
r~

IJ
(:

• .iiI

rJ
I~

r:
I~J

1=
[J

IJ
rJ
I]

[J

I]

[J

[j

C

------------ .-~----------,-~~~~-

May 1995

Order Number: 312490-003

.:. ":. .' . ".:::.: ." :. ".,:: ..' .

TM
Paragon System

C Compiler User's Guide

. :: ::::.::.:.:. :... . . :.... .:::: ... "."" .. :..

Intel@ Corporation

Copyright @1995 by Intel Scalable Systems Division, Beaverton, Oregon. All rights reserved. No part of this work may be reproduced or copied in
any form or by any means ... graphic,electronic, or mechanical including photocopying, taping, or information storage and retrieval systems ... without
the express written consent of Intel Corporation. The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation
makes no canrni.tment to update or to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to restrictions
stated in Intel's software license agreement. Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subpara
graphs (c)(I)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule
vard, Santa Clara, CA 95052-8119. For all Federal use or contracts other than DoD, Restricted Rights under FAR 52.227 -14, ALT. III shall apply.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

286 i386
287 i387

i486
i487
i860

APSO is a service mark of Verdix Corporation
DOL is a trademark of Silicon Graphics, Inc.
Ethernet is a registered trademark of XEROX Corporation
EXABYTE is a registered trademark of EXABYTE Corporation
Excelan is a trademark of Excelan Corporation
EXOS is a trademark oc equipment designatoc of Excelan Corporation
FORGE is a trademark of Applied Parallel Research, Inc.

Intel
Inte1386
Inte1387
Intel486
Intel487

Green Hills Software, C-386, and FORTRAN-386 are trademarks of Green Hills Software, Inc.
GV AS is a trademark of Verdix Corporation
mM and IBM/VS are registered trademarks of International Business Machines
Lucid and Lucid Common Lisp are trademarks of Lucid, Inc.
NFS is a trademark of Sun Microsystems
OpenGL is a trademark of Silicon Graphics, Inc.
OSF, OSF/l, OSFIMotif, and Motif are trademarks of Open Software Foundation, Inc.
POI and PGF77 are trademarks of The Portland Group, Inc.
PostScript is a trademark of Adobe Systems Incorporated
ParaSoft is a trademark of ParaSoft Cocporation
SOO and OPEN DESKTOP are registered trademarks of The Santa Cruz Operation, Inc.
Seagate, Seagate Technology, and the Seagate logo are registered trademarks of Seagate Technology, Inc.
sm and Si1iconGraphics are registered trademarks of Silicon Graphics, Inc.
Sun Microsystems and the combination of Sun and a numeric suffix are trademarks of Sun Microsystems
The X Window System is a trademark of Massachusetts Institute of Technology

iPSC
Paragon

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Ltd.
V ADS and Verdix are registered trademarks of Verdix Corporation
V AST2 is a registered trademark of Pacific-Sierra Research Corporation
VMS and VAX are trademarks of Digital Equipment Corporation
VP/ix is a trademark of INTERACTIVE Systems Cocporation and Phoenix Technologies, Ltd.
Wipe Information is a trademark of Symanrec Corporation
XENIX is a trademark of Microsoft Corpocation

ii

•• "---=~-- .. ~---.=-, -

[~

()

[)

[J

C
(~

(~ •. J

~~I

i.,...;

~j

[J
rfl
~~

[l
...I

[~'I
."d

IJ
I~

r:
l:
I:
[:
[J

U

I:
I~:

r:
1_--'1

loU

I~
(

-"'I

~j

I~

I:

r=

I '1
.J

(~

1-=
[J

(' _Ai

WARNING
Some of the circuitry inside this system operates at hazardous energy and
electric shock voltage levels. To avoid the risk of personal injury due to
contact with an energy hazard, or risk of electric shock, do not enter any
portion of this system unless it is intended to be accessible without the use
of a tool. The areas that are considered accessible are the outer enclosure
and the area just inside the front door when all of the front panels are in
stalled, and the front of the diagnostic station. There are no user service
able areas inside the system. Refer any need for such access only to tech
nical personnel that have been qualified by Intel Corporation.

CAUTION
This equipment has been tested and found to comply with the limits for a
Class A digital device, pursuant to Part 15 of the FCC Rules. These limits
are designed to provide reasonable protection against harmful interfer
ence when the equipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio frequency energy and,
if not installed and used in accordance with the instruction manual, may
cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own
expense.

LIMITED RIGHTS
The information contained in this document is copyrighted by and shall re
main the property of Intel Corporation. Use, duplication or disclosure by
the U.S. Government is subject to Limited Rights as set forth in subpara
graphs (a)(15) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule
vard, Santa Clara, CA 95052. For all Federal use or contracts other than
DoD Limited Rights under FAR 52.2272-14, ALT. III shall apply. Unpub
lished-rights reserved under the copyright laws of the United States.

iii

iv

D
[J

[J

~~
rr-i
~

[If:
.-~

r:
I:
I:
IJ
I~

r:

r:
I

···~

.iIII

r:
r:

I:
1

·~1

• ...<-.1;

I:

IJ

IJ
(J

Preface

This manual describes the Paragon TM System C compiler and driver. This manual assumes that you
are an application programmer proficient in the C language and the UNIX operating system.

Organ ization
Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Appendix A

Introduces the Paragon system software development environment and
shows how to create executable files from C source code. This chapter
contains enough infonnation to get you started creating executable files for
the Paragon system.

Describes icc, the command for compiling, assembling, and linking C source
code for execution on the Paragon system.

Gives you a strategy for using the compiler's optimization features to help
maximize the single-node perfonnance of your programs.

Tells how to use the compiler's function inliner.

Tells how to write C functions that are callable from Fortran and how to call
Fortran routines from C.

Describes the language that the C compiler accepts (ANSI C), extensions to
the standard language, and considerations for porting programs written in
original C (the language described by Kernighan and Ritchie in The C
Programming Language).

lists the error messages generated by the compiler, indicating each
message's severity and, where appropriate, the probable cause of the error
and how to correct it.

v

Preface

AppendixB

AppendixC

Paragon™ System C Compiler User's Guide

Describes the internal structure of the compiler, with special emphasis on the
vectorizer and optimizer.

Contains reference manual pages for the Paragon system software
development commands.

Notational Conventions
This manual uses the following notational conventions:

Bold

Italic

Identifies command names and switches, system call names, reserved words,
and other items that must be entered exactly as shown.

Identifies variables, filenames, directories, processes, user names, and writer
annotations in examples. Italic type style is also occasionally used to
emphasize a word or phrase.

Plain-Monospace
Identifies computer output (prompts and messages), examples, and values of
variables. Some examples contain annotations that describe specific parts of
the example. These annotations (which are not part of the example code or
session) appear in italic type style and flush with the right margin.

Bold-I~alic-Monospace

Identifies user input (what you enter in response to some prompt).

Bold-Monospace

{ }

Identifies the names of keyboard keys (which are also enclosed in angle
brackets). A dash indicates that the key preceding the dash is to be held down
while the key following the dash is pressed. For example:

<Break> <s> <ctrl-Alt-Del>

Surround optional items.

Indicate that the preceding item may be repeated.

Separates two or more items of which you may select only one.

Surround two or more items of which you must select one.

Applicable Documents
For more information, refer to the Paragon TM System Technical Documentation Guide.

vi

[)

D
[J

rr -:
~.~

I"'i
1tI..J

r ~,
1. ~~

If ~1
1& . j

(.'''''
'"",

I:

I ~:
(. ~

.-"

I'~
, ,.J

I ' I.' "
, '

~!

I:
1=
1,-"'4

~I

I':
[J

l)

Paragon 1M System C Compiler User's Guide Preface

Comments and Assistance
Intel Scalable Systems Division is eager to hear of your experiences with our new software product.
Please call us if you need assistance, have questions, or otherwise want to comment on your Paragon
system.

U.S.AJCanada Intel Corporation
Phone: 8()()'421·2823

Internet: support@ssd.intel.com

Intel Corporation Italia s.p.a.
Milanofiori Palazzo

United Kingdom Intel Corporation (UK) Ltd.
Scalable Systems Division

20090 Assago
Milano
Italy
167877203 (toll free)

France Intel Corporation
1 Rue Edison-BP303

Pipers Way
Swindon SN3 IRJ
England
0800 212665 (toll free)

78054 St. Quentin-en-Yvelines Cedex
France

(44) 793491056 (answered in French)
(44) 793431062 (answered in Italian)
(44) 793480874 (answered in German)
(44) 793495108 (answered in English)

0590 8602 (toll free)

Intel Japan K.K.
Scalable Systems Division
5-6 Tokodai, Tsukuba City
Ibaraki -Ken 300-26
Japan
0298-47-8904

Germany Intel Semiconductor GmbH
Dornacher Strasse 1
85622 Feldkirchen bei Muenchen
Germany
0130813741 (toll free)

World Headquarters
Intel Corporation

Scalable Systems Division
15201 N.W. Greenbrier Parkway

Beaverton, Oregon 97006
U.S.A.

(503) 677-7600 (Monday through Friday, 8 AM to 5 PM Pacific Time)
Fax: (503) 677-9147

vii

Preface Paragon™ System C Compiler User's Guide
[~ , I

.I

[J

I'f~
I,

~L;d

~
~1

\. ,

"'"
~

'''l

' .
. .. I

1=
l ~' ,-

viii [J

(-.:

--~

I~

r:
(-":

I:
r~ ,:

·oj

1_-,-:
- - j

1_-,
.J

I
-~

~,

I:
I"
I~

r:
I,

_.oJ

Table of Contents
. ": =(:". :: .. ::.~: ".::. : . : .' '. . ".

Chapter 1
Getting Started

The Software Development Environment .. 1-1

System Hardware ... 1-1

System Software .. 1-2

Software Development Environments ... 1-2

Compiler Driver•.. 1-4

i860 TM Assembler ... 1-4

i860 TM Unker .. 1-5

Execution Environments ... 1-5

Running on a Single Node ... 1-5

Running on Multiple Nodes .. 1-5

Debugging .. 1-6

Example Driver Command Lines ... 1-7

ix

Table of Contenls

Chapter 2
The icc Driver

Paragon 1M System C Compiler User's Guide

Invoking the Driver .. 2-1

Controlling the Driver ... 2-3

Specific Passes and Options ... 2-4

Preprocess Only ... 2-5

Preprocess and Compile Only ... 2-5

Preprocess, Compile, and Assemble Only ... 2-5

Add and Remove Preprocessor Macros .. 2-6

Allow C++ Comments .. 2-6

Specify the Degree of ANSI C Conformance ... 2-6

Controlling the Compilation Step .. 2-7

Specific Actions .. 2-7

Location of Include Files .. 2-16

List of Include Files .. 2-16

Optimization Level .. 2-16

Generating Debug Information ... 2-17

Controlling the Link Step .. 2-18

Stripping Symbols .. 2-18

Generating a Relinkable Object File .. 2-18

Producing a Link Map .. 2-19

Linker Libraries ... 2-19

Controlling Mathematical Semantics ... 2-19

Controlling the Driver Output .. 2-20

Executable for Multiple Nodes ... 2-20

[.. ,
• I

.,J

~ ..
. ~' . .

...I

~=

IIJ -C-I

* ...
~=
I:
I:
(~. Name of Executable File .. 2-21 _

Verbose Mode .. ~ 2-21

I:
(~ ..

x [!

I:
IJ
~

r:
('~

.oj

r:
1-"1

~j

['-I

r~
I"~~

r''''\
.J

I " , '

,.I

[J

u

Paragon™ System C Compiler User's Guide Table of Contents

Overriding Compiler Defaults ... 2-22

C Pragmas ... 2-23

Pragma Descriptions .. 2-26

altcode(n)concur .. 2-26

altcode(n)concurreduction•...............................•... 2-26

(no)assoc•.. 2-27

(no)bounds ..•... 2-27

(no)cncall ... 2-27

(no)concur ... 2-27

(no)depchk ... 2-27

dist=block ...•........... 2-27

dist=cyclic ...•.. 2-28

(no)fcon ..• 2-28

(no)frame•.•.............•..•........... 2-28

(no)func32•..•.....•.................. 2-28

(no)lstval •..•...................•...•...........•.............................•••.........•............•••..........•••••.••.•.•.•.........•. 2-28

opt•...................•.........•.•.........................•...•..•........... 2-28

(no)recog•......•..•........... 2-29

(no)safe ..•.................... 2-29

(no)safeptr••... 2-29

(no)single•...•...............•........•.....•.................. 2-30

(no)smallvect•.........•... 2-30

(no)shortloop•...........•......•..........•...•...............•...........•.................•........................... 2-30

(no)swpipe ...•............•..•. 2-30

(no)transform .•..........•••..•.•.•..••...•..•.......•.••....•........••••.......................................•....••.................. 2-31

(no)vector•.•..........•................•......•..................•.••...•.... 2-31

(no)vintr •.................•.•..........•..............••.•.........•...........................•.................•........................... 2-31

Pragma Examples .•.......•.•........•••....•...................•..•.......................................•••.•...............•..•.•........ 2-31

Built-in Math Functions ... 2-33

xi

------------------ - -------

Table of Contents Paragon 1M System C Compiler User's Guide

Chapter 3
Optimizing Programs

Introduction .. 3-1

Optimization Procedure ... 3-1

Shortening Turnaround Time ... 3-2

Compiler Switches for Optimization .. 3-3

General Optimizations (-0) .. 3-3

Scalar Optimizations (-01, -02) ..•.......................................•............. 3-3

Software Pipelining (-03, -04)••...•...•......... 3-4

Vectorization (-Mvect) .. 3-5

How Vectorization Works .. 3-5

Controlling Vectorization (-Mvect) ... 3-6

Preventing Associativity Changes (-Mvect=noassoc) .. 3-7

Getting Information About Vectorization (-Minfo=loop) .. 3-8

Loop Unrolling (-Munroll) .. 3-10

Making Loops Parallel .. 3-11

General Loop Parallelization (-Mconcur) ... 3-11

Parallelizing Loops with Calls (-Mcncall) ... 3-12

Getting Information About Parallelization .. 3-12

Non-IEEE Math (-Knoieee) ... 3-12

Non-IEEE Divides (Compiling with -Knoieee) .. 3-13

Non-IEEE Math Library (Linking with -Knoieee) .. 3-13

SLAS Library (-Ikmath) ... 3-14

Inlining (-Minline) .. 3-14

Ignoring Potential Data Dependencies (-Mnodepchk and -Msafeptr) .. 3-14

Code Changes for Optimization ... 3-16

xii

General Improvements ...•................. 3-16

Loop Improvements•.. 3-16

File 1/0 Improvements .. 3-18

[-.' JIoi

'i a......;

rw-
\

~_",i

I:
1_-,
-

I:
(

_."'1

""'

(J

r:

r:
I:
I:
r:
('"

~""

(
, ~'''''1

,---w

1=:

~ -"

('''''
,.re;

L
1'''''1

~ .-J

I"~
_4.l

(J
u
c

Paragon ™ System C Compiler User's Guide Table of Contents

Chapter 4
Using the Inliner
Compiler Inline Switch ... 4-1

Creating an Inliner Library .. 4-2

Using Inliner Libraries .. 4-3

Restrictions on Inlining ... 4-4

Error Detection During Inlining4-4

Examples ... 4-5

Dhry•......................•...•.................................... 4-5

Fibo .. 4-5

Makefiles .. 4-6

Chapter 5
Interfacing Fortran and C ~

Calling a C Function from Fortran ... 5-1

Calling a Fortran Routine from C ... 5-3

Chapter 6
Extensions to Standard C
Standard Language ... 6-1

Extensions .. 6-1

Implementation-Defined Behavior ... 6-5

Porting Considerations .. 6-5

xiii

--- -- - -- ------~-.~~

Table of Contents Paragon TN System C Compiler User's Guide

Appendix A
Compiler Error Messages

Appendix B
Compiler Internal Structure
Scanner and Parser .. 8-3

Expander ... 8-3

Optimizer and Vectorlzer .. 8-3

Procedure Integration .. 8-3

Internal Vectorization .. 8-4

,~

l~

r:

l~
rr~
Ii..:

rr---'
Global Optimizations ... 8-4 ~ __

Local Optimizations ... 8-4

Flexible Memory Utilization ... 8-5

Scheduler and Pipeliner ... ; ... 8-5

Appendix C
Manual Pages

AR860 ... C-4

AS860 .. C-6

CPP860 .. C-8

DUMP860 C-11

ICC ... C-13

IFIXLI8 .. C-33

xiv

I'lr~'

~ .. ,
~.~'

r"'"'
1-

I:
1=
l:
C

C

Paragon 1M System C Compiler User's Guide Table of Contents

(J

LD860 .. C-34

MAC860•...•..................................... C-39

NM860 ..•........•................. C-40

SIZE860 ... C-42

STRIP860•... C-44

DV _ACOSO ...•... C-45

I--"'!

.':...1 SV _ACOSO ... C-50

1-'
--.!

(
-"1

I.J

[J
I]

1_-.,
~J

I~

IJ
[j

xv

-- -------------------------~---------~-----------------~,------------~-''''"- .. ~~-.-,-.-"'-.-.

Table of Contents Paragon'" System C Compiler User's Guide

[-,o'j. ' I

-'iii

List of Illustrations

Figure B-1 . Compiler Structure .. 8-2
Figure B-2. Parallel Activities of i860™ Microprocessor .. B-6

I'f "
It... ___ ,

I:
I:
I :

,,,,"

l:
xvi C

I····"!

.ill

r:
r:
1-:

r:
I~
1'<1

1·-."1
1 i

_I

(... ~
_ . .:J

r-l
...J

IJ
1"1

. .J

1_-:
_.>l

I-i
.-'"

IJ

Paragon TM System C Compiler User's Guide Table of Contents

List of Tables

Table 1-1. Software Development Commands .. 1-3

Table 2-1. Summary of icc Driver Switches ... 2-2

Table 2-2. Pragma Summary .. 2-25

Table 5-1. Fortran Data Types for Called C Functions .. 5-2

Table 5-2. C Data Types for Called Fortran Routines ... 5-3

Table 6-1. Sizes and Alignments of Data Types ... 6-5

Table C-1. Commands Discussed in This Appendix .. C-2

Table C-2. System Calls Discussed in This Appendix .. C-3

xvii

Table of Contenls Paragon™ System C Compiler User's Guide
[-"I
..... ~

[J

xviii

r:
I~

[J

IJ
(-..."

. -"j

I··~

.. "'"

IJ
IJ

Getting Started

This chapter introduces the Paragon TM System software development environment and shows how
to create executable files from C source code.

This chapter contains enough information to get you started using the compiler driver to create
executable files from C source code that conforms to the ANSI C standard. For information on
extensions to the standard language, refer to Chapter 6.

The Software Development Environment
The software development environment consists of an Intel supercomputer and its supporting
software.

System Hardware

A Paragon system consists of an ensemble of nodes connected by a high-speed internal network.
Each node contains one or more i860 TM processors and 16M bytes or more of memory. Each node's
memory is directly accessible only to that node; nodes share information with other nodes by passing
messages over the network. All nodes run the operating system. Multiple processes can run on each
node, and each process can have multiple threads (also known as lightweight processes).

The nodes appear to the programmer and user to be a single system. For example, every process in
a Paragon system has a different process ID from any other process running anywhere in the system,
no matter what node the processes are running on. In addition, all nodes share a single file system
and have equal access to tre system's IIOfacilities.

The nodes of tre system are divided into a service partition and a compute partition. The compute
partition may be subdivided into smaller partitions.

1-1

Getting Started Paragon TM System C Compiler User's Guide

Nodes in the service partition run a variety of system services, such as user shells, editors, and
compilers. Programs run in the service partition consist of single, independent processes.

Nodes in the compute partition runparaUel applications-user-written programs that consist of
groups of cooperating processes. All the processes in a single application run in the same
compute partition; they mayor may not use all the processors in the partition.

See the Paragon ™ System User's Guide for more information about partitions and applications.

System Software

1-2

The system software for the Paragon system is a complete implementation of the aSFIl operating
system. It includes all the calls and commands of aSF/1, plus extensions for parallel programming.

• For information on the standard aSF/1 calls and commands, see the OSFIl User's Guide,
OSFll Command Reference, and OSFll Programmer's Reference.

• For information on the parallel extensions, see the Paragon TM System User's Guide, Paragon TM

System Commands Reference Manual, and Paragon™ System C Calls Reference Manual.

Software Development Environments

The operating system includes a complete set of commands for compiling, linking, executing, and
debugging parallel applications. These commands are available in two different software
development environments:

• The cross-development environment runs both on the Paragon system and on supported
workstations.

• The native development environment runs only on the Paragon system itself.

[" ,'~ ,.AI

(',""" "

"""

(~

[J

I:
l=
C
(-1
~!

IJ
[

-"1

. -~

IJ

[J

IJ

IJ
I)

.- _._---------_._--------------------

Paragon TM System C Compiler User's Guide Getting Started

Table 1-1 lists the commands in the two software development environments.

Table 1-1. Software Development Commands

Name in Name in
Cross-Development Native

Environment Environment Description

ar860 ar Manages object code libraries

as860 as Assembles i860™ source code

cpp860 cpp Preprocesses C programs

dump860 dump860 Dumps object files

icc cc Compiles C programs

ifixlib ifixlib Updates inliner library directories.

Id860 Id Unks object files

mac860 mac Preprocesses assembly-language programs

nm860 nm Displays symbol table (name list) information

size860 size Displays section sizes of object files

strip860 strip Strips symbol information from object files

With minor exceptions, these commands work the same in both environments and on all supported
hardware platforms. The biggest difference between the two environments is the names of the
commands, as shown in Table 1-1. For convenience, the cross development name is also supported
in the native environment. Where other differences exist, they ate noted in Appendix C .

NOTE

This manual uses the cross-development names for these
commands. However, except where noted, all discussions of the
cross-development command names apply equally to the
corresponding native command names.

This manual gives complete information on the compiler and provides manual pages for the other
commands shown in Table 1-1. The Paragon system also provides a symbolic debugger, parallel
performance analyzer, and other software tools. For information on these tools, see the Paragon 1M

System Application Tools User's Guide.

1-3

Getting Started

1-4

Paragon™ System C Compiler User's Guide

Compiler Driver

The C driver provides an interface to the compiler, assembler, and linker that makes it easy to
produce executable files from C source code. For example:

• It automatically sets appropriate compiler, assembler, and linker switches.

• It lets you pass switches directly to the assembler and linker. All functionality of the as860
assembler and Id860 linker is available through the driver.

• It lets you stop after the preprocessor, compiler, assembler, or linker steps.

• It lets you retain intermediate files.

The driver creates an executable file for execution on a node running the operating system.

The icc command invokes the C driver. For example, the following command line compiles,
assembles, and links the C source code in the file myprog.c (using the default driver switches) and
leaves an executable version of the program in the file a.out:

% icc myp:cog.c

Chapter 2 describes the icc driver in detail, and Appendix C contains a manual page for icc.

NOTE

You can invoke the assembler and linker directly (as indicated in
the next two sections). However, if you do so, you must explicitly
specify switches, libraries, and other information that is provided
automatically by the driver. Therefore, such usage is
recommended for advanced users only.

i860 TM Assembler

The as860 command invokes the i860 assembler to assemble the output of the compiler. For
example, the following command line assembles the file myprog.s and leaves the resulting object
code in the file myprog .0:

%as860 myp:cog.s

For more information on using the i860 assembler, refer to the as860 manual page in Appendix C.

[]

[J

1_.,
.i

(
--1"

.;

I~I

r=
[J

[:

r:
I_ -'1

__ I

I
-~

..oj

[J

[)

I)

Paragon 1M System C Compiler User's Guide Getting Started

i860 TM Linker

The Id860 command invokes the i860 linker to link the output of the as860 assembler. For example,
the following command line links the file myprog.o with the library mylib.a and leaves the resulting
executable in the file a.out.

% Id860 myprog.o mylib.a

For more information on using the i860 linker, refer to the Id860 manual page in Appendix C.

Execution Environments
The software tools can create executable files for execution on one node or multiple nodes.

Running on a Single Node

By default, the icc driver creates a file for execution on a single node. For example, the following
command line compiles myprog.c to the executable a.out.

% icc myprog.c

When you run the resulting executable by typing Lout on the Paragon system, it runs on one node
in the service partition.

Running on Multiple Nodes

To run a program on multiple nodes, you must use calls from the library lihnx.a. This library contains
the calls that you use to start processes on multiple nodes and communicate with processes running
on other nodes. (All of the calls in lihnx.a are described in the Paragon TM System C Calls Reference
Manual.)

The icc driver does not automatically search libnx.a. To search libnx.a, you can use either the -ox or
-Inx switch when linking:

• The -ox switch links in !ibnx.a, libmach.a, and options/ autoinit.o and creates an executable that
automatically starts itself on multiple nodes when invoked. For example, the following
command line compiles myprog.c to the executable a.out.

% icc -nx myprog.c

1-5

Getting Started Paragon ™ System C Compiler User's Guide

When you run the resulting executable by typing a.out on the Paragon system, it runs on all the
nodes in your default partition. You can use the command line switches and environment
variables described in the Paragon™ System User's Guide to control its execution
characteristics.

For compatibility with the iPSe system, the -node switch is equivalent to -ox. For example, the
following command is equivalent to the previous command:

% icc -node myprog.c

However, continued support for this switch is not guaranteed.

• The -lox switch links in libnx.a but you should use the -ox switch if your program is going to
run on multiple nodes. For example, the following command line compiles myprog.c to the
executable a.out:

% icc myprog.c -In x

Note that -lox must appear after the filenames of any source or object files that use calls from
/ibnx.a.

Debugging

1-6

To debug programs, use the Interactive Parallel Debugger (IPO). IPO can debug any program that
runs on the Paragon system.

To compile an application for debugging, use the -g compile-time switch. The -g switch is equivalent
to the following switches:

-00 00 not optimize code.

-Mdebug Include symbol table and line table information.

-Mframe Include stack frame traceback information.

If you do not use the -g switch you can still debug the program, but debugging will be limited. For
example, at optimization levels higher than 0, access to individual source lines will be decreased,
and display or modification of variables and registers will probably have unpredictable results. In
addition, without stack frame traceback information turned on, the information displayed by the
debugger for a stack traceback will be incomplete.

For more information on using the Interactive Parallel Debugger, refer to the Paragon ™ System
Interactive Parallel Debugger Reference Manual and the Paragon TM System Application Tools
User's Guide.

D
[J

[]

[J

I:
IJ

[:

I'," _i6I

I:

r:
1-""1
, I

-~

IJ

r:
(~

1_,.,
"J

I ,
...I

[J

[)

Paragon 1M System C Compiler User's Guide Getting Started

Example Driver Command Lines
The following example command lines show how to use the icc driver to perfonn typical tasks. See
Chapter 2 for complete information on using the driver and its switches.

Compile and link: for a single node, leaving the executable in a file called x:

% icc -0 x x.e

Compile and link: for multiple nodes with automatic start-up:

% icc -nx -0 x x.e

Same as above, but include the C math library (-1m):

% icc -nx -0 x x.e -Im

• Compile source file x.c and link: it together with object file y.o and library mylib.a:

% icc -0 x x.e y.o myIib.a

• Compile and link: in libm.a:

% icc -0 x x.e -Inx

• Compile, but skip assemble and link: steps (-S); leaves assembly language output in file x.s:

% icc -8 x.e

• Compile and assemble, but skip link: step (-c); leaves object output in file x.o:

% icc -e x.e

• Compile and assemble with optimizations:

% icc -e -02 x.e
% icc -e -03 x.e
% icc -e -03 -Hvee"t x.e

See Chapter 3 for more infonnation on optimization.

(level 2 - global optimizations only)
(level 3 - adds software pipelining)

(level 3 optimizations plus vectorization)

1-7

Getting Started Paragon TM System C Compiler User's Guide

1-8

(J

[J

r i
i

(]
[

''''1., . .
i...J

iW'i
Ia. ~J

l:

I."'. '
M

I:
c

(.~'

-*'

I.''']
Jd

1-""1

, ..
(

"'"'I

""

r·-""
.II;.,j

r:
(

---'"1

-'

I "
(

-i
, ,

-J

(
4

~J

I:

("I

I:
r~

I.: --'"

r:
[J

(J

The icc Driver

This chapter describes icc. the driver for compiling. assembling. and linking C source code for
execution on the Paragon TM system.

The following sections tell how to invoke icc and how to control its inputs. processing. and outputs.

Invoking the Driver
The icc driver is invoked by the following command line:

icc [switches] source_file ...

where:

switches

sourceJile

Is zero or more of the switches listed in Table 2-1. Note that case is significant
in switch names.

Is the name of the file that you want to process. icc bases its processing on the
suffixes of the files it is passed:

file.c

file.s

file.o

file. a

is considered to be a C program. It is preprocessed,
compiled, and assembled. The resulting object file is
placed in the current directory.

is considered to be an i860 assembly language file. It
is assembled and the resulting object file is placed in
the current directory.

is considered to be an object file. It is passed directly
to the linker if linking is requested.

is considered to be an ar library. It is passed directly to
the linker if linking is requested.

2-1

The icc Driver

·A

·B

·c

·c
·Dname[=defJ

·E

·ES

• g

·Idirectory

·Koption

·Uibrary

·Ldirectory

·m

·M

·MD

·Moption

·nostdinc

·ox

2-2

Paragon™ System C Compiler User's Guide

file.f or file.F is considered to be a Fortran program. It is passed to
the Fortran compiler.

All other files are taken as object files and passed to the linker (if linking is
requested) with a warning message. If a file's suffix does not match its actual
contents, unexpected results may occur.

Table 2-1. Summary of icc Driver Switches (1 of 2)

Do not inhibit spacing around tokens.

Allow C++-style comments U / to end of line).

Skip link step; compile and assemble only (to file.o for eachjile.c).

Preserve comments in preprocessed C source files (implies ·E).

Define preprocessor symbol name to be def.

Preprocess every file to stdout.

Equivalent to ·E.

Synonymous with .Mdebug -00 ·Mframe .

Add directory to include file search path.

Request special mathematical semantics (ieee, ieee=enable,
ieee=strict, noieee, trap=fp, trap=align).

Load Iiblibrary.a from library search path (passed to the linker).

Add directory to library search path (passed to the linker).

Generate a link map (passed to the linker).

Output a list of include files to stdout.

Output a list of include files to file.d.

Request special compiler actions (allow _spacing, alpha, anno,
[no]asmkeyword, beta, [no]bounds, c1r]eg, concur, cncall,
cpp860, [no]dalign, [no]debug, [no]depchk, dollar, extract, fcon,
[no]frame, [no]func32, info, inline, keepasm, [no]list,
[no]longbranch, neginfo, nostartup, nostddef, nostdinc, nostdlib,
[no]perfmon, [no]quad, [no]reentrant, reloc_libs, retain_static,
safeptr, [no]signextend, [no]single, [nosplit_loop_ops,
[no]splitJoop]efs, [no]streamall, [no]strideO, [no]unroII, vect,
[no]vintr, [no]xp).

Remove the default include directory from the include files search
path.

Create executable application for multiple nodes.

[~
(~l'I.

'~

[J

f~,
I."",

[-,.".,

."'"

I:

('.~.'
Jij

I'.: ..
(....

