Paragon ™
System

User’s Guide

April 1996
Order Number: 312489-005

Paragon’ System
User’s
Guide

Intel® Corporation

Copyright ©1996 by Intel Server Systems Product Development, Beaverton, Oregon. All rights reserved. No part of this work may be reproduced
or copied in any form or by any means...graphic, electronic, or mechanical including photocopying, taping, or information storage and retrieval
systems...without the express written consent of Intel Corporation. The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation
makes no commitment to update or to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to restrictions
stated in Intel’s software license agreement. Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subpara-
graphs (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule-
vard, Santa Clara, CA 95052-8119. For all Federal use or contracts other than DoD, Restricted Rights under FAR 52.227-14, ALT. I shall apply.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

286 386 Intel iPSC
287 1387 Intel386 Paragon
i 486 Intel387

1487 Intel486

1860 Intel487

Other brands and names are the property of their respective owners.

WARNING

Some of the circuitry inside this system operates at hazardous energy and
electric shock voltage levels. To avoid the risk of personal injury due to
contact with an energy hazard, or risk of electric shock, do not enter any
portion of this system uniess it is intended to be accessible without the use
of a tool. The areas that are considered accessible are the outer enclosure
and the area just inside the front door when all of the front panels are in-
stalled, and the front of the diagnostic station. There are no user service-
able areas inside the system. Refer any need for such access only to tech-
nical personnel that have been qualified by Intel Corporation.

CAUTION

This equipment has been tested and found to comply with the limits for a
Class A digital device, pursuant to Part 15 of the FCC Rules. These limits
are designed to provide reasonable protection against harmful interfer-
ence when the equipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio frequency energy and,
if not installed and used in accordance with the instruction manual, may
cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own
expense.

LIMITED RIGHTS

The information contained in this document is copyrighted by and shall re-
main the property of Intel Corporation. Use, duplication or disclosure by
the U.S. Government is subject to Limited Rights as set forth in subpara-
graphs (a)(15) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule-
vard, Santa Clara, CA 95052. For all Federal use or contracts other than
DoD Limited Rights under FAR 52.2272-14, ALT. lll shall apply. Unpub-
lished—rights reserved under the copyright laws of the United States.

Preface

This manual tells how to use the operating system on a Paragon supercomputer.

This manual assumes that you are an application programmer proficient in the C or Fortran language
and the UNIX operating system. The manual provides you with enough detail to begin using your
system.

NOTE

In this manual, "operating system" refers to the operating system
that runs on the nodes of the Paragon(TM) supercomputer.

NOTE

Programming examples in this manual are intended to
demonstrate how to use the system calls provided by the
operating system, but are not necessarily examples of good
programming practice.

For example, in some cases, the return values of functions are not checked for error conditions. This
is not recommended, but the error checks have been omitted in order to make the example shorter
and easier to read.

Preface

Organization

vi

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Appendix A

Appendix B

Paragon™ System User's Guide

Provides an overview of the operating system software and Paragon
supercomputer hardware.

Describes the operating system commands that you can enter at the shell
prompt and the operating system cross-development commands that run on
supported workstations.

Describes the message-passing system calls available to programs in
operating system.

Describes the other general-purpose system calls available in operating
system.

Describes the parallel I/O calls you can use for parallel access to the Paragon
supercomputer’s file systems.

Describes SMP programming model and the pthreads package. The pthreads
package lets you create and control multiple threads (also called “lightweight
processes”) within your programs.

Tells how to prepare an application for the operating system operating
system. The steps described are applicable to applications that are written for
a parallel computer and applications that are ported from a sequential
computer. This chapter discusses three examples: an integration, a
matrix*vector multiplication, and the N-Queens problem.

Presents some techniques you can use to improve the performance of your
parallel applications.

Summarizes the commands and system calls of operating system. The
complete syntax of each command and call is provided, along with a brief
description of each.

Describes the level of support offered by operating system for the commands
and system calls of the iPSC® system.

Paragon" System User's Guide Preface

'Notational Conventions

This manual uses the following notational conventions:

Bold Identifies command names and switches, system call names, reserved words,
and other items that must be used exactly as shown.

Italic Identifies variables, filenames, directories, partitions, user names, and writer
annotations in examples. Italic type style is also occasionally used to
emphasize a word or phrase.

Plain-Monospace
Identifies computer output (prompts and messages), examples, and values of

variables.

Bold-Italic-Monospace
Identifies user input (what you enter in response to some prompt).

Bold-Monospace
Identifies the names of keyboard keys (which are also enclosed in angle
brackets). A dash indicates that the key preceding the dash is to be held down
while the key following the dash is pressed. For example:
<Break> <8> <Ctrl-Alt-Del>
[] (Brackets) Surround optional items.
(Ellipsis dots) Indicate that the preceding item may be repeated.

| (Bar) Separates two or more items of which you may select only one.

{ 3 (Braces) Surround two or more items of which you must select one.

Applicable Documents

For more information, refer to the following manuals. See the ParagonTM System Technical
Documentation Guide for information on the complete Paragon document set and ordering
information.

vii

Preface - Paragon™ System User's Guide

™
Paragon =~ Manuals
. ParagcmTM System Commands Reference Manual
U ParagonTM System Network Queueing System Manual
J ParagonTM System C Compiler User’s Guide
. ParagonTM System Fortran Compiler User’s Guide
. ParagonTM System C Calls Reference Manual
. ParagonTM System Fortran Calls Reference Manual
. ParagonTM System Application Tools User’s Guide
. ParagonTM System Interactive Parallel Debugger Reference Manual

. ParagonTM System Administrator’s Guide

Other Manuals
* OSF/I User’s Guide
e OSF/I Programmer’s Reference
e OSF/I Command Reference
* Effective Fortran 77 - Michael Metcalf
e C: A Reference Manual - Harbison and Steele
e The C Programming Language - Kernighan and Ritchie
* CLASSPACK Basic Math Library User’s Guide - Kuck & Associates

* CLASSPACK Basic Math Library/C User’s Guide - Kuck & Associates

Comments and Assistance

Intel Scalable Systems Division is eager to hear of your experiences with our products. Please call
us if you need assistance, have questions, or otherwise want to comment on your Paragon system.

viii

Paragon™ System User's Guide Preface

U.S.A./Canada Intel Corporation
Phone: 800-421-2823
Internet: support@ssd.intel.com

United Kingdom Intel Corporation (UK) Ltd.

France Intel Corporation Scalable Systems Division

1 Rue Edison-BP303 Pipers Way
78054 St. Quentin-en-Yvelines Cedex Swindon SN3 IRJ
France England
(44) 793 491056
(44) 793 431062
(44) 793 480874
(44) 793 495108
Intel Japan K.K. Germany Intel Semiconductor GmbH
Scalable Systems Division Dornacher Strasse 1
5-6 Tokodai, Tsukuba City 85622 Feldkirchen bei Muenchen
Ibaraki-Ken 300-26 Germany
Japan 0130 813741 (toll free)

0298-47-8904

World Headquarters
Intel Corporation
Scalable Systems Division
15201 N.W. Greenbrier Parkway
Beaverton, Oregon 97006
U.S.A.
(503) 677-7600 (Monday through Friday, 8 AM to 5 PM Pacific Time)
Fax: (503) 677-9147

If you have comments about our manuals, please fill out and mail the enclosed Comment Card. You
can also send your comments electronically to the following address:

techpubs @ssd.intel.com
(Internet)

Preface Paragon™ System User's Guide

Table of Contents

Chapter 1
Introduction
INErOAUCTION ...t e ettt n e 1-1
System Hardware ... ettt e e 1-2
NOAES .ottt e e s ee e e e e e e rer e e e e bt e s e an R R et e e s seaenben e rreees 1-2
Node INterconNNECt NEIWOIKciiii i e e e s s e e e et e e e e e s e seeees s e e sennnnenes 1-2
70 B [y 1 (=T o £= Tt TP PRSI 1-3
Front Panel LEDs (Paragon“'I XP/S System ONly) ...cccceviiiiiiriiiiiie e 1-3
SYSIEM SOTIWAIE ...ttt s e s 1-4
OPErating SYSIEBM ..o e et e e st s eae e e nre e e snee s 1-5
L8 LT g Yoo 1= RSP PPPRP PR 1-5
Programming MOGEIoviiiiiiiiiiiiiiir i ree s s e e e e e se e s s s s s v br e e reeea s seesenneannen 1-6
Cross-Development FAaCIlityccccciiiiiiniicciiiees e s 1-6

Xi

Table of Contents Paragon™ System User's Guide

Chapter 2
Using System Commands

INEFOAUCHION ... bbbt 2-1
BT .01 o] T 1Y 2-1
Using Commands on the Paragon’" SUPEICOMPULETc..c.ereeereeressmessssessesssssesssssesssssesessesssenes 2-2
Using Commands on WOTKSIALIONSccovciiiciieiiiin i s 2-2
A QUICK EXAMPIE ..o 2-3

INfOrmMation YOU NEEAoeeuiiieiii et e 2-3
Compiling, Linking, and Executing an Application ... 2-3

Compiling and Linking Applications ... 2-5
Configuring Your Environment for Cross-Developmentccocociiinicincniinee e, 2-6
Tips for Compiling and LINKINGcccoceiiiiiniii i i s e 2-8

USIiNG OthEr SWItCHESccuiveiiiiiiiciin s re e nes e s sanae e e e s 2-8
oY1 (V1o 1aTo la) o s o) g i el s K SRRSO 2-8
Specifying Include File and Library Pathnamescccocoiiiiiiiccccrec e e 2-8
Preprocessing a FOrtran Programccccoiceiriiis i neeeee e srrestre s s er s s sbne e 2-9
Order of SWICNEScooiiiieee e 2-10

Running APPlICatioNns ... e 2-11
1L 2 R 1T 1= o ([o N 2-12
(2 {0 0 T To STV | ol d foTo = Lo o 3 T 2-12
Controlling the Application’s Execution Characteristicsc..cocceiviviiiiicnc e, 2-12

Using the Default Partitionccccceviiiiiiinee e e 2-13
Setting Your Default Partitionccoovieerciiie s 2-14
Determining the Current Default Partitioncccooiiiiinnci e 2-15

Specifying ApplICAtION SIZEeviiiceiiire e 2-15
Specifying a Rectangle of NOdesccccooeiiiiiiii 2-16
Specifying a Particular Rectangle of NOGES ... 2-16
Using the Default Sizecooiiiiieiiiiciiicr e sner e 2-16
Relaxing Application SIZecovveiiiiiiiimiiii i 2-17

Specifying AppliCation PrOMYccoviimmiiiie e e e 2-18

xii

Paragon™ System User's Guide Table of Contents

SPECITYING PrOCESS TYPE ..eviiceiiiiiiieiiiieciies i ereesie e e sbeessste s e e ssee s reeseneessres s e sressasessssnnessaseasassnns 2-18
Running a Program on a Subset of the NOdescccoeemiiiiennci e, 2-19
Running Applications Consisting of Multiple Programs ..., 2-21
Running an Application in a Particular Partitionccccooceeieeenin e, 2-23
Running an Application on a Particular Node Typec.cceevniiniiiniiiiiciiii e, 2-23
NOdE AHMDULESeeeieeeeee e e 2-24
Specifying Node ARIDULEScccooiiiriieiin e 2-25
QuOtING NOE ALTIDULEScecvieiiiiieieecieiee et e s 2-26

Using Node Attributes with No Application Sizeccccviiiiiiniin e 2-26

Using Node Attributes with an Application Sizeccccccviiiiiiii e 2-27

Using Node Attributes with a Relaxed Application Sizecccccoviiiiiinice 2-28
Managing Running Applications ... s 2-29
Managing Partitions ... e 2-30
ST T=Y ot F- L =T 111 o T 2-31
The ROOt Partitioncooviiiiieiiee e s 2-32
The Service Partitioncoooo i 2-33
The Compute Partitioncccoiiiiiiiciiei et e e e e e e e s eree e e s s s nre e e s sennne 2-33
Partition PathNamescooiiriiiiiiiie e e e e s 2-33
Partition CharacteriStiCsccccvviiiiieier e 2-34
Parent Partitionc.coooiiiiiiiee i e e e 2-35
Partition NAMEccoo e e 2-35
Nodes Allocated 10 the Partition ... 2-35
Node NUMDers Within @ PArtHONcocuueeeremeeseessesessessesssssssesssessssssessesssesssesenens 2-36
UNUS@DIE NOGESooiiiieeeee e e s 2-37

Owner, Group, and Protection MOESc..ccceereeririiieiniiee e e 2-38
Scheduling CharacteriStiCSciciviiiiiiiiiic e e e 2-39
Standard Schedulingocociiiiiiii 2-40

SPACE SNAING ..eeeiiieii i e 2-40

(= TaTo ST a =T (01110 Vo [2-42
Summary of SCheduling TYPEScoiviiiecriiiee e e e 2-44

A Scheduling EXample ...t 2-45

xiii

Table of Contents : Paragon™ System User's Guide

L E= L] g el =T (1 (1] o PSR U ORI 2-46
Specifying the Nodes Allocated to the Partitioncccccoemreinne s JRTTR 2-46
e 1o L= PSPPI 2-47
REIXING PAMIHON SIZ& ..vvevveeverrerrssssessseeereeeesssessssessssssseeeessessesssssssssesesessseseseseeeessse 00 2-49
Specifying Protection MOGESccceiiiiiiii e e 2-50
Specifying Scheduling Characteristicscccovvviiiriii i 2-51
Removing Partitionscccov it e 2-52
Removing Partitions Containing Running Applicationscccccceiniiiiieen s e 2-53
Removing Partitions Containing Subpartitionscccccovieiiieriinn i 2-53
Showing Partition CharacteristiCs ..o e e 2-54
ShOWING FTree NOUESooiiiiiiiiiiicciiiee ettt e e e s e s et e e srnte e e s s s rs e e e e e e s e b e e s e e esabeessesnnres 2-55
Showing Node AHFDUIESceoiiiii e e e e e s 2-56
Showing Node Attributes with Root Node NUMDErSccccoiiiiiiiiciici e 2-57
Showing Nodes Having Certain ARHDULESccoiiiiiiii e 2-57
Showing Partitions with Cabinet Informationoooiiiiiiiii e 2-59
SUMMArY Of SYMDOISoveeiiieiiiiie e e s 2-60
Listing SUDPArHHIONScooeeiiiee e et e e 2-60
Recursively Listing Subpartitionsoooiii e 2-62
Listing Node Attributes of SUbPartitionNSc.cccooviiniii i e e 2-63
Listing Node Attributes with Root Node NUMDETScccevviiiiriiinniiir e 2-64
Listing the Applications in @ Partitioncccocuiiiiiiiiiiircir e 2-64
Applications in SUDPArtItIONSccoiiiiiiiieriin e e 2-66
Recursively Listing Applications in SUbpartitionsccccoocoeriiieniiiciee e 2-67
Listing Applications With Core DUMPScccoviiiiniieeniriee e s 2-67
Changing Partition CharaCteristiCscccceriiiiieiiiiir e e 2-68

Chapter 3
Using Message-Passing System Calls

{31 4o Yo [FTe (T 1 TRNUR TSRS 3-1

Xiv

Paragon System User's Guide Table of Contents

Process CharacteriStiCs ... 3-3
I [oTo LI V11 g o] o= = O OP TR 3-3
PrOCESS TYPES ..eiiieiiiiiiieiiiiieseeie e s e s sttt e s e tr e e s s s br e ee e s s sbe e e e e se s beeaaeaesssa s nrneeanansneesanneneean sanrnnaeesean 3-4

Message CharacteriStiCSs ... 3-5
(=== To Tl =T o To o TSP 3-5
LT T TR N o = PP 3-6
(=TS o L= | D TSR 3-6

MESSAQGE OFEN ...t 3-7

Names of Send and Receive Calls ... 37

Synchronous Send and RECEIVE ... et 3-8
Synchronous Send to Multiple NOAESocciiiiiiiiiiii e 3-9

Asynchronous Send and ReCeiVe ... s 3-10
Releasing MESSAQE IDSccoiciiiiiiieiiiiir e srrrie s e st re s s s s sre e e e e e e e e e s s e areesaarseesareeeseesennrnaaees 3-12
Merging MeSSage IDS ...ttt e 3-13

Probing for Pending MeSSages ...t 3-14

Getting Information About Pending or Received Messagesccccocovvernenene 3-15

Message Passing with Fortran COmmONS ... 3-17

Treating a Message as an Interrupt ... e 3-18
Passing Information to the Handlercccciiicii 3-20
Preventing INterrupts ..o 3-22

Extended Receive and Probe ...t 3-24

Global OPerations ...t 3-27

Table of Contents Paragon™ System User's Guide

Chapter 4

Managing Applications and Partitions with System
Calls

INErOAUCTION ..ot bbbt 4-1
Managing APPLICALIONS ..o 4-2
Controlling Application Execution with System Callsccccvviiinii 4-3
Creating an Application with NX_iNiVe()ccoocevcimmirieiieee e 4-4
Creating a Rectangular Application with nx_initve_rect()ccccoivviiiininiiiniinie i 4-7
Controlling Application Attributes with nx_initve_attr()ccoocviiiiiinini e 4-8
Specifying the Nodes Allocated to the Applicationccccoviiiiiiiiei e 4-12

EXAMPIES ... 4-13

Setting an Application’s Priority With NX_pri()ccoccerriemiee i 4-15
Copying a Process onto the Nodes with NX_NfOrk()cc.occccmmivmininiiirn e 4-15
Loading a Program onto the Nodes with NX_108d()c...corevrririennniimre e e 4-17
Loading a Program onto the Nodes with nx_loadve()cccccoiiiiiiniiiiiiecc e, 4-18
Waiting for Application Processes with nx_waitall()cccccoeiviiniiiiiiinin e 4-19

L8 LT I 15 4-20
Getting Information About ApPlICAtIONScccce it 4-21
Finding an Application’s Shape with nx_app_rect()cccccomirniiiiieieiin e 4-22

Listing an Application’s Nodes with nx_app_nodes()cccevemiiriiinini e 4-23

Listing the Applications in a Partition with nx_psparn()ccccoviieniiiininc e, 4-24

The ControlliNg PrOCESScoiiiiiiiiiiiiiisciiiee st ee s st rr e s s sre e s r e s e e e e s ssbsar s e s s sere s pasaesansneesssan 4-26
PrOCESS GIOUPDS ..icviiiiiiiirrituiriestietrereiesassssssssaeesseeessasssas s sasseessass s s s s s babare s reesaneesesanbarens 4-27
Process Groups in the Operating SyStemccccciriiiivii s 4-28

Killing Application ProCeSSEScccevviveiiiiriiiiii et 4-28

An Example Controlling ProCESScccciiiiiriiiiii i e s 4-28
Message Passing Between Controlling Process and Application ProCESSES ... 4-30
Managing Partitions ... s 4-32
LY =1 Lo T o= T 11T o T PP, 4-33
3= g] o [PP 4-35

Paragon™ System User's Guide Table of Contents

Setting Partition Attributes with nx_mkpart_attr()cccooeeriiimiiinii e 4-36
Specifying the Nodes Allocated to the Partition ... 4-38

EXAMPIES ..ottt e et e st er e e e s re e bae e e nes 4-40

RemOVING PArtItIONSooiiiiiiii et s rte s et s snre e e s re e e sae e e et e e s arane e 4-42
Getting Information About Partitionscccouiiiiiiinni et s s 4-43
Determining a Partition’s Attributes with nx_part_attr()cccccooiiiiiciiiien e, 4-43
Determining a Partition’s Nodes with nx_part_nodes()cccccceciiiiiciiien e e, 4-45
Determining Node Attributes with nx_node_attr()ccccooeveeii i, 4-47
Changing Partition CharacteriStiCsc.oceiriiieriiiie et 4-49
Listing Unusable NOdEeS ...t 4-53
HandliNG EFTOIS ...ttt st 4-55
UNAEISCOIE CallSeeiniiiieiiicti ettt e e e e e e s s e e bn e e b e e e see e s emneneenneneeneas 4-55
Core Dumps ferr e et eeeerereetaasessessiseesaestesetan.teetietathttetranttrrnthraaeeerrannarares 4-56
Getting Information About Core FlESccccciviiiiieiein e 4-57

USING IPD t0 EXAMINE COrEc..eiiiiiiiiiieee ettt e s e see e e san e naas 4-58
Overriding the Defaults for Core DUMPScoociiiiiiiioiiiiicciiee et ee e e e e e 4-59
Controlling Floating-Point Behavior ... 4-60
Detecting NOt-a-NUMDELoeiiiee e e e e s s are e s e nanes 4-60
Controlling FIoatihg-Point BEhaVIOL ... e 4-61
ROUNAING MOGE ...ttt e st e e e e e senre e e e e e ste e e e e enneas 4-61
Exception Mask and SHCKY FIagscccoeiiiiiir it 4-62

Fortran EXception Mask VAIUEScoooviciiiiiiieiii ittt e s e see e s 4-63
Miscellaneous Calls ...t 4-64
Temporarily Releasing Control of the ProCeSSOrccooiiiiiiiiinie it 4-64
TiMING EXECUTIONeeeeiieiir e et ne e s s n e e en e e s sre e s s nnnneens 4-64
iPSC® and Touchstone DELTA Compatibility CallSccooooooovevoveecversseeerereeeeeecoreessens 4-66

Xvii

Table of Contents Paragon™ System User's Guide

Chapter 5

Using Parallel File I/O
INErOAUCTION ...t bbb 5-1
Disks and File SYSIEMSooiiiiiiii e e 5-2
PFS File Systems and PFS FilESccoi ittt s e s 5-3
PFS Filenames and PathNames ..ot 5-4
PFS LIMItATIONS ...coeeieiiicieee et bbb 5-4
USIiNG PFS COMMANGSccoouiiicc ettt 5-5
Displaying File System AtHDULESocoooiiiii e 5-5
Displaying File ARHDUIEScoceiiiiiiiiri 5-7
Increasing the Size Of @ FIlEocieiiiiiiie e 5-8
Using Parallel /O Calls ... 5-9
Opening Files in Parallel ... 5-10
LU= TaTo [o T o T=T o N 1o X O TP 5-10
UsiNg gopen() iN FOMIANocoiiciii it et rean e s mr e s 5-11
Opening Files with Standard Operationscccccceccrumieiiiieirice e e 5-11
Special Considerations for FOMIaNcccoiviiiiii it ie s e e e e e s sre e ssessnnee 5-12
Formatted Versus Unformatted I/Occcooviiriiiiiiiicirere e 5-12
NEW FIlES it r et e e e e e s b e e e s e e e e e e e e e s e resseaneeee s e e eannnnee 5-13
UNNEMEA FlES ...ttt s e e r e 5-13
USING /O MOAES ..ottt et ettt ss b et 5-14
Default I/O MOooiiiiiiiiiiii e e 5-15
IV_UNIDX ettt et b e e e b e RS he e R SRR e e e eh et et s e mn e se e e eeebeere e e s reenesanan 5-16
1Y 1 PSR PEPR 5-16
M SYNC et e e e st e et ra e see e ere e e e sae e she et e e be Rt Rt R et sEe e e Rt e e e sanaRe e e e be e rerannean 5-16
IM_RBECORD ...ttt ettt et e st r et et e e e e s be s e e b e sReseeeae e e s nbesse st eatesaeeteesanenbean 5-17
IM_GILOBAL ...ttt ettt sttt st e et e ese s she et esbe e sheeae s st e st eRe s seemeeree e sasea e e ereareenteeeenbaeannean 5-18
IM_ASYNC ettt et st e et a e see e ehe e s Es e sR e e eheeae e et e Rt aRe e SEe At e be e e Rt e e e eat bt et eteeebeeenrean 5-19
AN /O MOE EXAMPIE ...ceeeiiiiieiiiriieeee ittt e e e e se s tr e e s e s sasr e s s sta e s s b b sbbe e s ssteeeransnenenenansan 5-20
FORran EXAmMPIEueiiiieii ettt s e e ae e e e ae e eaen 5-20

xviii

Paragon™ System User's Guide Table of Contents

O3 ¢ 121 o] L= TP PPRTPP 5-21
Compiling and Running the EXample ..ot e 5-22
IM_UNDX OUIPUL .ttt e s s r e e s s e en e s s be e e e e e st e eeeeassanseessanneeresnnnbeeassenan 5-23
M_LOG OUIPULiiiii ittt st st e e e s s e s e aeessasbe e e e sesaseeeesanassenesannnnenessnnenensnansnn 5-24

Y) 41 (O @ T o 11 TSN 5-24
M_RECORD OULPUL ..o eeeeeeseseseessasses s seseeeseessesrsses s essessesssssesessessesssesssssessensssassans 5-25
M_GLOBAL OUIPUL et eeseeeeeseeseess e se s sesssesses st essesssssssessssssesessssesssnsanesesenssssssanas 5-25

S N[O 10 o1 QPO 5-26
Reading and Writing Files in Parallel ... 5-26
SYNCHIONOUS File /O ...t et e e e s bbb s sbn e s emanes 5-27
ASYNChIONOUS File [/Ooiieiiieee et e e s s e e s e ssnre s s snnnneeeees 5-29
Closing Files in Parallel ... e 5-31
Detecting End-of-File and Moving the File Pointer ... 5-31
Flushing Fortran Buffered /O ... 5-33
Using “###” Filenames ... 5-34
Increasing the Size of @ File ... e 5-35
Using EXtended Files ... 5-36
OSF/1 Calls that Do Not Support Extended Filesc..ccociiimiiiiiiiiie e 5-36
OSF/1 Commands that Do Not Support Extended Filescccccecrerinircrien e 5-37
Manipulating EXtENded Filesccoeciiiiiiiiies e s s s 5-38
Performing Extended ArithmetiCccoeviiii e 5-39
Getting Information About PFS File Systems ..., 5-41
Getting Information About All Mounted PFS File Systemscccciciininin e 5-41
Getting PFS Information About a Single File System ... 5-43
Controlling OPen Files ... 5-46
Setting Stripe Attributes for OPen FIleScoooiiiiiiiiiiicre e 5-47
Getting Stripe Attributes for Open FIlescooo i 5-48
Controlling Tape DEVICES ...t 5-49
Naming Tape DEBVICEScoiuiriiiiiirereiirrie et e e e s er s e r b e s 5-49

Xix

Table of Contents ‘ Paragon™ System User's Guide

Performing Operations on Tape DeVICESccceiveiiiiriiiici i 5-50
Getting Status of Tape DEVICEScccceer it e e 5-52
Writing the 3480 DiISPIAY ...ccccviiriciiieieiiiie ettt ee e e e s e et r e sea e s s s sbr e nr e e e s st e s e e s b s 5-53
Getting the Tape POSIHIONoociiiiiiiiicciii et et ss s e s e s rne s snn e e saneeens 5-53
Synchronization SUMMANY ...t 5-54

Chapter 6
SMP Programming

INErOAUCHION ... 6-1
Libraries for SMP Programmingccccoeoieuiireriiriireeeeesiieee s sreessessree s s srte s s sssneess s e s s sebeese s ssnsssesnns 6-2
Setting _REENTRANT ...ttt st s sre e s s r e st e s san e bt s s b e r e s n e b e s e nesn et s 6-3

Relying on the Compiler vs. Custom Pthreads ... 6-3

Relying on the COMPIIET ...t 6-4
Limitations when Relying on the COmMPIIErc.ooiiiiiiiiioe s 6-4
Setting DFLT_INCPUS ... oottt sttt sttt e e e et r e s ae e e meesre e e eme e sne e e e sreensnenee e 6-5
(70T 011 1= RS (o o T USRS 6-5
(070 0qT o1 L= gl B (=Yor (V- PSRRI 6-6

FOrtran DIrECHVESceeeiieiiieii e e a e s e 6-7

(O3 o =T 3o F- 1= PP PSP UPPRPRN 6-8
Getting INFOrMALIONooeeiiie e e e s s r e s e e e e e s be e sree e e s s neenane 6-9
Additional Information about Loop Parallelizationcccccviiiminiiiiiii e, 6-9
LR 1= [0 o7 (1o - 6-9

I E= a1 [T T (o T U o L= PP 6-10
(07 11 E N1 11 T o o] o X3 TP 6-10
Basic Math Library Callsccoooviiiiiiiiiiiii e 6-10
Default Loop ThresSholdScooveiiiiiete et e e e 6-10
Focus on Compute NOAE PrOCESSESeieeiiiiiiiiiiiiiiriie et e e srir e e e e e e e e 6-10
Writing Custom Pthread Applications ... 6-11

Paragon™ System User's Guide Table of Contents

Limitations when Writing Custom Pthread Applicationscccciiiiiiiiiiccin e, 6-11
Recommended Safe Operating ENVIroNmMEeNtccoooiiiiiiiiiiniiir e 6-12
Compiling and Linking a Pthread AppliCationooceiriiiiiiiicniiiie e 6-14
Using Reentrant C Library CallS ...ttt e 6-14
Using Pthreads Library Callscoooceeiiiireiciiie et 6-18
Pthreads Library Data Types and SymboIsc.cccvviiiiiiiiinii e 6-18
LTI =T T I 4= e TP 6-19
Managing Pthread EXECULIONoo it e 6-20
Managing Pthread ARIDULEScoociiriir i 6-22
MaNAGING MULIEXESveiiiiiiiie ittt st e st e e s sr e s s ne e s s e e e s ene s saneessbeennsaeannnneeas 6-24
Managing MUteX ARFDULESc.covcviiiiiiiiir et e e s r e e 6-26

An Example PIhreads Programccceccieeeeiienieniesairessnesssseessssssssessesssssssssssssssessssssssessnnessanes 6-27
Using Condition Variables to Synchronize Pthreadscccoviierir e 6-30
Managing Condition ALHDUIEScoeviiiiiiiiii e e e 6-33
Examples of Condition Variablescoevriiiiie e 6-33
Canceling PHhreadscooeiiiiiee ettt b e s s et 6-38
Cancelability STAtEScoocvreir i s 6-38
Cancellation EXAMPIEScc.veiiiiiiiiiiiiiiieieeerire e e s e s ee e s e s e e st 6-40
Pthreads Cleanup ROULINESccciiiiieiiiiiiien st irieeseesee e s ae e e e s s ee s s smre s ere s s eneeesanssssmnesnnens 6-41
Managing Pthread KEYSccciiiriiiiiies et s ee e s s e e e sre s ns s n e 6-42
Executing @ ROULINE ONCEcocoiiiiie et s e e s s st e s s e e e e sbr e e e e eneeneas 6-43
Managing SIGNAISccoeeriiiie e e 6-44
Interfacing with Non-Thread-Safe Codecccvriiiiiiiciniiii s 6-46
Message Passing and Pthreads Library Callscooiioiiiiiie e 6-46
File I/O and Pthreads Library CallSccccciriiiiiiiiiiies e s e s e se e 6-47
nx_nfork() and nx_initve...() and Pthreads Library Callscccccceeiiiiiciiin et 6-47
Signals and Pthreads Library Callsc..cccoviiiiniiiiii 6-48
1o F= T Y] o L= OO 6-48
Signals are a Per-Process RESOUICEccccovueirieriiiiiriiir et 6-48
Dealing With SIgNaISccciiiiiie e e 6-49
Handling EFTOIS ...ttt bbb 6-50
=Y o Lo T 7101 (K= o o OO 6-50

Table of Contents Paragon™ System User's Guide

(07111 aTe =) (1 { | P PP SPRPRPN 6-51
Use of Underscore Versions of Paragon System Callscccoviiiiiiininniniinneec, 6-51
Catch Signals Causing Core Dump by Defaultccceovviiiniiiiic e 6-51
AVOId COTE DUMPSoviiiiiiiiiiiiiiecccccie e e eeree e s et e s e e e e e s s e bt st e e re s e as e e e s e s natbreeeeesseaesasreaaenen 6-52
When One PIread Hangscccveieecieieiiiiniieeisesssiesessssee s s e e ssns e e s sane e s s seneessessmnenens 6-52
Chapter 7
Designing a Parallel Application
INErOAUCTION ...t 7-1
Programming Modeloo e 7-2
Parallel Programming TeChNiqUEeS ... 7-2
Separating the User Interface from the Computationc.cccccviiniiiiniii e, 7-3
Balancing the LOAAcceiiiiieiecir ettt s e s s e e s s e e e e s e e e e nenee s 7-3
Domain DECOMPOSIIONccueiiiiiiiiiinieiiirriieeie e et seesrererrrereraeesseseessesssasrreaeseereseesaaessssasnenessenaes 7-3
Control DECOMPOSILIONccciuieiiiieriiii e e 7-5
Making the Program Independent of the Number of NOEScocciiiiriiiiniinn e 7-5
Designing Your Communication Strategyccceeviriiiiiiciiiniii i 7-6
Using Global Operationsoiiicieoeii ettt ettt e e e e e e e e ss e e anee s s s e nnreenee 7-6
Using Alternate Node TOPOIOGIESccooouieiiiiriiiiiii e e e e 7-6
Example Application: Calculating Pi ... 7-7
Example Application: Matrix*Vector Multiplication ... 7-11
Example Application: The N-Queens Problem ... 7-13
Chapter 8

Improving Performance

INEFOAUGCTION ...t ettt e et e et e et e e e et eeeaeaeeeaseeeeeeeeaneeneeeaneeseeeaseeeeseenanenaneen 8-1

XXii

Paragon™ System User's Guide Table of Contents

Single Node PerformancCe ...ttt 8-2
USE Profiling TOOIScoiiiiiiiiii ittt e e et e e e e s e et e e e se e e e anseeeseeeeeesenseeeeansanseenann 8-2
Avoid Repeated Use of System Callsoccuuiiiiiiiciiiieccies et e e e e nae e e e eraee s 8-2
Avoid Virtual MemOory Pagingcccecceeiiriiiciies it sree s sie s seee e s ste s see e e e sree e s s s s sssee s eenesannnnessessns 8-3
Use Compiler OptiMiZatIONSc.oicueriiiiieiiieesr et s st e e s e e e sbbn e e e s sbaesasreesessensnes 8-3
INCrease ProbIEmM SiZE ...t e s s e s e re e 8-5
Access Contiguous MemOory LOCAHONSccccoiiiiiriiiriie ittt e e e see s s 8-5
USE CaChiNg WISEBIYuuiiiiiiciiiii e ettt e et e e e e stte e e e e s e e teesesseessanteaaaeeaaeeesansaeessesnneannsens 8-5
O @] o] (109 r4=To J N1] = 1= O S 8-6
Use Assembly Language SUDIOULINESccooiiiiiiiiiiiiis et e e e ee s 8-7
Avoid Error Checking (C Language ONlY)cccciiiiiieiiiiieesereseee e e ses s s eesesnesaessenesaesnnes 8-7

Multi-Node PerformancCe ...ttt sss s s 8-7
Use Dynamic Memory Allocation for Large Arrayscccoeee.n eereereeeeeaeererenrnnan e 8-8
AvOid SerializZiNng CallScooieiiiiiiiieee et e s et st nnes 8-9
(UL = T =T € =T o o USSR 8-10
Maintain Data LOCAIILYccceeriiiiiiiiiie ettt e s s e s e ne e s se e s ranennee 8-10
Overlap Computation and ComMMUNICALIONc.eeeeiieiiiereiriee e e e e et e e e e enees 8-10
Avoid Message BUFfEIINGcceei ittt st e e e e e e rnse e e e srnsneeaesnneas 8-11
Align Application BUTFEIS ..o s 8-12
Understand Message-Passing FIOW CONTrolccciiiiiiiimniiiis e 8-13

Overview of Message:Passing FIOW CONtrolccccviriiieiiieine e 8-14
2 oTor =T W o Tor (4] o o PO PSRPRNE 8-15
PacCKEtZAtioNooeeieieee ettt e e e e e nnn e 8-16
System Message BUFErScoooi ittt 8-16
Message-Passing Configuration SWItChesccccuiviiiiiiiieiciiie e 8-18
Summary of the Message-Passing Configuration Switchescccccecceviiiiiieiccceccceeccee 8-19
Default, Maximum, and Minimum ValUEscocceiirciririiecerre e csrseeee e 8-20
Dependencies and ROUNAINGccoooiiiiiiiiiinnicenie et e e s e s s nsesn e e neenes 8-21
RecomMmMENAALIONScccueiiiiii et r e s re e an e s eneean 8-21

VO PEHOIMANCEooooeeeeoeeeeeeeeoeeeeeeeeeesseesses s ssss s sss s s s sensss s essseaeesssn 8-23

USE PFS File SYSIEBIMSoiiiiiiiiie ittt e s et r s snnen e e e e sanasenseasaneenne 8-23

xxiii

Table of Contents Paragon™ System User's Guide

Use gopen() Instead Of OPEN() .vveerirrririiiiirrinir e e ssres st see s s se e s s ene s s ae s s snnes s snneassmraas 8-23
Use Parallel /O Callls ..o e e sra e e 8-24
Use ASyNChronous Callscooiiiiiiiiiicreiniin e s e 8-24
Use the Appropriate /O MOGE ..o 8-24
Align 1/O Buffers with Virtual MemOry Pagescccoiiiiiiiiiiniricniin s 8-25
Read or Write Whole File System BIOCKScc.coiieiiiiiii e e 8-25
Make Good Use Of File SPINGcccooirriiieiiin et 8-25

Appendix A

Summary of Commands

and System Calls

CommMAaNd SUMMAIYc.coiiiie ettt A-1
Compiling and Linking AppliCatioNSccoiiiiimiiiiii i A-1
(2 (] g T To Y o] o] 1 o=1 i o] o T- TSP A-2
[F= Vo= To g e I ag= T (][] o F= PR A-2
Parallel File System Commandsccoceriiiiiiiiniiiiiecr e e A-3
Miscellaneous COMMENASceoviiiiiiiiiiinier s s nn s A-3

C System Call SUMMATY ...ttt st sss s ses st esees A-4
Process CharaCteriStCSovicrriiiiiriie it bbb s se s a s A-4
Synchronous Send and RECEIVEccocviiiiiiiiiiiie e e e e A-5
Asynchronous Send and RECEIVEcccviveiiiiiiiiiie s A-6
Probing for PEnding MESSAJEScccerieirreiririrtie et re bt sre s ssesn e ses s s mn s s eesne s A-7
Getting Information About Pending or Received Messagescccccriiiei e A-7
Treating a Message as an INterruptcccovveeer i e A-8
Extended Receive and Probe ... e A-9
(100101 M @] 01T ¢ 1 i{o] o - JR OSSR PTRPTPPPR A-10
Controlling Application EXECULONccoceeiiiiiireiiircee e A-12
Getting Information About ApPlICAtIONSccccomiiiiiiiii A-13
Partition Managementcooriiiriiiiinciir e e e e e ne e A-14

XXiv

Paragon™ System User's Guide Table of Contents

Finding UnUuSable NOUEScooiiiiiiiiiiiiie et nn e s s e e s mn s e e e snee s A-15
L L= T g e 11T gTo T = (o] = PP A-16
Floating-Point CONIOlcoeiiiiiiiiite e s en e e A-16
MiISCEHIANEOUS CallScoiciiiiiiii it e e e st e e s ne e e e e s e re e s re e s s maeeeneis A-17
iPSC® and Touchstone DELTA Compatibilityccoovviiiieee e A-17
7@ 1V Lo T 1= TSRO RRRPRPR A-18
Reading and Writing Files in Parallel ..o e A-19
Detecting End-of-File and Moving the File POINter ... A-20
Increasing the Size Of @ Filecc.eiioiii e e A-20
Extended File ManipUIation ... srer e rr e e s e s aanne A-21
Performing Extended ArithmetiCcccovciii i e A-22
Getting Information About PFS File SYStEmMScociviiiiiiiiiiic et e A-23
Managing Pthread EXECULIONcovceeiiiiie ittt st sre s s sane e s sre s e e e sae e s aae e nnnas A-24
Managing Pthread AHDULIESeooiii e e A-24
ManNAGING MULBXEScoiiiiiiiiiiriie e e e s e e e s s s e annen e e e s seneeesean A-25
Using Condition Variables to Synchronize Pthreadscccoceeeieviiiiiicicee et A-26
Canceling PHNIEASooeieii it s s e e e s e sane s s rne e e e s eneenans A-26
Pthreads Cleanup ROULINEScoooviiiiiiiiiiiiie et e e e s ar e re e e e e s e e e e s easnnes A-27
Managing Pthread KEYSco it A-27
Miscellaneous Pthread Callsoccviiiiii it s A-27
Fortran System Call SUMMAIY ...t A-28
Process CharacteriStiCSccooiiiiiiiiiiieniii e ee s e e s b e e esnne s A-28
Synchronous Send and RECEIVEcoiiiiiiiiiiiiiiiie e srre e e s s strr e e e te e e s sn s naresenane A-29
Asynchronous Send and RECEIVEccueceiiiiiiiiiciiii e e A-30
Probing for Pending MESSAJEScccoviiiiiiiiiiiie e s A-31
Getting Information About Pending or Received MeSSagescccccveiiicreeiieceieieiscees e A-31
Treating @ Message as an INterruptoeo i e A-32
Extended Receive and Probe ... A-33
€1 o= @11 =1 (o] o T PSP A-35
Controlling Application EXECULIONcccooiiiiiiiiiiie et e e e s s se s erneeenanee A-38
Getting Information About ApplICALIONSccciiiiiiiire e e e e A-40
Partition Managementccceoiiiiicii e e n e s an e s ne e es A-40

Table of Contents Paragon™ System User's Guide

Finding UNUSabIe NOTESeeiiiieiiiieeccee it s e s e A-43
L F= T g | T T N o o] = P A-43
Floating-Point CONLIOLccooiiiiiiii et e s A-43
MISCEANEOUS CalISceiiieiiiiiiiicie et cs s s e s b e e e e s b e e e s s e s aneanaeesaesasanens A-44
iPSC® and Touchstone DELTA COMPALDIIILYeceerrerrrrisesessesiesssssssessesessssssssssessssssssssssssesens A-44
10 1V o T =Y PSPPI A-46
Reading and Writing Files in Parallelccooiiiiii e e A-46
Detecting End-of-File and Moving the File Pointerccccociciiiiniice e, A-48
Flushing Fortran BUffered 1/0cooueeiiiirioniere e ssrees e s sees s snr e s e s ne e e s s smrnenns A-48
Increasing the Size Of @ Fleccoiiiieeiiie e s e s A-49
Extended File ManipuUlationooiiieiiieiiiicirie s ree e se s sesrnser e rreeaesesass s s nnsn e mnsrersenas A-49
Performing Extended ArithmetiC ... A-50

Appendix B
iPSC® System Compatibility

T a1 (o Lo VT o (oY o TRUURTR OO B-1
General Compatibility ISSUES ... B-1
INBW FALUIESot ee et e e et e e et e e e et s et e et e ase e et e eaeeeeeeeeereeeneeeneesnesasrtesssnen B-2
COMPIIEES ...t b et s es ettt B-4
02011 110 T=1 ¢ Lo L3RRS B-5
Cube CoNntrol COMMEANTScoevuiiiiiiiiiiiiiie e eeere s sre s e s sias s essesraeseeesssss ararsbersssssassssersrennnssnsssnen B-5
(01 a1 @] 0012 4 =10 Ve L3 Y B-7
System Administration COMMANGSccceeiieiiiiiiiicrrr e e rr e s e e s s raneeean B-7
RBemote HOSt COMMEANASoiiiiiiiiiiieiiiiir et eris s s seats s e s s e s e saess s esansrrrrerennsrenssennnseennsensurrrens B-8
VYol [P Ta =T TN I I @7 0] 0910 1 T= Ta Lo [N B-8
SYSIEM CallS ... b B-9
[T [0 e TSN 1 =N B-9
(015 A 07 =T B-9

XXVi

Paragon™ System User's Guide Table of Contents

Byte-SWapping CallScoviciiieiieeiiie et e e e e B-13
Floating-Point Control Callsc.cceiiiiiiiiiiiieciiiiiees et serere e e e s e sesrnsree s s s ssbeeesssssnreessssnrrnraessannee B-14
(0] LS 07 1 [PPSR B-15
MISCEIIANEOUS CallSoiiiiieie ettt ee e e e s e e e e e s ses b s eee e e serteeessasnbeeesesansenneensenen B-16
SUMMANY ...ttt b e s e e bbb st bt ebe bt st bbb e aen et B-17

Xxvii

Table of Contents

Figure 1-1.
Figure 1-2.

