
I~

[J

I:
(J

I "
.-'J

I :
I:
l:
I~
I

~-I

. .-J

r~

I:
[~

1=
IJ

1=

May 1995

Order Number: 312644-002

,". :::::::'.' :::~: .. :. .::f .::::":' . :: ... ::~~:~ <:.: .:::" . \:'::.:.", ",.. . :.: :.: :". . . ",:::":: .. :::: . .:".: .. ;:.":"" :."::- .,:: .'

TM
Paragon System

Fortran Language Reference Manual

Intel@ Corporation

Copyright © 1995 by Intel Scalable Systems Division, Beaverton, Oregon. All rights reserved. No part of this work may be reproduced or copied in
any form or by any means ... graphic, electronic, or mechanical including photocopying, taping, or information storage and retrieval systems ... without
the express written consent of Intel Corporation. The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability
and fitness for a particular pmpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation
makes no commitment to update or to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied.

Intel software products are copyrighted by and shall remain the property oflntel Corporation. Use, duplication, or disclosure is subject to restrictions
stated in Intel's software license agreement. Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subpara
graphs (c)(I)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule
vard, Santa Clara, CA 95052-8119. For all Federal use or contracts other than DoD, Restricted Rights under FAR 52.227-14, ALT. III shall apply.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

286 i386
287 i387

i486
i487
i860

APSO is a service mark of Verdix Corporation
DGL is a trademark of Silicon Graphics, Inc.
Ethernet is a registered trademark of XEROX Corporation
EXABYTE is a registered trademark of EXABYTE Corporation
Excelan is a trademark of Excelan Corporation
EXOS is a trademark or equipment designator of Excelan Corporation
FORGE is a trademark of Applied Parallel Research, Inc.

Intel
Inte1386
Inte1387
Intel486
Intel487

Green Hills Software, C-386, and FORTRAN-386 are trademarks of Green Hills Software, Inc.
GVAS is a trademark of Verdix Corporation
IBM and IBMlVS are registered trademarks of International Business Machines
Lucid and Lucid Cornmon Lisp are trademarks of Lucid, Inc.
NFS is a trademark of Sun Microsystems
OpenGL is a trademark of Silicon Graphics, Inc.
OSF, OSP/l, OSP/Motif, and Motif are trademarks of Open Software Foundation, Inc.
PGI and PGF77 are trademarks of The Portland Group, Inc.
PostScript is a trademark of Adobe Systems Incorporated
ParaSoft is a trademark of ParaSoft Corporation
sea and OPEN DESKTOP are registered trademarks of The Santa Cruz Operation, Inc.
Seagate, Seagate Technology, and the Seagate logo are registered trademarks of Seagate Technology, Inc.
SGI and SiliconGraphics are registered trademarks of Silicon Graphics, Inc.
Sun Microsystems and the combination of Sun and a numeric suffix are trademarks of Sun Microsystems
The X Window System is a trademark of Massachusetts Institute of Technology

iPSC
Paragon

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Ltd.
V ADS and Verdix are registered trademarks of Verdix Corporation
V AST2 is a registered trademark of Pacific-Sierra Research Corporation
VMS and VAX are trademarks of Digital Equipment Corporation
VP/ix is a trademark of INTERACTIVE Systems Corporation and Phoenix Technologies, Ltd.
XENIX is a trademark of Microsoft Corporation

ii

[]

IJ

[J

(]

I_ ~
_J<J

IJ

I '~

-J....i

1=

,-.
•• J

1""'-
i

--"

I~
I ··~

.---<

IJ
(

-'1

~J

(1
.--'OJ

WARNING
Some of the circuitry inside this system operates at hazardous energy and
electric shock voltage levels. To avoid the risk of personal injury due to
contact with an energy hazard, or risk of electric shock, do not enter any
portion of this system unless it is intended to be accessible without the use
of a tool. The areas that are considered accessible are the outer enclosure
and the area just inside the front door when all of the front panels are in
stalled, and the front of the diagnostic station. There are no user service
able areas inside the system. Refer any need for such access only to tech
nical personnel that have been qualified by Intel Corporation.

CAUTION
This equipment has been tested and found to comply with the limits for a
Class A digital device, pursuant to Part 15 of the FCC Rules. These limits
are designed to provide reasonable protection against harmful interfer
ence when the equipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio frequency energy and,
if not installed and used in accordance with the instruction manual, may
cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own
expense.

LIMITED RIGHTS
The information contained in this document is copyrighted by and shall re
main the property of Intel Corporation. Use, duplication or disclosure by
the U.S. Government is subject to Limited Rights as set forth in subpara
graphs (a)(15) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule
vard, Santa Clara, CA 95052. For all Federal use or contracts other than
DoD Limited Rights under FAR 52.2272-14, ALT. III shall apply. Unpub
lished-rights reserved under the copyright laws of the United States.

iii

iv

,-""
L....J

l=
I ~'i.

. '
,

.""

l=
[:

r:
IJ

IJ

C

[:
I ''''"'','

,

I "1

1"<.,
, r.~j

I, " , ,

I .
..J

(i
.-.1

[l

[J

[J

IJ

Preface

This manual describes the implementation of FORTRAN 77, the language accepted by the if17
compiler, and is part of a set of manuals describing the Fortran and C compilers and the compilation
tools available from Intel Scalable Systems Division. This manual presents a description of the
statements and intrinsics accepted by if17 FORTRAN 77. The Fortran compilation system consists
of an ANSI-confonnant Fortran compiler, macro-processor, assembler, linker, utilities, a debugger
and a profiler. You can use these tools to create, debug, optimize and profile your software. Refer to
the section "Related Publications" for a list of the other manuals in the manual set

Audience Description
This manual is intended for people who are writing programs in Fortran and are familiar with the
language. To use if17, you should be aware of the role of Fortran and of assembly-language
programs in the software development process. The if17 compiler runs on a variety of host systems.
To use if17, you need to be familiar with the basic commands available on your host system.

Compatibility and Conformance to Standards
The if17 compiler accepts an enhanced version of FORTRAN 77 and runs on a variety of host
systems. This version of FORTRAN 77 confonns to the ANSI standard for FORTRAN 77 and
includes various extensions from V AXlVMS Fortran, IBMlVS Fortran, and MIL-STD-1753.

For further information, you can also refer to the following:

• American National Standard Programming Language Fortran, ANSI X3.-1978 (1978).

• Programming in V AX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).

• IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

Military Standard, Fortran, DOD Supplement to American National Standard Programming
Language Fortran, ANSI X3.-1978, MIL-STD-1753 (November 9,1978).

v

Preface Paragon 1M System Fortran Language Reference Manual

Organization
This manual is divided into the following chapters and appendices:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Appendix A

Appendix B

"Language Overview" provides a description of the language structures and
the overall language features.

"Data Types" describes the Fortran data types and constants that if17
supports.

"Fortran Statements" provides an alphabetical listing of each statement, with
a summary of each statement, a syntax description, and a complete
description.

"Input and Output" describes the types of input and output available with if17
Fortran.

"Intrinsics" specifies the if17 intrinsic functions.

"V AX. System Subroutines and Built-in Functions" discusses the V AXlVMS
system subroutines and the built-in functions.

Hardware and Software Constraints

vi

This manual describes a version of Fortran that is accepted by if17, operates on a variety of host
systems and produces object code for the i860™ XR and the i860™ XP microprocessors. Details
concerning environment-specific values and defaults and host-specific features or limitations are
presented in the release notes and installation instructions sent with the if17 software.

['Ir--I,

i .. i
Wii.._..-.I

J~

l_~

~':

i.=l

IJ
r:
(!

IJ
I . ..,

. ..1

I i
"'

I":
I

····~

. -!

1""1

, : __J'

IJ
1·\

J

. ,

·1 "" ..

I· '" , ,

I i

. .J

I ~~

f)

Paragon TM System Fortran Language Reference Manual Preface

Conventions
This manual uses the following conventions:

italic is used for commands, filenames, directories, arguments, options and for
emphasis.

Constant Width
is used in examples and for language statements in the text.

[itemi] square brackets indicate optional items. In this case itemi is optional.

{ itern2 I item3}
braces indicate that a selection is required. In this case, you must select either
itern2 or item3 .

filename ... ellipsis indicates a repetition. Zero or more of the preceding item may occur.
In this example, multiple filenames are allowed.

FORTRAN Fortran language statements are shown using upper-case characters.

<TAB> non-printing characters, such as TAB, are shown enclosed in greater than and
less than characters.

§ this symbol indicates an area in the text that describes a FORTRAN 77
enhancement. Enhancements may be V AXlVMS FORTRAN enhancements,
IBMlVS enhancements or military standard MIL-STD-17S3 enhancements.

Related Publications
The following documents contain additional information related to the if17 compiler.

• Paragon™ System Fortran Compiler User's Guide

• Paragon™ System i860™ 64-Bit Microprocessor Assembler Reference Manual

• System V Application Binary interface i860 Intel i860™ Processor Supplement by AT&T Unix
System Laboratories, Inc (available from Prentice Hall, Inc.).

American National Standard Programming Language Fortran, ANSI x.3-1978 (1978).

Programming in V AX Fortran, Version 4.0, Digital Equipment Corporation (September, 1984).

• IBM VS Fortran, IBM Corporation, Rev. GC26-4119.

• Military Standard, Fortran, DOD Supplement to American National Standard Programming
Language Fortran, ANSI X3.-i978, MIL-STD-17S3 (November 9,1978).

vii

Preface Paragon TN System Fortran Language Reference Manual

Comments and Assistance

viii

Intel Scalable Systems Division is eager to hear of your experiences with our new software product.
Please call us if you need assistance, have questions, or otherwise want to comment on your Paragon
system.

U.S.AJCanada Intel Corporation
Phone: 800-421·2823

Internet: support@ssd.intel.com

Intel Corporation Italia s.p.a.
Milanofiori Palazzo

United Kingdom Intel Corporation (UK) Ltd.
Scalable Systems Division

20090 Assago
Milano
Italy
1678 772D3 (toll free)

France Intel Corporation
1 Rue Edison-BP303

Pipers Way
Swindon SN3 IRJ
England
0800 212665 (toll free)

78054 St. Quentin-en-Yvelines Cedex
France

(44) 793 491056 (answered in French)
(44) 793431062 (answered in Italian)
(44) 793480874 (answered in German)
(44) 793495108 (answered in English)

0590 8602 (toll free)

Intel Japan K.K.
Scalable Systems Division
5-6 Tokodai, Tsukuba City
Ibaraki-Ken 300-26
Japan
0298-47-8904

Germany Intel Semiconductor GmbH
Dornacher Strasse 1
85622 Feldkirchen bei Muenchen
Germany
0130813741 (toll free)

World Headquarters
Intel Corporation

Scalable Systems Division
15201 N.W. Greenbrier Parkway

Beaverton, Oregon 97006
U.S.A.

(503) 677-7600 (Monday through Friday, 8 AM to 5 PM Pacific Time)
Fax: (503) 677-9147

/""""'1
fl. .. ""

I:
I:

I.J

I··.·~·

. ..,

(.. ~
.:..1 Table of Contents
I: . ',:: . ~:. " .~. ," '::::.:":.:: :. . :".:/:(:::: .. :' ':.:. :~f· :":.::~:::. : .. :':':". ':'::'(:?:':; :.~:~ "::.,: :.(::/tt:.:.·:::;:·;·. :~~(':'::'.:~:: ·::··:::::::r::::'·t,· ":':~:' '~:=:~'.

1°-;
-,

I
~

. .J

I' Chapter 1
r: Language Overview

I~

I~

I, .:
""'

I ~:
IJ
1·-'
I ~':

I~

(i
J

IJ
[:J

Elements of a Fortran Module ... 1-1

Statements and Comments .. 1-1

Debug Statements ... 1-1

Statement Ordering .. 1-2

The Fortran Character Set .. 1-3

Formatting ... 1-4

Column Formatting ... 1-4

§ Tab Formatting ... 1-5

Label Field ...•.. 1-5

Continuation Field .. 1-5

Statement Field ...•..........•................................... 1-5

Including Fortran Source Files ...••...•.. 1-6

§ Input File Format - Summary of Extensions•.. 1-6

The Components of Fortran Statements .. 1-7

Symbolic Names .. 1-7

Symbolic Name Scope ... 1-8

ix

Table of Contents Paragon TM System Fortran Language Reference Manual

Expressions .. 1-8

Arithmetic Expressions ... 1-9

Relational Expressions ... 1-10

Logical Expressions ... 1-11

Character Expressions ... 1-11

Character Concatenation ... 1-12

Precedence Rules .. 1-12

Assignment Statements .. 1-13

Arithmetic Assignment ... 1-13

Logical Assignment Statement ... 1-14

Character assignment .. 1-14

Listing Controls .. 1-15

Chapter 2
Data Types

Constants .. 2-3

Integer Constants ... 2-3

Real Constants ... 2-4

Double Precision Constants ... 2-4

Logical Constants ~ .. 2-5

Complex Constants .. 2-5

Character Constants .. 2-5

Octal and Hexadecimal Constants ... 2-6

Hollerith Constants ... 2-7

Arrays .. 2-8

An Array Declaration Element .. 2-8

Subscripts .. 2-8

Character Substring ... 2-9

x

- --------_._-------~------------------------

III. ~,
(" I

1&.-,

I"~'

Ia ... ~

r:
("i

J

1"""""1
j

I-c,o<

_<ll

1 '1

.~:

r-)
("

I~,

I~

1_;

I~
I_I

Ii .• ~
_,J

r:
r:
c
[J

IJ
U
IJ

-- --------------- ---

Paragon TM System Fortran Language Reference Manual Table of Contents

§ Structures ... 2-9

§ Records .. 2-10

§ UNION and MAP Declarations•... 2-12

Data Initialization .. 2-13

§ Pointer Variables ... 2-14

Restrictions .. 2-15

Chapter 3
Fortran Statements
Definition of Terms ; ... 3-1

§ ACCEPT ... 3-2

§ ALLOCATE ... 3-3

ASSIGN .. 3-4

BACKSPACE ... 3-5

BLOCK DATA .. 3-6

§ BYTE .. 3-7

CALL .. 3-8

CHARACTER ... 3-9

CLOSE ... 3-10

COMMON (Static and Dynamic) ..•...... 3-11

COMPLEX .. 3-14

CONTINUE .. 3-15

DATA .. 3-16

§ DEALLOCATE ...•.. 3-17

§ DECODE .. 3-18

DIMENSION ...•... 3-19

DO (Iterative) .. 3-21

§ DO WHILE ...•.....•...•................................ 3-23

DOUBLE COMPLEX•..................•...• 3-24

xi

Table of Contents Paragon 1M System Fortran Language Reference Manual [J

DOUBLE PRECISION .. 3-25

ELSE ... 3-26

ELSE IF .. 3-27

§ ENCODE .. 3-28

END .. 3-29

§ END DO .. 3-30

END FILE ... 3-31
Fi
k=!

END IF ... 3-32

§ END MAP ... 3-33

§ END STRUCTURE ... 3-34

§ END UNION ... 3-35

ENTRY ... 3-36

EQUIVALENCE ... 3-39

EXTERNAL .. 3-40

FORMAT .. 3-41

FUNCTION ... 3-43

GOTO (Computed) .. 3-45

GOTO (Unconditional) ... 3-46

GOTO (Assigned) .. 3-47

IF (Arithmetic) ... 3-48

IF (Block) .. 3-49

IF (Logical) ... 3-50

IMPLICIT .. 3-51

§ INCLUDE .. 3-52

INQUIRE .. 3-53

INTEGER ... 3-56

I!'~ INTRINSIC ... 3-57 ~ ~

LOGICAL .. 3-59

§ MAP .. 3-60 [.=
§ NAMELIST .. 3-62

OPEN ... 3-63

§ OPTIONS ... 3-66

xii

IJ
[J

,(i
. ..J

[J

r:
(~

IJ
1_,,:
~ J

r:
r=
(':

I~

I_.~

(=
__ J

I ;
-"",,,,

[I
__ J

[J

[J

IJ

Paragon ™ System Fortran Language Reference Manual Table of Contents

PARAMETER ... 3-68

PAUSE ... 3-69

§ POINTER .. 3-70

PRINT .. 3-72

PROGRAM ... 3-73

READ ... 3-74

REAL .. 3-75

§ RECORD .. 3-76

RETURN .. 3-78

REWIND ... 3-79

SAVE .. 3-80

STOP ... 3-81

§ STRUCTURE ... 3-82

SUBROUTINE .. 3-84

THEN ... 3-86

§ TYPE .. 3-87

§ UNION .. 3-88 '

§ VOLATILE .. 3-90

WRITE .. 3-91

Chapter 4
Input and Output

File Access Methods ... 4-2

Standard Preconnected Units•.............•... 4-2

Opening and Closing Files ... 4-2

Direct Access Files•... 4-3

Closing a File ... 4-4

Unformatted Data Transfer ... 4-4

xiii

Table of Contents Paragon™ System Fortran Language Reference Manual

Formatted Data Transfer ... 4-5

Implied DO List Input Output List ... ; 4-6

Format Specifications ... 4-6

A Format Control- Character Data ... 4-8

o Format Control - Real Double Precision Data with Exponent .. .4-8

E Format Control- Real Single Precision Data with Exponent ... 4-9

F Format Control - Real Single PreCision Data .. .4-9

G Format Control- Real Data ... 4-10

I Format Control-Integer Data ... 4-10

L Format Control - Logical Data .. 4-10

Quote Format ContrOl .. 4-11

BN and BZ Format Control - Blank Control .. 4-11

.[.. l!!I J

1'Ir'"l
H Format Control- Hollerith Control ... 4-11 It.jQJ
o and Z Format Control - Octal and Hexadecimal Values .. .4-12

P Format Specifier - Scale Control ... 4-12

Q Format Control- Quantity .. ~ 4-13

S Format Control- Sign Control ... 4-13

T , TL, TR, and X Format Controls - Spaces and Tab Controls4-13

Slash Format Control - End of Record .. 4-14

The: Format Specifier - Format Termination ... 4-14

$ Format Control .. 4-14

Variable Format Expressions <expr> ... 4-15

List-Directed Formatting ... 4-15

List-Directed Input .. 4-15

List-Directed Output ... 4-17

Co.mrnas in External Field .. 4-18

§ Namelist Groups ... 4-18

§ Namelist Input ... 4-18 [::

§ Namelist Output .. 4-19

I:
I:

xiv (
-.1\

.AI

- --~-.---------

11
IJ

Paragon 1M System Fortran Language Reference Manual Table of Contents

[J Appendix A
C Intrinsics

c
[:
C
I

~.,..,

.... ~

[~:

1=
l:
[:
IJ
IJ
I)

I)

Appendix B
VAX Built-in Functions and
System Subroutines
Built-in Functions .. B-1

VAXlVMS System Subroutines .. B-1

xv

Table of Contents Paragon TM System Fortran Language Reference Manual

List of Illustrations
1""'

Figure 1-1. Order of Statements .. 1-2 *' ""

[:
xvi

[J

IJ

[
.'"1

~J

II
1 __ 1

I ' : , . , __ .w

[~

c

[
, ··~1
, .

. ...1

[~

[J

IJ
[J

IJ

U

Paragon 1M System Fortran Language Reference Manual Table of Contents

List of Tables

Table 1-1. Fortran Characters ... 1-3

Table 1-3. Record Positions and Fields ... 1-4

Table 1-4. Arithmetic Operators .. 1-9

Table 1-5. Operator Precedence ... 1-9

Table 1-6. Relational Operators .. 1-10

Table 1-7. Logical Operators ... 1-11

Table 1-S. Character Concatenation ... 1-12

Table 1-9. Operator Precedence ... 1-12

Table 2-1. Fortran Standard Data Types ... 2-1

Table 2-2. Data Type Extensions .. 2-2

Table 2-3. Data Type Ranks .. 2-3

Table 2-4. Real Constants ... 2-4

Table 2-5. Double Precision Constants ... 2-4

Table 3-1. OPTIONS Statement .. 3-66

Table 4-1. OPEN Specifiers .. 4-3

Table 4-2. Format Character Controls for a Printer ... 4-7

Table 4-3. List Directed Input Values .. 4-15

Table 4-4. Default List Directed Output Formatting ... 4-17

Table A-1. Zero Extend Functions .. A-1

Table A-2. Math IntrinSic Functions .. A-2

Table A-3. Trigonometric Functions ... A-2

Table A-4. Arithmetic Functions ... A-5

Table A-5. Type Conversion Functions .. A-S

Table A-6. Bitwise Functions .. A-9

xvii

-" ----------------------------------_._-_ .. _---- -- -- -----------

Table of Contents Paragon™ System Fortran Language Reference Manual

[
"'11'1

.~

xviii l::

I .,
.. ..J

IJ
IJ
[J

[J

r=
r~

r:
r:

Language Overview

This chapter describes the basic elements of the Fortran language, the format of Fortran records and
the types of expressions and assignments accepted by if17 Fortran.

Elements of a Fortran Module
A Fortran module is either a SUBROUTINE, FUNCTION, BLOCK DATA or PROGRAM.

Fortran source consists of a sequence of modules which are to be compiled into object modules.
Every module consists of statements and optionally comments beginning with the module statement,
either a SUBROUTINE, FUNCTION, BLOCK DATA or PROGRAM statement, and finishing with
an END statement.

In the absence of a module statement, the compiler will insert a PROGRAM statement.

Statements and Comments

§

Statements are either executable statements or specification statements. Each statement consists of
a single line or source record, possibly followed by one or more continuation lines. Comments may
appear anywhere in the source.

To append a comment to a Fortran statement line, precede the comment with an exclamation mark
(!) followed by the comment on the same line.

Debug Statements

The letter "D" in column 1 designates the statement on that line to be a debugging statement. The
compiler will treat the debugging statement as a comment unless the command line option -Mdlines
is set during the compilation. In that case, the compiler acts as if the "D" were a blank and compiles
the line according to the standard rules.

1-1

Language Overview Paragon TN System Fortran Language Reference Manual D

Statement Ordering

1-2

The rules defining the order in which statements appear in a program unit have been relaxed. as
compared to the ANSI standard. as follows:

• DATA statements can be freely interspersed with PARAMETER statements and other Ifl
specification statements. I--.d

• NAMELIST statements are supported and have the same order requirements as FORMAT and I'l~
ENTRY statements. I.l ~

The IMPLICIT NONE statement can precede other IMPLICIT statements. [.~

Figure 1-1 shows the required order of statements in a Fortran subprogram. In Figure 1-1. read from
top to bottom and left to right. For example. since the column for comments spans the entire table. r- '.
up to the END row. this indicates that comments may occur anywhere within a Fortran subprogram. IA =

before an END statement.

OPTIONS statement §

PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA statements

IMPLICIT NONE statement §

Comments NAMELIST §
IMPLICIT statements and PARAMETER

FORMAT statements
INCLUDE § Other specification
statements and statements

ENTRY
DATA statements

statements Statement Function Definitions

Executable Statements

END Statement
[. ~

.... J

I:
Figure 1·1. Order of Statements

I '~

.JtiI

[J
(~J

I
···~

."'

1=
[~

IJ
~

I, .-.... '.'. ' ,

(~

lJ

[J

Paragon TN System Fortran Language Reference Manual Language Overview

The Fortran Character Set
Table 1-1 shows the Fortran character set. Character variables and constants can use any ASCII
character.

Table 1·1. Fortran Characters

Character Description

A-Z, a-z alphabetic

0-9 numeric

<space> space character

-= equals

+ plus

- minus

* asterisk

I slash

(left parenthesis

) right parenthesis

• comma

underscore character -

decimal point

! exclamation mark

<TAB> tabulation character

<CR> carriage return

1-3

Language Overview Paragon ™ System Fortran Language Reference Manual

Table 1-2 shows C language character escape sequences that are recognized in if17 Fortran character
string constants. The if17 option -Mbackslash enables and disables this enhancement.

§ Table 1-2. C Compatibility Characters

Character Description

\v vertical tab

'a alert (bell)

\n newline

\t: tab

\b backspace

\f formfeed

'r carriage return

\0 null

\! apostrophe (does not terminate a string)

\" double quotes (does not terminate a string)

\\ \

\x x. where x is any other character

'4dd character with the given octal representation.

Formatting
A Fortran record may be formatted with tabs or by column formatting.

Column Formatting

1-4

A Fortran record consists of a sequence of up to 73 ASCII characters. the last being <CR>. It has a
fixed layout as shown in Table 1-3.

Table 1-3. Record Positions and Fields

Position Field

1-5 Label field

6 Continuation field

7-72 Statement field

D
D

rr- ~l

Ii. ~!

1=
I:

r:
c
(

"""'I

.. --1

I~

I~

['

I:

r~~

I -.·C'I

i,

-'

(~

I ··".,
.~

r=

Paragon 1M System Fortran Language Reference Manual Language Overview

Characters beyond position 72 on a line are ignored. Extended lines containing up to 132 characters
are valid if you use the if77 -Mextend option. For information on this option, refer to theParagon™
System Fortran Compiler User's Guide.

§ Tab Formatting

A tab formatted record consists of up to 72 ASCII characters. It is made up of a label field, an
optional continuation indicator and a statement field. The label field is terminated by a tab character.
The label cannot be more than 5 characters.

A continuation line is indicated by a tab character followed immediately by a digit. The statement
field starts after a continuation indicator, when one is present. The 73rd and subsequent characters
are ignored. Extended lines containing up to 132 characters are valid if you use the if17 -Mextend
option. For information on this option, refer to the Paragon™ System Fortran Compiler User's
Guide.

Label Field

§

The label field holds up to five characters. The characters C or * in the first character position of a
label field indicate a comment line.

In addition, to C or *, either of the characters D or ! in the first character position of a label field also
indicate a comment line.

When a numeric field drawn from digits 0 to 9 is placed in the label field, the field is a label. A line
with no label, and with five space characters or a <TAB> (the tab is an extension §) in the label
field, is an unlabeled statement. Each label must be unique in its module. Continuation lines must
not be labeled. Labels can only be jumped to when they are on executable statements.

Continuation Field

The sixth character position, or the position after the tab, is the continuation field. This field is
ignored in comment lines. It is invalid if the label field is not five spaces. A value of 0, <space> or
<TAB> indicates the first line of a statement. Any other value indicates a subsequent (continuation)
line to the preceding statement.

Statement Field

§

This consists of valid identifiers and symbols, possibly separated by <space> or <TAB> and
terminated by <CR>.

Within the statement field tabs and spaces are ignored as are characters following a ! or beyond the
72nd character. Extended lines containing up to 132 characters are valid if you use the if77 -Mextend
option. For information on this option, refer to the Paragon™ System Fortran Compiler User's
Guide.

1-5

Language Overview
1M '

Paragon System Fortran Language Reference Manual

Including Fortran Source Files

The sequence of consecutive compilation of source statements may be interrupted so that an extra
source file can be included. This is carried out using the INCLUDE statement which takes the
following form:

INCLUDE "filename"

where filename is the name of the file to be included. Pairs of either single or double quotes are
acceptable enclosing filename.

The INCLUDE file is compiled to replace the INCLUDE statement, and on completion of that
source the file is closed and compilation continues with the statement following the INCLUDE.

INCLUDE files are especially recommended when the same COMMON blocks and the same
COMMON block data mappings are used in several modules.

For example the following statement includes the file MYFILE. CMN .

INCLUDE "MYFILE.CMN"

§ Input File Format - Summary of Extensions

1-6

Input source file format has been extended from FORTRAN 77 to allow the following extensions:

• A continuation line may also be indicated by using an ampersand (&) in column one of a line.

• Tab-Format lines are supported. A tab in columns 1-6 ends the statement label field and begins
an optional continuation indicator field. If a non-zero digit follows the tab character, the
continuation field exists and indicates a continuation field. If anything other than a non-zero
digit follows the tab character, the statement body begins with that character and extends to the
end of the source statement. Note that this does not override FORTRAN 77's source line
handling since no valid Fortran statement can begin with a non-zero digit. The tab character is
ignored if it occurs in a line except in Hollerith or character constants.

• Input lines may be of varying lengths. If there are fewer than 72 characters, the line is padded
with blanks; characters after the 72nd are ignored unless you use the -Mextend option on the
command line.

• If the -Mextend option is used on the command line then the input line can extend to 132
characters. The line is padded with blanks if it is fewer than 132; characters after the 132nd are
ignored. Note that use of this option extends the statement field to position 132.

• Blank lines are allowed at the end of a program unit.

• The number of continuation lines allowed is extended to 99.

J'''1!j
*-~

[
'-1

.,' :

...uJ

I: "~,,
"' '

r:
I:

I··,,·.,
_I

I =t

-,

I "'"
_-..3

[~

[J

(J

Paragon 1M System Fortran Language Reference Manual Language Overview

The Components of Fortran Statements
Fortran modules are made up of statements which consist of expressions and elements. An
expression can be broken down to simpler expressions and eventually to its elements combined with
operators. Hence the basic building block of a statement is an element. An element takes one of the
following forms:

• A constant represents a fixed value.

A variable represents a value which may change during program execution.

An array is a group of values, stored contiguously, that can be referred to as a whole or
separately. The separate values are known as the elements of the array. The array has a symbolic
name.

Afunction reference is the name of a function followed by an argument list. The reference
causes the code specified at function definition to be executed and the result substituted for the
function reference.

Symbolic Names

Symbolic names identify different entities in Fortran source. A symbolic name is a string of letters
and digits, which must start with a letter and is terminated by a character not in the symbolic names
set (for example a <space> or a <TAB> character). Underscore U characters may appear within
symbolic names. Symbolic names may start with a dollar sign ($) or underscore U character (this
is a if77 extension). Only the first thirty-one characters identify the symbol. Below are several
symbolic names:

NUM

CRA9
Y
numericabcdefghijklmnopqrstuvwxyz

The last example is identified by its first 31 characters and is equivalent to:

numericabcdefghijklmnopqrstuvwx

The following are examples are invalid symbolic names.

8Q

This is invalid because it begins with a number.

