
CCOMPILER
USERSGUIOE

312130-001

iPSC@/860

April 1991

Order Number: 312130-001

I111II11I111

C COMPILER USER'S GUIDE

I111I1111111

Inte~ Corporation

Copyright 01991 by Intel Supercompner Systems DivisiOn, Beaverton, Oregon. All rights fIIIerved. No part of this work may be reproduced or
copied in any form or by any means .•• graphic, e1ecInmic, or mec::hanica1 including photocopying, taping, or information storage and retrieval sys­
tans ... without the express wriuen cement of Intel Corporation. The information in this document is subject to change without notice.

Intel Corporation make no wananty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability
and fiIDess for a particular pwpoae.lntd CoJporation aslUDles no responsibili1y for any erroR that may appear in this documenL Intel Corporation
makes no commitment to update or to keep current the information contained in this doaunenL

lntd CoJporatiClll aslUDles no reapaasibiIily for the uae of any c:in:uitry. other than c:in:uiuy embodied in an Intel product. No other cin:uit patent
licenses are implied.

1nte1.oftware products are copyrighted by and shall remain the property of Intel Corporation. Uae, duplication or disclosure is subject to restrictions
stated in Intel's software licenae, or as defined in ASPR-7-104.9(a)(9).

The following are trademarks of Intel CoJporation and ill affiliates and may be used only to identify Intel products:

286 iCEL 1nte1486
287 iCS InteIlec
4-sITE IDBP Intellink
Above IDIS iOSP
BITBUS iLBX iPDS
COMMpIter im iPSC
Concurrent File System 1m iRMX
Concurrent Workbench iMDDX iSBC
CREDIT iMMX .iSBX
Data Pipeline Insite iSDM
Direct-Connect Module int I iSXM
FASTPATH e

KEPROM
GENIUS int IBOS

Libruy Manager e
Intelevision MAP-NET

nCE inteligent Identifier MCS
i386 Megachassis
i486 inteligent Programming MICROMAINFRAME
i860 Intel MULTI CHANNEL
ICE Intel386 MULTIMODULE

Ada is a registered trademark of the U.S. GoveIIUllCDt, Ada Ioint Program Office
APSO is a service mark of Verdix Corporation
CLASSPACK is a trademark of Kuck & Associates, Inc.
Ethemet is a registered trademark of XEROX Cmporation
Exce1an is a trademark of Exce1an Corporation
EXOS is a trademark or equipment designator of Exce1an Corporation
FORGE is a trademark of Pacific-Sierra Research CoJporation
Green HilIs Software, C·386, and FORTRAN·386 are trademarks of Green Hills Software, Inc.
GVAS is a trademark.ofVerdix Corporation
IBM and IBMNS are registered bademarks of Intematiooal Business Machines
Lucid and Lucid Common Lisp are trademarks of Lucid, Inc.
NFS is a trademark of Sun Microsystems
ParaSoft is a trademark of ParaSoft Corporation
S\Dl Microsystems and the combination of Sun and a numeric suffix are trademarks of S\Dl Microsystems
The X Window System is a trademark of Massac:hUSCIU Institute of Tedmology
UNIX is a trademark of AT&T
V ADS and Verdix are registered trademarks of Verdix Cotporation
V ASn is a registered trademark of Pacitic-Sierra Research CoJporation
VMS and V AX· are trademarks of Digital Equipment Cotporation
VP/ix is a trademark ofINTERAC'llVE Systems Corporation and Phoenix Technologies, Ltd.
XBNIX is a trademark of Microsoft Cotporation

ii

ONCE
0penNBT
OTP
PC BUBBLE
Plug-A-Bubble
PROMPT
Promware
QUEST
QueX
Quidt-PuIae Programming
Ripplemode
RMX/8O
RUPI
Seamless
SLD
SugarCube
UP!
VLSiCEL

REV. REVISION HISTORY DATE
-001 Original Issue 04/91

RESTRICTED RIGHTS

Use, duplication or disclosure by the U.S. Government is subject to restric­
tions as set forth in subparagraph (c) (1) (ii) of the rights in Technical Data
and Computer Software clause at 52.227-7013. Intel Corporation, 3065
Bowers Avenue, Santa Clara, Califo~ia 95051.

iii

iv

PREFACE
1II1IIIIIIII

This manual completely documents the iPS~ /860 C compiler and driver. This manual assumes that
you are an application programmer proficient in the C language and the UNIX operating system.

ORGANIZATION

Chapter 1

Chapter 2

Appendix A

Appendix B

AppendixC

AppendixD

AppendixE

Introduces the iPSC® /860 software development environment (hardware and
software), relates it to the traditional "software development cycle," and
shows how to create executable mes from C source code. This chapter
contains enough information to get you started creating executable mes for
the iPSC®/860 system.

Describes icc, the driver for compiling, assembling, and linking C source
code for execution on the iPSc® /860 system.

Lists the error messages generated by the compiler, indicating each
message's severity and, where appropriate, the probable cause of the error
and how to correct it.

Describes the internal structure of the compiler, with special emphasis on the
vectorizer and optimizer.

Tells how to use the compiler's function inliner.

Describes the language that the C compiler accepts (draft ANSI C),
extensions to the standard language, and considerations for porting programs
written in original C (the language described by Kernighan and Ritchie in The
C Programming Language).

Contains manual pages for the icc and ic commands.

v

Preface iPS0CI'N860 C Compiler User's Guide

NOTATIONAL CONVENTIONS

This manual uses the following notational conventions:

Bold Identifies command names and switches, system call names, reserved words,
and other items that must be entered exactly as shown.

Italic Identifies variables, filenames, directories, processes, user names, and writer
annotations in examples. Italic type style is also occasionally used to
emphasize a word or phrase.

Plain-Monospace
Identifies computer output (prompts and messages), examples, and values of
variables. Some examples contain annotations that describe specific parts of
the example. These annotations (which are not part of the example code or
session) appear in italic type style and flush with the right margin.

Bold-Italic-HOnos~ce

Identifies user input (what you enter in response to some prompt).

Bold-Mon08pace
Identifies the names of keyboard keys (which are also enclosed in angle
brackets). A dash indicates that the key preceding the dash is to be held down
while the key following the dash is pressed. For example:

<Break> <8> <Ctrl-Alt-Del>

Surround optional items.

Indicate that the.preceding item may be repeated.

Separates two or more items of which you may select only one.

Surround two or more items of which you must select one.

APPLICABLE DOCUMENTS

For more information, refer to the following manuals:

vi

iPS~860 C Compiler User's Guide Preface

IPSC~ System Manuals

Intel~ Manuals

Other Manuals

iPsc412 and iPs~ /860 C Commands and Routines Quick Reference
Summarizes all e routines and commands for the iPSe system.

iPS~/860Basic Math Library User's Guide
Describes math library routines (including BLAS and FFr routines) for the
iPSe/860 system.

iPsc412 and iPSc4/860 Programmer's Reference Manual
Describes iPSe system commands and system calls.

iPsc412 and iPSc4/860 User's Guide
Overviews the iPSe system, including hardware and software architectures,
Tells how to develop and run programs.

i860™ 64-Bit Microprocessor Assembler and Linker Reference Manual
Tells how to use the i860 microprocessor assembler and linker.

i860™ 64-Bit Microprocessor Object File Utilities Reference Manual
Tells how to use the i860 microprocessor object file utilities.

i860™ 64-Bit Microprocessor Simulator and Debugger Reference Manual
Tells how to use the i860 microprocessor simulator and debugger.

i860™ 64-Bit Microprocessor Programmer's Reference Manual
Describes the i860 microprocessor.

C: A Reference Manual, Second Edition - Harbison and Steele
Describes the e programming language.

The C Programming Language - Kernighan and Ritchie
Describes the e programming language.

Draft Proposed Standardfor Programming Language C (X3Jl1/88-159)
Describes the proposed ANSI standard e language.

American National Standardfor Programming Language C, ANSI x3.159-1989
Describes the accepted ANSI standard e language.

