
IJ . , . ~

r:
IJ
rJ

r=:
rJ
[J

[:

I~

["~

r]
(J

I ·,.,
~;

I~

[J

~ I)

C

Paragon™ System

Fortran Calls

Reference Manual

IntelCP) Corporation

April 1996

Order Number: 312488-005

Copyright ©1996 by Intel Server Systems Product Development, Beaverton, Oregon. All rights reserved. No part of this work may be reproduced
or copied in any form or by any means ... graphic, electronic, or mechanical including photocopying, taping, or information storage and retrieval
systems ... without the express written consent of Intel Corporation. The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation
makes no commitment to update or to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to restrictions
stated in Intel's software license agreement. Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subpara­
graphs (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule­
vard, Santa Clara, CA 95052-8119. For all Federal use or contracts other than DoD, Restricted Rights under FAR 52.227-14, ALT. ill shall apply.

The following are trademarks of Intel Corporation and its, affiliates and may be used only to identify Intel products:

286
287

i386
i387
i486
i487
i860

Other brands and names are the property of their respective owners.

Copyright ® The University of Texas at Austin, 1994
All rights reserved.

Intel
Intel386
Inte1387
Intel486
Intel487

iPSC
Paragon

This software and documentation constitute an unpublished work and contain valuable trade secrets and proprietary information belonging to the
University. None of the foregoing material may be copied, duplicated or disclosed without the prior express written permission of the University.
UNIVERSITY EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES CONCERNING TIllS SOFTWARE AND DOCUMENTATION,
INCLUDING ANY WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR ANY PARTICULAR PURPOSE, AND W ARRAN­
TIES OF PERFORMANCE, AND ANY WARRANTY THAT MIGHT OTHERWISE ARISE FROM COURSE OF DEALING OR USAGE OF
TRADE. NO WARRANTY IS EITHER EXPRESS OR IMPLIED WITH RESPECT TO THE USE OF THE SOFTWARE OR DOCUMENTA­
TION. Under no circumstances shall University or Intel be liable for incidental, special, indirect, direct or consequential damages or loss of profits,
interruption of business, or related expenses which may arise from the use of, or inability to use, softWare or documentation, including but not limited
to those resulting from defects in the software and/or documentation, or loss or inaccuracy of data of any kind.

ii

[)

[J

(]

(
.~

, I
,.. --J

IJ
[J

[J

[J

[J
[J
r~

" --..

r:

I.' J

IJ

1··"1

LI

I "'
:, .J

[i '.
.J

I-~

1=
1=
(-'1.

I ~
I~~

I ':
I-~

IJ

WARNING
Some of the circuitry inside this system operates at hazardous energy and
electric shock voltage levels. To avoid the risk of personal injury due to
contact with an energy hazard, or risk of electric shock, do not enter any
portion of this system unless it is intended to be accessible without the use
of a tool. The areas that are considered accessible are the outer enclosure
and the area just inside the front door when all of the front panels are in­
stalled, and the front of the diagnostic station. There are no user service­
able areas inside the system. Refer any need for such access only to tech­
nical personnel that have been qualified by Intel Corporation.

CAUTION
This eqUipment has been tested and found to comply with the limits for a
Class A digital device, pursuant to Part 15 of the FCC Rules. These limits
are designed to provide reasonable protection against harmful interfer­
ence when the eqUipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio frequency energy and,
if not installed and used in accordance with the instruction manual, may
cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own
expense.

LIMITED RIGHTS
The information contained in this document is copyrighted by and shall re­
main the property of Intel Corporation. Use, duplication or disclosure by
the U.S. Government is subject to Limited Rights as set forth in subpara­
graphs (a)(15) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule­
vard, Santa Clara, CA 95052. For all Federal use or contracts other than
000 Limited Rights under FAR 52.2272-14, ALT. III shall apply. Unpub­
lished-rights reserved under the copyright laws of the United States.

iii

iv

IJ
U
[--.,

.. JiJ

[J
~--,

I

,,",_.~i

(]

(J
[J

[J

(J

r:
I:
r
·~

'"

1·-'1"1

~!

I
I
I-'~

I ~~

I ~
I~:
I ~4

~".I

IJ

-------,--- ._ ------.-

Preface

The Paragon™ System Fortran Calls Reference Manual describes the system calls and library
routines (referred to collectively as "system calls") that let you access the special capabilities of the
Paragon. These calls let you:

• Create and control parallel applications and partitions.

• Exchange messages between processes.

• Get information about the computing environment.

• Perform global operations that have been optimized for the Intel supercomputer's architecture.

• Perform 64-bit integer arithmetic (necessary when manipulating PFS file pointers, which can
exceed 32 bits).

• Read and write files.

This manual assumes that you are proficient in using the Fortran programming language and the
operating system.

See the Paragon™ System Fortran Compiler User's Guide for more information about the Fortran
interface to the operating system.

NOTE

Programming examples in this manual are intended to
demonstrate the use of Paragon Fortran system calls; they are not
intended as examples of good programming practice. For
example, in some cases, error checks have been omitted in order
to make an example shorter and easier to read.

v

Preface Paragon 1M System Fortran Calls Reference Manual

NOTE

Do not use the Mach system call interface. This interface is not
supported. It is not documented in SSD manuals, but you may
read about Mach elsewhere. If you use Mach system calls, your
application may fail. Mach memory allocation and Paragon
memory allocation do not work together.

Organization

vi

The body of this manual contains a "manual page" for each system call, organized alphabetically.
Each manual page provides the following information:

• Synopsis (showing the call's syntax, parameter declarations, and any needed include files).

• Description of any parameters.

• Discussion (may include hints on when and how to use the call).

• Return values (if applicable).

• Error messages (including probable cause and suggested remedy).

• Limitations and workarounds

• Related calls.

Some of the manual pages in this manual discuss several related system calls. For example, the
csendO manual page discusses both the csendO and csendxO system calls. The title of a manual
page that discusses more than one call is the name of the first call discussed on the page. To find the
discussion of any call, use the Index at the back of this manual.

Appendix A tells how to select message types and build message type selectors for the
message-passing system calls.

[]

[)

[]

[J

[J
(J
I.: ..,J

IJ

r:

, I ~ . .JI

("

" --,

-,'

I,' ..,
.J

f---.,
.'

I:
I'~

.oJ

Paragon TM System Fortran Calls Reference Manual Preface

Notational Conventions
This section describes the following notational conventions:

• Type style conventions.

• System call syntax descriptions.

Type Style Conventions

The text of this manual uses the following type style conventions:

Bold

Italic

Identifies command names and switches, system call names, reserved words,
and other items that must be used exactly as shown. Bold is also used in
examples of code to call attention to specific lines.

Identifies variables, filenames, directories, processes, user names, and writer
annotations in examples. Italic type style is also occasionally used to
emphasize a word or phrase.

Plain-Monospace
Identifies computer output (prompts and messages), examples, and values of
variables. Some examples contain annotations that describe specific parts of
the example. These annotations (which are not part of the example code or
session) appear in italic type style and are flush with the right margin.

Bold-Italic-MODospace
Identifies user input (what you enter in response to some prompt).

Bold-Monospace
Identifies the names of keyboard keys (which are also enclosed in angle
brackets). A dash indicates that the key preceding the dash is to be held down
while the key following the dash is pressed For example:

<Break> <s> <Ctrl-Alt-Del>

vii

---------------- --- --- --~-------~-~~~~-~~~-

Preface Paragon TM System Fortran Calls Reference Manual

System Call Syntax Descriptions

viii

In this manual, the syntax of each system call is described in the "Synopsis" section, which contains
the following:

• Include files needed by the system call.

• Syntax of the system call.

• Parameter declarations of any system call.

The following notational conventions apply to the "Synopsis" section:

Bold Identifies system call names.

Italic Identifies parameter names.

(Brackets) Surround optional items.

(Bar) Separates two or more items of which you may select only one.

(Braces) Surround two or more items of which you must select one.

(Ellipsis dots) Indicate that the preceding item may be repeated.

For example, the synopsis for the iprobeO system call appears as follows:

INCLUDE 'fnx.h'

INTEGER FUNCTION IPROBE(typesel)

INTEGER typesel

The INCLUDE statement shows only the filename of the include file, not its full pathname. If the
include file is not in the default location ("default" according to the if77 compiler), you must provide
a complete pathname, either with the INCLUDE statement or with the ·1 option on the in7 compiler
invocation line.

I)

[)
n - I

~.J

(]

c:
[1ri
It_..!

/"''1
I&..J

(I
_..J

[J
(J

1"1!I!

*'

(" OJ

r~
I" "'1

..I

I:
r:
r

~'

_.1

I':'

r:
I~
(-

r"'
I"~;

r~
1""""1

. .1

I ..

Paragon TM System Fortran Calls Reference Manual Preface

Applicable Documents
For more information, refer to the following documents:

• OSFll Programmer's Reference

• Paragon™ System User's Guide

• Paragon™ System C Calls Reference Manual

• Paragon ™ System Commands Reference Manual

ix

Preface Paragon TN System Fortran Calls Reference Manual

Comments and Assistance

x

Intel Scalable Systems Division is eager to hear of your experiences with our products. Please call
us if you need assistance, have questions, or otherwise want to comment on your Paragon system.

France Intel Corporation
1 Rue Edison-BP303

U.S.AJCanada Intel Corporation
Phone: 800-421-2823

Internet: support@ssd.intel.com

United Kingdom Intel Corporation (UK) Ltd.
Scalable Systems Division
Pipers Way

78054 St. Quentin-en-Yvelines Cedex
France

Swindon SN3 IRJ
England

05908602 (toll free)

Intel Japan K.K.
Scalable Systems Division
5-6 Tokodai, Tsukuba City
Ibaraki-Ken 300-26
Japan
0298-47-8904

0800 212665 (toll free)
(44) 793 491056
(44) 793 431062
(44) 793 480874
(44) 793 495108

Germany Intel Semiconductor GmbH
Dornacher Strasse 1
85622 Feldkirchen bei Muenchen
Germany
0130813741 (toll free)

World Headquarters
Intel Corporation

Scalable Systems Division
15201 N.W. Greenbrier Parkway

Beaverton, Oregon 97006
U.S.A.

(503) 677-7600 (Monday through Friday, 8 AM to 5 PM Pacific Time)
Fax: (503) 677-9147

If you have comments about our manuals, please fill out and mail the enclosed Comment Card. You
can also send your comments electronically to the following address:

techpubs@ssd.intel.com
(Internet)

[)

(J

(J

I"~
""_.i

I '~

..:i

r:
I:
1-:

I :'
r~

(-'"

I -
I

~-"i

-,"-,J

I
(-:

[:

I ~
I:
I "'"

,,J'

I '~
.. ...,

(J

Table of Contents

CPROBEO .. 1

CREADO .. 5

CRECVO .. 10

CSENDO .. 15

CSENDRECVO .. 19

CWRITEO ... 22

DCLOCKO .. 27

EADDO ... 29

ESEEKO ... 34

ESIZEO .. 38

ETOSO ... 43

FCNTLO ... 46

FLICKO ... 53

FORCEFLUSHO .. 54

FORFLUSHO ... 56

FPSETMASKO ... 58

GCOLO ... 61

GCOLXO .. 65

GDHIGHO .. 68

GDLOWO ... 71

GDPRODO ... 74

GDSUMO ... 77

xi

Table of Contents Paragon TM System Fortran Calls Reference Manual

GIANDO ... 81

GIORO .. 84

GOPENO ; .. 87

GOPFO ... 91

GSENDXO .. 95

GSYNCO .. 98

HRECVO .. 100

HSENDO .. 105

HSENDRECVO .. 109

INFOCOUNTO ... 112

IODONEO ... 116

IOMODEO .. 120

IOWAITO .. 123

IPROBEO ... 126

IREADO .. 131

IRECVO ... 136

ISENDO .. 142

ISENDRECVO .. 147

ISEOFO .. 152

IWRITEO .. 155

LSEEKO ... 160

LSIZEO ... 164

MASKTRAPO ... 168

MSGCANCELO .. 170

MSGDONEO .. 172

MSGIGNOREO .. 174

MSGMERGEO ... 176

MSGWAITO .. 178

MYHOSTO ... 180

MYNODEO , ... 181

MYPTYPEO .. 184

NUMNODESO .. 187

xii

()

D
(]

[J

'" '1'"1
It~

lJ
1-.1

J

(J

(~

IJ

(' _...J

r .. • liiI

I'~""
~

I :
I:
r:
I :
I "~

I ~:

I so,'

I ''\
cJ

r~

I··~.

I "'

I:
I ,.\

:~I

I~

I :
r "':

'U

1-.: ,.,

I_~

I'j

Paragon ™ System Fortran Calls Reference Manual Table of Contents

NX_APP _NODESO .. ; 190

NX_APP _RECTO ... 193

NX_CHPART_EPLO .. 195

NX_EMPTY _NODESO ... 202

NX_FAILED_NODESO .. 204

NX_INITVEO .. 206

NX_INITVE_ATTRO ... 211

NX_LOADO .. 223

NX_MKPARTO ... 226

NX_MKPART _A TTRO ... 230

NX_NFORKO ... 239

NX_PART _A TTRO ... 242

NX_PART _NODESO ... 245

NX_PERRORO ... 248

NX_PRIO .. 249

NX_PSPARTO ... 251

NX_RMPARTO ... 254

NX_WAITALLO .. 257

SETIOMODEO ... 259

SETPTYPEO .. 268

Appendix A
Message Types and Typesel Masks

Types .. A-1

Typesel Masks .. A-2

xiii

Table of Contents Paragon TM System Fortran Calls Reference Manual

List of Tables

Table A-1. Typesel Mask List .. A-3

xiv

(]

[]
[

"'1"\
" I

'.J

1]1

[J

"'lfj .,..i

IJ
I, ""'1;

"--""

IJ
IJ
IJ

,,' I
-'~'

Ii
I '1

.J

I', -.
"

I ~;
"I

I:

I~

I:

IJ

Paragon ™ System Fortran Calls Reference Manual Manual Pages

CPROBE{) CPROBE{)

cprobeO, cprobexO: Waits (blocks) until a message is ready to be received. (Synchronous probe)

Synopsis

Parameters

INCLUDE 'fnx.h'

SUBROUTINE CPROBE(typesel)

INTEGER typesel

SUBROUTINE CPROBEX(typesel, nodesel, ptypesel, info)

INTEGER typesel
INTEGER nodesel
INTEGER ptypesel
INTEGER info(8)

typesel

nodesel

ptypesel

info

Message type(s) to receive. Setting this parameter to -1 probes for a message of
any type. Refer to Appendix A of the Paragon TM System Fortran Calls Reference
Manual for more information about message type selectors.

Node number of the sender. Setting nodesel to -1 probes a message from any node.

Process type of the sender. Setting ptypesel to -1 probes a message from any
process type.

Eight-element array of integers in which to store message information. The first
four elements contain the message's type, length, sending node, and sending
process type. The last four elements are reserved for system use. If you do not
need this information, you can specify the global array msginfo, which is the array
used by the info ••• O calls.

Manual Pages Paragon TM System Fortran Calls Reference Manual

CPROBEO (cont.) CPROBEO (cont.)

Description

Examples

2

Use the appropriate synchronous probe call to block the calling process until a specified message is
ready to be received:

• Use the cprobeO subroutine to wait for a message of a specified type.

• Use the cprobexO subroutine to wait for a message of a specified type from a specified sender
and place information about the message in an array.

When a synchronous call returns, you know that a message of the specified type is available. You
can then use one of the receive system calls (for example, the crecvO or irecvO system calls) to
receive the message. With the cprobeO subroutine, you can use the info_.O system calls to get more
information about the message.

These are synchronous calls. The calling process waits (blocks) until the specified message is ready
to be received. To probe for a message of the specified type without blocking the calling process,
use one of the asynchronous probe calls (for example, the iprobeO system call).

The following example does a synchronous probe and runs in a two-node partition.

include 'fnx.h'

integer
integer

iam, msg_type
count, node, ptype, type

character*80 msg, smsg, rmsg
parameter (msg_type = 10)

c Identify self.

iam = mynode ()

c If node 0, then ...

if(iam .eq. 0) then
print *, 'Starting

c Build message.

msg = 'Hello from node '

[]

[J

(J

[J'''l
'-• ..,.j

f~ 1-"0

l,J

1·"1
.AJ

I ·.~
~

IJ
[J

I:

I::
1"'1

I:
It ".;

.. ,

I ·· .. ·
.OJ

IJ

IJ

Paragon 1M System Fortran Calls Reference Manual Manual Pages

CPROBEO (cont.)

100

c

200

write (smsg, 100) msg, iam
format (a16, i3, '.')

Send message.

CPROBEO (cont.)

call csend(msg_type, smsg, len (smsg), -1, myptype())

write(*, 200) iam, smsg
format('Node " i3, ' sent: ' a20)

c if not node 0, then ...

c

c

c

300

400

else

Probe for message.

call cprobe(msg_type)

Receive message.

if(infocount() .le. len(rmsg)) then
call crecv(msg_type, rmsg, len(rmsg))
count infocount()
type infotype()
ptype infoptype()
node infonode ()

Report receipt of message.

1
2
3

4

write(*, 300) iam, count, type, ptype, node
format ('Node " i3,

, reports " i3
'-byte message of type " i2,
, received from ptype " i2,
, on node " i 3 , '.')

write(*, 400) iam, rmsg
format('Node " i3, ' received: ' a30)

endif

endif

end

3

.-.~.--.-.-. - ----- .. -----~- ---------

Manual Pages Paragon 1M System Fortran Calls Reference Manual

CPROBE() (cont.) CPROBE() (cont.)

Limitations and Workarounds

See Also

4

For information about limitations and workarounds. see the release notes files in
lusrlsharelrelease _notes.

crecvO. infocountO. infonodeO. infoptypeO. infotypeO. iprobeO. irecvO

[~

"

l"1
jl

("'1
'..!

[
'~

.4>1

IJ

Ij ...

I· .. ,.,· .,
I

*I

I ,
J

1-:

r:
I··,.,

oJ

I· . .,., ...
.,

r:

I:~'
... 1

I "",
d

(
-"1

oJ

I
····~

_-'01

I··~

••

Paragon TM System Fortran Calls Reference Manual Manual Pages

CREAD(} CREAD(}

cread, creadv - Reads from a file and blocks the calling process until the read completes. (Synchronous read)

Synopsis

Parameters

INCLUDE 'fnx.h'

SUBROUTINE CREAD(unit, buffer, nbytes)

INTEGER unit
INTEGER buffer(*)
INTEGER nbytes

SUBROUTINE CREADV(unit, iov, iovcnt)

INTEGER unit
INTEGER iov(*)
INTEGER iovcnt

unit Unit number (an integer between 1 and 100) assigned when the file was opened.

buffer

nbytes

iov

iovcnt

Buffer in which to store the data after it is read from the file. The buffer can be of
any valid data type.

Size (in bytes) of the buffer parameter.

Array of iovec entries that identifies the buffers into which the data is to be placed.
An iovec entry is a pair of integers. The first integer contains the address of the
buffer. The second integer contains the number of bytes in the buffer.

Number of iovec entries in the iovarray.

5

Manual Pages Paragon TN System Fortran Calls Reference Manual

CREADO (cont.) CREADO (cont.)

Description

6

The creadO and creadvO subroutines perform high-speed, synchronous data reads from a file. The
creadvO subroutine performs the same actions as the creadO subroutine, but scatters the input data
into the buffers specified by the iov parameter.

These calls are synchronous calls. The calling process waits (blocks) until the read completes. To
read a file without blocking the calling process, use one of the corresponding asynchronous read
calls, either ireadO or ireadvO.

NOTE

To preserve data integrity, all I/O requests are processed on a
''first-in, first-ouf' basis. This means that if an asynchronous I/O
call is followed by a synchronous I/O call on the same file, the
synchronous call will block until the asynchronous operation has
completed.

To open a file for reading, use the Fortran openO statement with the form parameter set to
I unformat ted I or use the gopenO subroutine.

For a given file, mixing the operating system read and write calls (for example, creadO or cwrite())
with the Fortran readO and writeO statements causes an error.

You can automatically create files using a Fortran readO or writeO statement without an openO
statement. These kind of files are named with the form fnode.unit, where node is the node number
and unit is the value of the unit parameter. These kind of files do not have the correct format for
high-speed system reads using creadO or creadvO subroutines. However, you can read these kind
of files with a readO statement.

Reading past the end of a file causes an error, so you must know how many bytes remain in the file
before you read from it. If any error occurs, the creadO or creadvO subroutine prints an error
message and terminates the calling process. You can use the iseofO function, to detect end-of-file,
after each creadO or creadvO call. You can use the lseekO or the eseekO function to determine the
length of a file.

fi
iiAlJ

r:

I:

I~

I~

Paragon 1M System Fortran Calls Reference Manual Manual Pages

CREAD() (cont.) CREAD() (cont.)

Errors

NOTE

The majority of the Fortran 110 errors that you are likely to receive
are described in the "Runtime Error Messages" appendix of the
Paragon TM System Fortran Compiler User's Guide. This section
describes additional errors that you may receive.

Attempt to mix standard and PFS I/O calls

You cannot mix the creadO subroutine with Fortran readO and writeO statements on the same file.

Bad file descriptor

The unit parameter does not specify a valid file unit that is open for reading.

Invalid argument

Check arguments.

I/O error

Make sure file is open and of the proper format.

Mixed file operations

No such unit

In I/O mode M_SYNC or M_GLOBAL, nodes are attempting different operations (reads and
writes) to a shared file. In these modes, all nodes must perform the same operation.

The unit parameter must be a positive integer no larger than 100.

Too many open files

Only 64 files can be open at one time for any process.

7

___________ 0 __ ~ ________ _

Manual Pages Paragon TM System Fortran Calls Reference Manual

CREADO (cant.) CREADO (cant.)

Tries to read past EOF

Attempt was made to read past the end-of-file (BOp).

Unformatted I/O to FORMATTED file

Examples

Use the Fortran openO statement to open the file, setting proper format.

The following example does a synchronous read and runs in a multi-node partition. Note that in
order for this example to work, the file Itmplmydata must exist.

include 'fnx.h'

integer iam
character*13 buf

c Identify self.

iam = mynode ()

c Globally open file with the M_UNIX I/O mode

call gopen(12, '/tmp/mydata', M_UNIX)

c Read and close the file.

100

call cread(12, buf, 13)

write(*, 100) iam, buf
format ('Node " i3, ' read:

close(12)

end

a13)

Limitations and Workarounds

8

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

[]

~-"l'1

~Ad

[J

IJ

I:
[J

lJ

[~

fj

[J

r:
r:

I-"'l

.J

I
-~

u

IJ

I
-~

'"

r:
(J

Paragon 1M System Fortran Calls Reference Manual Manual Pages

CREAD() (cont.) CREAD() (cont.)

See Also

cwriteO. gopenO. ireadO. iwriteO. iseofO. lseekO. setiomodeO

9

Manual Pages Paragon TM System Fortran Calls Reference Manual

CRECV() CRECV()

crecvO, crecvxO: Posts a receive for a message and blocks the calling process until the receive completes.
(Synchronous receive)

Synopsis

Parameters

10

INCLUDE 'fnx.h'

SUBROUTINE CRECV(typesel, buf, count)

INTEGER typesel
INTEGER bu.f(*)
INTEGER count

SUBROUTINE CRECVX(typesel, buf, count, nodesel, ptypesel, info)

INTEGER typesel
INTEGER bu.f(*)
INTEGER count
INTEGER nodesel
INTEGER ptypesel
INTEGER info(S)

typesel

buf

count

nodesel

Message type(s) to receive. Setting this parameter to -1 receives a message of any
type. Refer to Appendix A of the Paragon TM System Fortran Calls Reference
Manual for more information about message type selectors.

Buffer for storing the received message. The buffer can be of any valid data type,
but should match the data type of the buffer in the corresponding send operation.

Length (in bytes) of the bufparameter.

Node number of the message source (that is, the sending node). Setting the
nodesel parameter to -1 receives a message from any node.

[J

I'.~ iJ

[J

[J

[1
~

[
"'1

, 1

~

[J

I]

I·'.~ ..

r:
I ,.,

~I

r:

1""

IJ

[J

(
' I

.I

I ··..,.,
••• 1

1''"'1

. ..:.:...i

IJ
1_"

..J

1]
..

Paragon 1M System Fortran Calls Reference Manual Manual Pages

CRECVO (cont.) CRECVO (cont.)

Description

ptypesel

info

Process type of the sender. Setting the ptypesel parameter to -1 receives a message
from any process type.

Eight-element array of integers in which to store message information. The first
four elements contain the message's length, type, sending node, and sending
process type. The last four elements are reserved for system use. If you do not
need this information, you can specify the global array msgin/o, which is the array
used by the info ••• Ocalls.

Use the appropriate synchronous receive call to post a receive for a message and wait until the
receive completes:

• Use the crecvO subroutine to receive a message of a specified type.

• Use the crecvxO subroutine to receive a message of a specified type from a specified sender and
place information about the message in an array.

When the receive completes, the message is stored in the specified buffer and the calling process
resumes execution.

After a crecvO call, you can use the info ••• O system calls to get more information about the message
after it is received. After a crecvxO call, the same message information is returned in the info array.

If the message is too long for the bu/buffer, your application terminates with an error and the receive
does not complete .

These are synchronous calls. The calling process waits (blocks) until the receive completes. To post
a receive for a message without blocking the calling process, use an asynchronous receive call (for
example, irecvO or a handler receive call (for example, brecv()). Note that posting too many
asynchronous calls can cause the application to deplete the available pool of Message IDs. If no
Message IDs are available, crecvO and crecvxO may fail with your application terminating and the
synchronous receive function not completing.

11

Manual Pages Paragon TM System Fortran Calls Reference Manual

CRECVO (cont.) CRECVO (cont.)

Errors

Received message too long for buffer

The message received was too long for the bUfmessage buffer.

Too many requests

Examples

12

The application has too many outstanding message requests from asynchronous system calls. No
Message IDs are available from the system for the synchronous receive.

The following example uses the crecvO subroutine to do a synchronous receive. The example can
run in a multi-node partition.

include 'fnx.h'

integer
integer

iam, msg_type
count, node, pid, type

character*80 msg, smsg, rmsg
parameter (msg_type = 10)

c Identify self.

iam = mynode ()

c I f node 0, then ...

if(iam .eq. 0) then
print *, 'Starting

c Build message.

100

msg = 'Hello from node '
write (smsg, 100) msg, iam
format (a16, i3, '.')

[J

[)

Ij

[J

IJ

(J

IJ
[J

11' ---

I
"~

..

I:

r:

Paragon ™ System Fortran Calls Reference Manual Manual Pages

CRECVO (cont.) CRECVO (cont.)

c Send message.

call csend(msg_type, smsg, len(smsg), -1, mypid())

200
write(*, 200) iam, smsg
format('Node " i3, , sent: ' a20)

c if not node 0, then ...

I : else

1---

I:
I:

I ~-

-",I

1"",
~j

I ... ·~
arJ

I '"
.",J

I:
I"." .ioI

c

c

Probe for message.

call cprobe(msg_type)

Receive message.

if (infocount() .le. len(rmsg)) then
call crecv(msg_type, rmsg, len(rmsg))
count = infocount()
type = infotype()
pid infopid()
node infonode()

c Report receipt of message.

write(*, 300) iam, count, type, pid, node
300 format('Node " i3,

400

1
2
3

4

, reports " i3
'-byte message of type' i2,
, received from PID " i2,
, on node " i 3 , '.')

write(*, 400) iam, rmsg
format('Node " i3, , received: ' a30)

endif

endif

end

13

Manual Pages Paragon™ System Fortran Calls Reference Manual

CRECVO (cant.) CRECVO (cant.)

Limitations and Workarounds

See Also

14

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

cprobeO, csendO, csendrecvO, hrecvO, hsendO, hsendrecvO, infocountO, infonodeO,
infoptypeO, infotypeO, iprobeO, irecvO, isendO, isendrecvO

f"'~
1IJr.i

[...... .,
! ,I

IW"'"
I

:.~ . ..:

[j
, TI

ImLk

I!Ir "C',

~LJ

" .. .,
~,J

I' • __ .J.I1J

IJ

Ij -..-

I:

''"""
:aaI

r:

I"
I," -

-,

I:

1,"',
_,I

I~

I, "'"
:ttl

1'"1!!I -,

_JaJ

Paragon TN System Fortran Calls Reference Manual Manual Pages

CSEND() CSEND()

Sends a message and blocks the calling process until the send completes. (Synchronous send)

Synopsis

Parameters

INCLUDE 'fnx.h'

SUBROUTINE CSEND(type, buf, count, node, ptype)

INTEGER type
INTEGER buf(*)
INTEGER count
INTEGER node
INTEGER ptype

type Type of the message to send. Refer to Appendix A of the Paragon TM System
Fortran Calls Reference Manual for more information about message types.

buf Buffer containing the message to send. The buffer may be of any valid data type.

count

node

ptype

Number of bytes to send in the bufparameter.

Node number of the message destination (that is, the receiving node). Setting the
node parameter to -1 sends the message to all nodes in the application (except the
sending node when the ptype parameter is the sender's process type).

Process type of the message destination (that is, the receiving process).

15

Manual Pages Paragon OM System Fortran Calls Reference Manual

CSEND() (cont.) CSEND() (cont.)

Description

Examples

16

This is a synchronous call. The calling process waits (blocks) until the send completes. To send a
message without blocking the calling process, use an asynchronous send call (for example, isendO)
or a handler send call (for example, hsend()) instead.

The completion of the send does not mean that the message was received, only that the message was
sent and the send buffer (but> can be reused.

The following example uses the csendO subroutine to do a synchronous send. The example can run
in a multi-node partition.

include 'fnx. h'

integer
integer
character*80
parameter

c Identify self.

iam, msg_type
count, node, pid,
msg, smsg, rmsg
(msg_type = 10)

i am = mynode ()

c If node 0, then ...

if(iam .eq. 0) then
print *, 'Starting

c Build message.

msg = 'Hello from node '
write (smsg, 100) msg, iam

100 format (a16, i3, '.')

c Send message.

type

call csend(msg_type, smsg, len(smsg), -1, mypid(»

write(*, 200) iam, smsg
200 format ('Node " i3, , sent: ' a20)

[]

[J

c

[J

If"'l
Ii .
.. -Ill

.-T'l r' .
I ..• :,

lJ
(J
(

"'I

. .J

(J

l'~

.,J

f~ ---

r:

r:
I:
I ~

I~I

(""
,.1

I :

I:
(-"I
,J

1_,
,A>!

Paragon no System Fortran Calls Reference Manual Manual Pages

CSEND() (cont.) CSEND() (cont.)

c if not node 0, then ...

c

c

c

300

400

else

Probe for message.

call cprobe(msg_type)

Receive message.

if(infocount() .le. len(rmsg)) then
call crecv(msg_type, rmsg, len(rmsg))
count infocount()
type infotype()
pid infopid ()
node infonode()

Report receipt of message.

1
2
3
4

write(*, 300) iam, count, type, pid, node
format('Node " i3,

, reports " i3
'-byte message of type' i2,
, received from PID " i2,
, on node " i 3 , '.')

write(*, 400) iam, rmsg
format('Node " i3, , received: ' a30)

endif

endif

end

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

17

Manual Pages Paragon ™ System Fortran Calls Reference Manual

CSEND() (cont.) CSEND() (cont.)

See Also

18

cprobeO, crecvO, csendrecvO, hrecvO, hsendO, hsendrecvO, iprobeO, irecvO, isendO,
isendrecvO

f1l'1
i.

l ~.'""" "

J

~--~-,

1i.IL. , __ ,

1" .'"
: ""1

III "J

,rfr --

,

\.a., ~'

if ~
l. J

I:

r-l!I."" ' ' .--..

(J
1-:

I:

('-'"
.,

I ~
1'-,""

.. '

I~

I ·."',
..J

I ''''''.
~,

(~"

I--

I· "",
""-,

I "-:

("'"
.J

r:

Paragon TM System Fortran Calls Reference Manual Manual Pages

CSENDRECVO CSENDRECVO

Sends a message, posts a receive for a reply, and blocks the calling process until the receive completes. (Synchronous
send-receive)

Synopsis

Parameters

INCLUDE 'fnx.h'

INTEGER FUNCTION CSENDRECV(type, sbuf, scount, node,ptype, typesel,
rbuf, rcount)

INTEGER type
INTEGER sbuf(*)
INTEGER scount
INTEGER node
INTEGER ptype
INTEGER typesel
INTEGER rbuf(*)
INTEGER rcount

type Type of the message to send. Refer to Appendix A of the Paragon TM System
Fortran Calls Reference Manual for information on message types.

sbu! Buffer containing the message to send. The buffer may be of any valid data type.

scount

node

ptype

Number of bytes to send in the sbufparameter.

Node number of the message destination (that is, the receiving node). Setting the
node parameter to -1 sends the message to all nodes in the application (except the
sending node when the ptype parameter is set to the sender's process type).

Process type of the message destination (the receiving process).

19

Manual Pages Paragon ™ System Fortran Calls Reference Manual

CSENDRECVO (cant.) CSENDRECVO (cant.)

Description

typesel Message type(s) to receive. Setting this parameter to -1 sends and receives a
message of any type. Refer to Appendix A of the Paragon TM System Fortran Calls
Reference Manual for more information about message type selectors.

rbuf Buffer for storing the received message. The buffer can be of any valid data type,
but should match the data type of the buffer in the corresponding send operation.

rcount Number of bytes in the rbuf parameter.

The csendrecvO function sends a message and waits for a reply. When a message whose type
matches the type(s) specified by the typesel parameter arrives, the calling process receives the
message, stores it in rbuf, and resumes execution.

This is a synchronous call. The calling process waits (blocks) until the receive completes. To send a
message and post a receive for the reply without blocking the calling process, use an isendrecvO or
hsendrecvO call (asynchronous calls) instead of a csendrecvO call.

If the received message is too long for the rbufbuffer, your application terminates with an error and
the receive does not complete.

This call does not affect the information returned by the info ••• O calls.

If you use force-type messages with the csendrecvO function, you are responsible for posting the
receive on the receiving node before the message arrives. Otherwise, the receive will not complete
and the message will be lost. The csendrecvO function does not do internal synchronization of
messages. See Appendix A, "Message Types and Typesel Masks" on page A-I of the Paragon TM

System Fortran Calls Reference Manual for more information on force-type messages.

Return Values

Length (in bytes) of the received message.

20

D
[)

[)

[J
[j

~J

~.; Ii_

II : 1"1f>1

., .)

IJ
(

"'1

. ""~

I:
(J

(J

Ij

(.. '"
--,",

I:;
(.'~

-,

f~:

I."'·
..J

Ii
I >;

r:
I:
r:
I~

I'" ,.)

Paragon TM System Fortran Calls Reference Manual Manual Pages

CSENDRECVO (cont.) CSENDRECVO (cont.)

Errors

Invalid argument

The received message is too long for the receive buffer.

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

cprobeO, crecvO, csendO, hrecvO, hsendO, hsendrecvO, infocountO, iprobeO, irecvO, isendO,
isendrecvO

21

Manual Pages Paragon TM System Fortran Calls Reference Manual

CWRITEO CWRITEO

cwriteO. cwritevO: Writes to a file and blocks the calling process until the write completes. (Synchronous write)

Synopsis

Parameters

22

INCLUDE 'fnx.h'

SUBROUTINE CWRITE(unit, buffer, nbytes)

INTEGER unit
INTEGER buffer(*)
INTEGER nbytes

SUBROUTINE CWRITEV(unit, iov, iovcnt)

INTEGER unit
INTEGER iov(*)
INTEGER iovcnt

unit

buffer

nbytes

iov

iovcnt

Unit number (an integer between 1 and 100) assigned when the file was opened.

Buffer containing data to be written. The buffer can be of any valid data type.

Number of bytes to write. The size is limited only by the memory available for the
buffer.

Array of iovec entries. which identifies the buffers containing the data to be
written. The iovec entry is defined to be a pair of integers. The first integer contains
the address of the buffer. The second integer contains the number of bytes in the
buffer.

Number of iovec entries in the iovarray.

(]

[]

[]

[
1"1

j

[J

(J

(J

lJ

I~

I-~ d

I:

I
-~

r . .!u

I:
I ""'·' I '

..... .1

IJ
r-:

r:
I '"

~J

I:
I:

Paragon ™ System Fortran calls Reference Manual Manual Pages

CWRITEO (cont.) CWRITEO (cont.)

Description

The cwriteO and cwritevO subroutines perform high-speed, synchronous data writes to a file. The
cwritevO subroutine performs the same actions as the cwriteO subroutine, but gathers the output
data from the buffers specified by the iov parameter.

These are synchronous calls. The calling process waits (blocks) until the calling process completes.
To write a file without blocking the calling process, use the corresponding asynchronous write call
(iwriteO or iwritev()).

NOTE

To preserve data integrity, all 110 requests are processed on a
"first-in, first-out" basis. This means that if an asynchronous 110
call is followed by a synchronous 1/0 call on the same file, the
synchronous call will block until the asynchronous operation has
completed.

To open a file for writing, use the Fortran openO statement with the form parameter set to
I unformatted I or use the gopenO subroutine.

For a given file, mixing the cwriteO or cwritevO subroutines with the Fortran readO and writeO
statements causes an error.

You can automatically create files using a Fortran readO or writeO statement without an openO
statement. These kind of files are named with the formfnode.unit, where node is the node number
and unit is the value of the unit parameter. You can write these kind of files using a writeO
statement. However, these kind of files do not have the correct format for high-speed system writes
using the cwriteO or cwritevO subroutines.

To determine whether the write operation moved the file pointer to the end of the file, use the iseofO
system call.

23

Manual Pages Paragon TM System Fortran Calls Reference Manual

CWRITEO (cont.) CWRITEO (cont.)

Errors

NOTE

The majority of the Fortran 1/0 errors that you are likely to receive
are described in the "Runtime Error Messages" appendix of the
Paragon TM System Fortran Compiler User's Guide. This section
describes additional errors that you may receive.

Attempt to mix standard and PFS I/O calls

You cannot mix the cwriteO subroutine with Fortran readO and writeO statements on the same file.

Attempt to write to READONLY file

Check file attributes.

Bad file descriptor

The unit parameter does not specify a valid file unit that is open for writing.

Invalid argument

Check arguments.

Mixed file operations

In liD mode M_SYNC or M_GLOBAL, nodes are attempting different operations (reads and
writes) to a shared file. In these modes, all nodes must perform the same operation.

No space left on device

Not enough space on device to which you are writing. Create more space in file system.

No such unit

The unit parameter must be a positive integer no larger than 100.

24

----- .---------------------~~ ----------

[]

lJ
IJ

l:

I~

I:
f '"

~I

I"'

I· .. "'
~,

I"

I -
.,

I:

Paragon TM System Fortran Calls Reference Manual Manual Pages

CWRITE() (cont.) CWRITE() (cont.)

Too many open files

Only 64 files can be open at one time for any process.

Unformatted I/O to FORMATTED file

Use the Fortran openO statement to open the file, setting proper format.

Examples

The following example globally opens a file with the gopenO subroutine and uses the cwriteO
subroutine to do a synchronous write to the file.

include 'fnx.h'

integer iam
character*13 buf

c Identify self.

iam = mynode ()

c Globally open file with the M_UNIX I/O mode

call gopen(12, '/tmp/mydata', M_UNIX)

c Write and close the file.

buf = 'Hello, world!'
call cwrite(12, buf, len(buf))

write(*, 100) iam, buf
100 format ('Node " i3, I wrote: ' a13)

close (12)

end

25

~~----------.-.---------------

Manual Pages Paragon TM System Fortran Calls Reference Manual

CWRITE() (cont.) CWRITE() (cont.)

Limitations and Workarounds

See Also

26

For information about limitations and workarounds, see the release notes files in
lusrlshare/release _notes.

creadO, gopenO, ireadO, iwriteO, setiomodeO

----.-- _._-----------------------

[]

[.. -"'1
~

[. ~." . . ,
-~

I. -.,.
Ii..!

(J

[J

rj --

[:

I "; ...

r:
(:

IJ

I-J

1-·_,.,
..::..;1

I:
I:
[~

Paragon ™ System Fortran Calls Reference Manual Manual Pages

DCLOCK() DCLOCK()

Gets elapsed time in double precision seconds since the node was booted.

