
• • • • • • •
II
a
B

n
IJ

IJ

~

E

rJ

a
Ij

IJ

IJ
[J

IJ
(J

IJ
I:J
.1:)

.~

E

• • • •

Paragon System

January 1995

Order Number: 313151-001

C++ Compiler User's Guide

Intel@ Corporation

Copyright © 1995 by Intel Scalable Systems Division, Beaverton, Oregon. All rights reserved. No part of this work may be reproduced or copied in
any form or by any means ... graphic, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems ... without
the express written consent of Intel Corporation. The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation
makes no commitment to update or to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to restrictions
stated in Intel's software license agreement. Use, duplication, or disclosure by the U.S. Government is subjectto restrictions as set forth in subpara
graphs (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule
vard, Santa Clara, CA 95052-8119. For all Federal use or contracts other than 000, Restricted Rights under FAR 52.227-14, ALT. III shall apply.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

286 i386
287 i387

i486
i487
i860

APSO is a service mark of Verdix Corporation
DGL is a trademark of Silicon Graphics, Inc.
Ethernet is a registered trademark of XEROX Corporation
EXABYTE is a registered trademark of EXABYTE Corporation
Excelan is a trademark of Excelan Corporation
EXOS is a trademark or equipment designator of Excelan Corporation
FORGE is a trademark of Applied Parallel Research, Inc.

Intel
Intel386
Intel387
Intel486
Intel487

Green Hills Software, C-386, and FORTRAN-386 are trademarks of Green Hills Software, Inc.
GV AS is a trademark of Verdix Corporation
IBM and IBMlVS are registered trademarks of International Business Machines
Lucid and Lucid Common Lisp are trademarks of Lucid, Inc.
NFS is a trademark of Sun Microsystems
OpenGL is a trademark of Silicon Graphics, Inc.
OSF, OSF/I, OSFlMotif, and Motif are trademarks of Open Software Foundation, Inc.
POI and PGF77 are trademarks of The Portland Group, Inc.
PostScript is a trademark of Adobe Systems Incorporated
ParaSoft is a trademark of ParaSoft Corporation
SCO and OPEN DESKTOP are registered trademarks of The Santa Cruz Operation, Inc.
Seagate, Seagate Technology, and the Seagate logo are registered trademarks of Seagate Technology, Inc.
SGI and SiliconGraphics are registered trademarks of Silicon Graphics, Inc.
Sun Microsystems and the combination of Sun and a numeric suffix are trademarks of Sun Microsystems
The X Window System is a trademark of Massachusetts Institute of Technology

iPSC
Paragon

UNIX is a registered trademark in the United States and other countries, licensed exclusively through XlOpen Company Ltd.
VADS and Verdix are registered trademarks of Verdi x Corporation
V AST2 is a registered trademark of Pacific-Sierra Research Corporation
VMS and V AX are trademarks of Digital Equipment Corporation
VP/ix is a trademark of INTERACTIVE Systems Corporation and Phoenix Technologies, Ltd.
XENIX is a trademark of Microsoft Corporation

ii

D

u
n
u
n
n
u
I[

• •

• •
I

•
I
at
I[

It

I

• • • •
I

• • • a:
•

• • •
II
III

•
II

D

D

IJ

IJ

IJ
IJ

IJ
[J

[J

Ij

~

• • •
•

WARNING
Some of the circuitry inside this system operates at hazardous energy and
electric shock voltage levels. To avoid the risk of personal injury due to
contact with an energy hazard, or risk of electric shock, do not enter any
portion of this system unless it is intended to be accessible without the use
of a tool. The areas that are considered accessible are the outer enclosure
and the area just inside the front door when all of the front panels are in
stalled, and the front of the diagnostic station. There are no user service
able areas inside the system. Refer any need for such access only to tech
nical personnel that have been qualified by Intel Corporation.

CAUTION
This equipment has been tested and found to comply with the limits for a
Class A digital device, pursuant to Part 15 of the FCC Rules. These limits
are designed to provide reasonable protection against harmful interfer
ence when the equipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio frequency energy and,
if not installed and used in accordance with the instruction manual, may
cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own
expense.

LIMITED RIGHTS
The information contained in this document is copyrighted by and shall re
main the property of Intel Corporation. Use, duplication or disclosure by
the U.S. Government is subject to Limited Rights as set forth in subpara
graphs (a)(15) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule
vard, Santa Clara, CA 95052. For all Federal use or contracts other than
DoD Limited Rights under FAR 52.2272-14, ALT. III shall apply. Unpub
lished-rights reserved under the copyright laws of the United States.

iii

iv

D

U

U

U

n
II
II

C

• •
I[

It
I[

I.

• • •
II

It
Ir
I[

I

• • • •
I

• • •
I:

•

• • • • •
B
D

e
C

C

El

IJ

IJ

I:J

EJ

~

EJ

IJ

IJ
(J

[]

IJ
IJ

IJ

IJ
IJ
(j

m

• • • •

Preface

This manual describes the Paragon™ system C++ compiler. This manual assumes that you are an
application programmer proficient in the C++ language and the UNIX operating system. This
manual describes how to use the C++ compiler and provides general information about the
implementation of the C++ language supported. The manual does not attempt to teach the C++
programming language.

Organization
Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Introduces the Paragon system software development environment and
shows how to create executable files from C++ source code. This chapter
contains enough information to get you started creating executable files for
the Paragon system.

Describes iCC, the command for compiling, assembling, and linking C++
source code for execution on the Paragon system.

Gives you a strategy for using the compiler's optimization features to help
maximize the single-node performance of your programs.

Tells how to use the compiler's function inliner.

Describes the inter-language calling conventions for C++, C, and Fortran.

Chapter 6 Provides general information about the implementation of the C++ language
that the C++ compiler accepts.

Chapter 7 Describes the C++ libraries.

v

Preface

Chapter 8

Chapter 9

Appendix A

Appendix B

Paragon ™ System C++ Compiler User's Guide

Describes how C++ templates are generated.

Describes how C++ name mangling is implemented.

Lists the error messages generated by the compiler, indicating each
message's severity and, where appropriate, the probable cause of the error
and how to correct it.

Contains reference manual pages for the Paragon software development
commands.

Compatibility and Conformance to Standards
Since there is no current ANSI standard for C++, the Paragon system C++ compiler produces code
that for the most part conforms to The Annotated c++ Reference Manual, with modifications
supporting the current draft of the ANSI C++ X3J16IWG21 working paper. The section "C++
Dialect Supported" on page 5-1 provides more details on what is and is not supported in the
. language.

Notational Conventions

vi

This manual uses the following notational conventions:

Bold

Italic

Identifies command names and switches, system call names, reserved words,
and other items that must be entered exactly as shown.

Identifies variables, filenames, directories, processes, user names, and writer
annotations in examples. Italic type style is also occasionally used to
emphasize a word or phrase.

Plain-Monospace
Identifies computer output (prompts and messages), examples, and values of
variables. Some examples contain annotations that describe specific parts of
the example. These annotations (which are not part of the example code or
session) appear in italic type style and flush with the right margin.

Bold-Italic-Monospace
Identifies user input (what you enter in response to some prompt).

D

U

U

U

n
II
C

C

II

U

It

~

[:

E

• • • •
If
I(

Ir

• • • • • • • • •
I:

•

• • • • • • •
n
D

E

C
IJ

IJ
[]

IJ

IJ
[j

IJ
El
[j

I'ij

11

• • • •

Paragon ™ System C++ Compiler User's Guide Preface

Bold-Monospace
Identifies the names of keyboard keys (which are also enclosed in angle
brackets). A dash indicates that the key preceding the dash is to be held down
while the key following the dash is pressed. For example:

<Break> <s> <Ctrl-Alt-Del>

Surround optional items.

Indicate that the preceding item may be repeated.

Separates two or more items of which you may select only one.

{ } Surround two or more items of which you must select one.

Applicable Documents
For more information about the C++ language, refer to The Annotated C++ Reference Manual by
Margaret Ellis and Bjarne Stroustrup. This book is provided with the Paragon system C++ Compiler
as an accompanying reference manual.

For more information about Paragon system manuals, refer to the Paragon™ System Technical
Documentation Guide.

vii

Preface Paragon™ System C++ Compiler User's Guide

Comments and Assistance

. viii

Intel Scalable Systems Division is eager to hear of your experiences with our new software product.
Please call us if you need assistance, have questions, or otherwise want to comment on your Paragon
system.

U.S.A./Canada Intel Corporation
Phone: 800-421-2823

Internet: support@ssd.intel.com

Intel Corporation Italia s.p.a.
Milanofiori Palazzo

United Kingdom Intel Corporation (UK) Ltd.
Scalable Systems Division

20090 Assago
Milano
Italy
167877203 (toll free)

France Intel Corporation
1 Rue Edison-BP303

Pipers Way
Swindon SN3 IRJ
England
0800212665 (toll free)

78054 St. Quentin-en-Yvelines Cedex
France

(44) 793 491056 (answered in French)
(44) 793 431062 (answered in Italian)
(44) 793 480874 (answered in German)
(44) 793 495108 (answered in English)

05908602 (toll free)

Intel Japan K.K.
Scalable Systems Division
5-6 Tokodai, Tsukuba City
Ibaraki-Ken 300-26
Japan
0298-47-8904

Germany Intel Semiconductor GmbH
Dornacher Strasse 1
85622 Feldkirchen bei Muenchen
Germany
0130813741 (toll free)

World Headquarters
Intel Corporation

Scalable Systems Division
15201 N.W. Greenbrier Parkway

Beaverton, Oregon 97006
U.S.A.

(503) 629-7600 (Monday through Friday, 8 AM to 5 PM Pacific Time)
Fax: (503) 629-9147

--_._----- -~-

u
n
n
u
II

II

II

II

II

II

II
r::
Ii:

• • • •
I

It
I[

I[

I

I

I

•
I

• •
I

II

I:

•

• • • • • • •
II

El

EJ
IZJ
[]

'I]

IJ

E

~

~

'I:]

IJ

IJ

IJ

IJ
(J

IJ

IJ

1:1

11
1;1

• • • •

Chapter 1
Getting Started

Table of Contents

The Software Development Environment .. 1-1

Compiler Driver .. 1-3

Execution Environments ... 1-4

Running on a Single Node ... 1-4

Running on Multiple Nodes .. 1-4

Example Driver Command Lines ... 1-5

Filename Conventions ... 1-6

Input Files ... 1-6

Output Files .. 1-7

ix

Table of Contents Paragon ™ System C++ Compiler User's Guide

Chapter 2
The iCC Driver

Invoking the Driver .. 2-1

Controlling the Driver ... 2-3

Specific Passes and Options ... 2-4

Preprocess Only ... 2-5

Preprocess and Compile Only ... 2-5

Preprocess, Compile, and Assemble Only ... 2-5

Add and Remove Preprocessor Macros .. 2-6

Controlling the Compilation Step .. 2-6

Specific Actions .. 2-7

Location of Include Files•... 2-11

Optimization Level .. 2-12

Generating Debug Information ... 2-12

Controlling the Link Step .. 2-13

Stripping Symbols .. 2-13

Generating a Relinkable Object File .. 2-13

Producing a Link Map .. 2-14

Linker Libraries ... 2-14

Controlling Mathematical Semantics ... 2-14

Controlling the Driver Output .. 2-15

Executable for Multiple Nodes ... 2-16

Name of Executable File .. 2-16

Verbose Mode .. 2-16

Built-in Math Functions ... 2-17

x

-----~--

u
u
n
u
n
n
II

n
II

II

II

I:

Ir

• •
I

I

•
n
m:
I[

I

• • •
I

I

I

• • • •

• • • •
II

II

•
II

E

e
G

IJ

IJ
[J

E
~

E
IJ

IJ

IJ
IJ

IJ
IJ

IJ
[J

[d

Ij

E

• • • •

Paragon ™ System c++ Compiler User's Guide Table of Contents

Chapter 3
Using the Inliner

Compiler Inline Switch ... 3-1

Restrictions on Inlining ... 3-2

Diagnostics During Inlining ... 3-2

Examples ... 3-3

Chapter 4
Inter-Language Calling

Inter-Language Calling Considerations .. 4-1

Functions and Subroutines .. 4-2

Upper and Lower Case Conventions .. .4-2

Underscore ... 4-3

Compatible Data Types .. 4-3

Fortran Named Common Blocks .. 4-4

Argument Passing and Return Values4-4

Passing By Value (%VAL) .. 4-5

Character Return Values .. 4-5

Complex Return Values ... 4-6

Array Indexes ... 4-6

Examples of Inter-Language Calling .. 4-7

C++ Calling C ... 4-7

C Calling C++ ... 4-7

Fortran Calling C++ .. 4-8

C++ Calling Fortran .. 4-9

xi

Table of Contents Paragon ™ System C++ Compiler User's Guide

Chapter 5
C++ Language Considerations

c++ Dialect Supported ... 5-1

ARM vs. X3J16IWG21 ... 5-1

Anachronisms Accepted .. 5-3

Extensions Accepted .. 5-4

Cfront 2.1 Compatibility Mode .. 5-5

Cfront 2.1/3.0 Compatibility Mode .. 5-8

Extensions .. 5-9

Implementation-Defined Behavior ... 5-10

Data Types .. 5-11

Scalars ... 5-11

Alignment of Scalars .. 5-12

Aggregate Data Types ... 5-12

Class and Object Data Layout ... 5-13

Structure Alignment .. 5-14

Bit-field Alignment .. 5-16

Other Type Keywords .. 5-17

Chapter 6
Libraries

Compiler Libraries ... 6-1

Linking to the Math Library ... 6-2

Including the Math Header File .. 6-3

Math Functions ... 6-3

Standard C Library Calls .. 6-4

Non-Standard C Library Calls .. 6-5

Setting the SBRK Size ... 6-5

xii

n
n
II

II

II

I:

~

I:

11

II

11

C

t:

I.

•
I:

• •
Ii

It

II

• •
I

•
I:

I.

I:

I:

•
I:

•

• • • •
n
D

II

D

G
I:j

El

D
[J

[J

El

~

fJ
I]

IJ

IJ
[J,~!

I

[J

[]

IJ
[J

D
[J

I]

• • • •

Paragon™ System c++ Compiler User's Guide Table of Contents

The lostream Library .. , 6-5

lostreams Header Files .. 6-5

lostreams Usage and Class Hierarchy ... 6-6

Using iostreams ... 6-6

Class ios ... 6-7

Class ios Enumerated Types ... 6-8

io_state enumc .. 6-8

open_mode enum ... 6-8

seek_dir enum ... 6-8

Class ios Constructor and Destructor .. 6-9

ios .. 6-9

-ios ... 6-9

Class ios - Public Functions .. 6-9

bad .. 6-9

bitalloc ... 6-10

clear .. 6-10

eof ... 6-10

fail .. 6-10

fill ... 6-10

flags ... 6-11

good .. 6-11

iword .. , 6-11

precision .. 6-11

pword .. 6-11

rdbuf .. 6-12

rdstate ... 6-12

setf .. 6-12

skip .. 6-12

sync_with_stdio ... 6-12

tie ... 6-13

unsetf .. 6-13

width .. 6-13

xalloc ... 6-13

xiii

Table of Contents Paragon™ System C++ Compiler User's Guide

Operators , ... 6-14

Class istream ... 6-14

Class istream constructor and destructor .. 6-14

istream .. 6-14

-istream .. 6-14

Class istream - Public Functions .. 6-14

gcount ... 6-14

get ... 6-15

getline .. 6-15

ignore .. 6-16

ipfx ... 6-16

peek .. 6-16

putback .. 6-16

read ... 6-16

seekg ... 6-17

sync ... 6-17

tellg .. 6-17

Class ostream .. 6-17

Class istream constructor and destructor .. 6-17 .

ostream ... 6-17

-ostream ... 6-18

Class ostream - Public Functions ... 6-18

flush ... 6-18

opfx ... 6-18

osfx .. 6-18

put ... 6-18

seekp ... 6-18

tellp .. 6-19

write ... 6-19

ostream Operators ... 6-19

xiv

n
II

U

n
II

11

11

I:

Il

II

n
I::

I:
I[

•
I

I

II

II

&
I[

I[

• • • •
I.

• •
I[

E

•

• • • •
II

a
11
c
D

:0

~

r=
IJ
[]

El

a
E

I:l
[J

[J

IJ
(j

IJ
[J

IJ

El

f:j

I!J

• • • '.

Paragon 1M System C++ Compiler User's Guide Table of Contents

Class iostream ... 6-19

iostream Constructor and Destructor .. ~ 6-20

iostream .. 6-20

-iostream .. 6-20

fstream Constructor and Destructor ... 6-20

fstream .. 6-20

-fstream .. 6-21

of stream Constructor and Destructor ... 6-21

of stream .. 6-21

-oft ream .. 6-21

ifstream Constructor and Destructor ... 6-22

ifstream ... 6-22

-ifstream ... 6-22

Class fstream, ifstream, of stream - Public functions ... 6-22

attach .. 6-22

close .. 6-23

open .. 6-23

rdbuf .. 6-23

setbuf .. 6-23

Class ostream_withassign ... 6-23

ostream_withassign .. 6-23

-ostream_withassign .. 6-24

Class iostream_withassign .. 6-24

iostream_withassign .. 6-24

-iostream_withassign ... 6-24

Class istream_withassign .. 6-24

istream_withassign .. 6-24

-istream_withassign ... 6-24

xv

---_._.,. '-~

0
Table of Contents Paragon™·System C++ Compiler User's Guide

II

n
II

II

Class istrstream ... 6-25 II
Class istrstream Constructors and Destructor ... 6-25 I:

istrstream .. 6-25 I:
-istrstream .. 6-25

Class istrstream - Public functions .. 6-25 Ii
rdbuf .. 6-25 I!

Class ostrstream .. 6-25
L

Class ostrstream constructor and destructor ... 6-26

ostrstream ... 6-26 [[>

-ostrstream ... 6-26 L
Class ostrstream - Public Functions ... 6-26

I:
pcount ...•................. 6-26

rdbuf .. 6-26 •
str .. 6-27 • Class strstream .. 6-27 • Class strstream constructor and destructor ... 6-27

strstream ... 6-27 •
-strstream ...•........................... 6-27 I[

Class strstream - Public Functions ... 6-27

str .. 6-27
I

Class stdiostream ... 6-28 II
Class stdiostream constructor and destructor ... 6-28 I

• stdiostream .. 6-28

-stdiostream ... 6-28

Class streambuf ... 6-28 •
Class streambuf constructor and destructor .. 6-28 • • streambuf .. 6-28

-streambuf .. 6-29

• • • •
xvi • •

•
II

II

D

C

o
n
Ij

~

(j

G

£ : -,

t:
IJ

e
El

C

~

IJ

IJ

IJ

r:J

IJ
[J

IJ

IJ

IJ

IZl

• • • •

Paragon ™ System c++ Compiler User's Guide Table of Contents

Class streambuf - Public Functions .. 6-29

in_avail .. 6-29

out_waiting .. ; 6-29

sbumpc .. 6-29

setbuf .. 6-29

seekoff ... 6-30

seekpos ... 6-30

sgetc .. 6-30

sgetn ... 6-30

snextc .. 6-30

sputbackc .. 6-31

sputc .. 6-31

sputn ... 6-31

stossc .. 6-31

sync ... 6-31

Class filebuf .. 6-32

Class filebuf Constructors and Destructors ... 6-32

filebuf ... 6-32

-filebuf .. 6-32

Class filebuf Member Functions .. 6-32

attach .. 6-32

close .. 6-33

fd ... 6-33

is_open .. 6-33

open .. 6-33

Class strstreambuf ... 6-33

Class strstreambuf-Constructors and Destructor .. 6-33

strstreambuf .. 6-33

strstreambuf .. 6-34

Class strstreambuf - Public Functions ... 6-35

freeze .. 6-35

str .. 6-35

Class stdiobuf ... 6-35

xvii

Table of Contents Paragon TN System C++ Compiler User's Guide

Manipulators ... 6-35

dec .. 6-35

hex .. 6-36

oct ... 6-36

ws .. 6-36

setw ... 6-36

setfil ... 6-36

setprecision ... 6-36

setiosflags ... 6-37

resetiosflags .. 6-37

endl ... 6-37

ends .. 6-37

flush ... 6-37

The C++ Complex Math Library .. 6-38

Complex Constructor and Destructor ... 6-38

complex ... 6-38

-complex ... 6-39

Complex Arithmetic Operators ... , 6-39

Complex Public Functions .. : ... 6-40

abs .. 6-40

arg ... 6-40

conj .. 6-40

cos ... 6-40

cosh ... 6-40

exp .. 6-40

imag .. 6-41

log ... 6-41

norm .. 6-41

polar .. 6-41

pow .. 6-41

xviii

B

U

U

U

U

U

II

II

•
I
II

I:

l:

E

• • • •
It
I(

I

• • • • • • • • • • •

• •
II

a
B

D
n
c
~

c

1"'1
1 .j

[J

o
~

I:l

IJ
IJ
(J

(]

I]

[j

IJ
[J

(j

El
~

• • • •

Paragon ™ System c++ Compiler User's Guide Table of Contents

real .. 6-42

sin .. 6-42

sinh .. 6-42

sqrt .. 6-42

Input and Output Using Complex Values ... 6-42

Error Handling .. 6-43

Chapter 7
Template Instantiation

Command Line Control ... 7-2

Automatic Template Instantiation ... 7-3

Implicit Inclusion .. 7-5

Chapter 8
C++ Name Mangling

Types of Mangling .. 8-2

Mangling Summary .. 8-3

Type Name Mangling ... 8-3

Nested Class Name Mangling .. 8-3

Local Class Name Mangling ...•.......... 8-3

Template Class Name Mangling .. 8-4

xix

Table of Contents Paragon TM System C++ Compiler User's Guide

Appendix A
Compiler Error Messages

Appendix B
Manual Pages

AR860 ... 8-3

AS860 ... 8-5

OUMP860 ... 8-7

ICC ... 8-9

L0860 .. 8-24

MAC860 .. 8-29

NM860 .. 8-30

SIZE860 .. 8-32

STRIP860 ... 8-34

xx

D

D

D

U

II

U

II

• • •
II
II

E

a
• • •
I
I.
&

II.

• • • •
I

• • • .-
K

•

B

•
II
D

II

11

c

IJ

IJ
(J

~

e

• • • • •

Paragon TM System c++ Compiler User's Guide Table of Contents

List of Illustrations

Figure 5-1.Natural Alignment .. 5-15

Figure 5-2.Quad Alignment .. 5-16

xxi

-- .-.----.-.-----... -..... --.-.. ~-----

Table of Contents Paragon ™ System C++ Compiler User's Guide

List of Illustrations

xxii

•
II
II

n
II

II

&

II

• • •
m=

I[

a

• • • •
I[

• ..
I

• • • • • • •
• • •

II

• •
D

o
D

D
Ij

C
e
C

I~

[:

Ij

El

o

• • • •

Table of Contents

Table 1-1.

Table 1-2.

Table 2-1.

Table 4-1.

Table 4-2.

Table 5-1.

Table 5-2.

Table 5-3.

Table 6-1.

Table B-1.

Paragon™ System C++ Compiler User's Guide

List of Tables

Software Development Commands .. 1-2

Stop After Options, Inputs, and Outputs ... 1-7

Summary of iCC Driver Switches : ... 2-1

Fortran and C++ Date Type Compatibility4-3

Fortran and C++ Representation of COMPLEX Data Type4-4

Sizes and Alignments of Data Types .. 5-10

Scalar Data Types .. 5-11

Floating-Point Data Type Ranges ... 5-12

Math Functions by Operation and Arguments .. 6-3

Commands Discussed in This Appendix ... B-2

xxiii

--~--~----------- ----~----- -~~----~- -~-~-----~-~--- -----~-- -"--~-------

• Paragon™ System c++ Compiler User's Guide Table of Contents
U

•
B

II

List of Tables a
• • • • •
E

r.
• • • •
I

I

•
a

• • • • • • • • •
xxiv • •

-- -- ---- ---~--~----------------------

B

• •
II

II

a
II

o
It

e
c'
1::

I~

C

E

• • • •

Getting Started

This chapter introduces the Paragon™ system software development environment and shows how to
create executable files from C++ source code.

This chapter contains enough information to get you started using the compiler driver to create
executable files from C++ source code.

The Software Development Environment
The Paragon system includes a complete set of commands for compiling, linking, executing, and
debugging parallel applications. These commands are available in two different software
development environments:

• The cross-development environment runs both on the Paragon system and on supported
workstations.

• The native development environment runs only on the Paragon system itself.

Table 1-1. lists the commands in the two software development environments.

1-1

Getting Started

1-2

Paragon TN System C++ Compiler User's Guide

Table 1-1. Software Development Commands

Name in Name in
Cross-Development Native

Environment Environment Description

ar860 ar Manages object code libraries

as860 as Assembles i860™ source code

dump860 dump860 Dumps object files

iCC CC Compiles C++ programs

Id860 Id Links object files

mac860 mac Preprocesses assembly-language programs

nm860 nm Displays symbol table (name list) information

size860 size Displays section sizes of object files

strip860 strip Strips symbol information from object files

With minor exceptions, these commands work the same in both environments and on all supported
hardware platforms. The biggest difference between the two environments is the names of the
commands, as shown in Table 1-1.. Where other differences exist, they are noted in Appendix B.

NOTE

This manual uses the cross-development names for these
commands. However, except where noted, all discussions of the
cross-development command names apply equally to the
corresponding native command names.

This manual gives complete information on the compiler and provides manual pages for the other
commands shown in Table 1-1..

• • • •
u

• • • • • • •
I[

• • • • •
I.

•
I:

• • • • • • • • • • •

III

•
II

II

n
D

II

c

IJ

IJ

(J

()

IJ
I~l

J

IJ
(j

[J

£j

• • • •

Paragon TN System C++ Compiler User's Guide Getting Started

Compiler Driver

The Paragon system c++ driver provides an interface to the compiler, assembler, and linker that
makes it easy to produce executable files from C++ source code. For example:

• It automatically sets appropriate compiler, assembler, and linker switches.

• It lets you pass switches directly to the assembler and linker. All functionality of the as860
assembler and Id860 linker is available through the driver.

• It lets you stop after the preprocessor, compiler, assembler, or linker steps.

• It lets you retain intermediate files.

The driver creates an executable file for execution on a Paragon system node.

The iCC command invokes the C++ driver. For example, the following command line compiles,
assembles, and links the C++ source code in the file myprog.C (using the default driver switches)
and leaves an executable version of the program in the file a.out:

% icc myprog.C

To translate and link a C++ program, iCC does the following:

• Runs the C++ front end and creates a temporary intermediate file (run icppl).

• Runs the back end which reads the binary intermediate file produced by the front end and
generates an assembly language file (run icpp2).

• Assemble the assembly file to create a coff object file (run as860).

• Link in the appropriate startup files and library routines, as well as the application program (run
Id860).

• Run nm860 on the linker output file and pipe the output through imunch. The command
imunch is a utility that generates a C program that will call all required start-up initialization
routines.

imunch looks for module level constructor and destructor functions that must be called at
program startup time. imunch outputs a temporary C language file which contains arrays of
function pointers pointing to the module level constructor/destructor functions.

• Compile and assemble the temporary file produced by the prior step.

• Do a final link which includes the temporary module consisting of the tables of module level.
constructor/destructor calls that need to be made at program startup time.

Additional steps are taken if templates are instantiated. Chapter 2 describes the iCC driver in detail.

1-3

Getting Started Paragon TM System C++ Compiler User's Guide

Execution Environments
The Paragon System software tools can create executable files for execution on one Paragon system
node or multiple nodes.

Running on a Single Node

By default, the iCC driver creates a file for execution on a single node. For example, the following
command line compiles myprog.C to the executable a.out:

% iCC myprog. c

When you run the resulting executable by typing a.out on the Paragon system, it runs on one node
in the service partition.

Running on Multiple Nodes

1-4

To run a program on multiple nodes, you must use calls from the library /ibnx.a. This library
contains the calls that you use to start processes on multiple nodes and communicate with processes
running on other nodes. (All of the calls in /ibnx.a are described in the Paragon ™ System C Calls
Reference Manual.)

The iCC driver does not automatically search /ibnx.a. To search libnx.a, you can use either the -ox
or -lox switch when linking:

• The -ox switch links in libnx.a, libmach.a, and options/autoinit.o and creates an executable that
automatically starts itself on multiple nodes when invoked. For example, the following
command line compiles myprog. C to the executable a.out:

% iCC -me myprog. C

When you run the resulting executable by typing a.out on the Paragon system, it runs on all the
nodes in your default partition. You can use the command line switches and environment
variables described in the Paragon™ System User's Guide to control its execution
characteristics.

