
I~

n
.~

C

I~

G

IJ

1"1

""

IJ
I)

E

IJ

IJ

~

D

D .' • •

TM
Paragon System

April 1996

Order Number: 312824-004

High Performance Parallel Interface
Manual

Intel@ Corporation

Copyright ©19% by Intel Server Systems Product Development, Beaverton, Oregon. All rights reserved. No part of this work may be reproduced
or copied in any form or by any means ... grapbic, electronic, or mechanical including photocopying, taping, or information storage and retrieval
systems ... without the express written consent of Intel Corporation. The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation
makes no commitment to update or to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to restrictions
stated in Intel's software license agreement. Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subpara
graphs (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule
vard, Santa Clara, CA 95052-8119. For all Federal use or contracts other than DoD, Restricted Rights under FAR 52.227-14, ALT. m shall apply.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

286
287

i386
i387
i486
i487
i860

Other brands and names are the property of their respective owners.

Intel
Inte1386
Inte1387
Inte1486
Inte1487

iPSC
Paragon

• •
II

II

• • • • • • •

• • • • •

• • • • • • • •
• • • •

D

n
D

I~

C

D

I~

I:
I ""!"I

.0.1

I~

1::1
[j

IJ

I]

IJ

I]

I']

Ij

IJ

I]

e
D

• • •

~o~ ___ 0 o ____________________________ ~

WARNING
Some of the circuitry inside this system operates at hazardous energy and
electric shock voltage levels. To avoid the risk of personal injury due to
contact with an energy hazard, or risk of electric shock, do not enter any
portion of this system unless it is intended to be accessible without the use
of a tool. The areas that are considered accessible are the outer enclosure
and the area just inside the front door when all of the front panels are in
stalled, and the front of the diagnostic station. There are no user service
able areas inside the system. Refer any need for such access only to tech
nical personnel that have been qualified by Intel Corporation.

CAUTION
This equipment has been tested and found to comply with the limits for a
Class A digital device, pursuant to Part 15 of the FCC Rules. These limits
are designed to provide reasonable protection against harmful interfer
ence when the equipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio frequency energy and,
if not installed and used in accordance with the instruction manual, may
cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own
expense.

LIMITED RIGHTS
The information contained in this document is copyrighted by and shall re
main the property of Intel Corporation. Use, duplication or disclosure by
the U.S. Government is subject to Limited Rights as set forth in subpara
graphs (a)(15) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule
vard, Santa Clara, CA 95052. For all Federal use or contracts other than
000 Limited Rights under FAR 52.2272-14, ALT. III shall apply. Unpub
lished-rights reserved under the copyright laws of the United States.

iii

iv

--• • • • • • • • • •
I:

• • • • • ..
• • • • • • • • • • • • • •

I!

D

II

II

n .'" ..
n

r:

I:
IJ

I~

IJ

IJ
I'~

.J

(]

IJ

1:1
(j

o
D

• • •

Preface

The American National Standards Institute (ANSI) has standardized a high speed external
connection for supercomputers. That product is called High Performance Parallel Interface, or
HIPPI. This manual describes the Paragon™ system HIPPI controller and explains how to install and
configure the controller in a Paragon system.

Audience

NOTE

Because Para~on ™ system HIPPI controllers are supported by
both Paragon T XP/S Systems and Paragon ™ XP/E Systems, this
manual discusses the HIPPI controller (as part of a Paragon
system) in generic terms.

This manual has two audiences:

• Intel Customer Support Engineers who have completed the Paragon System Site Support course
will be primarily interested in those portions of the manual that discuss installation procedures
(Chapters 3, 5, and 6).

• Engineers and system administrators who need to understand how the RIPPI controller works
on their system will be primarily interested in the portions of the manual that discuss RIPPI
packets, the raw RIPPI interface library, libhippi.a, the HIPPI commands, and usage notes
(Chapters 1, 2, and 4, plus Appendices A, B, C, and D).

v

Preface Paragon ™ System High Performance Parallel Interface Manual

NOTE

This manual assumes that you understand the ANSI HIPPI
specifications HIPPI-SC, HIPPI-LE, and HIPPI-FP.

In this manual, "operating system" refers to the operating system that runs on the nodes of the
Paragon(TM) supercomputer.

Organization
Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Appendix A

AppendixB

AppendixC

AppendixD

Introduces HIPPI usage, protocol, and standards.

Describes the HIPPI controller, its architecture, and its operation.

Explains how to install a HIPPI controller.

Discusses software configuration issues (network configuration, packet
building, and raw HIPPI).

Discusses HIPPI diagnostics.

Describes the HIPPI internal, external, and loopback (diagnostic) cables.

Contains manual pages for the raw HIPPI library (libhippi.a).

Contains manual pages for the HIPPI commands (bippi_setmap and
bippCshowmap).

Contains usage notes and examples for learning how to use the raw RIPPI
interfaces.

Contains instructions for setting up IPI-3 device drivers for use with the
HIPPI interface.

Notational Conventions

vi

This manual uses the following notational conventions:

Bold Identifies command names and switches, system call names, reserved words,
and other items that must be used exactly as shown.

~~~~----~~~. --~--~.----.. ----~---------------~-------.- .. -----~--------------------

• • • • • • • • • • • 
I: 

• • • • • • • • • • • • • • • • • • • 



II 

o 
I) 

II 

~ 

II 

If 

IJ 
1"1 

J 

I] 

IIJ 

I~ 

I~ 

IJ 

IJ 

I: 
•

·'1 
. .J 

IJ 

IJ 

IJ 

Ij . ~ 
II 

• • • 

Paragon TM System High Performance Parallel Interface Manual Preface 

Italic Identifies variables, filenames, directories, processes, user names, and writer 
annotations in examples. Italic type style is also occasionally used to 
emphasize a word or phrase. 

Plain-Monospace 
Identifies computer output (prompts and messages), examples, and values of 
variables. Some examples contain annotations that describe specific parts of 
the example. These annotations (which are not part of the example code or 
session) appear in italic type style and flush with the right margin. 

Bold-Italic-Monospace 
Identifies user input (what you enter in response to some prompt). 

Bold-Monospace 
Identifies the names of keyboard keys (which are also enclosed in angle 
brackets). A dash indicates that the key preceding the dash is to be held down 
while the key following the dash is pressed. For example: 

<Break> <8> <Ctrl-Alt-Del> 

(Brackets) Surround optional items. 

(Ellipsis dots) Indicate that the preceding item may be repeated. 

(Bar) Separates two or more items of which you may select only one. 

{ (Braces) Surround two or more items of which you must select one. 

Applicable Documents 
For information about limitations and workarounds, see the Paragon ™ System Software Release 
Notes. Release notes are also located in the directory lusrlsharelrelease_notes on your Paragon 
system. 

For more information, refer to the current versions of the following manuals: 

Intel Corporation manuals: 

Paragon™ System User's Guide 
312489 
Provides an overview of the operating system. Tells how to develop and run 
programs . 

Paragon™ System Commands Reference Manual 
312486 
Provides detailed information about the commands for the operating system. 

vii 



Preface 

viii 

_______________ ·_"c __ • __ ._._ ••• " ••• _________ • _______ • ____ •• --------------------------

Paragon™ System High Performance Parallel Interface Manual 

Paragon TM System Hardware Maintenance Manual 
312822 
Provides detailed maintenance infonnation for the Paragon system. 

Paragon TM System Administrator's Guide 
312544 
Provides detailed instructions for system administration for the Paragon 
system. 

Paragon ™ System Diagnostic Reference Manual 
312702 

ANSI documents: 

Provides detailed information about the configuration files SYSCONF.TXT 
and DEVCONF. TXT. 

High-Performance Parallel Inteiface-Physical Switch Control (HIPPI-SC) REV 1.7 
X3T9.3/91-023 

High-Performance Parallel Inteiface-Framing Protocol (HIPPI-FP) REV 4.2 
X3T6/91-146 

High-Performance Parallel Inteiface-Physical Layer Protocol (HIPPI-PH) REV 8.1 
X3T6/91-127 

High-Performance Parallel Inteiface-Link Encapsulation Protocol (HIPPI-LE) REV 2.0 
X3T9/90-119 

• • • • • • • • • • • • 
a 

• • • • • • • • • • • • • • • • 
• • • 



II 

o 
11 

n 

n 
G 

I: 

IJ 

[j 

III 

• • • 

Paragon™ System High Performance Parallel Interface Manual Preface 

Comments and Assistance 
Intel Scalable Systems Division is eager to hear of your experiences with our products. Please call 
us if you need assistance, have questions, or otherwise want to comment on your Paragon system. 

France Intel Corporation 
1 Rue Edison-BP303 

U.S.AJCanada Intel Corporation 
Phone: 800-421-2823 

Internet: support@ssdJntel.com 

United Kingdom Intel Corporation (UK) Ltd. 
Scalable Systems Division 
Pipers Way 

78054 St. Quentin-en-Yvelines Cedex 
France 

Swindon SN3 IRJ 
England 

05908602 (toll free) 

Intel Japan K.K. 
Scalable Systems Division 
5-6 Tokodai, Tsukuba City 
Ibaraki-Ken 300-26 
Japan 
0298-47-8904 

0800212665 (toll free) 
(44) 793 491056 
(44) 793 431062 
(44) 793 480874 
(44) 793 495108 

Germany Intel Semiconductor GmbH 
Domacher Strasse 1 
85622 Feldkirchen bei Muenchen 
Germany 
0130813741 (toll free) 

World Headquarters 
Intel Corporation 

Scalable Systems Division 
15201 N.W. Greenbrier Parkway 

Beaverton, Oregon 97006 
U.S.A. 

(503) 677-7600 (Monday through Friday, 8 AM to 5 PM Pacific Time) 
Fax: (503) 677-9147 

ix 



Preface Paragon ™ System High Performance Parallel Interface Manual 

x 

• 
•• 
• • • • • • • • • • .' • • • • • • • • • • • • • • • • • • • 



It 

D 

11 

U 

C 

I: 
n 

c 
1"'1 

1<1 

IJ 

Ij 

Ij 

I) 

rJ 
IJ 

IJ 

IJ 

I: 
IJ 

IJ 

1C\'l 
j 

[j 

• • • • 

Chapter 1 
Introduction 

Table of Contents 

How the HIPPI Controller is Used .............................................................................................. 1-1 

HIPPI Protocol ................................................................................................................................... 1-3 

Standards ............................................................................................................................................ 1-4 

The Physical Standard ....................................................................................................................... 1-4 

The Switch Control Facility Standard ................................................................................................. 1-4 

The Framing Protocol Standard ......................................................................................................... 1-5 

The Link Encapsulation Standard ...................................................................................................... 1-5 

Chapter 2 
Theory of Operation 

The HIPPI Controller ....................................................................................................................... 2-1 

HIPPI Controller Architecture ...................................................................................................... 2-3 

HIPPI Controller Operation ........................................................................................................... 2-4 

Basic HIPPI Framing Protocol ............................................................................................................ 2-4 

Data Flow ........................................................................................................................................... 2-5 

xi 



Table of Contents Paragon™ System High Performance Parallel Interface Manual 

Sending a Packet to Its Destination ................................................................................................... 2-7 

The I-Field .......................................................................................................................................... 2-9 

I-Field Source Addressing ......................................................................................................... 2-10 

I-Field Destination Addressing ................................................................................................... 2-11 

The Use of Switches In the HIPPI Environment ............................................................................... 2-11 

Chapter 3 
Installing the HIPPI Controller 

Tools Needed ..................................................................................................................................... 3-1 

The HIPPI Controller and the Node Board ............................................................................. 3-1 

Installing the HIPPI Controller .................................................................................................... 3-2 

Installing the Cables ....................................................................................................................... 3-4 

Closing the Cabinet Door ................................................................................................................... 3-5 

Chapter 4 
Software Configuration 

Network Configuration ................................................................................................................... 4-1 

Configuring The System For HIPPI .................................................................................................... 4-2 

Configuring the Network Interface ...................................................................................................... 4-2 

Activating the Network Interface ........................................................................................................ 4-3 

Optimizing TCP/IP Performance Over the HIPPI Channel .............................................................. ..4-4 

Determining ULA Addresses for HIPPI Boards .................................................................................. 4-5 

Routing Tables ................................................................................................................................... 4-6 

Routing Tables for Simple Networks ........................................................................................... 4-6 

Routing Tables for Complex Networks ........................................................................................ 4-7 

Routing Table Commands ........................................................................................................... 4-8 

xii 

-----"-""-- "-"-"~------------

• • 
• .' • • • • • • • • • • • • • • 
I.: 

• • • • • • • • • • • • • 



II 

D 

n 

I: 
n 

1:1 

I~ 

IJ 
[J 

Id 
1:1 

1~.'1 
, j 

IJ 

IJ 

rJ 

IJ 
Ij 

I:i 

o 

• • • 

Paragon TM System High Performance Parallel Interface Manual Table of Contents 

Server Interface and Packet Building ...................................................................................... 4-8 

The FP _Header_Area ........................................................................................................................ 4-9 

The D1_Area .................................................................................................................................... 4-10 

The LE_Header ......................................................................................................................... 4-10 

The D2_Area .................................................................................................................................... 4-11 

Inbound Packets .............................................................................................................................. 4-11 

Raw HIPPI .......................................................................................................................................... 4-11 

Raw HIPPI Usage Models ................................................................................................................ 4-11 

Using Raw HIPPI ............................................................................................................................. 4-14 

Chapter 5 
HIPPI Diagnostics 

Diagnostics ......................................................................................................................................... 5-1 

Power-On Self Test ............................................................................................................................ 5-1 

Paragon ™ System Diagnostic Program ............................................................................................. 5-1 

Loopback Tests .................................................................................................................................. 5-2 

Chapter 6 
Cable Parts and Specifications 

Internal Cables .................................................................................................................................. 6-1 

Internal Cable Characteristics ............................................................................................................ 6-1 

Internal Cable Implementation ........................................................................................................... 6-1 

External Cables ................................................................................................................................. 6-2 

External Cable Characteristics ........................................................................................................... 6-2 

External Cable Implementation .......................................................................................................... 6-2 

xiii 



Table of Contents Paragon TM System High Performance Parallel Interface Manual • • • • 
• 

Loopback Cable ................................................................................................................................ 6-2 • 

Loopback Cable Implementation ........................................................................................................ 6-2 • 

Appendix A 
HIPPI Calls 

HIPPI_BIND() .................................................................................................................................... A-2 

HIPPI_CLOSEO ................................................................................................................................ A-4 

HIPPI_CONFIGO .............................................................................................................................. A-5 

HIPPI_MEMFREEO .......................................................................................................................... A-7 

HIPPI_MEMGETO ............................................................................................................................. A-9 

HIPPI_OPENO ................................................................................................................................ A-11 

HIPPI_READO ................................................................................................................................ A-13 

HIPPI_READ_COMPLETEO ........................................................................................................... A-15 

HIPPI_READ_REQUESTO ............................................................................................................. A-17 

HIPPI_WRITEO ............................................................................................................................... A-19 

Appendix B 
HIPPI Commands 

HIPPI_SETMAP ................................................................................................................................. B-2 

HIPPI_SHOWMAP ............................................................................................................................. B-4 

xiv 

• • • • • 
a 

• • • • • 
II 

• • • • 
• • • • • • • • • 



II 

o 
n 
n 
I: 

n 
c 

I~ 

IJ 

I:J 

I~ 

1"1 
,..I 

IJ 

IJ 
:'-,,1 .,;J 

( l 
,C.J 

IJ 
Ij 

a 

• • • • 

Paragon™ System High Performance Parallel Interface Manual 

Appendix C 
Usage Notes 

Table of Contents 

Introduction ....................................................................................................................................... C-1 

Using the HIPPI_DATA Mode ..................................................................................................... C-1 

HIPPI Packets ................................................................................................................................... C-1 

FP Header ......................................................................................................................................... C-1 

hippLopen(dev_name, hippi_mode, mode) ...................................................................................... C-2 

hippi_bind(ihandle, ulp, port) ............................................................................................................. C-2 

hippLconfig(ihandle, ifield, ulp, b, d1_data, d1_len) ......................................................................... C-3 

hippi_memget(ihandle, size) ............................................................................................................. C-3 

hippi_write(ihandle, ptr, length) ......................................................................................................... C-3 

hippi_read(ihandle, ptr, bytes_wanted) ............................................................................................. C-5 

hippi_memfree(ihandle, ptr, size, how) ............................................................................................. C-5 

hippLread_request(ihandle, bytes_wanted) ..................................................................................... C-6 

hippi_read_complete(ihandle, ptr) ..................................................................................................... C-6 

hippi_close(ihandle) .......................................................................................................................... C-6 

Code Example ................................................................................................................................... C-7 

Using The HIPPI_RAW Mode .................................................................................................... C-13 

HIPPI Packets ................................................................................................................................. C-13 

hippLopen(dev_name, hippi_mode, mode) .................................................................................... C-14 

hippi_bind(ihandle, ulp, port) ........................................................................................................... C-14 

hippLconfig(ihandle, ifield, ulp, b, d1_data, d1_len) ....................................................................... C-14 

hippi_memget(jhandle, size) ........................................................................................................... C-14 

hippi_write(ihandle, ptr, length) ....................................................................................................... C-14 

hippUead(ihandle, ptr, bytes_wanted) ........................................................................................... C-16 

hippLmemfree(ihandle, ptr, size, how) ........................................................................................... C-17 

hippLread_request(ihandle, bytes_wanted) ................................................................................... C-17 

hippi_read_complete(ihandle, ptr) ................................................................................................... C-18 

hippi_close(ihandle) ........................................................................................................................ C-18 

Code Example ................................................................................................................................. C-18 

xv 



_.--------------------

Table of Contents Paragon TN System High Performance Parallel Interface Manual 

Appendix D 
Using IPI Devices With Paragon™ Systems 

Using The IPI-3lnterface on Paragon™ Systems ............................................................... 0-1 

The IPI Protocol ................................................................................................................................ 0-1 

Using the IPI-3 Interface ................................................................................................................... 0-1 

System Setup Overview .................................................................................................................... 0-2 

Device Requirements ........................................................................................................................ 0-2 

IPI Addressing ................................................................................................................................... 0-3 

Setting Up An IPI-3 Interface on Paragon TMSystems ........................................................ 0-3 

Connecting the IPI-3 Interface to a HIPPI Channel .............. ............................................................. 0-3 

Using Bootmagic Variables ........................................................................................................ 0-3 

Setting IPI Slave Connection Control Variables ................................................................... 0-4 

Setting IPI Slave Facility Variables ...................................................................................... 0-5 

Setting IPI Slave Partitions ................................................................................................... 0-5 

Setting IPI Command Reference Numbers .......................................................................... 0-6 

Dynamic Control of IPI-3 Connections With IOCTL Functions ................................................... 0-7 

Creating IPI-3 Device Entries ............................................................................................................ 0-8 

Creating a Disk Label ...................................................................................................................... 0-10 

Labeling the IPI Device ................................................................................................................... 0-11 

Creating New File Systems ............................................................................................................. 0-11 

Adding IPI Entries to Mount Tables ................................................................................................. 0-11 

Mounting The File Systems ............................................................................................................. 0-12 

Optimizing IPI-3 PFS Performance ................................................................................................. 0-12 

xvi 

• • 
II 

• • • • • -I 
• • 
I: 

• • • • • • 
II 

• • • • • • • • • • • • • 



II 

II 

n 
II 

n 
I f 

;1" 

I) 

I " ,I 

G 

I~ 

I;] 

C 

I~ 

I:J 

. ~ 
aJJ 

~ 

D 

• • • • 

~~~~~~~~~~~~--~- -------------- --------- .--------

Paragon™ System High Performance Parallel Interface Manual Table of Contents

Figure 1-1.

Figure 1-2.

Figure 2-1.

Figure 2-2.

Figure 2-3.

Figure 2-4.

Figure 2-5.

Figure 2-6.

Figure 2-7.

Figure 2-8.

Figure 2-9.

Figure 2-10.

Figure 3-1.

Figure 3-2.

Figure 3-3.

Figure 4-1.

Figure 4-2.

Figure 4-3 .

Figure 4-4.

Figure 4-5.

Figure 5-1.

List of Illustrations

How HIPPI Can Be Used .. 1-2

HIPPI Protocol .. 1-3

The HIPPI Controller Mounted on a Paragon™ System GP Node Board 2-2

HIPPI Framing Protocol .. 2-5

Data Flow in a HIPPI Controller ~ ... 2-6

The HIPPI Signal Diagram .. 2-8

I-Field Format ... 2-9

I-Field with Source Routing, D = 0 .. 2-10

I-Field with Source Routing, D = 1 .. 2-11

I-Field with Destination Address, D = 0 .. 2-11

I-Field with Destination Address, D = 1 .. 2-12

An 8 x 8 HIPPI Switch ... 2-12

Opening the Paragon ™ System Cabinet Door ... 3-3

Removing a Node Board from the Cardcage .. 3-4

Installing the Combined HIPPI/Node Board in the Cardcage ... 3-5

Sample Network with One HIPPI Switch .. 4-7

HIPPI Packet Format .. 4-9

Link Encapsulation Packet Format Header .. 4-1 0

A HIPPI Framing Protocol Packet with an LE_Header .. .4-12

HIPPI Packet Incoming and Outgoing Flow .. 4-13

Connecting the Loopback Cables ... 5-2

xvii

Table of Contents

Figure C-1.

Figure C-2.

Figure C-3.

Figure C-4.

Figure C-5.

xviii

Paragon TM System High Performance Parallel Interface Manual

FP Header ... C-2

The ptr and length Arguments for hippLwrite (HIPPI_DATA Mode) C-3

The ptr and length Values Returned by hippUead .. C-5

The ptr and length Arguments for hippLwrite (HIPPI_RAW Mode) C-15

The ptr and length Values Returned by hippUead .. C-17

• •
II

• • •
• •
•• • •
K

K

II

• • •
•
K

• • • • • • • • • • • •
•

II

o
D

II

n
c
11

C

I!

I]

IJ

1:1

IJ

IJ

~

e
[J

IJ
r~1

:J

IJ

1''''1.·
-"I

I1l

D

II

• • •

Introduction

The Paragon TM System High Performance Parallel Interface controller (called the RIPPI controller
in this manual) is a daughtercard that attaches to a Paragon system node board (GP or MP node
board) and provides high speed communications with other, heterogeneous systems, networks, and
devices.

This chapter briefly describes how the HIPPI controller is used, how data is transmitted across the
H1PPI channel, and the RIPPI standards.

How the HIPPI Controller is Used
As shown in Figure I-Ion page 1-2, the HIPPI controller is typically used in one of three ways:

• As a channel device between a Paragon system and a disk farm or another mass storage device.

• As a network device that enables applications to communicate with remote systems by using
data-communications protocols such as TCPIIP (Transmission Control ProtocollInternet
Protocol). This form of communication relies on an external switch.

• As a point-to-point device that enables two systems to communicate.

1-1

Introduction

Paragon ™ System

1-2

Paragon™ System High Performance ParaUellnterface Manual

Channel

Point-to-Point
Device

Network
Device

Paragon ™ System

Figure 1-1. How HIPPI Can Be Used

Disk Farm

Tape Unit

Workstation

• • • • • •
• • • • •
I

•

D

II

n
n
I '!I ..