Synopsis

Description

INCLUDE 'fnx.h'

DOUBLE PRECISION FUNCTION DCLOCKO

The dclockQ function measures time intervals in seconds. The time is obtained from the RPM global
clock. The dclockQ value rolls over approximately every 14 years, and has an accuracy of 100
nanoseconds on each node and 1 microsecond across all nodes.

Return Values

Examples

Elapsed time (in seconds) since booting the node.

The following example uses the dclockO function to calculate the elapsed time of a program.

include 'fnx.h'

integer iam
double precision stime, etime, dclock

c Identify self.

iam = mynode ()

c Get starting time.

stime = dclock()

c A delay loop.

10
do 10 i=1,1000000
continue

27

Manual Pages Paragon 1M System Fortran Calls Reference Manual

DCLOCK() (cont.) DCLOCK() (cont.)

c Calculate elapsed execution time.

etime = dclock() - stime

c Display elapsed execution time.

write(*,100) iam, etime
100 format('Node I, i3, I elapsed execution time =

1 I seconds. I)

end

Limitations and Workarounds

See Also

28

For information about limitations and workarounds, see the release notes files in
lusrlsoorelrelease _notes.

rpm

-------- -------

DIS.6,

[]

[]

I]

I:

IJ
IJ
Ij --

13
r·.·~

.aJ

(:
I:
r:
[

-"'1

.'"

Paragon™ System Fortran Calls Reference Manual Manual Pages

EADDO EADDO

eaddO, ecmpO, edivO, emodO, emulO, esubO: Perform mathematical operations on extended (64-bit) integers.

Synopsis

I-~ INCLUDE 'fnx.h'

1'·1

r~

IJ
I:
I··~!

(~

I ~,

~I

I ~.
j

I:
[J

U
C

SUBROUTINE EADD(el, e2, eresult)

INTEGER el (2)
INTEGER e2(2)
INTEGER eresult(2)

INTEGER FUNCTION ECMP(el, e2)

INTEGER el (2)
INTEGER e2(2)

SUBROUTINE EDIV(e, n, result)

INTEGER e(2)
INTEGERn
INTEGER result

SUBROUTINE EMOD(e, n, result)

INTEGER e(2)
INTEGERn
INTEGER result

29

Manual Pages Paragon 1M System Fortran Calls Reference Manual

EAOO() (cont.) EAOO() (cont.)

Parameters

Description

30

SUBROUTINE EMUL(e, n, eresult)

INTEGER e(2)
INTEGERn
INTEGER eresult(2)

SUBROUTINE ESUB(el, e2, eresult)

INTEGER el (2)
INTEGER e2(2)
INTEGER eresult(2)

e,el,e2 Extended integer values, implemented as an array of two integers.

n Integer value by which an extended integer is multiplied or divided.

eresult Resulting extended integer.

result Resulting integer.

Extended integers are signed 64-bit integers with values from -2**63 to 2**63 - 1. Extended integers
are represented as a two-element integer array. Extended-integer functions are for accessing
extended file sizes in the Parallel File System (PFS).

Use the subprograms to perform mathematical operations on extended integers:

eaddO Adds an extended integer to another extended integer.

ecmpO Compares two extended integers.

edivO Divides an extended integer by an integer.

emodO Gets remainder of an extended integer divided by an integer.

emulO Multiplies an extended integer by an integer.

[)

(: . ,
.JI

~·.I
&olIJ

(J

[J

[J

[:
.-oJ

[J
[Ji

I:
I·· ..

. ..J

I
"~

""
I··",

.. ,

I:

[~

[J

IJ

1=

I
··~

• .J

1·'9

.. ..1

[J

IJ

Paragon™ System Fortran Calls Reference Manual Manual Pages

EADD() (cont.) EADD() (cont.)

esubO Subtracts an extended integer by an extended integer.

Return Values

The ecmpO system call returns:

-1 If eJ < e2

o If eJ = e2

1 If eJ > e2

The eaddO. edivO. emodO. emulO. and esubO system calls have no return values.

Errors

Arithmetic overflow

Examples

Quotient should fit in an integer or division by zero for edivO or emodO system calls. Result does
not fit in an extended integer for the eaddO. emulO. and esubO system calls.

The following example uses the extended mathematical subprograms to do calculations on some
extended integers.

include 'fnx.h'

integer
integer

n, result
el(2), e2(2), eresult(2)

character*5 stringl, string2, string3, string4

c Identify self.

iam = mynode ()

c If node 0, then ...

if(iam .eg. 0) then
print *, 'Starting

31

Manual Pages

EADDO (cont.)

32

Paragon TN System Fortran Calls Reference Manual

c Initialize.

stringl =
string2 =
string3
n =

'3'//char(0)
'4'//char(0)
'5'//char(0)
5

c Convert strings to extended numbers.

call stoe(stringl, el)
call stoe(string2, e2)
call stoe(string3, eresult)

c Add el and e2.

call eadd(el, e2, eresult)
call etos(eresult, string4)
write(*, 200) stringl, string2, string4

200 format (alO, '+ " alO,' = " alO)

c Subtract el from e2.

call esub(el, e2, eresult)
call etos(eresult, string4)
write(*, 300) stringl, string2, string4

300 format (alO, ' - " alO, ' = " alO)

c Multiply el and n.

400

call emu 1 (el, n, eresult)
call etos(eresult, string4)
write(*, 400) stringl, string3, string4
format (alO, ' * " alO, , = " alO)

c Divide el by n.

call ediv(el, n, result)
write(*, 500) stringl, string3, result

500 format (alO, ' / " alO, , = " ilO)

c Remainder of el divided by n.

call emod(el, n, result)
write(*, 600) stringl, string3, result

600 format (alO, 'MOD', alO, ' = " ilO)

EADDO (cont.)

(J

['111
"" . I l,M

[J

u
[]

[J

[J

[J

Il

IJ

I:
(.. "1

~I

(
.-:1

.. I

(J

I
··~

J

r:
I J

I:
I]

Paragon'" System Fortran Calls Reference Manual Manual Pages

EADDO (cont.) EADDO (cont.)

c

700

710

720

Compare el and e2.

n = ecmp(el, e2)
if(n .It. O} then

write(*, 700} stringl, string2
format (alO, I is less than " alO}

else if(n .eq. O} then
write(*, 7l0} stringl, string2
format (alO, I is equal to I, alO}

else
write(*, 720} stringl, string2
format (alO, I is greater than I alO}

endif

endif

end

Limitations and Workarounds

See Also

For information about limitations and workarounds. see the release notes files in
lusrlsharelrelease_notes.

eseekO. esizeO. etosO. stoeO

33

Manual Pages Paragon'" System Fortran Calls Reference Manual

ESEEKO " ESEEKO

Moves a file's read-write file pointer.

Synopsis

Parameters

34

INCLUDE 'fnx.h'

SUBROUTINE ESEEK(unit, offset, whence, newpos)

INTEGER unit
INTEGER offset(2)
INTEGER whence
INTEGER newpos(2)

unit

offset

whence

newpos

Unit number of an extended or standard OSFIl file that is open for reading or
writing. The unit number is an integer between 1 and 100 that was assigned to the
file when it was opened.

An extended integer (64-bits) that is the value, in bytes, used by the whence
parameter to set the file pointer.

Specifies how to interpret the offset parameter in setting the file pointer associated
with the unit parameter. Values for the whence parameter are as follows:

SEEK~ET

SEEK-.END

Sets the file pointer to offset bytes from the beginning
of the file.

Sets the file pointer to its current location plus offset
bytes.

Sets the file pointer to offset bytes beyond the end of
the file.

An extended integer (64-bits) that is the value, in bytes, for the new position of the
file pointer as measured from the beginning of the file.

[)

[J

(]

(J

(J

[J

IJ
(I

.JiJ

fj i -

[:
IJ

I:
r:

("1

1=
1··'1

.:.1

I-~'
_.,

I~

I ~1
.... 1

I ~.
I

~-'

.-",

(:
£:
n
LiJ

Paragon TM System Fortran Calls Reference Manual Manual Pages

ESEEK() (cont.) ESEEK() (cont.)

Description

Errors

You can use the eseekO subroutine to access regular files and extended files, while the IseekO
subroutine does not support extended files. A regular file cannot exceed 2G - 1 bytes.

The eseekO subroutine moves the file pointer in an open extended or standard OSFIl file specified
by the unit parameter. You can also use the IseekO system call to move the file pointer in a standard
OSFIl file.

Upon successful completion, the eseekO subroutine returns an extended integer (newpos) that is the
new position of the file pointer measured in bytes from the beginning of the file. Because regular
files cannot exceed 2G - 1 bytes, the resulting file offset must not exceed 2G - 1 bytes when moving
the file pointer of a non-extended file. However, when working with extended files, the theoretical
resulting file offset can reach a 64-bit value. Realistically though, the file offset depends on how
many file systems the extended file is stripped across. Thus, any call to eseekO that results in a file
offset that exceeds the system-dependent limit produces an error.

When the eseekO subroutine does not successfully complete, it writes an error message on the
standard error output and causes the calling process to terminate.

The eseekO subroutine allows a file pointer to be set beyond the end of existing data in the file. If
data is later written at this point, reading data in the gap returns bytes with the value 0 (zero) until
data is actually written into the gap.

The eseekO subroutine does not extend the size of the file by itself.

The eseekO subroutine may block while asynchronous I/O requests queued by the same process to
the same file complete.

NOTE

The majority of the Fortran 1/0 errors that you are likely to receive
are described in the "Runtime Error Messages" appendix of the
Paragon Tiff System Fortran Compiler User's Guide. This section
describes additional errors that you may receive.

35

Manual Pages Paragon™ System Fortran Calls Reference Manual

ESEEKO (cont.) ESEEKO (cont.)

File too large

The resulting offset as determined by the whence and offset parameters exceeds the maximum file
offset allowable for this type of file on this particular file system.

Bad file descriptor

Invalid file unit number.

Fortran runtime error: Unit not open

A file must be open to perform a seek operation.

No such unit

The unit parameter must be a positive integer no larger than 100.

Mixed file operations

In liD mode M_SYNC or M_GLOBAL, nodes are attempting different operations (reads and
writes) to a shared file. In these modes, all nodes must perform the same operation.

Seek to different file pointers

Examples

36

In liD mode M_SYNC, M_RECORD, or M_GLOBAL, nodes are attempting to seek to different
positions in a shared file. In these modes, any seeks must be performed by all modes to the same file
position.

The following example shows how to use the eseekO subroutine to move file pointer in a file.

include 'fnx.h'

double precision etime, stime
integer newpos(2) , newsize(2) , offset(2)
character*10 position, size

c Open the file /tmp/mydata.

call gopen(12, '/tmp/mydata', M_UNIX)

[1
'j

(, 11
jJ

[]

[',," '~

D

[J

[J
("l , J

IJ

[J

rj , ____ I

[J

I:
I:

[~.'

('''' ..
.1

I~

I:

I· -~
•• 1

1. "1

... 1

I:
I~
[.... ~

. .JiII

Paragon TM System Fortran Calls Reference Manual Manual Pages

ESEEK() (cont.) ESEEK() (cont.)

c Set file size to 4,096 bytes (4k bytes).

100

c

call stoe('4096'//char(0), offset)
call esize(12, offset, SIZE_SET, newsize)

call etos(newsize, size)
write(*, 100) size
format('New file size is: alO)

Move read/write pointer to a location in the file.

call stoe('500'//char(0), offset)
call eseek(12, offset, SEEK_SET, newpos)

call etos(newpos, position)
write(*, 200) position

200 format('New pointer position is: ' alO)

c Close the file /tmp/mydata.

close(12)

end

Limitations and Workarounds

See Also

For information about limitations and workarounds. see the release notes files in
lusrlsharelrelease_notes.

creadO. cwriteO. esizeO. iread()). iseofO. iwriteO. IseekO. IsizeO. setiomodeO

37

Manual Pages Paragon TM System Fortran Catls Reference Manual

ESIZEO ESIZEO

Increases the size of an file.

Synopsis

Parameters

38

INCLUDE 'fnx.h'

SUBROUTINE ESIZE(unit, offset, whence, newsize)

INTEGER unit
INTEGER offset(2)
INTEGER whence
INTEGER newsize(2)

unit

offset

whence

Unit number of an extended file or standard OSFIl files open for writing. The unit
number is an integer between 1 and 100 that was assigned to the file when it was
opened. A standard OSFIl file cannot have a resulting size greater than 2G - 1
bytes.

An extended integer (64-bits) that is the value, in bytes, used by the whence
parameter to set the file size.

Specifies how to interpret the offset parameter in increasing the size of the file
associated with the unit parameter. Values for the whence parameter are as
follows:

Sets the file size to the greater of the current size or to

the value of the offset parameter.

Sets the file size to the greater of the current size or the
current location of the file pointer plus the value of the
offset parameter.

Sets the file size to the greater of the current size or the
current size plus the value of the offset parameter.

[~
r~
Ii.!

[J

r-. "'. :
iIl~

(J

(J

r:
rJ

1_--.,
~

r:
I --1_"'.

1_-"".-
--'

IJ

I.
I :

I:

Paragon TM System Fortran Calls Reference Manual Manual Pages

ESIZEO (cont.) ESIZEO (cont.)

Description

newsize An extended integer (64-bits) that is the new size, in bytes, of the file. If the new
size specified by offset and whence is greater than the available disk space, the
esizeO subroutine allocates all of the available space and returns the new size of
the file in the newsize parameter.

The esizeO subroutine increases the size of a file. This subroutine cannot decrease the size of a file.

You can use the esizeO subroutine to access regular files and extended files, while the IsizeO
function does not support extended files. Extended files can have a size a greater than 2G - 1 bytes,
while regular files cannot.

Use the esizeO subroutine to allocate sufficient file space before starting performance-sensitive
calculations or storage operations. This increases an application's throughput, because the I/O
system does not have to allocate data blocks for every write that extends the file size.

The contents of file space allocated by the esizeO subroutine is undefined.

Using the esizeO subroutine does not affect the position of the file pointer; use the eseekO system
call to move the file pointer.

The esizeO subroutine updates the modification time of the opened file. If the file is a regular file it
clears the file's set-user ill and set-group ill attributes.

If the file has enforced file locking enabled and there are file locks on the file, the esizeO subroutine
fails.

NOTE

Because NFS does not support disk block preallocation, the
esize() subroutine is not supported on files that reside in remote
file systems that have been NFS mounted. The esize() subroutine
is supported on files in UFS and PFS file systems only.

39

Manual Pages Paragon TM System Fortran Calls Reference Manual

ESIZEO (cont.) ESIZEO (cont.)

Errors

NOTE

The majority of the Fortran 1/0 errors that you are likely to receive
are described in the "Runtime Error Messages" appendix of the
Paragon ™ System Fortran Compiler User's Guide. This section
describes additional errors that you may receive.

Bad file descriptor

Invalid file unit number.

File too large

The file size specified by the whence and offset parameters exceeds the maximum file size.

Fortran runtime error: Unit not open

A file must be open to perform a size operation.

Invalid argument

The file is not an extended file.

No space left on device

The new size specified by offset and whence is greater than the available disk space. Create more
space in file system.

Operation not supported for this file system

The unit parameter refers to a file that resides in a file system that does not support this operation.
The esizeO subroutine does not support files that reside in remote file systems and have been NFS
mounted.

Permission denied

Write access permission to the file was denied.

40

[)

[)

[j

IJ
IJ
11, I

.. -i

[J

(J

IJ
(j --

I-~
ill

I-~.
....

I:

I~

I '",

1."-
'"

(
'I!!I

. ...oJ

Paragon ™ System Fortran Calls Reference Manual Manual Pages

ESIZEO (cont.) ESIZEO (cont.)

Read-only file system

The file resides on a read-only file system.

Resource temporarily unavailable

Examples

The file has enforced mode file locking enabled and there are file locks on the file.

The following example shows how to use the esizeO subroutine to increase the size of a file.

c

c

100

c

200

c

include 'fnx.h'

double precision etime, stime
integer newpos(2), newsize(2), offset(2)
character*lO position, size

Open the file /tmp/mydata.

call gopen(12, '/tmp/mydata', M_UNIX)

Set file size to 4,096 bytes (4k bytes).

call stoe('4096'//char(0), offset)
call esize(12, offset, SIZE_SET, newsize)

call etos(newsize, size)
write(*, 100) size
forrnat('New file size is: aiD)

Move read/write pointer to a location in the file.

call stoe('500'//char(0), offset)
call eseek(12, offset, SEEK_SET, newpos)

call etos(newpos, position)
write(*, 200) position
forrnat('New pointer position is: ' aiD)

Close the file /tmp/rnydata.

close(12)

end

41

Manual Pages Paragon TM System Fortran Calls Reference Manual

ESIZEO (cont.) ESIZEO (cont.)

Limitations and Workarounds

See Also

42

For information about limitations and workarounds. see the release notes files in
lusrlshare/release _notes.

creadO. cwriteO. eseekO. etosO. ireadO. iwriteO. lseekO. IsizeO. stoeO

~.,.,

it 1
Ill . .J.I

[J

[jJ

r:
J ,

i.Il~..J

"1 i.,J

(J

l, :.,
" ~

1=
(J

IJ
r~ .1 ---

I
"'~

.,1
'"

1_.,.,
-'::."

I, '" ..,

I~

r-:
(=:

I .,
j

I ,.

I :
I
'~

-~

I~
"I ..

Paragon TM System Fortran Calls Reference Manual Manual Pages

ETOS() ETOS()

etosO. stoeO: Converts an extended integer to a string or a string to an extended integer.

Synopsis

Parameters

Description

INCLUDE 'fnx.h'

SUBROUTINE ETOS(e, s)

INTEGER e(2)
CHARACTER *(*) s

SUBROUTINE STOE(s, e)

CHARACTER *(*) s
INTEGER e(2)

e

s

An extended integer.

A character string. (For the stoeO subroutine. the s parameter must be a null
terminated.)

Extended integers are signed 64-bit integers with values from -2**63 to 2**63 - 1. Always use the
extended-integer subroutines to access extended integers.The following subroutines perform
conversion operations for extended integers:

etosO Converts an extended integer to a character string.

stoeO Converts a string of characters to an extended integer.

43

Manual Pages Paragon 1M System Fortran Calls Reference Manual

ETOSO (cont.) ETOSO (cont.)

Errors

Arithmetic overflow

Examples

44

Size of the extended integer must be less than 263 -1.

The following example shows how to use the conversion subprograms for extended integers:

include 'fnx.h'

integer
integer

n, result
el (2), e2 (2) , . eresult (2)

character*5 stringl, string2, string3, string4

c Identify self.

iam = rnynode ()

c If node 0, then ...

c

if(iarn .eg. 0) then
print *, 'Starting

Initialize.

stringl
string2
string3 =
n

'3'//char(0)
'4'//char(0)
'5'//char(0)
5

c Convert strings to extended numbers.

