
· ~- ~ ~-

XENIX* 286

PROGRAMMER'S GUIDE

Order Number: 174391-002

*XENIX is a trademark of Microsoft Corporation

-

Copyright © 1984, 1986 Intel Corporation All lights reserved

I Intel Corporation. 3065 Bowers Avenue. Sanra Clara California 95051 I

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors
that may appear in this document. Intel Corporation makes no commitment to update or to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No
other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property ofIntel Corporation. Use, duplication or disclosure is
subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9 (a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Intel
Corporation.

The following are trademarks ofIntel Corporation and its affiliates and may be used only to identify Intel products:

Above iCEL intel iPDS Megachassis QUEST
BITBUS iCS intelBOS iPSC MICROMAINFRAME QueX
COMMputer iDBP Intelevision iRMX MULTIBUS Ripplemode
CREDIT iDIS inteligent Identifier iSBC MULTICHANNEL RMXJ80
Data Pipeline iLBX inteligent Programming iSBX MULTIMODULE RUPI
genius im Intellec iSDM ONCE Seamless
i iMDDX Intellink iSXM OpenNET SLD
i

iMMX iOSP Library Manager
Plug-A-Bubble

UPI
I2ICE PROMPT
ICE

Insite MCS
Promware

VLSiCEL

XENIX, MS-DOS, Multiplan, and Microsoft are trademarks of Microsoft Corporation. UNIX is a trademark of Bell
Laboratories. Ethernet is a trademark of Xerox Corporation. Centronics is a trademark of Centronics Data Computer
Corporation. Chassis Trak is a trademark of General Devices Company, Inc. VAX is a trademark of Digital Equipment
Corporation. Smartmodem 1200 and Hayes are trademarks of Hayes Microcomputer Products, Inc.

REV. REVISION HISTORY DATE

-001 Original issue 11/84

-002 Revision 1/86

ii 7/85

TABLE OF CONTENTS

CONTENTS

CHAPTER 1
INTRODUCTION
Prerequisites
Manual Organization
Notation

CHAPTER 2
cc: C COMPILER
Invoking the C Compiler
Creating Programs from C Source Files

Compiling a C Source File
Compiling Several Source Files
N am ing the Output File
Compiling Programs for the MS-DOS Environment

Creating Small, Middle, Large, and Huge Programs
Using Object Files and Libraries

Creating Object Files
Creating Programs from Object Files
Linking a Program to Functions in Libraries

Creating Smaller and Faster Programs
Creating Optimized Object Files
Stripping the Symbol Table
Removing Stack Probes from a Program

Preparing Programs for Debugging
Producing an Assembly Language Listing
Profiling a Program

Controlling the C Preprocessor
Defining a Macro
Defining Include Directories
Ignoring the Default Include Directories
Saving a Preprocessed Source File

Error Messages
C Compiler Messages
Setting the Level of Warnings

Using Advanced Options
Using the near and far Keywords
The pascal and fortran Keywords
Changing Word Order in Programs
Setting the Stack Size
Using Modules, Segments, and Groups

PAGE

1-1
1-1
1-2

2-1
2-2
2-2
2-3
2-4
2-4
2-5
2-7
2-7
2-8
2-8
2-9
2-9
2-9

2-10
2-10
2-10
2-11
2-12
2-12
2-13
2-13
2-14
2-14
2-14
2-15
2-16
2-16
2-17
2-18
2-18
2-19

iii

Table of Contents

CONTENTS

Compiler Summary
Memory Models
Pointer and Integer Sizes
Segment and Module Names

CHAPTER 3
lint: C PROGRAM CHECKER
Invoking lint
Checking for Unused Variables and Functions
Checking Local Variables
Checking for Unreachable Statements
Checking for Infinite Loops
Checking Function Return Values
Checking for Unused Return Values
Checking Types
Checking Type Casts
Checking for Nonportable Character Use
Checking for Assignment of longs to ints
Checking for Strange Constructions
Checking for Use of Older C Syntax
Checking Pointer Alignment
Checking Expression Evaluation Order
Embedding Directives
Checking for Library Compatibility

CHAPTER 4
make: PROGRAM MAINTAINER
Creating a Makefile
Invoking make
Using Pseudo-Target Names
U sing Macros
Using Shell Environment Variables
Using the Built-In Rules
Changing the Built-In Rules
U sing Libraries
Troubleshooting
Using make: An Example

CHAPTER 5
SCCS: SOURCE CODE CONTROL SYSTEM
Basic Information

iv

Files and Directories
Deltas and SIDs
sces Working Files
SCCS Command Arguments
File Administrator

XENIX Programming

PAGE

2-20
2-23
2-23
2-24

3-1
3-2
3-3
3-4
3-5
3-5
3-6
3-6
3-7
3-7
3-8
3-8
3-9

3-10
3-11
3-11
3-12

4-1
4-3
4-4
4-5
4-7
4-8
4-9

4-11
4-12
4-13

5-1
5-1
5-2
5-3
5-4
5-4

XENIX Programming

CONTENTS

Creating and Using s-files
Creating an s-file
Retrieving a File for Reading
Retrieving a File for Editing
Saving a New Version of a File
Retrieving a Specific Version
Changing the Release Number of a File
Creating a Branch Version
Retrieving a Branch Version
Retrieving the Most Recent Version
Displaying a Version
Saving a Copy of aNew Version
Displaying Helpful Information

Using Identification Keywords
Inserting a Keyword into a File
Assigning Values to Keywords
Forcing Keywords

Using s-file Flags
Setting s-file Flags
U sing the i Flag
U sing the d Flag
U sing the v Flag
Removing an s-file Flag

Modifying s-file Information
Adding Com ments
Changing Comments
Adding Modification Requests
Changing Modification Requests
Adding Descriptive Text

Printing from an s-file
Using a Data Specification
Printing a Specific Version
Printing Later and Earlier Versions·

Editing by Several Users
Editing Different Versions
Editing a Single Version
Saving a Specific Version

Protecting s-files
Adding a User to the User List
Removing a User from a User List
Setting the Floor Flag
Setting the Ceiling Flag
Locking a Version

Repairing SCCS Files
Checking an s-file
Editing an s-file
Changing an s-file's Checksum
Regenerating a g-file for Editing
Restoring a Damaged p-file

Table of Contents

PAGE

5-4
5-5
5-5
5-6
5-7
5-8
5-9

5-10
5-10
5-11
5-11
5-12
5-12
5-13
5-13
5-14
5-14
5-14
5-15
5-15
5-15
5-16
5-16
5-16
5-17
5-17
5-18
5-18
5-19
5-19
5-19
5-20
5-20
5-21
5-21
5-21
5-22
5-22
5-22
5-23
5-23
5-23
5-24
5-24
5-24
5-25
5-25
5-25
5-25

v

Table of Contents

CONTENTS

Using Other Command Options
Getting Help with SCCS Commands
Creating a File with the Standard Input
Starting at a Specific Release
Adding a Comment to the First Version
Suppressing Normal Output
Including and Excluding Deltas
Listing the Deltas of a Version
Mapping Lines to Deltas
Naming Lines
Displaying a List of Differences
Displaying File Information
Removing a Delta
Searching for Strings
Comparing SCCS Files

CHAPTER 6
adb: PROGRAM DEBUGGER
Starting and Stopping adb

Starting with a Program File
Starting with a Core Image File
Starting adb with Data Files
Starting with the Write Option
Starting with the Prompt Option
Leaving adb

Displaying Instructions and Data
Forming Addresses
Forming Expressions

Decimal, Octal, and Hexadecimal Integers
Symbols
adb Variables
Current Address
Register Names
Operators

Choosing Data Formats
Using the = Command
Using the? and / Commands
An Example: Simple Formatting

Debugging Program Execution
Executing a Program
Setting Breakpoints
Displaying Breakpoints
Continuing Execution

vi

Stopping a Program with Interrupt and Quit
Single-Stepping a Program
Killing a Program
Deleting Breakpoints
Displaying the C Stack Backtrace
Displaying CPU Registers
Displaying External Variables
An Example: Tracing Multiple Functions

XENIX Programming

PAGE

5-26
5-26
5-26
5-26
5-27
5-27
5-28
5-29
5-29
5-29
5-30
5-30
5-30
5-31
5-31

6-1
6-1
6-2
6-3
6-3
6-3
6-4
6-4
6-4
6-4
6-5
6-5
6-6
6-7
6-7
6-8
6-9

6-10
6-11
6-12
6-13
6-13
6-14
6-15
6-15
6-16
6-16
6-16
6-17
6-17
6-18
6-18
6-18

XENIX Programming

CONTENTS

Using the adb Memory Maps
Displaying the Memory Maps
Changing the Memory Map
Crea ting New Map Entries
Validating Addresses

Miscellaneous Features
Combining Commands on a Single Line
Creating adb Scripts
Setting Output Width
Setting the Maximum Offset
Setting Default Input Format
Using XENIX Commands
Computing Numbers and Displaying Text
An Example: Directory and Inode Dumps

Patching Binary Files
Locating Values in a File
Writing to a File
Making Changes to Memory

CHAPTER 7
as: ASSEMBLER
Command Usage
Lexical Conventions

Identifiers
Constants
White Space
Comments

Assembly Segments
Text, Data, and Bss Segments
The Location Counter

Statements
Labels
Null Statements
Expression Statements
Assignment Statements
Keyword Statements

Expressions
Expression Operators
Types
Type Propagation in Expressions

Table of Contents

PAGE

6-22
6-22
6-24
6-24
6-25
6-25
6-25
6-26
6-26
6-27
6-27
6-28
6-28
6-29
6-30
6-30
6-31
6-31

7-1
7-2
7-2
7-2
7-2
7-2
7-3
7-3
7-4
7-4
7-4
7-5
7-5
7-5
7-6
7-6
7-6
7-6
7-7

vii

Table of Contents

CONTENTS

Assembler Directives
Even Directive
Floating-Point Directives
Global Directive
Segment Directives
Common Directive
Insert Directive
ASCII Directives
Listing Directives
Block Directives
Initial Value Directives
End Directive

Machine Instructions
Mnemonic List
Byte Instructions
Branch Instructions
. String Instructions
Intersegment Instructions
Input/Output Instructions
80286 Instructions

Addressing Modes
Register Operands
Immediate Operands
Direct Address Operands
Based Operands
Indexed Operands
Based Indexed Operands
Indirect Address Operands

Diagnostics

CHAPTER 8
csh: C SHELL
Invoking the C Shell
Using Shell Variables
Using the C Shell History List
Using Aliases
Redirecting Input and Output
Creating Background and Foreground Jobs
Using Built-In Commands
Creating Command Scripts
U sing the argv Variable
Substituting Shell Variables
U sing Expressions
Using the C Shell: A Sample Script
U sing Other Control Structures
Supplying Input to Commands
Catching Interrupts
Using Other Features

viii

XENIX Programming

PAGE

7-8
7-8
7-9
7-9
7-9

7-10
7-10
7-10
7-11
7-11
7-12
7-12
7-12
7-12
7-16
7-17
7-17
7-18
7-18
7-18
7-19
7-19
7-20
7-20
7-21
7-21
7-22
7-22
7-23

8-1
8-2
8-4
8-6
8-7
8-8
8-9

8-10
8-11
8-11
8-13
8-14
8-16
8-17
8-18
8-18

XENIX Programming

CONTENTS

Starting a Loop at a Terminal
Using Braces with Arguments
Substituting Commands
Special Characters

CHAPTER 9
lex: LEXICAL ANALYZER GENERATOR
lex Source Format
lex Regular Expressions
Invoking lex
Specifying Character Classes
Specifying an Arbitrary Character
Specifying Optional Expressions
Specifying Repeated Expressions
Specifying Alternation and Grouping
Specifying Context Sensitivity
Specifying Expression Repetition
Specifying Definitions
Specifying Actions
Handling Ambiguous Source Rules
Specifying Left Context Sensitivity
Specifying Source Definitions
lex and yacc
Specifying Character Sets
Source Format

CHAPTER 10
yacc: COMPILER-COMPILER
Specifications
Actions
Lexical Analysis
How the Parser Works
Ambiguity and Conflicts
Precedence
Error Handling
The yacc Environment
Preparing Specifications

Input Style
Left Recursion
Lexical Tie-ins
Handling Reserved Words
Simulating Error and Accept in Actions
Accessing Values in Enclosing Rules
Supporting Arbitrary Value Types
A Small Desk Calculator
yacc Input Syntax
An Advanced Example

Old Features

Table of Contents

PAGE

8-19
8-20
8-20
8-21

9-2
9-3
9-4
9-5
9-6
9-6
9-6
9-7
9-7
9-8
9-8
9-8

9-12
9-14
9-17
9-18
9-22
9-22

10-3
10-6
10-8
10-9

10-14
10-18
10-21
10-23
10-24
10-24
10-24
10-25
10-26
10-26
10-27
10-27
10-29
10-31
10-33
10-39

ix

Table of Contents

CONTENTS

CHAPTER 11
m4: MACRO PROCESSOR
Invoking m4
Defining Macros
Quoting
Using Arguments
Using Arithmetic Built-In Macros
Manipulating Files
Using System Commands
Using Conditionals
Manipulating Strings
Printing

APPENDIX A
C LANGUAGE PORTABILITY
Program Portability
Machine Hardware

Byte Length
Word Length
Storage Alignment
Byte Order in a Word
Bitfields
Pointers
Address Space
Character Set

Compiler Differences
Signed/Unsigned char, Sign Extension
Shift Operations
Identifier Length
Register Variables
Type Conversion
Functions with Variable Number of Arguments
Side Effects, Evaluation Order

Program Environment Differences
Portability of Data
lint
Byte Ordering Summary

x

XENIX Programming

PAGE

11-2
11-2
11-3
11-5
11-6
11-7
11-8
11-8
11-9

11-10

A-2
A-2
A-2
A-2
A-3
A-4
A-5
A-5
A-6
A-6
A-7
A-7
A-7
A-7
A-8
A-8
A-9

A-II
A-II
A-12
A-12
A-13

XENIX Programming

CONTENTS

APPENDIX B
PROGRAMMING COMMANDS
adb
admin
ar
as
cb
cc
cdc
comb
cref
csh
ctags
delta
dosld
get
gets
hdr
help
ld
lex
lint
lorder
m4
masm
mkstr
nm
prof
prs
ranlib
ratfor
regcmp
rmdel
sact
sccsdiff
size
spline
stackuse
strings
strip
time
tsort
unget
val
xref
xstr
yacc

APPENDIX C
RELATED PUBLICATIONS

INDEX

Table of Contents

PAGE

B-2
B-11
B-16
B-18
B-20
B-21
B-28
B-31
B-33
B-35
B-57
B-59
B-62
B-64
B-70
B-71
B-73
B-74
B-77
B-80
B-83
B-84
B-89
B-92
B-94
B-96
B-97

B-101
B-102
B-104
B-105
B-106
B-107
B-108
B-109
B-110
B-112
B-113
B-115
8-116
B-117
B-118
B-120
B-121
B-123

C-1

xi

Table of Contents

TABLES
TABLE TITLE

2-1 Examples of near and far Keywords in a Small Model Program
2-2 Segments in Program Memory Models
2-3 Pointer and Integer Sizes in Program Memory Models
2-4 Default Segment and Module Names
A-1 Byte Ordering for Short Types
A-2 Byte Ordering for Long Types

xii

XENIX Programming

PAGE

2-18
2-22
2-23
2-23
A-13
A-13

CHAPTER 1
INTRODUCTION

This manual describes XENIX 286 Extended System commands used for developing and
maintaining programs. These commands support program development, checking,
debugging, maintenance, and version control.

Prereq u isites

This manual presumes that you understand the C programming language and basic
programming concepts. This manual also presumes some knowledge of XENIX or UNIX
and the standard shell she

Manual Organization

This manual contains the following chapters and appendixes:

1. Introduction: manual overview, prerequisites, organization, and notation.

2. cc: C Compiler: the cc command for compiling C programs and assembling and
linking the resulting modules.

3. lint: C Program Checker: a program that checks C programs for syntactic and
semantic errors.

4. make: Program Maintainer: a program that automates the generation of program
files, independent of the programming language or programming tools used.

5. SCCS: Source Code Control System: a set of commands to manipUlate multiple
versions of a single program or document, stored in a single file instead of in
separate files for each version.

6. adb: Program Debugger: a program for debugging C or assembly language
programs.

7. as: Assembler: the asse mbler used to assemble separate assembly language
programs.

8. csh: C Shell: a command interpreter that provides greater flexibility and more
power than the standard shell she

9. lex: Lexical Analyzer Generator: a program that produces another program,
called a lexical analyzer, that breaks up an input stream into "tokens," using rules
specified to the generator.

1-1

Introduction XENIX Programming

10. yacc: Compiler-Compiler: a program that produces a parser program that
translates input according to rules specified to yacc.

11. m4: Macro Processor: a program that processes macros defined and used in its
input, producing output with the macros replaced by the text that they stand for.

A. C Language Portability: how to write C language programs so that they are
portable to other XENIX syste ms running on other types of hardware.

B. Programming Commands: reference information for all the programming
commands in the XENIX 286 Extended System.

C. Related Publications: a list of related XENIX 286 manuals.

Notation

These notational conventions are used in this manual:

• Literal names are bolded where they occur in text, e.g., /sys/include, printf,
dey_tab, EOF.

• Syntactic categories are italicized where they occur and indicate that you must
substitute an instance of the category, e.g., filename.

• In examples of dialogue with the XENIX 286 system, characters entered by the
user are bolded.

• In syntax descriptions, optional items are enclosed in brackets ([]).

• Items that can be repeated one or more times are followed by an ellipsis (•••).

• Items that can be repeated zero or more times are enclosed in brackets and
followed by an ellipsis ([] •••).

• A choice between items is indicated by separating the items with vertical bars
(I).

1-2

CHAPTER 2
cc: C COMPILER

This chapter explains how to use the cc command. In particular, it explains how to

• Compile C language source files

• Choose a memory model for a program

• Use object files and libraries with a program

• Create smaller and faster programs

• Prepare C programs for debugging

• Control the C preprocessor

It also describes the error and warning messages generated by the C compiler and
explains how to use advanced features of the cc command to make customized
programs.

This chapter assumes that you are familiar with the C programming language and that
you can create C program source files using a XENIX text editor.

Invoking the C Compiler

The cc command has the form

cc [option]... filename ...

where option is a command option, and filename is the name of a C language source file,
an assembly language source file, an object file, or an archive library. You may give
more than one option or file name, if desired, but you must separate each item with one
or more spaces.

The cc command options control and modify the tasks performed by the command. For
example, you can direct cc to perform optimization or create an assembly listing file.
The options also specify additional information about the compilation, such as which
program libraries to examine and what the name of the executable file should be. Many
options are described in the following sections. For a complete description of all
options, see the entry cc in Appendix B, "Programming Commands."

2-1

cc: C Compiler XENIX Programming

Creating Programs from C Source Files

The cc command is normally used to create executable programs from C language
source files. A file's contents are identified by the file name extension. C source files
must have the extension ".c".

The cc command can create executable programs only from source files that make up a
complete C program. In XENIX, a complete program must have one (and only one)
function named "main". This function becomes the entry point for program execution.
The "main" function may call other functions as long as they are defined within the
program or are part of the C standard library. The standard C library is described in the
XENIX 286 C Library Guide.

Compiling a C Source File

You can compile a C source file by giving the name of the file when you invoke the cc
command. The command compiles the statements in the file, then copies the
executable program to the default output file a.out.

To compile a source program, type

cc filename

where filename is the name of the file containing the program. The program must be
complete, that is, it must contain a "main" program function. It may also contain calls
to functions explicitly defined by the program or by the standard C library.

For example, assume that the following program is stored in the file named main.c.

#include <stdio.h>

mainO
{

}

intx,y;

scanf("%d %d",&x,&y);
pri ntf(" %d\n ", x + y);

To compile this program, type

cc main.c

The command first invokes the C preprocessor, which adds the statements in the file
lusr/include/stdio.h to the beginning of the program. It then compiles these statements
and the rest of the program statements. Next, the com mand links the program with the
standard C library, which contains the object files for the scanf and printf functions.
Finally, it copies the program to the file a.out.

2-2

XENIX Programming cc: C Compiler

You can execute the new program by typing

a.out

The program waits until you enter two numbers, then prints their sum. For example, if
you type "3 5" the program displays "8".

Compiling Several Source Files

Large source programs are often split into several files to make them easier to
understand, update, and edit. You can compile such a program by giving the names of
all the files belonging to the program when you invoke the cc command. The command
reads and compiles each file in turn, then links all object files together, and copies the
new program to the file a.out.

To compile several source files, type

cc filename •••

where each filename is separated from the next by at least one space. One of these
files (and only one) must contain a "main" function. The others may contain functions
called by this "main" function or by other functions in the program. The files must not
contain calls to functions not explicitly defined by the program or by the standard C
library.

For example, suppose the following main program function is stored in the file main.

#include <stdio.h>
extern int addO;

mainO
{

}

int x,y,z;

scanf("%d %d", &x, &y);
z = add (x, y);
printf (" %d \n" I z);

Assume that the following function is stored in the file add.c.

add (a, b)
inta, b;
{

return (a + b);
}

You can compile these files and create an executable program by typing

cc main.c add.c

2-3

cc: C Co m piler XENIX Program ming

The command compiles the statements in main.c, then compiles the statements in add.c.
Finally, it links the two together (along with the standard C library) and copies the
program to a.out. This program, like the program in the previous section, waits for two
numbers, then prints their sum.

Since the cc command cannot keep track of more than one compiled file at a time, when
several source files are compiled at a time, the command creates object files to hold
the binary code generated for each source file. These object files are then linked to
create an executable program. The object files have the same base name as the source
files but are given the ".0" file extension. For example, when you compile the two
source files above, the compiler produces the object files main.o and add.o. These files
are permanent files, i.e., the command does not delete them after completing its
operation. Note that the command also creates an object file if only one source file is
compiled.

Naming the Output File

You can give the executable program file any valid file name by using the -0 (for
"output") option. The option has the form

-0 filename

where filename is a valid file name or path name. If a file name is given, the program
file is stored in the current directory. If a full path name is given, the file is stored in
the given directory. If that file already exists, its contents are replaced with the new
executable program.

For example, the command

cc -0 addem main.c add.o

causes the compiler to create an executable program file addem from the source file
main.c and object file add.o. You can execute this program by typing

addem

Note that the -0 option does not affect the existing a.out file. This means that the cc
command does not change the current contents of a.out if the -0 option has been given.

Compiling Programs for the MS-DOS Environment

The XENIX C compiler can compile programs that will operate in either the MS-DOS or
the XENIX environment. However, to compile a program for the MS-DOS environment,
you must use a different set of standard libraries and a different linker.

The -dos option instructs the compiler to alter the standard search path and to search
the appropriate libraries for the MS-DOS environment. Note that programs compiled
with these libraries will not run in the XENIX environment.

2-4

XENIX Program m ing cc: C Compiler

Creating Small, Middle, Large, and Huge Programs

The cc command supports the creation of programs of a variety of sizes and purposes
using the -Ms, -Mm, -MI, -Mh, and -i options. These options define the size of a given
program by defining the number of segments in physical memory to be allocated for
your program's use. They also determine how the system loads the program for
execution.

The cc command allows the creation of programs in five different memory models:
impure-text small model, pure-text small model, middle model, large model, and huge
model. Each model defines a different type of program structure and storage.

Impure-Text Small Model
These programs occupy one 64K-byte physical segment in which both text
(machine instructions) and data are combined. By default, cc creates impure
small model programs. They can also be created using the -Ms option.

Pure-Text Small Model
These programs occupy two 64K-byte physical segments. Text and data are in
separate segments. The text is read-only and may be shared by several processes
at once. The maximum program size is 128K bytes. Pure small model programs
are created using the -i flag when linking small model programs.

Middle Model
These programs occupy several physical segments when linked, but only one
segment contains data. A text segment is allocated per source module, but all
data segments are combined. Special calls and returns are used to access
functions in other segments. The total amount of text can be any size. Data
must not exceed 64K bytes. Middle models programs are created using the -Mm
option. These programs are always pure.

Large Model
These programs occupy several physical segments with both text and data in as
many segments as required. Text is handled as in middle model. Special
addresses are used to access data in other segments. Text and data may be any
size, but no data item may be larger than 64K bytes. Large model programs are
created using the -MI option. These programs are always pure.

Huge Model
These programs occupy several physical segments with both text and data as in
large model, but arrays may span segments, allowing them to be larger than 64K
bytes. Arrays which span more than two segments (128K bytes) must contain
elements whose size in bytes is a power of two. Huge model programs are
created using the -Mh option. These programs are always pure.

Small and middle model object files can be linked only with object files and libraries of
the same model. Large and huge model object files can be linked only with large and
huge model object files and libraries. You cannot combine small, medium, and
large/huge model object files into one executable program. cc automatically selects the
correct small, middle, or large versions of the standard libraries based on the
configuration option. It is up to you to make sure that all of your Object files and
private libraries are properly compiled in the appropriate model.

2-5

cc: C Compiler XENIX Programming

The special calls and returns used in middle and large model programs may affect
execution time, particularly if frequent calls are made to very short routines.

In middle, large, and huge model programs, function pointers are 32 bits long. In large
and huge model programs, data pointers are 32 bits long. Programs making use of such
pointers must be written carefully to avoid incorrect declaration and use of these types.
lint will help to check for correct use.

Keep the following in mind when programming in huge model.

Objects
No object can cross a segment boundary. Objects are defined as data structures
that can be elements of an array, scalar objects (integers and floating point
numbers), and composite objects (structures and unions). If the array requires
three or more segments (more than 128K bytes), then the size of the objects in
the array must be a power of two.

Address Space
When accessing a huge model array, the compiler simulates a linear address
space.

Array Alignment
Arrays of objects requiring more than one segment are aligned so that no object
crosses a 64K-byte boundary.

Pointer Size

2-6

Another item to be considered when programming in huge model is the value
produced by sizeof(huge_item) and sizeof(huge_ptrl - huge_ptr2). To obtain the
correct value, sizeof must be type cast as a long

(long)sizeof(huge item)
(long)sizeof(huge =ptrl - huge _ptr2)

where the value returned is a long instead of a normal integer.

XENIX Program m ing cc: C Compiler

Using Object Files and Libraries

The cc command can save useful functions as object files and use these object files to
create programs at a later time. Because object files contain the compiled or
assembled instructions of your source file, they save you the time and trouble of
recompiling the functions each time you need them. All object files created by cc have
the file extension ".0".

The cc command can also use functions found in XENIX system libraries, such as the
standard C library or the screen processing library curses. To use these functions, you
simply supply the name of the library containing them. However, cc accesses the
standard C library automatically and no explicit naming is required.

For convenience, you can create your own libraries with the ar and ranlib commands.
These commands, described in Appendix B, "Programming Commands," copy your useful
object files to a library file and prepare the file for use by the cc command. You can
access the library like any other library in the system if you copy it to the /lib
directory. You must name the library appropriately. The name must begin with a S, M,
L, or H, identifying the model in which the library was compiled. Then, follow the
capital letter with lib and the name you chose. Finally, supply the .a extension. For
example, the small model curses library has the name Slibcurses.a.

Creating Object Files

You can create an object file from a given source file by using the -c (for "compile")
option. This option directs cc to compile the source file without creating a final
program. The option has the form

-c filename ...

where filename is the name of the source file. You may give more than one file name
if you wish. Make sure each name is separated from the next by a space.

To make object files for the source files add.c and mult.c, type

cc -c add.c mult.c

This command compiles each file and calls the compiled source files (object files)
add.o and mult.o. It does not link these files; no executable program is created.

The -c option is typically used to save useful functions for programs to be developed
later. Once a function is in an object file it may be used as is, or saved in a library file
and accessed like other library functions, as described in the following sections.

Note that the cc command automatically creates an object file for each source file in
the command line. Unless the -c option is given, however, it will also attempt to link
these files, even if they do not form a complete program.

2-7

cc: C Compiler XENIX Programming

Creating Programs from Object Files

You can use the cc command to create executable programs from one or more object
files, or from a combination of object files and C source files. The command compiles
the source files (if any), then links the compiled source files with the object files to
create an executable program.

To create a program, give the names of the object and source files you wish to use. For
example, if the source file main.c contains calls to the functions add and mult (in the
object files add.o and mult.o), you can create a program by typing

cc main.c add.o mult.o

In this case, main.c is compiled and then linked with add.o and mult.o to create the
executable file a.out.

Linking a Program to Functions in Libraries

You can link a program to functions in a library by using the -1 (for "library") option. The
option directs cc to search the given library for the functions called in the source file.
If the functions are found, the command links them to the program file.

The option has the form

cc -Iname

where name is a shortened version of the library's actual file name (see the XENIX 286
C Library Guide for a list of names). Spaces between the name and option are optional.
The linker searches the /lib directory for the library. If not found, it searches the
/usr/lib directory.

For example, the command

cc main.c -Icurses

links the library /lib/Slibcurses.a to the source file main.c.

A library is a convenient way to store a large collection of object files. The XENIX
system provides several libraries, the most common of which is the standard C library.
Functions in this library are automatically linked to your program whenever you invoke
the compiler. Other libraries, such as curses, must be explicitly linked using the -1
option. The XENIX libraries and their functions are described in detail in the XENIX
286 C Library Guide.

In general, the cc command does not search a library until the -1 option is encountered,
so the placement of the option is important. The option must follow the names of any
source files containing calls to functions in the given library. In general, all library
options should be placed at the end of the command line, after all source and object
files.

2-8

XENIX Programming cc: C Compiler

Creating Smaller and Faster Programs

You can create smaller and faster C programs by using the optimizing options available
with the cc command. These options reduce the size of a compiled program by
removing unnecessary or redundant instructions or unnecessary symbol information.
Smaller programs usually run faster and save valuable space.

Creating Optimized Object Files

You can create an optimized object file or an optimized program from a given source
file by using the -0 (for "optimize") option. This option reduces the size of the object
file or program by removing unnecessary instructions. For example, the command

cc -0 main.c

creates an optimized program from the source file main.c. The resulting object file or
program is smaller (in bytes) than if the source had been compiled without the option. A
smaller object file usually means faster execution.

The -0 option applies to source files only; existing object files are not optimized if
included with this option. The option must appear before the names of the files you
wish to optimize. For example, the command

cc -0 add.c main.c

optimizes add.c and main.c. You have different levels of optimization available, The
default is to favor code size and execution time. See the cc man page in Appendix 8
for more information about levels of optimization.

You can combine the -0 and -c options to compile and optimize source files without
linking the resulting object files. For example, the com mand

cc -0 -c main.c add.c

creates separate optimized object files from the source files main.c and add.c.

Although optimization is very useful for large programs, it takes more time than regular
compilation. In general, it should be used in the last stage of program development,
after the program has been debugged.

Stripping the Symbol Table

You can reduce the size of a program's executable file by using the -s option. This
option directs cc to remove items from the symbol table. The symbol table contains
information about code relocation and program symbols and is used by the XENIX
debugger adb to allow symbolic references to variables and functions when debugging.
The information in this table is not required for execution and may be removed when the
program has been completely debugged.

2-9

cc: C Compiler XENIX Programming

The -s option strips the entire table, leaving machine instructions only. For example,
the command

cc -s main.c add.c

creates an executable program that contains no symbol table. It also creates the object
files main.o and add.o, which contain no symbol tables.

The -s option may be combined with the -0 option to create an optimized and stripped
program. Note that you can also strip a program with the XENIX command strip,
described in Appendix B, "Programming Commands."

Removing Stack Probes from a Program

You can reduce the size of a program slightly by using the -K option to remove all stack
probes. A stack probe is a short routine called by a function to check the program stack
for available space. The probes are not needed if the program makes very few function
calls or has unlimited stack space.

To remove the stack probes from the program main.c, type

cc -K main.c

Although this option, when combined with the -0 and -s options, makes the smallest
possible program, it should be used with great care. Removing stack probes from a
program with stack use that is not well known can cause execution errors.

Preparing Programs for Debugging

The cc command provides a variety of options to prepare a program for debugging.
These options range from creating an assembly language listing of the program for use
with the XENIX debugger adb, to adding routines for profiling the execution of a
program.

Producing an Assembly language listing

You can direct the compiler to generate an assembly language listing of your compiled
source file by using the -8 and -L options. The -S option creates an assembly language
listing that can later be assembled by resubmitting it (perhaps after revision) to masm.
The -L option creates a listing that shows assembled code, as well as instructions. The
file created by -8 is given the file extension" .s"; the file created by -L is given" .L".

Assembly language listing files are typically used by programmers who wish to debug
their program with adb. Since adb recognizes machine instructions instead of the actual
source statements in a program, a programmer may need an assembly language listing
for detailed debugging.

2-10

XENIX Program m ing cc: C Compiler

To create an assembly language listing, give the name of the desired source file. For
example, the command

cc -S add.c

creates an assembly language listing file named add.s and the command

cc -L mult.c

creates a listing file named mult.L. Note that both the -8 and -L options suppress
subsequent compilation of the source file; they imply the -c option. Thus, no program
file is created and no linking is performed.

Another use of the -8 option is to create an assembly language source file that may be
optimized by hand and later submitted to masm for translation. Although this method
can be useful, optimizing should be left to the compiler whenever possible.

The -8 and -L options apply to source files only; the compiler cannot create an assembly
language listing file from an existing object file. Furthermore, the options in the
command line must appear before the names of the files for which the assembly listings
are to be saved.

Profiling a Program

You can examine the flow of execution of a program by adding "profiling" code to the
program with the -p option. The profiling code automatically keeps a record of the
number of times program functions are called during execution of the program. This
record is written to the mon.out file and can be examined with the prof command.

For example, the command

cc -p main.c

adds profiling code to the program created from the source file main.c. The profiling
code automatically calls the monitor function, which creates the mon.out file at normal
termination of the program. The prof command is described in Appendix B,
"Programming Commands." The monitor function is described in "System Functions" in
the XENIX 286 C Library Guide.

The -p option must be given in any command line that links object files containing
profiling code. For example, if the command

cc -c -p fl.c f2.c

was used to create the object files fl.o and f2.0, then the command

cc -p fl.o f2.0

must be used to create an executable program from these files.

2-11

cc: C Compiler XENIX Programming

Controlling the C Preprocessor

The cc command provides a number of options to control the operation of the C
preprocessor. These options can define macros, mOdify the new search path to include
files, and suppress subsequent compilation of the preprocessed source file.

Defining a Macro

You can define the value or meaning of a macro used in a source file by using the -D
(for "define") option. The -D option assigns a value to a macro when you invoke the
compiler and is useful if you have used if, ifdef, and ifndef directives in your source
files.

The option has the form

-Dnamel = string]

where name is the name of the macro and string is its value or meaning. If no string is
given, the macro is defined and its value is set to 1. For example, the command

cc -DNEED = 2 main.c

sets the macro "NEED" to the value "2". This has the same effect as having the
directive

#define NEED 2

in the source file. The com mand compiles the source file main.c, replacing every
occurrence of "NEED" with "2".

The -D option is especially useful with the ifdef directive. You can use the option to
determine which statements in the source are to be compiled. For example, suppose a
source file, main.c, contains the directive

#ifdef NEED

but no explicit define directive for the macro "NEED". Then all statements controlled
by the ifdef directive would be compiled only if you supply an explicit definition of
"NEED" by using -D. For example, the command

cc -DNEED main.c

is sufficient to compile all statements controlled by the ifdef directive, while the
command

cc main.c

causes those statements to be ignored.

2-12

XENIX Programming cc: C Compiler

You may use -D to define up to 20 macros on a command line. However, you cannot
redefine a macro once it has been defined. If a file uses a macro, you must place the -D
option before that file's name on the command line. For example, in the command

cc main.c -DNEED a dd.c

the macro "NEED" is defined for add.c but not defined for main.c.

The -U option undefies a macro defined by a #define in each source file. The form -D
name sets name to O. The form -U name = string redefines name as the given string.

Defining Include Directories

You can explicitly define directories containing "include" files by using the -I (for
"include") option. This option adds the given directory to a list of directories to be
searched for include files. The directories in the list are searched whenever an include
directive is encountered in the source file. The option has the form

-Idirectoryname

where directoryname is a valid path name to a directory containing include files. For
example, the command

cc -lIusr/joe/inciude main.c

causes the compiler to search the directory /usr/joe/include for include files requested
by the source file main.c.

The directories are searched in the order they are listed and only until the given include
file is found. The /usr/include directory is the default include directory and is
automatically searched after directories given with -I.

Ignoring the Default Include Directories

You can prevent the C preprocessor from searching the default include directory by
using the -X option. This option is generally used with the -I option to define the
location of include files that have the same names as those found in the default
directories, but which contain different definitions. For example, the command

cc -x -lIusr/joe/inciude main.c add.c

causes cc to look for all include files only in the directory /usr/joe/include.

2-13

cc: C Compiler XENIX Program m ing

Saving a Preprocessed Source File

You can save a copy of the preprocessed source file by using the -P and -E options. The
file is identical to the original source file except that all C preprocesor directives and
macros have been expanded or replaced. The -P option copies the result to the file
named filename.i, where filename is the same name as the source file without the ".C"
extension. The -E option copies the result to the standard output and places a <ine
directive at the beginning and end of every file processed. You can save this output by
redirecting it.

For example, the command

cc -P main.c

creates a preprocessed file main.i from the source file main.c, and the command

cc -E add.c >add.i

creates a preprocessed file from the source file add.c. The output is redirected to the
file add.i.

Note that -P and -E suppress compilation of the source file. Thus, no object file or
program is created.

Error Messages

The C compiler generates a broad range of error and warning messages to help you
locate errors and potential problems in programs. In addition to compiler messages, the
cc com mand also displays error messages generated by the XENIX C preprocessor and
the XENIX assembler and linker programs. The following sections describe the form and
meaning of the compiler error messages and warning messages you can encounter while
using the cc command.

C Compiler Messages

The C compiler displays messages about syntactic and semantic errors in a source file,
such as misplaced punctuation, illegal use of operators, and undeclared variables. It also
displays warning messages about statements containing potential problems caused by
data conversions or the mismatch of types. Error and warning messages have the form

filename (linenumber) : message

where filename is the name of the source file being compiled, linenumber is the number
of the line in the source file containing the error, and message is a self-explanatory
description of the error or warning.

If an error is severe, the compiler displays a message and terminates the compilation.
Otherwise, the compiler continues looking for other errors but does not create an object
file. If only warning messages are displayed, the compiler completes compilation and
creates an object file.

2-14

XENIX Programming cc: C Compiler

You can avoid many C compiler errors by using the XENIX C program checker lint
before compiling your C source files. lint performs detailed error checking on a source
file and provides a list of actual errors and possible problems that may affect execution
of the program. For a description of lint, see Chapter 3, "lint: C Program Checker."

Setting the Level of Warnings

You can set the level of warning messages produced by the compiler by using the -W
option. This option directs the compiler to display messages about statements that may
not be compiled as the programmer intends. Warnings indicate potential problems
rather than actual errors. The option has the form

-w number

where number is a number in the range 0 to 3 giving the level of warnings. The levels
are

o Suppresses all warning messages. Only messages about actual syntactic or
semantic errors are displayed.

1 Warns about potentially missing statements, unreachable statements, and
other structural problems. Also warns about overt type mismatches.

2 Warns about all type mismatches (strong typing).

3 Warns on all automatic data conversions.

If the option is not used, the default is level 1.

The higher option levels are especially useful in the earlier stages of program
development when messages about potential problems are most helpful. The lower
levels are best for compiling programs whose questionable statements are intentionally
designed. For example, the command

CC -W 3 mai n.C

directs the compiler to perform the highest level of checking and produces the greatest
number of warning messages. The command

CC -W o· main.c

produces no warning messages. Note that the -w option has the same effect as -W O.

2-15

cc: C Compiler XENIX Programming

Using Advanced Options

The cc command provides a number of advanced programming options that give greater
control over the compilation process and the final form of the executable program. The
following sections describe a number of these options.

Using the near and far Keywords

The near and far keywords are special type modifiers that define the length and meaning
of the address of a given variable. The near keyword defines an object with a 16-bit
address. The far keyword defines an object with a full 32-bit segmented address. Any
data item or function can be accessed.

The near and far keywords override the normal address length generated by the compiler
for variables and functions. In small model programs, far can be used to access data and
functions in segments outside of the program. In middle and large model programs, near
can be used to access data with just an offset.

The examples in Table 2-1 illustrate the far and near keywords as used in declarations in
a small model program.

*
**

2-16

Table 2-1. Examples of near and far Keywords in a Small Model Program

Declaration

char c;
char far d;
char *p;
char far *q;
char * far r;
char far * far s;
int fooO;
int far fooO;

Address Size

near (16 bits)
far (32 bits)
near (16 bits)
near (16 bits)
far (32 bits)
far (32 bits)
near (16 bits)
far (32 bits)

This is shown for syntactic completeness.

Item Size

8 bits (data)
8 bits (data)
16 bits (near pointer)
32 bits (far pointer)
16 bits (near pointer)*
32 bits (far pointer)**
function returning 16 bits
function returning 16 bits***

This is similar to accessing data in a long model program.

This example leads to trouble in most environments. The far call changes the CS
register and makes run time support unavailable.

XENIX Programming cc: C Compiler

The following example is from a middle model compilation:

int near fooO;

This does a near call in an otherwise far (calling) program.

Since there is no type checking between items in separate source files, the near and far
keywords should be used with great care.

The pascal and fortran Keywords

The pascal and fortran keywords may be considered synonymous as they both invoke the
PL/M protocol. The Pascal keyword can be used to either call routines compiled with
the PL/M protocol or compile subroutines with the PL/M protocol.

The assembly language programming differences between C and Pascal are as follows:

• Any external Pascal identifiers are mapped to uppercase; underscores (_) are used.
This is true for both global variables and function/procedure names.

• In C, the programmer must readjust the stack pointer after making a call to a
routine. In Pascal, this is not necessary since all calls to routines readjust the
stack before they return a value.

• Conventions for returning floating-point numbers and structured items differ
between C and Pascal. In C, the return value is stored in a static buffer (AX if
the pointer is 16 bits, AX-DX if the pointer is far or huge) and the address of this
buffer is passed to the calling routine. In Pascal, space is reserved on the stack
for this return value and a near pointer is passed to the called routine as a hidden
parameter.

Finally, the protocol for passing parameters differs between C and Pascal. In C the
number of parameters is not fixed; the C compiler pushes the parameters from right to
left. In Pascal, since the number of parameters is fixed, the PL/M protocol dictates
that the parameters are pushed from left to right.

The pascal keyword is used in the following form:

int pascal addcol();

where addcol is a function that is to be compiled using the PL/M protocol.

Creating Programs from Assembly Language Source Files

Use the cc command to create executable programs from a combination of C source
files (files ending in .c) and 8086/286 assembly language source files (files ending in .8).
Refer to Chapter 7, "as: Assembler."

2-17

cc: C Compiler XENIX Programming

When assembly language source files are given, the cc command invokes as to assemble
the instructions and create an object file that can then be linked with object files
created by the compiler. For example,

cc main.c add.s

compiles the C source file main.c, but assembles the assembly language source file
add.s. The resulting object files, main.o and add.o, are linked to form a single program.

When coding assembly language routines with C programs, be sure to refer to "Assembly
Language Interface" in the XENIX 286 C Library Guide.

Changing Word Order in Programs

The C compiler automatically uses the standard 8086/286 word order for long type
values. This order may cause problems when programs access data files generated by
programs created by other C compilers. You can change the word order for a given
program by using the -Mb configuration option. This option causes the compiler to
generate all long values in reverse word order, making the program compatible with
programs created by other XENIX compilers.

Other portability issues must be considered when creating C programs intended for
different computer systems. For an explanation of these issues, see Appendix A, tIC
Language Portability."

Setting the Stack Size

You can set the size of the program stack by using the -F option. This option has the
form

-Fnum

where num is the size (in bytes) of the program stack. The program stack is used for
storage of function parameters and automatic variables. If the option is not used, a
default stack size (4,096 bytes) is set.

You can determine the stack requirements of a given program by using the stackuse
command, described in Appendix B. This command analyzes C source files and
computes the minimum stack requirement for all functions in the program. The
command displays a warning if recursive functions are encountered; stack use
requirements for recursive functions must be determined by the programmer.

Note that all programs linked by cc have fixed stacks. This means the stack size fixhdr
cannot be increased during execution of the program. Therefore, a sufficient stack size
must be given when compiling the program.

2-18

XENIX Programming cc: C Compiler

Using Modules, Segments, and Groups

"Module" is another name for an object file created by the C compiler. Every module
has a name, and the cc command uses this name in error messages if problems are
encountered during linking. The module name is usually the same as the source file's
name (without the ".c" or ".s" extension). You can change this name using the -NM
option. The option has the form

-NM name

where name can be any combination of letters and digits.

Changing a module's name is useful if the source file to be compiled is actually the
output of a program preprocessor and generator, such as lex or yacc.

A "segment" is a contiguous block of binary code produced by the C compiler. Every
module has two segments: a text segment containing the program instructions, and a
data segment containing the program data. Each segment in every module has a name.
This name is used by cc to define the order in which the segments of the program will
appear in memory when loaded for execution. Text segments having the same name are
loaded as a contiguous block of code. Data segments of the same name are also loaded
as contiguous blocks.

Text and data segment names are normally created by the C compiler. These default
names depend on the memory model chosen for the program. For example, in small
model programs the text segment is named " TEXT" and the data segment is named
"_DATA". These names are the same for all small model modules, so all segments from
all modules of a small model program are loaded as a contiguous block. In middle model
programs, each text segment has a different name. In large and huge model programs,
each text and data segment has a different name. The default text and data segment
names for middle, large, and huge model programs are given in the section "Segment and
Module Names" at the end of this chapter.

You can override the default names used by the C compiler (and override the default
loading order) by using the -NT and - ND options. These options set the names of the
text and data segments, in each module being compiled, to a given name. The options
have the form

-NT name

and

-ND name

where name is any combination of letters and digits. These options are useful in middle,
large, and huge model programs where there is no specific loading order. In these
programs, you can guarantee contiguous loading for two or more segments by giving
them the same name.

Note: Modules compiled with -ND option cannot call any system libraries.

2-19

cc: C Compiler XENIX Programming

Compiler Summary

The following sections summarize cc options and memory models.

-P Preprocesses each source file and copies the result to a file whose basename is
the same as the source but whose extension is .i. Preprocessing performs the
actions specified by the preprocessing directives in the source file, and inhibits
compilation and linking.

-E Preprocesses each source file as described for -P, but copies the result to the
standard output. The option also places a #line directive with the current input
line number and source filename at the beginning of output for each file.

-EP Preprocesses each source file as described for -E, but does not place a #line
directive at the beginning of the file.

-c Preserves comments when preprocessing a file with -E or -Po That is, comments
are not removed from the preprocessed source. This option may be used only in
conjunction with -E or -Po

-D name [= string]
Defines name to the preprocessor as if defined by a #define in each source file.
The form -D name sets name to 1. The form -D name = string sets name to the
given string.

-u name [= string]
Removes definition of name so that the preprocessor removes the name defined
by a #define in each source file. The form -U name sets name to O. The form
-U name = string undefines name for the given string.

-I pathname
Adds pathname to the list of directories to be searched when a #include file is
not found in the directory containing the current source file or whenever angle
brackets « » enclose the filename. There is a standard list of directories which
is searched automatically.

-x Removes the standard directories from the list of directories to be searched for
include files.

-v string

-Wnum

Copies string to the object file created from the given source file. This option
may be used for version control.

Sets the output level for compiler warning messages. If num is 0, no warning
messages are issued. If 1, only warnings about program structure and overt type
mismatches are issued. If 2, warnings about strong typing mismatches are issued.
If 3, warnings for all automatic conversions are issued. This option does not
affect compiler message output for non-warning messages.

-w Prevents compiler warning messages from being issued. Same as -W O.

-p Adds code for program profiling. Profiling code counts the number of calls to

2-20

XENIX Program m ing cc: C Compiler

each routine in the program and copies this information to the mon.out file.
This file can be examined using the prof command. Profiling is supported only
in small model.

-pack Packs structure members. Caution should be taken when using the pack option
because structures are no longer word-aligned.

-i Creates separate instruction and data spaces for small model programs. When
the output file is executed, the program text and data areas are allocated
separate physical segments. The text portion will be read-only and may be
shared by all users executing the file. The option is implied when creating
middle, large, or huge model programs.

-Fnurn
Sets the size of the program stack to nurn bytes. Default stack size if not given
is 4K bytes.

-K Removes stack probes from a program. Stack probes are used to detect stack
overflow on entry to program routines.

-nlnurn
Sets the maximum length of external symbols to nurn. Names longer than nurn
are truncated before being copied to the external symbol table.

-Alfu Same as -MI, plus saves/restores the value of the ds register before and after
procedure calls. The value is saved on the stack.

-Alhu Same as -Mh, plus saves/restores the value of the ds register before and after
procedure calls. The value is saved on the stack.

-M string
Sets the program configuration. This configuration defines the program's
memory model, word order, and data threshold. It also enables C language
enhancements such as advanced instruction sets and keywords. string may be
any combination of the following (except that the s, m, 1, and h options are
mutually exclusive, as are 0, 1, and 2).

s Creates a small model program (default).
m Creates a middle model program.
1 Creates a large model program.
h Creates a huge model program.
e Enables these keywords: far, near, pascal, and fortran.
o Enables 86 code generation.
1 Enables 186 code generation.
2 Enables 286 code generation (default).

b Reverses the word order for long types. High order word is first.
Default is low order word first.

t nurn Sets the size of the largest data item in the data group to nurn. Default
is 32,767. Items larger than this threshold are placed in another
segment.

2-21

cc: C Compiler XENIX Programming

d Sets SS equal to DS.

-c Suppresses linking of the object modules produced by the compilation(s). No
executable program is created.

-0 filename
Defines filename to be the name of the final executable program. This option
overrides the default name a.out and is effective only when the linker is
invoked.

-dos Directs cc to create an executable program for MS-DOS systems.

-llibrary
Searches library for unresolved references to symbols. The library must be an
object file archive in ranlib format.

-0 Invokes the object code optimizer during compilation. Anyone of the following
strings can be appended after the 0 to provide different levels of optimizer
control. Without any letter following the 0, the normal optimization is to favor
code size and execution speed.

d Disable optimization; performs no optimization.
a Relax aliasing checks.
8 Favor code size.
t Favor execution time.
x Maximum optimization (equivalent to -Oas and -K). This option should

be used with caution.

-8 Creates an assembly source listing of the compiled C source file and copies this
listing to the file whose basename is the same as the source but whose extension
is .8. Linking is also suppressed. It should be noted that this file is not suitable
for assembly. This option provides code for inspection only.

-L Creates an assembler listing file containing assembled code and assembly source
instructions. The listing is copied to the file whose basename is the same as the
source but whose extension is .L. This option overrides the -8 option and
suppresses linking.

-NM name
Sets the module name for each compiled or assembled source file to name. If not
given, the filename of each source file is used.

-NT name
Sets the text segment name for each compiled or assembled source file to name.
If not given, the name moduleTEXT is used for middle model, and _TEXT for
small model.

-ND name

2-22

Sets the data segment name for each compiled or assembled source file to name.
If not given, the name _DATA is used.

XENIX Programming cc: C Compiler

Many options (or equivalent forms of these options) are passed to the link editor as the
last phase of compilation. The s, m, and 1 configuration options are passed to specify
memory requirements. The -i, -F, and -p are passed to specify other characteristics of
the final program.

The -D and -I options may be used several times on the command line. The -D option
must not define the same name twice. These options affect subsequent source files
only.

Memory Models

Table 2-2 defines the number of text and data segments for the different program
memory models. This table also lists the segment register values.

*

Table 2-2. Segments in Program Memory Models

Model Text Data

Small 1* 1*
Middle 1 per module 1
Large 1 per module 1 per module
Huge 1 per module 1 per module

In impure-text small model programs, text and data occupy the same segment. In
pure-text programs, they occupy different segments.

Pointer and Integer Sizes

Table 2-3 defines the sizes (in bits) of text and data pointers, in each program memory
model. The integer (int type) size for compilers that run on the 80286 is 16 bits.

Table 2-3. Pointer and Integer Sizes in Program Memory Models

Model Data Pointer Text Pointer

Small 16 16
Middle 16 32
Large 32 32
Huge 32 32

2-23

cc: C Co m piler XENIX Programming

Segment and Module Names

Table 2-4 lists the default text and data segment names, and the default module name,
for each object file.

Table 2-4. Default Segment and Module Names

Model Text Data

Small TEXT DATA -
Middle module* TEXT DATA -
Large module* TEXT DATA
Huge module*_TEXT DATA

* module is the filename of the program being compiled without the .c extension.

2-24

CHAPTER 3
lint: C PROGRAM CHECKER

This chapter explains how to use the C program checker lint. The program examines C
source files and warns of errors or misconstructions that may cause errors during
compilation of the file or during execution of the compiled file.

In particular, lint checks for

• Unused functions and variables

• Unknown values in local variables

• Unreachable statements and infinite loops

• Unused and misused return values

• Inconsistent types and type casts

• Mismatched types in assignments

• Nonportable and old-fashioned syntax

• Strange constructions

• Inconsistent pointer alignment and expression evaluation order

The lint program and the C compiler are generally used together to check and compile C
language programs. Although the C compiler rapidly and efficiently compiles C
language source files, it does not perform the sophisticated type and error checking
required by many programs. The lint program, on the other hand, provides thorough
checking of source files without compiling.

Invoking lint

You can invoke lint by typing its name at the shell command prompt. The command has
the form

lint [option] ... filename ... lib ...

where option is a command option that defines how the checker should operate,
filename is the name of a C language source file to be checked, and lib is the name of a
library to check. You can give more than one option, file name, or library name in the
command as long as you use spaces to separate them. If you give two or more file
names, lint assumes that the files form a complete program and checks the 'files
accordingly. For example, the command

lint main.c add.c

3-}

lint: C Program Checker XENIX Programming

treats main.c and add.c as two parts of a complete program.

If lint discovers errors or inconsistencies in a source file, it produces messages
describing the problem. The message has the form

filename (num): description

where filename is the name of the source file containing the problem, num is the
number of the line in the source containing the problem, and description is a description
of the problem. For example, the message

main.c (3): warning: x unused in function main

shows that the variable x, defined in line 3 of the source file main.c, is not used
anywhere in the file.

Checking for Unused Variables and Functions

The lint program checks for unused variables and functions by seeing if each declared
variable and function is used at least once in the source file. The program considers a
variable or function used if the name appears in at least one statement. It is not
considered used if it only appears on the left side of an assignment. For example, in the
following program fragment

mainO
{

int x, y, z;

x = 1; Y = 2; z = x + y;

the variables x and yare considered used, but variable z is not.

Unused variables and functions often occur during the development of large programs. It
is not uncommon for a programmer to remove all references to a variable or function
from a source file but forget to remove its declaration. Such unused variables and
functions rarely cause working programs to fail but do make programs harder to
understand and change. Checking for unused variables and functions can also help you
find variables or functions that you intended to used but have accidentally left out of
the program.

3-2

XENIX Programming lint: C Program Checker

Note that the lint program does not report a variable or function unused if it is
explicitly declared with the extern storage class. Such a variable or function is assumed
to be used in another source file.

You can direct lint to ignore all the external declarations in a source file by using the -x
(for "external") option. The option causes the program checker to skip any line that
begins with the extern storage class.

The option is typically used to save time when checking a program, especially if all
external declarations are known to be valid.

Some programming styles require functions that perform closely related tasks to have
the same number and type of arguments regardless of whether or not these arguments
are used. Under normal operation, lint reports any argument not used as an unused
variable, but you can direct lint to ignore unused arguments by using the -Y option. The
-Y option causes lint to ignore all unused function arguments except for those declared
with register storage class. The program considers unused arguments of this class to be
a preventable waste of the register resources of the computer.

You can direct lint to ignore all unused variables and functions by using the -u (for
"unused") option. This option prevents lint from reporting variables and functions it
considers unused.

This option is typically used when checking a source file that contains just a portion of a
large program. Such source files usually contain declarations of variables and functions
to be used in other source files that are not explicitly used within the file. Since lint can
check only the given file, it normally assumes that such variables or functions are
unused and reports the m as errors.

Checking Local Variables

The lint program checks all local variables to see that they are set to a value before
being used. Since local variables have either automatic or register storage class, their
values at the start of the program or function cannot be known. Using such a variable
before assigning a value to it is an error.

The program checks the local variables by searching for the first assignment in which
the variable receives a value and the first statement or expression in which the variable
is used. If the first assignment appears later than the first use, lint considers the
variable inappropriately used. For example, in the program fragment

int c;

if (c ! = EDT)
c = getchar();

lint warns that the the variable c is used before it is assigned.

3-3

lint: C Program Checker XENIX Programming

If the variable is used in the same statement in which it is assigned for the first time,
lint determines the order of evaluation of the statement and displays an appropriate
message. For example, in the program fragment

int i, total;

scanf("%d", &i);
total = total + i;

lint warns that the variable "total" is used before it is set since it appears on the right
side of the same statement that assigns its first value.

Static and external variables are always initialized to zero before program execution
begins, so lint does not report such variables if they are used before being set to a value.

Checking for Unreachable Statements

The lint 'program checks for unreachable statements, that is, for unlabeled statements
that immediately follow a goto, break, continue, or return statement. During execution
of a program, the unreachable statements never receive execution control and are
therefore considered wasteful. For example, in the program fragment

int x,y;

return (x + y);
exit (1);

the function call exit after the return statement is unreachable.

Unreachable statements are common when developing programs containing large switch
statements or loops containing break and continue statements. Such statements are
wasteful and should be removed.

During normal operation, lint reports all unreachable break statements. Unreachable
break statements are relatively common (some programs created by the yacc and lex
programs contain hundreds), so it may be desirable to suppress these reports. You can
direct lint to suppress the reports by using the -b option.

Note that lint assumes that all functions eventually return control, so it does not report
as unreachable any statement that follows a function that takes control and never
returns it. For example:

exit (1);
return;

The call to exit causes the return statement to become an unreachable statement, but
lint does not report it as such.

3-4

XENIX Programming lint: C Program Checker

Checking for Infinite Loops

The lint program checks for infinite loops and for loops that are never executed. For
example, the statements

while (1) {}

and

for (;;) {}

are both considered infinite loops. While the statements

while (0) {}

and

for (;0;) {}

are never executed.

Although some valid programs have such loops, they are generally considered errors.

Checking Function Return Values

The lint program checks that a function returns a meaningful value if necessary. Some
functions return values that are never used; some programs incorrectly use function
values that have never been returned. lint addresses these problems in a number of
ways.

Within a function definition, the appearance of both

retu rn (expr);

and

return;

statements is cause for alarm. In this case, lint produces the following error message:

function name contains return(e) and return

3-5

lint: C Program Checker XENIX Programming

It is difficult to detect when a function return is implied by the flow of control reaching
the end of the given function. This is demonstrated with a simple example:

f (a)
{

}

if (a)
return (3);

gO;

Note that if the variable a tests false, f will call the function g and then return with no
defined return value. This will trigger a report from lint. If g, like exit, never returns,
the message will still be produced when in fact nothing is wrong. In practice,
potentially serious bugs can be discovered with this feature. It also accounts for a
sUbstantial fraction of the noise messages produced by lint.

Checking for Unused Return Values

The lint program checks for cases where a function returns a value, but the value is
rarely if ever used. lint considers functions that return unused values to be inefficient
and functions that return rarely used values to be a result of bad programming style.

lint also checks for cases where a function does not return a value but the value is used
anyway. This is considered a serious error.

Checking Types

lint enforces the type checking rules of C more strictly than the C compiler. The
additional checking occurs in four major areas:

• Across certain binary operators and implied assignments

• At the structure selection operators

• Between the definition and uses of functions

• In the use of enumerations

A number of operators, including the assignment, conditional, and relational operators,
have an implied balancing between types of operands. The argument of a return
statement and expressions used in initialization also suffer similar conversions. In these
operations, char, short, int, long, unsigned, float, and double types can be freely
intermixed. The types of pointers must agree exactly, except that arrays of x's can be
intermixed with pointers to x's.

3-6

XENIX Program m ing lint: C Program Checker

The type checking rules also require that, in structure references, the left operand of a
pointer arrow symbol (-» be a pointer to a structure, the left operand of a period (.) be
a structure, and the right operand of these operators be a member of the structure
implied by the left operand. Similar checking is done for references to unions.

Strict rules apply to function argument and return value matching. The types float and
double may be freely matched, as may the types char, short, int, and unsigned. Pointers
can also be matched with the associated arrays. Aside from these relaxations in type
checking, all actual arguments must agree in type with their declared counterparts.

For enumerations, checks are made that enumeration variables or members are not
mixed with other types or other enumerations, and that the only operations applied are
assignment (=), initialization, equals (==), and not-equals (!=). Enumerations may also be
function arguments and return values.

Checking Type Casts

The type cast feature in C was introduced largely as an aid to producing more portable
programs. Consider the assignment

p = 1 ;

where p is a character pointer. lint reports this as suspect. But consider the assignment

p = (char *)1 ;

in which a cast has been used to convert the integer to a character pointer. The
programmer obviously had a strong motivation for doing this, and has clearly signaled
his intentions. On the other hand, if this code is moved to another machine, it should be
looked at carefully. The -c option controls the printing of comments about casts. When
-c is in effect, casts are not checked and all legal casts are passed without comment, no
matter how strange the type mixing seems to be.

Checking for Nonportable Character Use

lint flags certain comparisons and assignments as illegal or nonportable. For example,
the fragment

char c;

if((c = getchar()) < 0) ...

works on some machines but fails on machines where characters always take on positive
values. The solution is to declare c an integer, since getchar is actually returning
integer values. In any case, lint issues the message

nonportable character comparison

3-7

lint: C Program Checker XENIX Program ming

A similar issue arises with bitfields. When assignments of constant values are made to
bit fields, the field may be too small to hold the value. This is especially true ~here on
some machines bitfields are considered as signed quantities. While it may seem
counter-intuitive to consider that a 2-bit field declared of type int cannot hold the value
3, the problem disappears if the bitfield is declared to have type unsigned.

Checking for Assignment of longs to ints

Bugs may arise from the assignment of a long to an int, because of a loss in accuracy in
the process. This may happen in programs that have been incompletely converted by
changing type definitions with typedef. When a typedef variable is changed from int to
long, the program can stop working because some intermediate results may be assigned
to integer values, losing accuracy. Since there are a number of legitimate reasons for
assigning longs to integers, you may wish to suppress detection of these assignments by
using the -a option.

Checking for Strange Constructions

Several perfectly legal but somewhat strange constructions are flagged by lint. The
generated messages encourage better code quality and clearer style, and may even point
out bugs. For example, in the statement

*p + + ;

the asterisk (*) does nothing and lint prints

null effect

The program fragment

unsigned x;
if (x < 0) ...

is also strange since the test will never succeed. Similarly, the test

unsigned x;
if (x > 0) ...

is equivalent to

unsigned x;
if(x ! = 0) ...

3-8

XENIX Program m ing lint: C Program Checker

which may not be the intended action. In these cases, lint prints the message

degenerate unsigned comparison

If you use

if(1 ! = 0) ...

then lint reports

constant in conditional context

since the comparison of 1 with 0 gives a constant result.

Another construction detected by lint involves operator precedence. Bugs that arise
from misunderstandings about the precedence of operators can be accentuated by
spacing and formatting, making such bugs extremely hard to find. For example, the
statements

if(x&077 = = 0) ...

and

x«2 + 40

probably do not do what is intended. The best solution is to parenthesize such
expressions. lint encourages this by printing an appropriate message.

Finally, lint checks variables redeclared in inner blocks in a way that conflicts with
their use in outer blocks. This is legal but is considered bad style, usually unnecessary,
and frequently a bug.

If you do not wish these heuristic checks, you can suppress them by using the -h option.

Checking for Use of Older C Syntax

lint checks for older C constructions. These fall into two classes: assignment operators
and initialization.

The older forms of assignment operators (e.g., =+, =-, •••) can cause ambiguous
expressions, such as

a = -1 ;

which could be taken as either

a = -1 ;

or

a = -1;

3-9

lint: C Program Checker XENIX Programming

The situation is especially perplexing if this kind of ambiguity arises as the result of a
macro sUbstitution. The newer and preferred operators (e.g., +=, -=) have no such
ambiguities. To encourage the abandonment of the older forms, lint checks for
occurrences of these old-fashioned operators.

A similar issue arises with initialization. The older language allowed

int x 1 ;

to initialize x to 1. This causes syntactic difficulties. For example

i nt x (-1) ;

looks somewhat like the beginning of a function declaration

int x (y) { ...

and the compiler must read past "x" to determine what the declaration really is. The
problem is even more perplexing when the initializer involves a macro. The current C
syntax places an equal sign between the variable and the initializer:

int x = -1 ;

This form is free of any possible syntactic ambiguity.

Checking Pointer Alignment

Certain pointer assignments may be reasonable on some machines and illegal on others,
due to alignment restrictions. For example, on some machines it is reasonable to assign
integer pointers to double pointers, since double precision values may begin on any
integer boundary. On other machines, however, double precision values must begin on
even word boundaries; thus, not all such assignments make sense. lint tries to detect
cases where pointers are assigned to other pointers and such alignment problems might
arise. The message

possible pointer alignment problem

results from this situation.

3-10

XENIX Program ming lint: C Program Checker

Checking Expression Evaluation Order

In complicated expressions, the best order in which to evaluate subexpressions may be
highly machine-dependent. For example, on machines in which the stack runs backward,
function arguments will probably be best evaluated from right to left; on machines with
a stack running forward, left to right is probably best. Function calls embedded as
arguments of other functions mayor may not be treated in the same way as ordinary
arguments. Similar issues arise with other operators that have side effects, such as the
assignment operators and the increment and decrement operators.

So that the efficiency of C on a particular machine is not unduly compromised, the C
language leaves the order of evaluation of complicated expressions up to the compiler,
and various C compilers have considerable differences in the order in which they will
evaluate complicated expressions. In particular, if any variable is changed by a side
effect, and also used elsewhere in the same expression, the result is explicitly
undefined.

lint checks for the important special case where a simple scalar variable is affected.
For example, the statement

a[i] = b[i + +] ;

will draw the comment

warning: i evaluation order undefined

Embedding Directives

There are occasions when the program mer is smarter than lint. There may be valid
reasons for illegal type casts, functions with a variable number of arguments, and other
constructions that lint finds objectionable. Moreover, as specified in the above sections,
the flow of control information produced by lint often has blind spots, causing
occasional spurious messages about perfectly reasonable programs. Some way of
communicating with lint, typically to turn off its output, is desirable. Therefore, a
number of words are recognized by lint when they are embedded in comments in a C
source file. These words are called directives. lint directives are invisible to the
compiler.

The first directive discussed concerns flow of control information. If a particular place
in the program cannot be reached, this can be asserted at the appropriate spot in the
program with the directive

/* NOTREACHED */

Similarly, if you desire to turn off strict type checking for the next expression, use the
directive

/* NOSTRICT */

3-11

lint: C Program Checker XENIX Programming

The situation reverts to the previous default after the next expression. The -v option
can be turned on for one function with the directive

/* ARGSUSED */

Comments about a variable number of arguments in calls to a function can be turned off
by preceding the function definition with the directive

/* VARARGS * /

In some cases, you may want to check the first several arguments and leave the later
arguments unchecked. Do this by following the VARARGS keyword immediately with a
digit giving the number of arguments that should be checked. Thus

/* VARARGS2 * /

causes only the first two arguments to be checked. Finally, the directive

/* LlNTLIBRARY */

at the head of a file identifies this file as a library declaration file, discussed in the next
section.