II]

rJ

IJ

IJ

[J

[J

IJ

I~

IJ

1:1

['j

e
II

• • •

Paragon™ System High Performance Parallel Interface Manual Introduction

HIPPI Protocol
The HIPPI controller transmits bursts of data using the protocol illustrated in Figure 1-2. Every time
a connection is established, one or more packets are sent across the HIPPI channel. Each packet
contains one or more bursts. Bursts contain the actual data and are 1 word wide (32 bits of data, 4
bits of parity) and 256 words long. To accommodate packets that are not exact multiples of 256, the
ANSI standard allows either the first burst or the last to be shorter than 256 words. The Paragon
system lllPPI controller sends the short burst last. Refer to Chapter 4 for more information about
how the controller transmits data.

I 8;9,01 Cho

B

A New Connection
Established

B

Figure 1-2. IllPPI Protocol

B

The number of packets-per-connection and bursts-per-packet depends upon the HIPPI mode used.
The MPC mode transmits multiple packets per connection. The CNT (CoNTinuation) mode
transmits multiple 110 reads and writes per connection and packet.

1-3

-.-~--~~---------~----------

Introduction Paragon TM System High Performance Parallel Interface Manual

Standards
The ANSI lflPPI standard is composed of six individual standards that address the Physical and the
Data Link layer (the lowest two layers) of the International Standards Organization (ISO) reference
model. The ANSI lflPPI standard does not address the other elements of the ISO reference model.
The six ANSI HIPPI standards are:

• The Physical standard (HIPPI-PH).

• The Switch Control Facility standard (HIPPI-SC).

• The Framing Protocol standard (HIPPI-FP).

• The Link Encapsulation standard (HIPPI-LE).

• The Intelligent Peripheral Interface standard (HIPPI-IPI-3).

• The Memory Interface (HIPPI-MI).

The following sections discuss the first four of these standards.

The Physical Standard

The Physical Standard defines the mechanical, electrical, and signaling protocol specifications for a
one-way, point -to-point interface. The Physical Layer uses a pair of cables, which consist of a bundle
of twisted-pairs, with a maximum length of 25 meters.

Data transfer occurs via data bursts. Each burst contains up to 256 words, each containing 32 bits of
data and four bits of parity. A word is transferred during every 25 Mhz clock cycle. In general, the
Physical Layer operates by host-based flow control (or READY signals) that regulate the
transmission of each data burst. Look-ahead flow control (or sending multiple READY signals)
allows the average data transfer rate to approach the peak transfer rate of 800M bits per second.

The Switch Control Facility Standard

1-4

The Switch Control Facility Standard defines the control for physical layer switching in a lflPPI
environment. A physical switch provides the method for interconnecting multiple HIPPI-based
systems. The Switch Control Facility provides source routing and destination addressing support
along with supporting different switch sizes. The Switch Control Facility does not generate the
I-field, but it defines how a switch should interpret the I-field. Refer to ''The I-Field" on page 2-9 for
moreinforntation.

•
• • •
• • • •
• • •
I:

II

• • • •
• • • • • • • • • • • • • • •

Ii

n
D

II

n
c

C

I~

I:
IJ

1=
r:
I:
IJ

(j

IJ
Ij
IJ

Ij
~

II

• • •

Paragon ™ System High Performance Parallel Interface Manual Introduction

The Framing Protocol Standard

The Framing Protocol Standard defines a common data framing protocol that supports large data
transfers, a best-effort delivery mechanism with no error recovery, and an identifier field for
multiplexed upper layer protocols. One HIPPI frame is equivalent to one packet. Each packet
contains one or more bursts and each burst can contain anywhere from 1 to 256 words. Each word
contains four bytes (32 bits of data and four parity bits). If a burst contains less than the maximum
of 256 words, it is referred to as a short burst. The Framing protocol consists of three parts:

Refer to "Server Interface and Packet Building" on page 4-8 for more information about the framing
protocol.

The Link Encapsulation Standard

The Link Encapsulation Standard defines the methodology by which packets of data can be
transported. The standard conforms to the IEEE 802.2 and ISO 8802-2 Logical Link Control
standards. The Link Encapsulation Standard also provides the methodology for sending the 48-bit
destination and source addresses which conform to the IEEE 802.1A standard.

1-5

Introduction Paragon™ System High Performance Parallel Interface Manual

1-6

• •
III

• •
tI

•
.: .,
• • •
I:

• • • • •
.:

• • • • • • • • • • • • •

II

o
n
II

n

c

IJ

•
"!IlI

,""

I:
I'd

IJ

IJ
Ij

e

• • • •

Theory of Operation

This chapter describes the HIPPI controller, its architecture, and its operation.

The HIPPI Controller
As shown in Figure 2-1 on page 2-2, the HIPPI controller is a daughtercard that mounts on a
Paragon TM system node board via the node board's expansion interface. The controller measures 8.7
by 9.8 inches and has its own front panel connectors and LED cutouts. (The HIPPI controller's front
panel replaces the front panel of the node board.)

The HIPPI controller contains the logic and connectors for two 32-bit simplex HIPPI channels. One
channel is called the source channel (for outgoing data) and the other is called the destination
channel (for incoming data). The HIPPI controller is a dual-simplex 110 channel. Only one HIPPI
node is required in order to achieve full dual-simplex operation.

The HIPPI controller is a high-speed, direct memory access (DMA) device that transfers data,
commands, and status between the node board memory and the HIPPI channel. The controller is
designed to transfer data on both channels simultaneously. An on-board microcontroller manages
channel connect and disconnect functions as well as burst-level and packet-level data transfers. The
host node supplies power to the HIPPI controller through the expansion connector and mounting
standoffs.

Packet descriptors in host node memory are constructed by the driver and include a pointer to a list
of variable-sized memory blocks. The lists are implemented using a series of packet and buffer
descriptors (data structures containing pointers and control and status bits that describe the buffers).

2-1

Theory of Operation Paragon 1M System High Performance Parallel Interface Manual

2-2

Source
Channel
Connector -~

ee

Destination DST

Channel (RA)

Connector

00

~

o 0 :
DOD
DOD
DOD
DOD
DOD
[J 0 0

DOO 10l 0 0
10l lOl[JDO[JOD 0

Ell [JDDDODD

t HIPPI Controller Paragon™ system
• GP Node Board

~~:~~::PI ~J@t:::::::::::~~~I~~~ICWIUCI ~1::::Sii~il==l+~c:J::J
GP Node Board

Figure 2-1. The HIPPI Controller Mounted on a Paragon™ System GP Node Board

• • • • • • • • .,:
•

D

II

D

n
C

n
11

D

I~

~

1"'1
~

1:1

1:1

1:1
[j

D

• • • •

Paragon TM System High Performance Parallel Interface Manual Theory of Operation

The IDPPI controller contains the following components:

• AMCC 52020 source interface device.

• AMCC 52021 destination interface device.

• Data first-in-first-out (FIFO) memories.

• 80960CF microcontroller with 128KB of RAM.

• Flash EPROM for 80960CF code, configuration, and diagnostics.

• Local and host expansion bus control logic.

• Control and status registers.

Direct memory access control logic.

• mPPI cable connectors.

• Activity light emitting diodes (LEDs).

• mPPI controller performance monitor.

HIPPI Controller Architecture
The mPPI controller has two parts: a decision-making unit and a data-transfer unit. The
decision-making unit is a microcomputer consisting of an 80960 processor, RAM, flash EPROM,
and all status and control registers. The status registers provide the current status of the entire
controller hardware. The control registers provide a means to exercise control over the controller
hardware and to interrupt the host.

The data-transfer unit consists of DMA logic, source and destination FIFOs, and source and
destination IDPPI interfaces. The DMA logic transfers blocks of data between the node memory and
the FIFO. A block consists of a maximum of 512 64-bit word transfers that are equivalent to four
32-bit word HIPPI bursts.

The host node has complete access to the controller's hardware. The controller, however, can only
access the node board's memory. If the node and controller attempt to access each other's hardware
simultaneously, the 80960 processor waits until the host access cycle completes.

DMA accesses for node memory are aligned on a cache-line boundary and are not cache-coherent.
However, the 80960 processor access of node memory could be from any byte and is
cache-coherent. The host should not cache data that it shares with the DMA, but it can cache its
shared data with the 80960 processor. Data shared with the DMA includes the HIPPI data that will
be sent out or has been received. Data shared with the 80960 includes data structures.

2-3

Theory of Operation Paragon 1M System High Performance Parallel Interface Manual

HIPPI Controller Operation
This section discusses the following:

• Basic HIPPI framing protocol.

• Data flow in a HIPPI controller.

• Packet transmission.

• The I-field.

• Switches in the HIPPI environment.

Basic HIPPI Framing Protocol

2-4

The RIPPI controller transmits bursts of data using the protocol illustrated in Figure 2-2 on page 2-5.
Every time a connection is established, one or more packets are sent across the HIPPI channel,
depending upon the HIPPI mode being used. Each packet contains one or more bursts, also
depending upon the RIPPI mode used. Bursts contain the actual data and are 1 word wide (32 bits
of data, 4 bits of parity) and 256 words long. To accommodate packets that are not exact multiples
of 256, the ANSI standard allows either the first burst or the last to be shorter than 256 words. To
implement the standard, the Paragon system RIPPI controller sends the short burst last. Refer to
Chapter 4 for more information about how the controller transmits data.

~ ~-~~---~--.--.- --.~~--~------------

• • • • • • • • • • • •
II

• • • • • • • • • • • • • • • • • • •

II

II

D

U

D

o
I~

r:
IJ

IJ
I'~
I ,.,J

I]

1:1

I)

IJ

IJ

1:1
I]

o
III

• • •

Paragon ™ System High Performance Parallel Interface Manual Theory of Operation

.---------r--------,------------------------------~-----....
Connection
Established

Connection
Established

Connection
Established

'-------~--------I.::::--------------------------'------.....

,///'
-'- -" '" ". ". ". ". ". ". ".

'"
",."

'" -'. ".

I ' __ p_a_c_k_e_t _-+-__ p_a_c_k_e_t _ [:::':::: ': _:::::: ::- -: -::] Packet
...........

'" -'.
,

-'. ". ". ". '-. --. '"
". ".

I ' __ B_u_r_m_, ,_,_, ,_, ,+I ___ B_u_rs_t_---IC,'::~ ,:::,: -_: -::_ -::: -: -__ .L.1 __ B_u_r_s_t _--I

Data Flow

,
,

,
,

,
,

256 Words of 32 Bits Each

Figure 2-2. HlPPI Framing Protocol

This section describes the data flow in a IDPPI controller (refer to Figure 2-3 on page 2-6).

The IDPPI controller transfers data using direct memory access (DMA). DMA transfersJrom
memory are called DMA reads and DMA transfers to memory are called DMA writes. DMA
transfers occur in a maximum of 4K-byte blocks. Transfers occur when there is room for a block in
the source FIFO or when there is a block available in the destination FIFO. Block transfers alternate
between channels if both have requests.

Parity is written to the source FIFO during DMA transfers. The HIPPI-PH standard specifies odd
parity on outgoing data, so the node bus parity is inverted before writing into the FIFO. Parity is
checked by and passed through the S2020 interface circuit.

2-5

Theory of Operation

....
""')

u)
:::l
III
c: o

Control Signals

.~ 32-Bit Address
as
~ w
Q)
"0 o z

fu < MoBil Dam >

Paragon™ System High Performance Parallel Interface Manual

80960 Processor
DMA Controller
Status Registers
Control Registers

Source
FIFO

Destination
FIFO

Control Signals

32-Bit Data

Interface
Circuitry
(2020)

Interface
Circuitry

"---------I (2021)

Figure 2-3. Data Flow in a IUPPI Controller

2-6

• • • • • • • • • • • • • •
• • • •
• • • • • • • • • • • • • •

B

n
n
o
I~

I.n

II

I~

I~

I~

r'

.'~' I:

I~

IJ

[" , J

IJ
• "",1 ,J

IJ
(J

[J

t;j

e

• • • •

Paragon ™ System High Performance Parallel Interface Manual Theory of Operation

The controller communicates with node memory using DMA at full speed (zero wait states for
sequential accesses). This is a peak bandwidth of 400M bytes/sec and does not include the initial
transfer latency, memory refresh cycles, DRAM page boundaries, or cache-coherency cycles.

There are 512 transfers made per block (4 K bytes), so with overhead, the block takes about 12
micro-seconds. Since a HIPPI burst takes 10.3 ms (258 clocks at 25 MHz), each channel uses about
29% of the node bus bandwidth with equally fast devices at the other ends.

The full 100 MB/s data rate is a theoretical maximum, measured to and from the node memory.
There are several factors that decrease the data rate. First, due to inter-burst overhead, the source
channel data rate is actually 98.8 MB/s, and the destination is actually 99.2 MB/s. Second, the
remote device may be significantly slower than the controller, and HIPPI flow control will throttle
the transfers down to the rate of the remote device. Finally, system throughput is limited by
inter-node transfers, both by the mesh data rate and the node bus bandwidth required to move data
into memory.

Sending a Packet to Its Destination

This section describes how data is transmitted across a simple HIPPI channel. Figure 2-4 shows
which signals are active during a simple HIPPI transmission.

An important part of RIPPI transmission is the I-field. The I-field consists of a 32-bit field that
contains connection routing information. The I-field precedes each HIPPI connection. Routing
tables convert the network addresses to I-fields. This conversion process allows the HIPPI protocol
to send and receive data between a wide variety of systems and peripherals.

The I-field is bounded by two events: the REQUEST signal being set to true and the CONNECT
signal being set to true. At the highest level, a connection is bounded by both the REQUEST and the
CONNECT signals being set to true. At the next highest level, the packet (which contains bursts of
data) is bounded by the packet signal being set to true. This means that all bursts of data inside a
packet occur between the time when the packet signal is set to true and the time when it is set to false .
At the lowest level, each burst of data is bounded by the burst signal being set to true.

The I-field is described in more detail in the following section.

2-7

Theory of Operation

Connection
Signals

Packet
Delimiter

Burst
Delimiter

Interconnect

Data Lines

Parity Lines

2-8

Paragon TM System High Performance Parallel Interface Manual

Single Simplex Channel

Request -
- Connect -
... Ready --

Packet --~
Burst .. -

S-to-O Interconnect 1 (2) .. -- D-to-S Interconnect 1 (2)

--
32 (64) Bit Data Bus .. -

4 (8) Bit Data Bus .. -
Clock .. -

Figure 2-4. The UIPPI Signal Diagram

Connection
Signals

Data
Throttle

Interconnect

~ -c: o
~
c:

~ o

I .i
• • • • • •
II .,
• •
I:

&

• • • • • • • • • • • • • • • • • • •

II

o
II

..".,

.~:

111
jjj

C
• "1

'1iJ

1"'1
.J

IJ

C
19

j

IJ

1=
IJ

IJ

IJ

IJ

I'
(j

o

• • • •

Paragon 1M System High Performance Parallel Interface Manual Theory of Operation

The I-Field

The I-field is a 32-bit field sent as part of the sequence of the physical layer operations when
establishing a connection between a HIPPI source or destination. The I-field contains connection
routing information. Routing tables convert network addresses to I-fields, thus allowing the HIPPI
protocol to communicate with many different systems. (Refer to "Routing Tables" on page 4-6 for
more information.)

Figure 2-5 on page 2-9 shows the I-field format and is followed by a description of the I-field bits.
Refer to the HIPPI-SC specification for more information about the I-field.

Bit 31 23 15 7 o

ILIR5~dDI pS lei

L

RSV

W

D

PS

I I I I I I I I I I I I
Routing Control

Figure 2-5. I-Field Format

Locally administered (bit 31). IfL=O, the I-field is defined by the HIPPI-SC
standard. If L= 1, the entire I-field will fall under the user's local
administration, and the HIPPI-SC standard will not apply.

Reserved (bits 30, 29). The reserved bits are transmitted as zeros.

Double-wide (bit 28). IfW=O, the Source is using the 800M bits/sec date rate
option. The Wbit is used in conjunctionwith the INTERCONNECT signals
on Cable A and Cable B. The INTERCONNECT signals tell a switch or end
point that the cable is physically attached to an active HIPPI port. The Wbit
is used to tell the switch or Destination end point whether or not Cable B is
being used in a particular connection.

Direction (bit 27). IfD=O, the right-hand end of the routing control field is the
current sub-field. The right-hand end contains the least-significant bits. See
Figure 2-5. IfD=I, the left-hand end of the routing control field is the current
sub-field. The left -hand end contains the most significant bits. When a reverse
path exists, a destination end point may return a reply to a received packet by
using the same I-field with the D bit complemented.

Path Selection (bits 26, 25). These bits are used as follows:

• 00 = Source routing: A specific route through the switches, with output
port numbers specified for each switch.

2-9

Theory of Operation Paragon ™ System High Performance Parallel Interface Manual

2-10

c

• 01 = Destination address: Switches select the first route from a list of
possible routes.

• 11 = Destination address: Switches select a route.

• 10 = Reserved

Camp-on (bit 24): If C=O, the switch replies with a connection reject
sequence if the switch is unable to complete the connection. If C= I, a switch
will attempt to establish a connection until either the connection is completed
or the source aborts the connection request.

I-Field Source Addressing

When the I-field PS bits are set to 00, the routing control field is split into multiple sub-fields. The
size of the sub-fields depends on the size of the switch using it. The number of bits in the sub-field
equals 10g2N, where N is the switch size. A 16 x 16 HIPPI switch would use a 4-bit sub-field (Figure
2-6).

When the I-field D bit is set to 0, the switch uses the current sub-field (right-most bits of the routing
control field) to select the switch output port. The switch right-shifts (end off) the routing control
field by the number of bits in the sub-field and inserts the switch port number in the left-most bits of
the routing control field (Figure 2-6).

Bit 31 23 15 7

Log
N o

Input to the
Switch

Output from
the Switch Other Routing Information

Figure 2-6. I-Field with Source Routing, D = 0

When the I-filed D bit is set to 1, the current sub-fields are at the left -end of the routing control field.
The routing control field is shifted left, and the port number is inserted at the right end of the routing
control field (Figure 2-7 on page 2-11).

• • • • • • •
Il

• • •
a
~

a

• • • • • • • • • • • • • • • • •
•

II

D

II

II

n
c
n
n
D

l~

I~

[j

IJ

IJ

1"1. ' . .1

I~

I~

IJ

I)

Ij

n
II

• • •

Paragon ™ System High Performance Parallel Interface Manual Theory of Operation

Bit 31 23 15 7

Log
N o

Input to the
Switch

Output from
the Switch Other Routing Information

Bit 31

Figure 2-7. I-Field with Source Routing, D = 1

I-Field Destination Addressing

When the I-field PS bits are set to 01 or 11, the routing control field is split into two 12-bit fields:
one 12-bit field specifies the address of the destination end point and the other specifies the address
of the source end point. When the D bit (direction) is set to 0, the right-hand 12 bits specify the
destination address, and the left-hand 12 bits specify the source address (Figure 2-8). When the D
bit is set to 1, the right hand 12 bits specify the source address, and the left-hand 12 bits specify the
destination address (Figure 2-9).

23 11 o
I

L RSV W D PS C Source Address Destination Address 0 00 x 0 x1 x

Figure 2-8. I-Field with Destination Address, D = 0

The Use of Switches In the HIPPI Environment

A HIPPI switch is a physical device that accepts input from one port and, after interrogating the
I-field, passes all control and data to the receiving port. A lllPPI switch may be compared to an
electrical switch in that, once the connection is made between an input port and an output port, it is
as if a solid wire were connecting the two ports. The Camp-on bit in the I-field provides control of
the switch. If the Camp-on bit is set, the switches are instructed to attempt a connection until the
connection is completed or the source cancels the connection request.

2-11

Theory of Operation

Bit 31

L
0

2-12

Paragon™ System High Performance Parallel Interface Manual

23 11 o
I

RSV W D PS C Destination Address Source Address 00 x 1 x1 x

Figure 2-9. I-Field with Destination Address, D = 1

A HIPPI switch is typically identified by the number of input and output ports in the form "A x B."
The "A" refers to the number of input ports and "B" to the number of output ports. Thus, an 8 x 8
switch consists of eight input ports and eight output ports

In a practical HIPPI application, a switch may provide switching capability for numerous ports.
Figure 2-10 shows an 8 x 8 HIPPI switch. In Figure 2-10, these input and output ports are labeled
Al through A8 and Bl through B8. The switch in Figure 2-10 could be used to control the
connection between any A port to any B port, thus allowing numerous connections.

AS A6 A7 A8

1, 1,
" "

.. <III It. <III It. <III It. <III It. ... -
... '" ... '" 88 A4

_ .. <III It. <III It. <III It. ~. ... - '" ... '" A3 87

A2 86 .. <III It. <III It. <III It. <III It. - '"

A1 .. • It. • It. <III It. • It. ... - 85

" "
, ,ir

81 82 83 B4

Figure 2-10. An 8 x 81llPPI Switch

•

IE

n
n
II

n

n
D

D

D

I~

IJ

('1
cJ

[1

IJ
(J

~

Ij

e
o

• • • •

Installing the HIPPI Controller

This chapter explains how to install the HIPPI controller in a Paragon ™ system. Refer to the cabling
guide in the Paragon™ System Hardware Maintenance Manual for information about how to cable
the controller to the system and how to run cables out to an external system or peripheral device.

Tools Needed
You need the following tools:

• Small Phillips screwdriver.

• Small flat-bladed screwdriver.

• Antistatic wrist strap.

• Antistatic surface on which to lay the boards while working on them (the antistatic bags used to
ship the boards are satisfactory).

The HIPPI Controller and the Node Board
As shown in Figure 2-1 on page 2-2, the system is shipped from the factory with the HIPPI controller
already mounted on a node board. The controller is mounted on the expansion interface connector
of the node board. When combined, the board and controller (called the HIPPI board) take up two
slots in the cardcage.

The primary side of the HIPPI board (the side with most of the active components) faces away from
the node board. The HIPPI controller mounts to six metal standoffs on the node with 2-52 screws,
#2 washers, and lockwashers. The standoffs provide proper clearance for the expansion connector
(11).

3-1

Installing the HIPPI Controller Paragon ™ System High Performance Parallel Interface Manual

The channel connectors on the HIPPI board are accessible through the IDPPI board's front panel.
On the front panel, the channel connectors are labeled "SRe" for the source connector (J2) and
''DST'' for the destination connector (J3). The board contains a pair of LED's for each channel, one
red and one green. Each pair is mounted at the upper end of its associated connector.

Installing the HIPPI Controller

3-2

CAUTION

You must shut the system down before installing the controller.
Before shutting the system down, make sure that no applications
are running on the system. For more information about how to shut
the system down, refer to the Paragon™ System Administrator's
Guide.

Follow these steps to install the controller:

1. Turn off the system's power.

2. Once power is off, open the cabinet door (Figure 3-1 on page 3-3). The door latch is located at
the bottom right of the front door. Unlock the door by moving the latch 90° counterclockwise.

