
Paragon ™
System

Paragon ™ System

User's

Guide

IntelGi) Corporation

April 1996

Order Number: 312489-005

Copyright ©1996 by Intel Server Systems Product Development, Beaverton, Oregon. All rights reserved. No part of tbis work may be reproduced
or copied in any form or by any means ... grapbic, electronic, or mechanical including photocopying, taping, or information storage and retrieval
systems ... without the express written consent of Intel Corporation. The information in tbis document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to tbis material, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in tbis document. Intel Corporation
makes no commitment to update or to keep current the information contained in tbis document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to restrictions
stated in Intel's software license agreement. Use, duplication, or disclosure by the U.S. Government is subjectto restrictions as set forth in subpara­
graphs (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule­
vard, Santa Clara, CA 95052-8119. For all Federal use or contracts other than DoD, Restricted Rights under FAR 52.227-14, ALT. ill shall apply.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

286 i386 Intel iPSC
287 i387 Intel386 Paragon

i486 Intel387
i487 Intel486
i860 Intel487

Other brands and names are the property of their respective owners.

WARNING
Some of the circuitry inside this system operates at hazardous energy and
electric shock voltage levels. To avoid the risk of personal injury due to
contact with an energy hazard, or risk of electric shock, do not enter any
portion of this system unless it is intended to be accessible without the use
of a tool. The areas that are considered accessible are the outer enclosure
and the area just inside the front door when all of the front panels are in­
stalled, and the front of the diagnostic station. There are no user service­
able areas inside the system. Refer any need for such access only to tech­
nical personnel that have been qualified by Intel Corporation.

CAUTION
This equipment has been tested and found to comply with the limits for a
Class A digital device, pursuant to Part 15 of the FCC Rules. These limits
are designed to provide reasonable protection against harmful interfer­
ence when the equipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio frequency energy and,
if not installed and used in accordance with the instruction manual, may
cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own
expense.

LIMITED RIGHTS
The information contained in this document is copyrighted by and shall re­
main the property of Intel Corporation. Use, duplication or disclosure by
the U.S. Government is subject to Limited Rights as set forth in subpara­
graphs (a)(15) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule­
vard, Santa Clara, CA 95052. For all Federal use or contracts other than
DoD Limited Rights under FAR 52.2272-14, ALT. III shall apply. Unpub­
lished-rights reserved under the copyright laws of the United States.

iii

iv

Preface

This manual tells how to use the operating system on a Paragon supercomputer.

This manual assumes that you are an application programmer proficient in the C or Fortran language
and the UNIX operating system. The manual provides you with enough detail to begin using your
system.

NOTE

In this manual, "operating system" refers to the operating system
that runs on the nodes of the Paragon(TM) supercomputer.

NOTE

Programming examples in this manual are intended to
demonstrate how to use the system calls provided by the
operating system, but are not necessarily examples of good
programming practice.

For example, in some cases, the return values of functions are not checked for error conditions. This
is not recommended, but the error checks have been omitted in order to make the example shorter
and easier to read.

v

Preface

Organization
Chapter 1

Chapter 2

Chapter 3

Chapter 4

ChapterS

Chapter 6

Chapter 7

Chapter 8

Appendix A

AppendixB

vi

Paragon™ System User's Guide

Provides an overview of the operating system software and Paragon
supercomputer hardware.

Describes the operating system commands that you can enter at the shell
prompt and the operating system cross-development commands that run on
supported workstations.

Describes the message-passing system calls available to programs in
operating system.

Describes the other general-purpose system calls available in operating
system.

Describes the parallel 110 calls you can use for parallel access to the Paragon
supercomputer's file systems.

Describes SMP programming model and the pthreads package. The pthreads
package lets you create and control multiple threads (also called "lightweight
processes") within your programs.

Tells how to prepare an application for the operating system operating
system. The steps described are applicable to applications that are written for
a parallel computer and applications that are ported from a sequential
computer. This chapter discusses three examples: an integration, a
matrix*vector multiplication, and the N-Queens problem.

Presents some techniques you can use to improve the performance of your
parallel applications.

Summarizes the commands and system calls of operating system. The
complete syntax of each command and call is provided, along with a brief
description of each.

Describes the level of support offered by operating system for the commands
and system calls of the iPSC@ system.

Paragon ™ System User's Guide Preface

Notational Conventions
This manual uses the following notational conventions:

Bold

Italic

Identifies command names and switches, system call names, reserved words,
and other items that must be used exactly as shown.

Identifies variables, filenames, directories, partitions, user names, and writer
annotations in examples. Italic type style is also occasionally used to
emphasize a word or phrase.

Plain-Monospace
Identifies computer output (prompts and messages), examples, and values of
variables.

Bold-Italic-Monospace
Identifies user input (what you enter in response to some prompt).

Bold-Monospace
Identifies the names of keyboard keys (which are also enclosed in angle
brackets). A dash indicates that the key preceding the dash is to be held down
while the key following the dash is pressed. For example:

<Break> <s> <Ctrl-Alt-Del>

(Brackets) Surround optional items.

(Ellipsis dots) Indicate that the preceding item may be repeated.

(Bar) Separates two or more items of which you may select only one.

(Braces) Surround two or more items of which you must select one.

Applicable Documents
For more information, refer to the following manuals. See the Paragon ™ System Technical
Documentation Guide for information on the complete Paragon document set and ordering
information.

vii

Preface Paragon™ System User's Guide

TM
Paragon Manuals

Paragon™ System Commands Reference Manual

Paragon™ System Network Queueing System Manual

• Paragon™ System C Compiler User's Guide

• Paragon™ System Fortran Compiler User's Guide

Paragon ™ System C Calls Reference Manual

TM
• Paragon System Fortran Calls Reference Manual

Paragon™ System Application Tools User's Guide

• Paragon™ System Interactive Parallel Debugger Reference Manual

• Paragon ™ System Administrator's Guide

Other Manuals

• OSFll User's Guide

OSFll Programmer's Reference

• OSFll Command Reference

Effective Fortran 77 - Michael Metcalf

C: A Reference Manual - Harbison and Steele

• The C Programming Language - Kernighan and Ritchie

• CLASSPACK Basic Math Library User's Guide - Kuck & Associates

• CLASSPACK Basic Math LibrarylC User's Guide - Kuck & Associates

Comments and Assistance

viii

Intel Scalable Systems Division is eager to hear of your experiences with our products. Please call
us if you need assistance, have questions, or otherwise want to comment on your Paragon system.

Paragon ™ System User's Guide

France Intel Corporation
1 Rue Edison-BP303

U.S.AJCanada Intel Corporation
Phone: 800-421-2823

Internet: support@ssd.intel.com

United Kingdom Intel Corporation (UK) Ltd.
Scalable Systems Division
Pipers Way

78054 St. Quentin-en-Yvelines Cedex
France

Swindon SN3 IRJ
England

0590 8602 (toll free)

Intel Japan K.K.
Scalable Systems Division
5-6 Tokodai, Tsukuba City
Ibaraki-Ken 300-26
Japan
0298-47-8904

0800212665 (toll free)
(44) 793 491056
(44) 793 431062
(44) 793480874
(44) 793 495108

Germany Intel Semiconductor GmbH
Dornacher Strasse 1
85622 Feldkirchen bei Muenchen
Germany
0130813741 (toll free)

World Headquarters
Intel Corporation

Scalable Systems Division
15201 N.W. Greenbrier Parkway

Beaverton, Oregon 97006
U.S.A.

(503) 677-7600 (Monday through Friday, 8 AM to 5 PM Pacific Time)
Fax: (503) 677-9147

Preface

If you have comments about our manuals, please fill out and mail the enclosed Comment Card. You
can also send your comments electronically to the following address:

techpubs@ssd.intel.com
(Internet)

ix

Preface Paragon ™ System User's Guide

x

Chapter 1
Introduction

Table of Contents

Introduction .. 1-1

System Hardware ... : 1-2

Nodes ... 1-2

Node Interconnect Network .. 1-2

1/0 Interfaces .. 1-3

Front Panel LEOs (Paragon ™ XP/S System Only) .. 1-3

System Software ... 1-4

Operating System .. 1-5

User Model .. 1-5

Programming Model .. 1-6

Cross-Development Facility ... 1-6

xi

Table of Contents Paragon ™ System User's Guide

Chapter 2
Using System Commands

Introduction .. 2-1

Terminology ... 2-1

Using Commands on the Paragon ™ Supercomputer .. 2-2

Using Commands on Workstations .. 2-2

A Quick Example .. 2-3

Information You Need .. 2-3

Compiling, Linking, and Executing an Application ... 2-3

Compiling and Linking Applications .. 2-5

Configuring Your Environment for Cross-Development ... 2-6

Tips for Compiling and Linking ... 2-8

Using Other Switches .. 2-8

Including nx.h or fnx.h ... 2-8

Specifying Include File and Library Pathnames .. 2-8

Preprocessing a Fortran Program ... 2-9

Order of Switches .. 2-1 0

Running Applications ... 2-11

I/O Redirection ... 2-12

Running SMP Programs .. 2-12

Controlling the Application's Execution Characteristics ... 2-12

Using the Default Partition ... 2-13

Setting Your Default Partition .. 2-14

Determining the Current Default Partition ... 2-15

Specifying Application Size ... 2-15

Specifying a Rectangle of Nodes .. 2-16

Specifying a Particular Rectangle of Nodes .. 2-16

Using the Default Size ... 2-16

Relaxing Application Size .. 2-17

Specifying Application Priority ... 2-18

xii

Paragon TM System User's Guide Table of Contents

Specifying Process Type ... 2-18

Running a Program on a Subset of the Nodes .. 2-19

Running Applications Consisting of Multiple Programs ... 2-21

Running an Application in a Particular Partition .. 2-23

Running an Application on a Particular Node Type ... 2-23

Node Attributes ... 2-24

Specifying Node Attributes .. 2-25

Quoting Node Attributes .. 2-26

Using Node Attributes with No Application Size .. 2-26

Using Node Attributes with an Application Size .. 2-27

Using Node Attributes with a Relaxed Application Size .. 2-28

Managing Running Applications ... 2-29

Managing Partitions .. 2-30

Special Partitions ... 2-31

The Root Partition .. 2-32

The Service Partition ... 2-33

The Compute Partition ... 2-33

Partition Pathnames ... 2-33

Partition Characteristics ... 2-34

Parent Partition .. 2-35

Partition Name ... 2-35

Nodes Allocated to the Partition .. 2-35

Node Numbers Within a Partition .. 2-36

Unusable Nodes .. 2-37

Owner, Group, and Protection Modes ... 2-38

Scheduling Characteristics .. 2-39

Standard Scheduling ... 2-40

Space Sharing ... 2-40

Gang Scheduling ... 2-42

Summary of Scheduling Types ... 2-44

A Scheduling Example .. 2-45

xiii

Table of Contents Paragon ™ System User's Guide

Making Partitions .. 2-46

Specifying the Nodes Allocated to the Partition .. 2-46

Examples .. 2-47

Relaxing Partition Size .. : 2-49

Specifying Protection Modes ... 2-50

Specifying Scheduling Characteristics .. 2-51

Removing Partitions ... 2-52

Removing Partitions Containing Running Applications ... 2-53

Removing Partitions Containing Subpartitions , ... 2-53

Showing Partition Characteristics .. 2-54

Showing Free Nodes ... 2-55

Showing Node Attributes ... 2-56

Showing Node Attributes with Root Node Numbers .. 2-57

Showing Nodes Having Certain Attributes ... , 2-57

Showing Partitions with Cabinet Information ... 2-59

Summary of Symbols .. 2-60

Listing Subpartitions ... 2-60

Recursively Listing Subpartitions ... 2-62

Listing Node Attributes of Subpartitions .. 2-63

Listing Node Attributes with Root Node Numbers ... 2-64

Listing the Applications in a Partition ... 2-64

Applications in Subpartitions ... 2-66

Recursively Listing Applications in Subpartitions .. 2-67

Listing Applications With Core Dumps .. 2-67

Changing Partition Characteristics ... 2-68

Chapter 3
Using Message-Passing System Calls

Introduction .. 3-1

xiv

Paragon TM System User's Guide Table of Contents

Process Characteristics .. 3-3

Node Numbers ... 3-3

Process Types ... 3-4

Message Characteristics ... 3-5

Message Length ... 3-5

Message Type .. 3-6

Message 10 .. 3-6

Message Order .. 3-7

Names of Send and Receive Calls .. 3-7

Synchronous Send and Receive .. 3-8

Synchronous Send to Multiple Nodes .. 3-9

Asynchronous Send and Receive ... 3-10

ReleaSing Message IDs ... 3-12

Merging Message IDs .. 3-13

Probing for Pending Messages .. 3-14

Getting Information About Pending or Received Messages .. 3-15

Message Passing with Fortran Commons ... 3-17

Treating a Message as an Interrupt .. 3-18

Passing Information to the Handler .. 3-20

Preventing Interrupts .. 3-22

Extended Receive and Probe .. 3-24

Global Operations .. 3-27

xv

Table of Contents Paragon 1M System User's Guide

Chapter 4
Managing Applications and Partitions with System
Calls

Introduction ... , 4-1

Managing Applications .. 4-2

Controlling Application Execution with System Calls ... 4-3

Creating an Application with nx_initveO .. 4-4

Creating a Rectangular Application with nx_initve_rectO .. 4-7

Controlling Application Attributes with nx_initve_attrO " 4-8

Specifying the Nodes Allocated to the Application " ... 4-12

Examples .. 4-13

Setting an Application's Priority with nx_priO4-15

Copying a Process onto the Nodes with nx_nforkO4-15

Loading a Program onto the Nodes with nx_loadO .. .4-17

Loading a Program onto the Nodes with nx_loadveO .. .4-18

Waiting for Application Processes with nx_waitaliO .. 4-19

Using PIOs ... 4-20

Getting Information About Applications , .. 4-21

Finding an Application's Shape with nx_app_rectO ... 4-22

Listing an Application's Nodes with nx_app_nodesO .. 4-23

Listing the Applications in a Partition with nx_pspartO4-24

The Controlling Process ... 4-26

Process Groups ... 4-27

Process Groups in the Operating System .. .4-28

Killing Application Processes .. 4-28

An Example Controlling Process ... 4-28

Message Passing Between Controlling Process and Application Processes ... 4-30

Managing Partitions .. 4-32

Making Partitions .. 4-33

Examples ... 4-35

xvi

Paragon ™ System User's Guide Table of Contents

Setting Partition Attributes with nx_mkpart_attrO4-36

Specifying the Nodes Allocated to the Partition4-38

Examples .. 4-40

Removing Partitions ... 4-42

Getting Information About Partitions .. 4-43

Determining a Partition's Attributes with nx_part_attrO .. .4-43

Determining a Partition's Nodes with nx_part_nodesO .. .4-45

Determining Node Attributes with nx_node_attrO .. 4-47

Changing Partition Characteristics ... 4-49

Listing Unusable Nodes .. 4-53

Handling· Errors ... 4-55

Underscore Calls .. 4-55

Core Dumps .. 4-56

Getting Information About Core Files4-57

USing IPD to Examine Core ... 4-58

Overriding the Defaults for Core Dumps .. .4-59

Controlling Floating-Point Behavior4-60

Detecting Not-a-Number .. 4-60

ContrOlling Floating-Point Behavior .. 4-61

Rounding Mode ... 4-61

Exception Mask and StiCky Flags .. 4-62

Fortran Exception Mask Values ... 4-63

Miscellaneous Calls .. 4-64

Temporarily Releasing Control of the Processor .. .4-64

Timing Execution .. 4-64

iPSC@ and Touchstone DELTA Compatibility Calls .. .4-66

xvii

Table of Contents Paragon TM System User's Guide

Chapter 5
Using Parallel File 1/0
Introduction .. 5-1

Disks and File Systems .. 5-2

PFS File Systems and PFS Files ... 5-3

PFS Filenames and Path names .. 5-4

PFS Limitations .. 5-4

Using PFS Commands ... , ... 5-5

Displaying File System Attributes ... 5-5

Displaying File Attributes .. 5-7

Increasing the Size of a File ... 5-8

Using Parallel VO Calls .. 5-9

Opening Files in Parallel ... 5-10

Using gopenO in C ... 5-1 0

Using gopenO in Fortran .. 5-11

Opening Files with Standard Operations ... 5-11

Special Considerations for Fortran .. 5-12

Formatted Versus Unformatted 1/0 ... 5-12

New Files .. 5-13

Unnamed Files .. 5-13

Using 1/0 Modes .. 5-14

Default 1/0 Mode .. 5-15

M_UNIX .. 5-16

M_LOG .. 5-16

M_SYNC .. 5-16

M_RECORD ... , ... 5-17

M_GLOBAL .. 5-18

M_ASYNC .. 5-19

An 1/0 Mode Example .. 5-20

Fortran Example .. 5-20

xviii

Paragon TM System User's Guide Table of Contents

C Example ... 5-21

Compiling and Running the Example .. 5-22

M_UNIX Output ... 5-23

M_LOG Output .. 5-24

M_SYNC Output .. 5-24

M_RECORD Output .. 5-25

M_GLOBAL Output ... 5-25

M_ASYNC Output ... 5-26

Reading and Writing Files in Parallel ... 5-26

Synchronous File 1/0 .. 5-27

Asynchronous File 1/0 .. 5-29

Closing Files in Parallel ... 5-31

Detecting End-of-File and Moving the File Pointer .. 5-31

Flushing Fortran Buffered I/O ... 5-33

Using "###" Filenames .. 5-34

Increasing the Size of a File ... 5-35

Using Extended Files .. 5-36

OSF/1 Calls that Do Not Support Extended Files .. 5-36

OSFI1 Commands that Do Not Support Extended Files .. 5-37

Manipulating Extended Files .. 5-38

Performing Extended Arithmetic .. 5-39

Getting Information About PFS File Systems .. 5-41

Getting Information About All Mounted PFS File Systems ... 5-41

Getting PFS Information About a Single File System .. 5-43

Controlling Open Files ... 5-46

Setting Stripe Attributes for Open Files .. 5-47

Getting Stripe Attributes for Open Files ... 5-48

Controlling Tape Devices .. 5-49

Naming Tape Devices .. 5-49

xix

Table of Contents Paragon ™ System User's Guide

Performing Operations on Tape Devices ... 5-50

Getting Status of Tape Devices ... 5-52

Writing the 3480 Display .. 5-53

Getting the Tape Position ... 5-53

Synchronization Summary ... 5-54

Chapter 6
SMP Programming

Introduction .. 6-1

Libraries for SMP Programming ... 6-2

Setting _REENTRANT ... 6-3

Relying on the Compiler vs. Custom Pthreads .. 6-3

Relying on the Compiler .. 6-4

Limitations when Relying on the Compiler ... 6-4

Setting DFL T _NCPUS ... 6-5

Compiler Switches ... 6-5

Compiler Directives .. 6-6

Fortran Directives .. 6-7

C Pragmas ... 6-8

Getting Information ... 6-9

Additional Information about Loop Parallelization .. 6-9

Reductions ... 6-9

Namelist Groups .. 6-10

Calls within Loops .. 6-10

Basic Math Library Calls .. 6-1 0

Default Loop Thresholds ... 6-10

Focus on Compute Node Processes ... 6-1 0

Writing Custom Pthread Applications ... 6-11

xx

Paragon ™ System User's Guide Table of Contents

Limitations when Writing Custom Pthread Applications ... 6-11

Recommended Safe Operating Environment .. 6-12

Compiling and Linking a Pthread Application ... 6-14

Using Reentrant C Library Calls ... 6-14

Using Pthreads Library Calls .. 6-18

Pthreads Library Data Types and Symbols ... 6-18

The Main Thread ... 6-19

Managing Pthread Execution .. 6-20

Managing Pthread Attributes ... 6-22

Managing Mutexes .. 6-24

Managing Mutex Attributes .. 6-26

An Example Pthreads Program .. 6-27

Using Condition Variables to Synchronize Pthreads .. 6-30

Managing Condition Attributes , .. 6-33

Examples of Condition Variables ... 6-33

Canceling Pthreads .. 6-38

Cancel ability States ... 6-38

Cancellation Examples .. 6-40

Pthreads Cleanup Routines ... 6-41

Managing Pthread Keys ... 6-42

Executing a Routine Once ... 6-43

Managing Signals ... 6-44

Interfacing with Non-Thread-Safe Code ... 6-46

Message Passing and Pthreads Library Calls ... 6-46

File 1/0 and Pthreads Library Calls .. 6-47

nx_nforkO and nx_initve ... O and Pthreads Library Calls .. 6-47

Signals and Pthreads Library Calls .. 6-48

Signal Types .. 6-48

Signals are a Per-Process Resource .. 6-48

Dealing with Signals .. 6-49

Handling Errors ... 6-50

errno Confusion ... 6-50

xxi

Table of Contents Paragon™ System User's Guide

Calling exitO ... 6-51

Use of Underscore Versions of Paragon System Calls ... 6-51

Catch Signals Causing Core Dump by Default .. 6-51

Avoid Core Dumps .. 6-52

When One Pthread Hangs .. 6-52

Chapter 7
Designing a Parallel Application

Introduction .. 7-1

Programming Model .. 7-2

Parallel Programming Techniques .. 7-2

Separating the User Interface from the Computation ... 7-3

Balancing the Load .. 7-3

Domain Decomposition ... 7-3

Control Decomposition .. 7-5

Making the Program Independent of the Number of Nodes ... 7-5

Designing Your Communication Strategy .. 7-6

Using Global Operations ... 7-6

Using Alternate Node Topologies .. 7-6

Example Application: Calculating pi .. 7-7

Example Application: Matrix*Vector Multiplication ... 7-11

Example Application: The N-Queens Problem ... 7-13

Chapter 8
Improving Performance

Introduction .. 8-1

xxii

ParagonT• System User's Guide Table of Contents

Single Node Performance ... 8-2

Use Profiling Tools ... 8-2

Avoid Repeated Use of System Calls .. 8-2

Avoid Virtual Memory Paging ... 8-3

Use Compiler Optimizations ... 8-3

Increase Problem Size ... 8-5

Access Contiguous Memory Locations .. 8-5

Use Caching Wisely ... 8-5

Use Optimized Libraries ... 8-6

Use Assembly Language Subroutines ... 8-7

Avoid Error Checking (C Language Only) .. 8-7

Multi-Node Performance .. 8-7

Use Dynamic Memory Allocation for Large Arrays ... ; 8-8

Avoid Serializing Calls .. 8-9

Use ParaGraph .. 8-10

Maintain Data Locality .. 8-10

Overlap Computation and Communication .. 8-10

Avoid Message Buffering ... 8-11

Align Application Buffers ... : .. 8-12

Understand Message-Passing Flow Control .. 8-13

Overview of Message·Passing Flow Control ... 8-14

Process Locking .. 8-15

Packetization ... 8-16

System Message Buff.ers ... 8-16

Message-Passing Configuration Switches .. 8-18

Summary of the Message-Passing Configuration Switches ... 8-19

Default, Maximum, and Minimum Values .. 8-20

Dependencies and Rounding .. 8-21

Recommendations ... 8-21

VO Performance .. 8-23

Use PFS File Systems ... 8-23

xxiii

Table of Contents Paragon ™ System User's Guide

Use gopenO Instead of openO ... 8-23

Use Parallel 1/0 Calls ... 8-24

Use Asynchronous Calls .. 8-24

Use the Appropriate 1/0 Mode ... 8-24

Align 1/0 Buffers with Virtual Memory Pages ... 8-25

Read or Write Whole File System Blocks .. 8-25

Make Good Use of File Striping ... 8-25

Appendix A
Summary of Commands
and System Calls

Command Summary A-1

Compiling and Linking Applications .. A-1

Running Applications ... A-2

Managing Partitions .. A-2

Parallel File System Commands ... A-3

Miscellaneous Commands .. A-3

C System Call Summary ... A-4

Process Characteristics .. A-4

Synchronous Send and Receive ... A-5

Asynchronous Send and Receive ... A-6

Probing for Pending Messages ... A-7

Getting Information About Pending or Received Messages ... A-7

Treating a Message as an Interrupt .. A-8

Extended Receive and Probe ... A-9

Global Operations ... A-1 0

Controlling Application Execution .. A-12

Getting Information About Applications ... A-13

Partition Management ... A-14

xxiv

Paragon™ System User's Guide Table of Contents

Finding Unusable Nodes ... A-15

Handling Errors ... A-16

Floating-Point Control ... A-16

Miscellaneous Calls .. A-17

iPSC® and Touchstone DELTA Compatibility ... A-17

I/O Modes .. A-18

Reading and Writing Files in Parallel .. A-19

Detecting End-of-File and Moving the File Pointer .. A-20

Increasing the Size of a File .. A-20

Extended File Manipulation ... A-21

Performing Extended Arithmetic ... A-22

Getting Information About PFS File Systems .. A-23

Managing Pthread Execution .. A-24

Managing Pthread Attributes ... A-24

Managing Mutexes .. A-25

Using Condition Variables to Synchronize Pthreads ... A-26

Canceling Pthreads ... A-26

Pthreads Cleanup Routines .. A-27

Managing Pthread Keys .. A-27

Miscellaneous Pthread Calls ... A-27

Fortran System Call Summary ... A-28

Process Characteristics .. A-28

Synchronous Send and Receive ... A-29

Asynchronous Send and Receive ... A-30

Probing for Pending Messages ... A-31

Getting Information About Pending or Received Messages ... A-31

Treating a Message as an Interrupt .. A-32

Extended Receive and Probe ... A-33

Global Operations ... A-35

Controlling Application Execution .. A-38

Getting Information About Applications ... A-40

Partition Management ... A-40

xxv

Table of Contents Paragon 1M System User's Guide

Finding Unusable Nodes ... A-43

Handling Errors ... A-43

Floating-Point Control ... A-43

Miscellaneous Calls .. A-44

iPSC@ and Touchstone DELTA Compatibility ... A-44

lID Modes .. A-46

Reading and Writing Files in Parallel .. A-46

Detecting End-of-File and Moving the File Pointer .. A-48

Flushing Fortran 8uffered lID .. A-48

Increasing the Size of a File .. A-49

Extended File Manipulation ... A-49

Performing Extended Arithmetic ... A-50

Appendix B
iPSC@ System Compatibility

Introduction ... 8-1

General Compatibility Issues ... 8-1

New Features .. 8-2

Compilers ... 8-4

Commands ... 8-5

Cube Control Commands .. 8-5

CFS Commands .. 8-7

System Administration Commands ... 8-7

Remote Host Commands .. 8-8

Miscellaneous Commands .. 8-8

System Calls .. 8-9

Include Files .. 8-9

Host Calls .. 8-9

xxvi

Paragon ™ System User's Guide Table of Contents

Byte-Swapping Calls ... B-13

Floating-Point Control Calls .. B-14

CFS Calls .. B-15

Miscellaneous Calls .. B-16

Summary ... B-17

xxvii

Table of Contents

Figure 1-1.

Figure 1-2.

Figure 2-1.

Figure 2-2.

Figure 2-3.

Figure 4-1.

Figure 7-1.

Figure 7-2.

Figure 7-3.

Figure 8-1.

xxviii

Paragon ™ System User's Guide

List of Illustrations

Front Panel LEDs (Paragon ™ XP/S System Only) ... 1-3

Node Activity LEDs ... 1-4

The Root Partition of a 32-Node System .. 2-32

Node Numbers in Contiguous and Noncontiguous Partitions 2-36

Node Numbers in Overlapping Partitions ... 2-37

Sample Partition for nx_part_attrO and nx_part_nodesO .. .4-46

Using Domain Decomposition to Achieve Load Balancing ... 7-4

The Decomposition Used for the pi Example ... 7-9

The N-Queens Solution Tree for a 4 x 4 Board .. 7-15

Two Methods of Improving 110 Performance with M_RECORD 8-27

Paragon ™ System User's Guide Table of Contents

Table 2-1.

Table 2-2.

Table 2-3.

Table 4-1.

Table 4-2.

Table 5-1.

Table 5-2.

Table 5-3.

Table 5-4.

Table 6-1.

Table 8-1.

Table A-1.

Table A-2.

Table A-3.

Table A-4.

Table A-5.

TableA-6.

Table A-7.

Table A-8.

Table A-9.

Table A-10.

Table A-11.

Table A-12.

Table A-13.

List of Tables

Node Attributes ... 2-24

Summary of Scheduling Types ... 2-44

Symbols Used in showpart Output ... 2-60

Attribute Constants for Use with nx_initve_attrO4-9

Attribute Constants for Use with nx_mkpart_attrO4-36

OSF/1 Calls Not Supporting Extended Files ... 5-36

OSF/1 Commands Not Supporting Extended Files .. 5-37

Synchronization in Each I/O Mode ... 5-54

File 1/0 Calls that Synchronize ... 5-54

Calls in Reentrant C Library (Iibc_r.a) ... 6-15

Message-Passing Configuration Switches ... 8-20

Commands for Compiling and Linking Applications .. A-1

Commands for Running Applications .. A-2

Commands for Managing Partitions .. A-2

Parallel File System Commands .. A-3

Miscellaneous Commands ... A-3

C Calls for Process Characteristics ... A-4

C Calls for Synchronous Send and Receive .. A-5

C Calls for Asynchronous Send and Receive .. A-6

C Calls for Probing for Pending Messages .. A-7

C Calls for Getting Information About Pending or Received Messages A-7

C Calls for Treating a Message as an Interrupt ... A-a

C Calls for Extended Receive and Probe .. A-9

C Calls for Global Operations .. A-1 0

xxix

Table of Contents

Table A-14.

Table A-15.

Table A-16.

Table A-17.

Table A-18.

Table A-19.

Table A-20.

Table A-21.

Table A-22.

Table A-23.

Table A-24.

Table A-25.

Table A-26.

Table A-27.

Table A-28.

Table A-29.

Table A-30.

Table A-31.

Table A-32.

Table A-33.

Table A-34.

Table A-35.

Table A-36.

Table A-37.

Table A-38.

Table A-39.

Table A-40.

Table A-41.

Table A-42.

Table A-43.

xxx

Paragon ™ System User's Guide

C Calls for Controlling Application Execution .. A-12

C Calls for Getting Information About Applications .. A-13

C Calls for Partition Management .. A-14

C Calls for Finding Unusable Nodes .. A-15

C Calls for Handling Errors .. A-16

C Calls for Floating-Point Control .. A-16

Miscellaneous C Calls ... A-17

C Calls for iPSC® and Touchstone DELTA Compatibility .. A-17

C Calls for I/O Modes .. A-18

C Calls for Reading and Writing Files in Parallel ... A-19

C Calls for Detecting End-of-File and Moving the File Pointer A-20

C Calls for Increasing the Size of a File ... A-20

C Calls for Extended File Manipulation .. A-21

C Calls for Performing Extended Arithmetic .. A-22

C Calls for Getting Information About PFSTM File Systems ... A-23

C Calls for Managing Pthread Execution ... A-24

C Calls for Managing Pthread Attributes ... A-24

C Calls for Managing Mutexes ... A-25

C Calls for Using Condition Variables to Synchronize Pthreads A-26

C Calls for Canceling Pthreads .. A-26

C Calls for Pthreads Cleanup Routines ... A-27

C Calls for Managing Pthread Keys ... A-27

Miscellaneous Pthread Calls ... A-27

Fortran Calls for Process Characteristics .. A-28

Fortran Calls for Synchronous Send and Receive ... A-29

Fortran Calls for Asynchronous Send and Receive ... A-30

Fortran Calls for Probing for Pending Messages ... A-31

Fortran Calls for Getting Information About Pending or Received Messages A-31

Fortran Calls for Treating a Message as an Interrupt .. A-32

Fortran Calls for Extended Receive and Probe ... A-33

Paragon™ System User's Guide Table of Contents

Table A-44.

Table A-45.

Table A-46.

Table A-47.

TableA-48.

Table A-49.

Table A-50.

Table A-51.

Table A-52.

Table A-53.

Table A-54.

Table A-55.

Table A-56.

Table A-57.

Table A-58.

Table A-59.

Table B-1.

Table B-2.

Table B-3.

Fortran Calls for Global Operations ... A-35

Fortran Calls for Controlling Application Execution ... A-38

Fortran Calls for Getting Information About Applications ... A-40

Fortran Calls for Partition Management ... A-40

Fortran Calls for Finding Unusable Nodes ... A-43

Fortran Calls for Handling Errors ... A-43

Fortran Calls for Floating-Point Control ... A-43

Miscellaneous Fortran Calls .. A-44

Fortran Calls for iPSC® and Touchstone DELTA Compatibility A-44

Fortran Calls for I/O Modes ... A-46

Fortran Calls for Reading and Writing Files in Parallel .. A-46

Fortran Calls for Detecting End-of-File and Moving the File Pointer A-48

Fortran Calls for Flushing Buffered I/O .. A-48

Fortran Calls for Increasing the Size of a File .. A-49

Fortran Calls for Extended File Manipulation ... A-49

Fortran Calls for Performing Extended Arithmetic ... A-50

Unsupported iPSC® System Byte-Swapping Calls ... B-13

Summary of Unsupported iPSC® System Commands ... B-17

Summary of Unsupported iPSC® System Calls .. B-18

xxxi

Table of Contents Paragon™ System User's Guide

e

xxxii

Introduction

Introduction
This chapter introduces the operating system and the hardware it runs on.

In a Paragon supercomputer, a large number of nodes work concurrently on the parts of a problem.
Each node has multiple processors and can run multiple processes; each process can have multiple
threads. The processes and threads on each node time-share the node's processors, using the
standard OSFIl scheduling mechanisms. Each process can be a stand-alone program (such as a shell,
compiler, or editor), or can be part of a parallel application.

A parallel application consists of a group of closely related processes that work together on a single
problem. They synchronize their actions and share information by passing messages, which are
created and controlled by special operating system system calls.

The processes in an application can also share disk files; operating system parallel YO calls insure
that access to these files is efficient and properly synchronized.

1-1

Introduction Paragon™ System User's Guide

System Hardware

Nodes

The operating system runs on several models of Paragon supercomputers. These systems all have a
large number of nodes connected by a high-speed node interconnect network, and a number of I/O
interfaces to communicate with the outside world.

Each node is essentially a separate computer, with multiple i860® processors and 16M bytes or more
of memory. Nodes can run distinct programs and have distinct memory spaces. They can team up to
work on the same problem and exchange data by passing messages. A Paragon supercomputer can
have up to more than 2000 nodes. Each node can run more than one process at the same time; these
processes can belong to the same or different applications.

There are three kinds physical nodes:

MPnode

GPnode

A three-processor node that runs with two processors as general processors and
one processor as message coprocessor.

A two-processor node that runs with one processor as a general processor and one
processor as a message coprocessor.

MP-as-GP node A three-processor node that runs with one processor as a general processor, one
processor as a message coprocessor, and one processor turned off.

An MP system is a Paragon supercomputer that is configured with MP nodes only. A GP system is
a Paragon supercomputer that is configured with either GP nodes or MP-as-GP nodes only. In a GP
system, MP nodes are automatically configured as MP-as-GP nodes.

The system administrator can choose to dedicate some nodes to interactive processes, such as shells
and editors, and other nodes to compute-intensive applications. The nodes used for interactive
processes are called service nodes, and the nodes used for compute-intensive applications are called
compute nodes.

Node Interconnect Network

1-2

The nodes are connected by a high-speed node interconnect network. Each node interfaces to this
network through special hardware that monitors the network and extracts only those messages
addressed to its attached node. Messages addressed to other nodes are passed on without interrupting
the node processor. For most applications, you can think of each node as being fully connected to all
the other nodes.

Paragon ™ System User's Guide Introduction

1/0 Interfaces

Some nodes are equipped with a SCSI interface, Ethernet interface, or other I/O connection. These
nodes manage the system's disk and tape drives, network connections, and other I/O facilities.
Nodes with I/O interfaces communicate with the other nodes over the node interconnect network.
However, this access is transparent: processes on nodes without I/O hardware access the I/O
facilities using standard OSF/l system calls, just as though they were directly connected. Nodes with
I/O interfaces are otherwise identical to nodes without I/O interfaces, and can run user processes.

TM
Front Panel LEOs (Paragon XP/S System Only)

On the Paragon XP/S System system, each cabinet has a number of Light-Emitling Diodes (LEDs)
on its front panel that inform you of the status of the system, the nodes, and messages between nodes.
The front panel LEDs are shown in Figure 1-1.

Power (green)
Power fault (red

Message going
(yellow)

)

up

Message going left (yellow)

0 ~ \) ~0 0 ,r 0

= = <i== = = = = =~> = , :> = = = =

. ~ ~
I [J

\ '1

lr I!
~L ..

--- Message going down
(green)

--- Node fault (red) u v 0

= = <i== = ¢==----= = = = :> = = = = =
~ Il it ~ 1 II MessaI~green~ Node actMty (green)

Figure 1-1. Front Panel LEDs (Paragon™ XP/S System Only)

Each cabinet has four LED panels, each of which shows the status of 16 nodes in a 4 by 4 grid. Figure
1-1 shows the upper left corner of one LED panel. The meanings of the LEDs are as follows:

The round green LED in the upper left comer of the top LED panel in each cabinet indicates
that power has been supplied to the cabinet. (The corresponding LEDs in the other three panels
never illuminate.)

1-3

Introduction Paragon™ System User's Guide

• The round red LED just below the green power LED indicates a fault in the cabinet's power
subsystem. If a fault is detected by the cabinet's self-tests, this LED illuminates. (The
corresponding LEDs in the other three panels never illuminate.)

• The square groups of horizontal green LED bars show the amount of computational activity on
the nodes. Each group represents one node. The more active a node is, the more green LEDs are
illuminated, in a bar graph moving out from the center. Figure 1-2 shows the six possible ways
these LEDs can be illuminated, showing activity levels from 0% to 100%.

I

'--------------~~~~~~~j
0% 20% 40% 60% 80% 100%

Figure 1-2. Node Activity LEDs

• The arrow-shaped yellow and green LED bars indicate messages. When a message is passed
from one node to another, all the arrow LEDs along its path illuminate. (Messages always travel
first in the X direction (horizontally), then in the Y direction (vertically). Messages never
change direction more than once.) Yellow arrows show messages going up or to the left; green
arrows show messages going down or to the right. When the arrows are illuminated, a light
pattern moves along the arrow to show the direction of motion.

• The round red LED associated with each node indicates a hardware fault on the node. If a fault
is detected by the node's self-tests, the red LED illuminates.

System Software

1-4

The nodes run the operating system, which is based on the OSF!1 operating system from the Open
Software Foundation. The same operating system runs on every node. aSF!1 is a version of the
UNIX operating system that supports most industry standards; operating system is an extended
version of OSF!1 with enhancements to support parallel processing.

The Paragon supercomputer also comes with a cross-development/acility, which you can use to
compile and link operating system programs on supported workstations.

Paragon ™ System User's Guide Introduction

Operating System

The operating system provides all the standard features of the OSFIl operating system, with
extensions to provide a single system image across multiple nodes. This single system image makes
all the nodes appear to be one large system. For example, all the nodes share a single file system, all
the nodes have equal access to the system's 110 devices, and process identifiers (PIDs) are unique
throughout the system. A process on one node can pipe its output to a process on another node, and
the command kill pid on any node kills the specified process, no matter which node the process is
running on.

The single system image does not combine all the nodes' memory into a single address space.
Rather, each process has its own address space. The physical memory available to each process is
limited to the memory of the node on which it is running. However, because OSFIl provides virtual
memory, a process's address space can be up to 2G bytes in size; memory pages that do not fit in
physical memory are paged to disk. As in most multi-user systems, the address spaces of the
different processes on the system are completely independent, unless two or more processes make
special shared virtual memory calls to explicitly share part of their memory.

In addition to the standard facilities of OSF/l, the operating system provides message passing
capability, Parallel File System access, and various other utilities to programs running on the
Paragon supercomputer. With operating system calls, your programs can perform the following
functions:

• Exchange messages with processes running on other nodes (or the same node).

• Read and write files on the Parallel File System.

• Perform 64-bit integer arithmetic.

• Find out information about the computing environment.

• Perform global operations.

• Create and control parallel applications and partitions.

User Model

The operating system is a complete implementation of OSFIl, and provides a full range of services,
commands, and system calls. It has its own file system, shells, compilers, editors, network
connections, and all the other features needed in a stand-alone computer system. It also supports
NFS, the Network File System, so it can share data with other systems on your network. You can
edit and compile programs, send and receive mail, read online manual pages, and do all your other
daily work on the Paragon supercomputer.

1-5

Introduction Paragon™ System User's Guide

You access the Paragon supercomputer by logging into a separate computer (typically your UNIX
workstation) and then connecting to the Paragon supercomputer over a local-area network, using a
command such as rlogin or telnet. The Paragon supercomputer does not have any dedicated
hardware terminals.

You compile and link your application with the self-hosted operating system compilers and linker.
You then execute your application on the nodes of the Paragon supercomputer simply by typing the
application's name on the shell command line. Command-line switches, or arguments to system
calls in the program, determine the number of nodes on which the application executes.

When you run an application, it runs in a partition. A partition is a group of nodes with an associated
set of parameters that controls some of the run-time characteristics of the applications within it. You
can use commands or system calls to create, modify, and remove partitions. However, the operations
you are allowed to perform on your system's partitions may be restricted by the policies of your site.

The operating system operating system also provides a suite of program development tools, such as
a debugger, profiler, and parallel performance analysis tools. These tools are described in the
Paragon™ System Application Tools User's Guide.

Programming Model

The most common programming model used with operating system is the "single program, multiple
data" (SPMD) model. In this model, the same program runs on each node in the application, but each
node works on only part of the data.

• For some problems, called "perfectly parallel" problems, each node can do its work without
access to data held by other nodes. In this case, each node operates completely independently.

• For other types of problems, each node needs data from other nodes to do its work. In this case,
the nodes can share data by passing messages. Messages can also be used to synchronize node
operations.

Because each node is an independent computer, you can also use other programming models. One
example is the "manager-worker" model, in which one "manager" program starts up several
"worker" programs on other nodes, then gathers and interprets their results.

Cross-Development Facility

1-6

The operating system comes with a complete program development environment, including
compilers, linker, libraries, and related tools. You can perform all phases of program development
on the Paragon supercomputer. In addition, the compilers, linker, and libraries are available on
selected UNIX workstations for cross-development. This lets you edit, compile, and link operating
system programs on your own workstation, then download your application to your Paragon
supercomputer where you run the application.

Paragon™ System User's Guide Introduction

The cross-development facility does not include a way to run a operating system executable that
resides on your workstation's disk. You must transfer your executable files to the Paragon
supercomputer for execution and debugging. You can do this by mounting your workstation's file
system onto the Paragon supercomputer, or the Paragon supercomputer's file system onto your
workstation, using the Network File System (NFS). You can also use commands such as rep or ftp
to copy the executable files to the Paragon supercomputer. To execute files on the Paragon
supercomputer once they are transferred, you can use the standard rsh or remd command from your
workstation.

1-7

Introduction Paragon ™ System User's Guide

1-8

Using System Commands

Introduction
This chapter tells you how to use operating system commands to perform the following tasks:

Compiling and linking applications.

• Running applications.

• Managing running applications.

• Managing partitions.

The commands discussed in this chapter are available to all users. See the Paragon ™ System
Administrator's Guide for information on commands that require root privilege.

This chapter does not discuss NQS, the Network Queueing System, which is used at some sites to
schedule application execution. See the Paragon ™ System Network Queueing System Manual for
information on NQS.

Terminology

This chapter uses the following terms:

A parallel application, usually just called an application in this manual, is a group of
cooperating processes that runs on the nodes of the Paragon supercomputer.

• A program is a file (source or executable). An application consists of one or more programs
running on one or more nodes. The term program is also used to refer to a non-parallel program
(an ordinary program that runs on one node).

2-1

Using System Commands Paragon ™ System User's Guide

• A partition is a named group of nodes. When you run a parallel application, you must select a
partition to run it in (if you don't, it runs in your default partition). The partition places limits
on some of the execution characteristics of the application, such as how many nodes it can use
and how long it can use them before it is "rolled out" and another application is ''rolled in." You
can allocate all of the nodes of the partition to the application, or just some of them. This
allocation mayor may not be exclusive, depending on the characteristics of the partition.

All Paragon supercomputers have two special partitions called the service partition and the
compute partition. The service partition is used to run non-parallel programs such as shells and
editors, and the compute partition is used to run parallel applications. The other partitions on
your system, and what you can do with them, are determined by your system administrator.

Using Commands on the Paragon ™ Supercomputer

The operating system provides all of the standard commands of OSFIl, such as cat and Is, which
work as specified by the Open Software Foundation. These commands are not described in this
chapter; see the OSFIl Command Reference for information on these commands.

The operating system also provides several commands that are not specified by the Open Software
Foundation, such as mkpart and rmpart. These commands are described in this chapter, and
manual pages for these commands are provided in the Paragon TM System Commands Reference
Manual.

To use any of these commands, you must firsOog into an Paragon supercomputer. Paragon
supercomputers have no directly-attached terminals; you must first log into another system
(typically a workstation running some variant of the UNIX operating system) and then log into the
Paragon supercomputer over the network, using a command such as rlogin or telnet. Once you have
logged in, you use these commands in the same way as commands on any other computer running
OSFIl.

Using Commands on Workstations

2-2

The operating system also comes with several commands that run on workstations (for example, the
icc and in7 cross-compilers). These commands are described briefly in this chapter; complete
descriptions and manual pages for these commands are provided in the Paragon TM System C
Compiler User's Guide and Paragon™ System Fortran Compiler User's Guide.

To use these commands, you must first log into a workstation on which these commands are
supported, then configure your account as described under "Configuring Your Environment for
Cross-Development" on page 2-6. Once you have done this, you can use the operating system
cross-development commands in the same way as other commands on the workstation. However, if
you compile an application on a workstation you must transfer the executable file to a Paragon
supercomputer to execute it. Depending on your local configuration, you may be able to use the

Paragon ™ System User's Guide Using System Commands

Network File System (NFS), the rep command, the ftp command, or some other technique to do
this. Ask your system administrator about how files are shared between the Paragon supercomputer
and other systems on your network.

A Quick Example

Here is a quick example that shows you how to compile, link, and execute a simple application on a
Paragon supercomputer.

Information You Need

Before you begin, you will need the following information:

• The network name of your Paragon supercomputer.

• The command to use to log into the Paragon supercomputer, such as rlogin or telnet.

• Your user name and password on the Paragon supercomputer (if necessary).

• The name of the default partition you should use to run parallel applications.

This information should be available from your system administrator.

Compiling, Linking, and Executing an Application

Once you have the necessary information, the procedure to compile, link, and execute an application
is as follows:

1. Log into the Paragon supercomputer, as instructed by your system administrator.

2. Set the environment variable NX_DFLT _PART to the name of your default partition:

• If you use the C shell, use the following command:

• If you use the Bourne or Korn shell, use the following commands:

$ N.X_DFLT_PART=partition_name
$ export N.X_DFLT_PART

3. Type in a short program:

2-3

Using System Commands Paragon ™ System User's Guide

2-4

• If you are a Fortran programmer, type the following program into the file myapp.j

program hello
include 'fnx.h'

write(*,100) mynode()
100 format ('Hello from node', i4, '!')

end

• If you are a C programmer, type the following program into the file myapp. c:

#include <nx.h>

main()
{

printf ("Hello from node %d! \n", mynode ()) ;

4. Compile the program into an executable file:

If you are a Fortran programmer, use the following command:

% £77 -nx -0 myapp myapp.£

• If you are a C programmer, use the following command:

% cc -me -0 myapp myapp.c

5. Execute the resulting file, myapp, on four nodes with the following command:

% myapp -sz 4
Hello from node O!
Hello from node 3!
Hello from node 1!
Hello from node 2!

The order in which the output lines appear may vary.

That's all there is to it! Of course, the operating system provides many additional commands and
switches you can use to control the behavior of the compiler and the resulting application. These
commands and switches are described in the rest of this chapter.

Paragon ™ System User's Guide Using System Commands

Compiling and Linking Applications

Command Synopsis

cc -ox [switches] sourcefile ...

f77 -ox [switches] sourcefile ...

icc -nx [switches] sourcefile ...

if77 -ox [switches] sourcefile ...

Description

Compile an application written in C on a Paragon
supercomputer.

Compile an application written in Fortran on a
Paragon supercomputer.

Compile an application written in C on a Paragon
supercomputer or cross-development
workstation.

Compile an application written in Fortran on a
Paragon supercomputer or cross-development
workstation.

You can compile and link applications on the Paragon supercomputer itself, or on a workstation that
supports the operating system cross-development environment. On the Paragon supercomputer, you
can use the "native" commands cc and f77 or the "cross-development" commands icc and if77. On
a workstation, you must use the cross-development commands icc and if77. The native and
cross-development versions of each command take the same switches and work identically.

When compiling and linking an application, you should generally use the switch -ox on the
command line. The -ox switch has three effects:

If used while linking a C or Fortran program, it links in !ibnx.a, the library that contains all the
system calls described in this manual.

• If used while linking a C or Fortran program, it links in a special start-up routine that starts up
the program on multiple nodes, as specified by standard command line switches and
environment variables.

• If used while compiling a C program, it defines the preprocessor symbol __ NODE. The
program being compiled can use preprocessor statements such as #ifdefto control compilation
based on whether or not this symbol is defined. (This preprocessor symbol is not defined if -ox
is used while compiling a Fortran program.)

For example, the following command line compiles and links the file myapp.c to create an
executable file called myapp (on the Paragon supercomputer):

% cc -nx -0 myapp myapp. c

2-5

Using System Commands Paragon ™ System User's Guide

The following command line has the same effect (on the Paragon supercomputer or a
cross-development workstation):

% icc -nx -0 myapp myapp.c

NOTE

Do not use -nx if your application uses any of the nx_initve ... ()
calls.

The operating system provides the ox_ioitve ••• () calls and related functions to give your application
more control over the way it starts up. They let the application perform actions for itself that are
normally performed for it by -ox. If you link your application with -ox and it also makes any
ox_initve ••• O call itself, the application's call to nx_initve ••• O will fail and return -1. See "Managing
Applications" on page 4-2 for more information on ox_initve ••• O and related functions.

To link an application that calls ox_ioitve ••• O, use the switch -lox instead of -ox. The -lox switch
links in libnx.a, but without the special start-up routine supplied by -ox. A program linked with -lox
can use all the calls described in this manual, but does not automatically start itself on multiple
nodes. (Note that the -lox switch must appear on the compiler command line after the filenames of
any source or object files that use these calls.) Note that the preprocessor symbol __ NODE is not
defined by -Inx.

A program that is not linked with -ox and does not call ox_ioitve ••• () is not a parallel application. It
does not recognize the command-line switches described under "Running Applications" on page
2-11, and it always runs on one node in the service partition. (If it creates additional processes by
calling forkO, they may run on the same node or a different node, but they will always run in the
service partition.)

Configuring Your Environment for Cross-Development

2·6

Before you can use the icc and it77 commands on your workstation, you must configure your
environment as follows:

• The environment variable PARAGON_XDEV must be set to the pathname of the directory that
contains the operating system cross-development facility. If you don't know this pathname, ask
your system administrator.

• Your execution search path (PATH or path variable) must include the directory
$PARAGON_XDEVlparagonlbin.arch, where arch identifies the architecture of your
workstation (such as suo4 for a Sun-4 workstation).

Paragon™ System User's Guide Using System Commands

• If you want to read online manual pages on your workstation, your online manual page search
path (MANPATH variable or eqpivalent facility) must include the directory
$PARAGON_XDEVIparagoniman.

You should put the definitions ofthese variables into your .cshrc or . login file (or the equivalent
start-up file for your shell). For example, suppose the operating system cross-development facility
is installed in the directory /usrllocaVXDEV. If you use the C shell, you would add these lines to your
.cshrc file:

setenv PARAGON_XDEV /usr/local/XDEV
set path=(Spath $PARAGON_XDEV/paragon/bin.'arch'
setenv MANPATH "${MANPATH}:${PARAGON_XDEV}/paragon/man"

(The curly braces in "$ {MANPATH} : $ {PARAGON_XDEV} /paragon/man" are necessary
because a colon after a variable name is special to the C shell.)

Once your environment is properly configured, you can use the icc or it77 command to compile and
link applications on your workstation. For example, the following command line compiles and links
the file myapp.fto create an executable file called myapp:

% if77 -me -0 myapp myapp.f

The executable file, myapp, can only be executed on the Paragon supercomputer. You can do this
by putting it in a directory that is shared between your workstation and the Paragon supercomputer
with the Network File System (NFS), or by copying it to the Paragon supercomputer with the ftp or
rep command. If you use the ftp command, the resulting file may not have execute permission; if
this happens, use the chmod command on the Paragon supercomputer to give myapp execute
permission.

NOTE

The Paragon system versions of the compilers are not the same
as their iPSC@ system equivalents.

If you develop programs for the iPSC series of supercomputers from Intel Corporation as well as for
the Paragon system, you must be sure that your execution search path (PATH or path variable) is set
appropriately for your current target system. To compile a program for the Paragon system, the
variable PARAGON_XDEV must be set appropriately and your execution search path must include
$PARAGON_XDEVIparagonlbin.arch; to compile a program for the iPSC system, the variable
IPSC_XDEV must be set appropriately and your execution search path must include
$IPSCj(DEVli860lbin.arch instead. Be sure that your execution search path does not include both
these directories at the same time.

2-7

Using System Commands Paragon ™ System User's Guide

Tips fo~ Compiling and Linking

2-8

The following sections give you some tips for compiling and linking applications (on either the
Paragon supercomputer or a cross-development workstation).

Using Other Switches

The cc, f77, icc, and if77 commands have a variety of switches to control their operation. For a
description of these switches and other information on these commands, see the online manual pages
for the commands or the following printed manuals:

cc, icc Paragon™ System C Compiler User's Guide.

f77, if77 Paragon™ System Fortran Compiler User's Guide.

Including nx.h or fnx.h

As a general rule, always include the file nx.h in all C programs and the file fnx.h in all Fortran
programs. These files contain definitions and declarations needed by the operating system's system
calls. Although a specific application may not need the definitions and declarations in these include.
files, the overhead involved in including them in all C or Fortran programs is minor. Include nx.h in
your C programs as follows:

#include <nx.h>

Include nx.h in your Fortran programs as follows

include 'fnx.h'

Specifying Include File and Library Pathnames

The standard include and library directories depend on whether you are using the native
development commands or the cross-development commands:

• The native development commands search for include files in the directory /usr/include, and
they search for libraries in the directories /usr/ccsllib (searched first) and /usrllib (searched
second).

• The cross-development commands search for include files in the directory
$PARAGON_XDEV/paragonlinclude, and they search for all libraries in the directory
$PARAGON _XDEV/paragonllib-cojf.

Paragon™ System User's Guide Using System Commands

Note, though, that on the Paragon supercomputer the directories
lusrlparagonIXDEVlparagonllib-cojJ and lusr/ccsllib are identical, the directories
lusrlparagonIXDEVlparagonlinclude and lusrlinclude are identical, and the default for
$PARAGON_XDEVis lusrlparagonIXDEV, so this difference may not be significant.

If you need to include a file that is not in the standard include directory or in the same directory as
the source file, you must use the -I switch on the compiler command line to identify the nonstandard
directory. For example, the following command line compiles and links an application that uses
include files in the directory lusrllocal/include:

% icc -nx ~app.c -I/usr/local/include

If you need to link to a library that is not in one of the standard library directories, then you must
modify the command line in one of the following ways:

• Use the -L switch to provide the pathoame of the directory in which the library is located. For
example, the following command line compiles and links an application that depends on the
library libfft.a located in the directory lusrllocalllib:

% icc -nx -L/usr/local/lib myapp.c -lfft

• Specify the complete pathname of the appropriate library or libraries on the command line. For
example, the following command line also compiles and links an application that depends on
the library libfft.a located in the directory lusrllocalllib:

% if77 -nx myapp.c /usr/local/lib/libfft.a

Preprocessing a Fortran Program

If your Fortran program is in a file whose filename ends with an uppercase" .F" (rather than the
standard lowercase ".f'), the if77 command runs a preprocessor (like the standard C preprocessor)
on the file. This enables you to use lines like the following in a Fortran program:

#include <file.h>

#define MAX 87

2-9

Using System Commands Paragon ™ System User's Guide

2-10

Order of Switches

Most cc, r17, icc, and if77 switches are not order-sensitive. However, order is important for the -I,
-L, and -I switches and for listing libraries when linking. When constructing command lines, keep
the following guidelines in mind:

• List include directories (-I switch) in the order in which they should be searched. The list of
include directories you specify with -I switches is collected together and used for all source files
you specify. For example, the following command looks for include files in the directory
myincludes, then the directory ..Iincludes; and finally the standard include directory when
compiling a.c, b.c, and c.c:

% icc a.c -Imyincludes b.c -I .. /includes c.c

• List libraries in the order in which they should be searched. The system's linkers are single-pass
linkers; they cannot resolve a backward library reference (Le., a reference to a library object that
was defined in a library that has already been searched). Note that this means that if you use the
-lnx switch, you should place it after any source files that need it, as follows:

% if77 -0 myapp myapp.f -lme

Backward references between objects (.0 files), however, are not a problem, as all listed objects
are linked unconditionally.

• The -L switch affects only the search path of libraries that are listed after the -L switch. For
example, the following command searches only the standard library directories for the library
libnews.a, but searches the directory ..Imylibs (as well as the standard library directories) for the
library libgx.a:

% icc -me myprog.c -lnews -L •• /mylibs -lgx

• If you specify more than one -L switch, the named directories are searched in reverse order (the
directory specified by the first -L switch on the command line is searched after the directory
specified by the second -L switch on the command line). For example:

% icc -me myprog.c -lnews -L . . /mylibs -lgx -Llocallibs -llocal

This command searches for libraries as follows:

It searches only the standard library directories for the library libnews.a.

It searches the directory ..Imylibs and then the standard library directories for the library
libgx.a.

It searches the directory locallibs, then ..Imylibs, and then the standard library directories
for the library liblocal.a.

Note that the -L switch also affects system libraries; in fact, directories specified by -L are
searched for system libraries before the standard library directories.

Paragon ™ System User's Guide Using System Commands

Running Applications
Once you have compiled your application into an executable file (and, if necessary, copied the
executable to an Paragon supercomputer), you run it by typing its name at your shell command
prompt, as you would for any other compiled program.

For example, if myapp is a compiled application, you can execute it with the following command:

% myapp

The way the application runs depends on how you linked it and on what system calls it makes:

• If myapp was linked with the -nx switch, this command runs myapp on your default number of
nodes in your default partition. The section "Controlling the Application's Execution
Characteristics" on page 2-12 tells you more about the default partition, and about the
environment variables and command-line switches you can use to control the execution
characteristics of applications linked with the -nx switch.

• If myapp was linked with the -lnx switch, this command runs myapp on the nodes and partition
specified by system calls within the application. The section "Managing Applications" on page
4-2 tells you how to use these system calls. If myapp does not specify the nodes and partition in
these calls, it defaults to running on your default number of nodes in your default partition. If
myapp does not make any of these calls, it runs on one node in the service partition.

• If myapp was linked without the -nx or -lnx switch, it is an ordinary non-parallel program, and
it runs on one node in the service partition.

If you see the error message "request overlaps with nodes in use," it means that your default partition
does not allow overlapping applications and someone else is already running an application in that
partition. Try again later, or use a different partition (as described under "Running an Application in
a Particular Partition" on page 2-23). You can use the pspart command to determine which
partitions have applications running in them, as described under "Listing the Applications in a
Partition" on page 2-64. You can also use the command showpart -f to determine which nodes in a
given partition do not have applications running on them, as described under "Showing Free Nodes"
on page 2-55.

If you see the error message "partition permission denied" or "exceeds partition resources," check
to be sure the environment variables NJCDFLT_PART and NX_DFLT_SlZE are properly defined.
See "Using the Default Partition" on page 2-13 and "Specifying Application Size" on page 2-15 for
more information on these variables; see your system administrator for information on the proper
settings for these variables at your site.

If you see the error message "error 216 occurred, unknown," it means that the application was
compiled on a previous release of the operating system and uses an out-of-date version of the
libraries. (Error 216 is "parallel application incompatible with as release", but the "unknown"
message may appear if the application is so out-of-date that it doesn't know about the existence of
this error.) If this occurs, recompile the application and try again.

2-11

Using System Commands Paragon TM System User's Guide

1/0 Redirection

You can redirect the standard input, standard output, and standard error of an application with the
usual OSFIl techniques. For example, the following command redirects the input and output of the
application myapp:

% ~app < my£ile.in > my£ile.out

This command runs the application myapp with its standard input redirected from the file myfile. in
and its standard output redirected to the file myfile.out.

Note that, by default, all the nodes read and write their standard input, standard output, and standard
error using PFS liD mode O. In mode 0, all file access requests are honored on a ftrst-come,
fIrst-served basis. You can change this behavior by selecting a different liD mode; see "Using liD
Modes" on page 5-14 for more information. The standard input, standard output, and standard error
are line-buffered by default. This means that if all the nodes write to standard output or standard
error, the output from all the nodes is intermixed in the output, line by line; if all the nodes read from
standard input, each line of the input goes to an arbitrary node.

Running SMP Programs

If you are running programs that take advantage of the symmetric multiprocessing (SMP) features
of the system, you may have to set the environment variable DFLT_NCPUS before you run your
program. For more information about DFLT_NCPUS and the SMP programming model, see
"Setting DFLT_NCPUS" on page 6-5.

Controlling the Application's Execution Characteristics

2-12

Command Synopsis Description

application [-sz size I -sz hXw I -nd hXw:n] Execute an application.
[-rlx] [-pri priority] [-pt ptype]
[-on nodespec] [-pn partition]
[-nt nodetype] [msg_switches]
[\; app2 [-pt ptype] [-on nodespec]] ...

When you run an application, you can use command-line switches and environment variables to
control the way the application executes. This section discusses all the switches and environment
variables except for the msg_switches, which are used for message-passing performance tuning; for
information on the msg_switches, see "Message-Passing Conftguration Switches" on page 8-18.

Paragon™ System User's Guide Using System Commands

Command-line switches can appear in any order on the command line, and may be intermixed with
application-specific switches and arguments. If you specify the same command-line switch more
than once in a single command, the last occurrence overrides the earlier ones. For example, the
following two commands are equivalent:

% myapp -sz 4 -sz 50 -pri 8 file.dat
% myapp -pri 8 -sz 4 file.dat -sz 50

Each of these commands runs the application myapp, with the argumentfile.dat, at priority 8 on 50
nodes of your default partition.

If the application was linked with the -ox switch, the command-line switches discussed in this
section are interpreted and removed from the command line before the application starts up. In the
previous examples, the arguments -pri 8, -sz 4, and -sz 50 are interpreted and removed by the -nx
code; myapp sees only the argument me.dat (if myapp is a C program argc is 2, argv[O] is "myapp",
and argv [1] is "file.dat").

NOTE

All the examples in this section assume that myapp was linked
with the -nx switch.

An application that is not linked with -nx controls its own execution with system calls, as discussed
under "Managing Applications" on page 4-2. Such an application mayor may not obey the
command-line switches discussed in this section, depending on how it was programmed.

Using the Default Partition

When you run a parallel application on the Paragon supercomputer, it runs in a partition. The
partition determines the maximum number of nodes used by the application and how the application
is scheduled, as described later in this chapter. An application stays in the same partition for its entire
run.

If you do not specify otherwise, the application runs in the partition specified by the environment
variable NX_DFLT_PART. If the environment variable NX_DFLLPARTis not set, the application
runs in the compute partition, a special partition that is present on all Paragon supercomputers. The
partition specified by NX_DFLT _PART (or, if this variable is not set, the compute partition) is called
your default partition.

For example, to run the application myapp in your default partition, use the following command:

% myapp

This command runs the application myapp in the partition specified by the environment variable
NX_DFLLPART, or in the compute partition if NX_DFLT_PARTis not set.

2-13

Using System Commands Paragon ™ System User's Guide

2-14

If you see an error message such as "partition not found" or "partition permission denied," ask your
system administrator what your default partition should be, then use the commands described in the
next section to set the variable NJCDFLT_PARTto that value. You can also use the -pn switch
(described under "Running an Application in a Particular Partition" on page 2-23) to run an
application in a different partition.

For more information about partitions, see "Managing Partitions" on page 2-30.

Setting Your Default Partition

The command you use to set or change your default partition depends on which shell you use.

• If you use the C shell, use the setenv command. For example, if you are a C shell user, the
following command sets your default partition to my part:

setenv is a built-in command of the shell; see csh in the OSFII Command Reference for more
information.

You can put this command in your .login or .cshrc file on the Paragon supercomputer to have
your default partition set to mypart each time you log in.

• If you use the Bourne or Kom shell, set the variable and use the export command to make its
value available to commands other than the shell. For example, if you are a Bourne or Kom shell
user, the following commands set your default partition to mypart:

$ NX_DFLT_PART=mypart
$ export NX_DFLT_PART

You do not have to use the export command each time you set the variable. You only have to
export a variable once in each login session. export is a built-in command of the shell; see sh
or ksh in the OSFII Command Reference for more information.

You can put these commands in your .profile file on the Paragon supercomputer to have your
default partition set to mypart each time you log in.

You can use an absolute or relative partition pathname as the value of NJCDFLT_PART. For
example, the following C shell commands are equivalent:

% setenv NX_DFLT_PART myorg.mypart
% setenv NX_DFLT_PART .compute.~rg.mypart

Paragon ™ System User's Guide Using System Commands

See "Partition Pathnames" on page 2-33 for more information on partition pathnames.

If you use the C or Kom shell, you can create an alias to change your default partition. For example,
the following C shell command creates a "setpart" alias that sets your default partition to its
argument:

% alias setpart 'setenv NX_DFLT_PART \!*'

Determining the Current Default Partition

To find out your default partition once you have set it, use the echo command. For example:

% echo $NX_DFLT_PART
mypart

This command works the same in any shell.

Specifying Application Size

An application's size is the number of nodes allocated to the application from the partition. The
processes of the application run only on this set of nodes, and do not exchange messages with
processes on nodes outside this set. Depending on the characteristics of the partition, this allocation
mayor may not be exclusive: some or all of these nodes may also be allocated to other applications
and/or other partitions. An application keeps the same size for its entire run.

To set an application's size, use the switch -sz size, where size is any positive integer less than or
equal to the number of nodes in the partition. For example, to run the application myapp on 64 nodes
of your default partition, use the following command:

% myapp -sz 64

The -sz size switch attempts to allocate a square group of nodes if it can. If this is not possible, it
attempts to allocate a rectangular group of nodes that is either twice as wide as it is high or twice as
high as it is wide. If this is not possible, it allocates any available nodes; in this case, nodes allocated
to the application may not be contiguous (that is, they may not all be physically next to each other).
If the requested number of nodes is not available, the command fails and the application does not
run; an error message is printed to explain why the specified number of nodes is not available.

No matter what the shape of the application, node numbers within the application (as returned by
mynode()) will always be sequential from O.

2-15

Using System Commands Paragon ™ System User's Guide

2-16

Specifying a Rectangle of Nodes

To force allocation of a contiguous rectangle of a particular size and shape, use the switch -sz hXw,
where h and w are positive integers that specify the height and width of the desired rectangle. (You
can use an uppercase or lowercase letter X between the integers hand w.) For example, to run myapp
on an 8 by 8 node rectangle of your default partition, use the following command:

% myapp -sz 8x8

If successful, this command runs myapp on an 8 by 8 node rectangle of nodes, which could be
located anywhere within the partition that it fits. If no 8 by 8 node rectangle is available in the default
partition, the command fails immediately and the application does not run, even if there are 64 nodes
free in the partition. If this occurs, the command fails with the error message "exceeds partition
resources" if no such rectangle can be found that fits within the partition, or "request overlaps with
nodes in use" if the rectangle fits within the partition but some of its nodes are busy).

Specifying a Particular Rectangle of Nodes

To force allocation of a contiguous rectangle of a particular size and shape at a particular location
within the partition, use the switch -nd hXw:n. (This switch is called -nd, rather than -sz, because it
specifies a particular set of nodes rather than just a size or shape.)

In the -nd hXw:n switch, hand w are positive integers that specify the height and width of the
desired rectangle, and n is a positive integer that specifies the node number within the partition for
the upper left comer of that rectangle. You can use an uppercase or lowercase letter X between the
integers h and w. When choosing the value of n, remember that in an m-node partition the nodes are
numbered left to right and top to bottom from 0 to m-l.

For example, to run myapp on an 8 by 8 node rectangle in the upper left comer of your default
partition, use the following command:

% myapp -nd 8x8:0

In this case, if the specified nodes are not available in the default partition, the application fails
immediately (even if there is a different 8 by 8 node rectangle available).

USing the Default Size

If you don't use the -sz or -nd switch, the application's size is specified by the environment variable
NX_DFLT_SIZE, whose value must be a single positive integer. You can use the techniques
discussed for the NX_DFLT _PART variable in the previous section to get and set the value of the
NX_DFLT _SIZE variable. If NX_DFLT _SIZE is not set, the application runs on all available nodes
of the partition, and its size is set to the size of the partition. The size specified by NX_DFLT _SIZE
(or, if this variable is not set, the size of the partition) is called your default number of nodes.

Paragon TM System User's Guide Using System Commands

An application can determine its size by calling numnodesO, and each process in the application
can determine its node number within the application by calling mynodeO. mynodeO returns a node
number from 0 to one less than the application's size. (See "Process Characteristics" on page 3-3 for
more information on these calls.) For example, with -sz 64, -sz 8x8, or -nd 8x8:0, numnodesO
returns 64 and mynodeO returns a number from 0 to 63 inclusive. There is no way for an application
to change its size.

An application can determine its shape by calling nx_app_rectO, which returns the height and width
of the rectangle of nodes allocated to the application. If the nodes allocated to the application do not
form a rectangle, nx_app_rectO returns a height of 1 and a width equal to numnodesO.
(nx_app_rectO can also be called by the name mypartO for compatibility with the Touchstone
DELTA System.)

Relaxing Application Size

No matter how you specify the application size, if any of the nodes you request are not available, the
application fails with an error message and does not run. The "availability" of a node is determined
by the partition's scheduling type and whether or not the node is already in use; for example, if the
partition does not permit overlapping applications, any node that already has an application running
on it cannot be allocated. See "Scheduling Characteristics" on page 2-39 for more information. A
node can also be unavailable due to a software or hardware problem; see "Unusable Nodes" on page
2-37.

You can use the switch -rlx to relax the requirement that the exact specified number of nodes must
be available. When you use -rlx, the application may run on/ewer nodes than you requested. In other
words, the application runs on as many nodes as possible, up to the requested number of nodes.
However, there must be at least one node available or the command still fails.

NOTE

-rlx can be used to relax the default size, the -sz size switch, or
the -nd switch. It cannot be used together with the switch -sz hXw.

For example, if the environment variable NX_DFLT _SIZE is not set, the following command runs
the application myapp on every available node in the default partition:

% myapp -rlx

The following command runs the application myapp on up to ten nodes of the default partition. If
less than ten nodes are available, the application runs on all the available nodes:

% setenv NX_DFLT_SIZE 10
% myapp -rlx

2-17

Using System Commands Paragon ™ System User's Guide

2-18

The following command runs the application myapp on up to five nodes of the default partition. If
less than five nodes are available, the application runs on all the available nodes:

% myapp -sz 5 -rlx

In any of the above cases, if no nodes are available in the default partition, the command fails.

The following command runs the application myapp on up to a 3-by-3-node rectangle of nodes
located in the upper left comer of the default partition. If any of those nodes is not available, the
application runs on the remaining nodes of that rectangle.

% myapp -nd 3x3:0 -rlx

In this case, if no nodes are available in the specified rectangle, the command fails.

Specifying Application Priority

An application's priority is an integer associated with the application that is used in determining how
much of a node's processor time the application gets when the node is allocated to more than one
application at once. 0 is the lowest priority, and lOis the highest.

The application's priority is only one of several factors that determine how much processor time it
gets. For example, the application's processor time can be affected by the priorities of other
applications in the system and by the effective priority limit of the partition in which the application
runs. See "Scheduling Characteristics" on page 2-39 for more information.

To set the priority of the application, use the switch -pri priority, where priority is an integer from
o to 10 inclusive. If you don't use the -pri switch, the application's priority is set to 5.

For example, to run the application myapp with a priority of 6, use the following command:

% myapp -pri 6

An application can change its priority by calling nx_priO (see "Setting an Application's Priority
with nx_priO" on page 4-15 for more information).

Specifying Process Type

A process's process type, or ptype, is an integer associated with the process that differentiates it from
any other process in the application that is on the same node. The process's node number and process
type together form the process's "address" for messages within the application.

To set the process type of each process in the application, use the switch -pt ptype, where ptype is
an integer from 0 to 2,147,483,647 (231 - 1) inclusive. If you don't use the -pt switch, the process
type of each process is O.

Paragon ™ System User's Guide Using System Commands

For example, to run the application myapp with a process type of 1 for each process, use the
following command:

% myapp -pt 1

A process can find out its current process type by calling myptypeO. For example, with -pt 1,
myptypeO returns 1 on all nodes. Once a process's process type has been set to a valid value, it
cannot change its process type and no other process in the same application on the same node can
use that process type for the run of the application. See "Process Characteristics" on page 3-3 for
information on process types and the myptypeO and setptypeO system calls.

The -pt switch is most commonly used when running multiple programs in one application, as
discussed under "Running Applications Consisting of Multiple Programs" on page 2-21. In most
other circumstances, you can use the default process type of o.

Running a Program on a Subset of the Nodes

Usually you run the same program file on all the nodes allocated to the application from the partition.
However, you can also run a program on just some ofthe nodes, leaving the other nodes vacant for
other programs. When you do this, the other nodes are allocated to the application, but no processes
are started on them.

To run a program on a subset of the nodes of an application, use the switch -on nodespee, where
nodes pee is one of the following:

x The node whose node number is x.

x •• y The range of nodes from numbers x to y.

n The last node of the partition.

nspee[,nspee J... The specified list of nodes, where each nspee is a node specifier of the form
x, x •• y, or n (no node may appear more than once in this list). Do not put any
spaces in this list.

If you don't use the -on switch, the program is run on all nodes allocated to the application.

NOTE

The numbers you use with -on are node numbers within the
application (which always range from 0 to one less than the size
of the application), not node numbers within the partition.

2-19

Using System Commands Paragon ™ System User's Guide

2-20

For example, to run the program myapp on the first three nodes of a 20-node application, use the
following command:

% myapp -sz 20 -on 0,1,2

This command creates an application of size 20 in your default partition and runs myapp on nodes
0, 1, and 2 of the application. Within this application, the function numnodesO returns 20, and the
function mynodeO returns a number from 0 to 19 inclusive. However, no processes are started on
nodes 3 through 19.

You can use the letter n to represent "the last node in the application." For example, the following
command creates an application of your default size in your default partition and runs myapp on the
first and last nodes of the application:

% myapp -on O,n

For example, if your NX_DFLT_SIZE variable is set to 64 (and there are at least 64 nodes in your
default partition), this would run myapp on nodes 0 and 63 of the application.

You can also use a pair of numbers separated by two periods (x •• y) to specify "nodes x through y

inclusive." For example, the following command creates an application of size 100 in your default
partition and runs the program myapp on nodes 10 through 90:

% myapp -sz 100 -on 10 .• 90

It doesn't matter whether y is greater than x or vice versa. For example, the following command also
creates an application of size 100 in your default partition and runs the program myapp on nodes 10
through 90:

% myapp -sz 100 -on 90 .• 10

These notations can be combined. For example, the following command creates an application of
your default size in your default partition and runs myapp on all nodes but node 0 of the application:

% myapp -on 1 •. n

Another example: the following command creates an application of your default size in your default
partition and runs myapp on node 1, node 3, nodes 5 through 10 inclusive, and the last node of the
application:

% ~app -on 1,3,5 •. 10,n

NOTE

Do not use -on if you just want to run a single program on a
specific number of nodes.

Paragon ™ System User's Guide Using System Commands

The -on switch is designed to be used when running multiple programs as a single application, as
discussed in the next section. You can also use the -on switch to run a "manager" program on one
or a few nodes of an application; the "manager" program can then run "worker" programs on other
nodes by calling nx_nforkO, nx_IoadO, or DX_loadveO (see "Managing Applications" on page 4-2
for information on these functions).

The -on switch is not designed to run an application on a particular number of nodes or a particular
set of nodes. If you want to run an application on a particular number of nodes, use the -sz switch;
if you want to run an application on a particular set of nodes, use the -nd switch.

If you use -on when you should be using -sz or -nd, the application will be allocated more nodes
than it needs. Also, if you use -on and do not run a program on every node of the application, global
synchronizing operations will hang. (Global synchronizing operations, such as gdsumO and
gopenO, block until they are called by every node in the application. If you run a program on only
a subset of the nodes, these operations will block forever. See "Global Operations" on page 3-27 and
"Synchronization Summary" on page 5-54 for information on global synchronizing operations.)

Running Applications Consisting of Multiple Programs

You can run multiple program files as a single application. For example, you could run two or more
separate programs on every node (the resulting processes must have different process types, and the
processes time-share the processor while the application is active). You might also run a manager
program on one node and worker programs on the other nodes. The programs should be written to
work together; you would not usually run two arbitrary programs together in one application.

To run multiple program files as a single application, use the following syntax:

% file [switches] [\; file [-pt ptype] [-on nodespec]] ...

That is, you use two or more complete commands on one line, separated by an escaped semicolon
(backslash followed by semicolon).

NOTE

The escaped semicolon (\;) must be preceded and followed by a
space or tab. Otherwise, it will be considered part of the preceding
or following argument.

The firstjile must either have been linked with -nx or must call DX_initve ••• O without overriding the
command line; the second and subsequentjiles may have been linked with or without -ox, but must
not call nx_initve ... O.

The command-line switches you can use with thejiles are different:

2-21

Using System Commands Paragon ™ System User's Guide

2-22

• You can use any application switches (-sz, -nd, -rlx, -pri, opt, -on, -pn, -nt, and msg_switches)
with the first file. (The -pn and -nt switches are discussed later in this chapter; see
"Message-Passing Configuration Switches" on page 8-18 for information on the msg_switches).
The effect of these switches varies according to the switch:

The -SZ, -nd, -rlx, -pri, -pn, -nt, and msg_switches switches you use with the first file affect
the entire application.

The opt and -on switches you use with the first file affect the first file only.

If you want opt and -on to affect second and subsequent files, you must specify them again for
each file. These switches affect the associated file only.

If you run multiple processes on a single node, you must use the opt switch to specify a unique
process type for each process. When two or more processes in an application run on the same node,
each must have a different process type. If you don't use the opt switch, each process will have
process type 0, and you will receive an error message.

For example, to run the programs myapp and myapp2 as a single application, use the following
command:

% myapp \; myapp2 -ptl

This command runs the program myapp with process type ° and the program myapp2 with process
type 1 on your default number of nodes in your default partition.

To run the program manager on node ° of a 20-node application and the program worker on the
remaining nodes, use the following command:

% manager -sz 20 -on 0 \; worker -on l •. n

Note that -on is specified twice, once for each file. This command creates an application of size 20
in your default partition. It then runs the program manager on node ° of the application and the
program worker on nodes 1 through 19 of the application. All the resulting processes have process
type 0, but this does not create a conflict because manager and worker run on different nodes.

NOTE

If you forget the backslash before the semicolon, the first program
is run as an application by itself and the second program runs after
the first program finishes. This usually results in unexpected
behavior from the programs.

Paragon 1M System User's Guide Using System Commands

Running an Application in a Particular Partition

To run an application in a partition other than your default partition, use the switch -pn partition.
You must have execute permission for the specified partition. The partition specified by -pn
overrides the value of NX_DFLT_PART, if any. If you don't use the -pn switch, the application runs
in your default partition, as described under "Using the Default Partition" on page 2-13.

NOTE

If your default number of nodes, as specified by the environment
variable NX_DFLT_SIZE, is greater than the number of nodes
available in the specified partition, you may get a "partition
resources exceeded" or "request overlaps with nodes in use"
error.

If you see this error, use the -sz switch or change the value of NX_DFLT_SlZE to specify an
application size less than or equal to the size of the specified partition.

For example, to run the application myapp on your default number of nodes in the partition my part,
use the following command:

% myapp -pn mypart

You can use an absolute or relative partition patbname with -pn (see "Partition Pathnames" on page
2-33 for information on partition patbnames). For example, the following commands are equivalent:

% ~app -pn myorg.mypart
% ~app -pn .compute.~org.mypart

For more information about partitions, see "Managing Partitions" on page 2-30.

Running an Application on a Particular Node Type

On some Paragon systems, not all the nodes in the compute partition have the same hardware. For
example, some nodes may have more memory than others, or some nodes may have I/O interfaces
that the others do not. The hardware characteristics of each node are described by a
comma-separated series of strings called attributes. You can use the command showpart -lor
Ispart -I to see the attributes of the nodes in a partition, as discussed under "Showing Partition
Characteristics" on page 2-54 and "Listing Subpartitions" on page 2-60.

2-23

Using System Commands Paragon ™ System User's Guide

2-24

Node Attributes

The meanings of the most commonly-seen node attributes are shown in Table 2-1. Other node
attributes (such as additional node or 110 types) may also be present on your system. Attributes are
not case-sensitive; for example, GP, gp, and Gp are all equivalent.

Table 2-1. NodeAttributes

Attribute Meaning

bootnode Boot node.

gp

mp

mcp

nproc

nmb

io

net

scsi

GP (two-processor) node.

MP (three-processor) node. This includes MP-as-GP nodes.

Node with a message coprocessor.

Node with n application processors (not counting the message
coprocessor).

Node with nM bytes of physical RAM.

Any 110 node.

110 node with any type of network interface.

enet Network node with Ethernet interface.

bippi Network node with RIPPI interface.

110 node with a SCSI interface.

disk SCSI node with any type of disk.

raid Disk node with a RAID array.

tape SCSI node with any type of tape drive.

3480 Tape node with 3480 tape drive.

dat Tape node with DAT drive.

IDstring SCSI node whose attached device returned the specified /Dstring
(supplied by the device manufacturer) at boot time. For example, a disk
node might have the /Dstring NCR ADP-92101 0304.

NOTE

In the current release, the only supported configuration is for one
processor on each node to be a message coprocessor. This
means that all nodes are mcp nodes, GP and MP-as-GP nodes
are 1 proc, and MP nodes are 2proc.

Paragon ™ System User's Guide Using System Commands

An attribute that is indented in the first column of Table 2-1 is a more specific version of the attribute
at the previous level of indentation. For example, net and scsi nodes are specific types of io node;
enet and hippi nodes are specific types of net node (and thus also specific types of io node).

When each node boots, the operating system gets the node's attributes and stores them as a string.
This string includes all the attributes associated with the node (both the more-specific and
less-specific versions). When you request a node with a particular attribute, the system searches
these strings and returns only nodes whose strings contain the specified attribute. This means that
requesting a less-specific attribute may match a node with any of the more-specific types indented
below it. For example, a request for a scsi node may allocate a disk node or a tape node; however,
it will never allocate any type of net node (unless that node is a scsi node as well).

For example, a GP disk node with 32M bytes of memory might have the following attributes string:

GP,fficp,lproc,32mb,io,scsi,disk,NCR ADP-92/01 0302

• If you request a gp node, an io node, a scsi node, or a disk node, you might get the above node,
because all these attributes appear in the string.

• If you request an mp node, a net node, an enet node, or a tape node, you will not get the above
node, because none of these attributes appear in the string.

Specifying Node Attributes

Sometimes you might want to run an application only on nodes that have a certain attribute or set of
attributes; for example, only those nodes with 16M bytes or more of RAM. To do this, use the switch
-nt nodetype, where nodetype is one of the following:

attribute

!attribute

Selects nodes having the specified attribute. The standard node attributes are
shown in Table 2-1. For example, the string mp selects only MP nodes.

Selects nodes not having the specified attribute. No white space may appear
between the ! and the attribute. For example, the string lio selects only nodes
that are not I/O nodes.

