mEaEeEsAaaR

- M.

!

AEBERAMmMMR"EM

April 1993
Order Number: 312487-001

PARAGON OSF/1
C SYSTEM CALLS
REFERENCE MANUAL

Intel® Corporation

Copyright ©1993 by Intel Supercomputer Systems Division, Beaverton, Oregon. All rights reserved. No part of this work may be reproduced or
copied in any form or by any means...graphic, electronic, or mechanical including photocopying, taping, or information storage and retrieval sys-
tems...without the express written consent of Intel Corporation. The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation
makes no commitment to update or to keep current the information contained in this document. .

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to restrictions
stated in Intel’s software license agreement. Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subpara-
graphs (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule-
vard, Santa Clara, CA 9502. For all Federal use or contracts other than DoD, Restricted Rights under FAR 52.227-14, ALT. III shall apply.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

286 iCS Intellink Plug-A-Bubble
287 iDBP iOSP

4-SITE iDIS iPDS PROMPT
Above iLBX iPSC Promware
BITBUS im iRMX

COMMputer Im iSBC ProSolver
Concurrent File System iMDDX iSBX QUEST
Concurrent Workbench iMMX iSDM

CREDIT Insite iSXM QueX

g?:: Picpeline Modul int 1 KEPROM Quick-Pulse Programming
F As‘-:;pAo;ﬁw € ‘ int 1BOS ﬁzp‘fﬁ;‘;“’ge’ Ripplemode
GENIUS Intelevision MCS RMX/80

'2 inteligent Identifier Megachassis RUPI
1I"ICE int ligent Programming MICROMAINFRAME

i386 3 MULTI CHANNEL Seamless
i387 Intel MULTIMODULE SLD

1486 Intel386 ONCE

i487 Intel387 OpenNET SugarCube
1860 Intel486 OTP UPI

ICE Intel487 Paragon

iCEL Intellec PC BUBBLE VLSIiCEL

Ada is a registered trademark of the U.S. Government, Ada Joint Program Office

APSO is a service mark of Verdix Corporation

DGL is a trademark of Silicon Graphics, Inc.

Ethernet is a registered trademark of XEROX Corporation

EXABYTE is a registered trademark of EXAB YTE Corporation

Excelan is a trademark of Excelan Corporation

EXOS is a trademark or equipment designator of Excelan Corporation

FORGE is a trademark of Applied Parallel Research, Inc.

Green Hills Software, C-386, and FORTRAN-386 are trademarks of Green Hills Software, Inc.
GVAS is a trademark of Verdix Corporation

IBM and IBM/VS are registered trademarks of International Business Machines

Lucid and Lucid Common Lisp are trademarks of Lucid, Inc.

NFS is a trademark of Sun Microsystems

OSF, OSF/1, OSF/Motif, and Motif are trademarks of Open Software Foundation, Inc.

PGI and PGF77 are trademarks of The Portland Group, Inc.

PostScript is a trademark of Adobe Systems Incorporated

ParaSoft is a trademark of ParaSoft Corporation

SGI and SiliconGraphics are registered trademarks of Silicon Graphics, Inc.

Sun Microsystems and the combination of Sun and a numeric suffix are trademarks of Sun Microsystems
The X Window System is a trademark of Massachusetts Institute of Technology

UNIX is a trademark of UNIX System Laboratories

VADS and Verdix are registered trademarks of Verdix Corporation

VAST2 is a registered trademark of Pacific-Sierra Research Corporation

VMS and VAX are trademarks of Digital Equipment Corporation

VP/ix is a trademark of INTERACTIVE Systems Corporation and Phoenix Technologies, Ltd.
XENIX is a trademark of Microsoft Corporation :

M N W W W MmN R RN R M N MMEMNEMNMM MM EENNERAEEERRE R

E
r

b B I

e Bl B o B o Bl |

o [e

e I B s

e S e B e Bl o

REV. REVISION HISTORY DATE

-001 Original Issue 4/93

LIMITED RIGHTS

The information contained in this document is copyrighted by and shall re-
main the property of Intel Corporation. Use, duplication or disclosure by
the U.S. Government is subject to Limited Rights as set forth in subpara-
graphs (a)(15) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule-
vard, Santa Clara, CA 95052. For all Federal use or contracts other than
DoD Limited Rights under FAR 52.2272-14, ALT. lll shall apply.

R RN B R EEE S s oMo o M NN N N NN NMN N NN

==

Preface

e

S B

frd

-

The Paragon” OSF/1 C system calls are described in two manuals:

=

I + The OSF/1 Programmer’s Reference describes the standard OSF/1 system calls, library
routines, file formats, and special files.
« The Paragon'= OSF!I C System Calls Reference Manual (this manual) describes the system
1 calls and library routines (referred to collectively as “system calls™) that let you access the

special capabilities of the Intel supercomputer. These calls let you:

- Create and control parallel applications and partitions.

- -

- Exchange messages between processes.

- Get information about the computing environment (such as, the number of nodes in the
current application).

-~

i - Perform global operations optimized for the Intel supercomputer’s architecture.

L - Perform 64-bit integer arithmetic (used for manipulating file pointers that exceed 32 bits).

I - Read and write files.

I This manual assumes that you are an application programmer proficient in using the C programming
language and the OSF/1 operating system.

I

Preface -

Paragon™ OSF/1 C System Calls Reference Manual

Organization

vi

The manual contains a “manual page” for each Paragon™ OSF/1 system call, organized
alphabetically. Each manual page provides the following information:

¢ Synopsis (including call syntax, parameter declarations, and include files)

¢ Description of any parameters.

¢ Description of the call (including programming hints)

* Return values (if applicable)

« Error messages (including causes and remedies)

¢ Related calls

Some of the manual pages in this manual discuss several related system calls. For example, the
csend() manual page discusses both the csend() and csendx() system calls. The title of a manual
page that discusses more than one call is the name of the first call discussed on the page. To find the
discussion of any call, use the Index at the back of this manual.

Appendix A tells how to select message types and build message type selectors for the
message-passing system calls.

B B e B o B B = - -~ B I

1
L

L

-

e o B B Bl e

N
I
L
L
[
§
8

Paragon™ OSF/1 C System Calls Reference Manual Preface

Notational Conventions

This section describes the following notational conventions:
¢ Type style conventions

e System call syntax descriptions

Type Style Conventions
This manual uses the following type style conventions:

Bold Identifies command names and switches, system call names, reserved words,
and other items that must be used exactly as shown.

Italic Identifies variables, filenames, directories, processes, user names, and writer
annotations in examples. Italic type style is also occasionally used to
emphasize a word or phrase.

Plain-Monospace
Identifies computer output (prompts and messages), examples, and values of
variables. Some examples contain annotations that describe specific parts of
the example. These annotations (which are not part of the example code or
session) appear in italic type style and flush with the right margin.

Bold-Italic-Monospace
Identifies user input (what you enter in response to some prompt).

Bold-Monospace
Identifies the names of keyboard keys (which are also enclosed in angle
brackets). A dash indicates that the key preceding the dash is to be held down
while the key following the dash is pressed. For example:
{Break> {s> {Ctrl-Alt-Del>
[1 (Brackets) Surround optional items.
(Ellipsis dots) Indicate that the preceding item may be repeated.

| (Bar) Separates two or more items of which you may select only one.

{ 1 (Braces) Surround two or more items of which you must select one.

vii

Preface ' Paragon™ OSF/1 C System Calls Reference Manual

System Call Syntax Descriptions

In this manual, a prototype for each system call is described in the “Synopsis™ section, which
contains the following:

» Include file declarations needed by the system call.
¢ Syntax of the system call.
* Parameter declarations of each system call.

The following notational conventions apply to the “Synopsis” section:

Bold Identifies system call names.
Ialic Identifies parameter names.”
[] (Brackets) Surround optional items.

| (Bar) Separates two or more items of which you may select only one.
{ 1 (Braces) Surround two or more items of which you must select one.
(Ellipsis dots) Indicate that the preceding item may be repeated.
For example:
* The synopsis for the iprobe() system call appears as follows:
#include <nx.h>

long iprobe(
long typesel);

viii

mEEnm

[

o e o I o T o s B M=

s B e Bl

Bl Bl Bl Bl Bl Bl

Paragon™ OSF/1 C System Calls Reference Manual Preface

Applicable Documents

For more information, refer to the following documents:

OSF/1 Programmer’s Reference
ParagonTM OSF/1 User’s Guide
Paragon™ OSF/1 Fortran System Calls Reference Manual

Paragon™ OSF/1 Commands Reference Manual

How Errors are Handled

How the Paragon OSF/1 operating system handles errors depends on the system call involved:

For Paragon OSF/1 system calls whose names begin with “nx_" or “nxr_" or “x”, the calls either
return -1 and set the variable errno to a value that describes the error, or it sends a signal to the
calling process. You can use nx_perror(3) or perror(3) to print a message for the value of
errno.

For all other Paragon OSF/1 system calls (except those whose names begin with “nx”, “nxr”, or
“x”), the system normally displays a message on the terminal and terminates the calling process.
For all Paragon OSF/1 system calls (except those whose names begin with “nx”, “nxr”, or “x”),
there is a corresponding underscore system call that returns -1 and sets the variable errno to a
value that describes the error. The underscore system calls are identified by an underscore (_)
as the first character of the name. For example, the _crecv() function is the underscore version
of the _cread() function. The underscore calls allow you to write programs that take specific
actions when an error occurs. These calls do not terminate a process when an error occurs. You
can use nx_perror(3) or perror(3) to print a message for the value of errno. For a complete list
of the errno values set by the underscore calls, see the errno manual page.

Comments and Assistance

Paragon™ OSF/1 C System Calls Reference Manual

Intel Supercomputer Systems Division is eager to hear of your experiences with our products. Please
call us if you need assistance, have questions, or otherwise want to comment on your Paragon

system.

U.S.A/Canada Intel Corporation
phone: 800-421-2823
Internet: support@ssd.intel.com

Intel Corporation Italia s.p.a.
Milanofiori Palazzo

20090 Assago

Milano

Italy

1678 77203 (toll free)

France Intel Corporation

1 Rue Edison-BP303

78054 St. Quentin-en-Yvelines Cedex
France

0590 8602 (toll free)

Japan Intel Corporation K.K.
Supercomputer Systems Division
5-6 Tokodai, Tsukuba City

United Kingdom Intel Corporation (UK) Ltd.
Supercomputer System Division

Pipers Way

Swindon SN3 IRJ

England

0800 212665 (toll free)

(44) 793 491056 (answered in French)

(44) 793 431062 (answered in Italian)

(44) 793 480874 (answered in German)

(44) 793 495108 (answered in English)

Germany Intel Semiconductor GmbH
Dornacher Strasse 1
8016 Feldkirchen bel Muenchen

Ibaraki-Ken 300-26 Germany
Japan 0130 813741 (toll free)
0298-47-8904
World Headquarters
Intel Corporation

Supercomputer Systems Division
15201 N.W. Greenbrier Parkway
Beaverton, Oregon 97006

U.S.A.

(503) 629-7600

If you have comments about the Paragon manuals, please fill out and mail the enclosed Comment
Card. You can also send your comments electronically to the following address:

techpubs@ssd.intel.com (Internet)

M W A N AW E e E =S NN EE R R R AR RN

)
&

o I o T e e

LN N N

Table of Contents

CPROBE() wcvvvvuerimmnvessmassssssssssssssssssmssssssssssesssesssssssssssssesesesmmssssssssssassssssssssssessesesssssmsssssssssmsssssssssssness 1
CREAD() ovuourmienessesessssssssesssssssssssssesssssesssssssssssessssessss osssssas s st sssesssesssse e essesessss s sessmssssssesssess 3
CRECV() «vvvvvesereesessesmssasssessssssessessmssssessssssessessssssssassesssesssasssesssssssmsssssssssssssessesessmsssnesssessssosssssmases 5
CSEND() wvvvvveseunesessesssssssssssassssssessesssssesssssssssssesssssssssesssssssmsassesssssssssosssssssssssssesessssssnesesssmssssssssssnsos 8
CSENDRECV() wcvveveeeseesesssssmessssssssmsnsssssssssssnesssssssssssssssssssnmmassssssssssssssssssssssssssssssssnosssssssasesssssssmnnes 10
CWRITE(weuvurnorreveessssessssseesssssssssssssessssssssssses s ssosssesessssssssesssssesesssssssssss s s st essssssssssssssssssmmsssessssssss 12
07010 103 () 14
EADD() weorornreveemssesneessessssssssssssssssesssssssssssesssesssssssssssssssessesssssssesses messsssssesssesssessmsssessssssnassssmmssssssssens 15
ERRNO .oovtevevussssmnsesessssssnsssssssssessssssssasosssssssssnsssssssssessesss essssssssssssssssiesssssssssmsssssssssssnassssssmssssssssnes 18
ESEEK() crovevevevussernnesssssssmssssssssssssssssssssssssssssessssssssssessssssssssssssssssssssesssssosssssssssssssssssssssmssesssnsnsssssssssnes 30
ESIZE() vvvvrevveemsmssmmsessesssssssmsssssssssssesssssssssssesssssssssssssssessssssssssssmmannans S 32
ESTAT() ervveemcssessssssesmssssssmssesssssssessessesessssssesssssssssssseessssessmasesssssssmssessssesesessossssessssssossssamsssssssssssns 35
ETOS() wereurerereresmesnsssessssssssssssssnssssssssssessssssssssnsssssssssssiossssssessssssssssessesssssssssssmsessssssssnsssessssssssssssanne 37
FLICK() wereureeeeeresaesmnessessssssessssmsesesssessesseessesssasasssssesessssesessesessssssessssmmmsesssssssessessesssessessssssemsesssesssnns 39
FLUSHMSG() cvvvveurnvesesssssnsssesssssasssssssssssssssssssnssessssssssssessssssssssssssssssasosssssssssmsssesssssssssssssssasssssssses 41
FPGETROUND() «..vcoevvevesssssssesssssssssssssnsssessessssessssssssssssssssssssssssesssessssssssssssssssssssssssssssssssmnsssssesssssnns 43
[cTe!o) 1) OO 47
GOOLX() ovvvemermssesssmsssnissssssssssssssssssssssssssssasssessssssssssssese s ssss s ssssssses s ssssssssssssssssssssssssssssessssssssnnes 49
GDHIGH() wevvonmeesseeesessssesnessssssssssssssssssesssssssssssessssssssssssesssssesesss st eessssssesssessesstoesssesasssssseessssmsesssse 51
GDLOW() covvvvermseneessesmsnssssssssssssessssesassssssssssssssssesessssssssestss s sssesssssssssssssasssssssssssesssesssssssmsssssssssnnes 53
GDPROD() wovusueneeeessssnssssssssneesssssessssssssssssssssssessssssmsssssssssssssssssssssesisssssssssssssssessssssssssesssssssessssssssnnnes 55
GDSUM() cevveeemereeeeeeeessssesesmessessessssssesesseesssssseesssessssansses e sessassssssessssaseesssssssmsssssssssssssessessssssssssssssssns 57