FIVE. 4

This is invalid because it contains a period which is an invalid character.

1-7

Language Overview Paragon TN System Fortran Language Reference Manual

Symbolic Name Scope

Symbolic names may be declared locally or globally.

Names of COMMON blocks, SUBROUTINEs and FUNCTIONs are global to those modules that
reference them. They must refer to unique objects, not only during compilation, but also in the link
stage.

The scope of names other than these is local to the module in which they occur, and any reference
to the name in a different module will imply a new local declaration. This includes the arithmetic
function statement.

Expressions

1-8

Each data item, such as a variable or a constant, represents a particular value at any point during
program execution. These elements may be combined together to form expressions, using binary or
unary operators, so that the expression itself yields a value.

An expression is formed as:

expr binary-operator expr

or

unary-operator expr

where an expr is formed as

expression or element

For example,

A+B
-c
+D

These are simple expressions whose components are elements. Expressions fall into one of four
classes: arithmetic, relational, logical or character.

1"--1
1Il, •. d

I:
1'1
'_"",,,I

1=:
(''''''

-...;

1.=

[~

r:

r~

1-·=.···
. ,

[J

r~

I,,·~i
,. ~

I ~~
1"=

I: ,"""\
__ .<.0

[J

Paragon11il System Fortran Language Reference Manual Language Overview

Arithmetic Expressions

§

Arithmetic expressions are fonned from arithmetic elements and arithmetic operators. An arithmetic
element may be:

• an arithmetic expression

• a variable

a constant

• an array element

a function reference

• a field of a structure or union

The arithmetic operators specify a computation to be perfonned on the elements. The result is a
numeric result. Table 1-4 shows the arithmetic operators .

Table 1-4. Arithmetic Operators

Operator Function

** Exponentiation

* Multiplication

/ Division

+ Addition or unary plus

- Subtraction or unary minus

Note that a value should be associated with a variable or array element before it is used in an
expression. Arithmetic expressions are evaluated in an order detennined by a precedence associated
with each operator. Table 1-5 shows the precedence of each arithmetic operator.

Table 1-5. Operator Precedence

Operator Precedence

** First

* and/ Second

+ and- Third

1-9

Language Overview

§

Paragon 1M System Fortran Language Reference Manual

This following example is resolved into the arithmetic expressions (A) + (B * C) rather than
(A + B) * (C).

P
lJli

r~

A + B * C ~.~

Normal ranked precedence may be overcome using parentheses which force the item(s) enclosed to r J
be evaluated fIrst.

(A + B) * C r"
The compiler resolves this into the expressions (A + B) * (C) •

The type of an arithmetic expression is:

INTEGER if it contains only integer elements.

REAL if it contains only real and integer elements.

OOUBLE PRECISION

COMPLEX

if it contains only double precision, real and integer elements.

if any element is complex. Any element which needs conversion to complex
will be converted by taking the real part from the original value and setting
the imaginary part to zero.

DOUBLE COMPLEX
if any element is double complex.

\Il..,J

Relational Expressions

1-10

A relational expression is composed oftwo arithmetic expressions separated by a relational operator.
The value of the expression is true or false (. TRUE. or . FALS E .) depending on the value of the
expressions and the nature of the operator.

Table 1-6 shows the relational operators.

Table 1-6. Relational Operators

Operator Relationship

.LT. Less than

.LE. Less than or equal to

.EO. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

If '"
i-._

ff""
l.

1=

r:

(J
[J

[~

I. ''''
.~J

(i

1=
'1. '''''1· ' ,
~

r:
I~
14

, :
~J

I:
I

~~

~,

(-",

~-,-"I

I~'J

(J
(1

.4J

Paragon™ System Fortran Language Reference Manual Language Overview

In relational expressions the arithmetic elements are evaluated to obtain their values. The
relationship is then evaluated to obtain the true or false result. Thus the relational expression:

TIME + MEAN .LT. LAST

means if the sum of TIME and MEAN is less than the value of LAST, then the result is true,
otherwise it is false.

Logical Expressions

A logical expression is composed of two relational or logical expressions separated by a logical
operator. Each logical expression yields the value true or false (. TRUE. or . FALSE.) .

Table 1-7 shows the logical operators.

Table 1-7. Logical Operators

Operator Relationship

. AND. True if both expressions are true .

. OR. True if either expression or both is true .

.NOT. This is a unary operator; it is true if the expression that follows is
false, otherwise it is false.

.NEQV. False if both expressions have the same logical value

• XOR. Same as .NEQV .

.EQV. True if both expressions have the same logical value

In the following example, TEST will be . TRUE. if A is greater than B or I is not equal to J+17.

TEST = A .GT. B .OR. I .NE. J+17

Character Expressions

An expression of type CHARACTER can consist of one or more printable characters. Its length is
the number of characters in the string. Each character is numbered consecutively from left to right
beginning with 1. For example:

'ab_&'
'A@HJi2'
'var[1,12],

1-11

Language Overview Paragon 1M System Fortran Language Reference Manual

Character Concatenation

A character expression can be formed by concatenating two (or more) valid character expressions
using the concatenation operator II.

Table 1-8 shows several examples of concatenation

Table 1-8. Character Concatenation

Expression Value

'ABC'//'YZ' "ABCYZ"

'JOHN '//'SMITH' "JOHN SMITH"

'J '//'JAMES '//'JOY' "J JAMES JOY"

Precedence Rules

1-12

Arithmetic, relational and logical expressions may be identified to the compiler by the use of
parentheses, as described in the section on arithmetic expressions. When no guidance is given to the
compiler it will impose a set of precedence rules to identify each expression uniquely. Table 1-9
shows the operator precedence rules for expressions.

Table 1-9. Operator Precedence

Operator Evaluated

** First

* and / Second

+ and- Third

Relational operators Fourth

.NOT. Fifth

.AND. Sixth

.OR. Seventh

. NEQV. and .EQV . Eighth

Operators of equal rank are evaluated left to right. Thus:

A*B+B**C .EQ. X+Y/Z .AND .. NOT. K-3.0 .GT. T

is equivalent to:

««A*B)+(B**C» .EQ. (X+(Y/Z») .AND. (.NOT. «K-3.0) .GT. T»)

l:
I:

[:

[J

[1
.~

[J

(J
(.. ".,

._J.J

I-.·~

.-J

[~

I~

I.

'"1 , .
,

-J

1=

1=
1

~1

-~

Paragon ™ System Fortran Language Reference Manual Language Overview

Assignment Statements
A Fortran assignment statement can be any of the following:

An arithmetic assignment

• A logical assignment

• A character assignment

A statement label assignment

§ • A structure field assignment (if the field is a scalar data type)

Arithmetic Assignment

The arithmetic assignment statement has the following form:

object = arithmetic-expression

where object is one of the following:

• Variable

Function name (within a function body)

• Subroutine argument

Array element

• Field of a structure

The type of object determines the type of the assignment (INTEGER, REAL, DOUBLE
PRECISION or COMPLEX) and the arithmetic-expression is coerced into the correct type if
necessary.

In the case of:

complex = real-expression

the implication is that the real part of the complex number becomes the result of the expression and
the imaginary part becomes zero. The same applies if the expression is double precision, except that
the expression will be coerced to real.

The following are examples of arithmetic assignment statements.

A=(P+Q)*(T/V)
B=R**T**2

1-13

Language Overview Paragon 1M System Fortran Language Reference Manual

Logical Assignment Statement

The logical assignment statement has the following fonn:

object = logical-expression

where object is one of the following:

• Variable

• Function name (only within the body of the function)

• Subroutine argument

• Array element

• A field of a structure

The type of object must be logical.

In the following example, FLAG takes the logical value . TRUE. if P+Q is greater than R;
otherwise FLAG has the logical value . FALSE.

FLAG=(P+Q) .GT. R

Character assignment

The fonn of a character assignment is

object == character-expression

where object is one of the following:

• Variable

• Function name (only within the body of the function)

• Subroutine argument

• Array element

• Character substring

• A field of a structure

The object must be of type character.

1-14

-~---~----~---------------~~-------~------------

~:
\jL~

f~
II
III..~M

~I

~=
l:

[~

[J

[1
-'Ii'

I,
~C

.J

, ' ('"

_J

10'9
"

, .Y

I, ' 'CI

•J

(',:
.• 1

[J

IJ
(j

I)

(]

Paragon ™ System Fortran Language Reference Manual Language Overview

None of the character positions being defined in object can be referenced in the character expression
and only such characters as are necessary for the assignment to object need to be defined in the
character expression. The character expression and object can have different lengths. When
object is longer than the character expression trailing blanks are added to the object; and if object is
shorter than the character expression the right-hand characters of the character expression are
truncated as necessary.

In the following example. note that all the variables and arrays are assumed to be of type character.

FILE = 'BOOKS'
PLOT(3:8) = 'PLANTS'
TEXT(I,K+1)(2:B-1) = TITLE//X

Listing Controls
if77 recognizes three V AXlVMS compiler directives that affect the program listing process:

%LIST Turns on the listing process beginning at the following source code line.

%NOLIST Turns off the listing process (including the %NOLIST line itself).

%EJECT Causes a new listing page to be started.

These directives have an effect only when the -MUst compile-time switch is used.

All of the directives must begin in column one.

1-15

Language Overview Paragon TM System Fortran Language Reference Manual

1-16

If",,!
il ... ~

I:

r:
(:

1'-' . ..J

(J

[', ,--.J

(J

r:
I:
r~
[
• '~"'"1

.,.J

(J

[J

[J

IJ

Data Types

Every Fortran element and expression has a data type. The data type of an element may be implicit
in its definition or explicitly attached to the element in a declaration statement. This chapter
describes the Fortran data types and constants that i177 supports.

Table 2-1 lists the standard FORTRAN 77 data types. Table 2-2 shows additional data types that if17
Fortran supports.

Table 2-1. Fortran Standard Data Types

Data Type Value

INTEGER An integer number.

REAL A real number.

OOUBLE PRECISION A double precision floating point number (real number) taking
up two numeric storage units and whose precision is greater than
REAL.

LOGICAL A value which can be either true or false.

COMPLEX A pair of real numbers used in complex arithmetic.

CHARACTER A string consisting of one or more printable characters.

2-1

Data Types

§

2-2

Paragon'" System Fortran Language Reference Manual

~.--.,

A symbolic name for a data type can be followed by a data type length specifier of the fonn * s, where L
s is one of the acceptable lengths for the data type being declared. Such a specification overrides the
length attribute that the statement implies and assigns a specific length to the specified item, ~ :
regardless of the compiler options specified. For example, REAL *8 is equivalent to DOUBLE 1& ..J

PRECISION. Table 2-2 shows the lengths of data types, their meanings, and their sizes.
if~'

Table 2-2. Data Type Extensions I J
Type Meaning Size

LOGICAL*1 Small LOGICAL 1 byte

LOGICAL*2 Short LOGICAL 2 bytes

LOGICAL*4 LOGICAL 4 bytes

BYTE Small INTEGER 1 byte

INTEGER*1 Same as BYTE 1 byte

INTEGER*2 Short INTEGER 2 bytes

INTEGER*4 INTEGER 4 bytes

REAL*4 REAL 4 bytes

REAL*8 DOUBLE PRECISION 8 bytes

COMPLEX*8 COMPLEX 8 bytes

COMPLEX*16 DOUBLE COMPLEX 16 bytes

The BYTE type is treated as a signed one-byte integer and is equivalent to LOGICAL * 1.

Assignment of a value too big for the data type to which it is assigned is an undefined operation.

A specifier is allowed after a CHARACTER function name even if the CHARACTER type word
has a specifier. For example:

CHARACTER*4 FUNCTION C*8 (VARl)

Above, the function size specification C* 8 overrides the CHARACTER * 4 specification. Logical
data items can be used with any operation where a similar sized integer data item is pennissible and
vice versa. The logical data item is treated as an integer or the integer data item is treated as a logical
of the same size and no type conversion is perfonned.

Floating point data items of type REAL or DOUBLE PRECISION may be used as array subscripts,
in computed GOTOs, in array bounds and in alternate returns. if17 converts the floating point
number to an integer.

The data type of the result of an arithmetic expression corresponds to the type of its data. The type
of an expression is determined by the rank of its elements. Table 2-3 shows the ranks of the various
data types, from lowest to highest.

rr ~~

i; =;

I:
I:

[:
(J

IJ

r:

[
-I

~ .. "J

(";
.~

r
·~

.~

(.:
r ~

IJ
I: . .-J

(1
...J

IJ

Paragon™ System Fortran Language Reference Manual Data Types

Table 2-3. Data Type Ranks

Data Type Rank

LOGICAL 1 (lowest)

INTEGER*2 2

INTEGER *4 3

REAL*4 4

REAL *8 (Double precision) 5

COMPLEX*8 (Complex) 6

COMPLEX*16 (Double complex) 7 (highest)

The data type of a value produced by an operation on two arithmetic elements of different data types
is the data type of the highest-ranked element in the operation. The exception to this rule is that an
operation involving a COMPLEX*8 element and aREAL *8 element produces a COMPLEX* 16
result. In this operation, the COMPLEX*8 element is converted to a COMPLEX* 16 element, which
consists of two REAL *8 elements, before the operation is performed.

The type of a logical expression is always a LOGICAL *4 result.

Constants
A constant is an unchanging value. It takes a form corresponding to one of the data types.

ij77 supports octal, hexadecimal and Hollerith constants. The use of character constants in a numeric
context, for example, in the right-hand side of an arithmetic assignment statement, is supported.
These constants assume a data type that conforms to the context in which they appear.

Integer Constants

The form of a decimal integer constant is:

where di is a digit in the range 0 to 9 and where s is an optional sign. The value of an integer constant
must be within the range -2147483648 to 2147483647 inclusive (_231 to (231 - 1)). All integer
constants assume a data type of INTEGER*4 and have a 32-bit storage requirement.

Below are several examples of integer constants.

+2
-36
437

2-3

Data Types Paragon™ System Fortran Language Reference Manual

Real Constants

Real constants have two forms, scaled and unsealed. An unsealed real constant consists of a signed
or unsigned decimal number. A scaled real constant takes the same form as an unsealed constant, but
is followed by a scaling factor using the form:

E+digits
Edigit
E-digits

where digits is the scaling factor (the power of ten) to be applied to the unsealed constant. The first
two forms above are equivalent, that is, a scaling factor without a sign is assumed to be positive.

Table 2-4 shows several examples of real constants.

Table 2-4. Real Constants

Constants Value

1.0 unsealed single precision constant

1. unsealed single precision constant

-1.0 signed unsealed single precision constant

6.1E2 is equivalent to 610.0

+2.3E3 is equivalent to 2300.0

-3.5E-l is equivalent to -0.35

Double Precision Constants

2-4

A double precision constant has the same form as a scaled real constant except that the E is replaced
by O. Table 2-5 shows several double precision constants.

Table 2-5. Double Precision Constants

6.102 is equivalent to 610.0

+2.303 is equivalent to 2300.0

-3.50-1 is equivalent to -0.35

+404 is equivalent to 40000

(
~ ,

" -MU

I:
(,

':'I

~I

I:

rl.· LJ

IJ

[J

c
IJ
[J

[J

[~

[J
(.. ~

_I

[J

[J

(J

[j

Paragon TM System Fortran Language Reference Manual Data Types

Logical Constants

A logical constant is one of:

. TRUE.

. FALSE.

The logical constants .TRUE. and .FALSE. are defined to be the four-byte values -1 and 0
respectively. By default, a logical expression is defined to be .TRUE. if its least significant bit is 1
and .FALSE. otherwise. The option -Munixlogical defines a logical expression to be true if its value
is non-zero and false otherwise, and defines the internal value of .1RUE. to be 1. Refer to the
Paragon™ System Fortran Compiler User's Guide for details.

The abbreviations T and F can be used in place of .TRUE. and .FALSE. in data initialization
statements and in namelist input.

Complex Constants

A complex constant is held as two real constants separated by a comma and surrounded by
parentheses. The first real number is the real part and the second real number is the imaginary part.
Together these values represent a complex number. Below are several examples:

(3.5,-3.5)
(6.1E2,+2.3E3)

Character Constants

§

Character string constants may be delimited using either an apostrophe (') or a double quote ("). The
apostrophe or double quote acts as a delimiter and is not part of the character constant. Use two
apostrophes together to include an apostrophe as part of the expression. If a string begins with one
variety of quote mark, the other may be embedded within it without using the repeated quote or
backslash escape. Within character constants, blanks are significant. The length of the string must
be at least one character. For further information on the use of the backslash character, refer to
-Mbackslash in the Paragon ™ System Fortran Compiler User's Guide.

Below are several examples of character constants.

'abc'
'abc'
'ab' 'c'

If a character constant is used in a numeric context, for example as the expression on the right side
of an arithmetic assignment statement, it is treated as a Hollerith constant. The rules for typing and
sizing character constants used in a numeric context are outlined later in the description of Hollerith
constants.

2-5

Data Types Paragon™ System Fortran Language Referenoe Manual

Octal and Hexadecimal Constants

2-6

The fonn of an octal constant is:

The fonn of a hexadecimal constant is:

where ci is a digit in the range 0 to 7 and ai is a digit in the range 0 to 9 or a letter in the range A to
F or a to f (case mixing is allowed). You can specify up to 64 bits (22 octal digits or 16 hexadecimal
digits).

Octal and hexadecimal constants are stored as either 32-bit or 64-bit quantities. They are padded on
the left with zeroes if needed and assume data types based on how they are used.

The following are the rules for converting these data types:

• An octal or hexadecimal constant is always either 32 or 64 bits in size and is typeless.
Sign-extension and type-conversion are never perfonned. All binary operations are perfonned
on 32-bit or 64-bit quantities. This implies that the rules to follow are only concerned with
mixing 32-bit and 64-bit data.

• When a constant is used with an arithmetic binary operator (including the assignment operator)
and the other operand is typed, the constant assumes the type and size of the other operand.

• When a constant is used in a relational expression such as . EO . , its size is chosen from the
operand having the largest size. This implies that 64-bit comparisons are possible.

• When a constant is used as an argument to the generic AND, OR, EQV, NEQV, SHIFT, or
COMPL function, a 32-bit operation is perfonned if no argument is more than 32 bits in size;
otherwise, a 64-bit operation is perfonned. The size of the result corresponds to the chosen
operation.

When a constant is used as an actual argument in any other context, no data type is assumed;
however, a length of four bytes is always used. If necessary, truncation on the left occurs.

• When a specific 32-bit or 64-bit data type is required, that type is assumed for the constant.
Array subscripting is an example.

• When a constant is used in a context other than those mentioned above, an INTEGER*4 data
type is assumed. Logical expressions and binary arithmetic operations with other untyped
constants are examples.

[J

I:

IJ
rJ
[J

1·"1

~

r=
r=

r:
r'""l
I :

~

r=

IJ

[J

IJ

Paragon ™ System Fortran Language Reference Manual Data Types

• When the required data type for a constant implies that the length needed is more than the
number of digits specified, the left-most digits have a value of zero. When the required data type
for a constant implies that the length needed is less than the number of digits specified, the
constant is truncated on the left. Truncation of nonzero digits is allowed.

In the example below, the constant I (oftype INTEGER*4) and the constant J (of type
INTEGER*2) will have hex values 1234 and 4567, respectively. The variable D (of type
REAL*8) will have the hex value x4000012345678954 after its second assignment:

I '1234'X ! Leftmost Pad with zero.
J '1234567'X ! Truncate Leftmost 3 hex digits
D '40000123456789ab'X
D NEQV(D,'ff'X) ! 64-bit Exclusive Or

Hollerith Constants

The form of a Hollerith constant is:

where n specifies the positive number of characters in the constant and cannot exceed 2000
characters. A Hollerith constant is stored as a byte string with four characters per 32-bit word.
Hollerith constants are untyped arrays ofINTEGER*4. The last word of the array is padded on the
right with blanks if necessary. Hollerith constants cannot assume a character data type and cannot
be used where a character value is expected. Hollerith constants are permitted with the %REF
built-in function (for more information on the built-in VAX/VMS functions, see Appendix B, VAX
System Subroutines and Built-in Functions.) The data type of a Hollerith constant used in a numeric
expression is determined by the following rules:

Sign-extension is never performed.

• The byte size of the Hollerith constant is determined by its context and is not strictly limited to
32 or 64 bits like hexadecimal and octal constants.

When the constant is used with a binary operator (including the assignment operator), the data
type of the constant assumes the data type of the other operand.

'When a specific data type is required, that type is assumed for the constant. When an integer or
logical is required, INTEGER*4 and LOGICAL *4 are assumed. When a float is required,
REAL *4 is assumed (array subscripting is an example of the use of a required data type).

• When a constant is used as an argument to certain generic functions (AND, OR, EQV, NEQV,
SIDFT, and COMPL), a 32-bit operation is performed if no argument is larger than 32 bits;
otherwise, a 64-bit operation is performed. The size of the result corresponds to the chosen
operation.

When a constant is used as an actual argument, no data type is assumed and the argument is
passed as an INTEGER*4 array. Character constants are passed by descriptor only.

2-7

Data Types Paragon ™ System Fortran Language Reference Manual

• When a constant is used in any other context, a 32-bit INTEGER*4 array type is assumed.

if' u

~]
When the length of the Hollerith constant is less than the length implied by the data type, spaces are ~ I

appended to the constant on the right. When the length of the constant is greater than the length Ia .,..j

Arrays

implied by the data type, the constant is truncated on the right.

An array is a group of consecutive, contiguous storage locations associated with a symbolic name
which is the array name. Each individual element of storage, called the array element, is referenced
by the array name modified by a list of subscripts. Arrays are declared with type declaration
statements, DIMENSION statements and COMMON statements; they are not defined by implicit
reference. These declarations will introduce an array name and establish the number of dimensions
and the bound of each dimension. If a symbol, modified by a list of subscripts is not defined as an
array, then it will be assumed to be a FUNCTION reference with an argument list.

An Array Declaration Element

An array declaration has the following form:

name([lb:] ub[, [lb:] ub] . ..)

where name is the symbolic name of the array, lb is the ,specification of the lower bound of the
dimension and ub is the specification of the upper bound. The upper bound ub must be greater than
the lower bound lb. The values lb and ub may be negative. The bound lb is taken to be 1 if it is not
specified. The difference (ub-lb+ 1) specifies the number of elements in that dimension. The number
of lb,ub pairs specifies the dimension of the array. The total amount of storage of the array is:

(ub-lb+l)*(ub-lb+l)* . ..

However, the dimension specifiers of a subroutine argument may themselves be subroutine
arguments or members of COMMON.

Subscripts

2-8

A subscript is used to locate an array element for access. An array name qualified by a subscript list
has the following form:

name(sub[,sub] . ..)

where there must be one sub entry for each dimension in array name.

~.~

I.L .. I

I:
(]

[J

IJ

[J
r''''1

.. J

I:
r~
[~

(
""9

.. _".J'

I'
I.

'·~j

,,-"

Paragon™ System Fortran Language Reference Manual Data Types

Each sub must be an integer expression yielding a value which is within the range of the lower and
upper bounds. Arrays are stored as a linear sequence of values in memory and are held such that the
first element is in the first store location and the last element is in the last store location. In a
multi-dimensional array the first subscript varies more rapidly than the second, the second more
rapidly than the third, and so on (column major order).

Character Substring

A character substring is a contiguous portion of a character variable and is of type character. A
character substring can be referenced, assigned values and named. It can take either of the following
forms:

character_variable_name (xl : x2)

character_array (subscripts) (xl : x2)

where xl and x2 are integers and xl denotes the left-hand character position and x2 the right-hand
one. These are known as substring expressions. In substring expressions xl must be both greater than
or equal to 1 and less than x2 and x2 must be less than or equal to the length of the character variable
or array element .

For example:

J(2:4) the characters in positions 2 to 4 of character variable J.

K (3 , 5) (1 : 4) the characters in positions 1 to 4 of array element K (3 , 5) .

A substring expression can be any valid integer expression and may contain array element or
function references.

§ Structu res
A structure is a user-defined aggregate data type having the following form:

STRUCTURE [/structure_name/] [field_namelist]
field_declaration
[field_declaration]

[field_declaration]
END STRUCTURE

2-9

Data Types

§ Records

2-10

Paragon™ System Fortran Language Reference Manual

Where:

structure name is unique and is used both to identify the structure and to allow its use in
subsequent RECORD statements.

field namelist is a list of fields having the structure of the associated structure declaration.

field declaration

Afield _ namelist is allowed only in nested structure declarations.

can consist of any combination of substructure declarations, typed data
declarations, union declarations or unnamed field declarations.

Fields within structures confonn to machine-dependent alignment requirements. Alignment of fields
also provides a C-like "struct" building capability and allows convenient inter-language
communications.

Field names within the same declaration nesting level must be unique, but an inner structure
declaration can include field names used in an outer structure declaration without conflict. Also,
because records use periods to separate fields, it is not legal to use relational operators (for example,
.EO., .xoR.),logical constants (.TRUE. or .FALSE.), or logical expressions (.AND., .NOT., .OR.) as
field names in structure declarations.

Fields in a structure are aligned as required by hardware; therefore a structure's storage requirements
are machine-dependent. Because explicit padding of records is not necessary, the compiler
recognizes the %FILL intrinsic, but perfonns no action in response to it

Data initialization can occur for the individual fields.

A record is a user-defined aggregate data item having the following fonn:

RECORD /structure_name/record_namelist
[,/structure_name/record_namelist]

[,/structure_name/record_namelist]

Where:

structure name is the name of a previously declared structure.

record 'namelist is a list of one or more variable or array names separated by commas.

You create memory storage for a record by specifying a structure name in the RECORD statement.
You define the field values in a record either by defining them in the structure declaration or by
assigning them with executable rode.

[
-"'"I, ' ,

-~

[f'"'
i~:

I:

~=
l=

r:

r:

r=
·I·-~·

--......,...!

[J
I' .. -.'.'

'-'

[.J

1=
(=
('.' J

IJ

Paragon™ System Fortran Language Reference Manual Data Types

You can access individual fields in a record by combining the parent record name, a period (.), and
the field name (for example, recordname.fieldname). For records, a scalar reference means a
reference to a name that resolves to a single typed data item (for example, INTEGER), while an
aggregate reference means a reference that resolves to a structured data item.

Scalar field references may appear wherever normal variable or array elements may appear with the
exception of COMMON, SA VB, NAMELIST, DATA and EQillV ALENCE statements. Aggregate
references may only appear in aggregate assignment statements, unformatted I/O statements, and as
parameters to subprograms.

The following is an example of RECORD and STRUCTURE usage.

STRUCTURE /person/
INTEGER id
LOGICAL living

! Declare a structure to define a person

CHARACTER*5 first, last, middle
INTEGER age

END STRUCTURE
! Define population to be an array where each element is of
! type person. Also define a variable, me, of type person.

RECORD /person/ population(2), me

me. age = 34
me. living = .TRUE.
me. first = 'Steve'
me.id = 542124822

population(1).last

population(2) = me

Assign values for the variable me to
some of the fields.

'Jones' Assign the "last" field of
element 1 of array population.
Assign all the values of record
"me" to the record population(2)

2-11

-_ .. _-_.- .. _-----_._- ._ _._-- -------~-~~~~

Data Types Paragon ™ System Fortran Language Reference Manual

§ UNION and MAP Declarations

2-12

A UNION declaration is a multi-statement declaration defining a data area that can be shared
intennittently during program execution by one or more fields or groups of fields. It declares groups
of fields that share a common location within a structure. Each group of fields within a union
declaration is declared by a MAP declaration, with one or more fields per MAP declaration.

Union declarations are used when one wants to use the same area of memory to alternately contain
one of two or more groups of fields. Whenever one of the fields declared by a union declaration is
referenced in a program, that field and any other fields in its map declaration become defined. Then,
when a field in one of the other map declarations in the union declaration is referenced, the fields in
that map declaration become defined, superseding the fields that were previously defined.

A union declaration is initiated by a UNION statement and tenninated by an END UNION
statement. Enclosed within these statements are one or more map declarations, initiated and
terminated by MAP and END MAP statements, respectively. Each unique field or group of fields is
defined by a separate map declaration. The fonnat of a UNION statement is as follows:

UNION
map_declaration
[map_declaration]

[map_declaration]
END UNION

The fonnat of the map_declaration is as follows:

MAP
field_declaration
[field_declaration]

[field_declaration]
END MAP

where field_declaration is a structure declaration or RECORD statement contained within a union
declaration, a union declaration contained within a union declaration, or the declaration of a typed
data field within a union.

Data can be initialized in field declaration statements in union declarations. Note, however, it is
illegal to initialize multiple map declarations in a single union.

Field alignment within multiple map declarations is perfonned as previously defmed in structure
declarations.

The size of the shared area for a union declaration is the size of the largest map defined for that
union. The size of a map is the sum of the sizes of the field(s) declared within it plus possibly space
reserved for alignment purposes.

- --_.--------------------- --~-----.----

(J

r'" -,
L. ~-,

[J

I:

IJ

['~

JIIJ

IJ

[-.-
. --'iJ

1-.-
.~

[J

[:
[J
()

Paragon TM System Fortran Language Reference Manual Data Types

Manipulating data using union declarations is similar to using EQUIV ALENCE statements.
However, union declarations more closely resemble union declarations for the language C. The main
difference is that the language C requires one to associate a name with each "map" (union). Fortran
field names must be unique within the same declaration nesting level of maps .

The following is an example of RECORD, STRUCTURE. MAP and UNION usage. The size of
each element of the reea" array would be the size of typetag (4 bytes) plus the size of the largest
MAP, the employee map (24 bytes).

STRUCTURE jaccountj
INTEGER typetag
UNION

MAP

CHARACTER * 12
REAL*4
CHARACTER*8

END MAP
MAP

INTEGER*4
REAL*4
CHARACTER*8

END MAP
MAP

INTEGER*4
REAL*4
BYTE
BYTE

END MAP
END UNION

END STRUCTURE

ssn
salary
empdate

acct_cust
credit_amt
due_date

acct_supp
debit_amt
num_items
items(12)

Tag to determine defined map.

