Point Plot, the next word defines the X value
of the block that is desired to be plotted See Appendix B-
The X value in this mode may range from binary 0 to 159 and all other
values will cause 160 to be subtracted and the resultant value of X to
be computed.

The X Point Plot may be terminated by code 255 which
causes the general Plot Mode to be terminated also. Any of the other plo
submodes may be entered directly from the X Point Plot by simply entering
the appropriate plot submode codes which range from binary 240 to 254.

It should be noted that this mode does not cause a
block to be intensified, but only causes the X value to be defined. Once
the X value is sent, the terminal is automatically placed in the Y Point
Plot mode. Thus, the next code sent will be the Y value, which may range
from binary 0 to 99 CQ-191J. Upon receipt of the Y value, a plot block
will be intensified on the CRT screen at the X value and Y value intersection.
The terminal is then automatically placed in the X Point Plot mode and the
next word sent will be interpreted as an X value.

Therefore, once in the X Point Plot mode, new
blocks may be defined by simply sending X values and Y values consecutively,
without the necessity of re-entering the X or the Y Point Plot modes.

27

The procedures for entering and exiting the X Point Plot mode are shown
below:

Function

Plot Mode*
Xl Value
Yl Value

Xn Value
Yn Value
Plot Escape

or
Plot Submode

Code

2
o to 159
o to 99 (0-191)

o to 159
o to 99 (0-191)
255
or

240 to 254

* Automatically X Point Plot mode also

NOTE: SEND Code 253 between X,Y data sets if necessary
for timing considerations. See Appendix A-4 for delays.

The X Point Plot in conjunction with the Y Point Plot
allows any block on a 160 wide by 100 (192 for 48 Line) high block
matrix to be positioned to and intensified. If the new block is within
a character position that is a previously intensified ASCII character, then
the ASCII character is replaced completely by the new block and its
associated color.

Y Point Plot (binary 252)

The Y Point Plot is entered by a binary 252 code
after the general Plot Mode is entered. See Appendix B-
From the Keyboard use Control "<;; " or F12. It may also be entered
directly from any of the other plot submodes except Character Plot
(binary 254). It is more commonly entered automatically from the X
Point Plot mode. After entering the Y Point Plot, the next word defines
the Y value of the block that is desired to be plotted and causes the
block to be intensified in accordance with the Section on (binary 253). The Y
value in this mode may range from binary 0 to 99 (0-191) and all larger
values will cause 100 (192) to be subtracted from the new value of Y to
be calculated.

Upon receipt of the Y value, the X Point Plot is
automatically entered by the terminal. The X value of the next block to
be plotted may then be sent as explained in the Section on (binary 253).

The Y Point Plot is terminated by Code 255 which causes
the general Plot Mode to be terminated also. Any of the other plot submodes
may be entered directly from the Y Point Plot by simply entering the appropriate
plot submode codes which range from binary 240 to 254.

28

Therefore, once in the Y Point Plot mode, new points
may be defined by simply sending X values and Y values consecutively
without the necessity of re-entering the X or the Y Point Plot modes. The
procedures for entering and exiting the Y Point Plot mode are shown below:

Function Code

Plot Mode 2
Plot Submode 252
Yl Value* 0 to 99
X2 Value 0 to 159
Y2 Value 0 to 99

Xn Value o to 159
Yn Value o to 99
Plot Excape 255

or or
Plot Submode 240 to 254

* Plots point using whatever previous X
Value left in memory.

NOTE: Send Code 253 between X,Y data sets if necessary for
timing considerations. See Appendix A-4 for Delays.

XY Incremental Point Plot (binary 251.)

The XY Incremental Point Plot is entered by code 251
after the general Plot Mode is entered. From the Keyboard use Control
";" or Fl1. It may also be entered directly from any of the other plot
submodes, except Character Plot. After entering the XY Incremental Point
Plot mode, the next word defines the next two increments as shown in
Figure below. This word may have a range from binary 0 to 239 since binary
240 to 255 is used for the plot submode codes.

b 7 I b 6 b 5 f b 4 b 3 I b 2 b l , b O

AXl A Yl AX2 AY2

Plot Plot
Block 1 Block 2

29

b b
n+l n

a 0 No Change
1 0 positive Increment
0 1 Negative Increment
1 1 No Change

n= 0, 2, 4, 6

If b o through b 3 are "O"s, then the plot block will
not print but will increment one increment according to the coding of
b 4 through b 7 • This allows the user to easily "skip" a plot increment
by plotting with an invisible block.

It should be noted that the XY Incremental Plot mode
does not automatically transfer the terminal to any other plot submode
upon receipt of an incremental change word,but remains in the XY
Incremental Plot mode ready to receive another incremental change word.
Therefore, a series of incremental movements may be made by sending
consecutive incremental change words.

The XY Incremental Plot mode may be terminated by code
255 which causes the general Plot Mode to be terminated also. Any of the
other plot submodes may be entered directly from the XY Incremental Point Plot
by simply entering the appropriate plot submode codes which range from binary 240
to 254.

The procedures for entering and exiting the XY
Incremental plot mode are shown below:

Function Code

Plot Mode 2
or or

Plot Submode 240 to 253
XY Incremental
Point Plot 251

Incremental Change
Word 1 o to 239

Incremental Change
Word n o to 239

Plot Escape 255
or or

Plot Submode 240 to 254

NOTE: Send code 251 between XY incremental point words
if necessary for timing considerations. See Appendix A-4 for Delays.

30

X Bar Graph, Xo Value (binary 250)

The X Bar Graph, Xo Value is entered by a binary 250
code after the general Plot mode is entered. From the Keyboard use
Control ":" or Fla. It may also be entered from any of the other plot
submodes except Character Plot. After entering the X Bar Graph, Xo Value
Mode, the next word sent defines the Xo Value or the left horizontal
start block of the horizontal bar graph. The graph grid is referenced
to the lower left hand corner of the face of the CRT. The Xo may range
in value from a to 159 and all other values have 160 subtracted and the
new value calculated for Xo'

Upon receipt of the Xo value, the value of Xo is
stored in memory and the terminal is automatically placed in the X
Bar Graph, Y Value mode (binary 249). The terminal is now ready to
receive the next eight bit word as the Y position of the bar graph.
Upon receipt of the Y value, the terminal is then automatically placed
in the X Bar Graph, X Max Value mode (binary 248). The terminal is
now ready to receive the next eight bit word as the X Max Value.
Upon receipt of the X Max Value, the bar is drawn on the CRT and the
terminal is placed back into the X Bar Graph, Y Value mode (binary 251)
ready to receive a new Y value to begin the bar graph drawing process
over again as outlined above. This process is shown below and in
Appendix B.

Function Code

Plot Mode 2
or or

Plot Submode 240 to 253
X Bar Graph, X

0
Value 250

Xo Value Word 1 a to 159
Y Value Word 1 a to 99 (0-191)
X Max Value Word 1 a to 159
Y Value Word 2 a to 99 (0-191)
X Max Value Word 2 a to 159

Y Value Word n a to 99 (191)
X Max Word n a to 159
Plot Escape 255

or or
Plot Submode 240 to 254

NOTE: Use Code 251 between Y value, X max Value data sets
for timing considerations. Timing delays depends directly upon the
length of the bar being intensified. See Appendix A-4 for delays both
minimum and maximum.

As can be seen from the above process, once in the
X Bar Graph, Xo mode, it is necessary to send only two words, Y and X
Max, to completely define other bar graphs with the same Xo in the
horizontal direction. As before, any of the submodes can be entered
independently. After the first bar graph sequence, additional bar graphs
can be described by a new Y position for the graph and a new X Max

31

-Value for the graph. The bar is drawn after the X Max Value is received
using the original value of Xo.

Any of the other plot submodes may be entered directly
from the X Bar Graph, entering the appropriate plot submode codes which
range from binary 240 to 254.

This mode allows bar graphs in any color or multiple
colors to be drawn with a width as small as one plot block wide or
areas under curves may be easily filled in.

X Bar Graph, Y Value (binary 249)

The X Bar Graph, Y Value is entered by .a binary 249
code after the general Plot Mode is entered. From the Keyboard use
Control "9" or F9. It is more commonly entered from the X Bar Graph,
Xo Value automatically, and may also be entered from any of the other
plot submodes except Character Plot (binary 254). After entering
the X Bar Graph, Y Value mode, the next word sent defines the Y
or vertical position of the horizontal bar graph being drawn. The
Y value m~y range from binary 0 to 99 (0 to 191) and all other values
will have 100 (192) subtracted from it and the new value calculated for
the Y value.

Upon receipt of the Y value word, the value of Y is
stored in memory and the terminal is automatically placed in the X Bar
Graph, X Max Value mode, as explained more completely in the Section on
(binary 248).

Any of the other plot submodes may be entered directly
from the X Bar Graph, Y Value mode by simply entering the appropriate
plot submode codes which range from binary 240 to 254.

X Bar Graph, X Max Value (binary 248)

The X Bar Graph, X Max Value is entered by a binary
248 code after the general Plot Mode is entered. From the Keyboard use
Control "8" or F8. It is more commonly entered from the X Bar Graph, Y
Value automatically, and may also be entered from any of the other plot
submodes except Character Plot. After entering the X Bar Graph, X Max
Value mode, the next word received. defines the X Max horizontal point of
the horizontal bar graph being drawn. The X Max Value may range from
o to 159 and all other values will have 160 subtracted from it and the
new value calculated for X Max Value.

Upon receipt of the X Max Value word, the bar graph
is drawn in the predefined color on the face of the CRT according to the
Xo and Y value stored in memory from previous operations. The terminal
is then automatically placed in the X Bar Graph, Y Value mode, binary 249,
for the beginning of a new bar graph as more completely explained in the
Section on (binary 248). .

Any of the other plot submodes may be entered directly
from the X Bar Graph, X Max Value mode by simply entering the appropriate

32

plot submode codes which range from binary 240 to 254.

X Incremental Bar Graph (binary 247)

The X Incremental Bar Graph is entered by a binary 247
code after the general Plot Mode is entered. From the Keyboard use
Control "7" or F7. It may also be entered from any of the other plot
submodes except Character Plot. After entering the X Incremental
Bar Graph mode, the next word sent defines the next two horizontal and
vertical increments for two horizontal bar graphs. Thus, one may
position a bar graph each side of the present location and add or
subtract an increment to the bar graph previously defined. The coding
and composition is the same as explained in the Section on (binary 251). An example
is shown in Appendix B-6.

Y Bar Graph, Yo Value (binary 246)

The Y Bar Graph, Yo Value is entered by a binary 246
code after the general Plot Mode is entered. From the Keyboard use
Control "6" or F6. It may also be entered from any of the other plot
submodes except Character Plot. After entering the Y Bar Graph, Yo Value
mode, the next word sent defines the Yo or the vertical start point of the
vertical bar graph being drawn. The range of the Yo word is 0 to 99
(0-191) and all other values have 100 (192) subtracted and will have the
new value calculated for Yo Value.

All other operations are identical as explained in the
Section on (binary 250), X Bar Graph, Xo Value except that Y Bar Graph, X Value
and Y Bar Graph, Y Max Value are applicable for drawing vertical bar
graphs. An example is shown in Appendix B-5.

Y Bar Graph, X Value (binary 245)

The Y Bar Graph, X Value is entered by a binary 245
code after the general Plot Mode is entered. From the Keyboard use
Control "5" or F5. It is more commonly entered from the Y Bar Graph,
Yo Value automatically, and may also be entered from any of the other plot
submodes except Character Plot. After entering the Y Bar Graph, X Value
mode, the next word sent defines the X, or horizontal position of the
vertical bar graph being drawn. The X Value may range from 0 to 159 and
all other values will have 160 subtracted and will have the new value
calculated for the X value.

All other operations are identical as explained inthe
Section on binary 249, X Bar Graph, Y Value except that Y Bar Graph, YO Value
and Y Bar Graph, Max Value are applicable for drawing vertical bar
graphs. An example is shown in Appendix B-5.

Y Bar Graph, Y Max Value (binary 244)

The Y Bar Graph, Y Max Value is entered by a binary
244 code after the general Plot Mode is entered. From the Keyboard use
Control "4" or F4. It is more commonly entered from the Y Bar Graph¥ X

33

Value automatically, and also may be entered from any of the other
plot submodes except Character Plot. After entering the Y Bar Graph,
Y Max Value mode, the next word received defines the vertical Y Max point
of the vertical bar graph being drawn. The Y Max Value may range from
binary 0 to 99 (0-191) and all other values will have 100 (192)
subtracted and will have the new value calculated for Y Max Value.

All other operations are identical as explained inthe
Section on (binary 248), X Bar Graph, X Value, except that Y Bar Graph, YO Value
and Y Bar Graph, X Value are applicable for drawing vertical bar graphs.
An example is shown in Appendix B-5.

Y Incremental Bar Graph - (binary 243)

The Y Incremental Bar Graph is entered by a binary 243
code after the general Plot Mode is entered. From the Keyboard use Control
"3" or F3. It may be entered from any of the plot submodes except Character
Plot. After entering the Y Incremental Bar Graph mode, the next word sent
defines the next two horizontal and vertical increments for two vertical
bar graphs.

All other operations are identical as explained in the
Section on (binary 247), X Incremental Bar Graph except for the mode being
applicable for drawing vertical bar graphs. An example is shown in Appendix
B-6.

Vector Mode XoValue (binary 242)

The Vector Mode is entered by a binary 242 code after
the general Plot Mode is entered. From the Keyboard use Control "2"
or F2. It may be entered from any of the plot submodes except Character Plot.
After entering the Vector Mode, Xo Value, the next word defines the Xo
Value point of the vector being drawn.

defined
defined

The Vector Mode requires the two end points to be
(i.e. Xo Yo and Xl Yl). The Xl'Y l values should previously be
by way of the X,Y Point Plot Mode.

Upon receipt of the Xo Value the terminal is automatically
placed in the Vector Yo Value Mode (binary 241). The terminal is now ready
to receive the next eight bit word as the Yo Vector Value. Upon receipt
of the Yo Value the terminal then determines the best straight line fit between
Xo ' Yo and Xl' Yl using the plot blocks. The terminal will then revert to
the Vector Mode Xo value (binary 242), ready to receive the new Xo Value
for another vector. The process is shown below and in Appendix B-7.

34

Function Code

Plot Mode 2
or

X point Plot submode 253

Xl Vector point 1 o to 15

Yl Vector point 1 o to 99 (191)
Xo Vector plot submode 242

Xo Vector point 1 0 to 159

Yo Vector point 1 0 to 99 (191)

Xo Vector point N-l 0 to 159
Yo Vector point N-l 0 to 99 (19l)

Xo Vector point N 0 to 159
Yo Vector point N 0 to 99 (191)

Plot Escape 255
or

Plot Submode 240 to 254

NOTE: Send code 242 between Yo vector point and Xo vector point
words if necessary for timing considerations. See Appendix A-4 for
delays.

Vector Mode Yo Value (binary 241)

The Yo vector is entered by binary 241 code after the
general Plot Mode is entered. From the keyboard use Control "1"
or Fl. This mode is more commonly entered automatically from
the Xo Vector mode. After entering the Yo Vector mode, the next word
defines the Yo value of the vector being drawn. There is no restriction on
Yo with respect to Yl except it must be in the range of 0 to 99 (191). Upon
receipt of the Yo value a vector is drawn from Xl, Yl to Xo ' Yo' with
the new X1Yl now at the old XoYo . If the next vector has a X1Yl value
XoYo old, then only the new XoYo need be sent. This would effectively draw
a vector from the present Xo Yo position to the new XoYo point. See
Appendix B-7.

~o ~o - Incremental Vector Mode (binary 240)

The Xo-Yo incremental vector mode is entered by a binary
240 code after the general plot mode is entered. From the keyboard use control
"W' or Fill. It. may also be entered from any of the other plot submodes
except Character Plot. After entering the incremental vector mode, the next
word sent defines the increments in XO ' Yo' Xl and Y point values for the
vector from X1Yl to XoYo . This word may have a range from binary 0 to 239
since binary 240 to 255 are used for the plot submode codes.

Referring to the section on (binary 251), XY Incremental Point Plot
it can be seen that there is one two bit element available for each of the
4 points (Le. XO' Yo' Xl and Yl). The 4 X ,4 Y refers to the increment in
Xl, Yl of the vector and the~X2, AY2 refers \0 the increment in XOI Yo of the
vector.

35

b 7 b 6 b 5 b 4 b 3 b 2 b l b O

XI+I XI-I YI+I YI-I Xo+1 Xo-I Yo+1 Yo-I

Therefore, if b 4 and b 5 are both I or both ~ then no
increment will take place. If either half of the word is all zero then the
corresponding X,Y will be changed but no vector will be drawn. This allows
the user to easily "skip" points. The only time a vector will be drawn is
when both halfs of the word are non zero.

The incremental vector plot mode does not automatically
transfer control to any other mode. It remains in this incremental mode until
terminated by a plot submode code. Therefore a series of incremental
movements in both Xo ' Yoand XIYlmay be made by sending consecutive incremental
change words.

The procedure for entering and exiting the XY Incremental plot
mode are shown below:

Function

Plot Mode
or

Plot Submode
Incremental Vector

Plot Mode
Incremental change

in Xl' YI , Xo ' Yo
Word I

Word N
Plot. Escape

or
Plot Submode

Code

2

or
240 to 253
240

o to 239

o to 239
255

or
240 to 254

NOTE: Send code 240 between incremental vector words if
necessary for timing considerations. See Appendix A-4 for input
Delay Times.

36

LIGHT PEN OPERATION (Option 28)

The Intecolor 8001 Light Pen is designed to move the cursor on
the screen of the terminal by simply pointing to the desired location on the
screen and touching with the forefinger the touch-sensitive end of the light
pen. The touch sensitive end of the light pen acts as a switch or button.

To effect operation of the light pen, the pen is simply pointed to
the desired location on the screen. Either the standard lense or the long range
lense may be used in the same manner. When the desired location is reached,
the forefinger is placed on the touch-sensitive end of the pen and held
on the pen until the cursor on the screen resides at the location the pen
is pointing to. As long as the finger is kept on the pen the cursor will
follow the pen to any location.

When the cursor is at the desired location, lift the forefinger from the
tip of the pen and the following 7 word sequence will be transmitted to the Jl
RS232 output port.

03
X
Y
06
Status
ASCII or
Special
Character
8D

Cursor X-Y (See Code 3)
X Cursor Coordinate
Y Cursor Coordinate
CCI (See Code 6)
Status Character (See Appendix A-6)

Carriage Return

Notice that this sequence is not transmitted unless the
finger first touches the end of the pen in the touch sensitive area and is
effected when the finger is lifted from the end of the pen.

Note that a blue flood is normal operation and occurs every
time the touch sensitive end of the pen is touched by the forefinger and
will repeat at a 2cps rate until the finger is lifted.

37

APPENDIX A

6 ROWS. 5.906"
5 ROWS = 5.156"

6 ROWS =5.906"

5 ROWS '5.156"

6 ROWS' 5.906"

5 ROWS = 5.156"

L

7 8 9 BLACK BLUE :t! ~~

+ RED MAGEfm ;~:

~ H~,~E ~ \-G_RE_E_N+-C_Y_A_N +-B_~~_NK-I
'V YEll.O'.' WHITE A;Lg;F

4 5 6

2 3

o

l_---W--'T-H-0-P-TION8AND-3-2----___ I
__ 21.010" ~

r
I
I

T
I
I

,­
I
I

-,
I
I

r
I
I

T
I
I

I
I

T
I
I

r
I
I

-,
I
I

.,
I
I

T
I
I

r
I
I

-r
I
I

T
I
I

T----,
I I
I I
I -'

I ~ I ! 1 ~ J ~ J ! I ~o I : l ; 1 ~ I ~ I 0 I ~ r~Jg~f~io1Ep~AG~E IR~~~TI
TAB I:~I~~~ lo~C:~~;)1 NULL LINE I RETURN I
I 1 0 I· p ·1 (ci) [FEED

I E~~~E I ~~~E I i * IDELETEIB~K I BREAK I

I I
-I KMIT I'CURSDRRI (DEL I PLOT IA7 ONI I SHIFT)(Y LINE)

Z X C V B N

I I

FG ON
BLACK BLUE FLG Oi:-F

+ RED MAGENU :L~~~

~ H~~E ~ f-G_R_EE_N+C_Y_A_N+B_~_~_jK
'V YELLO"" WHITE A~Lg;F

I
WITH OPTION 22 j

Jool-------~ ~~~~18.385"-------+I

I.

r--l---I---T---r--1---r---j--j---T---i--T--j---r--l---T--~

I I I I I I I I I I I I I I I I I
rL~,L~~~~~~~_rL-_.~_,-'-_,rL--,L--~--~--,_'~_rL--rL-_.~_,"

STANDARD

12.76"

A-l
KEYBOARD LAYOUTS

NOTE: IF 16 FUNCTION KEYS ARE REQUIRED THEN
THEN A SIXTH ROW OF KEYS ARE ADDED
AS SHOWN DOTTED.

! P1ot!Slink! BS I BG 1 BR ! FB ! Fe; I FI;

HEXADECIMAL 0 I 2 3

A7 0 0 0 0

A6 0 0 0 0
r--

-' ..
:E A5 0 0 I I lj ...
Q ..
)(... A4 0 I 0 I %

CONTROL CONTROL SHIFT
A3 A2 AI AO @TOO P TO_ o TO ?

0 0 0 0 0 NULL BLACK SPACE GI

0 16 32 48 64

I 0 0 0 I PROTECT REO ! I

I 17 33 49 65

2 0 0 I 0
PLOT GREEN n

2 MODE
2 18 34 50 66

3 0 0 I I
CURSOR

YELLOW X-V MODE # 3
3 19 35 51 67

4 0 I 0 0 FREE BLUE $ 4
4 20 36 52 68

5 0 I 0 I FREE MAGENTA 'Yo 5

5 21 37 53 69

6 0 I I 0 CCl CYAN II 6
6 22 38 54 70

7 0 I I I BELL WHITE 7
7 23 39 55 71

II I 0 0 0 HOME TRANSMIT (8
8 24 40 56 72

CURSOR
9 I 0 0 I TAB RIGHT) 9

9 25 41 57 73
LINE CURSOR

A I 0 I 0 FEED LEFT * 10 26 42 58 74
ERASE

B I 0 I I LINE ESC + ;
II 27 43 59 75

ERASE CURSOR
C I I 0 0 PAGE UP , <

12 28 44 60 76
FOREGND ON

D I I 0 I CR FLAG - =
13 29 OFF 45 61 77

A7 BACKGND ON
E I I I 0 ON FLAG . >

14 30
ON

46 62 78
BLINK BLINK

F I I I I A7 ON I ?
15 OFF 31 47 63 79

OPTIONAL FUNCTION KEYS

4 5 6 7 8 9 ' A B C 0 E F

0 0 0 0 I I I I I I I I

I I I I 0 0 0 0 I I I I

0 0 I I 0 0 I I 0 0 I I

0 I 0 I 0 I 0 I 0 I 0 I

SHIFT * SHIFT * CONT-SHIFT CONT-SHIFT CONT-SHIFT CONT CONTROL SHIFT CONT-SHIFT
@TOO P TO_ (iil TO 0 PTO_ t TO ? o TO ? FO-FI5 FO-FI5 FO -F15

FO-FI5

(iil P '/GO P/GI6 (i) P SPACE 0 FO FO FO FO Xo-Yo

80 96 112 128 144 160 176 192 208 224 240
INCREMENTAL VECTOII

A Q alGI q/GI7 A Q I I FI FI FI FI Yo VECTOR PLOT
81 97 113 129 145 161 177 193 209 225 241

B R b/G2 r/GI8 B R n 2 F2 F2 F2 F2 Xo VECTOR PLOT
82 98 114 130 146 162 178 194 210 226 242

C S c/G3 ,/GI9 C S # 3 F3 F3 F3 F3 INCREMENTAL Y BAR
83 99 115 131 147 163 179 195 211 227 243

0 T d/G4 t/GO D T $ 4 F4 F4 F4 F4 Ym-YBAR
84 100 116 132 148 164 180 196 212 228 244

E U ,/G5 u/G21 E U % 5 F5 F5 F5 F5 X-V BAR

85 101 117 133 149 165 181 197 213 229 245

F V IIG6 J/Q22 F V I!o 6 F6 F6 F6 Fe Yo-Y BAR

86 102 118 134 150 166 182 198 214 230 246

G W 9/G7 wlG23 G W , 7 F7 F7 F7 F7 INCREMENTAL X BAR
87 103 119 135 151 167 183 99 215 231 247

H X h/G8 K/G24 H X (8 F8 F8 F8 F8 Xm-X BAR
88 104 IZlL 36 152 168 184 200 216 232 248

I Y i/G9 J/G25 I Y) 9 F9 F9 F9 F9 Y-XIM
89 105 121 137 153 III 185 201 217 233 249

J Z j/GIO zlG26 J Z * FlO FlO FlO FlO Xo-XBAR

90 106 122 138 154 170 186 202 218 234 250

X-V
K C k/GIl [/G27 K C + ; FII FII FII FII INCREMENTAL PLOT

91 107 123 139 155 171 187 203 219 235 251

I
L "- IIGI2 I/G28 L "-

, < FI2 FI2 FI2 FI2 Y - POINT PLOT

92 108 124 140 156 172 188 204 220 236 2112

M J m/GI3 l/G29 M J - = FI3 FI3 FI3 FI3 X-POINT PLOT
93 109 125 141 157 173 189 205 221 237 253

N 1\ n/GI4 JIG30 N 1\ > FI4 FI4 FI4 FI4 CHAR PLOT

94 110 126 142 158 174 190 206 222 238 254

-/G31
BREAK

0 - 0/GI5 0 - I ? FI5 FI5 (FI5) FI5 PLOT llCAn
15 III 127 43 159 175 191 207 223 239 255

NOTE; THE TERMINAL ACCEPTS ALL B0 TO SF HEX CODES FROM THE KEYBOARD AND REASSIGNS TIlEIl

A-2
INTECOLOR 8001 CODE SET

FGI TO FF HEX WHEN IN THE PLOT MODE, UNLESS THE OPTIONAL KEYS ARE INSTALLED. THEREfORE
WITHOUT THE FUNCTION KEYS THE KEYBOARD CAN PLOT IN A RANGE OF • TO 175.

* COLUMNS 6 AND 7 WILL BE TRANSLATED TO COLUMNS 0 AND I RESPECTIVELY IN THE CRT REfRESH
RAM IF THE FLAG ON HAS BEEN SET BEFORE ENTERING THESE CODES, THEY WILL THEN APPEAR
AS THE SECOND GROUP OF 64 CHARACTERS IF THAT OPTION IS SUPPLIED,

I I
64 ASCII

CHARACTER
CODES

CONTROL CODE 2 CONTROL CODE 3
PLOT MODE CURSOR X-Y

OPTION MODE

ONE OF 16
SEE

CURSOR MODES
FIGURE 2.6.3.1

SEE FIGURE 2.6

ANY ONE OF
2ND 126 INPUT

CODES T

I
1ST 32
SPECIAL

CHARACTERS

CONTROL CODE 6
CCI MOVE

ONE OF 256
COLOR AND

BLINK STATUS

WORDS **

ANY ONE OF
256 INPUT

CODES

ANY ONE OF
FIRST 126 INPUT

CODES

32 SPECIAL
CHARACTER

CODES

I l
I
2ND 32
SPECIAL

CHARACTERS

CONTROL CODE 27
CONTROL CODE 29 CONTROL CODE 30
REVERSE FIELD REVERSE FIELD

ESC
OFF * ON *

NORMALLY FOLLOWED NORMALLY FOLLOWED
ONE OF 32 BY A COLOR CODE BY A COLOR CODE

ESCAPE CODES
OR GO TO G31 OR GO TO G31

SEE SECTION 2.5.20

t THIS IS VALID ONLY IF THE A7
BIT IS NOT MASKED OFF AT
CUSTOMER REQUEST

* THIS CODE DOES NOT REQUIRE
ANY FOLLOW-ON CODE

A-3

INPUT CODE FLOW DIAGRAM

IF ONE OF
32 CONTROL

CODES

ALL OTHER
CONTROL

CODES

** SEE SECTION 2.6.7 FOR
DEFINITION OF THE 6 BITS
OF THE STATUS WORD

Delay Times are in Milliseconds

Mode

Blind Cursor
Character Store

Most Control
Codes

Erase Line

Erase Page

Visible Cursor
Character Store
Left-Right

2X Char

down @ 450

Insert SO
Characters

Delete SO Characters

X,Y Point Plot

XY Increment
2 points

100 Element
X Bar Graph

100 Element
Y Bar Graph

100 Element Vector

*4SL Delay time in

Normal

.27S

.46

1.45

16 (30) *

.51

.59

.75

4.S2

4.34

.40, .63

1.2

5.45

3.28

34

A-4

INPUT COMMANDS DELAYS

High Speed Option

.231

.40

1.2

14.1 (27) *

.430

.50

.63

4.0

3.6

.33, .53

1.0

4.53

2.73

28.3

cc.l.

I" FOPJ!GP...OUND
H6t1.u".., 8LM:K R61> GAeeN VELLOW 't.UNJ(/tI(,

0 // 1,// 2., / "3 //
8Lt\<.l<

,/ , r "

(0+ ,/ "5 ,/ " ,/ (,7

,/' /
,

/

8' ,. 10/ n
A.cl> . / i

B 72- 7~ '/74 ,s
~ /" ,; "

16 17 '8 ' ,9 c GReeN (,; !

K ' 80 ,/ 81 r 91- "

~'5
G

,/ /
,

", /(

A 14 15 / leo " 1.7
0 Yeu.ow / ,I

\) S8 89 .' .90 .9'
N '3l '3.3

,
34 ,/ -,5 "",/

D SLUe v .
9' ' 57 '0 .9-'

40 ~I 42.- A,}
li'At;fJll1'A , , I'

".

10-4 10; 10C, IOl

~& ~9
.-

50.1 "

" "

eVA"" . ,
"

112. III 114 "5
sc. '57 S8 59 /

WHITe "

'10 IZ .. I '2.1 U.3

&LUI \'M&ft.tTl\ eYA" ~104'Tf.

... S " 7

'8 ~, 70 71

12. l3 ,4-
,

's ' 7, 77 78 73

2.0 2.1 2.1. ~3
,

84 8S 8' '37
,

18 ,- 2) '30 ~I . , .
9! 95 94 9S

'3' !J7 33 ,.' 39
, ,
100 101 1()2, 103

'" ~5 4' /' .t47 /

I ,

108 10~ 110
..

III

S1 53
,

54,/
,

5S "
" I

II' 117 \16 119

'0 'I (.1
..

"3
12+ I2.S 12.(. 127

. ----------.
0,0

PLOT 3

(to,D +~ke~
(vrsu" o~

scr~e")

73,0

0 1 7J,47 .---..;...-.----.
SCRee'"

, STANDARD INTECOLORR 8001

A7 A6 AS A4 A3 A2 Al AO

a a a a a a a 1 RED FOREGROUND
a a a a a a 1 a GREEN FOREGROUND
a a a a a 1 a a BLUE FOREGROUND
a 1 a a a a a a FOREGROUND BLINK
1 a a a a a a a PLOT CHARACTER

WITH BACKGROUND COLOR OPTION

A7 A6 AS A4 A3 A2 Al AO

a a a a a a a 1 RED FOREGROUND
a a a a a a 1 a GREEN FOREGROUND
a a a a a 1 a a BLUE FOREGROUND
a a a a 1 a a a RED BACKGROUND
a a a 1 a a a a GREEN BACKGROUND
a a 1 a a a a a BLUE BACKGROUND
a 1 a a a a a a FOREGROUND BLINK
1 a a a a a a a PLOT CHARACTER

The above codes may be "ORed" for composite functions

A-S

CCI CODE ASSIGNMENTS

J3

1:4 ~:I
2ND RS232C I/O

JI

1:4 ~:I I~~
SERIAL RS-232C ErA
20 MA CURRENT LOOP OPTIONAL

SWI

~ D OFF

POWER FUSE

J2 AC POWER

I~I ~
KEYBOARD

NOTES: (I) JI-SERIAL RS-232C EIA AND CURRENT LOOP ARE NOT SIMULTANEOUSLY AVAILABLE IN
RECEIVE MODE. PIN NUMBERS ARE FOR STANDARD EIA RS-232C ,25 PIN, CHASSIS MOUNT ~.

(2) MATING PLUGS a RECEPTACLES FOR REAR CHASSIS CONNECTORS:

JI,J3{EIA,25 PIN RECEPT.)
J2 (25 PIN PLUG)
AC POWER CORD
CRIMP PINS FOR PLUG
CONNECTORS
CRIMP SOCKETS FOR
RECEPTACLE CONNECTORS

- AMP 205207-1
- AMP205208-1
- BELDEN 17258B
- AMP205201 -5

- AMP 205202-4

OR EQUIVALENT - ISC P.N. 600040
OR EQUIVALENT. - ISC P.N. 600052
OR EQUIVALENT - ISC P.N. 110036
OR EQUIVALENT - ISC P.N.600044

OR EQUIVALENT - ISC P.N.600046

() ALL CHASSIS MOUNT CONNECTOR PIN AND SOCKET NUMBERS ARE
FROM THE REAR OF THE INTECOLOR® 8001 CHASSIS.

SHOWN AS VIEWED

A-6

Jl AND J2 PIN ASSIGNMENTS

I. AA I. AA 10. IN MJkY 10. IN OC
2. BA 2. BA 9. IN lA Data 9. IN lC
3. BB 3. BB ! 2l. IN 2A Bits 2I. IN 2C
4. CJl. 4. 470 Ohms to +12V 8. IN 3A 1-4 8. IN 3C
S. CB S. 20. IN 4A Control 20. IN 4C
6. 6. 7. IN SA Shift 7. IN SC
7. AB 7. AB 19. IN 6A Key Data BS 19. IN 6C
8. 8. 6. IN 7A Key Data B6 6. IN 7C
9. RX Response Control 9. RX Response . Control 12. IN 4BJ Not 2 • OUT (5c

10. RX Responce Control 10. RX Response Control 23. IN SB Used 14. OUT Ic
II. II. CLR+ II. IN 6B 3. OUT. 2C
12. TTL TX 12. TTL TX 22. IN 7B Key Trigger IS. -OUT 3C
13. 13. TX Isolator input 2. OUT OA RX ACK 4. OUT 4C
14. 14. 14. OUT IA 16. OUT 5"c
IS. IS. 3. OUT 2A S. OUT 6"c
16. 16. IS. OUT 3A 17. OUT ·7C
17. 17. 4. OUT 4A 13. CPU RESET
18. 18. CLR- 16. OUT SA 24. 2nd RS232 TX
19. 19. S. OUT 6A Bell II. 2nd TTL TX
20. CD 20. 470 ohms to +12V 17. OUT 'fA -Key ACK 22. 2nd RS232 RX
2I. 2l. CLT+ 13. CPU RESET 12. +12V
22. 22. l. SN -Key Inturr. 23. -12V
23. 23. 2S. +SV 2S. +SV
24. 23. 18. GND 18. GND
2S. 2S. CLT- l. SN - EXT Inturr.

An external jumper
is required from
pin 12 to pin 13.

A 2.2K ohm register
is required from
pin 3 to pin 4.

STANDARD TTY OPTIONAL ,
ElA RS2326 20MA Current Loop-

Jl J2 J3 - - -

SERIAL INPUT/OUTPUT KEYBOARD OPTIONAL:
PARALLEL INPUT/OUTPUT

AND 2nd PS232C

A-7
1/0 Connector Layout

APPENDIX B

BINARY CODE =

TWO'S COMPLEMENT­

SETS PLOFL TO -

FUNCTION =

NEXT WORD·

RANGE FROM -
TO·

CHANGE PLOFL TO'

BINARY CODE =

TWO'S COMPLEMENT­

SETS PLOFL TO •

FUNCTION =

NEXT WORD =

RANGE FROM =
TO -

CHANGE PLOFL TO-

I
255

H)

0

PLOT ESCAPE

N/A

N/A
N/A

N/A

I
247

(-9)

B

X INCREMENTAL
BAR GRAPH

XI YI X2 Y2

0
239

8 (SAME)

I
254

(-2)

I

CHARACTER PLOT

PLOT CHARACTER

0
254

I (SAME)

I
246

HO)

9

Y BAR GRAPH

Yo VALUE

0
100 091)

10

PLOT MODE

OR (2)

CONTROL CODE B

SETS PLOFL· 2

I I
253 252 251

(-3) (-4) (-5)

2 3 4

X-V POINT PLOT X-V POINT PLOT INCREMENTAL
X-V PLOT

X VALUE Y VALUE l>XI l>YI l>X2 l>Y2

0 0 0
159 100 Q.9l} 239

3 2 4 (SAME)

I I
245 244 243

HI) (-12) (-13)

10 II 12

Y BAR GRAPH Y BAR GRAPH Y INCREMENTAL
BAR GRAPH

X VALUE Y MAX VALUE AXI l>YI AX2 AY2

0 0 0
159 100091) 239

II 10 12 (SAME)

B-1

PLOT MODE FUNCTIONS

I I I
250 249 248

(-6) (-7) (-8)

5 6 7

X BAR GRAPH X BAR GRAPH X BAR GRAPH

Xo VALUE Y VALUE X MAX VALUE

0 0 0
159 100[i9!) 159

6 7 B

I I I
242 241 240

(-14) (-i5) (-16)

13 14 15

VECTOR VECTOR' INCREMENTAL
X-V VECTOR

Xo VALUE Yo VALUE l>Xt l>Yt l>Xo l>Yo

0 0 0
259 191 239

14 2 15

CJ.I.AP-A-c'tEit rlOI fJ\oi)E (hoT 2.. : PLoT2.S<f.: PL<I T!!;.)
(Ploi.!!;. : PLOT 2.55)

O[jB~Ql]~~Q~C=~~[;[j[J
0 0 I' ~l ~ " to J(fll 1~8 14<4 IWI 17~ ~l 1.' t2f 240

LJ 11 13 4, 'C; " 97 II~ IU HS ", 177 1'1i z..' loU 1<1'

EJ '2... fa 14 S., '" u ~ Iff ,~ I~ (ill. 178 IH till 21" Hl

~ 3 " ~~ 51 1.1 H " liS HI 1-+7 1(.1 179 I'S 111 2.17 2..fl

~ 4- to 3' <;1. ~ ,4- 10.» It(. t~ l.t, 1'-4- It;, I'" U1 2~ 2#

~ 5 1/ ~7 ~~ ,9 t,S 101 117 Hl 14, iC.S lSI I !I' 11\ 2.1') 2 .. fs

~ (. 2l. '3f1 s+ "70 &, lot 1/& .H- ISo ,,, In I").14 7.30 2.41.

~ 7 2.\ 39 C;S '11 n lol II' 13S It;1 11.,7 ISl 11" 2.(S t~ 147

CJ e 2.1' f() ." 71. at. lot lUI 13(. I<;Z 1'-8 1M ~ 2.14 lU 141

(), l.S of('57 7j U Ice 121 U7 \S3 II.~ I~s 1.1>, 1.(1 2.U 2."

EJ (D lJ, 41 53 74 '0 to(, III I~ 1~4 /70 184 101 tiS z..\4 l.So

e:J II 1.7 ·n ~ 7S 9\ 107 113 H9 ISS I?I 1~1 ~ ZI9 n5 lSI

~ Il t.f # flO -,,,
'2 I~ 1l.4 1-40 I~ m. (t, l04 ao HI. 1<;1

;] B l' fS ", 77 9J 10) IlS I.ft IS] m IU ~Cj UI H1 lS3

iJ 1+ So 4(, ('1 " ~ 110 /l.I. 142. IS, 174 ISO 2.04 Ul .ut l.~

IJ IS ~, ~7 'i ")S III 1l.7 I~ IS' 11~ 19\ 107 n? a' NA

PloT!h fro"" ~b\)ve t~bk. +0 ~ril\t- '~ire.d J (0"" b,;"ed

pa~e,..1'\ • Se,u(~+i-a.t i>L.oTs l>"i t ~~ ~ ~pe\llr'I1i(lr •

·---------.
0,19' /S',',J

PLoT 2..S3
PJ..oT 242..

O 0 IS9,o . ::'.:..-_------.

01 HEX

I

o Q 0 0 000 1 000 100 0 0

02 HEX

o 0 0 0 0 0 1 0 o 0 1 0 0 0 0 0

(~. &
04 HEX

o 0 0 0 0 100 o 100 0 0 0 0

08 HEX

/3/2

o 0 0 0 1 000 1 000 0 0 0 0

B-2

Note: Each of the above codes may be "ORed" for composite
symbols.

PLOT MODE CHARACTERS AND CODES

10 HEX

/~

20 HEX

32

40 HEX

80 HEX

y

Y2

Yn

Yl

0,0

B-3

X POINT PLOT AND Y POINT PLOT

Y

8X1 8Y 1 (1010)

Start

O,Q Movement and Coding Example

6X--1
AY--1
(0101)

8X-+1 (1010)
1

.--..._6X-+1 (1000)
AY- 0

~~:~ (1001)

(0001)

Movement Possibilities

B-4

XY INCREMENTAL POINT PLOT MOVEMENTS

y

y

0,
Xl Xn X2

~x

Y BAR GRAPH

Y2

0,0 Xo X Max2
~x

B-5

X AND Y BAR GRAPH MODES

Y

6Xl 6Yl 6X2 6Y2

.-1 1 1
+

.-1 .-1 .-1 II + I + >- 6X3 6Y3 6X4 6,Y4
II II II ~

>- >- >- .-1
~ ~ ~ + 1 0 .-1 .-1 II + + ><!