. ~

r:
r:
I:

(. ...,. I '

..J

r:
I:
(

'"9

.,"-,

(-,

[J

Paragon ™ System C Compiler User's Guide The icc Driver

Table 2-1. Summary of icc Driver Switches (2 of 2)

-ofile Use file as name of output file.

-O[level] Set optimization level (0, 1, 2, 3,4).

-p Preprocess only (to file.i for eachfile.c).

-r Generate a relinkable object file (passed to the linker).

-s Strip symbol table information (passed to the linker).

-S Skip assemble and link step; compile only (to file.s for eachfile.c).

-Uname Remove initial definition of name in preprocessor.

-v Print the entire command line for assembler, linker, etc. as each is
invoked in verbose mode.

-V Print the version banner for assembler, linker, etc. as each is invoked.

-VV Displays the driver version number and the location of the online
release notes, but performs no compilation.

-Wpass ,option[,option ...] Pass options to pass (0, a, I).

-Ypass,directory Look in directory for pass (0, a, I, S, I, L, U, p).

-X(a I cis I till 0) Specify degree of ANSI C conformance.

The rest of this chapter discusses these switches in more detail.

NOTE

The switches that discuss loop parallelization are available only
with the Paragon System MP product.

Controlling the Driver
The following switches let you control how the driver processes its inputs:

-W Pass specified options to specified tool.

-Y Look in specified directory for specified tool.

-E Skip compile, assemble, and link step; preprocess only (output to stdout).

-p Skip compile, assemble, and link step; preprocess only (output tofile.i).

2-3

The icc Driver Paragon ™ System C Compiler User's Guide

-s Skip assemble and link step; compile only (output tofile.s).

-c Skip link step; compile and assemble only (output tofile.o).

·D Define (create) preprocessor macro.

·u Undefine (remove) preprocessor macro.

·B Allow C++-style comments.

Specific Passes and Options

2-4

The following switch lets you pass options to specific passes (tools):

-Wpass,option[,option ...]

where:

pass Is one of the following:

o (zero) Compiler.

a Assembler.

Linker.

option Is a comma-delimited string that is passed as a separate argument

The following switch lets you tell the driver where to look for a specific pass:

-Ypass,directory

where pass is one of the following:

o (zero)

a

s

I

L

Search for the compiler executable in directory.

Search for the assembler executable in directory.

Search for the linker executable in directory.

Search for the start-up object files in directory.

Set the compiler's standard include directory to directory.

Set the first directory in the linker's library search path to directory (passes
-YLdirectory to the linker).

[)

(]

[J

[J

[:

I" "1

Il_

I:
I:

[."..

.ioi

I·~
.JeI

1···"'1
.«1

I
·~

...

I:
(.-0>'1 ...

.aI

IJ
I:
I, .~

_ . .:-J

I~

I "
~I

IJ

Paragon'" System C Compiler User's Guide

u

p

The icc Driver

Set the second directory in the linker's library search path to directory (passes
-YUdirectory to the linker).

Set the linker's entire library search path to directory (passes -VPdirectory to
the linker).

See the icc manual page in Appendix C for the defaults for these directories. See the Id860 manual
page in Appendix C for more information on the -YL, -YU, and -YP switches.

Preprocess Only

By default, the driver preprocesses, compiles, assembles, and links each input file. However, the
following switches suppress the compile, assemble, and link steps:

-Eor-ES

-c

-P

-A

After preprocessing every input file, regardless of suffix, send the result to
stdout. No compilation, assembly, or linking is performed.

After preprocessing eachjile.c, send the result to stdout (like -E), but do not
remove comments during preprocessing.

After preprocessing eachjile.c, send the result to a file namedfile.i.

Do not inhibit spacing around tokens. You should not use this option when
preprocessing assembly language (jile.s) files.

-Mallow_spacing
Allow spacing around tokens such as "." and "@" when used with -ES.

Preprocess and Compile Only

By default, the driver preprocesses, compiles, assembles, and links each input file. However, the
following switch tells the driver to suppress the assemble and link steps and produce an assembler
source file:

-8

After compiling eachjile.c, the resulting assembler source file is sent to a file namedfile.s.

Preprocess, Compile, and Assemble Only

By default, the driver preprocesses, compiles, assembles, and links each input file. However, the
following switch tells the driver to suppress the link step:

-c

2-5

The icc Driver Paragon 1M System C Compiler User's Guide

After assembling eachfile.c, the output is sent to a file namedfile.o. If you are compiling a single
source file, you can specify a different output file name with the -0 switch.

Add and Remove Preprocessor Macros

The following command line switches let you predefme preprocessor macros and undefine
predefined preprocessor macros:

NOTE

ANSI C predefined macros can be defined and undefined on the
command line, but not with #define and #undefine directives in
the source.

-Dname[=deJJ Define name to be de/in the preprocessor. If de/is missing, it is assumed to
be empty. If the "=" sign is missing, then name is defined to be the string 1
(one).

-Uname Remove any initial defmition of name in the preprocessor. (See also the
nostddef option of the -M switch.)

Because all -D switches are processed before all -U switches, the -U switch overrides the -D switch.

The -U switch affects only predefined preprocessor macros, not macros defined in source files. The
following macro names are predefined: __ LINE __ , __ FILE __ , __ DATE __ , __ TIME __ ,
__ STDC __ , __ i860, __ i860 __ , __ PARAGON __ , __ OSFl __ ,_YGC __ ,_PGC_,_COFF,
unix, MACH, CMU, __ 1860 __ , _1860_, __ 1860, _i860_, OSFl_ADFS, OSFIAD,and NODE
L_ NODE is only defined when compiling with -ox or -node). Note that some of these macro names
begin and/or end with two underscores.

Allow C++ Comments

By default, the driver recognizes and discards only standard C comments (J * ... * I). The following
switch tells the driver to recognize and discard C++ comments (J / to end of line):

-B

Specify the Degree of ANSI C Conformance

2-6

.~-------~.---.-.

The -x switch lets you control the degree of ANSI C Confonnance. The following options are
available:

[)

[J
/r.-'
'-M

r:
l:

l~

I]

I:
I:
I:
I:

rJ

I :
J

1"'1

.J

IJ
(J

IJ

Paragon ™ System C Compiler User's Guide

-Xa

-xc

-Xs

-Xl

-XI

-Xo

The icc Driver

ANSI mode. The compiled language confonns to all ANSI features.
__ STDC __ is defined to be zero.

Confonnance mode. The compiled language confonns to ANSI C, but
warnings may be produced about some extensions. __ STDC __ is defined to
be one. This is the most strict of the ANSI C confonnance options. If you
want to write full ANSI-confonnant code, you should use the -Xc option.

Pre-ANSI mode. The compiled language includes all features compatible
with the C language as defined in The C Programming Language, by
Kernighan and Ritchie (pre-ANSI C). The compiler warns about all language
constructs that differ between ANSI C and pre-ANSI C.

Transition mode. This is ANSI C plus pre-ANSI C compatibility extensions
without the semantic changes required by ANSI C. Where ANSI C and
pre-ANSI C specify different semantics for the same construct, the compiler
issues a warning and uses the pre-ANSI C interpretation.

Treat [un]signed int and [un]signed long as the same data type. When you use
this switch, debug records for [un]signed long are type [un]signed into

Execute the R4.1.1 version of ic.

Controlling the Compilation Step
The following switches let you control the compilation step:

-Moption

-I

-M

-MD

-0

-g

Specific Actions

Request special compiler actions.

Add a directory to include fIle search path

Output a list of include fIles to stdout.

Output a list of include files to file.d.

Set the optimization level.

Include symbolic debug infonnation in the output fIle (synonymous with
-Mdebug -00 -Mframe).

The following command line switch lets you request specific actions from the compiler:

-Moption

2-7

The icc Driver

2-8

Paragon™ System.C Compiler User's Guide

where option is one of the following (an unrecognized option is passed directly to the compiler,
which often removes the need for the -WO switch):

allow_spacing Allow spacing arOlmd tokens such as "." and "@" when used with -ES.

alpha Activate alpha-release compiler features.

anno Produce annotated assembly files, where source code is intermixed with
assembly language. -Mkeepasm or -S should be used as well.

[no]asmkeyword

beta

[no]bounds

[Don't] allow the asm keyword in C source code (default -Masmkeyword).
The format is: asm(s).

Activate beta-release compiler features.

[Don't] enable array bounds checking (default -Mnobounds). With
-Mbounds enabled. bounds checking is not applied to subscripted pointers or
to externally-declared arrays whose dimensions are zero (extern arr[]).
Bounds checking is not applied to an argument even if it is declared as an
array. If an array bounds checking violation occurs when a program is
executed, an error message describing where the error occurred is printed and
the program terminates. The text of the error message includes the name of
the array, where the error occurred (the source file and line number in the
source), and the value, upper bound, and dimension of the out-of-bounds
subscript. The name of the array is not included if the subscripting is applied
to a pointer.

Clear the internal registers after every procedure invocation. This option is
used for diagnostic purposes.

concur=[option[,option ...]]
Make loops parallel as defined by the specified options. option can be any of
the following:

a1tcode:count Make innermost loops without reduction parallel only
if their iteration count exceeds count. Without this
switch. the compiler assumes a default count of 100.

a1tcode]eduction:count

dist:block

Make innermost loops with reduction parallel only if
their iteration count exceeds count. Without this
switch. the compiler assumes a default count of 200.

Make the outermost valid loop parallel. This is the
default option.

c
c

l:
I:

(]

1··'1
.. .iJ

r:
(-...... : ...

r:
I '"

-,)

(~
I .. .0.1

rJ
r:
1··""1· . ,

.. J

1=
I:
(~

[-~

• ..J

(:
_.M

(J

c

Paragon TM System C Compiler User's Guide

eneall

epp860

[no]dallgn

[no]debug

[no]depcbk

The icc Driver

dist:eyeUe Make the outennost valid loop in any loop nest
parallel. If an innennost loop is made parallel, its
iterations are allocated to processors cyclically. That
is, processor ° perfonns iterations 0, 3, 6, ... ; processor
1 perfonns iterations 1,4,7, ... ; and processor 2
perfonns iterations 2, 5, 8, and so on.

global_ veaehe Directs the vectorizer to locate the cache within the
area of an external array when generating codes for
parallel loops. By default, the cache is located on the
stack for parallel loops.

noassoe Do not make loops with reductions parallel. This is the
same as -Mvect=noassoc.

Make loops with calls parallel. By default, the compiler does not make loops
with calls parallel since there is no way for the compiler to verify that the
called routines are safe to execute in parallel. When you specify -Meneall on
the command line, the compiler also automatically specifies -Mreentrant.

-Mcneall also allows several other types of loops to be made parallel:

loops with 110 statements

• loops with conditional statements

• loops with low loop counts

• non-vectorizable loops

If the compiler can detect a cross-iteration dependency in a loop, it will not
make the loop parallel, even if -Mcneall is specified.

Direct the internal preprocessor to not compress white space.

[Don't] align doubles in structures on double-precision boundaries (default
-Mdalign). -Mnodalign may lead to data alignment exceptions.

[Don't] generate symbolic debug infonnation (default -Mnodebug). If
-Mdebug is specified with an optimization level greater than zero, line
numbers will not be generated for all program statements. -Mdebug increases
the object file size.

[Don't] check for potential data dependencies exist (default -Mdepcbk). This
is especially useful in disambiguating unknown data dependencies between
pointers that cannot be resolved at compile time. For example, if two floating
point array pointers are passed to a function and the pointers never overlap

2-9

The icc Driver

2-10

dollar ,char

Paragon ™ System C Compiler User's Guide [)

o

rr-"
and thus never conflict, then this switch may result in better code. The ~ . ..J
granularity of this switch is rather coarse, and hence the user must use
precaution to ensure that other necessary data dependencies are not If --:
overridden. Do not use this switch if such data dependencies do exist *-~
-Mnodepchk may result in incorrect code; the -Msafeptr switch provides a
less dangerous way to accomplish the same thing. l~

Set the character used to replace dollar signs in names to be char. Default is
an underscore U. ~"'i

I.,:
extract= [option[,option ...]]

fcon

[no]frame

[no]func32

Pass options to the function extractor (see the inline option for more
information). The options are:

[name:]jUnction Extract the specified function. name: must be used if
the function name contains a period.

[size:]number Extract functions containing less than approximately ~ ~i
number statements.;

If both number(s) and junction(s) are specified, then functions matching the
given name(s) or meeting the size requirements are extracted.

The -ojile switch must be used with -Mextract to tell the compiler where to
place the extracted functions. The name of the specifiedjile must contain a
period.

See Chapter 4 for more information on using the compiler's function
extractor.

Treat non-suffixed floating point constants as float, rather than double. This
may improve the performance of single-precision code.

[Don't] include the frame pointer (default -Mnoframe). Using -Mnoframe
can improve execution time and decrease code, but makes it impossible to get
a call stack traceback when using a debugger.

[D()n't] align functions on 32-byte boundaries (default -Mfunc32).
-Mfunc32 may improve cache performance for programs with many small
functions.

(
. "'1

.,..J

r=
[... ..,

. ...,

info=[option[,option ...]]
Produce useful information on the standard error output The options are:

time or stat Output compilation statistics.

(
."'1

.~

[~

IJ
1_,

. .iJ

I '''''' .. "

.w

I:
r~

(:
.-1

1,=1

.~I

I-~

I' .-'"9

~J

IJ
I'

r:

(]

I)

Paragon TM System C Compiler User's Guide

loop

concur

inline

The icc Driver

Output information about loops. This includes
information about vectorization, software pipelining,
and parallelization.

Same as -Minfo=loop.

Output information about functions extracted and
inlined.

cycles or block or size

iii

all

Output block size in cycles. Useful for comparing
various optimization levels against each other. The
cycle count produced is the compiler's static estimate
of freeze-free cycles for the block.

Output intermediate language as comments in
assembly file.

All of the above.

inline=[option[,option ...]]

keepasm

Pass options to the function inliner. The options are:

[lib:]library Inline functions in the specified inliner library
(produced by -Mextract).lflib: is not used, the
library name must contain a period. If no library is
specified, functions are extracted from a temporary
library created during an extract prepass.

[name:]jUnction Inline the specified function. If name: is not used, the
function name must not contain a period.

[size:]number Inline functions containing less than approximately
number statements.

levels:number Perform number levels of inlining (default 1).

If both number(s) andjimction(s) are specified, then functions matching the
given name(s) or meeting the size requirements are inlined.

See Chapter 4 for more information on using the compiler's function inliner.

Keep the assembly file for each C source file, but continue to assemble and
link the program. This is mainly used in compiler performance analysis and
debugging.

2-11

The icc Driver

2-12

list[=name]

nolist

Paragon™ System C Compiler User's Guide

Create a source listing in the file name. If name is not specified, the listing file
has the same name as the source file except that the ".C" suffix is replaced by
a" .1st" suffix. If name is specified, the listing file has that name; no extension
is appended.

Don't create a listing file (this is the default).

[no]longbranch [Don't] allow compiler to generate bte and btne instructions (default
-M1ongbranch). -Mnolongbranch should be used only if an assembly error
occurs.

neginfo=concur
Print information for each countable loop that is not made parallel stating why
the loop was not made parallel.

nostartup Don't link the usual start-up routine CcrtO.o), which contains the entry point
for the program.

nostddef Don't predefine any system-specific macros to the preprocessor when
compiling a C program. (Does not affect ANSI -standard preprocessor
macros.) The system-specific predefined macros are __ i860, _J860 __ ,
__ PARAGON __ , __ OSFl __ , __ PGC __ , _ PGC _, _ COFF, unix, MACH,
CMU, __ 1860 __ , _1860_, __ 1860, _i860 _, OSFl_ ADFS, OSFIAD,and
__ NODE l._ NODE is only defined when compiling with -ox). See also -U.

nostdinc Remove the default include directory (lusr/include for cc,
$(PARAGON _ XDEV)/paragonlinclude for icc) from the include files search
path.

nostdlib Don't link the standard libraries (libpm.o, guard.o, libc.a, iclib.a, and
libmach3.a) when linking a program.

[no]perfmon [Don't] link the performance monitoring module (libpm.o) (default
-Mperfmon). See the Paragon ™ System Application Tools User's Guide for
information on performance monitoring.

[no]quad [Don't] force top-level objects (such as local arrays) of size greater than or
equal to 16 bytes to be quad-aligned (default -Mquad). Note that -Mquad
does not affect items within a top-level object; such items are quad-aligned
only if appropriate padding is inserted

[no]reentrant [Don't] generate reentrant code (default -Mreentrant). -Mreentrant
disables certain optimizations that can improve performance but may result
in code that is not reentrant. Even with -Mreentrant, the code may still not
be reentrant if it is improperly written (for example, if it declares static
variables).

[J

(.... ", . , ...,

W-""
l.~

I:

IJ

r:
I:
I~
(

""1

. J

I·~r
.-.J

I:

1_-,
: .. ,j

I " .. ~
.cJ

I:
I~!

IJ

Paragon TIl System C Compiler User's Guide

reloc libs

retain static

The icc Driver

Cause -I switches that appear before source or object file names on the
compiler command line to appear after these file names on the Id command
line.

Do not eliminate static data that is not referenced.

sareptr=[option[,option ...]]
Override data dependence between C pointers and arrays. This is a potentially
very dangerous option since the potential exists for code to be generated that
will result in unexpected or incorrect results as is defined by ANSI C.
However, when used properly, this option has the potential to greatly enhance
the performance of the resulting code, especially floating point oriented
loops. Combinations of the options can be used .

dummy or arg C dummy arguments (pointers and arrays) are treated
with the same copyinlcopyout semantics as Fortran
dummy arguments.

auto

static

global

C local or auto variables (pointers and arrays) are
assumed to not overlap or conflict with each other and
to be independent.

C static variables (pointers and arrays) are assumed to
not overlap or conflict with each other and to be
independent.

C global orextem variables (pointers and arrays) are
assumed not to overlap or conflict with each other and
are independent.

[no]signextend [Don't] sign extend when a narrowing conversion overflows (default
-Msignextend). For example, if -Msignextend is in effect and an integer
containing the value 65535 is converted to a short, the value of the short will
be -1. This option is provided for compatibility with other compilers, even
though ANSI C specifies that the result of such conversions are undefined.
-Msignextend will decrease performance on such conversions.

[no]single [Don't] suppress the ANSI-specified conversion of Boat to double when
passing arguments to a function with no prototype in scope (default
-Mnosingle). -Msingle may result in faster code when single precision is
used a lot, but is non-ANSI compliant.

spliUoop _ ops=n
Set a threshold of n floating-point operations within a loop. Innermost loops
whose number of floating-point operations exceeds n are split. Each
floating-point operation counts as two. The default for n is 40 when -Mvect
is used.

2-13

The icc Driver

2-14

-- -- -- ------- -------- -----~-------

Paragon'" System C Compiler User's Guide

nospliUoop_ops
Do not split loops when the floating-point operation threshold is exceeded.
When -Mvect is specified, innermost loops whose number of floating point
operations exceed 40 are split by default. This switch turns the default off.

spliUoop Jefs=n
Set a threshold of n array element loads and stores within a loop. Innermost
loops whose number of loads and stores exceeds n are split. The default for n
is 20 when -Mvect is used

nospliUoop Jets
Do not split loops when the array element loads and stores threshold is
exceeded. When -Mvect is specified, innermost loops whose number of array
element loads and stores exceeds 20 are split by default. This switch turns the
default off.

[no]streamall [Don't] stream all vectors to and from cache in a vector loop (default
-Mstreamall). When -Mnostreamall is in effect, the compiler chooses one
vector to come directly from or go directly to main memory, without being
streamed into or out of cache.

[no]strideO [Don't] inhibit certain optimizations and allow for stride 0 array references.
-MstrideO may degrade performance, and should only be used if zero stride
induction variables are possible. (default -MnostrideO).

unroU[=option [,option ...]]

nounroU

Invoke the loop unroller and set the optimization level to 2 if it is set to less
than 2. option is one of the following:

c:m

n:u

Do not unroll loops.

Completely unroll loops with a constant loop count
less than or equal to m. If m is not supplied, the default
value is 4.

Unroll loops that are not completely unrolled or have
a non-constant loop count u times. If u is not supplied,
the unroller computes the number of times a loop is
unrolled.

vect[=option[,option •..]]
Perform vectorization (also enables -Mvintr). If no options are specified,
then all vector optimizations are enabled. The available options are:

[)

D

I:
(.. ~

.J

IJ
[J

Paragon 1M System C Compiler User's Guide

I]

I:

I .. "9

• .J

[~I I I

! ,
-.,j

I
··~

. J

I. ··.'°1

, .-'

1=
r:

[J

IJ

a1tcode[:number]

The icc Driver

Produce non-vectorized code to be executed if the loop
count is less than or equal to number. Otherwise
execute vectorized code. The default value for number
is 10.

cachesize:number

noassoc

recog

Set the size of the portion of the cache used by the
vectorizer to number bytes. Number must be a multiple
of 16, and less than the cache size of the
microprocessor (16384 for the i860 XP, 8192 for the
i860 XR). In most cases the best results occur when
number is set to 4096, which is the default (for both
microprocessors).

When scalar reductions are present (for example, dot
product), and loop unrolling is turned on, the compiler
may change the order of operations so that it can
generate better code. This transformation can change
the result of the computation due to round-off error.
The use of noassoc prevents this transformation.

Recognize certain loops as simple vector loops and
call a special routine .

smaUvect[:number]

streamlim:n

This option allows the vectorizer to assume that the
maximum vector length is no greater than number.
Number must be a multiple of 10. If number is not
specified, the value 100 is used. This option allows the
vectorizer to avoid stripmining in cases where it
cannot determine the maximum vector length. In
doubly-nested, non-perfectly nested loops this option
can allow invariant vector motion that would not
otherwise have been possible. Incorrect code will
result if this option is used, and a vector takes on a
length greater than specified.

This sets a limit for application of the vectorizer data
streaming optimization If data streaming requires
cache vectors of length less than n, the optimization is
not performed. Other vectorizer optimizations are still
performed. The data streaming optimization has a high
overhead compared to other loop optimizations, and
can be counter-productive when used for short vectors.
The n specifier is not optional. The default limit is 32
elements if streamlim is not used.

2-15

The icc Driver

[no]vintr

[no]xp

transform

Paragon ™ System C Compiler User's Guide

PerfQnn high-level transformations such as loop
splitting and loop interchanging. This is nonnally not
useful without .Mvect=recog.

·Mvect with no options means:
.Mvect=recog,transform,cachesize:4096,altcode:l0.

[Don't] perfonn recognition of vector intrinsics (default ·Mnovintr, unless
·Mvect is used).

[Don't] use i860 XP microprocessor features (default ·Mxp).

Location of Include Files

The following command line switch lets you add a specified directory to the compiler's search path
for include files:

-Idirectory

where directory is the pathname of the directory to be added. If you use more than one ·1 switch, the
specified directories are searched in the order they were specified (left to right).

For include files surrounded by angle brackets « ... », each·1 directory is searched, followed by the
standard include directory. For include files surrounded by double quotes (" ... "), the directory
containing the file containing the #include directive is searched, followed by the·1 directories,
followed by the standard include directory.

List of Include Files

The following command line switches let you get a list of all the include files used by a source file:

-M
-MD

The·M switch (with no option) makes the compiler send to the standard output a list of the
pathnames of all files directly or indirectly referenced by #include directives in each source file. The
·MD switch is similar, except that it stores the list of #include files for each source file (file.c) in a
correspondingjile.d. This information can be useful in writing makejiles.

Optimization Level

The following command line switch lets you set the optimization level explicitly:

2-16

[)

[J

[J

I:
I
~

"--

I:

I-.··~

Ai

I:

[
"'I

... i

(
~.~

~

1···""1

---.I

IJ
I]

-------_ .. _ _-._-_ .. _--_. ------------ .. _ ... - --

Paragon TM System C Compiler User's Guide The icc Driver

-O[levelJ

where level is one of the following:

o

1

2

3

4

A basic block is generated for each C statement. No scheduling is done
between statements. No global optimizations are performed.

Scheduling within extended basic blocks is performed. Some register
allocation is performed. No global optimizations are performed.

All level 1 optimizations are performed. In addition, traditional scalar
optimizations such as induction recognition and loop invariant motion are
performed by the global optimizer.

All level 2 optimizations are performed. In addition, software pipelining is
performed.

All level 3 optimizations are performed, but with more aggressive register
allocation for software pipelined loops. In addition, code for pipelined loops
is scheduled several ways, with the best way selected for the assembly file .

If -0 is used without a level, the optimization level is set to 2. If you do not use the -0 switch, the
default optimization level is 1.

NOTE

When compiling an application for debugging, you will get the best
results using -00.

If you prefer optimized code to "debuggability ," use -02. See Chapter 3 for information on
additional compiler optimization features.

Generating Debug Information

To compile for debugging you should use the -g compiler switch. The -g switch is equivalent to
-Mdebug -Mframe -00. These switches have the following effects:

-Mdebug

-Mframe

Generate symbol and line number information.

Generate stack frames on function calls. (Default -Mnoframe.) Debugging
code without stack frames generated on function calls will result in stack
tracebacks that have miSSing calls when you use the frame command.

2-17

The icc Driver

-00

Paragon ™ System C Compiler User's Guide

Optimization off. If you do not turn optimization off, access to individual
source lines will be decreased, and display or modification of variables and
registers will probably have unpredictable results.

You can debug programs not compiled for debugging, but your ability to debug will be very limited.
The debugging information generated by -g increases the object file size.

Note that -Mvect causes the compiler to ignore optimization levels less than 2. For example, -g
-Mvect is the same as -g -Mvect -02. Optimization cannot be turned off when+ -Mvect is used.

Controlling the Link Step
The following switches let you control the link step (they are all passed directly to the linker):

-s Strip symbol table information.

-r Generate a relinkable object flle.

-m Produce a link map.

-L Change the default library search path.

-I Load a specific library.

Stripping Symbols

The following command line switch strips all symbols from the output object flle:

-8

This results in a smaller object flle, but makes it more difficult to debug.

Generating a Relinkable Object File

2-18

The following command line switch generates a relinkable object file:

-r

When you use the -r switch, the linker keeps internal symbol information in the resulting object file.
This lets you link the object flle together with other object files later.

[J

(J

rf -I

~='

l=
IJ
1-'
'-....

[J

C

C
1. -1t1

.~

r:

I-~

IJ
(J
(1
.~

[J

IJ
IJ
[J

IJ
(]

Paragon™ System C Compiler User's Guide The icc Driver

Producing a Link Map

The following command line switch produces a link map on the standard output:

-m

The link map lists the start address of each section in the object file. To get more information about
the object file, use the dump860 command.

Linker Libraries

The following switch adds a directory to the head of the linker's library search path:

-Ldirec"tory

where directory is the pathname of a directory that the linker searches for libraries. The linker
searches directory first (before the default path and before any previously specified·L paths).

The following switch tells the linker to use a specific linker library:

-llibrary

The linker loads the library Iiblibrary.a from the first library directory in the library search path in
which a file of that name is encountered.

See the Id860 manual page in Appendix C for more information on the linker's library search path.

Controlling Mathematical Semantics
The following command line switch lets you request special mathematical semantics from the
compiler and linker:

-Kop"tion

where option is one of the following:

ieee

ieee=enable

If used while linking, links in a math library that conforms with the IEEE 754
standard.

If used while compiling, tells the compiler to perform Boat and double
divides in conformance with the IEEE 754 standard.

If used while linking, has the same effects as ·Kieee, and also enables floating
point traps and undertlow traps. If used while compiling, has the same effects
as ·Kieee.

2-19

The icc Driver

ieee=strict

noieee

trap=fp

trap=aiign

Paragon 1M System C Compiler User's Guide

If used while linking, has the same effects as -Kieee=enable, and also enables
inexact traps. If used while compiling, has the same effects as -Kieee.

If used while linking, produces a program that flushes denonnals to 0 on
creation, which reduces underflow traps. If used together with -1m, also links
in a version of lihm.a that is not as accurate as the standard library, but offers
greater perfonnance. This library offers little or no support for exceptional
data types such as INF and NaN, and will trap on such values when
encountered.

If used while compiling. tells the compiler to perfonn Ooat and double
divides using an intine divide algorithm that offers greater perfonnance than
the standard algorithm. This algorithm produces results that differ from the
results specified by the IEEE standard by no more than three units in the last
place.

If used while compiling, disables kernel handling of floating point traps. Has
no effect if used while linking.

If used while compiling, disables kernel handling of alignment traps. Has no
effect if used while linking.

-Kieee is the default. See "Non-IEEE Math (-Knoieee)" on page 3-12 for more infonnation on the
-K switch.

Controlling the Driver Output
The following switches let you control the driver's outputs:

-ox

-0

-v

-vv

-v

Create an executable application for multiple nodes.

Specify the name of the output file.

Print the version banner for each tool (assembler, linker, etc.) as it is invoked

Display the driver version number and the location of the online release notes.
but do not perform any compilation.

Print the entire command line for each tool as it is invoked, and invoke each
tool in verbose mode (if it has one).

Executable for Multiple Nodes

2-20

By default, the icc driver creates an executable for a single node. The following command line
switch creates an executable for multiple nodes:

[)

[J

IJ

[:

[J

I:

I:

I:

I:
r~

.. ...,J

(J

1_-'.'
, '

.~

IJ
IJ

I, -""'I
~J

I:
r:

I~
-'"'

[J

Paragon 1M System C Compiler User's Guide The icc Driver

-nx

The -ox switch has three effects:

• If used while compiling, it defines the preprocessor symbol __ NODE. The program being
compiled can use preprocessor statements such as #ifdef to control compilation based on
whether or not this symbol is defined.

If used while linking, it links in libnx.a, the library that contains all the calls in the Paragon TM

System C Calls Reference Manual. It also links in libmach.a and optionsiautoinit.o.

If used while linking, it links in a special start-up routine that automatically copies the program
onto multiple nodes, as specified by standard command line switches and environment
variables. See the Paragon ™ System User's Guide for information on these command line
switches and environment variables.

For compatibility with the iPSe@ system, the icc driver currently accepts the following command
line switch, which is synonymous with -ox:

-node

However, support for this switch may be dropped in a future release.

Name of Executable File

By default, the executable file is named a.out (orfile.o if you use the -c switch). However, the
following command line switch lets you name the file anything you like:

-ofile

where file is the desired name.

Verbose Mode

By default, the driver does its work silently. However, the following command line switch causes
the driver to display the version banner of each tool (assembler, linker, etc.) as it is invoked:

-v

The following command line switch causes the driver to identify itself in more detail than the -V
switch and display the location of the online compiler release notes. No compilation is performed:

-vv

2-21

The icc Driver Paragon System C Compiler User's Guide

The following command line switch causes the driver to display the entire command line that
invokes each tool, and to turn on verbose mode (if available) for each tool:

-v

Overriding Compiler Defaults

2-22

You can override the default switch settings for the Paragon Fortran compiler by creating a compiler
default file in your home directory, your current working directory, or the directory where the
compiler driver resides. This file must be named .icfrc. The default file contains compiler switches
as they would appear on the command line, delimited by spaces, tabs, or new lines. The file can
contain any number of lines. The following is an example of the contents of a default file:

-03 -Mvect
-Knoieee -Mframe -Mnoperfmon

The compiler searches the following directories in the order listed for the .icfrc file.