[relop] [value]attribute
Selects nodes having a specified value or range of values for the attribute:

• The relop can be =, >, >=, <, <=, !=, or ! (!= and ! mean the same thing).
If the relop is omitted, it defaults to =.

• The value can be any nonnegative integer. If the value is omitted, it
defaults to 1.

• The attribute can be any attribute shown in Table 2-1, but is usually
either proc or mh. (Other attributes have the value 1 if present or 0 if
absent.)

2-25

Using System Commands Paragon™ System User's Guide

2-26

ntype[,ntype] ...

No white space may appear between the relop, value, and attribute.

For example, the string >=16mb selects nodes with 16M bytes or more of
RAM; 32mb selects nodes with exactly 32M bytes of RAM; >proc selects
nodes with more than one processor.

Selects nodes having all the attributes specified by the list of ntypes, where
each ntype is a node type specifier of the form attribute, !attribute, or
[relop][value]attribute. You can use white space (space, tab, or newline) on
either side of each comma, but not within an ntype.

For example, the string mp,32mb selects MP nodes with exactly 32M bytes
of RAM; io,gp,> 16mb selects GP-based 110 nodes with more than 16M bytes
of RAM; io,!eoet selects 110 nodes that are not Ethernet nodes.

Quoting Node Attributes

If any characters that are special to your shell (such as >, <, or white space) appear in a nodetype
string, you must enclose the entire node type in quotes or precede each special character with a
backslash. For example:

% myapp -.ot: "mp, >16mb"

If you use the C shell, the special character ! must always be preceded by a backslash, even if the
nodetype is quoted. For example:

% myapp -.ot: \!gp

Using Node Attributes with No Application Size

If you use the -ot switch and do not specify an application size (that is, if you don't use the -sz switch,
the -od switch, or the environment variable N1CDFLT_SlZE), the application runs on all the nodes
in the partition that have the specified attributes. If any of the specified nodes is not available (for
example, if the partition does not allow overlapping applications and one or more nodes of the
specified type already has an application running on it), the command fails with an error message
and the application does not run.

For example, the following command runs the application myapp on all the MP nodes in the default
partition:

% myapp -.n t: lI!P

Paragon TM System User's Guide Using System Commands

The following command runs the application myapp on all the GP nodes in the default partition that
are not 110 nodes (note that the exclamation point is escaped):

% myapp -nt gp, \! io

The following command runs the application myapp on all the nodes in the default partition that have
one processor and more than 16M bytes of memory (note that the nodetype is quoted, because it
contains a space and the special character»:

% myapp -nt "lproc, >16mb"

The above examples assume that the environment variable NX_DFLT_SIZE is not set.

Using Node Attributes with an Application Size

If you use the -nt switch together with the -sz switch, the -nd switch, or the environment variable
NX_DFLT_SIZE, the application runs on the specified nodes with the specified attributes, as
follows:

• For -sz size or NX_DFLT _SIZE, at least the specified number of nodes with the specified
attributes must be available in the partition.

• For -sz hXw, at least one rectangle of nodes of the specified size and shape, all of which have
the specified attributes, must be available somewhere in the partition.

• For -nd hXw:n, the specified rectangle of nodes must be available and all the nodes must have
the specified attributes.

If the specified nodes with the specified attributes are not available in the partition, the command
fails with an error message and the application does not run.

For example, the following command runs the application myapp on 5 MP nodes in the default
partition (it fails if less than 5 MP nodes are available):

% myapp -sz 5 -nt lIU'

The following command also runs the application myapp on 5 MP nodes in the default partition (it
fails if less than 5 MP nodes are available):

% setenv NX_DFLT_SIZE 5
% myapp -nt mp

The following command runs the application myapp on a 2-by-4-node rectangle of MP nodes in the
default partition (it fails if no such rectangle of MP nodes is available anywhere in the partition):

% myapp -BZ 2x4 -nt mp

2-27

Using System Commands Paragon ™ System User's Guide

2-28

The following command runs the application myapp on a 3-by-3-node rectangle of MP nodes in the
upper left corner of the default partition (it fails if the specified rectangle is not available or does not
consist entirely of MP nodes):

% myapp -nd 3x3: 0 -nt: B\P

Using Node Attributes with a Relaxed Application Size

As discussed under "Relaxing Application Size" on page 2-17, you can use the -rlx switch to relax
the requirement that a specified number of nodes must be available. When you use -rlx together with
-nt, the application still runs only on nodes of the type you specify, but it may run on/ewer nodes
than you requested. In other words, the application runs on as many nodes as possible having the
specified type, up to the requested number of nodes. However, there must be at least one node of the
specified type available or the command fails.

For example, if the environment variable NJCDFLT _SIZE is not set, the following command runs
the application myapp on every available MP node in the default partition:

% myapp -nt: mp -rlx

Without the -rlx switch, this command would fail if any of the MP nodes in the default partition was
not available (for example, if the partition did not allow overlapping applications and one or more
of the MP nodes already had an application running on it). With the -rlx switch, this command runs
the application on as many MP nodes as it can get.

Another example: the following command runs the application myapp on up to ten MP nodes (if less
than ten MP nodes are available in the default partition, the application runs on all the available MP
nodes):

% set:env N.X DPLT_SIZE 10
% myapp -nt: JIU) -rlx

The following command runs the application myapp on up to five MP nodes (if less than five MP
nodes are available in the default partition, the application runs on all the available MP nodes):

% myapp -nt: JIU) -sz 5 -rIx

In any of the above cases, if no MP nodes are available in the default partition, the command fails.

The following command runs the application myapp on up to a 3-by-3-node rectangle of MP nodes
located in the upper left corner of the default partition (if any of those nodes is not available or is not
an MP node, the application runs on the remaining nodes of that rectangle):

% myapp -nt: JIU) -nd 3x3:0 -rlx

In this case, if no MP nodes are available in the specified rectangle, the command fails.

Paragon ™ System User's Guide Using System Commands

Managing Running Applications
You use the standard OSF/l techniques to manage running applications. For example, you use your
interrupt key (usually or <Ctrl-c» to interrupt a running application. If you use the C
shell or Kom shell, you can use your suspend key (usually <Ctrl- z » to suspend an application,
and the fg or bg command to resume it. See csh, sh, or ksh in the OSFll Command Reference for
more information on these techniques.

NOTE

Interrupting or suspending an application that is "rolled out" will not
take effect until the application is "rolled in" again.

Parallel applications can be gang-scheduled to make more efficient use of system resources. In gang
scheduling, an application is allowed to run for a time period, called the rollin quantum, and then is
"rolled out" and another application is "rolled in" in its place. If the rollin quantum is long, you may
not see any response to a <Ctrl-c> or <Ctrl-z> for a long time. See "Scheduling
Characteristics" on page 2-39 for more information on gang scheduling.

You can also use the ps command to determine the status of an application, and the kill command
to terminate it. For example:

% myapp &:

[1] 7045
% ps

PID TT STAT
5841 p3 S +

7045 p3 R
% kill 7045
% ps

PID TT STAT
5841 p3 S +

[1] + Terminated
%

TIME
0:02.50
0:00.30

TIME
0:02.55

COMMAND
-csh (csh)
myapp

COMMAND
-csh (csh)

myapp

The ps command shows only processes running in the service partition. See ps and kill in the OSFll
Command Reference for more information on these commands. To show processes running in
partitions other than the service partition, use the pspart command.

The myapp process that you see in the output ofps is a special process called the controlling process
that runs in the service partition; you do not see the other application processes in the output of ps.
However, sending a signal to the controlling process with , <Ctrl-c>, <Ctrl-z>, or kill
signals all the processes in the application. See "Managing Applications" on page 4-2 for more
information on the controlling process.

2-29

Using System Commands Paragon™ System User's Guide

If the application was started from the Bourne shell (sh) or from a shell script, you will see two
processes with the name of the application in the output of ps. One of these two processes is the
controlling process; the other is another special process, called the shepherd process. The shepherd
process is necessary for the application; do not kill it. When the application terminates, this process
will terminate as well.

To determine which process is which, use the command ps -f and examine the PPID (parent PID)
fields of the two processes. The shepherd process is the parent of the controlling process. For
example:

$ ps -£
USER PID PPID %CPU STARTED TT TIME COMMAND
chris 131125 131124 0.0 13:55:51 p2 0:00.28 -sh (sh)
chris 131129 131125 0.0 13:56:36 p2 0:00.05 myapp
chris 131130 131129 0.0 13:56:36 p2 0:00.03 myapp

In this case the second myapp process (PID 131130) is the controlling process. The first myapp
process, PID 131129, is the parent ofthe controlling process and is therefore the shepherd process.

You can use the pspart command to determine the status of all the applications in a particular
partition. See "Listing the Applications in a Partition" on page 2-64 for information on this
command.

You can also use the Interactive Parallel Debugger (ipd) to control the execution of an application,
down to the machine instruction. See the Paragon ™ System Interactive Parallel Debugger
Reference Manual for information on ipd.

Managing Partitions

2-30

The nodes of the Paragon supercomputer are divided into overlapping groups called partitions.
When you run a parallel application, you must select a partition to run it in. The partition places
limits on the execution characteristics of the application, such as which nodes it can use, whether or
not it can use nodes that are already in use, and how long it can use them before it is "rolled out" and
another application is "rolled in."

Depending on the policies of your site, you mayor may not have to know any more about partitions
than what has been discussed in this chapter so far.

• At some sites, the system administrator configures all the partitions; ordinary users can simply
set the NJCDFLT _PART variable to an appropriate value (or leave it unset and use the compute
partition) and then forget all about partitions. If your site is like this, you do not have to read this
section. However, you may wish to read it to help you understand how the system works.

At other sites, users create and configure their own partitions. If your site is like this, you should
read this section.

Paragon ™ System User's Guide Using System Commands

This section includes the following information about partitions:

Some special partitions that every Paragon supercomputer has.

Specifying partitions with partition pathnames.

The characteristics of a partition.

Making partitions with the mkpart command.

Removing partitions with the rmpart command.

Showing the characteristics of a partition with the showpart command.

Listing the sUbpartitions of a partition with the lspart command.

Listing the applications in a partition with the pspart command.

• Changing the characteristics of a partition with the chpart command.

Special Partitions

Every Paragon supercomputer has three special partitions:

The root partition directly or indirectly contains all the other partitions in the system. It is the
only partition that does not have a parent partition.

The service partition is the partition in which the users' shells and other commands run. Its
parent is the root partition.

• The compute partition is the partition in which parallel applications run. Its parent is also the
root partition.

The characteristics of these partitions are determined by the system administrator. In particular, the
system administrator sets the ownership and permissions of these partitions according to local
policies. These ownerships and permissions determine whether or not ordinary users can create
partitions for their own use, or whether they must run applications in partitions provided for them by
the system administrator. If ordinary users are allowed to create partitions, the system administrator
can also place restrictions on the characteristics of partitions they create and the use of certain
application switches within partitions.

Typically, the service partition and compute partition are the only two children of the root partition
and do not overlap. However, the system administrator can choose to configure these partitions
differently, and may also create additional child partitions of the root partition.

2-31

Using System Commands Paragon ™ System User's Guide

2-32

For example, some systems have an I/O partition: a third child of the root partition, which does not
overlap with either the service or compute partitions, and which contains the nodes that control disks
and other I/O devices. In other systems, the I/O "partition" is not a true partition, but a set of nodes
in the root partition that are not part of either the service or the compute partition.

The Root Partition

The root partition is the basis for all other partitions. The name of the root partition is . (dot).

The root partition contains every usable node in the system. Depending on the underlying hardware,
there may be unusable nodes within the root partition as well. The root partition organizes all the
nodes in the system into a two-dimensional grid, or mesh. For example, Figure 2-1 shows the root
partition of a 32-node system that is configured as a 4 by 8 node mesh. The nodes are numbered from
o to 31.

00 000 (})

00 @@ @@@

@@ @@ @@@

@@

Figure 2-1. The Root Partition of a 32-Node System

NOTE

The root partition is always rectangular. (This is not true of
partitions other than the root partition.)

Paragon™ System User's Guide Using System Commands

For example, a system with 31 nodes would also be a 4-by-8-node rectangle, numbered as shown in
Figure 2-1, but one of the nodes would be an unusable node, as described under "Unusable Nodes"
on page 2-37. You would not be able to start any processes or allocate any subpartitions using this
node.

The Service Partition

The service partition is the partition in which the users' shells, OSF/1 commands, and other
non-parallel programs run. The name of the service partition is service. The service partition may
not contain any subpartitions.

When you log into the Paragon supercomputer, a shell is started for you on a node in the service
partition; when you execute a command in this shell, the command runs on a node in the service
partition. Note that the node the command runs on is not necessarily the same node that the shell runs
on; the system starts each new process on the node that is currently the least busy.

The Compute Partition

The compute partition is the partition in which parallel applications run. The name of the compute
partition is compute.

When you execute a parallel application, one process (called the controlling process) runs in the
service partition; the other processes of the application run in the compute partition, or in a
subpartition of the compute partition. You can specify which partition an application runs in when
you execute it.

Your system administrator determines whether or not you can create subpartitions in the compute
partition and whether or not you can execute applications in the compute partition itself. There may
also be other local policies that affect how you use the compute partition; for example, you may be
required to run your applications in certain subpartitions during the day and others at night.

Partition Pathnames

Since partitions have a hierarchical structure like directories, they also have pathnames like
directories. Like a file or directory pathname, a partition pathname identifies a partition within the
hierarchical partition structure by describing the path from a known location to the specified
partition.

Unlike file and directory pathnames, however, partition pathnames use a dot (.) instead of a slash
(I) to separate the elements ofthe pathname. This is why the name of the root partition is . (dot).
There is also no special partition pathname for "current partition" or "parent of the current partition."
Also, you cannot use wildcards (* and ?) in partition pathnames.

2-33

Using System Commands Paragon 1M System User's Guide

There are two types of partition pathnames:

• An absolute partition pathname specifies the path from the root partition to the specified
partition. An absolute partition pathname begins with a dot (.)

• A relative partition pathname specifies the path from the compute partition to the specified
partition. A relative partition pathname does not begin with a dot.

NOTE

Relative partition pathnames are always relative to the compute
partition (there is no "current partition").

The absolute partition pathnames of the root partition, service partition, and compute partition are
. (dot), .service, and .compute respectively. Because these partitions are not subpartitions of the
compute partition, they do not have relative partition pathnames.

If the partition mypart is a subpartition of the compute partition, its absolute partition pathname is
.compute.mypart and its relative partition pathname is just mypart.

If subpart is a subpartition of my part, its absolute partition pathname is . compute. my part. subpart
and its relative partition pathname is mypart.subpart.

Partition Characteristics

2-34

Each partition has the following characteristics:

• A parent partition that contains it.

• A name that identifies it.

• A set of nodes that is allocated to it.

• An owner and group and a set of protection modes, like those of a file or directory, that
determine what actions a given user is allowed to perform on it.

• A set of scheduling characteristics that determine how applications are scheduled in it.

A partition's characteristics are set when the partition is created. The mkpart command, described
under ''Making Partitions" on page 2-46, lets you specify most of these characteristics on the
command line; if you don't specify otherwise, the characteristics of a new partition are set to the
same values as those of its parent partition.

Paragon ™ System User's Guide Using System Commands

You can use the showpart command, described under "Showing Partition Characteristics" on page
2-54, to determine a partition's current characteristics.

A partition's parent partition and nodes cannot be changed. You can change the other characteristics
with the chpart command, described under "Changing Partition Characteristics" on page 2-68.

Parent Partition

Each partition is contained within another partition. The containing partition is called the parent
partition, and the contained partition is called a child partition or sub partition of the parent partition.
(There is one exception to this rule: the root partition has no parent.)

You specify a partition's parent when you create it with mkpart. The parent partition determines the
set of nodes that are available to be allocated to the new partition (a partition cannot include any
nodes other than the nodes of its parent). The parent partition also determines the default
characteristics of the new partition, as mentioned earlier. A partition's parent does not change for the
life of the partition.

Partition Name

Each partition is identified by a name. A partition's name must be unique among all the partitions
with the same parent. Partition names can be any length, but must consist of only uppercase letters
(A-Z), lowercase letters (a-z), digits (0-9), and underscores C).

You specify a partition's name when you create it with mkpart, and you can use chpart to change
an existing partition's name (you must have write permission on the partition's parent partition).

Nodes Allocated to the Partition

Each partition has a set of nodes allocated to it from its parent partition. Depending on the
characteristics of the parent partition, this allocation mayor may not be exclusive: some or all of
these nodes may also be allocated to other partitions and/or applications. The number of nodes in
this set is called the partition's size.

You can specify the set of nodes allocated to the partition when you create it with mkpart. You can
specify the partition's size and let the operating system select the nodes, or you can specify certain
node numbers from the parent partition. If you don't specify either, the new partition consists of all
the nodes of the parent partition.

The set of nodes allocated to a partition does not change for the life of the partition (that is, partitions
never move or change their size or shape). Depending on how you allocate the nodes, they mayor
may not be contiguous (all adjacent to each other). Figure 2-2 shows examples of contiguous and
noncontiguous partitions.

2-35

Using System Commands Paragon™ System User's Guide

2-36

o 000 o 00000

o 000 o o 00 0®
0000 o 000
o

0

0

0
0

000 o o 0000

0 0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0

0 0 0 0

Contiguous Partitions Noncontiguous Partitions

Figure 2-2. Node Numbers in Contiguous and Noncontiguous Partitions

Node Numbers Within a Partition

Each node in a partition has a node number within the partition: an integer from 0 to one less than
the partition's size. The nodes in a partition are typically numbered from left to right and then from
top to bottom, as shown in Figure 2-2.

Paragon ™ System User's Guide Using System Commands

NOTE

Because partitions can overlap, a single physical node can have
many logical node numbers.

For example, Figure 2-3 shows two partitions, called Partition A and Partition B, that have the same
parent partition. Partition A consists of nodes 1 through 4 of the parent partition, and Partition B
consists of nodes 4 through 8 of the parent partition. In this case, node 4 of the parent partition is also
known as node 3 of Partition A and node 0 of Partition B.

Parent Partition

Partition A Partition B

l' 11

0 0 0 0 0 0 0 0 0

Partition Node Numbers

Parent 0 1 2 3 4 5 6 7 8

A -- 0 1 2 3 -- -- -- --
B -- -- -- -- 0 1 2 3 4

Figure 2-3. Node Numbers in Overlapping Partitions

Unusable Nodes

Occasionally a node may become unusable because of a hardware or software failure. If this occurs,
the node is still allocated to any partitions to which it was allocated before it became unusable, but
no applications can be run on that node and no new partitions can include that node until the node
becomes usable again. The showpart and lspart commands indicate if there are any unusable nodes
in a partition.

2-37

Using System Commands Paragon ™ System User's Guide

2-38

For example, suppose you make a partition containing 20 nodes and later one of those nodes
becomes unusable. If you attempt to run an application or make a subpartition with all 20 nodes of
this partition while the node is unusable, the attempt will fail.

Owner, Group, and Protection Modes

Each partition has an owner, a group, and a set of protection modes, like those of a file or directory,
that determine who can perform what operations on the partition.

When you create a partition with mkpart, you become the new partition's owner; the new partition's
group is set to your current group (see newgrp in the OSFIJ Command Reference for more
information on groups). If you are the owner of a partition, you can usechpart to change an existing
partition's group; only the system administrator can change an existing partition's ownership.

A partition's protection modes consist of three groups of three permission bits (read, write, and
execute for owner; read, write, and execute for group; and read, write, and execute for "other"), as
described for the chmod command in the OSFll Command Reference. The read, write, and execute
permission bits have the following meanings for a partition:

r (read)

w (write)

x (execute)

Allows listing the subpartitions and characteristics of the partition.

Allows creating and removing subpartitions in the partition and changing the
partition's characteristics.

Allows executing applications in the partition.

The system administrator (root) is not affected by these permission bits. root can do anything to any
partition at any time.

The permission bits can be expressed as a three-digit octal number (as for the chmod command) or
as a string of the form rwxrwxrwx (as used by the Is -I command, where a letter represents a bit
that is "on" and a dash (-) represents a bit that is "off'). For example, the octal number 754 is
equivalent to the string rwxr - xr,.. -; both grant all permissions to the owner, read and execute
permissions to the group, and read permission only to all other users.

When you create a partition with mkpart, you can specify its protection modes. If you don't specify
a partition's protection modes when you create it, they are set to the same values as those of the
parent partition. If you are the owner of a partition or the system administrator, you can use chpart
to change an existing partition's protection modes.

Paragon™ System User's Guide Using System Commands

Scheduling Characteristics

Each partition has a set of scheduling characteristics that determine how the applications running in
the partition are scheduled (that is, how the system arbitrates between processes when there are
several processes running on a single node).

You can specify a partition's scheduling characteristics when you create it with mkpart and change
them with chpart. If you don't specify a partition's scheduling characteristics when you create it,
they are set to the same values as those of the parent partition.

A partition uses one of three different forms of scheduling: standard scheduling, space sharing, or
gang scheduling.

• Partitions that use standard scheduling use the standard OSF/l scheduling mechanisms. This
gives good response to user input, but may result in poor performance for parallel applications
(when one process in the application becomes inactive, other processes that depend on that
process for information have to wait until it becomes active again).

• Partitions that use space sharing allow only one application per node. When you run an
application in a space-shared partition, the partition checks to see if another application or
partition is already using the requested nodes. If any of the nodes are in use, your application
fails immediately with the error message "request overlaps with nodes in use." However, if all
the specified nodes are available, your application begins running immediately and continues
running, without interruption, until it completes.

• Partitions that use gang scheduling use a modified scheduling mechanism that makes all the
processes in a parallel application active at the same time. Also, where standard scheduling
swaps processes in and out frequently (typically every 100 milliseconds), gang scheduling
swaps applications in and out on the basis of the partition's rollin quantum: a time period that
can be up to 24 hours long. A long rollin quantum gives good performance for parallel
applications, because the application can run for a long time without being interrupted, but may
result in poor response to user input (when you give input to an application that is rolled out, the
application does not respond until it is rolled in again).

Standard-scheduled partitions should be used to run interactive applications and applications that are
being debugged; space-shared and gang-scheduled partitions should be used to run non-interactive
(typically either computationally-intensive or liD-intensive) applications.

The following sections give you more information about these three forms of scheduling.

2-39

Using System Commands Paragon TM System User's Guide

2-40

Standard Scheduling

Standard scheduling is the same as the scheduling technique used on single-processor aSP/1
systems. Standard scheduling is always used in the service partition.

In a partition that uses standard scheduling, each node is scheduled like a separate computer; there
is no attempt to coordinate related processes running on separate processors.

NOTE

A partition that uses standard scheduling may not contain
subpartitions, and may not overlap any other partitions that use
standard scheduling.

In a partition that uses standard scheduling, each process has a priority, a number from -20 (high
priority) to 20 (low priority), that is used in determining how much processor time the process gets.

Partitions that use standard scheduling give good interactive performance for each individual
process in the partition. However, there is no guarantee that related processes are active at the same
time. This means that a process in a parallel application running in such a partition may find itself
waiting for a message from a process that is not active, which reduces the performance of the
application. To avoid this problem, you can use gang scheduling.

Space Sharing

Space sharing, also referred to as tiling, is a scheduling technique that prevents partitions and
applications from overlapping. (Overlapping means having any physical nodes in common.) Space
sharing is typically used in all partitions other than the service and compute partitions. If your system
administrator has disallowed gang scheduling, space sharing is used in all partitions other than the
service partition. Within a space-shared partition:

• Subpartitions may not overlap other subpartitions.

• Applications may not overlap other applications.

• Active subpartitions .may not overlap applications.

An active subpartition is a subpartition in which one or more applications is running.

Paragon ™ System User's Guide Using System Commands

NOTE

If an application is running anywhere in a subpartition or any of its
sub-subpartitions, even on a single node, the entire subpartition is
considered active, and is not allowed to overlap with a running
application.

If a subpartition is not active (contains no running applications), it can overlap a running application,
but it cannot overlap another partition.

In a space-shared partition, any attempt to create a partition or run an application that would cause
an overlap fails immediately. However, once an application is successfully started, it continues
running without interruption until it completes. (Exception: if a space-shared partition overlaps with
another partition, the entire partition can be interrupted by applications running in that other
partition. This can only occur if the space-shared partition's parent is a gang-scheduled partition.

Space sharing is the opposite of the "time sharing" used in standard scheduling and gang scheduling.
In time sharing, multiple applications can use the same nodes at the same time, but each application
gets only a fraction of its nodes' processor time. In space sharing, no two applications can use a node
at the same time, but each application gets 100% of its nodes' processor time.

Although space sharing allows only one application per node, you can have more than one process
per node within a single application. If there are multiple processes per node within an application,
standard scheduling is used to schedule these processes against each other on each node.

Partitions that use space sharing may contain subpartitions, which cannot overlap. The space-shared
partition itself can overlap another partition of any type, but the advantages of space sharing may be
lost if space-shared partitions overlap with other partitions.

Like gang-scheduled partitions, space-shared partitions have a priority and an effective priority
limit. Each application within a space-shared partition has a priority from 0 to 10, and the partition's
priority is the lesser of the effective priority limit and the highest application priority in the partition.
Since applications in space-scheduled partitions never overlap, their priorities are never compared
with each other. However, the priorities of applications in a space-scheduled partition are important
because they determine the partition's priority when compared with other partitions at its own
hierarchical level.

Unlike gang-scheduled partitions, space-shared partitions do not have a rollin quantum (since
applications never overlap, they never have to be rolled in or out). In effect, the rollin quantum of a
space-shared partition is "inflnite."

2-41

Using System Commands Paragon ™ System User's Guide

2-42

Gang Scheduling

Gang scheduling is a special scheduling technique that coordinates the scheduling of related
processes running on separate processors. Gang scheduling is typically used only in the compute
partition, or is not used at all (this is determined by your system administrator).

In a partition that uses gang scheduling, the nodes are scheduled so that all the processes in an
application are active at the same time. If there are multiple processes per node in the active
application, standard scheduling is used to schedule these processes against each other while the
application is active.

Partitions that use gang scheduling may contain subpartitions, and may overlap other partitions of
any type.

In a partition that uses gang scheduling, not only does each process have a priority, but there is a
separate priority for the application as a whole. An application's priority is a number from 0 (low
priority) to 10 (high priority). A gang-scheduled partition also has a priority of its own, as well as
two other quantities called the effective priority limit and the rollin quantum:

• A partition's priority is the lower of the following:

The priority of the highest-priority application or subpartition in the partition.

The partition's effective priority limit.

• A partition's effective priority limit is a number from 0 to 10 that places an upper limit on the
partition's priority. It does not affect the priorities of applications or partitions within the
partition.

• A partition's rollin quantum is the amount of time each application in the partition is allowed
to be active before the system considers running another application instead. The term "rollin
quantum" comes from the application being "rolled in" when it is made active, and "rolled out"
when it is made inactive.

A gang-scheduled partition's effective priority limit and rollin quantum are set when the partition is
created, and do not vary unless you change them with the cbpart command. A gang-scheduled
partition's priority may vary over time, depending on the priorities of the applications and
subpartitions in the partition.

A partition that uses standard scheduling does not have an effective priority limit or rollin quantum.
It also does not have a numeric priority; instead, its priority is "infinite" (that is, higher than the
priority of any gang-scheduled partition or application).

Gang scheduling is performed recursively, partition by partition. For each gang-scheduled partition
in the system, starting with the root partition, the operating system examines all the entities
(applications and partitions) within the partition:

Paragon™ System User's Guide Using System Commands

1. Entities that do not overlap other entities (that is, they have no nodes in common with any other
entity in the partition) are simply scheduled to run for the partition's rollin quantum.

2. Where two or more entities overlap, the priorities of the overlapping entities are compared, and
the highest-priority entity is scheduled to run for the partition's rollin quantum.

3. If two or more entities overlap and are tied for highest priority, they are scheduled in a
round-robin fashion (each takes turns running for one full rollin quantum).

4. If an entity that is scheduled to run is a partition, the operating system examines and schedules
the entities in the partition as described above. This process continues recursively as necessary.

At the end of each partition's rollin quantum, the operating system examines and schedules the
entities in the partition again.

Note that rules 2 and 3 mean that, when applications or partitions overlap, the one with the highest
priority gets one rollin quantum after another until it completes. Entities with lower priorities get no
processor time at all until the higher-priority entity has completed. If there is a tie for highest priority,
the tied high-priority entities take turns running, but entities with lower priority get no processor
time until all the high-priority entities complete. Partitions that use standard scheduling always have
the highest priority, so if a standard-scheduled partition overlaps a gang-scheduled partition or an
application, the standard-scheduled partition always wins.

NOTE

Use of gang scheduling may be limited by the policies of your site.

Your system administrator can require all compute partitions to use space sharing. If gang
scheduling is allowed, the administrator can restrict the number of gang-scheduled partitions in the
system, can set a minimum rollin quantum, and can restrict the number of applications that can
overlap in each gang-scheduled partition. If you try to create a partition that would exceed these
restrictions, you see an error message such as "exceeded allocator configuration parameters" or
"scheduling parameters conflict with allocator configuration." See your system administrator for
information on the policies in force at your site.

2-43

Using System Commands Paragon ™ System User's Guide

Summary of Scheduling Types

Table 2-2 summarizes the differences between the three scheduling types.

Table 2-2. Summary of Scheduling Types

Characteristic Standard Scheduling Space Sharing Gang Scheduling

Scheduling method used Each process is scheduled All processes in an All processes in an
within partition by itself using standard application run at the application run at the

UNIX techniques same time; each same time; applications
application runs until it may be rolled in and out
completes

Partitions that typically Service partition All other partitions Compute partition, or
use this scheduling type none at all

Restrictions on partition Partition may not overlap Partition may overlap Partition may overlap
overlap other standard-scheduled other partitions (but other partitions

partitions overlap can lose benefits
of space sharing)

Restrictions on Subpartitions are not Subpartitions may not Subpartitions may
subpartition overlap allowed overlap other overlap; maximum depth

subpartitions; active of overlap can be
subpartitions may not restricted by system
overlap applications administrator

Restrictions on Applications may overlap Applications may not Applications may overlap;
application overlap to any depth overlap other applications maximum depth of

or active subpartitions overlap can be restricted
by system administrator

Special partition Partition priority Partition priority, Partition priority,
characteristics (always "infinite") effective priority limit effective priority limit,

rollin quantum

2-44

Paragon™ System User's Guide Using System Commands

A Scheduling Example

Suppose that a partition has 1 0 nodes, and an application is currently running on 5 of those nodes. If
you attempt to run a new application on 6 nodes of that partition, the results depend on the partition's
scheduling type:

• If the partition uses standard scheduling, both applications run at once. Where the applications
overlap, the two applications' processes time-share the node. No attempt is made to coordinate
when the processes are active with the rest of the application.

• If the partition uses space sharing, the new application fails with the error message "request
overlaps with nodes in use" and does not run.

• If the partition uses gang scheduling, the two applications' priorities are compared:

If the new application's priority is greater than the old application's, the entire old
application is immediately rolled out and the new application starts running. The new
application runs until it finishes, then the old application is rolled back in.

If the new application's priority is less than the old application's, the entire new application
waits until the old application finishes. (During this time it may appear to be "hung.") When
the old application finishes, the new application is rolled in and runs until it finishes.

If the two applications' priorities are equal, the applications alternate running on each rollin
quantum. If one application finishes first, the other runs in every rollin quantum until it
finishes.

You can use the pspart command to determine which applications are currently running in a
partition and what their priorities are, and you can use the command showpart -fto determine which
nodes in a partition have applications running on them.

2-45

Using System Commands Paragon ™ System User's Guide

Making Partitions

2-46

Command Synopsis Description

mkpart [-sz size I -sz hX w I -nd nodespec] Create a partition.
[-nt nodetype] [-rlx]
[-ss I [[-sps I -rq time] [-epl priority]]]
[-mod mode] name

To create a partition, use the mkpart command. You can specify either a relative or an absolute
partition pathname for the new partition. The specified new partition must not exist; the parent
partition of the new partition must exist and must grant you write permission.

For example, to create a partition called mypart whose parent partition is the compute partition, you
can use the following command:

% mkpart mypart

The following command has the same effect, but uses an absolute partition pathname:

% mkpart .compute.mypart

Specifying the Nodes Allocated to the Partition

The mkpart command gives you four ways to specify which nodes are allocated to the new
partition:

-sz size

-sz hXw

-nd nodes pee

Creates a partition whose size (number of nodes) is size. The -sz size switch
attempts to create a square partition if it can. If this is not possible, it attempts
to create a rectangular partition that is either twice as wide as it is high or
twice as high as it is wide. If this is not possible, it uses any available nodes.
In this case, the nodes allocated to the partition may not be contiguous.

Creates a contiguous rectangular partition that is h nodes high and w nodes
wide. (You can use an uppercase or lowercase letter X between the integers
hand w.)

Creates a partition that consists of exactly the specified nodes, where
nodespee is one of the following:

x The node whose node number is x.

x •• y The range of nodes from numbers x to y.

Paragon ™ System User's Guide Using System Commands

-nt nodetype

hXw:n The rectangular group of nodes that is h nodes high
and w nodes wide and whose upper left corner is node
number n. (You can use an uppercase or lowercase
letter X between the integers h and w.)

nspec[,nspec]... The specified list of nodes, where each nspec is a node
specifier ofthe form x, x •• y, or hXw:n (no node may
appear more than once in this list). Do not put any
spaces in this list.

The numbers you use with -nd are node numbers within the parent partition,
which always range from 0 to one less than the size of the partition.

Creates a partition that consists only of nodes of the specified type. The
nodetype is the same as the nodetype used with the -nt switch when running
an application, as described under "Running an Application on a Particular
Node Type" on page 2-23.

If you don't use the -SZ, -nd, or -nt switch, all the available nodes of the parent partition are allocated
to the new partition.

You can use at most one -sz or -nd switch in a single mkpart command. You can use -nt alone, or
with -sz or -nd. If you use -nt without -sz or -nd, the new partition consists of all the nodes of the
specified type in the parent partition. If you use -nt together with -sz or -nd, the new partition
consists of the specified nodes of the specified type; if the specified nodes are not all of the specified
type, the command fails (see the examples below for more information).

Examples

The following examples all create a partition called mypart whose parent partition is the compute
partition (that is, the new partition's absolute partition patbname is .compute.mypart):

• This command creates a 50-node partition with no specified shape or location:

% mkpart -BZ 50 mY,Part

The nodes of the new partition are selected from the parent partition by the system, and they
may not be contiguous.

• This command creates a partition 10 nodes high and 5 nodes wide:

% mkpart -BZ 10x5 mypart

The position of the new partition within the parent partition is selected by the system, but the
new partition is a contiguous rectangle.

2-47

Using System Commands Paragon ™ System User's Guide

2-48

• This command creates a partition 1 0 nodes high and 5 nodes wide located in the upper left
comer of the parent partition:

% mkpart -nd 10XS:0 mypart

The shape and position of the new partition are specified by the user, and the new partition is a
contiguous rectangle.

• This command creates a partition that consists of nodes 30 through 79 of the parent partition:

% mkpart -nd 30 .. 79 mypart

The specific nodes of the partition are specified by the user, and the new partition mayor may
not be contiguous (its shape depends on the size and shape of the compute partition).

• This command creates a partition that consists of node 0, nodes 3 through 16, and a 5 by 7 node
rectangle located at node 21 ofthe parent partition:

% mkpart -nd 0,3 .. 16,SX7:21 mypart

The specific nodes ofthe partition are specified by the user, and the new partition is not
contiguous (its shape depends on the size and shape of the compute partition).

• This command creates a partition that consists of all the MP nodes with 32M bytes of memory
in the parent partition:

% mkpart -nt mp,32mb mypart

If there are no 32MB MP nodes in the parent partition, the command fails.

• This command creates a 50-node partition that consists entirely of two-procesor nodes:

% mkpart -sz SO -nt 2proc mypart

If there are not at least 50 two-processor nodes in the partition, the command fails.

• This command creates a partition 5 nodes high and 10 nodes wide in the upper left comer of the
parent partition, which consists entirely of GP nodes:

% mkpart -nd SxlO:O -nt gp mypart

If the specified rectangle does not consist entirely of GP nodes, the command fails.

No matter how you specify the partition's size, nodes are always numbered from 0 to one less than
the partition's size. In most cases, they are numbered from left to right and then top to bottom, as
discussed under "Nodes Allocated to the Partition" on page 2-35. However, if you use the -nd

Paragon ™ System User's Guide Using System Commands

switch, the nodes in the new partition are numbered in the order you specified them in the -nd switch.
For example, the following command creates a partition that consists of nodes 30 through 79 of the
compute partition:

% mkpart -nd 79 .. 30 mypart

In this case, node 79 of the parent partition is node 0 of the new partition; node 78 of the parent
partition is node 1 of the new partition; and so on to node 30 of the parent partition, which is node
49 of the new partition.

Relaxing Partition Size

No matter how you specify the partition's size, if any of the nodes you request is not available, the
mkpart command fails with an error message and no partition is created. Whether or not a node is
available is determined by the parent partition's scheduling type and whether or not the node is
already in use; for example, if the partition does not permit overlapping subpartitions, any node that
is already allocated to a subpartition is not available. See "Scheduling Characteristics" on page 2-39
for more information. A node can also be unavailable due to a software or hardware problem; see
"Unusable Nodes" on page 2-37.

You can use the switch -rlx to relax the requirement that the exact specified number of nodes must
be available. When you use -rlx, the new partition may consist ofJewer nodes than you requested.
In other words, the new partition consists of as many nodes as possible, up to the requested number
of nodes. However, there must be at least one node available or the mkpart command still fails.

NOTE

-rlx can be used to relax the default size, the -sz size switch, or
the -nd switch. It cannot be used together with the switch -sz hXw.

For example, the following command creates a partition called mypart that consists of every
available node in the compute partition:

% mkpart -rlx mypart

The following command creates a partition that consists of up to five nodes of the compute partition.
If less than five nodes are available, the application consists of all the available nodes:

% mkpart -sz 5 -rlx mypart

In either of the above cases, if no nodes are available in the compute partition, the command fails.

2-49

Using System Commands Paragon ™ System User's Guide

2-50

The following command creates a partition that consists of up to a 3-by-3-node rectangle of nodes
located in the upper left comer of the compute partition. If any of those nodes is not available, the
partition consists of the remaining nodes of that rectangle.

% mkpart -nd 3x3:0 -rlx mypart

In this case, if no nodes are available in the specified rectangle, the command fails.

If you use -rlx together with -nt it relaxes the number of nodes requested, but does not relax the type
of nodes requested. The new partition will always consist entirely of nodes of the type specified by
-nt, but it may consist off ewer nodes than specified by -SZ, -nd, or the default size. The command
fails unless there is at least one node of the specified type available.

For example, the following command creates a partition that is up to 5 nodes high and 10 nodes wide,
is located in the upper left comer of the compute partition, and consists entirely of GP nodes. If any
of those nodes is not available or is not a GP node, the partition consists of the available GP nodes
in that rectangle.

% mkpart -nd 5xlO:O -nt gp -rlx mypart

If no GP nodes are available in the specified rectangle, the command fails.

Specifying Protection Modes

The mkpart command gives you two ways to specify the protection modes of the new partition:

-mod nnn

-mod string

Creates a partition whose protection modes are specified by the three-digit
octal number nnn, as used by the chmod command (see chmod in the OSFll
Command Reference for more information).

Creates a partition whose protection modes are specified by the
nine-character string string. The string must have the form rwxrwxrwx,
where a letter (r, w, or x) represents a permission granted and a dash (-)
represents a permission denied, as displayed by the command Is -I (see Is in
the OSFll Command Reference for more information).

You can use at most one -mod switch in a single mkpart command. If you don't use the -mod
switch, the new partition is given the same protection modes as its parent partition.

For example, the following command creates a partition that is readable, writable, and executable
by you; readable and executable by your group, and only readable by others:

% mkpart -mod rwxr-xr-- mypart

The following command has the same effect, but uses an octal number:

% mkpart -mod 754 mypart

Paragon™ System User's Guide Using System Commands

Specifying Scheduling Characteristics

The mkpart command gives you three switches to specify the scheduling characteristics of the new
partition:

-ss

-rq time

-sps

-epl priority

Creates a partition that uses standard scheduling.

-ss cannot be used with -sps, -rq or -epl.

Creates a partition that uses gang scheduling with a rollin quantum of time,
where time is one of the following:

n

ns

nm

nh

o

n milliseconds (if n is not a multiple of 100, it is
silently rounded up to the next multiple of 100).

n seconds.

n minutes.

n hours.

"Infinite" time: once rolled in, an application runs until
it exits.

The maximum rollin quantum is 24 hours; the minimum rollin quantum for
your system is determined by your system administrator.

-rq cannot be used with -ss or -sps. -rq can be used with or without -epl; if
you use -rq without -epl, the new partition is a gang-scheduled partition with
the same effective priority limit as its parent partition.

If gang-scheduled partitions are not allowed at your site, or creating a
gang-scheduled partition would exceed the maximum number of
gang-scheduled partitions, any attempt to create a partition with -rq fails.

Creates a partition that uses space sharing.

-sps cannot be used with -ss or -rq. -sps can be used with or without -epl; if
you use -sps without -epl, the new partition is a space-shared partition with
the same effective priority limit as its parent partition.

Creates a partition with an effective priority limit of priority, where priority
is an integer from 0 to 10 inclusive (0 is low priority, 10 is high priority).

-epl cannot be used together with -ss. If you use -epl without either -sps or
-rq, the results depend on the scheduling type of the parent partition:

2-51

Using System Commands Paragon™ System User's Guide

• If the parent partition is a space-shared partition, the new partition is a
space-shared partition with the specified effective priority limit.

• If the parent partition is a gang-scheduled partition, the new partition is
a gang-scheduled partition with the specified effective priority limit and
the same rollin quantum as its parent. If this would exceed the maximum
number of gang-scheduled partitions, the new partition is a space-shared
partition instead.

If you don't use the -ss, -rq, or -sps switch, the new partition uses the same scheduling technique,
rollin quantum,and effective priority limit as its parent partition.

For example, the following command creates a partition that uses standard scheduling:

% ~art -ss mypart

The following command creates a partition that uses gang scheduling with a rollin quantum of 10
seconds and the same effective priority limit as its parent partition:

% mkpart -rq lOs mypart

The following command creates a partition that uses space sharing with the same effective priority
limit as its parent partition:

% mkpart -sps ~art

The following command creates a partition that uses g!Ulg scheduling with a rollin quantum of 5
minutes and an effective priority limit of 6:

% ~art -rq Sm -epl 6 mypart

Removing Partitions

2-52

Command Synopsis Description

rmpart [-f] [-r] partition Remove a partition.

To remove an existing partition, use the rmpart command. You must have write permission on the
parent partition of the partition to be removed. You can specify the partition to be removed with
either a relative or an absolute partition pathname.

For example, to remove the partition called my part, whose parent partition is the compute partition,
you can use the following command:

% ~art ~art

Paragon ™ System User's Guide Using System Commands

The following command has the same effect, but uses an absolute partition pathname:

% r.mpart .compute.mypart

Removing Partitions Containing Running Applications

If you specify a partition that contains any running applications, you see an error message and the
partition is not removed. You can force rmpart to remove a partition that contains running
applications with the of switch. When you use the of switch, rmpart terminates all the applications
running in the specified partition and then removes it.

For example, if there are applications running in my part, use the following command to terminate
the applications and remove the partition:

% r.mpart -f mypart

Removing Partitions Containing Subpartitions

If you specify a partition that contains any subpartitions, you see an error message and the partition
is not removed. You can force nnpart to remove a partition that contains subpartitions with the or
switch. When you use the or switch, nnpart recursively removes all the subpartitions in the
specified partition (and their sub-subpartitions, and so on) and then removes the specified partition.

For example, if there are subpartitions in mypart, use the following command to remove mypart and
all its subpartitions:

% r.mpart -r mypart

nnpart or is an "all or nothing" operation. If any subpartitions cannot be removed, the command
fails and no subpartitions are removed.

The or switch does not imply of. If my part or any of its subpartitions contains any running
applications, you see an error message and none of the partitions are removed. You can force nnpart
to remove a partition that contains subpartitions and running applications by using the or and of
switches together. When you use both these switches, nnpart terminates all the applications running
in the specified partition and its subpartitions, removes all the subpartitions in the specified partition,
and then removes the specified partition.

2-53

Using System Commands Paragon TM System User's Guide

Showing Partition Characteristics

2-54

Command Synopsis Description

showpart [-f] [-II -p] [-w] [-nt nodetype]
[partition]

Show the characteristics of a partition.

To show the characteristics. of a partition, use the showpart command. You can specify the partition
with either a relative or an absolute partition pathname. If you don't specify a partition, showpart
shows the characteristics of your default partition (see "Using the Default Partition" on page 2-13).
In either case, you must have read permission on the specified partition.

For example, to show the characteristics of the partition called mypart, whose parent partition is the
compute partition, you can use the following command:

% sbow.part mypart
USER GROUP
smith eng

+---------+

01
41 * * *
8 I * * *

121 * * *
+---------+

ACCESS
777

SIZE
9

FREE
5

RQ EPL
15m 5

The following command has the same effect, but uses an absolute partition pathname:

% sbow.part .compute.mypart

The columns at the top of the showpart output have the following meanings:

USER

GROUP

ACCESS

SIZE

FREE

RQ

The owner of the partition, in this case smith.

The group of the partition, in this case eng.

The access permissions, expressed as an octal number, in this case 777 (which
represents the permissions rwxrwxrwx).

The number of nodes in the partition, in this case 9.

The number of free nodes in the partition, in this case 5 (see "Showing Free
Nodes" on page 2-55 for more information on free nodes).

The rollin quantum or scheduling type of the partition, as follows:

The partition uses standard scheduling.

Paragon ™ System User's Guide

EPL

SPS

time

Using System Commands

The partition uses space sharing.

The partition uses gang scheduling with a rollin
quantum of time. The time is expressed as a number
followed by an optional letter: no letter for
milliseconds, s for seconds, m for minutes, or h for
hours.

In this case, the partition is a gang-scheduled partition with a rollin quantum
of 15 minutes.

The effective priority limit of the partition, in this case 5, or a dash (-) for a
standard-scheduled partition.

See "Partition Characteristics" on page 2-34 for information on these partition characteristics.

The rectangular picture at the bottom of the showpart output shows the size, shape, and position of
the specified partition within the system:

The large rectangle represents the root partition. In this case, the root partition is 4 nodes high
and 4 nodes wide.

The numbers to the left of the rectangle show the node numbers of the nodes in the first column
of each row. In this case, the first node in the top row is node 0, the first node in the second row
is node 4, the first node in the third row is node 8, and the first node in the bottom row is node 12.

Asterisks (*) within the rectangle represent nodes that are allocated to the specified partition;
periods (.) represent other nodes. In this case, mypart consists of nodes 5-7, 9-11, and 13-15
of the root partition.

• If you see a dash (-) or an X within the rectangle, it represents an unusable node that is allocated
to the specified partition. You cannot run any applications or allocate any partitions using this
node. See "Unusable Nodes" on page 2-37 for more information.

Showing Free Nodes

The output of Ispart or showpart includes the number of free nodes in the FREE column. A node
is free if no application is running on that node and no sUbpartition in which any applications are
running includes that node. (Note that all the nodes of a subpartition are considered busy if an
application is running anywhere in the subpartition, or in any of its sub-subpartitions. This occurs
because partitions are scheduled recursively.)

You can use the -f switch of showpart to see which nodes are free. The output of showpart -fis the
same as the regular showpart output, except that free nodes are shown as an F instead of an asterisk.

2-55

Using System Commands Paragon Tht System User's Guide

2-56

For example, the following command shows the free nodes in the partition called my part:

% snow.part -£ mypart
USER GROUP ACCESS
smith eng 777

+---------+

01
41 * * *
81 * F F

121 F F F
+---------+

SIZE
9

FREE
5

RQ EPL
15m 5

In this case, mypart has five free nodes: nodes 4, 5, 6, 7, and 8 of the partition.

Showing Node Attributes

On some Paragon systems, not all the nodes in the compute partition have the same hardware. For
example, some nodes may have more memory than others, or some nodes may have I/O interfaces
that the others do not. The hardware characteristics or"each node are described by a
comma-separated series of strings called attributes. See "Running an Application on a Particular
Node Type" on page 2-23 for information on node attributes.

You can use the -I switch of showpart to list the attributes of the nodes in the partition. The output
of showpart -I shows the attributes of every node in the partition; it also includes an A TTR column
that lists the attributes that all the nodes in the partition have in common.

For example, the following command shows the node attributes of the partition called my part:

% snow.part -l mypart
USER GROUP ACCESS
smith eng 777

0 .. 2,4,52proc,64mb,MP
3,6 .. 82proc,128mb,MP

+---------+

01
41 * * *
81 * * *

121 * * *
+---------+

SIZE
9

FREE
5

RQ EPL
15m 5

ATTR
2proc,MP

In this case, mypart has five two-processor MP nodes with 64M bytes of memory (nodes 0, 1, 2, 4,
and 5) and four two-processor MP nodes with 128M bytes of memory (nodes 3, 6, 7, and 8). The
attributes that all nodes have in common are that they are all two-processor MP nodes; these
attributes are shown in the ATTR column.

Paragon ™ System User's Guide Using System Commands

Showing Node Attributes with Root Node Numbers

The node numbers shown in the middle section of the -I output are node numbers relative to the
specified partition (logical node numbers). You can also use the -p switch to see the same
information with node numbers relative to the root partition (physical node numbers). These node
numbers correspond to the numbers to the left of the rectangle and reflect the node's physical
position within the system. The output of showpart -p is otherwise identical to showpart -I. The -I
and -p switches are mutually exclusive.

For example, the following command shows the node attributes of the partition called mypart with
node numbers relative to the root partition:

% sbowpart -p mypart
USER GROUP ACCESS RQ EPL ATTR
smith eng 777

SIZE
9

FREE
5 15m 5 2proc,MP

5 .. 7,9,10 2proc,64mb,MP
11,13 .. 15 2proc,128mb,MP

+---------+

01
41 * * *
81 * * *

121 * * *
+---------+

This display is the same as the example on page 2-56, except the node numbers are displayed as
root-partition node numbers. The five two-processor MP nodes with 64M bytes of memory are
nodes 5, 6, 7, 9, and 10, and the four two-processor MPnodes with 128M bytes of memory are nodes
II, 13, 14, and 15.

Showing Nodes Having Certain Attributes

The -lor -p switch of showpart lists the attributes of each node, but it is also useful to see the
positions of nodes having certain attributes within the partition. To do this, use the switch
-nt nodetype, where nodetype is a string describing the desired nodes' attributes, as described under
"Specifying Node Attributes" on page 2-25. Nodes in the partition having the attributes specified in
the nodetype string are shown with an asterisk (*); other nodes within the partition are shown with
a lowercase letter 0 (0).

2-57

Using System Commands Paragon ™ System User's Guide

2-58

For example, the following command shows the positions of the 64M -byte nodes in the partition
called mypart:

% snow.part -Dt 64mb ~art
USER GROUP ACCESS
smith eng 777

+---------+

01
41 * * *
81 0 * *

121 0 0 0

+---------+

SIZE
9

FREE
5

RQ
15m

EPL
5

As in the previous two examples, mypart has five nodes with 64M bytes of memory (nodes 0,1,2,
4, and 5). These nodes are shown with asterisks. The other four nodes do not have 64M bytes of
memory; these nodes are shown with 0 characters. (Note that you do not know anything about the
nodes shown with 0 characters except that they do not have 32M bytes of memory. To find out more
about the attributes of these nodes, you would have to use the -lor -p switch. -lor -p can be used
together with -nt if desired.)

If you use -nt together with of, free nodes that match the nodetype string are shown with a capital F,
while free nodes that do not match are shown with a lowercase f. For example:

% snow.part -f -Dt 32mb mypart
USER GROUP ACCESS SIZE
smith eng 777 9

+---------+

01
41 * * *
81 0 F F

121 f f f
+---------+

In this case:

FREE
5

RQ EPL
15m 5

• Nodes 0,1, and 2 of the partition (shown as asterisks) are 32MB nodes that are not free.

Node 3 of the partition (shown as a lowercase letter 0) is not a 32MB node and is not free.

• Nodes 4 and 5 of the partition (shown as capital FS) are 32MB nodes and are free.

• Nodes 6, 7, and 8 of the partition (shown as lowercase fs) are not 32MB nodes and are not free.

Paragon ™ System User's Guide Using System Commands

Showing Partitions with Cabinet Information

You can use the -w switch of showpart to see which nodes are in which cabinet and to easily
determine a node's number relative to the root partition. This is particularly useful on larger systems.

The output of showpart -w is the similar to the regular showpart output, with the addition that the
command shows the cabinet and backplane location of the partition's nodes. The picture is divided
into columns and rows. The columns indicate the system's cabinets and the rows indicate the
system's backplanes. The top of the rectangular picture shows the offsets from the numbers in the
left column. The plus sign (+) indicates that the number is an offset. The offsets are in multiples of
four. The bottom of the picture shows the cabinet numbers. For example, Cab 2 indicates that the
column is for the nodes in cabinet 2. The following example shows the locations of the nodes in the
compute partition in a three-cabinet system.

% s.howpart -w
USER GROUP
root daemon

1+0 1+4

ACCESS
777

SIZE
128

1+8
+-----------------------------+

01 * * * * * * * I *
121 * * * * * * * I *
241 * * * * * * * I *
361 * * * * * * * I *

+-----------------------------+
481 * * * * * * * I *
601 * * * * * * * I *
721 * * * * * * * I *
841 * * * * * * * I *

+-----------------------------+
961 * * * * * * * I *

1081 * * * * * * * I *
1201 * * * * * * * I *
1321 * * * * * * * I *

+-----------------------------+
1441 * * * * * * * I *
1561 * * * * * * * I *
1681 * * * * * * * I *
1801 * * * * * * * I *

+-----------------------------+
I Cab 2 I Cab 1 I Cab 0

FREE RQ
128 0

EPL
5

The rectangular picture at the bottom of the showpart output shows there are three cabinets in the
system. The top line of the picture shows the cabinet offsets in multiples of four; the bottom line
shows the cabinet numbers. Using the offsets, the top left-hand node in the compute partition is
node 2 and the bottom right-hand node in the compute partition is node number 188 (180 + 8).

2-59

Using System Commands Paragon ™ System User's Guide

Summary of Symbols

The symbols used in the output of the showpart command are summarized in Table 2-3.

Table 2-3. Symbols Used in showpart Output

Symbol Meaning

Node not belonging to partition. (All other symbols represent nodes belonging to
the partition.)

* Without -f or -nt: Any node belonging to partition.
With of: Node that is not free.
With -nt: Node matching specified attributes.
With -f and -nt: Free node matching specified attributes.

F With of: Free node.
With -f and -nt: Free node matching specified attributes.

0 With -nt: Node not having specified attributes.

f With -f and -nt: Free node not matching specified attributes.

- Empty slot (unusable node).

X Node that failed to boot (unusable node).

Listing Subpartitions

2-60

Command Synopsis Description

Ispart [-r] [-I] [-p] [partition] List the subpartitions of a partition.

To list the subpartitions of a partition with their characteristics, use the lspart command. You can
specify the partition with either a relative or an absolute partition pathname. If you don't specify a
partition, Ispart lists the subpartitions of your default partition (see "Using the Default Partition" on
page 2-13). In either case, you must have read permission on the specified partition.

Paragon™ System User's Guide Using System Commands

For example, to list the sUbpartitions of the partition called mypart, whose parent partition is the
compute partition, you can use the following command:

% lspart mypart
USER GROUP ACCESS SIZE FREE RQ EPL PARTITION
chris eng 777 16 4 15m 3 mandelbrot
chris eng 777 16 16 debug
pat mrkt 755 4 0 SPS 10 slalom

* * * * * * * private

The following command has the same effect, but uses an absolute partition pathname:

% lspart .compute.mypart

The columns in the output of Ispart are the same as the top part of the output of showpart (see
"Showing Partition Characteristics" on page 2-54), with the addition of the partition name. In this
case, mypart has four subpartitions: mandelbrot, debug, slalom, and private.

• mandelbrot is owned by user chris in group eng; it has permissions rwxrwxrwx and a size of
16 nodes, of which 4 are free (see "Showing Free Nodes" on page 2-55 for more information
on free nodes). It is a gang-scheduled partition with a rollin quantum of 15 minutes and an
effective priority limit of 3.

debug is also owned by user chris in group eng; it has permissions rwxrwxrwx and a size of
16 nodes, of which all 16 are free. It is a standard-scheduled partition, so it has no rollin quantum
or effective priority limit.

slalom is owned by user pat in group mrkt; it has permissions rwxr-xr-x and a size of 4
nodes, of which none are free. It is a space-shared partition with an effective priority limit of 10.

private's access permissions do not grant you read permission, so all its characteristics are
shown as asterisks (*).

If you see two numbers separated by a slash in the SIZE column, it indicates that one or more of the
nodes allocated to the indicated partition is unusable. For example:

% lspart mypart
USER GROUP
chris eng

ACCESS
777

SIZE
14 / 16

FREE
10

RQ
15m

EPL
3

PARTITION
mandelbrot

This indicates that there are 16 nodes allocated to mandelbrot, but 2 of them are currently unusable.
You cannot run any applications or allocate any partitions using unusable nodes. See "Unusable
Nodes" on page 2-37 for more information.

2-61

Using System Commands Paragon TM System User's Guide

2-62

Recursively Listing Subpartitions

To recursively list all of a partition's subpartitions, sub-subpartitions, and so on, use the -r switch.
For example:

% lspart -r mypart
USER GROUP ACCESS SIZE FREE RQ EPL PARTITION

.compute.mypart:
chris eng 777 16 4 15m 3 mandelbrot
chris eng 777 16 16 debug
pat mrkt 755 4 0 SPS 10 slalom

* * * * * * * private
.compute.mypart.mandelbrot:

chris eng 777 16 16 15m 10 hi-pri
chris eng 777 16 16 15m 1 lo-pri

The lspart -r output reveals that mypart.mandelbrot has two subpartitions, htpri and lo-pri, neither
of which has any sub-subpartitions, and that slalom and debug have no subpartitions. No information
is available on the sUbpartitions of private (if any), because private does not grant you read
permission.

NOTE

If you specify a partition that has no subpartitions, Is part produces
no output.

For example, since my part. slalom has no subpartitions, an lspart command on this partition gives
no output:

% lspart mypart. slalom
%

To get information about my part. slalom itself, use the showpart command.

Paragon ™ System User's Guide Using System Commands

% lspart
USER
chris

-1

Listing Node Attributes of Subpartitions

You can use the -I switch of Ispart to list the attributes of the nodes in each subpartition. The output
of Ispart -I shows the attributes of every node in the partition; it also includes an A TTR column that
lists the attributes that all the nodes in the subpartition have in common. For example:

llG',Part
GROUP ACCESS SIZE FREE RQ EPL PARTITION ATTR
eng 777 16 4 15m 3 mandelbrot 1proc

0 .. 15 1proc,16mb,GP

chris eng 777 16 16 debug 16mb

0 .. 3,6,12 1proc,16mb,MP
4,5,7 .. 11,13 .. 15 1proc,16mb,GP

pat mrkt 755 4 o SPS 10 slalom 1proc,MP

0 1proc,32mb,MP
1 .. 3

*

1proc,64mb,MP

* * * * * * private

In this example, Ispart -I displays the node numbers relative to subpartition

• mandelbrot consists of 16 one-processor GP nodes with 16M bytes of memory. Because all
nodes in mandelbrot have the same attributes, this is shown both in the A TTR column and in
the list of node attributes following the partition.

• debug consists of 6 two-processor MP nodes with 16M bytes of memory (nodes 0, 1, 2, 3, 6,
and 12 of debug) and 10 one-processor GP nodes with 16M bytes of memory (the remaining
nodes). The only thing all these nodes have in common is that they all have 16M bytes of
memory; this is shown in the A TTR column.

• slalom consists of four two-processor MP nodes. Node 0 of slalom has 32M bytes of memory,
and nodes 1,2, and 3 have 64M bytes of memory. The ATTR column shows the common
attributes, which is that they are two-processor MP nodes.

• private's access permissions do not grant you read permission, so all its characteristics are
shown as asterisks (*) and no node attributes are shown.

2-63

Using System Commands Paragon ™ System User's Guide

Listing Node Attributes with Root Node Numbers

The node numbers shown with the node attributes for each subpartition of the -I output are node
numbers relative to the specified subpartition (logical node numbers). You can also use the -p switch
to see the same information with node numbers relative to the root partition (physical node
numbers). These node numbers reflect the node's physical position within the system. The output of
Ispart -p is otherwise identical to Ispart -I. The -I and -p switches are mutually exclusive.

% lspart -p mypart
USER GROUP
chris eng

ACCESS
777

SIZE
16

FREE
4

RQ
15m

EPL
3

PARTITION
mandelbrot

ATTR
Iproc

49 .. 52,57 .. 60,65 .. 68,73 .. 76 Iproc,16mb,GP

chris eng 777 16 16 debug 16mb

42 .. 46,53,54,61,62,69,70,77,78,81 .. 83 Iproc,16mb,GP

pat mrkt 755 4 ° SPS 10 slalom Iproc,MP

84 .. 86,89 Iproc,64mb,MP

* * * * * * * private

In this example, Ispart -I displays the same information as the example on page 2-63, except the
node numbers are relative to the root partition.

Listing the Applications in a Partition

2-64

Command Synopsis Description

pspart [-r] [partition] List the applications in a partition.

To list the applications in a partition, with information about the rollin/rollout status of each, use the
pspart command. You can specify the partition with either a relative or an absolute partition
pathname. If you don't specify a partition, pspart lists the applications in your default partition (see
"Using the Default Partition" on page 2-13). In either case, you must have read permission on the
specified partition.

For example, to list the applications in the partition mypart, whose parent partition is the compute
partition, you can use the following command:

Paragon ™ System User's Guide Using System Commands

% pspart mypart
PGID

12345
23456
34567

USER SIZE PRI START TIME ACTIVE TOTAL TIME COMMAND
pat 256 5 11:42:20 45.00 75% 0:04:41 mag -sz 256
chris 67 4 Jan 21 0:12.30 boggle
smith 192 10 02:21:51 0:01:00 100% 2:12:03 myfft

The following command has the same effect, but uses an absolute partition patbname:

% pspart .compute.mypart

The columns in the output of pspart have the following meanings:

PGID The process group ill of the application (see "Process Groups" on page 4-27
for more information).

The process group ill of an application is always the same as the process ill
of the application's controlling process. This means that you can use this
number with the kill command to kill the application; for example, given the
pspart output above, the command kill 34567 would kill the application
myfft.

USER The login name of the user who invoked the application.

SIZE The number of nodes allocated to the application from the partition (see
"Specifying Application Size" on page 2-15 for more information).

PRI The application's priority (see "Specifying Application Priority" on page
2-18 for more information).

START The time the application was started. If the application was started more than
24 hours ago, the date it was started is shown instead.

TIME ACTIVE The amount of time the application has been active (rolled in) in the current
rollin quantum (see "Gang Scheduling" on page 2-42 for more information).
The time active is shown both as an absolute time (in the format
minutes: seconds. milliseconds for times less than one minute or
hours: minutes: seconds for times of one minute or more) and as a percentage
of the partition's rollin quantum. If the application is not active in the current
rollin quantum, a dash (-) is shown for both quantities. If the partition uses
space sharing, the time shown is the total amount of time the application has
been running and the percentage is always 100%.

In the example above, the partition mypart is a gang-scheduled partition with
a rollin quantum of one minute. The application mag has been active for 45
seconds, or 75% of the rollin quantum; the application boggle is not currently
active; and the application myfft has been active for one minute, or 100% of
the rollin quantum.

2-65

Using System Commands Paragon ™ System User's Guide

TOTAL TIME The total amount of time the application has been rolled in since it was
started, in the format minutes: seconds. milliseconds or

COMMAND

hours: minutes: seconds. If the partition uses space sharing, the TOTAL
TIME is always the same as the TIME ACTIVE.

In the example above, the application mag has been active for a total of 4
minutes and 41 seconds; the application boggle has been active for a total of
12.30 seconds; and the application myfft has been active for a total of 2 hours,
12 minutes, and 3 seconds.

The command line by which the application was invoked.

Applications in Subpartitions

If there are any applications running in subpartitions of the specified partition, the subpartitions
appear in the output of pspart as follows:

% pspart mypart
PGID USER SIZE PRI START TIME ACTIVE TOTAL TIME COMMAND

12345 pat 256 5 11:42:20 45.00 75% 0:04:41 mag -S2 256
23456 chris 67 4 Jan 21 0:12.30 boggle
34567 smith 192 10 02:21:51 0:01:00 100% 2:12:03 myfft

Active Partitions
OWNER

smith

2-66

GROUP SIZE PRI START TIME ACTIVE TOTAL TIME NAME
eng 64 6 09:16:30 1:18.10 subpart

The columns for the list of active partitions have the following meanings:

OWNER

GROUP

SIZE

PRI

START

The owner of the subpartition.

The group of the subpartition.

The size of the subpartition (note that all nodes of a subpartition containing
an active application are considered active, even if not all the nodes in the
subpartition are actually in use by applications).

The current priority of the subpartition (this is the highest priority of all the
applications in the subpartition or the subpartition's effective priority limit,
whichever is lower).

The time or date when the oldest application in the subpartition was started.

TIME ACTIVE The amount of time the subpartition has been active (rolled in) in the current
rollin quantum.

Paragon TM System User's Guide Using System Commands

% pspart
mypart:

PGID
12345
23456
34567

TOTAL TIME The total amount of time the subpartition has been rolled in since it was
started.

NAME The name of the subpartition.

See "Scheduling Characteristics" on page 2-39 for more information on how subpartitions are
scheduled.

Recursively Listing Applications in Subpartitions

If there are applications running in a subpartition, the output of pspart normally shows only that the
subpartition is active. To list the applications in subpartitions (and, recursively, in sub-subpartitions
and so on), use the -r switch. For example:

-r mypart

USER SIZE PRI START TIME ACTIVE TOTAL TIME COMMAND
pat 256 5 11:42:20 45.00 75% 0:04:41 mag -sz 256
chris 67 4 Jan 21 0:12.30 boggle
smith 192 10 02:21:51 0:01:00 100% 2:12:03 myfft

Active Partitions
OWNER GROUP SIZE PRI START TIME ACTIVE TOTAL TIME NAME

smith eng 64 6 09:16:30 1:18.10 subpart
mypart.subpart:

PGID
45678

USER SIZE PRI START TIME ACTIVE TOTAL TIME COMMAND
smith 56 7 09:16:30 1:18.10 span

In this case, the -r switch shows that the subpartition subpart has one application, span, which is
running on 56 nodes of the subpartition. (Even though the application is not running on every node
of the subpartition, whenever the application is rolled in the entire subpartition is rolled in. This
occurs because subpartitions are scheduled recursively, as discussed under "Gang Scheduling" on
page 2-42.)

Listing Applications With Core Dumps

If there are applications in a subpartition that have one or more processes fault and dump core, the
string "(core dump)" is appended to the application name.

% pspart mypart
PGID USER SIZE PRI START TIME ACTIVE TOTAL TIME COMMAND

42 pat 12 5 12:51:22 0:06.30 63% 0:02:42 myapp (core dump)

In this example, the application myapp is running on some (not necessarily all) nodes in the partition
mypart. The display indicates that the application myapp has one or more processes dumping core.

2-67

Using System Commands Paragon™ System User's Guide

Changing Partition Characteristics

2-68

Command Synopsis

chpart [-rq time I -sps] [-epl priority]
[-nm name] [-mod mode]
[-g group] [-0 owner[• group]]
partition

Description

Change certain partition characteristics.

To change the characteristics of a partition, use the chpart command. The permissions required
depend on the switches you use. You can specify the partition with either a relative or an absolute
partition pathname.

chpart can change the following partition characteristics:

• Rollin quantum.

• Effective priority limit.

Partition name.

• Protection modes.

• Owner and group.

• Scheduling type (space-shared to gang-scheduled, or gang-scheduled to space-shared with
certain limitations; a partition cannot be changed to or from standard scheduling).

A partition's size and parent partition are determined when the partition is created and cannot be
changed.

The switches of chpart, which can be used together or separately and in any order (except as noted
below), are similar to the corresponding switches of mkpart:

-rq time Changes the partition to a gang-scheduled partition with a rollin quantum of
time, where time is one of the following:

n

ns

nm

nh

n milliseconds (if n is not a multiple of 100, it is
rounded up to the next multiple of 100).

n seconds.

n minutes.

n hours.

Paragon ™ System User's Guide

-sps

-epl priority

-nmname

-mod nnn

-mod string

-g group

Using System Commands

o "Infinite" time: once rolled in, an application runs until
it exits.

The maximum rollin quantum is 24 hours; the minimum rollin quantum for
your system is determined by your system administrator.

-rq can be used only on a gang-scheduled or space-shared partition, and
cannot be used together with -sps. To use -rq, you must have write
permission on the specified partition.

Changes the partition to a space-shared partition.

-sps can be used only on a space-shared or gang-scheduled partition, and
cannot be used together with -rq. If the partition is currently gang-scheduled,
it must not contain any overlapping subpartitions or any applications. To use
-sps, you must have write permission on the specified partition.

Changes the partition's effective priority limit to priority, where priority is an
integer from 0 to 10 inclusive.

-epl can be used only on a gang-scheduled or space-shared partition. To use
-epl, you must have write permission on the specified partition.

Changes the partition's name to name, where name is a valid partition name
(a string of any length containing only uppercase letters, lowercase letters,
digits, and underscores). To use -nm, you must have write permission on the
parent partition of the specified partition.

Note that -nm can only change the partition's name "in place;" there is no
way to move a partition to a different parent partition.

Changes the partition's protection modes to the value specified by the
three-digit octal number nnn. To use -mod, you must be the owner of the
specified partition or the system administrator.

Changes the partition's protection modes to the value specified by the
nine-character string string. The string must have the form rwxrwxrwx,
where a letter (r, w, or x) represents a permission granted and a dash (-)
represents a permission denied. To use -mod, you must be the owner of the
specified partition or the system administrator.

Changes the partition's group to group. The group can be either a group name
or a numeric group ill. To use -g, you must be the owner of the specified
partition and a member of the specified new group, or you must be the system
administrator.

2-69

Using System Commands ParagonT
" System User's Guide

2-70

-0 owner[• group] Changes the partition's owner to owner. If . group is specified, also changes
the partition's group to group. The owner and group can be either user/group
names or numeric user/group IDs. To use -0, you must be the system
administrator.

For example, the following command changes the rollin quantum of mypart to 20 minutes:

% chpart -rq 20m mypart

The following command changes mypart to a space-shared partition:

% chpart -sps mypart

The following command changes the effective priority of mypart to 2:

% chpart -epl 2 mypart

The following command changes the protection modes of mypart so that it is readable, writable, and
executable by the owner but not by anyone else:

% chpart -mod rW,X------ mypart

The following command has the same effect as the previous three commands combined, but uses an
absolute partition pathname and an octal protection mode specifier:

% chpart -epl 2 -rq 20m -mod 700 .compute.mypart

The following command changes the owner of mypart to smith, but does not affect its group:

% chpart -0 smith mypart

The following command changes the group of mypart to support, but does not affect its ownership:

% chpart -g support mypart

The following command changes the owner of mypart to smith and the group to support:

% chpart -0 smith. support mypart

The following command changes the name of mypart to newpart:

% chpart -nm new.part mypart

Paragon ™ System User's Guide Using System Commands

The following command also changes the name of mypart to newpart, but uses an absolute partition
pathname:

% chpart -nm newpart .compute.mypart

Note that the new name is specified as a name only, not a pathname.

2-71

Using System Commands Paragon ™ System User's Guide

¥&

2-72

Using Message-Passing System Calls

Introduction
Message passing is the standard means of communication among processes in operating system. As
independent processor/memory pairs, the nodes do not share physical memory. If the node processes
need to share information, they can do so by passing messages. The calls described in this chapter
let your programs send and receive messages.

This chapter introduces the message-passing system calls and includes the following sections:

• Process characteristics.

Message characteristics.

Names of send and receive calls.

Synchronous send and receive.

Asynchronous send and receive.

• Probing for pending messages.

• Getting information about pending or received messages.

• Message passing with Fortran commons.

• Treating a message as an interrupt.

Extended receive and probe.

Global operations.

3-1

Using Message-Passing System Calls Paragon™ System User's Guide

3-2

Within each section, the calls are discussed in order of increasing complexity. That is, the "base"
calls are discussed first, and the "extended" calls are discussed later.

Each section includes numerous examples in both C and Fortran. A call description at the beginning
of each section or subsection gives a language-independent synopsis (call name, parameter names,
and brief description) of each call discussed in that section. Differences between C and Fortran are
noted where applicable. See Appendix A for information on call and parameter types; see the

TM TM
Paragon System C Calls Reference Manual or the Paragon System Fortran Calls Reference
Manual for complete information on each call.

This chapter does not describe all the Paragon system's system calls. For information about system
calls that provide general services other than message passing, see Chapter 4. For information about
the calls used with the Parallel File System, see Chapter 5. For information about the calls used with
graphical interfaces, such as DGL and the X Window System, see the Paragon TM System Graphics
Libraries User's Guide. For information about the system calls that require root privileges, see the
Paragon ™ System Administrator's Guide.

Programs written in C can also issue OSFIl system calls. The operating system is a complete OSF!l
operating system and fully supports all the standard OSFIl system calls. See the OSFll
Programmer's Reference for information on these calls.

Programs written in Fortran cannot make OSFIl system calls directly, but the Fortran runtime library
includes a number of system interface routines. These routines make a number ofOSFIl system calls
available to Fortran programs. See the Paragon™ System Fortran Compiler User's Guide for
information on these routines.

Paragon™ System User's Guide Using Message-Passing System Calls

Process Characteristics
Each process within an application is identified by its node number and process type. A process must
have a valid node number and process type to send and receive messages.

Node Numbers

Synopsis

mynodeO

numnodesO

Description

Obtain the calling process's node number.

Obtain the number of nodes allocated to the
current application.

A process's node number is an integer that identifies the node on which it is running. Node numbers
are assigned by the system, and range from zero to one less than the number of nodes in the
application. A process can find out its node number by calling mynodeO; the node number does not
change for the life of the process. A process can also find out the number of nodes in the application
by calling numnodesO; the maximum node number in the application is numnodesO - 1.

When you run an application that was linked with the -nx switch, the system creates one process on
each node of the default partition (unless you specify otherwise on the application's command line).
Each process is the same as the others except for its node number, which is different in each process.

All message-sending system calls have a node parameter that specifies the node to which the
message is sent. You can use any valid node number, or the special value -1 to send the message to
all nodes in the application except the sending node itself.

Some message-receiving system calls have a nodesel parameter that specifies the node from which
the message was sent. A nodesel parameter can be a valid node number (to receive only messages
from that node), or the special value -1 (to receive messages from any node). Message-receiving
system calls that do not have a nodesel parameter always receive messages from any node.

The node numbers used in message-passing calls are always node numbers within the application,
not physical slot numbers or node numbers within the partition in which the application is running.
For example, if you run an application on 30 nodes of a 64-node partition by using the switch -sz 30,
the node numbers within the application will always be 0 through 29. However, those nodes might
not be nodes 0 through 29 of the partition. They might be nodes 0 through 29, or 10 through 39, or
a completely arbitrary set of nodes.

3-3

Using Message-Passing System Calls Paragon™ System User's Guide

Process Types

3-4

Synopsis Description

myptypeO Obtain the calling process's process type.

setptype(ptype) Set the calling process's process type (only
permitted if the process type is currently
INVALID_PTYPE).

A process's process type, or ptype, is an integer that distinguishes the process from other processes
in the same application running on the same node. Process types are assigned by the user, and can
be any integer from 0 to 2,147,483,647 (231 - 1) inclusive. A process can find out its process type
by calling myptypeO. A process cannot change its process type once it has been set to a valid value.

When you run an application that was linked with -nx, the system sets the process type of all
processes in the application to the value you specify with the -pt switch on the application's
command line (default 0).

All message-sending system calls have a ptype parameter that specifies the process type to which the
message is sent. You must specify the process type; you cannot use -1.

Some message-receiving system calls have a ptypesel parameter that specifies the process type from
which the message was sent. A ptypesel parameter can be a valid process type (to receive only
messages from that process type), or the special value -1 (to receive messages from any process
type). Message-receiving system calls that do not have a ptypesel parameter always receive
messages from any process type.

Certain system calls that involve all the nodes in the application, called global operations, require
that every node in the application has one process with the same process type. All these processes
must call the global operation before the application can proceed.

Within a single application, multiple processes running on the same node must have different
process types. However, processes on different nodes may (and usually do) have the same process
type. Two processes running on a single node may have the same process type only if they belong
to different applications.

NOTE

The -pt switch (or, if not specified, the default process type of 0)
applies only to the process type of the initial processes created by
running the application.

Paragon ™ System User's Guide Using Message-Passing System Calls

If an application creates additional processes after it starts up, and no process type is specified for
the new process, the new process's process type is set to the special value INVALID_PTYPE (a
negative constant defined in the header file nx.h). A process whose process type is
INV ALID _PTYPE cannot send or receive messages. It must use the system call setptypeO to set
its process type to a valid value before it can send or receive any messages. (This is the only valid
use of setptypeO.)

The system calls that create node processes (mcnforkO, nx_loadO, and nx_loadve()) have a ptype
parameter that specifies the process type of the newly-created processes. However, the standard
OSF/l system call forkO, which creates a new process on the same node as the process that calls it,
does not provide any way to specify the new process's process type. This means that the process type
of a process created by forkO is set to INVALID _PTYPE. The new process must call setptypeO
before it can send or receive messages. The specified process type must be different from the
parent's, and different from the process type of any other process in the same application on the same
node.

A process's process type is inherited across an execO. This means that if you do a forkO followed
by an execO, you can call setptypeO either before or after the execO. However, the setptypeO must
follow the forkO.

Once a process has used a process type, that process type is associated with the process for the life
of the application. No other process on the same node in the same application can ever use that
process type, even if the original process terminates.

If a process has multiple pthreads, all the pthreads in the process have the same process type. See
Chapter 6 for information on pthreads.

Message Characteristics
Messages are characterized by a length, a type, and sometimes an [D. These characteristics are set
when the message is sent, and do not change for the life of the message.

Message Length

The length of a message is the number of bytes of information contained in the message. Messages
can be of any length.

All message-passing system calls have a count parameter that specifies the length of the message to
be sent or received. The length you specify must be less than or equal to the size in bytes of the buffer
used in the call. Message-sending calls read exactly that number of bytes from the buffer and send
them as a message; message-receiving calls generate an error if a message is received that is larger
than the specified length.

3-5

Using Message-Passing System Calls Paragon ™ System User's Guide

If you program in C, when you send a message you can use the sizeof operator to determine the size
of your message in bytes. If you program in Fortran, you will need to add up the sizes of all the data
elements within the message; see the Paragon™ System Fortran Compiler User's Guide for
information on the default size of each data type. If you pass named common blocks as messages,
you may also have to include the space taken up by padding within the common block, as discussed
under "Message Passing with Fortran Commons" on page 3-17.

You can also send and receive zero-length messages. This is useful if the message type is sufficient,
and there is no need to supply any message content. For example, one process could tell another
process to start or stop doing something by sending a zero-length message of type 1 to start, or a
zero-length message of type 2 to stop.

Message Type

The type of a message is an integer whose meaning is determined by the programmer.

All message-sending system calls have a type parameter that specifies the type of the message sent.
You can use any integer from 0 to 999,999,999 (inclusive) as a message type.

All message-receiving system calls have a typesel parameter that specifies the type (or types) of
messages the call will receive. A typesel parameter can be an integer from 0 to 999,999,999 (to
receive only messages of the specified type) or the special value -1 (to receive messages of any type).

There are also special message types outside the range 0 to 999,999,999, calledforce types and
typesel masks, that you can use. Sending with a force type sends a message that uses a limited flow
control technique; receiving with a typesel mask receives messages of a selected set of types. See

TM TM
the Paragon System Fortran Calls Reference Manual or Paragon System C Calls Reference
Manual for information on these special message types. Note, though, that regular messages are just
as fast as force type messages, so force types are not needed for performance.

Message 10

3-6

The ID of a message is an identifier used to check for the completion of asynchronous messages.
Synchronous messages do not have IDs.

When you send or receive a message with an asynchronous message-passing call (one that returns
before the message is completely sent or received), the call returns an ID that you can use to check
whether or not the send or receive is complete. See "Asynchronous Send and Receive" on page 3-10
for more information on message IDs.

Paragon™ System User's Guide Using Message-Passing System Calls

Message Order
The operating system guarantees that all messages will arrive in the same order they are sent. That
is, if one message is sent from node A to node B, then a second message is sent from node A to node
B, the second message will never arrive before the first.

Although the first message always arrives at the node first, you can elect to receive the second
message-that is, to copy its contents into a buffer in user memory-before the first. You do this by
specifying different message types in the send calls on node A, and specifying the second message's
type in the first receive call on node B.

Names of Send and Receive Calls
You can tell what each message-passing call does by examining its name.

The first character of the name indicates whether the call is synchronous, asynchronous, or handled:

c

h

Synchronous (£omplete) call. These calls do not return until the message is
complete. They are discussed under "Synchronous Send and Receive" on
page 3-8.

Asynchronous (incomplete) call. These calls return immediately, so your
program can do other work while the message is processed. They are
discussed under "Asynchronous Send and Receive" on page 3-10.

Asynchronous with interrupt handler (handled) call. Like the i ... () calls, the
h ••• () calls return immediately. Unlike the i ... () calls, h ••• () calls indicate that
the message is complete by calling a user-supplied interrupt handler. They are
discussed under "Treating a Message as an Interrupt" on page 3-18.

The initial c, i, or h is followed by a verb that indicates what the call does:

send Send a message.

recv Receive a message.

sendrecv Send a message and receive the reply.

probe Probe for a pending (not yet received) message.

Finally, the verb may be followed by an x to indicate that it is an "extended" version ofthe call (see
"Treating a Message as an Interrupt" on page 3-18 and "Extended Receive and Probe" on page
3-24).

3-7

Using Message-Passing System Calls Paragon ™ System User's Guide

The synchronous calls with no additional functionality, such as esendO, are the easiest to understand
and use. However, the asynchronous calls (such as isendO) and the calls with additional
functionality (such as ereevx()) can offer dramatic improvements in performance when properly
used.

Synchronous Send and Receive

3-8

Synopsis

esend(type, buf, count, node, ptype)

ereev(typesel, buf, count)

esendreev(type, sbuj, scount, node, ptype,
typesel, rbuf, rcount)

Description

Send a message, waiting for completion.

Receive a message, waiting for completion.

Send a message and post a receive for the reply.
Wait for completion.

The e ... O message-passing calls perform synchronous sends and receives.

• A synchronous send means that the program executing the send waits until the send is complete.
This waiting is referred to as blocking. Completing the send, however, does not guarantee that
the message has been received. It only means that the message has left the sending process and
that the buffer can be reused. You use esendO to perform a synchronous send.

• A synchronous receive means that the program executing the receive waits until the message
arrives in the specified buffer. You use ereevO to perform a synchronous receive.

• A esendreevO is like a esendO followed by a ereevO. It returns the length of the received
message.

Here are two code fragments in C that perform a synchronous send and a synchronous receive.

• Node 1 sends a message of type 0 to the process with the same process type on node 0:

#include <nx.h>
#define MSG_TYPE 0
#define DEST_NODE 0
char send_buf[lOO];

csend(MSG_TYPE, send_buf,
sizeof(send_buf), DEST_NODE, myptype());

Paragon TM System User's Guide Using Message-Passing System Calls

• Node 0 receives the message:

#include <nx.h>
#define MSG_TYPE 0
char recv_buf[100)i

crecv(MSG_TYPE, recv_buf, sizeof(recv_buf))i

See "Extended Receive and Probe" on page 3-24 for information on a version of the crecvO call with
additional functionality.

Synchronous Send to Multiple Nodes

Synopsis

gsendx(type, buf, count, nodes, nodecount)

Description

Send a message to a list of nodes, waiting for
completion.