• The -lox switch links in libnx.a but you should use the -ox switch if your program is going to
run on multiple nodes. For example, the following command line compiles myprog.C to the
executable a.out:

% iCC myprog.C -lme

Note that -lox must appear after the filenames of any source or object files that use calls from
/ibnx.a.

• • •
II

II
U

II

• • • •
I::

C
&

• • • •
I:

•
II

a

• • • • • • • • • •

II

o
o
D

D
D

D
I]

I~

n

rJ
I:J

I~

~

n
o
[J

[J

IJ

D

Paragon TM System c++ Compiler User's Guide Getting Started

Example Driver Command Lines
The following example command lines show how to use the iCC driver to perform typical tasks. See
Chapter 2 for complete information on using the driver and its switches.

• Compile and link for a single Paragon system node, leaving the executable in a file called x:

% iCC -0 x X.C

• Compile and link for multiple nodes with automatic start-up:

% icc -nx -0 x X.C

• Same as above, but include the C math library (-1m):

% iCC -nx -0 x X.C -1m

• Compile source file x. C and link it together with object file y.o and library mylib.a:

% icc -0 x X.C y.o mylib.a

• Compile and link in libnx.a:

% icc -0 x x.C -lnx

• Compile, but skip assemble and link steps (-S); leaves assembly language output in file x.s:

% iCC -8 x.C

• Compile and assemble, but skip link step (-c); leaves object output in file x.o:

% iCC -c X.C

• Compile and assemble with optimizations:

% icc -c -02
% iCC -c -03
% icc -c -03

X.C
x.C
-Mvect x.C

(level 2 - global optimizations only)
(level 3 - adds software pipelining)

(level 3 optimizations plus vectorization)

1-5

Getting Started Paragon ™ System C++ Compiler User's Guide

Filename Conventions

Input Files

1-6

The C++ compiler uses the filenames that you specify on the command line to find and to create
input and output files. This section describes the input and output filename conventions for the
phases of the compilation process.

You can specify C++ source files, assembly-language files, preprocessed C source files, C source
files, object files, and libraries as inputs on the iCC command line. The driver determines the type
of each input file by examining the filename extension. The driver uses the following conventions:

filename. a A library of object files.

filename.C A C++ source file that can contain macros and preprocessor directives.

filename. cpp A C++ source file that can contain macros and preprocessor directives.

filename.cc A C++ source file that can contain macros and preprocessor directives.

filename.c A C++ source file that can contain macros and preprocessor directives.

filename. 0 An object file.

filename.s An assembly-language file.

The driver passes files with.o and .a extensions to the linker and.s files to the assembler. Input files
with unrecognized extensions or no extensions are also passed to the linker.

Any input files not needed for a particular phase of processing are not processed. For example, if on
the command line you use an assembly-language file (filename.s) and the -S option to stop before
the assembly phase, the compiler takes no action on the assembly-language file. Processing stops
after compilation and the assembler does not run (in this case compilation must have been completed
in a previous pass that created the.s file). Refer to Chapter 2 for information on the -S option.

In addition to specifying primary input files, files with .cc, .cpp, . c, or. C extensions on the command
line, you can insert text from include files using the #include preprocessor directive. An example of
an include file is a library header file which contains declarations used in many different modules
(for example iostream.h).

When linking a program module with a library, the linker extracts only those library modules that
the program needs. For more information about libraries, refer to Chapter 6.

-.--.~~-- .--

• a
• •
II
II

II

• • •
Ir

I:

r::
E

• • • • • •
K

• • • • • • • • • • •

n
u
o
o
c

I1l
Ij

C

I~

IJ

D

El

IJ
(J

[J

IJ

IJ
[J

rJ
[j

11

IJ

ti

• • • •

Paragon TN System C++ Compiler User's Guide Getting Started

Output Files

By default, iCC places executable output in the file a.out. You can use the -0 option to specify a
different output file name.

If you use the -P, -S or -c option, the compiler produces a file containing the output of the last phase
that completes for each input file, as specified by the option. Using these options, the output file will
be a preprocessed source file, an assembly-language file, or an unlinked object file respectively.
Similarly, the -E option does not produce a file, but displays the preprocessed source file on the
standard output. Also, with these options, the -0 option is valid only if you specify a single input
file. If no errors occur during processing, you can use the files created by these options as input to a
future invocation ofiCC. Table 1-2 lists the stop ajteroptions and the output files that iCC creates
when you use these options. Note that there are additional steps not covered here to create usable
executable files.

Table 1-2. Stop After Options, Inputs, and Outputs

Option Stop After Input Files to iCC Output From iCC

-P preprocessing source files preprocessed files (j)

-E preprocessing source files preprocessed files to standard
out

-S compilation C source files assembly-language files (.s)
preprocessed files

-c assembly C source files unlinked object files (.0)
preprocessed files
assembly-language files

none linking C source files executable files (a. out)
preprocessed files
assembly-language files
object files
libraries

If you specify multiple input files or do not specify an object filename, the compiler uses the input
filenames to derive corresponding default output filenames of the following form, where filename is
the input filename without its extension:

filename.i indicates a preprocessed file (using the -P option).

filename.o indicates an object file from the -c option.

filename.s indicates an assembly-language file from the -S option.

1-7

Getting Started

1-8

Paragon ™ System C++ Compiler User's Guide

Note

Unless you specify otherwise, the destination directory for any
output file is the current working directory. If the file exists in the
destination directory, the compiler overwrites it.

--- --------

•
a
•
II

II

II

• • • • •
r:
l:

• • • • •
I.

I:

I

• • • • • • • • • • •

II

•
D

D

D

n
D

C

C

I~

n
IJ

IJ

[J

IJ

[J

I]

EJ

• • • • •

The iCC Driver

This chapter describes iCC, the driver for compiling, assembling, and linking C++ source code for
execution on the Paragon™ system. On the Paragon system, this driver is also available by the name
CC.

The following sections tell how to invoke iCC and how to control its inputs, processing, and outputs.

Invoking the Driver
The iCC driver is invoked by the following command line:

icc [switches] source_file ...

where:

switches

sourceJile

-A

-b

-b3

-c

-C

-dryrun

-Dname[=defJ

Is zero or more ofthe switches listed in Table 2-1.. Note that case is
significant in switch names.

Is the name of the file that you want to process. iCC bases its processing on
the suffixes of the files it is passed. Refer to the section "Filename
Conventions" in Chapter 1 for a description of the file name conventions.

Table 2-1. Summary of iCC Driver Switches (1 of 3)

Accept the proposed version of ANSI C++.

Compile with cfront compatibility, version 2.1.

Compile with cfront compatibility, version 3.0.

Skip link step; compile and assemble only (to file.o for eachfile.c).

Preserve comments in preprocessed C source files (implies -E).

Show but do not execute commands created by the driver.

Define preprocessor symbol name to be def

2-1

The iCC Driver

-e

-E

-flags

-g

-help

-Idirectory

-Koption

-Ilibrary

-Ldirectory

-m

-Moption

-nostdinc

-ox

-ofite

-0 [level]

-p

-r

-rc

-.sufrIx

-s

-S

-show

-targ

-time

-Uname

2-2

Paragon™ System C++ Compiler User's Guide

Table 2-1. Summary of iCC Driver Switches (2 of3)

Set error limit.

Preprocess every file to stdout.

Display a list of all valid driver options.

Compile for debugging.
Synonymous with -Mdebug -00 -Mframe -dwarf.

Display a list of all valid driver options.

Add directory to include file search path.

Request special mathematical semantics (ieee, ieee=enable,
ieee=strict, noieee, trap=fp, trap=align).

Load Iiblibrary.a from library search path (passed to the linker).

Add directory to library search path (passed to the linker).

Generate a link map (passed to the linker).

Request special compiler actions (anno, [no]bounds, [no]dalign,
[no]debug, [no]depchk, [no]frame, [no]func32, info, inline,
keepasm, [no]longbranch, nostartup, nostddef, nostdinc,
nostdlib, [no]perfmon, [no]quad, [no]reentrant, safeptr,
[no]signextend, [no]streamall, [no]strideO, vect, [no]xp).

Remove the default include directory from the include files search
path.

Create executable Paragon System application for multiple nodes.

Usefite as name of output file.

Set optimization level (0, 1, 2, 3, 4).

Preprocess only (tofile.i for eachfile.c).

Generate a relinkable object file (passed to the linker).

Specify the name of the driver configuration file.

Use with -P to save intermediate file in a file with the specified suffix.

Strip symbol table information (passed to the linker).

Skip assemble and link step; compile only (to file.s for eachfile.c).

Display the driver configuration parameters after startup.

Control instantiation of template functions.

Print execution times for the compilation steps.

Remove initial definition of name in preprocessor.

• • •
D

II

II

• • • • •
I:

£:

E

• ..
• •
E:
I(

I:

• • • • • • • • • • •

II

•
II

III

II

o
n
~

P
L.I

[J

r:
c
EJ

EJ

IJ

IJ
[J

IJ

IJ

IJ

IJ
(J

IJ
Ij

G

• • • •

Paragon ™ System c++ Compiler User's Guide The iCC Driver

Table 2-1. Summary of iCC Drivel' Switches (3 of 3)

-u symbol Initialize the symbol table with symbol, which is undefined for the
linker. An undefined symbol triggers loading of the first member of an
archive library.

-v Print the entire command line for assembler, linker, etc. as each is
invoked in verbose mode.

-V Print the version banner for assembler, linker, etc. as each is invoked.

-VV Displays the driver version number and the location of the online C++
compiler release notes, but performs no compilation.

-W pass,option[,option ...] Pass options to pass (c, 0, a, p, I, n, m).

-w Do not print warning messages.

-X Generate cross-reference information and place output in the
specified file.

-Ypass,directory Look in directory for pass (0, a, I, S, I, L, U, P).

The rest of this chapter discusses these switches in more detail.

Controlling the Driver
The following switches let you control how the driver processes its inputs:

-W Pass specified options to specified tool.

-Y Look in specified directory for specified tool.

-E Skip compile, assemble, and link step; preprocess only (output to stdout).

-P Skip compile, assemble, and link step; preprocess only (output toftle.i).

-S Skip assemble and link step; compile only (output toftle.s).

-c Skip link step; compile and assemble only (output toftle.o).

-D Define (create) preprocessor macro.

-U Undefine (remove) preprocessor macro.

2-3

The iCC Driver Paragon ™ System C++ Compiler User's Guide

Specific Passes and Options

2-4

The following switch lets you pass options to specific passes (tools):

-Wpass,option[,option ...]

where:

pass Is one of the following:

c c++ front-end.

o (zero) c++ back-end.

a Assembler.

p Prelinker.

Linker.

n Symbol table lister.

m Muncher.

option Is a comma-delimited string that is passed as a separate argument.

The following switch lets you tell the driver where to look for a specific pass:

-Ypass,directory

where pass is one of the following:

c

o (zero)

a

s

I

Search for the C++ front-end in directory.

Search for the C++ back-end in directory.

Search for the assembler executable in directory.

Search for the linker executable in directory.

Search for the start-up object files in directory.

Set the compiler's standard include directory to directory.

D

o
u
u
n
II

II

• • • • .,
a

E:

E

• • •
I[

I:

I:

I:

I:

• • • •
I

• • • • •

D

•
II

o
D

D

D

I]

[J

D

U
e
E

EJ

IJ

IJ

IJ

IJ

IJ
(j

(j

Ij

EJ

• • • •

Paragon ™ System c++ Compiler User's Guide The iCC Driver

L

U

Set the first directory in the linker's library search path to directory (passes
.YLdirectory to the linker).

Set the second directory in the linker's library search path to directory (passes
• YUdirectory to the linker).

See the Id860 manual page in Appendix B for more information on the· YL, • YU, and· YP switches.

Preprocess Only

By default, the driver preprocesses, compiles, assembles, and links each input file. However, the
following switches suppress the compile, assemble, and link steps:

·E

·C

. p

After preprocessing every input file, regardless of suffix, send the result to
stdout. No compilation, assembly, or linking is performed.

After preprocessing eachftle.c, send the result to stdout (like ·E), but do not
remove comments during preprocessing.

After preprocessing eachftle.c, send the result to a file namedfile.i .

Preprocess and Compile Only

By default, the driver preprocesses, compiles, assembles, and links each input file. However, the
following switch tells the driver to suppress the assemble and link steps and produce an assembler
source file:

-s

After compiling eachfile.C, the resulting assembler source file is sent to a file namedfile.s.

Preprocess, Compile, and Assemble Only

By default, the driver preprocesses, compiles, assembles, and links each input file. However, the
following switch tells the driver to suppress the link step:

-0

After assembling eachftle.C, the output is sent to a file namedftle.o. If you are compiling a single
source file, you can specify a different output file name with the ·0 switch.

2-5

The iCC Driver Paragon TM System C++ Compiler User's Guide

Add and Remove Preprocessor Macros

The following command line switches let you predefine preprocessor macros and undefine
predefined preprocessor macros:

NOTE

c++ or ANSI C predefined macros can be defined and undefined
on the command line, but not with #define and #undefine
directives in the source.

-Dname[=dej] Define name to be de/in the preprocessor. If de/is missing, it is assumed to
be empty. If the "=" sign is missing, then name is defined to be the string 1
(one).

-Uname Remove any initial definition of name in the preprocessor. (See also the
nostddef option of the -M switch.)

Because all -D switches are processed before all -U switches, the -U switch overrides the -D switch.

The -U switch affects only predefined preprocessor macros, not macros defined in source files. The
following macro names are predefined: _3plusplus, __ LINE __ , __ FILE __ , __ DATE __ ,
__ TIME __ , __ STDC __ , __ i860, __ i860 __ , __ PARAGON __ , __ OSFC_, __ PGC __ , _PGC_.
_COFF, unix, MACH, CMU, and __ NODE L_NODE is only defined when compiling with -nx).

Note that some of these macro names begin and/or end with two underscores.

Controlling the Compilation Step

2-6

The following switches let you control the compilation step:

-Moption

-I

-0

-g

Request special compiler actions.

Add a directory to include file search path.

Set the optimization level.

Include symbolic debug information in the output file (synonymous with
-Mdebug -00 -Mframe -dwarf).

II

U

U
U

II

~

I:::

II

II

II

r:
r:
E:

• • • •
It

~

I:

I:

• • • • • • • •
I(

•

II

•
D

D

I~

IJ

IJ

[J

IJ

Ij
m

• • • •

Paragon ™ System c++ Compiler User's Guide The iCC Driver

Specific Actions

The following command line switch lets you request specific actions from the compiler:

-Moption

where option is one of the following (an unrecognized option is passed directly to the compiler,
which often removes the need for the -WO switch):

anna

[no]bounds

[no]dalign

[no] debug

[no]depchk

[no] frame

Produce annotated assembly files, where source code is intermixed with
assembly language. -Mkeepasm or -S should be used as well.

[Don't] enable array bounds checking (default -Mnobounds). With
-Mbounds enabled, bounds checking is not applied to subscripted pointers or
to externally-declared arrays whose dimensions are zero (extern arr[]).
Bounds checking is not applied to an argument even if it is declared as an
array. If an array bounds checking violation occurs when a program is
executed, an error message describing where the error occurred is printed and
the program terminates. The text of the error message includes the name of
the array, where the error occurred (the source file and line number in the
source), and the value, upper bound, and dimension of the out-of-bounds
subscript. The name of the array is not included if the subscripting is applied
to a pointer.

[Don't] align doubles in structures on double-precision boundaries (default
-Mdalign). -MnodaJign may lead to data alignment exceptions.

[Don't] generate symbolic debug information (default -Mnodebug). If
-Mdebug is specified with an optimization level greater than zero, line
numbers will not be generated for all program statements. -Mdebug increases
the object file size.

[Don't] check for potential data dependencies exist (default -Mdepchk). This
is especially useful in disambiguating unknown data dependencies between
pointers that cannot be resolved at compile time. For example, if two
floating-point array pointers are passed to a function and the pointers never
overlap and thus never conflict, then this switch may result in better code. The
granularity of this switch is rather coarse, and hence the user must use
precaution to ensure that other necessary data dependencies are not
overridden. Do not use this switch if such data dependencies do exist.
-Mnodepchk may result in incorrect code; the -Msafeptr switch provides a
less dangerous way to accomplish the same thing.

[Don't] include the frame pointer (default -Mnoframe). Using -Mnoframe
can improve execution time and decrease code, but makes it impossible to get
a call stack traceback when using a debugger.

2-7

The iCC Driver

2-8

[no]func32

Paragon 1M System C++ Compiler User's Guide

[Don't] align functions on 32-byte boundaries (default .Mfunc32).
-Mfunc32 may improve cache performance for programs with many small
functions.

info=[option[,option ...]]
Produce useful information on the standard error output. The options are:

time or stat

loop

inUne

Output compilation statistics.

Output information about loops. This includes
information about vectorization and software
pipelining.

Output information about functions extracted and
inlined.

inline=[option[,option ...]]

keepasm

nolist

Pass options to the function inliner. The options are:

levels:number Perform number levels of inlining (default 1).

See Chapter 3 for more information on using the compiler's function inliner.

Keep the assembly file for each source file, but continue to assemble and link
the program.

Don't create a listing file (this is the default).

[no]longbranch [Don't] allow compiler to generate bte and btne instructions (default
-Mlongbranch). -Mnolongbranch should be used only if an assembly error
occurs.

nostartup

nostddef

Don't link the usual start-up routine (ertO.o), which contains the entry point
for the program.

Don't predefine any system-specific macros to the preprocessor when
compiling a C program. (Does not affect ANSI-standard preprocessor
macros.) The system-specific predefined macros are __ i860, __ i860 __ ,
__ PARAGON __ , __ OSFC_, __ PGC __ , _PGC_, _COFF, unix, MACH,
CMU, and __ NODE L_NODE is only defined when compiling with -nx).
See also -U.

• • •
a
II

II
I[

II

• • •
I:
~. ..
• • • •
II

• • • • • • • • • • • • •

o
n
D

o
I~

11
(~

C

I .,.,
,2:.-1

(J,
, ,

!,i.J

I:J
[J

U

IJ

IJ
Ij

Ij

U

• • • •

Paragon TM System c++ Compiler User's Guide The iCC Driver

nostdinc

nostdlib

[no]perfmon

[no] quad

Remove the default include directory (lusrlinclude for CC,
$(PARAGON_XDEVyparagoniinclude for iCC) from the include files search
path.

Don't link the standard libraries (libpm.o, guard.o, libc.a, iclib.a, and
libmach3.a) when linking a program.

[Don't] link the performance monitoring module (libpm.o) (default
-Mperfmon). See the Paragon™ System Application Tools User's Guide for
information on performance monitoring.

[Don't] force top-level objects (such as local arrays) of size greater than or
equal to 16 bytes to be quad-aligned (default -Mquad). Note that -Mquad
does not affect items within a top-level object; such items are quad-aligned
only if appropriate padding is inserted.

[no] reentrant [Don't] generate reentrant code (default -Mreentrant). -Mreentrant
disables certain optimizations that can improve performance but may result
in code that is not reentrant. Even with -Mreentrant, the code may still not
be reentrant if it is improperly written (for example, if it declares static
variables).

safeptr=[option[,option ...]]
Override data dependence between C++ pointers and arrays. This is a
potentially very dangerous option since the potential exists for code to be
generated that will result in unexpected or incorrect results as is defined by
the ANSI C++ working draft. However, when used properly, this option has
the potential to greatly enhance the performance of the resulting code,
especially floating-point oriented loops. Combinations of the options can be
used.

dummy or arg C++ dummy arguments (pointers and arrays) are
treated with the same copyinlcopyout semantics as
Fortran dummy arguments.

auto C++ local or auto variables (pointers and arrays) are
assumed to not overlap or conflict with each other and
to be independent.

static C++ static variables (pointers and arrays) are assumed
to not overlap or conflict with each other and to be
independent.

2-9

The iCC Driver

2-10

global

Paragon ™ System C++ Compiler User's Guide

c++ global or extern variables (pointers and arrays)
are assumed not to overlap or conflict with each other
and are independent.

[no]signextend [Don't] sign extend when a narrowing conversion overflows (default
-Msignextend). For example, if -Msignextend is in effect and an integer
containing the value 65535 is converted to a short, the value of the short will
be -1. This option is provided for compatibility with other compilers, even
though ANSI C specifies that the result of such conversions are undefined.
-Msignextend will decrease performance on such conversions.

[no]streamall [Don't] stream all vectors to and from cache in a vector loop (default
-Mstreamall). When -Mnostreamall is in effect, the compiler chooses one
vector to come directly from or go directly to main memory, without being
streamed into or out of cache.

[no]strideO [Don't] inhibit certain optimizations and allow for stride 0 array references.
-MstrideO may degrade performance, and should only be used if zero stride
induction variables are possible. (default -MnostrideO).

veet[=option[,option ...]]
Perform vectorization (also enables -Mvintr). If no options are specified,
then all vector optimizations are enabled. The available options are:

eaehesize:number

noassoe

reeog

This sets the size of the portion of the cache used by
the vectorizer to number bytes. Number must be a
multiple of 16, and less than the cache size of the
microprocessor (16384 for the i860 XP, 8192 for the
i860 XR). In most cases the best results occur when
number is set to 4096, which is the default (for both
microprocessors).

When scalar reductions are present (for example, dot
product), and loop unrolling is turned on, the compiler
may change the order of operations so that it can
generate better code. This transformation can change
the result of the computation due to round-off error.
The use of noassoe prevents this transformation.

Recognize certain loops as simple vector loops and
call a special routine.

.1
• • • •
II

• • •
II

If

I:

I:

• • • • •
Ii
I:
It

• • • • • • • • • • •

D

o
D

II

I~

I:
Ii
• ' ~'I

.J

I~

IJ

IJ

IJ

IJ
[J

fj

I~

e

• • • •

Paragon™ System c++ Compiler User's Guide The iCC Driver

smallvect[:number]

streamlim:n

transform

This option allows the vectorizer to assume that the
maximum vector length is no greater than number.
Number must be a multiple of 10. If number is not
specified, the value 100 is used. This option allows the
vectorizer to avoid stripmining in cases where it
cannot determine the maximum vector length. In
doubly-nested, non-perfectly nested loops this option
can allow invariant vector motion that would not
otherwise have been possible. Incorrect code will
result if this option is used, and a vector takes on a
length greater than specified .

This sets a limit for application of the vectorizer data
streaming optimization. If data streaming requires
cache vectors oflength less than n, the optimization is
not performed. Other vectorizer optimizations are still
performed. The data streaming optimization has a high
overhead compared to other loop optimizations, and
can be counter-productive when used for short vectors.
The n specifier is not optional. The default limit is 32
elements if streamlim is not used.

Perform high-level transformations such as loop
splitting and loop interchanging. This is normally not
useful without -Mvect=recog.

-Mvect with no options means -Mvect=recog,transform,cachesize:4096.

[no]xp [Don't] use i860 XP microprocessor features (default -Mxp).

Location of Include Files

The following command line switch lets you add a specified directory to the compiler's search path
for include files:

-Idirectory

where directory is the pathname of the directory to be added. If you use more than one -I switch, the
specified directories are searched in the order they were specified (left to right).

For include files surrounded by angle brackets « ... », each -I directory is searched, followed by the
standard include directory. For include files surrounded by double quotes (" ... "), the directory
containing the file containing the #include directive is searched, followed by the -I directories,
followed by the standard include directory.

2-11

The iCC Driver Paragon ™ System C++ Compiler User's Guide

Optimization Level

The following command line switch lets you set the optimization level explicitly:

-O[level]

where level is one of the following:

o

1

2

3

4

A basic block is generated for each C++ statement. No scheduling is done
between statements. No global optimizations are performed.

Scheduling within extended basic blocks is performed. Some register
allocation is performed. No global optimizations are performed.

All level 1 optimizations are performed. In addition, traditional scalar
optimizations such as induction recognition and loop invariant motion are
performed by the global optimizer.

All level 2 optimizations are performed. In addition, software pipelining is
performed.

All level 3 optimizations are performed, but with more aggressive register
allocation for software pipelined loops. In addition, code for pipelined loops
is scheduled several ways, with the best way selected for the assembly file.

If -0 is used without a level, the optimization level is set to 2. If you do not use the -0 switch, the
default optimization level is 1.

NOTE

When compiling an application for debugging, you will get the best
results using -00.

Generating Debug Information

2-12

To compile for debugging you should use the -g compiler switch. The -g switch is equivalent to
-Mdebug -Mframe -00 -dwarf. These switches have the following effects:

-Mdebug

-Mframe

Generate symbol and line number information.

Generate stack frames on function calls. (Default -Mnoframe.) Debugging
code without stack frames generated on function calls will result in stack
tracebacks that have missing calls when you use the frame command.

• • • • • • • • • • •
fir

I:
E

• • • •
K

• .:
• • • • • • • • • • •

II

n
u
o
o
II

n

c
n
G
(J

1"1

r:

IJ
I " j

IJ

IJ

IJ
[j

o

• • • •

Paragon ™ System c++ Compiler User's Guide The iCC Driver

-00 Optimization off. If you do not turn optimization off, access to individual
source lines will be decreased, and display or modification of variables and
registers will probably have unpredictable results.

-dwarf Generate dwarf format.

You can debug programs not compiled for debugging, but your ability to debug will be very limited.
The debugging information generated by -g increases the object file size.

Controlling the Link Step
The following switches let you control the link step (they are all passed directly to the linker):

-s Strip symbol table information.

-r Generate a relinkable object file.

-m Produce a link map.

-L Change the default library search path.

-I Load a specific library.

Stripping Symbols

The following command line switch strips all symbols from the output object file:

-s

This results in a smaller object file.

Generating a Relinkable Object File

The following command line switch generates a relinkable object file:

-r

When you use the -r switch, the linker keeps internal symbol information in the resulting object file.
This lets you link the object file together with other object files later.

2-13

The iCC Driver Paragon ™ System C++ Compiler User's Guide

Producing a Link Map

The following command line switch produces a link map on the standard output:

-m

The link map lists the start address of each section in the object file. To get more information about
the object file, use the dump860 command.

Linker Libraries

The following switch adds a directory to the head of the linker's library search path:

-Ldirectory

where directory is the pathname of a directory that the linker searches for libraries. The linker
searches directory first (before the default path and before any previously specified.L paths).

The following switch tells the linker to use a specific linker library:

-11 i bra ry

The linker loads the library liblibrary.a from the first library directory in the library search path in
which a file of that name is encountered.

See the Id860 manual page in Appendix B for more information on the linker's library search path.

Controlling Mathematical Semantics

2-14

The following command line switch lets you request special mathematical semantics from the
compiler and linker:

-Koption

where option is one of the following:

ieee If used while linking, links in a math library that conforms with the IEEE 754
standard.

If used while compiling, tells the compiler to perform float and double
divides in conformance with the IEEE 754 standard.

--_._---

• •
U

II

II

II
I[

Il

• •
--1:.

I:
a:

• • • •
~

.
&

• • • • •
K

• • • • •

II

o
o
o
n
II

n
I]

n
n
n
fJ

'I",: ,I

I)

IJ
I)

El

D

o

• • • •

Paragon ™ System c++ Compiler User's Guide The iCC Driver

ieee=enable

ieee=strict

noieee

trap=fp

trap=align

-Kieee is the default.

If used while linking, has the same effects as -Kieee, and also enables
floating-point traps and underflow traps. If used while compiling, has the
same effects as -Kieee.

Ifused while linking, has the same effects as -Kieee=enable, and also enables
inexact traps. If used while compiling, has the same effects as -Kieee.

If used while linking, produces a program that flushes denormals to 0 on
creation, which reduces underflow traps. If used together with -1m, also links
in a version of lihm.a that is not as accurate as the standard library, but offers
greater performance. This library offers little or no support for exceptional
data types such as INF and NaN, and will trap on such values when
encountered.

If used while compiling, tells the compiler to perform float and double
divides using an inline divide algorithm that offers greater performance than
the standard algorithm. This algorithm produces results that differ from the
results specified by the IEEE standard by no more than three units in the last
place.

If used while compiling, disables kernel handling of floating-point traps. Has
no effect if used while linking.

If used while compiling, disables kernel handling of alignment traps. Has no
effect if used while linking.

Controlling the Driver Output
The following switches let you control the driver's outputs:

-nx

-0

-v

-vv

-v

Create an executable Paragon system application for multiple nodes.

Specify the name of the output file.

Print the version bannerfor each tool (assembler, linker, etc.) as it is invoked.

Display the driver version number and the location of the online release notes.
but do not perform any compilation.

Print the entire command line for each tool as it is invoked, and invoke each
tool in verbose mode (if it has one).

