
• • • •
D

D

D

n
n

1"1
)~

1""'1
,I

r::

IJ
I"~

J.,~'

Ij

IJ
I '"!

~I

IJ

fl

D

• • • •

April 1996

Order Number: 312547-005

Paragon™ System
Interactive Parallel Debugger

Reference Manual

IntelCID Corporation

Copyright ©1996 by Intel Server Systems Product Development, Beaverton, Oregon. All rights reserved. No part of this work may be reproduced
or copied in any form or by any means ... grapbic, electronic, or mechanical including photocopying, taping, or information storage and retrieval
systems ... without the express written consent of Intel Corporation. The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, iucluding, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation
makes no commitment to update or to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to restrictions
stated in Intel's software license agreement. Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subpara
graphs (c)(I)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule
vard, Santa Clara, CA 95052-8119. For all Federal use or contracts other than DoD, Restricted Rights under FAR 52.227-14, ALT. m shall apply.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

286 i386 Intel iPSC
287 i387 Intel386 Paragon

i486 Intel387
i487 Intel486
i860 Intel487

Other brands and names are the property of their respective owners.

ii

• • • • • • • • • • •
I

I

• • • • • • • • • • • • • • • • • • •

n
o

•
D

D

111

D
I]

I~

lJ

[J

I:)

[]

[J

U

IJ

IJ

IJ

IJ

IJ

I;]

IJ

IJ

IJ

II

• • •

WARNING
Some of the circuitry inside this system operates at hazardous energy and
electric shock voltage levels. To avoid the risk of personal injury due to
contact with an energy hazard, or risk of electric shock, do not enter any
portion of this system unless it is intended to be accessible without the use
of a tool. The areas that are considered accessible are the outer enclosure
and the area just inside the front door when all of the front panels are in
stalled, and the front of the diagnostic station. There are no user service
able areas inside the system. Refer any need for such access only to tech
nical personnel that have been qualified by Intel Corporation.

CAUTION
This equipment has been tested and found to comply with the limits for a
Class A digital device, pursuant to Part 15 of the FCC Rules. These limits
are designed to provide reasonable protection against harmful interfer
ence when the equipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio frequency energy and,
if not installed and used in accordance with the instruction manual, may
cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own
expense.

LIMITED RIGHTS
The information contained in this document is copyrighted by and shall re
main the property of Intel Corporation. Use, duplication or disclosure by
the U.S. Government is subject to Limited Rights as set forth in subpara
graphs (a)(15) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule
vard, Santa Clara, CA 95052. For all Federal use or contracts other than
000 Limited Rights under FAR 52.2272-14, ALT. III shall apply. Unpub
lished-rights reserved under the copyright laws of the United States.

iii

iv

• • •
Il

I

• • • • • •
I

I

• • • • • • • • • • • • • • • • • • •

• • •
II

n
n
n
o
G

n
n
r:
£:

Ij

I:]

[j

I]

Ij

I:J

IJ

IJ

11J

IJ

1:1
I]

n
o

• • • •

Preface

This manual describes the Paragon™ System Interactive Parallel Debugger (IPD) commands. These
commands are available when you are running the debugger. You issue the debugger commands at
the IPD prompt.

For a description of how to use the Interactive Parallel Debugger, refer to the Paragon TM System
Application Tools User's Guide

In this manual, "operating system" refers to the operatihg system that runs on the nodes of the
TM

Paragon _ supercomputer.

Organization
This manual contains a "manual page" for each command supported by IPD. The manual pages are
presented alphabetically. Each manual page provides the following information:

• Command syntax, including all arguments.

• Descriptions of all command arguments.

• A description of what the command does.

Appendix A shows methods used while debugging applications that are programed in the host-node
model.

Constants
A number of the IPD commands involve specifying an address or value. To specify an address or
value in a number base other than decimal, format the number using the rules of the somce language
you are working with. For example, octal numbers in Fortran sources have a "0" character (zero)
suffix and hex numbers have an "X" suffix. Using C or C++ somces, octal digits have a "0" prefix
and hex numbers have a "Ox" prefix. Assembly language programs may be different-refer to the
reference manual for yom assembler for information.

v

.~~----------~-------

Preface Paragon TM System Interactive Parallel Debugger Reference Manual

Notational Conventions
This manual uses the following notational conventions:

Bold

Italic

Identifies command names and switches, system call names, reserved words,
c++ class names, and other items that must be used exactly as shown.

Identifies variables, filenames, directories, processes, user names, and writer
annotations in examples. Italic type style is also occasionally used to
emphasize a word or phrase.

Plain-Monospace
Identifies computer output (prompts and messages), examples, and values of
variables. Some examples contain annotations that describe specific parts of
the example. These annotations (which are not part of the example code or
session) appear in italic type style and flush with the right margin.

Bold-Icalic-Monospace
Identifies user input (what you enter in response to some prompt).

Bold-Honospace

}

Identifies the names of keyboard keys (which are also enclosed in angle
brackets). A dash indicates that the key preceding the dash is to be held down
while the key following the dash is pressed. For example:

<Break> <s> <Ctrl-Alt-Del>

(Brackets) Surround optional items.

(Ellipsis dots) Indicate that the preceding item may be repeated.

(Bar) Separates two or more items of which you may select only one.

(Braces) Surround two or more items of which you must select one.

Applicable Documents
For more information, refer to the Paragon™ System Technical Documentation Guide.

vi

• • • • • • • • • • •
I:

• • •
• • • • • • • • • • • •
• • • • •

II

• •
D

D

D

D

I~

E

I:J
(j

1 ,
L!

IJ
1'''1

;J

[J

IJ

1'9

:~

I:
1:1

IJ
Ij

• • • •

Paragon 1M System Interactive Parallel Debugger Reference Manual Preface

Comments and Assistance
Intel Scalable Systems Division is eager to hear of your experiences with our products. Please call
us if you need assistance, have questions, or otherwise want to comment on your Paragon system.

France Intel Corporation
1 Rue Edison-BP303

U.S.AJCanada Intel Corporation
Phone: 800-421-2823

Internet: support@ssdJntel.com

United Kingdom Intel Corporation (UK) Ltd.
Scalable Systems Division
Pipers Way

78054 St. Quentin-en-Yvelines Cedex
France

Swindon SN3 IRJ
England

05908602 (toll free)

Intel Japan K.K.
Scalable Systems Division
5-6 Tokodai, Tsukuba City
Ibaraki-Ken 300-26
Japan
0298-47-8904

0800212665 (toll free)
(44) 793 491056
(44) 793 431062
(44) 793 480874
(44) 793 495108

Germany Intel Semiconductor GmbH
Dornacher Strasse 1
85622 Feldkirchen bei Muenchen
Germany
0130813741 (toll free)

World Headquarters
Intel Corporation

Scalable Systems Division
15201 N.W. Greenbrier Parkway

Beaverton, Oregon 97006
U.S.A.

(503) 677-7600 (Monday through Friday, 8 AM to 5 PM Pacific Time)
Fax: (503) 677-9147

If you have comments about our manuals, please fill out and mail the enclosed Comment Card. You
can also send your comments electronically to the following address:

techpubs@ssd.intel.com
(Internet)

vii

Preface Paragon TM System Interactive Parallel Debugger Reference Manual

viii

• • •
U

II

• • • • • •
I

I:

• • • • • • • • •
I

• • • • • • • • •

D

B

a
D

D

o
n
c
I:

•
'""1

, cJ

I "" , I
.J

I~

I';

IJ

IJ

IJ

(j

EJ

• • • •

Table of Contents

ALIAS ... 1

ASSiGN ... 3

BREAK .. 10

COMMSHOW .. 15

CONTEXT ... 20

CONTINUE '" .. 25

CORELOAD .. 27

DiSASSEMBLE ... 33

DISPLAY ... 37

EXEC .. 46

EXIT .. 48

FLUSH .. 49

FRAME .. 51

HELP ... 55

INSTRUMENT ... 59

KILL ... 68

LiST ... 71

LOAD .. 76

LOG .. 79

MORE ~ .. 80

MSGQUEUE ... 81

MSGSTYLE ... 85

PROCESS ... 86

ix

.. _----_ .. _._ .. _._._--_. __ _._---_. __ ... _-----

Table of Contents Paragon™ System Interactive Parallel Debugger Reference Manual

QUiT .. 90

RECVQUEUE ... 91

REMOVE ... 94

RERUN ... 96

RUN .. 98

SET ... 100

SiGNAL ... 102

SOURCE ... 105

STATUS .. 107

STEP ... 110

STOP .. 112

SYSTEM ... 114

THREADS ... 115

TRACE .. 117

TYPE ... 122

UNALIAS....................... 126

UNSET .. 127

WAIT ... 128

WATCH ... , 130

Appendix A
Using IPD With Host/Node Models

Debugging HostINode Programs on Paragon ™ Systems .. A-1

Example ... A-1

Source Code Examples .. A-5

PARENT.C .. A-5

CHILD_HOST.C .. A-6

CHILD_NODE.C ... A-6

• • • • • • • • • •
•
I'

a

• • • • • • • • • • • • • • • • • •
•

R

n
a
D

o
o
D

1:1

rl
.:J

I ·.,.;
· .J

I:
IJ

I:
1-1

J

IJ

IJ

I~

I!J

D

•
II

•

Paragon TM System Interactive Parallel Debugger Reference Manual IPD Commands

ALIAS ALIAS

Display or set aliases.

Syntax

Arguments

Description

alias [alias_name [command_string]]

A string (the first character must be a letter) that you choose to represent a
command.

command_string The !PO command string that the alias_name represents. All of the text following
the alias_name to the end of the alias command line, including any spaces, are
part of the command_string. To include the pound sign ("#"), semicolons, a
non-substituting dollar sign or a blackslash, precede them with a backslash
character (''\'').

An alias is a character string of your choice that you define to use in place of an !PO command string.
Usually, aliases are abbreviations, chosen to save keystrokes. Input on a command line is matched
with the list of aliases before it is compared with the !PO command list. A recursive alias definition
(an alias that uses the same alias in its definition) is flagged as an error when you use the alias.

Alias arguments that begin with a dollar sign ("$") are substituted for the value of the variable they
reference. when the alias is defined. To delay the substitution until the alias is used, escape the dollar
sign by preceding it with a backslash character (''\$'').

Entering the alias command with no arguments lists the current !PO aliases. When you issue the
command with the alias_name argument alone, the command displays the definition of that
alias_name. To define a new alias or redefine an existing alias, specify the alias_name followed by
the command_string that defines it.

Use the unalias command to delete an alias. The unalias and unset commands are the only
commands that cannot be given an alias.

-.----... -~--~-~-------.----. --.-~.-.-~~-- ---.------.------ ... ----~-.... -.-~~~~~

IPO Commands Paragon 1M System Interactive ParaHel Debugger Reference Manual

ALIAS (cont.) ALIAS (cont.)

Examples

1. Define an alias for the step command:

ipd > alias s step

2. Define an alias for the commonly used command pair continue;wait:

ipd > alias ow continue\;wait

3. Define an alias for a command and one of its switches:

ipd > alias x exec -ecbo

4. Display the current aliases:

ipd > alias
Alias Command String
====== ==============
x exec -echo
cw continue i wait
s step

See Also

unalias, set, unset

2

• • • • • •
•

D ..
•
D

D

n
o
1"1

. .iii:!

I~

IJ

IJ

IJ
fj

I)

c
o

• • •

Paragon™ System Interactive Parallel Debugger Reference Manual IPD Commands

ASSIGN ASSIGN

Assign a value to a program expression, address, or register .

Syntax

Arguments

Assign a value to an expression containing variables in the current scope of context:
assign [context] expression [,count] = expression

Assign a value to an expression containing global or static C variables:
assign [context] fileU expression [,count] = expression

Assign a value to an expression containing a local procedure variable:
assign [context] [fileU]ProcedureO expression [,count] = expression

Assign a value to an expression containing variables local to a block in C or C++:
assign [context] [fileU] #line expression [,count] = expression

Assign a value to a program address:
assign [context] [-size_switch] address [:addressl,count] = expression

Assign a value to a register:
assign [context] [-size_switch] register_switch = expression

context The context argument specifies the context as a list of processes using either NX
or MPI process naming conventions. An NX process consists of a node number
and ptype. An MPI process consists of a communicator and rank. The node
number, ptype, and rank may be expressed as a single value, a comma-separated
list, a range, or a combination thereof. The keyword all may be used in place of
any of these values as well. The special value host may be used in lieu of a process
name to specify the controlling process(es) running in the service partition.

(host)
(host: {all I ptypelist})
({ all I nodelist} : {all I ptypelist})
(communicator: {all I ranklist})

For more information, see the context command.

3

fPO Commands

ASSIGN (cont.)

file

procedure

line

4

----._-_ _. -----~ ._------------

Paragon "1M System Interactive Parallel Debugger Reference Manual

ASSIGN (cont.)

The optional file argument is the name of the source module in which the variable
resides. To refer to a file other than the location of the current execution point,
prefix the variable name with the name of the file where it resides. When you refer
to a procedure, you may omit the file name, unless there are duplicate procedure
names; because IPD can find the source file from the symbol table information.
Thefile argument must end with braces ({}).

The optional procedure argument is the name of the procedure in which the
variable resides. You need to specify the procedure or line number when the
execution point is not in the same procedure as the variable. The procedure
argument must end with a pair of parentheses (0).

For C++, procedure names may include operator functions, such as operator+O,
operator new(), or operator int *0. The operator names must include the
"operator" keyword. You may also preface the procedure name with class
information and may include argument types to distinguish between overloaded
functions. The syntax is:

[[class]:: [class::] ...]procedure([type[,type] ...])

class::

type

The name of the C++ class in which a procedure is a
member function. Use the "::" without a class name to
refer to a global procedure that is hidden by a member
function in the current scope. Specify nested classes as
class1: :class2::

Any legal C++ type specification, such as int,jloat *,
or clulr (*)(). Argument types may be omitted unless
the procedure name is overloaded. For overloaded
procedure names, you need only to specify enough
arguments to uniquely identify the intended procedure.
An error is reported when then procedure name is
ambiguous.

A line number from which the variable that you are specifying is accessible. You
only need to specify a line number if the variable that you are interested in is
hidden by another variable with the same name in the current scope. Specifying
any line number from which the variable is accessible allows IPD to find the
variable.

•

..
a ..
o
n
D

o

I~

I]

[J

Ij

[J

I~

1-:

IJ

IJ

IJ

IJ
I)

1"'1

"

II

•
II

•

Paragon TM System Interactive Parallel Debugger Reference Manual IPD Commands

ASSIGN (cont.)

variable

count

ASSIGN (cont.)

The required variable argument is the symbolic name of the variable to which you
want to assign a value. Alternatively, any expression that can appear on the left
side of an assignment may be used in place of Ii simple variable name. If you
specify an array name without a subscript, and IPD can determine the size of the
array, each element in the array is assigned value.

For C, C++, or Fortran programs, IPD follows the scoping rules of the language
in use. For assembly language programs, you can use symbolic names if you have
used the proper assembler directives to produce the symbolic debug information
and IPD will use C scoping rules. IPD looks for variables in the following places,
in order:

• In the current code block.

• In the current procedure.

• For C++ applications, IPD searches for class members next.

• In the static variables local to the current file.

• In the global program variables.

To specify variables not in the current scope, prefix the variable name with the
fileO, procedure() and/or #line qualifiers. C++ class member variables may also
be prefaced with the class name, as follows:

[[class]:: [class::] ...]variable

Use language-specific syntax to specify a variable. For example, in Fortran you
would specify an element of a two-dimensional array as a(I,I); in C or C++, it
would be a[I][I].

The optional count argument is a positive integer that specifies the range of an
array variable or address. Designate the beginning array element or address
followed by a comma and the count; for example, x(10),10, or 0x208,8. This
allows you to assign the same value to multiple contiguous elements or addresses.

5

IPO Commands

ASSIGN (cont.)

address

register_switch

expression

6

Paragon TN System Interactive Parallel Debugger Reference Manual

ASSIGN (cont.)

The size_switch switch is an option you can use when you assign a value to an
address. It specifies how many bytes (1, 2, 4, or 8) are to be assigned to the given
address. The size_switch command-line switch may be one of the following:

-byte
-short
-long -
-double

1 byte
2 bytes
4 bytes
8 bytes

If no size_switch is specified when assigning to an address, 4 bytes will be written
to that location.

The address argument is a valid memory address to which you want to assign a
value. You can specify a range of addresses with beginning and ending addresses
(for example 0x208:0x21b) or with a starting address and the number of bytes in
the range (for example Oxl08,20).

The register _switch switch argument assigns a value to a register or a
floating-point register pair. The value must be numeric. The default size for
single-word registers is -long. The default may be overridden with the -double
switch-size switch argument to assign to a floating-point register pair. Similarly,
the default size is -double for double-word registers (-Kl, -KR, -T), but can be
overridden with -long. Other size specifications (-byte and -short) are not
allowed.

Always specify the even-numbered register of a floating-point register pair. The
register switches are orO, -r1, -sp, -fp, and -r4 through -r31 for the integer
registers, and oro through -01 for the floating-point registers. You may also assign
to the dual-operation floating-point registers, -Kl, -KR and-T, and to the control
registers, -psr, -epsr, -fir, -fsr, and -db. (!PD reports a warning if you try to
change the supervisor bits of the control registers.)

The expression representing the value that you want to assign. IPD evaluates
expressions containing the following constructs:

constants

variables

All constant types except for Fortran Hollerith
constants.

All basic and derived types, except for Fortran unions;
ClC++ bit fields; and register variables.

• • • • • • • • • • •
I:

a
• • • • • • • • • • • • • • • • • • •

D

D

R

o

IE

I]

I~

I~J

I:l

IJ

I:J

I]

1-'1
, J

[J

IJ

I:l

II

• • •

Paragon 1M System Interactive Parallel Debugger Reference Manual IPD Commands

ASSIGN (cont.) ASSIGN (cont.)

Description

operators All Fortran operators, except for function calls and the
assignment operator (=). Fortran intrinsic functions
are not supported, except for the locO function. All
C/C++ operators except the assignment operators (=,
*=, %=, +=,1=, -=, «=, »=, &=, 1=, "=), function
calls, comma(,) and type casts. Overloaded C++
operators, delete operators, and new operators are not
supported.

Values are converted, using C conversion rules, to the type of the variable being
assigned. In C or C++ sources, you must enclose a character in single quotes
(,character') and a string value in double quotes ("string"). Fortran strings may
be enclosed either in single or double quotes.

The assign command changes the value of a variable for the current run. If you re-run the program
with the l"UIl or rerun commands, the values of all variables are reset to their original values.

When specifying a variable, use the same language syntax convention as that of the source language.
For example, to specify a Fortran array element, you would use names(l); for a C or C++ array
element, names[1].

To specify a range of addresses, you can use either the address:address form or the address,count
form, not both.

You cannot assign values to a structure or union as a whole; you must specify the individual
members of a structure or union one at a time.

The assign command cannot be used while examining core files.

7

IPD Commands Paragon System Interactive Parallel Debugger Reference Manual

ASSIGN (cont.) ASSIGN (cont.)

Examples

8

1. Assign a new value to the variable nbmodes in the current scope, using a context different from
the default:

(all:O) > assign (3:0) nbrnodes=3
(all:0) > disp nbrnodes

** gauss.f{}shadow()#18 nbrnodes **
***** (0 •• 2:0) *****
nbrnodes = 0

***** (3: 0) *****
nbrnodes = 3

2. Assign a new value of the expression ''node+8'' to the variable iam in the procedure shadowO,
using the current context:

(3:0) > assign sbadow()iam = node+B
(3:0) > display sbadow()iam

** gauss.f{}shadow()#26 iam **
***** (3: 0) *****
iam = 11

3. Assign a new value to register 16:

(3:0) > assign -r16=2
(3:0) > display -r16

***** (3: 0) *****
r16 Ox00000002 (2)

4. Assign a new value to the variable i in the C++ member function queen::firstO.

(3:0) > assign queen::first()i=2
(3:0) > display queen::first()i

** queen.C{}queen::first()i **
***** (3: 0) *****

i = 2

•

B

II

•
D

o
o
n
I~

I]

IJ
(J

fj

[j

I~

a

• • • •

Paragon TM System Interactive Parallel Debugger Reference Manual IPD Commands

ASSIGN (cont.) ASSIGN (cont.)

See Also

5. Assign a new value to the variable r in the C++ member function queen::row(int). Note that
rowO may be overloaded.

(3:0) > assign queen::row(int)r=8
(3:0) > display queen::row(int)r

** queen.C{}queen::row(int)r **
***** (3: 0) *****

r = 8

6. Assign a new value to the variable col in the C++ class queen. Note that there may be other
variables named col (local or global) that are visible within the current scope.

(3:0) > assign queen::col=8
(3:0) > display queen::col

** queen.C{}queen::col **
***** (3:0) *****

col = 8

7. Assign a new value to the static member variable board in the C++ class queen.

display

(3:0) > assign queen::board=2
(3:0) > display queen::board

** queen.C{}queen::board **
***** (3: 0) *****

board = 2

9

IPD Commands Paragon TM System Interactive Parallel Debugger Reference Manual

BREAK BREAK

Set a breakpoint or display current breakpoints.

Syntax

Arguments

10

Display breakpoint information:
break [context] [-full]

Set code breakpoint at procedure entry:

break [context] [fiZeU] procedureO [-after count]

Set code breakpoint at source line number:
break [context] [fiZeU] fprocedure()] #line [-after count]

Set code breakpoint at instruction address:
break [context] address [-after count]

context

-full

file

The context argument specifies the context as a list of processes using either NX
or MPI process naming conventions. An NX process consists of a node number
and ptype. An MPI process consists of a communicator and rank:. The node
number, ptype, and rank: may be expressed as a single value, a comma-separated
list, a range, or a combination thereof. The keyword all may be used in place of
any of these values as well. The special value host may be used in lieu of a process
name to specify the controlling process(es) running in the service partition.

(host)
(host: {alii ptypelist})
({alii nodelist} : {alIlptypelist})
(communicator: {alii ranklist})

For more information, see the context command.

Displays breakpoint information in a long or ''full'' format with more room for
class, file and procedure names.

The file argument name of the source module in which the procedure or line
resides. To refer to a file that is not where the current execution point is located,
prefix the line number withfile. When you refer to a procedure, you may omit the
file name unless there are duplicate procedure names. The file argument must end
in braces ({}).

- ----~.-~---------~----~~-

• • • • • • •
• • • • •
• •
• • • •
I:

•
• • • • • • • • • • • •

a

• •
D

n
D

II

111

'

·."'1
,d

IJ

IJ
~. b .",

· . ..1

c
[J

IJ

I]

[J

IJ

IJ
1"'1

.\J

c

• • • •

Paragon System Interactive Parallel Debugger Reference Manual IPD Commands

BREAK (cont.)

procedure

-after count

#line

BREAK (cont.)

The optional procedure argument is the name of the procedure at which you want
to set the breakpoint, or the procedure in which the line you are specifying resides.
If you set a breakpoint at a procedure name, execution is halted just before the first
executable line in the procedure, or at the entry point if the first executable line
doesn't have a number. The procedure argument must end with a pair of
parentheses (().

For C++, procedure names may include operator functions, such as operator+O,
operator new(), or operator int *0. The operator names must include the
"operator" keyword. You may also preface the procedure name with class
information and may include argument types to distinguish between overloaded
functions. The syntax is:

[[class]:: [class::] ...]procedure([type[,type] ...])

class::

type

The name of the C++ class in which a procedure is a
member function. Use the "::" without a class name to
refer to a global procedure that is hidden by a member
function in the current scope. Specify nested classes as
class1: :class2::

Any legal C++ type specification, such as int,jloat *,
or char (*)(). Argument types may be omitted unless
the procedure name is overloaded. For overloaded
procedure names, you need only to specify enough
arguments to uniquely identify the intended procedure.
An error is reported when then procedure name is
ambiguous.

The count argument is a positive integer indicating the number of times this
breakpoint is encountered before execution is halted. The default count is 1. For
example, if you have a Fortran loop defined by the following

DO 10 I = 1,100

and you want IPD to break on every fifth iteration, set the breakpoint on a line in
the body of the loop and include the -after 5 switch argument.

The line argument is the source line number at which you want to set the
breakpoint. The line number must be preceded with a pound sign (#). In general,
the statement must be executable. For example, you may not set a breakpoint on
a Fortran FORMAT statement, a comment, or an empty line. The process breaks
just before executing the specified statement. To qualify the line number, use the
fileU and/or procedureO qualifiers.

11

IPD Commands Paragon TM System Interactive Parallel Debugger Reference Manual

BREAK (cont.) BREAK (cont.)

Description

12

address The address argument specifies the address at which to set a breakpoint, which
must be an instruction address and not a data address. (Use the watch command
to set a watchpoint on a data address.) The process breaks just before executing
the instruction.

The break command sets a breakpoint at a specific location in the application that's being debugged.
When break is used without arguments, it displays the current breakpoints that are set.

When you define a breakpoint, it takes on either the context that you assign it, or the default context.
A breakpoint's context denotes the nodes and processes to which it applies. When IPD displays
breakpoints, only those breakpoints inthe current context are listed.

Entering the break command with no arguments displays all breakpoints in the current context. You
may also use the break command with the context argument to display all breakpoints in the
specified context. Following is an example of the break command display:

(all:O)

Bp # File name Procedure Breakpoint Condition Bp context
========== ========== ====================== ==========

1 gauss.f shadow Line 150 (all:O)

In the preceding display, the first line shows the current context for the break command. The labeled
columns denote the following:

Bp#

Filename

Procedure

The number of each breakpoint. The breakpoint number is used as an
argument to the remove command.

The name of the source file associated with the breakpoint.

The name of the procedure where the code or variable is located. For global
or static variables the "Procedure" field is set to "<global>" or "<static>".

Breakpoint Condition
The condition under which the breakpoint will occur. The after clause is not
displayed unless the count is greater than 1.

• • • • • • • • • • • •
I

• • • • • • • • • • • • • • • • • • •

o

• ..
II

o
D

n
I:

I~

r!
.... 1

1",
,.1

1:1

I:J

1:1

lJ
(9 . ..J

IJ

I~

I '" .J

IJ

IJ

IJ

r:J

IJ

G

II

• • •

Paragon ™ System Interactive Parallel Debugger Reference Manual IPO Commands

BREAK (cont.)

Bp context

BREAK (cont.)

The breakpoint context. If the text overflows the "File name", "Procedure"
and "Breakpoint Condition" columns, the right -most characters of the text are
truncated. However, if the context overflows the "Bp context" field, the
display for the breakpoint is continued on the next line. This is denoted by
blanks in all fields except the "Bp context" field, which contains the
continued breakpoint context.

In some cases, the file and procedure names may be long enough that truncating them is not a good
option. In that case, you may use the -full switch to force IPD to use an expanded format for the
break display. The expanded format includes separate lines for the file name, procedure name, and
breakpoint condition:

(all:O)

Bp #

File name
Procedure
Breakpoint Condition

======================================
1 gauss.C

interval::area(void)
line 150

Bp context

==========
(all:O)

Breakpoints and tracepoints are not allowed at the same location simultaneously. IPD issues an error
message if this is attempted.

If a single C statement consists of multiple source lines, set the breakpoint at the ending line. If a
single C++ statement consists of multiple source lines, set the breakpoint at the starting line. For a
multiple-line Fortran statement, set the breakpoint on the first line.