The gsendxO call sends a message to multiple nodes. Specifically, it performs a synchronous send
of the message specified by the type, buf, and count arguments to the process with the same process
type as the caller on the nodes specified by the nodes argument. The nodes argument is an array of
integers; the nodecount argument specifies the number of nodes in nodes.

For example, the following code fragment in Fortran sends the data in the array x to nodes 1 and 3:

integer*4 nodenums(2) , x(10)

nodenums(l) = 1
nodenums(2) = 3
call gsendx(100, x, 10*4, nodenums, 2)

3-9

Using Message-Passing System Calls Paragon TM System User's Guide

Asynchronous Send and Receive

3-10

Synopsis

isend(type, buf, count, node, ptype)

irecv(typesel, buf, count)

isendrecv(type, sbuf, scount, node, ptype,
typesel, rbuf, rcount)

msgdone(mid)

msgwait(mid)

msgignore(mid)

Description

Send a message without waiting for completion.

Receive a message without waiting for
completion.

Send a message and post a receive for the reply
without waiting for completion.

Determine whether a send or receive operation
has completed.

Wait for completion of a send or receive
operation.

Release a message ID as soon as a send or receive
operation completes.

The i ••• O message-passing calls perform asynchronous sends and receives. The msgdoneO and
msgwaitO calls are use.d with th.e i. .. O calls to deteI'rr'Jne when the message has completed; Li.e
msgignoreO call is used to discard a message ID as soon as the message has completed.

Unlike a synchronous send or receive, an asynchronous send or receive does not block. It returns a
unique message ID, which is not reused until released. You can use this ID to check for completion
at a later time.

NOTE

The number of message IDs is limited, so you must release each
10 after you use it. See "Releasing Message IDs" on page 3-12 for
information on releasing message IDs.

You use isendO to perform an asynchronous send, and irecvO to perform an asynchronous receive.
An isendrecvO is like an isendO followed by an irecvO, except that it returns only one message ID
(for the receive). Asynchronous sends can be used together with synchronous receives, and vice
versa. For example, a message sent by isendO could be received by crecvO.

Paragon ™ System User's Guide Using Message-Passing System Calls

You must make sure that an asynchronous operation has completed before you change the contents
of the send buffer or use the contents of the receive buffer. To check if an asynchronous operation
has completed, use the msgdoneO call. It returns 1 if an asynchronous call has completed and 0
otherwise. To block until an asynchronous operation has completed, use the msgwaitO call. Both
msgdoneO and msgwaitO take the message ill as an input parameter.

The message ill belonging to an asynchronous receive is distinct from the message ill belonging to
any companion asynchronous send. For example, if node 0 sends a message with isendO and node
1 receives the message with irecvO, the isendO has a different message ill from the irecvO. When
the isendO completes, this does not indicate that the corresponding irecvO has completed.

For example, assume that your application knows that it's going to need a message up ahead. So it
posts an asynchronous receive with irecvO. It then does work that does not require the message,
believing that by the time it needs the message, it will have arrived. When the program comes to
where it needs the message, it issues a msgwaitO. If the message has in fact arrived, the msgwaitO
returns immediately. Otherwise, it blocks until the message arrives. Here is a Fortran code fragment
that implements this technique.

Node 1 does an asynchronous send:

include 'fnx.h'

integer result, msg_sid
integer MSG_TYPE, DEST_NODE
double precision send_buf(100)
parameter (MSG_TYPE = 1)
parameter (DEST_NODE = 0)

msg_sid isend(MSG_TYPE, send_buf,
100*8, DEST_NODE, myptype())

c Free the asynchronous send ID
call msgwait(msg_sid)

3-11

Using Message-Passing System Calls Paragon ™ System User's Guide

Node 0 does the asynchronous receive:

include 'fnx.h'

integer result, msg_rid
integer MSG_TYPE
double precision rec_buffer(100)
parameter (MSG_TYPE = 1)

c Post the receive
msg_rid = irecv(MSG_TYPE, rec_buffer, 100*8) ..

c Now you need the message.
c
c Free the asynchronous receive ID

call msgwait(msg_rid)

When the msgwaitO returns, the message has been received. You may have blocked on the
msgwaitO if the message had not yet arrived. You may now assign another value to msg]id.

See "Extended Receive and Probe" on page 3-24 for information on a version of the irecvO call with
additional functionality.

Releasing Message IDs

3-12

Because the operating system has a limited number of message IDs, you must release IDs that are
no longer needed. There are three ways to release a message ID:

• You can call msgwaitO.

• You can keep calling msgdoneO until it returns 1.

You can call msgignoreO.

If you use msgignoreO, it tells the system to release the message ID as soon as the corresponding
send or receive has completed. Note, though, that this leaves you with no way to determine whether
or not the message has completed. In this case, your application must have some other means of
synchronization to prevent the send or receive buffer from being used before the message is
complete.

Paragon ™ System User's Guide Using Message-Passing System Calls

NOTE

Re-using a send or receive buffer before the message is complete
can result in unexpected behavior. Do not use msgignore()
unless you are certain this will not occur.

Merging Message IDs

Synopsis Description

msgmerge(midi. mid2) Merge two message IDs into a single ID that can
be used to wait for completion of both operations.

The msgmergeO call gives you a way to merge two or more message IDs together. It takes two
message IDs as parameters. and returns a message ID that does not complete until both the messages
identified by the input message IDs have completed.

Once you have merged a message ID with msgmergeO. you should not use the input message IDs
as arguments to msgwaitO. msgdoneO. msgcancelO. or msgignoreO. The input message IDs are
automatically released when the merged message IDs are waited for.

For example. the following C code fragment posts two irecvOs. one for a message of type 1 and the
other for a message of type 2. and then waits until both have completed:

#include <nx.h>

int mid1, mid2, midg;
char buf1[10], buf2[10];

mid1
mid2

midg

irecv(l, buf1, 10);
irecv(2, buf2, 10);

msgmerge(mid1, mid2);

msgwait (midg) ;

Note that midi and mid2 are released by the msgwaitO calion midg.

You can use a series of msgmergeO calls to merge multiple message IDs together. To help you do
this. you can use the value -1 as one of the message IDs; msgmergeO returns the other message ID
unchanged.

3-13

Using Message-Passing System Calls Paragon™ System User's Guide

For example, the following Fortran code fragment uses a series of isendO calls to send the buffer buf
as a message of type 1 to the process with the same process type on nodes 1 through 10, then waits
for all of the isendOs to complete:

include 'fnx.h'

integer i, mid
integer buf(100)

mid -1
i = 1

do while (i .le. 10)
mid msgmerge(mid, isend(l, buf, 400, i, myptype()))
i = i + 1

end do

call msgwait(mid)

The message ID returned by each isendO call is merged together with the message IDs of the
previous isendO calls into the merged message ID mid (the first message ID is merged with -1,
yielding itself). Once all the isendOs have been posted, the program uses msgwait() on the merged
message ID to wait for all of the isendOs to complete.

Probing for Pending Messages

3-14

Synopsis

cprobe(typesel)

iprobe(typesel)

Description

Wait for a message of a selected type to arrive.

Determine whether a message of a selected type is
pending.

When a message arrives for which no receive has been issued, it goes into a system buffer. It is
referred to as a pending message: a message that is available for receipt, but not yet received. When
you issue a receive for that message, the message is moved into the application's buffer (the buffer
you specify in the crecvO or irecvO call). If a receive has already been issued when the message
arrives, it goes directly into the application's buffer and bypasses the system buffer.

The cprobeO and iprobe() calls determine whether there is a message of a given type pending in the
system buffer. You can use a message type from 0 to 999,999,999 to probe for a message of a
specific type; the special value -1 to probe for a message of any type; or a typesel mask to probe for

TM
messages of a selected set of types (see the Paragon System Fortran Calls Reference Manual or
Paragon™ System C Calls Reference Manual for information on typesel masks).

Paragon ™ System User's Guide Using Message-Passing System Calls

The cprobeO call is a blocking call. It takes a type selection parameter as input and returns when a
message of the given type has arrived. The iprobeO call is similar to cprobeO, except that it is
nonblocking. iprobeO returns 1 if the message is pending and 0 if it is not.

cprobeO and iprobeO are not the only calls that probe for messages. See "Extended Receive and
Probe" on page 3-24 for information on message-probing calls with additional functionality.

Getting Information About Pending or Received
Messages

Synopsis

infocountO

infonodeO

infoptypeO

infotypeO

Description

Return size in bytes of a pending or received
message.

Return node number of the node that sent a
pending or received message.

Return process type of the process that sent a
pending or received message.

Return message type of a pending or received
message.

The info ••. O calls return information about received or pending messages. You can obtain the size
of the message, its type, and the node number and process type of the sending process.

The return value of the info .•• O calls is defined only in the following cases:

• After a crecvO, cprobeO, or msgwaitO.

After an iprobeO or msgdoneO returns 1.

Note that you must issue the info ••• O call before you perform any other message-passing operation.
Otherwise, you will get information about the most recently received or pending message instead.

3-15

Using Message-Passing System Calls Paragon ™ System User's Guide

3-16

For example, the following C code receives a message of any type, then uses infotypeO to determine
what type of message was actually received:

#include <nx.h>
#define BIGNUM 262144
long buf[BIGNUMj, msg_type;

crecv(-l, buf, sizeof(buf));
msg_type = infotype();

Another example: the following C code blocks until any message arrives, then allocates a buffer just
large enough to hold the message and receives it:

#include <nx.h>
char *buf;
long msg_type, msg_len;

cpr abe (-1) ;
msg_type = infotype();
msg_len = infocount();
buf = (char *) cal lac (msg_len, 1);
crecv(msg_type, buf, msg_len);

Between the cprobeO and the crecvO, the message is pending; it has arrived, but has not yet been
received. Until the message is received, the contents of the message are not accessible to the
program.

The info ••• O calls are subject to the following special conditions:

• The return value of the info ... O calls is undefined after a msgwaitO or msgdoneO if the message
ID in the msgwaitO or msgdoneO call is a "merged" message ID representing more than one
message. See "Merging Message IDs" on page 3-13 for more information.

• The return value of the info ... O calls is undefined after a crecvxO, cprobexO, or iprobexO,
except if the last parameter is the special array msginfo. See "Extended Receive and Probe" on
page 3-24 for more information.

• If you issue an info ... O call before doing any message passing, the call returns -1.

Paragon ™ System User's Guide Using Message-Passing System Calls

The info ... O calls are not the only way to get information about a received or pending message. See
"Extended Receive and Probe" on page 3-24 for information on message-receiving and
message-probing calls that also return information about the received or pending message.

Message Passing with Fortran Commons
Fortran users often use common blocks to send messages that contain data elements of different
types. For example, consider the named common containing a double precision number and an
integer. It is good Fortran practice to put the largest data element first in the common list, as follows:

integer i
double precision d
common/msg/ d, i

To send this common block, specify the name of the first common element as the buffer and the
length of the entire common as the length. For example, to send the common block named msg, send
the variable d with a length of 12 bytes (8 for the double precision variable plus 4 for the integer
variable). The following csendO call sends msg to process ptype on node node.

call csend(MSGTYPE, d, 12, node, ptype)

If you put smaller data elements before larger data elements in common blocks, the compiler may
have to insert padding, or "holes," between the elements of the common block to preserve data
alignment. For example, if you define the common block named pmsg as follows, the compiler will
place an invisible 4-byte pad between the end of i and the beginning of d to properly align d on an
8-byte boundary:

integer i
double precision d
common/pmsg/ i, d

This padding has two effects:

If you send this common block as a message, you must include the padding in the length of the
message. For example, even though pmsg contains the same two variables as msg, pmsg is 4
bytes longer than msg because of the padding between i and d. To send pmsg to process ptype
on node node, you would use the following call:

call csend(MSGTYPE, i, 16, node, ptype)

3-17

Using Message-Passing System Calls Paragon™ System User's Guide

• If another routine uses a different view of the same common block, you may have to add
additional variables to the other routine's declaration of the common block to take this padding
into account. For example, if another routine wants to view din pmsg as an array of two integers,
it must declare pmsg as follows:

integer i, ipad, id(2)
common/pmsg/ i, ipad, id(2)

The variable ipad corresponds to the 4-byte pad in the original routine's declaration of pmsg.
Without this variable, the position of id would not correspond to the position of d in the original
common block. This variable is necessary if pmsg is shared between these two routines, whether
or not the two routines run on different nodes.

When possible, you should define common blocks with the largest data element first, to avoid
padding completely. You should also use the %LOC function to determine the size of a common
block and avoid specifying its size with a hard-coded constant.

Treating a Message as an Interrupt

3-18

Synopsis

hsend(type, buf, count, node, ptype, handler)

hrecv(typesel, buf, count, handler)

hsendrecv(type, shuj, scount, node, ptype,
typesel, rbuj, rcount, handler)

Description

Send a message and set up a ha..l1dler procedure to
be called when the send completes.

Receive a message and set up a handler procedure
to be called when the receive completes.

Send a message and post a receive for the reply.
Set up a handler procedure to be called when the
reply arrives.

The h ••• O message-passing calls perform asynchronous sends and receives. However, unlike the i ... O
calls, the h ••• O calls let you establish a user-provided interrupt handler, which is called when the send
or receive is complete.

The h ••• O receive calls let you treat incoming messages as interrupts. For example, consider a
program that performs some action based on the type of a received message. One way to implement
this program is to block the program at a crecvO for messages of all types and then take appropriate
action based on the value returned by infotypeO.

Another way is to issue a number of hrecvO calls. Each call attaches a function to a particular
message type or set of types. Your program does not block. You can continue with other work; but
when the appropriate message comes, the attached function is called to take care of the message.
(The message is stored in the receive buffer before the function is called.)

Paragon ™ System User's Guide Using Message-Passing System Calls

The handler function you define must be written in C and must have four arguments of type long.
These arguments are passed the following values when the function is called:

1. Type of the message (as returned by infotype()).

2. Length of the message in bytes (as returned by infocountO).

3. Node number of the process that sent the message (as returned by infonode()).

4. Process type of the process that sent the message (as returned by infoptype()).

For example. here's a C code fragment that attaches the functions junctOr), junctl (), and junct2() to
message types 0, 1, and 2, respectively. The message types that have handlers are referred to as
handled types.

#include <nx_h>

char bufO[lOO], bufl[lOO], buf2[lOO];
void functO(), functl(), funct2();

hrecv(O, bufO, sizeof(bufO), functO);
hrecv(l, bufl, sizeof(bufl), functl);
hrecv(2, buf2, sizeof(buf2), funct2);

/* Now perform other work. No blocking happens. */

The declaration of functlO looks like this (the other functions are similar):

void functl(long type, long count, long node, long ptype)

}

When a message of type 1 arrives, the message is stored in the buffer specified in the hrecvO call
(in this case, bull), then fnnctlO is called with the type and length of the message and the node
number and process type of the sender as arguments. fnnctlO and the main program then run
concurrently until functlO returns. (In previous releases of the operating system, the main program
was interrupted and did not run at all until functlO returned.)

CAUTION

The handler runs in the same memory space as the .main program
(but they have separate stacks).

3-19

Using Message-Passing System Calls Paragon ™ System User's Guide

Because of this, parts of the main program may have to be protected from being executed at the same
time as the handler; see "Preventing Interrupts" on page 3-22 for information on using masktrapO
to do this.

NOTE

Once you have established a handler for a message type, do not
attempt to receive a message of that type with a crecv ... () or
irecv ... () call.

hsendO operates the same as hrecvO, except that the handler is invoked when the send completes.
(Note that completion of the send does not mean that the message has been received, only that the
message has been sent and the send buffer can be reused.) hsendrecvO is like an isendO followed
by an hrecvO, with the message ID of the isendO automatically released by msgignoreO.

See "Extended Receive and Probe" on page 3-24 for information on a version of the hrecvO call
with additional functionality.

Passing Information to the Handler

3-20

Synopsis

hsendx(type, buf, count, node, ptype, xhandler,
hparam)

Description

Send a message and set up an extended handler
procedure to be called with the value hparam
when the send completes. Allows handler sharing.

hsendxO is identical to hsendO except that it has an additional parameter, hparam, which is passed
to the handler when it is called. The declaration of a handler for hsendxO looks like this:

void xhandler(long type, long count, long node, long ptype,
long hparam)

Paragon ™ System User's Guide Using Message-Passing System Calls

You can use the hparam parameter to write handlers that are shared among several hsendxO calls,
each of which uses a different value of hparam to identify itself. For example, here is a C program
fragment that sends two messages of type 0 to the process with process type 2 on node 1, then uses
an hsendxO handler to free each message buffer as soon as the message send completes:

#include <nx.h>
#include <malloc.h>

#define NBUFS 2
#define BUFFER_SIZE 10000

char *buf[NBUFS]; /* array of pointers to char */

void freemem(long type, long count, long node, long ptype,
long hparam)

if((hparam >= 0) && (hparam < NBUFS)) {
free(buf[hparam]) ;

else {
printf (" freemem (): invalid value: %d\n", hparam);

main(int argc, char **argv)
{

/* allocate two buffers with malloc() */
buf[O] malloc(BUFFER_SIZE);
buf[l] = malloc(BUFFER_SIZE);

/* put data into the buffers */

/* send them */
hsendx(O, buf[O], BUFFER_SIZE, 1, myptype(), freemem, 0);
hsendx(O, buf[l], BUFFER_SIZE, 1, myptype(), freemem, 1);

/* Now perform other work */

Note that you must take care that this handler is not called while the program is in the middle of a
call to mallocO or freeO. If the handler attempts to free memory while another part of the program
is allocating or freeing memory, mallocO's internal memory structures could become corrupted.
You can prevent this by using the masktrapO call, described in the following section, to protect each
mallocO and freeO call elsewhere in the program that could be interrupted by this handler.

3-21

Using Message-Passing System Calls Paragon TM System User's Guide

Preventing Interrupts

3-22

Synopsis Description

masktrap(state) Enable or disable interrupts for message handlers.
Required to prevent corruption of global
variables.

If you have one or more handlers set up and you have some critical code that you do not want
interrupted, use the masktrapO call. A state value of 1 prevents any handler from running; a state
value of 0 (zero) re-enables handlers. Any pending interrupts are honored when the mask is
removed. A masktrapO call returns the previous state value (lor 0). For example:

hrecv(6,buf,sizeof(buf) ,myhandler);

• /* this code can be interrupted */
• /* by a message of type 6 */

oldmask = masktrap(l);

• /* critical code that must not be interrupted */

masktrap(oldmask) ;

• /* this code can be interrupted again */

Note the use of the variable oldmask to save the value of the previous masking state before the call
to masktrapO. This means that if the mask were already set before this call (for example, if this code
is in a subroutine that could be called when the mask is already set), the following masktrapO call
with the oldmask value as the argument would not unset it.

CAUTION

You must use masktrapO around any code in the main program
that could interfere with calls in the handler.

For example, if the handler performs any I/O, you must put masktrapO calls around any I/O calls
(such as printf()) in the main program that could be called while the handler is active. If you don't
do this, you could find characters from the handler's output interleaved with characters from the
main program's output.

Paragon 1M System User's Guide Using Message-Passing System Calls

Sometimes, it is not as obvious which calls could interfere with each other. For example, any two
library calls that could allocate or free memory could cause the memory subsystem to become
confused if they were called at the same time. To be on the safe side, keep the handler as simple as
possible and use masktrapO to protect all library calls in the rest of the program that could call the
same subsystems as the calls in the handler while the handler is active.

These calls to masktrapO are necessary because, when the handler is active, the handler and the
main program share the same memory space and can change each other's global variables. This
could cause any non-reentrant function to fail if it is called by both at the same time.

If the handler performs any message passing, any info ••• O call in the main program must be within
the same set of masktrapO calls as'the message-receiving call to which it applies. Otherwise, the
info ••• O call could reflect the value of a message received within the handler.

NOTE

You do not have to use masktrapO in your main program to
protect library calls that are in the standard C library (libc.a), if
your application is linked with the reentrant C libraries (-Ipthreads
and -Ic_r).

If you link your application with the reentrant C libraries, the standard C library is thread safe and
you do not have to protect the calls that are in the standard C library. See "SMP Programming" on
page 6-1 for information about the limitations of using reentrant C libraries in applications.

3-23

Using Message-Passing System Calls Paragon ™ System User's Guide

Extended Receive and Probe

3-24

Synopsis

crecvx(typesel, buf, count, nodesel, ptypesel,
info)

irecvx(typesel, buf, count, nodesel, ptypesel,
info)

hrecvx(typesel, buf, count, nodesel, ptypesel,
xhandler, hparam)

cprobex(typesel, nodesel, ptypesel, info)

iprobex(typesel, nodesel, ptypesel, info)

Description

Receive a message of a specified type from a
specified sending node and process type, together
with information about the message. Wait for
completion.

Receive a message of a specified type from a
specified sending node and process type, together
with information about the message. Do not wait
for completion.

Receive a message of a specified type from a
specified sending node and process type. Set up
an extended handler procedure to be called with
information about the message and the value
hparam when the receive completes.

Wait for a message of a specified type from a
specified sending node and process type. Return
information about the message.

Determine whether a message of a specified type
from a specified sending node and process type is
pending. If it is, return information about the
message.

The extended receive and probe calls, crecvxO, irecvxO, hrecvxO, cprobexO, and iprobexO, can
be used to receive or probe for a message from a particular node or a particular process type, and
return information about the message along with the message (instead of using the info ... O calls).

crecvxO, irecvxO, cprobexO, and iprobexO are like crecvO, irecvO, cprobeO, and iprobeO,
except that they have the following additional parameters:

nodesel Specifies the node that sent the message, or -1 for any node.

ptypesel Specifies the process type that sent the message, or -1 for any process type.

Paragon™ System User's Guide

info

Using Message-Passing System Calls

An array of eight long integers that receives information about the specified
message. The following information is stored into the ftrst four elements of
this array:

• Type of the message (as returned by infotype()).

• Length of the message in bytes (as returned by infocount()).

• Node number of the process that sent the message (as returned by
infonodeO)·

• Process type of the process that sent the message (as returned by
infoptype()).

The remaining four elements of the array are reserved.

hrecvxO is like hrecvO, except that it has the same nodesel and ptypesel parameters as the other
••• xO calls and the same hparam parameter as the hsendxO call. hrecvxO does not have an info
parameter, because the corresponding information is passed to the handler when it is called.

The info parameter of crecvxO, irecvxO, cprobexO, and iprobexO must be specified and must not
be zero or null. If you do not want this information, or you want it to be available to the info ••• O calls,
specify the special array msginfo, defined in nx.h orfnx.h. The array msginfo is used by the non-~
versions of these calls, and the info ••• O calls get their information from msginfo. This is why you
cannot use the info ••• O calls after crecvxO, cprobexO, or iprobexO unless you specify msginfo as
the last parameter of the extended receive or probe call.

The info parameter of irecvxO does not contain valid data until the message is received (as
determined by msgdoneO or msgwaitO). The info parameter ofiprobexO does not contain valid
data unless the iprobexO returns 1.

3-25

Using Message-Passing System Calls Paragon™ System User's Guide

3-26

For example, the following call receives a message of type 0 from process type 2 on node 1, storing
information about the received message into the array myinjo:

/* eversion */
char buf[80]i
long myinfo[8]i
crecvx(O, buf, sizeof(buf), 1, 2, myinfo)i

After this crecvxO call, the message type is in myinjo[O], its length is in myinjo[l], the sender's node
number is in myinjo[2], and the sender's process type is in myinjo[3].

c Fortran version
character*80 buf
integer*4 myinfo(8)
call crecvx(O, buf, len(buf), 1, 2, myinfo)

After this crecvxO call, the message type is in myinjo(1), its length is in myinjo(2), the sender's node
number is in myinjo(3), and the sender's process type is in myinjo(4).

Note that the standard crecvO call

crecv(typesel, buf, count)i

is exactly equivalent to the following crecvxO call:

crecvx(typesel, buf, count, -1, -1, msginfo)i

Paragon™ System User's Guide

Global Operations

Synopsis
gcol(x, x/en, y, y/en, ncnt)
gcolx(x, x/ens, y)
gdhigh(x, n, work)
gdlow(x, n, work)
gdprod(x, n, work)
gdsurn(x, n, work)
giand(x, n, work)
gihigh(x, n, work)
gilow(x, n, work)
gior(x, n, work)
giprod(x, n, work)
gisurn(x, n, work)
gland(x, n, work)
glor(x, n, work)
gopf(x, x/en, work,junction)
gshigh(x, n, work)
gslow(x, n, work)
gsprod(x, n, work)
gssurn(x, n, work)
gsyncO

Description
Concatenation.

Using Message-Passing System Calls

Concatenation for contributions of known length.
Vector double precision MAX.
Vector double precision MIN.
Vector double precision MUL TIPL Y.
Vector double precision SUM.
Vector integer bitwise AND.
Vector integer MAX.
Vector integer MIN.
Vector integer bitwise OR.
Vector integer MULTIPLY.
Vector integer SUM.
Vector logical AND.
Vector logical inclusive OR.
Arbitrary commutative function.
Vector real MAX.
Vector real MIN.
Vector real MULTIPLY.
Vector real SUM.
Global synchronization.

The g .•• O calls perform operations that use data from every node in the application. In general, when
you make one of these calls, each node contributes a piece of data to the operation, the operation is
performed on the whole collection of data, and then the result of the operation is returned to each
node.

These operations are synchronizing calls: if any node in an application makes one of these calls, it
blocks until every node in the application has made the same call. (In the simplest case, gsyncO, this
synchronization is the only operation performed by the call.) One process on each node in the
application must make the call, and all the processes that make the call must have the same process
type.

The global operations are implemented using dynamic algorithm selection for maximum
performance. The system considers several ways of exchanging the needed information between the
nodes, and selects the one that minimizes the time required to perform the global operation given the
size and shape of the application.

3-27

Using Message-Passing System Calls Paragon TM System User's Guide

3-28

Each global operation's name begins with g and ends with the name of the operation. Some
operations have several versions, which operate on different data types; for these calls, the data type
is indicated by the second letter of the call's name (l for logical, i for integer, s for single-precision
floating point, or d for double-precision floating point). For example, gdsumO performs a J:lobal
gouble-precision m,m.

To illustrate the use of a global operation, consider the gdsumO call. This call is used by the 1t

example discussed under "Example Application: Calculating pi" on page 7-7. This example
evaluates 1t by calculating a definite integral. The integral is partitioned among the nodes of a cube.
The answer, then, is the sum ofthe answers from each of the participating nodes. Here's a code
fragment from the Fortran version of the example:

double precision pi,tmp

call gdsum(pi,l,tmp)

Before this gdsumO call, this node's part of the total integral is stored in the variable pi. gdsumO is
designed to operate on a vector, so the second parameter specifies the size of the vector; in this case,
it is a "vector" of size I (a single variable). The third parameter, tmp, is a temporary area used in the
calculation. After this gdsumO call, the sum of all the nodes' pi's is stored in every node's pi.

Managing Applications and Partitions
with System Calls

Introduction
This chapter describes the system calls that let you create and manage applications and partitions on
Paragon systems. This chapter also describes the system calls that perform general services other
than message passing. The following sections, each of which describes a group of related calls:

• Managing applications.

• Managing partitions.

• Listing unusable nodes.

• Handling errors.

• Controlling floating-point behavior.

• Miscellaneous calls.

iPSC@ system and Touchstone DELTA system compatibility calls.

Within each section, the calls are discussed in order of increasing complexity. That is, the "base"
calls are discussed first, and the "extended" calls are discussed later.

Each section includes numerous examples in both C and Fortran. A call description at the beginning
of each section or subsection gives a language-independent synopsis (call name, parameter names,
and brief description) of each call discussed in that section. Differences between C and Fortran are
noted where applicable. See Appendix A for information on call and parameter types; see the
Paragon™ System C Calls Reference Manual or the Paragon™ System Fortran Calls Reference
Manual for complete information on each call.

± ' -4 + f 4 Z&&futt,

4-1

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

This chapter does not describe all the system calls. For information about system calls that perform
message passing, see Chapter 3. For information about the calls used with the Parallel File System,
see Chapter 5. For information about the calls used with graphical interfaces, such as DGL and the
X Window System, see the Paragon TM System Graphics Libraries User's Guide. For information
about the system calls that require root privileges, see the Paragon ™ System Administrator's Guide.

Applications written in C can also issue OSFIl system calls. The operating system is a complete
OSFIl system and fully supports all the standard OSFIl system calls. See the OSFll Programmer's
Reference for information on these calls.

Applications written in Fortran cannot make OSFIl system calls directly, but the Fortran runtime
library includes a number of system interface routines. These routines make a number of OSFIl
system calls available to Fortran programs. See the Paragon™ System Fortran Compiler User's
Guide for information on these routines.

NOTE

Do not use the Mach system call interface.

This interface is not supported. It is not documented in SSD manuals, but you may read about Mach
elsewhere. If you use Mach system calls, your application may fail. Mach memory allocation and
Paragon memory allocation do not work together.

Managing Applications

4-2

The operating system provides system calls that let you create parallel applications, control their
execution, and get information about them. See "Running Applications" on page 2-11 and
"Managing Running Applications" on page 2-29 for introductory information on applications.

Paragon TM System User's Guide Managing Applications and Partitions with System Calls

Controlling Application Execution with System Calls

Synopsis Description

ox_initve(partition, size, account, argc, argv) Create a new application.

nx_initve_rect(partition, anchor, rows, cols, Create a new application with a rectangular shape.
account, argc, argv)

nx_initve_attr(partition, argc, argv, Create a new application with specified attributes.
[attribute, value,] ... NX_ATTR_END)

nx_pri(pgroup, priority) Set the priority of an application.

ox_nfork(node_list, numnodes, ptype, pid_list) Copy the current process onto some or all nodes of
an application.

ox_load(node_list, numnodes, ptype, pid_list,
pathname)

nx_loadve(node_list, numnodes, ptype,
pid_list,pathname, argv, envp)

Execute a stored program on some or all nodes of
an application.

Execute a stored program on some or all nodes of
an application, with specified argument list and
environment.

Wait for all application processes.

The simplest way to control the wayan application executes is to use the command-line switch-ox
when you link the application. (See "Compiling and Linking Applications" on page 2-5 for more
information on the -ox switch.) When you execute a program that was linked with -nx, the program
is automatically copied onto the specified number of nodes in the specified partition, runs, and then
when all the nodes have finished you get your prompt back.

The code linked in by -ox reads the command line and environment variables, then performs the
following actions for you (see "Controlling the Application's Execution Characteristics" on page
2-12 for more information):

• Creates a new, empty application in the partition specified by the -pn switch and on the nodes
of that partition specified by the -sz or -nd switch. If -pn is not used, the partition is specified
by $NX_DFLT_PART, or .compute if $NJCDFLCPARTis not set. If neither -sz nor -nd is
used, the number of nodes is specified by $NX_DFLT _SIZE, or all nodes of the partition if
$NX_DFLT_SIZE is not set.

• Sets the application's priority to the value specified by -pri (default 5).

• Loads and starts your program(s) on the nodes specified by -on (default all nodes of the
application) with the process type specified by opt (default 0).

4-3

Managing Applications and Partitions with System Calls Paragon ™ System User's Guide

4-4

The nx_ ••• O system calls perform the same actions as those of the code linked in by -nx, but under
program control instead of command-line control. Using these calls is more complicated than using
-nx, but gives your program more flexibility and control.

NOTE

If you use any of the nx_initve ... O calls, do not link the program
with the -nx switch. Use the switch -Inx instead.

The switch -lnx links in the library libnx.a, which contains all the calls discussed in this manual, but
does not link in the automatic start-up code linked in by -nx.

Creating an Application with nx_initve()

nx_initveO creates a new, empty application. The process that calls nx_initveO becomes the new
application's controlling process; see "The Controlling Process" on page 4-26 for information on
what this means.

The partition and size of the new application can be specified by parameters or by the command line;
the priority and msg3witches are specified by the command line. If command-line switches are not
used or the comnland line is ignored by specifying zero for argc, ihe application's execution
characteristics default as discussed under "Controlling the Application's Execution Characteristics"
on page 2-12 and the msg_switches default as discussed under "Message-Passing Configuration
Switches" on page 8-18.

nx_initveO just allocates the specified number of nodes from the partition; it does not start any
processes. (This allocation mayor may not be exclusive, depending on the characteristics of the
partition.) You must call nx_nforkO, nx_loadO, or nx_loadveO to start processes in the new
application. The nodes allocated to the application are automatically deallocated when all the
processes in the application have terminated.

Another effect of nx_initveO is to make sure that the calling process is a process group leader. If
the calling process is not already a process group leader, nx_initveO creates a new process group,
removes the calling process from its current process group, and makes the calling process the new
process group's leader. If you're not familiar with these terms, see "Process Groups" on page 4-27.

Finally, nx_initveO also initializes the data structures required by all the other calls described in this
manual. In an application lip.ked \vith =nx, th.e code linked in by -fiX perfomls this initialization
before the application starts up, so you can use these other calls anywhere in the application. In an
application linked with -Inx, however, you must call nx_initveO before you can use any of the other
calls described in this manual. If called before nx_initveO, these other calls will fail; the way they
fail depends on the call (as described under "Handling Errors" on page 4-55). For example, if you
call csendO before calling nx_initveO, the csendO prints an error message and terminates the
calling process.

Paragon TM System User's Guide Managing Applications and Partitions with System Calls

The parameters of DX_initveO have the following meanings:

partition

size

account

argc

argv

The relative or absolute partition patbname of the partition to run the
application in, or a null string (" " or NULL in C, " " in Fortran) to use the
default partition (the partition specified by $NJCDFLT_PART, or . compute if
$NJCDFLT_PART is not set). The specified partition must exist and must
give execute permission to the calling process.

If the user specifies a partition with the -pn switch on the command line, it
overrides the value of the partition parameter (unless you set the argc
parameter to 0, as described later in this section).

See "Partition Pathnames" on page 2-33 for more information on partition
patbnames; see "Owner, Group, and Protection Modes" on page 2-38 for
more information on partition permissions.

The size of the application (number of nodes to run the application on), or 0
to use the default size (the size specified by $NX_DFLT _SIZE, or all nodes of
the partition if $NX_DFLT _SIZE is not set).

nx_initveO attempts to allocate a square group of nodes if it can. If this is not
possible, it attempts to allocate a rectangular group of nodes that is either
twice as wide as it is high or twice as high as it is wide. If this is not possible,
it allocates any available nodes. In this case, nodes allocated to the application
may not be contiguous.

If the user specifies the -sz or -nd switch on the command line, it overrides
the value of the size parameter (unless you set the argc parameter to 0, as
described later in this section).

In the future, this parameter will be used for accounting information. For now,
it must be a null string (" " or NULL in C, " " in Fortran).

In C, a pointer to an integer whose value is the number of arguments on the
command line (counting the application name). If the value of this integer is
0, the command line is ignored. You can use a pointer to the argc parameter
of mainO, or you can construct the command line yourself.

In Fortran, this parameter is any nonzero value to search the command line,
or 0 to ignore the command line.

In C, a pointer to the command-line arguments, which may include arguments
that specify application characteristics. You can use the argv parameter of
mainO, or you can construct the command line yourself.

In Fortran, DX_initveO gets the command line directly from the system,
because Fortran programs don't have an argv parameter. This parameter is
ignored; it should always be O.

4-5

Managing Applications and Partitions with System Calls Paragon ™ System User's Guide

4-6

In either language, if any of the command-line arguments -sz size, -sz hXw,
-nd hXw:n, -pri priority, -pn partition, -nt nodetype, -rlx, -pkt packecsize,
-mbf memory_buffer, -mex memory_export, -mea memory_each,
-sth send_threshold, -sct send_count, -gth give _threshold, or -plk is found in
the command line:

• The appropriate application characteristic is set as specified by the
argument.

• The argument is removed from argv.

The variable pointed to by argc is decremented appropriately.

Any remaining arguments are moved to the beginning of argv for your
program's use.

Note that the arguments opt type, -on nodelist, and \; application are not
recognized by nx_initveO. If you want your application to have the same user
interface as an application linked with -nx, you must examine the argument
list for these arguments and pass the appropriate values to nx_IoadO or
nx_IoadveO yourself.

nx_initveO returns the number of nodes in the application, or -1 if any error occurs.

For example, the following C call creates an application whose characteristics (partition, number of
nodes, and so on) are determined by the user through command-line switches. If the user runs this
program with no command-line switches, it runs on the user's default number of nodes in the user's
default partition.

#include <nx.h>

main(int argc, char *argv[])
int ni

n = nx_ini tve (" ", 0, "", &argc, argv) i

After this call, the variable n contains the number of nodes in the new application, or -1 if any error
occurred. The variable argc contains the count of arguments that were not recognized and removed
by nx_initveO, and the array argv contains pointers to those arguments.

The following Fortran call creates an application on 50 nodes of the partition my part, ignoring any
command-line switches provided by the user:

include 'fnx.h'
integer n

n = nx_initve("mypart", 50, "" 0,0)

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

After this call, the variable n contains the number of nodes in the new application, or -1 if any error
occurred.

The following restrictions apply to nx_initveO:

• A single process cannot call nx_initveO more than once.

• An application that calls nx_initveO cannot be linked with -nx. You must use -lnx instead.

• If your application uses any signal handlers, you must set them up after the call to nx_initveO.
See signalO in the OSFll Programmer's Reference for more information on signal handlers.

The reason you cannot use -nx when you link an application that calls nx_initveO is that the code
linked in by -nx calls nx_initveO itself, and nx_initveO can only be called once in an application.
If you do use -nx when you link, your application's call to DX_initveO (actually the second call to
nx_initve()) fails and returns -1.

Creating a Rectangular Application with nx_initve_rectO

nx_initve_rectO works exactly like nx_initveO except that it requires that the nodes allocated to the
application form a rectangle with a particular height and width. Optionally, it can also specify the
rectangle's location within the partition. The parameters of nx_initve]ectO are the same as those
of DX_initveO, except that instead of the size parameter it has the following three parameters:

anchor

rows

cols

The node number within the partition for the upper left comer of the
rectangle, or -1 to allow the rectangle to be placed anywhere in the partition
it will fit.

The height of the rectangle.

The width of the rectangle.

If the specified rectangle of nodes is not available, the DX_initve _rectO call fails and returns -1 (even
if the equivalent number of nodes is available with a non-rectangular shape).

NOTE

All the restrictions and cautions in this manual that refer to
nx_initveO also apply to nx_initve_rectO.

If the user specifies a size or shape with the -sz or -nd switch on the command line, it overrides the
values of these three parameters (unless you set the argc parameter to 0). nx_initve_rectO never
uses the environment variable $NX_DFLT_SIZE.

4-7

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

4-8

For example, the following Fortran call creates an application 8 nodes high and 8 nodes wide (unless
otherwise specified by command-line switches) anywhere it will fit in the user's default partition:

include 'fnx.h'
integer n

n = nx_initve_rect{"" , -1, 8, 8, "", 1, 0)

The following C call creates an application 10 nodes high and 20 nodes wide whose upper left corner
is node 0 (the upper left corner of the partition) in the partition mypart, ignoring any command-line
switches provided by the user:

#include <nx.h>
int n, l;

i 0;
n nx_initve_rect{"mypart", 0, 10, 20, "", &i, NULL);

After either of these calls, the variable n contains the number of nodes in the new application, or -1
if any error occurred.

Note that nx_initve_rectO will fail if the exact specified rectangle is not available. If you just want
to find out the application's size and shape, rather than mandating a particular size and shape, you
can use an ordinary nx_initveO, followed by a call to nx_app_rectO (discussed under "Finding an
Application's Shape with nx_app_rectO" on page 4-22) to determine the height and width assigned
by nx_initveO.

Controlling Application Attributes with nx_initve_attrO

When you call nx_initveO or nx_initve_rectO, you specify only the partition and the number of
nodes or rectangle of nodes. All the other application attributes you can specify with switches on the
application command line, such as its priority and packet size, cannot be specified in the call's
arguments; they are always extracted from the command line (argv argument).

nx_initve_attrO works exactly like nx_initveO except that you can specify all the application
attributes in the call's arguments. The parameters of nx_initve_attrO are as follows:

partition The partition to run the application in, as for nx_initveO.

argc The command-line argument count, as for nx_initveO.

argv The command-line arguments, as for nx_initveO.

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

[attribute, value,] ...
A series of zero or more argument pairs that specify the application's
attributes. The attribute is one of the constants described in Table 4-1; the
value is the value of the specified attribute. The type of the value argument is
determined by the value of the preceding attribute argument.

NX_ATTR_END A constant that marks the end of the list of attribute, value pairs.

NOTE

If you call nx_initve_attrO in a Fortran subprogram, you must
include fnx.h after the subprogran declaration and before the call.
This is required for the call to recognise the pre-defined attribute
constants (for example, NX_ATTR_SZ).

NOTE

All the restrictions and cautions in this manual that refer to
nx_initveO also apply to nx_initve_attr(}.

The following table describes the attributes and values you can use with nx_initve_attrO. The
attribute constants, including NX_ATTR_END, are defined in <nx.h> or <fnx.h>.

Table 4-1. Attribute Constants for Use with nx_initve_attrO (1 of 3)

Type of Following Equivalent
Attribute Constant Value (C I Fortran) Switch Description

NX_ATTR_SZ long -sz size Specifies the size of the application, like the
INTEGER size argument of nx_initveO (see "Creating

an Application with DX_initveO" on page
4-4).

NX_ATTR_RECT long * -szhXw Specifies a rectangle for the application, like
INTEGER(2) the rows and eals arguments of

nx_initveJectO (see "Creating a
Rectangular Application with
DX_initve_rectO" on page 4-7). The value is
an array of two integers (height first, width
second).

If NX_ATTR_ANCBOR is not specified,
the system determines the rectangle's
location within the partition.

4-9

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

Table 4-1. Attribute Constants for Use with nx_initve_attrO (2 of 3)

Type of Following Equivalent
Attribute Constant Value (C I Fortran) Switch Description

NX_ATTR_ANCHOR long -ndhXw:n Specifies the node number of the upper left
INTEGER corner of the rectangle, like the anchor

argument ofnx_initve_rectO (see "Creating
a Rectangular Application with
nx_initveJectO" on page 4-7).

If the specified node number is -I, the system
determines the rectangle's location within
the partition.

NX_ATTR_RECT must also be specified
(anywhere in the argument list) to give the
height and width of the rectangle.

NX_ATTR_RELAXED long -rlx Specifies whether or not the requested
INTEGER number of nodes can be r~laxed (see

"Relaxing Application Size" on page 2-17
and "Using Node Attributes with a Relaxed
Application Size" on page 2-28). The value 0
means all requested nodes must be available;
the value 1 relaxes this requirement.

If the user specifies the -rlx switch on the
command line, it overrides the value O. The
value 1 cannot be overridden.

NX_ATTR_RELAXED cannot be used
with NX_ATTR_RECT, unless
NX_ATTR_ANCHORis also specified
with a value other than -1.

NX_ATTR_SEL char * -nt Specifies the node type for the application.
CHARACTER *(*) The value is a character string whose value is

a node type specifier (see "Specifying Node
Attributes" on page 2-25).

If NX_ATTR_SZ is specified or
NX_ATTR_RECT is specified with
NX_ATTR_ANCHOR, the given nodes
must all be available and have the specified
node type, unless NX_ATTR_RELAXED
is specified.

NX_ATTR_PRI long -pri Sets the priorty for the application (see
INTEGER "Specifying Application Priority" on page

2-18).

4-10

Paragon ™ System User's Guide Managing Applications and Partitions with System Calls

Table 4-1. Attribute Coustants for Use with nx_initve_attrO (3 of 3)

Type of Following Equivalent
Attribute Constant Value (C I Fortran) Switch Description

NX_ATTR_PKT long -pkt Sets the size of each message packet (see
INTEGER "Packetization" on page 8-16).

NX_ATTR_MBF long -mbf Sets the total amount of memory allocated to
INTEGER message buffers (see "System Message

Buffers" on page 8-16).

NX_ATTR_MEX long -mex Sets the value of memory_export (see
INTEGER "Message-Passing Configuration Switches"

on page 8-18).

NX_ATTR_MEA long -mea Sets the amount of memory allocated to
INTEGER buffering messages from each other node

(see "System Message Buffers" on page
8-16).

NX_ATTR_NOC long -DOC Sets the total number of other processes from
INTEGER which each process expects to receive

messages (see "System Message Buffers" on
page 8-16).

NX_ATTR_STH long -sth Sets the send threshold for sending multiple
INTEGER packets (see "System Message Buffers" on

page 8-16).

NX_ATTR_SCT long -set Sets the number of bytes to send right away
INTEGER when the available memory is above

send_threshold (see "System Message
Buffers" on page 8-16).

NX_ATTR_GTH long -gth Sets the threshold for the "give me more
INTEGER messages" message (see "System Message

Buffers" on page 8-16).

NX_ATTR_PLK long -plk Specifies whether or not the data area of each
INTEGER process should be locked into memory (see

"Process Locking" on page 8-15). The
value 1 locks all processes into memory; the
value 0 does not lock.

If the user specifies the -plk switch on the
command line, it overrides the value O. The
value 1 cannot be overridden.

For each attribute in the nx_initve_attrO call, if the user specifies the equivalent application switch
on the command line, it overrides the value specified for the attribute in the call (unless you set the

4-11

Managing Applications and Partitions with System Calls Paragon ™ System User's Guide

4-12

argc parameter to 0, as described for nx_initve()). The -sz or -nd switch can override
NX_ATTR_SZ, NX_ATTR_RECT, and NX_ATTR_ANCHOR.

Each attribute can appear at most once in the argument list. The order of the attributes in the
argument list is not significant.

Specifying the Nodes Allocated to the Application

nx_initve_attrO provides the following ways to specify the nodes allocated to the application:

Requests the specified number of nodes. If the value is 0 or -1, requests the number of nodes
specified by $NXPFLT _SIZE, or all the nodes of the partition if $NX_DFLT _SIZE is not set.

NX_ATTR_SZ attempts to allocate a square group of nodes if it can. If this is not possible, it
attempts to allocate a rectangular group of nodes that is either twice as wide as it is high or twice
as high as it is wide. If this is not possible, it allocates any available nodes. In this case, nodes
allocated to the application may not be contiguous.

Requests a rectangle of nodes of the specified height and width. The system places the rectangle
wiu'1in the partition.

Requests a rectangle of nodes of the specified height and width, whose upper left comer is
located at the specified anchor node. NX_ATTR_RECT and NX_ATTR_ANCHOR can
appear in any order in the argument list. If the value of NX_ATTR_ANCHOR is -1, the system
places the rectangle within the partition ..

Requests all the nodes of the specified node type in the partition.

• Use NX_ATTR_SEL together with NX_ATTR_SZ, NX_ATTR_RECT, and/or
NX_ATTR_ANCHOR.

Requests the nodes specified by the NX_ATTR_SZ, NX_A TTR_RECT, and/or
NX_ATTR_ANCHOR, all of which must have the node type specified by the
NX_ATTR_SEL. See "Running an Application on a Particular Node Type" on page 2-23 for
more information.

Do not use NX_ATTR_SEL, NX_ATTR_SZ, NX_ATTR_RECT, or
NX_ATTR_ANCHOR.

Paragon ™ System User's Guide Managing Applications and Partitions with System Calls

Requests the number of nodes specified by $NX_DFLT _SIZE, or all the nodes of the partition
if $NX_DFLCSIZE is not set.

• Use NX_ATTR_RELAXED with a value of 1 together with any of the above.

Requests all the available nodes in the specified node set, up to the number of nodes requested.
At least one of the specified nodes must be available. See "Relaxing Application Size" on page
2-17 for more information.

If NX_ATTR_SEL is used together with NX_ATTR_RELAXED, only nodes of the specified
type are returned, but the number of nodes returned may be less than the number of nodes
requested. At least one node of the specified type must be available. See "Using Node Attributes
with a Relaxed Application Size" on page 2-28 for more information.

All these attributes can be overridden by command-line switches. In particular, note that either the
-sz or -nd switch overrides NX_A TTR_SZ, NX_ATTR_RECT, and NX_ATTR_ANCHOR. If an
attribute is overridden by a command-line switch, the effect is as though it had been specified in the
DX_initve_attrO call with the value from the command line.

The following combinations of these attributes are invalid:

• You cannot use NX_ATTR_RELAXED together with NX_ATTR_RECT, unless
NX_ATTR_ANCHOR is also specified with a value other than -1.

Using any of these combinations of attributes causes DX_initve_attrO to fail with the error "invalid
attribute specified."

Examples

The following C call creates an application whose characteristics (partition, number of nodes, and
so on) are determined by the user through command-line switches. If the user runs this program with
no command-line switches, it runs on the user's default number of nodes in the user's default
partition.

#include <nx.h>

main(int argc, char *argv[]) {
int ni

4-13

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

4-14

After this call, the variable n contains the number of nodes in the new application, or -1 if any error
occurred. The variable argc contains the count of arguments that were not recognized and removed
by DX_initveO, and the array argv contains pointers to those arguments.

The following Fortran call creates an application on 50 nodes of the partition my part, ignoring any
command-line switches provided by the user:

include 'fnx.h'
integer n

n = nx_initve_attr ("mypart", 0, 0,
x NX_ATTR_SZ, 50,
x NX_ATTR_END)

The following C call creates an application that consists of all available nodes in a rectangle 10 nodes
high and 20 nodes wide whose upper left comer is node 0 (the upper left comer of the partition) in
the partition mypart, ignoring any command-line switches provided by the user:

#include <nx.h>
long rect[2];
int i, n;

rect [0] 10;
rect[l] = 20:
i 0;

n = nx_initve_attr ("mypart", &i, NULL,
NX_ATTR_RELAXED, 1,
NX_ATTR_RECT, rect,
NX_ATTR_ANCHOR, a,
NX_ATTR_END) ;

The following Fortran call creates an application consisting of any 15 nodes in the user's default
partition that are not 110 nodes and have exactly 32M bytes of RAM (unless otherwise specified by
command-line switches):

include 'fnx.h'
integer n

n DX_initve_attr(" " , 1, a,
x NX_ATTR_SZ, 15,
x
x

NX_ATTR_SEL, "32mb, ! io",
NX_ATTR_END)

After any of these calls, the variable n contains the number of nodes in the new application, or -1 if
any error occurred.

Paragon TM System User's Guide Managing Applications and Partitions with System Calls

Setting an Application's Priority with nx_priO

DX-priO sets the specified application's priority to the specified value. If you don't call DX_priO and
the user doesn't use the -pri switch, the default priority is 5. The parameters of nx_priO have the
following meanings:

pgroup

priority

The process group ID of the application (see "Process Groups" on page 4-27
for more information), or 0 to specify the application of the calling process.
If the specified process group ID is not the process group ID of the calling
process, the calling process's user ID must either be root or the same user ID
as the specified application.

The new priority, an integer from 0 to 10 inclusive. 0 is the lowest priority,
lOis the highest.

DX-priO returns 0, or -1 if any error occurs.

For example, the following Fortran call sets the priority of the calling application to 7:

include 'fnx.h'
integer n

n = nx-pri(O, 7)

The following C call sets the priority of the application with process group ID 738423 to 0:

#include <nx.h>
int n;

n = nx-pri(738423, 0);

In each of these examples, the variable n is assigned 0, or -1 if any error occurred.

Copying a Process onto the Nodes with nx_nforkO

DX_nforkO copies the process that calls it onto the specified set of nodes with the specified process
type. It creates one child process on each specified node. nx_nforkO is similar to the standard OSFIl
call forkO except that it can fork processes onto multiple nodes and specifies the process type for
the child processes. The parameters of nx_nforkO have the following meanings:

numnodes

An array of integers, each of which specifies a node number within the
application (no node number may appear more than once in this array). The
calling process is copied onto each of the specified nodes.

The number of node numbers in node_list, or -1 to use all the nodes in the
application (in which case node_list is ignored).

4-15

Managing Applications and Partitions with System Calls Paragon TM System User's Guide

4-16

ptype The process type for each child process.

An array of integers, into which are stored the OSF/l process identifiers
(PIDs) of the child processes. This array is only for the parent process. The
child process get a zero-filled array. See "Using PIDs" on page 4-20 for more
information.

DX_nforkO returns the number of child processes created to the parent process and 0 to each child
process, or -1 if any error occurs.

For example, the following C calls create an application whose characteristics are specified by the
user, then copy the calling process onto all nodes of the application. The process type of each child
process is set to O.

#include <nx.h>
#include <sys/types.h>

rnain(int argc, char *argv[]) {
int n;
pid_t pids[2000];

n nx_ini tve (" ", 0, "", &argc, argv);
n = nx_nfork(NULL, -1, 0, pids);

Note that the node_list argument is ignored when the numnodes argument is -1, so you can specify
a NULL pointer in this case (in Fortran, you can use the value 0). After the call to nx_nforkO, the
variable n contains the number of child processes created, or -1 if any error occurred; the first n
elements of the array pids contains the PIDs of the child processes. If more than 2000 child processes
are created, unexpected results will occur.

The following Fortran calls create an application with 100 nodes and copy the calling process onto
the first 50 nodes of the application (nodes 0 through 49). The process type of each child process is
set to O.

include 'fnx.h'
integer n
integer nodes (50) , pids(50)

n = nx_initve ("mypart", 100,

do 2, i = 1, 50
nodes (i) = i - 1

2 continue

n = nx_nfork(nodes, 50, 0, pids)

0, 0)

After the call to nx_nforkO, the variable n contains 50, or -1 if any error occurred; the array pids
contains the PIDs of the child processes.

Paragon ™ System User's Guide Managing Applications and Partitions with System Calls

Loading a Program onto the Nodes with nx_load()

nx_loadO executes the specified file on the specified set of nodes with the specified process type.
Like nx_nforkO, DX_loadO creates one child process on each specified node. The parameters of
DX_loadO have the following meanings:

An array of integers, each of which specifies a node number within the
application (no node number may appear more than once in this array). The
specified file is loaded onto each of the specified nodes.

numnodes The number of node numbers in node_list, or -1 to use all the nodes in the
application (in which case node_list is ignored).

ptype

pathname

The process type for each child process.

An array of integers, into which are stored the OSF/l process identifiers
(Pills) of the child processes. See "Using PIDs" on page 4-20 for more
information.

The relative or absolute pathname of the file to load.

nx_loadO returns the number of child processes created, or -1 if any error occurs.

For example, the following Fortran calls create an application whose characteristics are specified by
the user, then load and start the program myprog on all nodes of the application. The process type of
each child process is set to o.

include 'fnx.h'
integer n
integer pids(2000)

n nx_ini tve (" ", 0, 1, 0)
n nx_load(O, -1, 0, pids, "myprog")

After the call to DX_loadO, the variable n contains the number of child processes created, or -1 if any
error occurred; the first n elements of the array pids contains the PIDs of the child processes. If more
than 2000 child processes are created, unexpected results will occur.

4-17

Managing Applications and Partitions with System Calls Paragon TM System User's Guide

4·18

The following C calls create an application with 10 nodes in the partition mypart, then load and start
the program . .lbinlmyprog on nodes 1,5, and 7 of the application. The process type of each child
process is set to 1.

#include <nx.h>
#include <sys/types.h>
int n, i;
int nodes[3];
pid_t pids[3];

i 0;
n nx_initve ("mypart", 10, "" &i, NULL);

nodes [0]
nodes [1]
nodes [2]

1;
= 5;

7 ;

n = nx_load(nodes, 3, I, pids, 'II •• /bin/myprogll);

After the call to nx_loadO, the variable n contains 3, or -1 if any error occurred; the array pids
contains the PIDs of the child processes.

Loading a Program onto the Nodes with nx_loadve()

nx_loadveO is just like nx_loadO except that it also lets you specify the argument list and
environment variables for the new processes (in C). nx_loadveO has the following additional
parameters:

argv

envp

In C, this parameter contains the command line for the child process (you can
use the argv parameter of mainO or construct the command line yourself).

In C, this parameter contains the environment variables for the child process
(you can use the envp parameter of mainO or construct the environment
yourself).

In Fortran, you must specify the value 0 for the argv and envp parameters (or use nx_IoadO instead).
This is necessary because these parameters are pointers to arrays of strings, which have no
equivalent in Fortran.

nx_IoadveO returns the number of child processes created, or -1 if any error occurs. If an error
occurs, the value 0 is also stored into the pid_list for each process that was not successfully started.

Paragon ™ System User's Guide Managing Applications and Partitions with System Calls

For example, the following C calls create an application as specified by the user (if not specified, the
default number of nodes in the default partition), then set the value of the environment variable
HOME to /tmp, then load and start the program myprog on all nodes of the application with process
type 0:

#include <nx.h>
#include <stdlib.h>
#include <sys/types.h>
extern char **environ;

main(int argc, char *argv[])
int n;
pid_t pids[2000];

n = nx_initve(NULL, 0, NULL, &argc, argyl;
putenv ("HOME=/tmp") ;
n = nx_loadve(NULL, -1, 0, pids, "myprog", argv, environ);

The argument list of myprog consists of any command-line arguments to the calling program that
were not recognized and removed by DX_initveO, and the environment of myprog is the same as the
user's environment except for the value of HOME.

Waiting for Application Processes with nx_waitaliO

DX_nforkO, DX_loadO, and DX_loadveO return immediately to the calling process. To wait for the
processes created by DX_nforkO, DX_loadO, or DX_loadveO to complete, call DX_WaitallO.
nx_ waitailO simply blocks until all the child processes of the calling process have terminated. It
returns 0, or -1 if any error occurs.

For example, the following Fortran calls create a new application as specified by the user, run the
program myprog on all nodes of the application, and wait until all the node processes have
completed:

include 'fnx.h'
integer n
integer pids(2000)

n nx_ini tve (II ", 0, II II 1, 0)
n nx_load(O, -1, 0, pids, "myprog")
n nx_waitall ()

4-19

Managing Applications and Partitions with System Calls Paragon ", System User's Guide

4-20

Using PIDs

The pid_list argument of nx_nforkO, nx_IoadO, and nx_IoadveO receives the OSF/l process
identifiers (PIDs) of the child processes created by the call. The specified array must be large enough
to hold all the PIDs-that is, it must have at least as many elements as the maximum number of
processes that could be created by the call. If more child processes are created than the number of
elements in the pid_list, unexpected results will occur (the program will probably crash).

In the typical case where you create one process per node of the application, you can use the value
returned by any of the nx_initve ••• O calls to determine the number of nodes in the application, then
use mallocO or an equivalent call to dynamically allocate a pid_list with the same number of
elements. For example, the following example allocates the appropriate number of elements to the
array pids based on the application size specified by the user in argv:

#include <nx.h>
#include <stdio.h>
#include <malloc.h>

main (int argc, char **argv) {

int nnodes;
long *pids;

nnodes = nx_initve(NULL, 0, NULL, &argc, argv);
pids = (long *)co_lloc(nnodes; sizeof(long));
nx_nfork(NULL, -1, 0, pids);

If you don't use dynamic allocation, you should give the pid_list as many elements as the number
of nodes on the largest system on which the application will be run. For portability to very large
Paragon supercomputers, this array should have at least 1000 elements (and possibly more in the
future).

Each element in the pid_list receives the PID of the process on the node specified by the
corresponding element of the node _list. If numnodes is -1, the PID of the process on node 0 is stored
into the first element of pid_list, the PID of the process on node 1 is stored into the second element
of pid_list, and so on. If one or more processes were not successfully started, the value 0 is stored
into the corresponding element of the pid_list.

NOTE

The PIDs stoiad into the pid_list are OSF/1 PIDs,
types.

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

OSF!! PIDs are unique throughout the system; they are used with standard OSF!! system calls such
as kiliO. (Note that killO and other system interface routines are supported by the Fortran runtime
library; see the Paragon™ System Fortran Compiler User's Guide for information on these
routines.) Process types are unique only within a single application and a single node; they are used
with message-passing calls such as esendO.

For example, the following C calls create an application as specified by the user, run the program
myprog on all nodes of the application with process type 0, and then send the signal SIGKILL to
all the node processes:

#inc1ude <nx.h>
#iric1ude <signa1.h>
#inc1ude <sys/types.h>

main(int argc, char *argv[])
int n, i;
pid_t pids[2000];

n nx_initve(NULL, 0, NULL, &argc, argv);
n nx_1oad (NULL , -1, 0, pids, nmyprog n);

for(i=O; i<n; i++) {
ki11(pids[i], SIGKILL);

Getting Information About Applications

Synopsis Description

Obtain the height and width of the rectangle of
nodes allocated to the current application.

nx_pspart(partition, pspart_list, lisCsize)

List the nodes allocated to an application.

Obtain information about all applications and
active subpartitions in a partition (C only).

To get information about applications once they are running, use nx_apPJeetO, nx_app_nodesO,
and nx_pspartO. nx_app_rectO returns the application's shape (height and width of the rectangle
of nodes allocated to the application); nx_app_nodesO returns a list of the nodes that are allocated
to the application; and nx_pspartO returns information about all the active applications and
subpartitions in a partition (like the pspart command).

4-21

Managing Applications and Partitions with System Calls Paragon ™ System User's Guide

4-22

NOTE

Do not call nx_app_nodesO or nx_pspartO on more than a few
nodes at once.

If many nodes use the application information calls at the same time, the allocator daemon can
become overwhelmed with requests, which could slow down your application or reduce system
stability. If all the nodes in your application need this information, you should have one node make
the call and then distribute the information to the other nodes. Note, though, that IDcapp_rectO is
not subject to thisrestriction.

Finding an Application's Shape with nx_app_rect()

Sometimes, in addition to its node number and the number of nodes in the application, a process
needs to know the shape of the application. For example, an application might use a different
message-passing algorithm depending on whether the nodes allocated to the application form a
square, a tall skinny rectangle, a short wide rectangle, or something else (such as a group of
noncontiguous nodes).

To find out the rectangular dimensions of the nodes allocated to the application, call nx_app_rectO.
DX_app_rectO stores the height of the application into rows and the width of the application into
eois. If the nodes allocated to the application do not form a rectangle, IDcapp_rectO stores 1 into
rows and numnodesO into eois. DX_app _rectO returns 0 if it is successful, or -1 if any error occurs.

For example, the following code fragment in Fortran stores the height of the application into y and
the width of the application into x:

integer*4 x, y, result

The following code fragment in C does the same:

long x, y, result;

result = nx_app_rect(&y, &x);

See "Specifying a Rectangle of Nodes" on page 2-16 for information on how to run your application
on a rectangular group of nodes with a specific shape.

Paragon ™ System User's Guide Managing Applications and Partitions with System Calls

NOTE

nx_apP3ectO can also be called by the name mypartO for
compatibility with the Touchstone DELTA System.

Listing an Application's Nodes with nx_app_nodes()

Occasionally you want to know an application's physical location within the system. You can use
this infonnation to help track down possible hardware problems or make use of nodes with special
hardware features (such as extra memory or special 110 interfaces).

To list the nodes allocated to an application, call Dx_app_DodesO. Dx_app_DodesO has the
following parameters:

pgroup

liscsize

The process group ID of the application (see "Process Groups" on page 4-27
for more infonnation), or 0 to specify the application of the calling process.
If the specified process group ID is not the process group ID of the calling
process, the calling process's user ID must either be root or the same user ID
as the specified application.

Pointer variable into which Dx_app_DodesO stores the address of the list of
nodes. The call allocates the memory for this list; when you are finished using
the infonnation, you should release this memory by calling freeO.

Variable into which Dx_app_DodesO stores the number of entries in
node_list.

The node numbers returned by Dx_app_DodesO are node numbers from the root partition, which tell
you where in the machine the application is located. DX_app_nodesO returns 0 for success, or -1 if
any error occurs.

For example, the following Fortran program fragment prints the root node numbers of the nodes on
which the current application is running:

include 'fnx.h'

integer*4 mynodes(l)
pointer (ptr, mynodes)
integer nnodes
integer i, status

status = nx_app_nodes(O, ptr, nnodes)

if(status .ne. 0) then
call nx-perror ("nx_app_nodes () ")
stop

4-23

Managing Applications and Partitions with System Calls Paragon™ System Users Guide

4-24

end if

do 2, i = 1, nnodes
print *, mynodes(i)

2 continue

call free (ptr)

The equivalent C code is as follows:

#include <nx.h>

nx_nodes_t mynodesi
unsigned long nnodesi
int i, status;

status nx_app_nodes(O, &mynodes, &nnodes);

if(status != 0) {

}

nx-perror ("nx_app_nodes () ") ;
exit(l) ;

forti = 0; i < nnodes; i++) {
printf("%d\n", mynodes[i]);

free (mynodes) i

Note the use of the & operator on the variables mynodes and nnodes in the call to nx_app_nodesO.

Listing the Applications in a Partition with nx_pspart()

nx-pspartO returns information about each of the applications and subpartitions in a partition, like
the pspart command. It is callable only from C, not Fortran. It has the following parameters:

partition The relative or absolute patbname of the partition. The specified partition
must exist and must give read permission to the calling process.

Pointer variable into which nx_pspartO stores the address of an 3iTay of
nx-psparCt structures. Each structure in the array describes one object
(application or subpartition). The nx-pspart_t structure is defined in
allocsys.h, which is automatically included by nx.h andfnx.h. It includes the
following fields:

Paragon ™ System User's Guide

objecctype

objecUd

uid

gid

size

priority

elapsed

active

Managing Applications and Partitions with System Calls

The type of the object described by this structure:
NX_APPLICATION or NX_PARTITION. (These
are constants defined in nx.h orfnx.h).

If the object is an application, this is its process group
ID. If the object is a partition, this is an arbitrary value
and should be ignored.

The numeric user ID of the object's owner.

The numeric group ID of the object's group.

The number of nodes allocated to the object.

The current priority of the object.

The amount of time the object has been rolled in
during the current rollin quantum, expressed as an
integer number of milliseconds.

The rollin quantum for the object's parent partition
(that is, the partition specified in the nx-pspartO call),
expressed as an integer number of milliseconds.

The total amount of time the object has been rolled in
since it was started, expressed as an integer number of
milliseconds.

Whether or not the object is currently active
(rolled-in), inactive (rolled-out), or is dumping core:
o if the object is inactive, 1 if the object is active, 2 if
the object is inactive and is either dumping core or has
dumped core, or 3 if the object is active and is either
dumping core or has dumped core.

The time the object was started, as returned by timeO.
(If the object is a subpartition, the time the oldest
application in the subpartition was started.)

DX_pspartO allocates the memory for the psparClist array; when you are
finished using the information, you should release this memory by calling
freeO.

4-25

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

liscsize Variable into which DX_pspartO stores the number of nx-psparCt structures
in psparClist.

nx_pspartO returns 0 for success, or -1 if any error occurs.

For example, the following program fragment prints the numeric user ID and size for every
application and subpartition in the partition mypart:

#include <nx.h>

nx-pspart_t
unsigned long
int

*infoi
nobjs;
status, i;

status = nx-pspart ("mypart", &info, &nobjs) i

if(status l= 0) {
nx-perror (II nx-pspart () II) i

exit(l) i

for(i = 0; i < nobjs; i++)
printf("uid = %d, size

free (info) ;

%d\n", info->uid, info->size) i

Note the use of the & operator on the structure info and the variable nobjs in the call to nx-pspartO.

The Controlling Process

4-26

By calling any of the nx_initve ••• O calls, a process creates a new application. The process that called
DX_initve ••• O becomes the new application's controlling process. Each application has exactly one
controlling process, and each process controls at most one application.

The controlling process is a special process that creates and controls the application:

• The controlling process can create new processes in the application, using the function
nx_nforkO, nx_loadO, or nx_loadveO.

• The controlling process can wait for an application process to complete, using DX_ waitallO or
the standard OSFIl function waitO or waitpidO.

The controlling process can send a signal to an application process, or terminate it, using the
standard OSF/l function killO. In particular, the controlling process can send a signal to all the
processes in the application (including itself) by using kill(O, signal).

Paragon ™ System User's Guide Managing Applications and Partitions with System Calls

You can terminate the entire application by terminating the controlling process, using the kill
command or your interrupt key (normally <Ctrl-c> or <Del». The controlling process always
runs in the service partition; the application processes run in the partition specified by DX_initve ••• O.
If the application processes are running in a gang-scheduled partition, the controlling process is
rolled in and out along with its application (that is, when the application is rolled out, the controlling
process gets no processor time; when the application is rolled in, the controlling process gets its
normal share of the service partition's processor time).

NOTE

Interrupting or suspending an application that is "rolled out" will not
take effect until the application is "rolled in" again.

In OSFIl terms, the controlling process is a parent process and the processes created by nx_nforkO,
DX_IoadO, or DX_IoadveO are its child processes. (In this respect, nx_nforkO is similar to forkO,
DX_IoadO is similar to a forkO followed by an execvO with a null argument list, and nx_IoadveO
is similar to a forkO followed by an execveO). The controlling process and the application processes
all belong to the same process group, and the controlling process is the process group leader of the
group. No process outside the application belongs to this process group.

The controlling process does not usually do heavy computational work, because it runs in the service
partition along with users' shells and other interactive processes. Since it is scheduled interactively,
the controlling process will not give as much throughput as application processes running in
gang-scheduled compute partitions.

See the OSFll Programmer's Reference for information on waitO, waitpidO, kiIIO, forkO, and
execveO.

Process Groups

Process groups are a standard OSFIl concept. A process group is a set of related processes. You can
send a signal to all the processes in a group at once with kiIIO, and you can wait for any process in
a group with waitpidO. The processes in a process group also share access to a terminal, called the
controlling terminal of the group. Each process belongs to exactly one process group.

The processes in a process group are all children (or grandchildren, and so on) of the oldest process
in the group, called the process group leader. The process group leader's process ID (PID) is used
to identify the group, and is also called the process group ID of the whole group. (Note that this is
the process group leader's OSFIl PID, not its process type.) A process can determine its process
group ID by calling getpgrpO.

Normally, a process belongs to the same process group as its parent process. However, a process can
leave its parent's process group and start a new process group of its own by making such calls as
setpgidO, setpgrpO, or setsidO. These calls create a new process group, then remove the calling

4-27

Managing Applications and Partitions with System Calls Paragon 1M System User's Guide

4-28

process from its current group and place it in the new group. The calling process becomes the new
group's process group leader, and the caller's PID becomes the new group's process group ID. After
that, any processes created by the process group leader belong to the new process group. See the
OSFll Programmer's Reference for information on setpgidO and getpgrpO.

Process Groups in the Operating System

In the operating system on a Paragon system, process groups work the same as they do in standard
OSFIl. In addition, nx_initve ••• O makes sure that the calling process is a process group leader. If the
calling process is not already a process group leader, ox_initve ••• O has the same effect as setpgidO:
it creates a new process group and makes the calling process the new group's process group leader.
Because all the processes in the application are created by the controlling process, all the processes
in an application are members of the same process group, and no other process in the system is a
member of that process group. This means that the application's process group ID uniquely
identifies the application, which is why you use a process group ID to identify the application in
nx_priO.

This also means that if a process in an application leaves the application's process group by calling
nx_initve ••• O (or setpgidO, setpgrpO, or setsid()), it leaves the application. If a process leaves its
application's process group, it is no longer considered part of the application and can no longer
exchange messages with the other processes in the application. You shouldn't do this unless you
know exactly what you are doing.

Killing Application Processes

You can take advantage of the fact that all the processes in the application are members of the same
process group by using OSFIl system calls that affect process groups. For example, specifying a
process ID of 0 (zero) to kil10 sends the specified signal to all the members of the calling process's
process group, so the following call kills the entire application (including the calling process):

kill(O, SIGKILL)i

This call differs from the example discussed under "Using PIDs" on page 4-20 in that it also kills
the calling process.

An Example Controlling Process

The following C program (which must be linked with -Inx, not -ox) copies itself onto eight nodes of
the partition mypart with a process type of 0 and a priority of 7. The eight application processes print
"Hello from node n" and then exit. The controlling process waits for the application processes to
finish, then prints "Hello from controlling process" before exiting itself. Note that this program is
executed by both the controlling process and the application processes.

Paragon 1M System User's Guide Managing Applications and Partitions with System Calls

#include <nx.h>
#include <sys/types.h>
#include <stdio.h>
#define NUMNODES 8

main(int argc, char **argv)
int n, i;
pid_t pids[NUMNODES];

/* create application */
n = nx_ini t ve ("mypart ", NUMNODES , NULL, &argc, argv);
if(n == -1) {

/* nx_initve() failed */
perror ("nx_ini tve ") ;
exit (1) ;

/* set application priority to 7 */
n = nx-pri(O, 7); /* 0 specifies calling application */
if(n == -1) {

/* nx-pri() failed */
perror ("nx-pri") ;
exit (1) i

/* fork child processes onto all nodes of application */
n = nx_nfork(NULL, -1, 0, pids)i
if (n == -1) {

/* nx_nfork() failed */
perror ("nx_nfork") ;
exit (1) ;

else if(n == 0) {
/* child process: print "Hello" and exit */
printf ("Hello from node %d! \n", mynode ()) ;
exit (0) ;

else {
/* parent (controlling process): wait for all children */
nx_waitall();
/* now print "Hello" and exit */
printf("Hello from controlling process!\n");
exit(O) ;

4-29

Managing Applications and Partitions with System Calls Paragon ™ System User's Guide

Message Passing Between Controlling Process and Application Processes

4-30

Synopsis

myhostO

Description

Obtain the controlling process's node number.

A controlling process can exchange messages with its child processes using the message-passing
system calls described in Chapter 3.

• The controlling process's node number is equal to numnodesO. (The maximum node number
within the application is numnodesO -1.) The controlling process's node number is also
returned by myhostO in any process in the application. In the controlling process, myhostO,
mynodeO, and numnodesO all return the same number.

• The controlling process's process type is initially INV ALID_PTYPE, but you can change it to
a valid value by calling setptypeO. For best performance, you should not call setptypeO until
after you have created all application processes with nx_nforkO, nx_IoadO, or nx_IoadveO,
and you should not call setptypeO at all unless you need to exchange messages with application
processes.

Although the controlling process can exchange messages with the application processes, it does not
participate in global operations:

• The controlling process may not make any of the calls described under "Global Operations" on
page 3-27.

• The controlling process does not participate when the application processes make any of the
calls described under "Global Operations" on page 3-27.

• The controlling process does not get messages sent to node number -1 (all nodes).

A send to node -1 (all nodes) sends the message to all the nodes in the application (except the calling
process's node), but not the controlling process. This applies whether the message is sent by a node
process or by the controlling process itself. On the other hand, an extended receive that specifies
node -1 (any node) as the sending node will match a message from the controlling process.

Here is an application, written in Fortran, that demonstrates message-passing between the
controlling process and the application processes. This application multiplies two numbers (in a very
inefficient way). It consists of two programs, control.f and app.j. You must link control.fwith -Inx,
not -nx; app.fcan be linked with either -Inx or -nx.

The controlling process (control./) requests a number of nodes and an integer value from the user. It
creates an application of the specified number of nodes on the partition mypart and loads the
program app onto each node. It then sends the user's integer value to each node as a message (note
that the node number -1 sends to all nodes, not including the controlling process) and waits for a
return message with the result. When the result is received, the controlling process prints its value
and then exits.

Paragon ™ System User's Guide Managing Applications and Partitions with System Calls

include 'fnx.h'

integer num_nodes, n, i
integer nodes(128) , pids(128)
integer
parameter
integer
integer
parameter
parameter

app-ptype
(app-ptype = 0)
data, result
result_type, data_type
(result_type = 1)
(data_type = 2)

c get number of nodes (limited to size of "nodes" and "pids" arrays)
1 print *, "Enter number of nodes (must not be greater than 128)"

read(*,*) num_nodes
if(num_nodes .gt. 128) goto 1

c create application of specified size
n = nx_ini tve ("mypart", num_nodes,
if(n .eq. -1) then

call nx-perror ("nx_initve")
stop

end if

c fill in node array for nx_Ioad()
do 2, i = 1, num_nodes

nodes (i) = i-I
2 continue

0, 0)

c load program "app" onto the nodes of the application
n = nx_Ioad(nodes, num_nodes, app-ptype, pids, "app")
if(n .eq. -1) then

call nx-perror ("nx_Ioad")
stop

end if

c get an integer from the user
print *, "Enter value to be summed"
read(*,*) data

c set my process type
call setptype(app-ptype)

c send integer to all the nodes
call csend(data_type, data, 4, -1, app-ptype)

c receive the result
call crecv(result_type, result, 4)

4-31

Managing Applications and Partitions with System Calls Paragon ™ System User's Guide

c print the result
print *, "The sum of ",data," over ",num_nodes," nodes is ",result

end

The application process (app.f) waits for a message and performs a gisumO on the value received.
(Note that the controlling process does not participate in the gisumO.) The process on node 0 sends
the result to the controlling process, then all the application processes exit.

include 'fnx.h'

integer
integer
parameter
parameter

val, work
result_type, data_type
(result_type = 1)
(data_type = 2)

c get an integer from the controlling process
call crecv(data_type, val, 4)

c sum it over all nodes
call gisum(val, I, work)

c if I'm node 0, send the result back to the controlling process
if (mynode() .eq. 0) call csend(result_type, val, 4, myhost(), 0)

end

Managing Partitions

4-32

The operating system provides system calls that let you create and remove partitions,get information
about partitions, and change their characteristics, like the mkpart, rmpart, showpart, and chpart
commands described in Chapter 2. See "Managing Partitions" on page 2-30 for introductory
information on partitions.

Paragon TM System User's Guide Managing Applications and Partitions with System Calls

Making Partitions

Synopsis Description

nx_mkpart(partition, size, type) Create a partition with a particular number of
nodes.

nx_mkpartJect(partition, rows, cols, type)

nx_mkpart_map(partition, numnodes,
node_list, type)

nx_mkpart_attr(partition,
[attribute, value,] ... NX_ATTR_END)

Create a partition with a particular height and
width.

Create a partition with a specific set of nodes.

Create a partition with specified attributes.

To create a partition, use nx_mkpartO, nx_mkpart_rectO, nx_mkpart_mapO, or
nx_mkpart_attrO. These calls all create a partition, but they use different methods to specify the
nodes allocated to the new partition:

nx_mkpartO works like the mkpart command's -sz size switch.

nx_mkpartJectO works like the mkpart command's -sz hXw switch.

nx_mkpart_mapO works like the mkpart command's -nd nodespec switch (except that only
node numbers can be specified).

DX_mkpart_attrO works like all of the mkpart command's switches.

See "Specifying the Nodes Allocated to the Partition" on page 2-46 for more information on the
mkpart command's -sz and -nd switches.

These calls have the following parameters:

partition The new partition's relative or absolute pathname. The specified new
partition must not exist; the parent partition of the specified new partition
must exist and must give write permission to the calling process. See
"Partition Pathnames" on page 2-33 for more information on partition
pathnames; see "Owner, Group, and Protection Modes" on page 2-38 for
more information on partition permissions.

size (nx_mkpartO only)
The number of nodes of the new partition, or -1 to specify "all the nodes of
the parent partition." If you specify a size smaller than that of the parent
partition, the nodes are selected by the system (and are not necessarily
contiguous).

4-33

Managing Applications and Partitions with System Calls Paragon TM System User's Guide

4-34

DX_mkpartO attempts to allocate a square group of nodes if it can. If this is
not possible, it attempts to allocate a rectangular group of nodes that is either
twice as wide as it is high or twice as high as it is wide. If this is not possible,
it allocates any available nodes. In this case, nodes allocated to the partition
may not be contiguous.

rows and cols (nx_mkpart_rectO only)
The height and width of the new partition. The new partition is a rectangle
with the specified number of rows and columns, but its location within the
parent partition is selected by the system.

numnodesand node_list (DX_mkpart_mapO only)
The exact node numbers within the parent partition for the new partition. The
node_list parameter is an array of node numbers; the numnodes parameter
specifies the number of elements in node_list.

type (all except nx_mkpart_attr())
The new partition's scheduling type: NX_STD to specify standard
scheduling, NX_GANG to specify gang scheduling, or ~_SPS to specify
space sharing. The names NX_STD, NX_GANG, and NX_SPS are defined
in nx.h andfnx.h. See "Scheduling Characteristics" on page 2-39 for more
information on the different scheduling types.

[attribute, value,] ... (DX_mkpart_attrO only)
The new partition's attributes. Each attribute is one of the constants described
in Table 4-2; the value is the value of the specified attribute. The type of the
value argument is determined by the value of the preceding attribute
argument. See "Setting Partition Attributes with nx_mkpart_attrO" on page
4-36 for more information.

NX_ATTR_END (nx_mkpart_attrO only)
A constant that marks the end of the list of attribute, value pairs.

nx_mkpartO, DX_mkpart_rectO, DX_mkpart_mapO, and DX_mkpart_attrO return the number
of nodes in the new partition, or -1 if any error occurs.

The new partition's owner and group are set to the owner and group of the calling process. Any
partition characteristics not specified in the call (such as protection modes and rollin quantum) are
set to the same values as the parent partition. Once the partition is created, you can use the
DX_cbpart ... O calls to set these characteristics to different values, as discussed under "Changing
Partition Characteristics" on page 4-49.

Paragon ™ System User's Guide Managing Applications and Partitions with System Calls

Examples

The following Fortran call creates a new gang-scheduled partition called new part whose parent
partition is the compute partition (using a relative partition patbname) and which consists of all the
nodes in the compute partition:

include 'fnx.h'
integer n

n = nx_mkpart (II newpart ", -1, NX_GANG)

The following C call creates a new space-shared partition called my part whose parent partition is the
compute partition (using an absolute partition pathname) and which has 54 nodes:

#include <nx.h>
int n;

n = nx_mkpart (". compute .mypart ", 54, NX_SPS);

The following C call creates a new gang-scheduled partition called reet whose parent partition is
mypart and which is 3 nodes high and 4 nodes wide:

#include <nx.h>
int n;

n = nx_mkpart_rect(".compute.mypart.rect", 3, 4, NX_GANG);

The following C call creates a new space-shared partition called comers whose parent partition is
reet and which consists of the four nodes at the comers of reet:

#include <nx.h>
long nodes[4];
int n;

nodes [0] 0;
nodes [1] 3;
nodes [2] 8;
nodes [3] 11;
n = nx_mkpart_map(".compute.mypart.rect.comers", 4,

nodes, NX_SPS);

In each of these examples, the variable n is assigned the number of nodes in the new partition, or -1
if any error occurred.

Examples of nx_mkparCattrO can be found at the end of the next section.

4·35

Managing Applications and Partitions with System Calls Paragon ™ System User's Guide

Setting Partition Attributes with nx_mkpart_attrO

NOTE

If you call nx_mkparCattr() in a Fortran subprogram, you must
include fnx.h after the subprogram declaration and before the call.
This is required for the call to recognize the pre-defined attribute
constants (for example, NX_ATTR_SZ).

The following table describes the attributes and values you can use with nx_mkparCattrO. The
attribute constants, including NX_ATTR_END, are defined in <nx.h> or <jnx.h>.

Table 4-2. Attribute Constants for Use with nx_mkparCattrO (1 of 3)

Type of Following Equivalent
Attribute Constant Value (C I Fortran) Switch Description

NX_ATTR_SZ long -sz size Spedfies the size of the new partition, like
INTEGER the size argument of nx_mkpartO.

NX_ATTR_MAP long * -nd Specifies the list of nodes for the new
INTEGER(*) partition, like the node_list argument of

mcmkparCmapO. The value is an array of
node numbers. Do not specify the same node
number more than once in this array.

NX_ATTR_SZ must also be specified
(anywhere in the argument list) to give the
length of the array.

NX_ATTR_RECT long * -szhXw Specifies a rectangle for the new partition,
INTEGER(2) like the rows and cols arguments of

DX_mkparCrectO. The value is an array of
two integers (height first, width second).

If NX_ATTR_ANCHOR is not specified,
the system determines the rectangle's
location within the parent partition.

4·36

Paragon 1M System User's Guide Managing Applications and Partitions with System Calls

Table 4-2. Attribute Constants for Use with DX_mkparCaUrO (2 of 3)

Type of Following Equivalent
Attribute Constant Value (C I Fortran) Switch Description

NX_ATTR_ANCHOR long (none) Specifies the node number of the upper left
INTEGER comer of a rectangle specified with

NX_ATTR_RECT. If the specified node
number is -1, the system determines the
rectangle's location within the parent
partition.