2-15

The iCC Driver Paragon TM System C++ Compiler User's Guide

Executable for Multiple Nodes

By default, the iCC driver creates an executable for a single node. The following command line
switch creates an executable for multiple nodes:

-nx

The -ox switch has three effects:

• If used while compiling, it defines the preprocessor symbol __ NODE. The program being
compiled can use preprocessor statements such as #ifdef to control compilation based on
whether or not this symbol is defined.

• If used while linking, it links in libnx.a, the library that contains all the calls in the Paragon ™
System C Calls Reference Manual. It also links in libmach.a and options/autoinit.o.

If used while linking, it links in a special start-up routine that automatically copies the program
onto multiple nodes, as specified by standard command-line switches and environment
variables. See the Paragon™ System User's Guide for information on these command-line
switches and environment variables.

Name of Executable File

By default, the executable file is named a.out (or file.o if you use the -c switch). However, the
following command line switch lets you name the file anything you like:

-ofile

wherefile is the desired name.

Verbose Mode

2-16

By default, the driver does its work silently. However, the following command line switch causes
the driver to display the version banner of each tool (assembler, linker, etc.) as it is invoked:

-v

The following command line switch causes the driver to identify itself in more detail than the -V
switch and display the location of the online compiler release notes. No compilation is performed:

-vv

The following command line switch causes the driver to display the entire command line that
invokes each tool, and to tum on verbose mode (if available) for each tool:

-v

•
II

B

U

C

II
&

&

• •
I:

I:

I:

I!

•
II

• •
C
It:

l:

I:

• • • • •
E

• • • •

o
D

II

D

~

I]

C
'Ii J

IJ

IJ
IJ

IJ
Ij

fj

G

• • • •

Paragon™ System c++ Compiler User's Guide The iCC Driver

Built-in Math Functions
The compiler supports the recognition of certain math functions as built-ins. These functions are
defined in the file math.h with #define statements. The #define statements are of the form:

#define routine(args) __ builtinJoutine (args)

routine is the name of a math function, and args are the arguments to the function. The following is
an example of a #define statement that defines the absolute value function as a built-in:

#define abs(x) __ builtin_abs(x)

Having built-in functions provides two benefits:

• Built-in functions allow the vectorizer to recognize vector versions of the functions, if they
exist. These vector intrinsics are optimized and provide significant performance improvements
for vector operations.

Built-in functions cause the code for a function to be generated inline, rather than incurring the
overhead of a function call.

For functions to be defined as built-ins, the __ PGI,macro must be defined. This macro is defined by
default.

The following is a list of the built-in math functions.

abs(x)
acos(x)
asinf(x)
atan2(x,y)
cosf(x)
exp(x)
logf(x)
pow(x,y)
sinf(x)
sqrt(x)
tanf(x)

fabs(x)
acosf(x)
atan(x)
atan2f(x,y)
cosh(x)
expf(x)
loglO(x)
powf(x,y)
sinh(x)
sqrtf(x)
tanh(x)

fabsf(x)
asin(x)
atanf(x)
cos(x)
coshf(x)
log(x)
loglOf(x)
sin(x)
sinhf(x)
tan(x)
tanhf(x)

2-17

The iCC Driver Paragon TM System C++ Compiler User's Guide

2-18

• • • • •
II
Ii

• • •
II

r:
I:
E

• .-
• •
~

I:

.-
• • • • • • • • • • •

n
II

11

I~

I~

I~

• ~1

Li

IJ

IJ
I]

IJ

Id

IJ

e

• • • •

Using the Inliner

This chapter describes the compiler's function inlining capability.

Function inlining is a compiler optimization under which the body of a function is expanded in place
of a call to the function. This can speed up execution by eliminating the parameter passing and
function call and return overhead. Inlining a function body also creates opportunities for other
compiler optimizations. Inlining will usually result in larger code size (although in the case of very
small functions, code size can actually decrease). Using inlining indiscriminately can result in much
larger code size and no increase in execution speed; there may even be a decrease in execution speed.

c++ allows programmers to specify functions as inline by using the keyword inline. Functions
whose definitions are given in a class declaration are also considered inlinable functions. The C++ .
compiler takes the in line specification as a hint that the user would like the function expanded inline.
The inline keyword is a hint to the C++ compiler in the same sense that a register declaration is a
hint to a C compiler that the programmer would like a variable to reside in a register.

In general, the C++ compiler is not required to inline a function whose definition does not appear in
the source file stream before function calls to that function .

When you use the -Minline switch during compilation, the compiler first looks in the source files
for functions that can be inlined, then replaces calls to those functions with the equivalent code
automatically.

Compiler Inline Switch
To invoke the function inliner, use the -Minline switch. The compiler performs a special pass on all
source files named on the compiler command line. This prepass extracts functions that meet the
requirements for inlining and puts them in a temporary inline library for use by the compilation
pass.The -Minline switch has the following syntax:

-Minline=levels:n

3-1

Using the Inliner Paragon ™ System C++ Compiler User's Guide

where n is a level number that represents the number of function calling levels to be inlined. The
default number is 1. Using a level greater than 1 indicates that function calls within inlined functions
may be replaced with inlined code. This allows the function inliner to automatically perform a
sequence of inline and extract processes. Setting levels to 0 turns off function inlining.

Using the -Minline=levels:1 switch causes most user specified inline function calls to be expanded
inline (see the following section for restrictions on function inlining). Inlined functions called by
other inlined functions may not be expanded inline with the option levels:1. Specifying
-Minlines=levels:n where n is 2 or greater may create more inline expansion. Raising the levels
number increases compilation time. Specifying-Minline=levels:O suppresses inlining. This speeds
up compilation and may make it easier to debug some programs.

Restrictions on Inlining
The following functions cannot be inlined:

• Functions whose return type is a struct data type, or have a struct argument.

• Functions containing switch statements.

• Functions that reference a static variable whose definition is nested within the function.

• Functions that accept a variable number of arguments.

Certain functions can only be inlined into the file that contains their definition:

• Static functions.

• Functions that call a static function.

• Functions that reference a static variable.

Diagnostics During Inlining

3-2

For information on inlining, set the diagnostics reporting switch (-Minfo=inline).

An additional feature associated with inlining is enhanced compiler error detection. For example:

• If an inlinable function is called with the wrong number of arguments, a warnirig message is
issued and the function is not inlined.

• If an inlinable function is called in a context which assumes that a value is returned, but the body
of the function does not contain any statements that set the return value, a severe error is issued.

• If the declaration of an external variable referenced by an inlinable function does not match the
declaration in the source file being compiled, a severe error is issued.

-----------------~---------- . __ . ------------

-- I

•
'0

II

o
e
o
II

It

•
I[

IlJ
(J

IJ

EJ

•
&:

•
It

I:

t:
E"

E

• • • • • • • • .,
•

1m

D

o
II

o
D

n
I~

n
I:
C

I:
I::

<W"IiJ

[J

IJ

IJ

IJ
I]

E

D

• • • •

Paragon ™ System c++ Compiler User's Guide Using the Inliner

Examples
This section contains examples of using the inliner.

The following command line builds an executable file in which inline functions are inlined (the
default action of the compiler):

$ iCC tests.C

The following command line creates an executable file in which inline functions are not inlined

$ iCC -Minline=levels:O tests.C

The following command line creates an executable file in which two levels of inlining are
performed.

$ iCC -Minline=levels:2 tests.C

3-3

Using the Inliner Paragon TM System C++ Compiler User's Guide

3-4

• .' , I,

•
D

Cl

c
c
c

•
If

I!

£:

I:

E

•
II:

II
I:

L

l:

I:

Ii

• • • •
II

• •
II

• •

I!

II

C

I~

IJ

Ij

I',
it!

r, ,.'"
. ,

D

(J

IJ

IJ

IJ

IJ

IJ

IJ
11 _-.J

Inter-Language Calling

This chapter describes inter-language calling conventions for C, Fortran and C++ programs. The
chapter describes how to call a Fortran or C function or subroutine from a C++ program and how to
call a C++ function from a Fortran or C program. At the end of the chapter several examples are
presented showing inter-language calling.

This chapter includes information on the following topics:

• Functions and subroutines in Fortran, C, and C++.

• Naming and case conversion conventions.

• Compatible data types.

• Argument passing and special return values.

• Arrays and indexes.

Inter-Language Calling Considerations
In general, when argument data types and function return values agree, you can call a C or Fortran
function from C++ and likewise, you can call a C++ function from C or Fortran. Where data types
for arguments do not agree, for example the Fortran COMPLEX type does not have a matching type
in C++, it is still possible to provide inter-language calls, but there are no general calling conventions
for such cases (you may need to develop special procedures to handle such cases).

Note that if a C++ function contains objects with constructors and destructors, calling such a
function from either C or Fortran will not be possible unless the initialization in the main program
is performed from a C++ program where constructors and destructors are properly initialized.

4-1

Inter-Language Calling Paragon™ System C++ Compiler User's Guide

In general, you can call a C function from c++ without problems as long as you use the extern "e"
keyword to declare the C function in the C++ program. This prevents name mangling for the e
function name. If you want to call a C++ function from C, likewise you have to use the extern n e n

keyword to declare the C++ function. This keeps the C++ compiler from mangling the name of the
function.

You can use the __ cplusplus macro to allow a program or header file to work for both C and C++.
For example, the following defines in the header file stdio.h allow this file to work for both C and
C++.

#ifndef _STDIO_H
#define _STDIO_H

#ifdef __ cplusplus
extern "C" {
#endif /* __ cplusplus */

. /* Functions and data types defined ... */

#ifdef __ cplusplus
}

#endif /* __ cplusplus */

end if

C++ member functions cannot be declared extern, as their names will always be mangled.
Therefore, C++ member functions cannot be called from C or Fortran.

Functions and Subroutines
Fortran and C++ define functions and subroutines differently. For a Fortran program calling a C++
program, observe the following return value convention: When the C++ function returns a value, call
it from Fortran as a function, otherwise call it as a subroutine.

For a C++ program calling a Fortran function, the call from C++ should return a similar type. Table
4-1 lists compatible types. If the call is to a Fortran subroutine or Fortran function, call it from C++
as a function that returns void. The exception to this convention is when a Fortran subroutine has
alternate returns; call such a subroutine from C++ as a function returning intwhose value is the value
of the integer expression specified in the alternate RETURN statement.

Upper and Lower Case Conventions

4-2

By default, all Fortran program names are converted to lower-case. C++ is case sensitive, so
upper-case function names stay upper-case. When you use inter-language calling you can either
name your C++ functions with lower-case names, or use the if77 option -Mupcase which tells
Fortran not to convert to lower-case.

---------- ---

.;
D

Dl

II

CJ

II

E .i
I[

~

r:=
~

I:

K

• • .:
I:

a::
I:

• • • • •
I:

• • • • •

D

II

D

II

c
." U

II

I:

I:

IJ

IJ

IJ

I)

IJ

IJ

IJ
Ij

[J

D

• • • •

Paragon ™ System c++ Compiler User's Guide Inter-Language Calling

Underscore

When programs are compiled, if77 appends an underscore to Fortran global names (names of
functions, subroutines and common blocks). This mechanism distinguishes Fortran name space
from C++ name space. If you calI a C++ function from Fortran, you should rename the C++ function
by appending an underscore. If you call a Fortran function from C++, you should append an
underscore to the Fortran function name in the calling program.

Compatible Data Types
Table 4-1 shows compatible data types between Fortran and C++. Table 4-2 shows how you can
represent the Fortran COMPLEX type in C++. If you can make your function/subroutine
parameters and return values match types, you should be able to use inter-language calling. An
exception is that you cannot directly caII a COMPLEX function from C++. Refer to the section
"Complex Return Values" on page 4-6 for details on how to call a COMPLEX function indirectly.

Table 4-1. Fortran and C++ Date Type Compatibility

Fortran Type (lowercase) c++ Type Size (bytes)

integer*l x signed char x 1

character x char x 1

character*n x char x[n] n

double precision double x 8

real x float x 4

real*4 x float x 4

real*8 x double x 8

integer x intx 4

integer*4 x intx 4

integer*2 x short x 2

logical x int x 4

logical*4 x int x 4

logical*2 x short x 2

10gical*1 x short x 1

4-3

-.,----"-~-------.---.--"-~- -.-~.---~-------- ,

Inter-Language Calling Paragon TN System C++ Compiler User's Guide

Table 4-2. Fortran and C++ Representation of COMPLEX Data Type

Fortran Type (lowercase) c++ Type Size (bytes)

complex x struct {float r,i;} x; 8

complex*8 x struct {float r,i;} x; 8

double complex x struct {double dr,di;} x; 16

Fortran Named Common Blocks

A named Fortran common block can be represented in C++ by a structure whose members
correspond to the members of the common block. The name of the structure in C++ must have the
added underscore. For example the Fortran common block:

INTEGER I
COMPLEX C
COMPLEX CD
DOUBLE PRECISION D
COMMON /COM/ i, c, cd, d

is represented in C++ with the following equivalent:

extern "C" struct {
int i;
struct {float real, imag;} c;
struct {float real, imag;} cd;
double d;

} com_;

Argument Passing and Return Values

4-4

In Fortran, arguments are passed by reference. In C++ parameters are passed by value, except for
strings and arrays, which are passed by reference. Due to the flexibility provided in C++, you can
work around these differences. Generally, solving the parameter passing differences involves
intelIigent use of the & and * operators in argument passing when C++ calls Fortran and in argument
declarations when Fortran calls C++.

For strings declared in Fortran as type CHARACTER, an argument representing the length of the
string is passed to a calling function. The compiler places the length argument(s) at the end of the
parameter list, following the other formal arguments. The length argument is passed by value, not
by reference.

D

o
u
C

I!l

C

G

C

II

E

C

1:=

I:

E

•
.:

• •
&:

&

E
&

• • • • • • • • • •

n
D

D

n
0·, ",

D

C

G

I~

n
IJ

~

I:J
[J

[J

[J

IJ

rJ
IJ

IJ

IJ
IjJ

[j

E

• • • •

Paragon'" System C++ Compiler User's Guide Inter-Language Calling

Passing By Value (%VAL)

When passing parameters from a Fortran subprogram to a c++ function, it is possible to pass by
value using the % VAL function. If you enclose a Fortran parameter with % V ALO, the parameter
is passed by value. For example, the following call passes the integer I and the logical BV AR by
value.

INTEGER*l
LOGICAL*l

I
BVAR

CALL CPLUSVALUE (%VAL(i), %VAL(BVAR))

Character Return Values

The section "Functions and Subroutines" on page 4-2 describes the general rules for return values
for C++ and Fortran inter-language caIling. There is a special return value to consider. When a
Fortran function returns a character, two arguments need to be added at the beginning of the C++
calling function's argument list: the address of the return character or characters, and the length of
the return character. The following example shows two extra parameters, tmp and la, supplied by
the caIler.

CHARACTER*(*) FUNCTION CHF(C1 , I)
CHARACTER*(*) C1
INTEGER I
END

extern void chf_();
char tmp [10] ;
char c1[9];
int i;
chf_(tmp, la, c1, &i, 9);

If the Fortran function is declared to return a character value of constant length, for example
CHARACTER*4 FUNCTION CHFO, the second extra parameter, representing the length, must
stilI be supplied but is not used.

NOTE

The value of the character function is not automatically
NULL-terminated.

4-5

Inter-Language Calling Paragon 1M System C++ Compiler User's Guide

Complex Return Values

Fortran complex functions return their values in multiple floating-point registers; consequently, you
cannot directly call a Fortran complex function from C++. It is possible for a C++ function to pass
a pointer to a memory area to a function, which calls the COMPLEX function and stores the value
returned by the complex function. The following example illustrates COMPLEX return values.

extern void inter_cf_{}i
typedef struct {float real, imagi} cplx;
cplx C1i

int 1i

inter_cf_{&c1, &i}i

SUBROUTINE INTER_CF(C, I}
COMPLEX C
COMPLEX CF
C = CF(I}
RETURN
END

COMPLEX FUNCTION CF(I}

END

Array Indexes

4-6

C++ arrays and Fortran arrays use different default initial array index values. By default, C++ arrays
start at 0 and Fortran arrays start at 1. If you adjust your array comparisons so that a Fortran second
element is compared to a C first element, and adjust similarly for other elements, you should not
have problems working with this difference. If this is not satisfactory, you can declare your Fortran
arrays to start at-zero.

Another difference between Fortran and C++ arrays is the storage method used. Fortran uses
column-major order and C++ uses row-major order. For one-dimensional arrays, as you might
expect, this poses no problems. For two-dimensional arrays, where there are an equal number of
rows and columns, row and column indexes can simply be reversed. For arrays other than
single-dimensional arrays, and square two-dimensional arrays, inter-language function mixing is not
recommended.

a
II

II

U

II
(]

I]

l:

U
(!

(J

[-:

lJ
I:J

G

It
I[

Ir

I:

L:

r::
Ir

• • .-
I:

E

1(.

•
II

II

•

Paragon TM System C++ Compiler User's Guide Inter-Language Calling

n
o

c

Cl
Examples of Inter-Language Calling

The following sections show examples of inter-language calling between C++, C, and Fortran.

I~ C++ Calling C

1:1 The following is a simple C function:

I] void funcl_cplus(nurnl, num2, res)

IJ
['1

...::

1"'1
;,j

I:J

IJ

IJ

I]

IJ
r l
aJ

(j

IJ

G

• • • •

int nurnl, num2, *resi
{

*res=nurnl/num2i
}

The following example shows the C++ Main calling the C function:

extern "C" void funcl_cplus()i
main ()
{

}

C Calling C++

int a,b,ci
a=8i
b=2i
funcl_cplus(a,b,&c)i

The following is a simple C++ function with extern c:

extern "C" void func2_cplus(int numl,int num2,int *res)i
{

*res=nurnl/nurn2i
}

4-7

-~-- --------- ------_._-----

Inter-Language Calling Paragon TM System C++ Compiler User's Guide

Now you can compile the function func I,...cplus with iCC and link it with your C programs.

extern void func2_cplus();
main ()
{

int a,b,c;
a=8;
b=2;
func1_cplus(a,b,&c);

Note that you cannot use the extern "C" form of declaration for an object's member functions.

Fortran Calling C++

4-8

The following is a C++ function that will be called by a Fortran main program. Note that each
argument is defined as a pointer, since Fortran passes by reference. Also note that the C++ function
name uses all lowercase and a trailing underscore.

#define TRUE Oxff
#define FALSE 0
extern "C· {

extern void cplus_func_

}

}

char *bool1,
char *letter1,
int *numint1,
int *numint2,
float *numfloat1,
double *numdoub1,
short *numshort1,
int len_letter1)

*bool1= TRUE;
*letter1 = 'v';
*numint1 = 11;
*numint2 = -44;
*numfloat1 = 39.6;
*numdoub1 = 39.2;
*numshort1 = 981;

{

D

o
"0

D

II
I]

l:

II
II

I!

r=
I::

I!

•
II

• .:
r:
~

E

I:

• • •
I:
I[

II

II

• • •

n
II

D

I:
r:
G

n

I~

I "" : ~

1.'1
.1

I ,.,
-,

[J

I]

IJ
I]

[j

I'
I]

• • • •

Paragon TM System c++ Compiler User's Guide Inter-Language Calling

The following Fortran main program calls the C++ function cplus_func:

&

&

&

logical*l
character
integer*4
real
double precision
integer*2
external cfunc

bool1
letter1
nurnint1, nurnint2
nurnfloat1
nurndoub1
nurnshor1

call cplus_func (bool1, letter1, nurnint1,
nurnint2, nurnfloat1, numdoub1, numshor1)
write (*, "(L2, A2, IS, IS, F6.1, F6.1, IS)")
bool1, letter1, nurnint1, nurnint2, numfloat1,
nurndoub1, nurnshor1
end

To execute the Fortran program fmain.C, and call cfunc_, create an executable using the following
command lines:

$ iCC -c c£unc.C
$ i£77 c£unc.o £main.£

Executing the a.out file should produce the following output:

T v 11 -44 39.6 39.2 981

c++ Calling Fortran

The following is a Fortran subroutine that will be called by a C++ function. Note that the subroutine
uses all lowercase.

subroutine forts (bool1, letter1, nurnint1,
& numint2, nurnfloat1, nurndoub1, nurnshor1)

logical*l booll
character letter1
integer nurnint1, nurnint2
double precision nurndoub1
real nurnfloat1
integer*2 nurnshor1

4-9

Inter-Language Calling Paragon™ System C++ Compiler User's Guide

4-10

bool1 = • true.
letter1 = "v·
numint1 = 11
numint2 = -44
numdoub1 = 902
numfloatl = 39.6
numshor1 = 299
return
end

The following c++ main calls the Fortran subroutine. Note that each call uses the & operator to pass
by reference.

#include <stdio.h>

extern "C" {
extern void forts_ char *, char *, int *, int * float *,
double *, short *);
}

main ()
{

char
int
float
double

bool1, letter1;
numint1, numint2;
numfloat1;
numdoub1;

short numshor1;
forts_(&bool1,&letter1,&numint1,&numint2,&numfloat

&numdoub1,&numshor1, 1);
printf(" %s %c %d %d %3.1f %.Of

%d\n" ,bool1 ?"TRUE" : "FALSE", letter1 ,numint1,
numint2, numfloat1, numdoub1, numshor1);

}

To compile this Fortran subroutine and C++ program, use the following command lines:

$ if77 -c forts.f
$ icc forts.o cmain.C

Executing this C main should produce the following output:

TRUE v 11 -44 39.6 902 299

1,

• o
u
CJ

I:

I~

r:
~=
;:
c
I[

II

• .-
I:

Ii

Ir

&

• • •
I

• • • • • •

II

n
n

G

.. ".
:<J

IJ

IJ

I~

IJ

IJ
I ',,'

.. J

I]

I i
4>1

I"J

II

• • •

C++ Language Considerations

This chapter describes the language that the Paragon™ system C++ compiler accepts, extensions to
the standard language, and details about the C++ dialect supported and C++ data types.

c++ Dialect Supported
The Paragon system C++ compiler accepts the C++ language as defined by The Annotated C++
Reference Manual (ARM) by Ellis and Stroustrup, Addison-Wesley, 1990, including templates and
support for the anachronisms described in section 18.3 ofthe ARM. This is the same language
defined by the language reference for ATT's cfront version 3.0.x. The C++ compiler optionally
accepts a number offeatures erroneously accepted by cfront version 2.1 or 3.0. Using the -b option,
iCC accepts these features, which may never have been legal C++, but have found their way into
some code.

Full support of many C++ variants, accomplished by accepting many language extensions and
anachronisms, is provided by command-line options. The C++ compiler provides command-line
options that enable the user to specify whether anachronisms and/or cfront 2.1 or 3.0 compatibility
features should be accepted. Refer to the following section for details on features that are not part of
the ARM but are part of the ANSI C++ working draft X3J16IWG21.

ARM vs. X3J16IWG21

The following features not in the ARM but in the X3J161WG21 Working Paper are accepted:

• The dependent statement of an if, while, do-while, or for is considered to be a scope, and the
restriction on having such a dependent statement be a declaration is removed.

• The expression tested in an if, while, do-while, or for, as the first operand of a "1" operator, or
as an operand of the "&&", "::", or "!" operators may have a pointer-to-member type or a class
type that can be converted to a pointer-to-member type in addition to the scalar cases permitted
by the ARM.

• Qualified names are allowed in elaborated type specifiers.

5-1

c++ Language Considerations Paragon TM System C++ Compiler User's Guide

5-2

• Use of a global-scope qualifier in member references of the form x.::A::B and p->::A::B.

• The precedence of the third operand of the "?" operator is changed.

• If control reaches the end of the MainO routine, and MainO has an integral return type, it is
treated as if a return 0; statement were executed.

• Pointers to arrays with unknown bounds as parameter types are not diagnosed as errors.

The following features not in the ARM but in the X3J16IWG21 Working Paper are not accepted:

• Virtual functions in derived classes may not return a type that is the derived-class version of the
type returned by the overridden function in the base class.

• enum types are not considered to be non-integral types.

• The digraph and macro forms (e.g., certain operators and punctuators are not accepted).

• wchar_t is not treated as a keyword.

• It is not possible to define class-specific new and delete routines to be used for arrays of class
objects.

• It is not possible to overload operators using functions that take enum types and no class types.

• Runtime type identification (RTTI) is not implemented.

• Declarations in tested conditions are not implemented.

• Definition of nested classes outside of the enclosing class is not allowed.

• The new lookup rules for member references of the form x.A::B and p->A::B are not yet
implemented.

• Implicit conversion of T** to const T *const * (and the like) is not yet implemented.

• A cast cannot be used to select one out of a set of overloaded functions when taking the address
of a function.

• Type qualifiers on parameter types are not dropped.

• Classes are not assumed to always have constructors, and the distinction between trivial and
nontrivial constructors is not implemented.

• mutable is not implemented.

• The lifetime of temporaries is not limited to statements (it extends to end of block).

• Namespaces are not implemented.

• •
II

II

C'

C

C

C

II

Ii

r:
[::

l:

E

•
K

•
I[

I:

~

I:

• • • •
II

• • • • • •

G

n
n
II

It

IE
n
I:

It

IJ
D

C

D
[J

[J

1:1
I i

.1li

11

IJ
IJ

C
fj

n

• • • •

Paragon ™ System C++ Compiler User's Guide C++ Language Considerations

•

•

•

enum types cannot contnin values larger than can be contained in an int.

Type qualifiers are not retained on rvalues (in particular, on function return values).

Functions that cannot be called because of incorrect reference binding are nevertheless
considered in overload resolution.

• bool is not implemented.

• New casts (e.g., reinterpreCcast) are not implemented.

• Explicit qualification of template functions is not implemented.

• Explicit instantiation of templates in the style of N0274/93-0067 is not implemented.

• Name binding in templates in the style of N0288/93-0081 is not implemented.

• The scope of a variable declared in a for loop is still the whole surrounding scope, not just the
loop.

• Static data member declarations cannot be used to declare member constants.

Anachronisms Accepted

The following anachronisms are accepted when anachronisms are enabled:

• overload is allowed in function declarations. It is accepted and ignored.

• Definitions are not required for static data members that can be initialized using default
initialization. This anachronism does not apply to static data members of template classes; they
must always be defined.

• Implicit conversion from integral types to enumeration types is allowed.

• The number of elements in an array may be specified in an array delete operation. The value is
ignored.

• A single operator++O and operator--O function can be used to overload both prefix and
postfix operations.

• The base class name may be omitted in a base class initializer if there is only one immediate
base class. .

• Assignment to this in constructors and destructors is allowed. This is allowed only if
anachronisms are enabled and the assignment to this configuration parameter is enabled.

5-3

----.--~"---,.. -"--~------~---..... ~-- ... ---

C++ Language Considerations Paragon ™ System C++ Compiler User's Guide

• A bound function pointer (a pointer to a member function for a given object) can be cast to a
pointer to a function.

• A nested class name may be used as a non-nested class name provided no other class of that
name has been declared. This anachronism is not applied to template classes.

• A reference to a non-const type may be initialized from a value of a different type. A temporary
is created, it is initialized from the (converted) initial value, and the reference is set to the
temporary.

• A function with old-style parameter declarations is allowed and may participate in function
overloading as though it were prototyped. Default argument promotion is not applied to
parameter types of such functions when the check for compatibility is done, so that the
following declares the overloading of two functions named f:

int f(int)i int f(x) char Xi return Xi

It will be noted that in C this is code is legal but has a different meaning: a tentative declaration
of f is followed by its definition.

Extensions Accepted

5-4

The following extensions are accepted in all modes (except when strict ANSI violations are
diagnosed as errors; see the -A option):

• A friend declaration for a class may omit the class keyword.

class A {
friend Bi II Should be "friend class B"

} i

• Constants of scalar type may be defined within classes.

class A {

} i

canst int size = 10i
int a[size)i

• In the declaration of a class member. a qualified name may be used.

struct A{
int A::f()i II Should be int f()i

}

• operatorOO functions may have default argument expressions. A warning is issued.

D
o
o
D

r::
u
c
c
r=
c
c
11
If

•
Ir

l:

I:
r::
I:

• • • • • • • • • •

II

II

II

11

D

D

D
D
[]

IJ

IJ

IJ

IJ

• • • •

Paragon TM System c++ Compiler User's Guide C++ Language Considerations

• The preprocessing symbol c_plusplus is defined in addition to the standard __ cplusplus.

• In a reference to a class template, the argument corresponding to a non-type parameter is
allowed to require a promotion or standard conversion. The ARM requires an exact match.

template<float F> class Sf};
S<2.0> Xi

• Trivial conversions involving references, array and function type decay to pointer, and addition
of type qualifiers are allowed.

template <class T> void f(const T &p) {}
void m() {int i; f (i); }

• Parameters that do not involve template types are allowed to require trivial conversions and/or
a cast to a base class.

struct A {} i

struct B : public A {} *Pi

template<class T> void f(T, A*)i

void m() {f (1, p) i}

• A reference to a non-const class type can be initialized from a non-l value of the proper type or
a derived type thereof.