When you set a breakpoint on a function, as in this example:

break ~_function()

the breakpoint is set on the first line of the function, if the function was compiled with symbols. If
it was not compiled with symbols, or line number information has been stripped, the breakpoint is
set on the function's entry point. As a result, if you set a breakpoint on a function, and then attempt
to set a breakpoint on the first executable line of the same function, you will get a ''breakpoint
already exists" error.

This command returns an error if it is used while examining core files.

13

-----------.-------------

IPO Commands Paragon TM System Interactive Parallel Debugger Reference Manual

BREAK (cont.) BREAK (cont.)

• • • • • • • • • • • •
I

Examples

See Also

14

1. Set a breakpoint at the procedure shadowO in the current source file for node 0, process type 0
only:

(0:0) > b sbadow()

2. Set a breakpoint at line number 175 in the file gauss.f. Set the breakpoint so that the break occurs
at the beginning of the tenth execution of the line 175 for process type 0 on nodes 1, 2, and 3:

(all:O) > break (1 •• 3:0) gauss.f{}#175 -after 10

3. Set a breakpoint at line number 180 in the source file gauss.f.

(all:O) > break gauss.f{}#lBO

4. Set a breakpoint at the C++ member function pivot(int*) for the class row. Note that there may
be other functions named pivotO:

(all:O) > break row::pivot(int*)

5. Set a breakpoint at the C++ operator function ++ for class row:

(all:O) > break row::operator++()

6. Display the current breakpoints. The break command displays those breakpoints that have a
process in the current context. The display context is shown on the line before the table and the
context of the breakpoint is shown in the rightmost column of the display:

(0:0» break (all:O)
(all:O)
Bp # File name Procedure Breakpoint Condition
---- =========

1 gauss.f
3 gauss.f
4 gauss.f

trace, watch, step

=========
shadow
shadow
shadow

====================
Call shadow
Line 175 after 10
Line 180

Bp context
==========

(0: 0)

(1. .3: 0)
(all:O)

• • • • • • • • • • • • • • • • • •
•

D

II

D

D

D

I!

IE
I:
("I

.. I

n
IJ

I::
IJ
[J

I:

IJ

IJ

IJ

1.:1

IJ

IJ

IJ
Ij

(j

(j

II

• • •

.. -.- .. --.---".------.------~ .. ~.--- -----_.

Paragon 1M System Interactive Parallel Debugger Reference Manual IPO Commands

COMMSHOW COMMSHOW

Display the handles (names) for MPI communicators assigned by the debugger.

Syntax

Arguments

Ust all handles for communicators:

commshow

Display the handle for a communicator specified by a variable or expression in the current scope of
context:
commshow [context] expression

Display the handle for a communicator specified by an expression containing global or static C
variables:
commshow [context] filen expression

Display the handle for a communicator specified by an expression containing local procedure
variables:

commshow [context] [filen] procedureO expression

Display the handle for a communicator specified by an expression containing variables local to a
block in C or c++:
commshow [context] [lilen] #line expression

Display the handle for a communicator specified at a memory location:
commshow [context] address

context The context argument specifies the context as a list of processes using either NX
or MPI process naming conventions. An NX process consists of a node number
and ptype. An MPI process consists of a communicator and rank. The node
number. ptype. and rank may be expressed as a single value. a comma-separated
list. a range. or a combination thereof. The keyword all may be used in place of
any of these values as well. The special value host may be used in lieu of a process
name to specify the controlling process(es) running in the service partition.

(host)
(host: {all I ptypelist})
({all I nodelist} : {aIllptypelist})
(communicator: {all I ranklist})

For more information. see the context command.

15

IPD Commands

COMMSHOW (cont.)

ftleU

procedureO

#line

address

expression

16

Paragon 1M System Interactive Parallel Debugger Reference Manual

COMMSHOW (cont.)

To specify a communicator using an expression containing global or static C or
c++ variables in a source file other than the source file of the current context's
execution point, you must qualify the variables with the ftleU prefix.

To specify a communicator using an expression containing local variables in a
procedure other than the procedure of the current context's execution point, you
must qualify the variables with the procedureO prefix. The ftleU prefix can be
omitted since IPO can find the source file from the symbol table information.
However, if you have procedures with the same name in two different source
modules then the name must be fully qualified with aftleU prefix.

For C++, procedure names may include operator functions such as operator+O,
operator newO, or operator int *0; the operator name must include the
"operator" keyword. Also for C++, you may preface the procedure name with
class information and may include argument types to distinguish between
overloaded functions. The full syntax is as follows:

class::

type

[[class]::[class::] ...]procedure([type[, type] ...])

The name of the C++ class in which a procedure is a member
function. Use :: without a class name to refer to a global procedure
that is hidden by a member function in the current scope. Specify
nested classes as classl::class2::

Any legal C++ type specification such as int,jloat *, char (*}(), etc.
Argument types may be omitted unless the procedure name is
overloaded. For overloaded procedure names, you need only specify
enough arguments to uniquely identify the desired procedure. An
error is reported when the procedure name is ambiguous.

A line number from which the variable that you are specifying is accessible. You
only need to specify a line number if the variable that you are interested in is
hidden by another variable of the same name in the current scope. In that case,
specifying any line number from which the desired variable is accessible allows
IPD to find the variable.

Display the handle of the communicator pointed to by the contents of the memory
location specified by the address argument.

The expression representing the location (address) of the communicator whose
handle you want to display.

• • • • • • • • • • •
I:

I:

• • • • • • • • • • • • • • • • • • •

II

• •
II

D

D

n
I~

D

I~

I]

1"1
.J

IJ

C

I.:
I.~j · .J

IJ

Ij

IJ

Ij
G

• • • •

Paragon"" System Interactive Parallel Debugger Reference Manual IPD Commands

COMMSHOW (cont.) COMMSHOW (cont.)

Description

When displaying expressions containing variables, IPD uses appropriate scoping
rules for the language in which you are programming (C, c++ or Fortran). For
Assembly language programs, you can use symbolic names if you have used the
proper assembler directives to produce the symbolic debug information and IPD
will use C scoping rules.

To specify expressions not in the current scope, prefix the expression name with
the file{}, procedureO and/or #line qualifiers. For C++ programs, class member
variables may also be prefaced with the class name(s) as follows:

[[class]:: [class::] ...]variable.

IPD also supports expression evaluation and can handle the following language
constructs:

constants All constant types except Fortran, octal, hexadecimal, and Hollerith
constants.

variables All basic and derived types except Fortran structures, records and
unions; and ClC++ bit fields. Also, register variables are not
supported.

operators All Fortran operators except function calls and the assignment
operator (=). All C/C++ operators except the assignment operators
(=, *=, %=, /=, +=. -=, «=, »=, &=, 1=, 1\=), function calls, comma
(,), and type casts.

Examples of valid ClC++ expressions include the following: "a[i+j] - 3 * k",
"b[3]", "sizeof(int) * 3 - (foo ? i + j : k / 5)".

Examples of valid Fortran expressions include the following: "a(3,k) - f * 5.0",
"iary(7-k*j) / i(12,I,m+2) ** 2".

The commshow command determines the handle (name) assigned to a MPI communicator by the
debugger. The argument supplied to commshow should resolve to a variable of type MPI_Comm,
which has previously been assigned a communicator. Optionally, an address may be specified that
is treated as a pointer to an object of type MPCComm. An error occurs if the specified variable is of
the wrong type or if its contents do not map to a valid communicator. If successful, the name of the
communicator displayed by commshow is suitable for use in a context command or argument.

17

------ ----------------.---.--~------

IPD Commands Paragon TV System Interactive Parallel Debugger Reference Manual

COMMSHOW (cont.) COMMSHOW (cont.)

18

Without any arguments, commshow displays the known list of communicator handles that may be
specified in a context command or argument. The size of the communicator's group and the rank:
(relative to MPl_COMM_WORLD) is displayed along with the handle. The display for
intercommunicators consists of the handle for the intercommunicator followed by the handle for
each of the intracommunicators that comprise it.

When MPI is initialized, several communicators are created automatically. The first is
MPI_COMM_WORLD and it is given the handle COMMWORLD. The others are
MPCCOMM_SELF. Each process within MPI_COMM_WORLD creates its own self
communicator; They are given the handles COMMSELFO, COMMSELF 1 • ... COMMSELFn-I,
where n is equal to the number of processes in MPCCOMM_ WORLD.

Each time an intracommunicator is created using MPI functions like MPCComm_createO,
MPI_Comm_dupO. or MPI_Comm_spUt() the debugger attaches a name to it of the form COMMI.
COMM2, ... in the order that the communicators are created by the application. It is possible for a
communicator to be assigned a different handle from run to run whenever communicators are
created on different processes that do not include all other processes.

Intercommunicators created via MPljntercomm_createO are assigned the names ICOMM 1,
ICOMM2, ... , where the numbering is kept separate from the intracommunicators.

An intercommunicator name may be used in a context command or argument only in conjunction
with a ranklist specification of all. This restriction is caused by the fact that an intercommunicator
and rank: value do not uniquely identify a process when expressed outside of message passing
function calls.

Execution of the call MPCCommJreeO results in that communicator's handle being deleted. If at
anytime a communicator is deleted whose handle is used in an IPD context, the COMMWORLD
handle replaces it.

The commshow command changes slightly when used with core files:

• commshow does not display communicators unless full core dumps exist, because processes
that are part of an MPI application can only be identified if this is the case.

• Only COMMWORLD and COMMSELF communicators appear initially. Then. each time you
use commshow with a new expression for a valid communicator, the debugger creates a handle
for it and adds it to the list of communicators that can be used in context specifications.

• The intracommunicator handles that are displayed for an intercommunicator do NOT show the
handles of the original intracommunicators that created it, as they do for runtime debugging.

• • • • • • • •
• • •
I. .' .-
• •
• • • • • • • • • • • • • • • •

D

n

•
II

D

D

II

IJ

I " , I:'~:

I:
IJ

IJ

IJ

IJ

G

II

• • •

Paragon TM System Interactive Parallel Debugger Reference Manual IPD Commands

COMMSHOW (cant.) COMMSHOW (cant.)

Examples

See Also

1. List the communicators for an MPI application that has executed the creation of several
communicators:

(COMMWORLD:all) > commsbow
Intracommunicators:
Name Size Rank (in COMMWORLD)
======= ----- ===================
COMMWORLD 4 O .. 3
COMMl 4 o .. 3
COMM2 1 2
COMM3 2 0,3
COMM4 1 1

COMMSELF [0 .. 3]

-Intercommunicators:
Name Intracommunicator Pair

=======
ICOMMl
ICOMM2

======================
COMM3 , COMM4
COMM2,COMM4

2. Display the debugger's name for the communicator in variable myFirstComm:

((COMMWORLD:all) > commsbow~PirBtComm
***** (COMMWORLD:O,l,3) *****

** inter2.c{}main()#35 myFirstComm **
myFirstComm = ICOMMl

***** (COMMWORLD:2) *****

** inter2.c{}main()#35 myFirstComm **
myFirstComm = ICOMM2

context, coreload, msgstyle

19

---.-------~~~--~-~~~~-.-~----.----- .--

IPD Commands Paragon 1M System Interactive Parallel Debugger Reference Manual

CONTEXT CONTEXT

Set the debug context, defining the default set of processes and nodes to which debug commands apply.

Syntax

Arguments

20

/

Set the debug context to compute partition processes:
context ({all I nodes I nodelist} : {aIllptypelist})

Set the debug context to the host process (hostlnode model):
context (host)

Set the debug context to service partition processes (hostlnode model):
context (host : {alii ptypelist })

Set the debug context using rank values as process identifiers (MPI applications):
context (communicator: {all I ranklist})

Display the context in which the application was loaded:
context [-pid]

all

nodes

nodelist

When used on the left side of a colon, the all argument specifies all compute
nodes. On the right side of a colon, the all argument specifies all ptypes under
debug on the specified nodes. When used with an MPI communicator all specifies
all ranks within the communicator's group.

The nodes argument is an alias for all (all compute nodes).

The nodelist argument specifies the set of nodes to be used with debug commands.
A single value indicates a single node. You may specify a range of nodes with the
syntax nodel •• node2, where node2 is greater than nodel. Specify a list of nodes
by separating node numbers with commas, using the syntax node, node,
node, ... node. The node specification may include both a range of nodes and a list
of nodes. Rather than a list of nodes, you may use the special value all, which
specifies all compute nodes where loaded processes reside.

I .:
•
• • • • • • • • •
.:

•
•
•
• • • • • •
• •
• • • • •
• • • •

o
a
D

o
n
II

II

11

" ,~

I]

IJ

IJ

~

~

• • • •

Paragon ™ System Interactive Parallel Debugger Reference Manual IPO Commands

CONTEXT (cont.) CONTEXT (cont.)

Description

ptypelist The ptypelist argument is a single value that indicates a process type. You may
specify a range of process types with the syntax ptype 1 •• ptype2, where ptype2 is
greater than ptypel. Specify a list of process types by separating process type
numbers with commas, using the syntax ptype, ptype, ... , ptype. The ptypelist may
include both ranges and lists of process types. Rather than a list of process types,
you may use the special value all, which specifies the process types of all loaded
processes under debug on the specified compute nodes.

host When used by itself, specifies the host (controlling) process in applications using
a host/node model of computation. When used with a ptype specification, refers
to all processes in the service partition.

communicator The debugger-assigned handle for an MPI communicator. Use the commshow
command to see a list of valid handles.

ranklist A rank is an identifier for a process within an MPI communicator's group of
processes. A single value indicates a single process. You can specify a range of
ranks with the syntax rankl •• rank2, where rank2 > rankl. Specify a list of ranks
by separating rank numbers with commas, using the syntax rank, rank, rank, ... ,
rank. The ranklist may include both a range of ranks and a list of ranks.
Alternatively, the special value all may be used to specify all ranks in the
communicator's group.

-pid The -pid switch argument indicates that the ID for each process should be
included in the display.

The default context is first set with the load or coreload command and is displayed as part of the
!PO prompt. For programs compiled with the -ox switch, the load or coreload command picks one
process type created and sets the default context to be all processes sharing that ptype. For all other
programs, the default context is set to host.

The coreload command forms a default context that includes all of the processes whose core files
are being loaded. In this case, the keyword all is used relative to the partition in which the faulting
application was running, not the partition in which the core file analysis is being done. In addition,
when performing core file analysis, the keyword all is allowed even if all of the processes in the
faulting application are not loaded for analysis. A message is printed for those processes without a
core file. This is allowed to provide a shorthand method of referencing a disjoint list of processes
during postmortem debug.

You may change the default context with the context command. When you need to override the
default context for a given command, specify the context as part of the command syntax. This
override is valid only for that command.

21

IPO Commands Paragon ™ System Interactive Parallel Debugger Reference Manual

CONTEXT (cont.) CONTEXT (cont.)

22

A communicator and rank cannot be used to specify a context until after the MPljnit() routine
within an application is executed. Once MPljnit() is executed, context specifications are assumed
to be of the form (communicator:ranklist) until the MPCFinalize() routine is executed. Use of the
keyword all on the right side of the : specifies all ranks in the communicator's group (0 to n-1, where
n is the number of processes in the group). If a node/ptype pair is used to specify a context while
debugging an application initialized for MPI, the node list is interpreted as a list of ranks relative to
MPCCOMM_ WORLD and then converted to its corresponding rank value for whichever
communicator is in the default context. If the process is not a part of the default context
communicator, an error is reported. To force the use of a context as the NX style (node:ptype), use
the command msgstyle. This same command sets the context style back to MPI. When the mode is
set back to MPI, the context reverts back to the communicator that was in the default context when
the switch to the NX mode occurred. If the node list was changed while in the NX mode, so that all
of them do not exist in that communicator, the COMMWORLD communicator is used in the default
context instead. In either case, the list of nodes in the default context at the time the mode is switched
remains the same. Only their rank may change, depending upon which communicator they are being
associated with.

A list of communicator names is obtained from the command commshow. The name
COMMWORLD is always present and represents the predefined communicator
MPCCOMM_ WORLD, which denotes all available processors in the application partition.

Without arguments, the context command displays all loaded processes and their executables.

If the -pid switch is specified, the process ID associated with each node/ptype pair is included in the
display. For host/node applications (not compiled with -ox), the host process information is included
in the display.

When debugging a host/node application, a combined host/node context can be created by
specifying the nodelist explicitly (not using "all"). For example, if an application is loaded on four
nodes, the host node ID is 4, but the "all" includes only nodes 0 .. .3. Specifying 0 .. .4 as the node list
includes the host in the context. Be careful when including the host node in the node list, because it
does not share a common ptype with the other nodes and many commands may return errors.

The context command can only refer to existing processes under debug.

The coreload command forms a default context that includes all of the processes from core files that
are being loaded. In this case, the keyword all refers to the partition in which the faulting application
was running, not the partition where IPD is running.

• • •
•• • • • • • • • .-
.:

• • • • • • • • • • • • • • • • • • •

o
n
n
D

n
n
D

I~

I !I
",I

IJ
• "1
, -J

I:]

C

I::

I~

IJ

(j

~

C

II

II

II
II

- .. ------------ ----- ------

Paragon TM System Interactive Parallel Debugger Reference Manual IPD Commands

-CONTEXT (cont.) CONTEXT (cont.)

Examples

1. Set the context to include process type 0 on all compute nodes:

(host) > context (all:O)
(all:O) >

2. Set the context to the controlling (host) process:

(all:O) > context (bost)
(host) >

3. Set the context to include all processes in the MPCCOMM_ WORLD group:

(host) > context (COMMWORLD:all)
(COMMWORLD:all) >

4. Change the context to include only the first 4 processes of the communicator:

(COMMWORLD:all) > context (COMM1:0 •• 3)
(COMM1 : o .. 3) >

5. Display the context for a host/node application:

(0:0» context

Nodes

==========
(0 •• 3)

4

Ptype
=======

o
o

Program
=======
gauss.nodes
gauss.host

6. Display the host/node application context with process IDs:

(all:O) > context -pid

pid (Node:Ptype) Program

========== ============ =======
35678 (0:0) gauss
35679 (1: 0) gauss
35680 (2: 0) gauss
35681 (3: 0) gauss
45635 (4: 0) gauss.host

23

IPD Commands

CONTEXT (cont.)

See Also

commshow, msgstyle

24

Paragon 1M System Interactive Parallel Debugger Reference Manual

CONTEXT (cont.)

.' • • • • • • •
• • •
a

•
• • • • • • • •
• •
• • • • • • • • •

B

a
D

o
o
o
D

I~

Cl

I~

I]

1:1

1:1

ITI .-':
.o!iI.J

13
I.:

IJ

1-.-'_-, .:.i ,-..,
~J

IJ
I]

1"'1
,:J

Ij
~

D

• • •

Paragon System Interactive Parallel Debugger Reference Manual IPD Commands

CONTINUE CONTINUE

Continue execution of processes stopped by command or breakpoint in the current context.

Syntax

Arguments

Description

continue [context] [-nosignal]

context

-nosignal

The context argument specifies the context as a list of processes using either NX
or MPI process naming conventions. An NX process consists of a node number
and ptype. An MPI process consists of a communicator and rank:. The node
number, ptype, and rank: may be expressed as a single value, a comma-separated
list, a range, or a combination thereof. The keyword all may be used in place of
any of these values as well. The special value host may be used in lieu of a process
name to specify the controlling process(es) running in the service partition .

(host)
(host: {all I ptypelist})
({ all I nodelist} : {all I ptypelist})
(communicator: {all I ranklist})

For more information, see the context command.

Deliver no signal upon execution. By default, IPD delivers any pending signal.

The continue command resumes execution of stopped processes. The processes may be stopped as
the result of a stop command or by the action of breakpoints or watchpoints. It may also be used to
start processes that have just been loaded.

After the processes have been continued, IPD returns control to you by issuing the next IPD prompt.
To cause IPD to delay returning control to you until all processes in the context stop (terminate or
hit breakpoints), use the wait command.

If a process is currently stopped at a signal, IPD delivers that signal by default when the process is
restarted. The -nosignal switch can be used to change that default action.

This command may not be used while examining a core file.

25

---------~~

IPD Commands Paragon™ System Interactive Parallel Debugger Reference Manual

CONTINUE (cont.) CONTINUE (cont.)

• •
• •
• • • • • • • • • •
• •
• • • •
• • • • •
• • • • • • •

Examples

See Also

26

1. Continue executing a single process with type 0 on node 1 when the default context is "(all:O)".

(all:O) > continue (~:O)

(all: 0) >

2. Continue all processes in the default context.

(all:O) > continue
(all: 0) >

3. Continue all processes in the default context, delivering no signals.

(all:O) > continue -nosignal
(all:O) >

4. Continue all processes and wait for them to stop before returning a prompt.

(all:O) > continue; wait

run, wait, signal, stop, rerun

D

n
n
D

o
D

o
G

, .. !'i
"

I ,
;~

I~

I]

14 .,J

IJ

I:J

IJ
I ""i

'"
(j

I:
c

• • • •

Paragon TM System Interactive Parallel Debugger Reference Manual IPD Commands

CORE LOAD cORELOAD

Load core files for examination.

Syntax

coreload [-alii-fault I-tirst I-nonfault I context] [core_name] [-pnpartition]
[-sz size]

Arguments

-all

-fault

-first

-nonfault

context

The -all switch selects all core files.

The-fault switch selects core files belonging to faulting processes only. (This is
the default.)

The -fJl"St switch selects the core file of the first process that faulted. An internal
time stamp is used to determine this, not the time stamp on the core files
themselves.

The -nonfault switch selects core files belonging to all non-faulting processes.

The context argument specifies the context as a list of processes using either NX
or MPI process naming conventions. An NX process consists of a node number
and ptype. An MPI process consists of a communicator and rank. The node
number, ptype, and rank may be expressed as a single value, a comma-separated
list, a range, or a combination thereof. The keyword all may be used in place of
any of these values as well. The special value host may be used in lieu of a process
name to specify the controlling process(es) running in the service partition.

(host)
(host: {all I ptypelist})
({all I nodelist} : {a1llptypelist})
(communicator: {all I ranklist})

For more information, see the context command.

The core_name argument specifies the name of a core file or directory. It is used
to override the default name and/or location named core. If a file name is
specified, that file is loaded as a core file. If a directory is specified, a file or
directory named core within that directory is looked for. If that is not found, the
directory specified is assumed to be a renamed core directory and is treated as
such.

27

~ ~- ~--------.-----.----- .. -.. -----------.-----------------

IPO Commands Paragon"" System Interactive Parallel Debugger Reference Manual

CORELOAD (cont.) CORE LOAD (cont.)

Description

28

-pn partition

~ -sz size

The -pn partition switch argument specifies the name of the partition to use for
core file examination. The partition argument is a string representing the name of
a previously created partition in .compute. The default partition is used if this is
not specified.

Restricts the number of nodes to use for core file examination to the value of size.
The size argument is a positive integer that is less than or equal to the maximum
number of nodes in the partition. All nodes in the partition may be used if this is
not specified.

The coreload command loads one or more core files for examination. By default, a file or directory
named core is looked for in the directory specified in the CORE_PATH environment variable, if it
is set, otherwise it is assumed to be in the current directory. If a core directory is found, only the
processes that terminated due to a fault are loaded. The switches -all, -nonfault, and -fll'St change
which group of processes within a core directory are loaded for examination. The core_name
argument overrides the default name and location of core.

After the core files are loaded, the process command is automatically executed to display summary
information about all of the processes that are loaded. The default context is set to include the nodes
and ptype of the processes that are loaded.

Upon completion of the loading of the core files, the process command automatically displays
summary information about all of the processes that are loaded. The default context is set in the same
fashion as for the load command (a single ptype and all nodes on which it is found).

A FUlL core dump (not TRACE) is required to determine whether the application that dumped the
core was using MPI. If MPI was initialized at the time of the fault, the context takes the form of a
communicator and a list of ranks. The communicator will be COMMWORLD and the ranks listed
will be relative to it. Refer to the commshow command for details on the communicator handles
available after a coreload.

The only requirements for the partition chosen for performing core file analysis is that it reside in
the compute partition and contain at least one node. It does not have to be equivalent in size to that
used by the application which faulted. Larger partitions (i.e greater than 1) allow parallel collection
of data to occur and are therefore recommended when examining many core files.

The partition chosen for performing core file analysis must reside in the compute partition and must
contain at least one node. It does not have to be equivalent in size to that used by the application that
faulted. Larger partitions (greater than one) allow parallel collection of data to occur and are
therefore recommended when examining many core files.

• • • • • • • • .' • • ..
.:

• • • • • • • • • • • • • • • • • • •

..
• •
D

D

D

n
IJ

G

I~

I~

I:~

I~

IJ

IJ

IJ

IJ

Ij

II

• • •

Paragon™ System Interactive Parallel Debugger Reference Manual IPD Commands

CORELOAD (cont.) CORELOAD (cont.)

The -pn and -sz switch commands allow control over which partition and how many nodes of a
partition are used for core file analysis. The default partition (determined by the environment
variable NX_DFLT _PARn is assumed if the -pn switch command is not used. All nodes in a
partition may be used if the -sz switch command is not specified. The actual number of nodes used
in a partition will not exceed the number of core files available in a core directory.

After using the coreload command, all references to node numbers and ptYPes should be taken in
the context of the application that dumped the core file(s) being examined.

Once the coreload command is used, commands are limited to those that are not related to executing
code. The help command shows this reduced list when used after a coreload command. To get out
of core file mode either use a load command or empty the list of core files being examined with this
command:

kill (all :all)

Note that reducing the context via the context command is not equivalent to "killing" a core file.
Use the kill command to permanently remove a process's core file from analysis. Use the context
command to temporarily exclude a process from consideration.

Multiple uses of the coreload command are cumulative if they load core files from the same core
directory. The core files specified are added to the list of those available for examination and
duplicates are silently ignored. An asterisk (*) in the process display that completes each core load
indicates the new processes that have been loaded.

NOTE

The default context (as displayed in the prompt) is not
automatically updated to include the new processes. Use the
context command to add them to the default context.

Cumulative uses of the coreload command assume that the same partition name and size should be
used as specified in the initial coreload command, unless a new partition name or size is explicitly
specified via the -pn and/or -sz switch arguments. Changing the debug partition in this fashion
constitutes a new initial core load rather than a cumulative core load.

A parallel core directory is identified by the existence of the allocinfo file. If this file is missing, only
a single core file can be loaded for examination and it is assumed to belong to a non-NX application.

A warning is displayed for core files with a corresponding executable that is newer than the core
file's internal time stamp, or if the executable file cannot be found.

29

\

-- ---- ---------------~------------------~--

IPD Commands Paragon™ System Interactive Parallel Debugger Reference Manual

CORELOAD (cont.) CORELOAD (cont.)

• • • • • • •
•

Examples

30

Use the status, process, and context commands to get more information about the application being
examined after a coreload command completes.