3. Attach the antistatic strap to your wrist and connect the other end of the strap to a solid ground.

NOTE

The HIPPI controller/node assembly requires two cardcage slots.
The following steps tell how to remove node boards from the
cardcage. If you already have two adjacent empty slots in which to
install the HIPPI controller, skip steps 4 through 8.

4. Loosen the capture screws at the top and bottom of the node's front panel (Figure 3-2 on page
3-4).

5. Remove the node board by grasping the nylon clips on the top and bottom of the board, and pull
the clips toward you. This should dislodge the board.

"-"-"-~-~~-"------------------

• • • • • • • • • • • •
II

• • • • •
I(

• • • • • • • • • • • • •

Ii

D

D

II

IE
I:
II

11

[J

IJ

I"

I:
• .. '''1

J

1:1

[J

I)

IJ
Ij

III

• • • •

Paragon TM System High Performance Parallel Interface Manual Installing the HIPPI Controller

Front door lever

-
Figure 3-1. Opening the Paragon TM System Cabinet Door

6. Carefully slide the board out of the cardcage. Take care to handle the board only by its edges.

7. Put the node board in an antistatic bag and lay it aside.

8. Repeat steps 4 through 7 for the second node.

9. Remove the combination IDPPI controllerl node from its antistatic bag. Handle the board only
by its edges.

10. Align the board edges with the cardguide rails. Slide the board into the cardcage until the board
connectors meet the backplane (Figure 3-3 on page 3-5).

3-3

Installing the HIPPI Controller Paragon TM System High Performance Parallel Interface Manual

Nylon Clips ·0

Figure 3-2. Removing a Node Board from the Cardcage

11. Align the node board connector with the backplane and press firmly on the board until the board
connector mates with the backplane.

12. When the board is properly seated, the nylon clips straighten out and the board front panel is
flush with the frame of the cabinet.

13. Tighten the capture screws at the top and bottom of the board front panel.

Installing the Cables

3-4

Each HIPPI controller comes with two identical 6.S-foot, l00-pin "internal" cables that connect to
the controller. One cable attaches to the Source Channel Connector and the other attaches to the
Destination Channel Connector. Each RIPPI controller also comes with two 2S-meter "external"
cables that are used to connect to an external system, switch, or peripheral device. The internal and
external cable connectors are linked together either at an I/O panel (in early systems) or outside of
the cabinet (in later systems). Refer to the Paragon™ System Hardware Maintenance Manual for
detailed HIPPI cabling procedures.

•
• • • • • •
•
• • •
K

• • • • •
•
K

• • • • • • • • • • • • •

Ii

D

II

n
I~

I!

1.""1
"j

r:
I!j

D

II

• • •

Paragon"" System High Performance Parallel Interface Manual Installing the HIPPI Controller

Figure 3-3. Installing the Combined HIPPIINode Board in the Cardcage

For each system, there is a single loopback cable that is used to perform loopback diagnostic tests.
This cable connects to the ends of the source and destination channel connectors on the HIPPI
controller to allow you to verify loopback transfers. Refer to Chapter 5, "HIPPI Diagnostics" for
more information about using the loopback diagnostic cable.

Intel supplies all these cables for your system. Refer to Chapter 6, "Cable Parts and Specifications,"
for more information about the cables.

Closing the Cabinet Door

Close and latch the front door to the Paragon system cabinet. Lock the door by moving the latch 90°
clockwise. See Figure 3-1 on page 3-3.

3-5

Installing the HIPPI Controller

3-6

Paragon ™ System High Performance Parallel Interface Manual -.
• • • •
• • • -I •

II

D

o
o
D

o
n
II

n
c
.~

IJ

I~

IJ

I~

IJ

C

~

• • • •

Software Configuration

This chapter discusses the following software configuration issues:

• Configuring the system for the HIPPI board.

• Configuring a network interface.

• Activating the interface.

• Defining and installing routing tables.

• Building data packets.

• Raw HIPPI.

Network Configuration
The device driver for the HIPPI controller serves as a bridge between the Mach microkernel and the
HIPPI controller card. The device driver is integral to the microkernel, but you must configure the
network interface for your own system.

4-1

Software Configuration Paragon TM System High Performance Parallel Interface Manual

Configuring The System For HIPPI

1. On the Diagnostic Station, update thelusrlparagon/bootIDEVCONF.1XTfile to tell the system
where the HIPPI board is located. The entry in DEVCONF.1XT should be similar to this
example, which specifies a IDPPI board in Cabinet 0, Backplane A, Slot 12:

HIPPI 00A12 H04

The ''H04'' is a generic version/rev ID used with IDPPI boards. Refer to the Paragon™ System
Commands Reference Manual for more information about the DEVCONF. TXT file.

2. Once the DEVCONF. TXT file is current, reset the system to create the SYSCONFIG. TXT and
SYSCONFIG.BIN files:

reset autocfg

Configuring the Network Interface

4-2

To configure the network interface, you must know the following values:

I-field settings The I-field is a 32-bit control field defined by the HIPPI-SC specification. For
more information, refer to ''The I-Field" on page 2-9.

IP address Each HIPPI board in a system must be assigned its own unique IP address.
Your system administrator can provide the IP address.

ULA address The ULA (Universal LAN Address) for each IDPPI board is unique and is
written into the controller's flash memory when the controller is
manufactured. Your system administrator can provide the ULA (the ULA
number is printed on each IDPPI board). The ULA has the following form:
1:0c:34:65:0:26.

The following steps show how to configure a IDPPI interface that starts automatically when the
Paragon system is rebooted.

1. Log in to the Paragon system as root.

2. Back up the files letclhosts and Isbinlinit.dlinet.

3. Edit theletclhosts file to add network address(es) of the HIPPI board(s). The following line is
an example of a network address specification for a HIPPI board in letclhosts:

123.45.678.910 si123 HIPPI_PARA

• • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

II

o
n
n
G

c
D
I ll) ,,.

I!

I~

I~

IJ

IJ

IJ

I)

(j

Ij

II

• • •

Paragon™ System High Performance Parallel Interface Manual Software Configuration

NOTE

It is recommended to place the HIPPI board(s) on a different
subnet than the Ethernet interfaces in the Paragon system to
avoid network addressing conflicts.

4. Create the letc/hippi.map file, using the format in the following example:

Lines with commments begin with #
Inet Address ULA
123.45.678.910 00:BA:00:00:00:11
123.45.678.911 00:AA:00:06:2C:2B

HIPPI I-field Address
Ox000002
Ox000003

• The first column contains the Internet address(es) of the HIPPI board(s).

• The second column contains each board's ULA address-found by looking on the HlPPI
board. The ULA may also be found by looking at the HIPPI node's boot output with the '
Paragon System Debugger.

• The third column contains the HIPPI I-field addresses, which indicate which port ofthe
HlPPI switch that the board is connected to.

NOTE

The I-field addresses must be unique, even if a HIPPI switch is not
used.

5. Configure the HlPPI interface as described below under Activating The Network Interface.

6. Reboot the Paragon system to enable the HlPPI interface(s) and to verify that they automatically
start at reboot.

Activating the Network Interface

The ifconfig command assigns an Internet address and activates the interface. It may be used
manually at the operating system prompt, or may be added to the Isbinlinit.dlinet file so that the
interface is configured each time the Paragon system is reset.

4-3

Software Configuration Paragon™ System High Performance Parallel Interface Manual

The following example command assigns and activates a HIPPI interlace:

/sbin/ifconfig \<hippinode\> ifbipO ~92.9.2.5 netmask
255.255.255.0 up

• hippinode is the number of the node on which your HIPPI controller is installed (using the
root-node numbering scheme). (Refer to the Paragon™ System Diagnostic Reference Manual
for information about the node-numbering schemes.)

• 192.9.2 is the network number in the example of a class C network address and 5 is the host
number. Note that an entry for this IP address and a unique hostname must be in the letclhosts
file.

NOTE

All HIPPI devices must be configured after configuring the boot
node and prior to configuring the standard network loopback
device 100.

It is recommended that the ifconfig commands be added to the Isbinlinit.dlinet file, so that the HIPPI
interlaces are configured automatically when the Paragon system is reset. The following example
shows the lines that need to be added:

THIS COMMAND CONFIGURES THE HIPPI DEVICE
/sbin/ifconfig "<12>ifhipO" 123.45.678.910 netmask 255.255.255.0
-trailers
Put this *before* configuring 100

THIS COMMAND LOADS THE HIPPI NETWORK ROUTING TABLE INTO THE #
HIPPI DRIVER
/usr/sbin/hippi_setmap ifhipO /etc/hippi.map

THIS COMMAND SHUTS DOWN THE HIPPI INTERFACE
Insert this command at the end of the inet file
as one of the steps to stopping (disabling)
the network.
/sbin/ifconfig "<12>ifhipO" down

Optimizing TCPIIP Performance Over the HIPPI Channel

4-4

To maximize the perlormance of TCP/IP over the HIPPI channel, add the following bootmagic
variable definition to the MAGIC.MASTER file:

•

n
n
D

1.1

n
I~

n
I)

r~

c
I-~

·I'l JL,'

• ""1
· oJ

c
Cl

(J

IJ

I]

Ij

rJ

I]

rJ
1"1

.. ..J

(j

G

II

• • •

Paragon ™ System High Performance Parallel Interface Manual Software Configuration

This allocates larger socket buffers for the program and enables the Paragon system to use window
scaling with other systems that use it. Reboot the Paragon system to initiate the changes made to the
MAGIC.MASTER file.

NOTE

In programs, I/O operations done over the sockets should be at
least 64K, to maximize Paragon system HIPPI TCP/IP
performance.

Determining ULA Addresses for HIPPI Boards

Each HIPPI board is assigned a unique Universal LAN Address (ULA) when it is made. The ULA
is printed on the HIPPI board. You can also determine a HIPPI board's ULA with the following
procedure:

1. From the Paragon system console, connect to the node board where the HIPPI daughtercard is
attached:

-#
Valid Nodes - node list
New Node:

When prompted for a new node, enter the number of the node where the HIPPI daughtercard is
attached.

2. Examine the resulting output (about 30 lines) and locate the line that looks similar to the
following example:

Hippi 10:0 ULA (MAC) - 00:aa:00:65:0:26, MTU 65535

In this example, the ULA is OO:aa:00:65:0:26.

3. Reconnect to the boot node,

-#
Valid Nodes - node list
New Node:

When prompted for a new node, enter the number of the boot node.

4-5

Software Configuration Paragon 1M System High Performance Parallel Interface Manual

Routing Tables

4-6

HIPPI routing tables provide the server with a mapping from the Internet address and the ULA
address to the I-fields. Each table includes the IP address, the ULA, and the I-field. A routing table
for all Paragon system HIPPI interfaces is maintained in a file that this manual refers to as a
hippi.map.

Routing Tables for Simple Networks

The following example shows a hippi.map file for the simple, one-switch network shown in Figure
4-1 on page 4-7.

HIPPI Network Routing Map for switch through the HIPPI
Switches, using Source Routing protocol

L=O
Rs=OO
w=o

Conforms to HIPPI-SC specification
Reserved

800 Mbit/sec, 32-bits wide
Destination Port in LSB
Source Routing protocol

Ps=OO
C=l Camp on line until connected or src aborts

Bit 3
1

2
3

1
5

o
7

o
o

+---------------------------------+

ILRsWDPsC<--- Other Info ---->Portl
+---------------------------------+

I-field Bit Values

Port switches:
Jaguar =0
Cheetah =1
Panther =2
Cougar =3

The I-field for Cougar is:

Bit 3 2 1 o o

1 3 570
000000010000000000000000000000011 =

A

Camp-on bit

IP Address IEEE
#-----------

AA

I I
Switch 3

Ox1000003

Comments

• • • • • • • •
• • •
.:

•
• • •
•
• • • • • • • • • • • •
• •
•

It

o
n
D

I~

I.:

It
C

I~

I:]

IT!

IJ

IJ

I:j

I]

I]

IJ
I~'!

oJ

IJ
141
~

~

El

• • • •

Paragon TM System High Performance Parallel Interface Manual

192.9.3.1
192.9.3.2
192.9.3.3
192.9.3.4

Jaguar
192.9.3.1

Panther
192.9.3.2

1:0c:34:65:0:26
1:0c:34:65:0:27
1:0c:34:65:0:28
1:0c:34:65:0:29

Oxl000000
Oxl000002
Oxl00000l
Oxl000003

Figure 4·1. Sample Network with One HlPPI Switch

Routing Tables for Complex Networks

Software Configuration

#Jaguar
#Panther
#Cheetah
#Cougar

Cheetah
192.9.3.3

Cougar
192.9.3.4

In the simple network shown in Figure 4-1, a single routing table supports all hosts on the network,
and all hosts go through the same switch to reach their destination. In a more complex network with
multiple switches, there may be multiple routing tables, and maintaining them becomes a more

4-7

Software Configuration Paragon ™ System High Performance Parallel Interface Manual

complex job. Each host's routing table must define the interconnecting paths through the switching
fabric. If there are failures with the switches, you must modify the routing tables to accommodate a
new path.

Routing Table Commands

There are two routing table commands: bippi_showmap and bippCsetmap.

Use the bippCshowmap command to display the current routing table. For example:

Use the bippCsetmap command to load a routing table (formatted like hippi.map shown
previously) into the device driver. For example:

b.ippi_setmap ifbipO b.ippi • map

NOTE

Every time the hippi_setmap command is executed, it appends
the table to the one in the driver. Use the hippi_setmap -d
command line switch to delete the table in the driver first.

Refer to Appendix A for more information about the hippCsetmap and hippCshowmap
commands.

Server Interface and Packet Building

4-8

The system server supports TCPIIP traffic over HIPPI as well as raw RIPPI frames via the raw
HIPPI library, libhippi.a. Use of the HIPPI interface for TCPIIP is transparent to the user. As with
other interfaces the TCPIIP protocol engine routes data over the HIPPI interface when the network
address of the destination dictates.

The server formats each packet of information as specified in Figure 4-2 on page 4-9. Each packet
consists of three areas: the FP _Header_Area, the DCArea, and the D2_Area. The FP _Header_Area
contains the Upper Level Protocol (ULP) identification which designates the destination ULP. This
identifies where the packet of information is to be delivered. Both Dl~ea and D2_Area are data
areas. These packet areas are described in the following sections.

• • • • • • • • • • • • •
-• • • • • • • • • • • • • • • • • •

II

n
n
II

11

n
n
n
G

I~

I:

I:

I~

Ij

~

e

• • • •

Paragon™ System High Perfonnance Parallel Interface Manual Software Configuration

Bit 31 23 15 7 o
I

ULP-ID P B Reserved D1_Area_Size ~_0IIset

FP _HeadecArea

D2_Size

D1_Area D1_Data_Set
0- 1016 Bytes

Offset (0 - 7 Bytes)

D2_Data_Set
o - (4G Bytes - 2) Bytes

I
Fill (0 - 2047 Bytes)

Figure 4-2. HIPPI Packet Format

The FP _Header_Area comprises the ULP-ID, which is eight bits in length. A value of one in the P
bit indicates that aD I_Data_Set is present in this packet. A value of zero in the P bit indicates there
is no DCData_Set present in this packet. A value of zero in the B bit indicates the D2_Area starts
at or before the beginning of the second burst of the data packet. A value of one in the B bit indicates
the D2_Area starts at the beginning of the second HIPPI-PH burst of the data packet. The
Dl_Area_Size designates the number of 64-bit words between the end of the 64-bit Header Area and
the start of the D2_Area. The D2_ Offset field contains the number of bytes in the Offset field in the
D2_Area (the number of ''junk'' bytes at the beginning of the D2_Area). The D2_Size field contains
the number of bytes in the D2_Area (including the Offset field); this number is aligned on an 8-byte
boundary.

4-9

Software Configuration Paragon™ System High Perfonnance Parallel Interface Manual

The D1_Area

4-10

....
... CI)
CI) CJ)
"0 I
3l Ul s
J: .- as

I 0
W I
....I o

The D1_Area follows the FP _Header_Area. If the P bit of the Header Area is equal to zero, then the
DCData_Set is not present and the contents of the DCArea are ignored. The DCData_Set is the
first information in the D1_Area. This area contains control information that may be delivered to the
Destination Upper Level Protocol on receipt, without waiting for the arrival of other bursts of the
packet. The maximum size of the D1_Data_Set is 127 64-bit words.

The Link Encapsulation (LE) protocol specification is the currently supported protocol for detailing
the header information passed to the D1_Area. The LE protocol envelopes a 802.2 LLC packet for
transmission over HIPPI Framing Protocol. The Destination Hub Address, Destination Port, Source
Hub Address and Source Port fields in the LE_Header identify the physical address of the hub which
this packet has started from or is destined to. Figure 4-3 shows the LE Packet Format.

Bit 31 23 15 7 o
I

Fe w M_Type Destination_Switch_Address

D_A_T S_A3 Source_Switch_Address

Reserved I Destination IEEE Address

Destination IEEE Address (last 32 bits)

LE_Locally Administered 1 Source IEEE Address

Source IEEE Address (last 32 bits)

Figure 4-3. Link Encapsulation Packet Format Header

• • • • • • • •
• • • •
a

• • • • • • • • • • •
• • • • • • •
•

n
II

D

I~

I~

I~

1'"1
, ... 1

IJ

1=
r:

IJ

I]

Ii

IJ

IJ

11

IJ

rJ
(j

e
B

• • •

Paragon ™ System High Performance Parallel Interface Manual Software Configuration

Figure 4-4 on page 4-12 depicts a HIPPI packet. The figure shows the Framing Protocol and the Link
Encapsulation Packet Format together. The LE_Header is placed in the D1_Area of the HIPPI FP
Packet.

If the D2_Size is not zero in the Header Area, D2_Area will then immediately follow the D1_Area
and will start on a 64-bit boundary and will contain the D2_Data_Set. If the B bit in the Header Area
equals one, then the D2_Area will start at the beginning of the second HIPPI burst. The Offset is the
unused bytes from the start of the D2_Area to the first byte of the D2_Data_Set.

The D2_Data_Set can range in size from zero to an indeterminate number of bytes. The Fill part of
the D2_Area is the unused bytes between the end of the D2_Data_Set and the end of the D2_Area,
for example, the end of the packet. If a D2_Size of all binary ones is used, then there is no Fill in the
D2_Area

Inbound Packets

When an incoming HIPPI packet is received, the device driver sends it to the destination channel
using standard microkemel network code. The HIPPI packets are filtered using the raw HIPPI Upper
Layer Protocol (ULP) and (optionally) a port number that must appear in the first word of D 1. If the
filterreads an LE_Headerin the packet, then that packet is sentto the TCP-IP server. See Figure 4-5.

Raw HIPPI
The raw HIPPI interface is implemented as a user library (libhippi.a) that sits on top of the Mach
device interface. The library consists of routines that allow you to define HIPPI packet formats and
to open, close, write, and read HIPPI channels. To use libhippi.a, your code must contain the include
file raw_hippi.h. For detailed information about the libhippi.a functions, refer to the manual pages
in Appendix A.

Raw HIPPI Usage Models

The raw HIPPI interface supports two usage models, called HIPPCRA W and HIPPCDAT A. You
select a model when you call the bippCopen function (see Appendix A). Whichever model you use,
the library maintains state information to ensure that each open HIPPI connection functions
correctly.

4-11

Software Configuration Paragon TM System High Performance Parallel Interface Manual

Bit 31

4-12

Byte 0 Byte 1 Byte2 Byte 3

23 15 7 o
I

0 4 18
Framing Protocol

Word 0

1
(FP) Header

5C

PC Iw M3ype Destination_Switch_Address 2

D_A_T S_A_T Source_Switch_Address 3

Reserved Destination_IEEE_Address (first 16 bits) 4

Destination_IEEE_Address (last 32 bits) 5

LE_Locally_Administered Source_IEEE_Address (first 16 bits) 6

Source_IEEE_Address (last 32 bits) 7

A A A A 0 3 0 0

0 0 0 0 0 8 0 0

Remainder of DOD I P Data Set

I
Fill (0 to 2047 Bytes)

Figure 4-4. A IDPPI Framing Protocol Packet with an LE_Header

The RIPPCRA W model assumes you are a sophisticated user of HIPPI and therefore does not
provide RIPPI frame formatting. Instead, you are responsible for formatting the HIPPI frame,
allocating and deallocating memory using the functions in libhippi.a, and rounding word sizes (per

• • • • • • • • • • • ..
K

• • • • • • • • • • • • • • • • • • •

II

n
II

u
I~

wy.
aiOJ

n
I~

c
c
c
IJ

IJ

1:1

£J

IJ

IJ

('" al

(j

1:1

IJ
[j

Ij

e
III

• • •

Paragon™ System High Performance Parallel Interface Manual Software Configuration

Application

•
Telnet I FTP

j~ j~

r
"

TCPIIP HIPPI Server I Raw HIPPI Server I
~~ ~

send recei ve

" "
HIPPI Network Device Driver I

~

,

I HIPPI Controller I
~~

,
source destination

Figure 4-5. IDPPI Packet Incoming and Outgoing Flow

the lllPPI-FP specification).

The lllPPCDATA model assumes you are not a experienced user of lllPPI and therefore does
provide lllPPI frame formatting. You are also responsible in this model (as in lllPPCRA W), for
allocating and deallocating memory using the libhippi.a functions. When you use these memory
functions in the lllPPCDATA model, memory is allocated in such a way that the library can add
lllPPI headers to frames without copying data and the driver is able to process frames efficiently.

4-13

Software Configuration Paragon ™ System High Performance Parallel Interface Manual

Using Raw HIPPI

4-14

Before you can use raw HIPPI, your system administrator must use the rmknod command (the
remote version of mknod) to make a special file for each IDPPI board on your system. Normally
this is done just after system installation and need not be done again (unless a mPPI board is
changed). As an example, the following command creates a mPPI device (called hippi.one) having
major device number 24, minor device number 0, and node number 5:

r.mknod /dev/bippi.oDe c 24 0 5

NOTE

rmknod creates the special file with the permissions set according
to your umask. You may want to use chmod to change to
permissions required for your system.

Refer to Appendix C for usage notes and examples of using the raw HIPPI interface.

----- "--~---~~---"----------~------

D

II

II

.:
I[

.:

.:

• .' • •
K

II

II

• • • •
I:

• • • • • • • • • • • • •

It

D

D

U

I)

II

II

r
--'-",

1::1

IJ

IJ

IJ

I:]
Ij

[]

IJ

IJ

Ij

e

• • • •

HIPPI Diagnostics

This chapter introduces the RIPPI controller diagnostic tests and explains how to install the
diagnostic cable used with the loopback tests.

Diagnostics
The RIPPI controller diagnostic tests consist of a power-on self-test, and tests that are part of the
Paragon™ System Diagnostic package. Portions of the power-on test process require a loopback
cable to be installed on the HIPPI controller.

Power-On Self Test

The power-on test is an extension of the Paragon System Node Confidence Test (NCT). If the
power-on test passes, the system assumes that the RIPPI controller functions correctly. This test is
not intended to provide detailed fault isolation beyond the Field Replaceable Unit (FRU) level. The
HIPPI power-on test returns a pass/fail indication to the main node-confidence test.

Paragon ™ System Diagnostic Program

The Paragon System Diagnostic (PSD) program includes a comprehensive set of tests for evaluating
the Paragon system RIPPI interfaces, and to isolate faults to the Field Replaceable Unit (FRU) level.