Checking for Library Compatibility

lint accepts certain library directives, such as

-Iy

and tests the source files for compatibility with these libraries. This testing is done by
accessing library description files whose names are constructed from the library
directives. These files all begin with the directive

/* LlNTLIBRARY */

which is followed by a series of dummy function definitions. The critical parts of these
definitions are the declaration of the function return type, whether the dummy function
returns a value, and the number and types of arguments to the function. The
"VARARGS" and "ARGSUSED" directives can be used to specify features of the library
functions.

lint library files are processed almost exactly like ordinary source files. The only
difference is that functions defined in a library file but not used in a source file, draw
no comments. lint does not simUlate a full library search algorithm. lint does check to
see if the source files contain redefinitions of library routines.

By default, lint checks the programs it is given against a standard library file, which
contains descriptions of the standard functions that are normally loaded when a C
program is run. When the -p option is in effect, the portable libarary file is checked
containing descriptions of the standard I/O library routines which are expected to be
portable across various machines. The -n option can be used to suppress all library
checking.

3-12

CHAPTER 4
make: PROGRAM MAINTAINER

The make program provides an easy way to automate the creation of large programs.
make reads commands from a user-defined "makefile" that lists the files to be created,
the commands that create them, and the files from which they are created. When you
direct make to create a program, it makes sure that each file on which the program
depends is up to date, then creates the program by executing the given commands. If a
file is not up to date, make updates it before creating the program by executing
explicitly given commands or one of the many built-in commands.

This chapter explains how to use make to automate medium-sized programming
projects. It explains how to create makefiles for each project and how to invoke make
for creating programs and updating files. For more details about the program, see make
in "Commands" in the XENIX 286 Reference Manual.

Creating a Makefile

A makefile contains one or more lines of text called dependency lines. A dependency
line shows how a given file depends on other files and what commands are required to
bring a file up to date. A dependency line has the form

target ... : [dependent .. . J [; command ... J

where target is the name of a file to be updated, dependent is the name of a file on
which the target depends, and command is the XENIX com mand needed to create the
target file. Each dependency line must have at least one command associated with it,
even if it is only the null command (;).

You may give more than one target name or dependent name if desired. Each name
must be separated from the next by at least one space. The target names must be
separated from the dependent names by a colon (:). File names must be spelled as
defined by the XENIX system. Shell metacharacters, such as star (*) and question mark
(?), in file names are expanded when make uses the name.

You may give a sequence of commands on the same line as the target and dependent
names if you precede each command with a semicolon (;). You can give additional
commands on following lines by beginning each line with a tab character. Commands
must be given exactly as they would appear on a shell command line. The at sign (@)
may be placed in front of a command to prevent make from displaying the command
before executing it. Shell commands, such as cd, must appear on single lines; they must
not contain the backslash (\) and newline character combination that normally can be
used to continue commands between lines.

You may add a comment to a makefile by starting the comment with a number sign (#)
and ending it with a newline character. All characters after the number sign are
ignored. Comments may be placed at the end of a dependency line if desired. If a
command contains a number sign, it must be enclosed in double quotation marks ("#").

4- 1

make: Program Maintainer XENIX Programming

If a dependency line is too long, you can continue it by typing a backslash (\)
immediately followed by a newline character.

The makefile should be kept in the same directory as the given source files. For
convenience, the file names makefile, Makefile, s.makefile, and s.Makefile are provided
as default file names used by make if no explicit name is given at invocation. You may
use one of these names for your makefile or choose one of your own. If the file name
begins with the s. prefix, make assumes that it is an sees file and invokes the
appropriate sees command to retrieve the latest version of the file.

To illustrate dependency lines, consider the following example. A program named prog
is made by linking three object files, x.o, y.o, and z.o. These object files are created by
compiling the e language source files x.c, y.c, and z.c. Furthermore, the files x.c and
y.c contain the line

#include "defs"

This means that prog depends on the three object files, the object files depend on the e
source files, and two of the source files depend on the include file defs. You can
represent these relationships in a makefile with the following lines

prog: x.o y.o z.o
cc x.o y.o z.o -0 prog

x.o: x.c defs
cc -c x.c

y.o: y.c defs
cc -c y.c

z.o: z.c
cc -c z.c

In the first dependency line, prog is the target file and x.o, y.o, and z.o are its
dependents. The command sequence

cc x.o y.o z.o -0 prog

on the next line tells how to create prog if it is out of date. The program is out of date
if anyone of its dependents has been modified since prog was last created.

The second, third, and fourth dependency lines have the same form, with the x.o, y.o,
and z.o files as targets and x.c, y.c, z.c, and defs files as dependents. Each dependency
line has one command sequence that defines how to update the given target file.

4-2

XENIX Programming make: Program Maintainer

Invoking make

Once you have a makefile and wish to update and modify one or more target files in the
directory, you can invoke make by typing its name and optional arguments. The
invocation has the form

make [option] ... [macdef] ... [target] ...

where option is a program option used to modify program operation, maedef is a macro
definition used to give a macro a value or meaning, and target is the file name of a file
to be updated. target must correspond to one of the target names in the makefile. All
arguments are optional. If you give more than one argument, you must separate them
with spaces.

You can direct make to update the first target file in the makefile by typing just the
program name "make". In this case, make searches for one of the files makefile,
Makefile, s.makefile, or s.Makefile in the current directory and uses the first one it
finds as the makefile. For example, assume that the current makefile contains the
dependency lines given in the last section. Then the command

make

compares the modification dates of the prog program and each of the object files x.o,
y.o, and z.o and recreates prog if any changes have been made to any object file since
prog was last created. It also compares the modified dates of the object files with those
of the four source files, x.c, y.c, z.c, and defs, and recreates the object files if the
source files have changed. It does this before recreating prog so that the recreated
object files can be used to recreate prog. If none of the source or object files has been
altered since the last time prog was made, make announces this fact and stops. No files
are changed.

You can direct make to update a given target file by giving the file name of the target.
For example,

make x.o

causes make to recompile the x.o file if the x.c or defs files have changed since the
object file was last created. Similarly, the command

make X.o z.o

causes make to recompile x.o and z.o if the corresponding dependents have been
modified. make processes target names from the command line in a left-to'-right order.

You can specify the name of the makefile you wish make to use by giving the -f option
in the invocation. The option has the form

-f filename

where filename is the name of the makefile. You must supply a full path name if the
file is not in the current directory. For example, the command

make -f makeprog

4-3

make: Program Maintainer XENIX Programming

reads the dependency lines of the makefile named makeprog found in the current
directory. You can direct make to read dependency lines from the standard input by
giving "- " as the file name. make will read the standard input until end-of-file is
encountered.

You may use program options to modify the operation of the make program. The
following list describes some of the options:

-p Prints the complete set of macro definitions and dependency lines in a makefile.

-i Ignores errors returned by XENIX com mands.

-k Abandons work on the current entry but continues on other branches that do not
depend on that entry.

-s Executes commands without displaying them.

-r Ignores the built-in rules.

-n Displays commands but does not execute them. make -n even displays lines
beginning with the at sign (@).

-e Ignores any macro definitions that attempt to assign new values to the shell's
environment variables.

-t Changes the modification date of each target file without recreating the files.

Note that make executes each command in the makefile by passing it to a separate
invocation of a shell. Because each command line is passed to a separate invocation of
the shell, care must be taken with certain commands (e.g., cd and shell control
commands) that have meaning only within a single shell process; the results are
forgotten before the next line is executed. If an error occurs, make normally stops the
command.

Using Pseudo-Target Names

It is often useful to include dependency lines that have pseudo-target names, i.e., names
for which no files actually exist or are produced. Pseudo-target names allow make to
perform tasks not directly connected with the creation of a program, such as deleting
old files or printing copies of source files. For example, the following dependency line
removes old copies of the given object files when the pseUdo-target name "cleanup" is
given in the invocation of make.

cleanup:
rm x.o y.o z.o

Since no file exists for a given pseudo-target name, the target is always assumed to be
out of date. Thus the associated command is always executed.

4-4

XENIX Programming make: Program Maintainer

make also has built-in pseudo-target names that modify its operation. The pseudo
target name ".IGNORE" causes make to ignore errors during execution of commands,
allowing make to continue after an error. This is the same as the -i option. (make also
ignores errors for a given command if the command string begins with a hyphen (-).)

The pseudo-target name ".DEFAULT" defines the commands to be executed when no
built-in rule or user-defined dependency line exists for the given target. You may give
any number of commands with this name. If ".DEFAULT" is not used and an undefined
target is given, make prints a message and stops.

The pseudo-target name ".PRECIOUS" prevents dependents of the current target from
being deleted when make is terminated using the INTERRUPT or QUIT key, and the
pseudo-target name ".SILENT" has the same effect as the -s option.

Using Macros

An important feature of a makefile is that it can contain macros. A macro is a short
name that represents a file name or command option. The macros can be defined when
you invoke make or in the makefile itself.

A macro definition is a line containing an equal sign not preceded by a colon or a tab.
The name (string of letters and digits) to the left of the equal sign (trailing blanks and
tabs are stripped) is assigned the string of characters following the equal sign (leading
blanks and tabs are stripped). The following are valid macro definitions:

2 = xyz
abc = -II -Iy
UBES =

The last definition assigns "LIBES" the null string. A macro that is never explicitly
defined has the null string as its value.

A macro is invoked by preceding the name by a dollar sign; macro names longer than one
character must be placed in parentheses. The name of the macro is either the single
character after the dollar sign or a name inside parentheses. The following are valid
macro invocations:

$(CFLAGS)
$2
$(xy)
$Z
$(Z)

The last two invocations are identical.

4-5

make: Program Maintainer XENIX Programming

Macros are typically used as placeholders for values that may change from time to time.
For example, the following makefile uses two macros for the names of object files to be
linked and for the name of the library.

OBJECTS = x.o y.o z.o
UBES = -lin
prog: $(OBJECTS)

(($(OBJECTS) $(UBES) -0 prog

If this makefile is invoked with the command

make

it will link the three object files with the lex library specified with the -lln switch.

You may include a macro definition in a command line. A macro definition argument
has the same form as a macro definition in a makefile. Macros in a command line
override corresponding definitions found in the makefile. For example, the command

make "UBES = -lin -1m"

assigns the library options -lln and -1m to LIBES. (It is necessary to quote arguments
with embedded blanks in XENIX commands.)

You can modify all or part of the value generated from a macro invocation without
changing the macro itself by using the substitution sequence. The sequence has the
form

name: st1 = [st2]

where name is the name of the macro whose value is to be modified, stl is the character
or characters to be modified, and st2 is the character or characters to replace the
modified characters. If st2 is not given, stl is replaced by a null character.

The SUbstitution sequence is typically used to allow user-defined metacharacters in a
makefile. For example, suppose that ".x" is to be used as a metacharacter for a prefix
and suppose that a makefile contains the definition

FI LES = prog 1.x prog2.x prog3.x

Then the macro invocation

$(FILES : .x = .0)

generates the value

prog1.0 prog2.0 prog3.o

The actual value of FILES remains unchanged.

4-6

XENIX Programming make: Program Maintainer

make has five built-in macros that can be used when writing dependency lines. The
following is a list of these macros:

$* Contains the name of the current target with the suffix removed. Thus if the
current target is prog.o, $* contains prog. It may be used in dependency lines that
redefine the built-in rules.

$@. Contains the full path name of the current target. It may be used in dependency
lines with user-defined target names.

$< Contains the file name of the dependent that is more recent than the given target.
It may be used in dependency lines with built-in target names or the .DEFAULT
pseudo-target name.

$? Contains the file names of the dependents that are more recent than the given
target. It may be used in dependency lines with user-defined target names.

$96 Contains the file name of a library member. It may be used with target library
names (see the section "Using Libraries" later in this chapter). In this case, $@.
contains the name of the library and $96 contains the name of the library member.

You can change the meaning of a built-in macro by appending the D or F descriptor to
its name. A built-in macro with the D descriptor contains the name of the directory
containing the given file. If the file is in the current directory, the macro contains".".
A macro with the F descriptor contains the name of the given file with the directory
name part removed. The D and F descriptors must not be used with the $? macro.

Using Shell Environment Variables

make provides access to current values of the shell's environment variables such as
HOME, PATH, and LOGIN. make automatically assigns the value of each shell variable
in your environment to a macro of the same name. You can access a variable's value in
the same way that you access the value of explicitly defined macros. For example, in
the following dependency line, "${HOME)" has the same value as the user's HOME
variable.

prog:
cc $(HOME)/x.o $(HOME)/y.o lusr/pub/z.o

make assigns the shell variable values after it assigns values to the built-in macros, but
before it assigns values to user-specified macros. Thus, you can override the value of a
shell variable by explicitly assigning a value to the corresponding macro. For example,
the following macro definition causes make to ignore the current value of the HOME
variable and use /usr/pub instead.

HOME = lusr/pub

If a makefile contains macro definitions that override the current values of the shell
variables, you can direct make to ignore these definitions by using the -e option.

make has use of two shell variables, MAKE and MAKEFLAGS, that correspond to two
special-purpose macros.

4-7

make: Program Maintainer XENIX Programming

The MAKE macro provides a way to override the -0 option and execute selected
commands in a makefile. When MAKE is used in a command, make will always execute
that command, even if -0 has been given in the invocation. The variable may be set to
any value or command sequence.

The MAKEFLAGS macro contains one or more make options and can be used in
invocations of make from within a makefile. You may assign any make options to
MAKEFLAGS except -f, -p, and -d. If you do not assign a value to the macro, make
automatically assigns the current options to it, i.e., the options given in the current
invocation.

The MAKE and MAKEFLAGS macros, together with the -0 option, are typically used to
debug makefiles that generate entire software systems. For example, in the following
makefile, setting MAKE to "make" and invoking this file with the -0 option displays all
the commands used to generate the programs progl, prog2, and prog3 without actually
executing them.

system : prog 1 prog2 prog3
@echo System complete.

prog 1 : prog 1.c
$(MAKE) $(MAKEFLAGS) prog 1

prog2 : prog2.c
$(MAKE) $(MAKEFLAGS) prog2

prog3 : prog3.c
$(MAKE) $(MAKEFLAGS) prog3

Using the Built-In Rules

make provides a set of built-in dependency lines, called built-in rules, that
automatically check the targets and dependents given in a makefile and create up-to
date versions of these files if necessary. The built-in rules are identical to user-defined
dependency lines except that they use the suffix of the file name as the target or
dependent instead of the file name itself. For example, make automatically assumes
that all files with the suffix .0 have dependent files with the suffixes .c and .8.

When no explicit dependency line is given in a makefile for a given file, make
automatically checks the default dependents of the file, forming the name of the
dependents by removing the suffix of the given file and appending the predefined
dependent suffixes. If the given file is out of date with respect to these default
dependents, make searches for a built-in rule that defines how to create an up to date
version of the file and executes it. There are built-in rules for the following files:

.0 Object file

.c C source file

.r Ratfor source file

.f Fortran source file

4-8

XENIX Programming make: Program Maintainer

.s Assembler source file

.y Yacc-C source grammar

.yr Yacc-Ratfor source grammar

.1 Lex source grammar

For example, if the file x.o is needed and there is an x.c in the description or directory,
x.c is compiled. If there is also an x.I, that grammar would be run through lex before
compiling the result.

The built-in rules are designed to reduce the size of your makefiles. They provide the
rules for creating common files from typical dependents. Reconsider the example given
in the section "Creating a Makefile." In this example, the program prog depended on
three object files, x.o, y.o, and z.o. These files in turn depended on the C language
source files x.c, y.c, and z.c. The files x.c and y.c also depended on the include file
defs. In the original example each dependency and corresponding command sequence
was explicitly given. Many of these dependency lines were unnecessary, since the built
in rules could have been used instead. The following is all that is needed to show the
relationships between these files:

prog: x.o y.o z.o
cc x.o y.o z.o -0 prog

x.o y.o: defs

In this makefile, prog depends on three object files, and an explicit command is given
showing how to update prog. However, the second line merely shows that two object
files depend on the include file defs. No explicit command sequence is given on how to
update these files if necessary. Instead, make uses the built-in rules to locate the
desired C source files, compile these files, and create the necessary object files.

Changing the Built-In Rules

You can change the built-in rules by redefining the macros used in these lines or by
redefining the commands associated with the rules. You can display a complete list of
the built-in rules and the macros used in the rules by typing

make -fp - 2 >/dev/null </dev/null

The rules and macros are displayed at the standard output.

4-9

make: Program Maintainer XENIX Program m ing

The macros of the built-in dependency lines define the names and options of the
compilers, program generators, and other programs invoked by the built-in cot:nmands.
make automatically assigns a default value to these macros when you start the program.
You can change the values by redefining the macro in your makefile. For example, the
following built-in rule contains three macros, CC, CFLAGS, and LOADLIBES .

. c:
$(CC) $(CFLAGS) $< $(LOADLIBES) -0 $@

You can redefine any of these macros by placing the appropriate macro definition at the
beginning of the makefile.

You can redefine the action of a built-in rule by giving a new rule in your makefile. A
built-in rule has the form

suffix-rule :
command

where suffix-rule is a combination of suffixes showing the relationship of the implied
target and dependent, and command is the XENIX command required to carry out the
rule. If more than one command is needed, they are given on separate lines.

The new rule must begin with an appropriate suffix-rule. The available suffix-rules are

.c .c

.sh .sh

.c.o .c.o

.c.c .5.0

.5.0 .y.o

.y.o .1.0

.1.0 .y.c

.y.c .I.c

.c.a .c.a

.s.a .h.h

A tilde (-) indicates an sees file. A single suffix indicates a rule that makes an
executable file from the given file. For example, the suffix rule ".c" is for the built-in
rule that creates an executable file from a e source file. A pair of suffixes indicates a
rule that makes one file from the other. For example, ".c.o" is for the rule that creates
an object file (.o) from a corresponding e source file (.c).

Any commands in the rule may use the built-in macros provided by make. For example,
the following dependency line redefines the action of the .c.o rule •

. c.o:
cc86 $< -c $*.0

4-10

XENIX Program m ing make: Program Maintainer

If necessary, you can also create new suffix-rules by adding a list of new suffixes to a
makefile with .SUFFIXES. This pseudo-target name defines the suffixes that may be
used to make suffix-rules for the built-in rules. The line has the form

.SUFFIXES: suffix .••

where suffix is usually a lowercase letter preceded by a dot (.). If more than one suffix
is given, you must use spaces to separate them.

The order of the suffixes is significant. Each suffix is a dependent of the suffixes
preceding it. For example, the suffix list

.SUFFIXES: .0 .C .y .1 .s

causes prog.c to be a dependent of prog.o, and prog.y to be a dependent of prog.c, etc.

You can create new suffix-rules by combining dependent suffixes with the suffix of the
intended target. The dependent suffix must appear first.

If a SUFFIXES list appears more than once in a makefile, the suffixes are combined into
a single list. If a SUFFIXES is given that has no list, all suffixes are ignored.

Using Libraries

You can direct make to use a file contained in an archive library as a target or
dependent. To do this you must explicitly name the file you wish to access by using a
library name. A library name has the form

lib {member-name}

where lib is the name of the library containing the file, and member-name is the name
of the file. For example, the library name

libtemp.a(print.o)

refers to the object file print.o in the archive library libtemp.a.

You can create your own built-in rules for archive libraries by adding the .a suffix to the
suffix list and creating new suffix combinations. For example, the combination ".c.a"
may be used for a rule that defines how to create a library member from a C source
file. Note that the dependent suffix in the new combination must be different than the
suffix of the ultimate file. For example, the combination ".c.a" can be used for a rule
that creates .0 files, but not for one that creates .c files.

4-11

make: Program Maintainer XENIX Programming

The most common use of the library naming convention is to create a makefile that
automatically maintains an archive library. For example, the following dependency
lines define the commands required to create a library, named lib, containing up' to date
versions of the files filel.o, file2.o, and file3.o.

lib:

.c.a:

lib(file1.0) lib(file2.0) lib(file3.0)
@echo lib is now up to date

$(CC) -c $(CFLAGS) $<
ar rv $@ $*.0
rm -f $*.0

The .c.a rule shows how to redefine a built-in rule for a library. In the following
example, the built-in rule is disabled, allowing the first dependency to create the
library.

lib:

.c.a:;

lib(file1.0) lib(file2.0) lib(file3.0)
$(CC) -c $(CFLAGS) $(7:.0 = .c)
ar rv lib $7
rm $7
@echo lib is now up to date

In this example, a substitution sequence is used to change the value of the $? macro
from the names of the object files "file1.o", "file2.0", and "file3.0" to "file1.c", "file2.c",
and "file3.c".

Trou bleshooti ng

Most difficulties in using make arise from make's specific meaning of dependency. If
the file x.c has the line

#include "defs"

then the object file x.o depends on defs; the source file x.c does not. (If defs is changed,
it is not necessary to do anything to the file x.c, while it is necessary to recreate x.o.)

To determine which commands make will execute, without actually executing them, use
the -n option. For example, the command

make -n

prints out the commands make would normally execute without actually executing them.

4-12

XENIX Programming make: Program Maintainer

If a change to a file is absolutely certain to be benign (e.g., adding a new definition to
an include file), the -t (touch) option can save a lot of time: instead of issuing a large
number of superfluous recompilations, make updates the modification times on the
affected file. Thus, the command

make -ts

which stands for touch silently, causes the relevant files to appear up to date.

The debugging option -d causes make to print out a very detailed description of what it
is doing, including the file times. The output is verbose and is recommended only as a
last resort.

Using make: An Example

As an example of the use of make, examine the makefile used to maintain the make
program itself. The code for make is spread over a number of C source files and a yacc
grammar.

Description file for the make command

Macro definitions below
P = Ipr
FILES = Makefile vers.c defs main.c doname.c misc.c files.c dosys.c\

gram.y lex.c
OBJECTS = vers.o main.o ... dosys.o gram.o
L1BES =
LINT = lint -p
CFLAGS = -0

#targets: dependents
##ITAB>actions

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(L1BES) -0 make
size make

$(OBJECTS): defs
gram.o: lex.c

cleanup:
-rm *.0 gram.c
-du

install:
@size make lusr/bin/make
cp make lusr/bin/make ; rm make

4-13

make: Program Maintainer

print: $(FILES) # print recently changed files

test:

pr $7 I $P
touch print

make -dp I grep -v TIME > 1 zap
lusr/bin/make -dp I grep -v TIME >2zap
diff 1 zap 2zap
rm 1 zap 2zap

lint: dosys.c doname.c files.c main.c misc.c vers.c gram.c

arch:

$(LlNT) dosys.c doname.c files.c main.c misc.c vers .. c gram.c
rm gram.c

ar uv Isys/source/s2/make.a $(FILES)

XENIX Programming

make usually prints out each command before issuing it. The following output results
from typing the simple command

make

in a directory containing only the make source and makefile:

cc -c vers.c
cc -c main.c
cc -c doname.c
cc -c misc.c
cc -c files.c
cc -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -c gram.c
cc vers.o main.o ... dosys.o gram.o -0 make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars was mentioned by name in the makefile,
make found them by using its suffix rules and issued the needed commands. The string
of digits results from the size make command.

The last few targets in the makefile are useful maintenance sequences. The print target
prints only the files that have been changed since the last make print command. A zero
length file print is maintained to keep track of the time of the printing; the $? macro in
the command line then picks up only the names of the files changed since print was
touched. The printed output can be sent to a different printer or to a file by changing
the definition of the P macro.

4-14

CHAPTER 5
SCCS: SOURCE

CODE CONTROL SYSTEM

The Source Code Control System (SeeS) is a collection of XENIX commands that
create, maintain, and control special files called sees files. The sees commands can
create and store multiple versions of a program or document in a single file instead of in
one file for each version. The commands can retrieve any version you wish at any time,
make changes to this version, and save the changes as a new version of the file in the
sees file.

The sees system is useful wherever you require a compact way to store multiple
versions of the same file. sees provides an easy way to update any given version of a
file and explicitly record the changes made. The com mands are typically used to
control changes to multiple versions of source programs, but may also be used to control
multiple versions of manuals, specifications, or other documentation.

This chapter explains how to make sees files, how to update the files contained in
sees files, and how to maintain sees files once they are created.

Basic Information

This section provides some basic information about sees. In particular, it describes

• sees files and directories

• Deltas and SIDs

• sees working files

• sees command arguments

• File administration

Files and Directories

All sees files (also called s-files) are originally created from text files containing
documents or programs created by a user. The text files must have been created using a
XENIX text editor such as vi. Special characters in the files are allowed only if they
are also allowed by the given editor.

5-1

SCCS: Source Code Control System XENIX Programming

To simplify s-file storage, all logically related files (e.g., files belonging to the same
project) should be kept in the same directory. Such directories should contain only s
files and should have read and search permission for everyone and write permission for
the user alone.

Note that you must not use the XENIX link com mand to create multiple links to an s
file.

Deltas and SIDs

Unlike an ordinary text file, an s-file contains nothing more than lists of changes. Each
list corresponds to the changes needed to construct exactly one version of the file. The
lists are combined to create the desired version from the original.

Each list of changes is called a delta. Each delta has an identification string called an
SID. The SID is a string of at least two and at most four numbers separated by periods.
The numbers name the version and define how it is related to other versions. For
example, the first delta is usually numbered "1.1" and the second "1.2".

The first number in any SID is called the release number. The release number usually
indicates a group of versions that are similar and generally compatible. The second
number in the SID is the level number. It indicates major differences between files in
the same release.

An SID may also have two optional numbers. The branch number, the optional third
number, indicates changes at a particular level, and the sequence number, the fourth
number, indicates changes at a particular branch. For example, the SIDs "1.1.1.1" and
"1.1.1.2" indicate two new versions that contain slight changes to the original delta 1.1.

An s-file may at any time contain several different releases, levels, branches, and
sequences of the same file. In general, the maximum number of releases an s-file may
contain is 9999, that is, release numbers may range from 1 to 9999. The same limit
applies to level, branch, and sequence numbers.

When you create a new version, SCCS usually creates a new SID by incrementing the
level number of the original version. If you wish to create a new release, you must
explicitly instruct the system to do so. A change to a release number indicates a major
new version of the file. How to create a new version of a file and change release
numbers is described later.

SCCS creates a branch and sequence number for the SID of a new version if the next
higher level number already exists. For example, if you change version 1.3 to create a
version 1.4 and then change 1.3 again, the SCCS system creates a new version named
1.3.1.1.

Version numbers can become quite complicated. In general, it is wise to keep the
numbers as simple as possible by carefully planning the creation of each new version.

5-2

XENIX Programming sees: Source Code Control Syste m

sees Working Files

sces uses several different kinds of files to complete its tasks. In general, these files
contain information about the commands in progress or contain actual text. For
convenience, sees names these files by placing a prefix before the name of the original
file from which all versions are made. The following is a list of the working files:

s-file

x-file

g-file

p-file

z-file

I-file

d-file

q-file

Contains all versions of the given text file. The versions are stored as
deltas, that is, lists of changes to be applied to the original file to create the
given version. The name of an s-file is formed by placing the prefix s. at the
beginning of the original file name.

A temporary copy of the s-file. It is created by sees commands that change
the s-file and is used instead of the s-file to carry out the changes. When all
changes are complete, sees removes the original' file and gives the x-file
the name of the original s-file. The name of the x-file is formed by placing
the prefix x. at the beginning of the original file name.

An ordinary text file created by applying the deltas in a given s-file to the
original file. The g-file represents a copy of the given version of the original
file and as such receives the same file name as the original. When created, a
g-file is placed in the current working directory of the user who requested
the file.

A special file containing information about the versions of an s-file currently
being edited. The p-file is created when a g-file is retrieved from the s-file.
The file remains until all currently retrieved files have been saved in the s
file. The p-file contains one or more entries describing the SID of the
retrieved g-file, the proposed SID of the new, edited g-file, and the login
name of the user who retrieved the g-file. The p-file name is formed by
placing the prefix p. at the beginning of the original file name.

A lock file used by secs commands to prevent two users from updating a
single sees file at the same time. Before a command modifies an sees
file, it creates a z-file and copies its own process ID to it. Any other
command that attempts to access the file while the z-file is present displays
an error message and stops. When the original command has finished its
tasks, it deletes the z-file before stopping. The z-file name is formed by
placing the prefix z. at the beginning of the original file name.

A special file containing a list of the deltas required to create a given
version of a file. The I-file name is formed by placing the prefix 1. at the
beginning of the original file name.

A temporary copy of the g-file used to generate a new delta.

A temporary file used by the delta command when updating the
corresponding p-file. The q-file is not directly accessible.

In general, a user never directly accesses x-files, z-files, d-files, or q-files. If a system
crash or similar situation abnormally terminates a command, the user may wish to
delete these files before using the sees commands.

5-3

sees: Source Code Control System XENIX Program ming

SCCS Command Arguments

Almost all sees commands accept two types of arguments: options and file names.
These appear in the sees command line immediately after the command name.

An option indicates a special action to be taken by the given sees com mand. An option
is usually a lowercase letter preceded by a hyphen (-). Some options require an
additional name or value.

A file name indicates the file to be acted on. The syntax for sees file names is like
other XENIX file names. Appropriate path names must be given if required. Some
commands also allow directory names. In this case, all files in the directory are acted
on. If the directory contains non-SeeS or unreadable files, these are ignored. A file
name must not begin with a hyphen (-).

The special symbol - may be used to cause an sees command to read a list of file
names from the standard input. These file names are then used as names for the files to
be processed. The list must be terminated by the end-of-file character CONTROL-D.

Any options given with a command apply to all files. The sees commands process the
options before any file names so the options may appear anywhere on the command line.

File names are processed left to right. If a command encounters a fatal error, it stops
processing the current file and, if any other files have been given, begins processing the
next.

File Administrator

Every sees file requires an administrator to maintain and keep the file in order. The
administrator is usually the user who created the file and therefore owns the file. When
other users intend to access the file, the administrator must ensure that they have
adequate access. Several sees com mands are used by the administrator to define who
has access to the versions in a given s-file. These commands are described later.

Creating and Using s-files

The s-file is the key element in sees. It provides compact storage for all versions of a
given file and automatic maintenance of the relationships between the versions.

This section explains how to use the admin, get, and delta commands to create and use
s-files. In particular, it describes how to create the first version of a file, how to
retrieve versions for reading and editing, and how to save new versions.

5-4

XENIX Programming sees: Source Code Control System

Creating an s-file

You can create an s-file from an existing text file using the -i (for "initialize") option of
the admin command. The command has the form

admin -ifilename s. filename

where -ifilename gives the name of the text file from which the s-file is to be created,
and s.filename is the name of the new s-file. The name must begin with s. and must be
unique; no other s-file in the same directory may have the same name. For example,
suppose the file named demo.c contains the short C language program

#include <stdio.h>

mainO
{
printf("This is version 1.1 \n");
}

To create an s-file, type

admin -idemo.e s.demo.e

This command creates the s-file s.demo.c and copies the first delta describing the
contents of demo.c to this new file. The first delta is numbered 1.1.

After creating an s-file, the original text file should be removed using the rm command.
It is no longer needed. If you wish to view the text file or make changes to it, you can
retrieve the file using the get command described in the next section.

When you are first creating an s-file, the admin command may display the warning
message

No id keywords (em7)

In general, this message can be ignored unless you have specifically included keywords in
your file (see the section "Using Identification Keywords" later in this chapter).

Note that only a user with write permission in the directory containing the s-file may
use the admin command on that file. This protects the file from administration by
unauthorized users.

Retrieving a File for Reading

You can retrieve a file for reading from a given s-file by using the get command. The
command has the form

get s.filename ••.

5-5

SCCS: Source Code Control System XENIX Programming

where s.filename is the name of the s-file containing the text file. The command
retrieves the lastest version of the text file and copies it to a regular file. The file has
the same name as the s-file but with the s. removed. It also has read-only file
permissions. For example, suppose the s-file s.demo.c contains the first version of the
short C program shown in the previous section. To retrieve this program, type

get s.demo.c

The command retrieves the program and copies it to the file named demo.c. You may
then display the file just as you do any other text file.

The command also displays a message that describes the SID of the retrieved file and its
size in lines. For example, after retrieving the short C program from s.demo.c, the
command displays the message

1.1
6 lines

You may also retrieve more than one file at a time by giving multiple s-file names in
the command line. For example, the command

get s.demo.c s.def.h

retrieves the contents of the s-files s.demo.c and s.def.h and copies them to the text
files demo.c and def.h. Multiple s-file names in a command must be separated by spaces
or tabs. When the get command displays information about the files, it places the
corresponding file name before the relevant information.

Retrieving a File for Editing

You can retrieve a file for editing from a given s-file by using the -e (for "editing")
option of the get command. The command has the form

get -e s. filename •••

where s.filename is the name of the s-file containing the text file. You may give more
than one file name if you wish. If you do, you must separate the names with spaces or
tabs.

get retrieves the latest version of the text file and copies it to an ordinary text file. The
file has the same name as the s-file but with the s. removed. It has read and write file
permissions. For example, suppose the s-file s.demo.c contains the first version of a C
program. To retrieve this program, type

get -e s.demo.c

The command retrieves the program and copies it to the file demo.c. You may edit the
file just as you do any other text file.

If you give more than one file name, the command creates files for each corresponding
s-file. Since the -e option applies to all the files, you may edit each one.

5-6

XENIX Programming SCCS: Source Code Control System

After retrieving a text file, the command displays a message giving the SID of the file
and its size in lines. The message also displays a proposed SID, that is, the SID for the
new version after editing. For example, after retrieving the six-line C program in
s.demo.c, the command displays the message

1.1
new delta 1.2
Glines

The proposed SID is 1.2. If more than one file is retrieved, the corresponding file name
precedes the relevant information.

Note that any changes made to the text file are not immediately copied to the
corresponding s-file. To save these changes you must use the delta command described
in the next section. To help keep track of the current file version, the get command
creates another file, called a p-file, that contains information about the text file. This
file is used by a subsequent delta command when saving the new version. The p-file has
the same name as the s-file but begins with "p.". The user must not access the p-file
directly.

Saving a New Version of a File

Yoti can save a new version of a text file by using the delta command. The command
has the form

delta s. filename

where s.filename is the name of the s-file from which the modified text file was
retrieved. For example, to save changes made to a C program in the file demo.c (which
was retrieved from the file s.demo.c), type

delta s.demo.c

Before saving the new version, the delta command asks for comments explaining the
nature of the changes. It displays the prompt

comments?

You may type any text you think appropriate, up to 512 characters. The comment must
end with a newline character. If necessary, you can start a new line by typing a
backslash (\) followed by a newline character. If you do not wish to include a comment,
just type a newline character.

Once you have given a comment, the command uses the information in the
corresponding p-file to compare the original version with the new version. A list of all
the changes is copied to the s-file. This is the new delta.

5-7

SCCS: Source Code Control System XENIX Programming

After a command has copied the new delta to the s-file, it displays a message showing
the new SID and the number of lines inserted, deleted, or left unchanged in the new
version. For example, if the C program has been changed to

#include <stdio.h>

mainO
{
int i = 2;

printf("This is version 1. %d \n", i);
}

the command displays the message

1.2
3 inserted
1 deleted
5 unchanged

Once a new version is saved, the next get command retrieves the new version. The
command ignores previous versions. If you wish to retrieve a previous version, you must
use the -r option of the get command as described in the next section.

Retrieving a Specific Version

You can retrieve any version you wish from an s-file by using the -r (for "retrieve")
option of the get command. The command has the form

get [-e] -rSID s. filename •••

where -e is the edit option, -rSID gives the SID of the version to be retrieved, and
s.filename is the name of the s-file containing the file to be retrieved. You may give
more than one file name. Names must be separated with spaces or tabs.

The command retrieves the given version and copies it to the file having the same name
as s-file but with the s. removed. The file has read-only permission unless you also give
the -e option. If multiple file names are given, one text file of the given version is
retrieved from each. For example, the command

get -rl.1 s.demo.c

retrieves version 1.1 from the s-file s.demo.c, but the command

get -e -rl.1 s.demo.c s.def.h

retrieves for editing a version 1.1 from both s.demo.c and s.def.h. If you give the
number of a version that does not exist, the command displays an error message.

5-8

XENIX Programming secs: Source Code Control System

You may omit the level number of a version number if you wish, that is, just give a
release number. If you do, the command automatically retrieves the most recent
version having the same release number. For example, if the most recent version in the
file s.demo.c is numbered 1.4, the command

get -r1 s.demo.c

retrieves the version 1.4. If there is no version with the given release number, the
command retrieves the most recent version in the previous existing release.

Changing the Release Number of a File

You can direct the delta command to change the release number of a new version of a
file by using the -r option of the get command. In this case, the get command has the
form

get -e -rrel-num s. filename •••

where -e is the required edit option, -rrel-num gives the new release number of the file,
and s.filename gives the name of the s-file containing the file to be retrieved. The new
release number must be an entirely new number, that is, no existing version may have
this number. You may give more than one file name.

The command retrieves the most recent version from the s-file, then copies the new
release number to the p-file. On the subsequent delta command, the new version is
saved using the new release number and level number 1. For example, if the most
recent version in the s-file s.demo.c is 1.4, the command

get -e -r2 s.demo.c

causes the subsequent delta to save a new version 2.1, not 1.5. The new release number
applies to the new version only; the release numbers of previous versions are not
affected. Therefore, if you edit version 1.4 (from which 2.1 was derived) and save the
changes, you create a new version 1.5. Similarly, if you edit version 2.1, you create a
new version 2.2.

As before, the get command also displays a message showing the current version
number, the proposed version number, and the size of the file in lines. Similarly, the
subsequent delta command displays the new version number and the number of lines
inserted, deleted, and unchanged in the new file.

5-9

SCCS: Source Code Control System XENIX Programming

Creating a Branch Version

You can create a branch version of a file by editing a version that has been previously
edited. A branch version is simply a version with an SID that contains a branch and
sequence number.

For example, if version 1.4 already exists, the command

get -e -r1.3 s.demo.c

retrieves version 1.3 for editing and gives 1.3.1.1 as the proposed SID.

In general, whenever get discovers that you wish to edit a version that already has a
succeeding version, it uses the first available branch and sequence numbers for the
proposed SID. For example, if you edit version 1.3 a third time, get gives 1.3.2.1 as the
proposed SID.

You can save a branch version just like any other version by using the delta command.

Retrieving a Branch Version

You can retrieve a branch version of a file by using the -r option of the get command.
For example, the command

get -r1.3.1.1 s.demo.c

retrieves branch version 1.3.1.1.

You may retrieve a branch version for editing by using the -e option of the get
command. When retrieving for editing, get creates the proposed SID by incrementing
the sequence number by one. For example, if you retrieve branch version 1.3.1.1 for
editing, get gives 1.3.1.2 as the proposed SID.

As always, the command displays the version number and file size. If the given branch
version does not exist, the command displays an error message.

You may omit the sequence number if you wish. In this case, the command retrieves the
most recent branch version with the given branch number. For example, if the most
recent branch version in the s-file s.def.h is 1.3.1.4, the com mand

get -r1.3.1 s.def.h

retrieves version 1.3.1.4.

5-10

XENIX Program ming sees: Source Code Control System

Retrieving the Most Recent Version

You can always retrieve the most recent version of a file by using the -t option with the
get command. For example, the command

get -t s.demo.c

retrieves the most recent version from the file s.demo.c. You may combine the -r and
-t options to retrieve the most recent version of a given release number. For example,
if the most recent version with release number 3 is 3.5, then the command

get -r3 -t s.demo.c

retrieves version 3.5. If a branch version exists that is more recent than version 3.5
(e.g., 3.2.1.5), then the above command retrieves the branch version and ignores version
3.5.

Displaying a Version

You can display the contents of a version at the standard output by using the -p option
of the get command. For example, the command

get -p s.demo.c

displays the most recent version in the s-file s.demo.c at the standard output. Similarly,
the command

get -p -r2.1 s.demo.c

displays version 2.1 at the standard output.

The -p option is useful for creating g-files with user-supplied names. Since this option
also directs all output normally sent to the standard output, such as the SID of the
retrieved file, to the standard error output, the resulting file contains only the contents
of the given version. For example, the command

get -p s.demo.c >version.c

copies the most recent version in the s-file s.demo.c to the file version.c. The SID of
the file and its size are copied to the standard error output.

5-11

SCCS: Source Code Control System XENIX Programming

Saving a Copy of a New Version

The delta command normally removes the edited file after saving it in the s-file. You
can save a copy of this file by using the -0 option of the delta command. For example,
the command

delta -n s.demo.c

first saves a new version in the s-file s.demo.c and then saves a copy of the source
version in the file demo.c. You may then display the source file as desired, but you
cannot edit it.

Displaying Helpful Information

An SCCS command displays an error message whenever it encounters an error in a file.
An error message has the form

ERROR [filename]: message (code)

where filename is the name of the file being processed, message is a short description of
the error, and code is the alphanumeric error code.

You may use the error code as an argument to the help command to display additional
information about the error. The command has the form

help code

where code is the error code given in an error message. The command displays one or
more lines of text that explain the error and suggest a possible remedy. For example,
the command

helpco1

displays the message

c01 :
"not an sees file"
A file that you think is an sees file
does not begin with the characters "s.".

Use the help command whenever you have doubt about the meariing of an error message.

5-12

XENIX Program m ing SCCS: Source Code Control System

Using Identification Keywords

SCCS provides several special symbols, called identification keywords, that can be used
in the text of a program or document to represent predefined values. Keywords
represent values ranging from the creation date and time of a given file to the name of
the module containing the keyword. When a user retrieves the file for reading, SCCS
automatically replaces each keyword it finds in a given version of a file with the
keyword's value.

This section explains how keywords are treated by the various SCCS commands and how
you may use the keywords in your own files. Only a few keywords are described in this
section. For a complete list of the keywords, see get in Appendix B, "Programming
Commands."

Inserting a Keyword into a File

You may insert a keyword into any text file. A keyword is simply an uppercase letter
enclosed in percent signs (%). For example, 96196 is the keyword representing the SID of
the current version, and 96H96 is the keyword representing the current date.

When a file is retrieved for reading using the get command, the keywords are replaced
by their current values. For example, if the 96M96, 96196, and 96H96 keywords are used in
place of the module name, the SID, and the current date in the program statement

eharheader(100) = {" %M% %1% %H% "};

then these keywords are expanded in the retrieved version of the program

char header{1 00) = {" MODNAME 2.3 07/07/77 "};

The get command does not replace keywords when retrieving a version for editing. SCCS
assumes that you wish to keep the keywords (and not their values) when you save the
new version of the file.

To indicate that a file has no keywords, the get, delta, and admin commands display the
message

No id keywords (em7)

This message is normally treated as a warning, letting you know that no keywords are
present. However, you may change the operation of the system to make this a fatal
error as explained later in this chapter.

5-13

SCCS: Source Code Control System XENIX Programming

Assigning Values to Keywords

The values of most keywords are predefined by the system, but some, such as the value
for the 96M96 keyword, can be explicitly defined by the user. To assign a value to a
keyword, you must set the corresponding s-file flag to the desired value. You can do
this by using the -f option of the admin command.

For example, to set the 96M96 keyword to "cdemo", set the m flag as in the command

admin -fmcdemo s.demo.c

This command records "cdemo" as the current value of the 96M96 keyword. Note that if
you do not set the m flag, SCCS uses the name of the original text file for 96M96 by
default.

The t and q flags are also associated with keywords. A description of these flags and
the corresponding keywords can be found in the entry get in Appendix B, "Programming
Commands." You can change keyword values at any time.

Forcing Keywords

You can force a fatal error if a version is found to contain no keywords by setting the i
flag in the given s-file. The flag causes the delta and admin commands to stop
processing of the given version and report an error if no keywords are found. The flag is
useful for ensuring that keywords are used properly in a given file.

To set the i flag, you must use the -f option of the admin command. For example, the
command

admin -fi s.demo.c

sets the i flag in the s-file s.demo.c. Subsequent delta or admin commands that access
this file print an error message if the given version does not contain keywords.

Note that if you attempt to set the i flag at the same time you create an s-file and if
the initial text file contains no keywords, the admin command displays a fatal error
message and stops without creating the s-file.

Using s-file Flags

An s-file flag is a special value that defines how SCCS will operate on the corresponding
s-file. The s-file flags are stored in the s-file and are read by each SCCS command
before it operates on the file. The s-file flags affect keyword checking, keyword
replacement values, and default values for commands.

This section explains how to set and use s-file flags. It also describes the action of
commonly used flags. For a complete description of all flags, see the entry admin in
Appendix B, "Programming Commands."

5-14

XENIX Programming SCCS: Source Code Control System

Setting s-file Flags

You can set the flags in a given s-file by using the -f option of the admin command. The
command has the form

admin -fflag s. filename

where -fflag gives the flag to be set, and s.filename gives the name of the s-file in
which the flag is to be set. For example, the command

admin -fi s.demo.c

sets the i flag in the s-file s.demo.c.

Note that some s-file flags take values when they are set. For example, the m flag
requires that a module name be given. When a value is required, it must immediately
follow the flag name as in the command

admin -fmdmod s.demo.c

which sets the m flag to the module name "dmod".

Using the i Flag

The i flag causes the admin and delta commands to print a fatal error message and stop
if no keywords are found in the given text file. The flag is used to prevent a file version
that contains expanded keywords from being saved as a new version. (Saving an
expanded version destroys the keywords for all subsequent versions.)

When the i flag is set, each new version of a file must contain at least one keyword.
Otherwise, the version cannot be saved.

Using the d Flag

The d flag gives the default SID for versions retrieved by the get command. The flag
takes an SID as its value. For example, the command

admin -fd 1.1 s.demo.c

sets the default SID to 1.1. A subsequent get command that does not use the -r option
will retrieve version 1.1.

5-15

SCCS: Source Code Control System XENIX Programming

Using the v Flag

The v flag allows you to include modification requests in an s-file. Modification
requests are names or numbers that may be used as a shorthand method to indicate the
reason for each new version.

When the v flag is set, the delta command asks for the modification requests just before
asking for comments. The v flag also allows the -m option to be used in the delta and
admin commands.

Removing an s-file Flag

You can remove an s-file flag from an s-file by using the -d option of the admin
command. The command has the form

admin -dflag s. filename

where -dflag gives the name of the flag to be removed and s.filename is the name of the
s-file from which the flag is to be removed. For example, the command

admin -di s.demo.c

removes the i flag from the s-file s.demo.c. When removing a flag that takes a value,
only the flag name is required. For example, the command

admin -dm s.demo.c

removes the m flag from the s-file.

The -d option and the -i ("initialize") option must not be used at the same time.

Modifying s-file Information

Every s-file contains information about the deltas it contains. Normally, this
information is maintained by the SCCS commands and is not directly accessible by the
user. Some information, however, is specific to the user who creates the s-file and may
be changed as desired to meet the user's requirements. This information is kept in two
special parts of the s-file called the delta table and the description field.

The delta table contains information about each delta, such as the SID and the date and
time of creation. It also contains user-supplied information, such as comments and
modification requests. The description field contains a user-supplied description of the
s-file and its contents. Both parts can be changed or deleted at any time to reflect
changes to the s-file contents.

5-16

XENIX Programming SCCS: Source Code Control System

Adding Comments

You can add comments to an s-file by using the -y option of the delta and admin
commands. This option causes the given text to be copied to the s-file as the comment
for the new version. The comment may be any combination of letters, digits, and
punctuation symbols. No embedded newline characters are allowed. If spaces are used,
the comment must be enclosed in double quotes. The complete command must fit on
one line. For example, the command

delta -y"George Wheeler" s.demo.c

saves the comment "George Wheeler" in the s-file s.demo.c.

The -y option is typically used in shell procedures as part of an automated approach to
maintaining files. When the -y option is used, the delta com mand does not print the
corresponding comment prompt, so no interaction is required. If more than one s-file is
given in the command line, the given comment applies to them all.

Changing Comments

You can change the comments in an s-file by using the cdc command. The command has
the form

cdc -rSID s. filename

where -rSID gives the SID of the version with the comment to be changed, and
s.filename is the name of the s-file containing the version. The command asks for a new
comment by displaying the prompt

comments?

You may type any sequence of characters up to 512 characters long. The sequence may
contain embedded newline characters if each such newline character is preceded by a
backslash (\). The sequence must be terminated with a newline character. For example,
the command

cdc -r3.4 s.demo.c

prompts for a new comment for version 3.4.

Although the command does not delete the old comment, it is no longer directly
accessible by the user. The new comment contains the login name of the user who
invoked the cdc command and the time the comment was changed.

5-17

SCCS: Source Code Control System XENIX Program m ing

Adding Modification Requests

You can add modification requests to an s-file, when the v flag is set, by using the -m
option of the delta and admin commands. A modification request is a shorthand method
of describing the reason for a particular version. Modification requests are usually
names or numbers that the user has chosen to represent a specific request.

The -m option causes the given command to save the requests following the option. A
request may be any combination of letters, digits, and punctuation symbols. If spaces
are used, you must enclose the request in double quotes. For example, the command

delta -m"error35 optimize10" s.demo.c

copies the requests "error35" and "optimize10" to s.demo.c while saving the new version.

The -m option when used with the admin command must be combined with the -i option.
Furthermore, the v flag must be explicitly set with the -f option. For example, the
command

admin -idef.h -mlerrorO" -fv s.def.h

inserts the modification request "errorO" in the new file s.def.h.

The delta command does not prompt for modification requests if you use the -m option.

Changing Modification Requests

You can change modification requests, when the v flag is set, by using the cdc
command. The command asks for a list of modification requests by displaying the
prompt

MRs?

You may type any number of requests. Each request may have any combination of
letters, digits, or punctuation symbols. No more than 512 characters are allowed and
the last request must be terminated with a newline character. If you wish to remove a
request, you must precede the request with an exclamation mark (!). For example, the
command

cdc -r1.4 s.demo.c

asks for changes to the modification requests. The response

MRs? error36 !error35

adds the request "error36" and removes "error35".

5-18

XENIX Programming sees: Source Code Control Syste m

Adding Descriptive Text

You can add descriptive text to an s-file by using the -t option of the admin com mand.
Descriptive text is any text that describes the purpose and reason for the given s-file.
Descriptive text is independent of the contents of the s-file and can only be displayed
using the prs command.

The -t option directs the admin command to copy the contents of a given file into the
description field of the s-file. The command has the form

admin -tfilename s. filename

where -tfilename gives the name of the file containing the descriptive text, and
s.filename is the name of the s-file to receive the descriptive text. The file to be
inserted may contain any amount of text. For example, the com mand

admin -tcdemo s.demo.c

inserts the contents of the file cdemo into the description field of the s-file s.demo.c.

The -t option may also be used when creating the s-file to initialize the description
field. For example, the command

admin -idemo.c -tcdemo s.demo.c

inserts the contents of the file cdemo into the new s-file s.demo.c. If the -t option is
not used, the description field of the new s-file is left empty.

You can remove the current descriptive text in an s-file by using the -t option without a
file name. For example, the command

admin -t s.demo.c

removes the descriptive text from the s-file s.demo.c.

Printing from an s-file

This section explains how to display information contained in an s-file using the prs
command. The command has a variety of options that control the display format and
content.

Using a Data Specification

You can explicitly define the information to be printed by using the -d option of the prs
command. The command copies user-specified information to the standard output. The
command has the form

prs -dspec s. filename

where -dspec is the data specification, and s.filename is the name of the s-file from
which the information is to be taken.

5-19

SCCS: Source Code Control System XENIX Programming

The data specification is a string of data keywords and text. A data keyword is an
uppercase letter, enclosed in colons (:). It represents a value contained in the given
s-file. For example, the keyword :1: represents the SID of a given version; :F:
represents the file name of the given s-file; and :C: represents the comment line
associated with a given version. Data keywords are replaced by these values when the
information is printed.

For example, the command

prs -dOl version: :1: filename: :F: " s.demo.c

may produce the line

version: 2.1 filename: s.demo.c

A complete list of the data keywords is given in the entry prs in Appendix B,
"Programming Commands."

Printing a Specific Version

You can print information about a specific version in a given s-file by using the -r option
of the prs command. The command has the form

prs -rSID s. filename

where -rSID gives the sin of the desired version, and s.filename is the name of the s-file
containing the version. For example, the command

prs -r2.1 s.demo.c

prints information about version 2.1 in the s-file s.demo.c.

If the -r option is not specified, the command prints information about the most
recently created delta.

Printing later and Earlier Versions

You can print information about a group of versions by using the -1 and -e options of the
prs command. The -1 option causes the command to print information about all versions
immediately succeeding the given version. The -e option causes the command to print
information about all versions immediately preceding the given version. For example,
the command

prs -r1.4 -e s.demo.c

5-20

XENIX Programming secs: Source Code Control System

prints all information about versions that precede version 1.4 (e.g., 1.3, 1.2, and 1.1).
The command

prs -rl.4 -I s.abc

prints information about versions that succeed version 1.4 (e.g., 1.5, 1.6, and 2.1).

If both options are given, information about all versions is printed.

Editing by Several Users

SCCS allows any number of users to access and edit versions of a given s-file. Since
users are likely to access the s-file at the same time, the system is designed to allow
concurrent editing of different versions. Normally, the system prevents concurrent
editing of the same version, but you can change the operation of the system to allow
concurrent editing of the same version by setting the j flag in the given s-file.

The following sections explain how to perform concurrent editing and how to save edited
versions when you have retrieved more than one version for editing.

Editing Different Versions

SCCS allows several different versions of a file to be edited at the same time. This
means a user can edit version 2.1 while another user edits version 1.1. There is no limit
to the number of versions that can be edited at any given time.

When several users edit different versions concurrently, each user must begin work in
his own directory. If users attempt to share a directory and work on versions from the
same s-file at the same time, the get command will refuse to retrieve a version.

Editing a Single Version

A single version of a file can be edited by more than one user if the j flag is set in the s
file. The flag causes the get command to check the p-file and create a new proposed
SID if the given version is already being edited.

You can set the flag by using the -f option of the admin command. For example, the
command

admin -fj s.demo.c

sets the flag for the s-file s.demo.c.

When the flag is set, get uses the next available branch SID for each new proposed SID.
For example, suppose a user retrieves for editing version 1.4 in the file s.demo.c and
that the proposed version is 1.5. If a short time later (before the first user has saved his
changes) another user retrieves version 1.4 for editing, then the proposed version for the
new user will be 1.4.1.1, since version 1.5 is already proposed and likely to be taken. In
no case will a version edited by two separate users result in a single new version.

5-21

SCCS: Source Code Control System XENIX Programming

Saving a Specific Version

When editing two or more versions of a file, you can direct the delta command to save a
specific version by using the -r option to give the SID of that version. The command has
the form

delta -rSID s. filename

where -rSID gives the SID of the version being saved and s.filename is the s-file to
receive the new version. The SID may be the SID of the version you have just edited, or
the proposed SID for the new version. For example, if you have retrieved version 1.4 for
editing (and no version 1.5 exists), both commands

delta -r1.S s.demo.c

and

delta -r1.4 s.demo.c

save version 1.5.

Protecting s-files

SCCS uses the normal XENIX system file permissions to protect s-files from changes by
unauthorized users. In addition to the XENIX system protections, SCCS provides two of
its own ways to protect the s-files: the user list and the protection flags. The user list
is a list of login names and group IDs of users allowed to access the s-file and create
new versions of the file. The protection flags are three special s-file flags that define
which versions are currently accessible to otherwise authorized users. The following
sections explain how to set and use the user list and protection flags.

Adding a User to the User List

You can add a user or a group of users to the user list of a given s-file by using the -a
option of the admin com mand. The option causes the given name to be added to the
user list. The user list defines who may access and edit the versions in the s-file. The
command has the form

admin -aname s. filename

where -aname gives the login name of the user or the group name of a group of users to
be added to the list, and s.filename gives the name of the s-file to receive the new
users. For example, the command

admin -ajohnd -asuex -amarketing s.demo.c

adds the users "johnd" and "suex" and the group "marketing" to the user list of the s-file
s.demo.c.

5-22

XENIX Programming sees: Source Code Control System

If you create an s-file without giving the -a option, the user list is left empty and all
users may access and edit the files. When you explicitly give a user name or names,
only those users can access the files.

Removing a User from a User List

You can remove a user or a group of users from the user list of a given s-file by using
the -e option of the admin command. The option is similar to the -a option but performs
the opposite operation. The command has the form

admin -ename s. filename

where -enarne gives the login name of a user or the group name of a group of users to be
removed from the list, and s.filenarne is the name of the s-file from which the names
are to be removed. For example, the command

admin -ejohnd -emarketing s.demo.c

removes the user "johnd" and the group "marketing" from the user list of the s-file
s.demo.c.

Setting the Floor Flag

The floor flag, f, defines the release number of the lowest version a user may edit in a
given s-file. You can set the flag by using the -f option of the admin command. For
example, the command

admin -ff2 s.demo.c

sets the floor to release number 2. If you attempt to retrieve any versions with release
numbers less than 2, an error will result.

Setting the Ceiling Flag

The ceiling flag, c, defines the release number of the highest version a user may edit in
a given s-file. You can set the flag by using the -f option of the admin command. For
example, the command

admin -fcS s.demo.c

sets the ceiling to release number 5. If you attempt to retrieve any versions with
release numbers greater than 5, an error will result.

5-23

SCCS: Source Code Control System XENIX Programming

Locking a Version

The lock flag, 1, lists by release number all versions in a given s-file that are locked
against further editing. You can set the flag by using the -f flag of the admin command.
The flag must be followed by one or more release numbers. Multiple release numbers
must be separated by commas (,). For example, the command

admin -f13 s.demo.c

locks all versions with release number 3 against further editing. The command

admin -fI4,5,9 s.def.h

locks all versions with release numbers 4, 5, and 9.

Note that the special symbol "a" may be used to specify all release numbers. The
command

admin -fla s.demo.c

locks all versions in the file s.demo.c.

Repairing sees Files

SCCS carefully maintains all secs files, making damage to the files very rare. Damage
can result from hardware malfunctions that cause incorrect information to be copied to
the file. The following sections explain how to check for damage to SCCS files and how
to repair the damage or regenerate the file.

Checking an s-file

You can check a file for damage using the -h option of the admin command. The option
causes the checksum of the given s-file to be computed and compared with the existing
sum. An s-file's checksum is an internal value computed from the sum of all bytes in
the file. If the new and existing checksums are not equal, the command displays the
message

corrupted file (c06)

indicating damage to the file. For example, the command

admin -h s.demo.c

checks the s-file s.demo.c for damage by generating a new checksum for the file and
comparing the new sum with the existing sum.

5-24

XENIX Programming SCCS: Source Code Control System

You may give more than one file name. If you do, the command checks each file in
turn. You may also give the name of a directory, in which case the command checks all
files in the directory.

Since failure to repair a damaged s-file can destroy the file's contents or make the file
inaccessible, it is a good idea to regularly check all s-files for damage.

Editing an s-file

When an s-file is discovered to be damaged, it is a good idea to restore a back-up copy
of the file from a back-up disk or tape rather than attempting to repair the file.
(Restoring a back-up copy of a file is described in the XENIX 286 System
Administrator's Guide.) If this is not possible, the file may be edited using a XENIX text
editor.

To repair a damaged s-file, use the description of an s-file given in the entry sccsfile in
"File Formats" in the XENIX 286 C Library Guide to locate the damaged part of the
file. Use extreme care when making changes; small errors can cause unwanted results.

Changing an s-file's Checksum

After repairing a damaged s-file, you must change the file's checksum using the -z
option of the admin command. For example, to restore the checksum of the repaired
file s.demo.c, type

admin -z s.demo.c

The command computes and saves the new checksum, replacing the old sum.

Regenerating a g-file for Editing

You can create a g-file for editing without affecting the current contents of the p-file
by using the -k option of the get command. The option has the same effect as the -e
option except that the current contents of the p-file remain unchanged. The option is
typically used to regenerate a g-file that has been accidentally removed or destroyed
before it has been saved using the delta command.

Restoring a Damaged p-file

The -g option of the get command may be used to generate a new copy of a p-file that
has been accidentally removed. For example, the command

get -e -g s.demo.c

creates a new p-file entry for the most recent version in s.demo.c. If the file demo.c
already exists, it will not be changed by this command.

5-25

SCCS: Source Code Control System XENIX Programming

Using Other Command Options

Many of the SCCS commands provide options that control their operation in useful ways.
This section describes these options and explains how you may use them to perform
useful work.

Getting Help with SCCS Commands

You can display helpful information about an SCCS command by giving the name of the
command as an argument to the help command. The help command displays a short
explanation of the command and command syntax. For example, the command

help rmdel

displays the message

rmdel:
rmdel -rSI D name ...

Creating a File with the Standard Input

You can direct admin to use the standard input as the source for a new s-file by using
the -i option without a file name. For example, the command

admin -i s.demo.c <demo.c

causes admin to create a new s-file named s.demo.c using the text file demo.c as its
first version.

This method of creating a new s-file is typically used to connect admin to a pipe. For
example, the command

cat mod1.c mod2.c I admin -i s.mod.c

creates a new s-file s.mod.c that contains the first version of the concatenated files
modl.c and mod2.c.

Starting at a Specific Release

The admin command normally starts numbering versions with release number 1. You
can direct the command to start with any given release number by using the -r option.
The command has the form

admin -rrel-num s. filename

5-26

XENIX Programming sees: Source Code Control System

where -rrel-num gives the value of the starting release number, and s.filename is the
name of the s-file to be created. For example, the command

admin -idemo.c -r3 s.demo.c

starts with release number 3. The first version is 3.1.

Adding a Comment to the First Version

You can add a comment to the first version of a file by using the -y option of the admin
command when creating the s-file. For example, the command

admin -idemo.c -y"George Wheeler" s.demo.c

inserts the com ment "George Wheeler" in the new s-file s.demo.c.

The comment may be any combination of letters, digits, and punctuation symbols. If
spaces are used, the comment must be enclosed in double quotes. The complete
command must fit on one line.

If the -y option is not used when creating an s-file, a comment of the form

date and time created YY/MM/DD HH:MM:SS by logname

is automatically inserted.

Suppressing Normal Output

You can suppress the normal display of messages created by the get command by using
the -s option. The option prevents information, such as the SID of the retrieved file,
from being copied to the standard output. The option does not suppress error messages.

The -s option is often used with the -p option to pipe the output of the get command to
other commands. For example, the command

get -p -s s.demo.c I I pr

copies the most recent version in the s-file s.demo.c to the line printer.

You can also suppress the normal output of the delta command by using the -s option.
This option suppresses all output normally directed to the standard output, except for
the normal comment prompt.

5-27

SCCS: Source Code Control Syste m XENIX Program ming

Including and Excluding Deltas

You can explicitly define which deltas you wish to include and which you wish to exclude
when creating a g-file by using the -i and -x options of the get command.

The -i option causes the command to apply the given deltas when constructing a version.
The -x option causes the command to ignore the given deltas when constructing a
version. Both options must be followed by one or more SIDs. If multiple SIDs are given,
they must be separated by commas (,). A range of SIDs may be given by separating two
SIDs with a hyphen (-). For example, the command

get -i 1.2,1.3 s.demo.c

causes deltas 1.2 and 1.3 to be used to construct the g-file. The command

get -x 1.2-1.4 s.demo.c

causes deltas 1.2 through 1.4 to be ignored when constructing the file.

The -i option is useful if you wish to apply the same changes to more than one version.
For example, the command

get -e -i4.1 -r3.3 s.demo.c

retrieves version 3.3 for editing. When the file is retrieved, the changes in delta 4.1 are
automatically applied to it, making the g-file the same as if version 3.3 had been edited
by hand using the changes in delta 4.1. These changes can be saved immediately by
issuing a delta command. No editing is required.

The -x option is useful if you wish to remove changes performed on a given version. For
example, the command

get -e -x1.5 -r1.6 s.demo.c

retrieves version 1.6 for editing. When the file is retrieved, the changes in delta 1.5 are
automatically left out of it, making the g-file the same as if version 1.4 had been
changed according to delta 1.6 (with no intervening delta 1.5). These changes can be
saved immediately by issuing a delta command. No editing is required.

When deltas are included or excluded, get compares them with the deltas normally used
in constructing the given version. If two deltas attempt to change the same line of the
retrieved file, the command displays a warning message. The message shows the range
of lines in which the problem may exist. Corrective action, if required, is the
responsibility of the user.

5-28

XENIX Program m ing SCCS: Source Code Control System

Listing the Deltas of a Version

You can create a table showing the deltas required to create a given version by using
the -1 option. The option causes the get command to create an I-file that contains the
SIDs of all deltas used to create the given version.

The option is typically used to create a history of a given version's development. For
example, the command

get -I s.demo.c

creates a file named I.demo.c containing the deltas required to create the most recent
version of demo.c.

You can display the list of deltas required to create a version by using the -lp option.
This option performs the same function as the -I option, except that it copies the list to
the standard output. For example, the command

get -Ip -r2.3 s.demo.c

copies the list of deltas required to create version 2.3 of demo.c to the standard output.

Note that the -1 option may be combined with the -g option to create a list of deltas
without retrieving the actual version.

Mapping Lines to Deltas

You can map each line in a given version to its corresponding delta by using the -m
option of the get command. The option causes each line in a g-file to be preceded by
the SID of the delta that caused that line to be inserted. The SID is separated from the
beginning of the line by a tab character. The option is typically used to review the
history of each line in a given version.

Naming Lines

You can name each line in a given version with the current module name (i.e., the value
of the 96M% keyword) by using the -0 option of the get command. The option causes
each line of the retrieved file to be preceded by the value of the %M% keyword and a
tab character.

The -0 option is typically used to indicate that a given line is from the given file. When
both the -m and -0 options are specified, each line begins with the %M% keyword.

5-29

SCCS: Source Code Control System XENIX Programming

Displaying a List of Differences

You can display a detailed list of the differences between a new version of a file and the
previous version by using the -p option of the delta command. The option causes the
command to display the differences in a format similar to the output of the XENIX diff
command.

Displaying File Information

You can display information about a given version by using the -g command of the get
option. The option suppresses the actual retrieval of a version and causes only the
information about the version, such as the SID and size, to be displayed.

The option is often used with the -r option to check for the existence of a given version.
For example, the command

get -g -r4.3 s.demo.c

displays information about version 4.3 in the s-file s.demo.c. If the version does not
exist, the command displays an error message.

Removing a Delta

You can remove a delta from an s-file by using the rmdel command. The command has
the form

rmdel -rSID s. filename

where -rSID gives the SID of the delta to be removed, and s.filename is the name of the
s-file from which the delta is to be removed. The delta must be the most recently
created delta in the s-file. Furthermore, the user must have write permission in the
directory containing the s-file and must either own the s-file or be the user who created
the delta.

For example, the command

rmdel -r2.3 s.demo.c

removes delta 2.3 from the s-file s.demo.c.

The rmdel command will refuse to remove a protected delta, that is, a delta whose
release number is below the current floor value, above the current ceiling value, or
equal to a current locked value. The command will also refuse to remove a delta that is
currently being edited.

The rmdel command should be reserved for those cases in which incorrect, global
changes were made to an s-file.

Note that rmdel changes the type indicator of the given delta from "D" to "R". A type
indicator defines the type of delta.

5-30

XENIX Program m ing SCCS: Source Code Control System

Searching for Strings

You can search for strings in files created from an s-file by using the what command.
The command searches for the symbol "#(@)" (the current value of the 96Z96 keyword) in
the given file and prints on the standard output all text immediately following the
symbol up to the next double quote ("), greater than (», backslash (\), newline, or
(nonprinting) NULL character. For example, if the s-file s.demo.c contains the line

char id[] = "%Z%%M%:%I%";

and the command

get -r3.4 s.prog.c

is executed, then the command

what prog.c

displays

prog.C:
prog.c:3.4

You may also use what to search files not created by SCCS commands.