1. Load core files for all faulting processes:

ipd > coreload
*** reading symbol table for

/home/karla/tests/fault/segfault ... 100%
*** scanning core files ...
*** core load complete
Context State Reason Location
======= ===== ====== ========

*(all:O) Signaled SIGSEGV Line 9
(all: 0) >

Procedure

=========
sub1 ()

2. Load only one core file, the first that took a fault. Then add the core file for process (1 :0) for
examination. Note that the default context is not changed by the second coreload command.
The process display indicates that the core file for process (1 :0) has been loaded and can be
added to the default context if desired. The asterisk (*) indicates that this process is newly
loaded:

ipd > core -first
*** reading symbol table for

/home/karla/tests/fault/segfault ... 100%
*** scanning core files ...
*** coreload complete
Context State Reason Location Procedure
======= ===== ====== ========

*(0:0) Signaled SIGSEGV Line 9
(0:0) > core (1:0)
*** scanning core files ...
*** coreload complete
Context State Reason Location

=======
(0:0)

* (1: 0)

(0 :0) >

======
Signaled SIGSEGV
Signaled SIGSEGV

========
Line 9
Line 9

=========
sub1 ()

Procedure

=========
sub1()
sub1()

II

•
II ..
D

D

D

C

1:1

IJ

IJ

I:l

(. .,
",

I]

~ a.,

IJ

(J

IJ

I]

IJ

I:J

IJ

I~

D

•
III

•

Paragon 1M System Interactive Paralle.1 Debugger Reference Manual IPO Commands

CORE LOAD (cont.) cORELOAD (cont.)

3. To load a core file or directory that resides some place other than the current working directory,
specify that directory. If you started the IPD program from within the directory /homeljoe, but
the core directory you want to examine resides in /homeljoe/gauss, enter the following:

ipd > core gauss
*** reading symbol table for /home/joe/gauss/gauss.nx ... 100%
*** scanning core files ...
*** coreload complete
Context State Reason Location

======= ====== ========
* (0: 0)

(0: 0) >
Signaled gauss.f Line 20

Procedure
=========
exchange ()

4. Load the core file of a UNIX application (compiled without the -ox option).

ipd > coreload
*** reading symbol table for /home/karla/apps/myapp ...
*** scanning core files ...

100%

*** core load complete
Context State Reason Location

======= ====== ========
* (host) Signaled SIGSEGV Line 230
(host) >

Procedure

=========
getval ()

5. Load core files for faulting processes on only one node of the default partition. This results in
multiple core files being loaded on a single node for analysis.

ipd > coreload -sz 1
*** reading symbol table for /home/joe/gauss/gausss.nx ... 100%
*** scanning core files ...
*** coreload complete
Context State Reason Location
======= ======

*(all:O) Signaled SIGBUS
(all:O) >

========
Line 20

Procedure

exchange ()

31

IPD Commands Paragon TM System Interactive Parallel Debugger Reference Manual

cORELOAD (cont.) CORE LOAD (cont.)

See Also

32

6. Exit the postmortem debug session and load an application for normal runtime debugging:

ipd > coreload -BZ 1
*** reading symbol table for /home/joe/gauss/gausss.nx ... 100%
*** scanning core files ...
*** coreload complete
Context State Reason Location Procedure
======= ====== ======== =========

*(all:O) Signaled SIGBUS Line 20 exchange()
(all:O) > load gauBB.nx
* This command will terminate the core file analysis session.

Are you sure you want to do this (y/n)? y
*** reading symbol table for /home/joe/gauss/gauss.nx ... 100%
*** loading program ...
*** initializing IPD for parallel application ...
*** load complete

(all: 0) >

load, status

• •
• • • • • •
• • • •
I:

• • • • • • • • • • • • • • • • • • •

o
II

n
D

D

D

D

e

n
IJ
["1

)

IJ

IJ

I]

IJ

IJ

IJ

IJ

IJ

I]

~

Ij

II

• • •

......... -----~--~

Paragon™ System Interactive Parallel Debugger Reference Manual IPD Commands

DISASSEMBLE DISASSEMBLE

Display machine code listing of process instructions.

Syntax

Arguments

Disassemble from current execution point:
disassemble [context] ~count]

Disassemble starting from an instruction address:
disassemble [context] address [:address I ,count]

Disassemble starting from procedure:
disassemble [context] [file{}] procedureO ~count]

Disassemble starting from"a source line number:
disassemble [context] [file{}] fprocedure()] #line [: #line I ,count]

context

count

The context argument specifies the context as a list of processes using either NX
or MPI process naming conventions. An NX process consists of a node number
and ptype. An MPI process consists of a communicator and rank. The node
number, ptype, and rank may be expressed as a single value, a comma-separated
list, a range, or a combination thereof. The keyword all may be used in place of
any of these values as well. The special value host may be used in lieu of a process
name to specify the controlling process(es) running in the service partition.

(host)
(host: {all I ptypelist})
({all I nodelist} : {all I ptypelist})
(communicator: {all I ranklist})

For more information, see the context command.

The count argument is an integer that indicates the number of assembly
instructions to disassemble. If the value of count is positive, disassembly starts at
the specified line number. If negative, disassembly begins at count-l instructions
preceding the specified point and ends at this point. If you do not specify a count,
the last count argument given to the disassemble command is used. Upon starting
the IPD program, the initial value of count is 50. One way to use the count
argument is to specify a large value and use the IPD more utility to browse
through the instructions (see the more command).

33

IPD Commands

DISASSEMBLE (cont.)

address

file

procedure

line

34

Paragon 1M System Interactive Parallel Debugger Reference Manual

DISASSEMBLE (cont.)

The address argument specifies where to start the disassembly. Specify a range of
addresses by including a count following the address, or by specifying the
beginning and ending addresses.

The file argument is the name of the source module in which the procedure or line
resides. To refer to a file in which the current execution point is not located,
specify the file name as a prefix to the line number. When you refer to a procedure,
you may omit the file name unless there are duplicate procedure names in different
files. Thefile argument must end with braces ({}).

The optional procedure argument is the name of the procedure at which you want
to start disassembling, or the procedure in which the line you are specifying
resides. The procedure argument must end with a pair of parentheses (O).

For C++, procedure names may include operator functions, such as operator+O,
operator new(), or operator int *0. The operator names must include the
"operator" keyword. You may also preface the procedure name with class
information and may include argument types to distinguish between overloaded
functions. The syntax is:

[[class]:: [class::] ...]procedure([type[,type] ...])

class::

type

The name of the C++ class in which a procedure is a
member function. Use the "::" without a class name to
refer to a global procedure that is hidden by a member
function in the current scope. Specify nested classes as
class1 ::class2::

Any legal C++ type specification, such as int,jloat *,
or char (*)(). Argument types may be omitted unless
the procedure name is overloaded. For overloaded
procedure names, you need only to specify enough
arguments to uniquely identify the intended procedure.
An error is reported when then procedure name is
ambiguous.

The line argument is the source line number at which to start disassembly. The line
number must be prefixed by a number sign (#) and must exist in the symbol table
debug information. Specify a range of lines by specifying beginning and ending
line numbers, or by specifying the beginning line number and a count.

• • • • • • • • • • • .-
•
II

• • • •
II

• • • • • • • • • • • • •

n

•
n
D

D

D

D

n
n
I::
I~

I~

G

IJ

C

IJ

IJ
('1 '. J

IJ

IJ

IJ

1:1

IJ

D

• • • •

Paragon TM System Interactive Parallel Debugger Reference Manual IPD Commands

DISASSEMBLE (cont.) DISASSEMBLE (cont.)

Description

The disassemble command allows you to display assembly language code. The contents of the
program's address space in memory are disassembled, rather than the contents of the executable file.
The target processes must be stopped to perform the disassembly. If they are not stopped, an error
message is displayed.

If you enter the command without specifying a starting point (using the current execution point), and
the processes within the current context are stopped at different locations in the load module,
multiple disassembly lists are displayed, one for each process with a unique execution point.

If the specified procedure or address matches a source line number, that line number is displayed
before the instructions. If there is no matching line number, the procedure name + address offset is
shown, as in the following example:

procedure() + Ox25.

35

n
D

•
B

D

D

n
IJ

It

I~

n

I:

I:J
Ij

~

G

II

• • •

Paragon 1M System Interactive Parallel Debugger Reference Manual IPD Commands

DISPLAY DISPLAY

Display the value of the specified variable, expression, memory address, or processor registers.

Syntax

Arguments

Display the value of expression in current scope of context:
display [context] [-jormaCswitch] expression [,count]

Display the value of an expression containing global or static C variables:
display [context] [-jormaCswitch]fileU expression [,count]

Display the value of an expression containing a local procedure variable:
display [context] [-formacswitch] [filen]procedureO expression [,count]

Display the value of an expression containing variables local to a block in C or C++:
display [context] [-jormacswitch] [fileU] #line expression [,count]

Display the value of a memory address:
display [context] address[:address I ,count]

Display the contents of all processor registers:
display [context] -register

Display the contents of one processor register:
display [context] [-jormacswitch] -register_name

context The context argument specifies the context as a list of processes using either NX
or MPI process naming conventions. An NX process consists of a node number
and ptype. An MPI process consists of a communicator and rank. The node
number, ptype, and rank may be expressed as a single value. a comma-separated
list, a range, or a combination thereof. The keyword all may be used in place of
any of these values as well. The special value host may be used in lieu of a process
name to specify the controlling process(es) running in the service partition.

(host)
(host: {all I ptypelist})
({all I nodelist} : {alliptypelist})
(communicator: {all I ranklist})

For more information, see the context command.

37

IPO Commands

DISPLAY (cont.)

jormaCswitch

count

fileU

procedureO

38

Paragon™ System Interactive Parallel Debugger Reference Manual

DISPLAY (cont.)

The jormaCswitch overrides the symbol table infonnation that would normally
determine how a symbol's value would be printed. For variable and memory
address displays, the jormacswitch can be one of the following:

alphanumeric
complex
dcomplex
decimal

double
float
hexadecimal
octal

real (equivalent to the C float type)
string (see Description)
logical

For register displays, the jormacswitch can be one of the following:

decimal
double
float

hexadecimal
real

One of the ways to specify a range is to specify the beginning array element
followed by a comma and a count (for example, x(lO),lO). You must specify the
range of an array in ascending order. If you only use the array name without a
subscript, all elements in the array are displayed.

Use the file argument to display an expression containing global or static C or C++
variables in a source file other than the source file of the current context's
execution point.

You must specify the name of the procedure or the line number that contains the
variables you want to display if they reside in a procedure other than the one with
the current execution point. The file argument may be omitted, because IPD can
fmd procedures from the symbol table infonnation; If you have procedures with
the same name in two different source modules, the name must include thefile
argument.

For C++, procedure names may include operator functions, such as operator+O,
operator new(), or operator int *0. The operator names must include the
"operator" keyword. You may also preface the procedure name with class
information and may include argument types to distinguish between overloaded
functions. The syntax is:

[[class]:: [class::] ...]procedure([type[,type] .. . J)

class:: The name of the C++ class in which a procedure is a
member function. Use the "::" without a class name to
refer to a global procedure that is hidden by a member
function in the current scope. Specify nested classes as
class1: :class2::

• • • • • • • • .1 1

• • • • • .,
• • • • • • • • • • • • • • • • •

D

II

D

o
n
II

n
1'1

j;

IJ

I]

IJ
• ·i

"",J

Ij

IJ

c
c
o
II

II

•

Paragon TM System Interactive Parallel Debugger Reference Manual IPD Commands

DISPLAY (cont.)

#line

address

type

DISPLAY (cont.)

Any legal C++ type specification, such as int,float *,
or char (*)(). Argument types may be omitted unless
the procedure name is overloaded. For overloaded
procedure names, you need only to specify enough
arguments to uniquely identify the intended procedure.
An error is reported when then procedure name is
ambiguous.

A line number from which the variable that you are specifying is accessible. You
only need to specify a line number if the variable you are interested in is hidden
by another variable of the same name in the current scope. Specifying any line
number from which the desired variable is accessible allows !PD to find the
variable.

Display the contents of the memory location specified by the address argument.

There are two ways to denote a range of memory locations. You can either specify
the beginning address and the ending address, separated by a colon (for example,
0x208:0x21b), or you can specify the beginning address followed by a comma
and a count (for example, 0x208,lO).

-register Display all of the processor registers.

-register _name Display a specific processor register. The register names follow the processor
naming conventions. See the Description section for a complete list of register
names .

expression The expression representing the value that you want to display. IPD evaluates
expressions containing the following constructs:

constants

variables

operators

All constant types except for Fortran Hollerith
constants.

All basic and derived types, except for Fortran unions;
C/C++ bit fields; and register variables.

All Fortran operators, except for function calls and the
assignment operator (=). Fortran intrinsic functions
are not supported, except for the locO function. All
C/C++ operators except the assignment operators (=,
*=, %=, +=,1=, -=, «=, »=, &=, 1=, 1\::), function
calls, comma(,) and type casts. Also, overloaded C++
operators, the new operator, and the delete operator are
not supported.

39

IPD Commands Paragon TM System Interactive Parallel Debugger Reference Manual

DISPLAY (cont.) DISPLAY (cont.)

Description

40

Values are converted, using C conversion rules, to the type of the variable being
assigned. In C or c++ sources, you must enclose a character in single quotes
('character') and a string value in double quotes ("string"). Strings in Fortran
sources may be enclosed in either single or double quotes.

The display command examines the current value of an application variable, expression, or data
location.

When specifying a variable or expression, use the same language syntax convention as that of the
source language. For example, to specify a Fortran element, you would use names(l); for a C or C++
element, names[l]. For assembly programs, you may use either C or Fortran syntax to display a
memory address.

To specify a range of addresses, you can use either the address:address form or the address,count
form.

You can display all of the elements of an array by specifying its name. You cannot display all of the
elements of a structure by specifying its name; you must specify individual elements.

When displaying from a single address, IPD prints 352 bytes by default in a formatted hex dump.

Use the -string switch to display a C or C++ character array as a null-terminated string. Otherwise,
it is displayed as individual characters. For example, in a C program with a variable declared to be
char name[5]:

(1: 0) > display name
name [0] = J
name [1] = 0

name [2] e
name [3] y
name [4] =\0000
(1: 0) > display -string name
name = "Joey"

•
•

D

D

D

n
II

n
n
• ''1

iii

I~

.''''' ,I

." -,
. ~,

(j

(71

'"
r:
I:
(':

r:

I::
I~

.~

II

•
II

•

Paragon™ System Interactive Parallel Debugger Reference Manual IPD Commands

DISPLAY (cant.) DISPLAY (cant.)

Use the -register switch to display all registers. The following switches are recognized for
displaying individual registers:

-rO,-rl,-sp,-fp,-r4 .. -r31
-ro .. -01
-psr and -epsr

-db
-dirbase
-fsr
-fir
-KI, -KR and-T
-merge

Integer register set
Floating-point register set
Processor status register and extended processor
status register
Data breakpoint register
Directory base register
Floating-point status register
Fault instruction register
"Konstant" registers and "temporary register"
Merge register

The register displays include the hexadecimal representation of the register(s) followed by an
interpretation. The default interpretation is decimal for the integer registers and floating-point for the
floating-point registers. Use thejormacswitch parameter to change the default interpretation.

For C or Assembly programs, IPD follows the C scoping rules. It first looks for a variable in the
current code block, then in the current procedure. Next, it looks for the variable in the static variables
local to the current file, and finally in the global program variables. Similarly, for C++ program IPD
follows C++ scoping rules, which are similar to C scoping rules, except that class variables are
searched prior to static and global variables.

The display of registers and local variables is affected by the setting of the threads command. If it
is set to "on" a value for each thread in each process will be displayed. Other data values will be the
same across all threads and are thus unaffected by the thread setting.

41

IPO Commands Paragon™·System Interactive Parallel Debugger Reference Manual

DISPLAY (cont.) DISPLAY (cont.)

Examples

42

1. Display 20 elements of the array a, starting at a(l,4). To display the entire array, you would
simply specify the array name. This listing uses the same column-major indexing as the Fortran
program.

(all:O) > disp (0:0) gauss()a(1,4),20

***** (0: 0) *****

** gauss.f{}gauss()#32 a(1,4) **
a(1,4) = 0.0000000000000
a(2,4) = 3.1250000000000
a(3,4) = 5.468750000000,0
a(4,4) 6.6406250000000
a(5,4) = 7.1289062500000
a(6,4) = 7.3120117187500
a(7,4) = 7.3760986328125
a(8,4) 7.3974609375000
a(9,4) = 7.4043273925781
a(10,4) = 7.4064731597900
a(11,4) = 7.4071288108826
a(12,4) 7.4073255062103
a(13,4) = 7.4073836207390
a(14,4) 7.4074005708098
a(15,4) 7.4074054602534
a(16,4) 7.4074068572372
a(17,4) = 7.4074072530493
a(18,4) 0.0000000000000
a(19,4) = 0.0000000000000
a(20,4) = 0.0000000000000

2. Display the variable named iam in the default context.

(0:0) > display iam

***** (0: 0) *****

** gauss.f{}gauss()#32 iarn **
(0:0) iarn = 4

•

II

n
II

o
D

n
o

I~

IE

IJ

171

IJ

I]

f.J

("1

["
.J

fj

I)

II

•
II

•

Paragon™ System Interactive Parallel Debugger Reference Manual IPD Commands

DISPLAY (cont.) DISPLAY (cont.)

3. Display floating point register fl2.

(all:O) > disp -f12

* * * * * (all: 0) * * * * *
f12 Ox3f99999a (1.200000

4. Display the value of the Fortran expression "iam + nodes(i)".

(1:0) > disp iam + nades(i)
***** (1: 0) *****

** gauss.f{}gauss()#32 iam+nodes(i) **
iam + nodes(i) = 4

5. Display the variable row in C++ function nextMove, where nextMove is an overloaded
function name (several functions with the same name but different numbers or types of
arguments):

(all:O) > disp nextMove(int, struct move*)row
* * * * * (all: 0) * * * * *

** rnoves.C{}nextMov(int, struct rnove*) #44 row **
row = 3

6. Display C++ static class member variable occupied for the nested class board::square:

(all:O) > disp board::square::occupied
* * * * * (all: 0) * * * * *

** board.C{}board()#12 board::square::occupied **
occupied = 1

7. Display variable row in C++ member function position for the class board::square:

(all:O) > disp board::square::position()row
* * * * * (all: 0) * * * * *

** board.C{}board::square::position()#ll row **
row = 1

43

--~---~~-----------------"-"."--.---~-~-

IPD Commands Paragon TM System Interactive Parallel Debugger Reference Manual

DISPLAY (cont.) DISPLAY (cont.)

8. Display from a memory address.

• • • • • •
• • • • • •
a

(all:O) > display Oxbffffd8c
***** (all:O) *****

Oxbffffd8c: OxOOOOOOO4 OxbffffeOO
Oxbffffd9c: OxOOOOOOOO OxOOOOOOOO
Oxbffffdac: OxOOOO1OOO OxOOOOOO64
Oxbffffdbc: OxOOOOO4d4 OxOOOOOOOl
Oxbffffdcc: OxOOOOla93 OxOOO17061
Oxbffffddc: OxOOOOOaOO OxbffffeOO
Oxbffffdec: Oxbffffe64 Oxbffffe74
Oxbffffdfc: OxOOOOOOOO OxOOOOOOOO
OxbffffeOc: OxOOOOOOOO OxOOOOOOOO
Oxbffffelc: OxOOOOOOOO OxOOOOOOOO
Oxbffffe2c: OxOOOOOOOO OxOOOOOOOl
Oxbffffe3c: OxOOOOOOOO OxOOOOOOOO
Oxbffffe4c: OxOOOOOOOO OxOOOOOOOO
Oxbffffe5c: OxOOOOOOOO OxOOOOOOO3
Oxbffffe6c: Oxbffffebb OxOOOOOOOO
Oxbffffe7c: Oxbffffed8 Oxbffffee7
Oxbffffe8c: Oxbfffff30 Oxbfffff4a
Oxbffffe9c: OxOOOOOOOO OxOOOOO3e9
Oxbffffeac: OxOOOOOOOO Ox6c6c6568
Oxbffffebc: Ox52455400 Ox74783d4d
Oxbffffecc: Ox6f682f3d Ox722f656d
Oxbffffedc: Ox622f3d4c Ox632f6e69

44

OxOOO10178 OxOOOOOOOO
OxOOOOOOOO OxOOOOOOOO
OxOOOOO381 OxOOOOO747
Oxbffffe64 Oxbffffe74
OxOOOO1849 OxOOOOOef9
OxOOO10134 OxOOOOOOO3
OxOOOOOOOO OxOOOOOOOO
OxdeadcOde OxOOOOOOOO
OxOOOOOOOO OxOOOOOOOO
OxOOOOOOOO OxOOOOOOOO
Oxbffffe64 Oxbffffe74
OxOOOOOOOO OxOOOOOOOO
OxOO010OdO OxOOOOOOOO
OxbffffebO OxOOOOOOOO
Oxbffffebd Oxbffffec8
Oxbffffefl Oxbffffefe
Oxbfffff8d Oxbfffffd4
Oxbfffffe6 OxOOOOOOOO
Ox2dOO326f Ox32007a73
OxOO6d7265 Ox454d4f48
OxOO617961 Ox4c454853
Ox55006873 Ox3d524553

* x *
* *
* d G ... *
* d ... t ... *
* ap .. I *
* 4 *
*d ... t *
* *
* *
* *
* d ... t ... *
* *
* *
* *
* *
* *
*O ... J *
* *
* hello2.-sz.2*
.TERM=xterm.HOME
=/home/raya.SHEL
L=/bin/csh.USER=

• • • • •
II

• • • • • • • • • • • • •

n
o
D

D

n
II

D

I~

n
I:J

n

I]

IJ

IJ

~

II

• • •

Paragon 1M System Interactive Parallel Debugger Reference Manual IPD Commands

DISPLAY (cont.) DISPLAY (cont.)

See Also

9. Display pc (fIr) register when threads is set to "on":

(all:O) > disp -fir

(O:O) ==
***** (O: 0) thread 0*****

fir OxOO02f140

***** (0: 0) thread 1*****
fir OxOO01de04

***** (0: 0) thread 2*****
fir OxOO01a348

(1:0) ==
***** (1:0) thread 0*****

fir Ox000108a4

***** (1:0) thread 1*****
fir Ox00020dac

***** (1:0) thread 2*****
fir Ox00010c5c

10. Display local (stack) variable when threads is set to "on":

(1:0) > disp i

(1:0) ==
***** (1:0) thread 0*****
** sigbus_inhrecv.c{}main()#25 i **

i = 0

***** (1:0) thread 1*****
** nx-port.c{}n_nx-port_recv() i ** Not found

***** (1:0) thread 2*****
** sigbus_inhrecv.c{}myhandler()#70 i **

i = 0

assign. type

45

IPD Commands Paragon 1M System Interactive Para"el Debugger Reference Manual

EXEC EXEC

Read and execute IPD commands from the specified file.

Syntax

Arguments

Description

46

exec [-echo I-step] filename

-echo

-step

filename

Causes the IPD commands in the specified file to be echoed to the terminal before
they are executed. Along with the command, the current prompt is echoed to show
the default context. By default, IPD does not echo commands.

Causes the IPD command file to be executed line by line. The screen displays each
IPD command before executing it (comment lines and blank lines are skipped).
Execute the displayed command by pressing <Enter>; the next command then
appears on the screen. To stop stepping through the command file, use the
keyboard interrupt (entering or <Ctrl-C» to terminate the exec
command.

The name of the IPD command file.

The exec command specifies an IPD command-file to execute.

When you specify -echo, a "++" is prefixed to each command line as it is displayed to show that it
is being read from a command file.

You may use the exec command inside the command file. Up to eight levels of exec nesting are
possible. For every nested exec level two additional "++" characters are prefixed to command lines
that are echoed.

You may insert comments in command files by typing # followed by a space and the comment. All
characters, including semicolons, in the line are part of the comment.

IPD executes the commands in a file named .ipdrc in your home directory when it starts. The .ipdrc
file is often used to define configuration information, such as a list of convenient aliases and
command line variables. The commands in .ipdrc are not echoed.

• • •
• • •
• •
• • • • • • • • • • • • • • • • • • .,
• • • • •

II

n
D

D

o
n
n
~

IJ
1"1

J

IJ

I]

[j

IJ

(J

IJ

n
D

• ..
•

Paragon™ System Interactive Parallel Debugger Reference Manual ·IPO Commands

EXEC (cont.)

Examples

EXEC (cont.)

1. Execute the command file picf, which consists of the following lines:

load main -on 0 \; node -on 1 .. 3
context (1 .. 3:0)
break #84
break #90

When you execute this file, you see the following display:

ipd> exec -echo picr
ipd> ++ load main -on 0 \; node -on 1 .. 3

*** reading symbol table for main ... 100%
*** loading program ...
*** initializing IPD for parallel application ...
*** reading symbol table for node ... 100%
*** load complete

(0:0» ++ context (1 .. 3:0)
(1 .. 3:0) > ++ break #84
(1 .. 3:0) > ++ break #90
(1. .3:0) >

47

--------------------------._.,------_ .. _._---_._-------._--"._----,---""-_.-

IPO Commands Paragon 1M System Interactive Parallel Debugger Reference Manual

EXIT EXIT

Terminate a debug session and exit IPD.

Syntax

Arguments

Description

Examples

See Also

48

exit

None

The exit command terminates an IPD session. It is equivalent to the quit command. Both commands
terminate only those processes that the debugger has loaded.

1. ExitIPD:

(all: 0) > exit
*** IPD exiting ...

quit

• • • • • • •
•
• • •
I:

•

II

D ..
o
II

II

II

I~

I· 1
jjJ

Ij

1'1

I:
(J

I~

IJ

IJ

n
n

• • •

Paragon TM System Interactive Parallel Debugger Reference Manual IPD Commands

FLUSH FLUSH

Set performance monitoring instrumentation flush policy.

Syntax

Arguments

Change performance monitoring event trace buffer flush policy:
flush [context] [-stop I -wrap I-continue]

List current flush policy:

flush [context]

context

-stop

-wrap

-continue

The context argument specifies the context as a list of processes using either NX
or MPI process naming conventions. An NX process consists of a node number
and ptype. An MPI process consists of a communicator and rank. The node
number, ptype, and rank may be expressed as a single value, a comma-separated
list, a range, or a combination thereof. The keyword all may be used in place of
any of these values as well. The special value host may be used in lieu of a process
name to specify the controlling process(es) running in the service partition.

(host)
(host: {all I ptypelist})
({ all I nodelist} : {all I ptypelist})
(communicator: {all I ranklist})

For more information, see the context command.

When the event trace buffer is full, stop performance monitoring, but do not flush
the buffer. The application continues to execute with no further data captured.
Data for only the first part of the programs execution is captured in the event trace
buffer.

When the event trace buffer is full, do not flush the buffer but continue to collect
performance data by overwriting the oldest event traces (the buffer is used as a
circular buffer). Data for only the last part of the programs is captured in the event
trace buffer.

When the event trace buffer is full, flush the buffer and continue to collect
performance data. All data is captured in the event trace buffer. Flushing the
buffers may adversely affect the performance program.

49

-
IPD Commands Paragon TM System Interactive Parallel Debugger Reference Manual

FLUSH (cont.) FLUSH (cont.)

Description

Type

prof
paragraph

Examples

See Also

50

The flush command sets the instrumentation flush policy. The flush policy determines how
instrumentation data is handled when the internal buffers are filled.

The default flush policy is -continue. Refer to the description of the instrument command for
detailed information about collecting data.

When the flush command is used without parameters or only with a context parameter, information
on the instrumented flush policy is displayed. An example is as follows:

Buffer Size Flush Location Flush Policy Output File Context

000064
000064

==============
entry of exit
entry of exit

============ ===========
stop mon.out
wrap pg.trf

(0: 0)

(1..3: 0)

The type of instrumentation is shown at the left, followed by the start and stop locations. Under the
''Flush Policy" header is the flush policy: "stop," ''wrap'' or "continue." At the right is the context of
nodes and process types being monitored.