1. Your current working directory.

2. Your home directory.

3. The directory where the compiler driver resides. If you place a .icfrc file in usr/ccs/bin on a
Paragon system, you should also have the system administrator create a link to that directory in
usr/bin.

If you have default files in more than one of these directories, the compiler uses the first one found.

NOTE

The .icfrc file is used by both the Paragon C compiler and the
Paragon Fortran compiler. It is suggested that .icfrc files that
reside in your home directory or the directory where the compiler
driver resides contain only switches that are common to both
compilers.

When you invoke the compiler, the compiler driver reads the default file, if it exists, and constructs
a new command line. The command line consists of the switches in the .icfrc file first, then the
switches in the command line you used to invoke the compiler. Because of this order, you should
not put arguments in the default file if they must go at the end of the command line. An example
would be directives to link to libraries.

The following is the order of precedence for compiler switches:

[)

[J

[J

If ~I
.-.~

1,""'1

'"
['

. .,

I:
I:
(:
l:

[:
I·""!

~

I·
. "lI

r:

r:
r:
I:

r:
r:

l ·.~
.,J

(-.,
. ..1

I: . ..J

[J

Paragon TM System C Compiler User's Guide The icc Driver

1. specific entries on the command line

2. entries in the .icfrc file

3. default switch settings

For example, suppose you have the following entries in your .icfrc file:

-03 -Mvect

If you use the following command line to invoke the compiler:

icc -04 example.c

The compiler will generate the following command line:

icc -03 -Mvect -04 example.c

Because the -04 switch from the compiler invocation comes after the -03 switch from the default
file, the explicit command line switch overrides the default file switch, and the optimization level is
set to 4.

C Pragmas

NOTE

Although you can include file names and switches such as -c in
the default file, this is not advisable because all arguments in the
default file will appear on all compiler command lines. Arguments
other than those needed to override default settings of switches
should go in a make file.

Pragmas alter the effects of certain command line switches or the default behavior of the compiler.
While a command line switch effects the entire source file being compiled, pragmas affect only
selected functions or loops in the source file. Pragmas allow you to fine tune selected functions or
loops.

The general syntax of a pragma is as follows:

#pragDla[scope]pragma_body

scope can be loop, routine, or global.

For pragmas that allow loop, routine, and global scope, the following rules apply:

2-23

The icc Driver

2-24

l(loop)

r(routine)

g(global)

Paragon no System C Compiler User's Guide

Indicates the pragma applies to the next lexical loop. The pragma does not
apply to any loops that are enclosed by the next loop. Loop-scoped pragmas
are only applied to do, for, and while loops. .

Indicates the pragma applies to the code that follows the pragma until the end
of the function.

Indicates the pragma applies to the code that follows the pragma until the end
of the file.

For pragmas where loop scope is not allowed, the scope rules fall into two groups.

The following rules apply to pragmas func32, frame, opt, and safe:

r(routine)

g(global)

Indicates the pragma applies to the current function, if it is in a function. If it
is not in a function, it applies to the next function.

Indicates the pragma applies to all functions that follow it.

The following rules apply to pragmas bounds, fcon, and single:

r(routine)

g(global)

Indicates the pragma applies to the code that follows the pragma until the end
of the function.

Indicates the pragma applies to the code that follows the pragma until the end
of the file.

If scope is not specified, the default scope for each individual pragma is applied. Table 2-1 lists these
defaults.

pragma _body can include any of the pragmas listed in Table 2-1.

Table 2-1 provides a summary of the supported pragmas. The default column specifies the default
condition for each pragma. The scope column lists the pennitted scopes for each pragma, with the
default scope in parentheses. L indicates loop, R indicates routine, and G indicates global scope. The
name of a pragma can be preceded by a -M. For example, -Mnoassoc is equivalent to noassoc .

[~

(J

I .. "'1i

•
(J

I:
I ';
.*

I:
I:
(
~

•

I:

I'~
.-41

(
--!Ill

""

r"'1l!' ..

r:
r ...

~!

I:
I:
I:

I~

I:
I---~

cO

(J

---~~-------~------- _.

Paragon TM System C Compiler User's Guide The icc Driver

Table 2-2. Pragma Summary (1 of 2)

PRAGMA DESCRIPTION DEFAULT SCOPE

altcode[n]concur Execute innennost loops without n=l00 (L)RG
reductions in parallel only if their
iteration count exceeds n.

altcode[n]concurreduction Execute innennost loops with n=200 (L)RG
reductions in parallel only if their
iteration count exceeds n.

[no]assoc [Don't] perfonn associative assoc (L)RG
transfonnations

[no]bounds [Don't] perfonn array bounds nobounds (R)G
checking

[no]concur [Don't] consider loops for noconcur (L)RG
parallelization

[no]cncall [Don't] consider loops for nocncall (L)RG
parallelization even if they
contain calls or conditionals,
their loop counts do not exceed
thresholds, or they contain inner
non-vectorizable loops

[no]depchk [Don't] check for potential data depchk (L)RG
dependencies

[no]fcon [Don't] assume unsuffixed real nofcon (R)G
constants are single precision

dist=block Change concurrency NlA (L)RG
characteristics to block

dist=cyclic Change concurrency N/A (L)RG
characteristics to cyclic

[no]frame [Don't] set up a complete stack frame (R)G
frame

[no]func32 [Don't] align functions on nofunc32 (R)G
32-byte boundaries

[no]lstval [Don't] compute last values lstval (L)RG

opt Select optimization level N/A (R)G

[no]recog [Don't] recognize vector idioms recog (L)RG

[no]safe [Don't] treat pointer arguments safe (R)G
as safe

2-25

----------_._--------------- ----- -----------------~".--'"

The icc Driver Paragon™ System C Compiler User's Guide

Table 2-2. Pragma Summary (2 of 2)

PRAGMA DESCRIPTION DEFAULT SCOPE

[no]safeptr [Don't] ignore potential data nosafeptr L(R)G
dependencies

[no]single [Don't] suppress the nosingle (R)G
ANSI-specified conversion of
Boat to double when passing
arguments to a function with no
prototype in scope

[no]smaIlvect [Don't] assume short loop count nosmaIlvect (L)RG

[no]shortloop [Don't] assume short loop count noshortloop (L)RG

[no]swpipe [Don't] perfonn software swpipe (L)RG
pipelining transfonnations

[no]transform [Don't] perfonn vector transform (L)RG
transfonnations

[no]vector [Don't] perfonn vectorizations vector (L)RG

[no]vintr [Don't] recognize vector vintr (L)RG
intrinsics

Pragma Descriptions

2-26

---------'----

The following sections provide descriptions of each pragma.

altcode(n)concur

This pragma alters the effect of the -Mconcur=altcode:n command line switch. The pragma makes
innennost loops without reduction parallel only if their iteration count exceeds n. Without this
pragma, the compiler assumes a default of 100.

altcode(n)concurreduction

This pragma alters the effect of the -Mconcur=altcode]eduction:n command line switch. The
pragma makes innennost loops with reduction parallel only if their iteration count exceeds n.
Without this pragma, the compiler assumes a default of 200.

[: . .JiII

[J
I'f~

I.J

~~

Ii

~=

[
"~'

'.

~~

(~

. ...!

IJ
I:
I:
l:
l:

r:
(.. -...... 'I

. ..,

I~
(,-"

..
[:
I~
I-'~

(''''
,...J

(J

I ·...,
... ~

[:
IJ

Paragon TM System C Compiler User's Guide The icc Driver

(no)assoc

This pragma alters the effects of the -Mvect=noassoc or -Meoneur=noassoc command line
switches. By default, when scalar reductions are present the vectorizer may change the order of
operations to generate better code and allow parallelization of loops. Such transformations change
the result of the computation due to roundoff error. The noassoc pragma disables these
transformations.

(no)bounds

This pragma alters the effects ofthe -Mbounds command line switch. The bounds pragma enables
the checking of array bounds when subscripted array references are performed. By default, array
bounds checking is not performed. If you use the bounds pragma, you must specify -Mbounds on
the compiler command line.

(no)cncall

This pragma alters the effects of the -Meneall command line switch The eneall pragma causes the
compiler to consider loops within the specified scope for parallelization, even if they contain calls
to user-defined routines, they contain conditional statements, their loop counts do not exceed the
usual thresholds, or they contain inner non-vectorizable loops. If you use the encall pragma, you
must specify -Mconcur on the compiler command line.

(no)concur

This pragma alters the effects of the -Mconeur command line switch. The concur pragma causes
the compiler to consider loops within the specified scope for parallelization. If you use the concur
pragma, you must specify -Meoncur on the compiler command line.

(no)depchk

This pragma alters the effects of the -Mdepcbk command line switch. When potential data
dependencies exist, the compiler,by default, assumes that a data dependency exists which may
inhibit certain optimizations or vectorizations. The nodepcbk pragma directs the compiler to ignore
these potential data dependencies.

dist=block

Changes the concurrency characteristics to block within the scope of the pragma.

2-27

The icc Driver

2-28

Paragon 1M System C Compiler User's Guide

dist=cyclic

Changes the concurrency characteristics to cyclic within the scope of the pragma.

{no)fcon

This pragma alters the effects of the -Mfcon command line switch. The fcon pragma causes the
compiler to treat non-suffixed floating-point constants as float rather than double. By default, all
non-suffixed floating-point constants are treated as double.

{no)frame

This pragma alters the effect of the -Mframe command line switch. The frame pragma causes the
compiler to set up a stack frame. By default, the compiler does not set up a stack frame.

{no)func32

This pragma alters the effects of the -Mfunc32 command line switch. The func32 pragma causes
the compiler to align functions on a 32-byte boundary. By default, functions are aligned on an 8-byte
boundary.

{no)lstval

The compiler determines whether or not the last values for loop iteration control variables and
promoted scalars must be computed. When the compiler detennines it is necessary, it computes the
last values. The nolstval pragma causes the compiler to not compute last values.

There is no command line switch that corresponds to this pragma.

opt

This pragma overrides the value specified by the -0 command line switch. The syntax for the opt
pragma is as follows:

#pragma [<scope>] opt=<level>

scope can be either routine or global, and level is an integer constant representing the optimization
level desired for the function (routine scope) or all functions in a file (global scope).

I)

u
[J

IJ
(

""1!1

.. ~

IJ
I

"'~

....

r:
r:
r=
I:
r:

IJ
1=1

""

I ~i

'.'

("~

• J

I:
IJ
[J

Paragon 1M System C Compiler User's Guide The icc Driver

(n0) recog

This pragma alters the effects of the -Mvect command line switch. If the -Mvecl=transform switch
is included on the command line, vector recognition is disabled for the entire compilation. The
norecog pragma allows selective disabling of vector recognition when the -Mvect switch is
selected. The recog pragma toggles a previous norecog.

The recog pragma only affects the compiler when -Mvect is included on the command line.

(no)safe

By default, the compiler assumes that all pointer arguments are unsafe and the storage located by the
pointer can be accessed by other pointers. The safe pragma causes the compiler to consider pointers
safe. The safe pragma has the following forms:

#pragma [<scope>] [no]safe

#pragma safe (variable [, variable] ...)

scope can be routine or global, and variable is the name of a pointer variable.

If no variable names are included, all pointer arguments in a routine (routine scope) or in all routines
(global scope) will be treated as safe by the compiler. If a single variable is specified, the
surrounding parentheses can be omitted.

There is no command line switch that corresponds to this pragma.

(no)safeptr

This pragma alters the effects of the -Msafeptr command line switch. The safeptr pragma causes
the compiler to treat pointer variables if a specified storage class as safe. The nosafeptr pragma
causes the compiler to treat them as unsafe. The syntax is as follows:

#pragma [<scope>] [no]safeptr=class, ...

scope can be global, local, or routine.

class specifies a variable storage class. The classes are arg, local, auto, global, static, or all. The
storage classes local and auto are equivalent.

In a file containing multiple functions, the -Msafeptr command line switch might be helpful for one
function, but not appropriate for another function because it would produce incorrect results. In such
a file, using the safeptr pragma with routine scope could improve performance and produce correct
results.

2-29

The icc Driver

2-30

Paragon TM System C Compiler User's Guide

(no)single

This pragma alters the effects of the -Msingle command line switch. The single pragma causes the
compiler not to convert float parameters to double parameters in non-prototyped functions. The
syntax is as follows:

#pragma [<scope>] [no]single

This can result in faster code if your program uses only float parameters, but it results in non-ANSI
conformant code.

(no)smallvect

This pragma alters the effects of the -Mvect=smallvect command line switch. The smaUvect
pragma has the following syntax:

#pragmma[scope]smaUvect[=count]

scope can be global, local, or routine. count is an integer constant that specifies the maximum
iteration count for a loop whose count is not a constant. If count is not specified, the default value is
100.

The smallvect pragma only affects compilation when the -Mvect switch is specified on the
command line. The default condition is nosmallvect, where the vectorizer does not make
assumptions about the maximum iteration count for loops whose counts are not constants.

(no)shortloop

This pragma is identical to the (no)smaUvect pragma.

(no)swpipe

The noswpipe pragma causes the compiler to suppress software pipelining transformations that
normally occur at optimization levels greater than 2.

There is no command line switch that corresponds to this pragma.

[~

I:

I:
l:
I·""

.AO

r:

1_;
...

r:
r:
r:
I:
r:
"

""1
, ,j

('"

iJ

(:
. ..,J

(J
(

..• ~'9

~J

I ·,":
,;J

I~

IJ
(]

[j

Paragon 1M System C Compiler User's Guide The icc Driver

(no)transform

This pragma alters the effects of the -Mvect=transform command line switch. The notransform
pragma can be used to inhibit vector transfonnations when the -Mvect switch is in effect The
transform pragma can be used to toggle a previous notransform. The transform pragma only
affects compilation when the -Mvect switch is specified on the command line.

(no)vector

The novector pragma disables vector transfonnations and vector recognitions. This pragma only
affects compilation when the -Mvect switch is specified on the command line.

(no)vintr

The novintr pragma disables recognition of vector intrinsics. This pragma only affects compilation
when the -Mvect switch is specified on the command line. If both the norecog and vintr pragmas
are present, the norecog pragma takes precedence.

Pragma Examples

This section presents several examples that illustrate the effects of pragmas and the use of the scope
specifiers. During compilation, a pragma either turns a switch on or off, and the pragma only applies
to the section of code defined by the scope specified in the pragma. The scope can be the entire file
(global), the following loop (loop), or the current or following routine (routine),

The following program is used for the first example:

#include "math.h"
maine)
{

float a[100], b[100];
float x[100] [100], y[100] [100];
int i, j;
for (i=0;i<100;i++)
{

a[i]=sin(b[i]);
for (j=0;j<100;j++)

x [j] [i] =cos (y [j] [i]) ;
}

When this program is compiled using the -Mvect command line switch as follows, the sine and
cosine functions are both recognized as operations on vectors, and the compiler produces code using
the vector versions of the sine and cosine routines:

2-31

The ioe Driver

2-32

Paragon™ System C Compiler User's Guide

icc -Mvec~ vec~l.c

You can use pragmas in the source code to alter this as follows:

#inelude "math.h"
#pragma routine novintr
maine)
{

float a[lOO], b[lOO];
float e[lOO], d[lOO];
int i;

#pragma loop vintr

}

for (i=O;i<lOO;i++)
a [i] =s in (b [i]) ;

for (i=O;i<lOO;i++)
e [i] =eos (d [i]) ;

In this version of the program, vector intrinsic recognition is disabled for the entire function, since
the novintr pragma appears before main(). However, the loop-scoped pragma vintr appears
before the loop containing the reference to sin(), so vector recognition is enabled for only that loop.
Since the loop containing the reference to cos() does not have the loop-scoped vintr pragma in
effect, the vector version of cos() is not recognized.

In the following example, the global novintr pragma disables vector intrinsic recognition for the
entire file, even if you use the following command line:

icc -Mvec~ vec~l.c

#inelude "math.h"
#pragma global novintr
maine)
{

}

float a[lOO], b[lOO];
float x[lOO] [100], y[lOO] [100];
int i, j;
for (i=O;i<lOO;i++)
{

a [i] =s in (b [i]) ;
for (j=O;j<lOO;j++)

x [j] [i] =eos (y [j] [i]) ;
}

[)

[.i AI

[j

(J

(J

f"'l
.~.AJ

If'l
Il i

r -,
~.'*"

[.... ,
1

. ...;

I:
(~

""
I '"'·

.....

IJ

(
.. '!O

['''',
'"

I
'~

.. J

I ',·'~

...

r~

(~)

I:
1'-

:..i

I~

I:
I :

IJ

IJ

Paragon 1M System C Compiler User's Guide The icc Driver

Built-in Math Functions
The compiler now supports the recognition of certain math functions as built-ins. These functions
are defined in the file math.h with #derme statements. The #derme statements are of the form:

#define routine(args) _builtin Joutine (args)

routine is the name of a math function, and args are the arguments to the function. The following is
an example of a #derme statement that defines the absolute value function as a built-in:

#define abs(x) __ builtin_abs(x)

Having built-in functions provides two benefits:

Built-in functions allow the vectorizer to recognize vector versions of the functions, if they
exist. These vector intrinsics are optimized and provide significant performance improvements
for vector operations.

• Built-in functions cause the code for a function to be generated inline, rather than incurring the
overhead of a function call.

For functions to be defined as built-ins, the _PGI macro must be defined. This macro is defined by
default.

The following is a list of the built-in math functions.

abs(x)
acos(x)
asinf(x)
atan2(x,y)
cosf(x)
exp(x)
logf(x)
pow(x,y)
sinf(x)
sqrt(x)
tanf(x)

fabs(x)
acosf(x)
atan(x)
atan2f(x,y)
cosh(x)
expf(x)
loglO(x)
powf(x,y)
sinh(x)
sqrtf(x)
tanh(x)

fabsf(x)
asin(x)
atanf(x)
cos(x)
coshf(x)
log(x)
loglOf(x)
sin(x)
sinhf(x)
tan(x)
tanhf(x)

2-33

The icc Driver Paragon TM System C Compiler User's Guide

2-34

[J

[J

[J

I'f "'I
Iil.Al

r:
I:
I:

()

r:
r-:
r:
I ~

I:
(

.~".,

-~~

, .'''1

.J

1""9

I _ "

(
.~

_I

I ·....,
i.;j

[J

IJ

[~

Optimizing Programs

Introduction
This chapter gives you a strategy for using the compiler's optimization features to help maximize
the single-node performance of your programs. It also explains what the most commonly-used
compiler optimization switches do and how they interact with each other. Finally, it gives you a few
tips for changes you can make in your code to help the program run faster.

The techniques discussed in this chapter are single-node optimizations only. They make the program
run faster on each node, but do not improve the program's internode communications. See the
Paragon TM System User's Guide for information on improving the performance of a multi-node
application.

Optimization Procedure
This section presents the recommended procedure for optimizing a new or ported program. The
fundamental characteristics of this procedure are adding optimizations in a controlled manner and
testing the program after each optimization.

1. Compile your program with the -02 switch for scalar optimizations. The optimizations
performed at level 2 are considered "safe"-if your program works at all, it should continue to
work (and work faster) with -02.

2. Test the program to be sure it works as you expect.

3. When the program is working, use the Paragon aSF!1 performance analysis tools to determine
which parts of the code are taking the most time. (See the Paragon ™ System Application Tools
User's Guide for information on performance analysis.)

4. Inspect the time-consuming code to see if will benefit from vectorization. In general,
vectorization helps floating-point math on large vectors or in loops. It does not help integer
math, string operations, or file operations.

Optimizing Programs Paragon™System C Compiler User's Guide

5. Recompile only those files that will benefit from vectorization with the -04 and -Mvect
switches.

6. Test the vectorized program to be sure it is still working and has not slowed down. (If the
program gives unexpected results or runs more slowly than it did before, try recompiling the
vectorized files with -03 -Mvect instead; if loop counts are small, try -04 without -Mvect
instead.)

7. Examine your program to see ifitis "numerically stable." A program is said to be numerically
stable if it does not depend on the behavior specified by the IEEE standard for floating-point
mathematics, such as proper behavior in case a denonnal, infinity, or "not-a-number" occurs
during a calculation.

8. Recompile and/or link only those files that are numerically stable with the -Knoieee switch.
(The differences between using -Knoieee when compiling and using -Knoieee when linking are
described later in this chapter.) You may get different results with -Knoieee on compile and
link, and on different source files; try a variety of combinations.

9. Test the program after each attempt to be sure it is still working and has not slowed down.

Further optimizations may be possible at this point. Depending on the program, you may be able to
use additional compiler optimization switches (as described under "Compiler Switches for
Optimization" on page 3-3) and/or modify your code for greater perfonnance (as described under
"Code Changes for Optimization" on page 3-16). Be sure to test the program after each change.

Shortening Turnaround Time

3-2

As you can see, optimizing a program can involve many "compile, link, run" cycles. You may be
able to reduce the time consumed by each run by using one or more of the following techniques:

Use a smaller input file.

• Temporarily reduce the count in the outennost loop of the program.

• Add a call to exitO after a key subroutine.

• Extract key subroutines into a separate program for testing.

These techniques can help you to optimize your program more quickly by performing more tests per
unit time. However, when you use these techniques, be sure that the reduced data or program
fragment is representative of the whole program.

[J

, .1"1

.. I

(. ;
...I

r:
(.

~

. .-.1

I]

I,,' .iIi!

IJ

r:
I:
I ,''''
, ".,I

19

Ij ,'-i "
".1

I:
IJ
('~

LJ

IJ
I)

Paragon™ System C Compiler User's Guide Optimizing Programs

Compiler Switches for Optimization
The icc command has a number of switches you can use to request compiler optimizations:

-0 Performs general code optimizations ..

-Mvect Performs vectorization.

-Mconcur Performs loop parallelization.

-Mcncall Parallelizes loops with calls.

-MunroH Unrolls loops.

-Knoieee Uses faster but less accurate floating-point math.

-lkmath Unks to an optimized BLAS library.

-Minline Replaces function calls with inline code.

-Mnodepcbk Ignores potential data dependencies.

-Msafeptr Overrides data dependence between C pointers and arrays.

These switches are discussed in the remainder of this section.

General Optimizations (-0)

The -0 switch performs general code optimization. The -0 can be followed by a number that
specifies the optimization level, from 0 (no optimization) to 4 (all optimizations). Each optimization
level performs all the optimizations that the levels below it perform.

If you don't use the -0 switch, you get optimization levell. If you use -0 with no number following
it, you get optimization level 2.

Programs optimized at levels above 0 cannot be debugged easily with a symbolic debugger. If you
are compiling an application for debugging, you should use the -00 switch.

Scalar Optimizations (-01, -02)

Optimization levels 1 and 2 perform scalar optimizations. These optimizations do not use the special
features of the i860 microprocessor, but they can improve the performance of most code and are
unlikely to break working code.

Optimizing Programs Paragon TM System C Compiler User's Guide

Levell perfonns only local optimizations: those that affect only a single C statement. These
optimizations include algebraic identity removal (removal of subexpressions that do nothing,
such as a==a), and redundant load and store elimination (elimination of unnecessary memory
accesses).

(J

[J

• Level 2 perfonns global optimizations: those that can affect multiple C statements. These It :
optimizations include invariant code motion (moving code that is the same on each iteration of L.
a loop out of the loop) and global register allocation (assigning variables to registers based on
how and when they are used). M". ~

~...J

Software Pipelining (-03, -04)

Optimization levels 3 and 4 make the compiled progmm use the i860 microprocessor's pipelining
and dual-instruction mode features. These optimizations are beneficial only for code that perfonns
intensive floating-point mathematics, particularly in loops. Since this type of code is also usually
vectorizable, the -03 and -04 switches are usually used together with -Mvect.

Pipelining and dual-instruction mode allow the i860 microprocessor to work on more than one
operation at a time.

Pipelining means that the i860 microprocessor's floating-point unit can accept new input while
previous inputs continue to move toward the result For example, a floating-point addition takes
three clock cycles, but the adder can accept new input every clock cycle. (The results of each
input emerge from the adder three clock cycles after the operands entered.)

Pipelining means that a sequence of similar operations can be perfonned in less time. However,
it takes a few cycles to prime the pipeline and a few cycles to drain it; this means that a pipeline
must have a certain minimum number of operations to be efficient.

The exposed pipeline of the i860 microprocessor allows floating-point adds and multiplies to
occur simultaneously (this is called dual-operation mode).

• Dual-instruction mode means that the i860 microprocessor's floating-point unit and integer unit
can be active at the same time. For example, the floating-point adder can perfonn an addition at
the same time the integer unit is loading the operands for the next additioIL

Optimization levels 3 and 4 both attempt to schedule the progmm's operations to make the most use
of pipelining and dual-instruction mode. This procedure is called software pipelining. For example,
if the progmm contains an addition and a multiplication that are near each other but do not depend
on the other's results, the compiler can schedule the two operations to occur at the same time.

• Level 3 uses a single scheduling algorithm on all candidates for software pipelining.

• Level 4 considers several scheduling algorithms for each candidate, and chooses the one that
gives the best perfonnance (or none of them, if the non-pipelined code is faster).

r' ",
--, .. ~

I:
r:

I:
I .,.:

. .lioI

C

1-.1!li

.....

I.··.-~-

Ai

r:
1·-· ..
r:

1=

I:
I
-~

,:;.;

1-=
I''''''.;

~

[J

n

.... --.-~.-.-------.-------------

Paragon 1M System C Compiler User's Guide Optimizing Programs

In theory, the code produced by level 4 should always be faster than the code produced by level 3,
at the cost of a very small increase in compilation time. You should try -04 first, then try -03 if the
results are not satisfactory.

Keep in mind that optimization levels 3 and 4 benefit code that is floating-point intensive. Code that
spends most of its time in string handling, disk operations, or other non-floating-point operations
will generally not benefit from optimization levels greater than 2 .

Vectorization (-Mvect)

The -Mvect switch performs vectorization. Vectorization consists of three processes, which are
described in the next section. Vectorization is beneficial only for code that performs floating-point
calculations on long vectors, typically in loops of 10 or more iterations.

The difference between -03/-04 and -Mvect is that optimization levels 3 and 4 (by themselves)
perform pipelining on your code as written, while -Mvect attempts to rearrange your code to make
more effective pipelining possible. This is why -03/-04 and -Mvect are usually used together.
-Mvect with an optimization level less than 3 will rearrange the code, but no pipelining will be
performed; -03 or -04 without -Mvect will perform software pipelining, but will not find as many
candidates for pipelining as they would with -Mvect. (However, if vector lengths are short, -04
alone may work better than -04 -Mvect.)

The vectorization performed by -Mvect affects only single nodes. The compiler cannot parallelize
vectors by splitting them up among several processors; you must do that yourself.

-Mvect will force an optimization level greater than or equal to 2. -Mvect -01 results in the -01
being ignored.

How Vectorization Works

Vectorization consists of three processes:

Nested loop transformation-tre compiler attempts to rearrange nested loops to increase
possibilities for pipelining. For example:

for(j=O; j<1000; j++) {
for(i=O; i<3; i++) {

x[i] [j] = x[i] [j] * a[i] [j];

Given this code, the compiler may rearrange the loops so that tre loop over j becomes the inner
loop, resulting in 3 vectors of length 1000 instead of 1000 vectors of length 3.

Optimizing Programs Paragon 1M System C Compiler User's Guide

• Cache management-the compiler attempts to perfonn streaming (loading all the operands for
a loop into the microprocessor's data cache before beginning the loop) and stripmining
(breaking a loop into smaller chunks so that the operands for each chunk will fit into the cache).

• Vector idiom recognition-the compiler scans the code for certain common vector operations
and replaces them with calls to hand-written assembly routines that do the same thing faster. For
example, the following source code perfonns a dot product:

for(i=O; i<100; i++) {
S = S + a[i] * b[i];

}

The vector idiom recognizer will replace the code produced by these statements with a single
call to a hand-coded dot-product routine.

Controlling Vectorization (-Mvect)

You can control the vectorizer by specifying options to -Mvect. The available options are as follows:

-Mvect=recog

-Mvect-noassoc

-Mvect=smallvect[:number]

-Mvect=cache~:number

Perfonn vector idiom recognition and cache management

Perfonn nested loop transfonnation. transform is not
nonnally useful without reoog.

Do not rearrange the order of operands in scalar reductions
(such as dot product). Rearranging operands can result in
faster code, but may give different results due to round-off
error.

Assume that no vectorizable loop is iterated more than
number times. Number must be a multiple of 10; if :number
is omitted, the value 100 is used This option improves the
perfonnance of doubly-nested, non-perfectly-nested loops,
but results in incorrect code if any vectorizable loop has
more iterations than the specified number.

Use at most number bytes of the data cache for cache
management of vector operations. Number must be a
multiple of 16, and less than the cache size of the
microprocessor (16384 for the i860 XP, 8192 for the
i860 XR).

(]

[J

lJ

If -.
Ill ...

'''' i"')

I:
(. -",-

.-

('"
.M

r:

r:
(.. "1

.,61

I ~ .-M

(-...

. .JIO

1··0>1

-'oiJ

I
··~

~

I:
(.. ",.,

. ..J

(.~1
~I

['

1=
1=

IJ
IJ
I)

Paragon 1M System C Compiler User's Guide

-Mvect=altcode:number

-----... ~~.-.--.- ..

Optimizing Programs

Produce non-vectorized code to be executed if the loop
count is less than or equal to number. Otherwise execute
vectorized code. The default value for number is 10.

-Mvect with no options means -Mvect=recog,transform,cachesize:4096, altcode:l0.

You can also control vectorization by using the following switches:

-Mnosplit }oop _ ops

Set a threshold of n floating-point operations within a loop.
Innermost loops whose number of floating-point
operations exceeds n are split. Each floating-point
operation counts as two. The default for n is 40 when
-Mvect is used.

Do not split loops when the floating-point operation
threshold is exceeded. When -Mvect is specified.
innermost loops whose number of floating point operations
exceed 40 are split by default. This switch turns the default
off.

Set a threshold of n array element loads and stores within a
loop. Innermost loops whose number of loads and stores
exceeds n are split. The default for n is 20 when -Mvect is
used

Do not split loops when the array element loads and stores
threshold is exceeded. When -Mvect is specified.
innermost loops whose number of array element loads and
stores exceeds 20 are split by default. This switch turns the
default off.

Preventing Associativity Changes (-Mvect=noassoc)

The switch -Mvect=Doassoc requires a bit more explanation than the others.

In most cases, the rearrangements performed by -Mvect do not affect the results of the calculations
performed by your program. One exception is that the compiler takes advantage of the associativity
of floating-point operations to produce faster code. For example, consider the following dot product:

for(i=O; i<100; i++) {
S = S + a[i] * b[i];

}

The order of evaluation of this dot product is as follows:

s = ((((s + (a [0] *b [0] » + (a [1] *b [1] » + (a [:2] *b [:2] » + ...)

3-7

Optimizing Programs Paragon TM System C Compiler User's Guide

However, the vector idiom recognizer takes advantage of the associativity of floating-point addition
to rearrange it as follows:

s = s + (((((a [0] *b [0]) + (a [1] *b [1])) + (a [2] *b [2])) + ...)

The rearranged equation is the same algebraically as the original, and runs faster than the original
(because it presents a more unifonn series of operations for pipelining), but may give slightly
different results. You can prevent this type of rearrangement by using the switch -Mvect=noassoc.