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 4-1.
Figure 7-1.
Figure 7-2.

Figure 7-3.

Figure 8-1.

xxviii

Paragon™ System User's Guide

List of lllustrations

Front Panel LEDs (Paragon™ XP/S SYStem ONlY)cccceeurvmeesseeveesesraessessenssnsenen, 1-3
Node ActivVity LEDS ...t 1-4
The Root Partition of a 32-Node Systemccccviniiniiiiinnes 2-32
Node Numbers in Contiguous and Noncontiguous Partitionscccccevceiiiieniinnnen, 2-36
Node Numbers in Overlapping Partitionscccoooovviiiiiin i 2-37
Sample Partition for nx_part_attr() and nx_part_Nodes()ccccererrrrrmrrnrreerinncceniaeens 4-46
Using Domain Decomposition to Achieve Load Balancingcccconnniiiininnencc e, 7-4
The Decomposition Used for the pi EXampleccccceviiiiiiininiceie e 7-9
The N-Queens Solution Tree fora 4 x4 Boardcccccccviinieiiiiinnicien e 7-15
Two Methods of Improving I/O Performance with M_RECORDccocoeinieiniieecnnen. 8-27

Paragon™ System User's Guide Table of Contents

Table 2-1.
Table 2-2.
Table 2-3.

Table 4-1.
Table 4-2.

Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.

Table 6-1.

Table 8-1.

Table A-1.
Table A-2.
Table A-3.
Table A-4.
Table A-5.
Table A-6.
Table A-7.
Table A-8.
Table A-9.

Table A-10.
Table A-11.
Table A-12.
Table A-13.

List of Tables

NOde AHFDULESooiiiiiii e e e 2-24
Summary of SCheduling TYPESccciiriieiieii e ree s 2-44
Symbols Used in showpart OULPULcccciiiiiiiiiiiieieer et 2-60
Attribute Constants for Use with nx_initve_attr()cccooommmrniiiiniieeeeeeeeeee 4-9
Attribute Constants for Use with nx_mkpart_attr()cccccorniiniinii e 4-36
OSF/1 Calls Not Supporting Extended Filescccoovrniriiiiceiercieecee e 5-36
OSF/1 Commands Not Supporting Extended Filesccevvvieiiiinncireeeren e 5-37
Synchronization in Each 1/O MOde ... e 5-54
File 1/O Calls that SYNCArONIZecooiiiiiiiiiere e e 5-54
Calls in Reentrant C Library (libC_r.a)ccoovieiiiiieiiincrtrirrceireeeee e e 6-15
Message-Passing Configuration SWItChesc.ccccviivieieiiin e 8-20
Commands for Compiling and Linking Applicationscccceceviiriieeninnciiereee e A-1
Commands for Running AppliCationscccueeiiiiiiiiiiii s e A-2
Commands for Managing Partitionsccoooeiiiionr et A-2
Parallel File System Commandsccooiiiieiiiniiieinecn e e s A-3
Miscellaneous COMMANGScceceeiiireiieriee e sse e sresss e sre e eeneesreenes A-3
C Calls for Process CharacteristiCsc.coccovuiiiriieniinnie e A-4
C Calls for Synchronous Send and RECEIVEccccuviriiiniiiiiieiccieee e A-5
C Calis for Asynchronous Send and RECEIVEccccvvveirririieieriien e A-6
C Calls for Probing for Pending MESSaQgESc..cccoceeriirieiniieeiiee et s A-7
C Calls for Getting Information About Pending or Received Messagesccccceeue. A-7
C Calls for Treating a Message as an Interruptcccoveeeriicin e e A-8
C Calls for Extended Receive and Probeccccovvriiieinieeeeeeeeeie e A-9
C Calls for Global Operationsccccccvereeiiiiieiieieie e s s esnrnee s A-10

XXiX

Table of Contents

Table A-14.
Table A-15.
Table A-16.
Table A-17.
Table A-18.
Table A-19.
Table A-20.
Table A-21.
Table A-22.
Table A-23.
Table A-24.
Table A-25.
Table A-26.
Table A-27.
Table A-28.
Table A-29.
Table A-30.
Table A-31.
Table A-32.
Table A-33.
Table A-34.
Table A-35.
Table A-36.
Table A-37.
Table A-38.
Table A-39.
Table A-40.
Table A-41.
Table A-42.
Table A-43.

Paragon™ System User's Guide

C Calls for Controlling Application EXeCUtioncccccvvveiinnniniiini e A-12
C Calls for Getting Information About Applicationscccceeeriiieri i, A-13
C Calls for Partition Managementcccccoorrniininiiii e A-14
C Calls for Finding Unusable NOdESccccceeviiriiiiiiiiin e, A-15
C Calls for Handling EITOrSovieiiiiiiiniire e sn s A-16
C Calls for Floating-Point Controlccoociviiirniien e A-16
Miscellaneous C Callsccciiiviiniiiiiiinic A-17
C Calls for iPSC® and Touchstone DELTA Compatibilitycccerenrererreerernenns A-17
C Calls fOr /O MOGESeeiiiieiiiieieie et e s et e A-18
C Calls for Reading and Writing Files in Parallelcccccooviiiiiniiniiie, A-19
C Calls for Detecting End-of-File and Moving the File Pointerc.cccceiiiiiininnnen. A-20
C Calls for Increasing the Size of a Filecccoooeireeiiiii e, A-20
C Calls for Extended File Manipulationcccccccvviriiniiiii e, A-21
C Calls for Performing Extended Arithmeticccccoiiiiiiininiiii e, A-22
C Calls for Getting Information About PFS™ File Systemsccccccceviiiiiniiincncnnen, A-23
C Calls for Managing Pthread EXECULIONccccoeureriieiniiieenneens s secs e A-24
C Calls for Managing Pthread ARMDULEScccovieiiriiiiic e A-24
C Calls for Managing MULEXEScccceeiiiiimmeirirrrienr i e A-25
C Calls for Using Condition Variables to Synchronize Pthreadsccccccoceeeenieeeeen. A-26
C Calls for Canceling PIreadsccccvriiieriiiensiciees e e s e A-26
C Calls for Pthreads Cleanup ROULINESccccooiviiiiniimnitie e A-27
C Calls for Managing Pthread Keysccccvvrrimrimirniiies e A-27
Miscellaneous Pthread Callscccccciviiiiiiiniiiiiiii e A-27
Fortran Calls for Process Characteristicsccccovvninininniniiiccin e A-28
Fortran Calls for Synchronous Send and Receivecccooccimiiiiiiniiiccsneinniec i, A-29
Fortran Calls for Asynchronous Send and Receivecccccvvniiiiiieniiiniieinccnnneen, A-30
Fortran Calls for Probing for Pending Messagesccocceeimiirieeiiininennnneeenn, A-31
Fortran Calls for Getting Information About Pending or Received Messages A-31
Fortran Calls for Treating a Message as an Interruptcccccvviinniinineiecenne A-32
Fortran Calls for Extended Receive and Probeccccccevviiniiiiininniicsveccccece, A-33

Paragon™ System User's Guide

Table A-44.
Table A-45.
Table A-46.
Table A-47.
Table A-48.
Table A-49.
Table A-50.
Table A-51.
Table A-52.
Table A-53.
Table A-54.
Table A-55.
Table A-56.
Table A-57.
Table A-58.
Table A-59.

Table B-1.
Table B-2.
Table B-3.

Table of Contents

Fortran Calls for Global Operationscccccuiieiiieiiir i A-35
Fortran Calls for Controlling Application EXecutioncccccoeeeiieiinieiriencciecceee e A-38
Fortran Calls for Getting Information About Applicationscccoeevriinniinniniecne, A-40
Fortran Calls for Partition Managementcccccoeeirieenie s A-40
Fortran Calls for Finding Unusable NOdESccceeiereiienniiee e A-43
Fortran Calls for Handling EITOrsccceicrieniiiiniiniies e A-43
Fortran Calls for Floating-Point CONtrolcccveeeieiienieene et A-43
Miscellaneous Fortran Callsccccccviieiiiiii s A-44
Fortran Calls for iPSC® and Touchstone DELTA Compatibilitycccc..cvveveruennns A-44
Fortran Calls for I/O MOGESccceiiiiiiiieiiee e A-46
Fortran Calls for Reading and Writing Files in Parallelcccoooviiiiincniiiinec, A-46
Fortran Calls for Detecting End-of-File and Moving the File Pointercccoeee. A-48
Fortran Calls for Flushing Buffered I/Occccoiciniiiiniiniieee s A-48
Fortran Calls for Increasing the Size of @ Filecccccoviiieiiiniie e A-49
Fortran Calls for Extended File Manipulationcccoovieineeiincniie e A-49
Fortran Calls for Performing Extended Arithmeticcccceciiiiinniiniciie s A-50
Unsupported iPSC® System Byte-Swapping Callsccccoeeeiiiiiiiiieeecs B-13
Summary of Unsupported iPSC® System Commandscccccevieeiiiriiiicinieeennen. B-17
Summary of Unsupported iPSC® System Callsccceeoveirieeniieiee e B-18

XXXi

Table of Contents Paragon" System User's Guide

XxxXii

Introduction

Introduction

This chapter introduces the operating system and the hardware it runs on.

In a Paragon supercomputer, a large number of nodes work concurrently on the parts of a problem.
Each node has multiple processors and can run multiple processes; each process can have multiple
threads. The processes and threads on each node time-share the node’s processors, using the
standard OSF/1 scheduling mechanisms. Each process can be a stand-alone program (such as a shell,
compiler, or editor), or can be part of a parallel application.

A parallel application consists of a group of closely related processes that work together on a single
problem. They synchronize their actions and share information by passing messages, which are
created and controlled by special operating system system calls.

The processes in an application can also share disk files; operating system parallel I/O calls insure
that access to these files is efficient and properly synchronized.

1-1

Introduction

Paragon™ System User's Guide

System Hardware

Nodes

The operating system runs on several models of Paragon supercomputers. These systems all have a
large number of nodes connected by a high-speed node interconnect network, and a number of /O
interfaces to communicate with the outside world.

Each node is essentially a separate computer, with multiple i860% processors and 16M bytes or more
of memory. Nodes can run distinct programs and have distinct memory spaces. They can team up to
work on the same problem and exchange data by passing messages. A Paragon supercomputer can
have up to more than 2000 nodes. Each node can run more than one process at the same time; these
processes can belong to the same or different applications.

There are three kinds physical nodes:

MP node A three-processor node that runs with two processors as general processors and
one Processor as message COProcessor.

GP node A two-processor node that runs with one processor as a general processor and one
Processor as a message COprocessor.

MP-as-GP node A three-processor node that runs with one processor as a general processor, one
processor as a message coprocessor, and one processor turned off.

An MP system is a Paragon supercomputer that is configured with MP nodes only. A GP system is
a Paragon supercomputer that is configured with either GP nodes or MP-as-GP nodes only. In a GP
system, MP nodes are automatically configured as MP-as-GP nodes.

The system administrator can choose to dedicate some nodes to interactive processes, such as shells
and editors, and other nodes to compute-intensive applications. The nodes used for interactive
processes are called service nodes, and the nodes used for compute-intensive applications are called
compute nodes.

Node Interconnect Network

The nodes are connected by a high-speed node interconnect network. Each node interfaces to this
network through special hardware that monitors the network and extracts only those messages
addressed to its attached node. Messages addressed to other nodes are passed on without interrupting
the node processor. For most applications, you can think of each node as being fully connected to all
the other nodes.

Paragon™ System User's Guide Introduction

I/O Interfaces

Some nodes are equipped with a SCSI interface, Ethemet interface, or other I/O connection. These
nodes manage the system’s disk and tape drives, network connections, and other I/O facilities.
Nodes with I/O interfaces communicate with the other nodes over the node interconnect network.
However, this access is transparent: processes on nodes without I/O hardware access the I/O
facilities using standard OSF/1 system calls, just as though they were directly connected. Nodes with
I/O interfaces are otherwise identical to nodes without I/O interfaces, and can run user processes.

Front Panel LEDs (Paragon’ XP/S System Only)

On the Paragon XP/S System system, each cabinet has a number of Light-Emitting Diodes (LEDs)
on its front panel that inform you of the status of the system, the nodes, and messages between nodes.
The front panel LEDs are shown in Figure 1-1.

Message going left (yellow)

Power (green) —:iz h @ I ﬁ&
. Power fault (red) IV o UV o
| ‘ : >

| | e— —
~ = = =
Message going up ———» | ‘“ Message going down
(yellow) } I i (green)
v o |V c<———— Node fault (red)
= ,::), <] — S ——
C > C > | ese— S w———
A
M il
Message going right (green) Node activity (green)

Figure 1-1. Front Panel LEDs (Paragon™ XP/S System Only)

Each cabinet has four LED panels, each of which shows the status of 16 nodes in a 4 by 4 grid. Figure
1-1 shows the upper left corner of one LED panel. The meanings of the LEDs are as follows:

* The round green LED in the upper left corner of the top LED panel in each cabinet indicates

that power has been supplied to the cabinet. (The corresponding LEDs in the other three panels
never illuminate.)

1-3

Introduction Paragon™ System User's Guide

e The round red LED just below the green power LED indicates a fault in the cabinet’s power
subsystem. If a fault is detected by the cabinet’s self-tests, this LED illuminates. (The
corresponding LEDs in the other three panels never illuminate.)

* The square groups of horizontal green LED bars show the amount of computational activity on
the nodes. Each group represents one node. The more active a node is, the more green LEDs are
illuminated, in a bar graph moving out from the center. Figure 1-2 shows the six possible ways
these LEDs can be illuminated, showing activity levels from 0% to 100%.

0% 20% 40% 60% 80% 100%

Figure 1-2. Node Activity LEDs

* The arrow-shaped yellow and green LED bars indicate messages. When a message is passed
from one node to another, all the arrow LEDs along its path illuminate. (Messages always travel
first in the X direction (horizontally), then in the Y direction (vertically). Messages never
change direction more than once.) Yellow arrows show messages going up or to the left; green
arrows show messages going down or to the right. When the arrows are illuminated, a light
pattern moves along the arrow to show the direction of motion.

¢ The round red LED associated with each node indicates a hardware fault on the node. If a fault
is detected by the node’s self-tests, the red LED illuminates.

System Software

The nodes run the operating system, which is based on the OSF/1 operating system from the Open
Software Foundation. The same operating system runs on every node. OSF/1 is a version of the
UNIX operating system that supports most industry standards; operating system is an extended
version of OSF/1 with enhancements to support parallel processing.

The Paragon supercomputer also comes with a cross-development facility, which you can use to
compile and link operating system programs on supported workstations.

-

Paragon™ System User's Guide Introduction

Operating System

The operating system provides all the standard features of the OSF/1 operating system, with
extensions to provide a single system image across multiple nodes. This single system image makes
all the nodes appear to be one large system. For example, all the nodes share a single file system, all
the nodes have equal access to the system’s I/O devices, and process identifiers (PIDs) are unique
throughout the system. A process on one node can pipe its output to a process on another node, and
the command kill pid on any node kills the specified process, no matter which node the process is
running on.

The single system image does not combine all the nodes’ memory into a single address space.
Rather, each process has its own address space. The physical memory available to each process is
limited to the memory of the node on which it is running. However, because OSF/1 provides virtual
memory, a process’s address space can be up to 2G bytes in size; memory pages that do not fit in
physical memory are paged to disk. As in most multi-user systems, the address spaces of the
different processes on the system are completely independent, unless two or more processes make
special shared virtual memory calls to explicitly share part of their memory.

In addition to the standard facilities of OSF/1, the operating system provides message passing
capability, Parallel File System access, and various other utilities to programs running on the
Paragon supercomputer. With operating system calls, your programs can perform the following
functions:

Exchange messages with processes running on other nodes (or the same node).
¢ Read and write files on the Parallel File System.

¢ Perform 64-bit integer arithmetic.

* Find out information about the computing environment.

* Perform global operations.

* Create and control parallel applications and partitions.

User Model

The operating system is a complete implementation of OSF/1, and provides a full range of services,
commands, and system calls. It has its own file system, shells, compilers, editors, network
connections, and all the other features needed in a stand-alone computer system. It also supports
NEFS, the Network File System, so it can share data with other systems on your network. You can
edit and compile programs, send and receive mail, read online manual pages, and do all your other
daily work on the Paragon supercomputer.

Introduction

Paragon™ System User's Guide

You access the Paragon supercomputer by logging into a separate computer (typically your UNIX
workstation) and then connecting to the Paragon supercomputer over a local-area network, using a
command such as rlogin or telnet. The Paragon supercomputer does not have any dedicated
hardware terminals.

You compile and link your application with the self-hosted operating system compilers and linker.
You then execute your application on the nodes of the Paragon supercomputer simply by typing the
application’s name on the shell command line. Command-line switches, or arguments to system
calls in the program, determine the number of nodes on which the application executes.

‘When you run an application, it runs in a partition. A partition is a group of nodes with an associated
set of parameters that controls some of the run-time characteristics of the applications within it. You
can use commands or system calls to create, modify, and remove partitions. However, the operations
you are allowed to perform on your system’s partitions may be restricted by the policies of your site.

The operating system operating system also provides a suite of program development tools, such as
a debugger, profiler, and parallel performance analysis tools. These tools are described in the

™ . . 1) .
Paragon ~ System Application Tools User’s Guide.

Programming Model

The most common programming model used with operating system is the “single program, multiple
data” (SPMD) model. In this model, the same program runs on each node in the application, but each
node works on only part of the data.

e For some problems, called “perfectly parallel” problems, each node can do its work without
access to data held by other nodes. In this case, each node operates completely independently.

» For other types of problems, each node needs data from other nodes to do its work. In this case,
the nodes can share data by passing messages. Messages can also be used to synchronize node
operations.

Because each node is an independent computer, you can also use other programming models. One
example is the “manager-worker” model, in which one “manager” program starts up several
“worker” programs on other nodes, then gathers and interprets their results.

Cross-Development Facility

The operating system comes with a complete program development environment, including
compilers, linker, libraries, and related tools. You can perform all phases of program development
on the Paragon supercomputer. In addition, the compilers, linker, and libraries are available on
selected UNIX workstations for cross-development. This lets you edit, compile, and link operating
system programs on your own workstation, then download your application to your Paragon
supercomputer where you run the application.

Paragon™ System User's Guide Introduction

The cross-development facility does not include a way to run a operating system executable that
resides on your workstation’s disk. You must transfer your executable files to the Paragon
supercomputer for execution and debugging. You can do this by mounting your workstation’s file
system onto the Paragon supercomputer, or the Paragon supercomputer’s file system onto your
workstation, using the Network File System (NFS). You can also use commands such as rep or ftp
to copy the executable files to the Paragon supercomputer. To execute files on the Paragon

supercomputer once they are transferred, you can use the standard rsh or remd command from your
workstation.

Introduction Paragon™ System User's Guide

Using System Commands

Introduction

This chapter tells you how to use operating system commands to perform the following tasks:
* Compiling and linking applications.

* Running applications.

* Managing running applications.

* Managing partitions.

The commands discussed in this chapter are available to all users. See the Paragon' System
Administrator’s Guide for information on commands that require root privilege.

This chapter does not discuss NQS, the Network Queueing System, which is used at some sites to

schedule application execution. See the Paragon"" System Network Queueing System Manual for
information on NQS.

Terminology
This chapter uses the following terms:

* A parallel application, usually just called an application in this manual, is a group of
cooperating processes that runs on the nodes of the Paragon supercomputer.

* A program is afile (source or executable). An application consists of one or more programs
running on one or more nodes. The term program is also used to refer to a non-parallel program
(an ordinary program that runs on one node).

2-1

Using System Commands Paragon™ System User's Guide

e A partition is a named group of nodes. When you run a parallel application, you must select a
partition to run it in (if you don’t, it runs in your default partition). The partition places limits
on some of the execution characteristics of the application, such as how many nodes it can use
and how long it can use them before it is “rolled out” and another application is “rolled in.” You
can allocate all of the nodes of the partition to the application, or just some of them. This
allocation may or may not be exclusive, depending on the characteristics of the partition.

All Paragon supercomputers have two special partitions called the service partition and the
compute partition. The service partition is used to run non-parallel programs such as shells and
editors, and the compute partition is used to run parallel applications. The other partitions on
your system, and what you can do with them, are determined by your system administrator.

Using Commands on the Paragon’ Supercomputer

The operating system provides all of the standard commands of OSF/1, such as cat and Is, which
work as specified by the Open Software Foundation. These commands are not described in this
chapter; see the OSF/1 Command Reference for information on these commands.

The operating system also provides several commands that are not specified by the Open Software
Foundation, such as mkpart and rmpart. These commands are described in this chapter, and
manual pages for these commands are provided in the Paragon"" System Commands Reference
Manual.

To use any of these commands, you must first log into an Paragon supercomputer. Paragon
supercomputers have no directly-attached terminals; you must first log into another system
(typically a workstation running some variant of the UNIX operating system) and then log into the
Paragon supercomputer over the network, using a command such as rlogin or telnet. Once you have

logged in, you use these commands in the same way as commands on any other computer running
OSF/1.

Using Commands on Workstations

The operating system also comes with several commands that run on workstations (for example, the
ice and if77 cross-compilers). These commands are described briefly in this chapter; complete
descriptions and manual pages for these commands are provided in the ParazgonTM System C
Compiler User’s Guide and ParagonTM System Fortran Compiler User’s Guide.

To use these commands, you must first log into a workstation on which these commands are
supported, then configure your account as described under “Configuring Your Environment for
Cross-Development” on page 2-6. Once you have done this, you can use the operating system
cross-development commands in the same way as other commands on the workstation. However, if
you compile an application on a workstation you must transfer the executable file to a Paragon
supercomputer to execute it. Depending on your local configuration, you may be able to use the

Paragon™ System User's Guide A Using System Commands

Network File System (NFS), the rep command, the ftp command, or some other technique to do
this. Ask your system administrator about how files are shared between the Paragon supercomputer
and other systems on your network.

A Quick Example

Here is a quick example that shows you how to compile, link, and execute a simple application on a
Paragon supercomputer.

Information You Need

Before you begin, you will need the following information:

* The network name of your Paragon supercomputer.

e The command to use to log into the Paragon supercomputer, such as rlogin or telnet.
¢ Your user name and password on the Paragon supercomputer (if necessary).

e The name of the default partition you should use to run parallel applications.

This information should be available from your system administrator.

Compiling, Linking, and Executing an Application

Once you have the necessary information, the procedure to compile, link, and execute an application
is as follows:

1. Log into the Paragon supercomputer, as instructed by your system administrator.
2. Set the environment variable NX_DFLT_PART to the name of your default partition:
* If you use the C shell, use the following command:
% setenv NX DFLT PART partition_name
e If you use the Bourne or Korn shell, use the following commands:

S NX DFLT PART=partition_name
S export NX DFLT PART

3. Type in a short program:

Using System Commands Paragon™ System User's Guide

e If you are a Fortran programmer, type the following program into the file myapp.f.

program hello
include 'fnx.h’

write(*,100) mynode()
100 format ('Hello from node', i4, '!"')

end

¢ Ifyou are a C programmer, type the following program into the file myapp.c:
#include <nx.h>

main ()
{
printf ("Hello from node %d!\n", mynode());

}
4. Compile the program into an executable file:

¢ If you are a Fortran programmer, use the following command:

2

> £77 -nx -o myapp myapp.f

e If you are a C programmer, use the following command:

[}

% ¢c -nx -o myapp myapp.cC
5. Execute the resulting file, myapp, on four nodes with the following command:

% myapp -8z 4

Hello from node 0!
Hello from node 3!
Hello from node 1!
Hello from node 2!

The order in which the output lines appear may vary.
That’s all there is to it! Of course, the operating system provides many additional commands and

switches you can use to control the behavior of the compiler and the resulting application. These
commands and switches are described in the rest of this chapter.

Paragon™ System User's Guide

Using System Commands

Compiling and Linking Applications

Command Synopsis

cc -nx [switches] sourcefile...

f77 -nx [switches] sourcefile...

icc -nx [switches] sourcefile...

if77 -nx [switches] sourcefile...

Description

Compile an application written in C on a Paragon
supercomputer.

Compile an application written in Fortran on a
Paragon supercomputer.

Compile an application written in C on a Paragon
supercomputer or cross-development
workstation.

Compile an application written in Fortran on a
Paragon supercomputer or cross-development
workstation.

You can compile and link applications on the Paragon supercomputer itself, or on a workstation that
supports the operating system cross-development environment. On the Paragon supercomputer, you
can use the “native” commands cc and f77 or the “cross-development” commands icc and if77. On
a workstation, you must use the cross-development commands icc and if77. The native and
cross-development versions of each command take the same switches and work identically.

When compiling and linking an application, you should generally use the switch -nx on the

command line. The -nx switch has three effects:

e If used while linking a C or Fortran program, it links in libnx.a, the library that contains all the

system calls described in this manual.

e If used while linking a C or Fortran program, it links in a special start-up routine that starts up
the program on multiple nodes, as specified by standard command line switches and

environment variables.

e If used while compiling a C program, it defines the preprocessor symbol __NODE. The
program being compiled can use preprocessor statements such as #ifdef to control compilation
based on whether or not this symbol is defined. (This preprocessor symbol is not defined if -nx

is used while compiling a Fortran program.)

For example, the following command line compiles and links the file myapp.c to create an
executable file called myapp (on the Paragon supercomputer):

[}

% cc -nx -o myapp myapp.c

2-5

Using System Commands Paragon™ System User's Guide

The following command line has the same effect (on the Paragon supercomputer or a
cross-development workstation):

o

% icc -nx -o myapp myapp.cC

NOTE

Do not use -nx if your application uses any of the nx_initve...()
calls.

The operating system provides the nx_initve...() calls and related functions to give your application
more control over the way it starts up. They let the application perform actions for itself that are
normally performed for it by -nx. If you link your application with -nx and it also makes any
nx_initve...() call itself, the application’s call to nx_initve...() will fail and return -1. See “Managing
Applications” on page 4-2 for more information on nx_initve...() and related functions.

To link an application that calls nx_initve...(), use the switch -Inx instead of -nx. The -lnx switch
links in /ibnx.a, but without the special start-up routine supplied by -nx. A program linked with -Inx
can use all the calls described in this manual, but does not automatically start itself on multiple
nodes. (Note that the -Inx switch must appear on the compiler command line after the filenames of
any source or object files that use these calls.) Note that the preprocessor symbol __NODE is not
defined by -Inx.

A program that is not linked with -nx and does not call nx_initve...() is not a parallel application. It
does not recognize the command-line switches described under “Running Applications” on page
2-11, and it always runs on one node in the service partition. (If it creates additional processes by
calling fork(), they may run on the same node or a different node, but they will always run in the
service partition.)

Configuring Your Environment for Cross-Development

2-6

Before you can use the icc and if77 commands on your workstation, you must configure your
environment as follows:

e The environment variable PARAGON_XDEV must be set to the pathname of the directory that
contains the operating system cross-development facility. If you don’t know this pathname, ask
your system administrator.

* Your execution search path (PATH or path variable) must include the directory
$PARAGON_XDEV/paragon/bin.arch, where arch identifies the architecture of your
workstation (such as sun4 for a Sun-4 workstation).

Paragon" System User's Guide Using System Commands

* If you want to read online manual pages on your workstation, your online manual page search
path (MANPATH variable or equivalent facility) must include the directory
SPARAGON_XDEV/paragon/man.

You should put the definitions of these variables into your .cshrc or .login file (or the equivalent
start-up file for your shell). For example, suppose the operating system cross-development facility
isinstalled in the directory /usr/local/XDEYV . If you use the C shell, you would add these lines to your
.cshrc file:

setenv PARAGON_XDEV /usr/local/XDEV
set path=($path SPARAGON_XDEV/paragon/bin.‘arch’)
setenv MANPATH "S$S{MANPATH} :${PARAGON_XDEV} /paragon/man"

(The curly braces in " $ {MANPATH} : $ { PARAGON_XDEV} /paragon/man" are necessary
because a colon after a variable name is special to the C shell.)

Once your environment is properly configured, you can use the ice or if77 command to compile and
link applications on your workstation. For example, the following command line compiles and links
the file myapp.fto create an executable file called myapp:

% 1if77 -nx -o myapp myapp.f

The executable file, myapp, can only be executed on the Paragon supercomputer. You can do this
by putting it in a directory that is shared between your workstation and the Paragon supercomputer
with the Network File System (NFS), or by copying it to the Paragon supercomputer with the ftp or
rep command. If you use the ftp command, the resulting file may not have execute permission; if
this happens, use the chmod command on the Paragon supercomputer to give myapp execute
permission.

NOTE

The Paragon system versions of the compilers are not the same
as their iPSC® system equivalents.

If you develop programs for the iPSC series of supercomputers from Intel Corporation as well as for
the Paragon system, you must be sure that your execution search path (PATH or path variable) is set
appropriately for your current target system. To compile a program for the Paragon system, the
variable PARAGON_XDEV must be set appropriately and your execution search path must include
SPARAGON_XDEV/paragon/bin.arch; to compile a program for the iPSC system, the variable
IPSC_XDEV must be set appropriately and your execution search path must include
$IPSC_XDEV/i860/bin.arch instead. Be sure that your execution search path does not include both
these directories at the same time.

Using System Commands Paragon™ System User's Guide

Tips for Compiling and Linking

The following sections give you some tips for compiling and linking applications (on either the
Paragon supercomputer or a cross-development workstation).

Using Other Switches

The cc, £77, icc, and if77 commands have a variety of switches to control their operation. For a
description of these switches and other information on these commands, see the online manual pages
for the commands or the following printed manuals:

cc, ice ParagonTM System C Compiler User’s Guide.

177, if77 ParagonTM System Fortran Compiler User’s Guide.

Including nx.h or fnx.h

As a general rule, always include the file nx.4 in all C programs and the file fax.h in all Fortran
programs. These files contain definitions and declarations needed by the operating system’s system
calls. Although a specific application may not need the definitions and declarations in these include
files, the overhead involved in including them in all C or Fortran programs is minor. Include nx.k in
your C programs as follows:

#include <nx.h>
Include nx.h in your Fortran programs as follows

include 'fnx.h’'

Specifying Include File and Library Pathnames

The standard include and library directories depend on whether you are using the native
development commands or the cross-development commands:

* The native development commands search for include files in the directory /usr/include, and
they search for libraries in the directories /usr/ccs/lib (searched first) and /usr/lib (searched
second).

* The cross-development commands search for include files in the directory
$PARAGON_XDEV/paragon/include, and they search for all libraries in the directory
SPARAGON_XDEV/paragon/lib-coff.

Paragon™ System User's Guide Using System Commands

Note, though, that on the Paragon supercomputer the directories
/usr/paragon/XDEV/paragon/lib-coff and /usr/ccs/lib are identical, the directories
/usr/paragon/XDEV/paragon/include and /usr/include are identical, and the default for
3PARAGON_XDEY is /usr/paragon/XDEV, so this difference may not be significant.

If you need to include a file that is not in the standard include directory or in the same directory as
the source file, you must use the -I switch on the compiler command line to identify the nonstandard
directory. For example, the following command line compiles and links an application that uses
include files in the directory /usr/local/include:

% icc -nx myapp.c -I/usr/local/include

If you need to link to a library that is not in one of the standard library directories, then you must
modify the command line in one of the following ways:

* Use the -L switch to provide the pathname of the directory in which the library is located. For
example, the following command line compiles and links an application that depends on the
library libfft.a located in the directory /usr/local/lib:

% icc -nx -L/usr/local/lib myapp.c -1lfft

* Specify the complete pathname of the appropriate library or libraries on the command line. For

example, the following command line also compiles and links an application that depends on

the library libfft.a located in the directory /usr/local/lib:

% 1if77 -nx myapp.c /usr/local/lib/libfft.a

Preprocessing a Fortran Program

If your Fortran program is in a file whose filename ends with an uppercase “.F” (rather than the
standard lowercase “.f”), the if77 command runs a preprocessor (like the standard C preprocessor)
on the file. This enables you to use lines like the following in a Fortran program:

#include <file.h>

#define MAX 87

29

Using System Commands Paragon™ System User's Guide

2-10

Order of Switches

Most cc, £77, ice, and if77 switches are not order-sensitive. However, order is important for the -1,
-L, and -l switches and for listing libraries when linking. When constructing command lines, keep
the following guidelines in mind:

List include directories (-I switch) in the order in which they should be searched. The list of
include directories you specify with -I switches is collected together and used for all source files
you specify. For example, the following command looks for include files in the directory
myincludes, then the directory ../includes, and finally the standard include directory when
compiling a.c, b.c, and c.c: :

% icc a.c -Imyincludes b.c -I../includes c.c

List libraries in the order in which they should be searched. The system’s linkers are single-pass
linkers; they cannot resolve a backward library reference (i.e., a reference to a library object that
was defined in a library that has already been searched). Note that this means that if you use the
-Inx switch, you should place it after any source files that need it, as follows:

% 1if77 -o myapp myapp.f -lnx

Backward references between objects (.o files), however, are not a problem, as all listed objects
are linked unconditionally.

The -L switch affects only the search path of libraries that are listed after the -L switch. For
example, the following command searches only the standard library directories for the library
libnews.a, but searches the directory ../mylibs (as well as the standard library directories) for the
library libgx.a:

% icc -nx myprog.c -lnews -L../mylibs -1lgx
If you specify more than one -L switch, the named directories are searched in reverse order (the
directory specified by the first -L switch on the command line is searched after the directory
specified by the second -L switch on the command line). For example:

% icc -nx myprog.c -lnews -L../mylibs -l1gx -Llocallibs -llocal
This command searches for libraries as follows:

- It searches only the standard library directories for the library libnews.a.

- It searches the directory ../mylibs and then the standard library directories for the library
libgx.a.

- It searches the directory locallibs, then ../mylibs, and then the standard library directories
for the library liblocal.a.

Note that the -L switch also affects system libraries; in fact, directories specified by -L are
searched for system libraries before the standard library directories.

Paragon™ System User's Guide Using System Commands

Running Applications

Once you have compiled your application into an executable file (and, if necessary, copied the
executable to an Paragon supercomputer), you run it by typing its name at your shell command
prompt, as you would for any other compiled program.

For example, if myapp is a compiled application, you can execute it with the following command:

[}

s myapp
The way the application runs depends on how you linked it and on what system calls it makes:

* If myapp was linked with the -nx switch, this command runs myapp on your default number of
nodes in your default partition. The section “Controlling the Application’s Execution
Characteristics” on page 2-12 tells you more about the default partition, and about the
environment variables and command-line switches you can use to control the execution
characteristics of applications linked with the -nx switch.

* If myapp was linked with the -Inx switch, this command runs myapp on the nodes and partition
specified by system calls within the application. The section “Managing Applications” on page
4-2 tells you how to use these system calls. If myapp does not specify the nodes and partition in
these calls, it defaults to running on your default number of nodes in your default partition. If
myapp does not make any of these calls, it runs on one node in the service partition.

* If myapp was linked without the -nx or -Inx switch, it is an ordinary non-parallel program, and
it runs on one node in the service partition.

If you see the error message “request overlaps with nodes in use,” it means that your default partition
does not allow overlapping applications and someone else is already running an application in that
partition. Try again later, or use a different partition (as described under “Running an Application in
a Particular Partition” on page 2-23). You can use the pspart command to determine which
partitions have applications running in them, as described under “Listing the Applications in a
Partition” on page 2-64. You can also use the command showpart -f to determine which nodes in a
given partition do not have applications running on them, as described under “Showing Free Nodes”
on page 2-55.

If you see the error message “partition permission denied” or “exceeds partition resources,” check
to be sure the environment variables NX_DFLT_PART and NX_DFLT _SIZE are properly defined.
See “Using the Default Partition” on page 2-13 and “Specifying Application Size” on page 2-15 for
more information on these variables; see your system administrator for information on the proper
settings for these variables at your site.

If you see the error message “error 216 occurred, unknown,” it means that the application was
compiled on a previous release of the operating system and uses an out-of-date version of the
libraries. (Error 216 is “parallel application incompatible with OS release”, but the “unknown”
message may appear if the application is so out-of-date that it doesn’t know about the existence of
this error.) If this occurs, recompile the application and try again.

2-11

Using System Commands Paragon™ System User's Guide

I/O Redirection

You can redirect the standard input, standard output, and standard error of an application with the
usual OSF/1 techniques. For example, the following command redirects the input and output of the
application myapp:

% myapp < myfile.in > myfile.out

This command runs the application myapp with its standard input redirected from the file myfile.in
and its standard output redirected to the file myfile.out.

Note that, by default, all the nodes read and write their standard input, standard output, and standard
error using PFS I/O mode 0. In mode 0, all file access requests are honored on a first-come,
first-served basis. You can change this behavior by selecting a different I/O mode; see “Using I/O
Modes” on page 5-14 for more information. The standard input, standard output, and standard error
are line-buffered by default. This means that if all the nodes write to standard output or standard
error, the output from all the nodes is intermixed in the output, line by line; if all the nodes read from
standard input, each line of the input goes to an arbitrary node.