vii

Preface iPSC4MJ60 C Compiler User's Guide

viii

CHAPTER 1
GETTING STARTED

TABLE OF CONTENTS
111111IIIIII

THE SOFTWARE DEVELOPMENT CYCLE ... 1-1

THE iPSC®/860 SOFTWARE DEVELOPMENT ENVIRONMENT .. 1-3

The i PSC®/860 System ... 1-3

The i PSC®/860 Supporting Software .. 1-3

THE DRIVER .. 1-4

The Compiler .. 1-4

The i860™ Assembler .. 1-5

The i860™ Linker ... 1-5

THE i860™ DEBUGGER .. 1-5

THE iPSC®/860 EXECUTION ENVIRONMENTS ... 1-6

Running on the i860™ Simulator ... 1-6

Running on RX Nodes ... 1-6

EXAMPLE DRIVER COMMAND LINES : .. 1-7

ix

Table of Contents iPSC@I860 C Compiler User's Guide

CHAPTER 2
THE ICC DRIVER

INVOKING THE DRIVER•... 2·1

CONTROLLING THE DRIVER ..•................................. 2·3

Specific Passes and Options ...•... 2·3

Preprocess Only .. 2·4

Preprocess and Compile Only ... 2·4,

Preprocess, Compile, and Assemble Only ... 2·5

Add and Remove Preprocessor Macros .. 2·5

CONTROLLING THE COMPILATION STEP ... 2·6

Specific Actions ... 2·6

Special Semantics ... 2·8

Location of Include Files .. 2-8

Optimization Level , ... 2-9

Symbolic Debug Information ... 2-10

Profiling Code .. 2-10

Compatibility .. 2-10

CONTROLLING THE LINK STEP .. 2-10

Specific Actions ... 2-11

Linker Libraries .. 2-11

CONTROLLING THE DRIVER OUTPUT ... 2-11

Executable for Simulator or RX Node .. 2-12

Name of Executable File ... 2-12

Verbose Mode ... 2-12

VerSion and Copyright Statement .. 2-12

APPENDIX A
COMPILER ERROR MESSAGES

x

iPSC8'860 C Compiler User's Guide Table of Contents

APPENDIX A
COMPILER ERROR MESSAGES

APPENDIX B
COMPILER INTERNAL STRUCTURE

SCANNER AND PARSER .. 8-1

EXPANDER .. 8-3

OPTIMIZER AND VECTORIZER .. 8-3

Procedure Integration ... 8-3

Internal Vectorization .. 8-3

Global Optimizations .. 8-4

Local Optimizations .. 8-4

Flexible Memory Utilization ... 8-5

SCHEDULER AND PIPELINER .. 8-5

APPENDIX C
USING THE INLINER

COMPILER INLINE SWITCH .. C-2

CREATING A LI8RARY .. C-2

USING LI8RARIES ... C-3

RESTRICTIONS ON INLINING .. C-4

ERROR DETECTION DURING INLINING .. C-4

EFFICIENCY CONSIDERATIONS ... C-5

xi

Table of Contents iPSC®l860 C Compiler User's Guide

EXAMPLES ... C-6

Dhry .. C-6

Fibo ... C-6

Makefiles , .. C-6

APPENDIX D
EXTENSIONS TO ANSI C

STANDARD LANGUAGE ... 0-1

EXTENSIONS ... 0-2

IMPLEMENTATION-DEFINED BEHAVIOR .. 0-4

PORTING CONSIDERATIONS .. 0-4

APPENDIX E
MANUAL PAGES

ICC ... E-2

IC .. E-10

xii

iPS~860 C Compiler User's Guide Table of Contents

LIST OF ILLUSTRATIONS

Figure 1-1. Traditional Software Development Cycle ... 1-2

Figure B-1. Compiler Structure ... B-2

Figure B-2. Parallel Activities of i860™ Microprocessor ... B-6

xiii

Table of Contents iPSOO/860 b Compiler User's Guide

LIST OF TABLES

Table 2·1. Summary of icc Driver Switches .. 2-2

xiv

GETTING STARTED IJJ
1II11IIIIIII

This chapter introduces the iPSc4/860 software development environment (hardware and software),
relates it to the traditional "software development cycle," and shows how to create executable fIles
from C source code.

This chapter contains enough information to get you started using the driver to create
iPSC/860-executable files from C source code that conforms to the draft ANSI C standard. For
information on iPSC/860 extensions to the standard languages, refer to Appendix D.

THE SOFTWARE DEVELOPMENT CYCLE

Figure 1-1 shows the traditional software development cycle:

1. Write or edit the source code.

2. Compile the source code, producing assembly language code.

3. Assemble the assembly language code, producing object code.

4. Link the object code, producing executable code.

5. Run the executable code.

6. Debug the program (by hand, with the help of a debugger, or both).

7. Repeat steps 1 through 6 as needed.

8. Optimize the program.

1-1

Getting Started

1-2

run the
executable code

@~-... -­debug the

@

program

optimize the
program

iPSC4MJ60 C Compiler User's Guide

assembly
language file

object
file

executable
file

Figure 1·1. Traditional Software Development Cycle

iPS~860 C Compiler User's Guide Getting Started

THE iPSC@/860 SOFTWARE DEVELOPMENT ENVIRONMENT

The iPSC/860 software development environment consists of an iPSCI860 system and its supporting
software,

The IPSC@/860 System

An iPSC/860 system consists of a host and two or more nodes:

• There are two kinds of hosts: local and remote, The local host is the System Resource Manager
(SRM), A remote host is any workstation other than the SRM. The host runs the UNIX
operating system, augmented with iPSC system extensions and networking software.

There are two kinds of nodes: compute and 110. Each node is a microprocessor/memory pair.
Each node's physical memory is distinct from that of the host and other nodes. Each node runs
the NX/2 operating system, uses message-passing to communicate with other nodes, and can
access both the host file system and the iPSC/2 Concurrent File SystemTM (CFS).

A typical iPSC system application is developed on either a local or remote host and runs on a group
of allocated nodes called a cube.

The iPSC@/860 Supporting Software

The iPSCI860 supporting software consists of

• The software development tools (compiler, assembler,linker, simulator, and debugger). This
manual describes only the iPSC/860 C compiler and driver. For information on the other
software development tools, refer to the following manuals:

i860™ 64-Bit Microprocessor Assembler and Linker Reference Manual
i860™ 64-Bit Microprocessor Simulator and Debugger Reference Manual

The runtime environment (iPSC/860 system commands and calls). For information on the
iPSC/860 runtime environment, refer to the following manuals:

iPSc412 and iPSc41860 Programmer's Reference Manual
iPsc412 and iPSc41860 User's Guide

1-3

· Getting Started

1-4

iPSC®1860 C Compiler User's Guide

THE DRIVER

The iPSCI860 C driver provides an interface to the compiler, assembler, and linker (steps 2, 3, and
4 of the traditional software development cycle).

The driver makes it easy to produce iPSC/8OO-executable mes from C source code. For example:

• It automatically sets appropriate compiler (ie), assembler (as860), and linker (ld860) switches~

• It lets you pass switches directly to the compiler, assembler, and linker. All functionality of ie,
as860, and ld860 are available through the driver.

• It lets you stop after the preprocessor (C only), compiler, assembler, or linker steps.

• It lets you retain intermediate meso

By default, the driver creates an executable me for execution on the i860™ simulator (sim860). The
section "Running on RX Nodes" (on page 1-6) tells how to create an executable file for execution
on an iPSC/860 node running the NX/2 operating system.

The ice command invokes the C driver. For example, the following command line compiles,
assembles, and links the C source code in the me myprog.c (using the default driver switches) and
leaves an executable version of the program in the me a.out:

icc myprog.c

Chapter 2 describes the iee driver in detail, and Appendix E contains a manual page for iee.

NOTE

If desired, you can invoke the iPSC/860 compiler, assembler, and
linker directly (as indicated in the next three sections). However,
doing so means that you must explicitly specify switches, libraries,
and other information that is provided automatically by the driver.
Therefore, such usage is recommended for advanced users only.

The Complier

The ie command invokes the C compiler directly (step 2 of the traditional software development
cycle). For example, the following command line compiles the C source code in the me myprog.c
and leaves an assembly language version of the program in the me myprog.s:

ic -astype 1 myprog.c

For more information on the ie compiler, refer to the ie manual page in Appendix E.

iPSCX!t'860 C Compiler User's Guide Getting Started

The'1860™ Assembler

The as860 command invokes the i860 assembler to assemble the output of the ic compiler (step 3 of
the traditional software development cycle). For example, the following command line assembles
the file myprog.s (the default output of the ic command), and leaves the resulting object code in the
me myprog.o:

a/l860 myprog./I

For more information on using the i860 assembler, refer to the i860™ 64-Bit Microprocessor
Assembler and Linker Reference Manual.

The 1860™ Linker

The Id860 command invokes the i860 linker to link the output of the as860 assembler (step 4 of the
traditional software development cycle). For example, the following command line links the file
myprog.o (the default output of the as860 command), and leaves the resulting executable in the file
a.out:

ld860 myprog.o

For more information on using the i860 linker, refer to the i860™ 64-Bit Microprocessor Assembler
and Linker Reference Manual.

THE i860™ DEBUGGER

The sim860 command with the -d switch invokes the i860 simulator to run, under control of the i860
debugger, the executable me created by the Id860 linker (step 6 of the traditional software
development cycle) or the icc driver. For example, the following command line tells the simulator
to start an interactive debugging session, accepting debugger commands from the standard input
device:

/lim860 -d a.out

Other command line switches let you further configure the debugging session. For complete
information on invoking and controlling the i860 debugger, refer to the i860™ 64-Bit
Microprocessor Simulator and Debugger Reference Manual.

NOTE

Do not use the -node switch to create executable programs that
you want to debug with the i860 debugger. Programs created with
the -node switch run only on RX nodes.

1-5

Getting Started iPS00I860 C Compiler User's GUide

THE IPSC@)/860EXECUTION ENVIRONMENTS

The iPSCI860 software tools let you create executable files for execution in either of two possible
environments (step 5 of the traditional software development cycle):

• The sim860 simulator

• RX(i860-based) nodes

Running on the IS60™ Simulator

The sim860 command invokes the i860 simulator to run the executable flle created by the Id860
linker. For example, the following command line causes the program in the flle a.out to execute
under control of the i860 simulator:

lIim860 a.out:

For complete information on using the i860 simulator, refer to the i860™ 64-Bit Microprocessor
Simulator and Debugger Reference Manual.