Getting Information About Vectorization (-Minfo=loop)

You canfmd out what the vectorizer is doing by using the switch -Minfo=loop while compiling with
-Mvect. This switch sends infonnation about what vectorizations the compiler is perfonning to the
standard error output.

For example:

% icc -04 -Mvect -Knoieee -Minfo=loop -c nas.c
II sw pipelined loop wi 21 cycles and 2 columns wi cnt 7 gend for line 27
Vect: streaming data and stripmining loop at line 64. strip ,size = 1008.
Interchanging loop lines 125, 126
Vect: streaming data and stripmining loop at line 127. strip size = 200.
Vect: loop at line 122 replaced by call to __ fill4.
II Software pipelined loop wi 8 cycles and 3 columns for line 127
II Pipe/Dual-inst 1 column 21 cycle loop gend for line 127
Vect: streaming data for loop at line 164. No stripmine loop required.
II SW pipelined loop wi 5 cycles and 2 columns wi cnt 128 gend for line 164
Vect: streaming data and stripmining loop at line 392. strip size = 336.
Vect: loop at line 392 replaced by call to __ zxrny4s.
Distributing loop at line 751, 2 new loops

•
•
•

Note that optimizations may not be perfonned in order by line number (for example, the fifth
message refers to line 122, while the fourth, sixth, and seventh messages refer to line 127). The
meanings of the messages in this example are as follows:

II SW pipelined loop wi 21 cycles and 2 columns wi cnt 7 gend for line 27

This means that the optimizer has perfonned software pipelining for a loop beginning at line 27 of
the source file. Each iteration of this loop takes 21 machine cycles (best-case) to execute. Two
"columns" of operations are logically scheduled into the pipelines; that is, there are two sequences
of instructions "in the pipeline" at once. The phrase "cnt 7" indicates that the loop has seven
iterations, and the word "gend" is an abbreviation for "generated."