Structure for an employee

social Security Number

Employment date

Structure for a customer

Structure for a supplier

Items supplied

RECORD jaccountj recarr(lOOO)

Data Initialization

§ Within data type declaration statements, data initialization is allowed. Data is initialized by placing
values bounded by slashes immediately following the symbolic name (variable or array) to be
initialized. Initialization of fields within structure declarations is allowed, but initialization of
unnamed fields and records is not.

Hollerith, octal and hexadecimal constants can be used to initialize data in both data type
declarations and in DATA statements. Truncation and padding occur for constants that differ in size
from the declared data item (as specified in the discussion of constants above).

2-13

Data Types
TM

Paragon System Fortran Language Reference Manual

§ Pointer Variables

2-14

The POINTER statement declares a scalar variable to be a pointer variable (of data type INTEGER),
and another variable to be its pointer-based variable.

The syntax of the POINTER statement is:

POINTER (pi, vi) [, (p2, v2) ... J

vI and v2

pI andp2

are pointer-based variables. A pointer-based variable can be of any type,
including STRUCTURE. A pointer-based variable can be dimensioned in a
separate type, in a DIMENSION statement, or in the POINTER statement.
The dimension expression may be adjustable, according to the rules for
adjustable dummy arrays and dimension declarators.

are the pointer variables corresponding to vIand v2. A pointer variable may
not be an array. The pointer is an integer variable containing the address of a
pointer-based variable. The storage located by the pointer variable is defmed
by the pointer-based variable (for example, array, data type, etc.). Areference
to a pointer-based variable appears in Fortran statements like a normal
variable reference (for example, a local variable, a COMMON block variable,
or a dummy variable). When the based variable is referenced, the address to
which it refers is always taken from its associated pointer (that is, its pointer
variable is dereferenced).

The pointer-based variable does not have an address until its corresponding pointer is defIned. The
pointer is defined in one of the following ways:

By assigning the value returned by the LOC function.

• By assigning a value defIned in terms of another pointer variable.

[J

By dynamically allocating a memory area for the based variable. If a pointer-based variable is I:
dynamically allocated, it may also be freed.

(J

I: .-'IIJ

r:

[J

I:
I:
[~

r~
1··~'"1

-'

I~

I·· -\
---'

(--,
I. '

_ .. ~1

(J

IJ
[i

~.J

rJ

IJ
r!
I~'

~~ -~~~~~- ~ -~~~---~~~--~-----------------------

Paragon™ System Fortran Language Reference Manual Data Types

The following code illustrates the use of pointers:

Restrictions

REAL XC(lO)
REAL X
COMMON IC, XC
POINTER (P, I)
POINTER (Q, X(5»

P LOC(IC)
I 0

P LOC(XC)
Q P + 20
X(l) = 0
ALLOCATE (X)

IC gets 0

! same as LOC(XC(6»
! XC(6) gets 0
Q locates an allocated memory area

The following restrictions apply to the POINTER statement:

No storage is allocated when a pointer-based variable is declared.

If a pointer-based variable is referenced, its pointer variable is assumed to be defined.

A pointer-based variable may not appear in the argument list of a SUBROUTINE or
FUNCTION and may not appear in COMMON, EQUIVALENCE, DATA, NAMELIST, or
SA VE statements.

• A pointer-based variable can be adjusted only in a SUBROUTINE or FUNCTION subprogram.
If a pointer-based variable is an adjustable array, it is assumed that the variables in the
dimension declarator(s) are defined with an integer value at the time the SUBROUTINE or
FUNCTION is called. For a variable which appears in a pointer-based variable's adjustable
declarator, modifying its value during the execution of the SUBROUTINE or FUNCTION does
not modify the bounds of the dimensions of the pointer-based array.

A pointer-based variable is assumed not to overlap with another pointer-based variable.

2-15

- __ '-____ ... - •. ___ __ ,._ .. '~ . __ ._. ____ "'--_-'-=---~. __ . __ . __ .. ___ ---=~_ ._._n. ____ ._. ___ ._. _____ .. ___ . __ ._. ______ . _----' ___ ._ .. _.'-'--. __ --'-__ . ___ .~ __ . ____ _. __ ._ .. ____________________ ._. _. __ ___ . ____ .. _,,_.-,--,-- _._ •. _'- __ ~_ ... _~. __

Data Types Paragon ™ System Fortran Language Reference Manual [)
,-11!1
i~

IIr-'"
i"i I

~~

l.:
""

2-16

I~

I~

[~~

r=
I ~!

.. -.J

lJ
(._'"
, '

.-J

r=

(1
. .w

IJ

Fortran Statements

This chapter describes each of the Fortran statements. Each description includes a brief summary of
the statement, a syntax description, a complete description and an example. The statements are listed
in alphabetical order. The first section lists terms that are used throughout the chapter.

Definition of Terms
character scalar memory reference

is an character variable, a character array element, or a character member of a
structure.

integer scalar memory reference
is an integer variable, an integer array element, or an integer member of a
structure.

logical scalar memory reference
is an logical variable, a logical array element, or a logical member of a structure.

3-1

Fortran Statements Paragon;'" System Fortran Language Reference Manual

§ ACCEPT
". .' ": ::.::. "::.: .. " ":.: .. :: ... :::" ... :::: :::.: ".. .

The ACCEPT statement causes formatted input to be read on standard input, stdin. ACCEPT is identical to the READ
statement with a unit specifier of asterisk (*).

Syntax

Examples

3-2

ACCEPT f [,iolist]

ACCEPT namelist

f

iolist

namelist

99

format-specifier. A * indicates list directed input.

is a list of variables to be input.

is the name of a namelist specified with the NAMELIST statement.

ACCEPT *, lA, ZA
ACCEPT 99 I, J, K
ACCEPT SUM
FORMAT(I2, 14, 13)

(J

~ ~l

~AIl

(:

[:

(:

IJ
I~' .-OJ

[J

[:

1-,.,. ·
~I

(·.4
.cJ

(-,
__ .J

I:
[J

[
4

.. ~

[J

Paragon™ System Fortran Language Reference Manual Fortran Statements

§ ALLOCATE
: ."... . .". ..:.... ..::.:'"::. :... :.::".:.::.:":., :: :::. :'-:":". :::"::" .. '

The ALLOCATE statement allocates storage for each pointer-based variable and allocatable common block which
appears in the statement

Syntax

Description

Examples

ALLOCATE name[, name] ... [, STAT= var])

name is a pointer-based variable or the name of an allocatable COMMON enclosed in
slashes.

var is an integer variable, integer array element or an integer member of a
STRUCTURE (that is, an integer scalar memory reference).

For a pointer based variable, its associated pointer variable is defined with the address of the
allocated memory area. If the specifier STAT = is present, successful execution of the ALLOCATE
statement causes the status variable to be defined with a value of zero. If an error occurs during
execution of the statement and the specifier STAT = is present, the status variable is defined to have
the integer value one. If an error occurs and the specifier STAT = is not present, program execution
is terminated.

A dynamic, or allocatable COMMON block is a common block whose storage is not allocated until
an explicit ALLOCATE statement is executed.

COMMON P, N, M
POINTER (P, A(N,M»
COMMON, ALLOCATABLE IALL/X(10), Y
ALLOCATE (lALLI, A, STAT=IS)
PRINT *, IS
X(S) = A(2, 1)
DEALLOCATE (A)
DEALLOCATE (A, STAT=IS)
PRINT *, 'should be 1', IS
DEALLOCATE (/ALL/)

Fortran Statements Paragon™ System Fortran Language Reference Manual

ASSIGN
".: :.".: .' : ... :.::.:.:., . :":. ..." .. :. "... : : :" ::'":. ". ".,

The assign statement assigns a statement label to a variable.

Syntax

Description

Example

ASSIGN a TO b

a is the statement label.

b is an integer variable.

Executing an ASSIGN statement assigns a statement label to an integer variable. This is the only
way that a variable may be defined with a statement label value. The statement label must be:

• A statement label in the same module as the ASSIGN statement.

• The label of an executable statement or a FORMAT statement.

A variable must be defined with a statement label when it is referenced:

• in an assigned GOTO statement.

as a fonnat identifier in an input/output statement and while so defined must not be referenced
in any other way.

An integer variable defined with a statement label can be redefined with a different statement label,
the same statement label or with an integer value.

ASSIGN 40 TO K

GO TO K

40 L = P + I + 56

[J;. • . I

JIll

D

I:

(J

r:

I~

['"

IJ
(J

[~

1_·....,
I

..J

I,.J

r:
(i _JiJ

IJ

C

Paragon ™ System Fortran Language Reference Manual Fortran Statements

BACKSPACE
.:: .' ... ": : .. ::". :.:: :-:::::.::" . ":> ":":.: "::. : ::.:::.::.::-: .. ::. .::::.:- .. : ::::: .. :., . ":.:: : :. :": . ::. :::.:.: .. : :. : ...". . " ... ":

When a BACKSPACE statement is executed the file connected to the specified unit is positioned before the preceding
record.

Syntax

Description

Examples

BACKSPACE unit

BACKSPACE ([UNIT=)unit [,ERR=errs) [, IOSTAT=ios)

unit

errs

ios

is the unit specifier.

an error specifier which is a statement label of an executable statement in the same
program. If an error condition occurs execution continues with the statement
specified by errs.

is an integer scalar memory reference that is defined as zero if no error condition
exists or a positive integer when there is an error condition.

If there is no preceding record the position of the file is not changed. A BACKSPACE statement
cannot be executed on a file that does not exist. You must not issue a BACKSPACE statement for a
file that is open for direct or append access.

BACKSPACE 4

BACKSPACE UNIT=3)

BACKSPACE 7, IOSTAT=IOCHEK, ERR=50)

3-5

Fortran Statements Paragon™ System Fortran Language Reference Manual

BLOCK DATA
", .",. : ":: .. ": "::. : ",

The BLOCK DATA statement introduces a module that sets up initial values in COMMON blocks. No executable
statements are allowed in a BLOCK DATA module.

Syntax

Example

BLOCK DATA [name]

name is a symbol identifying the module and must be unique among all global names
(COMMON block names and among all other module names). If missing, the
module is given a default name.

BLOCK DATA
COMMON /SIDE/ BASE, ANGL~, HEIGHT, WIDTH
INTEGER SIZE
PARAMETER (SIZE=lOO)
INTEGER BASE(O:SIZE)
REAL WIDTH(O:SIZE), ANGLE(O:SIZE), WIDTH(O:SIZE)
DATA/(BASE(I),I=O,SIZE)/SIZE*-l,-l/,

+(WIDTH(I),I=O,SIZE)/SIZE*O.O,O.O/
END

[J

l.l ..J

~=
l:
I:

1=
l:
l:
(

"WI I ..

IJ
(

4<1

~j

[-.",.,
, ,

_.J

[J

[J

[J

[J

(-~--
_-I

IJ

,- , --,,-------,----------,-,-, ,--",------------

Paragon ™ System Fortran Language Reference Manual Fortran Statements

§ BYTE
. ":".. . "'.:' .: ::.:.-: .. :"., .. :: .":. :... ". .: .. "::=., "::" .: .. ::. : ":. :"::" ". . :: :" : ..

The BYTE statement establishes the data type of a variable by explicitly attaching the name of a variable to a I-byte
integer. This overrides the implication of data typing by the initial letter of a symbolic name.

Syntax

Description

Example

BYTE name [/clist/l, ...

name

clist

is the symbolic name of a variable, array, or an array declarator (see the
DIMENSION statement for an explanation of array declarators).

is a list of constants that initialize the data, as in a DATA statement.

Byte statements may be used to dimension arrays explicitly in the same way as the DIMENSION
statement. BYTE declaration statements must not be labeled.

BYTE TB3, SEC, STORE (5,5)

3-7

Fortran Statements Paragon™ System Fortran Language Reference Manual

CALL
... . .:." :: "..:". ":.: : ":.:". .:"..

The CALL statement transfers control to a subroutine.

Syntax

Description

Examples

CALL subroutine [([argument [, argument] ...])]

subroutine is the name of the subroutine.

argument is the actual argument being passed to the subroutine. The first argument
corresponds to the first dummy argument in the SUBROUTINE statement and so
on.

Actual arguments can be expressions including: constants, scalar variables, function references and
arrays.

Actual arguments can also be alternate return specifiers. Alternate return specifiers are labels
prefixed by asterisks (*) or ampersands (&) (the ampersand is an extension from FORTRAN 77§).

CALL CRASH no arguments

CALL BANG (1. 0) one argument

CALL WALLOP(V, INT) two arguments

CALL ALTRET(I, *10, *20)

SUBROUTINE ONE
DIMENSION ARR
REAL WORK
INTEGER ROW, COL
PI=3.142857

10, 10)

CALL EXPENS(ARR,ROW,COL,WORK,SIN(PI/2)+3.4)
RETURN
END

Ir"l
LJ

I:
r:

[J

[:
_-.I

IJ
(J

IJ

Paragon TM System Fortran Language Reference Manual Fortran Statements

CHARACTER
. . : ":"... ":'." ::.:.::":.:".:. ":".::".::::: :.: .. :.:.:.:.::.: : :.:"::.:: .. ""::" .. ":.:." :.: :::":':":.. . . .

The CHARACTER statement establishes the data type of a variable by explicitly attaching the name of a variable to
a character data type. This overrides the implication of data typing by the initial letter of a symbolic name.

Syntax

Description

Examples

CHARACTER [*len) name [*len) [/clist/) , ...

name

len

clist

is the symbolic name of a variable, array. or an array declarator (see the
DIMENSION statement for an explanation of array declarators).

is a constant or *. (*) is only valid if the corresponding name is a dummy
argument.

is a list of constants that initialize the data. as in a DATA statement.

Character type declaration statements may be used to dimension arrays explicitly in the same way
as the DIMENSION statement. Type declaration statements must not be labeled. Note: The data type
of a symbol may be explicitly declared only once. It is established by type declaration statement,
IMPUCIT statement or by predefined typing rules. Explicit declaration of a type overrides any
implicit declaration. An IMPUCIT statement overrides predefmed typing rules.

CHARACTER A*4, B*6, C

A is 4 and B is 6 characters long and C is 1 character long.

3-9

----- ---- ----------------

Fortran Statements Paragon™ System Fortran Language Reference Manual

CLOSE
. . ". :" . ": .".. .:.:.:. :: :" ."" .. ':.

The CLOSE statement tenninates the connection of the specified file to a unit.

Syntax

Description

Example

3-10

CLOSE ([UNIT=] u [,IOSTAT=ios] [,ERR= errs]
[,STATUS= sta] [,DISPOSE= sta] [,DISP= sta])

u

ios

errs

sta

the external unit specifier where u is an integer.

is an integer scalar memory reference; if this is included ios becomes defined with
o (zero) if no error condition exists or a positive integer when there is an error
condition.

is an error specifier in the fonn of a statement label of an executable statement in
the same module. If an error condition occurs, execution continues with the
statement specified by errs.

is a character expression, where case is insignificant, specifying the file status and
the same keywords are used for the dispose status. Status can be KEEP or
DELETE. KEEP cannot be specified for a file whose dispose status is SCRATCH.
When KEEP is specified (for a file that exists) the file continues to exist after the
CLOSE statement; conversely DELETE deletes the file after the CLOSE
statement. The default value is KEEP unless the file status is SCRATCH.

A unit may be the subject of a CLOSE statement from within any module. If the unit specified does
not exist or has no file connected to it the use of the CLOSE statement has no effect. Provided the
file is still in existence it may be reconnected to the same or a different unit after the execution of a
CLOSE statement. Note that an implicit CLOSE is executed when a program stops.

In the following example the file on unit 6 is closed and deleted.

CLOSE(UNIT=6,STATUS='DELETE')

u

,f"I" -;

i:
[=

I'~,
.ioI

[J

r~~

1_,""1

_.

r:
[J

r=
I,~ , ,

...J

r-,
, ,

~J

(
-'1

, '

j

r=
IJ

IJ

Paragon TM System Fortran Language Reference Manual Fortran Statements

COMMON (Static and Dynamic)
.: ... ". "'. . ::": .. '. :.... "-: :. -.:": .. :"':':: ::" .. .

The COMMON statement defines contiguous blocks of storage. Each block is identified by a symbolic name and the
order of variables and arrays is defined in the COMMON block containing them. There are two fonns of the
COMMON statement, a static fonn and a dynamic fonn.

Syntax

§
COMMON /name/nlist [, /name/nlist] ...
COMMON [,ALLOCATABLE] /name/nlist [,/name/nlist] ...

name

nlist

is the name of each common block and is declared between the / .. .1 delimiters.

is a list of scalar and array names where the arrays may be defined in
DIMENSION statements or fonnally declared by their inclusion in the
COMMON block.

Description (static COMMON)

The name of the COMMON block need not be supplied; this is the Fortran BLANK COMMON
feature. In this case the compiler will use a default name which is implementation-specific. There
can be several COMMON block statements of the same name in a module; these are effectively
treated as one statement, with variables and array addresses concatenated from one COMMON
statement of the same name to the next. This is an alternative to the use of continuation lines when
declaring a common block with many symbols.

Common blocks with the same name that are declared in different modules share the same storage
area when combined into one executable program.

3-11

_ --- _-----_._-- _-.-.. - .•.. __ __ ... - .. -.. _ .. _-- ... _------_._._---_._-_ .. - .

Fortran Statements Paragon™ System Fortran Language Reference Manual

COMMON (Static and Dynamic) (cont.)

Example (static COMMON)

§

3-12

DIMENSION R(lO)
COMMON /HOST/ A, R, Q(3), U

This declares a common block of data memory called HOST where A will be held in the first
memory location, R (1) . .. R (10) will be held in the next ten locations, Q (1) . .. Q (3) in the
next three and U in the fifteenth location. Note the different types of declaration used for R (declared
in a DIMENSION statement) and Q (declared in the COMMON statement). The declaration of
HOST in a SUBROUTINE in the same executable program will share the same data area.

SUBROUTINE DEMO
COMMON/HOST/STORE(15)

RETURN
END

If the main program has the common block declaration as in the previous example, the COMMON
statement in the subroutine causes STORE (1) to correspond to A, STORE (2) to correspond to
R(1), STORE (3) to correspond to R(2), and so on through to STORE(15) corresponding to the
variable U.

You can name records within a COMMON block. Because the storage requirements of records are
machine-dependent, the size of a COMMON block containing records may vary between machines.
Note that this may also affect subsequent equivalence associations to variables within COMMON
blocks that contain records.

Both character and non-character data may reside in one COMMON block. Data is aligned within
the COMMON block in order to conform to machine-dependent alignment requirements.

A COMMON block may be data initialized in more than one program unit if the existing system
environment allows it (note that COFF-based systems do not). It is up to the programmer to make
sure that data within one COMMON block is not initialized more than once.

Blank COMMON may be data initialized.

._--_ .. _------

[J

[J

I:
r:
I~

[J

['J

I'. ~
(: ..

I'O*,.

'"

r:
[:

f=
I

'~

~l

1
'~4

,oJ

r=
1,'-'

-...l!L'

I '"
,-"

1=

[J

~

Paragon TM System Fortran Language Reference Manual Fortran Statements

COMMON (Static and Dynamic) (cont.)

§ Description (dynamic COMMON)

A dynamic, or allocatable, COMMON block is a common block whose storage is not allocated until
an explicit ALLOCATE statement is executed.

If the allocatable attribute is present, all named COMMON blocks appearing in the COMMON
statement are marked as allocatable. Like a normal COMMON statement, the name of an
allocatable COMMON block may appear in more than one COMMON statement. Note that the
ALLOCATABLE attribute need not appear in every COMMON statement.

The following restrictions apply to the dynamic COMMON statement:

• Before members of an allocatable COMMON block can be referenced, the common block must
have been explicitly allocated using the ALLOCATE statement.

• The data in an allocatable common block cannot be initialized.

The memory used for an allocatable common block may be freed using the DEALLOCATE
statement.

If a SUBPROGRAM declares a COMMON block to be allocatable, all other subprograms
containing COMMON statements of the same COMMON block must also declare the
COMMON to be allocatable.

§ Example (dynamic COMMON)

COMMON, ALLOCATABLE /ALL!/ A, B, /ALL2/ AA, BB
COMMON /STAT/ D, /ALL!/ C

This declares the following variables:

ALLl is an allocatable COMMON block whose members are A, B, and C.

ALL2 is an allocatable COMMON block whose members are AA, and BB.

STAT is a statically-allocated COMMON block whose only member is D.

A reference to a member of an allocatable COMMON block appears in a Fortran statement just like
a member of a normal (static) COMMON block. No special syntax is required to access members of
allocatable common blocks. For example, using the above declarations, the following is a valid ij77
statement:

AA=B*D

3-13

Fortran Statements Paragon TM System Fortran Language Reference Manual

COMPLEX

The COMPLEX statement establishes the data type of a variable by explicitly attaching the name of a variable to a
complex data type. This overrides the implication of data typing by the initial letter of a symbolic name.

Syntax

Description

Example

3-14

COMPLEX name [/clist/] [, name] [/clist/] ...

name

clist

is the symbolic name of a variable, array, or an array declarator (see the
DIMENSION statement below for an explanation of array declarators).

is a list of constants that initialize the data, as in a DATA statement.

COMPLEX statements may be used to dimension arrays explicitly in the same way as the
DIMENSION statement. COMPLEX statements must not be labeled. Note: The data type of a
symbol may be explicitly declared only once. It is established by type declaration statement,
IMPliCIT statement or by predefined typing rules. Explicit declaration of a type overrides any
implicit declaration. An IMPliCIT statement overrides predefined typing rules.

COMPLEX CURRENT

I'" .. ~
U

[J

[:
I:

IJ

r:

r:
(. .,

~

I:
[.... ~

.-'

I: .. "1

.---.J

'I·~
..;.J

(:""'"
..;.J

[~
[~

1=
[.:

[J

r=

Paragon™ System Fortran Language Reference Manual Fortran Statements

CONTINUE
.... ":. '". :"':: . ":.-::: .::::::: : :: .. : .. ::.: .. : .. ::.:::.: :: ... :: ... " :.:.:.: .:".:::: .. " .. :.:: :: .. : ... : ". ":::"

This CONTINUE statement passes control to the next statement. It is supplied mainly to overcome the problem that
transfer of control statements are not allowed to terminate a DO loop.

Syntax

Example

CONTINUE

DO 100 I = 1,10
SUM = SUM + ARRAY (I)
IF(SUM .GE. 1000.0) GOTO 200

100 CONTINUE
200

3-15

Fortran Statements Paragon™ System Fortran Language Reference Manual

DATA
.. . ." .'. ": ".:"." ".": :.....

The DATA statement assigns initial values to variables before execution.

Syntax

Example

3-16

DATA vlist/dlist/ [[,] vlist/dlist/] ...

vlist

dlist

is a list of variable names, array element names or array names separated by
commas.

is a list of constants or PARAMETER constants, separated by commas,
corresponding to elements in the vlist. An array name in the vlist demands that
dUst constants be supplied to fill every element of the array.

Repetition of a constant is provided by using the form:

n*constant-value

n a positive integer, is the repetition count.

REAL A, B, C(3), D(2)
DATA A, B, C(l), D /1.0, 2.0, 3.0, 2*4.0/

This performs the following initialization:

A = 1.0
B = 2.0
C(l) 3.0
D(l) 4.0
D(2) 4.0

r- -,
:
ilL xi

·[1!f~1

I
1a.-_.1

I· ~I
.""

1_.,,-, .,
...J

[-."
.. .J

(. ...,
. ..IJ

[~

(~,

..:J

(. ...,
-~

[J
[J

IJ
U

------~-~-- ... _----- ------

Paragon"" System Fortran Language Reference Manual Fortran Statements

§ DEALLOCATE
. :. . .. ".. :" '. ":" ".: ... ::' "." .:.:::::":.:::.:. ::.:::.... .:.' :.: :":. ":':'":... . .:-: "::::": .:: : -:-::.::.

The DEALLOCATE statement causes the memory allocated for each pointer-based variable or allocatable COMMON
block that appears in the statement to be deallocated (freed).

Syntax

Description

Examples

DEALLOCATE (al [, al] ... [, STAT= vax])

al is a pointer-based variable or the name of an allocatable COMMON block
enclosed in slashes.

var is an integer variable, integer array element, or an integer member of a structure.

An attempt to deallocate a pointer-based variable or an allocatable COMMON block which was not
created by an ALLOCATE statement results in an error condition.

If the specifier S TAT= is present. successful execution of the statement causes var to be defined with
the value of zero. If an error occurs during the execution of the statement and the specifier STAT=
is present, the status variable is defined to have the integer value one. If an error occurs and the
specifier S TAT= is not present, program execution is terminated.

COMMON P, N, M
POINTER (P, A(N,M»
COMMON, ALLOCATABLE IALL/X(10) , Y
ALLOCATE (lALLI, A, STAT=IS)
PRINT ., IS
XeS) = A(2, 1)
DEALLOCATE (A)
DEALLOCATE (A, STAT=IS)
PRINT·, 'should be I', IS
DEALLOCATE (/ALL/)

3-17

Fortran Statements Paragon '1M System Fortran Language Reference Manual

§ DECODE

The DECODE statement transfers data between variables or arrays in internal storage and translates that data from
internal to character form, and vice versa, according to format specifiers. Similar results can be accomplished using
internal files with formatted sequential WRITE and READ statements.

Syntax

Example

a;.18

DECODE (0, f, b [,IOSTAT= ios] [, ERR= errs]) [list]

c

f

b

ios

errs

list

is an integer expression specifying the number of bytes involved in translation.

is the format identifier.

is a scalar or array reference for the buffer area.

is the an integer scalar memory reference which is the input/output specifier: if
this is specified ios becomes defined with zero if no error condition exists or a
positive integer when there is an error condition.

an error specifier which takes the form of a statement label of an executable
statement in the same program. If an error condition occurs execution continues
with the statement specified by errs.

is the buffer area either containing data or receiving data.

DIMENSION K(3)
CHARACTER*12 A
DATA A/'123456789012'/
DECODE (12,100,A) K

100 FORMAT (314)

This translates the 12 characters in A to integer form and stores them in array K.

[~

(.~.' . i

J

I ~I. . ,

•

r:

(
"""!

d})

1_;
-,-,

(~1

",I

1'-"''', 'I , '

.J

1"'''1
.-

--.!

r=
(-:

I ~

IJ
(J

Paragon 1M System Fortran Language Reference Manual Fortran Statements

DIMENSION
.. :.:: .. ". : ".::;:':::" . ":::::"'::::. .."::::::::":::: " .. :.:.:" .. : .. : ". ":.": ... :.":" . ::

The DIMENSION statement defines the number of dimensions in an array and the number of elements in each
dimension.

Syntax

Description

DIMENSION name ([lb:]ub[, [lb:]ub] ...) [,name([lb:]ub[, [lb:]ub] . ..)]

name

lb:ub

is the symbolic name of an array.

is a dimension declarator specifying the bounds for a dimension (the lower bound
lb and the upper bound ub).lb and ub must be integers with ub greater than lb. The
lower bound lb is optional; if it is not specified, it is taken to be 1.

DIMENSION can be used in a subroutine to establish an argument as an array, and in this case the
declarator can use expressions formed from integer variables and constants to establish the
dimensions (adjustable arrays). Note however that these integer variables must be either arguments
or declared in COMMON; they cannot be local. Note that in this case the function of DIMENSION
is merely to supply a mapping of the argument to the subroutine code, and not to allocate storage.

If an array is a dummy argument its last dimension may be an * (assumed size array)

The typing of the array in a DIMENSION statement is defined by the initial letter of the array name
in the same way as variable names. The letters I, J, K, L, M and N imply that the array is of
INTEGER type and an array with a name starting with any of the letters A to Hand 0 to z will be of
type REAL, unless overridden by an IMPliCIT or type declaration statement. Arrays may appear
in type declaration and COMMON statements but the array name can appear in only one array
declaration.

DIMENSION statements must not be labeled.

3-19

- - ._.--- .. _----------

Fortran Statements Paragon ™ System Fortran Language Reference Manual

DIMENSION (cont.)

Example

3-20

DIMENSION ARRAY1(3:10), ARRAY2(3,-2:2)

This specifies ARRA Yl as a vector having eight elements with the lower bound of 3 and the upper
bound of 10 and ARRA Y2 as a matrix of two dimensions having fIfteen elements. The fIrst
dimension has three elements and the second has fIve with bounds from -2 to 2.