Xi

Table of Contents : Paragon™ OSF/1 C System Calls Reference Manual
GIAND() .eoveuunnreereesseessssesssesssssnessssasssssesssssssssssssessasess s asassssessssmssessasesssss s s st sssssssessssassssssssasassssess 59
GIOR() weveunerensemsnessssessnsssssssnessmsssssessasessssss s ssssessassessstasss s sese s ssssesess sassss s essasss s tsssssesssssssassssssssens 61
GOPF() weieierrietenerrisinsressessssssesesstesasssi st ssnessassessnsseresessasassssssesssonesstenesrssanssnesnesenenansse senassenssssssssnssssen 63
GSENDX() coveiireieseiiieisessanisticesestseressiorssssessseessssssssasssmssnssmssasssessesses saesnssssarserassssssnssassasssasane sssssssansanes 65
GSYNC() 1eerererrrrererrersenrecrsessreisessiesessestessessssseesssesssssesassstasssssesssssssssesnesnssssessensessssnassassssesasensasssssasnassnes 67
HRECV() oot senneisee st esstssesssesaeesessessssssesssesiesssssnsssassesssassesnesse sanssasssssasssusstsnasssns s ssesansnsns 68
HSEND() .eoteeerrreirerernecsseseeseessesstesnesesesessessessasesssssesassssesssssesnsesssssessesssssessensesssssaesassanssassnseenasassassnns 72
HSENDRECV() .cocveirirtireeescrnersresseeneessessssssssssssssssssesssssnsesessssesssssesssssssnssssssessesssssssssessssssassesssosassnesasss 76
INFOCOUNT() ceeiveeiirninirricirensnsseessisestssnsssnsseessrsssssnsssssanssnsssssasssesenssnsssssssarasss s sasssasstansnsssessssasssnsssess 79
JODONE() .uveeeerurrerersmrersseesssssusssessesssesarsssessesarssesssrssssssssesssessessesssessesssssaessessesssssesssessessesssessessassnensnesasss 81
JOMODE() «.ciieiiueiniestssisieeescrarnnsessteseesssstssnssasssesassessssesasssessassssssrssssrsnssnsssessassssansssnsssssnsnessesasasnessoss 83
TOWAIT() cocceieereirecerreirieessnersstessnesasssesessessassnnessnesssesssessnssess srssssassssserasesnnsess ssnssnassnesnnessnnssssasneesssanns 85
IPROBE() ..eevreerceeesseresenesersseesrerssessansssesssssssnssesssssssssessssssssessesnsessessssssessssessssssesstsesassnssssssesasssnsessassnns 87
IREAD() +1rvvuesseesseesssessessssessessessessssemsssssssessessssessssassessssesessssesessasssessasssmsssssesssessssesessnsssessssessanssessnens 90
IRECV.() cvvuereeeessmesssssnesssssssssssssssessssssensssisssnessssssssess esssssshesssasessssesssssssssessssssssessesssesssessssssssassnssssasnns 92
ISEND() eeeereriiririnesierctrereesesnnesesetsssnssessnsssessssssersssesssesssessesssssnesssssnssstssasssensesassns sssons sansssnsnsssssssesnnssnes 95
ISENDREGCV() coerieirereretsiarsinsseerssiessnsieessesssarsasessesssssssssssnsssssssssessessstessssessssssssssssssssassssnasanssnssssessnassane 97
ISEOF() eveeeveeernrrereiseritertessessneesnsesstessesssesssesssssssenssssssas ssessaesssesnsessasaneesasestavaessnsesssesssessassarnesnnansaes 100
JONANI() tvteeuesntererseeesnesessessenesneesssssessssesssesssssessessesneesssssnessessessensesnessssssseseessessanneenssnsasenesesnsnesasanansess 102
IWRITE() toeoctrernrienneireseecstniisieesssesesseessnnssssnssssssassnsesssesssnesssssssssasssssssessnessssssssssssnesssnssssnnssesassssanansans 104
LED() ceteerteecrersrnrreeessessreesessssisssesssesssessnssssesssssssnessesssesssssssensssesssnssssess sesasssnesssenesanasssesssssssasssnnssnenares 106
LSIZE() weuvereerssrssseessessssssssssssessssesssesssesssossesesssssssssenssesssessssessessassssasessssssesssssssssssenssssssessssassesssessssens 108
MASKTRAP() ..eerrereerrerrusrrensertesseessesisesessesssessesssessssessssssssssesssssssasssnsersnsasesssssaassnssssesssnssnsessnesssesssassnss 111
MSGCANCEL() ..evcverreiircicrrsrencressiesseesessiesesasessessessesssesssesssssssasrsnsssesasssssssessesassnsanasssssnnessesassnssssesnanss 113
MSGDONE() .eiicereriirrenienenssiesecereesnissisessssssesssesasssesstssessssssssesssnsessassessesessssssssssssessesensssnssassseesassssesess 116
MSGIGNORE() .eecririenimeiirrnsenentseisnsrsssssssnesssssssemsssssssssesssssssansssssanssssas sosssasssssassss sesssss ssssssssnssanesass 117
MSGMERGE() ...cceveiieireeernrreecsnecresessessessssssessssssssesssesesssessessssssssssssassssestsssssssssasssssesenssnsasessassssssansess 119
MSGWAIT() .eeevirereereinnenrinseesinesssessesssesssessssssessesssssstssssssasssestesssssassnesasssesasessssssssessesssasssssessnassssssosnansese 121
MYHOST() oveieieiireniiirrnreccrnrsnerensesesssesesssssseesnsssssesesssssesassesssmssssssessansnssssssessassssasssnsssssssasansnsssssnenss 123
MYNODE() .eoeuiiiiirniiiniisesitsesinssssnessensesstssessssssaeseeessssessasassssssssessassssassssssessens sssesssssssssssssssssssssss saness 124
MYPTYPE() couiticicmminiiiciriiiiiiisetieneissressssesssstssisnsssssssssassestesessnsessesssssnessnssessensssesessassrssssssssssnssssanssnne 125
NUMNODES() ..ocveererereermeriessiesensessesesssnsesssssessnsssssesssessssinsssessessessssssnsssessessessesassessssassssss sssssas snssssssnssn 126

Xii

Paragon™ OSF/1 C System Calls Reference Manual Table of Contents
NX_CHPART() .eeevirveeserinessessnnntesseesesssnesesseessnsseessesesssssssssnestsssessssasssssnsssss ssnesssseesessssssasssnssssasnssssssssass 127
NX_INITVE() coviriniiieiiiiinnennesssnsisessssssssssesssnssessissssissssssssssssas s sessas st asasasssansssanae snessnsesassanssanens 131
NX_LOAD() wvurrrrneresnsssssessssesesssesessesssesasssmsssssesesssss st sasesssssssssssassssssssssestasesesssssssssssssssesssessasssssssnnes 134
NX_MEKPART() cecteeserstseserssuissnrasnrasereessssarssssesseessnssssssasssnessssssassssssassssassssassnessasansessssensssssessassssssnassnes 137
NX NFORK() ooueiiieeiiirrinrerrceeisscesesseessssessseesnsssssssessssesssssssessssssssnessssessossessrasassasensssessnssssnsessssssessnns 140
NX_PERROR() .u.cvereeusersesesnmssesesssssessssesesssssessasssssssssssssnssssnosssssssssssssssssssssesssnesssssssssssssssasssasssssses 142
NX_PRI() vervrsreesesesenessssssssassssssesessessesessstesssssssssssssemsesessetssesssessssssestssnssssessssstasessssssesssasesssessssesassens 143
NX_RMPART() cerceieceeeririessinnnisinnnessnessesssenssesssnessesasesssessssosnasssssssssassassess st sssssasessssssnnssasasssassasssassssnses 145
NX _WAITALLQ ooivverererrmesinnnisisnnesserenassensssssnnessnsesarssensssassessssssssssssssnsssst esssssessse snnasensasseessessesassasss 148
SETIOMODE() ..evereeeseeersesssesssssesesssesessesesssassessssssssssssesssesssssssesssssssessssssssssssssssssssses sssssssasesssssanes 149
SETPTYPE() vvueeueeeereseseseeseesssesssssssssssssesssesssssssesssstasssassessssssssess s sssssssstensssssesesnsssmessasesstassssssasssns 153

Appendix A

Message Types and Typesel Masks

TYPES ..ottt st e ss s bt s e R AR e R e e bR R et e A-1

TYPESEI MASKS ...ttt ettt es s s a s st s st s A-2

xiii

Table of Contents iPSC®/860 System Administrator's Guide

List of Tables

Table A-1. Typesel Mask LiStcceviiiniiiiiniiiiennsnsssnsisss s s sssssss e ssssssssssssnsssssens A-2

xiv

-
[~

I

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

CPROBE|() CPROBE()

cprobe(), cprobex(): Waits (blocks) until a message is ready to be received. (Synchronous probe)

Synopsis
#include <nx.h>

void cprobe(
long rypesel);

void cprobex(
long typesel,
long nodesel,

long ptypesel,
long info[]);

Parameters

typesel Message type(s) to receive. Setting this parameter to - 1 probes for a message of
any type. Refer to Appendix A of the Paragon’ OSF/1 C System Calls Reference
Manual for more information about message type selectors.

nodesel Node number of the sender. Setting the nodesel parameter to - 1 probes for a
message from any node.

ptypesel Process type of the sender. Setting the prypesel parameter to - 1 probes for a
message from any process type.

info Eight-element array of long integers in which to store message information. The
first four elements contain the message’s type, length, sending node, and sending
process type. The last four elements are reserved for system use. If you do not need
this information, you can specify the global array msginfo, which is the array used
by the info...() calls. See the nx.h include file for information about the global
array msginfo.

Manual Pages

Paragon™ OSF/1 C System Cails Reference Manual

CPROBEO (cont.) CPROBEO (cont.)

Description

Use the appropriate synchronous probe system call to block the calling process until a specified
message is ready to be received:

e Use the cprobe() function to wait for a message of a specified type. Use the info...() system calls
to get more information about the message.

» Use the cprobex() function to wait for a message of a specified type from a specified sender and
store information about the message in the info array.

When a synchronous probe system call successfully returns, the message of the specified type is
available. Use the receive system calls (for example, crecv() or irecv()) to receive the message.

These are synchronous system calls. The calling process waits (blocks) until the specified message
is ready to be received. To probe for a message of the specified type without blocking the calling
process, use one of the asynchronous probe system calls (for example, iprobe()).

Return Values

Errors

See Also

Upon successful completion, the cprobe() and cprobex() functions return control to the calling
process; no values are returned. Otherwise, these functions display an error message to standard
error and cause the calling process to terminate.

Upon successful completion, the _cprobe() and _cprobex() functions return 0 (zero). Otherwise,
these functions return - 1 and set errno to indicate the error.

Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

crecv(), errno, infocount(), infonode(), infoptype(), infotype(), iprobe(), irecv()

non

& |

|

I

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

CREAD)

CREAD()

Reads from a file and blocks the calling process until the read completes. (Synchronous read)

Synopsis

Parameters

Description

#include <nx.h>

void cread(
int fildes,
char *buffer,
unsigned int nbytes);

fildes File descriptor identifying the file to be read.
buffer Pointer to the buffer in which to store the data after it is read from the file.
nbytes Number of bytes to read from the file associated with the fildes parameter.

Except for error handling, the cread() function operates identically to the OSF/1 read() function.
See the read(2) manual page in the OSF/! Programmer’s Reference.

This is a synchronous system call. The calling process waits (blocks) until the read completes. To
read a file without blocking the calling process, use the iread() function.

Reading past the end of a file causes an error, so you must know how many bytes remain in a file
before you read from it. If any error occurs, the cread() function prints an error message and
terminates the calling process. Use the iseof() function to detect end-of-file after calling the cread()
function. Use the Iseek() function to determine the length of a file.

If you need to detect errors in reading and writing, use either the standard OSF/1 calls (the read()
and write() functions, described in the OSF/1 Programmer’s Reference) or the underscore versions
of the parallel /O calls (the _cread() and _cwrite() function).

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

CREAD() (cont.) CREADO (cont.)

Return Values

Errors

See Also

Upon successful completion, the cread() function returns control to the calling process; no values
are returned. Otherwise, the cread() function displays an error message to standard error and causes
the calling process to terminate.

Upon successful compleu'on, the _cread() function returns the number of bytes read. Otherwise, the
_cread() function returns -1 and sets errno to indicate the error.

If the _cread()/fxmction fails, errno may be set to one of the error code values described for the
OSF/1 read() function or the following value:

EMIXIO In /O mode M_SYNC, nodes are attempting different operations (reads and
writes) to a shared file. In these modes, all nodes must perform the same operation.

cwrite(), iread(), iseof(), iwrite(), setiomode()

OSF/1 Programmer’s Reference: Iseek(2), open(2), read(2)

b4
Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
i
|}
I
]
K CRECV() CRECV()
I—'Z; R =

- crecv(), crecvx(): Posts a receive for a message and blocks the calling process until the receive completes.
(Synchronous receive)

I Synopsis
: #include <nx.h>
I
- void crecv(
1 long typesel,
1 char *buf,
long count);
1
. void crecvx(
i long typesel,
I char *buf,
‘ long count,
M long nodesel,
long ptypesel,
I long info[]);
1
I Parameters
- typesel Message type(s) to receive. Setting this parameter to - 1 receives a message of any
type. Refer to Appendix A of the ParagonTM OSF/1 C System Calls Reference
I Manual for more information about message type selectors.
i
. buf Pointer to the buffer in which to store the received message. The buffer can be of
lﬂ any valid data type, but should match the data type of the buffer in the
\ corresponding send operation.
I di d i
I count Length (in bytes) of the buf parameter.
. nodesel Node number of the sender. Setting the nodesel parameter to - 1 receives a
l: message from any node.
r ptypesel Process type of the sender. Setting the prypesel parameter to - 1 receives a
message from any process type.
o

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

CRECVO (cont.) CRECVO (cont.)