II II
><! ><!

x Y Incremental Bar Graph

6Xl 6Yl 8X2 6Y2

1 1

Y Start ~X3 !::.Y3 6X4

1-1
I

X=+l,Y=-l 1 1

+li' X==l,Y=-l

X Incremental Bar Graph

Appendix B6

X INCREMENTAL BAR GRAPH, Y INCREMENTAL BAR GRAPH

y

Y2

Yo

0,0

B-7

2 This v(ctor drawn by
send b irlary send ing x2, Y2

1 Line drawn from xI'YI
to xO,YO at xO,YO with
xI'YI now equal to old
xO,YO

x

Xo Yo vector Plot Mode

APPENDIX C

Appendix C

TMS 5501 Multifunction Input/Output controller

TABLE OF CONTENTS

1. INTRODUCTION

1.1 Description
1.2 Summary of Operation

2. OPERATIONAL AND FUNCTIONAL DESCRIPTION

2.1 I nterface Signals
2.2 TMS 5501 Commands

2.2.1 Read Receiver Buffer
2.2.2 Read External I nput Lines
2.2.3 Read I nterrupt Address

2.2.4 Read TMS 5501 Status
2.2.5 Issue Discrete Commands
2.2.6 Load Rate Register
2.2.7 Load Transmitter Buffer
2.2.8 Load Output Port
2.2.9 Load Mask Register
2.2.10 Load Timer n

3. TMS 5501 ELECTRICAL AND MECHANICAL SPECIFICATIONS

3.1 Absolute Maximum Ratings
3.2 Recommended Operating Conditions

LIST OF ILLUSTRATIONS

Figure 1 TMS 5501 Block Diagram
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Data Bus Assignments for TMS 550 I Status
Discrete Command Format
Data Bus Assignments for Rate Commands
Read Cycle Timing . .
Write Cycle Timing
Sensor/I nterrupt Tim ing

Information contained in this publiyation is believed to be accurate

and reliable. However, responsibility is assumed neither for its use

nor for any infringement of patents or rights of others that may

result from its use. No license is granted by implication or otherwise

under any patent or patent right of Texas Instruments or others.

Copyright © 1975

Texas I nstruments Incorporated

C-l

2
3

6
8
9
9
9
9

10
11
12
12
12
12

12
12

2

9
10
11
14
15
15

TMS 5501 MULTIFUNCTION INPUT/OUTPUT CONTROLLER

1. INTRODUCTION

1.1 DESCRIPTION

The TMS 5501 is a multifunction input/output circuit for use with TI's TMS 8080 CPU. It is fabricated with the same
N·channel silicon·gate process as the TMS 8080 and has compatible timing, signal levels, and power supply
requirements. The TMS 5501 provides a TMS 8080 microprocessor system with an asynchronous communications
interface, data I/O buffers, interrupt control logic, and interval timers.

INT8SYNC CE
CONTROL

AO·A3
4

00-07

FIGURE 1-TMS 5501 BLOCK DIAGRAM

The I/O section of the TMS 5501 contains an eight-bit parallel input port and a separate eight-bit parallel output port
with storage register. Five programmable interval timers provide time intervals from 64 [.1S to 16.32 ms.

The interrupt system allows the processor to effectively communicate with the interval timers, external signals, and the
communications interface by providing TMS 8080-compatible interrupt logic with masking capability.

Data transfers between the TMS 5501 and the CPU are carried by the da.ta bus and controlled by the interrupt, chip
enable, sync, and address lines. The TMS 8080 uses four of its memory-address lines to select one of 14 commands to
which the TMS 5501 will respond. These commands allow the CPU to:

read the receiver buffer
read the input port
read the interrupt address
read TMS 5501 status
issue discrete commands
load baud rate register
load the transmitter buffer
load the output port
load the mask register
load an interval timer

C-2

The commands are generated by executing memory referencing instructions such as MOV (register to memory) with the
memory address being the TMS 5501 command. This provides a high degree of flexibility for I/O operations.by letting
the systems programmer use a variety of instructions.

1.2 SUMMARY OF OPERATION

Addressing the TMS 5501

A convenient method for addressing the TMS 5501 is to tie the chip enable input to the highest order address line of
the CPU's 16-bit address bus and the fourTMS 5501 address inputs to the four lowest order bits of the bus. This, of
course, limits the system to 32,768 words of memory but in many applications the full 65,536 word memory
addressing capability of the TMS 8080 is not required.

Communications Functions

The communications section of the TMS 5501 is an asynchronous transmitter and receiver for serial communications
and provides the following functions:

Programmable baud rate - A CPU command selects a baud rate of 110, 150, 300, 1200,2400,4800, or 9600 baud.

Incoming character detection - The receiver detects the start and stop bits of an incoming character and places the
character in the receive buffer.

Character transmission - The transmitter generates start and stop bits for a character received from the CPU and
shifts it out.

Status and command signals - Via the data bus, the TMS 5501 signals the status of: framing error and overrun error
flags; data in the receiver and transmitter buffers; start and data bit detectors; and end·of-transmission (break) signals
from external equipment. It also issues break signals to external equipment.

Data Interface

The TMS 5501 moves data between the CPU and external devices through its internal data bus, input port, and output
port. When data is present on the bus that is to be sent to an external device, a Load Output Port (LOP) command from
the CPU puts the data on the XO pins of the TMS 5501 by latching it in the output port. The data remains in the port
until another LOP command is received. When the CPU requires data that is present on the External Input (XI) lines, it
issues a command that gates the data onto the internal data bus of the TMS 5501 and consequently onto the CPU's
data bus at the correct time during the CPU cycles.

Interval Timers

To start a countdown by any of the five interval timers, the program selects the particular timer by an address to the
TMS 5501 and loads the required interval into the timer via the data bus. Loading the timer activates it and it counts
down in increments of 64 microseconds. The 8-bit counters provide intervals that vary in duration from 64 to 16,320
microseconds. Much longer intervals can be generated by cascading the timers through software_ When a timer reaches
zero, it generates an interrupt that typically will be used to point toa subroutine that performs a servicing function
such as polling a peripheral or scanning a keyboard. Loading an interval value of zero causes an immediate interrupt. A
new value loaded while the interval timer is counting overrides the previous value and the interval timer starts counting
down the new interval. When an interval timer reaches zero it remains inactive until a new interval is loaded.

C-3

Servicing Interrupts

The TMS 5501 provides a TMS 8080 system with several interrupt control functions by receiving external interrupt
signals, generating interrupt signals, masking out undersired interrupts, establishing the priority of interrupts, and
generating RST instructions for the TMS 8080. An external interrupt is received on pin 22, SENS. An additional
external interrupt can be received on pin 32, X 17, if selected by a discrete command from the TMS 8080 (See
Figure 4). The TMS 5501 generates an interrupt when any of the five interval timers count to zero. Interrupts are also
generated when the receiver buffer is loaded and when the transmitter buffer is empty.

When an interrupt signal is received by the interrupt register from a particular source, a corresponding bit is set and
gated to the mask register. A pattern will have previously been set in the mask register by a load-mask-register command
from the TMS 8080. This pattern determines which interrupts will pass through to the priority logic. The priority logic
allows an interrupt to generate an RST instruction to the TMS 8080 only if there is no higher priority interrupt that
has not been accepted by the TMS 8080. The TMS 5501 prioritizes interrupts in the order shown below:

1st Interval Timer #1
2nd Interval Timer #2
3rd External Sensor
4th Interval Timer #3
5th Receiver Buffer Loaded
6th Transmitter Buffer Emptied
7th Interval Timer #4
8th Interval Timer #5 or an External Input (XI 7)

The highest priority interrupt passes through to the interrupt address logic, which generates the RST instruction to be

read by the TMS 8080. See Table 3 for relationship of interrupt sources to RST instructions and Figures 6 and 8 for
timing r;,elationships.

The TMS 5501 provides two methods of servicing interrupts; an interrupt-driven system or a polled-interrupt system. In
an interrupt-driven system, the INT signal of the TMS 5501 is tied to the INT input of the TMS 8080. The sequence of
events will be: (1) The TMS 5501 receives (or generates) an interrupt signal and readies the appropriate RST
instruction. (2) The TMS 5501 INT outpu,t, tied to the TMS 8080 INT input, goes high signaling the TMS 8080 that an
interrupt has occured. (3) If the TMS 8080 is enabled to accept interrupts, it sets the INTA (interrupt acknowledge)
status bit high at SYNC time of the next machine cycle. (4) If the TMS 5501 has previously received an interrupt­
acknowledge-enable command from the CPU (see Bit 3, Paragraph 2.2.5), the RST instruction is transferred to the data
bus.

In a polled-interrupt system, INT is not used and the sequence of events will be: (1) The TMS 5501 receives (or
generates) an interrupt and readies the RST instruction. (2) The TMS 5501 interrupt-pending status bit (see Bit 5,
Paragraph 2.2.4) is set high (the interrupt-pending status bit and the I NT output go high simultaneously). (3) At the
prescribed time, the TMS 8080 polls the TMS 5501 to see if an interrupt has occurred by issuing a read-.
TMS 5501-status command and reading the interrupt-pending bit. (4) If the bit is high, the TMS 8080 will then issue a
read-interrupt-address command, which causes the TMS 5501 to transfer the RST instruction to the data bus as data for
the instruction being executed by the TMS 8080.

1.3 APPLICATIONS

Communications Terminals

The functions of the TMS 5501 make it particularly useful in TMS 8080-based communications terminals and generally
applicable in systems requiring periodic or random servicing of i~terrupts, generation of control signals to external
devices, buffering of data, and transmission and reception of asynchronous serial data. As an example, a system
configuration such as shown in Figure 2 can function as the controller for a terminal that governs employee entrance
into a plant or security areas within a plant. Each terminal is identified by a central computer through 10 switches. The
central system supplies each terminal's RAM with up to 16 employee access categories applicable to that terminal.
These categories are compared with an employee's badge character when he inserts his badge into the badge sensor. If a

C-4

c-s

match is not found, a reject light will be activated. If a match is found, the terminal will transmit the employee's badge
number and access category to the central system, and a door unlock solenoid will be activated for 4 seconds. The
central computer then may take the transmitted information and record it along with time and date of access.

The TMS 4700 is a 1024 x 8 ROM that contains the system program, and the TMS 4036 is a 64 x 8 RAM that serves as
the stack for the TMS 8080 and storage for the access category information. TTL circuits control chip-enable information

carried by the address bus. Signals from the CPU gate the address bits from the ROM, the RAM, or the TMS 5501 onto
the data bus at the correct time in the CPU cycle. The clock generator consists of four TTL circuits along with a crystal,
needed to maintain accurate serial data assembly and disassembly with the central computer.

The TMS 5501 handles the asynchronous serial communication between the TMS 8080 and the central system and
gates data from the badge reader onto the data bus. It also gates control and status data from the TMS 8080 to the door
lock and badge reader and controls the time that the door lock remains open. The TMS 5501 signals the TMS 8080
when the badge reader or the communication lines need service. The functions that the TMS 5501 is to perform are
selected by an address from the TMS 8080 with the highest order address line tied to the TMS 5501 chip enable input
and the four lowest order lines tied to the address inputs.

2. OPERATIONAL AND FUNCTIONAL DESCRIPTION

This detailed description of the TMS 5501 consists of:

INTERFACE SIGNALS - a definition of each of the circuit's external connections

COMMANDS - the address required to select each of the TMS 5501 commands and a description of the response to
the command.

2.1 INTERFACE SIGNALS

The TMS 5501 communicates with the TMS 8080 via four address lines: a chip enable line, an eight·bit bidirectional
data bus, an interrupt line, and a sync line. It communicates with system components other than the CPU via eight
external inputs, eight external outputs, a serial receiver input, a serial transmitter output, and an external sensor input.
Table 1 defines the TMS 5501 pin assignments and describes the function of each pin.

SIGNATURE PIN

CE 18

A3 17
A2 16
A1 15
AO 14

SYNC 19

RCV 5

TABLE 1
TMS 5501 PIN ASSIGNMENTS AND FUNCTIONS

DESCRIPTION
INPUTS

Chip enable-When CE is low, the TMS 5501 address decoding is inhibited, which prevents
execution of any of the TMS 5501 commands.
Address bus-A3 through AOare the lines that are addressed by the TMS 8080 to select a particular
TMS 5501 function.

Synchronizing signal-The SYNC signal is issued by the TMS 8080 and indicates the beginning of a
machin.e cycle and availability of machine status. When the SYNC signal is active (high), the
TMS 5501 will monitor the data bus bits DO (interrupt acknowledge) and 01 (WO, data output
function) .
Receiver serial data input line-RCV must be held in the inactive (high) state when not receiving
data. A transition from high to low will activate the receive circuitry.

C-6

SIGNATURE

XIO
XI 1
XI2
XI3
XI4
XI5
XI6
XI7

SENS

XO 0
XO 1
XO 2
XO 3
X04
XO 5
XO 6
XO 7

XMT

DO
D1
D2
D3
D4
D5
D6
D7

INT

VSS
VBB
VCC
VDD

1/>1
1/>2

PIN

39
38
37
36
35
34
33
32

22

24
25
26
27
28
29

30
31

40

13
12
11
10
9

8
7
6

23

4
1
2
3

20
21

TABLE 1 (continued)
TMS 5501 PIN ASSIGNMENTS AND FUNCTIONS

DESCRIPTION
INPUTS

External inputs-These eight external inputs are gated to the data bus when the read-external-inputs
function is addressed. External input n is gated to data bus bit n without conversion.

External interrupt sensing - A transition from low to high at SENS sets a bit in the interrupt
register, which, if enabled, generates an interrupt to the TMS 8080.

OUTPUTS

External outputs-These eight external outputs are driven by the complement of the output
register; i.e., if output register bit n is loaded with a high (low) from data bus bit n by a load­
output register command, the external output n will be a low (high). The external outputs change
only when a load-output-register function is addressed.

Transmitter serial data output line-This line remains high when the TMS 5501 is not transmitting.

DATA BUS INPUT/OUTPUT

Data bus - Data transfers between the TMS 5501 and the TMS 8080 are made via the 8-bit
bidirectional data bus. DO is the LSB. D7 is the MSB.

Interrupt-When active (high), the INT output indicates that at least one of the interrupt conditions
has occurred and that its corresponding mask-register bit is set.

Ground reference
Supply voltage (-5 V nominal)
Supply voltage (5 V nominal)
Supply voltage (12 V nominal)
Phase 1 clock
Phase 2 clock

POWER AND CLOCKS

C-7

2.2 TMS 5501 COMMANDS

The TMS 5501 operates as memory device for the TMS 8080. Functions are initiated via the TMS 8080 address bus and
the TMS 5501 address inputs. Address decoding to determine the command function being issued is defined in Table 2.

TABLE 2

COMMAND ADDRESS DECODING
When Chip Enable Is High

A3 A2 A1 AO COMMAND FUNCTION PARAGRAPH

L L L L Read receiver buffer RBn --> On 2.2.1

L L L H Read external inputs Xln-->Dn 2.2.2

L L H L Read interrupt address RST --> On 2.2.3

L L H H Read TMS 5501 status (Status) --> Dn 2.2.4

L H L L Issue discrete commands See Figure 4 2.2.5

L H L H Load rate register See Figure 4 2.2.6

L H H L Load transmitter buffer On --> TBn 2.2.7

L H H H Load output port On-->XOn 2.2.8
H L L L Load mask register On --'> MRn 2.2.9

H L L H Load interval timer 1 On --> Timer 1 2.2.10

H L H L Load interval timer 2 On -> Timer 2 2.2.10

H L H H Load interval timer 3 On --> Timer 3 2.2.10

H H L L Load interval timer 4 On --> Timer 4 2.2.10
H H L H Load interval timer 5 On --7' Timer 5 2.2.10
H H H L No function

H H H H No function

RBn Receiver buffer bit n

On Data bus I/O terminal n

Xln External input terminal n

RST 11 (IA2) (IA1) (lAO) 111 (see Table 3)

TBn Transmit buffer bit n

XOn Output register bit n

MRn Mask register bit n

TABLE 3

RST INSTRUCTIONS

DATA BUS BIT
INTERRUPT CAUSED BY

0 2 3 4 5 6 7

H H H L L L H H I nterval Timer 1

H H H H L L H H I nterval Timer 2

H H H L H L H H External Sensor

H H H H H L H H I nterval Timer 3

H H H L L H H H Receiver Buffer

H H H H L H H H Transmitter Buffer

H H H L H H H H I nterval Timer 4

H H H H H H H H Interval Timer 5 or X17

C-8

The following paragraphs define the functions of the TMS 5501 commands.

2.2.1 Read receiver buffer
Addressing the read·receiver-buffer function causes the receiver buffer contents to be transferred to the TMS 8080 and
clears the receiver·buffer-Ioaded flag.

2.2.2 Read external input lines

Addressing the read-external-inputs function transfers the states of the eight external input lines to the TMS 8080.

2.2.3 Read interrupt address

Addressing the read interrupt address function transfers the current highest priority interrupt address onto the data bus

as read data. After the read operation is completed, the corresponding bit in the interrupt register is reset.

If the read-interrupt-address function is addressed when there is no interrupt pending, a false interrupt address will be
read. TMS 5501 status function should be addressed in order to determine whether or not an interrupt condition is

pending.

2.2.4 Read TMS 5501 status

Addressing the read-TMS 5501·status function gates the various status conditions of the TMS 5501 onto the data bus.

The status conditions, available as indicated in Figure 3, are described in the following paragraphs.

BIT: 7 6 5 4 3 2 1 0

START FULL INTRPT XMIT RCV SERIAL OVERRUN FRAME

BIT BIT PENDING BUFFER BUFFER RCVD ERROR ERROR
DETECT DETECT EMPTY LOADED

FIGURE 3-DATA BUS ASSIGNMENTS FOR TMS 5501 STATUS

Bit 0, framing error

A high in bit 0 indicates that a framing error was detected on the last character received (either one or both stop bits
were in error). The framing error flag is updated at the end of each character. Bit 0 of the TMS 5501 status will remain

high until the next valid character is received.

Bit 1, overrun error

A high in bit 1 indicates that a new character was loaded into the receiver buffer before a previous character was read
out. The overrun error flag is cleared each time the read-I/O·status function is addressed or a reset command is issued.

Bit 2, serial received data

Bit 2 monitors the receiver serial data input line. This line is provided as a status input for use in detecting a break and
for test purposes. Bit 2 is normally high when no data is being received.

Bit 3, receiver buffer loaded
A high in bit 3 indiciates that the receiver buffer is loaded with a new character. The receiver-buffer·loaded flag remains
high until the read·receiver·buffer function is addressed (at which time the flag is cleared). The reset function also clears

this flag.

C-9

Bit 4, transmitter butfer empty

A high in bit 4 indicates that the transmitter buffer register is empty and ready to accept a character. Note, however,

that the serial transmitter register may be in the process of shifting out a character. The reset function sets the

transmitter·buffer-empty flag high.

Bit 5, interrupt pending

A high in bit 5 indicates that one or more of the interrupt conditions has occured and the corresponding interrupt is

enabled. This bit is the status of the interrupt signal I NT.

Bit 6, full bit detected

A high in bit 6 indicates that the first data bit of a receive-data character has been detected. This bit remains high until

the entire character has been received or until a reset is issued and is provided for test purposes.

Bit 7, start bit detected
A high in bit 7 indicates that the start bit of an incoming data character has been detected. This bit remains high until

the entire character has been received or until a reset is issued and is provided for test purposes.

2.2.5 Issue discrete commands

Addressing the discrete command function causes the TMS 5501 to interpret the data bus information according to the

following descriptions. See Figure 4 for the discrete command format. Bits 1 through 5 are latched until a different

discrete command is received.

NORMALLY LOW
,-__ ..;!\I.. __ _,

BIT : 7 6 5 4 3 2

NOT NOT TEST TEST
INT.

INT.7
USED USED BIT BIT

ACK.
SELECT

ENABLE

H: Enables interwpt acknowledge J
L: Inhibits interrupt acknowledge

H: Selects XI 7-
L. Selects Interval timer 5 -

FIGURE 4-DISCRETE COMMAND FORMAT

Bit 0, reset

A high in bit 0 will cause the following:

1 0

BREAK RESET

~H:
LL:

Reset

No action

-H: L Sets XM
-' .

T output low

L. H Sets XMT output high

1) The receiver buffer and register are cleared to the search mode including the receiver-buffer-Ioaded flag, the

start-bit-detected flag, the full-bit-detected flag, and the overrun-error flag. The receiver buffer is not cleared and

will contain the last character received.

2) The transmitter data output is set high (marking). The transmitter-buffer-empty flag is set high indicating that the
transmitter buffer is ready to accept a character from the TMS 8080.

3) The interrupt register is cleared except for the bit corresponding to the transmitter buffer interrupt, which is set

high.

4) The interval timers are inhibited.

A low in bit 0 causes no action. The reset function has no affect on the output port, the external inputs, interrupt
acknowledge enable, the mas~ register, the rate register, the transmitter register, or the transmitter buffer.

C-IO

Bit 1, break
A low in bit 1 causes the transmitter data output to be reset low (spacing).

If bit 0 and bit 1 are both high, the reset function will override.

Bit 2, interrupt 7 select
Interrupt 7 may be generated either by a low to high transition of external input 7 or by interval timer 5.

A high in bit 2 selects the interrupt 7 source to be the transition of external input 7. A low in bit 2 selects the
interrupt 7 source to be interval timer 5.

Bit 3, interrupt acknowledge enable
The TMS 5501 decodes data bus (CPU status) bit 0 at SYNC of each machine 9ycle to determine if an interrupt
acknowledge is being issued.

A high in bit 3 enables the TMS 5501 to accept the interrupt acknowledge decode. A low in bit 3 causes the TMS 5501
to ignore the interrupt acknowledge decode.

Bit 4 and bit 5 are used only during testing of the TMS 5501. For correct system operation both bits must be kept low.

Bit 6 and bit 7 are not used and can assume any value.

2.2.6 Load rate register

Addressing the load-rate-register function causes the TMS 5501 to load the rate register from the data bus and interpre i

the data bits (See Figure 5) as follows.

BIT: 7 6 5 4 3 2 1 0
STOP 9600 4800 2400 1200 300 150 110
BIT(s) baud baud baud baud baud baud baud

-H: One stop bit
_I· L. Two stop bits

FIGURE 5-DATA BUS ASSIGNMENTS FOR RATE COMMANDS

Bits 0 through 6, rate select

The rate select bits (bits 0 through 6) are mutually exclusive, i.e., only one bit may be high. A high in bits 0 through 6
will select the baud rate for both the transmitter and receiver circuitry as defined below and in Figure 5:

Bit 0 110baud
Bit 1 150 baud
Bit 2 300 baud
Bit 3 1200 baud
Bit 4 2400 baud
Bit 5 4800 baud
Bit 6 9600 baud

If more than one bit is high, the highest rate indicated will result. If bits 0 through 6 are all low, both the receiver and
the transmitter circuitry will be inhibited.

C-ll

Bit 7. stop bits

Bit 7 determines whether one or two stop bits are to be used by both the transmitter and receiver circuitry. A high in
bit 7 selects one stop bit. A low in bit 7 selects two stop bits.

2.2.7 Load transmitter buffer

Addressing the load·transmitter·buffer function transfers the state of the data bus into the transmitter buffer.

2.2.8 Load output port

Addressing the load·output·port function transfers the state of the data bus into the output port. The data is latched
and remains on XO 0 through XO 7 as the complemert of the data bus until new data is loaded.

2.2.9 Load mask register

Addressing the load·mask·register function loads the contents of the data bus into the mask register. A high in data bus
bit n enables interrupt n. A low inhibits the corresponding interrupt.

2.2.10 Load timer n

Addressing the load·timer·n function loads the contents of the data bus into the appropriate interval timer. Time
intervals of from 64 J.1s (data bus = LLLLLLLH) to 16,320 /1S (data bus HHHHHHHH) are counted in 64'/1s, steps.
When the count of interval timer n reaches 0, the bit in the interrupt register that corresponds to timer n is set and
an interrupt is generated. Loading a!llows causes an interrupt immediately.

3. TMS 5501 ELECTRICAL AND MECHANICAL SPECIFICATIONS

3.1 ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE·AIR TEMPERATURE RANGE
(UNLESS OTHERWISE NOTED)*

Supply voltage, V CC (see Note 1)
Supply voltage, VDD (see Note 1
Supply voltage, VSS (see Note 1)
All input and output voltages (see Note 1)
Continuous power dissipation
Operating free·air temperature range
Storage temperature range

-0.3 V to 20 V
-0.3 V to 20 V
-0.3 V to' 20 V
-0.3 V to 20 V
.... 1.1 W

O~C to 70°C
-65°C to 150°C

·Stresses beyond those listed under" Absolute Maximum Ratings" may cause permanent damage to the davice. This is a stress rating only
and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating
Conditions" section of this specification is not implied. Exposure to absolute-maxi mum-rated condition-s for extended periods may affect
device reliability.

NOTE 1: Under absolute maximum ratings voltage values are with respect to the normally most negative supply voltage, Vee (substrate).
Throughout the remainder of this data sheet, voltage values are with respect to VSS unless otherwise noted.

3.2 RECOMMENDED OPERATING CONDITIONS

MIN NOM MAX UNIT

Supply voltage, VBB -4.75 -5 -5.25 V

Supply voltage, Vee 4.75 5 5.25 V

Supply voltage, VOO 11.4 12 12.6 V

Supply voltage, VSS 0 V

High·level input voltage, VIH (all inputs except clocks) 3.3 Vee+ 1 V

High·level clock input voltage, VIH(rp) VOO-1 VOO+1 V

Low·level input voltage, V I L (all inputs except clocks) (see Note 2) -1 0.8 V

Low-level clock input voltage, VI L(rp) (see Note 2) -1 0.6 V

Operating free·air temperature, T A 0 70 °e

NOTE 2: The algebraic convention where the most negative limit is designated as minimum is used in this specification for logic voltage levels only.

C-12

C-l3

3.5 SWITCHING CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED
OPERATING CONDITIONS (SEE FIGURES 6 AND 7)

tpzx

tpxz

tpo

PARAMETER

Data bus output enable time

Data bus output disable time to high-impedance state

External data output propagation delay time from 1>2

TMS 5501

OUTPUT

3V

-lL=1.3kH

ICL=100 PF

CL includes probe and jig capacitance

LOAD CI RCUIT

TEST CONDITIONS

CL = 100 pF,

RL = 1.3 kH

''''1 .. t---------tc(1))-------..... 1 ---J I+- tf(rj»
I I 1 I I

MIN MAX UNIT

200 ns

180 ns

200 ns

t w (rj>l)-4I ... ---.la l tr(rj»-I r-- 1 ... 1"t----.. ~ll-td(rj>l L-</J2)

<1>1 A"\.- 7 ~--i-: r----:--:---
I 1 ~I --tt:W';';(rj>:2;;):4:: .. ;::=:::::; .. :i: ---4, tr(rj» -.j :-: i.. tf(rj»

rj>2 td(rj>lH-</J2) ! I.. : ~ ~ al td(rj>2-</Jl) y ~
'& .: 'h(CE)~ ~ (I

SYNC I ,
I ' .. tsu(da) I. ..j thIda) .,I tpzx tp X z --I---t

~ 1 I I Ki I Hi-Z

*I-Z
DO , I

~ OUTPUT DATA VALID ,
tsu(da) I .. .,I thIda) I· .. I I I

~
1 ~ k! OUTPUT DATA yALID

1 Hi-Z

~I-Z 01 I
I I

I
I , I I I
I

~
Hi-Z 1<' OUTPUT DATA ~ALlO

>lH1-Z
02-07 , I

I .. al tsu(ad) I. al th(ad)

AO-A3 W< I READ FUNCTION AI?ORESS ~a
I. "I tsu(Xi) I. al th(XI)

EXTERNAL ~ ~~~~~ EXTERNAL INPUT DATA
INPUTS

NOTE: For (,)1 or </>2 inputs, high and low timing points are 90% and 10% of V I H(rj». Allother timing points are the 50% level.

FIGURE 6-READ CYCLE TIMING

C-14

1>2

CHIP

ENABLE

SYNC

00,01

02-07

AO-A3

EXTERNAL

OUTPUTS

--....... -1 ~F-----~/ ~l"------

W', l ~~
1 ~I

~ I ~ I 1 1
---..1':-1 I ~ I I 1

I : tsu(da) I- "I thIda) I.. --l I
~: ~ INPUTDATA! ~~~~~~~

I I I~
~g93I~~~ INPUT DATA , ~~~~~~~
~su(ad) th(ad):" :::I~ I DI< WRITE FUNCTION ADDRESS ~~:Po:::~~~~MII:~

tpD-I4 ___ .1

_______________________ P_R_E_V_I_O_U_S_E_X_T_E_R __ N_A_L_O __ U_T_P_U_T_D_A_T_A ______________________ -J~NEWDATA

NOTE: For q,1 and cp2 inputs, high and low timing points are 90% and 10% of VI H(¢). All other timing points are the 50% level.

FIGURE 7-WRITE CYCLE TIMING

'-- tw(sens H)~tw(sens L)----I

J£ ~!/
SENSOR --I"! '" ;r

I

"', .. --------td(sens-int)---------4.oI' ____________________________ ~)fr-----------------~ INTERRUPT

RST INSTRUCTION !.-td(rst-int)---.-I

---------------------------------~~---------ON DATA BUS / "'"
(See Note 1)

NOTES: 1. The RST instruction occurs during the output data valid time of tne read cycle.
2. All timing points are 50% of VIH'

FIGURE a-SENSOR/INTERRUPT TIMING

C-lS

APPENDIX D

Appendix D

TMS 8080 Microprocessor

TABLE OF CONTENTS

1. ARCHITECTURE

1.1 Introduction

1.2 The Stack

1.3 Registers

1.4 The Arithmetic Unit

1.5 Status and Control

1.6 I/O Operations

1.7 I nstruction Tim ing

2. TMS 8080 I NSTRUCTION SET

2.1 I nstruction Formats

2.2 Instruction Set Description

2.2.1 I nstruction Symbols

2.2.2 Accumulator Group Instructions

2.2.3 Input/Output Instructions

2.2.4 Machine Instructions

2.2.5 Program Counter and Stack Control Instructions

2.2.6 Register Group Instructions

2.3 I nstruction Set Opcodes Alphabetically Listed

3. TMS 8080 ELECTRICAL AND MECHANICAL SPECIFICATIONS

3.1 Absolute Maximum Ratings

3.2 Recommended Operating Conditions

3.3 Electrical Characteristics

3.4 Timing Requirements .

3.5 Switching Characteristics

3.6 Terminal Assignments

3.7 Mechanical Data

LIST OF ILLUSTRATIONS

Figure 1

Figure 2

TMS 8080 Functional Block Diagram

Voltage Waveforms

Information contained in this publication is believed to be accurate

and reliable. However, responsibility is assumed neither for its use

nor for any infringement of patents or rights of others that may

result from its use. No license is granted by implication or otherwise

under any patent or patent right of Texas I nstruments or others.

Copyright © 1975

Texas Instruments Incorporated

D-l

2

2

2

3

3
3

3

6
7

7
8
9
9

10
11

12

17
17
17
18

18
20
20

2

19

TMS 8080 MICROPROCESSOR

1. ARCHITECTURE

1.1 INTRODUCTION

The TMS 8080 is an 8-bit parallel central processing unit (CPU) fabricated on a single chip using a high-speed N-channel
silicon-gate process. (See Figure 1). A complete microcomputer system with a 2-l1s instruction cycle can be formed by
interfacing this circu it with any appropriate memory. Separate 8-bit data and 16-bit address buses simplify the interface

and allow direct addressing of 65,536 bytes of memory. Up to 256 input and 256 output ports are also provided with
direct addressing. Control signals are brought directly out of the processor and all signals, excluding clocks, are TTL

compatible.

1.2 THE STACK

The TMS 8080 incorporates a stack architecture in which a portion of external memory is used as a pushdown stack for

storing data from working registers and internal machine status. A 16-bit stack pointer (SP) is provided to facilitate
stack location in the memory and to allow almost unlimited interrupt handling capability. The CALL and RST (restart)
instructions use the SP to store the program counter (PC) into the st'ack. The RET (return) instruction uses the SP to

acquire the previous PC value. Additional instructions allow data from registers and flags to be saved in the stack.

1.3 REGISTERS

The TMS 8080 has three categories of registers: general registers, program control registers, and internal registers. The

general registers and program control registers are listed in Table 1. The internal registers are not accessible by the

programmer. They include the instruction register, which holds the present instruction, and several temporary storage

registers to hold internal data or latch input ilnd output addresses and data.

16

INCREMENTER/
DECREMENTEA

16

16

HIGH ORDER

FIGURE 1-TMS 8080 FUNCTIONAL BLOCK DIAGRAM

D-2

y

REGISTER

1.4 THE ARITHMETIC UNIT

Arithmetic operations are performed in an 8-bit parallel arithmetic unit that has both binary and decimal capabilities.

Four testable internal flag bits are provided to facilitate program control, and a fifth flag is used for decimal

corrections. Table 2 defines these flags and their operation. Decimal corrections are performed with the DAA

instruction. The DAA corrects the result of binary arithmetic operation on BCD data as shown in Table 3.

1.5 STATUS AND CONTROL

Two types of status are provided by the TMS8D8D. Certain status is indicated by dedicated control lines. Additional

status is transmitted on the data bus during the beginning of each instruction cycle (machine cycle). Table 4 indicates

the pin functions of the TMS8D8D. Table 5 defines the status information that is presented during the beginning of each

machine cycle (SYNC time) on the data bus.

1.6 I/O OPERATIONS

I nput/output operations (I/O) are performed using the I N and OUT instructions. The second byte of these instructions

indicates the device address (256 device addresses). When an I N instruction is executed, the input device address

appears in duplicate on A 7 through AD and A 15 through A8, along with WO and INP status on the data bus. The

addressed input device then puts its input data on the data bus for entry into the accumulatm. When an OUT

instruction is executed, the same operation occurs except that the data bus has OUT status and then has output data.

Direct memmy access channels (DMA) can be OR-tied directly with the data and address buses through the use of the

HOLD and HLDA (hold acknowledge) controls. When a HOLD request is accepted by the CPU, HLDA goes high, the

address and data lines are forced to a high-impedance or "floating" condition, and the CPU stops until the HOLD

request is removed.

Interfacing with different speed memories is easily accomplished by use of the WAIT and READY pins. During each

machine cycle, the CPU polls the READY input and enters a wait condition until the READY line becomes true_ When

the WAIT output pin is high, it indicates that the CPU has entered the wait state.

Designing interrupt driven systems is simplified through the use of vectored interrupts. At the end of each instruction,

the CPU pollsthe INT inputto determine if an interrupt request is being made. This action does not occur if the CPU is in

the HOLD state or if interrupts are disabled. The INTE output indicates if the interrupt logic is enabled (INTE is high).

When a request is honored, the INTA status bit becomes high, and an RST instruction may be inserted to force the CPU

to jump to one of eight possible locations. Enabling or disabling interrupts is controlled by special instructions (EI or

01). The interrupt input is automatica!ly disabled when an interrupt request is accepted or when a RESET signal is

received.

1.7 INSTRUCTION TIMING

The execution time of the instructions varies depending on the operation required and the number of memory

references needed. A machine cycle is defined to be a memory referencing operation and is either 3, 4, or 5 state times

long. A state time (designated S) is a full cycle of clocks ¢1 and ¢2. (NOTE: The exception to this rule is the DAD

instruction, which consists of 1 memory reference in 1 D state times). The first machine cycle (designated M1) is either 4

or 5 state times long and is the "instruction fetch" cycle with the program counter appearing on the address bus. The

CPU then continues with as many M cycles as necessary to complete the execution of the instruction (up to a

maximum of 5). Thus the instruction execution time varies from 4 state times (several including ADDr) to 18 (XTH L).

The WAIT or HOLD conditions may affect the execution time since they can be used to control the machine (for

example to "single step") and the HALT instruction forces the CPU to stop until an interrupt is received. As the

instruction execution is completed (or in the HALT state) the INT pin is polled for an interrupt. In the event of an

interrupt, the PC will not be incremented during the next M1 and an RST instruction can be inserted.

D-3

NAME

Accumulator

B Register

C Register

o Register

E Register

H Register

L Register

Program Counter

Stack Pointer

F lag Register

DESIGNATOR

A

B

C

D

E

H

L

PC

SP

F

TABLE 1

TMS 8080 REGISTERS

LENGTH

8

8

8

8

8

8

8

16

16

5

PURPOSE

Used for arithmetic, logical, and I/O operations

General or most significant 8 bits of double register BC

General or least significant 8 bits of double register BC

General or most significant 8 bits of double register DE

General or least significant 8 bits of double register DE

General or most significant 8 bits of double register H L

General or least significant 8 bits of double register HL

Contains address of next byte to be fetched

Contains address of the last byte of data saved in

the memory stack

Five flags (C, Z, S, P, C1)

NOTE" Registers Band C may be used together as a single 16-bit register, likewise, 0 and E, and Hand L.

SYMBOL TESTABLE

C YES

Z YES

S YES

P YES

C1 NO

C

0

0

0

1

1

1

0

0

0

TABLE 2

FLAG DESCRIPTIONS

DESCRIPTION

C I;; the carry/borrow out of the MSB (most significant bit) of the ALU (Arithment Logic

Unit!. A TRUE condition (C ~ 1) indicates overflow for addition or underflow for

subtraction.

A TRUE condition (Z 1) indicates that the output of the ALU is equal to zero,

A TRUE condition (S ~ 1) indicates that the MSB of the ALU output is equal to a one (1),

A TRUE condition (P ~ 1) indicates that the output of the ALU has even parity (the

numbel' of bits equal to one is even),

C1 is the carry out of the fourth bit of the ALU (TRUE condition), C1 is used only for BCD

correction with the 0 AA instruction,

TABLE 3

FUNCTION OF THE DAA INSTRUCTION

Assume the accumulator (A) contains two BCD digits, X and Y

7 430

ACC
,---x--r,--y-,

ACCUMULATOR ACCUMULATOR

BEFORE DAA AFTER DAA

A7" ,A4 C1 A3'" AO C A7'" A4 C1 A3'" AO

X < 10 0 Y< 10 0 X 0 Y

X < 10 1 Y< 10 0 X 0 Y+6

X<9 0 Y 10 0 X + 1 1 Y+6

X..::: 10 0 Y"::: 10 1 X + 6 0 Y

X < 10 1 Y..::: 10 1 X+6 0 Y+6

X < 10 0 Y ;. 10 1 X+7 1 Y+6

X 10 0 Y < 10 1 X+6 0 Y

X;,' 10 1 Y < 10 1 X+6 0 Y+6

X '9 0 y", 10 1 X+7 1 Y+6

NOTE The corrections shown in Table 3 are sufficient for addition. For subtraction, the programmer must account for the borrow

conditionthatcanoccurand give erroneous results. The most straight forward method is to set A = 9916 and carry = 1. Then

add the 1"I)inuend to A after subtracting the subtrahend from A.

D-4

SIGNATURE PIN I/O

A15 (MSB) 36 OUT

OUT

OUT

OUT

OUT

OUT

OUT

OUT

OUT

OUT

OUT

OUT

OUT

OUT

OUT

OUT

A14 39

A13 38

A12

All

Al0

A9

A8

A7

A6

A5

A4

A3

A2

Al

AO (LSB)

D7 (MSB)

D6

D5

D4

D3

D2

Dl

DO (LSB)

37

40

1

35

34

33

32

31

30

29

27

26

25

6 IN/OUT

5 IN/OUT

4 IN/OUT

3 IN/OUT

7 IN/OUT

8 IN/OUT

9 IN/OUT

10 IN/OUT

TABLE 4
TMS BOBO PIN DEFINITIONS

DESCRIPTION

A 15 through AO comprise the address bus. True memory or I/O device addresses appear on

this 3-state bus during the first state time of each instruction cycle.

D7 through DO comprise the bidirectional 3-state data bus. Memory, status, or I/O data is

transferred on this bus.

VSS 2 Ground reference

VCC

VDD

<1>1

<1>2

RESET

HOLD

INT

INTE

DBIN

11 Supply voltage (--5 V nominal)

20 Supply voltage (5 V nominal)

28 Supply voltage (12 V nominal)

22

15

12

13

14

16

17

IN

IN

IN

IN

IN

OUT

OUT

Phase 1 clock.

Phase 2 clock. See page 19 for <1>1 and <1>2 timing.

Reset. When active (high) for a minimum of 3 clock cycles, the RESET input causes the
TMS 8080 to be reset. PC is cleared, interrupts are disabled, and after RESET, instruction
execution starts at memory location O. To prevent a lockup condition, a HALT instruction

must not be used in location O.

Hold signal. When active (high) HOLD causes the TMS 8080 to enter a hold state and float

(put the 3'state address and data bus in a high-impedance state). The chip acknowledges

entering the hold state with the HLDA signal and will not accept interrupts until it leaves

the hold state.

Interrupt request. When active (high) INT indicates to the TMS8080 that an interrupt is

being requested. The TMS8080 polls INT during a HALT or at the end of an instruction.