Comparing SCCS Files

You can compare two versions from a given s-file by using the sccsdiff command. This
command prints on the standard output the differences between two versions of the s
file. The command has the form

sccsdiff -rSID1 -rSID2 s. filename

where -rSIDl and -rSID2 give the SIDs of the versions to be compared, and s.filename is
the name of the s-file containing the versions. The version SIDs must be given in the
order in which they were created. For example, the command

sccsdiff -r3.4 -rS.6 s.demo.c

displays the differences between versions 3.4 and 5.6. The differences are displayed in a
form similar to the XENIX diff command.

5-31

CHAPTER 6
adb: PROGRAM DEBUGGER

adb is a debugging tool for C and assembly language programs. It controls program
execution and provides commands to examine and modify a program's data and text
areas.

This chapter explains how to use adb. In particular, it explains how to

• Start the debugger.

• Display program instructions and data.

• Run, set breakpoints, or single-step a program.

• Patch program files and memory.

It also illustrates techniques for debugging C programs and explains how to display
information in non-ASCII data files.

Starting and Stopping adb

adb provides a powerful set of commands to examine, debug, and repair executable
binary files as well as examine non-ASCII data files. To use these commands you must
invoke adb from a shell command line and specify the file or files you wish to debug.
The following sections explain how to start adb and describe the types of files available
for debugging.

Starting with a Program File

You can debug any executable C or assembly language program file by typing a
command line of the form

adb [filename]

where filename is the name of the program file to be debugged. adb opens the file and
prepares its text (instructions) and data for subsequent debugging. For example, the
command

adbsample

prepares the program sample for examination and execution.

6-1

adb: Program Debugger XENIX Programming

Once started, adb normally prompts with an asterisk (*) and waits for you to type
commands. If you have given the name of a file that does not exist or is in the wrong
format, adb will display an error message first, then wait for commands. For example,
if you invoke adb with the com mand

adb sample

and the file sample does not exist, adb displays the message fladb: cannot open 'sample' fl.

You may also start adb without a file name. In this case, adb searches for the default
file a.out in your current working directory and prepares it for debugging. Thus, the
command

adb

is the same as typing

adb a.out

adb displays an error message and waits for a command if the a.out file does not exist.

Starting with a Core Image File

adb can also examine the core image files of programs that caused fatal system errors.
Core image files contain the contents of the CPU registers, stack, and memory areas of
the program at the time of the error and provide a way to determine the cause of an
error.

To examine a core image file with its corresponding program, you must give the name of
both the core file and the program file. The command line has the form

adb programfile corefile

where programfile is the program that caused the error, and corefile is the core image
file generated by the system. adb then uses information from both files to provide
responses to your commands.

If you do not give a core image file, adb searches for the default core file, named core,
in your current working directory. If it is found, adb uses it regardless of whether or not
the file belongs to the given program. You can prevent adb from opening this file by
using the hyphen (-) in place of the core file name. For example, the command

adb sample-

prevents adb from searching your current working directory for a core file.

6-2

XENIX Programming adb: Program Debugger

Starting adb with Data Files

You can use adb to examine data files by giving the name of the data file in place of the
program or core file. For example, to examine a data file named outdata, type

adb outdata

adb opens this file and lets you examine its contents.

This method of examining files is very useful if the file contains non-ASCII data. adb
provides a way to look at the contents of the file in a variety of formats and structures.
Note that adb may display a warning when you give the name of a non-ASCII data file in
place of a program file. This usually happens when the content of the data file is
similar to a program file. Like core files, data files cannot be executed.

Starting with the Write Option

You can make changes and corrections in a program or data file using adb if you open it
for writing using the -w option. For example, the command

adb -w sample

opens the program file sample for writing. You may then use adb commands to examine
and modify this file.

Note that the -w option causes adb to create a given file if it does not already exist.
The option also can be used to write directly to memory after executing the given
program. See the section "Patching Binary Files" later in this chapter.

Starting with the Prompt Option

You can define the prompt used by adb by using the -p option. The option has the form

-p prompt

where prompt is any combination of characters. If you use spaces, enclose prompt in
quotes. For example, the command

adb -p "Mar 10->" sample

sets the prompt to "Mar 10->". The new prompt takes the place of the default prompt
(*) when adb begins to prompt for commands.

Make sure you put at least one space between the -p and the new prompt, otherwise adb
will display an error message. Note that adb automatically supplies a space at the end
of the new prompt, so you do not have to supply one.

6-3

adb: Program Debugger XENIX Programming

Leaving adb

You can stop adb and return to the system shell by using the $q or $Q commands. You
can also stop the debugger by typing CONTROL-D.

You cannot stop adb by pressing the INTERRUPT or QUIT keys. These keys are caught
by adb and cause it to to wait for a new command.

Displaying Instructions and Data

adb provides several commands for displaying the instructions and data of a given
program and the data of a given data file. The commands have the form

address [, count] = format

address [, count] ? format

address [, count] / format

where address is a value or expression giving the location of the instruction or data
item, count is an expression giving the number of items to be displayed, and format is an
expression defining how to display the items. The equal sign (=), question mark (?), and
slash (/) tell adb from what source to take the item to be displayed.

The following sections explain how to form addresses, how to choose formats, and how
to use the display commands.

Forming Addresses

In adb, every address has the form

[segment :] offset

where segment is an expression giving the address of a specific segment of memory, and
offset is an expression giving an offset from the beginning of the specified segment to
the desired item. Segments and offsets are formed by combining numbers, symbols,
variables, and operators. The following are some valid addresses:

0: 1
OxObce:772

segment: is optional. If not given, the most recently typed segment is used.

Forming Expressions

Expressions may contain decimal, octal, and hexadecimal integers, symbols, adb
variables, register names, and a variety of arithmetic and logical operators.

6-4

XENIX Programming adb: Program Debugger

Decimal, Octal, and Hexadecimal Integers

Decimal integers must begin with a nonzero decimal digit. Octal numbers must begin
with a zero and may have octal digits only. Hexadecimal numbers must begin with the
prefix "Ox" and may contain decimal digits and the letters "a" through "f" (in both
uppercase and lowercase). The following are valid numbers:

Decimal

34
4090

Octal

042
07772

Hexadecimal

Ox22
Oxffa

Although decimal numbers are displayed with a trailing decimal point (.), you must not
use the decimal point when typing the number.

Symbols

Symbols are the names of global variables and functions defined within the program
being debugged and are equal to the address of the given variable or function. Symbols
are stored in the program's symbol table and are available if the symbol table has not
been stripped from the program file (see strip in Appendix B, "Program m ing
Commands").

In expressions, you may spell the symbol exactly as it is in the source program or as it
has been stored in the symbol table. Symbols in the symbol table are no more than eight
characters long, and those defined in C programs are given a leading underscore ().
The following are examples of symbols: -

main main hex2bin out of

Note that if the spelling of any two symbols is the same (except for a leading
underscore), adb will ignore one of the symbols and allow references only to the other.
For example, if both "main" and "_main" exist in a program, then adb accesses only the
first to appear in the source and ignores the other.

When you use the? command, adb uses the symbols found in the symbol table of the
program file to create symbolic addresses. Thus, the command sometimes gives a
function name when it displays data. This does not happen if the? command is used for
text (instructions) and the I command for data. Local variables cannot be addressed.

6-5

adb: Program Debugger XENIX Programming

adb Variables

adb automatically creates a set of its own variables whenever you start the debugger.
These variables are set to the addresses and sizes of various parts of the program file as
defined below.

d size of data
e entry address of the program
m execution type
n number of segments
t size of text

adb reads the program file to find the values for these variables. If the file does not
seem to be a program file, then adb leaves the values undefined.

You can use the current value of a variable in an expression by preceding the variable
name with a less-than sign «). For example, the current value of the base variable b is

<b

You can create your own variables or change the value of an existing variable by
assigning a value to a variable name with the greater-than sign (». The assignment has
the form

expression > variable-name

where expression is the value to be assigned to the variable, and variable-name must be
a single letter. For example, the assignment

Ox2000>b

assigns the hexadecimal value "Ox2000" to the variable b.

You can display the value of all currently defined adb variables by using the $v
command. The command lists the variable names followed by their values in the current
format and displays any variable with a value that is not zero. If a variable also has a
nonzero segment value, the variable's value is displayed as an address; otherwise it is
displayed as a number.

6-6

XENIX Programming adb: Program Debugger

Current Address

adb has two special variables that keep track of the last address to be used in a
command and the last address to be typed with a command. The. (dot) variable, also
called the current address, contains the last address to be used in a command. The"
(double quotation mark) variable contains the last address to be typed with a command.
The. and" variables are usually the same except when implied commands, such as the
newline and caret (A) characters, are used. (These automatically increment and
decrement. but leave" unchanged.)

Both. and n may be used in any expression. The less-than sign «) is not required. For
example, the command

displays the value of the current address and

=

displays the last address to be typed.

Register Names

adb can use the current value of the CPU registers in expressions. You can give the
value of a register by preceding its name with the less-than sign «). adb recognizes the
following register names:

ax register a
bx register b
ex register c
dx register d
di data index
si stack index
bp base pointer
fl status flags
ip instruction pointer
cs code segment
ds data segment
ss stack segment
es extra segment
sp stack pointer

For example, the value of the ax register can be given as

<ax

Note that register names may not be used unless adb has been started with a core file or
a program is currently being run under adb control.

6-7

adb: Program Debugger XENIX Programming

Operators

You may combine integers, symbols, variables, and register names with the following
operators:

Unary

Not
Negative

* Contents of location

Binary

+

*
%
&
I

Addition
Subtraction
Multiplication
Integer division
Bitwise AND
Bitwise inclusive OR
Modulo
Round up to the next multiple

Unary operators have higher precedence than binary operators. All binary operators
have the same precedence. Thus, the expression

2*3 +4

is equal to 10 and

4 + 2*3

is 18.

You can change the precedence of the operations in an expression by using parentheses.
For example, the expression

4 + (2*3)

is equal to 10.

Note that adb uses signed 32-bit arithmetic. This means that values that exceed
2,147,483,647 (decimal) are displayed as negative values.

6-8

XENIX Programming adb: Program Debugger

Note that the unary * operator treats the given address as a pointer. An expression
using this operator resolves to the value pointed to by that pointer. For example, the
expression

*Ox1234

is equal to the value at the address Ox1234, whereas

Ox1234

is just equal to Ox1234.

Choosing Data Formats

A format is a letter or character that defines how data is to be displayed. The following
are the most commonly used formats:

Letter Format

o 1 word in octal
d 1 word in decimal
D 2 words in decimal
x 1 word in hexadecimal
X 2 words in hexadecimal
u 1 word as an unsigned integer
f 2 words in floating point
F 4 words in floating point

c 1 byte as a character
s a null terminated character string

i machine instruction
b 1 byte in octal

a the current symbolic address
A the current absolute address
n a newline
r a blank space
t a horizontal tab

A format may be used by itself or combined with other formats to present a
combination of data in different forms.

The d, 0, x, and u formats may be used to display int type variables and D and X to
display long variables or 32-bit values. The f and F formats may be used to display
single- and double-precision floating-point numbers. The c format displays char type
variables and s is for arrays of char that end with a null character (null terminated
strings).

6-9

adb: Program Debugger XENIX Programming

The i format displays machine instructions in 8086/286 mnemonics. The b format
displays individual bytes and is useful for display data associated with instructions or the
high or low bytes of registers.

The a, r, and n formats are usually combined with other formats to make the display
more readable. For example, the format

ia

causes the current address to be displayed after each instruction.

You may precede each format with a count of the number of times you wish it to be
repeated. For example, the format

4c

displays four ASCII characters.

You can combine format requests to provide elaborate displays. For example, the
command

<b, -1/404"8Cn

displays four octal words followed by their ASCII interpretation from the data space of
the core image file. In this example, the display starts at the address "<b", the base
address of the program's data. The display continues until the end of the file since the
negative count "-1" causes an indefinite execution of the command until an error
condition such as the end of the file occurs. In the format, "40" displays the next four
words (I6-bit values) as octal numbers. The "4"" then moves the current address back to
the beginning of these four words and "8C" redisplays them as eight ASCII characters.
Finally, "n" sends a newline character to the terminal. The C format causes values to
be displayed as ASCII characters if they are in the range 32 to 126. If the value is in the
range 0 to 31, it is displayed as an "at" sign (@) followed by a lowercase letter. For
example, the value 0 is displayed as "@a". The at sign itself is displayed as a double at
sign, "@@".

Using the = Command

The = command displays a given address in a given format. The command is used
primarily to display instruction and data addresses in simpler form, or to display the
results of arithmetic expressions. For example, the command

main=A

displays the absolute address of the symbol main (giving the segment and offset), and
the command

<b + Ox2000 = D

displays (in decimal) the sum of the variable b and the hexadecimal value Ox2000.

6-10

XENIX Programming adb: Program Debugger

If a count is given, the same value is repeated that number of times. For example, the
command

main, 2 = x

displays the value of main twice.

If no address is given, the current address is used instead. This is the same as the
command

If no format is given, the previous format given for this command is used. For example,
in the following sequence of commands, both main and start are displayed in
hexadecimal:

main = x
start =

Using the? and / Commands

You can display the contents of a text or data segment with the? and I commands.
The commands have the form

address] [, count]? [format

address] [, count] / [format]

where address is an address with the given segment, count is the number of items you
wish to display, and format is the format of the items you wish to display.

The ? com mand is typically used to display instructions in a given text segment. For
example, the command

main,5?ia

displays five instructions starting at the address main, and the address of each
instruction is displayed immediately before it. The command

main,5?i

displays the instructions but no addresses other than the starting address.

The I command is typically used to check the values of variables in a program,
especially variables for which no name exists in the program's symbol table. For
example, the command

<bp-4/x

di,splays the value (in hexadecimal) of a local variable. Local variables are generally at
some offset from the address pointed to by the bp register.

6-11

adb: Program Debugger XENIX Programming

An Example: Simple Formatting

This example illustrates how to combine formats in? or / commands to display
different types of values stored together in the same program. The program to be
examined has the following source statements:

char
int
int
long
float
char

main()
{

}

str 1 []
one
number
Inurn
fpt
str2[]

one = 2;

= "This is a character string" ;
= 1 ;
= 456;
= 1234;
= 1.25;
= "This is the second character string" ;

The program is compiled and stored in a file named sample.

To start the session, type

adb sample

You can display the value of each individual variable by gIvIng its name and
corresponding format in a / command. For example, the command

str 1/s

displays the contents of strl as a string:

_str1: This is a character string

and the command

number/d

displays the contents of number as a decimal integer:

number: 456.

You may choose to display a variable in a variety of formats. For example, you can
display the long variable Inurn as a decimal, octal, and hexadecimal number by using the
commands

6-12

Inum/D
Inum: 1234

fi1um/O
Inum: 02322

fi1um/X
Inum: Ox4D2

XENIX Programming adb: Program Debugger

You can also examine all variables as a whole. For example, if you wish to see them all
in hexadeci mal, type

str1,S/8x

This command displays eight hexadecimal values on a line and continues for five lines.

Since the data contains a combination of numeric and string values, it is worthwhile to
display each value as both a number and a character to see where the actual strings are
located. You can do this with one command by typing

str1,S/4x4'" 8Cn

In this case, the command displays four values in hexadecimal, then the same values as
eight ASCII characters. The caret ("') is used four times just before displaying the
characters to set the current address back to the starting address for that line.

To make the display easier to read, you can insert a tab between the values and
characters and give an address for each line by typing

str1,S/4x4"'8t8Cna

Debugging Program Execution

adb provides a variety of commands to control the execution of programs being
debugged. The following sections explain how to use these commands as well as how to
display the contents of memory and registers.

Note that C does not generate statement labels for programs. Thus it is not possible to
refer to individual C statements when using the debugger. To use execution commands
effectively, you must be familiar with the instructions generated by the C compiler and
how they relate to individual C statements. One useful technique is to create an
assembly language listing of your C program before using adb, then refer to the listing
as you use the debugger. To create an assembly language listing, use the -8 option of
the cc command (see Chapter 2, "cc: C Compiler").

Executing a Program

You can execute a program by using the :r or :R commands. The commands have the
form

address] [,count]: r [arguments]

address] [,count] : R [arguments]

where address gives the address at which to start execution, count is the number of
breakpoints you wish to skip before one is taken, and arguments are the command line
arguments, such as file names and options, you wish to pass to the program.

6-13

adb: Program Debugger XENIX Programming

If no address is given, then the start of the program is used. Thus, to execute the
program from the beginning, type

: r

If a count is given, adb will ignore all breakpoints until the given number have been
encountered. For example, the command

,S:r

causes adb to skip the first five breakpoints.

If arguments are given, they must be separated by at least one space each. The
arguments are passed to the program in the same way the system shell passes command
line arguments to a program. You may use the shell redirection symbols if you wish.

The :R command passes the command arguments through the shell before starting
program execution. This means you can use shell metacharacters in the arguments to
refer to multiple files or other input values. The shell expands arguments containing
metacharacters before passing them on to the program.

The command is especially useful if the program expects multiple file names. For
example, the command

:R [a-z]*.s

passes the argument "[a-z]* .s" to the shell, where it is expanded to a list of the
corresponding file names before being passed to the program.

The :r and :R commands remove the contents of all registers and destroy the current
stack before starting the program. This kills any previous copy of the program you may
have been running.

Setting Breakpoints

You can set a breakpoint in a program by using the :br command. Breakpoints cause
execution of the program to stop when it reaches the specified address. Control then
returns to adb. The command has the form

address [, count] :br command

where address is a valid instruction address, count is a count of the number of times you
wish the breakpoint to be skipped before it causes the program to stop, and command is
the adb command you wish to execute when the breakpoint is taken.

6-14

XENIX Program m ing adb: Program Debugger

Breakpoints are typically set to stop program execution at a specific place in the
program, such as the beginning of a function, so that the contents of registers and
memory can be examined. For example, the command

main:br

sets a breakpoint at the start of the function main. The breakpoint is taken just as
control enters the function and before the function's stack frame is created.

A breakpoint with a count is typically used within a function that is called several times
during execution of a program, or within the instructions that correspond to a for or
while statement. Such a breakpoint allows the program to continue to execute until the
given function or instructions have been executed the specified number of times. For
example, the com mand

light,S:br

sets a breakpoint at the fifth invocation of the function light. The breakpoint does not
stop the program until function light has been called five times.

Note that no more than 16 breakpoints at a time are allowed.

Displaying Breakpoints

The command $b displays the location and count of each currently defined breakpoint.
Breakpoints are listed by address, along with any count and/or command associated with
them.

Continuing Execution

You can continue the execution of a program after it has been stopped by a breakpoint
by using the :co command. The command has the form

[address] [,count] :co [signal]

where address is the address of the instruction at which you wish to continue execution,
count is the number of breakpoints you wish to ignore, and signal is the number of the
signal to send to the program (see signal in "System Functions" in the XENIX 286 C
Library Guide).

If no address is given, the program starts at the next instruction after the breakpoint. If
count is given, adb ignores the first count breakpoints.

6-15

adb: Program Debugger XENIX Programming

Stopping a Program with Interrupt and Quit

You can stop execution of a program at any time by pressing the INTERRUPT or QUIT
keys. These keys stop the current program and return control to adb. These keys are
especially useful for programs with infinite loops or other program errors.

Note that whenever you press the INTERRUPT or QUIT key to stop a program, adb
automatically saves the signal and passes it to the program if you start it again by using
the :co command. This is very useful if you wish to test a program that uses these
signals as part of its processing.

If you wish to continue execution of the program but do not wish to send the signals,
type

:(0 0

The command argument 0 prevents a pending signal from being sent to the program.

Single-Stepping a Program

You can single-step a program, i.e., execute it one instruction at a time, by using the :8

command. The command executes an instruction and returns control to adb. The
command has the form

[address] [, count] :s

where address is the address of the instruction you wish to execute, and count is the
number of times you wish to repeat the command.

If no address is given, adb uses the current address. If count is given, adb continues to
execute each successive instruction until count instructions have been executed. For
example, the command

main,5:s

executes the first five instructions in the function main.

Killing a Program

You can kill the program you are debugging by using the :k command. The command
kills the process created for the program and returns control to adb. The com mand is
typically used to clear the current contents of the CPU registers and stack and begin
the program again.

6-16

XENIX Programming adb: Program Debugger

Deleting Breakpoints

You can delete a breakpoint from a program by using the :dl command. The command
has the form

address :dl

where address is the address of the breakpoint you wish to delete.

The :dl command is typically used to delete breakpoints you no longer wish to use. The
following command deletes the breakpoint set at the start of the function main:

main:dl

Displaying the C Stack Backtrace

You can trace the path of all active functions by using the $c command. The command
lists the names of all functions that have been called and have not yet returned control,
as well as the address from which each function was called and the arguments passed to
it.

For example, the command

$c

displays a backtrace of the C language functions called.

By default, the $c command displays all calls. If you wish to display just a few, you
must supply a count of the number of calls you wish to see. For example, the command

,25$c

displays up to 25 calls in the current call path.

Note that function calls and arguments are put on the stack after the function has been
called. If you put breakpoints at the entry point to a function, the function will not
appear in the list generated by the $c command. You can remedy this problem by
placing breakpoints a few instructions into the function.

6-17

adb: Program Debugger XENIX Program m ing

Displaying CPU Registers

You can display the contents of all CPU registers by using the $r command. The
command displays the name and contents of each register in the CPU as well as the
current value of the program counter and the instruction at the current address. The
display has the form

ax OxO fl OxO
bx OxO ip OxO
ex OxO es OxO
dx OxO ds OxO
di OxO ss OxO
si OxO es OxO
sp OxO sp OxO
0:0: addb al,bl

The value of each register is given in the current default format.

Displaying External Variables

You can display the values of all external variables in the program by using the $e
command. External variables are the variables in your program that have global scope
or have been defined outside of any function. This may include variables defined in
library routines used by your program.

The $e command is useful whenever you need a list of the names for all available
variables or to quickly summarize their values. The command displays one name on
each line with the variable's value (if any) on the same line.

The display has the form

fac: o.
errno: o.

- end: o.
- sobuf: o. - obuf: o.
- lastbu: 0406. - sibuf: O. - stkmax: O.
Iscadr: 02.

iob: 01664.
- edata: O.

An Example: Tracing Multiple Functions

The following example illustrates how to execute a program under adb control. In
particular, it shows how to set breakpoints, start the program, and examine registers
and memory. The program to be examined has the following source statements.

6-18

XENIX Programming

int fent,gent,hent;
h(x,y)
{

}

g(p,q)
{

}

f(a,b)
{

}

mainO
{

}

int hi; register int hr;
hi = x + 1;
hr = x-y + 1;
hent + + ;
hj:
f(hr,hi);

int gi; register int gr;
gi = q-p;
gr = q-p + 1;
gent + + ;
gj:
h(gr,gi);

int fi; register int fr;
fi = a + 2*b;
fr = a + b;
fent + + ;
fj:
g(fr,fi);

f(1, 1);

adb: Program Debugger

The program is compiled and stored in the file named sample. To start the session, type

adb sample

This starts adb and opens the corresponding program file. There is no core image file.

The first step is to set breakpoints at the beginning of each function. You can do this
with the :br command. For example, to set a breakpoint at the start of the function f,
type

f:br

6-19

adb: Program Debugger XENIX Programming

You can use similar commands for the g and h functions. Once you have created the
breakpoints, you can display their locations by typing

$b

This command lists the address, optional count, and optional command associated with
each breakpoint. In this case, the command displays

breakpoi nts
count bkpt command
1 f

9
-h

The next step is to display the first five instructions in the f function. Type

f,5?ia

This command displays five instructions, each preceded by its symbolic address. The
instructions in 8086/286 mnemonics are

f: push bp
-

f + 1.: mov bp,sp - f+3.: push di
-

f +4.: push si
-

f + 5.: call chkstk
- f+8.:

You can display five instructions in g without their addresses by typing

g,5?i

In this case, the display is

g: push bp
-

mov bp,sp
push di
push si
call chkstk

To start program execution, type

: r

adb displays the message

sample: running

and begins to execute. As soon as adb encounters the first breakpoint (at the beginning
of function f), it stops execution and displays the message

breakpoint f: push bp

6-20

XENIX Program m ing adb: Program Debugger

Since execution to this point caused no errors, you can remove the first breakpoint by
typing

f:dl

and continue the program by typing

:(0

adb displays the message

sample: running

and starts the program at the next instruction. Execution continues until the next
breakpoint where adb displays the message

breakpoint _g: push bp

You can now trace the path of execution by typing

$(

The command shows that only two functions are active: main and f.

f(1.,1.)
-main (1.,470.)

from main + 6.
from -start + 114.

Although the breakpoint has been set at the start of function g, it will not be listed in
the backtrace until its first few instructions have been executed. To execute these
instructions, type

,5:s

adb single-steps the first five instructions. Now you can list the backtrace again. Type

$(

This time the list shows three active functions:

g (2.,3.)
-f (1.,1.)
-main (1.,470.)

from f + 48.
from -main + 6.
from -start + 114.

6-21

adb: Program Debugger XENIX Programming

You can display the contents of the integer variable fent by typing

fcnt/d

This command displays the value of fent found in memory. The number should be 1.

You can continue execution of the program and skip the first ten breakpoints by typing

,10:co

adb starts the program and displays the running message again.
program until exactly ten breakpoints have been encountered.
message

breakpoint _9: push bp

It does not stop the
It then displays the

To show that these breakpoints have been skipped, you can display the backtrace again
using $e.

f (2., 11.) from h +46: - h (10.,9.) from
-

9 +4B:
9 (11., 20.) from - f + 4B:

- -
f (2.,9.) from h +46: - h (B., 7.) from - 9 +4B:

-
9 (9., 16.) from f+4B: - -
f (2., 7.) from h +46: - h (6.,5.) from - 9 +4B: -
9 (7., 12.) from f+ 4B: - f (2.,5.) from h +46: - h (4.,3.) from - 9 +4B:
9 (5., B.) from - f +4B: - -
f (2.,3.) from h +46: - h (2., 1.) from - 9 +4B: -

Using the adb Memory Maps

adb prepares a set of maps for the text and data segments in your program and uses
these maps to access items that you request for display. The following sections describe
how to view these maps and how they are used to access the text and data segments.

Displaying the Memory Maps

You can display the contents of the memory maps by using the $m command. The
command has the form

$m [segment]

where segment is the number of a segment used in the program.

6-22

XENIX Program m ing adb: Program Debugger

The command displays the maps for all segments in the program using information taken
from either the program and core files or directly from memory.

If you have started adb but have not executed the program, the $m command display has
the form

Text Segments
Seg # Fil e Pos
63. 32.
71. 2080.

Data Segments
Seg # File Pas
39. 2736.

Phys Size
2048.
656.

Phys Size
242.

'sample' -File

'core' -File

Each entry gives the segment number, file position, and physical size of a segment. The
segment number is the starting address of the segment. The file position is the offset
from the start of the file to the contents of the segment. The physical size is the
number of bytes the segment occupies in the program or core file. The file names to
the right of the display are the program and core file names.

If you have executed the program, the command display has the form

Text Segments
Seg # File Pos
63. 32.
71. 2080.

Data Segments
Seg # File Pas
39. 2736.

Vir Size
2048.
656.

Vir Size
456.

'sample' - Memory

'sample' - Memory

where virtual size is the number of bytes the segment occupies in memory. This size is
sometimes different than the size of the segment in the file and will often change as
you execute the program. This is due to expansion of the stack or allocation of
additional memory during program execution. The file names to the right always name
the program file. The file position value is ignored.

If you give a segment number with the command, adb displays information only about
that segment. For example, the command

$m 63

displays a map for segment 63 only. The display has the form

Segment # = 63.
Type = Text
File position = 32.
Physical Size = 2048.

6-23

adb: Program Debugger XENIX Program m ing

Changing the Memory Map

You can change the values of a memory map by using the ?m and 1m commands. These
commands assign specified values to the corresponding map entries. The commands
have the form

?m segment-number file-position size

and

1m segment-number file-position size

where segment-number gives the number of the segment map you wish to change, file
position gives the offset in the file to the beginning of the given address, and size gives
the segment size in bytes. ?m assigns values to a text segment entry and 1m to a data
segment entry.

For example, the following command changes the file position for segment 63 in the
text map to Ox2000:

?m 63 Ox2000

The command

1m 39 OxO

changes the file position for segment 39 in the data map to O.

Creating New Map Entries

You can create new segment maps and add them to your memory map by using the ?M
and 1M commands. Unlike?m and 1m, these commands create a new map instead of
changing an existing one. These commands have the form

?M segment-number file-position size

and

1M segment-number file-position size

where segment-number gives the number of the segment map you wish to create, file
position gives the offset in the file to the beginning of the given address, and size gives
the segment size in bytes. ?M creates a text segment entry and 1M creates a data
segment entry. The segment number must be unique. You cannot create a new map
entry that has the same number as an existing one.

The ?M and 1M com mands are especially useful if you wish to access segments otherwise
allocated to your program. For example, the com mand

?M 71 0 2504

creates a text segment entry for segment 71 with size 2504 bytes.

6-24

XENIX Programming adb: Program Debugger

Validating Addresses

Whenever you use an address in a command, adb checks the address to make sure it is
valid. adb uses the segment number, file position, and size values in each map entry to
validate the addresses. If an address is correct, adb carries out the command;
otherwise, it displays an error message.

The first step adb takes when validating an address is to check the segment value to
make sure it belongs to the appropriate map. Segments used with the? command must
appear in the text segments map; segments used with the I com mand must appear in the
data segments map. If the value does not belong to the map, adb displays a bad segment
error.

The next step is to check the offset to see if it is in range. The offset must be within
the range

o < = offset < = segment-size

If it is not in this range, adb displays a bad address error.

If adb is currently accessing memory, the validating segment and offset are used to
access a memory location and no other processing takes place. If adb is accessing files,
it computes an effective file address as follows:

effective-file-address = offset + file-position

then uses this effective address to read from the corresponding file.

Miscellaneous Features

The following sections explain how to use a number of useful miscellaneous commands
and features of adb.

Combining Commands on a Single Line

You can give more than one command on a line by separating the commands with a
semicolon (;). The commands are performed one at a time, starting at the left. Changes
to the current address and format are carried to the next command. If an error occurs,
the remaining com mands are ignored.

One typical combination is to place a? command after an 1 command. For example,
the com mands

?I 'Th'; ?s

search for and display a string that begins with the characters "Th".

6-25

adb: Program Debugger XENIX Program ming

Creating adb Scripts

You can direct adb to read commands from a text file instead of the keyboard by
redirecting adb's standard input file at invocation. To redirect the standard input, use
the standard redirection symbol < and supply a file name. For example, to read
commands from the file script, type

adb sample <script

The file you supply must contain valid adb commands. Such files are called script files
and can be used with any invocation of the debugger.

Reading commands from a script file is very convenient when you wish to use the same
set of commands on several different object files. Scripts are typically used to display
the contents of core files after a program error. For example, a file containing the
following commands can be used to display most of the relevant information about a
program error:

120$w
4095$s
$v
= 3n
$m
= 3n" (Stack Backtrace"
$(
= 3n"(External Variables"
$e
= 3n"Registers"
$r
O$s
= 3n"Data Segment"
<b,-1/8xna

Setting Output Width

You can set the maximum width (in characters) of each line of output created by adb by
using the $w command. The command has the form

n$w

where n is an integer number giving the width in characters of the display. You may
give any width that is convenient for your given terminal or display device. The default
width when adb is first invoked is 80 characters.

The command is typically used when redirecting output to a printer or special terminal.
For example, the command

120$w

sets the display width to 120 characters, a common maximum width for printers.

6-26

XENIX Programming adb: Program Debugger

Setting the Maximum Offset

adb normally displays memory and file addresses as the sum of a symbol and an offset.
This helps associate the instructions and data you are viewing with a given function or
variable. When first invoked, adb sets the maximum offset to 255. This means
instructions or data no more than 255 bytes from the start of the function or variable
are given symbolic addresses. Instructions or data beyond this point are given numeric
addresses.

In many programs, the size of a function or variable is actually larger than 255 bytes.
For this reason adb lets you change the maximum offset to accommodate larger
programs. You can change the maximum offset by using the $8 command. The
command has the form

n$5

where n is an integer giving the new offset. For example, the command

4095$5

increases the maximum possible offset to 4095. All instructions and data no more than
4095 bytes away are given symbolic addresses.

Note that you can disable all symbolic addressing by setting the maximum offset to
zero. All addresses will be given numeric values instead.

Setting Default Input Format

You can set the default format for numbers used in commands with the $d (decimal), $0
(octal), and $x (hexadecimal) commands. The default format tells adb how to interpret
numbers that do not begin with "0" or "Ox" and how to display numbers when no specific
format is given.

The commands are useful if you wish to work with a combination of decimal, octal, and
hexadecimal numbers. For example, if you use

$x

you may give addresses in hexadecimal without prepending each address with "Ox".
Furthermore, adb displays all numbers in hexadecimal except those specifically
requested to be in some other format.

When you first start adb, the default format is decimal. You may change this at any
time and restore it as necessary using the $d command.

6-27

adb: Program Debugger XENIX Programming

Using XENIX Commands

You can execute XENIX commands without leaving adb by using the adb escape
command!. The escape command has the form

command

where command is the XENIX command you wish to execute. The command must have
any required arguments. adb passes this command to the system shell, which executes
it. When finished, the shell returns control toadb.

For example, to display the date, type

! date

The system displays the date at your terminal and returns control to adb.

Computing Numbers and Displaying Text

You can perform arithmetic calculations while in adb by using the = command. The
command directs adb to display the value of an expression in a given format.

The command is often used to convert numbers in one base to another, to double-check
the arithmetic performed by a program, and to display complex addresses in simpler
form. For example, the command

Ox2a = d

displays the hexadecimal number Ox2a as the decimal number 42, but

Ox2a = c

displays it as the ASCII character "*". Expressions in a command may have any
combination of symbols and operators. For example, the command

<dO-12*<d1 + <b + 5 = X

computes a value using the contents of the dO and dl registers and the adb variable b.
You may also compute the value of external symbols as in the command

main + 5=X

This is helpful if you wish to check the hexadecimal value of an external symbol address.

Note that the = command can also be used to display literal strings at your terminal.
This is especially useful in adb scripts where you may wish to display comments about
the script as it performs its commands. For example, the command

= 3n II C Stack Backtrace II

spaces three lines, then prints the message "C Stack Backtrace" on the terminal.

6-28

XENIX Program m ing adb: Program Debugger

An Example: Directory and Inode Dumps

This example illustrates how to create adb scripts to display the contents of a directory
file and the inode map of aXE NIX file system. The directory file is assumed to be
named dir and contains a variety of files. The XENIX file system is assumed to be
associated with the device file /dev/src and has the necessary permissions to be read by
the user.

To display a directory file, you must create an appropriate script, e.g., in a file named
script. Then start adb with the name of the directory, redirecting its input to the
script.

A directory file normally contains one or more entries. Each entry consists of an
unsigned "inumber" and a 14-character file name. You can display this information by
adding the com mand

0,-1 ?ut 14cn

to the script file. This command displays one entry for each line, separating the number
and file name with a tab. The display continues to the end of the file. If you place the
command

= "inumber"8t" Name"

at the beginning of the script, adb will display the strings as headings for each column of
numbers.

Once you have the script file, type

adb dir - <script

(The hyphen (-) is used to prevent adb from attempting to open a core file.) adb reads
the commands from the script and the resulting display has the form

inumber name
652
82
5971 cap.c
5323 cap
0 pp

To display the inode table of a file system, you must create a new script, then start adb
with the file name of the block device that contains the file system (e.g., the hard disk
drive).

The inode table of a file system has a very complex structure. Each entry contains: a
word value for the file's status flags; a byte value for the number of links; two byte
values for the user and group IDs; a byte and word value for the size; eight word values
for the location on disk of the file's blocks; and two word values for the creation and
modification dates. The inode table starts at the address 02000. You can display the
first entry by typing

02000,-1 ?on3bnbrdn8un2Y2 na

6-29

adb: Program Debugger XENIX Program ming

Several new lines are inserted within the display to make it easier to read.

To use the script on the inode table of /dev/src, type

adb /dev/src -<script

(Again, the hypen (-) is used to prevent an unwanted core file.) Each entry in the display
has the form

02000: 073145
0163 0164 0141
0162 10356
28770 8236 25956 27766 25455 8236 25956 25206
1976 Feb 5 08:34:56 1975 Dec 28 10:55:15

Patching Binary Files

You can make corrections or changes to any file, including executable binary files, by
using the wand W commands and invoking adb with the -w option. The following
sections describe how to locate and change values in a file.

Locating Values in a File

You can locate specific values within a file by using the I and L commands. The
commands have the form

[address] 71 value

where address is the address at which to start the search, and value is the value (given
as an expression) to be located. The 1 com mand searches for two-byte values; L for
four-byte values.

The

71

command starts the search at the current address and continues until the first match or
the end of the file. If the value is found, the current address is set to that value's
address. For example, the command

71 'Th'

searches for the first occurrence of the string value "Th". If the value is found at
main+210, the current address is set to that address.

6-30

XENIX Program m ing adb: Program Debugger

Writing to a File

You can write to a file by using the wand W commands. The commands have the form

[address]?w value

where address is the address of the value you wish to change, and value is the new value.
The w command writes two-byte values; Wwrites four-byte values. For example, the
following com mands change the word "This" to "The".

?I 'This'
?W 'The'

Note that W is used to change all four characters.

Making Changes to Memory

You can also make changes to memory whenever a program has been executed. If you
have used an :r command with a breakpoint to start program execution, subsequent w
commands cause adb to write to the program in memory rather than the file. This is
useful if you wish to make changes to a program's data as it runs, for example, to
temporarily change the value of program flags or constants.

6-31

CHAPTER 7
as: ASSEMBLER

This chapter describes the usage and input syntax of the XENIX 8086/286 assembler, as.
The assembler produces relocatable object files from 8086/286 assembly language
source files. Object files contain relocation information and a complete symbol table
and may be linked to other object files using the XENIX link editor Id.

as is designed to be used in those rare cases where C programs do not satisfy a
programming requirement. Thus, you can combine as object files with object files
produced by the XENIX C compiler, cc, to make complete programs. Note that the
output format of as has been designed so that if a file contains no unresolved references
to external symbols, it is executable without further processing.

This chapter does not teach assembly language programming, nor does it give a detailed
description of 8086/286 operation codes.

Command Usage

as is invoked as follows:

as [option]... filename ...

where each option is an assembler option and filename is the name of the assembler
source file. If the file name does not have the extension ".s", as displays a warning
message before assembling the file. Although as has a large number of options, the
most commonly used are the -I and -0 options.

The -I option causes the assembler to create an assembly listing that includes the
source, the assembled (binary) code, and any assembly errors. The listing file is named
filename.L.

The -0 option causes the output to be placed in a given file. The option has the form

-0 outfile

where outfile is the name of the file to receive the assembled program. If you do not
use the -0 option, as copies the output to filename.o in the current directory.

For a complete description of all assembler options, see as in Appendix B, "Programming
Commands."

7-1

as: Asse m bIer XENIX Programming

Lexical Conventions

This section describes as lexical conventions for identifiers, constants, white space, and
comments.

Identifiers

An identifier consists of a sequence of alphanumeric characters, including periods (.) and
underscores (_). The first character must not be numeric. By convention, the first eight
characters are significant, but you can also define the maximum number of significant
characters by using the -nl option. Uppercase and lowercase letters are considered
distinct in identifiers.

Constants

A hex constant consists of a slash character (/) followed by a sequence of digits and one
of the letters "a", "b", "c", "d", "e", or "f", any of which may be capitalized.

A decimal constant consists simply of a sequence of digits. The constant should be
representable in 15 bits, i.e., be less than 32,768.

A character constant consists of one or two characters enclosed in single quotation
marks ('). If a single quotation mark is used in a constant, it must be given twice to
represent a single occurrence (If).

The following are examples of constants:

Decimal

10
32767

White Space

Hexadecimal

/lb
/7fff

Character

'a'
'in'

Blank and tab characters may be freely interspersed between tokens but may not be
used within tokens (except in character constants). A blank or tab is required to
separate adjacent identifiers or constants not otherwise separated.

Comments

The vertical bar (I) introduces a comment, which extends to the end of the line where it
appears. Comments are ignored by the assembler.

7-2

XENIX Programming as: Assembler

Assembly Segments

as assembles instruction and data statements in three segments, text, data, and bss.
Segments allow division of instructions and data into separate physical segments in
memory. A location counter keeps the current address within each segment during
assembly and provides reference to the current instruction and data.

Text, Data, and Bss Segments

Every program is divided into at most three distinct segments of assembled code and
data: the text segment, the data segment, and the bss segment. Each segment is
reserved for a specific type of storage and receives different treatment from the
assembler and from the XENIX linker when the final program is created.

The text segment is normally reserved for instructions but may also be used for data.
Instructions in this segment are assembled, and the code is copied to the output file.
Data definitions in this segment are also assembled and copied; the code is the value of
the data item. The assembler does not separate the instruction and data code. If the
instructions and data definitions are mixed within the source file, the resulting code is
mixed within the output file.

The data segment is reserved for data. The code is copied to a different part of the
output file and receives different treatment from the XENIX linker.

The bss segment is reserved for uninitialized data only. Instructions or data definitions
with initial values must not be given in this segment. The assembler counts the number
of bytes allocated for this segment and copies this count to the output file. It does not
generate code.

The text segment is implicitly defined at the start of every assembly. Thus, any
instructions or data definitions given when no other segment is explicitly defined are
copied to the text segment. To start a data or bss segment, you must use a .data or .bss
directive. You can explicitly start the text segment with the .text directive (see the
section "Segment Directives," later in this chapter).

Unless otherwise specified, the first statement in the text segment is considered the
program's entry point. In shared-text programs, the instructions and data in the text
segment are write-protected; in nonshared-text programs, they are not. Instructions
and data in the data segment are never write-protected. The bss segment is actually an
extension of the data segment. It begins immediately after the data segment and is
initialized to 0 at the start of program execution.

7-3

as: Asse m bIer XENIX Programming

The Location Counter

The special symbol "dot" (.) is the location counter. Its value at any time is the offset
from the current statement to the start of the current segment. Thus, it may be used in
any statement to refer to the current location.

The location counter actually has three different offsets, one for each type of segment.
Only the offset of the current segment is ever accessible. The assembler increments
the current offset after it processes each statement. It increments the offset by the
number of bytes in the assembled code or allocated storage.

The location counter can be assigned an explicit value if desired. Its value must not be
decreased. If it is explicitly increased, the assembler generates enough null bytes of
code to fill the gap between the last offset and the new offset.

Statements

A source program is composed of a sequence of statements. Statements are separated
by newline characters. There are four kinds of statements:

• Null statements

• Expression statements

• Assignment statements

• Keyword statements

The format for most 8086/286 assembly language source statements is

[labelfield] op-code [operand-field] [comment]

Any kind of statement may be preceded by one or more labels.

Labels

There are two kinds of labels: name labels and numeric labels. A name label consists of
an identifier followed by a colon (:). The effect of a name label is to assign the current
value and type of the location counter to the name. An error is indicated in pass 1 if
the name is already defined; an error is indicated in pass 2 if the value assigned changes
the definition of the label.

7-4

XENIX Programming as: Assembler

A numeric label consists of a string of the digits 0 to 9 followed by a dollar sign ($)
followed by a colon (:). Such a label serves to define local symbols of the form

n$

where n is the digit of the label. The scope of the numeric label is the labeled block in
which it appears. As an example, the label "9$" is defined only between the labels
label! and label2:

label1 :
9$:

label2:

.byte 0

.word a

As in the case of name labels, a numeric label assigns the current value and type of dot
to the symbol.

Null Statements

A null statement is an empty statement (which may, however, have labels and a
comment). A null statement is ignored by the assembler. Common examples of null
statements are empty lines or comment lines.

Expression Statements

An expression statement consists of an arithmetic expression not beginning with a
keyword. The assembler computes its value and places it in the output stream, together
with the appropriate relocation bits.

Assignment Statements

An assignment statement consists of an identifier, an equal sign (=), and an expression.
The value and type of the expression are assigned to the identifier. It is not required
that the type or value be the same in pass 2 as in pass 1, nor is it an error to redefine
any symbol by assignment.

Any external attribute of an expression is lost across an assignment. Thus you cannot
declare a global symbol by assigning to it. Nor can you define a symbol to be offset
from a nonlocally-defined global symbol.

As mentioned, you can assign the location counter. It is required, however, that the
type of the expression assigned be of the same type as dot, and an assignment cannot
decrease the value of dot. In practice, the most common assignment to dot has the
form

. =. +n

for some number n; this has the effect of generating n null bytes.

7-5

as: Asse m bIer XENIX Programming

Keyword Statements

Keyword statements are numerically the most common type, since most machine
instructions are of this sort. A keyword statement begins with one of the many
predefined keywords of the assembler. The syntax of the remainder depends on the
keyword. All the keywords are listed in the section "Mnemonic List" later in this
chapter.

Expressions

An expression is a sequence of symbols representing a value. An expression contains
identifiers, constants, and operators. Each expression has a type.

Arithmetic is two's complement. All operators have equal precedence, and expressions
are evaluated strictly left to right.

Expression Operators

The operators are

Operator

+

*
/

&

»

«

Types

Description

Addition
Subtraction
Multiplication
Division
Modulo
Logical AND
Logical NOT
Right Shift
Left Shift

The assembler deals with expressions, each of which may be of a different type. Most
types are attached to the keywords and are used to select the routine that treats that
keyword. The types likely to be met explicitly are

undefined Upon first encounter, each symbol is undefined. A defined symbol may
become undefined if it is assigned an undefined expression.

undefined external

7-6

A symbol declared .globl but not defined in the current assembly is an
undefined external. If such a symbol is declared, the link editor ld must be
used to link the assembler's output with another routine that defines the
undefined reference.

XENIX Programming as: Assembler

absolute An absolute symbol is defined ultimately from a constant. Its value is
unaffected by any possible future applications of the link editor to the output
file.

text The value of a text symbol is measured with respect to the beginning of the
text segment of the program. If the assembler output is link-edited, its text
symbols may change in value, since the program need not be the first in the
link editor's output. Most text symbols are defined by appearing as labels.
At the start of an assembly, the value of dot is text o.

data The value of a data symbol is measured with respect to the origin of the data
segment of a program. Like text symbols, the value of a data symbol may
change during a subsequent link editor run, since previously linked programs
may also have data segments. After the first .data statement, the value of
dot is data O.

bss The value of a bss symbol is measured from the beginning of the bss segment
of a program. Like text and data symbols, the value of a bss symbol may
change during a subsequent link-editor run, since previously linked programs
may also have bss segments. After the first .bss statement, the value of dot
is bss O. .

external absolute, text, data, or bss

other types

Symbols declared .globl but defined within· an assembly as absolute, text,
data, or bss symbols may be used exactly as if they were not declared .globl.
However, their value and type are available to the link editor so that the
program may be linked with others that reference these symbols.

Each keyword known to the assembler has a type used to select the routine
that processes the associated keyword statement. The behavior of such
symbols when not used as keywords is the same as if they were absolute.

Type Propagation in Expressions

When operands are combined by expression operators, the result has a type that depends
on the types of the operands and on the operator. The rules involved are complex but
are intended to be sensible and predictable. For purposes of expression evaluation, the
important types are

undefined
absolute
text
data
bss
undefined external
other

7-7

as: Asse m bIer XENIX Programming

The combination rules are as follows:

• If one of the operands is undefined, the result is undefined.

• If both operands are absolute, the result is absolute.

• If an absolute is combined with one of the other types mentioned above, the result
has the other type.

• If two operands of other type are combined, the result has the numerically larger
type.

• An other type combined with an explicitly discussed type other than absolute acts
like an absolute.

Further rules applying to particular operators are

+ If one operand is text-, data-, or bss-segment relocatable, or is an undefined
external, the result has the postulated type and the other operand must be
absolute.

If the first operand is a relocatable text-, data-, or bss-segment symbol, the
second operand may be absolute (in which case the result has the type of the first
operand), or the second operand may have the same type as the first (in which case
the result is absolute). If the first operand is undefined external, the second must
be absolute. All other combinations are illegal.

others
It is illegal to apply these operators to any but absolute symbols.

Assembler Directives

as supports a number of assembler directives (sometimes called "Pseudo-operations").
The directives modify the location counter, define the start of program segments,
generate initialized data, allocate storage space, assign the global attribute to labels or
symbols, and perform a variety of other tasks.

The following sections describe the directives and illustrate their use.

Even Directive

.even

The .even directive conditionally increments the location counter. If the location
counter is odd, it is incremented by one so the next statement will be assembled at a
word boundary. This is useful for forcing storage allocation to be on a word boundary
after a .byte or .ascii directive.

7-8

XENIX Programming as: Asse m bIer

Floating-Point Directives

. float float

.double float

The .float and .double directives accept one or more floating-point numbers as operands
and allocate storage for each number. A floating-point number has the form

[-] integer. fraction [E [-] exponent]

where integer is a decimal number, fraction is a combination of decimal digits, and
exponent is an decimal number. Examples of these directives are

.float

.double

.float

25.1
1.03E12
-34718.235E4

The .float and .double directives allocate a different number of bytes. The .float sets
aside four bytes, while .double sets aside eight.

Global Directive

.globl name

The .globl directive makes the text or data associated with name globally known to all
files in a program. name must be explicitly defined by assignment or by appearance as a
label in exactly one file. All other files that wish to access this name must use .globl to
give the name global meaning; no other definition is allowed in these files. The link
editor ld resolves all global references to name when the final program is created. If
more than one name is given, they must be separated with commas (,).

Segment Directives

.text

.data

.bss

The .text, .data, and .bss directives cause the assembler to copy subsequent· instruction
or data code (or allocated storage) to the text, data, or bss segment respectively. The
offset of the location counter is set to the previous value for that segment and
subsequent statements are processed as defined in the earlier section "Assembly
Segments. "

The directives may be used any number of times within a program. The offset for each
segment is initially set to O. Changing a segment causes the current offset to be saved.
Restoring a segment causes the old offset to be restored. Thus, each segment is copied
as a contiguous block even if the original source statements were not contiguous.

7-9

as: Assembler XENIX Programming

Instructions and data definitions with initial values must not be used after a .bss
directive, but symbols may be defined and dot moved by assignment.

If no explicit segment directive is given in a program, code is copied to the text
segment.

Common Directive

.comm name [, expression

The .comm directive makes name globally known to all files of the program. If name
also appears in an assignment or as a label in a file, then the .comm directive has the
same effect as the .globl directive. In this case, any expression given is ignored. If
name does not have an explicit definition, then .comm directs the XENIX linker to
automatically allocate expression bytes for name in the bss segment of the program.
These bytes appear before any bytes specifically allocated within the bss segment.

Insert Directive

.insrt "filename"

The .insrt directive directs the assembler to suspend processing of the current file until
all statements in the given file have been read. filename must be enclosed within
double quotation marks. If the file cannot be opened or does not exist, the assembler
displays the message

Cannot open insert file

Otherwise, it reads the contents of the file. The file may contain other .insrt
directives; up to ten levels of directives may be nested in this way.

The .insrt directive is useful for including a standard set of comments or symbol
assignments at the beginning of a program, e.g., the definitions for system calls found in
the file lusr/include/sys.s. The directive is also useful for breaking up a large source
program into easily manageable pieces.

ASCII Directives

.ascii /string/

.asciz /string/

The .ascii and .asciz directives translate string into an equivalent sequence of ASCII
byte values and copy these bytes to allocated storage in the current segment. The
.asciz directive also appends a null byte to the end of the sequence.

7-10

XENIX Program m ing as: Assembler

The string may contain any character in the character set except a newline. If
necessary, the escape sequence "\n" may be used in place of a newline. The string must
be enclosed within slashes (/) or within any character not used in the string. Examples:

.ascii I"hello there"/

.ascii "Warning- 07 07 \n"

.asciz *abcdefg*

The .asciz directive is especially useful because some system calls and many library
routines require nUll-terminated strings as arguments. Strings are normally null
terminated in C programs, and any string constant in a C program is stored with a
terminating null, appended by the compiler.

Listing Directives

.Iist

.nlist

The .list and .nlist directives control output to the assembler listing file created by
using the -1 option. If .list is given, subsequent statements are passed to the listing file
as well as being processed. If .nlist is given, statements are processed but not passed to
the listing file.

The directives may be used any number of times to turn listing on and off. This is
particularly useful when certain portions of the assembly output are not desired on a
printed listing.

Block Directives

.blkb [expression

. bl kw [expression

The .blkb and .blkw directives reserve blocks of storage where a block contains
expression bytes (for .blkb) or expression words (for .blkw). If no expression is given, 1
is assumed. The expression must be absolute and defined during pass 1.

Note that the statement

. = . + expression

may also be used to reserve blocks of storage. In this case, the block contains
expression bytes.

7-11

as: Asse m bIer

Initial Value Directives

. byte

. word
[expression] .. .
[expression] .. .

XENIX Programming

The .byte and .word directives reserve storage and initialize this storage to the value
given by the expressions. The .byte directive reserves one byte for each expression and
initializes that byte to the low-order byte of the expression. The .word directive
reserves one word for each expression and initializes that word to the value of
expression. When more than one expression is given, they must be separated by commas
(,).

End Directive

.end [expression]

The .end directive marks the physical end of the source program. If expression is given,
it indicates the entry point of the program, i.e., the starting point for execution.
Otherwise, the entry point is taken to be the start of the text segment.

Note that inserted files that contain an .end directive terminate assembly of the entire
program as well as the inserted portion.

Machine Instructions

This section presents a description of the 8086/286 instructions used by the XENIX
8086/286 assembler. This assembler supports those instructions common to the 8086 and
80286 processors, i.e., all 8086 instructions. This assembler does not support those
instructions that are specific to the 80286 assembler. 80286-specific instructions can be
defined by users either in numeric form or with a macro processor.

Mnemonic List

This section contains a list of the instruction mnemonics (instruction names) used by the
8086/286 assembler as. Some of these mnemonics are different from those used by
other 8086/286 assemblers. Mnemonics marked with an asterisk may be specific to this
assembler.

7-12

XENIX Program ming as: Asse m bIer

Mnemonic Description XENIX-specific

aaa ASCII adjust for addition
aad ASCII adjust for division
aam ASCII adjust for multiplication
aas ASCII adjust for subtraction
adc add with carry
adcb add byte with carry *
add add
addb add byte *
and logical AND
andb logical AND byte *
beq long branch equal *
bge long branch greater or equal *
bgt long branch greater *
bhi long branch on high *
bhis long branch high or same *
ble long branch less than or equal *
blo long branch on low *
bIos long branch low or same *
bIt long branch less than *
bne long branch not equal *
br long branch *
call intrasegment call
calli intersegment call *
cbw convert byte to word
clc clear carry flag
cld clear direction flag
cli clear interrupt flag
cmc complement carry flag
cmp compare
cmpb compare byte *
cmps compare string *
cmpsb compare string byte *
cwd covert word to double word
daa decimal adjust for addition
das decimal adjust for subtraction
dec decrement by one
decb decrement byte by one *
div division unsigned
divb division unsigned byte *
hlt halt
idiv integer division
idivb integer division byte *
imul integer multiplication
imulb integer multiplication byte *
in input byte *
inc increment by one
incb increment byte by one *

7-13

as: Assembler XENIX Programming

int interrupt
into interrupt if overflow
inw input word *
iret interrupt return
j short jump *
ja short jump if above
jae short jump if above or equal
jb short jump if below
jbe short jump if below or equal
jc short jump if carry
jcxz short jump if ex is zero
je short jump on equal
jg short jump on greater than
jge short jump on greater than or equal
jl short jump on less than
jle short jump on less than or equal
jmp jump
jmpi inter segment jump *
jna short jump not above
jnae short jump not above or equal
jnb short jump not below
jnbe short jump not below or equal
jnc short jump not carry
jne short jump not equal
jng short jump not greater
jnge short jump not greater or equal
jnl short jump not less
jnle short jump not less or equal
jno short jump not overflow
jnp short jump not parity
jns short jump not sign
jnz short jump not zero
jo short jump on overflow
jp short jump if parity
jpe short jump if parity even
jpo short jump if parity odd
js short jump if signed
jz short ju mp if zero
lahf load AH fro m flags
Ids load pointer using DS
lea load effective address
les load pointer using ES
lock lock bus
lodb load byte string *
lodw load word string *
loop loop short label
loope loop if equal
loopne loop if not equal
loopnz loop if not zero
loopz loop if zero

7-14

XENIX Program m ing as: Asse m bIer

mov move
movb move byte *
movs move word string *
movsb move byte string *
mul multiplication unsigned
mulb multiplication unsigned byte *
neg negate
negb negate byte *
nop no operation
not logical NOT
notb logical NOT byte *
or logical OR
orb logical OR byte *
out output byte *
outw output word *
pop pop from stack
popf pop flag from stack
push push onto stack
pushf push flags onto stack
rcl rotate left through carry
rclb rotate left through carry byte *
rcr rotate right through carry
rcrb rotate right through carry byte *
rep repeat string op *
repnz repeat string op while not zero *
repz repeat string op while zero *
ret return from procedure
reti return from intersegment procedure *
rol rotate left
rolb rotate left byte *
ror rotate right
rorb rotate right byte *
sahf store AH into flags
sal shift arithmetic left
salb shift arithmetic left byte *
sar shift arithmetic right
sarb shift arithmetic right byte *
sbb subtract with borrow
sbbb subtract with borrow byte *
scab scan byte string *
scaw scan word string *
shl shift logical left
shlb shift logical left byte *
shr shift logical right
shrb shift logical right byte *
stc set carry flag
std set direction flag
sti set interrupt enable flag
stob store byte string *
stow store word string *

7-15

as: Asse m bIer

sub
subb
test
testb
wait
xchg
xchgb
xl at
xor
xorb

subtract
subtract byte
test
test byte
wait while TEST pin
exchange
exchange byte
translate
exclusive OR
exclusive OR byte

Byte Instructions

*

*

*
*

*

XENIX Programming

The XENIX assembler extends the definition of several instruction mnemonics to include
an explicit byte "b" suffix. This suffix forces the operands in the instruction to be
treated as bytes when they would otherwise be treated as words. There are the
following byte instructions (not including byte string instructions):

adcb imulb rclb shlb
addb incb rcrb shrb
andb movb rolb subb
cmpb mulb rorb testb
decb negb salb xchgb
divb notb sarb xorb
idivb orb sbbb

The byte instructions are especially useful when operating on memory operands defined
with the .byte directive. Since as does not assign an explicit type to symbols created
with the .byte or .word directives, it cannot detect the size of the associated item when
given in an instruction. For example, if test_byte and test_word have been defined as

test byte:
test-word:

.byte 1

.word 1

then the statements

negb test byte
neg test-word

are required to operate on these values correctly. If neg were applied to test_byte, part
of test_word would be destroyed in the operation.

7-16

XENIX Programming as: Assembler

Branch Instructions

The XENIX assembler has a new class of instructions, called branch instructions, that
test a condition and branch to an instruction address further than 128 bytes away.
These instructions take the same kind of operand as the normal jmp instruction but
provide a test to see whether or not the jump should occur. The following is a list of the
branch instructions.

beq
bge
bgt
bhi

bhis
ble
blo
bIos

bIt
bne
br

The branch instructions, when assembled, consist of two 8086/286 jump instructions. The
first jump tests for the inverse of the condition specified by the branch. The second
jump is the unconditional jump instruction jmp. If the branch condition is true, the first
jump is ignored and the second jump taken. If the branch condition is false, the first
jump is taken. The first jump passes control to the next statement after the second
jump.

For example, the statement

bne subtest

is equivalent to the statements

je no
jmp subtest

no:

String Instructions

The XENIX assembler uses a subset of the string instructions normally available for the
8086/286 processor. In particular, the assembler accepts only those string instructions
that do not take operands. These are essentially the byte and word forms of the string
instructions with implied destination.

To indicate this restriction, some instruction mnemonics no longer contain the "s" for
string. The following isa list of the string instructions:

cmpsb
cmps

lodb
lodw

movsb
movs

scab
scaw

stab
stow

The assembler also accepts the rep, repnz, and repz instructions for repeating string
operations. Note that these instructions must appear alone on a line; they cannot be
combined on the same line with a string instruction.

7-17

as: Asse m bIer XENIX Program m ing

Intersegment Instructions

The XENIX assembler has redefined call and jump instructions to create a new class of
instructions called intersegment instructions. These allow calls and unconditional jumps
to locations across 8086/286 segment boundaries. (These are physical segments, not the
text, data, and bss segments described earlier.) There are the following intersegment
instructions:

calli
jmpi
reti

The calli and jrnpi instructions can have either a locally or globally defined symbol as an
operand. In this case, an appropriate segment address is provided automatically when
the program is linked. If an indirect address operand is used, an appropriate segment
address must be explicitly provided. The reti instruction has operands similar to the ret
instruction.

Input/Output Instructions

The XENIX assembler has modified the in and out instructions to include the new forms
inw and outw. The in and out instructions now operate strictly on byte values; inw and
outw operate on words. Furthermore, these instructions take only one operand--the port
number. The al or ax register is accessed as appropriate and must not be given as an
operand.

80286 Instructions

Assembly language programmers who wish to use 80286 instructions can insert the
binary opcode of a given instruction into the instruction stream using the .byte and
.word directives. For example, the directive

.byte /Ga, * 1

places the binary opcode of the pushi (for push immediate) instruction in the instruction
stream. This code is equivalent to the 80286 instruction

pushi * 1

A programmer can also use the power of the C language preprocessor to create macros
for the 80286 instructions. For example, if the macro definition

#define PUSHI(x) .byte /Ga, *x

is included in an assembly language source, then the macro call

PUSHI(1)

may be used for a pushi instruction in place of the .byte directive. In this case, you
must invoke the C preprocessor using the cc command to resolve this macro.

Note that privileged 80286 instructions are not available to user programs.

7-18

XENIX Programming as: Assembler

Branch Instructions

The XENIX assembler has a new class of instructions, called branch instructions, that
test a condition and branch to an instruction address further than 128 bytes away.
These instructions take the same kind of operand as the normal jmp instruction but
provide a test to see whether or not the jump should occur. The following is a list of the
branch instructions.

beq
bge
bgt
bhi

bhis
ble
blo
bIos

bIt
bne
br

The branch instructions, when assembled, consist of two 8086/286 jump instructions. The
first jump tests for the inverse of the condition specified by the branch. The second
jump is the unconditional jump instruction jmp. If the branch condition is true, the first
jump is ignored and the second jump taken. If the branch condition is false, the first
jump is taken. The first jump passes control to the next statement after the second
jump.

For example, the statement

bne subtest

is equivalent to the statements

je no
jmp subtest

no:

String Instructions

The XENIX assembler uses a subset of the string instructions normally available for the
8086/286 processor. In particular, the assembler accepts only those string instructions
that do not take operands. These are essentially the byte and word forms of the string
instructions with implied destination.

To indicate this restriction, some instruction mnemonics no longer contain the "s" for
string. The following isa list of the string instructions:

cmpsb
cmps

lodb
lodw

movsb
movs

scab
scaw

stob
stow

The assembler also accepts the rep, repnz, and repz instructions for repeating string
operations. Note that these instructions must appear alone on a line; they cannot be
combined on the same line with a string instruction.

7-17

as: Asse m bIer XENIX Program m ing

Intersegment Instructions

The XENIX assembler has redefined call and jump instructions to create a new class of
instructions called intersegment instructions. These allow calls and unconditional jumps
to locations across 8086/286 segment boundaries. (These are physical segments, not the
text, data, and bss segments described earlier.) There are the following intersegment
instructions:

calli
jmpi
reti

The calli and jmpi instructions can have either a locally or globally defined symbol as an
operand. In this case, an appropriate segment address is provided automatically when
the program is linked. If an indirect address operand is used, an appropriate segment
address must be explicitly provided. The reti instruction has operands similar to the ret
instruction.

Input/Output Instructions

The XENIX assembler has modified the in and out instructions to include the new forms
inw and outw. The in and out instructions now operate strictly on byte values; inw and
outw operate on words. Furthermore, these instructions take only one operand--the port
number. The al or ax register is accessed as appropriate and must not be given as an
operand.

80286 Instructions

Assembly language programmers who wish to use 80286 instructions can insert the
binary opcode of a given instruction into the instruction stream using the .byte and
.word directives. For example, the directive

.byte /6a , * 1

places the binary opcode of the pushi (for push immediate) instruction in the instruction
stream. This code is equivalent to the 80286 instruction

pushi * 1

A program mer can also use the power of the C language preprocessor to create macros
for the 80286 instructions. For example, if the macro definition

#define PUSHI(x) .byte /6a , *x

is included in an assembly language source, then the macro call

PUSHI(1)

may be used for a pushi instruction in place of the .byte directive. In this case, you
must invoke the C preprocessor using the cc com mand to resolve this macro.

Note that privileged 80286 instructions are not available to user programs.

7-18

XENIX Program m ing as: Asse m bIer

Addressing Modes

The XENIX 8086/286 assembler provides many different ways to access instruction
operands. Operands may be contained in registers, within the instruction itself, in
memory, or in I/O ports. In addition, the addresses of memory and I/O port operands
can be calculated in several different ways.

The following sections describe the format and meaning of instruction operands.

Register Operands

Register operands are the 8086/286 CPU registers. In an instruction, a register operand
causes the instruction's action to be performed on the contents of the register. A
register operand may be anyone of the following:

ax ah al
bx bh bl
cx ch cl
dx dh dl
di si bp
sp cs ds
ss es

Register operands may be used for the source or destination in an instruction. Since
these operands are encoded in a few bits, instructions that specify only register
operands are generally the most compact. They are also the fastest, since operations on
registers are performed entirely within the CPU.

The following are examples of instructions with register operands:

sub ax,bx
addb ah,dl
cmp cs,ds

7-19

as: Asse m bIer XENIX Program ming

Immediate Operands

Immediate operands are byte or word constants given with the instruction itself. These
operands have the forms

* expression
expression

where * specifies a byte constant, # specifies a word constant, and expression is an
absolute expression or a symbol that defines the constant's value.

Since immediate operands are constants, they cannot be used as the destination operand.
Note that the assembler does not check the operand size.

The following examples illustrate immediate operands:

movb
mov
addb

ex, *33
ex,#(122/2)
ax,*NAME

Direct Address Operands

Direct address operands are the bytes or words in memory at the given direct addresses.
Direct addresses have the form

expression

where expression is an absolute expression or symbol that resolves to a memory address.
The direct address gives the location of the operand in terms of an offset from the
beginning of the current segment or the segment in which the given symbol is defined.

-
Direct address operands may be used for source or destination. Although absolute
addresses are allowed, symbols should be used whenever possible. The size of the
operand depends on the instruction in which it is used.

The following examples illustrate direct address operands:

7-20

mov
movb

ex, free
Darray + 204, * 1

XENIX Program m ing as: Assembler

Based Operands

Based operands are bytes or words in memory with addresses computed by adding a
constant and one of the base registers bp or bx. The operands have the forms

expression] (bp)
expression] (bx)

where expression is an absolute expression or symbol that resolves to an absolute.

Based operands are typically used to access structures. The base register points to the
start of the structure, and items in the structure are addressed by an appropriate
expression.

The following examples illustrate based operands:

mov 2(bp), #1000
movb ax, TOP (bx)
neg -4 (bp)
mov ax, (bx) (bp)

Indexed Operands

Indexed operands are bytes or words in memory with addresses computed by adding a
constant and one of the index registers di or si. The operands have the forms

expression (di)
expression (si)

where expression is an absolute expression or symbol that resolves to an absolute.

Indexed operands are often used to access elements in an array. expression points to the
start of the array. The index register is given the index value of the element to be
accessed. Since all array elements are the same length, simple arithmetic on the index
register will select any element.