The flush command must be performed after the instrument command. If the flush command is
used on a context that is not instrumented, IPD displays just the header.

This command may not be used while examining core files.

1. Starting from the Unix shell we want to collect paragraph data on the application, my_app. The
flush command is used to change the flush policy to only capture the last part of the my _app
execution. Here, the event trace buffer is used as a circular buffer:

ipd > load m¥_app
*** reading symbol table for /home/myacct/my_app ... 100%
*** loading program ...
*** initializing IPD for parallel application ...
*** load complete

(all:O) > iDstrumeDt paragraph
(all:O) > flush -wrap
(all:O) > ruD

instrument

• • • • • • • • • • • •
II

a

• • • • • • • • • • • • • • • • • •

II

D

n ..
D

II

n
II

n
c
I:
('~l

1-"1

"i

(J

I ·~

""

n

• •
II

•

----... --.--------~

Paragon™ System Interactive Parallel Debugger Reference Manual IPD Commands

FRAME FRAME

Display the call stack traceback(s) of the current or specified context.

Syntax

Arguments

Description

frame [context]

context The context argument specifies the context as a list of processes using either NX
or MPI process naming conventions. An NX process consists of a node number
and ptype. An MPI process consists of a communicator and rank. The node
number, ptype, and rank may be expressed as a single value, a comma-separated
list, a range, or a combination thereof. The keyword all may be used in place of
any of these values as well. The special value host may be used in lieu of a process
name to specify the controlling process(es) running in the service partition.

(host)
(host: {all I ptypelist})
({alII nodelist} : {alliptypelist})
(communicator: {alII ranklist})

For more information, see the context command.

The frame command displays a stack traceback, which lists the routines accessed and the files in
which those routines are located. If the routine was compiled to produce debug information, line
numbers are displayed. If not, memory addresses are displayed.

If IPD encounters a routine without a recognizable function prologue, such as some assembly
routines, it assumes a standard stack frame and prints a question mark before the function name to
indicate that assumption. This indicates that some functions may be omitted from the stack frame
traceback.

Parentheses (()) following a name indicate a routine. Braces ({ }) indicate a file.

c++ functions inlined by the compiler (via the -Minline switch) are not displayed.

The frame command is affected by the setting of the threads command. If it is set to "on" a stack
traceback is displayed for each user thread in each process.

51

- -- -----~--.-.--------.----- .-~-----~---"--~-----.. --.---~~" "--------------

IPO Commands Paragon TM System Interactive Parallel Debugger Reference Manual

FRAME (cont.) FRAME (cont.)

Examples

52

1. In the following' example, execution stopped after the program hung up. The frame command
traces the stack to provide a history of the routines called, starting from the most recent. In this
example, node 3 is found to have a different history than nodes 0, I, and 2:

(all:O) > frame

[_flick.s{}Ox00023fe8]
[_gdhigh.c{}Ox000240f8]
[gdhigh_.c{}OxOOOle9dc]

***** (0 .. 2:0)
_flick()
_gdhigh()
gdhigh_()
gauss () [gauss. f {} #72]

[pgfmain.c{}OxOOOOOlac] main ()

***** (3:0)
_flick()
msgwai t_ ()
shadow()
gauss ()
main ()

[_flick.s{}Ox00023fe8]

[msgwait_.c{}Ox0002011c]
[gauss. f{}#209]

[gauss. f {} #58]
[pgfmain.c{}OxOOOOOlac]

2. This example shows how the frame command might appear for a c++ application with member
functions:

(all:O) > frame

* * * * * (all: 0) * * * * *
queen: : next () [queen.C{}#67]
queen::test(int) [queen.C{}#54]
queen: : first () [queen. C {} #45]
queen: :first() [queen.C{}#45]
queen: :first() [queen.C{}#45]
queen: : first () [queen. C{} #45]
main() [queen.C{}#87]

• • • • • • • • • • • •
I:

K

• • • • • • • • • • • • • • • • • •

II

D

o
o
D

D

D

n
c
C

IE

I':]

IJ

D

II

• • •

Paragon System Interactive Parallel Debugger Reference Manual IPO Commands

FRAME (cont.) FRAME (cont.)

3. In the following example, a breakpoint was set in mainO at line #21 and a second breakpoint
was set in the function myhandler() at line #62. The function myhandler() is passed as an
argument to the hrecv() call made in mainO. If threads has been set to off, frame produces the
following output after running the application to the breakpoints.

(0,1:0) > frame
***** (0: 0) *****

main() [hrecvtst.c{}#21]
_crtO_start() [crtO.c{}Ox000101fc]

***** (1:0) *****
myhandler() [hrecvtst.c{}#62]
_nx-port_recv_thread() [nx-port.c{}Ox00017d30]

The process command shows us that process (1 :0) was not running the main user thread when
it hit the breakpoint. This is indicated by the ">" in the far left column:

(0,1:0) > process
Context State Reason Location Procedure

====================== ============ ========= ========== ====================
* (0: 0)

>*(1:0)
Breakpoint
Breakpoint

C Bp 1
C Bp 2

Line 21
Line 62

main()
myhandler ()

To see where the main user thread was when the breakpoint was hit, set threads to on and then
review the frame command output. In process (0:0), thread 0 is at the breakpoint set in mainO
at line #21. Its other threads are sitting in _mach_msg_trap(), which is their normal location
when not doing anything. In process (1:0), the main user thread (thread 0) was executing a
print[() call when the process was stopped by thread 1 when it encountered the breakpoint at
line #62 in myhandler(). Thread 2 was not doing anything when the process stopped, just as in
process (0:0).

(0,1:0) > frame

== (0:0) ===
***** (0:0) thread 0 *****

main() [hrecvtst.c{}#21]
_crtO_start() [crtO.c{}Ox000101fc]

***** (0:0) thread 1 *****
_mach_msg_trap() [unknown1.s{}Ox00025a48]

? mach_msg() [mach_msg.c{}Ox000257dc]
mach_msg_receive() [mach_msg_receive.c{}Ox00025950]
_nx-port_recv_thread() [nx-port.c{}Ox00017a74]

***** (0:0) thread 2 *****
_mach_msg_trap() [unknown1.s{}Ox00025a48]

? mach_msg() [mach_msg.c{}Ox000257dc]
mach_msg_receive() [mach_msg_receive.c{}Ox00025950]
_nx-port_recv_thread() [nx-port.c{}Ox00017a74]

53

IPD Commands Paragon TM System Interactive Parallel Debugger Reference Manual

FRAME (cont.) FRAME (cont.)

-- (1:0) ===
***** (1:0) thread 0 *****
? _write() [write.s{}Ox0002f2f4]

_xflsbuf() [flsbuf.c{}Ox00029850]
fwrite() [fwrite.c{}Ox00035534]
_doprnt() [doprnt.c{}Ox0002f990]
printf() [printf.c{}Ox0002d8bc]
main () [hrecvtst. c {} #29]
_crtO_start () [crtO. c {} Ox00010lfc]

***** (1:0) thread 1 *****
myhandler() [hrecvtst.c{}#62]
_nx-port_recv_thread() [nx-port.c{}Ox00017d30]

***** (1:0) thread 2 *****
_mach_msg_trap() [unknown1.s{}Ox00025a48]

? mach_msg() [mach_msg.c{}Ox000257dc]
mach_msg_receive() [mach_msg_receive.c{}Ox00025950]
_nx-port_recv_thread() [nx-port.c{}Ox00017a74]

(0,1: 0) >

See Also

disassemble, list

54

i • • • • • • • • • • • •
II

• • • • • • • • • • • • • • • • • • •

o
n
II

II

D

n
o
n
c
n
n

I~

I:J

I:]

I '" . J

IJ

IJ

IJ

IJ

I)

I]

.~

II

• • • •

Paragon TM System Interactive Parallel Debugger Reference Manual IPD Commands

HELP HELP

Display IPD commands and syntax.

Syntax

Arguments

Description

List all commands:
{ help I? }

Obtain syntax help:
{ help I ? } command

command The command argument is any IPD command. The command line syntax will be
displayed for the command, with a brief description.

The help command displays a summary list of IPD commands, the shortest abbreviation for each
command, and a brief description.

A sub-set is displayed if core files are loaded. Only commands that are usable on core files are
shown.

55

IPD Commands Paragon ™ System Interactive Parallel Debugger Reference Manual

HELP (cont.) HELP (cont.)

Examples

1. Display the help for the break command. (Entering help break produces the same result.)

(all:O) > ?break
Display Breakpoint information:

break [context] [-full]

Set Breakpoint at procedure:
break [context] [file{}] [class:: [class] ...]procedure([param-types])

[-after count]

Set Breakpoint at source line number:
break [context] #line [-after count]
break [context] file{}#line [-after count]
break [context] [file{}] [class: : [class] ...] procedure ([param-types])

#line [-after count]

Set Code Breakpoint at instruction address:
break [context] address [-after count]

The break command allows you to set code breakpoints or display current
breakpoints. The count value specifies the number of times the breakpoint is
encountered before the break occurs (default is 1). Breakpoints are defined in
the current context (either default or specified) .

This command is not allowed when examining core files.

56

• • • •
• • • •
• • .-
• • •
• • • • • • • • • • • • • • • • •

II

D

D

II

IJ
n
11

I]

I:

IJ

IJ

IJ
• . l'l

.J

I~

D

II

• •

Paragon 1M System Interactive Parallel Debugger Reference Manual IPD Commands

HELP (cont.) HELP (cont.)

2. Display the !PD command summary list. Entering? produces the same result.

(all: 0) > help
Commands are grouped functionally. The information provided for each command
is: command name, shortest acceptable abbreviation, and brief description.

Enter 'help <command>' to get detailed information for each command.

Program load and termination:
load loa Load programs
coreload cor Load core files for examination
kill k Terminate processes

Program execution control and state:
continue conti Continue stopped processes
run
rerun
process
frame
stop
wait
break
trace
watch
remove
step
signal

ru
rer
p
fr -
sto
wai
b
tr
wat
rem
ste
si

Start process execution from the beginning
Same as run, but do not reuse previous argument list
Display the current state of processes
Display stack traceback from current execution point
Halt process execution
Wait for processes to stop
Set or display breakpoints
Set or display tracepoints
Set or display watchpoints
Remove break/trace/watchpoints
Execute the next source statement or instruction
Modify or display IPD signal reporting

Program performance analysis data collection:
instrument i Instrument program for collecting performance data
flush fl Set flush policy for event trace buffers

Program data display and modification:
Assign a new value to a variable or address assign

display
type

as
disp
ty

Display the value of an expression, address, or register
Display the type of an expression

Program message queue
msgqueue ms
recvqueue rec

Program code display:
list li
disassemble disa
source so

display:
Display
Display

the queue of messages sent but not received
the queue of receives posted but not satisfied

List source code
Display an assembly listing of program code
Set or display source directory search paths

57

IPD Commands paragonlM System Interactive Parallel Debugger Reference Manual

HELP (cont.) HELP (cont.)

IPD control and information:

58

context conte Change default list of processes to apply commands
commshow corn Display communicator handles assigned by debugger
exec exe Read debugger commands from a file
exit
help or ?
log
more
msgstyle
alias
unalias
set
unset
status
system or
threads
quit

exi
h
log
mo
msgs
al
una
se
uns
sta
sy
th
q

Exit IPD - same as quit
Display command summary or details
Record the debug session in a file
Turn terminal scrolling on or off
Set or display context format
Set or display command aliases
Delete aliases
Set or display debug variables
Delete debug variables
Display version number and control values
Execute a UNIX shell command
Set or display threads mode
Exit IPD - same as exit

to

• • • • • • • • • • •
II

• • • • • •
• • • • • • • • • • • • • •

II

D

D

II

n
u
o

I~

Id

I:

I ,
,~

~

G

II

• • •

Paragon'" System Interactive Parallel Debugger Reference Manual IPD Commands

INSTRUMENT INSTRUMENT

Add, remove, or display program instrumentation for perfonnance monitoring.

Syntax

Arguments

Instrument program:
instrument [context] [[-on] perf_name [starClocation [,stop_location
[, write_location]]] [-bufsize value][[-force] path_name]]

Immediately write perfonnance data and tenninate monitoring:
instrument [context] -write

Remove perfonnance monitoring instrumentation:
instrument [context] -off [-nowrite I -write] fperf_name]

List perfonnance monitoring instrumentation infonnation:
instrument [context]

context The context argument specifies the context as a list of processes using either NX
or MPI process naming conventions. An NX process consists of a node number
and ptype. An MPI process consists of a communicator and rank:. The node
number, ptype, and rank: may be expressed as a single value, a comma-separated
list, a range, or a combination thereof. The keyword all may be used in place of
any of these values as well. The special value host may be used in lieu of a process
name to specify the controlling process(es) running in the service partition.

-on

-off

(host)
(host: {all I ptypelist})
({all I nodelist} : {all I ptypelist})
(communicator: {all I ranklist})

For more infonnation, see the context command.

Turn profile instrumentation on. This is the default action when the perf_name
switch is given without -on or -off.

Stop collecting data and remove all profile instrumentation.

59

IPD Commands Paragon TM System Interactive Parallel Debugger Reference Manual

INSTRUMENT (cont.) INSTRUMENT (cont.)

60

-write When used without the -otT switch, the -write switch manually simulates a
write_location. Immediately write all performance data to the path_name
directory or file and terminate performance monitoring. The code is still
instrumented but no further performance data will be collected. If the program is
rerun then new performance data will be collected. The -write switch is used to
obtain performance data when the application never executes the write_location
(such as a dead-lock, an infinite loop or program fault).

When used with an -otT switch the -write switch causes IPD to write all
performance data before removing instrumentation.

-nowrite When using the -otT switch to turn off performance monitoring, the -nowrite
switch specifies that no performance data should be written.

perf_name perf_name is the name of the performance utility to be used to analyze the
resulting performance data. The three performance utilities are prof, gproj and
paragraph, corresponding to the switches -prof, -gprof and -paragraph.

start_location The start_location is the point in the code at which profiling begins. This can be
an entry or exit point to a procedure, a line number, or an address. The syntax for
the start_location specification is one of the following:

[-entryl-exit] [fileU]procedureO ([type [,type] ...])

[-entryl-exit] [file{}] fprocedureO]#line

[-entryl-exit] address

stop _location The location at which performance data collection ends. The stop _location can be
an entry or exit point of a procedure, a line number, or an address. The syntax for
the stop _location specification is one of the following:

[-entry I-exit] [fileU]ProcedureO ([type [,type] ...])

[-entryl-exit] [file{}] fprocedureO]#line

[-entryl-exit] address

•
• • • • • • • • • • •
II

• • • • • •
• •
• • • • • • • • • • •

II

n
D

D

II

n
n
I~

I~

I~

I-~

.t,j

r=
IJ

IJ

I]

IJ
~
•. J

1:1

e
II

II ..
•

Paragon ™ System Interactive Parallel Debugger Reference Manual IPD Commands

INSTRUMENT (cont.) INSTRUMENT (cont.)

write _location The location at which all performance data is written and performance monitoring
is terminated. The write_location can be an entry or exit point of a procedure, a
line number, or an address. The syntax for the write_location specification is one
of the following:

[-entry I-exit] [lileU]ProcedureO ([type [,type] ...])

[-entry I-exit] [lile{}] [procedureO]#line

[-entryl-exit] address

Syntax elements for start_location, stop_location, and write_location are defined
as follows:

file

procedure

The name of the source module in which the procedure
or line resides. To refer to a line in a file other than the
file containing the location of the current execution
point, prefix the line number withfile. When you refer
to a procedure, you may omit thefile name unless there
are duplicate procedure names that require
qualification.

The name of the procedure at which you want to set the
start, stop, or write location, or the precedure in which
the line you are specifying resides. The procedure
argument must end with a pair of parentheses (0).

For C++. procedure names may include operator
functions, such as operator+O, operator newO, or
operator int *0. The operator names must include the
"operator" keyword. You may also preface the
procedure name with class information and may
include argument types to distinguish between
overloaded functions. The syntax is:

[[class]:: [class::] ...]procedure([type[,type] ...])

class:: is the name of the C++ class in which a
procedure is a member function. Use the "::" without
a class name to refer to a global procedure that is
hidden by a member function in the current scope.
Specify nested classes as classl::class2::

61

IPO Commands Paragon System Interactive Parallel Debugger Reference Manual

INSTRUMENT (cant.) INSTRUMENT (cant.)

62

#line

address

-entry

-exit

type is any legal C++ type specification, such as int,
float *, or char (*)(). Argument types may be omitted
unless the procedure name is overloaded. For
overloaded procedure names, you need only to specify
enough arguments to uniquely identify the intended
procedure. An error is reported when then procedure
name is ambiguous.

The source line number at which you want to set the
start, stop, or write location. The line nUmber must be
preceded with a pound sign (#). The statement must be
executable. For example, you cannot set a start, stop,
or write location on a Fortran FORMAT statement, a
comment, or an empty line.

The address at which you want to set a start, stop, or
write location. The address must be an instruction
address.

Place a start, stop, or write location at the entry of the
procedure specified by procedureO. This is the default
action when only a procedureO name is given.

Place a start, stop, or write location at the exit of the
procedure specified by procedureO.

-bufsize value The bufsize switch specifies the size of the performance monitoring trace buffer
in K bytes. Valid numbers are 1 to the maximum amount of memory supported by
the system. The default buffer size is 64, or 64K bytes. For prof and gprof
instrumentation, the bufsize parameter is ignored.

-force The -force switch forces the deletion of the file or directory specified by the
path_name parameter.

NOTE

You will not be queried if the file or directory exists if -force is
used.

For added safety, the -force switch cannot be abbreviated.

• • • • • • • • .1
• •
&

.:

• • • • • • • • • •
• • • • • • • • •

n
II

n
n
n
u
D

(';j

IJ

11

1:1
I 'i'l

;J

."' . . ,
..I

I]

IJ

I:

II

• • •

Paragon™ System Interactive Parallel Debugger Reference Manual IPD Commands

INSTRUMENT (cont.) INSTRUMENT (cont.)

path_name can either be a single event trace file for all nodes and processes or
path_name can be a directory name where a data file exists for each process in the
application. If two instrument commands are used to instrument two different
contexts, the path_name can be the same if the perf_name switch is the same.
However, if the perf_name switch is different then an error message is displayed.

For paragraph instrumentation, path_name is the name of the file that will
contain event trace information for all nodes and processes sorted in time order.
The default paragraph path_name is .Ipg.trf. If the path_name parameter
specifies a directory then the performance data file is path_name. If path_name
already exists and the -force switch has not been used, you are queried before the
file is overwritten. This query only occurs on the first instrument -paragraph
command since multiple paragraph instrument commands are supported on
different contexts.

For prof and gprof instrumentation, the path_name specifies a directory where
the performance data files are written. The individual data files for each process
are written to a file named executable_name.pid.node.ptype where pid is the
process id, node is the node number, ptype is the current process type at the time
the data is written to the file. Node and ptype follow the IPD naming convention.
The default prof instrumentation directory_name is mon.out, while the default
gprof instrumentation directory_name is gmon.out. If path_name exists and the
-force switch has not been used, the you are queried before its removal. The query
is performed on the first set of prof or gprof instrument commands.

The prof and gprof directories contain an auxiliary file named INFO, which
contains information on each of the data files. The INFO file has the following
format:

Controlling Process: executable_name pid_value

pid
~

node
xxu

ptype
xxu

Executable
jultpath

The first·line has three fields, the title, the name of the controlling process's
executable, and its process id. The second line contains column titles for the lines
to follow. Each of the rest of the lines, (line 3 through the last line in the file)
contain a 10-character process id in the first field, a four-character node number
in the second field, a four-character process type number in the third field and the
full path name of the executable file for the process in the last field.

63

IPD Commands Paragon TM System Interactive Parallel Debugger Reference Manual

INSTRUMENT (cont.) INSTRUMENT (cont.)

Description

64

The instrument command starts and stops performance data collection for tools such as prof, gprof,
and paragraph.

The instrumentation of the code occurs when the instrument command is given. The actual
collection of the data occurs when the program is executed. Data collection starts at the
start_location and ends at the stop_location. The start and stop locations can be placed inside of a
loop to monitor the program only when it is executing within the loop. At the write_location all
performance data is written and performance monitoring terminated, however the instrumented code
still exists in the application. This allows you to rerun the program to obtain additional performance
data. Use the instrument -off switch to remove the performance monitoring instrumentation.

After the data has been written, a completion message is displayed; If no data was collected, this
message will be followed by a message informing you that no data was written. The default
write_location is the stop_location. If only the start_location is specified, performance monitoring
starts at that location and continues until the end of the program. If neither start nor stop are
specified, performance monitoring begins at the current execution point and continues until the end
of the program. If the write_location is encountered before the start_location no performance data
is generated. If the program does not execute the write _location for any reason (such as a dead-lock,
infinite loop or program fault) use the -write switch to obtain whatever performance data was
collected.

The instrument command re-applies the instrumentation when an application is rerun.

All nodes and processes executing this command must be running the same load module. If not, the
command returns an error. Multiple instrument commands are used to instrument diff~rent load
modules where differing start, stop or write locations are desired. You may not specify prof, gprof
and paragraph instrumentation on the same context. However, you may instrument one context
with prof, a second context with gprof and a third context with paragraph.

Use the flush command to modify the performance monitoring trace buffer flush policies when
paragraph performance monitoring is specified

To analyze the data generated by the prof instrumentation use the prof utility. By default, the prof
utility uses the data in the INFO file of the mon.out directory to choose the lowest (node:ptype) pair
data file for the specified load file. To view prof output on other (node:ptype) pairs, specify the
executable_name.pid.node.ptype data file via the prof utility -m switch.

To analyze the data generated by the gprof instrumentation use the gprof utility. By default, the
gprof utility uses the data in the INFO file of gmon.out directory to choose the lowest (node:ptype)
pair data file for the specified load file. To view gprof output on other (node:ptype) pairs, specify
the executable_name.pid.node.ptype data file on the gprof utility command line.

------- ------------------

• • • • • • • • .ii
•
• •
II

• • • • • • • • •
•
• • •
• • •
• • •

D

II

n
D

n
G

n
I~

IJ

r:l

l:J

C

r:
I:
I "," J

I ~I

I . .;.1

I -,'! . ,.!

IJ

IJ

IJ

IJ
1"'1

J

I::']

r:;

l:l

D

n
II

•

- ~--'------'---' ~~. -- ... - .. -- -... -.-.. --------~--- .. -.. -------.---~----~~~-- ---

Paragon™ System Interactive Parallel Debugger Reference Manual IPD Commands

INSTRUMENT (cont.) INSTRUMENT (cont.)

Examples

Use the paragraph utility to analyze the data generated by the paragraph instrumentation. By
default, the paragraph utility uses the default pg.tlj'file. If you have used a different file name when
instrumenting paragraph, use the paragraph -f switch or the paragraph file menu to specify your
data file.

The application must be compiled with the -Mperfmon switch (the default) in order for the
performance library to be linked into the application. If the application is compiled with the
-Mnoperfmon switch, the instrument command will not be able to instrument the application.

When the instrument command is started without parameters, or only with a context parameter,
information on what has been instrumented is displayed:

Type Start Location Stop Location Status Context

- ========== ======= --- -------
prof test{}#23 entry of exitO applied (0:0)
paragraph main{}S2 entry of exitO applied (1..3:0)

The type of instrumentation is shown at the left followed by the start and stop locations. Under the
Status header is the status of the instrumentation: "applied", ''monitoring'' or "done." The "applied"
status indicates that the instrumentation is applied but the application is not running. The
"monitoring" status indicates that the application is running and performance monitoring is
occurring. Finally at the right is the context of nodes and process types being monitored.

This command may not be used while examining core files.

1. Starting from the Unix shell, prof performance data is gathered on an application, my _app, for
its entire run:

ipd
ipd > load my_app

*** reading symbol table for /home/myacct/my_app ... 100%
*** loading program ...
*** initializing IPD for parallel application ...
*** load complete

(all:O) > i~Btrument -prof
(all:O) > run

65

IPO Commands Paragon 1M System Interactive Parallel Debugger Reference Manual

INSTRUMENT (cont.) INSTRUMENT (cont.)

66

2. After starting IPD and loading the program, gprof data starts collecting at the next call of the
function my _funcO. The output directory is specified to be gproLdata so that current data in
the gmon.out directory is not overwitten:

(all:O) > instrument -gprof ~_func() gprof_data
(all:O) > conti

3. For the program shown below a paragraph event trace for the do loop is generated. After starting
IPD and loading the program, the data collection is started with the instrument command shown.
This collects data on the program while it is in the loop and writes the data to the default
paragraph pg.tiffile. Note that the stop location is placed outside the do loop:

005 program main
006
007 call init
008 do 10 i=l,n
009
010 10 continue
011
012 end

(all:O) > instrument -paragraph #8,#11
(all:O) > conti

4. For the program shown below gprof data is generated only when the program is executing in
the inner do loop of the subroutine calculate:

005 subroutine calculate
006
007 do 5 j=1,5
008 do 10 i=1,20
009
010 10 continue
011 5 continue
012
013 end

(all:O) > instrument -gprof #8,#10,#13
(all:O) > conti

Here, the start and stop locations are specified within the do loop but the write location is
specified outside of the outer loop. By specifying the write location outside the loop, only when
the program is in the inner loop of the subroutine calculate is gprof performance data collected.

• • • • • • • • • • •
K

a

• • • • •
&

• • • • • • • • • • • • •

IJ

D

D

D

n
II

I~

11'1
1.1

I~

IJ

[J
I~"

IJ

IJ

1"1
, l!i

IJ

I::

C

D

• • • •

Paragon™ System Interactive Parallel Debugger Reference Manual IPD Commands

INSTRUMENT (cont.) INSTRUMENT (cont.)

See Also

5. There are two different load modules: my_host on node 0 and my _nodes on nodes 1 through 3.
This command line gathers gprof data on my _host and paragraph data on my_nodes:

flush

ipd > load my_host -on 0 \; my_nodes -on 1,2,3
*** reading symbol table for /home/myacct/my_host ... 100%
*** loading program ...
*** initializing IPD for parallel application ...
*** load complete
*** reading symbol table for /home/myacct/my_nodes ... 100%
*** load complete

(all:O) > instrument (0:0) -gprof
(all:O) > instrument (1 •• 3:0) -paragraph
(all:O) > run

67

---- ---~--."~-~---.---------------~--.~.--~--.-------

IPD Commands Paragon TM System Interactive Parallel Debugger Reference Manual

KILL KILL

Terminate and remove processes in the current or specified context.

Syntax

Arguments

Description

68

kill [context] [-force] [-fault I -nonfault I -notfirst]

context

-force

-fault

-nonfault

-notf"ll'St

The context argument specifies the context as a list of processes using either NX
or MPI process naming conventions. An NX process consists of a node number
and ptype. An MPI process consists of a communicator and rank. The node
number, ptype, and rank may be expressed as a single value, a comma-separated
list, a range, or a combination thereof. The keyword all may be used in place of
any of these values as well. The special value host may be used in lieu of a process
name to specify the controlling process(es) running in the service partition.

(host)
(host: {all I ptypelist})
({ all I node list} : {all I ptypelist})
(communicator: {all I ranklist})

For more information, see the context command.

Kill process(es) without asking for verification.

The -fault switch removes faulting processes from core analysis. This switch is
for use only during core-file analysis.