Running SMP Programs

If you are running programs that take advantage of the symmetric multiprocessing (SMP) features
of the system, you may have to set the environment variable DFLT_NCPUS before you run your
program. For more information about DFLT_NCPUS and the SMP programming model, see
“Setting DFLT_NCPUS” on page 6-5.

Controlling the Application’s Execution Characteristics

2-12

Command Synopsis Description

application [-sz size | -sz hXw | -nd hXw:n] Execute an application.
[-rIx] [-pri priority] [-pt ptype]
[-on nodespec 1 [-pn partition]
[-nt nodetype | [msg_switches]
[\s app2 [-pt ptype] [-on nodespec]] ...

‘When you run an application, you can use command-line switches and environment variables to
control the way the application executes. This section discusses all the switches and environment
variables except for the msg_switches, which are used for message-passing performance tuning; for
information on the msg_switches, see “Message-Passing Configuration Switches” on page 8-18.

Paragon™ System User's Guide Using System Commands

Command-line switches can appear in any order on the command line, and may be intermixed with
application-specific switches and arguments. If you specify the same command-line switch more
than once in a single command, the last occurrence overrides the earlier ones. For example, the
following two commands are equivalent:

% myapp -8z 4 -sz 50 -pri 8 file.dat
% myapp -pri 8 -sz 4 file.dat -sz 50

Each of these commands runs the application myapp, with the argument file.dat, at priority 8 on 50
nodes of your default partition.

If the application was linked with the -nx switch, the command-line switches discussed in this
section are interpreted and removed from the command line before the application starts up. In the
previous examples, the arguments -pri 8, -sz 4, and -sz 50 are interpreted and removed by the -nx
code; myapp sees only the argument file.dat (if myapp is a C program argc is 2, argv[0] is “myapp”,
and argv[1] is “file.dat”).

NOTE

All the examples in this section assume that myapp was linked
with the -nx switch.

An application that is not linked with -nx controls its own execution with system calls, as discussed
under “Managing Applications” on page 4-2. Such an application may or may not obey the
command-line switches discussed in this section, depending on how it was programmed.

Using the Default Partition

‘When you run a parallel application on the Paragon supercomputer, it runs in a partition. The
partition determines the maximum number of nodes used by the application and how the application
is scheduled, as described later in this chapter. An application stays in the same partition for its entire
run.

If you do not specify otherwise, the application runs in the partition specified by the environment
variable NX_DFLT_PART. If the environment variable NX_DFLT PART is not set, the application
runs in the compute partition, a special partition that is present on all Paragon supercomputers. The
partition specified by NX_DFLT_PART (or, if this variable is not set, the compute partition) is called
your default partition.

For example, to run the application myapp in your default partition, use the following command:

% myapp

This command runs the application myapp in the partition specified by the environment variable
NX_DFLT_PART, or in the compute partition if NX_DFLT_PART is not set.

2-13

Using System Commands Paragon™ System User's Guide

If you see an error message such as “partition not found” or “partition permission denied,” ask your
system administrator what your default partition should be, then use the commands described in the
next section to set the variable NX_DFLT_PART to that value. You can also use the -pn switch
(described under “Running an Application in a Particular Partition” on page 2-23) to run an
application in a different partition.

For more information about partitions, see “Managing Partitions™ on page 2-30.

Setting Your Default Partition
The command you use to set or change your default partition depends on which shell you use.

e If you use the C shell, use the setenv command. For example, if you are a C shell user, the
following command sets your default partition to mypart:

% setenv NX DFLT PART mypart

setenv is a built-in command of the shell; see csh in the OSF/I Command Reference for more
information.

You can put this command in your .Jogin or .cshre file on the Paragon supercomputer to have
your default partition set to mypart each time you log in.

e If you use the Bourne or Korn shell, set the variable and use the export command to make its
value available to commands other than the shell. For example, if you are a Bourne or Korn shell
user, the following commands set your default partition to mypart:

S NX_DFLT PART=mypart
S export NX_DFLT PART

You do not have to use the export command each time you set the variable. You only have to
export a variable once in each login session. export is a built-in command of the shell; see sh
or ksh in the OSF/I Command Reference for more information.

You can put these commands in your .profile file on the Paragon supercomputer to have your
default partition set to mypart each time you log in.

You can use an absolute or relative partition pathname as the value of NX_DFLT_PART. For
example, the following C shell commands are equivalent:

% setenv NX_DFLT PART myorg.mypart
% setenv NX_DFLT PART .compute.myorg.mypart

Paragon™ System User's Guide . Using System Commands

See “Partition Pathnames” on page 2-33 for more information on partition pathnames.

If you use the C or Korn shell, you can create an alias to change your default partition. For example,
the following C shell command creates a “setpart” alias that sets your default partition to its
argument:

% alias setpart ’‘setenv NX DFLT PART \!#*’/

Determining the Current Default Partition
To find out your default partition once you have set it, use the echo command. For example:

% echo $NX DFLT PART
mypart

This command works the same in any shell.

Specifying Application Size

An application’s size is the number of nodes allocated to the application from the partition. The
processes of the application run only on this set of nodes, and do not exchange messages with
processes on nodes outside this set. Depending on the characteristics of the partition, this allocation
may or may not be exclusive: some or all of these nodes may also be allocated to other applications
and/or other partitions. An application keeps the same size for its entire run.

To set an application’s size, use the switch -sz size, where size is any positive integer less than or
equal to the number of nodes in the partition. For example, to run the application myapp on 64 nodes
of your default partition, use the following command:

% myapp -8z 64

The -sz size switch attempts to allocate a square group of nodes if it can. If this is not possible, it
attempts to allocate a rectangular group of nodes that is either twice as wide as it is high or twice as
high as it is wide. If this is not possible, it allocates any available nodes; in this case, nodes allocated
to the application may not be contiguous (that is, they may not all be physically next to each other).
If the requested number of nodes is not available, the command fails and the application does not
run; an error message is printed to explain why the specified number of nodes is not available.

No matter what the shape of the application, node numbers within the application (as returned by
mynode()) will always be sequential from O.

2-15

Using System Commands Paragon™ System User's Guide

2-16

Specifying a Rectangle of Nodes

To force allocation of a contiguous rectangle of a particular size and shape, use the switch -sz A Xw,
where 4 and w are positive integers that specify the height and width of the desired rectangle. (You
can use an uppercase or lowercase letter X between the integers 4 and w.) For example, to run myapp
on an 8 by 8 node rectangle of your default partition, use the following command:

$ myapp -sz 8x8

If successful, this command runs myapp on an 8 by 8 node rectangle of nodes, which could be
located anywhere within the partition that it fits. If no 8 by 8 node rectangle is available in the default
partition, the command fails immediately and the application does not run, even if there are 64 nodes
free in the partition. If this occurs, the command fails with the error message “exceeds partition
resources” if no such rectangle can be found that fits within the partition, or “request overlaps with
nodes in use” if the rectangle fits within the partition but some of its nodes are busy).

Specifying a Particular Rectangle of Nodes

To force allocation of a contiguous rectangle of a particular size and shape at a particular location
within the partition, use the switch -nd AXw:n. (This switch is called -nd, rather than -sz, because it
specifies a particular set of nodes rather than just a size or shape.)

In the -nd AXw:n switch, 4 and w are positive integers that specify the height and width of the
desired rectangle, and 7 is a positive integer that specifies the node number within the partition for
the upper left corner of that rectangle. You can use an uppercase or lowercase letter X between the
integers 4 and w. When choosing the value of n, remember that in an m-node partition the nodes are
numbered left to right and top to bottom from 0 to m—1.

For example, to run myapp on an 8 by 8 node rectangle in the upper left corner of your default
partition, use the following command:

$ myapp -nd 8x8:0

In this case, if the specified nodes are not available in the default partition, the application fails
immediately (even if there is a different 8 by 8 node rectangle available).

Using the Default Size

If you don’t use the -sz or -nd switch, the application’s size is specified by the environment variable
NX_DFLT _SIZE, whose value must be a single positive integer. You can use the techniques
discussed for the NX_DFLT_PART variable in the previous section to get and set the value of the
NX_DFLT_SIZE variable. If NX_DFLT_SIZE is not set, the application runs on all available nodes
of the partition, and its size is set to the size of the partition. The size specified by NX_ DFLT _SIZE
(or, if this variable is not set, the size of the partition) is called your default number of nodes.

Paragon™ System User's Guide Using System Commands

An application can determine its size by calling numnodes(), and each process in the application
can determine its node number within the application by calling mynode(). mynode() returns a node
number from O to one less than the application’s size. (See “Process Characteristics” on page 3-3 for
more information on these calls.) For example, with -sz 64, -sz 8x8, or -nd 8x8:0, numnodes()
returns 64 and mynode() returns a number from 0 to 63 inclusive. There is no way for an application
to change its size. ‘

An application can determine its shape by calling nx_app_rect(), which returns the height and width
of the rectangle of nodes allocated to the application. If the nodes allocated to the application do not
form a rectangle, nx_app_rect() returns a height of 1 and a width equal to numnodes().
(nx_app_rect() can also be called by the name mypart() for compatibility with the Touchstone
DELTA System.)

Relaxing Application Size

No matter how you specify the application size, if any of the nodes you request are not available, the
application fails with an error message and does not run. The “availability” of a node is determined
by the partition’s scheduling type and whether or not the node is already in use; for example, if the
partition does not permit overlapping applications, any node that already has an application running
on it cannot be allocated. See “Scheduling Characteristics” on page 2-39 for more information. A
node can also be unavailable due to a software or hardware problem; see “Unusable Nodes” on page
2-37.

You can use the switch -rlx to relax the requirement that the exact specified number of nodes must
be available. When you use -rlx, the application may run on fewer nodes than you requested. In other

words, the application runs on as many nodes as possible, up to the requested number of nodes.
However, there must be at least one node available or the command still fails.

NOTE

-rix can be used to relax the default size, the -sz size switch, or
the -nd switch. It cannot be used together with the switch -sz hXw.

For example, if the environment variable NX_DFLT_SIZE is not set, the following command runs
the application myapp on every available node in the default partition:
% myapp -rlx

The following command runs the application myapp on up to ten nodes of the default partition. If
less than ten nodes are available, the application runs on all the available nodes:

% setenv NX DFLT SIZE 10
% myapp -rlx

2-17

Using System Commands ' Paragon™ System User's Guide

2-18

The following command runs the application myapp on up to five nodes of the default partition. If
less than five nodes are available, the application runs on all the available nodes:

$ myapp -8z 5 -rlx

In any of the above cases, if no nodes are available in the default partition, the command fails.
The following command runs the application myapp on up to a 3-by-3-node rectangle of nodes
located in the upper left corner of the default partition. If any of those nodes is not available, the
application runs on the remaining nodes of that rectangle.

% myapp -nd 3x3:0 -rlx

In this case, if no nodes are available in the specified rectangle, the command fails.

Specifying Application Priority

An application’s priority is an integer associated with the application that is used in determining how
much of a node’s processor time the application gets when the node is allocated to more than one
application at once. 0 is the lowest priority, and 10 is the highest.

The application’s priority is only one of several factors that determine how much processor time it
gets. For example, the application’s processor time can be affected by the priorities of other
applications in the system and by the effective priority limit of the partition in which the application
runs. See “Scheduling Characteristics” on page 2-39 for more information.

To set the priority of the application, use the switch -pri priority, where priority is an integer from
0 to 10 inclusive. If you don’t use the -pri switch, the application’s priority is set to 5.

For example, to run the application myapp with a priority of 6, use the following command:
% myapp -pri 6

An application can change its priority by calling nx_pri() (see “Setting an Application’s Priority
with nx_pri()” on page 4-15 for more information).

Specifying Process Type

A process’s process type, ot ptype, is an integer associated with the process that differentiates it from
any other process in the application that is on the same node. The process’s node number and process
type together form the process’s “address” for messages within the application.

To set the process type of each process in the application, use the switch -pt ptype, where ptype is
an integer from O to 2,147,483,647 (231 — 1) inclusive. If you don’t use the -pt switch, the process
type of each process is 0.

Paragon™ System User's Guide Using System Commands

For example, to run the application myapp with a process type of 1 for each process, use the
following command:

$ myapp -pt 1

A process can find out its current process type by calling myptype(). For example, with -pt 1,
myptype() returns 1 on all nodes. Once a process’s process type has been set to a valid value, it
cannot change its process type and no other process in the same application on the same node can
use that process type for the run of the application. See “Process Characteristics” on page 3-3 for
information on process types and the myptype() and setptype() system calls.

The -pt switch is most commonly used when running multiple programs in one application, as
discussed under “Running Applications Consisting of Multiple Programs” on page 2-21. In most
other circumstances, you can use the default process type of 0.

Running a Program on a Subset of the Nodes

Usually you run the same program file on all the nodes allocated to the application from the partition.
However, you can also run a program on just some of the nodes, leaving the other nodes vacant for
other programs. When you do this, the other nodes are allocated to the application, but no processes
are started on them.

To run a program on a subset of the nodes of an application, use the switch -on nodespec, where
nodespec is one of the following:

x The node whose node number is x.
Xesy The range of nodes from numbers x to y.
n The last node of the partition.

nspec[,nspec]... The specified list of nodes, where each nspec is a node specifier of the form
X, x..y, or i (no node may appear more than once in this list). Do not put any
spaces in this list.

If you don’t use the -on switch, the program is run on all nodes allocated to the application.

NOTE

The numbers you use with -on are node numbers within the
application (which always range from O to one less than the size
of the application), not node numbers within the partition.

2-19

Using System Commands Paragon™ System User's Guide

2-20

For example, to run the program myapp on the first three nodes of a 20-node application, use the
following command:

[}

% myapp -8z 20 -on 0,1,2

This command creates an application of size 20 in your default partition and runs myapp on nodes
0, 1, and 2 of the application. Within this application, the function numnodes() returns 20, and the
function mynede() returns a number from 0 to 19 inclusive. However, no processes are started on
nodes 3 through 19.

You can use the letter n to represent “the last node in the application.” For example, the following
command creates an application of your default size in your default partition and runs myapp on the
first and last nodes of the application:

% myapp -on 0,n

For example, if your NX_DFLT_SIZE variable is set to 64 (and there are at least 64 nodes in your
default partition), this would run myapp on nodes 0 and 63 of the application.

You can also use a pair of numbers separated by two periods (x..y) to specify “nodes x through y
inclusive.” For example, the following command creates an application of size 100 in your default
partition and runs the program myapp on nodes 10 through 90:

[}

% myapp -sz 100 -on 10..90

It doesn’t matter whether y is greater than x or vice versa. For example, the following command also
creates an application of size 100 in your default partition and runs the program myapp on nodes 10
through 90:

o)

% myapp -sz 100 -on 90..10

These notations can be combined. For example, the following command creates an application of
your default size in your default partition and runs myapp on all nodes but node 0 of the application:

$ myapp -on l..n

Another example: the following command creates an application of your default size in your default
partition and runs myapp on node 1, node 3, nodes 5 through 10 inclusive, and the last node of the
application:

% myapp -on 1,3,5..10,n

NOTE

Do not use -on if you just want to run a single program on a
specific number of nodes.

Paragon™ System User's Guide Using System Commands

The -on switch is designed to be used when running multiple programs as a single application, as
discussed in the next section. You can also use the -on switch to run a “manager” program on one
or a few nodes of an application; the “manager” program can then run “worker” programs on other
nodes by calling nx_nfork(), nx_load(), or nx_loadve() (see “Managing Applications” on page 4-2
for information on these functions).

The -on switch is not designed to run an application on a particular number of nodes or a particular
set of nodes. If you want to run an application on a particular number of nodes, use the -sz switch;
if you want to run an application on a particular set of nodes, use the -nd switch.

If you use -on when you should be using -sz or -nd, the application will be allocated more nodes
than it needs. Also, if you use -on and do not run a program on every node of the application, global
synchronizing operations will hang. (Global synchronizing operations, such as gdsum() and
gopen(), block until they are called by every node in the application. If you run a program on only
a subset of the nodes, these operations will block forever. See “Global Operations” on page 3-27 and
“Synchronization Summary” on page 5-54 for information on global synchronizing operations.)

Running Applications Consisting of Multiple Programs

You can run multiple program files as a single application. For example, you could run two or more
separate programs on every node (the resulting processes must have different process types, and the
processes time-share the processor while the application is active). You might also run a manager
program on one node and worker programs on the other nodes. The programs should be written to
work together; you would not usually run two arbitrary programs together in one application.

To run multiple program files as a single application, use the following syntax:

% file [switches] [\; file [-pt ptype 1 [-on nodespec] 1

That is, you use two or more complete commands on one line, separated by an escaped semicolon
(backslash followed by semicolon).

NOTE

The escaped semicolon (\;) must be preceded and followed by a
space or tab. Otherwise, it will be considered part of the preceding
or following argument.

The first file must either have been linked with -nx or must call nx_initve...() without overriding the
command line; the second and subsequent files may have been linked with or without -nx, but must
not call nx_initve...().

The command-line switches you can use with the files are different:

2-21

Using System Commands Paragon™ System User's Guide

2-22

* You can use any application switches (-sz, -nd, -rlx, -pri, -pt, -on, -pn, -nt, and msg_switches)
with the first file. (The -pn and -nt switches are discussed later in this chapter; see
“Message-Passing Configuration Switches” on page 8-18 for information on the msg_switches).
The effect of these switches varies according to the switch:

- The-sz,-nd, -rlx, -pri, -pn, -nt, and msg_switches switches you use with the first file affect
the entire application.

- The -pt and -on switches you use with the first file affect the first file only.

¢ If you want -pt and -on to affect second and subsequent files, you must specify them again for
each file. These switches affect the associated file only.

If you run multiple processes on a single node, you must use the -pt switch to specify a unique
process type for each process. When two or more processes in an application run on the same node,
each must have a different process type. If you don’t use the -pt switch, each process will have
process type 0, and you will receive an error message.

For example, to run the programs myapp and myapp?2 as a single application, use the following
command:

% myapp \; myapp2 -pt 1

This command runs the program myapp with process type 0 and the program myapp2 with process
type 1 on your default number of nodes in your default partition.

To run the program manager on node 0 of a 20-node application and the program worker on the
remaining nodes, use the following command:

% manager -sz 20 -on 0 \; worker -on 1..n

Note that -on is specified twice, once for each file. This command creates an application of size 20
in your default partition. It then runs the program manager on node 0 of the application and the
program worker on nodes 1 through 19 of the application. All the resulting processes have process
type 0, but this does not create a conflict because manager and worker run on different nodes.

NOTE

If you forget the backslash before the semicolon, the first program
is run as an application by itself and the second program runs after
the first program finishes. This usually results in unexpected
behavior from the programs.

Paragon™ System User's Guide Using System Commands

Running an Application in a Particular Partition

To run an application in a partition other than your default partition, use the switch -pn partition.
You must have execute permission for the specified partition. The partition specified by -pn
overrides the value of NX_DFLT_PART, if any. If you don’t use the -pn switch, the application runs
in your default partition, as described under “Using the Default Partition” on page 2-13.

NOTE

If your default number of nodes, as specified by the environment
variable NX_DFLT_SIZE, is greater than the number of nodes
available in the specified partition, you may get a “partition
resources exceeded” or “request overlaps with nodes in use”
error.

If you see this error, use the -sz switch or change the value of NX_DFLT_SIZE to specify an
application size less than or equal to the size of the specified partition.

For example, to run the application myapp on your default number of nodes in the partition mypart,
use the following command:

% myapp -pn mypart

You can use an absolute or relative partition pathname with -pn (see ‘“Partition Pathnames” on page
2-33 for information on partition pathnames). For example, the following commands are equivalent:

% myapp -pn myorg.mypart
% myapp -pn .compute.myorg.mypart

For more information about partitions, see “Managing Partitions” on page 2-30.

Running an Application on a Particular Node Type

On some Paragon systems, not all the nodes in the compute partition have the same hardware. For
example, some nodes may have more memory than others, or some nodes may have I/O interfaces
that the others do not. The hardware characteristics of each node are described by a
comma-separated series of strings called attributes. You can use the command showpart -1 or
Ispart -1 to see the attributes of the nodes in a partition, as discussed under “Showing Partition
Characteristics” on page 2-54 and “Listing Subpartitions” on page 2-60.

2-23

Using System Commands

2-24

Node Attributes

Paragon™ System User's Guide

The meanings of the most commonly-seen node attributes are shown in Table 2-1. Other node
attributes (such as additional node or I/O types) may also be present on your system. Attributes are
not case-sensitive; for example, GP, gp, and Gp are all equivalent.

Table 2-1. Node Attributes

Attribute

Meaning

bootnode

Boot node.

gp

GP (two-processor) node.

mp

MP (three-processor) node. This includes MP-as-GP nodes.

mcp

Node with a message coprocessor.

nproc

Node with n application processors (not counting the message
COPIocessor).

nmb

Node with nM bytes of physical RAM.

io

Any I/O node.

net

I/O node with any type of network interface.

enet

Network node with Ethernet interface.

hippi

Network node with HIPPI interface.

scsi

I/0O node with a SCSI interface.

disk

SCSI node with any type of disk.

raid

Disk node with a RAID array.

tape

SCSI node with any type of tape drive.

3480

Tape node with 3480 tape drive.

dat

Tape node with DAT drive.

IDstring

SCSI node whose attached device returned the specified IDstring
(supplied by the device manufacturer) at boot time. For example, a disk
node might have the IDstring NCR ADP-92/01 0304.

NOTE

In the current release, the only supported configuration is for one
processor on each node to be a message coprocessor. This
means that all nodes are mep nodes, GP and MP-as-GP nodes
are 1proc, and MP nodes are 2proc.

Paragon™ System User's Guide Using System Commands

An attribute that is indented in the first column of Table 2-1 is a more specific version of the attribute
at the previous level of indentation. For example, net and scsi nodes are specific types of io node;
enet and hippi nodes are specific types of net node (and thus also specific types of io node).

‘When each node boots, the operating system gets the node’s attributes and stores them as a string.
This string includes all the attributes associated with the node (both the more-specific and
less-specific versions). When you request a node with a particular attribute, the system searches
these strings and returns only nodes whose strings contain the specified attribute. This means that
requesting a less-specific attribute may match a node with any of the more-specific types indented
below it. For example, a request for a scsi node may allocate a disk node or a tape node; however,
it will never allocate any type of net node (unless that node is a scsi node as well).

For example, a GP disk node with 32M bytes of memory might have the following attributes string:
GP,mcp, 1proc, 32mb, io,scsi,disk,NCR ADP-92/01 0302

e If yourequest a gp node, an io node, a scsi node, or a disk node, you might get the above node,
because all these attributes appear in the string.

¢ If yourequest an mp node, a net node, an enet node, or a tape node, you will not get the above
node, because none of these attributes appear in the string.

Specifying Node Attributes

Sometimes you might want to run an application only on nodes that have a certain attribute or set of
attributes; for example, only those nodes with 16M bytes or more of RAM. To do this, use the switch
-nt nodetype, where nodetype is one of the following:

attribute Selects nodes having the specified attribute. The standard node attributes are
shown in Table 2-1. For example, the string mp selects only MP nodes.

lattribute Selects nodes not having the specified attribute. No white space may appear
between the ! and the attribute. For example, the string !io selects only nodes
that are not I/0 nodes.

[relop][valuelattribute
Selects nodes having a specified value or range of values for the attribute:

¢ The relop can be =, >, >=, <, <=, !=, or ! (!= and ! mean the same thing).
If the relop is omitted, it defaults to =.

e The value can be any nonnegative integer. If the value is omitted, it
defaults to 1.

¢ The attribute can be any attribute shown in Table 2-1, but is usually

either proc or mb. (Other attributes have the value 1 if present or 0 if
absent.)

2-25

Using System Commands Paragon™ System User's Guide

2-26

No white space may appear between the relop, value, and attribute.

For example, the string >=16mb selects nodes with 16M bytes or more of
RAM; 32mb selects nodes with exactly 32M bytes of RAM; >proc selects
nodes with more than one processor.

ntypel[,ntype]...
Selects nodes having all the attributes specified by the list of ntypes, where
each ntype is a node type specifier of the form attribute, attribute, or
[relop][value]attribute. You can use white space (space, tab, or newline) on
either side of each comma, but not within an n#ype..

For example, the string mp,32mb selects MP nodes with exactly 32M bytes
of RAM; io,gp,>16mb selects GP-based I/O nodes with more than 16M bytes
of RAM; io,!enet selects I/O nodes that are not Ethernet nodes.

Quoting Node Attributes

If any characters that are special to your shell (such as >, <, or white space) appear in a nodetype
string, you must enclose the entire nodetype in quotes or precede each special character with a
backslash. For example:

% myapp -nt "mp, >16mb"

If you use the C shell, the special character ! must always be preceded by a backslash, even if the
nodetype is quoted. For example:

% myapp -nt \l!gp

Using Node Attributes with No Application Size

If you use the -nt switch and do not specify an application size (that is, if you don’t use the -sz switch,
the -nd switch, or the environment variable NX_DFLT_SIZE), the application runs on all the nodes
in the partition that have the specified attributes. If any of the specified nodes is not available (for
example, if the partition does not allow overlapping applications and one or more nodes of the
specified type already has an application running on it), the command fails with an error message
and the application does not run.

For example, the following command runs the application myapp on all the MP nodes in the default
partition:

[}

% myapp -nt mp

Paragon™ System User's Guide - Using System Commands

The following command runs the application myapp on all the GP nodes in the default partition that
are not I/O nodes (note that the exclamation point is escaped):

% myapp -nt gp,\!io
The following command runs the application myapp on all the nodes in the default partition that have
one processor and more than 16M bytes of memory (note that the nodetype is quoted, because it
contains a space and the special character >):

% myapp -nt "lproc, >16mb"

The above examples assume that the environment variable NX_DFLT_SIZE is not set.

Using Node Attributes with an Application Size

If you use the -nt switch together with the -sz switch, the -nd switch, or the environment variable
NX_DFLT_SIZE, the application runs on the specified nodes with the specified attributes, as
follows:

¢ For -sz size or NX_DFLT_SIZE, at least the specified number of nodes with the specified
attributes must be available in the partition.

¢ For -sz hXw, at least one rectangle of nodes of the specified size and shape, all of which have
the specified attributes, must be available somewhere in the partition.

¢ For -nd hXw:n, the specified rectangle of nodes must be available and all the nodes must have
the specified attributes.

If the specified nodes with the specified attributes are not available in the partition, the command
fails with an error message and the application does not run.

For example, the following command runs the application myapp on 5 MP nodes in the default
partition (it fails if less than 5 MP nodes are available):

% myapp -8z 5 -nt mp

The following command also runs the application myapp on 5 MP nodes in the default partition (it
fails if less than 5 MP nodes are available):

% setenv NX DFLT SIZE 5

o

% myapp -nt mp

The following command runs the application myapp on a 2-by-4-node rectangle of MP nodes in the
default partition (it fails if no such rectangle of MP nodes is available anywhere in the partition):

$ myapp -8z 2x4 -nt mp

2-27

Using System Commands Paragon"'I System User's Guide

2-28

The following command runs the application myapp on a 3-by-3-node rectangle of MP nodes in the
upper left corner of the default partition (it fails if the specified rectangle is not available or does not
consist entirely of MP nodes):

% myapp -nd 3x3:0 -nt mp

Using Node Attributes with a Relaxed Application Size

As discussed under “Relaxing Application Size” on page 2-17, you can use the -rlx switch to relax
the requirement that a specified number of nodes must be available. When you use -rlx together with
-nt, the application still runs only on nodes of the type you specify, but it may run on fewer nodes
than you requested. In other words, the application runs on as many nodes as possible having the
specified type, up to the requested number of nodes. However, there must be at least one node of the
specified type available or the command fails.

For example, if the environment variable NX_DFLT_SIZE is not set, the following command runs
the application myapp on every available MP node in the default partition:

o

% myapp -nt mp -rlx

Without the -rlx switch, this command would fail if any of the MP nodes in the default partition was
not available (for example, if the partition did not allow overlapping applications and one or more
of the MP nodes already had an application running on it). With the -rIx switch, this command runs
the application on as many MP nodes as it can get.

Another example: the following command runs the application nyapp on up to ten MP nodes (if less
than ten MP nodes are available in the default partition, the application runs on all the available MP

nodes):

% setenv NX DFLT SIZE 10

[}

$ myapp -nt mp -rlx

The following command runs the application myapp on up to five MP nodes (if less than five MP
nodes are available in the default partition, the application runs on all the available MP nodes):

% myapp -nt mp -sz 5 -rlx
In any of the above cases, if no MP nodes are available in the default partition, the command fails.
The following command runs the application myapp on up to a 3-by-3-node rectangle of MP nodes
located in the upper left corner of the default partition (if any of those nodes is not available or is not
an MP node, the application runs on the remaining nodes of that rectangle):

% myapp -nt mp -nd 3x3:0 -rlx

In this case, if no MP nodes are available in the specified rectangle, the command fails.

Paragon™ System User's Guide Using System Commands

Managing Running Applications

You use the standard OSF/1 techniques to manage running applications. For example, you use your
interrupt key (usually or <Ctrl-c>) to interrupt a running application. If you use the C
shell or Korn shell, you can use your suspend key (usually <Ctr1-z>) to suspend an application,
and the fg or bg command to resume it. See csh, sh, or ksh in the OSF/I Command Reference for
more information on these techniques.

NOTE

Interrupting or suspending an application that is “rolled out” will not
take effect until the application is “rolled in” again.

Parallel applications can be gang-scheduled to make more efficient use of system resources. In gang
scheduling, an application is allowed to run for a time period, called the rollin quantum, and then is
“rolled out” and another application is “rolled in” in its place. If the rollin quantum is long, you may
not see any response to a <Ctrl-c> or <Ctrl-z> for a long time. See “Scheduling
Characteristics” on page 2-39 for more information on gang scheduling.

You can also use the ps command to determine the status of an application, and the kill command
to terminate it. For example:

% myapp &
[1] 7045
% ps
PID TT STAT TIME COMMAND
5841 p3 S + 0:02.50 -csh (csh)
7045 p3 R 0:00.30 myapp
% kill 7045
% ps
PID TT STAT TIME COMMAND
5841 p3 S + 0:02.55 -csh (csh)
[1] + Terminated myapp
%

The ps command shows only processes running in the service partition. See ps and kill in the OSF/I
Command Reference for more information on these commands. To show processes running in
partitions other than the service partition, use the pspart command.

The myapp process that you see in the output of ps is a special process called the controlling process
that runs in the service partition; you do not see the other application processes in the output of ps.
However, sending a signal to the controlling process with , <Ctrl-c>, <Ctrl-z>,orkill
signals all the processes in the application. See “Managing Applications” on page 4-2 for more
information on the controlling process.

2-29

Using System Commands ' Paragon™ System User's Guide

If the application was started from the Bourne shell (sh) or from a shell script, you will see two
processes with the name of the application in the output of ps. One of these two processes is the
controlling process; the other is another special process, called the shepherd process. The shepherd
process is necessary for the application; do not kill it. When the application terminates, this process
will terminate as well.

To determine which process is which, use the command ps -f and examine the PPID (parent PID)
fields of the two processes. The shepherd process is the parent of the controlling process. For
example:

$ ps -f

USER PID PPID %CPU STARTED TT TIME COMMAND
chris 131125 131124 0.0 13:55:51 p2 0:00.28 -sh (sh)
chris 131129 131125 0.0 13:56:36 p2 0:00.05 myapp
chris 131130 131129 0.0 13:56:36 p2 0:00.03 myapp

In this case the second myapp process (PID 131130) is the controlling process. The first myapp
process, PID 131129, is the parent of the controlling process and is therefore the shepherd process.

You can use the pspart command to determine the status of all the applications in a particular
partition. See “Listing the Applications in a Partition” on page 2-64 for information on this
command.

You can also use the Interactive Parallel Debugger (ipd) to control the execution of an application,
down to the machine instruction. See the ParagonTM System Interactive Parallel Debugger
Reference Manual for information on ipd.

Managing Partitions

2-30

The nodes of the Paragon supercomputer are divided into overlapping groups called partitions.
When you run a parallel application, you must select a partition to run it in. The partition places
limits on the execution characteristics of the application, such as which nodes it can use, whether or
not it can use nodes that are already in use, and how long it can use them before it is “rolled out” and
another application is “rolled in.”

Depending on the policies of your site, you may or may not have to know any more about partitions
than what has been discussed in this chapter so far.

e At some sites, the system administrator configures all the partitions; ordinary users can simply
setthe NX_DFLT_PART variable to an appropriate value (or leave it unset and use the compute
partition) and then forget all about partitions. If your site is like this, you do not have to read this
section. However, you may wish to read it to help you understand how the system works.

e Atothersites, users create and configure their own partitions. If your site is like this, you should
read this section.

Paragon'" System User's Guide Using System Commands

This section includes the following information about partitions:

* Some special partitions that every Paragon supercomputer has.

* Specifying partitions with partition pathnames.

* The characteristics of a partition.

* Making partitions with the mkpart command.

* Removing partitions with the rmpart command.

* Showing the characteristics of a partition with the showpart command.
e Listing the subpartitions of a partition with the Ispart command.

» Listing the applications in a partition with the pspart command.

* Changing the characteristics of a partition with the chpart command.

Special Partitions
Every Paragon supercomputer has three special partitions:

e The root partition directly or indirectly contains all the other partitions in the system. It is the
only partition that does not have a parent partition.

* The service partition is the partition in which the users’ shells and other commands run. Its
parent is the root partition.

* The compute partition is the partition in which parallel applications run. Its parent is also the
root partition.

The characteristics of these partitions are determined by the system administrator. In particular, the
system administrator sets the ownership and permissions of these partitions according to local
policies. These ownerships and permissions determine whether or not ordinary users can create
partitions for their own use, or whether they must run applications in partitions provided for them by
the system administrator. If ordinary users are allowed to create partitions, the system administrator
can also place restrictions on the characteristics of partitions they create and the use of certain
application switches within partitions.

Typically, the service partition and compute partition are the only two children of the root partition

and do not overlap. However, the system administrator can choose to configure these partitions
differently, and may also create additional child partitions of the root partition.

2-31

Using System Commands Paragon™ System User's Guide

For example, some systems have an I/O partition: a third child of the root partition, which does not
overlap with either the service or compute partitions, and which contains the nodes that control disks
and other I/O devices. In other systems, the I/O “partition” is not a true partition, but a set of nodes
in the root partition that are not part of either the service or the compute partition.

The Root Partition

The root partition is the basis for all other partitions. The name of the root partition is . (dot).

The root partition contains every usable node in the system. Depending on the underlying hardware,
there may be unusable nodes within the root partition as well. The root partition organizes all the
nodes in the system into a two-dimensional grid, or mesh. For example, Figure 2-1 shows the root
partition of a 32-node system that is configured as a 4 by 8 node mesh. The nodes are numbered from
0to 31.

® @ ®
® @ @ O
® @ @ ©
® ® @ ©
® ® ® ®
® ® @ @
® ® @ @
® 6® @

Figure 2-1. The Root Partition of a 32-Node System

NOTE

The root partition is always rectangular. (This is not true of
partitions other than the root partition.)

2-32

Paragon™ System User's Guide Using System Commands

For example, a system with 31 nodes would also be a 4-by-8-node rectangle, numbered as shown in
Figure 2-1, but one of the nodes would be an unusable node, as described under “Unusable Nodes”
on page 2-37. You would not be able to start any processes or allocate any subpartitions using this
node.

The Service Partition

The service partition is the partition in which the users’ shells, OSF/1 commands, and other
non-parallel programs run. The name of the service partition is service. The service partition may
not contain any subpartitions.

When you log into the Paragon supercomputer, a shell is started for you on a node in the service
partition; when you execute a command in this shell, the command runs on a node in the service
partition. Note that the node the command runs on is not necessarily the same node that the shell runs
on; the system starts each new process on the node that is currently the least busy.

The Compute Partition

The compute partition is the partition in which parallel applications run. The name of the compute
partition is compute.

When you execute a parallel application, one process (called the controlling process) runs in the
service partition; the other processes of the application run in the compute partition, or in a
subpartition of the compute partition. You can specify which partition an application runs in when
you execute it.

Your system administrator determines whether or not you can create subpartitions in the compute
partition and whether or not you can execute applications in the compute partition itself. There may
also be other local policies that affect how you use the compute partition; for example, you may be
required to run your applications in certain subpartitions during the day and others at night.

Partition kPathnames

Since partitions have a hierarchical structure like directories, they also have pathnames like
directories. Like a file or directory pathname, a partition pathname identifies a partition within the
hierarchical partition structure by describing the path from a known location to the specified
partition.

Unlike file and directory pathnames, however, partition pathnames use a dot (.) instead of a slash
(/) to separate the elements of the pathname. This is why the name of the root partition is . (dot).

There is also no special partition pathname for “current partition” or “parent of the current partition.”
Also, you cannot use wildcards (* and ?) in partition pathnames.

2-33

Using System Commands Paragon™ System User's Guide

There are two types of partition pathnames:

* An absolute partition pathname specifies the path from the root partition to the specified
partition. An absolute partition pathname begins with a dot (.)

* A relative partition pathname specifies the path from the compute partition to the specified
partition. A relative partition pathname does not begin with a dot.

NOTE

Relative partition pathnames are always relative to the compute
partition (there is no “current partition”).

The absolute partition pathnames of the root partition, service partition, and compute partition are
. (dot), .service, and .compute respectively. Because these partitions are not subpartitions of the
compute partition, they do not have relative partition pathnames.

If the partition mypart is a subpartition of the compute partition, its absolute partition pathname is
.compute.mypart and its relative partition pathname is just mypart.

If subpart is a subpartition of mypart, its absolute partition pathname is .compute.mypart.subpart
and its relative partition pathname is mypart.subpart.

Partition Characteristics
Each partition has the following characteristics:
* A parent partition that contains it.
* A name that identifies it.
* A set of nodes that is allocated to it.

* An owner and group and a set of protection modes, like those of a file or directory, that
determine what actions a given user is allowed to perform on it.

e A et of scheduling characteristics that determine how applications are scheduled in it.
A partition’s characteristics are set when the partition is created. The mkpart command, described
under “Making Partitions” on page 2-46, lets you specify most of these characteristics on the

command line; if you don’t specify otherwise, the characteristics of a new partition are set to the
same values as those of its parent partition.

2-34

Paragon™ System User's Guide Using System Commands

You can use the showpart command, described under “Showing Partition Characteristics” on page
2-54, to determine a partition’s current characteristics.

A partition’s parent partition and nodes cannot be changed. You can change the other characteristics
with the chpart command, described under “Changing Partition Characteristics” on page 2-68.

Parent Partition

Each partition is contained within another partition. The containing partition is called the parent
partition, and the contained partition is called a child partition or subpartition of the parent partition.
(There is one exception to this rule: the root partition has no parent.)

You specify a partition’s parent when you create it with mkpart. The parent partition determines the
set of nodes that are available to be allocated to the new partition (a partition cannot include any
nodes other than the nodes of its parent). The parent partition also determines the default
characteristics of the new partition, as mentioned earlier. A partition’s parent does not change for the
life of the partition.

Partition Name

Each partition is identified by a name. A partition’s name must be unique among all the partitions
with the same parent. Partition names can be any length, but must consist of only uppercase letters
(A-Z), lowercase letters (a-z), digits (0-9), and underscores (_).

You specify a partition’s name when you create it with mkpart, and you can use chpart to change
an existing partition’s name (you must have write permission on the partition’s parent partition).

Nodes Allocated to the Partition

Each partition has a set of nodes allocated to it from its parent partition. Depending on the
characteristics of the parent partition, this allocation may or may not be exclusive: some or all of
these nodes may also be allocated to other partitions and/or applications. The number of nodes in
this set is called the partition’s size.

You can specify the set of nodes allocated to the partition when you create it with mkpart. You can
specify the partition’s size and let the operating system select the nodes, or you can specify certain
node numbers from the parent partition. If you don’t specify either, the new partition consists of all
the nodes of the parent partition.

The set of nodes allocated to a partition does not change for the life of the partition (that is, partitions
never move or change their size or shape). Depending on how you allocate the nodes, they may or
may not be contiguous (all adjacent to each other). Figure 2-2 shows examples of contiguous and
noncontiguous partitions.