Cfront 2.1 Compatibility Mode

The following extensions are accepted in cfront 2.1 compatibility mode (with the -b option), along
with the extensions listed in the section "Cfront 2.113.0 Compatibility Mode" on page 5-8.

• A non-const member function may be called for a const object. A warning is issued.

• A const void * value may be implicitly converted to a void * value (e.g., when passed as an
argument).

• When, in determining the level of argument match for overloading, a reference parameter is
initialized from an argument that requires a non-class standard conversion, the conversion
counts as a user-defined conversion. (This is an outright bug, which unfortunately happens to
be exploited in the NIH class libraries.)

• A reference to a non-const type may be initialized from a value that is a const-qualified version
of the same type, but only if the value is the result of selecting a member from a const class
object or a pointer to such an object.

5-5

c++ Language Considerations Paragon 1M System C++ Compiler User's Guide

5-6

• The cfront 2.1 transitional model for nested type support is simulated. In the transitional model
a nested type is promoted to the file scope unless a type of the same name already exists at the
file scope. It is an error to have two nested classes of the same name that need to be promoted
to file scope or to define a type at file scope after the declaration of a nested class of the same
name. This feature actually restricts the source language accepted by the compiler. This is
necessary because of the affect this feature has on the name mangling of functions that use
nested types in their signature. This feature does not apply to template classes.

• A cast to an array type is allowed. It is treated like a cast to a pointer to the array element type.
A warning is issued.

• When an array is selected from a class, the type qualifiers on the class object (if any) are not
preserved in the selected array. (In the normal mode, any type qualifiers on the object are
preserved in the element type of the resultant array.)

• An identifier in a function is allowed to have the same name as a parameter of the function. A
warning is issued.

• A value may be supplied on the return statement in a function with a void return type. A warning
is issued.

• The destructor of a derived class may implicitly call the private destructor of a base class. In
default mode this is an error, but in cfront mode it is reduced to a warning. For example:

class A
i B:: B ()

A()i ; class B : public A
II Error except in cfront mode

B();

efrOnt 2.1 has a bug that causes a global identifier to be found when a member of a class or one
·of its base classes should actually be found. This bug is emulated in cfront compatibility. A
warning is issued when, because of this feature, a nonstandard lookup is performed.

The following conditions must be satisfied for the nonstandard lookup to be performed:

A member in a base class must have the same name as an identifier at the global scope. The
member may be a function, static data member, or nonstatic data member. Member type
names don't apply because a nested type will be promoted to the global scope by cfront,
which disallows a later declaration of a type with the same name at the global scope.

The declaration of the global scope name must occur between the declaration of the derived
class and the declaration of an out-of-Iine constructor or destructor. The global scope name
must be a type name.

D

D

D

Ul

(:

u
c

Ii

II

n

I~

ID
I:

IJ

IJ

I~

14
J

IJ

IJ . ~
.""
~

Ij
D

• • •

Paragon TM System c++ Compiler User's Guide C++ Language Considerations

No other member function definition---even one for an unrelated class---may appear
between the destructor and the offending reference. This has the effect that the nonstandard
lookup applies to only one class at any given point in time.

struct B {
void func(const char*);

} ;

struct D : public B {
pUblic:

D();
void Init(const char*);

} ;

struct func
func(const char* rnsg);

} ;

D::D(){}
void D::lnit(const char* t)
{

}

II Should call B::func
new func (t);

calls func::func instead.

The global scope name must be present in a base class (B::func in this example) for the
nonstandard lookup to occur. Even if the derived class were to have a member named func,
it is still the presence ofB::func that determines how the lookup will be performed.

• A parameter of type const void * is allowed on operator delete; it is treated as equivalent to void
*. (This is permitted by cfront 2.1 but is an error in cfront 3.0.)

• A period (.) may be used for qualification where :: should be used. Only:: may be used as a
global qualifier. Except for the global qualifier, the two kinds of qualifier operators may not be
mixed in a given name (i.e., you may say A::B::C or A.B.C but not A::B.C or A.B::C). A period
may not be used in a vacuous destructor reference nor in a qualifier that follows a template
reference such as A<T>::B.

• Cfront 2.1 does not correctly look up names in friend functions that are inside class definitions.
In this example function f should refer to the functions and variables (e.g., f1 and al) from the
class declaration. Instead, the global definitions are used .

int al; int el; void flC); class A int al; void fl();
friend void f () int il = al; I I cfront uses global al
fl(); II cfront uses global fl

5-7

--- ---------" ---.~~------- ._---"---" -"- -~--""-------~-"---"-

c++ Language Considerations Paragon ™ System C++ Compiler User's Guide

Only the innennost class scope is (incorrectly) skipped by cfront as illustrated in the following
example.

int ali
int bli
struct A {

} i

static int ali
class B {

static int bli
friend void f ()
{

}

} i

int il = ali
int jl = bli

II cfront uses A::al
II cfront uses global bl

Cfront 2.1/3.0 Compatibility Mode

5-8

The following extensions are accepted in cfront 2.1/3.0 compatibility mode.

• Because cfront does not check the accessibility of types, access errors for types are issued as
warnings instead of errors.

• When matching arguments of an overloaded function, a const variable with value zero is not
considered to be a null pointer constant.

• A reference to a pointer type may be initialized from a pointe~ value without use of a temporary
even when the reference pointer type has additional type qualifiers above those present in the
pointer value. For example:

int *Pi
const int *&r = Pi II No temporary used

• An extra comma is allowed after the last argument in an argument list.

f(l, 2,)i

• o
B

o
CJ

G

III

r:
U
n
(!i

l:
I::

E

• • •
I(

I:

I:
I::
I{

• • • • • • • • • •

n
n
II

C
I.~ jjj

I~

c
c
n
I') ,~i

I ~I

· I

IJ

'I~i
.U

I~

11,
. .J

(J

• • • •

Paragon TM System C++ Compiler User's Guide C++ Language Considerations

• Virtualfunction table pointer update code is not generated in destructors for base classes of
classes without virtual functions. even if the base class virtual functions might be overridden in
a further-derived class. For example:

struct A {

} i

virtual void f() {}
A() {}
-A() {}

struct B : public A {
B() {}

- B () { f () i }II Should call A:: f according to ARM 12. 7
} i

struct C : public B {
void f () {}

} Ci

In cfront compatibility mode. B: : -B calls c: : f.

Extensions
This section lists the language extensions supported by the Paragon system c++ compiler.

1. The #pragma [tokens] ANSI directive is supported. Any pragma that is not recognized is
ignored.

2. The #elif expression ANSI directive is supported. This directive is like a combination of the
#else and #if directives.

3. The following preprocessor macros are predefined (in addition to the ANSI-standard predefined
macros __ LINE __ • __ FILE __ • __ DATE __ • __ TIME __ • __ cplusplus. and __ STDC_~:

• __ i860

• __ i860 __

• __ PARAGON __

• __ OSFC_

• __ PGC __

• _PGC_

• COFF -

• __ NODE (only defined when compiling with -ox)

5-9

- -------- --~------- -- ------ --- ----------------------------------- ------- -- - -- ---- -------------------------------------~,~-------"-.~------------

c++ Language Considerations Paragon TM System C++ Compiler User's Guide

• unix

• MACH

• CMU

Note that some of these macro names begin and/or end with two underscores.

4. The #ident directive is supported. The syntax is:

#ident "string"

For certain assemblers, this results in a .ident directive being added to the output file.

Implementation-Defined Behavior

5-10

The sizes and alignments ofthe various C data types are shown in Table 5-1.:

Table 5-1. Sizes and Alignments of Data Types

Type Size Alignment

char 1 byte byte

short 2 bytes 2-byte

int 4 bytes 4-byte

long int 4 bytes 4-byte

float 4 bytes 4-byte

double 8 bytes 8-byte

long double 8 bytes 8-byte

struct (varies) Alignment of field with largest alignment

union (varies) Alignment of member with largest alignment

array of type n * size of type Alignment of type

The search rules for #include directives are:

• If the pathname is enclosed in angle brackets, the compiler first searches the directories
specified with the -I command line switch in the order specified, then the system include
directory.

• If the pathname is enclosed in double quotes, the compiler first searches the current directory.
then follows the search rules above.

• • •
a
CJ

D
CJ

IJ

II

o
CJ

l:

~

C
BJ

I1J

•
C

l:
&;j

E:

• • • • • • • • • • •

11

o
o
It
111

JlJ

G

I~

I]

IJ
I]

IJ

JJ
Ij
1:1
Ij

D

• • •

Paragon 1M System c++ Compiler User's Guide C++ Language Considerations

Data Types

Scalars

This section describes the scalar and aggregate data types recognized by the compiler, the format
and alignment of each type in memory, and the range of values each type can take.

A scalar data type (fundamental type) holds a single value, such as the integer value 42 or the bit
string 10011. Table 5-2 lists scalar data types, their size and format.

Table 5·2. Scalar Data Types

Data Type Size (bytes) Format Range

unsigned char 1 ordinal o to 255

[signed] char 1 two's complement integer -128 to 127

unsigned short 2 ordinal o to 65535

[signed] short 2 two's complement integer -32768 to 32767

unsigned int 4 ordinal o to 232_1

[signed] int 4 two's complement integer _231 to 231 _1

unsigned long int 4 ordinal o to 232_1

[signed] long int 4 two's complement integer _231 to 231 _1

float 4 ieee single-precision 10-37 to 1038

floating-point

double 8 ieee double-precision 10-307 to 10308

floating-point

long double 8 ieee double-precision 10-307 to 10308

floating-point

bit field 1 to 32 bits ordinal o to 2size_l

bit field 1 to 32 bits two's complement integer _2size-1 to 2size-1_1

pointer 4 address o to 232_1

enum 4 two's complement integer _231 to 231_1

5-11

c++ Language Considerations Paragon TM System C++ Compiler User's Guida

Table 5-3 lists the approximate ranges of floating-point data types.

Table 5-3. Floating-Point Data Type Ranges

Data Type Binary Range Decimal Range Decimal Digits
(approximate) of Precision

(approximate)

float 2-126 to 2128 10-37 to 1038 7-8

double 2-1022 to 21024 10-307 to 10308 15-16

long double 2-1022 to 21024 10-307 to 10308 15-16

Alignment of Scalars

The alignment of a scalar data type is equal to its size. The following scalar alignments apply to
individual scalars and to scalars that are elements of an array or members of a class, structure, or
union.

char Aligned on a I-byte boundary.

short Aligned on a 2-byte boundary.

[long] int Aligned on a 4-byte boundary.

enum Aligned on a 4-byte boundary.

pointer Aligned on a 4-byte boundary.

float Aligned on a 4-byte boundary.

double Aligned on a 8-byte boundary.

long double Aligned on a 8-byte boundary.

Wide characters are supported (character constants prefixed with an L of type wchar_t). The size of
each wide character is 4 bytes.

Aggregate Data Types

5-12

An aggregate data type consists of one or more scalar data type objects. You can declare the
following aggregate data types:

array One or more elements of a single data type placed in contiguous locations
from first to last.

D

D

o
D

n
C

1:1

r:
g

c
E:

I:

I:

E:

•
I:

•
E
I:

C
I:
&

• • •
a

• • • • • •

c
D

D

II

n
II

n

r::
'"1
[J

e
B
a
£J

[)

[J

IJ
I '~ .,

IJ

IJ
I]

IJ

Id
c

• • •
•

Paragon ™ System C++ Compiler User's Guide C++ Language Considerations

class

struct

union

A class that defines an object and its member functions. The object can
contain fundamental data types or other aggregates including other classes.
The class members are allocated in the order they appear in the definition but
may not occupy contiguous locations.

A structure that can contain different data types. The members are allocated
in the order they appear in the definition but may not occupy contiguous
locations. When a struct is defined with member functions. its alignment
issues are the same as those for a class.

A single location that can contain any of a specified set of scalar or aggregate
data types. A union can have only one value at a time. The data type of the
union member to which data is assigned determines the data type of the union
after that assignment.

Class and Object Data Layout

Class and structure objects with no virtual entities and with no base classes Gust direct data field
members) are laid out in the same manner as C structures. The following section describes the
alignment and size of these C-like structures. C++ classes (and structures as a special case of a class)
are more difficult to describe. Their alignment and size is determined by compiler-generated fields
in addition to user-specified fields. The following paragraphs describe how storage is laid out for
more general classes. The user is warned that the alignment and size of a class (or structure) is
dependent on the existence and placement of direct and virtual base classes and of virtual function
information. The information that follows is for informational purposes only and reflects the current
implementation. Note that it is subject to change. and only and reflects the current implementation.
Do not make assumptions about the layout of complex classes or structures.

All classes are laid out in the same general way. using the following pattern (in the sequence
indicated):

• First. storage for all of the direct base classes (which implicitly includes storage for nonvirtual
indirect base classes as well):

When the direct base class is also virtual. only enough space is set aside for a pointer to the
actual storage. which appears later.

In the case of a nonvirtual direct base class. enough storage is set aside for its own
nonvirtual base classes. its virtual base class pointers. its own fields. and its virtual function
information. but no space is allocated for its virtual base classes.

• Next. storage for the class's own fields.

• Next. storage for virtual function information (typically. a pointer to a virtual function table).

• Finally. storage for its virtual base classes. with space enough in each case for its own non virtual
base classes. virtual base class pointers. fields. and virtual function information.

5-13

- ---- - - -- ---".-.. ---.-.- .. --.---.~--.--- .. - -_._. - ---------- ------.---.-----.---.. ----.--"~~~~ ... "-----.. ----"---------~~-.--~--

c++ Language Considerations Paragon TN System C++ Compiler User's Guide

5-14

Structure Alignment

This section uses structure to mean a C-like structure, one with only direct data field members. In
C++ these structures may be declared as struct or class. The layout is not affected by the visibility,
public or private, of the data members.

The alignment of a structure or union affects how much space the structure occupies and how
efficiently the processor can address the structure members. The user has some control over
alignment and can specify natural alignment or quad alignment for structures:

Natural alignment The default alignment. Structures are aligned on the
boundary of their most-strictly-aligned member.

Quad alignment Aligns 16-byte or larger top-level objects, such as local
arrays and structures, on quad-word boundaries. You
specify quad alignment using the -Mquad option. For
more information on the -Mquad option, see Chapter 2.
Quad alignment has no effect on structures which are
members of other structures or on structures that are
members of arrays.

Structure alignment can result in unused space. called padding, between members of the structure.
and between the last member and the end of the space occupied by the structure. The padding at the
end of the structure is called tail padding. Because of differences in padding under different
alignments, changing the alignment can change the tail padding.

The rules for structure member alignment are:

Scalar types

Array types

Align according to their natural architectural alignment. For example, a
data type aligns on a 2-byte boundary.

Align according to the alignment of the array elements. For example, an array
of short data type aligns on a 2-byte boundary.

class I structure I union types
Align according to the most restrictive alignment of the enclosing members.
For example the union unl below aligns on a 4-byte boundary since the
alignment of c, the most restrictive element, is four:

union unl {

short ai /* 2 bytes */
char bi /* 1 byte */
int Ci /* 4 bytes */

} i

a
D

• •
D

Il1

III

II

• •
I[

I:

I:

C

• • •
II

1:=

L
r:::
II

• • •
II:

• • • • • •

n
o
D

II
I · ... ~

I~

I~

r:
c
~

IJ

IJ
I~ 11

D

D
I;:]

IJ
1'1 . .,

IJ
(i

.,.J

IJ

1:1

I]

I '" J

[j

C

• • • •

Paragon TM System c++ Compiler User's Guide C++ Language Considerations

By specifying quad' alignment with the -Mquad option, a structure whose size is at least 16 bytes
may use different tail padding from a structure using natural alignment (depending on the contents
of the structure). This change represents the difference between word-level tail padding and
quad-word level tail padding. Note that natural alignment and quad alignment structures differ only
in tail padding. Figures 5-1 and 5-2 illustrate natural and quad alignment. Consider the following
structure:

struct strcl {

char ai /* occupies byte 0 */
short bi /* occupies bytes 2 and 3 */
char c; /* occupies byte 4 */
int di /* occupies bytes 8 through 11 */

} i

Figure 5-1 shows that with natural alignment, the size allocated is 12 bytes. The memory allocated
for this structure uses no padding for either natural or quad alignment, since the structure is less than
16 bytes (a quad-word).

b xxx a byte 0

xxxxxxxxx c byte 4

d byte 8

Figure 5-1. Natural Alignment

Figure 5-2 shows how a structure with more than 16 bytes occupies memory using quad alignment.
This structure shows how quad alignment changes the tail padding and causes the structure to align
on a quad-word boundary. In this case quad alignment increases the amount of tail padding relative
to natural alignment.

Specifying quad alignment for strc2 aligns the structure as shown in Figure 5-2. Using natural
alignment this structure's second element would align according to the restriction of the largest
element, an integer, and the structure would be padded to byte 20 instead of to byte 32 as for quad
alignment.

struct strc2{
int ml [4] i

short m2i
sti

/* occupies bytes 0 through 15 */
/* occupies bytes 16 and 17 */

5-15

~ ~----~~- .. ----------

c++ Language Considerations Paragon TM System C++ Compiler User's Guide

5-16

I I I
st.m1[0] byte 0

st.m1[1] byte 4

st.m1[2] byte 8

st.m1[3] byte 12

xxxxxxxxx st.m2 byte 16

xxxxxxxxxxxxxxxxxxxx byte 20

xxxxxxxxxxxxxxxxxxxx byte 24

xxxxxxxxxxxxxxxxxxxx byte 28

Figure 5-2. Quad Alignment

Bit-field Alignment

Every bit field lies entirely within some bit-field container that has the same size and alignment as
its declared type. The size and alignment required by a container are defined by its declared type.
For example, if the bit field is of type int, the container alignment is four bytes. A bit field can cross
byte boundaries but cannot cross a container boundary (if the container consists of greater than one
byte).

The size of a bit field cannot exceed the size of its container. The compiler aligns an individual bit
field when the bit field, unaligned, would overrun the end of the container in which it starts. A
bit-field size of zero also forces bit-field alignment. You can determine the alignment of a bit field
and the position of the bit field within a structure as follows:

• The byte position of a bit field within a container is the current byte offset in the structure
modulo the container alignment. This value is the byte offset relative to the most recent
container alignment boundary. For example, if the container alignment is 1, the byte position is
always O. If the container alignment is 4, the byte position can be 0, 1,2, or 3.

.!
• •
III

II

G

a
t:

•
II
It

l:

I:

C

II

I!

U

C

L

I:

r::
II

II

II

• • • • • • • •

I

II

e
n
I~

I '.,.,
iIl.J

("I
ill

171

IJ

I'~

I~

'1'1
",d

[J

IJ

IJ

IJ

IJ

IJ

Paragon ™ System c++ Compiler User's Guide C++ Language Considerations

• The bit position of the bit field is the number of bits already allocated in the current byte, plus
8 times the container byte position. This value is the bit offset, in the range 0 to n relative to the
most recent container alignment boundary (n is 8 times the number of bytes in the container).

• If the value of the container bit position plus the size in bits of the new bit field is greater than
the size of the container or if the size of the new bit field is zero, the compiler aligns the bit field
on the next container alignment boundary. Bit-field alignment can result in padding of up to 32
bits. If the bit-field size is nonzero and the bit field fits entirely within the current container, the
compiler does not align the bit field.

Other Type Keywords

The void data type is neither a scalar nor an aggregate. You can use void or void* as the return type
of a function to indicate the function does not return a value, or as a pointer to an unspecified data
type, respectively.

The const and volatile type qualifiers do not in themselves define data types, but associate attributes
with other types. Use const to specify that an identifier is a constant and is not to be changed. Use
volatile to prevent optimization problems with data that can be changed from outside the program,
such as memory-mapped I/O buffers.

5-17

---- --------".~-~-~--- --~ .""----~---.-"

D
c++ Language Considerations Paragon 1M System C++ Compiler User's Guide

D

0

D

C

~

C ",i

r::

• •
K

I:

a:
I: ' ,

•
I[

•
CJ

I::
I:.;

r:
E

• • •
K

• • • • • 5-18 •

c
I!

n
c
Ii.
r,'1
.~i

I~

I]

1"1

IJ
I~ .;;1

c

[J

IJ

IJ

IJ

rJ
IJ
I] .-" J

IJ

[j

Jj

• • • •

Libraries

This chapter describes the libraries included with the Paragon™ system C++ Compiler. The libraries
include the following:

• Compiler libraries.

• Iostream libraries.

• Complex arithmetic library.

Compiler Libraries
This section introduces you to the compiler libraries and covers the following topics:

• The format of library functions.

• How to link the math libraries during compilation.

• How to include the math header file.

The following startup routines, function libraries, object files and source files are provided with the
Paragon system C++ compiler or C compiler:

crtO.o

crtO.s

libb.a

A startup routine for the compilation environment.

The assembly-language source of the startup routine crtO.o.

A math library that provides more accurate (approximately one-half the
error), but slower, math routines. This library contains both single-precision
and double-precision versions of the math functions listed in the ANSI C
standard.

6-1

Libraries

libc.a

libG.a

libstrma

libcmplx.a

libm.a

libic.a

subchk.o

Paragon'" System C++ Compiler User's Guide

The standard C run-time library. This library contains all of the run-time
functions listed in the ANSI C standard.

The C++ run-time library. This library contains all of the run-time functions
for C++.

Includes all the functions for C++ basic input and output with iostream.

Includes the type complex with constructors and functions for working with
complex numbers.

A math library that provides faster (approximately twice as fast), but less
accurate, math routines. This library contains both single-precision and
double-precision versions of the math functions listed in the ANSI C
standard.

The compiler support library. All routines compiled with the compiler must
include this library. The functions in this library perform operations such as
conversion between unsigned and floating-point, IEEE-conformant
floating-point division, and integer division.

The object file containing routines that handle bounds checking. The optional
bounds checking for C programs are enabled with the -Mbounds option on
the icc command line.

The standard c++ library routines are listed in this chapter. For more information on the standard C
run-time library routines, refer to the ANSI C standard. For more information about the libraries
provided with the Paragon system C compiler, refer to the Paragon™ System C Compiler User's
Guide.

Linking to the Math Library

6-2

The names of the math library files are libb.a (Berkeley) and libm.a. The math library is not linked
in by default. If you want to use a math library, link in the math library after your source file, as in
the following example. This example links in the libm.a library before the libmylib.a library.

$ icc ~rog.c -1m -~lib

D

o
D

C

I~

I '!'
i

n
II

o
Il

n
I~

I~

JJ

IJ

E

•
El

-.
IJ

I:J

IJ

fJ

I:J

IJ

IJ

D
Jj

B

• • • •

Paragon ™ System c++ Compiler User's Guide Libraries

Including the Math Header File

The name of the math header file is math.h. Include the math header file in all of your source files
that use a math library routine as in the following example, which calculates the inverse cosine of
1tI3.

#include <math.h>

#define PI 3.1415926535

main {)
{

}

Math Functions

double X, Yi
x = PI/3.0j
Y = acos (x) i

Table 6-1 provides a cross-reference of math library functions. Use this table to find the function that
satisfies the required operation and type of operands.

Table 6·1. Math Functions by Operation and Arguments (1 of 2)

Type of Arguments Type of Arguments
Operation (Double) (Single)

absolute value fabs

ceiling ceil

floor floor

floating remainder fmod

fraction/exponent frexp

floating times power of 2 ldexp

fraction/integer modf

power pow powf

square root sqrt sqrtf

cosine' cos cosf

sine sin sinf

tangent tan tanf

arc cosine acos acosf

6-3

Libraries Paragon 1M System C++ Compiler User's Guide

Table 6-1. Math Functions by Operation and Arguments (2 of 2)

Type of Arguments Type of Arguments
Operation (Double) (Single)

arc sin asin asinf

arc tangent atan atanf

arc tangent of quotient atan2 atan2f

hyperbolic cosine cosh coshf

hyperbolic sine sinh sinhf

hyperbolic tangent tanh tanhf

exponential exp expf

natural logarithm log logf

log base lO loglO logIOf

Standard C Library Calls

This section lists the standard C library calls supplied with the system library, libc.a.

abort fputc printf strncat
abs pfuts puts strncmp
atexit fread qsort strncpy
atoi fseek raise strpbrk
atol fsetpos rand strrchr
bsearch ftell remove strspn
clearerr fwrite rename strstr
clock getenv rewind strtok
difftime gets scanf strtol
div gmtime setvbuf strtoul
exit labs strcat strxfrm
fclose ldiv strchr system
feof malloc strcmp tmpfile
ferror memchr strcoll tmpnam
fflush memcmp strcpy ungetc
fgetc memcpy strcspn vfprintf
fgetpos memmove strerror vfscanf
fgets memset strftime
fopen perror strlen

6-4

o
D

U

D

I]

IJ

I:
C

II

II

E

Ii

• • • • •

II

a
II

II

I~

I~

II
I "'!

Iii

l 'l!I'1

ilil

IJ

,I~

D

CJ

D

D

G

D

I~

I]

11

IJ

IJ

IJ

G

• • • •

Paragon 1M System C++ Compiler User's Guide Libraries

Non-Standard C Library Calls

This section lists the C library calls that are not standard, but are supplied with the system library,
libc.a.

assert
bcopy
bzero
drand48
execl
execle
fdopen

Setting the SBRK Size

getcwd
getopt
isatty
locale
mktemp
setjmp
sleep

There are C user-callable routines that set the sbrk size. The routine __ malloc_sbsz(x), where x is "
an integer value, first rounds x to a multiple of 16 and sets the sbrk size to this (rounded) value. The
following is an example.

int x = 256;
__ malloc_sbsz(x); /* sets sbrk size to 256 */

The lostream Library
Iostream is the standard c++ input and output library. The iostream package allows operations on
streams of characters. The iostream package is implemented in a layered two-level approach. At the
lowest layer, implemented by the streambuf class, operations are defined for buffering the input and
output of sequences of characters (the terms input and output are used in a general sense in relation
to a sequence of characters). Higher layers in iostream add formatting and/or file specific operations
to this lowest layer. '

lostreams Header Files

The iostream package consists of a number of classes and routines defined in the following header
files:

fstream.h File handling input output routines.

iomanip.h Iostream manipulators for insert and extract special features.

iostream.h Defines for basic input and output operations.

stdiostream. h Specialized routines for input and output through FILE structs.

6-5

Libraries

stream.h

strstream.h

Paragon™ System 0++ Compiler User's Guide

Includes all the iostream .h files and also some additional compatibility
definitions for older versions of c++.

Array handling input output routines.

lostreams Usage and Class Hierarchy

6-6

The iostreams package for input and output contains a number of classes including the base class
ios. The ios class contains state information supporting formatting operations on streams; the input
and output classes including the istream and ostream classes as well as additional file and string
support classes are also part of iostream. After presenting an example showing iostream usage, the
following sections define the structure of each of the iostream classes.

Using iostreams

The following example uses the predefined output stream cout (which is connected to stdout.) It also
uses the overloaded operator « from class ostream to output the string "hello world\n" to the
terminal:

#include <iostrearn.h>
void rnain(void)
{

cout « "hello world\n";
}

The following example reads in an integer from stdin and then outputs it.

#include <iostrearn.h>
void rnain(void)
{

int weight;
cout « "Enter your weight:" « flush;
cin » weight;
cout « endl « "you weigh " « weight « endl;
}

------------ --~----~--------

o
o
o
D
(!]

(]

I)

I:

U
II
I!

l:

l:

Ir

•
I(

•
I]

[J

~

I:

E:

• • • • • • • • • •

• "!!!
II

II

c

I:

IJ

I'"

I""

I~

I~

~

I]

• • • •

Paragon 1M System C++ Compiler User's Guide Libraries

Class ios

The following example concatenates the files first. txt and second. txt into file output.txt.

#include <fstream.h>
void main(void)
{

}

ifstream infilel("first.txt")i
if (!infilel)

cerr « "unable to open file first.txt\n"i
ifstream infile2("second.txt")i
if (! infile2)

cerr « "unable to open file second.txt\n"i
of stream outfile("outfile.txt")i
if (! outfile)

cerr « "unable to open file output.txt\n"i
while (infilel.getc(c»

outfile.putc(c) i
while (infile2.getc(c»

outfile.putc(c) i

The other classes in iostream use the streambuf class, or a derived class, to support buffering of
streams. They add state information and functions to add formatted/unformatted file/incore input
and/or output to the streambuf-derived buffering classes.