call stoe(stringl, el)
call stoe(string2, e2)
call stoe(string3, eresult)

~~~~~~~~~~~~~~~~-~--,-~------~~-

[) 

[J 

(] 

il 
l..J 

(J 

IJ 
[J 

IJ 



I: 
I: 
I : 
[ 11'1 .. 

"" 

r·-
~j 

IJ , . ..., 
J 

r: 

1= 
IJ 

r: 
I···~ 

.!>J 

[J 

I: 
C 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

ETOSO (cont.) ETOSO (cont.) 

c 

200 

Add el and e2. 

call eadd(el, e2, eresult) 
call etos(eresult, string4) 
write(*, 200) stringl, string2, string4 
forrnat(alO, I + I, alO, I = I, alO) 

endif 

end 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds. see the release notes files in 
lusrlsharelrelease _notes. 

eaddO. esubO. edivO. emodO. emulO. ecmpO. eseekO. esizeO 

45 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

FCNTLO FCNTL(} 

Controls open file descriptors. 

Synopsis 

Parameters 

46 

INCLUDE 'frueh' 

CALL FCNTL (unit, request, <argument> ) 

INTEGER unit 
INTEGER request 
INTEGER <argument> 

unit 

request 

argument 

Unit number of an extended or standard OSFIl file that is open for reading or 
writing. The unit number is an integer between 1 and 100 that was assigned to the 
file when it was opened. 

Specifies the operation to be performed. 

Specifies a variable that depends on the value of the request parameter. 

The following are values for the request parameter: 

F _ GETSATTR Gets the PFS stripe attributes of the file referred to by the unit parameter. The 
argument parameter references the structure (sattr) in which the stripe attributes 
are retuined. The structure has the following form: 

STRUCTURE /sattr/ 
INTEGER*4 s_sunitsize 
INTEGER*4 s_sfactor 
INTEGER*4 s_start_sdir 

END STRUCTURE 

The file stripe attributes returned are a subset of the default stripe attributes for the 
PFS file system in which the file resides. The attributes consist of: 

• The file's stripe unit size, in bytes. This is the unit of data interleaving 
used in the PFS file. 

[ 1 
j 

[] 

[] 

[J 

I.
··~ 

jj! 

J1'1 
iL~ 

I: 
(J 

[J 

(J 



(~ 

I: 

I
'~ 

.. I 

(: 

I: 
'19 

• J 

I: 

I: 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

FCNTLO (cont.) FCNTLO (cont.) 

• The file's stripe factor. This is the size of the PFS file's stripe group. The 
file is striped in a round robin fashion to the number of stripe directories 
specified by this value. 

• The file's base stripe directory. This is the stripe directory at which 
striping begins for the file. Stripe directories define the storage locations 
for the PFS file, and the ordered set of stripe directories across which the 
file is striped define the file's stripe group. When a PFS file is created, it 
inherits its default stripe group from the PFS file system in which the file 
resides. (The file system stripe group is specified by the system 
administrator when the file system is mounted.) By default, the base 
stripe directory for a newly created file is selected randomly from the 
file's stripe group. 

When specified in the sattr structure, the base stripe directory is 
represented as an index between 0 and <sfactor>-l, inclusive, where 
<sfactor> is the default stripe factor of the PFS file. The file is striped in 
a round-robin fashion to stripe directories starting at this location. 

F _SETSATTR Sets the PFS stripe attributes of the file referred to by the unit parameter. The 
argument parameter references the structure (sattr) which must contain the file's 
new stripe attributes. The base stripe directory and the stripe factor must specify 
a subset of the PFS file's stripe group; in other words, the base stripe directory 
must be between 0 and <sfactor>-l and the stripe factor must be less than or equal 
to <sfactor>, where <sfactor> is the current stripe factor of the PFS file. 

F _SVR_BUFFER 
Enables or disables PFS buffering for the file referenced by thefiledes parameter . 
The argument parameter is interpreted as a boolean: TRUE enables server 
buffering; FALSE disables it. The fileservers cache stripe-file data in their 
memory-resident, disk-block caches. These fileservers use a read-ahead and 
write-behind caching algorithm. PFS buffering is recommended only when the 10 
request size is less than 64K bytes; otherwise, the fieservers's cache may thrash. 
Dirty cache buffers are flushed to disk when F _SVR_BUFFER changes from 
TRUE to FALSE. 

47 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

FCNTL() (cont.) FCNTL() (cont.) 

Description 

Notes 

48 

The fcntlO subroutine gets and sets PFS striping attributes for a supplied file descriptor (unit). 
Calling the subroutine suspends only the calling thread until the request is completed 

When used to permanently set the stripe attributes of a file, the F _SETSATTR request can only be 
used on a PFS file that has not yet been written to (it is zero-length). Once set, the new attributes of 
the file are permanent; further attempts to reset the attributes of the file will result in an error. 
Whenever an F _SETATTR request is completed successfully, the file pointer for unit is reset to 
point to the beginning of the file. 

The F _SETSATTR request also allows the stripe attributes of an already written-to file to be 
temporarily mapped to new attributes if the file is opened read-only. In this case, the new attributes 
apply only to the file descriptor specified by the unit parameter, and go away when the file is closed. 
This remapping can be useful for writing a matrix out to a file using one type of decomposition, and 
reading the matrix back in using a different decomposition. 

For a simple example. consider an 8x8 matrix with a record size of 4K bytes and a total of 64 records. 
If this matrix is written to a PFS file with a stripe factor of 8 and a stripe unit size of 32K bytes, the 
matrix will automatically be written using a column decomposition. If the stripe attributes of the file 
are then mapped to use a stripe unit size of 4K bytes, the matrix is read back in using a row 
decomposition. 

The stripe attributes of a PFS file can also be displayed from the command line by using the-P 
switch with the Is command. See the 18(1) man page for more information. 

Care should be used when attempting to set the stripe attributes of a file that is opened from multiple 
nodes. Use of the F _SETSATTR request on a file descriptor does not affect other already-existing 
descriptors for the same file. Possible file corruption could result if the :file is then written to using 
any of the already-existing descriptors. For example, if a file is opened by multiple nodes and then 
a single node sets the stripe attributes, the new attributes are only visible to that node. The other 
nodes must close and reopen the file to get the new attributes. Note also that for performance 
reasons, it is advisable to issue the F _SETSATTR from only one node, rather than all nodes running 
the application. 

( -.'1 
.jj 

[] 

rr~, 

iJ.! 

IJ 

I~ ---



I ," 
. .JIii 

r"'1 .. 1 

.iJ 

I: 

(-"' 
,~ 

( ''''' 
Jkl 

I~I 
I · ... ·, 
I 
I . 

-' 

[J 
1_.,., 

,.I 

r: 
1<1 

I~ 

1".=1 

.I!o.J 

I: 

.... '111'111.' .. LJ 

r.' JoI 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

FCNTLO (cont.) FCNTLO (cont.) 

Errors 

NOTE 

The majority of the Fortran I/O errors that you are likely to receive 
are described in the "Runtime Error Messages" appendix of the 
Paragon ™ System Fortran Compiler User's Guide. This section 
describes additional errors that you may receive. 

If the fcntIO subroutine fails, one of the following error messages appears: 

Bad file number 

File exists 

The request parameter is F _SETSATTR but the file's stripe attributes have already been 
permanently set by a previous call to fcntIO. 

The request parameter is F _SETSATTR but the file is not zero-length, or is not open read-only. 

Not a PFS file 

The file referred to by the unit parameter is not a PFS file; i.e., it is not a regular file in a PFS file 
system. 

Invalid Argument 

The set of attributes specified by the sattr structure is not a subset of the default stripe attributes of 
the PFS file system in which the file resides. 

49 



Manual Pages Paragon TM System Fortran calls Reference Manual 

FCNTL() (cont.) FCNTL() (cont.) 

Examples 

50 

This example creates a new file, reads and prints its default striping attributes, sets new striping 
attributes, and then closes the file. After closing the file the example opens the file and gets the new 
striping attributes and prints them. 

INCLUDE 'fnx.h' 

INTEGER unit 

STRUCTURE /sattr/ 
INTEGER*4 s_sunitsize 
INTEGER*4 s_sfactor 
INTEGER*4 s_start_sdir 

END STRUCTURE 

RECORD /sattr/ sattr 

unit = 12 

c Create unformatted file. 

OPEN {unit, 
& FILE='/pfs/rny_file', 
& STATUS='NEW' , 
& FORM='UNFORMATTED', 
& ERR=6100) 

c Get the default striping attributes and print them 

CALL fcntl{unit, F_GETSATTR, sattr) 

PRINT *, 'Here are the default striping attributes.' 
WRITE{*, 100) sattr.s_sunitsize 
WRITE{*, 200) sattr.s_sfactor 
WRITE{*, 300) sattr.s_start_sdir 

c Update the sattr structure with the new striping attributes 
c so they can be written later. 

sattr.s_sunitsize = 65536 
sattr.s_sfactor = 2 
sattr.s_start_sdir = 2 

[] 

If "1 
t~ 

[ .
. ---.., 
,I 

. .AI 

(J 

lJ 

c 



I
"~ 

"" 

I ~1 

•• 1 

IJ 

lOCi 

I~ 

I "· 
.;;J 

[J 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

FCNTL() (cont.) FCNTL() (cont.) 

c Set the new stripe attributes 

CALL fcntl(unit, F_SETSATTR, sattr) 

c Close the file. 

CLOSE (unit, 
& ERR=6200) 

c Re-open the file 

OPEN (unit, 
& FILE='/pfs/my_file', 
& 

& 

& 

STATUS= ' OLD' , 
FORM='UNFORMATTED', 
ERR=6100) 

c Get the new striping attributes 

CALL fcntl(unit, F_GETSATTR, sattr) 

PRINT *,'Here are the new striping attributes.' 
WRITE(*, 100) sattr.s_sunitsize 
WRITE(*, 200) sattr.s_sfactor 
WRITE(*, 300) sattr.s_start_sdir 

c Close the file 

CLOSE (unit, 
& ERR=6200) 

STOP 

c Error handling and format statements 

6100 CONTINUE 
PRINT *, 'Opening file failed.' 

6200 CONTINUE 
PRINT *,'Closing file failed.' 

100 FORMAT('Stripe Unit size = 
200 FORMAT('Stripe Factor 
300 FORMAT('Stripe Index 

STOP 
END 

, ,18.0) 
, ,18. 0) 
, ,18. 0) 

51 



· ... -~-~-~--.---- ... ----.- .... _ ... '---'-- .~---- .-.. -

Manual Pages Paragon TM System Fortran calls Reference Manual 

[) 

FCNTL() (cant.) FCNTL() (cant.) 

(
,,,,,! 
, I 

...Jill 

See Also 

commands: Is(I), showfs(l) 

[J 

[J 
[ ""'. . ! 

j 

IJ 

52 



I: 
I, .~ ... 

I: 
I: 
I
"~' 

L' 

(J 

IJ 
r·~ 

~I 

[= 
1.''9 

... 1 

1,= 
( ',"1 

. ..1 

C 

IJ 

C 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

FLICKO FLICKO 

Gives control of the node processor to the operating system for as long as 10 milliseconds. 

Synopsis 

Description 

INCLUDE 'fnx.h' 

SUBROUTINE FLICKO 

The ftickO subroutine temporarily releases control of the node processor to another process in the 
same application. If there are no other processes in the same application when a process calls ftickO, 
control returns to the operating system. For example, if your node program has set up a number of 
brecvO operations and has nothing else to do, it should issue t1ickO. The operating system can then 
more efficiently respond to an incoming message and wake up your process. 

The ftickO subroutine does not have any effect on rollin and rollout of the application. 

How the t1ickO function works depends on whether the calling process is the only process on the 
node or there are multiple processes on the node: 

• If the calling process is the only process on the node, t1ickO suspends execution of the calling 
process and gives control of the node to the operating system until any interrupt occurs. The 
operating system handles the interrupt and returns control of the node to the calling process. 
This improves performance by eliminating interrupt overhead; the operating system does not 
have to take control of the node before handling the interrupt. The operating system never 
retains control of the node longer than 10 milliseconds; the internal clock generates an interrupt 
at 10 millisecond intervals. 

• If there are multiple processes on the node, t1ickO suspends the calling process and gives control 
to the next scheduled process on the node. The calling process resumes executing when it is next 
scheduled to execute. This provides higher performance because control passes to the next 
scheduled process immediately and the scheduler does not intervene. 

Limitations and Workarounds 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease_notes. 

53 



Manual Pages Paragon ™ System Fortran Calls Reference Manual 

FORCEFLUSHO FORCEFLUSHO 

Flushes all buffered liD when an exception occurs. 

Synopsis 

Description 

Examples 

54 

INCLUDE 'frueh' 

SUBROUTINE FORCEFLUSHO 

The forceflushO subroutine enables a signal handler that flushes all buffered liD before an 
application terminates with an exception. Use this subroutine with fpsetmaskO to flush all liD in the 
event of a floating-point exception. 

A program must use forceflushO before an exception occurs. 

Writes to the terminal are not buffered. 

The following example shows how to use the forceflushO subroutine to flush all buffered liD for an 
application: 

c 
c 
c 
c 
c 

include 'fnx.h' 

integer a, newmask, oldmask, r 
character list(lOO) 

Set floating-point exception mask: 
1 Enables invalid operation exceptions. 
2 Enables denormalization exceptions. 
4 Enables divide-by-zero exceptions. 
8 Enables overflow exceptions. 

newmask 
oldmask = 

1 + 2 + 4 + 8 
fpsetmask(newmask) 

[] 

[--") 

'~ 

(J 

(
. "'1 
- I ..... 

IJ 
IJ 
[J 

IJ 
IJ 



I"· ""AI 

I: 
I

"~ 

, .. 

( '." 

_J 

( 'I 
~I 

IJ 
I: 
I: 

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

FORCEFLUSHO (cont.) FORCEFLUSHO (cont.) 

c Display old and new floating-point exception masks. 

write(*, 100) oldmask, newmask 
100 format('Old mask was: " il0, /, 'New mask is: 

c Ensure that all I/O is flushed if an exception occurs. 

call forceflush() 

c Build list of 100 charcters. 

1 

do 1, i = 1, 100 
list (i) 'b' 

continue 

c Open the file named "/tmp/mydata" 

call gopen(12, '/tmp/mydata', M_DNIX) 
end file (12) 

c Write to the file. 

write(12) (list(i), i = 1, 100) 

c The next statement causes a divide-by-zero exception. 

r 
a 

o 
l/r 

close(12) 

end 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease _notes. 

fpsetmaskO, forOusbO 

ilO) 

55 



Manual Pages Paragon TM System Fortran Calls Reference Manual 

FORFLUSHO FORFLUSHO 

Forces completion of all buffered 110 to a specified file. 

Synopsis 

Parameters 

Description 

Errors 

INCLUDE 'fnx.h' 

SUBROUTINE FORFLUSH(unit) 

INTEGER unit 

unit The unit number (an integer between 1 and 100) assigned when the file was 
opened. 

The forftushO subroutine forces all buffered I/O to the file identified by unit. 

NOTE 

The majority of the Fortran 1/0 errors that you are likely to receive 
are described in the "Runtime Error Messages" appendix of the 
Paragon TAt System Fortran Compiler User's Guide. This section 
describes additional errors that you may receive. 

Bad file descriptor 

Invalid file unit number. 

56 

[] 

U 
I] 

lj I 

I"fl 
t..,j 

~"'; 
i , 
lilL,..! 

(J 

[J 

[ 1 
.,OJ 

IJ 
IJ 
l~ 



r: 
I: 

IJ 

I : 
( ~~, 

1"1 

,,,j 

I: 

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

FORFLUSHO (cont.) FORFLUSHO (cont.) 

Examples 

The following example shows how to use the forcetlushO subroutine to force completion of all 
buffered I/O for an application: 

include 'fnx.h' 

character list(100) 

c Build list of 100 characters. 

do 1, i = 1, 100 
list(i) 'a' 

1 continue 

c Open the file named "/tmp/mydata" 

call gopen(12, '/tmp/mydata', M_UNIX) 
end file(12) 

c Write to the file. 

write(12) (list(i), i 1, 100) 

c Flush any buffered I/O. 

call forflush(12) 

close(12) 

end 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds, see the release notes files in 
lusrlshare/release _notes. 

forcetlushO 

57 



Manual Pages Paragon 1M System Fortran calls Reference Manual 

[] 
[

-111. 
' , 

" J\I 

FPSETMASKO FPSETMASKO 

Sets the floating-point exception mask. 
(: 

Synopsis 
I]i 

INCLUDE 'frueh' [J 

INTEGER FUNCTION FPSETMASK(mask) 

INTEGER mask 

Parameters 

mask An arithmetic value that enables or disables floating-point exceptions: 

o Disable all floating-point exceptions (default). 

1 Enable invalid operation exception. 

2 Enable divide-by-zero exception. 

4 Enable overflow exception. 

8 Enable underflow exception. 

16 Enable imprecise (loss of precision) exception. 

Description 

The fpsetmaskO function sets the floating-point exception mask. (J 

Return Values 

The previous value of the mask parameter. IJ 
lJ 
() 

58 



(: 
I·····.., .. 

r: 
I: 
I '" 

.. I 

I ~ 

I 'I 

.~ 

I ~1 
~I 

.('''''',.' -, 

(: 

--_._----------

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

FPSETMASK() (cont.) FPSETMASK() (cont.) 

Examples 

The following example shows how to use the fpsetmaskO function to set a floating-point exception 
mask: 

include 'fnx.h' 

integer a, newmask, oldmask, r 
character list(100) 

c Set floating-point exception mask: 
c 1 Enables invalid operation exceptions. 
c 2 Enables divide-by-zero exceptions. 
c 4 Enables overflow exceptions. 
c 8 Enables underflow exceptions. 

newmask = 1 + 2 + 4 + 8 
oldmask fpsetmask(newmask) 

c Display old and new floating-point exception masks. 

write(*, 100) oldmask, newmask 
100 format('Old mask was: " i10, /, 'New mask is: i10) 

c Ensure that all I/O is flushed if an exception occurs. 

call forceflush() 

c Build list of 100 charcters. 

do 1, i = 1, 100 
list(i) 'b' 

1 continue 

c Open the file named "/tmp/mydata" 

call gopen(12, '/tmp/mydata', M_UNIX) 
end file(12) 

c Write to the file. 

write(12) (list(i), i 1, 100) 

59 



------------

Manual Pages Paragon 1M System Fortran calls Reference Manual 

FPSETMASKO (cont.) FPSETMASKO (cont.) 

c The next statement causes a divide-by-zero exception. 

r = 0 
a = l/r 

close(12) 

end 

Limitations and Workarounds 

See Also 

60 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease_notes. 

forcef1ushO 

[] 
(] 

[J 

[J 

[J 

[- '1 
.J 

[J 

(] 



1_-.· 
iAI 

1··1li'I 

Jill 

r: 
I : 

I ~ 
r: 

I~, 

IJ 

I: 
I: 

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

GCOLO GCOLO 

Collects contributions from all nodes. (Global concatenation operation) 

Synopsis 

Parameters 

Description 

INCLUDE 'fnx.h' 

SUBROUTINE GCOL(x, xlen, y, ylen, ncnt) 

INTEGER x(*) 
INTEGER xlen 
INTEGER y(*) 
INTEGER ylen 
INTEGER ncnt 

x Input buffer to be used in the operation. Note that x may be of any type. 

xlen Length (in bytes) of x. 

y Output buffer to be used in the operation. Note that y must be of the same data type 
asx. 

ylen Length (in bytes) ofy. 

ncnt Number of bytes returned in y. 

The gcolO subroutine collects and concatenates (in node number order) a contribution from each 
node in the current application. The x and y parameters can be of any data type, but they must be of 
the same data type. The result is returned in y to every node. 

Problems that involve computing matrix vector products by allowing the nodes to compute partial 
answers can use gcolO to collect and concatenate the entire vector. 

61 



._----- - -----------

Manual Pages Paragon 1M System Fortran Catls Reference Manual 

GCOLO (cont.) GCOLO (cont.) 

Examples 

62 

If the lengths of the contributions from all the nodes are known, use gcolxO instead of gcolO. 

This is a "global" operation. All nodes in the application must execute this operation before the 
process can continue on any node, and all participating processes must have the same process type. 

The following example shows how to use the gcolO subroutine to do a global collect from all nodes 
in an application: 

include 'fnx.h' 

integer count, dpsize, iam, xsize, ysize, nbrnodes 
parameter (xsize = 4) 
parameter (ysize = 16) 
double precision x(xsize), y(ysize), dot, norm, work 
character*80 msg 

c Initialize. 

count 0 
dpsize = 8 
dot 0.0 
nbrnodes numnodes() 

c Identify self. 

iam = myna de () 

if(iam .eq. 0) print *, 'Starting 

c Each node creates and displays its four-element vector. 

100 
1 

do 1, i = 1, xsize 
x(i) = iam * (xsize) + i-l 
write(*, 100) iam, i, x(i) 
format ('Node', il, , x(', il, ') 

continue 
f3 .1) 

[] 

(] 

IJ 

(] 

[J 

(J 
I , 

AoI 

I) 



[J 
I: .. -,," 

I~ 

1-: 

I· 
I

···~ 

'" 

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

GCOLO (cont.) GCOLO (cont.) 

c Each node calculates and displays its dot product. 

2 

200 

do 2, i = 1, xsize 
dot = dot + x(i)*x(i) 

continue 
write(*, 200) iam, dot 
format('Node I, i1, I dot = I f10.6) 

c Each node sums the dot products of all nodes. 

call gdsum(dot, 1, work) 

c Node 0 displays the resulting dot product. 

if(iam .eq. 0) write(*, 300) dot 
300 format('dot = I, f10.6) 

c Each node normalizes its dot products. 

norm = dsqrt(dot) 
do 3, i = 1, xsize 

x(i) = x(i)/norm 
3 continue 

c Each node collects contributions from other node. 

call gcol(x, xsize*dpsize, y, nbrnodes*xsize*dpsize, count) 

c Node 0 displays the resulting vector. 

400 
4 

if(iam .eq. 0) then 
do 4, i = 1, nbrnodes*xsize 

write(*, 400) i, y(i) 
format('y(', i1, ') = I f3.1) 

continue 

endif 

end 

Limitations and Workarounds 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease_notes. 

63 



Manual Pages Paragon ™ System Fortran Calls Reference Manual 

GCOLO (cont.) GCOLO (cont.) 

See Also 

gcolxO. gdhighO. gdlowO. gdprodO. gdsumO. giandO. giorO, gopfO. gsyncO 

64 

[) 

[) 

[." .. .Ai 

[J 

(] 

(J 

[J 

l: 
IJ 
u 

rj 
IL. 



[: 
r: 
( .... .., 

Jil 

( ".'" 
"" 

I ·· .. 
J,d 

I· .. ., 
o. 

f "".-: 
,,-,I 

1'--' 

( ,~ 

u 

I ~i 

1= 

1_,. 
~, 

I: 
I -'ll'! 

-~ 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

GCOLXO GCOLXO 

Collects contributions of known length from all nodes. (Global concatenation operation for contributions of known 
length) 

Synopsis 

Parameters 

Description 

INCLUDE 'fnx.h' 

SUBROUTINE GCOLX(x, xlens, y) 

INTEGER x(*) 
INTEGER xlens(*) 
INTEGER y(*) 

x Input buffer to be used in the operation. This parameter may be of any type. 

xlens Array containing the length (in bytes) of the input buffer x expected on each node. 
The elements in xlens must be in increasing node number order. 

y Output buffer to be used in the operation. This parameter must be of the same data 
type asx. 

The gcolxO subroutine globally collects and concatenates (in node number order) a contribution of 
specified length from each node in the current application. The x and y parameters can be of any data 
type, but they must be of the same data type. The result is returned in y to every node. By providing 
the expected length of each contribution, gcolxO improves the speed of this operation compared to 
gcolO. This is due to the reduced overhead of calculating where each contribution belongs in the 
output buffer. 

If the lengths of the contributions from all the nodes are unknown, use gcolO instead of gcolxO. 

This is a "global" operation. All nodes in the application must execute this operation before the 
process can continue on any node, and all participating processes must have the same process type. 

65 



Manual Pages Paragon TM System Fortran Calls Reference Manual 

GCOLXO (cont.) GCOLXO (cont.) 

Examples 

66 

The following example shows how to use the gcolxO subroutine to do a global collect from all nodes 
in an application: 

include 'fnx.h' 

integer count, dpsize, iam, xsize, ysize, nbrnodes 
parameter (xsize = 4) 
paramet~ (ysize = 16) 
integer xlen(xsize) 
double precision x(xsize), y(ysize), dot, norm, work 
character*80 msg 

c Initialize. 

count 0 
dpsize 
dot 
nbrnodes 

8 
0.0 
numnodes() 

do 1, i = 1, nbrnodes 
xlen(i) = xsize*dpsize 

1 continue 

c Identify self. 

iam = mynode ( ) 
if(iam .eq. 0) print *, 'Starting 

c Each node creates and displays its four-element vector. 

100 
2 

do 2, i = 1, xsize 
x(i) = iam * (xsize) + i-l 
write(*, 100) iam, i, x(i) 
format ( 'Node " il, ' x ( " il, ') = 

continue 
f3 .1) 

c Each node calculates and displays its dot product. 

3 

200 

do 3, i = 1, xsize 
dot = dot + x(i)*x(i) 

continue 
write(*, 200) iam, dot 
format('Node " il, ' dot = flO.6) 

[] 

D 

(
-'I'j 

j 

[J 

lJ 
I: 

IJ 



I~ 

I: 

1= 
IJ 

r: 

I : 
( . ..., 

.~~ 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

GCOLXO (cont.) GCOLXO (cont.) 

c Each node sums the dot products of all nodes. 

call gdsum{dot, 1, work) 

c Node 0 displays the resulting dot product. 

if{iam .eg. 0) write{*, 300) dot 
300 format{'dot = " fl0.6) 

c Each node normalizes its dot products. 

norm = dsgrt(dot) 
do 4, i = 1, xsize 

x(i) = x(i)/norm 
4 continue 

c Each node collects contributions from other node. 

call gcolx(x, xlen, y) 

c Node 0 displays the resulting vector. 

if(iam .eg. 0) then 
do 5, i = 1, nbrnodes*xsize 

write(*, 400) i, y(i) 
400 format ( 'y{', il, ') =' n.l) 
5 continue 

endif 

end 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds, see the release notes files in 
lusrlshare/release _notes. 

gcol(), gdhigh(), gdlow(), gdprod(), gdsum(), gopf(), giand(), gior(), gsync() 

67 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

GDHIGHO GDHIGHO 

gdhighO, gihighO, gsbighO: Determines the maximum value across all nodes. (Global maximum operation) 

Synopsis 

Parameters 

68 

INCLUDE 'fnx.h' 

SUBROUTINE GDmGH(x, n, work) 

DOUBLE PRECISION x(*) 
INTEGERn 
DOUBLE PRECISION work(*) 

SUBROUTINE GIIllGH(x, n, work) 

INTEGER x(*) 
INTEGERn 
INTEGER work(*) 

SUBROUTINE GSmGH(x, n, work) 

REALx(*) 
INTEGERn 
REAL work(*) 

x 

n 

work 

Array to use in the operation. When the operation completes, x contains the final 
result. 

Number of elements in x. 

Array that receives the contributions from other nodes. The number of elements 
in work must be at least n. 

(] 

iJ 
~J 

u 

[.~ 
,'" '( 

..Ai 

(J 



I: 

I: 
I: 
1_.,., 

., 

( .-.., 

.It.i 

I· .", 
. J 

11 _ ..J 

I: 

IJ 

r: 

I ··,., 
.-..l 

[] 

[) 

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

GDHIGHO (cont.) GDHIGHO (cont.) 

Description 

Examples 

Use one of the following subroutines to determine a maximum value across all nodes: 

• Use gdhighO to determine the double precision maximum value of x across all nodes. 

• Use gihighO to determine the integer maximum value of x across all nodes. 

• Use gshighO to determine the real maximum value of x across all nodes. 

The result is returned in x to every node. When x is a vector, each element of the resulting vector 
represents the maximum of the corresponding vector elements of all nodes . 

This is a "global" operation. All nodes in the application must execute this operation before the 
process can continue on any node, and all participating processes must have the same process type. 

The following example shows how to use the gihighO subroutine to determine the maximum value 
across all nodes of an application: 

include 'fnx.h' 

integer*4 iam, max, maxval, min, minval, 
parameter (size = 10) 
integer list(size) 

c Identify self. 

iam = mynode () 
if(iam .eq. 0) print *, 'Starting 

size, seed, work 

c Each node creates list of random integers in the range O .. 100. 

seed = (2 * mclock()/(iam+l)) + 1 
do 1, i = 1, size 

list(i) = int(100*ran(seed)) 
1 continue 

100 
write(*, 100) iam, (list(i), i = 1, size) 
format('List for node " i3, , is: " 10i4) 

69 



Manual Pages Paragon TM System Fortran Calls Reference Manual 

GDHIGHO (cont.) GDHIGHO (cont.) 

c 

2 

c 

c 

Each node finds smallest and largest values in its list. 

min = 1 
max = 1 
do 2, i = 2, size 

if(list(i) .gt. list(max)) max = i 
if(list(i) .It. list(min)) min = i 

continue 
minval 
maxval 

list (min) 
list (max) 

Each node finds smallest and largest values across all nodes. 

call gilow(minval, 1, work) 
call gihigh(maxval, 1, work) 

Node 0 displays global minimum and maximum values. 

if(iam .eg. 0) write(*, 200) minval, maxval 
200 format ('Minimum value is " i4, /, 'Maximum value is' i4) 

end 

Limitations and Workarounds 

See Also 

70 

For information about limitations and workarounds. see the release notes files in 
lusrlshare/release _notes. 

gcolO. gcolxO. gdiowO. gdprodO. gdsumO. giandO. giorO. gopfO. gsyncO 

[ -., 
j 

D 

~~ 
i....-'" 

IJ 
C 
[J 



r: 
I: 
r: 
I: 
1_-,., 

~- ! 

I-J 

IJ 

I: 
IJ 

r~ 
1_"" 

.-~ 

IJ 

II 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

GDLOWO GDLOWO 

gdiowO. gilowO. gslowO: Determines the minimum value across all nodes. (Global minimum operation) 

Synopsis 

Parameters 

INCLUDE 'frueh' 

SUBROUTINE GDLOW(x, n, work) 

DOUBLE PRECISION x(*) 
INTEGERn 
DOUBLE PRECISION work(*) 

SUBROUTINE GILOW(x, n, work) 

INTEGER x(*) 
INTEGERn 
INTEGER work(*) 

SUBROUTINE GSLOW(x, n, work) 

REALx(*) 
INTEGERn 
REAL work(*) 

x Array to use in the operation. When the operation completes. x contains the final 
result. 

n 

work 

Number of elements in x. 

Array that receives the contributions from other nodes. The number of elements 
in work must be at least n. 

71 



Manual Pages Paragon TM System Fortran Calls Reference Manual 

GDLOWO (cont.) GDLOWO (cont.) 

Description 

Examples 

72 

Use one of the following subroutines to determine a minimum value across all nodes: 

• Use gdJowO to determine the double precision minimum value of x across all nodes. 

• Use gilowO to determine the integer minimum value of x across all nodes. 

• Use gsiowO to determine the real minimum value of x across all nodes. 

The result is returned in x to every node. When x is a vector, each element of the resulting vector 
represents the minimum of the corresponding vector elements of all nodes. 

This is a "global" operation. All nodes in the application must execute this operation before the 
process can continue on any node, and all participating processes must have the same process type. 

The following example shows how to use the gilowO subroutine to determine the maximum value 
across all nodes of an application: 

include 'fnx.h' 

integer*4 iam, max, maxval, min, minval, 
parameter (size = 10) 
integer list (size) 

c Identify self. 

iam = mynode () 
if(iam .eq. 0) print *, 'Starting 

size, seed, work 

c Each node creates list of random integers in the range 0 .. 100. 

1 

100 

seed = (2 * mclock()/(iam+1)) + 1 
do 1, i = 1, size 

list(i) = int(100*ran(seed)) 
continue 

write (*, 100) iam, (list (i), i = 1, size) 
format ( 'List for node " i3, ' is: " 10i4) 

~ ... '1 

Il. 

IJ 



r: 
I: 

1 -~.1 -, 

cJ 

I· 

-"I 

, 

I ~ 

I: 
I: 

IJ 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

GDLOWO (cont.) GDLOWO (cont.) 

c Each node finds smallest and largest values in its list. 

min = 1 
max = 1 
do 2, i = 2, size 

if{list{i) .gt. list{max» max 
if{list{i) .It. list{min» min 

i 
i 

2 continue 
minval = list (min) 
maxval = list (max) 

c Each node finds smallest and largest values across all nodes. 

c 

200 

call gilow{minval, 1, work) 
call gihigh{maxval, 1, work) 

Node 0 displays global minimum and maximum values. 

if{iam .eq. 0) write{*, 200) minval, maxval 
format('Minimum value is " i4, /, 'Maximum value is' i4) 

end 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds. see the release notes files in 
lusrlsharelrelease _notes. 

gcolO. gcolxO. gdhigh(). gdprodO. gdsumO. giandO. giorO. gopf(). gsync() 

73 



Manual Pages Paragon 1M System Fortran calls Reference Manual 

GDPRODO GDPRODO 

gdprodO. giprodO. gsprodO: Calculates a product across all nodes. (Global multiplication operation) 

Synopsis 

Parameters 

74 

INCLUDE 'fnx.h' 

SUBROUTINE GDPROD(x, n, work) 

DOUBLE PRECISION x(*) 
INTEGERn 
DOUBLE PRECISION work(*) 

SUBROUTINE GIPROD(x, n, work) 

INTEGER x(*) 
INTEGERn 
INTEGER work(*) 

SUBROUTINE GSPROD(x, n, work) 

REALx(*) 
INTEGERn 
REAL work(*) 

x Array to use in the operation: When the operation completes. x contains the final 
result. 

n 

work 

Number of elements in the array the x parameter specifies. 

Array that receives the contributions from other nodes. The number of elements 
in work must be at least the value of the n parameter. 

( . .. '"1 •. , I 

-'i.i 

I: 
I. i 

. A.! 

I] 



I····J'I 

... .ii.i 

IJ 

I: 

I ·'" 
.11.;1 

IJ 
IJ 

1= 
IJ 

[J 

[J 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

GDPROD() (cont.) GDPROD() (cont.) 

Description 

Examples 

Use one of the following subroutines to calculate a product across all nodes: 

• Use gdprodO to calculate the double precision product of x across all nodes. 

• Use giprodO to calculate the integer product of x across all nodes. 

• Use gsprodO to calculate the real product of x across all nodes. 

The result is returned in x to every node. When x is a vector, each element of the resulting vector 
represents the product of the corresponding vector elements of all nodes. 

This is a "global" operation. All nodes in the application must execute this operation before the 
process can continue on any node, and all participating processes must have the same process type. 

The following example shows how to use the giprodO subroutine to determine a product across all 
nodes of an application: 

include 'fnx.h' 

integer*4 iam, size, seed 
parameter (size = 5) 
integer list(size), work{size) 

c Identify self. 

iam = mynode () 
if(iam .eq. 0) print *, 'Starting 

c Create list of random integers in the range 0 .. 10. 

seed = (2 * mclock()/(iam+l)) + 1 
do 1, i = 1, size 

list(i) = int(10 * ran(seed)) 
1 continue 

write(*, 100) iam, (list(i), i = 1, size) 
100 format('List for node " i3, ' is: " 5i6) 

75 



Manual Pages Paragon TM System Fortran Calls Reference Manual 

GDPRODO (cont.) GDPRODO (cont.) 

c Perform mUltiplication across all nodes. 

call giprod(list, size, work) 

c If node 0, display resulting vector. 

if(iam .eg. 0) write(*, 200) (list(i), i 1, size) 
200 format('Resulting list is: " 5i6) 

end 

Limitations and Workarounds 

See Also 

76 

For information about limitations and workarounds. see the release notes files in 
lusrlsharelrelease _notes. 

gcolO. gcolxO. gdhighO. gdlowO. gdsumO. giandO. giorO. gopf(). gsyncO 

[) 

(J 

~= 

jl 
I'liL_J 

(
-"1 

- I 

c' ! 
--"'" 

l] 

(_I 
----' 

[J 

[J 

r, 
----



I'~ 
.... 

I '''l 

.iiI 

r: 

r·.., 
,., 

r: 
(J 

I ... , 
~J 

I'J 

1'.'1 
.I.! 

I] 

--_ .... _., ,,_ ............. _---

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

GDSUMO GDSUMO 

gdsumO, gisumO, gssumO: Calculates a sum across all nodes. (Global addition operation) 

Synopsis 

Parameters 

INCLUDE 'fnx.h' 

SUBROUTINE GDSUM(x, n, work) 

DOUBLE PRECISION x(*) 
INTEGERn 
DOUBLE PRECISION work(*) 

SUBROUTINE GISUM(x, n, work) 

INTEGER x(*) 
INTEGERn 
INTEGER work(*) 

SUBROUTINE GSSUM(x, n, work) 

REALx(*) 
INTEGERn 
REAL work(*) 

x Array to use in the operation. When the operation completes, x contains the final 
result. 

n 

work 

Number of elements in x. 

Array that receives the contributions from other nodes. The number of elements 
in work must be at least n. 

n 



Manual Pages Paragon '1M System Fortran Calls Reference Manual 

GDSUMO (cont.) GDSUMO (cont.) 

Description 

Examples 

78 

Use one of the following subroutines to calculate a sum across all nodes: 

• Use gdsumO to calculate the double precision sum of x across all nodes. 

• Use gisumO to calculate the integer sum of x across all nodes. 

• Use gssumO to calculate the real sum of x across all nodes. 

The result is returned in x to every node. When x is a vector, each element of the resulting vector 
represents the sum of the corresponding vector elements of all nodes. 

This is a "global" operation. All nodes in the application must execute this operation before the 
process can continue on any node, and all participating processes must have the same process type. 

The following example shows how to use the gdsumO subroutine to determine a sum across all 
nodes of an application: 

include 'fnx.h' 

integer count, dpsize, iam, xsize, ysize, nbrnodes 
parameter (xsize = 4) 
parameter (ysize = 16) 
double precision x(xsize) , y(ysize) , dot, norm, work 
character*80 msg 

c Initialize. 

count 0 
dpsize = 8 
dot = 0.0 
nbrnodes = numnodes () 

c Identify self. 

iam = mynode ( ) 

if(iam .eg. 0) print * 'Starting 

[] 

[] 

- (] 

(J 

(J 

(] 

(J 

( "'1. ' 1 

. .,J 

[J 

(] 



r: 
I ·_~ 

. .:J 

I: 
I: 
(._-, 

w 

1_-
,I 

1,-
:.<.! 

I ~: 
r: 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

GDSUMO (cont.) GDSUMO (cont.) 

c Each node creates and displays its four-element vector. 

100 
1 

do 1, i = 1, xsize 
x(i) = iam * (xsize) + i-l 
write(*, 100) iam, i, x(i) 
format ( 'Node', il, ' x(', il, ') = 

continue 
f3 .1) 

c Each node calculates and displays its dot product. 

do 2, i = 1, xsize 
dot = dot + x(i)*x(i) 

2 continue 
write(*, 200) iam, dot 

200 format ('Node', il, ' dot 
_ , 

flO.6) 

c Each node sums the dot products of all nodes. 

I = call gdsum(dot, 1, work) 

I 

1= 

[
-¥! 

-,~ 

c Node 0 displays the resulting dot product. 

if(iam .eq. 0) write(*, 300) dot 
300 format('dot = " fl0.6) 

c Each node normalizes its dot products. 

norm = dsqrt(dot) 
do 3, i = 1, xsize 

x(i) = x(i) /norm 
3 continue 

c Each node collects contributions from other node. 

call gcol(x, xsize*dpsize, y, nbrnodes*xsize*dpsize, count) 

79 



"---"""-------~---

Manual Pages Paragon TM System Fortran Calls Reference Manual 

GDSUMO (cont.) GDSUMO (cont.) 

c Node 0 displays the resulting vector. 

400 
4 

if(iam .eq. 0) then 
do 4, i = 1, nbrnodes*xsize 

write(*, 400) i, y(i) 
format('y(', il, ') =' f3.1) 

continue 

endif 

end 

Limitations and Workarounds 

See Also 

80 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease _notes. 

gcolO, gcolx(), gdhighO, gdlowO. gdprodO. giandO. giorO, gopro, gsyncO 

[] 

[] 

[] 
[ .""'1. 
' I • 

" 
j 

c: 

[J 

[J 
[J 

[J 
(J 

(J 



I· .~ 
.Oil 

I: 
r: 

Ij 

I ·.., 
... 1 

I ··., 
;"'.l 

I' 
( ' 

•• 1 

I~ 

[~ 

I~"'« 

I '..AJ 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

GIANDO GIANDO 

giandO. g1andO: Performs an AND across all nodes. (Global AND operation) 

Synopsis 

Parameters 

INCLUDE 'fnx.h' 

SUBROUTINE GIAND(x, n, work) 

INTEGER x(*) 
INTEGERn 
INTEGER work(*) 

SUBROUTINE GLAND(x, n, work) 

LOGICAL x(*) 
INTEGERn 
LOGICAL work(*) 

x Array to use in the operation. When the operation completes. x contains the final 
result. 

n 

work 

Number of elements in x. 

Array that receives the contributions from other nodes. The number of elements 
in work must be at least n. 

81 



Manual Pages Paragon 1M System Fortran calls Reference Manual 

GIAND{) (cont.) GIAND{) (cont.) 

Description 

Examples 

82 

Use one of the following subroutines to perform an AND operation across all nodes: 

• Use giandO to calculate the bitwise AND of x across all nodes. 

• Use g1andO to calculate the logical AND of x across all nodes. 

The result is returned in x to every node. When x is a vector, each element of the resulting vector 
represents the AND of the corresponding vector elements of all nodes. 

This is a "global" operation. All nodes in the application must execute this operation before the 
process can continue on any node, and all participating processes must have the same process type. 

The following example shows how to use the giandO subroutine to perform a global AND across 
all nodes of an application: 

c 

c 

1 

100 

include 'fnx.h' 

integer iam 
integer x(5), work(5) 

Identify self. 

iam mynode ( ) 

Node a builds simple vector. 

if(iam .eq. 0) then 

print * 'Starting 

do 1, i = 1, 5 
x(i) = i 

continue 

write(*, 100) (x(i), i 
format('Vector is: 

1, 5) 
5i6) 

IJ 

[J 

(] 

(J 



I: 
r: 

r: 
I "', 

,o. 

I~I 

1-: 
-~ 

I~ 

I'" 
•• d 

I··~. 

I'·, 
" •• 1 

r"""! 

.JJ 

r: 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

GIANDO (cont.) GIANDO (cont.) 

c 

2 

300 

else 

Node 1 builds bitwise-complement of Node O's vector. 

do 2, i 
x(i) 

continue 

1, 5 
inot(i) 

write(*, 300) (x(i), i = 1, 5) 
format('Complement Vector is: 

endif 

c Perform bitwise AND. 

call giand(x, 5, work) 

c Node 0 displays resulting vector. 

if (iarn .eg. 0 ) write(*, 200) (x(i), i = 1, 5) 

5i6) 

200 format('Vector ANDed with its complement is: ' 5i6) 

end 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease _notes. 

gcolO, gcolxO, gdhighO, gdlowO, gdprodO, gdsumO, giorO, gopf(), gsyncO 

83 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

GIORO GIORO 

giorO, glor(): Performs an OR across all nodes. (Global OR operation) 

Synopsis 

Parameters 

Description 

84 

INCLUDE 'frueh' 

SUBROUTINE GIOR(x, n, work) 

INTEGER x(*) 
INTEGERn 
INTEGER work(*) 

SUBROUTINE GLOR(x, n, work) 

LOGICAL x(*) 
INTEGERn 
LOGICAL work(*) 

x 

n 

work 

Array to use in the operation. When the operation completes, x contains the final 
result. 

Number of elements in x. 

Array that receives the contributions from other nodes. The number of elements 
in work must be at least n. 

Use one of the following subroutines to perform an OR operation across all nodes: 

• Use gior() to calculate the bitwise OR of x across all nodes. 

• Use glor() to calculate the logical OR of x across all nodes. 

(] 

[) 

[] 

(J 

IJ 
r~ 
•• 



r: 
r: 

1-.. 
",I 

IJ 
IJ 

I ~ 

I 

( .. ."" 
.1"': 

I: 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

GIORO (cont.) GIORO (cont.) 

Examples 

The result is returned in x to every node. When x is a vector, each element of the resulting vector 
represents the OR of the corresponding vector elements of all nodes. 

This is a "global" operation. All nodes in the application must execute this operation before the 
process can continue on any node, and all participating processes must have the same process type. 

The following example shows how to use the gior() function to perform a global OR across all nodes 
of an application: 

include 'fnx.h' 

integer iam 
integer x(5), work(5) 

c Identify self. 

iam = mynode () 

c Node a builds simple vector. 

1 

100 

if(iarn .eg. 0) then 

print *, 'Starting 

do 1, i = 1, 5 
x(i) = i 

continue 

write(*, 100) (x(i), i = 1, 5) 
format('Original Vector: 

else 

c Node 1 builds vector containing all ones. 

2 

do 2, i 
x(i) 

continue 

1, 5 
inot(O) 

5i6) 

85 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

GIOR() (cont.) GIORO (cont.) 

300 
write(*, 300) (x(i), i = 1,5) 

format('Vector containing all ones: 

endif 

c Perform exclusive OR. 

call gior(x, 5, work) 

c Display resulting vector. 

if (iam .eq. 0) write(*, 200) (x(i), i = 1, 5) 

5i6) 

200 format ('Vector exclusive ORed with all-ones vector: ' 5i6) 

end 

Limitations and Workarounds 

See Also 

86 

For infonnation about limitations and workarounds, see the release notes files in 
lusrlsharelrelease _notes. 

gcolO, gcolxO, gdhighO, gdlowO, gdprodO, gdsumO, giandO, gopfO, gsyncO 

( .. ~ j 

(] 

rri ~ . .., 

,: 
it....! 

( ' "" : 

-"" 

Ji 
"..I 
IJ 
IJ 



r: 

I: 

(" 

[
'1!!1 

.Mol 

r: 

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

GOPENO GOPENO 

Performs a global open of a file for reading or writing, sets the 110 mode of the file, and performs a global 
synchronization operation. 

Synopsis 

Parameters 

INCLUDE 'fnx.h' 

SUBROUTINE GOPEN(unit, path, iomode) 

INTEGER unit 
CHARACTER *(*) path 
INTEGER iomode 

unit 

path 

iomode 

Unit number (an integer between 1 and 100) to be assigned to the file being 
opened. An existing file must be a Fortran unformatted file. 

String containing the pathname for the file being opened or created. If the path 
parameter refers to a symbolic link, the gopenO subroutine opens the file pointed 
to by the symbolic link. 

110 mode for the file to be opened. This parameter can have the following values: 

M_ UNIX Each node has its own file pointer; access is 
unrestricted. 

M_LOG All nodes use the same file pointer; access is first 
come, first served; records may be of variable length. 

M_SYNC All nodes use the same file pointer; access is in node 
order; records are in node order but may be of variable 
length. 

M_RECORD Each node has its own file pointer; access is first come, 
first served; records are in node order and of fixed 
length. 

M_GLOBAL All nodes use the same file pointer, all nodes perform 
the same operations. 

87 



-----------.... ---

Manual Pages Paragon ™ System Fortran Calls Reference Manual 

GOPEN() (cont.) GOPEN() (cont.) 

Description 

Errors 

Each node has its own file pointer; access is 
unrestricted; I/O atomicity is not preserved in order to 
allow multiple readers/multiple writers and records of 
variable length. 

The gopenO subroutine optimizes the standard Fortran openO statement so all nodes can open and 
share a file. The gopenO subroutine performs a global open; all nodes can open the same file without 
issuing multiple I/O requests. 

You can use the gopenO subroutine to specify the I/O mode of a shared file when it is opened, rather 
than requiring an additional call to the setiomodeO subroutine. This improves performance when 
many nodes open and set the I/O mode of the same file. You use the iomode parameter to specify a 
file's I/O mode. See the setiomodeO manual page for a description of the file I/O modes. 

Use the setiomodeO subroutine to change a unit's I/O mode after the unit is opened. Use the 
iomodeO function to return a unit's current I/O mode. 

This call performs a global synchronization of all nodes in the application's partition. That is, all 
nodes must call the gopenO subroutine before any node can continue executing. In the M_LOG, 
M_SYNC, M_RECORD, and M_GLOBAL I/O modes, closing the file also performs a global 
synchronizing operation. 

The gopenO subroutine opens a new file as a Fortran unformatted file. Using the gopenO subroutine 
to open an existing Fortran formatted file causes a format-conflict error when you try to write to the 
file. 

NOTE 

The majority of the Fortran 1/0 errors that you are likely to receive 
are described in the "Runtime Error Messages" appendix of the 
Paragon TAf System Fortran Compiler User's Guide. This section 
describes additional errors that you may receive. 

Bad I/O mode number 

The iomode parameter is set to a invalid I/O mode number. 

88 

,. ... l\ 
l" 

[j 

[J 

': 1... . .01 

[~ 

[J 

lJ 
(J 

U 



I: 

r: 

I
···~ 

'-.II 

I : 

11 
. """ 

,~ 

_ .w 

I·: 
I·' 

[:J 
I·", 

. .J 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

GOPEN() (cont.) GOPEN() (cont.) 

File pathname not consistent. 

The patbname is not consistent between the nodes. 

Formatted/unformatted file conflict 

You opened an existing Fortran formatted file and tried to write to the file. 

I/O mode value not consistent. 

The 110 mode value is not consistent between the nodes. 

Invalid argument 

The file named by the path parameter is not a regular file . 

Examples 

The following example globally opens a file with the gopenO subroutine and writes to the file. 

include 'fnx.h' 

integer iam 
character*13 buf 

c Identify self. 

iam = mynode ( ) 

c Globally open file with the M_UNIX I/O mode 

call gopen(12, '/tmp/mydata', M_UNIX) 

89 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

GOPEN() (cont.) GOPEN() (cont.) 

c Write and close the file. 

buf = 'Hello, world!' 
call cwrite(12, buf, len(buf)) 

write(*, 100) iam, buf 
100 format ('Node " i3, ' wrote: ' a13) 

close(12) 

end 

Limitations and Workarounds 

See Also 

90 

For information about limitations and workarounds. see the release notes files in 
lusrlsharelrelease _notes. 

creadO. cwriteO. eseekO. estatO. ireadO. iseofO. iwrite(). setiomodeO 

Paragon™ System Fortran Compiler User's Guide: openO 

(] 

(J 

(, ""1 
" : 

.~ 

(
-."'1 , . 

.xJ 

(J 



I~ 

1··.111' .• 

,.J 

I··~' 

oJ 

I :: 
1_., 

.~I 

1· .. \ 
.. -1 

IJ 

I~ 

1<.'1 

.J 

I~ 

I-~ 

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

GOPF() GOPF() 

Makes a global operation of a user-defined function. 

Synopsis 

Parameters 

Description 

INCLUDE 'fnx.h' 

SUBROUTINE GOPF(x, xlen, work, name) 

INTEGER x(*) 
INTEGER xlen 
INTEGER work(*) 
EXTERNAL name 

x 

xlen 

Array to use in the operation. Note that x can be any type. When the operation 
completes, x contains the final result. 

Length (in bytes) of x. 

work Array that receives the contributions from other nodes. The length of work must 
be at least xlen. 

name The user-defined function to be called. The function is defined separately. The 
function name must be an associative and commutative function of the two 
vectors x and work defined above: the first parameter must be the same as the x 
parameter and the second parameter must be the same as the work parameter. 

The gopf() subroutine gives a user-defined function the same global properties as system-defined 
global communications routines (such as gdsum()). These properties are: 

• All nodes must call the global routine (in this case, gopfO, which in turn calls the user-written 
function). 

• All nodes in the application must complete the call before the process can continue on any node. 

• All participating processes must have the same process type. 

91 



Manual Pages Paragon no System Fortran Calls Reference Manual 

GOPFO (cont.) ~ GOPFO (cont.) 

Examples 

92 

• Each node calculates the result and stores it in the x buffer. 

• The work array receives contributions from other nodes. 

• The result is returned in x to all nodes. 

In the following example, each node constructs a short list of random integers. After constructing 
the lists, the global function max_node is called. Each node executes this function which determines 
the largest integer from all lists. The code follows: 

program test 

include 'fnx.h' 

external max_node 

integer*4 seed, size, iam, max_node 
parameter (size = 5) 
integer*4 list(size) 
integer*4 mine(3), work(3) 

c Identify self. 

iam = mynode ( ) 
if(iam .eg. 0) print *, 'Starting 

c Create list of random integers in the range 0 ... 100. 

1 

100 

c 
c 
c 

seed = (2 * mclock()/(iam+l)) + 1 
do 1, i = 1, size 

list(i) = int(100 * ran(seed)) 
continue 

write(*, 100) iam, (list(i), i = 1, size) 
format('List for Node " i3, , is: " 10i4) 

Determine: mine(l) 
mine(2) 
mine(3) 

maximum absolute value in list. 
associated element number. 
associated node number. 

[~ 

I~ 
L 

n, ',,' 

U 

[J 
(,: 

.cd 

l: 



r: 

1.111 

.-.J 

I: 
r: 
I~ 

I -
oJ 

I: 

Paragon TM System Fortran Calls Reference Manual 

GOPF() (cont.) 

2 

mine(1) 
mine(2) = 
mine(3) = 

abs(1ist(1)) 
1 
iam 

do 2, i = 2, size 
if (mine (1) .It. abs(list(i))) 

mine(1) = abs(list(i)) 
mine(2) = i 

endif 
continue 

Manual Pages 

GOPF() (cont.) 

then 

c Call gopf() to determine maximum value across all nodes. 

IJ call gopf (mine, 12, work, max_node) 

11 
,.;J 

IJ 

I· .. ~ 
~I 

(: 

I: 

[.1 
.iiI 

c Display maximum value and associated element and node numbers. 

if(iam .eg. 0) write(*, 200) mine(1) , mine(2) , mine(3) 
200 format(/, 'Maximum value is " i3, ' in element " i3, 

1 ' on Node " i3) 

end 

integer function max_node (mine, work) 

integer*4 mine(3) , work(3) 

if(mine(1) .It. work(1) .or. 
1 (mine(1) .eg. work(1) .and. mine(3) .gt. work(3)) ) 
2 then 

mine(1) = work(1) 
mine(2) = work(2) 
mine(3) work(3) 

endif 

return 

end 

93 



Manual Pages Paragon ™ System Fortran Calls Reference Manual 

GOPFO (cont.) GOPFO (cont.) 

Limitations and Workarounds 

See Also 

94 

For information about limitations and workarounds. see the release notes files in 
lusrlsharelrelease_notes. 

gcolO. gcolxO. gdhighO. gdiowO. gdprodO. gdsumO. giandO. gior(). gsyncO 

( --.. ! ...II 

IJ 



[: 

I " ',I 
JIi 

I··~ 

. !/iii 

I: 

IJ 

IJ 
I~ 
,_ J 

r: 
I~' 

I: 
I' 

IJ 
r: 

IJ 
I] 

----- .-.-----~---- ... 

Paragon TM System Fortran calls Reference Manual Manual Pages 

GSENDXO GSENDXO 

Sends a message to a list of nodes. 

Synopsis 

Parameters 

Description 

INCLUDE 'fux.h' 

SUBROUTINE GSENDX(type, buf,count, nodes, nodecount) 

INTEGER type 
INTEGER buf(*) 
INTEGER count 
INTEGER nodes(*) 
INTEGER nodecount 

type Message type of the message being sent. Refer to Appendix A of the Paragon TM 

System Fortran Calls Reference Manual for information on selecting message 
types. The type must be the same for all participating processes. and there must be 
no other messages of this type in the application. 

buf 

count 

nodes 

nodecount 

Message buffer containing the message being sent. The buffer can be any valid 
data type. 

Length (in bytes) of the message being sent. 

List of the node numbers for the nodes receiving the message. 

The number of nodes in the nodes parameter. 

The gsendxO subroutine sends a message to a set of nodes specified by the nodes parameter. The 
nodes that receive the message must call crecvO. irecvO. or hrecvO to receive the message. These 
receive calls must use the message type specified by gsendxO. All participating processes must have 
the same process type. 

95 



Manual Pages Paragon TM System Fortran Calls Reference Manual 

GSENDXO (cont.) GSENDXO (cont.) 

Examples 

96 

The following example shows how to use the gsendxO subroutine to send a message to a list of 
nodes in an application: 

include 'fnx.h' 

integer*4 iam 
integer*4 nodenums(2), x(10), y(10) 

c Initialize. 

do 1, i = 1, 10 
x(i) 0 
y(i) 0 

1 continue 

c Identify self. 

iam = mynode () 

c If node 0, then 

c 

2 

c 

c 

100 

if (iam .eq. 0) then 

print *, 'Starting 

Build list to send. 

do 2, i = 1, 10 
x(i) = i 

continue 

Specify receiving node numbers. 

nodenums(l) = 1 
nodenums(2) 3 

Send list to receiving nodes. 

call gsendx(100, x, 10*4, nodenums, 2) 

write(*, 100) iam, (x(i), i = 1,10) 
format('List sent by Node' i3, , is: ' 10i4) 

[) 

(J 

U 

1'-' 
~j 

(: 

[J 



I-'II!I 

---" 

I: 
I: 

1_'" 
'.:.101 

I , 
_J 

(
""1 

__ ...J 

[J 

[] 

I: 

", 
-,-I 

1--'" 
,~, 

IJ 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

GSENDXO (cont.) GSENDXO (cont.) 

c If not node 0, then ... 

c 

c 

c 

200 

else 

Receive the list. 

call crecv(100, y, 10*4) 
if (iam .ne. 2) call crecv(100, y, 10*4) 

Display the received list. 

write(*, 200) iam, (y(i), i = 1, 10) 
format('ListreceivedbyNode' i3,' is:' 10i4) 

endif 

end 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds. see tbe release notes files in 
lusrlshare/release _notes. 

crecvO. csendO. csendrecvO. irecvO. isendO. isendrecvO. hrecvO. hsendO. hsendrecvO 

97 



c, __________________ •• _ .. ~ •. ___________________ _ 

Manual Pages Paragon™ System Fortran CaHs Reference Manual 

GSYNCO GSYNCO 

Synchronizes all node processes in an application. (Global synchronization operation) 

Synopsis 

Description 

Examples 

98 

INCLUDE 'fnx.h' 

SUBROUTINE GSYNCO 

When a node process calls the gsyncO function, it waits until all other nodes in the application call 
gsyncO before continuing. All nodes in the application must call gsyncO before any node in the 