2-35

Using System Commands Paragon™ System User's Guide

O OO0 O0O0O0

O
©
O
O
O

©l0 0 ol® ®|o
O00O0 O00O0O
0000 Of®loo
® elo o 00le|o
Ol®@l0 O O 0O|e|0

® 00 0l® 6|0
0000 OO0lelo

Contiguous Partitions Noncontiguous Partitions

2-36

Figure 2-2. Node Numbers in Contiguous and Noncontiguous Partitions

Node Numbers Within a Partition

Each node in a partition has a node number within the partition: an integer from 0 to one less than
the partition’s size. The nodes in a partition are typically numbered from left to right and then from
top to bottom, as shown in Figure 2-2.

Paragon™ System User's Guide Using System Commands

NOTE

Because partitions can overlap, a single physical node can have
many logical node numbers.

For example, Figure 2-3 shows two partitions, called Partition A and Partition B, that have the same
parent partition. Partition A consists of nodes 1 through 4 of the parent partition, and Partition B
consists of nodes 4 through 8 of the parent partition. In this case, node 4 of the parent partition is also
known as node 3 of Partition A and node O of Partition B.

Parent Partition
Partition A Partition B

Y
OO0 O 000 0 0 O

Partition Node Numbers
Parent 0] 1 2 3 4 5 6 7 8
A - 0 1 2 3 - - - -
B - - - - 0 1 2 3 4

Figure 2-3. Node Numbers in Overlapping Partitions

Unusable Nodes

Occasionally a node may become unusable because of a hardware or software failure. If this occurs,
the node is still allocated to any partitions to which it was allocated before it became unusable, but
no applications can be run on that node and no new partitions can include that node until the node

becomes usable again. The showpart and Ispart commands indicate if there are any unusable nodes
in a partition.

2-37

Using System Commands Paragon™ System User's Guide

2-38

For example, suppose you make a partition containing 20 nodes and later one of those nodes
becomes unusable. If you attempt to run an application or make a subpartition with all 20 nodes of
this partition while the node is unusable, the attempt will fail.

Owner, Group, and Protection Modes

Each partition has an owner, a group, and a set of protection modes, like those of a file or directory,
that determine who can perform what operations on the partition.

When you create a partition with mkpart, you become the new partition’s owner; the new partition’s
group is set to your current group (see newgrp in the OSF/I Command Reference for more
information on groups). If you are the owner of a partition, you can use chpart to change an existing
partition’s group; only the system administrator can change an existing partition’s ownership.

A partition’s protection modes consist of three groups of three permission bits (read, write, and
execute for owner; read, write, and execute for group; and read, write, and execute for “other”), as
described for the chmod command in the OSF/1 Command Reference. The read, write, and execute
permission bits have the following meanings for a partition:

r (read) Allows listing the subpartitions and characteristics of the partition.

w (write) Allows creating and removing subpartitions in the partition and changing the
partition’s characteristics.

X (execute) Allows executing applications in the partition.

The system administrator (rooft) is not affected by these permission bits. root can do anything to any
partition at any time.

The permission bits can be expressed as a three-digit octal number (as for the chmod command) or
as a string of the form rwxrwxrwx (as used by the Is -1 command, where a letter represents a bit
that is “on” and a dash (-) represents a bit that is “off”’). For example, the octal number 754 is
equivalent to the string rwxr-xr--; both grant all permissions to the owner, read and execute
permissions to the group, and read permission only to all other users.

When you create a partition with mkpart, you can specify its protection modes. If you don’t specify
a partition’s protection modes when you create it, they are set to the same values as those of the
parent partition. If you are the owner of a partition or the system administrator, you can use chpart
to change an existing partition’s protection modes.

Paragon™ System User's Guide Using System Commands

Scheduling Characteristics

Each partition has a set of scheduling characteristics that determine how the applications running in
the partition are scheduled (that is, how the system arbitrates between processes when there are
several processes running on a single node).

You can specify a partition’s scheduling characteristics when you create it with mkpart and change
them with chpart. If you don’t specify a partition’s scheduling characteristics when you create it,
they are set to the same values as those of the parent partition.

A partition uses one of three different forms of scheduling: standard scheduling, space sharing, or
gang scheduling.

e Partitions that use standard scheduling use the standard OSF/1 scheduling mechanisms. This
gives good response to user input, but may result in poor performance for parallel applications
(when one process in the application becomes inactive, other processes that depend on that
process for information have to wait until it becomes active again).

¢ Partitions that use space sharing allow only one application per node. When you run an
application in a space-shared partition, the partition checks to see if another application or
partition is already using the requested nodes. If any of the nodes are in use, your application
fails immediately with the error message “request overlaps with nodes in use.” However, if all
the specified nodes are available, your application begins running immediately and continues
running, without interruption, until it completes.

e Partitions that use gang scheduling use a modified scheduling mechanism that makes all the
processes in a parallel application active at the same time. Also, where standard scheduling
swaps processes in and out frequently (typically every 100 milliseconds), gang scheduling
swaps applications in and out on the basis of the partition’s rollin quantum: a time period that
can be up to 24 hours long. A long rollin quantum gives good performance for parallel
applications, because the application can run for a long time without being interrupted, but may
result in poor response to user input (when you give input to an application that is rolled out, the
application does not respond until it is rolled in again).

Standard-scheduled partitions should be used to run interactive applications and applications that are
being debugged; space-shared and gang-scheduled partitions should be used to run non-interactive

(typically either computationally-intensive or I/O-intensive) applications.

The following sections give you more information about these three forms of scheduling.

2-39

Using System Commands Paragon™ System User's Guide

Standard Scheduling

Standard scheduling is the same as the scheduling technique used on single-processor OSF/1
systems. Standard scheduling is always used in the service partition.

In a partition that uses standard scheduling, each node is scheduled like a separate computer; there
is no attempt to coordinate related processes running on separate processors.

NOTE

A parition that uses standard scheduling may not contain
subpartitions, and may not overlap any other partitions that use
standard scheduling.

In a partition that uses standard scheduling, each process has a priority, a number from -20 (high
priority) to 20 (low priority), that is used in determining how much processor time the process gets.
Partitions that use standard scheduling give good interactive performance for each individual
process in the partition. However, there is no guarantee that related processes are active at the same
time. This means that a process in a parallel application running in such a partition may find itself
waiting for a message from a process that is not active, which reduces the performance of the
application. To avoid this problem, you can use gang scheduling.

Space Sharing

Space sharing, also referred to as tiling, is a scheduling technique that prevents partitions and
applications from overlapping. (Overlapping means having any physical nodes in common.) Space
sharing is typically used in all partitions other than the service and compute partitions. If your system
administrator has disallowed gang scheduling, space sharing is used in all partitions other than the
service partition. Within a space-shared partition:

¢ Subpartitions may not overlap other subpartitions.

¢ Applications may not overlap other applications.

e Active subpartitions may not overlap applications.

An active subpartition is a subpartition in which one or more applications is running.

2-40

Paragon™ System User's Guide Using System Commands

NOTE

If an application is running anywhere in a subpartition or any of its
sub-subpartitions, even on a single node, the entire subpartition is
considered active, and is not allowed to overlap with a running
application.

If a subpartition is not active (contains no running applications), it can overlap a running application,
but it cannot overlap another partition.

In a space-shared partition, any attempt to create a partition or run an application that would cause
an overlap fails immediately. However, once an application is successfully started, it continues
running without interruption until it completes. (Exception: if a space-shared partition overlaps with
another partition, the entire partition can be interrupted by applications running in that other
partition. This can only occur if the space-shared partition’s parent is a gang-scheduled partition.

Space sharing is the opposite of the “time sharing” used in standard scheduling and gang scheduling.
In time sharing, multiple applications can use the same nodes at the same time, but each application
gets only a fraction of its nodes’ processor time. In space sharing, no two applications can use a node
at the same time, but each application gets 100% of its nodes’ processor time.

Although space sharing allows only one application per node, you can have more than one process
per node within a single application. If there are multiple processes per node within an application,
standard scheduling is used to schedule these processes against each other on each node.

Partitions that use space sharing may contain subpartitions, which cannot overlap. The space-shared
partition itself can overlap another partition of any type, but the advantages of space sharing may be
lost if space-shared partitions overlap with other partitions.

Like gang-scheduled partitions, space-shared partitions have a priority and an effective priority
limit. Each application within a space-shared partition has a priority from 0 to 10, and the partition’s
priority is the lesser of the effective priority limit and the highest application priority in the partition.
Since applications in space-scheduled partitions never overlap, their priorities are never compared
with each other. However, the priorities of applications in a space-scheduled partition are important
because they determine the partition’s priority when compared with other partitions at its own
hierarchical level.

Unlike gang-scheduled partitions, space-shared partitions do not have a rollin quantum (since

applications never overlap, they never have to be rolled in or out). In effect, the rollin quantum of a
space-shared partition is “infinite.”

2-41

Using System Commands - Paragon™ System User's Guide

2-42

Gang Scheduling

Gang scheduling is a special scheduling technique that coordinates the scheduling of related
processes running on separate processors. Gang scheduling is typically used only in the compute
partition, or is not used at all (this is determined by your system administrator).

In a partition that uses gang scheduling, the nodes are scheduled so that all the processes in an
application are active at the same time. If there are multiple processes per node in the active
application, standard scheduling is used to schedule these processes against each other while the
application is active.

Partitions that use gang scheduling may contain subpartitions, and may overlap other partitions of
any type.

In a partition that uses gang scheduling, not only does each process have a priority, but there is a
separate priority for the application as a whole. An application’s priority is a number from 0 (low
priority) to 10 (high priority). A gang-scheduled partition also has a priority of its own, as well as
two other quantities called the effective priority limit and the rollin quantum:

* A partition’s priority is the lower of the following:
- The priority of the highest-priority application or subpartition in the partition.
- The partition’s effective priority limit.

* A partition’s effective priority limit is a number from 0 to 10 that places an upper limit on the
partition’s priority. It does not affect the priorities of applications or partitions within the
partition.

e A partition’s rollin quantum is the amount of time each application in the partition is allowed
to be active before the system considers running another application instead. The term “rollin
quantum” comes from the application being “rolled in” when it is made active, and “rolled out”
when it is made inactive.

A gang-scheduled partition’s effective priority limit and rollin quantum are set when the partition is
created, and do not vary unless you change them with the chpart command. A gang-scheduled
partition’s priority may vary over time, depending on the priorities of the applications and
subpartitions in the partition.

A partition that uses standard scheduling does not have an effective priority limit or rollin quantum.
It also does not have a numeric priority; instead, its priority is “infinite” (that is, higher than the
priority of any gang-scheduled partition or application).

Gang scheduling is performed recursively, partition by partition. For each gang-scheduled partition
in the system, starting with the root partition, the operating system examines all the entities
(applications and partitions) within the partition:

Paragon™ System User's Guide Using System Commands

1. Entities that do not overlap other entities (that is, they have no nodes in common with any other
entity in the partition) are simply scheduled to run for the partition’s rollin quantum.

2. 'Where two or more entities overlap, the priorities of the overlapping entities are compared, and
the highest-priority entity is scheduled to run for the partition’s rollin quantum.

3. If two or more entities overlap and are tied for highest priority, they are scheduled in a
round-robin fashion (each takes turns running for one full rollin quantum).

4. If an entity that is scheduled to run is a partition, the operating system examines and schedules
the entities in the partition as described above. This process continues recursively as necessary.

At the end of each partition’s rollin quantum, the operating system examines and schedules the
entities in the partition again.

Note that rules 2 and 3 mean that, when applications or partitions overlap, the one with the highest
priority gets one rollin quantum after another until it completes. Entities with lower priorities get no
processor time at all until the higher-priority entity has completed. If there is a tie for highest priority,
the tied high-priority entities take turns running, but entities with lower priority get no processor
time until all the high-priority entities complete. Partitions that use standard scheduling always have
the highest priority, so if a standard-scheduled partition overlaps a gang-scheduied partition or an
application, the standard-scheduled partition always wins.

NOTE

Use of gang scheduling may be limited by the policies of your site.

Your system administrator can require all compute partitions to use space sharing. If gang
scheduling is allowed, the administrator can restrict the number of gang-scheduled partitions in the
system, can set a minimum rollin quantum, and can restrict the number of applications that can
overlap in each gang-scheduled partition. If you try to create a partition that would exceed these
restrictions, you see an error message such as “exceeded allocator configuration parameters” or
“scheduling parameters conflict with allocator configuration.” See your system administrator for
information on the policies in force at your site.

2-43

Using System Commands

Summary of Scheduling Types

Paragon™ System User's Guide

Table 2-2 summarizes the differences between the three scheduling types.

Table 2-2. Summary of Scheduling Types

Characteristic

Standard Scheduling

Space Sharing

Gang Scheduling

Scheduling method used
within partition

Each process is scheduled
by itself using standard
UNIX techniques

All processes in an
application run at the
same time; each
application runs until it
completes

All processes in an
application run at the
same time; applications
may be rolled in and out

Partitions that typically
use this scheduling type

Service partition

All other partitions

Compute partition, or
none at all

Restrictions on partition

Partition may not overlap

Partition may overlap

Partition may overlap

subpartition overlap

allowed

overlap other
subpartitions; active
subpartitions may not

overlap other standard-scheduled | other partitions (but other partitions
partitions overlap can lose benefits
of space sharing)
Restrictions on Subpartitions are not Subpartitions may not Subpartitions may

overlap; maximum depth
of overlap can be
restricted by system

overlap applications administrator
Restrictions on Applications may overlap | Applications may not Applications may overlap;
application overlap to any depth overlap other applications | maximum depth of
or active subpartitions overlap can be restricted
by system administrator
Special partition Partition priority Partition priority, Partition priority,
characteristics (always “infinite”) effective priority limit effective priority limit,

rollin quantum

2-44

Paragon™ System User's Guide Using System Commands

A Scheduling Example

Suppose that a partition has 10 nodes, and an application is currently running on 5 of those nodes. If
you attempt to run a new application on 6 nodes of that partition, the results depend on the partition’s
scheduling type:

e If the partition uses standard scheduling, both applications run at once. Where the applications
overlap, the two applications’ processes time-share the node. No attempt is made to coordinate
when the processes are active with the rest of the application.

e If the partition uses space sharing, the new application fails with the error message “request
overlaps with nodes in use” and does not run.

e If the partition uses gang scheduling, the two applications’ priorities are compared:

- If the new application’s priority is greater than the old application’s, the entire old
application is immediately rolled out and the new application starts running. The new
application runs until it finishes, then the old application is rolled back in.

- Ifthe new application’s priority is less than the old application’s, the entire new application
waits until the old application finishes. (During this time it may appear to be “hung.””) When
the old application finishes, the new application is rolled in and runs until it finishes.

- Ifthe two applications’ priorities are equal, the applications alternate running on each rollin
quantum. If one application finishes first, the other runs in every rollin quantum until it
finishes.

You can use the pspart command to determine which applications are currently running in a

partition and what their priorities are, and you can use the command showpart -f to determine which
nodes in a partition have applications running on them.

2-45

Using System Commands Paragon™ System User's Guide

Making Partitions

2-46

Command Synopsis Description

mkpart [-sz size | -sz hXw | -nd nodespec] Create a partition.
[-nt nodetype] [-rlx]
[-ss|[[-sps!-rq time] [-epl priority]1]]
[-mod mode 1 name

To create a partition, use the mkpart command. You can specify either a relative or an absolute
partition pathname for the new partition. The specified new partition must not exist; the parent
partition of the new partition must exist and must grant you write permission.

For example, to create a partition called mypart whose parent partition is the compute partition, you
can use the following command:

% mkpart mypart
The following command has the same effect, but uses an absolute partition pathname:

$ mkpart .compute.mypart

Specifying the Nodes Allocated to the Partition

The mkpart command gives you four ways to specify which nodes are allocated to the new
partition:

-SZ size Creates a partition whose size (number of nodes) is size. The -sz size switch
attempts to create a square partition if it can. If this is not possible, it attempts
to create a rectangular partition that is either twice as wide as it is high or
twice as high as it is wide. If this is not possible, it uses any available nodes.
In this case, the nodes allocated to the partition may not be contiguous.

-sz hXw Creates a contiguous rectangular partition that is 2 nodes high and w nodes
wide. (You can use an uppercase or lowercase letter X between the integers
hand w.)

-nd nodespec Creates a partition that consists of exactly the specified nodes, where
nodespec is one of the following:

X The node whose node number is x.

Xoy The range of nodes from numbers x to y.

Paragon™ System User's Guide Using System Commands

hXw:n The rectangular group of nodes that is 4 nodes high
and w nodes wide and whose upper left comer is node
number n. (You can use an uppercase or lowercase
letter X between the integers 4 and w.)

nspec[,nspec]... The specified list of nodes, where each nspec is a node
specifier of the form x, x..y, or A Xw:n (no node may
appear more than once in this list). Do not put any
spaces in this list.

The numbers you use with -nd are node numbers within the parent partition,
which always range from 0 to one less than the size of the partition.

-nt nodetype Creates a partition that consists only of nodes of the specified type. The
nodetype is the same as the nodetype used with the -nt switch when running
an application, as described under “Running an Application on a Particular
Node Type” on page 2-23.

If you don’t use the -sz, -nd, or -nt switch, all the available nodes of the parent partition are allocated
to the new partition.

You can use at most one -sz or -nd switch in a single mkpart command. You can use -nt alone, or
with -sz or -nd. If you use -nt without -sz or -nd, the new partition consists of all the nodes of the
specified type in the parent partition. If you use -nt together with -sz or -nd, the new partition
consists of the specified nodes of the specified type; if the specified nodes are not all of the specified
type, the command fails (see the examples below for more information).

Examples

The following examples all create a partition called mypart whose parent partition is the compute
partition (that is, the new partition’s absolute partition pathname is .compute.mypart):

* This command creates a 50-node partition with no specified shape or location:
% mkpart -sz 50 mypart

The nodes of the new partition are selected from the parent partition by the system, and they
may not be contiguous.

e This command creates a partition 10 nodes high and 5 nodes wide:
% mkpart -sz 10x5 mypart

The position of the new partition within the parent partition is selected by the system, but the
new partition is a contiguous rectangle.

2-47

Using System Commands Paragon™ System User's Guide

¢ This command creates a partition 10 nodes high and 5 nodes wide located in the upper left
corner of the parent partition:

% mkpart -nd 10X5:0 mypart

The shape and position of the new partition are specified by the user, and the new partition is a
contiguous rectangle.

* This command creates a partition that consists of nodes 30 through 79 of the parent partition:
$ mkpart -nd 30..79 mypart

The specific nodes of the partition are specified by the user, and the new partition may or may
not be contiguous (its shape depends on the size and shape of the compute partition).

* This command creates a partition that consists of node 0, nodes 3 through 16, and a 5 by 7 node
rectangle located at node 21 of the parent partition:

$ mkpart -nd 0,3..16,5X7:21 mypart

The specific nodes of the partition are specified by the user, and the new partition is not
contiguous (its shape depends on the size and shape of the compute partition).

e This command creates a partition that consists of all the MP nodes with 32M bytes of memory
in the parent partition:

% mkpart -nt mp,32mb mypart
If there are no 32MB MP nodes in the parent partition, the command fails.
e This command creates a 50-node partition that consists entirely of two-procesor nodes:
% mkpart -sz 50 -nt 2proc mypart
If there are not at least 50 two-processor nodes in the partition, the command fails.

* This command creates a partition 5 nodes high and 10 nodes wide in the upper left corner of the
parent partition, which consists entirely of GP nodes:

% mkpart -nd 5x10:0 -nt gp mypart
If the specified rectangle does not consist entirely of GP nodes, the command fails.
No matter how you specify the partition’s size, nodes are always numbered from 0 to one less than

the partition’s size. In most cases, they are numbered from left to right and then top to bottom, as
discussed under “Nodes Allocated to the Partition” on page 2-35. However, if you use the -nd

2-48

Paragon™ System User's Guide Using System Commands

switch, the nodes in the new partition are numbered in the order you specified them in the -nd switch.
For example, the following command creates a partition that consists of nodes 30 through 79 of the
compute partition:

% mkpart -nd 79..30 mypart

In this case, node 79 of the parent partition is node 0 of the new partition; node 78 of the parent
partition is node 1 of the new partition; and so on to node 30 of the parent partition, which is node
49 of the new partition.

Relaxing Partition Size

No matter how you specify the partition’s size, if any of the nodes you request is not available, the
mkpart command fails with an error message and no partition is created. Whether or not a node is
available is determined by the parent partition’s scheduling type and whether or not the node is
already in use; for example, if the partition does not permit overlapping subpartitions, any node that
is already allocated to a subpartition is not available. See “Scheduling Characteristics” on page 2-39
for more information. A node can also be unavailable due to a software or hardware problem; see
“Unusable Nodes” on page 2-37.

You can use the switch -rlx to relax the requirement that the exact specified number of nodes must
be available. When you use -rlx, the new partition may consist of fewer nodes than you requested.

In other words, the new partition consists of as many nodes as possible, up to the requested number
of nodes. However, there must be at least one node available or the mkpart command still fails.

NOTE

-rlx can be used to relax the default size, the -sz size switch, or
the -nd switch. It cannot be used together with the switch -sz hXw.

For example, the following command creates a partition called mypart that consists of every
available node in the compute partition:
% mkpart -rlx mypart

The following command creates a partition that consists of up to five nodes of the compute partition.
If less than five nodes are available, the application consists of all the available nodes:

% mkpart -sz 5 -rlx mypart

In either of the above cases, if no nodes are available in the compute partition, the command fails.

2-49

Using System Commands Paragon" System User's Guide

2-50

The following command creates a partition that consists of up zo a 3-by-3-node rectangle of nodes
located in the upper left corner of the compute partition. If any of those nodes is not available, the
partition consists of the remaining nodes of that rectangle.

$ mkpart -nd 3x3:0 -rlx mypart
In this case, if no nodes are available in the specified rectangle, the command fails.
If you use -rlx together with -nt it relaxes the number of nodes requested, but does not relax the type
of nodes requested. The new partition will always consist entirely of nodes of the type specified by
-nt, but it may consist of fewer nodes than specified by -sz, -nd, or the default size. The command
fails unless there is at least one node of the specified type available.
For example, the following command creates a partition that is up to 5 nodes high and 10 nodes wide,
is located in the upper left corner of the compute partition, and consists entirely of GP nodes. If any
of those nodes is not available or is not a GP node, the partition consists of the available GP nodes
in that rectangle.

$ mkpart -nd 5x10:0 -nt gp -rlx mypart

If no GP nodes are available in the specified rectangle, the command fails.

Specifying Protection Modes
The mkpart command gives you two ways to specify the protection modes of the new partition:

-mod nnn Creates a partition whose protection modes are specified by the three-digit
octal number nnn, as used by the chmod command (see chmod in the OSF/!
Command Reference for more information).

-mod string Creates a partition whose protection modes are specified by the
nine-character string string. The string must have the form rwxrwxrwx,
where a letter (r, w, or x) represents a permission granted and a dash (-)
represents a permission denied, as displayed by the command Is -1 (see Is in

the OSF/I Command Reference for more information).

You can use at most one -mod switch in a single mkpart command. If you don’t use the -mod
switch, the new partition is given the same protection modes as its parent partition.

For example, the following command creates a partition that is readable, writable, and executable
by you; readable and executable by your group, and only readable by others:

% mkpart -mod rwxr-xr-- mypart
The following command has the same effect, but uses an octal number:

% mkpart -mod 754 mypart

Paragon™ System User's Guide

Using System Commands

Specifying Scheduling Characteristics

The mkpart command gives you three switches to specify the scheduling characteristics of the new

partition:

-SS

-rq time

-sps

-epl priority

Creates a partition that uses standard scheduling.
-ss cannot be used with -sps, -rq or -epl.

Creates a partition that uses gang scheduling with a rollin quantum of time,
where time is one of the following:

n n milliseconds (if # is not a multiple of 100, it is
silently rounded up to the next multiple of 100).

ns n seconds.

nm n minutes.

nh n hours.

0 “Infinite” time: once rolled in, an application runs until
it exits.

The maximum rollin quantum is 24 hours; the minimum rollin quantum for
your system is determined by your system administrator.

-rq cannot be used with -ss or -sps. -rq can be used with or without -epl; if
you use -rq without -epl, the new partition is a gang-scheduled partition with
the same effective priority limit as its parent partition.

If gang-scheduled partitions are not allowed at your site, or creating a
gang-scheduled partition would exceed the maximum number of
gang-scheduled partitions, any attempt to create a partition with -rq fails.
Creates a partition that uses space sharing.

-sps cannot be used with -ss or -rq. -sps can be used with or without -epl; if
you use -sps without -epl, the new partition is a space-shared partition with

the same effective priority limit as its parent partition.

Creates a partition with an effective priority limit of priority, where priority
is an integer from O to 10 inclusive (0 is low priority, 10 is high priority).

-epl cannot be used together with -ss. If you use -epl without either -sps or
-rq, the results depend on the scheduling type of the parent partition:

2-51

Using System Commands Paragon™ System User's Guide

Removing

2-52

¢ If the parent partition is a space-shared partition, the new partition is a
space-shared partition with the specified effective priority limit.

e If the parent partition is a gang-scheduled partition, the new partition is
a gang-scheduled partition with the specified effective priority limit and
the same rollin quantum as its parent. If this would exceed the maximum
number of gang-scheduled partitions, the new partition is a space-shared
partition instead.

If you don’t use the -ss, -rq, or -sps switch, the new partition uses the same scheduling technique,
rollin quantum, and effective priority limit as its parent partition.

For example, the following command creates a partition that uses standard scheduling:
% mkpart -ss mypart

The following command creates a partition that uses gang scheduling with a rollin quantum of 10
seconds and the same effective priority limit as its parent partition:

% mkpart -rq 10s mypart

The following command creates a partition that uses space sharing with the same effective priority
limit as its parent partition:

% mkpart -sps mypart

The following command creates a partition that uses gang scheduling with a rollin quantum of 5
minutes and an effective priority limit of 6:

% mkpart -rq 5m -epl 6 mypart

Partitions
Command Synopsis : Description
rmpart [-f] [-r] partition ' Remove a partition.

To remove an existing partition, use the rmpart command. You must have write permission on the
parent partition of the partition to be removed. You can specify the partition to be removed with
either a relative or an absolute partition pathname.

For example, to remove the partition called mypart, whose parent partition is the compute partition,
you can use the following command:

% rmpart mypart

Paragon' " System User's Guide Using System Commands

The following command has the same effect, but uses an absolute partition pathname:

$ rmpart .compute.mypart

Removing Partitions Containing Running Applications

If you specify a partition that contains any running applications, you see an error message and the
partition is not removed. You can force rmpart to remove a partition that contains running
applications with the -f switch. When you use the -f switch, rmpart terminates all the applications
running in the specified partition and then removes it.

For example, if there are applications running in mypart, use the following command to terminate
the applications and remove the partition:

% rmpart -f mypart

Removing Partitions Containing Subpartitions

If you specify a partition that contains any subpartitions, you see an error message and the partition
is not removed. You can force rmpart to remove a partition that contains subpartitions with the -r
switch. When you use the -r switch, rmpart recursively removes all the subpartitions in the

specified partition (and their sub-subpartitions, and so on) and then removes the specified partition.

For example, if there are subpartitions in mypart, use the following command to remove mypart and
all its subpartitions:

% rmpart -r mypart

rmpart -r is an “all or nothing” operation. If any subpartitions cannot be removed, the command
fails and no subpartitions are removed.

The -r switch does not imply -f. If mypart or any of its subpartitions contains any running
applications, you see an error message and none of the partitions are removed. You can force rmpart
to remove a partition that contains subpartitions and running applications by using the -r and -f
switches together. When you use both these switches, rmpart terminates all the applications running
in the specified partition and its subpartitions, removes all the subpartitions in the specified partition,
and then removes the specified partition.

2-53

Using System Commands . Paragon™ System User's Guide

Showing Partition Characteristics

Command Synopsis Description

showpart [-f][-1|-p] [-w] [-nt nodetype] Show the characteristics of a partition.
[partition]

To show the characteristics of a partition, use the showpart command. You can specify the partition
with either a relative or an absolute partition pathname. If you don’t specify a partition, showpart
shows the characteristics of your default partition (see “Using the Default Partition” on page 2-13).
In either case, you must have read permission on the specified partition.

For example, to show the characteristics of the partition called mypart, whose parent partition is the
compute partition, you can use the following command:

% showpart mypart

USER GROUP ACCESS SIZE FREE RQ EPL
smith eng 777 9 5 15m 5
e +
or1
4] . ox * x|
8| . * * x|
12] . * * x|
fmmm +

The following command has the same effect, but uses an absolute partition pathname:
% showpart .compute.mypart

The columns at the top of the showpart output have the following meanings:

USER The owner of the partition, in this case smith.
GROUP The group of the partition, in this case eng.
ACCESS The access permissions, expressed as an octal number, in this case 777 (which

represents the permissions rwxrwxrwx).
SIZE The number of nodes in the partition, in this case 9.

FREE The number of free nodes in the partition, in this case 5 (see “Showing Free
Nodes” on page 2-55 for more information on free nodes).

RQ The rollin quantum or scheduling type of the partition, as follows:

- The partition uses standard scheduling.

2-54

Paragon™ System User's Guide Using System Commands

SPS The partition uses space sharing.

time The partition uses gang scheduling with a rollin
quantum of time. The time is expressed as a number
followed by an optional letter: no letter for
milliseconds, s for seconds, m for minutes, or h for
hours.

In this case, the partition is a gang-scheduled partition with a rollin quantum
of 15 minutes.

EPL The effective priority limit of the partition, in this case 5, or a dash (-) for a
standard-scheduled partition.

See “Partition Characteristics” on page 2-34 for information on these partition characteristics.

The rectangular picture at the bottom of the showpart output shows the size, shape, and position of
the specified partition within the system:

» The large rectangle represents the root partition. In this case, the root partition is 4 nodes high
and 4 nodes wide.

e The numbers to the left of the rectangle show the node numbers of the nodes in the first column
of each row. In this case, the first node in the top row is node 0, the first node in the second row
is node 4, the first node in the third row is node 8, and the first node in the bottom row is node 12.

» Asterisks (*) within the rectangle represent nodes that are allocated to the specified partition;
periods (.) represent other nodes. In this case, mypart consists of nodes 5-7, 9—11, and 13-15
of the root partition.

e Ifyouseeadash (-) or an X within the rectangle, it represents an unusable node that is allocated
to the specified partition. You cannot run any applications or allocate any partitions using this
node. See “Unusable Nodes” on page 2-37 for more information.

Showing Free Nodes

The output of Ispart or showpart includes the number of free nodes in the FREE column. A node
is free if no application is running on that node and no subpartition in which any applications are
running includes that node. (Note that all the nodes of a subpartition are considered busy if an
application is running anywhere in the subpartition, or in any of its sub-subpartitions. This occurs
because partitions are scheduled recursively.)

You can use the -f switch of showpart to see which nodes are free. The output of showpart -f is the
same as the regular showpart output, except that free nodes are shown as an F instead of an asterisk.

2-55

Using System Commands ' Paragon™ System User's Guide

For example, the following command shows the free nodes in the partition called mypart:

$ showpart -f mypart

USER GROUP ACCESS SIZE FREE RQ EPL

smith eng 777 9 5 15m 5
Fommmm—— - +
0] |
4! . * k% |
8] . *FF |
12] FFF |
tommm - +

In this case, mypart has five free nodes: nodes 4, 5, 6, 7, and 8 of the partition.

Showing Node Attributes

On some Paragon systems, not all the nodes in the compute partition have the same hardware. For
example, some nodes may have more memory than others, or some nodes may have I/O interfaces
that the others do not. The hardware characteristics of each node are described by a
comma-separated series of strings called attributes. See “Running an Application on a Particular
Node Type” on page 2-23 for information on node attributes.

You can use the -1 switch of showpart to list the attributes of the nodes in the partition. The output
of showpart -1 shows the attributes of every node in the partition; it also includes an ATTR column
that lists the attributes that all the nodes in the partition have in common.

For example, the following command shows the node attributes of the partition called mypart:
% showpart -1 mypart
USER GROUP ACCESS SIZE FREE ROQ EPL ATTR
smith eng 777 9 5 15m 5 2proc,MP

0..2,4,5 2proc, 64mb,MP
3,6..8 2proc,128mb,MP

o +
or|
4| L x x %]
8| Lox k% |
12| P A I
e +

In this case, mypart has five two-processor MP nodes with 64M bytes of memory (nodes 0, 1, 2, 4,
and 5) and four two-processor MP nodes with 128M bytes of memory (nodes 3, 6, 7, and 8). The
attributes that all nodes have in common are that they are all two-processor MP nodes; these
attributes are shown in the ATTR column.

2-56

Paragon™ System User's Guide Using System Commands

Showing Node Attributes with Root Node Numbers

The node numbers shown in the middle section of the -1 output are node numbers relative to the
specified partition (logical node numbers). You can also use the -p switch to see the same
information with node numbers relative to the root partition (physical node numbers). These node
numbers correspond to the numbers to the left of the rectangle and reflect the node’s physical
position within the system. The output of showpart -p is otherwise identical to showpart -1. The -1
and -p switches are mutually exclusive.

For example, the following command shows the node attributes of the partition called mypart with
node numbers relative to the root partition:

% showpart -p mypart
USER GROUP ACCESS SIZE FREE RQ EPL ATTR
smith eng 777 9 5 15m 5 2proc,MP

5..7,9,10 2proc, 64mb,MP
11,13..15 2proc,128mb,MP

Fomm +
o
4|.***|
8|.***|
121 . % % x|
Fmmm +

This display is the same as the example on page 2-56, except the node numbers are displayed as
root-partition node numbers. The five two-processor MP nodes with 64M bytes of memory are
nodes 5, 6,7, 9, and 10, and the four two-processor MP nodes with 128M bytes of memory are nodes
11, 13, 14, and 15.

Showing Nodes Having Certain Attributes

The -1 or -p switch of showpart lists the attributes of each node, but it is also useful to see the
positions of nodes having certain attributes within the partition. To do this, use the switch

-nt nodetype, where nodetype is a string describing the desired nodes’ attributes, as described under
“Specifying Node Attributes” on page 2-25. Nodes in the partition having the attributes specified in
the nodetype string are shown with an asterisk (*); other nodes within the partition are shown with
alowercase letter O (0).

2-57

Using System Commands Paragon™ System User's Guide

For example, the following command shows the positions of the 64M -byte nodes in the partition

called mypart:
% showpart -nt 64mb mypart
USER GROUP ACCESS SIZE FREE RQ EPL
smith eng 777 9 5 15m 5
Fommm - +
or1
4' . * Kk 0k I
8| . o * * |
12| . o o o |
fmmm - +

As in the previous two examples, mypart has five nodes with 64M bytes of memory (nodes 0, 1, 2,
4, and 5). These nodes are shown with asterisks. The other four nodes do not have 64M bytes of
memory; these nodes are shown with o characters. (Note that you do not know anything about the
nodes shown with o characters except that they do not have 32M bytes of memory. To find out more
about the attributes of these nodes, you would have to use the -1 or -p switch. -1 or -p can be used
together with -nt if desired.) . ’

If you use -nt together with -f, free nodes that match the nodetype string are shown with a capital F,
while free nodes that do not match are shown with a lowercase f. For example:

% showpart -f -nt 32mb mypart

USER GROUP ACCESS SIZE FREE RQ EPL
smith eng 777 9 5 15m 5

fmmm - +

ol . . .

4 I . * * % I

8/ . o F F |

12| . £ £ £ |

tm—mm - +

In this case:

¢ Nodes 0, 1, and 2 of the partition (shown as asterisks) are 32MB nodes that are not free.
¢ Node 3 of the partition (shown as a lowercase letter o) is not a 32MB node and is not free.
¢ Nodes 4 and 5 of the partition (shown as capital Fs) are 32MB nodes and are free.

¢ Nodes 6, 7, and 8 of the partition (shown as lowercase £s) are not 32MB nodes and are not free.

2-58

Paragon™ System User's Guide Using System Commands

Showing Partitions with Cabinet Information

You can use the -w switch of showpart to see which nodes are in which cabinet and to easily
determine a node’s number relative to the root partition. This is particularly useful on larger systems.

The output of showpart -w is the similar to the regular showpart output, with the addition that the
command shows the cabinet and backplane location of the partition’s nodes. The picture is divided
into columns and rows. The columns indicate the system’s cabinets and the rows indicate the
system’s backplanes. The top of the rectangular picture shows the offsets from the numbers in the
left column. The plus sign (+) indicates that the number is an offset. The offsets are in multiples of
four. The bottom of the picture shows the cabinet numbers. For example, Cab 2 indicates that the
column is for the nodes in cabinet 2. The following example shows the locations of the nodes in the
compute partition in a three-cabinet system.

% showpart -w

USER GROUP ACCESS SIZE FREE RQ EPL

root daemon 777 128 128 0 5

12|
24
36|

48]
60|
72
84|

96] * x*
© 108 * ox
120 . * *
132] * %
144 *
156 . *
1681 . *
180 *

The rectangular picture at the bottom of the showpart output shows there are three cabinets in the
system. The top line of the picture shows the cabinet offsets in multiples of four; the bottom line
shows the cabinet numbers. Using the offsets, the top left-hand node in the compute partition is
node 2 and the bottom right-hand node in the compute partition is node number 188 (180 + 8).

2-59

Using System Commands Paragon™ System User's Guide

Summary of Symbols

The symbols used in the output of the showpart command are summarized in Table 2-3.

Table 2-3. Symbols Used in showpart Output

Symbol Meaning
Node not belonging to partition. (All other symbols represent nodes belonging to
the partition.)
* Without -f or -nt: Any node belonging to partition.

With -f: Node that is not free.
With -nt: Node matching specified attributes.
With -f and -nt: Free node matching specified attributes.

F With -f: Free node.
With -f and -nt: Free node matching specified attributes.
o With -nt: Node not having specified attributes.
f With -f and -nt: Free node not matching specified attributes.

- Empty slot (unusable node).

X Node that failed to boot (unusable node).

Listing Subpartitions

Command Synopsis Description

Ispart[-r][-1][-p]][partition] List the subpartitions of a partition.

To list the subpartitions of a partition with their characteristics, use the Ispart command. You can
specify the partition with either a relative or an absolute partition pathname. If you don’t specify a
partition, Ispart lists the subpartitions of your default partition (see “Using the Default Partition” on
page 2-13). In either case, you must have read permission on the specified partition.

2-60

Paragon™ System User's Guide Using System Commands

For example, to list the subpartitions of the partition called myparz, whose parent partition is the
compute partition, you can use the following command:

% lspart mypart

USER GROUP ACCESS SIZE FREE RQ EPL. PARTITION
chris eng 777 16 4 15m 3 mandelbrot
chris eng 777 16 16 - - debug

pat mrkt 755 -4 0 SPS 10 slalom

* * * * * * * pr lvate

The following command has the same effect, but uses an absolute partition pathname:
% lspart .compute.mypart

The columns in the output of Ispart are the same as the top part of the output of showpart (see
“Showing Partition Characteristics” on page 2-54), with the addition of the partition name. In this
case, mypart has four subpartitions: mandelbrot, debug, slalom, and private.

* mandelbrot is owned by user chris in group eng; it has permissions rwxrwxrwx and a size of
16 nodes, of which 4 are free (see “Showing Free Nodes” on page 2-55 for more information
on free nodes). It is a gang-scheduled partition with a rollin quantum of 15 minutes and an
effective priority limit of 3.

* debug is also owned by user chris in group eng; it has permissions rwxrwxrwx and a size of
16 nodes, of which all 16 are free. It is a standard-scheduled partition, so it has no rollin quantum
or effective priority limit.

* slalom is owned by user pat in group mrkt; it has permissions rwxr-xr-x and a size of 4
nodes, of which none are free. It is a space-shared partition with an effective priority limit of 10.

e private’s access permissions do not grant you read permission, so all its characteristics are
shown as asterisks (*).

If you see two numbers separated by a slash in the SIZE column, it indicates that one or more of the
nodes allocated to the indicated partition is unusable. For example:
% lspart mypart
USER GROUP ACCESS SIZE FREE RQ EPL. PARTITION
chris eng 777 14 / 16 10 15m 3 mandelbrot

This indicates that there are 16 nodes allocated to mandelbrot, but 2 of them are currently unusable.

You cannot run any applications or allocate any partitions using unusable nodes. See “Unusable
Nodes” on page 2-37 for more information.