Running on RX Nodes

1-6

By default, the icc driver creates a flle for execution by the i860 simulator (sim860). To create an
executable file for execution on an iPSC/860 node running the NX/2 operating system, use the
driver's -node switch. For example:

ico -node my,prog.o

Creating a node-executable flle using the compiler, assembler, and linker directly is a bit more
complex. For example, the above icc command line generates ie, 88860, and Id860 command lines
similar to the following:

ic my,prog.o-alltY,P8 1 -x 127 1 \
-lltdino /vol/pgi/i860/inolude:/vol/pgi/i860/include-ipllo
-de£ i860 -de£ _i860 -de£ _NX -de£ _NODE \
-predicate Imacbine(i860) #lint(o££) #IIYlItem(nx) #qpu(i860) \
-ieee 1 -opt: 1 -x 121 1 -asm /ullr/~/AAAa05259

all860 -0 ~rog.o /ullr/~/AAAa05259

ld860 -e ld$lItart -~ OxO -d Ox10000000 \
/vol/pgi/i860/lib-co£f/crtO.o my,prog.o \
/vol/pgi/i860/lib-co££/libnode.a \
/vol/pgi/i860/lib-ooff/iolib.a

iPSC&'860 C Compiler User's Guide Getting Started

No matter how you create a node~xecutable file, you next use the getcube command to get a cube
on which to run the program and the load command to load and run the executable file. The program
begins executing on each node as soon as it is loaded. For example, the following command lines
allocate the largest possible cube consisting entirely of RX nodes, and load the executable ftle a.out
on each node of the allocated cube:

getcube -trx
load a.out

For complete information on running programs on the iPSC/860, refer to the iPsc412 and
iPsc41860 Programmer's Reference Manual and the iPSc412 and iPsc41860 User's Guide.

EXAMPLE DRIVER COMMAND LINES

The following example command lines show how to use the icc driver to perform typical tasks:

Compile and link for an RX node (-node), leaving executable in a file called x (-0 x):

icc -node -0 x x.c
icc -node -0 x x.c y.o mylib.a

Same as above, but include the C math library (-1m):

icc -node -0 x x.c -lm

Same as above, but include debugging information (-g):

icc -g -node -0 x x.c

Compile and link for debugging on sim860 simulator (no -node switch):

icc -g -0 X x.c

Compile, but skip assemble and link steps (-S); leaves assembly language output in ftle x.s:

icc -s x.c

Compile and assemble, but skip link step (-c); leaves object output in ftle x.o:

icc -c x.c

• Compile and assemble with optimizations:

icc -c -02
icc -c -03
icc -c -03

x.c
x. c
-Nvect x.c

(level 2 - global optimizations only)
(level 3 - adds software pipelining)

(level 3 optimizations plus vectorization)

1-7

Getting Started iPSC®I860 C Compiler User's Guide

.: ,

1-8

THE ICC DRIVER [!]
111111111111

This chapter describes icc, the driver for compiling (usi~ ic), assembling (using 85860), and linking
(using 1d860) C source code for execution on the iPSC '/860 system.

The following sections tell how to invoke icc and how to control its inputs, processing, and outputs.

INVOKING THE DRIVER

The icc driver is invoked by the following command line:

icc [switches] source_file ...

where:

switches

sourceJile

Is zero or more of the switches listed in Table 2-1. Note that case is significant
in switch names.

Is the name of the file that you want to process:

• Files whose names end with ... c" are considered to be C programs. They
are preprocessed, compiled, and assembled. The resulting object file is
placed in the current directory. If linking is not suppressed (the default),
the object file is deleted following the link step.

• Files whose names end with" .s" are considered to be i860 assembly
language files. They are assembled and the resulting Object file is placed
in the current directory. If linking is not suppressed, the object file is
deleted following the link step.

• Files whose names end with ".0" are considered to be object files. They
are passed directly to the linker (if linking is not suppressed).

2-1

The icc Driver iPSC®/860 C Compiler User'S Guide

Switch

-c

-Dname[=dej]

-E

-(

-g

-Idirectory

-Kjlag

-Ldirectory

-Uibrary

-l\Vlag

-node

-O[level]

-ofile

-p

-p

-S

-s

-Uname

-uname

-V

-v

-Wpass,option[,option ...]

-Ypass .directory

2-2

• Files whose names end with" .a" are considered to be ar libraries. No
action is performed on these files if linking is suppressed.

All other files are assumed to be object files; they are passed to the linker (if
linking is not suppressed) with a warning message.

Table 2-1. Summary o(icc Driver Switches

Description

Skip link step; compile and assemble only

Define preprocessor name to be de!

Preprocess only (to stdout)

Ignored; for compatibility with other C compilers

Generate symbolic debug information

Add directory to include file search path

Request special compiler semantics (ieee, noieee)

Change default library search directory

Load liblibrary.a from standard library directory

Request special compiler actions (debug, coff, frame, noframe,
in1ine,keepas~list,nodepchk,nostartup,nostddef,

nostdinc, nostd1ib, quad, reentrant, vect)

Create executable program for RX node

Set optimization level (O, 1, 2, 3,4)

Use file as name of executable program

Preprocess only (tofile.i for eachfile.c)

Generate code for function-level profiling

Skip assemble and link step; compile only

Strip symbol table infonnation

Remove initial defmition of name in preprocessor

Generate undefined reference

Display each tool's version and copyright info

Turn on driver and tool verbose modes

Pass options to pass (0, a, 1)

Look in directory for pass (0, a, 1, S, L, U, I)

iPSC@V860 C Compiler User's Guide The icc Driver

CONTROLLING THE DRIVER

The following switches let you control how the driver processes its inputs:

• W Pass specified options to specified tool

• Y Look in specified directory for specified tool

·E

.p

-s

·c

·D

·u

Skip compile. assemble. and link step; preprocess only (output to stdout)

Skip compile. assemble. and link step; preprocess only (output to file .i)

Skip assemble and link step; compile only

Skip link step; compile and assemble only

Define (create) preprocessor macro

Undefine (remove) preprocessor macro

Specific Passes and Options

The following switch lets you pass options to specific passes (tools):

-Wpass,option[,option ...]

where:

pass

option

Is one of the following:

o Compiler

a

1

Assembler

Linker

Is a comma-delimited string that is passed as a separate argument.

2-3

The icc Driver iPSC®l860 C Compiler User's Guide

The following switch lets you tell the driver where to look for a specific pass:

-Ypass,directory

where pass is one of the following:

o

a

1

5

I

L

u

Search for the compiler executable in directory.

Search for the assembler executable in directory.

Search for the linker executable in directory.

Search for the start-up object mes in directory.

Set the compiler's standard include directory to directory. The standard
include directory is set to a default value by the driver and can be overridden
by this option.

Set the compiler's primary library search path to directory.

Set the compiler's secondary library search path to directory.

Preprocess Only

By default, the driver preprocesses, compiles, assembles, and links each input me. However, the
following switches suppress the compile, assemble, and link steps:

·E After preprocessing eachjile.c, send the result to standard output (stdout).

• p After preprocessing eachjile.c, send the result to a file namedjile.i .

Preprocess and Compile Only

2-4

By default, the driver preprocesses, compiles, assembles, and links each input me. However, the
following switch tells the driver to suppress the assemble and link steps:

-s

After compiling eachjile.c, the output is sent to a me namedfile.s.

iPSC@W860 C Compiler User's Guide The icc Driver

Preprocess, Compile, and Assemble Only

By default, the driver preprocesses, compiles, assembles, and links each input file. However, the
following switch tells the driver to suppress the link step:

-c

After assembling eachjiie.c, the output is sent to a file namedjile.o.

Add and Remove Preprocessor Macros

The following command line switches let you add (defme) and remove (undefme) C preprocessor
macros:

NOTE

ANSI C predefined macros can be defined and undefined on the
command line, but not with #define and #Undeflne directives in
the source.

-Dname[=dej] Define name to be de/in the preprocessor. If defis missing, it is assumed to
be empty. If the "=" sign is missing, then name is defined to be the string 1.

-Uname Undefine any initial defmition of name in the preprocessor. The only names
predefined by the preprocessor itself are the standard ANSI C predefined
macros. However, the driver can predefme other names (using the
-Mnostddef option).

Because all-D options are processed before all-U options, the -U option overrides the -D option.

2-5

The icc Driver iPSC®/860 C Compiler User's Guide

CONTROLLING THE COMPILATION STEP

The following switches let you control the compilation step:

-M Request special compiler actions

-K Request special compiler semantics

-I Add a directory to include fIle search path

-0 Set optimization level

-g Generate symbolic debug information

-p Generate code for function-level profIling

-, Ignored; for compatibility with other C compilers

Specific Actions

2-6

The following command line switch lets you request specific actions from the compiler:

-Mflag

where flag is one of the following:

debug

coff

frame

noframe

Put information needed for level 0 symbolic debugging into the output fIle.

Generate Common Object File Format (COFF) format object and executable
fIles (default). This option causes the compiler to emit Intel-style i860
assembly language and causes the COFF asse~bler and linker to be invoked.

Include the frame pointer (default).

Omit the frame pointer unless varargs is used or allocaO is called. Using this
switch can improve execution time and decrease code, but makes it
impossible to get a call stack traceback when using a debugger.

inline=option[,option, ...]

keepasm

Pass options to the function inliner. Refer to Appendix C for information on
using the compiler's function inliner.