The following is a list of predefined streams:

cio Standard input stream (uses file descriptor 0).

cont Standard output stream (uses file descriptor 1).

cerr Standard error (unbuffered) stream (uses file descriptor 2).

clog Standard error (buffered) stream (uses file descriptor 2).

The ios class is the base class for iostream operations. This class defines a number of public
functions for streams. It also defines enums used to specify formatting state, error state, open mode,
seek directions that control input and output operations. The following section lists enumerated
types defined in the file iostream.h.

6-7

Libraries

6-8

- ----- -------------------- ----- --.-----.---~.~----.-.--.---.-------- ~---.- .---"._._--

Paragon™ System C++ Compiler User's Guide

Class ios Enumerated Types

o
n
o
o
III

C

io_state enumc

enum io_state {
goodbit=O,
eofbit=l,
failbit=2,
badbit=4,
hardfail=0200

} ;

open_mode enum

enum open_mode {
in=l,

}

out=2,
ate=4,
app=OlO,
trunc=020,
nocreate=040,
noreplace=OlOO

enum seek_dir {
beg=O,
cur=l,
end=2

} ;

format flags enum

enum {
skipws=Ol,
left=02,
right=04,
internal=OlO,
dec=020,
oct=040,
hex=OlOO,
showbase=0200,

/* flags for controlling format */
/* skip whitespace on input */

/* padding location */

/* conversion base */

--------------- ..

I]

a:
II

CJ

C

I:
I:

EJ

• • •
II

~

I:

I:G

• • • • •
E

• • • •

II

II

III

I~

I~

I~

I "
'e

It
1:1

J:l

IJ

IJ
[J

IJ

fJ
I, ""I , .J

fJ

I':
I ",'i

.:.J

• • • •

Paragon™ System c++ Compiler User's Guide Libraries

showpoint=0400, /* modifiers */
uppercase=OlOOO,
showpos=02000, /* modifiers */
scientific=04000,
fixed=OlOOOO, /* floating point notation */
unitbuf=020000,
stdio=040000 /* stuff to control flushing */

}

Class ios Constructor and Destructor

ios

The ios constructor routine is defined as follows:

ios(streambuf *s};

This creates an ios object to represent a stream's state and associates streambuf s with the stream.

-ios

The ios destructor routine is defined as follows:

virtual -ios();

Class ios - Public Functions

This sections lists the public member functions defined for the class ios.

bad

Note

Extension functions allow derived classes to add additional format
flags or state information.

Error status function.

iut badO;

The routine returns a non-zero value if the ios_state badbit is set (indicating a severe rdbufO
failure). The routine returns 0 otherwise.

6-9

Libraries

6-10

Paragon TN System C++ Compiler User's Guide

bitalloc

Extension function.

static long bitallocO;

The routine returns a long with a single bit set. This is a newly allocated bit that the derived class
may use and pass to setfO.

clear

Error status function.

void clear(int state = 0);

The argument state is used as new error state and sets the value (mask) for the ios enum ios_state.
If state is zero, all bits of ios_state are cleared.

eof

Error status function.

inteofO;

Returns not-zero if the ios_state enum eojbit is set (indicating an end-of-file has been reached) ; 0
(zero) otherwise.

fail

Error status function.

int failO;

Returns non-zero if the ios_state enum badbit or failbit is set (indicating a get or conversion failure,
stream may be usable); 0 (zero) otherwise.

fill

Format access function.

int fillO;
int fill(char c1);

Return the stream's fill character. With an argument, set the fill character to c1

• • • •
C

D
II

c:

•
II
C

L
[:
[J

C
&J
II]

a
IJ

I:J

r:
I:
Ii

•
K
K

E

• • • • •

G

II

II

Ii

o

n
I:

IJ
J]

D

n
D

D

IJ

D
I.

"1
· ·11

I]

I]

C

II

• • • •

Paragon TM System c++ Compiler User's Guide Libraries

flags

Format access function. See the format flags enum above in this section for details on the various
flags.

long flags();
long flags(longjlag);

Return the format flags. With an argument, set the format flags.

good

Error status function.

int goodO;

Returns non-zero if no error bits are set; 0 (zero) otherwise.

iword

Extension function.

long& iword(int index);

The parameter index should have been allocated by a call to xallocO Returns a reference to a
user-defined word at index offset into an array managed by xallocO.

precision

Format access function.

int precision();
int precision(int.fpvp);

Return the precision used to format floating-point values. With an argument, set the precision used
to format floating-point values.

pword

Extension function.

void* & pword(int index);

The parameter index should have been allocated by a call to xallocO. Returns a reference to a
user-defined word at index offset into an array managed by xallocO.

6-11

Libraries

6-12

Paragon™ System C++ Compiler User's Guide

rdbuf

streambuf* rdbufO;

Returns a pointer to the associated streambuf used for buffering.

rdstate

Error status function.

int rdstateO;

Returns the ios error state flags. See the enum io_state.

setf

Format access function.

long setf(long setbits);

Set the format flag bits specified in setbits. Returns the previous settings.

long setf(long setbits, longfield);

Format state function. Set the format flag bits identified by field to the bits specified in setbits.

skip

Old stream package compatibility routine.

int skip(int i);

static void sync_with_stdioO;

Allows mixing stdio and iostreams. 110 will be flushed appropriately so it appears in the expected
order.

n
D

•
U

C

C
III
I:

•
K

E

I:
I:

• • • • c
r:
I::J

I:

~

• • .:
It

It

It

• • • •

I.t

II

n
I)

I~

I~

c

IJ

IJ

IJ
1"1

.1

IJ

G

• • • •

Paragon ™ System c++ Compiler User's Guide Libraries

tie

ostream* tieO;
ostream* tie(ostream* p);

Returns the tie variable. With an argument, sets the tie variable to p.

The tie variable is used to force flushing of one stream before a get or put operation is performed by
another stream. If the tie variable is not null, and more character must be got or put, the ostream
pointed to by p is flushed.

unsetf

Format access function.

long unsetf(long setbits);

Unset the format flag bits specified in setbits. Returns the previous settings. Refer to the format flags
enum for a description of the various format flags.

width

Format access function.

intwidthO;
int width(int wval);

Return the field width used to pad out, with the fill character, values being inserted. With an
argument, wval, sets the field width used to pad out (with the fill character) values being inserted.

xalloc

Extension function.

static int xailocO;

Returns a new index into an array of words. Used to extend formatting or other state information.
Word is accessed by iwordO or pwordO functions.

6-13

Libraries Paragon ™ System C++ Compiler User's Guide

Operators

Error status operator functions.

int operator !O;

Returns non-zero if badbit or faitbit is set.

int operator void*O;

Returns 0 (zero) if badbit or faitbit is set. Returns non-zero otherwise.

Class istream

6-14

The class istream supports operations to fetch and to format sequences of characters inserted from
streambufs. The istream functions are included with iostream.h.

Class istream constructor and destructor

istream

The istream constructor.

istream(streambuf* s);

Associate streambuf pointed to by s to stream.

-istream

The istream destructor.

virtual-istreamO;

Class istream - Public Functions

gcount

Input routine.

int gcountO;

Returns the number of characters extracted by the last unformatted getO, getlineO, or readO.
Formatting functions may call these functions and change this number.

.1
I

• • •
D

111
III

E

• •
aJ
[J

I;J

D

C

If
G
[J

I;

I:

E

• • .:
II

C

II

• • • •

G

n
n
D

D
I · ...

::w

I:
ITI

I:
'I~ : .itl

,Ij

I~

1"1
~J

1-:

I]

IJ

I]

Il

Ij

~

• • • •

Paragon ™ System C++ Compiler User's Guide Libraries

get

istream& get(char* ptr, int len, char delimiter='\n');

Unformatted input function. Extracts len bytes and puts them starting at ptr. Extraction ends if a
delimiter is found. The delimiter is not copied. A terminating NULL is always added.

istream& get(unsigned char* ptr, int len,
char delimiter='\n');

Unformatted input function. Extracts len bytes and puts them starting at ptr. Extraction ends if a
delimiter is found. The delimiter is not copied. A terminating NULL is always added.

istream& get(char& c);

Unformatted input function. Extracts a single character and stores it in c.

istream& get(unsigned char& c);

Unformatted input function. Extracts a single character and stores it in c.

istream& get(streambuf& s, char delimiter='\n');

Unformatted input function. Extracts characters and stores them in streambuf s. Stops if end-of-file
or the store fails, or if a delimiter is found.

int getO;

Unformatted input function. Extracts and returns the extracted character. end-of-file is returned for
end-of-file.

getline

istream& getIine(char * ptr, int len,
char delimiter='\n');

Unformatted input function. Operates like getO with similar parameter list, but the delimiter is
copied.

istream& getline(unsigned char * ptr, int len,
char delimiter='\n');

Unformatted input function. Operates like getO with similar parameter list, but the delimiter is
copied.

6-15

Libraries

6-16

------------_ .. _, _."- ---~.------"--".--- - "--_._-_ .. _._-"----

Paragon TM System C++ Compiler User's Guide

ignore

istream& ignore(int len ::i: 1, int delimiter=EOF);

Unformatted input function. Extract but do not store len characters or until delimiter is extracted.

ipfx

int ipfx(int need=O);

Input prefix function. Checks state of input stream. If error state is non-zero returns zero. Otherwise
may flush tied iostream, skip whitespace, etc.

Formatted input functions call ipfx(I), unformatted input functions call ipfx(O).

peek

intpeek();

Returns the next character without extracting it if !ipfx(l) or if at end-of-file returns end-of-file;
Otherwise it returns the next character.

putback

istream& putback(char c);

Attempts to back up streambuf pointer. c is last character extracted.

read

istream& read(char* str, int n);

Unformatted input function. Extracts n characters and stores them at str. If the end-of-file is hit, read
copies up to it, sets failbit, and the count of bytes read will be returned if gcountO is called.

istream& read(unsigned char* ustr, int n);

Unformatted input function. Extracts n characters and stores them at str. If end-of-file is hit, read
copies up to it, setsfai/bit, and the count of bytes read will be returned if gcountO is called.

II

o
o
III

Cl

I]

G

C

• e
[:]

,I:
[J

EJ

•
&J

I!J
C]

IJ

EJ

IJ

G

~

•
&J

IE

El

II:

• • • •

G

II

n
II

I~

II

I ,
61

.~
,.~

I~

I)

IJ
I "'l
, -,,1

IJ"
'"

IJ

IJ

I II!!
,J

D

• • • •

Paragon TN System C++ Compiler User's Guide Libraries

seekg

istream& seekg(streampos pos);

Repositions the streambufs get pointer. See class streambuf seekposO.

istream& seekg(streamoff vall, seek_dir direction);

Repositions the streambufs get pointer. See class streambuf seekoffO .

sync

intsyncO;

Synchronizes internal data and state with streambuf external source.

tellg

streampos tellgO;

Returns the current position of streambufs get pointer.

Class ostream

Supports operations to possibly format and to store sequences of characters inserted into streambufs.
The ostream functions are included with iostream.h .

Class istream constructor and destructor

ostream

The ostream constructor.

ostream(streambuf* s);

Associate streambuf pointed to by s to stream.

6-17

Libraries Paragon 1M System C++ Compiler User's Guide

-ostream.

The istream destructor.

virtual -ostreamO;

Class ostream - Public Functions

flush

ostream& flushO; .

Hushes the buffer associated with streambuf.

opfx

iot opfxO;

Output prefix function. Checks error state, returns zero if error. Flushes a tied stream.

osfx

void osfxO;

Output suffix function. Called at end of inserter routines to cleanup by flushing if necessary .

put

ostream& put(char c);

Unformatted output function. Puts char c into the associated streambuf.

seekp

ostream& seekp(streampos vpos);

Repositions the streambufs put pointer to vpos. See class streambuf seekposO.

ostream& seekp(streamoff pos, seek_dir dir);

Repositions the streambufs put pointer. See class streambuf seekoffO.

6-18

II

D

o
III

I:J

•
~

II

G

IJ

~

I:

K

•
II

E

E

K

• • • • •

C

11

n

I:

Ij
[j

17J

IJ
£j

D

D
[J

IJ
I]

I]

IJ
I]

IJ

IJ

I:l

• • • •

Paragon ™ System c++ Compiler User's Guide Libraries

tellp

streampos tellpO;

Returns the current position of the associated streambufs put pointer. See class streambuf seekoffO.

write

ostream& write(const char* ptr, int n);

Unformatted output function. Writes n characters starting at ptr into the associated streambuf.

ostream& write(const unsigned char* ptr, int n);

ostream Operators

ostream& operator« (char arg);

This function outputs arg. Also defined for arg of type unsigned char, short, unsigned short, int,
unsigned int, long, unsigned long, float, double, const char *, void *, streambuf *,
ostream& (*)(ostream&), and ios& (*)(ios&).

Class iostream

The iostream class combines istream and ostream abstractions. The following classes are derived
from istream, ostream, or iostream. They are the high level classes that users are most apt to use for
general file 110. These classes are defined in the include file fstream.h.

Three classes support input and/or output formatted file 110:

ifstream Supports formatted buffered input file 110.

of stream Supports formatted buffered output file 110.

fstream Supports formatted buffered input/output file 110.

6-19

Libraries

6-20

Paragon TM System C++ Compiler User's Guide

iostream Constructor and Destructor

iostream

The following constructor is defined for class iostream.

iostream(streambuf* psb);

-iostream

The iostream destructor.

virtual -iostreamO;

fstream Constructor and Destructor

fstream

The following constructors are defined in class fstream.

fstream();

Create unopened fstream.

fstream(const char* jilename, int mode,
int protection);

Create fstream; openjilename with specified mode and specified protection. Default mode is
input/output. Default protection is 0644 in UNIX terms.

fstream(intjiledescriptor);

Create fstream and connect to openjiledescriptor.

fstream(intjiledescriptor, char* p, int len);

Create fstream and connect to openjiledescriptor. Use buffer at p of length len. If p is 0 or len is 0
then filebuf is unbuffered.

D

D

D

U

[J

[J

G

DJ
I]

£:::

r:
II]

IlJ

C

III
I!]

[J

I:J

C

I:
II]

at
II

E
C

G

111

• • •

I lt
iii

D

n
n
n
o
I~

I]

I~

I~

£:

I "" _I

IJ

C

D

E

•
Jj

[J

D

D
[J

IJ

r.:
r:
[J

D

•
• • •

Paragon 1M System C++ Compiler User's Guide

-fstream

The fstream destructor.

virtual -fstreamO;

of stream Constructor and Destructor

of stream

The following constructors are defined in class of stream.

ofstreamO;

Create unopened of stream.

ofstream(const char* filename, int mode,
int protection);

Create of stream; open filename with mode and protection .

Default mode is output. Default protection is 0644 in UNIX terms.

ofstream(int filedescriptor);

Create of stream and connect to openjiledescriptor.

ofstream(intjiledescriptor, char * p, int len);

Libraries

Create of stream and connect to open file descriptor. Use buffer at p of length len. If p is 0 or len is
o then filebuf is unbuffered.

-oftream

The of stream destructor.

virtual-ofstream();

6-21

Libraries

6-22

Paragon TM System C++ Compiler User's Guide

ifstream Constructor and Destructor

ifstream

The following constructors are defined in class ifstream.

ifstreamO;

Create unopened ifstream.

ifstream(const char* filename, int mode,
int protection);

Create ifstream; openjilename with mode and protection.

Default mode is input. Default protection is 0644 in UNIX terms.

ifstream(intjiledescriptor);

Create ifstream and connect to open filedescriptor.

ifstream(intjiledescriptor, char* p, int len);

Create ifstream and connect to openjiledescriptor. Use buffer at p of length len. if pis 0 or len is 0
then filebuf is unbuffered.

-ifstream

The ifstream destructor.

virtual -ifstreamO;

Class fstream, ifstream, of stream - Public functions

The following public member functions have been defined for all three classes fstream, ifstream, and
of stream.

attach

void attach(intjiledescriptor);

Attaches the stream tojiledescriptor. Thefailbit is set on error.

D

D

D

D

C

G

C

l:

II

G

C

r=
IJ

I!J

D

~

D

I:
~=
l:

l:

a::
II

II

£
I[

•
I[

• • • •

c
n
D

11

n
n
D

c
c

I~

IJ

IJ
1-1

J

·IJ

IJ

I]

fj

D

• • • •

Paragon TM System c++ Compiler User's Guide Libraries

close

void closeO;

Closes the associated filebuf.

open

void open(char* filename, int mode, int protection);

Opens a file whose name is filename and attaches a stream to open file. Mode and protection
defaults are similar to those in the constructor.

rdbuf

mebuf * rdbufO;

Returns pointer to the associated filebuf.

setbuf

void setbuf(char* ptr, int len);

Allow the use of len bytes starting at ptr as the buffer. If ptr is NULL or len is 0 (zero) subsequent
operations are unbuffered.

Returns the pointer to streambuf or 0 (zero) if the request to use buffer or allow unbuffered
operations can not be accepted.

Class ostream_withassign

ostream_withassign

The ostream_withassign constructor.

ostream_ withassignO ;

6-23

Libraries

6-24

-ostream_withassign

The ostream_ withassign destructor.

virtual -ostream_withassignO;

Class iostream_withassign

iostream_withassign

The iostream_withassign constructor.

iostream_ withassignO ;

-iostream_withassign

The iostream_withassign destructor.

virtual -iostream_ withassignO;

Class istream_withassign

istream_withassign

The istream_withassign constructor.

istream_ withassignO ;

-istream_withassign

The istream_withassign destructor.

virtual -istream_ withassignO;

Paragon ™ System C++ Compiler User's Guide • • •
II

II

II

It

Ir

•
II
I::

L

I:

C

•
K

• •
;:

C

E:

.-
• •
• • • • • • • •

I!

II

I:

I:

. ' ./lJ

I~

D

D
IJ

IJ

IJ

IJ

IJ
I]

fJ

I]

• • • •

Paragon ™ System c++ Compiler User's Guide Libraries

Class istrstream

This class supports formatted buffered input from incore character arrays. The istrstream functions
are included with strstream.h .

Class istrstream Constructors and Destructor

istrstream

istrstream(char * p);

Make an istrstream object for string starting at p that is the length of the string p.

istrstream(char'" p, int len);

Make an istrstream object for string starting at p that is the length of length len.

-istrstream

virtual-istrstreamO;

The istrstream destructor.

Class istrstream - Public functions

rdbuf

strstreambuf* rdbufO;

Return the associated strstreambuf.

Class ostrstream

The ostrsstream class supports formatted buffered output to incore character arrays. The ostrstream
functions are included with strstream.h .

6-25

Libraries

6-26

Paragon TN System C++ Compiler User's Guide

Class ostrstream constructor and destructor

ostrstream

The following constructors are defined in class ostrstream:

ostrstream();

Dynamically allocate buffer to use for output buffer.

ostrstream(char* p, int len, int mode);

Use array of len characters beginning at p as output buffer.

A put pointer is normally set to p, but if ios: : ate or ios : : app are set in mode, then pis
assumed to locate a null-terminated string and the put pointer will be initialized to the location of the
null character.

-ostrstream

The ostrstream destructor.

virtual-ostrstream();

Class ostrstream - Public Functions

The following public member functions are defined for ostrstream.

pcount

int pcount();

Returns the number of characters stored in the buffer.

rdbuf

strstreambuf* rdbuf();

Returns the associated strstreambuf.

D

a

•
D
o
D

G

C

• a
(:J

L
[J

I:J

•
II

• •
I:
Ll

I:

IJ

• • •
II

• • • • • •

II

n
IE
11

1::
I "":

~,

IJ

JJ

I~

I~:

IJ
.I~l J

I'j

I:;

I:

r:
I '" , -~!

..
• • •

Paragon ™ System c++ Compiler User's Guide Libraries

str

char* strO;

Returns a pointer to the first character of the current array.

Class strstream

The strstream class supports formatted buffered input/output to incore character arrays. The
strStream functions are included with strstream.h .

Class strstream constructor and destructor

strstream

The following constructors are defined in class strstream:

strstreamO;

Dynamically allocate buffer.

strstream(char * p, int len, int mode)

Use array of len characters beginning at p as the input/output buffer.

-strstream

The strsttream destructor.

virtual-strstreamO;

Class strstream - Public Functions

The following public member functions are defined:

str

char* strO;

Returns a pointer to the first char of the current array.

6·27

Libraries Paragon ™ System c++ Compiler User's Guide

Class stdiostream

The class stdiostream supports formatted buffered input/output file I/O in a manner similar to the
stdio C library. The stdiostream functions are included with stdiostream.h.

Class stdiostream constructor and destructor

stdiostream

The following constructor is defined in class stdiostream:

stdiostream(FILE· fp);

Construct an empty file pointer fp.

-stdiostream

The stdiostream destructor.

virtual -stdiostreamO;

Class streambuf

6-28

The streambuf class is a character buffering class. The streambuf class implements a character
buffering package that supports a buffer, a sequence of characters, and put andlor get pointers into
that sequence. The pointers will be used to support operations to put (insert) characters into that
buffer andlor to get (extract) characters from that buffer. The source of the got characters and the
sink for the put characters are dependent on the derived class of the streambuf class. The streambuf
functions are included with iostream.h.

Class streambuf constructor and destructor

streambuf

The following constructors are defined in class streambuf:

streambufO;

Construct an empty buffer.

streambuf(char· p, int len)

Construct an empty buffer starting at p of length len.

•
a
III

a
c
c
c
c

•
Cl

C

I:
[:J

C

U

EJ
III
o
I:l
IjJ

C

III
D
111
ID

• • • • • • •

11

D

n
II

I!

I:
·1· ii

1_"'.
J<1

I~

Ij

1;1
"

'Ij

In
a

• • • •

Paragon 1M System C++ Compiler User's Guide Libraries

-streambuf

The streambuf destructor.

virtual-streambufO;

Class streambuf - Public Functions

The following public member functions are defined in class streambuf (defined in file iostream.h).

Returns the number of characters available in the get area.

iot ouCwaitiogO;

Returns the number of characters still buffered in the put area.

sbumpc

iot sbumpcO;

Move the get pointer forward one; returns the character skipped or end-of-file if get pointer is at the
end of the sequence.

setbuf

streambuf * setbuf(char* ptr, iot len);

Allow the use of len bytes starting at ptr as the buffer. If ptr is NULL or len is 0 (zero) request
unbuffered operations.

Returns pointer to streambuf or 0 (zero) if the request to use buffer or allow unbuffered operations
can not be accepted.

6-29

Libraries

6-30

seekoff

streampos seekoff(streamoff, seek_dir,
int mode=ios: :inlios: :out);

Paragon TM System C++ Compiler User's Guide

Reposition the put and/or get pointers. The parameter streamoffis taken as a signed byte offset. The
parameter seekdir is one of ios::beg (beginning of the stream), ios::cur (current position), or
ios::end (end ofthe stream). The mode parameter mode is-one or both bits ios::in (apply to the get
pointer), and ios::out (apply to the put pointer).

Returns end-of-file if the class doesn't support repositioning or on error. Returns new position
otherwise.

seekpos

streampos seekpos(streampos,int mode= ios::inlios::out);

Reposition the put and/or get pointer to streampos. Mode specifies get or put pointers as in
seekoffO.

sgetc

int sgetcO;

Returns the character after the get pointer. The get pointer is not changed. Returns end-of-file if no
character is available.

sgetn

int sgetn(char* ptr, int n);

Copy n characters following the get pointer to location starting at ptr. The get pointer is repositioned
after the fetched characters.

Returns the number of characters actually copied (which may be less than n.)

snextc

int snextcO;

Move the get pointer ahead one character and return the character following the new position.

Returns end-of-file if at the end of the sequence currently, or after the get pointer has been advanced.

--- ------------------------'------------------

a
a

•
u
It

G

o
I:

• a
c
I:

I:

I1J

U

G
C

D

I:

D
[J

til
o
D

u
a

• • • • • •

II

n
n
II

n
11

n
I'~

ill

I]

I '~
,oJ

IJ

D

IJ
IJ
1'"'1

.¢I:)

I:
I:

I~

Ij

D

• • • •

Paragon 1M System C++ Compiler User's Guide Libraries

sputbackc

iot sputbackc(char);

Move the get pointer back one character. The parameter char must represent the character following
the get pointer. Conceptually the char is put back into the get buffer.

Returns end-of-file on error.

sputc

iot sputc(char);

Put char following the put character and advance the put pointer beyond the stored character
(possibly extending the sequence).

Returns end-of-file on error.

sputn

iot sputo(coost char* ptr, iot n);

Copy n chars starting at ptr to the put area following the put pointer and advance the put pointer past
the added characters.

Returns the number of characters stored (which may be less than n).

stossc

void stosscO;

Move the get pointer forward one character. If at end of sequence, do nothing.

sync

virtual iot syocO;

Derived class dependent, but typically used to synchronize the streambuf class with the source (or
sink) of the sequence of characters being buffered.

Returns end-of-file on error.

6-31

Libraries Paragon TM System C++ Compiler User's Guide

The following three classes are derived from class streambuf.

Class filebuf

6-32

The filebuf class is derived from streambuf and adds support for 110 through file descriptors.
Operations for opening, closing and seeking in files are added.

Class filebuf Constructors and Destructors

filebuf

The following constructors are defined in class filebuf:

f"debufO;

Construct an empty filebuf.

f"debuf(intjiledescriptor);

Construct an empty filebuf attached to jiledescriptor.

f"debuf(intjiledescriptor, char* p , int len);

Construct an emptyfilebuf attached to jiledescriptor with buffer starting at p of length len.

-filebuf

The filebuf destructor is defined as follows:

virtual -f"debufO

Class filebuf Member Functions

The following public member functions are defined in class filebuf in include file fstream.h.

attach

f"debuf* attach(int jiledescriptor);

Attaches the filebuf object to an open file descriptor.

D

a
•
u
II

II

III

~

•
E
I:
r:
c
K

•
E

• •
I:

•
E

II:

• • .:
E

• • • • • •

Ii

o
II

n
I!

n

fJ

c

IJ

IJ
1·'1

oil

IJ

IJ

D

D .' • • •

Paragon 1M System C++ Compiler User's Guide Libraries

close

falebuf* closeO;

Flush and close the attached file descriptor. Clears error state unless error on close.

fd

int fdO;

Returns the attached file descriptor; returns end-of-file if file is closed.

int is_openO;

Returns nonzero if filebuf is connected to a file descriptor; otherwise, returns O.

open

falebuf * open(char* filename, iot omode, iot protection=openprot);

Open filename in appropriate mode and protection and connect to filebuf.

Class strstreambuf

The class strstreambuf is derived from streambuf and supports storing and fetching from incore
arrays of characters. The incore array can be a static array or a dynamically allocated and resized
array.

Class strstreambuf-Constructors and Destructor

strstreambuf

The following constructors are defined in class strstreambuf:

strstreambufO;

Construct an empty strstreambuf in dynamic mode.

6-33

Libraries

6-34

Paragon 1M System C++ Compiler User's Guide

strstreambuf(char* p, int n, char* pstart);

Construct an empty strstreambuf in static mode starting at p according to the following rules:

if n is positive: n is the length of the buffer.

if n is zero: p is taken to be a null terminated string.

if n is negative: no end is specified.

The get pointer is initialized to P. the put pointer is initialized to pstart.

strstreambuf(int len);

Construct an empty strstreambuf in dynamic mode with initial buffer allocation of at least length len.

strstreambuf(void* (*allocJunc)(long), void (*freeJunc)(void*));

Construct an empty strstreambuf in dynamic mode. If allocJunc is non-null use it to allocate the
buffer instead of newO. IffreeJunc is non-null use it to free the buffer instead of deleteO.

strstreambuf(unsigned char* b, int size, unsigned char* pstart = 0) ;

Construct an empty strstreambuf in static mode starting at p according to the following rules:

If n is positive: n is the length of the buffer.

If n is zero: p is taken to be a null terminated string.

If n is negative: no end is specified.

The get pointer is initialized to p. the put pointer is initialized to pstart.

strstreambuf

The strstreambuf destructor.

virtual -strstreambuf();

• • • a
D

Cl

G

C

•
D

Il1
[J

[J

a

•
~

•
II

I:J
EJ

IJ

• • •
III
IJ

• • • • • •

II

n

I:

c

1"1
,J

tJ

C

D

D
[1

IJ

[J

I~

I]

D

• • •

Paragon TN System c++ Compiler User's Guide Libraries

Class strstreambuf - Public Functions

freeze

void freeze(int n = 1);

If n is 0, permits automatic deletion of the current dynamic array.

If n is nonzero, automatic deletion is not permitted.

str

char * strO;

Returns a pointer to the current array.

Class stdiobuf

The stdiobuf class is derived from streambuf and supports I/O through FILE structs. It is intended
for mixing C and C++ code and should be avoided if possible. These functions are available by
including stdiostream.h.