The request will be accepted except when INTE is low or the CPU is in the HOLD

condition.

Interrupts enabled. I NTE indicates that an interrupt will be accepted by the TMS 8080

unless it is in the hold state. INTE is set to a high logic level by the EI (Enable Interrupt)

instruction and reset to a low logic level by the DI (Disable Interrupt) instruction. INTE is

also reset when an interrupt is accepted and by a high on RESET.

Data bus in. DBI N indicates whether the data bus is in an input or an output mode.

(high = input, low = output).

D-5

SIGNATURE PIN I/O

WR 18 OUT

SYNC 19 OUT

HLDA 21 OUT

READY 23 IN

WAIT 24 OUT

SIGNATURE DATA BUS BIT

INTA DO

WO D1

STACK D2

HLTA 03

OUT 04

M1 D5

INP 06

MEMR D7

2. TMS 8080 INSTRUCTION SET

2.1 INSTRUCTION FORMATS

TABLE 4 (CONTINUED)

DESCRIPTION

Write. When active (low) WR indicates a write operation on the data bus to memory or to an

I/O port.

Synchronizing control line. When active (high) SYNC indicates the beginning of each

machine cycle of the TMS8080. Status informatio;l is also present on the data bus during

SYNC for external latches.

Hold acknowledge. When active (high) HLDA indicates that the TMS8080 is in a hold state.

Ready control line. An active (high) level indicates to the TMS 8080 that an external device

has completed the transfer of data to or from the data bus. READY is used in conjunction

with WAIT for different memory speeds.

Wait status. When active (high) WAIT indicates that the TMS8080 has entered a wait state

pending a READY signal from memory.

TABLE 5

TMS 8080 ST A TUS

DESCRIPTION

Interrupt acknowledge.

Indicates that current machine cycle will be a read (input) (high = read) or a write (output)

(low = write) operation.

Indicates that address is stack address from the SP.

HALT instruction acknowledge.

Indicates that the address bus has an output device address and the data bus has output

data.

Indicates instruction acquisition for fi~st byte.

Indicates address bus has address of input device.

Indicates that data bus will be used for memory read data.

TMS 8080 instructions are either one, two, or three bytes long and are stored as binary integers in successive memory

locations in the format shown below.

One- Byte I nstructi ons

D7 D6 D5 D4 D3 D2 D1 DO OP CODE

Two-Byte Instructions

D7 D6 D5 D4 D3 D2 D1 DO OP CODE

D7 D8 D5 D4 D3 D2 D1 DO OPERAND

Three-Byte Instructions

D7 D6 D5 D4 D3 D2 D1 DO OP CODE

D7 D6 D5 D4 D3 D2 D1 DO LOW ADDRESS OR OPERAND 1

D7 D6 D5 D4 D3 D2 D1 DO HIGH ADDRESS OR OPERAND 2

D-6

2.2 INSTRUCTION SET DESCRIPTION

Operations resulting from the execution of TMS 8080 instructions are described in this section. The flags that are affected by

each instruction are given after the description.

2.2.1 INSTRUCTION SYMBOLS

SYMBOL
<b2>
<b3>

r a

M
()

[1

Am
11
b2

b3b2
(nnn)8

Second byte of instruction

Th ird byte of instruction

Register #
000

001

010

011

100
101
111

Register #
00
01

10
11

Register #
o

Register #
00
01

10

Least significant 8 bits of rd

Most significant 8 bits of rd

DESCRIPTION

F lags True condition

Zero (Z) Result is zero

Register Name

B
C
D
E
H

L
A

Register Name

BC
DE
HL
SP

Register Name

BC

DE

Register Name

BC

DE

HL

Carry (C) Carry/borrow out of MSB is one

Parity (P) Parity of result is even

Sign (S) MSB of result is one

Carry 1 (Cl) Carry out of fourth bit is one

Memory address defined by registers Hand L

Contents of specified address or register

Contents at address contained in specified register
I s transferred to

Exchange

Bit m of A register (accumulator)

Flags affected

Single byte immediate operand
Double byte immediate operand

(nnn) is an octal (base 8) number

D-7

2.2.2 ACCUMULATOR GROUP INSTRUCTIONS

MNEMONIC OPERANDS BYTES

ACI b2 2

ADC M

ADC ra

ADD M

ADD ~ 1

ADI ~ 2

ANA M

ANA ~ 1

ANI b2 2

CMA

CMC

CMP M

CMP

CPI

DAA

DAD

LDA

LDAX

ORA

ORA

ORI

RAL

RAR

RLC

RRC

rb

rc
M

1

2

3

2

MCYCLES/

STATES

2/7

2/7
1/4

2/7

1/4

2/7

2/7

1/4

2/7

1/4

1/4

2/7

1/4

2/7

1/4

1/10

4/13

2/7

2/7

1/4

2/7

1/4

1/4

1/4

1/4

D-8

DESCRIPTION

(A) <- (A) + <b2>+(carry), add the second byte of the

instruction and the contents of the carry flag to register A and

place in A. jC,z,S,P,C1\

(A) <- (A) + (M) + (carry). I C,z;S,p,el I
(A) <- (A) + (ra) + (carry). I C,Z,S,P;C1 }

(A) ... (A) + (M), add the contents of M to register A and place in

A. lc,z,s,P,Cl f
(A) <- (A) + (ra).1 C,Z,S,P,Cl f
(A) <- (A) + <b2>.lc,z,s,P,C1 \

(A) <- (A) AND (M), take the logical AND of M and register A

and place in A. The carry flag will be reset low. j C,Z,S,P,C1\

(A) <- (A) AND (ra).IC,z,s,p,C1\

(A) <- (A) AND <b2>.j C,Z,S,P,C1 }

(A) <- (A), complement A.

(carry) <- (carry), complement the carry flag. lc I
(A) - (M), compare the contents of M to register A and set the

flags accordingly.! C,Z,S,P,C1 !
(A) = (M) Z = 1

(A) '* (M) Z = 0

(A) < (M) C = 1

(A) > (M) C = 0

(A) - (ra).IC,Z,S,P,C1\

(A)-<b2>·: ! C,Z,S,P ,Cl }

(A)<-BCD correction of (A). The 8 bit A contents is corrected to

form two 4 bit BCD digits after a binary arithmetic operation. A

fifth flag C1 indicates the overflow from A3. The carry flag C

indicates the overflow from A7 (See Table 3). !C,Z,S,P,Cl \

(HL) <- (HL) + (rb), add the contents of double register rb to

double register HL and place in HL. Ie \

(A)<-[<b3> <b2>]

(A)<-[(rc)]

(A) <- (A) OR (M), take the logical OR of the contents of M and

register A and place in A. The carry flag will be reset.

le,z,S,p,Cll

(A) <- (A) OR (ral.{ C,Z,s,p,cll

(A) <- (A) OR <b2>.jC,z,s,p,e1\

Am+l<-Am, Ao<-(carry), (carry)<-(A7). Shift the contents of

register A to the left one bit through the carry flag. I C \

Am<-Am+1, Ar(carry), (carry)<-Ao.l C \

Am+l<-Am, AO<-A7 (carry)+-(A7). Shift the contents of register

A to the left one bit. Shift A7 into A and into the carry

flag. Ie \

Am+-Am+l, A7+-Ao. (carry)<-(AO).j e \

MNEMONIC OPERANDS BYTES

SBB M

SBB ra 1

SBI b2 2

STA b3b2 3

STAX rc

STC

SUB M

SUB ra 1

SUI b2 2

XRA M

XRA ra
XRI b2 2

2.2.3 INPUT/OUTPUT INSTRUCTIONS

MNEMONIC OPERANDS BYTES ---
IN b2 2

OUT b2 2

2.2.4 MACHINE INSTRUCTIONS

MNEMONIC OPERANDS BYTES

HLT

NOP

M CYCLES/

STATES

217

1/4

217

4/13

2/7

1/4

2/7

1/4

217

217

1/4

217

MCYCLES/

STATES

3/10

3/10

M CYCLES/

STATES

217

1/4

D-9

DESCRIPTION

(A)<-(A)-(M)-(carry), subtract the contents of M and the

contents of the carry flag from register A and place in A. Two's

complement subtraction is used and a true borrow causes the

carry flag to be set (underflow condition).l C,Z,S,P,Cl f
(A)<-(A)-(ra)-(carry). 1 C,Z,s,p,cll

(A)<-(A)-<b2>-(carry). jC,z,s,p,c11

[<b3> <b2>l <-(A), store contents of A in memory address

given in bytes 2 and 3.

[(rc)l <-(A), store contents of A in memory address given in BC

or DE.

(carry)<-l, set carry flag to a 1 (true condition).

(A)<-(A)-(M), subtract the contents of M from register A and

place in A. Two's complement subtraction is used and a true

borrow causes the carry flag to be set (underflow condition).

I C,Z,s,p,cll

(A)<-(A)-(ratl C,Z,s,p,cll

(A)<-(A)-<b2>· I C,Z,S,p,Cll

(A)<-(A) XOR (M), take the exclusive OR of the contents of M

and register A and place in A. The carry flag will be reset.

I C,Z,S,P,Cl f
(AHA) XOR (raI.IC,Z,S,P,Cl f
(A)<-(A) XOR <b2>. jC,z,S,P,Cl f

DESCRIPTION

(A)<-(input data from data bus), byte 2 is sent on bits A7-AO

and A 15-A8 as the input device address. INP status is given on

the data bus.

(Output data)<-(A), byte 2 is sent on bits A7-AO and A 15-A8 as

the output device address. OUT status is given on the data bus.

DESCRIPTION

Halt, all machine operations stop. All registers are maintained.

Only an interrupt can return the TMS 8080 to the run mode,

Note that a HL T should not be placed in location zero,

otherwise after the reset pin is active, the TMS 8080 will enter a
nonrecoverable state (until power is removed), i.e., in halt with

interrupts .disabled. This condition also occurs if a H L T is

executed while interrupts are disabled. HLTA status is given on

the data bus.

(PC)<-(PC)+l, no operation.

2.2.5 PROGRAM COUNTER AND STACK CONTROL INSTRUCTIONS

MNEMONIC OPERANDS

CALL b3b2

BYTES

3

Conditional call instructions for true flags:

(f)

CC (carry) b3b2 3

CPE (parity) b3b2 3

CM (sign) b3b 2 3

CZ (zero) b3b2 3

Conditional call instructions for false flags:

(f)

CNC (carry) b3b2 3

CPO (parity) b3b2 3

CP (sign) b3b2 3

CNZ (zero) b3b2 3

01

EI

JMP b3b2 3

Conditional jump instructions for true flags:

(f)

JC (carry) b3b2 3

JPE (parity) b3b2 3

JM (sign) b3b 2 3

JZ (zero) b3b2 3

Conditional jump instructions for falseflaQs:
(f)

JNC (carry) b3b2 3
JPO (parity) b3b2 3
JM (sign) b3b2 3
JNZ (zero) b3b2 3

PCHL

POP PSW

POP rd

PUSH PSW

PUSH rd

RET

M CYCLES/

STATES

5/17

5/17 (Pass)

3/11 (Fail)

5/17 (Pass)

3/11 (Fail)

1/4

1/4

3/10

3/10

3/10

1/5

3/10

3/10

3/11

3/11

3/10

D-10

DESCRIPTION

[(SP)-1] [(SP)·-2] ~(PC). (SP) (SP)-2. (PC)<-<b3> <b2>.

transfer PC to the stack address given by SP. decrement SP

twice. and jump unconditionally to address given in bytes 2 and

3.

If (f) = 1. [(SP)-l] [(SP)-2]~(PC). (SP)<-(SP)-2. (PS)+-<b3>

<b2>. otherwise (PC)<--(PC)+3. If the flag specified. f. is 1. then

execute a call. Otherwise. execute the next instruction.

If (f) = o. [(SP)-l] [(SP)-2]<-(PC). (SP) (SP)-2. (PC)'-<b3>

<b2>. otherwise (PC) (PC)+3.

Disable interrupts. INTE is driven false to indicate that no

interrupts will be accepted.

Enable interrupts. INTE is driven true to indicate that an

interrupt will be accepted. Execution of this instruction is

delayed to allow the next instruction to be executed before the

INT input is polled.

(PC)+-<b3> <b2>. jump unconditionally to address given in

bytes 2 and 3.

If (f) = 1. (PC)<--<b3><b2>. otherwise (PC) (PC) +3. If the flag

specified. f. is 1. execute a JMP. Otherwise. execute the next

instruction.

If (f) = O. (PC)+-<b3> <b2>. othewise (PC) (PC)+3.

(PC)<-(HL)

(Fl<-[(SP)]. (A)+-[('SP)+l]. (SP)<-(SP)+2. restore the last

stack values addressed by SP into A and F. Increment SP twice.

(rdL)+-[(SP)]. (rdH)<-[(SP)+l]. (SP)<-(SP)+2.

[(SP)-ll-(A). [(SP)-2]<-(F). (SP)<-(SP)-2. save the contents

of A and F into the stack addressed by SP. Decrement SP twice.

[(SP)-l]<-(rdL). [(SP)-2]<-(rdH). (SP)<-(SP)-2.

(PC)<-[(SP)] [(SP)+l]. (SP)+-(SP)+2. return to program at

memory address given by last values in the stack. The SP is

incremented by two.

MNEMONIC OPERANDS BYTES

Conditional return instructions for true flags:

(f)

RC (carry)

RPE (parity)

RM (sign)

RZ (zero)

C

P

S

Z

M CYCLESI

STATES

3/11 (Pass)

1/5 (Fail)

Conditional return instructions tor talse flags:

(f)

RNC (carry) C

RPO (parity) P

RP (sign) S

RNZ (zero) Z

RST

SPHL

2.2.6 REGISTER GROUP INSTRUCTIONS

MNEMONIC OPERANDS BYTES

OCR M

OCR ra

DCX rb

INR M

INR ra
INX rb 1

LHLD b3b2 3

LXI rbb3b2 3

MVI M,b2 2

MVI rab2 2

MOV Mra

MOV raM

MOV r al r a2

SHLD b3b2 3

XCHG

XTHL

3/11 (Pass)

1/5 (Fail)

3/11

1/5

M CYCLES/

STATES

3/10

1/5

1/5

3/10

1/5

1/5

5/16

3/10

3/10

217

217

217

1/5

5/16

1/4

5/18

D-ll

DESCRIPTION

If (I) ~ 1, (PC)<[(SP)] [(SP+1J, (SP)<-(SP)+2. If the flag

specified, f, is 1, execute a RET. Otherwise, execute the next

instruction.

If (I) = 0, (PC)- [(SP)] [(SP)+ll, (SP)<-(SP)+2.

[(SP)·-11 [(SP)-2] <-(PC) (SP).-(SP)--2, (PC)+-OOOOROS where

R is a 3 bit field in RST (RST=3R781. Transfer PC to the stack

address given by SP, decrement SP twice, and jump to the

address specified by R.

(SP)<-(HL).

DESCRIPTION

(M)<-(M)-l, decrement the contents of memory location

specified by Hand L.j Z,S,P,Cl \

(ra)<-(ra)-l, decrement the contents of register ra.j Z,S,P,Cl f'

(rb)+-(rb)-l, decrement double registers BC, DE, HL, or SP.

(M)<-(M)+l, increment the contents of memory location

specified by Hand L. \ Z,S,P,Cl f

(ra)<-(ra)+l, increment the contents of register ra.\Z,S,p,c1f

(rb)<--(rb)+l, increment double registers BC, DE, HL, or SP.

(L)<-[<b3> <b2>1; (H)<- [<b3> <b2>+ll, load registers H

and L with contents of the two memory locations specified

by bytes 3 and 2.

(rbH)<-<b3>; (rbL)<-<b2>, load double registers BC, DE, HL,

or SP immediate with bytes 3, 2, respectively,

(M)<-<b2>, store immediate byte 2 in the address specified by

HL

(ra)<-<b2>, load register ra immediate with byte 2 of the instruc­

tion.

(M)<-(ra), store register ra in the memory location addressed by

Hand L.

(ra)<-(M), load register ra with contents of memory addressed by

HL.

(ral)<-(ra2), load register ra l with contents of ra2, ra2 contents

remain unchanged.

[<b3> <b2>] <-(L); [<b3> <b2>+1)] <-(H), store the contents

of Hand L into two successive memory locations specified by

bytes 3 and 2.

(H)-(D); (L)-(E), exchange double registers HL and DE

(L)-[(SP)j, (H)-[(SP)+1j, (SP)=(SP), exchange the top of the

stack with register H L.

2.3 INSTRUCTION SET OPCODES ALPHABETICALLY LISTED
POSITIVE·LOGIC

REGISTER HEX OPCODE CLOCK

MNEMONIC BYTES DESCRIPTION AFFECTED ~ ~ CYCLES* ---
ACI 2 Add immediate to A with carryt C E 7

ADCM Add memory to A with carry t 8 E 7

ADC r Add register to A with carry t B 8 8 4

C 8 9

0 8 A

E 8 B

H 8 C

L 8 0

A 8 F

ADDM Add memory to At 8 6 7

ADD r Add register to At B 8 0 4

C 8

0 8 2

E 8 3

H 8 4

L 8 5

A 8 7
ADI 2 Add immediate to At C 6 7
ANAM AND memory with At A 6 7
ANAr AND register with At 'B A 0 4

C A 1

0 A 2

E A 3

H A 4

L A 5

A A 7

ANI 2 AND immediate with At E 6 7

f CALL 3 Call unconditional C 0 17
CC 3 Callan carry 0 C 11/17
CM 3 Call on minus F C 11/17

·.CMA Complement A 2 F 4
CMC Complement carry:!: 3 F 4
CMPM Compare memory with At B E 7

CMPr Compare register with A

B B 8 4

C B 9

0 B A

E B B

H B C

L B 0

A B F

CNC 3 Call on no carry 0 4 11/17
CNZ 3 Call on no zero C 4 11/17
CP 3 Call on positive F 4 11/17

"
CPE 3 Call on parity even E C 11/17
CPI 2 Compare immediate with At F E 7
CPO 3 Call on parity odd E 4 11/17
CZ 3 Callan zero C C 11/17
DAA Decimal adjust At 2 7 4

'Two possible cycle times (11/17) indicate instruction cycles dependent on condition flags.
t All flags (C.Z, S. P, C1) affected.
:i:Onl y carry flag affected.

D-12

POSITIVE-LOGIC

REGISTER HEX OPCODE CLOCK

MNEMONIC BYTES DESCRIPTION AFFECTED ~ ~ CYCLES

DAD B Add B&C to H&L:i: 0 9 10

DAD C Add D&E to H&L:i: 1 9 10

DAD H Add H&L to H&L:! 2 9 10

DAD SP Add stack pointer to H&L:!: 3 9 10

OCR M
,;

Decrement Memory' 3 5 10

DCRr Decrement Register ~ 8 0 5 5

C 0 0

0 5

E 0

H 2 5

L 2 0

A 3 0

DCX 8 Decrement B&C 0 8 5

DCX D Decrement D&E 8 5

DCX H Decrement H&L 2 B 5

DCX SP Decrement stack pointer 3 8 5

01 Disable interrupts F 3 4

EI Enable interrupts F B 4

HLT Halt 7 6 7

IN 2 Input D B 10

INR M I ncrement memory 'i 3 4 10

INR r Increment register~ 8 0 4 5

C 0 C

0 4

E C

H 2 4

L 2 C

A 3 C

INX 8 Increment 8& C register 0 3 5

INX 0 Increment D&E register 1 3 5

INX H Increment H&L register 2 3 5

INX SP 1 I ncrement stack poi nter 3 3 5

JC 3 Ju mp on carry 0 A 10

JM 3 Jump on minus F A 10

JMP 3 Jump unconditional C 3 10

JNC 3 Jump on no carry 0 2 10

JNZ 3 Jump on no zero C 2 10

JP 3 Jump on positive F 2 10

JPE 3 Jump on parity even E A 10

JPO 3 Jump on parity odd E 2 10

JZ 3 Jump on zero C A 10

LDA Load A direct 3 A 13

LDAX B 1 Load A indirect 0 A 7

LDAX 0 1 Load A indirect 1 A 7

LHLD 3 Load H& L direct 2 A 16

LXI 8 3 Load immediate register pair B&C 0 10

LXI 0 3 Load immediate register pair D&E 10

LXI H 3 Load immediate register 2 10

LXI SP 3 Load immediate stack pointer 3 10

:f.Only carry flag affected.
S All flags except carry affected.

D-13

POSITlVE·LOGIC

REGISTER HEX OPCODE CLOCK

MNEMONIC BYTES DESCRIPTION AFFECTED ~ ~ CYCLES

MOVM,r Move register to memOlY B 7 0 7

C 7 1

0 7 2

E 7 3

H 7 4

L 7 5

A 7 7
MOV r,M Move memory to register B 4 6 7

C 4 E
0 5 6

E 5 E
H 6 6

L 6 E
A 7 E

MOV r1, r2 Move register to register B,B 4 0 5

B,C 4 1

B,D 4 2

B,E 4 3

B,H 4 4

B,L 4 5

B,A 4 7

C,B 4 8

C,C 4 9

C,D 4 A
C,E 4 B
C,H 4 C

.. C,L 4 0

C,A 4 F

D,B 5 0

D,C 5

0,0 5 2

D,E 5 3

D,H 5 4

H,L 5 5

D,A 5 7

E,B 5 8

E,C 5 9

E,D 5 A
E,E 5 B
E,H 5 C
E,L 5 0

E,A 5 F

H,B 6 0

H,C 6 1

H,D 6 2

H,E 6 3

H,H 6 4

H,L 6 5

H,A 6 7

L,B 6 8

D-14

POSITIVE·LOGIC

REGISTER HEX OPCODE CLOCK

MNEMONIC BYTES DESCRIPTION AFFECTED ~ ~ CYCLES*

MOV r1, r2 Move register to register (continued) L,C 6 9

L,D 6 A

L,E 6 B

L,H 6 C

L,L 6 D

L,A 6 F

A,B 7 8

A,C 7 9

A,D 7 A

A,E 7 B

A,H 7 C

A,L 7 D

A,A 7 F

MVIM 2 Move immediate memory 3 6 10

MVI r 2 Move immediate register B 0 6 7

C 0 E

D 6

E 1 E

H 2 6

L 2 E

A 3 E

NOP No operation 4 0 0 4

ORAM OR memory with At B 6 7

ORAr OR register with At B B 0 4

C B

D B 2

E B 3

H B 4

L B 5

A B 7

ORI 2 OR immediate with At F 6 7

OUT 2 Output D 3 10

PCHL H&L to program counter E 9 5

POP B Pop register pair B&C off stack C 10

POP D Pop register pair D&E off stack D 10

POP H Pop register pai r H& L off stack E 10

POP PSW Pop A and flags off stack t F 10

PUSH B Push register pair B&C C 5 11

PUSH D 1 Push register pair D&C D 5 11

PUSH H 2 Push register pai r H& L on stack E 5 11

PUSH PSW Push A and Flags on stack F 5 11

RAL Rotate A left through carry :1: 7 4

RAR Rotate A right through carry:j: F 4

RC Return on carry D 8 5/11

RET Return C 9 10

RLC Rotate A left :1: 0 7 4

RM Return on minus F 8 5/11

RNC Return on no carry D 0 5/11

RNZ Return on no zero C 0 5/11

RP Return on positive F 0 5/11

• Two possible cycles times (11/17) ind icate instruction cycles dependent on condition flags.
t All flags (C, Z, S, P, Cl) affected.
j:Only carry flag affected.

D-15

POSITIVE-LOGIC

REGISTER HEXOPCODE CLOCK

MNEMONIC BYTES OESCRIPTION AFFECTED ~ ~ CYCLES*

RPE Return on parity even E 8 5/11

RPO Return on parity odd E 0 5/11

RRC Rotate A righti: 0 F 4

RST Restart 11

PC+-OOOO16 C 7

PC+-OOO816 C F

PC+-OO.1°16 D 7

PC+-OO1816 D F

PC+-OO2016 E 7

PC<-OO2816 E F

PC+-OO3016 F 7

PC+-OO3816 F F

RZ Return on Zero C 8 5/11

SBB M Subtract memory from A with borrowt 9 E 7

SBB r Subtract register from A with borrowt B 9 8 4

C 9 9

D 9 A

E 9 B

H 9 C

L 9 D

A 9 F

SBI 2 Subtract immediate from A with borrowt D E 7

SHLD 3 Store H&L direct 2 2 16

SPHL 1 H& L to stack poi'nter F 9 5

STA 3 Store A direct 3 2 13

STAX B Store A indirect 0 2 7

STAX D Store A indirect 1 2 7

STC Set carry:l: 3 7 4

SUB M Subtract memory from At 9 6 7

SUB r Subtract register from At B 9 0 4

C 9 1

D 9 2

E 9 3

H 9 4

L 9 5

A 9 7

SUI 2 Subtract immediate from At D 6 7
XCHG Exchange D& E, H& L registers E B 4

XRAM Exclusive OR memory with At A E 7

XRA r Exclusive OR register with At B A 8 4

C A 9

D A A

E A B

H A C

L A D

A A F

XRI 2 Exclusive OR immediate with At E E 7
XTHL Exchange top of stack H&L E 3 18

• Two possible cycles times (11/17) indicate instruction cycles dependent on condition flags.
~ All flags (C, Z, S, P, Cl) affected.
~: Only carry flag affected.

D-16

3. TMS 8080 ELECTRICAL AND MECHANICAL SPECIFICATIONS

3.1 ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE·AIR TEMPERATURE RANGE

(UNLESS OTHERWISE NOTED)*

Supply voltage, VCC (see Note 1)

Supply voltage, VDD (see Note 1
Supply voltage, VSS (see Note 1)

All input and output voltages (see Note 1)

Continuous power dissipation

Operating free-air temperature range
Storage temperature range

-0.3 V to 20 V
-0.3 V to 20 V
-0.3 V to 20 V
-0.3 V to 20 V

1.5W
O°C to 70°C

-65°C to 150°C

*Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating

Conditions" section of this specification is not implied. Exposure to absolute-maxi mum-rated conditions for extended periods may affect

device reliability.

NOTE 1: Under absolute maximum ratings voltage values are with respect to the normally most negative supply voltage, VBB (substrate).

Throughout the remainder of this data sheet, voltage values are with respect to VSS unless otherwise noted.

3.2 RECOMMENDED OPERATING CONDITIONS

MIN NOM MAX

Supply voltage, VBB -4.75 -5 -5.25

Supply voltage, VCC 4.75 5 5.25

Supply voltage, VOO 11.4 12 12.6

Supply voltage, VSS 0

High-level input voltage, VIH (all inputs except clocks) (see Note 2) 3.3 VCC+ 1

High-level clock input voltage, VIH(1)) VOO-1 VOO+1

Low-level input voltage, VI L (all inputs except clocks) (see Note 3) -1 0.8

Low-level clock input voltage, VIL(¢) (see Note 3) -1 0.6

Operating free·air temperature, T A 0 70

3.3 ELECTRICAL CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS
(UNLESS OTHERWISE NOTED)

PARAMETER TEST CONDITIONS MIN Typt MAX

II
I nput current (any input except

VI ~ 0 V to VCC ±10
clocks and data bus)

1111>) Clock input current VI(q,) ~ 0 V to VOO ±10

IIIOB) I nput current, data bus VI (DB) ~ 0 V to VCC -100

Address or data bus in put VI(ad) or VI(OB) - VCC 10
Ilihold)

current during hold VI(ad) or VI(OB) - 0 V -100

VOH High·level output voltage IOH ~ 100 J.1.A 3.7

VOL Low-level output voltage
lOll DB) ~ 1.7 mA,

0.45
IOL ~ 0.75 mA (any output except DB)

IBB(av) Average supply current from VBB -0.01 -1

ICC(av) Average supply current from VCC
Operating at tc(q)) ~ 480 ns,

60 75

IOO(av) Average supply current from VOO
TA~25°C

40 67

C I Capacitance, any input except clock V CC = VOO ~ VSS ~ 0 V, 10 20

Ci(q,) Clock input capacitance VBB ~ -4.75 to -5.25 V, f ~ 1 MHz. 5 10

Co Output capacitance All other pins at 0 V 10 20

t All typical values are at T A = 25u C and nominal voltages.

UNIT

V

V

V

V

V

V

V

V

C

UNIT

J.1.A

J.1.A

J.1.A

J.1.A

V

V

mA

pF

NOTES: 2. Active pull-up resistors of nominally 2 kr2 will be switched onto the data bus when DBIN is high and the data input voltage is

more positive than VIH min.

3. The algebraic convention where the most negative Hmit is designated as minimum is used in this specification for logic voltage

levels only.

D-17

3.4 TIMING REQUIREMENTS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS
(SEE FIGURE 2)

MIN

tc(¢) Clock cycle time (see Note 5) 480

tr(Q) Clock rise ti me 5

tfk») Clock fall time 5

tw(¢1) Pulse width, clock 1 high 60

t w (¢2) Pulse width, clock 2 high 220

td(I,)1 L-(2) Delay ti me, clock 1 low to clock 2 0

~d(¢2-<,01) Delay time, clock 2 to clock 1 70

td(,,)1 H-<;o2) Delay time, clock 1 high to clock 2 (time between leading edges) 130

tsu (da-¢1) Data setup time with respect to clock 1 50

t su (da-I,',2) Data setup time with respect to clock 2 150

tsu(hold) Hold input setup time 140

tsu(int) Interrupt input setup time 180

tsu I rdy) Ready input setup time 120

MAX

2000

50

50

thida) Data hold time (see Note 6) tPD(DBI)

th(hold) Hold input hold time 0

th (int) Interrupt input hold time 0

th(rdy) Ready input hold time 0

NOTES: 5. tde)) tdll)1 L.¢2) + t r l¢2) + t w l r:)2) + tll(;)2) + tdl,)2.r,)1) + t r l q)1)' 480 ns 0(tclljl) 0(2000 ns.

UNIT

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

6. The data input should be enabled using the DBIN status signal. No bus conflict can then occur and the data hold time

requirement is thus assured.

3.5 SWITCHING CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS
(SEE FIGURE 2)

PARAMETER TEST CONDITIONS MIN MAX

tPD(ad) Propagation delay time, clock 'Z to address outputs

tPD(da) Propagation delay time, clock 2 to data bus

Propagation delay time, clocks to control outputs
CL = 100 pF,

tPDlcont)

Propagation delay time, clock 2 to DBIN output
RL = 1.3 kn

tpD(DBI)

tPD(int) Propagation delay time, clock 2 to INTE output

tDI Time for data bus to enter input mode

Disable time to high-impedance state
tpxz

during hold (address outputs and data bus)

The time that the address outputs and output data will re."lain stable alter WR goes high, tWA and two;;' td(1jl1H-1jl2)'

The time between address outputs becoming stable and WR going low, tAW 0(2 t c (Ijl)-td(1jl1H _1jl2)-t r (q,)-120 ns.

The time between output data becoming stable and WR going low, tow;;' t c (¢)--td(rp1H.1jl2)-t,(Ijl)--150 ns.

The following are relevant when interfacing to devices requiring VIH min of 3.3 V:

200

220

120

25 140

200

tPDIDBI)

120

a) Maximum output rise time (tTLH) from 0.8 V to 3.3 V is 140 ns with CL as specified for the propagation delay times above.

UNIT

ns

ns

ns

ns

ns

ns

ns

b) Maximum propagation delay times when measured to V ref(H) = 3 V (instead of 2 V) will be 60 ns more than as specified above with

CL as specified.

TMS 8080

OUTPUT

3V

CL includes probe and jig capacitance

LOAD CIRCUIT

D-18

t:J
I
f-'
\D

voltage waveforms (see notes a and b)

IN </>1

"" .. I----tcl</>I~ --, i+- tdl.p1L-1>21
twl</>ll~ ...- I I :

------~[\ t\~----~fl~~1 __ __ L-____ ~t\~ ____ _
I twl¢21'-t4--1oi
I

IN <1>2

OUT A15-AO

1/0 07-00

OUT SYNC

OUT OBIN

OUTWR

IN READY

OUT WAIT

IN HOLD

OUT HLOA

IN INT

OUT INTE

I I
II II I II I II I I II I I I I

I II II I II I I: I I II I I I ~tpxz
r-""""i=""" Ii-----.,H I II I II I I II I I X---~--r-t--

--------+I-.A..---: I II ~--+~I- --...!~--I---I.---_tl--~--~ I I I'"
tPOladl~ I I I I 1.,1 I ~ I tAW II I ~ I II I 14 I ~ tWA I I I

i
'I I I I II - I I

tPOldal ~.--X~ tOIt'=1 thl~al--f1 t+-- II I II I tpOld.1 I I I I I ___ + __ 1--1 __
I 1-- >i=DATA INI@-V- II I II I I I DATA OUT T 1_ ---------1-- ------t--..,...-~--r-~-t+~ II I I --r-r-r---+j-t--t-I-

(I -+t I+---tsu lda-1>ll II I II !#-tOWri I II I I
__________ --"I---'t 1"+ 1..1: tsulda-<;i21 I II I: I I I II I I I I

tPolcontl~ :.- tpolcontl-J :.- I: I(I I: II II I I III1 I I ! I
I -t- I \ I I (I(I I I ' I

---------------+1 ---r, I +1 1 I II II I I II I I I
tPOIOBll---+o--------+I tPOIOBI(----I--+I (I I II "I I II I ~I_+_I-----+I-----_

II I I' I 4 I -i= I
II I II (I I t I II I" I I
I(I I(thlrdYI~ ~--+i ~ tPOlcontl ----.of I4---t- tPOlcontl I

~@~III~I I Ii 1 I
-~-I II -A..'fd..l~ I I II I 1

I II' I IltsulrdYI~...l ~tPOlcontl I
tsulrdyl_____... II I II I

thlrdyl-.lr+- I l'f \~+I---I-I-II----+I----....II--------------------------------------~~--~ I~II: I I I
tPOlcontl_ 1tr4- -y I 1!tr I I

--~II--------~-~--@-~----I~-----+I--------
II J i_ ---,ll.-thlhOldl I -.j I+-tPOlcontl
I tsulholdl-.... - II I -\~

il '1 I ~

tdl\'>lH-1>21

------------------------------~- ~--~i ------------
tsulrntl---' ~ tsulintl:::;:r-~ I

-+i !+-thl,ntl ~f+-thlmti t--.t-tPOlintl

X-______ _
NOTES: a. This timing diagram shows timing relationships only, it does not represent any specific machine cycle.

b. Time measurements are made at the following reference voltages: Clock, VreflH) ~ 9_5 V, VreflL) ~ 1 V. Other inputs, VreflH) ~ 2 V, VreflL) ~ 0.8 V_

c. Data in must be stable for this period when DBIN is high during S3. Requirements for both t su {da-Q1) and t su (da.¢2) must be satisfied.

d. The ready signal must be stable for this period during 52 or SW. This requires external synchronization.

e. The hold signal must be stable for this period during 52 or SW when entering the hold mode and during 53, 54, S5 and SWH when in the hold mode. This requires

external synchronization.

f. The interrupt signal must be stable during this period on the last clock cycle of any instruction to be recognized on the following instruction. External

synchronization is not required.

g. During halt mode only, timing is with respect to the clock 1 falling edge.

FIGURE 2

3.6 TERMINAL ASSIGNMENTS

3.7 MECHANICAL DATA

Al0
VSS
04
05
06
07
03
02
01
00

VBB
RESET
HOLO

INT
¢2

INTE
OBIN

WR
SYNC

VCC

TMS 8080

[1 I 40~
t 2

l_.
39~

~ 3 38 j

[4 37 .

[5 36~
6 35 j

L 7 34:
~

8
3l

,
- 9 32, :

10 31
11 30

~ 12 29 I

I 13 28 -,
14 27

r 15 26 I .,
~ 16 25 ~
i17 24 j

~ 18 23 l

L 19 22 1

~ 20 21 1
J

All
A14
A13
A12
A15
A9
A8
A7
A6
A5
A4
A3
VOO
A2
Al
AO
WAIT
REAOY
¢1
HLOA

40-PIN CERAMIC PACKAGE

INDEX
DOT

1f~------------2.020 MAX ------------.-t~
ki0-.. ----'----@I

rt. rt. (0 -----------------__ ®

l"""""d ,.'" F9 SEATING I n-rr....-n'lr"""1Trr-rrrr-mrr-mrr-rT".r;;:;;::;;;:::;;;:::;;:;;::;;;::t.,;;;;::;;:::;:;;::;;;;:::;;;;::::;;;:::;;;;;::;::;-~~
-PLANE T

j l 0.018 ± 0.003--1 j4-1 I
0.010 NOM I.-- \..-4-PIN SPACING 0.100 T.P.

(See Note A)

NOTES: A. The true-position pin spacing is 0.100 between centerllines. Each pin centerline is located within 0.010

of its true longitudinal position relative to pins 1 and 40.

B. All dimensions are in inches unless otherwise noted.

D-20

APPENDIX E

APPENDIX E
@

How to Align the Intecolor 8001.

CONTENTS

1.0 SAFETY PRECAUTIONS

1.0.1 HIGH VOLTAGE

1.0.2 X-RADIATION PRECAUTIONS

2.0 INSTALLATION AND SERVICE ADJUSTMENTS

2.0.1 SERVICING PRECAUTIONS
2.0.2 AC LINE TAP SELECTOR
2.0.3 VERTICAL DEFLECTION
2.0.4 HORIZONTAL DEFLECTION
2.0.5 HIGH WOLTAGE ADJUSTMENT
2.0.6 FOCUS ADJUSTMENT
2.0.7 PURITY ADJUSTMENT
2.0.8 COLOR TEMPERATURE ADJUSTMENTS
2.0.9 TOP, BOTTOM, AND SIDE PINCUSHION ADJUSTMENT
2.0.10 CONVERGENCE ADJUSTM~T PRELIMINARIES
2.0.11 CONVERGENCE STATIC ADJUSTMENTS
2.0.12 FINAL CONVERGENCE

@1976

E-l

1.0 SAFETY PRECAUTIONS

WARNING: The following precautions should be observed:

1. Do not install, remove, or handle the picture tube in any
manner unless shatter-proof goggles are worn o People not
so equipped should be kept away while picture tubes are
handled. Keep picture tube away from the body while
handling.

20 Part of the High Voltage is connected to the AC line
directly. This circuitry, found on the Analog Module
(100047), is isolated from the remainder of the circuitry
by optical isolator, U3, and driver transformer, T10l.
Should service of the High Voltage be required it is
recommended that an isolation transformer be inserted in
the power line between the IntecoloY®SOOl and the AC
supply before any service is performed o When the Chassis
must be operated directly from the AC supply, the power
plug should always be inserted in the correct polarity to
connect the High Voltage common (emitter of Q5) to the
ground side of the AC line. Check with a VOM or oscillo­
scope to se'e if a potential exists between this point and
a known earth groundo A zero reading should be obtained.
If any voltage reading is obtained, reverse the power plug
and recheck for zero meter reading.

3. When service is required, observe the original lead dress.
Extra precaution should be given to assure correct lead dress
in the high voltage circuitry and video area o Where a short
circuit has occurred, replace those components that indicate
evidence of overheating. Always use the manufacturer's
recommended replacement componento

E-2

1. 0.1

1. 0.2

HIGH VOLTAGE

NOTE: THE NOMINAL HIGH VOLTAGE FOR THE INTECOLOR@8001
17" or 19" TERMINAL IS 25 KV. THE HIGH VOLTAGE MUST
NOT, UNDER ANY CIRCUMSTANCES, EXCEED 27.5KV.

Each time a terminal's High Voltage requires servicing,
measurements should be made at normal viewing settings
of the Brightness Control. This will afford assurance
that;

1. The High Voltage is within limits specified.
2. The High Voltage regulation circuit is function­

ing properly.
3. X-Radiation is at a minimum.

If the High Voltage measures abnormally high or the
High Voltage Regulation Circuit is not functioning properly,
the Terminal should be restored to normal operation through
service or adjustments. (See 2.0.5 for High Voltage
Adjustment procedure.)

IT IS IMPORTANT TO USE AN ACCURATE AND RELIABLE HIGH
VOLTAGE METER.

X-RADIATION PRECAUTIONS

The primary source of X Radiation in this Terminal is
the picture tube.

The tube utilized for the above mentioned function in
the terminal is specifically constructed to limit X­
Radiation emissions.

For continued X-Radiation protection, the replacement tube
must be the same type as the original, including suffix
letter, or an ISC approved type.

E-3

2.0

2.0.1

INSTALLATION AND SERVICE ADJUSTMENTS

SERVICING PRECAUTIONS

Purity, Color, Temperature, and Convergence adjustments
for the Intecolot@800l are essentially the same as for
conventional shadow mask color tubes. Certain pre­
cautions should be taken, however, in servicing the
IntecoloX®800l terminal.

Some precautions to observe while servicing the solid
state chassis are listed below:

1. Always connect the ground lead of a test instrument
to the chassis before connecting the positive lead;
conversely, always remove the ground lead of a test
instrument last.

2. Do not check for high voltage by drawing an arc. Use
a high voltage meter or a high voltage probe with a VOM.

3. Do not bridge electrolytic capacitors since resultant
surges may damage solid state devices.

4. Some transistors are equipped with heat sinks. Do not
operate the transistor with the heat sink removed.

5. All soldering irons used where transistors and integrated
chips are concerned should be 35 -watt (6 volts) irons and
grounded in such a way that no voltage will be applied to
the solid state device during the soldering operation.
This precaution is to prevent possible damage to the
device due to excessive heat or voltage applied under
no bias conditions.