Keep the assembly fIle for each C source fIle, but continue to assemble and
link the program. This switch is used mainly for compiler performance
analysis and debugging.

iPSC3'860 C Compiler User's Guide

list [=name]

The ioe Driver

Create a source listing in the listing file with filename name. If name is not
specified, the listing file will have the same name as the source file except that
".c" SuffIX will be replaced by a ".1st" suffix. H name is specified, the listing
file will have that name. No extension is appended.

nodepchk Ignore unknown potential data dependencies. This is especially useful in
disambiguating unknown data dependencies between pointers that cannot be
resolved at compile-time. For example, if two floating point array pointers are
passed to a function and the pointelS never overlap and thus never conflict,
then this switch may result in better code. The granularity of this switch is
rather coarse and hence the user must use precaution to ensure that other
necessary data dependencies are not overridden. This switch must not be used
if such data dependencies do exist

no s tart up Do not link in the usual start-up routine. This routine contains the entry point
for the program. The start-up file is $(/PSC _ XDEV)/i860Ilib-coff/crtO.o.

nostddef Do not predefine any macros to the preprocessor when compiling a C
program. The normal predefined macros are: -Di860 and -Dunix.

nostdinc Do not search in the standard location ($(/PSC _XDEV)/i860Iinclude-ipsc) for
include files when those files are not located elsewhere.

nostdlib Do not link in the standard libraries when linking a program.

quad Force top-level objects (e.g., local arrays, structures, etc.) of size greater than
or equal to 16 bytes to be quad-aligned. Note that this does not affect items
within a top-level object; such items are quad aligned only if appropriate
padding is inserted. Common blocks are always quad-aligned.

reentrant Disable compiler optimizations that may prevent code from being reentrant.

2-7

The icc Driver iPSC®1860 C Compiler User's Guide

vect= [option [,option, ..•]]
Pass the specified options to the internal vectorizer, where option may be:

noassoc

recog

unroll

Prevents the vectorizer from unrolling scalar
reductions. Unrolling scalar reductions improves code
quality but causes slightly different answers due to
associativity in addition (common example is dot
product).

Causes the vectorizer to recognize idioms and to
perform strip-mining, streaming, and some invariant
vector motion.

Causes the vectorizer to unroll small loops to improve
pipelining opportunities.

Specifying vect with no option, turns on all vectorizer options.

An unrecognized flag is passed directly to the compiler, which often removes the need for the ·WO
switch.

Special Semantics

The following command line switch lets you request special semantics from the compiler:

-Kflag

where flag is one of the following:

ieee

no ieee

Perform float and double divides in conformance with the IEEE 754
standard. This is default.

Perform float and double divides using an inline divide algorithm for
performance. This algorithm produces results that differ from the IEEE result
by no more than three units in the last place.

Location of Include Files

2-8

The following command line switch lets you add a specified directory to the compiler's search path
for include files:

-:Idirectory

where directory is the pathname of the directory to be added.

iPSca'860 C Compiler User's Guide The icc Driver

For include files surrounded by angle brackets (< .. », each -I directory is searched, followed by the
standard area. For include fIles surrounded by double quotes (" .. ,,), the directory containing the file
containing the #include directive is searched, followed by the -I directories, followed by the
standard area.

Optimization Level

The following command line switch lets you set the optimization level explicitly:

-0 [level]

where level is one of the following:

o

1

2

3

4

A basic block is generated for each C statement. No scheduling is done
between statements. No global optimizations are performed.

Scheduling within extended basic blocks is performed. Some register
allocation is performed. No global optimizations are performed.

All level 1 optimizations are performed. In addition, traditional scalar
optimizations such as induction recognition and loop invariant motion are
performed by the global optimizer.

All level 2 optimizations are performed. In addition, software pipelining is
perfonned.

All level 3 optimizations are perfonned. but with more aggressive register
allocation for software pipelined loops. In addition, code for pipelined loops
is scheduled several ways, with the best way selected for the assembly file.

The default optimization level is determined as follows:

o H -0 is not specified and -g is specified

1 H -0 is not specified and -g is not specified

2 H a level is not supplied with -0

2-9

The icc Driver iPSC®I860 C Compiler User's Guide

Symbolic Debug Information

The following command line switch tells the compiler to generate symbolic debug information:

-g

This switch also sets the optimization level to 0 (unless the -0 switch appears on the command line
after the .g switch) and sets the ·Mframe switch.

Symbolic debugging may give confusing results with optimization levels other than O. The code
produced for level 0 is significantly slower than code generated for other optimization levels.

Profiling Code

The following command line switch tells the compiler to generate code for function-level profiling:

-p

This switch also sets the .Mdebug switch.

Compatibility

The following option is provided for compatibility with other C compilers; it is ignored:

-f

CONTROLLING THE LINK STEP

The following switches let you control the link step:

-5 Strip symbol table information

·u Generate undefined reference

·L Change default library search directory

-1 Load a specific library from standard library directory

2-10

iPSC4f1r'860 C Compiler User's Guide The ioe Driver

Specific Actions

The icc driver passes the following switches directly to the linker:

-5 Strip all symbols from the output object me

-uname Generate an undefined reference for the symbol named name

Linker Libraries

The following switch tells the linker where to fmd linker libraries:

-Ldirectory

where directory is the pathname of the directory that the linker searches for libraries. The icc driver
searches directory first (i.e., before the default path and before any previously specified -L paths).

The following switch tells the linker to use a specific linker library:

-llibrary

The linker loads the library Iiblibrary.a from the standard library directory. The library name is
constructed and the full library path is passed to the linker.

CONTROLLING THE DRIVER OUTPUT

The following switches let you control the driver's outputs:

-node Create executable program for RX node

-0 Specify name of executable program

-v Turn on driver and tool verbose modes

-V Print each tool's version and copyright infonnation

NOTE

The -v and -V switches do not perform the same function for Icc
that they do for cc.

2-11

The icc Driver iPSC®/860 C Compiler User's Guide

Executable for Simulator or RX Node

By default, the icc driver creates a program for execution on the sim860 simulator. However, the
following command line switch lets you create a program for execution on an RX node.

-node

Name of Executable File

By default, the executable fIle is named a.out. However, the following command line switch lets you
name the fIle anything you like:

-ofile

where file is the desired name.

Verbose Mode

By default, the driver does its work silently. However, the following command line switch causes
the driver to display the command line that invokes each tool, and to turn on verbose mode (if
available) for each tool:

-v (lowercase letter "v")

Version and Copyright Statement

The following command line switch causes each tool to display its version and copyright statement

-v (uppercase letter "V")

2-12

vooo

COMPILER ERROR MESSAGES0
11I11II1III1

This appendix lists the error messages generated by the iPSC~/860 C compiler, indicating each
message's severity and, where appropriate, the error's probable cause and correction. In the error
messages, the dollar sign ($) represents information that is specific to each occurrence of the
message.

Each error message is numbered and preceded by one of the following letters indicating its severity:

I Informative

W Warning

S Severe error

F Fatal error

V Variable

Internal compiler error. $ $

This message indicates an error in the compiler. The severity may vary; if it is informative or
warning, the compiler probably generated correct object code, but there is no way to be sure.
Regardless of the severity, please report any internal error to Customer Support:

1-800-421-2823 (Customer Support Hotline)
(44) 793 641469 (in England)
Your Local Intel Sales Office (in Europe)
support@isc.intel.com (Internet address)

A-1

Compiler Error Messages iPSC®l860 C Compiler User's Guide

FOOl Source input file name not specified

On the command line, you must specify the name of a source file. You may specify the name either
before or after the switches.

F002 Unable to open source input file: $

The specified source file (or include file) is not in current working directory or is read-protected.
Check to make sure that you spelled the fIle's name correctly.

F003 Unable to open listing file

You may not have write permission in the current working directory.

F004 Unable to open object file

You may not have write permission in the current working directory.

FOOS Unable to open temporary file

The compiler creates temporary files in lusrltmp or Itmp. This error occurs when neither of these
directories is available.

F006 Missing -exlib option

Extractor program requires -exlib option to specify output library.

F007 Source file too large to compile at this optimization level

The symbol table overflowed, or the compiler working storage space was exhausted. If this error
occurred at optimization level 2, reducing the level to 1 may work around the problem; otherwise
consider splitting the source file into two fIles. There is no hard limit on how large a file the compiler
can handle; however, if your file is less than 2,000 lines long (not counting comments), and this error
occurs, it may represent a compiler problem.

F008 Error limit exceeded

The compiler gives up after 25 severe errors.

I009 Function $ extracted. Size = $.

The extractor issues this informative message when it writes entry to inliner library.

A-2

iPSCQ!V860 C Compiler User's Guide Compiler Error Messages

1010 Function $ inlined

5011 Unrecognized command line switch: $

Refer to the manual page for a list of allowed switches.

5012 Value required for command line switch: $

Some switches require a value to follow immediately. For example, -opt 2.

5013 Unrecognized value specified for command line switch: $

5014 Ambiguous command line switch: $

The abbreviation you used for a command line switch was too short.

W015 Can't inline $ - wrong number of arguments

1016 Identifier, $, truncated to 31 chars

An identifier cannot be more than 31 characters; characters after the 31st are ignored.

1017 Argument of inlined function not used

5018 Inline library not specified on command line (-inlib switch)

1019 Underflow of real or double precision constant

1020 Overflow of real or double precision constant

5021 Input source line too long

After macro expansion, a source line must not be more than 3,000 characters long. It may be possible
to work around the problem by removing unneeded blank characters from some macro definitions.

W022 Char escape does not fit in char

The value of a hex escape in a char or string constant exceeds the capacity of a char (8 bits). The
value is truncated.