For more detailed information about the Paragon System Diagnostics, see the Paragon™ System
Diagnostic Reference Manual and the Paragon™ System Diagnostic Troubleshooting Guide.

5-1

HIPPI Diagnostics Paragon High Performance Parallel Interface Manual

Loopback Tests

5-2

Some parts of the power-on test require a loopback cable. If the loopback cable isn't installed, these
tests don't execute, but return "PASS". If you install a loopback cable, the tests transfer data through
the cable.

The loopback cable connects the }flPPI controller's source and destination channel connectors
together (Figure 5-1).

DST
(RA)

•

A

Loopback Cables
(Length: 5m)

Figure 5·1. Connecting the Loopback Cables

• • • • • • • • • • • •
II

• • • • • • • • • • • • • • • • • • •

II

II

n
u

n
I~

I~

. .,.,

..:..i

(j

11

Ij

I~

(j

I~

I~' · J

I:
I~!

....,.:

IJ

IJ

IJ

[J

IJ

fJ

II

• • •

Cable Parts and Specifications

This chapter contains the specifications for the internal, external, and loopback cables that connect
the lllPPI controller to external devices and that are used to test the controller's operation.

Internal Cables
The two internal cables for each lflPPI controller connect to the front panel of the controller. One
cable is for the source channel, one for the destination channel.

Internal Cable Characteristics

The ends of each internal cable are labeled PI and P2. The PI end is a right-angle, 1oo-pin, plug
connector that has a metal housing and latching retainer hardware; it mates with J2 and 13 on the
lflPPI controller board.

The P2 end of the internal cable is a standard lflPPI connector; it receives the standard external
lflPPI cable connector (including retaining screws). The standard lflPPI female screw locks are also
located on the P2 end of the cable.

Each internal cable is 6.5 feet long.

Internal Cable Implementation

The internal cables are Madison Cable DOSDKOoo10 or equivalent. The connectors used on this
cable must be the functional equivalent of:

• PI AMP 749611-8 or 749621-9, with latching backshell AMP 74919-1 or 749206-1.

• P2 AMP 749877-9 with female screw locks AMP 749087-1.

6-1

Cable Parts and Specifications Paragon TM System High Performance Parallel Interface Manual

External Cables
The two external cables for each HIPPI controller run to an external system, switch, or device. One
cable is for the source channel, one for the destination channel.

External Cable Characteristics

The external cables must meet the requirements specified in the ANSI X3T9.3/88-023 specification
for connectors, pin assignments, shielding, wire color code, and electrical behavior.

Each external cable is 25 meters long.

External Cable Implementation

The external cables must be the functional equivalent of:

• 1 meter cable - AMP 749755-13.

• 5 meter cable - AMP 749755-2.

• 15 meter cable - AMP 749755-3.

• 25 meter cable - AMP 749755-4.

Loopback Cable
The loopback cable connects the HIPPI controller's source and destination channel connectors
together. See Figure 5-1 on page 5-2. The cable allows you to run loopback transfers on the HIPPI
controller. Some of the controller's power-on diagnostics require the use of a loopback cable.

Loopback Cable Implementation

6-2

The loopback cable is a Madison Cable DOSD07BTIA or equivalent. The connectors used on this
cable must be the functional equivalent of AMP 749070-9 with female screw locks and housing.

• • • • • • • • • • • •
.:

• • • • • • • • • • • • • • • • • • •

IE
n
n
IJ

11

It

II

11

I~

I~

I~

C

17]

IJ

Id

1:1

IJ

G

D

• • • •

HIPPI Calls

This appendix contains manual pages for the libhippi.a library of routines.

See the Paragon TM System C Calls Reference Manual for manual pages for system calls unique to
the operating system.

The manual pages in this appendix are also available online, using the man command.

A-1

HIPPI Calls Paragon '1M System High Performance Parallel Interface Manual

HIPPLBIND()

Selects the incoming data that you want to receive.

Synopsis

Parameters

Description

A-2

#include <sys/types.h>
#include <raw _hippi.h>

int hippChind(

ihandle

ulp

port

int ihandle,
u_char ulp,
short port);

Specifies the HIPPI connection (ihandle) to bind.

A value greater than or equal to Ox80 that specifies the selected packets. (Values
below Ox80 are reserved for use by ANSI.) The maximum value for ulp is Oxff. A
special value of 0 can be used if the device was opened with ° _EXCL during the
hippi_openO function, which will result in all HIPPI packets being received by
this 9hannel. ulp must be set to 0 if running in HIPPCCNT mode.

A positive value specifies the port to bind to. A -1 value for port indicates that the
ulp alone should be used to select the incoming packets.

You must call the hippCbind function in order to read data from an open HIPPI channel. The call
allows your application to establish a peer-to-peer relationship with another application. Incoming
packets for your application are then correctly de-multiplexed based on the given ULP or ULP and
port. (For the port to be evaluated, it must be in the first short of the Dl_Area of the incoming
packet.)

This routine will fail if another process is currently receiving data with the same ULP or ULP and
port value.

This function supports receiving RAW HIPPI data by opening the device with O_EXCL during the
hippCopen routine and setting the ULP:;:() in this routine.

•

II

II

D

11

II

n
II

D

C

C

n
1"1

",I

c

IJ

IJ

I~

n u

• • • •

Paragon ™ System High Performance Parallel Interface Manual HIPPI Calls

HIPPI_BIND() (cont.) HIPPI_BIND() (cont.)

Return Value

On successful completion, hippCbind returns O. On failure, it returns -1 and sets the global variable
ermo to the appropriate value.

Errors

EADDRINUSE

EADDRNOTAVAIL

EBADF

EID

ENOBUFS

EACCES

EEXIST

Another process is currently receiving data with the
same ULP or ULP and port.

The given ULP was less than Ox80.

The i-handle argument is invalid.

A library operation failed.

The device is uninitialized.

The ULD requested requires HIPPI_EXC.

The i-handle is already bound.

A-3

HIPPI Calls Paragon TM System High Performance Parallel Interface Manual

HIPPI_ CLOSE() HIPPLCLOSE()

Closes a HIPPI connection and cleans up the state infonnation maintained for the connection.

Synopsis

Parameters

Description

#include <sys/types.h>
#include <raw _hippLh>

int bippCclose(
int ihandle);

ihandle Specifies the HlPPI connection (ihandle) to be closed.

The bippi_close routine closes the HlPPI connection referred to by the ihandle argument and cleans
up the library state for this connection.

Return Value

Errors

A-4

On successful completion, bippCclose returns 0; on failure, it returns -1, and sets the global variable
ermo to the appropriate value.

EBADF

ENXIO

EADDRINUSE

EIO

The ihandle argument referenced an invalid HlPPI
connection.

A library operation failed.

HlPPCCLOSE encountered an error.

HlPPCCLOSE encountered an error.

• • • • .:
• • • • • • .,
• • •
• • • • • • •
• • • • • • • • • •

II

D

II

D

I~

I~

n ...,

I~

I~ .. ""
1,1.;

[1
.i:J

[J

IJ

I:

I]

IJ

IJ

1:1

Ij

C

• • • •

Paragon™ System High Performance Parallel Interface Manual HIPPI Calls

Specifies packet framing semantics for lllPPI connections that are opened in the lllPPCDATA mode.

Synopsis

Parameters

Description

#include <sys/types.h>
#include <raw _hippi.h>

int hippCconfig(

ihandle

int ihandle,
u_long ifield,
u_char ulp,
u_long b,
char *dl_data,
u_short dl_len);

Specifies an open lllPPI connection.

ifield The address to which the packet is to be sent. The ifield argument must comply
with the lllPPI-SC specification.

ulp The upper layer protocol to send the packet to.

b Indicates where the D2_Area starts in the packet:

o Indicates that D2_Area is not aligned

1 Indicates that D2_Area is burst-boundary aligned

A pointer to the Dl_data area.

Size ofDl data (the number of 64-bit words in dl_data).

The hippLcontig function should only be used for connections opened in lllPPCDATA mode; it
should not be used for connections opened in lllPPCRA W mode.

A-5

HIPPICalis Paragon™ System High Performance Parallel Interface Manual

HIPPI_CONFIGO (cont.) HIPPI_CONFIGO (cont.)

The hippCconfig function sets the format characteristics of the first burst of outbound packets.
Parameter b should be TRUE ifD2 must start at a burst boundary. If dl_data isn't NULL, dLlen
bytes are copied into the dl_data area of the HIPPI frame. This combination of options result in a
small data copy, but enables users to fully control the contents of the first burst.

Return Value

Errors

A-6

On successful completion, bippCconfig returns 0; on failure, it returns -1 and sets the global
variable ermo to the appropriate value. (Failure indicates an invalid ihandle; the validity of the other
parameters can only be detennined at run time.)

EBADF The connection referenced by the ihandle argument is
not a HIPPCDATA mode connection or is invalid.

..
• • • • • •
-.>
• • • • • • • • • •
• • • • • • • • • • • • •

D

n
o
u
D

I:

II

II

I~

I~

IJ

IJ

IJ

IJ

IJ

IJ

1:1

G

II

• • •

Paragon'" System High Performance Parallel Interface Manual HIPPI Calls

HIPPLMEMFREE() HIPPI_MEMFREE()

Releases the memory acquired by either bippCmemget, bippi_read, or bippCread_request.

Synopsis

Parameters

Description

#include <sys/types.h>
#include <raw _hippi.h>

int hippCmemfree(
int ihandle,
char *ptr,
u_long size,
inthow);

ihandle Specifies the RIPPI connection (ihandle) associated with the memory to free.

ptr

size

how

Pointer to the memory to free.

Size, in bytes, of the block of memory to free.

This parameter should be:

o

1

If the memory was allocated by bippCmemget.

If the memory was acquired by hippCread or
bippi_read_request.

This routine releases memory pointed to by ptr. This routine must be called for memory allocated
by hippi_memget and for memory acquired by hippCread or bippi_read_request.

Return Value

On successful completion, hippCmemfree returns 0; on failure, it returns -1, and sets the global
variable errno to the appropriate value.

A-7

HIPPI Calls

HIPPI_MEMFREE() (cont.)

Errors

A-S

EBADF

EINVAL

Paragon TM System High Performance Parallel Interface Manual

HIPPI_MEMFREE() (cont.)

The ihandle argumemt is invalid.

how is not valid.

•

It.

n
D

II

[J

• ""i
;.J

IJ
1"'1

.l.!J

C

II

• • •

Paragon ™ System High Performance Parallel Interface Manual HIPPI Calls

HIPPI_MEMGET() HIPPI_MEMGET()

Allocates memory for a HIPPI connection.

Synopsis

Parameters

Description

#include <sys/types.h>
#include <raw _hippLh>

char * hippCmemget(
int ihandle •
u_long size);

ihandle Specifies the HIPPI connection.

size Specifies the number of bytes to allocate.

The hippi_memget routine allocates at least size bytes. For HIPPCRA W connections, the value of
size should be large enough to hold the largest packet the user will send, including the I-field,
headers, and data. For HIPPCDAT A connections, size only needs to be large enough for the data.
The hippCmemget routine must be used with HIPPCDATA connections and can be used with
HIPPCRA W. In HIPPCDATA mode, you should call hippCconfig routine before calling
hippCmemget.

Return Value

On successful completion, hippCmemget returns a pointer to the allocated memory. For
HIPPCRA W mode, the pointer points to the start of the HIPPI header area. For HIPPCDATA
mode, the pointer points to the place in the packet where HIPPI expects the user to put data (based
on the parameters supplied in the call to hippi_config).

On failure, hippi_memget returns a null pointer, and sets the global variable ermo to the appropriate
value.

A-9

HIPPI Calls

HIPPI_MEMGET() (cont.)

Errors

EBADF

ENOMEM

See Also

hippCcontig

A-10

Paragon TM System High Performance Parallel Interface Manual

HIPPLMEMGET() (cont.)

The ihandle argumemt is invalid.

There is not enough memory on the lllPPI board.

• • • • • • •
•
• • •
I:

I:

•
•
•
II:

•
II'

• • • • • • • • • • • •
•

II

n
II

IJ
1.1

c
n

1"'1
, ,.j

IJ

C

IJ
14

oJ

1:1

D

• • • •

Paragon ™ System High Performance Parallel Interface Manual HIPPI Calls

HIPPI_ OPEN() HIPPLOPEN()

Establishes an open HIPPI connection.

Synopsis

Parameters

Description

#include <fcnt1.h>
#include <raw _hippi.h>

int hippi_open(
char *dev _name,
u_Iong hippCmode,
u_Iong mode);

The HIPPI device through which connection is to be established. (Use the
rmknod command to create the device.)

hippCmode The RIPPI mode must be either HIPPCRA W or HIPPCDATA. Optional modes
include HIPPCCNT and HIPPCMPC. When using HIPPCCNT or HIPPCMPC
modes, the device must be opened with UNIX I/O mode O_EXCL. Optional
modes can ONLY be used with HIPPCRA W transfers.

mode I/O mode: should be O_RDONLY, O_WRONLY, O_RDWR, or O_EXCL.
(Other I/O modes, such as O_CREAT and O_TRUNC make no sense.) The mode
must match the permissions set on the devices by the system administrator (using
the chmod command).

The hippi_open routine opens a HIPPI connection and selects the connection's RIPPI and I/O
modes. HIPPCMPC mode allows you to specify multiple packets per connection for writes and
reads via both HIPPI channels. HIPPCCNT mode allows you to specify multiple I/O writes and
reads per connection and packet via both HIPPI channels.

Return Value

On successful completion, hippCopen returns a positive integer or zero. This integer, called the
ihandle argument, is used in subsequent HIPPI operations for the connection. On failure,
hippCopen returns -1, and sets the global variable errno to the appropriate value.

A-11

HIPPICalis

HIPPI_OPENO (cont.)

Erro~s

A-12

EMFILE

EINVAL

ENOENT

EIO

ENXIO

EACCES

Paragon ™ System High Performance Parallel Interface Manual

HIPPI_OPENO (cont.)

There are too many open files.

The hippCmode argument is invalid.

No such file.

HIPPCOPEN encountered an error.

HIPPCOPEN encountered an error.

The MPC node setup failed.

• • • • • • •
II .:
• •
K

II

• • • •
.:

• •
• • • • • • • •
• • •
•

II

II

n
II

c

I.~

~

I~

(j

IJ

11

I]
1_'1
, J

IJ

rJ

IJ

IJ

IJ

IJ

IJ

IJ

IJ

IJ
I)

II

• • •

Paragon ™ System High Performance Parallel Interface Manual HIPPI Calls

Reads from an open IllPPI connection.

Synopsis

Parameters

Description

#include <sys/types.h>
#include <raw _hippi.h>

long hippCread(
int ihandle.
char **ptr.
u_Iong bytes_wanted);

ihandle Specifies the HIPPI connection to read from.

ptr Address of data read.

bytes_wanted Number of bytes to read.

The bippCread function attempts to read from the IllPPI connection specified by the ihandle
argument, the number of bytes specified by the bytes_wanted argument. The data returned is
referenced by the ptr argument, which points to the start of the FP header area.

You must call hippi_bind before calling hippCread (otherwise bippCread will fail).

When running in IllPPC CNT mode, the read length must be at least 2048 bytes.

Return Value

On successful completion, hippCread returns the number of bytes read.

On failure, hippCread returns -1 and sets the global variable ermo to the appropriate value.

A-13

HIPPI calls

HIPPI_READO (cont.)

Errors

EBADF

EIO

ENOMEM

EMSGSIZE

See Also

A-14

Paragon ™ System High Performance Parallel Interface Manual

HIPPI_READO (cont.)

The ihandle argument referenced an invalid mpPI
connection.

A library operation failed.

mPPI cannot allocate enough memory.

HIPPCCNT mode cannot support requests less than
2K bytes.

D

D

IE

II

D

II

• •
• • •
I:
I(

• • • •
II

l:

E

• • • • • • • • • • • •

II

n
D

II

n
It

D

n
D

n
I~

IJ

I~

I·~
d

IJ

IJ
lj

I~

III

• • •

Paragon TM System High Performance Parallel Interface Manual HIPPI Calls

HIPPI_READ _COMPLETEO HIPPI_READ_COMPLETEO

Retrieves a packet on an open HIPPI connection.

Synopsis

Parameters

Description

#include <sys/types.h>
#include <raw _hippi.h>

long hippCread_complete(
int ihandle,
char **ptr);

ihandle Specifies the HIPPI connection to read from.

ptr Pointer to packet read.

The hippi]ead_complete function attempts to retrieve a packet from the HIPPI connection
specified by the ihandle argument. The data returned is referenced by the ptr argument, which points
to the start of the FP header area. The bippCread_complete function is a non-blocking function
which returns either success when a packet has arrived or failure (setting ermo) when a packet
hasn't. This function can only succeed if there is at least one buffer pending in the driver, which
would have been allocated using hippi_requesCrequestO.

You must call hippCread_request before calling hippCread_complete (otherwise
hippCread_complete will fail).

Return Value

On successful completion, bippi_read_complete returns the number of bytes read.

On failure, hippi_read_complete returns -1 and sets the global variable ermo to the appropriate

A-15

HIPPICalis

HIPPI_READ_COMPLETEO (cont.)

Errors

EBADF

EIO

EWOULDBLOCK

EINVAL

See Also

hippCread_requestO

A-16

Paragon™ System High Performance Parallel Interface Manual

HIPPI_READ_COMPLETEO (cont.)

The ihandle argument referenced an invalid HIPPI
connection.

A library operation failed.

There was no packet available.