(J

~~~ 

~ 



I ""'1 

J 

IJ 
I: 

r: 

r: 

I] 

[) 

Paragon TM System C Compiler User's Guide Optimizing Programs 

Vect: streaming data and stripmining loop at line 64. strip size = 1008. 

This means that the vectorizer has perfonned cache management by inserting a call to a built-in 
routine that fills the i860 microprocessor's data cache before the beginning of the loop. Each "strip" 
(that is, each chunk of data) contains 1008 data values. 

The size of the strip is chosen to fill the portion of the cache used by the vectorizer. The larger the 
amount of data required by each iteration of the loop, the smaller the maximum strip size for that 
loop. The default for the vectorizer's portion of the cache is 4096 bytes, so in this case each iteration 
of the loop probably requires four bytes of data. You can change the vectorizer's portion of the 
cache, and thus the strip size, with the switch -Mved=e8Chesize:number. 

Interchanging loop lines 125, 126 

This means that the vectorizer has performed nested loop transformation by exchanging two lines of 
code. This transformation typically gives either more iterations or unit stride in the innermost loop. 

Vect: streaming data and stripmining loop at line 127. strip size = 200. 

This message is similar to the previous "streaming data and stripmining loop" message, discussed 
"earlier. This loop has a smaller strip size because it has more data (in this case, about 20 bytes of data 
are probably required in each loop iteration). 

Vect: loop at line 122 replaced by call to __ fill4. 

This means that the vectorizer has performed vector idiom recognition by replacing an initialization 
of an array in a loop with a call to an optimized routine that performs the same function more 
quickly. 

II Software pipelined loop wi 8 cycles and 3 columns for line 127 

This message is similar to the "sw pipelined loop" message, discussed earlier, except that the 
number of iterations in the loop could not be determined at compile time (as shown by the lack of a 
"cnt" phrase in the message). This loop has three columns, so it will be more efficient than the 
two-column loop shown earlier. 

II Pipe/Dual-inst 1 column 21 cycle loop gend for line 127 

This means that the optimizer has made use of the i860 microprocessor's pipelining and 
dual-instruction mode to optimize a loop. 

This message is similar to the previous message, except that a "Software pipelined loop" message 
means that the vectorizer has inserted loop start-up and shut-down code, while a "PipelDual-inst" 
message means that the vectorizer is using pipelining and dual-instruction mode within the loop but 
has not generated any start-up or shut-down code. 

3-9 



Optimizing Programs Paragon 1M System C Compiler User's Guide 

Vect: streaming data for loop at line 164. No stripmine loop required. 

r-~ i 

U 

(J 

[J 

rr--.>] 

This message is similar to the previous "streaming data and stripmining loop" messages, discussed IlL ,..j 

earlier, except that in this case it was not necessary to "stripmine" the loop by gathering data 
together. For example, this might be an operation on a single array that fits in the cache. I ~ 

II sw pipelined loop wi 5 cycles and 2 columns wi cnt 128 gend for line 164 
Vect: streaming data and stripmining loop at line 392. strip size = 336. IJ 

These messages are similar to messages discussed earlier. 

Vect: loop at line 392 replaced by call to __ zxmy4s. 

This means that the vectorizer has performed vector idiom recognition by replacing user code with 
a call to an optimized built-in routine (in this case _ zxmy4s0, a single-precision complex 
multiply). The list of these routines is not documented because it is subject to change. 

Distributing loop at line 751, 2 new loops 

This means that the vectorizer has split a loop with two or more sequences of operations in it into 
two separate loops, one or both of which may be vectorizable. 

Loop Unrolling (-Munroll) 

3-10 

The loop unroller expands the contents of a loop and reduces the number of times a loop is executed. 
With the -Munroll option, you can unroll loops either partially or completely. There are several 
possible benefits from loop unrolling, including the following: 

• Reducing the loop's branching overhead. 

• Providing better opportunities for instruction scheduling. 

Branching overhead is reduced when a loop is unrolled two or more times, since each iteration of 
the unrolled loop corresponds to two or more iterations of the original loop. The number of branch 
instructions executed is proportionately reduced. When a loop is unrolled completely, the loop's 
branch overhead is eliminated altogether. 

Loop unrolling can also be beneficial for the instruction scheduler. When a loop is completely 
unrolled or unrolled two or more times, opportunities for improved scheduling may be presented. 
The code generator can take advantage of more possibilities for instruction grouping or fllling 
instruction delays found within the loop. 

You can use the -Minfo or -Minfo=loop option to have the compiler inform you when code is being 
unrolled. The compiler displays a message indicating the line number and the number of times the 
code is unrolled. 

I: 
I: 

IJ 
(J 

U 



r: 
I

···~ 

.lIIi 

1_·.,.. 
.. 

I
·~· 

."'" 

r: 

I

I: 
I···",,: 

~ 

( ... ~ 
~ 

I· .... 
. .sJ 

I
·~ 

~ 

IJ 

Paragon TM System C Compiler User's Guide Optimizing Programs 

Making Loops Parallel 

The compiler is able to use up to three separate processors of an MP node by making some loops 
parallel by splitting execution of the loop among two or three processors. Each processor is allocated 
certain iterations of the loop to perform. This can result in greater performance. Both inner and outer 
loops can be parallelized. For nested loops, the compiler selects the outermost parallelizable loop 
and makes it parallel. 

A loop can be parallelized if its iterations can be performed in any order without affecting the results 
computed by the loop. For example, one type of loop that cannot be parallelized is one in which the 
results of some iteration are used in a later iteration. Loops with reductions, such as vector sum or 
dot product, fit this description. The compiler will try to parallelize this type of loop, but can only 
do so by performing the sums in a different order than defined by the original loop. As a result, the 
final sum computed may be slightly off due to roundoff error. If exact results are important, you can 
use the -Mconcur=noassoc switch to prevent parallelization of loops with reductions. 

The following sections describe the compiler switches associated with parallelizing loops. 

General Loop Parallelization (-Mconcur) 

The -Mconcur switch causes the compiler to parallelize certain loops. The following options are 
available: 

-Mconcur=aItcode:count Make innermost loops without reduction parallel only if 
theiriteration count exceeds count. Without this switch, the 
compiler assumes a default count of 100. 

-Mconcur=aItcode reduction:count 

-Mconcur=dist:block 

-Mconcur=dist:cyclic 

Make innermost loops with reduction parallel only if their 
iteration count exceeds count. Without this switch, the 
compiler assumes a default count of 200. 

Make the outermost valid loop parallel. This is the default 
option. 

Make the outermost valid loop in any loop nest parallel. If 
an innermost loop is made parallel, its iterations are 
allocated to processors cyclically. That is, processor 0 
performs iterations 0,3,6, ... ; processor 1 performs 
iterations I, 4, 7, ... ; and processor 2 performs iterations 2, 
5, 8, and so on. 

3-11 



Optimizing Programs Paragon 1M System C Compiler User's Guide 

-Meoneur=g1obal_ veache 

-Mconeur=noassoc 

Directs the vectorizer to locate the cache within the area of 
an external array when generating codes for parallel loops. 
By default, the cache is located on the stack for parallel 
loops. 

Do not make loops with reductions parallel. 

Parallelizing Loops with Calls (-Mcncall) 

By default, the compiler does not parallelize loops with calls, since there is no way for the compiler 
to verify that the called routines are safe to execute in parallel. The -Mcneall switch forces the 
compiler to parallelize loops with calls. When you specify -Mcneall on the command line, the 
compiler also automatically specifies -Mreentrant. 

-Mcneall also allows several other types of loops to be made parallel: 

• loops with I/O statements 

• loops with conditional statements 

• loops with low loop counts 

• non-vectorizable loops 

If the compiler can detect a cross-iteration dependency in a loop, it will not make the loop parallel, 
even if -Mcneall is specified. 

Getting Information About Parallelization 

In addition to providing information about vectorization, the -Minfo=loop switch also provides 
information about any loop parallelization that has occurred. 

The -Mneginfo=eoncur switch prints information for each countable loop that is not made parallel 
stating why the loop was not made parallel. 

Non-IEEE Math (-Knoieee) 

3-12 

The -Knoieee switch makes the compiled program use faster but less accurate floating-point math. 
This can result in a substantial improvement in performance, but may give unacceptable numeric 
results. If your program relies on the accuracy and exception handling provided by the IEEE 754 
standard for floating-point mathematics, do not use this switch. If you do use it. be certain to check 
your program's results against the expected values. 

The effect of the -Knoieee switch depends on whether you use it while compiling, while linking, or 
both. 

(J 

[: 
I: 
f~ 

I. 

I: 
I~ 

IJ 
[!l 



[: 

[: 
1"'''1 

.iii 

I: 

I~ 

(, '" 

-' 

(
I"'! 

,.J 

I: 
,'-'I 
1= 
I~ 

I'·., 
, ) 

[J 

I.·~ 
.J 

Paragon TM System C Compiler User's Guide Optimizing Programs 

To use -Knoieee for compilation but not linking, use -Knoieee in conjunction with the -c switch 
to compile a source file to a .0 file, then link the .0 file into a compiled program without 
-Knoieee. For example: 

% icc -c -Knoieee myprog.c 
% icc myprog.o 

To use -Knoieee for linking but not compilation, compile the source file without -Knoieee, 
using the -c switch to produce a .0 file, then use the -Knoieee switch while linking the .0 file 
into a compiled program. For example: 

% icc -c myprog.c 
% icc -Knoieee myprog.o 

To use -Knoieee for both compilation and linking, compile the source file to an executable 
program with -Knoieee. For example: 

% icc -Knoieee myprog.c 

Non-IEEE Divides (Compiling with -Knoieee) 

The i860 microprocessor does not include a hardware divide unit. By default, the compiler performs 
floating-point division by calling a routine that conforms to the IEEE standard. This routine correctly 
handles overflow, underflow, and other exceptional conditions. 

If you use the -Knoieee switch while compiling a program, the compiler uses a faster but less 
accurate division routine. This routine is substantially faster than the IEEE routine, but gives results 
that may differ from the correctly rounded result by as much as three units in the last place. 

The non-IEEE division routine is also implemented as inline code rather than a subroutine call, 
resulting in even greater performance improvements at some increase in code size. 

Non-IEEE Math Library (Linking with -Knoieee) 

By default, the standard -1m math library conforms to the IEEE standard. The routines in this library 
handle out-of-range inputs in a well-defined manner and call an exception handler when a denormal 
is generated in a calculation. 

If you use the -Knoieee switch while linking a program, the linker uses a different set of math and 
runtime libraries: 

Using the -Knoieee switch when linking with -1m replaces the standard -1m math library with 
a compatible non-IEEE version. Many of the routines in this library are faster but less accurate 
than their IEEE counterparts. (The rest are identical to their IEEE counterparts.) The square root 

3-13 



Optimizing Programs Paragon 1M System C Compiler User's Guide 

function in particular has been very carefully optimized. However, the non-IEEE libraries may 
give unexpected results in response to arguments that are out of the defined domain for the given 
operation (such as the tangent of 90 degrees). 

• Using the -Knoieee switch when linking also causes the compiler to link in a different 
initialization routine. The non-IEEE initialization routine sets a flag that causes the 
microprocessor to immediately flush all denormals to zero on creation. This can make the 
program run faster, but may give erroneous results if the denormal range is necessary to the 
result. 

BLAS Library (-Ikmath) 

The -Ikmath switch links to a highly-optimized math library. This library includes the BLAS (Basic 
Unear Algebra Subroutines) levels 1,2, and 3 and some FFf (fast Fourier transform) routines. See 
the CLASSPACK Basic Math Library/C User's Guide for complete information on this library. You 
may have to re-code part of your program to use the routines in this library. 

Inlining (-Min line) 

The -Minline switch replaces function calls with inline code. See Chapter 4 for information on using 
the inliner. 

In general, inlining must be used judiciously. Inlining trades the overhead of a function call for larger 
code, which can overrun the instruction cache and actually decrease performance. You should inline 
only those routines that meet the following criteria: 

The routine is very small (10 lines of source code or less). 

The routine is called in only one place in the source code, or a few widely-separated places. 

• The call (or calls) to the routine occurs in a section of code that is called very often or is 
otherwise time-critical. 

Inlining routines that do not meet these criteria generally results in little or no improvement. 

Ignoring Potential Data Dependencies (-Mnodepchk and -Msafeptr) 

3-14 

The -Mnodepcbk switch ignores potential data dependencies. 

CAUTION 

The -Mnodepchk switch can give incorrect or erroneous results, 
and gives no improvement for many programs, but is provided for 
those programmers who can make use of it. 

[~ 

[) 

[J 

(
1l'I. 

I, i 

.Al 

rf '"1 

~ .. .J 

rr~1 

Ii. ,,) 

(
I 

",i 

1·"1 
. .Jtd 



I: 

1-: 
r: 
1-... 

-'"' 

r:: 
r: 

1-""1 

J 

r~' ,._."" 

~, 

I: 
r: 
I

·-~ 

--.,.! 

r: 

Paragon'" System C Compiler User's Guide Optimizing Programs 

Nonnally, the compiler emits code that will work properly even where data dependencies exist. For 
example, consider the following code: 

a[i] = value; 
variable = a[j]; 

If the compiler does not know the values of the variables i and j at compile time, it nonnally assumes 
that they may have the same value. This is a data dependency: if i has the same value as j, the second 
statement depends on the first. This is only one example of data dependency; many other types of 
data dependency exist. One of the most common is pointer dereferencing. 

If you use the -Mnodepchk switch, the compiler assumes that no data dependencies exist. This can 
allow the compiler to generate faster code in some cases. In this example, -Mnodepchk would allow 
the compiler to execute the second statement before the first if it results in a more efficient program. 
However, if any data dependencies do exist, the results will be unpredictable. 

Use the -Mnodepchk switch only if you understand the program very well and are sure that no data 
dependencies exist. 

The -Msafeptr=option switch causes the compiler to ignore data dependence between C pointers 
and arrays. This is a potentially very dangerous option since the potential exists for code to be 
generated that will result in unexpected or incorrect results as is defined by ANSI C. However, when 
used properly, this option has the potential to greatly enhance the perfonnance of the resulting code, 
especially floating point oriented loops. Combinations oftbe options can be used. The following are 
available: 

dummy or arg C dummy arguments (pointers and arrays) are treated with the same 
copyinlcopyout semantics as Fortran dummy arguments. 

auto C local or auto variables (pointers and arrays) are assumed to not overlap or 
conflict with each other and to be independent. 

static C static variables (pointers and arrays) are assumed to not overlap or conflict 
with each other and to be independent. 

global C global or extern variables (pointers and arrays) are assumed not to overlap 
or conflict with each other and are independent. 

The following example shows the use of -Msafeptr=global on the command line and the code 
segment affected 

% icc -Minfo=loop -04 -Msafeptr=global -c safeptrext.c 

//Sofware pipelined loop with 5 cycles and 2 columns for line 7. 
//Pipe/Dual-instruction 1 column lO-cycle loop gend for line 7. 

extern int i, max; 
extern float *c, *a, *b; 
extern void 

3-15 



Optimizing Programs Paragon™ System C Compiler User's Guide 

func( ) 
{ 

} 

for (i = 0; i < max; i += 1) { 
c[il = a[il 1\" b[il; 

} 

Code Changes for Optimization 
This section lists some changes you may be able to make in your code that will make the code more 
efficient or make the jobs of the optimizer and vectorizer easier. 

General Improvements 

These changes can improve almost all types of code: 

Split larger programs into smaller pieces and use appropriate optimization levels on each piece. 
For example, -Mvect makes vector codes faster, but can make non-vector codes slower. If a 
single source file contains both vector and non-vector code, you should split it into vector and 
non-vector pieces and compile the two pieces separately, with and without -Mvect. 

• Keep basic blocks under 30 lines of code. A basic block is a group of program statements in 
which the flow of control enters at the beginning and leaves at the end without the possibility 
of branching (except at the end). Small basic blocks give the compiler more opportunities to 
rearrange code for optimizations. 

• Avoid type conversions (for example, the assignment of a double value to a Boat variable). 
Type conversions are time-consuming operations that are often unnecessary. Conversions 
between floating-point and integer types are particularly difficult. Examine your code and be 
sure that variables that are used together are of the same type, except where different types are 
needed. 

Loop Improvements 

3-16 

These changes make it easier for the vectorizer to assemble long sequences of similar operations, 
which allow the i860 microprocessor to work the most efficiently. These changes can be very 
effective in improving the performance of code that uses floating-point vectors. 

• Use unit stride (each iteration of a loop works on the next vector element, rather than skipping 
elements). This results in efficient pipelines. This is one of the most important changes you can 
make. 

[J 
[J 

r: 

IJ 
IJ 



1-'· 4i 

r: 
r: 
1-: 

(: 

I .. · ... 
,. 

-..l 

1·'''1'\ _.J 

I: 
r

-~ 

.,J 

r-
,.-,,;....{ 

1-: 
1_-.., 

~I 

I --~ 

'-' 

1-: 

Paragon TM System C Compiler User's Guide Optimizing Programs 

Use countable loops (loops which are iterated a loop-invariant number of times). The compiler 
can create more efficient code for a loop whose iteration count is known at compile time than it 
can for a loop whose iteration count is not known until the program executes (such as a loop 
from 1 to n or a loop that terminates when a certain condition is true). 

• Use perfectly-nested loops (loops that have no code outside the innermost loop). Here is an 
example of a perfectly-nested loop: 

for(k=O; i<10; k++) { 
for(j=O; j<10; j++) 

for(i=O; i<2000; i++) 

aU loop operations here 

} 

Perfectly-nested loops also terminate only at a loop-control statement:; they do not have any 
"early outs." 

In nested loops, make the loop with the highest iteration count in the innermost loop. This gives 
the vectorizer the longest uninterrupted string of operations to work with. 

• Keep data dependence distances short. The data dependence distance of a loop is determined 
by the proximity in memory of the different data objects that are accessed in the body of a loop. 
For example, a loop that accesses vector elements a[n] and a[n+5] has a data dependence 
distance of 5. For best results, inner loops should have a data dependence distance of less than 
8 for double vectors and less than 16 for Ooat vectors. 

• Avoid if statements within loops. If the compiler can't be sure that the code that is executed on 
each iteration of a loop is the same as the code in the previous iteration, it cannot set up a 
pipeline. Instead of writing an if statement within a loop, write the loop within the if statement. 
For example, if your code looks like this: 

for(i=O; i<1000; i++) { 

} 

/* code for all conditions */ 
if(a > b) { 

/* code for a > b */ 

Rewrite it as follows: 

if (a > b) { 

for(i=O; i<1000; i++) { 

} 

/* code for all conditions */ 
/* code for a > b */ 

3-17 



Optimizing Programs Pamgon 1M System C Compiler User's Guide 

} else { 
for(i=O; i<1000; i++) { 

/* code for all conditions */ 
} 

} 

Note that this example assumes that the variables a and b are not changed in the loop body. If 
the condition in the if statement depends on code within the loop, you cannot rearrange the loops 
in this way. 

• Avoid divides and type conversions within loops. Division and type conversion are operations 

() 

() 

I ""'· I 
jJ 

I "" 'I .,) 

"~ 

that cannot be performed in hardware by the i860 microprocessor, so loops containing these [" ~" 

operations cannot be pipelined as effectively. I.. -.: 

File 110 Improvements 

3-18 

If your program reads and writes sizeable data files, you can obtain substantial improvements in 
performance with these changes: 

• Move the data fIles to PFS TM (parallel File System TM) fIle systems. Access to PFS file systems 
is substantially faster than access to ordinary non-parallel file systems for large fIles. 

• Use asynchronous I/O (ireadO, iwrite()). The asynchronous calls let your program work while 
reads or writes are in progress. You can also use asynchronous I/O to perform double buffering: 
reading data into a buffer, then reading into a second buffer while simultaneously processing 
the data in the first buffer. 

See the Paragon™ System User's Guide for more information on the techniques discussed in this 
section. 

IJ 
I: 
IJ 

(J 

U 



I: 
(

-"11'1 .. 
I
"~ 

AI 

I·,.., 
-

("". 

. ., 

I ··", 
"" 

I: 
r: 
(
! .• .., 

-~ 

I, "', 
. ...J 

I ~i 
~J 

('''''' 
: .. J 

I ""' 
, ~ 

r: 
1-: 

I: 
[J 

_ .. _-- ..... - .. ----~---.---.~-----.-.---.- .. -------------.~~-.------

Using the Inliner 

This chapter describes the compiler's function inlining capability. 

Function inlining is a compiler optimization under which the body of a function is expanded in place 
of a call to the function. This can speed up execution by eliminating the parameter passing and 
function call and return overhead. Inlining a function body also creates opportunities for other 
compiler optimizations. Inlining will usually result in larger code size (although in the case of very 
small functions, code size can actually decrease). Using inlining indiSCriminately can result in much 
larger code size and no increase in execution speed; there may even be a decrease in execution speed. 

There are basically two ways to accomplish inlining: 

• Automatic inlining as part of the compilation process. When you use the -Minline switch 
during compilation, the compiler first looks in the source files for functions that can be inlined, 
then replaces calls to those functions with the equivalent code automatically. 

Use of inliner libraries. When you use the -Mextract switch during compilation, the compiler 
looks for functions that can be inlined and extracts them into an inliner library. Later, when 
compiling a program that calls functions in the inliner library, you use the -Minline switch and 
specify the library; the compiler replaces calls to the functions in the library with the equivalent 
code. 

Compiler Inline Switch 
To request function inlining, use the -Minline switch: 

-Minline=option[,option .. . J 

where option is one of the following: 

[name:]fimction Specifies a particular function to inline. If name: is not used, the function 
name must not contain a period. Any number of names can be specified. 

4-1 



Using the Inliner Paragon TM System C Compiler User's Guide 

[size:]number Specifies an upper bound on function size to inline. Any function less than the 
specified number of lines (approximately) will be inlined. 

[lib:]library Specifies a library of inlined functions. If lib: is not used, the library name 
must contain a period. Any number of libraries can be specified. A function 
is inlined if it is found in any of the libraries. 

levels:number SpeCifies the number of levels of inlining to perform (default 1). For example, 
suppose subprogram a calls band b calls c. If you want to completely inline 
a (including the calls to b and c), you must use -Minline=a,b,c,levels:2. 

You must specify at least one name, size, or library. If both function name(s) and a size limit are 
specified, a function is inlined if it is named or if it satisfies the limit. 

Inlining can be either automatic or manual. If you do not specify any inliner libraries, the compiler 
performs a special pass for all source files named on the command line before any of them are 
compiled. This pass extracts functions that meet the requirements for inlining and puts them in a 
temporary library for use by the compilation pass. 

If you specify one or more inliner libraries, the compiler does not perform an initial extract pass. 
Instead, functions to be inlined are selected from the specified libraries. If neither function names 
nor a size limit are specified, any function in the library meets the conditions for inlining. 

Creating an Inliner Library 

4-2 

To create or update an inliner library, use the -Mextract switch: 

-Mextract[=option[,option ... ]] 

where option is one of the following: 

[name:1!itnction Extracts the specified function. name: must be used if the function name 
contains a period. 

[size:]number Extracts functions containing less than approximately number statements. 

If you don't specify any options with ·Mextract, the compiler attempts to extract all subprograms 
of a reasonable size. 

When you use -Mextract, only extraction is performed; compilation and linking are not performed. 

If the ·Mextract switch is present, you must also specify a single inliner library name on the 
compiler command line. For example: 

l~ 

(: 

I: 
I: 
IJ 



r: 
(-~ 

.II! 

r: 
I
-~ 

... 1 

1'''1 

,..I 

r~ 

I· -"! 

,-J 

I: 

r
--'~ 

..0 

I "1 

~I 

1-'1 

,.J 

1.-", 
..oJ 

I.J 

IJ 
U 

Paragon TM System C Compiler User's Guide Using the Inliner 

This specifies the inliner library in which the extracted fonns of functions are placed. The library 
mayor may not already exist; it is created if it does not. 

You can use the -Minline switch at the same time as the -Mextract switch. In this case, the extracted 
fonn of the function can have other functions inlined into it. This makes it possible to obtain more 
than one level of inlining. In this situation, if no library is specified with -Minline, processing will 
consist of two extract passes. The first pass is the hidden pass implied by -Minline during which 
functions are extracted into a temporary library. The second pass uses the results of the first pass but 
puts its results into the library specified with the -0 switch. See examples below. 

Using Inliner Libraries 
An inliner library is implemented as a directory. For each element of the library, the directory 
contains a file containing the encoded fonn of the inlinable function. 

A special file named TOe serves as a directory for the library. This is a printable, ASCII file that can 
be examined to find out infonnation about the library contents, such as names and sizes of functions, 
the source file from which they were extracted, the version number of the extractor that created the 
entry, etc. 

Libraries and their elements can be manipulated using ordinary system commands, for example: 

You can rename a library with mv . 

You can remove an element from a library with rm, or remove an entire library with rm or. 

You can copy an element from one library to another with cp, or copy an entire library with 
cp-r. 

You can examine the contents of a library with Is, or determine the modification date of an 
element with Is -I. 

Since deleting or adding an element can cause the TOe file to become out of date, a utility program 
ilixlib is provided to recreate a correct TOe file. Use it as follows: 

% ifixlib library_name 

When use of the icc command causes an entry to be created or updated, the date of the most recent 
change of the library directory itself is updated also. This allows a library to be listed as a 
dependency in a makefile, in order to ensure that the necessary compilations are perfonned again 
when a library is changed. 



Using the Inliner Paragon ™ System C Compiler User's Guide 

Restrictions on Inlining 
The following C functions cannot be inlined: 

Functions whose return type is a struct data type, or have a struct argument 

Functions containing switch statements 

• Functions that reference a static variable whose definition is nested within the function 

Functions that accept a variable number of arguments 

Certain functions can only be inlined into the file that contains their definition: 

• Static functions 

Functions that call a static function 

• Functions that reference a static variable 

Error Detection During Inlining 

4-4 

When invoking the inliner, you should always set the diagnostics reporting switch C-Minfo=inline). 

An additional feature associated with inlining is enhanced compiler error detection For example: 

• If an inlinable function is called with the wrong number of arguments, a warning message is 
issued and the function is not inlined 

• If an inlinable function is called in a context which assumes that a value is returned, but the body 
of the function does not contain any statements that set the return value, a severe error is issued. 

• If the declaration of an external variable referenced by an inlinable function does not match the 
declaration in the source file being compiled, a severe error is issued. 

(] 

IJ 
[J 

(, "1 
, jj 

( ~I 
" 

.J 

I: 
IJ 
IJ 
(: 

IJ 
IJ 



I· ... 
--

(: 
I: 

[ -"'" 
. . ... J 

I~ 

r: 

Paragon™ System C Compiler User's Guide Using the Inliner 

Examples 

Dhry 

Fibo 

This section contains examples of using the inliner. 

Assume the program dhry consists of a single source file dhry.c. Then, the following command line 
builds an executable for dhry in which Proc7 has been inlined wherever it is called: 

% icc dhry.c -Min~ine=Proc7 

The following command line builds an executable for dhry in which Proc7 plus any functions of 
roughly three or fewer statements have been inlined (llevel only). 

% icc dhry.c -Min~ine=Proc7,3 

The following command line builds an executable for dhry in which all functions of roughly ten or 
fewer statements are inlined. Two levels of inlining will have been perronned. This means that if 
function A calls function B, and B calls C, and both Band C are inlinable, then the version ofB that 
is inlined into A will have had C inlined into it. 

% icc dhry.c -Mex~rac~=lO -Min~ine=lO -0 ~emp.i~ib 

% icc dhry.c -Min~ine=~emp.i~ib 
% rm -r ~emp.i~ib 

Assumingfibo.c contains a single function fibo that calls itself recursively. Then, the following 
command line creates file fibo.o in which tibo has been inlined into itself: 

% icc fibo.c -c -Min~ine=fibo -0 

Because this version of fibo recurses only half as deeply, it should execute noticeably faster. 

4-5 



-----------------------

Using the Inliner 

Makefiles 

4-6 

Paragon TM System C Compiler User's Guide 

The following fragment of a makefile assumes that file utils.c contains a number of small functions 
that are used in the files parser.c and alloc.c. An inliner library utils.ilib is maintained. Note that the 
library must be updated whenever utils.c or one of the include files it uses is changed. In turn, 
parser.c and alloc.c must be compiled again whenever the library is updated. 

• 
• 
• 

main.o: $(SRC)/main.c $(SRC)/global.h 
$(CC) $ (CFLAGS) -c $(SRC)/main.c 

utils.o: $(SRC)/utils.c $(SRC)/global.h $(SRC)/utils.h 
$(CC) $ (CFLAGS) -c $(SRC)/utils.c 

utils.ilib: $(SRC)/utils.c $(SRC)global.h $(SRC)/utils.h 
$(CC) $ (CFLAGS) -Mextract=lS -0 utils.ilib 

parser.o: $(SRC)/parser.c $(SRC)/global.h utils.ilib 
$(CC) $(CFLAGS) -Minline=utils.ilib -c $(SRC)/parser.c 

alloc.o: $(SRC)/alloc.c $(SRC)/global.h utils.ilib 
$(CC) $ (CFLAGS) -Minline=utils.ilib -c $(SRC)/alloc.c 

myprog: main.o utils.o parser.o alloc.o 
$(CC) -0 myprog main.o utils.o parser.o alloc.o 

(.~ 

.-'111 

rf' 
~~ 

[J 

I lIO!', 

. ..-! 

(J 



[ 1'1 
.. .: 

r: 
r: 
I ''O!i 

,.,; 

(. ~ .. 

I"; 
...-!U 

I~' 

r= 
(~1 

I
~ 

.. 0 

IJ 
IJ 
IJ 

I) 

Interfacing Fortran and C 

This chapter describes how to use C and Fortran routines together in the same program. 

Calling a C Function from Fortran 
The Fortran compiler adds an underscore U at the beginning and end of every external name 
(function. subroutine and common), and expects all external names to begin and end with an 
underscore. However, the C compiler only adds an underscore at the beginning of each external 
name. This means that to make a C function callable from Fortran. the name that you give it (in the 
C source) must end with an underscore. If you want to call an existing function whose name does 
not end with an underscore, you must write a "wrapper" function, whose name does end with an 
underscore, which just calls the existing function. 

Also, any dollar signs in a C external name are replaced with underscores (or you can choose another 
replacement character by using the -MdoUar switch when you compile the program). For example, 
to call the C function my$func _0 from Fortran. you would call it as my _ funcO. 

5-1 



Interfacing Fortran and C Paragon TM System C Compiler User's Guide 

5-2 

All Fortran arguments are passed by reference. (femporary storage for non-addressable objects such 
as literals is provided by the compiler.) Therefore, each parameter in the called C routine must be a 
pointer of the appropriate type, as shown in Table 5-1. 

Table 5·1. Fortran Data Types for Called C Functions 

Fortran Passes C Receives 

REAL*4 Boat * 

REAL"'8 double * 

INTEGER*4 long '" 

INTEGER*2 short * 

INTEGER"'I char * 

LOGICAL"'4 long '" 

LOGICAL*2 short'" 

LOGICAL"'I char'" 

COMPLEX struct complex {Boat realpart, imagpart;} '" 

COMPLEX*16 struct dcomplex {double realpart, imagpart;} '" 

CHARACTER char'" 

In the case of a passing a CHARACTER argument, Fortran not only passes a pointer to the char 
variable, but also passes the length of the CHARACTER variable, as an int (not as an int oIl) at the 
end of the argument list. Fortran CHARACTER string constants are null terminated. 

If the C function being called from Fortran returns a value, then the return types correspond as 
follows: 

• An int C function must be declared either as INTEGER or LOGICAL in the calling Fortran 
routine. 

• A Boat or double C function must be declared as DOUBLE PRECISION in the calling Fortran 
routine. Since C usually promotes Boat return values to double, REAL return values usually 
cannot be returned from C. 

• COMPLEX, DOUBLE COMPLEX, and CHARACTER are returned by passing the address 
where the return value is to be stored as an extra first parameter to the C function. The length of 
a CHARACTER return value is passed as an extra second int parameter to the C function. 

If a Fortran caller calls a C function as a subroutine with alternate return parameters, the value 
returned by the C function (using returnee»~ is interpreted as the expression in the Fortran alternate 
return statement RETURN e. The Fortran caller does a computed GOTO on the returned value to 
implement the alternate return 

~~ 
( -' , , 

--J 

I. '""1 

... 

I: 
I: 
I: 



I~· 
.. ~ 

I··"'." 
G 

I~ 
I

··~I 

. ....l 

I
-~ 

.W 

IJ 
I) 

Paragon ™ System C Compiler User's Guide Interfacing Fortran and C 

Calling a Fortran Routine from C 
The Fortran compiler adds an underscore U at the beginning and end of every external name 
(function, subroutine and common), while the C compiler only adds an underscore at the beginning 
of each external name. TIlis means that to call a Fortran routine or refer to a Fortran COMMON 
block from C, you must append an underscore to its name. For example, to call the Fortran routine 
myfuncO from C, you would call it as myfunc_O. 

All Fortran parameters are passed by reference. Therefore, the corresponding argument in the C call 
must be a pointer of the appropriate type, as shown in Table 5-2. For example, to pass the scalar 
variable x from C to Fortran, use the argument value &x. 

Table 5·2. C Data Types for Called Fortran Routines 

C Passes Fortran Receives 

float'" REAL"'4 

double * REAL*8 

long'" INTEGER*4 

int '" INTEGER"'4 

short '" INTEGER"'2 

char'" INTEGER'" 1 

long '" LOGICAL"'4 

short '" LOGICAL"'2 

char'" LOGICAL"'1 

struct complex {Boat realpart, imagpart;} '" COMPLEX"'8 

struct dcomplex {double realpart, imagpart;} '" COMPLEX'" 16 

char'" CHARACTER 

In the case of a passing a CHARACTER argument, C must not only pass a pointer to the char 
variable, but must also pass the length of the char variable, as an int (not as an int "') at the end of 
the argument list 

If the Fortran routine being called from C is a FUNCTION, then the return types correspond as 
follows: 

An INTEGER or LOGICAL Fortran FUNCTION must be declared as int in the calling C 
routine. 

5-3 



Interfacing Fortran and C Paragon TM System C Compiler User's Guide 

• A DOUBLE PRECISION Fortran function must re declared as double in the calling C 
routine. Since C usually promotes float return values to double, a REAL return value may not 
re accessible in C. (You can use the -Msingle switch when compiling the calling C program to 
suppress the promotion of float to double.) 

• COMPLEX, DOUBLE COMPLEX, and CHARACTER are returned from the called Fortran 
routine by passing the address where the return value is to re stored as an extra first parameter 
to the C function. The length of a CHARACTER return value is passed as an extra second int 
parameter to the C function. 

The alternate return statement of Fortran, RETURN e, has no equivalent in C. 

(J 

[J 

(~ , , 
, 

'.J 

1""1, ... 

I: 
I: 
lJ 



( ' 
--

(-.... 
.... 

r: 
[~ 

1= 
[= 

1·"_, 

IJ 
n 
LJ 

IJ 

--.. -.----.. ---~--. ~~~-

Extensions to Standard C 

This chapter describes the language that the Paragon TM OSF/1 C compiler accepts (ANSI C), 
extensions to the standard language, and considerations for porting programs written in original C 
(the language described by Kernighan and Ritchie in The C Programming Language). 

Standard Language 
The standard language is defined in the American National Standard for Programming Language C 
(ANS X3.J59-J989). 

For additional infonnation on programming in the C language, refer to the following: 

• Kernighan, Brian W., and Ritchie, Dennis M., The C Programming Language, Prentice Hall, 
1978. 

• Harbison, Samuel P., and Steele, Guy L., C: A Reference Manual, Second Edition, Prentice 
Hall,1987. 

Instead of fully specifying the language accepted by the compiler, this chapter describes only those 
features that differ from the C language specified in The C Programming Language. Most of the 
differences (incompatibilities and extensions) are ANSI features. 

Extensions 
This section lists the extensions to the original C language and, in certain cases, to the ANSI 
standard, supported by the Paragon OSF/1 C compiler. 

1. The #module identifier directive is supported. The identifier is used as the name of the module. 
If no #module directive is present, the name of the input file, without the ".c" suffix, is used. 

2. The #list and #nolist directives are supported. They enable and disable the listing of source code 
in the listing file. 

6-1 



Extensions to Standard C Paragon™ System C Compiler User's Guide 

6-2 

3. The #pragma [tokens] ANSI directive is supported. Any pragma that is not recognized is 
ignored. 

4. The #elif expression ANSI directive is supported. This directive is like a combination of the 
#else and #if directives. 

5. The dermed ANSI operator is supported. Both of the following expressions evaluate to 1 if 
name is the name of a macro, or to 0 otherwise: 

defined(name) 
defined name 

6. The following preprocessor macros are predefined (in addition to the ANSI-standard predefined 
macros __ LINE __ • __ FI LE __ • __ DATE __ • __ TIME __ • and __ STDC __ ): 

OSFIAD 

• _PGC __ 

• __ NODE (only defined when compiling with -ox or -node) 

• unix 

• MACH 

• CMU 

Note that some of these macro names begin and/or end with two underscores. 

(J 

Ifl 
IJ 

~~ 
(~ 

I: 
lJ 



(: 
r: 
1"-" 

,,," 

I: 

(J 

IJ 

1_'1'1, 

... J 

r: 
[~ 

Paragon 1M System C Compiler User's Guide Extensions to Standard C 

7. The #ident directive is supported. The syntax is: 

#ident "string" 

For certain assemblers, this results in a .ident directive being added to the output file. 

8. The #predicate(value) extension is supported inside preprocessor #if and #eUf directives. This 
exists for compatibility with AT&T include files. The compiler driver passes the following 
predicates to the compiler: 

#machine(paragon) 

#Iint(oft) 

#system(osn) 

#Cpu(i860) 

Only these predefined predicates exist; you cannot create new predicates. 

9. Identifiers may contain the dollar sign character, ($). 

10. The ANSI reserved word void may be used to indicate the void data type (data type with no 
values). This type is used to indicate that the value of an expression is not used, and to declare 
functions that return no value. The type void'" is used to indicate a universal pointer (similar to 
the old use of char .... A void'" pointer may be quietly converted to and from pointers of other 
types. 

11. Enumeration types are supported. Enumeration constants are implemented as integers. All 
integer operations are allowed on enumeration types, as per the ANSI standard; thus an 
enumeration constant has type int and enumeration variables are of integral type. 

12. Two different structures may contain members with the same name, even when the members 
have different offsets within each structure. (ANSI) 

13. Structures may be assigned, passed as arguments to functions, and returned by functions . 
(ANSI) 

14. The ANSI types unsigned short int and unsigned char are supported. The keyword signed is 
added as per the ANSI standard. A signed integer type is equivalent to the normal integer type; 
characters may be specified to be signed by using this keyword. Characters are unsigned by 
default. The ANSI type long double is supported; it is currently implemented the same as 
double. 

15. The keywords const and volatile are supported as per the ANSI standard. Objects of type const 
may not be assigned values. Objects of type volatile (objects used for device registers and 
variables that may change as the result of signals) are immune to optimizations that might 
change the meaning of the program. 



Extensions to Standard C Paragon™ System C Compiler User's Guide 

16. ANSI function prototypes are supported. A function declaration may include specification of 
the types of its parameters. Type conversions are performed as necessary to ensure that the types 
of actual parameters to such a function match the types of its formal parameters, with error 
messages issued when appropriate. 

17. The new ANSI lexical conventions are supported: 

Any toke~ may be continued using the "backslash-newline" (\11) conventions. 

Trigraph sequences are recognized. 

The letters "u" or "U" may be appended to an integer constant to make it unsigned. 

• The letters "f" or "F" and "1" or "L" may be appended to a floating constant to make it of 

[) 

I] 

[J 

fl.· II"'] 

type Roat or long double, respectively. ~ ~ 

Two or more consecutive string literals are concatenated into one. 

• The '~ZZZ" (hexadecimal) and '\a" (alert) character escape sequences have been added. 

18. Initialization of automatic aggregates is allowed as per the ANSI standard. An automatic struct 
may be initialized with an arbitrary structure expression or with a brace-enclosed list of constant 
expressions. Automatic arrays can only be initialized using a brace-enclosed list of constant 
expressions. Initialization of a union is allowed by initializing the first element of the union. As 
in original C, all static variables can be initialized. 

19. Both signed and unsigned bit fields are supported as per the ANSI standard 

20. The unary + operator has been added as per the ANSI standard. 

21, Data types signed long and unsigned long are separate data types instead of synonyms for 
signed int and unsigned int respectively. 

[J 

IJ 
lJ 

(J 

u 



I: 
(.~ ... 

I: 

1.= 

r: 

I: 
1··>"1 

. .,J 

I~" 

I,j 

IJ 
[J 

Paragon 1M System C Compiler User's Guide Extensions to Standard C 

Implementation-Defined Behavior 