Description

info Eight-element array of long integers in which to store message information. The
first four elements contain the message’s type, length, sending node, and sending
process type. The last four elements are reserved for system use. If you do not need
this information, you can specify the global array msginfo, which is the array used
by the info...() system calls.

Use the appropriate synchronous receive system call to post a receive for a message and wait until
the receive completes:

¢ Use the crecv() function to receive a message of a specified type.

¢ Use the crecvx() function to receive a message of a specified type from a specified sender and
place information about the message in an array.

When the receive completes, the message is stored in the specified buffer and the calling process
resumes execution.

After the crecv() function completes, you can use the info...() system calls to get more information
about the message after it is received. After the crecvx() function completes, the same message
information is returned in the info array.

These are synchronous system calls. The calling process waits (blocks) until the receive completes.
To post a receive for a message without blocking the calling process, use an asynchronous receive
system call (for example, the irecv() function) or a handler receive system call (for example, the
hrecv() function).

Return Values

Errors

Upon successful completion, the crecv() and crecvx() functions return control to the calling process;
no values are returned. If an error occurs, these functions print an error message to standard error
and cause the calling process to terminate.

The _crecv() and _crecv() functions return -1 when an error occurs and set errno to indicate the
error. Otherwise, these functions return the number of bytes received.

Refer to the errno manual page for a complete list of error codes that occur in the C underscore
system calls.

I

7131‘

il

-
=

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
CRECV() (cont.) CRECVO (cont.)
See Also

cprobe(), csend(), csendrecv(), errno, hrecv(), hsend(), hsendrecv(), infocount(), infonode(),
infoptype(), infotype(), iprobe(), irecv(), isend(), isendrecv()

Manual Pages : Paragon™ OSF/1 C System Calls Reference Manual

Sends a message and blocks the calling process until the send completes. (Synchronous send)

Synopsis
#include <nx.h>
void csend(
long type,
char *buf,
long count,
long node,
long ptype);
Parameters
type Type of the message to send. Refer to Appendix A of the Paragonm OSF/1C
System Calls Reference Manual for more information about message types.
buf Pointer to the buffer containing the message to send. The buffer may be of any
valid data type.
count Number of bytes to send in the buf parameter.
node Node number of the message destination (the receiving node). Setting the node
parameter to - 1 sends the message to all nodes in the application (except the
sending node when the prype parameter is the sender’s process type).
ptype Process type of the message destination (the receiving process).
Description
This is a synchronous system call, The calling process waits (blocks) until the send completes. To
send a message without blocking the calling process, use one of the asynchronous send system calls
(for example, isend()) or one of the handler-send system calls (for example, hsend()) instead.
The completion of the send operation does not mean that the message was received, only that the
message was sent and the send buffer (buf) can be reused.
8

Ll
il

I

al

|
al

g

-

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

CSEND() (cont.) CSENDO (cont.)

Return Values
Upon successful completion, the csend() function returns control to the calling process; no values
are returned. Otherwise, this function displays an error message to standard error and causes the
calling process to terminate.

Upon successful completion, the _csend() function returns 0 (zero). Otherwise, this function returns
-1 and sets errno to indicate the error.

Errors

Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

See Also

csend(), crecv(), csendrecv(), errno, hrecv(), hsend(), hsendrecv(), iprobe(), irecv(), isend(),
isendrecv()

Manual Pages

CSENDRECV()

Paragon™ OSF/1 C System Calls Reference Manual

CSENDRECV()

Sends a message, posts a receive for a reply, and blocks the calling process until the receive completes. (Synchronous

send-receive)

Synopsis .
#include <nx.h>
long csendrecv(
long type,
char *sbuf,
long scount,
long node,
long prype,
long typesel,
char *rbuf,
long rcount);
Parameters
type Type of the message to send. Refer to Appendix A of the Paragon” OSF/I C
System Calls Reference Manual for information on message types.
sbuf Pointer to the buffer containing the message to send. The buffer may be of any
legal data type.
scount Number of bytes to send in the sbuf parameter.
node Node number of the message destination (the receiving node). Setting the node
parameter to - 1 sends the message to all nodes in the application (except the
sending node when the prype parameter is set to the sender’s process type).
ptype Process type of the message destination (the receiving process).
typesel Message type(s) to receive. Setting this parameter to - 1 receives a message of any
type. Refer to Appendix A of the ParagonTM OSF/1 C System Calls Reference
Manual for more information about message type selectors.
rbuf Pointer to the buffer in which to store the reply. The buffer can be of any valid data
type, but should match the data type of the buffer in the corresponding send
operation.
rcount Length (in bytes) of the rbuf parameter.
10

=l = I I

I

w
4

- -

S |

=™

m-

Paragon™ OSF/1 C System Calls Reference Manual ' Manual Pages
CSENDRECV() (cont.) CSENDRECVO (cont.)
Description

The csendrecv() function sends a message and waits for a reply. When a message whose type
matches the type(s) specified by the rypesel parameter arrives, the calling process receives the
message, stores it in 7buf, and resumes execution.

This is a synchronous system call. The calling process waits (blocks) until the receive completes. To
send a message and post a receive for the reply without blocking the calling process, use the
isendrecv() function or the hsendrecv() function (asynchronous system calls) instead of the
csendrecv() function.

If the reply is too long for the rbuf buffer, the receive completes with no error returned, and the
content of rbuf is undefined.

The csendrecv() function does not affect the information returned by the info...() system calls.

Return Values

Errors

See Also

Upon successful completion, the csendrecv() function returns the length (in bytes) of the received
message, and returns control to the calling process. Otherwise, this function displays an error
message to standard error and causes the calling process to terminate.

Upon successful completion, the _csendrecv() function returns length (in bytes) of the received
message. Otherwise, this function returns - 1 and sets errno to indicate the error.

Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

cprobe(), crecv(), csend(), errno, hrecv(), hsend(), hsendrecv(), iprobe(), irecv(), isend(),
isendrecv()

1

Manual Pages

CWRITE()

Paragon™ OSF/1 C System Calls Reference Manual

CWRITE(

Writes to a file and blocks the calling process until the write completes. (Synchronous write)

Synopsis

Parameters

Description

#include <nx.h>

void ewrite(
int fildes,
char *buffer,
unsigned int nbytes);

fildes File descriptor identifying the open file to which the data is to be written.
buffer Pointer to the buffer containing the data to be written.
nbytes Number of bytes to write to the file associated with the fildes parameter.

Other than the return values and the additional error discussed below, the cwrite() function is
identical to the OSF/1 write() function. See write(2) in the OSF/1 Programmer’s Reference.

This is a synchronous system call. The calling process waits (blocks) until the write completes. To
write a file without blocking the calling process, use the iwrite() function.

To determine whether the write operation moved the file pointer to the end of the file, use the iseof()
function.

Return Values

12

Upon successful completion, the cwrite() function returns control to the calling process; no values
are returned. Otherwise, the cwrite() function displays an error message to standard output and
causes the calling process to terminate.

Upon successful completion, the _cwrite() function returns the number of bytes written. Otherwise,
the _cwrite() function returns -1 and sets errno to indicate the error.

"
el

£

E

i b3

AN |

1

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
CWR|TE() (cont.) CWR'TE() (cont.)
Errors

See Also

If the _cwrite() function fails, errno may be set to one of the values described for the OSF/1 write(2)
function or the following value:

EMIXIO In I/O mode M_SYNC, nodes are attempting different operations (reads and
writes) to a shared file. In these modes, all nodes must perform the same operation.

cread(), iread(), iseof(), iwrite(), setiomode()

OSF/1 Programmer’ s Reference: open(2), write(2)

13

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual

DCLOCK() DCLOCK()

Gets elapsed time in seconds since the node was booted.

Synopsis
#include <nx.h>

double dclock(void);

Description

The dclock() function measures time intervals in seconds. The dclock() value rolls over
approximately every 14 years, maintaining an accuracy of 100 nanoseconds (the count rate for the
node’s counter) during that time.

NOTE

Each node has its own counter, which differs from the counters on
other nodes. Do not use dclock() to synchronize processes.

Return Values

Upon successful completion, the dclock() function returns a double precision value for the elapsed
time (in seconds) since booting the node, and returns control to the calling process. Otherwise, the
dclock() function displays an error message to standard error and causes the calling process to
terminate.

Upon successful completion, the _dclock() function returns the elapsed time (in seconds) since
booting the system. Otherwise, the _dclock() function returns -1 and sets errno to indicate the error.

Errors
Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

See Also
errno

14

o o T e B o

Paragon™ OSF/1 C System Calls Reference Manual

EADD()

eadd(), ecmp(), ediv(), emod(), emul(), esub(): Perform mathematical operations on extended (64-bit) integers.

Synopsis

#include <nx.h>

esize_t eadd(
esize_tel,
esize_te2);

long ecmp(
esize_tel,
esize_te2);

long ediv(
esize_t e,
long n);

long emod(
esize_te,
long n);

esize_t emul(
esize_te,
long n);

esize_t esub(
esize_tel,
esize_te2);

Manual Pages

EADD()

15

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual
EA DD() (cont.) EADD() (cont.)
Parameters

e el, e Extended integer values

n Integer value used to multiply or divide an extended integer
Description

Extended integers are unsigned 64-bit integers with values from 0 to 24 - 1 (approximately 1.8 x
10'%). Always use the extended-integer system calls to access extended integers.

Use these system calls to perform the following mathematical operations on extended integers:

eadd() Add an extended integer to another extended integer.

ecmp() Compare two extended integers.

ediv() Divide an extended integer by an integer.

emod() Get the remainder of an extended integer divided by an integer.
emul() Multiply an extended integer with an integer.

esub() Subtract an extended integer from another extended integer.

These system calls support the extended file sizes in the Parallel File System (PFS).

Return Values

Upon successful completion, the eadd(), emul(), and esub() functions return the computed value of
type esize_t (see the nx.h include file). The type esize_t has the following structure:

struct s_size {
long slow;
long shigh;
}i
typedef struct s size esize t;

16

K

-

I
a

Paragon™ OSF/1 C System Calls Reference Manual . Manual Pages
EADD() (cont.) EADD() (cont.)
Upon successful completion, the ecmp() function returns the following values:
-1 ifel <e2
0 ifel =e2
1 ifel >e2

Errors

See Also

Upon successful completion, the ediv() and emod() functions return the computed value (of type
long). Otherwise, the eadd(), ecmp(), ediv(), emod(), emul(), and esub() functions display an error
message to standard error and cause the calling process to terminate.

Upon successful completion, the _eadd(), _ecmp(), _ediv(), _emod(), _emul(), and _esub()
functions return the same value as their respective non-underscore version of the function.

Otherwise, these functions return - 1 (the functions that return an esize_t structure return -1 in all
fields of the structure) and set errno to indicate the error.

If an error occurs during an _eadd(), _ecmp(), _ediv(), _emod(), _emul(), or _esub() function,
errno may be set to the following error code value:

EQESIZE Arithmetic overflow of extended integer.

If an error occurs during an _ediv() or an _emod() function, errno may be set to the following error
code value:

EQESIZE Quotient does not fit into a long integer.

eseek(), esize(), estat(), etos(), stoe()

17

Manual Pages

ERRNO

Paragon™ OSF/1 C System Calls Reference Manual

ERRNO

* Error values returned by functions in the errno global variable.

Synopsis

Description

18

#include <errno.h>

There are two versions of the Paragon” OSF/1 C system calls:
¢ The standard C system calls that send a message to standard error when an error occurs
¢ The underscore C system calls that return an error code (errno) when an error occurs

The standard C system calls terminate a process when an error occurs and send a message to standard
error describing the error. For example, the crecv() function terminates when an error occurs and it
sends a message to the standard error describing the error.

The underscore C system calls are identified by an underscore as the first character of the name. For
example, the _crecv() function is the underscore version of the crecv() function. The underscore
calls allow you to write programs that take specific actions when an error occurs. They return a
non-negative value upon successful completion. When an error occurs in an underscore system call,
the call does not terminate the process, but returns a - 1 value and sets the errno global variable with
an error value.

The errno global variable is set with an error value that has an associated message that helps
determine the problem in a program. This manual page provides a complete list of the error values
for Paragon OSF/1 C system calls. You can also find the list of error codes in the file
lusrlincludelsys/errno.h. See the OSF/1 Programmer’s Reference for more information about error
codes and error numbers.

There are two functions you can use to print out the error code for a program that terminates with an
error: perror() and nx_perror(). The perror() function writes an error message on the standard
error output that describes the last error encountered by a function, library function, or Paragon
OSF/1 system call. The nx_perror() function is identical to the perror() function, except that it
writes the current node number and process type in addition to the error message.

mEannR R

Bl Bl e

Ml

Paragon™ OSF/1 C System Calls Reference Manual

ERRNO (cont.)

Manual Pages

ERRNO (cont.)

For example, the underscore C system call _crecv() call does not terminate when an error occurs.
On a error, it returns a - 1 and sets errno to the error code for the error that occurred. You can use
perror() or nx_perror() to print the error message.

The following table lists the errno values for Paragon OSF/1 system calls. The table lists the error
code, the error code number, the message text, and notes on the error code. The message text appears

in italic text.
Error Code Value
E2BIG 7
EACCES 13
EADDRINUSE 48

EADDRNOTAVAIL 49

EAEXIST 158
EAFNOSUPPORT 47
EAGAIN 35
EAINVALGTH 156
EAINVALMBF 151

Messages and Notes

Arg list too long. The number of bytes received by the
argument is too big.

Permission denied. The calling process does not have
permission for the operation.

Address already in use. The specified address is
already in use.

Can't assign requested address. The specified address
is not available from the local machine.

Application exists for process group.

Address family not supported by protocol family. The
addresses in a specified address family cannot be used
with the socket.

Resource temporarily unavailable. A resource, such as
a lock or process, is temporarily unavailable.

Give threshold invalid or out of range. For information
about the range of values for the give threshold, see the
application manual page either online or in the
Paragon™ OSF/1 Commands Reference Manual.

Memory buffer invalid or out of range. For
information about the range of values for the memory
buffer size, see the application manual page either
online or in the ParagonTM OSF/1 Commands
Reference Manual.

19

Manual Pages

ERRNO (cont.)

20

EAINVALMEA

EAINVALMEX

EAINVALPKT

EAINVALSCT

EAINVALSTH

EALREADY

EANOEXIST

EANOTPGL

EBADF

EBADMSG

EBADPORT

EBADRPC

EBUSY

153

152

150

155

154

37

164

157

84

101

72

16

Paragon™ OSF/1 C System Calls Reference Manual

ERRNO (cont.)