The -nonfault switch removes non-faulting processes from core-file analysis.
This switch is only for use during core-file analysis.

The -notf"ll'St switch removes all processes from core-file analysis except for the
one that faulted first, as determined by the internal time stamp. This switch is for
use during core-file analysis only.

The klll command terminates and removes processes. Because the klll command is potentially
destructive, it asks if you are sure you want to kill the processes. You must enter a y to confirm that
you want to kill the process. Any other character(s) are interpreted as a "no". Use the -force switch
to force the kill without a confirmation.

i .,
• • • • • • • • •
•
I:

• •
• • • •
• • • • • • • • • • • • • •

II

n
II

o
II

o
D

I~

n
C

r]

I~I
, cJ

I:,;
(1

.,)

•
-1

.kJ

11
. '"

I ""·'· ' :J

Ij

D

• • • •

Paragon™ System Interactive Parallel Debugger Reference Manual IPD Commands

KILL (cont.)

Examples

KILL (cont.)

The -force switch is not necessary when executing a command file. IPD automatically suppresses
the confirmation message when reading commands from a file.

A kill command tenninates a process and destroys all information IPD has about the process,
including breakpoints, variable types, etc. When all processes in the default context have been killed,
the prompt reverts to "ipd >" to indicate the lack of a current context.

If a core file is being analyzed, the kill command removes procesess' core files from analysis. A
context argument may specify processes, or the -fault, -nonfault, or -DOttirst switches may be used
to remove groups of core files. If all processes' core files are removed (the context is emptied) the
core-file-analysis mode is ended.

1. Kill process 0 on DOde 0 when the current context is (1..3:0):

(1 .. 3:0) > kill (O:O)
***This command will delete all processes in (0:0).
Are you sure you want to do this(y/n)? y

(1. .3:0) >

2. Kill all processes in the current context without a question.

(all:O) > kill -£
ipd >

69

IPD Commands

KILL (cont.)

See Also

70

- ----- -------- ----~------~~----.-------------.----. -,----_._._-

I

Paragon TM System Interactive Parallel Debugger Reference Manual

KILL (cont.)

3. All processes of an application that faulted were loaded initially for core-file analysis. Now,
only the faulting processes are of interest, so the rest are removed from analysis, leaving nodes
0 .. 2 in the context. Then, to exit the core-file-analysis mode completely, the remaining
processes are killed:

stop

ipd > coreload -all
*** reading symbol table for /home/john/chess/cgame.nx ... 100%
*** scanning core files ...
*** coreload complete
Context State Reason Location

======= ======
*(0 .. 2;0) Signaled SIGBUS
*(3:0) Signaled SIGKILL
* (host) Signaled SIGKILL
(all :0) >

(all:O) > kill -nonEault
(0 .. 2:0) > process
Context State Reason
======= ======
(0 .. 2:0) Signaled SIGBUS

(0 •• 2:0) >

(0 •• 2 : 0) > kill
ipd >

========
Line 113
Line 345
Ox00010404

Location
===.=====
Line 113

Procedure

=========
nextmove()
forward ()
nx_wait ()

Procedure
=========
nextmove ()

• • • • • • • • • • •
I:

&

• • • • • • • • • • • • •
• • • • • •

(I

D

o
o
D

o
II

I-~

111
•

_"1.
- 1

,)

IJ

IJ

1:1
1"1

.1

(]

I:]

I]

IJ

'

-"I

.J

D

II

II

•

ParagonTWI System Interactive Parallel Debugger Reference Manual IPD Commands

LIST LIST

Display source code lines.

Syntax

Arguments

List source code from current execution point:
list [context] ~count]

List source code starting from a procedure:

list [context] [fileU]procedureO ~count]

List source code starting from a source line number:
list [context] [fileU] [procedureOJ #line [: #line I ,count]

context

count

The context argument specifies the context as a list of processes using either NX
or MPI process naming conventions. An NX process consists of a node number
and ptype. An MPI process consists of a communicator and rank. The node
number, ptype, and rank may be expressed as a single value, a comma-separated
list, a range, or a combination thereof. The keyword all may be used in place of
any of these values as well. The special value host may be used in lieu of a process
name to specify the controlling process(es) running in the service partition.

(host)
(host: {all I ptypelist})
({all I nodelist} : {all I ptypelist})
(communicator: {all I ranklist})

For more information, see the context command.

The count argument is an integer that indicates the number of lines of source code
to list. If the count argument is positive, listing starts at the specified location and
continues for the specified number of instructions. If negative, listing begins at
count-l instructions preceding the specified location and ends at that location.

If you do not specify a count argument, IPD uses the last count argument supplied
to a list command in the current session, except when listing an entire procedure.
The default value of the count argument is 50 lines. One way to use the count
argument is to specify a large value and then use the IPD more utility (see the
more command) to browse through the instructions.

71

IPO Commands

LIST (cont.)

file

procedure

line

72

------------------------_ .. -~-.---"-------"---~-- -

Paragqn TMSystem Interactive Parallel Debugger Reference Manual

LIST (cont.)

The file argument is the name of the source file in which the procedure or line
resides. To refer to a file other than the location of the current execution point, you
must prefix the line number with file. When you refer to a procedure, you may
omit the file name unless there are duplicate procedure names, because IPD can
find the source file from the symbol table information. The file argument must be
followed with a pair of braces (n).

The optional procedure argument is the name of the procedure at which you want
to start listing or the procedure in which the line number you are specifying
resides. You need to specify the procedure when the execution point is not in the
same procedure as the variable. The procedure argument must end with a pair of
parentheses (0).

For C++, procedure names may include operator functions, such as operator+(),
operator new(), or operator int *(). The operator names must include the
"operator" keyword. You may also preface the procedure name with class
information and may include argument types to distinguish between overloaded
functions. The syntax is:

[[class]:: [class::] ...]procedure([type[,type] ...])

class::

type

The name of the C++ class in which a procedure is a
member function. Use the "::" without a class name to
refer to a global procedure that is hidden by a member
function in the current scope. Specify nested classes as
class} ::class2::

Any legal C++ type specification, such as int,jloat *,
or cfulr (*)(). Argument types may be omitted unless
the procedure name is overloaded. For overloaded
procedure names, you need only to specify enough
arguments to uniquely identify the intended procedure.
An error is reported when then procedure name is
ambiguous.

The line argument specifies a source line number at which to start listing. The line
number must be prefixed by a number sign (#) and may be any source line in a
source file. You may specify a range of lines by specifying a begininng and ending
line number (you must specify the range in ascending order), or or by specifying
a line number and a line count.

• • • • • • • • • •
.:
1I

I:

• • • • • • • • • • • • • • • • • • •

II

n
D

o
n
D

n
I~

I~ .I

rJ ."'" .J

IJ

r:J

IJ

I]

IJ
[j

e
~

D

II

II

•

Paragon TM System Interactive Parallel Debugger Reference Manual IPD Commands

LIST (cont.)

Description

LIST (cont.)

The list command displays source code lines. To list from the current execution point, all processes
in the context must be stopped. This is because the current execution point can be defined only when
all processes in the context are stopped. If you specify a line number or procedure as the starting
point, the state of the processes does not matter.

IPD finds the source files by searching the source directory search path defined by the source
command. You may not specify a path as part of the fileU qualifier. Refer to the source command
for more information.

If you enter the command without specifying a starting point (using the current execution point), the
list command lists the source lines at the current execution point. If the default or specified context
has processes stopped at different locations, multiple listings are displayed, one for each process
with a unique execution point.

If you specify afileU, it must have been used in compiling of a loaded module. Source files unrelated
to any loaded module cannot be listed with the list command. Use the system command to access
operating system commands such as cat or an editor to look at other files. Specifying a source file
that has the same name as a file used in compiling a program under debug, but is not the actual file
used does not generate an error or warning, but may provide faulty information. There is no way for
the debugger to detect this circumstance.

If you specify a procedure() argument without count or #line arguments, then the entire procedure
is listed, regardless of the last value of count specified.

Before each listing, the list command displays a line showing the current context and the name of
the source file that is being listed. If the source lines being listed are from a file that does not contain
a current execution point, the context information is omitted, and only the file name is displayed
prior to the listing.

Line numbers that are valid for setting breakpoints, tracepoints, and watchpoints are followed by the
">" symbol. All other line numbers are followed by the ":" symbol. A valid line number is one that
is represented in the line table created when an application is compiled with -g. However, the
number of lines represented in a line table is reduced as the optimization level (specified using the
-0 compiler switch) increases.

73

IPO COmmands Paragon TM System Interactive Parallel Debugger Reference Manual

LIST (cont.) LIST (cont.)

Examples

1. Assume that the current context is (1 :0). Issue the list command after the main program
encounters a code breakpoint to display each source line you are stepping through:

(1:0) > run ; wait
Context State
=======

*(1:0) Breakpoint

(1:0) > step; list,l
Context State
=======

* (1: 0) Stepped

***** (1: 0) *****
File: . /gauss. f

180> if(iam.eq.O) then

(1:0) > step; list
Context State
=======

* (1: 0) Stepped
***** (1: 0) *****
File: . /gauss. f

Reason Location
====== ========
C Bp 1 Line 180

Reason Location
====== ========

Line 180

Reason Location
====== ========

Line 194

194> leftid = irecv(type, a(l,l), length)

74

Procedure
=========
shadow ()

Procedure
=========
shadow ()

Procedure
=========
shadow()

• • • •
• • • • •
•• •
.:
a

•
• • • • •
• • • • •
• • • • • • • •

o
D

D

o
o
D

n
I]

I:

I~ ,..,
! 1

I~
, J

I~

l:il

I:

I '" ,~

(,"'
,;.j

('1
~

IJ

I:J

~

I~

D

• • •

Paragon TM System Interactive Parallel Debugger Reference Manual IPD Commands

LIST (cont.) LIST (cont.)

2. List 17 source lines starting at line number 180 (entering list #180,17 would produce the same
result):

(1:0) > list #180:#196
180> if(iam.eq.O) then
181:c
182:c
183:c
184:c
185>
186>
187>
188:
189:
190:c
191:c
192:c
193:c
194>
195>
196>
(1: 0) >

If I am the leftmost node of the array (node 0) then only exchange
with the right (to the left is a boundary of the array)

rightid = irecv(type, a(1,range+2), length)
call csend(type, a(l,range+l), length, rightnode,O)
call msgwait(rightid)

else if (iam .eq. nbrnodes) then

If I am the rightmost node of the array (highest numbered node) then
only exchange with the node to the left.

leftid = irecv(type, a(l,l), length)
call csend(type, a(1,2), length, leftnode,O)
call msgwait(leftid)

See Also

source, disassemble

75

JPD Commands Paragon™ System Interactive Parallel Debugger Reference Manual

LOAD LOAD

Load an application under debugger control.

Syntax

Arguments

Description

76

load filename [<infile] [> outfile] [program_args]

filename

infile

The filename argument is the program that you want to load. Specify the path
name if the file is not in the current directory.

The infile argument is the program's input file. All of the program's standard input
(stdin) is read from infile. The infile is not read until a wait command is issued.

outfile The outfile argument is the program's output file. All of the program's output will
be redirected to the outfile.

program_args These are arguments that are passed to the program. Anything following the
file-redirection arguments, up to the end of the line, a non-escaped pound sign, or
a non-escaped semicolon, is used as a program argument.

If the program is compiled with the -ox option, arguments should include any
operating system command line arguments necessary for loading the application
(such as -po partition, -sz num_nodes, -pt process_type, -od node_list, and so on).
For a complete description of these arguments, see the Paragon™System User's
Guide.

The load command loads an application under the debugger's control and sets the default debug
context. The program_args arguments may include those special switches recognized by the -ox
runtime start-up routine, such as -sz, -po, and so on.

To include the special characters ";", "#", "$", or "\" as arguments, they must be escaped (preceded)
with a backslash character ("\").

The run and rerun commands may be also used to specify command line arguments or to redirect
standard input. Those commands cause the application to be reloaded.

• • • • • • • • .:
• • •
II

••
•
•• • • • • • • • • • • • • • • •
•

- ... --.-----.----

D

D

II

II

II

II

0

I:
C

D
I-~ . ""

$JJ

I~

I:
Ij

I:J 11>1

C

19 AI

I:

1=
r~

r:
IJ

IJ

r:
I:

C

D

D

•
D

•

Paragon 1M System Interactive Parallel Debugger Reference Manual IPD Commands

LOAD (cont.)

Examples

LOAD (cont.)

The load command may be used to load different programs on different nodes. To do so, compile
the application with the -ox switch and specify the additional programs in the argument list as
described in the Paragon™System User's Guide.

The load command sets the default context. For parallel applications compiled with -ox, the default
context is automatically set to include all compute processes that have the same ptype as the first
program specified on the command line. For all other applications, the load command is set to the
default context (host) .

Programs that call ox_nforkO or ox_IoadveO directly may cause other processes to be loaded when
they are executed. When the new processes are created, the IPD program prints an information
message. At that point, the new processes are available for debugging by changing context.

1. Load the file gauss (compiled with the -ox option) on all nodes in the partition named eldr; set
the process type to 99:

ipd > load gauss -pn eldr -pt 99
*** reading symbol table for /home/myacct/gauss ... 100%
*** loading program ...
*** initializing IPD for parallel application ...
*** load complete

(all: 99) >

2. Load the file gauss on 3 nodes in the default partition; set the process type to 99; redirect input
to come from the file gauss.dat and pass the program the additional argument "100":

ipd > load gauss < gauss.dat -sz 3 -pt 99 100
*** reading symbol table for /home/myacct/gauss ... 100%
*** loading program ...
*** initializing IPD for parallel application ...
*** load complete

(all:99) >

77

IPD Commands

LOAD (cont.)

See Also

78

Paragon 1M System Interactive Parallel Debugger Reference Manual

LOAD (cont.)

3. Load the file gauss] on node 0 in the default partition and set the process type to 1; load the file
gauss2 on nodes 1..3 in the default partition and set the process type to 2:

ipd> load gauss1 -on 0 -pt 1 \; gauss2 -on 1 •• 3 -pt 2
*** reading symbol table for /home/myacct/gauss1 ... 100%
*** loading program ...
*** initializing IPD for parallel application ...
*** reading symbol table for /home/myacct/gauss2 ... 100%
*** load complete

(0 :1) >

4. Load the file sample (compiled without the -nx option).

ipd > load s~le
*** reading symbol table for /home/rnyacct/sample ... 100%
*** loading program ...
*** load complete

(host) >

coreload, status

• • • • • • .:
• • .:
• •
•• • • .:

• •
a

• • • • • • • • • • • •
•

II

o
D

II

n
II

n
c
.,-:
alii

n

I ·~
!J

I:

J: ."' .,1

IJ

IJ

IJ

Ij

(j

I!

D

II

D

•

Paragon'" System Interactive Parallel Debugger Reference Manual IPD Commands

LOG LOG

Tum debug session logging on or off, or display the name of the current log file .

Syntax

Arguments

Description

Examples

See Also

log [[-on] filename I -off]

[-on] filename Specifies the name of the file to contain the debug log. Thefilename argument
may be a complete or relative pathname. The -on is optional if you specify a file
name.

-ofT Turns off logging to the current log file.

The log command with no arguments displays the name of the current log file. The arguments allow
you to specify a log file name and turn on logging, or to turn it off. Only one log file may be active
at a time. If IPD is currently using one log file and you use the log command to specify another log
file, the current log file is closed and the new log file is opened.

If you specify a log file that already exists the file will be overwritten with new log information.

1. Tum on logging to file gauss.log:

(all:O) > log gauss.log

2. Display the name of the current log file:

(0:0) > log
Log file: gauss.log

status

79

IPO Commands Paragon 1M System Interactive Parallel Debugger Reference Manual

MORE MORE

Control scrolling of IPD information on the display.

Syntax

Arguments

Description

Examples

See Also

80

more [-on I -ofT]

-on

-off

Turns on the more function to control scrolling of the display. Whenever output
from a command would scroll off the screen, the display is halted. A more prompt
is shown below the last displayed line, at the bottom of the screen, and the IPD
program waits for input (pressing any key on the keyboard) before continuing.

Turns off the more function for terminal output. Allows output to scroll freely,
even when it is greater than one screen in length.

The more command allows you to control information scrolling on the display returned by IPD
commands. The default more state depends upon IPD's standard input and standard output. If the
standard input and standard output are a terminal, then the default is "more -on". However, if IPD' s
standard input or standard output is a file then the default is "more -off".

To determine the current IPD more state, use the more command without arguments.

1. Turn on IPD's more function:

(all:O) > more -on

2. Display the current more state:

status

(all: 0) > more
More: on

• • • • • •
• • .1
•
• •
I:

•
•
• • •
• • • •
•
• •
• • •
• • • •

D

D

D

D

II

II

D

I~

G

n
IJ

IJ

I.'" :,!,.!

I "'" .J

I:J

I:

II

•
, II

D

Paragon TM System Interactive Parallel Debugger Reference Manual IPD Commands

MSGQUEUE MSGQUEUE

Display messages sent but not yet received.

Syntax

Arguments

Description

msgqueue [context] [type] [·all]

context

type

-all

The context argument specifies the context as a list of processes using either NX
or MPI process naming conventions. An NX process consists of a node number
and ptype. An MPI process consists of a communicator and rank. The node
number, ptype, and rank may be expressed as a single value, a comma-separated
list, a range, or a combination thereof. The keyword all may be used in place of
any of these values as well. The special value host may be used in lieu of a process
name to specify the controlling process(es) running in the service partition.

(host)
(host: {all I ptypelist})
({all I nodelist} : {all I ptypelist})
(communicator: {all I ranklist})

For more information, see the context command.

The user-defined message type as specified in the message-passing call. Only
messages of the type specified by the type argument will be displayed; otherwise,
all types in the context are listed.

Include both NX and MPI style messages in the display.

The msgqueue command displays the messages that have been sent and have arrived on the node(s)
in the current context but have not yet been received by a process on the node. If you do not specify
a type, all message types are included, including those sent by library calls. Use the recvqueue
command to display the processes that have posted receives that have not been satisfied.

81

IPD Commands Paragon TM System Interactive Para"el Debugger Reference Manual

MSGQUEUE (cont.) MSGQUEUE (cont.)

82

The -all switch is useful for showing MPI messages for all communicators; without it, only MPI
messages for the current context's communicator are displayed. The -all switch is also useful if an
application uses both NX and MPI message passing, for example, if an MPI application is linked
with a library using NX message passing. Once an application has executed an MPljnitO call, only
MPI-style messages are displayed by default, since in most cases the message passing occurring
within the library is not a concern. Since seeing these messages may be useful in understanding a
problem, the -all switch causes NX messages to be displayed along with the MPI messages.

If the msgstyle command is set to NX, all messages (messages sent using MPI calls as well as those
sent using NX calls) will be displayed as NX-style messages.

It is possible for a message to be held up on the sending node if its receive has not been posted and
there is insufficient memory on the receiving node to allow it to store even a fragment of the
message. Such a message will not appear on the msgqueue list.

It is also possible for a message for which a receive has been posted to still appear on the message
list if the user's receive buffer was paged out when the process was stopped and the queue was
requested. This is a temporary state such that the receive has been posted, but before the page
containing the receive buffer could be swapped in and the receive completed the user stopped the
process. This situation can be detected by displaying the recvqueue. If it shows that a receive has
been posted for a message that is still on the msgqueue list, then the message is in the process of
being received.

If a global message is sent (that is, sent with -1 as the node number), the transfer is optimimized by
passing the messages through a tree structure. This message will not be visible on all of the node's
msgqueue lists as the messages are sent to one level of the tree and then passed to the next.

If a synchronous MPI send (MPCSsend() or MPljssend()) is used and the corresponding receive
has not been posted, the msgqueue list may include a 12-byte intermediate request-to-send message
that is sent to the receiver as part of the underlying communication protocol. Typically, message
types of 1,000,000,000 or greater are system messages. Refer to the Paragon(TM) System C Calls
Reference Manual, Appendix A, for more information.

Use the recvqueue command to display posted receives that have not been satisfied.

In an MPI application, if the communicator used to send an unreceived message has been freed the
communicator name given in the display will be COMMUNKNOWN and the ranks listed will be
relative to COMMWORLD.

• • • • • • • • • • • •
II

• • • • • • •
• • • • • • • • • • • •

II

n
o
o
D

II

n
Ij

G

I~'

I~:

I i
.U

IJ

I.~

I~'i
. .J

I~i

.J

12
I~

Ij

D

• • •

Paragon 1M System Interactive Parallel Debugger Reference Manual IPD Commands

MSGQUEUE (cont.) MSGQUEUE (cont.)

Examples

1. Display all messages sent to process type 0 that have not been received:

(all:O) > msgq
*** Unreceived messages in (all: 0)

Source

=================
(0: 0)

(2: 0)

(1: 0)

Destination

=================
(2: 0)

(3: 0)

(3: 0)

Msg Type

==========
2
1
2

Msg Length
(in bytes)

==========
7912
6048
7912

2. In an MPI application, display any messages sent within the COMMWORLD communicator
that have not been received:

(COMMWORLD:all) > msgq
* * * Unrecei ved mes sages in (COMMWORLD: all)

Source

=================
(COMMWORLD:O)
(COMMWORLD:O)

Destination

=================
(COMMWORLD: 10)
(COMMWORLD: 23)

Msg Tag

==========
16
16

Msg Length
(in bytes)

==========
100
100

3. In an MPI application that is linked with the ProSolver library (which is written using NX
message passing), display all messages that have not been received. Messages sent by any
communicator are displayed as well:

(COMMWORLD:all) > msgq -all
* * * Unrecei ved MPI messages in (COMMWORLD: all)

Source

=================
(COMMWORLD:O)
(COMMWORLD:O)
(COMM1:1)

Destination

=================
(COMMWORLD: 10)
(COMMWORLD: 23)
(COMM1:0)

*** UnreceivedNXmessages in (all:O)

Source

=================
(0: 0)

(2: 0)

Destination

=================
(2: 0)

(3: 0)

Msg Length
Msg Tag (in bytes)

========== ==========
16 100
16 100

8 80

Msg Length
Msg Type (in bytes)

========== ==========
200014 16
200015 140

83

IPD Commands

MSGQUEUE (cont.)

See Also

recvqueue

84

Paragon TM System Interactive Parallel Debugger Reference Manual

MSGQUEUE (cont.)

• • • • • • • • • • • • • • •
-• • • • • • • • • • • • • • • .,

n
II

n
n
D

II

n
I~

I~

Il
1"'1

,I.,I

I ,'].;
~.1

r:
•. ~~!

r:
I '.,

j

I~

n

•
D

•

Paragon TM System Interactive Parallel Debugger Reference Manual IPD Commands

MSGSTYLE MSGSTYLE

Set or display how process identifiers within contexts are displayed and interpreted.

Syntax

Arguments

Description

Examples

See Also

msgstyle [-nx I -mpiJ

-nx

-mpi

Use the NX naming convention for process identification (node and ptype).

Use the MPI naming convention for process identification (communicator and
rank).

The msgstyle command allows you to specify whether contexts should be displayed and interpreted
as nodelptype pairs (NX) or communicator/rank pairs (MPI). When an application is first loaded,
NX is assumed. After the execution of MPljnit(), MPI is assumed. This command allows you to
force the display of processes using the node/ptype notation while debugging an MPI application.

This command is most useful when debugging an application that mixes NX and MPI styles of
message passing. This situation may occur for an MPI application that calls a library that uses NX
message passing.

Specifying -mpi prior to executing a call to MPljnit() or after a call to MPCFinalize() is ignored.

Using msgstyle without an argument displays the current message-display mode, either NX or MPI.

1. Tell !PD to display contexts using the node/ptype format:

(COMMWORLD:all) > msgstyle -nx
(all: 0) >

context

85

IPD Commands Paragon 1M System Interactive Parallel Debugger Reference Manual

PROCESS PROCESS

Display information about user processes controlled by IPD.

Syntax

Arguments

86

process [context] [-change] [-Ioadtllc] [-full]

context

-change

-loadfile

-full

The context argument specifies the context as a list of processes using either NX
or MP! process naming conventions. An NX process consists of a node number
and ptype. An MP! process consists of a communicator and rank.. The node
number, ptype, and rank. may be expressed as a single value, a comma-separated
list, a range, or a combination thereof. The keyword all may be used in place of
any of these values as well. The special value host may be used in lieu of a process
name to specify the controlling process(es) running in the service partition.

(host)
(host: {all I ptypelist})
({all I nodelist} : {all I ptypelist})
(communicator: {all I ranklist})

For more information, see the context command.

The -change switch displays only those processes that have changed state since
the last process display.

The -loadf'Jle switch displays the load module name instead of the source file
name. By default, the current source file and procedure are displayed for stopped
processes, and the load module name is displayed for running processes. The
-loadf'Jle switch must be used with the -full switch.

The -full switch displays the process information in a long or ''full'' format with
more room for file, class, and procedure names.

• • • • • • • •
• • • • • • • • •
• • • • • • • • • • • • • • •

D

D

D

n
II

II

n
I~

I:

I:
1-

IJ
('1 , ",J

Ij

Ij

Ij

n
II

D

•

Paragon 1M System Interactive Parallel Debugger Reference Manual IPD Commands

PROCESS (cont.) PROCESS (cont.)

Description

Context

=========
(1,2: 0)

* (3 .. 5: 0)
(11:0)

The process command provides information about the processes running under IPD. The following
is an example of the process display:

State Reason Location Procedure
====== ====== ======== =========
Breakpoint C Bp 1 line #53 scant)
Executing
Breakpoint C Bp 2 OxOO0456 test ()

If an asterisk (*) appears in the ftrst column of the process display, then the processes on that line
of the display have changed state since the last process display. The column headings denote the
following:

Context

State

Reason

Location

Procedure

The nodes and process types in context format (see the context command for
more information). If the "Context" fteld overflows, the process command
splits the information into multiple lines.

The current state of the processes. A process can be in one of eleven states:
"Initial," "Executing," "Breakpoint," "Watchpoint," "Sre Stepping,"
"InstStepping," "Stepped," "Signaled," "Interrupted," "Exited," or
"Exiting ...

For processes in the "Breakpoint," "Watchpoint," "Signaled," or "Exited"
states, the next column under the heading "Reason" gives further information
on the state of the process. For processes at a breakpoint or watchpoint, the
"Reason" column shows the breakpointlwatchpoint type and number (see the
break and watch commands for more information). For terminated
processes, this column describes why the process has exited.

Shows the location of the process for all states except ''Executing,''
"SrcStepping," and "InstStepping."

Shows the name of the procedure for all states except "Executing,"
"SrcStepping," and "InstStepping."

Use the -loadf"de and -full switches together to specify that the load module should be displayed
instead of the fIle name and procedure.

87

IPO Commands Paragon TM System Interactive Parallel Debugger Reference Manual

PROCESS (cont.) PROCESS (cont.)

Context

=========
>*(0:0)

(1,2:0)

The process command is affected by the use of the threads command. When it is set to "off" the
display shows information for a single thread in each process as illustrated above. Normally, the
thread shown is the main user thread. However, if a thread other than the main user thread is halted
for any reason (such as a fault or breakpoint), then the state information for the thread that caused
the process to be halted is displayed instead. If this is the case, a ">" is placed in the first column, as
in the following display:

State Reason Location Procedure

====== ====== ======== =========
Signaled SIGSEGV OxOO01024 hrecv _hndlr ()
Breakpoint C Bp 1 line 102 scan()

If threads is set to "on", process information is displayed for each user thread in each process. A
column labeled "Thrd" is added that displays an identifier for each thread. The thread that caused
the process to halt shows the State and Reason information indicating why the process stopped. All
other threads will have a Stopped state and an empty Reason field.