The following examples illustrate indexed operands:

movb ax,Darray(di)
addb 4096(si), * 1

7-21

as: Asse m bIer XENIX Program m ing

Based Indexed Operands

Based indexed operands are bytes or words in memory whose addresses are computed by
adding a constant, a base register, and an index register. The operands have the forms

expression] (bx) (di)
expression] (bx) (si)
expression] (bp) (di)
expression] (bp) (si)

where expression is an absolute expression or a symbol that resolves to an absolute.

Based indexed operands provide a very flexible method of accessing items that require
two address components. For example, elements of multidimensional arrays can be
accessed by setting expression to the start address of the array and assigning the
appropriately scaled index values to the base and index registers.

The following examples illustrate based indexed operands:

movb Darray (bx) (di), * 1
mov ax, (bx) (si)
neg -2 (bp) (si)

Indirect Address Operands

Indirect address operands are instruction addresses stored in memory at given indirect
addresses. Indirect address operands have the form

@expression

where expression is an absolute expression or a symbol that resolves to an absolute.

Indirect address operands may be used only with the calli, call, jmpi, and jmp
instructions. When used with the intersegment call or jump instruction, expression
must point to a 4-byte segment/offset instruction address. When used with the call or
jump instruction, expression must point to a 2-byte offset to an instruction.

The following examples illustrate indirect address operands:

7-22

moncal!:
.word
.word

subtest':
.word
.text

examp:
calli
jmp

OFFSET
SEG SELECT

OFFSET

@moncall
@subtest

XENIX Program m ing as: Asse m bIer

Diagnostics

When syntactic errors occur, the assembler displays the line number and the name of the
file containing the error. If the errors are encountered in the first pass of the
assembler, the second pass is canceled and no object file is created.

Error messages have the following form:

ERROR syntax error, line nnn
file: eee errors

where nnn is the line number(s) containing the error, file is the name of the file, and eee
is the total number of errors.

7-23

CHAPTER 8
csh: C SHEll

The C shell program, csh, is a command language interpreter for XENIX system users.
The C shell, like the standard XENIX shell sh, is an interface between you and XENIX
commands and programs. It translates command lines typed at a terminal into
corresponding system actions, gives you access to information such as your login name,
home directory, and mailbox, and supports the construction of shell procedures for
automating system tasks.

This chapter explains how to use the C shell. It also explains the syntax and function of
C shell commands and features and shows how to use these features to create shell
procedures. The C shell is fully described in the entry csh in Appendix B, "Programming
Commands."

Invoking the C Shell

You can invoke the C shell from another shell by typing the csh command

csh

at the standard shell's command line. You can also direct the system to invoke the C
shell for you when you log in. If you have given the C shell as your login shell in your
/etc/passwd file entry, the system automatically starts the C shell when you log in.

After the system starts the C shell, the shell searches your home directory for the
command files .cshrc and .login. If the shell finds the files, it executes the commands
contained in them and then displays the C shell prompt, normally a percent sign (%).

The .cshrc file typically contains commands to be executed each time you start a C
shell, and the .login file contains the commands to be executed each time you log into
the system. The following is an example of a typical .login file:

set ignoreeof
set mail = (lusrlspool/mail/bill)
set time = 15
set history = 10
mail

This file contains several set commands. The set command is executed directly by the
C shell; there is no corresponding XENIX program for this command. In the example,
set is used to set the C-shell variable ignoreeof, which shields the C shell from logging
out if CONTROL-D is pressed. Instead of CONTROL-D, the logout command is used to
log out of the system. Setting the mail variable in the example causes the C shell to
notify you if you receive any mail in the specified mailbox.

8-1

csh: C Shell XENIX Programming

The C shell variable time is set to 15, causing the C shell to automatically print
statistics lines for commands that execute for at least 15 seconds of CPU time. The
variable history is set to 10, indicating that the C shell will remember the last 10
commands typed in its history list (described later). Finally, the XENIX mail program is
invoked.

When the C shell finishes processing the .login file, it begins reading commands from the
terminal, prompting for each with

%

When you log out (by giving the logout command) the C shell prints

logout

and executes commands from the file .logout if it exists in your home directory. After
that, the C shell terminates and XENIX logs you off the system.

Using Shell Variables

The C shell maintains a set of variables. For example, in the above discussion, the
variables history and time had the values 10 and 15. Each C shell variable has as its
value an array of zero or more strings. C shell variables may be assigned values by the
set command, which has several forms, the most useful of which is

set name = value

C shell variables can be used to store values to be used later in commands through a
sUbstitution mechanism. The C shell variables most commonly referenced are, however,
those that the C shell itself refers to. By changing the values of these variables you can
directly affect the behavior of the C shell.

One of the most important variables is path, which contains a list of directory names.
When you type a command name at your terminal, the C shell examines each named
directory in turn until it finds an executable file with a name that corresponds to the
name you typed. The set com mand with no arguments displays the values of all
variables currently defined in the C shell. The following example shows typical default
values:

argv 0
home fusrfbill
path (. fbin fusrfbin)
prompt %
shell fbi nfcsh
status 0

This output indicates that the variable path begins with the current directory indicated
by dot (.), then Ibin, and last lusr/bin. Your own local commands may be in the current
directory. Normal XENIX commands reside in Ibin and lusr/bin.

8-2

XENIX Program ming csh: C Shell

Sometimes a number of locally developed programs reside in the directory /usr/local. If
you want all C shells that you invoke to have access to these new programs, place the
command

set path = (. fbi n lusrfbi n lusr/local)

in the .cshrc file in your home directory. Try doing this, then logging out and back in.
Type

set

to see that the value assigned to path has changed.

When you log in, the C shell examines all directories in your path other than the current
directory (.), to determine which commands are in those directories. The C shell
remembers these commands in an internal table. This means that if a command is added
to a directory in your search path after you have started the C shell, then the C shell
may not find that command if you attempt to invoke it. If you want to use a command
that has been added after you have logged in, give the command

rehash

to the C shell. rehash causes the shell to recompute its internal table of command
locations, so that it will find the newly added command. Note that rehashing is not
necessary for commands added to the current directory. Since the C shell has to look in
the current directory on each command anyway, placing it at the end of the path
specification usually works best and reduces overhead.

Other useful built-in variables are home, which shows your home directory, and
ignoreeof, which can be set in your .login file to tell the C shell not to exit when it
receives an end-of-file from a terminal. The variable ignoreeof is one of several
variables with values that the C shell does not care about; the C shell is only concerned
with whether these variables are set or unset. Thus, to set ignoreeof you simply type

set ignoreeof

and to unset it type

unset ignoreeof

Some other useful built-in C shell variables are noclobber and mail. The syntax

> filename

which redirects the standard output of a command just as in the regular shell,
overwrites and destroys the previous contents of the named file. In this way, you may
accidentally overwrite a valuable file. If you prefer that the C shell not overwrite files
in this way, type

set noclobber

8-3

csh: C Shell XENIX Programming

in your .login file. After setting noclobber, typing

date> now

causes an error message if the file now already exists. You can type

date >! now

if you really want to overwrite the contents of now. The ">!" is a special syntax
indicating that overwriting or "clobbering" the file is permitted. (The space between
the exclamation point (!) and the word "now" is critical here, as "!now" would be an
invocation of the history mechanism (described below) and would have a very different
effect.)

Using the C Shell History List

The C shell can maintain a history list containing the text of previous commands. You
can use a notation that reuses commands, or words from commands, in forming new
commands. This notation can be used to repeat previous commands or to correct minor
typing mistakes in co m mands.

The following example gives a sample session using the history mechanism of the C
shell. The example assumes that the bug.c file exists and that its contents are exactly
as shown below. Boldface indicates user input.

8-4

% cat bug.c
main()

{

}
printf(" hello);

% cc !$
cc bug.c
bug.c (5): warning 8: newline in string constant
bug.c (5): error 59: syntax error: '}'
% ed !$
ed bug.c
29
* 4s/);/");/p

*w
30
*q
% !c

printf(" hello");

cc bug.c
% a.out
hello% !e
ed bug.c
30
* 4s/10/10\\n/p

pri ntf(" hello\n ");

XENIX Program m ing

*w
32
* q
% !c -0 bug
cc bug.c -0 bug
bug.c
% size a.out bug
a.out: 4112+496+1072 = 5680 = Ox1630
bug: 4112+496+1072 = 5680 = Ox1630
% I !*
I a.out bug
-rwxr-xr-x 1 bill group 5925 Dec 19 09:41 a.out
-rwxr-xr-x 1 bill group 5927 Dec 19 09:42 bug
% bug
hello
% pr bug.c I Ipt
Ipt: Command not found.
% AlptAlpr
pr bug.c I I pr
%

csh: C Shell

In this example, we have a very simple C program that has a bug or two in the file
bug.c, which we display using cat. We then try to run the C compiler on it, referring to
the file again as "!$", meaning the last argument to the previous command. Here the
exclamation mark (!) is the history mechanism invocation metacharacter, and the dollar
sign ($) stands for the last argument, by analogy to the dollar sign in the editor that
stands for the end-of-line. The C shell echoed the command, as it would have been
typed without use of the history mechanism, and then executed the command. The
compilation yielded error diagnostics, so we now edit the file we were trying to compile,
fix the bug, and run the C compiler again, this time referring to this command simply as
"!c", which repeats the last command that started with the letter "c". If there were
other commands beginning with the letter "c" executed recently, we could have said
"!cc" or even "!cc:p", which prints the last command starting with "cc" without
executing it, so that you can check to see whether you really want to execute a given
command.

After this recompilation, we ran the resulting a.out file, and then noting that the cursor
didn't move to the next line before the shell prompt (%) was displayed, ran the editor
again. After fixing the program, we ran the C compiler again, but added to the
command an extra "-0 bug" telling the compiler to place the resultant binary in the file
bug rather than a.out. In general, the history mechanisms may be used anywhere in the
formation of new commands, and other characters may be placed before and after the
substituted commands.

We then ran the size command to see how large the binary program images we have
created are, and then we ran an I command with the same argument list, denoting the
argument list:

!*

We then ran the program bug to see that its output is indeed correct.

8-5

csh: C Shell XENIX Programming

To make a listing of the program, we ran the pr command on the file bug.c. To print the
listing, we piped the output to Ipr, but misspelled it as "lpt". To correct this, w~ used a
C shell substitute, placing the old text and new text between caret (") characters. This
is similar to the substitute command in the editor. Finally, we repeated the same
command with

!!

and sent its output to the printer.

Other mechanisms are available for repeating commands. The history command prints
out a numbered list of previous commands. You can then refer to these commands by
number. You can also refer to a previous command by searching for a string that
appeared in it, and there are other, less useful, ways to select arguments to include in a
new command. A complete description of all these mechanisms is given in the entry csh
in Appendix B, "Programming Commands."

Using Aliases

The C shell has an alias mechanism that can be used to make transformations on
commands immediately after they are input. This mechanism can be used to simplify
the commands you type, to supply default arguments to commands, or to perform
transformations on commands and their arguments. The alias facility is similar to a
macro facility. Some of the features obtained by aliasing can also be obtained using C
shell command files, but these take place in another instance of the C shell and cannot
directly affect the current C shell's environment or involve commands such as cd which
must be done in the current C shell.

For example, suppose there is a new version of the mail program on the system called
new mail that you wish to use instead of the standard mail program mail. If you place
the C shell command

alias mail newmail

in your .cshrc file, the C shell will transform an input line of the form

mail bill

into a call to newmail. Suppose you wish the command Is to always show sizes of files,
that is, to always use the -s option. You can accomplish this with the following alias
command:

alias Is Is -s

or even

alias dir Is -s

creating a new command named dire If we then type

dir -bill

8-6

XENIX Programming csh: C Shell

the C shell translates this to

Is -s/usr/bill

Note that the tilde (....) is a special C shell symbol that represents the user's home
directory.

Thus the alias command can be used to provide short names for commands, to provide
default arguments, and to define new short commands in terms of other commands. You
can also define aliases that contain multiple commands or pipelines, showing where the
arguments to the original command are to be substituted using the facilities of the
history mechanism. Thus the definition

alias cd 'cd \!* ; Is '

specifies an Is command after each cd command. We enclosed the entire alias definition
in single quotation marks (') to prevent most sUbstitutions from occurring and to prevent
the semicolon (;) from being recognized as a metacharacter. The exclamation mark (!)
is escaped with a backslash (\) to prevent it from being interpreted when the alias
command is typed in. The "\!*" here substitutes the entire argument list to the
prealiasing cd command; no error is given if there are no arguments. The semicolon
separating commands is used here to indicate that one command is to be done and then
the next. Similarly, the following example defines a command that looks up its first
argument in the password file.

alias whois 'grep \! ... /etc/passwd'

The C shell reads the .cshrc file each time it starts up. If you place a large number of
aliases there, C shells will tend to start slowly. You should try to limit the number of
aliases you have to a reasonable number (10 or 15). Having too many aliases causes
delays and makes the system seem sluggish when you execute commands from within an
editor or other programs.

Redirecting Input and Output

In addition to the standard output, commands also have a standard error output that is
normally directed to the terminal even when the standard output is redirected to a file
or a pipe. It is occasionally useful to redirect the standard error output along with the
standard output. For instance, if you want to redirect the output of a long-running
command into a file and wish to have a record of any error message it produces, you can
type

command >& file

The ">&" here tells the C shell to route both the standard error output and the standard
output into file. Similarly, you can give a command of the form

command 1& Ipr

to route both standard output and standard error output through the pipe to the line
printer.

8-7

csh: C Shell XENIX Program ming

The form

command > &! file

is used when noclobber is set and file already exists.

Finally, use the form

command > > file

to append output to the end of an existing file. If noclobber is set, then an error results
if file does not exist, otherwise the C shell creates file. The form

command > >! file

appends to a file even if it does not exist and noclobber is set.

Creating Background and Foreground Jobs

When one or more commands are typed together as a pipeline or as a sequence of
commands separated by semicolons, a single job is created by the C shell consisting of
these commands together as a unit. Single commands without pipes or semicolons
create the simplest jobs. Usually, every line typed to the C shell creates a job. Each of
the following lines creates a job:

sort < data
Is -s I sort -n I head -5
mail harold

If the ampersand metacharacter (&) is typed at the end of a command pipeline or
sequence, then the job is started as a background job. This means that the C shell does
not wait for the job to finish, but immediately prompts for another command. The job
runs in the background at the same time that normal jobs, called foreground jobs,
continue to be read and executed by the C shell. Thus

du > usage &

runs the du program, which reports on the disk usage of your working directory, directs
the output into the file usage, and returns immediately with a prompt for the next
command without waiting for du to finish. The du program continues executing in the
background until it finishes, even though you can type and execute more commands in
the mean time. Background jobs are unaffected by any signals from the keyboard such
as the INTERRUPT or QUIT signals.

The kill command terminates a background job immediately. Normally, this is done by
specifying the process number of the job you want killed. Process numbers can be found
with the ps command.

8-8

XENIX Programming csh: C Shell

Using Built-In Commands

This section explains how to use some of the built-in C shell commands.

The alias command (see "Using Aliases" above) is used to assign new aliases and to
display existing aliases. If given no arguments, alias prints the list of current aliases.
alias can also be given one argument to show the current alias for a given string of
characters. For example

alias Is

prints the current alias for the string "Is".

The history command displays the contents of the history list. The numbers given with
the history events can be used to reference previous events difficult to reference
contextually. There is also a C shell variable named prompt. By placing an exclamation
point (!) in its value the C shell will substitute the number of the current command in
the history list. You can use this number to refer to a command in a history
sUbstitution. For example, you could type

set prom pt = ' \! % '

Note that the exclamation mark (!) had to be escaped even within single quotes.

The logout command is used to terminate a login C shell that has ignoreeof set.

The rehash command causes the C shell to recompute a table of command locations.
This is necessary if you add a command to a directory in the current C shell's search
path and want the C shell to find it, since otherwise the hashing algorithm may tell the
C shell that the command wasn't in that directory when the hash table was computed.

The repeat command is used to repeat a command several times. For example, to make
five copies of the file one in the file five you could type

repeat 5 cat one > > five

The setenv command can be used to set variables in the environment. Thus

setenv TERM adm3a

sets the value of the environment variable TERM to "adm3a". The env command prints
out the environment. For example:

% env
HOME =/usr/bill
SHELL = /bin/csh
PATH = :/usr/ucb:/bin:/usr/bin:/usr/local
TERM = adm3a
USER = bill

8-9

csh: C Shell XENIX Programming

The source command is used to cause the current C shell to read commands from a file
until the end of the file. Thus

source .eshre

can be used after editing in a change to the .cshrc file that you wish to take effect
before the next time you log in.

The time command is used to cause a command to be timed no matter how much CPU
time it takes. Thus

time ep letcJre lusr/bi I lire

displays

O.Ou 0.1s 0:01 8%

Similarly

time we lete/re lusr/bi "Ire

displays

52 178 1347 lete/re
52 178 1347 lusr/bi Il/re
104 356 2694 total

0.1 u 0.1s 0:00 13%

This indicates that the cp command used a negligible amount of user time (u) and about
one-tenth of a second system time (s); the elapsed time was one second (0:01). The word
count command wc used 0.1 seconds of user time and 0.1 seconds of system time in less
than a second of elapsed time. The percentage "13%" indicates that over the period
when it was active the wc command used an average of 13 percent of the available CPU
cycles of the machine.

The unalias and unset commands are used to remove aliases and variable definitions
from the C shell. The command unsetenv removes variables from the environment.

Creating Command Scripts

You can place com mands in files and cause C shells to be invoked to read and execute
commands from these files, which are called C shell scripts. This section describes the
C shell features that are useful when creating C shell scripts.

8-10

XENIX Programming csh: C Shell

Using the argv Variable

A csh command script can be interpreted by typing

csh script [argument] ...

where script is the name of the file containing a group of C shell commands and
argument is a sequence of command arguments. The C shell places these arguments in
the variable argv and then begins to read commands from script. These parameters are
then available through the same mechanisms used to reference any other C shell
variables.

If you make the file script executable by typing

chmod 755 script
or

chmod + x script

and then place a C shell comment at the beginning of the C shell script (i.e., begin the
file with a number sign (#», then /bin/csh will automatically be invoked to execute
script when you type

script

If the file does not begin with a number sign (#), then the C shell will call the standard
shell /bin/sh to execute it. Thus from the C shell, you can execute scripts written for
either the C shell or the standard shell. In the standard shell sh, you can only execute
scripts written for sh and not scripts written for the C shell.

substituting Shell Variables

After each input line is broken into words and history substitutions are done on it, the
input line is parsed into distinct commands. Before each command is executed, a
mechanism known as variable sUbstitution is performed on these words. Keyed by the
dollar sign ($), this substitution replaces the names of variables by their values. Thus

echo $argv

when placed in a command script, would cause the current value of the variable argv to
be echoed to the output of the C shell script. It is an error for argv to be unset at this
point.

A number of notations are provided for accessing components and attributes of
variables. The notation

$?name

expands to 1 if name is set or to 0 if name is not set. It is the fundamental mechanism
used for checking whether particular variables have been assigned values. All other
forms of reference to undefined variables cause errors.

8-11

csh: C Shell XENIX Programming

The notation

$#name

expands to the number of elements in the variable name. To illustrate, examine the
following terminal session (input is in boldface):

% set argv = (a b c)
1
% echo $#argv
3
% unset argv
% echo $?argv
0
% echo $argv
Undefined variable: argv.
%

You can also access the components of a variable that has several values. Thus

$argv[l]

gives the first component of argv or in the example above "a". Similarly

$argv[$#argv]

would give "c", and.

$argv[1-2]

would give "a bIt. Other notations useful in C shell scripts are

$n

where n is an integer. This is shorthand for

$argv[n]

the nth parameter and

$*

which is a shorthand for

$argv

The form

$$

expands to the process number of the current C shell. Since this process number is
unique in the system, it is often used in the generation of unique temporary file names.

8-12

XENIX Programming csh: C Shell

The form

$<

is quite special and is replaced by the next line of input read from the C shell's standard
input (not the script it is reading). This is useful for writing interactive C shell scripts
that read commands from the terminal, or for writing a C shell script that acts as a
filter, reading lines from its input file. Thus, the sequence

A comment line is required in a C shell script.
echo 'yes or no?\c'
set a = $<

writes out the prompt

yes or no?

without a newline and then reads the answer into the variable a. In this case $#a is 0 if
either a blank line or CONTROL-D is typed. The echo command is built into csh and the
-0 option of echo is replaced by \c.

One minor difference between $n and $argv[n] is that the form $argv[n] will yield an
error if n is not in the range l-$#argv while $n will never yield an out-of- range
subscript error. This is for compatibility with the way older shells handle parameters.

An important point is that it is never an error to give a subrange of the form n-; if the
given variable has fewer than n components, no words are substituted. A range of the
form m-n likewise returns an empty vector without giving an error when m exceeds the
number of elements of the given variable, provided the subscript n is in range.

Using Expressions

To construct useful C shell scripts, the C shell must be able to evaluate expressions
based on the values of variables. In fact, all the arithmetic operations of the C
language are available in the C shell with the same precedence that they have in C. In
particular, the operations == and != compare strings, and the operators && and II
implement the logical AND and OR operations.

The C shell also supports file enquiries of this form, where option is one of a number of
single characters:

-option filename

For example, the expression primitive

-e filename

tells whether filename exists. Other primitives test for read, write, or execute access
to the file, whether it is a directory, or if it has nonzero length.

8-13

csh: C Shell XENIX Program m ing

You can test whether a command terminates normally, by using a primitive of the form

{ command}

which returns 1 if the command exits normally with exit status 0, or 0 if the command
terminates abnormally or with exit status nonzero. If more detailed information about
the execution status of a command is required, it can be executed and the status
variable examined in the next command. Since $status is set by every command, its
value is always changing.

For the full list of expression components, see the entry csh in Appendix B,
"Programming Commands."

Using the C Shell: A Sample Script

A sample C shell script follows that uses the expression mechanism of the C shell and
some of its control structures:

Copyc copies the C programs in the current working directory
to the directory -/backup if they differ from the files
already in -/backup

foreach i {* .c}

end

if (! -e -/backup/$i :t) then # if file does not exist in -/backup, continue
echo $i:t not in backup ... not copied
continue

endif

cmp -s $i -/backup/$i:t # to set $status

if ($status ! = 0) then
echo new backup of $i
cp $i -/backup/$i:t

endif

This script uses the foreach command. The command executes the other commands
between the foreach and the matching end for each of the values given between
parentheses with the named variable i, which is set to successive values in the list.
Within this loop we may use the command break to stop executing the loop and continue
to prematurely terminate one iteration and begin the next. After the foreach loop, the
iteration variable (i in this case) has the value at the last iteration.

8-14

XENIX Programming csh: C Shell

Note: When setting $status (as in the cmp statement above), the status will change if
anything is done between the cmp statement and the "if ($status != 0) then" statement.
For example:

if files are different, status = 1 cmp -s $i -/backup/$i:t # to set $status
echo $status

if ($status ! = 0) then
will echo 1, but status will be set to 0
now status = 0, but it should be 1

The other control construct is a statement of the form

if (expression) then
command

endif

The placement of the keywords in this statement is not flexible due to the current
implementation of the C shell. The following two formats are not acceptable to the C
shell:

and

if (expression) # Won't work!
then

command

endif

if (expression) then command endif # Won't work

The C shell does have another form of the if statement:

if (expression) command

which can be written

if (expression) \
command

Here we have escaped the newline for the sake of appearance. The command must not
involve "I", "&", or ";" and must not be another control command. The second form
requires the final backslash (\) to immediately precede the end-of-line.

The more general if statements above also admit a sequence of else-if pairs followed by
a single else and an endif, for example:

if (expression) then
commands

else if (expression) then
commands

else
commands

endif

8-15

csh: C Shell XENIX Programming

Another important mechanism used in C shell scripts is the colon {:} modifier. We can
use the modifier :r here to extract the root of a file name. For example, this gives the
variable i the value /mot/foo.bar:

% set i = Imntlfoo.bar

If you give this command:

% echo $i $i:r

the result is

Imntlfoo.bar Imntlfoo

This example shows how the :r modifier strips off the trailing ".bar". Other modifiers
take off the last component of a path name leaving the head :h or all but the last
component of a path name leaving the tail :t. These modifiers are fully described in the
entry csh in Appendix B, "Programming Commands." You can also use the command
substitution mechanism to perform modifications on strings and then re-enter the C
shell environment. Since each usage of this mechanism involves the creation of a new
process, it is much more expensive to use than the colon {:} modification mechanism.
Note also that the current implementation of the C shell limits the number of colon
modifiers on a n$n substitution to 1. Thus

% set i = la/b/c
% echo $i $i:h:t

produces

la/b/c la/b:t

and does not do what you might expect.

Finally, we note that the number sign {#} lexically introduces a C shell comment in C
shell scripts (but not from the terminal). All subsequent characters on the input line
after a number sign are discarded by the C shell. This character can be quoted using' or
\ to place it in an argument word.

Using Other Control Structures

The C shell also has control structures while and switch similar to those of C. These
take the forms

and

8-16

while (expression)
commands

end

XENIX Programming

switch (string

case string 1:
commands
breaksw

case stringn:
commands
breaksw

default:
commands
breaksw

endsw

csh: C Shell

For details see csh in Appendix B. C programmers should note that breaksw is used to
exit from a switch while break exits from a while or foreach loop. A common mistake
to make in C shell scripts is to use break rather than breaksw in switches.

Finally, the C shell supports a goto statement, with labels looking like they do in C, e.g.:

loop:
commands
goto loop

Supplying Input to Commands

Commands run from C shell scripts receive by default the standard input of the C shell
running the script. This feature enables C shell scripts to fully participate in pipelines
but mandates extra notation for commands that take inline data.

Thus we need a metanotation for supplying inline data to commands in C shell scripts.
For example, consider this script that runs the editor to delete leading blanks from the
lines in each argument file:

deblank -- remove leading blanks
foreach i ($argv)
ed - $i « 'EOF'
1,$sr[]*11
w
q
'EOF'
end

8-17

csh: C Shell XENIX Programming

The notation

< < 'EOF'

means that the standard input for the ed command is to come from the text in the C
shell script file up to the next line consisting of exactly EOF. Because EOF is quoted in
single quotation marks ('), the C shell does not perform variable sUbstitution on the
intervening lines. In general, if any part of the word following the "«" that the C shell
uses to terminate the text to be given to the command is quoted, then these
sUbstitutions are not performed. In the example, since we used the form "1,$" in our
editor script, we needed to insure that the dollar sign was not variable substituted. We
could also have insured this by preceding the dollar sign ($) with a backslash (\), i.e.:

1, \$sr[]*11

Quoting the EOF terminator is a more reliable way of achieving the same end.

Catching Interrupts

If our C shell script creates temporary files, we may wish to catch interruptions of the
C shell script so that we can clean up these files. We can then do

onintr label

where label is a label in our program. If an interrupt is received, the C shell will do a
"goto label" and we can remove the temporary files, then do an exit command (which is
built in to the C shell) to exit from the C shell script. If we wish to exit with nonzero
status, we can write

exit{ 1)

to exit with status 1.

Using Other Features

This section describes other features useful to writers of C shell procedures. The
verbose and echo options and the related -v and -x command line options can be used to
help trace the actions of the C shell. The -n option causes the C shell only to read
commands and not to execute them and may sometimes be of use.

Remember that the C shell will not execute C shell scripts that do not begin with the
number sign character (#), i.e., C shell scripts that do not begin with a comment.

The C shell provides another quotation mechanism, using double quotation marks (").
This other mechanism allows only some of the expansions discussed above, and serves to
make the quoted string into a single word, just as single quotation marks (') do.

8-18

XENIX Program m ing csh: C Shell

Starting a Loop at a Terminal

It is occasionally useful to use the foreach control structure at the terminal to aid in
performing a number of similar commands. For instance, if we want to know how many
people have the Bourne shell (/bin/sh) as their login shell, we can give this command:

% grep -c Ihinlsh$ letc/passwd

if we want to know how many people have the C shell (/bin/csh) as their login shell, we
can give this command:

% grep -c Ibinlcsh$ letc/passwd

Since these commands are very similar, we can invoke this foreach command at the
terminal to find how many have the Bourne shell and how many have the C shell:

% foreach i ('/bin/sh$' '/bin/csh$')
? grep -c $i letc/passwd
? end

Note: When the foreach command is entered at the terminal, the C shell prompts for
input with n?n until the end command is given.

Also useful with loops are variables that contain lists of file names or other words. For
example, examine the following terminal session:

% set a = (Is)
% echo $a
csh.n csh.rm
% Is
csh.n
csh.rm
% echo $#a
2

The set command here gave the variable a a list of all the file names in the current
directory as its value. We can then iterate over these names to perform any chosen
function.

When the C shell encounters a command enclosed in accent marks (), it executes the
command and takes the standard output of the command as the value of the expression
formed by the delimited command.

The output of a command within accent marks () is converted by the C shell to a list of
words. You can also place the quoted string within double quotation marks (n) to take
each (nonempty) line as a component of the variable. This prevents the lines from being
split into words at blanks and tabs. A modifier :x exists which can be used later to
expand each component of the variable into another variable by splitting the original
variable into separate words at embedded blanks and tabs.

8-19

csh: C Shell XENIX Programming

Using Braces with Arguments

Another form of file name expansion involves the characters { and}. These characters
specify that the contained strings, separated by commas (,), are to be consecutively
substituted into the containing characters and the results expanded left to right. Thus

A{str1,str2,str3}B

expands to

Astr1B Astr2B ... AstrnB

This expansion occurs before the other file name expansions and can be applied
recursively (i.e., nested). The results of each expanded string are sorted separately, left
to right order being preserved. The resulting file names are not required to exist if no
other expansion mechanisms are used. This means that this mechanism can be used to
generate arguments that are not file names but that have common parts.

A typical use of this would be

mkdi r -/{hdrs,retrofit,csh}

to make subdirectories hdrs, retrofit, and csh in your home directory. This mechanism
is most useful when the common prefix is longer, for example:

chown root lusr/demo/{file1,file2, ... }

Substituting Commands

A command enclosed in accent marks 0 is replaced, just before file names are expanded,
by the output from that command. Thus, you can type

set pwd = pwd '

to save the current directory in the variable pwd or type

vi grep -I TRACE * ' .c

to run the editor vi, supplying as arguments those files whose names end in .c which
have the string "TRACE" in them. Command expansion also occurs in input redirected
with "«" and within quotation marks ("). Refer to csh in Appendix B for more
information.

8-20

XENIX Program m ing csh: C Shell

Special Characters

The following list summarizes the special characters recognized by csh.

Syntactic metacharacters

Separates commands to be executed sequentially

Separates com mands in a pipeline

() Brackets expressions and variable values

& Follows commands to be executed without waiting for completion

File name metacharacters

/ Separates components of a file's path name

Separates root parts of a file name from extensions

? Expansion character matching any single character

* Expansion character matching any sequence of characters

[] Expansion sequence matching any single character from a set of characters

Used at the beginning of a file name to indicate home directory

{ } Used to specify groups of arguments with common parts

Quotation metacharacters

\ Treat following single character as literal

Treat enclosed characters as literal

Like " but allows variable and command expansion

Input/output metacharacters

< Indicates redirected input

> Indicates redirected output

8-21

csh: C Shell

Expansion/substitution metacharacters

$ Indicates variable sUbstitution

Indicates history substitution

Precedes sUbstitution modifiers

Used in special forms of history sUbstitution

Indicates command substitution

Other metacharacters

Begins scratch file names; indicates C shell comments

Prefixes option (flag) arguments to commands

8-22

XENIX Programming

CHAPTER 9
lex: LEXICAL ANALYZER GENERATOR

lex is a program generator designed for lexical processing of character input streams. It
accepts a high-level, problem-oriented specification for character string matching and
produces a C program that recognizes regular expressions. The regular expressions are
specified by the user in the source specifications given to lex. The lex code recognizes
these expressions in an input stream and partitions the input stream into strings
matching the expressions. At the boundaries between strings, program sections provided
by the user are executed. The lex source file associates the regular expressions and the
program fragments. As each expression appears in the input to the program written by
lex, the corresponding fragment is executed.

The user supplies the additional code needed to complete his tasks, including code
written by other generators. The program that recognizes the expressions is generated
from the user's C program fragments. lex is not a complete language, but rather a
generator representing a new language feature added on top of the C programming
language.

lex turns the user's expressions and actions (called "source" in this chapter) into a C
program named yylex. The yylex program recognizes expressions in a stream (called
"input" in this chapter) and performs the specified actions for each expression as it is
detected.

Consider a program to delete from the input all blanks or tabs at the ends of lines. The
following source

%%
[\t] + $;

is all that is required. The program contains a %% delimiter to mark the beginning of
the rules and one rule. This rule contains a regular expression that matches one or more
instances of the characters blank or tab (written \t for visibility, in accordance with the
C language convention) just prior to the end of a line. The brackets indicate the
character class made of blank and tab; the + indicates one or more of the previous item;
and the dollar sign ($) indicates the end of the line. No action is specified, so the
program generated by lex will ignore these characters. Everything else will be copied.
To change any re maining string of blanks or tabs to a single blank, add another rule:

%%
[\t] + $;
[\t] + printf(" ");

The finite automaton generated for this source scans for both rules at once, observes at
the termination of the string of blanks or tabs whether or not there is a newline
character, and then executes the desired rule's action. The first rule matches all strings
of blanks or tabs at the ends of lines, and the second rule matches all remaining strings
of blanks or tabs.

9-1

lex: Lexical Analyzer Generator XENIX Programming

lex can be used alone for simple transformations, or for analysis and statistics gathering
on a lexical level. lex can also be used with a parser generator to perform the lexical
analysis phase; it is especially easy to interface lex and yacc. lex programs recognize
only regular expressions; yacc writes parsers that accept a large class of context-free
gram mars but that require a lower level analyzer to recognize input tokens. Thus, a
combination of lex and yacc is often appropriate. When used as a preprocessor for a
later parser generator, lex is used to partition the input stream, and the parser
generator assigns structure to the resulting pieces. Additional programs, written by
other generators or by hand, can be added easily to programs written by lex. yacc users
will realize that the name yylex is what yacc expects its lexical analyzer to be named,
so that the use of this name by lex simplifies interfacing.

lex generates a deterministic finite automaton from the regular expressions in the
source. The automaton is interpreted, rather than compiled, to save space. The result
is still a fast analyzer. In particular, the time taken by a lex program to recognize and
partition an input stream is proportional to the length of the input. The number of lex
rules or the complexity of the rules is not important in determining speed, unless rules
that include forward context require a significant amount of rescanning. What does
increase with the number and complexity of rules is the size of the finite automaton,
and therefore the size of the program generated by lex.

In the program written by lex, the user's fragments (representing the actions to be
performed as each regular expression is found) are gathered as cases of a switch. The
automaton interpreter directs the control flow. Opportunity is provided for the user to
insert either declarations or additional state ments in the routine containing the actions,
or to add subroutines outside this action routine.

lex is not limited to source that can be interpreted on the basis of one character look
ahead. For example, if there are two rules, one looking for ab and another for abcdefg,
and the input stream is abcdefb, lex will recognize ab and leave the input pointer just
before cd. Such backup is more costly than the processing of simpler languages.

lex Source Format

The general format of lex source is

{ definitions}
%%
{rules}
%%
{ user-subroutines}

where the definitions and the user subroutines are often omitted. The second %% is
optional, but the first is required to mark the beginning of the rules. The absolute
minimum lex program is thus

%%

(no definitions, no rules), which translates into a program that copies the input to the
output unchanged.

9-2

XENIX Programming lex: Lexical Analyzer Generator

In the lex program format shown above, the rules represent the user's control decisions.
They make up a table in which the left column contains regular expressions and the right
column contains actions, program fragments to be executed when the expressions are
recognized. Thus the following individual rule might appear:

integer printf("found keyword INT");

This looks for the string integer in the input stream and prints the message

found keyword INT

whenever it appears in the input text. In this example the C library function printf is
used to print the string. The end of the lex regular expression is indicated by the first
blank or tab character. If the action is merely a single C expression, it can be given on
the right side of the line; if it is compound, or takes more than a line, it should be
enclosed in braces. As a slightly more useful example, suppose you want to change a
number of words from British to American spelling. lex rules such as

colour
mechanise
petrol

pri ntf(II color");
printf(" mechanize");
printf("gas");

would be a start. These rules are not quite enough, since the word petroleum would
become gaseum; a way of dealing with such problems is described in a later section.

lex Regular Expressions

A regular expression specifies a set of strings to be matched. It contains text
characters (that match the corresponding characters in the strings being compared) and
operator characters (that specify repetitions, choices, and other features). The letters
of the alphabet and the digits are always text characters. Thus, the regular expression

integer

matches the string integer wherever it appears, and the expression

a57D

looks for the string a57D.

The operator characters are

"\[] A _1. * + I()$/{} % < >

9-3

lex: Lexical Analyzer Generator XENIX Program ming

If any of these characters are to be used literally, they must be quoted individually with
a backslash (\) or as a group within quotation marks ("). Whatever is contained between
a pair of quotation marks is to be taken as text characters. Thus

xyz" + +

matches the string xyz++ when it appears. Note that a part of a string may be quoted.
It is harmless but unnecessary to quote an ordinary text character; the expression

"xyz + +

is the same as the one above. Thus by quoting every nonalphanumeric character being
used as a text character, you need not memorize the above list of current operator
characters.

An operator character may also be turned into a text character by preceding it with a
backslash (\) as in

xyz\ + \ +

which is another, less readable, equivalent of the above expressions. The quoting
mechanism can also be used to get a blank into an expression; normally, as explained
above, blanks or tabs end a rule. Any blank character not contained within brackets
must be quoted. Several normal C escapes with the backslash (\) are recognized:

\n newline

\t tab

\b backspace

\\ backslash

Since newline is illegal in an expression, \n must be used; it is not required to escape tab
and backspace. Every character but blank, tab, newline, backspace, and backslash is
always a text character.

Invoking lex

There are two steps in compiling a lex source program. First, the lex source must be
turned into a generated C program. Then this program must be compiled and loaded,
usually with a library of lex subroutines. The generated program is in a file named
lex.yy.c. The lex I/O library is defined in terms of the C standard library.

9-4

XENIX Program m ing lex: Lexical Analyzer Generator

The library is accessed by the linker flag -11. So an appropriate set of commands is

lex source
cc lex.yy.c -II

The resulting program is placed in the usual file a.out for later execution. To use lex
with yacc see the section "lex and yacc" later in this chapter and also Chapter 10,
"yacc: Compiler-Compiler." Although the default lex I/O routines use the C standard
library, the lex automata themselves do not do so. If private versions of input, output,
and unput are given, the standard C library can be avoided.

Specifying Character Classes

Classes of characters can be specified using brackets: [and]. The construction

[abc]

matches a single character, which may be a, b, or c. Within square brackets, most
operator meanings are ignored. Only three characters are special: the backslash (\), the
hyphen (-), and the caret ("). The hyphen indicates ranges. For example

[a-zO-9< >]

indicates the character class containing all the lowercase letters, the digits, the angle
brackets, and underscore. Ranges may be given in either ascending or descending order.
Using the hyphen between any pair of characters that are not both uppercase letters,
both lowercase letters, or both digits is implementation dependent and causes a warning
message. If you want the hyphen in a character class, it should be first or last; thus

[-+0-9]

matches all the digits and the plus and minus signs.

In character classes, the caret (") operator must appear as the first character after the
left bracket; it indicates that the resulting string is to be complemented with respect to
the computer character set. Thus

[A abc]

matches all characters except a, b, or c, including all special or control characters; or

[A a-zA-Z]

is any character that is not a letter. The backslash (\) provides an escape mechanism
within character class brackets, so that characters can be entered literally by preceding
them with this character. Escaping into octal is possible although nonportable. For
example

[\40-\ 176]

matches all printable characters in the ASCII character set, from octal 40 (blank) to
octal 176 (tilde).

9-5

lex: Lexical Analyzer Generator XENIX Programming

Specifying an Arbitrary Character

To match almost any character, the period (.) designates the class of all characters
except a newline.

Specifying Optional Expressions

The question mark (?) operator indicates an optional element of an expression. Thus

ab?c

matches either ac or abc. Note that the meaning of the question mark here differs from
its meaning in the shell.

Specifying Repeated Expressions

Repetitions of classes are indicated by the asterisk (*) and plus (+) operators. For
example

a*

matches any number of consecutive a characters, including zero, while a+ matches one
or more instances of a. For example

[a-z] +

matches all strings of lowercase letters, and

[A-Za-z][A-Za-zO-9]*

matches all alphanumeric strings with a leading alphabetic character; this is a typical
expression for recognizing identifiers in computer languages.

9-6

XENIX Programming lex: Lexical Analyzer Generator

Specifying Alternation and Grouping

The vertical bar (I) operator indicates alternation. For example,

(ab I cd)

matches either ab or cd. Note that parentheses are used for grouping, although they are
not necessary at the outside level. For example

abl cd

would have sufficed in the preceding example. Parentheses should be used for more
complex expressions, such as

(ab I cd +)?(ef)*

which matches such strings as abefef, efefef, cdef, and cddd, but not abc, abed, or
abcdef.

Specifying Context Sensitivity

lex recognizes a small amount of surrounding context. The two simplest operators for
this are the caret (A) and the dollar sign ($). If the first character of an expression is a
caret, then the expression is only matched at the beginning of a line (after a newline
character or at the beginning of the input stream). This can never conflict with the
other meaning of the caret, complementation of character classes, since
complementation applies only within brackets. If the very last character is dollar sign,
the expression is only matched at the end of a line (when immediately followed by a
newline). The latter operator is a special case of the slash (/) operator, which indicates
trailing context. The expression

ab/cd

matches the string ab, but only if followed by cd. Thus

ab$

is the same as

ab/\n

Left context is handled in lex by specifying start conditions as explained in the section
"Specifying Left Context Sensitivity." If a rule is only to be executed when the lex
automaton interpreter is in start condition x, the rule should be enclosed in angle
brackets:

<x>

9-7

lex: Lexical Analyzer Generator XENIX Programming

If we considered being at the beginning of a line to be start condition ONE, then the
caret C) operator would be equivalent to

<ONE>

Start conditions are explained more fully later.

Specifying Expression Repetition

Within the rules section of a lex source, curly braces ({ }) specify repetition. For
example

a{1,S}

looks for 1 to 5 occurrences of the character a.

Specifying Definitions

Definitions are given in the first part of the lex source, before the rules. The curly
braces ({ and }) specify definition expansion if they enclose a name. For example

{digit}

looks for a predefined string named digit and inserts it at that point in the expression.

Specifying Actions

When an expression is matched by a pattern of text in the input, lex executes the
corresponding action. This section describes some features of lex that aid in writing
actions. Note that there is a default action, copying the input to the output. This is
performed on all strings not otherwise matched. Thus the lex user who wishes to absorb
the entire input, without producing any output, must provide rules to match everything.
When lex is being used with yacc, this is the normal situation. You may consider that
actions are what is done instead of copying the input to the output; thus, in general, a
rule that merely copies can be omitted.

One of the simplest actions is to ignore the input. Specifying a C null statement; as an
action causes this result. A frequent rule is

[\t\n]

which causes the three spacing characters (blank, tab, and newline) to be ignored.

9-8

XENIX Program m ing lex: Lexical Analyzer Generator

Another easy way to avoid writing actions is to use the repeat action character, I, which
indicates that the action for this rule is the action for the next rule. The previous
example could also have been written

"\t"
"\n"

with the same result, although in a different style. The quotes around \n and \t are not
required.

In more complex actions, you often want to know the actual text that matched some
expression like

[a-z] +

lex leaves this text in an external character array named yytext. Thus, to print the
name found, a rule like

[a-z] + pri ntf(" % 5 ", yytext);

prints the string in yytext. The C function printf accepts a format argument and data
to be printed; in this case, the format is print string where the percent sign (%)
indicates data conversion, s indicates string type, and the data are the characters in
yytext. So this just places the matched string on the output. This action is so common
that it can be written as ECHO. For example

[a-z] + ECHO;

is the same as the preceding example. Since the default action is just to print the
characters found, one might ask why give a rule, like this one, which merely specifies
the default action? Such rules are often required to avoid matching some other rule
that is not desired. For example, if a rule matches read, it will normally match the
instances of read contained in bread or readjust; to avoid this, a rule of the form

[a-z] +

is needed. This is explained further below, in the section "Handling Ambiguous Source
Rules."

Sometimes it is more convenient to know the end of what has been found; hence lex also
provides a count of the number of characters matched in the variable yyleng. To count
both the number of words and the number of characters in words in the input, you might
write

[a-zA-Z] + {words + +; chars + = yyleng; }

which accumulates in the variable chars the number of characters in the words
recognized. The last character in the string matched can be accessed with

yytext[yyl eng-l]

9-9

lex: Lexical Analyzer Generator XENIX Program m ing

Occasionally, a lex action may decide that a rule has not recognized the correct span of
characters. Two routines are provided to aid with this situation. First, yymore can be
called to indicate that the next input expression recognized is to be tacked on to the end
of this input. Normally, the next input string will overwrite the current entry in yytext.
Second, yyless(n) may be called to indicate that not all the characters matched by the
currently successful expression are wanted right now. The argument n indicates the
number of characters in yytext to be retained. Further characters previously matched
are returned to the input. This provides the same sort of look-ahead offered by the
slash (/) operator, but in a different form.

For example, consider a language that defines a string as a set of characters between
quotation marks (") and provides that to include a quotation mark in a string, it must be
preceded by a backslash (\). The regular expression that matches this is somewhat
confusing, so that it might be preferable to write

\"[""]* {
if (yytext[yyleng-1] = = '\')

yymoreO;
else

... normal user processing
}

which when faced with a string such as

" abc\"def"

will first match the five characters

"abc\

and then the call to yymore will cause the next part of the string

"def

to be tacked on the end. Note that the final quotation mark terminating the string
should be picked up in the code labeled normal processing.

The function yyless might be used to reprocess text in various circumstances. Consider
the problem in the older C syntax of distinguishing the ambiguity of =-a. Suppose you
want to treat this as =- a and to print a message. A rule might be

= -[a-zA-Z] {
printf("Operator (= -) ambiguous\n");
yyless(yyleng-1);

action for = - ...
}

which prints a message, returns the letter after the operator to the input stream, and
treats the operator as =-.

9-10

XENIX Programming lex: Lexical Analyzer Generator

Or you might want to treat this as = -0. To do this, just return the minus sign as well as
the letter to the input. The following performs the interpretation:

= -[a-zA-Z] {
printf("0perator (= -) ambiguous\n");
yyl ess(yyl eng-2);

action for =
}

Note that the expressions for the two cases might more easily be written

= -/[A-Za-z]

in the first case and

= /-[A-Za-z]

in the second: no backup would be required in the rule action. It is not necessary to
recognize the whole identifier to observe the ambiguity. The possibility of =-3 however,
makes

=_/[A \t\n]

a still better rule.

In addition to these routines, lex also permits access to the I/O routines it uses. They
include

• input returns the next input character.

• output(c) writes the character c on the output.

• unput(c) pushes the character c back onto the input stream to be read later by
input.

By default these routines are provided as macro definitions, but the user can override
them and supply private versions. These routines define the relationship between
external files and internal characters and must all be retained or modified consistently.
They may be redefined, to cause input or output to be transmitted to or from strange
places, including other programs or internal memory; but the character set used must be
consistent in all routines; a value of zero returned by input must mean end-of-file; and
the relationship between unput and input must be retained or the look-ahead will not
work. lex does not look ahead at all if it does not have to, but every rule containing a
slash (/) or ending in one of the following characters implies look-ahead:

+ * ? $

Look-ahead is also necessary to match an expression that is a prefix of another
expression. The standard lex library imposes a IOO-character limit on backup.

9-11

lex: Lexical Analyzer Generator XENIX Programming

Another lex library routine that you sometimes want to redefine is yywrap, which is
called whenever lex reaches an end-of-file. If yywrap returns a 1, lex continues with
the normal wrapup on end of input. Sometimes, however, it is convenient to arrange for
more input to arrive from a new source. In this case, the user should provide a yywrap
that arranges for new input and returns O. This instructs lex to continue processing.
The default yywrap always returns 1.

This routine is also a convenient place to print tables, sum maries, etc. at the end of a
program. Note that you cannot write a normal rule that recognizes end-of-file; the only
access to this condition is through yywrap. In fact, unless a private version of input is
supplied, a file containing nulls cannot be handled, since a value of 0 returned by input is
taken to be end-of-file.

Handling Ambiguous Source Rules

lex can handle ambiguous specifications. When more than one expression can match the
current input, lex chooses as follows:

• The longest match is preferred.

• Among rules that match the same number of characters, the first given rule is
preferred.

For example, suppose the following rules are given:

integer
[a-z] +

keyword action ... ;
identifier action ... ;

If the input is integers, it is taken as an identifier, because

[a-z] +

matches eight characters while

integer

matches only seven. If the input is integer, both rules match seven characters, and the
keyword rule is selected because it was given first. Anything shorter (e.g., int) does not
match the expression integer, so the identifier interpretation is used.

The principle of preferring the longest match makes certain constructions dangerous,
such as the following:

*

9-12

XENIX Programming lex: Lexical Analyzer Generator

For example

, *'

might seem a good way of recognizing a string in single quotes. But it is an invitation
for the program to read far ahead, looking for a distant single quote. Presented with
the input

'first' quoted string here, 'second' here

the above expression matches

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is of the form

'["'\n]*'

which, on the above input, stops after 'first'. The consequences of errors like this are
mitigated by the fact that the dot (.) operator does not match a newline. Therefore, no
more than one line is ever matched by such expressions. Don't try to defeat this with
expressions like

[.\n] +

or their equivalents; the lex generated program will try to read the entire input file,
causing internal buffer overflows.

Note that lex is normally partitioning the input stream, not searching for all possible
matches of each expression. This means that each character is accounted for only once.
For example, suppose you want to count occurrences of both she and he in an input text.
Some lex rules to do this might be

she s + +;
he h + +;
\n I

where the last two rules ignore everything besides he and she. Remember that the
period (.) does not include the newline. Since she includes he, lex will normally not
recognize the instances of he included in she, since once it has passed a she those
characters are gone.

Sometimes the user would like to override this choice. The action REJECT means go do
the next alternative. It causes whatever rule was second choice after the current rule
to be executed. The position of the input pointer is adjusted accordingly. Suppose you
really want to count the included instances of he:

she {s + + ; REJECT; }
he { h + +; REJ ECT; }
\n I

9-13

lex: Lexical Analyzer Generator XENIX Program m ing

These rules are one way of changing the previous example to do just that. After
counting each expression, it is rejected; whenever appropriate, the other expres~ion will
then be counted. In this example, of course, you could note that she includes he, but not
vice versa, and omit the REJECT action on he; in other cases, however, it would not be
possible to tell which input characters were in both classes.

Consider the two rules

a[bc] +
a[cd] +

{ ... ; REJECT; }
{ ... ; REJECT; }

If the input is ab, only the first rule matches, and on ad only the second matches. The
input string accb matches the first rule for four characters and then the second rule for
three characters. In contrast, the input aced agrees with the second rule for four
characters and then the first rule for three.

In general, REJECT is useful whenever the purpose of lex is not to partition the input
stream but to detect all examples of some items in the input, and the instances of these
items may overlap or include each other. Suppose a digram table of the input is desired;
normally the digrams overlap; e.g., the word the is considered to contain both th and he.
Assuming a two-dimensional array named digram to be incremented, the appropriate
source is

%%
[a-z][a-z] {digram [yytext [0]] [yytext [1]] + +; REJ ECT; }

\n

where the REJECT is necessary to pick up a letter pair beginning at every character,
rather than at every other character.

Remember that REJECT does not rescan the input. Instead it remembers the results of
the previous scan. This means that if a rule with trailing context is found and REJECT
executed, you must not have used unput to change the characters forthcoming from the
input stream. This is the only restriction on the ability to manipulate the not-yet
processed input.

Specifying Left Context Sensitivity

Sometimes you may want to have several sets of lexical rules to be applied at different
times in the input. For example, a compiler preprocessor might distinguish preprocessor
statements and analyze them differently from ordinary statements. This requires
sensitivity to prior context, and there are several ways of handling such proble ms. The
caret (A) operator, for example, is a prior context operator, recognizing immediately
preceding left context just as the dollar sign ($) recognizes immediately following right
context. Adjacent left context could be extended, to produce a facility similar to that
for adjacent right context, but it is unlikely to be as useful, since often the relevant left
context appeared some time earlier, such as at the beginning of a line.

9-14

XENIX Programming lex: Lexical Analyzer Generator

This section describes three means of dealing with different environments:

• The use of flags, when only a few rules change from one environment to another

• The use of start conditions with rules

• The use of multiple lexical analyzers running together

In each case, there are rules that recognize the need to change the environment in
which the following input text is analyzed and that set some parameter to reflect the
change. This may be a flag explicitly tested by the user's action code; such a flag is the
simplest way of dealing with the problem, since lex is not involved at all. It may be
more convenient, however, to have lex remember the flags as initial conditions on the
rules. Any rule may be associated with a start condition. It will only be recognized
when lex is in that start condition. The current start condition may be changed at any
time. Finally, if the sets of rules for the different environments are very dissimilar,
clarity may be best achieved by writing several distinct lexical analyzers and switching
from one to another as desired.

Consider the following problem: copy the input to the output, changing the word magic
to first on every line that began with the letter a, changing magic to second on every
line that began with the letter b, and changing magic to third on every line that began
with the letter c. All other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this job is with a flag:

int flag;
%%
"a {flag = 'a'; ECHO; }
"b {flag = 'b'; ECHO; }
"c {flag = 'c'; ECHO; }
\n {flag = 0; ECHO; }
magic

{
switch (flag)
{
case 'a': printf("first"); break;
case 'b': printf("second"); break;
case 'c': printf("third"); break;
default: ECHO; break;
}
}

9-15

lex: Lexical Analyzer Generator XENIX Programming

To handle the same problem with start conditions, each start condition must be
introduced to lex in the definitions section with a line reading

% Start namel name2 ...

where the conditions may be named in any order. The word Start may be abbreviated to
s or S. The conditions may be referenced at the head of a rule with angle brackets. For
example

< name 1 > expression

is a rule that is only recognized when lex is in the start condition namel. To enter a
start condition, execute the action statement

BEGIN namel;

which changes the start condition to namel. To return to the initial state

BEGIN 0;

resets the initial condition of the lex automaton interpreter. A rule may be active in
several start conditions; for example

<namel, name2, name3>

is a legal prefix. Any rule not beginning with the <> prefix operator is always active.

The same example as before can be written as:

%sTART AA BB CC
%%
"a {ECHO; BEGIN AA; }
"b {ECHO; BEGIN BB; }
"c {ECHO; BEGIN CC; }
\n { ECHO; BEGIN 0; }
<AA> magic printf("first");
<BB> magic printf("second");
<CC> magic printf("third");

where the logic is exactly the same as in the previous method of handling the problem,
but lex does the work rather than the user's code.

9-16

XENIX Programming

Specifying Source Definitions

Remember the format of the lex source:

{ definitions}
%%
{rules}
%%
{ user-routines}

lex: Lexical Analyzer Generator

So far only the rules have been described. You will need additional options, though, to
define variables for use in your program and for use by lex. These can go either in the
definitions section or in the rules section.

Remember that lex is turning the rules into a program. Any source not intercepted by
lex is copied into the generated program. There are three types of copied source lines:

• Any line not part of a lex rule or action that begins with a blank or tab is copied
into the lex generated program. Such source input prior to the first %% delimiter
will be external to any function in the code; if it appears immediately after the
first %%, it appears in an appropriate place for declarations in the function
written by lex that contains the actions. This material must look like program
fragments and should precede the first lex rule.

As a side effect of the above, lines that begin with a blank or tab, and that contain
a comment, are passed through to the generated program. This can be used to
include comments in either the lex source or the generated code. The comments
should follow the conventions of the C language.

• Anything included between lines containing only %{ and %} is copied out as above.
The delimiters are discarded. This format permits entering text like preprocessor
statements that must begin in column 1 or copying lines that do not look like
programs.

• Anything after the third %% delimiter, regardless of formats, is copied out after
the lex output.

Definitions intended for lex are given before the first %% delimiter. Any line in this
section not contained between %{ and %}, and beginning in column 1, is assumed to
define lex SUbstitution strings. The format of such lines is

name translation

and it causes the string given as a translation to be associated with the name. The name
and translation must be separated by at least one blank or tab, and the name must begin
with a letter. The translation can then be called out by the {name} syntax in a rule.
Using {D} for the digits and {E} for an exponent field, for example, might abbreviate
rules to recognize numbers:

9-17

lex: Lexical Analyzer Generator XENIX Programming

D [0-9]
E [DEde][- +]?{D} +
%%
{D}+
{D} + "." {D}*({E})?
{D}*" ."{D} + ({E})?
{D} + {E}

pri ntf(" integer");

I
I
printf(" real");

Note the first two rules for real numbers; both require a decimal point and contain an
optional exponent field, but the first requires at least one digit before the decimal
point, and the second requires at least one digit after the decimal point. To correctly
handle the problem posed by a FORTRAN expression such as 35.EQ.I, which does not
contain a real number, a context-sensitive rule such as

[0-9] +f"."EQ printf("integer");

could be used in addition to the normal rule for integers.

The definitions section may also contain other commands, including a character set
table, a list of start conditions, or adjustments to the default size of arrays within lex
itself for larger source programs. These possibilities are discussed later in the section
"Source Format."

lex and yacc

If you want to use lex with yacc, note that what lex writes is a program named yylex,
the name required by yacc for its analyzer. Normally, the default main program in the
lex library calls this routine, but if yacc is loaded, and its main program is used, yacc
will call yylex. In this case, each lex rule should end with

retu rn(token);

where the appropriate token value is returned. An easy way to access yacc's names for
tokens is to compile the lex output file as part of the yacc output file by placing the line

include "lex.yy.c"

in the last section of yacc input. Suppose the grammar is to be named good and the
lexical rules are to be named better; the XENIX command sequence can just be

% yacc good
% lex better
% cc y.tab.c -Iy -II

The yacc library (-ly) should be loaded before the lex library to obtain a main program
that" invokes the yacc parser. The generation of lex and yacc programs can be done in
either order.

9-18

XENIX Programming lex: Lexical Analyzer Generator

As a trivial problem, consider copying an input file while adding 3 to every positive
number divisible by 7. Here is a suitable lex source program to do just that:

%%

[0-9] +
int k;
{
k = atoi(yytext);
if (k% 7 = = 0)

printf("%d", k+3);
else

printf("%d",k);
}

The rule [0-9]+ recognizes strings of digits; atoi converts the digits to binary and stores
the result in k. The remainder operator (%) is used to check whether k is divisible by 7;
if it is, it is incremented by 3 as it is written out. Note that this program will alter such
input items as 49.63 or X7 and will also increment the absolute value of all negative
numbers divisible by 7. To avoid this, just add a few more rules after the active one, as
here:

%%
int k;

-7[0-9] + {
k = atoi(yytext);
printf("%d", k% 7 = = 0 7 k + 3 k);
}

-7[0-9.] + ECHO;
[A-Za-z][A-Za-zO-9] + ECHO;

Numerical strings containing a decimal point or preceded by a letter will be picked up
by one of the last two rules and not changed. The if-else has been replaced by a C
conditional expression to save space; the form a?b:c means "if a then b else e".

For an example of statistics gathering, here is a program that makes histograms of word
lengths, where a word is defined as a string of letters:

%%
[a-z] +

\n
%%
yywrapO
{
int i;

int lengs[100];

lengs[yyleng] + +;

I

printf("Length No. words\n");
for(i = 0; i < 100; i + +)

if (Iengs[i] > 0)
printf(" % 5d% 1 Od\n" ,i,lengs[i]);

return(1);
}

9-19

lex: Lexical Analyzer Generator XENIX Programming

This program accumulates the histogram, while producing no output. At the end of the
input it prints the table. The final statement return(1); indicates that lex is to perform
wrapup. If yywrap returns zero (false) it implies that further input is available and the
program is to continue reading and processing. To provide a yywrap that never returns
true causes an infinite loop.

As a larger example, here are some parts of a program written to convert double
precision FORTRAN to single precision FORTRAN. Because FORTRAN does not
distinguish between upper- and lowercase letters, this routine begins by defining a set of
classes including both cases of each letter:

a [aA]
b [bB]
c [cC]

z [zZ]

An additional class recognizes white space:

W [\t]*

The first rule changes double precision to real, or DOUBLE PRECISION to REAL:

{d} {oJ {u} {b} {I} {e} {W} {p} {r} {e} {c} {i} {s} {i} {oJ {n} {
printf(yytext[O] = = 'd'? "real" : "REAL");
}

Care is taken throughout this program to preserve the case of the original program. The
conditional operator is used to select the proper form of the keyword. The next rule
copies continuation card indications to avoid confusing them with constants:

"[A 0] ECHO;

In the regular expression, the quotes surround the blanks. It is interpreted as beginning
of line, then five blanks, then anything but blank or zero. Note the two different
meanings of the caret (A) here. Some rules then follow to change double precision
constants to ordinary floating constants:

9-20

[0-9] + {W} {d} {W} [+ -] ? {W} [0-9] + I
[0-9] + {W}" ."{W} {d} {W} [+ -] ? {W} [0-9] + I
"."{W} [0-9] + {W} {d} {W} [+ -] ? {W} [0-9] + {

/* convert constants * /
for(p = yytext; *p ! = 0; P + +)

{
if (*p = = 'd' II *p = = 'D')

*p+ = 'e'-'d';
ECHO;
}

XENIX Program m ing lex: Lexical Analyzer Generator

After the floating-point constant is recognized, it is scanned by the for loop to find the
letter "d" or "D". The program then adds 'e'-'d', which converts it to the next letter of
the alphabet. The modified constant, now single precision, is written out again. A
series of names follows that must be respelled to remove their initial d. By using the
array yytext, the same action suffices for all the names (only a sample of a rather long
list is given here).

{d} {5} {i} {n}
{d} {c} {oJ {5}
{d} {5} {q} {r} {t}
{d} {a} {t} {a} {n}

{d} {f} {I} {oJ {a} {t} printf(" %s",yytext + 1);

Another list of names must have initial d changed to initial a:

{d} {I} {oJ {g} I
{d}{I}{o}{g}10 I
{d} {m }{i} {n} 1 I
{d} {m} {a} {x} 1 {

yytext[O] + = 'a' -'d';
ECHO;
}

And one routine must have initial d changed to initial r:

{d} 1 {m} {a} {c} {h} {
yytext[O] + = 'r' - 'd';
ECHO;

}

To avoid such names as dsinx being detected as instances of dsin, some final rules pick
up longer words as identifiers and copy some surviving characters:

[A-Za-z] [A-Za-zO-9] *
[0-9] +
\n

ECHO;

Note that this program is not complete; it does not deal with the spacing problems in
FORTRAN or with the use of keywords as identifiers.

9-21

lex: Lexical Analyzer Generator XENIX Programming

Specifying Character Sets

The programs generated by lex handle character I/O only through the routines input,
output, and unput. Thus the character representation provided in these routines is
accepted by lex and employed to return values in yytext. For internal use, a character
is represented as a small integer that, if the standard library is used, has a value equal
to the integer value of the bit pattern representing the character on the host computer.
Normally, the letter a is represented as the same form as the character constant:

'a'

If this interpretation is changed, by providing I/O routines that translate the characters,
lex must be told about it, by giving a translation table. This table must be in the
definitions section and must be bracketed by lines containing only %T. The table
contains lines of the form

{ integer} { character-string}

which indicate the value associated with each character. For example:

%T
1 Aa
2 Bb

26 Zz
27 \n
28 +
29
30 0
31

39 9
%T

This table maps the lowercase and uppercase letters together into the integers 1 through
26, newline into 27, plus (+) and minus (-) into 28 and 29, and the digits into 30 through
39. Note the escape for newline. If a table is supplied, every character to appear either
in the rules or in any valid input must be included in the table. No character may be
assigned the number 0, and no character may be assigned a larger number than is
supported by the hardware character set.

Source Format

The general form of a lex source file is

9-22

{definitions}
%%
{rules}
%%
{ user-subroutines}

XENIX Programming

The definitions section contains a combination of

• Definitions, in the form "name space translation"

• Included code, in the form "space code"

• Included code, in the form

%{
code
%}

• Start conditions, in the form

%S name1 name2 ...

• Character set tables, in the form

%T
number space character-string
%T

• Changes to internal array sizes, in the form

%x nnn

lex: Lexical Analyzer Generator

where nnn is a decimal integer representing an array size and x selects the
parameter as follows:

Letter

p
n
e
a
k
o

Parameter

positions
states
tree nodes
transitions
packed character classes
output array size

Lines in the rules section have the form

expression action

where the action may be continued on succeeding lines by using braces to delimit it.

9-23

lex: Lexical Analyzer Generator

Regular expressions in lex use the following operators:

x The character x

"x" An x, even if x is an operator

\x An x, even if x is an operator

[xy] The character x or y

[x-z] The characters x, y, or z

[AX] Any character but x

AX

<y> x

x$

x?

x*

x+

xly

(x)

x/y

{xx}

x{m,n}

9-24

Any character but newline

An x at the beginning of a line

An x when lex is in start condition y

An x at the end of a line

An optional x

0,1,2, ••• instances of x

1,2,3, .•. instances of x

An x or a y

An x

An x but only if followed by y

The translation of xx from the definitions section

m through n occurrences of x

XENIX Programming

CHAPTER 10
yacc: COMPILER-COMPILER

Computer program input generally has some structure; every computer program that
does input can be thought of as· defining an input language that it accepts. An input
language may be as complex as a programming language, or as simple as a sequence of
numbers. Unfortunately, usual input facilities are limited, difficult to use, and often lax
about checking their inputs for validity.

yacc provides a general tool for describing the input to a computer program. The name
yacc itself stands for "yet another compiler-compiler." The yacc user specifies the
structures of his or her input, together with code to be invoked as each such structure is
recognized. yacc turns such a specification into a subroutine that handles the input
process; frequently, it is convenient and appropriate to have most of the flow of control
in the user's application handled by this subroutine.

The input subroutine produced by yacc calls a user-supplied routine to return the next
basic input item. Thus, the user can specify his input in terms of individual input
characters, or in terms of higher level constructs such as names and numbers. The user
supplied routine may also handle idiomatic features such as comment and continuation
conventions, which typically defy easy grammatical specification. The class of
specifications accepted is a very general one: LALR grammars with disambiguating
rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., yacc has also been used for
less conventional languages, including a phototypesetter language, several desk
calculator languages, a document retrieval system, and a FORTRAN debugging system.

yacc provides a general tool for imposing structure on the input to a computer program.
The yacc user prepares a specification of the input process; this includes rules
describing the input structure, code to be invoked when these rules are recognized, and
a low-level routine to do the basic input. yacc then generates a function to control the
input process. This function, called a parser, calls the user-supplied low-level input
routine (called the lexical analyzer) to pick up the basic items (called tokens) from the
input stream. These tokens are organized according to the input structure rules, called
grammar rules; when one of these rules has been recognized, then user code supplied for
this rule, an action, is invoked; actions have the ability to return values and make use of
the values of other actions.

yacc is written in a portable dialect of C, and the actions and output subroutine are in C
as well. Moreover, many of the syntactic conventions of yacc follow C.

The heart of the input specification is a collection of gram mar rules. Each rule
describes an allowable structure and gives it a name. For example, one grammar rule
might be

date month name day year

10-1

yacc: Compiler-Compiler XENIX Programming

Here, date, month name, day, and year represent structures of interest in the input
process; presumably, month_name, day, and year are defined elsewhere. The comma (,)
is enclosed in single quotation marks; this implies that the comma is to appear literally
in the input. The colon and semicolon merely serve as punctuation in the rule and have
no significance in controlling the input. Thus, with proper definitions, the input

-July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This user
routine reads the input stream, recognizing the lower level structures, and
communicates these tokens to the parser. A structure recognized by the lexical
analyzer is called a terminal symbol, while the structure recognized by the parser is
called a nonterminal symbol. To avoid confusion, terminal symbols will usually be
referred to as tokens.