6. When servicing the video circuitry it is recommended that
an oscilloscope of at least 100 MHZ bandwidth, such as
the Tektronix 454A, be used.

E-4

2.0.2

2.0.3

2.0.4

AC LINE TAP SELECTOR

The AC Line Tap Selector is located inside the chassis
on the right hand side as viewed from the rear (See
Figure 2.0.2.1). In areas having a 115VAC line
supply, this tap should be left in the 115 VAC
position. Other taps are shown depending on the
line voltage.

VERTICAL DEFLECTION

At 115 volts line voltage adjust the VERTICAL HEIGHT
CONTROL, R3, (See Figure 2.0.3.1) and the VERTICAL
POSITION CONTROL, R4, so that the picutre is centered
and there is a 12" wide by 10" high display. A
suitable display is found by filling up the screen
with a single character or erasing the screen with
a ba.ckground color.

HORIZONTAL DEFLECTION

Adjust the HORIZONTAL WIDTH CONTROL., R6, (Ana.10g
Module, 100047) (See Figure 2.0.3.1) so that the
picture has a 12" wide by 10" high display.
HORIZONTAL CENTERING is accomplished by adjusting
R3 on the rear edge of the Display Generator Card,
100117. Adjusting the Pot R3 causes one character
movement~ to the right or left of the screen.

,
E-5

Blue/Wht

Black/Wht

Green/Wht
Red/Wht

Vertical
Position

4-[==J 105

3-C==-J 115
E::J Black

2 -i:" ~ _--...:1 125

l-C=--=:J 135
Tap Selector

AC LINE TRANSFORMER TAP SELECTION
FIGURE 2. 0 .2 . 1

Horizontal
(DC!) Pincushion
R7 R6

Vertical
Height

C!) R3

@
Vertical

CD Pincushion
R4 R5

Horizontal
Width

ANALOG MODULE (100047) PRINTED CIRCUIT BOARD BOTTOM VIEW
FIGURE 2.0.3.1

E-6

'"

2.0.5

2.0.6

2.0.7

HIGH VOLTAGE ADJUSTMENT

Preset High Voltage Adjustment Control R8 (Analog
Module 100047) to 1/2 clockwise, and Brightness
Control R17, to maximum counterclockwise (minimum
brightness).

Remove the High Voltage Anode Cap from the tube and
connect a Pomona #2900A or equivalent to the High
Voltage Cap. CAUTION: BE SURE HV PROBE GROUND IS
GROUNDED. INSURE THAT ANODE CAP IS ISOLATED FROM
ALL PERSONS AND EQUIPMENT. Adjust High Voltage
Control, R8 for 25 KV.

FOCUS ADJUSTMENT

Create a full page of white dots on the CRT screen
by utilizing the following procedure:

1. Select Foreground Color - WHITE

2. Select Background Color - BLACK

3. Press keyboard "." (period) and allow to
repeat until screen is full of white dots.

Adjust the FOCUS pot (found on the right side (viewing
from rear) of the Analog Card mounting bracket.
Remove the external case with 6 screws) for optimum
focus over the entire screen. (See Figure 2.0.6.1)

PURITY ADJUSTMENT

The Intecolor®800l should always be facing either north
or south during p~rity adjustment. This assures that any
effect of the eaxth's normal magnetic field upon 'beam landing
will be negligible when the terminal is placed in its
normal viewing location.

The instrument should be at room temperature (60°F or above)
for at least 30 minutes before set-up adjustments are made.
Allow a minimum of ten minutes operation at high beam current
(brightness full without bloom) before attempting purity
or convergence adjustments.

E-7

R18 Focus Adjustment

R17 Brightness
Adjustment

Remove 3 Screws
~----------~--------~---on each side to

remove case.

FOCUS AND BRIGHTNESS ADJUSTMENT LOCATION

FIGURE 2.0.6.1

E-8

Should any parts of the chassis become magnetized, it
will be necessary to manually degauss the affected areas.
Move a manual (GC 9317 or equivalent) degaussing coil
slowly around those areas and the face of the CR Tube
and slowly withdraw to a distance of six feet before
disconnecting the coil from the AC power source.

Before performing the purity adjustments, the center of
the raster must be converged and the dynamic convergence
set roughly as explained in Section 2.0.12. Check
that the focus control is properly set (See Section 2.0.6).
The focus adjustment should be made with the brightness
control set at maximum beam current without bloom.

1. Purity adjustments are most accurate while
observing one screen only, preferably red.
Erase the screen with the background color "RED".

2. Loosen the yoke wing nuts and move the yoke to the
rear as far as possible. (See Figure 2.0.7.1)

3. Rotate the purity magnets and adjustment tabs so
that a clean red area is produced at the center
of the screen. Push the yoke forward until a
uniform red raster is obtained. Tighten the
yoke wing nuts.

4. Erase the screen with the background color
"WHITE". Check for a uniform white screen
(see COLOR TEMPERATURE ADJUSTMENTS, Section 2.0. 8 ,
for procedure). If uniformity has not been
obtained, reconverge the center of the screen
and repeat the purity adjustments.

5. It should be noted that purity adjustments also
affect the focus and DC Horizontal and Vertical
screen positions and these parameters may have to
be readjusted as outlined under Sections 2.0.3,
2.0.4, and 2.0.6.

E-9

BLUE LATERAL
MAGNET

ASSEMBLY

PURITY
RINGS

BLUE
LATERAL

ADJUSTMENT

BLUE
LATERAL

ADJUSTMENT

BLUE LATERAL
MAGNET

ASSEMJlLY -
PURITY

RINGS

CONVERGENCE
YOKE

ASSEMBLY

~)))m"..-----!
I

17" SCREEN

--------,

I
I

I
J

CONVERGENCE
YOKE

ASSEMBLY

19" SCREEN

;(((((((~~

DEFLECTION
YOKE

HOUSING

DEFLECTION
YOKE

. DEFLECTION
YOKE

HOUSING

DEFLECTION
YOKE

YOKE; BLUE LATERAL, AND PURITY

LOCATIONS AND ADJUSTMENTS

FIGURE 2.0.7.1

E-10

2.0.8

2.0.9

COLOR TEMPERATURE ADJUSTMENTS

1. Place a screen full of WHITE characters or ERASE
the screen in WHITE. Turn the screen grid drive
controls R14 (RED), R15 (GREEN), R16 (BLUE) (Analog
Module 100047) to minimum drive (Fully CCW) then
turn the BRIGHTNESS Control, R17 to maximum brightness
(Fully CW).

2. Turn the RED control, R14, clockwise until the red
vertical retrace raster line at the top of the screen
is just visible. Turn the GREEN Control, R15, clock­
wise until the gra::n vertical retrace raster line at
the top of the screen is just visible. Repeat the
same for the BLUE Control, R16.

3. Adjust the BRIGHTNESS Control, R17, until there is
no visible vertical retrace raster line and the
brightness is at a comfortable viewing level with a
minimum of color saturation.

4. Adjust each screen grid drive control, RED (R14),
GREEN (R15) , and BLUE (R16), until a white screen
is obtained, or a 9300 0 K color temperature (WHITE).

TOP, BOTTOM, AND SIDE PINCUSHION ADJUSTMENT

Place a suitable test pattern on the screen such as all
"+" (plus) symbols or all "." (periods). (See Section
2.0.6 for pattern set-up). Any color or WHITE may be used.

The top and bottom (Vertical) pin cushion adjustment is
made, if necessary, by adjusting R5 on the Analog Module
(100047) for straight horizontal lines at the top and
bottom of the raster as shown in Figure 2.0.3.1 and
Figure 2. 0 . 9 • 1.

The side (Horizontal) pin cushion adjustment is made by
adjusting R7 on the Analog Module (100047) for straight
vertical lines on the left and right side of the raster.

E-11

V=

H:

GND

v
Vertical
Pincushion: R7

Horizontal H H
Pincushion- R5

V

PINCUSHION ADJUSTMENT

FIGURE 2.0.9.1

~--------------------------------~~------~

V+

V-
i

~ T .. I
HORIZONTAL AND VERTICAL RAMP ADJUSTMENTS

ANALOG MODULE (100047)

FIGURE 2. O. 10 .• 1. 1

E-12

U11/6: Horizonta1:R1

U10/6= Vertica1:R2

2.0.10 CONVERGENCE ADJUSTMENT PRELIMINARIES

The CONVERGENCE ADJUSTMENT PRELIMINARIES are necessary
only if convergence cannot be obtained as outlined under
FINAL CONVERGENCE ADJUSTMENTS (Section 2.0.12), or if
these areas have required service or parts replacements,
or the adjustment pots have been tampered with. An
oscilloscope, such as the Tektronix 454, or equivalent
will be necessary for these adjustments.

2.0.la.l PRELIMINARY HORIZONTAL RAMP ADJUSTMENT

The Horizontal Ramp Ull/6 amplitude is adjusted by Rl on
the Analog Module (100047). The ramp is adjusted so
that the positive peak is equal in height to the negative
peak (symmetrical about ground or v+ = V-). (See
Figure 2.0.10.1.1).

2.0.10.2 PRELIMINARY VERTICAL RAMP ADJUSTMENT

The VERTICAL RAMP UIO/6 amplitude is adjusted by R2 on
the Analog Module (100047) in the same manner as the
HORIZONTAL RAMP ADJUSTMENT (See Figure 2.0.10.1.1).

2.0.10.3 PRELIMINARY HORIZONTAL PARABOLA ADJUSTMENT (U'l/3)
RIGHT & LEFT CENTER, TUBE AREAS 4 & 5 (See Figure 2.0.12.2).

Adjust R9 on the Analog Module (100047) until the bottom
of the Parabola is at Ground level. See Figure 2.0.10.3.1.

2.0.10.4 PRELIMINARY VERTICAL PARABOLA ADJUSTMENT (U8/3)
TOP & BOTTOM CENTER, TUBE AREAS 2 & 3 (See Figure 2.0.12.2).

Adjust RlO on the Analog Module (100047) until the bottom
of the Parabola is at ground level. See Figure 2.0.10.3.1.

2.0.10.5 HORIZONTAL AND VERTICAL RAMP ADJUSTMENTS.

Monitor the HORIZONTAL PARABOLA at U7/3 on the Analog
Module (100047). Superimpose a small amount of the video
signals (with a screen full of WHITE characters) by
adding a small amount of the "B" trace (connect a scope
probe to the collector of Q26 or Q27 or Q28) on the
oscilloscope (CHOP, INVERT B, ADD) to the "A" trace
(connected to U7/3). The above may also be accomplished"

E-13

by simply connecting the "A" channel Scope ground to a
ground in the vicinity of Q26, Q27, or Q2B. The video
will be apparent on the parabola, as shown in Figure
2.0.10.5.1.

Adjust R1 until the superimposed video is as shown
in Figure 2.0.10.5.1.

Monitor the VERTICAL PARABOLA at UB/3 and adjust R2 of
the Analog Module (100047) until the end points of the
parabola are equal in height.

The above procedure is shown in Figure 2.0.10.5.2.
2.0.10.6 VACANT

2.0.10.7 CORNER PARABOLA ADJUSTMENTS
TUBE AREAS 6,7, B,'and 9 (See Figure 2.0.12.2)

The CORNER PARABOLA ADJUSTMENTS are made by R11, R12
and R13 on the Analog Module 100047 and monitoring the
waveform as shown at U14/3 as in Figure 2.0. 10.7.1.
OFFSET is adjusted to zero by R13 by adjusting the
waveform baseline to ground as shown in Figure 2.0.10.7.1,
Waveform A.

BASELINE SLANT is adjusted by R12 on Analog
(100047) as shown in B of Figure 2.0.10.7.1.
for VSC equal to "0" volts.

Module
Adjust

VERTICAL SYMMETRY is adjusted as shown in C of
Figure 2.0.10.7.1 using R11 on Analog Module (100047).
Alignment is made by adjusting R11 until +VHC : -VHC '

2.0.10.B HORIZONTAL, VERTICAL and CORNER PARABOLA TOUCH-UP

Touch up of the HORIZONTAL, VERTICAL, and CORNER PARABOLAS
can best be accomplished by monitoring the waveforms on
the J1 on the Convergence Module (100014).

A. Adjust the HORIZONTAL PARABOLA offset, VHP with R9
on the Analog Module (100047) by monitoring the
waveform at J1/1 on the Convergence Module (100014)
as shown in Figure 2.0.10.8.1, A.

B. Adjust the VERTICAL PARABOLA offset, VVP with R10 on
the Analog Module (100047) by monitoring the waveform
at J1/5 on the Convergence Module (100014) as shown in
Figure 2.0.10.B.1, B

C. Adjust the CORNER PARABOLA offset, VCf with R13 on
the Analog Module (100047) by monitor~ng the waveform
at J1/7 on the Convergence Module (100014) as shown
in Figure 2.0.10.B.1, C.

E-14

HORIZONTAL - R2
VERTICAL = RIO

GND

HORIZONTAL AND VERTICAL PARABOLA ADJUSTMENTS

Superimposed
Video

FIGURE 2.0.10.3.1

Adjust R1 (Analog Module,
100047) to show 1 divi­
sion difference between
Start and Stop of Video.

~
1 division

f
Adjust Scope Gain
to 6 divisions

HORIZONTAL PARABOLA VIDEO ADJUSTMENT
FIGURE 2.0.10.5.1

E-15

_I. Adjust Vs=VF
using R2 on
Analog Module
(100047)

GND

VERTICAL PARABOLA HEIGHT ADJUSTMENTS

FIGURE 2.0.10..5.2

E-16

A. CORNER PARABOLA OFFSET

B. CORNER PARABOLA BASELINE SLANT

C. CORNER PARABOLA VERTICAL SYMMETRY

GND

1. Adjust R13, Analog Module
(100047) to VOC = "0"
Volts offset.

2. Monitor Waveform at U14/3
on Analog Module (100047)

GND

1. Adjust R12 Analog Module
(100047) to VSC = "0"
Volts.

2. Monitor waveform at U14/3
on Analog Module (100047)

GND

1. Adjust Rll Analog Module
(100047) to +VHC = -VHC

2. Monitor waveform at U14/3
on Analog Module (100047)

CORNER PARABOLA ADJUSTMENTS

FIGURE 2.0.10.7.1

E-17

Adjust R9 on
Analog Module
(100047) until
VHP = "0" Volts

HORIZONTAL PARABOLA
J1/l ON CONVERGENCE MODULE (100014)

A.

Adjust RIO on
Analog Module
(100047) until
VVP.= "0" Volts

VVP~~ ________ _ ,
VERTICAL PARABOLA

J1/5 ON CONVERGENCE MODULE (100014)

VCP

B.

Adjust R13 on Analog Module
(100047) unti1~VCP =

"0" Volts ,
.....-__ []JJll'" ,

CORNER PARABOLA
J1/7 ON CONVERGENCE MODULE (100014)

C.

HORIZONTAL, VERTICAL, AND CORNER PARABOLA TOUCH-UP

FIGURE 2.0.10.8.1

E-18

2.0.11 CONVERGENCE STATIC ADJUSTMENTS

Place a dot pattern on the screen in the following
manner from the Keyboard.

Define FOREGROUND COLOR AS ''WHITE''
BACKGROUND COLOR AS "BLACK"

Depress "." (period) Key and allow to repeat
until the screen is full of white dots.

The above will fill up the screen with dots. Now
place "+" symbols utilizing the keyboard as shown
in Figure 2.0.11.1

Turn all the pots on the Convergence Module (100014) to
the straight up position as shown in Figure 2.0.11.3.

Now adjust the static magnets and the Blue Lateral Magnet
to align the "+" symbols R,G,B, colors in Screen Sector 1,
as shown in Figure 2.0.11.2, so as to appear as ''WHITE''.
This will occur when the RED, GREEN, AND BLUE colors are
accurately superimposed on top of each other. With the
exception of BLUE lateral which is explained below.

For the above to be accurate the tube must have been
externally degaused, the Purity adjusted, the FOCUS R18
adjusted for sharp, and the BRIGHTNESS, R17, Analog
Module (100047), set for a. low level with the color
temperature being set to 9600 0 K as explained in previous
sections. DO NOT ATTEMPT FURTHER CONVERGENCE UNLESS THE
ABOVE HAS BEEN PREVIOUSLY PERFORMED. (See Sections

The beams move at approximately the same angle as the
convergence magnets are offset from the vertical plane.
Blue, since it is mounted in the vertical plane moves

E-19

+

+ • + +

+

CONVERGENCE TEST PATTERN

FIGURE 2.0.11.1

E-20

2.0.12

the beam up and down vertically; red and green move the
respective beams on a line at about a 60° angle from the
vertical. The blue lateral magnet moves all three beams
in the horizontal plane, the blue beam in one direction
and the red and green beams in the opposite direction in
a 5 to 1 ratio. The blue beam has the greatest lateral
shift.

The thumb screw adjustment of red, green, and blue center
convergence magnets can be rotated in either direction
continuously. Flux change is accomplished by rotating
the pole position of the magnets, not by moving the
magnets farther from or closer to the respective guns.

Adjust the Static Blue so that the Blue in the center of
the screen is superimposed on the RED and GREEN.

FINAL CONVERGENCE

Touch up the center convergence with the pots R13 (GREEN),
R14 (RED) and RIS (BLUE) on the Convergence Module (100014)
as shown in Figure 2.0.11.2 and Figure 2.0.11.3.

Once center convergence has been adjusted proceed to the
next convergence Screen Sector, 2, as shown in Figure 2.0.11.2.
Proceed with the alignment in the order of the sector numbers
as shown in Figure 2.0.11.2. After each Sector is aligned,
check and touch up the center convergence. Note that
the adjustment pots on the Convergence Module (100014) are
arranged in the same location as each Screen Sector as
viewed on the tube face (and the component side of the
board) and the trio of pot groups in each sector are
arranged as GREEN, RED, AND BLUE corresponding to the
location of the GREEN, RED, and BLUE electron beams as
viewed from the tube face.

When completed with the above, touch up each Screen Sector
as needed in the SAME ORDER as outlined above. Do not
violate the order of the Screen Sector numbers in the
adjustment procedure.

Never attempt a convergence procedure without first setting
the Convergence Module (100014) pots to the center position
as shown in Figure 2.0.12.3 and following the Screen Sector
numbers. It is seldom necessa.ry for the static magnets to
be adjusted unless shipment vibration causes convergence
coil or static magnet movements or unless convergence coil
or yoke replacements become necessary.

E-21

S 2 6

5 1 4

9 3 7

CR TUBE CONVERGENCE SECTORS (SCREEN VIEW)
FIGURE 2.0.11.2

R G R G .R G

CDs (!) (f)2 ® @6 ®

(f)B (1)B <DB

R G R G R G

@S@ @1@ @4@

@B @B (f)B

R G R G R G

@9@ ®3@ ®7@
(f)B <DB ® B

S 1

1 I I t I] 9 16

10""- ---CONVERGENCE BOARD ASSEMBLY SHOWING
CONTROLS ASSOCIATED WITH TUBE SECTORS

(TOP VIEW)

,

NOTE: Green and Red Pots are interchanged on all 17" Tubes.
FIGURE 2.0.12.3

E-22

BASlcao01

TAB L E o F CON TEN T S

PAGE

Introduction 1-2

Summary of Commands 3-8

Error Messages 9-11

BASIC 8001 Arithmetic 12-17

BASIC 8001 Strings 18-20

BASIC 8001 Immediate Mode 21-23

BASIC 8001 Statements 24-41

BASIC 8001 Arithmetic Functions 42-50

BASIC 8001 User Define Functions 51-53

BASIC 8001 String Functions 54-55

BASIC 8001 Editing Commands 56-60

Using Assembly Lanouage Routines
with BASIC 61

BASIC 8001

INTRODUCTION

BASIC 8001 is a single-user, conversational programming language which
uses simple English-type statements and familiar mathematical notations
to perform an operation. BASIC 8001 is one of the simplest computer
languages to learn and once learned has the facility of advanced tech­
niques to perform more intricate manipulations or express a problem
more efficiently.

BASIC 8001 is in incremental compiler which provides immediate translation
and storage of user programs being input. This method decreases the
response time of a RUN command and increases execution speed. BASIC 8001
has provision for alphanumeric character stringJ I/O and string variables,
and allows user defined functions and assembly language subroutine calls
from user BASIC 8001 programs.

BASIC 8001 can be run on any Intecolor 8001, Intecolor 8051 or Compucolor
8001 with a minimum of 8K of user workspace.

LOADING AND RUNNING BASIC 8001

BASIC 8001 is provided in ROM and runs in ROM. BASIC 8001 is initiated by
typing the ESC key, then the W (BASIC) key. The dialogue described below
is printed. This is a once-only dialogue and does not occur after an ESC
kny, and E key sequence. The READY message is printed after the ESC, E key
sequence.

BASIC 8001 prints:

BASIC 8001 V12/8/76 COPYRIGHT (C) 1976 BY CHARLES MUENCH

MAXIMUM RAM ADDRESS?

The user then types the highest RAM address that he has available or wants
to use and then keys a carriage return.

One extra RAM card is 49151
Two extra RAM cards is 57343
Three extra RAM cards is 65529

BASIC 8001 then prints the message,

READY

and waits for a command or program line to be typed.

If BASIC 8001 has been initialized as above but has returned to the CRT
O.S. (by CPU Reset Key), then BASIC 8001 can be recalled without disturbing
existing programs by typing the ESC key, then the E key. BASIC 8001 will
then print the message READY.

1

If power fails, the CPU Reset key is hit or the unit is turned off,
the unit returns to the CRT operating mode.

If the CPU Reset key or ESC delete keys are hit, the unit leaves
BASIC 8001 and returns to the CRT operating mode. Any BASIC 8001
statement program is saved and can later be recalled if BASIC 8001
is re-entered by typing ESC, E.

BASIC 8001 has twenty-four (24) key word program statements, thirteen
(l~ editing and command statements, eighteen (18) mathematical functions,
nine (9) string functions and eighteen (18) two-letter error messages.
With these command and statement capabilities, BASIC 8001 is. extremely
simple to use and yet very versatile and powerful.

The next section provides an easy reference to BASIC 8001 capabilities.
If the user is unfamiliar with BASIC 8001 language, then the rematning
portion of this manual should be studied in sequence while having a
terminal at your fingertips to run the example given. This manual
should enable the user to become very proficient in BASIC 8001 when
finished. Intelligent Systems Corporation and Compucolor Corporation
have a number of BASIC 8001 programs on Floppy Tapes and are available
at nominal prices. In addition, both companies will pay for BASIC 8001
programs that are provided on floppy tape when properly documented and
accepted. Enjoy your self programming in BASIC 8001!

2

BASIC 8001

SUMMARY OF COMMANDS

1. BASIC 8001 STATEMENTS

The following summary of BASIC statements defines the general format for
the statement and gives a brief explanation of its use.

DATA value list

DEF function (argument)
expression

DIM variable (n), variable (n,m),
variable $(n), variable $(n,m)

END

FOR variable=expressionl TO
expression2 STEP expression3'

GOSUB line number

GOTO line number

THEN
IF expression GOTO line number

INPUT list

INPUT "string"; list

LET variable = expression

NEXT variable

ON X GOSUB line number list

ON X GOTO line number list

3

Used in conjunction with READ to input
data into an executing program.

Defines a user function to be used in
the program.

Reserves space for lists and tables
according to subscripts specified after
variable name.

Placed at the physical end of the
program to terminate program execution.

Sets up a loop to be executed the
specified number of times.

Used to transfer control to the first
line of a subroutine.

Used to unconditionally transfer control
to other than the next sequential line
in the program.

Used to conditionally transfer control
to the specified line of the program.

Used to input data from the terminal
keyboard, promps with "?".

Used to input data without promp character.

Used to assign a value to the specified
variable(s).

Placed at the end of a FOR loop to
return control to the FOR statement.

Call the xth line number subroutine
after GOSUB.

Branch to the xth line number after GOTO.

OUT I,X

PLOT expression

£::-

POKE I,X X.::
(-"."'.'"

.;';!"

~

.... -"',

PRINT list

PRINT expression

PRINT "string"

?

PRINT TAB (x)

READ variable list

REM comment

RESTORE

RETURN

STOP

WAIT X,I,J

I I

/6<: ,:;. 7; t:j.,

4

Causes the X BYTE to be output to port I.

Sends the one BYTE result of the expression
to the 8001 CRT. The result must be
between a and 255 binary.

Causes the X BYTE to be placed in memory
location a £ I 32767. If I is negative
then address is 65536" - I.

Used
-,~Xt:ql

to output data} to the terminal.

Prints results of expression.

Prints a character string.

Equivalent to the word PRINT.

Used to space to the specified column.

Used to assign the values listed in a
DATA statement to the specified
variables.

Used to insert explanatory comments into
a BASIC 8001 program.

Used to reset data block pointer so the
same data can be used again.

Used to return program control to the
statement following the last executed
GOSUB statement.

Used at the logical end of the program
to terminate execution.

Causes the input port X to be read,
exclusive OR'ed with BYTE J, and then
AND'ed with BYTE I. The program will
wait until the result is zero before
continuing.

./

2. COMMANDS

The following key commands halt program execution, erase characters or delete
lines.

CTRL/J or Line Feed

CTRL/M or RETURN

CTRL/K or ERASE LINE

CTRL/L or ERASE PAGE

CTRL/Z or CURSOR LEFT

Explanation

Terminates program execution. BASIC 8001
prints READY.

Must be typed to end every line typed
in or to indicate the end of an INPUT.

A colon is used to separate multiple
statements per line.

Deletes the entire current line.

Erases the CRT screen, but does not
change or disturb BASIC 8001 statements
in any way.

Deletes the last character entered and
echoes a cursor left.

The following commands list, load, save, erase and execute the program currently
in core.

Command

CLEAR

CLEAR X

LIST

LIST line number

LOAD I

LOAD ? I

RUN

RUN line number

SAVE I

5

Explanation

Sets the array and string buffers to
nulls and zeroes.

Sets space for string variable to X
characters normally 50 characters.

Prints the user program currently in
core on the list output device.

Prints the program from the line speci­
fied to the end.

Does a NEW and inputs the program on track
#I from the READER input device.

Does not do a NEW but inputs and compares
the program on track #I with what is
existing in RAM Memory.

Executes the program in the buffer area.

Executes the program starting at line
number specified.

Outputs the program in core to track #I
of the WRITE output device.

mw

CONT

6

Erases the entire storage area.

Continues execution after CTRL/J is
typed or after a STOP statement.

The following functions perform standard mathematical operations in BASIC 8001.

Name

ABS (x)

ATN(x)

CALL (x)

COS (x)

EXP (x)

FRE(x)

INT(x)

INP (x)

LOG (x)

PEEK (x)

POS (x)

RND(x)

SGN(x)

SIN (x)

SPC (x)

SQR(x)

TAB (x)

TAN (x)

7

Explanation

Returns the absolute value of x.

Returns the arctangent of x as an angle
in radians in the range + or - pi/2.

Call the user machine language routine
at location OAOOO HEX.

Returns the cosine of x radians.

Returns the value of eX where e=2.71828.

Returns number of free BYTEs not in use.

Returns the greatest integer less than
or equal to x.

Returns a BYTE from input port a ~ x <:: 255.

Returns the natural logarithm of x.

Returns a BYTE from memory address 0~x~32767
or if X is negative the memory address
is 65536- x.

Returns a value 0 to 79 current cursor
position.

Returns a random number between 0 and 1.

Returns a value indicating the sign of x.

Returns the sine of x radians.

Causes x spaces to be generated.

Returns the square root of x.

Causes the cursor to tab to column
number x when used in a print statement.

Returns the tangent of x radians.

The string functions are:

Name

ASC(x$)

CHR$ (x)

FRE(x$)

LEFT$ (x$, I)

LEN (x$)

I>1ID$ (x$, I, J)

RIGHT$(x$,I)

STR$(x)

VAL (x$)

Explanation

Returns as' a decimal number the seven-bit
internal code for the first character of
string (x$).

Generates a one-character string having the
ASCII value of x.

Returns number of free string BYTES.

Returns left most I characters of string
(x$) •

Returns the number of characters in the
string (x$).

Returns J characters of string (x$)
starting at position I.

Returns right most I characters of string
(x$) •

Returns the string which represents the
numeric value of x.

Returns the number represented by the string
(x$) •

LIST OF VARIABLES USED FOR THIS TEST

\

X$='ABCDE ' X=123

------~.~.-.-----------------------------'-------

A=ASC(X$)
A$=CHR$(X)
A=FRE(X$)
A=LEFT$(X$,2)
A=LEN(X$)
A$=MID$(X$,2,2)
A$=RIGHT$(X$,3)
A$=STR$(X)
,A=VAL(X$)

8

A= 65
A$={
A= 50
A=AB
A= 5
A$=BC
A$=CDE
A$= 123
A= 0

ERROR MESSAGES

After an error occurs, BASIC 8001 returns to command level and types
READY. Variable values and the program text remain intact, but the program
cannot be continued and all GOSUB and FOR oontext is lost.

When an error occurs in a direct statement, no line number is printed.

Format of error messages:

Direct Statement XX ERROR

Indirect Statement XX ERROR IN YYYYY

In both of the above examples, "XX" will be the error code. The "yyyyy"
will be the line number where the error occurred for the indirect statement.

The following are the possible error codes and their meanings:

ERROR CODE

BS

DD

CF

MEANING

Bad Subscript. An attempt was made to reference a
matrix element which is outside the dimension of the
matrix. This error can occur if the wrong number of
dimensions are used in a matrix reference; for instance,
LET A (l,l,l)=Z when A has been dimensioned DIM A(2,2) .

Double Dimension. After a matrix was dimensioned,
another dimension statement for the same matrix was
encountered. This error often occurs if a matrix has
been given the default dimension 10 because a statement
like A(I)=3 is encountered and then later in the program
a DIM A(lOO) is found.

Call Function error. The parameter passed to a math.
or string function was out of range.
CF errors can occur due to:

a) a negative matrix subscript (LET A(-l)=O)

b) an unreasonably large matrix subscript (>32767)

c) LOG-negative or zero argument

d) SQR-negative argument

e) A B with A negative and B not an integer.

f) A CALL (X) before the address of the machine
language subroutine has been patched in

g) calls to MID$, LEFT$, RIGHT$, INP, OUT, WAIT,
PEEK, POKE, TAB, SPC or ON ... GOTO with an improper
argument.

9

10

NF

00

OM

ov

SN

RG

US

/0

CN

LS

as

ST

TM

Illegal Direct. You cannot use an INPUT or DEF
statement as a direct command.

NEXT without FOR. The variable in a NEXT statement
corresponds to no previously executed FOR statement.

Out of Data. A READ statement was executed but all
of the DATA statements in the program have already
been read. The program tried to read too much data
or insufficient data was included in the program.

out of Memory. Program too large, too many variables,
too many FOR loops, too many GOSUB's, too complicated
an expression or any combination of the above.

Overflow. The result of a calculation was too large
to be represented in BASIC's number format. If an
underflow occurs, zero is given as the result and
execution continues without any error message being
printed.

Syntax error. Missing parenthesis in an expression,
illegal character in a line, incorrect punctuation, etc.

RETURN without GOSUB. A RETURN statement was encountered
without a previous GOSUB statement being executed.

Undefined Statement. An attempt was made to GOTO, GOSUB
or THEN to a statement which does not exist.

Division by Zero.

Continue error. Attempt to continue a program when
none exists, an error occurred, or after a new line was
typed into the program.

Long String. Attempt was made by use of the concatenation
operator to create a string more than 255 characters long.

Out of String Space. Save your program on paper tape
or cassette, reload BASIC and allocate more string
space or use smaller strings or less string variables.

String Temporaries. A string expression was too complex.
Break it into two or more shorter ones.

Type Mismatch. The left hand side of an assignment
statement was a numeric variable and the right hand
side was a string, or vice versa; or, a function
which expected a string argument was given a numeric
one or vice versa.

10

UF Undefined Function. Reference was made to a user
defined function which had never been defined.

11

BASIC 8001 ARITHMETIC

I. NUMBERS

BASIC treats all numbers (real and integer) as decimal numbers--­
that is, it accepts any decimal number and assumes a decimal point
after an integer. The advantage of treating all numbers as decimal
numbers is that any number or symbol can be used in any mathematical
expression without regard to its type. Numbers used must be in the
approximate range 10-38<N<10+38 •

In addition to integer and real formats, a third format is recognized
and accepted by BASIC 8001. This format is called exponential or
E-type notation, and in this format, a number is expressed as a
decimal number times some power of 10. The form is:

xxEn

where E represents "times 10 to the power of"; thus the number is
read "xx times 10 to the power of n". For example:

23.4E2=23.4*102 = 2340

Data may be input in anyone or all three of these forms. Results
of computations are output as decimals if they are within the range
.01_n_999999; otherwise, they are output in E format. Numbers are
stored up to 24 bits of significance. If a number with more than
24 bits is entered, it is truncated and stored as 24 bits. BASIC
8001 handles six significant digits in normal operation and prints
6 decimal digits as illustrated below:

Value Typed In

.01

.0099
999999
1000000

Value Output by BASIC 8001

.01
9.90000E-03
999999
1.00000E+06

BASIC automatically suppresses the printing of leading and trailing
zeroes in integer and decimal numbers, and, as can be seen from the
preceding examples, formats all exponential numbers in the form:

(sign) x.xxxxxE(+ or -)n

where x represents the number carried to six decimal places, E stands
for "times 10 to the power of", and n represents the exponential value.
For example:

-3.4702lE+08 is equal to -347,021,000
7.26000E-04 is equal to .00726

Floating point format is used when storing and calculating most numbers.

12

NOTE

Because core size limitations prohibit the storage of
infinite binary numbers, some numbers cannot be expressed
exactly. In BASIC 8001, accuracy is approximately 5-~
digits, and errors in the 6th digit can occur. For
example, .999998 as a result of some functions may be
equal to 1. Discrepancies of this type are magnified when
such a number is used in mathematical operation.

II . VARIABLES

A variable in BASIC 8001 is an algebraic symbol representing a number, and
is formed by a single letter, a letter optionally followed by a single
digit or by double letters. For example:

Acceptable Variables

I

B3

AB

x

Unacceptable Variables

2C-a digit cannot begin a variable.

II-numbers alone cannot form a
variable.

Subscripted and string variables are described in later sections. The
user may assign values to variables either by indicating the values in
a LET statement, or by inputting the values as data; these operations
are discussed in another chapter.

The value assigned to a variable does not change until the next time a
statement is encountered that contains a new value for that variable.
All variables are set equal to zero (0) when the RUN command is issued.
It is only necessary to assign a value to a variable when an initial
value other than zero is required. However, good programming practice
would be to set variables equal to a wherever necessary. This ensures
that later changes or additions will not misinterpret values.

III. SUBSCRIPTED VARIABLES

In addition to the simple variables described in the preceding section,
BASIC 8001 allows the use of subscripted variables. Subscripted variables
provide additional computing capabilities for dealing with lists, tables,
matrices, or any set of related variables. In BASIC 8001 variables are
allowed from 1 to 31 subscripts.

The name of a subscripted variable is any acceptable BASIC 8001 variable
name followed by one or more integer expressions in parentheses within
the range 0-32767. For example, a list might be described as A(I) where
I goes from a to 5 as shown below:

A(O) ,A(l) ,A(2) ,A(3) ,A(4) ,A(5)

13

This allows reference to each of the six elements in the list, and can
be considered a one dimensional algebraic matrix as follows:

A(O)

A(l)

A(2)

A (3)

A(4)

A(S)

A two-dimensional matrix B (I,J) can be defined in a similar manner:

B(O,O) ,B(O,l) ,B(0,2),. • ,B (OJ) , • • ,B (I ,J)

and graphically illustrated as follows:

B(O,O) B(O,l) B(0,2) B(0,3)/ B (0 ,J)
B(l,O) B(1,l) B(1,2) B(1,3) "'\ B (1 ,J)
B(2,0) B(2,1) B(2,2) B(2,3) I B (2 ,J)
B(3,0) B(3,1) B(3,2) B(3,3) I B (3 ,J)

I B(I,O) B(I,l) B(I,2) B(I,3») (B(I,J)

Subscripts used with subscripted variables throughout a program can be
explicitly stated or be any legal expression. If the value of the expression
is non-integer, the value is truncated so that the subscript is an integer.

It is possible to use the same variable name as both a subscripted and
unsubscripted variable. Both A and A(I) are valid variables and can be
used in the same program. The variable A has no relationship to any
element of the matrix A(I). BASIC 8001 will accept the same variable
name as both a singly and a doubly subscripted variable name in the same
program.

Character strings may also be subscripted variable arrays, and may have
the same variable name i.e., A$(I).

A Dimension (DIM) statement is used with subscripted variables to define
the maximum number of elements in a matrix. ("Matrix" is the subscripted
variable.) The DIM statement is discussed in a later paragraph.

14

If a subscripted variable is used without appearing in a DIM statement,
it is assumed to be dimensioned to length 10 in each dimension (that
is, having eleven elements in each dimension, 0 through 10). However,
all matrices should be correctly dimensioned in a program.

IV. EXPRESSIONS

An expression is a group of symbols which can be evaluated by BASIC 8001.
Expressions are composed of numbers, variables, functions, or a
combination of the preceding separated by arithmetic or relational
operators.

The following are examples of expressions acceptable to BASIC 8001:

Arithmetic Expressions

4
A7*(BA2+l)

String Expressions

A$+B$+"ABC"

Not all kinds of expressions can be used in all statements, as is
explained in the sections describing the individual statements.

V. ARITHMETIC OPERATIONS

BASIC 8001 performs addition, subtraction, multiplication, division and
exponentiation. Formulas to be evaluated are represented in a format
similar to standard mathematical notation. The five operators used in
writing most formulas are:

Symbol
Operator

OR
AND
NOT
+

*

Example Meaning

Logical and bitwise
Logical and bitwise
Logical and bitwise
Add B to A
Subtract B from A
Multiply A by B

"OR"
"AND"
"NOT"

/
1\

A + B

A - B
A * B
A / B
A 1\ B

Divide A by B
Exponentiation (Raise A to
the Bth power)

Unary plus and minus are also allowed, e.g., the - in
+X-Y .. Unary plus is ignored. Unary minus is treated
the variable, e.g., -A+B would be handled as O-A+B.

VI. PRIORITY OF ARITHMETIC OPERATIONS

-A+B or the + in
as a zero minus

When more than one operation is to be performed in a single formula, as
is most often the case, rules are observed as to the precedence of the
operators.

15

In any given mathematical formula, BASIC 8001 performs the arithmetic operations
in the following order of evaluation:

1. Parentheses receive top priority. Any expression within
parentheses is evaluated before an unparenthesized expression.

2. In the absence of parentheses, the order of priority is:

1. Exponentiation (proceeds from left to right).

b. Unary minus.

c. Multiplication and Division (of equal priority).

d. Addition and Subtraction (of equal priority) .

e. Logical operators in the order NOT, AND, then OR.

3. If either 1 or 2 above does not clearly designate the order of
priority, then the evaluation of expressions proceeds from
left to right.

The expression ~BAC is evaluated from left to right as follows:

1. AA,B = step 1

2. (resul t of step l)"C answer

The expression A/B*C is also evaluated from left to right since multi­
plication and division are of equal priority:

1. AlB step 1

2. (result of step l)*C = answer

The expression A+B*CI\D is evaluated as:

1. CAD step 1

2. (result of step l)*B = step 2

3. (result of step 2)+A answer

Parentheses may be nested, or enclosed by a second set (or more) of
parentheses. In this case, the expression within the innermost paren­
theses is evaluated first, and then the next innermost, and so on, until
all have been evaluated.

In the following example:

A=7* ((BA2+4) IX)

The order of priority is:

16

step 1

2. (result of step 1)+4 step 2

3. (result of step 2)/X step 3

4. (result of step 3)*7 A

Parentheses also prevent any confusion or doubt as to how the expression
is evaluated. For example:

A*B"2/7+B/C*DA2
«A*BA2)/7+«B/C)*DA2)

Both of these formulas are executed in the same way, but the second is
easier to understand.

Spaces may be used in a similar manner. Since the BASIC 8001 interpreter
ignores spaces (except when enclosed in quotation marks), the two
statements:

10 LET B = DA2 + 1
10LETB=D~2+1

are identical, but spaces in the first statement provide ease in reading.
When the statement is subsequently printed, extra spaces are ignored.

VII. RELATIONAL OPERATORS

Relational operators allow comparison of two values and are used to
compare arithmetic expressions or strings in an IF. THEN statement.
The relational operators are:

Mathematical BASIC 8001
Symbol Symbol Example Meaning

A = B A is equal to B.

< < A <'B A is less than B.

<. (= or = (. A<= B A is less than or
equal to B.

>- > A> B A is greater than

~ >= or =) A>= B A is greater than
or equal to B.

B.

I (> or)(A(> B A is not equal to B.

The symbols = <, =) , > <. are accepted by BASIC 8001 but are converted to
(=, >=, and < > and are shown in that form in a listing.