A-3

Compiler Error Messages iPSC®l860 C Compiler User's Guide

W023 Integer overflow on integer constant: $

S024 Illegal character constant

A character constant was either not tenninated or had no characters.

S025 Illegal character: $

illegal character encountered in source code. Octal representation of character is shown.

S026 Unmatched double quote

S027 Illegal integer constant: $

Integer (or hexadecimal constant) is too large for 32-bit word.

S028 Illegal real or double precision constant: $

Syntax of constant with exponent is bad.

S029 Syntax error: Recovery attempted by deleting from $

The indicated input was deleted during syntax error recovery.

S030 Syntax error: Malformed $ at $

The indicated construct starting at the indicated token was improperly formed; found during syntax
error recovery.

W031 Multi-character character constant

You cannot specify more than one character within single quotes.

S032 Syntax error: Unexpected input at $

The tokens including and following the indicated token caused a syntax error.

W033 Missing declarator for dummy argument

A declaration without a declared identifier appeared in the dummy argument declaration list

A-4

iPSC3'860 C Compiler User's Guide

F034 Unrecoverable syntax error reading $

Source code processing is terminated.

S035 Syntax error: Recovery attempted by

S036 Syntax error: Recovery attempted by

S037 Syntax error: Recovery attempted by

replacing

inserting

deleting

S038 Illegal combination of standard data types

For example. "unsigned double."

W039 Use of undeclared variable $

An undeclared variable is tteated as an automatic int.

S040 Illegal use of symbol, $

S041 $ is not an enumeration tag

$ by $

$ before

$

An identifier was used as an enumeration tag before it was declared.

S042 Use of undefined struct or union, $

S043 Redefinition of symbol, $

S044 Redefinition of structure or union tag $

S045 Illegal field size

Bit field size must be in range 1 to 32 (0 allowed for unnamed fields).

W046 Non-integral array subscript is cast to int

S047 Array dimension less than or equal to zero

$

The number of elements declared for an array must be greater than zero.

Compiler Error Messages

A-5

Compiler Error Messages iPSC®/860 C Compiler User's Guide

S048 Illegal nonscalar constant

S049 Illegal storage class specifier

5050 Semicolon missing after declaration

5051 Illegal attempt to compute sizeof a function

I052 Array dimension not specified. Extern assumed

An array defmition such as "int a[);" is treated as the array declaration "extern int a[);~"

5053 Illegal use of void type

S054 Subscript operator ([]) applied to non-array

5055 Illegal operand of indirection operator (*)

5056 Attempt to call non-function

W057 Illegal lvalue. Ampersand (&) ignored before array name.

If a" is an array, then &arr is not a legal expression. Probably &arr[O] was intended.

S058 Illegal lvalue

The expression on the left side of an assignment statement or the operand of the unary & operator is
not a legallvalue.

5059 Struct or union required on left of . or -

5060 $ is not a member of this struct or union

S061 Sizeof dimensionless array required

A-6

An array whose dimensions were not specified is used in a context that requires a computation of its
size.

iPSC8'860 C Compiler User's Guide Compiler Error Messages

5062 Operand of - must be numeric type

5063 Operand of - must be an integer type

W064 Cast expression on LH5 of assiqnment treated as cast type

An expression of the fonn (type *)p = was found; the left hand side has been treated as if it were
*(type **)&p.

5065 Break statement not inside loop or switch statement

5066 Continue statement not inside loop

5067 5witch expression must be of integer type

5068 Case or default must be inside switch statement

5069 Dummy parameter specification not allowed here

5070 $ is not a dummy argument

5071 More than one default case for switch

5072 Initializer not allowed in this context

Initializer specified on a dummy parameter, a typedef name, or extern declaration.

5073 Too many initializers for $

The initializer for an array or structure contains too many constants.

A-7

Compiler Error Messages iPSC®l860 C Compiler User's Guide

S074 Non-constant expression in initializer

S075 Aggregate initializer used for scalar type

S076 Initializer not allowed for function

S077 Character string too long for array

When initializing an array of characters using a character string constant, the array must be large
enough for all the characters or all the characters including the null tenninating character.

W078 Character constant too long

A wide character constant contains more than one wide character.

F079 Unable to access file $/TOC

V080 Missing braces for array, structure, or union initialization

S081 Array of functions or function returning function not allowed

S082 Function returning array not allowed

S083 Switch case constants must be unique

S084 Unable to open file $ for inlining

W08S Truncation performed for field initialization

An integer constant used to initialize a sttucture field is too large for the field.

S086 Division by zero

A division by zero was encountered while constant-folding a constant expression.

iPSC3'860 C Compiler User's Guide Compiler Error Messages

8088 Bit field cannot be the operand of sizeof or &

8089 Array name used in logical expression

8090 8calar data type required for logical expression

8091 Integer constant expression required

8092 Illegal type conversion of constant required

W093 Type cast required for this conversion of constant

8094 Illegal type conversion required

The data types of the left and right sides of an assignment statement are incompatible.

W09S Type cast required for this conversion

This message is issued for situations such as message 94, except that the compiler has perfonned the
necessary type conversion as if you had specified a type cast A typical case is when the left and right
hand sides of an assignment statement have different pointer types.

8096 Illegal function arg of type void or function

The actual argument of a function call has an illegal data type.

8097 Statement label $ has been defined more than once

The indicated name is used for more than one label within a function.

8098 Expression of type void * cannot be dereferenced

An attempt was made to apply the unary * operator to a pointer expression of type pointer to void.

W099 Type cast required for this comparison

Comparison of pointers of different types should use a type cast. The compiler has perfonned the
necessary type conversion. .

A-9

Compiler Error Messages iPSC®!860 C Compiler User's Guide

S100 Non-integral operand for mod, shift, or bitwise operator

S101 Illegal operand types for + operator

S102 Illegal operand types for - operator

S103 Illegal operand types for comparison operator

S104 Non-numeric operand for multiplicative operator

W105 Operands of pointer subtraction have different types

Since both operands point to types of the same size, the compiler is able to translate this expression
unambiguously.

W106 Shift count out of range

The bit count for a shift operation must be in the range 0 to 31.

S107 Struct or union $ not yet defined

S108 Unnamed bit fields not allowed in unions

W109 Type specification of field $ ignored

Bit fields must be int, char, or short. Bit field is given the type unsigned int.

SilO Bit field $ too large for indicated data type

The size of a bit field exceeds the size of the data type used to declare the field. For example,
char nd:9.

W111 More than one storage class specified

The additional storage class specifiers are ignored.

Wl12 Duplicate type modifier

A type modifier is repeated. For example, const const int Xi.

A-10

iPSC8'860 C Compiler User's Guide Compiler Error Messages

8113 Label $ is referenced but never defined

W114 More than one type specified

More than one type specifier occurs where at least one of the specifrers is a typedef, struct/union
type, or enum type. All but the first type specifier are ignored.

W115 Duplicate standard type

A standard type is repeated. For example, float float int flt;.

W116 Constant value out of range for signed short or char

Note that a constant such as 0xFFFF (Oxft), interpreted as a positive number, is one bit too large for
the signed short (char) data type. Either the type unsigned short (cbar) should be used in place of
signed short (char), or the equivalent negative number should be used in place of the positive
constant.

I117 Value missing from return statement

This return statement does not return a function value.

I120 Label $ is defined but never referenced

W121 Block with auto initialization jumped into at label $

The indicated label was referenced from outside its containing block, and the containing block
initialized automatic storage. When such a transfer of control occurs, the automatic initialization
does not occur.

I122 Value of expression not used

This message can result from accidentally typing == where = was intended. As another example, the
statement .p++; (which is actually equivalent to just p++;) will cause the message. Unfortunately,
uses of the standard macros getc and putc will cause this message to be issued because these macros
expand to conditional expressions whose'values are typically not used by the programmer. In this
case, the message can be eliminated by casting the getc/putc expression to void.

I123 Definition of function $ is static

I124 possible misuse of dummy array $

Address of dummy array taken, or assignment to array name.

A-11

Compiler Error Messages iPSC®I860 C Compiler User's Guide

1125 Integer value truncated to fit into unsigned short or char type

Using a negative nwnber, or a positive nwnber greater than 16 (8) bits as an unsigned short (char)
value can cause this message to be issued. Note that such code is non-portable.

W129 Floating point overflow. Check constants and constant expressions

W130 Floating point underflow. Check constants and constant expressions

W131 Integer overflow. Check floating point expressions cast to integer

S132 Floating pt. invalid oprnd. Check constants and constant expressions

S133 Divide by 0.0. Check constants and constant expressions

W134 Duplicate struct or union member $

A struct or union member was found with the same name as another member of the same struct or
union.

1135 Function $ should use prototype form of definition

A function that was declared using the prototype form was defined using a non-prototype format.
Note that if the function is used after the definition, the prototype does not have an effect

W136 Function $ has non-prototype declaration in scope

A function is defined using the prototype form, but a declaration for the function that does not use
the prototype form is in scope.

S137 Incompatible prototype declaration for function $

A function prototype declaration is incompatible with a previous prototype declaration for that
function.

S138 Missing identifier for declarator in function prototype definition

A function declarator in a function prototype was missing an identifier for the formal parameter.

S139 void followed by ... or other parameters

A function prototype of the form (void, ...) or (void, int) was encountered.

A-12

iPSca'860 C Compiler User's Guide Compiler Error Messages

5140 Declaration for fODmal $ found in prototype function definition

An attempt was made to declare a fonnal parameter following the function header for a prototype
form function defmition.