There is considerable leeway in deciding whether to recognize structures using the
lexical analyzer or grammar rules. For example, the rules

month name 'J' 'a' 'n'
month-name 'F' 'e' 'b'

month name : 'D' 'e' 'e' ;

might be used in the above example. The lexical analyzer would only need to recognize
individual letters, and month_name would be a nonterminal symbol. Such low-level rules
tend to waste time and space and may complicate the specification beyond yacc's ability
to deal with it. Usually, the lexical analyzer would recognize the month names and
return an indication that a month_name was seen; in this case, month_name would be a
token.

Literal characters, such as the comma, must also be passed through the lexical analyzer
and are considered tokens.

Specification files are very flexible. It is relatively easy to add to the above example
the rule

date month '/' day '/' year

allowing

7/411776

as a synonym for

July 4, 1776

In most cases, this new rule could be slipped in to a working system with minimal effort
and little danger of disrupting existing input.

10-2

XENIX Program m ing yacc: Compiler-Compiler

The input being read may not conform to the specifications. These input errors are
detected as early as is theoretically possible with a left-to-right scan; thus, not only is
the chance of reading and computing with bad input data substantially reduced, but the
bad data can usually be quickly found. Error handling, provided as part of the input
specifications, permits the re-entry of bad data or the continuation of the input process
after skipping over the bad data.

In some cases, yacc fails to produce a parser when given a set of specifications. For
example, the specifications may be self contradictory, or they may require a more
powerful recognition mechanism than that available to yacc. The former cases
represent design errors; the latter cases can often be corrected by making the lexical
analyzer more powerful, or by rewriting some of the grammar rules. While yacc cannot
handle all possible specifications, its power compares favorably with similar systems;
moreover, constructions difficult for yacc to handle are also frequently difficult for
human beings to handle. Some users have reported that the discipline of formulating
valid yacc specifications for their input revealed errors of conception or design early in
the program development.

The next several sections describe

• The preparation of grammar rules

• The preparation of the user-supplied actions associated with the grammar rules

• The preparation of lexical analyzers

• The operation of the parser

• Various reasons why yacc may be unable to produce a parser from a specification,
and what to do about it

• A simple mechanism for handling operator precedences in arithmetic expressions

• Error detection and recovery

• The operating environment and special features of the parsers yacc produces

• Suggestions that should improve the style and efficiency of the specifications

10-3

yacc: Compiler-Compiler XENIX Program m ing

Specifications

Names refer to either tokens or nonterminal symbols. yacc requires token names to be
declared as such. In addition, for reasons discussed later, it is often desirable to include
the lexical analyzer as part of the specification file. It may be useful to include other
programs as well. Thus, every specification file consists of three sections: the
declarations, (grammar) rules, and programs. The sections are separated by double
percent (%%) marks. (The percent sign (%) is generally used in yacc specifications as an
escape character.) In other words, a full specification file looks like this:

declarations
%%
rules
%%
programs

The declaration section may be empty. Moreover, if the programs section is omitted,
the second %% mark may be omitted also; thus, the smallest legal yacc specification is

%%
rules

Blanks, tabs, and newlines are ignored except that they may not appear in names or
multicharacter reserved symbols. Comments may appear wherever a name is legal; they
are enclosed in /* ... * /, as in C.

The rules section is made up of one or more grammar rules. A grammar rule has the
form

A : BODY;

where A represents a nonterminal name, and BODY represents a sequence of zero or
more names and literals. The colon and the semicolon are yacc punctuation.

Names may be of arbitrary length and may be made up of letters, dot (.), the underscore
(), and noninitial digits. Uppercase and lowercase letters are distinct. The names used
in the body of a grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotation marks ('). As in C, the
backslash (\) is an escape character within literals, and all the C escapes are recognized:

'\n' = Newline
'\r' = Return
'\" = Single quotation mark
'\\' = Backslash
'\t' = Tab
'\b' = Backspace
'\f' = Formfeed
'\xxx' A character value specified by the octal number xxx

For a number of technical reasons, the ASCII NULL character ('\0' or 0) should never be
used in gram mar rules.

10-4

XENIX Program ming yacc: Compiler-Compiler

If there are several grammar rules with the same left-hand side, then the vertical bar (I)
can be used to avoid rewriting the left-hand side. In addition, the semicolon at the end
of a rule can be dropped before a vertical bar. Thus the gram mar rules

ABC D
A E F
A G;

can be given to yacc as

A : BCD
I E F
IG

It is not necessary that all gram mar rules with the same left side appear together in the
grammar rules section, although it makes the input much more readable and easier to
change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious
way:

empty: ;

Names representing tokens must be declared; this is most simply done by writing

% token name 1 name2 ...

in the declarations section. Every nonterminal symbol must appear on the left side of at
least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular importance.
The parser is designed to recognize the start symbol; thus, this symbol represents the
largest, most general structure described by the grammar rules. By default, the start
symbol is taken to be the left-hand side of the first grammar rule in the rules section.
It is possible, and in fact desirable, to declare the start symbol explicitly in the
declarations section using the 96start keyword:

%start symbol

The end of the input to the parser is signaled by a special token called the end marker.
If the tokens up to, but not including, the endmarker form a structure that matches the
start symbol, the parser function returns to its caller after the end marker is seen; it
accepts the input. If the endmarker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when
appropriate. Usually the endmarker represents some reasonably obvious I/O status, such
as the end of the file or end of the record.

10-5

yacc: Compiler-Compiler XENIX Programming

Actions

With each grammar rule, the user may associate actions to be performed each time the
rule is recognized in the input process. These actions may return values and may obtain
the values returned by previous actions. Moreover, the lexical analyzer can return
values for tokens, if desired.

An action is an arbitrary C statement and as such can do input and output, call
subprograms, and alter external vectors and variables. An action is specified by one or
more statements, enclosed in curly braces ({ and}). For example

and

A : '(' B ')'
{ hello(1, II abc"); }

XXX: YYY ZZZ
{ printf(" a message\n");

flag = 25; }

are gram mar rules with actions.

To facilitate easy communication between the actions and the parser, the action
statements are altered slightly. The dollar sign ($) is used as a signal to yacc in this
context.

To return a value, the action normally sets the pseudo-variable $$ to some value. For
example, an action that does nothing but return the value 1 is

{$$ = 1;}

To obtain the values returned by previous actions and the lexical analyzer, the action
may use the pseudo-variables $1, $2, ... , which refer to the values returned by the
components of the right side of a rule, reading from left to right. Thus, if the rule is

A : BCD;

for example, then $2 has the value returned by C and $3 the value returned by D.

As a more concrete example, consider the rule

expr :' (' expr ')' ;

The value returned by this rule is usually the value of the expr in parentheses. This can
be indicated by

expr :' (' expr ') , { $$ = $2 }

10-6

XENIX Program m ing yacc: Compiler-Compiler

By default, the value of a rule is the value of the first element in it ($1). Thus,
grammar rules of the form

A : B ;

frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes, it is
desirable to gain control before a rule is fully parsed. yacc permits an action to be
written in the middle of a rule as well as at the end. This rule is assumed to return a
value, accessible through the usual mechanism by the actions to the right of it. In turn,
it may access the values returned by the symbols to its left. Thus, in the rule

A: B
{ $$ = 1; }
C
{ x = $2; y = $3; }

the effect is to set x to 1 and y to the value returned by C.

Actions that do not terminate a rule are actually handled by yacc by manufacturing a
new nonterminal symbol name and a new rule matching this name to the empty string.
The interior action is the action triggered off by recognizing this added rule. yacc
actually treats the above example as if it had been written as

$ACT : /* empty */
{ $$ = 1; }

A B $ACT C
{ x = $2; y = $3; }

In many applications, output is not done directly by the actions; rather, a data structure,
such as a parse tree, is constructed in memory, and transformations are applied to it
before output is generated. Parse trees are particularly easy to construct, given
routines to build and maintain the tree structure desired. For example, suppose a C
function node is written so that the call

node(L, n1, n2)

creates a node with label L, and descendants nl and n2, and returns the index of the
newly created node. Then a parse tree can be built by supplying actions such as

expr: expr' + ' expr
{$$ = node('+', $1, $3); }

in the specification.

10-7

yacc: Compiler-Compiler XENIX Program m ing

The user may define other variables to be used by the actions. Declarations and
definitions can appear in the declarations section, enclosed in the marks 96{ ,and 96}.
These declarations and definitions have global scope, so they are known to the action
statements and the lexical analyzer. For example

%{ int variable = 0; %}

could be placed in the declarations section, making variable accessible to all of the
actions. The yacc parser uses only names beginning in yy; the user should avoid such
names.

In these examples, all the values are integers: a discussion of values of other types will
be found in a later section.

lexical Analysis

The user must supply a lexical analyzer to read the input stream and com municate
tokens (with values, if desired) to the parser. The lexical analyzer is an integer-valued
function called yylex. The function returns an integer, called the token number,
representing the· kind of token read. If a value is associated with that token, it should
be assigned to the external variable yylval.

The parser and the lexical analyzer must agree on these token numbers for
communication between them to take place. The numbers may be chosen by yacc or by
the user. In either case, the lfdefine mechanism of C is used to allow the lexical
analyzer to return these numbers symbolically. For example, suppose that the token
name DIGIT has been defined in the declarations section of the yacc specification file.
The relevant portion of the lexical analyzer might look like this

yylexO{
extern int yylval;
int c;

c = getchar();

switch(c) {

case '0':
case ' 1':

case '9':
yylval = c - '0';
return(DIGIT);

}

The intent is to return a token number of DIGIT and a value equal to the numeric value
of the digit. Provided that the lexical analyzer code is placed in the programs section
of the specification file, the identifier DIGIT will be defined as the token number
associated with the token DIGIT.

10-8

XENIX Programming yacc: Compiler-Compiler

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the
need to avoid using any token names in the grammar that are reserved or significant in
C or the parser; for example, the use of token names if or while will almost certainly
cause severe difficulties when the lexical analyzer is compiled. The token name error is
reserved for error handling and should not be used naively.

As mentioned above, the token numbers may be chosen by yacc or by the user. In the
default situation, the numbers are chosen by yacc. The default token number for a
literal character is the numerical value of the character in the local character set.
Other names are assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of the
token name or literal in the declarations section can be immediately followed by a
nonnegative integer. This integer is taken to be the token number of the name or
literal. Names and literals not defined by this mechanism retain their default
definition. All token numbers must be distinct.

For historical reasons, the endmarker must have token number 0 or negative. This token
number cannot be redefined by the user. Hence, all lexical analyzers should be prepared
to return 0 or negative as a token number upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is lex, discussed in Chapter 9.
These lexical analyzers are designed to work in close harmony with yacc parsers. The
specifications for these lexical analyzers use regular expressions instead of gram mar
rules. lex can be easily used to produce quite complicated lexical analyzers, but there
remain some languages (such as FORTRAN) that do not fit any theoretical framework,
and for which lexical analyzers must be crafted by hand.

How the Parser Works

yacc turns the specification file into a C program, which parses the input according to
the specification given. The algorithm used to go from the specification to the parser is
complex and will not be discussed here. The parser itself, however, is relatively simple,
and understanding how it works will make treatment of error recovery and ambiguities
much more comprehensible.

The parser produced by yacc consists of a finite state machine with a stack. The parser
is also capable of reading and remembering the next input token (called the look-ahead
token). The current state is always the one on the top of the stack. The states of the
finite state machine are given small integer labels; initially, the machine is in state 0,
the stack contains only state 0, and no look-ahead token has been read.

10-9

yacc: Compiler-Compiler XENIX Programming

The machine has only four actions available to it, called shift, reduce, accept, and error.
A move of the parser is done as follows:

• Based on its current state, the parser decides whether it needs a look-ahead token
to decide what action should be done; if it needs one and does not have one, it
calls yylex to obtain the next token.

• Using the current state, and the look-ahead token if needed, the parser decides on
its next action and carries it out. This may result in states being pushed onto the
stack, or popped off the stack, and in the look-ahead token being processed or left
alone.

The shift action is the most common action the parser takes. Whenever a shift action is
taken, there is always a look-ahead token. For example, in state 56 there may be an
action

IF shift 34

which says if the look-ahead token is IF, the current state (56) is pushed down on the
stack, and state 34 becomes the current state (on the top of the stack). The look-ahead
token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are
appropriate when the parser has seen the right-hand side of a gram mar rule and is
prepared to announce that it has seen an instance of the rule, replacing the right-hand
side by the left-hand side. It may be necessary to consult the look-ahead token to
decide whether to reduce, but usually it is not; in fact, the default action (represented
by a !) is often a reduce action.

Reduce actions are associated with individual grammar rules. Gram mar rules are also
given small integer numbers, leading to some confusion. The action

reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule being reduced is

A : x y z ;

10-10

XENIX Programming yacc: Compiler-Compiler

The reduce action depends on the left-hand symbol (A in this case) and the number of
symbols on the right-hand side (three in this case). To reduce, first pop off the top
three states from the stack (in general, the number of states popped equals the number
of symbols on the right side of the rule). In effect, these states were the ones put on
the stack while recognizing x, y, and z and no longer serve any useful purpose. After
popping these states, a state is uncovered that was the state the parser was in before
beginning to process the rule. Using this uncovered state and the symbol on the left side
of the rule, perform what is in effect a shift of A. A new state is obtained, pushed onto
the stack, and parsing continues. There are significant differences between the
processing of the left-hand symbol and an ordinary shift of a token, however, so this
action is called a goto action. In particular, the look-ahead token is cleared by a shift
and is not affected by a goto. In any case, the uncovered state contains an entry such as

A goto 20

causing state 20 to be pushed onto the stack and become the current state.

In effect, the reduce action turns back the clock in the parse, popping the states off the
stack to go back to the state where the right-hand side of the rule was first seen. The
parser then behaves as if it had seen the left side at that time. If the right-hand side of
the rule is empty, no states are popped off of the stack: the uncovered state is in fact
the current state.

The reduce action is also important in the treatment of ·user-supplied actions and values.
When a rule is reduced, the code supplied with the rule is executed before the stack is
adjusted. In addition to the stack holding the states, another stack, running in parallel
with it, holds the values returned from the lexical analyzer and the actions. When a
shift takes place, the external variable yyIvaI is copied onto the value stack. After the
return from the user code, the reduction is carried out. When the goto action is done,
the external variable yyvaI is copied onto the value stack. The pseudo-variables $1, $2,
etc. refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action
indicates that the entire input has been seen and that it matches the specification. This
action appears only when the look-ahead token is the end marker and indicates that the
parser has successfully done its job. The error action, on the other hand, represents a
place where the parser can no longer continue parsing according to the specification.
The input tokens it has seen, together with the look-ahead token, cannot be followed by
anything that would result in a legal input. The parser reports an error and attempts to
recover the situation and resume parsing. Error recovery is described in the section
"Error Handling," later in this chapter.

Consider the following example:

%token DING DONG DELL
%%
rhyme : sound place

sound : DING DONG

place: DELL

10-11

yacc: Compiler-Compiler XENIX Programming

When yacc is invoked with the -v option, a file called y.output is produced, with a
human-readable description of the parser. The y.output file corresponding to the above
grammar (with some statistics stripped off the end) is

state 0

state 1

state 2

state 3

$accept : _rhyme $end

DING shift 3
· error

rhyme goto 1
sound goto 2

$accept : rhyme _ $end

$end accept
· error

rhyme : sound_place

DELL shift 5
· error

place goto 4

sound: DING DONG

DONG shift 6
· error

state 4
rhyme: sound place _ (1)

· reduce 1

state 5
place : DELL (3)

· reduce 3

state 6
sound: DING DONG (2)

· reduce 2

10-12

XENIX Programming yacc: Compiler-Compiler

Notice that, in addition to the actions for each state, there is a description of the
parsing rules being processed in each state. The underscore character () is used to
indicate what has been seen and what is yet to corne in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state 0. The parser needs to refer to the input to decide
between the actions available in state 0, so the first token, DING, is read, becoming the
look-ahead token. The action in state ° on DING is shift 3, so state 3 is pushed onto the
stack, and the look-ahead token is cleared. State 3 becomes the current state. The
next token, DONG, is read, becoming the look-ahead token. The action in state 3 on the
token DONG is shift 6, so state 6 is pushed onto the stack, and the look-ahead is
cleared. The stack now contains 0, 3, and 6. In state 6, without even consulting the
look-ahead, the parser reduces by rule 2.

sound : DING DONG

This rule has two symbols on the right-hand side, so two states, 6 and 3, are popped off
of the stack, uncovering state 0. Consulting the description of state 0, looking for a
goto on sound

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is shift 5, so state 5 is
pushed onto the stack, which now has 0, 2, and 5 on it, and the look-ahead token is
cleared. In state 5, the only action is to reduce by rule 3. This has one symbol on the
right-hand side, so one state, 5, is popped off, and state 2 is uncovered. The goto in
state 2 on place, the left side of rule 3, is state 4. Now the stack contains 0, 2, and 4. In
state 4, the only action is to reduce by rule 1. There are two symbols on the right, so
the top two states are popped off, uncovering state ° again. In state 0, there is a goto
on rhyme causing the parser to enter state 1. In state 1, the input is read; the
end marker is obtained, indicated by $end in the y.output file. The action in state 1
when the end marker is seen is to accept, successfully ending the parse.

You should consider how the parser works when confronted with such incorrect strings
as DING DONG DONG, DING DONG, DING DONG DELL DELL, etc. A few minutes
spent with this and other simple examples will probably be repaid when problems arise in
more complicated contexts.

10-13

yacc: Compiler-Compiler XENIX Programming

Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can be structured
in two or more different ways. For example, the grammar rule

expr : expr '-' expr

is a natural way of expressing the fact that one way of forming an arithmetic expression
is to put two other expressions together with a minus sign between them. Unfortunately,
this grammar rule does not completely specify the way that all complex inputs should be
structured. For example, if the input is

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or as

expr-(expr-expr)

(The first is called left association, the second right association).

yacc detects such ambiguities when attempting to build the parser. Consider the
problem that confronts the parser when it is given an input such as

expr-expr-expr

When the parser has read the second expr, the input that it has seen

expr-expr

matches the right side of the gram mar rule above. The parser could reduce the input by
applying this rule; after applying the rule, the input is reduced to expr (the left side of
the rule). The parser would then read the final part of the input

- expr

and again reduce. The effect of this is to take the left associative interpretation.

Alternatively, when the parser has seen

expr-expr

it could defer the immediate application of the rule and continue reading the input until
it had seen

expr-expr-expr

10-14

XENIX Programming yacc: Compiler-Compiler

It could then apply the rule to the rightmost three symbols, reducing them to expr and
leaving

expr - expr

Now the rule can be reduced once more; the effect is to take the right associative
interpretation. Thus, having read

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding
between them. This is called a shift/reduce conflict. It may also happen that the parser
has a choice of two legal reductions; this is called a reduce/reduce conflict. Note that
there are never any shift/shift conflicts.

When there are shift/reduce or reduce/reduce conflicts, yacc still produces a parser. It
does this by selecting one of the valid steps wherever it has a choice. A rule describing
which choice to make in a given situation is called a disambiguating rule.

yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier gram mar rule
(in the input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of
shifts. Rule 2 gives the user rather crude control over the behavior of the parser in this
situation, but reduce/reduce conflicts should be avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the grammar rules,
while consistent, require a more complex parser than yacc can construct. The use of
actions within rules can also cause conflicts, if the action must be done before the
parser can be sure which rule is being recognized. In these cases, the application of
disambiguating rules is inappropriate and leads to an incorrect parser. For this reason,
yacc always reports the number of shift/reduce and reduce/reduce conflicts resolved by
Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a correct
parser, it is also possible to rewrite the gram mar rules so that the same inputs are read
but there are no conflicts. For this reason, most previous parser generators have
considered conflicts to be fatal errors. Our experience has suggested that this rewriting
is somewhat unnatural, and produces slower parsers; thus, yacc will produce parsers
even in the presence of conflicts.

As an example of the power of disambiguating rules, consider a fragment from a
programming language involving an if-then-else construction:

stat IF' (' cond ')' stat
IF '(' cond ')' stat ELSE stat

10-15

yacc: Compiler-Compiler XENIX Program ming

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing
conditional (logical) expressions, and stat is a nonterminal symbol describing statements.
The first rule will be called the simple-if rule, and the second the if-else rule.

These two rules form an ambiguous construction, since input of the form

IF(C1)IF(C2)51 ELSE52

can be structured according to these rules in two ways:

or

IF(C1){
IF (C2) 51
}

ELSE 52

IF(C1){
IF (C2) 51
ELSE 52
}

The second interpretation is the one given in most programming languages having this
construct. Each ELSE is associated with the last IF immediately preceding the ELSE.
In this example, consider the situation where the parser has seen

I F (C 1) I F (C2) 5 1

and is looking at the ELSE. It can immediately reduce by the simple-if rule to get

IF (C1) stat

and then read the remaining input

ELSE 52

and reduce

IF (C1) stat ELSE 52

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, S2 read, and then the right-hand portion of

IF (C 1) IF (C2) .s 1 ELSE 52

can be reduced by the if-else rule to get

IF (C1) stat

which can be reduced by the simple-if rule. This leads to the second of the above
groupings of the input, which is usually desired.

10-16

XENIX Program m ing yacc: Compiler-Compiler

Once again the parser can do two valid things; there is a shift/reduce conflict. The
application of disambiguating Rule 1 tells the parser to shift in this case, which leads to
the desired grouping.

This shift/reduce conflict arises only when there is a particular current input symbol,
ELSE, and particular inputs already seen, such as

I F ((1) I F ((2) S 1

In general, there may be many conflicts, and each one will be associated with an input
symbol and a set of previously read inputs. The previously read inputs are characterized
by the state of the parser.

The conflict messages of yacc are best understood by examining the verbose (-v) option
output file. For example, the output corresponding to the above conflict state might be

23: shift/reduce confl ict (shift 45, reduce 18) on ELSE

state 23

stat: IF (cond) stat (18)
stat: IF (cond) stat-ELSE stat

ELSE shift 45
reduce 18

The first line describes the conflict, giving the state and the input symbol. The ordinary
state description follows, giving the grammar rules active in the state, and the parser
actions. Recall that the underline marks the portion of the gram mar rules that has been
seen. Thus in the example, in state 23 the parser has seen input corresponding to

IF (cand) stat

and the two grammar rules shown are active at this time. The parser can do two
possible things. If the input symbol is ELSE, it is possible to shift into state 45. State
45 will have, as part of its description, the line

stat: IF (cond) stat ELSE stat

since the ELSE will have been shifted in this state. Back in state 23, the alternative
action, described by "." , is to be done if the input symbol is not mentioned explicitly in
the above actions; thus in this case, if the input symbol is not ELSE, the parser reduces
by grammar rule 18:

stat: IF' (' cond ')' stat

10-17

yacc: Compiler-Compiler XENIX Programming

Once again, notice that the numbers following shift commands refer to other states,
while the numbers following reduce commands refer to grammar rule numbers. In the
y.output file, the rule numbers are printed after those rules that can be reduced. In
most states, there will be at most one reduce action possible in the state, and this will
be the default command. The user who encounters unexpected shift/reduce conflicts
will probably want to look at the verbose output to decide whether the default actions
are appropriate.

Precedence

There is one common situation where the rules given above for resolving conflicts are
not sufficient; this is in the parsing of arithmetic expressions. Most of the commonly
used constructions for arithmetic expressions can be naturally described by the notion of
precedence levels for operators, together with information about left or right
associativity. It turns out that ambiguous grammars with appropriate disambiguating
rules can be used to create parsers that are faster and easier to write than parsers
constructed from unambiguous grammars. The basic notion is to write grammar rules of
the form

expr : expr OP expr

and

expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous grammar,
with many parsing conflicts. As disambiguating rules, the user specifies the precedence,
or binding strength, of all the operators, and the associativity of the binary operators.
This information is sufficient to allow yacc to resolve the parsing conflicts in
accordance with these rules and construct a parser that realizes the desired precedences
and associativities.

The precedences and associativities are attached to tokens in the declarations section.
This is done by a series of lines beginning with a yacc keyword (961eft, 96right, or
96nonassoc), followed by a list of tokens. All of the tokens on the same line are assumed
to have the same precedence level and associativity; the lines are listed in order of
increasing precedence or binding strength. Thus

10-18

%Ieft ' +'
%Ieft ' *, '/'

XENIX Programming yacc: Compiler-Compiler

describes the precedence and associativity of the four arithmetic operators. Plus and
minus are left associative, and have lower precedence than star and slash, which are
also left associative. The keyword 96right. is used to describe right associative
operators, and the keyword 96nonassoc is used to describe operators, like the operator
.LT. in FORTRAN, that may not associate with themselves; thus

A .LT. B .LT. C

is illegal in FORTRAN, and such an operator would be described with the keyword
96nonassoc in yacc. As an example of the behavior of these declarations, the description

%right ' ='
%Ieft ' +' '-'
%Ieft ,*, '/'

%%

expr : expr
I expr
I expr
I expr
I expr

, ,
=

' +' , ,
-

' *,

' / '
I NAME

expr
expr
expr
expr
expr

might be used to structure the input

a = b = c*d - e - f*g

as follows:

a = (b = («c*d)-e) - (f*g)))

When this mechanism is used, unary operators must, in general, be given a precedence.
Sometimes a unary operator and a binary operator have the same symbolic
representation, but different precedences. An example is unary and binary '-'; unary
minus may be given the same strength as multiplication, or even higher, while binary
minus has a lower strength than multiplication. The keyword 96prec changes the
precedence level associated with a particular gram mar rule. The 96prec keyword
appears immediately after the body of the grammar rule, before the action or closing
semicolon, and is followed by a token name or literal. It causes the precedence of the
grammar rule to become that of the following token name or literal. For example, to
make unary minus have the same precedence as multiplication the rules might resemble:

10-19

yacc: Compiler-Compiler

%Ieft
%Ieft

%%

, +' ,
, *, , / '

expr expr ' + ' expr
expr'-'expr
expr' * ' expr
expr'/'expr
, - ' expr % prec ' * '
NAME

XENIX Program m ing

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by
%token as well.

The precedences and associativities are used by yacc to resolve parsing conflicts; they
give rise to disambiguating rules. Formally, the rules work as follows:

• The precedences and associativities are recorded for those tokens and literals that
have them.

• A precedence and associativity is associated with each grammar rule; it is the
precedence and associativity of the last token or literal in the body of the rule. If
the %prec construction is used, it overrides this default. Some grammar rules may
have no precedence and associativity associated with them.

• When there is a reduce/reduce conflict or a shift/reduce conflict and either the
input symbol or the grammar rule has no precedence and associativity, then the
two disambiguating rules given at the beginning of the section are used, and the
conflicts are reported.

• If there is a shift/reduce conflict, and both the gram mar rule and the input
character have precedence and associativity associated with them, then the
conflict is resolved in favor of the action (shift or reduce) associated with the

. higher precedence. If the precedences are the same, then the associativity is
used; left associative implies reduce, right associative implies shift, and
nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and
reduce/reduce conflicts reported by yacc. This means that mistakes in the specification
of precedences may disguise errors in the input grammar; it is a good idea to be sparing
with precedences until some experience has been gained. The y.output file is very
useful in deciding whether the parser is actually doing what was intended.

10-20

XENIX Programming yacc: Compiler-Compiler

Error Handling

Error handling is an extremely difficult area, and many of the problems are semantic
ones. When an error is found, for example, it may be necessary to reclaim parse tree
storage" delete or alter symbol table entries, and, typically, set switches to avoid
generating any further output.

It is seldom acceptable to stop all processing when an error is found. It is more useful
to continue scanning the input to find further syntax errors. This leads to the problem
of getting the parser restarted after an error. A general class of algorithms to perform
this involves discarding a number of tokens from the input string and attempting to
adjust the parser so that input can continue.

To allow the user some control over this process, yacc provides a simple but reasonably
general feature. The token name error is reserved for error handling. This name can be
used in grammar rules; in effect, it suggests places where errors are expected, and
recovery might take place. The parser pops its stack until it enters a state where the
token error is legal. It then behaves as if the token error were the current look-ahead
token, and performs the action encountered. The look-ahead token is then reset to the
token that caused the error. If no special error rules have been specified, the processing
halts when an error is detected.

To prevent a cascade of error messages, the parser, after detecting an error, remains in
error state until three tokens have been successfully read and shifted. If an error is
detected when the parser is already in error state, no message is given, and the input
token is quietly deleted.

As an example, a rule of the form

stat : error

would, in effect, mean that on a syntax error the parser would attempt to skip over the
statement in which the error was seen. More precisely, the parser will scan ahead,
looking for three tokens that might legally follow a statement, and start processing at
the first of these; if the beginnings of statements are not sufficiently distinctive, it may
make a false start in the middle of a statement, and end up reporting a second error
where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to
reinitialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general but difficult to control. Somewhat easier
are rules such as

stat : error ';'

Here, when there is an error, the parser attempts to skip over the statement but will do
so by skipping to the next I;'. All tokens after the error and before the next I;' cannot be
shifted, and are discarded. When the I;' is seen, this rule will be reduced, and any
cleanup action associated with it performed.

10-21

yacc: Compiler-Compiler XENIX Programming

Another form of error rule arises in interactive applications, where it may be desirable
to permit a line to be re-entered after an error. A possible error rule might be

input : error '\n' { printf{ II Reenter line: "); } input
{ $$ = $4;}

There is one potential difficulty with this approach; the parser must correctly process
three input tokens before it admits that it has correctly resynchronized after the error.
If the re-entered line contains an error in the first two tokens, the parser deletes the
offending tokens and gives no message; this is clearly unacceptable. For this reason,
there is a mechanism that can be used to force the parser to believe that an error has
been fully recovered from. The statement

yyerrok;

in an action resets the parser to its normal mode. The last example is better written

input: error '\n'
{ yyerrok;

printf(II Reenter last line: ");}
input
{ $$ = $4; }

As mentioned above, the token seen immediately after the error symbol is the input
token at which the error was discovered. Sometimes, this is inappropriate; for example,
an error recovery action might take upon itself the job of finding the correct place to
resume input. In this case, the previous look-ahead token must be cleared. The
statement

yyclearin;

in an action will have this effect. For example, suppose the action after error were to
call some sophisticated resynchronization routine, supplied by the user, that attempted
to advance the input to the beginning of the next valid statement. After this routine
was called, the next token returned by yylex would presumably be the first token in a
legal statement; the old, illegal token must be discarded, and the error state reset. This
could be done by a rule like

stat: error
{ resynch{);

yyerrok ;
yyclearin ; }

These mechanisms are admittedly crude. They do allow for a simple, effective recovery
of the parser from many errors. Moreover, the user can gain control to deal with the
error actions required by other portions of the program.

10-22

XENIX Program m ing yacc: Compiler-Compiler

The yacc Environment

When the user inputs a specification to yacc, the output is a file of C programs called
y.tab.c on most systems. The function produced by yacc is called yyparse; it is an
integer valued function. When it is called, it in turn repeatedly calls yylex, the lexical
analyzer supplied by the user to obtain input tokens. Eventually, either an error is
detected, in which case (if no error recovery is possible) yyparse returns the value 1, or
the lexical analyzer returns the endmarker token and the parser accepts. In this case,
yyparse returns the value O.

The user must provide a certain amount of environment for this parser to obtain a
working program. For example, as with every C program, a program called main must
be defined that eventually calls yyparse. In addition, a routine called yyerror prints a
message when a syntax error is detected.

These two routines must be supplied in one form or another by the user. To ease the
initial effort of using yacc, a library has been provided with default versions of main and
yyerror. This library can be accessed with a -ly option to the linker. To show the
triviality of these default programs, the source is given below:

and

main() {
return(yyparse());
}

#include <stdio.h>

yyerror(s)
char *s; {

fprintf(stderr, II %s\n", s);
}

The argument to yyerror is a string containing an error message, usually the string
"syntax error". The average application will want to do better than this. Ordinarily, the
program should keep track of the input line number and print it along with the message
when a syntax error is detected. The external integer variable yychar contains the look
ahead token number at the time the error was detected; this may be of some interest in
giving better diagnostics. Since the main program is probably supplied by the user (to
read arguments, etc.) the yacc library is useful only in small projects, or in the earliest
stages of larger ones.

The external integer variable yydebug is normally set to o. If it is set to a nonzero
value, the parser will output a verbose description of its actions, including a discussion
of which input symbols have been read, and what the parser actions are. yydebug can be
set at run-time using a debugger such as adb.

10-23

yacc: Compiler-Compiler XENIX Programming

Preparing Specifications

This section contains miscellaneous hints on preparing clear, efficient, and easy-to
change specifications.

Input Style

It is difficult to provide rules with sUbstantial actions and still have a readable
specification file. These hints will help:

• Use uppercase letters for token names and lowercase letters for nonterminal
names. This rule helps you to know who to blame when things go wrong.

• Put grammar rules and actions on separate lines. This allows either to be changed
without an automatic need to change the other.

• Put all rules with the same left-hand side together. Put the left-hand side in only
once, and let all following rules begin with a vertical bar.

• Put a semicolon only after the last rule with a given left-hand side, and put the
semicolon on a separate line. This allows new rules to be easily added.

• Indent rule bodies by two tab stops and action bodies by three tab stops.

The examples in the text of this section follow this style (where space permits). The
user must make up his own mind about these stylistic questions; the central problem,
however, is to make the rules visible through the morass of action code.

Left Recursion

The algorithm used by the yacc parser encourages so-called left recursive grammar
rules, rules of the form

name : name rest-of-rule

These rules frequently arise when writing specifications of sequences and lists:

list item
I list ',' item

and

seq item
I seq item

10-24

XENIX Programming yacc: Compiler-Compiler

In each of these cases, the first rule will be reduced for the first item only, and the
second rule will be reduced for the second and all succeeding items.

With right recursive rules, such as

seq item
I item seq

the parser would be a bit bigger, and the items would be seen, and reduced, from right
to left. More seriously, an internal stack in the parser would be in danger of
overflowing if a very long sequence were read. Thus, the user should use left recursion
wherever reasonable.

Consider whether a sequence with zero elements has any meaning, and if so, consider
writing the sequence specification with an empty rule:

seq /* empty */
I seq item

Once again, the first rule would always be reduced exactly once, before the first item
was read, and then the second rule would be reduced once for each ite m read.
Permitting empty sequences often leads to increased generality. However, conflicts
might arise if yacc is asked to decide which empty sequence it has seen, when it hasn't
seen enough to know.

lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer might want
to delete blanks normally, but not within quoted strings. Or names might be entered
into a symbol table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the
lexical analyzer and set by actions. For example, suppose a program consists of 0 or
more declarations, followed by 0 or more statements.

10-25

yacc: Compiler-Compiler

Consider the following:

%{
int dflag;
%}
... other declarations ...

%%

prog : decls stats

decls : /* empty */
{ dflag = 1; }

I decls declaration

stats : /* empty */
{ dflag = 0; }

I stats statement

... other rules ...

XENIX Program m ing

The flag dflag is now 0 when reading statements, and 1 when reading declarations,
except for the first token in the first statement. This token must be seen by the parser
before it can tell that the declaration section has ended and the statements have begun.
In many cases, this single token exception does not affect the lexical scan.

This kind of approach can be overdone. Nevertheless, it represents a way of doing some
things that are difficult to do otherwise.

Handling Reserved Words

Some programming languages permit the user to use words like if, that are normally
reserved, as label or variable names, provided that such use does not conflict with the
legal use of these names in the programming language. This is extremely hard to do in
the framework of yacc; it is difficult to pass information to the lexical analyzer telling
it "this instance of 'if' is a keyword, and that instance is a variable." It is best that
keywords be reserved, that is, be forbidden for use as variable names.

Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of the
macros YYACCEPT and YYERROR. YYACCEPT causes yyparse to return the value 0;
YYERROR causes the parser to behave as if the current input symbol had been a syntax
error; yyerror is called, and error recovery takes place. These mechanisms can be used
to simulate parsers with multiple endmarkers or context-sensitive syntax checking.

10-26

XENIX Program m ing yacc: Compiler-Compiler

Accessing Values in Enclosing Rules

An action may refer to values returned by actions to the left of the current rule. The
mechanism is simply the same as with ordinary actions, a dollar sign followed by a digit,
but in this case the digit may be 0 or negative. Consider

sent : adj noun verb adj noun
{ look at the sentence ... }

adj : THE {$$ = THE; }
I YOUNG {$$ = YOUNG; }

noun : DOG {$$ = DOG; }
I CRONE {if($0 = = YOUNG){

printf("what?\n");
}

$$ = CRONE;
}

In the action following the word CRONE, a check is made that the preceding token
shifted was not YOUNG. Obviously, this is only possible when a great deal is known
about what might precede the symbol noun in the input. There is also a distinctly
unstructured flavor about this. Nevertheless, at times this mechanism will save a great
deal of trouble, especially when a few combinations are to be excluded from an
otherwise regular structure.

Supporting Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are integers. yacc·
can also support values of other types, including structures. In addition, yacc keeps
track of the types and inserts appropriate union member names so that the resulting
parser will be strictly type checked. The yacc value stack is declared to be a union of
the various types of values desired. The user declares the union and associates union
member names to each token and nonterminal symbol having a value. When the value is
referenced through a $$ or $ construction, yacc will automatically insert the
appropriate union name, so that no unwanted conversions will take place. In addition,
type checking commands such as lint will be far more silent.

Three mechanisms are used for this typing. First, there is a way of defining the union;
this must be done by the user since other programs, notably the lexical analyzer, must
know about the union member names. Second, there is a way of associating a union
member name with tokens and nonterminals. Finally, there is a mechanism for
describing the type of those few values where yacc cannot easily determine the type.

10-27

yacc: Compiler-Compiler XENIX Program ming

To declare the union, the user includes in the declaration section:

%union {
body of union ...
}

This declares the yacc value stack, and the external variables yyIval and yyval, to have
type equal to this union. If yacc was invoked with the -d option, the union declaration is
copied onto the y.tab.h file. Alternatively, the union may be declared in a header file,
and a typedef used to define the variable YYSTYPE to represent this union. Thus, the
header file might also have said:

typedef union {
body 0 f union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of 96{ and 96}.

Once YYSTYPE is defined, the union member names must be associated with the various
terminal and nonterminal names. The construction

< name>

is used to indicate a union member name. If this follows one of the keywords 96token,
96Ieft, 96right, and 96nonassoc, the union member name is associated with the tokens
listed. Thus, saying

%Ieft <optype> ' +' '-'

will cause any reference to values returned by these two tokens to be tagged with the
union member name optype. Another keyword, 96 type, is used similarly to associate
union member names with nonterminals. Thus, one might say

%type <nodetype> expr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an
action within a rule, the value returned by this action has no predefined type. Similarly,
reference to left context values (such as $0) leaves yacc with no easy way of knowing
the type. In this case, a type can be imposed on the reference by inserting a union
member name, between < and >, immediately after the first $. An example of this
usage is

rule: aaa { $<intval>$ = 3; } bbb
{ fun($<intval >2, $<other>O); }

This syntax has little to recommend it, but the situation arises rarely.

10-28

XENIX Programming yacc: Compiler-Compiler

A sample specification is given in a later section. The facilities in this subsection are
not triggered until they are used: in particular, the use of 96type will turn on these
mechanisms. When they are used, there is a fairly strict level of checking. For
example, use of $ or $$ to refer to something with no defined type is diagnosed. If these
facilities are not triggered, the yacc value stack is used to hold int's, as was true
historically.

A Small Desk Calculator

This example gives the complete yacc specification for a small desk calculator: the
desk calculator has 26 registers, labeled a through z, and accepts arithmetic expressions
made up of the operators +, -, *, /, % (mod operator), & (bitwise and), I (bitwise or), and
assignment. If an expression at the top level is an assignment, the value is not printed;
otherwise it is. As in C, an integer that begins with 0 (zero) is assumed to be octal;
otherwise, it is assumed to be decimal.

As an example of a yacc specification, the desk calculator does a reasonable job of
showing how precedences and ambiguities are used and demonstrating simple error
recovery. The major oversimplifications are that the lexical analysis phase is much
simpler than for most applications, and the output is produced immediately, line by line.
Note the way that decimal and octal integers are read in by the grammar rules; this job
is probably better done by the lexical analyzer.

/* desk calculator parser specification */
%{
include <stdio.h>
include <ctype.h>

int regs[26];
int base;

%}

%start list

%token DIGIT LETTER

% left 'I'
%Ieft'&'
%Ieft' +' '-'
% left ,*, '/' '%'
%Ieft UMINUS/* precedence for unary minus */

% % /* beginning of rules section */

list: /* empty */
I list stat '\n'
I list error '\n'

{yyerrok; }

10-29

yacc: Compiler-Compiler

10-30

stat: expr
{printf("%d\n", $1);}
, LETTER' =' expr

{regs[$1] = $3;}

expr : '(' expr ')'
{$$ = $2; }

, expr ' + ' expr
{$$ = $1 + $3; }

, expr '-' expr
{$$=$1-$3;}

, expr '*' expr
{$$ = $1 * $3; }

, expr '!' expr
{$$ = $1 /$3; }

, expr '%' expr
{$$ = $1 % $3; }

, expr '&' expr
{$$ = $1 & $3; }

, expr 'I' expr
{$$ = $1 , $3; }

"-' expr %prec UMINUS
{$$ = -$2; }

'LETTER
{$$ = regs[$1]; }

, number

number: DIGIT
{$$ = $1; base = ($1 = = 0) ? 8 : 10; }

, number DIGIT
{$$ = base * $1 + $2; }

% % /* start of programs * /

yylexO { /* lexical analysis routine */

int c;

/* returns LETTER for a lowercase letter, */
/* yylval = 0 through 25 */
/* return DIGIT for a digit, */
/* yylval = 0 through 9 */
/* all other characters */
/* are returned immediately */

while«c = getchar()) = =' ') {/* skip blanks */}

/* c is now nonblank */

XENIX Programming

XENIX Programming yacc: Compiler-Compiler

if(islower(c)) {
yylval = c -'a';
return (LETTER);
}

if(isdigit(c)) {
yylval = c -'0';
return(DIGIT);
}

return(c);
}

yacc Input Syntax

This section has a description of the yacc input syntax, as a yacc specification. Context
dependencies are not considered. Ironically, the yacc input specification language is
most naturally specified as an LR(2) grammar; the difficult part comes when an
identifier is seen in a rule, immediately following an action. If this identifier is
followed by a colon, it is the start of the next rule; otherwise it is a continuation of the
current rule, which just happens to have an action embedded in it. As implemented, the
lexical analyzer looks ahead after seeing an identifier and decides whether the next
token (skipping blanks, newlines, comments, etc.) is a colon. If so, it returns the token
C_IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted strings) are also
returned as IDENTIFIER, but never as part of C_IDENTIFIER.

/* grammar for the input to yacc */

/* basic entities * /
%token IDENTIFIER /* includes identifiers and literals */
%token C IDENTIFIER /* identifier followed by colon */
%token NUMBER/* [0-9] + */

/* reserved words: %type = > TYPE, % left = > LEFT, etc. */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK /* the % % mark */
%token LCURL /* the % {mark */
%token RCURL /* the %} mark */

/* ascii character literals stand for themselves */

%start spec

%%

spec : defs MARK rules tail

tail : MARK {Eat up the rest of the file}
I /* empty: the second MARK is optional */

10-31

yacc: Compiler-Compiler

10-32

defs : /* empty */
1 defs def

def : START IDENTIFIER
1 UNION {Copy union definition to output}
1 LCURL {Copy C code to output file} RCURL
1 ndefs rword tag nlist

rword : TOKEN
1 LEFT
1 RIGHT
1 NONASSOC
ITYPE

tag : /* empty: union tag is optional */
1'<' IDENTIFIER'>'

nlist : nmno
1 nlist nmno
1 nlist ',' nmno

nmno : IDENTIFIER /* Literal illegal with %type */
1 IDENTIFIER NUMBER /* Illegal with %type */

/* rules section */

rules : C IDENTIFIER rbody prec
1 rUles rule

rule : C IDENTIFIER rbody prec
1 'I'i-body prec

rbody : /* empty */
1 rbody IDENTIFIER
1 rbody act

act : '{' {Copy action, translate $$, etc. }'}'

prec : /* empty */
1 PREC IDENTIFIER
1 PREC IDENTIFIER act
1 prec ';'

XENIX Programming

XENIX Programming yacc: Compiler-Compiler

An Advanced Example

This section gives an example of a grammar using some of the advanced features
discussed in earlier sections. The desk calculator example is modified to provide a desk
calculator that does floating-point interval arithmetic. The calculator understands
floating-point constants, the arithmetic operations +, -, *, /, unary -, and = (assignment),
and has 26 floating-point variables, a through z. Moreover, it also understands intervals,
written

(x, y)

where x is less than or equal to y. There are 26 interval valued variables A through Z
that may also be used. Assignments return no value, and print nothing, while
expressions print the (floating or interval) value.

This example explores a number of interesting features of yacc and C. Intervals are
represented by a structure, consisting of the left and right endpoint values, stored as
double precision values. This structure is given a type name, INTERVAL, by using
typedef. The yacc value stack can also contain floating-point scalars and integers (used
to index into the arrays holding the variable values). Notice that this entire strategy
depends strongly on being able to assign structures and unions in C. In fact, many of the
actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle the following error conditions:
division by an interval containing 0 and an interval presented in the wrong order. In
effect, the error recovery mechanism of yacc is used to throwaway the rest of the
offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an
interesting use of syntax to keep track of the type (e.g., scalar or interval) of
intermediate expressions. Note that a scalar can be automatically promoted to an
interval if the context demands an interval value. This causes a large number of
conflicts when the grammar is run through yacc: 18 shift/reduce and 26 reduce/reduce.
The problem can be seen by looking at the two input lines:

2.5+(3.5-4.)

and

2.5 + (3.5,4.)

Notice that the 2.5 is to be used in an interval valued expression in the second example,
but this fact is not known until the comma (,) is read; by this time, 2.5 is finished, and
the parser cannot go back and change its mind. More generally, it might be necessary to
look ahead an arbitrary number of tokens to decide whether to convert a scalar to an
interval. This problem is circumvented by having two rules for each binary interval
valued operator: one when the left operand is a scalar, and one when the left operand is
an interval. In the second case, the right operand must be an interval, so the conversion
will be applied automatically. However, there are still many cases where the conversion
may be applied or not, leading to the above conflicts. They are resolved by listing the
rules that yield scalars first in the specification file; in this way, the conflicts will be
resolved in the direction of keeping scalar valued expressions scalar valued until they
are forced to become intervals.

10-33

yacc: Compiler-Compiler XENIX Programming

This way of handling multiple types is very instructive, but not very general. If there
were many kinds of expression types, instead of just two, the number of rules needed
would increase dramatically, and the conflicts even more dramatically. Thus, while this
example is instructive, it is better practice in a more normal programming language
environment to keep the type information as part of the value, and not as part of the
grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatment of
floating-point constants. The C library routine atof is used to do the actual conversion
from a character string to a double precision value. If the lexical analyzer detects an
error, it responds by returning a token that is illegal in the grammar, provoking a syntax
error in the parser, and thence error recovery.

/* advanced desk calculator parser specification */
%{

10-34

include <stdio.h>
include <ctype.h>

typedef struct interval {
double 10, hi;
} INTERVAL;

INTERVAL vmulO, vdivO;

double atofO;

double dreg[26];
INTERVAL vreg[26];

%}

%start lines

%union {
int ivai;
double dval;
INTERVAL vval;
}

%token < ivai> DREG VREG /* indices into dreg, vreg arrays */

%token <dval> CONST /* fl oati ng-poi nt constant * /

%type <dval> dexp /* expression */

%type <vval> vexp /* interval expression */

XENIX Programming

1* precedence information about the operators *1

%Ieft I I" + -
%Ieft ,*, 'I'

%Ieft UMINUS 1* precedence for unary minus *1

%%

lines : 1* empty *1
Ilines line

line : dexp '\n'
{ pri ntf(II % lS.8f\n", $1);}

I vexp '\n'
{printf("(%15.8f, %lS.8f)\en", $1.10, $1.hi);}

I DREG ' = ' dexp '\n'
{dreg[$l] = $3;}

I VREG ' = ' vexp '\n'
{vreg[$1] = $3; }

I error '\n'
{yyerrok; }

dexp: CONST
I DREG

{$$ = dreg[$1]; }
I dexp , + ' dexp

{$$ = $1 + $3; }
I dexp , -' dexp

{$$ = $1-$3;}
I dexp ,*, dexp

{$$ = $1 * $3; }
I dexp'I' dexp

{$$ = $1 1$3; }
1'-' dexp %prec UMINUS

{$$ = -$2; }
I' (, dexp ,) ,

{$$ = $2; }

yacc: Compiler-Compiler

10-35

yacc: Compiler-Compiler

10-36

vexp : dexp

%%

{$$.hi = $$.10 = $1;}
1'(' dexp ',' dexp ')'

{

IVREG

$$.10 = $2;
$$.hi = $4;
if($$.10 > $$.hi){

}

printf("interval out of order\n");
YYERROR;
}

{$$ = vreg[$l]; }
I vexp , + ' vexp

{$$.hi = $l.hi + $3.hi;
$$.10 = $1.10 + $3.10; }

I dexp , + ' vexp
{$$.hi = $1 + $3.hi;

$$.10 = $1 + $3.10; }
I vexp '-' vexp

{$$.hi = $l.hi -$3.10;
$$.10 = $1.10 -$3.hi; }

I dexp , -' vexp
{$$.hi = $1 -$3.10;

$$.10 = $1 -$3.hi;}
Ivexp'*'vexp

{$$ = vmul($1.10, $l.hi, $3); }
I dexp ,*, vexp

{$$ = vmul($1,$1,$3);}
I vexp '/' vexp

{ if (dcheck($3)) YYERROR;
$$ = vdiv($1.10, $l.hi, $3); }

I dexp '/' vexp
{ if (dcheck($3)) YYERROR;
$$ = vdiv($1, $1, $3);}

1'-' vexp %prec UMINUS
{$$.hi = -$2.10; $$.10 = -$2.hi; }

1'(' vexp ')'
{$$ = $2; }

define BSZ 50 /* buffer size for fp numbers */

XENIX Programming

XENIX Programming

/* lexical analysis */

yylexO{
register c;

{/* skip over blanks */}
while((c = getchar()) = = ' ,)

if (isupper(c)){
yylval.ival = c - 'A';
return(VREG);
}

if (islower(c)){
yylval.ival = c -' a';
return(DREG);
}

if(isdigit(c) II c = = '.'){

/* gobble up digits, points, exponents */

char buf[BSZ + 1], * cp = buf;
int dot = 0, exp = 0;

for(; (cp-buf) < BSZ; + + cp,c = getcharO){

*cp = c;
if (isdigit(c)) conti nue;
if(c=='.'){
if(dot+ + lIexp)return('.');

/* above causes syntax error */
continue;
}

if (c = = ' e') {
if (exp + +) return(, e');

/* above causes syntax error */
continue;
}

/* end of number */
break;
}

*cp = '\eO';
if((cp-buf) > = BSZ)

printf("constant too long: truncated\n");
else ungetc(c, stdin);

/* above pushes back last char read */
yylval.dval = atof (buf);
return{ CONST);
}

return{ c);
}

yacc: Compiler-Compiler

10-37

yacc: Compiler-Compiler

10-38

INTERVAL hilo(a, b, c, d) double a, b, c, d; {
/* returns the smallest interval containing a, b, c, and d */
/* used by *, / routines */
INTERVAL v;

if(a>b) {v.hi = a; v.lo = b; }
else {v.hi = b; v.lo = a; }

if(c>d) {

else {

if (c>v.hi) v.hi = c;
if (d <v.lo) v.lo = d;
}

if (d >v.hi) v.hi = d;
if (c<v.lo) v.lo = c;
}

return(v);
}

INTERVAL vmul(a, b, v) double a, b; INTERVAL v; {
return(hilo(a*v.hi, a*v.lo, b*v.hi, b*v.lo));
}

dcheck(v) INTERVAL v; {
if(v.hi > = O. && v.lo < = O.)(

printf("divisor interval contains O.\n");
return(1);
}

return(O);
}

INTERVAL vdiv(a, b, v) double a, b; INTERVAL v; {
return(hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo));
}

XENIX Programming

XENIX Programming yacc: Compiler-Compiler

Old Features

This section mentions synonyms and features supported for historical continuity, but
that, for various reasons, are not encouraged.

• Literals may also be delimited by double quotation marks (").

• Literals may be more than one character long. If all the characters are
alphabetic, numeric, or underscore, the type number of the literal is defined, just
as if the literal did not have the quotation marks around it. Otherwise, it is
difficult to find the value for such literals. The use of multicharacter literals is
likely to mislead those unfamiliar with yacc, since it suggests that yacc is doing a
job that must be actually done by the lexical analyzer.

• Most places where % is legal, backslash (\) may be used. In particular, the double
backslash (\ \) is the same as 9696, \left the same as 961eft, etc.

• There are a number of other synonyms:

96< is the same as 961eft
96> is the same as 96right
96binary and 962 are the same as 96nonassoc
960 and 96term are the same as 96token
96= is the same as 96prec

• Actions may also have the form

= { ... }

and the curly braces can be dropped if the action is a single C statement.

• C code between 96{ and 96} used to be permitted at the head of the rules section,
as well as in the declaration section.

10-39

CHAPTER 11
m4: MACRO PROCESSOR

The m4 macro processor defines and processes specially defined strings of characters
called macros. By defining a set of macros to be processed by m4, a programming
language can be enhanced to make it more structured, more readable, and more
appropriate for a particular application.

The #define statement in C and the analogous define in RATFOR are examples of the
basic facility provided by any macro processor--replacement of text by other text.

Besides the straightforward replacement of one string of text by another, m4 provides

• Macros with arguments

• Conditional macro expansions

• Arithmetic expressions

• File manipulation facilities

• String processing functions

The basic operation of m4 is copying its input to its output. As the input is read, each
alphanumeric token (that is, string of letters and digits) is checked. If the token is the
name of a macro, then the name of the macro is replaced by its defining text. The
resulting string is reread by m4. Macros may also be called with arguments, in which
case the arguments are collected and substituted in the right places in the defining text
before m4 rescans the text.

m4 provides a collection of about 20 built-in macros. In addition, the user can define
new macros. Built-in and user-defined macros work in exactly the same way, except
that some of the built-in macros have side effects on the state of the process.

11-1

m4: Macro Processor XENIX Programming

Invoking m4

The invocation syntax for m4 is

m4 [filename] ...

Each filename argument is processed in order. If there are no arguments, or· if an
argument is a dash (-), then the standard input is read. The processed text is written to
the standard output and can be redirected as in the following example:

m4 file1 file2 - >outputfile

Note the use of the dash in the above example to indicate processing of the standard
input, after the files filel and file2 have been processed by m4.

Defining Macros

The primary built-in function of m4 is define, which is used to define new macros. The
input

define(name, stuff)

causes the string name to be defined as stuff. All subsequent occurrences of name will
be replaced by stuff. name must be alphanumeric and must begin with a letter (the
underscore () counts as a letter}. stuff is any text, including text that contains
balanced parentheses; it may stretch over multiple lines.

Thus, as a typical example

defi ne(N, 100)

if (i > N)

defines N to be 100 and uses this symbolic constant in a later if statement.

The left parenthesis must immediately follow the word define, to signal that define has
arguments. If a macro or built-in name is not followed immediately by a left
parenthesis, it is assumed to have no arguments. This is the situation for N above; it is
actually a macro with no arguments. Thus, when it is used, no parentheses are needed
following its name.

11-2

XENIX Programming m4: Macro Processor

You should also notice that a macro name is only recognized as such if it appears
surrounded by nonalphanumerics. For example, in

defi ne(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to the defined macro N, even though it
contains three N's.

Names can be defined in terms of other names. For example

defi ne(N, 100)
defi ne(M, N)

defines both M and N to be 100.

What happens if N is redefined? Or, to say it another way, is M defined as N or as 100?
In m4, the latter is true; M is 100, so that even if N subsequently changes, M does not.

This behavior arises because m4 expands macro names into their defining text as soon as
it possibly can. Here, that means that when the string "N" is seen as the arguments of
the second define statement are being collected, it is immediately replaced by 100; it's
just as if you had said

defi ne(M, 100)

in the first place.

If this isn't what you really want, there are two ways out of it. The first, which is
specific to this situation, is to interchange the order of the definitions:

defi ne(M, N)
defi ne(N, 100)

Now M is defined to be the string "N", so when you ask for M later, you will always get
the value of N at that time (because the M will be replaced by "N" which in turn will be
replaced by 100).

Quoting

The more general solution is to delay the expansion of the arguments of define by
quoting them. Any text surrounded by single quotation marks (' and ') is not expanded
immediately but has the quotation marks stripped off. If you say

defi ne(N, 100)
define(M, 'N')

11-3

m4: Macro Processor XENIX Programming

the quotation marks around the "N" are stripped off as the argument is being collected,
but they have served their purpose, and "M" is defined as the string "N", not 100. The
general rule is that m4 always strips off one level of single quotation marks whenever it
evaluates something. This is true even outside of macros. If you want the word "define"
to appear in the output, you have to quote it in the input, as in

'define' = 1;

As another instance, consider redefining "N":

defi ne(N, 100)

define(N,200)

The "N" in the second definition is evaluated as soon as it's seen; that is, it is replaced
by 100, so it's the same as

define(1 ~O, 200)

This statement is ignored by m4, since you can only define things that look like names,
but it doesn't have the effect you wanted. To truely redefine N, you must delay the
evaluation by quoting:

define(N, 100)

define('N',200)

In m4, it is often wise to quote the first argument of a macro.

If the forward and backward quotation marks (' and ') are not convenient for some
reason, the quotation marks can be changed with the built-in changequote. For example

changequote([,])

makes the new quotation marks the left and right brackets. You can restore the original
characters with just

changequote

There are two additional built-in macros related to define. The built-in undefine
removes the definition of a macro:

undefi ne('N')

removes the definition of N. Built-in macros can be removed with undefine, as in

undefine(' defi ne')

but once you remove one, you can redefine it, but you cannot retrieve the previous
definition.

11-4

XENIX Programming m4: Macro Processor

The built-in ifdef provides a way to determine if a macro is currently defined. For
instance, pretend that either the word "xenix" or "unix" is defined according to a
particular implementation of a program. To perform operations according to which
system you have, you might use:

ifdef(,xenix', 'define(system, 1)')
ifdef(,unix', 'define(system,2)')

Don't forget the quotation marks in the above example.

ifdef actually permits three arguments; if the name is undefined, the value of ifdef is
then the third argument, as in

ifdef(,xenix', on XENIX, not on XENIX)

Using Arguments

So far we have discussed the simplest form of macro processing--replacing one string by
another (fixed) string. User-defined macros may also have arguments, so different
invocations can have different results. Within the replacement text for a macro (the
second argument of its define) any occurrence of $n will be replaced by the nth
argument when the macro is actually used. Thus, the macro bump, defined as

define(bump, $1 = $1 + 1)

generates code to increment its argument by 1:

bump(x)

is

x = x + 1

A macro can have any number of arguments, but only the first nine are accessible, as $1
to $9. (The macro name itself is $0.) Arguments not supplied are replaced by null
strings, so we can define a macro cat that simply concatenates its arguments, like this:

define(cat, $1 $2$3$4$5$6$7$8$9)

Thus

cat(x, y, z)

is equivalent to

xyz

The arguments $4 through $9 are null, since no corresponding arguments were provided.

11-5

m4: Macro Processor XENIX Programming

Leading unquoted blanks, tabs, or newlines that occur during argument collection are
discarded. All other white space is retained. Thus

defi ne(a, b c)

defines a to be "b c".

Arguments are separated by commas, but parentheses are counted properly, so a comma
protected by parentheses does not terminate an argument. That is, in

defi ne(a, (b,c»

there are only two arguments; the second is literally n(b,c)". Note that a bare comma or
parenthesis can be inserted by quoting it.

Using Arithmetic Built-In Macros

m4 provides two built-in macros for doing arithmetic on integers. The simplest is incr,
which increments its numeric argument by 1. Thus, to handle the common programming
situation where you want a variable to be defined as one more than N, write

defi ne(N, 100)
define(N 1, 'incr(N)')

The more general mechanism for arithmetic is a built-in macro called eval, which is
capable of arbitrary arithmetic on integers. It provides the following operators (in
decreasing order of precedence):

unary + and-
** or A (exponentiation)
* / % (modulus)
+ -
==!= «=»=

(not)
& or && (logical and)
I or I I (logical or)

Parentheses may be used to group operations where needed. All the operands of an
expression given to eval must ultimately be numeric. The numeric value of a true
relation (like 1> 0) is 1 and of a false relation is o. The precision in eva! is
implementation dependent.

As a simple example, suppose we want M to have the numeric value 2**N+ 1. Then we
could write:

define(N, 3)
define(M, ' eval(2** N + 1)')

As a matter of principle, it is advisable to quote the defining text for a macro unless it
is very simple indeed (e.g., just a number); it usually gives the result you want and is a
good habit to get into.

11-6

XENIX Programming m4: Macro Processor

Manipulating Files

You can include a new file in the input at any point by using the built-in macro include:

include(filename)

inserts the contents of filename in place of the include command. The contents of the
file is often a set of definitions. The value of include (that is, its replacement text) is
the contents of the file.

It is a fatal error if the file named in include cannot be accessed. To gain some control
over this situation, the alternate form sinclude can be used; sinclude (for "silent
include") says nothing and continues if it can't access the file.

You can divert the output of m4 to temporary files during processing and output the
collected material upon command. m4 maintains nine of these diversions, numbered 1
through 9. If you use

divert(n)

all subsequent output is put onto the end of a temporary file referred to as "n".
Diverting to this file is stopped by another divert command; in particular, divert or
divert(O) resumes the normal output process.

Diverted text is normally output all at once at the end of processing, with the diversions
output in numeric order. However, you can bring back diversions at any time.

undivert

brings back all diversions in numeric order, and undivert with arguments brings back the
selected diversions in the order given. The act of undiverting discards the diverted text,
as does diverting into a diversion with a number not between 0 and 9 inclusive.

The value of undivert is not the diverted text. Furthermore, the diverted material is
not rescanned for macros.

The built-in divnum returns the number of the currently active diversion. This is zero
during normal processing.

11-7

m4: Macro Processor XENIX Program m ing

Using System Commands

You can run any program in the local operating system with the built-in macro syscmd.
For example,

syscmd(date)

runs the date command. Normally, syscmd would be used to create a file for a
subsequent include.

To facilitate making unique file names, the built-in maketemp is provided, with
specifications identical to the system function mktemp: a string of the form "XXXXX"
in the argument is replaced by the process ID of the current process.

Using Conditionals

The built-in macro ifelse performs arbitrary conditional testing. In the simplest form,

ifelse(a, b, c, d)

compares the two strings a and b. If these are identical, ifelse returns the string c;
otherwise it returns d. Thus, we might define a macro called compare that compares
two strings and returns "yes" or "no" if they are the same or different.

defi ne(compare, 'ifelse($1, $2, yes, no)')

Note the quotation marks, which prevent premature evaluation of ifelse.

If the fourth argument is missing, it is treated as empty.

ifelse can have any number of arguments and provides a multi-way decision capability.
In the input

ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the result is c. Otherwise, if d is the same as e, the
result is f. Otherwise the result is g. If the final argument is omitted, the result is null,
so

ifelse(a, b, c)

is c if a matches b, and null otherwise.

11-8

XENIX Program m ing m4: Macro Processor

Manipulating Strings

The built-in len returns the length of the string that makes up its argument. Thus

len(abcdef)

is 6, and

len((a,b))

is 5.

The built-in substr can be used to produce substrings of strings. For example

substr(s, i, n)

returns the substring of s that starts at position i (origin zero) and is n characters long.
If n is omitted, the rest of the string is returned, so

substr('now is the time', 1)

is

ow is the time

The command

i ndex(s 1,52)

returns the index (position) in s1 where the string s2 occurs, or -1 if it doesn't occur. As
with substr, the origin for strings is o.

The built-in translit performs character transliteration.

translit(s, f, t)

modifies s by replacing any character of s found in f by the corresponding character of
t. That is

translit(s, aeiou, 12345)

replaces the vowels in s with the corresponding digits. If t is shorter than f, characters
that don't have an entry in t are deleted; as a limiting case, if t is not present at all,
characters from f are deleted from s. So

transl it(s, aeiou)

deletes vowels from s.

11-9

m4: Macro Processor XENIX Programming

The built-in macro dol deletes all characters that follow it up to and including the next
newline. It is useful mainly for deleting empty lines that otherwise tend to clutter up
m4 output. For example, if you specify

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end of each line is not part of the definition, so it is copied into the
output, where it may not be wanted. If you add dol to each of these lines, the newlines
will disappear.

Another way to achieve this is

divert(-1)
defi ne(. ..)

divert

Printing

The built-in macro errprint writes its arguments out on the standard error file. Thus,
you can write

errpri nt(,fatal error')

The built-in macro dumpdef is a debugging aid that dumps the current definitions of
defined terms. If there are no arguments, all definitions are output. Otherwise, only
the definitions of the terms given as arguments to dumpdef are output. The arguments
to dumpdef should be quoted.

11-10

APPENDIX A
C LANGUAGE PORTABILITY

The standard definition of the C programming language leaves many details to be
decided by individual implementations of the language. These unspecified features of
the language detract from its portability and must be studied when attempting to write
portable C code.

Most of the issues affecting C portability arise from differences in either target
machine hardware or compilers. C was designed to compile to efficient code for the
target machine (initially a PDP-11), so many of the language features not precisely
defined are those that reflect a particular machine's hardware characteristics.

This appendix highlights the various aspects of C that may not be portable across
different machines and compilers. It also briefly discusses the portability of a C
program in terms of its environment, which is determined by the system calls and
library routines it uses during execution, file path names it requires, and other items not
guaranteed to be constant across different systems.

The C language has been implemented on many different computers with widely
different hardware characteristics, from small 8-bit microprocessors to large
mainframes. This appendix is concerned with the portability of C code in the XENIX
programming environment. This is a more restricted problem to consider since all
XENIX systems to date run on hardware with the following basic characteristics:

• ASCII character set

• 8-bit bytes

• 2-byte or 4-byte integers

• Two's complement arithmetic

These features are not formally defined for the language and may not be found in all
implementations of C. However, the remainder of this appendix is devoted to those
systems where these basic assumptions hold.

The C language definition contains no specification of how input and output are
performed. This is left to system calls and library routines on individual systems. Within
XENIX systems there are system calls and library routines that can be considered
portable. These are described briefly in a later section.

This appendix is not intended as a C language primer. It is assumed that the reader is
familiar with C and with the basic architecture of common microprocessors.

A-I

C Language Portability XENIX Programming

Program Portability

A program is portable if it can be compiled and run successfully on different machines
without alteration. There are many ways to write portable programs. The first is to
avoid using inherently nonportable language features. The second is to isolate any
nonportable interactions with the environment, such as I/O to nonstandard devices. For
example, programs should avoid hard-coding path names unless a path name is common
to all systems (e.g., /etc/passwd).

Files required at compile time (i.e., include files) may also introduce nonportability if
the path names are not the same on all machines. In some cases, include files
containing machine parameters can be used to make the source code itself portable.

Machine Hardware

Differences in the hardware of the various target machines and differences in the
corresponding C compilers cause the greatest number of portability problems. This
section lists problems commonly encountered on XENIX systems.