NX_ATTR_RECT must also be specified
(anywhere in the argument list) to give the
height and width of the rectangle.

NX_ATTR_RELAXED long -rlx Specifies whether or not the requested
INTEGER number of nodes can be relaxed (see

"Relaxing Partition Size" on page 2-49). The
value 0 means all requested nodes must be
available; the value 1 relaxes this
requirement.

NX_ATTR_RELAXED cannot be used
with NX_ATTR_RECT, unless
NX_ATTR_ANCHOR is also specified
with a value other than -1.

NX_ATTR_SEL char * -nt Specifies the node type for the partition. The
CHARACTER *(*) value is a character string whose value is a

node type specifier (see "Specifying Node
Attributes" on page 2-25).

If NX_ATTR_SZ, NX_ATTR_MAP, or
NX_ATTR_RECT is also specified, the
given nodes must all be available and have
the specified node type, unless
NX_ATTR_RELAXED is specified.

NX_ATTR_SCHED long -ss/-spsl Sets the new partition's node type, like the
INTEGER -rq/-epl type argument of nx_mkpartO. The value is

NX_STD, NX_GANG, or NX_SPS (see
"Scheduling Characteristics" on page 2-39
for more information on the different
scheduling types).

4-37

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

Table 4-2. Attribute Constants for Use with nx_mkparCattrO (3 of 3)

Type of Following Equivalent
Attribute Constant Value (C I Fortran) Switch Description

NX_ATTR_EPL long -epl priority Sets the new partition's effective priority
INTEGER limit. The value is an integer from 0 to 10

(see "Scheduling Characteristics" on page
2-39).

NX_ATTR_EPL can be used with or
without NX_MKPART_SCHED. If
NX_MKPART_SCHED is used, its value
must be set to NX_GANG.

NX_ATTR_RQ long -rq time Sets the new partition's rollin quantum. The

4-38

INTEGER value is an integer number of milliseconds,
or 0 to specify an "infinite" rollin quantum
(see "Scheduling Characteristics" on page
2-39).

The value must be less than or equal to
86,400,000 milliseconds (24 hours) and
greater than or equal to the minimum rollin
quantum (determined by your system
administrator). If it is not a multiple of 100,
it is silently rounded up.

NX_ATTR_RQ can be used with or without
NX_MKPART_SCHED. If
NX_MKPART_SCHED is used, its value
must be set to NX_GANG.

Each attribute can appear at most once in the argument list. The order of the attributes in the
argument list is not significant.

Specifying the Nodes Allocated to the Partition

nx_mkparCattrO provides the following ways to specify the nodes allocated to the partition:

Requests the specified number of nodes. If the value is 0 or -1, requests all the nodes in the
parent partition.

Paragon 1M System User's Guide Managing Applications and Partitions with System Calls

NX_ATTR_SZ attempts to create a square partition if it can. If this is not possible, it attempts
to create a rectangular partition that is either twice as wide as it is high or twice as high as it is
wide. If this is not possible, it uses any available nodes. In this case, the nodes allocated to the
partition may not be contiguous.

Requests the specified list of nodes. NX_ATTR_MAP and NX_ATTR_SZ can appear in any
order in the argument list.

Requests a rectangular partition of the specified height and width. The system places the
rectangle within the parent partition.

Requests a rectangular partition of the specified height and width, whose upper left comer is
located at the specified anchor node within the parent partition. NX_ATTR_RECT and
NX_ATTR_ANCHOR can appear in any order in the argument list. If the value of
NX_ATTR_ANCHOR is -1, the system places the rectangle within the parent partition.

Requests all the nodes of the specified node type in the parent partition.

• Use NX_ATTR_SEL together with NX_ATTR_SZ, NX_ATTR_MAP, NX_ATTR_RECT,
and/or NX_ATTR_ANCHOR.

Requests the nodes specified by the NX_ATTR_SZ, NX_ATTR_MAP, NX_ATTR_RECT,
and/or NX_ATTR_ANCHOR, all of which must have the node type specified by the
NX_ATTR_SEL. See "Running an Application on a Particular Node Type" on page 2-23 for
more information.

• Do not use NX_ATTR_SEL, NX_ATTR_SZ, NX_ATTR_MAP, NX_ATTR_RECT, or
NX_ATTR_ANCHOR.

Requests all the nodes in the parent partition.

• Use NX_ATTR_RELAXED with a value of 1 together with any of the above.

Requests all the available nodes in the specified node set, up to the number of nodes requested.
At least one of the specified nodes must be available. See "Relaxing Application Size" on page
2-17 for more information.

4-39

Managing Applications and Partitions with System Calls Paragon ™ System User's Guide

4-40

If NX_ATTR_SEL is used together with NX_ATTR_RELAXED, only nodes of the specified
type are returned, but the number of nodes returned may be less than the number of nodes
requested. At least one node of the specified type must be available. See "Using Node Attributes
with a Relaxed Application Size" on page 2-28 for more information.

The following combinations of these attributes are invalid:

• You cannot use NX_ATTR_RELAXED together with NX_ATTR_RECT, unless
NX_ATTR_ANCHOR is also specified with a value other than -1.

Using any of these combinations of attributes causes nx_mkparCattrO to fail with the error
"invalid attribute specified."

Examples

The following Fortran call creates a new partition called newpart whose parent partition is the
compute partition (using a relative partition pathname). The new partition consists of all the nodes
in the compute partition and has the same scheduling type, rollin quantum, and effective priority
limit as the compute partition:

include 'fnx.h'
integer n

The following C call creates a new space-shared partition called mypart whose parent partition is the
compute partition (using an absolute partition pathname) and which has 54 nodes:

#include <nx.h>
int n;

n = nx_mkpart_attr(".compute.mypart",
NX_ATTR_SZ, 54,
NX_ATTR_SCHED, NX_SPS,
NX_ATTR_END) ;

The following C call creates a new gang-scheduled partition called reet whose parent partition is
mypart. It is 3 nodes high and 4 nodes wide, and has its upper left comer at node 1 of mypart. It has
a rollin quantum of 600,000 milliseconds (10 minutes) and the same effective priority limit as
mypart:

Paragon 1M System User's Guide Managing Applications and Partitions with System Calls

#include <nx.h>
long rect[2];
int n;

rect[O] 3;
rect[l] 4;

n = nx_mkpart_attr(".compute.mypart.rect",
NX_ATTR_RECT, rect,
NX_ATTR_ANCHOR, 1,
NX_ATTR_RQ, 600000,
NX_ATTR_END) ;

The following C call creates a new gang-scheduled partition called comers whose parent partition
is reet and which consists of the four nodes at the comers of reet. It has an effective priority limit of
3. All other characteristics are the same as reet:

#include <nx.h>
long nodes[4];
int n;

nodes[O]
nodes [1]
nodes [2]
nodes [3]

=
0;
3;
8 ;
11;

n = nx_mkpart_attr(".compute.mypart.rect.comers",
NX_ATTR_MAP, nodes,
NX_ATTR_SZ, 4,
NX_ATTR_EPL, 3,
NX_ATTR_END) ;

The following Fortran call creates a new partition called bigmem whose parent partition is the
compute partition and consists of all available nodes with 64M bytes or more of physical RAM. All
other characteristics of bigmem are the same as those of the compute partition:

include 'fnx.h'
integer n

n = nx_mkpart_attr ("bigmem",
x NX_ATTR_SEL, ">= 6 4mb II ,

x NX_ATTR_RELAXED, 1,
x NX_ATTR_END)

In each of these examples, the variable n is assigned the number of nodes in the new partition, or -1
if any error occurred.

4-41

Managing Applications and Partitions with System Calls Paragon ™ System User's Guide

Removing Partitions

4-42

Synopsis Description

nx_rmpart(partition,force, recursive) Remove a partition.

To remove a partition, use nx_rmpartO. The parameters of nx_rmpartO have the following
meanings:

partition

force

recursive

The relative or absolute pathname of the partition to be removed. The parent
partition of the specified partition must give write permission to the calling
process. See "Partition Pathnames" on page 2-33 for more information on
partition pathnames; see "Owner, Group, and Protection Modes" on page
2-38 for more information on partition permissions.

Specifies whether to remove the partition if it contains running applications:
ifforce is 0, the partition will not be removed if it contains any applications;
ifforce is any value other than 0, the partition will be removed even if it
contains applications.

Specifies whether to remove the partition if it contains subpartitions: if
recursive is 0, the partition will not be removed if it contains any
subpartitions; if recursive is any value other than 0, the partition will be
removed along with all its subpartitions, sub-subpartitions, and so on. This is
an "all or nothing" operation: if any subpartitions cannot be removed, the call
fails and no subpartitions are removed.

If the partition contains both subpartitions and applications, or contains subpartitions that contain
applications, you must set both force and recursive to a nonzero value to remove it.

nx_rmpartO returns ° for success, or -1 if any error occurs.

For example, the following Fortran call removes the partition called newpart whose parent partition
is the compute partition (using a relative partition pathname), but only if it does not contain any
running applications or subpartitions:

include 'fnx.h'
integer n

n = nx_rmpart ("newpart ", 0, 0)

After this call, the variable n contains ° if the partition was removed, or -1 if it was not removed for
any reason (for example, if the partition contained applications or subpartitions).

Paragon TM System User's Guide Managing Applications and Partitions with System Calls

The following C call removes the partition called mypart whose parent partition is the compute
partition (using an absolute partition patbname), even if it contains running applications; however,
it does not remove mypart if the partition contains subpartitions:

#include <nx.h>
int n;

n = nx_rmpart(".compute.mypart", I, 0);

After this call, the variable n contains 0 if the partition was removed, or -1 if it was not removed for
any reason (for example, if the partition contained subpartitions, or if the partition does not exist).

Getting Information About Partitions

Synopsis Description

DX_parCattr(partition, attributes) Get a partition's attributes.

DX_parCnodes(partition, node_list, liscsize) List the root node numbers for the nodes of a
partition.

DX_node_attr(partition, attributes) Get the node attributes for all nodes in a partition
(C only).

To get information about a partition, use DX-parCattrO, DX_parCnodesO, or nx_node_attrO.
DX_parCattrO returns the attributes of a partition, DX-parCnodesO returns a list of the nodes in a
partition, and DX_node_attrO returns the node attributes of the nodes in a partition.

NOTE

Do not call nx_parCattr{) or nx_parCnodes{) on more than a
few nodes at once.

If many nodes use the partition information calls at the same time, the allocator daemon can become
overwhelmed with requests, which could slow down your application or reduce system stability. If
all the nodes in your application need this information, you should have one node make the call and
then distribute the information to the other nodes.

Determining a Partition's Attributes with nx_part_attrO

DX-parCattrO returns the attributes of a partition. It has the following parameters:

4-43

Managing Applications and Partitions with System Calls Paragon 1M System User's Guide

4-44

partition

attributes

The relative or absolute pathname of the partition. The specified partition
must exist and must give read permission to the calling process.

A structure of type nx...]Jart_info _t (you must allocate the space for this
structure). The nx...]Jart_info_t structure is defined in allocsys.h, which is
automatically included by nx.h and fnx.h. It includes the following elements:

uid

gid

access

sched

rq

epl

nodes

meshJ

The numeric user ID of the partition's owner.

The numeric group ID of the partition's group.

The access permissions of the partition, expressed as a
three-digit octal number.

The scheduling type of the partition: NX_STD,
NX_GANG, or NX_SPS. (These are constants
defined in nx.h orfnx.h).

The rollin quantum of the partition, expressed as an
integer number of milliseconds (0 for a
standard-scheduled or space-shared partition).

The effective priority limit of the partition (20 for a
standard-scheduled partition).

The number of nodes in the partition.

The width of the partition (columns), or -1 if the
partition is not rectangular.

The height of the partition (rows), or -1 if the partition
is not rectangular.

enclose_mesh_x The width of the smallest rectangle that completely
encloses the partition.

enclose_meshJ The height of the smallest rectangle that completely
encloses the partition.

nx_parCattrO returns 0 for success, or -1 if any error occurs.

For example, the following C program fragment prints the rollin quantum and effective priority limit
for the partition my part:

#include <nx.h>

nx-part_info_t info;
int status;

Paragon ™ System User's Guide Managing Applications and Partitions with System Calls

status = nx-part_attr ("mypart", &info) i

if(status != 0) {
nx-perror ("nx-part_attr () ") i

exit(l) i

printf("rq = %d, epl = %d\n", info.rq, info.epl)i

Note the use of the & operator on the structure info in the call to IDcparCaUrO. The equivalent
Fortran code is as follows:

include 'fnx.h'

record /nx-part_info_t/ info
integer status

status = nx-part_attr("mypart", info)

if(status .ne. 0) then
call nx-perror ("nx-part_attr () ")
stop

end if

print *, "rq ="·,info.rq,", epl =",info.epl

If the partition is not a contiguous rectangle, the values of mesh_x and meshJ are -1 and the
rectangle described by enclose_mesh_x and enclose_meshJ includes nodes that are not part of the
partition. For example, Figure 4-1 shows a non-rectangular partition called my part. For this
partition:

• nodes is 4.

• mesh_x and meshJ are both -1.

• enclose_meshJ is 2.

Determining a Partition's Nodes with nx_part_nodes()

DX-parCnodesO returns a list of the nodes in the specified partition. You might want to do this to
determine whether or not the partition includes a certain node which has special hardware
characteristics such as extra memory or an 110 interface. nx-parCnodesO has the following
parameters:

4-45

Managing Applications and Partitions with System Calls Paragon TM System User's Guide

4-46

Root partition @ CD ® 0 0

Partition mypart
® 0)

@ @
Smallest enclosing rectangle for mypart

@ @ ® @ @

Figure 4-1. Sample Partition Cor DX-part_attrO and DX_partJlodesO

partition

liscsize

The relative or absolute pathname of the partition. The specified partition
must exist and must give read permission to the calling process.

Pointer variable into which nx_part_nodesO stores the address of the list of
nodes. DX-part_nodesO allocates the memory for this list; when you are
finished using the information, you should release this memory by calling
CreeO.

Variable into which nx_part_nodesO stores the number of entries in
node_list.

DX_part_nodesO returns 0 for success, or -1 if any error occurs.

The node numbers returned by nx_part_nodesO are node numbers from the root partition. For
example, DX-part_nodesO for the partition mypart shown in Figure 4-1 would return node numbers
6, 7, 12, and 13. This is true even if the root partition is not the direct parent partition of mypart.

For example, the following Fortran program fragment prints the root node numbers for the partition
my part:

include 'fnx.h'

integer*4
pointer
integer
integer

mynodes(l)
(ptr, rnynodes)
nnodes
i, status

status = nx-part_nodes ("rnypart ", ptr, nnodes)

Paragon TM System User's Guide Managing Applications and Partitions with System Calls

if(status .ne. 0) then
call nx-perror ("nx-part_nodes () ")
stop

end if

do 2, i = 1, nnodes
print *, mynodes(i)

2 continue

call free (ptr)

The equivalent C code is as follows:

#include <nx.h>

nx_nodes_t mynodes;
unsigned long nnodes;
int i, status;

status = nx-part_nodes ("mypart", &mynodes, &nnodes);

if(status != 0) {
nx-perror ("nx-part_nodes () ") ;
exit(l) ;

forti = 0; i < nnodes; i++) {
printf ("%d\n", mynodes [iJ);

}

free (mynodes) ;

Note the use of the & operator on the variables mynodes and nnodes in the call to nx_parCnodesO.

Determining Node Attributes with nx_node_sttr()

nx_node_attrO returns the node attribute strings for every node in a partition. It is callable only
from C, not Fortran. It has the following parameters:

partition The relative or absolute pathname of the partition. The specified partition
must exist and must give read permission to the calling process.

4-47

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

4-48

attributes Address of a variable of type char **, into which DX_Dode_attrO stores the
address of an array of strings. Each string in this array is a comma-separated
list of node attributes for a single node. The call allocates the memory for this
array; when you are finished using the information, you should release this
memory by calling freeO.

If successful, DX_Dode_attrO returns the number of nodes for which information is returned. If any
error occurs, DX_Dode_attrO returns -1 and sets ermo to indicate the cause of the error.

NOTE

Do not call nx_node_attrO on more than a few nodes at once.

The offset of each string in the returned array corresponds to the node number within the partition;
for example, if the variable pointed to by the attributes parameter is called x, then x[5 J describes
node 5 of the specified partition. Each string is a comma-separated list of node attributes (strings
that describe the physical properties of the node); see Table 2-1 on page 2-24 for a list ofthe most
commonly-seen node attributes. The node attributes are listed in an arbitrary order within each
string.

For example, the following C program fragment prints the node attributes for each node in the
pa..4:ition m)'Puit:

#include <nx.h>

char *partition
char **node_attrs;
int nnodes, i;

"mypart" ;

nnodes = nx_node_attr(partition, &node_attrs);

if(nnodes == -1)
nx-perror ("nx_node_attr () failed");
exit(l) ;

printf("Partition \"%s\" has %d nodes: \n" , partition, nnodes);

for(i = 0; i < nnodes; i++)
printf(" Node %d: \"%s\"\n", i, node_attrs[i]);

free (node_attrs) ;

Paragon TM System User's Guide Managing Applications and Partitions with System Calls

Note the use ofthe & operator on the variable node_attrs in the call to nx_node_attrO, and the use
of freeO to free the memory after it is used. The output of this code might be something like this:

Partition "mypart" has 7 nodes:
Node 0: 2proc,64mb,MP"
Node 1: 2proc,64mb,MP"
Node 2 : 2proc,64mb,MP"
Node 3 : 2proc,64mb,MP"
Node 4: 2proc,64mb,MP"
Node 5 : 2proc,64mb,MP"
Node 6 : 2proc,64mb,MP"

Changing Partition Characteristics

Synopsis Description

DX_chparCname(partition, name) Change a partition's name.

DX_chparCmod(partition, mode) Change a partition's protection modes.

nx_chparCepl(partition, priority) Change a partition's effective priority limit.

nX3hparCrq(partition, rollin_quantum) Change a partition's rollin quantum.

DX_chparCowner(partition, owner, group) Change a partition's owner and group.

DX_chparCsched(partition, sched_type) Change a partition's scheduling type.

To change a partition's characteristics, use nx_chpart_nameO, DX_chpart_modO,
nx_chparCeplO, DX_chparCrqO, DX_chpart_ownerO, ornx_chparCschedO. Each of these calls
changes one characteristic, and leaves the other characteristics unchanged. These calls have the
following parameters:

partition The relative or absolute pathname of the partition to change. The specified
partition must exist; the permissions required depend on the operation.

name (nx_chparCnameO only)
The new name for the partition, expressed as a string of any length containing
only uppercase letters, lowercase letters, digits, and underscores. Note that
nx_chpart_nameO can only change the partition's name "in place;" there is
no way to move a partition to a different parent partition.

The calling process must have write permission on the parent partition of the
specified partition to use DX_chparCnameO.

4-49

Managing Applications and Partitions with System Calls Paragon 1M System User's Guide

4-50

mode (nx_chparCmodO only)
The new protection modes of the partition, expressed as an octal number. See
chmodO in the OSFll Programmer's Reference for more information on
specifying protection modes; see "Owner, Group, and Protection Modes" on
page 2-38 for more information on protection modes for partitions.

The calling process must be the owner of the partition or the system
administrator to use nx_chparCmodO.

priority (ox_chparCepIO only)
The new effective priority limit for the partition, expressed as an integer from
o to 10 inclusive. See "Scheduling Characteristics" on page 2-39 for more
information on effective priority limits.

The calling process must have write permission for the partition to use
nx_chparCepIO.

rollin_quantum (ox_chparCrqO only)
The new rollin quantum for the partition, expressed as an integer number of
milliseconds, or 0 to specify an "infinite" rollin quantum. The specified value
must not be greater than 86,400,000 milliseconds (24 hours) and must not be
less than the minimum rollin quantum for your system (determined by your
system administrator). If it is not a multiple of 100, it is silently rounded up
to the next multiple of 100. See "Scheduling Characteristics" on page 2-39 for
more information on rollin quanta

The calling process must have write permission for the partition to use
nx_chparCrqO.

owner and group (nx_chparCownerO only)
The new user and group for the partition, expressed as a numeric user ID
(UID) and group ID (GID). You can also specify -1, meaning "leave
owner/group unchanged," for either or both. See "Owner, Group, and
Protection Modes" on page 2-38 for more information on partition
ownership.

The permissions required for nx_chparCownerO depend on the operation.
To change the partition's ownership, the calling process must be the system
administrator. To change the partition's group, the calling process must either
be the system administrator or must be the partition's owner and changing the
group to a group that the calling process belongs to.

Paragon ™ System User's Guide Managing Applications and Partitions with System Calls

sched_type (nx_chparCschedO only)
The new scheduling type for the partition, which must be NX_GANG or
NX_SPS (constants defined in nx.h orfnx.h). See "Scheduling
Characteristics" on page 2-39 for more information on gang-scheduling and
space sharing.

The specified partition must not be standard-scheduled. A space-shared
partition can be changed to gang-scheduled at any time; a gang-scheduled
partition can only be changed to space-shared if it contains no applications
and no overlapping subpartitions.

The calling process must have write permission for the partition to use
nx_chparCschedO.

nx_chparCnameO, DX_chparCmodO, DX_chparCeplO, nx_chparCrqO, nx_chparCownerO,
and nx_chparCschedO return 0 for success, or -1 if any error occurs.

For example, the following Fortran call changes the name of mypart to new part:

include 'fnx.h'
integer n

n ::: nx_chpart_name ("mypart ", "newpart ")

The following C call has the same effect, but uses an absolute partition patbname:

#include <nx.h>
int n;

n ::: nx_chpart_name(".compute.mypart", "newpart");

Note that the second parameter of nx_chparCnameO is always a partition name, never a partition
pathname. There is no way to move a partition from one parent partition to another.

The following C call sets the permissions of mypart to rwxr-x- - - (750 octal):

#include <nx.h>
int n;

n ::: nx_chpart_mod (II mypart ", 0750);

The following Fortran call has the same effect, but uses an absolute partition patbname:

include 'fnx.h'
integer n

4-51

Managing Applications and Partitions with System Calls Paragon ™ System User's Guide

4-52

n = nx_chpart_mod(".compute.mypart", '750'0)

The following C call sets mypart's effective priority limit to 7:

#include <nx.h>
int ni

n = nx_chpart_epl ("mypart", 7) i

The following Fortran call sets mypart's rollin quantum to 10 minutes (600,000 microseconds):

include 'fnx.h'
integer n

n = nx_chpart_rq ("mypart ", 6 0 0 0 0 0)

The following C calls set mypart's owner tofred and its group to devel (see the OSFll
Programmer's Reference for information on getpwnamO and getgrnamO, which get the numeric
user and group IDs based on their names):

#include <stdio.h>
#include <pwd.h>
#include <grp.h>
#include <nx.h>

struct passwd *useri
struct group *grouPi
int ni

user = getpwnam(" fred") i

group = getgrnam ("devel ") i

n = nx_chpart_owner ("mypart", user->pw_uid, group->gr_gid) i

The following Fortran call changes mypart to a gang-scheduled partition (it must currently be either
gang-scheduled or space-shared):

include 'fnx.h'
integer n

In each of these examples, the variable n is assigned 0 if the call succeeded, or -1 if any error
occurred.

Paragon TM System User's Guide Managing Applications and Partitions with System Calls

Listing Unusable Nodes

Synopsis Description

List the nodes that are empty slots.

List the nodes that failed to boot.

To find out which nodes in the system are unusable, use Dx_empty _DodesO and Dx3ailed_DodesO.
(See "Unusable Nodes" on page 2-37 for more information on unusable nodes.)

• DX_ empty _DodesO returns a list of the nodes that are part of the root partition but do not have
a node board installed in the corresponding slot (these are shown as "-" in the output of
showpart).

• DX_failed_DodesO returns a list of the nodes that are part of the root partition but failed to boot
for some reason (these are shown as "X" in the output of showpart).

NOTE

Do not call nx_empty_nodes() or nx_faiJecCnodes() on more
than a few nodes at once.

If many nodes use these calls at the same time, the allocator daemon can become overwhelmed with
requests, which could slow down your application or reduce system stability. If all the nodes in your
application need this information, you should have one node make the call and then distribute the
information to the other nodes.

Both these calls have the following parameters:

liscsize

Pointer variable into which the call stores the address of the list of nodes. The
call allocates the memory for this list; when you are finished using the
information, you should release this memory by calling freeO.

Variable into which the call stores the number of entries in node_list.

The node numbers returned by these calls are node numbers from the root partition. Both calls return
o for success, or -1 if any error occurs.

4-53

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

4-54

For example, the following Fortran program fragment prints the node numbers of all empty slots in
the root partition:

include 'fnx.h'

integer*4 empty (1)
pointer (ptr, empty)
integer nempty
integer i, status

status = nx_empty_nodes(ptr, nempty)

if(status .ne. 0) then
call nx--perror("nx_empty_nodes() ")
stop

end if

do 2, i = 1, nempty
print *, empty (i)

2 continue

call free (ptr)

The following C program fragment prints the node numbers of all nodes in the root partition that
failed to boot:

#include <nx.h>

nx_nodes_t failed;
unsigned long nfailed;
int i, status;

status nx_failed_nodes(&failed, &nfailed);

if(status != 0)
nx--perror ("nx_failed_nodes () ") ;
exit(l) i

forti = 0; i < nfailed; i++) {
printf("%d\n", failed[i]);

}

free (failed) ;

Note the use of the & operator on the variables failed and nfailed in the call to nx_failed_nodesO.

Paragon ™ System User's Guide

Handling Errors

Synopsis

nx_perror(string)

Managing Applications and Partitions with System Calls

Description

Special version of call that returns error value to
caller (C only).

Print an error message corresponding to the
current value of erma.

When an error occurs in a standard OSFIl system call, the call indicates the error in one of two ways,
depending on the error. For most errors, the call returns -1 and sets the variable errno to a value that
describes the error. For certain severe errors (such as a segmentation violation caused by an invalid
pointer parameter), the call sends a signal to the calling process; this signal may result in a core
dump, as discussed under "Core Dumps" on page 4-56.

When an error occurs in a system call whose name begins with nx_, it uses the same two techniques
as a standard aSF/1 system call. However, when an error occurs in a system call that is not a
standard OSFIl system call and whose name does not begin with nx_, the error is handled
differently: the system prints a message on the terminal and terminates the calling process. (There
are exceptions; see the manual page for each call in the Paragon ™ System C Calls Reference Manual
or Paragon™ System Fortran Calls Reference Manual for details.) If you program in C, you can get
the same behavior as the nx_ calls by calling the underscore version of the call. (Fortran does not
have underscore versions.)

Underscore Calls

The underscore version of a system call is the same as the standard version except that it has an
underscore added to the beginning of its name. For example, _crecvO is the underscore version of
crecvO. The underscore version returns -1 if the call encounters an error and 0 or a positive value if
the call is successful.

If an error occurs, the underscore version also sets the system variable ermo to indicate the cause of
the error. The include file errno.h declares ermo for you and defines constants for the possible erma
values. For example, if crecvO receives a message that is larger than the size specified by its len
parameter, an error message appears and the application terminates. If you use _crecvO instead, this
does not occur; instead, the call to _crecvO returns -1 and the variable ermo is set to the value
EQMSGLONG.

There is a standard error message for each value of errno, which you can print out by calling
nx_perrorO. nx_perrorO prints its argument (any string), the current node number and process
type, and the error message associated with the current value of ermo to the standard error output in
the following format:

4-55

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

(node n, ptype p) string: error_message

Suppose you have a program where the user can specify the size of a certain buffer with a
command-line argument. If a message is received that is too long for this buffer, you would like to
be able to tell the user what happened and suggest that they increase the buffer size. The following
example uses the underscore version of crecvO to do this:

#include <nx.h>
#include <errno.h>

char *transbufi
int transbuf_sizei

if(_crecv(l, transbuf, transbuf_size) == -1) {
if(errno == EQMSGLONG) {

/* received message too long for buffer */
printf ("Message exceeded transit buffer size! \n") i

printf ("Use -t to specify a larger transit buffer. \n") i

exit(l)i
} else {

/* some other error, print a standard error
message and exit*/

nx-perror ("crecv") i

exit (1) i

Core Dumps

4-56

When an application that is executing encounters an unrecoverable error (fault), it usually results in
a core dump. The application is immediately terminated and its memory contents is dumped
(written) to a file named core. When a parallel application terminates with unrecoverable error
(fault), a core directory is created instead. In either case, the contents of core dump can be examined
for information on where the problem occurred in the code and give clues about what caused the
unrecoverable error (fault).

See core(l) for information about how to control the creation, location, and contents of a core file
or directory. See signaI(4) for a information about the errors that result in a core dump,

See the Paragon™ System Interactive Parallel Debugger Reference Manual for information about
how to examine and debug applications using core dumps with !PD.

Paragon ™ System User's Guide Managing Applications and Partitions with System Calls

% coreinfo

Getting Information About Core Files

Command Synopsis

coreinfo [corename]

Description

Displays summary information about a core file
or the core files located in a core-file directory.

The coreinfo command displays summary information about the contents of a core file or directory.
If you use no arguments, coreinfo looks for a file or directory named core in the current working
directory.

If you set the environment variable CORE_PATH, the command looks at the CORE_PATH
pathname for core file or directory. If the core file or directory has been renamed or is, specify the
pathname when invoking coreinfo. See the core(l) for more information on CORE_PATH.

The coreinfo commands displays the following information for an application which faulted:

• The time each process terminated ordered chronologically in the DatefTime column.

• The process ID (PID) of the faulting process,

• The node number on which the process ran.

• The process type of the process.

• The signal that terminated the process.

• The memory location where the fault occurred.

• The type of core file. This can be FULL or TRACE.

• The name of the executable.

The following example shows a coreinfo display of the contents of a core directory:

Summary information for directory: /home/joe/core
Number of nodes: 3

Date/Time pid Node Ptype Signal Location Type Executable

--------- ------ -------- ----------
Mar 02 19:15 1049578 0 0 SIGSEGV OxOO01089c FULL /home/joe/myapp
Mar 02 19:15 1311615 1 0 SIGSEGV OxOOO1089c FULL /home/joe/myapp
Mar 02 19:15 144560 2 0 SIGKILL Ox6004812c TRACE /home/joe/myapp

4-57

Managing Applications and Partitions with System Calls Paragon TM System User's Guide

4-58

The core directory is /home/jbelcore. The application that faulted and caused the core dump was
executing on 3 nodes. The processes running on nodes 0 and 1 encountered a segmentation fault
(SIGSEGV) which means the application attempted to access an illegal address. The instruction
where the fault occurred was located at OxOOOl089c. A FULL core dump was written. This means
that both data and stack information were saved in the core files for these processes. The process
running on node 2 was killed by the system (SIGKlLL) as a consequence of the fault that occurred
on the other processes. The process was executing the instruction at Ox6004812c when the kill signal
arrived. The TRACE type indicates that only stack information was saved in the core file for this
non-faulting process.

If a core file is for a non-parallel application, the node and process type (Ptype field) information
would be omitted and there would be one process in the summary table only.

To translate the address given in the Location field to a routine name either let IPD do it for you or
get a sorted list of the starting address for each function in the executable as follows:

% nm -bexp ~app I sort > ~app.nmlist

You can search this list to find which routine the address falls within.

See coreinfo(l) for more information about this command.

Using IPD to Examine Core

The Paragon system interactive parallel debugger (IPD) provides the following features to examine
core dump information:

• The coreload command for loading core files.

• Symbolic information about where the fault occurred in the program.

• Stack (or frame) traceback which lists the calling sequence in the program before the fault
occurred.

• Register values can be displayed.

• If the application was compiled for debug, line number and variable data can be displayed. The
contents of variables can only be displayed if the type of a core file is FULL.

See the Paragon TM System Application Tools User's Guide and the Paragon TM System Interactive
Parallel Debugger Reference Manual for complete information about using IPD to examine core
files.

Paragon TM System User's Guide Managing Applications and Partitions with System Calls

Overriding the Defaults for Core Dumps

By default, a core file is written for the first process that faults in a parallel application. You can
change this by setting the following environment variables:

See core(4) for more information about how to use these environment variables to generate core
files.

When certain severe errors occur in a system call, the operating system sends a signal to the calling
process. The default action for certain signals is to cause a core dump. You can prevent the default
action by establishing a signal handler for the desired signal. See signal(4) in the OSFll
Programmer's Reference for information about signals and signal handlers.

4-59

Managing Applications and Partitions with System Calls Paragon 1M System User's Guide

Controlling Floating-Point Behavior

Synopsis

isnan(dsrc)

isnand(dsrc)

isnanf(fsrc)

fpgetroundO

fpsetround(rnd_dir)

fpgetmaskO

fpsetmask(nnask)

fpgetstickyO

fpsetsticky(sticky)

Description

Determine if a double value is Not-a-Number
(C only).

Determine if a double value is Not-a-Number
(C only).

Determine if a Ooat value is Not-a-Number
(C only).

Get the floating-point rounding mode for the
calling process (C only).

Set the floating-point rounding mode for the
calling process (C only).

Get the floating-point exception mask for the
calling process (C only).

Set the floating-point exception mask for the
calling process.

Get the floating-point exception sticky flags for
the calling process (C only).

Set the floating-point exception sticky flags for
the calling process (C only).

The operating system supports a series of floating-point control calls compatible with those of UNIX
System v.

NOTE

Only fpsetmaskO is available to Fortran programs. The other
floating-point control calls are available only to C programs.

Detecting Not-a-Number

4-60

The calls isnanO. isnandO. and isnanfO are used to determine whether a floating-point value is an
IEEE NaN. or "Not-a-Number." This value can be generated as a result of certain floating-point
mathematical operations and system calls, when the operands are invalid or out of range. isnanO and

Paragon TM System User's Guide Managing Applications and Partitions with System Calls

isnandO take an argument of type double, and isnanfO takes an argument of type float. (isnanO
and isnandO are identical except for the name.) All three calls return 1 if the argument is a NaN, and
o otherwise.

NOTE

These calls never generate an exception, even if the argument is
a NaN.

Controlling Floating-Point Behavior

The calls fpgetroundO, fpsetroundO, fpgetmaskO, fpsetmaskO, fpgetstickyO; and fpsetstickyO
get and set the i860 microprocessor's floating-point control registers. The values of these registers
are part of the process, and are saved and restored when the process is swapped in and out.

The get calls simply return the current value of the specified register for the calling process; the set
calls set the register to the specified value for the calling process and return its previous value.

Rounding Mode

fpgetroundO and fpsetroundO get and set the i860 microprocessor' sfloating-point rounding mode,
which determines what happens when a floating-point value generated in a calculation cannot be
represented exactly.

The i860 microprocessor has four rounding modes:

Round to nearest representable number (if two representable numbers are
equidistant, round to the even one).

Round toward minus infinity.

Round toward plus infinity.

Round toward zero (truncate).

These symbolic names are the values of the enum type fp_rnd, which is declared in <ieeefp.h>.
The argument of fpsetroundO and the return values of fpsetroundO and fpgetroundO are of this
type.

4-61

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

4-62

NOTE

When you convert a floating-point value to an integer type in C, it
always truncates. The processor's rounding mode is ignored.

Exception Mask and Sticky Flags

fpgetstickyO and fpsetstickyO get and set the i860 microprocessor'sjloating-point exception sticky
jlags, and fpgetmaskO and fpsetmaskO get and set thejloating-point exception mask.

The i860 microprocessor defines five floating-point exceptions:

Invalid operation exception.

Divide-by-zero exception.

Overflow exception.

Underflow exception.

Imprecise (loss of precision) exception.

These symbolic names are the values of the enum type fp_except, which is deciared in <ieeefp.h>.
The arguments of fpsetstickyO and fpsetmaskO and the return values of fpgetstickyO,
fpsetstickyO, fpgetmaskO, and fpsetmaskO are of this type.

The i860 microprocessor has five exception sticky jlags and five exception mask bits corresponding
to the five exception types. When a floating-point exception occurs, the corresponding exception
sticky flag is set to 1. The corresponding exception mask bit is then examined; if it is set to 1, the
exception is trapped and the appropriate trap handler is called.

NOTE

After an exception, you must clear the corresponding sticky flag to
recover from the trap and proceed.

If the sticky flag is not cleared before the next floating-point exception occurs, an incorrect exception
type may be signaled. For the same reason, when you call fpsetmaskO, you must be sure that the
sticky flag corresponding to each exception being enabled is cleared.

Paragon TM System User's Guide Managing Applications and Partitions with System Calls

NOTE

fpsetstickyO and fpsetmask() set the sticky flags and exception
mask to the specified values. Any bits not set in the call's
argument are cleared.

To set or clear a particular mask or sticky flag, get the current mask or sticky flags, modify it, and
then call fpsetstickyO or fpsetmaskO with the modified mask or sticky flags.

Fortran Exception Mask Values

Only the fpsetmaskO call is supported in Fortran. You use the following numeric values with
fpsetmaskO:

o No exceptions.

1 Invalid operation exception.

2 Divide-by-zero exception.

4 Overflow exception.

8 Underflow exception.

16 Imprecise (loss of precision) exception.

The argument and return value of fpsetmaskO are integers whose values are the sum of some, none,
of all of these values.

4-63

Managing Applications and Partitions with System Calls Paragon ™ System User's Guide

Miscellaneous Calls

Synopsis

flickO

dclockO

Description

Temporarily relinquish the CPU to another
process.

Return time in seconds since booting the system.

Temporarily Releasing Control of the Processor

The tlickO call temporarily releases control of the node processor to another process in the same
application. If there are no other processes in the same application when a process calls flickO,
control returns to the operating system. For example, if your node program has set up a number of
hrecvO's and has nothing else to do, it should issue flickO. The operating system can then more
efficiently respond to an incoming message and wake up your process.

flickO does not have any effect on rollin and rollout of the application (see "Gang Scheduling" on
page 2-42 for information on rollin and rollout).

Timing Execution

4-64

dclockO returns the time in seconds since the system was last booted, as a double precision number.
This time is obtained from the RPM global clock and is the same on every node.

Use dclockO to return a relative value that you can use to measure execution time. To time an
interval in your program, ftrst obtain an initial value. Then obtain a fmal value and take the
difference. The actual values returned by the two dclockO calls are not important.

Here is an example that shows how to use dclockO to time the execution of an iteration loop:

/* eversion */
double start_time, end_time, diff_time;
start_time = dclock();
for(i=O;i<imax;i++) {

•
}

end_time dclock();
diff_time = end_time - start_time;
printf ("Timing = %e\n", diff_time);

Paragon TM System User's Guide Managing Applications and Partitions with System Calls

c Fortran version
double precision start_time, end_time, diff_time
start_time = dclock()
do 100 i=l, imax

100 continue
end_time = dclock()
diff_time = end_time - start_time
write(*, 10) diff_time

10 format('diff_time =' D1S.9)

4-65

iPSC@ and Touchstone DELTA Compatibility Calls

Synopsis

flushmsg(typesel, nodesel, ptypesel)

ginV(J)

gray(i)

. hwclock(hwtime)

infopidO

kiIIcube(node, ptype)

kiIIproc(node, ptype)

led(state)

load (filename , node, ptype)

mclockO

msgcancel(mid)

mypart(rows, cols)

mypidO

nodedimO

restricivol(fiieID, nvoi, voUist)

flickO

dclockO

Description

Flush specified messages from the system.

Return the position of an element in the
binary-reflected gray code sequence. Inverse of
grayO.

Return the binary-reflected gray code for an
integer .

Place the current value of the hardware counter
into a 64-bit unsigned integer variable.

Return the process type of the process that sent a
. pending or received message.

Terminate and clear node process(es).

Terminate a node process.

Does nothing; provided for compatibility only.

Load a node process.

Return the time in milliseconds.

Cancel an asynchronous send or receive
operation.

Obtain the height and width of the rectangle of
nodes allocated to the current application.

Return the process type of the calling process.

Return the dimension of the current application
(the number of nodes allocated to the application
. 2dimension)
IS •

Does nothing; provided for compatibility only.

Temporarily relinquish the CPU to another
process.

Return time in seconds since booting the system.

Paragon TM System User's Guide Managing Applications and Partitions with System Calls

The iPSe and Touchstone DELTA compatible calls are provided for compatibility with the iPSe
series of supercomputers and Touchstone DELTA system from Intel Corporation. These calls should
not be used in new operating system applications. They either provide the same functionality as
other system calls (for example, mypidO is identical to myptypeO but uses the iPSe system
terminology), or provide functionality that is not needed in the operating system (for example,
grayO is not useful in a machine without a hypercube architecture).

These calls work the same as the corresponding calls on the iPSe or Touchstone DELTA system,
with the following exceptions:

• flushmsgO does nothing.

• The only valid use ofkillcubeO is killcube(-l,-l).

• The only valid use of killprocO is killproc(-l,-l).

• ledO does nothing.

• loadO must be preceded by DX_initve ••• O (it is equivalent to nx_loadO but does not let you
specify a list of nodes or find out the PIDs of the loaded processes).

• msgcancelO does nothing.

• If numnodesO is not a power of 2, nodedimO rounds it up to the next power of 2 and returns
the dimension of a cube of that size. For example, if numnodesO is 7, nodedimO returns 3; if
numnodesO is 9, nodedimO returns 4.

• restrictvolO does nothing. It always returns 0 (indicating success).

See your iPSe or Touchstone DELTA system documentation for more information on these calls.

4-67

Managing Applications and Partitions with System Calls Paragon ™ System User's Guide

4-68

Using Parallel File 1/0

Introduction

&

The operating system provides two forms of parallel 110 to files:

• A special file system type called PFS, for Parallel File System, gives applications high-speed
access to a large amount of disk storage. PFS file systems are optimized for simultaneous access
by multiple nodes. Files in PFS file systems can be very large (up to several terabytes); the exact
maximum depends on your system configuration. Access to PFS file systems also uses an 110
technique calledfast path 110, which gives superior performance for large I/O operations (64K
bytes or more per read or write).

• Special I/O system calls, called parallel 110 calls, facilitate 110 from multiple nodes and permit
110 to very large files in PFS file systems. These calls can give applications better performance
and more control over parallel file 110 than is offered by the standard C and Fortran file 110
features. These calls are compatible with the Concurrent File System TM (CFS TM) calls provided
by the iPSC@ system.

A system running the operating system can have both PFS and non-PFS file systems. You can access
files in PFS file systems with both parallel I/O calls and non-parallel 110 calls; you can use parallel
110 calls to access files in both PFS file systems and non-PFS file systems. In most cases you get the
best performance when you use parallel I/O calls to access files in PFS file systems.

This chapter discusses both PFS file systems and parallel I/O calls. It also gives information on
performing operations on tape devices in the operating system. For information on getting the best
performance from PFS file systems and parallel I/O calls, see "I/O Performance" on page 8-23.

&

5·1

Using Parallel File I/O Paragon ™ System User's Guide

Disks and File Systems

5-2

Every Paragon supercomputer has one or more disk devices attached to it. These disk devices are
attached to the system as RAID subsystems. RAID stands for Redundant Array ofInexpensive Disks.
In a RAID subsystem, several hard disks are connected together into a unit that appears to the system
as a single large disk drive. Files stored to a RAID subsystem are distributed, or striped, among the
disks within it by the RAID controller hardware.

Each disk device is controlled by an YO node: a compute node with an liD connection. liD nodes
communicate with the other nodes in the system using the node-to-node message-passing network
and with the disk drives using a SCSI interface (or other interface). The liD nodes mayor may not
also run application processes; this is determined by your system administrator. Each liD node can
control RAID subsystem only, and the number of liD nodes is limited only by the number of slots
in the system, so the total amount of disk space that could be installed in a Paragon supercomputer
is a terabyte or more.

The set of disk devices connected to the Paragon supercomputer's liD nodes is divided into file
systems. A file system can encompass anything from a portion of the space on one disk device to all
of the space on several disk devices. A file system is made accessible by mounting it to a directory
(this requires system administrator privileges). This directory is called the file system's mount point.
For example, if the file systemldevlioOlrzQfis mounted on the directory !home (the directory !home
is the file system's mount point), whenever you write a file in !home it is stored in the file system
IdevlioOlrzOf.

Each file system has a type that describes its internal structure and determines some of the operations
that can be performed on it. The supported file system types are:

UPS

NFS

PFS

UNIX File System, the standard file system type for OSF/I.

Network File System, a file system type that represents a file system on
another computer on the network.

Parallel File System, a file system type that is optimized for access by parallel
processes. This file system type is unique to the operating system.

This chapter discusses how PFS file systems work and how you can use the parallel liD system calls
provided by the operating system to access files in file systems of all types.

Paragon 1M System User's Guide Using Parallel File 1/0

PFS File Systems and PFS Files

Internally, a file system of type PFS consists of one or more stripe directories. The stripe directories
that make up a PFS file system are determined by the system administrator when the PFS file system
is mounted.

Each stripe directory is usually the mount point of a separate UFS file system. Just as a RAID
subsystem collects together several hard disks into a unit that behaves like a single large disk, a PFS
file system collects together several file systems into a unit that behaves like a single large file
system. A system running the operating system can have any number of PFS file systems.

The maximum storage capacity of a PFS file system is the sum of the capacities of the different file
systems containing its stripe directories. For example, if a PFS file system consists of four stripe
directories, each of which is the mount point of a UFS file system with a capacity of 100M bytes,
the capacity of the PFS file system is 400M bytes. However, if another PFS file system also consists
of four stripe directories, but two of them are directories in one UFS file system with a capacity of
100M bytes and the other two are directories in another UFS file system with a capacity of 100M
bytes, the capacity of the PFS file system is only 200M bytes.

A PFS file is any ordinary file that is stored in a file system of type PFS. PFS files are distributed,
or striped, across the stripe directories that make up the PFS file system. The amount of data from a
PFS file that is stored in each stripe directory is determined by the PFS file system's stripe unit, a
quantity that is set by the system administrator when the PFS file system is mounted. The maximum
size of a file in a PFS file system is roughly 2G bytes times the number of file systems in the PFS
file system. The exact maximum size is given by the formula ««2G - 1) - r) X n) + r), where r is
(2G -1) mod stripe_unit (that is, the remainder when the largest integer multiple of the stripe unit
that is less than 2G - 1 is subtracted from 2G - 1) and n is the number of different file systems
containing the PFS file system's stripe directories

For example, suppose a PFS file system consists of three stripe directories and has a stripe unit of
64K bytes. When you write a 256K-byte file to this PFS file system, the first 64K bytes of the file
are stored in the first stripe directory, the second 64K bytes in the second stripe directory, the third
64K bytes in the third stripe directory, and the last 64K bytes back in the first stripe directory.

Objects in PFS file systems that are not ordinary files (such as directories, symbolic links, and device
special files) are not striped. These objects exist on the disk partition on which the PFS file system
is mounted.

5-3

Using Parallel File 1/0 Paragon ™ System User's Guide

PFS Filenames and Path names

Filenames and pathnames in PFS file systems work the same as pathnames in UPS file systems. The
maximum length of a pathname is 1024 characters; the maximum length of a single filename is 255
characters.

PFS Limitations

5-4

In the current release, PFS file systems and parallel I/O calls have the following limitations:

PFS files cannot be accessed from a remote system via NFS.

PFS does not support executable files. If you copy a binary file to a PFS file system and try to
execute it, an "Operation not supported by this file system" error occurs.

• PFS does not support core files. If a core dump occurs while your current directory is in a PFS
file system, a core file of length 0 is created.

PFS does not support the quotaon or sysacct commands or the mmapO system call.

• PFS file regions cannot be locked by the fcntlO system call. However, you can use the flockO
system call to lock the entire file.

• The maximum number of open files per process at any given time is 64. This includes the
standard input, standard output, and standard error. This means that there is a practical
maximum of 61 open files per process.

Paragon TM System User's Guide Using Parallel File 1/0

Using PFS Commands
In general, you use standard OSF/l commands such as Is, cat, cp, and mv to manipulate files in PFS
file systems. See the OSFll Command Reference for information on these commands. (Many
commands do not work with files larger than 2G - 1 bytes, as described under "Using Extended
Files" on page 5-36.) This section describes the additional file and file system commands provided
by the operating system.

Displaying File System Attributes

Command Synopsis Description

showfs [-k] [-t type] [filesystem I directory] Display file system attributes.

The command showfs with no arguments lists the file systems on your system, together with
information on each. For example:

% showfs
Mounted on 512-blks avail capacity sunit sfactor
/ 1458308 719276 45%
/home 4060838 3373782 8%
/usr 2379194 1948124 9%
/home/.sdirs/volO 598622 574464 4%
/home/.sdirs/vol1 598622 574464 4%
/home/.sdirs/vo12 598622 574464 4%
/home/.sdirs/vo13 598622 574464 4%
/pfs 2394488 2297856 4% 8192 4

sdirs: /home/.sdirs/vo10
/home/.sdirs/vol1
/home/.sdirs/vo12
/home/.sdirs/vo13

In this case, the system has eight file systems. The seven file systems mounted on the directories
I (root), Ihome, Iusr, lhomel.sdirsivolO, Ihomel.sdirslvoll, lhomel.sdirslvol2, and lhomel.sdirslvol3
are non-parallel file systems (type UFS or NFS); the file system mounted on the directory Ipfs is a
PFS file system.

NOTE

There's nothing special about the name /pfs, your PFS file
systems can have any name. However, the rest of this chapter
uses the convention that path names beginning with /pfs are in a
PFS file system.

5-5

Using Parallel File I/O Paragon ™ System User's Guide

5-6

The showfs command shows the following information for every file system:

Mounted on The directory where the file system is mounted (its mount point). If you need
to know the file system's device name, use the standard OSF/l command
mount or df.

512-blks The total capacity of the file system in 512-byte disk blocks.

avail The number of disk blocks currently available.

capacity The approximate percentage of the file system's capacity currently in use.

In this example, the file system mounted on Iusr has a size of 2,379,194 512-byte disk blocks, of
which 1,948,124 blocks are currently unused, so that the file system is approximately 9% full.

The showfs command shows the following additional information for each PFS file system:

sunit

sfactor

sdirs

The file system's stripe unit, in bytes.

The number of stripe directories within the PFS file system.

The stripe directories (usually mount points ofUFS file systems) within the
PFS file system.

You can display the attributes of PFS files using the Is -IP command. See "Displaying File
Attributes" on page 5-7 for more information.

In this example, the PFS file system mounted on Ipfs has a stripe unit of 8K bytes and consists of the
four UFS file systems mounted on lhomel.sdirslvolO, lhomel.sdirsivolI , lhomel.sdirslvol2, and
lhomel.sdirslvol3.

The showfs command accepts the following optional arguments:

-k

-t type

jilesystem

directory

Display capacity and available capacity in 1024-byte disk blocks instead of
512-byte disk blocks. The header "512-blks" changes to "kbytes".

Display information about all file systems of type type, where type is any
recognized file system type in lowercase (pfs, ufs, or nfs).

Display information about the file system whose device name is jilesystem.

Display information about the file system mounted on directory.

The filesystem or directory argument overrides -t type if used together.

Paragon™ System User's Guide Using Parallel File 1/0

NOTE

You should use showfs, not df, to get information about the
cumulative amount of free space in a PFS file system. Using the
standard df command on a PFS file system only gives information
about the single disk partition on which the PFS file system is
mounted, so does not indicate how much space is actually
available for file striping.

Displaying File Attributes

Command Synopsis Description

Is [-I] [-P] [filesystem I directory] lists and generates PFS information about files.

The Is command has the -I and -P switches that display the stripe attributes of PFS files.
The Is -I command displays the mode, number of links, owner, group, size, time oflast modification
for each file, and pathname. If the file is a special file, the size field contains the device's node
number and the major and minor device numbers. For example, the following displays file
information about a device special file:

% 18 -1 /dev/ioO/rzOa

brw-r--r-- 1 root system 3: 3, 0 Jun 05 09:08 /dev/ioO/rzOa

The device special file /devlioOlrzOa has a node number of 3 and a major/minor number of (3,0).

The Is -P command displays stripe attributes for PFS files as follows:

sunit

sfactor

sdirs

Stripe unit. The size, in bytes, of the stripe unit that is used to stripe the PFS file
across the stripe directories.

Stripe factor. The number of stripe directories. The stripe factor multiplied by the
stripe unit equals the size of one PFS file stripe.

Stripe directories. An ordered list of stripe directories in UFS or NFS file systems
(typically UFS mount points) that are the storage locations for the PFS file.

You can get the stripe attributes of an individual PFS file with the fcotlO system call. See the fcotl(2)
manual page for more information.

5-7

Using Parallel File 110 Paragon ™ System User's Guide

The following example displays file information about a PFS file:

% cd /pfs
% 1s -P test

sunit 65536 sfactor 8 sdirs /home/.sdirs/vo16
/home/.sdirs/vo17
/home/.sdirs/volO
/home/.sdirs/voll
/home/.sdirs/vo12
/home/.sdirs/vo13
/home/.sdirs/vo14
/home/.sdirs/vo15

test

This example shows that the PFS file test has a stripe unit of 65536, a stripe factor of 8, and lists the
eight stripe directories in the file's stripe group. The Is command lists the stripe directories in the
order that the file data was written.

Increasing the Size of a File

5-8

Command Synopsis Description

Isize [-a] size file [file ...] Change the size of a file or files.

The Isize command changes the amount of disk space allocated to each specified file. You can use
this command to allocate all the space you will need for a large file before you run the application
that writes to the file. This makes sure that there is enough room in the file system for the file, and
can also increase file I/O performance.

The Isize command has two forms:

Isize size file [file ...] Sets the size of each file to size bytes.

Isize -a size file [file ...] Increases the size of each file by size bytes.

If the specified file does not exist, it is created with the specified size. The size can be a simple integer
to represent a number of bytes, or an integer followed by the letter k, m, or g to represent a number
of kilobytes (1024 bytes), megabytes (1024K bytes), or gigabytes (1024M bytes).

For example, the following command sets the size of the file mydat to 5M bytes:

% lsize Sm ~at

Paragon ™ System User's Guide Using Parallel File I/O

The following command increases the size of the file mydat by 200K bytes:

% lsize -a 200k mydat

The additional space is allocated to the file from the file system, but it is not initialized (its contents
are undefined).

lsize will not decrease the size of a file. If the specified size is smaller than the file's current size, the
command has no effect.

Using Parallel 1/0 Calls
The rest of this chapter discusses the parallel I/O calls you can use in parallel applications to access
both PFS and non-PFS files.

The term parallel I/O calls refers to all I/O calls that are provided by the operating system but not
by standard OSF/I. These calls facilitate I/O on multiple nodes and permit I/O to very large files in
PFS file systems. They are part of the library libnx.a, which is automatically searched when you link
an application with the -nx switch. You can also use the switch -lnx to search libnx.a without using
-nx. See "Compiling and Linking Applications" on page 2-5 for more information on these switches.

Most of the parallel I/O calls can only be used in programs running in the compute partition. They
will not work, or will give unexpected results, if used in a program running in the service partition.
See "Managing Partitions" on page 2-30 for more information on the service and compute partitions.

NOTE

The parameter filelD in the system call synopses in this chapter is
an integer that represents an open file: a unit in Fortran, or a file
descriptor in C.

A call description at the beginning of each section or subsection gives a language-independent
synopsis (call name, parameter names, and brief description) of each call discussed in that section.
Differences between C and Fortran are noted where applicable. See Appendix A for information on
call and parameter types; see the Paragon™ System C Calls Reference Manual or the Paragon™
System Fortran Calls Reference Manual for complete information on each call.

5-9

Using Parallel File I/O Paragon ™ System User's Guide

Open i ng Fi les in Parallel

Synopsis Description

gopen(path, oflag, iomode [,perms])
gopen(unit, path, iomode)

(C)
(Fortran)

Open a file on all nodes and set its 110
mode.

To open a file for use by all the nodes in your application, call gopenO. You can use gopenO to open
files in both PFS and non-PFS file systems. gopenO works like the standard openO operation, with
the following exceptions:

• It is a global call. All the nodes in the application must call gopenO, and all must call it with
the same arguments.

•

•

It is a synchronizing call. Each node blocks at the gopenO until all the nodes have called it.

It sets the YO mode of the file, as described under "Using J.j0 Modes" on page 5-14 .

When called on a large number of nodes, it offers better performance and causes less system
overhead.

Note that gopenO must be called by all the nodes in the application, even those that do not actually
perform any 110. For example, suppose that your application has a "manager" node that assigns 110
work to the "worker" nodes, but does no 110 itself. If you want to use gopenO, all the nodes, even
the manager, must open the file.

Using gopen() in C

5-10

The C version of gopenO opens the specified file and returns a file descriptor, like the standard
OSFIl system call openO. In addition to being a global synchronizing call and setting the 110 mode
of the file, as discussed earlier, the C version of gopenO has the following differences from the
standard openO:

• It can only be used to open an ordinary file (not a directory or a device special file).

• If an error occurs, it prints an error message and terminates the calling process.

gcpen() is ot..l}er.,vise equivalent to cpen(). For example, the follo\ving C cal! opens the file
/pjs/mydat for reading and writing, creating it if it does not exist, and returns a file descriptor that
you can use to access it. The file's 110 mode is set to M_ GLOBAL, and if the file is created it is
given permissions 644 octal (rw-r--r--).

Paragon 1M System User's Guide Using Parallel File I/O

#include <fcntl.h>
#include <nx.h>
int fd;
fd = gopen("/pfs/mydat", O_RDWR I O_CREAT, M_GLOBAL, 0644);

The symbolic names for oflag (such as O_CREAT) are defined in the header filefcntl.h, and the
symbolic names for iomode (such as M_GLOBAL) are defined in the header file nx.h.

See openO in the OSFll Programmer's Reference for information on the oflag parameter; see
"Using 110 Modes" on page 5-14 for information on the iomode parameter; see chmodO in the
OSFll Programmer's Reference for information on the perms parameter.

Using gopen() in Fortran

The Fortran version of gopenO opens the specified file for unformatted 110 on a specified unit. It is
equivalent to the following Fortran openO statement:

OPEN(unit, path, status='unknown', form='unformatted',
x access='sequential')

However, it differs from the standard Fortran openO in that it is a subroutine. Also, as discussed
earlier, it is a global synchronizing call and sets the 110 mode of the file.

For example, the following Fortran call opens the file Ipfslmydat on unit lOin 110 mode
M_GLOBAL:

include' fnx.h'
call gopen(lO, "/pfs/mydat", M_GLOBAL)

The symbolic names for iomode (such as M_GLOBAL) are defined in the header filefiu.h.

Opening Files with Standard Operations

PFS and non-PFS files can also be opened and closed with the standard OSF!1 system calls and
Fortran routines. For example, to open the file Ipfslmydat for read and write access:

/* C version */
fd = open (" /pfs/mydat", O_CREAT I O_RDWR, 0644);

c Fortran version
open (unit=lO, file = '/pfs/mydat',

x status = 'new', form='unformatted')

5-11

Using Parallel File 1/0 Paragon™ System User's Guide

5-12

Use this method when not all nodes open the same file at the same time, or when source
compatibility with other systems is necessary. (Note that, if you want to use any synchronizing calls,
all nodes must open the file.)

NOTE

In Fortran, you must open the file with form='unformatted' to use
any parallel 1/0 calls on the file.

The following section discusses additional special considerations for Fortran.

Special Considerations for Fortran

This section describes the special considerations that apply when you open files with the standard
Fortran openO instead of gopenO.

Formatted Versus Unformatted I/O

If you call openO with form='formatted' (the default):

• You must use only Fortran 110 statements to access the file. You cannot use any of the parallel
110 calls described in this chapter on the file.

• Only one node may perform 110 to the file. If you perform formatted 110 to the same file from
multiple nodes, the results are undefined.

If you open a file with form='unformatted', you can use either Fortran 110 statements or parallel
110 calls to access the file. However, you must pick either one or the other: mixing Fortran 110 and
parallel 110 to the same file can give unexpected results.

For the best 110 performance, you should use gopenO, or openO with form='unformatted', and use
parallel 110 calls for all file 110.

If compatibility with other programs that use formatted 110 is required, you can perform formatted
110 to an internal file or a string and then use cwriteO to write the data to a file. However, if you use
a string you must add a newline (ASCII character 10) to the end of the string using the function
char(), since neither formatted I/O to a string nor cwrite() will add these for you. For example:

include 'fnx.h'
character*20 msgbuffer

write (msgbuffer, 26) answer, char(lO)
26 format('The answer is: " i4, al)

call cwrite(lO, msgbuffer, 20)

Paragon TM System User's Guide Using Parallel File 1/0

Alternatively, you can write a small program that translates your data files from unformatted to
formatted and vice versa, and run it only when you need to share data with other programs.

New Files

If you call openO with status='new', the result depends on whether or not the program is running
on multiple nodes:

• If the program is running on one node (numnodesO is 1 or undefined), the openO fails if the
file exists, as specified by the ANSI standard.

• If the program is running on multiple nodes (numnodesO is greater than 1), the file is truncated
if it exists, as though you had specified status='unknown'.

This change makes it possible to specify status='new' when multiple nodes are opening a file that
does not yet exist; with the standard Fortran semantics for status='new', the first node to execute
the openO statement would create the file, and the other nodes would fail because the file already
exists. You can use the system call statO to determine if a file exists before yo1,1 open it.

Unnamed Files

If you call openO with no filename, the result depends on whether or not you specified
status='scratch ':

• If you did not specify status=' scratch', the file is created in the current working directory with
the filenamejort.nnn, where nnn is the unit number. The file remains after the program
terminates.

• If you specified status='scratch', the file is created in the directory /usr/tmp with the filename
FTNxxxxxxxx.nn, where xxxxxxxx is the OSFIl process ID of the creating process and nn is the
unit number. The file does not remain after the program terminates, whether it terminated
normally or abnormally.

For compatibility with the iPSe system, if you specified status='scratch' and the directory specified
by the variable CFS_MOUNT exists (or, if CFS_MOUNT is not defined, if the directory lejs exists),
the file FTNxxxxxxxx.nn is created in $CFS_MOUNT (or lefs) instead of /usr/tmp.

5-13

Using Parallel File 1/0 Paragon ™ System User's Guide

Using 1/0 Modes

5-14

Synopsis Description

setiomode(fileID, iomode) Set the 110 mode for a file.

iomode(fileJD) Return the current 110 mode for a file.

A parallel application accesses a file with an 110 mode. You can specify a file's 110 mode when you
open it with gopenO, and you can use setiomodeO to change the 110 mode of a file that is already
open. You can use iomodeO to determine an open file's current mode.

Like gopenO, setiomodeO is a global synchronizing call. When a node calls setiomodeO, it blocks
until all the other nodes in the application call setiomodeO with the same arguments. setiomodeO
must be called by all the nodes in the application, even those that do not actually perform any 110
(this means that all nodes must open the file). Also, setiomodeO can only be used on an ordinary
file, not a directory or a device special file.

A file's 110 mode actually belongs to the file descriptor or unit through which the file is accessed,
not to the file itself. The 110 mode is not stored with the file, and different programs can access the
same file with different 110 modes (even at the same time).

A file's 110 mode is not inherited across a forkO (after a forkO all files in the child process have 110
mode M_UNIX).

There are six 110 modes, each of which has a name and a number:

M_UNIX (0) In this mode, each node has its own file pointer and file operations are
performed on a first-come, first-served basis. If you open a file with the C
openO call or Fortran open statement, it is opened with this mode (but you
can change it with setiomode()).

M_LOG (1) In this mode, all nodes share the same file pointer and file operations are
performed on a first-come, first-served basis.

M_SYNC (2) In this mode, all nodes share the same file pointer and file operations are
performed in order by node number. Records may be of variable length.

In this mode, each node has its own file pointer and file operations are
performed on a first-come, first-served basis. However, records are stored in
the file in order by node number. Records must be of a fixed length.

Paragon TM System User's Guide Using Parallel File 1/0

In this mode, all nodes share the same file pointer and must perform the same
file operations at the same time. All file operations are performed by a single
node, which then distributes the results to the other nodes over the internode
network.

In this mode, each node has its own file pointer; file access is unrestricted.
Atomic 110 operations are not preserved. This allows multiple readers/writers
and variable length records.

The names M_UNIX, M_LOG, M_SYNC, M_RECORD, M_GLOBAL, and M_ASYNC are
constants defined in the header files nx.h (for C) andftzx.h (for Fortran). You can use either these
names or the corresponding numbers in your programs (using the names is recommended).

The 110 mode you choose for a file determines which, if any, parallel 110 calls become
synchronizing operations (that is, each node blocks until all nodes have made the call). The
synchronizing operations for each mode are described in the following sections and are summarized
under "Synchronization Summary" on page 5-54.

Default 1/0 Mode

When you open a file with the standard openO call or statement, the file is opened with a default 110
mode. For non-PFS files, M_UNIX is always the default 110 mode. For PFS files, M_UNIX is the
default 110 mode unless the bootmagic string PFS_ASYNC_DFLTis set to 1. If PFS_ASYNC_DFLT
is set to 1, M_ASYNC is the default 110 mode. The value of PFS_ASYNC_DFLTis set by your
system administrator when the system is booted. To open a file with an 110 mode other than the
default, you can use gopenO or you can use openO followed by setiomodeO.

You can find the value of the bootmagic string PFS_ASYNC_DFLTwith the getmagic command,
as follows:

If this command returns 0 (zero) or no value, M_ UNIX is the default 110 mode. If this command
returns 1, M_ASYNC is the default 110 mode. See the getmagic manual page in the Paragon™
System Commands Reference Manual for more information about displaying values of bootmagic
strings.

5-15

Using Parallel File 1/0 Paragon™ System User's Guide

5-16

In mode M_UNIX (mode number 0), each node maintains its own file pointer. File access requests
are honored on a first -come, first -served basis. If two nodes write to the same place in the file, the
second node overwrites the data written by the first node.

Use this mode in applications where each node performs I/O on disjoint segments of the file, or
where I/O accesses are synchronized by other means (such as message-passing inherent to the
application).

In mode M_LOG (mode number 1), all nodes share a single file pointer. File accesses are performed
on a first-come, first-served basis. Whenever any node reads, writes, or moves the pointer, it affects
the pointer position for all nodes. This may change the results of subsequent reads, writes, or moves
by other nodes. This mode is useful for parallel log files.

Closing a file in this mode is a synchronizing operation. When a node closes a file, the operation
blocks until all the other nodes also close the file.

In mode M_SYNC (mode number 2), all nodes share a single file pointer and the nodes access the
file in a synchronized round-robin fashion. This mode has the following characteristics:

• All nodes share a single file pointer, as for M_LOG.

• All the nodes in the application must open the file, and all must perform the same operations on
the file in the same order. Reads and writes can be of variable sizes.

• All file operations are synchronizing. Closing, reading, writing, seeking, and detecting
end-of-file (using iseof()) become synchronizing operations. These operations block until all
nodes have called them. For example, when a node reads from a file with the parallel I/O call
creadO, the node blocks and the read request is not honored until all other nodes have called
creadO.

• All reads and writes to the file are performed in order by node number. For example, suppose
node 3 in an application running on four nodes writes to a file with the parallel I/O call cwriteO
before any of the other nodes. The node blocks until all the other nodes have called cwriteO.
When all nodes have called cwriteO, the data from node 0 is written to the file first, followed
by the data from node 1, then the data from node 2, and finally the data from node 3.

• The only valid use for IseekO is for all nodes to seek to the same position in the file. If nodes
attempt to seek to different positions, an error occurs.

Paragon ™ System User's Guide Using Parallel File 1/0

Mode M_RECORD (mode number 3) gives results that are similar to M_SYNC, but it operates
more efficiently. However, M_RECORD requires a fixed record size. This mode has the following
characteristics:

• Each node has its own file pointer, as for M_VNIX.

• All the nodes in the application must open the file, and all must perform the same operations on
the file in the same order, as for M_SYNC.

• Corresponding reads and writes must be ofthe same size on all nodes.

When a node reads or writes to the file for the nth time, it must read or write the same number
of bytes as the nth read or write by every other node. For example, if node 0 writes 100 bytes to
the file with its first call to cwriteO and 50 bytes with its second call to cwriteO, then all nodes
must write 100 bytes with their first call to cwriteO and 50 bytes with their second call to
cwriteO.

NOTE

No verification is performed. You must make sure that all the
nodes in the application make the same calls and read and write
the same number of bytes.

If different nodes read different amounts of data, incorrect data will be read. If different nodes
write different amounts of data, the output of different nodes will overwrite each other and/or
leave areas of the file with uninitialized data.

All reads and writes appear to be performed in order by node number.

Because reads and writes are of a known length, the operating system on each node can
determine where in the file it should be reading from or writing to independently of the other
nodes. The results of reading or writing a file with M_RECORD are the same as M_SYNC,
but M_RECORD is more efficient because no synchronization is required. No seeking is
required by the application; the file system automatically reads or writes file data to or from the
proper offset in the file.

For example, suppose node 2 in an application running on four nodes writes a lO-byte record.
Node 2's file pointer is first moved forward by 20 bytes to leave room for the records from
nodes 0 and 1. Next, node 2' s record is written to the file (which advances the file pointer by 10
bytes). Finally, node 2's file pointer is moved forward by 10 bytes to leave room for node 3's
record. The other nodes can fill in their "slots" at any time (earlier or later); no synchronization
or communication between nodes is required.

5-17

Using Parallel File 1/0 Paragon™ System User's Guide

• Closing a file is a synchronizing operation, as for M_LOG and M_SYNC.

• As for M_SYNC, IseekO becomes a synchronizing call, and the only valid use for IseekO is for
all nodes to seek to the same position in the file. If nodes attempt to seek to different positions,
an error occurs.

NOTE

When M_RECORD is set on UFS files, operations on these files
are sequential not parallel operations.

For 110 operations with UFS files, M_RECORD behaves correctly and is functionally compatible
with how this mode operates with PFS files. However, for UFS files, the parallelism in
M_RECORD is disabled so all 110 operations are sequential.

M_GLOBAL

5·18

In mode M_GLOBAL (mode number 4), all nodes must read and write the same data to the same
parts of the file at the same time. This mode gives excellent performance for programs that work this
way, such as a program where every node reads in the entire contents of a large input file.

• All nodes share a single file pointer.

• All the nodes in the application must open the file, and all must perform the same operations on
the file at the same time.

• All file operations are synchronizing.

• Corresponding reads and writes must be of the same size on all nodes.

• The only valid use for IseekO is for all nodes to seek to the same position in the file.

• When the nodes write to a file, only the data written by a single node is actually written. Data
written by other nodes is ignored.

The way that this mode is implemented is that only a single node actually reads from and writes to
the disk. After a read, that node distributes the data to the other nodes over the internode network.
This eliii'.tinates the contention for tlie disk device that would otherwise occur when many nodeS
attempt to read from the same place in a file at the same time.

Paragon TM System User's Guide Using Parallel File 1/0

The mode M_ASYNC (mode number 5) is similar to the M_ UNIX mode, except it does not support
standard UNIX file sharing semantics for different processes accessing the same file.

• Each node has a unique file pointer.

• Nodes are not synchronized.

• Variable-length, unordered records.

• Multiple readers/multiple writers are allowed with no restrictions.

In this mode, your application must control parallel access to the file. This mode allows multiple
readers and/or multiple writers to access the file simultaneously with no restrictions on record size
or file offset.

This mode does not guarantee that I/O operations are atomic. For example, if multiple nodes write
to the same area of a file at the same time, parts of the file area may contain data from one write
while other parts may contain data from other writes. If a node reads from the same area of the file
at this time, the returned data may consist partially of old data and partially of new data. Only data
from one write is seen in areas of the file where multiple processes are writing simultaneously. All
nodes are notified when the file size changes.

NOTE

I/O operations in M_ASYNC mode with UFS files are sequential
operations not parallel operations.

For I/O operations with UFS files, M_ASYNC behaves correctly and is functionally compatible
with how this mode operates with PFS files. However, for UFS files, the parallelism in M_ASYNC
is disabled so all I/O operations are sequential.

5-19

Using Parallel File I/O Paragon™ System User's Guide

An 1/0 Mode Example

5·20

This section provides a small example program (in Fortran and C) that you can compile and execute
to illustrate the differences between the various 110 modes. The source for this program can be found
on the Paragon supercomputer in lusrlshare/examples/jortranliomodeS/iomodesj (Fortran version)
or lusrlshare/examples/diomodeS/iomodes.c (C version).

The example program works as follows: node 0 gets an 110 mode from the user (specified as a
number), and sends it to the other nodes. Then all nodes call gopenO to open the file mydat in the
current directory (which could be in either a PFS file system or a non-PFS file system) with the
specified 110 mode.

Each node then writes 10 records to the file. Each record contains the time in seconds since the file
was opened, to four decimal places, and the message "Hello from node x." Node 0 waits one second
before each write to the file; the other nodes write as fast as they can (this demonstrates how writes
to the file are differently synchronized in the different modes). When each node finishes writing, it
writes a "done writing" message to the screen. Then it closes the file and writes a "finished" message
to the screen (the two messages show that, in some modes, closeO is a synchronizing operation).

Fortran Example

program iomodes

include 'fnx.h'

integer nunit, mode, iam
double precision start, now, loop_time, loop_start
character*16 msg
character*29 msgbuffer

msg = 'Hello from node '
nunit = 12
iam = mynode ()

if(iam .eg. 0) then
print *, 'Enter I/O mode (0, 1, 2, 3, 4, or 5):'
read(*, 11) mode

11 format (i1)
call csend(l, mode, 4, -1, myptype())

else
call crecv(l, mode, 4)

endif

call gopen(nunit, "mydat", mode)
print 13, iam, iomode(nunit)

13 format('Node', i4, ' using mode' i1)

Paragon ™ System User's Guide Using Parallel File 1/0

c

101

start = dclock ()
do 100 i = 1, 10

*** if node 0, do nothing for 1.0 seconds ***
if(iam .eq. 0) then

loop_start = dclock()
loop_time = dclock() - loop_start
if (loop_time .It. 1.0) goto 101

endif

c *** all nodes now write a record to the file ***
102 now = dclock() - start

write (msgbuffer, 14) now, msg, iam, char(10)
14 format(f7.4, a17, i4, al)

call cwrite(nunit, msgbuffer, 29)
100 continue

print 15, iam
15 format('Node', i3, ' done writing')

close (nunit)
print 16, iam

16 format (, Node' i3, , finished')
end

C Example

#include <fcntl.h>
#include <stdio.h>
#include <nx.h>

main()
{

int i, fd;
double start, now;
double loop_start, loop_cur;
long mode, iam;
char instring[40], msg[40];

iam = mynode();

if(iam == 0)
printf("Enter I/O mode (0, 1, 2, 3, 4, or 5) :\n");
gets(instring);
sscanf(instring, "%ld" , &mode);
csend(l, &mode, sizeof(mode), -1, myptype());

5-21

Using Parallel File 1/0 Paragon 1M System User's Guide

5-22

else {
crecv(l, &mode, sizeof(mode));

}

fd = gopen("mydat", O_WRONLY I O_CREAT I O_TRUNC, mode, 0666);
printf ("Node %d using mode %d\n ", iam, iomode (fd)) ;

start = dclock();
for(i=0;i<10;i++) {

}

if (iam==O) {
loop_start = dclock();
loop_cur = loop_start;
while(loop_cur - loop_start < 1.0) {

loop_cur = dclock();
}

now = dclock() - start;
sprintf(msg, "%7.4f Hello from node %4ld\n", now, iam);
cwrite(fd, msg, strlen(msg));

printf ("Node %d done writing\n", iam);
close(fd);
printf ("Node %d finished\n", iam);

Compiling and Running the Example

To compile this program to a parallel application, use the following it77 or icc command:

% if77 -nx iomodes.f -0 iomodes

or

% icc -nx iamodes.c -0 iamodes

When you run the resulting application, you may find the output easier to understand if you run the
example on four or fewer nodes. Use the -sz switch to determine the number of nodes on which the
application runs (see "Controlling the Application's Execution Characteristics" on page 2-12 for
information on -sz and other application switches).

Paragon ™ System User's Guide Using Parallel File I/O

For example, to run the application on two nodes of your default partition with 110 mode 1
(M_LOG):

% iomodes -sz 2
Enter I/O mode (0, 1, 2, 3, or 4) :
1
Node 0 using mode 1
Node 1 using mode 1
Node 1 done writing
Node 0 done writing
Node 1 finished
Node 0 finished
%

The following example outputs came from the C version of the example, run on two nodes.

In mode M_VNIX, each node has its own file pointer. Node 1 finishes right away. Node 0 waits
before each write and overwrites the message from node 1. As a result, the file contains only the
writes from node O.

1.0000 Hello from node 0
2.0087 Hello from node 0

9.0711 Hello from node 0
10.0797 Hello from node 0

5-23

Using Parallel File I/O Paragon TM System User's Guide

5-24

In mode M_LOG, the nodes share a common file pointer, but there is no synchronization. As in
mode M_ UNIX, node 1 finishes right away; but this time, node 0 appends its data to the file rather
than overwriting the data from node 1.

0.0000 Hello from node 1
0.0382 Hello from node 1

0.0990 Hello from node 1
0.1076 Hello from node 1
1.0000 Hello from node 0
2.0086 Hello from node 0

9.0712 Hello from node 0
10.0804 Hello from node 0

If the output file were large enough so that node 0 started before node 1 finished, the output of the
two nodes would be interleaved in the middle of the file.

In mode M_SYNC, the nodes share a common file pointer, and there is synchronization. Nodes 1
and 0 finish at around the same time. Because node 1 waits for node 0 on each write, the writes are
interleaved within the file.

1.0000 Hello from node 0
0.0000 Hello from node 1
2.0278 Hello from node 0
1.1105 Hello from node 1

9.2262 Hello from node 0
8.1641 Hello from node 1

10.2535 Hello from node 0
9.1914 Hello from node 1

Node 0' s records appear earlier in the file than node l' s, but the time value shown for each record
from node 0 is later than for the corresponding record from node 1. This is because the value shown
is the time at which cwriteO was called, but node l' s record was not actually written to the file until
node 0 had written its record.

Paragon™ System User's Guide Using Parallel File 1/0

In this case, node 1 called cwriteO for the first time immediately after opening the file, at time 0, but
the cwriteO blocked and the record was not written to the file until after node 0 called cwriteO for
the first time, at time 1.0000 (1.0000 seconds after the file was opened). Node 1 then called cwriteO
for the second time, at time 1.1105, but that cwriteO again blocked until after node 0 called cwriteO
again at time 2.0278, and so on.

M_RECORD Output

In mode M_RECORD, the nodes access the file in round-robin fashion, but there is no lock-step
synchronization. Node 1 finishes first. Then, node 0 goes into the file and fills in its data in the
correct places. Because the records are of a fixed length, node 0 has no trouble doing this. The result
is that the records are in the same order as in mode M_SYNC, but node 1 did not spend any time
waiting for node O.

1.0000 Hello from node 0
0.0000 Hello from node 1
2.0208 Hello from node 0
0.0505 Hello from node 1

9.1637 Hello from node 0
0.1955 Hello from node 1

10.1841 Hello from node 0
0.2158 Hello from node 1

Note that node 1 finished in only 0.2158 seconds, without having to wait for node O.

M_GLOBAL Output

In mode M_ GLOBAL, writes by all nodes but one (node 0 in this case) are ignored. As a result, the
file contains only the writes from that node.

1.0000 Hello from node 0
2.0087 Hello from node 0

9.0711 Hello from node 0
10.0797 Hello from node 0

This output is the same as the output of M_UNIX, but the other nodes do not compete with node 0
for access to the disk, so this mode is more efficient. However, because this program uses such a

. small data file, the difference in execution time is probably not noticeable.

Note that M_GLOBAL is usually used for reading, not writing.

5-25

Using Parallel File 110 Paragon ™ System User's Guide

M_ASVNC Output

In mode M_ASYNC, each node has its own file pointer and each node controls when it writes the
file. If there is no seek, node 0 overwrites the message from node 1. As a result, the file contains only
the writes from node O.

1.0000 Hello from node 0
2.0445 Hello from node 0
3.0451 Hello from node 0
4.0454 Hello from node 0

9.0469 Hello from node 0
10.0471 Hello from node 0

This output is the similar to the output of M_ UNIX.

Reading and Writing Files in Parallel

5-26

You can read and write files with the familiar OSFIl system calls and Fortran routines. For example,
here is a Fortran code fragment that opens a file whose patbname is /pfslmydat and reads some data
into an array called array using the Fortran read statement:

open(unit=10, file='/pfs/mydat', form='unformatted')
read 10, (array(j), j=l, n)

In addition to the usual 110 facilities, the operating system offers a series of parallel 110 calls, which
are discussed in the following pages. These calls can be used on files in both PFS and non-PFS file
systems.

Like the message-passing calls, the parallel 110 calls offer you the choice of synchronous or
asynchronous 110. The synchronous calls begin with c (for "complete") and do not return until the
operation is complete. The asynchronous calls begin with i (for "incomplete") and return
immediately; you use the call iodoneO or iowaitO to determine when the operation is complete.

If you program in Fortran, you should use the parallel 110 calls rather than Fortran 110 whenever you
can. These calls offer better performance than the Fortran 110 routines, and you can test for the end
of a file with iseofO. (This does not apply to C programmers; the usual C 110 calls are as efficient as
their paraiiei I/O counterparts.) However, if you use paraUel I/O calls on a tIle, you must not use
Fortran file 110 statements on the same file (for example, you must not mix write and cwriteO on
the same file).

NOTE

Parallel 110 to NFS files may give poor performance or unexpected
results.

Paragon TM System User's Guide Using Parallel File 1/0

The Paragon supercomputer's disk 110 hardware and software are designed to support simultaneous
access by large numbers of nodes. However, a remote NFS server may not be configured to support
this level of access. If you perform large parallel 110 operations from large numbers of nodes to a
file that is NFS-mounted from another computer, you may overload the network or the NFS server,
resulting in poor performance or unexpected results.

Synchronous File 110

Synopsis

cread(fileID, buffer, nbytes)

cwrite(file/D, buffer, nbytes)

creadv(fileID, iov, iovcnt)

cwritev(fileID, iov, iovcnt)

readoff(fileID, offset, buffer, nbytes)

writeoff(file/D, offset, iov, iovcnt)

readvoff(file/D, offset, buffer, nbytes)

writevoff(file/D, offset, iov, iovcnt)

Description

Read from a file, waiting for completion.

Write to a file, waiting for completion.

Read from a file to irregularly-scattered buffers,
waiting for completion.

Write toa file from irregularly-scattered buffers,
waiting for completion.

Read from a file at a specified offset, waiting for
completion.

Write to a file at a specified offset, waiting for
completion.

Read from a file at a specified offset, to
irregularly-scattered buffers, waiting for
completion.

Write to a file at a specified offset, from
irregularly-scattered buffers, waiting for
completion.

The calls creadO, cwriteO, creadvO, cwritevO, readotTO. writeoff(), readvoffO. and writevoffO,
perform synchronous file 110. creadO, cwriteO, creadvO. and cwritevO are equivalent to the
standard OSFIl calls readO, writeO, readvO. and writevO, except that they follow the same
naming and error-handling conventions as the operating system message-passing calls (see "Names
of Send and Receive Calls" on page 3-7 for information on the operating system system call naming
conventions; see "Handling Errors" on page 4-55 for information on the operating system
error-handling conventions). Unlike their standard OSFIl equivalents, these calls are available to
Fortran programs (as well as C).

For example, here is a C code fragment that writes the message "Hello from node x' to the file
/pfslhello:

5·27

Using Parallel File 1/0 Paragon ™ System User's Guide

5-28

fd open("/pfs/hello", O_RDWR, 0644);

sprintf(buffer, "Hello from node %d\n", iam);
cwrite(fd, buffer, strlen(buffer));

Here is a slightly more complicated example: a Fortran code fragment that opens a file whose
pathname is Ipfslmydat, seeks to a location, and reads some data using the synchronous call creadO.
The data represents a matrix stored in rows of n four-byte elements. Each node reads m rows and
performs a calculation with each row (calling the Basic Linear Algebra Subroutines routine sdotO
to get the dot product of two vectors). Because each node seeks to a different place in the file, you
must use I/O mode M_UNIX or M_ASYNC.

open(unit=10, file='/pfs/mydat', form='unformatted')
lseek(10, 4*mynode()*n*m, 0)

do 10 i I, m
call cread(10, arow, n*4)
y(i) sdot(n, arow, 1, xtotal, 1)

10 continue

Note that when you open a file in Fortran, you must open it as sequential and unformatted to be able
to use creadO and cwriteO. (Sequential is the default access, but you must specify
form='unformatted'.)