There were no buffers previously allocated via
hippCread_requestO available.

~~~-- --------------- ---- -- ------ -----------

• • • • • • • • • • 
• • 
I( 

• • 
.: 

• 
-.: 
I( 

• • • • • • • • • • • • • 



n 
n 
D 

o 
n 
II 

n 
11 

Ii 

ITI 

G 

1::1 

•
. '!'1 

J 

IJ 

G 

II 

• • • 

Paragon TM System High Performance Parallel Interface Manual HIPPI Calls 

HIPPI_READ _REQUESTO HIPPI_READ_REQUESTO 

Posts a read on an open IDPPI connection. 

Synopsis 

Parameters 

Description 

#include <sys/types.h> 
#include <raw _hippi.h> 

int hippCread_request( 
int ihandle, 
long bytes_wanted); 

ihandle Specifies the IDPPI connection to read from. 

bytes_wanted Number of bytes to read. 

The hippCread_request function posts a request to read from the HIPPI connection specified by 
the ihandle argument, the number of bytes specified by the bytes_wanted argument. This function is 
intended to provide an asynchronous read capability to the application. Each call to this function 
allocates in the HIPPI device driver a buffer for an incoming packet. The bippCread_completeO 
function should be called to retrieve the received packet. 

You must call bippi_bind before calling hippCread_request (otherwise hippi_read_request will 
fail). 

When running in IDPPC eNT mode, the read length must be at least 2048 bytes. 

Return Value 

On successful completion, hippCread_request returns O. 

On failure, bippi_read_request returns -1 and sets the global variable ermo to the appropriate 
value. 

A-17 



---~ --_._---

HIPPI Calis 

HIPPI_READ_REQUESTO (cant.) 

Errors 

EBADF 

BID 

ENDMEM 

BINVAL 

See Also 

hippCreadO, hippi_read_completeO 

A-18 

--- .--.-.--.-.-~-.- --

Paragon™ System High Performance Paraliellnterface Manual 

HIPPI_READ_REQUESTO (cant.) 

The ihandle argument referenced an invalid HIPPI 
connection. 

A library operation failed. 

The function was not able to allocate memory. 

The bytes requested were less than O. 

• • • • • • • • • • • 
I: 

I: 

• • • • • 
Ii 

• • • • • • • • • • • • • 



II 

II 

n 
o 
I·~ 

II 

II 

II 

n 
1:1 

I.J 

1:1 

I~ 

I~ 

1:1 
I) 

IJ 

IJ 

. ~ 
II 

• • • 

Paragon TM System High Performance Parallel Interface Manual HIPPI Calls 

HIPPI_ WRITE() HIPPL WRITE() 

Writes to an open HIPPI connection. 

Synopsis 

Parameters 

Description 

#include <sys/types.h> 
#include <raw _hippLh> 

int hippC write( 

ihandle 

ptr 

len 

int ihandle, 
char *ptr, 
u_long len ); 

The HIPPI connection to which packet is written. 

Pointer to write buffer. 

Number of bytes to write. 

The hippC writeO function writes a packet to the open HIPPI connection referenced by the ihandle 
argument. If HIPPCRA W mode was selected in the call to hippi_openO, the ptr argument points to 
the fully formatted frame (including the I-field), and hippCwriteO writes the packet starting at the 
location specified by the ptr argument. If HIPPCDAT A mode was selected in the call to 
hippi_openO, hippC writeO completes the packet, adjusting the ptr argument for copying DI_data, 
FP header, and I-field as specified in the call to hippi_contigO, and then writes the packet. For the 
HIPPCRA W mode, the number of bytes specified by the len argument must include the I-field, FP 
Header, DI_Data, andD2_Data. For the HIPPCDATA mode, the len argument only includes the 
D2_Data. 

If HIPPC CNT or HIPPCMPC mode was selected with HIPPCRA W mode in the call to 
hippi_openO, then ptr points to the fully formatted frame, including the I-field, only on the first 
packet. Subsequent packets will not need an I-field header, since the SRC channel connection is 
asserted until hippCcloseO . 

When running in HIPPCCNT mode the first write, not including the HIPPI I-field (32 bytes), and 
all subsequent writes must be a multiple of 1024 bytes (HIPPI BURST) to avoid HIPPI channel 
protocol violations. 

A-19 



- -------~--~.--------.-.----.----------------.-.. ---~-~---_._-------

HIPPI Calls Paragon TM System High Performance Parallel Interface Manual 

HIPPI_ WRITEO (cont.) HIPPI_ WRITEO (cont.) 

Return Value 

On successful completion, hippC writeO returns 0; on failure it returns -1 and sets the global 
variable ermo to the appropriate value. 

Errors 

EBADF 

EIO 

ElNVAL 

ENOMEM 

See Also 

hippCconfigO, hippi_openO 

A-20 

The ihandle argument referenced an invalid HIPPI 
connection. 

An I/O error occurred. 

The ptr argument is invalid (NULL). 

The HIPPI board has insufficient memory. 

• • • • • • • • 
• • 
• .. 
• • • • • • 
II 

• • • • • • • • 
• • • • • 



., 
n 
n 
11 

It 

I~ 

I "'! 
iii 

I·~ 

~J 

I~ 

I: 

I~ 

I] 

(J 

G 

• • • • 

HIPPI Commands 

This appendix contains manual pages for the hippCsetmap and hippCshowmap commands. 

See the Paragon ™ System Commands Reference Manual for manual pages for system calls unique 
to the operating system. 

The manual pages in this appendix are also available online, using the man command. 

8-1 



"----- ----_._--_._------- _._---.-_. __ . -- .--_._---------_._----

HIPPI Commands Paragon 1M System High Performance Parallel Interface Manual 

Loads a lflPPI network routing table into the HIPPI driver. 

Syntax 

Arguments 

Description 

8-2 

hippCsetrnap [-d] interface [mapfile] 

-d 

interface 

mapfile 

Deletes all entries in the routing table. 

Specifies the HIPPI interface of the board whose routing table is being loaded. 
You must use ifcontig to define the interface before using it in the interface 
argument here. 

Specifies the file that contains the HIPPI network routing table. The 
hippCsetmap command loads this routing table into the HIPPI driver. If a map 
file is not specified, hippCsetmap takes data fromthe standard input. 

The hippi_setmap command loads the lflPPI network routing table into the lflPPI server. The 
routing table lists IP addresses, ULAs, and I-fields and enables hippCsetmap to map IP addresses 
to I-fields. 

The specified table is appended to the routing table being used currently. If you want to replace the 
routing table, you must first delete the existing one using the -d command line switch, and then 
specify the new routing table. 

The hippCsetmap command reads from the standard input until you press the End-of-File key 
sequence, or it takes its input from the contents of the optional mapfile. 

You must be a logged in as root to use hippCsetmap. 

• • • • • • • • • • • • 
a 
II 

• • • • 
K 

• • • • • • • • • • • • • 



II 

n 
n 
n 

II 

I~ 

I'~' 
I., ..... J 

I·~ 

, .leI 

IJ 

[J 

IJ 

.~ 

II 

• • • 

Paragon™ System High Performance Parallel Interface Manual HIPPI Commands 

HIPPI_SETMAP (cont.) HIPPI_SETMAP (cont.) 

Examples 

See Also 

The bippi_setmap command takes as input a file formatted like the following: 

#HIPPI Network Routing Table 
# 
#IP Address 
#-----------
192.9.3.1 
192.9.3.2 
192.9.3.3 
192.9.3.4 

ULA 

1:0c:34:65:0:26 
1:0c:34:65:0:27 
1:0c:34:65:0:28 
1:0c:34:65:0:29 

I-field 

OxlOOOOOO 
Oxl000002 
OxlOOOOOl 
Ox1000003 

#Zombie 
#Jaguar 
#Balu 
#Carlsbad 

• The IP Address column contains either an internet address or a host name. 

• The I-field column is in hex, prefixed with Ox. 

• All characters following the pound sign "#" on a line are ignored and serve as comments. 

In the above table, the camp-on bit in the I-field is set. This instructs the mpPI switches to attempt 
a connection until the connection is completed or the source cancels the connection request. 

To append the file hippi.map into the server, type: 

bippi_setmap ifbipO bippi • map 

To delete the existing map from the server and then load the contents of /etc/hippi.map, type: 

bippi_setmap -d ifbipO 
bippi_setmap ifbipO /etc/nippi.map 

hippCshowmap, ifconfig 

8-3 



HIPPI Commands Paragon TM System High Performance Parallel Interface Manual 

HIPPLSHOWMAP 

Displays the current HIPPI network routing table. 

Syntax 

Arguments 

Description 

Example 

See Also 

8-4 

hippCshowmap [-n] 

-n Causes the command to search for and display the ASCn names of the hosts in the 
routing table. These names correspond to IP addresses. 

The hippCshowmap command displays the current HIPPI network routing table (loaded by the 
most recent hippi_setmap command). 

Without the -n argument, hippi_showmap displays IP addresses in the first column: 

#IP Address ULA I-field 
#-----------
192.9.3.1 
192.9.3.2 

With the -n argument, hippi_showmap displays hostnames in the first column: 

#Hostname 
#-----------
Tornado 
Hurricane 

ULA I-field 

To display the current routing table, using hostnames, type the following: 

hippCsetmap 

• • • • • • • • • • • • • 
II 

• • • • 
I. 

• • • • • • • • • • • • • 



II 

D 

n 
D 

11 

It 

11 

n 
n 

I~ 

I'"" 

IJ 

IJ 

~ 

1'"1 
jJ 

I·q 

IJ 

IJ 

IJ 

IJ 

I:] 

I'~ ., 
10 

B 

II 

• • 

Usage Notes 

Introduction 
This Appendix contains practical advice and examples for using the HIPPI interface in both the 
HIPPCDATA and lllPPCRA W modes. 

Using the HIPPI_DATA Mode 
The HIPPI library provides all of the system calls needed to send and receive data using the HIPPI 
device. The following notes are a summary of what is necessary to write a program to use 
HIPPCDATA mode to exchange data between nodes on a Paragon system. 

HIPPI Packets 

FP Header 

A lllPPI packet has three main parts. The first 32 bytes contains the I-field, the next 8 bytes define 
the FP _Header, and the remaining bytes include any DI_Data and the D2_Data. The raw_hippi.h 
file contains structure definitions that simplify access to the various fields in the header. 

In HIPPCDAT A mode, you are not expected to know the size or structure of an outbound packet. 
The lllPPI library calls automatically format and build outbound packets by using the input 
parameter that you supply. As a result, there are some fields in the FP header that you have no control 
over. 

Here are general rules for that define how the FP header shown in Figure C-l is built: 

• The ULP and the B bit are set to the values you supply with the hippCconfigO call. 

C-1 



Usage Notes Paragon ™ System High Performance Parallel Interface Manual 

Bit 31 23 15 7 o 

ULP-id P B Reserved 
FP _Header_Area f----------'---'---'-------------'----------'------1 

Figure C-1. FP Header 

• The P bit is set to 1 if you supply a greater-than-zero-length DI_Data_Set, otherwise, it is set 
to zero. 

• The 11 reserved bits are always transmitted as zero's. 

• If B is set to zero, DI_Area_Size is set to the size of DI_Data_Set. If B is set to 1, DI_Area_Size 
should be set to 127 to burst-align the D2_Data_Set. 

• D2_0ffset is always set to zero. 

hippCopen creates an I-handle that is used to access the lllPPI device. You can specify which 
HIPPI device to use, the mode you are using (HIPPCRA W or lllPPCDATA), and the 110 mode 
(read, write, both ... ). Make sure that the permissions of the lllPPI device in/dev are set 
appropriately. 

hippi_bind{ihandle, ulp, port) 

C-2 

hippi_bind binds the I-handle to a specific ulp/port. The I-handle then only receives packets that 
are sent to this specific ulp/port. This function needs to be called only if the I-handle is going to 
receive data. If used, the port must appear in the first 16 bits after the D2_Size in the FP _Header. 

• • • • • • • • .1 
• • • • • • • • • 
II 

• • • • • • • • • • • • • 



II 

D 

n 
n 
I! 

n 
I: 

I~ 

I:; 
1"'1 

"i 

LJ 

IJ 

I) 

IJ 

IJ 

IJ 

~ 

C 

• • • • 

Paragon TM System High Performance Parallel Interface Manual Usage Notes 

hippi_config(ihandle, ifield, ulp, b, d1_data, d1_len) 

hippCconfig uses the parameters to format the I-field, the FP _Header _Area and the Dl_Area of an 
outbound packet: 

• This function can only be used for a connection opened in HIPPCDATA mode. 

• If dl_data is NULL, dl_len is ignored, and the D l_Data_Set is considered not present. 

• hippCconfig returns -1 if dl_len is greater than the maximum Dl_Area_Size, 127 64-bit words. 

hippi_memget(ihandle, size) 

hippCmemget allocates memory for the outbound pack;et. The behavior of this function depends on 
which mode you are using. 

• In HIPPCDATA mode, the size parameter should be large enough to fit the largest 
D2_Data_Set you will send. 

• The pointer returned by hippCmemget points to the place in the packet where the D2_Data_Set 
is to be placed. In order to calculate exactly where this point is, hippCconfig must be called 
prior to hippi_memget. This pointer can then be used for hippi_ write. 

hippi_write(ihandle, ptr, length) 

In mpPCDATA mode, hippCwrite uses the ihandle to send a packet that contains aD2_Data_Set 
that is length bytes long starting from memory location ptr. See Figure C-2. The l-field and FP 
header information is automatically filled in for you based on the parameters supplied by the 
hippCconfig call. The I-field is for routing information, the FP header indicates how the remaining 
data is to be interpreted. 

I-field FP Header D1_Area D2_Area 
(32 bits) (8 bytes) (0 to 1016 bytes) (0 to 4 Gbytes - 2) 

- length • 
ptr 

Figure C-2. Theptr and length Arguments for hippi_write (HIPPCDATA Mode) 

C-3 



.... _------_._--_._--_.-_._.- -.---..... ------------------~---.. ----~-.-------------.. _ .. _-_._-----

Usage Notes 

C-4 

Paragon ™ System High Performance Parallel Interface Manual 

Here is a short and simple example that formats a packet and sends 1024 bytes of data using 
HIPPCDATA mode. Note that the DI_Area is not present in this example. 

int ihandle, i; 
int how = 0; 
char *D2_Data_Set, *tmp-ptr; 
u_long length = 1024; 
u_long ifield = Ox01000001; 
u_long ulp = 128; 
u_long b = 0; char *dl_data = NULL; 
u_short d1_len = 0; 

/* Create HIPPI connection */ 
ihandle = hippi_open (H /dev/hippi", HI PPI_DATA , O_RDWR); 

/* Configure Ifield, FP Header and D1_Area */ 
hippi_config(ihandle, ifield, ulp, b, d1_data, d1_1en); 

/* Allocate the memory */ 
D2_Data_Set = hippi_memget(ihandle, length); 

/* Copy your data into the buffer returned by hippi_memget(). 
* This is a byte copy. If your data is integers, than 
* extra space is needed. 
*/ 

tmp-ptr = D2_Data_Set; 

for(int i = 0; i < length; i++) { 
*tmp-ptr = your_data[i]; 
tmp-ptr++; } 

/* Send your packet */ 
hippi_write(ihandle, D2_Data_Set, length); 

/* Free the memory */ 
hippi_memfree(ihandle, D2_Data_Set, length, how): 

/* Close HIPPI connection */ 
hippi_close(ihandle)i 

• 
D 

II 

• • 
II 

• 
II: -i 
• • 
I( 

I( 

K 

• • • • 
I: 

• • • • • • • • • • • • • 



D 

II 

IJ 

I~ 

n 
I: 
.~ liil 

~ .;J 

1.1 

I] 

[J 

Ij 

IJ 
1'1 

• .1 

(j 

fj 

I:J 

II 

• • • 

Paragon ™ System High Performance Parallel Interface Manual Usage Notes 

hippLread(ihandle, ptr, bytes_wanted) 

bippCread works the same in both HIPPCRA Wand HIPPCDATA modes. It is used to read data 
from an I-handle (bippChind must be called before reading). The arguments to this function include 
the I-handle to read from the reference of a pointer to the received packet (which includes an FP 
header) and the number of bytes you expect to read. If the incoming packet is larger than the number 
specified by bytes_wanted, bippi]eadO returns an error.!f the incoming packet is equal to or 
smaller than the number specified by bytes_wanted, bippi_readO returns the number of bytes 
actually read. Note that the I-field is not include in this buffer. 

FP Header D1_Area D2_Area 
(8 bytes) (0 to 1016 bytes) (0 to 4 Gbytes - 2) 

... length .. 
ptr 

Figure C-3. The ptr and length Valoes Returned by bippi_read 

To get at the data (assuming there was no DI_Data specified in the FP header) you must increment 
the pointer that is returned by bippCread by sizeof(union hippiJp_header). The length that is 
returned includes the bytes for the FP header. Therefore, the actual data (minus header) that is 
received starts at ptr + sizeof( struct hippCheader) and is length - sizeo/( struct hippCheader) bytes 
long. 

To get at the FP header, cast ptr to (union hippiJp_header) and use the field names as defmed in 
raw _hippi.h. 

hippLmemfree(ihandle, ptr, size, how) 

bippi_memfree releases the memory allocated by bippCmemget or bippCread. It is very 
important, and good style, to release the memory you use. 

• Use the pointer returned by bippCmemget, the length passed into hippCmemget and how = 0 
if ptr was allocated by hippCmemget. 

• Use the pointer and length returned by hippCread and how = 1 if ptr was from allocated by 
bippCread. 

C-5 



Usage Notes Paragon™ System High Performance Parallel Interface Manual 

hippLread_request(ihandle, bytes_wanted) 

bippCread_request works the same in both HIPPCRA W and IllPPCDATA modes. It allocates 
buffer space of size bytes_wanted for a particular I-handle to provide asynchronous read capability. 

You must call hippCread_complete in order to retrieve the received packet. It is the responsibility 
of the programmer to ensure that the incoming data order and sizes match the order and sizes of the 
hippCread_requests. For example, if you expect a particular I-handle's second packet to contain 
64K of data, your second call to hippCread_request should be posted (with the bytes_wanted 
parameter at least 64K) before the second hippC write occurs or an error will occur. 

hippi_read_complete(ihandle, ptr) 

bippCread_complete works the same in both IllPPCRA Wand HIPPCDATA modes. It is a 
non-blocking call that retrieves received packets for a particular I-handle. There is a one-to-one 
correspondence between bippCread_requests and hippi_read_completes-you will get an error 
if you call bippCread_complete when there are no bippCread]equests pending. If a 
bippCread_request is pending but the data has not arrived yet from a bippC write, 
bippCread_complete will return -1 and set errno to EWOULDBLOCK. 

The following example is one way of using bippi_read_complete to continue polling until data 
arrives. 

while ((count = hippi_read_complete(ihandle, &buf)) -- -1) 
if(errno != EWOULDBLOCK) { 

nx-perror ("hippi_read_complete () FAILED"); 
exit(l);} 

hippi_close(ihandle) 

C-6 

hippCclose closes the HIPPI connection. It works the same in both HIPPI_RA Wand HIPPCDATA 
modes. 

o 
II 
8] 

• 
I:; 

• • 
E 

• • 
.: 
I:: 

I: 

.: 

• • 
.: 
II: 

I: 

II 

• • • • • • • • • • 
• • 



e 
D 

D 

D 

I~ 

D 

D 

n 
I~ 

IJ 

IJ 

£1 

D 

IJ 

IJ 
1"'1 
· -I 

IJ 
(J 

IJ 

r.J 

G 

n 

• • • 

Paragon ThO System High Performance Parallel Interface Manual Usage Notes 

Code Example 

There are many ways to format the buffer and allow for different types of data- char, int, long, 
float ... This is a working program that shows where and how the pointers need to be manipulated, 
and illustrates the use of the RIPPI library calls to read and write data in HIPPI_DATA mode. 

/**************************************************************************** 

* 
* Title: HIPPI_DATA mode data exchange program. 

* 
* Description: 
* This program tests RAW HiPPI (HIPPI_DATA mode) data exchange for 
* ANSI HiPPI-FP compliance. Node 0, the client, transmits the data and 
* node 1, the server, receives and verifies the data. 

* 
****************************************************************************/ 

#include <stdio.h> 
#include <errno.h> 
#include <fcntl.h> 
#include <setjmp.h> 
#include <sys/param.h> 
#include <sys/timers.h> 
#include <raw_hippi.h> 

#define TIMEOUT_VAL 60 
#define Dl_CHAR 'a' 
#define D2_CHAR 'Z' 

/* global vars */ 
int failed = 0; 
int 
u_long 
u_long 
u_long 

node; 
cci = Ox01000001; 
ulp = Ox80; 
port = -1; 

b = 0; 

u_short d1_len = 104; 
u_long d2 len = 60*1024; 

jmp_buf timeout; 

main{) 
{ 

node mynode () ; 

/* number of failures */ 
/* node number */ 
/* I-field */ 
/* Upper Level Protocol */ 
/* Application only binding to ulp, 
/* port value set to -1 */ 
/* Setting b bit to zero indicates D2_Area not 

* burst aligned */ 
/* D1_Area_Size=104 64-bit words=832 bytes */ 
/* D2_Data_Set_Size = 60 KB of data */ 

C-7 



Usage Notes Paragon TM System High Performance Parallel Interface Manual 

if (node> 1) 

} 

printf(HNode %d not need for this test.\n H, node); 
fflush(stdout); 
exit (0) ; 

/* 
* Do the tests 
* Node 0, the client, will transmit the data. 
* Node I, the server, will receive the data and verify ANSI HiPPI-FP 
* compliance. 

} /* 

*/ 

if (node == 0) 
sleep(2) ; 
hippi_client();} 

else if(node == 1) 
hippi_server(); 

/* 
* Report test results 
*/ 

if (failed == 0) 
printf (HNode %d: HIPPI 

else 
printf (HNode %d: HIPPI 

exi t (failed) ; 
main */ 

Data Exchange Done: *** PASSED ***\n" , node) ; 

Data Exchange Done: *** FAILED ***\nH, node) ; 

/**************************************************************************** 

* 
* alrm_handler() 

* 
* Does a longjmp() if called. Attached to signal SIGALRM 

* 
****************************************************************************/ 

void alrm_handler() 
{ 

C-8 

printf(HNode %d: SIGALRM occured!\n", node); 
fflush (stdout) ; 

longjmp(timeout, 1); 

II 

II 

II 

• 
II 

• • • • • • 
.: 
I: 

• • • • -• 
I: 

• • • • • • • • • • • • • 



II 

II 

II 

II 

II 

It 

e 
IE 

G 

I : 
,.I 

r~ 
.~J 

c 
C 

1::1 

IJ 
IJ 
I] 

IJ 
I~ 

IJ 
IJ 
Ij 
Ir1 .tAl 

D 

• • • • 

Paragon ™ System High Performance Para"el Interface Manual Usage Notes 

/**************************************************************************** 

* 
* hippi_client () 

* 