Context Thrd State Reason Location Procedure

=======
(0: 0) 0

1
2

(1: 0) 0
1
2

Examples

====== ====== ======== =========
Stopped line 84 Main()
Stopped OxOOO17d2c _nx-port_recv_ thr
Breakpoint C Bp 1 line 70 myhandler ()
Breakpoint C Bp 2 line 10 sub1()
Stopped OxOOO17d2c _nx-port_recv_ thr
Stopped OxOOO17d2c _nx-port_recv_ thr

The wait and step commands perform an implicit process command upon returning control to the
user.

A process in the ''Exited' state no longer exists under debug control.

1. Display process information. Node 0 is stopped at a breakpoint and the others are in a
just-loaded state.

(all:all) > process

Context

=========
(0: 0)

(1. .3:0)

88

State
======
Breakpoint
Initial

Reason

======
C Bp 1

Location

========
line #86
line #84

Procedure

=========
Main()
Main()

• • • • • • • •
• • •
I

II

K

•
a

•
•
II:

• • • •
• • • • • •
• • •

II

D

o
D

D

II

II

I:

I~

1'1
cJ

I]

1·'1
.W

IJ

IJ

[J

[J

G

D

II

II

•

Paragon TN System Interactive Parallel Debugger Reference Manual IPD Commands

PROCESS (cont.) PROCESS (cont.)

2. Continue the execution of the node program, hitting another breakpoint. The wait command
performs an implicit process command to display the process information. Notice that the node
program has executed and is now stopped at a breakpoint. The leading asterisk (*) indicates
that the state has changed since the last time process was used:

(all:all) > context (1 •• 3:0)
(1 .. 3:0) > continue
(1 .. 3 : 0) > wai t

Context State
========= ======

* (1. .3:0) Breakpoint

Reason Location Procedure
====== ======== =========
C Bp 3 line 93 Main()

3. Redisplay the process information in the "full" format:

(1 .. 3:0) > process -full

Context State
========= ======

* (1 .. 3:0) Breakpoint

See Also

context, status

Reason
======
C Bp 3

Location
Procedure
Src/Obj Name
=====================================
line 93
Main()
node.f

89

IPO Commands Paragon TM System Interactive Parallel Debugger Reference Manual

QUIT QUIT

Terminate a debug session and exit IPD.

Syntax

Description

Examples

See Also

90

quit

The quit command terminates an IPD session. It is equivalent to the exit command. Either command
terminates only those processes that the debugger has loaded.

1. ExitIPD:

(all:all) > quit
*** IPD exiting ...

exit

• • • • • • • • • •
• •
I:

•
•
• • •
.:

• •
•
• •
• •
• •
•
• •
•

n
D

II

II

II

D

n

I~

1"1
,I, r

, J

IJ

IJ

1~1

-.I

IJ

IJ

IJ

Ij

I]

II

D

II

•

Paragon™ System Interactive Parallel Debugger Reference Manual IPD Commands

RECVQUEUE RECVQUEUE

Display pending receives.

Syntax

Arguments

Description

recvqueue [context] [type] [-all]

context

type

-all

The context argument specifies the context as a list of processes using either NX
or MPI process naming conventions. An NX process consists of a node number
and ptype. An MPI process consists of a communicator and rank. The node
number, ptype, and rank may be expressed as a single value, a comma-separated
list, a range, or a combination thereof. The keyword all may be used in place of
any of these values as well. The special value host may be used in lieu of a process
name to specify the controlling process(es) running in the service partition.

(host)
(host: {all I ptypelist})
({ all I nodelist} : {all I ptypelist})
(communicator: {all I ranklist})

For more information, see the context command.

The user-defined message as specified in the message-passing call. Only
messages of the type specified by the type argument are displayed; otherwise, all
message types in the context are displayed.

Include both NX and MPI style messages in the display.

The recvqueue command displays message receive requests that have been posted but not satisfied.
Only receive requests posted by processes in the current or specified context are displayed. If a
message type is specified then only receives for messages of that type on the nodes in the context are
displayed.

91

----- - --------------~--------

IPD Commands Paragon '1M System Interactive Parallel Debugger Reference Manual

RECVQUEUE (cont.) RECVQUEUE (cont.)

Examples

The -all switch is useful for showing MPI messages for all communicators; without it, only MPI
messages for the current context's communicator are displayed. The -all switch is also useful if an
application uses both NX and MPI message passing, for example, if an MPI application is linked
with a library using NX message passing. Once an application has executed an MPljnitO call, only
MPI-style receives are displayed by default, since in most cases the message passing occurring
within the library is not a concern. However, since seeing these receives may be useful in
understanding a problem, the -all switch causes NX receives to be displayed along with the MPI
receives.

If the msgstyle command is set to NX, all receives (receives posted using MPI calls as well as those
posted using NX calls) will be displayed as NX-style messages.

Processes that have unreceived messages posted are not necessarily blocked. The process may have
posted one or more asynchronous receives (using, for example, irecvO or hrecvO) and continued
executing. If the process has posted an brecvO call, which requires a handler, the name of the
handler is listed under the final column.

MPI applications that use the MPCANY _SOURCE or MPCANY _TAG will see the word "ANY"
in the "For Msg From" and "Msg Tag" fields. Also, the "Call Type" and "Handler" fields are
dropped when using the recvqueue command on MPI applications. Note that the "Msg Length" field
is in number of bytes, not the number of elements, as was specified in the MPI receive function call.

In an MPI application, if the communicator used to post the outstanding receive has been freed the
communicator name given in the display will be COMMUNKNOWN and the ranks listed will be
relative to COMMWORLD.

Use the msgqueue command to display messages that have been sent but not received.

1. Display all receives that have not been satisfied by an incoming message:

(all:O) > recvq
*** Unsatisfied receives

Recv Posted
Call Type By

posted in (all:O)
For Msg

From Msg Type

========= =========== =========== ============
CRECV (0:0) (2: 1) 100

92

Msg Length
(in bytes)

============
8

Handler

============

• • • • • • • • • • •
r:
I':
I(

• • • •
K

I:

• • • • • • • • • • • •

D

n
D

D

II

n
n

G

o
n
1"'1

"-I

IJ

C

1:1

IJ

IJ

1:1

IJ

IJ
Ij

I~

~

II

•
II

•

Paragon 1M System Interactive Parallel Debugger Reference Manual IPO Commands

RECVQUEUE (cant.) RECVQUEUE (cant.)

2. In an MPI application. display any receives that have not been satisfied by an incoming message
within the COMMWORLD communicator:

(COMMWORLD:all) > recvq
*** unsatisfied receives posted in (COMMWORLD:all)

Msg Length
Recv Posted By For Msg From Msg Tag (in bytes)

================== ================= ============ ============
(COMMWORLD: 10)
(COMMWORLD: 23)

(COMMWORLD:O)
(COMMWORLD : ANY)

100
1

8
80

3. In an MPI application that is linked with the ProSolver library (which is written using NX
message passing). display all receives that have not been satisfied by an incoming message.
Receives posted by any communicator are included:

(COMMWORLD:all) > recvq -all
*** Unsatisfied MPI receives posted in (COMMWORLD:all)

Msg Length
Recv Posted By For Msg From Msg Tag (in bytes)

================== ================= ============ ============
(COMMWORLD: 10)
(COMMWORLD : 23)
(COMM2:6)

(COMMWORLD:O)
(COMMWORLD:ANY)
(COMM2 : ANY)

100
1

ANY

*** Unsatisfied NX receives posted in (all:O)

8
80
10

Recv Posted For Msg
Call Type By From Msg Type

Msg Length
(in bytes)

=========== =========== ============ ============
CRECV (0:0) (2: 1) 200021 8

See Also

msgqueue

93

IPD Commands Paragon tM System Interactive Para"el Debugger Reference Manual

REMOVE REMOVE

Remove breakpoints, watchpoints, and tracepoints.

Syntax

Arguments

Description

94

remove [context] [actionpoincnumber [actionpoincnumber]] I-all

context The context argument specifies the context as a list of processes using either NX
or MPI process naming conventions. An NX process consists of a node number
and ptype. An MPI process consists of a communicator and rank:. The node
number, ptype, and rank: may be expressed as a single value, a comma-separated
list, a range, or a combination thereof. The keyword all may be used in place of
any of these values as well. The special value host may be used in lieu of a process
name to specify the controlling process(es) running in the service partition.

(host)
(host: {all I ptypelist})
({all I nodelist} : {alii ptypelist})
(communicator: {all I ranklist})

For more information, see the context command.

actionpoincnumber

-all

The number of the breakpoint, watchpoint, or tracepoint to be removed. To
determine the actionpoinCnumber, use the break, watch, or trace commands.

The -all switch removes all breakpoints, watchpoints, and tracepoints in the
default or specified context.

The remove command removes the specified breakpoints, watchpoints or tracepoints, or all action
points in the default or specified context.

You may remove nodes from an action point context by using the remove command with the desired
nodes in the context argument. The IPD program does not remove the action point, but rather
removes the nodes from the action point context. Only when all the nodes have been removed from
the action point context is the action point removed.

I .' • • • • • • • • •
•
K

II

II

• • • • •
• • • • • • • •
• • • •
•

D

o
o
n
I)

U

D

II

C

I~

I~

• '111 ,&1

I:
r:: .:
I~

I:

IJ

I~

I]
.,
.iJ

D

D

•
II

•

Paragon™ System Interactive Parallel Debugger Reference Manual IPD Commands

REMOVE (cont.) REMOVE (cont.)

When you remove an action point its number is no longer valid, but the number is not used again in
the same debug session.

This command may not be used while examining core files.

Example

1. Display all current breakpoints, remove breakpoint 1 on (0:0), then redisplay the breakpoints:

(0:0) > break (all:O)

Bp # File name Procedure
---- ========= ===::::=====

1 gauss.f shadow
3 gauss.f shadow
4 gauss.f shadow

(0: 0) > remove (0:0) 1
(0: 0) > b (all: 0) -

Breakpoint Condition

Call shadow
Line 175 after 10
Line 180

Bp # File name Procedure Breakpoint Condition

========= ========= ====================
3
4

gauss.f
gauss.f

shadow
shadow

Line 175 after 10
Line 180

2. Remove breakpoint 3 on (2:0), then redisplay the breakpoints:

(0:0) > remove (2:0) 3
(0:0) > b (all:O)

Bp # File name Procedure
---- ========= =========

3 gauss.f shadow
4 gauss.f shadow

See Also

break, watch, trace

Breakpoint Condition

====================
Line 175 after 10
Line 180

Bp context

(0: 0)

(1..3: 0)
(all:O)

Bp context

==========
(1. .3:0)
(all:O)

Bp context

==========
(1,3:0)
(all: 0)

95

----- ----------------------------------~~~~~~~- -----------.~~~-~-~---------------

IPO Commands Paragon TM System Interactive Parallel Debugger Reference Manual

RERUN RERUN

Reload and restart the execution of the program, clearing previous command line arguments.

Syntax

Arguments

Description

96

rerun [<injile] [> outfile] [program_args]

infile The program's input file argument. All of the program's input is redirected from
infile.

outfile The program's output file argument. All of the program's output is redirected to
outfile.

program_args Arguments to be passed to the program. Anything following the file-redirection
arguments, up to the end of the line, a non-escaped pound sign, or a non-escaped
semicolon, is used as a program argument. See the load command for more
information on program arguments.

The rerun command reloads and executes a program from its beginning without using
command-line arguments from a previous load, run or rerun. All data in the program is
re-initialized. (Use the continue command to continue execution of a stopped or breakpointed
process without reloading the program or reinitializing data.)

To include the special characters ";", "#", "$", or ''\'' as arguments, they must be escaped (preceeded)
with a backslash character (''\'').

The rerun command does the following:

1. Kills the current program, which deletes all outstanding messages for the application.

2. Reloads the program.

3. Resets all of the user breakpoints and instrumentation if the program arguments have not
changed from the last load, run, or rerun command.

4. Resets the argument list.

5. Starts executing the program.

• • • • • • • • • •
•
K

.:
K

•
II

•
II

I:

•
E

• • • • • •
• •
• •
•

o
n
n
II

D

II

n

I~

IJ

IJ

I::

I~

D

D ..
•

Paragon TM System Interactive Parallel Debugger Reference Manual IPD Commands

RERUN (cont.) RERUN (cont.)

Examples

See Also

To restart the application without retyping the previous command line arguments, use the run
command. The input redirection is not saved between run commands, so you need to respecify it if
you issue another run command.

This command returns an error if it is used while examining a core file.

1. Load the gauss program on nodes 0 .. 3 with program arguments -d -f gauss:

ipd > load gauss -on 0 •• 3 -d -f gauss
*** reading symbol table for /home/myacct/gauss ... 100%

loading program ...
initializing IPD for parallel application ...
load complete

Start the program and wait for it to complete:

(all:O) > continue; wait
*** interrupt ...

After that completes, restart the program, this time without program arguments:

(all:O) > rerun -on 0 •• 3
* This command will destroy all processes under debug.

Are you sure you want to do this (y/n)? y
*** reading symbol table for /home/myacct/gauss ... 100%
*** initializing IPD for parallel application .. .

run, continue, stop, wait, signal

97

IPD Commands Paragon TIl System Interactive Parallel Debugger Reference Manual

RUN RUN

Reloads and restarts the execution of a program, reusing previous command line arguments.

Syntax

Arguments

Description

98

run [<in file] [> outfile] fprogram_args]

infile The program's input file argument. If specified, all of the program's input is
redirected from infile.

outfile The program's output file argument. All of the program's output is redirected to
outfile.

program_args Arguments to be passed to the program. Anything following the file-redirection
arguments, up to the end of the line, a non-escaped pound sign, or a non-escaped
semicolon, is used as a program argument. Refer to the load command for more
information about program arguments.

If a program is in its initial state Gust after it is loaded), run causes it to begin executing. If the
program is in any other state, the run command reloads and executes a program from its beginning,
retaining command-line arguments from a previous load, run, or rerun if no new arguments are
specified. (Use the continue command to continue execution of a stopped or breakpointed process,
or to roD: in a specified context.)

To include the special characters ";", "#", "$", or ''\'' as argumeQts, they must be escaped (preceeded)
with a backslash character (''\'').

If you assign a value to a variable, the run command resets it to the initial value. Use either the
continue or the step command to retain the assigned value of a variable.

The run command does the following:

1. Kills the current program, which deletes all outstanding messages.

2. Reloads the program.

3. Resets all of the user breakpoints and instrumentation if the run command is used without
arguments or if the arguments have not changed from the last load, run, or rerun command.

• • • • • • • • • •
•
I(

II

• • • • • • • • •
• • • •
•
• • • •
•

n
o
II

n
I)

II

n

c

I:

1"1···· ' ,
~,

l '!li
I •
I iU

I.

II

D

II

Paragon 1M System Interactive Parallel Debugger Reference Manual IPD Commands

RUN (cont.)

Examples

See Also

RUN (cont.)

4. Resets the argument list if program arguments are specified.

5. Starts executing the program.

The IPD program executes application processes asynchronously. The input redirection is not saved
between run commands, so you need to respecify it if you issue another run command.

Use the wait command to wait for all processes in a context to stop.

A run command that does not specify any application command line arguments reuses the argument
list from the last run or rerun command. To restart the application without using the previous
command line arguments, use the rerun command.

See the description of the load command for more information on application command line
arguments.

This command returns an error if it is used while examining a core file.

1. Load the program gauss with program arguments -d -f gauss.

ipd > load gauss -d -f gauss
*** reading symbol table for /home/myacct/gauss ... 100%
*** loading program ...
*** initializing IPD for parallel application ...
*** load complete

Start the program and wait for it to complete.

(all:O) > continue; wait
*** interrupt ...

After that completes, restart the program using the same arguments.

(all:O) > run

rerun, continue, stop, wait, signal

99

IPD Commands Paragon 1M System Interactive Parallel Debugger Reference Manual

SET SET

Set or display IPD variables.

Syntax

. Arguments

Description

100

List all set variables:

set

List variable definition:
set variable_name

Define new or redefine old variable:
set variable _name string .

variable_name The symbolic name of the command line variable you are defining.

string The string argument includes all text after the variable _name to the end of the
command line. To include pound signs, semicolons, non-substituting dollar signs,
or backslashes as part of the string, escape (precede) them with a backslash (''\'')
character. You may build a command line variable from other command line
variables by specifying a previously defined variable _name prefixed with a dollar
sign ($) in the string. If the dollar sign is not escaped, substitution will occur when
the set command is entered. If the dollar sign is escaped, substitution will occur
when the variable being set is used. Escaping the dollar sign for variables in the
definition of a new variable allows using variables in the definition that are not yet
defined.

The set command allows you to set or display command line variables. Command line variables are
expanded immediately unless the dollar sign is escaped with a backslash. A recursive variable
definition generates an error when you use it.

To use a command line variable in a command, precede the variable_name with a dollar sign ($).
The variable_name must be followed by a space to separate it from the next argument on the
command line. If you do not wish a space after the variable_name, enclose it in braces as follows:

• • • • • • • • .,
•
.:
K:

a:
K
I(

K

• •
I:

• •
• • • • •
•
• • • • •

D

a
D

D

U

D

D

IE
I~

,,",

I~

I ·",
.L!

I~

('1
lIJ

Ij

I:
I~

I~

II

II

•
II

•

Paragon 1M System Interactive Parallel Debugger Reference Manual IPD Commands

SET (cont.)

Examples

See Also

SET (cont.)

Use the unset command to delete command line variables. You may create an alias for the unset
command, but you may not use ''unset'' as an alias.

You may not follow the set command with another command on the same command line.

1. Define the command line variable myproc as (1..3:0). Then, use this command line variable in
the context command:

(0:0) > set m¥,Proc (1 •• 3:0)
(0:0) > context $m¥,Proc
(1. .3:0) >

2. Display the current command line variables:

(1 .. 3 : 0) > set
Variables Substitution String
========= ===================
rnyproc (1..3: 0)

3. Set x to the command line variable long_name[l04 J. Alias an to assign in the $myproc context.
Use an to assign the variable x (that is, an becomes an alias for the command string assign
(1 • .3:0) in this example):

(1 .. 3: 0) > set x long_name [104]
(1 .. 3:0) > alias an assign $my,proc
(1 .. 3:0) > an $x = 100

alias, unalias, unset

101

IPO Commands Paragon 1M. System Interactive Parallel Debugger Reference Manual

SIGNAL SIGNAL

Set or display the signal-reporting mask.

Syntax

Arguments

102

Display the current signal-reporting mask:
signal [context]

Enable signal reporting for specified signals:
signal [context] -on {signo [signo] ... I -all }

Disable signal reporting for specified signals:
signal [context] -otT {signo [signo] ... I-all}

context

signo

-on

-ott

-all

The context argument specifies the context as a list of processes using either NX
or MPI process naming conventions. An NX process consists of a node number
and ptype. An MPI process consists of a communicator and rank. The node
number, ptype, and rank may be expressed as a single value, a comma-separated
list, a range, or a combination thereof. The keyword all may be used in place of
any of these values as well. The special value host may be used in lieu of a process
name to specify the controlling process(es) running in the service partition.

(host)
(host: {all I ptypelist})
({all I nodelist} : {all I ptypelist})
(communicator: {all I ranklist})

For more information, see the context command.

The signal to be added or removed from the signal-reporting mask. The signal
may be specified either as a number or a symbolic name (such as SIGCHW). The
symbolic names are defined in lusrlincludelsignal.h.

Add the specified signals to the signal-reporting mask. By default IPD reports all
signals except SIGALRM and SIGCHLD.

Remove the specified signals from the signal-reporting mask.

Apply the specified command (-on or -oft) to all signals.

• • • • • • .i
• • • •
I:

I:

I:

• • • •
1:.

• • • • • • • • • • • • •

o
D

D

II

II

D

II

r:
I "wi

1,.1

I "!
, RI

1:1

I]

D

II

D

•

Paragon 1M System Interactive Parallel Debugger Reference Manual IPD Commands

SIGNAL (cont.) SIGNAL (cont.)

Description

IPD maintains a signal mask for each process under its control. The signal mask represents the set
of Unix signals that are reported, and initially includes all signals except for SIGALRM and
SIGCHLD. The signal command with no switch arguments displays the current signal mask for the
default or specified context. The -on switch specifies that the list of signals is to be enabled in the
mask, and the -off switch specifies that the signals are to be disabled.

NOTE

The Signal-reporting mask does not affect the action that the
signal has on the application-it only affects whether IPO reports
the receipt of the signal. For example, if a process receives a
SIGSEGV Signal, and that signal is not enabled in the
signal-reporting mask, the process is still killed, but the next
process state that IPO reports is "Exited", rather than "Signaled".

This command is useful when running applications that expect to receive certain signals. Using
signal-off command tells IPD to ignore these signals, making it easier to run to the point of interest
without having to continue the application for every signal that comes in.

The symbolic signal names recognized by the signal command are those defined in
lusrlinclude/signal.h:

SIGHUP, SIGINT, SIGQUIT, SIGILL, SIGTRAP, SIGABRT, SIGEMT,
SIGFPE, SIGKILL, SIGBUS, SIGSEGV, SIGSYS, SIGPIPE, SIGALRM,
SIGTERM, SIGURG, SIGSTOP, SIGTSTP, SIGCHLD, SIGTTIN, SIGTTOU,
SIGIO, SIGXCPU, SIGXFSZ, SIGVTALRM, SIGPROF, SIGWINCH, SIGINFO,
SIGUSR1, SIGMIGRATE

The Unix signals SIGUSR2 and SIGCONT are not accepted by the signal command-they are
reserved.

This command may not be used while examining core files.

103

IPO Commands Paragon™ System Interactive Parallel Debugger Reference Manual

SIGNAL (cont.) SIGNAL (cont.)

Examples

See Also

104

1. This example displays the current set of signals that will not be reported:

(all:O) > signal
Signals not reported by IPD:

***** (all:O) *****
SIGALRM SIGCHLD

2. This example specifies that IPD should not report receiving the SIGSEGV signal-if a process
faults with this signal, it will simply exit:

(all:O) > signal -orr SIGSEGV

(all:O) > signal
Signals not reported by IPD:

***** (all:O) *****
SIGALRM SIGCHLD SIGSEGV

continue, run, rerun, wait

• • • • • • • • • •
•
-K,

•• • • • • • • • • • • • • • •
• • • •

II

n
D

D

D

II

II

I:
c
I:

I.":
.01

IJ

c,
. :\1

D

• • • •

Paragon TM System Interactive Parallel Debugger Reference Manual IPO Commands

SOURCE SOURCE

Set or display the current source directory search paths.

Syntax

Arguments

Description

Display source directory search path:

source [filename]

Set new source directory search path:
source filename directory [directory] ...

Add directories to source directory search path:
source [filename] -add directory [directory] ...

Remove directories from source directory search path:
source [filename] -remove directory [directory] ...

filename The name of a previously loaded executable file, used to specify which program's
search path to access. If a file name is not specified, the command applies to all
executable files

directory

-add

-remove

A list of path names for the directories that contain the application source files.

Add the specified directories to the source directory search path. The directories
specified are appended to the end of the search path.

Remove the specified directories from the source directory search path.

The source command with no arguments displays the search paths for all loaded modules. If you
specify a filename, the search path for that file is displayed. When adding or deleting directories
from the search paths, if the load module name is omitted the change is applied to the search paths
for all load modules .

The directories are listed in the order that IPD uses to search for a source file for the list command .
The default directory search path assigned at load time is the current directory (.). A directory must
exist and be readable to be added to the search list. If a non-existent directory is specified in a list of
directories to be added, an error message is displayed, and only the directories that precede the
non-existent directory in the list are added.