17

BASIC 8001 STRINGS

I. STRINGS

The previous section described the manipulation of numerical information
only; however, BASIC 8001 also processes information in the form of
character strings. A string, in this context, is a sequence of characters
treated as a unit. A string can be composed of alphabetic, numeric, or al­
phanumeric characters. (An alphanumeric string is one which contains
letters, numbers, spaces or any combination of characters.) A character
string can be 255 characters long. Strings cannot be typed on more than
one terminal line since a carriage return terminates the command.

II. STRING VARIABLES

Any variable name followed by a dollar sign ($) character indicates a
string variable. For example:

A$
C7$

are simple string variables and can be used, for example, as follows:

LET A$="HELLO"
PRINT A$

Note that the string variable A$ is separate and distinct from the variable
A.

In BASIC 8001, all control characters above control code F (or 6) are legal
within Quotes (") except for the following:

Control Code K or 11 or erase line
Control Code L or 12 or erase page
Control Code M or 13 or return
Control Code Z or 26 or cursor left

III. SUBSCRIPTED STRING VARIABLES

Any list of matrix variable name followed by the $ character denotes the
string form of that variable. For example:

V$ (n)
C$(m,n)

M2$(n)
Gl$(m,n)

where m and n indicate the position of the matrix element within the
whole.

The same name can be used as a numeric variable and as a string variable
in the same program with no restriction. A one- and a two-dimensional
matrix can have the same name in the same program. For example:

18

A
A$

A(n)
A$(m,n)

can all be used in the same program.

A(m,n)
A$(m,n(

String lists and matrices are defined with the DIM statement as are
numerical lists and matrices.

IV. STRING OPERATIONS

Concatenation

Concatenation puts one string after another without any intervening
characters. It is specified by a plus sign (+) and works only with
strings. The maximum length of a concantenated string is 255 char­
acters.

For example:

l~ READ A$, B$, C$
2~ DATA "11", "33", "22"
3~ LET D$ = A$+C$+B$
35 PRINT D$
4~ END
RUN
112233

V. RELATIONAL OPERATIONS

When applied to string operands, the relational operators indicate
alphabetic sequence. The comparison is done on the basis of the ASCII
value associated with each character in the strings being compared. For
example:

55 IF A$<B$ THEN 100

When line 55 is executed, the first characters of each string (A$ and
B$) are compared, then the second characters of each string and so on
until the character in A$ is less than the character in B$. Then
execution continues at line 100. Essentially, the strings are compared
for alphabetic order. The next page contains a list of the relational
operators and their string interpretations.

In any string comparison, trailing blanks are ignored (Le., "ABC" is
equivalent to "ABC ").

19

Operator

=

<

(= or = (

>= or =>

< > or ><

BASIC 8001

Relational Operators Used With
String Variables

Example

A$ = B$

A$ < B$

A$ > B$

A$ (= B$

A$)= B$

A$ <> B$

20

Meaning

The strings A$ and B$ are al­
phabetically equal.

The string A$ alphabetically
precedes B$.

The string A$ alphabetically
follows B$.

The string A$ is equivalent to
or precedes B$ in alphabetical
sequence.

The string A$ is equivalent to
or follows B$ in alphabetical
sequence.

The strings A$ and B$ are not
alphabetically equal.

BASIC 8001 IMMEDIATE MODE

I. USE OF IMMEDIATE MODE FOR STATEMENT EXECUTION

It is not necessary to write a complete program to use BASIC 8001.
Most of the statements discussed in this manual can be included in a
program for later execution or given on-line as commands, which are
immediately executed by the 8080 CPU. This latter facility makes
BASIC 8001 an extremely powerful calculator.

BASIC 8001 distinguishes between lines entered for later execution
and those entered for immediate execution solely by the presence (or
absence) of a line number. Statements which begin with line numbers
are stored; statements without line numbers are executed immediately
upon being entered to the system. Thus the line:

l~ PRINT "THIS IS A COMPUCOLOR 8001"

produces no action at the console upon entry, while the statement:

PRINT "THIS IS A COMPUCOLOR 8001"

causes the immediate output:

THIS IS A COMPUCOLOR 8001

II. PROGRAM DEBUGGING

Immediate mode operation is especially useful in two areas: program
debugging and the performance of simple calculations in situations which
do not occur with sufficient frequency or with sufficient complications
to justify writing a program.

In order to facilitate debugging a program, STOP statements can be
liberally placed through~ut the program. Each STOP statement causes
the program to halt, at which time the various data values can be
examined and perhaps changed in immediate mode. The

GO TO xxxxx

command is used to continue program execution (where xxxxx is the number
of the next program line to be executed). GOSUB and IF commands could
also be used. The values assigned to variables when the RUN command was
executed remain intact until a NEW, CLEAR or another RUN command is
executed.

If the STOP occurs in the middle of a FOR loop, modifications cannot be
made to the section of the program preceding the FOR.

21

When using immediate mode, nearly all the standard statements can be
used to generate or print results.

If CTRL/J or linefeed is used to halt program execution, the GO TO XXXX or CONT
command can be used to continue execution, since CTRL J or line feed
does print the number of the line where execution stopped. It is
easy to know where to resume the program.

III. MULTIPLE STATEMENTS PER LINE

Multiple statements can be used on a single line in immediate mode.
For example:

A=l:PRINT A
1

Program loops are allowed in immediate mode~ thus a table of square
roots can be produced as follows:

FOR 1=1 TO l~: PRINT I, SQR (I):NEXT I

1 1
2 1.41421
3 1.732~5

4 2
5 2.236~7

6 2.44949
7 2.64575
8 2.82843
9 3
l~ 3.16228

READY

IV. RESTRICTIONS ON IMMEDIATE MODE

The INPUT statement cannot be used in immediate mode and such use results
in the following error message:

ID ERROR
READY

Certain commands, while not illegal, make no logical sense when used in
immediate mode. Commands in this category are DEF, DIM and DATA.

Also since user functions are not defined until the program is executed,
fUnction references in immediate mode cause an error unless the program
containing the definition was previously executed.

Thus, the following dialogue might result if a function was defined in
a user program and then referenced in immediate mode.

l~ DEF FNA(X) = XA2 + 2*X:REM SAVED STATEMENT
PRINT FNA(l) :REM IMMEDIATE MODE

UF ERROR
READY 22

but if the sequence of statements is:

10 DEF FNA(X) = XA2+2*X:REM SAVED STATEMENT
RUN

READY

PRINT FNA(1)
3

READY

the immediate mode statement is executed.

23

BASIC 8001 STATEMENTS

A user program is composed of lines of statements containing instructions
to BASIC 8001. Each line of the program begins with a line number that identi­
fies that line as a statement and indicates the order of statement execution.
Each statement starts with an English word specifying the type of operation
to be performed. The statement lines are terminated with the RETURN key
which is non-printing.

I. STATEMENT NUMBERS

An integer number is placed at the beginning of each line in a BASIC 8001
program. BASIC 8001 executes the statements in a program in numerically
consecutive order regardless of the order in which they were typed.
Statement numbers must be within the range a to 65529. When first writing
a program, it is advisable to number lines in increments of five or ten to
allow insertion of forgotten or additional lines when debugging the program.

All BASIC 8001 statements and computations must be written on a single line;
they cannot be continued onto a following line. However, more than one
statement may be written on a single line when each statement after the
first is preceded by a colon (:). For example:

l~ INPUT A,B,C

is a single statement line, whereas

2~ LET X=ll: PRINT X,Y,Z: IF X=A THEN l~

is a multiple statement line containing three statements: LET, PRINT, and
IF. Most statements may be used anywhere in a multiple statement line;
exceptions are noted in the discussion of each statement. Only the first
statement on a line can (and must) have a line number.; It should be re­
membered that program control cannot be transferred tola statement within a
line, but only to the first statement of a line.

II. REMARK STATEMENT

It is often desirable to insert notes and messages within a user program.
Such data as the name and purpose of the program, how to use it, how
certain parts of the program work,and expected results at various points
are useful things to have present in the program for ready reference by
anyone using that program.

The REMARK or REM statement is used to insert remarks or comments into a
program without these comments affecting execution. Remarks do, however,
use core area which may be needed by an exceptionally long program.

The REMARK statement must be preceded by a line number and may be used
anywhere in a multiple statement line. The message itself can contain

24

any printing character on the keyboard. BASIC 8001 completely ignores
anything on a line following the letters REM. (The line number of a REM
statement can be used in a GOTO or GOSUB statement, see sections pertaining
to destination of a jump in the program execution.) Typical REM statements
are shown below:

10 REM- THIS PROGRAM COMPUTES THE
11 REM- ROOTS OF A QUADRATIC EQUATION

III. THE ASSIGNMENT STATEMENT - LET

The LET statement assigns a value to the specified variable(s). The
general format of the LET statement is:

LET variable expression

where variable is a numeric or string variable and expression is an
arithmetic or string expression. All items in the statement must be
either string or numeric; they cannot be mixed. The word LET is optional.

The LET statement does not indicate algebraic equality, but performs
calculations within the expression (if any) and assigns the value to the
variable.

The meaning of the equal (=) sign should be clarified. In algebraic
notation, the formula x=x+l is meaningless. However, in BASIC 8001 (and
most computer languages), the equal sign designates replacement rather
than equality. Thus, this formula is actually translated: "add one to
the current value of X and store the new result back in the same variable
X". Whatever value has previously been assigned to X will be combined
with the value 1. An expression such as A=B+C instructs the computer to
add the values of Band C and store the result in a third variable A. The
variable A is not being evaluated in terms of any previously assigned value,
but only in terms of Band C. Therefore, if A has been assigned any value
prior to its use in this statement, the old value is lost; it is instead
replaced by the value B+C.

Example:

LET X=2

LET X=X+l+Y

Assigns the value 2 to the variable X.

Adds 1 to the current value of X then adds the
value of Y to the result and assigns that value
to X.

IV. THE DIMENSION STATEMENT - DIM

The DIMension statement is used to define the maximum number of elements
in a matrix. The DIM statement is of the form:

DIM variable(n), variable(n,m), variable$(n), variable$(n,m)

where variables specified are indicated with their maximum subscript value(s).

25

For example:

l~ DIM X(5), Y(4,2), A(l~ ,l~)

12 DIM A4(1~~), A$(25)

Only integer constants (such as 5 or 5070) can be used in DIM statements
to define the size of a matrix. Variables cannot be used to specify the
bounds of arrays. Any number of matrices can be defined in a single DIM
statement as long as their representations are separated by commas.

The first element of every matrix is automatically assumed to have a sub­
script of zero. Dimensioning A(6,lO) sets up room for a matrix with 7
rows and 11 columns. This zero element is illustrated in the following
program:

l~ REM - MATRIX CHECK PROGRAM
2~ DIM A(6,l~)
3~ FOR I=~ TO 6
4~ LET A(I,~) I
5~ FOR J=~ TO l~
6~ LET A(~,J) = J
7~ PRINT A(I,J);
8~ NEXT J:PRINT:NEXT I
9~ END

RUN
~ 1 2 3 4
1 ~ ~ ~ ~
2 ~ ~ ~ ~
3 ~ ~ ~ ~
4 ~ ~ ~ ~
5 ~ ~ ~ ~
6 ~ ~ ~ ~

READY

5
~
~
~
~
~
~

6 7 8 9
~ ~ ~ ~
~ ~ ~ ~
~ ~ ~ ~
~ ~ ~ ~
~ 0 ~ 0
~ ~ ~ ~

Notice that a variable has a value of zero until it
value.

l~

~
~
~
~
~
~

is assigned another

Whenever an array is dimensioned (n,m), the matrix is allocated m+l, n+l
elements. Core space can be conserved by using the Oth element of the
matrix. For example, DIM A(5,9) dimensions a 6 x 10 matrix which would
then be referenced beginning with the A(O,O) element.

The size and number of matrices which can be defined depend upon the
amount of storage space available.

A DIM statement can be placed anywhere in a multiple statement line and
can appear anywhere in the program. A matrix can only be dimensioned
once. DIM statements need not appear prior to the first reference to an
array, although DIM statements are generally among the first statements
of a program to allow them to be easily found if any alterations are later
required.

26

All arrays specified in DIM statements are allocated space when the RUN
command is executed.

V. PLOT STATEMENT

The PLOT Statement is used to output the 8 bit BYTE value of an expression
to the CRT Screen. The general format of the PLOT Statement is:

10 PLOT expression

The expression can be any combination of variables which will evaluate
to a positive value between 0 and 255.

The following example will plot a point on the CRT Screen at Location
80,96 (X,Y):

10 X=80 Y=96
20 PLOT 2 REMARK THE 8001 PLOT MODE CODE
30 PLOT X
40 PLOT 255

PLOT Y : REMARK PLOTS POINT AT 80, 96
REMARKS THE 8001 PLOT MODE ESCAPE CODE

As another example enter:

PLOT 65
A
READY

It can be seen that (since 65 is the decimal ASCII value for A) PLOT 65
is the same as PRINT "An.

VI. PRINT STATEMENT

The PRINT statement is used to output data to the terminal. The general
format of the PRINT statement is:

1) PRINT list

The list is optional and can contain expressions, text strings, or both.

When used without the list, the PRINT statement:

25 PRINT

causes a blank line to be output on the 8001 CRT Screen (a carriage return!
line feed operation is performed).

2) PRINT Expression

PRINT statements can be used to perform calculations and print results.
Any expression within the list is evaluated before a value is printed.
For example:

27

l~ LET A=l : LET B=2: LET C=3+A
2~ PRINT
3~ PRINT A+B+C
RUN

7

READY

All numbers are printed with a preceding and following blank space.

The PRINT statement can be used anywhere in a multiple statement line.
For example:

l~ A=l: PRINT A: A=A+5: PRINT: PRINT A

prints the following on the terminal when executed:

I

6

READY

Notice that the terminal performs a carriage return/line feed at the end
of each PRINT statement. Thus the first PRINT statement outputs a I and
a carriage return/line feed; the second PRINT statement the blank line;
and the third PRINT statement, a 6 and another carriage return/line feed.

3) PRINT Strings

The PRINT statement can be used to print a message or string of characters,
either alone or together with the evaluation and printing of numeric values.
Characters are indicated for printing by enclosing them in double quotation
marks. For example:

l~ PRINT "TIME'S UP"
2~ PRINT "NEVERMORE"
RUN
TIME'S UP
NEVERMORE

READY

As another example, consider the following line:

4~PRINT "AVERAGE GRADE IS";X

which prints the following (where X is equal to 83.4) :

AVERAGE GRADE IS 83.4

28

When a character string is printed, only the characters between the
quotes appear; no leading or trailing spaces are added. Leading and
trailing spaces can be added within the quotation marks using the key­
board space bar; spaces appear in the printout exactly as they are typed
within the quotation marks.

When a comma separates a text string from another PRINT list item, the
item is printed at the beginning of the next available print zone.
Semicolons separating text strings from other items are ignored. Thus,
the previous example could be expressed as:

4~ PRINT "AVERAGE GRADE IS" X

and the same printout would result. A comma or semicolon appearing as
the last item of a PRINT list always suppresses the carriage return/line
feed operation.

BASIC 8001 does an automatic carriage return/line feed if a string is
printing past column 80.

4) Use of "," and ";"

BASIC 8001 considers the 8001 CRT Screen to be divided into ten zones of
eight spaces each. When an item in a PRINT statement is followed by a
comma, the next value to be printed appears in the next available print
zone. For example:

l~ LET A=3: LET B=2
2~ PRINT A,B,A+B,A*B,A-B,B-A

When the preceding lines are executed, the following is printed:

3 2 5 6 1 -1

Notice each character is 8 spaces from the next character.

Two commas together in a PRINT statement cause a print zone to be skipped.
For example:

l~ LET A=lJ LET B=2
2~ PRINT A,B"A+B
RUN
1 2

READY

3

If the last item in a PRINT statement is followed by a comma, no carriage
return/line feed is output, and the next value to be printed (by a later
PRINT statement) appears in the next available print zone. For example:

29

1.0 A=1:B=2-:C=3
2.0 PRINT A, :PRINT B: PRINT C
RUN
1 2
3

READY

If a tighter packing of printed values is desired, the semicolon
character can be used in place of the comma. A semicolon causes no
further spaces to be output other than the leading and trailing space
automatically output with each number. A comma causes the print head
to move at least one space to the next print zone or possibly perform
a carriage return/line feed. The following example shows the effects
of the semicolon and comma.

1.0 LET A=lJ B=2J C=3
2.0 PRINT A;B;C;
3.0 PRINT A+l;B+l;C+l
4.0 PRINT A,B,C
RUN
1 2
1

READY

3 2
2

3 4
3

The following example demonstrates the use of the formatting characters ,
and; with text strings:

12.0 PRINT "STUDENT NUMBER"X, "GRADE ="G;"AVE. ="A;
13.0 PRINT "NO. IN CLASS ="N

- could cause the following to be printed (assuming calculations were done
prior to line 130):

STUDENT NUMBER 119.05.0 GRADE = 87 AVE. 85.44 NO. IN CLASS 26

5) PRINT Statement - TAB Function

The TAB function is used in a PRINT statement to write spaces to the spec­
ified column on the output device. The columns on the output devices are
numbered 1 to 80.

The form of the command is:

PRINT TAB(x)

where (x) is the column number in the range 0-255. (If X exceeds 80,
however, every other consecutive line is tabbed until the number of
spaces to be output is less than or equal to 80). If the column number
specified is greater than 255 or negative, an error message is printed
as follows:

CF ERROR
READY

30

If (x) is non-integer, only the integer portion of the number is
used.

If the column number (x) specified is less than or equal to the
current column number, the TAB function has no effect.

VII. INPUT STATEMENT

The INPUT statement is used when data is to be input from the terminal
keyboard during program execution. The form of the statement is:

1) INPUT list

where list is a list of variable names separqted by commas.

For example:

l~ INPUT A,B,C

causes the computer to pause during execution, print a question mark,
and wait for input of three numeric values separated by commas. The
values are input to the computer by typing the RETURN key.

If too few values are entered, BASIC 8001 prints another ? to indicate
that more data is needed. If too many values are typed, the excess
data on that line is ignored and the message below is printed but program
still continues. The values entered in response to the INPUT statement
cannot be continued on another line and are terminated by the RETURN
key. Values must be separated by commas, if more than one value is
input on the same line.

When there are several values to be entered via the INPUT statement,
it is helpful to print a message explaining the data needed. For
example:

l~ PRINT "YOUR AGE IS";
2~ INPUT A

2) INPUT "string"; list

The INPUT statement can also contain quoted strings. The above example
could be written:

10 INPUT "YOUR AGE IS?";A

Note that when a quoted string is included in a INPUT statement, the
normal? is not printed as a prompt character, and if desired, must
be included as shown within the quotes above.

This feature allows BASIC 8001 to be programmed to handle fill-in-the~
forms type of applications.

31

VIII. DATA STATEMENT

The DATA statement is used in conjunction with the READ statement to
enter data into an executing program. One statement is never used
without the other. The form of the statement is:

DATA value list

where the value list contains the numbers or strings to be assigned to
the variables listed in a READ statement. Individual items in the value
list are separated by commas; strings must be enclosed in quotation
marks.

For example:

15~ DATA 4,7.2,3,"ABC"
17~ DATA 1,34E-3, 3.17311

The location of DATA statements is arbitrary as long as they appear in
the correct order; however, it is good practice to collect all DATA
statements near the end of the program.

When the RUN command is executed, BASIC 8001 searches for the first DATA
statement and saves a pointer to its location. Each time a READ statement
is encountered in the program, the next value in the data statement is
assigned to the designated variable. If there are no more values in that
DATA statement, BASIC 8001 looks for the next DATA statement.

IX. READ STATEMENT

A READ statement is used to assign the values listed in a DATA statement
to the specified variables. The READ statement is of the form:

READ variable list

The items in the variable list may be simple variable names or string
variable names and are separated by commas. For example:

l~ READ A, B$, C(l)
2~ DATA 12, "12",.12E2

Since data must be read before it can be used in a program, READ statements
generally occur near the beginning of the program. A READ statement can be
placed anywhere in a multiple statement line.

If there is no data available in the data table for the READ to store, the
out of data message below is printed:

OD ERROR IN xxxxx
READY

Items in the data list in excess of those needed by the program's READ
statements are ignored.

32

X. RESTORE STATEMENT

The RESTORE statement causes the program to reuse the data from the
first DATA statement and is of the form:

RESTORE

For example:

3~ RESTORE

causes the next READ statement following line 30 to begin reading data
from the first DATA statement in the program, regardless of where the
last value was found.

A further example of the use of RESTORE follows:

15 READ B,C,D

55 RESTORE
6~ READ E,F,G

8~ DATA 6,3,4,7,9,2

l~~ END

The READ statements in lines 15 and 60 both read the first three data
values provided in line 80. (If the RESTORE statement had not been
inserted b~fore line 60, then the second READ would pick up data in
line 80 starting with the fourth value.)

Since the values are being read as though for the first time, the same
variable names may be used the second time through the data, if desired.
To skip unwanted values, replacement, or dummy, variables may be inserted.
For example:

1 REM - PROGRAM TO ILLUSTRATE USE OF RESTORE
2~ READ N
25 PRINT "VALUES OF X ARE:"
3~ FOR I=l TO N
4~ READ X
5~ PRINT X,
6~ NEXT I
7~ RESTORE
185 PRINT
19~ PRINT "SECOND LIST OF X VALUES"
2~~ PRINT "FOLLOWING RESTORE STATEMENT:"
2l~ FOR I=l TO N
22~ READ X
23~ PRINT X,
24~ NEXT I 33

25fJ DATA 4,1,2
251 DATA 3,4
3fJfJ END

RUN
VALUES OF X ARE:

1 2 3
SECOND LIST OF X VALUES
FOLLOWING RESTORE STATEMENT:

4

4 1 2 3
READY

The second time the data values are read, the first X picks up the
value originally assigned to N in line 20, and as a result, BASIC
prints:

4 1 2 3

To circumvent this, a dummy variable could be inserted to pick up and
store the first value. This variable would not be represented in the
PRINT statement, so the output would be the same each time through
the list.

XI. GOTO STATEMENT

The GOTO statement is used when it is desired to unconditionally transfer
to some line other than the next sequential line in the program. In
other words, a GOTO statement causes an immediate jump to a specified
line, out of the normal consecutive line number order of execution. The
general format of the statement is as follows:

GOTO line number

The line number to which the program jumps can be either greater or less
than the current line number. It is thus possible to jump forward or
backward within a program.

For example,

lfJ LET A=2
2fJ GOTO 5fJ
3fJ LET A=SQR(A+l4)
5fJ PRINT A,A*A
RUN

causes the following to be printed:

2 4

When the program encounters line 20, control transfers to line 50; line
50 is executed, control then continues to the line following line 50.
Line 30 is never executed. Any number of lines can be skipped in either
direction.

34

When written as part of a multiple statement line, GOTO should always
be the last statement on the line, since any statement following the
GOTO on the same line is never executed. For example:

ll~ LET A=ATN(B2) :PRINT A:GOTO 5~

XII. IF-THEN, IF-GOTO STATEMENTS

The IF-THEN statement is used to transfer conditionally from the normal
consecutive order of statement numbers, depending upon the truth of some
mathematical relation or relations. The basic format of the IF statement
is as follows:

THEN
IF expression rel.op. expression line number

GOTO

where expression is an arithmetic or string expression.

reI. op.

line number

Expressions cannot be mixed; both must be string
or both must be numeric. Numeric comparisons are
hanqled as described in the ARITHMETIC Section. String
comparisons are performed on the ASCII values of
the strings as described in the STRING Section.

is one of the operators described in the ARITHMETIC
Section.

is the line of the program to which control is
conditionally passed.

If the value of the expression is true, control passes to the line number
specified.

If the value of the expression is false, control passes to the next state­
ment in sequence.

Examples:

l~ IF A=B THEN 2~:PRINT "A B"
15 STOP
2~ PRINT A+B

l~ IF A <> l~ GOTO 2~ :PRINT A
15 STOP
2~ D=A+B*C

l~ IF A$<B$ THEN 2~:STOP
2~ PRINT A$

XIII. FOR-NEXT STATEMENTS

FOR and NEXT statements define the beginning and end of a loop. (A loop
is a set of instructions which are repeated over and over again, each time

35

being modified in some way until a terminal condition.is reached.)
The FOR statement is of the form:

FOR variable = expressionl TO expression2 STEP expression3

where

variable

expression

must be a nonsubscripted numeric variable.

is an arithmetic expression which may be non­
integer.

The variable is the index; expressionl is the initial value; expression2,
the terminal value and expression3, the increment value.

For example:

15 FOR K=2 TO 2~ STEP 2

causes the program execution of the designated loop as long as K is
less than or equal to 20. Each time through the loop, K is incremented
by 2, so the loop is executed a total of 10 times. When K=20, program
control passes to the line following the associated NEXT statement.

The index variable must be unsubscripted, although a common use of such
loops is to deal with subscripted variables using the control variable
as the subscript of a previously defined variable. The expressions in
the FOR statement can be any acceptable BASIC 8001 expression.

The NEXT statement signals the end of the loop which began with the
FOR statement. The NEXT statement is of the form:

NEXT variable

where the variable is the same variable specified in the FOR statement.
Together the FOR and NEXT statements define the boundaries of the
program loop. When execution encounters the NEXT statement, the computer
adds the STEP expression value to the variable and checks to see if the
variable is still less than or equal to the terminal expression value.
When the variable exceeds the terminal expression value, control falls
through the loop to the statement following the NEXT statement. Note
the variable is not necessary since when a NEXT statement is encountered
it is assumed it is for the appropriate FOR loop variable.

If the STEP expression and the word STEP are omitted from the FOR state­
ment, +1 is the assumed value. Since +1 is a common STEP value, that
portion of the statement is frequently omitted.

The expressions within the FOR statement are evaluated once upon initial
entry to the loop. The test for completion of the loop is made after
each execution of the loop. (If the test fails initially, the loop is
still executed once.)

36

The index variable can be modified within the loop. When control falls
through the loop, the index variable retains the value used to fall through
the loop.

The following is a demonstration of a simple FOR-NEXT loop. The loop
is executed 10 times; the value of I is 11 when control leaves the loop;
and +1 is the assumed STEP value:

l~ FOR I=l TO l~
2~ PRINT I
3~ NEXT I
4~ PRINT I

The loop itself is lines 10 through 30. The numbers 1 through 10 are
printed when the loop is executed. After I=lO, control passes to line
40 which causes 11 to be printed. If line 10 had been:

l~ FOR I = l~ TO 1 STEP -1

the value printed by line 40 would be ~.

l~ FOR I = 2 TO 44 STEP 2
2~ LET I = 44
3~ NEXT I

The above loop is only executed once since the value of I=44 has been
reached and the termination condition is satisfied.

If the initial value of the variable is greater than the terminal value,
the loop is still executed once. The loop set up by the statement:

l~ FOR I = 2~ TO 2 STEP 2

will be executed only once although a statement like the following will
initialize execution of a loop properly:

l~ FOR I=2~ TO 2 STEP -2

For positive STEP values the loop is executed until the control variable
is greater than its final value. For negative STEP values, the loop
continues until the control variable is less than its final value.

FOR loops can be nested but not overlapped. The depth of nesting depends
upon the amount of user storage space available (in other words, upon the
size of the user program and the amount of RAM available). Nesting is a
programming technique in which one or more loops ar~ completely within
another loop. The field of one loop (the numbered lines from the FOR
statement to the corresponding NEXT statement, inclusive) must not cross
the field of another loop.

37

ACCEPTABLE NESTING
TECHNIQUES

Two Level Nesting

FOR Il = 1 TO 10
[FOR 12 = 1 TO 10

NEXT 12

[FOR I3 = 1 TO 10
NEXT I3
NEXT II

Three Level Nesting

FOR Il 1 TO 10
FOR 12 1 TO 10

[FOR I3 = 1 TO 10
NEXT I3

[FOR 14 = 1 TO 10
NEXT 14
NEXT 12
NEXT Il

UNACCEPTABLE NESTING
TECHNIQUES

~
FOR Il =
FOR 12 =
NEXT Il
NEXT 12

FOR Il
FOR 12

[FOR I3 =
NEXT 13

[FOR 14 =
NEXT 14
NEXT Il
NEXT 12

I TO 10
I TO 10

I TO 10
I TO 10
I TO 10

1 TO 10

An example of nested FOR-NEXT loops is shown below:

5 DIM X(5,1~)
1~ FOR A=l TO 5
2~ FOR B=2 TO l~ STEP 2
3~ LET X(A,B)= A+B
4~ NEXT B
5~ NEXT A
55 PRINT X(5,1~)

When the above statements are executed, BASIC 8001 prints 15 when line
55 is processed.

It is possible to exit from a FOR-NEXT loop without the control variable
reaching the termination value. A conditional or unconditional transfer
can be used to leave a loop. Control can only transfer into a loop which
had been left earlier without being completed, ensuring that termination
and STEP values are assigned.

Both FOR and NEXT statements can appear anywhere in a multiple statement
line. For example:

l~ FOR 1=1 TO 10 STEP 5:NEXT I: PRINT "1=";1

causes:

1=11

to be printed when executed.

38

XIV. GOSUB AND RETURN STATEMENTS

A subroutine is a section of code performing some operation required
at more than one point in the program. Sometimes a complicated I/O
operation for a volume of data, a mathematical evaluation which is too
complex for a user-defined function, or any number of other processes
may be best performed in a subroutine.

More than one subroutine can be used in a single program, in which
case they can be placed one after another at the end of the program
(in line number sequence). A useful practice is to assign distinc­
tive line numbers to subroutines; for example, if the main program
uses line numbers up to 199, use 200 and 300 as the first numbers of
two subroutines.

Subroutines are usually placed physically at the end of a program
before DATA statements, if any. The program begins execution and
continues until it encounters a GOSUB statement of the form:

1) GOSUB line number

where the line number following the word GOSUB is that of the first
line of the subroutine. Control then transfers to that line of the
subroutine. For example:

5~ GOSUB 2~~

Control is transferred to line 200 in the user program. The first
line in the subroutine can be a remark or any executable statement.

Having reached the line containing a GOSUB statement, control trans­
fers to the line indicated after GOSUB; the subroutine is processed
until BASIC 8001 encounters a RETURN statement of the form:

2) RETURN

which causes control to return to the statement following the original
GOSUB statement. A subroutine must always be exited via a RETURN
statement.

Before transferring to the subroutine, BASIC 8001 internally records the
next sequential statement to be processed after the GOSUB statement;
the RETURN statement is a signal to transfer control to this statement.
In this way, no matter how many subroutines there are or how many times
they are called, BASIC 8001 always knows where to transfer control next.
The following program demonstrates the use of GOSUB and RETURN.

1 REM - THIS PROGRAM ILLUSTRATES GOSUB AND RETURN
l~ DEF FNA(X)= ABS(INT(X»
2¢ INPUT A,B,C
3~ GOSUB l~~
4~ LET A=FNA(A)

39

5~ LET B=FNA(B)
6~ LET C=FNA(C)
7~ PRINT
8~ GOSUB l~~
9~ STOP
l~~ REM - THIS SUBROUTINE PRINTS OUT THE SOLUTIONS
ll~ REM - OF THE EQUATION: AXA2 + BX + C = ~
l2~ PRINT "THE EQUATION IS "A "*XJ\2 + " Bn*X + "C
l3~ LET D=B*B - 4*A*C
l4~ IF D<>O THEN l7~
l5~ PRINT "ONLY ONE SOLUTION ..• X "~ -B/(2*A)
l6~ RETURN
l7~ IF D<~ THEN 2~~
l8~ PRINT "TWO SOLUTIONS •.. X =" ~
185 PRINT (-B+SQR(D»/(2*A)~ ") AND ("~ (-B-SQR(D»/(2*A)
19~ RETURN
2~~ PRINT II IMAGINARY SOLUTIONS ... X= (" ~
2~5 PRINT -B/(2*A) "," SQR(-D)/(2*A) ") AND ("~

2~7 PRINT -B/(2*A) ","~ -SQR(-D)/(2*A) ")"
2l~ RETURN
9~~ END

Subroutines can be nested~ that is, one subroutine can call another
subroutine. If the execution of a subroutine encounters a RETURN
statement, it returns control to the line following the GOSUB which
called that subroutine. Therefore, a subroutine can call another
subroutine, even itself. Subroutines can be entered at any point
and can have more than one RETURN statement. It is possible to trans­
fer to the beginning or any part of a subroutine~ mUltiple entry points
and RETURN's make a subroutine more versatile. Up to 20 levels of
GOSUB nesting are allowed.

XV. END STATEMENT

The END statement is the last statement in a BASIC program qnd is of
the form:

END

The line number of the END statement must be the largest line number
in a given program, since any lines having line numbers greater than
that of the END statement are not executed (although they are saved
with the SAVE command).

The END statement is optional. When an END statement is executed,
program execution stops ahd the READY message is printed.

XVI. STOP STATEMENT

The STOP statement can occur several times throughout a single program
with conditional jumps determining the actual end of the program. The
STOP statement is of the form:

90 STOP

40

and causes:

BREAK IN 90
READY

to be printed when executed.

This signals that the execution of a program has been terminated and
BASIC 8001 is able to accept further input.

41

BASIC 8001 FUNCTIONS

ARITHMETIC FUNCTIONS

BASIC 8001 provides functions to perform certain standard mathematical
operations such as square roots, logarithms, etc.

These functions have three or four letter call names followed by
a parenthesized argument. They are pre-defined and may be used
anywhere in a program.

Call Name

ABS (x)

ATN(x)

CALL (x)

COS (x)

EXP (x)

FRE(x)

INT(x)

INP (x)

LOG (x)

PEEK (x)

POS(x)

RND(x)

SGN(x)

SIN(x)

SPC(x)

SQR(X)

TAB (x)

~., "

TAN (x)

Function

Returns the absolute value of x.

Returns the arctangent of x as an
angle in radians in range + or -pi/2.

CALL the user, machine language program
at location ~A~~~ Hex.

Returns the cosine of x radians.

Returns the value of eX where e=2.7l828.

Returns number of free BYTES not in use.

Returns the greatest integer less than
or equal to x, (INT(-.5)=-1).

Returns a BYTE from. input port 0<x<255.

Returns the natural logarithm of x.

Returns a BYTE from memory address ~x~32767
or if x is negative the memory address is
65536-x.

Returns a value of current cursor positions
between a and 79.

Returns a random number between a and 1.

Returns a value indicating the sign of x.

Returns the sine of x radians.

Causes x spaces to be generated.

Retu~ils the square root of x.

Causes the 8001 CRT to space over to column
number x. Valid in PRINT statement only.

Returns the tangent of x radians.

42

The argument x to the functions can be a constant, a variable, an
expression, or another function. A square bracket cannot be used as
the enclosing character for the argument x, e.g. SIN [xJ is illegal.

Function calls, consisting of the function name followed by a paren­
thesized argument, can be used as expressions or as elements of
expressions anywhere that expressions are legal.

Values produced by the functions SIN (x) , COS (x) , ATN(x), SQR(x) , EXP(
and LOG (x) have six significant digits.

I. Sine and Cosine Functions, SIN(x) and COS (x)

The sine and cosine functions require an argument angle expressed in
radian measure. If the angle is stated in degrees, conversion to
radians may be done using the identity:

(radians) (degrees) * (pi/180)

In the following example program, 3.14159 is used as a nominal value
for pi. P is set equal to this value at line 20. At line 40 the
above relationship is used (in the expression within the LET statemer
to convert the input value into radians.

10 REM - CONVERT ANGLE (X) TO RADIANS, AND
11 REM - FIND SIN AND COS
20 LET P = 3.14159
25 PRINT "DEGREES", "RADIANS", "SINE", "COSINE"
30 INPUT X
40 LET Y = X*P/180
60 PRINT X, Y, SIN(Y),
70 GOTO 30
RUN
DEGREES RADIANS
?0

0 0
?l0
10 .174533

?20
20 .349066

?30
30 .523598

?360
360 6.28318

?45
45 .785398

?90
90 1. 5708

?RETURN
READY

COS (Y)

SINE

0

.173648

.34202

.5

-5.243l0E-06

.707106

1

43

COSINE

1

.984808

.939693

.866026

1

.707107

1.12352E-06

II. Arctangent Function, ATN(x); Tangent Function, TAN (x)

The arctangent function returns a value in radian measure, in the range
+pi/2 to -pi/2 corresponding to the value of a tangent supplied as the
argument (X).

In the following program, input is an angle in degrees. Degrees are
then converted to radians at line 40.

At line 70 the tangent value, Z, is supplied as argument to the ATN
function to derive the value found in column 4 of the printout under
the label ATN(X). Also in line 70 the radian value of the arctangent
function is con~erted back to degrees and printed in the fifth column
of the printout as a check against the input value shown in the first
column.

l~ LET P= 3.14159
2~ PRINT "SUPPLY AN ANGLE IN DEGREES"
25 PRINT "ANGLE", "ANGLE", "TAN(X)", "ATAN(X) ", "ATAN(X)"
26 PRINT II (DEGS) "," (RADS) "","(DEGS) II
3~ INPUT X
4~ LET Y = X*P/18~
5~ LET Z = TAN(Y)
7~ PRINT X,Y,Z,ATN(Z),ATN(Z)*180/P
85 PRINT
9~ GOTO 3~
RUN
SUPPLY AN ANGLE IN DEGREES
ANGLE ANGLE TAN (X)
(DEGS) (RADS)
?~

~ ~

?45
45

?l~

.785398

10 .174533
?(RETURN)
READY

.999999

.176327

ATAN(X)

.785398

.174533

III. Square Root Function, SQR(X)

ATAN(X)
(DEGS)

45

l~

This function derives the square root of any positiv~ value as shown
below.

l~ INPUT X
2~ LET X SQR(X)
3~ PRINT X
4~ GOTO l~
RUN
?l6

4
?l~~
l~

?l~~~

44

31. 6228
?l23456789
11111.1

?l7
4.12311

?25E2
5fO

?l97fO
44.3847

? (RETURN)
READY

IV. Exponential Function, EXP(x)

The exponential function raises the number e to the power x. EXP is
the inverse of the LOG function. The relationship is

LOG(EXP(X» = X

The following program prints the exponential equivalent of an input
value. Note that the output values derived below are used as input to
,the LOG function.

lfO INPUT X
2fO PRINT EXP(X)
4fO GOTO lfO

RUN
?4

54.5981
?lfO

22f026.5
?9.421fOf06

12345
?4.6.0517

lfOfO
?25

7.2fOf049E+lfO
?(RETURN)
READY

V. Logarithm Function, LOG (x)

The LOG function derives the logarithm to the base e of a given value.
In the following program at line 20, the LOG function is used to
convert an input value to its logarithmic equivalent.

1.0 INPUT X
2.0 PRINT LOG (X)
3fO GOTO lfO

RUN
?54.59815

4
?22.026.47

lfO 45

?l2345
9.42l~1

?l~~
4.6~5l7

?72~~49Ell
25

?(RETURN)
READY

Logarithms to the base e may easily be converted to any other base
using the following formula:

where a represents the desired base. The following program illustrates
conversion to the base 10.

1 REM - CONVERT BASE E LOG TO BASE l~ LOG.
5 PRINT "VALUE" ,"BASE E LOG", "BASE l~ LOG"

15 INPUT X
17 PRINT X,
2~ PRINT LOG(X) ,
4~ PRINT LOG(X)/LOG(l~)
5~ GOTO 15
6~ END
RUN
VALUE BASE E LOG BASE l~ LOG
?4

4 1.38629 .6~2~6
?25~
25~ 5.52146 2.39794

?5
5 1.6~944 .69897
?6~

6~ 4.~9434 1.77815
?l~~
l~~ 4.6~517 2

?(RETURN)
READY

An attempt to do a LOG (0) or LOG of a negative number causes the
CF error message.

VI. Absolute Function, ABS(x)

The ABS function returns an absolute value for any argument value.
Absolute value is always positive. In the following program, various
input values are converted to their absolute values and printed.

46

l~ INPUT X
2~ LET X ABS(X)
3~ PRINT X
4~ GOTO l~

,RUN
?-35.7
35.7

?2
2

?25El~

2. 5~~~~E+11
?l~5555567

1.~5556E+~8

?1~ .. 12345
10.1234

?-44.555566668899
44.5556

?(RETURN)
READY

VII. Integer Function, INT(x)

The integer function returns the value of the greatest integer not
greater than x. For example:

PRINT INT (34.67)
34

PRINT INT(-5.1)
-6

The INT of a negative number is a negative number with the same or
larger absolute value, i.e., the same or smaller algebraic value.
For example:

PRINT INT(-23.45)
-24

PRINT INT(-14.39)
-15

PRINT INT(-l1)
-11

The INT function can be used to round numbers to the nearest integer,
using INT(X+.5). For example:

PRINT INT(34.67+.5)
35

PRINT INT(-5.1+.5)
-5

47

INT(X) can also be used to round to any given decimal place or
integral power of 10, by using the following expression as an
argument:

(X*10tD+.5)/10 D

where D is an integer supplied by the user.

VIII.