Note

This class is obsolete and should not be used.

Manipulators

The include files iomanip.h and iostream.h contain functions that take an ios&, istream& or
ostream& and return their argument. Such functions are called manipulators. These functions also
change the format state information.

dec

ontstream « dec
instream » dec

Change formatting conversion base to decimal.

6-35

Libraries

6-36

hex

outstream « hex
instream » hex

Change formatting conversion base to hexadecimal.

oct

outstream « oct
instream» oct

Change formatting conversion base to octal.

ws

instream » ws

Skip over next whitespace in input stream.

setw

outstream« setw(n)
instream» setw(n)

Set field width to n.

setfil

outstream« setf"dl(n)
instream » setf"dl(n)

Set fill character to n.

setprecision

outstream« setprecision(n)
instream » setprecision(n)

Set precision to n.

Paragon 1M System C++ Compiler User's Guide

.~------------------~----- -~----

•
D

•
III
o
IE

G

C

•
C

C

L
r:

• • .:
a:

• • • • • •

I " 'ij

II

D

II

II

II

o
c
n
I~

C1

I "
,,.,

IJ

D

D

• ,.
•
IJ
[]

IJ

I ')
,,J

[j

rJ

Ii

• • • • •

Paragon ™ System c++ Compiler User's Guide

setiosflags

outstream « setiosflags(long n)
instream» setiosflags(long n)

Set the format flags indicated in n.

resetiosflags

outstream « resetiosflags(long n)
instream» resetiosflags(long n)

Clear the format flags indicated in n.

endl

outstream « endl

End line. That is, insert \n and flush.

ends

outstream « ends

End string. Insert \0.

flush

outstream « flush

Flush stream.

Libraries

6·37

--- "- ---~-------~~-.-----.. ----.--.,.~~.-.-~-~---~---------"-.--~~~-- -.--------.-.~--.~~~~~--------

Libmries Paragon TM System C++ Compiler User's Guide

The C++ Complex Math Library
The header file complex.h and the C++ library libcmplx.a provide definitions and support for
complex arithmetic in C++.

The' complex numeric data type is implemented as a new data type, complex, with operators and
functions. The complex class is defined to hold a single complex number consisting of a real part
and an imaginary part. The real and imaginary parts are represented in the class complex as a pair of
doubles.

Complex Constructor and Destructor

complex

The complex class provides two constructors.

void complexO;

The first takes no arguments and declares a complex variable that is initialized so that both its real
and imaginary parts are initialized to 0.0.

complex (double r, double i = 0.0);

The second constructor takes one or two arguments; the first argument initializes the real component
of the complex object, and the second argument initializes the imaginary part. When only one
argument is given, a default argument of 0.0 is supplied for the second argument. The supplied value
initializes the real part and the imaginary part is initialized to zero.

Below are several examples showing use of the complex constructors.

complex Xi

This creates a complex object named x which is initialized to (0.0,0.0), with its real and imaginary
parts both initialized to zero.

complex y(9.9,1.1)i

This creates a complex object named y which is initialized to (9.9,1.1). This represents 9.9 + 1.1i.

complex z(8.4)i

This uses the second constructor to create a complex object named z which is initialized to (8.4,0.0).

D

D

•
III

D

o
C

I:J

•
B
C

l:
[J

I!

Ii
It]

If

c:
l:

I:

I:

C

II

II:

C

I:
I[

II

• • • •

II

n
I~

e
It
n

."" I:
Ij

C

~

D
[]

[j

IJ

IJ

I)

(j

J:

• • • •

Paragon TM System c++ Compiler User's Guide Libraries

-complex

The complex class does not provide a special destructor function.

Complex Arithmetic Operators

The following operators are overloaded to provide complex operations using the usual precedence
rules.

+ addition

subtraction

unary minus

* multiplication

/ division

= assignment

equals

t-.- not equal

The following operators are overloaded. but may not be used to return a value in an expression.

+= Compound assignment (addition)

-+ Compound assignment (subtraction)

*= Compound assignment (multiplication)

/= Compound assignment (division)

For example, the following are valid complex assignments:

complex comp1, comp2i
comp1 += 1i
comp2 -= comp1i

6-39

--~----.-.---.---.----_._---

Libraries Paragon 1M System C++ Compiler User's Guide

Complex Public Functions

This section shows the public complex math functions provided with iCC.

abs

double abs(complex);

Returns the magnitude of the complex argument.

arg

double arg(complex);

Returns the phase angle of the complex argument.

conj

complex conj(complex);

Returns the complex conjugate of the complex argument.

cos

complex cos(complex);

Returns the cosine of the complex argument.

cosh

complex cosb(complex);

Returns the hyperbolic cosine of the complex argument.

exp

complex exp(complex);

Returns e**x where e is 2.718281828. and x is the complex argument.

6-40

D

o
D

II

G
I]

III

It

• • •
I:

EJ

IE

•
EJ

OJ

C

l::::

~

I:

U

• • •
I[

K
.:

• • • •

II

I!

11
I]

C

C

D
[J

Jj

I:

IJ

IJ

I]
(-I
· ~

.IJ

-,'" J

I~

• '. • •

Paragon ™ System c++ Compiler User's Guide Libraries

imag

double imag(const complex&);

Returns the imaginary part of the complex argument.

log

complex log(complex);

Returns the natural logarithm of the complex argument. If the argument is 0, this causes an error and
the value returned in the real part is a very large number.

norm

double norm(complex);

Returns the square of the magnitude of the complex argument.

polar

complex polar(double, double = 0);

Returns a complex number with the given magnitude (first argument) and phase angle (second
argument).

pow

complex pow(double, complex);

Returns Ii ** b where a is the first argument (a double) and b is the second argument (a complex).

complex pow(complex, int);

Returns a ** b where a is the first argument (a complex) and b is the second argument (an int).

complex pow(complex, double);

Returns a ** b where a is the first argument (a complex) and b is the second argument (a double).

complex pow(complex, complex);

Returns a ** b where a is the first argument (a complex) and b is the second argument (a complex).

6-41

Libraries Paragon TM System C++ Compiler User's Guide

real

double real(const complex&};

Returns the real part of the complex argument.

sin

complex sin(complex};

Returns the sine of the complex argument.

sinh

complex sinh(complex};

Returns the hyperbolic sine of the complex argument.

sqrt

complex sqrl(complex};

Returns the square root of the complex argument.

Input and Output Using Complex Values

6-42

For the complex class, the operators « and » are overloaded to provide input and output of
complex numbers (see the Iostream library description for more details). Input is expected in the
form (x,y) where x and y are doubles. For example:

complex cval1;
cin » cval1;

with the input values:

(100.0, 40.0)

gives cvall the value 100.0 + 40i.

D

D

D

D

G

D

III

C

II

o
I:l
[J

CJ

111
G

D

D

I:J

~

E

• • • •
IE

•
It

•
III .;
•

I ll!'
,~~

I]

1'1':·' '.1
Ii!

-'!'1 ~,

c
u

IJ

IJ
)j

EJ

D

IJ

IJ
[]

IJ

IJ

D

IJ

IJ

IJ
Jj

• • • • •

Paragon TM System c++ Compiler User's Guide Libraries

For output, the real and imaginary parts of the number are enclosed in parentheses and the "i", for
imaginary, is not included in the imaginary number.

complex cval2(l2.0,3.0);
cout « cval2;

produces the following output:

(12.0,3.0)

Error Handling

The complex class includes a mechanism for handling errors, using the errno integer flag and the
integer function complex_error(int, double).

The error handler function sets the value of the error flag errno. The library defines several values
for error conditions for the functions cosh, exp, log, and sinh.

The cosh error values are:

The real part was too large.

The imaginary part was too large.

The exp error values are:

The imaginary part was too small.

The real part was too small.

The log error values are:

The real and imaginary parts were O.

The sinh error values are:

The real part was too large.

The imaginary part was too large.

6·43

Libraries Paragon ™ System C++ Compiler User's Guide

6-44

- - ----------

D

D

U

II
I]

C

C

I:

G

I!

I:

r:
l:

IJ

C

C

R

C

l:
(:;

I:

I:

C

~

C

I:

1:-

II

II

II

E:

•

Ii

n
n
D

D

D

I:]

Ij

~

U

• • • •

Template Instantiation

A template defines a family of types or functions. For example, the following code fragment shows
a template declaration of a class veet. This template declaration can be used to declare vector objects.
By supplying different types for the parameter T, different template class definitions are instantiated
or generated.

II define a template
template<class T> class vect{

} ;

private:
T * Vi

typedef int vect_index_ti
vect_index_t sizei

public:
vect(vect_index_t x) { size = Xi v = new int[x]i}i

. T& opera tor [] (vec t_index_ t) i
T& element(vect_index_t i)i

template<class T> T& vect<T>::element(vect_index~t i)
{

return v[i] i
}

The following program fragment shows the template class veet being used.

II use the template
vect<int> x(80);
vect<double> d(20)i

void foo(void)
{

}

int j = x.element(S);
double f = d.element(6}i

7-1

~-- . __ .-.------_._----

Template Instantiation Paragon ™ System C++ Compiler User's Guide

The previous program requires two instantiations of template class vect: one where T is int and one
where T is double. It would seem the compiler could just generate these instantiations, but
unfortunately things are not that simple.

If the template declaration of class vect was in an include file, and another module included it and
used it, other instantiations.of this template might be needed. Another module might also require an .
instantiation where T is int. In this case, we would like only one instantiation of template class vect
where T is int.

c++ also allows specialization of a template entity. This is a type specific version to be used in place
of the version that would have been generated from the template. In the above example, someone
could write a specialization for type int:

int& vect<int>::element(vect_index_t i)
{

II check bounds for int vectors
if (i >= size){

extern void error(char *);
error (·vect index out of bounds\n");

}

return v[i];
}

In this case, we would like to use the specialized member function element.

c++ also dictates that unreferenced template functions should not be compiled.

For these reasons, the compiler cannot know what instantiations are required or in which modules
to put them until the whole program is linked. The programmer should have an idea where these
templates should be expanded. First we discuss two methods the programmer can use to tell the
compiler where to put template instantiations. Then we discuss an automatic instantiation scheme.

Command Line Control

7-2

Normally, when a file is compiled, no template entities are instantiated except those assigned to the
file by automatic instantiation (see the section "Automatic Template Instantiation" on page 7-3).

The overall instantiation mode can, however, be changed by the following command-line options:

-tnone

-tused

Do not automatically create instantiations of any template entities. This is the
default. It is also the usually appropriate mode when automatic instantiation
is done.

Instantiate those template entities that were used in the compilation. This will
include all static data members for which there are template definitions.

o
D

II

II

C

It
I]

I:J

• o
I:l
[J

IJ

~

D

G

e
II]

[J

D

I:J

~

U
III
Ii]

El

IlJ

a
•
III

• •

•
II

D
,0

C

D

D

n
e
ITI
IJ

r:
1-=

'1""'1 , cJ

~

Ij

fj

• • • • •

Paragon ™ System c++ Compiler User's Guide Template Instantiation

-tall

-tlocal

Instantiate all template entities declared or referenced in the compilation unit.
For each fully instantiated template class, all of its member functions and
static data members will be instantiated whether or not they were used.
Nonmember template functions will be instantiated even if the only reference
was a declaration.

Similar to -tused except that the functions are given internal linkage. This is
intended to provide a very simple mechanism for those getting started with
templates. The compiler will instantiate the functions that are used in each
compilation unit as local functions, and the program will link and run
correctly (barring problems due to multiple copies of local static variables.)
However, one may end up with many copies of the instantiated functions.
-tlocal cannot be used in conjunction with automatic template instantiation.

Automatic Template Instantiation
The goal of an automatic instantiation mode is to provide painless instantiation. The programmer
should be able to compile source files to object code, then link them and run the resulting program,
and never have to worry about how the necessary instantiations get done. In practice, this is hard for
a compiler to do.

Our approach requires that for each instantiation required, there is some (normal, top-level,
explicitly-compiled) source file that contains both the definition of the template entity and of any
types required for the particular instantiation.

This is not always the case. Suppose that file A contains a definition of class X and a·reference to
Stack<X>::push, and that file B contains the definition for the member function push. There
would be no file containing both the definition of push and the definition of X.]

This requirement can be met in various ways:

1. Each .h file that declares a template entity also contains either the definition of the entity or
includes another file containing the definition ..

2. Implicit inclusion: when the compiler sees a template declaration in a .h file and discovers a
need to instantiate that entity, it is gi ven permission to go off looking for an associated definition
file having the same base name and a different suffix, and it implicitly includes that file at the
end of the compilation. This method allows most programs written using the cfront convention
to be compiled (see the section "Implicit Inclusion" on page 7-5).

3. The ad hoc approach: the programmer makes sure that the files that define template entities also
have the definitions of all the available types, and adds code or pragmas in those files to request
instantiation of the entities there. .

7-3

Template Instantiation Paragon TM System C++ Compiler User's Guide

7-4

The automatic instantiation method works as follows:

1. The first time the source files of a program are compiled, no template entities are instantiated.
However, the generated object files contain information about things that could have been
instantiated in each compilation.

2. When the object files are linked together, a special pre-linker program called iprelnk is run. It
examines the object files, looking for references and definitions of template entities, and for the
added information about entities that could be instantiated.

3. If iprelnk finds a reference to a template entity for which there is no definition anywhere in the
set of object files, it looks for a file that indicates that it could instantiate that template entity.
When it finds such a file, it assigns the instantiation to it. The set of instantiations assigned to a
given file, say abc.C, is recorded in an associated.ii file, for example, abc.ii.

4. The iprelnk then executes the compiler again to recompile each file for which the .ii file was
changed.

5. When the compiler compiles a file, it reads the.ii file for that file and obeys the instantiation
requests therein. It produces a new object file containing the requested template entities (and all
the other things that were already in the object file).

6. iprelnk repeats steps 3-5 until there are no more instantiations to be adjusted.

7. The object files are linked together.

Once the program has been linked correctly, the .ii files contain a complete set of instantiation
assignments. From then on, whenever source files are recompiled, the compiler will consult the.ii
files and do the indicated instantiations as it does the normal compilations. That means that, except
in cases where the set of required instantiations changes, the iprelnk step from then on will find that
all the necessary instantiations are present in the object files and no instantiation assignment
adjustments need be done. That's true even if the entire program is recompiled.

If the programmer provides a specialization of a template entity somewhere in the program, the
specialization will be seen as a definition by the iprelnk step. Since that definition satisfies whatever
references there might be to that entity, the iprelnk program will see no need to request an
instantiation of the entity. If the progra!Jlmer adds a specialization to a program that has previously
been compiled, the iprelnk program will notice that too and remove the assignment of the
instantiation from the proper .ii file.

The.ii files should not, in general, require any manual intervention. One exception: if a definition is
changed in such a way that some instantiation no longer compiles (it gets errors), and at the same
time a specialization is added in another file, and the first file is being recompiled before the
specialization file and is getting errors, the.ii file for the file getting the errors must be deleted
manually to allow iprelnk to regenerate it.

o
o
o
II

G

C

[J

G

D
I]

(!J

(]

IJ

III
(J

III

tJ

C
I::
IJ
[J

C
D

II

• •

I."" ...

o
n
I:

I~

I~

I·~

",

J.

';

"'

I:J
. 1:5

IJ

IJ
I·~

cj

iJ

G

• • • •

Paragon 1M System C++ Compiler User's Guide Template Instantiation

If iprelnk changes an instantiation assignment, it will issue a message like the following:

c++ iprelnk: f __ 10A--pt __ 2_iFv assigned to file test.o
c++ iprelnk: executing: /usr/pgi/i860/bin/pgCC -c test.c

The name in the message is the mangled name of the entity.

The automatic instantiation scheme can coexist with partial explicit control of instantiation by the
programmer through the use of pragmas or command-line specification of the instantiation mode.

Implicit Inclusion
Implicit inclusion is provided in order to facilitate existing cfront programs.

When implicit inclusion is enabled with the -Wc,-B command line switch, the front end is given
permission to assume that if it needs a definition to instantiate a template entity declared in a.h file
it can implicitly include the corresponding. C file to get the source code for the definition. For
example, if a template entity ABC::fis declared in filexyz.h, and an instantiation of ABC::f is
required in a compilation but no definition of ABC::f appears in the source code processed by the
compilation, the compiler will look to see if a file xyz. C exists, and if so it will process it as if it were
included at the end of the main source file.

To find the template definition file for a given template entity the front end needs to know the full
path name of the file in which the template was declared and whether the file was included using the
system include syntax (e.g., #include <f"I1e.h». This information is not available for preprocessed
source containing #line directives. Consequently, the front end will not attempt implicit inclusion
for source code containing #line directives.

Implicit inclusion works well alongside automatic instantiation, but the two are independent. They
can be enabled or disabled independently, and implicit inclusion is still useful when automatic
instantiation is not done .

7-5

Template Instantiation Paragon TN System C++ Compiler User's Guide

7-6

.... ---~.---------------------------

D

• • • '. II

• • •
II]

II]

[J

r:
I!J

•
E

•
B
C

~

I:J

I:J

II

•
tJ
I:J

• • • • • •

n
o
1_" ..
I!

IJ
D

I!

IJ

11
1""'1

~I

I~

I)

IJ

IJ
-1':(

, .. ;..d

fj

• • • •

c++ Name Mangling

Name mangling transforms the names of entities so that the names include information on aspects
of the entity's type and fully qualified name. This is necessary since the intermediate language into
which a program is translated contains fewer and simpler name spaces than there are in the C++
language. Specifically:

• Overloaded function names are not allowed in the intermediate language.

• Classes have their own scopes in C++, but not in the generated intermediate language. For
example, an entity x from inside a class must not conflict with an entity x from the file scope.

• External names in the object code form a completely flat name space. The names of entities with
external linkage must be projected onto that name space so that they do not conflict with one
another. A function f from a class A, for example, must not have the same external name as a
function f from class B.

• Some names are not names in the conventional sense ofthe word, they're not strings of
alphanumeric characters, for example operator:.

There are two problems here:

1. Generating external names that will not clash.

2. Generating alphanumeric names for entities with strange names in C++.

Name mangling solves these problems by generating external names that will not clash, and
alphanumeric names for entities with strange names in C++. It also solves the problem of generating
hidden names for some behind-the-scenes language support in such a way that they will match up
across separate compilations.

You will see mangled names if you view files that are translated by iCC, and you do not use tools
that demangle the C++ names. Intermediate files that use mangled names include the assembly and
object files created by iCC.

8-1

c++ Name Mangling Paragon TM System 0++ Compiler User's Guide

The name mangling algorithm for iCC is the same as that for dront and also matches the description
in Section 7.2, "Function Name Encoding" of the ARM (except for some minor details). Refer to the
ARM for a complete description of name mangling.

Types of Mangling

8-2

The following entity names are mangled:

• Function names including non-member function names are mangled, to deal with overloading.
Names of functions with extern "e" linkage are not mangled.

Mangled function names have the function name followed by __ followed by F followed by the
mangled description of the types of the parameters of the function. If the function is a member
function, the mangled form of the class name precedes the F. If the member function is static,
an S also precedes the F.

int f(float);
class A

int f (float) ;
static int g(float);

II f_Ff

II f_1AFf
II g_lASFf

• Special and operator function names, like constructors and operator=O. The encoding is
similar to that for normal functions, but a coded name is used instead of the routine name:

class A
int operator+(float);
A(float) ;

int operator+(A, float);

II --pl_1AFf
II ct_1AFf

II --pl_F1Af

• Static data member names. The mangled form is the member name followed by __ followed
by the mangled form of the class name:

•

•

class A
static int i; II i_1A

Names of variables generated for virtual function tables. These have names like:

vtblmangled-class-name or
vtblmangled-base-clas~-namemangled-class-name.

Names ofvariables generated to contain runtime type information. These have names like:

Ttype-encoding and TIDtype-encoding.

o
D

D
o
o
o
III

l:l

U

D
I]

IJ

• • •
EJ

E

• • • .' •

Ii

o
II
1-1Ill

,BJ

I~

IE
11

It
I~

I:

I]

J:J

I~

D

1:1

C
IJ
1:1

IJ

1:1

(j

1:1
ij

II

• • • •

Paragon TM System c++ Compiler User's Guide C++ Name Mangling

Mangling Summary
This section lists some of the C++ entities that are mangled and provides some details on the
mangling algorithm. For more details, refer to The Annotated C++ Reference Manual.

Type Name Mangling

Using iCC, each type has a corresponding mangled encoding. For example, a class type is
represented as the class name preceded by the number of characters in the class name, as in 5abede
for abede. Simple types are encoded as lower-case letters, as in i for int or ffor float. Type modifiers
and declarators are encoded as upper-case letters preceding the types they modify, as in U for
unsigned or P for pointer.

Nested Class Name Mangling

Nested class types are encoded as a Q followed by a digit indicating the depth of nesting, followed
by a _, followed by the mangled-form names of the class types in the fully-qualified name of the
class, from outermost to innermost:

class A
class B

Local Class Name Mangling

The name of the nested class itself is mangled to the form described above with a prefix __ , which
serves to make the class name distinct from all user names.

Local class names are encoded as L followed by a number (which has no special meaning; it's just
an identifying number assigned to the class) followed by __ followed by the mangled name of the
class (this is not in the ARM, and cfront encodes local class names slightly differently):

void f ()
class A II Ll_lA}

This form is used when encoding the local class name as a type. It's not necessary to mangle the name
of the local class itself unless it's also a nested class.

8-3

c++ Name Mangling Paragon TM System C++ Compiler User's Guide

Template Class Name Mangling

8-4

Template classes have mangled names that encode the arguments of the template:

ternplate<class Tl, class T2> class abc i

abc<int, int> Xi

abc---pt_3_ii

This describes two template arguments of type int with the total length of template argument list
string, including the underscore, and a fixed string, indicates parameterized type as well, the name
of the class template.

o
o
o
o
o
D
I]

£

U

D
CJ
[J

(J

C

II

I!l

III

U

IJ

~

I:J

K

• •
IE
E

• • • • •
•

I~

II

o
I:
I!

I:

I~

r:J
'Ii ,I

C

D

IKJ

tl

E

III
I:J

IJ
Ij

Ij

El

• • • • •

VOOO

Compiler Error Messages

This appendix lists the error messages generated by the Paragon System C++ compiler, indicating
each message's severity and, where appropriate, the error's probable cause and correction. In the
error messages, the dollar sign ($) represents information that is specific to each occurrence of the
message. Note that messages issued by the C++ front-end are not currently included in this list.

Each error message is numbered and preceded by one of the following letters, indicating its severity:

I Informative.

W Warning.

S Severe error.

F Fatal error.

V Variable.

Internal compiler error. $ $

This message indicates an error in the compiler. The severity may vary; if it is informative or
warning, the compiler probably generated correct object code, but there is no way to be sure.
Regardless of the severity, please report any internal error to Intel Supercomputer Systems Division
Customer Support.

FOOl Source input file name not specified

On the command line, source file name should be specified either before all the switches, or after
them.

A-1

Compiler Error Messages Paragon™ System C++ Compiler'User's Guide

F002 Unable to open source input file: $

Source file name misspelled, file not in current working directory, or file is read protected. Also can
be issued if include file is read protected.

F003 Unable to open listing file

Probably, user does not have write permission for the current working directory.

F004 Unable to open object file

Probably, user does not have write permission for the current working directory.

FOOS Unable to open temporary file

Compiler uses directory lusrltmp or Itmp in which to create temporary files. If neither of these
directories is available on the node on which the compiler is being used, this error will occur.

F006 Empty translation unit

Source input file does not contain any declarations or function definitions.

FOO? Source file too large to compile at this optimization level

Symbol table overflowed, or compiler working storage space exhausted. If this error occurred at
optimization level 2, reducing the optimization level to 1 may work around the problem, otherwise
splitting the source file in two should be considered. There is no hard limit on how large a file the
compiler can handle, but as a very rough estimate, if the file is less than 2000 lines long (not counting
comments), and this error occurs, it may represent a compiler problem.

r009 <reserved message number>

rOl0 <reserved message number>

SOll Unrecognized command line switch: $

Refer to the Chapter 2 of this manual for a list of the allowed switches.

S012 Value required for command line s~itch: $

Certain switches require a value which immediately follows, such as -0 2.

S013 Unrecognized value specified for command line switch: $

A-2

o
U

II

II

e
G

U
f]

•
n
c
[J

[d

Ul

II

II

n
n
ID
C

G

n

I~ .. ,

('" /1

I"~

, i;)

Ij

c
I~

IJ
'1-;

u

IJ
I:]

1'1
\i;J

(j

iN
aJd

E

• • • •

Paragon ™ System c++ Compiler User's Guide Compiler Error Messages

S014 Ambiguous command line switch: $

Too short an abbreviation was used for one of the switches.

1015 <reserved message number>

1017 <reserved message number>

1018 <reserved message number>

S073 Too many initializers for $

The initializer for an array or structure contains too many constants.

W085 Truncation performed for field initialization

An integer constant used to initialize a structure field is too large for the field.

S086 Division by zero

A division by zero was encountered while constant folding a constant expression.

WI06 Shift count out of range

The bit count for a shift operation must be in the range 0 to 31. Note that a shift count of 32 will not
produce a result of zero on some machines.

Wl16 Constant value out of range for signed short or char

Note that a constant such as OxFFFF (Oxff), interpreted as a positive number, is 1 bit too large for
the signed short (char) data type. Either the type unsigned short (unsigned char) should be used
in place of signed short (char), or the equivalent negative number should be used in place of the
positive constant.

W129 Floating point overflow. Check constants and constant expressions

W130 Floating point underflow. Check constants and constant expressions

W131 Integer overflow. Check floating point expressions cast to integer

A-3

Compiler Error Messages Paragon 1M System C++ Compiler User's Guide

S132 Floating pt. invalid oprnd.Check constants and constant expressions

S133 Divide by 0.0. Check constants and constant expressions

W~99 Unaligned memory reference

A memory reference occurred whose address does not meet its data alignment requirement.

W271 Can't inline $ - wrong number of arguments

I272 Argument of inlined function not used

S273 Inline library not specified on command line (-inlib switch)

F274 Unable to access file $/TOC

S275 Unable to open file $ for inlining

A-4

• • •
D
o
o
D

Dl

•
o
G
[J

[J

EJ

•
~

III
IJ

C

~

I:

E

• •
E

II

E

• • • • •

II

II

n
c
r:
.~

c
C

I:

I '" ::1

1'1
ill

I.;~
,~

E
[j

• • • • •

Manual Pages

This appendix contains manual pages for compiler-related commands and system calls.

• See the OSFIl Command Reference and OSFIl Programmer's Reference for manual pages for
the standard commands and system calls of OSP/I.

TM TM
• See the Paragon System Commands Reference Manual and the Paragon System C Calls

Reference Manual for manual pages for parallel commands and system calls unique to the
operating system for the Paragon™ system.

The manual pages in this appendix are also available on-line, using the man command.