2-61

Using System Commands Paragon™ System User's Guide

Recursively Listing Subpartitions

To recursively list all of a partition’s subpartitions, sub-subpartitions, and so on, use the -r switch.
For example:

% lspart -r mypart

USER GROUP ACCESS SIZE FREE RQ EPL PARTITION
.compute.mypart:

chris eng 777 16 4 15m 3 mandelbrot

chris eng 777 16 16 - - debug

pat mrkt 755 4 0 SPS 10 slalom

* * * * * * * private
.compute.mypart.mandelbrot:

chris eng 777 16 16 15m 10 hi_pri

chris eng 777 16 16 15m 1 lo_pri

The Ispart -r output reveals that mypart.mandelbrot has two subpartitions, ki_pri and lo_pri, neither
of which has any sub-subpartitions, and that slalom and debug have no subpartitions. No information
is available on the subpartitions of private (if any), because private does not grant you read -
permission.

NOTE

If you specify a partition that has no subpartitions, Ispart produces
no output.

For example, since mypart.slalom has no subpartitions, an Ispart command on this partition gives
no output:

% lspart mypart.slalom

oe

To get information about mypart.slalom itself, use the showpart command.

2-62

Paragon™ System User's Guide Using System Commands

Listing Node Attributes of Subpartitions

You

can use the -1 switch of Ispart to list the attributes of the nodes in each subpartition. The output

of Ispart -1 shows the attributes of every node in the partition; it also includes an ATTR column that

lists

the attributes that all the nodes in the subpartition have in common. For example:

% lspart -1 mypart

USER
chris

GROUP
eng

ACCESS SIZE FREE RQ EPL. PARTITION ATTR
777 16 4 15m 3 mandelbrot 1lproc

0..15 1proc,lémb,GP

chris

eng

777 16 16 - - debug lémb

0..3,6,12 lproc,l6émb,MP
4,5,7..11,13..15 1lproc,l6mb,GP

pat

mrkt

0 1lproc,32mb,MP
1..3 1lproc, 64mb,MP

*

*

755 4 0 SPS 10 slalom lproc,MP

* * * * * private

In this example, Ispart -1 displays the node numbers relative to subpartition

mandelbrot consists of 16 one-processor GP nodes with 16M bytes of memory. Because all
nodes in mandelbrot have the same attributes, this is shown both in the ATTR column and in
the list of node attributes following the partition.

debug consists of 6 two-processor MP nodes with 16M bytes of memory (nodes 0, 1, 2, 3, 6,
and 12 of debug) and 10 one-processor GP nodes with 16M bytes of memory (the remaining
nodes). The only thing all these nodes have in common is that they all have 16M bytes of
memory; this is shown in the ATTR column.

slalom consists of four two-processor MP nodes. Node 0 of slalom has 32M bytes of memory,
and nodes 1, 2, and 3 have 64M bytes of memory. The ATTR column shows the common

attributes, which is that they are two-processor MP nodes.

private’s access permissions do not grant you read permission, so all its characteristics are
shown as asterisks (*) and no node attributes are shown.

2-63

Using System Commands Paragon™ System User's Guide

Listing Node Attributes with Root Node Numbers

The node numbers shown with the node attributes for each subpartition of the -1 output are node
numbers relative to the specified subpartition (logical node numbers). You can also use the -p switch
to see the same information with node numbers relative to the root partition (physical node

numbers). These node numbers reflect the node’s physical position within the system. The output of
Ispart -p is otherwise identical to Ispart -1. The -1 and -p switches are mutually exclusive.

% lspart -p mypart

USER GROUP ACCESS SIZE FREE RQ EPL. PARTITION ATTR
chris eng 777 16 4 15m 3 mandelbrot Ilproc
49..52,57..60,65..68,73..76 lproc,lémb,GP

chris eng 777 16 16 - - debug l6mb
42..46,53,54,61,62,69,70,77,78,81..83 1lproc,lé6mb,GP

pat mrkt 755 4 0 SPS 10 slalom lproc,MP

84..86,89 lproc, 64mb,MP
* * * * * * * private

In this example, Ispart -1 displays the same information as the example on page 2-63, except the
node numbers are relative to the root partition.

Listing the Applications in a Partition

Command Synopsis Description

pspart [-r] [partition] List the applications in a partition.

To list the applications in a partition, with information about the rollin/rollout status of each, use the
pspart command. You can specify the partition with either a relative or an absolute partition
pathname. If you don’t specify a partition, pspart lists the applications in your default partition (see
“Using the Default Partition” on page 2-13). In either case, you must have read permission on the
specified partition.

For example, to list the applications in the partition mypart, whose parent partition is the compute
partition, you can use the following command:

2-64

Paragon™ System User’s Guide

% pspart mypart

PGID
12345
23456
34567

Using System Commands

USER SIZE PRI START TIME ACTIVE TOTAL TIME COMMAND
pat 256 5 11:42:20 45.00 75% 0:04:41 mag -sz 256
chris 67 4 Jan 21 - - 0:12.30 boggle
smith 192 10 02:21:51 0:01:00 100% 2:12:03 myfft

The following command has the same effect, but uses an absolute partition pathname:

% pspart .compute.mypart

The columns in the output of pspart have the following meanings:

PGID

USER

SIZE

PRI

START

TIME ACTIVE

The process group ID of the application (see “Process Groups” on page 4-27
for more information).

The process group ID of an application is always the same as the process ID
of the application’s controlling process. This means that you can use this
number with the kill command to kill the application; for example, given the
pspart output above, the command kill 34567 would kill the application

myfft.
The login name of the user who invoked the application.

The number of nodes allocated to the application from the partition (see
“Specifying Application Size” on page 2-15 for more information).

The application’s priority (see “Specifying Application Priority” on page
2-18 for more information).

The time the application was started. If the application was started more than
24 hours ago, the date it was started is shown instead.

The amount of time the application has been active (rolled in) in the current
rollin quantum (see “Gang Scheduling” on page 2-42 for more information).
The time active is shown both as an absolute time (in the format

minutes : seconds . milliseconds for times less than one minute or

hours : minutes : seconds for times of one minute or more) and as a percentage
of the partition’s rollin quantum. If the application is not active in the current
rollin quantum, a dash (-) is shown for both quantities. If the partition uses
space sharing, the time shown is the total amount of time the application has
been running and the percentage is always 100%.

In the example above, the partition mypart is a gang-scheduled partition with
a rollin quantum of one minute. The application mag has been active for 45

seconds, or 75% of the rollin quantum; the application boggle is not currently
active; and the application myfft has been active for one minute, or 100% of
the rollin quantum.

2-65

Using System Commands Paragon™ System User's Guide

TOTAL TIME The total amount of time the application has been rolled in since it was
started, in the format minutes : seconds . milliseconds or
hours : minutes : seconds. If the partition uses space sharing, the TOTAL
TIME is always the same as the TIME ACTIVE.

In the example above, the application mag has been active for a total of 4
minutes and 41 seconds; the application boggle has been active for a total of
12.30 seconds; and the application myfft has been active for a total of 2 hours,
12 minutes, and 3 seconds.

COMMAND The command line by which the application was invoked.

Applications in Subpartitions

If there are any applications running in subpartitions of the specified partition, the subpartitions
appear in the output of pspart as follows:

% pspart mypart

PGID USER SIZE PRI START TIME ACTIVE TOTAL TIME COMMAND
12345 pat 256 5 11:42:20 45.00 75% 0:04:41 mag -sz 256
23456 chris 67 4 Jan 21 - - 0:12.30 boggle
34567 smith 192 10 02:21:51 0:01:00 100% 2:12:03 myfft

Active Partitions
OWNER GROUP SIZE PRI START TIME ACTIVE TOTAL TIME NAME
smith eng 64 6 09:16:30 - - 1:18.10 subpart

The columns for the list of active partitions have the following meanings:

OWNER The owner of the subpartition.
GROUP The group of the subpartition.
SIZE The size of the subpartition (note that all nodes of a subpartition containing

an active application are considered active, even if not all the nodes in the
subpartition are actually in use by applications).

PRI The current priority of the subpartition (this is the highest priority of all the
applications in the subpartition or the subpartition’s effective priority limit,
whichever is lower).

START The time or date when the oldest application in the subpartition was started.

TIME ACTIVE The amount of time the subpartition has been active (rolled in) in the current
rollin quantum.

2-66

Paragon™ System User's Guide Using System Commands

TOTAL TIME The total amount of time the subpartition has been rolled in since it was
started.

NAME The name of the subpartition.

See “Scheduling Characteristics” on page 2-39 for more information on how subpartitions are
scheduled.

Recursively Listing Applications in Subpartitions
If there are applications running in a subpartition, the output of pspart normally shows only that the
subpartition is active. To list the applications in subpartitions (and, recursively, in sub-subpartitions

and so on), use the -r switch. For example:

% pspart -r mypart

mypart:
PGID USER SIZE PRI START TIME ACTIVE TOTAL TIME COMMAND
12345 pat 256 5 11:42:20 45.00 75% 0:04:41 mag -sz 256
23456 chris 67 4 Jan 21 - - 0:12.30 boggle
34567 smith 192 10 02:21:51 0:01:00 100% 2:12:03 myfft
Active Partitions

OWNER GROUP SIZE PRI START TIME ACTIVE TOTAL TIME NAME
smith eng 64 6 09:16:30 - - 1:18.10 subpart
mypart.subpart:

PGID USER SIZE PRI START TIME ACTIVE TOTAL TIME COMMAND
45678 smith 56 7 09:16:30 - - 1:18.10 span

In this case, the -r switch shows that the subpartition subpart has one application, span, which is
running on 56 nodes of the subpartition. (Even though the application is not running on every node
of the subpartition, whenever the application is rolled in the entire subpartition is rolled in. This
occurs because subpartitions are scheduled recursively, as discussed under “Gang Scheduling” on
page 2-42.)

Listing Applications With Core Dumps

If there are applications in a subpartition that have one or more processes fault and dump core, the
string “(core dump)” is appended to the application name.

% pspart mypart
PGID USER SIZE PRI START TIME ACTIVE TOTAL TIME COMMAND
42 pat 12 5 12:51:22 0:06.30 63% 0:02:42 myapp (core dump)

In this example, the application myapp is running on some (not necessarily all) nodes in the partition
mypart. The display indicates that the application myapp has one or more processes dumping core.

2-67

Using System Commands Paragon™ System User's Guide

Changing Partition Characteristics

2-68

Command Synopsis Description

chpart [-rq time | -sps] [-epl priority] Change certain partition characteristics.
[-nm name] [-mod mode]
[-g group][-0 owner][. group]]
partition

To change the characteristics of a partition, use the chpart command. The permissions required
depend on the switches you use. You can specify the partition with either a relative or an absolute
partition pathname.

chpart can change the following partition characteristics:

* Rollin quantum.

e Effective priority limit.

e Partition name.

e Protection modes.

e Owner and group.

e Scheduling type (space-shared to gang-scheduled, or gang-scheduled to space-shared with
certain limitations; a partition cannot be changed to or from standard scheduling).

A partition’s size and parent partition are determined when the partition is created and cannot be
changed.

The switches of chpart, which can be used together or separately and in any order (except as noted
below), are similar to the corresponding switches of mkpart:

-rq time Changes the partition to a gang-scheduled partition with a rollin quantum of
time, where time is one of the following:

n n milliseconds (if » is not a multiple of 100, it is
rounded up to the next multiple of 100).

ns n seconds.
nm n minutes.
nh n hours.

Paragon™ System User's Guide

-Sps

-epl priority

-nm name

-mod nnn

-mod string

-g group

Using System Commands

0 “Infinite” time: once rolled in, an application runs until
it exits.

The maximum rollin quantum is 24 hours; the minimum rollin quantum for
your system is determined by your system administrator.

-rq can be used only on a gang-scheduled or space-shared partition, and
cannot be used together with -sps. To use -rq, you must have write
permission on the specified partition.

Changes the partition to a space-shared partition.

-sps can be used only on a space-shared or gang-scheduled partition, and
cannot be used together with -rq. If the partition is currently gang-scheduled,
it must not contain any overlapping subpartitions or any applications. To use
-sps, you must have write permission on the specified partition.

Changes the partition’s effective priority limit to priority, where priority is an
integer from O to 10 inclusive.

-epl can be used only on a gang-scheduled or space-shared partition. To use
-epl, you must have write permission on the specified partition.

Changes the partition’s name to name, where name is a valid partition name
(a string of any length containing only uppercase letters, lowercase letters,
digits, and underscores). To use -nm, you must have write permission on the
parent partition of the specified partition.

Note that -nm can only change the partition’s name “in place;” there is no
way to move a partition to a different parent partition.

Changes the partition’s protection modes to the value specified by the
three-digit octal number nnn. To use -mod, you must be the owner of the
specified partition or the system administrator.

Changes the partition’s protection modes to the value specified by the
nine-character string string. The string must have the form rwxrwxrwx,
where a letter (r, w, or x) represents a permission granted and a dash (-)
represents a permission denied. To use -mod, you must be the owner of the
specified partition or the system administrator.

Changes the partition’s group to group. The group can be either a group name
or a numeric group ID. To use -g, you must be the owner of the specified
partition and a member of the specified new group, or you must be the system
administrator.

2-69

Using System Commands Paragon™ System User's Guide

-0 owner]| . group] Changes the partition’s owner to owner. If . group is specified, also changes
the partition’s group to group. The owner and group can be either user/group
names or numeric user/group IDs. To use -0, you must be the system
administrator.

For example, the following command changes the rollin quantum of mypart to 20 minutes:

% chpart -rg 20m mypart

The following command changes mypart to a space-shared partition:
% chpart -sps mypart
The following command changes the effective priority of mypart to 2:

% chpart -epl 2 mypart

The following command changes the protection modes of mypart so that it is readable, writable, and
executable by the owner but not by anyone else:

% chpart -mod rwx------ mypart

The following command has the same effect as the previous three commands combined, but uses an
absolute partition pathname and an octal protection mode specifier:

% chpart -epl 2 -rg 20m -mod 700 .compute.mypart
The following command changes the owner of mypart to smith, but does not affect its group:
% chpart -o smith mypart
The following command changes the group of mypart to support, but does not affect its ownership:
% chpart -g support mypart
The following command changes the owner of mypart to smith and the group to support:
$ chpart -o smith.support mypart
The following command changes the name of mypart to newpart:

% chpart -nm newpart mypart

2-70

Paragon™ System User's Guide Using System Commands

The following command also changes the name of mypart to newpart, but uses an absolute partition
pathname:

% chpart -nm newpart .compute.mypart

Note that the new name is specified as a name only, not a pathname.

2-71

Using System Commands Paragon™ System User's Guide

2-72

Using Message-Passing System Calls

Introduction

Message passing is the standard means of communication among processes in operating system. As
independent processor/memory pairs, the nodes do not share physical memory. If the node processes
need to share information, they can do so by passing messages. The calls described in this chapter
let your programs send and receive messages.
| This chapter introduces the message-passing system calls and includes the following sections:

* Process characteristics.

* Message characteristics.

¢ Names of send and receive calls.

¢ Synchronous send and receive.

* Asynchronous send and receive.

* Probing for pending messages.

e Getting information about pending or received messages.

e Message passing with Fortran commons.

* Treating a message as an interrupt.

¢ Extended receive and probe.

* Global operations.

3-1

Using Message-Passing System Calls ParagonTM System User's Guide

3-2

Within each section, the calls are discussed in order of increasing complexity. That is, the “base”
calls are discussed first, and the ‘“‘extended” calls are discussed later.

Each section includes numerous examples in both C and Fortran. A call description at the beginning
of each section or subsection gives a language-independent synopsis (call name, parameter names,
and brief description) of each call discussed in that section. Differences between C and Fortran are
noted where applicable. See Appendix A for information on call and parameter types; see the
ParagonTM System C Calls Reference Manual or the ParagonTM System Fortran Calls Reference
Manual for complete information on each call.

This chapter does not describe all the Paragon system’s system calls. For information about system
calls that provide general services other than message passing, see Chapter 4. For information about
the calls used with the Parallel File System, see Chapter 5. For information about the calls used with
graphical interfaces, such as DGL and the X Window System, see the ParagonTM System Graphics
Libraries User’s Guide. For information about the system calls that require root privileges, see the
PalragonTM System Administrator’s Guide.

Programs written in C can also issue OSF/1 system calls. The operating system is a complete OSF/1
operating system and fully supports all the standard OSF/1 system calls. See the OSF/!
Programmer’s Reference for information on these calls.

Programs written in Fortran cannot make OSF/1 system calls directly, but the Fortran runtime library
includes a number of system interface routines. These routines make a number of OSF/1 system calls
available to Fortran programs. See the ParagonTM System Fortran Compiler User’s Guide for
information on these routines.

Paragon" System User's Guide Using Message-Passing System Calls

Process Characteristics

Each process within an application is identified by its node number and process type. A process must
have a valid node number and process type to send and receive messages.

Node Numbers

Synopsis Description
mynode() Obtain the calling process’s node number.
numnodes() Obtain the number of nodes allocated to the

current application.

A process’s node number is an integer that identifies the node on which it is running. Node numbers
are assigned by the system, and range from zero to one less than the number of nodes in the
application. A process can find out its node number by calling mynode(); the node number does not
change for the life of the process. A process can also find out the number of nodes in the application
by calling numnedes(); the maximum node number in the application is numnodes() — 1.

When you run an application that was linked with the -nx switch, the system creates one process on
each node of the default partition (unless you specify otherwise on the application’s command line).
Each process is the same as the others except for its node number, which is different in each process.

All message-sending system calls have a node parameter that specifies the node to which the
message is sent. You can use any valid node number, or the special value -1 to send the message to
all nodes in the application except the sending node itself.

Some message-receiving system calls have a nodesel parameter that specifies the node from which
the message was sent. A nodesel parameter can be a valid node number (to receive only messages
from that node), or the special value -1 (to receive messages from any node). Message-receiving
system calls that do not have a nodesel parameter always receive messages from any node.

The node numbers used in message-passing calls are always node numbers within the application,
not physical slot numbers or node numbers within the partition in which the application is running.
For example, if you run an application on 30 nodes of a 64-node partition by using the switch -sz 30,
the node numbers within the application will always be 0 through 29. However, those nodes might
not be nodes 0 through 29 of the partition. They might be nodes 0 through 29, or 10 through 39, or
a completely arbitrary set of nodes.

3-3

Using Message-Passing System Calls Paragon™ System User's Guide

Process Types

Synopsis Description
myptype() Obtain the calling process’s process type.
setptype(ptype) Set the calling process’s process type (only

permitted if the process type is currently
INVALID_PTYPE).

A process’s process type, Ot ptype, is an integer that distinguishes the process from other processes
in the same application running on the same node. Process types are assigned by the user, and can
be any integer from 0 to 2,147,483,647 (23! - 1) inclusive. A process can find out its process type
by calling myptype(). A process cannot change its process type once it has been set to a valid value.

When you run an application that was linked with -nx, the system sets the process type of all
processes in the application to the value you specify with the -pt switch on the application’s
command line (default 0).

All message-sending system calls have a ptype parameter that specifies the process type to which the
message is sent. You must specify the process type; you cannot use -1.

Some message-receiving system calls have a ptypesel parameter that specifies the process type from
which the message was sent. A ptypesel parameter can be a valid process type (to receive only
messages from that process type), or the special value -1 (to receive messages from any process
type). Message-receiving system calls that do not have a ptypesel parameter always receive
messages from any process type.

Certain system calls that involve all the nodes in the application, called global operations, require
that every node in the application has one process with the same process type. All these processes
must call the global operation before the application can proceed.

Within a single application, multiple processes running on the same node must have different
process types. However, processes on different nodes may (and usually do) have the same process
type. Two processes running on a single node may have the same process type only if they belong
to different applications.

NOTE

The -pt switch (or, if not specified, the default process type of 0)
applies only to the process type of the initial processes created by
running the application.

3-4

Paragon" System User's Guide Using Message-Passing System Calls

If an application creates additional processes after it starts up, and no process type is specified for
the new process, the new process’s process type is set to the special value INVALID_PTYPE (a
negative constant defined in the header file nx.h). A process whose process type is
INVALID_PTYPE cannot send or receive messages. It must use the system call setptype() to set
its process type to a valid value before it can send or receive any messages. (This is the only valid
use of setptype().)

The system calls that create node processes (nx_nfork(), nx_load(), and nx_loadve()) have a ptype
parameter that specifies the process type of the newly-created processes. However, the standard
OSF/1 system call fork(), which creates a new process on the same node as the process that calls it,
does not provide any way to specify the new process’s process type. This means that the process type
of a process created by fork() is set to INVALID_PTYPE. The new process must call setptype()
before it can send or receive messages. The specified process type must be different from the
parent’s, and different from the process type of any other process in the same application on the same
node.

A process’s process type is inherited across an exec(). This means that if you do a fork() followed
by an exec(), you can call setptype() either before or after the exec(). However, the setptype() must
follow the fork().

Once a process has used a process type, that process type is associated with the process for the life
of the application. No other process on the same node in the same application can ever use that
process type, even if the original process terminates.

If a process has multiple pthreads, all the pthreads in the process have the same process type. See
Chapter 6 for information on pthreads.

Message Characteristics

Messages are characterized by a length, a type, and sometimes an ID. These characteristics are set
when the message is sent, and do not change for the life of the message.

Message Length

The length of a message is the number of bytes of information contained in the message. Messages
can be of any length.

All message-passing system calls have a count parameter that specifies the length of the message to
be sent or received. The length you specify must be less than or equal to the size in bytes of the buffer
used in the call. Message-sending calls read exactly that number of bytes from the buffer and send
them as a message; message-receiving calls generate an error if a message is received that is larger
than the specified length.

Using Message-Passing System Calls Paragon™ System User's Guide

If you program in C, when you send a message you can use the sizeof operator to determine the size
of your message in bytes. If you program in Fortran, you will need to add up the sizes of all the data
elements within the message; see the ParagonTM System Fortran Compiler User’s Guide for
information on the default size of each data type. If you pass named common blocks as messages,
you may also have to include the space taken up by padding within the common block, as discussed
under “Message Passing with Fortran Commons” on page 3-17.

You can also send and receive zero-length messages. This is useful if the message type is sufficient,
and there is no need to supply any message content. For example, one process could tell another
process to start or stop doing something by sending a zero-length message of type 1 to start, or a
zero-length message of type 2 to stop.

Message Type

The type of a message is an integer whose meaning is determined by the programmer.

All message-sending system calls have a type parameter that specifies the type of the message sent.
You can use any integer from 0 to 999,999,999 (inclusive) as a message type.

All message-receiving system calls have a typesel parameter that specifies the type (or types) of
messages the call will receive. A typesel parameter can be an integer from 0 to 999,999,999 (to
receive only messages of the specified type) or the special value -1 (to receive messages of any type).

There are also special message types outside the range 0 to 999,999,999, called force types and
typesel masks, that you can use. Sending with a force type sends a message that uses a limited flow
control technique; receiving with a typesel mask receives messages of a selected set of types. See
the ParagonTM System Fortran Calls Reference Manual or ParagonTM System C Calls Reference
Manual for information on these special message types. Note, though, that regular messages are just
as fast as force type messages, so force types are not needed for performance.

Message ID

The ID of a message is an identifier used to check for the completion of asynchronous messages.
Synchronous messages do not have IDs.

When you send or receive a message with an asynchronous message-passing call (one that returns
before the message is completely sent or received), the call returns an ID that you can use to check
whether or not the send or receive is complete. See “Asynchronous Send and Receive” on page 3-10
for more information on message IDs.

Paragon™ System User's Guide ‘Using Message-Passing System Calls

Message Order

The operating system guarantees that all messages will arrive in the same order they are sent. That
is, if one message is sent from node A to node B, then a second message is sent from node A to node
B, the second message will never arrive before the first.

Although the first message always arrives at the node first, you can elect to receive the second
message—that is, to copy its contents into a buffer in user memory—before the first. You do this by

specifying different message types in the send calls on node A, and specifying the second message’s
type in the first receive call on node B.

Names of Send and Receive Calls

You can tell what each message-passing call does by examining its name.

The first character of the name indicates whether the call is synchronous, asynchronous, or handled: .

c Synchronous (complete) call. These calls do not return until the message is
complete. They are discussed under “Synchronous Send and Receive” on
page 3-8.

i Asynchronous (incomplete) call. These calls return immediately, so your

program can do other work while the message is processed. They are
discussed under “Asynchronous Send and Receive” on page 3-10.

h Asynchronous with interrupt handler (handled) call. Like the i...() calls, the
h...() calls return immediately. Unlike the i...() calls, h...() calls indicate that
the message is complete by calling a user-supplied interrupt handler. They are
discussed under “Treating a Message as an Interrupt” on page 3-18.

The initial ¢, i, or h is followed by a verb that indicates what the call does:

send Send a message.

recv Receive a message.

sendrecv Send a message and receive the reply.

probe Probe for a pending (not yet received) message.

Finally, the verb may be followed by an x to indicate that it is an “extended” version of the call (see
“Treating a Message as an Interrupt” on page 3-18 and “Extended Receive and Probe” on page
3-24).

Using Message-Passing System Calls ' Paragon™ System User's Guide

The synchronous calls with no additional functionality, such as csend(), are the easiest to understand
and use. However, the asynchronous calls (such as isend()) and the calls with additional
functionality (such as crecvx()) can offer dramatic improvements in performance when properly
used.

Synchronous Send and Receive

Synopsis Description

csend(type, buf, count, node, ptype) Send a message, waiting for completion.

crecv(typesel, buf, count) Receive a message, waiting for completion.

csendrecv(type, sbuf, scount, node, ptype, Send a message and post a receive for the reply.
typesel, rbuf, rcount) Wait for completion.

The c...() message-passing calls perform synchronous sends and receives.

e Asynchronous send means that the program executing the send waits until the send is complete.
This waiting is referred to as blocking. Completing the send, however, does not guarantee that
the message has been received. It only means that the message has left the sending process and
that the buffer can be reused. You use csend() to perform a synchronous send.

¢ A synchronous receive means that the program executing the receive waits until the message
arrives in the specified buffer. You use crecv() to perform a synchronous receive.

e A csendrecv() is like a csend() followed by a crecv(). It returns the length of the received
message.

Here are two code fragments in C that perform a synchronous send and a synchronous receive.
* Node 1 sends a message of type O to the process with the same process type on node 0:

#include <nx.h>

#define MSG_TYPE 0
#define DEST_NODE 0
char send_buf[100];

csend (MSG_TYPE, send_buf,
sizeof (send_buf), DEST_NODE, myptype());

3-8

Paragon™ System User's Guide Using Message-Passing System Calls

¢ Node 0 receives the message:

#include <nx.h>
#define MSG_TYPE 0
char recv_buf[100];

crecv (MSG_TYPE, recv_buf, sizeof (recv_buf));

See “Extended Receive and Probe” on page 3-24 for information on a version of the crecv() call with
additional functionality.

Synchronous Send to Multiple Nodes

Synopsis Description
gsendx(type, buf, count, nodes, nodecount) Send a message to a list of nodes, waiting for
: completion.

The gsendx() call sends a message to multiple nodes. Specifically, it performs a synchronous send
of the message specified by the type, buf, and count arguments to the process with the same process
type as the caller on the nodes specified by the nodes argument. The nodes argument is an array of
integers; the nodecount argument specifies the number of nodes in nodes.

For example, the following code fragment in Fortran sends the data in the array x to nodes 1 and 3:

integer*4 nodenums (2), x(10)

nodenums (1) = 1
nodenums (2) = 3
call gsendx (100, x, 10*4, nodenums, 2)

Using Message-Passing System Calls Paragon™ System User's Guide

Asynchronous Send and Receive

3-10

Synopsis Description
isend(zype, buf, count, node, ptype) Send a message without waiting for completion.
irecv(typesel, buf, count) Receive a message without waiting for
completion.
isendrecv(type, sbuf, scount, node, ptype, Send a message and post a receive for the reply
typesel, rbuf, rcount) without waiting for completion.
msgdone(mid) Determine whether a send or receive operation

has completed.

msgwait(mid) Wait for completion of a send or receive
operation.
msgignore(mid) Release a message ID as soon as a send or receive

operation completes.

The i...() message-passing calls perform asynchronous sends and receives. The msgdone() and
msgwait() Caus are used Wlth the i__(\ calls to dpfnrminp ‘xlhnn the messagce hac pnmpleted; the

ail v S CQALS LU UUILLUIRIT WAL Uiv LUTohagv uas LU

msgignore() call is used to discard a message ID as soon as the message has completed.

Unlike a synchronous send or receive, an asynchronous send or receive does not block. It returns a
unique message ID, which is not reused until released. You can use this ID to check for completion
at a later time.

NOTE

The number of message IDs is limited, so you must release each
ID after you use it. See “Releasing Message IDs” on page 3-12 for
information on releasing message IDs.

You use isend() to perform an asynchronous send, and irecv() to perform an asynchronous receive.
An isendrecv() is like an isend() followed by an irecv(), except that it returns only one message ID
(for the receive). Asynchronous sends can be used together with synchronous receives, and vice
versa. For example, a message sent by isend() could be received by crecv().

Paragon" System User's Guide Using Message-Passing System Calls

You must make sure that an asynchronous operation has completed before you change the contents
of the send buffer or use the contents of the receive buffer. To check if an asynchronous operation
has completed, use the msgdone() call. It returns 1 if an asynchronous call has completed and 0
otherwise. To block until an asynchronous operation has completed, use the msgwait() call. Both
msgdone() and msgwait() take the message ID as an input parameter.

The message ID belonging to an asynchronous receive is distinct from the message ID belonging to
any companion asynchronous send. For example, if node O sends a message with isend() and node
1 receives the message with irecv(), the isend() has a different message ID from the irecv(). When
the isend() completes, this does not indicate that the corresponding irecv() has completed.

For example, assume that your application knows that it’s going to need a message up ahead. So it
posts an asynchronous receive with irecv(). It then does work that does not require the message,
believing that by the time it needs the message, it will have arrived. When the program comes to
where it needs the message, it issues a msgwait(). If the message has in fact arrived, the msgwait()
returns immediately. Otherwise, it blocks until the message arrives. Here is a Fortran code fragment
that implements this technique.

Node 1 does an asynchronous send:
include 'fnx.h’

integer result, msg_sid
integer MSG_TYPE, DEST_NODE
double precision send_buf (100)
parameter (MSG_TYPE = 1)
parameter (DEST_NODE = 0)

msg_sid = isend(MSG_TYPE, send_buf,
100*8, DEST_NODE, myptype())

C Free the asynchronous send ID
call msgwait (msg_sid)

Using Message-Passing System Calls Paragon™ System User's Guide

Node 0 does the asynchronous receive:
include 'fnx.h'

integer result, msg_rid

integer MSG_TYPE

double precision rec_buffer (100)
parameter (MSG_TYPE = 1)

c Post the receive
msg_rid = irecv (MSG_TYPE, rec_buffer, 100*8)

c Now you need the message.
c
c Free the asynchronous receive ID

call msgwait (msg_rid)

When the msgwait() returns, the message has been received. You may have blocked on the
msgwait() if the message had not yet arrived. You may now assign another value to msg_rid.

See “Extended Receive and Probe” on page 3-24 for information on a version of the irecv() call with
additional functionality.

Releasing Message IDs

3-12

Because the operating system has a limited number of message IDs, you must release IDs that are
no longer needed. There are three ways to release a message ID:

* You can call msgwait().

* You can keep calling msgdone() until it returns 1.

* You can call msgignore().

If you use msgignore(), it tells the system to release the message ID as soon as the corresponding
send or receive has completed. Note, though, that this leaves you with no way to determine whether
or not the message has completed. In this case, your application must have some other means of

synchronization to prevent the send or receive buffer from being used before the message is
complete.

Paragon™ System User's Guide Using Message-Passing System Calls

NOTE

Re-using a send or receive buffer before the message is complete
can result in unexpected behavior. Do not use msgignore()
unless you are certain this will not occur.

Merging Message IDs

Synopsis Description

msgmerge(midl, mid2) Merge two message IDs into a single ID that can
be used to wait for completion of both operations.

The msgmerge() call gives you a way to merge two or more message IDs together. It takes two
message IDs as parameters, and returns a message ID that does not complete until both the messages
identified by the input message IDs have completed.

Once you have merged a message ID with msgmerge(), you should not use the input message IDs
as arguments to msgwait(), msgdone(), msgcancel(), or msgignore(). The input message IDs are
automatically released when the merged message IDs are waited for.

For example, the following C code fragment posts two irecv()s, one for a message of type 1 and the
other for a message of type 2, and then waits until both have completed:

#include <nx.h>

int midl, mid2, midg;

char bufl[10], buf2[10];
midl
mid2

irecv(1l, bufl, 10);
irecv (2, buf2, 10);

midg = msgmerge (midl, mid2);
msgwait (midg) ;
Note that midl and mid2 are released by the msgwait() call on midg.
You can use a series of msgmerge() calls to merge multiple message IDs together. To help you do

this, you can use the value -1 as one of the message IDs; msgmerge() returns the other message ID
unchanged.

3-13

Using Message-Passing System Calls Paragon™ System User’s Guide

For example, the following Fortran code fragment uses a series of isend() calls to send the buffer buf
as a message of type 1 to the process with the same process type on nodes 1 through 10, then waits
for all of the isend()s to complete:

include 'fnx.h'

integer 1, mid
integer buf (100)

[oF
ol

mi -1

i =

do while (i .le. 10)
mid = msgmerge (mid, isend(1l, buf, 400, i, myptype()))
i=14+1

end do

call msgwait (mid)

The message ID returned by each isend() call is merged together with the message IDs of the
previous isend() calls into the merged message ID mid (the first message ID is merged with -1,
yielding itself). Once all the isend()s have been posted, the program uses msgwait() on the merged
message ID to wait for all of the isend()s to complete.

Probing for Pending Messages

Synopsis Description

cprobe(typesel) Wait for a message of a selected type to arrive.

iprobe(typesel) Determine whether a message of a selected type is
pending.

When a message arrives for which no receive has been issued, it goes into a system buffer. It is
referred to as a pending message: a message that is available for receipt, but not yet received. When
you issue a receive for that message, the message is moved into the application’s buffer (the buffer
you specify in the erecv() or irecv() call). If a receive has already been issued when the message
arrives, it goes directly into the application’s buffer and bypasses the system buffer.

The cprobe() and iprobe() calls determine whether there is a message of a given type pending in the
system buffer. You can use a message type from 0 to 999,999,999 to probe for a message of a
specific type; the special value -1 to probe for a message of any type; or a typesel mask to probe for
messages of a selected set of types (see the Paragon'" System Fortran Calls Reference Manual or
Paragon™" System C Calls Reference Manual for information on typesel masks).

Paragon™ System User's Guide Using Message-Passing System Calls

The cprobe() call is a blocking call. It takes a type selection parameter as input and returns when a
message of the given type has arrived. The iprobe() call is similar to cprobe(), except that it is
nonblocking. iprobe() returns 1 if the message is pending and O if it is not.

cprobe() and iprobe() are not the only calls that probe for messages. See “Extended Receive and
Probe” on page 3-24 for information on message-probing calls with additional functionality.

Getting Information About Pending or Received
Messages

Synopsis Description

infocount() Return size in bytes of a pending or received
message.

infonode() Return node number of the node that sent a

pending or received message.

infoptype() Return process type of the process that sent a
pending or received message.

infotype() Return message type of a pending or received
Yp p
message.

The info...() calls return information about received or pending messages. You can obtain the size
of the message, its type, and the node number and process type of the sending process.

The return value of the info...() calls is defined only in the following cases:
e After a crecv(), cprobe(), or msgwait().
e After an iprobe() or msgdone() returns 1.

Note that you must issue the info...() call before you perform any other message-passing operation.
Otherwise, you will get information about the most recently received or pending message instead.

3-15

Using Message-Passing System Calls Paragon™ System User’s Guide

For example, the following C code receives a message of any type, then uses infotype() to determine
what type of message was actually received:

#include <nx.h>

#define BIGNUM 262144

long buf [BIGNUM], msg_type;
crecv (-1, buf, sizeof (buf));
msg_type = infotype() ;

Another example: the following C code blocks until any message arrives, then allocates a buffer just
large enough to hold the message and receives it:

#include <nx.h>

char *buf;

long msg_type, msg_len;
cprobe(-1) ;

msg_type = infotype();

msg_len = infocount () ;

buf = (char *) calloc(msg_len, 1);
crecv (msg_type, buf, msg_len);

Between the cprobe() and the crecv(), the message is pending; it has arrived, but has not yet been
received. Until the message is received, the contents of the message are not accessible to the
program.

The info...() calls are subject to the following special conditions:

¢ Thereturn value of the info...() calls is undefined after a msgwait() or msgdone() if the message
ID in the msgwait() or msgdone() call is a “merged” message ID representing more than one
message. See “Merging Message IDs” on page 3-13 for more information.

e The return value of the info...() calls is undefined after a crecvx(), cprobex(), or iprobex(),
except if the last parameter is the special array msginfo. See “Extended Receive and Probe” on

page 3-24 for more information.

e If you issue an info...() call before doing any message passing, the call returns -1.

Paragon™ System User's Guide Using Message-Passing System Calls

The info...() calls are not the only way to get information about a received or pending message. See
“Extended Receive and Probe” on page 3-24 for information on message-receiving and
message-probing calls that also return information about the received or pending message.

Message Passing with Fortran Commons

Fortran users often use common blocks to send messages that contain data elements of different
types. For example, consider the named common containing a double precision number and an
integer. It is good Fortran practice to put the largest data element first in the common list, as follows:

integer i
double precision d
common/msg/ d, 1

To send this common block, specify the name of the first common element as the buffer and the
length of the entire common as the length. For example, to send the common block named msg, send
the variable d with a length of 12 bytes (8 for the double precision variable plus 4 for the integer
variable). The following csend() call sends msg to process ptype on node node.

call csend (MSGTYPE, d, 12, node, ptype)

If you put smaller data elements before larger data elements in common blocks, the compiler may
have to insert padding, or “holes,” between the elements of the common block to preserve data
alignment. For example, if you define the common block named pmsg as follows, the compiler will
place an invisible 4-byte pad between the end of i and the beginning of d to properly align d on an
8-byte boundary:

integer i
double precision d
common/pmsg/ i, d
This padding has two effects:
* If you send this common block as a message, you must include the padding in the length of the
message. For example, even though pmsg contains the same two variables as msg, pmsg is 4
bytes longer than msg because of the padding between i and d. To send pmsg to process ptype

on node node, you would use the following call:

call csend(MSGTYPE, i, 16, node, ptype)

3-17

Using Message-Passing System Calls Paragon™ System User's Guide

e If another routine uses a different view of the same common block, you may have to add
additional variables to the other routine’s declaration of the common block to take this padding
into account. For example, if another routine wants to view din pmsg as an array of two integers,
it must declare pmsg as follows:

integer 1, ipad, id(2)
common/pmsg/ i, ipad, id(2)

The variable ipad corresponds to the 4-byte pad in the original routine’s declaration of pmsg.
Without this variable, the position of id would not correspond to the position of d in the original
common block. This variable is necessary if pmsg is shared between these two routines, whether
or not the two routines run on different nodes.

When possible, you should define common blocks with the largest data element first, to avoid
padding completely. You should also use the % LOC function to determine the size of a common
block and avoid specifying its size with a hard-coded constant.

Treating a Message as an Interrupt

Synopsis Description

hsend(type, buf, count, node, ptype, handler) Send a mes:

hrecv(typesel, buf, count, handler) Receive a message and set up a handler procedure
to be called when the receive completes.

hsendrecv(type, sbuf, scount, node, ptype, Send a message and post a receive for the reply.
typesel, rbuf, rcount, handler) Set up a handler procedure to be called when the
reply arrives.

The h...() message-passing calls perform asynchronous sends and receives. However, unlike the i...()
calls, the h...() calls let you establish a user-provided interrupt handler, which is called when the send
or receive is complete.

The h...() receive calls let you treat incoming messages as interrupts. For example, consider a
program that performs some action based on the type of a received message. One way to implement
this program is to block the program at a crecv() for messages of all types and then take appropriate
action based on the value returned by infotype().

Another way is to issue a number of hrecv() calls. Each call attaches a function to a particular
message type or set of types. Your program does not block. You can continue with other work; but
when the appropriate message comes, the attached function is called to take care of the message.
(The message is stored in the receive buffer before the function is called.)

Paragon" System User's Guide Using Message-Passing System Calls

The handler function you define must be written in C and must have four arguments of type long.
These arguments are passed the following values when the function is called:

1. Type of the message (as returned by infotype()).

2. Length of the message in bytes (as returned by infocount()).

3. Node number of the process that sent the message (as returned by infonode()).

4. Process type of the process that sent the message (as returned by infoptype()).

For example, here’s a C code fragment that attaches the functions funct0(), functl(), and funct2() to
message types 0, 1, and 2, respectively. The message types that have handlers are referred to as
handled types.