CHARACTER B(0:20)*4

This sets up an array B with 21 character elements each having a length of four characters. Note that
the array has been dimensioned in a type declaration statement and therefore cannot subsequently
appear in a DIMENSION statement.

~~~~~~~~~~~~.---~- -----.... --... --.. ~-~-

[J 

(
~l 

" ' , , ... 

(J 

[J 



I: 

[J 

r: 
r: 
I ,"" 

~J 

1= 
r: 
I ~! 

rJ 

·1· .~ 
-, 

! ' I.
·~ 

I: 
I."" 

,J 

(
"'''1 

.J 

r: 
(: 

. ....J 

n, LJ 

Paragon™ System Fortran Language Reference Manual Fortran Statements 

DO (Iterative) 
". ".:: ... ": .. : ......... ". ::.' ::.:' ." .:: ':':"::.,:"::.::.:: ..... :. :.,::.:::: .:::: ..... ::":.::" ..... ::.:: ..... ::':':::'" .. :,::,:.,:'::. . . . 

The DO statement introduces an iterative loop and specifies the loop control index and parameters. 

Syntax 

Description 

§ 

§ 

DO [label [,]] i = el, e2 [, e3] 

label 

el 

e2 

e3 

labels the last executable statement in the loop (this must not be a transfer of 
control statement). 

is the name of a variable called the DO variable. 

is an expression which yields an initial value for i. 

is an expression which yields a final value for i. 

is an optional expression yielding a value specifying the increment value for i. The 
default for e3 is 1. 

If the optional label, label, is not included, the DO statement must be terminated by an END DO 
statement. 

The DO loop consists of all the executable statements after the specifying DO statement up to and 
including the labeled statement, called the terminal statement. The label is optional. If omitted, the 
terminal statement of the loop is an END DO statement. 

END DO may be used to terminate the DO loop even if a label is specified. 

3-21 



--- - ------------~-------~-,---~~~~~--

Fortran Statements Paragon TM System Fortran Language Reference Manual 

DO (Iterative) (cont.) 

§ 

Example 

3-22 

Before execution of a DO loop, an iteration count is initialized for the loop. This value is the number 
of times the DO loop is executed, and is 

INT«e2-e1+e3)/e3) 

If the value obtained is negative or zero that the loop is not executed. 

The DO loop is executed first with i taking the value el, then the value (el+e3), then the value 
(el+e3+e3), etc. 

It is possible to jump out of a DO loop and jump back in, as long as the do index variable has not 
been adjusted. 

Nested DO loops may share the same labeled terminal statement if required. They may not share an 
END DO statement. 

In a nested DO loop, it is legal to transfer control from an inner loop to an outer loop. It is illegal, 
however, to transfer into a nested loop from outside the loop. 

DO 100 J = -10,10 
DO 100 I = -5,5 

100 SUM = SUM + ARRAY (I,J) 

I: 

(
.''"1 

, ! 

~ 

[J 



(] 

r: 
[: 
["~ 

( """ 
,.J' 

I: 
I·.~·· 

I ~l 

~ J 

(
""'I 

.' .. -J 

1-1 

I: 

I··"", ., 

d 

(J 

IJ 
I~ LJ 

Paragon 1M System Fortran Language Reference Manual Fortran Statements 

§ DO WHILE 
. :' ......... "::.:.: .. ":": ..... -:" .... : ...... : : .. :: .":. " ..... : .... :. . .... : .. ::::.:::: .. " .. ":":.:":: :".: ... ::" .::0· :0·" .. '.:: .. : . 

The DO WHILE statement introduces a logical do loop and specifies the loop control expression. 

The DO WHILE statement executes for as long as a logical expression tested at the beginning of each iteration 
continues to be true. If the expression is false, control transfers to the statement following the loop. 

Syntax 
DO [label[,]] WHILE expression 

The end of the loop is specified in the same way as for an iterative loop, either with a labeled 
statement or an END DO. 

label labels the last executable statement in the loop (this must not be a transfer of 
control). 

expression is a logical expression and label. 

Description 

The expression is evaluated. If it is .FALS E., the loop is not entered. If it is . TRUE., the loop is executed once. Then 
expression is evaluated again, and the cycle is repeated until expression evaluates .FALSE .. 

Example 
CHARACTER*132 LINE 
I = 1 
LINE(132:) = 'x') 
DO WHILE (LINE(I:I) .EQ. ' ') 

I = I + 1 
END DO 

3-23 



Fortran Statements Paragon™ System Fortran language Reference Manual 

DOUBLE COMPLEX 
.' .".. ." ... :.:: "::'. . :::::": :: .. ". ". .::":.- "..." .': 

The DOUBLE COMPLEX statement establishes the data type of a variable by explicitly attaching the name of a 
variable to a double complex data type. This overrides the implication of data typing by the initial letter of a symbolic 
name. 

Syntax 

Description 

Examples 

3-24 

DOUBLE COMPLEX name [/clist/] [, name] [/clist/] ... 

name 

clist 

is the symbolic name of a variable, array, or an array declarator (see the 
DIMENSION statement for an explanation of array declarators). 

is a list of constants that initialize the data, as in a DATA statement 

Type declaration statements may be used to dimension arrays explicitly in the same way as the 
DIMENSION statement. Type declaration statements must not be labeled. Note: The data type of a 
symbol may be explicitly declared only once. It is established by type declaration statement, 
IMPLICIT statement or by predefined typing rules. Explicit declaration of a type overrides any 
implicit declaration. An IMPLICIT statement overrides predefined typing rules. 

DOUBLE COMPLEX CURRENT, NEXT 

D 

r'" 
I.t.~ 

~-"t 

\ 
~~ 

f~ 
I.. ..\lOIJ 

I: 



r.= 

1---"'," 
,...I 

(
""'i 

~J 

( '~ 

.W 

IJ 
[J 

:I,',"l 
-, 

r" 
(

"""'1 

....... i, 

(J 

IJ 
[j 

C 

Paragon 1M System Fortran Language Reference Manual Fortran Statements 

DOUBLE PRECISION 
" ... :.. :.".:. .::.". . ... : .. ::::: .. : .. ":." :::.: .. :::.. . .:-:.:.: .. :.: ::.::".. ::. :." . ..: . :: 

The DOUBLE PRECISION statement establishes the data type of a variable by explicitly attaching the name of a 
variable to a double precision data type. This overrides the implication of data typing by the initial letter of a symbolic 
name. 

Syntax 

Description 

Examples 

DOUBLE PRECISION name [/clist/] [, name] [/clist/] ... 

name 

clist 

is the symbolic name of a variable, array, or an array declarator (see the 
DIMENSION statement for an explanation of array declarators). 

is a list of constants that initialize the data, as in a DATA statement. 

Type declaration statements may be used to dimension arrays explicitly in the same way as the 
DIMENSION statement. Type declaration statements must not be labeled. Note: The data type of a 
symbol may be explicitly declared only once. It is established by type declaration statement, 
IMPUCIT statement or by predefined typing rules. Explicit declaration of a type overrides any 
implicit declaration. An IMPUCIT statement overrides predefined typing rules. 

DOUBLE PRECISION PLONG 

3-25 



Fortran Statements Paragon™ System Fortran Language Reference Manual 

ELSE 
.:. ."". . ". .". .: ':'" .: :." -"::::. ... ... . 

The ELSE statement begins an ELSE block of an IF block and encloses a series of statements that are conditionally 
executed. 

Syntax 

Example 

3-26 

IF logical-expression THEN 
statements 

ELSE IF logical-expression THEN 
statements 

ELSE 
statements 

ENDIF 

The ELSE IF section is optional and may be repeated any number of times. Other IF blocks may be 
nested within the statements section of an IF block. 

IF (I.GT.70) THEN 
M=l 

ELSE IF (I.LT.5) THEN 
M=2 

ELSE IF (I.LT.16) THEN 
M=3 

ENDIF 
IF (I.LT.15) THEN 

M = 4 
ELSE 

M=5 
ENDIF 

(J 

(J 

lJ 



I
"~ 

o.! 

I: 

I: 
I -"! 

'" 

I~ 

I: 
(

'"'1 

"J 

(
"1 

..J 

r~ 
(

'-I 

~ 

r: 
1= 
r: 
I : -"-' 

Paragon ™ System Fortran Language Reference Manual Fortran Statements 

ELSE IF 
.,:. . .:.:::: ... :. . :. . . ::" ... ' .. 

The ELSE IF statement begins an ELSE IF block of an IF block series and encloses statements that are conditionally 
executed. 

Syntax 

Example 

IF logical-expression THEN 
statements 

ELSE IF logical-expression THEN 
statements 

ELSE 
statements 

ENDIF 

The ELSE IF section is optional and may be repeated any number of times. Other IF blocks may be 
nested within the statements section of an IF block. 

IF (I.GT.70) THEN 
M=l 

ELSE IF (I.LT.5) THEN 
M=2 

ELSE IF (I.LT.16) THEN 
M=3 

ENDIF 
IF (I.LT.15) THEN 

M = 4 
ELSE 

M=5 
ENDIF 

3-27 



Fortran Statements Paragon TN System Fortran Language Reference Manual 

§ ENCODE 
. ... .." ':' .. : ".:' .... :: ..... :.:::::. :..... . ... ::::<". :.:::.::.::::. ::::: ..... : .. ::: .: .. : .. : ..... ".:.:.:". . 

The ENCODE statement transfers data between variables or arrays in internal storage and translates that data from 
internal to character form, and vice versa, according to format specifiers. Similar results can be accomplished using 
internal files with formatted sequential WRITE and READ statements. 

Syntax 

Example· 

3-28 

ENCODE (c,f,b[,IOSTAT=ios] [,ERR=errs]) [list] 

c 

f 

b 

ios 

errs 

list 

is an integer expression specifying the number of bytes involved in translation. 

is the format identifier. 

is a scalar or array reference for the buffer area. 

is the an integer scalar memory reference which is the input/output specifier: if 
this is included, ios becomes defined with zero if no error condition exists or a 
positive integer when there is an error condition. 

an error specifier which takes the form of a statement label of an executable 
statement in the same program. If an error condition occurs execution continues 
with the statement specified by errs. 

is the buffer area either containing data or receiving data. 

DIMENSION K(3) 
CHARACTER*12 A 
DATA A/'123456789012'/ 
DECODE (12,100,A) K 

100 FORMAT (3I4) 
ENCODE (12,100,B) K(3), K(2), K(l) 

The DECODE statement translates the 12 characters in the character variable A to integer form and 
stores them in array K. The ENCODE statement translates the values in K(3), K(2), and K(I) to 
character form and stores them in the character variable B. 

if" 
iL..J 

~
~ 

" 

Ai 

rr -1 

~A) 

~= 
[~ 

I: 
I "": .-
1= 
I: 
I: 



I
C'~ 

... 

r: 
r: 

I· .-
2..-,1 

I: 

IJ 

I, "'1 

-eJ 

(
-"1 

-eI 

I; 
--" 

[~ 

[J 

Paragon'" System Fortran Language Reference Manual Fortran Statements 

END 
... : .. : .. :. ......... . .... :.:.... . .:." .' .:"::: .. :.".:. . ... ::::".:: .... ".-:." .-: ... :.: .. "::: .. 

The END statement tenninates a module. It may be the last statement in a compilation or it may be followed by a new 
module. 

Syntax 

Description 

END 

The END statement is executable, and has the same effect as a RETURN statement in a 
SUBROUTINE or FUNCTION, or the effect of a STOP statement in a PROGRAM module. 

3-29 



Fortran Statements ParagontM System Fortran Language Reference Manual 

§ END DO 
:":.,. '." .:: ........ :.,:' .: ....... : .. ::::..... . .... : ... " ..... -: .... : ... " . .... .' . . .. . 

The END DO statement tenninates a DO or DO WIDLE loop. 

Syntax 

Description 

3-30 

END DO 

The END DO statement tenninates an indexed DO or DO WHILE statement which does not contain 
a tenninal-statement label. 

The END 00 statement may also be used as a labeled terminal statement if the DO or DO WIDLE 
statement contains a tenninal-statement label. 

r-, 
lAii 

.'" '1 

~
."'l 

, , 

'.i 

I: 
I: 
I: 

IJ 



r: 

1·.-,., 
-'" 

r: 
r: 
I·.· ... , 

Ad 

r-: 
c 
[J 
(; 

--"-" 

1"9 

. -w 

1= 
[ .. ~ 

.J 

1= 
[J 

[J 

IJ 
C 

Paragon1M System Fortran Language Reference Manual Fortran Statements 

END FILE 
........ : ." ":::'" "." . .... .." .... :.:.: .. : .. :' .:: ... " 

When an END FILE statement is executed an endfile record is written to the file as the next record. The file is then 
positioned after the endfile record. Note that only records written prior to the endfile record can be read later. 

Syntax 

Examples 

END FILE u 
END FILE ([UNIT=]u, [,IOSTAT=ios] [,ERR=errs]) 

u 

IOSTAT=ios 

ERR=errs 

is the external unit specifier where u is an integer. 

an integer scalar memory reference which is the input/output specifier: ios 
becomes defined with zero if no error condition exists or a positive integer when 
there is an error condition. 

an error specifier which takes the form of a statement label of an executable 
statement in the same program. If an error condition occurs, execution continues 
with the statement specified by errs. 

A BACKSPACE or REWIND statement must be used to reposition the file after an END FILE 
statement prior to the execution of any data transfer statement. A file is created if there is an END 
FILE statement for a file connected but not in existence . 

END FILE (20) 
END FILE(UNIT=34, IOSTAT=IOERR, ERR=140) 

3-31 



Fortran Statements Paragon TM System Fortran Language Reference Manual 

END IF 

..--~, 

I " I 
I : 
~..J 

." ":.".. .::.".: ... ".:":' ......... :.::: ...... " .... :..... ""::":'. '":"::"" ":" ..... . .: .. ":' . . . 

The END IF statement terminates an IF or ELSE IF block. 

Syntax 
(J 

END IF 

Description 

See the BLOCK IF statement for details. 

(J 

t:: 
I: 

3-32 U 



[~ 

[ "': 
_.oi 

I: 
I ": 

.. I 

( ~' 
... 

r°"'1 

"" 

I: 
(~ 

( .-.., 
1 .~...J 

r: 

( -< 
...J 

r= 
I'CZl 

.W 

( i 
.. .J 

1= 
I~ 

C 

IJ 

Paragon 1M System Fortran Language Reference Manual Fortran Statements 

§ END MAP 
........ :. . . ....".. ." .. ": .... :".: :::. : .... ::::: .. :: .. :. 

The END MAP statement tenninates a MAP declaration. 

Syntax 
END MAP 

Description 

See the MAP statement for details. 

3-33 



... -----~~---.. -- .-.-.----------.-------~-.---- ----------------- ----

Fortran Statements Paragon '1M System Fortran Language Reference Manual 

D 

§ END STRUCTURE 
. ."." : .... :.::. :. . ..:. -: ::".:' ...... .... .... .:. . ... :: ::.:., .-: ...... " .:. ".:" ;: ...... :: .. : ... " . 

The END STRUCTURE statement terminates a STRUCTURE declaration. 

Syntax 
[J 

END STRUCTURE (J 
Description 

See the STRUCTURE statement for details. 

CJ 

(J 

(J 

(J 



I: 
1-: 
r: 
I : 
r: 
(
~ ..... 

"" 

r: 
r-' 
I: 
I: 
r: 
I: 
I' ~, 

--" 

r= 
I

~..", 

"-' 

I ~~1 
~,.J 

19 

.J 

r: 
I: 

----~~-~--

Paragon ™ System Fortran Language Reference Manual Fortran Statements 

§ END UNION 
.. "... . . . :"... . .. ":": .. ":":":"" .... :.. . " .. :"::':'. :. ..... ". 

The END UNION statement tenninates a UNION declaration. 

Syntax 
END UNION 

Description 

See the UNION statement for details. 

3-35 



----------------.------ --- --._.--------_ .. _ .. _--"-----_ .... - ---.-------------.-~.----~-

Fortran Statements Paragon™ System Fortran Language Reference Manual 

ENTRY 
"." .:": . "... .. . ".:. .'. : . . 

The ENTRY statement allows a subroutine or function to have more than one entry point. 

Syntax 

Description 

3-36 

ENTRY name [(variable, variable ... )] 

name 

variable 

is the symbolic name, or entry name, by which the subroutine or function may be 
referenced. 

is a dummy argument. A dummy argument may be a variable name, array name, 
dummy procedure or, if the ENTRY is in a subroutine, an asterisk. If there are no 
dummy arguments name may optionally be followed by ( ). There may be more 
than one ENTRY statement within a subroutine or function, but they must not 
appear within a block IF or 00 loop. 

The name of an ENTRY must not be used as a dummy argument in a FUNCTION, SUBROUTINE, 
or ENTRY statement, nor may it appear in an EXTERNAL statement. 

Within a function a variable name which is the same as the entry name may not appear in any 
statement that precedes the ENTRY statement, except in a type statement. 

If name is of type character the names of each entry in the function and the function name must be 
of type character. If the function name or any entry name has a length of (*) all such names must 
have a length of (*); otherwise they must all have a length specification of the same integer value. 

A name which is used as a dummy argument must not appear in an executable statement preceding 
the ENTRY statement unless it also appears in a FUNCTION, SUBROUTINE, or ENTRY 
statement that precedes the executable statement. Neither must it appear in the expression of a 
statement function unless the name is also a dummy argument of the statement function. or appears 
in a FUNCTION or SUBROUTINE statement, or in an ENTRY statement that precedes the 
statement function statement. 

If a dummy argument appears in an executable statement, execution of that statement is only 
permitted during the execution of a reference to the function or subroutine if the dummy argument 
appears in the dummy argument list of the procedure name referenced. 

When a subroutine or function is called using the entry name, execution begins with the statement 
immediately following the ENTRY statement. If a function entry has no dummy arguments the 
function must be referenced by nameO but a subroutine entry without dummy arguments may be 
called with or without the parentheses after the entry name. 

--~ ----- - ----------------------

/r~: 
liJ 

I: 
(. ! 

,,d 

I: 
[Ji '.' 

IJ 



(', .. • 

(: 

I~ 
(

'9 

. ..J 

, , 1.-.' 

[= 
I~ 
(-

r: 
( "'i 

..:J 

[
.~ 

~ 

IJ 

Paragon ™ System Fortran language Reference Manual Fortran Statements 

ENTRY (cont.) 

Example 

An entry may be referenced from any module except the one in which it is defined. 

The order, type, number and names of dummy arguments in an ENTRY statement can be different 
from those used in the FUNCTION, SUBROUTINE or other ENTRY statements in the same 
module but each reference must use an actual argument list which agrees in order, number and type 
with the dummy argument list of the corresponding FUNCTION, SUBROUTINE or ENTRY 
statement. When a subroutine name or an alternate return specifier is used as an actual argument 
there is no need to match the type. 

Entry names within a FUNCTION subprogram need not be of the same data type as the function 
name, but they all must be consistent within one of the following groups of data types: 

• BYTE, INTEGER*2, INTEGER*4, LOGICAL*l, LOGICAL*2, LOGICAL*4, REAL*4, 
REAL *8, COMPLEX*8 

• COMPLEX*16 

• CHARACTER 

If the function is of character data type, all entry names must also have the same length specification 
as that of the function. 

FUNCTION SUM(TALL,SHORT,TINY) 

SUM=TALL-(SHORT+TINY) 
RETURN 
ENTRY SUM1(X,LONG,TALL,WIDE,NARROW) 

SUM1=(X*LONG) + (TALL*WIDE) +NARROW 
RETURN 

ENTRY SUM2(SHORT,SMALL,TALL,WIDE) 

SUM2=(TALL-SMALL)+(WIDE-SHORT) 
RETURN 
END 

3-37 



-.---------------- -------- -- .-.-- ------- -.-.------~-------------

Fortran Statements Paragon 1M System Fortran language Reference Manual 

ENTRY (cont.) 

When the calling program calls the function SUM it can do so in one of three ways depending on 
which ENTRY point is desired. 

For example if the call is: 

Z=SUM2 (LITTLE, SMALL,BIG,HUGE) 

the ENTRY point is SUM2. 

If the call is: 

Z=SUM(T,X,Y) 

the ENTRY point is SUM and so on. 

[J 
[J 

(J 

f~ 
1;.J 

I: 

IJ 



I '''fll
e

: 

..... 

I·· ~ 
.,., 

1-"1 

;.J 

( . ., 
,a; 

I ·.., 
., .... 

I( ~, 
) 

1'4 

~ 

1"1 

, ..,J 

('= 

l: 
I~ 

Paragon ™ System Fortran Language Reference Manual Fortran Statements 

EQUIVALENCE 
.. .. ... .. ::"." . : ... ...... .::.... .: : ... :: .. " .:. . ...... :. ":.". .: 

The EQUIVALENCE statement allows two or more named regions of data memory to share the same start address. 

Syntax 

Description 

§ 

§ 

Example 

EQUIVALENCE (list)[,(list) ... ] 

list is a set of identifiers (variables, arrays or array elements) which are to be 
associated with the same address in data memory. The items in a list are separated 
by commas, and there must be at least two items in each list. When an array 
element is chosen, the subscripts must be integer constants or integer 
PARAMETER constants. 

An array element may be identified with a single subscript in an EQUIVALENCE statement even 
though the array is defined to be a multidimensional array. 

Equivalence of character and non-character data is allowed as long as misalignment of non-character 
data does not occur. 

Records and record fields cannot be specified in EQUIV ALENCE statements. 

The statement can be used to make a single region of data memory have different types, so that, for 
example, the imaginary part of a complex number can be treated as a real value or arrays can be 
made to overlap. This allows the same region of memory to be dimensioned in several different 
ways. 

COMPLEX NUM 
REAL QWER(2) 
EQUIVALENCE (NUM,QWER(l» 

In the above example QWER ( 1) is the real part of NUM and QWER ( 2) is the imaginary part. 
EQUIV ALENCE statements are illegal if there is any attempt to make a mapping of data memory 
inconsistent with its linear layout. 

3-39 



-.. -.--.. ------"-----------------~-.,--.--~---.----- .. _. __ . 

Fortran Statements Paragon ™ System Fortran Language Reference Manual 

EXTERNAL 
...... :: .... ::. .: .... :.. . .. . . :.. ... .. : .. 

The EXTERNAL statement identifies a symbolic name as an external or dummy procedure. This procedure can then 
be used as an actual argument. 

Syntax 

Description 

3-40 

EXTERNAL proa [, proal .. 

proc is the name of an external procedure, dummy procedure or block data module. 
When an external or dummy procedure name is used as an actual argument in a 
module it must appear in an EXTERNAL statement in that module. 

If an intrinsic function appears in an EXTERNAL statement an intrinsic function of the same name 
cannot then be referenced in the module. A symbolic name can appear only once in all the 
EXTERNAL statements of a module. 

----"-"--------------

.""1 
~.~. 

IJ 



IJ 
[: 
r: 
I .... ' 

'"" 

(""" 
,". 

I ~~ 

r= 
Ii '''''1 

. _ . ....J 

[J 

r~ 

(
''''1 

_J 

I ~I 

,J 

I~ 
I
"~ 

<,.,.1 

I ""' 
.~ 

Paragon ™ System Fortran Language Reference Manual Fortran Statements 

FORMAT 
. . .. ... ::. : .... :.... .... . ..... ":... .. ..... .". :".: . .. . 

The FORMAT statement specifies format requirements for input or output. 

Syntax 

Description 

Examples 

label FORMAT (list-items) 

list-items can be any of the following. separated by commas: 

Repeatable editor commands which mayor may not be preceded by an 
integer constant which defines the number of repeats. 

Nonrepeatable editor commands. 

• A format specification list optionally preceded by an integer constant 
which defines the number of repeats . 

Each action of format control depends on the next edit code and the next item in the input/output list 
where one is used. If an input/output list contains at least one item there must be at least one 
repeatable edit code in the format specification. An empty format specification ( ) can only be used 
if no list items are specified; in such a case one input record is skipped or an output record containing 
no characters is written. Unless the edit code or the format list is preceded by a repeat specification. 
a format specification is interpreted from left to right. Where a repeat specification is used the 
appropriate item is repeated the required number of times. 

WRITE (6,90) NPAGE 
90 FORMAT('lPAGE NUMBER' ,I2,16X,'SALES REPORT, C~nt. ') 

produces: 

PAGE NUMBER SALES REPORT, C~nt. 

3-41 



---------------------

Fortran Statements Paragon TM System Fortran Language Reference Manual 

FORMAT (cont.) 

3-42 

The following example shows use of the tabulation specifier T: 

PRINT 25 
25 FORMAT (T41, 'COLUMN 2' ,T21,'COLUMN 1') 

produces: 

COLUMN 1 COLUMN 2 

The following: 

DIMENSION A(6) 
DO 10 I = 1,6 

10 A(I) = 25. 
TYPE 100,A 

100 FORMAT ( , ',F8.2,2PF8.2,F8.2) ! ' , 

C !gives single spacing 

produces: 

25.00 2500.00 2500.00 2500.00 2500.00 2500.00 

Note that the effect of the scale factor continues until another scale factor is used. 

[J 

IJ 

(J 

IJ 
C 
I

·~ 

.JIIO 

(J 



r: 

r: 
I: 
r:: 
1_--.. ' 
I: 

I: 
I~ 

(-"~ 
I~'.: 
1_, 

. ..) 

1''''1, 

~ 

(~ 
--"" 

Paragon 1M System Fortran Language Reference Manual Fortran Statements 

FUNCTION 
... : .......... ::. . . ..... . ." ." ":.: .. : :":..... . ............ :: .... : ... : ... ::.:.:". 

The function statement introduces a module; the statements that follow all apply to the function itself and are laid out 
in the same order as those of a PROGRAM module. 

Syntax 

Description 

[type] FUNCTION name ([argument [,argument] .. . ]) 

type 

name 

argument 

will explicitly apply a type to the function. If the function is not explicitly typed 
then the function type is taken from the initial letter and is dictated by the usual 
default. 

is the name of the function and must be unique among all the module names in the 
program. name must not clash with any local, COMMON or PARAMETER 
names. 

is a symbolic name, starting with a letter and containing only letters and digits. An 
argument can be of type REAL, INTEGER, DOUBLE PRECISION, 
CHARACTER, LOGICAL or COMPLEX. 

The statements and names in the module apply only to the function, except for subroutine or function 
references and the names of COMMON blocks. The module must be terminated by an END 
statement. 

A function produces a result; this allows a function reference to appear in an expression, where the 
result is assumed to replace the actual reference. The symbolic name of the function must appear as 
a variable in the module. The value of this variable, on exit from the function, is the result of the 
function. The result is undefined if the variable has not been defined. 

The type of a FUNCTION refers to the type of its result. 

3-43 



Fortran Statements Paragon™ System Fortran Language Reference Manual 

FUNCTION (cont.) 

Examples 

1 

2 

3 

3-44 

FUNCTION FRED(A,B,C) 
REAL x 

END 

FUNCTION EMPTY() 

END 

PROGRAM FUNCALL 

SIDE=TOTAL(A,B,C) 

END 

Note parentheses 

FUNCTION TOTAL(X,Y,Z) 

END 

FUNCTION AORB(A,B) 
IF(A-B)1,2,3 
AORB = A 
RETURN 
AORB = B 
RETURN 
AORB = A + B 
RETURN 
END 

·(·1111 
.JJ 

[J 

~r"1 

~ ... .J 

[J 

.('1Il .. , '. 
~ 

I: 

(J 



r: 
r-: 
r: 
I: 
1_..", 

.u: 

(
4 

-, 

1-
~, 

1~1 

r~-

1= 
I: 

1
-'~1 

.",1 

1----.. " 
W 

I: 
[~ 

Paragon 1M System Fortran Language Reference Manual Fortran Statements 

GOTO (Computed) 
.. ::: . ::":':". ..::.:.: .......... ":. ..' "....:. ':". . . : .. ".:..: ... .: ,." :: .... ::: ... " ." .':." .' 

The computed GOTO statement allows transfer of control to one of a list of labels according to the value of an 
expression. 

Syntax 

Example 

GOTO (list) [,] expression 

list 

expression 

10 

50 

70 
100 
20 

+ 

is a list of labels separated by commas. 

selects the label from the list to which to transfer control. Thus a value of 1 implies 
the first label in the list. a value of 2 implies the second label and so on. An 
expression value outside the range will result in transfer of control to the statement 
following the computed GOTO statement. 

READ *, A, B 
GO TO (50,60,70)A 
WRITE (*, 10) A, B 
FORMAT ( , , 13, FI0.4, 5X, 'A must be I, 2 , 

or 3') 
STOP 
X=A**B Come here if A has the value 1 
GO TO 100 
60 X=(A*56)*(B/3) Come here if A has the value 2 
GO TO 100 
X=A*B Come here if A has the value 3 
WRITE (* , 20) A, B, X 
FORMAT ( , , 13, FI0.4, 5X, FI0.4) , 

3-45 



Fortran Statements Paragon™ System Fortran Language Reference Manual 

GOTO (Unconditional) 
".: . ".::." .... :.... . ".: . :" ::: "::" .:".. 

The GOTO statement unconditionally transfers control to the statement with the label label. The statement label label 
must be declared within the code of the module containing the GOTO statement and must be unique within that 
module. 

Syntax 

Example 

3-46 

GOTO label 

label 

30 

is a statement label 

TOTAL=O.O 
READ *, X 

IF (X.GE.O) THEN 
TOTAL=TOTAL+X 
GOTO 30 

END IF 

[J 

(J 

I: 
IJ 



( .. .., 
.JIiJ 

( ... ~ 
iI 

(-: 

1-: 
I
·-~ 

~I 

IJ 

I·-~ 

I' 

IJ 

[J 

Paragon™ System Fortran Language Reference Manual Fortran Statements 

GOTO (Assigned) 
.. .... . ... : ...... : ........ :.:":": ... :....... ..::":.":::.: .. : ..... : .... "::"." ::.::" ..... ". "::: ... ::.:..." . 

The assigned GOTO statement transfers control so that the statement identified by the statement label is executed next. 

Syntax 

Examples 

GOTO integer-variable-name[[,] (list)] 

integer-variable-name 

list 

must be defined with the value of a statement label of an executable statement 
within the same module. This type of definition can only be done by the ASSIGN 
statement. 

consists of one or more statement labels attached to executable statements in the 
same program unit. If a list of statement labels is present, the statement label 
assigned to the integer variable must be in that list. list does not affect statement 
execution. 

The first example is equivalent to GOTO 100: 

ASSIGN 100 TO INEXT 
GO TO INEXT 

The next example is equivalent to GOTO 50: 

ASSIGN 50 TO K 
GOTO K(50,90) 

3-47 



Fortran Statements Paragon TN System Fortran Language Reference Manual 

IF (Arithmetic) 
. . :." .. .':':. .'. .".: .. ... .:" "':" . ::: ... 

The arithmetic IF statement transfers control to one of three labeled statements. The statement chosen depends upon 
the value of an arithmetic expression. 

Syntax 

Example 

IF (arithmetic-expression) label-I, label-2, label-3 

Control transfers to label-l, label-2 or label-3 if the result of the evaluation of the 
arithmetic-expression is less than zero, equal to zero or greater than zero respectively. 

IF X 10, 20, 30 

If X is less than zero then control is transferred to label 10. 

If X equals zero then control is transferred to label 20. 

If X is greater than zero then control is transferred to label 30. 

. I t-.....,·· 
d ' 

I:: 



(~ 

1_-"" 
,lli 

I -~ 
~I 

r: 
( --."""1 

-'-' 

[~ 

I, =, 

_J 

I -~' 

.,l.-• .J 

r: 
IJ 
[) 

Paragon ™ System Fortran Language Reference Manual Fortran Statements 

IF (Block) 
' ... "::.: ".":::.. ": .. : .:: .. :. . " ... " . " ........... :..... ":' :.:." .. : .... . 

The block IF statement consists of a series of statements that are conditionally executed. 

Syntax 

Example 

IF logical expression THEN 
statements 
ELSE IF logical expression THEN 
statements 
ELSE 
statements 
ENDIF 

The ELSE IF section is optional and may be repeated any number of times. Other IF blocks may be 
nested within the statements section of an IF block. 

IF (I.GT.70) THEN 
M=l 

ELSE IF (I.LT.5) THEN 
M=2 

ELSE IF (I.LT.16) THEN 
M=3 

ENDIF 
IF (I.LT.15) THEN 

M = 4 
ELSE 

M=5 
ENDIF 

3-49 



Fortran Statements Paragon™ System Fortran Language Reference Manual 

IF (Logical) 
::: :::.:::::.:'. <.: :::::":"':':" ... ::.: .. ::.... . ." :.:. ".:". '. :." : :'.. . . 

The logical IF statement executes or does not execute a statement based on the value of a logical expression. 

Syntax 

Examples 

3-50 

IF (logical-expression) statement 

logical-expression 

statement 

is evaluated and if it is true the statement is executed. If it is false statement is not 
executed and control is passed to the next executable statement. 

can be an assignment statement, a CALL statement or a GOTO statement. 

IF (N .LE. 2) GOTO 27 
IF (HEIGHT .GT. 1000.0 .OR. HEIGHT .LT. 0.0) 
HEIGHT=1000.0 

[J 
,~ 

'-~ 

(J 

If'" 
It...! 

I: 

l: 
I: 



r: 

r: 
1_-." 

~I 

(= 

1m 

IJ 

I_I 

( 
""i 

~I 

I~ 
I

--~ 

_1:,..1 

IJ 

Paragon ™ System Fortran Language Reference Manual Fortran Statements 

IMPLICIT 
:" . . . .. ". . . .: . : ... :. .. .... .".:::- ":::.: . ..:" ... " .:: .... : ... ::". . ... " :" 

The IMPUCIT statement redefines the implied data type of symbolic names from their initial letter. Without the use 
of the IMPUCIT statement all names that begin with the letters I, J, K, L, Mor N are assumed to be of type integer 
and all names beginning with any other letters are assumed to be real. 

Syntax 

§ 

Description 

Examples 

IMPLICIT spec (a[,a] ... ) [,spec (a[,a] ... )] 

IMPLICIT NONE 

spec 

a 

is a data type specifier. 

is an alphabetic specification expressed either as a or al-a2, specifying an 
alphabetically ordered range of letters. 

IMPUCIT statements must not be labeled. 

Symbol names may begin with a dollar sign ($) or underscore U character, both of which are of 
type REAL by default. In an IMPUCIT statement, these characters may be used in the same manner 
as other characters, but they cannot be used in a range specification. 

The IMPUCIT NONE statement specifies that all symbolic names must be explicitly declared, 
otherwise an error is reported. If IMPUCT NONE is used, no other IMPUCIT can be present. 

IMPLICIT REAL (L,N) 
IMPLICIT INTEGER (S,W-Z) 
IMPLICIT INTEGER (A-D,$,_) 

3-51 



._-_ .. __ .- _ .... __ ._----_.-....•.•. _ ....... _ .. _-...... ~~- .. -.--.. -~ .. ,.-...• - ... - ... ---. 

Fortran Statements Paragon TM System Fortran Language Reference Manual 

§ INCLUDE 
". '." .. "." . . . . ... ' ".". :'::'-. . ... :... ." .... 

The INCLUDE statement directs the compiler to start reading from another file. 

Syntax 

3-52 

INCLUDE 'filename[/[NO]LIST) , 

The INCLUDE statement may be nested to a depth of 20 and can appear anywhere within a program 
unit as long as Fortran's statement-ordering restrictions are not violated. 

The qualifiers /LIST and /NOLIST can be used to control whether the include file is expanded 
in the listing file (if generated). 

Note that there is no support for V AXlVMS text libraries or the module -,lOme pathname qualifier 
that exists in the V AXlVMS version of the INCLUDE statement. 

(J 

IJ 



r-~ 

.iiiI 

r.·~ ..... 

I.·.··~ 
-'i.J 

I: 
I: 

- I· ... -, 

~ 

[J 

(= 

I: 
1_.., 

j 

( --. ' 
~I 

[J 

IJ 
() 

Paragon™ System Fortran Language Reference Manual Fortran Statements 

INQUIRE 
. . .. .:. "." .::.:": ... ': ...... " ... . : ." . : ... :." .... :: ":":": ..... :.:.::: 

An INQUIRE statement has two fonns and is used to inquire about the current properties of a particular file or the 
current connections of a particular unit. INQUIRE may be executed before, while or after a file is connected to a unit 

Syntax 
INQUIRE (file/list) 