* This procedure uses a HIPPI_DATA-mode connection to 
* build and transmit a HIPPI packet to the server. 

* 
****************************************************************************/ 

hippi_client () 
{ 

int ihandle; /* ihandle corresponding to the HIPPI connection */ 
int err; 
char *dl_data; 
char *d2_data; 

/* print the parameter values to be tested */ 
starting 

Ox%x\n 
d2_len 

printf(HNode %d: HIPPI_CLIENT 
printf(H I-field = Ox%x\n ulp 
printf(H b = %d\n dl_len = %d\n 
fflush(stdout) ; 

/* create HIPPI connection */ 

test case\nH, node); 
port = %d\n", cci, ulp, port); 
= %d\n", b, dl_len, d2_len); 

if((ihandle = hippi_open(H/dev/hippi", HIPPI_DATA, O_RDWR)) < 0) 
nx-perror("HIPPI_CLIENT: FAILED hippi_open()"); 
failed++;} 

/* get memory for dl_data area. Dl_len is multiplied by 8 
* to convert from 64-but words to bytes */ 

if((dl_data = (char *) malloc(dl_len*8)) < 0) 
nx-perror("HIPPI_CLIENT: FAILED malloc()"); 
failed++;} 

/* fill dl_data with fill_char */ 
memset(dl_data, Dl_CHAR, dl_len*8); 

/* configure I-field, FP Header and Dl_Area */ 
if (hippi_config(ihandle, cci, ulp, b, dl_data, dl_len) < 0) { 

nx-perror("HIPPI_CLIENT: FAILED hippi_config()"); 
failed++;} 

/* allocate memory for d2_data area */ 
if((d2_data = hippi_memget(ihandle, d2_len)) == NULL) 

nx-perror("HIPPI_CLIENT: FAILED hippi_memget()"); 
failed++;} 

else 
/* fill d2 data with fill_char */ 
memset(d2_data, D2_CHAR, d2_len); 

C-9 



------~-~-.------.--.~- ... -.-~~---.-.. -.----.---. --_.- - ------~~~---- ------------ -

Usage Notes Paragon™ System High Performance Parallel Interface Manual 

if (setjmp(timeout) == 0) 
/* attach signal to alarm handler */ 
signal (SIGALRM, alrm_handler); 

alarm(TIMEOUT_VAL); 

/* write data */ 
errno = 0; 
if (hippi_write(ihandle, d2_data, d2_len) == -1) { 

nx-perror(HHIPPI_CLIENT: FAILED hippi_write()H); 
failed++;} 

alarm(O) ;} 

else { 
printf(HNode %d: HIPPI_CLIENT: FAILED hippi_write timed out\n", node); 
failed++;} 

/* free memory allocated by hippi_memget */ 
hippi_memfree(ihandle, d2_data, d2_len, 0); 

/* close HIPPI DATA-mode connection */ 
hippi_close(ihandle); 
return; 

/* hippi_client */ 

/**************************************************************************** 

* 
* hippi_server() 

* 
* Read the HIPPI packet sent by the server and verify ANSI HIPPI-FP 
* compliance. 

* 
****************************************************************************/ 

hippi_server ( ) 
{ 

C-10 

int i; / * Temporary loop counter * / 
int ihandle; /* ihandle corresponding to the HIPPI 

* connection */ 
int bad_cnt = 0;/* Data mismatch counter */ 

char *rx-ptrj/* Pointer to the FP Header of the packet */ 
char *tmp-ptr;/* temporary pointer */ 
u_long rx_size;/* Number of bytes to read by hippi_read() */ 

longcount;/* Number of bytes actually read by hippi_read */ 
union hippi_fp_header *fp-ptr; /* FP Header structure */ 

D 

D 

II 

• 
• 
II 

K 

• • • • 
K 

• • • • 
II 

• • • • • • • • • • • 
• 
•• 
• 



D 

n 
II 

11 

o 

II 

C 

1··"1.·· I, 

IJ 
( : 
· j 

I. ~: 
.Jr.j 

IJ 
• "1 

,J 

• "1 
JJ 

I: 
IJ 

n 
II 

• • • 

Paragon ™ System High Performance Parallel Interface Manual Usage Notes 

/* create HIPPI_DATA-rnode connection */ 
if ( (ihandle = hippi_open (" /dev /hippi", HIPPI_DATA, O_RDWR)) < 0) { 

nx-perror("HIPPI_SERVER: FAILED hippi_open()")i 
failed++i} 

/* bind for read from client */ 
if (hippi_bind(ihandle, ulp, port) == -1) { 

nx-perror("HIPPI_SERVER: FAILED hippi_bind()") i 

failed++i} 

if (setjrnp(timeout) == 0) { 
/* attach signal to alarm handler */ 
signal (SIGALRM, alrm_handler)i 

alarm(TIMEOUT_VAL)i 

/* read data */ 
if((count = hippi_read(ihandle, &rx-ptr, rx_size)) == -1) { 

nx-perror("HIPPI_SERVER: FAILED hippi_read()")i 
failed++i} 

alarm(O) i 

/* Check received data for ANSI HIPPI-FP compliance */ 

/* convert fp header to host order */ 
fp-ptr = (union hippi_fp_header *)rx-ptri 
fp-ptr->words.w1 ntohl(fp-ptr->words.w1)i 
fp-ptr->words.w2 = ntohl(fp-ptr->words.w2)i 

/* check ULP */ 
if(fp-ptr->fields.ulp != ulp) { 

printf("Node %d: HIPPI_SERVER: FAILED ULP wrong, expected Ox%x, 
got Ox%x\n", node, ulp, fp-ptr->fields.ulp)i 

failed++i} 

/* Check P bit - it should be 1 since the D1_Area is present */ 
if(fp-ptr->fields.p != 1) { 

printf(HNode %d: HIPPI_SERVER: FAILED p bit wrong, expected Ox%x, 
got Ox%x\n", node, 1, fp-ptr->fields.p)i 

failed++i} 

/* Check B bit - it should be the same as the outbound packet */ 
if(fp-ptr->fields.b != b) { 

printf(HNode %d: HIPPI_SERVER: FAILED b bit wrong, expected Ox%x, 
got Ox%x\n", node, b, fp-ptr->fields.b)i 

failed++i} 

C-11 



Usage Notes Paragon ™ System High Performance Parallel Interface Manual 

/* Check reserved bits - always zeros */ 
if(fp-ptr->fields.res != 0) { 

printf(HNode %d: HIPPI_SERVER: FAILED res bits wrong, expected 
Ox%x, got Ox%x\n", node, 0, fp-ptr->fields.res)i 

failed++i} 

/* Check dl_size - it should be the size of Dl_Data-Set*/ 
if(fp-ptr->fields.dl_size != dl_len) { 

printf(UNode %d: HIPPI_SERVER: FAILED dl_size wrong, expected %d, 
got %d\n", node, dl_len, fp-ptr->fields.dl_size)i 

failed++i} 

/* Check d2_offset - always zero in the HIPPI_DATA mode */ 
if(fp-ptr->fields.d2_off != 0) { 
printf (UNode %d: HIPPI_SERVER: FAILED d2_off wrong, expected Ox%x, got 

Ox%x\n", node, 0, fp-ptr->fields.d2_off)i 
failed++i} 

/* Check d2 size - it should be the size of D2_Data_Set */ 
if(fp-ptr->fields.d2_size != d2_len) { 

printf(HNode %d: HIPPI_SERVER: FAILED d2_size wrong, expected %d, 
got %d\n", node, d2_len, fp-ptr->fields.d2_size)i 

failed++i} 

/* Check dl_data_set. The pointer returned by hippi_read() points 
* to the beginning of the FP Header. The Dl_Data_Set (if it 
* exists) immediately follows the FP Header. To get to the 
* Dl_Data_Set, increment the pointer returned by hippi_read() 
* sizeof(union hippi_fp_header) bytes. */ 

tmp-ptr = rx-ptr + sizeof(union hippi_fp_header) i 

for (i = Oi i < dl_len*8i i++) { 
if (*tmp-ptr != Dl_CHAR) 

bad_cnt++i 
tmp-ptr++i} 

if (bad_cnt > 0) { 
printf("Node %d: HIPPI_SERVER: FAILED dl_data wrong, %d bytes did 

not match\n", node, bad_cnt) i 

failed++ i} 

/* Check d2_data_set. The pointer returned by hippi_read() points 
* to the beginning of the FP Header. The D2_Data_Set (if it 
* exists) immediately follows the d2_offset. To get to the 
* D2_Data_Set, increment the pointer returned by hippi_read() 
* sizeof(union hippi_fp_header) + fp-ptr->fields.dl_size*8 + 
* fp-ptr->fields.d2_off bytes. */ 

bad_cnt = Oi 
tmp-ptr = rx-ptr + sizeof(union hippi_fp_header) + 

fp-ptr->fields.dl_size*8 + fp-ptr->fields.d2_offi 

C-12 

o 
III 
D 

III 

G 

III 

III 

KJ 

• 
II 

K 
K, 

K 
a 

• 
• • 
.: 
K 

• • • • • • • • • • • • • 



D 

o 
n 
II 

IJ 

I~ 

I: 
~' 
.,~ 

I~ 

I~ 

." Ll 

D 

• 
II 

• • 

Paragon TM System High Performance Parallel Interface Manual Usage Notes 

for (i = Oi i < d2_leni i++) 
if (*tmp-ptr != D2_CHAR) 

bad_cnt++i 
tmp-ptr++i} 

if (bad_cnt > 0) { 
printf(HNode %d: HIPPI_SERVER: FAILED d2_data wrong, %d bytes did 

not match\n H, node, bad_cnt)i 

else 

failed++i} 

printf(HNode %d: HIPPI_SERVER: FAILED hippi_read timed out\nH, node)i 
fflush(stdout) i 

failed++i} 

/* free memory allocated by hippi_read() */ 
hippi_memfree(ihandle, rx-ptr, count, l)i 

/* close connection */ 
hippi_close(ihandle)i 
returni 

/* hippi_server */ 

Using The HIPPI_RAW Mode 
The HIPPI library provides all of the system calls needed to send and receive data using the HIPPI 
device. The following notes are a summary of what is necessary to write a program that uses 
HIPPI_RAW, HIPPCCNT, or HIPPCMPCmodes to exchange data between nodes on a Paragon 
system. 

HIPPI Packets 

A HIPPI packet has three main parts. The fIrst 32 bits contain the I-field, the next 8 bytes define the 
FP header, and the remaining bytes include any DI_Data and the D2_Data. The raw_hippi.h file 
contains structure defInitions to simplify access to the various fIelds in the header. Always cast your 
data buffers to struct hippCheader when fIlling in the header fields. 

C-13 



Usage Notes Paragon TM System High Performance Parallel Interface Manual 

bippi_open creates an I-handle that is used to access the IDPPI device. You can specify which 
HIPPI device to use, the mode you are using (HIPPCRA W, HIPPC CNT, IDPPI_MPC, or 
HIPPCDATA), and the I/O mode (read, write, both ... ). Make sure that the permissions of the HIPPI 
device in/dev are set appropriately. 

ihandle = hippi_open ( " / dey /hippi" I HIPPI_RAW I O_ROWR); 

hippi_bind(ihandle, ulp, port) 

hippCbind binds the I-handle to a specific ulp/port. The I-handle then only receives packets that 
are sent to this specific ulp/port. This function needs to be called only if the I-handle is going to 
receive data. 

hippLconfig(ihandle, ifield, ulp, b, d1_data, d1_len) 

This function cannot be used for a connection opened in the HIPPI_RA W, HIPPCCNT, or 
HIPPCMPC modes. 

hippLmemget(ihandle, size) 

The behavior of this function depends on which mode you are using. For an I-handle that was opened 
in HIPPI_RA W, HIPPI_CNT, or HIPPCMPC modes, this function returns a pointer to the 
beginning of a chunk of memory size bytes big. Make sure that the size parameter is large enough to 
fit the I-field, FP header, DI_Area andD2_Area for the packet you will send. This pointer can then 
be used for hippC write. 

hippi_write(ihandle, ptr, length) 

C-14 

Using the ihandle, this function sends a packet length bytes long starting from memory location ptr. 
You must fill in the header information manually in HIPPCRA W, HIPPCCNT, or HIPPCMPC 
modes. All outbound packets must contain a full hippi_header, which consists of the I-field and the 
FP header. Cast your buffer to struct hippCheader to access the appropriate fields. See the 

• • • • • • • • 
• 
• 
•• 
II: 

II 

I: 

• 
.: 

• 
.: 
I: 

• • • 
• • • • • • • • • • 



B 

D 

n 
II 

II 

n 

IJ 

I] 

I " .,1 

I~ 

I ,'" 
'" 

I~ 

1'''1 

"i 

1:1 

1:1 

IJ 

I: 
11 

~ 

I~ 

II 

• • • 

Paragon ™ System High Performance Parallel Interface Manual Usage Notes 

raw _hippi.h file for the definition of the structures and unions. The buffer that you allocate with 
hippi_memget must be large enough to include the data, the FP header and the [-field. The [-field 
is for routing information, and the FP header indicates how the remaining data is to be interpreted. 

I-field FP Header D1_Area D2_Area 
(32 bits) (8 bytes) (0 to 1016 bytes) (0 to 4 Gbytes - 2) 

int 
char 
struct 

~ ... length 

ptr 

Figure C-4. The ptr and length Arguments for hippC write (IDPPCRA W Mode) 

The following example formats a packet and sends n bytes of data. 

ni 

*ptr; 
hippi_header *header-ptr; 

/* allocate the memory */ 
ptr = hippi_memget(ihandle, n + sizeof(struct hippi_header)) i 

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* NOT E 

* 
* 
* 

* hippi_memget's size parameter bytes of data plus the header * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 

/* cast the buffer to a hippi_header */ 
header-ptr = (struct hippi_header *)ptr; 

/* set the I-field, in network order */ 
header-ptr->cci.Ifield htonl(Ox01000001); 

/* set the FP fields for wl */ 
header-ptr->fp.fields.d2_off = 0; 
header-ptr->fp.fields.dl_size = 0; 
header-ptr->fp.fields.res = 0; 
header-ptr->fp.fields.b = 0; 
header-ptr->fp.fields.p = 0; 
header-ptr->fp.fields.ulp = OX80i 

.. 

C-15 



Usage Notes Paragon ™ System High Performance Parallel Interface Manual 

/* set the FP fields for w2 */ 
header-ptr->fp.fields.d2_size = OJ /* this field is not used by HIPPI_RAW 

* mode, in RAW mode it is up to the 
* receiving platform to interprete it */ 

/* 
* put the header in network order 
* Remember that the hippi_fp_header is a union and can be accessed using 
* either words or fields 
* wl contains: d2_off, dl_size, res, b, p, and ulp 
* w2 contains: d2_size 
*/ 

header-ptr->fp.words.wl htonl(header-ptr->fp.words.wl)j 

/* 
* copy the data into the buffer after the header, this 
* is a byte copy, if the data is integers, than extra space is needed 
*/ 

tmp-ptr = ptr + sizeof(struct hippi_header)j /* new pointer: points to data 
* area directly after the 
* header */ 

for(int i = OJ i < nj i++) { 
*tmp-ptr = your_data[i]j 
tmp-ptr++j 

} 

/* now send the packet!! */ 
hippi_write(ihandle, ptr, n + sizeof(struct hippi_header)) j 

hippLread(ihandle, ptr, bytes_wanted) 

C-16 

hippCread works the same in the HIPPCRA W, HIPPCCNT, HIPPCMPC and HIPPCDATA 
modes. It is used to read data from an I-handle (hippi_bind must be called before reading). The 
arguments to this function include the I-handle to read from the reference of a pointer to the received 
packet (which includes an FP header) and the number of bytes you expect to read. If the incoming 
packet is larger than the number specified by bytes_wanted, hippCreadO returns an error.If the 
incoming packet is equal to or smaller than the number specified by bytes_wanted, hippCreadO 
returns the number of bytes actually read. Note that the I-field is not include in this buffer. 

To get at the data (assuming there was no Dl_Data specified in the FP header) you must increment 
the pointer that is returned by hippCread by sizeoj(union hippiJp_header). The length that is 
returned includes the bytes for the FP header. Therefore, the actual data (minus header) that is 
received starts at ptr + sizeoj( struct hippCheader) and is length - sizeo/( struct hippCheader) bytes 
long. 

To get at the FP header, cast ptr to (union hippiJp_header) and use the field names as defined in 
raw _hippi.h. 

D 

II 

• • • • 
K 
I[ 

• • 
• 
K 

I: 

• • 
II 

• • 
K 

• • • • • • • • • • • • • 



II 

n 
n 
D 

n 

IE 
1:1 

IJ 
'1"1 J 

[J 

IJ 

IJ 
Ij 

Ij 
I~ 

II 

• • • 

Paragon ™ System High Performance Parallel Interface Manual Usage Notes 

FP Header D1_Area D2_Area 
(8 bytes) (0 to 1016 bytes) (0 to 4 Gbytes - 2) 

... length • 
ptr 

Figure C-S. The ptr and length Values Returned by hippCread 

hippi_memfree(ihandle, ptr, size, how) 

hippCmemfree releases the memory allocated by hippi_memget or hippi_read. It is very 
important, and good style, to release the memory you use. 

• Use the pointer returned by bippi_memget, the length passed into hippCmemget and how = 0 
if ptr was allocated by bippCmemget. 

• Use the pointer and length returned by bippi_read and how = 1 if ptr was from allocated by 
hippi_read. 

hippi_read_request(ihandle, bytes_wanted) 

bippi_read_request works the same in the HIPPCRA W, HIPPI_CNT, HIPPCMPC and 
HIPPI_DATA modes. It allocates buffer space of size bytes_wanted for a particular I-handle to 
provide asynchronous read capability. 

You must call hippCread_compJete in order to retrieve the received packet. It is the responsibility 
of the programmer to ensure that the incoming data order and sizes match the order and sizes of the 
bippCread_requests. For example, if you expect a particular I-handle's second packet to contain 
64K of data, your second call to hippCread_request should be posted (with the bytes_wanted 
parameter at least 64K) before the second bippCwrite occurs or an error will occur. 

C-17 



Usage Notes Paragon ™ System High Performance Parallel Interface Manual 

hippi_read_complete(ihandle, ptr) 

bippi_read_complete works the same in the HIPPI_RA W, HIPPCCNT, HIPPCMPC and 
HIPPI_DATA modes. It is a non-blocking call that retrieves received packets for a particular 
I-handle. There is a one-to-one correspondence between hippCread_requests and 
bippi_read_completes-you will get an error if you call bippCread_complete when there are no 
bippi_read]equests pending. If a bippCread_request is pending but the data has not arrived yet 
from a hippi_ write, bippCread_complete will return -1 and set ermo to EWOULDBLOCK. 

The following example is one way of using bippi_read_complete to continue polling until data 
arrives. 

while ((count = hippi_read_complete(ihandle, &buf)) -- -1) 
if(errno 1= EWOULDBLOCK) { 

nx-perror ("hippi_read_complete () FAILED") ; 
exit (1) ; } 

hippLclose(ihandle) 

hippCclose closes the lllPPI connection. It works the same in the HIPPI_RA W, HIPPI_CNT, 
HIPPI_MPC, and HIPPI_DATA modes. 

Code Example 

C-18 

There are many ways to format the buffer and allow for different types of data- char, int, long, 
float, etc. This example is a working program that shows where and how the pointers need to be 
manipulated, and illustrates the use of the lllPPI library calls to read and write data in HIPPCRA W 
mode. 

This example program does not use the D 1 data area. Also, it uses the asynchronous calls 
hippi_read_request and bippi_read_complete rather than the synchronous call hippi]ead to 
receive the data. The program runs with a loop-back connector installed on the lllPPI node. 

Compile the example using the following command: 

# cc -nx -0 hippi_node -g node.c -lhippi 

The lllPPI interface mpst be set up as raw lllPPI (see page 4-14). 

Create a link to your HIPPI device as follows: 

# In -8 /dev/hippinum /dev/hippi 

(num represents the HIPPI device number.) 

------- -- ----------------

• 
II: 

II 

• • • • 
II -. 
• • 
I: 

I: 

• 
.: 

• 
• • .. 
• • • • • • • • • • • • • 



II 

n 
II 

II 

I: 

II 

n 
11 

r:J 
1"'1 

.J 

I~'I 

J 

IJ 

IJ 

G 

• 
II 

• • 

Paragon ™ System High Performance Parallel Interface Manual Usage Notes 

The code is meant to run on a partition of two compute nodes, it then sends to the HIPPI node. The 
HIPPI node does not have to be in the compute partition. The following shows how to create the 
partition and run the example, and illustrates a typical output: 

# mkpart -sz 2 hippitest 
# ./hippi_node -pn hippitest 
Node 0: HIPPI Data Exchange: STARTED 
Node 0: 
Node 0: 
Node 1 : 
Node 1 : 

Loopback Mode 
CLIENT - Ifield = Oxl000001, ULP 
HIPPI Data Exchange: STARTED 
Loopback Mode 

Ox80, port 

Node 0: SERVER - Ifield = Ox1000001, ULP = Ox81, port 
Node 1 : HIPPI_SERVER started 
Node 1 : HIPPI_SERVER reading data 
Node 0: HIPPI_CLIENT started 
Node 0: HIPPI_CLIENT writing data 
Node 0: HIPPI_CLIENT reading data 
Node 1 : HIPPI_SERVER writing data 
Node 1 : 

-1 

-1 

Node 0: 
check_buf(): 0 mismatches 
HIPPI_CLIENT: 2679856 bytes in 0.02 s 
check_buf(): 0 mismatches 
check_buf(): 0 mismatches 
check_buf(): 0 mismatches 
check_buf(): 0 mismatches 
check_buf(): 0 mismatches 
check_buf(): 0 mismatches 
check_buf(): 0 mismatches 

127776823.59 bytes/sec 
Node 0: 
Node 1 : 
Node 0: 
Node 1 : 
Node 0: 
Node 1 : 
Node 0: 
Node 1 : HIPPI Data Exchange Done: *** PASSED *** 
Node 0: HIPPI Data Exchange Done: *** PASSED *** 
# 

C-19 



Usage Notes Paragon 1M System High Performance Parallel Interface Manual 

The example code that follows is located in the lusrlsharelexamples/c/hippi directory on the 
Paragon system. 

/**************************************************************************** 

* 
* Title: hippi/exchange/node.c 

* 
* Description: 
* Using the HIPPI interface, exchange data between nodes. Node 0 is 
* the nclient n Node 1 is the nserver." 
* Each node creates four buffers for writing. Each buffer 
* is a different length (defined by the Bx_SIZE constants), formated 
* to be sent to the other node, and filled with filler data. 
* The client writes its buffers to the server and expects to receive 
* four packets from the server. The server receives the packets from 
* the client and writes its buffers to the client. After all data is 
* sent and received, both nodes compare the received data with the 
* sent data and report any discrepancies. The client also reports 
* the rate of the data exchange. 

* 
* 
****************************************************************************/ 

#include <stdio.h> 
#include <errno.h> 
#include <fcntl.h> 
#include <setjmp.h> 
#include <sys/param.h> 
#include <sys/timers.h> 
#include <raw_hippi.h> 

#define TIMEOUT_VAL 60 

/* buffer sizes: must have 8 as a factor so that there are no partial words */ 
#define Bl_SIZE 1000 
#define B2_SIZE 88888 
#define B3_SIZE 250016 
#define B4_SIZE 1000024 

/* global vars */ 
int failed = 0; 
int node; 
int tcp_debug; 

jmp_buf timeout; 

C-20 

OxOl00000l; 

D 

II 

II 

• • • • 
&: 

• • 
&: 

a 
.: 
K 

• • • 
a, 
I: 

• • 
• • • • • • • • • 
• • 



II 

II 

I! 

II 

It 

II 

o 
I~ 

I~ 

1""'1 
\'1 

I: 
I: 
11'1 
" I 

";',l 

[J 

r:: 
c 
C 

II 

n 

• • 

Paragon ™ System High Performance Parallel Interface Manual Usage Notes 

u_long cci server OxOl00000l; 
u_long ulp_ client Ox80; 
u_long ulp_server Ox81; 
u_long port_ client -1; 
u_long port_server = -1; 

/**************************************************************************** 

* 
* main(): gets command line arguments, calls either client or 
* server function based on node' number, and reports results 

* 
****************************************************************************/ 

main (argc, argv) 
int argc; 
char *argv[); 

tcp_debug = 1; 
node = mynode(); 

printf (HNode %d: HIPPI Data Exchange: STARTED\n H, node); 
fflush(stdout) ; 

switch (argc) { 
case 1: 

printf(HNode %d: Loopback Mode\n", node); 
fflush (stdout) ; 
break; 

case 7: 
cci_client = atol(argv[l)); 
ulp_client = atol(argv[2)); 
port_client = atol(argv[3)); 
cci_server = atol(argv[4)); 
ulp_server = atol(argv[S)); 
port_server = atol(argv[6)); 
break; 

default: 