105


~~~----- .. -- -.-.-~ ---~------------

IPD Commands Paragon 1M System Interactive Parallel Debugger Reference Manual 

SOURCE (cont.) SOURCE (cont.) 

Examples 

See Also 

106 

1. Display the current source directory search path for the previously loaded program, gauss. Add 
/usrlyouIFpil to the source directory search path and list the node program: 

(all:O) > source gauss 
Source search paths for gauss: 

(all:O) > source gauss -add /usr/you/F,pi 
(all:O) > source gauss 

Source search paths for gauss: 

/usr/you/Fpi 
(all:O)> list,lO 
***** 
57 
58 
59 
60 

(all:O) ***** gauss.f 
program gauss 

include 'nx.h' 

61 integer SIZETYPE, INITTYPE, PARTTYPE, MSGSIZE, CUBESIZE, 
62 
63 
64 
65 
66 

> HOST, HOSTPID, APPLPID, DOUBLESIZE 

integer*4 worknodes, mynode, pid, size 
integer*4 basicpoints, extrapoints, mypoints, i, j 
integer*4 starttime, points 

(all :0) > 

Iist,status 

• • • • • • 
II 

IE 

• • 
•• 
K: 

II: 
I[ 

II 

IE 

• 
K 

I:: 

• • • • • • 
II: 

• • • • • • 



II 

a 
D 

D 

II 

o 
D 

I~ 

I· ,., 
,~ 

( " 
.1 

IJ 

I] 

E 

l:i 

n .. 
• 
II 

• 

Paragon 1M System Interactive Parallel Debugger Reference Manual IPD Commands 

STATUS STATUS 

Display the debug environment settings and system partition information. 

Syntax 

Description 

Examples 

status 

The status command displays version number, debug mode (runtime or core analysis), debug 
partition information (only if doing core file analysis), application partition information (only if one 
has been indicated via load or coreload), the state of the more command (the default is "on"), the 
state of the threads command (the default is "off'), the state of the msgstyle command (either NX 
or MPI), the name of the log file (if any) to which the output from the debug session is being written, 
and the source search paths for each executable under debug. 

1. Display current status after loading an executable: 

(all:O) > st:at:UB 

IPD version number: Paragon Release 1.4 

Debug mode: Runtime process analysis 
Application partition info: .compute.karla 
USER GROUP ACCESS SIZE FREE RQ 
karla tools 777 6 0 SPS 

Message style: NX 
More: on 
Threads: off 
Log file: /home/karla/debug.log 

EPL 
5 

Source search paths for /home/karla/tests/apps/myapp: 

107 



.---~-.-.--.-------

IPD Commands Paragon TM System Interactive Parallel Debugger Reference Manual 

STATUS (cant.) STATUS (cant.) 

108 

2. Display status after loading core files from an NX application for analysis: 

(0:0) > status 

IPD version number: Paragon Release 1.4 

Debug mode: Core file analysis 
Debug partition name: karla 
Debug partition size: 1 
Core directory path: /home/karla/tests/apps/core 

Number of nodes in application: 4 
Application partition info: 
USER GROUP ACCESS SIZE 
karla tools 777 2 

Message style: NX 
More: on 
Threads: off 
Log file: 

FREE 
o 

RQ 
SPS 

EPL 
5 

Source search paths for /home/karla/tests/apps/myapp: 

3. Display status after loading an MPI application core file: 

(host) > status 

IPD version number: Paragon Release 1.4 

Debug mode: Core file analysis 
Debug partition name: karla 
Debug partition size: 1 
Core directory path: /home/karla/tests/fault/core 

Unix application core file. 

Message style: MPI 
More: on 
Threads: off 
Log file: 

Source search paths for /home/karla/tests/fault/segfault: 

.' • • • • • • • • • 
II 

I: 

&: 

K 

• • • • 
K: 

II 

• 
• • • • .. 
• • • • 
• • 



D 

I .• 

II 

If 
n 
II 

I! 

.';' 1·1 

Ie 

I': 

:I·.~ .. ' "I'i 

IJ 

I ': , . 

1m 
IJ 

II 
D 

II 

Paragon ™ System Interactive Parallel Debugger Reference Manual IPD Commands 

STATUS (cont.) STATUS (cont.) 

See Also 

process, more, log, load, coreload 

109 



IPO Commands ParagonTM System. Interactive Parallel Debugger Reference Manual 

STEP STEP 

Single step through the processes in the current or specified debug context. 

Syntax 

Arguments 

Description 

110 

Step through source line(s): 

step [context] [-call] [,count] 

Step one machine instruction: 

step [context] -instruction [-call] [,count] 

context 

-call 

-instruction 

count 

The context argument specifies the context as a list of processes using either NX 
or MPI process naming conventions. An NX process consists of a node number 
and ptype. An MPI process consists of a communicator and rank. The node 
number, ptype, and rank may be expressed as a single value, a comma-separated 
list, a range, or a combination thereof. The keyword all may be used in place of 
any of these values as well. The special value host may be used in lieu of a process 
name to specify the controlling process( es) running in the service partition. 

(host) 
(host: {all I ptypelist} ) 
( {all I nodelist} : {all I ptypelist}) 
(communicator: {all I ranklist}) 

For more information, see the context command. 

Treat all subroutine and function calls as single statements. If -call is not specified, 
routines compiled with line-number information are entered and their statements 
stepped through. 

Step one instruction instead of stepping one source line. 

The number of source lines or instructions to step through before returning control 
to the user. The default count is one source line or machine instruction. 

The step command executes a program one source line or one machine instruction at a time. Upon 
returning control to the user from a step command, IPD displays process information with the 
process command. 

• 
D 

D 

II 

D 

IE 

II 

II 

• • 
E 

I: 

I: 

E: 

E 

II 

II 

K 

If 

II: 

.: 

• • • 
II 

II: 

K 

• • 
• 
• • 



II 

n 
D 

D 

n 
D 

n 
I: 

1"1 

I~ 

I -c 
, ~, 

G 

n 
D 

II 

• 

Paragon TM System Interactive Parallel Debugger Reference Manual IPD Commands 

STEP (cont.) STEP (cont.) 

When stepping through source line numbers, any procedures compiled without line number 
information are treated as if the command were step -call, even if you did not specify -call. 

When stepping through machine instructions, you cannot step through a system call trap instruction 
to the operating system. The trap is treated as if the command were step -instruction -call. 

Single-stepping is synchronous; the step command does not return until all processes in its context 
have stepped. If your program blocks during the step command, use the interrupt signal (pressing 
<Del> or <Ctrl-C» to regain the IPD prompt. At this point the current state of the process is still 
"Executing". Use the stop command to stop the process. 

This command may not be used while examing core files. 

Examples 

1. Assume that the program is stopped at line 93 on all nodes, just before a crecvO. Step to line 94: 

(all:O) > process 
Context State Reason Location 

=::::::=::::::::::::= ====== ====== ======== 
(all:O) Breakpoint C Bp 3 line 93 

(all:O) > list 5 
***** (all:O) ***** node.f 
93 call crecv(SIZETYPE, size, PARTSIZE) 

worknodes = size 94 
95 
96c 
97c receive integration parameters 

(all:O) > step 
Context State Reason 

========= ====== ====== 
* (all: 0) Stepped 

(all: 0) > 

See Also 

continue, break, trace, watch 

Location 
======== 
line 94 

Procedure 

========= 
Main() 

Procedure 
========= 
Main() 

111 



IPD Commands Paragon no System Interactive ParaUel Debugger Reference Manual 

STOP STOP 

Stop program execution in the current context. 

Syntax 

Arguments 

Description 

112 

stop [context] 

context The context argument specifies the context as a list of processes using either NX 
or MPI process naming conventions. An NX process consists of a node number 
and ptype. An MPI process consists of a communicator and rank. The node 
number, ptype, and rank may be expressed as a single value, a comma-separated 
list, a range, or a combination thereof. The keyword all may be used in place of 
any of these values as well. The special value host may be used in lieu of a process 
nameto specify the controlling process(es) running in the service partition. 

(host) 
(host: {alii ptypelist}) 
( {alii node list } : {all I ptypelist}) 
(communicator: {alii ranklist}) 

For more information, see the context command. 

The stop command stops program execution. Processes that are blocked waiting for something, such 
as a crecvO, are not in a stopped state, but are still executing. Stopping program execution when you 
do not have an IPD prompt requires that you send an interrupt signal (entering <Del> or 
<Ctrl-C» so you can get a prompt at which you can enter a stop command to stop application 
processes. Many IPD commands require processes to be stopped so that valid information can be 
obtained from the operating system. 

This command may not be used while examining core files. 

• • • • • • • 
II] 

• • 
II; 

II.' 

~ 

II: 

• 
II] 

• 
II 

K: 

II 

.: 

• • • 
.: 
II] 

• 
• • • 
• 
• 



o 
n 
D 

D 

D 

D 

D 

II 

c 

IJ 

I ·"'.·, 
cl 

I "' , j 

IJ 

I] 

IJ 

I· .~.' , .kJ 

I:J 

G 

D 

II 

D 

• 

Paragon™ System Interactive Parallel Debugger Reference Manual IPD Commands 

STOP (cont.) STOP (cont.) 

Examples 

1. A program named gauss blocks at its first receive. Send an interrupt signal, then issue the 
process command. This indicates the program is still executing. Issue the stop command, and 
then the process command again: 

(all:O) > run; wait 
*** interrupt ... 

(all:O) > process 
Context State 

======= 
*(all:O) Executing 
(all:O) > stop 
(all:O) > p 

Context State 
======= 

*(all:O) Interrupted 

See Also 

process, kill 

Reason Location Procedure 
====== ========= 

Reason Location Procedure 

====== ======== ========= 
Ox00016648 

113 



IPD Commands Paragon TM System Interactive Parallel Debugger Reference Manual 

SYSTEM SYSTEM 

Execute a shell command. 

Syntax 

Arguments 

Description 

Examples 

114 

system shell_command 

or 

! shell_command 

shell_command A string consisting of operating system shell commands (not an IPD command) to 
be executed. All text following the! or system to the end of the line, a non-escaped 
semi-colon, or a non-escaped pound sign is part of the shell_command argument. 
To include any semi-colons, pound signs, dollar signs, or backslashes, escape 
(preceed) them with a backslash character. 

Use either the system or ! command to execute an operating system shell command from within the 
IPD program. The she1l30mmand argument is not interpreted by the IPD program. All 
shelCcommand text to the end of the system command line or to a non-escaped semi-colon character 
or a non-escaped pound sign is passed directly to sb (the Bourne shell). All variables that begin with 
a non-escaped dollar sign are expanded before being passed to the shell. You may not follow the 
system command with any other commands on the same command line. 

If a log file is active, output from this command is written in the log file. 

1. Issue the shell command Is -I from within the IPD program: 

(all:O) > system ls -1 /usr/paragon/ex~les/£ortran/gauss 
total 23 
-r--r--r-- 1 root other 1413 Mar 30 21:03 README 
-r--r--r-- 1 root other 187 Mar 30 21:03 gauss.f 
-r--r--r-- 1 root other 475 Mar 30 21:03 makefile 
(all: 0) > 

.: 
• • • • • • • • • 
.: 

•• 
a: 
E 

• 
II: 

• 
II 
I(: 

~ 

IE 

II 

• .' • • • • • • • 
• 



D 

II 

D 

II 

II 

n 
D 

11 

C 

c 

I ,'" 
~.I 

I~ 

I:J 

D 

I: 

I] 
I ',., 

.... i 

IJ 

I~ 

n .. .. 
• • 

Paragon TV System Interactive Parallel Debugger Reference Manual IPO Commands 

THREADS THREADS 

Controls number of threads displayed for each process with the display, frame, and process commands. 

Syntax 

Arguments 

Description 

threads [-off I-on] 

-otT Display information for a single thread. The thread reported on will be the thread 
that caused the process to stop. This is the default behavior. 

-on Display, information for all user threads in each process. 

The threads command allows you to specify whether information about more than one thread 
should be reported by the display, frame, and process commands. 

Use the threads command without any arguments to display its current setting. 

An application compiled with -ox has a minimum of three user threads, the main user thread, an 
hrecv thread (which remains idle unless one of the hrecv handler functions is called), and a 
message-passing paging thread (VM pager). If -Mconcur is added to the compile line, an additional 
thread is created for executing loops in parallel. 

An application compiled with -lox starts off with a single user thread. The VM pager and hrecv 
threads are created if a call to setptype() is executed. 

Applications that do their own thread management via explicit calls to the Pthreads library (instead 
of using -Mconcur) may have additional threads that result from executing calls that create and 
delete threads. 

By default (threads is set to "off'), all commands report on a single thread, which is usually the main 
user thread. If a different thread stops for any reason (a fault or a breakpoint), then information 
concerning that thread is reported instead. 

115 



~-~---.--------.-.. --~-.~------ ... -~-. ----~-----

IPD Commands Paragon 1M System Interactive Parallel Debugger Reference Manual 

THREADS (cont.) THREADS (cont.) 

Examples 

116 

When displaying threads, a thread ID number is associated with each thread displayed. This is a 
number assigned by the debugger, starting at 0, for each thread being displayed. It can only be used 
to relate thread output from various commands (a trace back and register display) while the 
application is stopped. Once execution is resumed, it is possible for a thread to have a different ID 
associated with it when the process is next stopped and thread information is displayed again. 

The main user thread always has ID 0 throughout an application's execution. An application 
compiled with -lox only has thread O. An application compiled with -ox has the main user thread 
ID 0, an hrecv thread ID 1, and a message-passing paging thread ID2. If -Mconcur is used then the 
ID for that thread is 3. If pthread creation calls are used in place of -Mconcur, thread ID 3 will be a 
thread created by one of these calls and there may be additional threads in the display. 

The general rule for a thread ID to be constant throughout the execution of an application is that a 
thread and all threads created prior to it be created once and live throughout the life of the 
application. When an application does its own pthreads management, or in any way changes the 
order in which implicit thread creation takes place, no assumptions can be made about a certain 
thread ID representing a specific thread. Stack tracebacks should be used to determine which thread 
is which in these cases. The frame command is useful for determining the origin of the threads in a 
display. 

1. Display information on all user threads when using the display, frame, and process 
commands: 

(all:O) > tbreads -on 

2. Display the current thread display state: 

(all:O) > tbreads 
Threads: on 

• • • • • • • 
II .1 
• 
II] 

~ 

I:: 

IE 

• 
II 

III 

• 
It 

• • • • • • • • • • • • • 



II 

D 

II 

II 

II 

II 

II 

II 

C 

n 
I: 

I: 

I- ~_! 
J 

IJ 

IJ 

IJ 

IJ 
fj 

C 

n 
II .. 
II 

• 

----------- -~~-

Paragon™ System Interactive Parallel Debugger Reference Manual IPD Commands 

TRACE TRACE 

Set a tracepoint or display current tracepoints. 

Syntax 

Arguments 

Display Tracepoint information: 
trace [context] [-full] 

Set Tracepoint at procedure: 

trace [context] [file{}] procedureO [-after count] 

Set Tracepoint at source line number: 
trace [context] [file{}] fprocedure()] tiline [-after count] 

Set Tracepoint at instruction address: 

trace [context] address [-after count] 

context 

-full 

file 

The context argument specifies the context as a list of processes using either NX 
or MPI process naming conventions. An NX process consists of a node number 
and ptype. An MPI process consists of a communicator and rank. The node 
number, ptype, and rank may be expressed as a single value. a comma-separated 
list. a range, or a combination thereof. The keyword all may be used in place of 
any of these values as well. The special value host may be used in lieu of a process 
name to specify the controlling process(es) running in the service partition. 

(host) 
(host: {all I ptypelist} ) 
({alII nodelist} : {aIllptypelist}) 
(communicator: {all I ranklist}) 

For more information, see the context command. 

Displays tracepoint information in a long or ''full'' format, with more room for file, 
class, and procedure names. 

The name of the source module in which the procedure or line resides. To refer to 
a file other than the location of the current execution point, you must prefix the 
line number with file. When you refer to a procedure, you can omit the file name 
unless there are duplicate procedure names, because the IPD program can find the 
source file from the symbol table information . 

117 



IPD Commands 

TRACE (cont.) 

procedure 

line 

address 

118 

Paragon 1M System Interactive Parallel Debugger Reference Manual 

TRACE (cont.) 

The optional procedure argument is the name of the procedure at which you want 
to set the tracepoint, or the procedure in which the line number you are specifying 
resides. The procedure argument must end with a pair of parentheses «()). 

For C++, procedure names may include operator functions, such as operator+O, 
operator new(), or operator int *0. The operator names must include the 
"operator" keyword. You may also preface the procedure· name with class 
information and may include argument types to distinguish between overloaded 
functions. The syntax. is: 

[[class]:: [class::] ... ]procedure([type[,type] . .. ]) 

class:: 

type 

The name of the C++ class in which a procedure is a 
member function. Use the "::" without a class name to 

refer to a global procedure that is hidden by a member 
function in the current scope. Specify nested classes as 
class} ::class2:: .... 

Any legal C++ type specification, such as int,jloat *, 
or char (*)(). Argument types may be omitted unless 
the procedure name is overloaded. For overloaded 
procedure names, you need only to specify enough 
arguments to uniquely identify the intended procedure. 
An error is reported when then procedure name is 
ambiguous. 

The source line number at which you want to set the tracepoint. The line number 
must be preceded with a pound sign (#). In general, the statement must be 
executable. For example, you cannot set a tracepoint on a Fortran FORMAT 
statement, a comment, or an empty line. The trace message is displayed just before 
executing the specified statement. To qualify the line number, use the file and/or 
procedure qualifiers. 

The address must be an instruction address (not a data address). The trace message 
is displayed just before executing the instruction at the address. 

I .1 
• • • • • • • • • 
• 
I: 
K; 

I( 

• 
II 

• • 
I[ 

• .: 

• • • 
• • • • • • • • 



II 

D 

o 
D 

n 
D 

o 
n 

IJ 

I", 

I:: 
I

"~ 

<J 

I "! 
,~ 

I! 

o 
II 

• 
II 

• 

Paragon"" System Interactive Parallel Debugger Reference Manual IPO Commands 

TRACE (cont.) TRACE (cont.) 

Description 

-after count In all forms of the trace command, the count argument is a positive integer 
indicating the number of times this tracepoint is encountered before the trace 
message is displayed. The default count is 1. For example, if you have a Fortran 
loop defined by the following 

DO 10 I = 1,100 

and you want to see a trace message after every fifth iteration, you would set the 
tracepoint inside the loop with an -after count of 5. 

Tracepoints are breakpoints that cause a message to be displayed rather than execution to halt. They 
can be used in place of inserting print statements in the source code to determine the execution path 
of the code. The following is a sample trace message: 

(0:0) TRACE POINT #1: gauss.f{}shadow()#150 

Without any arguments the trace command lists all tracepoints whose context has any node or 
process in the current default context or context argument. An example of the trace command 
display is as follows: 

(all: 0) 
Tp # File name Procedure Tracepoint Condition Tp context 

========= ========= ==================== ========== 
1 gauss.f shadow Line 150 (all:O) 

In the preceding display, the first line shows the current context for the trace command. The labeled 
columns denote the following: 

Tp# 

Filename 

Procedure 

The number of each tracepoint. The tracepoint number is used as an argument 
to the remove command. 

The name of the source file associated with the tracepoint. 

The name of the procedure where the code is located. 

Tracepoint Condition 
The condition under which the tracepoint will occur. The -after clause is not 
displayed unless the count is greater than 1. 

119 



IPD Commands Paragon 1M System Interactive Parallel Debugger Reference Manual 

TRACE (cont.) TRACE (cont.) 

Examples 

120 

Tp context The tracepoint context. If the text overflows the "File name", "Procedure" 
and "Tracepoint Condition" columns, the right-most characters of the text are 
truncated. However, if the context overflows the ''Tp context" field, the 
display for the tracepoint is continued on the next line. This is denoted by 
blanks in all fields except the ''Tp context field", which contains the 
continued tracepoint context. 

In some cases, the file and procedure names may be long enough that truncating them is not an 
option. In that case, you may use the ·full switch to use an expanded format for the tracepoint 
display. The expanded format includes separate lines for the file name, procedure name, and 
tracepoint condition. 

Breakpoints and tracepoints are not allowed at the same location at the same time. An error message 
is displayed if this is attempted. 

If a single C statement consists of multiple source lines, set the breakpoint at the ending line. If a 
single C++ statement consists of multiple source lines, set the breakpoint at the starting line. For a 
multiple-line Fortran statement, set the breakpoint on the first line. 

When you set a tracepoint on a function such as the following: 

trace my_fu~ctio~() 

The tracepoint is set on the first line of the function, if the function was compiled with symbols. If 
it was not compiled with symbols, or line number information has been stripped, the tracepoint is set 
on the function's entry point. As a result, if you set a tracepoint on a function, and then attempt to 
set a breakpoint on the first executable line of the same function, you will get a ''tracepoint already 
exists" error. 

This command may not be used while examining core files. 

1. Set a tracepoint at the procedure shadowO in the current source file for node 0, process type 0 
only: 

(0:0) > trace sbadow() 

2. Set a tracepoint at line number 175 in the file gauss.f. Set the tracepoint so that the trace occurs 
at the beginning of the tenth execution of the function for process type 0 on nodes 1, 2, and 3: 

(all:O) > trace (1 •• 3:0) gauss.f{}#175 -after 10 

• • • • • • • • • • 
• 
I: 

.: 
K 

• • • • 
I: 

• 
& .: 
• 
• • • • • • 
• • • 



D 

D 

D 

D 

D 

n 
D 

1"" 
J 

ITI 

IJ 

I~ 

I~ 

D 

n .. 
• 

Paragon 1M System Interactive Parallel Debugger Reference Manual IPD Commands 

TRACE (cont.) TRACE (cont.) 

3. Set a tracepoint at line number 180 in the source file gauss.f 

(all:O) > trace gauss.£{}#180 

4. Set a tracepoint at the start of a c++ member function row for the class board. Specify the 
argument types for the member function to distinguish between the desired function and another 
member function with the same name: 

(all:O) > trace board.c{}board::row(int) 

5. Display the current tracepoints. The trace command displays those tracepoints that have a node 
or process type in the current context. The display context is shown on the line before the table 
and the tracepoint context is shown in the right most column of the display: 

(0:0) > trace (a11:0) 

Tp # File name Procedure 

========= ========= 
1 gauss.f shadow 
3 gauss.f shadow 
4 gauss.f shadow 

See Also 

break, watch, step 

Tracepoint Condition 

==================== 
Call shadow 
Line 175 after 10 
Line 180 

Tp context 

========== 
(0: 0) 

(1..3: 0) 
(all:O) 

121 



IPD Commands Paragon ™ System Interactive Parallel Debugger Reference Manual 

TYPE TYPE 

Display the type of variables in the current or specified context. 

Syntax 

Arguments 

122 

Display type of variable in current scope of context: 

type [context] variable 

Display type of global or static C variable: 

type [context] fileU variable 

Display type of local procedure variable: 
type [context] [fileU] procedureO variable 

Display type of a variable local to a block (in C or C++): 

type [context] [fileU] #line variable 

context 

variable 

The context argument specifies the context as a list of processes using either NX 
or MPI process naming conventions. An NX process consists of a node number 
and ptype. An MPI process consists of a communicator and rank. The node 
number, ptype, and rank may be expressed as a single value, a comma-separated 
list, a range, or a combination thereof. The keyword all may be used in place of 
any of these values as well. The special value host may be used in lieu of a process 
name to specify the controlling process(es) running in the service partition. 

(host) 
(host : {all I ptypelist}) 
({all I nodelist} : {all I ptypelist}) 
(communicator: {all I ranklist}) 

For more information, see the context command. 

The variable argument is the symbolic name of the variable for which information 
is to be displayed. Alternatively, any expression that can appear on the left side of 
an assignment may be used in place of a simple variable name. 

• • • • • • • • • 
• 
K 
a 
!I, 

E 

• 
.: 

• 
I[ 

II 

• • • 
• • • 
K 

• • • • • 



D 

• 
II 

o 
II 

n 
o 
11 

C 

.'" 
"411 

I "'" ~ 

I"" 

I] 

1"1 
.:J 

n 
D 

• 
II 

• 

ParagonTN System Interactive Parallel Debugger Reference Manual IPD Commands 

TYPE (cont.) 

file 

procedure 

TYPE (cont.) 

For C, C++ ,or Fortran programs, IPD follows the scoping rules of the language 
in use. For assembly language programs, you can use symbolic names if you have 
used the proper assembler directives to produce the symbolic debug information 
and IPD will use C scoping rules. IPD looks for variables in the following places, 
in order: 

• In the current code block. 

• In the current procedure. 

• For C++, IPD searches next for class member variables. 

• In the static variables local to the current file. 

• In the global program variables. 

To specify variables not in the current scope, preftx the variable name with the 
fileO, procedure() and/or #line qualifters. C++ class member variables may also 
be prefaced with the class name, as follows: 

[[class] :: [class::] ... ] variable 

Use language-speciftc syntax to specify a variable. For example, in Fortran you 
would specify an element of a two-dimensional array as a(1,1); in C or C++, it 
would be a[1][1] 

The name of the source module in which the variable resides. To refer to a file 
other than the location of the current execution point, you must prefix the variable 
name with file. When you refer to a procedure, you can omit the file name unless 
there are duplicate procedure names, because the IPD program can ftnd the source 
file from the symbol table information. 

The optional procedure argument is the name of the procedure in which the 
variable resides. You need to specify the procedure when the execution point is 
not in the same procedure as the variable. The procedure argument must end with 
a pair of parentheses (0) . 

For C++, procedure names may include operator functions, such as operator+O, 
operator new(), or operator int *0. The operator names must include the 
"operator" keyword. You may also preface the procedure name with class 
information and may include argument types to distinguish between overloaded 
functions. The syntax is: 

[[class]:: [class::] ... ]procedure([type[,type] ... ]) 

123 



IPD Commands 

TYPE (cont.) 

Description 

Examples 

124 

#line 

class:: 

type 

--~---. -~.-~-.-.--... -.-.--~---. ------

Paragon TIll System Interactive ParaDel Debugger Reference Manual 

TYPE (cont.) 

The name of the c++ class in which a procedure is a 
member function. Use the "::" without a class name to 
refer to a global procedure that is hidden by a member 
function in the current scope. Specify nested classes as 
classl::class2:: .... 

Any legal C++ type specification, such as int,jloat *, 
or char (*)(). Argument types may be omitted unless 
the procedure name is overloaded. For overloaded 
procedure names, you need only to specify enough 
arguments to uniquely identify the intended procedure. 
An error is reported when then procedure name is 
ambiguous. 

A line number from which the variable that you are specifying is accessible. You 
only need to specify a line number if the variable you are interested in is hidden 
by another variable of the same name in the current scope. Specifying any line 
number from which the desired variable is accessible allows IPD to find the 
variable. 

The type command shows the type of a specified variable. If a variable has a structured type, such 
as a C "struct" or ''union'' or a C++ "class", IPD displays the type information for the members of 
the type. 

The type command displays the type of a variable. The scope of the thread that was active when the 
process stopped is used to qualify the variable. If the type of the variable within a different scope is 
needed, the variable must be qualified on the command line with a routine name and/or a file name. 

1. Determine the type of the Fortran variable tms in process type 0 on node 0: 

(all:O) > type (0:0) tms 
** tst.f{}main()#5 tms ** 
***** (0: 0) ***** 

INTEGER 
(all:O) > 

• • • 
a 
r: 
I[ 

• 
.: 

• 
.: 

• 
I: 

I: 

I: 

.: 

.: 

• • 
I( 

• • • • • • 
• • • • • • • 



II 

• 
II 

o 
D 

D 

o 
D 

n 
I '" , I.&J 

IJ 
1'101 

:;.1 

I: 
I ' ,J 

IJ 

IJ 

IJ 

I: 

I~ 

II 

• • • • 

Paragon 1M System Interactive Parallel Debugger Reference Manual IPD Commands 

TYPE (cont.) 

See Also 

TYPE (cont.) 

2. Determine the type of a C structure variable msg: 

(all:O) > type msg 
** tst.c{}rnain()#8 rnsg ** 
* * * * * (all: 0) * * * * * 

struct rnsg_type 

} ; 

(all:O) > 

double a; 
double b; 
int points; 

3. Determine the type of the C++ class member variable lengths in the class rectangle: 

(all:O) > type rectangle::lengtbs 
** shapes.C{}rnain(void)#36 rectangle::lengths ** 
***** (all:O) ***** 

int *; 

(all:O) > 

4. Determine the type of variable a3xpr which is a C++ class object: 

display 

(all:O) > type a_e~r 
** expression.C{}rnain(void)#45 a_expr ** 
***** (all: 0) ***** 

class expr { 

} ; 

(all:O) > 

int row; 
int col; 
double f1; 
double f2; 