INQUIRE ([UNIT=] unit/list) 

list of specifiers is as follows: 

ACCESS= ace 
ace a character scalar memory reference which specifies the access method for file 

connection as either DIRECT or SEQUENTIAL; the default is SEQUENTIAL. 

BLANK=blnk 
blnk 

DIRECT=dir 
dir 

ERR=errs 
errs 

EXIST=ex 
ex 

a character scalar memory reference taking the value NULL or ZERO. NULL 
causes all blank characters in numeric fonnatted input fields to be ignored with the 
exception of an all blank field which has a value of zero. ZERO causes all blanks 
other than leading blanks to be treated as zeros. This specifier must only be used 
when a file is connected for fonnatted input/output. 

a character scalar memory reference which takes the value YES if DIRECT is one 
of the allowed access methods for the file, NO if not and UNKNOWN if it is not 
known if DIRECT is included. 

an error specifier which takes the form of a statement label of an executable 
statement in the same program. If an error condition occurs execution continues 
with the statement specified by errs. 

a logical scalar memory reference which becomes. TRUE. if there is a file/unit 
with the specified name or .FALSE. otherwise. 

3-53 



Fortran Statements Paragon TM System Fortran Language Reference Manual 

INQUIRE (cont.) 

3-54 

FORM=fm 
fm a character scalar memory reference specifying whether the file is being 

connected for FORMA TIED or UNFORMA TIED output; the default is 
UNFORMATIED. 

FORMATTED= fmt 
fmt a character scalar memory reference which takes the value YES if FORMATTED 

is one of the allowed access methods for the file, NO if not and UNKNOWN if it 
is not known if FORMA TIED is included. 

IOSTAT= ios 
ios 

NAME=fn 

fn 

NAMED=nmd 

nmd 

NEXTREC=nr 

nr 

NUMBER=num 

num 

OPENED=od 

od 

RECL=rcl 

rcl 

an integer scalar memory reference which is the input/output specifier: if this is 
included in list, ios is defined with 0 if no error condition exists or a positive 
integer when there is an error. 

a character scalar memory reference which is assigned the name of the file when 
the file has a name, otherwise it is undefined. 

a logical scalar memory reference which becomes. TRUE. if the file has a name, 
otherwise it becomes .FALSE •• 

an integer scalar memory reference which is assigned the value n+ I, where n is 
the number of the record read or written. It takes the value 1 if no records have 
been read or written. If the file is not connected, or its position is indeterminate, 
nr is undefined. 

an integer scalar memory reference or integer array element assigned the value of 
the external unit number of the currently connected unit. It becomes undefined if 
no unit is connected. 

a logical scalar memory reference which becomes. TRUE. if the file/unit specified 
is connected as appropriate. 

an integer scalar memory reference defining the record length in a file connected 
for direct access and is the number of characters when formatted input/output is 
specified. This specifier must only be given when a file is connected for direct 
access. 

lJ 

(J 

l: 
I .. 0 

~ 



r: 
[j 

r: 
r: 
I'''' .. 

r: 

r~ 
1_'1 

"--,>j 

C 

rJ 

[= 

1"""1 .. 

oJ 

~ 

IJ 

I] 

Paragon ™ System Fortran Language Reference Manual Fortran Statements 

INQUIRE (cont.) 

Description 

SEQUENTIAL= seq 
seq a character scalar memory reference which is assigned the value YES if 

SEQUENTIAL is included in the set of allowed access methods, NO if 
SEQUENTIAL is not included and UNKNOWN if it cannot be determined whether 
or not SEQUENTIAL is included. 

UNFORMATTED= un! 
un! a character scalar memory reference which takes the value YES if 

UNFORMA TIED is one of the allowed access methods for the file, NO if not and 
UNKNOWN if it is not known if UNFORMA TIED is included. 

When an INQUIRE by file statement is executed the following specifiers will only be assigned 
values if the file name is acceptable. 

nmd,jn, seq, dir,jmt and unf. num is defined, and acc,jm, rcl, nr and blnkmay become defined only 
if od is defined as . TRUE .• 

When an INQUIRE by unit statement is executed the specifiers num, nmd,jn, ace, seq, dir,jm,jmt, 
un/, rcl, nr and blnk are assigned values provided that the specified unit exists and a file is connected 
to that unit. Should an error condition occur during the execution of an INQUIRE statement all the 
specifiers except ios become undefined. 

3-55 



Fortran Statements Paragon™ System Fortran Language Reference Manual 

INTEGER 
. ": .. ::.:" . :::':::." : .. ::"::.".. :..... ... :.:. '.' .. - .. " . . . .......... :....... . 

The INTEGER statement establishes the data type of a variable by explicitly attaching the name of a variable to an 
integer data type. This overrides the implication of data typing by the initial letter of a symbolic name. 

Syntax 

Description 

Example 

3-56 

INTEGER [*n] name [*n] [([lb:] ub [, [lb: ] ub] ... )] [jclist/] 

n 

name 

Ib:ub 

clist 

[, name[*n] [([lb:]ub[,[lb:]ub] ... )] [jclist/]] ... 

is an optional size specification. 

is the symbolic name of a variable or array. 

is a dimension declarator specifying the bounds for a dimension (the lower bound 
Ib and the upper bound ub).lb and ub must be integers with ub greater than lb. The 
lower bound lb is optional; if it is not specified, it is taken to be 1. 

is a list of constants that initialize the data, as in a OAT A statement. 

Integer type declaration statements may be used to dimension arrays explicitly in the same way as 
the DIMENSION statement. INTEGER statements must not be labeled. Note: The data type of a 
symbol may be explicitly declared only once. It is established by type declaration statement, 
IMPUCIT statement or by predefined typing rules. Explicit declaration of a type overrides any 
implicit declaration. An IMPUCIT statement overrides predefined typing rules. 

INTEGER TIME, SECOND, STORE (5,5) 

(J 

(] 
it 

(J 

I: 
I: 
IJ 
I] 

(J 

() 



r: 
(: 

I: 
I: 

(
-"1 

...oJ 

r~ 

I: 

1= 
( '; 

~" 

I~ 
-OIl 

Paragon™ System Fortran Language Reference Manual Fortran Statements 

INTRINSIC 
. . .": .. " .... . :.": ':. . .. . .. ". . . " .. ' 

An INTRINSIC statement identifies a symbolic name as an intrinsic function and allows it to be used as an actual 
argument. 

Syntax 

Description 

INTRINSIC func [,func] 

June is the name of an intrinsic function such as SIN, COS, etc. 

Do not use any of the following functions in INTRINSIC statements: 

• type conversions: 
INT, IFIX, IDINT, FLOAT, SNGL, REAL, DBLE, CMPLX, ICHAR, CHAR 

• lexical relationships: 
LGE, LGT, LLE, LLT 

• values: 
MAX, MAXO, AMAXI, DMAXI, AMAXO, MAXI, MIN, MINO, AMINI, DMINI, 
AMINO, MINI 

When a specific name of an intrinsic function is used as an actual argument in a module it must 
appear in an INTRINSIC statement in that module. If the name used in an INTRINSIC statement is 
also the name of a generic intrinsic function, it retains its generic properties. A symbolic name can 
appear only once in all the INTRINSIC statements of a module and cannot be used in both an 
EXTERNAL and INTRINSIC statement in a module. 

3-57 



Fortran Statements Paragon 1M System Fortran Language Reference Manual 

INTRINSIC (cont.) 

Example 

3-58 

The following example illustrates the use of INTRINSIC and EXTERNAL: 

EXTERNAL MYOWN 
INTRINSIC SIN, COS 

CALL TRIG (ANGLE,SIN,SINE) 

CALL TRIG (ANGLE,MYOWN,COTANGENT) 

CALL TRIG (ANGLE, COS ,SINE) 

SUBROUTINE TRIG (X,F,Y) 
Y=F(X) 
RETURN 
END 

FUNCTION MYOWN 
MYOWN=COS(X)/SIN(X) 
RETURN 
END 

In this example, when TRIG is called with a second argument of SIN or COS the function reference 
F (X) references the intrinsic functions SIN and COS; however when TRIG is called with MYOWN 
as the second argument F (X) references the user function MYOWN. 

[; ~ 
.. ..J ' 

(J 

[J 

(
.~ 

" I .,.,J 

I: 
I: 

[J 

IJ 



r: 

I
~ ~ 

"" 

r
~~' 

-, 

I ~= : 
.. ~ 

r: 
I
~ 

. ~~.J 

(
~"1 

[ , 

.J 

r~: 

I' 

1= 
IJ 

[J 

Paragon™ System Fortran Language Reference Manual Fortran Statements 

LOGICAL 
. "." .... . " .. :". ..... . . .:.: . .... :.:.:":::. .. . . ..... :. ". ": ....... " 

The LOGICAL statement establishes the data type of a variable by explicitly attaching the name of a variable to an 
integer data type. This overrides the implication of data typing by the initial letter of a symbolic name. 

Syntax 

Description 

Example 

LOGICAL [*n] name[*n] [([lb:]ub[,[lb:]ub] ... )] [lclist/] 

n 

name 

lb:ub 

dist 

[, name[*n] [([lb:]ub[,[lb:]ub] ... )] [lclist/]] ... 

is an optional size specification. 

is the symbolic name of a variable or array. 

is a dimension declarator specifying the bounds for a dimension (the lower bound 
lb and the upper bound ub ).lb and ub must be integers with ub greater than lb. The 
lower bound lb is optional; if it is not specified, it is taken to be 1. 

is a list of constants that initialize the data, as in a DATA statement. 

Integer type declaration statements may be used to dimension arrays explicitly in the same way as 
the DIMENSION statement. Type declaration statements must not be labeled. Note: The data type 
of a symbol may be explicitly declared only once. It is established by type declaration statement, 
IMPUCIT statement or by predefined typing rules. Explicit declaration of a type overrides any 
implicit declaration. An IMPUCIT statement overrides predefined typing rules. 

LOGICAL TIME, SECOND, STORE (5,5) 

3-59 



Fortran Statemen1s Paragon'M System Fortran Language Reference Manual 

§ MAP 
..... "::::: .: ...... ::.. .. . . ....... ".' :."... ...... ".: .": .. : ........ : ... : .": 

The MAP statement initiates a map declaration within a union declaration. 

Syntax 

Description 

3-60 

MAP 
field_declaration 
[field_declaration] 

[field_declaration] 
END MAP 

field declaration 
is a structure declaration or RECORD statement contained within a union 
declaration, a union declaration contained within a union declaration, or the 
declaration of a typed data field within a union. 

A union declaration is initiated by a UNION statement and terminated by an END UNION 
statement. Enclosed within these statements are one or more map declarations, initiated and 
terminated by MAP and END MAP statements, respectively. Each unique field or group of fields is 
defined by a separate map declaration. 

Data can be initialized in field declaration statements in union declarations. Note, however, it is 
illegal to initialize multiple map declarations in a single union. 

The size of the shared area for a union declaration is the size of the largest map defined for that union. 
The size of a map is the sum of the sizes of the field(s) declared within it plus the space reserved for 
alignment purposes. 

Manipulating data using union declarations is similar to what happens using EQUIVALENCE 
statements. However, union declarations are probably more similar to union declarations for the 
language C. The main difference is that the language C requires one to associate a name with each 
"map" (union). Fortran field names must be unique within the same declaration nesting level of 
maps. 

l,·!~ 
~ 

rJ 

(J 

(J 

(
""1 , . 

J 

(~1 

. .AI 

r: 



( .~ .. 

IJ 
r: 
I: 

r= 

I: 

1'1 

I: 
I: 
I: 
(

e'l 

.. "," 

[) 

ParagonT• System Fortran Language Reference Manual Fortran Statements 

MAP (cont.) 

Example 

The following is an example of RECORD, STRUCTURE and UNION usage. The size of each 
element of the recarr array would be the size of typetag (4 bytes) plus the size of the largest MAP
the employee map (24 bytes). 

STRUCTURE /account/ 
INTEGER typetag 
UNION 

MAP 
CHARACTER*12 
REAL*4 
CHARACTER*8 

END MAP 
MAP 

INTEGER*4 
REAL*4 
CHARACTER*8 

END MAP 
MAP 

INTEGER*4 
REAL * 4 
BYTE 
BYTE 

END MAP 
END UNION 

END STRUCTURE 

Tag to determine defined map. 

ssn 
salary 
empdate 

acct_cust 
credit_amt 
due_date 

acct_supp 
debit_amt 
num_items 
items(12) 

Structure for an employee 
Social Security Number 

Employment date 

Structure for a customer 

Structure for a supplier 

Items supplied 

RECORD /account/ recarr(lOOO) 

3-61 



Fortran Statements Paragon TM System Fortran Language Reference Manual 

§ NAMELIST 
.. " ':':::":":':::"::.: .. :::: .. ::::"'. . " .. : ... " .. : .... : . " .. :.:::. . . :.:.: ....... : ::. ". ".". ' ... : .... :' .. :. 

The NAMELIST statement allows for the definition of namelist groups for namelist-directed I/O. 

Syntax 

Example 

3-62 

NAMELIST /group-name/ namelist [[,] /group-name/ namelist ] ... 

group-name is the name of the namelist group. 

namelist is the list of variables in the namelist group. 

In the following example a name group PERS consists of a name, an account, and a value. 

CHARACTER*12 
INTEGER*$ 
REAL * 4 
NAMELIST 

NAME 
ACCOUNT 
VALUE 

/PERS/ NAME, ACCOUNT, VALUE 

[: 
,Joi 

[J 
,1 
, I 

~J 

I: 
I: 
rr VI 

,""':'1 

IJ 



I: 
1-411 

.. jjjj 

I: 
I : 
1-· 

, '!flO> 

I ~\ 

~J 

I: 
1_4 ': 

~ 

I: 

IJ 

( :1 

[.
-"'1 

~ 

1=: 

.,,] 

I~ 

I·~ 

--
u 
[j 

Paragon 1M System Fortran Language Reference Manual Fortran Statements 

OPEN 
. .:.".::. ".::... .:.:.: .. : .... ::: .. : .".: ".: .. : .... :.:. :.: .. " : .. :.: .. :.".. . 

The OPEN statement can be used to do the following: connect an existing file to a unit; create and connect a file to a 
unit; create a file that is preconnected; change certain specifiers of a connection between a file and a unit 

Syntax 
OPEN ( list ) 

list must contain exactly one unit specifier of the fonn: 

[UNIT=] u 

where the UNIT= is optional and the external unit specifier u is an integer. 

In addition list may contain one of each of the following specifiers. 

ACCESS= ace 
ace 

BLANK=blnk 
·blnk 

FORM=fin 

fin 

ERR=errs 
errs 

FILE=fin 
fin 

IOSTAT= ios 
ios 

is a character expression specifying the access method for file connection as either 
DIRECT or SEQUENTIAL - the default is SEQUENTIAL. 

is a character expression which takes the value 'NULL' or 'ZERO': 'NULL I causes 
all blank characters in numeric fonnatted input fields to be ignored with the 
exception of an all blank field which has a value of zero. 'ZERO' causes all blanks 
other than leading blanks to be treated as zeros. The default is 'NULL.' This 
specifier must only be used when a file is connected for fonnatted input/output 

is a character expression specifying whether the file is being connected for 
'FORMATTED' or 'UNFORMATTED' output respectively and is 
'UNFORMATTED' by default. 

is an error specifier which takes the fonn of a statement label of an executable 
statement in the same program. If an error condition occurs execution continues 
with the statement specified by errs. 

is a character expression whose value is the file name to be connected to the 
specified unit. 

is an input/ output status specifier where ios is an integer scalar memory reference: 
if this is included in list, ios becomes defined with 'ZERO I if no error condition 
exists or a positive integer when there is an error condition. 

3-63 



Fortran Statements 

OPEN (cont.) 

Description 

Example 

RECL=rl 
rl 

STATUS= sta 
sta 

Paragon ™ System Fortran L.anguage Reference Manual 

is an integer expression defines the record length in a file connected for direct 
access and is the number of characters when formatted input/output is specified. 
This specifier must only be given when a file is connected for direct access. 

is a character expression whose value can be: "NEW", "OLD" , "SCRATCH" or 
"UNKNOWN". When "OLD" or "NEW" is specified a file specifier must be 
given. "SCRATCH" must not be used with a named file. The default is. 
UNKNOWN. 

The record length, RECL=, must be specified if a file is connected for direct access and optionally 
one of each of the other specifiers may be used. RECL is ignored if the access method is sequential. 

The unit specified must exist and once connected by an OPEN statement can be referenced in any 
module of the executable program. If a file is connected to a unit it cannot be connected to a different 
unit by the OPEN statement. 

If a unit is connected to an existing file, execution of an OPEN statement for that file is allowed. 
Where FILE= is not specified the file to be connected is the same as the file currently connected. If 
the file specified for connection to the unit does not exist but is the same as a preconnected file, the 
properties specified by the OPEN statement become part of the connection. However, if the file 
specified is not the same as the preconnected file this has the same effect as the execution of a 
CLOSE statement without a STA TUS= specifier immediately before the execution of the OPEN 
statement. When the file to be connected is the same as the file already connected only the BLANK= 
specifier may be different from the one currently defined. 

In the following example a new file, BOOK, is created and connected to unit 12 for direct formatted 
input/output with a record length of 98 characters. Numeric values will have blanks ignored and El 
will be assigned some positive value if an error condition exists when the OPEN statement is 
executed; execution will then continue with the statement labeled 20. If no error condition occurs, 
El is assigned the value zero (0) and execution continues with the next statement. 

OPEN( 12, IOSTAT=E1, ERR=20, FILE= , BOOK , , 
1BLANK='NULL', ACCESS='DIRECT', RECL=98, 
1FORM='FORMATTED',STATUS='NEW') 

( "" i. I 
• I 

. ...J 

If. ~'. 
1.A! 

I: 

(J 

I~ 



r: 
("~ 

JIll 

I: 
I: 
r: 

I ~" 

j 

I~ 

I~ 

I·· ~"" 

~"" 

I: ~ . ." 
~< 

1'" 

r~ 

I'": 

I: 
("'"'\ 

-~ 

L: 
(J 

Paragon 1M System Fortran Language Reference Manual Fortran Statements 

OPEN (cont.) 

Environment Variables 

For an OPEN statement which does not contain the FILE= specifier, an environment variable may 
be used to specify the file to be connected to the unit. If the environment variable FORddd exists, 
where ddd is a 3 digit string whose value is the unit, the environment variable's value is the name of 
the file to be opened. 

VAX/VMS Fortran 

V AXlVMS introduces a number of extensions to the OPEN statement. Many of these relate only to 
the VMS file system and are not supported (e.g., KEYED access for indexed files). The following 
keywords for the OPEN statement have been added or augmented as shown below. Refer to 
Programming in VAX Fortran for additional details on these keywords. 

ACCESS The value of 'APPEND' is recognized and implies sequential access and 
positioning after the last record of the file. Opening a file with append access 
means that each appended record is written at the end of the file. 

ASSOCIATEVAJUABLE 
This new keyword specifies an INTEGER*4 integer scalar memory reference 
which is updated to the next sequential record number after each direct access I/O 
operation. Only for direct access mode. 

DISPOSE and DISP 
These new keywords specify the disposition for the file after it is closed. 'KEEP' 
or 'SAVE' is the default on anything other than ST A TUS='SCRA TCH' files. 
'DELETE' indicates that the file is to be removed after it is closed. The PRINT and 
SUBMIT values are not supported. 

NAME This new keyword is a synonym for FILE. 

READONL Y This new keyword specifies that an existing file can be read but prohibits writing 
to that file. The default is read/write. 

RECL=len The record length given is interpreted as number of words in a record if the 
environment variable FTNOPTis set to "vaxio". This simplifies the porting of 
V AXlVMS programs. The default is that len is given in number of bytes in a 
record. 

TYPE This keyword is a synonym for STA1US. 

3-65 



Fortran Statements Paragon 1M System Fortran Language Reference Manual 

§ OPTIONS 
.... :.. .. .:.:" :-. ..: .... ::.: .... :: .. " ........ : ..... :".-:.,. . ..... ".: ".:' ...... : ........ : .. :.:.:::::::.. .". -'":"':'.: .' .. . 

The OPTIONS statement allows you to specify certain compiler command-line options for a particular program unit. 

Syntax 
[
-~ 

< I I 
, < 

...J 

OPTIONS /option [/option ... J 

Table 3-1 shows what options are available for the OPTIONS statement. 

Table 3-1. OPTIONS Statement 

Option Action Taken 

CHECK=ALL No effect (recognized, but ignored). 

CHECK=[NO]OVERFLOW No effect. 

CHECK=[NO]BOUNDS No effect. 

CHECK=[NO]UNDERFLOW No effect. 

CHECK=NONE No effect. 

NOCHECK No effect. 

[NO]EXTEND_SOURCE (Don't) enable the -Mextend switch. 

[NO]F77 (Don't) enable the -Mstandard switch. 

[NO]G_FLOATING No effect. 

[NO] 14 (Don't) enable the -Mi4 switch. 

[NO]RECURSIVE (Don't) enable the -Mrecursive switch. 

[NO]REENTRANT (Don't) enable the -Mreentrant switch. 

[NO] STANDARD (Don't) enable the -Mstandard switch. 

I: 
I. ' -'*>I 

3-66 



r: 
[: 
r: 
r: 
('-'" 

"'" 

r '~'" 

~. 

( """" 
A.! 

I ''''1 

..A.ol 

1= 
I: 
1= 
1"-

(-
-'", 

1_: 

~ ~~ ~"~"""~"- ,~-~~~~, ,~--

Paragon 1M System Fortran Language Reference Manual Fortran Statements 

OPTIONS (cont.) 

Example 

The following restrictions apply to the OPTIONS statement: 

• The OPTIONS statement must be the first statement in a program unit; it must precede the 
PROGRAM, SUBROUTINE, FUNCTION, and BLOCKDATA statements. 

The options listed in the OPTIONS statement override values from the compiler command-line 
for the program unit immediately following the OPTIONS statement. 

• Any abbreviated version of an option that is long enough to identify the option uniquely is a 
legal abbreviation for the option. 

• Case is not significant, unless the -Mupcase switch is present on the command line. If it is, each 
option must be in lower case. 

OPTIONS /RECURSIVE/REENTRANT 

This specifies that the program unit following the OPTIONS statement is to be compiled with 
recursive and reentrant options activated, regardless of the settings on the Fortran command line. 

3-67 



Fortran Statements Paragon TM System Fortran language Reference Manual 

PARAMETER 
.. ... . ".. .::".". . ......... ::..... ..: .". . .. :::.":.:.:. .. . . ..: .. ". 

The PARAMETER statement gives a symbolic name to a constant. 

Syntax 

Examples 

3-68 

PARAMETER (name = expression[,name = expression . .. ] ) 

expression is an arithmetic expression fonned from constant or PARAMETER elements 
using the arithmetic operators + - * I>. The usual precedence order can be 
changed by using parentheses. expression may include a previously defined 
PARAMETER. 

PARAMETER 
PARAMETER 
PARAMETER 

PI = 3.142 ) 
INDEX = 1024 
INDEX3 = INDEX * 3 ) 

The following V AXlVMS extensions to the PARAMETER statement are fully supported: 

• Its list is not bounded with parentheses. 

• The fonn of the constant (rather than the implicit or explicit typing of the symbolic name) 
detennines the data type of the variable. 

The fonn of the alternative PARAMETER statement is: 

PARAMETER p=c [, p=c] ... 

where p is a symbolic name and c is a constant, symbolic constant, or a compile time constant 
expression 

[J 

~= 
I: 
IJ 
"I i ... 

I: 

(: 



I: 

I "" .... 

I: 
I: 
I: 
I·.., 

.. j 

IJ 

I: 
I] 

Paragon TM System Fortran Language Reference Manual Fortran Statements 

PAUSE 
.. ": .. ":"." :.:: .. :" .. "::": .. : .:". :::: ...... : .: . ":".":" .. : ............... : .... : .... ::: ... : ..... ":.:": ....... "'::":"":'" ... :.:......... '". 

The PAUSE statement stops the program's execution. 

Syntax 

Description 

Example 

PAUSE display] ] 

display is a character constant or a string of decimal digits. 

The PAUSE statement stops the program's execution. The contents of display are displayed at your 
terminal when the PAUSE statement is executed. The program may be restarted later and execution 
will then continue with the statement following the PAUSE statement. 

The following PAUSE statement: 

PAUSE 'Error Detected' 

would cause program execution to be suspended, and the following would display at your terminal: 

Error Detected 
$ 

S-e9 



Fortran Statements Paragon TM System Fortran language Reference Manual 

§ POINTER 
...... : ..... ::":.:::." .. : ... :: .... :.:.: .. " .. :." ...... .. ::.:" :"::: .. " ..... :.: ::::: ":··.::"::·"f:::·.::: :: .... ..-:.:: ..... : ...... ":: : .......... ". . 

The POINTER statement declares a scalar variable to be a pointer variable (of type INTEGER), and another variable 
to be its pointer-based variable. 

Syntax 

3-70 

POINTER (pI, vI) [, (p2, v2) ... ] 

vI and v2 

pI andp2 

are pointer-based variables. A pointer-based variable can be of any type, 
including STRUCTURE. A pointer-based variable can be dimensioned in a 
separate type, in a DIMENSION statement, or in the POINTER statement. The 
dimension expression may be adjustable, where the rules for adjustable dummy 
arrays regarding any variables which appear in the dimension declarators apply. 

are the pointer variables corresponding to vI and v2. A pointer variable may not 
be an array. The pointer is an integer variable containing the address of a 
pointer-based variable. The storage located by the pointer variable is defined by 
the pointer-based variable (for example, array, data type, etc.). A reference to a 
pointer-based variable appears in Fortran statements like a normal variable 
reference (for example, a local variable, a COMMON block variable, or a dummy 
variable). When the based variable is referenced, the address to which it refers is 
always taken from its associated pointer (that is, its pointer variable is 
dereferenced). 

The pointer-based variable does not have an address until its corresponding pointer is defined. The 
pointer is defined in one of the following ways: 

By assigning the value of the LOC function 

• By assigning a value defined in tenns of another pointer variable 

• By dynamically allocating a memory area for the based variable. If a pointer-based variable is 
dynamically allocated, it may also be freed. 

iJ 

~."'1 
I.",j 

1= 

( "" -: 

11' ,,.., 



r: 

I '" 
.... l 

I: 

I: 
r "~ 

. "" 

I: 
I: 
(: 

.4J 

(
'""'1 

.J 

( ' --" 

IJ 
(J 

Paragon™ System Fortran Language Reference Manual Fortran Statements 

POINTER (cont.) 

Example 

Restrictions. 

REAL XC(lO) 
COMMON IC, XC 
POINTER (P, I) 
POINTER (Q, X(S» 

P 
I 

LOC(IC) 
o 

P LOC(XC) 
Q P + 20 
X(l) = 0 
ALLOCATE (X) 

IC gets 0 

same as LOC(XC(6» 
XC(6) gets 0 
Q locates a dynamically 
allocated memory area 

The following restrictions apply to the POINTER statement: 

• No storage is allocated when a pointer-based variable is declared . 

• If a pointer-based variable is referenced, its pointer variable is assumed to be defined. 

• A pointer-based variable may not appear in the argument list of a SUBROUTINE or 
FUNCTION and may not appear in COMMON,EQUIV ALENCE, DATA, NAMEUST, or 
SAVE statements. 

A pointer-based variable can be adjusted only in a SUBROUTINE or FUNCTION subprogram. 
If a pointer-based variable is an adjustable array, it is assumed that the variables in the 
dimension declarator(s) are defined with an integer value at the time the SUBROUTINE or 
FUNCTION is called. For a variable which appears in a pointer-based variable's adjustable 
declarator, modifying its value during the execution of the SUBROUTINE or FUNCTION does 
not modify the bounds of the dimensions of the pointer-based array. 

• A pointer-based variable is assumed not to overlap with another pointer-based variable. 

3-71 



Fortran Statements ParagontM System Fortran Language Reference Manual 

PRINT 
: . . .... :. "::."' :.... . ... : ........ : ...... :::.:::." ... ::.::".:." : : .".. .. '. . 

The PRINT statement is a data transfer output statement. 

Syntax 

§ 

Description 

Example 

PRINT for.mat-identifier [, iolist] 

or 

PRINT namelist-group 

format-identifier 

ioUst 

a label of a format statement or a variable containing a format string. 

(output list) must either be one of the items in an input list or any other expression. 
However a character expression involving concatenation of an operand of variable 
length cannot be included in an output list unless the operand is the symbolic name 
of a constant. 

namelist-group the name of a namelist group. 

~ ~" 

I 

When a PRINT statement is executed the following operations are carried out: data is transferred to I.l ...J 

the standard output device from the items specified in the output list and format specification. l The 
data are transferred between the specified destinations in the order specified by the input/output list. " : 
Every item whose value is to be transferred must be defined. Ia.w 

In the following example, the PRINT statement writes one record to the standard output device. The 
record has four fields of character data. 

CHARACTER*16 NAME, JOB 
PRINT 400, NAME, JOB 

400 FORMAT ('NAME=' ,A, 'JOB=' ,A) 
l= 
I: 
I: 

1. If an asterisk (*) is used instead of a format identifier, the list-directed formatting rules apply. , , (
'""9 

...J 

3-72 



I
·~ 

.lioI 

fJ 
( -"" 

. ..J 

r: 

IJ 

r= 

I~: 

r: 

r= 
r'" 

~J 

(J 

Paragon'" System Fortran Language Reference Manual Fortran Statements 

PROGRAM 
.:: ... :..... . ... .. .. .".".. ::." ... " " .. :: .... :. ." 

The PROGRAM statement specifies the entry point for the linked Fortran program. 

Syntax 

Description 

Example 

PROGRAM [name] 

name is optional; if supplied it becomes the name of the program module and must not 
clash with any other names used in the program. If it is not supplied, a default 
name is used. 

The program statement specifies the entry point for the linked Fortran program. An END statement 
terminates the program. 

PROGRAM MYOWN 
REAL MEAN, TOTAL 

CALL TRIG(A,B,C,MEAN) 

END 

3-73 



Fortran Statements Paragon™ System Fortran Language Reference Manual 

READ 
. : .. : ... :: ::":"., . ..::: ....... ".:':':' ":.:"... . ... :... ::.":::. : .. ".:.::.. : ::.. ." .. : .... :. ". 

The READ statement is the data transfer input statement. 

Syntax 

§ 

Description 

Example 

READ ([unit=] u, format-identifier [, control-information) [iolist] 
READ format-identifier [,iolist] 
READ ([unit=] u, [NML=] namelist-group [, control-information]) 

format-identifier 
label of a format statement or a variable containing a format string. 

iolist (input list) must either be one of the items in an input list or any other expression. 

When a READ statement is executed the following operations are carried out: data is transferred 
from the standard input device to the items specified in the input and format specification. 1 The data 
are transferred between the specified destinations in the order specified by the input/output list. 
Every item whose value is to be transferred must be defined. 

110 
READ(2,110) 1,J,K 
FORMAT(12, 14, 13) 

1. If an asterisk (*) is used instead of a format identifier, the list-directed formatting rules apply. 

3-74 

1'1 
! , 
... d 

I ,,"', 
"" 

I, ~ -
1= 
I: 
(: 

A! 

I: 



l: 
r: 
I: 
I """ 
~, 

I: 

I: 
r~ 

I~ 

IJ 
IJ 
(] 

IJ 

Paragon TN System Fortran Language Reference Manual Fortran Statements 

REAL 
" .... : .... : .. " ....... :. ... . ....... :...... ...... . .. . ..... ... :: ............ :. :" " ... :-'. 

The REAL statement establishes the data type of a variable by explicitly attaching the name of a variable to a data type. 
This overrides the implication of data typing by the initial letter of a symbolic name. 

Syntax 

Description 

Example 

REAL [*n] name[*n] [([lb:]ub[,[lb:]ub] ... )] [fclist/] 

n 

name 

lb:ub 

clist 

[, name[*n] [([lb:]ub[,[lb:]ub] ... )] [fclist/]] ... 

is an optional size specification. 

is the symbolic name of a variable or array 

is a dimension declarator specifying the bounds for a dimension (the lower bound 
lb and the upper bound ub).lb and ub must be integers with ub greater than lb. The 
lower bound lb is optional; if it is not specified, it is taken to be 1. 

is a list of constants that initialize the data, as in a DATA statement. 

The REAL type declaration statements may be used to dimension arrays explicitly in the same way 
as the DIMENSION statement. Type declaration statements must not be labeled. Note: The data type 
of a symbol may be explicitly declared only once. It is established by type declaration statement, 
IMPUCIT statement or by predefined typing rules. Explicit declaration of a type overrides any 
implicit declaration. An IMPUCIT statement overrides predefmed typing rules. 

REAL KNOTS 

3-75 



Fortran Statements Paragon ™ System Fortran Language Reference Manual 

§ RECORD 
........... .". ....... '. "'. ':.:.:. "':":' ... ::":.: ':.:: .. -:: ... :.:::.::: .. , : .... :::.:::.:::: ... ::.:: .. ".::: ........ " 

The RECORD statement defines a user-defined aggregate data item. 

Syntax 

Description 

3-76 

RECORD /structure_name/record_riamelist 
[,/structure_name/record~namelistl 

[,/structure_name/record_namelistl 
END RECORD 

structure name is the name of a previously declared structure. 

record namelist is a list of one or more variable or array names separated by commas. 

You create memory storage for a record by specifying a structure name in the RECORD statement. 
You define the field values in a record either by defining them in the structure declaration or by 
assigning them with executable code. 

You can access individual fields in a record by combining the parent record name, a period (.), and 
the field name (for example, recordname . f ieldname). For records, a scalar reference means 
a reference to a name that resolves to a single typed data item (for example, INTEGER), while an 
aggregate reference means a reference that resolves to a structured data item. 

Scalar field references may appear wherever normal variable or array elements may appear with the 
exception of COMMON, SAVE, NAMELIST, DATA and EQUIVALENCE statements. Aggregate 
references may only appear in aggregate assignment statements, unformatted I/O statements, and as 
parameters to subprograms. 

lJ 

[. "l ... ' , 

~..J 

~--, 

~~ 

l= 
I: 
l: 
[

"1 

. --: 