5141 Wrong number of parameters to function

W142 Assignment to const object not allowed

An assignment to an object with type modifier const was attempted.

W143 Useless typedef declaration

V144 Syntax requires semicolon, semicolon inserted

V145 Syntax requires no comma, comma deleted

W198 possible conflict ignored between $ and $

W199 Unaligned memory reference

A memory reference occurred whose address does not meet its data alignment requirement

S201 #elif after #else

A preprocessor #elif directive was found after a #else directive; only #endif is allowed in this
context.

S202 #else after #else

A preprocessor #else directive was found after a #else directive; only #endif is allowed in this
context.

S203 #if-directives too deeply nested

Preprocessor #if directive nesting exceeded the maximum allowed (currently 10).

5204 Actual parameters too long for $

The total length of the parameters in a macro call to the indicated macro exceeded the maximum
allowed (currently 2048).

A-13

Compiler Error Messages iPS00I860 C Compiler User's Guide

W205 Argument mismatch for $

The number of arguments supplied in the call to the indicated macro did not agree with the number
of parameters in the macro' s defInition.

F206 Can't find include file $

The indicated include rue could not be opened.

5207 Definition too long for $

The length of the macro defmition of the indicated macro exceeded the maximum allowed (currently
2048).

5208 EOF in comment

The end of a fIle was encountered while processing a comment.

5209 EOF in macro call to $

The end of a fIle was encountered while processing a call to the indicated macro.

5210 EOF in string

The end of a fIle was encountered while processing a quoted string.

5211 Formal parameters too long for $

The total length of the parameters in the defmition of the indicated macro exceeded the maximum
allowed (currently 2048).

5212 Identifier too long

The length of an identifIer exceeded the maximum allowed (currently 2048).

W214 Illegal directive name

The sequence of characters following a # sign was not an identifIer.

W215 Illegal macro name

A macro name was not an identifIer.

A-14

iPSC<!?¥860 C Compiler User's Guide Compiler Error Messages

5216 Illegal number $

The indicated number contained a syntax error.

F217 Line too long

The input source line length exceeded the maximum allowed (currently 2048).

W218 Missing tendif

End of fIle was encountered before a required #eDdif directive was found.

W219 Missing argument list for $

A call of the indicated macro had no argument list.

5220 Number too long

The length of a number exceeded the maximum allowed (currently 2048).

W221 Redefinition of symbol $

The indicated macro name was redefined.

1222 Redundant definition for symbol $

A defmition for the indicated macro name was found that was the same as a previous definition.

F223 String too long

The length of a quoted string exceeded the maximum allowed (currently 2048).

5224 Syntax error in tdefine, formal $ not identifier

A formal parameter that was not an identifier was used in a macro definition.

W225 Syntax error in tdefine, missing blank after name or arglist

There was no space or tab between a macro name or argument list and the macro's defmition.

S226 Syntax error in tif

A syntax error was found while parsing the expression following a #if or #elir directive.

A-15

Compiler Error Messages iPSC®l860 C Compiler User's Guide

5227 Syntax error in *include

The #include directive was not correctly formed.

W228 Syntax error in *line

A #Iine directive was not correctly formed.

W229 Syntax error in *module

A #module directive was not correctly formed.

W230 Syntax error in *undef

A #Undef directive was not correctly formed.

W231 Token after *ifdef must be identifier

The #ifdef directive was not followed by an identifier.

W232 Token after *ifndef must be identifier

The #ifnder directive was not followed by an identifier.

5233 Too many actual parameters to $

The number of actual arguments to the indicated macro exceeded the maximum allowed (currently
31).

5234 Too many formal parameters to $

The number of formal arguments to the indicated macro exceeded the maximum allowed (currently
31).

F235 Too much pushback

The preprocessor ran out of space while processing a macro expansion. The macro may be recursive.

W236 Undefined directive $

The identifier following a # was not a directive name.

A-16

.
iPSC&'860 C Compiler User's Guide Compiler Error Messages

S237 EOF in *include directive

End of me was encountered while processing a #include directive.

S238 Unmatched felif

A #eUf directive was encountered with no preceding #if or #eUf directive.

S239 Unmatched felse

A #else directive was encountered with no preceding #if or #elif directive.

S240 Unmatched fendif

A #endif directive was encountered with no preceding #if, #ifdef, or #ifndef directive.

S241 Unreasonable include nesting

The nesting depth of #include directives exceeded the maximum (currently 10).

S242 Unterminated macro definition for $

A newline was encountered in the formal parameter list for the indicated macro.

S243 Unterminated string or character constant

A newline with no preceding backslash was found in a quoted string.

I244 possible nested comment

The characters I * were found within a comment.

A-17

Compiler Error Messages iPSC®1860 C Compiler User's Guide

I245 Redefining predefined macro $

I246 Undefining predefined macro $

W247 Can't redefine predefined macro $

W248 Can't undefine predefined macro $

F249 terror $

W250 tidentnot followed by quoted string

W251 Extraneous tokens ignored following t directive

F252 Unexpected EOF following t directive

W253 Unexpected t ignored in tif expression

5254 Illegal number in directive

5255 Illegal token in tif expression

A-18

COMPILER INTERNAL STRUCTURE[!]
11I1II11IIII

This appendix describes the internal structure of the compilers as shown in Figure B-1:

Scanner and Parser

Expander

• Optimizer and Vectorizer

Scheduler and Pipeliner

The front-end of the compiler translates the program into an internal representation called
Intermediate Language Macros (ll...Ms). The ILMs are grouped into basic blocks during the
translation phase. A basic block consists of Intermediate Language Instructions (ILls) representing
a sequence of language statements in which flow of control enters at the beginning and leaves at the
end without the possibility of branching except at the end. '

While the source code is translated and grouped into basic blocks. function inlining may occur. Once
the translation is complete. optimizations are applied. Depending on the options selected by the user.
a hierarchy of optimizations may be applied: global optimizations. local optimizations.
vectorization. and software pipelining.

SCANNER AND PARSER

Each compiler has a Scanner and Parser that performs syntax and semantic analysis of its respective
source language input. A set of ILMs is created and a symbol table and various data structures
referring back to the original source code are maintained for diagnostics and symbolic debugging.
Error detection and recovery is performed using an advanced multiple parse stack technology.

8-1

Compiler Internal Structure

CSource

Figure B-1. Compiler Structure

B-2

iPSOO/860 C Compiler User's Guide

Intennedlate
Language

Macros

ILM

Intennedlate
Language

Instructions

ILl

Optimized
Intennedlate

Language
Instructions

iPS~860 C Compiler User's Guide Compiler Internal Structure

EXPANDER

The Expander lowers the ll..M set along with the semantic analysis infonnation and generates a set
of ll..Is and associated data structmes including extended basic block tables and infonnation about
referenced variables. Some optimizations such as constant folding, elimination of identity
expressions, and branch folding occur at this point The ll..I data structme is a directed graph, instead
of a tree structure, which simplifies common subexpression elimination.

OPTIMIZER AND VECTORIZER

The internal, integrated optimizer and vectorizer provides both a faster compile time and more
efficient code generation than traditional source-to-source preprocessors. Advanced optimizations
are used to achieve superior perfonnance. Among these techniques are:

Procedure Integration

Internal Vectorization

Global Optimization

Local Optimization

Flexible memory utilization schemes

Procedure Integration

Procedure Integration, also known as function inlining, allows a function to be executed as a part of
the originating program instead of having parameters passed and making a call. This results in
removing the call overhead and allowing the function to be optimized along with the rest of the
program.

Internal Vectorization

The internal vectorizer is oriented to the Intel i860 microprocessor, which involves transformations
that create better opportunities for software pipelining. Recognition of vector fonns is only
perfonned when the hand-coded vector library calls will outperfonn the scheduler. Having an
internal vectorizer and software pipeliner allows the compiler to make more precise and infonned
decisions on code generation opportunities. Other advantages of an internal vectorizer over a
source-to-source vectorizer include enhanced debugging capabilities as well as a significant increase
in compilation speeds.

B-3

Compiler Intema! Structure iPSC®/860 C Compiler User's Guide

Global Optimizations

Global optimizations are those which optimize code over all basic blocks created for a function.
Control flow analysis and data flow analysis are performed over a flow graph, where each node of
the graph is a basic block. All loops (not just loops created by the language's loop constructs) are
detected, and loop optimizations are performed on each loop. These include:

• Invariant Code Motion

• Induction Variable Elimination

Global Register Allocation

Dead Store Elimination

Copy Propagation

Local Optimizations

Local optimizations are performed on an extended basic block. Most of the local optimizations are
performed by the code generating phase of the multiple functional units. This technique allows
computations from more than one statement to utilize the functional units in parallel, thus providing
a fme-grain parallelism that is completely transparent to the program. For loops containing IF
statements (multiple blocks) that are software pipelinable, the compiler provides fine-grain
parallelism across multiple blocks. Local optimizations provided by the compilers include:

Common Subexpression Elimination

Constant Folding

• Algebraic Identities Removal

• Redundant Load and Store Elimination

• Strength Reduction

• Scratch Register Allocation

• Register Aliasing

The types of code transformations performed on loops include:

Invariant IF statement removal

• Loop interchange when advantageous

iPSC<&'860 C Compiler User's Guide Compiler Intemal Structure

• Loop invariant vector recognition within nested loops

• WHERE statement ttansfonnations using scatter/gather when appropriate

• Splitting out intrinsics

• Loop fusion

• Common idiom recognition

Flexible Memory Utilization

Support is provided for an:hitectures having an integral data caching scheme. Some techniques
provided are:

• Streaming of vectors into cache

• Streaming of invariant vectors into cache and their reuse

• Explicit bypassing of cache for accessing array elements within loops

• Dual and quad loads and stores from and to memory

• Mixing access of arrays from both cache and memory within a loop

SCHEDULER AND PIPELINER

The i860 microprocessor supports parallel activities two ways:

Dual Instruction Mode
The "core" unit and the floating-point sections can operate independently and
in parallel with each other. An example would be a load occurring at the same
time that a floating-point add occurs. The compilers test for situations where
dual instructions are advantageous and schedules instructions accordingly.