B-1

Manual Pages

B-2

~~~-.--.----.----~- .. -----~.--.- ------

Paragon 1M System c++ Compiler User's Guide 

Table B-1. lists the commands described in this appendix. 

Table B-1. Commands Discussed in This Appendix 

Manual Page Commands Description 

ar860 ar860 (cross) Manages object code libraries. 
ar (native) 

as860 as860 (cross) Assembles i860™ source code. 
as (native) 

cpp860 cpp860 (cross) Preprocesses C programs. 
cpp (native) 

dump860 dump860 (cross and native) Dumps object files. 

iCC iCC (cross) Invoked the C++ compiler. 
CC (native) 

Id860 Id860 (cross) Links object files. 
ld (native) 

mac860 mac860 (cross) Preprocesses assembly-language programs. 
mac (native) 

nm860 nm860 (cross) Displays symbol table (name list) 
nm (native) information. 

size860 size860 (cross) Displays section sizes of object files. 
size (native) 

strip860 strip860 (cross) Strips symbol information from object files. 
strip (native) 

Except for their names, the cross-development and native versions of each command work the same 
(with minor exceptions). These commands are available by their cross-development names on the 
Paragon system and on supported workstations; they are available by their native names on the 
Paragon system only. 

D 

D 

• 
o 
D 

U 

Ii 

D 

II 

n 
II] 

r= 
r:: 
c 
III 

C 

e 
C 

l: 
IjJ 

I: 

C 

D 

II 

C 

C 

C 

II 

II 

• • • 



G 

n 
1,1 

c 
c 
I) 

D 

C 

r: 
c 

G 

D 

G 

D 
[J 

IJ 

D 

lJ 
[J 

IJ 

IJ 

D 

• • • • 
• 

Paragon ™ System c++ Compiler User's Guide Manual Pages 

AR860 AR860 

ar860, ar: Creates and maintains archives for the Paragon™ system. 

Cross-Development Syntax 

ar860 [ -V] key [options] libname [filename ... ] 

Native Syntax 

Arguments 

ar [ -V] key [options] libname [filename ... ] 

libname The name of the archive. 

Jilename The name of the target file. 

You must specify one, and only one, key from the following list: 

d 

e 

p 

q 

r 

t 

x 

Delete Jilename from the archive. 

Display the symbol tables of COFF objects in the archive. 

Display the archive version ofJilename (may result in binary data being sent to 
standard output). 

Quickly add the fileJilename to the archive libname by appending the file(s) to the 
end of the archive without checking to see if they duplicate existing files in the 
archive. If libname does not exist, then create it (unless the c option is specified). 
IfJilename does not appear in the archive, then add it. 

Replace the fileJilename in the archive libname. If libname does not exist, then 
create it. IfJilename does not appear in the archive, then add it. 

Display the archive table of contents. 

ExtractJilename from the archive. If no file is named, extract all files. 

The key argument may be preceded by a dash. For example, ar860 -t file.a and ar860 t file.a are 
equivalent. 

B-3 



Manual Pages Paragon TM System C++ Compiler User's Guide 

AR860 (cont.) AR860 (cont.) 

Description 

See Also 

8-4 

You may specify the following options in any order: 

c 

I 

u 

v 

Suppress the creation message. This option is used with the -r key. 

. Use the current working directory for temporary files. 

Replace the archive version only if filename is newer. This option is used only 
with the -r key. 

Verbose mode. For -r, display the names of the archive members as they are 
replaced (or added). For -d, display the names of the archive members as they are 
deleted. For -t, display the file mode, the uid, the gid, the size, and the timestamp 
of the specified files. For -x, display the names of the files as they are extracted. 

No space may appear between the key and any options. 

You must specify the following argument, if used, before the key: 

-V Display the tool banner (tool name, version, etc.). 

No space may appear between -V and the following key, and the key may not be preceded by a dash. 
The dash preceding the V is optional. For example, ar860 -Vt tile.a and ar860 Vt tile.a are 
equivalent. . 

Use ar860 to manage archives for the Paragon system. 

as860, dump860, icc, if77, Id860, nm860, size860, strip860 

o 
D 

o 
o 
II 

D 

III 

C 

• 
IE 

C 

I: 

I: 

C 

• 
I[ 

II 

II 

I: 

I:: 

I: 

I:: 

II 

II 

I: 

I: 

E 

II 

II 

II 

• • 



n 
D 

D 

G 

I~ 

I: 

IJ 

IJ 
I i 

,.j 

c 

• • • • 

Paragon TM System C++ Compiler User's Guide Manual Pages 

ASS60 ASS60 

as860, as: Assembles i860 code for the ParagonThl system. 

Cross-Development Syntax 

as860 [switches] [filename] 

Native Syntax 

Arguments 

as [switches] [filename] 

filename The name of the i860 assembly language file. If no file is specified, as860 reads 
from standard input. 

You may specify the following switches in any order: 

-a 

-I [listfile ] 

-L 

-oobjfile 

-R 

-v 

-x 

Do not automatically import symbols that are referenced but otherwise undefined. 
Issues an error message for each occurrence. 

Write source listing in the file listfile, a file in the current working directory. If you 
omit listfile, the listing goes to standard output. 

Preserve text symbols starting with ".L" in the debug section. 

Put the output object file in objfile. If you omit this switch, the default object file 
name is produced by stripping any directory prefixes fromfilename, stripping any 
of the suffixes ".nIO", ".s", ".mac", or ".860", and appending ".0". An existing file 
with the same name is silently overwritten. 

Suppress all .data directives. Code and data are both assembled into the .text 
section. 

Display the tool banner (tool name, version, etc.). 

Enable additional checks of the source file to find illegal sequences of 
instructions. 

8-5 



Manual Pages Paragon TM System C++ Compiler User's Guide 

AS860 (cont.) AS860 (cont.) 

Description 

See Also 

B-6 

Use as860 to assemble the named file. 

You can ensure that the proper switches are passed to as860 by accessing as860 using the compiler 
drivers (icc or if77). 

Not all illegal sequences are detected when the -x switch is used. 

ar860, dump860, icc, in7, Id860, nm860, size860, strip860 



..:: 
r:: 

1"1 
,,"I 

IJ 

I: 

Paragon TM System C++ Compiler User's Guide Manual Pages 

DUMP860 DUMP860 

Dumps parts of a Paragon™ system object file . 

Syntax 

Arguments 

dump860 [ switches] filename 

filename The name of the object file. 

You may specify the following switches in any order: 

-a 

-c 

-dnumber 

+dnumber 

-f 

-g 

-h 

-I 

-0 name 

-0 

-p 

-r 

-s 

Display archive headers. 

Dump the string table. 

Dump section headers starting at section number. Only effective if the -h switch 
is also specified. Sections are numbered starting at 1. If the +d switch is not 
specified, then only the single section header is dumped. 

Dump section headers ending at section number. Only effective if the -h switch is 
used. 

Display file headers. 

Display the archive symbol table. 

Dump section headers. 

Dump line numbers. 

Dump only sections named name. Only effective if the -h switch is used. 

Dump (in formatted hexadecimal) optional headers. 

Do not display headers. 

Dump relocation data. 

Dump section data. 

B-7 



Manual Pages Paragon 1M System C++ Compiler User's Guide 

DUMP860 (cont.) DUMP860 (cont.) 

Description 

See Also 

8-8 

-t [number] 

+tnumber 

-u 

-v 

-v 

Dump symbol table, starting at symbol index number. If the +t switch is not used, 
then only the single symbol is displayed. 

Dump symbol table, through symbol index number. If -t was not specified, the 
start index is zero. 

Underline mode. Only works on devices supporting backspace. 

Verbose mode. Display some headers and information in an easier-to-comprehend 
form. 

Display the tool banner (tool name, version, etc.). 

-z name,number Dump line numbers for function name, starting at line number. 

+znumber Dump line numbers for function name (specified by -z), ending at line number. 

Use dump860 to dump (in formatted hexadecimal) parts of the named object file. 

ar860, as860, icc, if77, Id860, nm860, size860, strip860 

n 
III 
B 

II 

a 
III 
E 

E 

• • 
E 

I: 

r:: 
El 

II 

~ 

II 

I: 

I: 

IrJ 

r: 
E: 

• • • 
IE 

• • • • • • 



Ii 

n 
II 

IJ 

II 

u 
I: 
r:; 

C 

G 

G 

e 
D 
r-I 
LI 

Ij 

El 

D 

• • • • 

Paragon ™ System c++ Compiler User's Guide Manual Pages 

ICC ICC 

iCC, CC: Invokes the Paragon™ system C++ compiler 

Cross-Development Syntax 

iCC [options ]filename ... 

Native Syntax 

Arguments 

Options 

CC [ options] filename ... 

options Any of the command-line options listed in the following section. 

filename The name of the source file. 

-A Accepts the proposed version of ANSI C++. 

-b Compiles with cfront compatibility, version 2.1. 

-b3 Compiles with cfront compatibility, version 3.0. 

-c Skips the link step. Compile and assembles only (to file.o for each file.c) 

-C Preserves comments in preprocessed source files. Also enables -E. 

-drymn Shows all commands created by the driver but does not execute any commands. 

-Dname[=dej] Defines name to be de/in the preprocessor. If de/is missing, it is assumed to be 
empty. If the = sign is also missing, then name is defined to be the string 1. 

-e 

-E 

-flags 

-help 

Sets the error limit. 

Preprocesses very input file, regardless of suffix, and sends the result to stdout. No 
compilation, assembly, 'or linking is performed. 

Displays a list of all valid driver options. 

Displays a list of all valid driver options. 

8-9 



Manual Pages 

ICC (cont.) 

.Idirectory 

.Koption 

8-10 

Paragon 1M System C++ Compiler User's Guide 

ICC (cont.) 

Adds directory to the compiler's search path for include files. If you use more than 
one ·1 switch, the specified directories are searched in the order they were 
specified (left to right). For include files surrounded by angle brackets « ... »~ 
each directory is searched followed by the default location. For include files 
surrounded by double quotes (If .•. If), the directory containing the file containing 
the #include directive is searched, followed by the ·1 directories, followed by the 
default location. 

Requests special mathematical semantics. The option values are: 

ieee (default) 

ieee=enable 

ieee=strict 

noieee 

If used while linking, links in a math library that 
conforms with the IEEE 754 standard. 

If used while compiling, tells the compiler to perform 
float and double divides in conformance with the 
IEEE 754 standard. 

If used while linking, has the same effects as ·Kieee, 
and also enables floating-point traps and underflow 
traps. If used while compiling, has the same effects as 
·Kieee. 

If used while linking, has the same effects as 
·Kieee=enable, and also enables inexact traps. If used 
while compiling, has the same effects as ·Kieee. 

If used while linking, produces a program that flushes 
denormals to 0 on creation, which reduces underflow 
traps. If used together with ·Im, also links in a version 
of lihm.a that is not as accurate as the standard library, 
but offers greater performance. This library offers 
little or no support for exceptional data types such as 
INF and NaN, and will trap on such values when 
encountered. 

If used while compiling, tells the compiler to perform 
float and double divides using an inline divide 
algorithm that offers greater performance than the 
standard algorithm. This algorithm produces results 
that differ from the results specified by the IEEE 
standard by no more than three units in the last place. 

----~----.---

o 
o 
lIt 

o 
It 

G 
rl u 

(:J 

I: 
I:] 

C 
IlJ 

G 

C 
C 

II 

• • • • 



II 

n 
n 
I: 

II 

II 

II 

o 
G 

'''' ~j 

Ij 

1:1 

IJ 
• "'1 
, .:d 

• • • • • 

Paragon TN System C++ Compiler User's Guide Manual Pages 

ICC (cant.) 

-Ilibrary 

-Ldirectory 

-m 

-Moption 

trap=Cp 

trap=align 

ICC (cant.) 

If used while linking, disables kernel handling of 
floating-point traps. Has no effect if used while 
compiling. 

If used while linking, disables kernel handling of 
alignment traps. Has no effect if used while compiling. 

Load the library liblibrary.a. The library is loaded from the first library directory 
in the library search path (see the -L switch) in which a file of that name is 
encountered. (Passed to the linker.) 

Adds directory to beginning of the library search path. Also see the nostdlib and 
nostartup options of the -M switch. (Passed to the linker; see the Id860 manual 
page for more information on the library search path.) 

Produces a link map. (Passed to the linker.) 

Requests specific actions from the compiler. The option values are as follows (an 
unrecognized -M option is passed directly to the compiler): 

anna 

[no]bounds 

[no]dalign 

Produce annotated assembly files, where source code 
is intermixed with assembly language. -Mkeepasm or 
-S should be used as well. 

[Don't] enable array bounds checking (default 
-Mnobounds). With -Mbounds enabled, bounds 
checking is not applied to subscripted pointers or to 
externally-declared arrays whose dimensions are zero 
(extern arr[]). Bounds checking is not applied to an 
argument even if it is declared as an array. If an array 
bounds checking violation occurs when a program is 
executed, an error message describing where the error 
occurred is printed and the program terminates. The 
text of the error message includes the name of the 
array, where the errQr occurred (the source file and line 
number in the source), and the value, upper bound, and 
dimension of the out-of-bounds subscript. The name 
of the array is not included if the subscripting is 
applied to a pointer. 

[Don't] align doubles in structures on 
double-precision boundaries (default -Mdalign). 
-Mnodalign may lead to data alignment exceptions. 

8-11 



Manual Pages 

ICC (cont.) 

8-12 

[no]debug 

[no]depchk 

[no]frame 

[no]func32 

Paragon TN System C++ Compiler User's Guide 

ICC (cont.) 

[Don't] generate symbolic debug information (default 
-Mnodebug). If -Mdebug is specified with an 
optimization level greater than zero, line numbers will 
not be generated for all program statements. -Mdebug 
increases the object file size. 

[Don't] check for potential data dependencies exist 
(default -Mdepchk). This is especially useful in 
disambiguating unknown data dependencies between 
pointers that cannot be resolved at compile time. For 
example, if two floating-point array pointers are 
passed to a function and the pointers never overlap and 
thus never conflict, then this switch may result in 
better code. The granularity of this switch is rather 
coarse, and hence the user must use precaution to 
ensure that other necessary data dependencies are not 
overridden. Do not use this switch if such data 
dependencies do exist. -Mnodepchk may result in 
incorrect code; the -Msafeptr switch provides a less 
dangerous way to accomplish the same thing. 

[Don't] include the frame pointer (default 
-Mnoframe). Using -Mnoframe can improve 
execotion time and decrease code, but makes it 
impossible to get a call stack traceback when using a 
debugger. 

[Don't] align functions on 32-byte boundaries (default 
-Mfunc32). -Mfunc32 may improve cache 
performance for programs with many small functions. 

info=[option[,option ... ]] 
Produce useful information on the standard error 
output. The options are: 

time or stat - Output compilation statistics. 

loop - Output information about loops. This includes 
information about vectorization and software 
pipelining. 

inUne - Output information about functions extracted 
and inlined~ 

D 

o 
D 

o 
D 
I] 

I!J 

C 

o 
C 

r: 
l: 

IJ 

G 

o 
IIJ 
Cl 

D 
(:J 

I] 

IJ 

D 
III 
II 

• 
Ij 

E 

a 
a 
III 

• • 



II 

11 

II 

n 
I! 

n 
n 
C 

I] 

C 

t:1 
I~ 

r' 
I: 

c 
EJ 

• • 
El 

t1 
IJ 

IJ 

I~ 

D 

• • • • 

Paragon 1M System c++ Compiler User's Guide 

ICC (cont.) 

Manual Pages 

ICC (cont.) 

inline=[option[,option ... ]] 

keepasm 

nolist 

Pass options to the function inliner. The options are: 

levels:number - Perfonn number levels of in lining 
(default 0). 

See Chapter 3 for more infonnation on using the 
compiler's function inliner. 

Keep the assembly file for each source file, but 
continue to assemble and link the program. 

Don't create a listing file (this is the default). 

[no]longbranch [Don't] allow compiler to generate bte and btne 
instructions (default -Mlongbranch). 
-Mnolongbranch should be used only if an assembly 
error occurs. 

nostartup 

nostddef 

nostdinc 

nostdlib 

[no]perfmon 

Don't link the usual start-up routine (crtO.o), which 
contains the entry point for the program. 

Don't predefine any system-specific macros to the 
preprocessor when compiling a C program. (Does not 
affect ANSI-standard preprocessor macros.) The 
system-specific predefined macros are __ i860, 
__ i860 __ , __ PARAGON __ , __ OSFC_, 
__ PGC __ , _PGC_, _COFF, unix, MACH, CMU, 
and __ NODE L_NODE is only defined when 
compiling with -nx). See also -U. 

Remove the default include directory (lusr/include for 
CC, $(PARAGON_XDEVyparagoniinclude for iCC) 
from the include files search path. 

Don't link the standard libraries (libpm.o, guard.o, 
libc.a, iclib.a, and libmach3.a) when linking a 
program. 

[Don't] link the perfonnance monitoring module 
(libpm.o) (default -Mperfmon). See the Paragon™ 
System Application Tools User's Guide for 
infonnation on perfonnance monitoring, 

8-13 



Manual Pages 

ICC (cont.) 

8-14 

Paragon .... System C++ Compiler User's Guide 

ICC (cont.) 

[no]quad [Don't] force top-level objects (such as local arrays) of 
size greater than or equal to 16 bytes to be 
quad-aligned (default -Mquad). Note that -Mquad 
does not affect items within a top-level object; such 
items are quad-aligned only if appropriate padding is 
inserted. 

[no] reentrant [Don't] generate reentrant code (default 
-Mreentrant). -Mreentrant disables certain 
optimizations that can improve performance but may 
result in code that is not reentrant. Even with 
-Mreentrant, the code may still not be reentrant if it is 
improperly written (for example, if it declares static 
variables). 

safeptr=[option[,option ... ]] 
Override data dependence between c++ pointers and 
arrays. This is a potentially very dangerous option 
since the potential exists for code to be generated that 
will result in unexpected or incorrect results as is 
defined by the ANSI C++ working draft. However, 
when used properly, this option has the potential to 
greatly enhance the performance ofthe resulting code, 
especially floating-point oriented loops. Combinations 
of the options can be used. 

dummy or arg - C++ dummy arguments (pointers and 
arrays) are treated with the same copyinlcopyout 
semantics as Fortran dummy arguments. 

auto - C++ local or auto variables (pointers and 
arrays) are assumed to not overlap or conflict with 
each other and to be independent. 

static - C++ static variables (pointers and arrays) are 
assumed to not overlap or conflict with each other and 
to be independent. 

global - C++ global or extern variables (pointers and 
arrays) are assumed not to overlap or conflict with 
each other and are independent. 

D 

D 

• 
D 

m.~ 

IJ 

I:: 
a:: 
I: 

• 
E 
K 

• • • • • • 



II 

II 

I! 

I~ 

Ii 

D 

I: 

.=' .,.,1 

I: 
I ', 

'o,j 

• • • • 

Paragon ™ System c++ Compiler User's Guide Manual Pages 

ICC (cont.) ICC (cont.) 

[no]signextend [Don't] sign extend when a narrowing conversion 
overflows (default -Msignextend). For example, if 
-Msignextend is in effect and an integer containing 
the value 65535 is converted to a short, the value of 
the short will be -1. This option is provided for 
compatibility with other compilers, even though ANSI 
C specifies that the result of such conversions are 
undefined. -Msignextend will decrease performance 
on such conversions . 

[no]streamall [Don't] stream all vectors to and from cache in a vector 
loop (default -MstreamaII). When -MnostreamaII is 
in effect, the compiler chooses one vector to come 
directly from or go directly to main memory, without 
being streamed into or out of cache. 

[no]strideO [Don't] inhibit certain optimizations and allow for 
stride 0 array references. -MstrideO may degrade 
performance, and should only be used if zero stride 
induction variables are possible. (default 
-MnostrideO). 

vect[ =option[,option ... ]] 
Perform vectorization (also enables -Mvintr). If no 
options are specified, then all vector optimizations are 
enabled. The available options are: 

cachesize:number - This sets the size of the portion of 
the cache used by the vectorizer to number bytes. 
Number must be a multiple of 16, and less than the 
cache size of the microprocessor (16384 for the 
i860 XP, 8192 for the i860 XR). In most cases the best 
results occur when number is set to 4096, which is the 
default (for both microprocessors). 

noassoc - When scalar reductions are present (for 
example, dot product), and loop unrolling is turned on, 
the compiler may change the order of operations so 
that it can generate better code. This transformation 
can change the result of the computation due to 
round-off error. The use of noassoc prevents this 
transformation. 

recog - Recognize certain loops as simple vector loops 
and call a special routine. 

6-15 



Manual Pages 

ICC (cont.) 

-nostdinc 

-ox 

6-16 

[no]xp 

Equivalent to -Mnostdinc. 

-------------- ."-.---~- -~-----.. - ------~ ----"----------_. 

Paragon TM System C++ Compiler User's Guide 

ICC (cont.) 

smallvect[:number] - This option allows the 
vectorizer to assume that the maximum vector length 
is no greater than number. Number must be a multiple 
of 10. If number is not specified, the value 100 is used. 
This option allows the vectorizer to avoid stripmining 
in cases where it cannot determine the maximum 
vector length. In doubly-nested, non-perfectly nested 
loops this option can allow invariant vector motion 
that would not otherwise have been possible. Incorrect 
code will result if this option is used, and a vector takes 
on a length greater than specified. 

streamlim:n - This sets a limit for application of the 
vectorizer data streaming optimization. If data 
streaming requires cache vectors of length less than n, 
the optimization is not performed. Other vectorizer 
optimizations are still performed. The data streaming 
optimization has a high overhead compared to other 
loop optimizations, and can be counter-productive 
when used for short vectors. The n specifier is not 
optional. The default limit is 32 elements if streamlim 
is not used. 

transform - Perform high-level transformations such 
as loop splitting and loop interchanging. This is 
normally not useful without -Mvect=recog. 

-Mvect with no options means 
-Mvect=recog,transform,cachesize:4096. 

[Don't] use i860 XP microprocessor features (default 
-Mxp). 

Creates an executable application for multiple nodes. 

• If used while compiling, it defines the preprocessor symbol __ NODE. 
The program being compiled can use preprocessor statements such as 
#ifdef to control compilation based on whether or not this symbol is 
defined. 

• If used while linking, it links in libnx.a, the library that contains all the 
. calls in the Paragon System C Calls Reference Manual. It also links in 
libmach.a and options/autoinit.o. 

D 

D 

II 

a 
D 
D 

D 
It] 

U 

Cl 
[J 

I: 

I: 

C 

II 
I: 
C 

1:1 
[J 

I;j 

I: 
E 

• • 
II 
W:: 

.: 

• • • • • 



n 
u 
I~ 

II 

n 
D 

n 
o 

I~ 

IJ 
I l 

-4J 

I: 
C 

tJ 

• • • • • 

Paragon ™ System C++ Compiler User's Guide Manual Pages 

ICC (cont.) 

-ofile 

-O[level] 

-p 

-r 

-re 

-.sufilX 

ICC (cont.) 

• If used while linking, it links in a special start-up routine that 
automatically copies the program onto multiple nodes, as specified by 
standard command line switches and environment variables. See the 
Paragon System User's Guide for information on these command line 
switches and environment variables. 

Uses file for the output file, instead of the default a.out (orfile.o if used with the 
-e switch). 

Set the optimization level: 

o A basic block is generated for each C++ statement. No 
scheduling is done between statements. No global 
optimizations are performed. 

1 

2 

3 

4 

Scheduling within extended basic blocks is performed. 
Some register allocation is performed. No global 
optimizations are performed. 

All level 1 optimizations are performed. In addition, 
traditional scalar optimizations such as induction 
recognition and loop invariant motion are performed 
by the global optimizer. 

All level 2 optimizations are performed. In addition, 
software pipelining is performed. 

All level 3 optimizations are performed, but with more 
aggressive register allocation for software pipelined 
loops. In addition, code for pipelined loops is 
scheduled several ways, with the best way selected for 
the assembly file. 

If a level is not supplied with -0, the optimization level is set to 2. If -0 is not 
specified, the default level is 1. Setting optimization to levels higher than 0 may 
reduce the effectiveness of symbolic debuggers. 

Preprocesses each file and leaves the output in a file namedfile.i for each file 
namedfile.c. 

Generates a relinkable object file. (passed to the linker.) 

Specifies the name of the driver configuration file. 

Saves the intermediate file in a file with the specified suffix when used with -Po 

8-17 



--_ .. __ .-._----- .. _- _. __ . ----------- - ---"-"----- ... -- ... _-- .. --.--- .. -.------------.--.---~.,.- ... ~,-.~, ~---.----"--- ------... --_ .... _--. ---------_._--

Manual Pages 

ICC (cont.) 

-s 

-S 

-show 

-targument 

-time 

-Uname 

-u symbol 

-v 

-v 

-vv 

8-18 

Paragon TM System c++ Compiler User's Guide 

ICC (cont.) 

Strips symbol table information. (passed to the linker.) 

Skips the link and assemble step. Leaves the output from the compile step in a file 
namedfile.s for each file namedfile.c. 

Displays the driver configuration parameters on startup. 

Controls instantiation of template functions. argument can be one of the 
following: 

all 

none 

local 

used 

All template functions are instantiated. 

No template functions are instantiated. 

Only the functions used in the compilation are 
instantiated, and they are forced to be local. Note that 
this may cause mUltiple copies oflocal static variables. 
If this occurs, the program may not execute correctly. 

Only the functions used in the compilation are 
instantiated. 

Print execution times for the compilation steps. 

Remove any initial definition of name in the preprocessor. (See also the nostddef 
option of the -M switch.) 

The -U switch affects only predefined preprocessor macros, not macros defined in 
source files. The following macro names are predefined: __ cplusplus, 
__ LINE __ , __ FILE __ , __ DATE __ , __ TIME __ , __ STDC __ , __ i860, 
__ i860 __ , __ PARAGON __ , __ OSFC_, __ PGC __ , _PGC_, _COFF, unix, 
MACH, CMU, and __ NODE L_NODE is only defined when compiling with 
-nx). Note that some of these macro names begin and/or end with two underscores. 

Because all -D switches are processed before all -U switches, the -U switch 
overrides the -D switch. 

Initialize the symbol table with symbol, which is undefined for the linker. An 
undefined symbol triggers loading of the first member of an archive library. 

Prints the entire command line for each tool as it is invoked, and invokes each tool 
in verbose mode (if it has one). 

Prints the version banner for each tool (assembler, linker, etc.) as it is invoked. 

Displays the driver version number and the location of the online release notes. 
No compilation is performed. 

• • a 
a 
II 

III 

C 

C 

• 
£] 

EJ 

l:: 

I:J 

IrJ 

e 
C 

II 

I:J 

I: 

~ 

r: 

• • • • 
• • • • • • 



It 

II 

n 

c 
D 

o 
It 

I~ 

W!!':.".I a.iJ 

IJ 

f:J 
( "1 

J 

D 

e 

• • • • 

Paragon TN System C++ Compiler User's Guide Manual Pages 

ICC (cont.) ICC (cont.) 

-Wpass,option[,option ... ] 

-w 

-x 

-Ypass, directory 

Passes the specified options to the specified pass: 

c c++ front-end. 

o (zero) c++ back-end. 

a Assembler. 

Linker. 

n Symbol table lister. 

m Muncher. 

p Prelinker. 

Each comma-delimited string is passed as a separate argument. 

Do not print warning messages. 

Generate cross-reference information and place output in the specified file. 

Looks for the specified pass in the specified directory (rather than in the default 