~~~~~~'. ---~~~-~-~---


I:

I:

I:
I",""

~,

I ,""
, _",J

r''''1

J

I~
I, ·-1

I ,
.J

I·.,.., :
....

r:

Paragon™ System Fortran Language Reference Manual Fortran Statements

RECORD (cont.)

Example
STRUCTURE /person/

INTEGER ID
LOGICAL LIVING

Declare a structure to define a person

CHARACTER*5 FIRST, LAST, MIDDLE
INTEGER AGE

END STRUCTURE
! Define population to be an array where each element is of
! type person. Also define a variable, me, of type person.

RECORD /PERSON/ POPULATION(2), ME

ME.AGE = 34
ME.LIVING = . TRUE.
ME.FIRST = 'Steve'
ME.ID = 542124822

POPULATION(l).LAST

POPULATION(2) = ME

Assign values for the variable me to
some of the fields.

'Jones' Assign the "LAST" field of
element 1 of array population.
Assign all the values of record
"ME" to the record population(2)

3-77

-------_ .. _._-_ .. -...... ---~-----.---~---.---... ----.--.. -----.--.- - _ __ ... ----_ .. _-----_ .. __ _-

Fortran Statements Paragon T,. System Fortran Language Reference Manual

RETURN
.. ":: .. : .:. ".' ".::.:

The RETURN statement causes a return to the statement following a CALL when used in a subroutine, and to within
the relevant arithmetic expression when used in a function.

Syntax
RETURN

Alternate RETURN Statement

Example

3-78

The alternate RETURN statement takes the following fonn:

RETURN (i)

40
50

i is an integer expression. The value of i specifies that the ith alternate return in
the subroutine argument list is to be taken (see the example that follows).

SUBROUTINE FIX (A,B,*,*,C)

IF (T) 50, 60, 70
RETURN

60 RETURN 1
70 RETURN 2

END

PROGRAM FIXIT
CALL FIX(X, Y, *100, *200, S)
WRITE(*,5) X, S Come here if (T) < 0
STOP

100 WRITE(*, 10) X, Y ! Come here if (T) 0
STOP

200 WRITE(*,20) Y, S ! Come here if (T) > 0

[J

[J

I]
(J

~J

(J

IJ
I:
I·"'l
! .

..J

I]

[J

·IJ i

I:
I "'· ...

(-',

('"

lJ
IJ

1"1

~.J

I :

I
-~

~aJ

Paragon ™ System Fortran Language Reference Manual Fortran Statements

REWIND
. :: ".;" ":":: ... ":".

The REWIND statement positions the file at its beginning. The statement has no effect if the file is already positioned
at the start or if the file is connected but does not exist.

Syntax

Examples

REWIND unit
REWIND (unit, list)

unit

list

IOSTAT= ios
ios

ERR= errs
errs

REWIND 5

is an integer value which is the external unit.

contains the optional specifiers as follows:

an integer scalar memory reference which is the input/output specifier: if this is
included in list, ios becomes defined with zero if no error condition exists or with
a positive integer if there is an error condition.

an error specifier which takes the form of a statement label of an executable
statement in the same program. If an error condition occurs execution continues
with the statement specified by errs.

REWIND(2, ERR=30)
REWIND(3, IOSTAT=IOERR)

3-79

--_ _.-.---_ .. _----_._._-------

Fortran Statements Paragon TM System Fortran Language Reference Manual

SAVE

The SAVE statement retains the definition status of an entity after a RETURN or END statement in a subroutine or
function has been executed.

Syntax

Description

Example

3-80

SAVE [/v/ [, /v/] ...]

v is the name of an array, variable, or common block.

Using a common-block name, preceded and followed by a slash, ensures that all entities within that
COMMON block are saved. SAVE may be used without a list, in which case all the allowable
entities within the module are saved (this has the same effect as using the -Msave command-line
option). Dummy arguments, names of procedures and names of entities within a common block may
not be specified in a SAVE statement. Use of the SA VB statement with local variables ensures the
values of the local variables are retained for the next invocation of the SUBROUTINE or
FUNCTION. Within a main program the SA VB statement is optional and has no effect.

When a RETURN or END is executed within a subroutine or function, all entities become undefined
with the exception of:

• Entities specified by a SA VB statement

• Entities in blank common or named common

• Entities initially defined which have not been changed in any way

PROGRAM SAFE

CALL KEEP

SUBROUTINE KEEP
COMMON /LIST/ TOP, MIDDLE
INTEGER LOCALl.

SAVE /LIST/, LOCALl

[J

[l I ..J .

1- : ,.,J

r:
r

-~

-~

1"1 .,
1_-,.,

.~

1_·""1

_JOJ

r~

r~
(

-

":

""

I:'
r:
r:
r:

1_'-""
-'-'

I:

Paragon™ System Fortran Language Reference Manual Fortran Statements

STOP
: .. :::: : : .. ::.: : ... : .". ".:.. ::: " :.:.:: ... :: ".:.::... . ".. .

The STOP statement stops the program's execution and precludes any further execution of the program.

Syntax

Description

Example

STOP [display]]

display is a character constant or a string of decimal digits.

The STOP statement stops the program's execution. The contents of display are displayed at your
terminal when the STOP statement is executed.

The following are examples of valid STOP statements:

STOP

STOP 'End of program'

STOP 99

3-81

-------------_.

Fortran Statements , Paragon TM System Fortran Language Reference Manual

§ STRUCTURE
... "." ".:.".: ...

The STRUCTURE statement defines an aggregate data type.

Syntax

Description

3-82

STRUCTURE [/structure_name/] [field_namelist]
field_declaration
[field_declaration]

[field_declaration]
END STRUCTURE

structure name is unique and is used both to identify the structure and to allow its use in
subsequent RECORD statements.

field _ namelist is a list of fields having the structure of the associated structure declaration. A
field _ namelist is allowed only in nested structure declarations.

field_declaration
can consist of any combination of substructure declarations, typed data
declarations, union declarations or unnamed field declarations.

Fields within structures conform to machine-dependent alignment requirements. Alignment of fields
also provides a C-like "struct" building capability and allows convenient inter-language
communications.

Field names within the same declaration nesting level must be unique, but an inner structure
declaration can include field names used in an outer structure declaration without conflict. Also,
because records use periods to separate fields, it is not legal to use relational operators (for example,
.EQ., .xOR.), logical constants (.TRUE. or .FALSE.), or logical expressions (.AND., .NOT., .OR.)
as field names in structure declarations.

Fields in a structure are aligned as required by hardware and a structure's storage requirements are
therefore machine-dependent. Because explicit padding of records is not necessary, the compiler
recognizes the %FILL intrinsic, but performs no action in response to it.

NOTE

Field alignment and padding are not performed by VAXNMS
Fortran.

IJ

r'

I:

(J

I·~

. .!ii

I :

r:
r:
r:
I'·'
1-"'

r:
(' . ~J

r=
I~

I:
r~

(
''''I

. ...!

Paragon TN System Fortran Language Reference Manual Fortran Statements

STRUCTURE (cont.)

Example

Data initialization can occur for the individual fields.

The UNION and MAP statements are also supported.

The following example shows the definition of two structure types, named strl and str2, and
the declaration of one record object of type str2, named reel. Note that str2 has one field,
named rl, which is itself a structure of type strl.

STRUCTURE /STRI/
CHARACTER*l CHR
INTEGER*4 INT

END STRUCTURE

STRUCTURE /STR2/
RECORD /STRI/ Rl
STRUCTURE /STR3/ RNI

CHARACTER*l CHR
INTEGER*4 INT

END STRUCTURE
RECORD /STRl/ R2

END STRUCTURE

RECORD /STR2/ RECl

RECl.RNl.CHR
RECI. RNl. INT

'A'
100

3~3

Fortran Statements Paragon TM System Fortran Language Reference Manual

SUBROUTINE
.:" ." :" :... .". ". .". : .. ".:.:. . ..

The SUBROUTINE statement introduces a module. The statements that follow should be laid out in the same order as
a PROGRAM module.

Syntax

Description

Example

3-84

SUBROUTINE name [(argument[,argument .. .])]

name

argument

is the name of the subroutine being declared and must be unique amongst all the
subroutine and function names in the program. name should not clash with any
local, COMMON, PARAMETER or ENTRY names.

is a symbolic name, starting with aletter and containing only letters and digits.
The type of argument can be REAL, INTEGER, OOUBLE PRECISION,
CHARACTER, LOGICAL or COMPLEX.

The SUBROUTINE module must be terminated by an END statement. The statements and names
in the module only apply to the subroutine except for subroutine or function references and the
names of COMMON blocks. Dummy arguments may be specified as * which indicates that the
SUBROUTINE contains alternate returns.

SUBROUTINE STAR(A,B,C,*,*)

Note the dummy arguments represented by the two *s.

IF (ANY) THEN
A=45
B=36.33
C=O
RETURN 1

ELSE
C=100
RETURN 2

END IF
END

[J

[J

IJ

IJ
[J

(J

[~

Paragon™ System Fortran Language Reference Manual Fortran Statements

I:
I_c,

jJ SUBROUTINE (cont.)

(-~

""
PROGRAM SHOWME

CALL STAR(R,S,T,*30,*40)

r: 30 WRITE(*,lO) R,S Come here if RETURN 1

40 WRITE(*,20) T Come here if RETURN 2

I:

[J

(1
-"III

3-85

Fortran Statements Paragon TN System Fortran Language Reference Manual

THEN
"::" . :."". ": . ':." .:.:::: : .-.;:.......". ;

The THEN statement is part of a block IF statement and surrounds a series of statements that are conditionally
executed. See IF (block) for details.

3-86

[J

i'
~ . .J

~ ~1

It....:

I:

(1!
.oiioI

I:

I:

[-~

I ,,"

I "'!

"
LJ

1=
(.,' .~

-,

I =!

(4

I:

I,
,.J>1

Paragon™ System Fortran Language Reference Manual Fortran Statements

§ TYPE
:.... '". . ." " .. " :. :":" .:.:. .

The TYPE statement has the same syntax and effect as the PRINT statement. Refer to the PRINT entry for a
description of its syntax and function.

3-87

Fortran Statements Paragon TM System Fortran Language Reference Manual

§ UNION
. .. .: : .. ::.:.: .: ."' .::.:. ::" :.... ;-., .,> .. ". ";." ..

A union declaration is a multi statement declaration defining a data area that can be shared intermittently during
program execution by one or more fields or groups of fields. It declares groups of fields that share a common location
within a structure. Each group of fields within a union declaration is declared by a map declaration, with one or more
fields per map declaration.

Syntax

Description

3-88

UNION
map_declaration
[map_declaration]

[map_declaration]
END UNION

The format of the map_declaration is as follows:

MAP
field_declaration
[field_declaration]

[field_declaration]
END MAP

field_declaration
is a structure declaration or RECORD statement contained within a union
declaration. a union declaration contained within a union declaration. or the
declaration of a typed data field within a union.

Union declarations are used when one wants to use the same area of memory to alternately contain
two or more groups of fields. Whenever one of the fields declared by a union declaration is
referenced in a program, that field and any other fields in its map declaration become defined. Then,
when a field in one of the other map declarations in the union declaration is referenced, the fields in
that map declaration become defmed, superseding the fields that were previously defined.

A union declaration is initiated by a UNION statement and terminated by an END UNION
statement. Enclosed within these statements are one or more map declarations, initiated and
terminated by MAP and END MAP statements, respectively. Each unique field or group of fields is
defined by a separate map declaration. The format of a UNION statement is as follows:

[J

~
"l

, !

, . ..J

IJ
I:
IJ
(J

IJ

r:
r:

1=

:' ·",1

I
~

_,

I :
~"

I:
lJ

[] ' .. .,
"

Paragon TN System Fortran Language Reference Manual Fortran Statements

UNION (cont.)

Example

Data can be initialized in field declaration statements in union declarations. Note, however, it is
illegal to initialize multiple map declarations in a single union.

The size of the shared area for a union declaration is the size of the largest map defined for that union.
The size of a map is the sum of the sizes of the field(s) declared within it plus the space reserved for
alignment purposes.

Manipulating data using union declarations is similar to what happens using EQUIV ALENCE
statements. However, union declarations are probably more similar to union declarations for the
language C. The main difference is that the language C requires one to associate a name with each
"map" (union). Fortran field names must be unique within the same declaration nesting level of
maps.

The following is an example of RECORD, STRUCTURE and UNION usage. The union elements
are of different sizes (5 bytes for chr, 4 bytes each for short and int), so the size of the union is
the size of the largest element (5 bytes) plus any padding that may be required.

CC

STRUCTURE /STR1/
UNION

MAP
CHARACTER*l CHR(4)

ENDMAP
MAP

INTEGER*2
ENDMAP
MAP

INTEGER*4
ENDMAP

END UNION
END STRUCTURE

RECORD /STR1/ REC1

INTEGER TK1/0/

REC1.CHR(1) 'A'
REC1.CHR(2) 'B'
REC1.CHR(3) 'C'
REC1.CHR(4) 'D'

SHORT(2)

INT

IF (RECl. SHORT (1) . NE. 'AB')
IF (RECl.SHORT(2) .NE. 'CD')
IF (REC1.INT .NE. 'ABCD')

TK1
TK1
TK1

TK1 + 1
TK1 + 2
TK1 + 4

3-89

..•. _._-_ ..•... _._ _ _ .. _ _ ... _._-_ _ _. _.. -...•...•..... -..... -.•.... _- ...•.. _ ... _-~--.-.. -.. --..... _--- ...• -.--

Fortran Statements Paragon 1M System Fortran Language Reference Manual

§ VOLATILE
" .. ". . .". :; '. .:'". "::.::::.:.:; -:"... ".:' ".:::." '. : .. :""..

The VOLATILE statement inhibits all optimizations on the variables, arrays and common blocks that it identifies.

Syntax

Description

Example

3-90

VOLATILE /nitem/ [, /nitem/ ...]

nitem is the name of a variable, an array, or a common block.

If nitem names a common block, all members of the block are volatile. The volatile attribute of a
variable is inherited by any direct or indirect equivalences, as shown in the example.

COMMON /COM/ Cl, C2
VOLATILE /COM/, /OIR/
EQUIVALENCE (OIR, X)
EQUIVALENCE (X, Y)

/COM/ and OIR are volatile
X is volatile
Y is volatile

[... " _AI

i]

i '
I.... ~,

I.' ~1
, .

....

1=
I:

1-.." i

_A.i

I.-~
iii

I j

r:
I:
1-'"'1

. ..~!

1_..,
... I

I~

[:
I:

I

f:

~~~~~- -~--------

Paragon TN System Fortran Language Reference Manual Fortran Statements 

WRITE 
. .. .:.... .. : ..... " : ......... : "." ..... :.: ... : ........ : ...... : .: ......... :.. ".:".: .. :.. ..." ... . 

The WRITE statement is a data transfer output statement. 

Syntax 

§ 

Description 

Example 

WRITE ([unit=] u, format-identifier [, control-information) [iolist]) 

or 

WRITE ([unit=] u, [NML=] namelist-group [, control-information]) 

format-identifier 

iolist 

a label of a format statement or a variable containing a format string. 

(output list) must either be one of the items in an input list or any other expression. 
However a character expression involving concatenation of an operand of variable 
length cannot be included in an output list unless the operand is the symbolic name 
of a constant. 

When a WRITE statement is executed the following operations are carried out: data is transferred to 
the standard output device from the items specified in the output list and format specification. The 
data are transferred between the specified destinations in the order specified by the input/output list. 
Every item whose value is to be transferred must be defined. 

WRITE (6,90) NPAGE 
90 FORMAT('lPAGE NUMBER' ,I2,16X,'SALES REPORT, Cont.') 

3-91 



Fortran Statements Paragon™ System Fortran Language Reference Manual 

3-92 

(] 

(J 

IJ 

LJ 



I: 

r: 
r: 
I: 
1_,., 

~I 

I: 

I~! 

I~ 
( ''''''' 

.;..1 

r: 

Ij 

('; 
,..J 

l e"'1 
,--oJ 

IJ 
c 

Input and Output 

Input, output, and format statements provide the means for transferring data to or from files. Data is 
transferred as records to or from files. A record is a sequence of data which may be values or 
characters and afile is a sequence of such records. A file may be internal, that is, held in memory, 
or external such as those held on disk. To access an external file a formal connection must be made 
between a unit, for example a disk file, and the required file. An external unit must be identified 
either by a positive integer expression, the value of which indicates a unit, or by an asterisk (* ) 
which identifies the standard input or output device. 

This chapter describes the types of input and output available and provides examples of input, output 
and format statements. There are four types of input/output you can use to transfer data to or from 
files: unformatted, formatted, list directed, and namelist. 

• unformatted data is transferred between the item(s) in the input/output list (iolist) and the 
current record in the file. Exactly one record may be read or written. 

• formatted data is edited to conform to a format specification, and the edited data is transferred 
between the item or items in the iolist, and the file. One or more records may be read or written. 

list directed input/output is an abbreviated form offormatted input/output that does not require 
the use of a format specification. Depending on the type of the data item or data items in the 
iolist, data is transferred to or from the file, using a default, and not necessarily accurate format 
specification. 

namelist input/output is a special type of formatted data transfer; data is transferred between a 
named group (namelist group) of data items and one or more records in a file. 

4-1 



Input and Output Paragon™ System Fortran Language Reference Manual 

File Access Methods 
You can access files using one of two methods, sequential access, or direct access (random access). 
The access method is determined by the specifiers supplied when the file is opened using the OPEN 
statement. Sequential access files are accessed one after the other, and are written in the same 
manner. Direct access files are accessed by specifying a record number for input, and by writing to 
the currently specified record on output. 

Files may contain one of two types of records, fixed length records or variable length records. To 
specify the size of the fixed length records in a file, use the RECL specifier with the OPEN 
statement. RECL sets the record length in bytes. RECL can only be used when access is direct. 

A record in a variable length formatted file is terminated with a new line. A record in a variable 
length unformatted file is preceded and followed by a word indicating the length of the record. 

Standard Preconnected Units 

Certain input and output units are predefined, depending on the value of compiler options. The if17 
option -Mdefaultunit tells the compiler to treat "*,, as a synonym for standard input for reading and 
standard output for writing. When the option is set to -Mnodefaultunit, then the compiler treats "*,, 
as a synonym for unit 5 on input and unit 6 on output. 

Opening and Closing Files 
The OPEN statement establishes a connection to a file. OPEN allows you to do any of the following 

Connect an existing file to a unit. 

• Create and connect a file to a unit. 

• Create a file that is preconnected. 

• Establish the access method and record format for a connection. 

OPEN has the form: 

OPEN (list) 

where list contains a unit specifier of the form: 

[UNIT]= u 

where u, an integer, is the external unit specifier. 

4-2 [~ 



, ..... '., 
LJ 

I
-~ 

"'" 

I ~; 

~, 

I: 
I~ 

[J 

1-: 

I ' -, 

Paragon TM System Fortran Language Reference Manual Input and Output 

In addition list may contain one of each of the specifiers shown in Table 4-1. 

Table 4-1. OPEN Specifiers 

Specifiers Description 

IOSTAT= ios An input/output status specifier where ios is an integer scalar memory reference. If this is 
included in list, ios becomes defined with 0 if no error exists or a positive integer when 
there is an error condition.1 

ERR=errs An error specifier which takes the form of a statement label of an executable statement in 
the same program. If an error condition occurs, execution continues with the statement 
specified by errs. 

FILE=fin A file specifier, where fin is a character string defining the file name to be connected to the 
specified unit. 

STATUS=sta A file status specifier, where sta is a character expression: it can be NEW, OLD, SCRATCH 

or UNKNOWN. When OLD or NEW is specified a file specifier must be given. SCRATCH 

must not be used with a named file. The default is UNKNOWN. 

ACCESS= ace An access specifier, where aee is a character string specifying the access method for file 
connection as DIRECT (random access) or SEQUENTIAL. The default is 
SEQUENTIAL. 

FORM=jm A format specifier, wherejm is a character string specifying whether the file is being 
connected for FORMATTED or UNFORMATTED output respectively. The default is 
FORMATTED. 

RECL=rl A record length specifier, where rl is an integer which defines the record length in a file 
connected for direct access and is the number of characters when formatted input/output 
is specified. This specifier must only be given when a file is connected for direct access. 

BLANK=blnk A character specifier, where blnk is a character string which takes the value NULL or 
ZERO: NULL causes all blank characters in numeric formatted input fields to be ignored 
with the exception of an all blank field which has a value of zero. ZERO causes all blanks 
other than leading blanks to be treated as zeros. The default is NULL. This specifier must 
only be used when a file is connected for formatted input/output. 

1. If lOST AT and ERR are not present, a program will terminate if an error occurs. 

Direct Access Files 

If a file is connected for direct access using OPEN with ACCES S = , DIRECT' , the record length 
must be specified using REeL=, and optionally one of each of the other specifiers may be used. 

Any file opened for direct access must be via fixed length records. 

4-3 



Input and Output ParagonTN System Fortran Language Reference Manual 

In the following example a new file, book. dat, is created and connected to unit 12 for direct 
fonnatted input/output with a record length of 98 characters. Numeric values will have blanks 
ignored and the variable El will be assigned some positive value if an error condition exists when 
the OPEN statement is executed; execution will then continue with the statement labeled 20. If no 
error condition exists, El is assigned the value 0 and execution continues with the statement 
following the OPEN statement. 

OPEN(12,IOSTAT=E1,ERR=20,FILE='book.dat',BLANK='NULL', 
+ACCESS='DIRECT',RECL=98,FORM='FORMATTED',STATUS='NEW') 

Closing a File 

Close a unit by specifying the CLOSE statement from within any module. If the unit specified does 
not exist or has no file connected to it, the CLOSE statement has no effect. 

Provided the file is still in existence it may be reconnected to the same or a different unit after the 
execution of a CLOSE statement. An implicit CLOSE is executed when a program stops. 

The CLOSE statement tenninates the connection of the specified file to a unit. 

CLOSE ([UNIT=] u [,IOSTAT=ios] [,ERR= errs] 
[,STATUS= sta] [,DISPOSE= sta] [,DISP= sta]) 

Close takes the status values IOSTAT, ERR, and STATUS, similar to those described in Table 4-1. 
In addition, CLOSE allows the DISPOSE or DISP specifier which can take a status value sta which 
is a character string, where case is insignificant, specifying the file status (the same keywords are 
used for the DISP and DISPOSE status). Status can be KEEP or DELETE. KEEP cannot be specified 
for a file whose dispose status is SCRATCH. When KEEP is specified (for a file that exists) the file 
continues to exist after the CLOSE statement, conversely DELETE deletes the file after the CLOSE 
statement. The default value is KEEP unless the file status is SCRATCH. 

In the following example the file on unit 6 is closed and deleted. 

CLOSE(UNIT=6,STATUS='DELETE') 

Unformatted Data Transfer 
Unfonnatted data transfer allows data to be transferred between the current record and the items 
specified in an input/output list. Use OPEN to open a file for unfonnatted output: 

OPEN (2, FILE='new.dat', FORM='UNFORMATTED') 

The unit specified must be an external unit. 

[J 

I: 
(J 



I: 

I
·~ 

.. I 

I~ 

I·~O 
-" 

r-.~ 
" 

, 

...J 

I ',.: 
u 

1= 
I'-~ 

. ..J 

IJ 

Paragon™ System Fortran Language Reference Manual Input and Output 

After data is transferred. the file is positioned after the last record read or written, if there is no error 
condition or end-of-file condition set. Unformatted data transfer cannot be carried out if the file is 
connected for formatted input/output. 

The following example shows an unformatted input statement: 

READ (2, ERR=50) A, B 

On output to a file connected for direct access. the output list must not specify more values than can 
fit into a record. If the values specified do not fill the record the rest of the record is undefined. 

On input the following conditions must pertain; the file must be positioned so that the record read is 
either: 

An unformatted record or an endfile record. 

• The number of values required by the input list in the input statement must be less than or equal, 
to the number of values in the record being read. The type of each value in the record must agree 
with that of the corresponding entity in the input list. However one complex value may 
correspond to two real list entities or vice versa If the input list item is of type CHARACTER. 
its length must be the same as that of the character value. 

In the event of an error condition, the position of the file is indeterminate. 

Formatted Data Transfer 
During formatted data transfer, data is edited to conform to a format specification, and the edited 
data is transferred between the items specified in the input or output statement's iolist and the file; 
the current record and. possibly, additional records are read or written. On input the file must be 
positioned so that the record read is either a formatted record or an endfile record. Formatted data 
transfer is prohibited if the file is connected for unformatted input/output. 

For variable length record formatted input. each newline character is interpreted as a record 
separator. On output. the I/O system writes a newline at the end of each record. If a program writes 
a newline itself, the single record containing the newline will appear as two records when read or 
backspaced over. The maximum allowed length of a record in a variable length record formatted file 
is 2000 characters. 

4-5 



Input and Output Paragon ™ System Fortran Language Reference Manual 

Implied DO List Input Output List 

An implied DO list takes the form 

(iolist,do-var=var1,var2,var3) 

where the items in iolist are either items permissible in an input/output list or another implied DO 
list,. The value do-var is an INTEGER, REAL or DOUBLE PRECISION variable and var1, var2 
and var3 are arithmetic expressions of type INTEGER, REAL or DOUBLE PRECISION. Generally 
do-var, var 1, var2 and var3 are of type INTEGER. Should iolist occur in an input statement, the 
do-var cannot be used as an item in iolist. If var3 and the preceding comma are omitted the 
increment takes the value 1. The list items are specified once for each iteration of the DO loop with 
the DO-variable being substituted as appropriate. 

REAL C(6) ,D(6) 
DATA OXO,(C(I),I=7,9),TEMP,(D(J),J=1,2)/4*O.O,3*10.0/ 

In the above example oxo, C (7), C (8) and C (9) are set to 0 . 0 with TEMP, D (1) and D (2) 
being set to 10 . O. In the next example: 

READ *,A,B,(R(I),I=1,4),S 

has the same effect as 

READ *,A,B,R(1),R(2),R(3),R(4),S 

Format Specifications 

Format requirements may be given either in an explicit FORMAT statement or alternatively, as 
fields within an input/output statement (as values in character variables, arrays or other character 
expressions within the input/output statement). 

When a fonnat identifier in a formatted input/output statement is a character array name or other 
character expression, the leftmost characters must be defined with character data that constitute a 
format specification when the statement is executed. A character format specification is enclosed in 
parentheses. Blanks may precede the left parenthesis. Character data may follow the right-hand 
parenthesis and has no effect on the format specification. When a character array name is used as a 
format identifier, the length of the format specification can exceed the length of the first element of 
the array; a character array format specification is considered to be an ordered concatenation of all 
the array elements. When a character array element is used as a format identifier the length must not 
exceed that of the element used. 

[J 

i'I' I 

tJ ! 

r-:"i 

(J 

[J 

[J 

I: 
I: 



r: 
I: 
r·1!>1. ' 

..J 

I: 

1·"1 

,J 

I~ 
I
··~ 

_--l:...1 

( i 
~J 

(; 
.-.J 

1·-'1 

I' . ~,J 

("' 

I ~l 
.LI 

I··~ 

~J 

Paragon ™ System Fortran Language Reference Manual Input and Output 

The FORMAT statement has the form: 

FORMAT (list-of-format-requirements) 

The list of format requirements can be any of the following, separated by commas: 

• Repeatable editor commands which mayor may not be preceded by an integer constant which 
defines the number of repeats. 

• Non-repeatable editor commands. 

A format specification list enclosed in parentheses, optionally preceded by an integer constant 
which defines the number of repeats. 

Each action of format control depends on a FORMAT specified edit code and the next item in the 
input/output list used. If an input/output list contains at least one item there must be at least one 
repeatable edit code in the format specification. An empty format specification FORMAT( ) can 
only be used if no list items are specified - in such a case one input record is skipped or an output 
record containing no characters is written. Unless the edit code or the format list is preceded by a 
repeat specification, a format specification is interpreted from left to right. When a repeat 
specification is used, the appropriate item is repeated the required number of times. 

Each repeatable edit code has a corresponding item in the iolisr, however when a list item is of type 
complex two edit codes ofF, E, D or G are required. The edit codes P, X, T, TL, TR, S, SP, SS, H, 
BN, BZ, / ,: and apostrophe act directly on the record and have no corresponding item in the 
input/output list. 

The file is positioned after the last character read or written when the edit codes I, F, E, D, G, L, A, 
H or apostrophe are processed. If the specified unit is a printer then the first character of the record 
is used to control the vertical spacing as shown in Table 4-2: 

Table 4·2. Format Character Controls for a Printer 

Character Vertical Spacing 

Blank One line 

0 Two lines 

1 To first line on next page 

+ No advance 

4-7 



Input and Output Paragon ™ System Fortran Language Reference Manual 

A Format Control - Character Data 

The A specifier transfers characters. The A can optionally be followed by a field width w. When 
w is not specified. the width is determined by the size of the data item. 

On output. if 1 is the length of the character item and w is the field width. then the following rules 
apply: 

If w > I: w -I blanks before the character are included in the transfer. 

If w < I: the leftmost w characters are transferred .. 

On input. if I is the length of the character item and w is the field width. then the following rules 
apply: 

If w > 1: the rightmost 1 characters from the input field are transferred. 

If w < 1: the leftmost w characters from the input field are transferred. followed by 1- w blanks. 

You can also use the A format specifier to process data types other than CHARACTER. For types 
other than CHARACTER.. the number of characters supplied for input/output will equal the size in 
bytes of the data allocated to the data type. For example, an INTEGER *4 value is represented with 
4 characters and a LOGICAL *2 is represented with 2 characters. 

The following shows a simple example that reads two CHARACTER arrays from the file data.src: 

CHARACTER STR1*8, STR2*12 
OPEN(2, FILE='data.src') 
READ(2, 10) STR1, STR2 

10 FORMAT ( A8, A12 ) 

D Format Control - Real Double Precision Data with 
Exponent 

The D specifier transfers real values for double precision data with a representation for an exponent. 
The form of the D specifier is: 

Dw.d 

where w is the field width and d the number of digits in the fractional part. 

For input. the same conditions apply as for the F specifier which is described later. 

[J 

[J 
I" l 
i , 
II. .J 

[J 

~l 
1.,.J 

IJ 

I: 
IJ 



r: 
[

.~ 

.aI 

I
··~ 

... , 

1-: 

r"" 
I~ 

C, 

r: 
I : ..w 

I: 
IJ 
IJ 

Paragon ™ System Fortran Language Reference Manual Input and Output 

For output the scale factor k controls the decimal normalization. The scale factor k is the current 
scale factor specified by the most recent P format control; if one hasn't been specified, the default is 
zero (0). If - d < k :s; 0, the output file contains leading zeros and d - I k I significant digits after 
the decimal point If 0 < k < d + 2 there are exactly I k I significant digits to the left of the decimal 
point and d - k+ 1 significant digits to the right of the decimal point. Other values of k are not 
allowed. 

For example: 

DOUBLE PRECISION VALl 
VALl = 141.8835 
WRITE( *, 20) VALl 

20 FORMAT ( 010.4 ) 

produces the following: 

0.14180+03 

E Format Control - Real Single Precision Data with 
Exponent 

The E specifier transfers real values for single precision data with an exponent The E format 
specifier has two basic forms: 

Ew.d 
Ew.dEe 

w is the field width, d the number of digits in the fractional part and e the number of digits to be 
printed in the exponent part 

For input the same conditions apply as for F editing. For output the scale factor controls the decimal 
normalization as in D above . 

F Format Control - Real Single Precision Data 

The F specifier transfers real values. The form of the F specifier is: 

Fw.d 

w is the field width and d is the number of digits in the fractional part. 

On input if the field does not contain a decimal digit or an exponent, right-hand d digits, with leading 
zeros, are interpreted as being the fractional part. 

On output a leading zero is only produced to the left of the decimal point if the value is less than one. 

4-9 



Input and Output 

4-10 

G Format Control - Real Data 

The G format specifier has two basic forms: 

Gw.d 
Gw.dEe 

Paragon™ System Fortran Language Reference Manual 

The specifier transfers real values; it acts like the F format control on input and depending on the 
value's magnitude, like E or F on output. The magnitude of the data determines the output format. 
For details on the actual format used, based on the magnitude, refer to Section 13.5.9.2.3 "G 
Editing", in the ANSI FORTRAN Standard. 

I Format Control-Integer Data 

The I format specifier transfers integer values. The I format specifier has two basic forms: 

Iw 
Iw.m 

where w is the field width and m is the minimum field width on output, including leading zeros. If 
present, m must not exceed width w. 

On input, the external field to be input must contain (unsigned) decimal characters only. An all blank 
field is treated as a value of zero. If'the value of the external field exceeds the range of the 
corresponding list element, an error occurs. 

On output, the I field descriptor transfers the decimal values of the corresponding 110 list element, 
right-justified, to an external field that is w characters long. If the value to be transmitted does not 
fill the field. leading spaces are inserted; if the value is too large for the field. the entire field is filled 
with asterisks. If m is present, the external field consists of at least m digits, and is zero-filled on the 
left if necessary. Note that if m is zero, and the internal representation is zero, the external field is 
blank-filled. 

L Format Control - Logical Data 

Lw 

The L format control transfers logical data of field width w. On input the list item will become 
defined with a logical value; the field consists of optional blanks. followed by an optional decimal 
point followed by T or F. Also. the values .TRUE. or .FALSE. may appear in the input field. 

The output field consists of w-l blanks followed by T or F as appropriate. 

(J 

(J 

I: 

IJ 



I." 
.JoJ 

r: 
I ... 

.... 

I " 
.'" 

r= 
1-. · 

_.~:.J 

I
-~ 

. ..:.w 

I·.,., 
~: 

I· '.'~ 
.~ 

I-! 
I--l 

_-J 

I ~"" 

. ~.~ 

('" 
. .j.,.! 

[J 

-----------_._----------_ ... _. 

Paragon ™ System Fortran Language Reference Manual Input and Output 

Quote Format Control 

Quote editing prints a character constant. The fonnat specifier writes the characters enclosed 
between the quotes and cannot be used on input. The field width is that of the characters contained 
within quotes (you can also use apostrophes to enclose the character constant). 

To write an apostrophe (or quote) use two consecutive apostrophes (or quotes). 

For example: 

WRITE ( *, 101) 
101 FORMAT ( 'Print an apostrophe" and end.') 

Produces: 

Print an apostrophe ' and end. 

Similarly, you can use quotes, for example: 

WRITE ( *, 102) 
102 FORMAT ( "Print a line with a "" and end.") 

Produces: 

Print a line with a " and end. 

BN and BZ Format Control- Blank Control 

The BN and BZ fonnats control blank spacing. BN causes all embedded blanks except leading blanks 
in numeric input to be ignored, which has the effect of right justifying the remainder of the field. 
Note that a field of all blanks has the value zero. Only input statements and I, F, E, D and G editing 
are affected. 

BZ causes all blanks except leading blanks in numeric input to be replaced by zeros. Only input 
statements and I, F, E, D and G editing are affected. 

H Format Control - Hollerith Control 

The H fonnat control writes the n characters following the H in the fonnat specification and cannot 
be used on input. 

The basic fonn of this format specification is: 

nHclcn ... 

where n is the number of characters to print and cl through cn are the characters to print. 

4-11 



Input and Output 

4-12 

Paragon 1M System Fortran Language Reference Manual 

o and Z Format Control - Octal and Hexadecimal Values 

The 0 and Z field descriptors transfer octal or hexadecimal values and can be used with any data 
type. They have the form: 

Ow[ .m] and Zw[ .m] 

where w specifies the field width and m indicates minimum field width on output. 

On input, the external field to be input must contain (unsigned) octal or hexadecimal characters only. 
An all blank field is treated as a value of zero. If the value of the external field exceeds the range of 
the corresponding list element, an error occurs. 

On output:. the 0 and Z field descriptors transfer the octal and hexadecimal values, respectively, of 
the corresponding I/O list element, right-justified, to an external field that is w characters long. If the 
value to be transmitted does not fill the field, leading spaces are inserted; if the value is too large for 
the field, the entire field is filled with asterisks. If m is present, the external field consists of at least 
m digits, and is zero-filled on the left if necessary. Note that if m is zero, and the internal 
representation is zero, the external field is blank-filled. 

P Format Specifier - Scale Control 

kP 

The P format specifier is the scale factor format which is applied as follows. 

• With F, E, D and G editing on input and F editing on output, the external number equals the 
internal number multiplied by 10** k . If there is an exponent in the field on input editing with 
F, E, D and G the scale factor has no effect. 

• On output with E and D editing the basic real constant part of the number is multiplied by 10**k 
and the exponent reduced by k , and with G editing the effect of the scale factor is suspended 
unless the size of the datum to be edited is outside the range permitted for F editing. If E editing 
is required the scale factor has the same effect as with E output editing. 

The following is an example using a scale factor. 

DIMENSION A(6) 
DO 10 I = 1,6 

10 A(I) = 25. 
TYPE 100,A 

100 FORMAT(" ,F8.2,2PF8.2,F8.2) 

produces: 

25.00 2500.00 2500.00 2500.00 2500.00 2500.00 

Note that the effect of the scale factor continues until another scale factor is used. 

U 
'1 LAI 

II'~ 

~J 

,~ "1 

I. .~ 

~ ~ I 
~ c.J 

(J 

r ~'I 

1.,.,J 

(J 

I: , 



I.: 
[-~ 

.... 

r: 
r: 
I: 

I: 
1_'" 

u 

1·-.'·'; 
l,) 

I···~ 

I"> 

I: 

I] 

c 

Paragon TM System Fortran Language Reference Manual Input and Output 

Q Format Control - Quantity 

The Q edit descriptor calculates the number of characters remaining in the input record and stores 
that value in the next I/O list item. On output, the Q descriptor skips the next I/O item. 

S Format Control - Sign Control 

The S format specifier restores the default processing for writing a plus; the default is SS processing. 

Sp forces the processor to write a plus in any position where an optional plus is found in numeric 
output fields, this only affects output statements. 

ss stops the processor from writing a plus in any position where an optional plus is found in numeric 
output fields, this only affects output statements. 

T , TL, TR, and X Format Controls - Spaces and Tab Controls 

The T specifier controls which portion of a record a iolist value is read from or written to a file. The 
general form is as follows: 

Tn 

this specifies that the nth value is to be written to or from a record. 

The TL form specifies the relative position to the left of the data to be read or written. 

TLn 

This specifies that the nth character to the left of the current position is to be written to or from the 
record. If the current position is less than or equal to n the transmission will begin at position one of 
the record. 

The TR form specifies the relative position to the right of the data to be read or written. 

TRn 

Specifies that the nth character to the right of the current position is to be written to or from the 
record. 

The X control specifies a number of characters to skip forward. 

nX 

Specifies that the next character to be written to or from is n characters forward from the current 
position. 

4-13 



Input and Output 

4-14 

Paragon™ System Fortran language Reference Manual 

The following example uses the X format specifier. 

NPAGE = 19 
WRITE ( 6, 90) NPAGE 

90 FORMAT('lPAGE NUMBER ,12, 16X, 'SALES REPORT, Cont. ') 

produces: 

PAGE NUMBER 19 SALES REPORT, Cont. 

The following example shows use of the T format specifier. 

PRINT 25 
25 FORMAT (T41,'COLUMN 2' ,T21,'COLUMN 1') 

produces: 

COLUMN 1 COLUMN 2 

Slash Format Control - End of Record 

The slash (/) control indicates the end of data transfer on the current record. 

On input from a file connected for sequential access the rest of the current record is skipped and the 
file positioned at the start of the next record. 

On output a new record is created which becomes the last and current record. For an internal file, 
connected for direct access the record is filled with blank: characters. If a direct access file, the record 
number is increased by one and the file is positioned at the start of the record. 

The: Format Specifier - Format Termination 

The (:) control terminates format control if there are no more items in the input/output list It has no 
effect if there are any items left in the list. 

$ Format Control 

The $ field descriptor allows the programmer to control carriage control conventions on output. It is 
ignored on input. For example, on terminal output, it can be used for prompting. 

The form of the $ field descriptor is: 

$ 

(J 

rr' lLJ 

IJ 



r: 
( '''\ 

liII 

(,
''''I 

. .., 

r: 
I

'-~~" 

_ ... IIP 

I: 
r-.., 

.,' 

1~9 

I . .,. 
I .. ~ 

I ,~ ~: 

I""" 

I ',"', 
.-1 

(
-""'1 

. .<oJ 

l ~\ 

.. .-1 

Ii 
(J 

() 

C 

Paragon TM System Fortran Language Reference Manual Input and Output 

Variable Format Expressions <expr> 

Variable format expressions are supported. They provide a means for substituting run-time 
expressions for the field width. other parameters for the field and edit descriptors in a FORMAT 
statement (except for the H field descriptor and repeat counts). 

Variable format expressions are enclosed in "<" and ">" and are evaluated each time they are 
encountered in the scan of a format. If the value of a variable used in the expression changes during 
the execution of the I/O statement, the new value is used the next time the format item containing 