application can continue. All participating processes must have the same process type. 

The following example shows how to use the gsyncO subroutine to synchronize an application 
running on multiple nodes in a partition: 

include' fnx.h' 

parameter (MAX_IDS = 900) 
integer n, node, my_node, num nodes 
character*lO sbuf(lO), rbuf(10) 
integer rmid(O:MAX_IDS-l) 

my_node mynode() 
num_nodes = numnodes() 

if(my_node .eq. 0) then 
print *, 'Starting ... ' 

endif 

c Post receives. 

do 1 n = O,num_nodes - 1 
rmid(n) = irecv(l, rbuf, MBUF_LEN) 

1 continue 

u 
[J 

[. 1 
• I 

.. ...i 

[J 

[J 

IJ 



I ?' 

.., 

IJ 
I

--~ 

... 

( . .., 
. <oJ 

IJ 

I~ 

I~: 

(; 
"" 

... ----~------.. -~---- ... ----

Paragon TM System Fortran Calls Reference Manual Manual Pages 

GSYNCO (cont.) GSYNCO (cont.) 

c Send a message to each node . 

do 2 node = O,num_nodes - 1 
call csend(l, sbuf, MBUF_LEN, node, 0) 

2 continue 

c Check received messages. 

c 

do 3 n = O,num_nodes - 1 
call msgwait(rmid(n)) 

3 continue 

Wait for all nodes to complete. 

call gsync ( ) 

if (my_node .eg. 0) then 
print * I I Finished! I 

endif 

end 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease_notes. 

gcolO, gcolxO, gdhighO, gdlowO, gdprodO, gdsumO, giandO, giorO, gopfO 

99 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

HRECVO HRECVO 

hrecvO, hrecvxO: Posts a receive for a message and returns immediately; invokes a user-written handler when the 
receive completes. (Asynchronous receive with interrupt-driven handler) 

Synopsis 

Parameters 

100 

INCLUDE 'frueh' 

SUBROUTINE HRECV (typesel, buf, count, handler) 

INTEGER typesel 
INTEGER buf(*) 
INTEGER count 
EXTERNAL handler 

SUBROUTINE HRECVX(typesel, buf, count, nodesel,ptypesel, handler, hparam) 

INTEGER typesel 
INTEGER buf(*) 
INTEGER count 
INTEGER nodesel 
INTEGER ptypesel 
EXTERNAL handler 
INTEGER hparam 

typesel 

buf 

Message type( s) to receive. Setting this parameter to -1 receives a message of any 
type. Refer to Appendix A of the Paragon™ System Fortran Calls Reference 
Manual for more information about message type selectors. 

Buffer for storing the received message. The buffer can be of any valid data type, 
but should match the data type of the buffer in the corresponding send operation. 

( ~. I 
~ 

I' 
l"-I 

[J 

[J 

[J 

I] 



rJ 

I '" 
,", 

I.·'·~ 

~" 

I~! 

I~ 

[~ 

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

HRECVO (cont.) HRECVO (cont.) 

Description 

count 

nodesel 

ptypesel 

handler 

xhandler 

hparam 

Length (in bytes) of the bujparameter. 

Node number of the message source (the sending node). Setting nodesel to -1 
receives a message from any node. 

Process type of the sender. Setting ptypesel to -1 receives a message from any 
process type. 

Handler to execute when the receive completes after an hrecvO call. This handler 
is user-written and must have four parameters only. See the "Description" section 
for a description of the user-written handler for the hrecvO subroutine. 

Handler to execute when the receive completes after an hrecvxO call. This 
handler is user-written and must have five parameters only. See the "Description" 
section for a description of the user-written handler for the hrecvxO subroutine. 

Integer that is passed directly to handler. Typically, hparam is used by the handler 
to identify the request that invoked the handler, thus making it possible to write 
shared handlers. 

The hrecvO and hrecvxO functions are asynchronous message-passing system calls. After calling a 
handler receive function, the function posts a receive for a message, specifies a handler to receive 
the message, and returns immediately. The calling process continues to run until the message arrives. 
When the message arrives, the message is stored in the buffer buf, the calling process is interrupted, 
and the specified handler is started. After the handler is started, the handler and the calling process 
may run concurrently until the handler finishes. 

The handler contains code that you write to process the message or information about the message 
after the message is received. The handler receives the following information about a message: the 
message's type, length, sending node, and process type. 

A handler for the hrecvO and hrecvxO subroutines must have the following arguments: 

type 

count 

node 

The message type (specified in the corresponding send operation). 

The message length (in bytes). If the received message is too long for the 
buffer buf, the receive completes, no error is returned, the content of bujis 
undefined, and this argument is set to 0 (zero). 

The node that sent the message. 

101 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

HRECVO (cont.) HRECVO (cont.) 

102 

ptype The process type of the process that sent the message. 

A handler for the brecvxO subroutine requires a fifth argument, hparam. The hparam parameter is 
an integer that is passed by the call to the handler and identifies the request that invoked the handler. 

NOTE 

The handler function must be written in C. The handler function's 
parameters a" must be of type long. 

An example handler for the hrecvO subroutine has the following form: 

void myhandler( 
long type, 
long count, 
long node, 
long ptype ) i 

An example handler for the brecvxO subroutine has the following form: 

void myhandler( 
long type, 
long count, 
long node, 
long ptype, 
long hparam ) i 

Because the handler and the main program may run concurrently, parts of the main program may 
have to be protected from being executed at the same time as the handler. Use the masktrapO 
function to ensure a critical section of code in the main program is not interrupted by the execution 
of the handler. If a handler is active when a masktrapO function is called in the main program, the 
main program blocks in the masktrapO call until the handler completes. See the masktrapO manual 
page for more information about using the masktrapO function to protect a section of code from 
interrupts. 

NOTE 

The masktrapO function may be called from a handler, but it is 
unnecessary and has no effect. This is supported because code 
that calls the masktraPO function may be used by both the 
handler and the main program. The purpose of the masktrap() 
function is to protect the main program from the handler. 

[) 

[) 

(J 

[] 

[J 

lJ 
I.: ,..J 

I.' . .1 



I · '" 

r: 

1_"" 
~I 

(: 

I: 
1-" 
I~~ 

r: 

I: 
1''''1 

--"" 

r: 

------ ----------

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

HRECVO (cant.) HRECVO (cant.) 

CAUTION 

The handler runs in the same memory space as the main program 
(but they have separate stacks). 

These calls are asynchronous system calls. To post a receive and block the calling process until the 
receive completes, use one of the synchronous receive system calls (for example, crecvO). To 
receive a message and return a message ID (MID), use one of the other asynchronous receive system 
calls (for example, irecvO). 

Using the hrecvxO subroutine, you can post multiple handler requests with the same shared handler. 
The hrecvxO subroutine is identical to the hrecvO subroutine except for an additional parameter, 
hparam. The hparam parameter is an integer value that is passed by the brecvxO subroutine to the 
handler. The handler uses this value to identify which handler request it is servicing. 

NOTE 

There are a limited number of message IDs available for 
applications. Therefore, applications need to release unused 
message IDs. The hrecvO and hrecvxO subroutines use 
message IDs internally, but do not return message IDs, like the 
irecv(), and irecvx() functions do. The handlers associated with 
hrecv() and hrecvx() subroutines release these message IDs. 

NOTE 

Once you have established a handler for a message type, do not 
attempt to receive a message of that type with a crecv .•• () or 
irecv ••• () call. 

Limitations and Workarounds 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease_notes. 

103 



Manual Pages Paragon ™ System Fortran Calls Reference Manual 

HRECVO (cont.) HRECVO (cont.) 

See Also 

104 

cprobeO. csendO. crecvO. csendrecvO. hsendO. hsendrecvO. iprobeO. isendO. irecvO. 
isendrecvO •. masktrapO 

[~ 

~""l. . , 

."J 

l.~ 

[J 

~l fa"", 

(J 

(] 



I" 0", 

. ., 

I
~ ..... 

. . .J 

I ··,., 
.. I 

I: 

I: 
I] 

I· "" I 
I 

1:.1 

1'-

(
'>!'1 

. .,ii~ 

[J 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

HSEND() HSEND() 

hsendO. hsendxO: Sends a message and returns immediately; invokes a user-written handler when the send 
completes. (Asynchronous send with interrupt-driven handler) 

Synopsis 

Parameters 

INCLUDE 'fox.h' 

SUBROUTINE HSEND(type, buJ, count, node, ptype, handler) 

INTEGER type 
INTEGER buf(*) 
INTEGER count 
INTEGER node 
INTEGER ptype 
EXTERNAL handler 

SUBROUTINEHSENDX(type, buf, count, node,ptype, handler, hparam) 

INTEGER type 
INTEGER buf(*) 
INTEGER count 
INTEGER node 
INTEGER ptype 
EXTERNAL handler 
INTEGER hparam 

type Type of the message to send. Refer to Appendix A of the Paragon TM System 
Fortran Calls Reference Manual for information on message types. 

buf Buffer containing the message to send. The buffer may be of any valid data type. 

count Number of bytes to send in the bufparameter. 

105 



Manual Pages Paragon ™ System Fortran Calls Reference Manual 

HSEND() (cont.) HSEND() (cont.) 

Description 

106 

node 

ptype 

handler 

xhandler 

hparam 

Node number of the message destination (the receiving node). Setting node to -1 
sends the message to all nodes in the application (except the sending node when 
the value of the ptype parameter is the sender's process type). 

Process type of the message destination (the receiving process). 

Handler to execute when the send completes, after an hsendO call. You must 
provide the handler and the handler must have four parameters only. See the 
"Description" section. for a description of the handler for the hsendO subroutine. 

Handler to execute whe~ the send completes, after an hsendxO call. You must 
provide the handler and the handler must have five parameters only. See the 
"Description" section for a description of the handler for the hsendxO subroutine. 

Integer that is passed directly to the handler specified by the xhandler parameter. 
Typically, the hparam value is used by the handler to identify the request that 
invoked the handler, making it possible to write shared handlers. 

The hsendO and hsendxO subroutines are asynchronous message-passing calls. After calling one of 
these subroutines, the call starts a sending process and returns immediately. The sending process 
sends the message in the buffer bufto a destination specified by node. The calling process continues 
to run while the send is completing. (In previous releases of the operating system operating system, 
the calling process was interrupted and did not run at all until the handler returned.) 

CAUTION 

The handler runs in the same memory space as the main program 
(but they have separate staCks). 

Because of this, parts of the main program may have to be protected from being executed at the same 
time as the handler. 

The handler contains user-written code that runs after the send buffer is available for reuse. The 
handler receives information about the message including the message's type, length, receiving 
node, and process type. 

Using the hsendxO subroutine, you can post multiple handler requests with the same shared handler. 
The hsendxO subroutine is identical to the hsendO subroutine except for an additional parameter, 
hparam. The hparam parameter is an integer value that is passed by the hsendxO subroutine to the 
handler. The handler uses this value to identify which request it is servicing. 

[] 

(J 

I: 
lJ 
(J 



I: 

1"-."" 
... 1 

(J 

I ,., 
,-' 

,--

I:' 
(-=, 

1= 
(

"""i 

• JI;.i 

( """, 

_-»Ol' 

r: 
U 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

HSENDO (cont.) HSENDO (cont.) 

A handler for the hsendO and hsendxO subroutines must have the following arguments: 

type The message type. 

count The message length (in bytes). 

node The node number that is running the process that receives the message. 

ptype The process type of the node that receives the sent the message. 

A handler for the hsendxO subroutine requires a fifth parameter, hparam. The hparam parameter is 
an integer passed by the call to the handler that identifies the request invoking the handler. 

NOTE 

The handler function must be written in C. The handler function's 
parameters all must be of type long. 

An example handler for the hsendO subroutine has the following form: 

void myhandler( 
long type, 
long count, 
long node, 
long ptype ); 

An example handler for the hsendxO subroutine has the following form: 

void myhandler( 
long type, 
long count, 
long node, 
long ptype, 
long hparam ) ; 

These are asynchronous calls. To send a message and block the calling process until the send 
completes, use one of the synchronous send calls (for example, csendO). To send a message and 
return a message ID (MID), use one of the other asynchronous send calls (for example, isendO) . 

107 



~----~.--~---~----

Manual Pages Paragon TM System Fortran Calls Reference Manual 

HSENDO (cont.) HSEND() (cont.) 

To ensure a critical section of code is not interrupted by the execution of the handler, use the 
masktrapO subprogram to protect that section of code. 

NOTE 

There are a limited number of message IDs available for 
applications. Applications that use the isendO and isendxO 
functions must explicitly release unused message IDs. If an 
application runs out of message IDs, the application may fail. This 
can affect the hsendO and hsendxO functions, because they use 
message IDs internally. 

Limitations and Workarounds 

See Also 

108 

For information about limitations and workarounds, see the release notes files in 
lusrlshare/release _notes. 

cprobeO, csendO, crecvO, csendrecvO. hrecvO. hsendrecvO, iprobeO. isendO. irecvO. 
isendrecvO. masktrapO 

[] 

[J 

[J 
[

I 
• I 

..-i 

lJ 



I: 
I: 
I

-~ 

~ 

I·· 11> 

.... 

[
w 

.~ 

r: 
r: 
( ., 

.J 

1= 

_ ...... 1 

I: 
I·......, 

" 

, 
_ ,W 

I~ 

I '" 
"~: 

I~ 

I: 
I: 
1-: 

-.1 

( --'" 

" .,d 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

HSENDRECVO HSENDRECVO 

Sends a message and posts a receive for a reply; invokes a user-written handler when the receive completes. 
(Asynchronous send-receive with interrupt-driven handler) 

Synopsis 

Parameters 

INCLUDE 'fnx.h' 

SUBROUTINE HSENDRECV(type, sbuJ, scount, node, ptype, typesel, rbuJ, 
rcount, handler) 

INTEGER type 
INTEGER sbuf(*) 
INTEGER scount 
INTEGER node 
INTEGER ptype 
INTEGER typesel 
INTEGER rbuf(*) 
INTEGER rcount 
EXTERNAL handler 

type Type of the message to send. Refer to Appendix A of the Paragon TM System 
Fortran Calls Reference Manual for information on message types. 

shuf Buffer containing the message to send. The buffer may be of any valid data type. 

scount 

node 

ptype 

typesel 

Number of bytes to send in the shufparameter. 

Node number of the message destination (the receiving node). Setting node to-1 
sends the message to all nodes in the application (except the sending node when 
ptype is the sender's process type). 

Process type of the message destination (the receiving process). 

Message type(s) to receive. Setting this parameter to -1 sends and receives a 
message of any type. Refer to Appendix A of the Paragon TM System Fortran Calls 
Reference Manual for information on message type selectors. 

109 



Manual Pages Paragon TM System Fortran Calls Reference Manual 

HSENDRECVO (cont.) HSENDRECVO (cont.) 

Description 

110 

rbuf Buffer for storing the reply. The buffer can be of any valid data type, but should 
match the data type of the buffer in the corresponding send operation. 

rcount Length (in bytes) of the rbufparameter. 

handler Handler to execute when the receive completes after an hsendrecvO call. This 
handler is user-written and must have four parameters only. See the ''Description'' 
section for a description of the user-written handler. 

The hsendrecvO subroutine is an asynchronous system call. The subroutine sends a message and 
immediately posts a receive, specifying the handler to be invoked when the receive completes. The 
calling process continues to run until the receive completes. When the receive completes, the calling 
process is interrupted and the specified handler is started. After the handler is started, the handler 
and the calling process may run concurrently until the handler finishes. (In previous releases of the 
operating system operating system, the calling process was interrupted and did not run at all until 
the handler returned.) 

CAUTION 

The handler runs in the same memory space as the main program 
(but they have separate stacks). 

Because of this, parts of the main program may have to be protected from being executed at the same 
time as the handler. 

The handler contains code that you write to process the message or information about the message 
after the message is received. The handler receives the following information about the received 
message: the message's type, length, sending node, and process type. 

When the message arrives, the hsendrecvO call passes information about the received message (its 
type, length, sending node, and process type) to the handler. The handler must have four parameters 
(which correspond to the message information passed by the receive call): 

type 

count 

node 

ptype 

The message type (specified in the corresponding send operation). 

The message length (in bytes). lithe received message is too long for the 
buffer rbuf, the receive completes, no error is returned, the content of rbufis 
undefined, and this argument is set to 0 (zero). 

The node of the process that sent the message 

The process type of the process that sent the message. 

[] 

[J 

u 

[J 

( i 

-c4i 

1_= 

U 
IJ 



I: 
I

~~ 

iiW 

r
··~ 

.'" 

I: 
I·: 

r·..,., 
I 

-- -',ijj.J 

I.'.' 
.J 

I:J 
I: 
r: 

IJ 
I] 

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

HSENDRECVO (cont.) HSENDRECVO (cont.) 

NOTE 

The handler function must be written in C. The handler function's 
parameters all must be of type long. 

The handler must have the following form: 

void myhandler( 
long type, 
long count, 
long node, 
long ptype ) i 

To ensure that a critical section of code is not interrupted by the execution of the handler, use the 
masktrapO subprogram to protect that section of code. 

NOTE 

There are a limited number of message IDs available for 
applications. Therefore, applications need to release unused 
message IDs. The hsendrecvO subroutine uses message IDs 
internally, but does not return message IDs, like the isendrecv() 
function does. The handlers associated with hsendrecvO 
subroutine releases these message IDs. 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds, see the release notes files in 
lusrlshare/release _notes. 

cprobeO, crecvO, csendO, csendrecvO, hrecvO, hsendO, iprobeO, irecvO, isendO, isendrecvO, 
masktrapO 

111 



-----_._._-_._---._--------. _ .. __ ._-- _. __ . --------- .. - -~------

Manual Pages Paragon TM System Fortran Calls Reference Manual 

INFOCOUNTO INFOCOUNTO 

infocountO, infonodeO, infoptypeO, infotypeO: Gets information about a pending or received message. 

Synopsis 

Description 

112 

INCLUDE 'fnx.h' 

INTEGER FUNCTION INFOCOUNTO 

INTEGER FUNCTION INFONODEO 

INTEGER FUNCTION INFOPTYPEO 

INTEGER FUNCTION INFOTVPEO 

Use the information calls to return information about a pending or received message. Information 
calls are used immediately after completion of one of the following calls and the conditions 
indicated: 

• A cprobeO, crecvO, or msgwaitO call. 

• A cprobexO or crecvxO call whose info parameter was set to the global array msginfo. 

• An iprobeO or msgdoneO call that returns 1. 

If the mid parameter in the msgwaitO or msgdoneO subroutines represents a merged message IDs 
(that is, it was returned by the msgmergeO function), the information returned for the info ••• O calls 
is unpredictable. 

[, .~ _J/ 

[) 

[J 

~ 11'\ 
" ,I 

, 
.Ai 

G'I 
'J 

,---" 
i....J 

(: 

l= 
C 
(J 



I: 
I: 

r'''' 
.iJ.J 

r: 
I," ~ 
IJ 
[~ 

(J 

(""1, 
_ .JOJ 

1= 
I
"~ 

• _0..1 

1_"1 

: .... 1 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

INFOCOUNTO (cont.) INFOCOUNTO (cont.) 

Return Values 

The requested information about a pending or received message: 

infocountO Returns length in bytes (count) of message. 

infonodeO Returns node ID (node) of sender. 

infoptypeO Returns process type (ptype) of sender. 

infotypeO Returns type (type) of message. 

If you issue an info ••• O call before doing any message passing, the call returns -1. 

Examples 

The following example shows how to use the info ... O functions to get information about a message 
in an application. 

c 

include 'fnx.h' 

integer 
integer 

iam, msg_type 
count, node, pid, type 

character*80 msg, smsg, rmsg 
parameter (msg_type = 10) 

Identify self . 

iam = mynode () 

c If node 0, then ... 

if(iam .eq. 0) then 
print *, 'Starting 

c Build message. 

100 

msg = 'Hello from node ' 
write (smsg, 100) msg, iam 
format (a16, i2, '.') 

113 



-------_ •.... _--_ .. -

Manual Pages Paragon TM System Fortran Calls Reference Manual 

INFOCOUNTO (cont.) INFOCOUNTO (cont.) 

114 

c Send message. 

call csend(msg_type, smsg, len (smsg), -1, mypid()) 

write(*, 200) iam, smsg 
200 format ('Node " i2, ' sent: ' a20) 

c if not node 0, then ... 

c 

c 

c 

300 

400 

else 

Probe for message. 

call cprobe(msg_type) 

Receive message. 

if (infocount() .le. 80) then 
call crecv(msg_type, rmsg, len(rmsg)) 
count infocount() 
type infotype() 
pid = infopid() 
node = infonode() 

Report receipt of message. 

1 
2 
3 
4 

write(*, 300) iam, count, type, pid, node 
format ( 'Node " i2, 

, reports " i3 
'-byte message of type' i2, 
, received from PID " i2, 
, on node " i2, '.') 

write(*, 400) iam, rmsg 
format('Node " i2, ' received: ' a30) 

endif 

endif 

end 

(.-1I . •. 
.JI 

[.~ ... .11 

(] 

r~ 

~-

[J ...• 
1'- ' 

".; 

(~ 

(: 
.AI 



r: 
( !!!I: 

,liI 

r: 
I ' .. 

,1iiJ 

I
-~' 

'", 

I"""" 
,,1 

I "! 

---I 

I~: 

[~ 

('J 

1= 
I : 

,~ 

1= 
r: 
I: 
I '"" '~i 

( -.. 

, . ..J 

I i 
,.J 

[ ," .J 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

INFOCOUNTO (cont.) INFOCOUNTO (cont.) 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds, see the release notes files in 
lusrlshare/release _notes. 

crecvO, cprobeO, iprobeO, msgdoneO, msgmergeO, msgwaitO 

115 



Manual Pages Paragon TM System Fortran Calls Reference Manual 

IODONE(} IODONE(} 

Deterniine whether an asynchronous read or write operation is complete. 

Synopsis 

Parameters 

Description 

116 

INCLUDE 'fnx.h' 

INTEGER FUNCTION IODONE(id) 

INTEGERid 

id Non-negative 110 ID returned by an asynchronous read or write call (for example, 
ireadO or iwrite(». 

The iodoneO function determines whether the asynchronous read or write operation (for example, 
ireadO or iwriteO) identified by the id parameter is complete. If the operation is complete, this 
function releases the 110 ID for the operation. 

Use the iowaitO subroutine if you need the blocking version of this function. 

NOTE 

You must call either the iowait() or iodone() subprogram after an 
asynchronous read or write to ensure that the operation is 
complete and to release the I/O 10 number. 

~-., 

l.lJ 

If-'; 
*--,.! 
f~ 

*--'" 

r: 
1-......" , i 

jjJ 

[J 

I) 



I~ 

I: 
I: 
I ·' ., 

I
~~ ... ' 

~~ 

I~ 

( '''' 
~, 

r~1 

("i 

1': 
I

'~' 

, .. : 

[
'~" 

-,' .• ,.,1 

I: 

Paragon™ System Fortran Calls Reference Manual Manual Pages 

IODONE() (cont.) IODONE() (cont.) 

Return Values 

Errors 

o Read or write is not yet complete. 

1 Read or write is complete. 

If the iodoneO function returns a 1 (indicating the liD operation is complete): 

• The buffer specified with an ireadO call that contains valid data (if the id parameter identifies 
the ireadO call). 

• The buffer specified with an iwriteO call is available for reuse (if the id parameter identifies an 
iwriteO call). 

• The liD ID specified by the id parameter is released for use in another asynchronous read or 
write. 

NOTE 

The majority of the Fortran 1/0 errors that you are likely to receive 
are described in the "Runtime Error Messages" appendix of the 
Paragon™ System Fortran Compiler User's Guide. This section 
describes additional errors that you may receive. 

Invalid message id 

Use the liD ID returned by the asynchronous read or write call (for example, the ireadO or iwriteO 
call). 

117 



Manual Pages Paragon ™ System Fortran Calls Reference Manual 

IODONE() (cont.) IODONE() (cont.) 

Examples 

The following example shows,how to use the iodoneO function to determine if an asynchronous 
write is complete: 

include 'fnx.h' 

integer iam, msgid, size 
parameter (size=10000) 
integer rbuf(size) 

c Identify self. 

iam = mynode () 

c Open existing file. 

call gopen(12, '/tmp/mydata', M_UNIX) 

end file(12) 

msgid = iread(12, rbuf, 4*size) 

c Loop until the read completes. 

do while (iodone(msgid) .eq. 0) 
write(*, 100) iam 

100 format ( 'Node " i3, , looping .... ') 
end do 

c Display a message when the read is finished. 

write(*, 200) iam 
200 format('Node ',i3, , finished reading. ') 

close(12) 

end 

Limitations and Workarounds 

118 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease _notes. 

[] 

(, ~ 
, _AI 

c 

( '-' 
-....I 



.--- .. ~~ ...•. ~~~~~- -~-----. --.. ~--.. ~---- ~--.-~-~--~ 

I: Paragon 1M System Fortran Calls Reference Manual Manual Pages 

IODONE() (cont.) IODONEO (cont.) 

I :: See Also 

iowaitO, ireadO, iwriteO 

I: 
IJ 
(j 

I
~~' 

~.J 

Ij 

[ ." 
-AJ 

IJ 

119 



Manual Pages Paragon TM System Fortran Calls Reference Manual 

IOMODE() IOMODEO 

Return the I/O mode of a file. 

Synopsis 

Parameters 

Description 

INCLUDE 'frueh' 

INTEGER FUNCTION IOMODE(unit) 

INTEGER unit 

unit Unit number (an integer between 1 and 100) assigned when the file was opened. 

The iomodeO function determines the current I/O mode of the file identified by unit. A file's I/O 
mode determines how a process may access the file. 

Return Values 

120 

Current I/O mode of the file identified by the unit parameter. The I/O mode can be M_UNIX, 
M_LOG, M_SYNC, M_RECORD, M_GLOBAL, or M_ASYNC. Refer to the setiomodeO 
manual page for descriptions of each I/O mode. 

r·· ~ ..IiI 

c 
[~ 

[J 

c 

[J 

[J 

IJ 
Il 
-~. 



r: 
I: 
1_-""" 

,,' 

1'--<11'1 

~, 

1''1 

,"I 

('.--, 

~J 

(] 

r-'-I 

• -""<..1 

( '''' 
, .. I 

IJ 

n,' IU 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

IOMODE{) (cont.) IOMODE{) (cont.) 

Errors 

NOTE 

The majority of the Fortran 1/0 errors that you are likely to receive 
are described in the "Runtime Error Messages" appendix of the 
Paragon™ System Fortran Compiler User's Guide. This section 
describes additional errors that you may receive. 

Bad file number 

Invalid file unit number. 

No such unit 

The unit must be a value no larger than 100. 

Fortran runtime error: Unit not open 

Examples 

A file must be open to get its 110 mode. 

The following example show how to use the iomodeO function to determine the 110 mode of an 
opened file: 

include 'fnx.h' 

integer mode 

c Open existing file. 

call gopen(12, '/tmp/mydata', M_UNIX) 

121 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

IOMODE{) (cont.) IOMODEO (cont.) 

c Verify I/O mode. 

100 

mode = iomode(12) 
write(*, 100) mode 
format (' I/O mode set to: I i2, I. ') 

close(12) 

end 

Limitations and Workarounds 

See Also 

122 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease _notes. 

gopenO, setiomodeO 

Paragon™ System Fortran Compiler User's Guide: openO 

[] 

[J 

D 

il 
U 

I""l 
~J 

[J 

[J 



r: 
r: 
I: 
( ." 

., 

I ~'", 
0' 

r~ 
I ~i 

"J 

(J 

I: 
(~"' 

[~'" 

I "~ 
10., 

"I 

Paragon ™ System Fortran calls Reference Manual Manual Pages 

IOWAITO IOWAITO 

Wait for an asynchronous read or write operation to complete. 

Synopsis 

Parameters 

Description 

INCLUDE 'fnx.h' 

SUBROUTINE IOWAIT(id) 

INTEGERid 

id Non-negative 110 ID returned by an asynchronous read or write call (for example, 
ireadO or iwriteO). 

The iowail0 subroutine waits until the asynchronous read or write operation (for example, ireadO 
or iwriteO) identified by id completes. When the iowail0 subroutine returns, the following is true: 

• The buffer specified with an ireadO call that contains valid data (if the id parameter identifies 
the ireadO call). 

• The buffer specified with an iwriteO call is available for reuse (if the id parameter identifies an 
iwrileO call). 

• The 110 ID specified by the id parameter is released for use in another asynchronous read or 
write. 

Use the iodoneO function for the non-blocking version of this subroutine. 

NOTE 

You must call either the iowaitO or iodone{) function after an 
asynchronous read or write to ensure that the operation is 
complete and to release the 1/0 10. 

123 



------.----------

Manual Pages Paragon TM System Fortran Calls Reference Manual 

IOWAITO (cont.) IOWAITO (cont.) 

Errors 

NOTE 

The majority of the Fortran 1/0 errors that you are likely to receive 
are described in the "Runtime Error Messages" appendix of the 
Paragon TM System Fortran Compiler User's Guide. This section 
describes additional errors that you may receive. 

Invalid message id 

Examples 

124 

Use the I/O ID returned by the asynchronous read or write call (for example. ireadO or iwrite()). 

The following example shows how to use the iowaitO subroutine to determine if an asynchronous 
write has completed: 

include 'fnx.h' 

integer iam, mode, msgid, size 
parameter (size=10000) 
integer sbuf(size), rbuf(size) 

c Open existing file. 

call gopen(12, '/tmp/mydata', M_UNIX) 

c Identify self. 

iam mynode ( ) 

c Create the list. 

do 1 i = I, size 
sbuf(i) = i 

1 continue 

[~ 

[] 

[] 

If! 
Ii""", 

l ' 
Jill 



r-: 
;.J 

I: 
1_'" 

>IJ 

(--
'" 

I: 

I: 
I: 
r: 
[~~ 

1_-,., 
_"J 

1_, 

I: 

[ 1Ij 
J 

IJ 

P~ragon 1M System Fortran Calls Reference Manual Manual Pages 

IOWAITO (cont.) IOWAITO (cont.) 

c Write to the file. 

end file(12) 
msgid = iwrite(12, sbuf, 4*size) 

c Wait until the write completes. 

call iowait(msgid) 

write(*, 200) iam 
200 format ( 'Node ',i3, ' finished writing.') 

close(12) 

end 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease _notes. 

iodoneO, ireadO, iwriteO 

125 



Manual Pages Paragon '1M System Fortran calls Reference Manual 

IPROBEO IPROBEO 

iprobeO, iprobexO: Determines whether a message is ready to be received. (Asynchronous probe) 

Synopsis 

Parameters 

126 

INCLUDE 'frueh' 

INTEGER FUNCTION IPROBE(typesel) 

INTEGER typesel 

INTEGER FUNCTION IPROBEX(typesel, nodesel, ptypesel, info) 

INTEGER typesel 
INTEGER nodesel 
INTEGER ptypesel 
INTEGER info(8) 

typesel 

nodesel 

ptypesel 

info 

Message type or set of message types for which to probe. Setting this parameter 
to -1 probes for a message of any type. Refer to Appendix A of the Paragon TM 

System Fortran Calls Reference Manual for more information about message type 
selectors. 

Node number of the sender. Setting nodesel to -1 probes for a message from any 
node. 

Process type of the sender. Setting ptypesel to -1 accepts a message from any 
process type. 

Eight-element array of integers in which to store message information. The ftrst 
four elements contain the message's type, length, sending node, and sending 
process type. The last four elements are reserved for system use. If you do not 
need this information, you can specify the global array msginfo, which is the array 
used by the info ••• O calls. 

[~ j 

(] 

[~ 

" .. ~~ 

r~ 
&---1 

[~ 
~~ 
~j 

rr-'1 
, 

~ . ....;;i 

r' ""', 
r.,~ 

r-r'''1 
ll...i 
.. ., 
I' i&. ~ ."" 
(~ . , 

. .;0,1 

r' 
1A,,,j 

~'"'1 

~i ..... 

[J 
If""! 
i~ 

[4 
. ...J 

[~ f 
~ 

(J 

(J 

Il ..... 
i 



r: 

(
-"'I 

J 

r: 
(-: 

(-J' 

I: 
I~' 

I: 
I'"", 

,-"t 

[ '. 'I ., 

U 

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

IPROBE() (cant.) IPROBE() (cant.) 

Return Values 

Description 

Examples 

o If the specified message is not available. 

1 If the specified message is available. 

Use the appropriate asynchronous probe call to determine if the specified message is ready to be 
received: 

• Use the iprobeO function to probe for a message of a specified type. 

• Use the iprobexO function to probe for a message of a specified type from a specified sender 
and place information about the message in an array. 

If the iprobeO function returns 1 (indicating that the specified message is ready to be received), you 
can use the info ••• O calls to get more information about the message. Otherwise, the info ••• O calls 
are undefined. 

Similarly, if the iprobexO function returns I, you can examine the info array to get more information 
about the message. Otherwise, the info array is undefined. 

These are asynchronous calls. To probe for a message and block the calling process until the 
message is ready to be received, use one of the synchronous probe calls (for example, cprobe()). 

The following example shows how to use the iprobeO function to determine whether an 
asynchronous message is ready to be received: 

include 'fnx.h' 

integer donel, done2, iam, idl, id2 
integer msgidl, msgid2, mtime 
character*80 bufl, buf2 

c Identify self. 

iam = mynode () 

127 



Manual Pages Paragon TM System Fortran Calls Reference Manual 

IPROBE() (cont.) IPROBE() (cont.) 

128 

c If node 0, then 

c 

1 

c 

c 

if(iam .eq. 0) then 
print *, 'Starting 

Waste some time. 

mtime = mclock() 
continue 
if(mclock() .It. mtime+SO) goto 1 

Create and send message type 1. 

bufl 
msgid1 

'This is message type l' 
isend(l, buf1, len(buf1), -1, mypid()) 

Wait until message is sent and then report same. 

call msgwait(msgid1) 
write(*, 100) iam 

100 format('Node " i3, , sent message type 1.') 

c Waste some more time. 

2 

c 

c 

200 

mtime = mclock() 
continue 
if(mclock() .It. mtime+100) goto 2 

Create and send message type 2. 

buf2 = 'This is message type 2' 
msgid2 = isend(2, buf2, len(buf2), -1, mypid()) 

Wait until message is sent and then report same. 

call msgwait(msgid2) 
write(*, 200) iam 
format('Node " i3, , sent message type 2. ') 

c If not node 0, then ... 

else 

[] 

[J 

u 

[J 

[J 

[= 
I: 
lJ 



I: 
r: 

I: 

I: 
I "."" 

,.J 

1-'" 
-, 

[J 

IJ •. .., 
LMJ 

. Paragon TM System Fortran Calls Reference Manual Manual Pages 

IPROBE() (cont.) IPROBE() (cont.) 

c 

c 

300 

c 

400 

c 

500 

Set up loop exit condition. 

done1 = 0 
done2 = 0 
do while ((done1 .eg. 0) .or. (done2 .eg. 0» 

Receive message type 1 if available. 

if(iprobe(l) .eg. 1) then 
call crecv(l, buf1, len(buf1» 
write(*, 300) iam 
format('Node " i3, , received message type 1. ') 
done1 = -1 

Receive message type 2 if available. 

else if(iprobe(2) .eg. 1) then 
call crecv(2, buf2, len(buf2» 
write(*, 400) iam 
format('Node " i3, , received message type 2.') 
done2 = -1 

Flick if neither message is available. 

else 
write(*, 500) iam 
format('Node " i3, , calling flick() ... ') 
call flick ( ) 

endif 

end do 

endif 

end 

Limitations and Workarounds 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease_notes. 

129 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

IPROBE() (cont.) IPROBE() (cont.) 

( -"" .. , . 
. ~ 

See Also 

cprobeO. infocountO. infonodeO. infoptypeO. infotypeO 

/11" '"1 

~, ,J 

(J 

r= 
['~. 

-"'" 

[J 

130 



r: 
I: 

I: 
I~ 

I-~ 

I: 
I'" -... 

1_,' 
"'" 

(:; 

I "~ 
---' 

1_"" 
0" 

1--."., 
o~ 

c 

Paragon"" System Fortran Calls Reference Manual Manual Pages 

IREADO IREADO 

ireadO. ireadvO: Reads from a file and returns immediately. (Asynchronous read) 

Synopsis 

Parameters 

INCLUDE 'fnx.h' 

INTEGER FUNCTION IREAD(unit, buffer, nbytes) 

INTEGER unit 
INTEGER buffer(*) 
INTEGER nbytes 

INTEGER FUNCTION IREADV(unit, iov, iovcnt) 

INTEGER unit 
INTEGER iov(*) 
INTEGER iovcnt 

unit Unit number (an integer between 1 and 100) assigned when the file was opened. 

buffer 

nbytes 

iov 

iovcnt 

Buffer in which the data is stored after it is read. The buffer can be of any valid 
data type. 

Size (in bytes) of buffer. 

Array of iovec entries that identifies the buffers into which the data is to be placed. 
An iovec entry is a pair of integers. The first integer contains the address of the 
buffer. The second integer contains the number of bytes in the buffer. 

Number of iovec entries in the iov array. 

131 



Manual Pages Paragon™ System Fortran Calls Reference Manual 

IREADO (cont.) IREADO (cont.) 

Description 

132 

The ireadO and ireadvO subroutines perform high-speed, asynchronous data reads from a file. The 
ireadvO subroutine performs the same actions as the ireadO subroutine, but scatters the input data 
into the buffer specified by the iov parameter. An ireadO or ireadvO function call returns to the 
calling process immediately; the calling process continues to run while the read is being done. If the 
calling process needs the data for further processing, it must do one of the following: 

• Use the creadO or creadvO subroutine for synchronous reads, instead of the ireadO or ireadvO 
function. 

• Use the iowaitO subroutine to wait until the read completes. 

• Loop until the iodoneO function returns 1, indicating that the read is complete. 

NOTE 

To preserve data integrity, all 1/0 requests are processed on a 
"first-in, first-out" basis. This means that if an asynchronous 1/0 
call is followed by a synchronous 1/0 call on the same file, the 
synchronous call will block until the asynchronous operation has 
completed. 

To open a file before using the ireadO or ireadvO function, use the Fortran openO statement with 
the/orm parameter set to 'unformatted I or use the gopenO subroutine. 

Mixing the ireadO or ireadvO subroutines with the Fortran readO or writeO statements causes an 
error. 

You can automatically create files using a Fortran readO or writeO statement without an openO 
statement. These kind of files are named with the form/node.unit, where node is the node number 
and unit is the value of the unit parameter. You can read these kind of files with a readO statement. 
However, these kind of files do not have the correct format for high-speed system reads using the 
ireadO or ireadvO functions. 

After an ireadO or ireadvO call, you can perform other read or write calls on the same file without 
waiting for the read to finish. 

Use the iseofO function to determine whether the file pointer is at the end of the file. 

r~. ' IJ 

[~ 

[J 

(] 

[ ~ 
, ' 

, .-~ 

(: 
[ -, 

" : 
s.i 

(J 

IJ 



I: 

1= 
I
-~ 

lI/I 

I": 
I: 

I~ 

I
····~ 

.d 

I
··~ 

. ..J 

r-: 
I
~ 

,,] 

I i 
.w 

'"' l: 
I ··"" 

'" 

() 

IJ 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

IREADO (cont.) IREADO (cont.) 

Return Values 

Non-negative 110 ID for use in iodoneO and iowaitO calls. 

Errors 

NOTE 

The number of 1/0 IDs is limited, and an error occurs when no 1/0 
IDs are available for a requested asynchronous read or write. 
Therefore, your program should release the returned 1/0 10 as 
soon as possible by calling iodoneO or iowaitO. 

NOTE 

The majority of the Fortran 1/0 errors that you are likely to receive 
are described in the "Runtime Error Messages" appendix of the 
Paragon TM System Fortran Compiler User's Guide. This section 
describes additional errors that you may receive. 

Attempt to mix standard and PFS I/O call 

You cannot mix the ireadO function with Fortran readO and writeO statements on the same file. 

Bad file descriptor 

Invalid file unit number. 

Invalid argument 

Check arguments. 

Mixed file operations 

In 110 mode M_SYNC or M_GLOBAL, nodes are attempting different operations (reads and 
writes) to a shared file. In these modes, all nodes must perform the same operation. 

133 



-- ----,-- -----

Manual Pages Paragon TM System Fortran Calls Reference Manual 

IREADO (cont.) IREADO (cont.) 

I/O error 

A disk error occurred. 

No such unit 

The unit must be a positive value no larger than 100. 

Too many open files 

Only 64 files can be open at one time for any process. 

Unformatted I/O to FORMATTED file 

Use the Fortran openO statement to open the file, setting the proper format. 

Too many I/O requests outstanding 

No available I/O file descriptors. Use the iowaitO or iodoneO subprogram for outstanding ireadO 
or iwriteO requests. 

Tries to read past EOF 

Examples 

134 

Attempt was made to read past the end-of-file. 

The following example shows how to use the ireadO and iodoneO functions to do an asynchronous 
read: 

include 'fnx.h' 

integer iam, msgid, size 
parameter (size=10000) 
integer rbuf(size) 

c Identify self. 

iam = myna de ( ) 

(-~ ,. 

rr-.ry 
iL .... 

i··-"""· 
" 

-"" 

(J 

[J 

r·~.! 
,.1 

-~ 



I·~ 
. .i/Ii 

I: 
I " .. , 

1·-' 

r: 
IJ 

.......... -.-----~~ 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

IREADO (cont.) IREADO (cont.) 

c Open existing file . 

call gopen(12, '/tmp/mydata', M_UNIX 

msgid = iread(12, rbuf, 4*size) 

c Loop until the read completes. 

100 

c 

do while (iodone(msgid) .eg. 0) 
write(*, 100) iam 
format ( 'Node " i3, ' looping .... ') 

end do 

Display a message when the read is finished. 

write(*, 200) iam 
200 format('Node ',i3, ' finished reading. ') 

close(12) 

end 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds. see the release notes files in 
lusrlsharelrelease_notes. 

creadO. cwriteO. gopenO. iodoneO. iomodeO. iowaitO. iseofO. iwriteO. setiomodeO 

135 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

IRECVO IRECVO 

irecvO, irecYXO: Posts a receive for a message and returns immediately. (Asynchronous receive) 

Synopsis 

Parameters 

136 

INCLUDE 'fnx.h' 

INTEGER FUNCTION IRECV (typeseZ, buf, count) 

INTEGER typeseZ 
INTEGER buf(*) 
INTEGER count 

INTEGER FUNCTION IRECVX(typesel, buf, count, nodesel, ptypesel, info) 

INTEGER typeseZ 
INTEGER buf(*) 
INTEGER count 
INTEGER nodesel 
INTEGER ptypeseZ 
INTEGER info(8) 

typesel 

buf 

count 

nodesel 

ptypesel 

Message type(s) to receive. Setting this parameter to -1 receives a message of any 
type. Refer to Appendix A of the Paragon™ System Fortran Calls Reference 
Manual for more information about message type selectors. 

Buffer in which to store the received message. The buffer can be of any valid data 
type, but should match the data type of the buffer in the corresponding send 
operation. 

Length (in bytes) of the bufparameter. 

Node number of the sender. Setting the nodesel parameter to -1 receives a 
message from any node. 

Process type of the sender. Setting the ptypesel parameter to -1 receives a message 
from any process type. 

[] 

[: 

(] 

rr-.~. 
iL ...... 

r~ 
~L.-l 

I.: 

1= 



(~ 

I: 
r: 
I: 

1-·1 

,.1 

I: 

1= 

IJ 

IJ 

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

IRECV() (cont.) IRECV() (cont.) 

Description 

info Eight-element array of integers in which to store message information. The first 
four elements contain the message's type, length, sending node, and sending 
process type. The last four elements are reserved for system use. If you do not 
need this information, you can specify the global array msginfo, which is the array 
used by the info ••• O calls. 

Use the appropriate asynchronous receive call to post a receive for a message and return 
immediately: 

• Use the irecvO function to post a receive for a message of a specified type. 

• Use the irecvxO function to post a receive for a message of a specified type from a specified 
sender and place information about the message in an array. 

The asynchronous receive calls return a message ID that you can use with the msgdoneO and 
msgwaitO subprograms to determine when the receive completes (and the buffer contains valid 
data). 

For the irecvO function, you can use the info ••• O calls to get more information about the message 
after it is received. For the irecvO function, the same message information is returned in the info 
array. Note, however, that until the receive completes, neither the info ••• O calls nor the info array 
contain valid information. 

If the message is too long for the buffer, the receive completes with no error returned, and the content 
of the buffer is undefined. To detect this situation, check the value of the infocountO function or the 
second element of the info array. 

These are asynchronous calls. The calling process continues to run while the receive is being done. 
If your program needs the received message for further processing, it must do one of the following: 

• Use the msgwaitO subroutine to wait until the receive completes. 

• Loop until the msgdoneO function returns 1, indicating that the receive is complete. 

• Use one of the synchronous calls (for example, the crecvO subroutine) instead. 

137 



Manual Pages Paragon lM System Fortran Calls Reference Manual 

IFlE:C:"() (cont) IFlEC:"O (cont.) 

Return Values 

Errors 

A message ID (mid) for use in msgcancelO, msgdoneO, msgignoreO, msgmergeO, or msgwaitO 
system calls. 

NOTE 

The number of message IDs is limited. The error message 
"Too many requests" is returned and your application will stop 
when no message IDs are available for a requested asynchronous 
send or receive. Your program should release its message IDs as 
soon as possible by calling msgcancelO, msgdone(), 
msgignore(), or msgwaitO. 

NOTE 

The majority of the Fortran I/O errors that you are likely to receive 
are described in the "Runtime Error Messages" appendix of the 
Paragon™ System Fortran Compiler User's Guide. This section 
describes additional errors that you may receive. 

Too many requests 

138 

Your application has used all the available message IDs and no message IDs are available. Use either 
the msgcancelO, msgdoneO, msgignoreO, or msgwaitO subprogram with the receive to release 
message IDs. 

,11 
L~ 

[: 

I'" -, 
I 

l~ 

fJ .... 



r: 

r: 
I: 
I: 

I: 
1"1 

",I 

( '" 
~.I 

I: 
[J 

[ : 
~ 

~ 
LJ 

D 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

IRECVO (cont.) IRECVO (cont.) 

Examples 

The following example shows how to use the irecvO function to do an asynchronous receive: 

include 'fnx.h' 

integer iam, gotmsgl, gotmsg2, idl, id2, mtime 
character*80 bufl, buf2 

c Identify self. 

iam = mynode () 

c If node 0, then 

c 

1 

c 

c 

100 

c 

2 

if(iam .eg. 0) then 
print *, 'Starting 

Waste some time. 

mtime = mclock() 
continue 
if(mclock() .It. mtime+SO) goto 1 

Create and send message type 1. 

bufl = 'This is message type l' 
idl = isend(l, bufl, len(bufl), -1, mypid()) 

Wait until message is sent and then report same. 

call msgwait(idl) 
write(*, 100) iam 
format('Node " i3, , sent message type 1. ') 

Waste some more time. 

mtime = mclock() 
continue 
if(mclock() .It. mtime+l00) goto 2 

139 



Manual Pages 

IRECVO (cont.) 

140 

Paragon .... System Fortran Calls Reference Manual 

IRECVO (cont.) 

c Create and send message type 2. 

buf2 = 'This is message type 2' 
id2 = isend(2, buf2, len(buf2), -1, mypid()) 

c 

200 

wait until message is sent and then report same. 

call msgwait(id2) 
write(*, 200) iam 
format('Node " i3, , sent message type 2. ') 

c If not node 0, then ... 

c 

else 

Post receives for the messages. 

id1 
id2 

irecv(l, buf1, len(buf1)) 
irecv(2, buf2, len(buf2)) 

c Set up loop exit condition. 

gotmsg1 = 0 
gotmsg2 = 0 

10 if(gotmsg1 .eg. 1 .and. gotmsg2 .eg. 1) goto 20 

c Receive message type 1 if available. 

if (msgdone(id1) .eg. 1) then 
write(*, 300) iam 

300 format('Node " i3, , received message type 1. ') 
id1 = irecv(l, buf1, len(buf1)) 
gotmsg1 = 1 

c Receive message type 2 if available. 

else if (msgdone(id2) .eg. 1) then 
write(*, 400) iam 

400 format('Node " i3, , received message type 2. ') 
id2 = irecv(2, buf2, len(buf2)) 
gotmsg2 = 1 

u 
[ .. ~ . I 

jj 

t..... _ .. -' 

[J 

[J 

[J 

[: 

[~ 
-"" 



[ Ji .. 

• 

r: 
r: 
I': 
[~ 

(~ 

I
·~ 

.,: 

I: 

IJ 

IJ 

D 
(] 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

IRECVO (cont.) IRECVO (cont.) 

c 

500 

Flick if neither message is available. 

else 
write(*, 500) iam 
format ( I Node I, i3, I calling flick () ... I ) 

call flick () 
endif 

goto 10 

endif 

20 end 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds. see the release notes files in 
lusrlsharelrelease _notes. 

cprobeO. crecvO. csendO. csendrecvO. hrecvO. hsendO. hsendrecvO. infocountO. infonodeO. 
infoptypeO. infotypeO. iprobeO. isendO. isendrecvO. msgcancelO. msgdoneO. msgignoreO. 
msgmergeO. msgwait() 

141 



---~--------------- ----

Manual Pages Paragon TM System Fortran Calls Reference Manual 

ISENDO ISENDO 

Sends a message and returns immediately. (Asynchronous send) 

Synopsis 

Parameters 

Description 

142 

INCLUDE 'frueh' 

INTEGER FUNCTION ISEND(type, buj, count, node, ptype) 

INTEGER type 
INTEGER buf(*) 
INTEGER count 
INTEGER node 
INTEGER ptype 

type 

buf 

count 

node 

ptype 

Type of the message to send. Refer to Appendix A of the Paragon TM System 
Fortran Calls Reference Manual for information on message types. 

Buffer containing the message to send. The buffer may be of any valid data type. 

Number of bytes to send in the bzif' parameter. 

Node number of the message destination (that is, the receiving node). Setting node 
to -1 sends the message to all nodes in the application (except the sending node 
when the ptype is the sender's process type). 

Process type of the message destination (that is, the receiving process). 

The asynchronous send calls return a message ID. You can use with the msgdoneO and msgwaitO 
system calls to determine when the send completes. Completion of the send does not mean that the 
message was received, only that the message was sent and the send buffer (buj) can be reused. 

These are asynchronous calls. The calling process continues to run while the send is being done. To 
send a message and block the calling process until the send completes, use one of the synchronous 
send calls (for example, csendO) instead. 

[ 111 

-~ 

[J 

[] 

[J 

[J 

'f ~I 
IlJl.! 

D 

r: 

[J 

[J 

[J 



[: 
I
·~ 

JI.I 

I: 
I: 
r: 
I~: 

I: 
I·"'.' 

.u 

[-'-1 

1-·'1 

_.J 

r= 

[J 

r: 
[J 

C 

D 
D 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

ISEND{) (cont.) ISEND{) (cont.) 

Return Values 

Errors 

A message ID (mid) for use in msgcancelO, msgdoneO, msgignoreO, msgmergeO, or msgwaitO 
system calls. 

NOTE 

The number of message IDs is limited. The error message 
''Too many requests" is returned and your application will stop 
when no message IDs are available for a requested asynchronous 
send or receive. Your program should release its message IDs as 
soon as possible by calling msgcancelO. msgdone(). 
msgignoreQ. or msgwaitO. 

NOTE 

The majority of the Fortran I/O errors that you are likely to receive 
are described in the "Runtime Error Messages" appendix of the 
Paragon TM System Fortran Compiler User's Guide. This section 
describes additional errors that you may receive. 

Too many requests 

Your application has used all the available message IDs and no message IDs are available. Use either 
the msgcancelO, msgdoneO, msgignoreO, or msgwaitO subprogram with the receive to release 
message IDs. 

143 



Manual Pages Paragon TM System Fortran Calls Reference Manual 

ISEND() (cont.) ISEND() (cont.) 

Examples 

The following example shows how to use the isendO function to do an asynchronous send: 

144 

include 'fnx.h' 

integer iam, gotmsgl, gotmsg2, idl, id2, mtime 
character*80 bufl, buf2 

c Identify self. 

iam = mynode ( ) 

c If node 0, then 

c 

1 

c 

85 

c 

if(iam .eq. 0) then 
print *, 'Starting 

Waste some time. 

mtime = mclock() 
continue 
if(mclock() .It. mtime+50) goto 1 

Announce asynchronous message 

write(*,85) iam 
format('Node " i3, , sending message type 1.') 

Create and send message type 1. 

bufl = 'This is message type l' 
idl = isend(l, bufl, len(bufl), -1, mypid()) 

c Perform concurrent processing 

write(*,90) iam 
90 format ('Node " i3, , waiting for send to complete ... ') 

c Wait until message is sent and then report same. 
" 

call msgwait(idl) 
write(*, 100) iam 

100 format('Node " i3, , send of type 1 complete. ') 

[: 
[J 

(J 

(J 



11 

I: 

IJ 

( i 
,"," 

I
·~ 

,~ 

lJ 
(] 

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

ISENDO (cont.) ISENDO (cont.) 

c 

2 

c 

105 

Waste some more time. 

mtime = mclock() 
continue 
if(mclock() .It. mtime+l00) goto 2 

Announce asynchronous message 

write(*,105) iam 
format ('Node " i3, ' sending message type 2. ' ) 

c Create and send message type 2. 

buf2 = 'This is message type 2' 
id2 = isend(2, buf2, len(buf2), -1, mypid()) 

c Perform concurrent processing 

write(*,190) iam 
190 format ('Node', i3, ' waiting for send to complete ... ') 

c Wait until message is sent and then report same. 

200 

call msgwait(id2) 
write(*, 200) iam 
format('Node " i3, ' send of type 2 complete. ') 

c If not node 0, then ... 

else 

c Post receives for the messages. 

c 

10 

idl = irecv(l, bufl, len(bufl)) 
id2 irecv(2, buf2, len(buf2)) 

Set up loop exit condition. 

gotmsgl = 0 
gotmsg2 = 0 
if(gotmsgl .eq. 1 .and. gotmsg2 .eq. 1) goto 20 

145 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

ISEND() (cont.) ISEND() (cont.) 

c Receive message type 1 if available. 

if (msgdone(id1) .eq. 1) then 
write(*, 300) iam 

300 format('Node " i3, ' received message type 1. ') 
id1 = irecv(l, buf1, len(buf1)) 
gotmsg1 = 1 

c Receive message type 2 if available. 

else if (msgdone(id2) .eq. 1) then 
write(*, 400) iam 

400 format('Node " i3, ' received message type 2. ') 
id2 = irecv(2, buf2, len(buf2)) 
gotmsg2 = 1 

c Flick if neither message is available. 

500 

20 

else 
write(*, 500) iam 
format('Node " i3, ' calling flick() ... ') 
call flick ( ) 

endif 

goto 10 

endif 

end 

Limitations and Workarounds 

See Also 

146 

For information about limitations and workarounds. see the release notes files in 
lusrlshare/release _notes. 

cprobeO. crecvO. csendO. csendrecvO. hrecvO. hsendO. hsendrecvO. iprobeO. irecvO. 
isendrecvO. msgcancelO. msgdoneO. msgignoreO. msgmergeO. msgwaitO 

[~ 

IJ 

[J 

[
-"1 

~, 

.-OJ 

[J 

I~ 
.1 

-~ 



( -. 
". 

1_'" 
""" 

(
"""111 

. A.: 

1""""'1 

"..w 

I-~ 

[: 
I"

~! 

"oJ 

r~ 

"'" 

[: 

(J 

l"j 

D 
D 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

ISENDRECVO ISENDRECVO 

Sends a message, posts a receive for a reply, and returns immediately. (Asynchronous send-receive) 

Synopsis 

Parameters 

INCLUDE 'fnx.h' 

INTEGER FUNCTION ISENDRECV(type, sbuf, scount, node, ptype, typeset, 
rbuj, rcount) 

INTEGER type 
INTEGER sbuf(*) 
INTEGER scount 
INTEGER node 
INTEGER ptype 
INTEGER typeset 
INTEGER rbuf(*) 
INTEGER rcount 