Byte Length

By definition, the char data type in C must be large enough to hold as positive integers
all members of a machine's character set. For the machines described in this appendix,
the char size is exactly an 8-bit byte.

Word Length

In C, the size of the basic data types for a given implementation are not formally
defined. Thus they often follow the most natural size for the underlying machine. It is
safe to assume that short is no longer than long. Beyond that no assumptions are
portable. For example, on some machines short is the same length as int, whereas on
others long is the same length as int.

Programs that need to know the size of a particular data type should avoid hard-coded
constants where possible. Such information can usually be written in a fairly portable
way. For example, the maximum positive integer (on a two's complement machine) can
be obtained with

#define MAXPOS «int)(((unsigned)-1) > > 1))

A-2

XENIX Programming

This is preferable to something like:

#ifdef i8086
#define MAXPOS 32767
#else

#endif

C Language Portability

To find the number of bytes in an int, use sizeof(int) rather than 2, 4, or some other
nonportable constant.

Storage Alignment

The C language defines no particular layout for storage of data items relative to each
other, or for storage of elements of structures or unions within the structure or union.

Some CPUs, such as the PDP-11 and M68000, require that data types longer than one
byte be aligned on even-byte address boundaries. Others, such as the 8086, 80286, and
VAX-11 have no such hardware restriction. However, even with these machines, most
compilers generate code that aligns words, structures, arrays, and long words on even
addresses, or even long word addresses. Thus, on the VAX-11, the following code
sequence gives 8, even though the V AX hardware can access an int (a 4-byte word) on
any physical starting address:

struct stag {
char c;

int i';
}; printf("%d\n",sizeof(struct s_tag));

The principal implications of this variation in data storage are that data accessed as
nonprimitive data types is not portable, and code that makes use of knowledge of the
layout on a particular machine is not portable.

Thus unions containing structures are nonportable if the union is used to access the same
data in different ways. Unions are only likely to be portable if they are used simply to
have different data in the same space at different times. For example, if the following
union were used to obtain 4 bytes from a long word, the code would not be portable:

union {

} u;

char c[4];
long Iw;

The sizeof operator should always be used when reading and writing structures:

struct s _ tag st;

write(fd, &st, sizeof(st));

A-3

C Language Portability XENIX Programming

This ensures portability of the source code. It does not produce a portable data file.
Portability of data is discussed in a later section.

Note that the sizeof operator returns the number of bytes an object would occupy in an
array. Thus on machines where structures are always aligned to begin on a word
boundary in memory, the sizeof operator will include any necessary padding for this in
the return value, even if the padding occurs after all useful data in the structure. This
occurs whether or not the argument is actually an array element.

Byte Order in a Word

The variation in byte order in a word affects the portability of data more than the
portability of source code. However, any program that makes use of knowledge of the
internal byte order in a word is not portable. For example, some XENIX/UNIX systems
have an include file misc.h that contains the following structure declaration:

/*
* structure to access an
* integer in bytes
*/
struct {

char
char

};

lobyte;
hibyte;

With certain less restrictive compilers this could be used to access the high and low
order bytes of an integer separately, and in a completely nonportable way. The correct
way to do this is to use mask and shift operations to extract the required byte:

#define LOBYTE(i) (i & Oxff)
#define HIBYTE(i) ((i > > 8) & Oxff)

Note that even this operation is only applicable to machines with two bytes in an int.

One result of the byte ordering problem is that the following code sequence will not
always perform as intended:

int c = 0;

read(fd, &c, 1);

On machines where the low order byte is stored first, the value of c will be the byte
value read. On other machines the byte is read into some byte other than the low order
one, and the value of c is different.

A-4

XENIX Program m ing C Language Portability

Bitfields

Bitfields are not implemented in all C compilers. When they are, no field may be larger
than an int, and no field can overlap an int boundary. If necessary the compiler will
leave gaps and move to the next int boundary.

The C language makes no guarantees about whether fields are assigned left to right, or
right to left in an iDt. Thus, while bitfields may be useful for storing flags and other
small data items, their use in unions to dissect bits from other data is definitely
nonportable.

To ensure portability, no individual field should exceed 16 bits.

Pointers

The C language is fairly generous in allowing manipulation of pointers, to the extent
that most compilers will not object to nonportable pointer operations. The lint program
is particularly useful for detecting questionable pointer assignments and comparisons.

The common nonportable use of pointers is the use of casts to assign one pointer to
another pointer of a different data type. This almost always makes some assumption
about the internal byte ordering and layout of the data type, and is therefore
nonportable. In the following code, the byte order in the given array is not portable:

char c[4];
long *Ip;

Ip = (long *)&c[O];
*Ip = Ox 12345678L;

The lint program will issue warning messages about such uses of pointers. Code like this
is very rarely necessary or valid. It is acceptable, however, when using the malloc
function to allocate space for variables that do not have char type. The routine is
declared as type char * and the return value is cast to the type to be stored in the
allocated memory. If this type is not char * then lint will issue a warning concerning
illegal type conversion. In addition, the malloc function is written to always return a
starting address suitable for storing all types of data. lint does not know this, so it gives
a warning about possible data alignment problems, too. In the following example,
malloc is used to obtain memory for an array of 50 integers.

extern char *maliocO;
int *ip;

ip = (int *)malloc(50);

This example will cause a warning message from lint.

The C reference manual (contained in The C Programming Language by Kernighan and
Ritchie) states that a pointer can be assigned (or cast) to an integer large enough to hold
it. Note that the size of the int type depends on the given machine and implementation.
This type is long on some machines and short on others. In general, do not assume that
sizeof(char *) == sizeof(int).

A-5

C Language Portability XENIX Programming

In most implementations, the null pointer value NULL is defined to be the integer value
O. This can lead to problems for functions that expect pointer arguments larger than
integers. For portable code, always use

func((char *)NULL);

to pass a NULL value of the correct size.

Address Space

The address space available to a program running under XENIX varies considerably fro m
system to system. On a small PDP-II, only 64K bytes may be available for program and
data combined. Larger PDP-II's and some l6-bit microprocessors allow 64K bytes of
data and 64K bytes of program text. Other machines, such as the 80286, allow
considerably more text, and possibly more data as well.

Large programs or programs that require large data areas may have portability problems
on small machines.

Character Set

The C language does not require the use of the ASCII character set. In fact, the only
character set requirements are that all characters must fit in the char data type and all
characters must have positive values.

In the ASCII character set, all characters have values from 0 to 127. Thus they can all
be represented in 7 bits, and on an 8-bits-per-byte machine are all positive, whether
char is treated as signed or unsigned.

XENIX defines a set of macros in the header file /usr/include/ctype.h that should be
used for most tests on character quantities. They provide insulation from the internal
structure of the character set and in most cases their names are more meaningful than
the equivalent line of code. Compare

if(isupper(c))

to

if((c > = 'A') && (c < = 'Z'»

With some of the other macros, such as isdigit to test for a hex digit, the advantage is
even greater. Also, the internal implementation of the macros makes them more
efficient than an explicit test with an if statement.

A-6

XENIX Programming C Language Portability

Compiler Differences

A number of C compilers are available for various XENIX systems. The "Ritchie"
compiler is available for PDP-II systems. Available for the PDP-II and most other
XENIX systems is the Portable C Compiler.

Signed/Unsigned char, Sign Extension

The current state of the signed versus unsigned char problem is best described as
unsatisfactory.

The sign extension problem is a serious barrier to writing portable C, and the best
solution at present is to write defensive code that does not rely on particular
implementation features.

Shift Operations

The left shift operator « shifts its operand a number of bits left, filling vacated bits
with zero. This is a logical shift. The right shift operator », when applied to an
unsigned quantity, performs a logical shift operation. When applied to a signed quantity,
the vacated bits may be filled with zero (logical shift) or with sign bits (arithmetic
shift). The decision is implementation dependent, and code that uses knowledge of a
particular implementation is nonportable.

The PDP-II compilers use arithmetic right shift. To avoid sign extension, you must
shift and mask out the appropriate number of high order bits:

char c;

c = (c > > 3) & Ox1f;

You can also avoid sign extension by using the divide operator:

char c;

c = c /8;

Identifier Length

The use of long symbols and identifier names will cause portability problems with some
compilers. To avoid these problems, a program should keep the following symbols as
short as possible:

• C preprocessor symbols

• C local symbols

• C external symbols

A-7

C Language Portability XENIX Programming

The loader used may also place a restriction on the number of unique characters in C
external symbols.

Symbols unique in the first six characters are unique to most C language processors.

On some non-XENIX C implementations, uppercase and lowercase letters are not
distinct in identifiers.

Register Variables

The number and type of register variables in a function depends on the machine
hardware and the compiler. Excess and invalid register declarations are treated as
nonregister declarations and should not cause a portability problem. Typically, up to
three register declarations are significant, and they must be of type int, char, or
pointer. While other machines and compilers may support declarations such as

register unsigned short

this should not be relied on.

Since the compiler ignores excess variables of register type, the most important register
type variables should be declared first. Thus, if any are ignored, they will be the least
important ones.

Type Conversion

The C language has some rules for implicit type conversion; it also allows explicit type
conversions by type casting. The most common portability problem in implicit type
conversion is unexpected sign extension. This is a potential proble m whenever
something of type char is compared with an into

For example

char c;

if(c = = Ox80)

will never evaluate true on a machine that sign extends since c is sign extended before
the comparison with Ox80, an into

The only safe comparison between char type and an int is the following:

char c;

if(c = = 'x')

A-8

XENIX Program m ing C Language Portability

This is reliable because C guarantees all characters to be positive. The use of hard
coded octal constants is subject to sign extension. For example, the following program
prints "ff80" on a PDP-II:

main()
{

pri ntf(II % x\n ", '\200');
}

Type conversion also takes place when arguments are passed to functions. Types char
and short become int. Machines that sign extend char can produce unexpected results.
For example, the following program gives -128 on some machines:

char c = 128;
printf("%d\n" ,c);

This is because c is converted to int before being passed to the function. The function
itself has no knowledge of the original type of the argument and is expecting an int.
The correct way to handle this is to code defensively and allow for the possibility of sign
extension:

char c = 128;
printf("%d\n", c & Oxff);

Functions with Variable Number of Arguments

Functions with a variable number of arguments present a particular portability problem
if the type of the arguments is also variable. In such cases, the code depends on the size
of various data types.

XENIX has an include file, lusr/include/varargs.h, that contains macros for use in
variable argument functions to access the arguments in a portable way:

typedef char *va list;
#define va del int va alist;
#define va -start(list) list = (char *) &va alist
#define va - end(list)
#define va = arg(l ist,mode) «mode *)(Iist + = sizeof(mode))) [-1]

The va endO macro is not currently required. Use of the other macros will be
demonstrated by an example of the fprintf library routine. This has a first argument of
type FILE * and a second argument of type char *. Subsequent arguments are of
unknown type and number at compilation time. They are determined at run time by the
contents of the control string, argument 2.

A-9

C Language Portability XENIX Programming

The first few lines of fprintf to declare the arguments and find the output file and
control string address could be

#inelude <varargs.h>
#inelude <stdio.h>

int
fprintf(va alist)
va del; -
{

va list ap;
char *format;
FILE *fp;

/* pointer to arg list

va start(ap); /* initialize arg pointer */
fp -= va arg(ap, (FILE *»;
format =- va _arg(ap, (char *»;

}

*/

Note that just one argument is declared to fprintf. This argument is declared by the
va del macro to be type int, although its actual type is unknown at compile time. The
argument pointer ap is initialized by va_start to the address of the first argument.
Successive arguments can be picked from the stack so long as their type is known using
the va_arg macro. This has a type as its second argument, and this controls what data is
removed from the stack, and how far the argument pointer ap is incremented. In
fprintf, once the control string is found, the type of subsequent arguments is known and
they can be accessed sequentially by repeated calls to va_argO. For example,
arguments of type double, int *, and short could be retrieved as follows:

double dint;
int *ip;
short s;

dint = va arg(ap, double);
ip = va arg(ap, (int *»;
s = va _ arg(ap, short);

The use of these macros makes the code more portable, although it does assume a
certain standard method of passing arguments on the stack. In particular, no holes must
be left by the compiler, and types smaller than int (e.g., char and short on long word
machines) must be declared as int.

A-IO

XENIX Program m ing C Language Portability

Side Effects, Evaluation Order

The C language makes few guarantees about the order of evaluation of operands in an
expression or arguments to a function call. Thus

func(i + +, i + +);

is extremely nonportable, and even

func(i + +);

is unwise if func is ever likely to be replaced by a macro, since the macro may use i
more than once. Certain XENIX macros are commonly used in user programs; these are
all guaranteed to use their argument once, and so can safely be called with a side
effect argument. The most common examples are getc, putc, get char, and putchar.

Operands to the following operators are guaranteed to be evaluated left to right:

&& II ?

Note that the comma operator above is a separator for C expressions. (For example,
the expression (a, b, c, d) evaluates a, then b, then c, and last d, returning the value of d
as the value of the entire expression.) A list of items separated by commas in a
declaration list is not guaranteed to be processed left to right. Thus the declaration

register int a, b, c, d;

on a PDP-ll where only three register variables may be declared could make any three
of the four variables register type, depending on the compiler. The correct declaration
is to decide the order of importance of the variables being register type, and then use
separate declaration statements, since the order of processing of individual declaration
statements is guaranteed to be sequential:

register int a;
register int b" ,
register int c;
register int d;

Program Environment Differences

Most programs make system calls and use library routines for various services. This
section indicates some of those routines that are not always portable, and those that
particularly aid portability.

We are concerned here primarily with portability under the XENIX operating system.
Many of the XENIX system calls are specific to that particular operating system
environment and are not present on all other operating system implementations of C.
Examples of this are getpwent for accessing entries in the XENIX password file, and
getenv, which is specific to the XENIX concept of a process's environment.

A-ll

C Language Portability XENIX Programming

Any program containing hard-coded path names to files or directories, or user IDs, login
names, terminal lines, or other system dependent parameters is nonportable. These
types of constants should be in header files, passed as command line arguments,
obtained from the environment, or obtained by using the XENIX default parameter
library routines defopen and defread.

Within XENIX, most system calls and library routines are portable across different
implementations and XENIX releases. However, a few routines have changed in their
user interface. The XENIX library routines are usually portable among XENIX systems.

Note that the members of the printf and scanf families, printf, fprintf, scanf, fscanf,
and sscanf have changed in several ways during the evolution of XENIX, and some
features are not completely portable. The return values of these routines cannot be
relied on to have the same meaning on all systems. Some of the format conversion
characters have changed their meanings, in particular those relating to uppercase and
lowercase in the output of hexadecimal numbers, and the specification of long integers
on I6-bit word machines.

Portability of Data

Data files are almost always nonportable across different machine CPU architectures.
As mentioned above, structures, unions, and arrays have varying internal layout and
padding requirements on different machines. In addition, byte ordering within words and
actual word length may differ.

The only way to achieve data file portability is to write and read data files as one
dimensional character arrays. This avoids alignment and padding problems if the data is
written and read as characters and interpreted that way. Thus ASCII text files can
usually be moved between different machine types without too many problems.

lint

lint is a C program checker that attempts to detect features of a collection of C source
files that are nonportable or even incorrect C. One particular advantage of lint over
any compiler checking is that lint checks function declaration and usage across source
files. Neither compiler nor loader do this.

lint will generate warning messages about nonportable pointer arithmetic, assignments,
and type conversions. However, being passed by lint is not a guarantee that a program
is completely portable.

A-12

XENIX Programming C Language Portability

Byte Ordering Summary

The following conventions are used in Tables A-I and A-2 below:

aD The lowest physically addressed byte of the data item. al has a byte address aD +
1, and so on.

bO The least significant byte of the data item, bl being the next least significant, and
so on.

Note that any program that actually makes use of the following information is
guaranteed to be nonportable.

Table A-I. Byte Ordering for Short Types

CPU Byte Order

aD al

8086 bO bl
80286 bO bl
PDP-II bO bl
VAX-II bO bl
M68000 bl bO
Z8000 bl bO

Table A-2. Byte Ordering for Long Types

CPU Byte Order

aD al a2 a3

8086 bO bl b2 b3
80286 bO bl b2 b3
PDP-II b2 b3 bO bl
VAX-II bO bl b2 b3
M68000 b3 b2 bl bO
Z8000 b3 b2 bl bO

A-13

APPENDIX B
PROGRAMMING COMMANDS

This section describes the programming commands available in the XENIX 286 Extended
System product.

Syntax

Unless otherwise noted, commands described in this section accept options and other
arguments according to the following syntax:

name [option] ... [cmdarg] ...

name

option

cmdarg

The file name or path name of an executable file.

A single letter representing a command option. By convention, most options
are preceded by a hyphen. Option letters can sometimes be grouped
together, as in -abed. Alternatively they are specified individually, as in -a
-b -c -d. The method of specifying options depends on the syntax of the
command. Some options require arguments. For example, the -f option for
many commands often takes a following file name argument.

A path name or other command argument not beginning with a hyphen. It
may also be a hyphen alone by itself, indicating the standard input.

Note: Not all commands adhere to the above syntax.

See Also

getopt in "Commands" in the XENIX 286 Reference Manual

getopt in "System Functions" in the XENIX 286 C Library Guide

Diagnostics

Upon termination, each command returns 2 bytes of status, one supplied by the system
and giving the cause for termination, and (in the case of "normal" termination) one
supplied by the program. (See wait and exit in "System Functions" in the XENIX 286 C
Library Guide.) The byte supplied by the system is zero for normal termination; the
byte supplied by the program is customarily zero to indicate successful execution and
nonzero to indicate troubles such as erroneous parameters or bad or inaccessible data.
It is called variously "exit code," "exit status," or "return code," and is described only
where special conventions are involved.

8-1

Programming Commands XENIX Program ming

ad b - Invokes a general-purpose debugger.

Syntax

adb [-w] [-p prompt] [objfil [corefile]]

Description

A general-purpose debugging program, adb may be used to exam ine files and to provide
a controlled environment for the execution of XENIX programs.

Normally an executable program file, objfil preferably contains a symbol table; if not,
then the symbolic features of adb cannot be used, although the file can still be
examined. The default for objfil is a.out. corefile is assumed to be a core image file
produced after executing objfil. The default for corefile is core.

Requests to adb are read from the standard input, and responses are written to the
standard output. If the -w option is present, then both objfil and corefile are created if
necessary and opened for reading and writing so that files can be modified with adb.
The QUIT and INTERRUPT keys cause adb to return to the next command. The-p
option defines the prompt string. It may be any combination of characters. The default
is an asterisk (*).

In general requests to adb are of the form

[address] [, count] [command] [;]

If address is present, then dot is set to address. Initially, dot is set to zero. For most
commands, count specifies how many times the command will be executed. The default
count is 1. A special expression, address has the form

[segment:] offset

where segment gives the address of a specific text or data segment, and offset gives an
offset from the beginning of that segment. If segment is not specified, then the last
segment value in a command is used.

The interpretation of an address depends on the context it is used in. If a subprocess is
being debugged, then addresses are interpreted in the usual way in the address space of
the subprocess. For details on address mapping, see the "Addresses" section later in this
entry.

B-2

XENIX Programming Programming Commands

ad b (continued)

Expressions

The value of dot.

+ The value of dot incremented by the current increment.

The value of dot decremented by the current increment.

" The last address typed.

integer
An octal number if integer begins with a 0; a hexadecimal number if preceded by #
or Ox; otherwise a decimal number.

integer .fraction

'ecce'

A 32-bit floating-point number.

The ASCII value of up to 4 characters. The backslash (\) may be used to escape an
apostrophe (f).

<name
The value of name, which is either a variable name or a register name. adb
maintains a number of variables (see "Variables" later in this entry) named by
single letters or digits. If name is a register name, then the value of the register
is obtained from the system header in corefile. The register names are ax, bx, ex,
dx, di, si, bp, fl, ip, es, ds, ss, es, sp. The name fl refers to the status flags.

symbol
A symbol is a sequence of uppercase or lowercase letters, underscores, or digits
not starting with a digit. The value of symbol is taken from the symbol table in
objfil. An initial underscore (_) or tilde (-) will be prepended to symbol if needed.

symbol
- In C, the "true name" of an external symbol begins with • It may be necessary to

use this name to distinguish it from internal or hidden variables of a program.

(exp)
The value of the expression exp.

Monadic Operators

*exp The contents of the location addressed by exp.

-exp Integer negation.

-exp Bitwise complement.

8-3

Programming Commands XENIX Programming

ad b (continued)

Dyadic Operators

Dyadic operators are left-associative and are less binding than monadic operators.

el + e2 Integer addition

el - e2 Integer subtraction

el * e2 Integer multiplication

el 96 e2 Integer division

el & e2 Bitwise AND

el I e2 Bitwise OR

el A e2 Remainder after division of el by e2.

el I e2 Value of el rounded up to the next multiple of e2.

Commands

Most commands consist of a verb followed by a modifier or list of modifiers. The
following verbs are available. (The commands? and I may be followed by *; see the
"Addresses" section later in this entry for details.)

?f Locations starting at address in objfil are printed according to the format f.

If Locations starting at address in corefile are printed according to the format f.

=f The value of address itself is printed in the styles indicated by the format f. (For i
format, ? is printed for the parts of the instruction that reference subsequent
words.)

8-4

A format consists of one or more characters that specify a style of printing. Each
format character may be preceded by a decimal integer that is a repeat count for
the format character. While stepping through a format, dot is incremented
temporarily by the amount given for each format letter. If no format is given,
then the last format is used.

XENIX Program m ing Programming Commands

adb (continued)

The format letters available are as follows:

o 2 Prints 2 bytes in octal. All octal numbers output by adb are preceded by O.

o 4 Prints 4 bytes in octal.

q 2 Prints in signed octal.

Q 4 Prints long signed octal.

d 2 Prints in decimal.

D 4 Prints long decimal.

x 2 Prints 2 bytes in hexadecimal.

X 4 Prints 4 bytes in hexadecimal.

u 2 Prints a~ an unsigned decimal number.

U 4 Prints long unsigned decimal.

f 4 Prints the 32-bit value as a floating-point number.

F 8 Prints double floating point.

b 1 Prints the addressed byte in octal.

c 1 Prints the addressed character.

C 1 Prints the addressed character using the following escape convention. Character
values 000 to 040 are printed as an at sign (@.) followed by the corresponding
character in the octal range 0100 to 0140. The at sign character itself is printed
as @.@..

s n Prints the addressed characters until a zero character is reached.

S n Prints a string using the at sign (@.) escape convention. Here, n is the length of
the string including its zero terminator.

Y 4 Prints 4 bytes in date format. (See ctime in "System Functions" in the XENIX
286 C Library Guide.)

i n Prints as machine instructions. n is the number of bytes occupied by the
instruction. This style of printing causes variables 1 and 2 to be set to the offset
parts of the source and destination respectively.

8-5

Programming Commands XENIX Program m ing

adb (continued)

a 0 Prints the value of dot in symbolic form. Symbols are checked to ensure that they
have an appropriate type as indicated below.

I local or global data symbol
? local or global text symbol
= local or global absolute symbol

A 0 Prints the value of dot in absolute form.

P 2 Prints the addressed value in symbolic form using the same rules for symbol
lookup as a.

t 0 Tabs to the next appropriate tab stop when preceded by an integer. For example,
8t moves to the next 8-space tab stop.

r 0 Prints a space.

n 0 Prints a newline.

'string' 0
Prints the enclosed string.

Decrements dot by the current increment. Nothing is printed.

+ Increments dot by 1. Nothing is printed.

Decrements dot by 1. Nothing is printed.

newline
If the previous command temporarily incremented dot, makes the increment
permanent. Repeat the previous command with a count of 1.

[?1]1 value [mask]
Words starting at dot are masked with mask and compared with value until a
match is found. If L is used, then the match is for 4 bytes at a time instead of 2.
If no match is found, then dot is unchanged; otherwise, dot is set to the matched
location. If mask is omitted, then -1 is used.

[?I]w value •••
Writes the 2-byte value into the addressed location. If the command is W, writes
4 bytes. Odd addresses are not allowed when writing to the subprocess address
space.

[?I]m segnum fpas [size]

B-6

Sets new values for the given segment's file position and size. If size is not
given, then only the file position is changed. segnum must be the segment
number of a segment already in the memory map. (See the "Addresses" section
later in this entry.) If? is given, a text segment is affected; if I is given, a data
segment is affected.

XENIX Programming Programming Commands

ad b (continued)

[?I1M segnum fpos size

>name

Creates a new segment in the memory map. The segment is given a file position
fpas and physical size size. segnum must not already exist in the memory map.
If ? is given, a text segment is created; if I is given, a data segment is created.

dot is assigned to the variable or register named.

A shell is called to read the rest of the line following !.

$modifier
Miscellaneous commands. The available modifiers are:

<f Read commands from the file f and return.

>f Send output to the file f, which is created if it does not exist.

r Print the general registers and the instruction addressed by ip. dot is set
to ip.

f Print the floating registers in single or double length.

b Print all breakpoints and their associated counts and com mands.

c C stack backtrace. If address is given, then it is taken as the address of
the current frame (instead of bp). If C is used, then the names and (16-bit)
values of all automatic and static variables are printed for each active
function. If count is given, then only the first count frames are printed.

e The names and values of external variables are printed.

w Set the page width for output to address (default 80).

s Set the limit for symbol matches to address (default 255).

o Sets input and output default format to octal.

d Sets input and output default format to decimal.

x Sets input and output default format to hexadecimal.

q Exit from adb.

v Print all nonzero variables in octal.

m Print the address map.

B-7

Programming Commands XENIX Programming

ad b (continued)

:modifier

8-8

Manage a subprocess. Available modifiers are

brc Set breakpoint at address. The breakpoint is executed count-l times
before causing a stop. Each time the breakpoint is encountered the
command c is executed. If this command sets dot to zero, then the
breakpoint causes a stop.

dl Delete breakpoint at address.

r[arguments]
Run objfil as a subprocess. If address is given explicitly, then the program
is entered at this point; otherwise, the program is entered at its standard
entry point. count specifies how many breakpoints are to be ignored
before stopping. Arguments to the subprocess may be supplied on the
same line as the com mand. An argument starting with < or > causes the
standard input or output to be established for the command. All signals
are turned on upon entry to the subprocess.

R[arguments]
Same as the r command except that arguments are passed through a shell
before being passed to the program. This means shell metacharacters can
be used in file names.

cos The subprocess is continued and signal § is passed to it. (See the entry for
signal in "System Functions" in the XENIX 286 C Library Guide.) If
address is given, then the subprocess is continued at this address. If no
signal is specified, then the signal that caused the subprocess to stop is
sent. Breakpoint skipping is the same as for r.

ss Same as c except that the subprocess is single-stepped count times. If
there is no current subprocess then objfil is run as a subprocess as for r. In
this case, no signal can be sent; the remainder of the line is treated as
arguments to the subprocess.

k The current subprocess, if any, is terminated.

XENIX Programming Programming Commands

ad b (continued)

Variables

adb provides a number of variables. Named variables are set initially by adb but are not
used subsequently. Numbered variables are reserved for communication as follows.

o The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry, the following are set from the system header in the core file. If corefile does
not appear to be a core file then these values are set from objfil:

d The data segment size.
e The entry point.
m The execution type.
D The number of segments.
t The text segment size.

Addresses

Addresses in adb refer to either a location in a file or in actual memory. When there is
no current process in memory, adb addresses are computed as file locations, and
requested text and data are read from the objfil and corefile files. When there is a
process, such as after a :r command, addresses are computed as actual memory
locations.

All text and data segments in a program have associated memory map entries. Each
entry has a unique segment number. In addition, each entry has the file position of that
segment's first byte and the physical size of the segment in the file. When a process is
running, a segment's entry has a virtual size that defines the size of the segment in
memory at the current time. This size can change during execution.

When an address is given and no process is running, the file location corresponding to the
address is calculated as

effective-file-address = file-position + offset

If a process is running, the memory location is simply the offset in the given segment.
These addresses are valid if and only if

o < = offset < = size

where size is physical size for file locations and virtual size for memory locations.
Otherwise, the requested address is not legal.

8-9

Programming Commands XENIX Programming

ad b (continued)

The initial setting of both mappings is suitable for normal a.out and core files. If either
file is not of the kind expected then, for that file, file position is set to 0, and size is set
to the maximum file size. In this way, the whole file can be examined with no address
translation.

So that adb may be used on large files, all appropriate values are kept as signed 32-bit
integers.

Files

/dev/mem
/dev/swap
a.out
core

See Also

ptrace in "System Functions" in the XENIX 286 C Library Guide

a.out, core in "File Formats" in the XENIX 286 C Library Guide

Diagnostics

The message "adb" appears when there is no current command or format.

Comments about inaccessible files, syntax errors, abnormal termination of commands,
etc. may appear.

Exit status is zero unless last com mand failed or returned nonzero status.

Notes

A breakpoint set at the entry point is not effective on initial entry to the program.

System calls cannot be single-stepped.

Local variables whose names are the same as an external variable may foul up the
accessing of the external variable.

8-10

XENIX Programming Programming Commands

admin - Creates and administers sees files.

Syntax

admin [-n] [-i[name]] [-rrel] [-t[name]] [-fflag[flag-va/]]
[-dflag[flag-val]] [-a/ogin] [-e/ogin] [-m[mrlist]]
[-y[comment]] [-h] [-z] file ...

Description

admin is used to create new sees (source code control system) files and change
parameters of existing ones. Arguments to admin may appear in any order. They
consist of options, which begin with a dash (-), and named files. (Note that sees file
names must begin with the characters "s.".) If a named file does not exist, it is created,
and its parameters are initialized according to the specified options. Parameters not
initialized by an option are assigned a default value. If a named file does exist,
parameters corresponding to specified options are changed, and other parameters are
left as is.

If a directory is named, admin behaves as though each file in the directory were
specified as a named file, except that non-SeeS files (the last component of whose path
names does not begin with s.) and unreadable files are silently ignored. If the dash is
given, the standard input is read; each line of the standard input is taken to be the name
of an sees file to be processed. Again, non-sees files and unreadable files are silently
ignored.

The options are as follows. Each is explained as though only one named file is to be
processed since the effects of the arguments apply independently to each named file.

-n This option indicates that a new sees file is to be created.

-i[name]

-rrel

The name of a file from which the text for a new sees file is to be taken. The
text constitutes the first delta of the file. (See the description of the -r option,
which follows, for the delta numbering scheme.) If the i option is used but the file
name is omitted, the text is obtained by reading the standard input until an end
of-file is encountered. If this option is omitted, then the sees file is created
empty. Only one sees file may be created by an admin command on which the -i
option is supplied. Using a single admin to create two or more sees files requires
that they be created empty (no -i option). Note that the -i option implies the -n
option.

The release into which the initial delta is inserted. This option may be used only if
the -i option is also used. If the -r option is not used, the initial delta is inserted
into release 1. The level of the initial delta is always 1. (By default, initial deltas
are named 1.1.)

8-11

Programming Commands XENIX Programming

admin (continued)

-t[name]
The name of a file from which descriptive text for the sees file is to be taken. If
the -t option is used and admin is creating a new sees file (the -n and/or -i
options are also used), the descriptive text file name must also be supplied. In the
case of existing sees files, a -t option without a file name causes removal of
descriptive text (if any) currently in the sees file, and a -t option with a file
name causes text (if any) in the named file to replace the descriptive text (if any)
currently in the sees file.

-fflag[flag-val]

8-12

This option specifies a flag, and possibly a value for the flag, to be placed in the
sees file. Several f options may be supplied on a single admin command line.
The allowable flag and flag-val combinations are

b Allows use of the -b option on a get command to create branch deltas.

cceil The highest release (or "ceiling"), a number less than or equal to 9999, that
may be retrieved by a get command for editing. The default value for an
unspecified c flag is 9999.

ffloor
The lowest release (or "floor"), a number greater than 0 but less than 9999,
that may be retrieved by a get command for editing. The default value for
an unspecified f flag is 1.

dSID The default delta number (SID, or sees identification) to be used by a get
command.

Causes the "No id keywords (ge6)" message issued by get or delta to be
treated as a fatal error. In the absence of this flag, the message is only a
warning. The message is issued if no sees identification keywords (see get
later in this appendix) are found in the text retrieved or stored in the sees
file.

j Allows concurrent get commands for editing on the same SID of an sees
file. This allows multiple concurrent updates to the same version of the
sees file.

llist A list of releases to which deltas can no longer be made. (A get -e against
one of these "locked" releases fails.) A list is one or more list items
separated by commas. A list item is either a release number or the letter
"a" (to indicate all releases for the file).

XENIX Program ming Programming Commands

admin (continued)

n Causes delta to create a "null" delta in each release being skipped (if any)
when a delta is made in a new release. For example, in making delta 5.1
after delta 2.7, releases 3 and 4 are skipped. These null deltas serve as
"anchor points" so that branch deltas may later be created from them. The
absence of this flag causes skipped releases to be nonexistent in the sees
file, thus preventing branch deltas from being created from them in the
future.

qtext
User-definable text sUbstituted for all occurrences of the keyword in sees
file text retrieved by get.

mmod

ttype

Module name of the sees file substituted for all occurrences of the admin
keyword in sees file text retrieved by get. If the m flag is not specified,
the value assigned is the name of the sees file with the leading s. removed.

type of module in the sees file substituted for all occurrences of keyword
in sees file text retrieved by get.

v[pgm]

-d[flag]

Causes delta to prompt for Modification Request (MR) numbers as the reason
for creating a delta. The optional value specifies the name of an MR number
validity checking program. (See the entry for delta later in this appendix.)
If this flag is set when creating an sees file, the m option must also be used
even if its value is null.

Causes removal (deletion) of the specified flag from an sees file. The -d option
may be specified only when processing existing sees files. Several -d options may
be supplied on a single admin command. See the -f option for allowable flag
names.

llist A list of releases to be "unlocked". See the -f option for a description of the
1 flag and the syntax of a list.

-alogin
A login name, or numerical XENIX group ID, to be added to the list of users who
may make deltas (changes) to the sees file. A group ID is equivalent to
specifying all login names common to that group ID. Several -a options may be
used on a single admin command line. As many logins, or numerical group IDs, as
desired may be on the list simultaneously. If the list of users is empty, then
anyone may add deltas.

-elogin
A login name, or numerical group ID, to be erased from the list of users allowed to
make deltas (changes) to the sees file. Specifying a group ID is equivalent to
specifying all login names common to that group ID. Several -e options may be
used on a single admin com mand line.

8-13

Programming Commands XENIX Programming

admin (continued)

-y[comment]
The comment text is inserted into the sees file as a comment for the initial delta
in a manner identical to that of delta. Omission of the -y option results in a
default comment line being inserted in the form

YY/MM/DD HH:MM:SS by login

The -y option is valid only if the -i and/or -n options are specified (that is, a new
sees file is being created).

-m[mrlist]
The list of Modification Requests (MR) numbers is inserted into the sees file as
the reason for creating the initial delta in a manner identical to delta. The v flag
must be set and the MR numbers are validated if the v flag has a value (the name
of an MR number validation program). Diagnostics will occur if the v flag is not
set or if the MR validation fails.

-h Causes admin to check the structure of the sees file (see sccsfile in "File
Formats" in the XENIX 286 C Library Guide) and to compare a newly computed
checksum (the sum of all the characters in the sees file except those in the first
line) with the checksum that is stored in the first line of the sees file.
Appropriate error diagnostics are produced.

This option inhibits writing on the file, thereby nullifying the effect of any other
options supplied, and is therefore only meaningful when processing existing files.

-z The sees file checksum is recomputed and stored in the first line of the sees
file. (See -h, the preceding description.) Note that use of this option on a truly
corrupted file may prevent future detection of the corruption.

Files

The last component of all sees file names must be of the form s.filename. New sees
files are created read-only (0444 modified by umask--see chmod in "Commands" in the
XENIX 286 Reference Manual). Write permission in the pertinent directory is, of
course, required to create a file. All writing done by admin is to a temporary x-file,
called x.filename (see get later in this appendix), which is created with read-only if the
admin command is creating a new sees file, or with the same mode as the sees file if
it exists. After successful execution of admin, the sees file is removed (if it exists),
and the x-file is renamed with the name of the sees file. This ensures that changes are
made to the sees file only if no errors occurred. It is recommended that directories
containing sees files be mode 0755 and that sees files themselves be read-only. The
mode of the directories allows only the owner to modify sees files contained in the
directories. The mode of the sees files prevents any modification at all except by
sees commands. If it should be necessary to patch an sees file for any reason, the
mode may be changed to 0644 by the owner allowing use of a text editor. Care must be
taken. The edited file should always be processed by an admin -h to check for
corruption followed by an admin -z to generate a proper checksum. Another admin -h is
recommended to ensure that the sees file is valid.

8-14

XENIX Program ming Programming Commands

admin (continued)

admin also makes use of a transient lock file called z.filename, which is used to prevent
simultaneous updates to the secs file by different users. See get for further
information.

See Also

delta, get, help, prs

ed, what in "Commandsu in the XENIX 286 Reference Manual

sccsfile in "File Formats" in the XENIX 286 C Library Guide

Diagnostics

Refer to help for explanations.

B-15

Programming Commands XENIX Programming

a r - Maintains archives and libraries.

Syntax

ar key [posname] afile name ...

Description

ar maintains groups of files combined into a single archive file. Its main use is to create
and update library files as used by the link editor, though it can be used for any similar
purpose.

key is one character from the set drqtpmx, optionally concatenated with one or more of
vuaibel. arile is the archive file. Each name is a constituent file in the archive file.
The key characters have these meanings:

d Deletes the named files from the archive file.

r Replaces the named files in the archive file. If the optional character u is used
with r, then only those files with modified dates later than the archive files are
replaced. If an optional positioning character from the set abi is used, then the
posname argument must be present; it specifies that new files are to be placed
after (a) or before (b or i) posname. Otherwise, new files are placed at the end.

q Quickly appends the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check whether the
added members are already in the archive. Useful only to avoid quadratic
behavior when creating a large archive piece by piece.

t Prints a table of contents of the archive file. If no names are given, all files in
the archive are tabled. If names are given, only those files are tabled.

p Prints the named files in the archive.

m Moves the named files to the end of the archive. If a positioning character is
present, then the posname argument must be present and, as in r, it specifies
where the files are to be moved.

x Extracts the named files. If no names are given, all files in the archive are
extracted. In neither case does x alter the archive file.

v Verbose. Under the verbose option, ar gives a file-by-file description of the
creation of a new archive file from the old archive and the constituent files. When
used with t, it gives a long listing of all information about the files. When used
with x or p, it precedes each file with a name.

B-16

XENIX Program ming Programming Commands

a r (continued)

c Create. Normally ar will create arile when it needs to. The create option
suppresses the normal message that is produced when arile is created.

1 Local. Normally ar places its temporary files in the directory /tmp. This option
causes them to be placed in the local directory.

Files

/tmp/v* Temporary files

See Also

ld, lorder, ranlib

ar in "File Formats" in the XENIX 286 C Library Guide

Notes

If the same file is mentioned twice in an argument list, it may be put in the archive
twice.

8-17

Programming Commands XENIX Program m ing

as - Invokes the XENIX assembler.

Syntax

as [options] file.s

Description

as is the XENIX assembler. It reads and assembles 8086/286 assembly language
instructions from the source file named file.s and creates either a linkable object file
named file.o or an executable program named a.out. The extension .s is recommended
but not required. If this extension is not given, as displays a warning and continues
processing.

These options are available:

-1

-01 num

Creates an assembly listing file called file.L. This file lists the source
instructions, the assembled (binary) code for each instruction, and any
assembly errors.

Sets the maximum length of external symbols to num. Names longer than
num are truncated before being copied to the external symbol table.

-g Directs the assembler to interpret undefined symbols as globally-defined
external symbols. If not given, undefined symbols cause an assembly error.

-Mm Creates a middle model object file suitable for linking with other middle
model object files. The resulting text segment is named FILE_TEXT, where
FILE is the file argument, but in uppercase letters.

-NT name

-NM name

-oobjfile

B-18

Sets the text segment name of the assembled code to name. This option
overrides the default text segment.

Sets the module name of the assembled code to name. The option overrides
the default module name.

Copies the assembled instructions to the file named objfile. This file is
executable only if no errors occur during the assembly. This option overrides
the default object name.

XENIX Programming

as (continued)

Files

/bin/as

See Also

cc,ld

a.out in "File Formats" in the XENIX 286 C Library Guide

Programming Commands

8-19

Programming Commands XENIX Programming

cb - Beautifies C programs.

Syntax

cb [file]

Description

cb takes a copy of the C program in file and places it on the standard output with
spacing and indentation that displays the structure of the program. If file is not given,
it acts on the standard input.

B-20

XENIX Programming Programming Commands

CC - Invokes the C compiler.

Syntax

cc [options] filenam e •••

Description

cc is the XENIX C compiler command. It creates executable programs by compiling and
linking the files named by the filename arguments. By default, cc creates the resulting
program in the file a.out.

filename can name any C or assembly language source file or any object or library file.
C source files must have a .c filename extension. Assembly language source files must
have .5; object files must have .0; and library files must have .a.

cc invokes the C compiler for each C source file and copies the result to an object file
whose basename is the same as the source file but whose extension is .0. cc invokes the
XENIX assembler, as, for each assembly source file and copies the result to an object
file whose extension is .0.

cc ignores object and library files until all source files have been compiled or assembled.
It then invokes the XENIX link editor, ld, and combines all the object files it has created
with object files and libraries given in the command line to form a single program.

Files are processed in the order they are encountered in the com mand line, so the order
of files is important. Library files are examined only if symbols referenced in previous
files have not yet been defined. Only those modules which define unresolved references
are concatenated. A number of "standard" libraries are searched automatically. These
libraries support the standard C library functions and program startup routines. Which
libraries are used depends on the program's memory model (see "Memory Models"
below). Execution of the resulting program will begin in the "main" program function.

The options are the following.

-p Preprocesses each source file and copies the result to a file whose basename is
the same as the source but whose extension is .i. Preprocessing performs the
actions specified by the preprocessing directives in the source file, and inhibits
compilation and linking.

-E Preprocesses each source file as described for -P, but copies the result to the
standard output. The option also places a #line directive with the current input
line number and source filename at the beginning of output for each file.

-EP Preprocesses each source file as described for -E, but does not place a #line
directive at the beginning of the file.

-C Preserves comments when preprocessing a file with -E or -P. That is, comments
are not removed from the preprocessed source. This option may be used only in
conjunction with -E or -P.

B-21

Programming Commands XENIX Program ming

CC (continued)

-0 name [= string]
Defines name to the preprocessor as if defined by a #define in each source file.
The form -0 name sets name to 1. The form -0 name = string sets name to the
given string.

-u name [= string]
Removes definition of name so that the preprocessor removes the name defined
by a #define in each source file. The form -U name sets name to O. The form
-U name = string undefines name for the given string.

-I pathname
Adds pathname to the list of directories to be searched when a #include file is
not found in the directory containing the current source file or whenever angle
brackets « » enclose the filename. There is a standard list of directories which
is searched automatically.

-x Removes the standard directories from the list of directories to be searched for
include files.

-v string

-Wnum

Copies string to the object file created from the given source file. This option
may be used for version control.

Sets the output level for compiler warning messages. If num is 0, no warning
messages are issued. If 1, only warnings about program structure and overt type
mismatches are issued. If 2, warnings about strong typing mismatches are
issued. If 3, warnings for all automatic conversions are issued. This option does
not affect compiler message output for non-warning messages.

-w Prevents compiler warning messages from being issued. Same as -W O.

-p Adds code for program profiling. Profiling code counts the number of calls to
each routine in the program and copies this information to the mon.out file.
This file can be examined using the prof command. Profiling is supported only
in small model.

-pack Packs structure members. Caution should be taken when using the pack option
because structures are no longer word-aligned.

-i Creates separate instruction and data spaces for small model programs. When
the output file is executed, the program text and data areas are allocated
separate physical segments. The text portion will be read-only and may be
shared by all users executing the file. The option is implied when creating
middle, large, or huge model programs.

-Fnum

8-22

Sets the size of the program stack to num bytes. Default stack size if not given
is 4K bytes.

XENIX Programming Programming Commands

CC (continued)

-K Removes stack probes from a program. Stack probes are used to detect stack
overflow on entry to program routines.

-nl num
Sets the maximum length of external symbols to num. Names longer than num
are truncated before being copied to the external symbol table.

-Alfu Same as -MI, plus saves/restores the value of the ds register before and after
procedure calls. The value is saved on the stack.

-Alhu same as -Mh, plus saves/restores the value of the ds register before and after
procedure calls. The value is saved on the stack.

-M string
Sets the program configuration. This configuration defines the program's
memory model, word order, and data threshold. It also enables C language
enhancements such as advanced instruction sets and keywords. string may be
any combination of the following (except that the s, m, 1, and h options are
mutually exclusive, as are 0, 1, and 2).

s Creates a small model program (default).
m Creates a middle model program.
1 Creates a large model program.
h Creates a huge model program.
e Enables these keywords: far, near, pascal, and fortran.
o Enables 86 code generation.
1 Enables 186 code generation.
2 Enables 286 code generation (default).

b Reverses the word orde.r for long types. High order word is first.
Default is low order word first.

t num Sets the size of the largest data item in the data group to num. Default
is 32,767. Items larger than this threshold are placed in another
segment.

d Sets SS equal to DS.

-c Suppresses linking of the object modules produced by the compilation(s). No
executable program is created.

-0 filename
Defines filename to be the name of the final executable program. This option
overrides the default name a.out and is effective only when the linker is
invoked.

-dos Directs cc to create an executable program for MS-DOS systems.

8-23

Programming Commands XENIX Program m ing

CC (continued)

-llibrary
Searches library for unresolved references to symbols. The library must be an
object file archive in ranlib format.

-0 Invokes the object code optimizer during compilation. Anyone of the following
strings can be appended after the 0 to provide different levels of optimizer
control. Without any letter following the 0, the normal optimization is to favor
code size and execution speed.

d Disable optimization; performs no optimization.
a Relax aliasing checks.
s Favor code size.
t Favor execution time.
x Maximum optimization (equivalent to -Oas and -K). This option should

be used with caution.

-8 Creates an assembly source listing of the compiled C source file and copies this
listing to the file whose basename is the same as the source but whose extension
is .s. Linking is also suppressed. It should be noted that this file is not suitable
for assembly. This option provides code for inspection only.

-L Creates an assembler listing file containing assembled code and assembly source
instructions. The listing is copied to the file whose basename is the same as the
source but whose extension is .L. This option overrides the -8 option and
suppresses linking.

-NM name
Sets the module name for each compiled or assembled source file to name. If
not given, the filename of each source file is used.

-NT name
Sets the text segment name for each compiled or assembled source file to name.
If not given, the name moduleTEXT is used for middle model, and _TEXT for
small model.

-ND name
Sets the data segment name for each compiled or assembled source file to name.
If not given, the name _DATA is used.

Many options (or equivalent forms of these options) are passed to the link editor as the
last phase of compilation. The s, m, and 1 configuration options are passed to specify
memory requirements. The -i, -F, and -p are passed to specify other characteristics of
the final program.

The -D and -I options may be used several times on the command line. The -D option
must not define the same name twice. These options affect subsequent source files
only.

B-24

XENIX Programming Programming Commands

CC (continued)

Memory Models

cc can create programs for four different memory models: small, middle, large, and
huge. In addition, small model programs can be pure or impure.

Impure-Text Small Model
These programs occupy one 64K -byte physical segment in which both text
(machine instructions) and data are combined. 8y default, cc creates impure
small model programs. They can also be created using the -Ms option.

Pure-Text Small Model
These programs occupy two 64K -byte physical segments. Text and data are in
separate segments. The text is read-only and may be shared by several
processes at once. The maximum program size is 128K bytes. Pure small model
programs are created using the -i flag when linking small model programs.

Middle Model
These programs occupy several physical segments when linked, but only one
segment contains data. A text segment is allocated per source module, but all
data segments are combined. Special calls and returns are used to access
functions in other segments. The total amount of text can be any size. Data
must not exceed 64K bytes. Middle models programs are created using the -Mm
option. These programs are always pure. .

Large Model
These programs occupy several physical segments with both text and data in as
many segments as required. Text is handled as in middle model. Special
addresses are used to access data in other segments. Text and data may be any
size, but no data item may be larger than 64K bytes. Large model programs are
created using the -MI option. These programs are always pure.

Huge Model
These programs occupy several physical segments with both text and data as in
large model, but arrays may span segments, allowing them to be larger than 64K
bytes. Arrays which span more than two segments (128K bytes) must contain
elements whose size in bytes is a power of two. Huge model programs are
created using the -Mh option. These programs are always pure.

Small and middle model object files can be linked only with object files and libraries of
the same model. Large and huge model object files can be linked only with large and
huge model object files and libraries. You cannot combine small, medium, and
large/huge model object files into one executable program. cc automatically selects the
correct small, middle, or large versions of the standard libraries based on the
configuration option. It is up to you to make sure that all of your object files and
private libraries are properly compiled in the appropriate model.

The special calls and returns used in middle and large model programs may affect
execution time, particularly if frequent calls are made to very short routines.

8-25

Programming Commands XENIX Programming

CC (continued)

In middle, large, and huge model programs, function pointers are 32 bits long. In large
and huge model programs, data pointers are 32 bits long. Programs making use of such
pointers must be written carefully to avoid incorrect declaration and use of these types.
lint will help to check for correct use.

Keep the following in mind when programming in huge model.

Objects
No object can cross a segment boundary. Objects are defined as data structures
that can be elements of an array, scalar objects (integers and floating point
numbers), and composite objects (structures and unions). If the array requires
three or more segments (more than 128K bytes), then the size of the objects in
the array must be a power of two.

Address Space
When accessing a huge model array, the compiler simulates a linear address
space.

Array Alignment
Arrays of objects requiring more than one segment are aligned so that no object
crosses a 64K-byte boundary.

Pointer Size
Another item to be considered when programming in huge model is the value
produced by sizeof(huge item) and sizeof(huge ptrl - huge ptr2). To obtain the
correct value, size of must be type cast as a lon-g -

(long)sizeof(huge item)
(long)sizeof(huge =ptrl - huge _ptr2)

where the value returned is a long instead of a normal integer.

The -NM, -NT, and -ND options may be used with middle, large, and huge model
programs to direct the text and data of specific object files to named physical
segments. All text having the same text segment name is placed in a single physical
segment. Similarly, all data having the same data segment name is placed in a single
physical segment.

Files

/bin/cc, /lib/pO, /lib/pI, /lib/p2, /lib/p3

See Also

as, ar, ld, lint, ranlib

B-26

XENIX Programming Programming Commands

CC (continued)

Notes

Error messages are produced by the program that detects the error. These messages are
usually produced by the C compiler but may occasionally be produced by the assembler
or the link loader.

All object module libraries must have a current ranlib directory.

The output of cc is in 86 REL format. The output of ld is in STL 286 format.

B-27

Programming Commands XENIX Programming

cdc - Changes the delta commentary of an sces delta.

Syntax

cdc -rSID [-m[mrlistll [-y[commentll files

Descri ption

cdc changes the delta commentary for the SID specified by the -r option, of each named
SCCS file.

The delta commentary is defined to be the Modification Request (MR) and com ment
information normally specified via the delta command (-m and -yoptions).

If a directory is named, cdc behaves as though each file in the directory were specified
as a named file, except that non-SCeS files (last component of the path name does not
begin with s.) and unreadable files are silently ignored. If a name of - (dash) is given,
the standard input is read (see the "Warning" section later in this entry); each line of the
standard input is taken to be the name of an sces file to be processed.

Arguments to cdc, which may appear in any order, consist of option arguments, and file
names.

All the described option arguments apply independently to each named file:

-rSID
Used to specify the sees identification (SID) string of a delta for which the delta
com mentary is to be changed.

-m[mrZist]

8-28

If the sees file has the v flag set (see the entry for admin earlier in this
appendix), then a list of MR numbers to be added and/or deleted in the delta
commentary of the SID specified by the -r option may be supplied. A null MR list
has no effect.

MR entries are added to the list of MRs in the same manner as that of delta. In
order to delete an MR, place the character! ahead of the MR number. (See the
"Examples" section later in this entry.) If the MR to be deleted is currently in the
list of MRs, it is removed and changed into a "comment" line. A list of all deleted
MRs is placed in the comment section of the delta commentary and preceded by a
comment line stating that they were deleted.

If -m is not used and the standard input is a terminal, the prompt MRs? is issued
on the standard output before the standard input is read. If the standard input is
not a terminal, no prompt is issued. The MRs? prompt always precedes the
comments? prompt. (See the description of the -y option, which follows.)

XENIX Programming Programming Commands

cdc (continued)

MRs in a list are separated by blanks and/or tab characters. An unescaped
newline character terminates the MR list.

Note that if the v flag has a value (see admin), it is taken to be the name of
a program or shell procedure that validates the correctness of the MR
numbers. If a nonzero exit status is returned from the MR number validation
program, cdc terminates, and the delta commentary remains unchanged.

-y[comment]
Arbitrary text used to replace the comment(s) already existing for the delta
specified by the -r option. The previous comments are kept and preceded by
a comment line stating that they were changed. A null comment has no
effect.

If -y is not specified and the standard input is a terminal, the prompt
comments? is issued on the standard output before the standard input is read;
if the standard input is not a terminal, no prompt is issued. An unescaped
newline character terminates the comment text.

In general, if you have made the delta, you can change its delta commentary; if you own
the file and directory, you can modify the delta commentary.

Examples

The following command

cdc - r1.6 - m"bI78-12345 !bI77-54321 bI79-00001" - ytrouble
s.file

adds b178-12345 and b179-00001 to the MR list, removes b177-54321 from the MR list,
and adds the comment trouble to delta 1.6 of s.fBe. The following interactive sequence
has the same effect:

cdc -r1.6 s.file
MRs? !bI77-S4321 b178-12345 b179-00001
comments? trouble

Warning

If sees file names are supplied to the cdc command via the standard input (-on the
command line), then the -m and -y options must also be used.

8-29

Programming Commands

cd c (continued)

Files

x-file

z-file

See Also

See delta.

See delta.

admin, delta, get, help, prs

sccsfile in "File Formats" in the XENIX 286 C Library Guide

Diagnostics

Use help for explanations.

B-30

XENIX Programming

XENIX Program m ing Programming Commands

comb - Combines secs deltas.

Syntax

comb [-0] [-5] [-psid] [-clist] file ...

Description

comb provides the means to combine one or more deltas in an secs file and make a
single new delta. The new delta replaces the previous deltas, making the sees file
smaller than the original.

comb does not perform the combination itself. Instead, it generates a shell procedure
that you must save and execute to reconstruct the given sces files. comb copies the
generated shell procedure to the standard output. To save the procedure, you must
redirect the output to a file. The saved file can then be executed like any other shell
procedure. (See sh in "Commands" in the XENIX 286 Reference Manual.)

When invoking comb, arguments may be specified in any order. All options apply to all
named sees files. If a directory is named, comb behaves as though each file in the
directory were specified as a named file, except that non-SCeS files (last component of
whose path names does not begin with s.) and unreadable files are silently ignored. If a
name of - is given, the standard input is read; each line of the standard input is taken to
be the name of an SCCS file to be processed; non-SCeS files and unreadable files are
silently ignored.

The generated shell procedure is written on the standard output.

The options are as follows. Each is explained as though only one named file is to be
processed, but the effects of any option apply independently to each named file.

-pSID

-clist

The SCCS identification string (SID) of the oldest delta to be preserved. All
older deltas are discarded in the reconstructed file.

A list of deltas to be preserved. (For the syntax of a list, see the entry for
get later in this appendix.) All other deltas are discarded.

-0 For each get-e generated, this argument causes the reconstructed file to be
accessed at the release of the delta to be created; otherwise, the
reconstructed file would be accessed at the most recent ancestor. Use of
the -0 option may decrease the size of the reconstructed sees file. It may
also alter the shape of the delta tree of the original file.

B-31

Programming Commands XENIX Programming

comb (continued)

-s This argument causes comb to generate a shell procedure that will produce a
report for each file giving the file name, size (in blocks) after combining,
original size (also in blocks), and percentage change computed by

100 * (original - combined) / original

Before any SCCS files are actually combined, you should use this option to determine
exactly how much space is saved by the combining process.

If no option arguments are specified, comb will preserve only leaf deltas and the
minimal number of ancestors needed to preserve the tree.

Files

comb????? Temporary files

See Also

admin, delta, get, help, prs

sccsfile in "File Formats" in the XENIX 286 C Library Guide

Diagnostics

Use help for explanations.

Notes

comb may rearrange the shape of the tree of deltas. It may not save any space; in fact,
it is possible for the reconstructed file to be larger than the original.

B-32

XENIX Program ming Programming Commands

cref - Makes a cross-reference listing.

Syntax

cref [-acilnostux123] file ...

Description

eref makes a cross-reference listing of assembler or C programs. The program searches
the given files for symbols in the appropriate C or assembly language syntax.

The output report is in four columns:

1. Symbol

2. File name

3. Current symbol or line number

4. Text as it appears in the file

eref uses either an ignore file or an only file. If the -i option is given, the next
argument is taken to be an ignore file; if the -0 option is given, the next argument is
taken to be an only file. ignore and only files are lists of symbols separated by newlines.
All symbols in an ignore file are ignored in columns 1 and 3 of the output. If an only file
is given, only symbols in that file will appear in column 1. Only one of these options
may be given; the default setting is -i using the default ignore file. (See the "Files"
section later in this entry.) Assembler-predefined symbols and C keywords are ignored.

The -5 option causes current symbols to be put in column 3. In the assembler, the
current symbol is the most recent name symbol; in C, it is the current function name.
The -1 option causes the line number within the file to be put in column 3.

The -t option causes the next available argument to be used as the name of the
intermediate file (instead of the temporary file Itmp/ert??). This file is created and is
not removed at the end of the process.

B-33

Programming Com mands XENIX Programming

(ref (continued)

The cref options are

a Uses assembler format (default)

c Uses C format

Uses an ignore file

I Puts line number (instead of current symbol) in column 3

n Omits column 4 (no context)

o Uses an only file (see above)

s Current symbol in column 3 (default)

t User-supplied temporary file

u Prints symbols that occur exactly once

x Prints C-external symbols

1 Sorts output on column 1 (default)

2 Sorts output on column 2

3 Sorts output on column 3

Files

/usr/lib/ cref/* Assembler-specific files

See Also

as, cc, xref

sort in "Commands" in the XENIX 286 Reference Manual

Notes

cref inserts an ASCII DEL character into the intermediate file after the eighth
character of each name that is eight or more characters long in the source file.

B-34

XENIX Programming Programming Commands

csh - Invokes a shell command interpreter with C-like syntax.

Syntax

csh [-cefi nstvVxX] [arg] ...

Description

csh is a command language interpreter. It begins by executing commands from the file
.cshrc in the home directory of the invoker. If this is a login shell, then it also executes
commands from the file .login there. In the normal case, the shell will then begin
reading commands from the terminal, prompting with 96. (The processing of arguments
and the use of the shell to process files containing command scripts is described later.)

The shell then repeatedly performs the following actions: a line of command input is
read and broken into words. This sequence of words is placed on the command history
list and then parsed. Finally, each command in the current line is executed.

When a login shell terminates, it executes commands from the file .logout in the user's
home directory.

Lexical Structure

The shell splits input lines into words at blanks and tabs with the following exceptions.
The characters &, I, ;, <, >, (,) form separate words. If doubled in &&, II, «, or »,
these pairs form single words. These parser metacharacters may be made part of other
words or denied their special meaning by placing a backslash (\) ahead of them. A
newline preceded by a \ is equivalent to a blank.

In addition, strings enclosed in matched pairs of quotations--', ; or "--form parts of a
word; metacharacters in these strings, including blanks and tabs, do not form separate
words. The semantics for these quotations will be described later in this entry. Within
pairs of \ or " characters, a newline preceded by a \ gives a true newline character.

When the shell's input is not a terminal, the character # introduces a comment that
continues to the end of the input line. The character does not have this special meaning
when preceded by \ and placed inside the quotation marks " ; and ft.

Commands

A simple command is a sequence of words, the first of which specifies the command to
be executed. A simple command or a sequence of simple commands separated by
vertical bar (I) characters forms a pipeline. The output of each command in a pipeline is
connected to the input of the next. Sequences of pipelines may be separated by ; and
executed sequentially. A sequence of pipelines may be executed without waiting for it
to terminate by following it with an ampersand (&). Such a sequence cannot be
terminated by a hangup signal; the nohup command need not be used.

8-35

Programming Commands XENIX Programming

csh (continued)

Any of these characters may be placed in parentheses to form a simple command, which
may be a component of a pipeline. It is also possible to separate pipelines with II or &&
indicating, as in the C language, that the second is to be executed only if the first fails
or succeeds, respectively. (See the section on "Expressions" later in this entry.)

Su bstitutions

The following sections describe the various transformations the shell performs on the
input. It performs substitutions in the order the input demands, not necessarily in the
order presented here.

History Substitutions

History substitutions can be used to reintroduce sequences of words from previous
commands, possibly performing modifications on these words. Thus, history
sUbstitutions provide a generalization of a redo function.

History substitutions begin with the exclamation point character (!) and may begin
anywhere in the input stream if a history sUbstitution is not already in progress. This!
may be preceded by a \ to prevent its special meaning. An ! is passed unchanged when
it is followed by a blank, tab, newline, =, or (. History substitutions also occur when an
input line begins with a caret ("). This special abbreviation will be described later. Any
input line that contains history substitution is echoed on the terminal before it is
executed as it could have been typed without history substitution.

Commands input from the terminal that consist of one or more words are saved on the
history list, the size of which is controlled by the history variable. The previous
command is always retained. Commands are numbered sequentially from 1.

For example, consider the following output from the history command:

9 write michael
1 0 ex write.c
11 cat oldwrite.c
12 diff *write.c

The commands are shown with their event numbers. It is not usually necessary to use
event numbers, but the current event number can be made part of the prompt by placing
an ! in the prompt string. With the current event 13, we can refer to previous events by
event number!1I. We can also refer to them relatively, as in !-2 (which refers to the
same event), by a prefix of a command word, as in !d for event 12 or !w for event 9, or
by a string contained in a word in the command, as in !?mic? (which also refers to event
9). These forms, without further modification, simply reintroduce the words of the
specified events, each separated by a single blank. As a special case, !! refers to the
previous command; thus!! alone is essentially a redo. The form !# references the
current command (the one being typed in). It allows a word to be selected from further
left in the line to avoid retyping a long name, as in !#:I.

B-36

XENIX Programming Programming Commands

csh (continued)

To select words from an event, we can follow the event specification by a colon (:) and
a designator for the desired words. The words of an input line are numbered from 0, the
first (usually command) word being 0, the second word (first argument) being 1, and so
on. The basic word designators are

o First (command) word

n nth argument

First argument (that is, 1)

$ Last argument

96 Word matched by (immediately preceding) ?s? search

x-y Range of words

-y Abbreviates O-y

* Abbreviates A -$, or nothing if only one word in event

x* Abbreviates x-$

x- Like x* but omitting word $

The: separating the event specification from the word designator can be omitted if the
argument selector begins with a A, $, *, -, or %. A sequence of modifiers, each
preceded by a colon, can be placed after the optional word designator. The following
modifiers are defined:

h Removes a trailing path name component

r Removes a trailing .xxx component

sll/rl Substitutes l for r

t Removes all leading path name components

c5c Repeats the previous substitution

g Applies the change globally, prefixing the above

p Prints the new command but do not execute it

q Quotes the SUbstituted words, preventing substitutions

x Like q, but breaks into words at blanks, tabs, and newlines

The modification is applied only to the first modifiable word unless preceded by a g. In
any case, it is an error for no word to be applicable.

8-37

Programming Commands XENIX Programming

csh (continued)

The left sides of substitutions are strings, not regular expressions in the sense of the
editors. Any character can be used in place of slash (/) as the delimiter. A backslash (\)
quotes the delimiter into the 1 and r strings. An & in the right side is replaced by the
text from the left. A \ quotes &. A null l uses the previous string either from an l or
from a contextual scan string s in !?s? The trailing delimiter in a substitution or the
trailing? in a contextual scan can be omitted if a newline follows immediately.

A history reference may be given without an event specification, for example, !$. In
this case, the reference is to the previous command unless a previous history reference
occurred on the same line, in which case this form repeats the previous reference. Thus
!?fOO?A!$ gives the first and last arguments from the command matching ?foo?

A special abbreviation of a history reference occurs when the first nonblank character
of an input 'line is a caret ('"'). This is equivalent to !:s" and provides a convenient
shorthand for sUbstitutions on the text of the previous line. Thus, "Ib"lib fixes the
spelling of lib in the previous command. Finally, a history substitution may be
surrounded with braces ({ }) if necessary to insulate it from the characters that follow.
Thus, after Is -ld-paul we might do HIla to do Is -Id-paula, while !la would look for a
command starting la.

Quotations with ' and n

The quotation of strings by , and" can be used to prevent all or some of the remaining
substitutions. Strings enclosed in ' are prevented any further interpretation. Strings
enclosed in " are variable, and command expansion may occur.In both cases, the
resulting text becomes (all or part of) a single word. Only in one special case (see
"Command Substitution" later in this entry) does a " quoted string yield parts of more
than one word; , quoted strings never do.

Alias Substitution

The shell maintains a list of aliases that can be established, displayed, and modified by
the alias and unalias commands. After a command line is scanned, it is parsed into
distinct commands, and the first word of each command, left-to-right, is checked to see
if it has an alias. If it does, then the text that is the alias for that command is reread
with the history mechanism available as though that command were the previous input
line. The resulting words replace the command and argument list. If no reference is
made to the history list, then the argument list is left unchanged.

Thus if the alias for Is is ls -I the command "Is /usr" would map to "ls -I /usr". Similarly,
if the alias for lookup was grep "!" /etc/passwd" then "lookup bill" would map to "grep
bill /etc/passwd". If an alias is found, the word transformation of the input text is
performed, and the aliasing process begins again on the reformed input line. If the first
word of the new text is the same as the old, flagging it will prevent further aliasing and
will preclude looping. Other loops are detected and cause an error. The mechanism
allows aliases to introduce parser metasyntax. Thus, we can alias print as "'pr\!* I lprlll
to make a command that paginates its arguments to the line printer.

B-38

XENIX Programming Programming Commands

csh (continued)

Variable Substitution

The shell maintains a set of variables, each of which has as its value a list of zero or
more words. Some of these variables are set by the shell or referred to by it. For
instance, the argv variable is an image of the shell's argument list, and words of this
variable's value are referred to in special ways.

The values of variables may be displayed and changed by using the set and unset
commands. Of the variables referred to by the shell, a number are toggles; the shell
does not care what their value is, only whether they are set or not. For instance, the
verbose variable is a toggle which causes command input to be echoed. The setting of
this variable results from the -v command line option.

Other operations treat variables numerically. The at sign (@.) command permits numeric
calculations to be performed and the result assigned to a variable. However, variable
values are always represented as (zero or more) strings. For the purposes of numeric
operations, the null string is considered to be zero, and the second and subsequent words
of multi word values are ignored.

After the input line is aliased and parsed, and before each command is executed,
variable sUbstitution is performed, keyed by dollar sign ($) characters. This expansion
can be prevented by placing a backslash (\) ahead of the dollar sign except within double
quotation marks (") where it always occurs and within single quotation marks (') where it
never occurs. Strings quoted by back quotation marks 0 are interpreted later (see the
section "Command Substitution" later in this entry) so dollar sign substitution does not
occur there until later, if at all. A dollar sign is passed unchanged if followed by a
blank, tab, or end-of-line.

Input and output redirections are recognized before variable expansion and are variable
expanded separately. Otherwise, the command name and entire argument list are
expanded together. It is thus possible for the first (command) word to generate more
than one word, the first of which becomes the command name and the rest of which
become arguments.