the expression is processed. 

List-Directed Formatting 
List-directed formatting is an abbreviated form of input/output that does not require the use of a 
format specification. The type of the data is used to determine how a value is read/written. On output 
it will not always be accurate enough for certain ranges of values. The characters in a list-directed 
record constitute a sequence of values which cannot contain embedded blanks except those 
permitted within a character string. To use list-directed input/output formatting. specify a * for the 
list of format requirements. For example. the following example uses list-directed output: 

READ ( 1, * ) VALl, VAL2 

List-Directed Input 

The form of the value being input must be acceptable for the type of item in the ioUst. Blanks must 
not be used as zeros nor be embedded in constants except in a character constant or within a type 
complex form contained in parentheses. 

Table 4-3. list Directed Input Values 

Input List Type Form 

Integer A numeric input field. 

Real A numeric input field suitable for F editing with no fractional part 
unless a decimal point is used. 

Double precision Same as for real. 

Complex An ordered pair of numbers contained within parentheses as shown 
(real part. imaginary part). 

Logical A logical field without any slashes or commas. 

Character A non-empty character string within apostrophes. A character 
constant can be continued on as many records as required. Blanks, 
slashes and commas can be used. 

4-15 



Input and Output 

4-16 

m ' 
Paragon System Fortran Language Reference Manual 

A null value has no effect on the definition status of the corresponding iolist item. A null value 
cannot represent just one part of a complex constant but may represent the entire complex constant. 
A slash encountered as a value separator stops the execution of that input statement after the 
assignment of the previous value. If there are further items in the list they are treated as if they are 
null values. 

Commas may be used to separate the input values. If there are consecutive commas, or the if the first 
non-blank character of a record is a comma, the input value is a null value. Input values may also 
be repeated. 

In the following example of list-directed formatting, assume that 

A= -1. 5 

K= 125 

I'" '1 , ' 
I. I 
L-J 

1""', 
1 

and all other variables are undefined. When the statement below reads in the list from the input file: i.L~ 

READ * I, J, X, Y, Z, A, C, K 1"'''' 

where the file contains the following record: 

10,-14,25.2,-76,313,,29/ 

The variables are assigned the following values by the list-directed input/output mechanism: 

I=10 
J=-14 
X=25.2 
Y=-76.0 
Z=313.0 
A=-1. 5 

C=29 
K=125. 

Note that the value for A does not change because the input record is null (consecutive commas). No 
input is read for K, so it assumes null and K retains it previous value (the / terminates the input). 

,~ 

[J 



[~ 
.,A, 

(
""1"j 

"'" 

r: 
I: 

r~ 

I'~ 

I~ 
1"""1 

--*l<1 

I
-~-' 

; -"",J 

I ~ 
. oJ 

( '.., 
.J 

[J 

c 
(J 

[j 

o 

Paragon™ System Fortran language Reference Manual Input and Output 

List-Directed Output 

The data type of each item appearing in the iolist is formatted according to the rules in Table 4-4. 

Table 4-4. Default List Directed Output Formatting 

Data Type Default Formatting 

BYTE I5 

INTEGER*2 I7 

INTEGER*4 Il2 

LOGICAL*l I5 (L2 ) 

LOGICAL*2 L2 

LOGICAL*4 L2 

REAL*4 G15.7e2 

REAL*8 G25.16e3 

COMPLEX*8 (G15.7e2, G15.7e2) 

COMPLEX * 16 (G25.16e3, G25.16e3) 

CHAR *n An 

The length of a record is less than 80 characters; if the output of an item would cause the length to 
exceed 80 characters, a new record is created. 

Notes 

1. New records may begin as necessary with the exception of character and complex constants. 

2. Logical output constants are T for true and F for false . 

3. Complex constants are contained within parentheses with the real and imaginary parts separated 
by a comma. 

4. Character constants are not delimited by apostrophes and have each internal apostrophe (if any 
are present) represented externally by one apostrophe 

5. Each output record begins with a blank character to provide carriage control when the record is 
printed. 

6. A typeless value output with list-directed I/O is output in hexadecimal form by default. There 
is no other octal or hexadecimal capability with list-directed I/O. 

4-17 



Input and Output Paragon™System Fortran Language Reference Manual 

Commas in External Field 

Use of the comma in an external field eliminates the need to "count spaces" to have data match 
fonnat edit descriptors. The use of a comma to tenninate an input field and thus avoid padding the 
field is fully supported. 

§ Namelist Groups 
The NAMELIST statement allows for the definition of namelist groups. A namelist group allows for 
a special type of fonnatted input/output, where data is transferred between a named group of data 
items defined in a NAMELIST statement and one or more records in a file. 

The general fonn of a namelist statement is: 

NAMELIST /group-name/ namelist [[,] /group-name/ namelist ] ... 

where: 

group-name is the name of the namelist group. 

namelist is the list of variables in the namelist group. 

§ Namelist Input 

" ~, 

• li 

I1If ~; 

I 

Namelist input is accomplished using a READ statement by specifying a namelist group as the input ... .,i 

4-18 

item. The following statement shows the fonnat: 

READ ([unit=] u, [NML=] namelist-group [, control-in/ormation] ) 

One or more records are processed which define the input for items in the namelist group. 

The records are logically viewed as follows: 

$group-name item=value [,item=value] . . .. $ [END] 

The following rules describe these input records: 

1. The start or end delimiter ($) may be an &. 

2. . The start delimiter must begin in column 2 of a record. 

3. The group-name begins immediately after the start delimiter. 

4. The spaces or tabs may not appear within the group-name, within any item, or within any 
constants. 

I: 
[

ll'l 

.JI.i 



(--
" 

I"' 

r= 

1''1 

-"" 

I; 

ParagonT
• System Fortran Language Reference Manual Input and Output 

5. The value may be constants as are allowed for list directed input, or they may be a list of 
constants separated by commas C,). A list of items is used to assign consecutive values to 
consecutive elements of an array. 

6. Spaces or tabs may precede the item, the = and the constants. 

7. Array items may be subscripted. 

8. Character items may be substringed. 

§ Namelist Output 

§ 

Namelist output is accomplished using a READ statement by specifying a namelist group as the 
output item. The following statement shows the format 

WRITE ([unit=] u, [NML=] namelist-group [,control-information]) 

The records output are logically viewed as follows: 

$group-name 
item = value 
$ [END] 

The following rules describe these output records: 

1. One record is output per value. 

2. Multiple values are separated by C,). 

3. Values are formatted according to the rules of the list-directed write. Exception: character items 
are delimited by an apostrophe. 

4. An apostrophe C ' ) or a quote ('') in the value is represented by two consecutive apostrophes or 
quotes. 

4-19 



Input and Output 

4-20 

Paragon 1M System Fortran Language Reference Manual 

,-., 
~AJ 

IJ 



I """" 
." 

(
"~ 

~ 

1-"'''' 
'" 

r= 
1_..,. 

.' 

( ~, 
I~I 

I" "-., 
-" 

("-
i ___ ,J 

I """ 
_ ..... J' ,"-,.,., 

'.J 

I "" 
""" 

Generic 
Name 

IZEXT 

ZEXT 

Intrinsics 

This chapter specifies the ij77 intrinsic functions. All the FORTRAN 77 intrinsics are supported and 
are detailed in the ANSI Fortran manual listed in the section "Related Publications," in the Preface. 

Table A·1. Zero Extend Functions 

Number Specific Type of Type of 
Functions of Args Name Argument Result 

Zero-Extend Function 1 IZEXT LOGICAL*l INTEGER*2 

(Conversion Routine) LOGICAL*2 INTEGER*2 

INTEGER*2 INTEGER*2 

Zero-Extend Function JZEXT LOGICAL*l INTEGER*4 

(Conversion Routine) LOGICAL*2 INTEGER*4 

LOGICAL*4 INTEGER*4 

INTEGER*2 INTEGER*4 

INTEGER*4 INTEGER*4 

A-1 



Intrinsics 

Generic 
Name 

SQRT 

LOG 

LOGIO 

EXP 

Generic 
Name 

SIND 

COSD 

A-2 

Paragon™ System Fortran Language Reference Manual 

Table A-2. Math Intrinsic Functions 

Number Specific Type of Type of 
Functions of Args Name Argument Result 

Square Root I SQRT REAL*4 REAL*4 

DSQRT REAL*8 REAL*8 

CSQRT COMPLEX*8 COMPLEX*8 

CDSQRT COMPLEX*16 COMPLEX*16 

Natural 
I ALOG REAL*4 REAL*4 

Logarithm 

DLOG REAL*8 REAL*8 

CLOG COMPLEX*8 COMPLEX*8 

CDLOG COMPLEX*16 COMPLEX*16 

Common 
I ALOGlO REAL*4 REAL*4 

Logarithm 

DLOGIO REAL*8 REAL*8 

Exponential I EXP REAL*4 REAL*4 

DEXP REAL*8 REAL*8 

CEXP COMPLEX*8 COMPLEX*8 

CDEXP COMPLEX*16 COMPLEX*16 

Table A-3. Trigonometric Functions (1 of 3) 

Number Specific Type of Type of 
Functions of Args Name Argument Result 

Sine(degree) 1 SIND REAL*4 REAL*4 

DSIND REAL*8 REAL*8 

Cos (degree) 1 COSD REAL*4 REAL*4 

DCOSD REAL*8 REAL*8 

[) 

I" 'I 

LAi I 

l: 

( 1 
.A 



I"" 
L 

I": 

I····~··. " .. ~ 

r: 

I 
I: .-~ 

":-' 

I ,~ 
_~I 

I-~ . .., 

r~i 

I-~ 

1_-'4 

_...l 

[~ 

IJ 
IJ 
[J 

c 

Paragon 1M System Fortran Language Reference Manual 

Table A·3. Trigonometric Functions (2 of 3) 

Generic Number Specific Type of 
Name Functions of Args Name Argument 

TAND Tan (degree) 1 TAND REAL*4 

DTAND REAL*8 

ASIND ArcSine (degree) 1 ASIND REAL*4 

DASIND REAL*8 

ACOSD ArcCosine (deg.) 1 ACOSD REAL*4 

DACOSD REAL*8 

ATAND ArcTangent (deg.) 1 ATAND REAL*4 

ArcTangent DATAND REAL*8 

ATAN2D ArcTangent (deg.) 2 ATAN2D REAL*4 

DATAN2D REAL*8 

SIN Sine 1 SIN REAL*4 

DSIN REAL*8 

DSINH REAL*8 

COSH Hyperbolic Cosine 1 COSH REAL*4 

OCOSH REAL*8 

TANH Hyperbolic Tangent 1 TANH REAL*4 

DTANH REAL*8 

CSIN COMPLEX*8 

CDSIN COMPLEX*16 

COS Cos 1 COS REAL*4 

OCOS REAL*8 

CCOS COMPLEX*8 

COCOS COMPLEX*16 

Intrinsics 

Type of 
Result 

REAL*4 

REAL*8 

REAL*4 

REAL*8 

REAL*4 

REAL*8 

REAL*4 

REAL*8 

REAL*4 

REAL*8 

REAL*4 

REAL*8 

REAL*8 

REAL*4 

REAL*8 

REAL*4 

REAL*8 

COMPLEX*8 

COMPLEX*16 

REAL*4 

REAL*8 

COMPLEX*8 

COMPLEX*16 

A-3 



Intrinsios 

Generic 
Name 

TAN 

ASIN 

ACOS 

ATAN 

ATAN2 

SINH 

COSH 

TANH 

A-4 

ParagonTM System Fortran Language Reference Manual 

Table A·3. Trigonometric Functions (3 of 3) 

Number Specific Type of Type of 
Functions of Args Name Argument Result 

Tangent 1 TAN REAL*4 REAL*4 

DTAN REAL*8 REAL*8 

ArcSine 1 ASIN REAL*4 REAL*4 

DASIN REAL*8 REAL*8 

ArcCosine 1 ACOS REAL*4 REAL*4 

DACOS REAL*8 REAL*8 

ArcTangent 1 ATAN REAL*4 REAL*4 

DATAN REAL*8 REAL*8 

ArcTangent 2 ATAN2 REAL*4 REAL*4 

DATAN2 REAL*8 REAL*8 

Hyperbolic Sine 1 SINH REAL*4 REAL*4 

DSINH REAL*8 REAL*8 

Hyperbolic Cosine 1 COSH REAL*4 REAL*4 

DCOSH REAL*8 REAL*8 

Hyperbolic Tangent 1 TANH REAL*4 REAL*4 

DTANH REAL*8 REAL*8 

Ia __ ..J 

[ -' 
-,{ 

,...I 

J~! 

i .. -.J 



[~'" 

.... 

I ··", 
~..>J 

I
·~ 

>I.: 

I:: 

l: 
I:: 
r: 

l: 
[~ 

[J 

(J 

IJ 

IJ 

IJ 

Paragon TM System Fortran Language Reference Manual 

Table A·4. Arithmetic Functions (1 of3) 

Generic Number Specific Type of 
Name Functions of Args Name Argument 

ABS Absolute Value 1 IIABS INTEGER*2 

TIABS INTEGER*4 

ABS REAL*4 

DABS REAL*8 

CABS COMPLEX*8 

CDABS COMPLEX*16 

lINT Truncation 1 INTEGER*2 

INTEGER*4 

lINT REAL*4 

IIFIX REAL*4 

IIDINT REAL*8 

COMPLEX*8 

COMPLEX*16 

INT Truncation 1 INTEGER*2 

INTEGER*4 

INT REAL*4 

TIFIX REAL*4 

IDINT REAL*8 

COMPLEX*8 

COMPLEX*16 

TINT Truncation 1 INTEGER*2 

INTEGER*4 

TINT REAL*4 

TIDINT REAL*8 

COMPLEX*8 

COMPLEX*16 

Intrinsics 

Type of 
Result 

INTEGER*2 

INTEGER*4 

REAL*4 

REAL*8 

COMPLEX*8 

COMPLEX*16 

INTEGER*2 

INTEGER*2 

INTEGER*2 

INTEGER*2 

INTEGER*2 

INTEGER*2 

INTEGER*2 

INTEGER*4 

INTEGER*4 

INTEGER*4 

INTEGER*4 

INTEGER*4 

INTEGER*4 

INTEGER*4 

INTEGER*4 

INTEGER*4 

INTEGER*4 

INTEGER*4 

INTEGER*4 

INTEGER*4 

A-5 



Intrlnsics Paragon ™ System Fortran Language Reference Manual [J 

Table A-4. Arithmetic Functions (2 of 3) 

Generic Number Specific Type of Type of 
Name Functions of Args Name Argument Result 

AINT Truncation I AINT REAL*4 REAL*4 

DINT REAL*8 REAL*8 

ININT Nearest Integer I ININT REAL*4 INTEGER * 2 

[a + .5 * sign(a)] IIDNNT REAL*8 INTEGER*2 

JNINT Nearest Integer I JNINT REAL*4 INTEGER*4 

[a + .5 * sign(a)] nDNNT REAL*8 INTEGER*4 !' 

NINT Nearest Integer I NINT REAL*4 INTEGER*4 

[a + .5 * sign(a)] IDNINT REAL*8 INTEGER*4 

ANINT Nearest Whole 
1 ANINT REAL*4 REAL*4 Number 

int(a+.5) ifa~ 0 
DNINT REAL*8 REAL*8 int(a - .5 )if a < 0 

MAX Maximum n>I !MAXO INTEGER*2 INTEGER*2 

!MAXI REAL*4 INTEGER*2 

AIMAXO INTEGER*2 REAL*4 

JMAXO INTEGER*4 INTEGER*4 

JMAXI REAL*4 INTEGER*4 

AJMAXO INTEGER*4 REAL*4 

.(.-"'1 ., 

""'" 

l: 

r: 
A-6 (J 



I'~ 
.110 

r: 
r: 
I: 
r: 
I~ 

I: 
I ,'" 

_ . .J 

r: 
I~ 
I
'~ 

-'" 

[J 

IJ 
l =-j 

" , 

~ 

IJ 
IJ 

Paragon™ System Fortran language Reference Manual 

Table A·4. Arithmetic Functions (3 of 3) 

Generic Number Specific Type of 
Name Functions of Args Name Argument 

DIM Positive Difference 2 IIDIM INTEGER*2 

nDIM INTEGER*4 

DIM REAL*4 

DDIM REAL*8 

MIN Minimum n>1 IMINO INTEGER*2 

IMINI REAL*4 

AIMINO INTEGER*2 

JMINO INTEGER*4 

JMINI REAL*4 

AJMINO INTEGER*4 

MOD Remainder 2 IMOD INTEGER*2 

JMOD INTEGER*4 

AMOD REAL*4 

DMOD REAL*8 

SIGN Transfer of Sign 2 IISIGN INTEGER*2 

nSIGN INTEGER*4 

SIGN REAL*4 

DSIGN REAL*8 

Intrinsics 

Type of 
Result 

INTEGER*2 

INTEGER*4 

REAL*4 

REAL*8 

INTEGER*2 

INTEGER*2 

REAL*4 

INTEGER*4 

INTEGER*4 

REAL*4 

INTEGER*2 

INTEGER*4 

REAL*4 

REAL*8 

INTEGER*2 

INTEGER*4 

REAL*4 

REAL*8 

A·7 



Intrinsics 

Generic 
Name 

REAL 

DBLE 

CMPLX 

A-8 

Paragon 1M System Fortran Language Reference Manual [J 

(J 

Table A-S. Type Conversion Functions (1 of 2) 

Number Specific 
Functions of Args Name 

Convert to 1 FLOATI 

REAL*4 REAL 

FLOATJ 

SNGL 

Convert to 1 DFLOTI 

REAL*8 DFLOAT 

DFLOTJ 

DREAL 

Convert to 1,2 

COMPLEX*8 or 

COMPLEX*8 

from two 

arguments 1 

Type of 
Argument 

INTEGER*2 

INTEGER*4 

INTEGER*4 

REAL*4 

REAL*8 

COMPLEX*8 

COMPLEX*16 

INTEGER*2 

INTEGER*4 

INTEGER*4 

REAL*4 

REAL*8 

COMPLEX*8 

COMPLEX*16 

INTEGER*2 

INTEGER*4 

REAL*4 

REAL*8 

COMPLEX*8 

COMPLEX*16 

Type of 
Result 

REAL*4 

REAL*4 

REAL*4 

REAL*4 

REAL*4 

REAL*4 

REAL*4 

REAL*8 

REAL*8 

REAL*8 

REAL*8 

REAL*8 

REAL*8 

REAL*8 

COMPLEX*8 

COMPLEX*8 

COMPLEX*8 

COMPLEX*8 

COMPLEX*8 

COMPLEX*8 

,..._ . ..., 
I ' 

IJ 
L' ' , "".J 

[J 

[J 

[J 



r,' 
L 

r: 

I: 
("''''' 

"" 

r: 
I ,"'; 

c, 

(
'~ 

.~ 

( ~,' 
.AI 

1"·.,, 
• ..J 

r= 
1_" 

.J 

C 
[J 

(J 

[J 

Paragon TM System Fortran Language Reference Manual 

Table A·5. Type Conversion Functions (2 of2) 

Generic Number Specific Type of 
Name Functions of Args Name Argument 

DCMPLX Convert to 1,2 INTEGER*2 

COMPLEX*16 or INTEGER*4 

COMPLEX*16 REAL*4 

from two REAL*8 

arguments 1 COMPLEX*8 

COMPLEX*16 

AIMAG ImagPart of 1 AIMAG COMPLEX*8 

Complex DIMAG COMPLEX*16 

CONJG Complex 1 CONJG COMPLEX*8 

Conjugate DCONJG COMPLEX*16 

Table A·6. Bitwise Functions (1 of 3) 

Generic Number Specific Type of 
Name Functions of Args Name Argument 

Bitwise AND 2 llANO INTEGER*2 
lAND 

Perform a logical AND on bits JIAND INTEGER*4 

AND 

Bitwise OR 2 1I0R INTEGER*2 
lOR 

Perform a logical OR on bits JIOR INTEGER*4 

OR 1 

IEOR BitwiseXOR 2 lIEOR INTEGER*2 

XOR logical Exclusive OR JIEOR INTEGER*4 

NEQV 1 

EQV 
Bitwise Excl. NOR Performs a 

2 1 
logical Exclusive Nor 

Intrinsics 

Type of 
Result 

COMPLEX*16 

COMPLEX*16 

COMPLEX*16 

COMPLEX*16 

COMPLEX*16 

COMPLEX*16 

REAL*4 

REAL*8 

COMPLEX*8 

COMPLEX*16 

Type of 
Result 

INTEGER*2 

INTEGER*4 

typeless1 

INTEGER*2 

INTEGER*4 

typelessl. 

INTEGER*2 

INTEGER*4 

typelessl. 

typelessl. 

A-9 



Intrinsics 

Generic 
Name 

NOT 

COMPL 

LOC 

ISHfT 

SHIFT 

LSHIFf 

RSHIFT 

ISHfTC 

CHAR 

A-10 

Paragon no System Fortran Language Reference Manual 

Table A-6. Bitwise Functions (2 of 3) 

Number Specific Type of Type of 
Functions of Args Name Argument Result 

Bitwise Complement 1 INOT INTEGER*2 INTEGER*2 

Complements each bit JNOT INTEGER*4 INTEGER*4 

Bitwise Complement 1 1 typelessl. 

The address of a data item is INTEGER*2 INTEGER*4 
returned (Assumes 32-bit 1 LOC INTEGER*4 INTEGER*4 
address) REAL*4 INTEGER*4 

REAL*8 INTEGER*4 

COMPLEX*8 INTEGER*4 

COMPLEX*l INTEGER*4 

Bitwise Shift 2 IISHfT INTEGER*2 INTEGER*2 

al logically shifted left a2 JISHfT INTEGER*4 INTEGER*4 

bits. If a2 < 0 then right logical 
typeless2 

shift. 

Bitwise Left Shift 2 ILSHIFf INTEGER*2 INTEGER*2 

al logically shifted left JLSHIFT INTEGER*4 INTEGER*4 

Bitwise Right Shift IRSHIFT INTEGER*2 INTEGER*2 

al logically shifted right JRSHIFf INTEGER*4 INTEGER*4 

Circular Shift 3 IISHfTC INTEGER*2 INTEGER*2 

Rightmost a3 bits of al are 
shifted circularly by a2 bits; 

JISHFfC INTEGER*4 INTEGER*4 remaining bits in al are 
unaffected. 

Character 1 LOGICAL*l CHARACTER 

Returns a character that has the INTEGER*2 CHARACTER 
ASCII value specified by the 
argument. CHAR INTEGER*4 CHARACTER 

[ -..., 
, I 

... -M 

[J 

[: 
[: 

[J 

(J 



1-'i'I 

~, 

I: 

1= 
1= 
I····~ 

( " , .... 

I: 
(: 

( 'I 
.. ..J 

I: 
[J 

U 

Paragon ™ System Fortran Language Reference Manual Intrinsics 

Table A-6. Bitwise Functions (3 of 3) 

Generic Number Specific Type of Type of 
Name Functions of Args Name Argument Result 

IBITS Bit Extraction 3 lIB ITS INTEGER*2 INTEGER*2 

Extracts bits a2 through 
JIB ITS INTEGER*4 INTEGER*4 

(a2 +a 3 - 1) from a1. 

IBSET Set Bit 2 lIB SET INTEGER*2 INTEGER*2 

Returns al with bit a2 set to 1. JIBSET INTEGER*4 INTEGER*4 

BTEST Bit Test 2 BITEST INTEGER*2 LOGICAL*2 

.TRUE. if bit a2 of at is a 1. BJTEST INTEGER*4 LOGICAL*4 

IBCLR Bit Clear 2 IIBCLR INTEGER*2 INTEGER*2 

Returns at with bit a2 set to 0 JIBCLR INTEGER*4 INTEGER*4 

1. The arguments to the intrinsics AND, OR, NEQV, EQV, and COMPL may be of any type except for 
CHARACTER and COMPLEX. 

2. The fIrst argument to the SHIff intrinsic may be of any type except for CHARACTER and COMPLEX. 
The second argument is any integer type. 

A-11 



· Intrinsics Paragon TM System Fortran Language Reference Manual 

A-12 

[j 

:,'1'1 
il..J 

(J 

[J 



( ..• " .. 
r: 
1. 1P1 

jJ 

r: 
r: 
I.'n 

... , 

r~ 

I· ~, 
_., 

1-·-'" 
.-.tJ 

[ 
.

. ~ 

.~ 

10" 
~ ..... 

1= 
I~ 

1 . .1 

IJ 

IJ 

C 

VAX Built-in Functions and 
System Subroutines 

This appendix discusses the V AXlVMS built-in functions and system subroutines supported by if17. 

BUilt-in Functions 
The built-in functions perfonn inter-language utilities for argument passing and location 
calculations. The following built-in functions are available: 

%LOC(arg) 

%REF(a) 

%VAL(a) 

Compute the address of the argument arg. 

Pass the argument a by reference. 

Pass the argument as a 32-bit immediate value (64-bit if it is double 
precision.) 

VAX/VMS System Subroutines 

DATE 

The DATE subroutine returns a nine-byte string containing the ASCII representation of the current 
date. It has the fonn: 

CALL DATE(buf) 

where bufis a nine-byte variable, array, array element, or character substring. The date is returned 
as a nine-byte ASCII character string of the fonn: 

dd-mmm-yy 

B-1 

-------_._---



System Subroutines Paragon™ System Fortran Language ReferenoeManual 

EXIT 

GETARG 

lARGe 

B-2 

Where: 

tid Is the two-digit day of the month 

mmm Is the three-character abbreviation of the month 

yy Is the last two digits of the year 

The EXIT subroutine causes program termination, closes all open files, and returns control to the 
operating system. It has the form: 

CALL EXIT[(exit_status)] 

where exit _status is an optional integer argument used to specify the image exit value. 

SUBROUTINE GETARG(N, ARG) 
INTEGER*4 N 
CHARACTER* (*) ARG 

The GETARG subroutine returns the Nth command line argument in character variable ARG. For 
N equal to zero, the name of the program is returned. 

INTEGER*4 FUNCTION IARGC() 

The lARGe subroutine returns the number of command line arguments following the program 
name. 

l: 
(J 



I: 
I'.-~ .. 

I: 
r: 
r: 
I~ ,------, 

. _J 

[: 
(
i''''' 

_--.I 

(
--."'1 1 ' 

I I 
,1 

, ""' 

' ' I. -"co, 

(~ 

('''''' 
• .....,u.) 

[ : -.'" 

[J 

IJ 

--_._- _ ... __ .. _. ------------- --_._--_ .. - -- --------------_._--_._---_. __ . 

Paragon TIl System Fortran Language Reference Manual System Subroutines 

IDATE 

MVBITS 

The IDA TE subroutine returns three integer values representing the current month. day, and year. It 
has the form: 

CALL IDATE(IMONTH, I DAY , IYEAR) 

If the current date were October 9, 1992, the values of the integer variables upon return would be: 

IMONTH = 10 
IDAY = 9 
IYEAR '" 92 

The MVBITS subroutine transfers a bit field from one storage location (source) to a field in a second '. 
storage location (destination). MVBITS transfers a3 bits from positions a2 through (a2 + a3 - 1) of 
the source, src, to positions a5 through (a5 + a3 - 1) of the destination, dest. Other bits of the 
destination location remain unchanged. The values of (a2 + a3) and (a5 + a3) must be less than or 
equal to 32. It has the form: 

CALL MVBITS(src, a2, a3, dest, as) 

Where: 

src 

a2 

a3 

dest 

a5 

is an integer variable or array element that represents the source location. 

is an integer expression that identifies the first position in the field transferred 
fromsrc. 

is an integer expression that identifies the length of the field transferred from src. 

is an integer variable or array element that represents the destination location. 

is an integer expression that identifies the starting position within a4, for the bits 
being transferred. 



System Subroutines 

RAN 

SECNDS 

B-4 

Paragon TM System Fortran Language Reference Manual 

The RAN subroutine returns the next number from a sequence of pseudo-random numbers of 
uniform distribution over the range 0 to 1. The result is a floating point number that is uniformly 
distributed in the range between 0.0 and 1.0 exclusive. It has the form: 

y = RAN(i) 

where y is set equal to the value associated by the function with the seed argument i. The argument 
i must be an INTEGER*4 variable or INTEGER*4 array element. 

The argument i should initially be set to a large, odd integer value. The RAN function stores a value 
in the argument that it later uses to calculate the next random number. 

There are no restrictions on the seed, although it should be initialized with different values on 
separate runs in order to obtain different random numbers. The seed is updated automatically, and 
RAN uses the following algorithm to update the seed passed as the parameter: 

SEED = 6969 * SEED + 1 I MOD 2**32 

The value of SEED is a 32-bit number whose high-order 24 bits are converted to floating point and 
returned as the result. 

If the command-line option to treat all REAL declarations as OOUBLE PRECISION declarations is 
in effect, RAN returns a DOUBLE PRECISION value. 

The SECNDS subroutine provides system time of day, or elapsed time, as a floating point value in 
seconds. It has the form: 

y = SECNDS(x) 

where (REAL or DOUBLE PRECISION) Y is set equal to the time in seconds since midnight, minus 
the user supplied value of the (REAL or OOUBLE PRECISION) x. Elapsed time computations can 
be performed with the following sequence of calls. 

x = SECNDS(O.O) 

! Code to be timed 

DELTA = SECNDS(X) 

The accuracy of this call is the same as the resolution of the system clock. 

[) 

r l 
Ia.J 

CJ 

I'r~' 

ll_ 

!\If: 
I., . 
• ~f 

[J 

(
'l!Ij 

, I 

~ 



I: 
I
··~ 

....:Jijj.i 

I: 

,( ..... -
_;....1 

I~: 

I.: 
( . .., 

.~j 

r·~ 
• ...J 

I ; 
. ..J 

C 
[J 

c 

Paragon T" System Fortran Language Reference Manual System Subroutines 

TIME 

The TIME subroutine returns the current system time as an ASCII string. It has the form: 

CALL TlME(buf) 

where bufis an eight-byte variable, array, array element, or character substring. The TIME call 
returns the time as an eight-byte ASCII character string of the form: 

hh:mm:ss 

For example: 

16:45:23 

Note that a 24-hour clock is used. 



.. -.--------.------

System Subroutines Paragon™ System Fortran Language Reference Manual 

[: 
l: 

(J 

U 



l: 
IJ 
[

TI 

-ill 

[ ''''' 
->J 

I""", 
_-4: 

(,-I ' 
-'-' 

[J 

I: ",-' -, 

r~ 

(~ 

("~ 
-A 

[J 

IJ 
[J 

r: 
c 

----------,------~ 

Index 
... ::.::: .. :::::::>:: ... :.:.:::::.:::.:::::: .. ::::.: .: .... :::"::::'. :)i . .->: '::;:':'::''- ::::.::\ :. /: ... : :.: '::::",: .. : .... ::;::;... ::. :.:)." .... ::: .. :.... (::: ..... :.::J: .. :: .... :: . .- :',-,,:::'."'::: :"'::':'.-:" :::. 

Symbols 
%LOC B-1 

%REF B-1 

%VAL B-1 

A 

ACCEPT 3-2 

ALLOCATE 3-3 

arithmetic assignment 1-13 

arithmetic expressions 1-9 

arithmetic operators 1-9 

array declaration 2-8 

array subscripts 2-8 

arrays 2-8 

ASSIGN 3-4 

assignment statements 1-13 

Audience Description v 

B 
BACKSPACE 3-5 

BLOCK DATA 3-6 

BYTE 3-7 

C 
CALL 3-8 

CHARACTER 3-9 

character assignment 1-14 

character concatenation 1-12 

character constants 2-5 

character expressions 1-11 

character set 1-3 
C language compatibility 1-4 

character substrings 2-9 

CLOSE 3-10 

closing a file 4-4 

column formatting 1-4 
continuation field 1-4 
label field 1-4 
statement field 1-4 

COMMON 3-11 

COMPLEX 3-14 

complex constants 2-5 

Conformance to standards v 

constants 2-3 

CONTINUE 3-15 

Conventions vii 

Index-1 



Index 

o 
DATA 3-16 

data initialization 2-13 

data type extensions 2-2 

DEALLOCATE 3-17 

DECODE 3-18 

DIMENSION 3-19 

direct access files 4-3 

DO Iterative 3-21 

DO WHILE 3-23 

DOUBLE COMPLEX 3-24 

DOUBLE PRECISION 3-25 

double precision constants 2-4 

E 
ELSE 3-26 

ELSE IF 3-27 

ENCODE 3-28 

END 3-29 

END DO 3-30 

END FILE 3-31 

END IF 3-32 

END MAP 3-33 

END STRUCTURE 3-34 

END UNION 3-35 

ENTRY 3-36 

EQUIVALENCE 3-39 

expressions 1-8 

EXTERNAL 3-40 

Index-2 

Paragon ™ System Fortran Language Reference Manual 

F 
file access methods 4-2 

FORMAT 3-41 

Format control 
$ specifier 4-14 
A specifier 4-8 
BN specifier 4-11 
D specifier 4-8 
E specifier 4-9 
end of record 4-14 
F specifier 4-9 
format termination 4-14 
G specifier 4-1 0 
H specifier 4-11 
I specifier 4-10 
L specifier 4-1 0 
o specifier 4-12 
P specifier 4-12 
Q specifier 4-13 
quote control 4-11 
S specifier 4-13 
slash 4-14 
SP specifier 4-13 
SS specifier 4-13 
T specifier 4-13 
TL specifier 4-13 
X specifier 4-13 
Z specifier 4-12 

format specifications 4-6 

formatted data transfer 4-5 

FORTRAN module 
elements of 1-1 
order of statements 1-2 

FUNCTION 3-43 

G 
GOTO Assigned 3-47 

GOTO Computed 3-45 

GOTO Unconditional 3-46 

I~ 
,~ 

r'" 
l.ilk 

rotC", _cd 

,~ 

A-e 

l' 
t_. 

I """ 
ii~ 

I: 



c 
(] 

[J 

[J 

c 

(J 

[~ 

[J 

IJ 
(J 

(. ~ 
, --j' 

c 

IJ 
(J 

[j 

c 

Paragon TM System Fortran Language Reference Manual 

H 
Hardware and Software Constraints vi 

hexadecimal constants 2-6 

hollerith constants 2-7 

IF Arithmetic 3-48 

IF Block 3-49 

IF Logical 3-50 

IMPLICIT 3-51 

implied DO list 4-6 

INCLUDE 3-52 

INCLUDE statement 1-6 

input and output 4-1 

INQUIRE 3-53 

INSTRINSIC 3-57 

INTEGER 3-56 

integer constants 2-3 

Intrinsic functions 

L 

arithmetic functions A-5 
bitwise functions A-9 
math functions A-2 
trigonometric functions A-2 
type conversion functions A-8 
zero extend functions A-1 

list-directed formatting 4-15 

list-directed input 4-15 

LOGICAL 3-59 

logical aSSignment 1-14 

logical constants 2-5 

logical expressions 1-11 

logical operators 1-11 

M 
MAP 3-60 

N 
NAMELIST 3-62 

namelist groups 4-18 

o 
octal constants 2-6 

OPEN 3-63 

opening and closing files 4-2 

operator precedence 1-9 

OPTIONS 3-66 

P 
PARAMETER 3-68 

PAUSE 3-69 

POINTER 3-70 

pointer variables 2-14 

precedence rules 1-12 

PRINT 3-72 

printer controls 4-7 

PROGRAM 3-73 

Index 

Index-3 



Index 

R 
READ 3-74 

REAL 3-75 

real constants 2-4 

RECORD 3-76 

records 2-10 

Related Publications vii 

relational expressions 1-10 

RETURN 3-78 

REWIND 3-79 

S 
SAVE 3-80 

Standard compatibility v 

standard data types 2-1 

Statement 
ACCEPT 3-2 
ALLOCATE 3-3 
ASSIGN 3-4 
BACKSPACE 3-5 
BLOCK DATA 3-6 
BYTE 3-7 
CALL 3-8 
CHARACTER 3-9 
CLOSE 3-10 
COMMON 3-11 
COMPLEX 3-14 
CONTINUE 3-15 
DATA 3-16 
DEALLOCATE 3-17 
DECODE 3-18 
DIMENSION 3-19 
DO Iterative 3-21 
DO WHILE 3-23 
DOUBLE COMPLEX 3-24 
DOUBLE PRECISION 3-25 
ELSE 3-26 

Index-4 

Paragon™ System Fortran Language Reference Manual 

ELSE IF 3-27 
ENCODE 3-28 
END 3-29 
END 003-30 
END FILE 3-31 
END IF 3-32 
END MAP 3-33 
END STRUCTURE 3-34 
END UNION 3-35 
ENTRY 3-36 
EQUIVALENCE 3-39 
EXTERNAL 3-40 
FORMAT 3-41 
FUNCTION 3-43 
GOTO Assigned 3-47 
GOTO Computed 3-45 
GOTO Unconditional 3-46 
IF Arithmetic 3-48 
IF Block 3-49 
I F Logical 3-50 
IMPLICIT 3-51 
INCLUDE 3-52 
INQUIRE 3-53 
INTEGER 3-56 
INTRINSIC 3-57 
LOGICAL 3-59 
MAP 3-60 
NAMELIST 3-62 
OPEN 3-63 
OPTIONS 3-66 
PARAMETER 3-68 
PAUSE 3-69 
POINTER 3-70 
PRINT 3-72 
PROGRAM 3-73 
READ 3-74 
REAL 3-75 
RECORD 3-76 
RETURN 3-78 
REWIND 3-79 
SAVE 3-80 
STOP 3-81 
STRUCTURE 3-82 
SUBROUTINE 3-84 
THEN 3-86 

.. J I 

r--~ 

l~" 

~i 
1a...J 

~=: 
~: 

I ,· I . 

...J 



I .. ! &! 

11 
I·."". ! 

.Iii 

I."'.·· ;lU 

[ 
.

. ~. 

..JioJ 

(
~.,," 

.A' 

(~ 

l." 

(Wi 

I·V
' 

Ii ..• ~ 

:' 

I~ 

1= 
I·.' -"'" 

I ··." .. 
C 

Paragon ™ System Fortran Language Reference Manual 

TYPE 3-87 
UNION 3-88 
VOLA TI LE 3-90 
WRITE 3-91 

Statements 
END STRUCTURE 2-9 
RECORD 2-10 
STRUCTURE 2-9 

Statements and comments 1-1 

STOP 3-81 

STRUCTURE 3-82 

structures 2-9 

SUBROUTINE 3-84 

symbolic name scope 1-8 

symbolic names 1-7 

T 
tab formatting 1-5 

continuation field 1-5 
label field 1-5 
statement field 1-5 

THEN 3-86 

TYPE 3-87 

u 
unformatted data transfer 4-4 

UNION 3-88 

V 
variable format expressions 4-15 

VAX built-in functions 
%LOC B-1 
%REF B-1 
%VAL B-1 

VAX system functions 
DATE B-1 
EXIT B-2 
GETARG B-2 
IARGC B-2 
IDATE B-3 
MVBITS B-3 
RAN B-4 
SECNDS B-4 
TIME 8-5 

VOLATILE 3-90 

W 
WRITE 3-91 

Index 

Index-5 



Index Paragon TM System Fortran Language Reference Manual 

.. 

,.. ~, 

.. .. 
,.. 'l 

... 
,.,. 

... .j 

f" 

'" 
r'" ~ 

~ 

'" 
, 

III ..J 

~ 

• oJ 

I" "" 
Ie 

II 

Ii ""~j 

~ <oj 

~ 
-, 

.. 
: ''''1 

Index-6 ... 