Memory each invalid or out of range. For information
about the range of values for the memory each size, see
the application manual page either online or in the
Paragon” OSF/1 Commands Reference Manual.

Memory Export invalid or out of range. For
information about the range of values for the memory
export size, see the application manual page either
online or in the ParagonTM OSF/1 Commands
Reference Manual.

Packet size invalid or out of range. For information
about the range of values for the packet size, see the
application manual page either online or in the
Paragon” OSF/1 Commands Reference Manual.

Send count invalid or out of range. For information
about the range of values for the send count size, see
the application manual page either online or in the
Paragon™ OSF/1 Commands Reference Manual.
Send threshold invalid or out of range. For
information about the range of values for the send
count size, see the application manual page either
online or in the Paragon" OSF/1 Commands
Reference Manual.

Operation already in progress.

Application does not exist for process group. The
specified process group does not exist.

Calling process not process group leader.

Bad file number. A socket or file descriptor parameter
is invalid.

Next message has wrong type.
Failed port to struct translation.
RPC structure is bad.

Device busy. The requested element is unavailable, or
the associated system limit was exceeded.

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
 H

 §4

I

[

IFJ ERRNO (cont.) ERRNO (cont.)
™

I ECFPS 199 Seek 1o different file pointers. Two or more application
- processes are calling Iseek() with different shared 1/O

I modes (M_SYNCH or M_RECORD).

I ECHILD 10 No child processes. The child process does not exist,
- or the requested child process information is

1 unavailable.

I
s ECLONEME 88 Tells open to clone the device.

I ECONNABORTED 53 Software caused connection abort. The software

- caused a connection to abort because there is no space

i on the socket’s queue and the socket cannot receive

N further connections.

I ECONNREFUSED 61 Connection refused.

- ECONNRESET 54 Connection reset by peer. The attempt to connect was

I rejected.

il

EDEADLK 11 Resource deadlock avoided. There is a probable

- deadlock condition, or the requested lock is owned by

i someone else.

ol

1 EDESTADDRREQ 39 Destination address required.

&7

i EDIRTY 89 Mounting a dirty file svstem w/o force. The file system

1 is not clean and M_FORCE is not set.

‘ EDOM 33 Argument out of domain. The value of the parameter is

I a Not a Number (NaN).

.ﬂ EDQUOT 69 Disc quota exceeded. The file system of the requested
- directory has exceeded the user’s quota of disk blocks.
al .

- EDUPPKG 90 Duplicate package name. The loaded module exported

LJ a package which duplicated the package name of a
- module already loaded in the same process.

o

r EEXIST 17 File exists. The requested file already exists.

. EFAULT 14 Bad address. The requested address is in some way
invalid.

2

Manual Pages

ERRNO (cont.)

22

EFBIG

EFSNOTSUPP

EHOSTDOWN

EHOSTUNREACH

EIDRM

EIMODE"

EINPROGRESS

EINTR

EINVAL

EIO

EISCONN

EISDIR

ELOCAL

ELOOP

EMFILE

EMIXIO

27

210

65

81

202

36

22

56

21

103

62

24

201

Paragon™ OSF/1 C System Calls Reference Manual

ERRNO (cont.)

File 100 large. The file size exceeds the process’ file
size limit, or the requested semaphore number is
invalid.

Operation not supported by this file system.

Host is down.

Host is unreachable.

Identifier removed. The requested semaphore or
message queue ID has been removed from the system.

Bad io mode number. Use the /O mode M_UNIX,
M_LOG, M_SYNC, or M_RECORD.

Operation now in progress.

Interrupted system call. The operation was interrupted
by a signal.

Invalid argument. The argument or parameter is not
valid for the system call.

I/O error. An /O error occurred while reading or
writing to the file system.

Socket is already connected. The socket is already
connected.

Is adirectory. The request is for a write to a file but the
specified file name is a directory, or the function is
trying to rename a file as a directory.

Handle operation locally.

Too many levels of symbolic links. Too many symbolic
links were encountered in translating a pathname.

Too many open files. Too many files descriptors are
open, no space remains in the mount table, or the
attempt to attach a shared memory region exceeded the
maximum number of attached regions for a process.

Mixed file operations. See the setiomode() function.

-

:Im‘
-
I Wy

.
[

- ™

mEmne

Paragon™ OSF/1 C System Calls Reference Manual

ERRNO (cont.)

EMLINK 31
EMSGSIZE 40

ENAMETOOLONG 63

ENETDOWN 50
ENETRESET 52
ENETUNREACH 51
ENFILE 23
ENFPS 200
ENOBUFS 55
ENOCFS 204
ENODATA 86
ENODEV 19
ENOENT 2
ENOEXEC 8
ENOLCK 77

Manual Pages

ERRNO (cont.)

Too many links. The number of links would exceed
LINK_MAX.

Message 100 long. The message is too large to be sent
all at once, as the socket requires.

File name too long. The pathname argument exceeds
PATH_MAX (1024 characters) or the pathname
component exceeds NAME_MAX (255 characters).
Nerwork is down.

Network dropped connection on reset.

Network is unreachable. No route to the network or
host is present.

File table overflow. Too many files are currently open
in the system.

Different file pointers.

No buffer space available. Insufficient resources, such
as buffers, are available to complete the call.

No CFS available. The concurrent file system (CFS) is
not available.

No message on stream head read q.

No such device. The file descriptor refers to an object
that cannot be mapped, the requested block special
device file does not exist, or a file system is

unmounted.

No such file or directory. A pathname component of
the parameter does not exist.

Exec format error. The parameter specifies a file with
a bad object file format.

No locks available. The lock table is full because too
many regions are already locked.

23

Manual Pages

ERRNO (cont.)

24

ENOMEM
ENOMSG
ENOPKG
ENOPROTOOPT
ENOSPC
ENOSR

ENOSTR

ENOSYM

ENOSYS

ENOTBLK

ENOTCONN

ENOTDIR

ENOTEMPTY

ENOTSOCK
ENOTTY

ENXIO

12

80

92

42

28

82

87

93

78

15

57

20

66

38

25

Paragon™ OSF/1 C System Calls Reference Manual

ERRNO (cont.)

Not enough space. Insufficient memory is available
for the requested function.

No message of desired type. A message of a requested
type does not exist.

Unresolved package name. One or more unresolved
package names were found.

Option not supported by protocol. The option is
unknown.

No space left on device. There is not enough memory
space to extend the file system or device for file or
directory writes.

Out of STREAMS resources.

fd not associated with a stream.

Unresolved symbol name. One or more unresolved
external symbols were found.

Function not implemented.

Block device required. The specified device is not a
block device.

Socket is not connected. The socket is not connected.

Not adirectory. A component of the pathname is not a
directory.

Directory not empry.'

Socket operation on non-socket. The parameter refers
to a file not a socket.

Not a typewriter. The specified request does not apply
to the kind of object that the descriptor references.

No such device or address. The device or address does
not exist.

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
i
K
I
| W
i ERRNO (con.) ERRNO (con.)
I EOPNOTSUPP 45 Operation not supported on socket. The socket does
not support the requested operation, or the socket does
I not accept the connection.
M ' EPACCES 139 Partition permission denied.
i EPALLOCERR 130 Allocator internal error.
I EPBADNODE 132 Bad node specification.
I EPERM 1 Not owner. The calling process does not have
. permissions for the operation.
I
. EPFNOSUPPORT 46 Protocol family not supported.
&
r EPINGRP 160 Invalid group.
} Lz.l
7 EPINRN 161 Invalid partition rename. Use a simple name for a
¥ partition name.
EPINUSER 159 Invalid user.
i - EPINVALMOD 136 Invalid mode.
i EPINVALPART 133 Partition not found.
I EPINVALPRI 134 Invalid priority.
I EPINVALSCHED 138 Invalid Scheduling.
I EPIPE 32 Broken pipe. An attempt was made to write to a pipe
or FIFO that is not open for reading by any process.
B
A EPLOCK 162 Partition lock denied. You specified a partition that is
I ' currently in use and being updated by someone else.
’ You cannot change the characteristics of a partition
I that is currently being used.
. EPNOTEMPTY 135 Partition not empty.
o
K EPPARTEXIST 137 Partition exists.
EPROCLIM 67 Too many processes.
EPROCUNAVAIL 76 Bad procedure for program.

25

Manual Pages

ERRNO (cont.)

26

EPROGMISMATCH
EPROGUNAVAIL
EPROTO

EPROTONOSUPPORT

EPROTOTYPE
EPXRS
EQBADFIL

EQBLEN

EQDIM
EQESIZE

EQHND

EQLEN

EQMEM
EQMID

EQMODE

EQMSGLONG

EQMSGSHORT .

EQNOACT

75

74

85

43

131

183

171

195
205

179

172

190

178

196

174

198

182

Paragon™ OSF/1 C System Calls Reference Manual

ERRNO (cont.)

Program version wrong.
RPC program not available.
Error in protocol.

Protocol not supported. The socket or protocol is not
supported.

Protocol wrong type for socket.
Exceeds partition resources.
Invalid object file. Specify a loadable file.

Buffer length exceeds allocation. Make sure the buffer
length does not exceed the buffer size.

Invalid dimension.
Invalid size.

Invalid handler rype. Select one of the handlers listed
in the handler description.

Invalid length. Use a non-negative number or a length
that is less than or equal to the maximum message
length.

Not enough memory. Simplify the application
program,

Invalid message id. Use the message ID (MID)
returned by the irecv() or isend() functions.

Invalid diagnostic channel mode.

Received message too long for buffer. Make sure the
buffer is large enough to hold the message.

Received message too short for buffer.

No active process. Use the process ID (PID) of a
loaded process.

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
[H
4
M
i ERRNO (cont.) ERRNO (con.)
I EQNODE 176 Invalid node. Use the numnodes() function to
determine the partition size and the myhost() function
h to determine the host node number.
b EQNOMID 191 Too many requests. Use the msgwait() function for
outstanding requests from the irecv() or isend()
| functions.
I EQNOPROC 180 Out of process slots. Use fewer processes.
I EQNOSET 193 No ptype defined.
i EQPARAM 184 Invalid parameter.
I EQPATH 207 Path name too long.
I i EQPBUF 170 Invalid buffer pointer. Specify a pointer that contains
I the address of a valid data buffer.
W
I EQPCCODE 188 Invalid ccode pointer.
|
I EQPCNODE 186 Invalid cnode pointer.
1
) EQPCPID 187 Invalid cpid pointer. Do not call the setpid() function
1 again.
i EQPFIL 185 Invalid file name pointer.
I EQPGRP 209 Supplied processes group does not exist or is under
) control of another TAM.
i
EQPID 175 Invalid prype. The PID must not be negative.
|
) EQPRIV 189 Privileged operation.
i N .
EQSET 192 Ptype already set.
L
EQSTATUS 197 Invalid diagnostic channel status.
EQTAM 208 Max number of applications under debug was
reached.
EQTIME l73 Time limit exceeded.
EQTYPE 177 Invalid rype. Use a non-negative number.

27

Manual Pages

ERRNO (cont.)

28

EQUSEPID
EQUSM

ERANGE

ERDEOF
EREMOTE
EREMOTEPORT
ERFORK

EROFS

ERPCMISMATCH

ESETIO

ESHUTDOWN
ESOCKTNOSUPPORT

ESPIPE

ESRCH

ESTALE

ETIME

ETIMEDOUT

181

194

34

206

71

102

140

30

73

203

58

44

29

70

83

Paragon™ OSF/1 C System Calls Reference Manual

ERRNO (cont.)

Prype already in use. Select another PID.
Invalid diagnostic channel usm id.

Result too large. The symbol address could not be
converted into an absolute value.

Attempt 1o read past end of file.
Item is not local 10 host.
Returned port is remote.

Do an rfork instead of a fork.

Read-only file system. The directory in which the file
is to be created is located on a read-only file system.

RPC version is wrong.

File is not synchronized. In /O modes M_SYNC and
M_RECORD, all nodes must read or write
synchronously.

Can't send after socket shutdown.
Socket type not supported.

lllegal seek. An invalid seek operation was requested
for a pipe (FIFO), socket, or multiplexed special file.

No such process. The requested process or child
process ID is invalid, no disk quota is found for the
specified user, or the specified thread ID does not refer
to an existing thread.

Missing file or file system. The process’ root or current
directory is located in a virtual file system that has
been unmounted.

System call timed out.
Connection timed out. The establishment of the

connection timed out before the connection could be
made.

Paragon™ OSF/1 C System Calls Reference Manual ' Manual Pages
I
4
B
I
[¥ ERRNO (cont.) ERRNO (cont.)
kil
I ETOOMANYREFS 59 Too many references: can't splice.
”
I ETXTBSY 26 Text file busy. The file is currently opened for writing
- by another process, or a write access is requested by a
W pure procedure (shared text) file that is being executed.
-
= EUSERS 68 Too many users. There are too many users.
r EVERSION 91 Version mismatch.
-
I EWOULDBLOCK 35 Operation would block. The file is locked, but
- blocking is not set. The socket is marked nonblocking,
a. so the connection cannot be completed.
I th i be completed
L - EXDEV 18 Cross-device link. The link and the file are on different

file systems.

I See Also

-
I application, nx_perror(), perror(3)

- -

29

ManuaI'Pages Paragon™ OSF/1 C System Calls Reference Manual

ESEEK() ESEEK()

Moves the read-write file offset.

Synopsis
#include <nx.h>
#include <unistd.h>
esize_t eseek(
int fildes,
esize_t offset,
int whence),
Parameters
fildes File descriptor for an open extended file or standard OSF/1 file. A standard OSF/1
file cannot have a resulting size greater than 2G -1 bytes.
offset The value, in bytes, to be used in conjunction with the whence parameter to set the
file pointer.
whence Specifies how to interpret the offset parameter in setting the file pointer associated
. with the fildes parameter. Values for the whence parameter are as follows (defined
in unistd.h).
SEEK_SET Sets the file pointer to offser bytes from the beginning
of the file.
SEEK_CUR Sets the file pointer to its current location plus offser
bytes.
SEEK_END Sets the file pointer to the size of the file plus the value
of offset bytes.
Description
Other than the return value and the additional errors discussed below, the eseek() function behavior
is identical to the OSF/1 Iseek() function. See Iseek(2) in the OSF/1 Programmer’s Reference.
Extended files are files that support the maximum file size of the Paragon” OSF/1 operating system.
Standard OSF/1 files cannot have a size greater than 2G - 1 bytes.
30

"
il

m--m-

e

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

ESEEKO (cont.) ESEEK() (cont.)