#include <nx.h>

char buf0[100], bufl[100], buf2[100];
void functO0(), functl(), funct2();

hrecv (0, bufl0, sizeof(bufl), functO0);
hrecv(l, bufl, sizeof (bufl), functl);
hrecv (2, buf2, sizeof (buf2), funct2);

. /* Now perform other work. No blocking happens. */

The declaration of functl() looks like this (the other functions are similar):

void functl(long type, long count, long node, long ptype)

When a message of type 1 arrives, the message is stored in the buffer specified in the hrecv() call
(in this case, bufT), then functl() is called with the type and length of the message and the node
number and process type of the sender as arguments. funct1() and the main program then run
concurrently until funct1() returns. (In previous releases of the operating system, the main program
was interrupted and did not run at all until funct1() returned.)

CAUTION

The handler runs in the same memory space as the main program
(but they have separate stacks).

3-19

Using Message-Passing System Calls ' Paragon™ System User’s Guide

Because of this, parts of the main program may have to be protected from being executed at the same
time as the handler; see “Preventing Interrupts” on page 3-22 for information on using masktrap()
to do this.

NOTE

Once you have established a handler for a message type, do not
attempt to receive a message of that type with a crecv...() or
irecv...() call.

hsend() operates the same as hrecv(), except that the handler is invoked when the send completes.
(Note that completion of the send does not mean that the message has been received, only that the
message has been sent and the send buffer can be reused.) hsendrecv() is like an isend() followed
by an hrecv(), with the message ID of the isend() automatically released by msgignore().

See “Extended Receive and Probe” on page 3-24 for information on a version of the hrecv() call
with additional functionality.

Passing Information to the Handler

Synopsis Description

hsendx(type, buf, count, node, ptype, xhandler, Send a message and set up an extended handler
hparam) procedure to be called with the value hparam
when the send completes. Allows handler sharing.

hsendx() is identical to hsend() except that it has an additional parameter, Aparam, which is passed
to the handler when it is called. The declaration of a handler for hsendx() looks like this:

void xhandler (long type, long count, long node, long ptype,
long hparam)

3-20

Paragon" System User's Guide Using Message-Passing System Calls

You can use the hparam parameter to write handlers that are shared among several hsendx() calls,
each of which uses a different value of hparam to identify itself. For example, here is a C program
fragment that sends two messages of type 0 to the process with process type 2 on node 1, then uses
an hsendx() handler to free each message buffer as soon as the message send completes:

#include <nx.h>
#include <malloc.h>

#define NBUFS 2
#define BUFFER_SIZE 10000

char *buf[NBUFS]; /* array of pointers to char */

void freemem(long type, long count, long node, long ptype,
long hparam)

{
if((hparam >= 0) && (hparam < NBUFS)) {
free(buf [hparam]) ;
} else {
printf ("freemem(): invalid value: %d\n", hparam) ;
}
}
main(int argc, char **argv)
{
/* allocate two buffers with malloc() */
buf[0] = malloc (BUFFER_SIZE);
buf[l] = malloc (BUFFER_SIZE) ;
. /* put data into the buffers */
/* send them */
hsendx (0, buf[0], BUFFER_SIZE, 1, myptype(), freemem, 0);
hsendx (0, buf[l], BUFFER_SIZE, 1, myptype(), freemem, 1);
. /* Now perform other work */
}

Note that you must take care that this handler is not called while the program is in the middle of a
call to malloc() or free(). If the handler attempts to free memory while another part of the program
is allocating or freeing memory, malloc()’s internal memory structures could become corrupted.
You can prevent this by using the masktrap() call, described in the following section, to protect each
malloc() and free() call elsewhere in the program that could be interrupted by this handler.

3-21

Using Message-Passing System Calls Paragon™" System User’s Guide

Preventing Interrupts

3-22

Synopsis Description

masktrap(state) Enable or disable interrupts for message handlers.
Required to prevent corruption of global
variables.

If you have one or more handlers set up and you have some critical code that you do not want
interrupted, use the masktrap() call. A state value of 1 prevents any handler from running; a state
value of 0 (zero) re-enables handlers. Any pending interrupts are honored when the mask is
removed. A masktrap() call returns the previous state value (1 or 0). For example:

hrecv (6,buf,sizeof (buf) ,myhandler) ;
e /* this code can be interrupted */
e /* by a message of type 6 */

oldmask = masktrap(l);

e /* critical code that must not be interrupted */

masktrap (oldmask) ;

e /* this code can be interrupted again */

Note the use of the variable oldmask to save the value of the previous masking state before the call
to masktrap(). This means that if the mask were already set before this call (for example, if this code
is in a subroutine that could be called when the mask is already set), the following masktrap() call
with the oldmask value as the argument would not unset it.

CAUTION

You must use masktrap() around any code in the main program
that could interfere with calls in the handler.

For example, if the handler performs any I/O, you must put masktrap() calls around any I/O calls
(such as printf()) in the main program that could be called while the handler is active. If you don’t
do this, you could find characters from the handler’s output interleaved with characters from the
main program’s output.

Paragon™ System User's Guide Using Message-Passing System Calls

Sometimes, it is not as obvious which calls could interfere with each other. For example, any two
library calls that could allocate or free memory could cause the memory subsystem to become
confused if they were called at the same time. To be on the safe side, keep the handler as simple as
possible and use masktrap() to protect all library calls in the rest of the program that could call the
same subsystems as the calls in the handler while the handler is active.

These calls to masktrap() are necessary because, when the handler is active, the handler and the
main program share the same memory space and can change each other’s global variables. This
could cause any non-reentrant function to fail if it is called by both at the same time.

If the handler performs any message passing, any info...() call in the main program must be within
the same set of masktrap() calls as the message-receiving call to which it applies. Otherwise, the
info...() call could reflect the value of a message received within the handler.

NOTE

You do not have to use masktrap() in your main program to
protect library calls that are in the standard C library (libc.a), if
your application is linked with the reentrant C libraries (-lpthreads
and -lc_r).

If you link your application with the reentrant C libraries, the standard C library is thread safe and
you do not have to protect the calls that are in the standard C library. See “SMP Programming” on
page 6-1 for information about the limitations of using reentrant C libraries in applications.

3-23

Using Message-Passing System Calls

Extended Receive and Probe

3-24

Paragon™ System User's Guide

Synopsis

crecvx(typesel, buf, count, nodesel, ptypesel,

info)

irecvx(typesel, buf, count, nodesel, ptypesel,

info)

hrecvx(typesel, buf, count, nodesel, ptypesel,
xhandler, hparam)

cprobex(typesel, nodesel, ptypesel, info)

iprobex(typesel, nodesel, ptypesel, info)

Description

Receive a message of a specified type from a
specified sending node and process type, together
with information about the message. Wait for
completion.

Receive a message of a specified type from a
specified sending node and process type, together
with information about the message. Do not wait
for completion.

Receive a message of a specified type from a
specified sending node and process type. Set up
an extended handler procedure to be called with
information about the message and the value
hparam when the receive completes.

Wait for a message of a specified type from a
specified sending node and process type. Return
information about the message.

Determine whether a message of a specified type
from a specified sending node and process type is
pending. If it is, return information about the
message.

The extended receive and probe calls, crecvx(), irecvx(), hrecvx(), cprobex(), and iprobex(), can
be used to receive or probe for a message from a particular node or a particular process type, and
return information about the message along with the message (instead of using the info...() calls).

crecvx(), irecvx(), cprobex(), and iprobex() are like crecv(), irecv(), cprobe(), and iprobe(),
except that they have the following additional parameters:

nodesel Specifies the node that sent the message, or -1 for any node.

ptypesel Specifies the process type that sent the message, or -1 for any process type.

Paragon' " System User's Guide Using Message-Passing System Calls

info An array of eight long integers that receives information about the specified
message. The following information is stored into the first four elements of
this array:

* Type of the message (as returned by infotype()).
¢ Length of the message in bytes (as returned by infocount()).

¢ Node number of the process that sent the message (as returned by
infonode()).

* Process type of the process that sent the message (as returned by
infoptype()).

The remaining four elements of the array are reserved.

hrecvx() is like hrecv(), except that it has the same nodesel and ptypesel parameters as the other
«.X() calls and the same Aparam parameter as the hsendx() call. hrecvx() does not have an info
parameter, because the corresponding information is passed to the handler when it is called.

The info parameter of crecvx(), irecvx(), cprobex(), and iprobex() must be specified and must not
be zero or null. If you do not want this information, or you want it to be available to the info...() calls,
specify the special array msginfo, defined in nx.h or fnx.h. The array msginfo is used by the non-x
versions of these calls, and the info...() calls get their information from msginfo. This is why you
cannot use the info...() calls after crecvx(), cprobex(), or iprobex() unless you specify msginfo as
the last parameter of the extended receive or probe call.

The info parameter of irecvx() does not contain valid data until the message is received (as

determined by msgdone() or msgwait()). The info parameter of iprobex() does not contain valid
data unless the iprobex() returns 1.

3-25

Using Message-Passing System Calls Paragon System User's Guide

3-26

For example, the following call receives a message of type O from process type 2 on node 1, storing
information about the received message into the array myinfo:

/* C version */

char buf[80];

long myinfo[8];

crecvx (0, buf, sizeof(buf), 1, 2, myinfo);

After this crecvx() call, the message type is in myinfo[0], its length is in myinfo[1], the sender’s node
number is in myinfo[2], and the sender’s process type is in myinfo[3].

c Fortran version
character*80 buf
integer*4 myinfo(8)

call crecvx (0, buf, len(buf), 1, 2, myinfo)

After this crecvx() call, the message type is in myinfo(1), its length is in myinfo(2), the sender’s node
number is in myinfo(3), and the sender’s process type is in myinfo(4).

Note that the standard crecv() call
crecv (typesel, buf, count);
is exactly equivalent to the following crecvx() call:

crecvx (typesel, buf, count, -1, -1, msginfo);

Paragon™ System User's Guide

Global Operations

Using Message-Passing System Calls

Synopsis

geol(x, xlen, y, ylen, ncnt)

geolx(x, xlens, y)
gdhigh(x, n, work)
gdlow(x, n, work)
gdprod(x, n, work)
gdsum(x, n, work)
giand(x, n, work)
gihigh(x, n, work)
gilow(x, n, work)
gior(x, n, work)
giprod(x, n, work)
gisum(x, n, work)
gland(x, n, work)
glor(x, n, work)

gopf(x, xlen, work, function)

gshigh(x, n, work)
gslow(x, n, work)
gsprod(x, n, work)
gssum(x, n, work)
gsync()

Description

Concatenation.

Concatenation for contributions of known length.
Vector double precision MAX.
Vector double precision MIN.
Vector double precision MULTIPLY.
Vector double precision SUM.
Vector integer bitwise AND.
Vector integer MAX.

Vector integer MIN.

Vector integer bitwise OR.
Vector integer MULTIPLY.
Vector integer SUM.

Vector logical AND.

Vector logical inclusive OR.
Arbitrary commutative function.
Vector real MAX.

Vector real MIN.

Vector real MULTIPLY.

Vector real SUM.

Global synchronization.

The g...() calls perform operations that use data from every node in the application. In general, when
you make one of these calls, each node contributes a piece of data to the operation, the operation is
performed on the whole collection of data, and then the result of the operation is returned to each
node.

These operations are synchronizing calls: if any node in an application makes one of these calls, it
blocks until every node in the application has made the same call. (In the simplest case, gsync(), this
synchronization is the only operation performed by the call.) One process on each node in the

application must make the call, and all the processes that make the call must have the same process

type.

The global operations are implemented using dynamic algorithm selection for maximum
performance. The system considers several ways of exchanging the needed information between the
nodes, and selects the one that minimizes the time required to perform the global operation given the
size and shape of the application.

3-27

Using Message-Passing System Calls Paragon’" System User's Guide

Each global operation’s name begins with g and ends with the name of the operation. Some
operations have several versions, which operate on different data types; for these calls, the data type
is indicated by the second letter of the call’s name (1 for logical, i for integer, s for single-precision
floating point, or d for double-precision floating point). For example, gdsum() performs a global
double-precision sum.

To illustrate the use of a global operation, consider the gdsum() call. This call is used by the &
example discussed under “Example Application: Calculating pi” on page 7-7. This example
evaluates 7t by calculating a definite integral. The integral is partitioned among the nodes of a cube.
The answer, then, is the sum of the answers from each of the participating nodes. Here’s a code
fragment from the Fortran version of the example:

double precision pi,tmp

call gdsum(pi,1l,tmp)

Before this gdsum() call, this node’s part of the total integral is stored in the variable pi. gdsum() is
designed to operate on a vector, so the second parameter specifies the size of the vector; in this case,
itis a “vector” of size 1 (a single variable). The third parameter, tmp, is a temporary area used in the
calculation. After this gdsum() call, the sum of all the nodes’ pi’s is stored in every node’s pi.

3-28

Managing Applications and Partitions
with System Calls

Introduction

This chapter describes the system calls that let you create and manage applications and partitions on
Paragon systems. This chapter also describes the system calls that perform general services other
than message passing. The following sections, each of which describes a group of related calls:

* Managing applications.

* Managing partitions.

e Listing unusable nodes.

¢ Handling errors.

¢ Controlling floating-point behavior.

e Miscellaneous calls.

« ipPSC® system and Touchstone DELTA system compatibility calls.

Within each section, the calls are discussed in order of increasing complexity. That is, the “base”
calls are discussed first, and the “extended” calls are discussed later.

Each section includes numerous examples in both C and Fortran. A call description at the beginning
of each section or subsection gives a language-independent synopsis (call name, parameter names,
and brief description) of each call discussed in that section. Differences between C and Fortran are
noted where applicable. See Appendix A for information on call and parameter types; see the
ParagonTM System C Calls Reference Manual or the ParagonTM System Fortran Calls Reference
Manual for complete information on each call.

4-1

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

This chapter does not describe all the system calls. For information about system calls that perform
message passing, see Chapter 3. For information about the calls used with the Parallel File System,
see Chapter 5. For information about the calls used with graphical interfaces, such as DGL and the
X Window System, see the ParagonTM System Graphics Libraries User’s Guide. For information

about the system calls that require root privileges, see the Paragon™ System Administrator’s Guide.

Applications written in C can also issue OSF/1 system calls. The operating system is a complete
OSF/1 system and fully supports all the standard OSF/1 system calls. See the OSF/I Programmer’s
Reference for information on these calls.

Applications written in Fortran cannot make OSF/1 system calls directly, but the Fortran runtime
library includes a number of system interface routines. These routines make a number of OSF/1
system calls available to Fortran programs. See the Paragonm System Fortran Compiler User’s
Guide for information on these routines.

NOTE

Do not use the Mach system call interface.

This interface is not supported. It is not documented in SSD manuals, but you may read about Mach
elsewhere. If you use Mach system calls, your application may fail. Mach memory allocation and
Paragon memory allocation do not work together.

Managing Applications

4-2

The operating system provides system calls that let you create parallel applications, control their
execution, and get information about them. See “Running Applications” on page 2-11 and
“Managing Running Applications” on page 2-29 for introductory information on applications.

Paragon™ System User's Guide

Managing Applications and Partitions with System Calls

Controlling Application Execution with System Calls

Synopsis
nx_initve(partition, size, account, argc, argv)

nx_initve_rect(partition, anchor, rows, cols,
account, argc, argv)

nx_initve_attr(partition, argc, argv,
[attribute, value,]... NX_ATTR_END)

nx_pri(pgroup, priority)

nx_nfork(node_list, numnodes, ptype, pid_list)

nx_load(node_list, numnodes, ptype, pid_list,
pathname)

nx_loadve(node_list, numnodes, ptype,

pid_list, pathname, argv, envp)

nx_waitall()

Description
Create a new application.

Create a new application with a rectangular shape.

Create a new application with specified attributes.

Set the priority of an application.

Copy the current process onto some or all nodes of
an application.

Execute a stored program on some or all nodes of
an application.

Execute a stored program on some or all nodes of
an application, with specified argument list and
environment.

Wait for all application processes.

The simplest way to control the way an application executes is to use the command-line switch -nx
when you link the application. (See “Compiling and Linking Applications” on page 2-5 for more
information on the -nx switch.) When you execute a program that was linked with -nx, the program
is automatically copied onto the specified number of nodes in the specified partition, runs, and then
when all the nodes have finished you get your prompt back.

The code linked in by -nx reads the command line and environment variables, then performs the
following actions for you (see “Controlling the Application’s Execution Characteristics” on page

2-12 for more information):

* Creates a new, empty application in the partition specified by the -pn switch and on the nodes
of that partition specified by the -sz or -nd switch. If -pn is not used, the partition is specified
by $NX_DFLT_PART, or .compute if SNX_DFLT _PART is not set. If neither -sz nor -nd is
used, the number of nodes is specified by SNX_DFLT_SIZE, or all nodes of the partition if

SNX_DFLT_SIZE is not set.

* Sets the application’s priority to the value specified by -pri (default 5).

* Loads and starts your program(s) on the nodes specified by -on (default all nodes of the
application) with the process type specified by -pt (default 0).

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

4-4

The nx_...() system calls perform the same actions as those of the code linked in by -nx, but under
program control instead of command-line control. Using these calls is more complicated than using
-nx, but gives your program more flexibility and control.

NOTE

If you use any of the nx_initve...() calls, do not link the program
with the -nx switch. Use the switch -Inx instead.

The switch -Inx links in the library libnx.a, which contains all the calls discussed in this manual, but
does not link in the automatic start-up code linked in by -nx.

Creating an Application with nx_initve()

nx_initve() creates a new, empty application. The process that calls nx_initve() becomes the new
application’s controlling process; see “The Controlling Process” on page 4-26 for information on
what this means.

The partition and size of the new application can be specified by parameters or by the command line;
the priority and msg_switches are specified by the command line. If command-line switches are not
used or the command line is ignored by specifying zero for argc, the application’s execution
characteristics default as discussed under “‘Controlling the Application’s Execution Characteristics”
on page 2-12 and the msg_switches default as discussed under “Message-Passing Configuration
Switches” on page 8-18.

nx_initve() just allocates the specified number of nodes from the partition; it does not start any
processes. (This allocation may or may not be exclusive, depending on the characteristics of the
partition.) You must call nx_nfork(), nx_lead(), or nx_loadve() to start processes in the new
application. The nodes allocated to the application are automatically deallocated when all the
processes in the application have terminated.

Another effect of nx_initve() is to make sure that the calling process is a process group leader. If
the calling process is not already a process group leader, nx_initve() creates a new process group,
removes the calling process from its current process group, and makes the calling process the new
process group’s leader. If you’re not familiar with these terms, see “Process Groups” on page 4-27.

Finally, nx_initve() also initializes the data structures required by all the other calls described in this
manual. In an application linked with -nx, the codc linked in by -nx peiforms this initialization
before the application starts up, so you can use these other calls anywhere in the application. In an
application linked with -Inx, however, you must call nx_initve() before you can use any of the other
calls described in this manual. If called before nx_initve(), these other calls will fail; the way they
fail depends on the call (as described under “Handling Errors” on page 4-55). For example, if you
call csend() before calling nx_initve(), the csend() prints an error message and terminates the
calling process.

Paragon™ System User's Guide

Managing Applications and Partitions with System Calls

The parameters of nx_initve() have the following meanings:

partition

size

account

argc

argv

The relative or absolute partition pathname of the partition to run the
application in, or a null string (" " or NULL in C, " " in Fortran) to use the
default partition (the partition specified by SNX_DFLT_PART, or .compute if
SNX_DFLT_PART is not set). The specified partition must exist and must
give execute permission to the calling process.

If the user specifies a partition with the -pn switch on the command line, it
overrides the value of the partition parameter (unless you set the argc
parameter to 0, as described later in this section).

See “Partition Pathnames” on page 2-33 for more information on partition
pathnames; see “Owner, Group, and Protection Modes” on page 2-38 for
more information on partition permissions.

The size of the application (number of nodes to run the application on), or 0
to use the default size (the size specified by $SNX_DFLT_SIZE, or all nodes of
the partition if NX_DFLT_SIZE is not set).

nx_initve() attempts to allocate a square group of nodes if it can. If this is not
possible, it attempts to allocate a rectangular group of nodes that is either
twice as wide as it is high or twice as high as it is wide. If this is not possible,
it allocates any available nodes. In this case, nodes allocated to the application
may not be contiguous.

If the user specifies the -sz or -nd switch on the command line, it overrides
the value of the size parameter (unless you set the argc parameter to 0, as
described later in this section).

In the future, this parameter will be used for accounting information. For now,
it must be a null string (* " or NULL in C, " " in Fortran).

In C, a pointer to an integer whose value is the number of arguments on the
command line (counting the application name). If the value of this integer is
0, the command line is ignored. You can use a pointer to the argc parameter
of main(), or you can construct the command line yourself.

In Fortran, this parameter is any nonzero value to search the command line,
or 0 to ignore the command line.

In C, apointer to the command-line arguments, which may include arguments
that specify application characteristics. You can use the argv parameter of
main(), or you can construct the command line yourself.

In Fortran, nx_initve() gets the command line directly from the system,

because Fortran programs don’t have an argv parameter. This parameter is
ignored; it should always be 0.

4-5

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

4-6

In either language, if any of the command-line arguments -sz size, -sz hXw,
-nd AXw:n, -pri priority, -pn partition, -nt nodetype, -rlx, -pkt packet_size,
-mbf memory_buffer, -mex memory_export, -mea memory_each,

-sth send_threshold, -sct send_count, -gth give_threshold, or -plk is found in
the command line:

» The appropriate application characteristic is set as specified by the
argument.

e The argument is removed from argv.
e The variable pointed to by argc is decremented appropriately.

Any remaining arguments are moved to the beginning of argv for your
program’s use.

Note that the arguments -pt type, -on nodelist, and \; application are not
recognized by nx_initve(). If you want your application to have the same user
interface as an application linked with -nx, you must examine the argument
list for these arguments and pass the appropriate values to nx_load() or
nx_loadve() yourself.

nx_initve() returns the number of nodes in the application, or -1 if any error occurs.

For example, the following C call creates an application whose characteristics (partition, number of
nodes, and so on) are determined by the user through command-line switches. If the user runs this

program with no command-line switches, it runs on the user’s default number of nodes in the user’s

default partition.

#include <nx.h>

main(int argc, char *argv[]) {
int n;
n = nx_initve("", 0, "", &argc, argv);

After this call, the variable n contains the number of nodes in the new application, or -1 if any error
occurred. The variable argc contains the count of arguments that were not recognized and removed
by nx_initve(), and the array argv contains pointers to those arguments.

The following Fortran call creates an application on 50 nodes of the partition mypart, ignoring any
command-line switches provided by the user:

include 'fnx.h'
integer n

n = nx_initve("mypart", 50, "", 0, 0)

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

After this call, the variable n contains the number of nodes in the new application, or -1 if any error
occurred.

The following restrictions apply to nx_initve():
* Asingle process cannot call nx_initve() more than once.
* An application that calls nx_initve() cannot be linked with -nx. You must use -Inx instead.

* If your application uses any signal handlers, you must set them up after the call to nx_initve().
See signal() in the OSF/I Programmer’s Reference for more information on signal handlers.

The reason you cannot use -nx when you link an application that calls nx_initve() is that the code
linked in by -nx calls nx_initve() itself, and nx_initve() can only be called once in an application.
If you do use -nx when you link, your application’s call to nx_initve() (actually the second call to
nx_initve()) fails and returns -1.

Creating a Rectangular Application with nx_initve_rect()

nx_initve_rect() works exactly like nx_initve() except that it requires that the nodes allocated to the
application form a rectangle with a particular height and width. Optionally, it can also specify the
rectangle’s location within the partition. The parameters of nx_initve_rect() are the same as those
of nx_initve(), except that instead of the size parameter it has the following three parameters:

anchor The node number within the partition for the upper left corner of the
rectangle, or -1 to allow the rectangle to be placed anywhere in the partition
it will fit.

rows The height of the rectangle.

cols The width of the rectangle.

If the specified rectangle of nodes is not available, the nx_initve_rect() call fails and returns -1 (even
if the equivalent number of nodes is available with a non-rectangular shape).

NOTE

All the restrictions and cautions in this manual that refer to
nx_initve() also apply to nx_initve_rect().

If the user specifies a size or shape with the -sz or -nd switch on the command line, it overrides the
values of these three parameters (unless you set the argc parameter to 0). nx_initve_rect() never
uses the environment variable $NX_DFLT SIZE.

Managing Applications and Partitions with System Calls Paragon"'| System User's Guide

4-8

For example, the following Fortran call creates an application 8 nodes high and 8 nodes wide (unless
otherwise specified by command-line switches) anywhere it will fit in the user’s default partition:

include 'fnx.h®
integer n

n = nx_initve_rect("", -1, 8, 8, "", 1, 0)
The following C call creates an application 10 nodes high and 20 nodes wide whose upper left corner
is node O (the upper left corner of the partition) in the partition mypart, ignoring any command-line

switches provided by the user:

#include <nx.h>
int n, 1i;

i = 0;
nx_initve_rect ("mypart", 0, 10, 20, "", &i, NULL);

After either of these calls, the variable n contains the number of nodes in the new application, or -1
if any error occurred.

Note that nx_initve_rect() will fail if the exact specified rectangle is not available. If you just want
to find out the application’s size and shape, rather than mandating a particular size and shape, you
can use an ordinary nx_initve(), followed by a call to nx_app_rect() (discussed under “Finding an
Application’s Shape with nx_app_rect()”” on page 4-22) to determine the height and width assigned
by nx_initve().

Controlling Application Attributes with nx_initve_attr()

When you call nx_initve() or nx_initve_rect(), you specify only the partition and the number of
nodes or rectangle of nodes. All the other application attributes you can specify with switches on the
application command line, such as its priority and packet size, cannot be specified in the call’s
arguments; they are always extracted from the command line (argv argument).

nx_initve_attr() works exactly like nx_initve() except that you can specify all the application
attributes in the call’s arguments. The parameters of nx_initve_attr() are as follows:

partition The partition to run the application in, as for nx_initve().
argc The command-line argument count, as for nx_initve().
argv The command-line arguments, as for nx_initve().

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

[attribute, value,] ...
A series of zero or more argument pairs that specify the application’s
attributes. The attribute is one of the constants described in Table 4-1; the
value is the value of the specified attribute. The type of the value argument is
determined by the value of the preceding attribute argument.

NX_ATTR_END A constant that marks the end of the list of attribute, value pairs.

NOTE

If you call nx_initve_attr() in a Fortran subprogram, you must
include fnx.h after the subprogran declaration and before the call.
This is required for the call to recognise the pre-defined attribute
constants (for example, NX_ATTR_SZ).

NOTE

All the restrictions and cautions in this manual that refer to
nx_initve() also apply to nx_initve_attr().

The following table describes the attributes and values you can use with nx_initve_attr(). The
attribute constants, including NX_ATTR_END, are defined in <nx.h> or <fnx.h>.

Table 4-1. Attribute Constants for Use with nx_initve_attr() (1 of 3)

Type of Following | Equivalent

Attribute Constant Value (C / Fortran) Switch Description
NX_ATTR_SZ long -SZ size Specifies the size of the application, like the
INTEGER size argument of nx_initve() (see “Creating
an Application with nx_initve()”” on page
4-4).
NX_ATTR_RECT long * -sz hXw Specifies a rectangle for the application, like
INTEGER(2) the rows and cols arguments of

nx_initve_rect() (see “Creating a
Rectangular Application with
nx_initve_rect()” on page 4-7). The value is
an array of two integers (height first, width
second).

If NX_ATTR_ANCHOR is not specified,
the system determines the rectangle’s
location within the partition.

Managing Applications and Partitions with System Calls

Paragon™ System User’s Guide

Table 4-1. Attribute Constants for Use with nx_initve_attr() (2 of 3)

Attribute Constant

Type of Following
Value (C / Fortran)

Equivalent
Switch

Description

NX_ATTR_ANCHOR

long
INTEGER

-nd A Xw:n

Specifies the node number of the upper left
corner of the rectangle, like the anchor
argument of nx_initve_rect() (see “‘Creating
a Rectangular Application with
nx_initve_rect()” on page 4-7).

If the specified node number is -1, the system
determines the rectangle’s location within
the partition.

NX_ATTR_RECT must also be specified
(anywhere in the argument list) to give the
height and width of the rectangle.

NX_ATTR_RELAXED

long
INTEGER

Specifies whether or not the requested
number of nodes can be relaxed (see
“Relaxing Application Size” on page 2-17
and “Using Node Attributes with a Relaxed
Application Size” on page 2-28). The value 0
means all requested nodes must be available;
the value 1 relaxes this requirement.

If the user specifies the -rlx switch on the
command line, it overrides the value 0. The
value 1 cannot be overridden.

NX_ATTR_RELAXED cannot be used
with NX_ATTR_RECT, unless
NX_ATTR_ANCHOR is also specified
with a value other than -1.

NX_ATTR_SEL

char *
CHARACTER *(*)

Specifies the node type for the application.
The value is a character string whose value is
a node type specifier (see “Specifying Node
Attributes” on page 2-25).

If NX_ATTR_SZ is specified or
NX_ATTR_RECT is specified with
NX_ATTR_ANCHOR, the given nodes
must all be available and have the specified
node type, unless NX_ATTR_RELAXED
is specified.

NX_ATTR_PRI

long
INTEGER

-pri

Sets the priorty for the application (see
“Specifying Application Priority” on page
2-18).

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

Table 4-1. Attribute Constants for Use with nx_initve_attr() (3 of 3)

Type of Following | Equivalent

Attribute Constant | Value (C / Fortran) Switch Description
NX_ATTR_PKT long -pkt Sets the size of each message packet (see
INTEGER “Packetization” on page 8-16).
NX_ATTR_MBF long -mbf Sets the total amount of memory allocated to
INTEGER message buffers (see “System Message
Buffers” on page 8-16).
NX_ATTR_MEX long -mex Sets the value of memory_export (see
INTEGER “Message-Passing Configuration Switches”
on page 8-18).
NX_ATTR_MEA long -mea Sets the amount of memory allocated to
INTEGER buffering messages from each other node
(see “System Message Buffers” on page
8-16).
NX_ATTR_NOC long -noc Sets the total number of other processes from
INTEGER which each process expects to receive
messages (see “System Message Buffers” on
page 8-16).
NX_ATTR_STH long -sth Sets the send threshold for sending multiple
INTEGER packets (see “System Message Buffers” on
page 8-16).
NX_ATTR_SCT long -sct Sets the number of bytes to send right away
INTEGER when the available memory is above

send_threshold (see “System Message
Buffers” on page 8-16).

NX_ATTR_GTH long -gth Sets the threshold for the “give me more
INTEGER messages” message (see “System Message
Buffers” on page 8-16).
NX_ATTR_PLK long -plk Specifies whether or not the data area of each
INTEGER process should be locked into memory (see

“Process Locking” on page 8-15). The
value 1 locks all processes into memory; the
value 0 does not lock.

If the user specifies the -plk switch on the
command line, it overrides the value 0. The
value 1 cannot be overridden.

For each attribute in the nx_initve_attr() call, if the user specifies the equivalent application switch
on the command line, it overrides the value specified for the attribute in the call (unless you set the

411

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

argc parameter to 0, as described for nx_initve()). The -sz or -nd switch can override
NX_ATTR_SZ, NX_ATTR_RECT, and NX_ATTR_ANCHOR.

Each artribute can appear at most once in the argument list. The order of the attributes in the
argument list is not significant.

Specifying the Nodes Allocated to the Application
nx_initve_attr() provides the following ways to specify the nodes allocated to the application:

e Use NX_ATTR_SZ alone.

Requests the specified number of nodes. If the value is 0 or -1, requests the number of nodes
specified by SNX_DFLT_SIZE, or all the nodes of the partition if $NX_DFLT_SIZE is not set.

NX_ATTR_SZ attempts to allocate a square group of nodes if it can. If this is not possible, it
attempts to allocate a rectangular group of nodes that is either twice as wide as it is high or twice
as high as it is wide. If this is not possible, it allocates any available nodes. In this case, nodes
allocated to the application may not be contiguous.

e Use NX_ATTR_RECT alone.

Requests a rectangle of nodes of the specified height and width. The system places the rectangle
within the partition.

e Use both NX_ATTR_RECT and NX_ATTR_ANCHOR.

Requests a rectangle of nodes of the specified height and width, whose upper left corner is
located at the specified anchor node. NX_ATTR_RECT and NX_ATTR_ANCHOR can
appear in any order in the argument list. If the value of NX_ATTR_ANCHOR is -1, the system
places the rectangle within the partition..

e Use NX_ATTR_SEL alone.
Requests all the nodes of the specified node type in the partition.

e Use NX_ATTR_SEL together with NX_ATTR_SZ, NX_ATTR_RECT, and/or
NX_ATTR_ANCHOR.

Requests the nodes specified by the NX_ATTR_SZ, NX_ATTR_RECT, and/or
NX_ATTR_ANCHOR, aii of which must have the node type specified by the
NX_ATTR_SEL. See “Running an Application on a Particular Node Type” on page 2-23 for
more information.

¢ Do notuse NX_ATTR_SEL, NX_ATTR_SZ, NX_ATTR_RECT, or
NX_ATTR_ANCHOR.

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

Requests the number of nodes specified by SNX_DFLT_SIZE, or all the nodes of the partition
if $NX_DFLT _SIZE is not set.

e Use NX_ATTR_RELAXED with a value of 1 together with any of the above.

Requests all the available nodes in the specified node set, up fo the number of nodes requested.
At least one of the specified nodes must be available. See “Relaxing Application Size” on page
2-17 for more information.

If NX_ATTR_SEL is used together with NX_ATTR_RELAXED, only nodes of the specified
type are returned, but the number of nodes returned may be less than the number of nodes
requested. At least one node of the specified type must be available. See “Using Node Attributes
with a Relaxed Application Size” on page 2-28 for more information.

All these attributes can be overridden by command-line switches. In particular, note that either the
-sz or -nd switch overrides NX_ATTR_SZ,NX_ATTR_RECT, and NX_ATTR_ANCHOR. If an
attribute is overridden by a command-line switch, the effect is as though it had been specified in the
nx_initve_attr() call with the value from the command line.

The following combinations of these attributes are invalid:

e You cannot use NX_ATTR_ANCHOR without NX_ATTR_RECT.

¢ You cannot use NX_ATTR_SZ together with NX_ATTR_RECT.

¢ You cannot use NX_ATTR_RELAXED together with NX_ATTR_RECT, unless
NX_ATTR_ANCHOR is also specified with a value other than -1.

Using any of these combinations of attributes causes nx_initve_attr() to fail with the error “invalid
attribute specified.”
Examples
The following C call creates an application whose characteristics (partition, number of nodes, and
so on) are determined by the user through command-line switches. If the user runs this program with
no command-line switches, it runs on the user’s default number of nodes in the user’s default
partition.

#include <nx.h>

main(int argc, char *argvl[]) {
int n;

n = nx_initve_attr("", &argc, argv, NX_ATTR_END) ;

4-13

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

After this call, the variable n contains the number of nodes in the new application, or -1 if any error
occurred. The variable argc contains the count of arguments that were not recognized and removed
by nx_initve(), and the array argv contains pointers to those arguments.

The following Fortran call creates an application on 50 nodes of the partition mypart, ignoring any
command-line switches provided by the user:

include 'fnx.h'
integer n

n = nx_initve_attr ("mypart", 0, 0,
X NX_ATTR_SZ, 50,
X NX_ATTR_END)

The following C call creates an application that consists of all available nodes in a rectangle 10 nodes
high and 20 nodes wide whose upper left corner is node O (the upper left corner of the partition) in
the partition mypart, ignoring any command-line switches provided by the user:

#include <nx.h>
long rect[2];

int i, n;

rect[0] = 10;

rect([1l] = 20;

i = 0;

n = nx_initve_attr("mypart", &i, NULL,

NX_ATTR_RELAXED, 1,
NX_ATTR_RECT, rect,
NX_ATTR_ANCHOR, O,
NX_ATTR_END) ;

The following Fortran call creates an application consisting of any 15 nodes in the user’s default
partition that are not I/O nodes and have exactly 32M bytes of RAM (unless otherwise specified by

command-line switches):

include 'fnx.h'
integer n

n = nxXx_initve_attr("", 1, 0,

x NX_ATTR_SZ, 15,
X NX_ATTR_SEL, "32mb, !io",
X NX_ATTR_END)

After any of these calls, the variable n contains the number of nodes in the new application, or -1 if
any error occurred.

P.'zu'agonTM System User's Guide Managing Applications and Partitions with System Calls

Setting an Application’s Priority with nx_pri()

nx_pri() sets the specified application’s priority to the specified value. If you don’t call nx_pri() and

the user doesn’t use the -pri switch, the default priority is 5. The parameters of nx_pri() have the

following meanings:

pgroup The process group ID of the application (see “Process Groups” on page 4-27

for more information), or 0 to specify the application of the calling process.
If the specified process group ID is not the process group ID of the calling
process, the calling process’s user ID must either be root or the same user ID
as the specified application.

priority The new priority, an integer from 0 to 10 inclusive. 0 is the lowest priority,
10 is the highest.

nx_pri() returns 0, or -1 if any error occurs.
For example, the following Fortran call sets the priority of the calling application to 7:

include 'fnx.h'
integer n

n = nx_pri(0, 7)
The following C call sets the priority of the application with process group ID 738423 to 0:

#include <nx.h>
int n;

n = nx_pri (738423, 0);

In each of these examples, the variable n is assigned 0, or -1 if any error occurred.

Copying a Process onto the Nodes with nx_nfork()

nx_nfork() copies the process that calls it onto the specified set of nodes with the specified process
type. It creates one child process on each specified node. nx_nfork() is similar to the standard OSF/1
call fork() except that it can fork processes onto multiple nodes and specifies the process type for
the child processes. The parameters of nx_nfork() have the following meanings:

node_list An array of integers, each of which specifies a node number within the
application (no node number may appear more than once in this array). The
calling process is copied onto each of the specified nodes.

numnodes The number of node numbers in node_list, or -1 to use all the nodes in the
application (in which case node_list is ignored).

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

4-16

pbtype The process type for each child process.

pid_list An array of integers, into which are stored the OSF/1 process identifiers
(PIDs) of the child processes. This array is only for the parent process. The
child process get a zero-filled array. See “Using PIDs” on page 4-20 for more
information.

nx_nfork() returns the number of child processes created to the parent process and 0 to each child
process, or -1 if any error occurs.

For example, the following C calls create an application whose characteristics are specified by the
user, then copy the calling process onto all nodes of the application. The process type of each child
process is set to 0.

#include <nx.h>
#include <sys/types.h>

main(int argc, char *argv[]) {
int n;
pid_t pids[2000];

n
n

nx_initve("", 0, "", &argc, argv);
nx_nfork(NULL, -1, 0, pids);

Note that the node_list argument is ignored when the numnodes argument is -1, so you can specify
a NULL pointer in this case (in Fortran, you can use the value 0). After the call to nx_nfork(), the
variable n contains the number of child processes created, or -1 if any error occurred; the first n
elements of the array pids contains the PIDs of the child processes. If more than 2000 child processes
are created, unexpected results will occur.

The following Fortran calls create an application with 100 nodes and copy the calling process onto
the first 50 nodes of the application (nodes 0 through 49). The process type of each child process is
setto 0.

include 'fnx.h'
integer n
integer nodes (50), pids(50)
n = nx_initve("mypart", 100, "", 0, 0)
do 2, i =1, 50
nodes (i) = 1 - 1
2 continue

n = nx_nfork(nodes, 50, 0, pids)

After the call to nx_nfork(), the variable n contains 50, or -1 if any error occurred the array pids
contains the PIDs of the child processes.

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

Loading a Program onto the Nodes with nx_load()

nx_load() executes the specified file on the specified set of nodes with the specified process type.
Like nx_nfork(), nx_load() creates one child process on each specified node. The parameters of
nx_load() have the following meanings:

node_list An array of integers, each of which specifies a node number within the
application (no node number may appear more than once in this array). The
specified file is loaded onto each of the specified nodes.

numnodes The number of node numbers in node_list, or -1 to use all the nodes in the
application (in which case node_list is ignored).

ptype The process type for each child process.

pid_list An array of integers, into which are stored the OSF/1 process identifiers
(PIDs) of the child processes. See “Using PIDs” on page 4-20 for more
information.

pathname The relative or absolute pathname of the file to load.

nx_load() returns the number of child processes created, or -1 if any error occurs.