printf(HNode %d: Usage - %s [client_ifield client_ulp client-port 

server_ifield server_ulp server-port)\n", node, argv[O)); 
fflush(stdout) ; 
exit(l); 

} 

/* 

C-21 



Usage Notes Paragon™ System High Performance Parallel Interface Manual 

* Do the tests 
* Node 0 is the client 
* Node 1 is the server that echos the data sent by the client 
*/ 

if(node == 0) { 
printf ("Node %d: CLIENT - Ifield = Ox%x, ULP Ox%x, port %d\n" , 

node, cci_client, ulp_client, port_client); 
fflush (stdout) ; 
printf ("Node %d: SERVER - Ifield = Ox%x, ULP = Ox%x, port %d\n" , 

node, cci_server, ulp_server, port_server); 
fflush(stdout) ; 

C-22 

sleep(S); 
hippi_client();} 

else if(node == 1) { 
hippi_server();} 

else { 

/* 

printf("Node %d: Node Not Needed - Good Bye!\n", node); 
fflush(stdout) ; 
exit(O);} 

* Report test results 
*/ 

if (failed == 0) { 
printf("Node %d: HIPPI Data Exchange Done: *** PASSED ***\n", node); 
fflush(stdout);} 

else { 
printf("Node %d: HIPPI Data Exchange Done: *** FAILED ***\n", node); 
fflush(stdout);} 

exit (failed) ;} /* main */ 

/************************************************************************ 

* 
* alrm_handler() 

* 
* Prevents infinite blocking reads from hanging program. Does a 
* longjmp()if called. Attached to signal SIGALRM 

* 
**********************************************************************/ 

void alrm_handler(){ 
if (tcp_debug) { 

printf("Node %d: SIGALRM occured!\n", node); 
fflush(stdout);} 

longjmp(timeout, 1);} 

• 
U 

B 

• 
II 

• • 
I( 

• • • 
~ 

~ 

K 

• ., 
• • 
a 

• • • • • • • • • • • • • 



II 

n 
n 
II 
1,'1 

tIi 

II 

D 

I~ 

c 
•

'Ijr 

"" 

14'j 
" :.i 

1-'1 
.. "~,I 

I: 
11 

"'" 

I: 
I "" .. 
I: 
I] 

IJ 
Ij 

(j 

e 
II 

• • • 

Paragon TM System High Performance Parallel Interface Manual Usage Notes 

/************************************************************************ 

* 
* get_buf(ihandle, size, header-ptr, fill_char) 

* 
* 
* 
* 
* 
* 
* 
* 

ihandle: specifies the HIPPI connection 
size: the size of the desired buffer including space for 

the header 
head-ptr: a pointer to the header structure that will be 

copied into this buffer 
fill_char: the character to fill the remaining space in the buffer 

* Returns a pointer to a buffer of 'size' bytes, formatted with the header 
* and fill character. 

* 
***********************************************************************/ 

char *get_buf(ihandle, size, header-ptr, fill_char) 
int ihandlei 
u_long sizei 
struct hippi_header *header-ptri 
char fill_chari 

char *ptri 

/* allocate memory */ 
if((ptr = hippi_memget(ihandle, size)) == NULL) { 

nx-perror("get_buf(): FAILED hippi_memget()")i} 
else { /* copy header into buffer */ 

memcpy(ptr, header-ptr, sizeof(struct hippi_header))i 

/* fill rest of buffer */ 
memset(ptr + sizeof(struct hippi_header), fill_char, 
size - sizeof(struct hippi_header))i} 

/* return pointer to buffer */ 
return (ptr) i} 

/************************************************************************ 
* check_buf(bufl, buf2, ulp, size) 

* 
* Compare the data in HIPPI frame bufl (a frame that was written) to buf2 
* (a frame that was read). buf2 is checked for the correct ULP and size. 
* Return a if everything matches, otherwise return the number of 
* discrepancies. 

C-23 



Usage Notes Paragon TM System High Performance Parallel Interface Manual 

* 
* Remember that a buffer formatted for writing includes the i-field while 
* a buffer returned from a hippi_read() does not contain an i-field. Also 
* headers are in nnetwork" order and need to converted using the 
* ntoh*() functions. The Paragon bit ordering matches network order, 
* but good style and the demands of portable code dictate their use. 
* See raw_hippi.h for the definition of the header structures. 

* 
***********************************************************************/ 

int check_buf(buf_w, buf_r, ulp, size_w, size_r) 
char *buf_w; 
char *buf_r; 
u_long ulp; 
u_long size_wi 
u_long size_r; 

char *ptr_w, *ptr_r; 
int i, bad_cnt = 0; 
union hippi_fp_header *fp-ptr; 

/* convert fp header to host order */ 
fp-ptr = (union hippi_fp_header *)buf_r; 
fp-ptr->words.wl = ntohl(fp-ptr->words.wl); 

/* check size, read buffer does not contain the I-field */ 
if(size_r != (size_w - sizeof(struct hippi_ifield))) { 

printf("NOde %d: check_buf(): FAILED wrong number of bytes read\n", 
node) ; 

fflush (stdout) ; 
bad_cnt++i} 

/* check ULP of buf_r */ 
if(fp-ptr->fields.ulp != ulp) { 

printf ("Node %d: check_buf (): FAILED ULP wrong, Ox%x ! = Ox%x\n", 
node, fp-ptr->fields.ulp, ulp); 

C-24 

fflush(stdout) ; 
bad_cnt++;} 

/* 
* check data 

* 
* This check compares the read buffer to the write buffer. A read 
* buffer only has an FP header while the write buffer has both the I-field 
* and an FP header. Therefore, to get at the data in the read buffer, you 
* must skip sizeof(union hippi_fp_header) bytes and to get to the 

D 

II 

II 
8] 

II 

E: 

.: 
I: 

• • 
II: 

~ 

~ 

K' 

II 
I[ 

.: 
a 
K: 

• • • • • • • 
II 

• • • 
• 
• 



D 

n 
D 

II 
1'1 :Ii; 

D 

Ii 

I] 

IJ 

IJ 

I~'! 
00 

IJ 

IJ 

1"1 
",I 

IJ 

IJ 

IJ 

~ 

D 

n 

• • 

Paragon 1M System High Performance Parallel Interface Manual Usage Notes 

* data in the write buffer you must skip sizeof(struct hippi_header) bytes 
*/ 

buf_w + sizeof(struct hippi_header); 
buf_r + sizeof(union hippi_fp_header); 

forti 0; i < (size_w -
if(*ptr_w != *ptr_r) 

bad_cnt++;} 
ptr_w++; 
ptr_r++;} 

sizeof(struct hippi_header»; i++) 
{ 

/* restore fp header to network order, non-destructive compare */ 
fp-ptr->words.wl = htonl(fp-ptr->words.wl); 

if (tcp_debug) 
printf(HNode %d: check_buf(): %d mismatches\nH, node, bad_cnt); 

fflush(stdout);} 

return(bad_cnt);} 

/************************************************************************ 

* 
* hippi_client ( ) 

* 
* Fill in a HIPPI header with values to send data to the server. 
* Open the HIPPI device. Use get_buf() to create some buffers. Write 
* the buffers to the server, read what the server sends back, and check 
* for discrepancies. Report any errors and the data rate. Also, free 
* the memory allocated for for the device. 

* 
**********************************************************************/ 

hippi_client ( ) 
{ 

int ihandle, total_bytes; 
long bufl_r_len, buf2_r_len, buf3_r_len, buf4_r_len; 
double elap_time; 
char *bufl_w, *buf2_w, *buf3_w, *buf4_w; 
char *bufl_r, *buf2_r, *buf3_r, *buf4_r; 

/* 
* See hippi_raw.h for the definition of a hippi_header. It contains two 
* other structures, an I-field and a FP_Header. 
*/ 

struct hippi_header hh_w; 
struct timespec tl, t2; 

C·25 



-- - --.. ~-------

Usage Notes Paragon™ System High Performance Parallel Interface Manual 

C-26 

printf (HNode %d: HIPPI_CLIENT started\n", node) i 

fflush(stdout); 

/* 
* header for writes to server 

* 
* Note: zeroing this structure zeros the P, B, D1_Area_Size, 
* and the D2_0ffset fields of the FP_HEADER_AREA. This turns Hoff" 
* the use of the D1_Area and makes the D2_Area not aligned. 
* This simplies things and avoids any offset computation. 
* Remember that this is HRAW" mode that allows you to do anything! 

* 
* Also, the header must be in Hnetwork" order--use the hton*() 
* functions to avoid problems. 
*/ 

memset(&hh_w, 0, sizeof(hh_w)); 

/* 
* The I-field for outbound packets contains the routing information. 
* This is the destination of the outbound data. The hippi.map file 
* (or equivalent) contains the I-fields for other hosts connected to 
* the HIPPI network 
*/ 

hh_w.cci.Ifield = htonl(cci_server)i 

/* 
* Since the D1_Area is not being used, the only value that needs to 
* be put into the FP_Header is the destination ULP. 
*/ 

hh_w.fp.fields.ulp = ulp_server; 
hh_w.fp.words.w1 = htonl(hh_w.fp.words.w1)i 

/* create HIPPI connection */ 
if((ihandle= hippi_open("/dev/hippi", HIPPI_RAW, O_RDWR)) < 0) { 

nx-perror("HIPPI_CLIENT: FAILED hippi_open()")i 
failed++i} 

/* 
* bind for reads from server 

* 
* To receive data the I-handle must be bound to a specific ULP. In this 
* case, the server is sending data to the client. Therefore the client 
* must bind its ULP to the I-handle. This I-handle will then be able to 
* to receive data that is sent to this ULP. 
*/ 

if (hippi_bind(ihandle, ulp_client, port_client) -1) { 

U 

II 

II 

II 

II 

II 

II 

I: 

• 
II: 

I: 

== 
I: 

E: 

II 

II: 

E 

R: 

~ 

• • • • • • • 
.: 

• • • • • 



II 

D 

D 

D 

II 

n 
D 

n 
D 

I; 

n 
IJ 

I~:J 

1:1 

IJ 

IJ 

r: 
Ij 

D 

II 

• • • 

--~--.-'-----~ 

Paragon™ System High Performance Parallel Interface Manual Usage Notes 

nx-perror("HIPPI_CLIENT: FAILED hippi_bind()"); 
failed++;} 

/* Initialize buffers */ 
if((bufl_w =get_buf(ihandle, Bl_SIZE, &hh_w, 'f')) == NULL) { 

printf("Node %d: HIPPI_CLIENT: FAILED get_buf(Bl_SIZE)\n", node); 
fflush (stdout) ; 
failed++; } 

if((buf2_w =get_buf(ihandle, B2_SIZE, &hh_w, 'A')) == NULL) { 
printf ("Node %d: HIPPI_CLIENT: FAILED get_buf (B2_SIZE) \n", node); 
fflush (stdout) ; 
failed++; } 

if((buf3_w =get_buf(ihandle, B3_SIZE, &hh_w, 's')) == NULL) { 
printf("Node %d: HIPPI_CLIENT: FAILED get_buf(B3_SIZE)\n", node); 
fflush (stdout) ; 
failed++;} 

if((buf4_w =get_buf(ihandle, B4_SIZE, &hh_w. 'T')) == NULL) { 
printf("Node %d: HIPPI_CLIENT: FAILED get_buf(B4_SIZE)\n", node); 
fflush (stdout) ; 
failed++;} 

if (tcp_debug) { 
printf ("Node %d: HIPPI_CLIENT writing data\n", node); 
fflush(stdout);} 

/* Allocate buffer space for rece~v~ng data from client */ 
if (hippi_read_request(ihandle, Bl_SIZE) < 0) { 

nx-perror("HIPPI_CLIENT: FAILED hippi_read_request(bufl)"); 
exit (1) ;} 

if (hippi_read_request (ihandle, B2_SIZE) < 0) { 
nx-perror("HIPPI_CLIENT: FAILED hippi_read_request(buf2)"); 
exit (1) ;} 

if (hippi_read_request(ihandle, B3_SIZE) < 0) { 
nx-perror("HIPPI_CLIENT: FAILED hippi_read_request(buf3)"); 
exit (1) ;} 

if (hippi_read_request (ihandle, B4_SIZE) < 0) { 
nx-perror("HIPPI_CLIENT: FAILED hippi_read_request(buf4)"); 
exit (1) ;} 

C-27 



Usage Notes Paragon TM System High Performance Parallel Interface Manual 

if (setjmp (timeout) == 0) { 

C-28 

/* attach signal to alarm handler */ 
signal (SIGALRM, alrm_handler) i 

alarm(TIMEOUT_VAL)i 
getclock(TIMEOFDAY, &t1)i 

/* write data */ 
if (hippi_write(ihandle, buf1_w, B1_SIZE) == -1) { 

nx-perror(HHIPPI_CLIENT: FAILED hippi_write(bufl)")i 
failed++i} 

if (hippi_write(ihandle, buf2_w, B2_SIZE) == -1) { 
nx-perror(HHIPPI_CLIENT: FAILED hippi_write(buf2)")i 
failed++i} 

if (hippi_write(ihandle, buf3_w, B3_SIZE) == -1) { 
nx-perror(HHIPPI_CLIENT: FAILED hippi_write(buf3)") i 

failed++i} 

if (hippi_write(ihandle, buf4_w, B4_SIZE) == -1) { 
nx-perror(HHIPPI_CLIENT: FAILED hippi_write(buf4)")i 
failed++i} 

if (tcp_debug) { 
printf(HNode %d: HIPPI_CLIENT reading data\n", node)i 
fflush(stdout)i} 

/* read data */ 
while((buf1_r_len = hippi_read_complete(ihandle, &buf1_r» -1) 
if(errno != EWOULDBLOCK) { 

nx-perror(HHIPPI_CLIENT: FAILED hippi_read(buf1)")i 
exit (1) i} 

while((buf2_r_len = hippi_read_complete(ihandle, &buf2_r) == -1) 
if(errno != EWOULDBLOCK) { 

nx-perror(HHIPPI_CLIENT: FAILED hippi_read(buf2)") i 

exit(l)i} 

while((buf3_r_len = hippi_read_complete(ihandle, &buf3_r») == -1) 
if(errno != EWOULDBLOCK) { 

nx-perror(HHIPPI_CLIENT: FAILED hippi_read(buf3)") i 

exit(l)i} 

while((buf4_r_len = hippi_read_complete(ihandle, &buf4_r)) == -1) 
if(errno != EWOULDBLOCK) { 

nx-perror(HHIPPI_CLIENT: FAILED hippi_read(buf4)")i 
exit (1) i } 

D 

U 

o 
II] 

a 
III 

• 
EJ 

• • 
~ 

I: 

1:, 

II 
II] 

III 

E 

II: 

I: 

• 
II 

• • • .' • • • • • • • 



II 

D 

II 

D 

n 
n 

( ''1 
. ..J 

[J 

IJ 

I" 

I: 
IJ 
IJ 
IJ 
I i 

"J 

II 

n 

• • 

Paragon™ System High Performance Parallel Interface Manual Usage Notes 

getclock(TIMEOFDAY, &t2); 
alarm(O) ; 

/* report bytes per second */ 
elap_time = t2.tv_sec+t2.tv_nsec/l0.0e9 - tl.tv_sec-tl.tv_nsec/l0.0e9; 
total_bytes = 2* (Bl_SIZE + B2_SIZE + B3_SIZE + B4_SIZE); 

print f ("Node %d: HIPPI_CLIENT: %d bytes in %.2 f s = %.2 f bytes / sec \n" , 
node, total_bytes, elap_time, total_bytes/elap_time); 

fflush (stdout) ; 

/* Check received data */ 
if (check_buf(bufl_w, bufl_r, ulp_client, Bl_SIZE, bufl_r_len)) { 

printf("Node %d: HIPPI_CLIENT: FAILED bufl bad data\n", node); 
fflush(stdout) ; 
failed++;} 

if (check_buf(buf2_w, buf2_r, ulp_client, B2_SIZE, buf2_r_len)) { 
printf(UNode %d: HIPPI_CLIENT: FAILED buf2 bad data\n", node); 
fflush (stdout) ; 
failed++;} 

if (check_buf(buf3_w, buf3_r, ulp_client, B3_SIZE, buf3_r_len)) { 
printf("Node %d: HIPPI_CLIENT: FAILED buf3 bad data\n", node); 
fflush(stdout) ; 
failed++;} 

if (check_buf(buf4_w, buf4_r, ulp_client, B4_SIZE, buf4_r_len)) { 
printf("Node %d: HIPPI_CLIENT: FAILED buf4 bad data\n", node); 
fflush(stdout); 
failed++;} 

else { 

node) ; 

/* 

printf(UNode %d: HIPPI_CLIENT: FAILED write or read timed out\n", 

fflush (stdout) ; 
failed++;} 

* free memory and close connection 

* 
* See the man page for hippi_memfree() about the last parameter 
*/ 

hippi_memfree(ihandle, bufl_w, Bl_SIZE, 0); 
hippi_memfree(ihandle, buf2_w, B2_SIZE, 0); 

C-29 



Usage Notes Paragon™ System High Performance Parallel Interface Manual 

C-30 

hippi_memfree(ihandle, 
hippi_memfree(ihandle, 
hippi_memfree(ihandle, 
hippi_memfree(ihandle, 
hippi_memfree(ihandle, 
hippi_memfree(ihandle, 
hippi_close(ihandle); 
return; 
} /* hippi_client */ 

buf3_w, 
buf4 _w, 
bufl _r, 
buf2 _r, 
buf3 _r, 
buf4 _r, 

B3 _SIZE, 0) ; 

B4 _SIZE, 0) ; 
buf1_r_len, 1) ; 
buf2 _r_len, 1) ; 
buf3 _r_len, 1) ; 
buf4 _r_len, 1) ; 

/************************************************************************ 

* 
* hippi_server ( ) 

* 
* Fill in a HIPPI header with values to send data to the client. 
* Open the HIPPI device. Use get_buf() to create some buffers. Read what 
* the client sends, write the buffers to the client and check 
* for discrepancies. Report any errors and free the memory allocated 
* for for the device. 

* 
**********************************************************************/ 

hippi_server ( ) 
{ 

int ihandle; 
long buf1_r_len, buf2_r_len, buf3_r_len, buf4_r_len; 
char *buf1_w, *buf2_w, *buf3_w, *buf4_w; 
char *buf1_r, *buf2_r, *buf3_r, *buf4_r; 
struct hippi_header hh_w; 

printf (UNode %d: HIPPI_SERVER started\n", node); 
fflush (stdout) ; 

/* 
* header for writes to client 

* 
* See the comments in hippi_client() about filling in the HIPPI 
* header fields. For the server, the destination ULP is the client 
*/ 

memset(&hh_w, 0, sizeof(hh_w)); 
hh_w.cci.Ifield = htonl(cci_client); 
hh_w.fp.fields.ulp = ulp_client; 
hh_w.fp.words.w1 = htonl(hh_w.fp.words.w1); 

/* create HIPPI connection */ 
if((ihandle = hippi_open(u/dev/hippi", HIPPI_RAW, O_RDWR)) < 0) 

nx-perror(HHIPPI_SERVER: FAILED hippi_open()"); 
failed++;} 

D 

o 
II] 

a 
111 

E 

• 
II] 

• 
II 

I: 

K: 

I:: 
I[ 

• 
II 

E 

III 

a-

• 
I[ 

• 
• • • • 
• • • • • • 



II 

n 
D 

D 

II 

c 
n 
I~ 

11 

I~ 

r: 
I "" 1~: 

[
'~ 

L __ '.: 

I~ 

IJ .-,.., 
l.I 

IJ 

IJ 

IJ 

C 
I) 

D .. 
II 

• 

Paragon ™ System High Performance Parallel Interface Manual Usage Notes 

/* 
* bind for reads from client to receive data sent to the server ULP 
* 
* See the comments in hippi_client() about binding I-handles 
*/ 

if (hippi_bind(ihandle, ulp_server, port_server) == -1) 
nx.....perror(HHIPPI_SERVER: FAILED hippi_bind()H); 
failed++; } 

/* Initialize buffers */ 
if((bufl_w =get_buf(ihandle, Bl_SIZE, &hh_w, 'f')) == NULL) { 

printf(HNode %d: HIPPI_SERVER: FAILED get_buf(Bl_SIZE)\n", node); 
fflush(stdout) ; 
failed++;} 

if((buf2_w =get_buf(ihandle, B2_SIZE, &hh_w, 'A')) == NULL) { 
printf(HNode %d: HIPPI_SERVER: FAILED get_buf(B2_SIZE)\n", node); 
fflush (stdout) ; 
failed++;} 

if((buf3_w =get_buf(ihandle, B3_SIZE, &hh_w, 's')) == NULL) { 
printf(HNode %d: HIPPI_SERVER: FAILED get_buf(B3_SIZE)\n", node); 
fflush (stdout) ; 
failed++;} 

if((buf4_w =get_buf(ihandle, B4_SIZE, &hh_w, 'T')) == NULL) { 
printf(HNode %d: HIPPI_SERVER: FAILED get_buf(B4_SIZE)\n", node); 
fflush(stdout) ; 
failed++;} 

if (tcp_debug) { 
printf(HNode %d: HIPPI_SERVER reading data\n", node); 
fflush(stdout);} 

/* Allocate buffer space for recelvlng data from client */ 
if (hippi_read_request (ihandle, Bl_SIZE) < 0) { 

nx.....perror(HHIPPI_SERVER: FAILED hippi_read_request(bufl)"); 
exit (1) ; } 

if (hippi_read_request (ihandle, B2_SIZE) < 0) { 
nx.....perror(HHIPPI_SERVER: FAILED hippi_read_request(buf2)H); 
exit (1);} 

if (hippi_read_request (ihandle, B3_SIZE) < 0) { 
nx.....perror(HHIPPI_SERVER: FAILED hippi_read_request(buf3)H); 
exit(l);} 

C-31 



Usage Notes Paragon™ System High Performance Parallel Interface Manual 

C-32 

if (hippi_read_request (ihandle, B4_SIZE) < 0) { 
nx-perror("HIPPI_SERVER: FAILED hippi_read_request(buf4)"); 
exit (1) ;} 

if (setjmp(timeout) == 0) { 
/* attach signal to alarm handler */ 
signal (SIGALRM, alrm_handler); 

alarm(TIMEOUT_VAL); 

/* read data */ 
while((buf1_r_len = hippi_read_complete(ihandle, &buf1_r» 
if(errno != EWOULDBLOCK) { 

nx-perror("HIPPI_SERVER: FAILED hippi_read(buf1)"); 
exit(l);} 

-1) 

while((buf2_r_len = hippi_read_complete(ihandle, &buf2_r» == -1) 
if(errno != EWOULDBLOCK) { 

nx-perror("HIPPI_SERVER: FAILED hippi_read(buf2)"); 
exit (1) ;} 

while((buf3_r_len = hippi_read_complete(ihandle, &buf3_r» == -1) 
if(errno != EWOULDBLOCK) { 

nx-perror ("HIPPI_SERVER: FAILED hippi_read (buf3) ") ; 
exit(l);} 

while((buf4_r_len = hippi_read_complete(ihandle, &buf4_r» == -1) 
if(errno != EWOULDBLOCK) { 

nx-perror("HIPPI_SERVER: FAILED hippi_read(buf4)"); 
exit (1) ;} 

if (tcp_debug) { 
printf (IINode %d: HIPPI_SERVER writing data\n", node); 
fflush(stdout);} 

/* write data */ 
if (hippi_write(ihandle, buf1_w, B1_SIZE) == -1) { 

nx-perror(NHIPPI_SERVER: FAILED hippi_write(buf1)"); 
failed++; } 

if (hippi_write(ihandle, buf2_w, B2_SIZE) == -1) { 
nx-perror(NHIPPI_SERVER: FAILED hippi_write(buf2)"); 
failed++;} 

if (hippi_write(ihandle, buf3_w, B3_SIZE) == -1) { 
nx-perror(NHIPPI_SERVER: FAILED hippi_write(buf3)"); 
failed++; } 

D 

It 

D 

II 

• 
II] 

E 

• • 
•• 
II: 

I: 

II 

• a: 
II 
E; 

II 

• 
.: 

• • • • • • • • 
• • • 



II 

II 

D 

o 
I! 

C 

11 

n 
C 

I·~ 

.lI! 

'I~! 
1."<.] 

I· ", ..rJ 

IJ 

IJ 
IJ 

I: 
I~ 

1:1 

C 

B 

II 

• • 

Paragon TM System High Performance Parallel Interface Manual Usage Notes 

if (hippi_write(ihandle, buf4_w, B4_SIZE) == -1) { 
nx-perror(HHIPPI_SERVER: FAILED hippi_write(buf4)"); 
failed++;} 

alarm(O) ; 

/* Check received data */ 
if (check_buf(bufl_w, bufl_r, ulp_server, Bl_SIZE, bufl_r_len)) { 

printf(HNode %d: HIPPI_SERVER: FAILED buf1 bad data\n", node); 
fflush(stdout); 
failed++; } 

if (check_buf(buf2_w, buf2_r, ulp_server, B2_SIZE, buf2_r_len)) { 
printf(UNode %d: HIPPI_SERVER: FAILED buf2 bad data\n H , node); 
fflush (stdout) ; 
failed++;} 

if (check_buf(buf3_w, buf3_r, ulp_server, B3_SIZE, buf3_r_len)) { 
printf(HNode %d: HIPPI_SERVER: FAILEDbuf3 bad data\n H , node); 
fflush(stdout); 
failed++;} 

if (check_buf (buf4_w, buf4_r, ulp_server, B4_SIZE, buf4_r_len)) { 
printf("Node %d: HIPPI_SERVER: FAILED buf4 bad data\n", node); 
fflush(stdout) ; 
failed++;} 

else { 

node) ; 
printf(HNode %d: HIPPI_SERVER: FAILED write or read timed out\n", 

fflush(stdout) ; 
failed++;} 

/* free memory and close connection */ 
hippi_memfree(ihandle, buf1_w, B1_SIZE, 0); 
hippi_memfree(ihandle, buf2_w, B2_SIZE, 0); 
hippi_memfree(ihandle, buf3_w, B3_SIZE, 0); 
hippi_memfree(ihandle, buf4_w, B4_SIZE, 0); 
hippi_memfree(ihandle, buf1_r, buf1_r_len, 1); 
hippi_memfree(ihandle, buf2_r, buf2_r_len, 1); 
hippi_memfree(ihandle, buf3_r, buf3_r_len, 1); 
hippi_memfree(ihandle, buf4_r, buf4_r_len, 1); 
hippi_close(ihandle); 
return; 
} /* hippi_server */ 

C-33 



Usage Notes Paragon 1M System High Performance Parallel Interface Manual 

C-34 

D 

II 

H 

D 

It 
I[ 

&: 

a: 

• 
II 

• 
I[ 

I: 
K 

• 
II 

• 
.: 
I: 

• • • • .: 
• • • • • 
• • • 



II 

D 

D 

o 
n 
11 
II 

I~ 

IJ 

1:1 

I~ 

IJ 

I~ 

c 

• • • • 

Using IPI Devices With 
Paragon ™ Systems 

Using The IPI-3 Interface on Paragon ™ Systems 
This section describes how to use the IDPPI IPI-3 interface on Paragon systems. It includes 
information about IPI protocol, system requirements, addressing, and information about configuring 
the illPPI interface for use with IPI-3 transfers. 

The IPI Protocol 

The Intelligent Peripheral Interface (IPI) is a protocol developed by the International Standards 
Organization (ISO) and the International Electrotechnical Commission (lEC). The specification is 
in four parts: 

Part 1 Physical Interface. 

Part 2 Device-specific command set for magnetic disk drives. 

Part 3 Device-generic command set for magnetic and optical disk drives. 

Part 4 Device-generic command set for magnetic disk drives. 

The Part 3 interface (IPI-3) drivers are available to connect IPI devices to Paragon TM systems via the 
mPPI interface. Data is transferred between the HIPPI master and IPI-3 slave devices using "read" 
and "write" commands like any disk drive. 

Using the IPI-3 Interface 

The IPI -3 subsystem provides a high-speed interface for transferring large amounts of data between 
a Paragon system and a remote IPI-3 mass-storage device (such as an external magnetic/optical disk 