Return Values

Errors

See Also

Upon successful completion, the eseek() function returns an extended integer (esize_t) that is the
new position of the file pointer measured in bytes from the beginning of the file. Otherwise, the
eseek() function displays an error message to standard error and causes the calling process to
terminate. The esize_t structure has the following format (see the nx.h include file):

struct s_size {
long slow;
long shigh;
};
typedef struct s_size esize t;

Upoh successful completion, the _eseek() function returns the same value as the eseek() function.
Otherwise, the _eseek() function returns -1 in all fields of the esize_t structure and sets errno to
indicate the error.

If the _eseek() function fails, errno may be set to one of the error code values described for the
OSF/1 Iseek(2) function or to one of the following values:

ECFPS In /O modes M_SYNC, M_RECORD, or M_GLOBAL, nodes are attempting
to seek to different positions in a shared file. In these modes, any seeks must be
performed by all nodes to the same file position.

EMIXIO In IO modes M_SYNC or M_GLOBAL, nodes are attempting different
operations to a shared file. In these modes, all nodes must perform the same
operation.

EFBIG The file size specified by the whence and offser parameters exceeds the maximum
file size.

ECFPS Two or more application processes are calling eseek() with different shared I/O

modes (M_SYNCH, M_RECORD, or M_GLOBAL).

cread(), cwrite(), esize(), iread(), iseof(), iwrite(), setiomode()

OSF/1 Programmer’s Reference: fentl(2), Iseek(2), open(2)

31

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual

ESIZE() ESIZE()

Increases the size of a file.

Synopsis
#include <nx.h>

esize_t esize(
int fildes,
esize_t offset,
int whence);

Parameters

fildes File descriptor for an extended file or standard OSF/1 files open for writing. A
standard OSF/1 file cannot have a resulting size greater than 2G - 1 bytes.

offset Value, in bytes, to be used in conjunction with the whence parameter to set the file
size.

whence Specifies how to interpret the offser parameter in increasing the size of the file
associated with the fildes parameter. Values for the whence parameter are as
follows (defined in nx.h):

SIZE_SET Sets the file size to the greater of the current size or to
the value of the offser parameter.

SIZE_CUR Sets the file size to the greater of the current size or the
current location of the file pointer plus the value of the
offset parameter.

SIZE_END Sets the file size to the greater of the current size or the
current size plus the value of the offser parameter.

32

e I =

I
I’

i
i

{

e e Bl Bl

I

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
ES'ZE() (cont.) ES'ZEO (cont.)
Description

The esize() function increases the size of a file. This function cannot decrease the size of a file.

The esize() function supports both extended files and standard OSF/1 files. Extended files are files
that support the maximum file size of the Paragon” OSF/1 operating system. Standard OSF/1 files
cannot have a size greater than 2G - 1 bytes. You can also use the Isize() function to change the size
of standard OSF/1 files.

Use the esize() function to allocate sufficient file space before starting performance-sensitive
calculations or storage operations. This increases an application’s throughput, because the /O
system does not have to allocate data blocks for every write that extends the file size.

The esize() function does not affect FIFO special files, directories, or the position of the file pointer.
The contents of the new file space allocated by esize() is undefined.

The esize() function updates the modification time of the opened file. If the file is a regular file it
clears the file’s set-user ID and set-group ID attributes.

You cannot use the esize() function with a file that has enforced file locking enabled and file locks
on the file.

Note

If the new size specified by offset and whence is greater than the
available disk space, esize() allocates what disk space is
available and returns the actual new size.

Return Values

Upon successful completion, the esize() function returns an extended integer (type esize_t) that
indicates the new size of the file (in bytes). Otherwise, the esize() function displays an error message
to standard error and causes the calling process to terminate. The type esize_t has the following
structure (see the nx.A include file):

struct s size {
long slow;
long shigh;

Y -

typedef struct s_size esize t;

33

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual n
[
B
|
|
ESIZEO (cont.) ESIZE() (cont.) N
Upon successful completion, the _esize() function returns an extended integer that indicates the new =
size of the file (in bytes). Otherwise, the _esize() function returns -1 in all fields of the esize_t
structure and sets errno to indicate the error. - |
N
Errors B
If the _esize() function fails, errno may be set to one of the following error code values: X
EAGAIN The file has enforced mode file locking enabled and there are file locks on the file. i]
EACCES Write access permission to the file was denied. l
EBADF * The fildes parameter is not a valid file descriptor. B
EFBIG The file size specified by the whence and offset parameters exceeds the maximum
file size. B
EFSNOTSUPP The fildes parameter refers to a file that resides in a file system that does not |
support this operation. u
EINVAL The file is not a regular file. B
ENOSPC No space left on device. X
EROFS The file resides on a read-only file system. R
See Also R
eseek(), Isize() B
OSF/1 Programmer’s Reference. chmod(2), dup(2), fentl(2), Iseek(2), open(2) N
|
||
E
K
B
B
|
34 .
|

"
il

X
I
I
I

mmm-

Paragon™ OSF/1 C System Calls Reference Manual

ESTAT()

estat(), festat(): Gets status of an file.

Synopsis

#include <nx.h>

long estat(
char *path,
struct estat *buffer);

long festat(
int fildes,
struct estat *buffer);

Parameters
path

buffer

fildes

Description

Pointer to the pathname identifying a file.

Pointer to an estat structure in which the status information is placed. The estar

structure is described in the sys/estar.h header file.

A file descriptor representing an open file.

The estat() function semantics are identical to the OSF/1 stat() and fstat() functions. See the stat(2)
manual page in the OSF/1 Programmer’s Reference.

The estat() function gets information about the file named by the path parameter. Read, write, or
execute permission for the named file is not required, but all directories listed in the pathname
leading to the file must be searchable. The file information is written to the area specified by the
buffer parameter, which is a pointer to an estar structure, defined in sys/estat.h.

The festat() function is identical to the estat() function except that the information obtained is about
an open file referenced by the fildes parameter.

35

Manual Pages

ESTAT()

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual

ESTATO (cont.) ESTAT() (cont.)

Return Values

Upon successful completion, the estat() and festat() functions return a value of 0 (zero). Otherwise,
these functions return a value of - 1, display an error message to standard error, and cause the calling
process to terminate.

Upon successful completion, the _estat() and _festat() functions return a value of 0 (zero).
Otherwise, these functions return -1 and set errno to indicate the error.

Errors
If the _estat() or _festat() functions fail, errno may be set to one of the error code values described
for the OSF/1 stat() function.
See Also
eseek(), esize()
OSF|1 Programmer’s Reference: dup(2), open(2), stat(2)
36

A A EEEAAEEEEEMRERMEENERS T R EEREAEE R R RS

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

ETOS() ETOS()

etos(), stoe(): Converts an extended integer to a string or a string to an extended integer.

Synopsis
#include <nx.h>
void etos(
esize_te,
char *s5);
esize_t stoe(
char *s);
Parameters
e An extended integer.
s Pointer to a character string.
Description

Use these functions to perform the following operations:
etos() Converts an extended integer to a character string.

stoe() Converts a string of characters to an extended integer.

“Return Values

On successful completion, the etos() function returns control to the calling process; no values are
explicitly returned. On successful completion, the stoe() function returns control to the calling
process and returns an extended integer (type esize_t). Otherwise, these functions display an error
message to standard error and cause the calling process to terminate. If an error occurs, the stoe()
function returns - 1 in all fields of the esize_t structure.

37

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual

ETOSO (cont.) ETOS() (cont.)

The esize_t structure has the following format (see the nx.h include file):

struct s_size {
long slow;
long shigh;
};
typedef struct s size esize t;

Upon successful completion, the _etos() function returns 0 (zero) and the _stoe() function returns an
extended integer. Otherwise, the _etos() function returns -1 and sets errno to indicate the error. The
_Stoe() function returns - 1 in all fields of the esize_t return structure and sets errno to indicate the
error.

Errors
If the _etos() or _stoe() functions fail, errno may be set to the following error code value:
EQESIZE Argument is too large. The size of the extended integer must be less than 2% or
overflow occurs.
See Also
eadd(), ecmp(), ediv(), emod(), emul(), eseek(), esub()
38

N E N ENMNNNNESNNEBBAENSEMN®MENNEBEMN®E S EMNMBR~NE®RNELDRN

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

FLICK()

FLICK

Gives control of the node processor to the operating system for as long as 10 milliseconds.

Synopsis

Description

#include <nx.h>

void flick(void);

The flick() function temporarily releases control of the node processor to another process in the same
application. If there are no other processes in the same application when a process calls the flick()
function, control returns to the operating system. For example, if your application has several
handler-receive operations set up and nothing else to do, it should call the flick() function. The
operating system can then more efficiently respond to an incoming message and wake up your
process.

The flick() function does not affect an application’s rollin or rollout.

How the flick() function works depends on whether the calling process is the only process on the
node or there are multiple processes on the node:

« Iftthe calling process is the only process on the node, the flick() function suspends execution of
the calling process and gives control of the node to the operating system until any interrupt
occurs. The operating system handles the interrupt and returns control of the node to the calling
process. This improves performance by eliminating interrupt overhead; the operating system
does not have to take control of the node before handling the interrupt. The operating system
never retains control of the node longer than 10 milliseconds; the internal clock generates an
interrupt at 10 millisecond intervals.

¢ If there are multiple processes on the node, the flick() function suspends the calling process and
gives control to the next scheduled process on the node. The calling process resumes executing
when it is next scheduled to execute. This provides higher performance because control passes
to the next scheduled process immediately and the scheduler does not intervene.

39

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual

FL'CKO (cont.) FL'CKO (cont.)

Return Values

Upon successful completion, the flick() function returns control to the calling process; no values are
returned. Otherwise, this function displays an error message to standard error and causes the calling
process to terminate.

Upon successful completion, the _flick() function returns 0 (zero). Otherwise, this function returns
-1 and sets errno to indicate the error.

Errors
Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.
See Also
€rrno
OSF/1 Programmer’s Reference: sleep()
40

I

il
|

l"}
-
I”J
|
t
IJ

I
d

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
g

FLUSHMSG() FLUSHMSG()

Removes (flushes) messages from the system buffers.

Synopsis

- Parameters

Description

#include <nx.h>

void flushmsg(
long rypesel,
long nodesel,

long ptypesel);

typesel Message type(s) to remove. Setting this parameter to - 1 flushes messages of any
type. Refer to Appendix A of the Paragon’ OSF/1 C System Calls Reference
Manual for more information about message type selectors.

nodesel Node number of the message destination (that is, the receiving node). Setting this
parameter to - 1 flushes a message from any node.

ptypesel Process type of the receiver. Setting ptypesel to - 1 flushes a message for any
process type.

The flushmsg() function removes from system buffers all messages of the specified type(s) sent to
the specified node and process type.

The prypesel parameter specifies the process type for the receiving process not the sending process.
The flushmsg() function has no effect on messages sent to processes that do not have the same
process type as the ptypesel parameter, even if the sending process has a matching process type. The
flushmsg() function affects only messages that have arrived but not received.

To ensure that all messages are removed, first use the msgcancel() function to cancel any messages

in transit, then use the flushmsg() function to flush any messages that have arrived but have not yet
been received.

41

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual -

FLUSHMSGO (cont.) FLUSHMSG() (cont.)

Return Values

Upon successful completion, the flushmsg() function returns control to the calling process; no
values are returned. Otherwise, this function displays an error message to standard error and causes
the calling process to terminate.

Upon successful completion, the _flushmsg() function returns 0 (zero). Otherwise, this function
returns -1 and sets errno to indicate the error.

Errors
Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

See Also
errno, msgeancel()

42

M EEE R MNE®NNENREER®REER®RTEENRRESSERERRERRRARAN

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

I FPGETROUND() FPGETROUND()

N fpgetround(), fpsetround(), fpgetmask(), fpsetmask(), fpgetsticky(), fpsetsticky(): IEEE floating-point
I environment control.

L M
- Synopsis
#include <ieeefp.h>
K
. fp_rnd fpgetround(void);
I fp_rnd fpsetround(
’ fp_md rnd_dir);
I _
fp_except fpgetmask(void);
1
i
r fp_except fpsetmask(
fp_except mask);
I
fp_except fpgetsticky(void);
-
.
o fp_except fpsetsticky(
1 fp_except sticky);
i
1 Parameters
I rnd_dir The new rounding mode for the calling process. Must be one of the following
! values:
I
- FP_RNor 0 Round to nearest representable number (if two
I representable numbers are equidistant, round to the
J even one).
§
! FP_RMor 1 Round toward minus infinity.
I FP_RPor2 Round toward plus infinity.
L FP_RZ or 3 Round toward zero (truncate).
U These are the only valid values for the enum type fp_rnd, which is declared
r in <ieeefp.h>.
43

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

FPGETROUND() (con. FPGETROUND() (cont.
mask The new exception mask for the calling process. You can create this mask value
by OR-ing together the following constants, which are defined in <ieeefp.h>:
FP_X_INV Invalid operation exception.
FP_X DZ Divide-by-zero exception.
FP_X_OFL Overflow exception.
fP__X_UFL Underflow exception.
FP_X_IMP Imprecise (loss of precision) exception.
sticky ~ The new exception sticky flags for the calling process. You can create tlns value
by OR-ing together the same constants used for mask.
Description

44

The fpget...() and fpset...() functions get and set the i860™" microprocessor’s floating-point rounding
mode, exception flags, and exception sticky flags for the calling process.

The floating-point rounding mode determines what happens when a floating-point value generated
in a calculation cannot be represented exactly. You can use fpgetround() to determine the current
rounding mode and fpsetround() to set the rounding mode.

NOTE

When you convert a floating-point value to an integer type in C, it
always truncates. The processor’s rounding mode is ignored.

There are six floating-point exceptions: divide by zero, overflow, underflow, imprecise (inexact)
result, denormalization, and invalid operation. When one of these exceptions occurs, the
corresponding exception sticky flag is set to 1. If the corresponding exception mask bit is set to 1,
the exception is trapped. You can use fpgetsticky() and fpsetsticky() to get and set the exception
sticky flags, and fpgetmask() and fpsetmask() to get and set the exception mask.

o
bl

et o e, "

Paragon™ OSF/1 C System Calls Reference Manual ' Manual Pages

FPGETROUND() (cot.) FPGETROUND() (o,

NOTE

fpsetsticky() and fpsetmask() set the sticky flags and exception
mask to the specified values. Any bits not set in the mask or sticky
argument are cleared.