10 REM - INT FUNCTION EXAMPLE
15 PRINT
20 PRINT "NUMBER TO BE ROUNDED:"
25 INPUT A
40 PRINT "NO. OF DECIMAL PLACES:"
45 INPUT D
60 LET B = INT(A*lOAD + .5)/10AD
70 PRINT "A ROUNDED = " B
80 GOTO 15
90 END
RUN

NUMBER TO BE ROUNDED:
?55.65842
NO. OF DECIMAL PLACES:
?2
A ROUNDED = 55.66

NUMBER TO BE ROUNDED:
?78.375
NO. OF DECIMAL PLACES:
?-2
A ROUNDED = 100

NUMBER TO BE ROUNDED:
?67.38
NO. OF DECIMAL PLACES:
?-l
A ROUNDED = 70

NUMBER TO BE ROUNDED:
?(RETURN)
READY

Random Number Function, RND(x)

The random number function produces a random number, or random number
set, between 0 and 1. The numbers are reproducible in the same order
after ESC, E key if X~O for later checking of a program. The argument (x)
is not used and can be any number (it cannot be a string expression); it
serves only to standardize all BASIC 8001 function representations. The
form RND is not legal. For example:

48

1~ REM - RANDOM NUMBER EXAMPLE.
25 PRINT "RANDOM NUMBERS:
3~ FOR I = 1 TO 15
40 PRINT RND (1)
5~ NEXT I
60 END
RUN
RANDOM NUMBERS:

.1~0250.5~438

.306121.209~46

.985412.27376

.964813.~267824

.285553.599886

.522186.701146

.886627.388094

.958221. 744055

.246246.59~584

.636444.569123

.179351.460434

.777801.457448

.839~19.72~021

.452117.433291

.450592.3~797

READY

To obtain random digits from 0 to 9, change line 40 to read:

40 PRINT INT(10*RND(1)),

and run the program again. This time the results will be printed
as follows:

RUN
RANDOM NUMBERS:
8 9
5 4

READY

8
4

9
1

5
5

5 5

It is possible to generate random numbers over a given range. If
the open range (A,B) is desired, use the expression:

(B-A) *RND (1) +A

to produce a random number in the range A~n<B.

The following program produces a random number set in the open range
4,6 (the extremes, 4 and 6, are never reached).

1~ REM - RANDOM NUMBER SET IN OPEN RANGE 4,6.
2~ FOR B = 1 TO 15
3~ LET A = (6-4) * RND(l) +4
4~ PRINT A,
5~ NEXT B
6~ END

RUN
4.20054.59266
4.612245.33046
4.197085.~9034

READY

5.929624.20985
4.5711~4.26695

5.~44374.82533

5.773255.54026
5.916445.69965
4.492495.614~8

49

5.272884.76248
4.358705.54721
5.555604.41632

9 8

5.678045.25946
4.904235.65021
4.901185·015~8

7

NOTE: Negative arguments, i.e., RND(-x) will start a new random
number sequence. While RND (0) will always generate the last random
number.

IX. Sign Function, SGN(x)

The sign function returns the value 1 if x is a positive value, 0
if x is a and -1 if x is negative. For example:

PRINT SGN(3.42)
1

PRINT SGN (-42)
-1

PRINT SGN (23-23)
o

The following example program illustrates the use of the SGN function.

10 REM-SGN FUNCTION EXAMPLE.
20 READ A,B,C
25 PRINT "A = "A, "B = "B, "c = "C
30 PRINT "SGN(A) ="SGN(A), "SGN(B) ="SGN(B),
40 PRINT "SGN(C) ="SGN(C)
50 DATA -7.32, .44, 0
60 END
RUN
A = -7.32
SGN(A) =-1

READY

B = .44 C = 0
SGN(B) =1 SGN(C) =0

X. Call Statement

The CALL statement can be inserted anywhere in the BASIC 8001 program
and has the form:

CALL (expression)

Where expression is the argument to the assembly
language routine. The argument
may be an expression. This may
include values passed to the usel
routine.

The CALL statement causes a jump to location AOOO HEX, which, unless
modified by the user, contains a jump to the CF ERROR routine. The
user must modify these three locations to go to his routines.

50

BASIC 8001 FUNCTIONS

USER DEFINED FUNCTIONS

In some programs it may be necessary to execute the same sequence of
statements or mathematical formulas in several different places.
BASIC 8001 allows definition of unique operations or expressions and
the calling of these functions in the same way as the square root or
trig functions.

These user-defined functions consist of a function name: the first
two letters of which are FN followed by a third or a fourth letter.
For example:

legal

FNA
FNAA
FNAl

illegal

FNA$
FN2

Each function is defined once and the definition may appear anywhere
in the program. The defining or DEF statement is formed as follows:

DEF FNa (argument) expression (argument)

where a is a variable name. The argument may consist of a dummy variable
and the number of arguments is limited to one variable. The expression
may contain other program variables not among the argument variable.
For example:

10 DEF FNA(S) = SA2

causes a later statement:

2~ LET R = FNA(4)+1

to be evaluated as R=17. As another example:

5~ DEF FNB(A) = A+XA2
6~ Y=FNB(14)

causes the function to be evaluated with the current value of the
variable X within the program.

The two following programs

Program #1:

l~ DEF FNS(A) = AAA
2~ FOR 1=1 TO 5
3~ PRINT I, FNS(I)
4~ NEXT I
5~ END

51

Program #2:

l~ DEF FNS(X) = XAX
2~ FOR I=l TO 5
3~ PRINT I, FNS(I)
4~ NEXT I
5~ END

cause the same output:

RUN
1 1
2 4
3 27
4 256
5 3125

READY

The argument in the DEF statement can be seen to have no significance;
it is strictly a dummy variable. (A DEF statement with no arguments is
illegal.) The function itself can be defined in the DEF statement in
terms of numbers, variables, other functions, or mathematical expressions.
For example:

l~ DEF FNA(X)
2~ DEF FNB(X)
3~ DEF FNC(X)

XI\2+3*X+4
FNA(X)/2 + FNA(X)
SQR(X+4)+1

The statement in which the user-defined function appears can have that
function combined with numbers, variables, other functions, or mathe­
matical expressions. For example:

4~ LET R = FNA(X+Y+Z)*N/(YA2+D)

A user-defined function cannot have several arguments, as shown below:

25 DEF FNL(X,Y,Z) = SQR(XA2 + YA2 + ZA2)

will cause an error

SN ERROR IN 25.
READY

When calling a user-defined function, the parenthesized arguments can be
any legal expressions. The value of each expression is substituted for
the corresponding function variable. For example:

l~ DEF FNZ(X)=XA2
2~ LET A=2
3~ PRINT FNZ(2+A)

line 30 causes 16 to be printed.

52

If the same function name is defined more than once, then the last
definition will be used. The program below

l~ DEF FNX(X)=X~2
2~ DEF FNX(X)=X+X
3~ LET A=5
4~ PRINT FNX (A)

will cause 10 to be printed.

The function variable need not appear in the function expression as
shown below:

10 DEF FNA (X) = 4 +2
20 LET R FNA(lO)+l
30 PRINT R
40 END
RUN

7

53

BASIC 8001 FUNCTIONS

STRING FUNCTIONS

Like the intrinsic mathematical functions (e.g., SIN, LOG), BASIC 8001
contains various functions for use with character strings. These
functions allow the program to concatenate two strings, access part of
a string, determine the number of characters in a string, generate a
character string corresponding to a given number or vice versa, search
for a substring within a larger string, and perform other useful
operations. The various functions available are summarized in the
following table.

Function code

ASC(x$)

CHR$ (x)

FRE (x$)

LEFT$(x$,I)

LEN(x$)

MID$(x$,I,J)

RIGHT$(x$,I)

STR$ (x)

String Functions

Meaning

Returns the seven-bit internal code for the
one-character string (x$) as a decimal num­
ber. If the argument contains more than
one character, then the first character in
the string is returned.

Generates a one-character string having the
ASCII value of x where x is a number greater
than or equal to a and less than or equal to
255. For example: CHR$(65) is equivalent
to "A". Only one character can be generated.

Returns number of free string BYTES.

Returns left most I characters of string
(x$) .

Returns the number of characters in the
string x$ (including trailing blanks). For
example:

PRINT LEN (A$)
26

Returns the string of characters in position
I through J in x$. s~~;t- ~ M C'> $tT

d 1/ 11 Ii

Returns right most I characters of string
(x$) .

Returns the string which represents the
numeric value of x as it would be printed by
a PRINT statement but without a leading or
trailing blank.

54

VAL (x$) Returns the number represented by the string
x$. If x$ does not represent a number, then
~ value is returned.

In the above examples, x$ and y$ represent any legal string expressions,
and I and J represent any legal arithmetic expressions.

User-Defined String Functions

Character string functions cannot be written in the same way as numeric
functions.

55

BASIC 8001 ~DITING COMMANDS

BASIC 8001 provides several key commands which can be used to halt
program execution, erase characters or delete lines. The below table
provides an explanation of each of the key commands.

Key

CTRL/J
or LINE FEED

.or .J,

CTRL/M or RETURN

CTRL/K
·or

ERASE LINE

CTRL/Z
or CURSOR LEFT
or +--

CTRL/L
or ERASE PAGE

Key Commands

Explanation

Interrupts execution of a command or program.
BASIC 8001 prints the message

BREAK IN XXX
READY

A control command is typed by holding down
the CTRL key while typing the letter key.

Must be typed to end every line typed in
or to indicate the end of an INPUT.

Deletes the entire current line (provided
the RETURN key has not been typed).
BASIC 8001 displays:

Erased line and CR.

Deletes the last character typed and echoes
as a cursor left on the terminal. Spaces
as well as characters or control codes may
be erased.

A colon is used to separate multiple
statements per line.

Erases CRT screen but does not change
any BASIC 8001 statements.

If the RETURN key has already been typed, a program line can be corrected
by typing the appropriate line number and retyping the line correctly.

The line can be deleted by typing the RETURN key immediately after the
line number: removing both the line number and line from the program.

If the line number of a line not needing correction is accidentally typed,
the cursor left key (CTRL Z) may be used to delete the number(s): then the
correct number can be typed. Assume the line:

56

l~ IF A)S GO TO 23~

is correct. A line IS is to be inserted, but:

l~ LET

is typed by mistake. The correction is made as follows:

l~ LET~"" "S LET X=X-3

Line 10 remains unchanged, and line IS is entered.

Following an attempt to run a program, error messages may be output
on the terminal indicating illegal characters or formats, or other
user errors in the program. Most errors can be corrected by typing
the line number(s) and the correction(s) and then rerunning the pro­
gram. As many changes or corrections as desired may be made before
runs.

The following editing commands are entered in immediate mode and
terminated by the RETURN key. These commands are used to erase a
program in RAM, and list, punch or run a program.

I. NEW COMMAND

The NEW command clears current contents of the storage area set up
by BASIC 8001. This deletes any commands, programs, arrays, strings
or symbols currently stored by BASIC 8001.

NEW should be used before entering a new program from the terminal
keyboard to be sure no old program lines will be mixed into the new
program and to clear out the symbol table area.

Example:

NEW
READY
l~ READ A

clears the storage area and inserts the program being input at the
keyboard.

II. LIST COMMAND

The LIST command prints the user program currently in core on the
terminal.

A part of a program may be listed by typing LIST followed by a line
number. This causes that line and all following lines in the program
to be listed.

57

Type CTRL/J or linefeed key to halt the listing. BASIC 8001 returns
to the READY message when the current line is finished.

The lines listed may differ slightly from those entered because:

1. Certain characters while acceptable to BASIC 8001 are stored
in a standard manner.

Character
Typed

=(

= >
>(

Character
Stored

(=

>=
()

2. Literals are stored to 24 bits of accuracy. Those with more
than 24 bits are truncated to 24 bits.

3. Although literal storage is 24 bits, output is truncated to
6 decimal digits.

4. Literals are output in standard BASIC 8001 format, regardless of
how they were input; for example,

l~ LET X=3.~+1.~~~~0~1
2~ PRINT X-E7
LIST
l~ LET X=3+1
2~ PRINT X-l.~~~~~E+~7

5. Spaces in the input program are ignored, except within
strings and REM statements. The LIST command prints the
program with a space inserted to separate the key word and
the line number. The listed program is therefore easier
to read.

Example:

LIST l~~

Lists line 100 and all remaining lines in the program.

III. .SAVE COMMAND

The SAVE command outputs the program in RAM to the specified device.
The form of the command is:

SAVE A

The format of the program output by the SAVE command is exactly the
same as that stored in RAM memory. It may be recalled by the same
file name using the LOAD command.

58

IV. RUN COMMAND

After the user program is entered into RAM, it can be executed by
typing the command

RUN

and the RETURN key.

The program is scanned; arrays are created in core and then the program
is executed. Any appropriate error messages are printed and when the
END or STOP statement is encountered, execution halts and a message is
printed.

After execution, the variables used in a program remain accessible for
use in immediate mode until a NEW, CLEAR or another RUN command is
executed.

V. CLEAR COMMAND

The CLEAR command clears the contents of the user array and string
buffers. This command is generally used when a program has been exe­
cuted and then edited. Before it is rerun, the array and string buffers
are set to zeros and nulls by the CLEAR command to provide more core.

These buffers will be filled again when the RUN command is executed.

Example:

l~ A=10
20 PRINT A
CLEAR

READY

RUN
10

READY

VI. CLEAR X COMMAND

The CLEAR X performs the same function as CLEAR without the argument,
but the Argument X reserves X locations for string variables which are
required in string calculations. Normally this is 50 locations unless
changed by CLEAR X command.

VII. CONTINUE COMMAND

Continues program execution after a Control J or line feed is typed or
a STOP statement is executed. You cannot continue after any err04 after
modifying your program or before your program has been run.

59

One of the main purposes of CONT is debugging. Suppose at some point
qfter running your program, nothing is printed. This may be because
your program is performing some time-consuming calculation, but it may
be because you have fallen into an "infinite loop". An infinite loop
is a series of BASIC 8001 statements from which there is no escape.
The BASIC 8001 will keep executing a series of statements over and
over until you intervene or until power to the unit is cut off. If
you suspect your program is in an infinite loop, type in a Control J
or line feed. The line number of the statement BASIC 8001 was executing
will be typed out.

After BASIC 8001 has typed out READY, you can use PRINT to type out
some of the values of your variables. After examining these values,
you may become satisfied that your program is functioning correctly.
You should then type in CONT to continue executing your program where
it left off, or type a direct GOTO statement to resume execution of
the program at a different line.

You could also use assignment (LET) statements to set some of your
variables to different values. Remember, if you line feed or Control
J your program and expect to continue it later, you must not get any
errors or type in any program lines. If you do, you won't be able to
continue, and get a "CN" (continue not) error. It is impossible to
continue a direct command. CONT always resumes execution at the next
statement to be executed in your program when Control J or line feed
was typed.

VIII. LOAD I COMMAND

LOADS the program named I from the 8001 CPU operating system Reader
Input port specified by the I/O BYTE at location 9F90 HEX, see the
CPU O. S. Manual. A new command is automa-tically done before the
LOAD I command is executed. When finished loading the READY command
will appear as usual. If the unit can't find the file on the floppy
tape, then an error message should appear.

IX. LOAD?I COMMAND

Does same as LOAD I except that a NEW command is not performed and
BASIC 8001 does a word-by-word comparison of file I with the program
already existing in RAM memory. If they are the same, then READY
appears, else

VERIFY FAILURE
READY

will appear.

This should always be used after saving a program with the SAVE I
command to ensure that it was saved correctly and can be reloaded
without error.

60

USING ASSEMBLY LANGUAGE

ROUTINES WITH BASIC

BASIC 8001 has a facility which allows experienced 8080 assembly
language programmers to interface their own assembly language
routines to BASIC 8001. This facility permits the user to add
functions to BASIC 8001 which can operate directly on special
purpose peripheral devices. This section describes in some detail
the internal characteristics of BASIC 8001 during the execution of
a BASIC 8001 program, and is intended to serve as a programming
guide for the creation of such user-coded assembly language functions.
This material assumes the user is familiar with 8080 assembly
language. For additional information on this subject, refer to an
assembly language programming manual on the 8080 CPU.

The CALL statement is used to reference these assembly language
routines from the BASIC 8001 program.

61

he U
a in System

1.0

2.0

3.0

4.0

Appendix A.

Appendix B.

Appendix C.

TAB L E o F CONTENTS

TERMS AND ABBREVIATIONS

CPU O.S. COMMANDS AND MESSAGES

INTECOLOR® 8001 CONFIGURATION

3.1 1/0 System
3.1.1 Logical and Physical Devices
3.1.2 I/O Subroutines
3.1.3 User Supplied Devices

CPU OPERATING SYSTEM

4.1

4.2

CPU O.S. Implementation and Execution
4.1.1 CPU O.S. Implementation
4.1.2 Starting CPU o.S.
CPU O.S. Operation And Commands
4.2.1 B Command (Back to CRT O.S.)
4.2.2 D Command (Display Data)
4.2.3 F Command (Fill Memory

Wi th Constant)
4.2.4. G Command (Go To)
4.2.5

4.2.6

4.2.7
4.2.8
4.2.9

H Command (Hexadecimal
Arithmetic)
I Command (Reset CRT to
State So)
L Command (Read Hex File)
M Command (Move Memory)
R Command (Select Baud Rate
#2)

4.2.10 S Command (Substitute Memory)
4.2.11 X Command (Examine And

Modify Registers),
4.2.12 E Command (End File)
4.2.13 W Command (Write Memory)
4.2.14 N Command (Null Punch)

Page

1-2

2-4

5
5-7
7-10

10-11

11

12
12
12
12
12

12-14
14-15

16-17
17-18

18

18-19
19-21

21

22
23-24

24
25-26

26

Instruction Summary 27-38

Instruction Execution Times and Bit Patterns 39-42

Hexadecimal Program Tape Format 43-44

TERMS:

TERM

Address

Bit

Byte

Console

Instruction

Object Program

Program

Source Program

System Program

--TERMS AND ABBREVIATIONS--

DESCRIPTION

A 16 bit number assigned to a memory location
corresponding to its sequential position.

The smallest unit of information which can
be represented. (A bit may be in one of
two states, 0 or 1).

A group of 8 contiguous bits occupying a
single memory location.

Refers to the 8001 CRT Display as the
output device, and the 8001 keyboard
as the input device. Allows operator
interface with the CPU operating system.

The smallest single operation that the
computer can be directed to execute.

A program which can be loaded directly into
the computer's memory and which requires no
alteration before execution. An object
program is usually on paper tape, and is
produced by assembling (or compiling) a
source program. Instructions are re­
presented by binary machine code in an
object program.

A sequence of instructions which, taken as
a group, allow the computer to accomplish a
desired task.

A progam which is readable by a programmer
but which must be transformed into object
program format before it can be loaded into
the computer and executed. Instructions in
an assembly language source program are
represented by their assembly language
mnemonic.

A program written to help in the process of
creating user programs.

1

TERMS -- (Continued):

TERM

User Program

Word

ABBREVIATIONS:

ABBREVIATION

Cr

CPU

Lf

PROM

Sp

nnn B

nnn D

nnn 0

nnn Q

nnn H

DESCRIPTION

A program written by the user to make the
computer perform any desired task.

A group of 16 contiguous bits occupying
two successive memory locations. (2 bytes).

DESCRIPTION

Carriage return

Central Processing Unit

Line feed

Programmable Read Only Memory

Space Bar

nnn represents a number in binary format.

nnn represents a number in decimal format.

nnn represents a number in octal format.

nnn represents a number in octal format.

nnn represents a number in hexadecinal format.

Shaded portions of CPU/operator dialog repre­
sent Console output.

CPU O.S. COMMANDS AND MESSAGES

2. a CPU OPERATING SYSTEM (0. S.)

STARTING ADDRESS - 100 When in 8708 ERASABLE PROM

2

All arguments are in hexadecimal form.

B GO BACK TO CRT O.S.

D DISPLAY IN HEXADECIMAL FORMAT

D low address, high address

Memory from low address to high address is displayed in hexadecimal
form.

E END

E address

Endfile mark is created; 60 null characters are written on
punch device

F FILL MEMORY

F low address, high address, data

Memory from low address to high address is filled with data.

G GO TO

G Address, bkptl, bkpt2

Program control is transferred to address. Breakpoints are set at
bkptl and bkpt2. When break points are executed, all of the CPU
registers are automatically displayed.

H HEXADECIMAL ARITHMETIC

H number, number sp

The sum and difference of the two numbers is printed in hexadecimal.

L LO'AD HEXADECIMAL TAPE

L Bias address

A hexadecimal format tape is read into memory at tape address plus
bias address.

3

M MOVE

M low address, high address, destination address

A block of memory from low address to high address is moved
to location destination address.

N PUNCH NULL

N

Sixty null characters are punched.

R BAUD RATE FOR SECOND RS-232 CHANNEL

R rate number

The rate number must be between 1 and 7. See the "How to Use the 8001"
Manual.

S SUBSTITUTE

S address Sp

Memory at address is displayed, and can be modified by typing
in new data. Termination with space opens next sequential
address, termination with carriage return ends command.

X EXAMINE REGISTERS OR MEMORY

X reg ident

Register is displayed, and can be modified as in the S command.

W WRITE HEXADECIMAL

W low address, high address

Memory from low address to high address is punched in hexadecimal
format.

MESSAGES

CPU O.S. ready to accept commands

? Error. Reenter command

4

3.0 INTECOLOR®SOOl CONFIGURATION

3.1 I/O SYSTEM

The Intecolor®SOOl can support a number of input/output devices,
from the CRT display and the RS232C I/O to devices supplied by
the user. In general, it may be convenient to have two devices
which can perform the same function, but to use them for different
purposes at various times. For example, if a program is being assembled,
you might want the program listing to be written on one device, while
any system messages not relevant to the assembly would be written on a
separate device.

The 1.0 system described below permits this type of change. Devices
may be assigned functions via the System Monitor S command (see Section
4.2.11) or via the user's program. That is, it is possible to write
programs which read from several different input devices and write to
several different output devices of the program's choosing, without re­
quiring any human intervention.

3.1.1 LOGICAL AND PHYSICAL DEVICES

Regardless of how many I/O devices a particular Intecolor@SOOl
has, there are only four operations which can be performed to
any of them. For example, a WRITE operation can be performed
either to the RS232C channel 1 to a host computer or a high speed
tape system. All system programs and user-written programs, therefore,
access four LOGICAL DEVICES (i.e., a WRITE device) which are then trans­
lated to a PHYSICAL DEVICE (i.e., a high speed tape) by the I/O
system.

The four logical devices available to programs are:

CONSOLE

READER

WRITE

LIST

An interactive, character-oriented device used
for both input and output.

A character-oriented, input-only device which
transfers data on command and signals the
program when where is no more data (an end-of­
file condition).

A character-oriented, output-only device which
accepts a character from the program and re­
cords it on some external medium.

A character-oriented, output-only uevice which
accepts a character from the program and records
it on some external medium in human readable form.

5

Each of these four logical devices may be associated with one of
four physical devices at any instant, giving a total of 16 phys­
ical devices. The mapping from logical to physical devices is
specified by an I/O status byte which resides in memory and is
accessible to system and user programs via substitute command~ II .Il FI
The address of the I/O status byte is ~ex.--~ApointerC t';~'"- 'I £ n
the I/O status byte is also contained in memory locations 0036
and 0037 (low byte of pointer, high byte of pointer). The possible
mappings appear as follows:

I/O Status Byte: A A A A A
Ini tially 7 6 S 1 0

10 00 10

A7A6 LIST FIELD AIAO= CONSOLE FIELD

ASA4 PUNCH FIELD A3A2= READER FIELD

LOGICAL DEVICES I/O DEV FIELD PHYSICAL DEVICES

00 RS232 Channel 1

01 RS232 Channel 2

CONSOLE 10 CR Tube = Console Output
Keyboard= Console Input

11 (user console device)

READER

6

LOGICAL DEVICES I/O DEV FIELD PHYSICAL DEVICES

00 RS232 Channel 1

01 RS232 Channel 2
WRITE

10 CR Tube

11 (user punch device 1)

00 RS232 Channel 1

01 RS232 Channel 2
LIST

10 CR Tube

11 (user list device 1)

At cold start or system reset, the I/O status byte is set equal
to 82H, causing the CR Tube and keyboard to be selected for console
I/O and LIST, while the RS232 Channell is selected for both READ
and WRI'rE.

3.1. 2 I/O SUBROUTINES

The way in which a program performs an I/O operation to any of
the four logical devices is by calling the appropriate sub­
routine supplied by the I/O system. The available subroutines
and their locations in memory are given in the following table:

ROUT!.NE FUNCTION MEMORY LOCATION ---

CI Console input 103H
C[Console Output 109H
F . Reader input 106H
1::0 Punch output lOCH
LO List output 10FH
SO Console String Output 12AH

The rest of this section gives a description and examples of
how to call these subroutines.

7

CI - CONSOLE INPUT

This routine returns a character received from the selected
console device to the caller in the A register. The A regis­
ter and the condition bits are affected by this operation.

Example:

Assembly Language

CALL
STA

CO - CONSOLE OUTPUT

CI
DATA

CO transmits a character, passed from the calling program in
the A register, to the device selected for console output. The
A register and the condition bits are affected.

Example:

Assembly Language

RI - READER INPUT

MVI
CALL

A I I , .
CO ; PRINT I I ON CONSOLE

..
RI returns a character read from the reader device in the A
register. If no character was read from the device (i.e.,
end of file), the CARRY condition bit is set equal to 1, and
the A register is zeroed. If data is ready, the CARRY bit is
zeroed. If no character is received from the physical device
then striking any key causes an end of file to be simulated and
control is returned to the calling program.

Example:

Assembly Language

CALL RI
JC EOF END OF FILE SENSED
STA DATA

8

PO - WRITE OUTPUT

PO transmits a character from the calling program to the device
selected as the punch device. PO is identical in format to CO.

LO - LIST OUTPUT

LO performs the same function to the selected list device as
CO and PO do to their selected devices.

SO - CONSOLE STRING OUTPUT

SO transmits a character string to the device selected for console
output. A pointer to the beginning of the string is passed from
the calling program in the HL register pair. The string should be
terminated by a byte having the value 239 (decimal). SO also pro­
vides repeat loops of the form: ••• , 237, N, Dl, D2, ••. , DM, 238,

where N is the repeat count for the string of bytes Dl
through DM.

Example:

Assembly Language

LXI
CALL

H, STR
SO

STR: DB 'AB', 237, 3, 'CD', 238, 'EFG', 239

This example will print 'ABCDCDCDEFG' on the console device.

FLOPPY TAPE I/O SUBROUTINES

Three I/O subroutines are provided for the Intecolor Floppy Tape.
These routines are:

ROUTINE

TWR
TRD
TVF

FUNCTION

Write to Floppy Tape
Read from Floppy Tape
Compare memory with Floppy Tape

MEMORY LOCATION

0130H
0133H
0136H

The Floppy Tape is a block-transfer device. One record is written
per track. The inputs from the calling program to each of the
three I/O routines are:

9

HL register pair - pointer to memory buffer

DE register pair - byte count

A register - Tape drive/track code:
BIT3 DRIVE: 0 or 1
BITS2-0 - Track: 0 through 7

After calling anyone of the routines, the A register will contain a
status code and will have been tested (ORA A) :

A=0
A=2

A=4
A=6
A=8

A=IO
A=12

No Errors
Keyboard Abort (pressing any key ~n the

keyboard during the data transfer will
abort the operation)

Buffer too large for write.
Buffer too small for read.
Read Failure: A complete, correctly

formatted record could not be read
from the tape.

Checksum error.
Verify failure. A mismatch was detected between

data in memory and data read from the tape
during a memory compare operation (TVF).

Also, after calling any of the routines, the HL register pair
will point one byte past the last byte manipulated in the memory
buffer.

3.1.3 USER-SUPPLIED DEVICES

This section describes the necessary steps in hooking up a
user-supplied I/O device to the I/O system.

The I/O subroutines described in Section 3.3.2 assume that
programs (called drivers) exist which perform the actual
transfer of data between I/O devices and the CPU. For in­
stance, when the console input routine is called, it checks
to see which physical device is assigned to the console,
and then branches to the driver appropriate to the device
Therefore, when the user supplies his own device, he must:

1) Write a program to perform the data transfer,
making sure that the program saves and restores
any CPU registers it uses that are not specifi­
cally changed by the I/O subroutine.

10

2) Store a JMP to this driver's address in the
appropriate location as defined in the
following table:

MEMORY LOCATION USE

9F91H USER DEFINED CONSOLE INPUT
9F94H USER DEFINED CONSOLE OUTPUT
9F97H USER DEFINED READER (1)
9F9AH USER DEFINED WRITE (1)
9F9DH USER DEFINED LIST (1)

Thus, if the user supplied a custom built listing device, he would
write a driver to transfer data to it in an appropriate manner,
then store the JMP to the driver's address at location 9F9DH. By
assigning LIST=3, his device would receive any listing output
generated.

4. 0 . CPU OPERATING SYSTEM

The Intecolor SOOI CPU O.S. enables the operator to easily
manipulate the contents of memory, read and produce MAG
tapes, and execute programs.

® The CPU O.S., and all Intecolor SOOI system software in
general, use the last SO memory locations after the refresh
area for storage of temporary data. Therefore, if the opera­
tor runs a program beginning in these locations, and then uses
the CPU O.S. Text Editor, or Assembler, he must re-load these
SO bytes of his program before running it again. Alternatively,
programs could be written beginning at any higher location.
Then system programs and user programs could be executed in
any order, without requiring the re-load operation.

For a 25!line system these locations are SFBOH to SFFFH.
The 4S line system uses locations 9FBOH to 9FFFH.

The CPU O.S. is the operator's interface to the SOSO CPU, and
controls loading and execution of user programs, and to some
extent the debugging of user programs. Figure 4-1 illustrates
memory utilization during various stages of system software
use. While the CPU O.S. is running, it uses an area at the
top of memory for data storage and scratch work.

11

4.1 CPU OPERATING SYSTEM IMPLEMENTATION AND EXECUTION

4.1.1 CPU O.S. IMPLEMENTATION

The Intecolor@SOOl CPU O.S. program is implemented on two
E PROM modules, which are pre-installed into each Intecolor SOOI
with Option 34. This allows the CPU to be used with great
ease, as it is not necessary to wait for lengthy paper-tape
loading operations. All that is required to go on-line with
CPU O.S. is to turn the Intecolor SOOI on, hit the ESCAPE
key, and then the CPU O.S. key, and begin execution.

4.1.2. STARTING SYSTEM MONITOR

To begin operating the CPU O.S., press two keys in sequence,
'ESCAPE', (CPU O.S.) and the Intecolor SOOI will automatically
jump to the starting address of the CPU O.S.

4.2 CPU O.S. OPERATION AND COMMANDS

The commands consist of a single letter typed into the
Intecolor@SOOl keyboard followed by a number of arguments,
possibly none. The arguments are separated, if there are
more than one, by spaces or commas. A command is terminated
and executed by typing a carriage return or space, depending
upon the command.

4.2.1 B COMMAND (BACK TO CRT O.S.)

4.2.2 D COMMAND (DISPLAY DATA)

'rhe format of the D command is:

D low address, high address

Low address is a valid 16 bit memory address.

12

High address is a valid 16 bit memory address equal to or
greater than low address.

Description: Upon execution of this command, memory data
from (low address) to (high address) is displayed upon the
list device (normally the CR tube). Data are displayed in
hexadecimal form. Up to sixteen bytes per line are printed,
preceded by the hexadecimal address of the first byte of
that line. A carriage return is forced after a byte having a
low order digit of F in its memory address is printed.

Example: Enter at the keyboard the command:

.DIOF, 123(Cr)

and the CR Tube will display:

AA OlOF
0110
0120

BB CC DD EE FF 11 22 33 44 55 66 77 88 99 AB CD
EF 12 34 56

where memory locations OlOF through 0123 are assumed to contain

AA BB CC DD EE FF 11 22 33 44 55 66 77 88 99 AB CD EF
12 34 56

the D command should be used only to examine memory contents. To
punch the memory contents onto a tape, the W command should be
used. These commands produce a tape in the proper formats, while
the D command causes a simple sequence of characters to be
output.

Error conditions:

1. If low address or high address is greater than 16 bits,
only the last 4 hex digits of the argument will be used
as the address.

Example: The command

.D30010,AB0013(Cr)

is equivalent to the command

.DOOIO,0013(Cr)

2. If low address is greater than high address, only the
one byte at low address will be displayed.

13

Example: The command:

.DlO,6

is equivalent to the command

.DlO,lO

3. Non-existent memory is equivalent to a string of bytes
all containing FF H.

Example: If memory address 2000 H- 2010 H are invalid, then
the command:

.D2000,20l0

will cause the teletype to print:

2000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
2010 FF

4. If low address or high address contains an invalid
character, or if high address is omitted, the CR Tube
will immediately display '? (Cr) (1£). and await the
next command.

Example: If the user attempts to enter the number OG as an
address, the following will be displayed:

• DOG?

4.2.3 F COMMAND (FILL MEMORY WITH CONSTANT)

The format of the F command is:

F low address, high address, data

Low address is a valid 16 bit memory address.

High address is a valid 16 bit memory address equal to or
greater than low address.

Data is an 8 bit data value.

14

Description: Execution of this command causes memory locations
(low address) through (high address) to be filled with the
constant (data).

Example: The command:

. F7, l4,AA (Cr)

will set bytes 0007 through 0014 equal to AA H.

0007
0010

Error Conditions:

AA AA AA AA AA AA AA AA AA
AA AA AA AA AA

1. If low address of high address is greater than 16 bits
(or data is greater than 8 bits), only the last 4 (or 2)
hex digits will be used.

Example: The command:

.F7AB0007,0014,FFACAA(Cr)

is equivalent to the command:

.F0007,0014,AA(Cr)

2. If low address is greater than high address, data will
replace only the byte at low address.

Example: If locations 7, 8, and 9 contain AA H, BB H, and CC H,
execution of the command:

.F7,l,33(Cr)

will cause memory to appear as follows:

0007 33 BB CC

3. If a non-existent memory address is specified, this
command has no effect.

4. If low address, high address, or data contain an invalid
character, the CR Tube will immediately display'? (Cr) (If).'
and await the next command.

Example: If the user tries to enter BQ as data, the following
will be displayed:

.F0012,14,BQ?

15

4.2.4 G COMMAND (GO TO)

The format of the G command is:

G address, bkptl, bkpt2

Address, bkptl, and bkpt2 are valid 16 bit hexadecimal memory
addresses.

Description: The G command causes program control to be trans­
ferred to location address. If either bkptl or bkpt2 is specified,
a breakpoint will be set in the program at the corresponding
addressees). The specified address must correspond to the first
byte of a program instruction. If either breakpoint is en­
countered during program execution, the CPU o.s. will save and
display all program status (CPU registers and condition bits),
clear all existing breakpoints, and take control. The user may
then examine and/or modify registers or memory, or use any other
monitor commands. This feature allows the user to debug por-
tions of a program.

If address is not specified, the program status is restored
and the saved value of the program counter is used as the new
starting address.

Example: The command:

G24A

will cause program execution to begin at location 24AH, with
no breakpoints being set.

The command:

G,12C

will cause a breakpoint to be set at 12CH, and program execution
to resume at the address indicated by the saved value of the
program counter.

The command:

G

will cause program execution to resume at the address indicated
by the saved value of the program counter, with all status
restored and no breakpoints set.

16

Error Conditions:

1. If address is greater than 16 bits, only the last 4
hex digits of the argument will be used as the address.

Example: The command:

.G3C0010(Cr)

is equivalent to the command

.G0010 (Cr)

2. If address is a non-existent memory address, the system
will attempt to transfer control and then return to the
CRT 0.5. with no response. The CPU 0.5. must then be
manually restarted.

4.2.5. H COMMAND (HEXADECIMAL ARITHMETIC)

The format of the H command is:

.H number, number Sp

Number is a 16 bit hexadecimal number.

Description: The H command is designed to aid the user in
performing hexadecimal arithmetic while using the CPU 0.5.
It causes the sum and difference it arguments to be displayed
in two-s complement hexadecimal form. This command is termi­
nated by a space, rather than by a carriage return.

Example:

.HIE,5C 007A FFC2

Error Conditions:

1. If either number is greater than 16 bits, only the last
4 hex digits are used.

Example: The command:

.HOOABC,23Sp

lS equivalent to the command:

.HOABC,23Sp

17

2. If number contains an invalid character, the CR Tube
will immediately display '?(Cr) (If).' and await the
next command.

Example: If the user attempts to enter alP, the following will
be displayed:

.HOIP?

4.2.6 I COMMAND (RESET CRT TO STATE So)

The format of the I command is:

4.2.7

I causes the same action as the CPU reset key
being typed.

L COMMAND (LOAD HEXADECIMAL FILE)

The format for the L command is:

L bias address

Bias Address is a 16 bit two's complement hexadecimal number.

Description: This command loads tape written in hexadecimal
format (using the W command) into memory. The address at which
the tape is loaded is determined by adding the address on the
tape to the bias address using two's complement arithmetic.
The bias may be negative, but in this case must be in two's
complement form. If the tape was produced using an E command
with a non-zero entry point address (see section 4.2.11),
control will be transferred to that location in memory. Other­
wise, the CPU O.S. will remain in control and request another
command.

Example: If a tape was used which began at location 0100 H,
the following command:

.LFFBO(Cr)

will cause the tape to be read and loaded into location 50 H.
(1000+FFBO=50).

18

NOTE: If an error occurs while reading the tape (such as a
checksum error), the CPU o.s. will immediately stop reading
the tape, display '?(Cr) (Lf).' and await the next command.
The operation may be retried by backing up the tape to any
point before the last colon and issuing another L command,
since each data word specifies the address at which it is to be
loaded. The CPU o.s. will read up to the first colon it en­
counters, and then begin loading data.

Note that this means that, if you wish to change data in
locations in memory, it is not necessary to regenerate an
entirely new tape with the change; instead you may read in
the original tape, then read in a patch tape which reloads
only the erroneous locations.

Error Conditions:

1. If the bias address is greater than 16 bits, only the
last 4 hex digits are used as the bias address.

Example: The command:

.LOOFFBO (Cr)

is equivalent to the command:

.LFFBO (Cr)

2.- If an invalid character is present in the bias address,
the CR Tube will immediately display '*(Cr) (Lf).' and
await the next command.

Example: If the user attempts to enter GOO as a bias address,
the following will be displayed:

.RG?

4.2.8 M COMMAND (MOVE MEMORY)

The format of the M command is:

.M low address, high address,
destination address

Low address is a valid 16 bit memory address.

High address is a valid 16 bit memory address equal to or
greater than low address.

19

Destination address is a valid 16 bit memory address.

Description: The M command causes the block of memory from
low address through high address to be moved to the locations
in memory beginning at destination address.

Example: If memory appears as follows:

LOCATIONS

0300-0304
0200-0204

Then the command:

will cause the following:

LOCATIONS

0300-0304
0200-0204

contain
contain

DATA

01020304
A1A2A3A4

M200,204,300

contain
contain

DATA

A1A2A3A4
A1A2A3A4

Note: The movement is performed byte by byte: the byte at
low address is moved to destination address, then low address
+1 is moved to destination address+l, etc. Therefore, the
MOVE command may be used to fill memory with a byte or sequence
of bytes.

Example: If location 0300 H contains FF H, the command

.M300,3l0,30l(Cr)

will cause locations 300 through 310 to contain FF H. The FF
at 300 is moved to 301, then the byte at 301 (which is now FF) ,
is moved to 302, and so on.

Error Conditions:

1. If any address is greater than 16 bits, only the
last 4 hex digits are used as the address.

Example: The command:

.M00302,303,00405(Cr)

is equivalent to the command:

M302,303,405(Cr)

20

2. If low address is greater than high address, only
one byte will be moved from low address to destina­
tion address.

Example: The command:

.M300,2FO,100(Cr)

is equivalent to the command:

.M300,300,100(Cr)

3. If low address through high address specifies a non­
existent range of memory, bytes of FF H will be moved
to the memory locations specified by destination address.

Example: If locations 2000 H through 2005 are non-existent,
the commend:

.M2000,2005,100(Cr)

will cause locations 0100 H through 0105 H to contain FF H.

4. If an invalid character is entered in an address, the
CR Tube will display '?(Cr) (If).' and await the next
command.

E~ample: If the user attempts to enter OBAG as the destination
address, the following will be displayed:

MIOO,lOF,OBAG*

4.2.9. R COMMAND (BAUD RATE SELECT)

The format of the R command is

R rate value

The rate value must be between 1 and 7. See chart below.

NUMBER 1 2 3 4 5 6 7

NORMAL BAUD llO 150 300 1200 2400 4800 9600
Ri\,fE

HIGH SPEED 880 1200 2400 9600 19,200 38,400 76,800
BAUD RATE

21

4.2.10 S COMMAND (SUBSTITUTE MEMORY)

The S command is used to display and/or modify the contents
of individual memory locations. It is used as follows:

1. Type an S, followed by the hexadecimal address of the
first memory location you wish to display. Type space.

2. The data from the selected address is displayed,
followed by a dash (-).

3. To modify memory, type in the new data followed by a
space or a carriage return. If you do not wish to
modify the contents of that location, do not type any
data in, but only type a space or carriage return.

4. If a space was typed in step 3, the next memory
location will be displayed as in step 2. If a
carriage return was typed, operation will be returned
to thli:! CPU O.S.

Example: The contents of the first four bytes of memory is
00 Al CE FF. You wish to change it to 00 A3 CE 11 •

• SOOOOSpOOSp Al - A3Sp CE - Sp FF - llCr

User entries are unshaded. Display back is shaded.

Error Conditions:

1. If address is greater than 16 bits, or the data to be
substituted is greater than 8 bits, only the last 4
or 2 hex digits respectively are used.