type Type of the message to send. Refer to Appendix A of the Paragon TM System 
Fortran Calls Reference Manual for more information about message types. 

sbuf Buffer containing the message to send. The buffer may be of any valid data type. 

scount 

node 

ptype 

typesel 

rbuf 

rcount 

Number of bytes to send in the sbufparameter. 

Node number of the message destination (the receiving node). Setting node to -1 
sends the message to all nodes in the application (except the sending node when 
ptype is the sender's process type). 

Process type of the message destination (the receiving process). 

Message type(s) to receive. Refer to Appendix A of the Paragon TM System Fortran 
Calls Reference Manual for information on message type selectors. 

Buffer for storing the reply. The buffer can be of any valid data type, but should 
match the data type of the buffer in the corresponding send operation. 

Length (in bytes) of the rbufparameter. 

147 



Manual Pages Paragon TIll System Fortran Calls Reference Manual 

ISENDRECVO (cont.) ISENDRECVO (cont.) 

Description 

The isendrecvO function sends a message and immediately posts a receive for a reply. The 
isendrecvO function immediately returns a message ID that you can use with the msgdoneO and 
msgwaitO system calls to determine when the send-receive completes (that is, the reply arrives). 
When the reply arrives, the calling process receives the message and stores it in the rbujbuffer. 

If the reply is too long for the rbujbuffer, the receive completes with no error returned, and the 
content of the rbujbuffer is undefined. 

This is an asynchronous system call. The calling process continues to run while the send-receive 
operation is occurring. To determine if the message sent is received, do either of the following: 

• Use the msgwaitO subroutine to wait until the receive completes. 

• Loop until the msgdoneO function returns 1, indicating that the receive is complete. 

You can use the info ••• O system calls to get more information about a message after it is received. 

For synchronous message passing applications, use the csendrecvO function instead of the 
isendrecvO function. 

Return Values 

148 

A message ID (mid) for use in msgcancelO, msgdoneO, msgignoreO, msgmergeO, or msgwaitO 
system calls 

NOTE 

The number of message IDs is limited. The error message 
"Too many requests" is returned and your application will stop 
when no message IDs are available for a requested asynchronous 
send or receive. Your program should release its message IDs as 
soon as possible by calling msgcancel{), msgdone{), 
msgignore(), or msgwait{). 

[J 

[J 

( •. "'1 
....1 

(J 

fj ... .-



1_., 
,AJ 

I: 
I,'· 

"'"' 

1_--
•• 1 

I
'~ 

-

r'" 

(
-~ 

,.J 

I: 
l'~ --
l: 
.... 
I.~ 

C 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

ISENDRECVO (cont.) ISENDRECVO (cont.) 

Errors 

NOTE 

The majority of the Fortran 1/0 errors that you are likely to receive 
are described in the "Runtime Error Messages" appendix of the 
Paragon TM System Fortran Compiler User's Guide. This section 
describes additional errors that you may receive. 

Too many requests 

Examples 

Your application has used all the available message IDs and no message IDs are available. Use either 
the msgcancelO, msgdoneO, msgignoreO, or msgwaitO subprogram with the receive to release 
message IDs. 

The following example shows how to use the isendrecvO function to do an asynchronous send and 
receive: 

include 'fnx.h' 

integer msgid, inode, ipid 
real lbuf, value 
double precision sbufO, rbufO, sbuf1, rbuf1 

sbufO = 0.0 
rbufO = 0.0 
sbufl = 0.0 
rbufl 0.0 
lbuf 0.0 
value 3.14 

c Identify self. 

iam = mynode () 

c If node 0, then ... 

if(iam .eg. O} then 
print *, 'Starting 

149 



Manual Pages Paragon TM System Fortran Calls Reference Manual 

ISENDRECVO (cont.) ISENDRECVO (cont.) 

150 

c 

c 

50 

c 

c 

100 

Send message to other node(s) and post receive for result. 

sbufO 
msgid 

0.21381 
isendrecv(10,sbufO,8,-1,mypid(),11,rbufO,8) 

Do some processing while waiting for results. 

Ibuf = sqrt(value) 
write (* , 50) value, Ibuf 
format ( 'The square root of ',F5.2, , is , FS.2) 

Wait for result. 

call msgwait(msgid) 

Display result. 

write(*, 100) sbufO, rbufO 
format ( 'Arcsin of , dlS.S, , is , d15.S) 

c If not node 0, then ... 

else 

c Receive message. 

c 

c 

c 

call crecv(10, rbufl, 8) 

Get sending node and pid (for returning result) . 

inode 
ipid 

= infonode ( ) 
infopid( ) 

Get value of result. 

sbufl = dasind(rbufl) 

Send result to calling node. 

call csend(ll, sbufl, 8, inode, ipid) 

endif 

end 

[ .""'1 ... '. 'I 

,-,", 

[J 

(J 



(: 

I: 
[: 
("-

...... 

r: 
(~' 

.~ 

( . ...., 
-~: 

(-: 

[ .-
.~ 

(~ -"" 

(~ . .., 

IJ 
(] 

n u 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

ISENDRECVO (cont.) ISENDRECVO (cont.) 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds. see the release notes files in 
lusrlsharelrelease _notes. 

cprobeO. crecvO. csendO. csendrecvO. hrecvO. hsendO. hsendrecvO. iprobeO. irecvO. isendO • 
isendrecvO. msgcancelO. msgdoneO. msgignoreO. msgmergeO. msgwaitO 

151 



-----,.~------~,~,,- ~.--.-.~--"~. --

Manual Pages Paragon™ System Fortran Calls Reference Manual 

ISEOFO ISEOFO 

Determine whether specified file pointer is at end-of-file. 

Synopsis 

Parameters 

Description 

INCLUDE 'fnx.h' 

INTEGER FUNCTION ISEOF(unit) 

INTEGER unit 

unit The unit number (an integer between 1 and 100) assigned when the file was 
opened. 

Use the iseofO function together with read or write calls to detennine whether the file pointer in a 
file is at the end-of-file. 

Return Values 

o If file pointer is not at end-of-file. 

1 If file pointer is at end-of-file. 

152 

[) 

(J 

. I [ ~ 

'. :I< 

[~ 

,"'1 
l.~ 

f"'l 
l.~ 

[-' 
.~ 

[J 

(J 



r: 
I·~." .. 

( .,. 
.. Ie 

[: 

I: 
r: 

IJ 

I~ 
J 

(J 

( '.""1 
~..J 

U 

D 
D 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

ISEOF() (cont.) ISEOF() (cont.) 

Errors 

NOTE 

The majority of the Fortran 1/0 errors that you are likely to receive 
are described in the "Runtime Error Messages" appendix of the 
Paragon TM System Fortran Compiler User's Guide. This section 
describes additional errors that you may receive. 

Attempt to mix standard and PFS I/O calls 

Fortran readO and writeO and operating system I/O calls cannot be used in the same file. 

Bad file number 

Use the unit assigned with openO. 

Fortran runtime error: Unit not open 

No such unit 

Examples 

A file must be open to check the position of its file pointer. 

The unit number must be a value no larger than 100. 

The following example shows how to use the iseof() function to determine end-of-file: 

include 'fnx.h' 

character*20 sbuf 
character*l char 

c Open existing file. 

call gopen(12, '/tmp/rnydata', M_UNIX) 

153 



Manual Pages Paragon TM System Fortran Calls Reference Manual 

ISEOFO (cont.) ISEOFO (cont.) 

c Identify self. 

iam = mynode () 

c Read and display the file. 

100 

do while(iseof(12) .eg. 0) 

call cread(12, char, 1) 

write(*, 100) iam, char 
format ( I Node I, i3, I read: 

end do 

close(12) 

end 

a1) 

Limitations and Workarounds 

See Also 

154 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease _notes. 

creadO, cwriteO, eseekO, ireadO, iwriteO, IseekO 

[J 

~- ~' 

,~ 

Il."" 



I·,...· 
.Jii 

I "'··· . . , .. 
r-: 
I

~ ... 
.... 

I ··,,, 
, '" 

[J 

I·..., 
,~~ 

r: 
I '~ 

. .J 

r: 

(] 

D 

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

IWRITEO IWRITEO 

Writes to a file and returns immediately. (Asynchronous write) 

Synopsis 

Parameters 

INCLUDE 'frueh' 

INTEGER FUNCTION IWRITE(unit, buffer, nbytes) 

INTEGER unit 
INTEGER buffer(*) 
INTEGER nbytes 

INTEGER FUNCTION IWRITEV(unit, iov, iovcnt) 

INTEGER unit 
INTEGER iov(*) 
INTEGER iovcnt 

unit Unit number of the file (an integer between 1 and 100) assigned when the file was 
opened. 

buffer 

nbytes 

iov 

iovcnt 

Buffer containing data to be written. The buffer can be of any valid data type. 

Number of bytes to write. The size is limited only by the memory available for the 
buffer . 

Array of iovec entries, which identifies the buffers containing the data to be 
written. An iovec entry is defmed to be a pair of integers, the first integer contains 
the address of the buffer, the second contains the number of bytes in the buffer. 

Number of iovec entries in the iov array. 

155 



-----~------.--- ---"- . -- ~~-- .. ----."----.---.------~---.-.----

Manual Pages Paragon TM System Fortran Calls Reference Manual 

IWRITEO (cont.) IWRITEO (cont.) 

Description 

156 

The iwriteO and iwritevO subroutines perform high-speed, asynchronous data writes to a file. The 
iwritevO subroutine performs the same actions as the iwriteO subroutine, but gathers the output data 
from the buffers specified by the iov parameter. A call to the iwriteO or iwritevO function returns 
immediately to the calling process. The calling process continues to run while the write is being 
done. If the calling process needs the write buffer for further processing, it must do one of the 
following: 

• Use the cwriteO or cwritevO subroutine ( synchronous write) instead of the iwriteO or iwritevO 
function, respectively. 

• Use iowaitO to wait until the write completes. 

• Loop until iodoneO returns aI, indicating that the write is complete. 

NOTE 

To preserve data integrity, all 1/0 requests are processed on a 
''first-in, first-out" basis. This means that if an asynchronous 1/0 
call is followed by a synchronous 1/0 call on the same file, the 
synchronous call will block until the asynchronous operation has 
completed. 

After an iwriteO or iwritevO call, you can perform other read or write calls on the same file without 
waiting for the write to finish. 

To determine whether the write operation moved the file pointer to the end of the file, use the iseofO 
system call. 

To open a file before using asynchronous write calls, use the Fortran openO statement with the form 
parameter set to 'unformatted' or use the gopenO subroutine. 

For a given file, mixing the operating system read and write calls (for example, ireadO or iwrite()) 
with the Fortran readO and writeO statements causes an error. 

You can automatically create files using a Fortran readO or writeO statement without an openO 
statement. Automatically-created files are named with the form fnode.unit, where node is the node 
number and unit is the value of the unit parameter. You can write these files with a writeO statement, 
however, these files do not have the correct format for high-speed system writes using the iwriteO 
or iwritevO function. 

[
"'1 

~ 

(: 

[~ 

l: 

I: 
[J 
I-~ 

,I •• 



11 
[: 
I: 
I: 

( '''''', 
,I 

I~ 

r~ 

I"'~ 
., 

D 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

IWRITEO (cont.) IWRITEO (cont.) 

Return Values 

Non-negative 110 ID for use in iodoneO and iowaitO calls. 

Errors 

NOTE 

The number of 1/0 IDs is limited, and an error occurs when no 1/0 
IDs are available for a requested asynchronous read or write. 
Therefore, your program should release the returned I/O 10 as 
soon as possible by calling iodoneO or iowaitO. 

NOTE 

The majority of the Fortran 1/0 errors that you are likely to receive 
are described in the "Runtime Error Messages" appendix of the 
Paragon ™ System Fortran Compiler User's Guide. This section 
describes additional errors that you may receive. 

Attempt to mix standard and PFS I/O call 

You cannot mix the iwriteO function with Fortran readO and writeO statements on the same file. 

Attempt to write to READONLY file 

Check file attributes. 

Bad file descriptor 

Invalid file unit number. 

Invalid argument 

Check arguments. 

157 



Manual Pages Paragon TM System Fortran Calls Reference Manual 

IWRITEO (cont.) IWRITEO (cont.) 

I/O error 

A disk error occurred. If error persists, run the diagnostics. 

Mixed file operations 

In I/O mode M_SYNC or M_GLOBAL, nodes are attempting different operations (reads and 
writes) to a shared file. In these modes, all nodes must perform the same operation. 

No space left on device 

Not enough space on device to which you are writing. Create more space in file system. 

Too many I/O requests outstanding 

Use iowaitO or iodoneO for outstanding iwriteO requests. 

Too many open files 

Only 64 files can be open at one time for any process. 

Unformatted I/O to FORMATTED file 

Examples 

158 

Use Fortran openO to open the file, setting proper format. 

The following example shows how to use the iwriteO, iodoneO, and iowaitO functions to do an 
asynchronous write: 

include 'fnx.h' 

integer iam, mode, msgid, size 
parameter (size=10000) 
integer sbuf(size) , rbuf(size) 

c Open existing file. 

call gopen(12 , '/tmp/mydata', M_UNIX) 

[~ 

[ 11 
... iIJ 

[J 

c: 

[~ 



Paragon 1M System Fortran calls Reference Manual Manual Pages 

I: 
r: 
I: IWRITEO (cont.) IWRITEO (cont.) 

I
·~ 

. lii c Identify self . 

iam = mynode ( ) 

c Create the list. 

( ..• :.' _ do 1 i = 1, size 

I: 

D 
II 

sbuf(i) = i 
1 continue 

c Write to the file. 

end file (12) 
msgid = iwrite(12, sbuf, 4*size) 

c Wait until the write completes. 

call iowait(msgid) 

write(*, 200) iam 
200 format('Node ',i3, ' finished writing. ') 

close(12) 

end 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease_notes. 

creadO, cwriteO, gopenO, iodoneO, iomodeO, iowaitO, ireadO, iseofO, setiomodeO 

159 



Manual Pages Paragon TM System Fortran Calls Reference Manual 

LSEEK(} LSEEK(} 

Move the read/write file pointer in a normal (non-extended) file. 

Synopsis 

Parameters 

Description 

160 

INCLUDE 'fnx.h' 

INTEGER FUNCTION LSEEK(unit, offset, whence) 

INTEGER unit 
INTEGER offset 
INTEGER whence 

unit 

offset 

whence 

Identifies the file whose pointer is to be moved. The unit number is an integer 
between 1 and 100 that was assigned to the file when it was opened. 

Affects the file pointer in the manner specified by the whence parameter. 

Specifies how offset affects the file pointer: 

Sets the file pointer to offset bytes from the beginning 
of the file. 

Sets the file pointer to its current location plus offset 
bytes. 

Sets the file pointer to offset bytes beyond the end of 
the file. 

The IseekO subroutine moves the file pointer in an open normal file specified by the unit parameter. 
To move the pointer in an extended file, use the eseekO system call. The whence parameter 
determines how the file pointer is interpreted. 

The lseekO function can be used on extended files if the offset result is less than 2G bytes. 

[ .. ~ 

--*' 

~ = 

[= 

[: 

[: 
[-.~ 

.Jloi 



I -
,,,", 

I: 
r: 

IJ 
(] 

o 
D 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

LSEEK() (cont.) LSEEKO (cont.) 

The IseekO subroutine allows a file pointer to be set beyond the end of existing data in the file. If 
data is later written at this point, reading data in the gap returns bytes with the value 0 (zero) until 
data is actually written into the gap. 

The IseekO subroutine does not extend the size of the file by itself. 

Return Values 

Errors 

The new position of the file pointer (measured in bytes from the beginning of the file) 

NOTE 

The majority of the Fortran 1/0 errors that you are likely to receive 
are described in the "Runtime Error Messages" appendix of the 
Paragon ™ System Fortran Compiler User's Guide. This section 
describes additional errors that you may receive. 

Bad file number 

Use the unit number assigned when the file was opened 

No such unit 

The unit number must be a value no larger than 1 00. 

Mixed file operations 

In I/O mode M_SYNC or M_RECORD, nodes are attempting different operations (reads and 
writes) to a shared file. In these modes, all nodes must perform the same operation. 

Seek to different file pointers 

Two or more application processes are calling lseekO with different shared I/O modes (M_SYNC 
or M_RECORD). 

161 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

LSEEKO (cont.) LSEEKO (cont.) 

Fortran runtime error: Unit not open 

Examples 

A file must be open to perform a seek operation. 

The following example shows how to use the lseekO function to move file pointer in a file. 

include 'fnx.h' 

integer newpos, newsize 

c Open the file /tmp/mydata. 

call gopen(12, '/tmp/mydata', M_UNIX) 

c Set file size to 1000 bytes. 

100 

newsize = lsize(12, 1000, SIZE_SET) 

write(*, 100) newsize 
format('New file size is: HO) 

c Move read/write pointer to the end of the file. 

newpos = lseek(12, 0, SEEK_END) 

write(*, 200) newpos 
200 format('New pointer position is: HO) 

c Close the file /tmp/mydata. 

close(12) 

end 

Limitations and Workarounds 

162 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease_notes. 

[: 

[ .. ~ 
. .JO 

l: 
[ .... : 

'·1 

' --.---

l: 



I ·.: ... 

I .~ ~; 

I: 
I: 

IJ 
I .. ·.: 

""I 

r: 
1= 
[~ 

I'"", 
__ &1' 

r: 

In .. ,,, a. 

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

LSEEK{) (cont.) LSEEK{) (cont.) 

See Also 

creadO. cwriteO. eseekO. esizeO. ireadO.iseofO. iwriteO.isizeO 

163 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

LSIZEO LSIZEO 

Change the size of a normal (non-extended) file. 

Synopsis 

Parameters 

164 

INCLUDE 'fmeh' 

INTEGER FUNCTION LSIZE(unit, offset, whence) 

INTEGER unit 
INTEGER offset 
INTEGER whence 

unit 

offset 

whence 

Unit number of a regular file opened for writing. The unit number is an integer 
between 1 and 100 that was assigned to the file when it was opened 

Value, in bytes, to be used together with the whence parameter to increase the file 
size. 

Specifies how offset affects the file size: 

Sets the file size to the greater of the current size or 
offset. 

Sets the file size to the greater of the current size or the 
current location of the file pointer plus offset. 

Sets the file size to the greater of the current size or the 
current size plus offset. 

NOTE 

If the new size specified by offset and whence is greater than the 
available disk space, IsizeO allocates all of the available space, 
prints an error message, and terminates your program. 

( "1 
.. ~ 

( .. ~ 
. ..M 

" ~, l ~,I 

I: 
I: 
I~ ----



I: 
I: 

I: 
r: 
1_"'" 

- _...l.!.~ 

[~ 

r: 

1'.'''1 
.-..J 

D 
D 

Paragon TM System Fortran calls Reference Manual Manual Pages 

LSIZEO (cont.) LSIZEO (cont.) 

Description 

The IsizeO function increases the size of a file according to the offset and whence parameters. 

Use the lsizeO function to preallocates sufficient file space before starting performance-sensitive 
applications or storage operations. This increases throughput for I/O operations on a file, because 
the I/O system does not have to allocate data blocks for every write that extends the file size. 

The IsizeO function increases the size of a file. If the file is 2G bytes or more in size, use the esizeO 
system call. This function cannot decrease the size of a file. 

The IsizeO function can be used on extended files if the offset result is less than 2G bytes. 

The IsizeO function has no effect on FIFO special files or directories, and does not effect the position 
of the file pointer. The contents of file space allocated by the IsizeO function is undefined. 

The IsizeO function updates the modification time of the opened file. If the file is a regular file it 
clears the file's set-user 10 and set-group 10 attributes. 

If the file has enforced file locking enabled and there are file locks on the file, the IsizeO function 
fails. 

NOTE 

Because NFS does not support disk block preallocation, the 
Isize() subroutine is not supported on files that reside in remote 
file systems that have been NFS mounted. The IsizeO subroutine 
is supported on files in UFS and PFS file systems only. 

Return Values 

>=0 

-1 

The call is successful (returns the new file size in bytes). 

The call is not successful. 

NOTE 

If the requested size is greater than the available disk space, 
Isize() allocates the available disk space and returns the actual 
new size. 

165 



Manual Pages Paragon TM System Fortran calls Reference Manual 

LSIZEO (cont.) LSIZEO (cont.) 

Errors 

NOTE 

The majority of the Fortran I/O errors that you are likely to receive 
are described in the "Runtime Error Messages" appendix of the 
Paragon™ System Fortran Compiler User's Guide. This section 
describes additional errors that you may receive. 

Bad file number 

Use the unit number assigned when the file was opened. 

Fortran runtime error: unit not open 

A file must be open to perform a size operation. 

Invalid argument 

The value for the whence parameter is invalid or the resulting file size would be invalid. 

Invalid size 

Cannot be used in extended file sizes. Use esizeO. 

No space left on device 

The new size specified by offset and whence is greater than the available disk space. Create more 
space in file system. 

Operation not supported on this file system 

The unit parameter refers to a file that resides in a file system that does not support this operation. 
The IsizeO function does not support files that reside in remote file systems and have been NFS 
mounted. 

Read-only file system 

The unit number refers to a file that resides in a read-only file system. 

166 

[] 

(J 

[J 

l 1 
.JIoI 



I: 
I: 
I· .. 

.AI 

I: 

I.'''''' 
. ~ 

I ·,.. 
.-'" 

I~ 

[J 

D 
D 

-------------- .-.----...... - .. -~--... -~-.-~-~--

Paragon TM System Fortran Calls Reference Manual Manual Pages 

LSIZEO (cont.) LSIZEO (cont.) 

Examples 

The following example shows how to use the lsizeO function to increase the size of a file with 
different whence values: 

include 'fnx.h' 

integer newpos, newsize 

c Open the file /tmp/mydata. 

call gopen(12, '/tmp/mydata', M_UNIX) 

c Set file size to 1000 bytes. 

100 

newsize = Isize(12, 1000, SIZE_SET) 

write(*, 100) newsize 
format('New file size is: ilO) 

c Move read/write pointer to the end of the file . 

newpos = Iseek(12, 0, SEEK_END) 

write(*, 200) newpos 
200 format('New pointer position is: ilO) 

c Close the file /tmp/mydata. 

close(12) 

end 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease_notes. 

eseekO, esizeO. lsize 

167 



Manual Pages Paragon ™ System Fortran Calls Reference Manual 

MASKTRAP(} MASKTRAP(} 

Enables or disables send and receive handlers. 

Synopsis 

Parameters 

Description 

168 

INCLUDE 'fnx.h' 

INTEGER FUNCTION MASKTRAP(state) 

INTEGER state 

state The state of send-receive traps: 

o Enables (allows) send and receive traps. 

1 Disables (blocks) send and receive traps. 

Other values are not defined. 

The masktrapO function enables and disables send and receive handlers. This function protects 
critical code from being interrupted by the handler procedure that is executed when using the h ••• O 
calls (hrecvO, hsendO, or hsendrecvO). A masktrap(l) prevents any handler from running; a 
masktrap(O) enables handlers. Any pending interrupts are honored when the mask is removed. The 
masktrapO function returns the previous masking state (lor 0). 

CAUTION 

When using any of the h ••• O calls, you must use masktrapO 
around any code in the main program that could interfere with calls 
in the handler. 

---------~-----------------'----------------

(J 

Irl liL _d 

If ~ 
l ... _ 

", .. ~ 

[J 



,-.., .. 

1_"" 
'" 

r: 
l: 

I·~ --

("'" 
_'-.,' 

I" 
' .. ~ 

l: 

(] 

c 
D 
o 

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

MASKTRAPO (cont.) MASKTRAPO (cont.) 

For example, if the handler performs any I/O, you must put masktrapO calls around any I/O call in 
the main program that could be called while the handler is active. If you do not do this, you could 
find characters from the handler's output interleaved with characters from the main program's 
output. 

Sometimes it is not as obvious which calls could interfere with each other. For example, any two 
library calls that could allocate or free memory could cause the memory subsystem to become 
confused if they were called at the same time. To be safe, keep the handler simple and use the 
masktrapO function to protect all library calls following the h ••• O call that could call the same 
subsystems as the handler while the handler is active. 

Calls to the masktrapO function are necessary, because a handler and the main program share the 
same memory space and can change each other's global variables. This could cause any 
non-reentrant function to fail if it is called by both the handler and the main program at the same 
time. 

Return Values 

The previous value of state. 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds, see the release notes files in 
lusrlshare/release _notes. 

hrecvO, hsendO, hsendrecvO 

169 



Manual Pages Paragon TM System Fortran Calls Reference Manual 

MSGCANCEL() MSGCANCEL() 

Cancels an asynchronous send or receive operation. 

Synopsis 

Description 

Parameters 

170 

INCLUDE 'fnx.h' 

SUBROUTINE MSGCANCEL(mid) 

INTEGER mid 

The msgcancelO subroutine cancels an asynchronous send or receive operation. When msgcancelO 
returns, you do not know whether the send or receive operation completed, but you do know the 
following: 

• The asynchronous operation is no longer active. 

• The message buffer may be reused. 

• The message ID is released. 

mid 

NOTE 

The number of message IDs is limited, and an error occurs when 
no message IDs are available for a requested asynchronous send 
or receive. Therefore, your program should release its message 
IDs as soon as possible by calling msgcancelO, msgdone(), 
msgignoreO, or msgwaitO. 

The message ID returned by one of the asynchronous send or receive calls (for 
example, isendO, irecvO, or isencirecvO) or by the msgmergeO call. 

[
.~ 

.. ~ 

~: 

[: 
(: 
[ :1 



r: 
I': 
[ .. ,.. .. 

I '·· .... 

I: 
1_·"", 

, .oil'] 

I: 
I: 
( ~' 

_J 

( '.-"1 
~J 

(:~ 

[ "'" 
'.~ ~.J 

I: 
I ',., 

-'" 

lJ 

I: 
I~~, 

,.oJ 

U 
IJ 
11 
D 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

MSGCANCEL() (cont.) MSGCANCEL() (cont.) 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease_notes. 

isendO, irecvO, isendrecvO, msgdoneO, msgignoreO, msgmergeO, msgwaitO 

171 



Manual Pages Paragon 1M System Fortran calls Reference Manual 

MSGDONEO MSGDONEO 

Determines whether an asynchronous send or receive operation is complete. 

Synopsis 

Parameters 

Description 

172 

INCLUDE 'fnx.h' 

INTEGER FUNCTION MSGDONE(mid) 

INTEGER mid 

mid Message ID returned by one of the asynchronous send or receive calls (for 
example, isendO, irecvO, or isendrecv()) or by the msgmergeO call. 

If the msgdoneO function returns 1, it means the asynchronous send or receive operation identified 
by mid is complete, and indicates the following: 

• The buffer contains valid data (if mid identifies a receive operation), or the buffer is available 
for reuse (if mid identifies a send operation). 

• The info array (used by the extended receive calls) contains valid information. 

• The info ••• O calls return valid information. 

• The message ID number that identifies the asynchronous send or receive (mid) is released for 
use in a future asynchronous send or receive. 

NOTE 

The number of message IDs is limited, and an error occurs when 
no message IDs are available for a requested asynchronous send 
or receive. Therefore, your program should release its message 
IDs as soon as possible by calling msgcancelO, msgdoneO, 
msgignore(), or msgwaitO. 

[] 

I: 
(J 



[1 

( ','1 ... 
I
"~ 

,ill 

I: 
I,',''', " 

.Jill 

I: 
I: 
(

-11' 

,loI.I 

I,
--~ 

,,," 

r: 
1-: 

r: 

I: 
l: 

11 
D 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

MSGDONE{) (cont.) MSGDONEO (cont.) 

If the mid parameter in the msgdoneO function represents a merged message ID (that is, it was 
returned by the msgmergeO function), the information returned for the info ••• O calls is 
unpredictable. 

Return Values 

o If the send or receive is not yet complete. 

1 If the send or receive is complete. 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds, see the release notes files in 
lusrlshare/release _notes. 

infocountO, infonodeO, infoptypeO, infotypeO, irecvO, isendO, isendrecvO, msgcancelO, 
msgignoreO, msgmergeO, msgwaitO 

173 



Manual Pages Paragon no System Fortran Calls Reference Manual 

MSGIGNOREO MSGIGNOREO 

Releases a message ID as soon as its asynchronous send or receive operation is complete. 

Synopsis 

Parameters 

Description 

174 

INCLUDE 'fnx.h' 

SUBROUTINE MSGIGNORE(mid) 

INTEGER mid 

mid The message ID returned by one of the asynchronous send or receive calls (for 
example, isendO, irecvO, or isendrecvO) or by the msgmergeO call. 

The msgignoreO subroutine releases a message ID as soon as its asynchronous send or receive 
operation completes. 

NOTE 

The number of message IDs is limited, and an error occurs when 
no message IDs are available for a requested asynchronous send 
or receive. Therefore, your program should release its message 
IDs as soon as possible by calling msgcancelO, msgdoneO, 
msgignoreO, or msgwaitO. 

Note the following: 

• Your application must have some alternate means to determine when it can reuse a send or 
receive buffer. 

• For applications that have a natural synchronization, msgignoreO is more convenient and has 
better performance than msgmergeO. 

• Do not use msgignoreO as a substitute for msgwaitO. 

I: 
[: 
(] 

[: 

L 

IJ 



1','111\ .. 
1-.: .. 
I ·..., 

... 

I": 
I'~ 

.<lJ 

r: 
1'"9\ 

. d 

I'~ 

. ..1 

[ '."'i 
;<J 

1"'4 

.-">J 

r·· .. 
. "" 

o 
D 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

MSGIGNORE() (cont.) MSGIGNORE() (cont.) 

Limitations and Workarounds 

See Also 

For infonnation about limitations and workarounds, see the release notes files in 
lusrlsharelrelease_notes. 

irecvO, isendO, isendrecvO, msgcancelO, msgdoneO, msgmergeO, msgwaitO 

175 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

MSGMERGE() MSGMERGE() 

Groups two message IDs together so they can be treated as one. 

Synopsis 

Parameters 

Description 

176 

INCLUDE 'fnx.h' 

INTEGER FUNCTION MSGMERGE(midI, mid2) 

INTEGER midI 
INTEGER mid2 

midI, mid2 Message IDs returned by the asynchronous send or receive calls (for example, 
isendO, irecvO, or isendrecv()) or by the msgmergeO call. 

The msgmergeO function groups mid2 with midI and returns a mid to use for both. After calling 
msgmergeO, the original message IDs (midI and mid2) become invalid (although they are not 
released until the new message ID is released). The operation associated with the new message ID 
does not complete until both of the asynchronous send or receive operations associated with the 
original message IDs complete. 

Normally, msgmergeO returns midI, and only mid2 becomes invalid. As a special case, one mid can 
be -1, in which case the other mid is returned with no other action. 

Do not use the info ••• O calls after a msgmergeO call; the information returned is unpredictable. 

( " 
_.iii 

C 

1' .. 1 
~"" 

I.: .... 



I '" 
~ ... 

r: 
I.

··~ 

"" 

I: 
I: 

( """, 
._.4J 

[~ 

( i 
,.j 

r: 
r: 
r: 
I.'.'~ 
~ 

[ ': 
oJ 

r: 
I: 

(] 

o 
o 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

MSGMERGE() (cont.) MSGMERGEO (cont.) 

Return Values 

A message ID (mid) for use (instead of midI or mid2) in msgcancelO. msgdoneO. msgignoreO. 
msgmergeO. or msgwaitO calls. 

NOTE 

The number of message IDs is limited, and an error occurs when 
no message IDs are available for a requested asynchronous send 
or receive. Therefore, your program should release its message 
IDs as soon as possible by calling msgcancelO, msgdoneO, 
msgignoreO, or msgwaitO. 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds. see the release notes files in 
lusrlsharelrelease _notes. 

irecvO. isendO. isendrecvO. msgcancelO. msgdoneO. msgignoreO. msgwaitO 



........ __ ._._ .. _-------_. __ ._--

Manual Pages Paragon TM System Fortran Calls Reference Manual 

MSGWAITO MSGWAITO 

Waits (blocks) until an asynchronous send or receive operation completes. 

Synopsis 

Parameters 

Description 

178 

INCLUDE 'fnx.h' 

SUBROUTINE MSGWAIT(mid) 

INTEGER mid 

mid The message ID returned by one of the asynchronous send or receive calls (for 
example, isendO, irecvO, or isendrecvO) or by the msgmergeO call. 

The msgwaitO subroutine causes a node process to wait until the asynchronous send or receive 
operation identified by mid completes. When msgwaitO returns: 

• The buffer contains valid data (if mid identifies a receive operation), or the buffer is available 
for reuse (if mid identifies a send operation). 

• The irifo array (used by the extended receive calls) contains valid information. 

• The info ••• O calls return valid information. 

• The message ID number that identifies the asynchronous send or receive (mid) is released for 
use in a future asynchronous send or receive. 

NOTE 

The number of message IDs is limited, and an error occurs when 
no message IDs are available for a requested asynchronous send 
or receive. Therefore, your program should release its message 
IDs as soon as possible by calling msgcancelO, msgdoneO. 
msgignoreO. or msgwaitO. 

(. " ... 

l: 

( '" , " 

_-ii 

[ -

l: 
(: 



[I 

I~ 

I: 

r: 

r"'l· 
.. I 

I·~ 
."", 

(: 
I: 
r: 
I: 
r: 

I··.·~ 

.iJ 

o 
D 

Paragon™ System Fortran Calls Reference Manual Manual Pages 

MSGWAITO (cont.) MSGWAITO (cont.) 

If the mid parameter in the msgwaitO subroutine represents a merged of message ID (that is, it was 
returned by the msgmergeO function), the information returned for the info ••• O calls is 
unpredictable. 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease _notes. 

infocountO, infonodeO, infoptypeO, infotypeO, irecvO, isendO, isendrecvO, msgcancelO, 
msgdoneO, msgignoreO, msgmergeO 

179 



-----------~-,.----.~-,~ 

Manual Pages Paragon™ System Fortran calls Reference Manual 

MYHOSTO MYHOSTO 

Gets the node number of the controlling process. 

Synopsis 

Description 

INCLUDE 'frueh' 

INTEGER FUNCTION MYHOSTO 

The myhostO function returns the node number of the caller's controlling process (the host process) 
for use in send and receive operations. For controlling processes, myhostO returns the same number 
as mynodeO, which is the node number of the calling process. 

Return Values 

The node number of the controlling process. 

Limitations and Workarounds 

See Also 

180 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease_notes. 

csendrecvO, hsendO, hsendrecvO, isendrecvO, mynodeO, myptypeO, numnodesO, DX_IoadveO, 
DX_nforkO 

I: 

,. 
( 'l'!. --



r: 

[: 

I: 

r: 
I: 

r: 
[ '''' 

. .J£J 

l
'~ 
-i 

i 

,oJ 

U 

D 
D 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

MYNODEO MYNODEO 

Gets the node number of the calling process. 

Synopsis 

Description 

INCLUDE 'fnx.h' 

INTEGER FUNCTION MYNODEO 

The mynodeO function returns the node number of the calling process (an integer between 0 and the 
value of numnodes()). 

Return Values 

Examples 

The node number of the calling process. 

The following example shows how to use the mynodeO function to get the node number of the 
calling process and use the node number in an application: 

include 'fnx.h' 

integer 
integer 
character*80 
parameter 

c Identify self. 

iam, msg_type 
count, node, pid, 
msg, smsg, rmsg 
(msg_type = 10) 

iam = myna de ( ) 

c If node 0, then ... 

if(iam .eq. 0) then 
print * 'Starting 

type 

181 



Manual Pages Paragon 1M System Fortran Ca"s Reference Manual 

MVNODEO (cont.) MVNODEO (cont.) 

182 

c Build message. 

msg = 'Hello from node ' 
write (smsg, 100) msg, iam 

100 format (a16, i3, '.') 

c Send message. 

call csend(msg_type, smsg, len (smsg), -1, mypid()) 

write(*, 200) iam, smsg 
200 format('Node " i3, ' sent: ' a20) 

c if not node 0, then ... 

c 

c 

c 

300 

400 

else 

Probe for message. 

call cprobe(msg_type) 

Receive message. 

if(infocount() .le. len(rmsg)) then 
call crecv(msg_type, rmsg, len(rmsg)) 
count = infocount() 
type = infotype() 
pid = infopid() 
node = infonode() 

Report receipt of message. 

1 
2 
3 
4 

write(*, 300) iam, count, type, pid, node 
format ( 'Node " i3, 

, reports " i3 
'-byte message of type' i2, 
, received from PID " i2, 
, on node " i 3 , '.') 

write(*, 400) iam, rmsg 
format('Node " i3, ' received: ' a30) 

endif 
endif 
end 

[.~ 

.~ 

l: 
l: 
[ "" 

.~ 

l: 
f ·~ 

_i:: 



11 
I ··~ 

.~ 

I ··· 
'" 

I-.... 
r-: 
I: 
I
'~ 

Jl>J 

( . ...., 
W 

( = 
"",,-J 

[J 

[J 

I~ 

[J 

("= 

l: 
I.~ . .iiJ 

l: 
IJ 
I) 

D 
D 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

MYNODEO (cont.) MYNODEO (cont.) 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds. see the release notes files in 
lusrlshare/release _notes. 

myhostO. myptypeO. numnodesO. nx_loadveO. nx_nforkO 

183 



--- -------_._-------_._.----._-------

Manual Pages Paragon TM System Fortran calls Reference Manual 

MYPTYPEO MYPTYPEO 

Gets the process type of the calling process. 

Synopsis 

INCLUDE 'fnx.h' 

INTEGER FUNCTION MYPTYPEO 

Description 

The myptypeO function returns the process type of the calling process. 

Return Values 

Examples 

184 

The process type (ptype) of the calling process. 

The following example shows how to use the myptypeO function to get the process type of the 
calling process: 

include 'fnx.h' 

integer iam, msg_type 
integer count, node, pid, type 
character*80 msg, smsg, rmsg 
parameter (msg_type = 10) 

c Identify self. 

iam = mynode ( ) 

c If node 0, then 

if(iam .eq. 0) then 
print * 'Starting 

.,r .~ 

I 
I 
i... •. 

I: 



IJ 
[J 

IJ 
IJ 

[J 

IJ 

IJ 

D 
D 

Paragon™ System Fortran Calls Reference Manual Manual Pages 

MYPTYPEO (cont.) MYPTYPEO (cont.) 

c Build message. 

100 

msg = 'Hello from node ' 
write (smsg, 100) msg, iam 
format (a16, i3, '.') 

c Send message. 

200 

call csend(msg_type, smsg, len (smsg), -1, myptype(» 

write(*, 200) iam, smsg 
format('Node " i3, ' sent: ' a20) 

c if not node 0, then 

else 

c Probe for message. 

call cprobe(msg_type) 

c Receive message. 

if (infocount() .le. len(rmsg» then 
call crecv(msg_type, rmsg, len(rmsg» 
count = infocount() 
type = infotype() 
pid = infopid ( ) 
node = infonode() 

c Report receipt of message. 

300 

400 

1 
2 
3 
4 

write(*, 300) iam, count, type, pid, node 
format('Node " i3, 

, reports " i3 
'-byte message of type' i2, 
, received from PID " i2, 
, on node " i 3 , '.') 

write(*, 400) iam, rmsg 
format('Node " i3, ' received: ' a30) 

endif 
endif 
end 

185 



Manual Pages Paragon ™ System Fortran Calls Reference Manual 

MYPTYPEO (cont.) MYPTYPEO (cont.) 

Limitations and Workarounds 

See Also 

186 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease_notes. 

csendO, csendrecvO, hsendO, bsendrecvO, isendO, isendrecvO, myhostO. mynodeO, 
numnodesO; DX_IoadveO, nx_nforkO. setptypeO 

l: 

r '1 

11J 

i 
b. 

i Iii. _ 

I~ -..-



I'., j 

r: 
r: 

I
·~ 

JiJ 

IJ 
[J 

[ 0-, 
~I 

(J 

IJ 

D 

D 

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

NUMNODESO NUMNODESO 

Gets the number of nodes in the application. 

Synopsis 

INCLUDE 'fnx.h' 

INTEGER FUNCTION NUMNODES() 

Description 

The numnodesO function returns the number of nodes allocated to the application. 

Return Values 

Examples 

The number of nodes in the application. 

The following example shows how numnodesO can be used to determine the number of nodes in 
the application: 

include 'fnx.h' 

integer count, dpsize, iam, xsize, ysize, nbrnodes 
parameter (xsize = 4) 
parameter (ysize = 16) 
double precision x(xsize), y(ysize), dot, norm, work 
character*80 msg 

c Initialize. 

count = 0 
dpsize 8 
dot 0.0 
nbrnodes = numnodes () 

c Identify self. 

iam = mynode () 

187 



Manual Pages Paragon ™ System Fortran Calls Reference Manual 

NUMNODESO (cont.) NUMNODESO (cont.) 

188 

if(iam .eq. 0) print *, 'Starting 

c Each node creates and displays its four-element vector. 

100 
1 

do 1, i = 1, xsize 
x(i) = iam * (xsize) + i-1 
write(*, 100) iam, i, x(i) 
format ('Node', i1, ' x(', i1, ') = 

continue 
f3 .1) 

c Each node calculates and displays its dot product. 

2 

200 

do 2, i = 1, xsize 
dot = dot + x(i)*x(i) 

continue 
write(*, 200) iam, dot 
format('Node " i1, ' dot =' f10.6) 

c Each node sums the dot products of all nodes. 

call gdsum(dot, 1, work) 

c Node a displays the resulting dot product. 

if(iam .eq. 0) write(*, 300) dot 
300 format('dot = " f10.6) 

c Each node normalizes its dot products. 

norm = dsqrt(dot) 
do 3, i = 1, xsize 

x(i) = x(i)/norm 
3 continue 

c Each node collects contributions from other node. 

call gcol(x, xsize*dpsize, y, nbrnodes*xsize*dpsize, count) 

I: 

i -
t.. -

r·l1 
-, -... 



r: 
I ·· .. 

..... 

[ .. '" 
M 

IJ 
[j 

l: 

C 

D 
II 

-~---------.---~-

Paragon TM System Fortran Calls Reference Manual Manual Pages 

NUMNODESO (cont.) NUMNODES() (cont.) 

c Node 0 displays the resulting vector. 

400 
4 

if(iam .eq. 0) then 
do 4, i = 1, nbrnodes*xsize 

write(*, 400) i, y(i) 
format ( 'y(', il, ') =' n.l) 

continue 

endif 
end 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease_notes. 

myhostO, mynodeO, DX_initveO, nx_loadO 

189 



---------~-------.--~~- ~,--~.-~-. 

Manual Pages Paragon 1M System Fortran Calls Reference Manual 

Returns the list of nodes allocated to an application. 

Synopsis 

Parameters 

Description 

INCLUDE 'frueh' 

INTEGER NX_APP _NODES(pgroup, ptr, liscsize) 

INTEGER pgroup 
POINTER (ptr, node_list(l)) 
INTEGER lisCsize 

pgroup 

ptr 

liscsize 

Process group ID for the application, 0 (zero) to specify the calling application. If 
the specified process group ID is not the process group ID of the calling process, 
the calling process's user ID must either be root or the same user ID as the 
specified application. 

Pointer variable that specifies the address of the list of nodes for the application. 
The node numbers are root-partition node numbers. The call allocates memory for 
this parameter. Free this memory using the freeO subroutine. 

Variable into which the DX_app_oodesO function stores the number of elements 
in the node_list parameter. 

The DX_app_oodesO function returns the list of node numbers for the nodes an application is 
running on. You must have read permission on the partition the application is running in to use this 
call. 

Return Values 

On successful completion, the DX_app_oodesO function returns 0 (zero). Otherwise, -1 is returned. 

190 

(
11 

-.jJ 

[.J 

c: 

l: 
[: 
W"'1 
l ,~ 

(: 



( . .., 
.. 11 

I: 

[ .. 
.... 

r: 
I: 
l~ 

."" 

[: 

I] 

D 
D 

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

NX_APP _NODESO (cont.) NX_APP _NODESO (cont.) 

Examples 

Errors 

The following example prints the list of nodes for an application: 

2 

include 'fnx.h' 

pointer 
integer 
integer 

(ptr, mynodes(l)) 
nnodes 
i, status 

status = nx_app_nodes(O, ptr, nnodes) 

if(status .ne. 0) then 
call nX""perror ("nx_app_nodes ()") 
stop 

end if 

do 2, i = 1, nnodes 
print *, mynodes(i) 

continue 

call free (ptr) 

end 

Application does not exist for process group 

The specified process group does not exist. 

Partition permission denied 

Insufficient access permission for this operation on a partition. 

Limitations and Workarounds 

For information about limitations and workarounds, see the release notes files in 
lusrlshare/release _notes. 

191 



Manual Pages Paragon ™ System Fortran Calls Reference Manual 

NX_APP _NODESO (cont.) NX_APP _NODESO (cont.) 

See Also 

192 

( ~ 

... JJ 

.. '" )'., 

~---'~-

I 

•. ;.t,:; 

.. A' 

"'" ~ 

I 
IIil ~ 

! 
li.l .. 
• "wko.J 

l: 
I: 
I: 



I'.·~ ... 

I: 
l: 
(J 

1--' -.--
I: 

r: 
l: 
C 
D 
o 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

DX_app_rectO, mypartO: Returns the height and width of the rectangle of nodes allocated to the current application. 

Synopsis 

Parameters 

Description 

INCLUDE 'fnx.h' 

INTEGER FUNCTION NX_APP _RECT(rows, cols) 

INTEGER rows 
INTEGER cols 

INTEGER FUNCTION MYPART(rows, cols) 

INTEGER rows 
INTEGER cols 

rows 

cols 

Number of rows in the node set for the application. If the node set is not a 
rectangle, the value pointed to by rows is set to 1. 

Number of columns in the node set for the application. If the node set is not a 
rectangle, the value pointed to by cols is set to the number of nodes in the 
application. 

The DX_app_rectO function returns the rectangular dimensions of the node set of the application 
from which the function call is made. 

The mypartO function is identical to the DX_app_rectO function and is provided for compatibility 
with the Touchstone DELTA system. 

Return Values 

On successful completion, the DX_app_rectO function returns 0 (zero). Otherwise, -1 is returned 
and errno is set to indicate the error. 

193 



Manual Pages Paragon TM System Fortran Calls Reference Manual 

NX_APP _RECTO (cont.) NX_APP _RECTO (cont.) 

Examples 

This example returns the number of rows and columns used by the application. 

include 'fnx.h' 

integer*4 rows, cols, result 

if (rnynode() .eq. 0) then 
status = nx_app_rect(rows, cols) 
if(status .ne. 0) then 

call nx-perror ("nx_app_rect () ") 
stop 

end if 
print * 
print * 

end if 
end 

"Number of rows = 
"Number of columns = 

rows 
cols 

Limitations and Workarounds 

See Also 

194 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease_notes. 

Paragon™ System Fortran Calls Reference Manual: nx_app_nodesO, DX_initve_rectO, 
nx_mkpartO, nx-part_attrO, DX]ooCnodesO 

Paragon ™ XPIS System Commands Reference Manual: application, mkpart 

l: 
[ ... ~ 

.AI 

[: 

r--
& ..• 



II 
I'~ 

I: 
r: 
I"": 
1-
[ "'" 

.JMJ 

l.-. : ~ 

["~ 
"" 

l: 
l: 

1= 
[j 

I: 
[~ 

r: 
u 
I] 

D 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

DX_chparCepIO, DX_chparCmodO, DX_chparCnameO, DX_chparCownerO, nx_cbparCrqO, 
DX_cbparCschedO: Changes a partition's characteristics. 

Synopsis 

INCLUDE 'fnx.h' 

INTEGER FUNCTION NX_CHPART_EPL(partition, priority) 

CHARACTER *(*) partition 
INTEGER priority 

INTEGER FUNCTION NX_CHPART_MOD(partition, mode) 

CHARACTER *(*) partition 
INTEGER mode 

INTEGER FUNCTION NX_CHPART_NAME(partition, name) 

CHARACTER *(*) partition 
CHARACTER name*(*) 

INTEGER FUNCTION NX_CHPART_OWNER(partition, owner, group) 

CHARACTER *(*) partition 
INTEGER owner 
INTEGER group 

INTEGER FUNCTION NX_CHPART_RQ(partition, rollin_quantum) 

CHARACTER *(*) partition 
INTEGER rollin_quantum 

195 



Manual Pages 

Parameters 

196 

Paragon 1M System Fortran Calls Reference Manual 

INTEGER FUNCTION NX_CHPART_SCHED(partition, sched_type) 

CHARACTER *(*) partition 
INTEGER sched_type 

partition Relative or absolute patbname of an existing partition for which you are changing 
the characteristics. 

priority (ox_cbparCepIO only) r -
New effective priority limit for the partition expressed as an integer with a range I.. ;~ 
from 0 (lowest priority) to 10 (highest priority) inclusive. 

~ 'l"i 

The calling process must have write permission for the partition to use the • JiI 

nx_cbparCeplO function. 

mode (ox_chparCmodO only) 
New protection modes for the partition expressed as an octal number. See the 
chmodO function in the OSFll Programmer's Reference for more information on 
specifying protection modes. 

The calling process must be the owner of the partition or root user to use the 
nx_chparCmodO function. 

name (ox_chparCnameO only) 
New name for the partition, expressed as a string of any length containing only 
uppercase letters, lowercase letters, digits, and underscores. The 
ox_chparCnameO function can only change the partition's name "in place;" 
there is no way to move a partition to a different parent partition. 

The calling process must have write permission on the parent partition of the 
specified partition to use the ox_cbparCnameO function. 

owner (nx_chparCownerO only) 
New owner for the partition expressed as a numeric user ID (UID). If the owner 
parameter is -1, the owner name is not changed. See the Paragon™ System 
Fortran Compiler User's Guide for information about using the getuidO system 
call to convert a user name to a numeric user ID. 

The permissions required for the ox_chparCownerO function depend on the 
operation. To change the partition's ownership, the calling process must be the 
system administrator. 

c: 
r-" 
~ .. 
(

"1'1 

" 

"" 

[: 

[: 

l: 
(: 

r" •• 



(! 
I .... 

. ~ 

I·· .. 
. 110; 

I. "·' -*"' 

[: 

I: 
I~ 

( '''''' 
.,.oJ 

[J 

[J 

D 
II 

Paragon ™ System Fortran calls Reference Manual Manual Pages 

Description 

group (DX_cbparCownerO only) 
New group for the partition expressed as a numeric group ID (GID). If the group 
parameter is -1, the group name is not changed. See the Paragon ™ System Fortran 
Compiler User's Guide for infonnation about using the getgidO system call to 
convert a group name to a numeric user ID. 

The pennissions required for the DX_cbpart_ownerO function depend on the 
operation. To change the partition's group, the calling process must either be the 
system administrator or must be the partition's owner and changing the group to 
a group that the calling process belongs to. 

rollin_quantum (DX_cbpart_rqO only) 
New rollin quantum for the partition expressed as an integer number of 
milliseconds, or -1 to specify inftnite rollin quantum. The specifted value must not 
be greater than 86,400,000 milliseconds (24 hours). If you specify a value that is 
not a multiple of 100, the value is silently rounded up to the next multiple of 100. 

The minimum rollin quantum can be set in the allocator.config me. See the 
aIlocator.conf"Ig manual page for more infonnation. 

The calling process must have write permission for the partition to use the 
nx_cbparCrqO function. 

sched_type (DX_cbpart_scbedO only) 
Type of scheduling for the partition. These scheduling types are deftned in the 
jnx.h include me and can be specifted: 

Gang scheduling (rollin quantum = 0). 

Space sharing. 

The calling process must have write permission for the partition to use the 
n~cbparCscbedO function. 

The DX_ cbpart. •• O functions change speciftc characteristics of a partition. Each of these calls 
speciftcally changes a partition characteristic as follows: 

DX_cbparCeplO 
Changes the partition's effective priority limit. 

DX_cbparCmodO 
Changes the partition's pennission modes. 

197 



Manual Pages 

198 

Paragon 1M System Fortran Calls Reference Manual 

DX_cbparCnameO 
Changes the partition's name. 

nx_chparCownerO 
Changes the partition's owner and group IDs. 

DX_cbparCrqO Changes the partition's rollin quantum. 

DX_chparCscbedO 
Changes the partition's scheduling type. 

When you create a partition with the mkpart command or the nx_mkpart ••• O functions, you set a 
partition's initial characteristics. You can set specific characteristics or use the default 
characteristics. After creating a partition, you are the partition's owner and you can use the 
nx_cbpart..,O functions or the cbpart command to change the partition's characteristics. 

The nx_cbpart_epIO function changes the effective priority limit for a partition. The effective 
priority limit ranges from 0 to 10. The effective priority limit is the upper priority limit on a partition. 
This limit does not affect the priority of applications or partitions within a partition. The system uses 
the effective priority limit for gang scheduling in partitions. See the Paragon TM System User's Guide 
for more information about effective priority limits and gang scheduling. 

The DX_cbpart_nameO function changes the partition's name only. You cannot use this function to 
change the partition's parent partition or the partition's relationship in a partition hierarchy. 

Each partition has an owner, a group, and protection modes that determine who can perform what 
operations on a partition. When you create a partition, you become the partition's owner and the 
partition's group is set to your current group. The DX_chpart_ownerO function changes the owner 
and group of a partition. The owner and group must be specified as a numeric ID, not as a name. 

A partition's protection modes consist of three groups of permission bits that indicate the read, write 
and execute permissions for the owner, group, and other users of the partition. A partition's 
protection modes are initially set when the partition is created. The DX_cbpart_modO function 
changes the protection mode for a partition. Set the mode parameter to the three-digit octal value that 
represents the protection mode you want for the partition. See the chmod command in the OSFll 
Command Reference for more information on specifying protection modes. 

~-......,., , . . , 

r: 
l: 



c 
(~ 

( "'. 
_M 

r: 
I: 
[J 

I: 
[: 

[J 

[J 

[j 

c 
D 
o 

Paragon TM System Fortran calls Reference Manual Manual Pages 

The mccbparCscbedO function cbanges the partition's scheduling to either space sharing 
<NX_SPS) or gang scheduling (NX_GANG). The DX_cbparCscbedO function has the following 
restrictions: 

• You cannot change a partition's scheduling to or from standard scheduling. 

• You cannot change a partition's scheduling to space sharing if the partition contains any active 
applications or overlapping partitions. 

The allocator limits the number of partitions that can use gang scheduling. For information on the 
allocator, see the allocator manual page in the Paragon™ XP/S System Commands Reference 
Manual. You cannot change a partition's scheduling to gang scheduling if the request exceeds the 
maximum number of partitions allocated for gang scheduling. The rollin quantum is automatically 
set to 0 (zero) when changing to gang-scheduling. 

Return Values 

o 

-1 

Errors 

Partition's characteristic was successfully changed. 

Error. Use the DX-perrorO subroutine to display the error message for the current 
error. 

Allocator internal error 

An internal error occurred in the node allocation server. 

Exceeded allocator configuration parameters 

The application exceeded the configuration parameters for the partition. See the allocator manual 
page. 

Exceeds partition resources 

Request exceeds the partition's resources. 

199 



Manual Pages Paragon lM System Fortran calls Reference Manual 

Invalid group 

An invalid group ID was specified. 

Invalid partition rename 

You specified a partition name that was not a simple name. You cannot change a partition's 
relationship within a partition hierarchy. 

Invalid priority 

An invalid priority level was specified. 

Invalid user 

An invalid user ID was specified. 

Partition not found 

The specified partition (or its parent) does not exist. 

Partition permission denied 

The application has insufficient access permission on a partition. 

Scheduling parameters conflict with allocator configuration parameters 

The scheduling parameters conflict with the allocator configuration. See the allocator manual page. 

Limitations and Workarounds 

200 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease_notes. 

---------------~-----~--~ ~-~---~. 

r: 
[: 
[~ 

[ ,", 

" 

...,J 