NOTE

Unlike their OSF/1 equivalents, these calls do not return the
number of bytes read or written. If any error occurs, these calls
print an error message and terminate the calling process.

Reading past the end of a file is considered an error, so you must be certain you know how many
bytes remain in the file before you read from it. You can use iseofO, to detect end-of-file, after each
creadO or creadvO. You can also use the following call to determine the length of a file:

length = lseek(unit, 0, SEEK_END)

This ca11 sets the file pointer to the end of the file 8....'ld returns the current position of the file pointer
(that is, the file's length). You can then use Iseek(unit, 0, SEEK_SET) to return the file pointer to
the beginning of the file. (If the file might be larger than 2G - 1 bytes, use eseekO insteadoflseekO;
see "Manipulating Extended Files" on page 5-38 for more information.)

If you need to detect errors in reading and writing, you must program in C and use either the standard
OSFIl calls (readO, writeO, readvO, and writevO, described in the OSFll Programmer's
Reference) or the underscore versions of the parallel I/O calls CcreadO, _cwriteO, _creadvO, and
_cwritevO, described under "Handling Errors" on page 4-55). The underscore versions do return the
number of bytes read or written.

Paragon ™ System User's Guide

Asynchronous File 1/0

Synopsis

iread(fileID, buffer, nbytes)

iwrite(fileID, buffer, nbytes)

ireadv(fileID, iov, iovcnt)

iwritev(fileID, iov, iovcnt)

ireadoff(file/D, offset, buffer, nbytes)

iwriteoff(fileID, offset, iov, iovcnt)

ireadvoff(file/D, offset, buffer, nbytes)

iwritevoff(fileID, offset, iov, iovcnt)

iodone(id)

iowait(id)

niodone(id)

niowait(id)

Using Parallel File 1/0

Description

Read from a file without waiting for completion.

Write to a file without waiting for completion.

Read from a file to irregularly-scattered buffers,
without waiting for completion.

Write to a file from irregularly-scattered buffers,
without waiting for completion.

Read from a file at a specified offset, without
waiting for completion.

Write to a file at a specified offset, without
waiting for completion.

Read from a file at a specified offset, to
irregularly-scattered buffers, without waiting for
completion.

Write to a file at a specified offset, from
irregularly-scattered buffers, without waiting for
completion.

Determine whether an asynchronous 110
operation is complete. If complete, release the
IIOID.

Wait for completion of an asynchronous 110
operation and release the 110 ID.

Determine whether an asynchronous 110
operation is complete. If complete, return the
number of bytes transferred.

Wait for completion of an asynchronous 110
operation and return the number of bytes
transferred.

The calls ireadO, iwriteO, ireadvO, iwritevO, ireadoffO, iwriteoffO, ireadvoffO, and iwritevoffO,
perform asynchronous file 110. They work like creadO, cwriteO, creadvO, cwritevO, readoffO,
writeoffO, readvoffO, and writevoffO, but they return immediately, without waiting for the read or
write to complete. The asynchronous 110 calls return an 110 ID much like the message ID returned
by the asynchronous message passing calls. You can pass this 110 ID to iodoneO or iowaitO to
determine when the asynchronous file 110 operation has completed.

5-29

Using .Parallel File I/O Paragon ™ System User's Guide

5-30

NOTE

The number of 1/0 IDs is limited, so you must use iodoneO or
iowaitO to release each 10 after you use it.

To check if an asynchronous I/O operation has completed, use the iodoneO call. It returns 1 if the
asynchronous operation has completed and 0 otherwise. You can also decide to block on the

. completion of an asynchronous call. Use the iowaitO call for this. Both iodoneO and iowaitO take
the 1/0 ID as an input parameter. For example (in Fortran):

c Write to a file
ioid iwrite(12, sbuf, size)

c Do some calculation ...

c wait until the write completes
call iowait(ioid)

The number of available 1/0 IDs is limited; be sure to release IDs that are no longer needed. There
are two ways to release an I/O ill: you can issue an iowaitO, as shown in the previous example, or
you can keep issuing iodoneOs until an iodoneO returns 1.

NOTE

To preserve data integrity, all 1/0 requests that use or affect the file
pointer are processed on a "first-in, first-out" basis.

This means that if an asynchronous I/O call is followed by a synchronous read, write, or seek on the
same file, the synchronous call will block until the asynchronous operation has completed.

Paragon ™ System User's Guide Using Parallel File I/O

Closing Files in Parallel
It's always a good idea to close a file when you are finished using it. Whether you used openO or
gopenO to open a file, and whether the file is a PFS file or a non-PFS file, you use the standard
OSFIl system calls or Fortran routines to close it.

For example, to close the file open on file descriptorjd (C) or unit 10 (Fortran):

/* eversion */
close (fd) ;

c Fortran verSlon
close (unit=10)

NOTE

If the I/O mode of the file being closed is anything other than
M_UNIX, closing the file is a synchronizing operation.

See "Using 110 Modes" on page 5-14 for more information.

Detecting End-of-File and Moving the File Pointer

Synopsis Description

iseof(fileID) Test for end-of-file.

Iseek(fileID, offset, whence) Move the read/write file pointer.

The calls iseofO and IseekO are provided for both C and Fortran programmers. If you use parallel
110 calls to perform file 110 in a Fortran program, you must use iseofO and IseekO instead of the
equivalent Fortran features.

5-31

Using Parallel File I/O Paragon™ System User's Guide

5-32

The iseofO call returns 1 if the given file is at the end of the file and 0 otherwise. For example, the
following Fortran code reads characters from the file open on unit 12, writing each one to the screen,
until it reaches the end of the file:

300

do while(iseof(12) .eq. 0)
call cread(12, char, 1)
print 300, iam, char
format('Node " i3,' read:

end do
al)

The IseekO call moves the file pointer to offset bytes from the poinrspecified by whence, which can
be either a name or a number:

• If whence is SEEK_SET, IseekO moves the pointer to offset bytes from the beginning of the
file.

• If whence is SEEK_CUR, IseekO moves the pointer forward offset bytes from its current
position.

• If whence is SEEK_END, IseekO moves the pointer to offset bytes after the end of the file.

The names SEEK_SET, SEEK_CUR, and SEEK_END are constants defined in the header files
unistd.h (for C) andjhx.h (for Fortran). For compatibility with the iPSC system, the numeric values
0, 1, and 2 are also accepted (but using the symbolic names is recommended).

IseekO returns the new position of the file pointer (measured in bytes from the beginning of the file).

For example, the following C call moves the file pointer of the file open on file descriptor fd to the
beginning of the file:

#include <unistd.h>

newpos = lseek(fd, 0, SEEK_SET);

The following Fortran call moves the file pointer of the file open on unit 12 forward 500 bytes:

include 'fnx.h'

newpos = Iseek(12, 500, SEEK_CUR)

NOTE

If the I/O mode of the file is M_SYNC, M_RECORD, or
M_GLOBAL, seeking is a synchronizing operation.

See "Using I/O Modes" on page 5-14 for more information.

Paragon TM System User's Guide

Flushing Fortran Buffered 1/0

Synopsis

forceflushO

forflush(unit)

Using Parallel File I/O

Description

Cause all buffered 110 to be flushed if an
exception occurs.

Flush all buffered 110 on a particular unit.

The subroutines forceflushO and forflushO let Fortran programmers make sure that buffered 110
actually goes to the associated file or device. These subroutines are not available to C programs.

Fortran 110 to files and devices other than the user's terminal is buffered-that is, when you write to
a file, the data is stored in a memory buffer, and only written to the corresponding file or device when
the buffer is full. However, if another node is waiting for some data to appear in a file, you might
want to force the contents of a unit's buffer to be written immediately. You can do this by calling
forflushO on the unit. For example, to flush all buffered 110 on unit 9 to the corresponding file or
device:

call forflush(9)

Another possible problem with buffered 110 is that if the program is interrupted by an exception,
buffered data that has not yet been written to the file is lost. The subroutine forceflushO establishes
a signal handler that flushes all buffered 110 in case of an exception. You call it as follows:

call forceflush

Note that you must call forceflushO before the exception occurs. You can use fpsetmaskO
(described under "Controlling Floating-Point Behavior" on page 4-60) to control whether or not an
exception occurs in case of certain floating-point errors.

Fortran 110 to the user's terminal is not buffered. You can avoid buffering to files and devices by
using parallel file 110 calls such as cwriteO and iwriteO instead of Fortran 110. These calls do not
buffer 110 into the Fortran I/O memory buffer; when the call returns, you can be sure the data has
been sent to the specified file or device. (However, there may be some buffering within the operating
system, which cannot be avoided.)

5-33

Using Parallel File I/O Paragon TM System User's Guide

Using "###" Filenames

5-34

If you perform certain standard file operations on a file that contains three or more consecutive
symbols in its filename, the series of # symbols is automatically replaced by the node number
(within the application) of the node that opens the file. The following C calls support "###"
filenames:

accessO chdirO chmodO chownO
creatO mkdirO mknodO openO
readlinkO rmdirO statO statfsO
truncateO unlinkO utimesO UnkO
renameO symlink(

The Fortran calls that are equivalents of these C calls also support "###" filenames. Note that
gopenO does not appear in this list.

For example, assume that you have the same program running on all the nodes of your application,
and each node calls openO to open a file calledjile###. The result is that each node opens a separate
file. Node 0 opensjileOOO, node 1 opensjileOO1, node 2 opensjile002, and so on. If an application
opens jile### for reading, the specified files (jileOOO,jileOO1,jileOO2, and so on) must exist.

If the number of digits in a node number is less than the number of # symbols in the filename, the
node number is padded with zeros to the length of the sequence of # symbols. If the number of digits
in a node number exceeds the number of # symbols in the filename, the filename is extended, but
only when necessary. For example, calling unlinkO on the file data.### in every node of an
application running on 2000 nodes unlinks files data. 000, data.OO1, data.OO2 ... data.998, data.999,
data.1OOO, data.100l ... data.1998, and data. 1999.

If you use a "###" filename in a non-parallel program running in the service partition, it uses node
number O. For example, opening a file calledjile### from a service node opensjileOOO. Note that
this also affects standard commands that make these calls; for example, since the rm command calls
unlinkO, the command rm rIle### will attempt to remove the filejileOOO.

Filenames containing a sequence of one or two # symbols are not affected. For example, the file
jile## is a single file that is accessible by each node.

There is nothing special about files created in this way; each file created is a single ordinary file. For
example, suppose an application uses openO or creatO to create ###myjile, writes into it, and then
closes the file. This creates a series of files called OOOmyfile, OOlmyjile, 002myfile, and so on. Each
of these files is an ordinary file; for example, you can delete one without affecting the others, and
there's nothing to prevent node 1 from opening 005myjile.

Paragon TM System User's Guide Using Parallel File 1/0

Increasing the Size of a File

Synopsis Description

Isize(file/D, offset, whence) Increase size of a file.

You can allocate more space to a file with IsizeO. The IsizeO call sets the file's size as specified by
offset and whence:

• If whence is SIZE_SET, IsizeO sets the file's size to offset bytes.

• If whence is SIZE_CUR, IsizeO sets the file's size to the current file pointer position plus offset
bytes.

• If whence is SIZE_END, IsizeO increases the file's size by offset bytes.

The names SIZE_SET , SIZE_CUR, and SIZE_END are constants defined in the header files nx.h
(for C) andfnx.h (for Fortran). For compatibility with the iPSe system, the numeric values 0, 1, and
2 are also accepted (but using the symbolic names is recommended).

For example, the following Fortran call increases the size of the file open on unitl to one million
bytes:

include 'fnx.h'

size = lsize(unit1, 1000000, SIZE_SET)

The following e call increases the size of the file open on file descriptor fd by 500,000 bytes:

#include <unistd.h>
#include <nx.h>
int size, fd;

size = lsize(fd, 500000, SIZE_CUR)

The additional space is allocated to the file from the file system, but it is not initialized (its contents
are undefined).

IsizeO will not decrease the size of a file. If the size specified by offset and whence is smaller than
the file's current size, the call has no effect.

The major use of this call is to ensure that enough disk space is available before you begin a lengthy
calculation. Pre-allocating disk space can also improve disk performance.

5-35

Using Parallel File 1/0 Paragon ™ System User's Guide

Using Extended Files
A PFS file greater than or equal to 2G bytes in size is called an extendedfile. These files are stored
in the same way as non-extended PFS files. However, some of the file parameters (like the file
pointer and file size) do not fit into a 32-bit integer. This means that standard aSF/1 calls and
commands that use these parameters cannot be used on extended files. The following two sections
list the calls and commands that do not support extended files.

OSF/1 Calls that Do Not Support Extended Files

5-36

Most aSFIl calls, such as readO and writeO, don't care how big the file is and work perfectly well
on extended files. The aSF/1 calls that have problems with extended files are shown in Table 5-1.

Table 5-1. OSF/l Calls Not Supporting Extended Files

Call Problem

fgetposO Can't return an offset greater than 2G - 1 bytes.

fseekO Can't specify an offset greater than 2G - 1 bytes.

unlocked_fseekO Can't specify an offset greater than 2G - 1 bytes.

fsetposO Can't return an offset greater than 2G - 1 bytes.

fstatO Can't be used on a file larger than 2G - 1 bytes.1

ftellO Can't return an offset greater than 2G - 1 bytes.

ftruncateO Can't specify a file size greater than 2G - 1 bytes.

IseekO Can't specify an offset greater than 2G - 1 bytes.

IstatO Can't be used on a file larger than 2G - 1 bytes.1

madviseO Can't map a file larger than 2G - 1 bytes.

mmapO Can't map a file larger than 2G - 1 bytes.

mprotectO Can't map a file larger than 2G - 1 bytes.

msyncO Can't map a file larger than 2G - 1 bytes.

munmapO Can't map a file larger than 2G - 1 bytes.

statO Can't be used on a file larger than 2G - 1 bytes.1

truncateO Can't specify a file size greater than 2G - 1 bytes.

1. If you call fstatO, IstatO, or statO on a file larger than 2G - 1 bytes, the call fails with
the error EFBIG.

Paragon ™ System User's Guide Using Parallel File 1/0

To manipulate extended files, the operating system provides special calls that perform the equivalent
oflseekO, statO, fstatO, and IsizeO for extended files. These calls are discussed under
"Manipulating Extended Files" on page 5-38.

OSF/1 Commands that Do Not Support Extended Files

Many OSFIl commands make one or more of the system calls in Table 5-1, so do not work on
extended files. The commands cat, chgrp, chmod, chown, cp, df, ditT, du, dump, dumpfs, find,
fsdb, Is, mY, newfs, restore, showfs, tar, rm, and ufs_fsck have been specially modified to support
extended files; most other commands will fail if used on extended files. (Note that you must use the
-E switch to archive an extended file with tar; see tar in the Paragon TM System Commands
Reference Manual for more information.)

Table 5-2 shows the OSF/I commands that are known to have problems with extended files. (This
list is not guaranteed to be complete; other commands, not listed here, may also have problems.)

Table 5-2. OSFIl Commands Not Supporting Extended Files

Command Problem

compress Can't compress a file larger than 2G - 1 bytes.

cpio Can't handle files or archives larger than 2G - 1 bytes.

ed Can't edit a file larger than 2G - 1 bytes.

ex Can't edit a file larger than 2G - 1 bytes.

ftp Can't copy a file larger than 2G - 1 bytes.

more Can't display a file larger than 2G -1 bytes.

rep! Can't copy a file larger than 2G - 1 bytes.

tail Can't display a file larger than 2G - 1 bytes.

vi Can't edit a file larger than 2G - 1 bytes.

1. Note that although rep cannot copy an extended file, cp can.

5-37

Using Parallel File I/O Paragon™ System User's Guide

Manipulating Extended Files

5-38

Synopsis

eseek(fildes, offset, whence)
eseek(unit, offset, whence, newpos)

esize(fildes, offset, whence)
esize(unit, offset, whence, newsize)

estat(path, buffer)

lestat(path, buffer)

festat(fildes, buffer)

(C)
(Fortran)

(C)
(Fortran)

(C only)

(C only)

(C only)

Description

Move file pointer in extended file.

Increase size of extended file.

Get status of extended file from pathname.

Get status of extended file or symbolic link
from pathname.

Get status of open extended file from file
descriptor.

The e ••• O calls perform file operations on extended files. They do this by having parameters that are
extended integers (a data type capable of representing integers greater than 2G - 1). You must use
the calls described under "Performing Extended Arithmetic" on page 5-39 to operate on extended
integers.

• The call eseekO is like IseekO (discussed under "Detecting End-of-File and Moving the File
Pointer" on page 5-31), except that the offset parameter is an extended integer. The C version
of this call is a function that returns the new position as an extended integer; the Fortran version
is a subroutine that stores the new position in its fourth parameter.

• The call esizeO is like IsizeO (discussed under "Increasing the Size of a File" on page 5-35),
except that the offset parameter is an extended integer. The C version of this call is a function
that returns the new size as an extended integer; the Fortran version is a subroutine that stores
the new size in its fourth parameter.

• The calls estatO, lestatO, and festatO are like the standard aSFIl calls statO, IstatO, and fstatO
(described in the OSFll Programmer's Reference), except that they use a structure called estat,
defined in <syslestat.h>, which is the same as the aSF/1 stat structure except that the file size
is an extended integer. These calls are available only in C, not in Fortran.

You must use these calls to manipulate extended files. However, you can also use these calls on
non-PFS files and on PFS files less than 2G bytes in size. You can use these calls or the standard
aSF/1 calls on PFS files less than 20 bytes in size.

Paragon ™ System User's Guide Using Parallel File 1/0

Performing Extended Arithmetic

Synopsis

eadd,(el, e2) (C)
eadd(el, e2, eresult) (Fortran)

ecmp(el, e2)

ediv(e, n) (C)
ediv(e, n, result) (Fortran)

emod(e,n) (C)
emod(e, n, result) (Fortran)

emul(e, n) (C)
emul(e, n, eresult) (Fortran)

esub(el, e2) (C)
esub(el, e2, eresult) (Fortran)

etos(e, s)

stoe(s) (C)
stoe(s, e) (Fortran)

Description

Add two extended integers.

Compare two extended integers.

Divide extended integer by integer.

Give extended integer modulo an integer
(remainder when e is divided by n).

Multiply extended integer by integer.

Subtract twO extended integers.

Convert extended integer to string.

Convert string to extended integer.

The extended arithmetic calls manipulate 64-bit integers, also called extended integers. You use
these calls to manipulate the parameters used by the parallel 110 calls described in the previous
section.

Extended integers are signed 64-bit integers with values from (263 - 1) to _263 (263 is approximately
9.2 x 1018).

• In Fortran, extended integers are stored in a two-element array of type integer*4.

• In C, extended integers are stored in a variable of type esize_t, a structure type defined in the
header file <syslestat.h>. (For compatibility with the iPSC system, there is also a header file
<estat.h> that simply includes <syslestat.h>.

You should always use extended arithmetic calls to operate on an extended integer, rather than
access its internal structure.

Some of these calls return extended integers. The C versions of these calls return a value of type
esize_t. However, Fortran does not allow functions to return arrays, so the Fortran versions of these
calls are subroutines with an additional parameter: the result of the operation on the first two
parameters is stored into the third parameter. For example, the following call adds the extended
integers el and e2 and stores the result in e_sum:

5-39

Using Parallel File I/O Paragon™ System User's Guide

5-40

/* eversion */
#include <sys/estat.h>
esize_t el, e2, e_sum;
e_sum = eadd(el, e2);

c Fortran version
integer el(2), e2(2), e_sum(2)
call eadd(el, e2, e_sum);

If you want to add an ordinary integer to an extended integer, you must create your own extended
integer from the desired integer value. To create an extended integer, use stoeO. This call takes a
string whose value is a number, and returns the corresponding numeric value as an extended integer.
For example, the following code fragment adds 1 to the value of the extended integer el. It does this
by converting the string" 1 " to an extended integer with stoeO, storing the resulting extended integer
in e2, and then adding e2 to el (note that in Fortran the string must be declared to be one character
larger than the actual string being converted):

/* eversion */
#include <sys/estat.h>
esize_t el, e2, e_sum;
char *one = "1";

e2 = stoe (one) ;
e_sum = eadd(el, e2);

c Fortran version
character*2 one
parameter (one ='1')
integer el(2), e2(2), e_sum(2)

call stoe(one, e2)
call eadd(el, e2, e_sum)

The other extended arithmetic calls allow you to subtract, multiply, divide, and find the remainder
after division of extended integers. When you use edivO or emodO, the divisor and answer must be
4-byte integers, not extended integers. Similarly, when you use emulO, the second argument must
be a 4-byte integer, not an extended integer.

You can also compare two extended integers; ecmpO returns -1, 0, or 1, depending on whether the
first extended integer is less than, equal to, or greater than the second.

Paragon TM System User's Guide Using Parallel File I/O

Getting Information About PFS File Systems

Synopsis

getpfsinfo(buf}

Description

Get PFS-specific information about all mounted
PFS file systems.

statpfs(path,fs_buffer, pfs_buffer, pfs_bufsize) Get PFS~specific and non-PFS-specific
information for the file system containing path.

fstatpfs(jildes,fs_buJfer, pfs_buffer,
pfs_bufsize)

Get PFS-specific and non-PFS-specific
information for the file system containing the file
open onfildes.

You can use the functions getpfsinfoO, statpfsO, and fstatpfsO in C programs to get information
about PFS file systems. These functions are not available in Fortran programs. See "PFS File
Systems and PFS Files" on page 5-3 for more information on the concepts discussed in this section.

Getling Information About All Mounted PFS File Systems

getpfsinfoO gets information about all mounted PFS file systems. It is similar to the standard OSFIl
call getmntinfoO, except that instead of returning information in an array of statfs structures, it
returns information in an array of pfsmntinfo structures. It allocates the memory for this array of
structures, each of which describes one PFS file system, and stores a pointer to this array into its
argument. getpfsinfoO returns the number of elements in this array. The pfsmntinfo structure,
defined in the header file pfs/pfs.h, contains the following fields:

m_mntonname Directory on which the PFS file system is mounted.

m_statpfs statpfs structure that describes the PFS file system.

The statpfs structure, also defined in the header file pfs/pfs.h, describes the PFS-specific attributes
of a file system. This is a variable-size structure. It contains the following fields:

p _sunitsize

p_sfactor

Total size of this statpfs structure, in bytes.

Stripe unit size for this PFS file system, in bytes.

Number of stripe directories within this PFS file system.

List of stripe directories within this PFS file system. The number of
patbnames in the list is specified by p _sfactor.

Each pathname in p _sdirs is a structure of type pathname_t (defined in pfs/pfs.h); you can use the
NEXTPATHO macro defined inpfs/pfs.h to examine each patbname in tum.

5-41

Using Parallel File 110 Paragon TM System User's Guide

5-42

Here's an example of getpfsinfoO:

#include <sys/types.h>
#include <nx.h>
#include <pfs/pfs.h>

main () {
struct pfsmntinfo *pfsinfoj
struct statpfs *sattrj
pathname_t *sdirj
int cnt, i, incrj

cnt = getpfsinfo(&pfsinfo)j

if (cnt == 0) {
printf ("No PFS file systems mounted\n") j

} else {
for(i = OJ i < cntj i++)

printf (IIMount point: %s\n ", pfsinfo->I!Lmntonname) j

sattr = & (pfsinfo->m_statpfs) j

print f (II Stripe unit si ze: %d \n II ,
sattr->p_sunitsize)j

printf(1I Stripe factor: %d\n", sattr->p_sfactor)j

sdir = &(sattr->p_sdirs)j
printf(" Stripe directories:\n")j
for(i = OJ i < sattr->p_sfactorj i++) {

printf(" %s\n", sdir->name)j
sdir = NEXT PATH (sdir) j

incr = sizeof(pfsinfo->m_mntonname)
+ sattr->p_reclenj

pfsinfo = (struct pfsmntinfo *) ((char *)pfsinfo
+ incr) j

This program prints out the attributes of all mounted PFS file systems, something like the command
showfs -t pfs. Note that you must use the NEXTPATHO macro to step through the p _sdirs field of
the statpfs structure, and you must increment the pointer into the array of pfsmntinfo structures by
the size of the current pfsmntinfo structure (using the value of its p Jeclen field).

Paragon ™ System User's Guide Using Parallel File 1/0

Getting PFS Information About a Single File System

statpfsO gets information about a file system given the pathname of a file or directory in that file
system; fstatpfsO gets information about a file system given the file descriptor of an open file in that
file system.

These functions get both general and PFS-specific information about the specified file system. They
can be used on both PFS and non-PFS file systems, but they retum PFS-specific information only
for PFS file systems. They are similar to the standard OSF/l calls statfsO and fstatfsO, except that
instead of returning information in a statfs structure, they return information in an estatfs structure
and a statpfs structure.

• The estatfs structure, defined in the header file <pfs/pfs.h>, describes the basic attributes of the
file system. It is just like the statfs structure defined in <sys/mount.h>, except that some of its
fields are of type esize_t (see "Performing Extended Arithmetic" on page 5-39 for information
on this type). This is necessary because some of the values returned for PFS file systems are too
large to be stored into an ordinary integer.

Some of the more generally useful fields of the estatfs structure are:

Ltype

Lbavail

Lmntonname

The type of the file system, expressed as a constant such as
MOUNT_UFS, MOUNT_NFS, or MOlJI'j"T_PFS (these constants are
defined in <sys/mount.h».

Number of free l024-byte disk blocks in the file system available to
ordinary users, expressed as a value of type esize_t.

Directory on which the file system is mounted, expressed as a string.

Lmntfromname Device name of the file system, expressed as a string.

See statpfsO in the Paragon TM System C Calls Reference Manual for a complete description of
all fields in the estatfs structure.

• The statpfs structure is the same statpfs structure described for getpfsinfoO in the previous
section. However, the way it is returned is different: getpfsinfoO allocates space for several
statpfs structures and returns you a pointer to this space, but statpfsO and fstatpfsO store
information in a statpfs structure that you provide.

Because the statpfs structure is variable-size, you must tell statpfsO and fstatpfsO how big your
statpfs structure is; you do this with the third parameter of statpfsO and fstatpfsO (called
pfs_bufsize). Then you must check the PJeclen field in the returned statpfs structure to be sure
the returned information fit in your provided structure; if it didn't, try again with a larger
structure.

5-43

Using Parallel File 1/0 Paragon TM System User's Guide

Here's an example of statpfsO:

5-44

#include <sys/types.h>
#include <sys/mount.h>
#include <malloc.h>
#include <nx.h>
#include <pfs/pfs.h>

#define SDIRS_INIT_SIZE 1024

main(int argc, char **argv) {
struct statpfs *statpfsbufi
int
struct estatfs
pathname_t
char

bufsizei
estatbufi

*sdiri
blocks[80]i
ii int

if(argc != 2)
{

printf ("Usage: %s <mountpoint>\n", argv[O]) i

exit(l) i

bufsize=sizeof(struct statpfs) + SDIRS_INIT_SIZEi

statpfsbuf=(struct statpfs *)malloc(bufsize) i

if (statpfs(argv[l], &estatbuf, statpfsbuf, bufsize) < 0)
{

nx-perror ("statpfs") i

exit(l) i

if(statpfsbuf->p_reclen > bufsize)
{

bufsize=statpfsbuf->p_recleni
statpfsbuf=(struct statpfs *)realloc(statpfsbuf,

bufsize) i

if(statpfs(argv[l], &estatbuf, statpfsbuf, bufsize)
< 0)

nx-perror("statpfs")i
exit (1) i

Paragon ™ System User's Guide

}

Using Parallel File I/O

printf (" Selected PFS statistics for %s: \n", argv [1]) ;

/* From estatfs structure */

printf (" File system type: %d\n", estatbuf. f_type) ;
etas (estatbuf.f_bavail, blocks);
printf(" # of 1K blocks available: %s\n", blocks);
printf(" Mount point: %s\n", estatbuf.f_mntonname);
printf(" Device name: %s\n", estatbuf.f_mntfromname);

/* From statpfs structure */

printf(II Stripe unit size: %d\n",
statpfsbuf->p_sunitsize);

printf(" Stripe factor: %d\n", statpfsbuf->p_sfactor);

printf(" Stripe directories:\n");
sdir = &(statpfsbuf->p_sdirs);
for (i = 0; i < statpfsbuf->p_sfactor; i++) {

printf (" %s\n", sdir->name);
sdir = NEXTPATH(sdir);

This program prints out the attributes of the file system containing the file specified by its first
argument. Note that you must allocate enough space for the statpfs structure plus the stripe directory
patbnames and check the returned p Jeclen against the currently-allocated size of the structure
(bufsize).

This example starts offby allocating an extra SDIRS_INIT_SIZE bytes (an arbitrary value) for the
stripe directory pathnames. If p _reclen is larger than the size of the structure, this example uses
reallocO to enlarge the structure and calls statpfsO again. It then uses the NEXTPATHO macro to
step through the p _sdirs field of the statpfs structure, as discussed earlier for getpfsinfoO.

5-45

Using Parallel File 1/0 Paragon ™ System User's Guide

Controlling Open Files

5-46

~--~--~---- ---- --~- ----~--------~~-------~---

Synopsis

fcntl(fd, request, argument)
fcntl(unit, request, argument)

(C)
(Fortran)

Description

Controls an open file descriptor.

You can use the standard OSFIl system call fcntlO to control a file that is opened with openO or
gopenO. The header file sys/fcntl.h defines the structures and constants you need to use fcntlO. This
call lets you to get and set stripe attributes for a PFS file. The following values for the request
parameter let you get and set a file's stripe attributes:

F _ GETSATTR Gets the PFS stripe attributes of the file associated with the /iledes parameter. The
argument parameter is a pointer to a sattr structure that returns the file's stripe
attributes.

F _SETSA TTR Sets the PFS stripe attributes of the file associated with the fUedes parameter. The
argument parameter is a pointer to a sattr structure that contains the file's new
stripe attributes.

When using F _SETSATTR, you can only permanently set stripe attributes on PFS files that have
not been written and are zero-length. You can use F _SETSATTR to temporarily set stripe attributes
on PFS files that have been written and are read-only. Temporarily setting stripe attributes, affects
the file descriptor only, and the changes go away when the file is closed. Temporarily setting stripe
attributes can be useful when you are writing matrix data to a file in one decomposition and reading
the matrix data back in a different decomposition.

You can get or set the following stripe attributes:

stripe unit size The unit of data interleaving in bytes used in the PFS file.

stripe factor The number of stripe directories the file is striped across. When setting the stripe
factor, this value must be less than or equal to the current stripe factor of the PFS
file.

bll;se stripe directory
The stripe directory at which striping begins for the file. The base stripe directory
must specify a subset of the PFS file's stripe group. The base stripe directory must
be between 0 and (stripe/actor-I).

Paragon TM System User's Guide Using Parallel File 1/0

Getting Stripe Attributes for Open Files

When you call rcntIO with F _ GETSATTR or F _SETSATTR as its second argument, you must use
a structure of type sattr as the third argument. The sattr structure in C is defined as follows:

struct sattr {
size_t s_sunitsize;
uint_t s_sfactor;

/* size of each stripe unit */
/* stripe factor */

uint_t s_start_sdir; /* base stripe directory */
} ;

The following example C program opens a PFS file, gets a PFS file's stripe attributes, and prints the
results.

#include <fcntl.h>
#include <stdio.h>
#include <pfs/pfs.h>

void print (void) ;
struct sattr

main()
{

int fd;

sattr;

fd = open("/p fs/myfile", O_RDWRIO_CREAT, 0644);
if (fd < 0) {

perror (II open II) ;

exit(l);

if (fcntl(fd, F_GETSATTR, &sattr) != 0) {
perror("fcntl");
exit(l);

printf (" stripe attributes for /pfs/myfile: \n");
printf(1I stripe unit size = %d\n", sattr.s_sunitsize);
printf(1I stripe factor = %d\n", sattr.s_sfactor);
printf(" base stripe dir = %d\n", sattr.s_start_sdir);

close (fd) ;

5-47

Using Parallel File 1/0

Setting Stripe Attributes for Open Files

The sattr structure in Fortran is as follows:

STRUCTURE /sattr/
INTEGER*4 s_sunitsize
INTEGER*4 s_sfactor
INTEGER*4 s_start_sdir

END STRUCTURE

Paragon TM System User's Guide

The following example Fortran program opens a PFS file and sets a PFS file's stripe attributes.

5-48

INCLUDE 'fnx.h'

INTEGER unit

STRUCTURE /sattr/
INTEGER*4 s_sunitsize
INTEGER*4 s_sfactor
INTEGER*4 s_start_sdir

END STRUCTURE

RECORD /sattr/ sattr

unit = 12
OPEN(unit, FILE='/pfs/myfi1e',FORM='UNFORMATTED)i

sattr.s_sunitsize = 32768
sattr.s_sfactor = 3
sattr.s_start_sdir = 1

CALL fcnt1(unit,F_SETSATTR, sattr)

close (unit)

END

Paragon™ System User's Guide Using Parallel File 1/0

Controlling Tape Devices

Synopsis Description

ioctl(fd, request, argp) Perform an operation on an open tape or other
device.

You can use standard OSFIl 110 calls or parallel 110 calls to open, read, and write tape devices. To
control tape devices, use the standard OSFIl system call ioctlO. The header file <sys/mtio.h>
defines the tape-specific structures and constants you need.

NOTE

Only one node at a time can open a tape device, and it must use
1/0 mode M_UNIX (0).

The include file syslmtio.h defines three constants you can use as the second argument of ioctlO:

MTIOCTOP Perform operation on tape.

MTIOCGET Get status of tape.

MTIODISPLAY
Write the display for the 3480 tape drive.

MTIODGET Returns the tape density.

MTIOPOS Returns the tape position.

The rest of this section explains the details of using these constants.

Naming Tape Devices

The operating system uses the following conventions for naming tape devices:

ldevlioN/rmtX Raw cartridge tape, rewinds automatically when closed.

ldevlioN/rmtXl1 Raw cartridge tape, rewinds automatically when closed.
This is for a 3480 tape device only. The 11 specifies that the
device is logical unit 1.

5-49

Using Parallel File 1/0 Paragon ™ System User's Guide

IdevlioN/nrmtX

IdevlioN/nrmtXll

IdevlioN/rmtcX

IdevlioN/nrmtcX

Raw cartridge tape, does not rewind automatically when
closed.

Raw cartridge tape, does not rewind automatically when
closed. This is for a 3480 tape device only. The II specifies
that the device is logical unit 1.

Raw cartridge tape with compression, rewinds
automatically when closed.

Raw cartridge tape with compression, does not rewind
automatically when closed.

NOTE

The rmtc devices can only be used with tape drives that support
data compression.

In each case, N is the node number of the I/O node to which the tape device is connected, and X is
the SCSI ID of the tape device (typically 6). So, for example, to use the cartridge tape device with
SCSI ID 6 on the boot node (node 0) and have it rewind automatically when closed, use the
pathname IdevlioOlrmt6. To use the same device but have it not rewind automatically when closed,
use the pathname IdevlioO/nrmt6.

Performing Operations on Tape Devices

5·50

When you call ioctlO with MTIOCTOP as its second argument, you must use a structure of type
mtop as the third argument. This structure tells ioctlO what operation to perform. The mtop structure
is defined as follows:

struct mtop
unsigned int mt_op;
daddr_t mt_count;

/* operation to perform */
/* how many operations to perform or */
/* tape density; daddr_t is a long */

} ;

The valid values of the mCop field for MTIOCTOP include the following constants:

MTWEOF Write mCcount end-of-file marks.

MTFSF Space the tape forward by mCcount files.

MTBSF Space the tape backward by mCcount files.

Paragon TM System User's Guide Using Parallel File 1/0

MTFSR Space the tape forward by mccount records.

MTBSR Space the tape backward by mccount records.

MTREW Rewind the tape. If the tape has been written to, writes two end-of-file marks
before rewinding. (Two end-of-file marks indicate the end of data.)

MTOFFL

MTCACHE

Rewind the tape and put the drive offline. If the tape has been written to,
writes two end-of-file marks before rewinding.

Enable the drive's on-board buffer.

MTNOCACHE Disable the drive's on-board buffer.

MTLOCATE Position the tape at the requested block.

MTDENSITY Sets the tape density. The count (mCcount) identifies the density. It is either
EXB_85 (Exabyte 8505) or EXB_82 (Exabyte 8200).

MTNOP No operation, sets status only.

Closing the tape device after writing to it also writes an end-of-file mark (or two end-of-file marks
if the tape was opened in variable-block mode or the tape mode "rewind" is set). If the tape was
opened in variable-block mode, the tape head is then positioned between the two end-of-file marks,
so that any subsequent write will overwrite the second one.

For example, the following C program rewinds the tape on the device connected to IdevlioOlrmt6:

#include <fcntl.h>
#include <errno.h>
#include <sys/mtio.h>

main () {
int fd;
struct mtop s;
fd = open ("/dev/ioO/rmt6", O_RDONLY, 0666);
if(fd == -1) {

perror("opening /dev/ioO/rmt6");
exit (1) ;

s.mt_op = MTREW;
s.mt_count = 1;
if (ioctl(fd, MTIOCTOP, &s) == -1) {

perror ("rewinding tape II) ;

exit(2) ;

5-51

Using Parallel File 1/0 Paragon TM System User's Guide

If you want to make a tape on the Exabyte 8505 tape drive but write the tape so that it is readable on
the Exabyte 8200 tape drive, you must issue an ioctlO with MTIOCTOP and set mCop to
MTDENSITY and mCcount to 0x14.

The new density takes effect when you write data at the beginning of the tape. If you change the
density when the tape is not positioned at the beginning and then write data, the new density will not
take effect. It you then reposition the tape at its beginning and then write data, the new density takes
effect.

Getting Status of Tape Devices

5-52

When you call ioctlO with MTIOCGET or MTIODGET as its second argument, you must provide
a structure of type mtget as the third argument. The mtget structure is defined as follows:

struct mtget {
short mt_type; /* type of magtape device */
short mt_dsreg; /* "drive status" register */
short mt_erreg; /* "error" register */
short mt_resid; /* residual count */

/* the following two are not yet implemented */
daddr_t mt_fileno; /* file number of current position */
daddr_t mt_blkno; /* block number of current position */

/* end not yet implemented */
} ;

ioctlO fills in the elements of this structure with information about the device. The value of the
mCtype field is always OXOC (indicating a generic SCSI device). The values ofthe mcdsreg and
mCerreg fields are device-dependent.

When MTIODGET is the second argument, the tape density is returned in mcdsreg. The value is
OXOO for the Exabyte 8505 tape drive and Ox14 for the Exabyte 8200 tape drive. Note that, if you
change the density with MTIOTCOP, you must write something to the tape before a MTIODGET
returns the changed tape density.

For example, the following C program prints the status of the device connected to IdevlioOlrmt6:

#include <fcntl.h>
#include <errno.h>
#include <sys/mtio.h>

main() {
int fd;
struct mtget s;

fd = open("/dev/ioO/rmt6", O_RDONLY, 0666);
if (fd == -1) {

Paragon ™ System User's Guide

perror("opening /dev/ioO/rmt6");
exit(l);

if (ioct1(fd, MTIOCGET, &s) == -1) {
perror("getting status of tape");
exit(2) ;

printf ("mt_type Ox%x\n" , s . mt_type) ;
printf ("mt_dsreg Ox%x\n" , s . mt_dsreg) ;
printf ("mt_erreg Ox%x\n" , s . mt_erreg) ;
printf ("mt_ resid = Ox%x\n" , s .mt_resid) ;

Writing the 3480 Display

Using Parallel File 1/0

When you call ioctlO with MTIODISPLA Y as its second argument, you must provide a structure
of type load_display as the third argument. The load_display structure is defined as follows:

struct load_display {
char

} ;

Getting the Tape Position

message[17];

When you call ioctlO with MTIOPOS as its second argument, you must provide a structure of type
position as the third argument. The position structure is defined as follows:

struct position{
char flags;
char partition;
char reserved_1;
char reserved_2;
unsigned long first _block;

} ;

5-53

Using Parallel File 1/0 Paragon TM System User's Guide

Synchronization Summary

5-54

Table 5-3 lists the 110 modes and summarizes the 110 calls that are synchronizing calls in each one.
Table 5-4 lists the most commonly-used 110 calls and summarizes the 110 modes that cause them to
become synchronizing calls.

Table 5-3. Synchronization in Each I/O Mode

110 Mode I/O Calls that Synchronize

M...:UNIX gopenO and setiomode()

M_LOG gopenO, setiomode() and closeO

M_SYNC All

M_RECORD gopenO, setiomode(), IseekO, eseek(), and closeO

M_GLOBAL All

M_ASYNC gopenO and setiomode()

Table 5-4. File I/O Calls that Synchronize

Call 110 Modes Causing the Call to Synchronize

closeO M_LOG, M_SYNC, M_RECORD, and M_GLOBAL

cread() and creadvO M_SYNC and M_GLOBAL

cwriteO and cwritevO M_SYNC andM_GLOBAL

eseekO M_SYNC, M_RECORD, and M_GLOBAL

gopenO All

ireadO and ireadvO M_SYNC andM_GLOBAL

iseof() M_SYNC andM_GLOBAL

iwriteO and iwritevO M_SYNC and M_GLOBAL

IseekO M_SYNC, M_RECORD, and M_GLOBAL

setiomodeO All

SMP Programming

Introduction
This chapter describes the symmetric multiprocessing programming (SMP) model on a Paragon
system. This programming model is supported for both MP and GP systems.

SMP programs are multi-threaded programs that run on one or more processors. A single image of
the operating system runs on these processors. Also, none of the threads has any specialized access
to the hardware.

The threads are implemented as pthreads, which is short for POSIX threads. The implementation is
based on, but is not strictly conformant to, the POSIX Threads Extension [C language] P 1003.4a1D4
(Draft 4), August 1990, which is not the most recent one. Consequently, your pthread programs may
not be portable to or from other systems.

An MP system has three processors on each compute node board. Two of those processors run
application code while the third is dedicated to message passing. A GP system has two processors
on each compute node board. One of those processors is dedicated to message passing.

A pthread is one of the resources of a process. The pthread is the resource that performs the actual
execution of code. Other resources are memory objects and open files. On GP systems, the pthreads
all run on one application. processor. On MP systems, a pthread can run on either of the two
application processors.

A process may have several ptbreads. When it does, it has several threads of execution. When a
single process has more than one pthread, each pthread executes independently, but shares resources
with other threads. For example, all the pthreads in a single process share memory; when one pthread
writes to a global variable in memory, it modifies the value of that variable for all threads.

On a Paragon system, there are two approaches to SMP programming. You should not use both in
the same program. The two approaches are the following:

1. Let the compiler do it. Both C and Fortran compilers are parallelizing compilers. On MP
systems, the compiler emits code that creates a pthread on each additional application processor.
Note that currently there is only one additional processor, and so there is only one additional

6-1

SMP Programming Paragon ™ System User's Guide

pthread. When the application program encounters a loop that the compiler has accepted for
parallelization, a portion of that loop is executed by the pthread. You can control the operation
of the compiler with switches and directives.

2. Explicitly create your own pthreads. If you create your own pthreads, you must use the C
programming language. No Fortran interface is provided. Because pthreads share resources
(like memory) you must carefully manage your pthreads. Software that can be safely executed
by two or more threads at the same time is referred to as thread-safe or reentrant.

NOTE

Pthreads are not the same as, and are not compatible with,
cthreads or Mach threads. These other thread types are not
supported. They are incompatible with libcJ.a and cannot be
recognized or managed by the calls in Jibpthreads.a.

Libraries for SMP Programming

6-2

To use the compiler to achieve parallelization, specify the -Mconcur compiler switch. This switch
automatically links in the libraries libpthreads.a, libcJ.a, and libmp3.a.

If you write your own custom pthread applications, you must link in at least libpthreads.a and
libcr.a. Do not link in libmp3.a; it is only for compiler use.

The libraries for SMP programming are as follows:

libpthreads.a

libcJ.a

libmp3.a

libmJ.a

Contains thread management calls, such as pthread_createO. If you are
relying on the compiler to perform the parallelization, do not issue these calls
directly. This library is automatically linked in when you specify the
-Mconcur switch.

Contains reentrant versions of standard C library (libc.a) calls, such as
printfO. This library is automatically linked in when you specify the
-Mconcur switch. If you do not use -Mconcur and instead write your own
custom pthreads, you must link in both libcJ.a and libpthreads.a. Linking in
libcJ.a without also linking in libpthreads.a results in a link error.

Contains runtime support functions for the loop parallelizing compiler that
manage compiler-generated pthreads. This library is automatically linked in
when you specify the -Mconcur switch.

Contains reentrant versions of standard libm.a calls, such as sqrtO. Also has
thread-specific errno numbers. This library is automatically linked in when
you specify the -Mconcur and -1m switches on the compiler invocation. If
you do not use -Mconcur, you must explicitly specify -Im_r to obtain the
reentrant version of the math library.

Paragon™ System User's Guide SMP Programming

libkmathJ.a Contains reentrant versions of Basic Math Library calls, such as dgemmO.
This library is automatically linked in when you specify the -Mconcur and
-lkmath switches on the compiler invocation. If you do not use -Mconcur,
you must explicitly specify -lkmath] to obtain the reentrant version of the
Basic Math Llibrary.

libksignaCr.a Contains reentrant versions of Signal Processing Library calls. The Signal
Processing Library is an optional product available with Paragon systems.
This library is automatically linked in when you specify the -Mconcur and
-lksignal switches on the compiler invocation. If you do not use -Mconcur,
you must explicitly specify -lksignal_r.

Setting _REENTRANT

Whether you rely on the compiler or write your own custom ptbreads, you should set the
preprocessor symbol_REENTRANT. Do this by including the file pthread.h or defining
_REENTRANT on the command line.

The symbol_REENTRANT is defined in pthread.h. Because some programs include other header
files before pthread.h, you may want to specify the switch -D _REENTRANT on the command line
when compiling a program that uses multiple pthreads. This symbol ensures that the correct versions
of call prototypes and preprocessor symbols are pulled in from header files.

Relying on the Compiler vs. Custom Pthreads
The primary benefit of relying on the compiler for parallelization is that it is an easy way to speed
up single node performance. You can achieve loop parallelization without having to learn the
complicated techniques of ptbread programming. Drawbacks are that only one ptbread per processor
is allowed and that not all loops can be parallelized.

You may be convinced you can do a better job than the compiler. The compiler is necessarily
conservative about what loops it parallelizes. Because you know the details of your code, you may
be able to make better decisions.

By writing your own pthreads; you can explore parallelization beyond loops. Loop parallelization is
most useful for data decomposition. Y ou may wish instead to parallelize your code at a higher level.
That is, you may want to perform task decomposition.

For example, you may detect independent calculations in your application (at a higher level than
loop iterations) that for clarity and performance reasons, you assign to different pthreads. For
example, you may assign one pthread to exchange messages with other compute nodes and another
ptbread to perform calculations.

Note that as an application programmer, you do not have control over which processor runs your
ptbread. That is determined by the operating system kernel at runtime.

6-3

SMP Programming Paragon™ System User's Guide

Relying on the Compiler
Using the compiler is the easiest way to achieve loop parallelization. The process is not entirely
automatic. You control the operation of the compiler with compiler switches, directives (for
Fortran), and pragmas (for C). Examples are shown later in this section.

For a complete description of compiler switches and directives, refer to the Paragon™ Fortran
Compiler User's Guide and the Paragon™ C Compiler User's Guide. This section describes the
most common use of the most common options.

Limitations when Relying on the Compiler

6-4

The pthreads package has the following limitations in the current release:

• Currently, only the following libraries are thread-safe:

libpthreads. a
libcJ.a
libmJ.a
libkmathJ.a
libksignaCr.a

You need not specify any of these libraries directly. The compiler switch -Meoneur ensures that
they are linked in. It is important to note, however, that libnx.a (which contains the calls
discussed in the Paragon system reference manuals) is not thread-safe. Hence, you must not try
to parallelize loops that contain calls to libnx.a.

• For performance reasons, the compiler-parallelized code generates only one additional pthread
for each additional application processor. This means one additional pthread when two
application processors are used.

• Any global variables used or set by a non-thread-safe library may also have to be protected. In
particular, you should pay attention to global variables set within your own routines when these
routines appear within loops and you have allowed the parallelization of loops containing calls
by specifying the compiler switch -Meneall.

• The application development tools currently are not thread-aware and do not have any features
to support pthreads.

In particular, IPD does not support the debugging of threaded applications. Similarly, the
debugging of core files generated by threaded applications is not supported. This includes
applications that use pthreads as a result of using the -Meoneur switch (or the associated
pragma) with the RS.O version of the compilers.

Paragon ™ System User's Guide SMP Programming

Setting DFL T _NCPUS

If you run your application on an MP system, a pthread is created at runtime. If, for debugging
purposes, you do not want to create a pthread; instead you want your application to run on only one
processor, set DFLT_NCPUS to 1. In this case, the application may run on either of the two
application processors.

On an MP system, setting DFL T_NCP US to 2 is the same as not setting it. Setting DFLT_NCPUSto

a value greater than 2 is an error that causes the application to terminate.

On a GP system, setting DFLT_NCPUS to 1 is the same as not setting it. Setting DFLT_NCPUS to
a value greater than 1 is an error that causes the application to terminate.

Set the environment variable as follows:

% setenv DPLT_NCPUS 1

Compiler Switches

The primary compiler switches used for loop parallelization are -Meoneur, -Mcneall, -Miomutex,
and -Mreentrant. You must use at least -Meoneur.

• -Meoneur tells the compiler to turn on parallelization. You can choose block or cyclic loop
parallelization.

The -Meoneur switch tells the compiler to parallelize those loops that qualify. When loops are
nested, the compiler will attempt to parallelize the outermost loop. More typically, however,
you would specify -Meoncur and then use directives or pragmas to target specific loops for
parallelization.

Loops that do not qualify for parallelization typically contain one of the following: a
cross-iteration dependency, a function call, a conditional statement, a small number of
iterations.

No loops will be parallelized unless -Mconcur is present on the compiler invocation line. This
switch must be present on both the compilation and link steps. If it only exists on the
compilation step, the linker will issue undefined symbol messages for runtime support routines.

Without options, -Mconeur directs the compiler to use block parallelization. This means that
processor 0 and processor 1 each get a contiguous block of iterations. The iterations are
balanced between the processors, and the specified number iterations is performed before either
processor leaves the parallelized loop.

You can instead specify cyclic parallelization. Do this by adding an option to -Mconcur as
follows -Meoneur=dist:cyclic. Cyclic parallelization means that every other iteration is
assigned to the other processor.

6-5

SMP Programming Paragon™ System User's Guide

• -Mcneall tells the compiler to allow parallelization for loops that contain a function or
subroutine call. If you specify -Mcncall, you must also specify -Mconcur. Also, you must
ensure that any routines within loops targeted for parallelization are thread-safe. You know that
routines from the C library are thread-safe because -Mconcur linked in the reentrant version of
libc.a, libc].a.

If you specify -Mcncall and the routine in a parallelized loop itself contains parallelized loops,
those loops are executed sequentially. However, the parallel code is still there; if the routine
exists outside a loop, its own loops will be executed in parallel.

• -Miomutex is only applicable to the Fortran compiler. Use this switch if your Fortran program
performs 110. This switch causes the compiler to place critical sections around the 110
statements of Fortran programs whether they are in loops or not. A critical section is a portion
of the code that is only executed by one processor. If you are not trying to parallelize loops with
110 statements, specify -Mnoiomutex.

• -Mreentrant is only applicable to the Fortran compiler. That is, for the C compiler,
-Mreentrant is the default, and -Mnoreentrant is ignored. -Mreentrant has two consequences
for the Fortran compiler.

1. The Fortran compiler does not perform any optimizations that might destroy reentrancy.

2. The default variable allocation becomes stack -based. That is, it is as if the switch -Mnosave
were issued. You can still specify particular variables as saved with SA VB declarations
within your code.

If you want to make calls within a parallelized loop, those calls must be compiled with
-Mreentrant.

When you specify -Mreentrant, you should be aware that your program's stack requirements
may increase.

The -Msave switch has the opposite effect of -Mreentrant. Programs compiled with -Msave will
have their local variables static, not stack-based. When compiling procedures intended to be
thread-safe, do not use -Msave with -Mreentrant.

Compiler Directives

6-6

For best results, you should use compiler switches as well as directives or pragmas. If you use
-Mconcur without directives or pragmas, the compiler will attempt to parallelize all loops that
qualify, starting with the outermost loop. With directives or pragmas, you can target specific loops
in your program for parallelization.

Directives or pragmas have three possible scopes: global, routine, and loop.

• Global means that the directive or pragma applies from its current position to the end of the file.

Paragon TM System User's Guide SMP Programming

• Routine means that the directive or pragma applies from its current position to the end of the
routine. This means that if you place a routine directive at the start of a subroutine, it applies to
just that subroutine.

• Loop means that the directive or pragma applies to the next loop. Its effect is not passed through
to any nested loops.

When you specify -Mconcur, the compiler attempts to parallelize all loops. With nested loops, the
compiler starts at the outermost loop and does not continue deeper into the nesting once it
successfully parallelizes. Most often you want to perform selective parallelization of loops. One
approach is to tum off all parallelization with a directive and then specifically target certain loops
for parallelization. Another approach is leave parallelization on and then specifically turn off
parallelization for particular loops.

Fortran Directives

Fortran directives begin in the first column position with a c, just like a comment. The syntax is as
follows:

cdir$x value

where x is one of g (for global), r (for routine), or I (for loop). value is the same keyword specified
by the switch. For example, the value of the directive corresponding to the switch -Mconcur is either
concur or noconcur; the value of the directive corresponding to the switch -Mcncall is either cncall
or nocncall.

In the following example, the fIrst directive turns off parallelization for the entire routine. The
second directive tells the compiler to attempt to parallelize the outer loop indexed by i, but not the
inner loop indexed by j.

cdir$r noconcur
cdir$l concur

do 100 i=l,n
do 100 j=l,m

100 continue

Fortran statements appear here

In the next example, the first directive turns off parallelization for the routine. The second directive
tells the compiler to attempt to parallelize the inner loop indexed by j, but not the outer loop indexed
by i.

cdir$r noconcur
do 100 i=l,n

cdir$l concur

6-7

SMP Programming

6-8

Paragon ™ System User's Guide

do. 100 j=l,m

Fortran statements appear here

100 continue

C Pragmas

C pragmas have the following syntax:

pragma scope value

where scope is one of global, routine, or loop. value is the same keyword specified by the switch.
For example, the value of the directive corresponding to the switch -Mconcur is either concur or
noconcur; the value of the directive corresponding to the switch -Mcneall is either cncall or
nocncall.

In the following example, the first pragma turns off parallelization for the entire routine. The second
pragma tells the compiler to attempt parallelize the outer loop indexed by i, but not the inner loop
indexed by j.

pragma routine no concur
pragma loop concur

for(i=Oi i<ni i++) {
for(j=Oi j<mi j++)

C statements appear here

In the next example, the first directive turns off parallelization for the routine. The second directive
tells the compiler to attempt to parallelize the inner loop indexed by j, but not the outer loop indexed
by i.

pragma routine noconcur
for(i=Oi i<ni i++) {

pragma loop concur
for(j=Oi j<mi j++)

}

C statements appear here

Paragon ™ System User's Guide SMP Programming

Getting Information

As you optimize your code, you may need more information about what the compiler has accepted
for parallelization, what it has rejected, and why it rejected certain loops.

Setting -Minfo=loop causes the compiler to report information about both vectorization and
parallelization. Previously, it reported only vectorization. By default, no information is displayed.

You may also choose to set -Mneginfo=concur. If the compiler rejects a loop for parallelization,
this switch causes the compiler to print a message explaining why.

Additional Information about Loop Parallelization

This section describes some additional topics you should consider when doing SMP programming.

Reductions

A loop is non-parallelizable if it contains cross-iteration dependencies. That is, the result of one
iteration is used in another iteration. A reduction is an operation that processes a vector of values and
reduces them to a single scalar.

Technically, a reduction has a cross-iteration dependency; but parallelization is possible if the order
of the reduction operations is altered. For example, summing the elements of a vector is a reduction
operation.

sum = a
do 100 i=l,n

sum = sum + v(i)
100 continue

Here, the value of sum from one iteration is used in the next iteration. But if each processor forms a
partial sum, and then the two processors communicate and sum their partial sums, the same answer
is obtained. This assumes, however, that the operations are commutative (their order does not
matter). This is true mathematically, but there may be some subtle numeric effects that you need to
take into consideration.

By default, the compiler will parallelize reduction loops. If you want to turn off the parallelization
of reduction loops, use the -Mconcur switch and set it equal to noassoc as follows:
-Mconcur=noassoc.

Note that you may have more than one assignment to -Mconcur. -Mconcur options are separated
by commas. For example, you may want to turn off parallelization of reduction loops as well as set
the distribution to cyclic. You would specify -Moncur as follows: -Mconcur=dist:cyclic,noassoc.

6-9

SMP Programming

6-10

Paragon ™ System User's Guide

Namelist Groups

Namelist groups are used in Fortran programs. Local variables that appear in a namelist group are
not placed on the stack, even if the module is compiled with -Mreentrant. They are statically
allocated. If you compile with -Mcncall (which allows loops with procedures to be parallelized),
then you should check that the variables in the namelist group do not introduce unwanted thread
dependences. Treat the namelist variable as if it were declared in a SA VB statement.

Calls within Loops

It was stated earlier that -Mconcur linked in libcj.a. This library is linked in for both C and Fortran
programs. Fortran code requests libf.a and this is linked in automatically. libf.a uses either libc.a or
libcj.a; and if you specify the -Mconcur switch, libcj is linked in.

libcj.a contains reentrant versions of the C library calls. Note, however, that if you do not also
specify -Mcncall, the compiler will not attempt to parallelize loops containing C library calls even
though these C calls are thread-safe.

Basic Math Library Calls

When you compile your program with -Mconcur, the reentrant version of the Basic Math Library,
libkmathj is linked in. The Basic Math Library calls are then executed in parallel.

If you parallelize a loop that contains a Basic Math Library call, the call itself is not parallelized; but
because the loop is parallelized, the call must be thread-safe.

Default Loop Thresholds

The compiler attempts to parallelize a loop only if its iteration count exceeds 100. If the loop is a
reduction loop, its iteration count must exceed 200 before it is considered. Currently, these numbers
are hard limits, and their values are subject to change.

Focus on Compute Node Processes

Best results are achieved if you limit loop parallelization to processes running on the compute node.
Do not parallelize service node applications of the controlling process of a parallel application.

Paragon TM System User's Guide SMP Programming

Writing Custom Pthread Applications
This section describes how to achieve SMP parallelization by writing your own ptbread applications.
If you write your own ptbread applications, do not use any of the compiler switches discussed in
"Compiler Switches" on page 6-5.

Limitations when Writing Custom Pthread Applications

• Currently, only the following libraries are thread-safe:

libpthreads. a
libcJ.a
libmJ.a
liblanathJ.a
libksignaCr.a

These libraries must be linked iIi explicitly if you are writing custom pthread applications.

• Any global variables used or set by a non-thread-safe library may also have to be protected. For
example, if a non-thread-safe function sets the global variable ermo, you must be sure to read
the value of erma before allowing any other ptbread to make any call that could change the
value of ermo. See "ermo Confusion" on page 6-50 for more information about ermo.

• On a GP node, all the pthreads in a process always run on the same processor. Scheduling of
pthreads is handled by the kernel, which uses a policy of time sharing with aging. You cannot
control or get information about pthread scheduling by using pthread library calls. On an MP
node all ptbreads run on both available application processors.

• Pthreads use kernel resources as well as user-level resources (to be specific, each ptbread uses
one kernel thread). This means that using very large numbers of pthreads can exhaust certain
resources within the kernel.

• The POSIX Threads Extension [C language] P 1 003.4a1D4 (Draft 4), August 1990 includes an
optional feature called "thread priority scheduling." This feature is not available in the current
release. If you attempt to make use of this feature, you will get compilation errors (for use of an
unsupported data type), link errors (for use of an unsupported library call), or run-time errors
(for use of an unsupported system call). If a run-time error occurs, the call fails with the ermo
value ENOSYS.

• There is no Fortran interface to the pthreads package. If you must use pthreads in a Fortran
program, you could make the calls to the ptbreads library from a C function, which can then be
compiled to a .0 file and linked into the Fortran program. However, this programming model
has not been tested.

6-11

SMP Programming Paragon ™ System User's Guide

• The application development tools currently are not thread-aware and do not have any features
to support pthreads.

In particular, IPD does not support the debugging of threaded applications. Similarly, the
debugging of core files generated by threaded applications is not supported.

• Pthread-specific data are bound to a pthread key with pthread_setspecificO. The key is created
with pthread_keycreateO. Note that all pthread-specific data for a process reside in one
memory page, which on Paragon systems is 4K bytes. Hence, you may have
pthread_keycreateO fail on ENDMEM when your system still has memory available.

Recommended Safe Operating Environment

6-12

The previous section described the limitations which cannot be exceeded. This section recommends
limitations which you should not exceed in the current release. Exceeding these limitations may
result in unexpected behavior, up to and including system crashes and data loss.

• No process should have more than six pthreads at once. This limitation is due to the availability
of system resources and the use of the reentrant C library.

Any pthread can create or terminate another pthread at any time. The system does not impose a
limit on the number of active pthreads in a process, on a node, or in the whole system. However,
the total active pthreads per process (including the main thread) should be kept at or below six.
Exceeding this limit may result in an emulator exception.

Under some circumstances, you may wish to risk creating more than six pthreads. If you do so,
any additional pthreads should only perform computation and not make calls to libc].a. The
stack size is one of the system resources that limits the number of pthreads, and so decreasing
the stack size may allow you to create more pthreads. Creating more than six pthreads, however,
remains currently unsupported.

• Only one pthread in a process should use the message-passing calls described in Chapter 3. The
message-passing pthread can be the main thread or another pthread, but a pthread other than the
main thread will experience higher message latency than the main thread.

This limitation is due to the fact that the message-passing library (libnx.a) is not thread-safe.
Also, there is no mechanism in current message passing calls to send or receive messages to or
from a specific pthread within a process. See "Message Passing and Pthreads Library Calls" on
page 6-46 for more information.

If more than one pthread in a process attempts to perform message passing, message~passing
performance may degrade, incorrect information may be returned from an info ... O call, and
global operations such as gsyncO may give unexpected results.

Paragon ™ System User's Guide SMP Programming

• All global operations (such as gsync()) must be performed by the message-passing pthread. This
is necessary because all global operations use message-passing to synchronize the nodes. You
can synchronize ptbreads within a process by using a global variable counter as a barrier.

• Only one ptbread in a process should use the parallel file liD calls described in Chapter 5. The
liD pthread can be the main thread or another pthread. See "File liD and Pthreads Library Calls"
on page 6-47 for more information.

• The calls gopenO and setiomodeO use message-passing internally. If the liD pthread is not also
the message-passing ptbread, you must make sure that these calls are not used at the same time
as any message-passing calls in the message-passing ptbread.

• The standard OSF!l file liD system calls, such as readO and writeO, can be called from
multiple pthreads at the same time if they are called from a controlling process and they are only
used with files that reside in UFS file systems. Otherwise, only one pthread in a process can use
them.

• Applications with multiple ptbreads should not be run in gang-scheduled partitions. Gang
scheduling of tbreaded applications has not been thoroughly tested.

• Do not call sigwaitO to wait on synchronous signals (those that are generated synchronously as
the results of a ptbread's faults, such as SIGBUS and SIGSEGV). Doing this may cause the
application or the system to crash. See "Managing Signals" on page 6-44 for more information
about sigwaitO.

• Do not use calls from libpthreads.a or libcJ.a within a signal handler. Some of these calls use
mutexes internally, which may result in deadlock (the handler can fmd itself waiting on an
unavailable mutex lock, while the mutex lock cannot be released until the signal handler has
returned).

• Asynchronous cancellation is very destructive and should be avoided. In particular, attempting
to cancel a ptbread doing file liD on a PFS or UFS file system can cause the entire application
to hang. See "Canceling Pthreads" on page 6-38 for more information about asynchronous
cancellation.

• Do not terminate a process when other ptbreads are progressing. For example, calling exitO or
returning from MainO kills all tbreads and terminates the entire process. If there are any other
pthreads in the process, including ptbreads generated transparently by library calls, null
processes may result. Be sure to terminate all ptbreads gracefully before terminating the
program. In particular, be sure that all asynchronous and interrupt-driven message and liD
operations (such as hrecvO or iread()) are complete before the program terminates. It is also a
good idea to ensure that mainO always exits by calling pthread_exitO, never by calling exitO
or by reaching the closing brace of MainO. The last active ptbread should call exitO to terminate
process execution.

• No Mach calls can be used in a pthreads program. The Mach kernel interface (libmach.a) is not
supported in the current release; use of Mach features in pthreads programs can cause ptbreads
internal errors or system crashes.

6-13

SMP Programming Paragon 1M System User's Guide

Compiling and Linking a Pthread Application

When compiling a program that uses the pthreads package, you should define the symbol
_REENTRANT; this symbol ensures that thread-safe definitions are used in all included header
files. (The compiler switch -M[no]reentrant does not have any effect on whether or not the
resulting code is thread-safe. It only determines whether or not the code can be called recursively.)

When linking a program that uses the pthreads package, you must link in the library libpthreads.a,
followed by the library libcJ.a. If you use the -nx switch, it can appear on the command line either
before these two libraries or after them; if you use the -lox switch, it should appear after both these
libraries. The standard C library is also linked by default, but only after searching all libraries
specified on the command line.

For example:

• To compile and link a non-parallel program:

% cc -D_REENTRANT -0 node node.c -lpthreads -lc_r

• To compile and link a controlling process:

% cc -D_REENTRANT -0 node node.c -lpthreads -lc_r -lnx

• To compile and link a parallel application:

% cc -D_REENTRANT -0 node node.c -lpthreads -lc_r -nx

• To compile and link a parallel application with the reentrant math library:

Using Reentrant C Library Calls

6-14

The reentrant C calls are used by both Fortran and C programs. Although you cannot invoke these
calls directly from a Fortran program, certain Fortran routines call them internally.

Only the calls in the reentrant C library (libcr.a), the calls in the ptbreads library (libpthreads.a),
the calls in the math libraries (libmJ.a and libkmathJ.a), and the calls in the optional signal
processing library (libksignaCr.a) are guaranteed to be thread-safe. Any calls to other libraries must
be protected so that no two pthreads can call them at the same time. Table 6-1 lists the calls in
libcJ.a.

Paragon ™ System User's Guide SMP Programming

Table 6-1. Calls in Reentrant C Library (libc].a) (1 of 2)

abortO endgrentO fstatfsO getsocknameO memcpyO
absO endpwentO fsyncO getsockoptO memmoveO
acceptO endttyentO ftellO gettimeofdayO memsetO
accessO endusershellO ftruncateO gettimerO mkdirO
acctO endutentO ftwO getttyent_rO* mknodO
adjtimeO exec_ with_IoaderO funlockfIleO* getttynam]O* mkstempO
advanceO execlpO fwriteO getuidO mktempO
alarmO execvpO gcvtO getusershell_rO* mktimeO
allocaO exitO getaddressconf() getutenCrO* mktimerO
asctime_rO* fabsO getcO getutid_rO* mmapO
async_daemonO fchdirO getcharO getutline_rO* modfO
atexitO fchmodO getclockO getwO mountO
atofO fchownO getcwdO getwcO mprotectO
atoiO fcloseO getdirentriesO getwdO msem_initO
atolO fcntlO getdtablesizeO gmtimeO msem_IockO
bcmpO fcvt_rO* getegidO gmtime_rO* msem_removeO
bcopyO fdopenO getenvO htonlO msem_unlockO
bindO feofO geteuidO htonsO msgctlO
brkO ferrorO getfbO initstateO msggetO
bzeroO mushO getfsenCrO* initstate_rO* msgrcvO
callocO ffsO getfsfIle_rO* insqueO msgsndO
catcloseO fgetcO getfsspec_rO* ioctlO msyncO
catgetsO fgetsO getfsstatO isalnumO munmapO
catopenO fIl.enoO getgidO isattyO mvalidO
chdirO .flockO getgrenCrO* isdigitO nfssvcO
chmodO flockiIleO* getgrgid_rO* isnanO niceO
chownO fopenO getgmam_rO* isnandO nl_IanginfoO
chrootO fpathconfO getgroupsO isnanfO ntohlO
clearerrO fpgetmaskO gethostidO isspaceO ntohsO
clockO fpgetroundO gethostnameO isupperO openO
closeO fpgetstickyO getitimerO isxdigitO opendirO
closedirO fprintfO getlogin_rO* killO pathconfO
connectO fpsetmaskO getpagesizeO IdexpO perrorO
creatO fpsetroundO getpeemameO linkO pipeO
ctermidO fpsetstickyO getpgrpO listenO plockO
ctime_rO* fputcO getpidO localtime_rO* polIO
cuseridO fputsO getppidO longjmpO printfO
dbm_closeO freadO getpriorityO lseekO profIlO
dbm_fetchO freeO getpwenCrO* IstatO ptraceO
dbm_openO freopenO getpwnam_rO* madviseO putcO
dupO frexpO getpwuid_rO* mallocO putcharO
dup20 fscanfO getrlimitO memccpyO putsO
ecvt_rO* fseekO getrusageO memchrO pututline_rO*
endfsentO fstatO getsO memcmpO putwO

* Does not exist in the standard C library (libc.a).

6-15

SMP Programming Paragon™ System User's Guide

Table 6-1. Calls in Reentrant C Library (libc].a)- (2 of 2)

putwcO semctIO setttyentO strchrO ulimitO
quotactlO semgetO setuidO strcmpO umaskO
raiseO semopO setusershellO strcpyO umountO
randO sendO setutent() strcspnO uname()
rand30* sendmsgO setvbufO strdupO ungetcO
random 0 sendtoO shmatO strerror _rO * uulinkO
random_rO* setbufO shmctlO strftimeO uulocked_fcloseO*
re_comp_rO* setbufferO shmdtO stringO uulocked_fflushO*
re_exec_rO* setclockO shmgetO strlenO uulocked_freadO*
readO setfsentO shutdownO strncatO uulocked_fseekO*
readdirO setgidO sigactionO strncmpO uulocked_fwriteO*
readdir30* setgrentO sigaddsetO strncpyO uulocked~etcO*

readlinkO setgroupsO sigdelsetO strpbrkO unlocked~etcharO*

readvO sethostidO sigemptysetO strrchrO uulocked~etwcO*

reallocO sethostnameO sigfIlIsetO strspnO unlocked_putcO*
rebootO setitimerO sigismemberO strtokJO* unlocked_putcharO*
recvO setjmpO signalO strtolO unlocked_setvbufO*
recvfromO setIinebufO sigprocmaskO strtoulO utimesO
recvmsgO setIocaleO sigreturnO swaponO utmpnameO
reltimerO setIoginO sigstackO synIlinkO vforkO
remqueO setpgidO sigsuspendO syncO vfprintfO
renameO setpgrpO sleepO sysconfO vprintfO
revokeO setpriorityO socketO tableO vsprintfO
rewindO setpwentO socketpairO tempnamO wait40
rewinddirO setregidO sprintfO timeO waitpidO
rindexO setreuidO srandO timesO writeO
rmdirO setrlimitO srandomO tmpfileO writevO
rmknodO setsidO srandom_rO* tmpnamO
rmtimerO setsockoptO sscanfO tolowerO
sbrkO setstateO statO truncateO
scanfO setstateJO* statfsO ttynameJO*
selectO settimeofdayO strcatO tzsetO

* Does not exist in the standard C library (libc.a).

6-16

The calls in libcJ.a can be divided into three groups according to their names:

• Most of the calls in libcJ.a have the same names as calls in the standard C library (libc.a).
These calls generally work the same as the equivalent calls in libc.a. However, they perform
special checks and locks internally to be sure they will work if called by multiple pthreads at the
same time. Also, many blocking system calls only block the calling pthread instead of every
pthread of the process. The following commonly-used calls have the following effects in
programs with multiple pthreads:

Paragon ™ System User's Guide

exitO

forkO

execO

chdirO

sleepO

waitO

perrorO

SMP Programming

Kills all pthreads of the process and closes all opened files. See "Calling
exitO" on page 6-51 for more information on using exitO in programs
with multiple tbreads.

Copies only the calling pthread to the new process's address space. If a
mutex lock is held by another pthread, then the calling pthread in the new
process may deadlock. For example, if a process has two pthreads and
ptbread 0 calls forkO when ptbread 1 is holding a mutex lock inside a call
to printfO, only the ptbread in the new process will hang when it calls
printfO·

Kills all ptbreads other than the calling ptbread, then loads a new
program into the process's address space. The result is a new program
with one ptbread. The calling pthread can create additional ptbreads if it
wants.

Changes the current working directory for all ptbreads in the calling
process.

Puts only the calling pthread to sleep.

Blocks only the calling ptbread; does not return until every pthread of the
process being waited for exits. Note that a pthread can waitO for a
process created by a different ptbread.

Uses the per-pthread ermo (see "ermo Confusion" on page 6-50).

Note that these calls may have different semantics on different platforms:

• libcr.a also includes some calls whose names end in _r. These calls do the same thing as the
similarly-named calls in the standard C library, but have different parameters.

If the _r call is the only version of the call in libc].a, you must use the] call to be sure
your code is thread-safe. This is the case for most of the] calls.

If both an _r and a non-_r version of the call exist in libc].a, both versions are tbread-safe,
but the _r version offers better performance. This is the case for gmtimeO, initstateO,
randO, randomO, readdirO, setstateO, and srandomO.

The _r calls are noted with an asterisk in Table 6-1.

• Finally, the calls tlockiJleO, funlockiJleO, and unlocked_ ••• O exist only in libc].a:

tlockiJleO

funlockiJleO

Locks the specified standard 110 stream for exclusive use by the calling
pthread.

Unlocks the specified stream.

6-17

SMP Programming Paragon™ System User's Guide

unlocked_ ••• O Performs operations on a stream while it is locked (these are called
"unlocked" calls because they do not perform any locking or unlocking
of their own).

The unlocked_ ... O calls are not thread-safe by themselves; they must be used together with
tlockf'IleO/funlockf'IleO.

These calls offer better 110 performance and more control over 110 from pthreads than the
standard thread-safe 110 calls. For example, the thread-safe version of putcO locks out all other
110 calls, writes the specified character, then unlocks. If you write a series of characters to a file
with putcO, this locking and unlocking results in considerable overhead; also, there is nothing
to prevent characters written by two different pthreads from becoming intermingled.

You can instead use flockf'IleO to lock out all other operations on the file, a series of
unlocked-putcO calls to write characters without locking and unlocking, and finally a
funlockf'IleO to release the lock. In this case only one pair of lock/unlock operations is
performed; your 110 performance will be better, and no other pthread' s output can interfere. See
the OSFll Programmer's Reference for more information about these calls.

Using Pthreads Library Calls

6-18

This section tells you how to use the calls in libpthreads.a to create and control pthreads in your
programs. See the OSFll Programmer's Reference for more detailed information on each call.

Pthreads Library Data Types and Symbols

In order to use any calls from the pthreads library, your program must include the file <pthread.h> ,
which defines several types and symbols used by this library. The most important of these are:

Within each process, each active pthread is identified by a unique pthread ID,
which is a value of type pthreadJ You use a pthread' s ID to identify the
pthread in all calls that control pthreads.

pthread_mutex_t and pthread_cond_t
Each active mutex is identified by a value of type pthread_mutex_t, and each
active condition variable is identified by a value of type pthread3ond_t.

pthread_attr _t, pthread_mutexattr _t, and pthread_condattr_t
Objects of these types, called attributes objects, are used to specify the
attributes (characteristics) of pthreads, mutexes, and condition variables.
These types are extensible, and can support new features added by later
revisions of the pthreads standard while maintaining compatibility with
existing programs. Objects of these types are created with default values and
can be changed by pthreads library calls.

Paragon ™ System User's Guide SMP Programming

pthread_attr _default, pthread_mutexattr _default, and pthread_condattr _default
These are external symbols whose values are the default attributes for an
object of the appropriate type. If you want to create an object with the default
attributes, you can use one of these symbols instead of creating a new
attributes object with the default attributes.

pthread_key_t This data type supports the per-pthread global data structure in the pthreads
library. This enables different functions to access global data that only
belongs to a single pthread.

The Main Thread

Each program initially has a single thread-the flow of control that starts at the beginning of the
function mainO. This thread is referred to as the main thread.

Any other pthreads in the program are created by the main thread, either directly or indirectly. But
threads do not have a parent-child relationship, as processes do, so the main thread does not have
any special relationship with or control over other pthreads in the process.

However. the C library treats the function mainO specially, in a way that can affect other threads in
the process:

NOTE

If the function mainO returns (either by executing a return
statement or by reaching the closing brace of the function), the C
library generates an implicit call to _exitO, which kills all pthreads
in the process and terminates the process.

This means that you must either have mainO wait for all other pthreads before returning, or make
sure that mainO always terminates itself by calling ptbread_exitO rather than calling exitO or
returning.

6-19

SMP Programming

6-20

Managing Pthread Execution

Synopsis

int pthread_create(
ptbread_t *thread,
ptbread_attct attr,
void *(*routine)(void *arg),
void *arg);

int pthread_equal(
pthread_t thread] ,
ptbread_t thread2);

void pthread..Yield(void);

void pthread_exit(
void *status);

int pthreadJoin(
ptbread_t thread,
void ** status);

int pthread_detach(
ptbread_t *thread);

Paragon ™ System User's Guide

Description

Creates a ptbread.

Returns the ID of the calling ptbread.

Compares two ptbread identifiers.

Allows the scheduler to run another pthread
instead of the current one.

Terminates the calling ptbread.

Waits for a ptbread to terminate.

Detaches a ptbread. Invalidates the specified
ptbreadID.

To create a ptbread, call pthread_createO. This call has the following parameters:

thread

attr

routine

arg

Pointer to a variable of type pthread_t that receives the ptbread ID of the
newly-created ptbread.

An object of type pthread_attr _t that describes the desired attributes of the
new ptbread. This can be the default ptbread attribute object
pthread_attr _default, or a user-created pthread attribute object (see
"Managing Pthread Attributes" on page 6-22).

Pointer to the initial function to be executed by the new pthread. This function
is assumed to return void * and to have one argument of type void *.

Value of type void * to be passed to the initial function as its argument.

A ptbread can determine its own pthread ID by calling pthread_selfO, and a ptbread ID can be
compared against another ptbread ID by calling pthread_equalO. Note that pthreadj is an
"opaque" type, and you should not use standard C operators on it.

Paragon ™ System User's Guide SMP Programming

The pthreadJieldO call will decrease the priority of the calling pthread and give up the node's
processor to other ptbreads that have higher priorities than the calling pthread. The kernel decides
which thread to run next, based on its time sharing and aging policies. Eventually, the calling ptbread
will be scheduled to run again when other ptbreads become lower priority ptbreads. A ptbread
should call pthreadJieldO to give up the processor when it is making no progress or has no work
to do.

A ptbread terminates when it calls ptbread_exitO or returns from its initial function. However, the
termination of a ptbread does not release all the resources associated with the pthread. To release a
terminated ptbread's resources, a different pthread must call pthread..JoinO or pthread_detachO:

• pthread..JoinO blocks until the specified pthread terminates, then releases the specified
pthread's resources and returns the exit status of the specified pthread to its caller. The exit
status is the value specified in the ptbread's pthread_exitO call, or the return value of its initial
function if it did not call pthread_exitO.

• pthread_detachO tells the ptbreads library to release the specified pthread's resources, then
returns immediately to its caller. Later, when the specified pthread terminates, the library
releases the ptbread's resources and discards the pthread's exit status. Once a ptbread has been
detached, any subsequent calls to pthread-JoinO or pthread_cancelO specifying that ptbread
will fail.

Any pthread that creates other ptbreads should call pthread..JoinO or pthread_detachO for each
pthread it created before it terminates itself.

6-21

SMP Programming

6-22

Managing Pthread Attributes

Synopsis

int pthread_attr_create(
pthread_attct *attr);

int pthread_attr_setstacksize(
pthread_attct *attr,
long stacksize);

int pthread_attr_delete(
pthread_attr_t *attr);

int pthread_attr ~etstacksize(
pthread_attr_t attr);

Paragon ™ System User's Guide

Description

Creates a pthread attributes object.

Sets the value of the stack size attribute of a
ptbread attributes object.

Deletes a pthread attributes object.

Returns the value of the stack size attribute of a
pthread attributes object.

The only pthread attribute that is currently modifiable is stack size. (A pthread's priority and
scheduling policy are managed by the kernel and cannot be inspected or changed.) To set a pthread' s
stack size, use the following procedure:

1. Call pthread_attr_createO to create a pthread attributes object (an object oftype
pthread_attr _t).

2. Call pthread_attr_setstacksizeO to set the stack size in that object.

3. Use the modified ptbread attributes object in the call to pthread_createO that creates the
pthread.

4. Call pthread_attr_deleteO to remove the pthread attributes object.

Once a pthread has been created, the size of its stack is fixed and can't be changed.

To use the default stack size, you can simply use the default ptbread attribute object
pthread_attr _default instead of creating your own pthread attributes object.

You can use pthread_attr_getstacksizeO to find out the current stack size in a pthread attributes
object.

NOTE

Whenever possible, use the same stack size for all pthreads. Be
sure to check the stack size. The default stack size increased for
Release 1.3.

Paragon ™ System User's Guide SMP Programming

Each pthread is built on a lower-level construct called a kernel thread. When you create a pthread,
the pthread library tries to re-use a kernel thread from a pool of existing kernel threads. This means
that creating a new pthread is more expensive if there are no existing kernel threads inside the
pthreads library that can be reused. A major cause for the kernel being unable to recycle kernel
threads is using a different stack size for new ptbreads; this should be avoided.

6-23

SMP Programming

6-24

Managing Mutexes

Synopsis

int pthread_mutex_init(
pthread_mutex_t *mutex,
pthread_mutexattr_t attr);

int pthread_mutex_lock(
pthread_mutex_t *mutex);

int pthread_mutex_trylock(
pthread_mutex_t *mutex);

int pthread_mutex_unlock(
pthread_mutex_t *mutex);

int pthread_mutex_destroy(
pthread_mutex_t *mutex);

Paragon ™ System User's Guide

Description

Creates a mutex.

Locks a mutex.

Tries once to lock a mutex.

Unlocks a mutex.

Deletes a mutex.

A pthread mutex is a binary semaphore with two states: locked and unlocked. When a mutex is
created, its initial state is I,mlocked. Only one pthread at a time can lock a mutex. When a pthread
successfully locks a mutex, it becomes the mutex' s owner. Any other pthread that attempts to lock
the mutex will block until the owner unlocks the mutex. Mutexes cannot be used recursively: if the
owner attempts to lock the mutex again, the attempt fails.

You should use mutex locks to serialize pthread access to a block of code that accesses a
nonshareable resource, such as a file or a non-thread-safe library. A ptbread that is waiting on a
mutex lock will not use any ofthe node's processor time.

To create and initialize a mutex, call pthread_mutex_initO. This call creates a new mutex with the
attributes specified by attr (typically the default mutex attributes object pthread_mutexattr _default)
and stores the new mutex's ID into the variable pointed to by mutex. A newly-created mutex is
unlocked.

To lock a mutex, call pthread_mutex_lockO. The call to pthread_IDutex_lockO will block the
calling pthread until the mutex lock is available. A pthread waiting on a mutex lock will be scheduled
out and another pthread will be scheduled to run. When the calling pthread is again scheduled to run
because no higher-priority pthread can run, it checks the availability of the mutex lock again and is
scheduled out again if the mutex lock is still unavailable.