Example: The following sequence is equilvalent to the previous
example:

.SOABOOOOSp 00 - Sp Al - BA3Sp CE - Sp FF - OllCr

2. If an invalid character is encountered, the CR Tube will
immediately display '?(Cr) (If).' and await the next
command.

22

4.2.11 X COMMAND (EXAMINE AND MODIFY REGISTERS)

The formQt of the X command is:

X reg ident

Reg ident is a single character specifying a CPU register as
follows:

A A register
B B register
C C register
D D register
E E register
F Flag byte, displayed in the form as it is stored

by the instruction PUSH PSW
H H register
L L register
M Hand L registers combined (16 bits)
P Program counter (16 bits)
S Stack pointer (16 bits)

Note: The format of the flag byte F is:

Description:
CPU registers.

Sign bit
Zero bit
Always 0

A

SZOCOP1C

Auxiliary carry bit

State of carry bit
Always 1
State of parity bit
Always 0

The X command is used to display and/or modify
It operates similar to the S command, as follows:

1. Type an X, followed by the register identifier.

2. The data from the selected register is displayed,
followed by a dash (-). Four hexadecimal digits
are displayed for M, P, and Sj two hex digits for
the other register identifiers.

3. To modify the register, type in the new data followed
by a space or a carriage return. If you do not wish
to modify the register, type only the space or carriage
return.

23

4. If a space was typed in step 3, the next register in al­
phabetical order is displayed. If carriage return was
typed, the X command is terminated. If a space is typed
after register S has been displayed, the command is terminated,
this being the last register identifier in the list.

Example: The A, B, C, and D registers contain AAH, BBH, CCH,
and DDH, respectively. You wish to change the Band C registers
to OOH and FFh, respectively.

XASp AA- Sp BB- OOSp CC- FFSp DD-Cr

Note: Values set by the X-command will become the actual
contents of the registers after execution of the next GO
command.

The values displayed by the X-command are the contents of
the registers prior to the execution of the last breakpoint
set by the GO command. These displayed values, however,
will reflect any changes of register "contents" made by the
execution of X-commands since this last breakpoint.

Error Conditions:

1. If the data to be substituted is greater than 16
bits for registers M, P, S, or 8 bits for the other
register identifiers, only the last 4 or 2 hex
digits respectively are used.

2. If an invalid register identifier or character is
encountered, the CR Tube will immediately display
'?(Cr) (Lf).' and await the next command.

4.2.12 E COMMAND (END FILE)

The format of the E command is:

E address

Address is a valid 16 bit memory address.

Description: The E command causes an end-of-file mark and
sixty null characters to be written at the end of a hexa­
decimal output file. The end of file mark is hexadecimal
record of length 00. (See Appendix D). If address is 0
or absent, the L command which loads the file will return
control to the CPU O.S. If address is non-zero, the L command
will transfer control to that memory address immediately after
loading the file.

24

4.2.13 W COMMAND (WRITE MEMORY)

The format of the W command is:

W low address; high address

Low address is a valid 16 bit memory address.

High address is a valid 16 bit memory address equal to or
greater than low address.

Description: The W command is used to output memory locations
low address through high address to the system punch device
in hexadecimal format. A series of W commands may be issued
in order to punch various non-contiguous memory locations onto
a continuous strip of tape.

Any series of W commands should be terminated with an E command
in order to punch a termination character, so that when the tape
is read it will be handled properly.

Example: If memory locations 1 through 3 contain 53F8EC, the
command: .WOOOl,0003(cr)

produces:

:0300010053F8ECC5

(See Appendix D for an explanation of tape format.)

Error Conditions:

1. If low address or high address is greater than 16
bits, only the last 4 hex digits of the argument
will be used as the address.

Example: The command:

WABOOIO,lOO(Cr)

is equivalent to the command:

WOOIO,lOO(Cr)

2. If low address is greater than high address, only
the one byte at 1mV' address will be written:

25

Example: The command:

.W10,0(Cr)

is equivalent to the command:

.W10,10(Cr)

3. Non-existent memory is equivalent to a string of
bytes all containing FF H.

4. An invalid character in either address will cause
the CR Tube to display '?(Cr) (If).' and await the
next comrr~nd.

Example: If the user attempts to enter 3Z as low address,
the following will be displayed:

.W3Z?

4.2.14 N COMMAND (NULL PUNCH)

The N command consists only of the letter N followed by a
carriage return and causes 60 null characters to be written
on the punch device.

26

APPENDIX A

INSTRUCTION SUMMARY

This appendix provides a summary of 8080 assembly language
instructions. Abbreviations used are as follows:

A

An

ADDR

Aux. carry

Carry

CODE

DATA

DATAl 6

DST

EXP

INTE

LABEL

M

Parity

PC

PCH

PCL

REGM

RP

The accumulator (register A)

Bit n of the accumulator contents, where n may have any value
from 0 to 7 and 0 is the least significant (rightmost) bit.

Any memory address

The auxiliary carry bit

The carry bit

An operation code

8 bits (one byte) of data

16 bits (2 bytes) of data

Destination register or memory byte

A constant or mathematical expression

The 8080 interrupt enable flip-flop

Any instruction label

A memory byte

The parity bit

Program Counter

The most significant 8 bits of the program counter

The least significant 8 bits of the program counter

Any register or memory byte

A register pair. Legal register pair symbols are:

B for registers B and C
D for registers D and E
H for registers H and L
SP for the 16 bit stack pointer
PSW for condition bits and register A

27

RPI

RP2

sign

SP

SRC

zero

XY

(

Format:

CODE

STC

CMC

The first register of register pair RP

The second register of register pair RP

The sign bit

The l6-bit stack pointer register

Source register or memory byte

The zero bit

The value obtained by concatenating the values X and Y

An optional field enclosed by brackets

contents of register or memory byte enclosed by parentheses

Replace value on lefthand side of arrow with value on right­
hand side of arrow

CARRY BIT INSTRUCTIONS

[LABEL:] CODE

DESCRIPTION

(carry) (1 Set carry

(carry) (Complement carry
(carry)

Condition bits affected: Carry

28

Format:

Code

INR

DCR

CMA

DAA

SINGLE REGISTER INSTRUCTIONS

[LABEL:]

[LABEL:]

[LABEL:]

[LABEL:]

(REGM) ~(__

(REGH) ~(__

(A) ~'--__

INR REGM
-or-
DCR REGM
-or-
CMA
-or-
DAA

Description

(REGM) + 1

(REGM) - 1

If (AO-A3)> 9 or (aux. carry = 1,
(A) ((A) +6

Then if (A4-A7)> 9 or (carry)=
1 (A) = (A) + 6 *24

Increment register REGM

Decrement register REGM

Complement accumulator

Convert accumulator
contents to form
two decimal
digits

Condition bits affected: INR,DCR
CMA

Zero, sign, parity
None

DAA Zero, sign, parity, carry, aux. carry

NOP INSTRUCTION

Format:

[LABEL:] NOP

Description

-------------- No operation

Condition bits affected: None

29

Format:

[LABEL:]

[LABEL:]

DATA TRANSFER INSTRUCTIONS

MOV
-or­
CODE

DST ,SRC

RP

NOTE: SRC and DST not both = M

NOTE: RP = B or D

Code Description

MOV (DST) ((SRC) Load register DST from register SRC

STAX «RP))((A) Store accumulator at memory
location referenced by the specified
register pair

LDAX (A) <IE «RP» Load accumulator from memory
location refereced by the specified
register.pair

Condition bits affected: None

REGISTER OR MEMORY TO ACCUMULATOR INSTRUCTIONS

Format:

[LABEL:] CODE REGM

Code Description

ADD (A) (; (A) + (REGM) Add REGM to accumulator

ADC (A) ~ (A)+ (REGM) + (carry) Add REGM to accumulator
with carry

SUB (A) ((A) - (REGM) Subtract REGM from accumulator

SBB (A) (; (A)-(REGM)-(carry) Subtract REGM from accumulator
with borrow

ANA (A) ((A) AND (REGM) AND accumulator with REGM

XRA (A) ((A) XOR (REGM) EXCLUSIVE-OR accumulator
with REGM

30

Code Description

ORA (A) ~_ (A) OR (REGM) OR accumulator with REGM

CMP Condition bits set by (A) - (REGM) Compare REGM with
accumulator

Condition bits affected:

ADD, ADC, SUB, SBB: Carry, sign, zero, parity, aux. carry
ANA', XRA, ORA: Sign, zero, parity. Carry is zeroed.
CMP: Carry, sign, zero, parity, aux. carry. Zero set if (A)=(REGM)

Carry reset if (A) < (REGM)
Carry set if (A)~ (REGM)

ROTATE ACCUMULATOR INSTRUCTIONS

Format:

[LABEL:] CODE

Code Description

RLC (carry) ~-- A7' An+ l ,<- An,AO ~ A7 _Set carry =A7, rotate
accumulator left

RRC (carry) < AO'
A An ~ An+l,A7 ~ 0 Set carry =A O' rotate

accumulator right

RAL An+l f- An' (carry) ~7 ,AO ~(ca.rry) Rotate accumulator
left through the carry

RAR An<---An+ 1 ' (carry) ~O,A7 <E-- (carry) Rotate accumulator
right through carry

Condition bits affected: Carry

REGISTER PAIR INSTRUCTIONS

Format:

[LABEL:] CODEl RP
-or-

[LABEL:] CODE2

Note: For PUSH and POP, RP=B,D,H or PSW
For DAD, INX, and DCX, RP=B,D,H, or SP

31

I

Codel

PUSH

POP

DAD

INX

DCX

Code2

XCHG

XTHL

SPHL

Description

«SP) -1) ~(RPl), «SF) -2) ~ (RP2),
(SP) ~ (SP)-2

(RPl)~((SP) +1), (RP2)~ «SP»,
(SP)~ (SP)+2

(HL)~< __ (HL) + (RP)

(RP) <- (RP) +1
(RP) ~ (RP)-l

Description

(H)~(D), (L) ~ (E)

(L)~((SP», (H)<-?((SP)+l)

(SP)~(H) : (L)

Condition bits affected:

PUSH, INX, DCX, XCHG, 'XTHL, SPHL: None

Save RP on the
stac1<
RP=A saves accumulator
and condition bits.
Restore RP from
the stack
RP=A restores accumulator
and condition bits.
Add RP to the 16-bit
number in Hand L.

Increment RP by 1
Decrement RP by 1

Exchange the 16 bit
number in Hand L with
that in D and E.
Exchange the last
values saved in the
stack with Hand L.

Load stack pointer from
Hand L.

POP If RP=PSW, all condition bits are restored from the stack, otherwise
none are affected.

DAD Carry

IMMEDIATE INSTRUCTIONS

Format:

[LABEL:] LXI RP, DATA16
-or-

[LABEL:] MVI REGM, DATA
-or-

[LABEL:] CODE REGM

Note: RP=B,D,H, or SP

32

CODE DESCRIPTION

LXI

MVI

ADI

ACI

SUI

SBI

ANI

XRI

ORI

CPI

(RP)~ DATA 16

(REGM) < DATA

(A)~(A) + DATA

(A)~(A) + DATA + (carry)

(A)~(A) - DATA

(A)~(A) - DATA - (carry)

(A)~(A) AND DATA

(A)~(A) XOR DATA

(A)~(A) OR DATA

Condition bits set by (A)-DATA

Condition bits affected:

LXI, MVI: None

Move 16 bit immediate Data
into RP

Move immediate DATA into REGM

Add immediate data to accumulator

Add immediate data to accumulator
with carry

Subtract immediate data from
accumulator

Subtract immediate data from
accumulator with borrow

AND accumulator with immediate
data

EXCLUSIVE-OR accumulator with
immediate data

OR accumulator with immediate
data

Compare immediate data with
accumulator

ADI, ACI, SUI, SBI: Carry, sign, zero, parity, aux. carry
ANI, XRI, ORI: Zero, sign, parity. Carry is zeroed.
CPI: Carry, sign, zero, parity, aux. carry. Zero is set if (A)= DATA

Carry reset if (A) < DATA
Carry set if (A) ~ DATA

DIRECT ADDRESSING INSTRUCTIONS

Format:

[LABEL:] CODE

CODE

STA (ADDR) ((A)

LDA (A) ((ADDR)

SHLD (ADDR) ~(L), (ADDR+l)~(:I)

LHLD (L)~(ADDR), (H)~(ADDR+l)

Condition bits affected: None

ADDR

DESCRIPTION

33

Store accumulator at location
ADDR

Load accumulator from location
ADDR

Store Land H at ADDR and
ADDR+l

Load Land H from ADDR and ADDR+l

JUMP INSTRUCTIONS

Format:

[LABEL:] PCRL

-or-

[LABEL:] CODE ADDR

I

CODE DESCRIPTION

PCRL (PC) ~(RL) Jump to location specified by
register Rand L

JMP (PC) ~ADDR Jump to location ADDR

JC If (carry) = 1, (PC)~- ADDR
If (carry) = 0, (PC)~ (PC) +3 Jump to AD DR if carry set

JNC If (carry) = 0, (PC) (-- ADDR
If (carry) = 1, (PC)~ (PC)+3 Jump to ADDR if carry reset

JZ If (zero) = 1, (PC) ~.ADDR
If (zero) = 0, (PC) -E-- (PC) +3 Jump to ADDR of zero set

JNZ If (zero) = 0, (PC) ~ADDR
If (zero) = 1, (PC) ~ (PC)+3 Jump to ADDR if zero reset

JP If (sign) = 0, (PC) ~ADDR
If (sign) = 1, (PC) ~ (PC)+3 Jump to ADDR if plus

JM If (sign) = 1, (PC) ~ADDR
If (sign) = 0, (PC) ~ (PC)+3 Jump to ADDR if minus

JPE If (parity) = 1, (PC) _ADDR
If (parity) = 0, (PC) _(PC) +3 Jump to ADDR if parity even

JPO If (parity) == 0, (PC) ~DDR
If (parity) = 1, (PC) ~(PC) +3 Jump to ADDR is parity'odd

Condition bits affected: None

34

CALL INSTRUCTIONS

Format:

[LABEL:] CODE ADDR

CODE DESCRIPTION

CALL ((SP) -1) ~(PCH), «SP) -2) ~ (PCL), (SP)~(SP) +2, (PC) ~ ADDR
call subroutine and push return
address onto stack

CC If (carry) 1, «SP) -1) ~ (PCH), «SP)-2) ~ (PCL), (SP) ~_ (SP)+2,
(PC)~ ADDR

If (carry) 0, (PC)~ (PC)+3 Call subroutine if carry set

CNC If (carry) 0, «SP)-l ~ (PCH), «SP)-2)~ (PCL), (SP) ~ (SP)+2,
(PC) ~ ADDR

If (carry) 1, (PC) ~ (PC)+3 Call subroutine if carry reset

CZ If (zero) 1, «SP)-l)- (PCH), «SP)-2) ~ (PCL), (SP) ~ (SP)+2,
(PC) ~ ADDR

If (zero) = 0, (PC) <- (PC)+3 Call subroutine if zero set

CNZ If (zero) 0, «SP) -1) -E-- (PCH), «SP) -2) ~ (PCL), (SP) -E- (SP) +2,
(PC) ~ AD DR

If (zero) 1, (PC) ~ (PC)+3 Call subroutine if zero reset

CP If (sign) 0, «SP)-l) ~(PCH), «SP)-2) ~ (PCL), (SP) -E-- (SP)+2,
(PC) ~ ADDR

If (sign) 1, (PC) ~ (PC)+3 Call subroutine if sign plus

CM If (sign) 1, «SP) -l)~ (PCH), «SP) -2) ~ (PCL), (SP) -E-(SP) +2,
(PC) ~ ADDR

If (sign) 0, (PC) ~ (PC)+3 Call subroutine if sign minus

CPE If (parity)= 1, «SP)-l) ~ (PCH), «SP)-2) ~ (PCL), (SP) -<,-(SP) +2,
(PC) ~ ADDR

If (parity)= 0, (PC) ~ (PC)+3 Call subroutine if parity even

CPO If (parity)= 0, «SP)-l) ~ (PCH), «SP)-2) ~ (PCL), (SP) ~ (SP)+2,
(PC) ~ ADDR

If (parity)= 1, (PC) ~ (PC)+3 Call subroutine if parity odd

Condition bits affected: None

35

RETURN INSTRUCTIONS

Format:

[LABEL:] CODE

I

CODE DESCRIPTION

RET (PCL) ~ «SP», (PCH) ~ ((SP) +1) i (SP) <E-(SP) +2
Return from subroutine

RC If (carry) = 1, (PCH) ~ ((SP)) , (PCH) ~ ((SP) +1) , (SP) ~ (SP) +2
If (carry) = 0, (PC) ~ (PC) +3 Return if carry set

RNC If (carry) = 0, (PCL) .;:- ((SP)) , (PCH) ~ ((SP) +1) , (SP) ~ (SP)+2

If (carry) = 1, (PC) ~ (PC) +3 Return if carry reset

RZ If (zero) = 1, (PCL) -E- «SP», (PCH) ~ ((SP) +1) , (SP) (- (SP) +2
If (zero) = 0, (PC) ~ (PC) +3 Return if zero set

RNZ If (zero) =0, (PCL) ~ ((SP)) , (PCH) ~ ((SP) +1) , (SP) ~ (SP) +2
If (zero) =1, (PC) ~ (PC) +3 Return if zero set

RM If (sign) = 1, (PCL) <- «SP», (PCH) ~ ((SP) +1) , (SP) ~ (SP) +2
If (sign) = 0, (PC) ~ (PC) +3 Return if minus

RP If (sign) = 0, (PCL)~ ((SP)) , (PCH) ~«SP)+l) , (SP) ~ (SP) +2
If (sign) = 1, (PC) ~ (PC) +3 Return if plus

RPE If (parity) =1, (PCL) <!-((SP)) , (PCH) ~ ((SP) +1) , (SP) ~(SP)+2
If (parity) =0, (PC) ~ (PC) __ (PC) +3 Return if parity even

RPO 'If (parity) =0, (PCL) ~ ((SP)) , (PCH) ~«SP)+l), (SP) (;- (SP) +2
If (parity) =1, (PC) ~ (PC) +3 Return if parity odd

Condition bits affected: None

RST INSTRUCTION

Format:
[LABEL:] RST EXP

Note: a EXP 7

CODE DESCRIPTION

RST ((SP) -1) ~ (PCH), ((SP) -2) ~(PCL) , (SP) ~ (SP)+2
(PC) ~_ OOOOOOOOOOEXPOOOB Call subroutine at address

specified by EXP

Condition bits affected: None

36

INTERRUPT FLIP FLOP INSTRUCTIONS

Format:

[LABEL:] CODE

CODE DESCRIPTION

EI (INTE) ~l Enable the interrupt system

DI (INTE) ~O Disable the interrupt system

Condition bits affected: None

INPUT/OUTPUT INSTRUCTIONS

Format:

[LABEL:] CODE EXP

CODE DESCRIPTION

IN (A) ~ input device Read a byte from device EXP into
the accumulator

OUT output device ~ (A) Send the accumulator contents to
device EXP

I

Condition bits affected: None

HLT INSTRUCTION

Format:
[LABEL:] HLT

CODE DESCRIPTION

HLT ---------------- Instruction execution halts until
an interrupt occurs.

Condition bits affected: None

37

PSEUDO - INSTRUCTIONS

ORG PSEUDO - INSTRUCTION

Format:

ORG EXP

Code De~~cription

ORG LOCATION COUNTER < EXP Set Assembler location
counter to EXP

EQU PSEUDO - INSTRUCTION

Format:

NAME EQU EXP

Code Description
-

EQU NAME <: EXP Assign the value EXP
to the symbol NAME

END PSEUDO - INSTRUCTION

Format:

END

Code Description

END End the assembly.

38

APPENDIX B

--INSTRUCTION EXECUTION TIMES AND BIT PATTERNS--

This appendix summarizes the bit patterns and number of time states
associated with every 8080 CPU instruction.

When using this summary, note the following symbology:

1) DDD represents a destination register. SSS represents a
source register. Both DDD and SSS are interpreted as
follows;

DDD or SSS Interpretation

000 Register B
001 Register C
010 Register D
Oll Register E
100 Register H
101 Register L

110 A memory register
III The accumulator

2) Instruction execution time equals number of time periods
multiplied by the duration of a time period.

A time period may vary from 480 nanosecs to 2 microsec.

When two numbers of time periods are shown (eg. 5/11), it
means that the smaller number of time periods will be required
if a condition is not met, and the larger number of time periods
will be required if the condition is met.

39

MNEMONIC D7 D6 D5 D4 D3 D2 Dl DO Number of Time Periods

CALL 1 1 0 0 1 1 0 1 17
CC 1 1 0 1 1 1 0 0 11/17
CNC 1 1 0 1 0 1 0 0 11/17
CZ 1 1 0 0 1 1 0 0 11/17
CNZ 1 1 0 0 0 1 0 0 11/17
CP 1 1 1 1 0 1 0 0 11/17
CM 1 1 1 1 1 1 0 0 11/17
CPE 1 1 1 0 1 1 0 0 11/17
CPO 1 1 1 0 0 1 0 0 11/17

,

RET 1 1 0 0 1 0 0 1 10
RC 1 1 0 1 1 0 0 0 5/11
RNC 1 1 0 1 0 0 0 0 5/11
RZ 1 1 0 0 1 0 0 0 5/11
RNZ 1 1 0 0 0 0 0 0 5/11
RP 1 1 1 1 0 0 0 0 5/11
RM 1 1 1 1 1 0 0 0 5/11
RPE 1 1 1 0 1 0 0 0 5/11
RPO 1 1 1 0 0 0 0 0 5/11
RST 1 1 A A A 1 1 1 11
IN 1 1 0 1 1 0 1 1 10
OUT 1 1 0 1 0 0 1 1 10
LXI B 0 0 0 0 0 0 0 1 10
LXI D 0 0 0 1 0 0 0 1 10
LXI H 0 0 1 0 0 0 0 1 10
LXI SP 0 0 1 1 0 0 0 1 10
PUSH B 1 1 0 0 0 1 0 1 11
PUSH D 1 1 0 1 0 1 0 1 11
PUSH H 1 1 1 0 0 1 0 1 11
PUSH A 1 1 1 1 0 1 0 1 11
POP B 1 1 0 0 0 0 0 1 10
POP D 1 1 0 1 0 0 0 1 10
POP H 1 1 1 0 0 0 0 1 10
POP A 1 1 1 1 0 0 0 1 10
STA 0 0 1 1 0 0 1 0 13
LDA 0 0 1 1 1 0 1 0 13
XCHG 1 1 1 0 1 0 1 1 4
XTHL 1 1 1 0 0 0 1 1 18
SPHL 1 1 1 1 1 0 0 1 5
PCHL 1 1 1 0 1 0 0 1 5
DAD B 0 0 0 0 1 0 0 1 -10
DAD D 0 0 0 1 1 0 0 1 10
DAD H 0 0 1 0 1 0 0 1 10
DAD SP 0 0 1 1 1 0 0 1 10
STAX B 0 0 0 0 0 0 1 0 7
STAX D 0 0 0 1 0 0 1 0 7
LDAX B 0 0 0 0 1 0 1 0 7
LDAS D 0 0 0 1 1 0 1 0 7
INX B 0 0 0 0 0 0 1 1 5
INX D 0 0 0 1 0 0 1 1 5
INX H 0 0 1 0 0 0 1 1 5
INX SP 0 0 1 1 0 0 1 1 5

40

I
MNEMONIC D7 D6 DS D4 D3 D2 D1 DO Number of Time Periods

MOV r1,r2' 0 1 D D D S S S S

MOV M,r 0 1 1 1 0 S S S 7

MOV r,M 0 1 D D D 1 1 0 7

HLT 0 1 1 1 0 1 1 0 7

MVI r 0 0 D D D 1 1 0 7
MVI M 0 0 1 1 0 1 1 0 10
INR 0 0 D D D 1 0 0 S

DCR 0 0 D D D 1 0 1 S
INR A 0 0 1 1 1 1 0 0 S

DCR A 0 0 1 1 1 1 0 1 S

INR M 0 0 1 1 0 1 0 0 10

DCR M 0 0 1 1 0 1 0 1 10

ADD r 1 0 0 0 0 S S S 4

ADC r 1 0 0 0 1 S S S 4

SUB r 1 0 0 1 0 S S S 4

SBB r 1 0 0 1 1 S S S 4

NDA r 1 0 1 0 0 S S S 4

XRA r 1 0 1 0 1 S S S 4

ORA r 1 0 1 1 0 S S S 4

CMP r 1 0 1 1 1 S S S 4

ADD M 1 0 0 0 0 1 1 0 7

ADC M 1 0 0 0 1 1 1 0 7

SUB M 1 0 0 1 0 1 1 0 7
SBB M 1 0 0 1 1 1 1 0 7
NDA M 1 0 1 0 0 1 1 0 7
XRA M 1 0 1 0 1 1 1 0 7
ORA M 1 0 1 1 0 1 1 0 7
CMP M 1 0 1 1 1 1 1 0 7

ADI 1 1 0 0 0 1 1 0 7

ACI 1 1 0 0 1 1 1 0 7

SUI 1 1 0 1 0 1 1 0 7

SBI 1 1 0 1 1 1 1 0 7

NDI 1 1 1 0 0 1 1 0 7

XRI 1 1 1 0 1 1 1 0 7

ORI 1 1 1 1 0 1 1 0 7

CPI 1 1 1 1 1 1 1 0 7

RLC 0 0 0 0 0 1 1 1 4

RRC 0 0 0 0 1 1 1 1 4

RAL 0 0 0 1 0 1 1 1 4

RAR 0 0 0 1 1 1 1 1 4
JMP 1 1 0 0 0 0 1 1 10

JC 1 1 0 1 1 0 1 0 10

JNC 1 1 0 1 0 0 1 0 10

JZ 1 1 0 0 1 0 1 0 10

JNZ 1 1 0 0 0 0 1 0 10

JP 1 1 1 1 0 0 1 0 10

JM 1 1 1 1 1 0 1 0 10

JPE 1 1 1 0 1 0 1 0 10

JPO 1 1 1 0 0 0 1 0 10

41

MNEMONIC D7 D6 D5 D4 D3 D2 D1 DO Number of Time Periods

DCX B 0 0 0 0 1 0 1 1 5
DXC D 0 0 0 1 1 0 1 1 5
DCX H 0 0 1 0 1 0 1 1 5
DCX SP 0 0 1 1 1 a 1 1 5
CMA a a 1 0 1 1 1 1 4
STC a a 1 1 a 1 1 1 4
CMC a a 1 1 1 1 1 1 4
DAA 0 a 1 a a 1 1 1 4
SHLD a a 1 0 0 0 1 0 17
LHLD 0 a 1 a 1 a 1 a 17
EI 1 1 1 1 1 a 1 1 4
DI 1 1 1 1 a 0 1 1 4
NOP a a 0 a 0 a a a 4

42

APPENDIX C

HEXADECIMAL PROGRAM TAPE FORMAT

The hexadecimal tape format used by the Intecolor@800l system is a
modified memory image, blocked into discrete records. Each record
contains record length, record type, memory address, and checksum
information in addition to data. A frame by frame description
is as follows:

Frame 0

Frames 1,2
(0-9,A-F)

Frames 3 to 6

Frames 7,8

Frames 9 to 9+2* (Record
Length) - 1

Record Mark, Signals the start of
a record. The ASCII character
colon (":" HEX 3A) is used as the
record mark.

Record Length. Two ASCII characters
representing a hexadecimal number
in the range 0 to 'FF'H (0 to 255).
This is the count of actual data
bytes in the record type or check­
sum. A record length of 0 indicates
end of file.

Load Address. Four ASCII characters
that represent the initial memory
location where the data following
will be loaded. The first data byte
is stored in the location pointed
to by the load address, succeeding
data bytes are loaded into
ascending addresses.

Record Type. Two ASCII characters.
Currently all records are type 0,
this field is reserved for future
expansion.

Data. Each 8 bit memory word is
represented by two frames containing
the ASCII characters (0 to 9, A to F)
to represent a hexadecimal value 0
to 'FF'H (0 to 255).

43

Frames 9+2* (Record Length) to
0+2* (Record Length) +1

Checksum. The checksum is the
negative of the sum of all 8 bit
bytes in the record since the
record mark (":") evaluated
modulus 256. That is, i~ you
add together all the 8 bit bytes,
ignoring all carries out of an
8-bit sum, then add the checksum,
the result is zero.

Example: If memory locations 1 through 3 contain 53F8EC, the format
of the hex file produced when these locations are punched is:

:0300010053F8ECC5

Note: This format is also known as the Intel format.

44

To: Dave Deans

150 Sp!'en St rcet

Flamillqham. Ma~s. 01701

(617) 879·7530

S b ' t Greg Whitten's Disasssnbler • U Jec:

Copies: All Hands

Men, 0 rand u m

In Reply Refer To:

From: Joe S;U1rorna

Date: Junc> 16, HY17

Ref:

The dis~Lsst311bler by Greg is ingenious. No docLUncntaUon cxh;ts except that which
Greg \\yote and fOllvarded to Charles l!ucnch. I Lx'l icve you or Juhn Dc;Wolf w(Jre
concerned, last week, that it was unable to decode "push" statements. With the
correc Lions listed below, it qui.te properly ha.nd les them. The missing code at
or about line 110:

430
440
150
460

0$""ID$(D3)+H2$(RP):Hcturn
0$=" INR*LI·~L.dl ~ "+H$(Xl): Retw'ri
O$="DCH 4L'. L14 4 "+H$(Xl) : Ilcturn
O$="MVI 4Ll AALl "+H$(Xl)+",":Go

*11 Denotes Space

'. ',-
l!~ '.

to 800

1(' .
•. I

Greg has verbally explained how to use the disasSB1ID leI'.

He explains that the first set of statonents requiring response an' C£XTlpuc.olor -
Display or list. Only the first letter of each, or <my qucsti on; need be typed.
A Ccxnpucolor (we chould eh:mgc this variable n;Ul1(~ Lo somd.hin[; (:Js0) l'e~~pons(> or
C sets the output f0l1lut to 18 lim~s. lJi!::>l)lay is 24 lines and list is 6G for a
high spet'Cl. printer.

The soc(lnd i ntm'3.ct iv(:~ r('~ponsh [or mnnlK'l"i ng ~ystnn
reccmncnds using bex - address must use IouI' digits.
if not four digits. A decimal system is correct if,
for the address. An "0" assumes octal.

Byte; Character or Display dump yields:

I3 - dllmp in h('x
C - dLUnp in character ionnat
D - DispJay ~U1d .'-;Y1l1bol generation.

is S('U'-cxpl:llntlH'Y. Greg
Fi 11 in withlc:ac1 i ng z.oro' s,

and only if, we use a decimal

The add, charaeter, make and no, SYlnl.1Ol interaCU'ltlGrog eon!:-3idcrs j~; the only
confusing issue. The symool table is the same idea as any symool table iran
a compiler, i.e. listing of c;1ch variable's addn~ss in memory.

Dave Dc~ms
,Junc 16, 1977
P;}ge 2

The rcsp::)l1se:

N - No t~l ble (the easiest)
M - ~lakc a table
A - Add more symlx)ls Ilku1Ually on ~cc()nd pas~.
C - Clear previous s~~nl:XJl s l:x~Iore making tabk.

Hcspone:;cs may be "OBed" rur 1"1 nesse (~. g. A ~1 meallS add :llld lIl:d« ~ a La 11 1 e,
C M - cleaT and f1l:ckc, etc. Tl1is rout inc; should Lx.: \'.orth $100 to a custcmc;r?
It outputs in standard InLel 8080 cexie.

Hl'gal'lls,

/ i,' jZ 'Ii>u~r~-<',
l/ Joseph M. S;mrl1na

JMS:Lmg

BARTLETT ASSOCIATES INC.

Dumb Terminal Emulation - No Parity-No Graphics

FULL DUPLEX SOFTHARE

3800 21
[)iZ ;¢

30 B8 start: LXI H, TABLE

3 CD 2A 01 CALL MESSX INITIALIZE OR TEH.MINAL
(1, l~!~ /

04)(IF: Of) 6 CD AEJ 57 loop: CALL KETST
C 4 ,'.\ (j ~.'-

=) NO 9 CA 15 B8 JZ OVER "z" KBD CHAR
;>

C DB, 02 IND INTAD CLEAR
S'~' 1-

E CD FF 11 CALL RDKEY GETKBD CHAR
h~-f

8811 4F MOV C,A Send to RS-232 via PUNCH

2 CD OC 01 CALL PO
0\ (:c.

5 DB 03 over IND STBFA GET I/O STATUS
i~

I. #;

,7 Et? 08 ANI TTYDA IF NO RCV CHAR
~~. 7..

9 CA 06 B8 JZ LOOP THEN LOOP
0\: ..

C DB 00 IND RXBFA ELSE GET IT
" E F6 80 ORI 80H RE~10VE PARITY
E:

[3820 26, B8 MVI H, CHAS
"

2 DF HOV L,A

3 7E HOV A,M

4 CD c 09 01 CALL CO

7 C3 06 B8 JMD LOOP
c<..''' .

3830 IB table DB lB ESC

1 4B DB 4B K SCROLL

2 OE DB OE CTRL N

3 lB DB IB ESC

4 52 DB 52 B

5 33 DB 33 3 BAUD RATE

6 OF DB OF CTRL-O

7 OC DB OC CTRL-L

8 lB DB IB ESC

9 46 DB 46 F FDX

A EF DB EF TERM

BARTLETT ASSOCIATES INC.

Dumb Terminal Emulation - No parity-no Graphics

HALF DUPLEX SOFTHARE

B800 21 30 B8 start: LXI H, Table

3 CD 2A 01 Call MESSX

6 CD /,-,0 S"/ 04 loop: Call KETST

9 CA lA B8 JZ : OVER
C DB 02 IN INTAD

E CD FF 11 CALL lillKEY

B8l1 4F F5 MOV C,A, PUSH PSW

3 CD OC 01 CALL PO
6 Fl POP PSW

7 C3 23 B8 JMP SKIP
A DB 03 over: INP STBFP

C E6 08 ANJ TTY DA
E CA 06 B8 JZ LOOP

B821 DB 00 IN RXBFP

3 F6 80 skip: ORJ 80H

5 26 B8 MVI H,TRANS SHR 8

7 6F MOV L,A

8 7E MOV A,M

9 CD 09 01 CALL LO
C C3 06 B8 JMP LOOP

B830 IB table: DB ESC
1 4B DB K SCROLL

2 OE DB CTRL-N A7 ON

3 lB DB ESC

4 52 DB R

5 34 DB 4 1200 BAUD

6 OF DB CTRL-O A7 OFF

7 OC DB CTRL-L CLR SCRN

8 IB DB ESC

9 48 DB H HDX

A EF DB TERMINATOR

B880-00
1-00
2-00
3-03
4-00
5-00
6-06
7-07
3-08
9-09
A-OA
B-OB
C-DC
D-OD
E-OE
F-OF

B890-00
1-11
2-12
3-13
4-14
5-15
6-16
7-17
8-18
9-19
A-IA
B-IB
C-IC
D-ID
E-1E
F-1F

1 SHIFT 1 to /

B8AO-20
1-21
2-22
3-23
4-24
5-25
6-26
7-27
8-28
9-29
A-2A
B-2B
C-2C
D-2D
E-2E
F-2F

rcv'd Char

NULL
Protect
Plot Node
CURSOR X,Y
FREE
FREE
CCl
BELL
HOME
TAB
LINE FEED
ERASE LINE
ERASE PAGE
CR
A7 ON
BLINK/A7 OFF

BLACK
RED
GREEN
YELLOH
BLUE
MAGENTA
CYAN
liHITE
TRAl"'1SMlT
CURSOR RIGHT
CURSOR LEFT
ESC
CURSOR UP
F6 ON/FLAG OFF
BG ON/FLAG ON
BLINK ON

SPACE
!
"
if
$
%
&

(
)

* +

/

CRT Char

NULL
Protect
NULL
CURSOR X,Y
FREE
FREE
CCl
BELL
HOME
TAB
LINE FEED
EI~ASE LINE
ERASE PAGE
CR
A7 ON
BLINK / A7 OFF

BLACK
RED
GREEN
YELLOW
BLUE
MAGENTA
CYAN
Hl-IITE
TRANSMIT
CURSOR RIGHT
CURSOR LEFT
ESC
CURSOR UP
F6 ON/FLAG OFF
BG ON/FLAG ON
BLINK ON

SPACE
!
"
If
$
%
&

(
)

* +

/

rcv'd Char CRT Char

B8BO-30 0 0
1-31 1 1
2-32 2 2
3-33 3 2
4-34 4 4
5-35 5 5
6-36 6 6
7-37 7 7
8-38 8 8
9-39 9 9
A-3A
B-3B
C-3C
D-30 ==
E-3E
F-3F ? ?

~ - ,,,,,~-

:\. , .. -
~ ~ \. c..... ~- - ::\. -- I ~ _

\.., .""": ,3.:"' ,,-- •• C!. _

B8CO-4J :1 3
- -

1-41 A A
2-42 B B
3 -,+3 c C
4-44 D D
5-45 E E
6-46 F F
7-4: G G
8-45 I" 6

('1-49 1 1
/\-I+A J J
B-I+B K K
C-46 L L
D-4D M M
E-4E N N
F-4F 0 0

B8DO-50 P P
1-51 Q Q
2-52 R R
3-53 S S
4-54 T T
5-55 U U
6-56 V V
7-57 W W
8-58 X X
9-59 y y

A-SA Z Z
B-SB C C
C-5C \ "

.=:J :J
D-SD
E-5E 1\ 1\

F-SF

B8EO-60
1-61 a a
2-62 b b
3-63 c c
4-64 d d
5-65 e e
6-66 f f
7-67 g g
8-68 h h
9-69 i i
A-6A j j
B-6B k k
C-6C 1 1

, D-6D m m

E-6E n n
F-6F 0 0

;. ~ ~.:~ ~ \..-"\.

Cl1a~ '-1-
L" . ::l ::-

B8FO-70 p P
1-71 9 9
2-72 r r
3-73 s s
4-74 I 6-'-+

5-75 u ~

6-U .. 'J

," - 7 / ' . . , ;.v
8-7S x x
9-79 y y
A-7A z z
B-7B L L
C-7C 1 1
D-7D J '5
C-7E s s
F-7F E E

DOS TO FCS DISKETTE CONVERSJON

1. Type CPU R~sct, ESCAPE D ;mcl then FCS \vill be
pdnLccl on thc screen.

2. Now place thc' diskeltc included in the conversion kit
in the (}isk drive and close Lhc door.

3. Typc RUN CON VR T (Return) and tllen the unit will
ask you what drive no. the DOS diskette is in. Replace
the diskette now in the drivc with a DOS diskette to be
converted to YCS.

4. Now type (,b for left hand or single drive and 1 for the
right hand dri.ve.

5. The Convcrsion will take about 5 seconds for rnast DOS

diskettes and is pcrnlanent. The cOllverted disketLes
will now work on the FCS systelTl and not the DOS

systern.

FILE CONTROL SYSTEM
OPERATIO::\S MANUAL

When you recei.ve your Intecolor System, be sure your unit is working cor­
rectly before connecting any other I/O device, except the keyboard.

DISK DRIVE INSTALLATION

1. Turn the Intecolor power off.

2. Plug the ribbon cable £rOIn the disk unit into the RS-232 type connector
labc:led "FLOPPY DISK" . NEVER CONNECT THIS RIBBON CABLE

. ------.---.-.~-~~------ --~--

11~TO ANY OTHER RS-232 TYPE CO::\NECTOR OR DAMAGE TO TliE
DISK UNIT MAY RESU LT.

3. Plug the DISK power cord in an AC outlet.

4. Now turn on the Intecolor CRT power and the system is now ready.

BEGINNIN"G DISK OPERATING INSTRUCTIONS

1. Insert the labeled diskette into the disk drive with the label up and in
the lower right-hand corner, and close the gate.

DISKETTE-
o
o

[=.=J

i
2. Enter@~~-~~-~~ID~~9' D and the :message prompt -yCS> will appear.

Then type either DIR ~~l~@ or DIRl:(!{~tu-~ for t~e second drive and
a listing of progra:ms available on that diskette will be displayed followed
by the prompt me s sage ~_<;:;_e_>. Once in the File CO:1trol System, DIR
should be used for listing the directory. To change drives, type DEVO:
~~i.~3 for the left-hand, DEVl:@~t~i.DJ for the right-hand. To change
device type enter DEV FD0: (8 ' \ FLOPPY DISK) or DEV MD0: (MINI DISK)
or DEV FT0: (FLOPPY TAPE).

3. ~o load a particular BASIC program, type@:~g then Wand @-;t3.
~~ t~~n D and following the ~ pro:mpt message type DIR ~etur19.
Type@then E and LOAD? IIPROGRAM NAME 1\ then (RetllT.§). -­
(See exa:mple 1)

ISC146-1077

.l:~S, CUN'f. PACi.c; 2

4. If something other than READY comes back, then type LOAD? "PROGRAM
NAME" and~~u:r0agai~-----uThe program still does not work, select
another program and try again. If it still doesn It function properly, check
with the FCS Commands and DISK BASIC MANUAL.