~~~ 

'-~

I:
r:
I~ --

c
11
I:
[:
(

'Y

....

1'~''1I1. !

'''I

[
'111

,,,i

r:
(

C"':

_,..J

(J

r:
r:
[''''':

-eJ

r:

IJ

IJ
IJ

C

D
D.:!

."

-------,-,--, --,-----------,--- --'"--""-""

Paragon 1M System Fortran Calls Reference Manual Manual Pages

See Also

TM
Paragon System Fortran Calls Reference Manual: nx_mkpartO, DX-pspartO, DX_rmpartO

TM
Paragon XPIS System Commands Reference Manual: allocator, allocator.config, chpart, lspart,
mkpart, pspart, rmpart

OSFIl Command Reference: chgrp(l), chmod(l), chown(l)

201

Manual Pages Paragon TM System Fortran CaUs Reference Manual

Returns the list of empty nodes in the root partition.

Synopsis

Parameters

Description

INCLUDE 'fnx.h'

INTEGER NX_EMPTY _NODES(ptr, liscsize)

POINTER (ptr, node_list(l»
INTEGER lisCsize

ptr

liscsize

Pointer variable to the node_list array into which the ox_empty _nodesO function
stores the list of empty nodes found in the root partition. The node numbers are
root-partition node numbers. The call allocates memory for this parameter. Free
this memory using the freeO function.

Variable into which the ox_empty_nodesO function stores the number of
elements in the node_list array.

The ox_empty _nodesO function returns the list of empty nodes in the root partition. An empty node
is a node in the root partition that does not have a node board in the corresponding slot. An empty
node is specified as "empty" in the SYSCONFIG. TXT file. An empty node shows up as a dash (-) in
the display of the showpart command.

NOTE

Do not call the nx_empty_nodesO function on more than a few
nodes at once.

Return Values

202

On successful completion, the ox_empty _nodesO function returns 0 (zero). Otherwise, -1 is
returned and ermo is set to indicate the error.

(:

~'"
lAJ

i
~~ ,
~A.

r~ --

D
(]
(

"1!1

.. 11;

l:

I~.···
.1IlI

I:
IJ

IJ

c
o
D

Paragon ™ System Fortran Calls Reference Manual

Examples

The following example prints the list of the empty nodes in the root partition:

2

include 'fnx.h'

integer*4
pointer
integer
integer

empty (1)
(ptr, empty)
nempty
i, status

status = nx_empty_nodes(ptr, nempty)

if(status .ne. 0) then
call nx-perror ("nx_empty_nodes () ")
stop

end if

do 2, i = I, nempty
print *, empty (i)

continue

call free (ptr)

end

Limitations and Workarounds

See Also

For information about limitations and workarounds, seethe release notes files in
lusrlsharelrelease_notes.

Manual Pages

Paragon™ System Fortran Calls Reference Manual: Dx_app_DodesO, DX_falled_DodesO

Paragon™ XPIS System Commands Reference Manual: showpart

203

Manual Pages Paragon TM System Fortran Calls Reference Manual

Returns a list of the failed nodes in the root partition.

Synopsis

Parameters

Description

INCLUDE 'frueh'

INTEGER FUNCTION NX_FAILED_NODES(ptr, liscsize)

POINTER (ptr, node_list(l»
INTEGER lisCsize

ptr

lisCsize

Pointer variable to the array node_list into which the DX_failed_oodesO function
stores the list of failed nodes found in the root partition. The node numbers are
root-partition node numbers. The call allocates memory for this parameter. Free
this memory using the freeO function.

Address to a variable into which the DX_failed_oodesOfunction stores the
number of elements in the node_list array.

The DX_failed_oodesO function returns the list of failed nodes in the root partition. The system
boots the nodes that are listed in the SYSCONFIG. TXT file on the diagnostic station. If a node fails
to boot, it is listed as a bad or failed node. A failed node shows up as an X in the display for the
showpart command.

NOTE

Do not call the nx_failecCnodes() function on more than a few
nodes at once.

Return Values

204

On successful completion, the ox_failed_oodesO function returns 0 (zero). Otherwise, -1 is returned
and errno is set to indicate the error.

I:

III'
I

~ -

f~ --

11

r:
(-'1

....

lJ
IJ

IJ

[J

IJ

D
o

Paragon no System Fortran Calls Reference Manual

Examples

The following example prints the list of the failed nodes in the root partition:

2

include 'fnx.h'

integer*4 failed(l)
pointer (ptr, failed)
integer nfailed
integer i, status

status = nx_failed_nodes(ptr, nfailed)

if(status .ne. 0) then
call nx-perror("nx_failed_nodes()")
stop

end if

do 2, i = 1, nfailed
print *, failed(i)

continue

call free (ptr)

end

Limitations and Workarounds

See Also

For information about limitations and workarounds. see the release notes files in
lusrlslwrelrelease_notes.

TId
Paragon System Fortran Calls Reference Manual: mynodeO. DX_app_nodesO.
DX_empty _nodesO

TId
Paragon XPIS System Commands Reference Manual: showpart

Manual Pages

205

Manual Pages

Synopsis

Parameters

206

---.-~-

Paragon TM System Fortran Calls Reference Manual

INCLUDE 'fnx.h'

INTEGER FUNCTION NX_INITVE(partition, size, account, argc, argv)

CHARACTER *(*) partition
INTEGER size
CHARACTER *(*) account
INTEGER argc
INTEGER argv

INTEGER FUNCTION NX_INITVE_RECT(partition, anchor _node, rows,
columns, account, argc, argv)

CHARACTER *(*) partition
INTEGER anchor_node
INTEGER row
INTEGER cols
CHARACTER *(*) account
INTEGER argc
INTEGER argv

partition Relative or absolute patbname of the partition in which to run the application, or
a null string ('''') to use the default partition. The default partition is the partition
specified by the NX_DFLT_PARTenvironment variable, or is the .compute
partition if the NX_DFLT _PART enviromilent variable is not set. The specified
partition must exist and must give execute permission to the calling process.

[.. ~ ..

,. ~1

1.. ...

If the -pn switch is specified on the command line, the specified partition I .. ~
patbname overrides the partition parameter; unless you set the value of argc to 0 _
(zero).

D··'
~i

IJ

lJ
[~

IJ

IJ

[J

IJ

IJ

I]

D
II

Paragon"" System Fortran Calls Reference Manual Manual Pages

NX_INITVE() (cont.) NX_INITVE() (cont.)

Description

size

account

argc

argv

rows

cols

Size of the application (number of nodes to run the application on), or 0 (zero) to
use the default size. The default size is the size specified by the
NJCDEFA ULT _SIZE environment variable, or is all nodes of the partition if the
NX_DEFAULT_SlZE environment variable is not set.

If the -sz or -nd switch is specified on the command line, it overrides the value of
the size parameter, unless you set the value of argc to 0 (zero).

Reserved for future use. Set this parameter to the null string.

Number of arguments on the command line (including the application name). If
the value is 0 (zero), the command line is ignored. If the value is greater than 0
(zero), the command line is parsed.

Command line argument values. Fortran does not support this parameter, so the
value must be 0 (zero).

Node number of the node in the upper left-hand corner ofthe partition's rectangle.
If the node number is -1, the allocator chooses the partition placement. For node
numbers greater than or equal to 0 (zero), the partition is anchored on that node.

Number of rows in the partition's rectangle.

Number of columns in the partition's rectangle.

The DX_initveO function initializes an application on a set of nodes in a specified partition. Use this
call as follows:

• Call either nx_initveO or ox_initve]ectO before any other Paragon system calls.

• Use the -lox switch to link a program that calls either ox_initveO or ox_initve_rectO. Do not
use the -ox option.

The DX_initveO and DX_initve_rectO functions just initialize a program. Use the DX_loadveO,
DX_loadO, or nx_nforkO calls to start a program's processes.

207

Manual Pages Paragon TM System Fortran cans Reference Manual

NX_INITVEO (cont.) NX_INITVEO (cont.)

The DX_initveO function initializes an application to run in a specified number of nodes. Other than
specifying a size, you cannot control how the nodes for your application are allocated. The
DX_initveO function attempts to allocate a square group of nodes if it can. If this is not possible, the
DX_initveO function attempts to allocate a rectangular group of nodes that is either twice as wide as
it is high or twice as high as it is wide. If this is not possible, the nx_initveO function allocates any
available nodes. In this case, nodes allocated to the application may not be contiguous (that is, they
may not all be physically next to each other).

The DX_initve_rectO function initializes an application to run in a specified node set allocated as a
rectangle. You can specify the size and shape of the partition using the rows and cols parameters.
You can specify the placement of the application within its partition using the anchor_node
parameter. If you specify anchor _node to be -1, the allocator places the application wherever it fits.
The DX_initve_rectO function fails if the specified rectangle cannot be allocated, even if the
equivalent number of nodes are available in a non-rectangular shape.

The DX_initveO and DX_initve_reetO functions recognize the following command line switches for
an application: -gth, -mbf, -mea, -mex, -nd, -pkt, -plk, -pn, -pri, -set, -sth, and -sz. See the
application manual page for a description of these switches. When a switch is recognized, the
appropriate application characteristic is set, the switch and any associated argument are removed
from argv, and the variable pointed to by argc is decremented appropriately. The remaining switches
and arguments are moved to the beginning of argv.

The nx_initveO and DX_initve_rectO functions do not recognize the command line arguments -pt,
-on, and \; application. If you want your application to have the same interface as an application
linked with the -DX switch, you must parse the argument list for these arguments and pass the
appropriate values to the DX_loadO or DX_loadveO function.

The application's scheduling priority is specified by the -pri argument in argv. If the -pri switch is
not specified or the argc parameter is 0 (zero), then the scheduling priority is set to 5.

When calling the DX_initveO and DX_initve_rectO functions, the calling process becomes the
controlling process of the application. If the calling process is not already the process group leader,
the DX_initveO and DX_initve_rectO functions disassociate the calling process from its current
process group, create a new process group, and make the calling process the process group leader of
the new process group.

The DX_initveO and nx_initve_rectO functions do not set the calling process's ptype.

Return Values

>0

-1

208

Number of nodes on which the application was initialized.

Error. Use the DX-perrorO subroutine to display the error message for the current
error.

l-- ~
. All

r "'1
I
ill. ~I

I:

D

r:

r'1 I_JIl

[J

IJ
[J

IJ

IJ

D

D

Paragon ™ System Fortran Calls Reference Manual Manual Pages

NX_INITVE() (cont.) NX_INITVE() (cont.)

Errors

Application exists for a process group

An application has already been established for the process group.

Packet size invalid or out of range

The packet size is invalid or out of range.

Memory buffer invalid or out of range

The memory buffer size is invalid or out of range.

Memory each invalid or out of range

The memory each size is invalid or out of range.

Memory export invalid or out of range

The memory export size is invalid or out of range.

Send threshold invalid or out of range

The send threshold size is invalid or out of range.

Give threshold invalid or out of range

The give threshold size is invalid or out of range.

Request overlaps with nodes in use

A partition or application overlaps with another partition or application.