Unless enclosed in double quotation marks or given the :q modifier, the results of
variable sUbstitution may eventually be command- and file-name-substituted. Within
double quotation marks (") a variable whose value consists of multiple words expands to
a portion of a single word, with the words of the variable's value separated by blanks.
When the :q modifier is applied to a substitution, the variable expands to multiple words
with each word separated by a blank and quoted to prevent later command or file name
substitution.

The following sequences are provided for introducing variable values into the shell input.
Except as noted, it is an error to reference a variable that is not set.

8-39

Programming Commands XENIX Program m ing

csh (continued)

$name
${name}

Are replaced by the words of the value of variable name, each separated by a
blank. Braces insulate name from following characters, which would otherwise
be part of it. Shell variables have names consisting of up to 20 letters, digits,
and underscores.

If name is not a shell variable, but is set in the environment, then that value is returned.
However, modifiers and the other forms given below are not available in this case.

$name[selector]
${name[selector] }

May be used to select only some of the words from the value of name. The
selector is subjected to $ sUbstitution and may consist of a single number or two
numbers separated by a -. The first word of a variable's value is numbered 1. If
the first number of a range is omitted, it defaults to 1. If the last member of a
range is omitted, it defaults to $#name. The selector * selects all words. It is
not an error for a range to be empty if the second argument is omitted or in
range.

$ltname
$lt{name}

Gives the number of words in the variable. This is useful for later use in a
[selector].

$0 Substitutes the name of the file from which command input is being read. An
error occurs if the name is not known.

$number
${number}
. Equivalent to $argv[number].

$* , Equivalent to $argv[*].

The modifiers :h, :t, :r, :q, and :x may be applied to these substitutions as may :gh, :gt,
and : gr. If braces ({ }) appear in the command form, then the modifiers must appear
within the braces. Only one colon (:) modifier is allowed on each dollar sign ($)
expansion.

The following SUbstitutions may not be modified with: modifiers.

$?name
${?name}

Substitutes the string 1 if name is set, 0 if it is not.

$?O Substitutes 1 if the current input file name is known, 0 if it is not.

$$ Substitutes the (decimal) process number of the (parent) shell.

B-40

XENIX Programming Programming Commands

csh (continued)

Command and File Name Substitution

Command and file name substitution are applied selectively to the arguments of built-in
commands. This means that portions of expressions that are not evaluated are not
subjected to these expansions. For commands that are not internal to the shell, the
command name is substituted separately from the argument list. This occurs very late,
after input-output redirection is performed, and in a child of the main shell.

Command Substitution. Command substitution is indicated by a command enclosed in
back quotation marks O. The output from such a command is normally broken into
separate words at blanks, tabs and newlines, with null words being discarded, this text
then replacing the original string. Within double quotation marks, only newlines force
new words; blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Note that it is thus
possible for a command substitution to yield only part of a word, even if the command
outputs a complete line.

File Name Substitution. If a word contains any of the characters *, ?, [, or { or begins
with the character , then that word is a candidate for file name substitution, also known
as globbing. This word is then regarded as a pattern and replaced with an alphabetically
sorted list of file names that match the pattern. In a list of words specifying file name
substitution it is an error for no pattern to match an existing file name, but it is not
required for each pattern to match. Only the metacharacters *, ?, and [imply pattern
matching, the characters and { being more akin to abbreviations.

In matching file names, the character dot (.) at the beginning of a file name or
immediately following a slash (/), as well as the character / itself must be matched
explicitly. The character asterisk (*) matches any string of characters, including the
null string. The character question mark (?) matches any single character. The
sequence [•••] matches anyone of the characters enclosed. Within [•••], a pair of
characters separated by dash (-) matches any character lexically between the two
(inclusive).

The character tilde (....) at the beginning of a file name is used to refer to home
directories. Standing alone, it expands to the invoker's home directory as reflected in
the value of the variable home. When followed by a name consisting of letters, digits
and dash characters (-), the shell searches for a user with that name and SUbstitutes his
or her home directory; thus -ken might expand to /usr/ken and -ken/chmach to
/usr/ken/chmach. If the character is followed by a character other than a letter or
slash (/) or if it appears somewhere besides the beginning of a word, it is left unchanged.

The metanotation a{b,c,d}e is a shorthand for abe ace ade. Left-to-right order is
preserved, with results of matches being sorted separately at a low level to preserve
this order. This construct may be nested. Thus, -source/sl/{oldls,ls}.c expands to
/usr/source/sl/oldls.c /usr/source/sl/ls.c, whether or not these files exist and without
any chance of error if the home directory for source is /usr/source. Similarly,
•• /{memo,*box} might expand to •• /memo •• /box •• /mbox. (Note that memo was not
sorted with the results of matching *box.) As a special case {, } and D are passed
unchanged.

8-41

Programming Commands XENIX Programming

csh (continued)

Input/Output

The standard input and standard output of a command may be redirected with the
following syntax:

<name

«word

Opens file name (which is first variable, command, and file name expanded) as
the standard input.

Reads the shell input up to a line which is identical to word. word is not
subjected to variable, file name or command substitution, and each input line is
compared to word before any sUbstitutions are done on this input line. Unless a"
quoting backslash, double or single quotation mark, or back quotation mark
appears in word, variable and com mand substitution is performed on the
intervening lines, allowing \ to quote $, \, and: Commands that are substituted
have all blanks, tabs, and new lines preserved, except for the final newline,
which is dropped. The resulting text is placed in an anonymous temporary file
that is given to the command as standard input.

>name
>!name
>&name
>&!name

The file name is used as standard output. If the file does not exist, then it is
created; if the file exists, it is truncated, and its previous contents are lost.

If the variable noclobber is set, then the file must not already exist, or it must
be a character special file (for example, a terminal or /dev/null); otherwise, an
error results. This provision helps prevent accidental destruction of files. In
this case the ! forms can be used to suppress a check. The forms involving &
route the diagnostic output into the specified file as well as the standard output.
name is expanded in the same way as < input file names are.

»name
»&name
»!name
»&!name

B-42

Uses the file name as standard output like> but places output at the end of the
file. If the variable noclobber is set, then it is an error for the file not to exist
unless one of the! forms is given. Otherwise similar to >.

XENIX Programming Programming Commands

csh (continued)

If a command is run detached (followed by &), then the default standard input for the
command is the empty file /dev/null. Otherwise, the command receives the
environment in which the shell was invoked as modified by the input-output parameters
and the presence of the command in a pipeline. Thus, unlike some previous shells,
commands run from a file of shell commands have no access to the text of the
commands by default; rather, they receive the original standard input of the shell. The
« mechanism should be used to present in-line data. This permits shell command
scripts to function as components of pipelines and allows the shell to block read its
input.

Diagnostic output may be directed through a pipe with the standard output. Simply use
the form 1& instead of just I.

Expressions

A number of the built-in commands (to be described later) take expressions, in which the
operators are similar to those of C and have the same precedence. These expressions
appear in the @" exit, if, and while commands. The following operators are available:

II && & != <= >= < >« »
+ * I % -- ()

Here, the precedence increases from left to right, with the operators

== and !=
<=, >=, <, and >
« and »
+ and -
*,1, and %

forming groups at the same level. The == and != operators compare their arguments as
strings; all others operate on numbers. Strings that begin with 0 are considered octal
numbers. Null or missing arguments are considered o. The results of all expressions are
strings, which represent decimal numbers. It is important to note that no two
components of an expression can appear in the same word. Except when adjacent to
components of expressions that are syntactically significant to the parser--& I < > ()-
they should be surrounded by spaces.

8-43

Programming Commands XENIX Programming

csh (continued)

Also available in expressions as primitive operands are command executions enclosed in
{ and} and file enquiries of the form -l name where l is one of

r Read access
w Write access
x Execute access
e Existence
0 Ownership
z Zero size
f Plain file
d Directory

The specified name is command- and file-name-expanded, then tested to see if it has
the specified relationship to the real user. If the file does not exist or is inaccessible,
then all enquiries return false (0). Command executions succeed, returning true (1) if
the command exits with status 0; otherwise, they fail, returning false (0). If more
detailed status information is required, then the command should be executed outside of
an expression and the variable status examined.

Control Flow

The shell contains a number of commands that can be used to regulate the flow of
control in command files (shell scripts) and (in limited but useful ways) from terminal
input. These commands all operate by forcing the shell to reread or skip in its input
and, due to the implementation, restrict the placement of some of the commands.

The foreach, switch, and while statements, as well as the if-then-else form of the if
statement require that the major keywords appear in a single simple command on an
input line as shown in this section.

If the shell's input is not seekable, the shell buffers up input whenever a loop is being
read and performs seeks in this internal buffer to accomplish the rereading implied by
the loop. (To the extent that this allows, backward goto commands will succeed on
nonseekable inputs.)

B-44

XENIX Program m ing Programming Commands

csh (continued)

Built-In Commands

Built-in commands are executed within the shell. If a built-in command occurs as any
component of a pipeline except the last, then it is executed in a subshell.

alias
alias name
alias nam e wordlist

break

The first form prints all aliases. The second form prints the alias for name. The
final form assigns the specified wordlist as the alias of name; wordlist is
command- and file-name-substituted. name is not allowed to be alias or unalias.

Causes execution to resume after the end of the nearest enclosing foreach or
while statement. The remaining commands on the current line are executed.
Multilevel breaks are thus possible by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A string in a switch statement as discussed later under "switch".

cd
cd name
chdir
chdir name

Changes the shell's working directory to directory name. If no argument is
given, then the directory changes to the home directory of the user. If name is
not found as a subdirectory of the current directory (and does not begin with /,
./, or . ./), then each component of the variable cdpath is checked to see if it has
a subdirectory name. Finally, if all else fails but name is a shell variable whose
value begins with /, then this is tried to see if it is a directory.

continue

default:

Continues execution of the nearest enclosing while or foreach. The rest of the
commands on the current line are executed.

Labels the default case in a switch statement. The default should come after all
case labels.

echo wordlist
The specified words are written to the shell's standard output. A \c causes the
echo to complete without printing a newline. A \n in wordlist causes a newline
to be printed. Otherwise, the words are echoed, separated by spaces.

B-45

Programming Commands XENIX Programming

csh (continued)

else
end
endif
endsw

See the descriptions of the foreach, if, switch, and while statements.

exec command
The specified command is executed in place of the current shell.

exit
exit(expr)

The shell exits either with the value of the status variable (first form) or with
the value of the specified expr (second form).

foreach name (wordlist)

end
The variable name is successively set to each member of wordlist, and the
sequence of commands between this command and the matching end is
executed. (Both foreach and end must appear alone on separate lines.)

The built-in command continue may be used to continue the loop prematurely
and the built-in command break to terminate it prematurely. When this
command is read from the terminal, the loop is read up once, prompting with?,
before any statements in the loop are executed.

glob wordlist
Like echo except that \ escapes are not recognized and that words are delimited
by null characters in the output. Useful for programs that need the shell to file
name-expand a list of words.

goto word

history

The specified word is file-name- and command-expanded to yield a string of the
form label. The shell rewinds its input as much as possible and searches for a
line of the form label: possibly preceded by blanks or tabs. Execution continues
after the specified line.

Displays the history event list.

if (expr) command

8-46

If the specified expression evaluates true, then the single command with
arguments is executed. Variable substitution on command happens early, at the
same time it does for the rest of the if command. command must be a simple
command, not a pipeline, a command list, or a parenthesized command list.
When command is not executed, input/output redirection occurs even if expr is
false.

XENIX Programming Programming Commands

csh (continued)

if (expr) then

else if (expr2) then

else

endif

logout

nice

If the specified expr is true, then the commands to the first else are executed;
else if expr2 is true, then the commands to the second else are executed, etc.
Any number of else-if pairs are possible; only one endif is needed. The else part
is likewise optional. (The words else and endif must appear at the beginning of
input lines; the if must appear alone on its input line or after $IR else.)

Terminates a login shell. The only way to log out if ignoreeof is set.

nice +number
nice command
nice +number command

nohup

The first form sets the nice for this shell to 4. The second form sets the nice to
the given number. The final two forms run command at priority 4 and number,
respectively. With "nice -number •••• " the super-user may increase the priority
by reducing the priority number. The command is always executed in a subshell,
and the restrictions placed on commands in simple if statements apply.

nohup command
The first form can be used in shell scripts to cause hangups to be ignored for the
remainder of the script. The second form causes the specified command to be
run with hangups ignored. Unless the shell is running detached, nohup has no
effect. All processes detached with & are automatically nohuped. (Thus, nohup
is not really needed.)

onintr
onintr
onintr label

Controls the action of the shell on interrupts. The first form restores the
default action of the shell on interrupts, which is to terminate shell scripts or to
return to the terminal command input level. The second form onintr- causes all
interrupts to be ignored. The final form causes the shell to execute a goto label
when an interrupt is received or a child process terminates because it was
interrupted. In any case, if the shell is running detached and interrupts are
being ignored, no forms of onintr have meaning, and interrupts continue to be
ignored by the shell and all invoked commands.

8-47

Programming Commands XENIX Programming

csh (continued)

rehash
Causes the internal hash table of the contents of the directories in the path
variable to be recomputed. This is needed if new commands are added to
directories in the path while you are logged in. This should be necessary only if
you add commands to one of your own directories or if a systems programmer
changes the contents of one of the system directories.

repeat count command

set

The specified command, which is subject to the same restrictions as the
command in this one-line if statement, is executed count times. I/O
redirections occur exactly once, even if count is o.

set name
set nam e=word
set name[index]=word
set name=(wordlist)

The first form of the command shows the value of all shell variables. Variables
that have a value other than a single word print as a parenthesized word list.
The second form sets name to the null string. The third form sets name to the
single word. The fourth form sets the indexth component of name to word; this
component must already exist. The final form sets name to the list of words in
wordlist. In all cases, the value is command- and file-name-expanded. These
arguments may be repeated to set multiple values in a single set command.
Note however, that variable expansion happens for all arguments before any
setting occurs.

setenv name value

shift

Sets the value of the environment variable name to be value, a single string.
Useful environment variables are TERM, the type of terminal you are using, and
SHELL, the shell you are using.

shift variable
The members of argv are shifted to the left, discarding argv[1]. It is an error
for argv not to be set or to have less than one word as value. The second form
performs the same function on the specified variable.

source name

B-48

The shell reads commands from name. source commands may be nested. If they
are nested too deeply, the shell may run out of file descriptors. An error in a
source at any level terminates all nested source commands. Input during source
commands is never placed on the history list.

XENIX Program ming Programming Commands

csh (continued)

switch (string)
case string 1 :

breaksw

default:

breaksw
endsw

time

Each case label is successively matched against the specified string, which is
first com mand- and file-name-expanded. The file metacharacters *, ?, and [..•]
may be used in the case labels, which are variable-expanded. If none of the
labels matches before a default label is found, then the execution begins after
the default label. Each case label and the default label must appear at the
beginning of a line. The command endsw causes execution to continue after the
breaksw. Otherwise, control may fall through case labels and default labels, as
in C. If no label matches and there is no default, execution continues after the
breaksw.

time command
With no argument, a summary of time used by this shell and its children is
printed. If arguments are given, the specified simple command is timed, and a
time summary as described under the time variable (see "Predefined Variables"
later in this entry) is printed. If necessary, an extra shell is created to print the
time statistic when the command completes.

umask
umask value

The file creation mask is displayed (first form) or set to the specified value
(second form). The mask is given in octal. Common values for the mask are
002, which gives all access to the group and read and execute access to others,
or 022, which gives all access except write access to users in the group and to
others.

unalias pattern

unhash

All aliases with names that match the specified pattern are discarded. Thus, all
aliases are removed by unalias *. It is not an error for nothing to be unaliased.

Use of the internal hash table to speed location of executed programs is
disabled.

unset pattern
All variables with names that match the specified pattern are removed. Thus all
variables are removed by unset *; this has noticeably distasteful side effects.
Having nothing unset is not an error.

unsetenv pattern
All environment variables with names that match the specified pattern are
removed.

B-49

Programming Commands XENIX Program m ing

csh (continued)

wait
All child processes are waited for. If the shell is interactive, then an interrupt
can disrupt the wait, at which time the shell prints names and process numbers
of all children known to be outstanding.

while (expr)

end

@.

As the specified expression evaluates nonzero, the commands between the while
and the matching end are evaluated. break and continue may be used to
terminate or continue the loop prematurely. (The while and end must appear
alone on their input lines.) Prompting occurs here the first time through the
loop as for the foreach statement if the input is a terminal.

@. nam e = expr
@. name[index] = expr

The first form prints the values of all the shell variables. The second form sets
the specified name to the value of expr. If the expression contains <, >, &, or I,
then at least this part of the expression must be placed within (). The third
form assigns the value of expr to the indexth argument of name. Both name and
its indexth component must already exist.

Assignment operators such as *= and += are available as in C. The space
separating the name from the assignment operator is optional. Spaces are
mandatory in separating components of expr that would otherwise be single
words. Special postfix operators ++ and --, respectively, increment and
decrement name (for example, @. i++).

Predefined Variables

The following variables have special meaning to the shell. Of these, argv, child, home,
path, prompt, shell, and status are always set by the shell. Except for child and status,
setting occurs only at initialization; these two variables will not then be modified unless
done explicitly by the user.

The shell copies the environment variable PATH into the variable path and copies the
value back into the environment whenever path is set. Thus, there is no need to be
concerned about its setting other than in the file .cshrc, as inferior csh processes will
import the definition of path from the environment.

argv

B-50

Set to the arguments to the shell, it is from this variable that
positional parameters are substituted; that is, $1 is replaced by
$argv[l], etc.

XENIX Programming Programming Commands

csh (continued)

cdpath

child

echo

histchars

history

home

ignoreeof

mail

noclobber

noglob

Gives a list of alternate directories searched to find subdirectories in
cd com mands.

The process number printed when the last command was forked with &.
This variable is unset when this process terminates.

Set when the -x command line option is given. Causes each command
and its arguments to be echoed just before it is executed. For
nonbuilt-in commands, all expansions occur before echoing. Built-in
commands are echoed before command and file name substitution,
since these substitutions are then done selectively.

Can be assigned a two-character string. The first character is used as
a history character in place of !; the second character is used in place
of the A substitution mechanism. For example, set histchars=",;" will
cause the history characters to be comma and semicolon.

Can be given a numeric value to control the size of the history list.
Any command that has been referenced in this many events will not be
discarded. A history that is too large may run the shell out of memory.
The last executed command is always saved on the history list.

The home directory of the invoker, initialized from the environment.
The file name expansion of -. refers to this variable.

If set, the shell ignores end-of-file from input devices that are
terminals. This prevents a shell from accidentally being terminated by
typing a CONTROL-D.

The files where the shell checks for mail. This is done after each
command completion and will result in a prompt, if a specified interval
has elapsed. The shell says You have new mail if the file exists with an
access time not greater than its modify time. If the first word of the
value of mail is numeric, it specifies a different mail checking interval,
in seconds, than the default, which is 10 minutes. If multiple mail files
are specified, then the shell says New mail in name when there is mail
in the file name.

As described earlier, in the "Input/Output" section of this entry,
restrictions are placed on output redirection to ensure that files are
not accidentally destroyed and that » redirections refer to existing
files.

If set, file name expansion is inhibited. This is most useful in shell
scripts that are not dealing with file names, and when a list of file
names has been obtained and further expansions are not desirable.

B-51

Programming Commands XENIX Programming

csh (continued)

nonomatch

path

prompt

shell

status

time

verbose

B-52

If set, it is not an error for a file name expansion to not match any
existing files; rather, the primitive pattern is returned. It is still an
error for the primitive pattern to be malformed; that is, echo [still
gives an error.

Each word of the path variable specifies a directory in which
commands are to be sought for execution. A null word specifies the
current directory. If there is no path variable, then only full path
names will execute. The usual search path is Ibin, /usr/bin, and ., but
this may vary from system to system. For the super-user, the default
search path is letc, Ibin, and lusr/bin. A shell that is given neither the
-c nor the -t option will normally hash the contents of the directories
in . the path variable after reading .cshrc and each time the path
variable is reset. If new commands are added to these directories
while the shell is active, it may be necessary to give the rehash.
Otherwise, the commands may not be found.

The string printed before each com mand is read from an interactive
terminal input. If an ! appears in the string, it will be replaced by the
current event number unless a preceding \ is given. Default is % for
the user, # for the super-user.

The file in which the shell resides. This is used in forking shells to
interpret files that have execute bits set but are not executable by the
system. (See the section "Nonbuilt-In Command Execution," which
follows.) Initialized to the system-dependent home of the shell.

The status returned by the last command. If it terminated abnormally,
then 0200 is added to the status. Abnormal termination results in a
core dump. Built-in commands that fail return exit status 1; all other
built-in commands set status o.

Controls automatic timing of commands. If set, then any command
that takes more than this many CPU seconds will cause a line of
information to be printed when the command terminates. This line
gives the user, system, and real times and a utilization percentage,
which is the ratio of user plus system times to real time to be printed
when it terminates.

Set by the -v command line option, causes the words of each command
to be printed after history substitution.

XENIX Programming Programming Commands

csh (continued)

Nonbuilt-In Command Execution

When a command to be executed is found to not be a built-in command the shell
attempts to execute the command via exec. Each word in the variable path names a
directory from which the shell will attempt to execute the command. If it is given
neither a -c option nor a -t option, the shell will hash the names in these directories into
an internal table so that it will try an exec in a directory only if there is a possibility
that the command resides there. This greatly speeds command location when a large
number of directories are present in the search path. If this mechanism has been turned
off (via unhash) or if the shell was given a -c or -t argument and in any case for each
directory component of path which does not begin with a /, the shell concatenates with
the given command name to form a path name of a file which it then attempts to
execute.

Parenthesized commands are always executed in a subshell. Thus, (cd; pwd) ; pwd
prints the home directory, leaving you where you were (printing this after the home
directory), while cd ; pwd leaves you in the home directory. Parenthesized commands
are most often used to prevent cd from affecting the current shell.

If the file has execute permissions but is not an executable binary to the system, then it
is assumed to be a file containing shell commands, and a new shell is spawned to read it.

If there is an alias for shell then the words of the alias will be prepended to the
argument list to form the shell command. The first word of the alias should be the full
path name of the shell (for example, $shell). Note that this is a special, late occurring
case of alias sUbstitution and that it only allows words to be prepended to the argument
list without modification.

8-53

Programming Commands XENIX Programming

csh (continued)

Argument List Processing

If argument 0 to the shell is -, then this is a login shell. The flag arguments are
interpreted as follows:

-c Commands are read from the (single) following argument, which must be
present. Any remaining arguments are placed in argv.

-e The shell exits if any invoked command terminates abnormally or yields a
nonzero exit status.

-f The shell will start faster because it will neither search for nor execute
commands from the file .cshrc in the invoker's home directory.

-i The shell is interactive and prompts for its top-level input, even if it appears not
to be a terminal. Shells are interactive without this option if their inputs and
outputs are terminals.

-n Commands are parsed, but not executed. This may aid in syntactic checking of
shell scripts.

-s Command input is taken from the standard input.

-t A single line of input is read and executed. A \ may be used to escape the
newline at the end of this line and continue on to another line.

-v Causes the verbose variable to be set, with the effect that command input is
echoed after history substitution.

-x Causes the echo variable to be set, so that commands are echoed immediately
before execution.

-v Causes the verbose variable to be set even before .cshrc is executed.

-x Causes the echo variable to be set even before .cshrc is executed.

If arguments remain after flag arguments are processed but none of the -c, -i, -s, or -t
options were given, the first argument is taken as the name of a file of commands to be
executed. The shell opens this file and saves its name for possible resubstitution by $0.
Since most shell scripts on a typical system are written for the standard shell sh, the C
shell will execute such a standard shell if the script does not start with a comment (the
first character of a script is not a #). (See the entry sh in "Commands" in the XENIX
286 Reference Manual.) Remaining arguments initialize the variable argv.

8-54

XENIX Programming Programming Commands

csh (continued)

Signal Handling

The shell normally ignores quit signals. The interrupt and quit signals are ignored for an
invoked command if the command is followed by &; otherwise, the signals have the
values the shell inherited from its parent. The shell's handling of interrupts can be
controlled by onintr. Login shells catch the terminate signal; otherwise, this signal is
passed on to children from the state in the shell's parent. In no case are interrupts
allowed when a login shell is reading the .logout file.

Files

-I.cshrc

-I. login

-I. logout

Ibin/sh

Itmp/sh*

Idev/null

I etc/passwd

Limitations

Read by each shell at the beginning of execution

Read by login shell after .cshrc at login

Read by login shell at logout

Shell for scripts not starting with a #

Temporary file for «

Source of empty file

Source of home directories for -name

Words can be no longer than 512 characters. The number of arguments to a command
that involves file name expansion is limited to one-sixth the number of characters
allowed in an argument list, which is 5120, less the characters in the environment.
Command sUbstitutions may replace no more characters than are allowed in an
argument list.

To detect looping, the shell restricts the number of alias substitutions on a single line to
20.

See Also

sh in "Commands" in the XENIX 286 Reference Manual

a.out, environ in "File Fromats" in the XENIX 286 C Library Guide

access, exec, fork, pipe, signal, umask, wait in "System Functions" in the XENIX 286 C
Library Guide

B-55

Programming Commands XENIX Programming

csh (continued)

Credit

This utility was developed at the University of California at Berkeley and is used with
permission.

Notes

Built-in control structure commands like foreach and while cannot be used with I, &,
or ;.

Commands within loops, prompted for by ?, are not placed in the history list.

It is not possible to use colon (:) modifiers on the output of command sUbstitutions.

csh attempts to import and export the PATH variable for use with regular shell scripts.
This works only in simple cases, where PATH contains no command characters.

This version of csh does not support or use the process control features of the 4th
Berkeley Distribution.

8-56

XENIX Programming Programming Commands

ctags - Creates a tags file.

Syntax

ctags [-u] [-w] [-x] name ...

Description

ctags makes a tags file for vi from specified C sources. A tags file gives the locations
of specified objects (in this case functions) in a group of files. Each line of the tags file
contains the function name, the file in which it is defined, and a scanning pattern used
to find the function definition. These are given in separate fields on the line, separated
by blanks or tabs. Using the tags file, vi can quickly find these function definitions.

If the -x flag is given, ctags produces a list of function names, the line number and file
name on which each is defined, and the text of that line, and prints this list on the
standard output. This is a simple index which can be printed out as an off-line readable
function index.

Files with names ending in .c or .h are assumed to be C source files and are searched for
C routine and macro definitions.

Other options are

-w Suppresses warning diagnostics.

-u Causes the specified files to be updated in tags; that is, all references to them
are deleted, and the new values are appended to the file. (Beware: this option
is implemented in a way that is rather slow. It is usually faster to simply rebuild
the tags file.)

The tag main is treated specially in C programs. The tag formed is created by
prepending M to the name of the file. The trailing .c, if any, is removed and leading
path name components also removed. This makes use of ctags practical in directories
with more than one program.

Files

tags Output tags file

See Also

ex, vi in "Commands" in the XENIX 286 Reference Manual

8-57

Programming Commands XENIX Programming

(tags (continued)

Credit

This utility was developed at the University of California at Berkeley and is used with
permission.

B-58

XENIX Programming Programming Commands

delta - Makes a delta (change) to an sees file.

Syntax

delta [-rSID] [-5] [-n] [-glist] [-m[mrlist]] [-y[comment]] [-p] files

Description

delta is used to permanently introduce into the named sees files changes that were
made to the files retrieved by get (called the g-files, or generated files).

delta makes a delta to each sees file named by files. If a directory is named, delta
behaves as though each file in the directory were specified as a named file, except that
non-SeeS files (last component of the path name does not begin with s.) and unreadable
files are silently ignored. If a name of - is given, the standard input is read (see the
"Warning" section later in this entry); each line of the standard input is taken to be the
name of an sees file to be processed.

delta may issue prompts on the standard output depending upon certain options specified
and the flags that may be present in the sees file. (See -rn and -y options below.)

Options apply independently to each named file.

-rSID
Uniquely identifies which delta is to be made to the sees file. The use of this
keyletter is necessary only if two or more versions of the same sees file have
been retrieved for editing (get -e) by the same person (login name). The SID
value specified with the -r keyletter can be either the SID specified on the get
command line or the SID to be made as reported by the get command. (See the
entry for get later in this appendix.) A diagnostic results if the specified SID is
ambiguous or if it is necessary but omitted from the command line.

-s Suppresses the created delta's SID, as well as the number of lines inserted,
deleted, and unchanged in the sees file from being issued to the standard
output.

-n Specifies retention of the edited g-file (normally removed at completion of delta
processing).

-glist
Specifies a list of deltas that are to be ignored when the file is accessed at the
change level (SID) created by this delta. (See get for the definition of list.)

8-59

Programming Commands XENIX Program m ing

delta (continued)

-m[mrlist]
If the SCCS file has the v flag set (see the entry for admin later in this
appendix), then a Modification Request (MR) number must be supplied as the
reason for creating the new delta.

If -m is not used and the standard input is a terminal, the prompt MRs? is issued
on the standard output before the standard input is read. If the standard input is
not a terminal, no prompt is issued. The MRs? prompt always precedes the
comments? prompt. (See the description of -y, which follows.)

MRs in a list are separated by blanks and/or tab characters. An unescaped
newline character terminates the MR list.

Note that if the v flag has a value (see admin), it is taken to be the name of a
program (or shell procedure) that will validate the correctness of the MR
numbers. If a nonzero exit status is returned from an MR number validation
program, delta terminates. (It assumes that the MR numbers were not all valid.)

-y[comment]
Arbitrary text used to describe the reason for making the delta. A null string is
considered a valid comment.

If -y is not specified and the standard input is a terminal, the prompt comments?
is issued on the standard output before the standard input is read. If the
standard input is not a terminal, no prompt is issued. An unescaped newline
character terminates the comment text.

-p Causes delta to print (on the standard output) the SCCS file differences before
and after the delta is applied. Differences are displayed in a diff format.

Files

All files of the form ?-file are explained in Chapter 5, "SCCS: Source Code Control
System." The naming conventions for these files are also described.

g-file

p-file

q-file

x-file

8-60

Existed before the execution of delta; removed after completion of delta.

Existed before the execution of delta; may exist after completion of delta.

Created during the execution of delta; removed after completion of delta.

Created during the execution of delta; renamed to SCCS file after
completion of delta.

XENIX Programming Programming Commands

delta (continued)

z-file Created during the execution of delta; removed during the execution of
delta.

d-file Created during the execution of delta; removed after completion of delta.

/usr/bin/bdiff
Program to compute differences between the "retrieved" file and the g-file.

Warning

Lines beginning with an SOH ASCII character (binary 001) cannot be placed in the SCCS
file unless the SOH is escaped. This character has special meaning to SCCS (see sccsfile
in "File Formats" in the XENIX 286 C Library Guide) and will cause an error.

A get of many SCCS files followed by a delta of those files should be avoided when the
get generates a large amount of data. Instead, multiple get/delta sequences should be
used.

If the standard input (-) is specified on the delta command line, the -m (if necessary),
and -y options must also be present. Omission of these options causes an error to occur.

See Also

admin, get, help, prs

bdiff, diff in "Commands" in the XENIX 286 Reference Manual

sccsfile in "File Formats" in the XENIX 286 C Library Guide

Diagnostics

Use help for explanations.

8-61

Programming Commands XENIX Program ming

dosld - XENIX to MS-DOS cross linker.

Syntax

dosld [options] file •••

Description

dosid links the object file{s) given by file to create a program for execution under MS
DOS. Although similar to Id, dosld has many options that differ significantly from Id.

The options are described below.

-D

-H

-L

-M

-c

-Fnum

-Snum

8-62

DS Allocate. This option instructs dosld to perform DS allocation. It is
generally used in conjunction with the -H option.

Load high. This option instructs dosld to set a field in the header of
the executable file to tell MS-DOS to load the program at the highest
available position in memory. It is most often used with programs in
which data precedes code in the memory image.

Include line numbers. This option instructs dosid to include line
numbers in the listing file (if any). Note that dosld cannot put line
numbers in the listing file if the source translator hasn't put them in
the object file.

Include public symbols. This option instructs dosld to include public
symbols in the list file. The symbols are sorted twice,
lexicographically and by address.

Ignore case. This option instructs dosid to treat upper and lower case
characters in symbol names as identical.

Set stack size. This option should be followed by a hexadecimal
number. dosld will use this number for the size in bytes of the stack
segment in the output file.

Set segment limit. This option should be followed by a decimal number
between 1 and 1024. The number sets the limit on the number of
different segments that may be linked together. The default is 128.
Note that the higher the value given, the slower the link will be.

XENIX Program m ing Programming Commands

dosld (continued)

-m filename

-nl num

-0 filename

-u name

-G

Create map file. This option should be followed by a filename. dosld
will create a file with the given name in which it will put information
about the segments and groups in the executable. Additionally, public
symbols and line numbers will be listed in this file if the -M and -L
options are given.

Set name length. This option should be followed by a decimal number.
The option instructs dosld to truncate all public and external symbols
longer than num characters.

Name output file. This option should be followed by a filename which
dosld will use as the name of the executable file it creates. The
default name is a.out.

Name undefined symbol. This option should be followed by a symbol
name. dosld will enter the given name into its symbol table as an
undefined symbol. The -u option may appear more than once on the
command line.

Ignore group associations. This option instructs dosld to ignore any
group definitions it may find in the input files. This option is provided
for compatibility with old versions of MS-LINK; generally, it should
never be used.

As with Id, the files passed to dosld may be either XENIX-style libraries (objects
collected using ar) and indexed using ranlib or ordinary 8086 object files. Unless the -u
option appears, at least one of the files passed to dosld must be an ordinary object file.
Libraries are searched only after all the ordinary object files have been processed.

Files

/usr/bin/dosld

See Also

ar, as, cc, Id, ranlib

dos in "Commands" in the XENIX 286 Reference Manual

8-63

Programming Commands XENIX Programming

get - Gets a version of an sees file.

Syntax

get [-rSID] [-ccutoff] [-ilist] [-xlist] [-aseq-no.] [-k] [-e]
[-I[p]] [-p] [-m] [-n] [-5] [-b] [-g] [-t] file ...

Descri ptio n

get generates an ASCII text file from each named sees file according to the
specifications given by its keyletter arguments, which begin with -. The arguments may
be specified in any order, but all options apply to all named sees files. If a directory is
named, get behaves as though each file in the directory were specified as a named file,
except that non-SeeS files (last component of whose path names does not begin with s.)
and unreadable files are silently ignored. If a name of - is given, the standard input is
read; each line of the standard input is taken to be the name of an sees file to be
processed. Again, non-SeeS files and unreadable files are silently ignored.

The generated text is normally written into a file called the g-file. Its name is derived
from the sees file name by simply removing the leading "s.". (See the "Files" section
later in this entry.)

Each of the options is explained below as though only one sees file is to be processed,
but the effects of any option apply independently to each named file.

-rSID
The sees identification string (SID) of the version (delta) of an sees file to be
retrieved.

-ccutoff
cutoff date-time, in the form

YY[MM[DD[HH[MM[SS]]]]]

No changes (deltas) to the sees file that were created after the specified
cutoff date-time are included in the generated ASCII text file. Units omitted
from the date-time default to their maximum possible values; that is, -c1502 is
equivalent to -c150228235959. Any number of nonnumeric characters may
separate the various two-digit pieces of the cutoff date-time. This feature
allows you to specify a cutoff date in the form: n-c77/2/2 9:22:25n•

-e Indicates that the get is for the purpose of editing or making a change (delta) to
the sees file via a subsequent use of delta. The -e option used in a get for a
particular version (SID) of the sees file prevents further gets for editing on the
same SID until delta is executed or the j (joint edit) flag is set in the sees file.
(See the entry for admin later in this appendix.) Concurrent use of get -e for
different SIDs is always allowed.

8-64

XENIX Programming Programming Commands

get (continued)

If the g-file generated by get with an -e option is accidentally ruined in the
editing process, it may be regenerated by re-executing the get command with
the -k option in place of the -e option.

SCCS file protection specified via the ceiling, floor, and authorized user list
stored in the SCCS file (see admin) are enforced when the -e option is used.

-b Used with the -e option to indicate that the new delta should have an SID in a
new branch. This option is ignored if the b flag is not present in the file (see
admin) or if the retrieved delta is not a leaf delta. (A leaf delta is one that has
no successors on the SCCS file tree.)

-ilist

-xlist

Note: A branch delta may always be created from a nonleaf delta.

A list of deltas to be included (forced to be applied) in the creation of the
generated file. The list has the following syntax:

<list> :: = <range>! <list> I <range>
<range> ::= SID!SID-SID

SID, the SCCS identification of a delta, may be in any form described in [get
citation].

A list of deltas to be excluded (forced not to be applied) in the creation of the
generated file. See the -i option for the list format.

-k Suppresses replacement of identification keywords in the retrieved text by their
value. The -k option is implied by the -e option.

-l[p]
Causes a delta summary to be written into an I-file. If -lp is used, then an I-file
is not created; the delta summary is written on the standard output instead. See
the "Files" section later in this entry for the format of the I-file.

-p Causes the text retrieved from the SCCS file to be written on the standard
output. No g-file is created. All output that normally goes to the standard
output goes to file descriptor 2 instead, unless the -8 option is used, in which
case it disappears.

-8 Suppresses all output normally written on the standard output. However, fatal
error messages (which always go to file descriptor 2) remain unaffected.

-m Causes each text line retrieved from the SCCS file to be preceded by the SID of
the delta that inserted the text line in the SCCS file. The format is: SID, a
horizontal tab, the text line.

B-65

Programming Commands XENIX Program m ing

get (continued)

-n Causes each generated text line to be preceded with the %M% identification
keyword value. The format is: %M% value, a horizontal tab, the text line.
When both the -m and -n options are used, the format is: %M% value, a
horizontal tab, the -m option-generated format.

-g Suppresses the actual retrieval of text from the SCCS file. It is primarily used
to generate an I-file or to verify the existence of a particular SID.

-t Used to access the most recently cre.ated (top) delta in a given release (for
example, -rl) or release and level (-rl.2).

-aseq-no.
The delta sequence number of the SCCS file delta (version) to be retrieved.
(See sccsfile in "File Formats" in XENIX 286 C Library Guide.) This option is
used by the comb command; it is not particularly useful and should be avoided.
If both the -r and -a options are specified, the -a option is used. Care should be
taken when using the -a option in conjunction with the -e option, as the SID of
the delta to be created may not be what you expect. The -r option can be used
with the -a and -e options to control the naming of the SID of the delta to be
created.

For each file processed, get responds (on the standard output) with the SID being
accessed and with the number of lines retrieved from the SCCS file.

If the -e option is used, the SID of the delta to be made appears after the SID accessed
and before the number of lines generated. If there is more than one named file or if a
directory or standard input is named, each file name is printed (preceded by a newline)
before it is processed. If the -i option is used, included deltas are listed following the
notation "Included"; if the -x option is used, excluded deltas are listed following the
notation "Excluded."

Identification Keywords

Identifying information is inserted into the text retrieved from the SCCS file by
replacing identification keywords with their value wherever they occur. The following
keywords may be used in the text stored in an SCCS file:

Keyword

%M%

%1%

%R%

%L%

B-66

Value

Module name: either the value of the m flag in the file (see admin), or
if absent, the name of the SCCS file with the leading s. removed.

SCCS identification (SID) (%R %. %L%. %B%. %S%) of the retrieved text.

Release.

Level.

XENIX Programming Programming Commands

get (continued)

96B96

96896

96D96

96H96

96T96

96E96

96G96

96U96

96Y96

96F96

96P96

96Q96

96C96

96W96

96A96

Files

Branch.

Sequence.

Current date (YY/MM/DD).

Current date (MM/DD/YY).

Current time (HH:MM:SS).

Date newest applied delta was created (YY/MM/DD).

Date newest applied delta was created (MM/DD/YY).

Time newest applied delta was created (HH:MM:SS).

Module type: value of the t flag in the SCCS file. (See admin.)

SCCS file name.

Fully qualified SCCS file name.

The value of the q flag in the file. (See admin.)

Current line number. This keyword is intended for identifying
messages output by the program such as "this shouldn't have happened"
type errors. It is not intended to be used on every line to provide
sequence numbers.

A shorthand notation for constructing what strings for XENIX program
files % W%=%Z%%M%<horizontal-tab>%I%.

A shorthand notation for constructing what strings for non-XENIX
program files %A %=%Z%% Y%%M%%I%%Z%.

Several auxiliary files may be created by get. These files are known generically as the
g-file, I-file, p-file, and z-file. The letter before the hyphen is called the tag. An
auxiliary file name is formed from the SCCS file name. The last component of all SCCS
file names must be of the form s.module-name; the auxiliary files are named by
replacing the leading s with the tag. The g-file is an exception to this scheme: it is
named by removing the s. prefix. For example, with s.xyz.c, the auxiliary file names
would be xyz.c, l.xyz.c, p.xyz.c, and z.xyz.c respectively.

B-67

Programming Commands XENIX Programming

get (continued)

The g-file, which contains the generated text, is created in the current directory (unless
the -p option is used). A g-file is created in all cases, whether or not any lines of text
were generated by the get. It is owned by the real user. If the -k option is used or
implied, its mode is 0644; otherwise, its mode is 0444. Only the real user need have
write permission in the current directory.

The I-file contains a table showing which deltas were applied in generating the retrieved
text. The I-file is created in the current directory if the -1 option is used; its mode is
0444, and it is owned by the real user. Only the real user need have write permission in
the current directory.

Lines in the I-file have the following format:

• A blank character if the delta was applied; * otherwise

• A blank character if the delta wasn't applied or was applied and ignored; * if the
delta wasn't applied and wasn't ignored

• A code indicating a "special" reason why the delta was or was not applied:

• Blank

"I": Included
"X": Excluded
"C": Cut off (by a -c option)

• SCCS identification (SID)

• Tab character

• Date and time (in the form YY/MM/DD HH:MM:SS) of creation

• Blank

• Login name of person who created delta

The comments and MR data follow on subsequent lines, indented one horizontal tab
character. A blank line terminates each entry.

The p-file is used to pass information resulting from a get with an -e option along to
delta. Its contents are also used to prevent a subsequent execution of get with an -e
option for the same SID until delta is executed or the joint edit flag, j, (see admin) is set
in the SCCS file. The p-file is created in the directory containing the SCCS file, and
the effective user must have write permission in that directory. Its mode is 0644, and it
is owned by the effective user. The format of the p-file is: the retrieved SID, a blank,
the SID that the new delta will have when it is made, a blank, the login name of the real
user, a blank, the date-time the get was executed, a blank and the -i option argument if
it was present, a blank and the -x option argument if it was present, and a newline.
There can be an arbitrary number of lines in the p-file at any time; no two lines can
have the same new delta SID.

B-68

XENIX Program m ing Programming Commands

get (continued)

The z-file serves as a "lock-out" mechanism against simultaneous updates. Its contents
are the binary (2 bytes) process ID of the command that created it, namely get. The
z-file is created in the directory containing the sees file for the duration of get. The
same protection restrictions that apply to the p-file apply to the z-file. The z-file is
created in mode 0444.

See Also

admin, delta, help, prs

sccsfile in "File Formats" in the XENIX 286 C Library Guide

what in "Commands" in the XENIX 286 Reference Manual

Diagnostics

Use help for explanations.

Notes

If the effective user has explicit or implicit write permission in the directory containing
the sees files, but the real user doesn't, then only one file may be named when the -e
option is used.

B-69

Programming Commands XENIX Program m ing

gets - Gets.a string from the standard input.

Syntax

gets [string]

Description

gets can be used with csh to read a string from the standard input. If string is given, it
is used as a default value should an error occur. The resulting string (either string or
the string as read from the standard input) is written to the standard output. If no
default is given and an error occurs, gets exits with exit status 1.

See Also

csh

line in "Commands" in the XENIX 286 Reference Manual

8-70

XENIX Programming Programming Commands

hd r - Displays selected parts of object files.

Syntax

hdr [-dhprSt] file ...

Description

hdr displays object file headers, symbol tables, and text or data relocation records in
human-readable formats. It also prints out seek positions for the various segments in
the obj ect file.

a.out, x.out, and x.out segmented formats and archives are understood.

The symbol table format consists of six fields. In a.out formats, the third field is
missing. The first field is the symbol's index or position in the symbol table, printed in
decimal. The index of the first entry is zero. The second field is the type, printed in
hexadecimal. The third field is the s_seg field, printed in hexadecimal. The fourth field
is the symbol's value in hexadecimal. The fifth field is a single character that
represents the symbol's type, as in nm except that C common is not recognized as a
special case of "undefined." The last field is the symbol name.

If long form relocation is present, the format consists of six fields. The first is the
descriptor, printed in hexadecimal. The second is the symbol ID, or index, in decimal.
This field is used for external relocations as an index into the symbol table. It should
reference an undefined symbol table entry. The third field is the position, or offset,
within the current segment at which relocation is to take place; it is printed in
hexadecimal. The fourth field is the name of the segment referenced in the relocation:
text, data, bss, or EXT for external. The fifth field is the size of relocation: byte, word
(2 bytes), or long (4 bytes). The last field, if present, will indicate that the relocation is
relative.

If short form relocation is present, the format consist of three fields. The first field is
the relocation command in hexadecimal. The second field contains the name of the
segment referenced: text or data. The last field indicates the size of relocation: word
or long.

8-71

Programming Commands XENIX Programming

hdr (continued)

Options are as follows:

-h Causes the object file header and extended header to be printed out. Each field
in the header or extended header is labeled. This is the default option.

-d Causes the data relocation records to be printed out.

-t Causes the text relocation records to be printed out.

-r Causes both text and data relocation to be printed.

-p Causes seek positions to be printed out as defined by macros in the include file,
<a.out.h>.

-5 Prints the symbol table.

-8 Prints the file segment table with a header (only applicable to files in segmented
format).

See Also

nm

a.out in "File Formats" in the XENIX 286 C Library Guide

8-72

XENIX Programming Programming Commands

help - Asks for help about sees commands.

Syntax

help [arg] ...

Description

help finds information to explain a message from an sees command or to explain the
use of a command. Zero or more arguments may be supplied. If no arguments are
given, help will prompt for one.

The arguments may be either message numbers, which normally appear in parentheses
following messages, or com mand names of one of the following types:

type 1

type 2

type 3

Begins with nonnumerics, ends in numerics. The nonnumeric prefix is usually
an abbreviation for the program or set of routines that produced the message
(for example, ge6 for message 6 from the get command).

Does not contain numerics (as a command, such as get)

Is all numeric (for example, 212)

The response of the program will be the explanatory information related to the
argument, if there is any.

When all else fails, try help stuck.

Files

/usr/lib/help Directory containing files of message text

B-73

Programming Commands XENIX Programming

Id - Invokes the link editor (linker).

Syntax

Id [option] ... filename ...

Description

ld is the XENIX link editor. It creates an executable program by combining one or more
object files and copying the executable result into the file a.out. The filename must
name an object or library file. These names must have the .0 (for object) or .a (for
archive library) extensions. If more than one name is given, the names must be
separated by one or more spaces. If errors occur while linking, ld displays an error
message. The resulting a.out file is unexecutable.

ld concatenates the contents if the given object files in the order given in the command
line. Library files in the command line are examined only if there are unresolved
external references encountered from previous object files. Library files must be in
ranlib format; that is, the first member must be named _.SYMDEF, which is a
dictionary for the library. ld ignores the modification dates of the library and the

.SYMDEF entry, so if object files have been added to the library since .SYMDEF was
created, the link may result in "invalid object module." -

The library is searched iteratively to satisfy as many references as possible. Only those
routines that define unresolved external references are concatenated. Object and
library files are processed at the point they are encountered in the argument list, so the
order of files in the command line is important. In general, all object files should be
given before the library files. Id sets the entry point of the resulting program to be the
beginning of the first routine.

Id has these options:

-A num

-Bnum

Creates a standalone program whose expected load address (in hexadecimal) is
num. This option sets the absolute flag in the header of the a.out file. Such
program files can only be executed as standalone programs.

Sets the text selector bias to the specified hexadecimal number.

-c Causes the editor to ignore the case of symbols.

-Dnum
Sets the data selector bias to the specified hexadecimal number.

-Fnum

B-74

Sets the size of the program to num bytes. Default stack size, if not given, is
4K bytes.

XENIX Programming Programming Commands

Id (continued)

-i Creates separate instruction and data spaces for small model programs. When
the output file is executed, the program text and data areas are allocated
separate physical segments. The text portion will be read-only and will be
shared by all users executing the file.

-m name
Creates a link map named name that includes public symbols.

-Ms Creates small model programs and checks for errors such as fixup overflow.
This option is reserved for object files compiled or assembled using the small
model configuration. This is the default model if no -M option is given.

-Mm Creates middle model programs and checks for errors. This option is reserved
for object files compiled or assembled using the middle model configuration.
This option implies -i.

-MI Creates a large model program and checks for errors. The option is reserved for
object files compiled using the large model configuration. This option implies -i.

-nl num
Truncates symbols to the length specified by num.

-0 name
Sets the executable program file name to name instead of a.out.

-s Strips the symbol table.

-Snum
Sets the maximum number of data segments to num. If no argument is given,
the default is 256.

-u symbol

-vnum

Designates the specified symbol as undefined.

Specifies the XENIX version number. Acceptable values for num are 2 or 3; 3 is
the default.

ld should be invoked by using the cc command instead of invoking it directly. cc invokes
ld as the last step of compilation, providing all the necessary C language support
routines. Invoking ld directly is not recommended since failure to give the command
line arguments in the right order can result in errors.

8-75

Programming Commands XENIX Programming

Id (continued)

Files

bin/ld

See Also

as, ar, CC, ranlib

Notes

The user must make sure that the most recent library versions have been processed with
ranlib before linking. If this is not done, ld cannot create executable programs using
these libraries.

The output of cc is in 86 REL format. The output of ld is in STL 286 format.

B-76

XENIX Programming Programming Commands

lex - Generates programs for lexical analysis.

Syntax

lex [-ctvn] [file] ...

Description

lex generates programs to be used in simple lexical analysis of text. A file lex.yy.c is
generated which, when loaded with the lex library, copies the input to the output except
when a string specified in the file is found; then the corresponding program text is
executed.

The input file contains strings and expressions to be searched for, and C text to be
executed when strings are found. Multiple files are treated as a single file. If no files
are specified, standard input is used.

The options must appear before any files. The options are as follows:

-c Indicates C actions and is the default.

-t Causes the lex.yy.c program to be written instead to standard output.

-v Provides a one-line summary of machine-generated statistics.

-n Suppresses the - summary.

Strings and Operators

lex strings may contain square brackets to indicate character classes, as in [abx-z] to
indicate a, b, x, y, and z; and the operators *, +, and ? mean, respectively, any
nonnegative number of, any positive number of, and either zero or one occurrence of,
the previous character or character class. Thus, [a-zA-Z]+ matches a string of letters.
The character. is the class of all ASCII characters except newline. Parentheses for
grouping and vertical bar for alternation are also supported. The notation r{d,e} in a
rule indicates between d and e instances of regular expression r. It has higher
precedence than I but lower than *, ?, +, and concatenation. The character " at the
beginning of an expression permits a successful match only immediately after a newline,
and the character $ at the end of an expression requires a trailing newline. The
character / in an expression indicates trailing context; only the part of the expression up
to the slash is returned in yytext, but the remainder of the expression must follow in the
input stream. An operator character may be used as an ordinary symbol if it is within"
symbols preceded by \.

B-77

Programming Commands XENIX Programming

lex (continued)

Routines and Variables

Matching is done in order of the strings in the file. The actual string matched is left in
yytext, an external character array. Three subroutines defined as macros are expected:
inputQ to read a character; unput(c) to replace a character read; and output(c) to place
an output character. They are defined in terms of the standard streams, but you can
override them. The program generated is named yylexQ, and the library contains a
mainQ, which calls it. The action REJECT on the right side of the rule causes this
match to be rejected and the next suitable match executed; the function yymoreQ
accumulates additional characters into the same yytext; and the function yyless(p)
pushes back the portion of the string matched beginning at p, which should be between
yytext and yytext + yyleng. The macros input and output use files yyin and yyout to
read from and write to, defaulted to stdin and stdout, respectively. The external names
generated by lex all begin with the prefix yy or YY.

lex File Format

Any line beginning with a blank is assumed to contain only C text and is copied; if it
precedes %% it is copied into the external definition area of the lex.yy.c file. All rules
should follow a %% as in YACC. Lines that precede %% and begin with a nonblank
character define the string on the left to be the remainder of the line; it can be called
out later by surrounding it with braces (0). Note that braces do not imply parentheses;
only string sUbstitution is done.

Certain table sizes for the resulting finite state machine can be set in the definitions
section:

96p n number of positions is n (default 2000)

96n n number of states is n (500)

96t n number of parse tree nodes is n (1000)

96a n number of transitions is n (3000)

The use of one or more of the above automatically implies the -v option, unless the -n
option is used.

B-78

XENIX Programming

lex (continued)

Example

D
%%
if

[a-z] +

O{D}+
{D} +
II + + II

II + II

"/*"

See Also

yacc

Notes

[0-9]

printf("IF statement\n");
printf("tag, value %s\n",yytext);
printf("octal number %s\n",yytext);

printf("decimal number %s\n" ,yytext);
printf("unary op\n");
printf("binary op\n");
{ loop:

while (inputO ! = \(fm\(**\(fm);
switch (i nputO)

}

{
case \(fm/\(fm: break;
case \(fm\(**\(fm: unput(\(fm\(**\(fm);
default: go to loop;
}

Programming Commands

This program translates its input into C source code, which in segmented programming
environments is suitable for compiling as a small model program only. (See cc.)

8-79

Programming Commands XENIX Program m ing

lint - Checks C language usage and syntax.

Syntax

lint [-abchlnpuvx] file ...

Description

lint attempts to detect features of the C program file that are likely to be bugs or to be
nonportable or wasteful. It also checks type usage more strictly than the compilers.
Among the items currently detected are unreachable statements, loops not entered at
the top, automatic variables declared and not used, and logical expressions whose value
is constant. Moreover, the usage of functions is checked to find functions that return
values in some places and not in others, functions called with varying numbers of
arguments, and functions whose values are not used.

If more than one file is given, it is assumed that all files are to be loaded together; they
are checked for mutual compatibility. If routines from the standard library are called
from file, lint checks the function definitions using the standard lint library llibc.ln. If
lint is invoked with the -p option, it checks function definitions from the portable lint
library llibport.ln.

Any number of lint options may be used and in any order. The following options suppress
certain kinds of complaints:

-a Suppresses complaints about assignments of long values to variables that are not
long.

-b Suppresses complaints about break statements that cannot be reached.
(Programs produced by lex or yacc will often result in a large number of such
complaints.)

-c Suppresses complaints about casts that have questionable portability.

-h Does not apply heuristic tests that attempt to intuit bugs, improve style, and
reduce waste.

-u Suppresses complaints about functions and external variables that are used and
not defined or that are defined and not used. (This option is suitable for running
lint on a subset of files of a larger program.)

-v Suppresses complaints about unused arguments in functions.

-x Does not report variables referred to by external declarations but never used.

B-80

XENIX Programming Programming Commands

lint (continued)

The following arguments alter lint's behavior:

-n Does not check compatibility against either the standard or the portable lint
library.

-p Attempts to check portability to other dialects of C.

llibname
Checks functions definitions in the specified lint library. For example, -1m
causes the library llibm.ln to be checked.

The -D, -U, and -I options of cc are also recognized as separate arguments.

Certain conventional comments in the C source will change the behavior of lint:

/*NOTREACHED*/
At appropriate points stops comments about unreachable code.

/*VARARGSn*/
Suppresses the usual checking for variable numbers of arguments in the
following function declaration. The data types of the first n arguments are
checked; a missing n is taken to be O.

/*ARGSUSED*/
Turns on the -v option for the next function.

/*LINTLmRAR y* /
Shuts off complaints about unused functions in this file.

lint produces its first output on a per-source-file basis. Complaints regarding included
files are collected and printed after all source files have been processed. Finally,
information gathered from all input files is collected and checked for consistency. At
this point, if it is not clear whether a complaint stems from a given source file or from
one of its included files, the source file name will be printed followed by a question
mark.

Files

Program Files

/usr/lib/lint[12]
/usr/lib/llibc.ln
/usr/lib/llibport.ln
/usr/lib/llibm.ln
/usr/lib/llibdbm.ln
/usr/lib/llibtermlib.ln

8-81

Programming Commands

lint (continued)

Standard Lint Libraries (Binary Format)

/usr/lib/llibc
/usr/lib/llibport
/usr/lib/llibm
/usr/lib/llibdbm
usr/lib/llibtermlib

See Also

cc

Notes

XENIX Programming

exit (see "System Functions" in the XENIX 286 C Library Guide) and other functions
that do not return are not understood. This can cause improper error messages.

B-82

XENIX Program ming Programming Commands

larder - Finds ordering relation for an object library.

Syntax

lorder file ...

Description

The input is one or more object or library archive files. (See ar.) The standard output is
a list of pairs of object file names, meaning that the first file of the pair refers to
external identifiers defined in the second. The output may be processed by tsort to find
an ordering of a library suitable for one-pass access by Id.

Example

The following command intends to build a new library from existing .0 files:

ar cr library 'Iorder *.0 I tsort'

Files

*symref, *symdef Temporary files

See Also

ar, Id, tsort

Notes

Object files with names that do not end with .0, even when contained in library archives,
are overlooked. Their global symbols and references are attributed to some other file.

8-83

Programming Commands XENIX Programming

m4 - Invokes a macro processor.

Syntax

m4 [options] [files] ...

Description

m4 is a macro processor intended as a front end for RATFOR, C, and other languages.
Each of the argument files is processed in order; if there are no files, or if a file name is
-, the standard input is read. The processed text is written on the standard output.

The options and their effects are as follows:

-e Operates interactively. Interrupts are ignored and the output is unbuffered.

-s Enables line sync output for the C preprocessor (#line •••).

-Bint

-Hint

-Sint

-Tint

Changes the size of the push-back and argument collection buffers from the
default of 4,096.

Changes the size of the symbol table hash array from the default of 199. The
size should be prime.

Changes the size of the call stack from the default of 100 slots. Macros take
three slots, and nonmacro arguments take one.

Changes the size of the token buffer from the default of 512 bytes.

To be effective, these flags must appear before any file names and before any -D or -U
flags:

-Dnam e [=val]
Defines name to valor to null in val's absence.

-Uname
Undefines name.

B-84

XENIX Programming Programming Commands

m4 (continued)

Macro Calls

Macro calls have the form

name(arg 1,arg2, """' argn)

The (must immediately follow the name of the macro. If a defined macro name is not
followed by a (, it is deemed to have no arguments. Leading unquoted blanks, tabs, and
new lines are ignored while collecting arguments. When the first character is not a
digit, the macro name could consist of a letter, digit, or underscore (_).

Left and right single quotation marks are used to quote strings. The value of a quoted
string is the string stripped of the quotation marks.

When a macro name is recognized, its arguments are collected by searching for a
matching right parenthesis. Macro evaluation proceeds normally during the collection
of the arguments, and any commas or right parentheses that happen to turn up within
the value of a nested call are as effective as those in the original input text. After
argument collection, the value of the macro is pushed back onto the input stream and
rescanned.

m4 makes available the following built-in macros. They may be redefined, but once this
is done the original meaning is lost. Their values are null unless otherwise stated.

define
The second argument is installed as the value of the macro whose name is the
first argument. Each occurrence of $n in the replacement of text, where n is a
digit, is replaced by the n-th argument. Argument 0 is the name of the macro;
missing arguments are replaced by the null string; $# is replaced by the number
of arguments; $* is replaced by a list of all the arguments separated by commas;
$@. is like $*, but each argument is quoted (with the current quotation marks).

undefine

defn

pushdef

popdef

ifdef

Removes the definition of the macro named in its argument.

Returns the quoted definition of its argument(s). It is useful for renaming
macros, especially built-ins.

Like define, but saves any previous definition.

Removes current definition of its argument(s), exposing the previous ones if any.

If the first argument is defined, the value is the second argument, otherwise the
third. If there is no third argument, the value is null. The word XENIX is
predefined in m4.

B-85

Programming Commands XENIX Programming

m4 (continued)

shift
Returns all but its first argument. The other arguments are quoted and pushed
back with commas in between. The quoting nullifies the effect of the extra
scan that will subsequently be performed.

ehangequote
Changes quotation marks to the first and second arguments. The symbols may
be up to five characters long. ehangequote without arguments restores the
original values, namely left and right single quotation marks.

ehangeeom

divert

Changes left and right comment markers from the default # and newline. With
no arguments, the comment mechanism is effectively disabled. With one
argu'ment, the left marker becomes the argument, and the right marker becomes
newline. With two arguments, both markers are affected. Comment markers
may be up to five characters long.

m4 maintains 10 output streams numbered 0 through 9. The final output is the
concatenation of the streams in numerical order; initially stream 0 is the
current stream. The divert macro changes the current output stream to its
(digit-string) argument. Output diverted to a stream other than 0 through 9 is
discarded.

undivert

divnum

dnl

ifelse

iner

8-86

Causes immediate output of text from diversions named as arguments, or all
diversions if no argument exists. Text may be undiverted into another diversion.
Undiverting discards the diverted text.

Returns the value of the current output stream.

Reads and discards characters up to and including the next newline.

Has three or more arguments. If the first argument is the same string as the
second, then the value is the third argument. If not, and if there are more than
four arguments, the process is repeated with arguments 4, 5, 6, and 7.
Otherwise, the value is either the fourth string or null if a fourth string is not
present.

Returns the value of its argument incremented by 1. The value of the argument
is calculated by interpreting an initial digit-string as a decimal number.

XENIX Programming Programming Commands

m4 (continued)

decr

eva!

index

len

substr

translit

include

Returns the value of its argument decremented by 1.

Evaluates its argument as an arithmetic expression, using 32-bit arithmetic.
Operators include +, -, *, /, 96, A (exponentiation), bitwise &., I, A, and -;
relationals; parentheses. Octal and hex numbers may be specified as in C. The
second argument specifies the radix for the result; the default is 10. The third
argument may be used to specify the minimum number of digits in the result.

Returns the position in its first argument where the second argument begins
(zero-origin), or -1 if the second argument does not occur.

Returns the number of characters in its argument.

Returns a substring of its first argument. The second argument is a zero-origin
number selecting the first character; the third argument indicates the length of
the substring. A missing third argument is taken to be large enough to extend to
the end of the first string.

Transliterates the characters in its first argument from the set given by the
second argument to the set given by the third. No abbreviations are permitted.

Returns the contents of the file named in the argument.

sinclude
Identical to include, except that it says nothing if the file is inaccessible.

syscmd
Executes the XENIX command given in the first argument. No value is
returned.

sysval
Is the return code from the last call to syscmd.

maketemp

m4exit

Fills in a string of XXXXX in its argument with the current process ID.

Causes immediate exit from m4. Argument 1, if given, is the exit code; the
default is o.

8-87

Programming Commands XENIX Programming

m4 (continued)

m4wrap
Argument 1 will be pushed back at final EOF; for example, m4wrap(cleanupQ').

errprint
Prints its argument on the diagnostic output file.

dumpdef

traceon

Prints current names and definitions, for the named items, or for all if no
arguments are given.

With no arguments, turns on tracing for all macros (including built-ins).
Otherwise, turns on tracing for named macros.

traceoff

B-88

Turns off trace globally and for any macros specified. Macros specifically
traced by traceon can be untraced only by specific calls to traceoff.

XENIX Programming Programming Commands

masm - Invokes the XENIX assembler.

Syntax

masm [option ...] sourcefiJe ...

Description

masm is the XENIX assembler. It reads and assembles 8086/80286 assembly language
instructions from the source file named sourcefile. It then creates a linkable object file
named sourcefile.o, or an executable program named a.out. The extension .s is
recommended but not required. If this extension is not given, masm displays a warning
and continues processing. There are the following options:

-a

- bnum

-c

-c

-d

-Dsym

-e

- Ipath

- llistfile

- Mx

- Mu

Puts the assembled output segments in alphabetic order before copying
the m to the obj ect file.

Specifies the I/O buffer size in Kbytes for source, include, and object
files (not .crf or .1st files). The valid range of values is 1 to 64. The
default is 16K bytes.

Outputs cross reference data for each assembled file to filename.crf.

Outputs cross reference data for a set of assembled files. The cross
reference data is written to files with the same name as the input files,
with the filename extension "crf".

Adds a pass 1 listing to the assembly listing file filename. 1st.

Defines the symbol appended to the -D flag as a null TEXTMACRO.

Generates floating point code to emulate the 8087 or 80287 coprocessor.
Programs created with this option must be linked with an appropriate
math library before being executed.

Defines the path appended to the -I flag as the search path for include
files. Up to 10 include paths are allowed in one invocation of masm.

Creates an assembly listing file with the same basename as the sourcefile
or, if the listfile parameter is given, with that name but with a .1st
extension. The file lists the source instructions, the assembled (binary
code) for each instruction, and any assembly errors. If file name is "_",
the listing is written to stdout.

Directs masm to preserve lower case letters in public and external names
only when copying these names to the object file. For all other purposes,
masm converts the lower case to upper case.

Disables case sensitivity. Upper case is now treated identically to lower
case.

8-89

Programming Commands XENIX Programming

masm (continued)

- Ml

-0

- oobjfile

- Oobjfile

-p

- r

-v

-x

-x

Files

/bin/masm

See Also

Leaves case of symbols alone.

Generates information about the symbols used in the assembled programs.
The -1 option must also be used for this option to take effect.

Copies the assembled instructions in octal to the file named objfile. This
file is executable only if no errors occurred during the assembly. This
option overrides the default object filename.

Copies the assembled instructions in binary to the file named objfile.

Checks the assembled instructions to make sure that all memory
references are pure so that the code can run in 286 protected mode.

Generates floating point code that can only be executed by an 8087 or
80287 coprocessor.

Prints verbose error statistics on the console. If not selected, only error
counts are displayed.

Displays error messages on the standard error channel, in addition to the
messages generated in the listing file.

Copies to the assembly listing all statements forming the body of an IF
directive whose expression (or condition) evaluates to false.

cc, Id in "Programming Commands" in the XENIX 286 Programmer's Guide

a.out in "File Formats" in the XENIX 286 C Library Guide

XENIX Macro Assembler User's Guide.

B-90

XENIX Programming Programming Commands

masm (continued)

Diagnostics

The masm exit codes have the following meanings:

Notes

Code

o
1
2
3
4
5
6
7
8
9

Meaning

No error
Argument error
Unable to open input file
Unable to open listing file
Unable to open object file
Unable to open cross reference file
Unable to open include file
Assembly errors; if fatal, the object file is deleted
Memory allocation error
Real number input not allowed in this version

The default options are -MI and -e, which enable case sensitivity and allow emulation of
a floating point processor. The options are flags with the following default settings:

Flag Default Meaning of TRUE condition

a FALSE Outputs segments alphabetically
b 8K bytes Sets size of I/O buffer
c FALSE Outputs cross reference data
C FALSE Outputs cross reference data
d FALSE Adds pass 1 listing to filename.1st
Dsym NULL Gives no meaning if not defined
e FALSE Emulates floating point
Jpath NULL Gives no meaning if not defined
llistfile sourcefiZe.1st Uses sourcefile as the default filename
M MI Leaves symbol case alone
n TRUE Outputs symbols if -1 selected
0 TRUE Assembles output in binary
0 FALSE Assembles output in octal
p FALSE Checks for impure memory references
r TRUE Uses real 8087 instead of emulated format
v FALSE Prints verbose error statistics
x TRUE Displays errors on console
X FALSE Toggles setting of conditional flag

8-91

Programming Commands XENIX Programming

m kstr - Creates an error message file from C source.

Syntax

mkstr [-] messagefile prefix file ...