For example, the following Fortran calls create an application whose characteristics are specified by
the user, then load and start the program myprog on all nodes of the application. The process type of
each child process is set to 0.

include 'fnx.h'
integer n
integer pids(2000)

nx_initve("", 0, "", 1, 0)
nx_load(0, -1, 0, pids, "myprog")

n
n

After the call to nx_load(), the variable n contains the number of child processes created, or -1 if any
error occurred; the first n elements of the array pids contains the PIDs of the child processes. If more
than 2000 child processes are created, unexpected results will occur.

Managing Applications and Partitions with System Calls Paragon System User's Guide

The following C calls create an application with 10 nodes in the partition mypart, then load and start
the program ../bin/myprog on nodes 1, 5, and 7 of the application. The process type of each child
process is setto 1.

#include <nx.h>
#include <sys/types.h>
int n, i;

int nodes [3];

pid_t pids[31];

i = 0;

n = nx_initve("mypart", 10, "", &i, NULL);
nodes|[0] = 1;

nodes[1l] = 5;

nodes[2] = 7;

n = nx_load(nodes, 3, 1, pids, "../bin/myprog");

After the call to nx_load(), the variable n contains 3, or -1 if any error occurred; the array pids
contains the PIDs of the child processes.

Loading a Program onto the Nodes with nx_loadve()

nx_loadve() is just like nx_load() except that it also lets you specify the argument list and
environment variables for the new processes (in C). nx_loadve() has the following additional
parameters:

argv In C, this parameter contains the command line for the child process (you can
use the argv parameter of main() or construct the command line yourself).

eny In C, this parameter contains the environment variables for the child process
P p p
(you can use the envp parameter of main() or construct the environment
yourself).

In Fortran, you must specify the value 0 for the argv and envp parameters (or use nx_load() instead).
This is necessary because these parameters are pointers to arrays of strings, which have no
equivalent in Fortran.

nx_loadve() returns the number of child processes created, or -1 if any error occurs. If an error
occurs, the value 0 is also stored into the pid_list for each process that was not successfully started.

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

For example, the following C calls create an application as specified by the user (if not specified, the
default number of nodes in the default partition), then set the value of the environment variable
HOME to /tmp, then load and start the program myprog on all nodes of the application with process
type 0:

#include <nx.h>
#include <stdlib.h>
#include <sys/types.h>
extern char **environ;

main(int argc, char *argv[]) {
int n;
pid_t pids[2000];

n = nx_initve(NULL, 0, NULL, &argc, argv);
putenv ("HOME=/tmp") ;
n = nx_loadve (NULL, -1, 0, pids, "myprog", argv, environ);

The argument list of myprog consists of any command-line arguments to the calling program that
were not recognized and removed by nx_initve(), and the environment of myprog is the same as the
user’s environment except for the value of HOME.

Waiting for Application Processes with nx_waitall()

nx_nfork(), nx_load(), and nx_loadve() return immediately to the calling process. To wait for the
processes created by nx_nfork(), nx_load(), or nx_loadve() to complete, call nx_waitall().
nx_waitall() simply blocks until all the child processes of the calling process have terminated. It
returns 0, or -1 if any error occurs.

For example, the following Fortran calls create a new application as specified by the user, run the
program myprog on all nodes of the application, and wait until all the node processes have
completed:

include 'fnx.h'
integer n
integer pids (2000)

n nx_initve("", 0, "", 1, 0)
n nx_load (0, -1, 0, pids, "myprog")
n = nx_waitall ()

i}

1]

4-19

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

Using PIDs

The pid_list argument of nx_nfork(), nx_load(), and nx_loadve() receives the OSF/1 process
identifiers (PIDs) of the child processes created by the call. The specified array must be large enough
to hold all the PIDs—that is, it must have at least as many elements as the maximum number of
processes that could be created by the call. If more child processes are created than the number of
elements in the pid_list, unexpected results will occur (the program will probably crash).

In the typical case where you create one process per node of the application, you can use the value
returned by any of the nx_initve...() calls to determine the number of nodes in the application, then
use malloc() or an equivalent call to dynamically allocate a pid_list with the same number of
elements. For example, the following example allocates the appropriate number of elements to the
array pids based on the application size specified by the user in argv:

#include <nx.h>
#include <stdio.h>
#include <malloc.h>

main(int argc, char **argv) {
int nnodes;
long *pids;

nnodes = nx_initve(NULL, 0, NULL, &argc, argv);
pids = (long *)calloc(nnodes, sizeof(long));
nx_nfork (NULL, -1, 0, pids);

If you don’t use dynamic allocation, you should give the pid_list as many elements as the number
of nodes on the largest system on which the application will be run. For portability to very large
Paragon supercomputers, this array should have at least 1000 elements (and possibly more in the
future).

Each element in the pid_list receives the PID of the process on the node specified by the
corresponding element of the node_list. If numnodes is -1, the PID of the process on node 0 is stored
into the first element of pid_list, the PID of the process on node 1 is stored into the second element
of pid_list, and so on. If one or more processes were not successfully started, the value O is stored
into the corresponding element of the pid_list.

4-20

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

OSF/1 PIDs are unique throughout the system; they are used with standard OSF/1 system calls such
as kill(). (Note that kill() and other system interface routines are supported by the Fortran runtime
library; see the ParagonTM System Fortran Compiler User’s Guide for information on these
routines.) Process types are unique only within a single application and a single node; they are used
with message-passing calls such as csend().

For example, the following C calls create an application as specified by the user, run the program
myprog on all nodes of the application with process type 0, and then send the signal SIGKILL to
all the node processes:

#include <nx.h>
#include <signal.h>
#include <sys/types.h>

main(int argc, char *argvI[]) {
int n, 1i;
pid_t pids[2000];

n
n

nxX_initve (NULL, 0, NULL, &argc, argv);
nx_load (NULL, -1, 0, pids, "myprog");

for(i=0; i<n; i++) {
kill(pids[i], SIGKILL);
}

Getting Information About Applications

Synopsis Description

nx_app_rect(rows, cols) Obtain the height and width of the rectangle of
nodes allocated to the current application.

nx_app_nodes(pgroup, node_list, list_size) List the nodes allocated to an application.

nx_pspart(partition, pspart_list, list_size) Obtain information about all applications and

active subpartitions in a partition (C only).

To get information about applications once they are running, use nx_app_rect(), nx_app_nodes(),
and nx_pspart(). nx_app_rect() returns the application’s shape (height and width of the rectangle
of nodes allocated to the application); nx_app_nodes() returns a list of the nodes that are allocated
to the application; and nx_pspart() returns information about all the active applications and
subpartitions in a partition (like the pspart command).

4-21

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

4-22

NOTE

Do not call nx_app_nodes() or nx_pspart() on more than a few
nodes at once.

If many nodes use the application information calls at the same time, the allocator daecmon can
become overwhelmed with requests, which could slow down your application or reduce system
stability. If all the nodes in your application need this information, you should have one node make
the call and then distribute the information to the other nodes. Note, though, that nx_app_rect() is
not subject to this restriction.

Finding an Application’s Shape with nx_app_rect()

Sometimes, in addition to its node number and the number of nodes in the application, a process
needs to know the shape of the application. For example, an application might use a different
message-passing algorithm depending on whether the nodes allocated to the application form a
square, a tall skinny rectangle, a short wide rectangle, or something else (such as a group of
noncontiguous nodes).

To find out the rectangular dimensions of the nodes allocated to the application, call nx_app_rect().
nx_app_rect() stores the height of the application into rows and the width of the application into
cois. If the nodes aliocaied to the application do not form a reciangle, nx_app_reci() stores 1 into
rows and numnodes() into cols. nx_app_rect() returns O if it is successful, or -1 if any error occurs.

For example, the following code fragment in Fortran stores the height of the application into y and
the width of the application into x:

integer*4 x, y, result

result = nx_app_rect(y, X)
The following code fragment in C does the same:

long x, y, result;

result = nx_app_rect (&y, &X);

See “Specifying a Rectangle of Nodes” on page 2-16 for information on how to run your application
on a rectangular group of nodes with a specific shape.

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

NOTE

nx_app_rect() can also be called by the name mypart() for
compatibility with the Touchstone DELTA System.

Listing an Application’s Nodes with nx_app_nodes()

Occasionally you want to know an application’s physical location within the system. You can use
this information to help track down possible hardware problems or make use of nodes with special
hardware features (such as extra memory or special I/O interfaces).

To list the nodes allocated to an application, call nx_app_nodes(). nx_app_nodes() has the
following parameters:

pgroup The process group ID of the application (see ‘“Process Groups” on page 4-27
for more information), or 0 to specify the application of the calling process.
If the specified process group ID is not the process group ID of the calling
process, the calling process’s user ID must either be root or the same user ID
as the specified application.

node_list Pointer variable into which nx_app_nodes() stores the address of the list of
nodes. The call allocates the memory for this list; when you are finished using

the information, you should release this memory by calling free().

list_size Variable into which nx_app_nodes() stores the number of entries in
node_list.

The node numbers returned by nx_app_nodes() are node numbers from the root partition, which tell
you where in the machine the application is located. nx_app_nodes() returns O for success, or -1 if

any error occurs.

For example, the following Fortran program fragment prints the root node numbers of the nodes on
which the current application is running:

include 'fnx.h'

integer*4 mynodes(1)

pointer (ptr, mynodes)
integer nnodes
integer i, status

status = nx_app_nodes (0, ptr, nnodes)
if (status .ne. 0) then

call nx_perror("nx_app_nodes()")
stop

4-23

Managing Applications and Partitions with System Calls

4-24

end if
do 2, 1 = 1, nnodes
print *, mynodes (i)
2 continue

call free(ptr)
The equivalent C code is as follows:

#include <nx.h>

nx_nodes_t mynodes;
unsigned long nnodes;
int i, status;

status = nx_app_nodes (0, &mynodes, &nnodes);

if(status != 0) {
nx_perror ("nx_app_nodes()");
exit (1) ;

}

for(i = 0; i1 < nnodes; i++) {

printf ("%d\n", mynodes[i]);
}

free (mynodes) ;

Note the use of the & operator on the variables mynodes and nnodes in the call to nx_app_nodes().

Listing the Applications in a Partition with nx_pspart()

nx_pspart() returns information about each of the applications and subpartitions in a partition, like
the pspart command. It is callable only from C, not Fortran. It has the following parameters:

partition The relative or absolute pathname of the partition. The specified partition
must exist and must give read permission to the calling process.

pspart_list Pointer variable into which nx_pspart() stores the address of an array of
nx_pspart_t structures. Each structure in the array describes one object
(application or subpartition). The nx_pspart_t structure is defined in

allocsys.h, which is automatically included by nx.s and fix. h. It includes the

following fields:

Paragon™ System User’s Guide

Paragon™ System User's Guide

object_type

object_id

uid

gid

size

priority

rolled_in

rollin_q

elapsed

active

time_started

Managing Applications and Partitions with System Calls

The type of the object described by this structure:
NX_APPLICATION or NX_PARTITION. (These
are constants defined in nx.h or fnx.h).

If the object is an application, this is its process group
ID. If the object is a partition, this is an arbitrary value
and should be ignored.

The numeric user ID of the object’s owner.
The numeric group ID of the object’s group.
The number of nodes allocated to the object.
The current priority of the object.

The amount of time the object has been rolled in
during the current rollin quantum, expressed as an
integer number of milliseconds.

The rollin quantum for the object’s parent partition
(that is, the partition specified in the nx_pspart() call),
expressed as an integer number of milliseconds.

The total amount of time the object has been rolled in
since it was started, expressed as an integer number of
milliseconds.

‘Whether or not the object is currently active
(rolled-in), inactive (rolled-out), or is dumping core:
0 if the object is inactive, 1 if the object is active, 2 if
the object is inactive and is either dumping core or has
dumped core, or 3 if the object is active and is either
dumping core or has dumped core.

The time the object was started, as returned by time().
(If the object is a subpartition, the time the oldest
application in the subpartition was started.)

nx_pspart() allocates the memory for the pspart_list array; when you are
finished using the information, you should release this memory by calling

free().

4-25

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

list_size Variable into which nx_pspart() stores the number of nx_pspart_t structures
in pspart_list.

nx_pspart() returns 0 for success, or -1 if any error occurs.

For example, the following program fragment prints the numeric user ID and size for every
application and subpartition in the partition mypart:

#include <nx.h>
nx_pspart_t *info;
unsigned long nobjs;

int status, 1i;

status = nx_pspart ("mypart", &info, &nobjs);

if(status != 0) {
nx_perror ("nx_pspart ()");
exit (1) ;

}

for(i = 0; i1 < nobjs; i++) {

printf ("uid = %d, size %2d\n", info->uid, info->size);

}
free(info);

Note the use of the & operator on the structure info and the variable nobjs in the call to nx_pspart().

The Controlling Process
By calling any of the nx_initve...() calls, a process creates a new application. The process that called
nx_initve...() becomes the new application’s controlling process. Each application has exactly one
controlling process, and each process controls at most one application.

The controlling process is a special process that creates and controls the application:

¢ The controlling process can create new processes in the application, using the function
nx_nfork(), nx_load(), or nx_loadve().

e The controlling process can wait for an application process to complete, using nx_waitall() or
the standard OSF/1 function wait() or waitpid().

e The controlling process can send a signal to an application process, or terminate it, using the

standard OSF/1 function kill(). In particular, the controlling process can send a signal to all the
processes in the application (including itself) by using kill(0, signal).

4-26

Paragon™ System User’s Guide Managing Apblications and Partitions with System Calls

You can terminate the entire application by terminating the controlling process, using the kill
command or your interrupt key (normally <Ctrl-c> or <Dels>). The controlling process always
runs in the service partition; the application processes run in the partition specified by nx_initve...().
If the application processes are running in a gang-scheduled partition, the controlling process is
rolled in and out along with its application (that is, when the application is rolled out, the controlling
process gets no processor time; when the application is rolled in, the controlling process gets its
normal share of the service partition’s processor time).

NOTE

Interrupting or suspending an application that is “rolied out” will not
take effect until the application is “rolled in” again.

In OSF/1 terms, the controlling process is a parent process and the processes created by nx_nfork(),
nx_load(), or nx_loadve() are its child processes. (In this respect, nx_nfork() is similar to fork(),
nx_load() is similar to a fork() followed by an execv() with a null argument list, and nx_loadve()
is similar to a fork() followed by an execve()). The controlling process and the application processes
all belong to the same process group, and the controlling process is the process group leader of the
group. No process outside the application belongs to this process group.

The controlling process does not usually do heavy computational work, because it runs in the service
partition along with users’ shells and other interactive processes. Since it is scheduled interactively,
the controlling process will not give as much throughput as application processes running in
gang-scheduled compute partitions.

See the OSF/1 Programmer’s Reference for information on wait(), waitpid(), kill(), fork(), and
execve().

Process Groups

Process groups are a standard OSF/1 concept. A process group is a set of related processes. You can
send a signal to all the processes in a group at once with kill(), and you can wait for any process in
a group with waitpid(). The processes in a process group also share access to a terminal, called the
controlling terminal of the group. Each process belongs to exactly one process group.

The processes in a process group are all children (or grandchildren, and so on) of the oldest process
in the group, called the process group leader. The process group leader’s process ID (PID) is used
to identify the group, and is also called the process group ID of the whole group. (Note that this is
the process group leader’s OSF/1 PID, not its process type.) A process can determine its process
group ID by calling getpgrp().

Normally, a process belongs to the same process group as its parent process. However, a process can

leave its parent’s process group and start a new process group of its own by making such calls as
setpgid(), setpgrp(), or setsid(). These calls create a new process group, then remove the calling

4-27

Managing Applications and Partitions with System Calis Paragon™ System User's Guide

4-28

process from its current group and place it in the new group. The calling process becomes the new
group’s process group leader, and the caller’s PID becomes the new group’s process group ID. After
that, any processes created by the process group leader belong to the new process group. See the
OSF/1 Programmer’s Reference for information on setpgid() and getpgrp().

Process Groups in the Operating System

In the operating system on a Paragon system;, process groups work the same as they do in standard
OSF/1. In addition, nx_initve...() makes sure that the calling process is a process group leader. If the
calling process is not already a process group leader, nx_initve...() has the same effect as setpgid():
it creates a new process group and makes the calling process the new group’s process group leader.
Because all the processes in the application are created by the controlling process, all the processes
in an application are members of the same process group, and no other process in the system is a
member of that process group. This means that the application’s process group ID uniquely
identifies the application, which is why you use a process group ID to identify the application in
nx_pri().

This also means that if a process in an application leaves the application’s process group by calling
nx_initve...() (or setpgid(), setpgrp(), or setsid()), it leaves the application. If a process leaves its
application’s process group, it is no longer considered part of the application and can no longer
exchange messages with the other processes in the application. You shouldn’t do this unless you
know exactly what you are doing.

Killing Application Processes

You can take advantage of the fact that all the processes in the application are members of the same
process group by using OSF/1 system calls that affect process groups. For example, specifying a
process ID of 0 (zero) to kill() sends the specified signal to all the members of the calling process’s
process group, so the following call kills the entire application (including the calling process):

kill (0, SIGKILL);

This call differs from the example discussed under “Using PIDs” on page 4-20 in that it also kills
the calling process.

An Example Controlling Process

The following C program (which must be linked with -Inx, not -nx) copies itself onto eight nodes of
the partition mypart with a process type of 0 and a priority of 7. The eight application processes print
“Hello from node »n” and then exit. The controlling process waits for the application processes to
finish, then prints “Hello from controlling process” before exiting itself. Note that this program is
executed by both the controlling process and the application processes.

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

#include <nx.h>
#include <sys/types.h>
#include <stdio.h>
#define NUMNODES 8

main(int argc, char **argv) {
int n, 1i;
pid_t pids[NUMNODES] ;

/* create application */
n = nx_initve ("mypart", NUMNODES, NULL, &argc, argv);

if(n == -1) {
/* nx_initve() failed */
perror ("nx_initve");
exit (1) ;

}

/* set application priority to 7 */
n = nx_pri(0, 7); /* 0 specifies calling application */
if(n == -1) {

/* nx_pri() failed */

perror("nx_pri");

exit (1) ;

/* fork child processes onto all nodes of application */
n = nx_nfork(NULL, -1, 0, pids);
if (n == -1) {
/* nx_nfork() failed */
perror ("nx_nfork") ;
exit (1) ;
} else if(n == 0) {
/* child process: print "Hello" and exit */
printf("Hello from node %d!\n", mynode());
exit (0) ;
} else {
/* parent (controlling process): wait for all children */
nx_waitall();
/* now print "Hello" and exit */
printf("Hello from controlling process!\n");
exit (0);

4-29

Managing Applications and Partitions with System Calls ' Paragon™ System User's Guide

Message Passing Between Controlling Process and Application Processes

4-30

Synopsis Description

myhost() Obtain the controlling process’s node number.

A controlling process can exchange messages with its child processes using the message-passing
system calls described in Chapter 3.

e The controlling process’s node number is equal to numnodes(). (The maximum node number
within the application is numnodes() — 1.) The controlling process’s node number is also
returned by myhost() in any process in the application. In the controlling process, myhost(),
mynode(), and numnodes() all return the same number.

¢ The controlling process’s process type is initially INVALID_PTYPE, but you can change it to
a valid value by calling setptype(). For best performance, you should not call setptype() until
after you have created all application processes with nx_nfork(), nx_load(), or nx_loadve(),
and you should not call setptype() at all unless you need to exchange messages with application
processes.

Although the controlling process can exchange messages with the application processes, it does not
participate in global operations:

« The controlling process may not make any of the calls described under “Global Operations” on
page 3-27.

e The controlling process does not participate when the application processes make any of the
calls described under “Global Operations” on page 3-27.

¢ The controlling process does not get messages sent to node number -1 (all nodes).

A send to node -1 (all nodes) sends the message to all the nodes in the application (except the calling
process’s node), but not the controlling process. This applies whether the message is sent by a node
process or by the controlling process itself. On the other hand, an extended receive that specifies
node -1 (any node) as the sending node will match a message from the controlling process.

Here is an application, written in Fortran, that demonstrates message-passing between the
controlling process and the application processes. This application multiplies two numbers (in a very
inefficient way). It consists of two programs, control.f and app.f. You must link control.f with -Inx,
not -nx; app.f can be linked with either -Inx or -nx.

The controlling process (control.f) requests a number of nodes and an integer value from the user. It
creates an application of the specified number of nodes on the partition mypart and loads the
program app onto each node. It then sends the user’s integer value to each node as a message (note
that the node number -1 sends to all nodes, not including the controlling process) and waits for a
return message with the result. When the result is received, the controlling process prints its value
and then exits.

Paragon™ System User's Guide

include 'fnx.h'
integer num_nodes, n, i
integer nodes (128), pids(128)
integer app_ptype
parameter (app_ptype = 0)
integer data, result
integer result_type, data_type
parameter (result_type = 1)
parameter (data_type = 2)
¢ get number of nodes (limited to size of
1 print *, "Enter number of nodes

read (*,*) num_nodes
if (num_nodes .gt. 128) goto 1

c create application of specified size

n = nxXx_initve("mypart", num_nodes,
if(n .eqg. -1) then
call nx_perror ("nx_initve")
stop
end if

c fill in node array for nx_load()

do 2, 1 = 1, num_nodes
nodes (i) = 1 - 1
2 continue

nn
’

Managing Applications and Partitions with System Calls

"nodes" and "pids" arrays)

(must not be greater than 128)"

0, 0)

c load program "app" onto the nodes of the application

n = nx_load(nodes,

if(n .eg. -1) then
call nx _perror ("nx_load")
stop

end if

num_nodes,

an integer from the user
print *, "Enter value to be summed"
read(*,*) data

c get

¢ set my process type

call setptype (app_ptype)

¢ send integer to all the nodes

call csend(data_type, data, 4, -1,

c receive the result

call crecv(result_type, result, 4)

app_ptype,

pids, "app")

app_ptype)

4-31

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

c print the result
print *, "The sum of ",data," over ",num_nodes," nodes is ",result

end
The application process (app.f) waits for a message and performs a gisum() on the value received.
(Note that the controlling process does not participate in the gisum().) The process on node O sends

the result to the controlling process, then all the application processes exit.

include 'fnx.h'

integer val, work

integer result_type, data_type
parameter (result_type = 1)
parameter (data_type = 2)

c get an integer from the controlling process
call crecv(data_type, wval, 4)

¢ sum it over all nodes
call gisum(val, 1, work)

c if I'm node 0, send the result back to the controlling process
if (mynode() .eqg. 0) call csend(result_type, val, 4, myhost(), 0)

end

Managing Partitions

The operating system provides system calls that let you create and remove partitions, get information
about partitions, and change their characteristics, like the mkpart, rmpart, showpart, and chpart
commands described in Chapter 2. See “Managing Partitions” on page 2-30 for introductory
information on partitions.

4-32

Paragon™ System User's Guide

Making Partitions

Managing Applications and Partitions with System Calls

Synopsis

nx_mkpart(partition, size, type)

nx_mkpart_rect(partition, rows, cols, type)

nx_mkpart_map(partition, numnodes,
node_list, type)

nx_mkKkpart_attr(partition,
[attribute, value,]... NX_ATTR_END)

Description

Create a partition with a particular number of
nodes.

Create a partition with a particular height and
width.

Create a partition with a specific set of nodes.

Create a partition with specified attributes.

To create a partition, use nx_mkpart(), nx_mkpart_rect(), nx_mkpart_map(), or
nx_mkpart_attr(). These calls all create a partition, but they use different methods to specify the

nodes allocated to the new partition:

e nx_mkpart() works like the mkpart command’s -sz size switch.

* nx_mkpart_rect() works like the mkpart command’s -sz A Xw switch.

* nx_mkpart_map() works like the mkpart command’s -nd nodespec switch (except that only

node numbers can be specified).

* nx_mkpart_attr() works like all of the mkpart command’s switches.

See “Specifying the Nodes Allocated to the Partition” on page 2-46 for more information on the

mkpart command’s -sz and -nd switches.

These calls have the following parameters:

partition The new partition’s relative or absolute pathname. The specified new
partition must not exist; the parent partition of the specified new partition
must exist and must give write permission to the calling process. See
“Partition Pathnames” on page 2-33 for more information on partition
pathnames; see “Owner, Group, and Protection Modes” on page 2-38 for
more information on partition permissions.

size (nx_mkpart() only)

The number of nodes of the new partition, or -1 to specify “all the nodes of
the parent partition.” If you specify a size smaller than that of the parent
partition, the nodes are selected by the system (and are not necessarily

contiguous).

4-33

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

4-34

nx_mkpart() attempts to allocate a square group of nodes if it can. If this is
not possible, it attempts to allocate a rectangular group of nodes that is either
twice as wide as it is high or twice as high as it is wide. If this is not possible,
it allocates any available nodes. In this case, nodes allocated to the partition
may not be contiguous.

rows and cols (nx_mkpart_rect() only)
The height and width of the new partition. The new partition is a rectangle
with the specified number of rows and columns, but its location within the
parent partition is selected by the system.

numnodes and node_list (nx_mkpart_map() only)
The exact node numbers within the parent partition for the new partition. The
node_list parameter is an array of node numbers; the numnodes parameter
specifies the number of elements in node_list.

type (all except nx_mkpart_attr())
The new partition’s scheduling type: NX_STD to specify standard
scheduling, NX_GANG to specify gang scheduling, or NX_SPS to specify
space sharing. The names NX_STD, NX_GANG, and NX_SPS are defined
in nx.h and fnx.h. See “Scheduling Characteristics” on page 2-39 for more
information on the different scheduling types.

[attribute, value,]... (nx_mkpart_attr() only)
The new partition’s attributes. Each attribute is one of the constants described
in Table 4-2; the value is the value of the specified attribute. The type of the
value argument is determined by the value of the preceding astribute
argument. See “Setting Partition Attributes with nx_mkpart_attr()” on page
4-36 for more information.

NX_ATTR_END (nx_mkpart_attr() only)
' A constant that marks the end of the list of attribute, value pairs.

nx_mkpart(), nx_mkpart_rect(), nx_mkpart_map(), and nx_mkpart_attr() return the number
of nodes in the new partition, or -1 if any error occurs.

The new partition’s owner and group are set to the owner and group of the calling process. Any
partition characteristics not specified in the call (such as protection modes and rollin quantum) are
set to the same values as the parent partition. Once the partition is created, you can use the
nx_chpart...() calls to set these characteristics to different values, as discussed under “Changing
Partition Characteristics” on page 4-49.

Paragon" System User's Guide Managing Applications and Partitions with System Calls

Examples

The following Fortran call creates a new gang-scheduled partition called newpart whose parent
partition is the compute partition (using a relative partition pathname) and which consists of all the
nodes in the compute partition:

include 'fnx.h'
integer n

n = nx_mkpart ("newpart", -1, NX_GANG)

The following C call creates a new space-shared partition called mypart whose parent partition is the
compute partition (using an absolute partition pathname) and which has 54 nodes:

#include <nx.h>
int n;

n = nx_mkpart (".compute.mypart", 54, NX_SPS);

The following C call creates a new gang-scheduled partition called rect whose parent partition is
mypart and which is 3 nodes high and 4 nodes wide:

#include <nx.h>
int n;

n = nx_mkpart_rect (".compute.mypart.rect", 3, 4, NX_GANG);

The following C call creates a new space-shared partition called corners whose parent partition is
rect and which consists of the four nodes at the corners of rect:

#include <nx.h>
long nodes(4];
int n;

nodes[0] = 0;

nodes[1l] = 3;

nodes[2] = 8;

nodes[3] = 11;

n = nx_mkpart_map(".compute.mypart.rect.corners", 4,
nodes, NX_SPS);

In each of these examples, the variable n is assigned the number of nodes in the new partition, or -1
if any error occurred.

Examples of nx_mkpart_attr() can be found at the end of the next section.

4-35

Managing Applications and Partitions with System Calls

Paragon" System User's Guide

Setting Partition Attributes with nx_mkpart_attr()

NOTE

If you call nx_mkpart_attr() in a Fortran subprogram, you must
include fnx.h after the subprogram declaration and before the call.
This is required for the call to recognize the pre-defined attribute
constants (for example, NX_ATTR_S2).

The following table describes the attributes and values you can use with nx_mkpart_attr(). The
attribute constants, including NX_ATTR_END, are defined in <nx.h> or <fnx.h>.

Table 4-2. Attribute Constants for Use with nx_mkpart_attr() (1 of 3)

Type of Following | Equivalent
Attribute Constant | Value (C / Fortran) Switch Description
NX_ATTR_SZ long -SZ size Specifies the size of the new partition, like
INTEGER the size argument of nx_mkpart().
NX_ATTR_MAP long * -nd Specifies the list of nodes for the new
INTEGER(*) partition, like the node_list argument of
nx_mkpart_map(). The value is an array of
node numbers. Do not specify the same node
number more than once in this array.
NX_ATTR_SZ must also be specified
(anywhere in the argument list) to give the
length of the array.
NX_ATTR_RECT long * -sz hXw Specifies a rectangle for the new partition,
INTEGER(2) like the rows and cols arguments of

nx_mkpart_rect(). The value is an array of
two integers (height first, width second).

If NX_ATTR_ANCHOR is not specified,
the system determines the rectangle’s
location within the parent partition.

4-36

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

Table 4-2. Attribute Constants for Use with nx_mkpart_attr() (2 of 3)

Type of Following | Equivalent

Attribute Constant Value (C / Fortran) Switch Description
NX_ATTR_ANCHOR | long (none) Specifies the node number of the upper left
INTEGER corner of a rectangle specified with

NX_ATTR_RECT. If the specified node
number is -1, the system determines the
rectangle’s location within the parent
partition.

NX_ATTR_RECT must also be specified
(anywhere in the argument list) to give the
height and width of the rectangle.

NX_ATTR_RELAXED | long -rlx Specifies whether or not the requested
INTEGER number of nodes can be relaxed (see
“Relaxing Partition Size” on page 2-49). The
value 0 means all requested nodes must be
available; the value 1 relaxes this
requirement.

NX_ATTR_RELAXED cannot be used
with NX_ATTR_RECT, unless
NX_ATTR_ANCHOR is also specified
with a value other than -1.

NX_ATTR_SEL char * -nt Specifies the node type for the partition. The
CHARACTER *(*) value is a character string whose value is a
node type specifier (see “Specifying Node
Attributes” on page 2-25).

If NX_ATTR_SZ,NX_ATTR_MAP, or
NX_ATTR_RECT is also specified, the
given nodes must all be available and have
the specified node type, unless
NX_ATTR_RELAXED is specified.

NX_ATTR_SCHED long -ss/-sps/ Sets the new partition’s node type, like the
INTEGER -rq/-epl type argument of nx_mkpart(). The value is
NX_STD, NX_GANG, or NX_SPS (see
“Scheduling Characteristics” on page 2-39
for more information on the different
scheduling types).

4-37

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

Table 4-2. Attribute Constants for Use with nx_mkpart_attr() (3 of 3)

Type of Following | Equivalent

Attribute Constant Value (C / Fortran) Switch Description
NX_ATTR_EPL long -epl priority | Sets the new partition’s effective priority
INTEGER limit. The value is an integer from 0 to 10
(see “Scheduling Characteristics” on page
2-39).

NX_ATTR_EPL can be used with or
without NX_MKPART_SCHED. If
NX_MKPART_SCHED is used, its value
must be set to NX_GANG.

NX_ATTR_RQ long -rq time Sets the new partition’s rollin quantum. The
INTEGER value is an integer number of milliseconds,
or 0 to specify an “infinite” rollin quantum
(see “Scheduling Characteristics” on page
2-39).

The value must be less than or equal to
86,400,000 milliseconds (24 hours) and
greater than or equal to the minimum rollin
quantum (determined by your system
administrator). If it is not a multiple of 100,
it is silently rounded up.

NX_ATTR_RQ can be used with or without
NX_MKPART_SCHED. If
NX_MKPART_SCHED is used, its value
must be set to NX_GANG.

Each attribute can appear at most once in the argument list. The order of the attributes in the
argument list is not significant.

Specifying the Nodes Allocated to the Partition

nx_mkpart_attr() provides the following ways to specify the nodes allocated to the partition:
e Use NX_ATTR_SZ alone.

Requests the specified number of nodes. If the value is 0 or -1, requests all the nodes in the
parent partition.

4-38

Paragon™ System User’s Guide Managing Applications and Partitions with System Calls

NX_ATTR_SZ attempts to create a square partition if it can. If this is not possible, it attempts
to create a rectangular partition that is either twice as wide as it is high or twice as high as it is
wide. If this is not possible, it uses any available nodes. In this case, the nodes allocated to the
partition may not be contiguous.

* Use both NX_ATTR_MAP and NX_ATTR_SZ.

Requests the specified list of nodes. NX_ATTR_MAP and NX_ATTR_SZ can appear in any
order in the argument list.

e Use NX_ATTR_RECT alone.

Requests a rectangular partition of the specified height and width. The system places the
rectangle within the parent partition.

* Use both NX_ATTR_RECT and NX_ATTR_ANCHOR.

Requests a rectangular partition of the specified height and width, whose upper left corner is
located at the specified anchor node within the parent partition. NX_ATTR_RECT and
NX_ATTR_ANCHOR can appear in any order in the argument list. If the value of
NX_ATTR_ANCHOR is -1, the system places the rectangle within the parent partition.

e Use NX_ATTR_SEL alone.
Requests all the nodes of the specified node type in the parent partition.

* Use NX_ATTR_SEL together with NX_ATTR_SZ,NX_ATTR_MAP,NX_ATTR_RECT,
and/or NX_ATTR_ANCHOR.

Requests the nodes specified by the NX_ATTR_SZ,NX_ATTR_MAP, NX ATTR_RECT,
and/or NX_ATTR_ANCHOR, all of which must have the node type specified by the
NX_ATTR_SEL. See “Running an Application on a Particular Node Type” on page 2-23 for
more information.

* Donot use NX_ATTR_SEL, NX_ATTR_SZ, NX_ATTR_MAP, NX_ATTR_RECT, or
NX_ATTR_ANCHOR.

Requests all the nodes in the parent partition.
e Use NX_ATTR_RELAXED with a value of 1 together with any of the above.
Requests all the available nodes in the specified node set, up to the number of nodes requested.

At least one of the specified nodes must be available. See “Relaxing Application Size” on page
2-17 for more information.

4-39

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

4-40

If NX_ATTR_SEL is used together with NX_ATTR_RELAXED, only nodes of the specified
type are returned, but the number of nodes returned may be less than the number of nodes
requested. At least one node of the specified type must be available. See “Using Node Attributes
with a Relaxed Application Size” on page 2-28 for more information.

The following combinations of these attributes are invalid:

¢ You cannot use NX_ATTR_MAP without NX_ATTR_SZ.

¢ You cannot use NX_ATTR_ANCHOR without NX_ATTR_RECT.

* You cannot use NX_ATTR_SZ or NX_ATTR_MAP together with NX_ATTR_RECT.

¢ You cannot use NX_ATTR_RELAXED together with NX_ATTR_RECT, unless
NX_ATTR_ANCHOR is also specified with a value other than -1.

Using any of these combinations of attributes causes nx_mkpart_attr() to fail with the error
“invalid attribute specified.”

Examples

The following Fortran call creates a new partition called newpart whose parent partition is the
compute partition (using a relative partition pathname). The new partition consists of all the nodes
in the compute partition and has the same scheduling type, rollin quantum, and effective priority
limit as the compute partition:

include 'fnx.h'
integer n

n = nx_mkpart_attr("newpart", NX_ATTR_END)

The following C call creates a new space-shared partition called mypart whose parent partition is the
compute partition (using an absolute partition pathname) and which has 54 nodes:

#include <nx.h>
int n;

n = nx_mkpart_attr(".compute.mypart",
NX_ATTR_SZ, 54,
NX_ATTR_SCHED, NX_SPS,
NX_ATTR_END) ;

The following C call creates a new gang-scheduled partition called rect whose parent partition is
mypart. It is 3 nodes high and 4 nodes wide, and has its upper left corner at node 1 of mypart. It has
a rollin quantum of 600,000 milliseconds (10 minutes) and the same effective priority limit as
mypart:

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

#include <nx.h>
long rectl[2];

int n;
rect[0] = 3;
rect[1] = 4;

n = nx_mkpart_attr(".compute.mypart.rect",
NX_ATTR_RECT, rect,
NX_ATTR_ANCHOR, 1,
NX_ATTR_RQ, 600000,
NX_ATTR_END) ;

The following C call creates a new gang-scheduled partition called corners whose parent partition
is rect and which consists of the four nodes at the corners of rect. It has an effective priority limit of
3. All other characteristics are the same as rect:

#include <nx.h>
long nodes([4];

int n;

nodes[0] = 0;
nodes[1l] = 3;
nodes[2] = 8;
nodes|[3] = 11;

n = nx_mkpart_attr(".compute.mypart.rect.corners",
NX_ATTR_MAP, nodes,
NX_ATTR_SZ, 4,
NX_ATTR_EPL, 3,
NX_ATTR_END) ;

The following Fortran call creates a new partition called bigmem whose parent partition is the
compute partition and consists of all available nodes with 64M bytes or more of physical RAM. All

other characteristics of bigmem are the same as those of the compute partition:

include 'fnx.h'
integer n

n = nx_mkpart_attr ("bigmem",

X NX_ATTR_SEL, ">=64mb",
X NX_ATTR_RELAXED, 1,
X NX_ATTR_END)

In each of these examples, the variable n is assigned the number of nodes in the new partition, or -1
if any error occurred.

4-41

Managing Applications and Partitions with System Calis ' Paragon™ System User's Guide

Removing Partitions

4-42

Synopsis Description

nx_rmpart(partition, force, recursive) Remove a partition.

To remove a partition, use nx_rmpart(). The parameters of nx_rmpart() have the following
meanings:

partition The relative or absolute pathname of the partition to be removed. The parent
partition of the specified partition must give write permission to the calling
process. See “Partition Pathnames” on page 2-33 for more information on
partition pathnames; see “Owner, Group, and Protection Modes” on page
2-38 for more information on partition permissions.

force Specifies whether to remove the partition if it contains running applications:
if force is 0, the partition will not be removed if it contains any applications;
if force is any value other than 0, the partition will be removed even if it
contains applications.

recursive Specifies whether to remove the partition if it contains subpartitions: if
recursive is 0, the partition will not be removed if it contains any
subpartitions; if recursive is any value other than 0, the partition will be
removed along with all its subpartitions, sub-subpartitions, and so on. This is
an “all or nothing” operation: if any subpartitions cannot be removed, the call
fails and no subpartitions are removed.

If the partition contains both subpartitions and applications, or contains subpartitions that contain
applications, you must set both force and recursive to a nonzero value to remove it.

nx_rmpart() returns O for success, or -1 if any error occurs.
For example, the following Fortran call removes the partition called newpart whose parent partition
is the compute partition (using a relative partition pathname), but only if it does not contain any

running applications or subpartitions:

include 'fnx.h'
integer n

n = nx_rmpart ("newpart", 0, 0)

After this call, the variable n contains 0 if the partition was removed, or -1 if it was not removed for
any reason (for example, if the partition contained applications or subpartitions).

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

The following C call removes the partition called mypart whose parent partition is the compute
partition (using an absolute partition pathname), even if it contains running applications; however,
it does not remove mypart if the partition contains subpartitions:

#include <nx.h>
int n;

n = nx_rmpart (".compute.mypart", 1, 0);

After this call, the variable » contains 0 if the partition was removed, or -1 if it was not removed for
any reason (for example, if the partition contained subpartitions, or if the partition does not exist).

Getting Information About Partitions

Synopsis Description
nx_part_attr(partition, attributes) Get a partition’s attributes.

nx_part_nodes(partition, node_list, list_size) List the root node numbers for the nodes of a
partition.

nx_node_attr(partition, attributes) Get the node attributes for all nodes in a partition
(C only).

To get information about a partition, use nx_part_attr(), nx_part_nodes(), or nx_node_attr().
nx_part_attr() returns the attributes of a partition, nx_part_nodes() returns a list of the nodes in a
partition, and nx_node_attr() returns the node attributes of the nodes in a partition.

NOTE

Do not call nx_part_attr() or nx_part_nodes() on more than a
few nodes at once.

If many nodes use the partition information calls at the same time, the allocator daemon can become
overwhelmed with requests, which could slow down your application or reduce system stability. If
all the nodes in your application need this information, you should have one node make the call and
then distribute the information to the other nodes.