double f3; 

125 



IPD Commands Paragon"" System Interactive Parallel Debugger Reference Manual 

UNALIAS UNALIAS 

Delete previously defined aliases. 

Syntax 

Arguments 

Description 

Examples 

See Also 

126 

unalias {alias_name [alias_name ... ] I-all} 

-all 

A string that was chosen as an alias for an IPD command using the alias 
command. 

Remove all currently defined aliases. 

The unalias command removes a previously-defined alias. Use the alias command without 
arguments to display the current list of alias names. You can create an alias for the unalias 
command, but you cannot use the name "unalias" as an alias. 

1. Remove the alias ct: 

(all:O) > alias 
Alias Cormnand String 

====== ============== 
ct context 

(all:O) > unalias at 
(all:O) > alias 

Alias Cormnand String 

====== ============== 
(all: 0) > 

alias, set, unset 

• • • • • • • • • • • 
I: 

I: 

~ 

• 
K 

• • 
II 

• • • • • • 
.: 
.: 

• • • • • 



II 

D 

D 

D 

II 

D 

D 

I~ 

I~ 

IJ 
I~I 
, I 
, ,bi 

n 
II 

Ii 

• 

Paragon 1M System Interactive Parallel Debugger Reference Manual IPO Commands 

UNSET UNSET 

Delete previously defined command line variables. 

Syntax 

Arguments 

Description 

Examples 

See Also 

unset {variable_name [variable_name] ... ] I-all } 

variable_name The symbolic name of the command line variable you are deleting. Do not precede 
the variable_name to be unset with a $. 

-all Remove all currently defined command line variables. 

The unset command removes the definitions of command line variables previously defined with the 
set command. Use the set command with no arguments to display a list of the current command line 
variable names. You can create an alias for the unset command, but you cannot use ''unset'' as an 
alias. 

1. Delete the command line variable myproc. 

(0:0) > set 
Variables 

========= 
myproc 

Variable String 

=============== 
(1..3 :0) 

(0: 0) 

(0: 0) 
> Ullset myproc 
> set 

Variables variable String 

========= =============== 
(0 :0) > 

set,aIias, unset 

127 



'-~~----------.---'-""--'-'-.""-'--.-.-.. ~~-------•. _--_._--------_ .... _----_. 

IPD Commands Paragon TM System Interactive Parallel Debugger Reference Manual 

WAIT WAIT 

Wait until all processes within the context have stopped running. 

Syntax 

Arguments 

Description 

128 

wait [context] 

context The context argument specifies the context as a list of processes using either NX 
or MPI process naming conventions. An NX process consists of a node number 
and ptype. An MPI process consists of a communicator and rank. The node 
number, ptype, and rank may be expressed as a single value, a comma-separated 
list, a range, or a combination thereof. The keyword all may be used in place of 
any of these values as well. The special value host may be used in lieu of a process 
name to specify the controlling process(es) running in the service partition. 

(host) 
(host: {all I ptypelist} ) 
( {all I node list} : {all I ptypelist}) 
(communicator: {all I ranklist}) 

For more information, see the context command. 

The wait command causes IPO to return with the prompt only when all processes within the context 
are in a "stopped" state (use the process command for process state information). 

A program's output written to stdout appears between IPO commands and is not intermixed with 
IPO output. If the program needs to read from the terminal, you must use the wait command to 
process the read requests. To redirect the program's standard input, use the redirect argument in the 
load, run, or rerun command. 

After a run, rerun, or continue command, the IPO program immediately issues a prompt. To cause 
IPO to withhold the prompt until a process hits a breakpoint or terminates, use the wait command. 

Upon returning control to the user from wait, the IPD program uses the process command to display 
the process information. 

• • • • 
II 

• • • • • • 
r: 
~ 

& 

• 
K 

• 
I: 

E: 

• 
.: 
.: 

• • 
• • 
II 

• 
• • • 
• 



n 
o 
n 
D 

11 

n 
D 

D 

IJ 

I~ 

." , ..I 

IJ 

IJ 
(J 

I:] 
fj 

IJ 

D 

II 

II 

• 

Paragon™ System Interactive Parallel Debugger Reference Manual fPD Commands 

WAIT (cont.) 

Examples 

WAIT (cont.) 

After you have issued a wait, if you decide not to wait for all the processes to stop running, use the 
interrupt signal (pressing <Del> or <Ctrl-C» to regain the IPD prompt. 

This command may not be used while examining core files. 

1. Issue a run command followed by a wait. When all the processes have stopped running, the 
wait command issues a process command, and then returns a prompt: 

(all:O) > run. ; wait 
State Context 

======= 
* (all: 0) 
(all: 0) > 

See Also 

Reason 
------------

Breakpoint C Bp 1 

contblue, run, rerun, stop 

Location Procedure 

======== 
Line 150 shadow ( ) 

129 



IPD Commands Paragon TM System Interactive Parallel Debugger Reference Manual 

WATCH WATCH 

Set a watchpoint (data breakpoint) or display current watchpoints. 

Syntax 

Arguments 

130 

Display watchpoint information: 
watch [context] [-full] 

Set watchpoint on an expression: 

watch [context] [ -access I -write] [fileU] fprocedureO] expression [#line] 
[-after count] 

Set watchpoint on an expression containing variables in the current scope of context: 
watch [context] [ -access I -write] expression [,count] 

Set a watchpoint on an expression containing global or static C variables: 
watch [context] [ -access I -write ]fileUexpression [,count] 

Set a watchpoint on an expression containing a local procedure variable: 

watch [context] [-access I-write] [fileU]procedureOexpression [,count] 

Set a watchpoint on an expression containing variables local to a block in C or C++: 
watch [context] [ -access I -write] [fileU] #line expression [,count] 

Set watchpoint on a memory address: 
watch [context] [-access I-write] address [-after count] 

context The context argument specifies the context as a list of processes using either NX 
or MPI process naming conventions. An NX process consists of a node number 
and ptype. An MPI process consists of a communicator and rank. The node 
number, ptype, and rank may be expressed as a single value, a comma-separated 
list, a range, or a combination thereof. The keyword all may be used in place of 
any of these values as well. The special value host may be used in lieu of a process 
name to specify the controlling process(es) running in the service partition. 

(host) 
(host: {alii ptypelist}) 
( {all I nodelist} : {all I ptypelist}) 
(communicator: {alii ranklist}) 

For more information, see the context command. 

• 
D 

II 

It 

It 

II 

• 
E: 

• • 
.: 
I:.: 

I: 

r: 
E: 

E: 

If 

I: 
.::. 
~ 

E: 

.: 
K 

• • 
II 

I. 

• • • • • 



D 

D 

n 
D 

D 

D 

n 
G 

C 

I '" " 

I "! 
-," 

IJ 

IJ 

IJ 

I: 
I: 
D 

• • • • 

Paragon™ System Interactive Parallel Debugger Reference Manual IPD Commands 

WATCH (cont.) 

-full 

-access 

-write 

file 

procedure 

WATCH (cont.) 

Displays watchpoint information in a long or "full" format with more room for 
file, class and procedure names. 

Specifies that a break will occur when the program accesses the specified variable 
or memory address (the break occurs just before the access). An access is either a 
read or a write. Break on access is the default if neither -access nor -write is 
specified. Use either the process or wait command to determine where in your 
source code the access occurred that caused the break. 

Specifies that a break will occur when the program writes the specified variable 
or memory address (the break occurs just before the write). Use either the 
process or wait command to determine where in the source code the break 
occurred. 

The name of the source module in which a variable resides. To refer to a file other 
than the location of the current execution point, you must prefix the variable name 
with file. When you specify a procedure, you can omit the file name unless there 
are duplicate procedure names, because the IPD program can find the source file 
from the symbol table information. 

The procedure argument is the name of the procedure in which the variable 
resides. You need to specify the procedure when the execution point is not in the 
same procedure as the variable. The procedure argument must end with a pair of 
parentheses CO). 

For C++, procedure names may include operator functions, such as operator+O, 
operator new(), or operator int *0. The operator names must include the 
"operator" keyword. You may also preface the procedure name with class 
information and may include argument types to distinguish between overloaded 
functions. The syntax is: 

[[class]:: [class::] ... ]procedure([type[,type] ... ]) 

class:: The name of the C++ class in which a procedure is a 
member function. Use the "::" without a class name to 
refer to a global procedure that is hidden by a member 
function in the current scope. Specify nested classes as 
class} ::class2:: .... 

131 



IPD Commands 

WATCH (cont.) 

#line 

variable 

132 

type 

Paragon 1M System Interactive Parallel Debugger Reference Manual 

WATCH (cont.) 

Any legal C++ type specification, such as int,jloat *, 
or char (*)(). Argument types may be omitted unless 
the procedure name is overloaded. For overloaded 
procedure names, you need only to specify enough 
arguments to uniquely identify the intended procedure. 
An error is reported when then procedure name is 
ambiguous. 

A line number from which the variable that you are specifying is accessible. You 
only need to specify a line number if the variable you are interested in is hidden 
by another variable of the same name in the current scope. Specifying any line 
number from which the desired variable is accessible allows IPD to find the 
variable. 

The required variable argument is the symbolic name of the variable upon which 
you want to set a watchpoint. 

For C, C++, or Fortran programs, IPD follows the scoping rules of the language 
in use. For assembly language programs, you can use symbolic names if you have 
used the proper assembler directives to produce the symbolic debug information 
and IPD will use C scoping rules. IPD looks for variables in the following places, 
in order: 

• In the current code block. 

• In the current procedure. 

• For C++, IPD searches next for class member variables. 

• In the static variables local to the current file. 

• In the global program variables. 

To specify variables not in the current scope, prefix the variable name with the 
fileO, procedureO and/or #line qualifiers. C++ class member variables may also 
be prefaced with the class name, as follows: 

[[class]:: [class::] ... ]variable 

Use language-specific syntax to specify a variable. For example, in Fortran you 
would specify an element of a two-dimensional array as 8(1,1); in C or C++, it 
would be 8[1][1]. 

II 

B 

II 

n 
Ii 

II 

• 
K 

• • .. 
I: 

I: 

I: 

II: 
IE 

.: 

• 
III 
Ii] 

I( 

• • • • 
IE 

• • • • • • 



D 

D 

n 
o 
o 
D 

D 

n 
G 

n 
1m 
I: 
, -11'1 

".I 

C 

D 

C 

C 
I'~ 

.a\U 

( -" 
:\.J 

I: 
IJ 

I '" ~ 

D 

• • • • 

Paragon 1M System Interactive Parallel Debugger Reference Manual IPD Commands 

WATCH (cont.) WATCH (cont.) 

Description 

-after count 

address 

A positive integer indicating the number of times this watchpoint is encountered 
before execution is halted. The default count is 1. For example, if you have a 
Fortran loop defined by the following 

DO 10 I = 1,100 

and you set a watchpoint on I with an -after count of 5, the program will stop on 
every fifth iteration of the symbol/" 

The address to watch. The address must be a data address (use the break 
command to set a breakpoint on a code address). Watchpoints set on memory 
addresses cause a break to occur just before the memory access. 

The watch command sets a watchpoint on a specified variable. A watchpoint stops execution of an 
application upon reading or writing the variable. 

Without any arguments the watch command lists all watchpoints whose context has any node or 
process in the current default context or context argument. An example of the watch command 
display is as follows: 

(all:O) 
Wp # File name Procedure Watchpoint Condition Wp context 

========= ========= ==================== 
1 gauss.f shadow (all: 0) 

In the preceding display, the first line shows the current context for the watch command. The labeled 
columns denote the following: 

Wp# 

Filename 

Procedure 

The number of each watchpoint. The watchpoint number is used as an 
argument to the remove command. 

The name of the source file associated with the watchpoint. For global 
variables, the file name is set to "<global>". 

The name of the procedure where the code or variable is located. For global 
or static variables the Procedure field is set to "<global>" or "<static>". 

Watchpoint Condition 
The condition under which the watchpoint will occur. The after clause is not 
displayed unless the count is greater than 1. 

133 



IPD Commands Paragon 1M System Interactive Parallel Debugger Reference Manual 

WATCH (cont.) WATCH (cont.) 

134 

Wp context The watchpoint context. If the text overflows the "File name", "Procedure" 
and "Watchpoint Condition" columns, the right-most characters of the text 
are truncated. However, if the context overflows the "Wp context" field, the 
display for the watchpoint is continued on the next line. This is denoted by 
blanks in all fields except the "Wp context" field, which contains the 
continued watchpoint context. 

A single watchpoint is allowed per process. 

When setting a watchpoint on any non-stack variable in a multi-threaded application (compiled with 
-Mconcur), the current execution point of the thread that caused the process to stop is used to resolve 
the address of the variable. The watchpoint is then set for all threads. If any thread accesses this 
address, execution is interrupted. In the case of local (stack) variables, the current execution point 
of the thread that caused the process to stop is used to qualify the variable. The address for the 
variable is determined and set for each thread. Each thread is watching a different stack address but 
you are watching a single variable that has copies on multiple threads. This makes it possible to 
watch loop variables that have been dispersed among several threads (by -Mconcur for instance). 
Specify an address instead of a variable name to override this feature. 

In some cases, the file and procedure names may be long enough that truncating them is not a good 
option. In that case, you may use the -full switch to specify a expanded display format for the 
watchpoint display. The expanded format includes. separate lines for the file name, procedure name 
and watchpoint condition: 

(all:O) 

Wp # 

File name 
Procedure 
Watchpoint Condition Wp context 
================================================ ========== 

1 gauss.f (all:O) 
shadow 
Write int_var 

Use the continue command to resume executing the application after a watchpoint. 

This command may not be used while examining core files. 

• 
• • • 
I[ 

• • 
II: 

• • 
E 

a:: 
I: 
~ 

• 
I: 
E 

E 

IJ 

• 
I'J 

.: 

• • 
• • • • • • • • 



D 

D 
o 
o 
II 

o 
11 

II 

c 

I:J 

IJ 

I~' 

f.J 

I: 
IJ 

I.,: 

IJ 

D 

II 

• • 

Paragon TM System Interactive Parallel Debugger Reference Manual IPD Commands 

WATCH (cont.) WATCH (cont.) 

Examples 

See Also 

1. Set a watchpoint on write to the address 0x040Jb7a8 for nodes 0 and 1, process type 0: 

(all:O) > watch (0,1:0) -write Ox0401b7aB 

2. Set a data watchpoint when the variable pJ is accessed for reading or writing on node 2: 

(all:O) > watch (2:0) p1 

3. Set a data watchpoint when the variable row in the C++ member function position is accessed 
for reading or writing. Note that you don't need to specify the class name if the scope of the 
current instruction pointer is in any member function for the class board. 

(all:O) > watch (all:O) board::positioD()row 

4. Set a data watchpoint when the C++ global variable size is accessed for reading on node O. The 
current instruction pointer is in a member function and the global variable size is hidden by a 
class variable with the same name. 

(all:O) > watch (0:0) ::size 

5. Display the watchpoints for all processes. The watch command displays a watchpoint if its node 
and process type pair is in the current context. The display context is shown on the line before 
the table and the watchpoint context is shown in the right most column of the display: 

(all:O) > watch 

(all:O) 
Wp # File name Procedure Watchpoint Condition 

1 
2 

========= 
myhello.c 
myhello.c 

trace,break,step 

========= 
main 
main 

==================== 
Write Ox401b7a8 
Access pi 

wp context 

========== 
(0,1:0) 
(2: 0) 

135 



IPD Commands Paragon 1M System Interactive Parallel Debugger Reference Manual 

136 

• • • • • • • 
II 

• • 
K 

I: 
Ir_ 

&: 

I: 

II: 

a 
~ 

It 

• • • • • • • • • • • • • 



II 

n 
D 

o 
n 
U 

II 

I~ 

I '''l 
. ...i 

I.' '" 
IJ 

I~ 

I] 

IJ 

IJ 

IJ 
[J 

1''''1 
:dl:J 

o 
II .. 
• • 

Using IPD With Host/Node Models 

Debugging Host/Node Programs on Paragon ™ 
Systems 

A hosUnode program is one that is written such that part of it (the "parent" or "controlling" process) 
runs in the service partition and that process starts processes running in the compute partition, or 
other processes running in the service partition (the "child" processes). The service partition is the 
"host"-it has the parent process running on it and may also have child processes running on it. The 
''node'' child processes run on nodes in the compute partition. 

Example 
In the following example, a parent (host) program forks two child processes, one on the same node 
as itself and one on a node in the compute partition. The child forked onto the parent node is referred 
to as the host-child process, since it is running in the service partition. The other process is forked 
onto node 0 and is referred to as the node-child process. Both child processes are created with a ptype 
of 10. The parent process does not set its own ptype and therefore has none. Thus, the IPD context 
for each of these processes is: 

(host) 
(host: 10) 
(0:10) 

Parent process 
Child process on same node a parent 
Child process on node 0 

The parent process prints a hello message and then waits for the children to complete. The children 
each execute their own program to print a message identifying them. 

Here is an IPD debug session illustrating how to swap between the processes to get each of them to 
run to completion. The complete code used in the example is included at the end of this section. 

A-1 



Using IPO With Host/Node Models Paragon TM System Interactive Parallel Debugger Reference Manual 

First load the parent program and then run it and wait for the child processes to be created. An 
information message is printed as the new processes are created. 

When all of the processes are created, press <Return> to get the debugger prompt. If you had 
entered run;wait rather than just run, a <Ctrl·C> would be required to get a prompt. 

ipd > load parent 
*** reading symbol table for /home/cjd/host/parent ... 100% 
*** loading program ... 
*** load complete 

(host) > run 
(host) > *** initializing IPD for parallel application ... 

*** 
*** 

INFO: processes (host:l0) have been created and are stopped. 
INFO: processes (0:10) have been created and are stopped. 

Hello from Parent (pid 131572) 
(host) > 

Next, the context is changed to include all ptypes running on the host node. The process (host: 10) is 
the host-child process. The process (host: -131572) is the parent process. Since it did not give itself 
a ptype, the debugger assigns it a ptype of the negative value of its pid so that it can distinguish it 
from other host processes. Normally, this negative ptype is not displayed, since the program does 
not really have a ptype. When there are multiple host processes in a context, this negative ptype is 
displayed in order to distinguish between the processes. 

(host) > context(host:all) 
(host:-131572,10) > 

The process command shows the state of the host processes. The parent process is in an ''Executing'' 
state because it is busy waiting for the child processes to complete. The host child is in the "Initial" 
state because it has been created but not run. IPD automatically stops a child process upon creation 
(via/ork(2) or exec(2) so that its execution can be monitored and controlled. 

(host:-131572,10) > process 
Context State 

======= 
* (host) 
*(host:l0) 
(host:-131572,10) > 

Executing 
Initial 

Reason 
====== 

Location Procedure 

======== ========= 

Line 28 main() 

To see what is happening with the node-child process, we enter another process command. This 
process is at the same point as the host child. 

(host:-131572,10) > process(O:10) 
Context State Reason Location Procedure 
======= ====== ======== ========= 

*(0:10) Initial Line 28 main() 
(host:-131572,10) > 

A-2 

• • • • • • • • • • 
11 

I: 

~ 

I: 

• • • 
I: 

I:: 
1::. 

I: 

• • • • • • • • • • • 



III 

• 
D 

D 

II 

o 
n 

r: 
c 
[j 

IJ 

IJ 

IJ 

U 
."1 
Lr 

I~ 

IJ 

III 
II 

• • • 

Paragon TM System Interactive Parallel Debugger Reference Manual Using IPD With HostINocIe Models 

We change the context to include just the host child and then begin its execution by using the 
continue command. The wait command is used in conjunction with the continue so that we know 
when the process is stopped. The process will be stopped by the debugger when it executes a new 
file via an exec(2) call. If the context had not been changed to exclude the parent process, a <Ctrl-C> 
would have been necessary to return to the prompt. While the continue has no effect on this process, 
because it is already running, the wait would not return until all processes in the context are stopped. 
The parent will not reach a stopped state until it returns from the nx_waitaliO. Thus, the <Ctrl-C> 
would be needed to escape from the wait command. 

(host:-131572,10) > context(host:10) 
(host:10) > continue;wait 
Child forked ... 
*** reading symbol table for /home/cjd/host/child_host ... 100% 

*** INFO: processes (host:10) have been created and are stopped. 
Context State Reason Location Procedure 
======= 

* (host:10) 
(host:10) > 

Initial 
======== ========= 
Line 5 main() 

To execute the node-child process, we do the same as with the host-child process. The host- and 
node-child processes are started using separate commands because we cannot form a context node 
list that includes the keyword "host" and a node number. Refer to the context command for· 
information about how to include a host node in a context with a compute node. For purposes of this 
example, we choose the clarity of having the distinct contexts. 

(host:10) > context(O:lO) 
(0:10) > continue;wait 
Child forked ... 
*** reading symbol table for /home/cjd/host/child_node ... 100% 

*** INFO: processes (0:10) have been created and are stopped. 
Context State Reason Location Procedure 

======= 
* (0:10) 
(0: 10) > 

====== 
Initial 

======== ========= 
Line 5 main() 

Now we continue the node-child process and then the host-child process, allowing them to run until 
completion. They will each print a message and then exit. 

A-3 



Using IPD With HostINode Models 

(0:10) > continue;wait 
Hello from Node Child process 
Context State 

======= 
*(0:10) Exiting 
(0:10) > con~ext(bost:l0) 
(host:10) > continue;wait 
Hello from Host Child process 
Context State 
======= 

* (host:10) 
(host:10) > 

Exiting 

(0: 10) 
Reason 

====== 

(2 :10) 
Reason 
====== 

Paragon 1M System Interactive Parallel Debugger Reference Manual 

Location Procedure 
======== ========= 
OxOOOlf840 _exit() 

Location Procedure 

======== ========= 
OxOOOlf840 _exit() 

You might expect that the parent process has now returned from its wait loop and can thus complete 
its execution since its children have completed. However, the process command shows that it is still 
executing. 

(host:10) > process(bost) 
Context 
======= 
(host) 

(host:10) > 

State Reason Location Procedure 

====== ======== ========= 
Executing 

The reason for this is that the child processes have not actually exited yet. The debugger 
automatically stops a process as it enters the exit code so that it might be examined before it 
disappears. Thus, the child processes must be continued one more time so that they execute the exit 
code-after which the parent is notified of their completion. Note that you cannot use the wait 
command in this case, because the exited processes no longer exist and are not a valid context 
anymore. The process command can be used to show that they have exited. 

(host:10) > continue 
(host:10) > process(bost:l0) 
Context State 
======= 

*(host:10) Exited 
ipd > context(O:10) 
(0:10) > continue 
(0:10) > process(O:10) 
Context State 
======= 

Reason 
====== 
37 

Reason 
====== 

*(0:10) Exited 37 

Location Procedure 
======== ========= 

Location Procedure 

======== ========= 

Now the parent process has returned from waiting on the children and has reached the exit routine 
itself. One more continue for this process and it too will exit. 

A-4 

• • • • 
II 

• • • • • 
I: 
;:. 

~ 

&: 

• • • • 
~ 

• .. 
• • • • 
.: 

• • • • • • 



• • .. 
D 
D 

II 

D 

n 

n 
,I:) 

I: 
IJ 
-.=. 

I~~ 

IJ 

l: 

C 

111 
Ij 

o 
B 

• • • 

Paragon™ System Interactive Parallel Debugger Reference Manual Using IPD With Host/Node Models 

ipd > context(bost) 
(host) > process 
Context State 

======= 
*(host) Exiting 
Ox0002c920(host) > continue 
(host) > process(bost) 
Context 
======= 

* (host) 
ipd > 

State 

Exited 

Reason 
====== 

Reason 

====== 
o 

Source Code Examples 

PARENT.C 

#include <nx.h> 
#include <stdio.h> 
#include <unistd.h> 
#include <sys/types.h> 

main (argc, argyl 
int argc; 
char *argv[]; 
{ 

long node_list[2]; 
long pid_list[2]; 
long partition_size; 
long return_val; 

/*establish partition in .compute */ 

Location Procedure 
======== ========= 

_exit () 

Location Procedure 
======== ========= 

partition_size = nx_initve( NULL, 0, NULL, &argc, argv ); 
if ( partition_size == -1 ) { 

perror( Nnx_initve" ); 
exit ( 1 );} 

/* create list of nodes to fork onto */ 
node_list [0] = node_self(); 
node_list [1] = 0; 

/* fork the processes */ 
fflush(stdout) ; 
return_val = nx_nfork( node_list, 2, 10, pid_list ); 

A-5 



Using IPD With Host/Node Models Paragon TM System Interactive Parallel Debugger Reference Manu-

if ( return_val == 0 ) { 
printf( ° Child forked ... \n" )i 
fflush( stdout )i 

if ( mynode() == numnodes() ) { 
execl( N./child_host", N./child_host", NULL )i} 

else { 
execl( N./child_node", N./child_node", NULL )i}} 

else if( return_val == -1 ) { 
perror( °nx_nfork" ); 
exit ( 1 )i} 

else { 
printf( NRello from Parent (pid %d)\n", getpid() )i 

fflush(stdout)i 
nx_waitall()i}} 

#include <stdio.h> 

main() 
{ 

printf (ORello from Rost Child process_ (%d:%d)\n", mynode(), myptype() )i 

} 

#include <stdio.h> 

main() 
{ 

printf ( oRella from Node Child process (%d:%d)\n", mynode(), myptype() )i 

} 

A-6 

------- ----------- --_ .... _----------------- --------------

• • • • • • • • • • • 
I" 
I, 

I: 

• 
I: 
.: 
I: 

I: 

& 

K: 

• • • • 
K 

• • • • • • 



• • 
n 
D 

D 

D 

n 
D 

C 

G 

IJ 

I: 
I: 

e 
C 

e 
[J 

IJ 

IJ 

IJ 
19 
'"" 
IJ 

IJ 

E1 

I!l 

e 
II 

• • • • 

A 

alias command 1 

assembly language code 35 

assign command 3, 102 

assigning values 3 

B 
break command 10 

breakpoints 
removing 94 
setting 10 

c 
changing variable values 7 

command aliases 1 
removing 126 

command files 46 

commands 
alias 1 
assign 3 
break 10 
commshow 15 
context 20 
coreload 27 
disassemble 33 
display 37 
exec 46 
flush 49 
frame 51 
help 55 
instrument 59 
kill 68 
list 71 
load 76 
log 79 
more 80 
msgqueue 81 
msgstyle 85 
process 86 
quit 90 
recvqueue 91 
remove 94 
rerun 96 
run 25,98 
set 100 
signal 102 
source 105 
status 107 
step 110 
stop 112 

Index 

Index-1 



Index 

system 114 
threads 115 
trace 117 
type 122 
unalias 126 
unset 127 
wait 128 
watch 130 

commshow command 15 

context command 20 

controlling scrolling 80 

coreload command 27 

D 
debug context 20 

disassemble command 33 

display command 37 

displaying assembly language code 35 

displaying pending receives 91 

displaying process information 86 

displaying source code 71 

displaying stack trace backs 51 

displaying unreceived messages 81 

displaying values 37 

displaying variables 100 

E 
exec command 46 

exiting IPO 48,90 

F 
flush command 49 

frame command 51 

Index-2 

Paragon™ Interactive Parallel Debugger Reference Manual 

G 
gprof 64 

H 
handles 15 

help command 55 

host/node debugging A-1 

instrument command 59 

K 
kill command 68 

L 
list command 71 

load 
core files 27 

load command 76 

loading applications 76 

log command 79 

log file 79 

M 
messages 81,91 

more command 80 

MPI communicators 15 

msgqueue command 81 

msgstyle command 85 

• • • • • • • 
-• • 
I: 

Ir 

I: 

I: 

Ir 

I: 

K 

I: 
\[ 

I: 

1:. 

I: .. 
• 
I: 

I:: 

E: 

• • • 
•• 
• 



. - ~~~~~~ ~~ ~~- ~~-- -~ "-----~.-~-~---~~-~-- "--

• • Paragon™ Interactive Parallel Debugger Reference Manual Index .. 
II 

U 

D 
p setting the default context 76 

D ParaGraph 65 setting variables 100 

0 performance monitoring 49,59 shell commands 114 

C 
process command 86 signal command 102 

process information 86 single stepping 110 

G processes 86 source code 71 

0 prof 64 source command 105 

(j 
program instrumentation 59 source directory 105 

program reloading 96, 98 stack trace backs 51 

I:J starting processes 25 

C Q status command 107 

D quit command 90 step command 110 

stop command 112 

C R stopping program execution 112 

~ recvqueue command 91 system command 114 
, ' 

EJ reloading programs 96, 98 

remove command 94 T 
IJ removing action points 94 terminating a debug session 48, 90 

KJ removing aliases 126 terminating processes 68 

IJ removing processes 68 threads command 115 

rerun command 96 trace command 117 

Kl run command 25, 98 tracepoints 

E 
removing 94 
setting 117 

EJ s type command 122 

I:J 
scrolling 80 

search paths 105 U 
a session logging 79 unalias command 126 

I!i set command 100 unset command 127 
" 

II 
setting flush policy 49 

setting the debug context 20 

• • • Index-3 • 



Index 

v 
variables 

w 

deleting 127 
displaying 1 00 
displaying type 122 
setting 100 

wait command 128 

watch command 130 

watch points 
removing 94 
setting 130 

Index-4 

----------- --------------

Paragon™ Interactive Parallel Debugger Reference Manual 
• 
II 

II 

II 

II 

It 

II: 

It: 

• • 
I: 

~ 

r: 
I: 

£ 

I: 

• 
a 
I: 

I: 

r:.: 
I: 

l: 

I: 

I:: 

I: 

I: 

• • • • • 