To set or clear a particular mask or sticky flag, get the current mask or sticky flags, modify it, and
then call fpsetsticky() or fpsetmask() with the modified mask or sticky flags.

NOTE

After an exception, you must clear the corresponding sticky flag to
recover from the trap and proceed.

If the sticky flag is not cleared before the next floating-point exception occurs, an incorrect exception
type may be signaled. For the same reason, when you call fpsetmask(), you must be sure that the -
sticky flag corresponding to each exception being enabled is cleared.

Return Values

Upon successful completion, the fpget...() and fpset...() functions return the following values and
return control to the calling process:

fpgetround() Returns the current rounding mode.
fpsetround() Returns the previous rounding mode.
fpgetmask() Returns the current exception mask.
fpsetmask() Returns the previous exception mask.
fpgetsticky() Returns the current exception sticky flags.
fpsetsticky() Returns the previous exception sticky flags.

Otherwise, these functions display an error message to standard error and cause the calling process
to terminate.

45

ManuaI.Pages Paragon™ OSF/1 C System Calls Reference Manual

FPGETROUND() (con.) FPGETROUND() (cont.

Upon successful completion, the _fptget...() and _fptset...() functions return the following values:
- _fpgetround() Returns the current rounding mode.

_fpsetround() Returns the previous rounding mode.

_fpgetmask() Returns the current exception mask.

_fpsetmask() Returns the previous exception mask.

_fpgetsticky() Returns the current exception sticky flags.

_fpsetsticky() Returns the previous exception sticky flags.

Otherwise, these functions return - 1 and set errno to indicate the error.

Errors
Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

See Also
errno, isnan()

46

o e
- 1 g

ol

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

CO L() GCOL()

Collects contributions from all nodes. (Global concatenation operation)

Synopsis
#include <nx.h>
void geol(
char x[],
long xlen,
Char y[],
long ylen,
long *ncnt);
Parameters
X Pointer to the input buffer to be used in the operation. This parameter can be of
any type.
xlen Length (in bytes) of x.
y Pointer to the output buffer to be used in the operation (y contains the desired
result). This parameter must be of the same data type as x.
vlen Length (in bytes) of y.
nent Pointer to the number of bytes returned in y.
Description

The geol() function collects and concatenates (in node number order) a contribution from each node
in the current application. The x and y parameters can be of any data type, but they must be of the
same data type. The result is returned in y to every node.

Problems that involve computing matrix vector products by allowing the nodes to compute partial
answers can use gcol() to collect and concatenate the entire vector.

If the lengths of the contributions from all the nodes are known, use gcolx() instead of gcol().

47

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual

GCOLO (cont.) GCOL() (cont.)

This is a “global” operation, which means that all nodes in the application must execute this
operation before the process can continue on any node, and all participating processes must have the
same process type.

Return Values
Upon successful completion, the geol() function returns control to the calling process; no values are
returned. Otherwise, this function displays an error message to standard error and causes the calling

process to terminate.

Upon successful completion, the _geol() function returns 0 (zero). Otherwise, this function returns
- 1 and sets errno to indicate the error.

Errors
Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

See Also
errno, geolx(), gdhigh(), gdlow(), gdprod(), gdsum(), giand(), gior(), gopf(), gsync()

48

i N‘i ﬁ
Ao)

e e Bl e

ﬂ'ﬂ
|

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

GCOLX() GCOLX()

Collects contributions of known length from all nodes. (Global concatenation operation for contributions of known
length)

Synopsis
#include <nx.h>
void geolx(
char x[],
long xlens[],
char y[]);
Parameters
x Pointer to the input buffer to be used in the operation. This parameter may be of
any type.
xlens Pointer to an array containing the length (in bytes) of the input buffer x expected
on each node. The elements in xlens must be in increasing node number order.
y Pointer to the output buffer to be used in the operation (y receives the desired
result). This parameter must be of the same data type as x.
Description

The gceolx() function globally collects and concatenates (in node number order) a contribution of
specified length from each node in the current application. The x and y parameters can be of any data
type, but they must be of the same data type. The result is returned in y to every node. By providing
the expected length of each contribution, gcolx() improves the speed of this operation compared to
geol() due to the reduced overhead of calculating where each contribution belongs in the output
buffer.

If the lengths of the contributions from all the nodes are unknown, use gcol() instead of gcolx().
This is a “global™ operation, which means that all nodes in the application must execute this

operation before the process can continue on any node, and all participating processes must have the
same process type. . ‘

49

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual

GCO LX() (cont.) GCOLX() (cont.)

Return Values

Upon successful completion, the geolx() function returns control to the calling process; no values
are returned. Otherwise, this function displays an error message to standard error and causes the
calling process to terminate.

Upon successful completion, the _geolx() function returns 0 (zero). Otherwise, this function returns
- 1 and sets errno to indicate the error.

Errors
Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

See Also
errno, geol(), gdhigh(), gdlow(), gdprod(), gdsum(), gopf(), giand(), gior(), gsync()

50

M E E N R E N R NNEEFEE R NMEBNPRE S MMBEEMRMERRRRARMERANRR

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
[§
L
i
w
[GDHIGH() GDHIGH()
b
I gdhigh(), gihigh(), gshigh(): Determines the maximum value across all nodes. (Global maximum operation)
&l
I .
“ Synopsis
I #include <nx.h>
r void gdhigh(
1 double x[],
v long n,
1 double work[]);
I o
. void gihigh(
| | long x[],
- long n,
L long work(]);
I
T void gshigh(
‘ float x[],
1 long n,
r float work[]);
l"’W
L Parameters
7
1 x Pointer to the buffer that contains the final result of the global maximum
operation.
B
'8 n Number of elements in x.
- work Pointer to the buffer that receives the contributions from other nodes. The number
I of elements in work must be at least .
B
B

51

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

GDH'GH() (cont.) GDH'GH() (cont.)

Description

Use the following functions to determine maximum values across nodes:

¢ Use gdhigh() to determine the double precision maximum value of x across all nodes.
¢ Use gihigh() to determine the integer maximum value of x across all nodes.

* Use gshigh() to determine the float maximum value of x across all nodes.

The result is returned in x to every node. When x is a vector, each element of the resulting vector
represents the maximum of the corresponding vector elements of all nodes.

This is a “global” operation, which means that all nodes in the application must execute this
operation before the process can continue on any node, and all participating processes must have the
same process type.

Return Values

Errors

See Also

52

Upon successful completion, the gdhigh(), gihigh(), and gshigh() functions return control to the
calling process; no values are returned. Otherwise, these functions display an error message to
standard error, and cause the calling process to terminate.

Upon successful completion, the _gdhigh(), _gihigh(), and _gshigh() functions return 0 (zero).
Otherwise, these functions return - 1 and set errno to indicate the error.

Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

errno, gcol(), geolx(), gdlow(), gdprod(), gdsum(), giand(), gior(), gopf(), gsync()

H B W E N E B E E N MMM ~BEMENEMNMMEMHENRESMSMBEERNNENERNERAERR

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
4
i
i
I GDLOW() GDLOW()
T
r gdlow(), gilow(), gslow(): Determines the minimum value across all nodes. (Global minimum operation)
|] Synopsis
I #include <nx.h>
void gdlow(
- double x[],
I long n,
1 double work([]);
I void gilow(
long x[],
|
i long n,
I long work(]);
i void gslow(
) float x[],
i : long n,
float work[]);
I
L Parameters
1 x Pointer to the buffer that contains the final result of the global minimum operation.
i n Number of elements in x.
i work Pointer to the buffer that receives the contributions from other nodes. The number
I . of elements in work must be at least n.
1
B
8
8

53

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

GDLOWO (cont.) GDLOW() (cont.)

Description

Use the following functions to determine minimum values across nodes:

* Use gdlow() to determine the double precision minimum value of x across all nodes.
* Use gilow() to determine the integer minimum value of x across all nodes.

e Use gslow() to determine the float minimum value of x across all nodes.

The result is returned in x to every node. When x is a vector, each element of the resulting vector
represents the minimum of the corresponding vector elements of all nodes.

This is a “global” operation, which means that all nodes in the application must execute this
operation before the process can continue on any node, and all participating processes must have the
same process type.

Return Values

Errors

See Also

54

Upon successful completion, the gdlow(), gilow(), and gslow() functions return control to the calling
process; no values are returned. Otherwise, these functions display an error message to standard
error, and cause the calling process to terminate.

Upon successful completion, the _gdlow(), _gilow(), and _gslow() functions return 0 (zero).
Otherwise, these functions return - 1 and set errno to indicate the error.

Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

errno, geol(), geolx(), gdhigh(), gdprod(), gdsum(), giand(), gior(), gopf(), gsync()

e
il

I

B I i Bl

Paragon™ OSF/1 C System Calls Reference Manual

GDPROD()

Manual Pages

GDPROD()

gdprod(), giprod(), gsprod(): Calculates a product across all nodes. (Global multiplication operation)

Synopsis

Parameters

#include <nx.h>

Pointer to the buffer that contains the result of the global multiplication operation.

void gdprod(

double x[],

long n,

double work[]);
void giprod(

long x[],

long n,

long work(]);
void gsprod(

float x[],

long n,

float work[]);
X
n Number of elements in x.
work

Pointer to the buffer that receives the contributions from other nodes. The number

of elements in work must be at least n.

55

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

GDPRODO (cont.) GDPRODO (cont.)

Description

Use the following functions to calculate products across nodes:

e Use gdprod() to calculate the double precision product of x across all nodes.
* Use giprod() to calculate the integer product of x across all nodes.

e Use gsprod() to ca]culaie the float product of x across all nodes.

The result is returned in x to every node. When x is a vector, each element of the resulting vector
represents the product of the corresponding vector elements of all nodes.

This is a “global” operation, which means that all nodes in the application must execute this
operation before the process can continue on any node, and all participating processes must have the
same process type.

Return Values

Errors

See Also

56

Upon successful completion, the gdprod(), giprod(), and gsprod() functions return control to the
calling process; no values are returned. Otherwise, these functions display an error message to
standard error and cause the calling process to terminate.

Upon successful completion, the _gdprod(), _giprod(), and _gsprod() functions return 0 (zero).
Otherwise, these functions return - 1 and set errno to indicate the error.

Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

errno, geol(), geolx(), gdhigh(), gdlow(), gdsum(), giand(), gior(), gopf(), gsync(

l” Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
o
I
i
I
I GDSUM() GDSUM()
I 5
I gdsum(), gisum(), gssum(): Calculates a sum across all nodes. (Global addition operation)

Synopsis
I #include <nx.h>
1
e void gdsum(
I ~ double x[],
B long n,
i double work[]);
I void gisum(
l‘*ﬂ long x[1,
L}

long n,

I long work{]);
I void gssum(
I float x[],

. : long n,
1 float work[]);
1

Parameters

1

» b Pointer to the that contains the final result of the global addition operation.

’ n Number of elements in x.
B

work Pointer to the buffer that receives the contributions from other nodes. The number

i of elements in work must be at least n.
i
B
i
i
|

57

B3

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

GDSUM() (cont.) GDSUM() (conr,)

Description

Use the following functions to calculate sums across nodes:

e Use gdsum() to calculate the double precision sum of x across all nodes.
* Use gisum() to calculate the integer sum of x across all nodes.

e Use gssum() to calculate the float sum of x across all nodes.

The result is returned in x to every node. When x is a vector, each element of the resulting vector
represents the sum of the corresponding vector elements of all nodes.

This is a “global” operation, which means that all nodes in the application must execute this
operation before the process can continue on any node, and all participating processes must have the
same process type.

Return Values

Errors

See Also

58

Upon successful completion, the gdsum(), gisum(), and gssum() functions return control to the
calling process; no values are returned. Otherwise, these functions display an error message to
standard error, and cause the calling process to terminate.

Upori successful completion, the _gdsum(), _gisum(), and _gssum() functions return 0 (zero).
Otherwise, these functions return - 1 and set errno to indicate the error.

Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

errno, geol(), geolx(), gdhigh(), gdlow(), gdprod(), giand(), gior(), gopf(), gsync()

FENEERNNNENNNENENNNENENNERNRERNNNEDERNNRERNN

I Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
I
|
I
-
GIAND() GIAND()
[M '
I giand(), gland(): Performs an AND across all nodes. (Global AND operation)
s
I S .
ynopsis
I #include <nx.h>
r void giand(
I long x[],
‘ long n,
I long work(]);
I void gland(
T long x[],
. long n,
I long work[]);
B
T Parameters
B
x Pointer to the buffer that contains the final result of the global AND operation.
i
n Number of elements in x.
] =
j work Pointer to the array that receives the contributions from other nodes. The number
i of elements in work must be at least n.
I
I Description
l“ Use the following functions to perform AND operations across all nodes:
l e Use giand() to calculate the bitwise AND of x across all nodes.
1 ¢ Use gland() to calculate the logical AND of x across all nodes.
- The result is returned in x to every node. When x is a vector, each element of the resulting vector
| represents the AND of the corresponding vector elements of all nodes.
This is a “global” operation, which means that all nodes in the application must execute this
operation before the process can continue on any node, and all participating processes must have the
same process type.

59

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual

GlANDO (cont.) GIAND() (cont.)

Return Values

Upon successful completion, the giand(), and gland() functions return control to the calling process;
no values are returned. Otherwise, these functions display an error message to standard error and
cause the calling process to terminate.

Upon successful completion, the _giand(), and _gland() functions return 0 (zero). Otherwise, these
functions return - 1 and set errno to indicate the error.

Errors
Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

See Also
errno, geol(), geolx(), gdhigh(), gdlow(), gdprod(), gdsum(), gior(), gopf(), gsync()

60

=l =R

-t
[

f—

£_.3

=

. e
S [

el

- .
BEd ¢ 9§

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

GIOR()

GIOR()

gior(), glor(): Performs an OR across all nodes. (Global OR operation)

Synopsis

Parameters

Description

#include <nx.h>

void gior(
long x[],
long n,
long work(]);

void glor(
long x[],
long n,
long work(]);
x Pointer to the buffer that contains the final result of the global OR operation.
n Number of elements in x.
work Pointer to the buffer that receives the contributions from other nodes. The number

of elements in work must be at least .

Use the following functions to perform OR operations across all nodes:
* Use gior() to calculate the bitwise OR of x across all nodes.
e Use glor() to calculate the logical OR of x across all nodes.

The result is returned in x to every node. When x is a vector, each element of the resulting vector
represents the OR of the corresponding vector elements of all nodes.