Use of -plk not allowed in gang-scheduled partition

An application cannot use the -pIk switch in a gang-scheduled partition.

209

Manual Pages Paragon 1M System Fortran Calls Reference Manual

NX_INITVEO (cont.) NX_INITVEO (cont.)

The application and the OS are of incompatible revisions

Your application's code is no longer up to date with the current release of the installed operating
system. You must relink your application.

Allocator internal error

An internal error occurred in the node allocation server.

Partition permission denied

The application has insufficient access rights to a partition for this operation.

Bad node specification

A bad node was specified.

Invalid priority

An invalid priority value was specified.

Partition not found

The specified partition was not found.

Exceeds partition resources

The request exceeds the partition resources.

Limitations and Workarounds

See Also

210

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

TM
Paragon System Fortran Calls Reference Manual: DX_nforkO, nx_loadO

Paragon TM XPIS System Commands Reference Manual: allocator, application

r:

[
~:

:,

"

I:
(J

r~

11

[J

[J

[J

IJ

IJ
[J

I]

D
II

Paragon ™ System Fortran Calls Reference Manual Manual Pages

Initializes a new application with specified attributes.

Synopsis

Parameters

INCLUDE 'frueh'

INTEGER FUNCTION NX_INITVE_ATTR(partition, argc, argv [attribute,
value} ... NX_ATTR_END)

CHARACTER *(*) partition
INTEGER argc
INTEGER argv
INTEGER attribute
CHARACTER * I INTEGER value

partition

argc

argv

attribute

Relative or absolute pathname of the partition in which to run the application, or
a null string ("") to use the default partition. The default partition is the partition
specified by the NJCDFLT_PARTenvironment variable, or is the .compute
partition if the NJCDFLT_PARTenvironment variable is not set. The specified
partition must exist and must give execute permission to the calling process.

If the -pn switch is specified on the command line, the specified partition
pathname overrides the partition parameter; unless you set the value of argc to 0
(zero).

Number of arguments on the command line (including the application name). If
the value is 0 (zero), the command line is ignored. If the value is greater than 0
(zero), the command line is parsed.

Command line argument values. Fortran does not support this parameter, so the
value must be 0 (zero).

Attribute constant to use for creating the new partition. The attribute parameter
must be followed by the value parameter. The value parameter sets the value of
the attribute. See the "Attributes" section for the list of attribute constants you can
use with the attribute parameter.

211

Manual Pages

Description

212

value

Paragon TM System Fortran Calls Reference Manual

Value of the attribute specified by the attribute parameter. A value parameter must
follow each attribute parameter. The data type of the value parameter depends on
the preceding attribute parameter. See the "Attributes" section for a description of
values.

NX_ATTR_END
Constant that marks the end of the list of attribute, value pairs.

The w,-initve_attrO function initializes an application to run in a specific partition. The
DX_initve_attrO function has the functionality of the nx_initveO and nx_initve_reetO functions,
but you use attributes to specify how to initialize the application.

You specify attributes in the argument list of the function as a set of zero or more attribute, value
pairs: an attribute constant and a value. The attribute constant is the name of the attribute. The
attribute value can be either an integer, array of integers, or a character string depending on the
attribute. You use the attribute parameter to specify the attribute constant and the value parameter
to specify the value of the attribute. See the "Attributes" section for the list of the attributes that can
be set in the DX_initve_attrO function.

The DX_initve_attrO function recognizes the following command line switches for an application:
-gth, -mbf, -mea, -mex, -nd, -pkt, -plk, -pn, -pri, -set, -sth, and -sz. See the application manual
page for a description of these switches. When a switch is recognized, the appropriate application
characteristic is set, the switch and any associated argument are removed from argv, and the variable
pointed to by argc is decremented appropriately. The remaining switches and arguments are moved
to the beginning of argv.

The DX_initve_attrO function does not recognize the command line arguments -pt, -on, and \;
application. If you want your application to have the same interface as an application linked with
the -DX switch, you must parse the argument list for these arguments and pass the appropriate values
to the DX_loadO or DX_IoadveO function.

When calling the DX_initve_attrO function, the calling process becomes the controlling process of
the application. If the calling process is not already the process group leader, the DX_initve_attrO
function disassociates the calling process from its current process group, creates a new process
group, and makes the calling process the process group leader of the new process group.

The application's scheduling priority is specified by the -pri argument in argv. If the -pri switch is
not specified or the argc parameter is 0 (zero), then the scheduling priority is set to 5.

fill
iJi

l,, • , ..

[

r

r~ --..

('"" ,..II

I:
[:

(J

IJ
[J

C

II
D

Paragon TM System Fortran Calls Reference Manual Manual Pages

Attributes

NOTE

If you call nx_initve_attrO in a subprogram, you must include
fnx.h after the subprogran declaration and before the call. This is
required for the call to recognise the pre-defined attribute
constants (for example, NX_ATTR_SZ).

The attribute parameter can be set with the following attribute constants:

Attribute Constant Description

Specifies the node number of the node in the upper
left-hand corner of the partition rectangle. The value
parameter must be of type long.

You may only specify NX_ATTR_ANCHOR when
NX_ATTR_RECT is present. If the value parameter is -1,
the system chooses the partition placement. For node
numbers greater than or equal to zero, the partition is
anchored on that node.

Specifies the threshold for the "give me more messages"
message in bytes. The value parameter must be of type
long.

If you use the -gth give_threslwld switch from the
command line and argc is not zero (i.e. it is in the argc/argv
list); it overrides the value of the NX_ATTR_GTH value.

Specifies the total amount of memory allocated to message
buffers in bytes. The value parameter must be of type long.

If you use the -mbf memory_buffer switch from the
command line and argc is not zero, it overrides the value of
the NX_ATTR_MBF value.

Specifies the amount of memory allocated to buffering
messages from each other node in bytes. The value
parameter must be of type long.

If you use the -mea memory_each switch from the
command line and argc is not zero, it overrides the value of
the NX_ATTR_MEA value.

213

Manual Pages

Attribute Constant

214

Paragon '1M System Fortran Calls Reference Manual

Description

Specifies the total amount of memory allocated to
buffering messages from other nodes in bytes. The value
parameter must be of type long.

If you use the -mex memory 3xport switch from the
command line and argc is not zero, it overrides the value of
the NX_ATTR_MEX value.

Specifies the total number of other processes from which
each process expects to receive messages. The value
parameter must be of type long. The default value is the
number of nodes allocated for the application.

If you use the -noc correspondents switch from the
command line and argc is not zero, it overrides the value of
the NX_ATTR_NOC value.

Specifies the size of each message packet in bytes. The
value parameter must be of type long.

If you use the -pkt packecsize switch from the command
line and argc is not zero, it overrides the value of the
NX_ATTR_PKT value.

Specifies whether to lock the data area of each process into
memory. The value parameter must be of type long. The
value 1 locks the data area of each process into memory,
while the value 0 (zero) does not.

This attribute is the same as -plk in argv list. The existing
interaction between -plk and REJECT_PLK is preserved.

Specifies the priority at which the application runs. The
value parameter must be of type long.

If you use the -pri priority switch from the command line
and argc is not zero, it overrides the value of the
NX_ATTR_PRI value.

l:

[l!
.. 11

r -.
I

Ir.. .~.

(", .
. ,

...

(
'''1

....

I:
(11

~I --

11 I,j;

1."1 .~

I:
r~

[""
--

IJ

l:

l ' ·oJ

C

D
II

Paragon TM System Fortran Calls Reference Manual

Attribute Constant

Manual Pages

Description

Specifies running the application on a rectangular node set.
The value parameter must be of type long *. The value
parameter is a pointer to an array of two integers; the first
integer is the height of the rectangle, while the second is its
width.

If you specify NX_ATTR_SEL, all the nodes in the
rectangle, must be consistent with the selected attributes.

If you use either a -sz .or a -nd switch from the command
line and argc is not zero, it overrides the value of the
NX_ATTR_RECT value.

Specifies whether to relax the requirement that all nodes
requested must be available and eligible for allocation. The
value parameter must be of type long. The value 0 does not
relax the requirement, while the value 1 relaxes the
requirement.

If you specify a value of 1 and also use NX_ATTR_RECT
and NX_A TTR_RECT, the requirement that all requested
nodes must be allocated for the application is relaxed.

Specifies the number of bytes to send right away when the
available memory is above send_threshold. The value
parameter must be of type long.

If you use the -set send_count switch from the command
line and argc is not zero, it overrides the value of the
NX_ATTR_SCT value.

Specifies the send threshold for sending multiple packets.
The value parameter must be of type long.

If you use the -8th send_threshold switch from the
command line and argc is not zero, it overrides the value of
the NX_ATTR_STH value.

215

---------~~-~~~-- -

Manual Pages

Attribute Constant

Paragon TM System Fortran calls Reference Manual

Description

Specifies the size of the application (number of nodes to
run the application on).The value parameter must be of
type long.

The default for value is 0 (zero).

A value of 0 (zero) or -1 specifies using the default size set
by the N1CDFLT_SIZE environment variable, or when
NX_DFLT _SIZE is not set, is all nodes of the partition.

If you use either a -sz or a -nd switch from the command
line and argc is not zero, it overrides the value of the
NX_ATTR_SZ value.

Nodes are selected using the criteria specified by the
NX_A TTR_SEL attribute, if any. If the value of the
NX_A TTR_RELAXED attribute is specified as 1, fewer
nodes than the requested number may be allocated and the
application will run.

Specifies a pointer to a node attribute. string. The value
parameter must be of type char

If you specify multiple NX_ATTR_SEL attributes, the
result is the logical AND of all of them. Node attribute
strings are case-insensitive.

If you use the -nt node_type switch from the command line
and argc is not zero, it overrides the values of both the
NX_ATTR_SEL and NX_MKPART_ATTR_EXCL
values.

The following shows the format of the value parameter for the NX_ATTR_SEL attribute.

216

Selects nodes having the specified attribute. For example,
when node_attribute equals the string mp, only MP nodes
are selected. The standard node attributes are shown in the
"Node Attributes" section.

l:
[:

l:
I:
I ~. ..
-- ~

(]

(. .,
,.JJ

I-"'II!I

.J

l:
[J

IJ
~. L

[J

(J

[J

IJ

U
D
o

--- - .----.. -----.-~~------- .. --~~ --- ---. --~-

Paragon 1M System Fortran Calls Reference Manual

!node _attribute

[relop] [value]node_attribute

ntype[,ntype] ...

Manual Pages

Selects nodes not having the specified attribute. For
example, when node_attribute equals the string !io, only
nodes that are not I/O nodes are selected. Note that no
white space may appear between the ! and node_attribute.

Selects nodes having a specified value or range of values
for the attribute. For example, the string >=16mb selects
nodes with 16M bytes or more of RAM. The string 32mb
selects nodes with exactly 32M bytes of RAM. And, the
string >proc selects nodes with more than one processor.

The relop can be =, >, >=, <, <=, !=, or ! (!= and ! mean the
same thing). If the relop is omitted, it defaults to =.

The value can be any nonnegative integer. If the value is
omitted, it defaults to 1.

The node_attribute can be any attribute shown in the
"Node Attributes" section, but is usually either proc or mb.
(Other attributes have the value 1 if present or 0 if absent.)

No white space may appear between the relop, value, and
attribute.

Selects nodes having all the attributes specified by the list
of ntypes, where each ntype is a node type specifier of the
form node_attribute, !node_attribute, or
[relop][value]node_attribute. For example, the string
32mb, !io selects non-io nodes with 32M bytes of RAM.

You can use white space (space, tab, or newline) on either
side of each comma, but not within an ntype.

217

Manual Pages

218

Paragon n.t System Fortran Calls Reference Manual

Node Attributes

The following shows the most common values for node_attribute. A node attribute that is indented
is a more specific version of the attribute from the previous level of indentation. For example, net
and scsi nodes are specific types ofio node; enet and bippi nodes are specific types of net node (and
also specific types ofio node).

Attribute

bootnode
gp
mp
mcp
nproc
nmb
io
net
enet
hippi

scsi
disk
raid

tape
3480
dat

IDstring

Meaning

Boot node.
GP (two-processor) node.
MP (three-processor) node.
Node with a message coprocessor.
Node with n application processors (not counting the message coprocessor).
Node with nM bytes of physical RAM.
Any 110 nodes.
110 node with any type of network interface.
Network node with Ethernet interface.
Network node with lllPPI interface.
110 node with a SCSI interface.
SCSI node with any type of disk.
Disk node with a RAID array.
SCSI node with any type of tape drive.
Tape node with a 3480 tape drive.
Tape node with a DAT drive.
SCSI node whose attached device returned the specified IDstring. For example, a
disk node might have the IDstring NCR ADP-92101 0304.

Specifying the Nodes Allocated to the Application

The DX_initve_attrO function provides the following ways to specify the nodes allocated to the
application:

• Using NX_A TTR_SZ alone requests the specified number of nodes. A value of 0 or -1 requests
the number of nodes specified by $NJCDFLT _SIZE, or all the nodes of the partition if
$NX_DFLCSIZE is not set.

l:

(:

[~

--~ ,-,

r:
l:

1'""1

_JiI

I"'· ,.AI

I:

[J

IJ
IJ
[J

IJ
[J

IJ

u
o
III
III

Paragon TM System Fortran Calls Reference Manual Manual Pages

NX_ATl'R_SZ attempts to allocate a square group of nodes. If this is not possible, it attempts
to allocate a rectangular group of nodes that is either twice as wide as it is high or twice as high
as it is wide. If this is not possible, it allocates any available nodes. In this case, the nodes
allocated to the application may not be contiguous.

• Using NX_A Tl'R_RECT alone requests a rectangle of nodes specified by height and width.
The system places the rectangle within the partition.

• Using both NX_A TTR_RECT and NX_ATTR_ANCBOR requests a rectangle of nodes
specified by height and width, whose upper left comer is located at the specified anchor node.
You can place NX_ATTR_RECT and NX_ATTR_ANCBOR in any order within the
argument list. If you supply a value of -1 for NX_ATl'R_ANCBOR, the system determines
the anchor node within the partition.

• Using NX_ATl'R_SEL alone requests all nodes by attribute (of a specific node type) in the
partition.

• Using NX_ATTR_SEL together with NX_ATTR_SZ, NX_ATTR_RECT, and/or
NX_ATTR_ANCBOR requests the nodes specified by the NX_ATTR_SZ,
NX_ATTR_RECT, and/or NX_ATTR_ANCBOR, all of which must have the attributes
specified by the NX_ATTR_SEL.

• Not using NX_ATTR_SEL, NX_ATTR_SZ, NX_ATTR_RECT, or NX_ATTR_ANCBOR
requests the number of nodes specified by $NJCDFLT_SlZE. When $NX_DFLT_SIZE is not
set, all nodes of the partition are requested.

• Using NX_ATTR_RELAXED with a value of 1 together with NX_ATTR_SEL,
NX_A TTR_SZ, NX_ATTR_MAP, NX_ATTR_RECT, or NX_ATTR_ANCBOR requests
all the available nodes (nodes that meet the attribute requirements) in the specified node set
(requested size and/or shape), up to the number of nodes requested. For NX_INITVE~ TTRO
to return successfully, at least one of the specified nodes must be available.

You can override all the attributes with command-line switches, particularly the node set size and
location. For example, either the -sz or -nd switch overrides NX_ATTR_SZ, NX_A TTR_RECT,
and NX_ATTR_ANCBOR. If you override an attribute with a command-line switch, the effect is
as though you had specified it in the DX_initve_attrO call.

The following combinations of these attributes are invalid:

219

Manual Pages Paragon 1M System Fortran Calls Reference Manual

• NX_A TTR_RELAXED together with NX_ATTR_RECT, unless you also specify
NX_ATTR_ANCHOR with a value other than -1.

Using any of these combinations of attributes causes DX_initve_attrO to fail with the error ''invalid
attribute specified."

Return Values

>0

-1

Errors

Allocated nodes: The number of nodes allocated for the application.

Error: No nodes matched the attributes specified in the attribute selector. An error
has occurred and ermo has been set. Note that the error occurs even if
N1CAITR_REIAXED is set to 1.

Application exists for process group

An application has already been established for the process group.

Memory buffer invalid or out of range

The memory buffer size is invalid or out of range.

Memory each invalid or out of range

The memory each size is invalid or out of range.

Memory export invalid or out of range

The memory export size is invalid or out of range.

Packet size invalid or out of range

The packet size is invalid or out of range.

Send threshold invalid or out of range

The send threshold size is invalid or out of range.

220

(
.. l!

. .lII

I:

[~

l:
(
.~

".::
.-A<i

I:
(l1
--..-

IJ

IJ
IJ

D
II

Paragon™ System Fortran Calls Reference Manual Manual Pages

Give threshold invalid or out of range

The give threshold size is invalid or out of range.

Request overlaps with nodes in use

A partition or application overlaps with another partition or application.

Use of -plk not allowed in gang-scheduled partition

An application cannot use the -plk switch in a gang-scheduled partition.

The application and the as are incompatible revisions

Your application's code is no longer up to date with the current release of the installed operating
system. You must relink your application.

Allocator internal error

An internal error occurred in the node allocation server.

Partition permission denied

The application has insufficient access rights to a partition for this operation.

Bad node specification

A bad node was specified.

Invalid priority

An invalid priority value was specified.

Partition not found

The specified partition was not found.

221

Manual Pages Paragon 1M System Fortran Calls Reference Manual

Attributes do not match

Some nodes in the map or rectangle do not qualify. An attribute selector was specified with nodes
in the map or rectangle that do not.have all the specified node attributes.

Exceeds partition resources

The request exceeds the partition resources.

Limitations and Workarounds

See Also

222

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

commands: application, chpart, lspart, mkpart, pspart, rmpart

(:

I'IIr""' ""',
I
I

l:
l:
(;

c
r:
I:

I: .,
U

D
D
II

Paragon ™ System Fortran calls Reference Manual Manual Pages

DX_loadO, DX_loadveO: Loads and starts an executable image.

Synopsis

INCLUDE 'fnx.h'

INTEGER FUNCTION NX_LOAD(node_list, numnodes, ptype, pid_list,
pathname)

INTEGER node_list(*)
INTEGER numnodes
INTEGER ptype
INTEGER pid_list(*)
CHARACTER *(*) pathname

INTEGER FUNCTION NX_LOADVE(node_list, numnodes, ptype, pid_list,
pathname, argv, envp)

INTEGER node_list(*)
INTEGER numnodes
INTEGER ptype
INTEGER pid_list(*)
CHARACTER *(*) pathname
INTEGER argv
INTEGER envp

NOTE

It is possible that after loading and starting an executable on
multiple nodes, the executable can fail on more than one node.
Each failure on each node can be for a different reason. The value
of the error number reflects only one of the failures. In such cases,
it may not be possible to determine which failure the error number
value is for.

223

Manual Pages

NX_LOADO (cont.)

Parameters

numnodes

ptype

pathname

argv

envp

224

Paragon 1M System Fortran Calls Reference Manual

NX_LOADO (cont.)

Array of node numbers on which to load and start the executable image.

NOTE

Do not specify the same node number more than once. If you
specify the same node twice, two processes are created on the
specified node, but one of the processes is terminated shortly after
creation with the error "setptype: Ptype already in use".

Number of node numbers in the node_list array. If the numnodes parameter is set
to -I, the application is loaded onto all the application's nodes (the node_list
parameter is ignored).

Process type of the new process(es).

Pathname of the executable image to load and start.

Array of OSFIl process IDs (PID) of the new processes. Each element of the
pid_list array identifies the process ID of the node identified by the corresponding
element of the node_list parameter. An entry of 0 (zero) indicates that the process
on the corresponding node was not started successfully. The pid_list array needs
to be the size of the number of nodes used in the application.

If the numnodes parameter equals -I, the first element of the pid_list array equals
the PID of node 0, the second element of the pid_list array equals the PID of node
I, and so on for all the nodes in the system.

Must be 0 (zero). Any other value causes an error.

Must be 0 (zero). Any other value causes an error.

-------~-~-----~-----~------- ---

l:

... -,
!

11
11

IJ

~ u

In.,.
~

D
D
II

Paragon 1M System Fortran Calls Reference Manual Manual Pages

NX_LOAD{) (cont.) NX_LOADO (cont.)

Description

The nx_loadO and nxjoadveO functions load and start an executable image on the nodes specified
by node_list. These calls can only be made after the calling process makes an initial nx_initveO call.

The nx_loadveO function is provided for compatibility with the corresponding Paragon TM OSFIl C
system call. See the Paragon™ System C Calls Reference Manual. The nx_loadveO function is
identical to the DX_loadO function, except for the argv and envp parameters. These parameters are
not supported in the Fortran version of the DX_loadveO function. You specify a 0 (zero) value for
these parameters. The nx_loadO function is preferable for Fortran applications.

The nx_loadO and nx_loadveO functions return immediately to the calling process. Use the
DX_ waitallO function to wait for processes created by the DX_loadO and nx_loadveO functions.

Return Values

>0

-1

Number of child processes started successfully.

Error. Use the nx-perrorO subroutine to display the error message for the current
error.

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

225

Manual Pages

Synopsis

226

Paragon TM System Fortran Calls Reference Manual

INCLUDE 'frueh'

INTEGER FUNCTION NX_MKPART(partition, size, type)

CHARACTER *(*) partition
INTEGER size
INTEGER type

INTEGER FUNCTION NX_MKPART_RECT(partition, rows, cols, type)

CHARACTER *(*) partition
INTEGER rows
INTEGER cols
INTEGER type

INTEGER FUNCTION NX_MKPART_MAP(partition, numnodes, node_list,
type)

CHARACTER *(*) partition
INTEGER numnodes
INTEGER node_list(*)
INTEGER type

l:
I:
[~

(:

- . r'

i "" '

".~.I U

n
~

l:

IJ
[J

IJ

IJ
[J

IJ

D
D

~~~----. ----_. 

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

NX_MKPART() (cont.) NX_MKPART() (cont.) 

Parameters 

Description 

partition 

size 

type 

rows 

cols 

numnodes 

New partition's relative or absolute pathname. The new partition must not exist. 
The parent partition of the new partition must exist and must give the calling 
process write permission. 

Number of nodes for the new partition, or -1 to specify all nodes of the parent 
partition. If you specify a size smaller than the number of nodes in the parent 
partition, the system selects the nodes that make up the new partition and the 
nodes are not necessarily contiguous. 

New partition's scheduling type: NX_STD specifies standard scheduling and 
NX_GANG specifies gang scheduling. The scheduling type names are specified 
in the nx.h include file. See the Paragon™ System User's Guide for more 
information about partitions and scheduling. 

Number of rows in the new partition. 

Number of columns in the new partition. 

Number nodes in the parent partition available to the new partition. 

Array of node numbers in the parent partition available to the new partition. 

The DX_mkpartO, DX_mkparCrectO. or DX_mkparCmapO functions create partitions for your 
application programs. The nx_mkpartO function creates a partition with a specified number of 
nodes. The system selects the shape of the partition and the nodes that make up the partition. The 
nodes are not necessarily contiguous. 

The DX_mkparCrectO function creates a partition with a rectangular shape and a specified number 
of rows and columns. The system allocates the rectangular partition where it can in the parent 
partition. 

The DX_mkparCmapO function creates a partition with a specified list of nodes. You pass the 
numnodes and node list parameters to specify the number of nodes and the list of nodes to use for the 
new partition. The node numbers listed in the nodelist must exist and be available in the parent 
partition. The system allocates the nodes for the new partition from the nodelist only. 

227 



-~ ------~~------.-----.-----~-.-- - "----.-_._-------------

Manual Pages Paragon 1M System Fortran Calls Reference Manual 

NX_MKPARTO (cont.) NX_MKPARTO (cont.) 

When you create a partition with the wcmkpart. •• O functions. the new partition gets default 
characteristics. The partition's owner and group are set to the owner and group of the calling process. 
All other characteristics including the effective priority limit. protection mode. and rollin quantum 
are set to the same values as the parent partition. If you want to change a partition's characteristics, 
use the DX_chpart. •• O functions or the cbpart command. 

Return Values 

>0 

-1 

Errors 

Number of nodes allocated for the partition. 

Error. Use the nx-perrorO subroutine to display the error message for the current 
error. 

Partition permission denied 

The application has insufficient access permission on a partition. 

Allocator internal error 

An internal error occurred in the node allocation server. 

Bad node specification 

The specified node is a bad node or is not present in the partition. You specified the same node 
number more than once in the node_list parameter. 

Partition not found 

The specified partition (or its parent) does not exist. 

Partition exists 

The specified partition already exists. 

228 

( : 

(: ~, 

" .. ' 

I: 
I: 



1] .. " 
,,' . 

I) 

I "" ... 

l: 
l: 
I'~ 

... 

IJ 

r: 
IJ 
I) 

U 

IJ 

IJ 

IJ 

IJ 

IJ 

IJ 
I] 

D 
II 
II 

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

NX_MKPARTO (cont.) NX_MKPARTO (cont.) 

Exceeds partition resources 

Request exceeds the partition's resources. 

Limitations and Workarounds 

See Also 

For infonnation about limitations and workarounds, see the release notes files in 
lusrlsharelrelease _notes. 

chpart, lspart, mkpart, DX_chpartO, DX]mpartO, pspart, rmpart 

229 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

Creates a new partition. 

Synopsis 

Parameters 

230 

INCLUDE 'fnx.h' 

INTEGER FUNCTION NX_MKPART_ATTR(partition, [attribute, value,] ... 
NX_ATTR_END) 

CHARACTER *(*) partition 
INTEGER attribute 
CHARACTER * I INTEGER value 

partition 

attribute 

value 

New partition's relative or absolute pathname. The new partition must not exist. 
The parent partition of the new partition must exist and must give the calling 
process write permission. 

Attribute constant to use for creating the new partition. The attribute parameter 
must be followed by the value parameter which sets the value of the attribute. See 
the "Attributes" section for the list of attribute constants you can use with the 
attribute parameter. 

Value of the attribute specified by the attribute parameter. A value parameter must 
follow each attribute parameter. The data type of the value parameter depends on 
the preceding attribute parameter. See the "Attributes" section for a description of 
the values for the 

NX_ATTR_END 
Constant that marks the end of the list of attribute, value pairs. 

I"" .'. 
I 

~ .~ 

(~ --



11 
11 

IJ 
[J 

c 
(j 

IJ 

IJ 
r'J.'.' .. L 

n 
IIJJ 

D 
II 
D 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

Description 

The DX_mkparCattr() function provides the functionality of the DX_mkpartO, DX_mkparCrectO, 
or DX_mkpart_mapO functions to create partitions for your application programs. 

The DX_mkpart_attr() function creates a partition using attributes that specify the partition's 
characteristics. You specify the attributes in the function's argument list. An attribute consists of an 
attribute constant and a value. The attribute constant is the name of the attribute. The attribute value 
can be either an integer, array of integers, or a character string depending on the attribute. You use 
the attribute parameter to specify the attribute constant and the value parameter to specify the value 
of the attribute. See the "Attributes" section for the list of the attributes that can be set in the 
DX_mkpart_attrO function. 

When you create a partition with the DX_mkpart_attr() function, the new partition gets default 
characteristics. The partition's owner and group are set to the owner and group of the calling process. 
Other characteristics including the effective priority limit, protection mode, and rollin quantum are 
set, by default, to the same values as the parent partition, but can be changed using attributes. 

Attributes 

NOTE 

If you call nx_mkparCattr() in a subprogram, you must include 
fnx.h after the subprogran declaration and before the call. This is 
required for the call to recognise the pre-defined attribute 
constants (for example, NX_ATTR_SZ). 

The attribute parameter can be set with the following attribute constants. The values for the value 
parameter are described in the "Description" column. 

Attribute Constant Description 

Specifies the upper-left comer of a rectangular partition 
when used with the NX_ATTR_RECT attribute. The 
value parameter must be of type long. 

If NX_ATTR_SEL is specified, the selected attributes 
must be consistent with all nodes in the list unless 
NX_ATTR_RELAXED is specified. 

231 



Manual Pages 

232 

------"------

paragon™ System Fortran calls Reference Manual 

Specifies the effective priority limit of the new partition. 
The value parameter must be of type long and be an integer 
that ranges from 0 to 10, inclusive (0 is low priority, while 
10 is high). 

The new partition uses gang scheduling. NX_ATTR_EPL 
can be used with or without NX_ATTR_SCIlED. 
However, if NX_A TTR_SCIlED is present, it must be set 
to NX_GANG or NX_SPS. If NX_ATTR_EPL is not 
specified, and the partition is to be gang scheduled 
(NX_ATTR_RQ or NX_ATTR_SCIlED equals 
NX_GANG or NX_SPS), the partition has the same 
effective priority limit as its parent. 

Specifies a set of nodes to use for a partition. The value 
parameter must be of type long *. It functions as a pointer 
to an array of node numbers. 

NX_A TTR_SZ must also be specified to give the length of 
the array, but need not precede it in the list of arguments. If 
NX_A TTR_SEL is specified, the selected attributes must 
be consistent with all nodes in the list unless 
NX_A TTR_RELAXED is specified. Do not specify the 
same node number more than once. 

Specifies the protection modes for the partition. The value 
parameter must be of type long. 

Specifies a rectangular partition. The value parameter must 
be of type long *. It functions as a pointer to an array of 
two integers; the first integer is the height of the rectangle 
and the second integer is its width. 

If NX_ATTR_SEL is specified but 
NX_ATTR_RELAXED is not, the selected attributes 
must be consistent with all nodes in the rectangle. 

Specifies whether to relax the requirement that all nodes 
requested must be available and eligible for allocation. The 
value parameter must be of type long. The value of 0 has 
no effect; the value of 1 relaxes the requirement. 

[: 

, " 
[.oJ 

L:' 

I: 



11 
11 
I·~ 

_iJ 

c 
u 

u 
[j 

u 
IJ 

IJ 

IJ 
(J 

D 
II 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

Specifies the rollin quantum for the new partition. The 
value parameter must be of type long. It specifies 
milliseconds and must not be larger than 86,400,000 (24 
hours). A value of 0 means infinite; once rolled in, an 
application runs to completion. 

NX_ATTR_RQ can be used with or without 
NX_ATTR_SCHED. However, if NX_ATTR_SCHED 
is present, it must be set to NX_GANG. If 
NX_ATTR_RQ is not specified, and the partition is to be 
gang scheduled (NX_ATTR_SCHED equals 
NX_GANG), the partition has the same rollin quantum as 
its parent. 

Specifies the new partition's scheduling type. The value 
parameter must be of type long. It must be NX_STD for 
standard, NX_SPS for space sharing or NX_GANG for 
gang scheduling. If you do not specify a type, it defaults to 
that of the parent partition. The scheduling type names are 
specified in the nx.h include file. See the Paragon ™ System 
User's Guide for more information about partitions and 
scheduling. 

Specifies the number of nodes in the new partition. The 
value parameter must be of type long. A 0 (zero) or -1 for 
value requests that all nodes in the parent partition that 
meet the criteria specified by NX_A TTR_SEL be 
allocated. If value is smaller than the parent partition is 
specified, the nodes are selected by the system and are not 
necessarily contiguous. 

A pointer to a Node Attribute string. The value parameter 
must be of type char *. 

If you specify multiple NX_ATTR_SEL's, the Attribute 
Selector is the logical and of all of them. Node Attribute 
strings are case-insensitive. The Node Attribute string may 
consist of a comma-separated list of selectors. See the 
"NX_A TTR_SEL Values" section for information on how 
to specify value. 

233 



Manual Pages 

234 

Paragon TM System Fortran Calls Reference Manual 

[ .... -
.. .irI 

The following shows the format of the value parameter for the NX_A TTR_SEL attribute. 

!node _attribute 

[relop] [value ]node _attribute 

ntype[,ntype ] ... 

Selects nodes having the specified attribute. For example, 
when node_attribute equals the string mp, only MP nodes 
are selected. The standard node attributes are shown in the 
"Node Attributes" section. 

Selects nodes not having the specified attribute. For 
example, when node_attribute equals the string !io, only 
nodes that are not I/O nodes are selected. Note that no 
white space may appear between the! and node_attribute. l.. ~ 

Selects nodes having a specified value or range of values 
for the attribute. For example, the string >=16mb selects 
nodes with 16M bytes or more of RAM. The string 32mb 
selects nodes with exactly 32M bytes of RAM. And, the 
string >proc selects nodes with more than one processor. 

The relop can be =, >, >=, <, <=, !=, or ! (!= and ! mean the 
same thing). If the relop is omitted, it defaults to =. 

The value can be any nonnegative integer. If the value is 
omitted, it defaults to 1. 

The node_attribute can be any attribute shown in the 
"Node Attributes" section, but is usually either proc or mb. 
(Other attributes have the value 1 if present or 0 if absent.) 

No white space may appear between the relop, value, and 
attribute. 

Selects nodes having all the attributes specified by the list 
of ntypes, where each ntype is a node type specifier of the 
form node_attribute, !node_attribute, or 
[relop][value]node_attribute. For example, the string 
32mb, !io selects non-io nodes with 32M bytes of RAM. 

You can use white space (space, tab, or newline) on either 
side of each comma. but not within an ntype. 



11 

I"', L 

l: 
r: 
Ir: alii 

l~ 

1""111'\.·: 

. i;,.I 

G 
C 

n 
II 

Paragon TN System Fortran Calls Reference Manual Manual Pages 

Node Attributes 

The following shows the most common values for node_attribute. A node attribute that is indented 
is a more specific version of the attribute from the previous level of indentation. For example, net 
and scsi nodes are specific types ofio node; enet and hippi nodes are specific types of net node (and 
also specific types of io node). 

Attribute 

bootnode 
gp 
mp 
mcp 
nproc 
nmb 
io 
net 
enet 
bippi 

scsi 

Meaning 

Boot node. 
GP (two-processor) node. 
MP (three-processor) node. 
Node with a message coprocessor. 
Node with n application processors (not counting the message coprocessor). 
Node with nM bytes of physical RAM. 
Any 110 nodes. 
110 node with any type of network interface. 
Network node with Ethernet interface. 
Network node with lllPPI interface. 
110 node with a SCSI interface. 
SCSI node with any type of disk. 
Disk node with a RAID array. 
SCSI node with any type of tape drive. 
Tape node with a 3480 tape drive. 
Tape node with a DAT drive. 

disk 
raid 
tape 
3480 
dat 

IDstring SCSI node whose attached device returned the specified IDstring. For example, a 
disk node might have the /Dstring NCR ADP-92101 0304. 

Specifying the Nodes Allocated to the Partition 

DX_mkparCattrO provides the following ways to specify the nodes allocated to the partition: 

• Using NX_ATTR_SZ alone requests the specified number of nodes. A value of 0 or -1 requests 
all the nodes in the parent partition. 

NX_A TTR_SZ attempts to create a square partition. If this is not possible, it attempts to create 
a rectangular partition that is either twice as wide as it is high or twice as high as it is wide. If 
this is not possible, it uses any available nodes. In this case, the nodes allocated to the partition 
may not be contiguous. 

• Using both NX_ATTR_MAP and NX_ATTR_SZ requests the specified list of nodes. 
NX_ATTR_MAP and NX_A TTR_SZ can appear in any order in the argument list. 

235 



Manual Pages 

236 

---------~~-

Paragon 1'01 System Fortran Calls Reference Manual 

• Using NX_ATTR_RECT alone requests a rectangular partition of the specified height and 
width. The system places the rectangle within the parent partition. 

• Using both NX_A TTR_RECT and NX_ATTR_ANCHOR requests a rectangular partition of 
the specified height and width, whose upper left comer is located at the specified anchor node 
within the parent partition. NX_ATTR_RECT and NX_ATTR_ANCHOR can appear in any 
order in the argument list. If the value of NX_ATTR_ANCHOR is -1, the system determines 
the anchor node within the parent partition. 

• Using NX_ATTR_SEL alone requests all the nodes by attribute (of a specified node type) in 
the parent partition. 

• Using NX_ATTR_SEL together with NX_ATTR_SZ, NX_ATTR_MAP, 
NX_ATTR_RECT, and/or NX_ATTR_ANCHOR requests the nodes specified by the 
NX_ATTR_SZ, NX_ATTR_MAP, NX_ATTR_RECT, and/or NX_ATTR_ANCHOR, all 
of which must have the node type specified by the NX_ATTR_SEL. 

• Not using NX_ATTR_SEL, NX_ATTR_SZ, NX_ATTR_MAP, NX_ATTR_RECT, or 
NX_ATTR_ANCHOR requests all the nodes in the parent partition. 

• Using NX_ATTR_RELAXED with a value of 1 together with NX_ATTR_SEL, 
NX_ATTR_SZ, NX_ATTR_MAP, NX_ATTR_RECT, or NX_ATTR_ANCHOR requests 
all the available nodes (nodes that meet the attribute requirements) in the specified node set 
(requested size and/or shape), up to the number of nodes requested For 
NX_MKP ART_A TTRO to return successfully, at least one of the specified nodes must be 
available. 

The following combinations of these attributes are invalid: 

• NX_A TTR_RELAXED together with NX_ATTR_RECT, unless you also specify 
NX_ATTR_ANCHOR with a value other than -1. 

Using any of these combinations of attributes causes nx_mkparCattr() to fail with the error 
"invalid attribute specified." 

L: 
(. -" 

_-JII 

(--~. 
--~ 



(
'111 

-'" 

£: 

IJ 
'IJ 

." __ .w 

(J 

I] 

D 
II 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

Return Values 

>0 Allocated nodes: The number of nodes allocated for the partition. 

-1 Error: No nodes matched the attributes specified in the attribute selector. An error 
has occurred and errno has been set. Note that the error occurs even if 
NlCA1TR_RELAXED is set to 1. 

Errors 

Invalid argument 

Invalid attribute specified in the attribute parameter, including error in the Some nodes in the map 
or rectangle do not qualify attribute selector. 

Partition permission denied 

The application has insufficient access permission on a partition. 

Allocator internal error 

An internal error occurred in the node allocation server. 

Bad node specification 

The specified node is a bad node or is not present in the partition . 

Bad partition request 

Partition request contains bad or missing nodes. 

237 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

Partition not found 

The specified partition (or its parent) does not exist. 

Partition lock denied 

Partition is currently in use or being updated. 

Attributes do not match 

Some nodes in the map or rectangle do not qualify. An attribute selector was specified with nodes 
in the map or rectangle that do not.have all the specified node attributes. 

Partition exists 

The specified partition already exists. 

Exceeds partition resources 

Request exceeds the partition's resources. 

Limitations and Workarounds 

See Also 

238 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease_notes. 

commands: application, cbpart, Ispart, mkpart, pspart, rmpart 

[: 
[~ 

[: 

""" -i 

I: 



11 
n u 

U 
IJ 

r, 
LJ 

l: 

IJ 
IJ 

U 
I] 

I] 

D 
D 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

Forks the calling process and creates an application's processes. 

Synopsis 

Parameters 

INCLUDE 'frueh' 

INTEGER FUNCTION NX_NFORK(node_list, num_nodes, ptype, pid_list) 

INTEGER node_list(*) 
INTEGER num_nodes 
INTEGER ptype 
INTEGER pid_list(*) 

Array of node numbers on which to fork the calling process. 

NOTE 

Do not specify the same node number more than once. If you 
specify the same node twice, two processes are created on the 
specified node, but one of the processes is terminated shortly after 
creation with the error "setptype: Ptype already in use". 

Number of nodes in the node_list array. If you set num_nodes to -I, DX_nforkO 
assumes all nodes of the application and ignores the value of the node_list 
parameter. 

ptype Process type of the new process(es). 

239 



Manual Pages Paragon TM System Fortran Calls Reference Manual 

NX_NFORK() (cont.) NX_NFORK() (cont.) 

Description 

Array in which DX_nforkO records the OSFIl process IDs of the new processes. 
Each element of the pid_list array contains the OSFIl process ID of the process 
that was forked on the node identified by the corresponding element of the 
node_list array. An entry of 0 (zero) indicates that the process on the 
corresponding node was not forked successfully. Valid pid_list values exist only 
for the calling process. The values in the pid_list arrays of any child processes 
created by DX_nforkO are invalid. 

If the num_nodes parameter equals -1, the first element of the pid_list array equals 
the PID of node 0, the second element of the pid_list array equals the PID of node 
1, and so on for all the nodes in the system. 

The nx_nforkO function forks the calling process onto the nodes specified by the node_list 
parameter. The fork operation copies the calling process onto a specified set of nodes with a 
specified process type. It creates one child process for each specified node. This call can only be 
made after an initial DX_initveO call. 

Return Values 

240 

If the fork succeeds: 

• The parent process receives a value that indicates the number of child processes that were 
created (that is, the number of nodes on which the process was forked). 

• Each child process receives the value 0 (zero). 

If the fork fails: 

• The calling process receives the value -1. 

• Each successfully created child process receives the value 0 (zero). 

• Use the DX""perrorO subroutine to display the error message for the current error. 

... _----------

(~ 
. .AI 

,--... 
'---

I: 
l' .. 
~ .. 

[: 

[: 
~~ 

~ 

.... 
i 
I.. 

C~ 
f\" -
i 

\...'" 

I" 
, 

I 
W. ~ 

C 
~ 

~ 

r- ., 

!. ;.1 

~ 
., 

.. 

[ 
--: 

... , -, 
~-~ 

C~ 
~-" 
i_ 

I: 
r: 
I: 



D 

c 
~ I .. 

u 
u 

~ __ iJ 

IJ 

C 

D 
II 
II 

Paragon":' System Fortran·Calis Reference Manual Manual Pages 

NX_NFORKO (cont.) NX_NFORKO (cont.) 

Errors 

NOTE 

It is possible that the process could not be successfully forked on 
more than one node, and that each failure could be for a different 
reason. In this case, the value of error number reflects only one of 
the failures. It may not be possible to determine which failure the 
error number value is for. 

Allocator internal error 

An internal error occurred in the node allocation server. 

Bad node specification 

The specified node is a bad node. 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease_notes. 

mcinitveO, nx_loadO, setptypeO 

241 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

Returns information about a partition. 

Synopsis 

Parameters 

Description 

242 

INCLUDE 'fnx.h' 

INTEGER FUNCTION NX_PART_ATTR(partition, attributes) 

CHARACTER *(*) partition 
RECORD Inx_parCinfo_tI attributes 

partition 

attributes 

Relative or absolute patbname of a partition. The partition must exist and give 
read permission to the calling process. 

Pointer to an nx_parCinfo_t structure that contains information about the 
partition specified by the partition parameter. The DX-parUnfo_t type is defined 
in the include file fnx. h. You must allocate space for this structure. 

The DX_parCattrO function returns the partition characteristics of the partition specified by the 
partition parameter. 

The DX-part_info structure includes the following fields: 

uid User ill for the partition's owner. 

gid Group ill for the partition's owner. 

access Access permissions for the partition. A three-digit octal number. 

sched Scheduling type for the partition (defined infnx.h): 

Gang scheduling. 

Space sharing. 

Standard scheduling. 

, ~ 
t. 

,~ -.. -



D 
D 
( "! 

Ai 

r 
L 

r'1 
&.0 

c 
u 

n u 

G 
II 
II 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

rq 

epl 

nodes 

mesh.-,;x 

mesh-y 

Rollin quantum for the partition. The value is 0 (zero) for a standard-scheduled or 
space-shared partition. 

Effective priority limit for the partition. The value is 0 (zero) for a 
standard-scheduled partition. 

Number of nodes in the partition. 

Width of the partition (columns). This is set only if the node set is a contiguous 
rectangle. 

Height of the partition (rows). This is set only if the node set is a contiguous 
rectangle. 

enclose_mesh_x Width of the smallest rectangle that completely encloses the partition. 

enclose_mesh-y Height of the smallest rectangle that completely encloses the partition. 

Return Values 

Examples 

On successful completion. the DX-parCinfoO function returns 0 (zero). Otherwise. -1 is returned 
and ermo is set to indicate the error. 

The following example prints the rollin quantum and effective priority limit for the partition mypart: 

include 'fnx.h' 

record /nx-part_info_t/ info 
integer status 

status = nx-part_attr ("mypart", info) 

if(status .ne. 0) then 
call nx-perror ("nx-part_attr () ") 
stop 

end if 

print * "rq =",info.rq,", epl =",info.epl 

end 

243 



Manual Pages Paragon TM System Fortran Calls Reference Manual 

Errors 

Partition permission denied 

The application has insufficient access permission on a partition. 

Partition not found 

The specified partition (or its parent) does not exist. 

Limitations and Workarounds 

See Also 

244 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease _notes. 

Paragon™ System Fortran Calls Reference Manual: Dx_chparCepIO, Dx-pspartO, 
DX-part_DodesO 

TM 
Paragon XPIS System Commands Reference Manual: chpart, lspart, pspart, showpart 

I: 

--I 
I 

l.. 

(: 



n 
D 
C 

[J 

I i 
..i>! 

I) 

~ 

~ 

C 

D 

II 
II 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

Returns the root partition node numbers for a partition. 

Synopsis 

Parameters 

Description 

INCLUDE 'fnx.h' 

INTEGER FUNCTION NX_PART_NODES(partition, ptr, liscsize) 

CHARACTER *(*) partition, 
POINTER (ptr, node _list( 1» 
INTEGER lisCsize 

partition 

ptr 

lisCsize 

Relative or absolute pathname of a partition. The specified partition must exist and 
must give read permission to the calling process. 

Pointer variable to the integer array node_list into which the DX-parCnodesO 
function stores the address of a list of nodes in partition. The call allocates 
memory for this parameter. Free this memory using the freeO function. 

Variahle into which the nx-parCnodesO function stores the number of elements 
in the node_list array. 

The nx-part_nodesO function returns the root partition node numbers for the partition specified by 
the partition parameter. 

Return Values 

On successful completion, the DX-part_nodesO function returns 0 (zero). Otherwise, -1 is returned 
and ermo is set to indicate the error. 

245 



Manual Pages 

Examples 

Errors 

.. _------ ~------------

Paragon 1M System Fortran Calls Reference Manual 

The following example prints the root node numbers for the partition my part: 

2 

include 'fnx.h' 

integer*4 
pointer 
integer 
integer 

mynodes(l) 
(ptr, mynodes) 
nnodes 
i, status 

status = nx-part_nodes ("mypart", ptr, nnodes) 

if(status .ne. 0) then 
call nx-perror ("nx-part_nodes () ") 
stop 

end if 

do 2, i = 1, nnodes 
print *, mynodes(i) 

continue 

call free (ptr) 

end 

Partition permission denied 

The application has insufficient access permission on a partition. 

Partition not found 

The specified partition (or its parent) does not exist. 

Limitations and Workarounds 

246 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease _notes. 

[" 
I .. ... 

r 
i 
Ia •. 



D 
(] 

l: 
I: 
I: 
r: 
IJ 
[j 

[J 

IJ 

IJ 
[j 

IJ 
IJ 
IJ 
[Jl 

,-", "i 

u 
I] 

D 
II 
D 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

See Also 

247 



Manual Pages Paragon TM System Fortran cans Reference Manual 

Print an error message corresponding to the current value of ermo. 

Synopsis 

Parameters 

Description 

INCLUDE 'fnx.h' 

SUBROUTINE NX_PERROR(string) 

CHARACTER *(*) string 

string Error message you want to display. 

Use the nx-perrorO subroutine with nx_ ••• calls to display the error message for the current error. 
The nx-perrorO subroutine prints its argument (any string), the current node number and process 
type, and the error message associated with the current error number to the standard error output in 
the following format: 

(node n, ptype p) string: error_message 

Limitations and Workarounds 

See Also 

248 

For information about limitations and workarounds, see the release notes files in 
lusrlslulrelrelease_notes. 

OSFIl Programmer's Reference: perror(2) 

l: 

j 
\0. 

[ ~, 

~~ 



D 
11 
~ u 

c 
u 

D 
II 

Paragon ™ System Fortran Calls Reference Manual Manual Pages 

Sets the priority of an application. 

Synopsis 

Parameters 

Description 

INCLUDE 'fnx.h' 

INTEGER FUNCTION NX_PRI(pgroup, priority) 

INTEGER pgroup 
INTEGER priority 

pgroup 

priority 

Process group ID for the application, or 0 (zero) to specify the application of the 
calling process. If the specified process group ID is not a process group ID of the 
calling process, the calling process's user ID must either be root or the same user 
ID as the specified application. 

New priority for the application, an integer from 0 (lowest priority) to 10 (highest 
priority) inclusive. 

An application runs in a partition with a priority. The priority determines how and when the 
application is scheduled to run in the partition. The mcpriO function sets an application's priority. 
An application's priority can range from 0 (low priority) to 10 (high priority) inclusive; an 
application with the higher priority takes scheduling precedence over applications with lower 
priorities. See the Paragon™ System User's Guide for more information on scheduling and an 
application's priority. 

If you do not call DX_priO and you do not use the -pri switch with your application, the default 
priority is 5. 

249 



--- ----------

Manual Pages Paragon .... System Fortran Calls Reference Manual 

Return Values 

>0 

-1 

Errors 

No errors; priority successfully set. 

Error. Use the DX_perror() subroutine to display the error message for the current 
error. 

Allocator internal error 

An internal error occurred in the node allocation server. 

Application does not exist for process group 

The specified process group does not exist. 

Not owner 

The calling process does not have permissions to change the application's priority. 

No such process 

The specified process group does not exist. 

Priority out of range 

The specified priority is out of the range of priority values. 

Limitations and Workarounds 

See Also 

250 

For information about limitations and workarounds, see the release notes files in 
lusrlshare/release _notes. 

r '" 
i .. 

I'" 



D 
D 

c 

D 

C 

D 
II 
II 

Paragon TloI System Fortran Calls Reference Manual Manual Pages 

Returns information about the applications and active partitions in a specified partition. 

Synopsis 

Parameters 

Description 

INCLUDE 'frueh' 

INTEGER partition 
INTEGER lisCsize 

partition Relative or absolute patbname of a partition. The specified partition must exist and 
must give read permission to the calling process. 

lisCsize 

Structure into which the DX_pspartO function stores information about an 
application or active partition in the partition specified by the partition parameter. 
The DX-psparCt structure is defmed in the include file allocsys.h, which is 
included by the include filefttx.h. 

Variable into which the DX_pspartO function stores the number of elements in the 
NX_PSP ART _T structure. 

The DX_pspartO function provides information about the status of the applications and active 
partitions in a specified partition. The DX-pspart_t structure contains the following information: 

objecctype Indicates if the object is an active partition (NX_PARTITION) or an application 
(NX_APPLICATION). 

251 



Manual Pages 

objecUd 

uid 

gid 

size 

priority 

elapsed 

active 

Paragon .... System Fortran Calls Reference Manual 

NX_PSPARTO (cont.) 

Process group ID for an application or a partition ID (arbitrary integer) for a 
partition. 

Numeric user ID of the object's owner. 

Numeric group ID of the object's group. 

Number of nodes in the object. 

Priority of the object. 

Amount of time the object has been rolled in during the current rollin quantum, in 
milliseconds. 

Rollin quantum of the object's parent partition (the partition specified in the 
DX_pspartO call), in milliseconds. 

Total amount of time the object has been rolled in since it was started, in 
milliseconds. 

Indicates whether the object is active (rolled in), inactive (rolled out), and/or has 
been dumping core. The values are as follows: 

o 

1 

2 

3 

Object is inactive and is or has not been dumping core. 

Object is active and is or has not been dumping core. 

Object is inactive and is either currently dumping core 
or has dumped core. This active value applicable only 
when object is an application. 

Object is active and is either currently dumping core or 
has dumped core. This active value applicable only 
when object is an application. 

Time the object was started, as returned by the timeO call. If the object is a 
subpartition, the time is when the oldest application started in the subpartition. 

Return Values [.~ 

On successful completion, the DX-pspartO function returns 0 (zero). Otherwise, -1 is returned and ( : 
ermo is set to indicate the error. _ 

I: 
252 

--_ ... _------------



D 
I] 

U 

I: 
U 
[j 

C 

U 
IJ 
C 

I! 
D 
r] 
~.J 

IJ 

U 
(J 

U 
C 

C 

D 

II 

------~-~-" ..••.... -.--

Paragon TM System Fortran Calls Reference Manual Manual Pages 

NX_PSPARTO (cont.) NX_PSPARTO (cont.) 

Errors 

Partition permission denied 

The application has insufficient access permission on a partition. 

Partition not found 

The specified partition (or its parent) does not exist. 

Limitations and Workarounds 

For information about limitations and workarounds, see the release notes files in 
lusrlshare/release _notes. 

See Also 

pspart 

253 



Manual Pages Paragon'" System Fortran cans Reference Manual 

Removes a partition. 

Synopsis 

Parameters 

254 

INCLUDE 'fnx.h' 

INTEGER FUNCTION NX_RMPART(pathname, force, recursive) 

CHARACTER *(*) partition 
INTEGER force 
INTEGER recursive 

partition 

force 

recursive 

Relative or absolute patbname of the partition to be removed. The parent partition 
must give write permission to the calling process. 

Removes partitions that contain running applications. If the value is e (zero), the 
partition will not be removed if any applications are running in the partition. Any 
other value specifies removing the partition even if applications are running in the 
partition. 

Recursively removes the partition. A value of 0 (zero) specifies that the partition 
will not be removed if the partition has any subpartitions. 

A non-zero value specifies that the partition and all its subpartitions will be 
removed recursively. There cannot be any applications running in the partition or 
any of its subpartitions. If applications are running in the partition or any of its 
subpartitions, the nx_nnpartO function does not remove the partition or any of 
its subpartitions. 

Theforce parameter set to a positive integer and used with the recursive parameter 
allows a partitions and subpartitions to be removed if they have applications 
running in them. 

(: 
[: 
f' ~ 

w., .. 

!III -
I 

I.. 

l: 
(~ 

f ~ .. -



D 
II 

I~ 
r1 .... ' 
~ 

It 

c 
o 
II 
II 

--------~.-~----

Paragon TM System Fortran Calls Reference Manual Manual Pages 

NX_RMPARTO (cont.) NX_RMPARTO (cont.) 

Description 

The DX]mpartO function removes from the system a partition, its subpartitions, and applications 
running in the partition or its subpartitions. A calling process must have write permission on a 
partition to remove the partition. 

The force parameter specifies whether to remove the partition if it contains applications. A 0 (zero) 
value specifies not to remove a partition if it contains applications. Any other value forces the 
partition to be removed. This is a safety mechanism so you do not accidently destroy an application 
or subpartition. 

The recursive parameter specifies whether to remove the partition and all its subpartitions. A 0 
(zero) value specifies not to remove a partition if it contains subpartitions. Any other value removes 
the partition and all its subpartitions. 

If you provide non-zero values for both the force and recursive parameters, DX_rmpartO removes 
the partition and all its subpartitions, even if applications are running in the partition or its 
subpartitions. 

Return Values 

>0 

-1 

Errors 

Allocator internal error 

Partition was successfully removed. 

Error. Use the DX-perrorO subroutine to display the error message for the current 
error. 

An internal error occurred in the node allocation server. 

Partition lock denied 

The specified partition is currently being updated and is locked by someone else. 

255 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

NX_RMPARTO (cont.) NX_RMPARTO (cont.) 

Partition not empty 

The specified partition contains one or more subpartitions or running applications. 

Partition not found 

The specified partition does not exist. 

Partition permission denied 

Insufficient access permission for this operation on a permission. 

Limitations and Workarounds 

See Also 

256 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease _notes. 

chpart, Ispart, mkpart, nx_chpartO, nx_mkpartO, pspart, rmpart 

... , 
L.. -



D 
D 
....... L 

r'!1 
L 

C 
".".: U 

~ 
L 

U 
n 
~ 

:., 
Lil 

In 
LJ 

D 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

Waits for all the child processes of a calling process to stop or terminate 

Synopsis 

Description 

INCLUDE 'fnx.h' 

INTEGER FUNCTION NX_ WAITALLO 

The DX_ waitallO function suspends the application's calling process until all the application's child .. 
processes stop or terminate. An application can start child processes can with the DX_nforkO or 
DX_loadO functions. 

If the DX_ waitallO function detects that one of the processes being waited for has been terminated 
by the signal SIGBUS, SIGFPE, SIGILL, SIGSEGV, or SIGSYS, the DX_WaitallO function 
terminates the whole application by sending a SIGKILL to the process group. 

Return Values 

o All the application's processes terminated successfully. 

-1 One or more of the application's processes terminated with an error. 

Errors 

Interrupted system call 

The function was terminated by receipt of a signal. 

No child processes 

The calling process has no existing child processes to wait for. 

257 



Manual Pages Paragon TM System Fortran Calls Reference Manual 

NX_WAITALL(} (cont.) NX_WAITALL(} (cont.) 

Limitations and Workarounds 

See Also 

258 

For information about limitations and workarounds, see the release notes files in 
lusrlsharelrelease_notes. 

l: 
l: 
( " 

.. j! 

r 
III 

i 
IlL •. 

r~ 
•• 



D 
D 

~ 

I] 

., 
,L.) 

I) 

IJ 

r1 LtJ 

C 
IJ 

o 
D 
D 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

SETIOMODEO " SETIOMODEO 

Sets a file's 110 mode and performs a global synchronization operation. 

Synopsis 

Parameters 

INCLUDE 'fnx.h' 

SUBROUTINE SETIOMODE(unit, iomode) 

INTEGER unit 
INTEGER iomode 

unit 

iomode 

Unit number (an integer between 1 and 100) assigned when the file was opened. 

110 mode to be assigned to the file associated with unit. Values for the iomode 
parameter are as follows: 

Each node has its own file pointer; access is 
unrestricted 

All nodes use the same file pointer; access is first 
come, first served; records may be of variable length. 

All nodes use the same file pointer; access is in node 
order; records are in node order but may be of variable 
length. 

M_RECORD Each node has its own file pointer; access is first come, 
first served; records are in node order and of fixed 
length. 

M_GLOBAL All nodes use the same file pointer, all nodes perform 
the same operations. 

M_ASYNC Each node has its own file pointer; access is 
unrestricted; 110 atomicity is not preserved in order to 
allow multiple readers/multiple writers and records of 
variable length. 

Refer to the "Description" section for detailed information on each mode. 

259 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

SETIOMODEO (cont.) SETIOMODEO (cont.) 

Description 

260 

The setiomodeO subroutine changes the 110 mode of an open shared file. A shared file is a file that 
is opened for access by all nodes in an application. To explicitly specify an 110 mode at the time a 
file is opened, use the gopenO function. 

The default 110 mode shared files are opened with depends on two things: the type of file and the 
value of the PFS_ASYNC_DFLTbootmagic string. Behavior is as follows: 

non-PFS files The default 110 mode is M_UNIX for all non-PFS files. This behavior holds 
true regardless of the PFS_ASYNC_DFLTbootmagic string. 

PFS files The default 110 mode is M_UNIX when PFS_ASYNC_DFLTis set to any 
value other than 1. WhenPFS_ASYNC_DFLTis setto 1, the default 110 mode 
isM_ASYNC. 

This method of determining the default 110 mode also holds true during forkO operations. In other 
words, the IJO modes associated with the parent process' file descriptors are not inherited by the 
child process. Instead, all 110 modes in the child process default accordingly. 

NOTE 

To determine the current setting for PFS_ASYNC_DFL T, use the 
getmagic command. For information on this command, see the 
getmagic manual page. 

Each node calling setiomodeO must specify a unit number representing the opened file, and the file 
pointer must be in the same position in the file for each node at the time the call to setiomocleO is 
made. 

In addition to setting the file's 110 mode, setiomodeO performs a global synchronizing operation 
like that of the gsyncO call. All nodes must call the setiomodeO function before any node can 
continue executing. In the M_LOG, M_SYNC, M_RECORD, and M_GLOBAL 110 modes, 
closing the file also performs a global synchronizing operation. 

Use iomocleO to return a file's current 110 mode. 

r 
l.. 

r--
I . -



D 
D, 
.. 

I] 

C 
c 

c 

o 
II 
II 

Paragon l1II System Fortran Calls Reference Manual Manual Pages 

SETIOMODE() (cont.) SETIOMODE() (cont.) 

The features of this mode are as follows: 

• Each node has a unique file pointer. 

• Nodes are not synchronized. 

• Variable-length, unordered records. 

This mode conforms with standard UNIX file sharing semantics for different processes accessing 
the same file. In this mode, each node maintains its own file pointer and can access information 
anywhere in the file at any time. If two nodes write to the same place in the file, the latest data written 
by one node overwrites the data written previously by the other node. 

This mode is often used when each node is responsible for data in a specific area of a file. 

Although nodes are not synchronized as in the M_SYNC mode, this mode currently supports only 
a single reader/single writer. If multiple readers/multiple writers are required, use the M_RECORD 
or M_ASYNC modes. If all nodes read the same data, use the M_GLOBAL mode. 

Depending on the shared file type (PFS or non-PFS) and the PFS_ASYNC_DFLTbootmagic 
variable setting, M_VNIX can be the default I/O mode (see the ''Description'' section for more 
information). 

The features of this mode are as follows: 

• Shared file pointer. 

• Nodes are not synchronized. 

• Variable-length, unordered records. 

In this mode, all nodes use the same file pointer. I/O requests from nodes are handled on a first-come, 
first-served basis. Because requests can be performed in any order, the order of the data in the file 
may vary from run to run. 

Because only one node may access the file at a time, this mode has lower performance than the 
M_RECORD, M_GWBAL, and M_ASYNC modes. 

261 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

SETIOMODE() (cont.) SETIOMODE() (cont.) 

262 

M_SYNC (Mode 2) 

The features of this mode are as follows: 

• Shared file pointer. 

• Nodes are synchronized. 

• Variable-length records, stored in node order. 

In this mode, all nodes use the same file pointer, but YO requests are handled in node order. This 
mode treats file accesses as global operations in which all nodes must complete their access before 
any node can access the file again. The amount of data requested by the application to be read or 
written may vary from node to node. 

In this mode, all nodes must perform the same file operations in the same order. The only valid use 
of the IseekO and eseekO subprograms is for all nodes to seek to the same position in the file prior 
to an access. 

Because nodes must access the file in node order, this mode has the lowest performance than the 
M_RECORD, M_GLOBAL, and M_ASYNC modes. 

M_RECORD (Mode 3) 

The features of this mode are as follows: 

• Unique file pointer. 

• Nodes are not synchronized. 

• Fixed-length records, stored in node order. 

• Highly parallel. 

In this mode, each node maintains its own file pointer and the application can access the file at any 
time. The data for each corresponding access (that is, the nth read or write) must be the same length 
for all nodes. This guarantees that each node reads/writes to separate areas of the file, allowing the 
file system to provide access to the file in a highly parallel fashion. 

I'f 
i 

~~ 

[~ 
( .. ~ ,I 

" 

"" 

(~ 



o 
D 
[] 

U 
c 

IJ 

C 

D 
D 
II 
II 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

SETIOMODEO (cont.) SETIOMODEO (cont.) 

NOTE 

No verification is performed. You must make sure that all the 
nodes in the application make the same calls and read and write 
the same number of bytes. 

Files created in this mode resemble files created in the M_SYNC mode (that is, the data appear in 
node order). The application should perform the same file operations in the same order on all nodes. 
However, for higher performance only the IseekO and eseekO subprograms are synchronized. The 
only valid use of one of these calls is for all nodes to seek to the same position in the file prior to an 
access. 

Because all nodes may access the file in parallel when either reading or writing, this mode offers 
higher performance than the M_UNIX, M_LOG, and M_SYNC modes. 

M_GLOBAL (Mode 4) 

The features of this mode are as follows: 

• Shared file pointer. 

• Nodes are synchronized. 

• Variable-length, unordered records. 

• All nodes access the same data. 

• Data read/written from/to disk only once. 

This mode coordinates 110 requests so that multiple identical 110 requests to the same file from 
different nodes are not issued. 

In the M_GLOBAL mode, all nodes use the same file pointer for a file, and each 110 request from 
an application is a global operation in which all nodes must perform the same file accesses in the 
same order. All nodes read the same data and all nodes write the same data, although the data written 
is not checked. All write operations return the same number of bytes written. The only valid use for 
the IseekO or eseekO subprograms is for all nodes to seek to the same position in the file prior to an 
access. 

263 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

SETIOMODEO (cont.) SETIOMODEO (cont.) 

264 

Because identical requests are combined into a single request, the M_GLOBAL mode provides a 
higher-performance alternative to the M_UNIX mode when all nodes read and write the same data. 
For example, this mode is useful for parallel applications that initialize by having all nodes 
sequentially read the same data file. 

M_ASVNC (Mode 5) 

The features of this mode are as follows: 

• Each node has a unique file pointer. 

• Nodes are not synchronized. 

• Variable-length, unordered records. 

• Multiple readers/multiple writers are allowed with no restrictions. 

The M_ASYNC mode is similar to the M_UNIX mode, except it does not support standard UNIX 
file sharing semantics for different processes accessing the same file. This mode does not guarantee 
that I/O operations are atomic. For example, if multiple nodes write to the same area of a file at the 
same time, parts of the file area may contain data from one write while other parts may contain data 
from other writes. If a node reads from the same area of the file at this time, the returned data may 
consist partially of old data and partially of new data. Other I/O modes guarantee that 110 operations 
are atomic, so that only the data from one write is seen in areas of the file where multiple processes 
are writing simultaneously, and all nodes are notified when the file size changes. 

In this mode, an application must control parallel access to the file. This allows multiple readers 
and/or multiple writers to access the file simultaneously with no restrictions on record size or file 
offset. 

If a file is opened with the 0 _APPEND flag and multiple nodes write to the file simultaneously, the 
results are unpredictable because nodes are not synchronized whenever the end-of-file changes. 

It is not required that all nodes read or write to the file, and there are no restrictions on using lseekO 
oreseekO· 

Because all nodes may access the file in parallel when either reading or writing, this mode offers 
higher performance than the M_UNIX, M_LOG, and M_SYNC modes. 

You can cause M_ASYNC mode to be the default 110 mode used when opening PFS files by setting 
the PFS_ASYNCJJFLTbootrnagic string to 1. 

[: 

(,
1'1 

,..Ii 

i '· 
" 

_Ii 

~ ~' 
i 
l.. -

( " . 
.. 

I: 
I: 



D 
D 
n 
RAi 

In 
U 

(] 

c 

n., 
~ 

., 
a . .J 

C 

D 
D 
II 
II 

Paragon 1M System Fortran Calls Reference Manual Manual Pages 

SETIOMODE() (cont.) SETIOMODE() (cont.) 

Errors 

Bad file number 

NOTE 

The majority of the Fortran 1/0 errors that you are likely to receive 
are described in the "Runtime Error Messages" appendix of the 
Paragon™ System Fortran Compiler User's Guide. This section 
describes additional errors that you may receive. 

Use the unit assigned when the file was opened. 

Bad I/O mode number 

File is not synchronized 

In the I/O modes M_LOG, M_SYNC, M_RECORD, or M_GLOBAL, all nodes must set the file 
pointer to the same location. 

Fortran runtime error: Unit not open 

A file must be open to set its I/O mode. 

Invalid argument 

The given value for iomode is not valid. 

Invalid argument 

The file named by the path parameter is not a regular file. 

No such unit 

The unit number must be a value no larger than 100. 

265 



Manual Pages Paragon 1M System Fortran Calls Reference Manual 

SETIOMODEO (cont.) SETIOMODEO (cont.) 

Examples 

266 

The following example shows how to use the setiomodeO subroutine to set the I/O mode after 
opening a file. but before writing to the file. 

include 'fnx.h' 

integer iam 
character*14 buf 

c Identify self. 

iam = mynode () 

c Globally open file with the M_UNIX I/O mode. 

call gopen(12, '/tmp/mydata', M_UNIX) 

c You can read the file and do some computation before 
c changing the I/O mode. 

call setiomode(12, M_RECORD) 

c Write and close the file. 

buf = 'Hello, world!\n' 
call cwrite(12, buf, len(buf)) 

write(*, 100) iam, buf 
100 format ( 'Node " i3, , wrote: ' a13) 

close(12) 

end 

l: 

~ 
1a.. _ 

l: 



D 
D 
C 

U 
(] 

C 
I] 

U 

IJ ., 
iLl 

C 
i~ 
LJ 

IJ 
C 
(j 

IJ 
I] 

D 
D 
II 
II 

Paragon TM System Fortran Calls Reference Manual Manual Pages 

SETIOMODE() (cont.) SETIOMODE() (cont.) 

Limitations and Workarounds 

See Also 

For information about limitations and workarounds. see the release notes files in 
lusrlsharelrelease _notes. 

creadO. cwriteO. fopenO. forkO. gopenO. iomodeO. ireadO. iwriteO. openO 

267 



Manual Pages Paragon™ System Fortran Calls Reference Manual 

SETPTYPEO SETPTYPEO 

Sets the process type of the calling process. 

Synopsis 

Parameters 

Description 

268 

INCLUDE 'fnx.h' 

SUBROUTINE SETPTYPE(ptype) 

INTEGER ptype 

ptype Process type you are assigning to a process. The ptype must be a non-negative 
integer between 0 and 2**30 - 1. 

The calling process's process type can be set only if the process type is currently 
INVALID _PTVPE. A process cannot change it's process type once it has been set to a valid value. 

The setptypeO subroutine sets the process type of a calling process. A process type is an integer that 
uniquely distinguishes a process from another process in the same application on the same node. 
You can use process types with processes as follows: 

• A process can have one process type only. 

• Processes on different nodes may have the same process type. 

• Multiple processes running on the same node in the same application must have different 
process types (Ptypes). 

• Multiple processes running on the same node may have the same process type only if they 
belong to different applications. 

• A process may not change its process type once it has set a valid process type. 

• Once a process has used a process type, the process type is associated with the process for the 
life of the application. No other process on the same node in the same application can use that 
process type, even if the original process terminates. 

"'" L 

i 
\& 

I '" -.. 



D 
D 
I) 

C 

c 

[J 

~. L 

D 
D 
D 

Paragon 1M System F~rtran Calls Reference Manual Manual Pages 

SETPTVPEO (cont.) SETPTVPEO (cont.) 

The setptypeO subroutine has the following restrictions: 

• Do not use the setptypeO subroutine in applications linked with the -ox switch. Instead, link 
with the -lnx switch. For all processes in applications linked with the -ox switch, the process 
type is set automatically to the value specified with the -pt switch. The default process type 
value is 0 (zero). 

• Do not use the setptypeO subroutine in processes created with the ox_nforkO, ox_IoadO, or 
ox_loadveO subprograms. These subprograms have a ptype parameter for specifying the 
process type of newly created processes in an application. 

• Do not use the setptypeO subroutine in controlling processes that do not use message passing, 
because the setptypeO subroutine assigns memory for message buffering that will be unused. 

If an application creates additional processes after it starts up and no process type is specified for the 
new process, the process type of the new process is set to the value INVALID _PTYPE (a negative 
constant defined in the header file nx.h). A process whose process type is INVALID_PTYPE 
cannot send or receive messages. A process must call setptypeO to set its process type to a valid 
value before it can send or receive any messages. (This is the only valid use of the setptypeO 
subroutine.) 

The forkO system call creates a new process on the same node as the process that calls it. The forkO 
system call does not provide any way to specify the new process's process type. The process type of 
a process created by forkO is set to INVALID _PTYPE. The new process must call the setptypeO 
subroutine before it can send or receive messages. The specified process type must be different from 
the parent's process type and different from the process type of any other process in the same 
application on the same node. 

Limitations and Workarounds 

See Also 

For infoimation about limitations and workarounds, see the release notes files in 
lusrlshare/release _notes. 

application, myptypeO, ox_IoadO, ox_nforkO 

269 



Manual Pages Paragon TN! System Fortran Calls Reference Manual 

270 

( : 

... 
I 

U. -

if . 
l~ 

I : 
I: 



D 
D 

I· .'1 
.. .J 

I """· 
, ~.i 

D 
II 

II 

Message Types and Typesel Masks 

Types 
The type parameter used in message passing calls is a user-defined, integer value used to identify the 
kind of information contained in the message. Types 0 to 99 9 , 99 9 , 99 9 are normal types that 
can be used by any send or receive call. 

NOTE 

Types 1,000,000,000 to 1,073,741,823 and 2,000,000,000 and up 
are used by the system and should be avoided. Their use may 
produce unpredictable results. 

Types 1,073,741,824 to 1,999,999,999 are special force types intended specifically for the 
csendrecvO, hsendrecvO, and isendrecvO calls. Force types have three special properties: 

1. A message with a force type bypasses the normal flow control mechanisms and is not delayed 
by clogged message buffers on the node. 

2. Force types do not match the -1 wildcard type selector. This property can be used to guarantee 
that the message is received by the proper buffer, no matter what other messages are also 
received. 

3. A message with a force type is discarded if no receive is posted (as when the receiving process 
has been killed). In general, bypassing the normal flow control mechanisms causes no problem 
because the send-receive calls guarantee that a receive is posted for the message. 

If you use force-type messages with the csendrecvO function, you are responsible for posting the 
receive on the receiving node before the message arrives. Otherwise, the receive will not complete 
and the message will be lost. The csendrecvO function does not do internal synchronization of 
messages. 

A-1 



Message Types and Typesel Masks Paragon ™ System Fortran Carls Reference Manual 

Typesel Masks 
The typeset parameter used in receive calls is an integer value that specifies the type(s) of message 
you are waiting for in a probe, receive, or flush operation. You assign a type to a message when you 
initiate a send operation. The typeset (type selector) allows you to select a specific message type or 
a set of message types based on a 32-bit mask. The typeset can be set as follows: 

• If typeset is a non-negative integer, a specific message type will be recognized. All other 
messages will be ignored. 

• If typeset is -1, the first message to arrive for the process that initiated a probe or receive 
operation will be recognized. After the first message has been received, you can use -1 again 
to receive or probe the next message, and so on. 

• If typeset is any negative number other than -1, a set of message types will be recognized. In 
this case, bits 0-29 of the typeset correspond to types 0 - 2 9. For example, if bit number 3 is set 
to 1 in the typeset, then a message of type 3 will be recognized. If bit number 3 is set to 0, 
then a message of type 3 will be ignored. 

f 
I 

It. J> 

Bit 30 allows you to select all types greater than 29 as a group. Bit 30 can be used in conjunction ~ 

with bits 0-29, as desired. Bit 31 set to 1 makes the typeset parameter negative and indicates Iii. ~ 

A-2 

that it is a mask. 

To generate a mask, add the hexadecimal numbers associated with the types you want to select to 
the constant, Ox80000000. For example, if you want to receive message types 1, 2, 5, and 12, 
add the following hex numbers: 

O'2'x, O'4'x, O'20'x, O'1000'x + O'80000000'x O'80001026'x 

then enter 

crecv (O'80001026'x, buf, len); 

Or, if you want to receive any message except type 0 use: 

crecv (O'FFFFFFFE'x, buf, len); 

I. .' 

" 
( ,. 

( : 



D 
D 
10 u 

11 
U 

( "1 , , 
..J 

IJ 
U 

1:' 

C 

Paragon 1M System Fortran Calls Reference Manual Message Types and Typesel Masks 

Table A-I. shows the hexadecimal number associated with bits 0-31. 

Table A-t. Typesel Mask List (1 of 2) 

Type Hex Number 

0 0'00000001 'x 

1 0'OOOOOOO2'x 

2 0'00000004 'x 

3 0'00000008 'x 

4 0'00OOO010'x 

5 0'00OOO020'x 

6 0'00OOO040'x 

7 0'00OOOO80'x 

8 o '00000 l00'x 

9 0'00000200'x 

10 O'OOOOO4OO'x 

11 0'00000800'x 

12 O'OOOOI000'x 

13 0'00002000'x 

14 O'OOOO4OOO'x 

15 0'00008000'x 

16 O'OOOlO000'x 

17 0'00020000'x 

18 0'0004oo00'x 

19 0'OOO8oo00'x 

20 0'00100000 'x 

21 o '00200000 'x 

22 0'00400000'x 

23 0'008oooo0'x 

24 0'01000000'x 

25 0'02oo0000'x 

A-3 



Message Types and Typeset Masks Paragon 1M System Fortran Calls Reference Manual 

Table A·t. Typesel Mask List (2 of 2) 

Type Hex Number 

26 0'04000000'x 

27 0'08000000'x 

28 0' lOOOOOOO'x 

29 0'20000000'x 

Other types 0'40000000'x 

A-4 

, '" 
i ... 

i 
i ... . 

I '" 
'\. ," 

r ~ 
•• 



"' ___ • ___ ••• _______ '- w,~ •• ~_~. 

D 
D 
U 
C Index 
U 
C jj 

(J 

C C esize 38 

C cprobe 1 esub 29 

cprobex 1 etos 43 

cread 5 

C , 
creadv 5 F 

D 
crecv 10 fcntl46 

crecvx 10 flick 53 

D csend 15 forceflush 54 
.' 

csendrecv 19 forflush 56 

(~ 
cwrite 22 fork 269 

li!1 cwritev 22 fpsetmask 58 

C D G 

C 
dclock 27 gcol61 

gcolx 65 

I~ 
E gdhigh 68 

eadd 29 gdlow 71 

I! ecmp 29 gdprod 74 

ediv29 gdsum 77 

D emod 29 giand 81 

emul29 gihigh 68 

0 eseek34 gilow 71 

D 
II Index-1 



-------.-------------------------~------- -- -- ----~------ ---, 

~ ~ 

Index Paragon TM System Fortran Calls Reference Manual I .., 

r .., 
I, 

1 .. 

[: 
~ " 

gior 84 iprobex 126 1..., 
giprod 74 iread 131 rr 
gisum 77 ireadv 131 I.. ~ 

gland 81 irecv 136 

i~, glor 84 irecvx 136 

gopen 87 isend 142 rr 
gopf 91 isendrecv 147 l& 

gsendx 95 iseof 152 F 
gshigh 68 iwrite 155 i.. 

gslow 71 r 
gsprod 74 L I.. ~ 

gssum 77 Iseek 160 r 
gsync 98 Isize 164 \ri, • 

I'" 

H M l.. 

hrecv 100 masktrap 168 ,'" 

hrecvx 100 msgcancel 170 I... _ 

hsend 105 msgdone 172 r 
hsendrecv 109 msgignore 174 ~ 

hsendx 105 msgmerge 176 ~ 

msgwait 178 \. 

myhost 180 

~ infocount 112 mynode 181 

infonode 112 mypart 193 , 
infoptype 112 myptype 184 ''i.. 

infotype 112 rr 
iodone 116 N ~ --

iomode 120 numnodes 187 If' 

iowait 123 nx_app_nodes 190 i. 

iprobe 126 nx_app_rect 193 { 

( 

Index-2 . " 
'~ . "" 



&1 
1:1 
r't~ 
II~I 

[;, 

I:J 
(! 

(] 

r: 
[ 

c 
( "'I 

" 
~ 

'("1111,', 
,Ji; 

U 
I: 
[ 

I: 
U 
Q 1 

" 
I~ ,. 
o 
Ir\\ 
~ 

Paragon ™ System Fortran Calls Reference Manual 

nx_chparCepl 195 

nx_chparCmod 195 

nx_chparCname 195 

nx_chpart_owner195 

nx_chparCrq 195 

nx_chpart_sched 195 

nx_empty_nodes 202 

nx_tailed_nodes 204 

nx_initve 206 

nx_initve_attr 211 

nx_initve_rect 206 

nx_load 223 

nx_loadve 223 

nx_mkpart 226 

nx_mkparLattr 230 

nx_mkpart_map 226 

nx_mkparLrect 226 

nx_ntork 239 

nx_part_attr242 

nx_perror 248 

nx_pri 249 

nx_pspart 251 

nx_rmpart 254 

nx_rooCnodes 245 

nx_waitall257 

s 
setiomode 259 

setptype 268 

stoe 43 

Index 

Index-3 



Index Paragon 1M System Fortran Calls Reference Manual 

I 
, · '" 

""" 
/' 

\. · 
roo · 

L · c. 

~ 

l ... 

,~ ,-, ..; 

I" 
ia 

('!r .. , 
~ "" 

~ 
~ 

I .. .. 
r" r, 

I.r. -
/If 

'la., 
~ 

'" I .. ... 

r" • -, " 
*" "" 

I 
,,' 

, ., 
i 

• i -

( 
" 

" 

Index-4 {~ 