Description

mkstr is used to create files of error messages. Its use can decrease the size of
programs with large numbers of error diagnostics. It can also reduce system overhead in
running the program as error messages do not have to be constantly swapped in and out.

mkstr will process each specified file, placing a massaged version of the input file in a
file whose name consists of the specified prefix and the original name. The optional
dash (-) causes the error messages to be replaced at the end of the specified message
file for recompiling part of a mkstred program.

A typical mkstr command line is

mkstr pistrings xx *.c

This command would cause all the error messages from the C source files in the current
directory to be placed in the file pistrings and processed copies of the source for these
files to be placed in files whose names are prefixed with xx.

To process the error messages in the' source to the message file, mkstr keys on the
string error(n in the input stream. Each time it occurs, the C string starting at the n is
placed in the message file and followed by a null character and a newline character; the
null character terminates the message so it can be easily used when retrieved, and the
newline character makes it possible to sensibly cat the error message file to see its
contents. The massaged copy of the input file then contains an !seek pointer into the
file. This pointer can be used to retrieve the message, as the following example
demonstrates. The command changes

error("Error on reading", a2, a3, a4);

into

error(m, a2, a3, a4);

where m is the seek position of the string in the resulting error message file. The
programmer must create a routine error that opens the message file, reads the string,
and prints it out. The "Example" section, which follows, illustrates such a routine.

B-92

XENIX Programming Programming Commands

mkstr (continued)

Example

char efilname [] = I/usr/lib/pi_strings";
i nt efi I = -1 ;

error(a 1, a2, a3, a4)
{

}

See Also

xstr

char buf[256];

if (efil<O) {

}

efil = open(efilname, 0);
if (efil < 0) {

perror(efilname};
exit(C);

}

if (Iseek(efil, (long) a 1, O) II read(efil, buf, 256} < = 0)
goto oops;

printf(buf, a2, a3, a4);

lseek in "System Functions" in the XENIX 286 C Library Guide

Credit

This utility was developed at the University of California at Berkeley and is used with
permission.

Notes

All the arguments except the name of the file to be processed are unnecessary.

8-93

Programming Commands XENIX Program ming

n m - Prints name list.

Syntax

nm [-acgnoOprsSuv] [+ offset] [file] ...

Description

nm prints the name list {symbol table} of each object file in the argument list. If an
argument is an archive, a listing for each object file in the archive will be produced. If
no file is given, the symbols in a.out are listed.

Each symbol name is preceded by its value in hexadecimal {blanks if undefined} and one
of the letters U {undefined}, A {absolute}, T (text segment symbol), D (data segment
symbol), B (bss segment symbol), C (common symbol), or K {8086/286 common segment}.
If the symbol table is in segmented format, symbol values are displayed as
segment:offset. If the symbol is local (nonexternal), the type letter is in lowercase.
The output is sorted alphabetically.

Options are

-a Print only absolute symbols.

-c Print only C program symbols {symbols that begin with "_"} as they appeared in
the C program.

-g Print only global (external) symbols.

-n Sort numerically rather than alphabetically.

-0 Prepend file or archive element name to each output line rather than only once.

-0 Print symbol values in octal.

-p Don't sort; print in symbol-table order.

-r Sort in reverse order.

-8 Print 8086/286-executable file symbols as segment:offset.

-8 Sort by size of symbol and display each symbol's size instead of value. The last
symbol in each text or data segment may be assigned a size of O. This option
implies the -n option.

-u Print only undefined symbols.

-v Also describe the object file and symbol table format.

B-94

XENIX Programming Programming Commands

n m (continued)

For each symbol that is associated with an 8086/286-relocatable segment, this flag also
causes the segment number to be printed after the symbol name, in the form of sOl.

This flag also causes a table of 8086/286 relocatable segments to be printed at the end
of the name list. The segment table contains: the sequential segment number, the
segment name, the class name, the type of required alignment, and the manner in which
the segment can be combined with other segments.

Files

a.out Default input file

See Also

ar

ar, a.out in "File Formats" in the XENIX 286 C Library Guide

8-95

Programming Commands XENIX Programming

prof - Displays profile data.

Syntax

prof [-a] [-I] [-low [-high]] [file]

Description

prof interprets the file mon.out produced by the monitor subroutine. Under default
modes, the symbol table in the named object file (a.out default) is read and correlated
with the mon.out profile file. For each external symbol, the percentage of time spent
executing between that symbol and the next is printed (in decreasing order), together
with the number of times that routine was called and the number of milliseconds per
call.

If the -a option is used, all symbols (rather than just external symbols) are reported. If
the -1 option is used, the output is listed by symbol value rather than by decreasing
percentage.

To cause calls to a routine to be tallied, the -p option of cc must have been given when
the file containing the routine was compiled. This option also arranges for the mon.out
file to be produced automatically.

Files

mon.out For profile

a.out For namelist

See Also

cc

monitor, profil in "System Functions" in the XENIX 286 C Library Guide

Notes

Beware of quantization errors.

If you use an explicit call to monitor, you will need to make sure that the buffer size is
equal to or smaller than the program size.

B-96

XENIX Programming Programming Commands

p rs - Prints an sees file.

Syntax

prs [-d[dataspecll [-r[SID]] [-e] [-I] [-a] file ...

Description

prs prints, on the standard output, all or part of an sees file (see sccsfile in "File
Formats" in the XENIX 286 C Library Guide) in a user-supplied format.

If a directory is named, prs behaves as though each file in the directory were specified
as a named file, except that non-SeeS files (the last component of whose path names
does not begin with s.) and unreadable files are silently ignored.

If a name of - is given, the standard input is read; each line of the standard input is
taken to be the name of an sees file or directory to be processed; non-SeeS files and
unreadable files are silently ignored.

Arguments to prs, which may appear in any order, consist of options and file names. All
the described options apply independently to each named file:

-d[dataspec]

-r[SID]

-e

-1

-a

Used to specify the output data specification. The dataspec is a string
consisting of sees file data keywords (see "Data Keywords," which
follows) interspersed with optional user-supplied text.

Used to specify the sees identification (SID) string of a delta for
which information is desired. If no SID is specified, the SID of the
most recently created delta is assumed.

Requests information for all deltas created earlier than and including
the delta designated via the -r option.

Requests information for all deltas created later than and including the
delta designated via the -r option.

Requests printing of information for both removed deltas (delta type =
R) and existing deltas (delta type = D). See rmdel for more
information. If the -a option is not specified, information for existing
deltas only is provided.

8-97

Programming Commands XENIX Program ming

prs (continued)

Data Keywords

Data keywords specify the parts of an sees file that are to be retrieved and output. All
parts of an sees file have an associated data keyword. There is no limit on the number
of times a data keyword may appear in a dataspec.

The information printed by prs consists of the user-supplied text and appropriate values
(extracted from the SCCS file) substituted for the recognized data keywords in the
order of appearance in the dataspec. The format of a data keyword value is either
simple, in which keyword substitution is direct, or multiline, in which keyword
sUbstitution is followed by a carriage return. User-supplied text is any text other than
recognized data keywords. A tab is specified by \t and carriage return/newline is
specified by \n.

Keyword Data Item File Section Value Format

:Dt: Delta information Delta Table See below* S
:DL: Delta line statistics " :Li:/:Ld:/:Lu: "
:Li: Lines inserted by Delta " nnnnn "
:Ld: Lines deleted by Delta " " "
:Lu: Lines unchanged by Delta " " "
:DT: Delta type " Dor R "
:1: secs ID string (SID) " :R:.:L:.:B:.:S: "
:R: Release number " nnnn "
:L: Level number " " "
:B: Branch number " " "
:8: Sequence number " " "
:D: Date Delta created " :Dy:/:Dm:/:Dd: "
:Dy: Year Delta created " nn "
:Dm: Month Delta created " " "
:Dd: Day Delta created " " "
:T: Time Delta created " :Th:::Tm:::Ts: "
:Th: Hour Delta created " nn "
:Tm: Minutes Delta created " " "
:Ts: Seconds Delta created " " "
:P: Program mer who created Delta " logname "
:DS: Delta sequence number " nnnn "
:DP: Predecessor Delta seq-no. " " "
:DI: Seq-no. of deltas incl, excl, ignored " :Dn:/:Dx:/:Dg: "
:Dn: Deltas included (seq #) " :DS: :DS: •.• "
:Dx: Deltas excluded (seq #) " " "
:Dg: Deltas ignored (seq #) " " "
:MR: MR numbers for delta " text M
:C: Comments for delta " " "
:UN: User names User Names " "
:FL: Flag list Flags " "
:Y: Module type flag " " S
:MF: MR validation flag " yes or no "
:MP: MR validation pgm name " text "
:KF: Keyword error/warning flag " yes or no "

B-98

XENIX Programming

prs (continued)

:BF: Branch flag "
:J: Joint edit flag "
:LK: Locked releases "
:Q: User defined keyword "
:M: Module name "
:FB: Floor boundary "
:CB: Ceiling boundary "
:Ds: Default SID "
:ND: Null Delta flag "
:FD: File descriptive text Comments
:BD: Body text Body
:GB: Gotten body "
:W: A form of what string N/A
:A: A form of what string N/A
:Z: what string delimiter N/A
:F: SCCS file name N/A
:PN: SCCS file path name N/A

* :Dt: = :DT: :1: :D: :T: :P: :DS: :DP:

Examples

The following command

prs -d" Users and/or user IDs for: F: are:\n: UN:" s.file

may produce this on the standard output:

Users and/or user IDs for s.file are:
xyz
131
abc

The following command

prs -d" Newest delta for pgm : M:: : I: Created: D: By : P:" -r
s.file

may produce on the standard output:

Newest delta for pgm mai n.c: 3.7 Created 77/12/1 By cas

Programming Commands

" "
" "

:R: ... "
text "
" "

:R: "
" "

:1: "
yes or no "

text M

" "
" "

:Z::M:\t:I: S
:Z::Y: :M: :I::Z: "

@(#) "
text "
" "

8-99

Programming Commands

prs (continued)

As a special case

prs s.file

may produce on the standard output

D 1.1 77/12/1 00:00:00 cas 1 000000100000100000
MRs:
b178-12345
b179-54321
COMMENTS:
this is the comment line for s.file initial delta

XENIX Programming

for each delta table entry of the "D" type. The only option argument allowed to be used
with the special case is the -a option.

Files

/tmp/pr?????

See Also

admin, delta, get, help

sccsfile in "File Formats" in the XENIX 286 C Library Guide

Diagnostics

Refer to help for explanations.

8-100

XENIX Programming Programming Commands

ranlib - Converts archives to random libraries.

Syntax

ranlib archive

Description

By adding a table of contents named .SYMDEF to the beginning of the archive, ranlib
converts each archive to a form that the loader can load more rapidly. ranlib uses ar to
reconstruct the archive so that sufficient temporary file space must be available in the
file system containing the current directory.

See Also

ld, ar

copy, settime in "Commands" in the XENIX 286 Reference Manual

Notes

Failure to process or reprocess a library with ranlib will cause ld to fail. Because
generation by ar and randomization by ranlib are separate, phase errors are possible.
The loader ld warns when the modification date of a library is more recent than the
creation of its dictionary; but this means you receive a warning even if you only copy
the library.

When ranlib builds a library, it does not include BSS symbols in the symbol table, so
unresolved BSS external symbols cannot by resolved by a library search.

8-101

Programming Commands XENIX Program m ing

ratfor - Converts Rational FORTRAN into standard FORTRAN.

Syntax

ratfor [option ...] [filename ...]

Description

ratfor converts a rational dialect of FORTRAN into ordinary FORTRAN. ratfor
provides control flow constructs essentially identical to those in C:

statement grouping:

{ statement; statement; statement}

decision making:

loops:

if (condition) statement [else statement]
switch (integer value) {

case integer: statement

[default:] statement
}

while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [until (condition)]
break [n]
next [n]

and some additional syntax to make programs easier to read and write:

Free form input:

multiple statements/line; automatic continuation

Comments:

this is a comment

8-102

XENIX Program ming Programming Commands

ratfor (continued)

Translation of relationals:

>, > = , etc., become .GT., .G E., etc.

Return (expression):

returns expression to caller from function

Define:

define name replacement

Include:

include filename

The option -h causes quoted strings to be turned into 27H constructs. -C copies
comments to the output, and attempts to format it neatly. Normally, continuation lines
are marked with an &. in column 1; the option -6x makes the continuation character x
and places it in column 6.

Notes

This program translates its input into FORTRAN source code, which in segmented
programming environments is suitable for compiling as a small model program only.

8-103

Programming Commands XENIX Program ming

regcmp - Compiles regular expressions.

Syntax

regcmp [-] file

Description

regcmp, in most cases, precludes the need for calling regcmp from C programs. This
saves on both execution time and program size. The command regcmp compiles the
regular expressions in file and places the output in file.i. If the - option is used, the
output will be placed in file.c. The format of entries in file is a name (C variable)
followed by one or more blanks followed by a regular expression enclosed in double
quotation marks.

The output of regcmp is C source code. Compiled regular expressions are represented
as extern char vectors. file.i files may thus be included into C programs, or file.c files
may be compiled and later loaded. In the C program that uses the regcmp output,
regex(abc,line), applies the regular expression named abc to line. Diagnostics are self
explanatory.

Examples

name "([A-Za-z][A-Za-zO-9]*)$0"

tel no "\({a, 1 }([2-9][0 1][1-9])$0\){0, 1} *"
"([2-9][0-9]{2})$1 [-]{O, 1}"
"([O-9]{ 4})$2"

In the C program that uses the regcmp output

regex(telno, line, area, exch, rest)

will apply the regular expression named telno to line.

See Also

regex in "System Functions" in the XENIX 286 C Library Guide

8-104

XENIX Program ming Programming Commands

rmdel - Removes a delta from an sees file.

Syntax

rmdel -rSID file ...

Description

rmdel removes the delta specified by the SID from each named sees file. The delta to
be removed must be the newest (most recent) delta in its branch in the delta chain of
each named sees file. In addition, the SID specified must not be that of a version being
edited for the purpose of making a delta. That is, if a p-file (see get) exists for the
named sees file, the SID specified must not appear in any entry of the p-file.

If a directory is named, rmdel behaves as though each file in. the directory were
specified as a named file, except that non-SeeS files (last component of whose path
names does not begin with s.) and unreadable files are silently ignored. If a name of - is
given, the standard input is read; each line of the standard input is taken to be the name
of an sees file to be processed; nonSeeS files and unreadable files are silently ignored.

Files

x-file See delta

z-file See delta

See Also

delta, get, help, prs

sccsfile in "File Formats" in the XENIX 286 C Library Guide

Diagnostics

Use help for explanations.

8-105

Programming Commands XENIX Programming

sact - Prints current SCCS file editing activity.

Syntax

sact file ...

Description

sact informs the user of any impending deltas to a named SCCS file. This situation
occurs when get with the -e option has been executed without a subsequent execution of
delta. If a directory is named on the command line, sact behaves as though each file in
the directory were specified as a named file, except that non-SCCS files and unreadable
files are silently ignored. If a name of - is given, the standard input is read with each
line being taken as the name of an SCCS file to be processed.

The output for each named file consists of five fields separated by spaces.

Field 1

Field 2

Field 3

Field 4

Field 5

See Also

Specifies the SID of a delta that currently exists in the sces file to which
changes will be made to make the new delta

Specifies the SID for the new delta to be created

Contains the logname of the user who will make the delta (executed a get
for editing)

Contains the date that get -e was executed

Contains the time that get -e was executed

delta, get, unget

Diagnostics

Use help for explanations.

B-I06

XENIX Programming Programming Commands

sccsd iff - Compares two versions of an SCCS file.

Syntax

sccsdiff -rSID1-rSID2 [-p] [-sn] file ...

Description

sccsdiff compares two versions of an SCCS file and generates the differences between
the two versions. Any number of SCCS files may be specified, but arguments apply to
all files.

-rSID? SIDl and SID2 specify the deltas of an secs file that are to be compared.
Versions are passed to bdiff in the order given.

-p Pipe output for each file through pre

-sn n is the file segment size that bdiff will pass to diff. This is useful when diff
fails due to a high system load.

Files

/tmp/get????? Temporary files

See Also

get, help

bdiff, pr in "Commands" in the XENIX 286 Reference Manual

Diagnostics

file: No differences if the two versions are the same

Use help for explanations.

8-107

Programming Commands XENIX Programming

size - Prints the size of an object file.

Syntax

si ze [object ...]

Description

size prints the (decimal) number of bytes required by the text, data, and bss portions and
their sum in octal and decimal for each object-file argument. If no file is specified,
a.out is used.

See Also

a.out in "File Formats" in the XENIX 286 C Library Guide

8-108

XENIX Program m ing Programming Commands

spline - Interpolates smooth curve.

Syntax

spl i ne [option] ...

Description

spline takes pairs of numbers from the standard input as abcissas and ordinates of a
function. It produces a similar set, which is approximately equally spaced and includes
the input set, on the standard output. The cubic spline output has two continuous
derivatives and enough points to look smooth when plotted.

The following options are recognized, each as a separate argument.

-a Supplies abscissas automatically (they are missing from the input); spacing is
given by the next argument, or is assumed to be 1 if next argument is not a
number.

-k The constant k used in the boundary value computation

yOlo = ky'1, ... , y"n = ky'n-1

is set by the next argument. By default k =0.

-n Spaces output points so that approximately n intervals occur between the
lower and upper x limits. (Default n = 100.)

-p Makes output periodic, i.e., matches derivatives at ends. First and last input
values should normally agree.

-x Next 1 (or 2) arguments are lower (and upper) x limits. Normally these limits
are calculated from the data. Automatic abcissas start at lower limit
(default 0).

Diagnostics

When data is not strictly monotone in x, spline reproduces the input without
interpolating extra points.

Notes

A limit of 1000 input points is silently enforced.

B-109

Programming Commands XENIX Programming

stackuse - Determines stack requirements for C programs.

Syntax

stackuse [-a] [-mstartsym] [-rfakeref] [-slibstack] [file ...]

Description

stackuse determines the stack requirements of one or more C language programs. It
displays the name of the main routine in a file, its stack requirements in bytes, and the
number of recursive routines. All command line switches are optional.

-a

-mstartsym

-rfakeref

-slibstack

Print data for all symbols, not just start symbols.

Print only the specified start (main) symbol. If this option is not
specified, all start symbols (including those which are not called by the
program) will be printed.

Uses the named file fakeref as a fake references file. The format is:
parent child. The special parent.LEAF is a meta-parent meaning all
leaf nodes.

Uses the named file as library of costs for external routines. The
format is: subr stack. The special subr.UNDEF is a meta-subroutine
meaning all undefined routines.

The -r and -s options may be repeated an arbitrary number of times. The effect is
additive rather than destructive. In the case of duplicate definitions, the first is used.

Lines of the -r and -s files which begin with a pound sign (i) are treated as comments
and are ignored otherwise.

8-110

XENIX Programming Programming Commands

stackuse (continued)

Diagnostics

Usage (fatal).

Redefinitions in -r, -s files, or in the source (warning).

Presence of routines for which no stack value is provided (warning).

Files

/usr/lib/stackuse/*

/tmp/*

Notes

Passes, libraries

Temporaries used by passes.

For the libstack and fakeref files, a comment character (#) is used.

8-111

Programming Commands XENIX Program m ing

strings - Finds the printable strings in an object file.

Syntax

strings [-] [-0] [-number] file ...

Description

strings looks for ASCII strings in a binary file. A string is any sequence of four or more
printing characters ending with a newline or a null character. Unless the - flag is given,
strings only looks in the initialized data space of object files. If the -0 flag is given,
then each string is preceded by its decimal offset in the file. If the -number flag is
given then number is used as the minimum string length rather than 4.

strings is useful for identifying random object files and many other items.

See Also

hd, od in "Commands" in the XENIX 286 Reference Manual

Credit

This utility was developed at the University of California at Berkeley and is used with
permission.

B-112

XENIX Programming Programming Commands

strip - Removes symbols and relocation bits.

Syntax

strip [dehrsStx] file ...

Description

strip removes selected parts of an object file, including the header, text, data,
relocation records, and symbol table. strip works directly on the named files; nothing is
written to the standard output.

strip is typically used to remove symbol table and relocation information from a file
after debugging has been completed. It also is useful for creating a compact namelist
file in which text and data have been removed.

-d Strip data and the data relocation records.

-e Strip the extended header.

-h Strip the header and extended header.

-r Strip all relocation records except the x.out short form.

-s Strip the symbol table.

-8 Strip the segment table.

-t Strip text and the text relocation records.

-x Strip all relocation records.

strip has the same effect as the -s option of Id. If no options are given, the -r and -s
options are implied.

Although strip can be used to remove an x.out header from an 8086/286-relocatable file,
it cannot be used to remove run-time relocation records.

Files

/tmp/stm* Temporary file

8-113

Programming Commands

strip (continued)

See Also

a.out in "File Formats" in the XENIX 286 C Library Guide

Id in "Commands" in the XENIX 286 Reference Manual

8-114

XENIX Program m ing

XENIX Programming Programming Commands

time - Times a command.

Syntax

time command

Description

The given command is executed; after it is complete, time prints the elapsed time
during the command ("real"), the time spent in the kernel ("sys"), and the time spent in
execution of the command outside of the kernel ("user"). Times are reported in seconds.

The times are printed on the standard error output.

See Also

times in "System Functions" in the XENIX 286 C Library Guide

8-115

Programming Commands XENIX Programming

tso rt - Sorts a file topologically.

Syntax

tsort [file]

Description

tsort produces on the standard output a totally ordered list of items consistent with a
partial ordering of items mentioned in the input file. If no file is specified, the standard
input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of
different items indicate ordering. Pairs of identical items indicate presence, but not
ordering.

See Also

lorder

Diagnostics

Odd data: There is an odd number of fields in the input file.

Notes

The sorting algorithm is quadratic, which can be slow if you have a large input list.

B-116

XENIX Programming Programming Commands

unget - Undoes a previous get of an SCCS file.

Syntax

unget [-rSID] [-5] [-n] file ...

Description

uoget undoes the effect of a get -e done prior to creating the intended new delta. If a
directory is named, uoget behaves as though each file in the directory were specified as
a named file, except that non-SCCS files and unreadable files are silently ignored. If a
name of - is given, the standard input is read with each line being taken as the name of
an SCCS file to be processed.

Options apply independently to each named file.

-rSID

-s

-0

See Also

Uniquely identifies which delta is no longer intended. (This would have been
specified by get as the "new delta.") The use of this option is necessary only
if two or more versions of the same SCCS file have been retrieved for
editing by the same person (login name). A diagnostic results if the specified
SID is ambiguous, or if it is necessary and omitted on the command line.

Suppresses the printout, on the standard output, of the intended delta's SID.

Causes the retention of the file that would normally be removed from the
current directory.

delta, get, sact

Diagnostics

Use help for explanations.

8-117

Programming Commands XENIX Program m ing

val - Validates an sees file.

Syntax

val -

val [-5] [-rSID] [-mname] [-ytype] file ...

Description

val determines if the specified file is an sees file meeting the characteristics specified
by the optional argument list. Arguments to val may appear in any order. The
arguments consist of options, which begin with a -, and named files.

val has a special argument, -, which causes reading of the standard input until an end
of-file condition is detected. Each line read is independently processed as if it were a
command line argument list.

val generates diagnostic messages on the standard output for each command line and
file processed. It also returns a single 8-bit code upon exit.

The options are defined as follows. The effects of any options apply independently to
each named file on the command line:

-s

-rSID

-mname

-ytype

8-118

The presence of this argument silences the diagnostic message normally
generated on the standard output for any error that is detected while
processing each named file on a given com mand line.

The argument value SID (SeeS identification string) is an sees delta
number. A check is made to determine if the SID is ambiguous (for
example, rl is ambiguous because it physically does not exist but implies
1.1, 1.2, etc., which may exist) or invalid (rl.O or rl.l.O is invalid because
neither case can exist as a valid delta number). If the SID is valid and not
ambiguous, a check is made to determine if it actually exists.

The argument value name is compared with the sees %M% keyword in file.

The argument value type is compared with the sees % Y% keyword in file.

XENIX Program m ing Programming Commands

val (continued)

The 8-bit code returned by val is a disjunction of the possible errors. That is, it can be
interpreted as a bit string where (moving from left to right) set bits are interpreted as
follows:

bit 0 = Missing file argument

bit 1 = Unknown or duplicate keyletter argument

bit 2 = Corrupted SCCS file

bit 3 = Can't open file or file not SCCS

bit 4 = SID is invalid or ambiguous

bit 5 = SID does not exist

bit 6 = 96 Y96, -y mismatch

bit 7 = 96M96, -m mismatch

Note that val can process two or more files on a given command line and in turn can
process multiple command line (when reading the standard input). In these cases, an
aggregate code is returned: a logical OR of the codes generated for each command line
and file processed.

See Also

admin, delta, get, prs

Diagnostics

Use help for explanations.

Notes

val can process up to 50 files on a single command line.

B-119

Programming Commands XENIX Programming

xref - Cross-references C programs.

Syntax

xref [file] •••

Description

xref reads each named file or the standard input if no file is specified and prints a cross
reference consisting of lines of the form

identifier filename line_number ...

Function definition is indicated by a plus sign (+) preceding the line number.

See Also

cref

8-120

XENIX Program m ing Programming Commands

xstr - Extracts strings from C programs.

Syntax

xstr [-c] [-] [file]

Description

xstr maintains a file strings into which strings in component parts of a large program
are hashed. These strings are replaced with references to this common area. This
serves to implement shared constant strings and is most useful if they are also read-only
strings.

The command

xstr -c name

will extract the strings from the C source in name, replacing string references by
expressions of the form (&xstr[number]) for some number. An appropriate declaration
of xstr is prep ended to the file. The resulting C text is placed in the file x.c, to then be
compiled. The strings from this file are placed in the strings data base if they are not
there already. Repeated strings and strings that are suffixes of existing strings do not
cause changes to the data base.

After all components of a large program have been compiled, a file xs.c declaring the
common xstr space can be created by a command of the form

xstr -c name 1 name2 name3

This xs.c file should then be compiled and loaded with the rest of the program. If
possible, the array can be made read-only (shared), saving space and swap overhead.

xstr can also be used on a single file. A command

xstr name

creates files x.c and xs.c as before, without using or affecting any strings file in the
same directory.

It may be useful to run xstr after the C preprocessor if any macro definitions yield
strings or if there is conditional code containing strings that may not, in fact, be
needed. xstr reads from its standard input when the argument - is given. An
appropriate command sequence for running xstr after the C preprocessor is

cc -E name.c I xstr -c
cc -c x.c
mv x.o name.o

8-121

Programming Commands XENIX Programming

xstr (continued)

xstr does not touch the file strings unless new items are added. Thus, make can avoid
re making xs.o unless truly necessary.

Files

strings Data base of strings

x.c Massaged C source

xs.c C source for definition of array xstr

/tmp/xs* Temp file when xstr name doesn't touch strings

See Also

mkstr

Credit

This utility was developed at the University of California at Berkeley and is used with
permission.

Notes

If a string is a suffix of another string in the data base, but the shorter string is seen
first by xstr, both strings will be placed in the data base even when placing just the
longer one there will do.

8-122

XENIX Programming Programming Commands

yacc - Invokes a compiler-compiler.

Syntax

yacc [-vd] grammar

Description

yacc converts a context-free grammar into a set of tables for a simple automaton that
executes an LR(l)-parsing algorithm. The grammar may be ambiguous; specified
precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a program
yyparse. This program must be loaded with the lexical analyzer program, yylex, as well
as main and yyerror, an error handling routine. These routines must be supplied by the
user; lex is useful for creating lexical analyzers usable by yacc.

If the -v flag is given, the file y.output is prepared, which contains a description of the
parsing tables and a report on conflicts generated by ambiguities in the grammar.

If the -d flag is used, the file y.tab.h is generated with the #define statements that
associate the yacc-assigned "token codes" with the user-declared "token names". This
allows source files other than y. tab.c to access the token codes.

Files

y.output

y.tab.c

y.tab.h Defines for token names

yacc. tmp, yacc.acts Temporary files

/usr/lib/yaccpar Parser prototype for C programs

See Also

lex

8-123

Programming Commands XENIX Programming

yacc (continued)

Diagnostics

The number of reduce-reduce and shift-reduce conflicts is reported on the standard
output; a more detailed report is found in the y.output file. Similarly, if some rules are
not reachable from the start symbol, this is also reported.

Notes

Because file names are fixed, one yacc process at most can be active in a given
directory at a time.

B-124

Intel Publications

APPENDIX C
RELATED PUBLICATIONS

Copies of the following publications can be ordered from

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

XENIX R. 3.4 Reference Library: Basic System

Overview of the XENIX 286 Operating System, Order Number 174385 -- XENIX history,
XENIX uses, basic XENIX concepts, and an overview of other XENIX manuals.

XENIX 286 User's Guide, Order Number 174387 -- a brief survey of common commands
plus full chapters on the ed text editor, the vi text editor, electronic mail, the Bourne
shell (sh), and the be calculator.

XENIX 286 Visual Shell User's Guide, Order Number 174388 -- a XENIX command
interface ("shell") that replaces the standard command syntax with a menu-driven
command interpreter.

XENIX 286 Installation and Configuration Guide, Order Number 174386 -- how to install
XENIX on your hardware and tailor the XENIX configuration to your needs.

XENIX 286 System Administrator's Guide, Order Number 174389 -- how to perform
system administrator chores such as adding and removing users, backing up file systems,
and troubleshooting system problems.

XENIX 286 Communications Guide, Order Number 174461 -- installing, using, and
administering XENIX networking software.

XENIX 286 Reference Manual, Order Number 174390 -- all commands in the XENIX 286
Basic System, with a master index to the XENIX Basic System and Extended System.

C-1

Related Publications XENIX Programming

XENIX R. 3.4 Reference Library: Extended System

XENIX 286 Programmer's Guide, Order Number 174391 -- XENIX 286 Extended System
commands used for developing and maintaining programs.

XENIX 286 C Library Guide, Order Number 174542 -- standard subroutines used in
programming with XENIX 286, including all system calls.

XENIX 286 Device Driver Guide, Order Number 174393 -- how to write device drivers
for XENIX 286 and add them to your system.

XENIX 286 Text Formatting Guide, Order Number 174541 -- XENIX 286 Extended
System commands used for text formatting.

Other XENIX Publications

XENIX Networking Software Installation and Configuration Guide, Order Number
135146 -- installing, configuring, and administering the XENIX OpenNETTM network.

XENIX Networking Software User's Guide, Order Number 135147 -- user's and
programmer's reference to the XENIX OpenNETTM network.

C-2

INDEX

Note: For a master index to the XENIX reference library, see the XENIX 286
Reference Manual.

80286 instructions, 7-18
Actions,

in lex, 9-8 thru 9-12
in yacc, 10-6 thru 10-8, 10-10 thru

10-13, 10-22, 10-26 thru
10-27

adb, 1-1, 2-9, 6-1 thru 6-31, 10-23,
B-2 thru B-10

addresses, 6-4, 6-7, 6-25, B-9 thru
B-10

commands, 6-10 thru 6-13, 6-25 thru
6-28, B-4 thru B-8

data formats, 6-9 thru 6-10
debugging, 2-10, 6-13 thru 6-18
displaying, 6-4, 6-9 thru 6-13, 6-15,

6-17 thru 6-18
examples, 6-12 thru 6-13, 6-18 thru

6-22, 6-29 thru 6-30
expressions, 6-4, B-3
features, 6-25 thru 6-28
files, B-10
integers, 6-5
invoking, 6-1 thru 6-4
leaving, 6-4
memory maps, 6-22 thru 6-25
operators, 6-8 thru 6-9
options, 6-3
patching, 6-30
registers, 6-7
scripts, 6-26
symbols, 6-5, 6-27
variables, 6-6, B-9

Address space, 2-6, A-6, B-26
Addressing modes, 7-19 thru 7-22
admin, 5-4 thru 5-5, 5-13 thru 5-19,

5-21 thru 5-27, B-11 thru B-15
al register, 7-18
alias, 8-6 thru 8-7, 8-9, B-38, B-45, B-53
Aliases, 8-6 thru 8-7, 8-9, B-38
Allocating memory, 2-5 thru 2-6

Alternation, 9-7
a.out, 2-2 thru 2-4, 9-5, B-2, B-10, B-18,

B-21, B-71, B-74 thru B-75, B-94
thru B-96

ar, 2-7, B-16 thru B-17, B-101
argv, 8-11 thru 8-13, B-39 thru B-40,

B-50
.ascii, 7-8, 7-10 thru 7-11
.asciz, 7-10 thru 7-11
as, 1-1, 7-1 thru 7-23, B-18 thru B-19

addressing modes, 7-19 thru 7-22
constants, 7-2
diagnostics, 7-23
directives, 7-8 thru 7-12
files, B-19
lexical conventions, 7-2
machine instructions, 7-12 thru 7-18
options, 7-1, B-18

Assembler, see as
Assembly,

language files, 2-10 thru 2-11
segments, 7-3

Assignment statements, 7-4 thru 7-5
ax register, 7-18

$b, 6-15, B-7
Background processes, 8-8
Base registers, 7-21
/bin, 8-2
/bin/ as, B-19
/bin/cc, B-26
/bin/csh, 8-11, 8-19
/bin/ld, B-76
/bin/masm, B-90
/bin/sh, 8-11, B-55
Binary files, 6-30
Bitfields, A-5
.blkb, 7-11
.blkw, 7-11
Block directive, 7-11

Index-l

Index

bpregister, 6-11,7-21
:br, 6-14 thru 6-15,6-19, B-8
Branch,

instructions, 7-17
number, 5-2, 5-10

break, 3-4, 8-17, B-45, B-50, B-80
breaksw, 8-17, B-45
Breakpoints, 6-14 thru 6-15, 6-17
.bss, 7-3, 7-7, 7-9 thru 7-10
bss segments, 7-3, 7-7
bx register, 7-21
.byte, 7-8, 7-12, 7-16, 7-18
Byte,

instruction, 7-16
length, A-2
ordering, A -4, A -13

$c, 6-17, 6-22, B-7
C,

character set, A-6
compiler, see cc

differences, A-7 thru A-II
messages, 2-14 thru 2-15

library, 2-2 thru 2-3
portability, 1-2, A-2 thru A-13
preprocessor, 2-12 thru 2-14
program checker, see lint
program environments, A-II thru A-12
shell, see csh

call, 7-22
calli, 7-18, 7-22
case, B-45, B-49
cb, B-20
cc, 1-1,2-1 thru 2-24, 7-1, 8-21 thru B-27,

B-75
as used with, 7-1
debugging, 2-9 thru 2-11
defining a macro, 2-12 thru 2-13
error messages, 2-14 thru 2-15, B-27
files, B-26
invoking, 2-1
keywords, 2-16 thru 2-18
linking, 2-8
main function, 2-2 thru 2-4
memory models, 2-5 thru 2-6, 2-23

thru 2-24, B-25 thru B-26
MS-DOS environment, 2-4

Index-2

XENIX Programming

naming output files, 2-4
object files, 2-4, 2-7 thru 2-10
options, 2-16 thru 2-22, B-21 thru

B-24
profiling, 2-11
programs, 2-5 thru 2-9
source files, 2-2 thru 2-4

cd, 4-1, B-45
cdc, 5-17 thru 5-18, B-28 thru B-30
cdpath, B-51
Ceiling flag, 5-23
changecom, B-86
changequote, 11-4, B-86
char, A-6 thru A-I0

signed, A-7
unsigned, A-7

Character classes, 9-5 thru 9-8
Character I/O, 9-22
Character set, A-6
chdir, B-45
Checksums, 5-24 thru 5-25
child, B-50 thru B-51
:co, 6-15 thru 6-16, B-8
comb, B-31 thru B-32
comb?????, B-32
.comm, 7-10
Commands,

adb, B-2 thru B-I0
admin, B-l1 thru B-15
ar, B-16 thru B-17
as, B-18 thru B-19
cb, B-20
cc, B-21 thru B-27
cdc, B-28 thru 8-30
comb, B-31 thru B-32
cref, B-33 thru B-34
csh, B-35 thru B-56
ctags, B-57 thru 8-58
delta, B-59 thru B-61
dosld, B-62 thru B-63
get, B-64 thru B-69
gets, B-70
hdr, B-71 thru 8-72
help, B-73
ld, B-74 thru B-76
lex, B-77 thru B-79

XENIX Programming

lint, 8-80 thru 8-82
lorder, 8-83
m4, 8-84 thru 8-88
masm, 8-89 thru 8-91
mkstr, B-92 thru 8-93
nm, 8-94 thru 8-95
prof, 8-96
prs, 8-97 thru 8-100
ranlib, 8-10 1
ratfor, 8-102 thru 8-103
regcmp, 8-104
rmdel, 8-105
sact, 8-106
sccsdif, 8-107
size, 8-108
spline, 8-109
stackuse, 8-110 thru 8-111
strings, 8-112
strip, B-113 thru 8-114
time, 8-115
tsort, 8-116
unget, 8-11 7
val, 8-118 thru 8-119
xref, 8-120
xstr, 8-121 thru 8-122
yacc, B-123 thru 8-124

Comments,
in as, 7-2
in sees, 5-7, 5-17

Common directive, 7-10
Compiler-compiler, see yacc
Compiler messages, 2-14 thru 2-15
Constants, 7-2
Context sensitivity, in lex, 9-14 thru 9-16
continue, 3-4, 8-45, 8-50
CONTROL-D, 6-4
Control structures, 8-16 thru 8-17
core, 8-10
Core image files, 6-2
Creating,

makefile, 4-1
object files, in cc, 2-7 thru 2-10
programs, in cc, 2-5 thru 2-9
s-files, in sees, 5-4 thru 5-5

cref, 8-33 thru 8-34
csh, 1-1, 8-1 thru 8-22, 8-35 thru 8-56,

8-70
aliases, 8-6 thru 8-7, 8-38
argument list, 8-54
background and foreground jobs, 8-8

Index

commands, 8-9 thru 8-10, 8-17 thru
8-18, 8-20, 8-35 thru 8-36, 8-45

thru 8-50
control structures, 8-16 thru 8-17
example, 8-14 thru 8-16
expressions, 8-13 thru 8-14, 8-43

thru 8-44
files, 8-55
history list, 8-4 thru 8-6
invoking, 8-1 thru 8-2
lexical structure, 8-35
limitations, 8-55
redirecting I/O, 8-7 thru 8-8, 8-42

thru 8-43
signal handling, 8-55
special characters, 8-21 thru 8-22
starting a loop, 8-19
substitutions, 8-36 thru 8-41
variables, 8-2 thru 8-4, 8-11 thru

8-13, 8-39, 8-50 thru 8-52
.cshrc, 8-1, 8-3, 8-10, 8-35, 8-50, 8-55
ctags, 8-57 thru 8-58
curses, 2-7 thru 2-8

$d, 6-27, 8-7
.data, 7-3, 7-7, 7-9
Data,

formats, in adb, 6-9 thru 6-10
pointers, 2-6
prot ability, A-12
segments, 2-19, 2-23 thru 2-24, 6-23,

7-3
specification, 5-19 thru 5-20

Debugger, see adb
Debugging option, in make, 4-13
Declarations in yacc, 10-4 thru 10-5
decr, 8-87
default, 8-45
define, 11-2 thru 11-5, B-85
defn, 8-85
defopen, A-12
defread, A -12
Deleting characters, in m4, 11-10
delta, 5-2 thru 5-4, 5-7, 5-9 thru 5-10,

5-12 thru 5-18, 5-22, 5-25, 5-27 thru
5-28, B-12 thru B-14, B-28, B-59

thru B-61, B-106
files, B-60 thru B-61
options, B-59 thru B-60

Index-3

Index

Deltas, 5-2 thru 5-3, 5-7 thru 5-8, 5-29
thru 5-30, B-28 thru B-29

Dependency lines, 4-1 thru 4-2
built-in, 4-8 thru 4-11

/dev/mem, B-10
/dev/null, B-43, B-55
/dev/swap, B-10
d-files, 5-3, B-61
d-flag, 5-15
di register, 7-21
Diagnostics, 7-2, B-1
diff, 5-31
Directives, 7-8 thru 7-12

ASCII, 7-10 thru 7-11
block, 7-11
common, 7-10
embedding, 3-11
end, 7-12
even, 7-8
floating point, 7-9
global, 7-9
initial value, 7-12
insert, 7-10
listing, 7-11
segment, 7-9 thru 7-10

Directories, 5-1, 5-4
Disambiguity rules, in yace, 10-15, 10-20
Displaying data, in adb, 6-4, 6-9 thru

6-10
divert, 11-7, B-86
divnum, 11-7, B-86
:dl, 6-17, B-8
dol, 11-10, B-86
dosld, B-62, B-63
.double, 7-9
du, 8-8
dumpdef, 11-10, B-88
Dyadic operators, B-4

$e, 6-18, B-7
echo, 8-13, 8-18, B-45, B-51
Editing s-files, 5-6 thru 5-7, 5-21 thru

5-22, 5-25
else, B-44, B-46 thru B-47
.end, 7-12
end, B-46, B-50
End directive, 7-12
Endmarker, 10-5, 10-9
endif, B-46

Index-4

endsw, B-46, B-49
env, 8-9

XENIX Programming

Environmental variables, 4-7 thru 4-8
Equal sign (=) command, 6-10 thru 6-11
error, 10-9, 10-21
Error messages, A-5, A-12, see

Error handling
Error handling,

in adb, 6-2 thru 6-3
in as, 7-23
in cc, 2-14 thru 2-15
in lint, 3-2
in m4, 11-10
in sees, 5-12, 5-28
in yacc, 10-9 thru 10-11, 10-21 thru

10-22
errprint, 11-10, B-88
Escape command, in adb, 6-28
/etc/passwd, 8-1, B-55
eva!, 11-6, B-87
.even, 7-8
Even directive, 7-8
exec, B-46, B-53
exit, 8-18, B-46
Expressions,

in adb, B-3
in as, 7 -6 thru 7-8
in csh, 8-13 thru 8-14, B-43 thru

B-44
in lex, 9-3 thru 9-4, 9-6, 9-8

$f, B-7
far, 2-16 thru 2-17
File administrator, 5-4
Filenames,

in cc, 2-4
in sees, 5-4

files, B-59
fixhdr, 2-18
Flags, in sees, 5-14 thru 5-16, 5-23
.float, 7-9
Floating point directive, 7-9
Floor flags, 5-23
for, 6-15
foreach, 8-17, 8-19, B-44, B-46
Foreground, 8-8
Format, in adb, 6-9 thru 6-10
fortran, 2-17
fprintf, A-9 thru A-10, A-12

XENIX Program m ing

fscanf, A-12

get, 5-4 thru 5-11, 5-13 thru 5-15,5-21,
5-25, 5-27 thru 5-30, 8-12 thru 8-13,

8-61,8-64 thru 8-69,8-117
files, 8-67 thru 8-69
keywords, 8-66 thru 8-67
options, 8-64

getc, A-II
getchar, A-II
getenv, A-II
getpwent, A-II
gets, 8-70
g-files, 5-3, 5-28, 8-60, 8-67 thru 8-68
glob, 8-46
Global directive, 7-9
.glob1, 7-6 thru 7-7, 7-9 thru 7-10
goto, 3-4, 8-46
Grammar, in yacc, 10-1, 10-4 thru 10-8,

10-14 thru 10-20, 10-24 thru 10-25

hdr, 8-71 thru 8-72
help, 5-12, 5-26, 8-73
histchars, 8-51
history, 8-9, 8-46, 8-51
History list, 8-4 thru 8-6, 8-36
home, 8-3, 8-41, 8-51
Huge model programs, 2-5 thru 2-6, 2-19,

8-25 thru 8-26

Identifiers, 7-2, A-7 thru A-8
if, 2-12, 10-9, 8-43 thru 8-44, 8-46 thru

8-47
ifdef, 2-12,11-5,8-85
ifelse, 11-8,8-86
i flag, 5-15
ifndef, 2-12
ignore, 8-33
ignoreeof, 8-3, 8-9, 8-51
Impure-text small model, 2-5, 8-25
in, 7-18
include, 11-7 thru 11-8, 8-87
incr, 11-6, 8-86
index, 8-87
Initial value directive, 7-12
input, 9-11 thru 9-12,8-78
Insert directive, 7-10
.insrt, 7-10
int, A-5, A-8 thru A-10

Integer,
in adb, 6-5
in cc, 2-23

INTERR UPT, 6-4, 6-16, 8-8
Interrupts, 8-18
Intersegment instructions, 7-18
Invoking,

abd, 6-1 thru 6-4
cc, 2-1
csh, 8-1 thru 8-2
lex, 9-4 thru 9-5
lint, 3-1
m4, 11-2
make, 4-3 thru 4-4

inw, 7-18
110,

Index

in csh, 8-7 thru 8-8, 8-42 thru 8-43
instructions, 7-18

isdigit, A-6

j flag, 5-21
j m p, 7 -1 7, 7 - 22
jmpi, 7-18, 7-22

:k, 6-16, 8-8
Keyword(s),

in as, 7-6, 7-12 thru 7-16
in cc, 2-16 thru 2-18
in sees, 5-13 thru 5-14, 8-66 thru

8-67, 8-98 thru 8-99
kill, 8-8
Killing a program, 6-4, 6-16

1, 6-25, 6-30, 8-6
L, 6-30, 8-6
Labels, 7-4
Large model programs, 2-5 thur 2-6,

8-25 thru 8-26
Id, 7-1, 7-6, 8-27, 8-74 thru 8-76,8-83,

B-101
files, 8-76
options, 8-74 thru 8-75

961eft, 10-18 thru 10-20, 10-28, 10-39
Left recursive grammar, 10-24 thru

10-25
Left shift operator, 7-6, A-7
len, 11-9, 8-87
Length of string, 11-9

Index-5

Index

lex, 1-1, 3-4, 9-1 thru 9-24, 10-9, B-77
thru B-79

actions, 9-8 thru 9-12
character classes, 9-5 thru 9-6
character sets, 9-22
file format, B-78
invoking, 9-4 thru 9-5
I/O routines, 9-4 thru 9-5, 9-11
operators, 9-24, B-77
options, B-77
regular expressions, 9-3 thru 9-4
routines, B-78
source format, 9-2 thru 9-3, 9-22 thru

9-23
specifications, 9-5 thru 9-18
strings,. B-7 7
used with yaee, 9-18 thru 9-21
variables, B-78

lex.yy.e, 9-4, B-77 thru B-78
Lexical,

analysis in yaee, 10-8 thru 10-9
conventions, 7-2

Lexical Analyzer Generatorm, see lex, 9-1
thru 9-24, 10-2, 10-4 thru 10-6, 10-25

thru 10-26, 10-34
I-files, 5-3, B-67 thru 8-68
1 flag, 5-24
/lib/pO, 8-26
/lib/pI, B-26
/lib/p2, B-26
/lib/p3, B-26
Library, 2-8, 3-12
link, 5-2
Linking

object files, 2-5
programs to functions, 2-8

lint, 1-1, 3-1 thru 3-12, 10-27, A-5, A-12,
B-80 thru B-82

checks, see program checking
directives, 3-11 thru 3-12
files, B-81
invoking, 3-1
libraries, 3-12, B-80 thru 8-82
options, 3-1, 3-3, B-80 thru 8-81

.list, 7-11
Listing directives, 7-11
Literals, 10-4, 10-39
Location counter, 7-4, 7-8
Lock flag, 5-24

Index-6

XENIX Programming

.login, 8-1 thru 8-4, B-35, B-55

.logout, 8-2, 8-35, B-55
logout, 8-1 thru 8-2,8-9, B-47, B-55
lorder, B-83

$m, 6-22 thru 6-23, B-7
m, 6-24, B-6
M, 6-24, B-7
m4, 1-2, 11-1 thru 11-10, B-84 thru B-88

arguments, 11-5 thru 11-6
built-in macros, 11-6
conditionals, 11-8
defining macros, 11-2 thru 11-3,

8-85 thru B-88
file manipulation, 11-7
invoking, 11-2
options, B-84
printing, 11-10
quoting, 11-3 thru 11-5
string manipulation, 11-9
system commands, 11-8

m4exit, B-87
m4wrap, 8-88
Machine instructions, 7-12 thru 7-18
Macros, 1-2

defining, in ee, 2-12 thru 2-13
in m4, 11-2 thru 11-6
parser simulation, in yyae, 10-26
using, in make, 4-5 thru 4-9

mail, 8-3, 8-51
main, 2::-2/thru 2-4, 6-17, 10-23, 8-57,

B-78, 8-110
Main function, in ee, 2-2 thru 2-3
make, 1-1, 4-1 thru 4-14

built-in rules, 4-8 thru 4-11
creating a makefile, 4-1 thru 4-2
dependency lines, 4-1
environments, 4-7 thru 4-8
example, 4-13 thru 4-14
invoking, 4-3 thru 4-4
libraries, 4-11 thru 4-12
macros, 4-5 thru 4-7
options, 4-4
target files, 4-3 thru 4-4
target names, 4-4 thru 4-5, 4-11
troubleshooting, 4-12 thru 4-13

makefile, 4-2 thru 4-3
Makefile, 4-2 thru 4-3
make print, 4-14

XENIX Programming

maketemp, 11-8, B-87
malIoc, A-5
masm, 2-10 thru 2-11, B-89 thru B-91

default options, B-91
diagnostics, B-91
exit codes, B-91
files, B-90
options, B-89 thru B-90

Memory,
maps, 6-22 thru 6-25
models, 2-5 thru 2-6, 2-23 thru 2-24,

B-25 thru B-26
Middle model programs, 2-5 thru 2-6, B-25

thru B-26
mkstr, B-92 thru B-93
Mnemonic list, 7-12 thru 7-16
Modification requests, 5-18, B-28 thru

B-29
Module(s), 2-19, 2-24
Monadic operators, B-4
monitor, B-96
mon.out, 2-11, B-96
MS-DOS environment, 2-4

Name labels, 7-4 thru 7-5
Naming files, in cc, 2-4
near, 2-16 thru 2-17
newline, B-6
nice, B-47
.nlist, 7 -11
nm, B-94 thru B-95
noclobber, 8-3, B-42, B-51
noglob, B-51
nohup, B-35, B-47
%nonassoc, 10-18 thru 10-20, 10-28, 10-39
nonomatch, B-52
Null,

character, 10-4
pointer, A-6
statements, 7-4 thru 7-5

Numeric labels, 7-4 thru 7-5

$0, 6-27, B-7
Object files, 2-4, 2-7 thru 2-10, 7-1, B-71
Objects, 2-6, B-26
Offset, 6-27, 7-4
onintr, B-47

only, B-33
Operands,

based, 7-21
based indexed, 7-22
direct address, 7-20
immediate, 7-20
indexed, 7-21
indirect address, 7-22
register, 7-19

Operators,
binary, 6-8 thru 6-9
in adb, 6-8 thru 6-9, B-3 thru B-4
in expressions, 7-6
left shift A-7
lex, 9-24
order of evaluation, A-II
right shift, A-7
unary, 6-8 thru 6-9

Optimization, 2-9 thru 2-10
Optional expressions, 9-6
out, 7-18
output, 9-11, 9-22, B-78
Output files in cc, 2-4
outw, 7-18

Index

Parser, 10-1 thru 10-3, 10-9 thru 10-18,
10-26, 10-34

pascal, 2 -1 7
path, 8-2 thru 8-3, B-50, B-52
p-files, 5-3, 5-7, B-60, B-67 thru B-68,

B-105
Pointers, A-5 thru A-6, B-26

alignment, 3-10
data, in cc, 2-6
function, in cc, 2-6
size, in cc, 2-6, 2-23, B-26

popdef, B-85
Portability,

C, A-I thru A-13
data, A-12
source code, A-2, A-4
variable argument functions, A-9

thru A-10
%prec, 10-19 thru 10-20, 10-39
printf, 9-9, A-12
prof, 2-11, B-96
Profiling, 2-11

Index-7

Index

Program,
debugger, see adb
maintainer, see make
model sizes, 2-5 thru 2-6
portability, A-2

Program checking, see lint
for expression order, 3-11
for infinite looping, 3-5
for local variables, 3-3 thru 3-4
for long/int assignments, 3-8
for non-portable characters, 3-7 thru

3-8
for old syntax, 3-9 thru 3-10
for pointer alignment, 3-10
for return values, 3-5 thru 3-6
for strange constructions, 3-8 thru 3-9
for types, 3-6 thru 3-7
for unreachable statements, 3-4
for unused functions, 3-2 thru 3-3
for unused returns, 3-6
for unused variables, 3-2 thru 3-3

prompt, 8-9, B-50, B-52
prs, 5-19 thru 5-20, B-97 thru B-100

data keywords, B-98 thru B-99
files, B-I00
options, B-97

ps, 8-8
Pseudo-operations, see directives
Pseudo-target names, 4-4 thru 4-5, 4-11
Pure-text small model, 2-5, B-25
pushdef, B-85
pushi, 7-18
putc, A-II
put char, A-II

$q, $Q" 6-4
q-files, 5-3, B-60
QUIT, 6-4, 6-16, 8-8

:r, 6-13 thru 6-14,6-31, B-8
:R, 6-13 thru 6-14, B-8
$r, 6-18, B-7
ranlib, 2-7, B-27, B-74, B-76, B-101
ratfor, B-I02 thru B-103
Redefining,

commands, 4-9 thru 4-11
macros, 4-9 thru 4-11

Redirecting 110, 8-7 thru 8-8, B-42 thru
B-43

Index-8

XENIX Program m ing

redo, B-36
Reduce action, 10-10 thru 10-11
regcmp, B-104
Register variables, A-8
Registers, in adb, 6-7
Regular expressions, 9-3 thru 9-4
rehash, 8-3, 8-9, B-48
REJECT, 9-13 thru 9-14, B-78
rep, 7-17
repeat, 8-9, B-48
repnz, 7-17
repz, 7-17
Reserved words, in yacc, 10-26
Retrieving s-files, 5-5 thru 5-9
ret, 7-18
reti, 7-18
return, 3-4, 3-6
96right, 10-18 thru 10-20, 10-28, 10-39
Right shift operator, 7-6
rm, 5-5
rmdel, 5-30, B-105
Rules, see grammar

:s, 6-16, B-8
$s, 6-27, B-7
sact, B-106
Saving s-files, 5-7 thru 5-8, 5-12
scanf, A-12
SCCS, 1-1, 5-1 thru 5-31, B-11 thru

B-15, B-31 thru B-32, B-59 thru
B-61, B-64 thru B-69, B-73, B-105

thru B-107, B-118
command arguments, 5-4
deltas, 5-2, see Deltas
files, 4-2, 4-10, 5-1 thru 5-2, see

s-files
flags, 5-14 thru 5-16
keywords, 5-13 thru 5-14
SIDs, 5-2, 5-7 thru 5-11, 5-21 thru

5-22, B-28, B-105
working files, 5-3

sccsfile, 5-25, B-14
sccsdiff, 5-31, B-107
Scripts,

in adb, 6-26
in csh, 8-11

Segment directive, 7-9 thru 7-10

XENIX Programming

Segments, 2-19, 2-24, 6-22 thru 6-23,
7-3, see text segments, data segments,

bss segments
set, 8-1 thru 8-2, B-39, B-48
setenv, 8-9, B-48
s-files, 5-1 thru 5-5

advanced options, 5-26 thru 5-31
changing,

comments, 5-17
information, 5-16 thru 5-19
modification requests, 5-18
release number, 5-9

comparing, 5-31
creating, 5-4 thru 5-5, 5-10
displaying, 5-11
editing, 5-6 thru 5-7, 5-21 thru 5-22,

5-25
flags, 5-14 thru 5-16
help, 5-12
printing, 5-19 thru 5-21
protecting, 5-22 thru 5-24
repairing, 5-24 thru 5-25
retrieving, 5-5 thru 5-11
saving, 5-7 thru 5-8, 5-12
user list, 5-22 thru 5-23

sh, 8-11
shell, B-50, B-52
Shell environment variables, 4-7 thru 4-8
shift, B-48, B-86
Shift operations, A-7
si register, 7-21
SID, 5-2, 5-7 thru 5-8, 5-11, 5-21 thru

5-22, B-28, B-105
Sign extension, A-7
sinclude, 11-7, B-87
Single-stepping a program, 6-16
size, B-108
size make, 4-14
sizeof, 2-6, A-3 thru A-4
s.makefile, 4-2 thru 4-3
s.Makefile, 4-2 thru 4-3
Small model programs, 2-5, B-25
source, 8-10, B-48
Source Code Control System, see SCCS
Source,

definitions, 9-17 thru 9-18
files, 2-2 thru 2-4

Source rules, 9-12 thru 9-14
Special characters, 8-21 thru 8-22
spline, B-1 0 9
sscanf, A-12
Stack probes, 2-10
Stacksize, 2-18
stackuse, 2-18, B-110 thru B-111
Standard library, see C library,
%start, 10-5
Statements, 7-4
status, 8-14, B-44, B-50, B-52
String instructions, 7-17
strings, B-112, B-122
strip, 2-10, 6-5, B-113 thru B-113
Substituting commands, 8-20, B-41
Substitution,

alias, B-38
command, 8-20, B-41
filename, B-41
variable, B-39 thru B-40

substr, 11-9, B-87

Index

switch, 3-4, 8-16 thru 8-17, B-44, B-49
Symbol table, 6-5, 7-1

stripping, 2-9 thru 2-10
Symbols, 6-5, 6-27, 10-4 thru 10-5, A-7

thru A-8, B-71, B-94 thru 8-95
*symdef, B-83
*symref, B-83
Syntax, B-1
syscmd, 11-8, B-87
sysval, B-87

tags, B-57
Tags files, B-57, B-67
Target files, 4-3 thru 4-4
Temporary files, 8-18
TERM, 8-9
.text, 7-3, 7-9
Text

relocation records, B-71
segment, 2-19, 2-23 thru 2-24, 6-23,

7-3
then, 8-44, B-47
time, 8-10, B-49, B-52, B-115
/tmp/*, B-111
/tmp/crt??, B-33

Index-9

Index

/tmp/get?????, 8-107
/tmp/pr?????, 8-100
/tmp/sh*, 8-55
/tmp/stm*, 8-113
/tmp/v*, 8-1 7
/tmp/xs*, 8-122
%token, 10-20, 10-28, 10-39
Tokens, 10-4 thru 10-5, 10-8 thru 10-11,

10-18 thru 10-22
traceoff, 8-88
traceon, 8-88
translit, 11-9, 8-87
tsort, 8-83, 8-116
%type, 10-28 thru 10-29
typedef, 3-8, 10-28
Type conversion, A-8

unalias, 8-10, 8-38, B-49
undefine, 11-4, 8-85
undivert, 11-7, 8-86
unget, 8-117
unhash, 8-49
unmask, 8-14, 8-49
unput, 9-11, 9-14, 9-22, 8-78
unset, 8-10, 8-39, 8-49
unsetenv, 8-10, 8-49
/usr/bin, 8-2
/usr/bin/bdiff, 8-61
/usr/bin/dosld, 8-63
/usr/include/ ctype.h, A-6
/usr/include/sys.s, 7-10
/usr/include/varargs.h, A-9
/usr/lib/cref*, 8-34
/usr/lib/help, 8-73
/usr/lib/lint, 8-81
/usr/lib/llibc, 8-82
/usr/lib/llibc.ln, 8-81
/usr/lib/llibdbm, 8-82
/usr/lib/llibdbm.ln, 8-81
/usr/lib/llibm, 8-82
/usr/lib/llibm.ln, 8-81
/usr/lib/llibport, 8-82
/usr/lib/llibport.ln, 8-81
/usr/lib/llibtermlib, 8-82
/usr/lib/llibtermlib.ln, 8-81
/usr/local, 8-3
/usr/lib/stackuse/*, 8-111
/usr/lib/yaccpar, 8-123

Index-10

$v, 6-6, 8-7
val, 8-118 thru 8-119
Variable(s),

in adb, 6-6, 8-9

XENIX Programming

in csh, 8-2 thru 8-4, 8-11 thru 8-13,
8-39 thru 8-40, 8-50 thru 8-52

substitution, 8-39 thru 8-40
verbose, 8-18, 8-52
vi, 8-57
v-flag, 5-16, 5-18

$w, 6-26, 8-7
w, W, 6-30 thru 6-31, 8-6
wait, 8-50
Warning

levels, 2-15
messages, see error handling

while, 6-15, 8-16 thru 8-17, 10-9, 8-44,
8-50, 8-56

.word, 7-12, 7-16, 7-18
Word,

designator, 8-37
length, A-2

$x, 6-27
x.c, 8-122
x-files, 5-3, B-30, 8-60, 8-105
x.out, 8-71, 8-113
xref, 8-120
xs.c,8-122
xstr, 8-121 thru 8-122

yacc, 1-2, 3-4, 9-2, 9-8, 9-18, 10-1 thru
10-39, 8-123 thru 8-124

actions, 10-6 thru 10-8
ambiguity, 10-14 thru 10-18
conflicts, 10-14 thru 10-18
environment, 10-23
error handling, 10-21 thru 10-22
examples, 10-29 thru 10-38
lexical analysis, 10-8 thru 10-9,
old features, 10-39
parser, 10-9 thru 10-13
precedence, 10-18 thru 10-20
preparing specificaitons, 10-24 thru

10-38

XENIX Programming

yacc.acts, 8-123
yacc.tmp, 8-123
y.output, 10-12, 10-18, 10-20, 8-123
y.tab.c, 10-23, 8-123
y.tab.h, 10-28, 8-123
yydebug, 10-23
yyerror, 10-23, 10-26, 8-123
yyleng, 8-78
yyless, 9-10,8-78
yylex, 9-1 thru 9-2,9-18,10-8, 10-10,

10-22 thru 10-23, 10-28, 8-123
yyIvaI, 10-8, 10-11, 10-28
yymore, 9-10, 8-78
yyparse, 10-23, 10-26, 8-123
yyt ext , 9-9 thru 9-10, 9-21 thru 9-22, 8-77

thru 8-78
yyvaI, 10-11, 10-28
yywrap, 9-12, 9-20

z-files, 5-3, 8-30, 8-61, 8-67, 8-69, 8-105

!, 5-18, 6-28, 7-5, 8-9, 8-22, 8-7, 8-28,
8-36, 8-42 thru 8-43

!!, 8-6, 8-36
!=, 3-7, 8-13, 8-43
;, 4-1, 6-25, 8-21, 8-35, 8-56
:, 4-1, 5-20, 7-4 thru 7-5, 8-22, A-II,

8-40, 8-56
,(comma), 5-24, 5-28, 7-9, 8-20, A-II
• (dot), 3-7, 4-11, 6-5, 6-7, 7-4, 8-2 thru

8-3, 8-21, 9-5, 9-13, 10-4, 8-3, 8-41,
8-77

••• , 1-2
_ (underscore), 2-17, 6-5, 10-4, 10-13,

11-2, 8-3, 8-85
1,4-1, 6-4 thru 6-5,6-11 thru 6-12,6-25,

8-21,9-6, A-II, 8-6 thru 8-7,8-41,
8-56, 8-77

", 5-31, 6-7, 8-18 thru 8-20, 9-4, 10-38,
8-3, 8-35, 8-38 thru 8-39, 8-42, 8-77

'(apostrophe), 7-2, 8-18, 8-21, 10-4, 11-3
thru 11-4, 8-35

... (grave accent), 8-7, 8-19 thru 8-22, 8-
35,

8-38 thru 8-39, 8-41 thru 8-42
",6-7 thru 6-8,7-6,8-22,9-5,9-7,9-14,

9-20, 8-3, 8-36 thru 8-38, 8-43,
8-77, 8-87

*, 4-1, 6-2 thru 6-3, 6-8 thru 6-9, 7-6,
7-20, 8-21, 8-37, 8-41, 8-68, 8-77,

8-87

Index

*=, 8-50
*/, 10-4, 8-43
-,4-10,6-8,7-6,8-7, 8-21, 8-3, 8-41,

8-51, 8-87
\,4-1,5-7,5-17,5-31,8-18,8-21,9-4

thru 9-5, 10-4, 10-39, 8-35 thru
8-36, 8-38 thru 8-39, 8-42 thru

8-43, 8-46, 8-50, 8-52, 8-77
/,6-4,6-11 thru 6-12,6-25,7-2,7-6,

7-11,8-21,8-6, 8-38, 8-41, 8-43,
8-45, 8-77, 8-87

I, 1-2,6-8,6-25,7-2,8-21,9-7,9-9,
8-35, 8-43, 8-50, B-77, 8-87

II, 8-13, A-II, 8-35 thru 8-36, B-43
I, 4-1, 6-8, 7-20, 8-11, 8-18, 8-22, 8-35
(g, 4-1, 8-5, 8-39, B-43
<, 6-6 thru 6-7, 6-26, 8-21, 8-35, 8-42

thru 8-43, 8-50
«, 7-6, 8-18, 8-20, A-7, 8-35, 8-43
<=, 8-43
<-=, 3-10
<>, 9-16, 8-22
>, 5-31, 6-6, 8-21, B-35, 8-42 thru 8-43,

8-50
», 7-6, 8-5, 8-35, 8-43, 8-51
>=, 8-43
>!, 8-4
+, 6-8, 7-6, 8-3, B-43, 8-77, 8-87
++, 8-50
+=, 3-10, B-50
- (hyphen, dash), 4-5, 5-4, 5-28, 6-2,

6-29 thru 6-30, 8-22, 9-5, 11-2, 8-11,
8-37, 8-41, B-54, 8-61, B-84,

B-92, 8-106 thru 8-106,8-121
- (minus sign), 6-8, 7-6, 8-43, 8-87
- -, (double minus), 8-50
->, 3-7
=, 3-7, 6-4, 6-10 thru 6-11, 6-28, 7-5,

8-36
==, 3-7, 8-13, B-43
$, 7-5', 8-11, 8-18, 8-22, 9-7, 9-14,10-6,

10-27, B-37, 8-39 thru 8-40, 8-42,
8-77

$$, 10-6 thru 10-7, 10-27
$*, 4-7, 8-40, B-85
$@, 4-7, 8-85
$<, 4-7
$1, 4-7
$%, 4-7
$1, 8-40, B-85

Index-11

Index

&:, 6-8, 7-6, 8-8, 8-21, B-35, B-37 thru
B-38, B-42 thru B-43, B-50, B-55,

B-87
&:&:, 8-13, A-11, B-35 thru B-36, B-43
%, 5-13, 6-8, 8-1, 9-9, 9-19, 10-4, 10-39,

B-35, B-37 thru B-38, B-43, B-87
%%, 9-17, 10-4, 10-39, B-78
%{, 9-17, 10-6, 10-28, 10-39
%}, 9-17, 10-6, 10-28, 10-39
(, B-36, B-85
(), 8-21, B-43, B-50
{, B-41
{}, 8-20 thru 8-21, 9-8, 10-6, B-38, B-40

thru B-41, B-78
L B-41
[],1-2,8-21

Index-12

XENIX Program m ing

XENIX 286 Programmer's Guide
174391-002

REQUE.ST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all
Intel product users. This form lets you participate directly in the publication process. Your comments
will help us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, organization, and completeness of this
publication. If you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Literature Department.

1. Please describe any errors you found in this publication (include page number).

2. Does this publication cover the information you expected or required? Please make suggestions
for improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME ___ DATE

TITLE
COMPANYNAM~DEPARTMENT __ ~

ADDRESS ---
CITY STATE ZIP CODE ------------------------ ---------------------

(COUNTRY)

Please check here if you require a written reply 0

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel C6rporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

I ntel Corporation
ISO Technical Publications, MS: EY2-06
5200 N.E. Elam Young Parkway
Hillsboro, Oregon 97124-9987

11.1111.11111.11 •• 1.1.11111.1111.1 •• 1111.11111.11111

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