This is a “global” operation, which means that all nodes in the application must execute this

operation before the process can continue on any node, and all participating processes must have the
same process type.

61

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual

GIOR() (cont.) G'OR() (cont.)

Return Values

Upon successful completion, the gior(), and glor() functions return control to the calling process; no
values are returned. Otherwise, these functions display an error message to standard error, and cause
the calling process to terminate.

Upon successful completion, the _gior(), and _glor() functions return 0 (zero). Otherwise, these
functions return - 1 and set errno to indicate the error.

Errors
Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

See Also
errno, geol(), geolx(), gdhigh(), gdlow(), gdprod(), gdsum(), giand(), gopf(), gsync()

62

I
[.

Paragon™ OSF/1 C System Calls Reference Manual . Manual Pages

GOPF()

GOPF()

Makes a global operation of a user-defined function.

Synopsis
#include <nx.h>
void gopf(
char x[],
long xlen,
char work(],
long (*function)());
Parameters

X Pointer to the buffer that contains the final result of the user-defined function.

xlen Length (in bytes) of x.

work Pointer to the buffer that receives the contributions from other nodes. The length
of work must be at least x/en.

Junction Pointer to the user-defined function to be called. The function is defined
separately. The function must be an associative and commutative function of the
two vectors x and work defined above.

Description

The gopf() function gives a user-defined function the same global properties as system-defined
global communications functions (such as gdsum()). These properties are:

All nodes must call the global routine (in this case, gopf(), which in turn calls the user-written
function).

All nodes in the application must complete the call before the process can continue on any node.
All participating processes must have the same process type.

Each node calculates the result and stores it in the x buffer.

63

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual

GOP FO (cont.) GOPFO (cont.)

* The work array receives contributions from other nodes.
¢ The result is returned in x to all nodes.

* The function must be associative and commutative.

Return Values

Upon successful completion, the gopf() function returns control to the calling process; no values are
returned. Otherwise, this function displays an error message to standard error, and causes the calling
process to terminate.

Upon successful completion, the _gopf() function returns 0 (zero). Otherwise, this function returns
-1 and sets errno to indicate the error. :

Errors
Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

See Also
errno, geol(), geolx(), gdhigh(), gdlow(), gdprod(), gdsum(), giand(), gior(), gsync()

64

=E=mm

mEEmEmm

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

GSENDX() GSENDX()

Sends a message to a list of nodes.

Synopsis
#include <nx.h>
void gsendx(
long type,
char *buf,
long count,
long node(],
long nodecount);
Parameters
type Message type of the message being sent. Refer to Appendix A of the ParagonTM
OSF/1 C System Calls Reference Manual for information on message types. The
message type must be the same for all participating processes, and there must be
no other messages of this type in the application.
buf Pointer to the message buffer containing the message to be sent. The buffer may
be any valid data type.
count Length (in bytes) of the message being sent.
nodes Pointer to a list of node numbers for the nodes receiving the message.
nodecount Number of nodes in the nodes parameter.
. Description

The gsendx() function sends a message to a set of nodes specified by the nodes parameter. The nodes
that receive the message must call crecv(), irecv(), or hrecv() to receive the message. These receive
calls must use the message type specified by gsendx(). In addition, all participating processes must
have the same process type.

65

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual
K
K
.E
GSENDX() (con.) GSENDX() (con.) E
|
Return Values
Upon successful completion, the gsendx() function returns control to the calling process; no values l
are returned. Otherwise, this function displays an error message to standard error and causes the B
calling process to terminate.
Upon successful completion, the _gsendx() function returns 0 (zero). Otherwise, this function R
returns -1 and sets errno to indicate the error. K
Errors 1
Refer to the errno manual page for a list of errno values that can return for errors in C underscore N
system calls. l
|
See Also
P u
errno, crecv(), csend(), esendrecv(), irecv(), isend(), isendrecv(), hrecv(), hsend(), hsendrecv()
n
E
|
K
K
|
|
N
|
K
K
u
R
66 .
K

=]

mEAnRnEn.

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

SYNC() | GSYNC(

Synchronizes all node processes in an application. (Global synchronization operation)

Synopsis
#include <nx.h>

void gsync(void);

Description
When a node process calls the gsync() function, it waits until all other nodes in the application call
gsync() before continuing. All nodes in the application must call gsync() before any node in the
application can continue. All participating processes must have the same process type.

Return Values
Upon successful completion, the gsync() function returns control to the calling process; no values
are returned. Otherwise, this function displays an error message to standard error and causes the
calling process to terminate.
Upon successful completion, the _gsync() function returns 0 (zero). Otherwise, this function returns
- 1 and sets errno to indicate the error.

Errors
Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

See Also

errno, geol(), geolx(), gdhigh(), gdlow(), gdprod(), gdsum(), giand(), gior(), gopf()

67

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual

RECV() HRECV(

hrecv(), hrecvx(): Posts areceive for a message and returns immediately; invokes a specified handler when the receive
completes. (Asynchronous receive with interrupt-driven handler)

Synopsis
#include <nx.h>

void hrecv(
long typesel,
char *buf,
long count,
void (*handler) ());

void hrecvx(
long rypesel,
char *buf,
long count,
long nodesel,
long ptypesel,
void (*xhandler) (),
long hparam);

Parameters

typesel Message type(s) to receive. Setting this parameter to - 1 receives a message of any
type. Refer to Appendix A of the Paragon " OSFI1 C System Calls Reference
Manual for more information about message type selectors.

buf Pointer to the buffer for storing the received message. The buffer can be of any
valid data type, but should match the data type of the buffer in the corresponding
send operation.

count Length (in bytes) of the buf parameter.
handler Pointer to the handler to execute when the receive completes, after a call to the
hrecv() function. This handler is user-written and must have four parameters only.

See the “Description” section for a description of the handler for the hrecv()
function.

68

I
I

I

I
i

I

= I =

Paragon™ OSF/1 C System Calls Reference Manual ' Manual Pages
HRECV() (cont.) HRECV() (cont.)
nodesel Node number of the sender. Setting nodesel to -1 receives a message from any
node.
ptypesel Process type of the sender. Setting prypesel to- - 1 receives a message from any

Description

process type.

xhandler Pointer to the handler to execute when the receive completes, after a call to the
hrecvx() function. This handler is user-written and must have five parameters
only. See the “Description” section for a description of the handler for the
hrecvx() function.

hparam Integer that is passed directly to the handler specified by the xhandler parameter.
Typically, the hparam value is used by the handler to identify the request that
invoked the handler, making it possible to write shared handlers.

The hrecv() and hrecvx() functions are asynchronous message-passing system calls. After calling a
handler receive function, the function posts a receive for a message, specifies a handler to receive
the message, and returns immediately. The calling process continues to run until the message arrives.
When the message arrives, the calling process is interrupted, the message is stored in the buffer buf,
and the specified handler is executed.

The handler is code you write to complete the receive and perform any clean-up after the receive.
The handler receives information about the message including the message’s type, length, sending
node, and process type. When the handler returns, the calling process resumes where it left off.

Using the hrecvx() function, you can post multiple handler requests with the same shared handler.
The hrecvx() function is identical to the hrecv() function except for an additional parameter,
hparam. The hparam parameter is an integer value that is passed by the hrecvx() function to the
handler. The handler uses this value to identify which handler request it is servicing.

A handler for the hrecv() and hrecvx() functions must have the following arguments:

type The message type (specified in the corresponding send operation).
count The message length (in bytes).

node The node that sent the message.

ptype The process type of the process that sent the message.

A handler for the hrecvx() function requires a fifth parameter, hparam. The hparam parameter is an
integer passed to the handler that identifies the request invoking the handler.

69

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

HRECV() (cont.) HRECVO (cont.)

An example handler for the hrecv() function has the following form:

void myhandler(
long type,
long count,
long node,

long ptype);
An example handler for the hrecvx() function has the following form:

void myhandler(
long type,
long count,
long node,
long ptype,
long hparam);

If the received message is too long for the buffer buf, the receive completes with no error returned,
and the content of bufis undefined. To detect this situation, the handler can examine the value of its
count argument.

To post a receive and block the calling process until the receive completes, use one of the
synchronous receive system calls (for example, crecv()). To receive a message and return a message
ID (MID), use one of the other asynchronous send system calls (for example, irecv()).

To ensure a critical section of code is not interrupted by the execution of the handler, use the
masktrap() function to protect that section of code.

Once a handler is invoked, no other handler will interrupt until the first handler returns. For this
reason, do not use the longjump() function within a handler.

Return Values

70

Upon successful completion, the hrecv() and hrecvx() functions return control to the calling
process; no values are returned. Otherwise, these functions display an error message to standard
error and cause the calling process to terminate.

Upon successful completion, the _hrecv() and _hrecvx() functions returns 0 (zero). Otherwise,
these functions return - 1 and set errno to indicate the error.

‘SN ENEENENENENENNERNRNEHRSIHEHRERHBNN.

iR

W
I
I

o
I'm
| B9
Iv.

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
HRECV() (cont.) HRECVO (cont.)
Errors

Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

See Also

errno, cprobe(), csend(), crecv(), csendrecv(), hsend(), hsendrecv(), iprobe(), isend(), irecv(),
isendrecv(), masktrap()

7

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual

HSEND() HSEND()

hsend(), hsendx(): Sends a message and returns immediately; invokes a specified handler when the send completes.
(Asynchronous send with interrupt-driven handler)

Synopsis
#include <nx.h>

void hsend(
long type,
char *buf,
long count,
long node,

long ptype,
void (*handler) ());

void hsendx(

long rype,
char *buf,
long count,
long node,

long prype,
void (*xhandler) (),

long hparam);

Parameters

type Type of the message to send. Refer to Appendix A of the ParagonTM OSF/1C
System Calls Reference Manual for information on message types.

buf Pointer to the buffer containing the message to send. The buffer may be of any
valid data type.

count Number of bytes to send in the buf parameter.
node Node number of the message destination (the receiving node). Setting node to - 1

sends the message to all nodes in the application (except the sending node when
the value of the ptype parameter is the sender’s process type).

72

MO M W M MmO WO W M RN W EEE =N TRE R

oo B e
Ed pd

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
HSEND() (cont.) HSENDO (cont.)
ptype Process type of the message destination (the receiving process).

handler Pointer to the handler to execute when the send completes, after calling the

Description

hsend() function. This handler is user-written and must have five parameters only.
See the “Description” section for a description of the handler for the hsend()
function.

xhandler Pointer to the handler to execute when the send completes, after calling the
hsendx() function. You must provide this handler and the handler must have five
parameters only. See the “Description” section for a description of the handler for
the hsendx() function.

hparam Integer that is passed directly to the handler specified by the xhandler parameter.
Typically, the hparam value is used by the handler to identify the request that
invoked the handler, making it possible to write shared handlers.

The hsend() and hsendx() functions are asynchronous message-passing system calls. After calling
one of these functions, the function starts a sending process and returns immediately. The sending
process sends the message in the buffer buf to a destination specified by node. The calling process
continues to run while the send is completing. When the send completes, the sending process
interrupts the calling process and executes the specified handler.

The handler is code you write to complete the send and perform clean-up after the receive. The
handler receives information about the message including the message’s type, length, receiving
node, and process type. When the handler returns, the calling process resumes where it left off.

Using the hsendx() function, you can post multiple handler requests with the same shared handler.
The hsendx() function is identical to the hsend() function except for an additional parameter,
hparam. The hparam parameter is an integer value that is passed by the hsendx() function to the
handler. The handler uses this value to identify which request it is servicing.

These are asynchronous system calls. To send a message and block the calling process until the send
completes, use one of the synchronous send system calls (for example, the csend() function). To
send a message and return a message ID (MID), use one of the other asynchronous send system calls
(for example, isend()).

73

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

HSENDO (cont.) HSEND() (cont.)
A handler for the hsend() and hsendx() functions must have the following arguments:
type The message type.
count The message length (in bytes).
node The node number that is running the process that receives the message.
pype The process type of the node that receives the sent the message.

74

A handler for the hsendx() function requires a fifth parameter, #iparam. The hparam parameter is an
integer the handler uses to identify the request invoking the handler.

An example handler for the hsend() function has the following form:

void myhandler(
long type,
long count,
long node,
long ptype);

An example handler for the hsendx() function has the following form:

void myhandlex(
long type,
long count,
long node,
long ptype,
long hparam);

To ensure a critical section of code is not interrupted when the handler executes, use the masktrap()
function to protect that section of code.

Once a handler is invoked, no other handler can interrupt the calling process until the first handler
returns. For this reason, do not use the longjump() function within a handler.

' = L ” . 7 . : o ' > g - \ .| | b 4

- -
L B - B - - Rl

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

HSENDO (cont.) HSEND() (cont.)

Return Values
Upon successful completion, the hsend() and hsendx() functions return control to the calling
process; these functions do not return a value. Otherwise, these functions display an error message
to standard error and cause the calling process to terminate.
Upon successful completion, the _hsend() and _hsendx() functions return 0 (zero). Otherwise, these
functions return -1 and set errno to indicate the error.

Errors

Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

See Also

cprobe(), csend(), crecv(), csendrecv(), errno, hrecv(), hsendrecv(), iprobe(), isend(), irecv(),
isendrecv(), masktrap()

75

Manual Pages

HSENDRECV/()

Paragon™ OSF/1 C System Calls Reference Manual

HSENDRECV()

Sends a message and posts a receive for a reply; invokes a user-written handler when the receive completes.
(Asynchronous send-receive with interrupt-driven handler)

Synopsis

Parameters

76

#include <nx.h>

void hsendrecv(

ype

sbuf

scount

node

ptype

typesel

rbuf

long rype,
char *sbuf,

long scount,

long node,

long prype,

long typesel,

char *rbuf,

long rcount,

void (*handler) ());

Type of the message to send. Refer to Appendix A of the ParagonTM OSF/1C
System Calls Reference Manual for information on message types.

Pointer to the buffer containing the message to send. The buffer may be of any
valid data type.

Number of bytes to send in the sbuf parameter.

Node number of the message destination (the receiving node). Setting node to - 1
sends the message to all nodes in the application (except the sending node when
ptype is the sender’s process type).

Process type of the message destination (the receiving process).

Message type(s) toreceive. Setting this parameter to - 1 receives a message of any
type. Refer to Appendix A of the Paragonm OSF/1 C System Calls Reference

Manual for more information about message type selectors.

Pointer to the buffer for storing the reply. The buffer can be of any valid data type,
but should match the data type of the buffer in the corresponding send operation.