farm or a tape unit) via a IDPPI connection. The illPPI IPI-3 driver provides three types of transfers: 

0-1 



- ---_._---._.- ----~-----------------------~---------- -- ----

Using IPI Devices With Paragon™ Systems Paragon ™ System High Performance Parallel Interface Manual 

Raw Block I/O Provides for reading and writing directly to the IPI-3 device without going 
through the file system. Raw block I/O to an IPI-3 magnetic disk array 
provides high-speed remote temporary storage for moving large data sets 
(using block sizes as large as 4 MB) into and out of a Paragon system without 
going through a file system. 

File System I/O Provides for communicating with the IPI-3 device through the file system, 
just as if it were part of the local disk arrays. File system I/O is only available 
for parallel file systems (PFS) and not for Unix file systems (UPS). File 
system I/O to a mounted magnetic disk provides high-speed remote-access 
file systems that can be configured with block sizes as large as 512 KB. 

System Setup Overview 

A system administrator must perform the following steps to set up the IPI -3 interface on a Paragon TM 

system. The steps are described in detail in this appendix: 

1. Create new bootmagic variables to configure the IPI-3 driver to a mpPI channel or design a 
series of ioctlO function calls within your application to configure the interface. 

2. Reboot the Paragon system to enable the variables in the bootmagic file, if you are using that 
method to configure the interface. 

3. Create device special files in Idev. 

4. Create a disk label in letddisktab (if necessary). 

5. Write the label to the IPI device. 

The process is complete at this point if you are configuring the system for raw I/O transfers. The 
remaining steps are necessary for using the system with file system I/O. 

6. Create new file systems on the IPI device. 

7. Mount the new file systems for use by the Paragon system. 

Device Requirements 

IPI devices must meet the following requirements to be used with a Paragon system: 

• It must be a magnetic disk using IPI-3 protocol over mPPI channels. 

• It must use a block size of 64k bytes. 

• It is desirable that it use Full First Burst mode for better performance. 

0-2 

o 
II 

G 

D 

BJ 

B 
EJ 

I: 

• .: 
.: 
IJ 

I:: 

III 

• • 
IJ 

&: 

• 
a: 

• • • • • • • • • • • 



• • • 
D 
.~ 

11 

II 

11 

C 

11 

I , 
"I 

I "".· .J 

IJ 

Ij 

r: 
I: 

G 

II 

II 

• • 

Paragon ™ System High Performance Parallel Interface Manual Using IPI Devices With Paragon™ Systems 

IPI Addressing 

An IPI-3 device is addressed by four components: 

Slave Up to eight slaves may be assigned to each lllPPI master. 

Facility Up to 16 physical facilities are available per slave. 

Partition There may be up to 256 partitions per facility. (Note that this is not the same 
as a Unix partition.) 

Unix Partition Up to 16 Unix partitions are available on each facility partition. 

Setting Up An IPI-3 Interface on Paragon TMSystems 

Connecting the IPI-3 Interface to a HIPPI Channel 

The IPI-3 interface connections must be specified, using either bootmagic variables in the 
MAGIC.MASTER file to initialize the connections during system start-up, or by using ioctlO 
function calls within your application to specify or change the connections. Both processes are 
described in the following paragraphs. 

Using Bootmagic Variables 

The IPI-3 interface is assigned to a lllPPI channel by setting variables in theMAGIC.MASTER file 
on the diagnostic station. That file is used when a Paragon system boots to create the bootmagic file, 
which is downloaded to the supercomputer and used to configure hardware and software. 

NOTE 

Never modify the boot magic file directly. 

Bootmagic variables allow you to control the operation of the lllPPI IPI device driver. These 
configuration variables operate on individual nodes, allowing multiple IPI interfaces to be 
configured differently within a Paragon TM system. 

D-3 



Using IPI Devices With Paragon™ Systems Paragon ™ System High Performance Parallel Interface Manual 

0-4 

The syntax. of a bootmagic string is: 

name= [<node_list>Jvalue [:<node_list>valueJ ... 

name The name of the bootmagic variable. 

The node_list may have the following form: 

node [,node J ... 

node Either an individual node ID or a range of nodes 
(low _node .. high_node). 

If node_list is not specified, the bootmagic variable setting applies to all 
nodes in the Paragon™ system. 

value The initialization value for the bootmagic variable. 

Refer to the Paragon™ System Software Release Notes for more information about the bootmagic 
variables. 

Setting IPI Slave Connection Control Variables 

The HIPPI interface defines a protocol for controlling physical layer switches. This protocol 
includes a parameter called an I-field to establish a connection from a source to a destination. A 
bootmagic variable that contains the connection control information may be defined for each IPI 
slave device. The available bootmagic variables are: 

IPCSLA VE_O_IFIELD 
IPCSLA VE_l_IFIELD 
IPCSLA VE_2_IFIELD 
IPCSLA VE_3_IFIELD 
IPCSLA VE_ 4_IFIELD 
IPCSLA VE_5_IFIELD 
IPCSLA VE_6_IFIELD 
IPCSLA VE_7 _IFIELD 

If not defined, the driver defaults to a value of the slave ID. The following example specifies that the 
I-field routing control value for the Slave 0 device will be "8": 

Refer to Chapter 4 for more information about the I-field and routing through the mpPI network. 

I: 

It 
I: 

C 

I:J 

E1 

I: 

• 
I[ 

I( 

I:: 

I: 

~ 

• 
~ 

III 

&: 

.: 
II 

•• • 
• 
II 

• • • • • • • • 



• • 
II 

II 
II, 

II 

D 

n 
D 

IE 

.~ 

1= 
I·~ 
, i1J 

r~ 

'"j 

Ij 

~ 

D 

II 

• • • 

Paragon ™ System High Performance Parallel Interface Manual Using IPI Devices With Paragon™ Systems 

Setting IPI Slave Facility Variables 

Each IPI device can support multiple facilities. These facilities are unique to each type of hardware 
and allow a single IPI slave to control multiple sub-devices. While there are several ways in which 
a facility address may logically be used by an IPI slave, a maximum of sixteen physical facilities 
may exist. To overcome this logical versus physical device limitation, a set of bootmagic variables 
are available to define the base facility number that is added to the facility number offset encoded in 
the device minor number. The bootmagic variables are: 

IPCSLA VE_O_FACILITY 
IPCSLA VE_l_FACILITY 
IPCSLA VE_2_FACILITY 
IPCSLA VE_3_FACILITY 
IPCSLA VE_ 4_FACILITY 
IPCSLA VE_5_FACILITY 
IPCSLA VE_6_FACILITY 
IPCSLA VE_7 _FACILITY 

If not defined, the driver defaults to a facility base value of O. The following example sets the base 
facility number for the Slave 0 device to "16": 

Setting IPI Slave Partitions 

IPI devices can support multiple partitions within each facility. These partitions are controlled by 
the IPI-3 device and are not related to the Unix file system partitions encoded in the minor number. 
Multiple partition support allows you to take advantage of the performance characteristics of each 
partition depending on the device configuration and usage model. The bootmagic variables are: 

IPCSLAVE_O_PARTITION 
IPCSLAVE_CPARTITION 
IPCSLAVE_2_PARTITION 
IPCSLAVE_3_PARTITION 
IPCSLA VE_ 4_P ARTITION 
IPCSLA VE_5_PARTITION 
IPCSLA VE_6_P ARTITION 
IPCSLA VE_7 _PARTITION 

If not defined, the driver will default to partition 0, the default data partition of the device. The 
following example specifies that the Slave ° device will use partition 16 

0-5 



Using IPI Devices With Paragon™ Systems Paragon"" System High Performance Parallel Interface Manual 

0-6 

Setting IPI Command Reference Numbers 

IPI commands include a command reference number field that identifies each individual command. 
The slave echoes the command reference number in a response packet to identify the associated 
command. For slaves capable of queuing multiple commands, the master is responsible for ensuring 
that all active commands have a unique identification. When the command is no longer outstanding, 
the master may reuse the command reference number. Because a slave may be shared by several 
masters, such as when two systems are sharing different partitions on the same disk array, a unique 
range of command reference numbers must be assigned to each master. The bootmagic variable pairs 
used are: 

IPCSLA VE_O_CMD_REF _MIN 
IPCSLAVE_l_CMD_REF _MIN 
IPCSLA VE_2_CMD_REF _MIN 
IPCSLA VE_3_CMD_REF _MIN 
IPCSLAVE_ 4_CMD_REF _MIN 
IPCSLAVE_5_CMD_REF _MIN 
IPCSLAVE_6_CMD_REF _MIN 
IPCSLA VE_7 _CMD_REF _MIN 

IPCSLA VE_O_CMD_REF _MAX 
IPCSLA VE_l_CMD_REF _MAX 
IPCSLA VE_2_CMD_REF _MAX 
IPCSLA VE_3_CMD_REF _MAX 
IPCSLA VE_ 4_CMD_REF _MAX 
IPCSLAVE_5_CMD_REF _MAX 
IPCSLA VE_6_CMD_REF _MAX 
IPCSLA VE_7 _CMD_REF _MAX 

If not defined, the driver defaults to command reference numbers OxOOOO through OxOOOF inclusive. 
To provide compatibility with NSL client implementations on the Paragon™ system, the maximum 
command reference number is limited to Ox7FFF. The following example defines the range of 
command reference numbers that will apply to Slave 0 as those between 16 and 31. 

IPI_SLAVE_O_CMD_REF_MIN=16 
IPI_SLAVE_O_CMD_REF_MAX=31 

Note that the range of command reference numbers specified limits the amount of command queuing 
the HIPPI IPI device driver performs on each slave and the amount of memory allocated for 
command queues. Each command buffer allocated consumes 1024 bytes of wired-down node 
memory. 

NOTE 

If you are using bootmagic variables to configure the IPI-3 
interface, you must reboot the Paragon system at this point for the 
bootmagic variables to take effect. 

11 

II 

II 

II 

II 

C 

E: 

Ir 

• • 
I: 

£: 
;::: 

~ 

II 

I: 

.: 
~, 

~ 

II 

• • • • • • • • • • • • 



• • 
D 

n 
D 

1:1 

Ll 

IJ 

~ 

~ 

II 

• • • 

Paragon™ System High Performance Parallel InterfaCe Manual Using IPI Devices With Paragon™ Systems 

Dynamic Control of IPI-3 Connections With IOCTL Functions 

The IPI control functions may either be set with bootmagic variables as described previously, or 
changed dynamically with ioctIO functions within the application code. The ioctlO functions may 
be used to set or read information about a particular slave device. 

The ioctlO functions are defined in the header file /usr/includeJdevice/ipCstatus.h. Refer to the 
online manual page for ioctlO for general information about using those functions, and to the 
ipCstatus.h file for detailed information about the arguments for each function. 

The following code segment contains examples of how to configure an IPI-3 interface using ioctlO 
functions: 

#include <stdio.h> 
#include <errno.h> 
#include <fcntl.h> 
#include <sys/ioctl.h> 
#include <device/ipi_status.h> 

#define IPI_MASTER_DEV l/dev/ipi/ripmO" 

main() 
{ 

int fd; /* file descriptor of an IPI Master Device */ 
unsigned int ifield; /* ifield */ 
unsigned int facility; /* facility */ 
unsigned int partition; /* partition */ 
struct ipi_cmd_ref cmd_ref; /* min & max command */ 

/* reference numbers */ 

if ((fd = open (IPI_MASTER_DEV, O_RDONLY)) < 0) { 
perror("open failed"); 
exit (1) ; 

} 

ifield = 8; 
if (ioctl(fd, IPISIFIELD, &ifield) < 0) { 

perror("ioctl() IPISIFIELD failed\n"); 
exit (1); 

} 

facility = 16; 
if (ioctl(fd, IPISFACILITY, &facility) < 0) 

perror("ioctl() IPISFACILITY failed\n"); 
exit(l); 

D-7 



Using IPI Devices With Paragon™ Systems Paragon™ System High Performance Parallel Interface Manual 

partition = 16; 
if (ioctl(fd, IPISPART, &partition) < 0) { 

perror(Hioctl() IPISPART failed\n"); 
exit(l); 

cmd~ref.min = 16; 
cmd_ref.max = 31; 
if (ioctl(fd, IPISCMDREF, &cmd_ref) < 0) { 

perror(Hioctl() IPISCMDREF failed\nH); 
exit(l); 

} 

close (fd) ; 
exit(O); 

Creating IPI-3 Device Entries 

0-8 

After configuring the IPI-3 interface, create device entries in the/dev directory using the rmknod 
command. The syntax of the rmknod command is: 

rmknotl <name> <ble> <major> <minor> <node> 

name The name of the device being created. 

b Defines a block-oriented device. 

c Defines a character-oriented device. 

It 
II 

H 

II 

II 

E 

E: 

• • 
E 

r: 
£ 

K.: 

II 

I: 

K 

I: 

~ 

• 
K 

• • • • • • • • • • • 



• • .. 
D 

o 
D 

D 

D 

D 

D 

D 

I:J 

C 

IJ 
[J 

(J 

C 

IJ 
[J 

[J 

Ij 

~ 

II 

II 

• • 

Paragon™ System High Performance Parallel Interface Manual Using IPI Devices With Paragon™ Systems 

major 

minor 

node 

The major number specifies the device type and slave. The available device 
types are: 

Master Device Character devices only. The master device is an 
optional control interface for the IPI-3 device driver 
and does not use the Unix partition defined in the 
minor number. 

Master devices are specified with the major number 
25, and offset by the number of the slave (0 - 7). Slave 
o is 25, Slave 1 is 26, etc. 

Magnetic Disk Either block or raw character devices. 

Block disk devices are specified with the major 
number 23, and offset by the number of a slave (0 - 7). 
Slave 0 is 23, Slave 1 is 24, etc. 

Raw character disks are specified with the major 
number 33, and offset by the number of a slave (0 - 7). 
Slave 0 is 33, Slave 1 is 34, etc. 

NOTE 

If you are using an application to configure the device (as opposed 
to bootmagic variables) you must open the master device to 
perform the configuration. You cannot open a magnetic disk if it 
has not been configured. Once they are properly configured, 
either a master device or a magnetic disk may be used to modify 
the configuration, with some restrictions. 

The minor number is an 8-bit value that specifies the facility and the Unix 
partition. 

Bits 0 - 3 

Bits 4-7 

Defines the Unix partition. Four bits allow for sixteen 
Unix partitions (a - p). These bits must all be set to "0" 
for a Master Device, which doesn't use Unix 
partitions. 

Defines the IPI facility number offset. This value is 
added to the base facility value defined by the 
bootmagic variable IPCSLA VE_x_FACILITY. Four 
bits allow for sixteen device facilities. 

The remote HlPPI 110 node to be used. 

0-9 



Using IPI Devices With Paragon™ Systems Paragon TM System High Performance Para"el Interface Manual 

The following example creates a block disk device special file "imd (IPI Magnetic Disk) slave 0 
partition a on remote node 7". 

> r.mknod /dev/ipi/imdOa b 23 0 7 

The next example creates a raw disk device special file "rimd (Raw IPI Magnetic Disk) slave 7 
partition d, again on remote node 7": 

> r.mknod /dev/ipi/rimd7d c 40 3 7 

The third example creates a raw master device special file "ripm (Raw Intelligent Peripheral Master) 
slave 1 on remote node 7" 

> r.mknod /dev/ipi/ripml c 26 0 7 

Creating a Disk Label 

0-10 

After the interface is connected, the next step in setting up an IPI-3 device for use in a Paragon 
system is to create a label for the new disk in the letcldisktab file. The label describes the disk 
geometry, and divides the disk into Unix partitions. It is dependent on the specifications of the 
hardware. Refer to the manual page for the disktab file for information about the file format. Refer 
to the manufacturer's specifications for details about a specific IPI device. 

NOTE 

The disk label for the Maximum Strategy GEN-4 device is included 
in the standard /etc/disktab file for the Paragon ™ system. The disk 
label may need modification, depending upon the exact 
configuration of your GEN-4 system. 

The following example is the disk label for the Maximum Strategy GEN-4 device: 

gen4 IGEN-4 I Maximum Strategy GEN-4:\ 
:ty=winchester:dt=IPI:\ 
:ns#15:nt#9:nc#2626:\ 
:sc#135:su#354510:se#65536:sf#O:\ 
:rm#5400:sk#O:cs#O:hs#O:ts#1700:il#1:\ 
:bs#65536:sb#65536:\ 
:oa#O:pa#32670:ba#524288:fa#65536:ta=4.2BSD:\ 
:ob#32670:pb#32670:bb#524288:fb#65536:tb=4.2BSD\ 
:oc#O:pc#354510:tc=all:\ 
:od#65340:pd#32670:bd#524288:fd#65536:td=4.2BSD:\ 
:oe#98010:pe#32670:be#524288:fe#65536:te=4.2BSD:\ 
:of#130680:pf#32670:bf#524288:ff#65536:tf=4.2BSD:\ 

~~----~-.--.-- .~-----------

I: 

I: 

l: 

I: 
Ii) 

r:: 
r: 
[:" 

b 
Fl. 
Li 

IE 
I: 

.: 
E: 

K: 

• 
K 

• 
• • • a 
II: 

• • 
• • 
c 



• • 
D 

II 

D 

IE 

n 
o 
e 
D 

IE 

I: 

IJ 

I:J 

C 

~ 

IJ 

IJ 

IJ 

IJ 

G 
[J 

[J 

IJ 
[J 

In 
n 
II 

II 

• • 

Paragon ™ System High Performance Parallel Interface Manual Using IPI Devices With Paragon™ Systems 

:og#163350:pg#32670:bg#524288:fg#65536:tg=4.2BSD:\ 
:oh#196020:ph#32670:bh#524288:fh#65536:th=4.2BSD:\ 
:oi#228690:pi#32670:bi#524288:fi#65536:ti=4.2BSD:\ 
:oj#261360:pj#32670:bj#524288:fj#65536:tj=4.2BSD:\ 
:ok#294030:pk#32670:bk#524288:fk#65536:tk=4.2BSD:\ 
:ol#326700:pl#27810:bl#524288:fl#65536:tl=4.2BSD: 

Labeling the IPI Device 

After defining the disk label, you must use the operating system's disklabel command to write the 
label information on to the external IPI device. The following example shows how to write the disk 
label for on to a Maximum Strategy GEN-4 device that's connected to the raw (character-mode) 
device "rimdOa". 

> disklabel -r -w /dev/ipi/rimdOa gen4 

Refer to the Paragon TM System Administrator's Guide or the online manual page for the disklabel(8) 
command for more information. 

Creating New File Systems 

If you are using file system 110, you must create the file systems on the IPI device, using the newfs 
command. 

The following example creates a new file system on the device with the block-device name "imdO" 
and partition "j", using the default file-system parameters: 

> newfs /dev/ipi/imdOj 

Refer to the Paragon TM System Administrator's Guide or the online manual page for the newfs 
command for more information about creating new file systems and the default parameters. 

Adding IPI Entries to Mount Tables 

Add entries for the file systems on IPI devices to theletcljstab andletclpjstab files to make those file 
systems available during multi-user sessions on the Paragon TM system. 

NOTE 

While the IPI-3 interface does not support I/O with Unix file 
systems (UFS), you need to mount an IPI-3 device as a UFS file 
system to use it as a PFS stripe directory. 

0-11 



Using IPI Devices With Paragon™ Systems Paragon™ System High Performance Parallel Interface Manual 

The following example defines partition ''j'' on an IPI-3 device with the block name "imdO" to be 
mounted in the directory lhomel.sdirslvolO, to be used as a PFS stripe directory for the PFS 
filesystem mounted at/pfs. 

/dev/ipi/imdOj /home/.sdirs/volO 
/dev/ioO/rzOd /pfs 

ufs rw 0 4 
pfs rw, stripegroup=one 0 5 

Refer to the Paragon TM System Administrator's Guide or the online manual page for the fstab and 
pfstab file for more information about the file-system-table files. 

Mounting The File Systems 

Use either the mount -a command reboot the Paragon system to mount the file systems defined in 
the letc/fstab file. 

Optimizing IPI-3 PFS Performance 

0-12 

The performance of IPI-3 PFS file systems is dependent on many variables. Included among these 
is the application usage model, layout of the file system, device partitioning, PFS striping factor, I/O 
request size, and the device itself. With such a large numbe of variables, it is difficult to suggest a 
configuration that will satisfy the I/O requirements of every user. However, the following 
recommendations may help to increase the file system performance. This is not a complete list of 
available options-you may find others as you gain experience. 

newfs Option The newfs command offers many options that may be used to control the 
layout of the file system and the manner in which the file system accesses the 
device. For example, increasing the number of cylinders per group (-c 
option) may be beneficial, especially when combined with an increase in the 
maximum blocks per group (-e option). 

PFS Configuration 
The PFS file system has many unique configuration options that may affect 
the I/O performance. For example, increasing the stripe unit size from the 
default of 64K may result in an increase the I/O performance. The 
performance of IPI-3 devices is usually optimized for large data transfers 
(S12k and greater). It is important to understand how the device capabilities 
map to the application usage model. 

Application 110 Requests 
The 110 requests generated by an application have a significant impact on the 
performance. In general, large sequential accesses out perform small or 
random accesses. It may be necessary to tune the application to take full 
advantage of the performance potential. 

I: 

c 



• • • • 
D 

D 

o 
D 

II 

D 

D 

III 

D 
I] 

D 

D 

e 
D 

I:J 

C 
C 

C 

o 
G 

~ 

~ IU 

o 
D 

• • • • 

Paragon ™ System High Performance Parallel Interface Manual Using IPI Devices With Paragon™ Systems 

IPI-3 Device Options 
The performance of IPI -3 devices is usually optimized for large data transfers 
(512k or greater). It is important to understand how the device capabilities 
map to the application and file system usage model. For example, creating a 
separate facility partition may allow you to customize the device for a 
particular application, perhaps by changing the RAID level on that partition. 

0-13 



Using IPI Devices With Paragon™ Systems Paragon ™ System High Performance Parallel Interface Manual 

0-14 

I: 

Ir 
E: 

.: 
I: 

~ 

K 

• • • • • • • • • • • 
II: 