EXAMPLE 1: TO LOAD A BASIC 8001 PROGRAM

You typeGf"i0 E the system prints READY
You type LOAD? "PROGRAM NAME" lRe!~- the

system prints READY
You type RUN. @:_~-";~d the loaded p'rograrn will

execute

HOW TO SAVE A DISPLAY

1. Enter BASIC 800 1 and type the following program:

~PLOT27: PLOT4: PRlL-....;'T"SAVE0:SCREEN. DIS 8000-9DFF":END ~~
NO_IE: SC reen can be any file name and. DIS is optional as is 0

for drive nUHlber.
Now type PLOT2:PLOT 255 ~Ct~. This will put the display'in the
correct location so that the display memory location is at the top left
corner of sc reen.

2. Put the 'display on the screen to be saved. You can use the curGor
con'trol keys to correct all errors in the display.

3. Now position the cursor so as to have about 4 lines by 5 characters each
on the left area of the screen clear. Select Foreground and Background
colors the same as the display color in this area. Type@Y9 E and
then type RUN: and then Background, Black, Foreground, Red and then

QIeJ:~B·
NOTE: You will not be able to see the characters you type in.

After the display has been SAVED then R~ will appear •

. 4. Now that the display is saved on diskette you may erase the page. To
recall the display to the screen, typet&S~ D and after the prompt message
FCS;> appears, you type: LOAD0:SCREEN. DIS and the whole display
willbe loaded onto the screen.

5. NOTE: If the sc'reen is to be generated from BASIC 8001 program, then
the process could be simplified by just including the BASIC 8001 state­
ments at the end of that program, as in Step 1 above.

· FCS, CO.NT. PAGE 4

HOW TO FORMAT AND INITIALIZE A DISKETTE

FORMAT

1. Put in the Diskette with the MDFRMT program. on it and close the gate.

2. Hit~i9 D and Type DIR ~_t~, a listing of all files will be displayed.

3. Type RUN MDFRMT ®~. The m.essage FLOPPY DISK FORMATTER
should be returned by the unit. \ '!!-:-7

NO'~: For 8" Disk System type RUN(i<tL)KRMT (R_~~
l •. '-"";"; ,

4. Now take out the diskette that MDFRMT (or FDFRM·'F) was loaced from.
Put in the diskette that is to be checked or form.atted and close the
gate. (etc.)

1) A READ CHECK will allow you to check a diskette that already has
prograr:ns on it to see if the diskette has any unreadable blocks.

2) FORMATTING a diskette will prepare it to accept programs.

(.C~y~~.!g]\: Formatting a diskette will completely wipe out any infor- .
mation previously stored on the diskette.

To do a READ CHECK type R and then the drive number (0,1). The printout
on the screen is decoded (see below) into 9~_~~ and address errors. Unless
the last three letters are RED then the error is a soft error, but if there
are a lot of these Blue, Yellow, or Green errors you should try to get
another copy of your source program on a more error-free diskette. To
FORMAT a diskette, insert a blank diskette and type F and the dri.ve number
(0,1), and a colorful pattern will be displayed on the screen. After the disk
has been formatted it will automatically do a READ CHECK as described above.
The computer will return to the DISK FORMATTER Program which allows
you to FORMAT many diskettes in a row.

FORMAT ERROR DECODING

T
o Track No. 0 to 22 for MD or 0 to 4C for FD (Values are in Hex)
7

s
o Sector No. 0 to 11 for MD or 0 to 2D for FD (Value s are in Hex)

e (D Data Error
Ite (0 - Read Error

{8

A -Address Error
1 -Write Error
o

1 - Read & Write Error

8

PAGE 5

NOTE: The color of these three characters tells how m.any Read/Write
errors in a row the computer found. l=WHITE, 2=CYAi'\f •.• 8=RED

-RED is not acceptable below track ff20 HEX for MD or 1/40 HEX
for FD

INITIALIZE

Type@~DD the system. will print FCS >.
Then you type: li'JI MDO: (1 0 letter-~ameT (optional no. directory blocks).
The diskette is now form.atted, initialized and ready for storage of progran~s or
data.

NOTE: The MD will default to 9 blocks for the Directory and the FD will
default to 24H blocks for the Directory.

· ,F(;S~ CONT. PAG~ b

SUMMARY OF THE
FILE CONTROL SYSTEM COMMANDS

The following definitions will be used to describe the FCS commands:

() Means manditory part

[J Means optional part and if not specified, will result in the default
type.

(Device name:) = [Device type J [Number] (:)

Device types are MD, FT, and FD for Mini-Disk, Floppy Tape and
8 11 Floppy Disk and number is either.o or 1.

(Memory spec) = (Load address) (Byte count) or (-End address)
all memory addresses are in HEX format.

(File spec) = (File name) GType] [; Version1

File name is any 6 characters. Type can be any three charcters and
PRG is default type. Version is 0 to FF HEX number.

~OTE: After a default device type has been selected only the number of the
device is required.

COpy or COP

DUPLICATE or DUP

DUPLICATE ALL
or DUA

DEVICE or DEL

DIRECTORY or DIR·

EXIT "FCS"

[Device Name:] (File Spec) TO (Device Name:)
(File Spec) will copy one file from one disk drive
drive to another.

(Device name:) TO (Device name:) - will dup­
licate all the files on the original diskette onto
another diskette. Dvr l(lc~-~.S d'l> ~ ''''~'''.e.. a! So

Same as DUP, but duplicate complete disk not
just the file.s areas.

[Device name: J (File Spec) - all options ·re­
qui:;:ed. Allows the user to delete any file in
one step.

(Device name:] lists directory of the default
or specified device.

ESCAPE and ESCAPE again

INITIALIZE or INI

b fA-VTfoN ~ 1t.~ v;, tl
SAVE or SAY

LOAD or LOA

RUN

REN AME 0 r REN

READ or REA

WRITE or WRI

.?AG~ .,

(Device name:) (Volume name) No. of DIR
BLOCKS No. of directory blocks will default to
a normally adequate no. ; NOTE: Device name
requires all options.

Wtp~ (Jtt- 8U f't,"}~;"-;;V"\' {~w"'""Tt\e 'bi Sk('t1,<,
[Device name:] (Fi Ie Spec) (Memory Spec)
Start address Acutal address Start

Addre s s defaults to LOAD addre s s and actual
address defaults to load address.

[Device nameJ (File spec) [Load address]

LDevice name:] (File spec)

[Device 11 me:] (File spec) TO (File spec)­
allows the user to rename any file to any
other na,me.

[Device name: 1 (Start block no.) (Memory
spec) - will read any"\vhere on the diskette
starting at any block and ending whe re speci­
fied, without regard to program boundaries.

[Device name:) (Start block no.)
(Memory spec)

};CS, CO~T. PAGE 8

HOW TO USE THE -
FILE CONTROL SYSTEM COMMANDS

COpy or COP - allows the user to copy one file frorn one diskette to another
if you have a dual drive system, or a system with two different
types of devices.

~:x_:\1'0_JCLE: Type~S_g D and when the system responds with
~~~ then type in COP0:TEST. PRG TO l:ABC ~~ 
This will copy the latest version of TEST. PRG on device ¢ 
to file name ABC. PRG on device 1 

DUPLICATE or DUP - allows all the files on one diskette to be transferred 
to another diskette. 

EXAl::1:PLE: Type@© D and wh~~ge system responds with 
£CS> then type in DUP0: TO 1: Q3-e~~~ or 
DUP MDl: TO MD0: . 

DEVICE or DEY - allows the user to change the default device or drive • 

. ~XAMPLE: Type in @.© D and when the system responds with 
FCS)- then type in DEY 1: will change the default device to -- Dri ve 1 (right hand) 

DEV MD¢: will change the default device to 
mini-disk drive 0 (left hand) 

DELETE or DEL - allows you to delete any file on the diskette. 

EXAMPLE: Type in~~© D and when the system responds with 
FCS > then type in 
D~ TEST. PRG; 1 Q§t~ NOTE: all file informa-

or DELl:TEST. DAT;2 ~~t..':l..~ tion is needed to delete a 
or DEL MDl:NAME.ARY;1 @'~f3 file. This is the file pro­

tection that is provided to 
protect the diskette. 

DIRECTORY or DIR - lists all the programs on the diskette on any drive no. (¢,l) 

EXAMPLE: Type in~~D and when the system responds with 
FCS> then type in DIR for default drive 
~ ~~_for left hand default drive or 
DIR MDI: @i9 for right hand mini-disk drive 



f ;, I", ~. . . . 

INITIALIZE or INI- allows the user to name a diskette a 10 letter name and also 
name an optional number of directory blocks allotted. 

EXAMPLE: Type in~© D and when the system responds with 
FCS> then type in INI MD0:SAMPLENAME @_:~3 

INI MDl:TESTDISKOl 10 CRetur~ the 10 is 
optional 

Mini Disk defaults to 9 blocks 
Floppy tape defaults to storage in K/8 blocks (8K=1 block) 
8" single sided disk to _?4!i_ blocks 
8" double sided disk to 48H blocks 

SAVE or SA V - allows the user to save any type of data, array, or program iile 
on diskette. 

EXAM~:LE: Type in«'~ D and when the system responds with 
FCS> then type in SAVE 0:TEST. ASM; 01 LOAD 2ddres s -End 
--- address ~ 

or SA VE TEST LOAD address Byte count Hex (Retur}Y 
or SAVE MD1:TEST.DAT;01 A000 - BFFF Start Address,Actual 

Address @.=tu.0J 
ASM - Assembly source program 
PRG - Object code program 
DAT - Data File 

NOTE: Ii the same File Name is reused then the version number -----
will be 1 higher than already on disk by that san"le name 

Both the (ASM, DAT) and (VR#Ol) are optional but help define the 
file better. 
To SAVE and LOAD programs from BASIC it will be necessary 
to go into BASIC first then follow the instructions in the DISK 
BASIC 8001 Manual. 

LOAD or LOA - allows the user to load any type file into any RAM IY'"em.ory 
location he may wish to. This indicates that you may bring a 
display to the screen which is correct. LOAD command uses 
the same guide line s as the SAVE command. 

EXAMPLE: Type0[S0D and when the system responds with 
}~ then type in 
LOAl:TEST.i>P-.~~1 (Test must be a PRG type) 

or LOA:DISPLA. DAT;l (DAT-Indicates data file) 
or LOA MD0:DISPLA. DIS; 1 8000 (8000- Indicates where it will 

.. load) 

NOTE: If version number is not specified then the highest 
version will be used. 

To load BASIC programs see section headed "SAVE/LOAD'f in 



· .1"CS, CON'l'. PAGE 10 

DISK BASIC 8001 MANUAL. 

RUN - allows the user to load an object code program and then start ex­
ecution of the program all in the same command if the re is a start 
address other than 0 in the directory 

,-g:XAMPLE: Type @9D and when the system responds with I~ 
then type in RUN CHESS (CrIESS must be a PRG file) 

or RUN l:CHE. ASM;2 (If it is an ASM file it must be 
specified) 

RENAME or REN - allows the user, in one step, to change the File Name, 
File TypeJand the Version No. separately or collectively without 
changing the information stored in the program. 

EXAMPLE: Type~S0 D and when the 
then type in REN TEST. PRG;l TO 

orRENO;TEST.ASM;2 TO 

systern responds 
TEST 1. ASM;2 
TEST; 1 

with :;:< .. CS> ---

READ or REA - allows ret rieval of information on any part of the diskette 
without regard to the directory or program boundaries. 

~XAMyLE; Type rE"SC) D and when the 
then type in REA 'L.-z--u- 8000 - 9EOO 

or REA 0; 100 8000· IE 00 

system responds with FCS> 
(will bring info. to screen) 
(will do the same as above) 

WRITE or WRI - allows information to be written anywhere on the diskette 
without regard to the directory or previous progralTI boundaries. 

EXAMPLE: Type@ D and when the 
then type in WRI 0:220 8000 - 9EOO 

or WRI 0;220 8000 lEOO 

system responds with f_~ 
-(will save\~hats on screen) 
(will dr,;) the same as above) 



FILE CONTROL SYSTEMS 
ERROR STATEMENTS 

EIVC - INVALID COMMAND 
ECFB -
EMVN - MISSING VOLUME NAME 

ESYN - SYNTAX ERROR 

EDIR - DIRECTORY ERROR 

EIVP - INV~,\L1D PARAMETER(S) 

ENVE - NO VOLUME ENTRY IN DIRECTORY 

EMFN - MISSING FILE NAME 

EMDV - MISSING DEVICE' NAME 

EMVR - MISSING VERSION 

EIVD - INVALID DEVICE 

ENSA - NO START ADDRESS 

EDFN - DUPLICATE FILE NAME 

EVOV - VERSION NUMBER OVERFLOW 

EFNF - FILE NOT FOUND 

EDRF - DIRECTORY FULL 

EFRD - FILE READ ERROR 

EFWR - FILE WRITE ERROR 

EWSZ - FILE TOO LARGE FOR WRITE 

ERSZ - FILE TOO LARGE FOR READ 

EDEL - DELETE ERROR 

EDUP - ERROR DURIl~G DUPLICATE 

ESIZ - DEVICE SIZES NOT SAME 

ECOP - ERROR DURING COpy 



THINGS TO BE NOTED 

1. Always be sure to have a diskette in the disk drive and the gate closed before 
hitting@0 D, DIR m.et~ or any other FCS com.mand. 

2. If the disk drive fails to stop running after typing the directory, or after 
execution of any other FCS command, type~ D or @Pu-"RE@. 

·3. When a disk drive does not function and an error statement appears across 
the screen such as: 

FCS Error - EIVC - L~VALID COMMAND 

Please check your list of error staten"lents of Page tt of this manual. 

4. Each mini-diskette has 276 Hex Blocks. 
Each 8" Diskettes has 906 Hex Blocks. 
Each block has 80 Hex bytes. (128 decimal) 

5. All File Control System commands involving the alphabet letters should be 
separated by spaces or commas. 

6, Any control code other than~~(ERASE line) will tenninate the command 
typed in. 

7. Any ESC command terminate s the FCS system. (Normally use ESC, ESC to 
go to visible cursor mode.) 

8. !'IOTE: The host computer can generate all of the FCS commands over the 
RS 232 channel. But the cO:llnland will not appear on the screen, nor will 
the FCS"/ prompt. In fact this is how DISK BASIC 8001 uses the system. 



-- -
f'CS DIR (RETURN) 

DIRECrrORY MD.0: SA!1PLENA:>1E 6 
{DEVICE TYPE {IO LETTERS (NO. DIRECTORY 
AND DRIVE NO.) FOR NAHE) . BLOCKS) 

A."TR NAME TYPE VR SBLK SIZE LEG IADR SADR 

attribute Program File Version Start Size of Last Byte Load Start 
byte Name type Block Program Count Address Address 

!/J3 PRINTl .BAS ;.01 .0.013 .0.064 7D AOB2 ,0,0,0~ 

Not Free Name of Type of Version Starting No. of Byte Load Starting 
bl:lt in use Program file BASIC No. of Prg. Block BaH Byte Count Addre-ss or Running 

any 6 Program FCS auto- where Blocks in the Address 
alpha matically program this last used for 
nUInl"!ric increments stnrts on . Program Block PRG types 
char. the VR diskette uses can be 

NO. I-BaH 

¢3 HDFRMT .PRG ;.02 .0.077 .0.0;06 80 A.0.0;O A~~f<J 

Same as Assembly 2nd Same as 6 (Ball Highest LOAD jumps to . 
above language Version. above Byte Byte PROGRAM this address 

program Block) possible @ this after it's 
file type long address loaded 

¢3 ABC 123 .DAT ;.01 .0.07D .0~~1 30 .013.0.0 ~~.0f<J 

Same as Data file Version Same as Size of 30 Hex Not used Not used 
above above Data Bytes in Data in Data 

in last file file 
block 

rpl (Free space) 012E Hex 014B Hex 

deFlates Total No. Total No. 
t .. ee space of Bytes of Bytes 

used left on '-. 
~ diskette 



·' 

This is the same as the original BAS IC 8001 Vel.'. 12..8.76 "t·;i.tb. th'2 
follmving extensions to allmv cor.qletc use of the IntcccIC't" File Control 
Systems or (FCS). These e)~tensions involve only d-:c! sxn:, LOAD a;d 
PRINT commands. For a det.::Iiled descripti on of tbQ FCS ~;ce tJ"lC! Intcc.olor 
FILE C01ffROL SYSTEN 1'13nual. 

SAVE 

The SAVE cmmn.:md is nOl'17 in the [onn SAVE ~·Tla:·:G \';~li_~r(! st:.rin>-; C;.:1n 
be a string variable such as A$ or as a quoted litcr21 5t~in~ su~h as 
"N/1l-m". There are threc FILE types that CC"lll be ~;;,:vQd. ·.they an: BASIC 
source (BAS), Dllmcl-ic /,RRI\YS (i-'.RY) [Jnd mCfliory n,.,·).'A (1).;~.~i') L 'if: 1:'10 file 
type is specified thenthc--delault tYPG~ is nAS .. o-· .. ·-·;:hl! J~p) file! t::.-~)0. c;m 
be in thc follmving form. Each cxamp]c \d 11 ~;,jVl~ UtQ ~,::Tl£.~ Gf'..~::n: ~;C'l!n:c. 

II 1/ 

SAVE "TEST" :RUl SAVES BASTC SOUJ~CE \nTH N!·.:-;r-: 'fEST O~~ DT~:!~ 
. SAVE "TEST. BAS II 

SAVE llTEST "BAS; 1" 
SAVE "TEST. 13/;S : II +ST1~$ (V) : l~E~< \·!lfFRE V IS ,!J. \' ,\r:..rid)lE J:',L'f\'Tl~;~ I ~'.XD SI9 
S/\\IJ.~ 1$· RE1·1 \.'fJ'.'DE' A~ ']'S A S'i'Dr:'(' \lj"J"j·\rT-'·' :k ~ ~. _ 1.1.1 Ll-\. ~,. L .L J. ' .......... 1 \ r .. \ \ 1 )..l. G 

SAVE A$+STR$ (V) :REH U1IEKE A$ l\r:n V i\RE V,I\l::'L\DLES 

The string sequence a fter the Sl\VE COlTu!l.::lnU obGJ s all of. the ?R INT 
command forms of normal BASIC 8001, sue b .::IS ccnc atena fd_on. 

The ARY file type can be in the S':-lfiH:~ £01:1,1 AS BAS except that: ARY 
ri'lust be in the string after the file 11.lmC. Also t.he file nar.'1e 11lU.,sC be 
a dimensioned or previously used arr.1Y by that Same first blO let;t;el:'s of 
the file n.:1me. If only one letter va rinb Ie Y'i.d!,;\e is us e<1 t:hen the file 
name must be thilt lctter only. 

EXAHPLE: 10 DIH l\1' (lOO)lO).T(3),TT(11,1~,13) 
20 S 1\ VE ".l\'rE~,;'r.: .td<' y I t 

30 SAVE "T. Al~y ; 1" 
LIO END 

The above \'Jill savC! the m:me:.'ic cllTcJYS AT <:wl "(_ 

The PAT £ iJ e type can be j n i:he s effie forrn as AR.Y.. It wi) 1 10ck ClE 
locat:ion 9E66H a.nd ~E67H (-24~86 low byte and -l4985 h.lSh byte) as Cl 

pointer to memory. It adds 1 to this pointer crnd takes the nex.t two 
bytes in memory as the number of bytQS to De scwetl on di sk. The] c"c at j~ns 
9£66H and ~E6 7H Si'eC ify tl1e end of ~ASIC 8001 MI?t"fJCny spsce, so all iYlernory 
above that location can be used to save data via BASIC 8001 using the 
lfletnOry POKE cOl1"ln:;.nd. 

This makes an ideal Way to save text Clr string infortll"~t:ioi'\ _ The 
examples belClw are subroutines \>lhich will CR.EATE, OPEN or CLOSE a d~t.;t 

\5C 100 -1077 

--



Disk BASIC 8001, Cont. P[lgc 2 

rile of NR Records (Number of Rl'conl::) by 1\.1. (R(~co rd L(>ngth) c hnracter. 

65000 
65002 
65003 
65004 
65005 

65008 
65009 
65010 
65012 
65014 

DATA VILE SYSTEN rOIl DISK l,NlIC BOO] VE~. 12.8.76 
. - "--------

REH FILE r.REATE, FILE SIZE = if OF RECORDS -,', RECORD LENGTH, r~R-":RL 
GOSUe65008: POn~l~ A+ 1 ,lm~':RL-lt\T (l]Z'::lU'/256) ~':256 
POKEFAt-2, INT (l\:R~':Rl./256) 
POKEFA+ 3, t\R: POKEFA+4 ,RL: FCJl{FI:: 51' o [\"R·.':RJ ,: POKEI' A+ FI ,0: NEXT 
RETU&~:END CREATE 

FAa 256-::PEE!( (~24 985 )+PEEK C-2!t<)86) -6 .':>53() :RETUR.l~ 
END OF GOSl1B 65008 
KEN FILE OPEN, FILEi·U.:-rE. DAT ;VET:;STON 
LO,\DPRn:T!\$:HEi·! i\$ ;':U~~T=F1Ll': l:,\[·W.IJXI';VElZ 
GOSUB65 GOg: !\R= PEEJ~ (FA!' 3) : In,::l'EEJ.;: (FII+/,) : :n~Tlll\N: END OF OPF!':: 

65020 l~El'l FILE CLOSE,FTLE1';X-1E.DXl';VUzSTON 
65022' SAVE A$:RHl A$ ~W~~'l' =FILUU\I-iE.DAT;VETl 

" 65024 RETURN: END OF CLU; E 

65028 
65029 
65030 
65031 

65038 
65039 
65040 
65041 

LOAD 

RE~·l />.$=GET$(PJ~,RP,l{C); JU·J=REC •. t.t,Rl''''POSITION IN REC o 

REH RC =ft Of CIL\R.i\CTn~S 
A$ = 1111: FOH..F 1 = ITORC : /\S =A$+CllR~~ (Pl::EK (FA-!-(r-l-J;.;·t::RL+RP+F1) ) 
NEXT:RCrUnN:EKD GET$ 

REi'l PUT A$, RN) RP: A$ =STRnJG OF D,\T 11, RN:: RECORD # 
REH RP= P()SITIO:~ OF i~ECOI-u) 

FORFI:: 1TOLEI~ (A$) : P01~EF Al-td-E:;'::RL+ Rl'+F' I ,ASC (l-HD$ (/\$ ) FI) ) 
NEXT: RETURN: END PUT 

The LOAD command is 110\oJ of the fornl 1,()J\DL'HLtl' STri.lNG \·;hC1-(> stl-jng is 
either a string variah] c or [' quotl,d J.i u·i~.:ll stdng. l,ike S/\VE thcl.-c 

arc three types of LOAD COl1il:ltlnJs. They <1J.-e HASIC SUllrce (1:;'.'I.S), numoric 
ARRAYS (ARY) , and mCl!lOl.-Y ]2A1'A (DAT). 

If no file type is Sl)(;l'jfj(~d Lll(~n tlw dl:LIUlt L~.'lw is ;)ssulllC'd to be 
BAS. The BAS type cnn b(~ of U:e fu] 1n\,?il'i~ fonn. Each example \·)1.11 cause 
a BASIC Source progr~m to be lonJcd. 

LOADPRINT"TEST :RG·l J,OI,DS 1\ Sl'.SIC ~UlmCE rKOCj~:\}l BY N/\:,TII\'G OF TEST 
LOAD? "TEST":RG'l IN Ii/\SIC i:U01 PRn;T IS S:IHE l\S? 
LOAD? "TEST. Jj/,S II 
J~OAD? "TEST. ];.".5 ; }," 
LOAD? "TEST. BAS; 11 +STj~$ (V) :REH \'!I1Ej~E' V ] ~ AVXfL\DLE BEllmEl'J 1 l\?-~D 99 
LOAD? A$:R£.l HHERE A~i IS A STRTI'\C VI'.I{Tt\l)1_E 
LOAD? A$+ST);.$ (V) :H.EN \!flEln: X~ !'l;j) V ,\RE Vi\l\Ti\j:;LES 



Disk BASIC 8001, Cont. Page J 

The string sequcnc e a[tcL' the l.Of,DIJi; H,!'1' (or 1.0ft.))?) c olnrn31:1d obey s 
all of the PRINT command form!; of nann:1l BASIC 000l such as conc':ltenation. 
The LOAD command can also be executed from Uw l)ASIC 8001 source. 

such as: 

10 LOADPRINT "TEST":RUN 
, 

This \o)Ould load a BASIC 8001 S01..l1'ce Ily nnllle of TEST ~mc1 thC'n execute 
that source progrmn. NOTE: 1\ny size progr3111 c:m load and mIN ~my other 
size program but variables C<ll1l10t-. j>L~ r<lss(~d bcc':-ll1sC the RUN command re­
utilizes the variabJes. Tf you want to tL~nsfer variables [rom one 
program to another you cnn lise: 

10 LOADPRINT "TEST":COI'O ~ 

This \;10U](] lorld a D/\~-;rc HOO] ~~(lllr('t: hy n:l111C or TEST (Jlld tl1L'l1 goes to 

statement 5 to start cxC'cution, \."itllout rC'initL!1:izing the vadClbles from 
tha first program. 

NOTE: The second pr(lgr~!m must be the ~:;lmC' ~;j;:c or sma1]er than the> 
first program if a GOTO state'lTIent is used (1ftC'~· the LOl\D com:nDncl. All 
string variables definC:'cl in the fi.rst SOl1rc(~ as :-1 J itc'ral '\\'111 not neces­
sarily be correct nO\'] , but CD.JcuLltccl string _varLlhJcs ,.,'ill be corl.·cct. 
This process C~ln be chain forever, so lon!; ~1S the first prOt~l'am in the 
chain is the largest • 

. The ARY file type can be i~1 the samc fnrm (1S the ))J\S file-tYI~e, except 
that ARY must be in the string after tl1C! file IWillC'. [\lso, the file n;]me 
must be a dimensioned O)~ previously us(>d alT,!y by the same name tiwt is cithc,~­

the smne size or larger than the l1e\\? array. NOTE: The dimensioned arrD.Y 
does not have to have -the S;]!T)C numbe1.· of: dimensions C1S the disk a::"'ray so 
long as total size is Conlp;!tible. 

Example: 10 DT1'-mNS,[ON I\'j' (J lOU) 
20 LOA])PRnn' "1>'1' EST • J\~~J' IT: REl-1 l\TEST -. DI:-l (100,10) 
30 END 

will couse a (100,10) ,n:C<l\; en bc lo~,(L:,d even t-hOllgh AT \vas od ginally 
set as an 1100, sincc 1100'i lO\: x 1(1. 

The DAT FIl.E type' call Iw il: till' ~;,aJH~ fl·JU·lh :\l:Y. B/\SIC Fill CD.use 
the file to be 10acJ(:d intI, lllf'J;,'.'-·:y l;r};i_1111i_j~g <it LL ... lo(:;lt.ion +1 specified 
at 9E66Jl ond 9E6711 (-2~9<'>:.) 1m! 11)'((' ~md -2t4~)f;C, b;[:,1/ byte). After lO.1din':, 
the first t\\'o byter, of 1.h,·· d-:t-,1 ::::i.L· 'dill. 1.:,<IJ h,,,,:! rC!11[; the fi]e is. l;UIE: 
The ,vcra Dt 9E(l61I .11ltl ~n:(.;;ll :'i';"-~LI il~:-: i.hc (,~iij I~r ])A~;TC ~)()Ol \·.'Ork ;.p;]ce, ~o 

that all memory ~lI)OV(! t l,.-,ti ~ I-r ('(' en, (l;:L~l st(lLlge to and from disk. 
Al son 0 t c t hat 0 n 1 y U J It' iL\ r I. i L: ill: I y- I II' n_-, ; 111 j]1 ,I t .~ 11 Y un p t j III C VJ i 1: !J 0 u t -



Disk BASIC 8001, Cant. p.Joe 4 
I, b 

C hanging the pointer at 9E66Jl and 9E() ill. 

PRINT 

By us ing thci PRINT STRING c Drl11n.:.ll1c1 pn:~c cded by PLOT 27 ;:md PLOT It or 
PLOT 68 (ESC,D for FCS DISK) BASIC 8001 is .Jblc to exercise [111 of the 
FCS disk commands. TheH:forc every command av.:d l.Jhle to the File Control 
System is also available to HASIC 8001, by Jetting tbe string become tbe 
FCS cornmc111d. 

'" 

EX3mple: To list tbe disk directory 

10 PLOT 27 
20 PLOT 4 
30 PRINT "DIR" 
!fO END 

or: 
10 PLOT 2 7 ; PRINT"DDI1"( 11 

or; 
10 PLOT 27;PLOT 68:PRINT A$:RF}1I'nlERE A$ IS A 
20 RE1-1 ST1Ul'iG VARIABLE [Qt;lIJJ TO DIR. 

NOTE: All of the above: cOIlim.Jnus c.:1l1S(~ the S:1111(, r('r;u1ts. 

For example, suppose the Directory of the disk is BE; fo1101-:s: 

TEST .DAT:Ol 
TEST .DAT;02 

Then tbe BASIC 8001 progr(}m b21cM \\7;11 dC'ic,t-e vel-sian 1 of TEST .DHf 
file, rennITIC vc':rsio]1 2 to vcr~;ioll 1 ujllbte Uk) cizltCi. file ;1l1c1 ~;avc it out 
Dgain BS vel-sian 2 so it can Ge used <li-~ain. 

10 JJOADPTUNT "TEST c DAT ; 2" 
20 PLOT27 : PLOT Lt : REi-I ;:ELECT FCS ;:10DE 
30 PRINT "DELETE 1'ES'] v])AT ; 1 II 
50 PRINT "RE;~M1E TEST, DIG; 2 TO TEST, DAT ; 111 
60 PLOT 27 : PLOT . 27 :JZGl SELECT VISI]3LE CUI~SOR }jODE 
70 :REH UPDfI'fr: DATA FILE 
80 : REM UPDATE J)Xl' A FILE 
90 SAVE '''f}~s:r. DA'1' " 

NOTE: All string func,tions t-llClt are :wailClblc too LASIC 8001 can be llsed 
\-Jhen generating the PRlh'T statuaellt for FCS. 

To esc.Jpe froll1 the File Contn-d Sy~~t('m :mc1 return to one of the other 
CRT modes then an Escapc! sequence !:Iu:;t he t,ivcn ~~uch as ESC, E~;C for vj sible 
CRT cursor mode. 



· ,OTE: The FCS rcsponcl~; only to ASCI] cll.1r.J.c:t(~rs Llncl the fo] 10\·.lin~ co;)trol 
:;odcs: 

11 ERASE l.nm 
13 Cl\RRI/\GE r~ETURN 
26 CU]::'SOR u~rT 
27 ESCl\PE 

\11 other control codes \-.'ill C0U;,C' em Fes cn:or, if they Llp;Y~.1r in a 
~;tring. 



000 

'2"" 

100 

°0 

200 

~~o -

300-

380--

400 

480--

500 

~80·--

780 

800 

980--

080 ---

0000 

.-----6--
RSrS! 

+ ON 

TAB~LESI 

C4 
ON -
CPU 

1000 2080 3000 4000 5000 

--"<f-+--~~--H-~~--H---{~---- - ---" --

"" 

A2 
ON 
~K 

PROM 

6000 

AG 
ON 
24K 

PROt.! 

7000 

PROM 

8000 

-

--4-~---{~~~~-.-.~.~--~~-4~-~4-t---n~"·---~+---+t--4-1--n.--4~-~r--+---4~---t-

CPU 

0.5. 

ROM 

CRT 
0.5. 

D7-:"'cC =..::.:~ g~ FUT. PROM 

~tM~ ; =~~ ... "." l:O~ROM BASIC 

REF. 

RAM -
25,/ LINE __ -= /48 

_.C:" 



.. --:: ... - ~=.-=---=-==-:::~ 

--~~~-~~~~~~~~~I~~~~~~·-··-~-~~~~=7~~~~~·-~--~-~-~-~-~-1----~--~-r.-~-~~~-~~_r~~-~--~~40~ 
HI:}"±- 11'llii. ~ljf'f 'tea.;::- c;,_'P~ --~:- 5't-1H- ::0 s'd~~:.-- ~ uJ·,·f 

- --'" 1:- REF. 

==- ±i3l= --- ---- -
_'"=cc._ t= -:,_:: 
-:::::::::- :---: .::,,--

---::::-

MAX 
BASIC 

~A~~ I'''~ 
END 
-~ 



,'1 REM-GOT06 
2 PLOTI4:PLOT27:PLOT82:PLOT52:PLOTI5 
3 PLOT27:PLOT72:POKE-24688,~G 
4 PRINT"XFER/A STTI J":PLOTI3 
5 FO RK = 1 TO 1500: N E XTK ~:£·JS"N 
~ REM-A=*:B=* (START&STOP DECIMAL ADDR. OF RAM DUMP) 
7 J=A-65536:K=B-65536 
io FORN=JTOK 
20 X=PEEK(N) 
30 IFX>127THENX=0 4( (f) 
40 I F X < 3 2 THE N X =6 41 ( ! '> 
~O CS=CHRS(X):PRINTCS; 
60 NEXTN 
80 REM 
81 REM-THIS PROGRAM WILL PRINT THE CONTENTS OF ANY 
82 REM-SECTION OF 8080 RAM SELECTED BY A & B. 
8? REM-ENTER S#1 TO RUN ON CRT, ELSE IT GOES TO 
84 REM-THE NOVA AS FILE "J". 
85 REM 
99 END 

1 REM-GOT06 
2 PLOTI4:PLOT27:PLOT82:PLOT52:PLOTI5 
3 PLOT27:PLOT72:POKE-24688,fG 
4 PRINT"XFER/A $TTI J":PLOTI3 
5 FORK=IT01500:NEXTKt~IST 
6 REM-A & B HERE 
7 J=A-65536:K=B-65536:L=1 
8 FORN=JTOK:X=PEEK(N):PRINTX; 
9 L=L+l:IFL=17THENPRINT:L=1 
10 NEXTN:PRINT 
80 REM 
81 REM--THIS PROGRAM WILL PRINT THE DECIMAL 
82 REM--EQUIVALENT OF ANY SECTION OF 8080 RAM 
83 REM--SELECTED BY A & B. 
84 REt>1--CLEAR S#1 TO RUN TO FILE "J" ON THE NOVA. 
85 REM 
99 END 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



LABEL V12. 8.76 BTISIC 

X20D 
X221 
X225 
:\233 
X235 
:\237 

X~JB 
:·:230 
/\.'. j t' 
X244 

ISC 2,05-678 

9E66-9E67 
9E7A-9£7B 
9E7E-9E72 
9E8C-9E8D 
9E8E-9E8F ..... 
9£90-9£91 
9E92-9E93 
9 E 9 ,1.-- 9 E 9 5 
9E96-9E97 
9E98-9E98 
9£90-91':81 
AOOO-i\002 
9£00-9E60 
9 F G .) -, :: ;:;:: 5 
9FDF-9FE3 
103H 
10F!{ 
12:.:1 
9EE7E 
9 EA1\H 

H1PORTANT MEMORY COHPARISON rl'ABLE 

V2. 1. '78 EDB 

.;069-;106A 
;"'07D-I'l.07E 
A081-A082 
A08F-A090 
1".091-A092 
';09 3-1~09 4 
';095 -1'.096 
':'_09 7-A09 8 
A099~A09A 
1\0913-]\09E 
AO;'\O-1\OAC 
/-\.\.),,:"-;,O;\F 
9EOO-9E60 
9FE3-9FES 
9Fur-9:r'E3 
103H 
lOPH 
12,-:'H 
9E37H 
SEAHH 

DESCRIPTIC~ FIELD 

E;id of' P-i'u\j - ::.~.::;':. ;'ocation BASIC uses 
Top of String File Space (moves as string is allocated) 
Current line nurr.bers I is -1 if iTI1,f,1ecliate modes 
Top of Nemory-5~ Bytes where stack is set originally 
Pointer to start of text 
Pointer to start of simple variables 
Pointer to start of arrays 
l~ 11 d 0 f .:-.. ~ ::- ~ ~. s 
Pointer to next data item 
Floating point accu~u~~tor 
Floating point print cut, (13 Gytes) 
Call Routine fro~ ~AS=C See ISC 149 
BASIC Input Line B~f~er 
Input F12g--
Keyboard Flag 
Console Input Routine 
Console Out Routine 
Output String Routine 
User Console Output Cevice 
I/O Status Control Byte 



HOW TO SAVE A DISPLAY 

1. Enter BASIC 8001 and type the following program: 

,0PLOT27:PLOT4:PRINT"SAVE.0:SCREEN.DIS 8.0.0.0-9DFF":END{Return) 
NOTE:' Screen can be any file name and .DIS is optional 

as is .0 for drive number. 
Now type PLOT2:PLOT 255 (Return). This will put the display in 
the correct location so that the display memory location is at 
the top left corner of screen. 

2. Put the display on the screen to be saved. You can use the cursor 
control keys to correct all errors in the display. 

3. Now position the cursor so as to have about 4 lines by 5 characters 
each on the left area of the screen clear. Select Foreground and 
Background colors the same as the display color in this area. Type 
ESC E and then type RUN: and then Background, Black, Foreground, 
Red and then (Return). 

NOTE: You will not be able to see the characters you type in. 
After the display has been SAVED then READY will appear. 

4. Now that the display is saved on diskette you may erase the page. To 
recall the display to the screen, type ESC D and after the prompt 
message FCS> appears, you type: LOAD.0: SCREEN. DIS and the whole 
display will be loaded onto the screen. 

5. NOTE: If the screen is to be generated from BASIC 8001 program, 
then the process could be simplified by just including the BASIC 
8001 statements at the end of that program, as in Step 1 above. 

"" .. 


	00_000
	01_001
	01_002
	01_003
	01_01-00
	01_01-01
	01_01-02
	01_01-03
	01_01-04
	01_01-05
	01_01-06
	01_01-07
	01_01-08
	01_01-09
	01_01-10
	01_02-00
	01_02-11
	01_02-12
	01_02-13
	01_02-14
	01_02-15
	01_02-16
	01_02-17
	01_02-18
	01_02-19
	01_02-20
	01_02-21
	01_02-22
	01_02-23
	01_02-24
	01_02-25
	01_02-26
	01_02-27
	01_02-28
	01_02-29
	01_02-30
	01_02-31
	01_02-32
	01_02-33
	01_02-34
	01_02-35
	01_02-36
	01_02-37
	01_A-00
	01_A-01
	01_A-02
	01_A-03
	01_A-04
	01_A-04a
	01_A-05
	01_A-06
	01_A-07
	01_B-00
	01_B-01
	01_B-01a
	01_B-02
	01_B-03
	01_B-04
	01_B-05
	01_B-06
	01_B-07
	01_C-00
	01_C-01
	01_C-02
	01_C-03
	01_C-04
	01_C-05
	01_C-06
	01_C-07
	01_C-08
	01_C-09
	01_C-10
	01_C-11
	01_C-12
	01_C-13
	01_C-14
	01_C-15
	01_D-00
	01_D-01
	01_D-02
	01_D-03
	01_D-04
	01_D-05
	01_D-06
	01_D-07
	01_D-08
	01_D-09
	01_D-10
	01_D-11
	01_D-12
	01_D-13
	01_D-14
	01_D-15
	01_D-16
	01_D-17
	01_D-18
	01_D-19
	01_D-20
	01_E-00
	01_E-01
	01_E-02
	01_E-03
	01_E-04
	01_E-05
	01_E-06
	01_E-07
	01_E-08
	01_E-09
	01_E-10
	01_E-11
	01_E-12
	01_E-13
	01_E-14
	01_E-15
	01_E-16
	01_E-17
	01_E-18
	01_E-19
	01_E-20
	01_E-21
	01_E-22
	02_000
	02_001
	02_01
	02_02
	02_03
	02_04
	02_05
	02_06
	02_07
	02_08
	02_09
	02_10
	02_11
	02_12
	02_13
	02_14
	02_15
	02_16
	02_17
	02_18
	02_19
	02_20
	02_21
	02_22
	02_23
	02_24
	02_25
	02_26
	02_27
	02_28
	02_29
	02_30
	02_31
	02_32
	02_33
	02_34
	02_35
	02_36
	02_37
	02_38
	02_39
	02_40
	02_41
	02_42
	02_43
	02_44
	02_45
	02_46
	02_47
	02_48
	02_49
	02_50
	02_51
	02_52
	02_53
	02_54
	02_55
	02_56
	02_57
	02_58
	02_59
	02_60
	02_61
	03_000
	03_001
	03_01
	03_02
	03_03
	03_04
	03_05
	03_06
	03_07
	03_08
	03_09
	03_10
	03_11
	03_12
	03_13
	03_14
	03_15
	03_16
	03_17
	03_18
	03_19
	03_20
	03_21
	03_22
	03_23
	03_24
	03_25
	03_26
	03_27
	03_28
	03_29
	03_30
	03_31
	03_32
	03_33
	03_34
	03_35
	03_36
	03_37
	03_38
	03_39
	03_40
	03_41
	03_42
	03_43
	03_44
	04_01
	04_02
	04_03
	04_04
	04_05
	04_06
	04_07
	04_08
	04_10
	04_11
	04_12
	04_13
	04_14
	04_15
	04_16
	04_17
	04_18
	04_19
	04_20
	04_21
	04_22
	04_23
	04_24
	04_25
	04_26
	04_27
	04_28
	04_29a
	04_29b
	04_30
	04_31
	04_32