Note that there is no guarantee that a pthread waiting on a pthread_IDutex_lockO will eventually
get the lock. If you do not want to block until the lock is available, call pthread_mutex_trylockO.
This call tries once to lock the specified mutex. If the attempt succeeds, the call returns 1
immediately; but if the mutex is already locked, the call returns 0 immediately.

Paragon TM System User's Guide SMP Programming

When a pthread is finished using the resource controlled by the mutex, it should release the lock by
calling ptbread_mutex_unIockO. This allows any other ptbread that has been waiting to lock the
mutex to proceed.

When all ptbreads have finished using the mutex, you should remove it and release all resources
associated with it by calling ptbread_mutex_destroyO. You cannot destroy a mutex that is
currently locked. Attempting to lock or unlock a mutex that has been successfully destroyed will
result in undefined behavior.

6-25

SMP Programming

6-26

Managing Mutex Attributes

Synopsis

int pthread_mutexattr _create(
pthrea(Cmutexattct *attr);

int pthread_mutexattr_delete(
pthread_mutexattct *attr);

Paragon™ System User's Guide

Description

Creates a mutex attributes object.

Deletes a mutex attributes object.

No mutex attributes are currently defined. You can either use the default mutex attributes object,
pthread_mutexattr _default, or create a mutex attribute object for use in pthread_mutex_initO by
calling pthread_mutexattr_createO. A user-created mutex attributes object should be released by
calling pthread_mutexattr_deleteO.

Paragon™ System User's Guide SMP Programming

An Example Pthreads Program

The following program demonstrates some principles of using ptbreads and mutexes. It creates a
user-specified number ofpthreads, each of which prints its node number, ptype, and pthread ill and
the message "Done."

#include <pthread.h>
#include <stdlib.h>
#include <nx.h>

#define MAXTHREAD 6

/* pthread resources */

/* thread maximum limit */

pthread_t thread[MAXTHREAD];
pthread_mutex_t mutex;

/* per-thread pthread ID */
/* mutex to protect global

variable "thread_alive" */

/* global variables that only the main thread writes to */
int max_thread = MAXTHREAD; /* maximum thread number */
int my_node; /* my node number */
int my-ptype; /* my ptype */

/* shared global variable that is modified by all threads */
int thread_alive; /* count of living threads */

/* forward declarations */
void thread_fun(int thread_id);

main(int argc, char *argv[])
{

int
int

index;
my_thread = 0;

my_node = mynode();
my-ptype = myptype();

if(argc != 2) {
if(my_node == 0) {

/* initial function for
new threads */

/* loop index */
/* main thread is indexed 0 */

printf("Usage: %s <nthreads>\n", argv[O]);
}

exit (1) ;

max_thread = atoi(argv[l]);

if(max_thread > MAXTHREAD) {

6-27

SMP Programming Paragon ™ System User's Guide

if(my_node == 0)
printf("Error: %d threads requested, must be %d or less\n",

max_thread, MAXTHREAD);

exit(l);

/* The main thread is the last thread alive, so don't count itself. */
thread_alive = max_thread - 1;

/* create and initialize a mutex to control access to "thread alive" */
if (pthread_mutex_init (&mutex, pthread_mutexattr_default) == -1)

perror ("pthread_mutex_init Error");

/*
* Spawn threads and remember each thread's pthread ID.
* The main thread is indexed as thread O.
*/
thread [my_thread] = pthread_self();
for (index = 1; index < max_thread; index++)

if(pthread_create(&thread[index], pthread_attr_default,
(void *)thread_fun, (void *)index) == -1)

perror ("pthread_create Error");
exit(2) ;

/* loop until all other threads are finished. */
while(thread_alive != 0) {

pthread-yield() ;

/*
* Ignore other threads' exit status (can also be done right after
* pthread_create()).
*/

for (index = 1; index < max_thread; index++)
pthread_detach(&thread[index]);

printf(" (%3d, %3d, %3d) Done\n", my_node, my-ptype, my_thread);

/***
* thread_fun() -- This is the initial function for new threads
**/

6-28

Paragon TM System User's Guide SMP Programming

void thread_fun(int my_thread)

printf (" (%3d, %3d, %3d) Done\n", my_node, my-ptype, my_thread);

/*
* use mutex to protect global variable "thread_alive"
*/
if (pthread_mutex_lock(&mutex) == -1) {

perror ("pthread_mutex_lock Error") ;
}

thread_alive--;
if (pthread_mutex_unlock(&mutex) == -1) {

perror("pthread_mutex_unlock Error");

/* terminate (status is ignored) */
pthread_exit(NULL);

Assuming this program is called pthreads.c, use the following command to compile it:

% cc -D_REENTRANT -0 pthreads ptbreads.c -lpthreads -lc_r -nx

To run this program with three pthreads per process on two nodes of your default partition, use the
following command:

% ptbreads 3 -sz 2

The results of this application run:

0, 0, 2) Done
1, 0, 1) Done
0, 0, 1) Done
0, 0, 0) Done
1, 0, 2) Done
1, 0, 0) Done

Note that the results may appear in a different order on each run.

6-29

SMP Programming Paragon ™ System User's Guide

Using Condition Variables to Synchronize Pthreads

6-30

Synopsis

int pthread_cond_init(
pthread30nd_t *cond,
pthread_condattr_t attr);

int pthread_cond_wait(
pthread30nd_t *cond,
pthread_mutex_t *mutex);

int pthread_cond_timedwait(
pthread30nd_t *cond,
pthread_mutex_t *mutex,
struct timespec *abstime);

int pthread_cond_signal(
pthread_cond_t *cond);

int pthread_cond_broadcast(
pthread_cond_t *cond);

int pthread_cond_destroy(
pthread_cond_t *cond);

Description

Creates a condition variable.

Waits on a condition variable.

Waits on a condition variable for a specified
period of time.

Wakes up a pthread that is waiting on a condition
variable.

Wakes up all pthreads that are waiting on a
condition variable.

Destroys a condition variable.

A condition variable is a construct that implements synchronization among pthreads. There are other
ways of implementing synchronization, but for many applications condition variables are the most
straightforward.

For example, consider two pthreads. Assume that one is a producer and the other a consumer. The
producer could be a pthread that received messages, and the consumer could be a pthread that
processed the messages. The producer places the messages in a buffer shared with the consumer. The
consumer must have some way of knowing when the buffer contains messages to process.

You could program the consumer to continually check a flag that's set by the producer. If the
consumer does this, it is spinning, which is wasteful of CPU cycles. Alternatively, you could
program the consumer to periodically check a flag. This is polling, which, although not as wasteful
as spinning, still is profligate of computer cycles.

Better yet, the consumer could block until the producer signals it that messages are ready for
processing. The pthreads package provides condition variables for this purpose.

Condition variables use the following objects:

• A mutex (an object of type pthread_mutex_t, as discussed under "Managing Mutexes" on page
6-24) that is used to protect the pthread condition variable and the global predicate variable.

Paragon™ System User's Guide SMP Programming

• A condition variable (an object of type pthread_cond_t) that links all pthreads waiting on a
particular condition.

• A global predicate variable that indicates the current state of the condition. It could be a global
integer variable.

To create and initialize a condition variable, call pthread_cond_initO. This call creates a new
condition variable with the attributes specified by attr (typically the default condition attributes
objectpthread_condattr_default) and stores the new condition variable's ID into the variable
pointed to by condo The list of pthreads that are waiting on the new condition variable is initially
empty.

To wait for a condition, call pthread_cond_ waitO. This call unlocks the specified mutex and blocks
until the specified condition is signaled by another pthread. When the condition is signaled, the call
re-Iocks the mutex and returns to the caller. pthread_cond_timedwaitO is similar, but if the
specified amount of time passes before the condition is signaled, the call re-Iocks the mutex and
returns an error condition. You must successfully lock the specified mutex before calling
pthread_cond_ waitO or pthread_cond_timedwaitO, and you should unlock the mutex after the
call to pthread_cond_ waitO or pthread_cond_timedwaitO returns.

To signal a condition, call pthread_cond_signalO or pthread_cond_broadcastO.
pthread_cond_signalO signals the specified condition to one of the pthreads that is waiting for it
(if more than one pthread is waiting for the condition to be signaled, the kernel selects one of them
arbitrarily). pthread_cond_broadcastO signals the specified condition to all of the pthreads that are
waiting for it. If no other ptbread is waiting on the condition, these calls have no effect. No mutex
lock is required for these calls (but a mutex can be used to prevent certain race conditions; see the
example on page 6-34).

If a pthread calls pthread_ cond_ waitO after the specified condition has been signaled, that pthread
could wait forever. To prevent this problem, use a global predicate variable. This can be any
variable that is visible to all pthreads. You use it as follows:

• Before calling pthread_cond_signalO or pthread_cond_broadcastO, a pthread should set the
value of the condition's global predicate value to indicate that the condition has occurred. The
global predicate value should be protected by a mutex if there is any possibility that more than
one pthread could try to set it at once.

• Before calling pthread_cond_ waitO or pthread_cond_timedwaitO, a pthread should check
the current value of the condition's global predicate variable. If the condition has already
occurred, the pthread should proceed without calling pthread_cond_ waitO or
pthread_cond_timedwaitO.

• After a successful call to pthread_cond_waitO or ptbread_cond_timedwaitO, a pthread
should check the global predicate value to be sure it has the expected value. If the global
predicate variable does not indicate that the condition has occurred, the pthread should call
pthread_cond_ waitO or pthread_cond_timedwaitO again.

6-31

SMP Programming

6-32

Paragon ™ System User's Guide

The first example shown under "Examples of Condition Variables" on page 6-33 gives an example
of this technique.

When all pthreads have finished using a condition variable, you should remove it and release all
resources associated with it by calling pthread_cond_destroyO. You cannot destroy a condition
variable that is currently being waited on.

Paragon ™ System User's Guide SMP Programming

Managing Condition Attributes

Synopsis

int pthread_condattr_create(
pthreruCcondattct *attr);

int pthread_condattr_delete(
ptbread_condattr_t *attr);

Description

Creates a condition variable attributes object.

Deletes a condition variable attributes object.

No condition attributes are currently defined. You can either use the default condition attributes
object, pthread_condattr _default, or create a condition attribute object for use in
pthread_cond_initO by calling pthread_condattr_createO. A user-created condition attributes
object should be released by calling pthread_condattr_deleteO.

Examples of Condition Variables

The following example uses a mutex to protect the global predicate variable cond_true, which is
used to prevent the signaling pthread from calling pthread_cond_signalO until the waiting ptbread
has called pthread_cond_waitO. Note that the call to pthread_cond_signalO is within the mutex
lock; this is not necessary, but can prevent certain race conditions.

The ptbread waiting for the condition executes the following code:

if (pthread_mutex_Iock(&mutex) == -1) {
perror ("pthread_mutex_Iock Error");

/*
* If the expected condition already exists, don't call
* pthread_cond_wait(), since the condition signal will not be
* sent if no threads are waiting for this condition.

*
* Recheck the state of cond_true after calling
* pthread_cond_wait() to ensure that the received condition
* signal is for this expected state change.
*/
while(!cond_true) {

/*
* mutex will be unlocked in pthread_cond_wait() when
* calling thread is ready to wait.
*/
if (pthread_cond_wait(&cond, &mutex)

perror ("pthread_cond_wait Error");
break;

-1) {

6·33

SMP Programming

6-34

Paragon™ System User's Guide

/*
* mutex will be locked again when the calling thread
* is awakened.
*/

if (pthread_mutex_unlock(&mutex) == -1)
perror ("pthread_mutex_unlock Error") ;

The pthread signaling the condition executes the following code:

if (pthread_mutex_lock(&mutex) == -1)
perror("pthread_mutex_lock Error");

/* This global variable needs a mutex's protection. */
++cond_true;

/*
* The pthread_cond_signal () call does not use a mutex internally.
* The mutex protection will guarantee that every thread can
* catch the expected condition signal once it calls
* pthread_cond_wait(). This will prevent the endless block of
* the calling thread.
*/

if (pthread_cond_signal (&cond) == -1)
perror("pthread_cond_signal Error");

if (pthread_mutex_unlock(&mutex) == -1)
perror("pthread_mutex_unlock Error");

Here's another example, which uses pthread_cond_hroadcastO to wake up all waiting pthreads.

/*
* Simulate a thread-level gsync() to synchronize all active
* threads at a barrier. A counter in this example can only be
* used once.
*/

long
long
pthread_mutex_t
pthread_cond_t

cond_gsync;
max_thread;
mutex;
cond;

/* counter of threads arrived */
/* number of active threads */

Paragon TM System User's Guide SMP Programming

void thread_gsync(long *cond_gsync)
{

if (pthread_mutex_Iock(&mutex) == -1) {
perror ("pthread_mutex_Iock Error") ;

/* Increase the count of threads that have called
thread_gsync() */

*cond_gsync++;

if(*cond_gsync == max_thread) {
/*
* If I'm the last thread to call thread_gsync(),
* wake up all threads waiting on this condition.
*/
if (pthread_cond_broadcast(&cond) == -1)

perror ("pthread_cond_broadcast Error");

else
while(*cond_gsync != max_thread) {

/*
* Other threads haven't called thread_gsync() yet,
* so wait for them in pthread_cond_wait().

}

*/
if (pthread_cond_wait (&cond, &mutex) == -1)

perror ("pthread_cond_wai tError") ;
break;

}

if (pthread_mutex_unlock(&mutex) == -1) {
perror ("pthread_mutex_unlock Error");

main()
{

/*
* Initialize counter and the condition that counter
* will meet.
*/
max_thread
cond_gsync

atoi(argv[l]); /* threads to create */
0; /* init counter */

if (pthread_cond_init(&cond,

6-35

SMP Programming

6-36

Paragon TM System User's Guide

}

pthread_condattr_default)
perror ("pthread_cond_init Error");

if (pthread_mutex_init (&mutex ,

-1) {

pthread_mutexattr_default) -1)
perror ("pthread_mutex_init Error");

}

/* Create more pthreads */

}

/* Every thread calls thread_gsync() once */
thread_gsync(&cond_gsync) ;
/* Every thread passes this barrier at the same time */

Here's an example using pthread_cond_timedwaitO:

#include <sys/timers.h>

long interval = 10;

struct timespec abs_time;

/* Get the current time */
getclock(TIMEOFDAY , &abs_time);

/*

/* 10 seconds interval */

* Can use another member of structure timespec to specify the
* waiting interval in nanoseconds. But the resolution cannot be
* smaller than the interval between updates of the system clock.

*
* The wait time should not be so small that the
* absolute time specified is smaller than the
* time spent inside the pthread_cond_timedwait() call.
*/

abs_time.tv_sec = abs_time.tv_sec + interval;

if (pthread_mutex_Iock(&mutex) == -1) {
perror ("pthread_mutex_Iock Error");

while (!condition)

Paragon 1M System User's Guide SMP Programming

if (pthread_cond_timedwait(&cond, &mutex, &abs_time) -- -1) {
/* EAGAIN is the timeout error code. */
if(errno != EAGAIN) {

perror ("pthread_cond_timedwai tError") ;

break;

if (pthread_mutex_unlock(&mutex) == -1)
perror("pthread_mutex_unlock Error");

6-37

SMP Programming Paragon ™ System User's Guide

Canceling Pthreads

6·38

Synopsis

int pthread_cancel(
ptbreruU thread);

int pthread_setcancel(
int state);

int pthread_setasynccancel(
int state);

void pthread_testcancel(void);

Description

Requests cancellation of a pthread.

Enables or disables the general cancelability of
the calling pthread.

Enables or disables the asynchronous
cancelability of the calling pthread.

Creates a cancellation point in the calling ptbread.

The ptbreads package includes a pthread cancellation mechanism that allows a pthread to terminate
the execution of other ptbreads. The call pthread_cancelO requests cancellation of the specified
ptbread; however, the specified ptbread may terminate later or not at all, depending on its
cancelabiIity states.

Cancelability States

Each pthread has two cancelability states that determine how it reacts to cancellation requests. Each
of the two states can be set to the value CANCEL_ON (enabled) or CANCEL_OFF (disabled).

• If general cancelability determines whether or not the ptbread can be canceled:

If general cancelability is enabled, cancellation requests are accepted. Cancellation mayor
may not occur immediately, depending on the asynchronous cancelability state.

If general cancelability is disabled, cancellation requests are queued until general
cancelability is enabled again.

General cancelability is enabled by default; a ptbread can change its general cancel ability state
by calling pthread_setcanceIO.

• When general cancelability is enabled, a second cancelability state called asynchronous
cancelability determines how quickly the cancellation occurs:

If asynchronous cancelability is enabled, when a cancellation request is received the
ptbread begins termination immediately.

Paragon™ System User's Guide SMP Programming

If asynchronous cancelability is disabled, when a cancellation request is received the
ptbread does not begin termination until it reaches a cancellation point. The default
cancellation points are calls to pthread_cond_waitO, pthread_cond_timedwaitO,
pthread.JoinO, and pthread_setcancel(CANCEL_ON). A ptbread can also create an
explicit cancellation point by calling pthread_testcanceIO, which otherwise does nothing.

Asynchronous cancelability is disabled by default; a pthread can change its asynchronous
cancelability state by calling pthread_setasynccanceIO.

NOTE

Asynchronous cancelability should not be enabled in the current
release.

Asynchronous cancellation of certain ptbreads, particularly ptbreads performing file 110, can cause
the entire application to hang.

NOTE

You must be careful not to cancel a pthread that is holding a mutex
lock.

Canceling a ptbread that is holding a mutex lock leaves the mutex locked with no way to unlock it,
possibly resulting in deadlock. For example, a ptbread calling printfO will get a mutex lock inside
the reentrant C library. A cancellation of this pthread during the call to printfO will cause all other
ptbreads calling printfO to deadlock.

Functions such as printfO, which can cause deadlock if they are canceled, are called not safe to
cancel.

NOTE

Most library functions are not safe to cancel.

In particular, all of the calls in lihnx.a are not safe to cancel. The list of functions that is safe to cancel
can be found in the pthread_setasynccancelO manpage in the OSFIl Programmer's Reference.

6-39

SMP Programming

6-40

Paragon ™ System User's Guide

Cancellation Examples

Here's an example of changing a pthread's cancelability states:

/* flip the general cancelability of the calling thread */
if (pthread_setcancel (CANCEL_ON) == -1) {

perror(IIpthread_setcancel Error");

if (pthread_setcancel (CANCEL_OFF) == -1)
perror("pthread_setcancel Error");

/* flip the asynchronous cancelability of the calling thread */
if (pthread_setasynccancel (CANCEL_ON) == -1) {

perror ("pthread_setasynccancel Error");

if (pthread_setasynccancel (CANCEL_OFF) == -1)
perror ("pthread_setasynccancel Error");

Here's an example of delivering and accepting cancellations:

thread_id; /* value from pthread_create() call */

/*
* Cancel another thread whose pthread ID lS "thread_id".
*/
if (pthread_cancel (thread_id) == -1) {

perror ("pthread_cancel Error\n");

/*
* If a cancellation request is already posted, this call will
* not return.
*/
pthread_testcancel();
/* Execution continues if no posted cancellation request */

Paragon™ System User's Guide

Pthreads Cleanup Routines

Synopsis

void pthread_cleanup_pop(
int execute);

void ptbread_cleanup_push(
void (*routine)(void *arg),
void *arg);

SMP Programming

Description

Removes a routine from the top of the cleanup
stack of the calling pthread and optionally
executes it.

Pushes a routine onto the cleanup stack of the
calling pthread.

Pthreads may have resources that must be released before the pthread terminates. Each pthread can
create a list of cleanup routines, called the cleanup stack, to release those resources. The routines on
the cleanup stack are called, in order from top to bottom, when the pthread terminates for any of the
following reasons:

• Calling pthread_exitO.

• Returning from its initial function.

• Being cancelled by another pthread.

To place a function on the cleanup stack, call ptbread_c1eanup-pushO; to remove the top function
from the cleanup stack, call ptbread_c1eanup_popO. You can optionally execute the function as it
is popped. Every call to pthread_c1eanup-pushO must be matched with a pthread_c1eanup-popO
call in the same lexical scope (that is, within the same set of "{ ... }" braces).

If general cancelability is enabled, whenever a pthread allocates a resource it should push a function
that deallocates that resource onto the cleanup stack; when the pthread is finished with the resource
it should deallocate it by popping the function off the cleanup stack and executing it. This ensures
that all resources are accounted for if the pthread is cancelled.

6-41

SMP Programming Paragon ™ System User's Guide

Managing Pthread Keys

6-42

Synopsis

int pthread_keycreate(
pthread_key_t *key,
void (*destructor)(void *value));

int pthread_setspecific(
pthread_key_t key,
void *value);

int pthread~etspecific(
pthread_key_t key,
void **value);

--------- _._-----_ ... -

Description

Creates a key to be used with pthread-specific
data.

Binds a pthread-specific value to a key.

Returns the value bound to a key.

The pthreads package provides pthread-specific data objects to associate infonnation with
individual pthreads. Each pthread-specific data object is controlled by a key (an object of type
pthread_key_t). A pthread creates a new key by calling pthread_keycreateO, associates the key
with a ptbread-specific data object by calling pthread_setspecificO, and then retrieves the data
associated with the key by calling pthread_getspecificO. See the OSFll Programmer's Reference
for more infonnation on these calls.

Paragon ™ System User's Guide SMP Programming

Executing a Routine Once

Synopsis

int pthread_once(
ptbreruConce_t *once_block,
void(*routine)O);

Description

Calls an initialization routine.

The pthread_onceO call executes the specified routine the first time it is called (from any pthread),
and does nothing every subsequent time. The parameter once_block must be declared as static. For
example:

void lib_util_init() {
/* perform some initialization that can only be done once */

/*
* Every pthread calls pthread_once(), but only the first one
* executes lib_util_init().
*/
if (pthread_once(&init_once, lib_util_init)

perror ("pthread_once Error") i

-1) {

6-43

SMP Programming Paragon ™ System User's Guide

Managing Signals

6-44

Synopsis

int sigwait(
sigseCt * set);

Description

Suspends the calling pthread until one of a
specified set of signals is received.

The sigwaitO call is used to tum asynchronous signals into synchronous notifications. Before calling
sigwaitO, you must create a signal set, using the standard signal calls sigemptysetO, sigfIlIsetO,
sigaddsetO, and sigdelsetO, and then block the signals in that set from being delivered. When you
call sigwaitO with that signal set, the calling pthread is suspended until one or more of the signals
in the set is received by the process containing the pthread. If one of the specified signals was
received (and blocked) before the call to sigwaitO, the call returns immediately. sigwaitO returns
the signal number of the signal that was received.

The sigwaitO call only works for asynchronous signals (those that are generated externally from the
pthread, such as those generated by killO in other processes or by the user pressing <Ctrl- \ >).
Contrast this with sigactionO, which only works for synchronous signals (those that are generated
as the result of the pthread's faults, such as SIGBUS). If both sigactionO and sigwaitO are used on
the same signal, the results are unspecified.

NOTE

In a parallel application, sending an asynchronous signal to an
application's controlling process affects the controlling process
(as specified by the controlling process's signal mask), and also
causes the signal to be broadcast to the compute processes. In an
application linked with -nx, the controlling process's signal mask
is always the default.

See "Signals and Pthreads Library Calls" on page 6-48 for more information on signals in
applications with multiple pthreads.

Here's an example that uses sigwaitO to deal with the asynchronous signal SIGQUIT. This example
uses a parent process to generate the asynchronous signal by calling killO.

long sig;
long ret;

sig SIGQUIT;

pid fork () ;

Paragon ™ System User's Guide SMP Programming

if(pid == -1) {
perror("fork() ");
exit (1) ;

else if (pid ! = 0) {
/* parent process */
sleep(2);
/*
* Deliver the signal SIGQUIT to child process.
*/
if(kill(pid, sig) == -1) {

perror ("kill ");
exit (1) ;

exit (0) ;

/* child process */
if (sigemptyset(&set) != 0)

perror ("sigemptyset") ;

/* Add the signal SIGQUIT to the signal mask */
if (sigaddset (&set, sig) != 0) {

perror("sigaddset");

/* Block the signal SIGQUIT from delivery */
if (sigprocmask(SIG_BLOCK, &set, NULL) != 0) {

perror ("sigprocmask () ") ;

/*
* During the next 10 seconds, the posted signal from the
* parent process becomes a pending signal.
*/
sleep(10);

/*
* sigwait() blocks the calling thread until the specified signal
* arrives, then unblocks and returns the value SIGQUIT.
*/

if((ret = sigwait(&set)) == -1) {
perror("sigwait() ");

} else {
printf ("Received signal %d, expected %d\n", ret, sig);

}

/*

6-45

SMP Programming Paragon ™ System User's Guide

* The thread can decide what to do with this signal.
*/

/*
* There is no destructive default action of core dump on the
* posted signal SIGQUIT.
*/

Interfacing with Non-Thread-Safe Code

Whenever you call a non-thread-safe library from a process with multiple pthreads, you must make
sure that no two pthreads call the same library at the same time. There are two ways do this:

• Make sure that only one pthread ever calls the library.

• Use mutexes to protect all calls to the library.

Here's an example of the second technique:

pthread_mutex_lock{&mutex) j

non_thread_safe_call{)j
pthread_mutex_unlock{&mutex)j

Note that the same mutex must be used by all pthreads for any calls from the same library. If all calls
to the non-thread-safe library are surrounded by a lock and unlock of the same mutex, as shown here,
any pthread that calls the library while another pthread is currently calling it will block until the other
pthread returns and unlocks the mutex. See "Managing Mutexes" on page 6-24 for more information
onmutexes.

Message Passing and Pthreads Library Calls

6-46

Message-passing is done on a process-by-process basis. All message-sending calls specify the
recipient by node and process type; there is no way to specify a particular pthread within that process
(all the threads in a process have the same process type). Similarly, when a message arrives at a
process, there is nothing to prevent confusion among pthreads; for example, a pthread could probe
for a message, find a pending message of the specified type, and then attempt to receive it-only to
find that another pthread has already received it. For this reason, you should make sure that only one
pthread in each process uses message-passing calls.

You should also keep the following special considerations in mind when using message-passing and
pthreads in the same application:

• Blocking calls, such as csendO, only block the calling pthread, not the entire process. While the
calling pthread is blocked, other pthreads can continue to run. The pthread that is blocked
releases processor resources until the csendO returns.

Paragon ™ System User's Guide SMP Programming

• When the message-passing ptbread uses one of the global calls (those described under "Global
Operations" on page 3-27), the call blocks until the message-passing ptbread on every other
node makes the same call. If one of those message-passing pthreads is blocked (for example, by
a mutex lock), the operation will hang all the message-passing pthreads in the application.

• An hsendOlhrecvO handler can use calls from libpthreads.a or libcJ.a (note that libcJ.a
includes almost the entire C library). However, you should avoid calls from libpthreads.a. In
particular, do not call pthread_exitO because the hsendOlhrecvO handler is implemented as a
pthread.

• An hsendOlhrecvO handler also should not use the info ••• O calls. Because the handler executes
concurrently with the main message-passing ptbread, the info ••• O calls may return values
representing messages received by the main message-passing ptbread. The main
message-passing ptbread can use masktrapO to protect critical regions from the handler.

• If an hsendOlhrecvO handler performs any message passing, you must put masktrapO calls
around any message-passing calls in the main message-passing pthread that could be called
while the handler is active. Otherwise, any info ••• O calls in the handler could reflect the value
of a message received by the main message-passing ptbread.

In addition, any info ••• O call in the main program must be within the same set of masktrapO
calls as the message-receiving call to which it applies. Otherwise, the info ••• O call in the main
message-passing ptbread could reflect the value of a message received by the handler.

File 110 and Pthreads Library Calls

In general, opened files are per-process resources. A ptbread can open a file, a second pthread can
use the open file descriptor to write or read, and a third pthread can use the same file descriptor in
an IseekO call. The movement of file pointers is visible to all pthreads, so if multiple pthreads are
accessing the same file they must coordinate their actions with mutexes or condition variables.
However, blocking calls such as readO and cwriteO only block the calling pthread, not the entire
process.

If two ptbreads doing file I/O read and write concurrently, they can each read and write their own
data independently. If you are performing I/O to a file in a synchronized PFS I/O mode (see "Using
I/O Modes" on page 5-14), the synchronization information is stored with the file descriptor; each
file is synchronized independently.

See "Recommended Safe Operating Environment" on page 6-12 for limitations on using I/O calls
from multiple ptbreads.

nx_nforkO and nx_initve ... O and Pthreads Library Calls

In a controlling process with multiple ptbreads:

6-47

SMP Programming

m,-nforkO

DX_initve ... O

Paragon ™ System User's Guide

Copies only the calling pthread to the new process on each node. Can only be
called from one ptbread.

If the user's shell is the Bourne shell (sb), the DX_initve ••• O calls perform a
forkO internally. As described under "Using Reentrant C Library Calls" on
page 6-14, forkO copies only the calling ptbread to the new process. This
means that if there are multiple pthreads in the calling process before the call
to DX_initve ••• O, after the DX_initve ••• O all ptbreads except the calling
ptbread will appear to cease to exist. (If the user's shell is ksb or csb, this
problem does not exist.)

nx_initve ••• O can be called at most once in a process. This means that at most
one ptbread in a process can call it.

Signals and Pthreads Library Calls

6-48

The following special considerations apply to signals in programs with multiple pthreads.

Signal Types

There are two types of signals: synchronous and asynchronous:

• Synchronous signals are caused by a pthread's own actions, such as when a pthread divides by
zero (causing a SIGFPE signal) or attempts to access memory outside its address space
(causing a SIGSEGV signal).

• Asynchronous signals are caused by something external to the pthread, such as another process
calling killO or the user pressing <Ctrl- \> on the keyboard (causing a SIGQUIT signal).

If a ptbread causes a synchronous signal, the handler routine executes in the context of that ptbread
only. If an asynchronous signal is delivered to a process, the handler routine executes in the context
of the main thread.

Signals are a Per-Process Resource

Signals are generally managed as per-process objects in ptbreads programs. Signal masks, signal
handlers, and signal sending and receiving are all oriented toward the process, not toward a
particular Pthread. This means that signals affect the entire process. Of particular interest:

• A SIGSTOP signal stops all pthreads of the receiving process.

• A SIGCONT signal continues all ptbreads of the receiving process.

Paragon ™ System User's Guide SMP Programming

• If one pthread of a program with multiple pthreads causes a SIGSEGV or SIGBUS, the entire
process (not just the faulting pthread) receives the signal. If this signal has not been handled, all
pthreads are killed and the program core dumps.

It is important to be aware that a pthread program's signal mask has a per-process visibility. In other
words, all pthreads share the same mask. If one pthread changes its mask (for example, by calling
sigprocmaskO) the change affects all pthreads. The thread-safe sigwaitO requires manipulation of
the signal mask, as does sigactionO and other common signal-management routines.

Along with the signal mask, signal handlers are also process-wide objects. A signal handler can be
registered for the process (for example, by calling sigactionO or sigwaitO) by any pthread. Because
the handlers are process-wide objects, a second pthread registering a handler for a given signal will
override the handler registered by the first pthread.

In general, blocking calls only block the calling pthread. This is the case with sigsuspendO as it is
with waitO, sleepO etc. Note also, that if multiple pthreads are blocking on sigsuspendO for a given
signal, all pthreads will continue when that signal arrives. This differs from sigwaitO which
unblocks only one of the pthreads.

sigwaitO creates a hidden pthread which manipulates the process's signal mask and registers a
signal handler for each signal sigwaitO has been asked to wait for. Because of this, use of other
signal management calls (especially sigactionO) on the signals being waited for, would be
hazardous. Care must be taken when changing a signal mask so the state of a sigwaitOed signal's bit
is not changed.

The floating pont exeception mask operates differently. It has a per-pthread visibility, not a
per-process visibility. fpsetmaskO only affects the calling pthread's floating point exception mask.
The exception mask is not inherited by any created pthread; each pthread must set its own floating
point exception mask.

Dealing with Signals

A way to deal with signals in a pthread application is the following:

• Use sigactionO to catch the synchronous signals. sigactionO only works with synchronous
signals.

• Use sigprocmaskO to block the asynchronous signals, then sigwaitO to receive the signal as a
notification. sigwaitO only works with asynchronous signals.

Do not use sigwaitO and sigactionO on the same signal.

6-49

SMP Programming Paragon ™ System User's Guide

Handling Errors

6-50

The handling of error situations in a program with multiple pthreads should be robust and graceful.
It should protect the pthreads that did not cause the error from being interrupted or terminated. It also
should give information on which pthread caused the error and coordinate a proper shutdown of all
pthreads if the error is fatal. If the error cannot be recovered from by the pthread causing the error,
and other pthreads are depending on this pthread to progress, it might be best to terminate those
pthreads right away and shut down the rest of the pthreads later.

errno Confusion

The ermo variable is set to an error value when a system or library call fails. An immediate call to
perrorO or DX_perrorO reads the value of ermo and prints out the error message corresponding to
its current value. User-written code may also set ermo to take advantage of this standard
error-handling mechanism.

In multiple-threaded programs, there are two ermo variables: a global (per-process) ermo variable
and a local (per-pthread) ermo variable. The preprocessor symbol_REENTRANT determines (for
some libraries) which of these ermo variables the symbol ermo refers to. If _REENTRANT is
defined at the point the file <ermo.h> is included, the symbol ermo refers to the per-pthread ermo.
Otherwise, the symbol ermo refers to the global (per-process) ermo.

In the current release, the libraries provided with the operating system are not consistent in their use
of the two different ermo variables.

• libpthreads.a, libmJ.a, and libkmath.a set and reference only the per-pthread ermo.

• libcJ.a sets both the global and the per-pthread ermo, but only references the per-pthread
ermo.

• All other libraries set and reference only the global ermo.

The inconsistency in the way libraries treat ermo is what causes the confusion. For example, if a call
to libnx.a fails in a program, the global ermo is set. But if the program is compiled with
_REENTRANT, the calling pthread can only see its local ermo whose value does not reflect the
error in the libnx.a call that just failed.

In general, this means that code compiled with _REENTRANT cannot use ermo values returned
by non-thread-safe libraries. However, because some non-thread-safe libraries make calls to the
standard C library, some ermo values are usable. For example, creadO (in the non-thread-safe
library libnx.a) calls readO. If you link with libcJ.a, any error that occurs in readO will be reflected
in the per-pthread ermo and will be visible to the calling pthread. But any error that occurs in the
creadO call itself (before or after the call to readO) will not be visible to the calling pthread.

Paragon TM System User's Guide SMP Programming

Rather than access ermo values directly, you can use the perrorO and DX_perrorO calls. These calls
print on standard error a specified argument string and a short message that depends on the value of
ermo.

• The perrorO call in libcr.a uses the per-ptbread ermo.

• The DX-perrorO call in libnx.a uses the global ermo. Because libnx.a is not tbread-safe, results
from nx-perrorO may be suspect. Note that calls in libnx.a may use calls in libc.a. Specifically,
nx_perrorO uses the perrorO in libc.a. The perrorO call in libc.a uses the global ermo.

Calling exitO

Calling exitO when an error occurs terminates the entire process and closes any opened files. For
this reason, it's a bad idea to call exitO on an error returned from a system call inside a ptbread.
Instead, you should call ptbread_exitO to terminate the failing ptbread and return a value indicating
failure to the ptbread that calls ptbread-JoinO. The pthread that calls ptbread-JoinO should use this
information to shut down all other ptbreads properly.

Use of Underscore Versions of Paragon System Calls

The standard versions of most Paragon system calls in !ibnx. a terminate the calling process when an
error occurs and send a message to standard error describing the error. For example, isendO will call
nx_perrorO to print out the error message, then call exitO to terminate the process. This implies that
if a ptbread causes an error in an isendO call, this error will kill the rest of the ptbreads in the process.

For this reason, in programs with multiple pthreads you should always use the underscore versions
of these calls instead. For example, calling _isendO will return -1 and set the global ermo in case of
error, instead of terminating the process. The calling ptbread can then use this information to shut
down the rest of the ptbreads cleanly. See "Handling Errors" on page 4-55 for more information on
underscore calls.

Catch Signals Causing Core Dump by Default

The default action for the signals SIGFPE (floating point exception) and SIGSEGV (segmentation
violation) is to core dump, terminate the process, and terminate the application. This will also kill
all ptbreads in the application.

When this occurs, you want to be able to figure out which ptbread was responsible for this problem.
For synchronous signals, the best way to do this is to install a signal handler to catch them and print
out the pthread ID when the signal is received. For asynchronous signals, use sigwaitO to catch them
and then terminate all pthreads gracefully.

6-51

SMP Programming

6-52

Paragon TM System User's Guide

Avoid Core Dumps

If your application has a number of pthreads, very large core files may be generated. It could take
several minutes to dump one of these large core files. Creating core dumps in a program with many
pthreads is not supported.

When One Pthread Hangs

When debugging a program with multiple pthreads, always keep track of every active pthread, as
much as possible, to detect the hang of a single pthread. Knowing which pthread has hung will help
you determine the cause of a program hang.

Designing a Parallel Application

Introduction
This chapter describes some general design guidelines to follow when writing parallel applications.
However, the best way to become skilled in parallel programming is to do it. With that in mind, this
chapter presents three examples of parallel applications. Each example is intended to illustrate a
different aspect of parallel design technique.

• The first example is a nearly-perfectly-parallel application that evaluates a deftnite integral to
calculate 1t. This example illustrates how a sequential application can be ported to a parallel
system with minimal effort. Much of the sequential algorithm can be maintained. The parallel
design consists of separating the user interface from the core computation and then distributing
that core computation onto the nodes.

• The next example is the multiplication of a matrix by a vector. In addition to the numerical
technique, this example illustrates the use of parallel fIle I/O by assuming a matrix that is too
large to reside entirely in memory.

• The third example solves a classic computer science problem called the N-Queens problem.
Given a chess board with N x N grid locations, where can you place N queens so that no queen
is under attack? This example illustrates a technique called control decomposition. This
technique also appears in more complicated real-world applications such as electronic design
rule checking.

7-1

Designing a Parallel Application Paragon ™ System User's Guide

Programming Model
As described in Chapter 1, the Paragon supercomputer is a distributed-memory parallel computer
with a high-speed interconnect network. The following characteristics of the system should be kept
in mind when designing or porting applications:

• The system is made up of an ensemble of processor/memory pairs called nodes. The nodes do
not share memory. They present a single system image (for example, a process running on one
node can send a signal to a process running on another node), but the nodes operate
independently of each other.

All the nodes are fully connected. They communicate with each other and the host by passing
messages.

Each node executes its own program. In many applications, it turns out that each node executes
the same program on a different set of input data. There may be some conditional code that
identifies one or more nodes that perform special actions.

These characteristics influence the design of parallel applications, as described in the remainder of
this chapter.

Parallel Programming Techniques

7-2

Parallel applications have varying degrees of parallelism. A perfectly-parallel application is one that
requires no internode communication. In a perfectly-parallel application, if you double the number
of nodes, you halve the computation time.

Most applications involve a mix of computation and internode communication; in these applications,
increasing the number of nodes reduces the computation time, but can never yield a "perfect"
speedup. The more time a program spends communicating instead of computing, the less speedup
you get by adding nodes.

In order to get the best possible speed from a parallel program, you must design it so that each node
spends as much time as possible computing, and as little time as possible communicating (or waiting
for communication). Here are some techniques that can help you to do this:

• Separate the user interface from the computational parts of the code.

Distribute the computation among the nodes so that their computational load is evenly balanced.

• Write your application so that you can run it on more nodes, thus improving performance,
without having to recode.

Design your internode communication such that the nodes spend as little time in communication
(or waiting for communication) as possible.

The following sections tell you more about these techniques.

Paragon ™ System User's Guide Designing a Parallel Application

Separating the User Interface from the Computation

To have each node do as much computation, and as little non-computational work, as possible, you
should analyze the algorithm and separate the user interface from the computational kernel. You can
designate one of the nodes to handle the user interface, or put the user interface in the application's
controlling process (see "The Controlling Process" on page 4-26 for information on this process).
In either case, the part of the program that handles the user interface and the part of the program that
does the computation communicate by passing messages.

In the 1t example, node 0 requests the number of integration intervals from the user. It then sends that
number to the other nodes, and all the nodes do the calculation.

Balancing the Load

You should keep all the nodes busy and have them finish at the same time, because if some nodes
have to wait for others to finish, they're wasting cycles doing nothing. Analyze your application anciJ
distribute the computation among the nodes so that their computational load is evenly balanced.

The process of distributing a problem among the nodes is referred to as problem decomposition, or
just decomposition. There are two kinds of decomposition: domain decomposition and control
decomposition.

Domain Decomposition

In domain decomposition, the input data (the domain) is partitioned and assigned to different
processors. How you divide and distribute the data among the nodes can have a significant effect on
the efficiency of your application.

For example, consider an application that performs image enhancement (see Figure 7-1). Because
some parts of the image may be more detailed than others, they will require more processing. The
shaded portion of Figure 7-1 shows the work done by node O. If you divide the image sequentially
among the nodes, as shown in the top half of Figure 7 -I, some nodes may get a partition that requires
a lot of work and other nodes may get a partition that requires little or no work. In the top half of
Figure 7-1, node 0 gets a lot of work and node 7 gets no work at all. This is inefficient.

You can often achieve better load balancing by dividing the image into smaller partitions and then
distributing the partitions sequentially among the nodes, as shown in the bottom half of Figure 7-1.
This is analogous to dealing out the partitions like cards in a deck; it spreads out the work more
evenly among the nodes. As the bottom half of Figure 7-1 shows, each node gets some slices that
require a lot of work, some slices that require a moderate amount of work, and some slices that
require no work. This is more balanced and efficient for this type of problem, and may be appropriate
for your problem as well.

7-3

Designing a Parallel Application Paragon ™ System User's Guide

7-4

Poor load balancing: Nodes 0 through 3 get most of the work.
Nodes 4 through 7 have little or nothing to do.

o 1 2 3 4 5 6 7

Good load balancing: The partitions in the domain are dealt out to
the nodes like cards from a deck. Now, each node has
approximately the same amount of work.

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7

Figure 7-1. Using Domain Decomposition to Achieve Load Balancing

Paragon ™ System User's Guide Designing a Parallel Application

Control Decomposition

Control decomposition, on the other hand, divides the tasks to be performed rather than the data. For
many problems, this is a more natural decomposition.

For example, consider a tree-search used in a game-playing algorithm. Assume that you're at some
mid-level of the tree. You could approach the problem as a domain decomposition and divide the
current branches among the nodes. Each node would then follow its branch down to the leaves and
then return the leaves as an answer. The leaves in this case are the possible moves. Depending on
the current state of the game, some of the branches may be quite involved and require a great deal
of processing. Other branches may be simple. The result is that some nodes finish before others. This
is a poor problem decomposition.

Approaching this problem as a control decomposition achieves better load balancing. In a control
decomposition, you think of the branches not as data partitions but rather as tasks that need to be
performed.

To manage these tasks, you have to introduce a little bureaucracy. Assign one node as a manager
node. This manager node then gives tasks to idle nodes. When the node finishes a task, it reports its
answer and requests another task. It's this "reporting for duty" that characterizes a control
decomposition.

The manager node must, of course, do some initial setup. For example, it may follow the tree down
until the number of branches exceeds the number of available nodes by some predetermined factor.

This method produces the best results when the tasks assigned near the end of the problem are about
the same size. For example, if one of the last tasks assigned was a very long task, the other nodes
may be idle while that last node finishes.

The N-Queens example (presented later in this chapter) shows control decomposition.

Making the Program Independent of the Number of Nodes

You should write your application so that you can run it on more nodes, thus improving
performance, without having to recode.

This method also turns out to be the most natural one to use when porting an existing sequential
application. After you've separated the user interface from the core computation, you still have a
sequential algorithm, but you can think of it as the special case of an application that runs on one
node. Once you have done this, you can parallelize the computation part for an arbitrary number of
nodes.

The 1t example illustrates this technique. The number of nodes appears only as the variable nodes.

7-5

Designing a Parallel Application Paragon ™ System User's Guide

Designing Your Communication Strategy

7-6

Your should design your internode communication such that the nodes spend as little time in
communication as possible. This may involve running some tests to determine an optimal message
length. Often, you can decrease the number of messages by increasing the size of each message. You
may also be able to improve communication performance by using asynchronous message-passing
calls, as described under "Asynchronous Send and Receive" on page 3-10.

Using Global Operations

You should use the global operations, described under "Global Operations" on page 3-27, when
possible. That section described a simple example of a global sum. Using gdsumO results in a
significant improvement over having one node perform the global sum by explicitly collecting all
the partial sums. Also, after the execution of the gdsumO, the global sum is available on each node.

The matrix*vector example in this chapter uses another global operation called gcolxO. In that
example, a large vector is distributed over the nodes. gcolxO collects the components from each
node and constructs the complete vector on each node. As with gdsumO, the answer is available on
each node.

Using Alternate Node Topologies

The nodes in the Paragon supercomputer are connected in either a hypercube or a mesh network.
However, because of the specialized message-passing hardware in both architectures,
communication with distant nodes is nearly as fast as communication with neighboring nodes. This
means that you do not have to structure your application's communications as a hypercube or mesh;
you can choose an alternate topology that makes more sense for your program. This can make your
program easier to write and understand, at a tiny cost in performance.

When you use an alternate node topology, you embed your node topology (a virtual topology) into
the nodes' actual network topology (the physical topology). One example of a virtual topology is the
ring. This topology is useful in certain types of many-body calculations. The technique consists of
partitioning the particles into groups and assigning each group to a different node. A node then
calculates the state of its group. This state information is then passed to another node which

Paragon ™ System User's Guide Designing a Parallel Application

calculates the state of its own particles and takes into account the state received from the previous
node. The state information moves from node to node around a ring. You can implement a ring
topology by writing a function like this one:

succ(int n)
{

}

int maxnode;
maxnode = numnodes() - 1;

if ((n >= 0) && (n < maxnode))
return (n+1) ;

else if (n == maxnode)
return(O);

else
return (-1) ;

Given a valid node ID (n), this function returns the node ID of the successor of node n in a ring
embedded in a partition with numnodesO nodes. Else it returns -1. (The prede~essor function is
similar.) A node can send a message to process type 0 on its successor node with the following
csendO call:

csend(MSGTYPE, buf, sizeof(buf), succ(mynode()), 0);

Example Application: Calculating pi
This application uses an n-point-quadrature rule to evaluate the following definite integral:

1

1t=J 4 dx
(1 +x2)

o

Admittedly, using the power of a Paragon supercomputer for such a simple application is overkill,
but the application demonstrates concepts that are just as valid for more challenging problems.

7-7

Designing a Parallel Application Paragon ™ System User's Guide

7-8

Here is a sequential program (written in Fortran) that evaluates the above integral. The source for
this program is available on the Paragon supercomputer in/usr/share/exampies/fortranlpilpiserial.f
Note that the user interface consists only of a read statement that solicits the number of intervals.

program piserial
double precision h,sum,x,pi,f,a
integer n

c Define the function
f(a) = 4.0dO/(1.dO + a*a)

c Input the number of intervals.
1 print *,' Enter number of intervals:'

read(5,*,end=100) n

c Calculate the scaling factor
h = l.dO/n

c Integrate. The value of x used to calculate the slice is
c the value at the midpoint of the integration slice.

sum = O.dO
do 10 i = 1,n

x = h * (dble(i) - 0.5dO)
sum = sum + f (x)

10 continue
pi = h * sum

c Output the answer

c

print *,' The value of pi for',n,' intervals is' ,pi
goto 1

c Terminate
100 stop

end

In the parallel version of this program, each node performs a portion of the integration. The
decomposition is a domain decomposition that "deals out" the work, as illustrated in Figure 7 -2. For
example, if you choose 16 nodes and 512 points, each node gets 32 points. The first point goes to
node 0, the second point goes to node 1, and so on through the 16th point, which goes to node 15.
The 17th point goes to node 0, the 18th point goes to node 1, and so on until all the points have been
dealt out. (It is not strictly necessary to deal out the work in this way, because the integration work
is evenly balanced. However, since the data is calculated by each node, it is just as easy to deal out
as not, and this example deals out the data to give you an example of this technique.)

Paragon ™ System User's Guide Designing a Parallel Application

f(x) =
1 + x2

4

Node Numbers

X Values

o 1

I~

17

o 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 0 1 2 3 4 5 1415

o 0.03125

~~----------~ ~-----------) y
For 512 points you have 32

groups of 16.

Figure 7-2. The Decomposition Used for the pi Example

... 1

7-9

Designing a Parallel Application Paragon ™ System User's Guide

7-10

Here is the parallel version of the program. The source for this program is available on the Paragon
supercomputer inlusrlsharelexamplesl/ortran/pi/pinode.f, differences from the serial version are
shown here in boldface.

program pinode
include 'fnx.h'
double precision h,sum,x,pi,f,a,tmp
integer n
integer nodes, iam, intsiz

data intsiz I 4 I

c Define the function
f(a) = 4.0dO/(1.dO + a*a)

c Do some bookkeeping
iam = mynode ()
nodes = numnodes()

1 if(iam .eq. 0) then
c Input the number of intervals.

print *,' Enter number of intervals:'
read(5,*,end=100) n
call csend(300,n,intsiz,-1,0)

else
call crecv(300,n,intsiz)

endif

c Calculate the scaling factor
h = 1.dO/n

c Integrate. The value of x used to calculate the slice is
c the value at the midpoint of the integration slice.

sum = O.dO
do 10 i = iam+l,n,nodes

x = h * (dble(i) - 0.5dO)
sum = sum + f(x)

10 continue
pi = h * sum
call gdsum(pi,l,tmp)

if(iam .eq. 0)then
c Output the answer

c

print *,' The value of pi for',n,' intervals iS',pi
endif

goto 1

Paragon TM System User's Guide Designing a Parallel Application

c Terminate all nodes
100 i = kill(O, 9}

end

Note that the parallel version is not much longer than the sequential version. Note also that the
decomposition takes place entirely in the do statement. The sequential version is:

do 10 i = l,n

while the parallel version is:

do 10 i = iam+1,n,nodes

If you run the application on more nodes, you don't have to change one line of the node program!

In the parallel version, only node 0 interacts with the user. The other nodes do only calculation. If
the print and read statements were not surrounded with if(iam .eq. O)then ... endif statements, then
when you ran the program on 100 nodes you would have to input the number of intervals 100 times
and see the answer 100 times!

Example Application: Matrix*Vector Multiplication
The following example computes the matrix-vector product y = Ax, where A is an n x n matrix and
x and y are vectors with n components. In addition to the numerical technique, this example
illustrates the use of the parallel file I/O calls.

The matrix A is assumed to be too large to fit in the node's memory, requiring an "out-of-core"
multiplication. For simplicity, n, the number of rows in the matrix, is assumed to be divisible by p,
the number of nodes in the application. The number of rows per node, nip, is referred to as m.

The problem decomposition is again a domain decomposition. Each node collects all of x, but then
takes only a portion of A (specifically m rows) to form its portion of the product vector. There is no
attempt to "deal out" the rows of A.

The vector x is initially divided among the nodes. (This example assumes that each node has
obtained its portion of x before this routine is called.) Each node contains m components of x. Node
o has components 1 through m; node 1 has components m + 1 through 2*m, etc. (In general, node Z
has components (Z-l)*m through Z*m.) The answer, the vector y, will be stored in the same way.

The matrix A, which is too large to fit in a single node's memory, is also divided among the nodes.
It is initially stored in a file called matrix. The elements of the matrix are stored in the file by rows,
as follows:

A(l,l), A(1,2), ... A(l,n), A(2,1), A(2,2), ... A(2,n), ... A(n,l), A(n,2), ... A(n,n)

7-11

Designing a Parallel Application Paragon ™ System User's Guide

7·12

Each row of the matrix A has n elements of length REALSlZE bytes, and so each row takes up
n* REALSIZE bytes in the file. Each node is responsible for m rows in the matrix; it reads its portion
of the matrix from the file by first moving the file pointer to mynodeO*m*n* REALSlZE bytes from
the beginning of the file, then reading m rows of n* REALSlZE bytes each beginning at that point.

Here is the code that collects x, reads the node's portion of A, and performs the multiplication:

c

subroutine matvmul(m, n, x, y, xtotal, arow)
integer REALSIZE
parameter(REALSIZE = 4)
integer ncnt, fileptr, xlens(128)
integer m, n
real x(m), y(m), xtotal(n), arow(n)

c m is nip where n is the dimension of A
c and p is numnodes()
c
c Collect all of x on each node.

do 3 i = 1, numnodes()
xlens(i) m*REALSIZE

3 continue
call gcolx(x, xlens, xtotal)

c
c Open the file and seek to the appropriate location

open(unit=10, file = 'matrix',
+ form = 'unformatted')
fileptr = Iseek(10, mynode()*m*n*REALSIZE, 0)

c
c Read the rows and use the BLAS call sdot() to do
c the mUltiplication.

do 10 i = 1, m
call cread(10, arow, n*REALSIZE)
y(i) = sdot(n, arow, 1, xtotal, 1)

10 continue

This subroutine takes the following parameters:

m

n

x

The size of each node's portion of the matrix A and the vector x (nip).

The number of rows and columns in the entire matrix A and the number of
elements in the entire vector x.

This node's portion of the vector x (m elements).

Paragon ™ System User's Guide Designing a Parallel Application

y This node's portion of the result vector y (m elements).

xtotal A temporary array used to hold the entire vector x (n elements).

arow A temporary array used to hold one row of the matrix A (n elements).

The subroutine first calls gcolxO to collect the nodes' portions of x together into the array xtotal. It
then opens the file containing A, moves the file pointer to the beginning of the section of the file that
belongs to this node, and then reads m rows from the file. After reading each row, it uses the BLAS
(Basic Linear Algebra Subroutines) routine sdotO to perform the dot product between the current
row and the vector x, storing the result (a scalar) into the appropriate element of the vector y.

NOTE

You must use the -Ikmath switch on the im command line to link
in the library that contains sdotO.

See the Paragon™ System Fortran Calls Reference Manual for more information on gcolxO; see
Chapter 5 for information about parallel file 110; see the CLASSPACK Basic Math Library User's
Guide or CLASSPACK Basic Math Library/C User's Guide for more information on sdotO.

Example Application: The N-Queens Problem
This application collects all the board configurations that solve the N-Queens problem. This problem
is: "Given an N x N chess board, where can you place N queens so that no queen can capture any
other?" In chess, queens attack in straight lines along the X, Y, and diagonal directions.

The N -Queens problem is typical of problems for which there is no analytical solution. Instead, there
exists a large set of candidate solutions. You test each solution and accept those that pass.

The difficulty lies in the enormous size of the candidate set. For example, an 8 x 8 chess board has
64 squares. The total number of possible positions for 8 queens can be represented as the
combination of n=64 things taken m=8 at a time. The formula for the number of combinations is:

n! / (rn!* (n-rn)!)

which evaluates to 232 possibilities. Even on a state-of-the-art sequential computer, it would take
several hours to check every one of those combinations.

Even before you begin thinking about an algorithm, however, you can eliminate a large number of
possibilities. For example, any solution that has more than one queen in the same column is invalid.
This reduces the number of possibilities to 88 or 224.

7-13

Designing a Parallel Application Paragon™ System User's Guide

7-14

This section shows how to use a Paragon supercomputer to evaluate those 224 possibilities. You can
arrange the possibilities into a tree. The technique involves following a tree down until it either
reaches a dead end (an invalid state) or until it reaches a leaf (a valid solution). Figure 7-3 illustrates
such a tree. To make the figure simpler, the chess board is shown as 4 x 4. Instead of 224 possibilities,
you have 28.

The root of the tree (the zero level) is the null board - no queens present. The next level (the first
level) consists of states where a queen is in each of the positions that make up the first column. In
Figure 7-3, there are four of those. In an 8 x 8 board, there would be eight.

The next level (the second level) consists of states with two queens on the board, one in the first
column and one in the second. In Figure 7-3, there are four of those under each second level state.
Notice, however, that some states are already invalid. There is no need to follow the tree any further
down this branch. In Figure 7-3, the two leftmost states in the second level are invalid. The second
state in the first level has three dead ends in its second level.

You can see how the algorithm is going. Some paths are going to finish early because they reach
dead ends. Others are going to take longer and reach the solutions at the leaves. This is a problem
for control decomposition.

Manager/worker decomposition (a type of control decomposition) is a useful way of achieving
balanced computational loads when the application consists of a large number of tasks that are of
varying length. Because there is no way of determining up front what the length of the task is, the
method consists of dividing the application into a large number of tasks (more than the number of
nodes) and then assigning tasks to individual nodes as the node becomes available.

One way of generating the task is for the manager node to follow the tree down until the number of
states is larger than the number of available nodes. As a further enhancement, the manager node may
even enlist the aid of the other nodes when doing this initial processing.

Then, the manager node assigns a state to a node. The node follows that state down the tree and
collects all the possible solutions. When the node finishes, it reports its solutions, if any, and requests
more work. In the case of a 4 x 4 board, the tree is shallow and there are only two solutions. An
8 x 8 board results in 92 solutions.

The directory lusrlsharelexamplesldnqueens contains a C version of the 8 x 8 8-Queens problem.
The example is written in C because the N-Queens algorithm makes use of recursion.

In this example, a task is represented as a partially-filled board (only the first few columns contain
queens) given to one of the nodes. The example as described here runs on four nodes. Node 0 is the
manager, and nodes 1 through 3 are the workers. The manager is assigned a certain number of
columns (in this example, two) and creates partial boards by placing queens on the board, one for
each column it is assigned. When the manager controls two columns of an 8 x 8 board, it creates 64
partial boards.

Paragon ™ System User's Guide Designing a Parallel Application

~
0

0
0

0

in;;:! in~l inval~

00 0 0 0 0 0
0 0 0

0 0
0 0 0 0

invalid invalid
A~ .-f.! in;;:! in;;:! in;;:!

invalid ,"val inv alid

0 0 0 0
0 0

Il.I 0
0 0 0 0

./1~
in;;:! in;;:!

/?~
invalid invalid

The only invalid states shown as
leaves are those for the leftmost
state of the second level.

Q = Queen position 0 0
Q 0

0
0 0

Figure 7-3. The N-Queens Solution Tree for a 4 x 4 Board

7-15

Designing a Parallel Application Paragon™ System User's Guide

7-16

Also, in this example, the manager does not create the boards intelligently. For example, the
manager will create a board with two queens in the same row. If a worker gets a partial board that
contains invalid queens (such as two queens in the same row), the worker immediately throws the
board away and requests another.

The manager creates boards by counting in a radix equal to the number of rows in the board. Each
digit in the resulting number represents a column with the least significant digit being column o. The
value of the digit is the row position of the queen. Hence, 00 represents two queens in row 0, and 01
represents one queen in row 0 of column 0 and another queen in row 1 of column 1.

The workers signal their availability by sending a "ready" message to the manager. This is a zero
length message of type READY. When the manager receives a READY message, it determines who
sent it, then sends a partial board to that node as a message of type TASK. The manager keeps doing
this until it has no more partial tasks to assign. Finally, the manager waits until all workers are idle
(that is, it receives a READY message from every worker) and then sends a final message with the
special value FINISHED to all workers.

Here are the key lines that implement the manager control.

/* This is the manager part */
if (!iam) { /* If I am node ° */

printf("\n\n\n");
printf ("\nSTARTING \n") ;

/* Manager keeps a count of how many workers are available
and sends out boards to a worker when the worker identifies
itself as READY. The manager uses the routine get_board() to get
a new board. There are no more new boards when this routine
returns DONE.*/

while (get_board (board) != DONE) {
crecv(READY,NULL,O);
nodenbr = infonode();
msgcount++; /* Count how many nodes are ready */
csend(TASK,board,sizeof(twoD) ,nodenbr,O);
msgcount--; /* When a node gets a task, it is no longer

ready for another. Hence, decrease
msgcount */

/* Wait for all workers to be free (the msgcount must be equal
to the number of worker nodes) */

while(msgcount != nodes-l)
crecv(READY,NULL,O);
msgcount++;

}

Paragon ™ System User's Guide Designing a Parallel Application

/* Send the FINISHED message to all nodes and then say goodbye */

board[O] [0] = FINISHED;
csend(TASK,board,sizeof(twoD),-l,O);
goodbye() ;

The manager does not know if a worker has found a solution or not, and the workers do not know
how many initial boards there are. When a worker receives a partial board, it first checks for the
special value FINISHED, and calls goodbyeO if it finds this value. (The goodbyeO routine prints
a summary message in the output file, closes the file, and exits.) Next, the worker checks that the
queens already on the board are valid. If they are, the worker finds all the solutions that exist with
that partial board by recursively calling move_to_rightO. When the worker finds a solution, it writes
the solution to a file called queens. out. This file was opened by all nodes in mode M_LOG (1),
which is the mode in which all nodes have a common file pointer and access the file on a first-come
first-served basis.

Here are the key lines that implement the worker control.

else {
/* This is the worker part. */

/* Each node enters an infinite loop where it receives a partial
board and checks whether that partial board contains valid
queens. If the board contains a FINISHED message, the node
cleans up and exits by calling goodbye(). If the board contains
invalid queens, the node considers itself done with the task.
Otherwise, it tries to place a queen in the next column by calling
move_to_right(). This routine will find all possible solutions
given the initial board. */

for (; ;)
csend(READY,O,O,O,O);
crecv(TASK,board,sizeof(board)) ;
if(board[O] [0] == FINISHED) {

goodbye () ;

if (chk_board(board)
move_to_right(board,O, MeOLS);

/* end of else */

There are many opportunities for optimizing this algorithm. For example, you could write the
manager in such a way that it only gave workers boards that had the potential of containing one or
more solutions. In addition, the manager could mark positions on the board that are invalid due to
the presence of the initial queens, and the worker would not have to check those.

7-17

Designing a Parallel Application Paragon ™ System User's Guide

7-18

The file queens. out contains copies of all the 92 solutions for the 8-Queens problem. Each board is
preceded by a header that identifies the node that found the solution and the number of solutions
found so far by the node. Finally, the total number of solutions is printed. The tail of the file looks
as follows:

Node 1 found solution

0 1 2 3 4 5 6 7
0 - - - Q -
1 - - Q
2 - - Q
3 - - Q -

4 Q -

5 - - - - - - Q -

6 - - Q -
7 - Q -

Node 2 found solution

0 1 2 3 4 5 6 7
0 - - Q -

1 - - Q -

2 Q
3 Q
4 - - Q
5 - - - Q
6 - - - Q - -

7 - Q -

Node 3 found solution

012 3 4 5 6 7
o - Q -
1 - - Q
2
3 - - - Q -
4 -

5 Q
6 -
7 - Q -

- - Q

- Q -

Q - -

Total solutions = 92

30

31

31

If you want to investigate another manager/worker application, look at the triangle program in
/usr/sharelexamples/c/triangle. Its operation is described in a README file.

Improving Performance

Introduction
This chapter presents some techniques you can use to improve the performance of your parallel
applications. It includes the following sections:

• Single Node Performance.

• Multi-Node Performance.

• I/O Performance.

In general, however, the best thing you can do to improve performance is to choose an efficient
numerical method and algorithm for solving your problem. A good numerical method and an
efficient algorithm will always give better performance than a poor method and algorithm. This is
true even if the good method is implemented in a bigh-levellanguage and the poor method is
implemented in hand-coded assembly language.

Another general performance technique is to use the Paragon system's profiling and performance
analysis tools to help pinpoint the parts of your application that could benefit the most from
optimization. See the Paragon™ System Application Tools User's Guide for information on the
available tools.

8-1

Improving Performance Paragon™ System User's Guide

Single Node Performance
This section discusses things you can do to increase the speed of calculation (MFLOPS or GFLOPS)
on each node. Many of these are general performance-improvement techniques that you can use on
any computer; some of them are specific to the i860® microprocessor. Techniques discussed in this
section include:

• Use profiling tools.

• A void repeated use of system calls.

• Avoid virtual memory paging.

• Use compiler optimizations.

• Increase problem size.

• Access contiguous memory locations.

• Use caching wisely.

• Use optimized libraries.

• Use assembly language subroutines.

• Avoid error checking (C language only).

Use Profiling Tools

The Paragon system comes with the prof and gprofprofilers, and their graphical versions xprof and
xgprof. You can use these tools to help track down the parts of your application that are consuming
the most time and concentrate your optimization efforts there. See the Paragon TM System Application
Tools User's Guide for more information on these tools.

Avoid Repeated Use of System Calls

8-2

Don't make a system call twice if once will do. This is an obvious performance improvement
technique, but unfortunately it is missing from many applications. For example, a process may need
its node number and process type to do message passing. Avoid using mynodeO and myptypeO
each time you need those numbers. Instead, invoke each once and store their values in variables.

Paragon™ System User's Guide Improving Performance

Avoid Virtual Memory Paging

The operating system provides virtual memory, which lets you use more memory than is physically
available on the node. When a program tries to allocate a memory space that is larger than the node's
available free memory, one or more 8K-byte virtual memory pages that haven't been referenced
recently are paged out. This means that their contents are written to disk and replaced with the new
data. Later, when the program references data in the paged-out memory section, a different section
is paged out and the old data is paged in (read back from disk) in its place.

Although virtual memory makes it possible for the system to support multiple users and very large
programs, you should try to avoid it when you can. Accessing pages of virtual memory that are not
currently paged in is much slower than physical memory and generates a lot of disk activity. Try to
reduce the memory used by your application until it fits in physical memory, including
dynamically-allocated buffers and system message buffers (see "Understand Message-Passing Flow
Control" on page 8-13 for information on the sizes of system message buffers).

You can use the vm_stat command to get information about your application's memory usage. See
the Paragon ™ System Commands Reference Manual for information on this command.

Once you have reduced your application so that it fits in physical memory, you may be able to use
the -plk switch to lock parts of your application into physical memory. This reduces paging and
improves message-passing latency, but has certain consequences; see "Process Locking" on page
8-15 for more information.

Use Compiler Optimizations

When you compile a program, you can use compiler optimization switches to tell the compiler what
techniques to use to optimize your code. Optimization can produce a compiled program that does
the same work in less time by making better use of the processor's special features. However,
optimization can sometimes produce a program that runs more slowly or produces wrong answers,
so it must be used carefully.

8-3

Improving Performance Paragon ™ System User's Guide

8-4

The compiler optimization switches you can use and compiler-specific code changes you can make
depend on which language you program in and the revision level of the compiler. See the Paragon TM

System Fortran Compiler User's Guide or Paragon ™ System C Compiler User's Guide for complete
information on compiler optimizations for your specific compiler. However, here are a few general
hints:

• Experiment with the -0 switch, which controls the level of compiler optimization:

Level 0 performs no optimization.

Levels 1 and 2 perform straightforward optimizations that should always result in
improvement.

Levels 3 and 4 attempt to make use of the i860® microprocessor's pipe lining and
dual-instruction modes to improve performance; whether or not they improve your
program's performance, and by how much, depends on the characteristics of your program.

In some cases, different parts of the program should be compiled with different optimization
levels.

• Try the -Mvect switch to invoke the vectorizer. The vectorizer attempts to rearrange your code
to allow more efficient use of pipelining. You can get better results out of the vectorizer if your
innermost loops have the following characteristics:

The loop index increments the first dimension in Fortran, or the last dimension in C.

Arrays are accessed with unit stride.

The number of iterations within the loop is not too small.

Also, if tests and subroutine calls should be avoided within the loop. See the Paragon ™ System
Fortran Compiler User's Guide or Paragon™ System C Compiler User's Guide for specific
examples of code changes you can make.

If your application does not depend on strict IEEE semantics for mathematical operations, try
the -Knoieee switch. This switch provides much faster mathematical operations than those
provided by the default IEEE math library, but may result in slightly decreased accuracy and
different behavior in exceptional circumstances (operations on 0 or infinity and NaNs).

Use the -MnostrideO switch, unless your program accesses arrays with zero stride (that is,
incrementing the array pointer by 0 in each loop iteration). There are some important compiler
optimizations that are only possible if the compiler knows the code does not do this.

Paragon ™ System User's Guide Improving Performance

Increase Problem Size

Once you have optimized a program's single-node performance, you may find that running the
program on a larger number of nodes with the same data set gives a lower per-node performance.
This can occur because the per-node vector size has gone down, reducing the efficiency of the i860
microprocessor's pipelines. To avoid this problem, you can increase the problem size as you increase
the number of nodes, or you could even write two different inner loops-one optimized for short
vectors, the other optimized for longer vectors.

Access Contiguous Memory Locations

Whenever you access memory, try to access contiguous memory locations. In particular, whenever
your program reads or changes the value of an array element in memory, try to be sure that the next
array element it reads or changes is adjacent to the previous one in memory. This is important
because the i860 microprocessor accesses memory in 4K-byte physical memory pages. Once you
have read from a physical page, another read from the same page takes only one more cycle, but a
read from a different page takes 10 to 14 more cycles. Every cycle spent switching from one page to
another is a cycle that can't be used for calculation.

To keep your memory accesses within a physical page, you can use some of the following
techniques:

• Group a series of memory reads out of the same array.

• Do consecutive references across the rows (C) or down the columns (Fortran) of matrices. (In
C the rightmost index of an array varies the fastest, while in Fortran the leftmost index varies
fastest. This means that, for example, if you distribute the elements of a two-dimensional array
among the nodes, you should give out rows in C and columns in Fortran.)

"Strip-mine" loops, so that you do several accesses to the same array at a time. For example,
you should read several elements from vector A, then several from B, instead of reading A[1],
B[1], A[2], B[2], and so on.

You should also try to group reads and writes. Once you have read from a page, a following write
takes about 6 more cycles than a following read. Switching from write to read also takes about 6
cycles.

Use Caching Wisely

The i860 microprocessor has a 16K-byte data cache for recently-accessed memory locations.
Whenever you read or change a bit in memory, a 32-byte area of memory containing that bit is
copied into the cache. (This 32-byte area is called a cache line and always begins on a 32-byte
boundary.) When you access memory that is already in the cache, the access is very fast. However,

8-5

Improving Performance Paragon™ System User's Guide

whenever a new cache line is copied into the cache, cache lines that have not been accessed recently
are written back to memory (if necessary) and removed from the cache to make room. Try to arrange
your code so that all operands for a loop can be accommodated in the cache at the same time.

The i860 microprocessor also has an instruction cache (4K bytes on the i860 XR, 16K bytes on the
i860 XP) which is used to hold program instructions once they have been fetched and decoded from
memory. You can use this cache in two ways:

• Try to keep your loops small. If the code for an entire loop fits in the instruction cache, the loop
can execute very quickly.

• In an if/else block, try to put the code that is used more often in the if part and the code that is
used less often in the else part. The instruction cache works in a "lookahead mode," and when
pre-fetching instructions will fetch the code immediately following the if. If the else branch is
executed instead, the if branch code must be discarded from the cache.

Both these techniques can be used in high-level languages as well as assembly code.

Note that the data cache, the instruction cache, the physical memory page, and the virtual memory
page are separate functions that have different sizes and different effects. In general, cache
management is handled by the compiler, but you should try to arrange your code to make the
compiler's job easier.

Use Optimized Libraries

8-6

Several optimized libraries of math and utility functions are available with the operating system.
These libraries have been carefully hand-tuned to give the best possible performance; you can save
time and increase efficiency by using routines from these libraries rather than writing the equivalent
code yourself. The available libraries include:

• The Basic Math Library (libkmath.a). This library is a standard part of the operating system; it
includes optimized BLAS (Basic Linear Algebra Subroutines) and FFr (Fast Fourier
Transform) routines. See the CLASSPACK Basic Math Library User's Guide or CIASSPACK
Basic Math Library/C User's Guide for more information.

• The Signal Processing Library (libsignal.a). This library is an optional product; it includes
optimized vector and signal-processing routines. See the CIASSPACK Signal Processing
Library User's Guide or CLASSPACK Signal Processing Library/C User's Guide for more
information.

Note that these are single-node libraries; they improve the numeric performance of each node of
your program, but do not affect its multi-node performance.

Paragon ™ System User's Guide Improving Performance

Use Assembly Language Subroutines

Re-writing key routines in the i860 microprocessor's assembly language can sometimes bring
significant performance benefits. See the Paragon ™ XP/S System i860™ Microprocessor Assembler
Reference Manual for information on the assembler.

Avoid Error Checking (C Language Only)

In C, there are two versions of most calls in libnx.a: the standard version and the underscore version
(for example, the underscore version of crecvO is _crecv()). When you call the standard version, the
call checks for certain error conditions before it returns; if an error is detected, the call terminates
your program with an error message. The underscore version works the same as the non-underscore
version, but if an error occurs, the call simply returns the value -1 and sets the external variable errno
to a value that describes the error. This is useful if you want to handle an error yourself and not let
the system do it. But if you are confident that your program is working, you may choose to use the
underscore version and not check the return value, thereby improving performance. (If an error does
occur, unexpected and difficult-to-debug behavior will result, so use this technique with caution.)

Multi-Node Performance
This section discusses things you can do to increase the efficiency of applications running on
multiple nodes, including:

• Use dynamic memory allocation for large arrays.

• A void serializing calls.

Use ParaGraph ..

• Maintain data locality.

• Overlap computation and communication.

• Avoid message buffering.

• Align application buffers.

• Understand message-passing flow control.

8-7

Improving Performance Paragon 1M System User's Guide

Use Dynamic Memory Allocation for Large Arrays

8-8

You should always use dynamic memory allocation for large arrays. Dynamic memory allocation
means allocating the memory for the array at run time. using the ALLOCATE statement in Fortran
or the mallocO call in C. The alternative. static memory allocation. means declaring the array in the
program source.

Dynamic allocation is important even on one node. but becomes more and more important as the
number of nodes increases. The larger the array and the more nodes. the more performance can be
improved by using dynamic memory allocation. If the array or number of nodes is large enough. the
application may not run at all unless you use dynamic memory allocation.

For example. the following program fragment uses static memory allocation. It simply creates two
4M -byte arrays of real*4 (one in a common block. the other not) and initializes each element of each
array to the element number.

parameter huge_size = 1024*1024
real*4 huge (huge_size) , huge_common (huge_size)
common /giant/ huge_common
integer i

do 10 i=l,huge_size
huge(i) = i
huge_common (i) i

10 continue

The equivalent code with dynamic memory allocation is as follows (changes are shown in boldface).
With 16M bytes of memory on each node, this version runs as much as ten times as fast as the
previous version on one node; it runs as much as fifteen times as fast on eight nodes. The more nodes,
the greater the speedup.

parameter huge_size = 1024*1024
real*4 huge (huge_size) , huge_common (huge_size)
pointer(p, huge)
common, allocatable /giant/ huge_common
integer i

allocate (huge, /giant/)

do 10 i=l,huge_size
huge(i) = i
huge_common (i) i

10 continue

deallocate (huge, /giant/)

Paragon™ System User's Guide Improving Performance

Note that a common block must be declared ALLOCATABLE before it is allocated with an
ALLOCATE statement. A variable or array that is not part of a common block must be declared as
a pointer-based variable with a POINTER statement before it is allocated with ALLOCATE; the
corresponding pointer variable, in this case p, does not have to be used. See the Paragon TM System
Fortran Language Reference Manual for more information on these statements.

The reason statically allocated arrays cause your program to run slowly is that, since they are
compiled into the program, the initial contents of the array must be obtained from the executable
program on disk. Whenever a process on a compute node reads or changes a byte in a memory page
of statically allocated data that it hasn't touched before, the data for that page may have to be paged
in. (See "Avoid Virtual Memory Paging" on page 8-3 for an introduction to virtual memory paging.)
A message requesting the initial contents of that page is sent to the node in the service partition
where the compute process's parent process is running. The entire page-SK bytes-is then sent
back to the compute process. This occurs even if the statically allocated data is uninitialized (all
zeroes).

Sending these pages across the mesh takes time. Even worse, if many compute processes all want
pages at the same time, the parent process's node can become overwhelmed, slowing the application
drastically. The effect is magnified if the statically-allocated array is so large that parts of the
operating system have to be paged out to make room for it; in this case, pages of the operating system
have to go out at the same time pages of static data are coming in.

When you use ALLOCATE or mallocO to dynamically allocate an array, the memory is not
associated with the program on disk. Instead, each node has its own copy of the array, and it doesn't
have to be paged in. When a compute process touches a page of dynamically-allocated data it hasn't
touched before, the page is simply allocated from the available node memory-no messages are sent.
This greatly reduces traffic on the mesh and increases the performance of your application.

Avoid Serializing Calls

Avoid using serializing calls repeatedly or on many nodes. A serializing call is one that relies on a
single resource which can only service one request at a time (typically a daemon or server on the
boot node). Using a serializing call once takes little time, but if many nodes in a large application
call it at the same time the boot node can only service these requests one at a time. Each node must
wait until the boot node services its request, which can cause the entire application to run slowly.

Many calls that perform 110 or make use of the file system, such as statO, chdirO, and chmodO, are
serializing calls, because they must communicate with the root file system server on the boot node.
getrusageO is also a serializing call, because it sends a message to all the 110 nodes to get
information on the caller's 110 activity. You can detect the presence of serializing calls in your
program by profiling it. If common operations, especially 110 operations, are taking much more time
than expected, they may be serializing calls.

Whenever possible, avoid overuse of serializing calls by having only one node make the call. For
example, instead of having every node process call statO, have one node call statO and then use
gisumO to distribute the information to the other nodes. Also, instead of having every node process

8-9

Improving Performance Paragon ™ System User's Guide

call chdirO when it starts up, have the controlling process call chdirO before creating the node
processes. You can avoid serialization in liD by using the liD mode M_RECORD or M_ GLOBAL,
as described under "Use the Appropriate liD Mode" on page 8-24.

Use ParaGraph

The Paragon system comes with the ParaGraph performance visualization tool. You can use this
graphical tool to help analyze your application's message passing behavior and determine where to
concentrate your optimization efforts. See the Paragon ™ System Application Tools User's Guide for
more information on ParaGraph.

Maintain Data Locality

Wherever possible, try to distribute the data to the nodes so that each node has all the data it needs,
and does not have to get any data from other nodes. Where it is not possible to keep all related data
on one node, try to keep the data as close as possible to the nodes that need it.

For example, suppose you are writing a simulation where the value of each data point in a plane is
computed from the values of nearby data points. To parallelize this simulation, you would divide up
the plane into segments and assign each segment to a node. However, each node must communicate
with other nodes to get data for points that are just past the edge of its data segment. Since the
Paragon system has a mesh architecture, you would typically divide up the plane in a
two-dimensional decomposition (rectangles). You would then assign the rectangles to nodes in such
a way that neighboring segments are the responsibility of neighboring nodes. (Use the
nx_app_rectO call to determine the "shape" of your application.) This will reduce message traffic
and ensure that each message reaches its destination as quickly as possible.

Overlap Computation and Communication

8-10

The message-passing system calls are available in both synchronous versions (call names beginning
with c) and asynchronous versions (call names beginning with i). Synchronous calls do not return
until the message-passing operation is complete; asynchronous calls return immediately, giving you
a message ID that you can use to check when the operation is complete.

Although the synchronous calls are easier to use and have slightly lower overhead, you should use
the asynchronous calls whenever the results of the call are not needed immediately. Using
asynchronous calls can let your application do useful computation in the time when it would
otherwise just be waiting for a message to arrive. During this time, the node's message coprocessor
can process the communication without interrupting the main processor.

Paragon ™ System User's Guide Improving Performance

Avoid Message Buffering

Try to avoid message buffering whenever possible. For example, assume that you have the same
process running on two nodes and that these processes must exchange information. Each process
must issue a receive and a send. If a esendO call is executed before its corresponding ereevO, the
message is sent and buffered in a system buffer (if there is not enough space in system buffers, the
sender blocks). When the ereevO is executed, the message is copied from the system buffer into the
application buffer. (For detailed information on message buffering, see "Understand
Message-Passing Flow Control" on page 8-13.)

Your code runs more efficiently if you can avoid the system buffer and copy the message directly
into the application buffer. You can do this by using an ireevO (the asynchronous receive) and
posting the receive before the corresponding esendO. Remember, however, that because the nodes
do not run in lock step, coding the ireevO before its corresponding esendO does not guarantee that
the ireevO is executed before its esendO (even if the same program runs on every node). You can
make sure that the ireevO is executed before the esendO by using zero-length messages to
synchronize the nodes, as shown in the following example.

For example, consider the following C routine, shadow. This routine might appear in an application
that needs to have the nodes exchange the rows of a matrix (a Fortran version would probably
exchange columns instead).

A typical application for shadow might be a Gauss-Seidel iteration or any technique based on nearest
neighbor interactions. The application processes a two dimensional array called s[] [] and exchanges
rows between nodes. The first index in the array represents a row, and it is passed as a pointer. Each
node contains a horizontal partition of the array with range rows. It has a top buffer (s[O]) and a
bottom buffer (s[range+ 1]) containing the boundary rows from other nodes.

void shadow (
long topnode;
long botnode;
int (*s) [MAX_LATTICEJ
int range)

long topid, botid, syncbotid, synctopid;

/* Node sends upper boundary row s[1J to the bottom buffer
s[range+1J of the node controlling the upper partition,
(topnode) .

Node sends lower boundary row s[rangeJ to the top buffer s[OJ
of the node controlling the lower partition, botnode */

topid
botid

irecv(TOP, s[OJ, s i z eo f (s [0 J)) ;
irecv(BOT, s[range+1J, sizeof(s[range+1J));

8-11

Improving Performance Paragon ™ System User's Guide

/* The following code ensures that the csend()s corresponding
to the above irecv()s are not executed until all the irecv()s
have been posted. */

syncidtop = irecv(SYNCTOP, 0, 0);
syncidbot = irecv(SYNCBOT, 0, 0);
csend(SYNCTOP,O,O,topnode,O);
csend(SYNCBOT,O,O,botnode,O);
msgwait(syncidtop);
msgwait(syncidbot);

/* End of synchronization code. */

csend(BOT, s[l], sizeof(s[l]), topnode, 0);
csend(TOP, s[range], sizeof(s[range]), botnode, 0);

msgwait (topid) ;
msgwai t (botid) ;

Note that when the data sends are performed the asynchronous receives have already been executed.
This is ensured by the zero-length synchronization messages. The data then goes directly into the
application buffer (unless it is paged out, as discussed later in this section).

Another way of achieving synchronization is to issue a gsyncO after the irecvO' s. However, gsyncO
can be expensive-it synchronizes all the nodes, when all that's really necessary is to synchronize
senders and receivers. A good rule of thumb is to synchronize only what is really necessary.

Align Application Buffers

8-12

Try to ensure that send and receive buffers are properly aligned and sized whenever possible.
Although the message-passing system calls will work with any size or alignment of buffers, the
hardware works best with well-aligned buffers. The software may have to copy messages that are in
misaligned buffers to new, aligned buffers, which decreases performance. There are several degrees
of alignment. All other things being equal:

1. The best performance can be achieved by aligning the send or receive buffer on a 4K-byte
boundary (this means that the buffer's address is an even multiple of 4K). This corresponds with
the i860 microprocessor's 4K-byte physical memory page.

2. Good performance (only slightly worse) occurs if the buffer is aligned on a 32-byte boundary,
which corresponds with the microprocessor's cache line, but crosses a 4K-byte memory page
boundary.

3. The next-best performance (not nearly as good) occurs if the buffer is aligned on an 8-byte
boundary, which corresponds with the microprocessor's FIFO size.

Paragon ™ System User's Guide Improving Performance

4. Some performance improvement can be seen if the buffer is aligned on a 4-byte boundary.

5. The worst performance comes when the buffer is not even aligned on a 4-byte boundary (that
is, its address is not a multiple of 4).

To be sure the buffer is well-aligned, you should use mallocO to allocate it rather than allocating it
statically. (This call is available in both Fortran and C.) Buffers allocated with the standard mallocO
or its derivatives will always be aligned on a 32-byte boundary.