Dual Operation Mode
The floating-point units for some instructions can initiate floating-point adds
and multiplies at the same time. In dual operation mode, the two
floating-point arithmetic units can operate independently each providing
results at the clock rate of the machine. See Figure B-2.

8-5

Compiler Internal Structure iPSC®l860 C Compiler User's Guide

I~

CORE OPERATION

Core
Unit

DUAL INSTRUCTION

DUAL OPERATION

8+b

Figure B-Z. ParaDel Activities of i860™ Microprocessor

--I

x*y

The Optimized Intermediate Language Instruction set becomes the input for the Scheduler and
Pipeliner, which takes advantage of the i860 microprocessor's dual instruction and operations
modes. These unique machine characteristics permit parallel scheduling to multiple functional units
and software pipelining.

• Parallel scheduling takes advantage of fine-grain parallelism occurrences in the code and
schedules to multiple functional units when possible.

Software pipelioing schedules code so that operations from several iterations of a loop are
overlapped. This aUows multiple iterations of a loop to be executed during the same instruction.
Software pipelining relies on information provided by the global optimizer and vectorizer
(regarding loops which are pipelinable, data dependence information, recurrences, array
references).

The output of the Scheduler and Pipeliner is a list of assembly language instructions which are
passed to an assembler to create the final object file.

USING THE INLINER ~
11111111111I

This appendix describes the compiler's function inlining capability.

Function inlining is a compiler optimization under which the body of a function (or subroutine) is
expanded in place of a call to the function. This can speed up execution by eliminating the parameter
passing and function call and return overhead. Inlining a function body also creates opportunities for
other compiler optimizations. Inlining will usually result in larger code size (although in the case of
very small functions, code size can actually decrease). Using inlining indiscriminately can result in
much larger code size and no increase in execution speed; there may even be a decrease in execution
speed.

There are basically two ways to accomplish inlining:

• Automatic inlining as part of the compilation process. In this case there is a hidden pass,
preceding the compilation pass, to extract functions that are candidates for inlining. The actual
inlining of functions takes place as the source files are compiled.

• Use of inliner Ubraries. These libraries are created by previous invocations of icc using the
-Mextract option, or can be part of a compiler release. There is no hidden extract pass, but the
user must take care that the library is up to date, and that compilations that depend on the library
are updated whenever necessary.

C-1

Using the Inliner iPSC®I860 C Compiler User's Guide

COMPILERINLINE SWITCH

Function inlining is requested using the -Minline switch:

-Minlinecoption[,option ...]

where option is one of the following:

A size limit This is an integer that represents an upper bound on function size. A function
will not be inlined if it exceeds the size limit. This limit roughly corresponds
to the number of executable statements in the function.

A function name Any number of names can be specified. Any function that is named is inlined.

An inliner library name
Any number of libraries can be specified. Library names are distinguished
from function names by the presence of a period somewhere in the name. A
function is inlined if it is found in any of the libraries.

If both function name(s) and a size limit are specified, a function is inlined if it is named or if it
satisfies the limit.

Inlining can be either automatic or manual. If no inlirier libraries are specified, a special pass is
performed for all source files named on the compiler command line before any of them are compiled.
This pass extracts functions that meet the requirements for inlining and puts them in a temporary
library for use by the compilation pass.

If one or more inliner libraries are specified, no initial extract pass is performed. Functions to be
inlined are selected from the specified libraries. If neither function names nor a size limit are
specified, any function in the library meets the conditions for inlining.

CREATING A LIBRARY

C-2

An inliner library is created or updated using the -Mextract switch:

-Mextract[=option[,option ...]]

where option is either:

• A size limit

A function name

These have the same meaning as for the -Minline switch described above. If no option is specified
with -Mextract, then an attempt is made to extract all subprograms of a reasonable size.

iPSC3'860 C Compiler User's Guide Using the Inliner

When the extract option is used, only extraction is performed; compilation and linking are not
performed.

IT the -Mextract switch is present, you must also specify a single inliner library name on the
~ompiler command line. For example:

This specifies the inliner library in which the extracted forms of functions are placed. The library
mayor may not already exist; it is created if it does not.

You can use the -Minline switch at the same time as the -Mextract switch. In this case, the extracted
form of the function can have other functions inlined into it. This makes it possible to obtain more
than one level of inlining. In this situation, if no library is specified with -Minline, processing will
consist of two extract passes. The fIrst pass is the hidden pass implied by -Minline during which
functions are extracted into a temporary library. The second pass uses the results of the first pass but
puts its results into the library specifIed with the -0 switch. See examples below.

USING LIBRARIES

An inliner library is implemented as a directory. For each element of the library the directory
contains a fIle containing the encoded form of the inlinable function.

A special fIle named TOe serves as a directory for the library. This is a printable, ASCII fIle that can
be examined to fmd out information about the library contents, such as names and sizes of functions,
the source fIle from which they were extracted, the version number of the extractor that created the
entry, etc.

Libraries and their elements can be manipulated using ordinary system commands, for example:

Libraries can be copied or renamed

• Elements of libraries can be deleted or copied from one library to another

• The Is command can be used to learn the date of the most recent change of a library entry

Since deleting or adding an element can cause the TOe fIle to become out of date, a utility program
irIxlib is provided to recreate a correct TOe fIle. Use as follows:

ifixlib library_name

When use of the icc command causes an entry to be created or updated, the date of the most recent
change of the library directory itself is updated also. This allows a library to be listed as a
dependency in a makefile, in order to ensure that the necessary compilations are performed again
when a library is changed.

C-3

Using the Inliner iPSC®I860 C Compiler User's Guide

RESTRICTIONS ON INLINING

The following C functions cannot be inlined:

• Functions whose return type is a struct data type. or have a struct argument

• Functions containing switch statements

• Functions that reference a static variable whose definition is nested within the function

• Functions that accept a variable number of arguments

Certain functions can only be inlined into the fIle that contains their definition:

• Static functions

• Functions that call a static function

• Functions that reference a static variable

ERROR DETECTION DURING INLINING

C-4

When invoking the inliner. you should always set the diagnostics reporting switch (-Mx,O,8).

An additional feature associated with inlining is enhanced compiler error detection. For example:

If an inlinable function is called with the wrong number of arguments, a warning message is
issued and the function is not inlined.

• If an inlinable function is called in a context which assumes that a value is returned, but the body
of the function does not contain any statements that set the return value, a severe error is issued.

• If the declaration of an external variable referenced by an inlinable function does not match the
declaration in the sowce fIle being compiled. a severe error is issued.

iP8Ca'860 C Compiler User's Guide Using the Inliner

EFFICIENCY CONSIDERATIONS

To ensure that compiler vectorizer optimizations are not impeded. observe the following guidelines
when inlining Forttan subprograms:

• Avoid inlining subprograms whose fonnal parameters are adjustable arrays. For example. this
fragment will vectorize well:

subroutine x(a)
integer n
parameter (n - 100)
double precision a(n, n)

However. this fragment will not vectorize well:

subroutine x(a, n)
integer n
double precision a(n, n)

• Avoid actual parameters that are elements of arrays. except when the element specified is the
flJ"St element of the array. For example:

program p

integer actparam(3:l0,2:8,9)

C The next call will not inline efficiently
call inline_sub(actparam(4,6,2»

C The next call will inline efficiently
call inline_sub(actparam(3,2,1»

end

C-5

Using the In liner iPSOO1860 C Compiler User's Guide

EXAMPLES

Dhry

Fibo

Makefiles

C-6

This section contains examples of using the inliner.

Assume the program dhry consists of a single source file dhry.c. Then, the following command line
builds an executable for dhry in which Proc7 has been inlined wherever it is called:

icc dhry.c -lIinline=Proc7

The following command line builds an executable for dhry in which Proc7 plus any functions of
roughly three or fewer statementS have been inlined (llevel only).

icc dhry.c -lIinline=Proc7,3

The following command line builds an executable for dhry in which all functions of roughly ten or
fewer statements are inlined. Two levels of inlining will have been performed. This means that if
function A calls function B, and B calls C, and both B and C are inlinable, then the version of B that
is inlined into A will have had C inlined into it.

icc dhry. c -lIextract=lO -Minline=lO -0 tenp. ilib
icc dhry. c -llinline=tenp. ilib
rm -r tenp. ilib

Assumingfwo.c contains a single function fibo that calls itself recursively. Then, the following
command line creates mefibo.o in which fibo has been inlined into itself:

icc £ibo.c -c -llinline=£ibo-O

Because this version of/ibo recurses only half as deeply, it should execute noticeably faster.