Determining a Partition’s Attributes with nx_part_attr()

nx_part_attr() returns the attributes of a partition. It has the following parameters:

4-43

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

4-44

partition The relative or absolute pathname of the partition. The specified partition
must exist and must give read permission to the calling process.

attributes A structure of type nx_part_info_t (you must allocate the space for this
structure). The nx_part_info_t structure is defined in allocsys.h, which is
automatically included by nx.h and fhx.h. It includes the following elements:

uid The numeric user ID of the partition’s owner.
gid The numeric group ID of the partition’s group.
access The access permissions of the partition, expressed as a

three-digit octal number.

sched The scheduling type of the partition: NX_STD,
NX_GANG, or NX_SPS. (These are constants
defined in nx.h or fux.h).

rq The rollin quantum of the partition, expressed as an

integer number of milliseconds (0 for a
standard-scheduled or space-shared partition).

epl) The effective priority limit of the partition (20 for a
standard-scheduled partition).

nodes The number of nodes in the partition.

mesh_x The width of the partition (columns), or -1 if the
partition is not rectangular.

mesh_y The height of the partition (rows), or -1 if the partition
is not rectangular.

enclose_mesh_x The width of the smallest rectangle that completely
encloses the partition.

enclose_mesh_y The height of the smallest rectangle that completely
encloses the partition.

nx_part_attr() returns O for success, or -1 if any error occurs.

For example, the following C program fragment prints the rollin quantum and effective priority limit
for the partition mypart:

#include <nx.h>

nx_part_info_t info;
int status;

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

status = nx_part_attr("mypart", &info);

if(status != 0) {
nx_perror ("nx_part_attr()");
exit (1) ;

}

printf("rg = %d, epl = %d\n", info.rqg, info.epl);

Note the use of the & operator on the structure info in the call to nx_part_attr(). The equivalent
Fortran code is as follows:

include 'fnx.h'

record /nx_part_info_t/ info
integer status

status = nx_part_attr("mypart", info)
if (status .ne. 0) then
call nx_perror ("nx_part_attr()")
stop
end if
print *, "rqg =",info.rq,", epl =",info.epl
If the partition is not a contiguous rectangle, the values of mesh_x and mesh_y are -1 and the
rectangle described by enclose_mesh_x and enclose_mesh_y includes nodes that are not part of the
partition. For example, Figure 4-1 shows a non-rectangular partition called mypart. For this
partition:
* nodesis 4.
¢ mesh_x and mesh_y are both -1.

e enclose_mesh_xis 3.

* enclose_mesh_y is 2.

Determining a Partition’s Nodes with nx_part_nodes()

nx_part_nodes() returns a list of the nodes in the specified partition. You might want to do this to
determine whether or not the partition includes a certain node which has special hardware
characteristics such as extra memory or an I/O interface. nx_part_nodes() has the following
parameters:

4-45

Managing Applications and Partitions with System Calls

Paragon™ System User's Guide

Root partition

Partition mypart

Smallest enclosing rectangle for mypart

Figure 4-1. Sample Partition for nx_part_attr() and nx_part_nodes()

partition The relative or absolute pathname of the partition. The specified partition
must exist and must give read permission to the calling process.

node_list Pointer variable into which nx_part_nodes() stores the address of the list of
nodes. nx_part_nodes() allocates the memory for this list; when you are
finished using the information, you shouid reiease this memory by calling

free().

list_size Variable into which nx_part_nodes() stores the number of entries in

node_list.

nx_part_nodes() returns O for success, or -1 if any error occurs.

The node numbers returned by nx_part_nodes() are node numbers from the root partition. For
example, nx_part_nodes() for the partition mypart shown in Figure 4-1 would return node numbers
6,7, 12, and 13. This is true even if the root partition is not the direct parent partition of mypart.

For example, the following Fortran program fragment prints the root node numbers for the partition

mypart:

include 'fnx.h’

integer*4 mynodes{l)
pointer (ptr, mynodes)
integer nnodes
integer i, status

status = nx_part_nodes ("mypart", ptr, nnodes)

4-46

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

if (status .ne. 0) then
call nx_perror("nx_part_nodes()")
stop

end if

do 2, 1 = 1, nnodes
print *, mynodes (i)
2 continue
call free(ptr)

The equivalent C code is as follows:

#include <nx.h>

nx_nodes_t mynodes;
unsigned long nnodes;
int i, status;

status = nx_part_nodes ("mypart", &mynodes, &nnodes) ;
if(status != 0) {
nx_perror ("nx_part_nodes () ") ;
exit (1) ;
}
for(i = 0; i < nnodes; i++) {
printf ("%d\n", mynodes[i]);

free (mynodes) ;

Note the use of the & operator on the variables mynodes and nnodes in the call to nx_part_nodes().

Determining Node Attributes with nx_node_attr()

nx_node_attr() returns the node attribute strings for every node in a partition. It is callable only
from C, not Fortran. It has the following parameters:

partition The relative or absolute pathname of the partition. The specified partition
must exist and must give read permission to the calling process.

4-47

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

4-48

attributes Address of a variable of type char **, into which nx_node_attr() stores the
address of an array of strings. Each string in this array is a comma-separated
list of node attributes for a single node. The call allocates the memory for this
array; when you are finished using the information, you should release this
memory by calling free().

If successful, nx_node_attr() returns the number of nodes for which information is returned. If any
error occurs, nx_node_attr() returns -1 and sets errno to indicate the cause of the error.

NOTE

Do not call nx_node_attr() on more than a few nodes at once.

The offset of each string in the returned array corresponds to the node number within the partition;
for example, if the variable pointed to by the attributes parameter is called x, then x/5] describes
node 5 of the specified partition. Each string is a comma-separated list of node attributes (strings
that describe the physical properties of the node); see Table 2-1 on page 2-24 for a list of the most
commonly-seen node attributes. The node attributes are listed in an arbitrary order within each
string.

For example, the following C program fragment prints the node attributes for each node in the

partition mypart:

#include <nx.h>

char “*partition = "mypart";
char **node_attrs;
int nnodes, 1i;

nnodes = nx_node_attr (partition, &node_attrs);

if (nnodes == -1) {
nx_perror ("nx_node_attr () failed");
exit (1) ;

}

printf("Partition \"%s\" has %d nodes:\n", partition, nnodes);

printf (" Node %d: \"%s\"\n", 1, node_attrs[i]);

—

free (node_attrs) ;

Paragon" System User's Guide Managing Applications and Partitions with System Calls

Note the use of the & operator on the variable node_attrs in the call to nx_node_attr(), and the use
of free() to free the memory after it is used. The output of this code might be something like this:

Partition "mypart" has 7 nodes:

Node 0: "2proc, 64mb,MP"

Node 1: "2proc, 64mb,MP"

Node 2: "2proc, 64mb,MP"

Node 3: "2proc, 64mb,MP"

Node 4: "2proc, 64mb,MP"

Node 5: "2proc, 64mb,MP"
6

Node "2proc, 64mb, MP"

Changing Partition Characteristics

Synopsis Description

nx_chpart_name(partition, name) Change a partition’s name.
nx_chpart_mod(partition, mode) Change a partition’s protection modes.
nx_chpart_epl(partition, priority) Change a partition’s effective priority limit.
nx_chpart_rq(partition, rollin_quantum) Change a partition’s rollin quantum.
nx_chpart_owner(partition, owner, group) Change a partition’s owner and group.
nx_chpart_sched(partition, sched_type) Change a partition’s scheduling type.

To change a partition’s characteristics, use nx_chpart_name(), nx_chpart_mod(),
nx_chpart_epl(), nx_chpart_rq(), nx_chpart_owner(), ornx_chpart_sched(). Each of these calls
changes one characteristic, and leaves the other characteristics unchanged. These calls have the
following parameters:

partition The relative or absolute pathname of the partition to change. The specified
partition must exist; the permissions required depend on the operation.

name (nx_chpart_name() only)
The new name for the partition, expressed as a string of any length containing
only uppercase letters, lowercase letters, digits, and underscores. Note that
nx_chpart_name() can only change the partition’s name “in place;” there is
no way to move a partition to a different parent partition.

The calling process must have write permission on the parent partition of the
specified partition to use nx_chpart_name().

"4-49

Managing Applications and Partitions with System Calls . Paragon™ System User's Guide

4-50

mode (nx_chpart_mod() only)

The new protection modes of the partition, expressed as an octal number. See
chmod() in the OSF/1 Programmer’s Reference for more information on
specifying protection modes; see “Owner, Group, and Protection Modes” on
page 2-38 for more information on protection modes for partitions.

The calling process must be the owner of the partition or the system
administrator to use nx_chpart_mod().

priority (nx_chpart_epl() only)

The new effective priority limit for the partition, expressed as an integer from
0 to 10 inclusive. See “Scheduling Characteristics”” on page 2-39 for more
information on effective priority limits.

The calling process must have write permission for the partition to use
nx_chpart_epl().

rollin_quantum (nx_chpart_rq() only)

The new rollin quantum for the partition, expressed as an integer number of
milliseconds, or 0 to specify an “infinite” rollin quantum. The specified value
must not be greater than 86,400,000 milliseconds (24 hours) and must not be
less than the minimum rollin quantum for your system (determined by your

system administrator). If it is not a multiple of 100, it is silently rounded up

to the next multiple of 100. See “Scheduling Characteristics” on page 2-39 for
more information on rollin quanta.

The calling process must have write permission for the partition to use
nx_chpart_rq().

owner and group (nx_chpart_owner() only)

The new user and group for the partition, expressed as a numeric user ID
(UID) and group ID (GID). You can also specify -1, meaning “leave
owner/group unchanged,” for either or both. See “Owner, Group, and
Protection Modes” on page 2-38 for more information on partition
ownership.

The permissions required for nx_chpart_owner() depend on the operation.

To change the partition’s ownership, the calling process must be the system
administrator. To change the partition’s group, the calling process must either
be the system administrator or must be the partition’s owner and changing the
group to a group that the calling process belongs to.

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

sched_type (nx_chpart_sched() only)
The new scheduling type for the partition, which must be NX_GANG or
NX_SPS (constants defined in nx.A or fnx.h). See “Scheduling
Characteristics” on page 2-39 for more information on gang-scheduling and
space sharing.
The specified partition must not be standard-scheduled. A space-shared
partition can be changed to gang-scheduled at any time; a gang-scheduled
partition can only be changed to space-shared if it contains no applications
and no overlapping subpartitions.

The calling process must have write permission for the partition to use
nx_chpart_sched().

nx_chpart_name(), nx_chpart_mod(), nx_chpart_epl(), nx_chpart_rq(), nx_chpart_owner(),
and nx_chpart_sched() return 0 for success, or -1 if any error occurs.

For example, the following Fortran call changes the name of mypart to newpart:

include 'fnx.h'
integer n

n = nx_chpart_name ("mypart", "newpart")
The following C call has the same effect, but uses an absolute partition pathname:

#include <nx.h>
int n;

n = nx_chpart_name(".compute.mypart", "newpart");

Note that the second parameter of nx_chpart_name() is always a partition name, never a partition
pathname. There is no way to move a partition from one parent partition to another.

The following C call sets the permissions of mypart to rwxr-x--- (750 octal):

#include <nx.h>
int n;

n = nx_chpart_mod("mypart", 0750);
The following Fortran call has the same effect, but uses an absolute partition pathname:

include 'fnx.h'
integer n

4-51

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

4-52

n = nxX_chpart_mod(".compute.mypart", '750'0)
The following C call sets mypart’s effective priority limit to 7:

#include <nx.h>
int n;

n = nx_chpart_epl ("mypart", 7);
The following Fortran call sets mypart’s rollin quantum to 10 minutes (600,000 microseconds):

include 'fnx.h'
integer n

n = nx_chpart_rqg("mypart", 600000)

The following C calls set mypart’s owner to fred and its group to devel (see the OSF/I
Programmer’s Reference for information on getpwnam() and getgrnam(), which get the numeric
user and group IDs based on their names):

#include <stdio.h>
#include <pwd.h>
#include <grp.h>
#include <nx.h>

struct passwd *user;
struct group *group;
int n;

user = getpwnam("fred");
group = getgrnam("devel");

n = nx_chpart_owner ("mypart", user->pw_uid, group->gr_gid);

The following Fortran call changes mypart to a gang-scheduled partition (it must currently be either
gang-scheduled or space-shared):

include 'fnx.h’
integer n

n = nx_chpart_sched("mypart", NX_GANG)

In each of these examples, the variable n is assigned 0 if the call succeeded, or -1 if any error
occurred.

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

Listing Unusable Nodes

Synopsis Description
nx_empty_nodes(node_list, list_size) List the nodes that are empty slots.
nx_failed_nodes(node_list, list_size) List the nodes that failed to boot.

To find out which nodes in the system are unusable, use nx_empty_nodes() and nx_failed_nodes().
(See “Unusable Nodes” on page 2-37 for more information on unusable nodes.)

¢ nx_empty_nodes() returns a list of the nodes that are part of the root partition but do not have
anode board installed in the corresponding slot (these are shown as “~” in the output of

showpart).

e nx_failed_nodes() returns a list of the nodes that are part of the root partition but failed to boot
for some reason (these are shown as “X” in the output of showpart).

NOTE

Do not call nx_empty_nodes() or nx_failed_nodes() on more
than a few nodes at once.

If many nodes use these calls at the same time, the allocator daemon can become overwhelmed with
requests, which could slow down your application or reduce system stability. If all the nodes in your
application need this information, you should have one node make the call and then distribute the
information to the other nodes.

Both these calls have the following parameters:
node_list Pointer variable into which the call stores the address of the list of nodes. The
call allocates the memory for this list; when you are finished using the
information, you should release this memory by calling free().

list_size Variable into which the call stores the number of entries in node_list.

The node numbers returned by these calls are node numbers from the root partition. Both calls return
0 for success, or -1 if any error occurs.

4-53

Managing Applications and Partitions with System Calls

Paragon™ System User's Guide

For example, the following Fortran program fragment prints the node numbers of all empty slots in

the root partition:
include 'fnx.h'

integer*4 empty (1)

pointer (ptr, empty)
integer nempty
integer i, status

status = nx_empty_nodes (ptr, nempty)

if(status .ne. 0) then
call nx_perror ("nx_empty_nodes()")
stop

end if

do 2, i = 1, nempty
print *, empty (i)

2 continue

call free(ptr)

The following C program fragment prints the node numbers of all nodes in the root partition that

failed to boot:

#include <nx.h>

nx_nodes_t failed;
unsigned long nfailed;
int i, status;

status = nx_failed_nodes (&failed, &nfailed);

if(status != 0) {
nx_perror ("nx_failed_nodes()");
exit (1) ;

}

for(i = 0; i < nfailed; i++) {

printf("%d\n", failed[il);

free(failed) ;

Note the use of the & operator on the variables failed and nfailed in the call to nx_failed_nodes().

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

Handling Errors

Synopsis Description

_callQ) Special version of call that returns error value to
caller (C only).

nx_perror(string) Print an error message corresponding to the

current value of errno.

When an error occurs in a standard OSF/1 system call, the call indicates the error in one of two ways,
depending on the error. For most errors, the call returns -1 and sets the variable errno to a value that
describes the error. For certain severe errors (such as a segmentation violation caused by an invalid
pointer parameter), the call sends a signal to the calling process; this signal may result in a core
dump, as discussed under “Core Dumps” on page 4-56.

‘When an error occurs in a system call whose name begins with nx_, it uses the same two techniques
as a standard OSF/1 system call. However, when an error occurs in a system call that is not a
standard OSF/1 system call and whose name does not begin with nx_, the error is handled
differently: the system prints a message on the terminal and terminates the calling process. (There
are exceptions; see the manual page for each call in the ParagonTM System C Calls Reference Manual
or ParagonTM System Fortran Calls Reference Manual for details.) If you program in C, you can get
the same behavior as the nx_ calls by calling the underscore version of the call. (Fortran does not
have underscore versions.)

Underscore Calls

The underscore version of a system call is the same as the standard version except that it has an
underscore added to the beginning of its name. For example, _crecv() is the underscore version of
crecv(). The underscore version returns -1 if the call encounters an error and 0 or a positive value if
the call is successful.

If an error occurs, the underscore version also sets the system variable errno to indicate the cause of
the error. The include file errno.h declares errno for you and defines constants for the possible errno
values. For example, if crecv() receives a message that is larger than the size specified by its len
parameter, an error message appears and the application terminates. If you use _crecv() instead, this
does not occur; instead, the call to _crecv() returns -1 and the variable errno is set to the value
EQMSGLONG.

There is a standard error message for each value of errno, which you can print out by calling
nx_perror(). nx_perror() prints its argument (any string), the current node number and process
type, and the error message associated with the current value of errno to the standard error output in
the following format:

4-55

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

(node n, ptype p) string: error_message

Suppose you have a program where the user can specify the size of a certain buffer with a
command-line argument. If a message is received that is too long for this buffer, you would like to
be able to tell the user what happened and suggest that they increase the buffer size. The following
example uses the underscore version of crecv() to do this:

#include <nx.h>
#include <errno.h>

char *transbuf;
int transbuf_size;

if(_crecv(l, transbuf, transbuf_size) == -1) {

if (errno == EQMSGLONG) {
/* received message too long for buffer */
printf ("Message exceeded transit buffer size!\n");
printf("Use -t to specify a larger transit buffer.\n");
exit (1) ;

} else {
/* some other error, print a standard error

message and exit*/

nx_perror ("crecv");
exit (1);

Core Dumps

4-56

When an application that is executing encounters an unrecoverable error (fault), it usually results in
a core dump. The application is immediately terminated and its memory contents is dumped
(written) to a file named core. When a parallel application terminates with unrecoverable error
(fault), a core directory is created instead. In either case, the contents of core dump can be examined
for information on where the problem occurred in the code and give clues about what caused the
unrecoverable error (fault).

See core(1) for information about how to control the creation, location, and contents of a core file
or directory. See signal(4) for a information about the errors that result in a core dump.

™ . . .
See the Paragon ~ System Interactive Parallel Debugger Reference Manual for information about
how to examine and debug applications using core dumps with IPD.

Paragon System User's Guide Managing Applications and Partitions with System Calls

% coreinfo

Getting Information About Core Files

Command Synopsis Description

coreinfo [corename] Displays summary information about a core file
or the core files located in a core-file directory.

The coreinfo command displays summary information about the contents of a core file or directory.
If you use no arguments, coreinfo looks for a file or directory named core in the current working
directory.

If you set the environment variable CORE_PATH, the command looks at the CORE_PATH
pathname for core file or directory. If the core file or directory has been renamed or is, specify the
pathname when invoking coreinfo. See the core(1) for more information on CORE_PATH.

The coreinfo commands displays the following information for an application which faulted:

¢ The time each process terminated ordered chronologiéally in the Date/Time column.

e The process ID (PID) of the faulting process,

¢ The node number on which the process ran.

* The process type of the process.

¢ The signal that terminated the process.

¢ The memory location where the fault occurred.

¢ The type of core file. This can be FULL or TRACE.

¢ The name of the executable.

The following example shows a coreinfo display of the contents of a core directory:

Summary information for directory: /home/joe/core
Number of nodes: 3

Date/Time

Mar 02 19:15
Mar 02 19:15
Mar 02 19:15

Pid Node Ptype Signal Location Type Executable

1049578 0 0 SIGSEGV 0x0001089c FULL /home/joe/myapp
1311615 1 0 SIGSEGV 0x0001089c FULL /home/joe/myapp
144560 2 0 SIGKILL 0x6004812c TRACE /home/joe/myapp

4-57

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

4-58

The core directory is /home/joe/core. The application that faulted and caused the core dump was
executing on 3 nodes. The processes running on nodes 0 and 1 encountered a segmentation fault
(SIGSEGV) which means the application attempted to access an illegal address. The instruction
where the fault occurred was located at 0x0001089¢c. A FULL core dump was written. This means
that both data and stack information were saved in the core files for these processes. The process
running on node 2 was killed by the system (SIGKILL) as a consequence of the fault that occurred
on the other processes. The process was executing the instruction at 0x6004812c when the kill signal
arrived. The TRACE type indicates that only stack information was saved in the core file for this
non-faulting process.

If a core file is for a non-parallel application, the node and process type (Ptype field) information
would be omitted and there would be one process in the summary table only.

To translate the address given in the Location field to a routine name either let IPD do it for you or
get a sorted list of the starting address for each function in the executable as follows:

% nm -hexp myapp | sort > myapp.nmlist
You can search this list to find which routine the address falls within.

See coreinfo(1) for more information about this command.

Using IPD to Examine Core

The Paragon system interactive parallel debugger (IPD) provides the following features to examine
core dump information:

* The coreload command for loading core files.
* Symbolic information about where the fault occurred in the program.

¢ Stack (or frame) traceback which lists the calling sequence in the program before the fault
occurred.

¢ Register values can be displayed.

e If the application was compiled for debug, line number and variable data can be displayed. The
contents of variables can only be displayed if the type of a core file is FULL.

™ . . . ™ .
See the Paragon = System Application Tools User’s Guide and the Paragon = System Interactive

m Application Tools e and the Paragon 1 Interactive
Parallel Debugger Reference Manual for complete information about using IPD to examine core
files.

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

Overriding the Defaults for Core Dumps

By default, a core file is written for the first process that faults in a parallel application. You can
change this by setting the following environment variables:

* CORE_ACTION_FIRST.
* CORE_ACTION_FAULT.
* CORE_ACTION_OTHER.

See core(4) for more information about how to use these environment variables to generate core
files.

When certain severe errors occur in a systém call, the operating system sends a signal to the calling
process. The default action for certain signals is to cause a core dump. You can prevent the default
action by establishing a signal handler for the desired signal. See signal(4) in the OSF/1
Programmer’s Reference for information about signals and signal handlers.

4-59

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

Controlling Floating-Point Behavior

Synopsis Description

isnan(dsrc) Determine if a double value is Not-a-Number
(C only).

isnand(dsrc) Determine if a double value is Not-a-Number
(C only).

isnanf(fsrc) Determine if a float value is Not-a-Number
(C only).

fpgetround() Get the floating-point rounding mode for the
calling process (C only).

fpsetround(rnd_dir) Set the floating-point rounding mode for the
calling process (C only).

fpgetmask() , Get the floating-point exception mask for the
calling process (C only).

fpsetmask(mask) Set the floating-point exception mask for the
calling process.

fpgetsticky() Get the floating-point exception sticky flags for

the calling process (C only).

fpsetsticky(sticky) Set the floating-point exception sticky flags for
the calling process (C only).

The operating system supports a series of floating-point control calls compatible with those of UNIX
System V.

NOTE

Only fpsetmask() is available to Fortran programs. The other
floating-point control calls are availabie only to C programs.

Detecting Not-a-Number
The calls isnan(), isnand(), and isnanf() are used to determine whether a floating-point value is an

IEEE NaN, or “Not-a-Number.” This value can be generated as a result of certain floating-point
mathematical operations and system calls, when the operands are invalid or out of range. isnan() and

4-60

Paragon™ System User's Guide Managing Applications and Partitions with System Callls

isnand() take an argument of type double, and isnanf() takes an argument of type float. (isnan()
and isnand() are identical except for the name.) All three calls return 1 if the argument is a NaN, and
0 otherwise.

NOTE

These calls never generate an exception, even if the argument is
a NaN.

Controlling Floating-Point Behavior
The calls fpgetround(), fpsetround(), fpgetmask(), fpsetmask(), fpgetsticky(), and fpsetsticky()
get and set the i860 microprocessor’s floating-point control registers. The values of these registers

are part of the process, and are saved and restored when the process is swapped in and out.

The get calls simply return the current value of the specified register for the calling process; the set
calls set the register to the specified value for the calling process and return its previous value.

Rounding Mode

fpgetround() and fpsetround() get and set the 1860 microprocessor’s floating-point rounding mode,
which determines what happens when a floating-point value generated in a calculation cannot be
represented exactly.

The 1860 microprocessor has four rounding modes:

FP_RN Round to nearest representable number (if two representable numbers are
equidistant, round to the even one).

FP_RM Round toward minus infinity.
FP_RP Round toward plus infinity.
FP_RZ Round toward zero (truncate).

These symbolic names are the values of the enum type fp_rnd, which is declared in <ieeefp.h>.
The argument of fpsetround() and the return values of fpsetround() and fpgetround() are of this

type.

4-61

Managing Applications and Partitions with System Calls Paragon™ System User's Guide

NOTE

When you convert a floating-point value to an integer type in C, it
always truncates. The processor’s rounding mode is ignored.

Exception Mask and Sticky Flags

fpgetsticky() and fpsetsticky() get and set the 1860 microprocessor’s floating-point exception sticky
flags, and fpgetmask() and fpsetmask() get and set the floating-point exception mask.

The 1860 microprocessor defines five floating-point exceptions:

FP_X_INV
FP_X DZ

FP_X_OFL
FP_X_UFL

FP_X_IMP

Invalid operation exception.
Divide-by-zero exception.
Overflow exception.
Underflow exception.

Imprecise (loss of precision) exception.

These symbolic names are the vaiues of the enum type fp_except, which is declared in <ieeefp.h>.
The arguments of fpsetsticky() and fpsetmask() and the return values of fpgetsticky(),
fpsetsticky(), fpgetmask(), and fpsetmask() are of this type.

The 1860 microprocessor has five exception sticky flags and five exception mask bits corresponding
to the five exception types. When a floating-point exception occurs, the corresponding exception
sticky flag is set to 1. The corresponding exception mask bit is then examined,; if it is set to 1, the
exception is trapped and the appropriate trap handler is called.

NOTE

After an exception, you must clear the corresponding sticky flag to
recover from the trap and proceed.

If the sticky flag is not cleared before the next floating-point exception occurs, an incorrect exception
type may be signaled. For the same reason, when you call fpsetmask(), you must be sure that the
sticky flag corresponding to each exception being enabled is cleared.

4-62

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

NOTE

fpsetsticky() and fpsetmask() set the sticky flags and exception
mask to the specified values. Any bits not set in the call's
argument are cleared.

To set or clear a particular mask or sticky flag, get the current mask or sticky flags, modify it, and
then call fpsetsticky() or fpsetmask() with the modified mask or sticky flags.

Fortran Exception Mask Values

Only the fpsetmask() call is supported in Fortran. You use the following numeric values with

fpsetmask():
0 No exceptions.
1 Invalid operation exception.
2 Divide-by-zero exception.
4 Overflow exception.
8 Underflow exception.
16 Imprecise (loss of precision) exception.

The argument and return value of fpsetmask() are integers whose values are the sum of some, none,
of all of these values.

4-63

Managing Applications and Partitions with System Calls

Miscellaneous Calls

Paragon™ System User's Guide

Synopsis Description

flick() Temporarily relinquish the CPU to another
process.

dclock() Return time in seconds since booting the system.

Temporarily Releasing Control of the Processor

The flick() call temporarily releases control of the node processor to another process in the same
application. If there are no other processes in the same application when a process calls flick(),
control returns to the operating system. For example, if your node program has set up a number of
hrecv()’s and has nothing else to do, it should issue flick(). The operating system can then more
efficiently respond to an incoming message and wake up your process.

flick() does not have any effect on rollin and rollout of the application (see “Gang Scheduling” on
page 2-42 for information on rollin and rollout).

Timing Execution

4-64

dclock() returns the time in seconds since the system was last booted, as a double precision number.
This time is obtained from the RPM global clock and is the same on every node.

Use dclock() to return a relative value that you can use to measure execution time. To time an
interval in your program, first obtain an initial value. Then obtain a final value and take the
difference. The actual values returned by the two dclock() calls are not important.

Here is an example that shows how to use dclock() to time the execution of an iteration loop:

/* C version */

double start_time, end_time, diff_time;
start_time = dclock();
for(i=0;i<imax;i++) {

}

end_time = dclock();

diff_time = end_time - start_time;
printf ("Timing = %e\n", diff_time);

Paragon'™ System User's Guide

¢ Fortran version

Managing Applications and Partitions with System Calls

double precision start_time, end time, diff_time

start_time
do 100 i=1,

100 continue

end_time = dclock()
diff_time = end_time - start_time
write(*, 10) diff_time

10 format (‘diff_time = D15.9)

4-65

iPSC® and Touchstone DELTA Compatibility Calls

Synopsis

flushmsg(typesel, nbdesel, ptypesel)

ginv(j)

gray())
hweclock(hwtime)
infopid()

killcube(node, ptype)
killproc(node, ptype)
ed(staze)

load(ﬁleﬁame, node, ptype)
mclock()

msgcancel(mid)
mypart(rows, cols)

mypid()
nodedim()

LT T

resirictvoi{filelD, nvol, volliist)

flick()

dclock()

Description
Flush specified messages from the system.

Return the position of an element in the
binary-reflected gray code sequence. Inverse of
gray().

Return the binary-reflected gray code for an
integer.

Place the current value of the hardware counter
into a 64-bit unsigned integer variable.

Return the process type of the process that sent a

- pending or received message.

Terminate and clear node process(es).
Terminate a node process.

Does nothing; provided for compaiti
Load a node process.

Return the time in milliseconds.

Cancel an asynchronous send or receive
operation.

Obtain the height and width of the rectangle of
nodes allocated to the current application.

Return the process type of the calling process.
Return the dimension of the current application

(the number of nodes allocated to the application
is 2dimension)

Does nothing; provided for compatibility only.

Temporarily relinquish the CPU to another
process.

Return time in seconds since booting the system.

Paragon™ System User's Guide Managing Applications and Partitions with System Calls

The iPSC and Touchstone DELTA compatible calls are provided for compatibility with the iPSC
series of supercomputers and Touchstone DELTA system from Intel Corporation.These calls should
not be used in new operating system applications. They either provide the same functionality as
other system calls (for example, mypid() is identical to myptype() but uses the iPSC system
terminology), or provide functionality that is not needed in the operating system (for example,
gray() is not useful in a machine without a hypercube architecture).

These calls work the same as the corresponding calls on the iPSC or Touchstone DELTA system,
with the following exceptions:

flushmsg() does nothing.

The only valid use of killcube() is killcube(-1,-1).
The only valid use of killproc() is killproc(-1,-1).
led() does nothing.

load() must be preceded by nx_initve...() (it is equivalent to nx_load() but does not let you
specify a list of nodes or find out the PIDs of the loaded processes).

msgcancel() does nothing.
If numnodes() is not a power of 2, nodedim() rounds it up to the next power of 2 and returns
the dimension of a cube of that size. For example, if numnodes() is 7, nodedim() returns 3; if

numnodes() is 9, nodedim() returns 4.

restrictvol() does nothing. It always returns 0 (indicating success).

See your iPSC or Touchstone DELTA system documentation for more information on these calls.

4-67

Managing Applications and Partitions with System Calls . Paragon™ System User's Guide

4-68

Using Parallel File I/0

Introduction

The operating system provides two forms of parallel I/O to files:

* A special file system type called PFS, for Parallel File System, gives applications high-speed
access to a large amount of disk storage. PFS file systems are optimized for simultaneous access
by multiple nodes. Files in PFS file systems can be very large (up to several terabytes); the exact
maximum depends on your system configuration. Access to PFS file systems also uses an I/O
technique called fast path I/O, which gives superior performance for large I/O operations (64K
bytes or more per read or write).

e Special I/O system calls, called parallel I/O calls, facilitate I/O from multiple nodes and permit
I/O to very large files in PFS file systems. These calls can give applications better performance
and more control over parallel file I/O than is offered by the standard C and Fortran file I/O
features. These calls are compatible with the Concurrent File SystemTM (CFS™) calls provided
by the iPsC® system.

A system running the operating system can have both PFS and non-PFS file systems. You can access
files in PFS file systems with both parallel I/O calls and non-parallel I/O calls; you can use parallel
I/O calls to access files in both PFS file systems and non-PFS file systems. In most cases you get the
best performance when you use parallel I/O calls to access files in PFS file systems.

This chapter discusses both PFS file systems and parallel I/O calls. It also gives information on
performing operations on tape devices in the operating system. For information on getting the best
performance from PFS file systems and parallel I/O calls, see “I/O Performance” on page 8-23.

5-1

Using Parallel File I/O Paragon™ System User's Guide

Disks and File Systems

Every Paragon supercomputer has one or more disk devices attached to it. These disk devices are
attached to the system as RAID subsystems. RAID stands for Redundant Array of Inexpensive Disks.
In aRAID subsystem, several hard disks are connected together into a unit that appears to the system
as a single large disk drive. Files stored to a RAID subsystem are distributed, or striped, among the
disks within it by the RAID controller hardware.

Each disk device is controlled by an I/0 node: a compute node with an I/O connection. I/O nodes
communicate with the other nodes in the system using the node-to-node message-passing network
and with the disk drives using a SCSI interface (or other interface). The I/O nodes may or may not
also run application processes; this is determined by your system administrator. Each I/O node can
control RAID subsystem only, and the number of I/O nodes is limited only by the number of slots
in the system, so the total amount of disk space that could be installed in a Paragon supercomputer
is a terabyte or more.

The set of disk devices connected to the Paragon supercomputer’s I/O nodes is divided into file
systems. A file system can encompass anything from a portion of the space on one disk device to all
of the space on several disk devices. A file system is made accessible by mounting it to a directory
(this requires system administrator privileges). This directory is called the file system’s mount point.
For example, if the file system /dev/io0/rz0f is mounted on the directory /home (the directory /home
is the file system’s mount point), whenever you write a file in /home it is stored in the file system
/dev/ioO/rz0f.

Each file system has a type that describes its internal structure and determines some of the operations
that can be performed on it. The supported file system types are:

UFS UNIX File System, the standard file system type for OSF/1.

NFS Network File System, a file system type that represents a file system on
another computer on the network.

PFS Parallel File System, a file system type that is optimized for access by parallel
processes. This file system type is unique to the operating system.

This chapter discusses how PFS file systems work and how you can use the parallel I/O system calls
provided by the operating system to access files in file systems of all types.

Paragon™ System User's Guide Using Parallel File I/O

PFS File Systems and PFS Files

Internally, a file system of type PFS consists of one or more stripe directories. The stripe directories
that make up a PFS file system are determined by the system administrator when the PFS file system
is mounted.

Each stripe directory is usually the mount point of a separate UFS file system. Just as a RAID
subsystem collects together several hard disks into a unit that behaves like a single large disk, a PFS
file system collects together several file systems into a unit that behaves like a single large file
system. A system running the operating system can have any number of PFS file systems.

The maximum storage capacity of a PFS file system is the sum of the capacities of the different file
systems containing its stripe directories. For example, if a PFS file system consists of four stripe
directories, each of which is the mount point of a UFS file system with a capacity of 100M bytes,
the capacity of the PFS file system is 400M bytes. However, if another PFS file system also consists
of four stripe directories, but two of them are directories in one UFS file system with a capacity of
100M bytes and the other two are directories in another UFS file system with a capacity of 100M
bytes, the capacity of the PFS file system is only 200M bytes.

A PFS file is any ordinary file that is stored in a file system of type PFS. PFS files are distributed,
or striped, across the stripe directories that make up the PFS file system. The amount of data from a
PFS file that is stored in each stripe directory is determined by the PFS file system’s stripe unit, a
quantity that is set by the system administrator when the PFS file system is mounted. The maximum
size of a file in a PFS file system is roughly 2G bytes times the number of file systems in the PFS
file system. The exact maximum size is given by the formula ((((2G — 1) — r) X n) + r), where ris
(2G - 1) mod stripe_unit (that is, the remainder when the largest integer multiple of the stripe unit
that is less than 2G — 1 is subtracted from 2G - 1) and # is the number of different file systems
containing the PFS file system’s stripe directories

For example, suppose a PFS file system consists of three stripe directories and has a stripe unit of

64K bytes. When you write a 256K-byte file to this PFS file system, the first 64K bytes of the file

are stored in the first stripe directory, the second 64K bytes in the second stripe directory, the third
64K bytes in the third stripe directory, and the last 64K bytes back in the first stripe directory.

Objects in PFS file systems that are not ordinary files (such as directories, symbolic links, and device

special files) are not striped. These objects exist on the disk partition on which the PFS file system
is mounted.

5-3

Using Parallel File I/O

Paragon™ System User's Guide

PFS Filenames and Pathnames

Filenames and pathnames in PFS file systems work the same as pathnames in UFS file systems. The
maximum length of a pathname is 1024 characters; the maximum length of a single filename is 255
characters.

PFS Limitations

5-4

In the current release, PFS file systems and parallel I/O calls have the following limitations:

PFS files cannot be accessed from a remote system via NFS.

PFS does not support executable files. If you copy a binary file to a PFS file system and try to
execute it, an “Operation not supported by this file system” error occurs.

PFS does not support core files. If a core dump occurs while your current directory is in a PFS
file system, a core file of length 0 is created.

PFS does not support the quotaon or sysacct commands or the mmap() system call.

PFS file regions cannot be locked by the fentl() system call. However, you can use the flock()
system call to lock the entire file.

The maximum number of open files per process at any given time is 64. This includes the
standard input, standard output, and standard error. This means that there is a practical
maximum of 61 open files per process.

Paragon™ System User's Guide

Using PFS Commands

Using Parallel File I/O

In general, you use standard OSF/1 commands such as Is, cat, cp, and mv to manipulate files in PFS
file systems. See the OSF/I Command Reference for information on these commands. (Many
commands do not work with files larger than 2G — 1 bytes, as described under “Using Extended
Files” on page 5-36.) This section describes the additional file and file system commands provided

by the operating system.

Displaying File System Attributes

Command Synopsis

showfs [-k] [-t type][filesystem | directory]

Description

Display file system attributes.

The command showfs with no arguments lists the file systems on your system, together with
information on each. For example:

% showfs

Mounted on

/

/home

/usr

/home/ .sdirs/vol0

/home/.sdirs/voll

/home/ .sdirs/vol2

/home/.sdirs/vol3

/pfs

sdirs: /home/.

/home/ .
/home/ .
/home/ .

512-blks
1458308
4060838
2379194
598622
598622
598622
598622
2394488
sdirs/vol0
sdirs/voll
sdirs/vol2
sdirs/vol3

avail
719276
3373782
1948124
574464
574464
574464
574464
2297856

capacity

45%
8%
9%
4%
4%
4%
4%
4%

sunit sfactor

8192 4

In this case, the system has eight file systems. The seven file systems mounted on the directories
/ (root), /home, /usr, /home/.sdirs/vol0, /home/.sdirs/voll, /home/.sdirs/vol2, and /home/.sdirs/vol3
are non-parallel file systems (type UFS or NES); the file system mounted on the directory /pfs is a

PFS file system.

NOTE

There’s nothing special about the name /pfs; your PFS file
systems can have any name. However, the rest of this chapter
uses the convention that pathnames beginning with /pfs are in a

PFS file system.

5-5

Using Parallel File /O Paragon™ System User's Guide

The showfs command shows the following information for every file system:

Mounted on The directory where the file system is mounted (its mount point). If you need
to know the file system’s device name, use the standard OSF/1 command

mount or df.
512-blks The total capacity of the file system in 512-byte disk blocks.
avail The number of disk blocks currently available.
capacity The approximate percentage of the file system’s capacity currently in use.

In this example, the file system mounted on /usr has a size of 2,379,194 512-byte disk blocks, of
which 1,948,124 blocks are currently unused, so that the file system is approximately 9% full.

The showfs command shows the following additional information for each PFS file system:

sunit The file system’s stripe unit, in bytes.

sfactor The number of stripe directories within the PFS file system.

sdirs The stripe directories (usually mount points of UFS file systems) within the
PFS file system.

You can display the attributes of PFS files using the Is -IP command. See “Displaying File
Attributes” on page 5-7 for more information.

In this example, the PFS file system mounted on /pfs has a stripe unit of 8K bytes and consists of the
four UFS file systems mounted on /home/.sdirs/vol0, /home/.sdirs/voll, /home/.sdirs/vol2, and
/home/.sdirs/vol3.

The showfs command accepts the following optional arguments:

-k Display capacity and available capacity in 1024-byte disk blocks instead of
512-byte disk blocks. The header “512-blks” changes to “kbytes”.

-t type Display information about all file systems of type type, where type is any
recognized file system type in lowercase (pfs, ufs, or nfs).

filesystem Display information about the file system whose device name is filesystem.
directory Display information about the file system mounted on directory.
The filesystem or directory argument overrides -t fype if used together

5-6

Paragon™ System User's Guide Using Parallel File I/O

NOTE

You should use showfs, not df, to get information about the
cumulative amount of free space in a PFS file system. Using the
standard df command on a PFS file system only gives information
about the single disk partition on which the PFS file system is
mounted, so does not indicate how much space is actually
available for file striping.

Displaying File Attributes

Command Synopsis Description

Is [-1] [-P] [filesystem | directory] Lists and generates PFS information about files.

The Is command has the -1 and -P switches that display the stripe attributes of PFS files.
Thels -1 command displays the mode, number of links, owner, group, size, time of last modification
for each file, and pathname. If the file is a special file, the size field contains the devi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>