The sizes and alignments of the various C data types are shown in Table 6-1: 

Table 6·1. Sizes and Alignments of Data Types 

Type Size Alignment 

char 1 byte byte 

short 2 bytes 2-byte 

int 4 bytes 4-byte 

long int 4 bytes 4-byte 

Ooat 4 bytes 4-byte 

double 8 bytes 8-byte 

long double 8 bytes 8-byte 

struct (varies) Alignment of field with largest alignment 

union (varies) Alignment of member with largest alignment 

array of type n * size of type Alignment of type 

The search rules for #include directives are: 

• If the pathname is enclosed in angle brackets, the compiler first searches the directories 
specified with the·1 command line switch in the order specified, then the system include 
directory. 

• If the pathname is enclosed in double quotes, the compiler first searches the current directory, 
then follows the search rules above. 

Porting Considerations 
This section describes incompatibilities between original C and the version of ANSI C supported by 
the Paragon aSP/1 C compiler. These incompatibilities prevent programs that were legal under the 
original definition from being accepted by the compiler. In all but the last two cases, the compiler 
identifies the error and issues a message. 

1. The compiler performs strict type-checking. In particular, the base type of a pointer expression 
used to access a struct member must be a structure type that contains a member with that name. 
(ANSI) 

6-5 



Extensions to Standard C Paragon ™ System C Compiler User's Guide 

2. Identifier names may be arbitrarily long, but only the flrst 31 characters are signiflcant (31 is 
also the ANSI standard). The original deflnition of C allowed long names but only the flrst eight 
characters were signiflcant, implying that misspellings after the eighth character were not 
errors. 

3. Storage class speciflers must come before type speciflers, if both are present (for example, 
static int, not int static). The ANSI standard considers placement of the storage class specifler 
an obsolete feature. 

4. If a unary operator is applied to a variable of type float, or if a binary operator is applied to two 
variables of type float, the result is computed using single precision arithmetic. This is in 
accordance with the ANSI standard. 

5. No white space (blanks, tabs, comments, or new lines) is allowed between the characters 
making up the following assignment operator tokens (ANSI): 

+= 
>>= &= 

*= 
"= 

1= 
1= 

«= 

6. The default numeric conversion rules follow the ANSI convention of value preserving. This 
means that an unsigned char or unsigned short int is converted to an int, rather than an 
unsigned into The compiler issues no messages for this conversion. 

[J 

IJ 
[J 

(J 

IJ 



I~ 

("' .~ 

I: 
I ... 

..... 

r: 

r'~ 

r: 

I .""1 

.'-' 

IJ 

Compiler Error Messages 

This appendix lists the error messages generated by the Paragon TM aSF/1 C compiler, indicating 
each message's severity and, where appropriate, the error's probable cause and correction. In the 
error messages, the dollar sign ($) represents information that is specific to each occurrence of the 
message. 

Each error message is numbered and preceded by one of the following letters, indicating its severity: 

I Informative. 

W Warning. 

S Severe error. 

F Fatal error. 

v Variable. 

VOOO Internal compiler error. $ $ 

FOOl 

This message indicates an error in the compiler. The severity may vary; if it is informative or 
warning, the compiler probably generated correct object code, but there is no way to be sure. 
Regardless of the severity, please report any internal error to Intel Supercomputer Systems Division 
Customer Support. 

Source input file name not specified 

On the command line, source file name should be specified either before all the switches, or after 
them. 

A-1 



Compiler Error Messages Paragon™ System C Compiler User's Guide 

F002 Unable to open source input file: $ 

Source file name misspelled, file not in current working directory, or file is read protected. Also can 
be issued if include file is read protected. 

F003 Unable to open listing file 

Probably, user does not have write permission for the current working directory. 

F004 Unable to open object file 

Probably, user does not have write permission for the current working directory. 

FOOS Unable to open temporary file 

Compiler uses directory lusrltmp or I tmp in which to create temporary files. If neither of these 
directories is available on the node on which the compiler is being used, this error will occur. 

I006 <reserved message number> 

F007 Source file too large to compile at this optimization level 

Symbol table overflowed, or compiler working storage space exhausted. If this error occurred at 
optimization level 2, reducing the optimization level to 1 may work around the problem, otherwise 
splitting the source file in two should be considered. There is no hard limit on how large a file the 
compiler can handle, but as a very rough estimate, if the file is less than 2000 lines long (not counting 
comments), and this error occurs, it may represent a compiler problem. 

FOOS Error limit exceeded 

The compiler gives up after 25 severe errors. 

I009 <reserved message number> 

IOI0 <reserved message number> 

SOll Unrecognized command line switch: $ 

Refer to the icc manual page for a list of the allowed switches. 

S012 Value required for command line switch: $ 

Certain switches require a value which immediately follows, such as -0 2. 

A-2 

[~ , 

A ' 

(: 

I: 



r: 
I. ··f\ 

.A 

1_-
,. 

I: 
r: 

I ~ 

1= 
I ." 

. ~ 

I ., 
. ...J.i 

( . ...., 
."" 

IJ 
1··.1 

Ai>< 

C 

Paragon™ System C Compiler User's Guide Compiler Error Messages 

8013 Unrecognized value specified for command line switch: $ 

8014 Ambiguous command line switch: $ 

Too short an abbreviation was used for one of the switches. 

lOIS <reserved message number> 

I016 Identifier, $, truncated to 31 chars 

An identifier may be at most 31 characters in length; characters after the 31 st are ignored. 

I017 <reserved message number> 

I018 <reserved message number> 

I019 Underflow of real or double precision constant 

I020 Overflow of real or double precision constant 

8021 Input source line too long 

After macro expansion, a source line must not be more than 3000 characters long. It may be possible 
to work around the problem by removing unneeded blank characters from certain macro definitions. 

W022 Char escape does not fit in char 

The value of a hex escape in a char or string constant exceeds the capacity of a char (8 bits). The 
value is truncated . 

W023 Integer overflow on integer constant: $ 

8024 Illegal character constant 

A character constant was either unterminated or had no characters. 

8025 Illegal character: $ 

lllega! character encountered in source code. Octal representation of character is given. 

A-3 



Compiler Error Messages Paragon TM System C Compiler User's Guide 

S026 Unmatched double quote 

S027 Illegal integer constant: $ 

Integer (or hexadecimal constant) is too large for 32-bit word. 

S028 Illegal real or double precision constant: $ 

Syntax of constant with exponent is bad. 

S029 Syntax error: Recovery attempted by deleting from $ 

The indicated input was deleted during syntax error recovery. 

S030 Syntax error: Malformed $ at $ 

The indicated construct starting at the indicated token was found to be improperly formed during 
syntax error recovery. 

W031 Multi-character character constant 

This error can be caused by an attempt to specify more than one character within single quotes. 

S032 Syntax error: Unexpected input at $ 

The tokens including and following the indicated token caused a syntax error. 

W033 Missing declarator for dummy argument 

A declaration without a declared identifier appeared in the dummy argument declaration list. 

F034 Unrecoverable syntax error reading $ 

Note that processing of source code is terminated. 

S035 Syntax error: Recovery attempted by replacing $ by $ 

S036 Syntax error: Recovery attempted by inserting $ before $ 

S037 Syntax error: Recovery attempted by deleting $ 

A-4 

it. ~. 
IIlJ 

I: 

(J 
[.~ 

Ai 



Paragon TM System C Compiler User's Guide Compiler Error Messages 

I
"~ 

.IIO 8038 Illegal combination of standard data types 

For example. unsigned double. 

r: 8039 Use of undeclared variable $ 

An undeclared variable is treated as an automatic int. 

I: 8040 Illegal use of symbol, $ 

8041 $ is not an enumeration tag 

Use of an identifier as an enumeration tag before declaring it. 

8042 Use of undefined struct or union, $ 

8043 Redefinition of symbol, $ 

8044 Redefinition of structure or union tag $ 

8045 Illegal field size 

Bit field size must be in range 1 to 32 (0 allowed for unnamed fields). 

W046 Non-integral array subscript is cast to int 

I ~ 
8047 Array dimension less than or equal to zero 

The number of elements declared for an array must be greater than zero. 

8048 Illegal nonscalar constant 

Don't know how user can cause this error. 

8049 Illegal storage class specifier 

1_-
" 

.v.d 8050 8emicolon missing after declaration 

5051 Illegal attempt to compute sizeof a function 

IJ 
r: A-5 



'-----1------- --

Compiler Error Messages Paragon 1M System C Compiler Users Guide 

I052 Array dimension not specified. Extern assumed 

An array definition such as int a[]; is treated as the array declaration extern int a[];. 

S053 Illegal use of void type 

S054 Subscript operator ([]) applied to non-array 

S055 Illegal operand of indirection operator (*) 

SO 56 Attempt to call non-function 

W057 Old-style declaration used; int assumed 

A data declaration consisting of just an identifier is used (no type and storage class specified). 

SO 58 Illegal lvalue 

Expression on the left hand side of an assignment statement or operand of unary & operator is not a 
legallvalue. 

S059 Struct or union required on left of . or -> 

S060 $ is not a member of this struct or union 

S061 Sizeof dimensionless array required 

An array whose dimensions were not specified is used in a context which requires a computation of 
its size. 

S062 Operand of - must be numeric type 

S063 Operand of - must be an integer type 

W064 Cast expression on LHS of assignment treated as cast type 

A-6 

An expression of the form (type *)p .. expr was found; the left hand side has been treated as if it 
were *(type **)&p. 

[] 

I) 
( .'1 
.~ 

1"'1· 
i . ...I 

~ ,...! 
i 
!Al..,,; 

l: 

I: 
(J 

l.: 
I: 
IJ 
( i 

.;k,j 

() 



(j 

I -1JIi .. 
1-.... 

-,iii 

I: 
I: 
I: 

I: 
I: 
I: 

1=. 

I: 

Paragon 1M System C Compiler User's Guide Compiler Error Messages 

8065 Break statement not inside loop or switch statement 

8066 continue statement not inside loop 

8067 8witch expression must be of integer type 

8068 Case or default must be inside switch statement 

8069 Dummy parameter specification not allowed here 

8070 $ is not a dummy argument 

8071 More than one default case for switch 

8072 Initializer not allowed in this context 

Initializer specified on a dummy parameter, a typedef name, or extern declaration. 

8073 Too many initializers for $ 

The initializer for an array or structure contains too many constants. 

S074 Non-constant expression in initializer 

S075 Aggregate initializer used for scalar type 

S076 Initializer not allowed for function 

8077 Character string too long for array 

When initializing an array of characters using a character string constant, the array must be large 
enough for all the characters or all the characters including the null terminating character. 

W078 Character constant too long 

A wide character constant contains more than 1 wide character. 

A-7 



Compiler Error Messages Paragon TM System C Compiler User's Guide 

W079 Enum value for $ overflows $ 

V080 Missing braces for array, structure, or union initialization 

S081 Array of functions or function returning function not allowed 

S082 Function returning array not allowed 

S083 switch case constants must be unique 

1084 <reserved message number> 

W08S Truncation performed for field initialization 

An integer constant used to initialize a structure field is too large for the field. 

S086 Division by zero 

A division by zero was encountered while constant folding a constant expression. 

S087 <reserved message number> 

S088 Bit field cannot be the operand of sizeof or & 

S089 Array name used in logical expression 

S090 Scalar data type required for logical expression 

S091 Integer constant expression required 

S092 Illegal type conversion of constant required 

W093 Type cast required for this conversion of constant 

S094 Illegal type conversion required 

A-8 

This message is issued for a number of situations, for example, when the data types of the left and 
right hand sides of an assignment statement are incompatible. 

I: 
I: 
l: 
I: 
(: .4J 

(.~ 

A 



r~ 
.. liIi 

I
··~ 

"" 
[
-~ 

·lIIl 

I : 
I····., 

.. 

r: 

I: 
I: 
I ·· .. , 

",I 

I ~ 
I
·~ 

.J 

I: 

Paragon'" System C Compiler User's Guide Compiler Error Messages 

W09S Type cast required for this conversion 

This message is issued for situations such as message 94, except that the compiler has gone ahead 
and performed the necessary type conversion as if the user had specified a type cast. A typical case 
is when the left and right hand sides of an assignment statement have different pointer types. 

5096 Illegal function arg of type void or function 

The actual argument of a function call has an illegal data type. 

5097 statement label $ has been defined more than once 

The indicated name is used for more than one label within a function. 

5098 Expression of type void * cannot be dereferenced 

An attempt was made to apply the unary ... operator to a pointer expression of type "pointer to void." 

W099 Type cast required for this comparison 

Comparison of pointers of different types should use a type cast. The compiler has performed the 
necessary type conversion. 

5100 Non-integral operand for mod, shift, or bitwise operator 

5101 Illegal operand types for + operator 

5102 Illegal operand types for - operator 

5103 Illegal operand types for comparison operator 

5104 Non-numeric operand for mUltiplicative operator 

W105 Operands of pointer subtraction have different types 

Since both operands point to types of the same size, the compiler is able to translate this expression 
unambiguously. 

W106 Shift count out of range 

The bit count for a shift operation must be in the range 0 to 31. Note that a shift count of 32 will not 
produce a result of zero on some machines. 

A-9 



-- ---------- -------------------~.----

Compiler Error Messages Paragon TN System C Compiler User's Guide 

8107 8truct or union $ not yet defined 

8108 Unnamed bit fields not allowed in unions 

WI09 Type specification of field $ ignored 

Bit fields must be int, char, or short. Bit field is given the type unsigned int. 

8110 Bit field $ too large for indicated data type 

The size of a bit field exceeds the size of the data type used to declare the field; for example, 
charfld:9. 

WIll More than one storage class specified 

The additional storage class specifiers are ignored. 

Wl12 Duplicate type modifier 

A type modifier is repeated; for example, const const int x;. 

8113 Label $ is referenced but never defined 

Wl14 More than one type specified 

More than one type specifier occurs where at least one of the specifiers is a typedef, structlunion 
type, or enum type. All but the first type specifier are ignored. 

Wl15 Duplicate standard type 

A standard type is repeated; for example, float float int flt;. 

Wl16 Constant value out of range for signed short or char 

Note that a constant such as OxFFFF (Oxff), interpreted as a positive number, is 1 bit too large for 
the signed short (char) data type. Either the type unsigned short (unsigned char) should be used 
in place of signed short (char), or the equivalent negative number should be used in place of the 
positive constant. 

Wl17 Value missing from return statement in function $ 

No function value will be returned by this return statement. 

A-10 

I I 
.AI 

i" "1 

1..., __ 

I: 

I. ' . .J' 

(] 



[~ 

r: 
r: 

I: 
I: 

r: 
I '., 

.AJ 

I'~ 

.. Ail 

Paragon 1M System C Compiler User's Guide Compiler Error Messages 

Wl18 Function $ does not contain a return statement 

Wl19 void function $ cannot return value 

I120 

W121 

I122 

The return expression is ignored. 

Label $ is defined but never referenced 

Block with auto initialization jumped into at label $ 

The indicated label was referenced from outside its containing block, and the containing block 
initialized automatic storage. When such a transfer of control occurs, the automatic initialization 
does not occur. 

Value of expression not used 

This message can result from accidentally typing == where = was intended. As another example, the 
statement "'p++; (which is actually equivalent to just p++;) will cause the message. Unfortunately, 
uses of the standard macros getc and putc will cause this message to be issued because these macros 
expand to conditional expressions whose values are typically not used by the programmer. In this 
case, the message can be eliminated by casting the getc/putc expression to void. 

1123 Definition of function $ is static 

1124 possible misuse of dummy array $ 

Address of dummy array taken, or assignment to array name. 

1125 Integer value truncated to fit into unsigned short or char type 

Using a negative number, or a positive number greater than 16 (8) bits as an unsigned short 
(unsigned char) value can cause this message to be issued. Note that such code is nonportable. 

5126 Parameters cannot follow va_alist 

1127 <reserved message number> 

1128 <reserved message number> 

W129 Floating point overflow. Check constants and constant expressions 

A-11 



Compiler Error Messages Paragon TM System C Compiler User's Guide 

W130 Floating point underflow. Check constants and constant expressions 

W131 Integer overflow. Check floating point expressions cast to integer 

8132 Floating pt. invalid oprnd. Check constants and constant expressions 

8133 Divide by 0.0. Check constants and constant expressions 

W134 Duplicate struct or union member $ 

A struct or union member was found with the same name as another member of the same struct or 
union. 

I135 Function $ should use prototype form of definition 

A function that was declared using the prototype form was defined using a non-prototype format. 
Note that if the function is used after the definition, the prototype does not have an effect 

W136 Function $ has non-prototype declaration in scope 

A function is declared using the prototype form, but a declaration or definition for the function that 
does not use the prototype form is in scope. 

8137 Incompatible prototype declaration for function $ 

A function prototype declaration is incompatible with a previous prototype declaration for that 
function. 

8138 Missing identifier for declarator in function prototype definition 

A function declarator in a function prototype was missing an identifier for the formal parameter. 

8139 void parameter must be the only parameter 

A function prototype of the form (void, ••• ), (in~ void), or (void, int) was encountered. 

8140 Declaration for formal $ found in prototype function definition 

A-12 

An attempt was made to declare a formal parameter following the function header for a prototype 
form function definition. 

[~ 

(~ 

[: 

IJ 

!If'! 
~Aoi 

aJ 

.-", 
, , 

l~ 

I: 

IJ 
(! 



I", ' 
..ii 

( "',''1 
JIi 

1"''fI! 

JOi 

I: 
(-., ,. 

( '" 
,.,j 

I: 
I : 

I '." 
",I 

I,'," 
,J 

I: 
I~ 

(',." ..J 

I] 

() 

Paragon TM System C Compiler User's Guide Compiler Error Messages 

S141 Wrong number of parameters to function 

W142 Assignment to const object not allowed 

An assignment to an object with type modifier const was attempted. 

W143 Useless typedef declaration (no declarators present) 

typedef declares no declarators; e.g. typedef int X; typedef int X; the second typedef would give 
this message. Often occurs with non-ANSI include files (a common culprit is size _ t). 

V144 Syntax requires semicolon, semicolon inserted 

V145 Syntax requires no comma, comma deleted 

S146 void parameter cannot have a name ($) 

W147 Inappropriate qualifiers with void 

const void and volatile void are just treated as void. 

S148 Struct/union member $ cannot be a function 

W149 Unnamed struct/union member ignored 

A member of struct or union with no declarators was encountered. 

W150 Useless declaration 

A declaration does not specify an identifier; e.g., int; extern; 

W158 US,e of escape ignored 

A use of a character escape which is not one of the recognized escapes has occurred; the backslash 
is ignored. 

W159 No hex digits follow ignored 

No hexadecimal digits follow the numeric escape \x; the backslash is ignored. 

A-13 



Compiler Error Messages Paragon 1M System C Compiler User's Guide 

W162 Not equal test of loop control variable $ replaced with < or > test. 

W198 possible conflict ignored between $ and $ 

W199 Unaligned memory reference 

A memory reference occurred whose address does not meet its data alignment requirement. 

8201 #elif after #else 

A preprocessor #eUf directive was found after a #else directive; only #endif is allowed in this 
context. 

8202 #else after #else 

A preprocessor #else directive was found after a #else directive; only #endifis allowed in this 
context. 

8203 #if-directives too deeply nested 

Preprocessor #if directive nesting exceeded the maximum allowed (currently 10). 

8204 Actual parameters too long for $ 

The total length of the parameters in a macro call to the indicated macro exceeded the maximum 
allowed (currently 2048). 

W205 Argument mismatch for $ 

The ~ber of arguments supplied in the call to the indicated macro did not agree with the number 
of parameters in the macro's definition. 

F206 can't find include file $ 

The indicated include file could not be opened. 

8207 Definition too long for $ 

A-14 

The length of the macro definition of the indicated macro eJ[ceeded the maximum allowed (currently 
2048). 

-------_ .. _--_._ .. _--- -------------- --------------

1'f-"'1 
J. ,~i 

1"" 
1.4.) 

( ""1 
_.:..J 



(: 

I.~ 
-"" 

I: 

I: 

Paragon 1M System C Compiler User's Guide Compiler Error Messages 

8208 EOF in comment 

The end of a file was encountered while processing a comment. 

8209 EOF in macro call to $ 

The end of a file was encountered while processing a call to the indicated macro. 

8210 EOF in string 

The end of a file was encountered while processing a quoted string. 

8211 Formal parameters too long for $ 

8212 

The total length of the parameters in the definition of the indicated macro exceeded the maximum 
allowed (currently 2048). 

Identifier too long 

The length of an identifier exceeded the maximum allowed (currently 2048). 

8213 Unable to open dependency file $ 

W214 Illegal directive name 

The sequence of characters following a # sign was not an identifier. 

W215 Illegal macro name 

A macro name was not an identifier. 

8216 Illegal number $ 

The indicated number contained a syntax error. 

F217 Line too long 

I: The input source line length exceeded the maximum allowed (currently 2048). 

W218 Missing #endif 

End of file was encountered before a required #endif directive was found. 

A-15 



Compiler Error Messages Paragon™ System C Compiler User's Guide 

W219 Missing argument list for $ 

A call of the indicated macro had no argument list. 

S220 Number too long 

The length of a number exceeded the maximum allowed (currently 2048). 

W221 Redefinition of symbol $ 

The indicated macro name was redefined. 

1222 Redundant definition for symbol $ 

A definition for the indicated macro name was found that was the same as a previous definition. 

F223 String too long 

The length of a quoted string exceeded the maximum allowed (currently 2048). 

S224 Syntax error in #define, formal $ not identifier 

A formal parameter that was not an identifier was used in a macro definition. 

W225 Syntax error in #define, missing blank after name or arglist 

There was no space or tab between a macro name or argument list and the macro's definition. 

S226 Syntax error in #if 

A syntax error was found while parsing the expression following a #if or #eUf directive. 

S227 Syntax error in #include 

The #include directive was not correctly formed. 

W228 Syntax error in #line 

A #line directive was not correctly formed. 

W229 Syntax error in #module 

A #module directive was not correctly formed. 

A-16 

[) 

[] 

[J 

Ifi 
llJ 

r."i . .., 

I: 

l~ 

(J 



r: 

I: 
r: 
1 ': 
r: 

I: 

I, ""'1 

...>:,.1 

I""", 
.,'-': 

I'''' 
I, '" 

J 

Paragon TM System C Compiler User's Guide Compiler Error Messages 

W230 8yntax error in #undef 

A #Undef directive was not correctly fonned. 

W231 Token after #ifdef must be identifier 

The #ifdef directive was not followed by an identifier. 

W232 Token after #ifndef must be identifier 

The #ifndef directive was not followed by an identifier. 

8233 Too many actual parameters to $ 

The number of actual arguments to the indicated macro exceeded the maximum allowed (currently 
31). 

8234 

F235 

Too many formal parameters to $ 

The number of formal arguments to the indicated macro exceeded the maximum allowed (currently 
31). 

Too much pushback 

The preprocessor ran out of space while processing a macro expansion. The macro may be recursive. 

W236 Undefined directive $ 

The identifier following a # was not a directive name. 

8237 EOF in #include directive 

I~ End of file was encountered while processing a #include directive. 

8238 Unmatched #elif 

A #eUf directive was encountered with no preceding #if or #elif directive. 

8239 Unmatched #else 

IJ A #else directive was encountered with no preceding #if or #eUf directive. 

IJ 
[) A-17 



Compiler Error Messages Paragon 1M System C Compiler User's Guide 

8240 Unmatched #endif 

A #endif directive was encountered with no preceding #if, #irder, or #ifnder directive. 

8241 Include files nested too deeply 

The nesting depth of #include directives exceeded the maximum (currently 20). 

8242 unterminated macro definition for $ 

A newline was encountered in the formal parameter list for the indicated macro. 

8243 Unterminated string or character constant 

A newline with no preceding backslash was found in a quoted string. 

I244 possible nested comment 

The characters ,. were found within a comment 

I245 Redefining predefined macro $ 

I246 Undefining predefined macro $ 

W247 can't redefine predefined macro $ 

W24A r.an't- undE'finE' predefined macro $ 

F249 #error -- $ 

W250 #ident not followed by quoted string 

2251 Extraneous tokens ignored following # directive 

F252 Unexpected EOF following # directive 

W253 Unexpected # ignored in iif expression 

8254 Illegal number in directive 

A-18 

(."1!'! 
.Ai 

l i 
.A 

[J 

!If ~J 

ILJ 

fY .. , 
II I 

I: 
[~ 



-------- ------------- - --------------- -- ------------

r: Paragon TM System C Compiler User's Guide Compiler Error Messages 

I: 
(: 8255 Illegal token in #if expression 

I: 8256 Missing > in #include 

F270 Missing -exlib option 

W271 Can't inline $ - -wrong number of arguments 

1272 Argument of inlined function not used 

8273 Inline library not specified on command line (-inlib switch) 

F274 Unable to access file $/TOC 

I i 
\ _J 8275 Unable to open file $ for inlining 

1280 Unrecognized #pragma$ 

Ignored if not recognized. 

W281 <reserved message number> 

1= Messages 280-300 are reserved for #pragma handling. 

I -_~I 

J 

I
--~ 

~I 

I~ 

(J 

IJ 
A-19 



Compiler Error Messages . Paragon TM System C Compiler User's Guide () 

D 
[J 

(~.I 

.'" 

( .. '" 
..... ' 

I: 

A-20 



r: 

I: 
1 .... 1 

.aI 

r: 

I·", 
,J 

I
·~ 

. -'" 

r: 
I: 

Compiler Internal Structure 

This appendix describes the internal structure of the compilers as shown in Figure B-1: 

Scanner and Parser 

Expander 

Optimizer and Vectorizer 

Scheduler and Pipeliner 

The front-end of the compiler translates the program into an internal representation called 
Intermediate Language Macros (ILMs). The ILMs are grouped into basic blocks during the 
translation phase. A basic block represents a sequence of language statements in which the flow of 
control enters at the beginning and leaves at the end, without the possibility of branching except at 
the end. 

While the source code is translated and grouped into basic blocks, function inlining may occur. Once 
the translation is complete, optimizations are applied. Depending on the switches selected by the 
user, a hierarchy of optimizations may be applied: global optimizations, local optimizations, 
vectorization, and software pipelining. 

B-1 



CompHer Internal Structure 

C Source 

Figure B-1. Compiler Structure 

B-2 

Paragon™ System C Compiler User's Guide 

Intermediate 
Language 

Macros 

ILM 

Intermediate 
Language 

Instructions 

III 

Optimized 
Intermediate 

Language 
Instructions 

U 

lJ 
[) 
( i 
. I 

• 

IJ 

I~ 

(J 

l ' aJ 



I: 
I · ... 

r: 
r: 
I: 
I'~ 

1,-' 
,~ 

I: 
( . .", 

"'" 

(""" 
-'" 

( "" 

~, 

(: 

(: 
I: 
'''''' 

.... 

I'~ 
JiiJ 

I) 

~ 

Paragon™ System C Compiler User's Guide Compiler Internal Structure 

Scanner and Parser 
The compiler has a Scanner and Parser that perfonns syntax and semantic analysis of its respective 
source language input. The Scanner and Parser create a set of ILMs and a symbol table and various 
data structures referring back to the original source code for diagnostics and symbolic debugging. 
They perform error detection and recovery using an advanced multiple parse stack technology. 

Expander 
The Expander expands the macros in the ILM set along with the semantic analysis information and 
generates a set ofIntermediate Language Instructions (ILls) and associated data structures including 
extended basic block tables and information about referenced variables. The Expander also performs 
certain optimizations, such as constant folding, elimination of identity expressions, and branch 
folding. The ILl data structure is a directed graph, instead of a tree structure, which simplifies 
common subexpression elimination. 

Optimizer and Vectorizer 
The internal, integrated OptimizerN ectorizer provides both a faster compile time and more efficient 
code generation than traditional source-to-source preprocessors. The OptimizerNectorizer uses 
advanced optimizations to achieve superior performance. Among these techniques are: 

• Procedure Integration 

Internal Vectorization 

Global Optimization 

• Local Optimization 

• Flexible memory utilization schemes 

Procedure Integration 

Procedure Integration, also known as function inlining. allows a function to be executed as a part of 
the originating program instead of having parameters passed and making a call. This results in 
removing the call overhead and allowing the function to be optimized along with the rest of the 
program . 

B-3 



Compiler Internal Structure Paragon 1M System C Compiler User's Guide 

Internal Vectorization 

The internal vectorizer is oriented to the Intel i860™ microprocessor, which involves 
transfonnations that create better opportunities for software pipelining. Recognition of vector forms 
is only performed when the hand-coded vector library calls will outperform the scheduler. Having 
an internal vectorizer and software pipeliner allows the compiler to make more precise and informed 
decisions on code generation opportunities. Other advantages of an internal vectorizer over a 
source-to-source vectorizer include enhanced debugging capabilities as well as a significant increase 
in compilation speeds. 

Global Optimizations 

Global optimizations are those that optimize code over all basic blocks created for a function. 
Control flow analysis and data flow analysis are performed over a flow graph, where each node of 
the graph is a basic block. All loops (not just loops created by the language's loop constructs) are 
detected, and loop optimizations are performed on each loop. These include: 

Invariant Code Motion 

Induction Variable Elimination 

• Global Register Allocation 

• Dead Store Elimination 

• Copy Propagation 

Local Optimizations 

Local optimizations are performed on an extended basic block. Most of the local optimizations are 
performed by the code generating phase of the multiple functional units. This technique allows 
computations from more than one statement to utilize the functional units in parallel, thus providing 
a fine-grain parallelism that is completely transparent to the program. For loops containing if 
statements (multiple blocks) that are software pipelinable, the compiler provides fine-grain 
parallelism across multiple blocks. Local optimizations provided by the compilers include: 

• Common Subexpression Elimination 

• Constant Folding 

• Algebraic Identities Removal 

• Redundant Load and Store Elimination 

• Strength Reduction 

[] 

[) 

[] 

(
"?'l 

J i 

I: 

1\'!1 

",' 



r: 
I~ 

I ·~ .. 
[: 
I
-·~ 

.. 

I: 

I ··.., 
"' 

I: -"1 

~~ 

r: 
1-" .. , 

r: 
I~ 
( ."" .. 

'" 

I: 
I ., 

."' 

(
?I 

.. 
I~·"" 

.~ 

1·"1.' 
~ 

Paragon ™ System C Compiler User's Guide Compiler Intemal Structure 

• Scratch Register Allocation 

• Register Aliasing 

The types of code transformations performed on loops include: 

• Invariant if statement removal 

• Loop interchange when advantageous 

Loop invariant vector recognition within nested loops 

Loop fusion 

Common idiom recognition 

Flexible Memory Utilization 

Support is provided for architectures having an integral data caching scheme. Some techniques 
provided are: 

Streaming of vectors into cache 

Streaming of invariant vectors into cache and their reuse 

Explicit bypassing of cache for accessing array elements within loops 

Dual and quad loads and stores from and to memory 

Mixing access of arrays from both cache and memory within a loop 

Scheduler and Pipeliner 
The i860 microprocessor supports parallel activities two ways: 

Dual Instruction Mode 
The "core" unit and the floating-point sections can operate independently and 
in parallel with each other. An example would be a load occurring at the same 
time that a floating-point add occurs. The compilers test for situations where 
dual instructions are advantageous and schedules instructions accordingly. 

8-5 



Compiler Internal Structure Paragon™ System C Compiler User's Guide 

Dual Operation Mode 
The floating-point units for some instructions can initiate floating-point adds 
and multiplies at the same time. In dual operation mode, the two 
floating-point arithmetic units can operate independently each providing 
results at the clock rate of the machine. See FIgure B-2. 

DUAL INSTRUCTION 

CORE OPERATION DUAL OPERATION 

Core 
Unit 

8+b x*y 

The Optimized Intermediate Language Instruction set becomes the input for the Scheduler and 
Pipeliner, which takes advantage of the i860 microprocessor's dual instruction and operations 
modes. These unique machine characteristics permit parallel scheduling to multiple functional units 
and software pipelining. 

• Parallel scheduling takes advantage of fine-grain parallelism occurrences in the code and 
schedules to multiple functional units when possible. 

Software pipelining schedules code so that operations from several iterations of a loop are 
overlapped. This allows multiple iterations of a loop to be executed during the same instruction. 
Software pipelining relies on information provided by the global optimizer and vectorizer. This 
information includes loops that are pipelinable, data dependence information, recurrences, and 
array references. 

The output of the Scheduler and Pipeliner is a list of assembly language instructions that is passed 
to an assembler to create the final object file. 

IJ 
(] 

I~ ! 

r'!'" ~! 

ft.>cJ 

IJ 
(J 

U 



(-: 

I~ 
Jji 

r: 

I: 

,~ 

I: 
I: 
I: 

I ~, 

"-
I
-~ 

"" 

1',·" 
.-" 

[: 

[J 

I) 

I) 

Manual Pages 

This appendix contains manual pages for compiler-related commands and system calls. 

See the OSFll Command Reference and OSFll Programmer's Reference for manual pages for 
the standard commands and system calls of OSF/l. 

See the Paragon TM Commands Reference Manual and the Paragon ™ C System Calls Reference 
Manual for manual pages for parallel commands and system calls unique to Paragon OSF/l. 

The manual pages in this appendix are also available on-line, using the man command. 

0-1 



Manual Pages 

0-2. 

Paragon TM System C Compiler User's Guide 

Table C-llists the commands descrired in this appendix. 

Table C-l. Commands Discussed in This Appendix 

Manual Page Commands Description 

ar860 ar860 (cross) Manages object code libraries. 
ar (native) 

as860 as860 (cross) Assembles i860™ source code. 
as (native) 

cpp860 cpp860 (cross) Preprocesses C programs. 
cpp (native) 

dump860 dump860 (cross and native) Dumps object files. 

icc icc (cross) Compiles C programs. 
cc (native) 

itixllb itixlib (cross and native) Updates inliner library directories. 

Id860 Id860 (cross) Links object files. 
Id (native) 

mac860 mac860 (cross) Preprocesses assembly-language programs. 
mac (native) 

nm860 nm860 (cross) Displays symbol table (name list) 
nm (native) information. 

size860 size860 (cross) Displays section sizes of object files. 
size (native) 

strip860 strip860 (cross) Strips symbol information from object files. 
d"":_ '_q<th:TO \ I ~ .... &1' v.au.u.,. "" J 

Except for their names, the cross-development and native versions of each command work the same 
(with minor exceptions). These commands are available by their cross-development names on the 
Intel supercomputer and on supported workstations; they are available by their native names on the 
Intel supercomputer only. 

(] 

1. '1 
.~ 

~"'! 

~ .. J 

IJ 
(J 
(

"'!i"1< 

-~ 

I: 
IJ 
(J 

l: ! 



I: 
I: 
I-.. ~ 

". 

I ".., 
'" 

I
'"~ 

j,l 

I ".~ 
. , 

..,; 

I"~ 

4' 

[J 
I~: 

1= 
I "'" 

-"li 

I: 
1"11 

A' 

Paragon 1M System C Compiler User's Guide Manual Pages 

Table C-2lists the system calls described in this appendix. 

Table C-2. System Calls Discussed in This Appendix 

Manual Page System Calls Description 

dv_acosO dv_acos(), dv_asinO, Double-precision vector intrinsics. 
dv _ atanO, dv _atan20, 
dv_cosO, dv_divO, 
dv_expO, dv_logO, 
dv yowO, dv]ecpO, 
dv]sqrtO, dv_sinO, 
dv_sqrtO, dv_tanO 

SV_8COSO sv_acosO, sv_asinO, Single-precision vector intrinsics. 
sv_atanO, sv_atan20, 
sv_cos(), sv_divO, 
sv_expO, sv_logO, 
sv yowO, sv]ecpO, 
sv]sqrtO, sv_sinO, 
sv _ sqrtO, sv _ tanO 



Manual Pages Paragon™ System C Compiler User's Guide 

AR860 AR860 

ar860, ar: Creates and maintains archives for the Paragon(TM) system. 

Cross-Development Syntax 
ar860 [-V] key [options] libname [filename ... ] 

Native Syntax 

Arguments 

ar [-V] key [options] libname [filename ... ] 

lihname The name of the archive. 

filename The name of the target file. 

You must specify one, and only one, key from the following list: 

d 

e 

p 

q 

r 

t 

x 

Delete filename from the archive. 

Display the symbol tables of COFF objects in the archive. 

Display the archive version of filename (may result in binary data being sent to 
standard output). 

Quickly add the file filename to the archive libname by appending the file(s) to the 
end of the archive without checking to see if they duplicate existing files in the 
archive. If lihname does not exist, then create it (unless the c option is specified). 
If filename does not appear in the archive, then add it. 

Replace the file filename in the archive libname. If lihname does not exist, then 
create it. Iffilename does not appear in the archive, then add it. 

Display the archive table of contents. 

Extract filename from the archive. If no file is named, extract all files. 

The key argument may be preceded by a dash. For example, ar860 -t me.a and ar860 t me.a are 
equivalent. 

.-'>"1 
I.~ 

1'."1: 

_ft 

I~ 

I: 
U 



I: 

I: 
r: 
( _."" 

.'"," 

I: 
r'" 

J.d 

I· .. "" 
"" 

I .. "" -" 

r~ 

I~ 

1-.." 
. ....v.1 

IJ 
C 

Paragon'" System C Compiler User's Guide Manual Pages 

AR860 (cont.) AR860 (cont.) 

Description 

See Also 

You may specify the following options in any order: 

c 

u 

v 

Suppress the creation message. This option is used with the -r key. 

Use the current working directory for temporary files. 

Replace the archive version only if filename is newer. This option is used only 
with the -r key. 

Verbose mode. For or, display the names of the archive members as they are 
replaced (or added). For-d, display the names of the archive members as they are 
deleted. For -t, display the file mode, the uid, the gid, the size, and the timestamp 
of the specified files. For -x, display the names of the files as they are extracted. 

No space may appear between the key and any options. 

You must specify the following argument, if used, before the key: 

-V Display the tool banner (tool name, version. etc.). 

No space may appear between -V and the following key, and the key may not be preceded by a dash. 
The dash preceding the V is optional. For example, ar860 -Vt tiIe.a and ar860 Vt file.a are 
equivalent. 

Use ar860 to manage archives for the Paragon system. 

as860, dump860, icc, if77, Id860, nm860, size860, strip860 

C-5 



Manual Pages Paragon™ System C Compiler User's Guide 

AS860 AS860 
. ." ".:' "'::':":::: . . .':: . . ": ".": .. ": .". :"::.: 

as860, as: Assembles i860 code for the Paragon(TM) system. 

Cross-Development Syntax 
as860 [switches] [filename] 

Native Syntax 

Arguments 

as [ switches] [filename] 

filename The name of the i860 assembly language file. If no file is specified, as860 reads 
from standard input. 

You may specify the following switches in any order: 

-a 

-I[listfile] 

-L 

-oobjfile 

-R 

-v 

-x 

Do not automatically import symbols that are referenced but otherwise undefined. 
Issues an error message for each occurrence. 

Write source listing in the file listjile, a file in the current working directory. If you 
omit listjile, the listing goes to standard output. 

Preserve text symbols starting with ".L" in the debug section. 

Put the output object file in objfile. If you omit this switch. the default object file 
name is produced by stripping any directory prefixes fromfilename, stripping any 
of the suffixes ".nlO", ".s", ".mac", or ".860", and appending ".0". An existing file 
with the same name is silently overwritten. 

Suppress all .data directives. Code and data are both assembled into the .text 
section. 

Display the tool banner (tool name, version, etc.). 

Enable additional checks of the source file to find illegal sequences of 
instructions. 

( -."1 
jj 

l-'1 
Jl i 

'V! _J 

r''''1 
i& ~J 

( "'" 
. .... 

I: 
I: 
IJ 

.-~-.--.--~----------'-----------------------------



I: 
(~ 

l: 
r: 
r~ 

.i6i 

I: 
r: 
r~ 

('" 

('1 
-'" 

r~ 
~, 

I~ , oJ 

I~I 
_J 

1= 
r~ 

-;;>,' 

I "" 
,) 

I~ 

I: 
(': 

_AI 

IJ 
,~ 'I >:M 

-------- ---.-.--

Paragon ™ System C Compiler User's Guide Manual Pages 

AS860 (cont.) AS860 (cont.) 

Description 

Use 88860 to assemble the named file. 

You can ensure that the proper switches are passed to as860 by accessing as860 using the compiler 
drivers (icc or im). 

Not all illegal sequences are detected when the -x switch is used. 

See Also 

ar860, dump860, icc, if77, Id860, nm860, size 860, strip860 

0-7 



-- ----- - ----- ----~~~--~.----~------.-"~~~~ .-=. 

Manual Pages Paragon 1M System C Compiler User's Guide 

CPP860 CPP860 
:.:" ... : .. ::: ... :" :0.:" ... : .". 

cpp860, Cpp: C language preprocessor for the Paragon{TM) system. 

Cross-Development Syntax 

cpp860 [switches] [inputJile [outputJile] ] 

Native Syntax 

Description 

Arguments 

cpp [switches] [inputJile [ outputJile] ] 

The cpp860 command invokes the C compiler to preprocess C language source files. 

inputJile 

outputJile 

NOTE 

ANSI C predefined macros can be defined and undefined on the 
command line, but not with #define and #undefine directives in 
the source file. 

Input file to be preprocessed (default standard input). 

Output file after preprocessing (default standard output). 

You may specify the following switches in any order: 

·A Allows spacing around tokens. 

·B Allows C++-style comments (j / to end of line) in source code. 

·C Preserves comments in preprocessed C source files. 

·Dname[ =defJ Defines name to be defin the preprocessor. If defis missing, it is assumed to be 
empty. If the = sign is also missing, then name is defined to be the string 1. 

The normal predefined macros are __ i860, _J860 __ , __ PARAGON __ , 
__ OSFl __ , __ PGC __ , _PGC_, _COFF, unix, MACH, CMU, _1860_, 
_1860_. _1860. _i860_. OSFl_ADFS. OSFIAD. 

[.~ 

.JiI 

[) 

l : JI 

I: 
I: 
(J 

(J 

U 
.. ---.~~~--- ------- --------------------------~ 



1.1I'! 
. Ail 

I: 
I. " .... 

r: 

1-: 

1·-· 
.d 

r: 
I~.··i 

. M 

l ' .: 
I) 

Paragon TM System C Compiler User's Guide Manual Pages 

CPP860 (cont.) CPP860 (cont.) 

Files 

-E 

-ES 

-Idirectory 

-M 

-MD 

Preprocesses the input file, regardless of the file suffix, and sends the output to 
stdout. 

Behaves the same as -E. 

Adds directory to the compiler's search path for include files. For include files 