The following fragment of a makefile assumes that file utits.c contains a number of small functions
that are used in the files parser.c and alloc.c. An in liner library utils.ilib is maintained. Note that the
library must be updated whenever utils.c or one of the include files it uses is changed. In turn,
parser.c and alloc.c must be compiled again whenever the library is updated.

main.o: $(SRC)/main.c $(SRC)/global.h
$(CC) $ (CFLAGS) -c $(SRC)/main.c

utils.o: $(SRc)/utils.c $(SRC)/global.h $(SRC)/utils.h

IPSCGti860 C Compiler User's Guide Using the Inliner

$(CC) $ (CFLAGS) -c $(SRC)/utils.c
utils.ilib: $(SRC)/utils.c $(SRC)qlobal.h $(SRC)/utils.h

$(CC) $ (CFLAGS) -Mextract-15 -0 utils.ilib
parser.o: $(SRC)/parser.c $(SRC)/qlobal.h utils.ilib

$(CC) $ (CFLAGS) -Minline-utils.ilib -c $(SRC)/parser.c
alloc.o: $(SRC)/alloc.c $(SRC)/qlobal.h utils.ilib

$(CC) $ (CFLAGS) -Minline-utils.ilib -c $(SRC)/alloc.c

myproq: main. 0 utils. 0 parser.o alloc .. o
$(CC) -0 myproq main.o utils.o parser.o alloc.o

C-7

Using the Inliner iPSC®I860 C Compiler User's Guide

C-8

EXTENSIONS TO ANSI C [[]
I1I1I1I11I11

This appendix describes the language that ic accepts (draft ANSI C), extensions to the standard
language, and considerations for porting programs written in original C (the language described by
Kernighan and ,Ritchie in The C Programming Language).

STANDARD LANGUAGE
The standard language is defined in the Dra/t Proposed Standard/or Programming Language C
(X3] 11 /88-159), American National Standards Institute, December 7, 1988.

For additional information on programming in the C language, refer to the following:

Kernighan, Brian W., and Ritchie, Dennis M., The C Programming Language, Prentice Hall,
1978.

Harbison, Samuel P., and Steele, Guy L., C: A Reference Manual, Second Edition, Prentice
Hall, 1987.

Instead of fully specifying the language accepted by the compiler, this appendix describes only those
features that differ from the C language specified in The C Programming Language. Most of the
differences (incompatibilities and extensions) are ANSI features.

0-1

Extensions to ANSI C iPSC$I860 C Compiler User's Guide

EXTENSIONS

0-2

This section lists the extensions to the original C language and, in certain cases, to the draft ANSI
standard, supported by the ic: compiler.

1. The #module identi}ier directive is supported Theidentijier is used as the name of the module.
If no #module directive is present, the name of the input file, without the ... c" suffix, is used.

2. The #list and #nolist directives are supported. They enable and disable the listing of source code
in the listing rue.

3. The #pragma [tokenS] ANSI directive is supported. Any pragma that is not recognized is
ignored.

4. The #elif expression ANSI directive is supported. This directive is like a combination of the
#else and #if directives.

5. The dermed ANSI operator, is supported. Both of the following expressions evaluate to 1 if
name is the name of a macro, or to 0 otherwise:

defined (name)
defined name

6. The #ident directive is supported. The syntax is:

fiden,t "string"

For certain assemblers, this results in a Jdent directive being added to the output file.

7. The #predicate(value) extension is supported inside preprocessor #if and #elif directives. This
exists for compatibility with AT&T include files. The compiler driver passes a set of predefined
predicates to the compiler. Only predefmed predicates exist; the user may not create new
predicates.

8. Identifiers may contain the dollar sign character, ($).

9. The ANSI reserved word void may be used to indicate the void data type (data type with no
values). This type is used to indicate that the value of an expression is not used, and to declare
functions that retmn no value. The type void • is used to indicate a universal pointer (similar to
the old use of char •• A void • pointer may be quietly converted to and from pointers of other
types.

10. Enumeration typeS are supported. Enumeration constants are implemented as integers. All
integer operations are allowed on enumeration types, as per the proposed ANSI standard; thus
an enumeration constant has type int and enumeration variables are of integral type.

iPSC&'860 C Compiler User's Guide Extensions to ANSI C

11. Two different structures may contain members with the same name, even when the members
have different offsets within each sttucture. (ANSI)

12. Sttuctures may be assigned, passed as arguments to functions, and returned by functions.
(ANSI)

13. The new ANSI types unsigned short int and unsigned char are supported. The keyword
signed is added as per the proposed ANSI standard. A signed integer type is equivalent to the
normal integer type; characters may be specified to be signed by using this keyword. Characters
are unsigned by default. The new ANSI type long double is supported; it is currently
implemented the same as double.

14. The keywords const and volatlle are supported as per the proposed ANSI standard Objects of
type const may not be assigned values. Objects of type volatile (objects used for device
registers and variables that may change as the result of signals) are immune to optimizations that
might change the meaning of the program.

15. ANSI function prototypes are supported. A function declaration may include specifIcation of
the types of its parameters. Type conversions are performed as necessary to ensure that the types
of actual parameters to such a function match the types of its formal parameters, with error
messages issued when appropriate.

16. The new ANSI lexical conventions are supported:

• Any token may be continued using the ''backslash-newline'' (\n) conventions.

• Trigraph sequences are recognized.

• The letters "u" or ''U" may be appended to an integer constant to make it unsigned.

• The letters "r' or ''F'' and "1" or "L" may be appended to a floating constant to make it of
type noat or long double, respectively.

• Two or more consecutive string literals are concatenated into one.

• The '~" (hexadecimal) and '"\a" (alert) character escape sequences have been added.

17. Initialization of automatic aggregates is allowed as per the proposed ANSI standard An
automatic strud may be initialized with an arbitrary structure expression or with a
brace-enclosed list of constant expressions. Automatic arrays can only be initialized using a
brace-enclosed list of cOnstant expressions. Initialization of a union is allowed by initializing
the fmt element of the union. As in original C, all static variables can be initialized.

18. Both signed and unsigned bit fields are supported. (ANSI)

19. The unary + operator has been added as per the proposed ANSI standard.

0-3

Extensions to ANSI C iPSC®1860 C Compiler User's Guide

IMPLEMENTATION-DEFINED BEHAVIOR

The search rules for #include directives are:

• If the patbname is enclosed in angle brackets, the compiler fll'St searches the directories
specified with the ·idir command line switch in the order specified, then the system include
directory.

• If the pathname is enclosed in double quotes, the compiler first searches the current directory,
then follows the search rules above.

PORTING CONSIDERATIONS

0-4

This section describes incompatibilities between original C and the version of ANSI C supported by
the ic compiler. These incompatibilities prevent programs that were legal under the original
definition from being accepted by the compiler. In all but the last two cases, the compiler identifies
the error and issues a message.

1. The compiler performs strict type-checking. In particular, the base type of a pointer expression
used to access a struct member must be a structure type that contains a member with that
name.(ANSI)

2. Identifier names may be arbitrarily long, but only the frrst 31 characters are significant (31 is
also the ANSI standard). The original definition of C allowed long names but only the frrst eight
characters were significant, implying that misspellings after the eighth character were not
errors.

3. Storage class specifiers must come before type specifiers, if both are present (e.g., static int, not
int static). The proposed ANSI standard considers placement of the storage class specifier an
obsolete feature.

4. If a unary operator is applied to a variable of type Boat, or if a binary operator is applied to two
variables of type Boat, the result is computed using single precision arithmetic. This is in
accordance with the proposed ANSI standard.

5. No white space (blanks, tabs, comments, or new lines) is allowed between the characters
making up the following assignment operator tokens (ANSI):

+=
»=

-=
&=

*=
"=

1=
1=

«=

6. The default numeric conversion rules follow the proposed ANSI convention of value
preserving. This means that an unsigned char or unsigned short int is converted to an int,
rather than an unsigned int. The compiler issues no messages for this conversion.

MANUAL PAGES~
11111111111I

This appendix contains manual pages for the icc and ic commands.

E-1

Manual Pages iPSC®1860 C Compiler User's Guide

ICC ICC

Driver for compiling, assembling, and linking C programs for the iPse,4 /860 system.

Synopsis

, Description

E-2

icc [switches] sourcefile ...

The icc command invokes the iPSc4>/860 C compiler, assembler, and linker with switches derived
from the driver's command line arguments.

The icc bases its processing on the suffixes of the files it is passed:

Files whose names end with" .c" are considered to be C programs. They are preprocessed,
compiled, and assembled. The resulting object file is placed in the current directory.

• Files whose names end with ".s" are considered to be i860 assembly language fIles. They are
assembled and the resulting object file is placed in the current directory.

Files whose names end with" .0" are considered to be object fIles. They are passed directly to
the linker if linking is requested.

Files whose names end with ".a" are considered to be ar libraries. No action is performed on
".a" files unless linking is requested.

• All other fIles are taken as object files and passed to the linker (if linking is requested) with a
warning message.

If a single C program is compiled and linked with one icc command, then the intermediate object
and assembly files are deleted.

The compiler is targeted to the Intel i860 System Binary Standard (SBS) for the Intel APX system.
The compiler creates object fIles and executables that will function for any system conforming to the
SBS. In addition, the compiler can create object flIes that will work for any system conforming to
the System V, Release 4 Application Binary Interface (ABI) for the i860 microprocessor.