You can arrange for the pointer to a message buffer to be on a 4K-byte boundary by using pointer
arithmetic. This technique can be used even if the buffer is statically allocated. You do this by
declaring your buffer to be 4095 (4K-l) bytes longer than needed, adding 4095 to the buffer pointer,
and then ANDing the pointer with the NOT of 4095. For example, assume that you need a 50K-byte
buffer called buf You can cause the buffer pointer bufp to be on a 4K-byte boundary by declaring
bujto be 54K-l bytes and doing the following pointer arithmetic:

char *bufp, buf[55295Ji

/* bufp points to the nearest 4K-byte boundary in the buffer */
bufp = (char *) (((int)buf + 4095) & -4095) i

Finally, when you set up C structures that you intend to use as messages, try to minimize padding
(open areas within the structure inserted by the compiler to make the following structure element
properly aligned). To do this, you should be aware of the sizes and alignments of the different data
types; in general, you can minimize padding by placing the larger data types first. Reducing padding
reduces the number of empty bytes sent with the message.

Understand Message-Passing Flow Control

Whenever you send a message, the sending process and the receiving process use message-passing
flow control to make sure that the message is safely stored in memory when it arrives at the
destination node. This flow control guarantees that messages flow from their source to destination
without blocking on the mesh. If you understand flow control, you can select the message sizes,
message-passing configuration parameters, and message synchronization techniques that give the
best possible message-passing performance for your application.

Note, though, that the most important thing you can do to improve message-passing flow control is
to avoid message buffering (as discussed under "Avoid Message Buffering" on page 8-11). You
should only read this section if you cannot avoid message buffering and need to improve its
efficiency, or if you really want to understand all the nitty-gritty details of message-passing flow
control. If neither of these applies to you, skip to "Recommendations" on page 8-21.

8-13

Improving Performance Paragon 1M System User's Guide

8-14

Overview of Message-Passing Flow Control

Here's an overview of what happens when you send a message. (This is a simplified view; the
low-level details of message-passing flow control are proprietary and subject to change.)

1. The sending process checks to see if the memory page containing the message to be sent is
currently in physical memory. If not, it is paged in. (See "Avoid Virtual Memory Paging" on
page 8-3 for information on paging.)

2. The sender checks to see how much memory it thinks is available in system message buffers on
the receiver and sends the appropriate number of bytes (see "System Message Buffers" on page
8-16 for details). If the whole message has been sent at this point, the send is complete;
otherwise, it waits for a request from the receiver for the next part of the message. This waiting
mayor may not block the sending process, depending on whether the sending call was
synchronous or asynchronous.

3. When the message (or the first part of the message) arrives at the receiving node, the node's
operating system checks to see if there is a receive posted for a message of that type by the
specified receiving process. ("Posted" means that the process has an outstanding
message-receiving call that has not yet been fulfilled.)

A. If there is a receive posted and the application buffer (the buffer specified in the receive
call) is currently paged in, the message is stored directly into the application buffer.

B. If there is a receive posted and the specified application buffer is not paged in, the message
is stored in a system buffer. Then the application buffer is paged in and the message is
copied into it.

c. If there is no receive posted, the message is stored in a system buffer and the receiver waits
until a receive is posted. When the receive is posted, the specified application buffer is
paged in (if necessary) and the message is copied into it.

4. If the whole message has been received at this point, the receive is complete; otherwise, it sends
a request to the sender for the next part of the message and waits. (This waiting mayor may not
block the receiving process, depending on whether the receiving call was synchronous or
asynchronous.) The request also includes the current free space in system message buffers on
the receiver, which is used to calculate how big the next part should be. Go back to step 1 and
continue until the message has been completely sent and completely received.

Special case: if the sender thinks the message is too large to send all at once, and there is no receive
posted, but there is actually enough space in system buffers on the receiver to accommodate the
entire message, the receiver stores the first part of the message in a system buffer and immediately
sends a special request to the sender saying "send the whole rest of the message." In this case, the
entire message can be sent before the receive is posted. Otherwise, only the first part of the message
is sent and the rest of the message waits on the sender until the receive is posted.

Paragon ™ System User's Guide Improving Performance

Process Locking

The message-passing flow control procedures check to make sure that application buffers are paged
into physical memory, and copy information from one buffer to another if they are not. You can
avoid these steps by using the -plk switch on the application command line. This switch locks parts
of each process into physical memory, like the aSF/1 system call piockO (see the OSFll
Programmer's Reference for information on plock()). This locking is also referred to as wiring.

The -pik switch locks the following parts of your application into physical memory:

• The entire data segment (the part of memory that contains global variables) is locked. This
occurs when the program is loaded.

• If you use an application buffer that is located on the stack (the part of memory that contains
local variables) or on the heap (the part of memory that is allocated by mallocO or
ALLOCATE), the area from the beginning of the stack/heap to the end of the buffer is locked.
This occurs the first time you use the buffer in a message-sending or -receiving call.

All areas of memory not mentioned in this list, including the code segment (the-part of memory that
contains executable instructions), are not locked and are still subject to paging. Note that locking is
done a page at a time: to lock a single byte, the system must lock the entire 8K-byte virtual memory
page containing that byte.

The -pik switch greatly reduces the effect of virtual memory on your application and improves
message-passing latency. However, it has the following consequences:

• Your application must fit in physical memory. If it does not, any operation that results in the
allocation or locking of more memory may fail unexpectedly, possibly terminating the
application.

Ideally, the operating system and the application's code and data should all fit into the node's
physical memory at once. However, the code segment is subject to paging even when -plk is in
effect, so the application may still work if there is enough physical memory left over after
subtracting the size of the operating system and the total amount of locked data. The definition
of "enough" depends on the application's pattern of access to its code in memory and how much
of the code needs to be present in memory at once. (See the Paragon TM System Software Release
Notes for the Paragon TM XPIS System for information on how much memory is needed by the
operating system.)

• The physical memory available for other processes is reduced by the size of your application's
locked data for the life of your application.

When -pik is in effect, none of the locked data will be removed from physical memory until the
application terminates. Even if your application is not actually executing (for example, because
it is "rolled out" by gang scheduling), it still retains control of this memory, and the application
that is currently executing cannot use the memory that is locked by your application. This can
cause the other application to run very slowly or ''thrash.''

8-15

Improving Performance Paragon™ System User's Guide

8-16

To prevent this "thrashing," your system administrator can configure the system so that -pIk cannot
be used in gang-scheduled or standard-scheduled partitions. If -pIk is allowed at your site, it should
be used with extreme care because of its impact on other users.

-pIk also conditions message-passing flow control to run more efficiently by assuming that all
message buffers are locked into memory. For example, suppose a message is too large to send all at
once. With -pIk, after the first part of the message arrives, the receiver can request the entire rest of
the message-no matter how big it is-as soon as the receive is posted. Since the application buffer
cannot be paged out, the receiver can be sure it will be there to receive the rest of the message when
it arrives. Without -plk, the application buffer could be paged out while the second part is on its way,
so the second and subsequent parts of the message must be smaller than the available system
message buffer space. This means that many more exchanges might be required before the message
is completely received.

Packetization

Messages from one node to another may be broken into smaller messages, called packets, before
they are placed on the mesh. Using packets results in a slight additional overhead on large messages,
but it gives much better overall message bandwidth because it allows several large messages to be
interleaved on the same wire at the same time.

The maximum size of each packet is referred to as packecsize, and is 8192 bytes for MP systems
and 1792 for GP systems, by default (this size does not include the header appended to each packet).
If a message is larger than packecsize, it is sent in several pieces, each at most packecsize bytes
long. You can change the packet size with the -pkt switch on the application command line.

System Message Buffers

In each node process, an area of memory is set aside for system message buffers. These buffers are
used to store messages that arrive at the node before the receiving process is ready to receive them.
For example, if a sending process calls csendO before the receiving process has called the
corresponding crecvO, the message goes into a system buffer in the receiving process. Then, when
the receiving process does call crecvO, the message is copied from the system buffer to the buffer
specified in the crecvO call, which is referred to as the application message buffer.

The size and behavior of the system message buffers are controlled by several parameters that you
can set on the application command line. The following list describes these parameters and their
effects.

• The total amount of memory allocated to system message buffers in each process is referred to
as message_buffer. The message_buffer is always wired into physical memory, which means
that it can never be paged out (see "Avoid Virtual Memory Paging" on page 8-3 for information
on paging). This is necessary to ensure that all messages that arrive at the node can be stored
somewhere, even if the rest of the application is paged out. The default value of message_buffer
is 1152K bytes. You can change this size with the -mbf switch on the application command line

Paragon ™ System User's Guide Improving Performance

• The message_buffer is divided into an area for messages from any process, and a series of areas
dedicated to messages from particular processes. The number of dedicated areas is referred to
as correspondents, and the size of each dedicated area is referred to as memory_each. When a
message is received, it is stored in the open area if there is room; the memory_each areas are
used only when the open area is full. The default value for correspondents is numnodesO; you
can change it with the -noc switch. The default value of memory3ach is determined by the
current values of correspondents, message_buffer, andpackecsize; you can change it with the
-mea switch.

• Each node process maintains a value called the send_avail for each other process in the
application. The send_avail is the maximum amount of memory that the process can depend on
to be available in its memory _each segment in that other process. (The send_avail may be
smaller than the actual amount of memory available, but is never larger.) When a process sends
a message to another process, it decreases the send_avail for that process by the message size;
when the message has been "consumed" (completely placed in the application buffer on the
receiving process), the receiver tells the sender and the sender increases its send_avail for the
receiving process accordingly. The initial value of send_avail is memory_each; the send_avail
value is maintained dynamically by each process and cannot be set on the command line.

• When a process has a large message to send, it uses its send_avail value for the receiving
process to determine how much of the message to send at first. Two parameters called
send_threshold and send_count control this behavior:

1. If the send_avail value is equal to or greater than the size of the message, the sender sends
the whole message at once.

2. Otherwise, if the send_avail value is equal to or greater than the send_threshold, the sender
sends the first send_count bytes of the message and waits for an acknowledgment from the
receiver that they have been consumed before proceeding.

3. Otherwise, if the send_avail value is equal to or greater than the packecsize, the sender
sends the first packet of the message and waits for an acknowledgment from the receiver
that it has been consumed before proceeding.

4. If the send_avail value is less than packecsize, the send blocks until the receiver tells it that
some messages have been consumed and send_avail can be increased. (See the discussion
of give_threshold later in this section for more information on how this occurs.) This
blocking mayor may not block the sending process, depending on whether it used a
synchronous send (such as csend()) or an asynchronous send (such as isendO).

Note that deadlock can occur when send_avail is less than packecsize. For example,
suppose that node A and node B' s system message buffers are both full. Under normal
circumstances, eventually a receive would be posted and the buffered messages would be

8-17

Improving Performance Paragon ™ System User's Guide

8-18

consumed. But if the two nodes try to exchange messages with synchronous calls, they
deadlock: A blocks waiting for more space to become available on B. and B blocks waiting
for more space to become available on A.

The default value for send_threshold and send_count is half of memory_each; you can change
these two parameters with the -sth and -set switches respectively.

• When a message is consumed. the receiver normally informs the sender that the space occupied
by the message is available for new messages by "piggy-backing" information on other
messages going to the sender. However. if there are no such messages. the sender can get out of
date and stop sending messages because it thinks there is no free memory left for it on the
receiver. In this case. a parameter called the give _threshold comes into play. If a receiver knows
that a sender thinks it has less than give_threshold bytes of memory free. but there is really more
memory available. it sends a special message to the sender telling it how much memory is really
available. The default value for give_threshold is packecsize; you can change it with the -gth
switch.

Message-Passing Configuration Switches

The switches that control the message-passing configuration parameters discussed earlier in this
section are referred to as the msg_switches. Although the default values of these parameters have
been chosen to give good results for "typical" applications. you may be able to improve your
application's message-passing performance by using different values.

You use the msg_switches on the command line of a parallel application. These switches override
the default values of the specified parameters for that run of the application; they do not have any
effect on other runs or other applications.

If the application was linked with the -ox switch. the msg_switches are automatically interpreted and
removed from the command line before the application starts up. An application linked with -lnx
controls its own execution with system calls. as discussed under "Managing Applications" on page
4-2. Such an application mayor may not obey the msg_switches. depending on how it was
programmed.

The values used with the msg_switches (except -plk and -noc) are integer numbers of bytes. The
default. maximum, and minimum values for these switches are described under ''Default, Maximum.
and Minimum Values" on page 8-20. The value you specify may be rounded up or down to ensure
correct operation. as described under "Dependencies and Rounding" on page 8-21.

Paragon ™ System User's Guide Improving Performance

Summary of the Message-Passing Configuration Switches

The list of available msg_switches is as follows:

-pik

-pkt packecsize

-mbf message_buffer

-DOC correspondents

-mex memory_export

-mea memory_each

-sth send_threshold

-set send_count

-gth give_threshold

Locks parts of the application into memory (see "Process
Locking" on page 8-15 for more information).

Sets the size of each packet.

Sets the total amount of memory allocated to message
buffers in each process.

Sets the total number of other processes from which each
process expects to receive messages.

Used in setting the maximum value for memory_each;
otherwise ignored.

Sets the amount of memory allocated to buffering
messages from each correspondent.

Sets the threshold for sending multiple packets.

Sets the number of bytes to send right away when the
available memory is above send_threshold.

Sets the threshold for "give me more messages" message.

See "Process Locking" on page 8-15, "Packetization" on page 8-16, and "System Message Buffers"
on page 8-16 for more detailed information.

8-19

Improving Performance Paragon™ System User's Guide

Default, Maximum, and Minimum Values

The default, maximum, and minimum values for the msgjwitches are shown in Table 8-1.

Table 8-1. Message-Passing Configuration Switches

Switch Parameter Default Maximum Minimum

-plk none unlocked nla n/a

-pkt packecsize 8192 (for MP systems) or 8192 bytes (for MP sizeof(xms~t)

1792 (for GP systems) or systems) or 1792 bytes
«memory_each 12) - (for GP systems)
sizeof(xms~t)l),
whichever is less

-mbf message_buffer 1MB + 128KB 32MB + (8 * sizeof(xmsg_t» *
(10 * JuIl...packecsize2) (correspondents + 2) +

(20 * sizeof(xmsg_t»

-mex memory_export message_buffer - 128KB message_buffer - 128KB 2 * (correspondents + 2) *
(2 * Jullyacket_size)

-noc correspondents numnodesO none none

-mea memory_each (10 * jullyackeCsize) or 1MB - 31 or 2 * jullyackeCsize
maximum memory_each, (memory_export 12) 1
whichever is less (correspondents + 2),

whichever is less

-sth send_threshold memory_each 12 memory jach - 1 none

-set send_count memoryjach 12 memory_each packecsize

-gth give_threshold packecsize memory_each 1 2 packecsize

1. xmsg_t is a type defined in <mcmsg/mcmsg_xmsg.h> that defines the message header sent along with
each packet. The size of this type is currently 64 bytes.
2. jullyackecsize = packecsize + sizeof(xmsg_t).

8-20

Paragon ™ System User's Guide Improving Performance

Dependencies and Rounding

As you can see from Table 8-1, the values for some ofthemsg_switches depend on the current values
of other switches in a circular manner (for example, the default for packecsize depends on the value
of memory _each, while the default for memory _each depends on the value of packecsize). These
dependencies are resolved using the following procedure:

1. Set packeCsize: If -pkt is specified, round the specified value up to a multiple of
sizeof(xms~t). Otherwise, use the default value.

2. Set message_buffer: If -mbf is specified, round the specified value up to a multiple of
jull...JJackeCsize. Otherwise, use the default value.

3. Set memory_export: If -mex is specified, use the specified value. Otherwise, use the default
value.

4. Set memory_each: If -mea is specified, round the specified value down to a multiple of
sizeof(xms~t). Otherwise, round the default value down to a multiple of sizeof(xmsg_t).

5. Check that memory_each will hold at least two packets: If (memory_each/2) - sizeof(xms~t)
is less than packet_size, reset packecsize to the value «memory_eachl2) - sizeof(xmsg_t»),
round the resulting value down to a multiple of sizeof(xms~t), then return to step 2. Otherwise,
continue to step 6.

6. Set send_threshold: If -sth is specified, round the specified value down to a multiple of
packecsize. Otherwise, round the default value down to a multiple of packeCsize.

7. Set send_count: If -sci is specified, round the specified value down to a multiple of packet_size.
Otherwise, round the default value down to a multiple of packeCsize.

8. Set give_threshold: If -gth is specified, round the specified value down to a multiple of
packecsize. Otherwise, round the default value down to a multiple of packecsize.

Recommendations

Because of the way message-passing flow control works, you should try to do all the following to
achieve the best possible message-passing performance:

Avoid paging, by keeping the application's memory requirements within available physical
memory. Once you have done this, use the -plk switch if this is allowed at your site.

• Avoid blocking, by using asynchronous calls.

Avoid system message buffering, by posting receives before the message is sent. (See "Avoid
Message Buffering" on page 8-11 for tips on how to do this.)

8-21

Improving Performance Paragon ™ System User's Guide

8-22

It is important to make all three of these changes if possible. For example, even if you always post
receives before the corresponding send occurs, system message buffering will still be necessary if
the application buffer is paged out (or has never been paged in) when the message arrives.

If you cannot avoid system message buffering, you may be able to improve message-passing
performance by increasing the message_buffer parameter (-mbt). This parameter determines the
total amount of memory allocated to message buffers in each process; the other parameters
determine how this memory is divided up. When you change the value of message_buffer, the
defaults for the other parameters are automatically scaled to match the current message_buffer size.
Increasing the message_buffer can increase the efficiency of message passing, but it also increases
the memory usage of your application, which may cause paging and slow the application down.
Once you have determined the optimal message _buffer size for your application, you can change the
other parameters to fine-tune the usage of memory within the message_buffer and optimize
message-passing performance.

The performance of some applications that use system message buffering can also be improved by
reducing the correspondents parameter (-DOC). This is particularly likely to help if your application
slows down or hangs when you run it on more nodes. The -DOC switch sets the "number of
correspondents" for each process, which is the number of other processes from which the process
receives messages. This number is used to determine how the memory allocated to buffering
messages is divided up; more correspondents means that less memory is available for buffering
messages from each correspondent. If you don't use -DOC, the default for correspondents is
DumnodesO; that is, it is assumed that each process may receive messages from one process on each
node. If you know that each process does not receive messages from every other node, using -DOC to
decrease the value of correspondents increases the memory_each buffer size, which can result in
more efficient message passing (especially if the number of nodes is large). However, if the total
number of other processes from which any process receives messages during the life of the
application exceeds the value of correspondents, the application may run more slowly.

Note that certain global operations, such as sending to node -1 (which broadcasts a message to all
nodes in the application) or calling gdswnO, can send messages to intermediate nodes. For example,
sending to node -1 does not simply send one message to every other node; instead, it sends a message
to several other nodes, which each send messages to several other nodes, and so on in a "message
tree." This method is more efficient, but it means that if you use any global operations, the actual
number of correspondents will be greater than the number of nodes from which each node receives
explicit messages (by approximately the log of the number of nodes in the application).

Paragon ™ System User's Guide Improving Performance

1/0 Performance
If your application performs I/O to files, you can use the following techniques to improve its I/O
performance. Note: the term request size refers to the number of bytes specified in a single read or
write operation. Techniques discussed in this section include:

Use PFS file systems.

• Use gopenO instead of openO.

• Use parallel I/O calls.

• Use asynchronous calls.

• Use the appropriate I/O mode.

• Align I/O buffers with virtual memory pages.

• Read or write whole file system blocks.

Make good use of file striping.

See Chapter 5 for more information on these techniques.

Use PFS File Systems

Always store large data files in file systems of type PFS (Parallel File System). These file systems
are optimized for large I/O requests (request sizes of 64K bytes or more) and simultaneous access
by multiple nodes, and files in them can be larger than 2G bytes in size.

Use gopenO Instead of openO

If all nodes in an application open the same file, you should always use gopenO rather than openO.
If all nodes call openO, each node sends an "open file" message to the same I/O node at the same
time, which can swamp the I/O node with messages. But when all nodes call gopenO, only one node
communicates with the I/O node; the open file descriptor is then broadcast to the other nodes in the
application through efficient global communication techniques. If you must use openO, try to keep
all the nodes from calling it at the same time (do not precede the openO with a gsyncO).

8-23

Improving Performance Paragon™ System User's Guide

Use Parallel 110 Calls

If you program in Fortran, you should always use the parallel 110 calls, such as creadO, to access
your files. These calls give much better performance than the standard Fortran file 110 statements,
such as READ.

If you program in C, you will not see any 110 performance increase from using parallel 110 calls,
such as creadO, rather than standard UNIX 110 calls, such as readO (although creadO gives better
performance than freadO, which is the C equivalent of Fortran' s READ). However, you may be able
to improve computational performance by using asynchronous 110 calls.

Use Asynchronous Calls

The parallel 110 calls are available in both synchronous versions (call names beginning with c) and
asynchronous versions (call names beginning with i). Synchronous calls do not return until the liD
operation is complete; asynchronous calls return immediately, giving you an liD ID that you can use
to check when the operation is complete.

Although the synchronous calls are easier to use and have slightly lower overhead, you should use
the asynchronous calls whenever the results of the call are not needed immediately. Using
asynchronous calls can let your application do useful computation in the time when it would
otherwise just be waiting for a large 110 operation to complete.

Use the Appropriate 110 Mode

8-24

When you use parallel 110 calls, you can choose from five 110 modes (M_UNIX, M_LOG,
M_SYNC, M_RECORD, and M_GLOBAL), each of which is optimized for a particular pattern
of file 110. Be sure to use the correct 110 mode for your application's usage. In particular:

• Don't use M_UNIX, the default 110 mode, unless your application depends on its semantics.

• If all nodes read the same data from the same file at the same time, use M_GLOBAL.

• If all nodes read or write the same file, but each node is accessing a different part of the file, use
M_RECORD if at all possible. This mode provides much higher multi-node performance than
the other modes, all of which force reads and writes from different nodes to the same file to be
performed in strict sequential order (this is required to preserve standard UNIX 110 semantics,
but slows the application down).

• If M_RECORD cannot be used because the 110 request size is not constant across all compute
nodes, use M_SYNC instead.

Paragon ™ System User's Guide Improving Performance

Align 1/0 Buffers with Virtual Memory Pages

Try to ensure that memory buffers used in 110 calls are aligned on an 8K-byte boundary whenever
possible, to align with the operating system's virtual memory page size. This alignment is
particularly important in scatter/gather operations with large request sizes to multiple I/O nodes. If
you do not specify properly-aligned buffers, the software must copy the data to new, aligned buffers,
which decreases performance.

To be sure the buffer is well-aligned, you should use mallocO to allocate it rather than allocating it
statically. (This call is available in both Fortran and C.) Buffers allocated with the standard mallocO
or its derivatives will always be aligned on a 32-byte boundary. See "Align Application Buffers" on
page 8-12 for more information on aligning buffers.

Read or Write Whole File System Blocks

Disk space is allocated and managed in units called file system blocks. The size of each block in a
file system is determined when the file system is created. For best performance, PFS file systems
should have a file system block size of 64K bytes.

The file system block size is important because files always begin at a block boundary and data is
most efficiently transferred to and from the physical disk in integer numbers of blocks. Furthermore,
if a block is modified (but not entirely overwritten) by a write operation, the block may have to be
read, modified in memory, and then written back.

Because of this, you will get the best 110 performance if each read or write request begins on a block
boundary (a multiple of the block size from the beginning of the file) and the request size is a
multiple of the file system block size.

To determine the block size of a file system, you can use the statfsO or fstatfsO call (see the OSFll
Programmer's Reference for information on these calls), or ask your system administrator.

Make Good Use of File Striping

Files in PFS file systems are distributed, or striped, across several directories called stripe
directories. The number of stripe directories in a PFS file system is called the stripe factor, and the
amount of data from each file that is stored in each directory is called the stripe unit. The product of
the stripe factor and the stripe unit is called the full stripe size. A PFS file system's stripe factor and
stripe unit are set by the system administrator when the PFS file system is mounted.

8-25

Improving Performance Paragon TM System User's Guide

8-26

Each stripe directory is typically on a separate disk, and each disk is typically controlled by a
separate I/O node; you get the best I/O performance when you keep all the I/O nodes busy at once.
You can use file striping to help you do this, with two different methods:

1. Use a request size equal to an integer multiple of the full stripe size, and make the starting
address of each request the beginning of a full stripe. With this method, each I/O request goes
to all the I/O nodes at once. This method can be used on any number of nodes.

2. Use a request size equal to the stripe unit size, make the starting address of each request the
beginning of a stripe unit, and choose the starting address of each node's requests so that the
nodes' requests are evenly distributed among the I/O nodes. With this method, each I/O request
goes to just one 110 node, but the application's 110 requests are distributed among the 110 nodes.
This method should be used only if the number of compute nodes is greater than or equal to the
number of 110 nodes, preferably an integer multiple of the number of 110 nodes.

These two methods are illustrated in Figure 8-1. Note that method 1 uses fewer, larger requests and
method 2 uses more, smaller requests. Method 1 is generally more efficient, but method 2 may give
better performance for some situations (depending on the number of compute nodes, the number of
110 nodes, the amount of memory on each 110 node, and the size and frequency of requests). If
possible, you should try both methods and use whichever is more efficient. The example program in
/usr/share/exampZes/c/stripe demonstrates the two methods, and you can use it to help you
determine which method is best for your application. (Note that you will see more consistent results
from one run to the next if the data size is large-8M bytes per node or more.)

You should always use the 110 mode M_RECORD when using these methods. M_RECORD is the
most efficient 110 mode for this type of I/O, and automatically enforces the distribution of data
among the I/O nodes. If you use M_RECORD, no file pointer calculation or seeking is required.
For example:

while(data < end) {

}

cwrite(fd, data, request_size);
data += request_size;

Using this code, if requesCsize is equal to the full stripe size, each compute node automatically
accesses all 110 nodes on each write (method 1). Alternatively, if requescsize is equal to the stripe
unit, each compute node automatically accesses exactly one 110 node on each write (method 2).

To determine the stripe factor and stripe unit of a PFS file system, you can use the showfs command
(described under ''Displaying File System Attributes" on page 5-5) or the statpfsO or fstatpfsO call
(available only in C; described under "Getting Information About PFS File Systems" on page 5-41).
The example program in /usr/share/examples/c/stripe shows you how you can do this with
fstatpfsO·

Paragon™ System User's Guide Improving Performance

Compute Nodes

I/O Nodes

Disks

1. Request size = full stripe size
(Fewer, larger requests; each request goes to all I/O nodes)

Compute Nodes o 0

I/O Nodes

Disks

2. Request size = stripe unit size
(More, smaller requests; each request goes to one I/O node)

Figure 8-1. Two Methods of Improving 110 Performance with M_RECORD

8-27

Improving Performance Paragon TM System User's Guide

8-28

Summary of Commands
and System Calls

This appendix summarizes the commands and system calls of the operating system. The complete
syntax of each command and call is provided, along with a brief description of each. The C and
Fortran versions of the calls are discussed in separate sections.

This appendix discusses only the commands and calls that are specific to the operating system. For
information on the standard commands and calls of aSF/I, see the OSFll Command Reference and
OSFll Programmer's Reference.

Command Summary
This section summarizes the commands discussed in Chapter 2 and Chapter 5. See the Paragon™
System Commands Reference Manual for more information on these commands.

Compiling and Linking Applications

Table A-I. Commands for Compiling and Linking Applications

Command Synopsis Description

cc -ox [switches] source file ... Compile an application written in C on a
Paragon supercomputer.

f17 -ox [switches] sourcefile ... Compile an application written in Fortran on a
Paragon supercomputer.

icc -nx [switches] sourcefile ... Compile an application written in C on a
Paragon supercomputer or cross-development
workstation.

irT7 -nx [switches] source file ... Compile an application written in Fortran on a
Paragon supercomputer or cross-development
workstation.

A-1

Summary of Commands and System Calls Paragon ™ System User's Guide

Running Applications

Table A-2. Commands for Running Applications

Command Synopsis Description

application [-sz size I -sz hXw I -nd hXw:n] Execute an application on a Paragon system.
[-rlx] [-pri priority] [opt ptype]
[-on nodespec] [-pn partition]
[-nt nodetype] [-pkt packecsize]
[-noc correspondents]
[-mbf memory_buffer]
[-mex memory_export]
[-mea memory_each]
[-sth send_threshold] [-sct send_count]
[-gth give_threshold] [-plk]
[application_args] [\;jile [opt ptype]
[-on nodespec] [application_args]] ...

Managing Partitions

Table A-3. Commands for Managing Partitions

Command Synopsis Description

mkpart [-sz size I-sz hXw I-nd nodespec] Create a partition.
[-ss I [[-sps I -rq time]
[-epl priority]]] [-mod mode]
[-nt nodetype] [-rlx] partition

rmpart [-f] [-r] partition Remove a partition.

showpart [-f] [-I] [-p] [-nt nodetype] Show the characteristics of a partition.
[partition]

Ispart [-r] [-I] [-p] [partition] List the subpartitions of a partition.

pspart [-r] [partition] List the applications in a partition.

chpart [-epl priority] [-g group] Change certain partition characteristics.
[-mod mode] [-nm name]
[-0 owner[. group]] [-rq time I -sps]
partition

A-2

Paragon™ System User's Guide Summary of Commands and System Calls

Parallel File System Commands

Table A-4. Parallel File System Commands

Command Synopsis Description

showfs [-k] [-t type] Display file system attributes.
[filesystem I directory]

Isize [-a] size file ... Change the size of a file or files.

Is [-I] [-P] [filesystem I directory] Lists and generates PFS information about
files.

Miscellaneous Commands

Note: the commands shown in Table A-5 are not documented in this manual.

Table A-S. Miscellaneous Commands

Command Synopsis Description

coreinfo [corename] Displays summary information about a core
file or the core files located in a core-file

directory. (See the Paragon™ System
Commands Reference Manual for more
information.)

fsplit [filename] Split one file containing several Fortran
program units into several files containing one
program unit each. (See the Paragon 1M System
Commands Reference Manual for more
information.)

pmake [-bcdeFikmnNpqrsStuUvw] Parallel make utility that maintains up-to-date
[-C dir] [-ffile] [-I dir] [-j [jobs]] versions of target files and performs shell
[-I [load]] [-0 file] [-P partition] programs in parallel. (See the Paragon

TM

[-W file] [macro_definition ...] System Application Tools User's Guide for
[target ...] more information.)

sat [-bchxV] [-d dir] [-I log] [-m mins] Run the Paragon system acceptance test. (See
[-0 output] [-p partition] [-r reps] the Paragon™ System Acceptance Test User's
[test ...] Guide for more information.)

A-3

Summary of Commands and System Calls Paragon TM System User's Guide

C System Call Summary
This section summarizes the C versions of the system calls discussed in Chapter 3, Chapter 4,
Chapter 5, and Chapter 6. See the Paragon™ System C Calls Reference Manual for more
information on these calls.

Process Characteristics

Table A-6. C Calls for Process Characteristics

Synopsis Description

long mynode(void); Obtain the calling process's node number.

long numnodes(void); Obtain the number of nodes allocated to the
current application.

long myptype(void); Obtain the calling process's process type.

void setptype(Set the calling process's process type (only
long ptype); permitted if the process type is currently

INVALID _PTYPE).

long myhost(void); Obtain the controlling process's node number.

A·4

Paragon ™ System User's Guide Summary of Commands and System Calls

Synchronous Send and Receive

Table A-7. C Calls for Synchronous Send and Receive

Synopsis Description

void csend(Send a message, waiting for completion.
long type,
char *buf,
long count,
long node,
long ptype);

void crecv(Receive a message, waiting for completion.
long typeset,
char *buf,
long count);

long csendrecv(Send a message and post a receive for the
long type, reply. Wait for completion.
char *sbuf,
long scount,
long node,
longptype,
long typeset,
char *rbuf,
long rcount);

void gsendx(Send a message to a list of nodes, waiting for
long type, completion.
char *buf,
long count,
long nodes[],
long nodecount);

A-5

Summary of Commands and System Calls Paragon™ System User's Guide

Asynchronous Send and Receive

Table A-S. C Calls for Asynchronous Send and Receive

Synopsis Description

longisend(Send a message without waiting for
long type, completion.
char *buf,
long count,
long node,
long ptype);

long irecv(Receive a message without waiting for
long typesel, completion.
char *buf,
long count);

long isendrecv(Send a message and post a receive for the reply
long type, without waiting for completion.
char *sbuf,
long scount,
long node,
longptype,
long typesel,
char *rbuf,
long rcount);

long msgdone(Determine whether a send or receive operation
long mid); has completed.

void msgwait(Wait for completion of a send or receive
long mid); operation.

void msgignore(Release a message ID as soon as a send or
long mid); receive operation completes.

long msgmerge(Merge two message IDs into a single ID that
long midI, can be used to wait for completion of both
long mid2); operations.

A-6

Paragon™ System User's Guide Summary of Commands and System Calls

Probing for Pending Messages

Table A-9. C Calls for Probing for Pending Messages

Synopsis Description

void cprobe(Wait for a message of a selected type to arrive.
long typesel);

long iprobe(Determine whether a message of a selected
long typesel); type is pending.

Getting Information About Pending or Received Messages

Table A-tO. C Calls for Getting Information About Pending or Received Messages

Synopsis Description

long infocount(void); Return size in bytes of a pending or received
message.

long infonode(void); Return node number of the node that sent a
pending or received message.

long infoptype(void); Return process type of the process that sent a
pending or received message.

long infotype(void); Return message type of a pending or received
message.

A-7

Summary of Commands and System Calls Paragon ™ System User's Guide

Treating a Message as an Interrupt

Table A-H. C Calls for Treating a Message as an Interrupt

Synopsis Description

voidhsend(Send a message and set up a handler procedure
long type, to be called when the send completes.
char *buf,
long count,
long node,
longptype,
void (*handler) 0);

voidhrecv(Receive a message and set up a handler
long typesel, procedure to be called when the receive
char *buf, completes.
long count,
void (*handler) 0);

void hsendrecv(Send a message and post a receive for the
long type, reply. Set up a handler procedure to be called
char *sbuf, when the reply arrives.
long scount,
long node,
longptype,
long typesel,
char *rbuf,
long rcount,
void (*handler) 0);

long masktrap(Enable or disable interrupts for message
long state); handlers. Required to prevent corruption of

global variables.

void hsendx(Send a message and set up an extended handler
long type, procedure to be called with the value hparam
char *buf, when the send completes. Allows handler
long count, sharing.
long node,
longptype,
void (*xhandler) 0,
long hparam);

A-a

Paragon ™ System User's Guide Summary of Commands and System Calls

Extended Receive and Probe

Table A-12. C Calls for Extended Receive and Probe

Synopsis Description

void crecvx(Receive a message of a specified type from a
long typesel, specified sending node and process type,
char *buf, together with information about the message.
long count, Wait for completion.
long nodesel,
long ptypesel,
long injo[]);

long irecvx(Receive a message of a specified type from a
long typesel, specified sending node and process type,
char *buf, together with information about the message.
long count, Do not wait for completion.
long nodesel,
long ptypesel,
long injo[]);

void hrecvx(Receive a message of a specified type from a
long typesel, specified sending node and process type. Set
char *buf, up an extended handler procedure to be called
long count, with information about the message and the
long nodesel, value hparam when the receive completes.
long ptypesel,
void (*xhandler) 0,
long hparam);

void cprobex(Wait for a message of a specified type from a
long typesel, specified sending node and process type.
long nodesel, Return information about the message.
long ptypesel,
long injo[]);

long iprobex(Determine whether a message of a specified
long typesel, type from a specified sending node and process
long nodesel, type is pending. If it is, return information
long ptypesel, about the message.
long injo[]);

A-9

Summary of Commands and System Calls Paragon™ System User's Guide

Global Operations

Table A-13. C Calls for Global Operations (1 of 3)

Synopsis Description

void gcol(Concatenation.
char x[],
long xien,
char y[],
long yien,
long *ncnt);

void gcolx(Concatenation for contributions of known
char x[], length.
long xlens[],
char y[]);

void gdbigb(Vector double precision MAX.
doublex[],
long n,
double work[]);

void gdlow(Vector double precision MIN.
double x[],
long n,
double work[]);

void gdprod(Vector double precision MULTIPLY.
doublex[],
long n,
double work[]);

void gdsum(Vector double precision SUM.
double x[],
long n,
double work[]);

voidgiand(Vector integer bitwise AND.
long x[],
long n,
long work[]);

void gihigb(Vector integer MAX.
long x[],
long n,
long work[]);

A-10

Paragon ™ System User's Guide Summary of Commands and System Calls

Table A-13. C Calls for Global Operations (2 of 3)

Synopsis Description

void gilow(Vector integer MIN.
long x[],
long n,
long work[]);

void gior(Vector integer bitwise OR.
long x[],
long n,
long work[]);

void giprod(Vector integer MUL TIPL Y.
long x[],
long n,
long work[]);

voidgisum(Vector integer SUM.
long x[],
long n,
long work[]);

void gland(Vector logical AND.
long x[],
long n,
long work[]);

voidglor(Vector logical inclusive OR.
long x[],
long n,
long work[]);

voidgopf(Arbitrary commutative function.
char x[],
longxlen,
char work[],
long (*junction)O);

void gshigh(Vector real MAX.
floatx[],
long n,
float work[]);

void gslow(Vector real MIN.
floatx[],
long n,
float work[]);

A-11

Summary of Commands and System Calls Paragon TM System User's Guide

Table A-13. C Calls for Global Operations (3 of 3)

Synopsis Description

void gsprod(Vector real MUL TIPL Y.
float x[],
long n,
float work[]);

voidgssum(Vector real SUM.
floatx[],
long n,
float work[]);

void gsync(void); Global synchronization.

Controlling Application Execution

Table A-14. C Calls for Controlling Application Execution (1 of 2)

Synopsis Description

long nx_initve(Create a new application.
char *partition,
long size,
char *account,
long *argc,
char *argv[]);

long nx_initve_rect(Create a new application with a rectangular
char *partition, shape.
long anchor,
long rows,
long cols,
char *account,
long *argc,
char *argv[]);

long nx_initve_attr(Create a new application with specified
char *partition, attributes. (The type of each value parameter
int *argc, depends on the value of the previous attribute
char *argv[], parameter.)
[int attribute,
{ long I char * I long * } value,] ...
NX_ATTR_END);

long nx_pri(Set the priority of an application.
longpgroup,
long priority);

A-12

Paragon 1M System User's Guide Summary of Commands and System Calls

Table A-14. C Calls for Controlling Application Execution (2 of 2)

Synopsis Description

long nx_nfork(Copy the current process onto some or all
long node_list[], nodes of an application.
long numnodes,
longptype,
long pid_list(]);

long nx_load(Execute a stored program on some or all nodes
long node_list[], of an application.
long numnodes,
longptype,
long pid_list(] ,
char *pathname);

long DX_loadve(Execute a stored program on some or all nodes
long node_list[], of an application, with specified argument list
long numnodes, and environment.
longptype,
long pid_list(] ,
char *pathname,
char *argv[],
char *envp[]);

long nx_ waitaIl(void); Wait for all application processes.

Getting Information About Applications

Table A-1S. C Calls for Getting Information About Applications

Synopsis Description

long nx_app]ect(Obtain the height and width of the rectangle of
long *rows, nodes allocated to the current application.
long *cols);

int DX_app_nodes(List the nodes allocated to an application.
pid_t pgroup,
nx_nodes_t *node_list,
unsigned long *lisCsize);

int nx-pspart(Obtain information about all applications and
char *partition, active subpartitions in a partition.
nx_psparU **pspart_list,
unsigned long *liscsize);

A-13

Summary of Commands and System Calls Paragon ™ System User's Guide

Partition Management

Table A-16. C Calls for Partition Management (1 of 2)

Synopsis Description

long nx_mkpart(Create a partition with a particular number of
char *partition, nodes.
long size,
long type);

long nx_mkpart_rect(Create a partition with a particular height and
char *partition, width.
long rows,
long cols,
long type);

long nx_mkpart_map(Create a partition with a specific set of nodes.
char *partition,
long numnodes,
long node_list[],
long type);

long nx_mkpart_attr(Create a partition with specified attributes.
char *partition, (The type of each value parameter depends on
[int attribute, the value of the previous attribute parameter.)
{ long I char * I long * } value,] ...
NX_ATTR_END);

long nx_rmpart(Remove a partition.
char *partition,
longforce,
long recursive);

int nx_part_attr(Get a partition's attributes.
char *partition,
llX_part_info_t *attributes);

int nx_part_nodes(List the root node numbers for the nodes of a
char *partition, partition.
nx_nodes_t *node_list,
unsigned long *lisCsize);

int nx_node_attr(Get the node attributes for all nodes in a
char *partition, partition.
char ***attributes);

long nx_chpart_name(Change a partition's name.
char *partition,
char *name);

A-14

Paragon™ System User's Guide Summary of Commands and System Calls

Table A-16. C Calls for Partition Management (2 of 2)

Synopsis Description

long nx_cbparCmod(Change a partition's protection modes.
char *partition,
long mode);

long DX_cbparCepl(Change a partition's effective priority limit.
char *partition,
long priority);

long nx_cbparCrq(Change a partition's rollin quantum.
char *partition,
long rollin_quantum);

long nx_cbparCowner(Change a partition's owner and group.
char *partition,
long owner,
long group);

long DX_cbparCscbed(Change a partition's scheduling type.
char *partition,
int sched_type);

Finding Unusable Nodes

Table A-17. C Calls for Finding Unusable Nodes

Synopsis Description

int nx_empty _nodes(List the nodes that are empty slots.
nx_nodes_t *node_list,
unsigned long *lisCsize);

int nx_failed_nodes(List the nodes that failed to boot.
nx_nodes_t *node_list,
unsigned long *liscsize);

A-15

Summary of Commands and System Calls Paragon™ System User's Guide

Handling Errors

Table A·lS. C Calls Cor Handling Errors

Synopsis Description

_call(...); Special version of call that returns error value
to caller.

void nx-perror(Print an error message corresponding to the
char *string); current value of errno.

Floating-Point Control

Table A·l9. C Calls Cor Floating·Point Control

Synopsis Description

int isnan(Determine if a double value is Not-a-Number.
double dsrc);

intisnand(Determine if a double value is Not-a-Number.
double dsrc);

int isnanf(Determine if a float value is Not-a-Number.
floatfsrc);

fp_rnd fpgetround(void); Get the floating-point rounding mode for the
calling process.

fp_rnd Cpsetround(Set the floating-point rounding mode for the
fp_rnd rnd_dir); calling process.

fp_except Cpgetmask(void); Get the floating-point exception mask for the
calling process.

fp_except Cpsetmask(Set the floating-point exception mask for the
fp_except mask); calling process.

fp_except Cpgetsticky(void); Get the floating-point exception sticky flags
for the calling process.

fp_except Cpsetsticky(Set the floating-point exception sticky flags for
fp_except sticky); the calling process.

A-16

Paragon TM System User's Guide Summary of Commands and System Calls

Miscellaneous Calls

Table A-20. Miscellaneous C Calls

Synopsis Description

void flick(void); Temporarily relinquish the CPU to another
process.

voidled(Tum the node's green LED on or off.
long state);

double dclock(void); Return time in seconds since booting the
system.

iPSC@ and Touchstone DELTA Compatibility

Table A-21. C Calls for iPSC@ and Touchstone DELTA Compatibility (1 of 2)

Synopsis Description

void flushmsg(Flush specified messages from the system.
long typesel,
long nodesel,
longptypesel);

long ginv(Return the position of an element in the
longj); binary-reflected gray code sequence. Inverse

ofgrayO.

long gray(Return the binary-reflected gray code for an
longj); integer.

void hwclock(Place the current value of the hardware counter
esize_t *hwtime); into a 64-bit unsigned integer variable.

long infopid(void); Return the process type of the process that sent
a pending or received message.

void killcube(Terminate and clear node process(es).
long node,
long ptype);

void killproc(Terminate a node process.
long node,
long ptype);

voidload(Load a node process.
char *filename,
long node,
long ptype);

A-17

Summary of Commands and System Calls Paragon TM System User's Guide

Table A-21. C Calls for iPSC® and Touchstone DELTA Compatibility (2 of 2)

Synopsis Description

unsigned long mclock(void); Return the time in milliseconds.

void msgcancel(Cancel an asynchronous send or receive
long mid); operation.

long mypart(Obtain the height and width of the rectangle of
long *rows, nodes allocated to the current application.
long *cols);

long mypid(void); Return the process type of the calling process.

long nodedim(void); Return the dimension of the current application
(the number of nodes allocated to the
application is 2dimension).

long restrictvol(Return 0 (does nothing; provided for
longjildes, compatibility only).
long nvol,
long vollist[]);

1/0 Modes

Table A-22. C Calls for I/O Modes

Synopsis Description

int gopen(Open a file on all nodes and set its 110 mode.
const char *path,
int ojlag,
int iomode [,
mode_t mode]);

void setiomode(Set the 110 mode for a file.
intjildes,
int iomode);

long iomode(Return the current 110 mode for a file.
intjildes);

A-18

Paragon™ System User's Guide Summary of Commands and System Calls

Reading and Writing Files in Parallel

Table A-23. C Calls for Reading and Writing Files in Parallel

Synopsis Description

void cread(Read from a file, waiting for completion.
intfildes,
char *bujfer,
unsigned int nbytes);

void cwrite(Write to a file, waiting for completion.
intfildes,
char *buffer,
unsigned int nbytes);

void creadv(Read from a file to irregularly-scattered
intfildes, buffers, waiting for completion.
struct iovec *iov,
int iovcount);

void cwritev(Write to a file from irregularly-scattered
intfildes, buffers, waiting for completion.
struct iovec *iov,
int iovcount);

long iread(Read from a file without waiting for
intfildes, completion.
char *buffer,
unsigned int nbytes);

long iwrite(Write to a file without waiting for completion.
intfildes,
char *buffer,
unsigned int nbytes);

long ireadv(Read from a file to irregularly-scattered
intfildes, buffers, without waiting for completion.
struct iovec *iov,
int iovcount);

long iwritev(Write to a file from irregularly-scattered
intfildes, buffers, without waiting for completion.
struct iovec *iov,
int iovcount);

long iodone(Determine whether an asynchronous I/O
long id); operation is complete. If complete, release the

I/O ID.

void iowait(Wait for completion of an asynchronous I/O
long id); operation and release the I/O ID.

A-19

Summary of Commands and System Calls Paragon TM System User's Guide

Detecting End-of-File and Moving the File Pointer

Table A-24. C Calls for Detecting End-of-File and Moving the File Pointer

Synopsis Description

long iseof(Test for end-of-file.
intjildes);

ofCtlseek(Move the read/write file pointer.
intjildes,
ofCt offset,
int whence);

Increasing the Size of a File

Table A-25. C Calls for Increasing the Size of a File

Synopsis Description

long lsize(Increase size of a file.
intjildes,
ofCt offset,
int whence);

A-20

Paragon TM System User's Guide Summary of Commands and System Calls

Extended File Manipulation

Table A-26. C Calls for Extended File Manipulation

Synopsis Description

esize_t eseek(Move file pointer in extended file.
intjildes,
esize_t offset,
int whence);

esize_t esize(Increase size of extended file.
intjildes,
esize_t offset,
int whence);

long estat(Get status of extended file from pathname.
char *path,
struct estat *buffer);

long lestat(Get status of extended file or symbolic link
char *path, from pathname.
struct estat *buffer);

long festat(Get status of open extended file from file
intjildes, descriptor or unit.
struct estat *buffer);

A-21

Summary of Commands and System Calls Paragon ™ System User's Guide

Performing Extended Arithmetic

Table A-27. C Calls for Performing Extended Arithmetic

Synopsis Description

esize_t eadd(Add two extended integers.
esize_t el,
esize_t e2);

long ecmp(Compare two extended integers.
esize_t el,
esize_t e2);

long ediv(Divide extended integer by integer.
esize_t e,
long n);

long emod(Give extended integer modulo an integer
esize_t e, (remainder when e is divided by n).
long n);

esize_t emul(Multiply extended integer by integer.
esize_t e,
long n);

esize_t esub(Subtract two extended integers.
esize_t el,
esize_t e2);

void etos(Convert extended integer to string.
esize_t e,
char *s);

esize_t stoe(Convert string to extended integer.
char *s);

A-22

Paragon ™ System User's Guide Summary of Commands and System Calls

Getting Information About PFS File Systems

Table A-28. C Calls for Getting Information About PFSTM File Systems

Synopsis Description

long getpfsinfo(Get PFS-specific information about all
struct pfsmntinfo **attrbufp); mounted PFS file systems.

int statpfs(Get PFS-specific and non-PFS-specific
char *path, information for the file system containing path.
struct estatfs *fs_buffer,
struct statpfs *pfs_buffer,
unsigned int pfs_bufsize);

long fstatpfs(Get PFS-specific and non-PFS-specific
intjildes, information for the file system containing the
struct estatfs *fs_buffer, file open onjildes.
struct statpfs *pfs_buffer,
unsigned int pfs_bufsize);

A-23

Summary of Commands and System Calls Paragon ™ System User's Guide

Managing Pthread Execution

Table A-29. C Calls for Managing Pthread Execution

Synopsis Description

int pthread_create(Creates a pthread.
pthread_t *thread,
pthread_attct attr,
void *(*routine)(void *arg),
void *arg);

pthread_t pthread_self(void); Returns the ID of the calling pthread.

int pthread_equal(Compares two pthread identifiers.
pthread_t thread],
pthread_t thread2);

void pthreadJield(void); Allows the scheduler to run another pthread
instead of the current one.

void pthread_exit(Terminates the calling pthread.
void * status);

int pthread.Join(Waits for a pthread to terminate.
pthread_t thread,
void **status);

int pthread_detach(Detaches a pthread.
pthread_t *thread);

Managing Pthread Attributes

Table A-30. C Calls for Managing Pthread Attributes

Synopsis Description

int pthread_attr_create(Creates a pthread attributes object.
pthread_attr_t *attr);

int pthread_attr_setstacksize(Sets the value of the stack size attribute of a
pthread_attct *attr, pthread attributes object.
long stacksize);

--------_._-_.

int pthread_attr_delete(Deletes a pthread attributes object.
pthread_attct *attr);

int pthread_attr ~etstacksize(Returns the value of the stack size attribute of
pthread_attr_t attr); a pthread attributes object.

A-24

Paragon ™ System User's Guide Summary of Commands and System Calls

Managing Mutexes

Table A-31. C Calls for Managing Mutexes

Synopsis Description

int pthread_mutex_init(Creates a IDutex.
pthread_IDutex_t *mutex,
pthread_IDutexattr_t attr);

int pthread_mutex_lock(Locks a IDutex.
pthread_IDutex_t *mutex);

int pthread_mutex_trylock(Tries once to lock a IDutex.
pthread_mutex_t *mutex);

int pthread_mutex_unlock(Unlocks a mutex.
pthread_mutex_t *mutex);

int pthread_mutex_destroy(Deletes a mutex.
pthread_mutex_t *mutex);

int pthread_mutexattr_create(Creates a mutex attributes object.
pthread_IDutexattr_t *attr);

int pthread_mutexattr _delete(Deletes a mutex attributes object.
pthread_mutexattr_t *attr);

A-25

Summary of Commands and System Calls Paragon ™ System User's Guide

Using Condition Variables to Synchronize Pthreads

Table A-32. C Calls for Using Condition Variables to Synchronize Pthreads

Synopsis Description

int pthread_cond_init(Creates a condition variable.
pthread30nd_t *cond,
pthread30ndattr_t aur);

int pthread_cond_wait(Waits on a condition variable.
pthread_cond_t *cond,
pthread_mutex_t *mutex);

int pthread_cond_timedwait(Waits on a condition variable for a specified
pthread30nd_t *cond, period of time.
pthread_mutex_t *mutex,
struct timespec *abstime);

int pthread_cond_signal(Wakes up a pthread that is waiting on a
pthread_cond_t *cond); condition variable.

int pthread_cond_broadcast(Wakes up all pthreads that are waiting on a
pthread_cond_t *cond); condition variable.

int pthread_cond_destroy(Destroys a condition variable.
pthread30nd_t *cond);

int pthread30ndattr _create(Creates a condition variable attributes object.
pthread30ndattct *attr);

int pthread_condattr_delete(Deletes a condition variable attributes object.
pthread30ndattr_t *attr);

Canceling Pthreads

Table A-33. C Calls for Canceling Pthreads

Synopsis Description

int pthread_cancel(Requests cancellation of a pthread.
ptbread_t thread);

int pthread_setcancel(Enables or disables the general cancelability of
int state); the calling pthread.

int pthread_setasynccancel(Enables or disables the asynchronous
int state); cancelability of the calling pthread.

-~--

void pthread_testcancel(void); Creates a cancellation point in the calling
pthread.

A-26

Paragon ™ System User's Guide Summary of Commands and System Calls

Pthreads Cleanup Routines

Table A-34. C Calls for Pthreads Cleanup Routines

Synopsis Description

void pthread_cleanup_pop(Removes a routine from the top of the cleanup
int execute); stack of the calling pthread and optionally

executes it.

void pthread_cleanup_push(Pushes a routine onto the cleanup stack of the
void (*routine)(void *arg), calling pthread.
void *arg);

Managing Pthread Keys

Table A-3S. C Calls for Managing Pthread Keys

Synopsis Description

int pthread_keycreate(Creates a key to be used with pthread-specific
ptbread_key_t *key, data.
void (*destructor)(void *value));

int pthread_setspecific(Binds a pthread-specific value to a key.
pthread_key_t key,
void *value);

int pthread...getspecific(Returns the value bound to a key.
pthread_key_tkey,
void **value);

Miscellaneous Pthread Calls

Table A-36. Miscellaneous Pthread Calls

Synopsis Description

int pthread_once(Calls an initialization routine.
pthread_once_t *once_block,
void(*routine)O);

int sigwait(Suspends the calling pthread until one of a
sigseCt *set); specified set of signals is received.

A-27

Summary of Commands and System Calls Paragon TM System User's Guide

Fortran System Call Summary
This section summarizes the Fortran versions of the system calls discussed in Chapter 3, Chapter 4,
and Chapter 5. See the Paragon™ System Fortran Calls Reference Manual for more information on
these calls.

Process Characteristics

Table A-37. Fortran Calls for Process Characteristics

Synopsis Description

INTEGER FUNCTION MYNODEO Obtain the calling process's node number.

INTEGER FUNCTION NUMNODESO Obtain the number of nodes allocated to the
current application.

SUBROUTINE SETPTYPE(ptype) Set the calling process's process type (only
permitted if the process type is currently

INTEGER ptype INVALID _PTYPE).

INTEGER FUNCTION MYPTYPEO Obtain the calling process's process type.

INTEGER FUNCTION MYHOSTO Obtain the controlling process's node number.

A-28

Paragon ™ System User's Guide Summary of Commands and System Calls

Synchronous Send and Receive

Table A-38. Fortran Calls for Synchronous Send and Receive

Synopsis Description

SUBROUTINE CSEND(type, buf, count, Send a message, waiting for completion.
node, ptype)

INTEGER type
INTEGER buf(*)
INTEGER count
INTEGER node
INTEGER ptype

SUBROUTINE CRECV(typesel, buf, count) Receive a message, waiting for completion.

INTEGER typesel
INTEGER bufl.*)
INTEGER count

INTEGER FUNCTION CSENDRECV(type, Send a message and post a receive for the
sbuf, scount, node, ptype, typesel, rbuf, reply. Wait for completion.
rcount)

INTEGER type
INTEGER sbuf(*)
INTEGER scount
INTEGER node
INTEGER ptype
INTEGER typesel
INTEGER rbuf(*)
INTEGER rcount

SUBROUTINE GSENDX(type, buf, count, Send a message to a list of nodes, waiting for
nodes, nodecount) completion.

INTEGER type
INTEGER buf(*)
INTEGER count
INTEGER nodes(*)
INTEGER nodecount

A-29

Summary of Commands and System Calls Paragon ™ System User's Guide

Asynchronous Send and Receive

Table A-39. Fortran Calls for Asynchronous Send and Receive (1 of 2)

Synopsis Description

INTEGER FUNCTION ISEND(type, buf, Send a message without waiting for
count, node, ptype) completion.

INTEGER type
INTEGER buf(*)
INTEGER count
INTEGER node
INTEGER ptype

INTEGER FUNCTION IRECV(typeset, buf, Receive a message without waiting for
count) completion.

INTEGER typeset
INTEGER buf(*)
INTEGER count

INTEGER FUNCTION ISENDRECV(type, Send a message and post a receive for the reply
sbuf, scount, node, ptype, typeset, rbuf, without waiting for completion.
rcount)

INTEGER type
INTEGER sbuf(*)
INTEGER scount
INTEGER node
INTEGER ptype
INTEGER typeset
INTEGER rbuf(*)
INTEGER rcount

INTEGER FUNCTION MSGDONE(mid) Determine whether a send or receive operation
has completed.

INTEGER mid

SUBROUTINE MSGW AIT(mid) Wait for completion of a send or receive
operation.

INTEGER mid

A-3~

Paragon TM System User's Guide Summary of Commands and System Calls

Table A-39. Fortran Calls for Asynchronous Send and Receive (2 of 2)

Synopsis Description

SUBROUTINE MSGIGNORE(mid) Release a message ID as soon as a send or
receive operation completes.

INTEGER mid

INTEGER FUNCTION MSGMERGE(midl, Merge two message IDs into a single ID that
mid2) can be used to wait for completion of both

operations.
INTEGER midl
INTEGER mid2

Probing for Pending Messages

Table A-40. Fortran Calls for Probing for Pending Messages

Synopsis Description

SUBROUTINE CPROBE(typesel) Wait for a message of a selected type to arrive.

INTEGER typesel

INTEGER FUNCTION IPROBE(typesel) Determine whether a message of a selected
type is pending.

INTEGER typesel

Getting Information About Pending or Received Messages

Table A-41. Fortran Calls for Getting Information About Pending or Received Messages

Synopsis Description

INTEGER FUNCTION INFOCOUNTO Return size in bytes of a pending or received
message.

INTEGER FUNCTION INFONODEO Return node number of the node that sent a
pending or received message.

INTEGER FUNCTION INFOPTYPEO Return process type of the process that sent a
pending or received message.

INTEGER FUNCTION INFOTYPEO Return message type of a pending or received
message.

A-31

Summary of Commands and System Calls Paragon™ System User's Guide

Treating a Message as an Interrupt

Table A-42. Fortran Calls for Treating a Message as an Interrupt (1 of 2)

Synopsis Description

SUBROUTINE HSEND(type, buf, count, Send a message and set up a handler procedure
node, ptype, handler) to be called when the send completes.

INTEGER type
INTEGER buf(*)
INTEGER count
INTEGER node
INTEGER ptype
EXTERNAL handler

SUBROUTINE HRECV (typesel, buf, count, Receive a message and set up a handler
handler) procedure to be called when the receive

completes.
INTEGER typesel
INTEGER buf(*)
INTEGER count
EXTERNAL handler

SUBROUTINE HSENDRECV(type, sbuf, Send a message and post a receive for the
scount, node,ptype, typesel, rbuf, rcount, reply. Set up a handler procedure to be called
handler) when the reply arrives.

INTEGER type
INTEGER sbuf(*)
INTEGER scount
INTEGER node
INTEGER ptype
INTEGER typesel
INTEGER rbuf(*)
INTEGER rcount
EXTERNAL handler

A-32

Paragon TM System User's Guide Summary of Commands and System Calls

Table A-42. Fortran Calls for Treating a Message as an Interrupt (2 of 2)

Synopsis Description

INTEGER FUNCTION MASKTRAP(state) Enable or disable interrupts for message
handlers. Required to prevent corruption of

INTEGER state global variables.

SUBROUTINE HSENDX(type, buf, count, Send a message and set up an extended handler
node, ptype, xhandler, hparam) procedure to be called with the value hparam

when the send completes. Allows handler
INTEGER type sharing.
INTEGER buf(*)
INTEGER count
INTEGER node
INTEGER ptype
EXTERNAL xhandler
INTEGER hparam

Extended Receive and Probe

Table A-43. Fortran Calls for Extended Receive and Probe (1 of 2)

Synopsis Description

SUBROUTINE CRECVX(typesel, buf, count, Receive a message of a specified type from a
nodesel, ptypesel, info) specified sending node and process type,

together with information about the message.
INTEGER typesel Wait for completion.
INTEGER buf(*)
INTEGER count
INTEGER nodesel
INTEGER ptypesel
INTEGER info(8)

INTEGER FUNCTION IRECVX(typesel, Receive a message of a specified type from a
buf, count, nodesel, ptypesel, info) specified sending node and process type,

together with information about the message.
INTEGER typesel Do not wait for completion.
INTEGER buf(*)
INTEGER count
INTEGER nodesel
INTEGER ptypesel
INTEGER inJo(8)

A-33

Summary of Commands and System Calls Paragon ™ System User's Guide

Table A-43. Fortran Calls for Extended Receive and Probe (2 of 2)

Synopsis Description

SUBROUTINE HRECVX(typesel, buj, count, Receive a message of a specified type from a
nodesel, ptypesel, xhandler, hparam) specified sending node and process type. Set

up an extended handler procedure to be called
INTEGER typesel with information about the message and the
INTEGER buj(*) value hparam when the receive completes.
INTEGER count
INTEGER nodesel
INTEGER ptypesel
EXTERNAL xhandler
INTEGER hparam

SUBROUTINE CPROBEX(typesel, nodesel, Wait for a message of a specified type from a
ptypesel, info) specified sending node and process type.

Return information about the message.
INTEGER typesel
INTEGER nodesel
INTEGER ptypesel
INTEGER info(8)

INTEGER FUNCTION IPROBEX(typesel, Determine whether a message of a specified
nodesel, ptypesel, info) type from a specified sending node and process

type is pending. If it is, return information
INTEGER typesel about the message.
INTEGER nodesel
INTEGER ptypesel
INTEGER info(8)

A-34

Paragon ™ System User's Guide Summary of Commands and System Calls

Global Operations

Table A-44. Fortran Calls for Global Operations (1 of 3)

Synopsis Description

SUBROUTINE GCOL(x, xlen, y, ylen, ncnt) Concatenation.

INTEGER x(*)
INTEGER xlen
INTEGER y(*)
INTEGER ylen
INTEGER ncnt

SUBROUTINE GCOLX(x, xlens, y) Concatenation for contributions of known
length.

INTEGER x(*)
INTEGER xlens(*)
INTEGER y(*)

SUBROUTINE GDIDGH(x, n, work) Vector double precision MAX.

DOUBLE PRECISION x(*)
INTEGERn
DOUBLE PRECISION work(*)

SUBROUTINE GDLOW(x, n, work) Vector double precision MIN.

DOUBLE PRECISION x(*)
INTEGERn
DOUBLE PRECISION work(*)

SUBROUTINE GDPROD(x, n, work) Vector double precision MUL TIPL Y.

DOUBLE PRECISION x(*)
INTEGERn
DOUBLE PRECISION work(*)

SUBROUTINE GDSUM(x, n, work) Vector double precision SUM.

DOUBLE PRECISION x(*)
INTEGERn
DOUBLE PRECISION work(*)

SUBROUTINE GIAND(x, n, work) Vector integer bitwise AND.

INTEGER x(*)
INTEGERn
INTEGER work(*)

A-35

Summary of Commands and System Calls Paragon ™ System User's Guide

Table A-44. Fortran Calls for Global Operations (2 of 3)

Synopsis Description

SUBROUTINE GIHIGH(x, n, work) Vector integer MAX.

INTEGER x(*)
INTEGERn
INTEGER work(*)

SUBROUTINE GILOW(x, n, work) Vector integer MIN.

INTEGER x(*)
INTEGERn
INTEGER work(*)

SUBROUTINE GIOR(x, n, work) Vector integer bitwise OR.

INTEGER x(*)
INTEGERn
INTEGER work(*)

SUBROUTINE GIPROD(x, n, work) Vector integer MUL TIPL Y.

INTEGER x(*)
INTEGERn
INTEGER work(*)

SUBROUTINE GISUM(x, n, work) Vector integer SUM.

INTEGER x(*)
INTEGERn
INTEGER work(*)

SUBROUTINE GLAND(x, n, work) Vector logical AND.

LOGICAL x(*)
INTEGERn
LOGICAL work(*)

SUBROUTINE GLOR(x, n, work) Vector logical inclusive OR.

LOGICAL x(*)
INTEGERn
LOGICAL work(*)

A-36

Paragon 1M System User's Guide Summary of Commands and System Calls

Table A-44. Fortran Calls for Global Operations (3 of 3)

Synopsis Description

SUBROUTINE GOPF(x, xlen, work, Arbitrary commutative function.
junction)

INTEGER x(*)
INTEGER xlen
INTEGER work(*)
EXTERNAL junction

SUBROUTINE GSmGH(x, n, work) Vector real MAX.

REALx(*)
INTEGERn
REAL work(*)

SUBROUTINE GSLOW(x, n, work) Vector real MIN.

REALx(*)
INTEGERn
REAL work(*)

SUBROUTINE GSPROD(x, n, work) Vector real MUL TIPL Y.

REALx(*)
INTEGERn
REAL work(*)

SUBROUTINE GSSUM(x, n, work) Vector real SUM.

REALx(*)
INTEGERn
REAL work(*)

SUBROUTINE GSYNCO Global synchronization.

A-37

Summary of Commands and System Calls Paragon ™ System User's Guide

Controlling Application Execution

Table A-45. Fortran Calls for Controlling Application Execution (1 of 2)

Synopsis Description

INTEGER FUNCTION Create a new application.
NX_INITVE(partition, size, account,
argc, argv)

CHARACTER partition*(*)
INTEGER size
CHARACTER account*(*)
INTEGER argc
INTEGER argv

INTEGER FUNCTION Create a new application with a rectangular
NX_INITVE_RECT(partition, anchor, shape.
rows, cols, account, argc, argv)

CHARACTER partition*(*)
INTEGER anchor
INTEGER rows
INTEGER cols
CHARACTER account*(*)
INTEGER argc
INTEGER argv

INTEGER FUNCTION Create a new application with specified
NX_INITVE_ATTR(partition, argc, attributes. (The type of each value parameter
argv, [attribute, value,] ... depends on the value of the previous attribute
NX_ATTR_END) parameter.)

CHARACTER partition*(*)
INTEGER argc
INTEGER argv
INTEGER attribute
{ INTEGER value
I CHARACTER value*(*)
I INTEGER value(2) }

INTEGER FUNCTION NX_PRI(pgroup, Set the priority of an application.
priority)

INTEGER pgroup
INTEGER priority

A-38

Paragon ™ System User's Guide Summary of Commands and System Calls

Table A-45. Fortran Calls for Controlling Application Execution (2 of 2)

Synopsis Description

INTEGER FUNCTION Copy the current process onto some or all
NX_NFORK(node_list, numnodes, nodes of an application.
ptype, pid_list)

INTEGER node_list(*)
INTEGER numnodes
INTEGER ptype
INTEGER pid_list(*)

INTEGER FUNCTION Execute a stored program on some or all nodes
NX_LOAD(node_list, numnodes, ptype, of an application.
pid_list, pathname)

INTEGER node_list(*)
INTEGER numnodes
INTEGER ptype
INTEGER pid_list(*)
CHARACTER pathname*(*)

INTEGER FUNCTION Execute a stored program on some or all nodes
NX_LOADVE(node_list, numnodes, of an application, with specified argument list
ptype,pid_list,pathname, argv, envp) and environment.

INTEGER node_list(*)
INTEGER numnodes
INTEGER ptype
INTEGER pid_list(*)
CHARACTER pathname*(*)
INTEGER argv
INTEGER envp

SUBROUTINE NX_ WAITALLO Wait for all application processes.

A-39

Summary of Commands and System Calls Paragon TM System User's Guide

Getting Information About Applications

Table A-46. Fortran Calls for Getting Information About Applications

Synopsis Description

INTEGER FUNCTION Obtain the height and width of the rectangle of
NX_APP _RECT(rows, cols) nodes allocated to the current application.

INTEGER rows
INTEGER cols

INTEGER FUNCTION List the nodes allocated to an application.
NX_APP _NODES(pgroup, ptr, liscsize)

INTEGER pgroup
POINTER (ptr, node_list(l»
INTEGER lisCsize

Partition Management

Table A-47. Fortran Calls for Partition Management (1 of 3)

Synopsis Description

INTEGER FUNCTION Create a partition with a particular number of
NX_MKPART(partition, size, type) nodes.

CHARACTER partition*(*)
INTEGER size
INTEGER type

INTEGER FUNCTION Create a partition with a particular height and
NX_MKPART_RECT(partition, rows, width.
cols, type)

CHARACTER partition*(*)
INTEGER rows
INTEGER cols
INTEGER type

A-40

Paragon TM System User's Guide Summary of Commands and System Calls

Table A-47. Fortran Calls for Partition Management (2 of 3)

Synopsis Description

INTEGER FUNCTION Create a partition with a specific set of nodes.
NX_MKP ART_MAP(partition,
numnodes, node_list, type)

CHARACTER partition*(*)
INTEGER numnodes
INTEGER node_list(*)
INTEGER type

INTEGER FUNCTION Create a partition with specified attributes.
NX_MKPART_ATTR(partition, (The type of each value parameter depends on
[attribute, value,] ... NX_ATTR_END) the value of the previous attribute parameter.)

CHARACTER partition*(*)
INTEGER attribute
{ INTEGER value
I CHARACTER value*(*)
I INTEGER value(2) }

INTEGER FUNCTION Remove a partition.
NX_RMP ART(pathname,jorce,
recursive)

CHARACTER partition*(*)
INTEGERjorce
INTEGER recursive

INTEGER FUNCTION Get a partition's attributes.
NX_PART _ATTR(partition, attributes)

CHARACTER partition*(*)
RECORD Inx_part.Jnfo_tI attributes

INTEGER FUNCTION List the root node numbers for the nodes of a
NX_PART _NODES (partition, ptr, partition.
lisCsize)

CHARACTER partition*(*)
POINTER (ptr, node_list(l»
INTEGER liscsize

INTEGER FUNCTION Change a partition's name.
NX_CHP ART_NAME (partition, name)

CHARACTER partition*(*)
CHARACTER name*(*)

A-41

Summary of Commands and System Calls Paragon ™ System User's Guide

Table A-47. Fortran Calls for Partition Management (3 of 3)

Synopsis Description

INTEGER FUNCTION Change a partition's protection modes.
NX_CHPART_MOD(partition, mode)

CHARACTER partition*(*)
INTEGER mode

INTEGER FUNCTION Change a partition's effective priority limit.
NX_ CHP ART _EPL(partition, priority)

CHARACTER partition*(*)
INTEGER priority

INTEGER FUNCTION Change a partition's rollin quantum.
NX_CHPART_RQ(partition,
rollin_quantum)

CHARACTER partition*(*)
INTEGER rollin_quantum

INTEGER FUNCTION Change a partition's owner and group.
NX_CHPART_OWNER(partition,
owner, group)

CHARACTER partition*(*)
INTEGER owner
INTEGER group

INTEGER FUNCTION Change a partition's rollin quantum.
NX_CHPART_SCHED(partition,
sched_type)

CHARACTER partition*(*)
INTEGER sched_type

A-42

Paragon 1M System User's Guide Summary of Commands and System Calls

Finding Unusable Nodes

Table A-48. Fortran Calls for Finding Unusable Nodes

Synopsis Description

INTEGER FUNCTION List the nodes that are empty slots.
NX_EMPTY _NODES(ptr, liscsize)

POINTER (ptr, node_list(1»
INTEGER liscsize

INTEGER FUNCTION List the nodes that failed to boot.
NX_FAILED_NODES(ptr,lisCsize)

POINTER (ptr, node_list(1»
INTEGER liscsize

Handling Errors

Table A-49. Fortran Calls for Handling Errors

Synopsis Description

SUBROUTINE NX_PERROR(string) Print an error message corresponding to the
current value of errno.

CHARACTER string*(*)

Floating-Point Control

Table A-50. Fortran Calls for Floating-Point Control

Synopsis Description

INTEGER FUNCTION FPSETMASK(mask) Set the floating-point exception mask for the
calling process.

INTEGER mask

A-43

Summary of Commands and System Calls Paragon TM System User's Guide

Miscellaneous Calls

Table A-51. Miscellaneous Fortran Calls

Synopsis Description

SUBROUTINE FLICKO Temporarily relinquish the CPU to another
process.

SUBROUTINE LED(state) Turn the node's green LED on or off.

INTEGER state

DOUBLE PRECISION FUNCTION Return time in seconds since booting the
DCLOCKO system.

iPSC@ and Touchstone DELTA Compatibility

Table A-52. Fortran Calls for iPSC@ and Touchstone DELTA Compatibility (1 of 2)

Synopsis Description

SUBROUTINE FLUSHMSG(typesel, Flush specified messages from the system.
nodesel, ptypesel)

INTEGER typesel
INTEGER nodesel
INTEGER ptypesel

INTEGER FUNCTION GINV(graycode) Return the position of an element in the
binary-reflected gray code sequence. Inverse

INTEGER graycode ofgrayO·

INTEGER FUNCTION GRA Y(position) Return the binary-reflected gray code for an
integer.

INTEGER position

SUBROUTINE HWCLOCK(hwtime) Place the current value of the hardware counter
into a 64-bit unsigned integer variable.

INTEGER hwtime(2)

INTEGER FUNCTION INFOPIDO Return the process type of the process that sent
a pending or received message.

SUBROUTINE KILLCUBE(node, pid) Terminate and clear node process(es).

INTEGER node
INTEGERpid

A-44

Paragon ™ System User's Guide Summary of Commands and System Calls

Table A-52. Fortran Calls for iPSC® and Touchstone DELTA Compatibility (2 of 2)

Synopsis Description

SUBROUTINE KILLPROC(node, pid) Terminate a node process.

INTEGER node
INTEGERpid

SUBROUTINE LOAD(jilename, node, pid) Load a node process.

CHARACTERfilename*(*)
INTEGER node
INTEGERpid

INTEGER FUNCTION MCLOCKO Return the time in milliseconds.

SUBROUTINE MSGCANCEL(mid) Cancel an asynchronous send or receive
operation.

INTEGER mid

INTEGER FUNCTION MYPART(rows, Obtain the height and width of the rectangle of
cols) nodes allocated to the current application.

INTEGER rows
INTEGER cols

INTEGER FUNCTION MYPIDO Return the process type of the calling process.

INTEGER FUNCTION NODEDIMO Return the dimension of the current application
(the number of nodes allocated to the
application is 2dimension).

INTEGER FUNCTION Return 0 (does nothing; provided for
RESTRICTVOL(unit, nvol, vollist) compatibility only).

INTEGER unit
INTEGER nvol
INTEGER vollist(*)

A-45

Summary of Commands and System Calls Paragon ™ System User's Guide

1/0 Modes

Table A-53. Fortran Calls for 110 Modes

Synopsis Description

SUBROUTINE GOPEN(unit, path, iomode) Open a file on all nodes and set its 110 mode.

INTEGER unit
CHARACTER path*(*)
INTEGER iomode

SUBROUTINE SETIOMODE(unit, iomode) Set the 110 mode for a file.

INTEGER unit
INTEGER iomode

INTEGER FUNCTION IOMODE(unit) Return the current 110 mode for a file.

INTEGER unit

Reading and Writing Files in Parallel

Table A-54. Fortran Calls for Reading and Writing Files in Parallel (1 of 2)

Synopsis Description

SUBROUTINE CREAD(unit, buffer, nbytes) Read from a file, waiting for completion.

INTEGER unit
INTEGER buffer(*)
INTEGER nbytes

SUBROUTINE CWRITE(unit, buffer, Write to a file, waiting for completion.
nbytes)

INTEGER unit
INTEGER buffer(*)
INTEGER nbytes

SUBROUTINE CREADV(unit, iov, iovcnt) Read from a file to irregularly-scattered
buffers, waiting for completion.

INTEGER unit
INTEGER iov(*)
INTEGER iovcnt

A-46

Paragon TM System User's Guide Summary of Commands and System Calls

Table A·54. Fortran Calls for Reading and Writing Files in Parallel (2 of 2)

Synopsis Description

SUBROUTINE CWRITEV(unit, iov, iovcnt) Write to a file from irregularly-scattered
buffers, waiting for completion.

INTEGER unit
INTEGER iov(*)
INTEGER iovcnt

INTEGER FUNCTION IREAD(unit, buffer, Read from a file without waiting for
nbytes) completion.

INTEGER unit
INTEGER buffer(*)
INTEGER nbytes

INTEGER FUNCTION IWRITE(unit, buffer, Write to a file, waiting for completion.
nbytes)

INTEGER unit
INTEGER buffer(*)
INTEGER nbytes

INTEGER FUNCTION IREADV(unit, iov, Read from a file to irregularly-scattered
iovcnt) buffers, without waiting for completion.

INTEGER unit
INTEGER iov(*)
INTEGER iovcnt

INTEGER FUNCTION IWRITEV(unit, iov, Write to a file from irregularly-scattered
iovcnt) buffers, without waiting for completion.

INTEGER unit
INTEGER iov(*)
INTEGER iovcnt

INTEGER FUNCTION IODONE(id) Determine whether an asynchronous I/O
operation is complete. If complete, release the

INTEGERid I/OID.

SUBROUTINE lOW AIT(id) Wait for completion of an asynchronous I/O
operation and release the I/O ID.

INTEGERid

A-47

Summary of Commands and System Calls Paragon ™ System User's Guide

Detecting End-ot-File and Moving the File Pointer

Table A-55. Fortran Calls for Detecting End-of-File and Moving the File Pointer

Synopsis Description

INTEGER FUNCTION ISEOF(unit) Test for end-of-file.

INTEGER unit

INTEGER FUNCTION LSEEK(unit, offset, Move the read/write file pointer.
whence)

INTEGER unit
INTEGER offset
INTEGER whence

Flushing Fortran Buffered 1/0

Table A-56. Fortran Calls for Flushing ButTered 110

Synopsis Description

SUBROUTINE FORCEFLUSHO Cause all buffered 110 to be flushed if an
exception occurs.

SUBROUTINE FORFLUSH(unit) Flush all buffered 110 on a particular unit.

INTEGER unit

A-48

Paragon TM System User's Guide Summary of Commands and System Calls

Increasing the Size of a File

Table A-57. Fortran Calls for Increasing the Size of a File

Synopsis Description

INTEGER FUNCTION LSIZE(unit, offset, Increase size of a file.
whence)

INTEGER unit
INTEGER offset
INTEGER whence

Extended File Manipulation

Table A-58. Fortran Calls for Extended File Manipulation

Synopsis Description

SUBROUTINE ESEEK(unit, offset, whence, Move file pointer in extended file.
newpos)

INTEGER unit
INTEGER offset(2)
INTEGER whence
INTEGER newpos(2)

SUBROUTINE ESIZE(unit, offset, whence, Increase size of extended file.
newsize)

INTEGER unit
INTEGER offset(2)
INTEGER whence
INTEGER newsize(2)

A-49

Summary of Commands and System Calls Paragon ™ System User's Guide

Performing Extended Arithmetic

Table A-59. Fortran Calls for Performing Extended Arithmetic

Synopsis Description

SUBROUTINE EADD(el, e2, eresult) Add two extended integers.

INTEGER el(2)
INTEGER e2(2)
INTEGER eresult(2)

INTEGER FUNCTION ECMP(el, e2) Compare two extended integers.

INTEGER el(2)
INTEGER e2(2)

SUBROUTINE EDIV(e, n, result) Divide extended integer by integer.

INTEGER e(2)
INTEGERn
INTEGER result

SUBROUTINE EMOD(e, n, result) Give extended integer modulo an integer
(remainder when e is divided by n).

INTEGER e(2)
INTEGERn
INTEGER result

SUBROUTINE EMUL(e, n, eresult) Multiply extended integer by integer.

INTEGER e(2)
INTEGERn
INTEGER eresult(2)

SUBROUTINE ESUB(el, e2, eresult) Subtract two extended integers.

INTEGER el(2)
INTEGER e2(2)
INTEGER eresult(2)

SUBROUTINE ETOS(e, s) Convert extended integer to string.

INTEGER e(2)
CHARACTER s(*)

SUBROUTINE STOE(s, e) Convert string to extended integer.

CHARACTER s(*)
INTEGER e(2)

&&&

A-50

iPSC@) System Compatibility

Introduction
This appendix gives you information you can use to port programs to the Paragon system from the
iPSC® series of supercomputers from Intel Scalable Systems Division.

This appendix lists the differences between iPSC system commands and system calls and those of
the operating system, and suggests alternatives that you can use for commands and calls that are not
supported. Commands and calls that are not listed here should work the same in the operating system
as they do in the iPSC system.

General Compatibility Issues
In general, iPSC system programs can simply be recompiled and executed on the Paragon system.
However, keep in mind the following basic differences between the two systems:

• There is no SRM. The Diagnostic Station is used only for system administration; all software
development is done either on remote workstations or on the Paragon system itself. Parallel
applications are run only on the Paragon system.

• Host programs are not directly supported. See "Host Calls" on page B-9 for more information.

• The node network is a 2-D mesh rather than a hypercube. You might want to change the data
distribution in your application to take advantage of the different system topology.

• An application can run on any number of nodes from 1 to the size of the compute partition (up
to several thousand nodes). If your application depends on the number of nodes being a power
of two or no greater than 128, you should re-write it so that it works on any number of nodes. If
this is not possible, you should have the application print an error message if numnodesO is not
a power of two or is too large for the application to handle.

8-1

iPSC® System Compatibility Paragon ™ System User's Guide

• If a message arrives at a node before the receive for the message has been posted, the message
is stored in a system buffer. In the iPSC system, the space available for these system buffers is
the entire free physical memory of the node. In the Paragon system, this space is more limited
(1M bytes by default). This limitation results from the fact that the Paragon system supports
mUltiple processes per node.

NOTE

Because of this limitation, iPSe system applications that use large
amounts of system message buffering may slow down or hang on
the Paragon system, especially when run on large numbers of
nodes.

If this occurs, you can increase the system message buffering space with the -mbf switch, as
described under "System Message Buffers" on page 8-16. However, it would be better to
re-write the application so that receives are always posted before the message arrives, as
discussed under "Avoid Message Buffering" on page 8-11.

The term process ID, or PID, is used differently. In the iPSC system, each process has a UNIX
PlD used by the OS and an NX PID used for message passing. In the Paragon system, the
"UNIX PID" is just called the PlD, and the "NX PID" is called the process type or ptype.
Although the names have changed, the software works the same. For example, mypidO and
infopidO are supported as equivalents to myptypeO and infoptypeO. Exception: on the
iPSC/860, the NX PID is always 0; in the Paragon system, the process type can be any integer
from 0 to 2,147,483,647 (231 - 1) inclusive (but is usually 0).

Force types (special message types that use a limited flow control technique) are fully supported
and work the same as they do in the iPSC system. However, in the Paragon system regular
messages are just as fast as force type messages, so force types are not needed for performance.

New Features

B-2

The operating system offers the following features that were not available on the iPSC system. You
can use these features to improve the performance and readability of your programs.

• You can use the complete set of OSF/l commands on the Paragon system, as discussed in
Chapter 2.

• You can execute an application on multiple nodes just by typing its name on the command line,
using command-line switches to control its execution, as discussed under "Running
Applications" on page 2-11.

You can control the values of some important message-passing configuration parameters, as
discussed under "Message-Passing Configuration Switches" on page 8-18.

Paragon TM System User's Guide iPSC® System Compatibility

• You can allocate groups of nodes of any size and shape, and control the scheduling
characteristics of applications that run in them, as discussed under "Managing Partitions" on
page 2-30 and "Managing Partitions" on page 4-32.

• You can have more than one process per node, as discussed under "Process Characteristics" on
page 3-3. When sending messages, you specify a process by its process type (equivalent to the
"NX PID" in the iPSC system).

• You can tell the system to discard an asynchronous message ID as soon as the send or receive
completes with msgignoreO, as discussed under "Asynchronous Send and Receive" on page
3-10.

• You can merge together a number of asynchronous message-passing requests and wait for all
of them to complete in a single call with msgmergeO, as discussed under "Merging Message
IDs" on page 3-13.