location), where pass is one of the following: 

c 

o (zero) 

a 

s 

I 

L 

u 

Search for the C++ front-end in directory. 

Search for the C++ back-end in directory. 

Search for the assembler executable in directory. 

Search for the linker executable in directory. 

Search for the start-up object files in directory. 

Set the compiler's standard include directory to 
directory. 

Set the first directory in the linker's library search path 
to directory (passes -YLdirectory to the linker). 

Set the second directory in the linker's library search 
path to directory (passes -YUdirectory to the linker). 

8-19 



Manual Pages 

ICC (cont.) 

Description 

Paragon TM System c++ Compiler User's Guide 

ICC (cont.) 

See the Id860 manual page for more information on the • YL, • YU, and· yP 

switches. 

iCC is the interface to the Paragon C++ compiler. It invokes the C++ compiler, assembler, linker, 
muncher, and prelinker with options derived from its command-line arguments. 

iCC bases its processing on the suffixes of the files it is passed. Files whose names end with .cc, .c, 
.cpp, or .C, are considered to be C++ source files. They are preprocessed, compiled and assembled. 
The resulting object file is placed in the current directory. Files whose names end with .s are 
considered to be i860 assembly language files. They are assembled and the resulting object file is 
placed in the current directory. Files whose names end with.o are taken as object files, and are 
passed directly to the linker if linking is requested. Files whose names end with .a are taken as ar 
libraries. No action is performed on .a files unless linking is requested. 

Files not ending in .cc, .cpp, .C, .c, .0, .s, or .a are taken as object files and passed to the linker (if 
linking is requested) with a warning message. 

If a single C++ program is compiled and linked with one iCC command, then the intermediate 
object and assembly files are deleted. 

Environment 

8-20 

iCC runs in two distinct environments. The first is a cross environment, where the compiler runs on 
one host and generates code for a different host. The second is a native environment, where the 
compiler and the generated code both run on the Paragon system. 

Each of these environments use different directories for the executables, different libraries, and 
different default options. In addition, there may be custom installations that define their own default 
parameters to the compilers. The remainder of this section describes the implementation for the two 
standard environments, native and cross-compilation. 

Native Environment 

Executables reside in/usr/ccs/bin; libraries and objects reside inlusr/Ccsllih. The C compilation 
system (CCS) must be installed to use iCC on the Paragon system. 

lusr/ccs/binlicpp 1 

lusr/ccs/binlicpp2 

C++ compiler front end. 

C++ compiler back end which reads the binary 
intermediate file produced by the front end and generates 
an assembly language file 

. ----- ------------------------------------------------- -------------------

o 
D 

o 
IE 

D 

U 

CJ 

l:J 

II 
III 

III 

rc 
I: 

C 

G 
[J 

I] 

~ 

I~. i 

" 

I: 

I: 

E 

• 
E 
II] 

Ir 

E 

• • • • • 



II 

II 

n 
1m 
Ir 

II 

D 

[1 

C 

11 

III 

• 
Il 
J:j 

[) 

IJ 

El 

D 

• • • • 

-----------------

Paragon TM System c++ Compiler User's Guide Manual Pages 

ICC (cont.) ICC (cont.) 

/usr/ccslbinlas ELF assembler. 

/usr/ccslbinlld ELF linker 

/usr/ccs/binliprelnk c++ prelinker. 

/usr/ccs/binlimunch c++ muncher. 

/usr/ccs/binliCC C compilation driver. 

/usr/ccs/lihllibc.a C runtime library. 

/usr/ccs/lihllibC.a c++ runtime library. 

/usr/ccsllib/libm.a Math library. 

/usr/Ccs/lib/libstrm.a Iostreams library. 

/usr/ccs/lib/libcmplx.a Complex library. 

/usr/ccs/lib/ieee/libm.a More accurate (and slower) math library. 

/usr/ccslbinlcrtO.o startup routine for the compilation environment. 

lusr/ccslbinlcrti.o lusr/ccsnib/values-Xa.o-

lusr/ccsllib/crtn.o C startup/endup routines 

lusr/ccsllibllibic.a C built-in intrinsic library. 

lusr/ccsllib/subchk.o Array bounds checking routines. 

lusr/ccsllib. lusrllib Library search directories. 

lusr/include Include files for C library. 

Cross Environment 

Executables reside in $PARAGON_XDEVlbin.arch (where arch identifies the architecture of the 
system. e.g. sgi. solaris or sun4); libraries and objects reside in $PARAGON_XDEVllib-coff. 
Include files are searched for in $PARAGON_XDEV/includelCC. PARAGON_XDEV is the root 
of the compiler installation directory. 

$(PARAGON_XDEV)/paragonlbin.archlicppl - C++ front-end compiler. 

$(P ARAGON_XDEV)/paragonlbin.archlicpp2 - C++ back end. 

8-21 



Manual Pages 

ICC (cont.) 

Files 

8-22 

Paragon 1M System C++ Compiler User's Guide 

ICC (cont.) 

$(P ARAGON_XDEV)/paragonlbin.archlas860 - COFF assembler 

$(P ARAGON_XDEV)/paragonlbin.archlld860 - COFF linker 

$(P ARAGON_XDEV)/paragonlbin.archliprelnk - C++ prelinker 

$(P ARAGON_XDEV)/paragonlbin.archlimunch - C++ muncher 

$(PARAGON_XDEV)/paragonlbin.archliCC - C++ compilation driver 

$(P ARAGON_XDEV)/paragonllib-coffllibm.a - Fast, less accurate, scalar math library 

$(P ARAGON_XDEV)/paragonllib-coffllibstrm.a - C++ Iostreams library 

$(P ARAGON_XDEV)/paragonllib-coffllibcmplx.a - C++ Complex library 

$(P ARAGON_XDEV)/paragonllib-coffllibC.a - C++ runtime library 

$(PARAGON_XDEV)/paragonllib-coffllibc.a - C library 

$(PARAGON_XDEV)/paragonllib-coffllibb.a - Slow, more accurate, scalar math library 

$(P ARAGON_XDEV)/paragonllib-coff/crtO.o - C startup routine 

$(PARAGON_XDEV)/paragonllib-coffllibic.a - C built-in intrinsic library 

$(PARAGON_XDEV)/paragonlincludelCC - Include files for C++ libraries 

a.out 

file. a 

file.c 

file.i 

file. 0 

file.s 

.iCCrc 

executable output file. 

library of object files. 

C++ source file. 

C++ source file after preprocessing. 

object file. 

assembler source file. 

defines the iCC driver's startup file. This file sets parameters for the driver's 
default configuration. 

D 

D 

D 

II 

C 
I] 

(~ 



U 

I! 

I) 

II 

c 
C 

IJ 

Paragon ™ System c++ Compiler User's Guide 

ICC (cont.) 

r:; See Also 

~ ar860, as860, dump860, if77, irIxlib, Id860, nm860, size860, strip860 

1:1 Paragon System c++ Compiler User's Guide 

c 
£j 

El 

El 

IJ 
'r:; 

IJ 
1'9 

~I 

I '" 
,',! 

IJ 
J] 

fj 

• • • • 

Manual Pages 

ICC (cont.) 

8-23 



Manual Pages Paragon TM System C++ Compiler User's Guide 

L086D L086D 

Id860, Id: Link editor for Paragon™ system object files. 

Cross-Development Syntax 

Id860 [ switches] filename ... 

Native Syntax 

Arguments 

8-24 

Id [ switches] filename ... 

filename The name of the object file or library. 

You may specify the following switches in any order: 

-B integer 

-contig 

-d integer 

-D 

-D integer 

-e symbol 

-f/ilelist 

-k 

Specify the address to use for the base of the .bss section for all following object 
modules. This switch may be used multiple times, and affectS only objects that 
appear after the switch in the command line. 

Force the .data section to follow the .text section. Overrides -d. 

Specify the address at which the .data section is to be loaded. The default is 
Ox40 1 0000. 

Display the c++ .debug section. 

Specify the length of the .data section to be integer bytes. The .data section is 
padded with zero to the specified length, which may not be less than the summed 
length derived from the object modules. 

Specify symbol as the entry-point. The default"entry-point is start. 

Read in a list of files to be linked from file /ilelist. Names in the file can be 
separated by a comma, a space, a tab, or a linefeed. This switch may be used 
multiple times. 

Start the .text and .data sections exactly at the addresses specified by the -T and 
-d switches (or at the defaultsifthe switches are not given) withou.t performing 
the normal modifications to those addresses to make the file pageable. 

D 

a 

• 
II 

G 

U 

G 

EJ 

II 

a 
[J 

[J 

(J 

I:J 
II] 

I] 

C 
(;J 

I: 

& 

E: 

E 

• • 
IE 
K 

• • • • • • 



II 

D 

II 

c 
n 
I~ 

G 

D 

G 

IJ 

IJ 

tJ 

D 

~ 

~ 

11 

IJ 

D 

IJ 

IJ 

IJ 
[J 

C 

El 

• • • • • 

Paragon TN System C++ Compiler User's Guide Manual Pages 

LOB60 (cont.) LOB60 (cont.) 

-Ilibrary Load the library liblibrary.a. The library is loaded from the first library directory 
in the library search path in which a file of that name is encountered. 

-L Display the C++ .line section. 

-Ldirectory Add directory to the beginning of the library search path. 

-m Generate a link map (listing of modules and addresses). 

-oobjfile Put the output object file in objfile. If this switch is not specified, the default object 
file name is a.out. If a file with the same name already exists, it is silently replaced. 

-p Align the .data section of the following module on a logical page boundary. 
(Other switches may appear between -p and the filename.) This switch may be 
repeated as necessary, and applies only to the next object file. 

-P integer Set the logical page size to integer bytes (default 65536). The value of integer 
must be a power of two multiple of 4096 bytes. 

-r Retain relocation entries in the output object file to allow incremental linking. The 
output object file produced with -r can be used as an input object file in another 
link. When -r is used, -0 must also be specified. 

-s Strip all symbols from the output object file. 

-t Display the name of each object file or library as it is processed. 

-T integer Specify the address at which the .text section is to be loaded. The default is 
OxlOOOO. If used without -d, implies -contig. 

-u symbol Initialize the symbol table with symbol. The linker considers symbol to be 
undefined. 

-v Display the tool banner (tool name, version, etc.). 

-yfile Load the library file. The library is loaded from the first library directory in the 
library search path in which a file of that name is encountered. (-y is like -I, but 
uses the specified filename without modifications.) 

-YLdirectory Replace the standard library directory (the first directory in the library search 
path) with directory. 

-YUdirectory Replace the secondary library directory (the second directory in the library search 
path) with directory. 

-YPdirectory Replace the entire library search path with directory. 

8-25 



Manual Pages Paragon ™ System C++ Compiler User's Guide 

LD860 (cont.) LD860(cont.} 

Description 

8-26 

Use Id860 to link-edit the named file(s). 

Object files and libraries are processed in the order specified. 

Libraries are searched for unsatisfied externals when they are processed, and are not reopened to 
satisfy any symbols that might not have been satisfied. The search for libraries is done in the 
following order: 

• If PARA GON_LPA TH is defined, it is searched. 

• If PARAGON_LPATH is not defined and LPATH is defined, it is searched. 

• Any directories specified using the ·L switch prior to ·Ilibname on the command line are 
searched. 

• The standard default libraries are searched. In the cross-development environment, the default 
library directories are: 

$PARAGON_XDEVlparagonllib-cof!:$PARAGON_XDEVlparagonllib-cof!loptions 

In the native environment, the default library directories are: 

$PARAGON_XDEVlusrllib :$PARAGON_XDEVlusrllibloptions 

If PARA GON_XDEV is not set,lusrllib:lusrllibloptions is the default. 

The search path used by the -I switch can be modified by any ·L, ·YL, ·YU, or·YP switch to the 
left of the ·1 switch on the command line. The effect of these switches is cumulative. 

The ·r switch requires the ·0 switch. 

If the ·r and the .s switches are used together, the ·s switch is ig!1ored. 

If the ·r and the ·e switches are used together, the ·e switch is ignored. 

If the ·f switch is used, the ·B and .p switches are applied as if the object file names appeared in 
place of the ·f switch. 

.. __ ._--_ ... _-------------------- -------~---

D 

o 
D 

D 



Ii 

D 

II 

D 

n 
G 

D 

['I 

IJ 

IJ 

IJ 

E 

J:l 

I1l 

Il 
[J 

(] 

[] 

[J 

IJ 

(J 

IJ 
[1 

EJ 

• • • • • 

Paragon™ System c++ Compiler User's Guide Manual Pages 

LD860 (cont.) LD860 (cont.) 

The -d (data start address) and -T (text start address) switches interact as follows: 

• If neither the -d nor the -T switch is used, the data and text start addresses default. 

• If the -d switch is used without -T (that is, if a data start address is specified, but no text start 
address is specified), then the data start address specified is used, and the text start address 
defaults. 

If the -T switch is used without -d (that is, if a text start address is specified, but no data start 
address is specified), then the specified text start address is used, and the data section starts on 
the next logical page boundary following the end of the text section. 

• If both the -d and -T switches are used, the specified data and text start addresses are used. 

Special Symbols 

NOTE 

Specifying addresses for the text and data sections different from 
the defaults may preclude the usage of profiling and performance 
monitoring tools. These tools require a gap between the text and 
data sections that is at least as long as the text section. 

The profiling tools cannot be used on executables with a text 
section larger than 32 Mb, although such applications can be 
executed. 

The following symbols have special meanings to Id860: 

The next available address after the end of the output section .text. 

The next available address after the end of the output section .data. 

The next available address after the end of the output section .bss. 

Programs should not use any of these as external symbols. 

The symbols described above are those actually seen by Id860. Note that C and several other 
languages prepend an underscore U to external symbols defined by the programmer. This means 
that, for example, you cannot use end as an external symbol. If you use any of these names, you must 
limit its scope by using the static keyword in the declaration or declare the symbol to be local to the 
function in which it is used. If this is not possible, you will have to use another name. 

B·27 



Manual Pages Paragon TM System C++ Compiler User's Guide 

LOB60 (cont.) LOB60 (cont.) 

See Also 

ar860, as860, dump860, icc, in" nm860, size860, strip860 

8-28 

U 

D 

II 

II 

c: 
II 
II 

Il 

D 

II 
l: 
[: 

L 



c 
n 
II 

n 
n 
I! 

o 
I~ 

C 

I~ 

n 
lJ 

IJ 

tJ 

• 
El 

• 
J:1 

11 

tJ 
1] 

C 

IJ 

IJ ., __ .;1 

Jj 

D 

• • • • 

Paragon TM System C++ Compiler User's Guide Manual Pages 

MAC860 MAC860 

mac860, mac: Macro preprocessor for the Paragon™ system. 

Cross-Development Syntax 

mac860 [switches] sourcefile 

Native Syntax 

Arguments 

Description 

See Also 

mac [switches] sourcefile 

source file Source file containing assembler and macro preprocessor commands. 

You may specify the following switches in any order: 

-Dsym=val 

-lincfile 

-oobjfile 

-v 

-y 

Defines sym as a local symbol with the value val in the macro preprocessor. 

Includes the file incfile before the first statement of source file. You can use at 
most one -I switch in a single mac860 command. 

Sets the output file name to objfile (the default is the name of the source file with 
any .s suffix removed and .mac appended). 

Displays the tool banner (tool name, version, etc.). 

. Makes the macro preprocessor output special directives that the assembler can use 
for better reporting of line numbers in the source file when errors are detected. 

The mac860 command preprocesses the specified sourcefile with the macro preprocessor and 
produces a source file ready to be assembled with as860 . 

as860, ar860, dump860, Id860, nm860, size860, strip860 

8·29 



Manual Pages Paragon 1M System C++ Compiler User's Guide 

NM860 NM860 

nm860, om: Displays symbol table infonnation for Paragon™ system object files. 

Cross-Development Syntax 

nm860 [ switches] filename ... 

Native Syntax 

nm [ switches] filename ... 

Arguments 

filename The name of the object file or library. 

You may specify the following switches in any order: 

-d Display numbers in decimal. 

-e Display external relocatable symbols only. 

-f Display all symbols, including redundant symbols. Overrides -e. 

-h Suppress headers. 

-0 Sort symbols by name. 

-0 Display numbers in octal. 

-p Use short fonn output. (See "Description" section.) 

-r Prepend the current file name to symbols. 

-T Truncate symbol names to 19 characters, plus an asterisk to indicate truncation. 

-u Display a list of undefined symbols. 

-v Sort symbols by value. 

-v Display the tool banner (tool name, version, etc.). 

-x Display numbers in hexadecimal (default). 

B-30 

o 
D 

D 

o 
Il 

G 

111 
C 

• • 
It 
r: 
I:: 

~ 

It 

m: 
~ 
b 

I: 
I'!'~ 

16~ 

I:: 

r: 
II: 

• 
IIJ 
It 

C 

Ir 

• • 
-• • 



II 

II .. ". 
" 

c 
c 
u 
c 
It 

Ij 

r: 
IJ 
[J 

[l 

[J 

lj 

• • • • 

Paragon TN System C++ Compiler User's Guide Manual Pages 

NM860 (cont.) NM860 (cont.) 

Description 

See Also 

Use nm860 to display the symbol tables of the named file(s). 

For each symbol in the output of the -p switch, one of the following characters identifies its type: 

a Absolute. 

b BSS section symbol. 

c Common symbol. 

d Data section symbol. 

f File tag. 

r Register symbol. 

s Other symbol. 

Text section symbol. 

u Undefined. 

In addition, the characters associated with local symbols appear in lowercase and the characters 
associated with external symbols appear in uppercase. 

When using the -v or -n switches (sort by value or name, respectively), the scoping information is 
jumbled, so it is advisable to use the -e (externals only) switch. 

as860, ar860, dump860, icc, in7, Id860, size860, strip860 

9-31 



Manual Pages Paragon TM System C++ Compiler User's Guide 

SIZE860 SIZE860 

size860, size: Displays section sizes of Paragon™ system object files. 

Cross-Development Syntax 

size860 [ switches] filenames 

Native Syntax 

Arguments 

Description 

8-32 

size [ switches] filenames 

filename The name of the object file. 

You may specify the following switches in any order: 

-d Display sizes in decimal (default). 

-f Full output. 

-0 Display the sizes of non-loading sections, as well. 

-0 Display sizes in octal. 

-v Display the tool banner (tool name, version, etc.). 

-x Display sizes in hexadecimal. 

Use size860 to display the section sizes of the named files. 

Note that the total size of an executable object may be greater than or less than the total of the sizes 
of all the compiled objects that make up the executable. This is because the true size of the BSS 
section is not known until after a set of objects is loaded, and because padding is done by Id860 on 
other sections. 

D 

o 
D 

o 
l: 

I: 

• 
I:] 

E 

E 
I[ 

• 
II 

• • 



• 
II 

n 
II 

II 

G 

U 

Paragon ™ System c++ CompUer User's Guide 

SIZE860 (cont.) 

I~ See Also 

.u as860, ar860, dump860, icc, if77,ld860, nm860, strip860 

III 

D 
tJ 
Jj 

D 

E 

E 
fJ 

~ 

[J 

D 

D 
[J 

IJ 

E 
[J 

El 

• • • • • 

Manual Pages 

SIZE860 (cont.) 

8-33 



Manual Pages Paragon 1M System C++ Compiler User's Guide 

STRIP860 STRIP860 

strip860, strip: Strips symbol information from Paragon™ system object files. 

Cross-Development Syntax 

strip860 [ switches] filename ... 

Native Syntax 

strip [ switches] filename ... 

Arguments 

filename The name of the target object file. 

You may specify the following switches in any order: 

-I Strip line number information only. 

-r Do not strip static, external, or relocation information. 

-v Display the tool banner (tool name, version, etc.). 

Description 

Use strip860 to strip symbol information from object files. 

The default is to strip all symbols. This is generally only acceptable for executables. 

See Also 

as860, ar860, dump860, icc, if77,ld860, nm860, size860 

8·34 



• 
n 
n 
II 

n 
IE 
n 
c 
D 

c 
P1 .. ~ 

13 
[, 

[:: 

C 

J: 
I: 

IJ 
r: 
D 

E 

• • • 
D 

Symbols 

.a extension 
Library filename 1-6 

.C extension 
Source filename 1-6 

.c extension 
Source filename 1-6 

.cc extension 
Source filename 1-6 

.cpp extension 
Source filename 1-6 

.i extension 
Preprocessed file 1-7 
Preprocessed filename 1-6 

.0 extension 
Object file 1-7 
Object filename 1-6 

.s extension 
Assembly-language file 1-7 
Assembly-language filename 1-6 

_cplusplus 
usage 4-1 

-complex 6-39 

-filebuf 6-32 

-fstream 6-21 

-ifstream 6-22 

-ios 6-9 

-iostream 6-20 

-iostream_withassign 6-24 

-istream 6-14 

-istream_withassign 6-24 

-istrstream 6-25 

-oftream 6-21 

-ostream 6-18 

-ostream_withassign 6-24 

-ostrstream 6-26 

-stdiostream 6-28 

-streambuf 6-29 

-strstream 6-27 

-strstreambuf 6-34 

A 

a.out 1-3 

abs 6-40 

Aggregates 
Alignment 5-12,5-14,5-15,5-17 
Data types 5-12 

Alignment 
Aggregates 5-12 

Index 

Index-1 



Index 

Arrays 5-14 
Backward compatibility 5-12 
Natural 5-12, 5-14, 5-15 
Offset 5-14, 5-15 
Padding 5-14, 5-15 
Quad 5-14 
Structures 5-14,5-15 
Unions 5-14 

alignments of data types 5-10 

ar manual page B-3 

ar860 manual page B-3 

arg 6-40 

Arrays 5-12, 5-14 

as manual page B-5 

as860 assembler 
manual page B-5 

Assembler 
Filenames 1-6 
Inputs 1-3 
Invocation 1-3 
Outputs 1-3 

Assembly-language file 1-7 
Filename extension (.s) 1-6 

attach 6-22, 6-32 

B 
bad 6-9 

behavior, implementation-defined 5-10 

bitalloc 6-10 

Bit-field 
Alignment 5-16 

c 
c assembling option 

output 1-7 

Index-2 

Paragon™ System C++ Compiler User's Guide 

C driver 1-3 

C switch (driver) 2-5 

c switch (driver) 2-5 

C++ extensions 
#elif directive 5-9 
#ident directive 5-10 
#pragma directive 5-9 
predefined macros 5-9 

C++ language 
extensions to 5-9 

Class 
Alignment 5-13 

clear 6-10 

close 6-23, 6-33 

Compiler 
Filenames 1-6 
Inputs 1-3 
Managing assembler and linker 1-3 
Outputs 1-3 

complex 6-38 

conj 6-40 

controlling the iCC driver 2-3 

cos 6-40 

cosh 6-40 

cross-development environment 1-1 

o 
D switch (driver) 2-6 

Data types 
Array 5-12,5-14 
Class 5-12,5-14 
Fundamental 5-11 
Scalar 5-11, 5-14 
Structure 5-12, 5-14 
Union 5-12, 5-14 
void 5-17 

o 
D 
D 



II 

II 

II 

II 

D 

U 

D 

o 
c 

[; 

r 
):; 

D 
C 

r:: 
ID 

IJ 
[J 

I: 

IJ 

IJ 
IJ 

11 
11 

• 
I 

• • • •• 

Paragon 1M System C++ Compiler User's Guide 

data types, sizes and alignments of 5-10 

dec 6-35 

Definition 
_cplusplus 4-1 

development environments 1-1 

driver 
command lines, example 1-5 
controlling 2-3 
iCC v, 1-3,2-1 
icc 1-3 
overview 1-3 

driver switches 
C2-5 
c2-5 
02-6 
E2-5 
g 2-12 
12-11 
iCC (table) 2-1 
K2-14 
L2-14 
12-14 
Inx 1-4 
M2-7 
m2-14 
nx 1-4,2-16 
02-12 
02-16 
P 2-5 
r 2-13 
S 2-5 
s 2-13 
U 2-6 
V 2-16 
v 2-16 
VV 2-16 
W2-4 
Y2-4 

dump860 manual page 8-7 

E 
E switch (driver) 2-5 

#elif directive 5-9 

end16-37 

ends 6-37 

environment 
execution 1-4 
software development 1-1 

eof 6-10 

example driver command lines 1-5 

execution environments 1-4 

exp 6-40 

extensions to C++ language 5-9 

F 
fail 6-10 

fd 6-33 

filebuf 6-32 

Filename extension 
. .a (library file) 1-6 

.C (source file) 1-6 

.c (source file) 1-6 

.cc (source file) 1-6 

.cpp (source file) 1-6 

.i (preprocessed file) 1-6 

.0 (object file) 1-6 

.s (assembly-language file) 1-6 
Input file 1-6 

fill 6-10 

flags 6-11 

flush 6-18, 6-37 

freeze 6-35 

fstream 6-20 

Function in lining 3-1 

Index 

Index-3 



Index 

Fundamental 
Data types 5-11 

G 
g switch (driver) 2-12 

gcount 6-14 

get 6-15 

getH ne 6-15 

getti ng started 1-1, 4-1, 6-1 

good 6-11 

H 
hex 6-36 

I switch (driver) 2-11 

iCC driver v 
controlling 2-3 
invocation command 1-3, 2-1 
switches (table) 2-1 

icc driver 1-3 

#ident directive 5-10 

ifstream 6-22 

ignore 6-16 

imag 6-41 

implementation-defined behavior 5-10 

in_avail 6-29 

#include, search rules for 5-10 

Include file 
Specifying 1-6 

Inlining functions 3-1 

Index-4 

Paragon 1M System C++ Compiler User's Guide 

Input file 
Primary 1-6, 1-7 

Input filename 1-6 

Instantiation of templates 7-1 

Inter-language calling 
_cplusplus 4-1 
C calling C++ 4-7 
C++ calling C 4-7 
C++ calling Fortran 4-9 
Fortran calling C++ 4-8 
Parameter passing 4-4 
Return values 4-2 
Underscore 4-3 
Upper-lower case conventions 4-2 

invoking 
iCC driver 1-3, 2-1 

io_state enum 6-8 

ios 6-9 

iostream 6-20 

iostream_withassign 6-24 

ipfx 6-16 

is_open 6-33 

istream 6-14 

istream_withassign 6-24 

istrstream 6-25 

iword 6-11 

K 
K switch (driver) 2-t4 

L 
L switch (driver) 2-14 

"----"""---------------~----------

11 

It 
l~ 



II 

D Paragon TN System C++ Compiler User's Guide Index 

0 

n 
G 

IE I switch (driver) 2-14 norm 6-41 

a Id manual page B-24 nx switch (driver) 1-4,2-16 

I~ Id860 linker 
~ manual page B-24 

0 
0 libnx.a 1-4 o switch (driver) 2-12 

C Library 
a switch (driver) 2-16 Filename extension (.a) 1-6 

C Linking 1-6 Object file 1-7 

Linker Filename extension (.0) 1-6 

r' .1 Filename extensions 1-6 oct 6-36 
Filenames 1-6 

of stream 6-21 r~ Libraries 1-6 ) 

IJ Inx switch (driver) 1-4 open 6-23, 6-33 

log 6-41 open_mode enum 6-8 

D opfx 6-18 

D M organization of manual v 

M switch (driver) 2-7 
osfx 6-18 

C 
m switch (driver) 2-14 

ostream 6-17 

n 
mac manual page B-29 

ostream_withassign 6-23 

[J mac860 manual page B-29 
ostrstream 6-26 

[; macros, predefined 5-9 
ouCwaiting 6-29 

I ,;~ 

Mangling 8-1 
Output file 

[J Extension 1-7 
Manual pages B-1 Temporary (work) files 1-3 

IJ manual, organization of v overview 

~ Math header file 
driver (iCC) 1-3 

Including 6-3 

[' I Math library p 

[J 
Linking to 6-2 

P preprocessing option 
output 1-7 

C: N P switch (driver) 2-5 

C Name mangling 8-1 pcount 6-26 

D 
native development environment 1-1 peek 6-16 

nm manual page B-30 polar 6-41 

• nm860 manual page B-30 pow 6-41 

• • Index-5 

b' 



Index 

#pragma directive 5-9 

precision 6-11 

Preprocessed file 1-7 
Filename extension (J) 1-6 

preprocessor macros, predefined 5-9 

Primary input file 1-6, 1-7 

put 6-18 

putback 6-16 

pword 6-11 

R 
r switch (driver) 2-13 

rdbuf 6-12, 6-23, 6-25, 6-26 

rdstate 6-12 

read 6-16 

real 6-42 

resetiosflags 6-37 

running a program 

s 

on a single node 1-4 
on multiple nodes 1-4 

S compiling option 
output 1-7 

S switch (driver) 2-5 

s switch (driver) 2-13 

sbumpc 6-29 

Scalars 
Data types 5-11 

search rules for #include 5-10 

seek_dir enum 6-8 

Index-6 

Paragon ™ System C++ Compiler User's Guide 

seekg 6-17 

seekoff 6-30 

seekp 6-18 

seekpos 6-30 

setbuf 6-23, 6-29 

setf 6-12 

setfil6-36 

setiosflags 6-37 

setprecision 6-36 

setw 6-36 

sgetc 6-30 

sgetn 6-30 

sin 6-42 

sinh 6-42 

size manual page 8-32 

size860 manual page 8-32 

sizes of data types 5-10 

skip 6-12 

snextc 6-30 

software development environments 1-1 

Source file 
Filename extenstion (.C) 1-6 
Filename extenstion (.cc) 1-6 
Filename extenstion (.cpp) 1-6 

sputbackc 6-31 

sputc 6-31 

sputn 6-31 

sqrt 6-42 

stdiostream 6-28 

stossc 6-31 

str 6-27, 6-35 

II 

II 

o 
D 

r:: 
ar 
It: 
I[ 

II 
l: 
(~ 

L 
r::: 
I:: 

E 

K 
II 
I: .-
• • '. I: 

tl.-"l 



• • • 
D 

D 

II 

II 
iD 

D 

IE 

e 
D 

E 
[J 

• • • • • 
IJ 

• 
I 
IJ 
[J 

IJ 

IJ 

e 

• • • .. 
• 

------- --------- -- --_.-

Paragon TM System c++ Compiler User's Guide 

streambuf 6-28 

strip manual page 8-34 

strip860 manual page 8-34 

strstream 6-27 

strstreambuf 6-33 

Structures 
Alignment 5-14,5-15 
Size 5-14, 5-15 

switches (driver) 
C2-5 
c 2-5 
02-6 
E 2-5 
g 2-12 
12-11 
iCC (table) 2-1 
K2-14 
L 2-14 
12-14 
Inx 1-4 
M 2-7 
m2-14 
nx 1-4, 2-16 
02-12 
02-16 
P 2-5 
r 2-13 
52-5 
s 2-13 
U2-6 
V 2-16 
v 2-16 
VV 2-16 
W2-4 
Y2-4 

sync 6-17, 6-31 

sync_with_stdio 6-12 

T 
tellg 6-17 

tellp 6-19 

Template instantiation 7-1 

tie 6-13 

types, sizes and alignments of 5-10 

u 
U switch (driver) 2-6 

Unions 5-12,5-14 

unsetf 6-13 

v 
V switch (driver) 2-16 

v switch (driver) 2-16 

variables, sizes and alignments of 5-10 

VV switch (driver) 2-16 

w 
W switch (driver) 2-4 

width 6-13 

write 6-19 

ws 6-36 

X 
xalloc 6-13 

y 

Y switch (driver) 2-4 

Index· 

Index-7 



Index Paragon 1M System C++ Compiler User's Guide 

Index-8 

----~-~----~~-~-

--;,.- .. 

i'" 
ill -, 

(t 

.( ," 

C 