surrounded by angle brackets « ... », each -I directory is searched followed by the 
default location. For include files surrounded by double quotes (" ... "), the 
directory containing the file containing the #include directive is searched, 
followed by the -I directories, followed by the default location. 

Outputs a list of include files to stdout (used for makefile construction). An input 
file is required with this switch. 

Outputs a list of include files to file.d (used for makefile construction). An input 
file is required with this switch. 

-Mallow_spacing 

-p 

-Uname 

-v 

Ji1&.c 

Ji1£..d 

Ji1£..i 

Allow spacing around tokens such as "." and "@" when used with -ES. 

Preprocesses each input file without producing the line control information used 
by the next pass of the compiler. 

Remove any initial definition of name in the preprocessor. Since all -D switches 
are processed before all-U switches, the -U switch can be used to override the -D 
switch. 

Display the tool banner (tool name, version, etc.). 

C source file. 

Ust of include files produced by -MD. 

C source file after preprocessing. 

The following files and directories are used in the cross-development environment (cpp860). 
PARAGON jWEV is an environment variable that can be set to the root of the compiler installation 
directory. If PARAGON _ XDEV is not set, the default is lusrlparagonlXDEV. The directory where 
the C compiler is located must be included in your path. For Sun4 users, for example, 
$P ARAGON _ XDEVlparagonlbin.sun4 would be included in the path . 

$(P ARAGON _ XDEV )/paragonlbin.r.u:dl Directory containing executables for system r.u:dl 
(m:dl identifies the architecture of the system, e.g . 
sgi or sun4). 



Manual Pages Paragon™ System C Compiler User's Guide 

CPP860 (cont.) CPP860(cont.) 

$( PARAGON _ XDEV)lparagonlbin.ard:!!ic Ccompiler. 

$(P ARAGON _ XDEV)lparagonlinclude Standard include directory. 

The following flles and directories are used by default in the native environment (cpp). If/is not the 
root of the compiler installation directory. you must set PARAGON _ XDEV to this directory and add 
$PARAGON_ XDEVlusrlccslbin to your path. 

lusrlccslbin Directory containing executables. 

lusrlccslbinlic C compiler. 

lusrlinclude Standard include directory. 

Environment Variables 

C-10 

The environment variable MAKECPP is supported. MAKECPP is a colon-separated list of 
directories that is added to the compiler search path for include flles. 

[ i 
_..AI 

(J 
~~ 
~ 

l~ 

[: 

(J 

I: 

IJ 
IJ 
r-, 
L.J 



[: 
I
-~ 

_.o! 

I: 
191 

...... 

I: 
I:: 
r·~ 

1.-"'" 
,~ 

(: 

1= 

I: 
r.

·~ 

JIIoi 

Paragon ™ System C Compiler User's Guide Manual Pages 

DUMP860 DUMP860 
.. .... ... . :. . ".":: . :": :: .. :.:. : . 

Dumps parts of a Paragon(fM) system object file. 

Syntax 

Arguments 

dump860 [ switches] filename 

filename The name of the object file. 

You may specify the following switches in any order: 

-8 

-c 

-dnumber 

+dnumber 

-f 

-g 

-h 

-I 

-noome 

-0 

-p 

-r 

-s 

Display archive headers. 

Dump the string table. 

Dump section headers starting at section number. Only effective if the -h switch 
is also specified. Sections are numbered starting at 1. If the +d switch is not 
specified. then only the single section header is dumped. 

Dump section headers ending at section number. Only effective if the -h switch is 
used. 

Display file headers. 

Display the archive symbol table. 

Dump section headers. 

Dump line numbers. 

Dump only sections named name. Only effective if the -h switch is used. 

Dump (in formatted hexadecimal) optional headers. 

Do not display headers. 

Dump relocation data. 

Dump section data. 

G-11 



Manual Pages Paragon ™ System C Compiler User's Guide 

DUMP860 (cont.) DUMP860 (cont.) 

Description 

See Also 

C-12 

-t [number] 

+tnumber 

-u 

-v 

-v 

Dump symbol table, starting at symbol index number. If the +t switch is not used, 
then only the single symbol is displayed. 

Dump symbol table, through symbol index number. If -t was not specified, the 
start index is zero. 

Underline mode. Only works on devices supporting backspace. 

Verbose mode. Display some headers and information in aneasier-to-comprehend 
fonn. 

Display the tool banner (tool name, version, etc.). 

-z name,number Dump line numbers for function name, starting at line number. 

+z number Dump line numbers for function name (specified by -z), ending at line number. 

Use dump860 to dump (in formatted hexadecimal) parts of the named object file. 

ar860, 8s860, icc, if77, Id860, nm860, size860, strip860 

[J 

I~ I 

I
·~ 

Ai 



I, ", 
... .Al 

I: 
I
'~ 

"-..IIi> 

I: 
I"-,"'! 

,Mj 

(
"""'I, 

'" 

r~ 

I ~ 
(

""1 
, , 

.-:J 

[ -"1 

.oJ 

r: 
I '"l 
, : 

..J 

IJ 
[: 
1''1 

.J 

( -""',' "' 

-"" 

[] 

Paragon TM System C Compiler User's Guide Manual Pages 

ICC ICC 

icc, cc: Driver for compiling, assembling, and linking C programs for the Paragon(TM) system. 

Cross-Development Syntax 

icc [switches] sourcefile ... 

Native Syntax 

Description 

cc [switches] sourcefile ... 

The icc command invokes the C compiler, assembler, and linker with switches derived from icc's 
command line arguments. 

icc bases its processing on the suffixes of the files it is passed: 

file.c 

file.s 

file. 0 

file.a 

is a C program. It is preprocessed, compiled, and assembled. The resulting 
Object file is placed in the current directory. 

is an i860 assembly language file. It is assembled and the resulting object file 
is placed in the current directory . 

is an object file. It is passed directly to the linker if linking is requested. 

is an ar library. It is passed directly to the linker if linking is requested. 

file.f or file.F is a Fortran program. It is passed to the Fortran compiler. 

All other files are taken as object files and passed to the linker (if linking is requested) with a warning 
message. If a file's suffix does not match its actual contents, unexpected results may occur. 

If a single C program is compiled and linked with one icc command, then the intennediate object 
and assembly files are deleted . 

NOTE 

ANSI C predefined macros can be defined and undefined on the 
command line, but not with #define and #undefine directives in 
the source file. 

0.13 



Manual Pages 

ICC (cont.) 

Switches 

-B 

-c 

-c 

-Dname[ =defJ 

-E 

-ES 

-g 

-1-

-Idirectory 

-Koption 

C-14 

Paragon TM System C Compiler User's Guide 

ICC (cont.) 

Allows C++-style comments (j / to end ofline) in source code. 

Skips link step; compiles and assembles only. Leaves the output from the 
assemble step in a file namedfile:o for each file namedfile.c (unless you also 
use the -0 switch). 

Preserves comments in preprocessed C source files. Also enables -E. 

Defines name to be de/in the preprocessor. If de/is missing, it is assumed to 
be empty. If the = sign is also missing, then name is defmed to be the string 1. 

Preprocesses each" .c" file and sends the result to stdout. No compilation, 
assembly, or linking is performed. 

Preprocesses every file and sends the result to stdout. No compilation, 
assembly, or linking is performed. 

Equivalent to -Mdebug -00 -Mframe. 

Accepted, but has no effect. 

Adds directory to the compiler's search path for include files. If you use more 
than one -I switch, the specified directories are searched in the order they 
were specified (left to right). For include files surrounded by angle brackets 
« ... », each directory is searched followed by the default location. For 
include files sili"Tounded by double qUOieil C ....... ), the directory containing the 
file containing the #include directive is searched, followed by the -I 
directories, followed by the default location. 

Requests special mathematical semantics. The option values are: 

ieee (default) 

ieee=enable 

If used while linking, links in a math library that 
conforms with the IEEE 754 standard. 

If used while compiling, tells the compiler to perform 
Boat and double divides in conformance with the 
IEEE 754 standard. 

If used while linking, has the same effects as -Kieee, 
and also enables floating point traps and undertlow 
traps. If used while compiling, has the same effects as 
-Kieee. 

IJ 
[~ 

[J 

(: 

I: 
I: 

IJ 



[
11 

.. ~ 

I: 
(.

-\10 

.-
(-.'" 

.'"' 

I: 
r: 

I~ 

I: 
(-: 

. ..J 

1··.~Cl 

-, 

I: 

[) 

Paragon TM System C Compiler User's Guide 

ICC (cont.) 

.Ilihrary 

·Ldirectory 

·m 

·M 

-MD 

ieee=strict 

noieee 

trap=fp 

trap=aiign 

Manual Pages 

ICC (cont.) 

If used while linking, has the same effects as 
·Kieee=enable, and also enables inexact traps. If used 
while compiling, has the same effects as ·Kieee. 

If used while linking, produces a program that flushes 
denormals to 0 on creation, which reduces underflow 
traps. If used together with ·lm, also links in a version 
of lihm.a that is not as accurate as the standard library, 
but offers greater performance. This library offers 
little or no support for exceptional data types such as 
INF and NaN, and will trap on such values when 
encountered. 

If used while compiling, tells the compiler to perform 
float and double divides using an inline divide 
algorithm that offers greater performance than the 
standard algorithm. This algorithm produces results 
that differ from the results specified by the IEEE 
standard by no more than three units in the last place. 

If used while linking, disables kernel handling of 
floating point traps. Has no effect if used while 
compiling. 

If used while linking, disables kernel handling of 
alignment traps. Has no effect if used while compiling. 

Load the library Ublibrary.a. The library is loaded from the first library 
directory in the library search path (see the ·L switch) in which a file of that 
name is encountered. (passed to the linker.) 

Adds directory to beginning of the Ii brary search path. Also see the nostdlib 
and nostartup options of the ·M switch. (passed to the linker; see the ld860 
manual page for more information on the library search path.) 

Produces a link map. (passed to the linker.) 

Outputs a list of include files to the standard output (used for makefile 
construction). 

Outputs a list of include files to file.d (used for makefile construction). 

0.15 



Manual Pages 

ICC (cont.) 

-Moption 

Paragon TIl System C Compiler User's Guide 

ICC (cont.) 

Requests specific actions from the compiler. The option values are as follows 
(an unrecognized -M option is passed directly to the compiler): 

allow_spacing Allows spacing around tokens such as "." and "@" 
when used with -ES. 

alpha Activate alpha-release compiler features. 

anno Produce annotated assembly files, where source code 
is intermixed with assembly language. -Mkeepasm or 
-S should be used as well. 

[no ]asmkeyword 

beta 

[no]bounds 

[Don't] allow the asm keyword in C source code 
(default-Masmkeyword). The format is: asm(" text") 

Activate beta-release compiler features. 

[Don't] enable array bounds checking (default 
-Mnobounds). With -Mbounds enabled, bounds 
checking is not applied to subscripted pointers or to 
externally-declared arrays whose dimensions are zero 
(extern arr[ D. Bounds checking is not applied to an 
argument even if it is declared as an array. If an array 
bounds checking violation occurs when a program is 
executed, an error message describing where the error 
occurred is printed and the program terminates. The 
text of the error message includes the name of the 
array, where the error occurred (the source file and line 
number in the source), and the value, upper bound, and 
dimension of the out-of-bounds subscript The name 
of the array is not included if the subscripting is 
applied to a pointer. 

Clear the internal registers after every procedure 
invocation. This option is used for diagnostic 
purposes. 

[~ 
(
-~ 

] 

[J 

l: 

concur=[option[,option ... ]] ( ~ 
Make loops parallel as defined by the specified ""'" 
options. option can be any of the following: 

I ~ altcode:count - Make innermost loops without -"l1lI 

reduction parallel only if their iteration count exceeds 
count. Without this switch, the compiler assumes a 

(~, default count of 100. __ 

- ~------ ------------------------------------------------------------



I: 
1·"11\ 

.~ 

r: 
I--.~ 

.j/I 

I: 
I~ 

[J 

I·"'l 

c.1 

I: 
1--, 

.-<oJ 

IJ 
I~ 

I: 
r: 

IJ 

Paragon™ System C Compiler User's Guide 

ICC (cont.) 

eneall 

epp860 

Manual Pages 

ICC (cont.) 

altcode Jeduetion:count - Make innennost loops 
with reduction parallel only if their iteration count 
exceeds count. Without this switch, the compiler 
assumes a default count of 200. 

dist:block - Make the outennost valid loop in any loop 
nest parallel. This is the default option. 

dist:eyelie - Make the outennost valid loop in any loop 
nest parallel. If an innennost loop is made parallel, its 
iterations are allocated to processors cyclically. That 
is, processor a perfonns iterations 0,3,6, ... ; processor 
1 perfonns iterations 1,4,7, ... ; and processor 2 
perfonns iterations 2, 5, 8, and so on. 

global_ veaehe - Directs the vectorizer to locate the 
cache within the area of an external array when 
generating codes for parallel loops. By default, the 
cache is located on the stack for parallel loops. 

noassoc - Do not make loops with reductions parallel. 

Make loops with calls parallel. By default, the 
compiler does not make loops with calls parallel since 
there is no way for the compiler to verify that the 
called routines are safe to execute in parallel. When 
you specify -Mcneall on the command line, the 
compiler also automatically specifies -Mreentrant. 

-Meneall also allows several other types ofloops to be 
made parallel: 

-loops with I/O statements 

- loops with conditional statements 

- loops with low loop counts 

- non-vectorizable loops 

If the compiler can detect a cross-iteration dependency 
in a loop, it will not make the loop parallel, even if 
-Mcneall is specified. 

Direct the internal preprocessor to not compress white 
space. 

0-17 



------.---------------.-~--~--~-"-.- -

Manual Pages 

ICC (cont.) 

C-18 

[no]dalign 

[no] debug 

[no]depchk 

doUar,char 

ParagontM System C Compiler User's Guide 

ICC (cont.) 

[Don't] align doubles in structures on 
double-precision boundaries (default -Mdalign). 
-Mnodalign may lead to data alignment exceptions. 

[Don't] generate symbolic debug information (default 
-Mnodebug). If -Mdebug is specified with an 
optimization level greater than zero, line numbers will 
not be generated for all program statements. 

[Don't]check for potential data dependencies (default 
-Mdepchk). This is especially useful in 
disambiguating unknown data dependencies between 
pointers that cannot be resolved at compile time. For 
example, if two floating point array pointers are passed 
to a function and the pointers never overlap and thus 
never conflict, then this switch may result in better 
code. The granularity of this switch is rather coarse, 
and hence the user must use precaution to ensure that 
other necessary data dependencies are not ovenidden. 
Do not use this switch if such data dependencies do 
exist. -Mnodepchk may result in incorrect code; the 
-Msafeptr switch provides a less dangerous way to 
accomplish the same thing. 

Set the character used to replace dollar signs in names 
to be char. Default is an underscore U. 

extract= [option[,option ... ]] 
Pass options to the function extractor (see the inline 
option for more information). The options are: 

[name:lfitnction-Extract the specified function. 
name: must be used if the function name contains a 
period 

[size:]number-Extract functions containing less than 
approximately number statements. 

If both number(s) andjimction(s) are specified, then 
functions matching the given name(s) or meeting the 
size requirements are extracted. 

The -ofile switch must be used with -Mextract to tell 
the compiler where to place the extracted functions. 
The name of the specified file must contain a period. 

[~ 

() 

IJ 
[J 

[
• ~l 

.""' 

[J 

( 1 
. ...J 

IJ 
IJ 
I) 

IJ 



I~··~ 

.. .lIiI 

1_"'. ' 
.JiIiJ 

r: 
r: 

I~' 

r'~ 

r: 
(.~ 

~J 

r: 
(. '-""] 

-J 

I~ 

r: 
I '''''. : 

101/ 

Paragon ™ System C Compiler User's Guide 

ICC (coot.) 

feon 

[no] frame 

[no]func32 

Manual Pages 

ICC (cont.) 

Treat non-suffixed floating point constants as float, 
rather than double. This may improve the 
performance of single-precision code. 

[Don't] include the frame pointer (default 
-Mnoframe). -Mnoframe can improve execution 
time and decrease code, but makes it impossible to get 
a call stack traceback when using a debugger. 

[Don't] align functions on 32-byte boundaries (default 
-Mfunc32). -Mfunc32 may improve cache 
performance for programs with many small functions. 

info=[option[,option ... ]] 
Produce useful information on the standard error 
output. The options are: 

time or stat-Output compilation statistics. 

loop-Output information about loops. This includes 
information about vectorization. software pipelining, 
and parallelization. 

concur-Same as -Minfo=loop. 

inline-Output information about functions extracted 
and inlined. 

cycles or block or size-Output block size in cycles. 
Useful for comparing various optimization levels 
against each other. The cycle count produced is the 
compiler's static estimate of freeze-free cycles for the 
block. 

i1i-Output intermediate language as comments in 
assembly file. 

all-All of the above. 

C-19 



--------------------- -

Manual Pages 

ICC (cont.) 

0-20 

Paragon™ System C Compiler User's Guide 

ICC (cont.) 

inline=[option[,option ... ]] 

keepasm 

IistL=name] 

nolist 

Pass options to the function inliner. The options are: 

[Db:]library-Inline functions in the specified inliner 
library (produced by -Mextract). If Db: is not used, 
the library name must contain a period. If no library is 
specified, functions are extracted from a temporary 
library created during an extract prepass. 

[name:lfUnction-Inline the specified function. If 
name: is not used, the function name must not contain 
a period. 

[size:]number-Inline functions containing less than 
approximately number statements. 

levels:number-Perform number levels of inlining 
(default 1). 

If both numberCs) and junction(s) are specified, then 
functions matching the given name(s) or meeting the 
size requirements are inlined. 

Keep the assembly file for each C source file, but 
continue to assemble and link the program. This is 
mainly for use in compiler performance analysis and 
debugging. 

Create a source listing in the file name. If name is not 
specified, the listing file has the same name as the 
source file except that the ".c" suffix is replaced by a 
".1st" suffix. If name is specified, the listing file has 
that name; no extension is appended. 

Don't create a listing file (this is the default). 

[no]longbranch [Don't] allow compiler to generate bte and btne 
instructions (default -M1ongbranch). 
-Mnolongbranch should be used only if an assembly 
error occurs. 

neginfo=concur 
Print information for each countable loop that is not 
made parallel stating why the loop was not made 
parallel. 

C"· . I 
\ 

[J 

(J 

[J 

IJ 
(J 
(~ 

"" 

I: 

I: 
C 



(: 
1··l'I 

.JiI 

r: 
I

-~ 

.... 

r: 

1_·,., 
JjJ 

r: 
r~ 

I: 
I: 

[: 

IJ 

Paragon 1M System C Compiler User's Guide Manual Pages 

ICC (cont.) ICC (cont.) 

nostartup Don't link the usual start-up routine (ertO.o), which 
contains the entry point for the program. 

nostddef Don't predefirie any system-specific macros to the 
preprocessor when compiling a C program. (Does not 
affect ANSI-standard preprocessor macros.) The 
system-specific predefined macros are __ i860, 
__ i860 __ , __ PARAGON __ , __ OSF1 __ , 
__ PGC _, _PGC _, _ COFF, unix, MACH, CMU, 
__ 1860 __ , _1860_, __ 1860, )860_, OSF1_ ADFS, 
OSFIAD,and __ NODE L_ NODE is only defined 
when compiling with -nx). See also-U. 

nostdinc Remove the default include directory (lusr/include for 
cc, $(PARAGON_ XDEV)/paragon/include for icc) 
from the include files search path. 

nostdlib Don't link the standard libraries (libpm.o, guard.o, 
libc.a,libic.a, and libmach3.a) when linking a 
program. 

[no]perfmon [Don't] link the performance monitoring module 
(libpm.o) (default -Mperfmon). See theParagon(TM) 
System Application Tools User's Guide for 
information on performance monitoring. 

prof=x This option is ignored. 

[no ]quad [Don't] force top-level objects (such as local arrays) of 
size greater than or equal to 16 bytes to be 
quad-aligned (default -Mquad). Note that -Mquad 
does not affect items within a top-level object; such 
items are quad-aligned only if appropriate padding is 
inserted. 

reloc libs Causes -I switches that appear before source or object 
file names on the compiler command line to appear 
after these file names on the Id command line. 

[no]reentrant [Don't] generate reentrant code (default 
-Mreentrant). -Mreentrant disables certain 
optimizations that can improve performance but may 
result in code that is not reentrant. Even with 
-Mreentrant, the code may still not be reentrant if it is 
improperly written (e.g., declares static variables). 
-Mnoreentrant is currently ignored by the compiler. 

C-21 



Manual Pages 

ICC (cont.) 

0-22 

Paragon™ System C Compiler User's Guide 

ICC (cont.) 

retain static Do not eliminate static data that is not referenced. 

safeptl'= [option [,option ... ]] 
Override data dependence between C pointers and 
arrays. This is a potentially very dangerous option 
since the potential exists for code to be generated that 
will result in unexpected or incorrect results as is 
defined by ANSI C. However, when used properly, 
this option has the potential to greatly enhance the 
perfonnance of the resulting code, especially floating 
point oriented loops. Combinations of the options may 
be used and interact appropriately. 

dummy or arg-C dummy arguments (pointers and 
arrays) are treated with the same copyinlcopyout 
semantics as Fortran dummy arguments. 

auto-C local or auto variables (pointers and arrays) 
are assumed not to overlap or conflict with each other 
and are independent. 

static-C static variables (pointers and arrays) are 
assumed to not overlap or conflict with each other and 
to be independent 

global-C global or extern variables (pointers and 
arrays) are assumed to not overlap or conflict with 
each other and to be independent. 

schar Treat ordinary char declarations as signed char. This 
is the default condition. 

[no]signextend [Don't] sign extend when a narrowing conversion 
overflows (default -Msignextend). For example, if 
-Msignextend is in effect and an integer containing 
the value 65535 is converted to a short, the value of 
the short will be -1. This option is provided for 
compatibility with other compilers, even though ANSI 
C specifies that the result of such conversions are 
undefined. -Msignextend will decrease perfonnance 
on such conversions. 

[no]single [Don't] suppress the ANSI-specified conversion of 
ftoat to double when passing arguments to a function 
with no prototype in scope (default -MnosingIe). 
-Msingle may result in faster code when single 
precision is used a lot, but is non-ANSI compliant 

(J 

[J 

[J 

I: 

IJ 



1','"11',' 

Jiij 

I
"~ 

.. 

I
'~ 

.. 
I

·~ 

,>'I 

(: 
I'''' 
(

' ,~4 

.. ' 

I: 
1_,., 

. -1,""1 

I',·~ 
,M 

IJ 

Paragon TM System C Compiler User's Guide 

ICC (cont.) 

spliUoop_opS=n 

Manual Pages 

ICC (cont.) 

Set a threshold of n floating-point operations within a 
loop. Innennost loops whose number of floating-point 
operations exceeds n are split. Each floating-point 
operation counts as two. The default for n is 40 when 
-Mvect is used. 

nospliUoop _ ops 
Do not split loops when the floating-point operation 
threshold is exceeded. When -Mvect is specified, 
innennost loops whose number of floating point 
operations exceed 40 are split by default. This switch 
turns the default off. 

split_loop Jefs=n 
Set a threshold of n array element loads and stores 
within a loop. Innennost loops whose number of loads 
and stores exceeds n are split. The default for n is 20 
when -Mvect is used. 

nosplit)oop Jefs 
Do not split loops when the array element loads and 
stores threshold is exceeded. When -Mvect is 
specified. innennost loops whose number of array 
element loads and stores exceeds 20 are split by 
default. This switch turns the default off. 

[no ]streamall [Don't] stream all vectors to and from cache in a vector 
loop (default -Mstreamall). When -Mnostreamall is 
in effect, the compiler chooses one vector to come 
directly from or go directly to main memory, without 
being streamed into or out of cache. 

[no]strideO [Don't] inhibit certain optimizations and allow for 
stride 0 array references. -MstrideO may degrade 
perfonnance, and should only be used if zero stride 
induction variables are possible. (default 
-MnostrideO). 

ucbar Treat ordinary char declarations as unsigned char . 

0.23 



Manual Pages 

ICC (cont.) 

C,24 

Paragon 1M System C Compiler User's Guide 

ICC (cont.) 

unroll[=option [,option ... ]] 

nounroll 

Invoke the loop unroller and set the optimization level 
to 2 if it is set to less than 2. option is one of the 
following: 

c:m - Completely unroll loops with a constant loop 
count less than or equal to m. If m is not supplied, the 
default value is 4. 

n:u - Unroll loops that are not completely unrolled or 
have a non-constant loop count u times. If u is not 
supplied, the unroller computes the number of times a 
loop is unrolled. 

Do not unroll loops. 

vect[ =option[,option ... ]] 
Perfonn vectorization (also enables -Mvintr). If no 
options are specified, then all vector optimizations are 
enabled. The available options are: 

altcode[:number] -Produce non-vectorized code to be 
executed if the loop count is less than or equal to 
number. Otherwise execute vectorized code. The 
default value for number is 10. 

cachesize:number-Sets the size of the portion of the 
cache used by the vectorizer to number bytes. Number 
must be a multiple of 16, and less than the cache size 
of the microprocessor (16384 for the i860 XP, 8192 
for the i860 XR). In most cases the best results occur 
when number is set to 4096, which is the default (for 
both microprocessors). 

noassoc-When scalar reductions are present (for 
example, dot product), and loop unrolling is turned on. 
the compiler may change the order of operations so 
that it can generate better code. This transfonnation 
can change the result of the computation due to 
round-off error. The use of noassoc prevents this 
transfonnation. 

[no ]recog-[Don't] Recognize certain loops as simple 
vector loops and call a special routine. 

[J 

/f"'1 
j ~J 

lJ 
IJ 
IJ 
IJ 



( .. ~ 
'" 

(~ 

(9 

r: 

I~ 

I: 
I ,," 

~I 

I ~' 

....,; 

I ··~ 

.JIO 

Paragon TM System C Compiler User's Guide 

ICC (cont.) 

-nostdinc 

[no]vintr 

[no]xp 

Manual Pages 

ICC (cont.) 

smallvect[:number]-Allow the vectorizerto assume 
that the maximum vector length is no greater than 
number. Number must be a multiple of 10. If number is 
not specified, the value 100 is used. This option allows 
the vectorizer to avoid stripmining in cases where it 
cannot determine the maximum vector length. In 
doubly-nested, non-perfectly nested loops, this option 
can allow invariant vector motion that would not 
otherwise have been possible. Incorrect code will result 
if this option is used, and a vector takes on a length 
greater than specified. 

streamlim:n Sets a limit for application of the vectorizer 
data streaming optimization. If data streaming requires 
cache vectors of length less than n, the optimization is 
not performed. Other vectorizer optimizations are still 
performed. The data streaming optimization has a high 
overhead compared to other loop optimizations, and can 
be counter-productive when used for short vectors. The 
n specifier is not optional. The default limit is 32 
elements if streamlim is not used. 

transform-Perfonn high-level transformations such as 
loop splitting and loop interchanging. This is normally 
not useful without -Mvect=recog. 

-Mvect with no options means 
-Mvect=recog,transform,cachesize:4096,a1tcode:l0. 

[Don't] perform recognition of vector intrinsics (default 
-Mnovintr, unless -Mvect is used). 

[Don't] use i860 XP microprocessor features (default 
-Mxp). 

Equivalent to -Mnostdinc. 

C-25 



Manual Pages 

ICC (cont.) 

-ox 

-ofile 

-O[level] 

0-26 

Paragon 1M System C Compiler User's Guide 

ICC (cont.) 

Creates an executable application for multiple nodes. 

• Using -ox while compiling defines the preprocessor symbol __ NODE. 

Using -ox while linking creates an application that automatically copies 
itself into multiple nodes. It also links in libnx.a, the library that contains 
the calls in the Paragon(TM) System C Calls Reference Manual. In 
addition, it links in libmach.a and optionslautoinit.o. You can control the 
execution of an application linked with -ox by using command-line 
switches and environment variables, as described in the Paragon(TM) 
System User's Guide. 

-node is currently accepted as a synonym for -ox, but this support may be 
dropped in a future release. 

Uses file for the output file, instead of the default a.out (or file.o if used with 
the -c switch). 

Set the optimization level: 

o 

1 

2 

3 

4 

A basic block is generated for each C statement. No 
scheduling is done between statements. No global 
optimizations are performed. 

Scheduling within extended basic blocks is performed. 
Some register allocation is performed. No global 
optimizations are performed. 

All level 1 optimizations are perfonned. In addition, 
traditional scalar optimizations such as induction 
recognition and loop invariant motion are performed 
by the global optimizer. 

All level 2 optimizations are perfonned. In addition. 
software pipelining is perfonned. 

All level 3 optimizations are perfonned, but with more 
aggressive register allocation for software pipelined 
loops. In addition. code for pipelined loops is 
scheduled several ways, with the best way selected for 
the assembly file. 

If a level is not supplied with -0, the optimization level is set to 2. If -0 is not 
speCified, the default level is 1. Setting optimization to levels higher than 0 
may reduce the effectiveness of symbolic debuggers. 

(~ 

(: 
j 

[J 

~ ~i 

l!.. .... .' 

I: 

(, ."""1 
...... 

(J 

(J 



r: 
r: 
r: 
r: 

I · ... 
,J 

1_,"1 

~I 

,I' '~I 
._1 

('-~ ,.: 
( -~, 

0, 

I "'" 
, , ",I 

I ~I 

I: 
I ~ 

r: 
I: 

IJ 

Paragon 1M System C Compiler User's Guide 

ICC (cont.) 

-p 

-P 

-r 

-s 

-S 

-Uname 

-v 

-v 

-vv 

Manual Pages 

ICC (cont.) 

This option is ignored. 

Preprocesses each file and leaves the output in a file named file.i for each file 
named file.c. 

Generates a relinkable object file. (passed to the linker.) 

Strips symbol table information. (passed to the linker.) 

Skips the link and assemble step. Leaves the output from the compile step in 
a file namedfile.s for each file namedfile.c. 

Removes any initial definition of name in the preprocessor. (See also the 
nostddef option of the -M switch.) Since all-D switches are processed before 
all -U switches, the -U switch can be used to ovenide the -D switch. 

The following macro names are predefined: __ UNE __ , __ FILE __ , 
__ DATE __ , __ TIME __ , __ smc __ , __ i860, __ i860 __ , 
__ PARAGON __ , __ OSF1 __ , __ PGC __ , _PGC _, _ COFF, unix, MACH, 
CMU, __ 1860 __ , _1860_, __ 1860, _i860_, OSF1_ADFS, OSFIAD, and 
__ NODE C_ NODE is only defined when compiling with -ox or -node). 
Note that some of these macro names begin and/or end with two lUlderscores. 

Prints the entire command line for each tool as it is invoked, and invokes each 
tool in verbose mode (if it has one). 

Prints the version banner for each tool (assembler, linker, etc.) as it is 
invoked. 

Displays the driver version number and the location of the online release 
notes. No compilation is performed. 

-Wpass,option[,option ... ] 
Passes the specified options to the specified pass: 

° (zero) Compiler. 

a Assembler. 

Linker. 

Each comma-delimited string is passed as a separate argument. 

C-27 



Manual Pages 

ICC (cont.) 

0-28 

Paragon ™ System C Compiler User's Guide 

ICC (cont.) 

-X(a I cis I till 0) 
Specify the degree of ANSI C confonnance. 

a 

c 

s 

t 

o 

ANSI mode. The compiled language confonns to all 
ANSI features. __ STDC __ is defined to be zero. 

Confonnance mode. The compiled language confonns 
to ANSI C, but warnings may be produced about some 
extensions. __ STDC __ is defined to be one. This is 
the most strict of the ANSI C confonnance options. If 
you want to write full ANSI-confonnant code, you 
should use the -Xc option 

Pre-ANSI mode. The compiled language includes all 
features compatible with the C language as defined in 
The C Programming Language, by Kernighan and 
Ritchie (pre-ANSI C). The compiler warns about all 
language constructs that differ between ANSI C and 
pre-ANSI C. 

Transition mode. This is ANSI C plus pre-ANSI C 
compatibility extensions without the semantic changes 
required by ANSI C. Where ANSI C and pre-ANSI C 
specify different semantics for the same construct, the 
compiler issues a warning and uses the pre-ANSI C 
interpretation. 

Treat [un]signed int and [un]signed long as the same 
data type. When you use this switch, debug records for 
[un]signed long are type [un]signed into 

Execute the R4.l.1 version of ic. 

By default __ STDC __ is defined to be one and ANSI confonnance is 
relaxed. 

(
."11'1 

.. ~ 

( 
.. 'l"1 

, , 

..Ioi 

I!" 1~1 ,,-

"I·~, ' , 

..; 

IJ 
(J 

(' ..;,.J 

(~." , i 
.J 

c 



Paragon ™ System C Compiler User's Guide 

r: 
[ ' . 

. 1;1 

I
'~ 

.A ICC (cont.) 

1''''1 

... -Ypass,directory 

I: 
1_, 

. .,j 

1'''1 

.~ 

r-" 
( ..• ., 
" .,J 

I.""" 
-.A<.) 

I''''· 
. ...J 

Files 

I""'~ 

.~I 

a.out 

Jik.a 

1""1 

. ", 
Jik.c 

( '" 
~J 

Jik.d 

Jik.i 

1
~"'1, 

'" 
Jik.lst 

I: Jik.o 

Jik.s 

c 

Manual Pages 

ICC (cont.) 

Looks for the specified pass in the specified directory (rather than in the default 
location), where pass is one of the following: 

o (zero) Compiler executable file. 

a Assembler executable file. 

I linker executable file. 

s Startup object files. 

I Standard include files. 

L Standard libraries (passes -YLdirectory to the linker). 

u Secondary libraries (passes -YUdirectory to the linker). 

p All libraries (passes -YPdirectory to the linker). 

See the Id860 manual page for more information on the -YL, -YU, and -yP 

switches . 

Executable output file. 

library of object files. 

C source file . 

list of include files produced by -MD. 

C source file after preprocessing. 

listing file produced by -MUst 

Object file. 

Assembler source file. 

0-29 



Manual Pages 

ICC (cont.) 

C-3O 

Paragon™ System C Compiler User's Guide 

ICC (cont.) 

The following files and directories are used in the cross-development environment (icc). 
PARAGON _ XDEV is an environment variable that can be set to the root of the compiler installation 
directory. If PARAGON _ XDEV is not set, the default is lusrlparagonlXDEV. The directory where 
the driver, compiler, and tools are located must be included in your path. For Sun4 users, for 
example, $PARAGON _ XDEVlparagonlbin.sun4 would be included in the path. 

$(P ARAGON _ XDEV)lparagonlbin.arch 

$(P ARAGON _ XDEV )lparagonibin.rJJ:d1Jicc 

$(PARAGON_XDEV)lparagonibin.archlic 

Directory containing executables for system t:Ilfil 
(m:Q:! identifies the architecture of the system, e.g. 
sgi or suo4). 

C compiler driver. 

C compiler. 

$(PARAGON_XDEV)lparagonibin.archlas860 Intel (COFF) assembler. 

$(PARAGON_XDEV)lparagonibin.rJJ:d1Jld860 Intel (COFF) linker. 

$( PARAGON _ XDEV )Iparagonlinclude Standard include directory. 

$(PARAGON _ XDEV)lparagonllib-cojJ Standard library directory. 

$(PARAGON_ XDEV)lparagonllib-cofficrtO.o C start-up routine. 

$( PARAGON _ XDEV )Iparagonllib-coffilibpm.o Performance monitoring module. 

$(PARAGON_XDEV)lparagonllib-coffiguard.o Barrier between user and system code. 

$( PARAGON _ XDI!.'V )/paragonllib-cofJIlibc.a Standard C library. 

$(PARAGON_XDEV)lparagonllib-coffilibic.a C built-in intrinsic library. 

$(P ARAGON _ XDEV )Iparagonllib-coffilibmach.a 
Mach operating system library. 

$(PARAGON _ XDEV)lparagonllib-coffinoieee Library directory used when linking with 
-Knoieee (contains non-IEEE version of libm.a). 

$(P ARAGON _ XDEV)lparagonllib-coffi optionslautoinit.o 
Routine linked in when -ox is used. 

[ -.., 

• 
r"'1 
'--AI 

I.'" 
j 

1!~: 
~M! 

(J 

11 
All 



( .. "" 
Ai 

1-.: .. 

I : 
t: 
r:: 
r

-~ 

~, 

I: . ...., 
. ...J 

1-"'1 

~. 

1-·"'1 
, 

...... j 

I: 
I· --, 

_I 

,"-
I· ."1 

.J.,J 

[~ 

1"'1 

~.4,J 

(J 

u 

Paragon TM System C Compiler User's Guide Manual Pages 

ICC (cont.) ICC (cont.) 

The following files and directories are used by default in the native environment (cc). If I is not the 
root of the compiler installation directory, you must set PARAGON _ XDEV to this directory and add 
$PARAGON .J(DEVlusrlccslbin to your path. 

lusrlccslbin 

lusrlccslbinlcc 

lusrlccslbinlic 

lusrlccslbinlas 

lusrlccslbinlld 

lusrlinclude 

lusrllib 

lusrlliblcrtO.o 

lusrllibllibpm.o 

lusrllibl guard.o 

lusrllibllibc.a 

lusrllibllibic.a 

lusrllibl I libmach.a 

lusrlliblnoieee 

I usrllibl optionslautoinit.o 

Directory containing executables. 

C compiler driver. 

C compiler. 

Assembler. 

Linker . 

Standard include directory. 

Standard library directory. 

C start-up routine. 

Performance mOnitoring module. 

Barrier between user and system code. 

Standard C library. 

C built-in intrinsic library. 

Mach operating system library. 

Library directory used when linking with 
-Knoieee (contains non-IEEE version of libm.a). 

Routine linked in when -nx is used. 

Environment Variables 

The environment variable MAKECPP is supported. MAKECPP is a colon-separated list of 
directories that is added to the compiler search path for include files. 

If you use the -Knoieee switch and define LP A1H or PARAGON _ LPA1H, be sure that the directory 
containing the noieee versions of libf.a and libm.a is listed before a directory containing the ieee 
versions of these libraries. If in doubt, compile with the -v switch to see which libraries are linked 
in. See the Id860 manual page for more information. 

0-31 



Manual Pages 

ICC (cont.) 

Diagnostics 

See Also 

c-32 

Paragon™ System C Compiler User's Guide 

ICC (cont.) 

The compiler produces information and error messages as it translates the input program. The linker 
and assembler may generate their own error messages. 

ar860, as860, dump860, if77, ifixlib, Id860, nm860, size860, strip860 

~ '", 

IA . ..J 

[ "'1 
• I ... 

I: 
l: 

IJ 
[~ 



Paragon ™ System C Compiler User's Guide Manual Pages 

r: 
I: 

IFIXLIB IFIXLIB 

Update an inliner library directory. 

I~ 
Syntax 

I : ifixlib library_name 

r" Arguments 

I,','" 
<.', 

( ''''''' 
,~ 

r: 
I~' 

I ,: 

1= 

I: 
1:', 'I : 

Description 

See Also 

library_name The name of an inliner library. 

An inliner library is implemented as a directory. For each element of the library, the directory 
contains a file containing the encoded form of the inlinable function. A special file named TOe 
serves as a directory for the library. This is a printable ASCII file that can be examined for 
information about the library contents. When an element is added to or removed from the library, 
the TOe file becomes out of date. The itixHb command updates the TOe file for the specified inliner 
library. 

icc, if77 



Manual Pages Paragon'" System C Compiler User's Guide 

LD860 LD860 
. . :":".:..." .. " ...... : .. ::.: ...... : .. :.::":.::.". . 

Id860, Id: link editor for Paragon(TM) system object files. 

Cross-Development Syntax 

Id860 [ switches] filename ... 

Native Syntax 

Arguments 

Id [ switches] filename ... 

filename The name of the object file or library. 

You may specify the following switches in any order: 

·B integer 

·contig 

·d integer 

·debug 

·D 

·D integer 

·e symbol 

• f filelist 

·k 

Specify the address to use for the base of the .bss section for all following object 
. modules. This switch may be used multiple times, and affects only objects that 

appear after the switch in the command line. 

Force the .data section to follow the .text section. Overrides ·d. 

Specify the address at which the .data section is to be loaded. The default is 
Ox40 1 0000. 

Provide a listing of where routines are referenced. 

Display the C++ .debug section. 

Specify the length of the .data section to be integer bytes. The .data section is 
padded with zero to the specified length, which may not be less than the summed 
length derived from the object modules. 

Specify symbol as the entry-point. The default entry-point is start. 

Read in a list of files to be linked from file filelist. Names in the file can be 
separated by a comma, a space, a tab, or a linefeed. This switch may be used 
multiple times. 

Start the .text and .data sections exactly at the addresses specified by the • T and 
·d switches (or at the defaults if the switches are not given) without performing 
the nonnal modifications to those addresses to make the file pageable. 

( .", 

'.~ 

c 

I "'!· .. ...w 

I: 
I: 
(J 



(
"'1\11,' ... 

1'11', ' 

.oi.i 

r: 
(~ 

(
-"'I 

~I 

( ... .., 
.-401 

I
'~ 

' .. ~ 

I·-~ 

"" 

I
"~ 

."'-1 

I'''': 
. .-..1 

1'1 

oJ 

(] 

Paragon no System C Compiler User's Guide Manual Pages 

LD860 (cont.) 

-Ilibrary 

-L 

-Ldirectory 

-m 

-oobjfile 

-p 

-P integer 

-r 

-s 

-t 

LD860 (cont.) 

Load the library Iiblibrary.a. The library is loaded from the first library directory 
in the library search path in which a file of that name is encountered. 

Display the C++ Jine section. 

Add directory to the beginning of the library search path. 

Generate a link map (listing of modules and addresses). 

Put the output object file in ob jfile. If this switch is not specified, the default object 
file name is a.out. If a file with the same name already exists, it is silently replaced 

Align the .data section of the following module on a logical page boundary. 
(Other switches may appear between -p and the filename.) This switch may be 
repeated as necessary, and applies only to the next object file. 

Set the logical page size to integer bytes (default 65536). The value of integer 
must be a power of two multiple of 4096 bytes. 

Retain relocation entries in the output object file to allow incremental linking. The 
output object file produced with -r can be used as an input object file in another 
link. When -r is used, -0 must also be specified . 

Strip all symbols from the output object file. 

Display the name of each object file or library as it is processed. 

-T integer Specify the address at which the .text section is to be loaded. The default is 
OxlOOOO. If used without -d, implies -contig. 

-u symbol Initialize the symbol table with symbol. The linker considers symbol to be 
undefined. 

-V Display the tool banner (tool name, version, etc.). 

-yfile Load the library file. The library is loaded from the first library directory in the 
library search path in which a file of that name is encountered. (-y is like -I, but 
uses the specified filename without modifications.) 

-YLdirectory Replace the standard library directory (the first directory in the library search 
path) with directory . 

• YUdirectory Replace the secondary library directory (the second directory in the library search 
path) with directory. 

-YPdirectory Replace the entire library search path with directory. 



Manual Pages Paragon™ System C Compiler User's Guide 

LD860 (cont.) LD860 (cont.) 

Description 

Use Id860 to link-edit the named file(s). 

Object files and libraries are processed in the order specified. 

Ubraries are searched for unsatisfied externals when they are processed, and are not reopened to 
satisfy any symbols that might not have been satisfied. The search for libraries is done in the 
following order: 

• If PARAGON _ LPATH is defined, it is searched. 

If PARAGON _ LP ATH is not defined and LPATH is defined, it is searched. 

Any directories specified using the -L switch prior to -Uibname on the command line are 
searched. 

The standard default libraries are searched In the cross-development environment, the default 
library directories are: 

$PARAGONjWEVlparagonllib-cojJ:$PARAGON_XDEVlparagonllib-cofjloptions 

In the native environment, the default library directories are: 

$PARAGON_XDEVlusrllib :$PARAGON_XDEVlusrllibloptions 

If PARAGON _ XDEV is not set, lusrllib:/usrllibloptions is the default. 

The search path used by the -1 switch can be modified by any -L, -YL, -YU, or-YP switch to the 
left of the -I switch on the command line. The effect of these switches is cumulative. 

The -r switch requires the -0 switch. 

If the -r and the -s switches are used together, the -s switch is ignored. 

If the -r and the -e switches are used together, the -e switch is ignored. 

If the -f switch is used, the -B and -p switches are applied as if the object file names appeared in 
place of the -f switch. 