Global sends use a -1 value for the node parameter in a send system call. Global sends are now
implemented using a tree-structured store-and-receive message passing strategy. As each
intermediate node receives a message, it forwards the message to other nodes. If a node fails to
receive a message from a global send, other nodes that depend on that node to receive the
message will never receive the message. This can cause an application to hang.

• The hsendO and hrecvO calls now run concurrently with the main program rather than
interrupting it. You still need to protect critical sections of code, as discussed under "Preventing
Interrupts" on page 3-22.

• You can pass a parameter to a message interrupt handler with hsendxO, as discussed under
''Treating a Message as an Interrupt" on page 3-18.

• You can receive or probe for a message based on its sender, and receive information about a
message along with the message, with the •• .x0 calls, as discussed under "Extended Receive and
Probe" on page 3-24.

• You can use system calls to control the execution characteristics of parallel programs, as
discussed under "Managing Applications" on page 4-2.

• You can open a file on all nodes at once very efficiently with gopenO, as discussed under
"Opening Files in Parallel" on page 5-10.

• You can read the same data from a file into all nodes at the same time very efficiently with the
110 mode M_GLOBAL, as discussed under "Using 110 Modes" on page 5-14.

• You can read data into or write data from a series of scattered memory buffers with th •• readvO
and ••• writevO calls, as discussed under "Reading and Writing Files in Parallel" on page 5-26.

• You can find out the characteristics ofPFS file systems (which are more configurable than CFS)
with the getpfsinfoO and statpfsO calls, as discussed under "Getting Information About PFS
File Systems" on page 5-41.

8-3

iPSC® System Compatibility Paragon™ System User's Guide

• You can use the HIPPI and FDDI network interfaces, as discussed in the Paragon TM System
High Performance Parallel Interface Manual and Paragon™ System Fiber Distributed Data
Interface Installation and Conjiguration Guide.

• You can use the Paragon application development tools to help you port and optimize your
code, as discussed in the Paragon™ System Application Tools User's Guide.

Compilers

8-4

The Paragon system compilers work the same as the iPSC system compilers, with the following
exceptions:

• The compilers, linker, and other tools are now available on the Paragon system as well as on
workstations. They can be called by the standard names (cc, 177, Id, and so on) as well as the
names used in cross-development (icc, if77, Id860, and so on).

• The environment variable that specifies the root of the compiler directory tree is called
PARAGON_XDEVrather than IPSC_XDEV. The default for this variable is now
lusrlparagonlXDEV rather than lusrlipsclXDEV.

• The compiler files are now found in the directory $PARAGON_XDEVIparagon rather than
$IPSC_XDEVli860. For example, your execution search path (path or PATH environment
variable) should include the directory $PARAGON_XDEVIparagonlbin.arch (where arch
identifies the architecture of the system, such as paragon or sun4) rather than
$IPSC_XDEVli860lbin.arch or $IPSC_XDEVli860lbin.

• The -p switch is now ignored. See the Paragon™ System Application Tools User's Guide for
information on profiling.

• The default for quad-alignment has been changed from -Mnoquad to -Mquad. This change
results in up to four times better performance for some code.

• The new switch -nx has been added. This switch generates a program that automatically starts
itself on multiple nodes, as discussed under "Compiling and Linking Applications" on page 2-5.
The switch -node is currently accepted as a synonym for -ox, but this support may be dropped
in a future release.

• You can now have a file called. icfrc in your home directory that defines the default compiler
switches for you.

See the Paragon TM System Fortran Compiler User's Guide or Paragon TM System C Compiler User's
Guide for more information on the Paragon system compilers.

Paragon TM System User's Guide iPSC® System Compatibility

NOTE

You cannot use the Paragon system cross-compilers to produce
programs for the iPSe system, and you cannot use the iPSe
system cross-compilers to produce programs for the Paragon
system.

If you develop programs for the iPSe system as well for the Paragon system, you must be sure that
your execution search path (PATH or path variable) is set appropriately for your current target
system. To compile a program for the operating system, the variable PARAGON j(DEV must be set
appropriately and your execution search path must include $PARAGON_XDEVIparagonlbin.arch;
to compile a program for the iPSe system, the variable IPSC _XDEV must be set appropriately and
your execution search path must include $IPSC_XDEVli860Ibin.arch instead. Be sure that your
execution search path does not include both these directories at the same time.

Commands
In general, all of the standard commands of UNIX System V are supported by the operating system,
but none ofthe iPSC-system-specific commands are supported. However, many of these commands
are not needed in the operating system, or have equivalent standard commands in OSFIl.

Cube Control Commands

The usage model of the Paragon system is different from that of the iPSC system. Instead of
allocating a cube with a certain number of nodes, loading a program onto the cube, and then
releasing the cube, you run a parallel application simply by typing its name on the command line.
You can use command-line arguments to control its execution characteristics (such as the number
of nodes on which it runs), and you can use standard OSFIl process control commands such as kill
to control the program. (See Chapter 2 for more information on running and controlling applications
in the operating system.)

For this reason, the following iPSe system commands, which create and control cubes, are not
supported in the operating system:

archcube

attachcube

cubeinfo

This command is not needed in the operating system because all nodes
currently have the same architecture.

This command is not needed in the operating system because you do not have
to attach to a cube before you can use it.

Use the lspart command to list the available partitions. See "Listing
Subpartitions" on page 2-60 for more information.

8-5

iPSC® System Compatibility

getcube

killcube

load

newserver

relcube

startcube

syslog

waitcube

B-6

Paragon™ System User's Guide

Use the -sz switch on the application command line to specify the number of
nodes allocated to the application. See "Specifying Application Size" on page
2-15 for more information.

The mkpart command is similar to getcube in that it allocates a partition (a
group of nodes). However, partitions are not the same as cubes: partitions can
overlap, and a partition can be used by several applications at once.
Depending on the policies of your site, you mayor may not be allowed to
allocate partitions. See "Making Partitions" on page 2-46 for more
information.

Use the OSF/I kill command to kill a running application, or press your
interrupt key «Ctrl-c> or <Del». See "Managing Running
Applications" on page 2-29 for more information.

Type an application's filename on the command line to run it on multiple
nodes. See "Running Applications" on page 2-11 for more information.

This command is not needed in the operating system because you can use the
usual OSF/l1/0 redirection characters to redirect an application's output. See
"1/0 Redirection" on page 2-12 for more information.

This command is not needed in the operating system because you do not have
to release a cube once you have used it. The nodes allocated to an application
are automatically released when all the processes in the application have
terminated.

The rmpart command is similar to relcube in that it deallocates a partition
(a group of nodes). However, partitions are not the same as cubes: partitions
can overlap, and a partition can be used by several applications at once.
Depending on the policies of your site, you mayor may not be allowed to
remove partitions. See "Removing Partitions" on page 2-52 for more
information.

This command has no equivalent in the operating system. There is no way to
load an application into the nodes' memory without starting it.

This command is not needed in the operating system because you can use the
usual OSF/l1/0 redirection characters to redirect an application's output.
The standard 1/0 of a node process is connected to the same files or devices
as the standard 1/0 of its controlling process. See "1/0 Redirection" on page
2-12 for more information.

This command is not needed in the operating system because, by default, your
command prompt does not return until the application has completed. Also,
you can redirect the output of any program with the usual OSF/l1/0
redirection characters (see "1/0 Redirection" on page 2-12 for more
information).

Paragon ™ System User's Guide iPSC® System Compatibility

CFS Commands

The following iPSC system commands, which control the Concurrent File System and the SRM tape
drive, are not supported in the operating system:

cptape

showvol

star

stream

tapemode

Use the cpio command instead. See cpio in the OSFll Command Reference
for more information.

Use the showfs command instead. See "Displaying File System Attributes"
on page 5-5 for more information.

Use the tar command instead. (Note that you must use the -E switch to
archive a file larger than 2G-l bytes.) See tar in the Paragon TM System
Commands Reference Manual and OSFll Command Reference for more
information.

This command is not needed in the operating system because there is no
streaming tape drive.

This command currently has no equivalent in the operating system. There is,
no way to display or change the operating mode of the system's tape drives.

System Administration Commands

The following iPSC system commands, which are used for system administration, are not supported
in the operating system:

cbackup

cfschk

crestore

makewhatis

mkcfs

mkdev

Use the dump command instead. See dump in the OSFll System and
Network Administrator's Reference for more information.

Use the fsck command instead. See fsck in the OSFll System and Network
Administrator's Reference for more information.

Use the rdump command instead. See rdump in the OSFll System and
Network Administrator's Reference for more information.

Use the catman command instead. See catman in the OSFll Command
Reference for more information.

Use the newfs command instead. See newfs in the OSFll System and
Network Administrator's Reference for more information.

Use the mknod command instead. See mknod in the OSFll System and
Network Administrator's Reference for more information.

8-7

iPSC® System Compatibility Paragon ™ System User's Guide

plogon and plogoff
These commands currently have no equivalent in the operating system. There
is currently no way to log creation and deletion of partitions or running of
applications. However, you can use the syslogd daemon to log other system
activity. See syslogd in the OSFll System and Network Administrator's
Reference for more information.

Remote Host Commands

The following iPSe system commands, which are used for program development on remote hosts,
are not supported in the operating system:

rf77

rcc

rid

ras

rar

Use the if77 command instead. See the Paragon™ System Fortran Compiler
User's Guide for more information.

Use the icc command instead. See the Paragon™ System C Compiler User's
Guide for more information.

Use the Id860 command instead. See the Paragon™ System Fortran
Compiler User's Guide or Paragon™ System C Compiler User's Guide for
more information.

Use the as860 command instead. See the Paragon™ System Fortran
Compiler User's Guide or Paragon™ System C Compiler User's Guide for
more information.

Use the ar860 command instead. See the Paragon™ System Fortran
Compiler User's Guide or Paragon™ System C Compiler User's Guide for
more information.

Miscellaneous Commands

8-8

The following iPSe system commands are not supported in the operating system:

less

manpatb

nsh

rebootcube

Use the more command instead. See more in the OSFll Command Reference
for more information.

Use the MANPATH environment variable instead. See man in the OSFll
Command Reference for more information.

Use the rlogin or telnet command to log into the Paragon system from your
workstation. See rlogin or telnet in your workstation's documentation for
more information.

This command has no equivalent in the operating system. There is no way for
ordinary users to reboot the system.

Paragon ™ System User's Guide iPSC® System Compatibility

System Calls
In general, all of the standard system calls of UNIX System V and most of the iPSC-system-specific
system calls are supported by the operating system. This section suggests alternatives for the
unsupported calls.

NOTE

Some iPSC calls are provided for backward compatibility only, and
are not intended for use in new programs. These calls are not
documented in the online manpages or in the Paragon ™ System
C Calls Reference Manual or Paragon ™ System Fortran Calls
Reference Manual. See "iPSC® and Touchstone DELTA
Compatibility Calls" on page 4-66 for a list of these calls.

Include Files

Host Calls

The operating system does not support the iPSC system include files <cube.h> or <fcube.h>. You
should replace any reference to <cube.h> with <nx.h>, and any reference to <fcube.h> with
<jnx.h>.

Applications in the operating system do not usually have host programs. The usual programming
model in the operating system is to write a single program (which corresponds to a "node program"
in the iPSC system), link it with -nx, and execute the program on a group of nodes by typing its name
(see "Running Applications" on page 2-11 for more information). You may be able to eliminate all
references to the following unsupported calls by rewriting your program to use this programming
model. If your application requires a separate host program, you can rewrite your host program into
a controlling process (see "Managing Applications" on page 4-2 for more information).

For this reason, the -host switch to the cc and f77 commands is not supported (there is no separate
host library; host programs use the same library as node programs). Also, the following iPSC system
calls, which are used in host programs, are not supported in the operating system:

attachcubeO This call currently has no equivalent in the operating system. Unlike a host
program, a controlling process cannot be associated with more than one
application. Consider re-writing your host program as two or more separate
programs, each of which creates one application and communicates with the
other host program(s) using pipes, signals, or some other aSF!1 interprocess
communication method. See "Managing Applications" on page 4-2 for
information on creating and controlling applications using system calls.

8-9

iPSC® System Compatibility

cubeinfoO

getcubeO

killcubeO

kiIlprocO

kiIlsyslogO

8-10

Paragon ™ System User's Guide

This call currently has no equivalent in the operating system. However,
because allocation of nodes in the operating system is not exclusive, it is not
usually necessary for programs to know how other users have allocated
nodes. To get information on your own application (equivalent to the "current
cube"), you can use calls such as numnodesO.

Use one of the DX_initve ... O calls instead. See "Managing Applications" on
page 4-2 for information on the DX_initve ••• O calls.

This call is supported, but can only be used to kill and flush all processes on
all nodes (killcube(-l,-l».

You can use kil10 to kill a single process, as discussed for killprocO below.

This call is supported, but can only be used to kill all processes on all nodes
(kil1proc(-1,-1».

You can use kil10 to kill a single process, given its OSFIl process ID. kiIlO
is supported in both e and Fortran. To determine the OSFIl process ID of a
process created by DX_nforkO, DX_loadO, or nx_loadveO, use the values
stored into the pid_array argument. These calls store the OSFIl PlDs of the
processes created into the elements of this array, as discussed under "Using
PlDs" on page 4-20.

For example, to kill the process on node number node:

#include <signal_h>

n = nx_nfork(NULL, -1, ptype, pid_arraY)i

kill(pid_array[node], SIGKILL)i

Note that process types (ptype in this example) in the operating system are
equivalent to NX PIDs in the iPSe system. PlDs (pid_array in this example)
in the operating system are standard UNIX process IDs.

See the OSF/l Programmer's Reference for information on kil10; see
"Managing Applications" on page 4-2 for information on DX_nforkO,
nx_IoadO, and nx_loadveO.

Use freopenO instead, to close the standard output and standard error output
and reopen them to /dev/tty. See freopenO in the OSF/l Programmer's
Reference for more information.

Paragon ™ System User's Guide

newserverO

relcubeO

setpidO

setsyslogO

waitallO

iPSC® System Compatibility

freopenO is not currently supported for Fortran programs. However, it is
supported for C programs. You can write a C ''wrapper'' function, as follows:

#include <stdio.h>

void killsyslog_()
freopen("/dev/tty", "w", stdout);
freopen (" /dev/tty", "w", stderr);

Note the underscore at the end of the function name. Once you have compiled
this function and linked it into your Fortran program, you can call killsyslogO
as described in the iPSC system documentation.

This call is not necessary in the operating system. The standard I/O of a
controlling process (host process) is connected to the same files or devices as
the standard I/O of its node processes.

This call is not necessary in the operating system. The nodes allocated to an
application are automatically released when all the processes in the
application have terminated.

Use setptypeO instead. "Process Characteristics" on page 3-3 for information
on setptypeO, and "Message Passing Between Controlling Process and
Application Processes" on page 4-30 for information on using setptypeO in
a controlling process.

This call is not necessary in the operating system. The standard I/O of a
controlling process (host process) is connected to the same files or devices as
the standard I/O of its node processes.

To wait for all processes on all nodes (waitall(-I, -1)), call nx_ waitallO. See
"Waiting for Application Processes with nx_ waitallO" on page 4-19 for more
information.

To wait for a single node process (waitall(node,pid)), use the OSF/l system
call waitpidO to wait for the process with a particular OSF/l process ID. To
determine the PID of a process created by nx_nforkO, nx_IoadO, or
nx_IoadveO, use the values stored into the pid_array argument. These calls
store the OSF/l PIDs of the processes created into the elements of this array,
as discussed under "Using PIDs" on page 4-20.

B-11

iPSC® System Compatibility

waitoneO

8-12

Paragon ™ System User's Guide

For example, to wait for the process on node number node:

n = nx_nfork(NULL, -1, ptype, pid_array);

waitpid (pid_array [node] , &status, 0);

Note that process types (ptype in this example) in the operating system are
equivalent to NX PIDs in the iPSe system. PIDs (pid_array in this example)
in the operating system are standard UNIX process IDs.

See the OSFll Programmer's Reference for information on waitO and
waitpidO; see "Managing Applications" on page 4-2 for information on
nx_nforkO, nx_IoadO, and DX_IoadveO.

waitO is supported in both e and Fortran, but waitpidO is not currently
supported in Fortran. You can make waitpidO callable from Fortran by
writing a e "wrapper" function, as follows:

#include <sys/types.h>
#include <sys/wait.h>

int waitpid_(int *process_id,

}

int *status_location,
int *options) {

return ((int) wai tpid ((pid_t) *process_id,
status_location,
*options);

Note the underscore at the end of the function name. Once you have compiled
this file and linked it into your Fortran program, you can call waitpidO as
described in the OSFll Programmer's Reference. The wrapper function
waitpidO takes three integer*4 parameters and returns an integer*4 value.

To wait for the first node process in the entire application to complete
(waitone(-1, .1, cnode, cpid, ccode»), use the OSFIl system call waitO. For
example:

n = nx_nfork(nodes, NUMNODES, ptype, pids);

pid wait (&status) ;

Paragon ™ System User's Guide iPSC® System Compatibility

After this call, the status of the first process to complete is stored in status and
its aSF/1 process ID is stored in pid. To determine the process's node
number, look for the value of pid in the pids array returned by nx_nforkO,
nx_IoadO, or nx_IoadveO.

To wait for a single node process (waitone(node,pid, cnode, cpid, ccode)),
use the same technique described for waitall(node, pid):

n = nx_nfork(NULL, -1, ptype, pid_array);

pid waitpid(pid_array[node] , &status, 0);

In this case, the status of the process is stored in status and its aSFIl process
ID is stored in pid. To determine the process's node number, look for the
value of pid in pid_array as described above.

See the OSFll Programmer's Reference for information on waitO and
waitpidO; see "Managing Applications" on page 4-2 for information on
nx_nforkO, nx_IoadO, and nx_IoadveO. waitO is supported in both C and
Fortran, but waitpidO is not; to call waitpidO from Fortran, use the technique
discussed previously under waitallO.

Byte-Swapping Calls

createstrucO
CTOHCO
CTOHDO

The calls listed in Table B-1, which swap bytes between the format used on the cube and the format
used on some remote hosts, are not supported in the current release of the operating system.

Table B-1. Unsupported iPSC® System Byte-Swapping Calls

CTOHFO HTOCCO HTOCLO
CTOHLO HTOCDO HTOCSO
CTOHSO HTOCFO relstrucO

You can use the standard aSF/1 system calls htonlO, htonsO, ntoblO, and ntohsO to swap bytes
between the standard format for your machine and the Internet network format. See htonlO, htonsO,
ntohlO, and ntohsO in the OSFll Programmer's Reference for more information.

8-13

iPSC® System Compatibility Paragon ™ System User's Guide

htonIO, htonsO, ntohIO, and ntohsO are not currently supported for Fortran programs. However,
they are supported for C programs. You can make them callable from Fortran by writing C
"wrapper" functions, as follows:

#include <netinet/in.h>

long htonl_(long *hostlong)
return((long)htonl((unsigned long)*hostlong);

short htons_(short *hostshort) {
return((short)htons((unsigned short)*hostshort);

long ntohl_(long *netlong) {
return((long)ntohl((unsigned long)*netlong);

short ntohs_(short *netshort) {
return((short)ntohs((unsigned short)*netshort);

Note the underscore at the end of each function name. Once you have compiled this file and linked
it into your Fortran program, you can call htonIO, htonsO, ntohlO, and ntohsO as described in the
OSFll Programmer's Reference. The wrapper functions htonlO and ntohlO take an integer*4
parameter and return an integer*4 value; the wrapper functions htonsO and ntohsO take an
integer*2 parameter and return an integer*2 value.

Floating-Point Control Calls

8-14

The C system calls fpgetstickyO and fpsetstickyO, which get and set the i860 microprocessor's
floating-point exception sticky flags, and fpgetJnaskO and fpsetJnaskO, which get and set the
floating-point exception mask, do not support the exception value FP _X_DNML, which represents
a denormalization exception in the iPSC system.

The Fortran system call fpsetmaskO also does not support the denormalization exception, and uses
different numeric values to represent the various exceptions than the corresponding iPSC system
call. See "Controlling Floating-Point Behavior" on page 4-60 for the correct values for the operating
system.

Paragon ™ System User's Guide iPSC® System Compatibility

CFS Calls

In the operating system, the iPSC system's Concurrent File System (CFS) has been replaced by the
Parallel File System (PFS). PFS calls are compatible with CPS calls; however, PFS offers additional
functionality (see Chapter 5 for more information). This section lists the differences that may affect
some programs that use CPS calls.

ireadO and iwriteO

openO

These calls work in the operating system just as they do in the iPSC system.
In both systems, the number of I/O IDs is limited; however, the limit in the
operating system is much smaller than in the iPSC system. (In the iPSC
system the limit is 5000; in the operating system it is at least 256, but may
vary from release to release.) For this reason, it is very important that you use
iodoneO or iowaitO to release each ID as soon as possible after you use it. If
you program in C, you can use _ireadO or _iwriteO to detect the "too many
requests" error (EQNOMID).

Many iPSC system programs use code like the following to open a file on all
nodes:

if (mynode() == 0) {
fd = open ("myfile" , O_CREAT I O_RDWR, 0644);
gsync();

} else {
gsync();
fd = open ("myfile", O_RDWR, 0644);

setiomode(fd, iomode);

The openO call works the same in the operating system as it does in the iPSC
system. However, if this code is executed on many nodes, the large number
of openO requests arriving simultaneously at the I/O node can cause the I/O
node to slow down, hang, or even crash. This can even cause the system to
crash.

You should always use the gopenO call instead of this type of code. For
example, you should replace the lines shown above with the following:

fd = gopen ("myfile", O_CREAT I O_RDWR,
iomode, 0644);

gopenO opens a file simultaneously on all nodes and sets its I/O mode in a
single operation. It is much more efficient than having each node call openO,
and avoids this type of system crash completely.

Note that gopenO opens the same file on each node. If each node is opening
its own file, you must still use openO. However, you should try to avoid using
openO together with gsyncO, to prevent all the openO requests from arriving
at the I/O node at the same time.

B-15

iPSC® System Compatibility Paragon™ System User's Guide

Miscellaneous Calls

The following iPSC system calls work differently or are not supported in the operating system:

8-16

dclockO

flushmsgO

getiphostsO

gixorO

glxorO

handierO

This call works in the operating system just as it does in the iPSC system: it
returns the time since the system was booted, in seconds. However, in a
gang-scheduled partition your application may be rolled out and then rolled
in again. While it is rolled out, the application is stopped but the dclockO
clock keeps going (reflecting "wall-clock" time), which means that dclockO
cannot be used to determine the amount of time your application has actually
been running.

Using dclockO in a gang-scheduled partition may result in incorrect
MFLOPS estimates. You can use the time command, getrusageO system call
(C only), or the etimeO or dtimeO routine (Fortran only) instead to determine
your application's CPU usage. See the OSFll Command Reference for
information on time, the OSFll Programmer's Reference for information on
getrusageO, and the Paragon™ System Fortran Compiler User's Guide for
information on etimeO and dtimeO.

This call currently has no equivalent in the operating system. It may be
supported in a future release.

This call currently has no equivalent in the operating system. However,
because the OSF/l operating system automatically routes network traffic
using all available Ethernet ports, it is not usually necessary to know the
network names of the available ports.

This call is not supported in the operating system. The exclusive OR operator
is not associative, and gives unpredictable results when used on more than
two nodes.

This call is not supported in the operating system. The exclusive OR operator
is not associative, and gives unpredictable results when used on more than
two nodes.

Use the signalO system call instead (signalO is supported for both C and
Fortran). See signalO in the OSFll Programmer's Reference for information
on signal handling; see signalO in the Paragon™ System Fortran Compiler
User's Guide for information on the Fortran interface to signalO.

plogonO and plogoffO
These calls currently have no equivalent in the operating system. There is
currently no way to automatically log creation and deletion of partitions or
running of applications. However, you can use the syslogO call to log
activities under program control. See syslogO in the OSFll Programmer's
Reference for more information.

Paragon ™ System User's Guide

setiphostO

setpgrpO

Summary

iPSC® System Compatibility

This call is not necessary in the operating system. The OSFIl operating
system automatically routes network traffic using all available Ethernet ports;
it is not necessary to select one port to perform network operations.

There are two different versions of this call in the operating system. The
standard version of setpgrpO, found in libbsd.a, is equivalent to setpgidO
and is not compatible with the iPSC/860 version. The System V version of
setpgrpO, found in libsys5.a, is equivalent to setsidO and is compatible with
the iPSC/860 version. To get the iPSC/860-compatible version, be sure to use
the switch -lsys5 when linking.

Table B-2 summarizes the operating system equivalents for the unsupported iPSC system
commands.

Table B-2. Summary of Unsupported iPSC® System Commands (1 of 2)

iPSC® System Command Operating System Equivalent

archcube (none)

attachcube (none)

cbackup dump

cfschk fsck

cptape cpio

crestore rdump

cubeinfo lspart

getcube -sz switch on application command line

kilIcube kill

less more

load Application's filename

makewhatis catman

manpath MANPATH environment variable
f--

mkcfs newfs

mkdev mknod

newserver 110 redirection characters

nsh rlogin or telnet

8-17

iPSC® System Compatibility Paragon ™ System User's Guide

Table B-2. Summary of Unsupported iPSC® System Commands (2 of 2)

iPSC@ System Command Operating System Equivalent

plogoff (none)

plogon (none)

rar ar860

ras as860

rcc icc

rebootcube (none)

relcube (none)

rf77 it77

rId Id860

showvol showfs

star tar

startcube (none)

stream (none)

syslog I/O redirection characters

tapemode (none)

waitcube (none)

Table B-3 summarizes the operating system equivalents for the unsupported iPSC system calls.

Table B-3. Summary of Unsupported iPSC® System Calls (1 of 2)

iPSC@ System Call Operating System Equivalent

attachcubeO (none)

cubeinfoO (none)

dclockO Supported, but use getrusageO (C) or
etimeO/dtimeO (Fortran) to determine CPU
usage in gang-scheduled partitions.

fpgetstickyO, fpsetstickyO, fpgetmaskO, Supported, except for FP _X_DNML, but
fpsetmaskO Fortran mask values are different.

flushmsgO (none)

getcubeO DX_initve ••• O

8-18

Paragon™ System User's Guide iPSC® System Compatibility

Table B-3. Summary of Unsupported iPSC® System Calls (2 of 2)

iPSC® System Call Operating System Equivalent

getiphostsO (none)

gixorO (none)

glxorO (none)

handlerO signalO

ireadO, iwriteO Supported, but number of 110 IDs is much
smaller.

_.-

killcubeO Use killcube(-l,-l) to kill and flush all
processes; use killO to kill one process

killsyslogO (none)

killprocO Use killproc(-l,-l) to kill all processes; use
killO to kill one process

newserverO freopenO

openO Supported, but use gopenO instead if possible.

plogoffO (none)

plogonO (none)

relcubeO (none)

setiphostO (none)

setpgrpO Supported, but be sure to link with -lsys5 to get
the correct version .

. -

setpidO setptypeO

setsyslogO (none)

waitallO Use nx_ waitallO to wait for all processes; use
waitO or waitpidO to wait for one process

waitoneO waitO or waitpidO

Byte-swapping calls htonlO, htonsO, ntohlO, and ntohsO

B-19

iPSC® System Compatibility Paragon ™ System User's Guide

8-20

\Wi.
, " 1f:1" t

Symbols

in filenames 5-34

· (dot) in partition pathnames 2-33

· (root) partition 2-32

.compute partition 2-34

· F extension 2-9

.service partition 2-34

Icfs directory 5-13

Idev/ioO/rmt6 device 5-51

Ipfs file system 5-5

lusr/ccs/lib directory 2-8

lusr/include directory 2-8

lusr/lib directory 2-8

lusr/paragonlXDEV directory 2-9

lusr/tmp directory 5-13

.,11' '

\;file (second program in an application) 2-21

__ NODE preprocessor symbol 2-5

_creadO system call 5-28

_creadvO system call 5-28

_crecvO system call 4-55

_cwriteO system call 5-28

_cwritevO system call 5-28

Index

_r calls 6-17

_REENTRANT 6-3

_REENTRANT preprocessor symbol 6-14

-1
as error return 4-55
as message type 3-6
as node number 3-3, 4-30
as process type 3-4
as sending node number 3-24
as sending process type 3-24

64-bit integers 5-39

A
absolute partition pathname 2-34

access methods 5-14
synchronization of 5-54

accessing contiguous memory locations 8-5

active and inactive applications 2-42

address space 1-5

algorithms 8-1

aligning application buffers 8-12

aligning 1/0 buffers 8-25

ALLOCATE statement 8-8,8-15

allocating memory 8-8

Index-1

Index

allocating nodes to a partition 2-35, 2-46

allocating nodes to an application 2-15, 4-4

allocating space to a file 5-8,5-35

allocator configuration parameters 2-43

alternate node topologies 7-6

anonymous files 5-13

applicable documents vii

application buffers
aligning 8-12

"application" command 2-12, A-2

Index-2

Paragon™ System User's Guide

applications 1-1, 2-1
active and inactive 2-42
allocating nodes to an application 4-4
Bourne shell 2-30
compiling and linking 2-5
compiling, linking, and executing 2-3
contiguous nodes 2-15, 4-5,4-12,4-34,4-39
control decomposition 7-5
controlling execution characteristics 2-12
controlling process 2-29, 2-33, 4-4, 4-26
controlling with system calls 4-2
creating and controlling 4-4
debugging 2-39
decomposition 7-3
default partition 2-13
designing 7-1
designing a communication strategy 7-6
domain decomposition 7-3
error handling 4-55
error messages 2-11
executing 2-11
-gth switch 8-18
1/0 redirection 2-12
independent of number of nodes 7-5
interactive 2-39
killing application processes 4-28
listing the applications in a partition 2-64
-Inx compiler switch 2-11
load balancing 7-3
managing running applications 2-29
matrix*vector example 7-11
-mbf switch 8-16
-mea switch 8-17
message buffers 3-14
message passing with controlling process 4-30
-mex switch 8-19
-noc switch 8-17
node numbers 3-3
nqueens example 7-13
-nt switch 2-25
-nx compiler switch 2-11
-on switch 2-19
order of switches 2-13
overlapping 2-43
partition of 2-13

Paragon ™ System User's Guide

perfectly-parallel 7-2
performance improvement techniques 8-1
pi example 7-7
-pkt switch 8-16
-plk switch 8-3, 8-15
-pn switch 2-23
-pri switch 2-18
priority of 2-18, 2-42, 4-15
process type of 2-18, 3-4
-pt switch 2-18, 3-4
rectangular dimensions of 4-22
rectangular size 2-16
removing partitions containing 2-53
running in a particular partition 2-23
running multiple programs 2-21
running on a particular node type 2-23
running on a subset of the nodes 2-19
-sct switch 8-18
separating the user interface from the

computation 7-3
shell scripts 2-30
size of 2-15
-sth switch 8-18
-sz switch 2-15, 3-3
waiting for application processes 4-19

arbitration between processes 2-39

archcube command B-5

architecture of your workstation 2-6

argc and argv parameters 4-5, 4-8, 4-18

arithmetic, extended 5-39

arrays
accessing contiguous memory locations 8-5
dynamic allocation of 8-8
large 8-8
memory layout in C and Fortran 8-5

arrow LEOs 1-4

assembly language programming 8-1,8-7

asynchronous and synchronous calls 8-10

asynchronous and synchronous I/O calls 8-24

asynchronous cancelability 6-38

asynchronous file I/O calls 5-29

asynchronous message-passing calls 3-6,3-7,
3-10

with interrupt handler 3-7

attachcube command B-5

attachcubeO system call B-9

attributes of file systems 5-5, 5-7

attributes of pthreads 6-22

available nodes 2-55

avoiding virtual memory paging 8-3

B
backward compatibility calls B-9"

backward library references 2-10

bad nodes 2-37,2-55,4-53

balancing the load among the nodes 7-3

Index

Basic Linear Algebra Subroutines (SLAS) 7-13

Basic Math Library (libkmath.a) 8-6

bg command 2-29

binary files in PFS file systems 5-4

BLAS library 8-6

blocking 3-8, 5-54
on child processes 4-19
with pthreads 6-46

blocks, file system 8-25

bold text vii

Bourne shell (sh) 2-30
with pthreads 6-48

brackets, in syntax descriptions vii

broadcast 3-9

Index-3

Index

buffering
of Fortran 1/0 5-33
of messages 3-14
of standard 1/0 2-12

buffers for 1/0 8-25

buffers for messages 8-11
aligning 8-12

buffers, message 8-16

bureaucracy in node programs 7-5

bytes read or written 5-28

byte-swapping calls 8-13

c
C library, reentrant 6-2

C pragmas 6-8

C preprocessor on a Fortran program 2-9

C programs
error handling 4-55, 8-7
file descriptors 5-9
including nx.h 2-8
memory access considerations 8-5
pointers to message buffers 8-13
structure padding 8-13

cache lines 8-5, 8-12

caches
data 8-5
instruction 8-6

caching 8-5

canceling pthreads 6-38

cat command 5-5, 5-37

cbackup command 8-7

Index-4

Paragon™ System User's Guide

cc command 2-4, 2-5, A-1
-host switch 8-9
-I switch 2-9, 2-10
-L switch 2-9, 2-10
-Mquad switch 8-4
-node switch 8-4
-nx switch 2-5, 8-4
order of switches 2-10
-p switch 8-4

CFS 5-1,8-7

Icfs directory 5-13

CFS_MOUNT environment variable 5-13

cfschk command 8-7

changing partition characteristics 4-49

changing process type 3-4

characteristics of a partition 2-34
default 2-34

characteristics of processes 3-3

chdirO system call 5-34, 8-9
with pthreads 6-17

chess example 7-13

chgrp command 5-37

child partitions 2-35, 2-40
creating 2-46
listing 2-60
removing 2-52
removing partitions containing 2-53

child processes 4-15,4-17,4-19

chmod command 5-37

chmodO system call 5-34, 8-9

chown command 5-37

chownO system call 5-34

chpart command 2-35, 2-68, A-2

CLASSPACK 8-6

cleanup routines for pthreads 6-41

Paragon TM System User's Guide

clock, global 4-64

closeO system call 5-31
synchronization 5-54

closing parallel files 5-16,5-31

code segment 8-15

commands 2-1
compiling and linking applications 2-5
cross-development 2-5
executing applications 2-11
iPSC system compatibility 8-5
managing partitions 2-30
managing running applications 2-29
native 2-5
on the Intel supercomputer 2-2
on workstations 2-2
PFS 5-5
summary A-1

commons in message passing 3-17

communication
overlapping with computation 8-10

compatibility with the iPSC system 8-1

compiler
directives 6-6
limitations 6-4

compiler switches 2-5,2-8,2-10, 8-4

compilers, iPSC system 2-7
compatibility with 8-4

compiling and linking
optimization 8-3

compiling and linking applications 1-6, 2-5
-host switch 8-9
-Inx switch 2-6

order of 2-10
-Mquad switch 8-4
-node switch 8-4
-nx switch 2-5, 8-4
-p switch 8-4
quick example 2-3
specifying include file path names 2-8
specifying library pathnames 2-8
tips 2-8
with pthreads 6-14

complete (synchronous) system calls
file I/O 5-26
message passing 3-7

compress command 5-37

computation
overlapping with communication 8-10

computational kernel of an application 7-3

compute nodes 1-2

compute partition 2-2, 2-33, 2-34

Concurrent File System 5-1, 8-7

condition variables 6-30

configuration parameters of the allocator 2-43

configuring message passing 8-18

configuring your environment
for cross-development 2-6
for online manual pages 2-7

contiguous m~mory locations 8-5

Index

contiguous nodes 2-15,2-46,4-5,4-12,4-34,4-39

contiguous partitions 2-36

control decomposition 7-5
example 7-14

controlling application execution with system calls
4-2

Index-5

Index

controlling open files 5-46

controlling process 2-29, 2-33, 2-65, 4-4, 4-26
global operations 4-30
message passing 4-30
node number of 4-30
process type of 4-30

controlling tape devices 5-49

controlling the application's execution
characteristics 2-12

coprocessor 8-10

copying processes onto nodes 4-15

core dumps 2-67,4-59

core files in PFS file systems 5-4

coreinfo command A-3

correspondents parameter 8-17

count parameter 3-5

Courier font vii

cp command 5-5, 5-37

cpio command 5-37

cprobeO system call 3-14, A-7, A-31

cprobexO system call 3-16, 3-24, A-9, A-34

cptape command 8-7

creadO system call 5-16, 5-27, A-19, A-46
synchronization 5-54

creadvO system call 5-27, 5-54, A-19, A-46

creatO system call 5-34

createstrucO system call 8-13

creating an application 4-4

creating partitions 2-46, 4-33

crecv() system call 3-8, A-5, A-29
message buffering 8-11

crecvxO system call 3-16, 3-24, A-9, A-33

Index-6

Paragon™ System User's Guide

crestore command 8-7

critical code 3-22

cross-compilers 2-2

cross-development facility 1-6
commands 2-5
configuring your environment 2-6

csendO system call 3-8, A-5, A-29
message buffering 8-11

csendrecv() system call 3-8, A-5, A-29

cthreads 6-2

CTOH ... O system calls 8-13

<Ctrl-c> key 2-29

<Ctrl-z> key 2-29

cube control commands 8-5

cube.h file 8-9

cubeinfo command 8-5

cubeinfo() system call 8-10

current partition 2-34

cwrite(} system call 5-16, 5-26, 5-27, 5-33, A-19,
A-46

synchronization 5-54

cwritevO system call 5-27, 5-54, A-19, A-47

o
data cache 8-5

data locality 8-10

data segment 8-15

dclockO system call 4-64, 4-66, A-17, A-44, 8-16

dead nodes 2-37, 2-55, 4-53

deadlock 8-17

dealing out data to the nodes 7-3

debugging applications 2-39

Paragon ™ System User's Guide

declaring large arrays 8-8

decomposition 7-3
control decomposition 7-5
domain decomposition 7-3

default application size 2-16

default characteristics of a partition 2-34

default partition 2-2, 2-13
determining 2-15
listing applications in 2-64
listing subpartitions of 2-60
setting 2-14
showing characteristics of 2-54

defaults
default number of processors 2-12

 key 2-29

DELTA System 4-66

designing a communication strategy 7-6

designing a parallel application 7-1

destroying partitions 2-52, 4-42

detecting end-of-file 5-31

determining your default partition 2-15

Idev/ioO/rmt6 device 5-51

devices, disk 5-2

df command 5-7

DFL T _NCPUS 2-12, 6-5

diff command 5-37

differences between iPSC and Paragon 8-1

disk space allocated to a file 5-8, 5-35

disks and file systems 5-2

displaying file system attributes 5-5, 5-7

distributed memory 7-2

distributing computation among the nodes 7-3

distributing data among the nodes 7-3

documents, related vii

domain decomposition 7-3
example 7-8

dot (.) in partition pathnames 2-33

dot (.) partition (root partition) 2-32

du command 5-37

dumping core 4-59

dynamic algorithm selection 3-27

dynamic memory allocation 8-8

E
eaddO system call 5-39, A-22, A-50

ecmpO system call 5-39, 5-40, A-22, A-50

ed command 5-37

edivO system call 5-39, 5-40, A-22, A-50

effective priority limit 2-42, 2-51, 2-69

efficiency of PFS files 8-23

ellipses (...), in syntax descriptions vii

emodO system call 5-39, 5-40, A-22, A-50

emulO system call 5-39, A-22, A-50

end-of-file 5-31

ENOSYS 6-11

environment variables
CFS_MOUNT 5-13
for compiling and linking 2-6
for online manual pages 2-7
IPSC_XDEV 8-4
MANPATH 2-7
NX DFLT PART 2-3,2-11,2-13
NX=OFL T =SIZE 2-11, 2-16, 2-23
of child processes 4-18
PARAGON_XOEV 2-6, 2-9
PATH 2-6

envp parameter 4-18

Index

Index-7

Index

errno variable 4-55
with pthreads 6-50

"error 216 occurred, unknown" error 2-11

error handling 4-55, 8-7
in parallel file I/O calls 5-28
with pthreads 6-50

error messages 2-11

eseekO system call 5-38, A-21 , A-49
synchronization 5-54

esizeO system call 5-38, A-21 , A-49

esize_t structure 5-39

estat structure 5-38

estatO system call 5-38, A-21

estat.h file 5-39

estatfs structure 5-43

esubO system call 5-39, A-22, A-50

Ethernet interface 1-3

etosO system call 5-39, A-22, A-50

ex command 5-37

example of compiling and linking 2-3

examples
iomodes 5-20
matrix*vector 7-11
nqueens 7-13
pi 7-7
pthreads 6-27
triangle 7-18

"exceeded allocator configuration parameters"
error 2-43

"exceeds partition resources" error 2-11,2-16

exception mask 4-62

exceptions 5-33

execO system call 3-5
with pthreads 6-17

Index-8

Paragon ™ System User's Guide

executable files in PFS file systems 5-4

execute (x) permission on a partition 2-38

executing applications 2-3, 2-11
after cross-compilation 1-7
controlling 2-12

execution search path 2-6

execution timing 4-64

exitO system call, with pthreads 6-17,6-51

extended arithmetic 5-39

extended files 5-36

extended receive and probe 3-24

F
. F extension 2-9

f77 command 2-4, 2-5, A-1
-host switch 6-9
-I switch 2-9,2-10
-L switch 2-9, 2-10
-Mquad switch 6-4
-node switch 6-4
-nx switch 2-5, 6-4
order of switches 2-10
-p switch 6-4

failed nodes 2-37,2-55,4-53

fault LEOs 1-4

fcntl5-41

fcntlO system call 5-4, 5-46

fcntl.h include file 5-46

fcube.h file 6-9

festatO system call 5-38, A-21

FFT library 8-6

fg command 2-29

fgetposO system call 5-36

Paragon™ System User's Guide

FIFO size 8-12

file 1/0, parallel (see also "parallel file 1/0") 5-1

file pointers 5-16

file system blocks 8-25

file systems 5-2
attributes of 5-5, 5-7
getting information about PFS file systems 5-41

filelD parameter 5-9

filenames, length of 5-4

files
extended 5-36
file descriptors 5-9
file pointers 5-16

moving 5-31
maximum open at once 5-4
size of 5-8, 5-35

find command 5-37

fixed-size records 5-17

flickO system call 4-64, 4-66, A-17, A-44

floating-point control calls 4-60

flockO system call 5-4

flockfileO system call 6-17

flow control of messages 8-13

flushing Fortran buffered I/O 5-33

flushmsgO system call 4-66, A-17, A-44, B-16

fnctlO system call 5-46

fnx.h file 2-8

force types 3-6, B-2

forceflushO system call 5-33, A-48

forflushO system call 5-33, A-48

forkO system call 2-6, 3-5, 4-15, 5-14
with pth reads 6-1 7

forking processes onto nodes 4-15

form="formatted" parameter 5-12

form="unformatted" parameter 5-12

formatted files 5-12

fort.nnn files 5-13

Fortran directives 6-7

Fortran programs
error handling 4-55
file I/O on parallel files 5-26
flushing buffered I/O 5-33
including fnx.h 2-8
memory access considerations 8-5

Index

message passing with Fortran commons 3-17
opening new files 5-13
opening parallel files 5-12
parallel file I/O calls 5-27
preprocessing 2-9
sequential files 5-28
unformatted files 5-28
units 5-9

fpgetmaskO system call 4-60, A-16

fpgetroundO system call 4-60, A-16

fpgetstickyO system call 4-60, A-16

fpsetmaskO system call 4-60, 5-33, A-16, A-43

fpsetroundO system call 4-60, A-16

fpsetstickyO system call 4-60, A-16

freadO system call 8-24

free nodes 2-55

front panel LEOs 1-3

fseekO system call 5-36

fsetposO system call 5-36

fsplit command A-3

fstatO system call 5-36

fstatfsO system call 5-43, 8-25

fstatpfsO system call 5-41 , 8-26, A-23

Index-9

Index

ftellO system call 5-36

FTNxxxxxxxx.nn files 5-13

ftpcommand 1-7, 2-7, 5-37

ftruncateO system call 5-36

full stripe size 8-25

funlockfileO system call 6-17

G
gang scheduling 2-42, 2-51, 2-68

with pthreads 6-13

Gauss-Seidel method 8-11

gcolO system call 3-27, A-10, A-35

gcolxO system call 3-27, 7-6, 7-13, A-10, A-35

gdhigh() system call 3-27, A-10, A-35

gdlowO system call 3-27, A-10, A-35

gdprodO system call 3-27, A-10, A-35

gdsum() system call 3-27,3-28, 7-6, A-10, A-35

general cancelability 6-38

getcube command 8-6

getcubeO system call 8-1 °
getiphostsO system call 8-16

getmntinfoO system call 5-41

getpfsinfoO system call 5-41, A-23

getrusageO system call 8-9

getting information about PFS file systems 5-41

GFLOPS 8-2

giand() system call 3-27, A-10, A-35

gigabyte files 5-36

gihighO system call 3-27, A-10, A-36

gilowO system call 3-27, A-11, A-36

Index-10

Paragon ™ System User's Guide

ginvO system call 4-66, A-17, A-44

giorO system call 3-27, A-11, A-36

giprodO system call 3-27, A-11, A-36

gisumO system call 3-27, A-11, A-36

give_threshold parameter 8-18

gixorO system call 8-16

glandO system call 3-27, A-11, A-36

global clock 4-64

global operations 3-4, 3-27, 5-10, 5-14, 5-15, 5-54,
7-6

and controlling process 4-30
effect on-noc switch 8-22
with -on switch 2-21
with pth reads 6-1 3, 6-47

global predicate variables 6-31

glorO system call 3-27, A-11, A-36

glxorO system call 8-16

gopenO system call 5-10, 8-23, A-18, A-46
synchronization 5-54
with pthreads 6-13

gopfO system call 3-27, A-11, A-37

gprof command 8-2

grayO system call 4-66, A-17, A-44

green LEDs 1-3

group of a partition 2-38,2-69,2-70

groups of processes 4-27

gsendxO system call 3-9, A-5, A-29

gshighO system call 3-27, A-11, A-37

gslowO system call 3-27, A-11, A-37

gsprodO system call 3-27, A-12, A-37

gssumO system call 3-27, A-12, A-37

Paragon ™ System User's Guide

gsyncO system call 3-27, A-12, A-37
with openO 8-15
with pthreads 6-13

-gth switch 8-18

H

handled message-passing calls 3-7

handled types 3-19

handlerO system call 8-16

handling errors 4-55,8-7
with pthreads 6-50

hardware 1-2

hardware failures 2-37

heap 8-15

"hello, world" program 2-3

hierarchical partition structure 2-33

host calls 8-9

-host switch 8-9

hparam parameter 3-21

hrecvO system call 3-18, A-8, A-32
with pthreads 6-47

hrecvxO system call 3-24, A-9, A-34

hsendO system call 3-18, 3-20, A-8, A-32
with pthreads 6-47

hsendrecvO system call 3-18, 3-20, A-8, A-32

hsendxO system call 3-20, A-8, A-33

HTOC ... O system calls 8-13

hwclockO system call 4-66, A-17, A-44

1/0 buffers 8-25

1/0 calls, efficiency of 8-24

1/0 IDs 5-29

1/0 interfaces 1-3

1/0 modes 5-10,5-14
efficiency of 8-24
example 5-20
inheritance across fork() 5-14
M_ASYNC 5-19
M_GL08AL 5-18
M_LOG 5-16
M_RECORD 5-17,8-26
M_SYNC 5-16
M_UNIX 5-16
standard 1/0 2-12
synchronization of 5-54

1/0 nodes 5-2

1/0 partition 2-32

1/0 redirection 2-12

1/0 request size 8-23, 8-25

1/0 to parallel files 5-26

1/0, parallel (see also "parallel file 1/0") 5-1

i860 microprocessor 1-2, 8-5
cache line 8-12
data cache 8-5
FIFO size 8-12
floating-point control registers 4-61
instruction cache 8-6
physical memory page 8-12

Index

Index-11

Index

icc command 2-5, A-1
environment variables 2-6
-I switch 2-9, 2-10
-Knoieee switch 8-4
-L switch 2-9, 2-10
-MnostrideO switch 8-4
-Mquad switch 8-4
-Mvect switch 8-4
-node switch 8-4
-nx switch 2-5, 8-4
-0 switch 8-4
order of switches 2-10
-p switch 8-4

10 of a message 3-6

IEEE math library 8-4

IEEE NaN 4-60

if/else blocks, efficiency of 8-6

if77 command 2-5, A-1
environment variables 2-6
-I switch 2-9, 2-10
-Knoieee switch 8-4
-L switch 2-9, 2-10
-Ikmath switch 7-13
-MnostrideO switch 8-4
-Mquad switch 8-4
-Mvect switch 8-4
-node switch 8-4
-nx switch 2-5, 8-4
-0 switch 8-4
order of switches 2-1 0
-p switch 8-4

image enhancement 7-3

improving performance 8-1

inactive applications 2-42

include directories 2-8

Index-12

include files
cube.h 8-9
estat.h 5-39
fcntl,h 5-46
fcube.h 8-9
fnx.h 2-8
mtio.h 5-49
nx.h 2-8

Paragon™ System User's Guide

incomplete (asynchronous) system calls
file I/O 5-26
message passing 3-7

increasing problem size 8-5

increasing the size of a file 5-8, 5-35

info parameter 3-25

info ... O system calls, with pthreads 6-47

infocountO system call 3-15, A-7, A-31

infonodeO system call 3-15, A-7, A-31

infopidO system call 4-66, A-17, A-44

infoptypeO system call 3-15, A-7, A-31

information about messages 3-15

infotypeO system call 3-15, A-7, A-31

innermost loops 8-4

instruction cache 8-6

Intel supercomputer
hardware 1-2
software 1-4
using commands on 2-2

interactive applications 2-39

interconnect network 1-2

interfaces 1-3

interrupt key 2-29

interrupts
preventing 3-22
treating messages as interrupts 3-18

INVALlD_PTYPE constant 3-5

Paragon ™ System User's Guide

ioctlO system call 5-49

iodoneO system call 5-26, 5-29, 5-30, A-19, A-47

iomodeO system call 5-14, A-18, A-46

iowaitO system call 5-26, 5-29, 5-30, A-19, A-47

IPO
not support threaded applications 6-4

iprobeO system call 3-14, A-7, A-31

iprobexO system call 3-16, 3-24, A-9, A-34

iPSC system
CFS compatibility 5-1
commands B-5
compatibility calls 4-66
compatibility with B-1
compilers 2-7, B-4
IPSC_XOEV environment variable B-4
system calls B-9

ireadO system call 5-29, A-19, A-47, B-15
synchronization 5-54

ireadvO system call 5-29, 5-54, A-19, A-47

irecvO system call 3-10, A-6, A-3~

irecvxO system call 3-24, A-9, A-33

isendO system call 3-10, A-6, A-30

isendrecvO system call 3-10, A-6, A-30

iseofO system call 5-16, 5-26, 5-28, 5-31, A-20,
A-48

synchronization 5-54

isnanO system call 4-60, A-16

isnandO system call 4-60, A-16

isnanfO system call 4-60, A-16

italic text vii

iwriteO system call 5-29, 5-33, A-19, A-47, B-15
synchronization 5-54

iwritevO system call 5-29, 5-54, A-19, A-47

K
kernel of an application 7-3

kernel threads 6-11 , 6-23

kill command 1-5, 2-29, 2-65

kiliO system call 4-21, 4-28

killcube command B-6

kilicubeO system call 4-66, A-17, A-44, B-10

killing application processes 4-28

kiliprocO system call 4-66, A-17, A-45, B-10

kilisyslogO system call B-10

-Knoieee switch 8-4

L
ledO system call 4-66, A-17, A-44

LEOs 1-3

length of a filename or pathname 5-4

length of a message 3-5, 3-15

less command B-8

lestatO system call 5-38, A-21

libc_r.a 6-2,6-14
error handling 6-50

lib-coff directory 2-8

libkmath.a 8-6

libkmathJa 6-3

libksignaU.a 6-3

libmJa6-2

libmach.a 6-13

libmp3.a 6-2

libnx.a 2-5

Index

Index-13

Index

libpthreads.a 6-2, 6-18
error handling 6-50

libraries
Basic Math Library 8-6
BLAS 7-13
command-line switches 2-10
IEEE math library 8-4
libkmath.a 7-13
libnx.a 2-5
pthreads package 6-14
search path for 2-10
Signal Processing Library 8-6
specifying 2-8

libsignal,a 8-6

life of a process type 3-5

limitations of PFS 5-4

link switches 2-10

linkO system call 5-34

linking an application 2-3
single-pass linker 2-10
specifying library pathnames 2-8
with pthreads 6-14

listing partitions 2-60

listing the applications in a partition 2-64

-Ikmath switch 7-13

-Inx switch 2-6
effect on execution 2-11
order of 2-10
with pthreads 6-14

load balancing 2-39, 7-3

load command B-6

10adO system call 4-66, A-17, A-45

loading processes onto nodes 4-17

locality of data 8-10

locking a process in memory 8-15

locking and unlocking pthreads 6-24

Index-14

Paragon ™ System User's Guide

locking data into memory 8-15

logical node numbers 2-37

loop parallelization 6-3

loops, innermost 8-4

loops, size of 8-6

Is command 5-5,5-37

IseekO system call 5-18, 5-28, 5-31, 5-36, A-20,
A-48

synchronization 5-54

Isize command 5-8, A-3

IsizeO system call 5-35, A-20, A-49

Ispart command 2-37, 2-60, A-2
-r switch 2-62

IstatO system call 5-36

M
M_ASYNC I/O mode 5-19

M_GLOBAL I/O mode 5-18,8-24

M_LOG I/O mode 5-16

M_RECORD I/O mode 5-17,8-24,8-26

M_SYNC I/O mode 5-16, 8-24

M_UNIX I/O mode 5-16,8-24

Mach kernel interface 6-13

Mach threads 6-2

madviseO system call 5-36

magnetic tapes, controlling 5-49

main thread 6-19

maintaining data locality 8-10

makewhatis command B-7

making partitions 2-46, 4-33

Paragon ™ System User's Guide

making the program independent of the number of
nodes 7-5

maliocO system call 8-8, 8-13, 8-15

manager-worker decomposition 7-5, 7-14

managing partitions 2-30
with system calls 4-32

managing running applications 2-29

manpath command 8-8

MANPATH environment variable 2-7

manual pages, configuring your environment for 2-7

masktrapO system call 3-22, A-8, A-33

math library, IEEE 8-4

matrix*vector example 7-11

maximum capacity of a PFS file system 5-3

maximum length of a filename or path name 5-4

maximum number of open files 5-4

maximum size of a PFS file 5-3

-mbf sWitch 8-16

mclockO system call 4-66, A-18, A-45

Mcncall 6-4, 6-5, 6-10

Mconcur 6-4, 6-5, 6-10

-mea switch 8-17

memory
accessing contiguous memory locations 8-5
allocated to message buffers 8-16
distributed 7-2
dynamic allocation 8-8
locking 8-15
locking data into memory 8-15
of nodes 1-2
physical 1-5
physical pages 8-5,8-12
static allocation 8-8
virtual 1-5, 8-3, 8-15

memory_each parameter 8-17

memory_export ipc_option 8-19

merging message IDs 3-13

message buffers 8-16

message coprocessor 8-10

message handlers 3-20

Index

message_buffer parameter 8-16

message-passing configuration switches 8-18

message-passing flow control 8-13

message-passing system calls 3-1
with pthreads 6-12,6-46

messages 1-1, 7-2
as interrupts 3-18
asynchronous calls 3-10
buffers 3-14, 8-11

aligning 8-12
configuration options 8-18
designing a communication strategy 7-6
exchanging with controlling process 4-30
force types 3-6
getting information about 3-15
handled types 3-19
memory allocated to message buffers 8-16
merging message IDs 3-13
message characteristics 3-5
message 10 3-6
message IDs 3-10
message length 3-5, 3-15
message order 3-7
message passing with Fortran commons 3-17
message type 3-6,3-15
names of message-passing calls 3-7
pending messages 3-14, 8-11
performance improvement techniques 8-7,

8-21
pthreads 6-46
releasing message IDs 3-12
synchronous calls 3-8
typesel masks 3-6
zero-length messages 3-6

Index-15

Index

-mex switch 8-19

MFLOPS 8-2

Minfo 6-9

Miomutex 6-5

miscellaneous system calls 4-64

mkcfs command B-7

mkdev command B-7

mkdirO system call 5-34

mkpart command 2-34, 2-46, A-2
-epl switch 2-51
-mod switch 2-50
-nd switch 2-46
-rq switch 2-51
-sps switch 2-51
-ss switch 2-51
-sz switch 2-46

mmapO system call 5-4, 5-36

-MnostrideO switch 8-4

modes for I/O 5-14
synchronization of 5-54

modes of a partition 2-38, 2-50, 2-69

monospace text vii

more command 5-37

mount points 5-2

moving the file pointer 5-31

mprotectO system call 5-36

-Mquad switch B-4

Mreentrant 6-5

Msave 6-6

msg_switches 8-18

msgcancelO system call 4-66, A-18, A-45

msgdoneO system call 3-10, 3-16, A-6, A-30

msgignoreO system call 3-10, A-6, A-31

Index-16

Paragon™ System User's Guide

msginfo array 3-16, 3-25

msgmergeO system call 3-13, A-6, A-31

msgwaitO system call 3-10, 3-16, A-6, A-30

msyncO system call 5-36

MT operations 5-49

mtio.h file 5-49

multi-node performance 8-7, 8-21

multiple nodes 3-9

multiple programs in an application 2-21

munmapO system call 5-36

mutexes 6-24

mv command 5-5, 5-37

-Mvect switch 8-4

myapp (any application) command 2-11

myapp.c 2-4

myapp.f 2-4

myhostO system call 4-30, A-4, A-28

mynodeO system call 2-17, 3-3, 8-2, A-4, A-28

mypartO system call 2-17, 4-23, 4-66, A-18, A-45

mypidO system call 4-66, A-18, A-45

myptypeO system call 2-19, 3-4, 8-2, A-4, A-28

N
name of a partition 2-35, 2-69

named commons in message passing 3-17

namelist groups 6-10

names of message-passing calls 3-7

NaN (Not-a-Number) 4-60

native commands 2-5

new features in Paragon OSF/1 B-2

Paragon™ System User's Guide

new files 5-13

newfs command 5-37

newserver command 8-6

newserverO system call 8-11

NEXTPATHO macro 5-41

NFS (Network File System) 1-7,2-7,5-2
accessing PFS files 5-4
parallel I/O to 5-27

-noc switch 8-17

node interconnect network 1-2

node numbers 3-3
in filenames 5-34
in overlapping partitions 2-37
logical 2-37
of a received or pending message 3-15
of controlling process 4-30
physical 2-37
within a partition 2-36

node parameter 3-3

__ NODE preprocessor symbol 2-5

node programs
error handling 8-7

-node switch 8-4

nodedimO system call 4-66, A-18, A-45

nodes 1-1,1-2,7-2
allocated to a partition 2-35, 2-46
allocated to an application 2-15, 4-4
compute nodes 1-2

Index

contiguous 2-15, 2-46, 4-5, 4-12, 4-34, 4-39
copying processes onto nodes 4-15
designing a communication strategy 7-6
free 2-55
I/O nodes 5-2
load balancing 7-3
loading processes onto nodes 4-17
making programs independent of number of

nodes 7-5
node numbers 3-3
node topologies 7-6
node types 2-25

running applications on 2-23
operating system 1-5
partitions 2-30
running application processes on a subset 2-19
service nodes 1-2
unusable nodes 2-37,2-55,4-53

nodesel parameter 3-3

nodespecs 2-19, 2-46

noieee switch 8-4

noncontiguous nodes 2-15, 2-46, 4-5, 4-12, 4-34,
4-39

noncontiguous partitions 2-36

non-parallel programs 2-11, 2-33

nostrideO switch 8-4

Not-a-Number (NaN) 4-60

notational conventions used in the manual vii

nqueens example 7-13

nsh command 8-8

-nt switch 2-25

number of bytes read or written 5-28

numbers, extended 5-39

Index-17

Index

numerical methods 8-1

numnodesO system call 2-17, 3-3, A-4, A-28

-nx switch 2-5, 8-4
actions performed by 4-3
and nx_initveO 4-4
command-line switches 2-13, 8-18
effect on execution 2-11
with pth reads 6-14

nx.h file 2-8

nx_ ... O system calls, error handling of 4-55

nx_app_nodesO system call 4-21 ,A-13, A-40

nx_app_rectO system call 2-17, 4-21,8-10, A-13,
A-40

nx_chparCeplO system call 4-49, A-15, A-42

nx_chparCmodO system call 4-49, A-15, A-42

nx_chparCnameO system call 4-49, A-14, A-41

nx_chparCownerO system call 4-49, A-15, A-42

nx_chparCrqO system call 4-49, A-15, A-42

nx_chparCschedO system call 4-49, A-15, A-42

NX_DFLT _PART environment variable 2-3,2-11,
2-13

NX_DFL T _SIZE environment variable 2-11, 2-16,
2-23

nx_empty_nodesO system call 4-53, A-15, A-43

nx_failed_nodesO system call 4-53, A-15, A-43

nx_initveO system call 4-3, 4-4, 4-26, A-12, A-38
linking 2-6
with pthreads 6-48

nx_initve_attrO system call 4-3, 4-8, A-12, A-38

nx_initve_rectO system call 4-3, 4-7, A-12, A-38

nx_loadO system call 2-21 ,3-5,4-3,4-17,4-20,
A-13, A-39

nx_loadveO system call 2-21, 3-5,4-3,4-18,4-20,
A-13, A-39

Index-18

Paragon ™ System User's Guide

nx_mkpartO system call 4-33, A-14, A-40

nx_mkpart_attrO system call 4-33, A-14, A-41

nx_mkpart_mapO system call 4-33, A-14, A-41

nx_mkpart_rectO system call 4-33, A-14, A-40

nx_nforkO system call 2-21, 3-5, 4-3, 4-15, 4-20,
A-13, A-39

with pthreads 6-48

nx_node_attrO system call 4-43, A-14

nx_part_attrO system call 4-43, A-14, A-41

nx_part_nodesO system call 4-43, A-14, A-41

nx_perrorO system call 4-55, A-16, A-43

nx_priO system call 4-3, 4-15, A-12, A-38

nx_pspartO system call 4-21 , A-13

nx_rmpartO system call 4-42, A-14, A-41

nx_waitaliO system call 4-3, 4-19, A-13, A-39

o
-on switch 2-19

open files, controlling 5-46

openO system call 5-11, 5-34, 8-23,8-15

opening parallel files 5-10
in filenames 5-34
special considerations for Fortran 5-12
with standard operations 5-11

operating system 1-5

"Operation not supported by this file system" error
5-4

optimization
compiler 8-3

optimizations 8-3

order of application switches 2-13

order of compiler switches 2-10

Paragon ™ System User's Guide

order of messages 3-7

organization of the manual vi

OSF/1 operating system 1-4
commands 2-2

OSF/1 PIDs 4-20

overlapping computation and communication 8-10

overlapping partitions or applications 2-43

owner of a partition 2-38, 2-70

p

-p switch B-4

packeCsize parameter 8-16

packetization 8-16

padding in common blocks 3-17

pages of physical memory 8-5

paging 8-3
preventing 8-15

Paragon OSF/1 operating system 1-5
commands 2-1
message-passing system calls 3-1
new features B-2
other system calls 4-1
parallel file 1/05-1

Paragon system
hardware 1-2
software 1-4

PARAGON_XDEV environment variable 2-6, 2-9

PARAGON_XDEV/paragon directory 2-8

ParaGraph performance visualization tool 8-10

parallel applications 1-1, 2-1

parallel file 1/0 5-1
in filenames 5-34
asynchronous 1/0 calls 5-29

efficiency of 8-24
closing files 5-31
detecting end-of-file 5-31
efficiency of 8-24
error handling 5-28
file pOinters 5-16
flushing Fortran buffered 1/0 5-33
formatted vs. unformatted 1/0 5-12
1/0 modes 5-10, 5-14

efficiency of 8-24
1/0 performance 8-23
in Fortran programs 5-27
increasing the size of a file 5-8, 5-35
manipulating extended files 5-38
moving the file pOinter 5-31
new files 5-13
open files, controlling 5-46
opening files 5-10

with standard operations 5-11
reading and writing files 5-26
scattered read and write 5-27
special considerations for Fortran 5-12
synchronizing calls 5-10,5-14,5-15
synchronizing operations 5-54
synchronous 1/0 calls 5-27
system calls 5-9
tapes, controlling 5-49
to NFS files 5-27
to the user's terminal 5-33
unnamed files 5-13
with pthreads 6-13,6-47

parallel file system (see also "PFS") 5-1

parallel programming techniques 7-2

parent partition 2-35

"partition permission denied" error 2-11

Index

Index-19

Index

partitions 1-6, 2-2, 2-30
allocating nodes to applications 2-15
changing partition characteristics 4-49
characteristics 2-34
child partitions 2-35, 2-40
compute partition 2-2, 2-33, 2-34
contiguous and noncontiguous 2-36
contiguous nodes 2-46
current 2-34
default characteristics 2-34
default partition 2-2, 2-13

determining 2-15
setting 2-14

dot (.) partition (root partition) 2-32
effective priority limit 2-42, 2-51, 2-69
error messages 2-14
execute (x) permission 2-38
free nodes 2-55
gang-scheduled 2-42, 2-51,2-68
hierarchical structure 2-33
I/O partition 2~32
listing 2-60
listing the applications in a partition 2-64
making partitions 2-46, 4-33
managing 2-30
managing with system calls 4-32
name of a partition 2-35, 2-69
nodes 2-35
nodes allocated to a partition 2-46
overlapping 2-43
owner and group 2-38, 2-69, 2-70
parent partition 2-35
path names 2-33
permission bits 2-38, 2-50, 2-69
priority 2-42
protection modes 2-38,2-50,2-69
read (r) permission 2-38
removing partitions 2-52, 4-42
rollin quantum 2-39, 2-42, 2-51,2-68
root partition 2-32, 2-35

shape of 2-32
running applications in 2-23
scheduling characteristics 2-39, 2-51
service partition 2-2, 2-29, 2-33
showing partition characteristics 2-54

Index-20

Paragon™ System User's Guide

space-shared 2-40,2-51,2-69
special 2-31
standard-scheduled 2-40, 2-51
subpartitions 2-35, 2-40
unusable nodes 2-37, 2-55, 4-53
write (w) permission 2-38

passing information to the handler 3-20

PATH environment variable 2-6

path names of partitions 2-33

path names, length of 5-4

pending messages 3-14,8-11
getting information about 3-15

perfectly-parallel applications 1-6, 7-2

performance improvement techniques 8-1

performance of PFS files 8-23

performance visualization 8-10

performing extended arithmetic 5-39

permissions of a partition 2-38, 2-50, 2-69

per-node vector size 8-5

perrorO system call, with pthreads 6-17

Paragon™ System User's Guide

PFS 5-3
accessing via NFS 5-4
commands 5-5
core files in 5-4
executable files in 5-4
file systems 5-3
filename and pathname length 5-4
files 5-3
getting information about PFS file systems 5-41
limitations of 5-4
manipulating extended files 5-38
maximum capacity 5-3
maximum file size 5-3
maximum number of open files 5-4
mount pOints 5-2
opening PFS files 5-10

with standard operations 5-11
performance 8-23
special files in 5-3
stripe attributes 5-46
stripe directories 5-3, 5-46
stripe factor 5-7, 5-46
stripe group 5-7
stripe units 5-3, 5-46

stripe unit 5-7

/pfs file system 5-5

PFS file systems
block size 8-25
striping 8-25

pfsmntinfo structure 5-41

physical memory 1-5

physical memory page 8-12

physical memory pages 8-5

physical nodes 2-37

physical topology 7-6

pi example 7-7

PIDs (process IDs) 4-20
contrasted with process types 4-20

-pkt switch 8-16

-plk switch 8-3, 8-15

plockO system call 8-15

plogon and plogoff commands B-8

plogonO and plogoffO system calls B-16

pmake command A-3

-pn switch 2-23

pointers to message buffers 8-13

Poperating system
programming model 7-2

porting iPSe programs B-1

porting serial codes 7-5

POSIX threads 6-1

pragmas 6-6

preallocating disk space 5-35

preprocessing a Fortran program 2-9

preprocessor symbol __ NODE 2-5

preventing interrupts 3-22

-pri switch 2-18

priority

Index

effective priority limit of a partition 2-42, 2-51,
2-69

of a partition 2-42
of a process 2-40
of an application 2-18, 2-42, 4-15

probing for pending messages 3-14
extended 3-24

problem decomposition 7-3

problem size 8-5

process group IDs 2-65

process group leaders 4-4, 4-27

process IDs (PIDs) 4-20

process locking 8-15

Index-21

Index

process types 3-4
changing 3-4
contrasted with OSF/1 PIOs 4-20
INVALlO_PTYPE 3-5
life of 3-5
of a received or pending message 3-15
of an application 2-18
of controlling process 4-30
with pthreads 3-5, 6-46

processes
arbitration between 2-39
characteristics 3-3
child processes 4-15, 4-17, 4-19
controlling process 2-29, 2-33, 2-65, 4-4, 4-26
copying processes onto nodes 4-15
loading processes onto nodes 4-17
PIOs (process IDs) 4-20
priority of 2-40
process groups 4-27
process types 3-4
threads 1-1
waiting for application processes 4-19

processor time 2-18

prof command 8-2

profiling 8-4

profiling tools 8-2

program development tools 1-6

programming model 1-6, 7-2

programming techniques 7-2

programs, non-parallel 2-1 , 2-33

protection modes of a partition 2-38, 2-50, 2-69

ps command 2-29

pspart command 2-64, A-2
-r switch 2-67

opt switch 2-18, 3-4

pthread_attr_createO system call 6-22, A-24

pthread_attr_deleteO system call 6-22, A-24

Index-22

Paragon™ System User's Guide

pthread_attcgetstacksizeO system call 6-22, A-24

pthread_attr_setstacksizeO system call 6-22, A-24

pthread_cancelO system call 6-38, A-26

pthread3leanup_popO system call 6-41, A-27

pthread_cleanup_pushO system call 6-41, A-27

pthread_cond_broadcastO system call 6-30, A-26

pthread_cond_destroyO system call 6-30, A-26

pthread_condjnitO system call 6-30, A-26

pthread_cond_signaIO system call 6-30, A-26

pthread_cond_timedwaitO system call 6-30, A-26

pthread_cond_waitO system call 6-30, A-26

pthread_condattr_createO system call 6-33, A-26

pthread_condattr_deleteO system call 6-33, A-26

pthread_createO system call 6-20, A-24

pthread_detachO system call 6-20, A-24

pthread_equalO system call 6-20, A-24

pthread_exitO system call 6-20, A-24

pthread_getspecificO system call 6-42, A-27

pthreadjoinO system call 6-20, A-24

pthread_keycreateO system call 6-42, A-27

pthread_mutex_destroyO system call 6-24, A-25

pthread_mutex_initO system call 6-24, A-25

pthread_mutex_lockO system call 6-24, A-25

pthread_mutex_trylockO system call 6-24, A-25

pthread_mutex_unlockO system call 6-24, A-25

pthread_mutexattr_createO system call 6-26, A-25

pthread_mutexattr_deleteO system call 6-26, A-25

pthread_onceO system call 6-43, A-27

pthread_selfO system call 6-20, A-24

pthread_setasynccancelO system call 6-38, A-26

Paragon ™ System User's Guide

pthread_setcancelO system call 6-38, A-26

pthread_setspecificO 6-12

pthread_setspecificO system call 6-42, A-27

pthread_testcancel() system call 6-38, A-26

pthread_yieldO system call 6-20, A-24

pthreads
attributes of 6-22
80urne shell 6-48
canceling 6-38
cleanup routines 6-41
compiling and linking 6-14
condition variables 6-30
data types and symbols 6-18
error handling 6-50
example program 6-27
execution of 6-20
file 1/0 6-47
global predicate variables 6-31
kernel threads 6-11
keys 6-42
libraries 6-2
locking and unlocking 6-24
main thread 6-19
message-passing calls 6-46
mutexes 6-24
non-thread-safe code 6-46
priority of 6-22
process types 3-5
pthreads library calls 6-11
pthread-specific data objects 6-42
reentrant C library 6-14
signals 6-44, 6-48
stack size of 6-22
synchronization of 6-30

ptype (see also "process type") 2-18

ptype parameter 3-4

ptypesel parameter 3-4

Q

quad-alignment 8-4

queens example 7-13

quick example 2-3

quotaon command 5-4

R

_r calls 6-17

Index

RAID (Redundant Array of Inexpensive Disks) 5-2

rar command 8-8

ras command 8-8

rcc command 8-8

rcmd command 1-7

rcp command 1-7, 2-7, 5-37

read (r) permission on a partition 2-38

read statement 5-26

readO system call 5-27
with pthreads 6-13

reading files in parallel 5-26

readlinkO system call 5-34

readvO system call 5-27

rebootcube command 8-8

receiving messages 3-8
extended 3-24

record size 5-17

rectangular applications 2-16

rectangular dimensions of an application 4-22

recursively listing applications in subpartitions 2-67

recursively listing subpartitions 2-62

recursively removing subpartitions 2-53

Index-23

Index

red LEOs 1-4

redirecting I/O 2-12

reductions 6-9

reentrant C library 6-2, 6-14

_REENTRANT preprocessor symbol 6-14

reentrant software 6-2

related documents vii

relative partition pathname 2-34

relcube command 6-6

relcubeO system call 6-11

releasing control of the processor 4-64

releasing I/O IDs 5-30

releasing message IDs 3-12

relstrucO system call 6-13

remote host commands 6-8

removing partitions 2-52,4-42

renameO system call 5-34

repeated use of system calls 8-2

"request overlaps with nodes in use" error 2-11 ,
2-16,2-39

request size 8-23, 8-25

restrictvolO system call 4-66, A-18, A-45

rewinding a tape 5-51

rf77 command 6-8

ring topology 7-6

rid command 6-8

rlogin command 1-6

rm command 5-37

rmdirO system call 5-34

Index-24

Paragon™ System User's Guide

rmpart command 2-52, A-2
-f switch 2-53
-r switch 2-53

rollin and rollout 2-2, 4-64

rollin quantum 2-39, 2-42
of a partition 2-51 , 2-68

root account 2-31,2-38,2-69,2-70

root partition 2-32, 2-35
shape of 2-32

rounding mode 4-61

RPM global clock 4-64

rsh command 1-7

running a program on a subset of the nodes 2-19

running applications 2-11
consisting of multiple programs 2-21
in a particular partition 2-23
removing partitions containing 2-53

running SMP programs 2-12

s
safe operating environment 6-12

sat command A-3

scattered read and write 5-27

scheduling characteristics of a partition 2-39, 2-51

scheduling mechanisms 1-1

"scheduling parameters conflict with allocator
configuration" error 2-43

scratch files 5-13

SCSI interface 1-3, 5-2

-sct switch 8-18

sdotO 6LAS function 7-13

search path 2-6

search path for libraries 2-10

Paragon ™ System User's Guide

seeking on a file 5-32

send_avail value 8-17

send_count parameter 8-17

send_threshold parameter 8-17

sending messages 3-8

sending to multiple nodes 3-9

separating the user interface from the computation
7-3

sequential files 5-28

serial codes, porting 7-5

serializing calls 8-9

service nodes 1-2

service partition 2-2,2-11,2-29,2-33

setiomodeO system call 5-14, A-18, A-46
synchronization 5-54
with pthreads 6-13

setiphostO system call B-17

set part alias 2-15

setpgrpO system call B-17

setpidO system call B-11

setptypeO system call 3-4, A-4, A-28
in controlling process 4-30

setsyslogO system call B-11

setting your default partition 2-14

sfactor 5-7

sh command 2-30
with pthreads 6-48

shadow buffers 8-11

shape of an application 4-22

shape of the root partition 2-32

shell 2-33

shell scripts 2-30

shepherd process 2-30

showfs command 5-5, 8-26, A-3

showing partition characteristics 2-54

Index

showpart command 2-35, 2-37, 2-54, 2-62, A-2
-f switch 2-55
-I switch 2-56, 2-63
-nt switch 2-57
-p switch 2-57, 2-64
-w switch 2-59

showvol command B-7

Signal Processing Library (libsignal.a) 8-6

signalO system call 4-59

Signals, with pthreads 6-13, 6-44, 6-48

sigwaitO system call 6-13, 6-44, A-27

single program multiple data (SPMD) programming
model 1-6, 7-2

single system image 1-5, 7-2

single-node performance 8-2

64-bit integers 5-39

size
of a file 5-8, 5-35
of a message 3-5
of a packet 8-16
of a partition 2-46
of an application 2-15

rectangular 2-16

size of a problem 8-5

sizeof operator 3-6

sleep system call, with pthreads 6-17

SMP programming
libraries 6-2
two approaches 6-1

SMP programs 2-12

software failures 2-37

space sharing 2-40,2-51,2-69

Index-25

Index

special partitions 2-31

specifying application priority 2-18

specifying application size 2-15

specifying nodes allocated to a partition 2-46

specifying process type 2-18

speed of calculation 8-2

speedup of a parallel program 7-2

SRM 8-1

stack 8-15

stack size of pthreads 6-22

standard include directory 2-9

standard input and output, redirecting 2-12

standard scheduling 2-40, 2-51

star command 8-7

startcube command 8-6

start-up routine 2-5

statO system call 5-34, 5-36, 8-9

statfsO system call 5-34, 5-43, 8-25

static memory allocation 8-8

statpfs structure 5-41

statpfsO system call 5-41, 8-26, A-23

status of a tape device 5-52

status="new" parameter 5-13

status="scratch" parameter 5-13

-sth switch 8-18

sticky flags 4-62

stoeO system call 5-39, 5-40, A-22, A-50

stream command 8-7

stripe attributes 5-46

stripe directories 5-3, 5-46, 8-25

Index-26

Paragon™ System User's Guide

stripe example 8-26

stripe factor 5-7, 5-46, 8-25

stripe group 5-7

stripe unit 5-3, 5-46, 8-25

strip-mining loops 8-5

structu res, padding of 8-13

subpartitions 2-35, 2-40
creating 2-46
listing 2-60
listing the applications in a subpartition 2-67
removing 2-52
removing partitions containing 2-53

succO function 7-7

summaries of commands and system calls A-1

supercomputer
hardware 1-2
software 1-4
using commands on 2-2

suspend key 2-29

SVR3.28-9

Paragon ™ System User's Guide

switches
compiler 2-8
compiler optimization 8-3
-gth switch 8-18
-host switch 8-9
in nx_initveO 4-6
-mbf switch 8-16
-mea switch 8-17
-mex switch 8-19
-Mquad switch 8-4
msg_switches 8-18
-noc switch 8-17
-node switch 8-4
-nt switch 2-25
-nx switch 2-5, 2-13, 8-18,8-4
-on switch 2-19
order of switches 2-13
-p switch 8-4
-pkt switch 8-16
-plk switch 8-3, 8-15
-pn switch 2-23
-pri switch 2-18
-pt switch 2-18, 3-4
-sct switch 8-18
-sth switch 8-18
-sz switch 2-15, 3-3

symlinkO system call 5-34

symmetric multiprocessing programming 6-1

synchronization of pthreads 6-30

synchronizing calls 5-10, 5-14, 5-15

synchronizing operations 5-31,5-32
summary 5-54

synchronous and asynchronous calls 8-10

synchronous and asynchronous 1/0 calls 8-24

synchronous file 1/0 calls 5-27

synchronous message-passing calls 3-7, 3-8
with pthreads 6-46

sys/estat.h file 5-39

sysacct command 5-4

syslog command 8-6

system administrator 2-31,2-38,2-69,2-70

system buffers 3-14, 8-11

Index

Index-27

Index

system calls
asynchronous file I/O calls 5-29
asynchronous message-passing calls 3-10
backward compatibility 4-66, 8-9
closing files in parallel 5-31
controlling application execution 4-2
controlling open files 5-46
controlling tape devices 5-49
detecting end-of-file 5-31
error handling 4-55, 8-7

in parallel file I/O calls 5-28
extended arithmetic 5-39
floating-point control 4-60
flushing Fortran buffered I/O 5-33
global operations 3-27,7-6
I/O modes 5-14
I/O to parallel files 5-26
increasing the size of a file 5-35
information about messages 3-15
iPSe system compatibility 4-66, 8-9
manipulating extended files 5-38
message buffers 3-14, 8-11
message passing with Fortran commons 3-17
message-passing 3-1
miscellaneous 4-64
moving the file pOinter 5-31
names of message-passing calls 3-7
opening files in parallel 5-10
other system calls 4-1
parallel file I/O 5-9
parallel file I/O synchronization 5-54
partition management 4-32
reading and writing files in parallel 5-26
repeated 8-2
summary of e system calls A-4
summary of Fortran system calls A-28
synchronization 5-54
synchronous file I/O calls 5-27
synchronous message-passing calls 3-8
timing 4-64
treating messages as interrupts 3-18
underscore versions 4-55,8-7

with pthreads 6-51

system hardware 1-2

Index-28

Paragon™ System User's Guide

system message buffers 8-16

system software 1-4

System V UNIX 8-9

-sz switch 2-15, 3-3

T
tail command 5-37

tape devices, controlling 5-49

tapemode command 8-7

tar command 5-37

task decomposition 7-5

techniques for improving performance 8-1

techniques for parallel programming 7-2

tel net command 1-6

temporarily releasing control of the processor 4-64

terminal I/O 5-33

terminology 2-1

threads 1-1

thread-safe software
definition 6-2

tiling 2-40

timing execution 4-64

tips for compiling and linking 2-8

tools for program development 1-6

topics in this manual vi

topologies 7-6

Touchstone DELTA System 4-66

treating a message as an interrupt 3-18

tree search 7-5

triangle example 7-18

Paragon ™ System User's Guide

truncateO system call 5-36

type of a message 3-6, 3-15

type parameter 3-6

typesel masks 3-6

typesel parameter 3-6

u
UFS file systems 5-2

underscore versions of system calls 4-55, 8-7
with pth reads 6-51

understanding message-passing flow control 8-13

unformatted files 5-12, 5-28

unit stride 8-4

units (Fortran I/O) 5-9

UNIX System V 8-9

unlinkO system call 5-34

unlocked_ ... O system calls 6-17

unlocked_fseekO system call 5-36

unlocking pthreads 6-24

unnamed files 5-13

unusable nodes 2-37, 2-55, 4-53

uppercase .F extension 2-9

user interface of an application 7-3

user model 1-5
differences from iPSC system 8-5

using Paragon OSF/1 commands
on the Intel supercomputer 2-2
on workstations 2-2

using PIDs 4-20

using the default partition 2-13

/usr/ccs/lib directory 2-8

/usr/include directory 2-8

/usr/lib directory 2-8

/usr/paragonIXDEV directory 2-9

/usr/tmp directory 5-13

uti mesO system call 5-34

v
variables

CFS_MOUNT 5-13
ermo 4-55

with pthreads 6-50
IPSC_XDEV 8-4
MANPATH 2-7
NX_DFL T _PART 2-11 , 2-13
NX_DFL T _SIZE 2-11, 2-16, 2-23
PARAGON_XDEV 2-6, 2-9
PATH 2-6

vector library 8-6

vector multiplication 7-11

vector operations 3-27

vector size 8-5

vi command 5-37

virtual memory 1-5, 8-3, 8-15

virtual topology 7-6

visualization of performance 8-10

vm_stat command 8-3

w
waitO system call, with pthreads 6-17

waitaliO system call 8-11

waitcube command 8-6

waiting for application processes 4-19

waitoneO system call 8-12

Index

Index-29

Index

wildcards in partition path names 2-33

wiring memory 8-15

workstations
architecture of 2-6
using commands on 2-2

workstations, working at 1-6

write (w) permission on a partition 2-38

write statement 5-26

writeO system call 5-27
with pthreads 6-13

writevO system call 5-27

writing files in parallel 5-26

x
x (execute) permission on a partition 2-38

xprof and xgprof commands 8-2

y

yellow LEOs 1-4

z
zero-length messages 3-6

Index-3~

Paragon ™ System User's Guide

j

c
CJ)
co
'­CJ)

G)
c
a:
co

infel·