~~~- "-----"-""-

[J

I'f-'-'
i
iA-

I:

I:
I:

I".'''.' -
[:
I

~

.till

r·.,
.AJ

1"'1'1

.. !

1.=

(-!

I:

I~

r~'

I
···~

. .l

r;
IJ

Paragon TM System C Compiler User's Guide Manual Pages

LD860 (cont.) LD860 (cont.)

The·d (data start address) and·T (text start address) switches interact as follows:

• If neither the ·d nor the • T switch is used, the data and text start addresses default.

If the ·d switch is used without· T (that is, if a data start address is specified, but no text start
address is specified), then the data start address specified is used, and the text start address
defaults.

If the • T switch is used without ·d (that is, if a text start address is specified, but no data start
address is specified), then the specified text start address is used, and the data section starts on
the next logical page boundary following the end of the text section.

• If both the ·d and • T switches are used, the specified data and text start addresses are used.

Special Symbols

NOTE

Specifying addresses for the text and data sections different from
the defaults may preclude the usage of profiling and performance
monitoring tools. These tools require a gap between the text and
data sections that is at least as long as the text section.

The profiling tools cannot be used on executables with a text
section larger than 32 Mb, although such applications can be
executed.

The following symbols have special meanings to Id860:

The next available address after the end of the output section .text.

edata The next available address after the end of the output section .data.

The next available address after the end of the output section .bss .

Programs should not use any of these as external symbols.

The symbols described above are those actually seen by Id860. Note that C and several other
languages prepend an underscore U to external symbols defined by the programmer. This means
that, for example, you cannot use end as an external symbol. If you use any of these names, you must
limit its scope by using the static keyword in the declaration or declare the symbol to be local to the
function in which it is used. If this is not possible, you will have to use another name.

0-37

Manual Pages Paragon 1M System C Compiler User's Guide [~

[J

[J

LD860 (cont.) LD860 (cont.)

See Also

ar860, as860, dump860, icc, if77, nm860, size860, strip860

I:
I:
[J

c-3S

I
"~

-AI

I·.,.,
-"

I~

1,-
_-W

(
-'"'1

__ -1

1_""
:_-,

I -~_.,
.J

I
-~

~.

I-_~

-'",

I ",
.. ...!

(J

Paragon 1M System C Compiler User's Guide Manual Pages

MAC860 MAC860
. . ":.". .".. . ::...

mac860, mac: Macro preprocessor for the Paragon(TM) system.

Cross-Development Syntax
mac860 [switches] source file

Native Syntax

Arguments

Description

See Also

mac [switches] source file

source file Source file containing assembler and macro preprocessor commands.

You may specify the following switches in any order:

-Dsym=val

-Iincfile

-oobifile

-v

-y

Defines sym as a local symbol with the value val in the macro preprocessor.

Includes the file incfile before the first statement of source file. You can use at
most one -I switch in a single mac860 command.

Sets the output file name to obifile (the default is the name of the source file with
any .s suffix removed and .mac appended).

Displays the tool banner (tool name, version. etc.).

Makes the macro preprocessor output special directives that the assembler can use
for better reporting of line numbers in the source file when errors are detected.

The mac860 command preprocesses the specified source file with the macro preprocessor and
produces a source file ready to be assembled with as860.

as860,ar860,duoonp860,ld860,mrnn860,mze860,sbip860

Manual Pages Paragon 1M System C Compiler User's Guide

NM860 NM860
." ::: ::.:": .. " :". ":: " .' .. :,"."": .:::: ".: ..

nm860, nm: Displays symbol table infonnation for Paragon(TM) system object files.

Cross-Development Syntax
nm860 [switches] filename ...

Native Syntax
nm [switches] filename ...

Arguments

filename The name of the object file or library.

You may specify the following switches in any order:

-d Display numbers in decimal.

-e Display external relocatable symbols only.

-f Display all symbols, including redundant symbols. Overrides -e.

-h Suppress headers.

-0 Sort symbols by name.

-0 Display numbers in octal.

-p Use short form output. (See "Description" section.)

-r Prepend the cutrent file name to symbols.

-T Truncate symbol names to 19 characters, plus an asterisk to indicate truncation.

-u Display a list of undefined symbols.

-v Sort symbols by value.

-v Display the tool banner (tool name, version, etc.).

-x Display numbers in hexadecimal (default).

0-40

[J

[J

J"l
I._-"'>i

[J

I'~

I:
I:
I:

r:
(-,

,

lOI

r., ,=1

.cJ

I:

[J

Paragon 1M System C Compiler User's Guide Manual Pages

N M860 (cont.) NM860 (cont.)

Description

See Also

Use nm860 to display the symbol tables of the named file(s).

For each symbol in the output of the -p switch, one of the following characters identifies its type:

a Absolute.

b BSS section symbol.

c Common symbol.

d Data section symbol.

f File tag.

r Register symbol.

s Other symbol.

t Text section symbol.

u Undefined.

In addition, the characters associated with local symbols appear in lowercase and the characters
associated with external symbols appear in uppercase.

When using the -v or -n switches (sort by value or name, respectively), the scoping information is
jumbled, so it is advisable to use the -e (externals only) switch.

as860, ar860, dump860, icc, ir77, Id860, size860, strip 860

0-41

Manual Pages Paragon™ System C Compiler User's Guide

SIZE860 SIZE860

size860, size: Displays section sizes of Paragon(TM) system object files.

Cross-Development Syntax
size860 [switches] filenames

Native Syntax

Arguments

Description

C-42

size [switches] filenames

filename The name of the object file.

You may specify the following switches in any order:

-d Display sizes in decimal (default).

-r Full output.

-n Display the sizes of non-loading sections, as well.

-0 Display sizes in octal.

-v Display the tool banner (tool name, version. etc.).

-x Display sizes in hexadecimal.

Use size860 to display the section sizes of the named files.

Note that the total size of an executable object may be greater than or less than the total of the sizes
of all the compiled objects that make up the executable. This is because the true size of the BSS
section is not known until after a set of objects is loaded, and because padding is done by Id860 on
other sections.

IJ

I]

[J

f "'I

Ii."..

I:
I.

·~·i

""

IJ

c
r""1

j".

I:
[:
r--"

~

[--~

--'"

I "'"
_.J

1=
I~-'

(""
,.J

r:
[:
I ~'

"~

I:
I

""~

-'-'

I "~
-,

I~

I~

IJ
r'1
l~

C

Paragon ™ System C Compiler User's Guide Manual Pages

SIZE860 (cont.) SIZE860 (cont.)

See Also

as860, ar860, dump860, icc, irT7, Id860, nm860, strip860

0-43

Manual Pages Paragon™ System C Compiler User's Guide

STRIP860 STRIP860
. ". :.:. '":'. :.. . ":. " .. :.". ." " ... " '.

strip860, strip: Strips symbol information from Paragon(TM) system object files.

Cross-Development Syntax
strip860 [switches] filename ...

Native Syntax
strip [switches] filename ...

Arguments

filename The name of the target object file.
~ -.. I , '

.Ji1

You may specify the following switches in any order:

-I Strip line number information only.

-r Do not strip static, external, or relocation information.

-v Display the tool banner (tool name, version. etc.).

Description

Use strip860 to strip symbol information from object files.

The default is to strip all symbols. This is generally only acceptable for executables.

See Also

as860, ar860, dump860, icc, if77, 1d860, nm860, size860

(J

C44

(-.'lP .• ,.

r:
(~:

r:
(

"""1

.w

Ie:
(',.,

~.

I:
(
'~

,-,,"

I~!

1= -.~

I:
I:
("""

.j

~
I..

Paragon TM System C Compiler User's Guide Manual Pages

dv_acos(), dv_asinO, dv_atanO, dv_atan20, dv_cosO, dv_divO, dv_expO, dv_logO, dvJoglO(), dVJ)owO,
dVJecpO, dVJsqrtO, dv_sinO, dv_sqrtO, dv_tanO: Perfonn mathematical operations on double vectors.

Synopsis
void dv _ acos(

int n,
double *x,
int incx,
double *z,
int inez);

void dv _ asin(
int n,
double *x,
int incx,
double *z,
int inez);

void dv _ atan(
int n,
double *x,
int incx,
double *z,
int inez);

void dv _ atan2(
int n,
double *x,
int inex,
double *Y.
int incy,
double *z.
int inez);

045

Manual Pages

DV_ACOSO (cont.)

046

void dv _ cos(
int n,
double *x,
int incx,
double *z,
int inez);

void dv _ div(
int n,
double *x,
int inex,
double *y,
int incy,
double *z,
int inez);

void dv _ exp(
int n,
double *x,
int incx,
double *z,
int inez);

void dv _Iog(
int n,
double *x,
intinex,
double *z,
int inez);

void dv _loglO(
int n,
double *x,
int incx,
double *z,
int inez);

Paragon™ System C Compiler User's Guide

DV _ACOSO (cont.)

(]

~:

I:
I:
(
'--"'1

.J

(J

IJ

[:
1·.·.'111 ..

I :
I:
I:
I:
I :
I~'

I
I~.
I~

I"
1-'

I -.'

I

I·.··""t

!.IIiJ

1'.''''11\.'.''

io!

Paragon ™ System C Compiler User's Guide

DV _ACOSO (cont.)

void dv JJOW(
int n,
double *x,
int inex,
double *y,
int iney,
double *z,
int inez);

void dv _ recp(
int n,
double alpha,
double *x,
int inex,
double *z,
int inez);

void dv _ rsqrt(
int n,
double *x,
int incx,
double *z,
int inez);

void dv _sine
int n,
double *x,
int inex,
double *z,
int inez);

void dv _sqrt(
int n,
double *x,
int inex,
double *z,
int inez);

Manual Pages

DV_ACOSO (cont.)

C-47

Manual Pages Paragon™ System C Compiler User's Guide

DV_ACOSO (cont.) DV _ACOSO (cont.)

void dv _ tan(
int n,
double *x,
int incx,
double *z,
int inez);

Description of Parameters

Discussion

C-48

n The number of elements in the vectors X, y, and z.

x, Y Input (argument) vectors.

z Output (result) vector.

incx, incy, incz The strides (increments) of vectors x, y, and z, respectively (may be zero).

alpha A scalar multiplier for dv Jeep.

These functions, called the vector intrinsics, perform the following mathematical operations on
arrays (vectors) very efficiently. You can specify the number of vector elements and the strides of
each input vector and the result vector.

Vector arccosine (z[i] = acos(x(i])).

Vector arcsine (z[i] = asin(x[i])).

Vector arctangent (z[i] = atan(x[ll)).

Vector arctangent from two arguments (z[i] = atan2(x[i], y[i]».

Vector cosine (z[i] = cos(x[i])).

Non-IEEE vector divide (z[i] = y[i]/x[i]).

Vector exponential (z[i] = exp(x[i])).

Vector natural log (z[i] = log(x[i])).

Vector logarithm loglO (z[i] = loglO(x[i])).

C
"[""''''1. "' ...

1""1

"jJ

~.''''I
." '

. ..",

I:
[
""1

;:.1IOi

I:
l:
l:

11I!,

•.. ~

I· ...
. JJ

I:
(. ...,.' .

.oJ

IJ
I:

(~

I:

Paragon ™ System C Compiler User's Guide Manual Pages

DV_ACOSO (cont.) DV_ACOSO (cont.)

Example

See Also

dvJlOwO Vector power (z[zl = x[i]y[i]).

Non-IEEE reciprocal times a scalar (z[i] = alpha/x[ll).

dVJsqrtO Non-IEEE vector reciprocal square root (Z[i] = lIsqrt(x[i])).

Vector sine (z[i] = sin(x[i])) .

Non-IEEE vector square root (z[i] = sqrt(x[i])).

Vector tangent (z[i] = tan(x[i])).

NOTE

To use these calls, you must link your program with the switch
-Ivect.

The following call to dv _cos() perfonns a double-precision vector cosine of the first n elements of
the double vector x with stride incx, storing the results in the double vector z with stride inez:

dv_eos(n, x, inex, z, inez);

It is similar in effect to the following code (the actual code for dv _cosO is written in assembler):

ix = 0;
iz = 0;
if(inex < 0)

ix = (-n+l)*inex;
if(inez < 0)

iz = (-n+l)*inez;
for(i=O; i<n; i++) {

z[iz] = eos(x[ix]);
ix ix + inex;
iz = iz + inez;

SV_8COs()

0-49

Manual Pages Paragon 1M System C Compiler User's Guide

. :":"::.. . ".::.:.. ":":. . .:."

SV_8COSO, sv_asinO, sv_atanO, sv_atan20, sv_cosO, sv_divO, sv_expO, sv_logO, sv_logIO(). sVJOwO. svJecpO.
sVJsqrtO. sv_sinO. sv_sqrtO. sv_tanO: Perfonn mathematical operations on Boat vectors.

Synopsis

0-50

void sv _ acos(
int n,
float *x,
int incx,
float *z,
int inez);

void sv _ asin(
int n,
float *x,
int inex,
float *z,
int inez);

void sv _ atan(
int n,
float *x,
int inex,
float *z,
int inez);

void sv _ atan2(
int n,
float *x,
int inex,
float *y.
int incy,
float *z,
int inez);

[:
(, . .,
\'

-A

If'" It,,;

(:
(""':

,1IIi

(:

r'i jJlil Paragon™ System C Compiler User's Guide Manual Pages

I:
(-~

-*

[~
_M SV_ACOSO (cont.) SV _ACOSO (cont.)

(-~

'"
void sv _ cos(

intn,

r: float *x,
int inex,

I~
float *z,
int inez);

(-= void sv _ dive
int n,
float *x,

r~ int incx,
float *y,

I~
int incy,
float *z,

-~

int inez);
r~

-;.) voidsv exp(

l- int n,
float *x,

.......

int inex,

I"" float *z,
int inez);

I ~
i void sv log(

int n,

I--~ float *x,
int inex,
float *z,

I~ int inez);

1- void sv _loglO(

• .1 int n,
float *x,

r: int incx,
float *z,

(J
int inez);

I~

D ,;J G-51

Manual Pages

SV _ACOSO (cont.)

0-52

void sv J)ow(
int n,
float *x,
int inex,
float *y,
int incy,
float *z,
int inez);

void sv recp(
int n,
float alpha,
float *x,
int incx,
float *z,
int inez);

void sv _l'Sqrt(
intn,
float *x,
int inex,
float *z,
int inez);

void sv _ sine
int n,
float *x,
int inex,
float *z,
int inez);

void sv _ sqrt(
int n,
float *x,
int inex,
float *z,
int inez);

Paragon™ System C Compiler User's Guide

SV _ACOSO (cont.)

C !

[~

C
,'lr1
~i -"""

rr~
Ii..,;

1-';
j.J

[~

r-'
!<Ie .~.

r -,
Wi. _I

rr"
l..lr.!

I' -, ',,:, :

it . ..,

"" ,"I

~ ...
rw ~,

~-
I'f ~I

-"" r-' "

-..;

I:
(~

I:
l:
(J

r:
I
I,
I

(' <'

JIii

I:
r:

1''''1

J

(",:
.J

I', .,
..,;:J

r:
r=
1=
[~

1=
('"""

.,

1_-,",",
----'..'.:.1

I~

I:
(J

Paragon ™ System C Compiler User's Guide Manual Pages

SV _ACOSO (cont.) SV_ACOSO (cont.)

void sv _ tan(
intn,
float *x,
int incx,
float *z,
int inez);

Description of Parameters

Discussion

n The number of elements in the vectors x, y, and z.

x,y Input (argument) vectors.

z Output (result) vector.

incx. incy, incz The strides (increments) of vectors x, y, and z, respectively (may be zero).

alpha A scalar multiplier for sv Jeep.

These functions, called the vector intrinsics, perfonn the following mathematical operations on
arrays (vectors) very efficiently. You can specify the number of vector elements and the strides of
each input vector and the result vector.

Vector arccosine (z[i] = acos(x[i])).

Vector arcsine (z[i] = asin(x[i])).

Vector arctangent (z[i] = atan(x[i])).

Vector arctangent from two arguments (z[i] = atan2(x[i], y[i]).

Vector cosine (z[i] = cos(x[i]).

Non-IEEE vector divide (z[i] = y[i]/x[i]).

Vector exponential (z[i] = exp(x[i])).

Vector natural log (z[i] = log(x[i])).

sv)oglO() Vector logarithm loglO (z[i] = loglO(x[i])).

Manual Pages ParagonlM System C Compiler User's Guide

SV_ACOSO (cont.) SV _ACOSO (cont.)

Example

See Also

SVJJOwO Vector power (z[ll = x[i]Y[i1).

Non-IEEE reciprocal times a scalar (z[i] = alphalx[i]).

SV]sqrtO Non-IEEE vector reciprocal square root (z[i] = 1/sqrt(x[i])).

Vector sine (z[i] = sin(x[i])).

Non-IEEE vector square root (z[i] = sqrt(x[i])).

Vector tangent (z[i] = tan(x[i])).

NOTE

To use these calls, you must link your program with the switch
·Ivect.

The following call to sv _cosO performs a single-precision vector cosine of the first n elements of the
Boat vector x with stride incx, storing the results in the Boat vector z with stride inez:

sv_eos(n, x, inex, z, inez);

It is similar in effect to the following code (the actual code for sv _cosO is written in assembler):

ix = 0;
iz = 0;
if(inex < 0)

ix = (-n+l)*inex;
if(inez < 0)

iz = (-n+l)*inez;
for(i=O; i<n; i++) {

z[iz] = eos(x[ix]);
ix ix + inex;
iz = iz + inez;

}

1f~1

I

1=

()

IJ

1=
, ~,J

["
-"-'

I~~ .. '
~I

(]

1-111
.~

Index
. . ~; . .. ":" : :: "." . . : . : :.: :.." . ..::.. . . ." :~ :" :::":.: . :... ::." .: : .. : "::.:.

A
alert character escape sequence 6-4

alignments of data types 6-5

ANSIC
differences from original C 6-5
language (standard) 6-1

applications 1-2

ar manual page C-4

ar860 manual page C-4

as manual page C-6

as860 assembler
manual page C-6
overview 1-4

assembler (as860) 1-4

assignment operator tokens 6-6

automatic aggregates, initialization of 6-4

B
B switch (driver) 2-6

behavior, implementation-defined 6-5

binary operators and variables of type float 6-6

bit fields (signed and unsigned) 6-4

c
C driver 1-4

manual page C-13

C extensions
#elif directive 6-2
#ident directive 6-3
#list directive 6-1
#module directive 6-1
#nolist directive 6-1
#pragma directive 6-2
#predicate 6-3
alert character escape sequence 6-4
automatic aggregates, initialization of 6-4
bit fields (signed and unsigned) 6-4
concatenating string literals 6-4
const data type 6-3
defined operator 6-2
dollar sign in identifiers 6-3
enumeration types 6-3
float constants 6-4
function prototypes 6-4
functions and structures 6-3
hexadecimal character escape sequence 6-4
lexical conventions 6-4
long double

constants 6-4
data type 6-3

overloading structure member names 6-3
predefined macros 6-2
signed data type 6-3
structures and functions 6-3
token continuation 6-4

Index-1

Index

trigraph sequences 6-4
unary + operator 6-4
unsigned char data type 6-3
unsigned integer constants 6-4
unsigned short int data type 6-3
void data type 6-3
volatile data type 6-3

C identifiers, length of 6-6

Clanguage
extensions to 6-1
standard 6-1

C porting considerations 6-5

C switch (driver) 2-5

c switch (driver) 2-5

C: A Reference Manual, Second Edition, Prentice
Hall, 1987 6-1

cc manual page C-13

checking, type 6-5

compute partition 1-1

concatenating string literals 6-4

const data type 6-3

controlling the icc driver 2-3

conversion rules (numeric) 6-6

cpp manual page C-8

cpp860 manual page C-8

cross-development environment 1-2

D
o switch (driver) 2-6

data types, sizes and alignments of 6-5

debugging 1-6

defined operator 6-2

development environments 1-2

Index-2

Paragon™ System C Compiler User's Guide

differences between original C and ANSI C 6-5

dollar sign in C identifiers 6-3

driver
command lines, example 1-7
contrOlling 2-3
icc v, 1-4,2-1
overview 1-4

driver switches
82-6
C2-5
c2-5
02-6
E2-5
ES2-5
g 2-17
12-16
icc (table) 2-2
K2-19
L2-19
12-19
Inx 1-5
M2-7
m2-19
MO 2-16
node 1-6,2-21
nx 1-5,2-20
02-16
02-21
P2-5
r2-18
S2-5
s2-18
U2-6
V 2-21
v 2-22
VV 2-21
W2-4
Y2-4

dump860 manual page C-11

dv_acos C-45

dv_asin C-45

(J
(
"~

. :
.. M

c

-c
I:

---~-----.--- - --"-~------

C Paragon TM System C Compiler User's Guide Index

[~
~

[~
_iii

C dv _atan C-45 G

("'1 dv_atan2 C-45 g switch (driver) 2-17

-".I dv_cos C-45 getting started 1-1

I~
dv_div G-45

"...lili dv_exp C-45 H

I'"~
dv_log G-45 Harbison, Samuel P. 6-1

dv_log 10 C-45 hardware,system 1-1 -'"

(- dv-pow C-45 hexadecimal character escape sequence 6-4

dv_recp C-45

r~
dv _rsqrt C-45

dv_sin C-45 I switch (driver) 2-16

[J
dv_sqrt C-45 i860
dv_tan C-45 assembler invocation command 1-4

linker invocation command 1-5

[: icc driver v, 1-4
E controlling 2-3

E switch (driver) 2-5 invocation command 1-4, 2-1

C switches (table) 2-2
#elif directive 6-2

icc manual page C-13

I~
enumeration types 6-3

#ident directive 6-3
-~ environment

execution 1-5 identifiers, length of 6-6

r=
software development 1-1, 1-2 ifixlib 4-3

ES switch (driver) 2-5 ifixlib manual page C-33

r= example driver command lines 1-7 implementation-defined behavior 6-5

execution environments 1-5 #include, search rules for 6-5

I: extensions to C language 6-1 invoking
i860 assembler 1-4
i860 linker 1-5 r: F icc driver 1-4, 2-1

float

L
constants 6-4

K variables and unary/binary operators 6-6

function prototypes 6-4 K switch (driver) 2-19

IJ functions and structures 6-3 Kernighan, Brian W. 6-1

C

~ Index-3

Index

L
L switch (driver) 2-19

I switch (driver) 2-19

Id manual page C-34

Id860 linker
manual page C-34
overview 1-5

length of C identifiers 6-6

lexical conventions 6-4

libnx.a 1-5

linker (ld860) 1-5

#list directive 6-1

Inx switch (driver) 1-5

long double
constants 6-4
data type 6-3

loops
making parallel 3-11

M
M switch (driver) 2-7

m switch (driver) 2-19

mac manual page C-39

mac860 manual page C-39

macros, predefined 6-2

manual, organization of v

MD switch (driver) 2-16

#module directive 6-1

N
native development environment 1-2

Index-4

Paragon TN System 0 Oompiler User's Guide

nm manual page C-40

nm860 manual page C-40

node switch (driver) 1-6,2-21

nodes 1-1

#nolist directive 6-1

numeric conversion rules 6-6

nx switch (driver) 1-5,2-20

o
o switch (driver) 2-16

o switch (driver) 2-21

organization of manual v

original C, differences from ANSI C 6-5

overloading structure member names 6-3

overview

p

assembler (as860) 1-4
driver (icc) 1-4
linker (ld860) 1-5

P switch (driver) 2-5

parallel applications 1-2

parallel loops 3-11

parallel software development environment 1-1

partitions 1-1

placement of storage class and type specifiers 6-6

porting considerations, C 6-5

#pragma directive 6-2

#predicate 6-3

preprocessor macros, predefined 6-2

programming language C 6-1

(J

[J

Ir-:
LJ

c
l:

£: Paragon 1M System C Compiler User's Guide I,..dex

I]
--ill

IJ

C R sv_exp C-50

r: r switch (driver) 2-18 sv_log C-50

Ritchie, Dennis M. 6-1 sv_log10 C-50

C
running a program sv -pow C-50

on a single node 1-5 sv _recp C-50
on multiple nodes 1-5

r sv _rsqrt C-50

L sv_sin C-50
S

r: S switch (driver) 2-5
sv_sqrt C-50

s switch (driver) 2-18
sv_tan C-50

E search rules for #include 6-5
switches (driver)

82-6

service partition 1-1 C2-5

[J signed data type 6-3
c2-5
02-6

size manual page C-42 E2-5

[: size860 manual page C-42
ES2-5
g2-17

,,,"

sizes of data types 6-5 12-16

l: software
icc (table) 2-2
K2-19

development environment 1-1 L2-19

(J software development environments 1-2 12-19

software, system 1-2
Inx 1-5
M2-7

r= Standard C language 6-1 m2-19

Steele, Guy L. 6-1
MD 2-16
node 1-6,2-21

[J storage class and type specifiers, placement of 6-6 nx 1-5,2-20

string literals, concatenating 6-4
02-16
02-21

E
strip manual page C-44 P2-5

strip860 manual page C-44
r 2-18
S2-5

[J structures and functions 6-3 s2-18

sv _acos C-50
U2-6
V 2-21

sv_asin C-50 v 2-22

[J
sv_atan C-50

VV 2-21
" W2-4

IJ
sv _atan2 C-50 Y2-4

sv_cosC-50 system hardware 1-1

I] sv_div C-50 system software 1-2

C Index-5

Index

T
The C Programming Language, Prentice Hall, 1978

6-1

token continuation 6-4

tokens, assignment operators 6-6

trigraph sequences 6-4

type checking 6-5

type specifiers and storage class, placement of 6-6

types, sizes and alignments of 6-5

u
U switch (driver) 2-6

unary + operator 6-4

unary operators and variables of type float 6-6

unsigned char data type 6-3

unsigned integer constants 6-4

unsigned short int data type 6-3

updating library directories 4-3

Index-6

Paragon 1M System C Compiler User's Guide

v
V switch (driver) 2-21

v switch (driver) 2-22

value preserving, ANSI convention for 6-6

variables of type float and unary/binary operators
6-6

variables, sizes and alignments of 6-5

void data type 6-3

volatile data type 6-3

W switch (driver) 2-21

w
W switch (driver) 2-4

v
Y switch (driver) 2-4

(J

(. "1
M