S EBEEEREER R EEREERNNENENEENNNERNNNENEN]

™
l LJ
I

|

-
J

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
HSENDRECV() (cont. HSENDRECV() (cont.)
rcount Length (in bytes) of the rbuf parameter.
handler Pointer to the handler to execute when the receive completes after a call to the

Description

hrecv() function. This handler is user-written and must have four parameters only.
See the “Description” section for a description of the user-written handler for the
hrecv() function.

The hsendrecv() function is an asynchronous message-passing system call. After calling this
function, the function starts a send-receive process, posts a receive for a reply, and returns
immediately. The send-receive process sends the message in the buffer sbuf to a destination
specified by node. The calling process continues to run while the send is completing. When the
send-receive completes and the message is received in the buffer rbuf, the send-receive process
interrupts the calling process and executes the specified handler.

The handler is code you write to complete the send-receive and perform any needed clean-up. The
handler receives information about the message including the message’s type, length, receiving
node, and process type. When the handler returns, the calling process resumes where it left off.

‘When the message arrives, the hsendrecv() function passes information about the received message
(its type, length, sending node, and process type) to the handler. The handler must have four
parameters (which correspond to the message information passed by the receive function):

type The message type (specified in the corresponding send operation).
count The message length (in bytes).

node The node of the process that sent the message.

phpe The process type of the process that sent the message.

The handler must have the following form:

void myhandler(
long type,
long count,
long node,

long ptype);
If the received message is too long for the rbuf buffer, the receive completes with no error returned,

and the content of the rbuf buffer is undefined. To detect this situation, the handler should look at
the value of its count argument.

77

Manual Pages

Paragonm OSF/1 C System Calls Reference Manual

HSENDRECV() (cont. HSENDRECV() (cont.

To ensure that a critical section of code is not interrupted by the execution of the handler, use the
masktrap() function to protect that section of code.

Once a handler is invoked, no other handler can interrupt until the first handler returns. For this
reason, do not use the longjump() function within a handler.

Return Values

Errors

See Also

78

Upon successful completion, the hsendrecv() function returns the length (in bytes) of the received
message, and returns control to the calling process. Otherwise, this function displays an error
message to standard error and causes the calling process to terminate.

Upon successful completion, the _hsendrecv() function returns length (in bytes) of the received
message. Otherwise, this function returns - 1 and sets errno to indicate the error.

Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

cprobe(), crecv(), csend(), esendrecv(), errno, hrecv(), hsend(), iprobe(), irecv(), isend(),
isendrecv(), masktrap()

EEE A AR A AR RN E AR NN E R RS A AE R AR R R

l -
wl

"
=

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

INFOCOUNTY() ‘ INFOCOUNTY()

infocount(), infonode(), infoptype(), infotype(): Gets information about a pending or received message.

Synopsis
#include <nx.h>
long infocount(void);
long infonode(void);
long infoptype(void);
long infotype(void);
Description

Use the info...() system calls to return information about a pending or received message. Return

values are defined only when these system calls are used immediately after completion of one of the

following (any of these conditions indicates that a message has arrived):

* A cprobe(), crecv(), or msgwait() system call.

* A cprobex() or crecvx() system call whose info parameter was set to the global array msginfo.

* Aniprobe() or msgdone() system call that returns 1. If the mid referenced by msgdone()
represents a “group’ of message IDs (that is, it was returned by msgmerge()), then return values
for the info...() system calls are undefined.

Return Values

Upon successful completion, the info...() functions return the following information about pending
or received messages and return control to the calling process:

infocount() Returns length in bytes (count) of message.
infonode() Returns node ID (node) of sender.
infoptype() Returns process type (ptype) of sender.

infotype() Returns type (rype) of message.

79

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual I
]
| H
 H
E
INFOCOUNTO (cont.) |NFOCOUNT() (cont.) E
Otherwise, these functions display an error message to standard error and cause the calling process K
to terminate.
K
Upon successful completion, the _infocount(), _infonode(), _infoptype(), and _infotype() ‘
functions return the same values as the correspozlding non-underscore function.-(.)therwise, these l
functions return - 1 and set errno to indicate the error. K
Errors K
Refer to the errno manual page for a list of errno values that can return for errors in C underscore 8
system calls. n
E
See Also K
cprobe(), crecv(), errno, iprobe(), msgdone(), msgmerge(), msgwait() K
K
4§
|
K
B
K
K
K
K
K
E
K
E
=
K
80 m
|

-
l :
Kl
lw
=
lud
l”‘\
i‘.\j
]
I
E N

-

I

]

i

[

LI 4

mEREREREEM™

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

IODONE() IODONE()

Determines whether an asynchronous read or write operation is complete.

Synopsis
#include <nx.h>

long iodone(
long id);
Parameters
id The non-negative I/O ID returned by an asynchronous read or write system call
(for example, iread() or iwrite()).
Description
The iodone() function determines whether the asynchronous read or write operation (for example,
iread() or iwrite()) identified by the id parameter is complete. If the operation is complete, this
function releases the I/O ID for the operation.

If the iodone() function returns 1 (indicating that the I/O operation is complete):

» The buffer contains valid data (if id identifies a read operation), or the buffer is available for
reuse (if id identifies a write operation).

* The I/O ID that identifies the asynchronous read or write (id) is released for use in a future
asynchronous read or write.

Use the iowait() function if you need the blocking version of this function.

NOTE

You must call either the iowait() or iodone() function after an
asynchronous read or write to ensure that the operation is
complete and to release the I/O ID.

81

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

IODONE() (cont,) IODONE() (cont,)

Return Values

Errors

See Also

82

Upon successful completion, the iodone() function returns control to the calling process and returns
the following values:

0 The read or write is not yet complete.
1 The read or write is complete.

If an error occurs, the iodone() function displays an error message to standard error and causes the
calling process to terminate.

Upon successful completion, the _iodone() function returns the same values as the iodone()

function. Otherwise, the _iodone() function returns -1 when an error occurs and sets errro to
indicate the error.

If the _iodone() function fails, errno may be set to the following error code value:

EBADID The id parameter is not a valid /O ID.

iowait(), iread(), iwrite()

SRR NN RN RN R ERNERNERNERNENENENNNENENNNN

e

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
IOMODE() IOMODE()
Gets the I/O mode of a file.

Synopsis

#include <nx.h>

long iomode(
int fildes);

Parameters

fildes A file descriptor representing an open file.

Description
The iomode() function determines the current /O mode of the file identified by fildes. A file’s I/O
mode determines how a process may access the file.

Return Values
Upon successful completion, the iomode() function returns control to the calling process and returns
the current I/O mode of the file descriptor identified by the fildes parameter. The 1/O mode can be
M_UNIX, M_LOG, M_SYNC, or M_RECORD. Refer to the setiomode() manual page for

descriptions of each I/O mode.

If an error occurs, the iomode() function displays an error message to standard error and causes the
calling process to terminate.

Upon successful completion, the _iomode() function returns the same values as the iomode()

function. Otherwise, the _iomode() function returns -1 and sets errno to indicate the error.
Errors

If the _iomode() function fails, errno may be set to the following error code value:

EBADF The fildes parameter is not a valid file descriptor.

Manual Pages

lOMODEO (cont.)

See Also

setiomode()

OSF/1 Programmer’s Reference: dup(2), open(2)

84

Paragon™ OSF/1 C System Calls Reference Manual

IOMODE() (cont.)

M E R E AN NN ERR R & BN E R E = RN

bl
R

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

OWAIT() IOWAIT()

Waits (blocks) until an asynchronous read or write operation completes.

Synopsis
#include <nx.h>

void iowait(
long id);

Parameters
“ id The non-negative /O ID returned by an asynchronous read or write system call
(for example, iread() or iwrite()).
Description

The iowait() function waits until an asynchronous read or write function (for example, the iread()
or iwrite() function) identified by id completes. When the iowait() function returns:

¢ The buffer contains valid data (if id identifies a read operation), or the buffer is available for
reuse (if id identifies a write operation).

e The I/O ID that identifies the asynchronous read or write (id) is released for use in a future
asynchronous read or write.

Use the iodone() function for the non-blocking version of this function.

NOTE

You must call either the iowait() or iodone() function after an
asynchronous read or write to ensure that the operation is
complete and to release the I/O ID.

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual

IOWAIT() (con. IOWAIT() (cont,)

Return Values

Upon successful completion, the iowait() function returns control to the calling process; no values
are returned. If an error occurs, the iowait() function displays an error message to standard error and
causes the calling process to terminate.

Upon successful completion, the _jowait() function returns the value 0 (zero). Otherwise, the
_iowait() function returns -1 when an error occurs and sets errno to indicate the error.

Errors
If the _iowait() function fails, errno may be set to the following error code value:
EBADID The id parameter is not a valid /O ID.

See Also
iodone(), iread(), iwrite()

86

M M A E MM AN R EE AR T T AR RN R R

I

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

IPROBE() IPROBE()

iprobe(), iprobex(): Determines whether a message is ready to be received. (Asynchronous probe)

Synopsis
#include <nx.h>
long iprobe(
long rypesel);
long iprobex(
long typesel,
long nodesel,
long ptypesel,
long info[]);
Parameters
typesel Message type or set of message types for which to probe. Setting this parameter
to - 1 probes for a message of any type. Refer to Appendix A of the Paragon™
OSF/1 C System Calls Reference Manual for more information about message
type selectors.
nodesel Node number of the sender. Setting nodesel to - 1 probes for a message from any
node.
ptypesel Process type of the sender. Setting ptypesel to - 1 probes for a message from any
process type.
info Eight-element array (four bytes per element) in which to store message

information. The first four elements contain the message’s type, length, sending
node, and sending process type. The last four elements are reserved for system
use. If you do not need this information, you can specify the global array msginfo,
which is the array used by the info...() system calls.

87

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual
IPRO BEO (cont.) 'PROBE() (cont.)
Description

Use the appropriate asynchronous probe function to determine if the specified message is ready to
be received:

* Use the iprobe() function to probe for a message of a specified type.

* Use the iprobex() function to probe for a message of a specified type from a specified sender
and place information about the message in an array.

If the iprobe() function returns 1 (indicating that the specified message is ready to be received), you
can use the info...() system calls to get more information about the message. Otherwise, the info...()
system calls are undefined.

Similarly, if the iprobex() function returns 1, you can examine the info array to get more information
about the message. Otherwise, the info array is undefined.

These are asynchronous system calls. To probe for a message and block the calling process until the
message is ready to be received, use one of the synchronous probe system calls (for example,
cprobe()).

Return Values

88

Upon successful completion, the iprobe() and iprobex() functions return the following values and
return control to the calling process:

0 If the specified message is not available.
1 If the specified message is available.

Otherwise, these functions display an error message to standard error and cause the calling process
to terminate.

Upon successful completion, the _iprobe() and _iprobex() functions return the following values:
0 If the specified message is not available.
1 If the specified message is available.

Otherwise, these functions return - 1 and set errno to indicate the error.

S EEEEEEERE R E R R R ERRRENERNRNNENRNENNNNDNES

re ™

i

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
IPRO BEO (cont.) |PROBE() (cont.)
Errors

Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

See Also

cprobe(), errno, infocount(), infonode(), infoptype(), infotype()

89

Manual Pages

IREAD()

Paragon™ OSF/1 C System Calls Reference Manual

IREAD()

Reads from a file and returns immediately. (Asynchronous read)

Synopsis

Parameters

Description

90

#include <nx.h>

long iread(
int fildes,
char *buffer,
unsigned int nbytes);

fildes File descriptor identifying the open file to be read.
buffer Pointer to the buffer in which the data is stored after it is read.
nbytes Number of bytes to read from the file associated with the fildes parameter.

Other than the return values, the additional errors, and the asynchronous behavior (all discussed
below), the iread() function is identical to the OSF/1 read() function. See read(2) in the OSF/1
Programmer’ s Reference.

The iread() function is an asynchronous version of the cread() function. The iread() function
returns to the calling process immediately; the calling process continues to run while the read is
being done. If the calling process needs the data for further processing, it must do one of the
following:

e Use cread() (a synchronous system call) instead of iread()

e Use iowait() to wait until the read completes

¢ Loop until iodone() returns 1, indicating that the read is complete

The asynchronous read system calls modify the file pointer immediately, so Iseek(), iseof(), or aread

or write system call can be used immediately without waiting for the read to finish. To determine
whether the read operation moved the file pointer to the end of the file, use the iseof() system call.

e
=

R A EaERERNRERNR

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
| H
I
I

8.l
I IREAD() (cont.) IREAD() (cont.)
|
I Return Values

- Upon successful completion, the iread() function returns control to the calling process and returns
I anon-negative I/0 ID for use in iodone() and iowait() system calls. Otherwise, the iread() function

- displays an error message to standard error and causes the calling process to terminate.

- Upon successful completion, the _iread() function returns a non-negative I/O ID for use in iodone()
I - and iowait() system calls. Otherwise, the _iread() function returns -1 when an error occurs and sets
I errno to indicate the error.

L NOTE
L : The number of I/O IDs is limited, and an error occurs when no /O

= _ IDs are available for a requested asynchronous read or write.

- Therefore, your program should release the I/O ID as soon as
I possible by calling iodone() or iowait().
|

Errors
I If the _iread() function fails, errno may be set to one of the error code values described for the
e OSF/1 read(2) function or one of the following values:
1
i EMIXIO In I/O modes M_SYNC, nodes are attempting different operations (reads and
i =

. writes) to a shared file. In these modes, all nodes must perform the same operation.
1 EMREQUEST An asynchronous system call has been attempted, but too many requests are
I already outstanding. Use either iowait() or iodone() to clear asynchronous read

h and write requests that are outstanding.
|
I See Also
| cread(), cwrite(), iodone(), iowait(), iseof(), iwrite(), setiomode()
I OSF/1 Programmer’s Reference: dup(2), open(2), read(2)
I
B

91

iz

Manual Pages

IRECV()

Paragon™ OSF/1 C System Calls Reference Manual

IRECV()

irecv(), irecvx(): Posts a receive for a message and returns immediately. (Asynchronous receive)

Synopsis

Parameters

92

#include <nx.h>

long irecv(

long typesel,
char *buf,
long count),

long irecvx(

long typesel,
char *buf,
long count,
long nodesel,
long ptypesel,
long info[]);

typesel

buf

count

nodesel

ptypesel

Message type(s) to receive. Setting this parameter to - 1 receives a message of any
type. Refer to Appendix A of the Paragon’ = OSF/1 C System Calls Reference
Manual for more information about message type selectors.

Pointer to the buffer in which to store the received message. The buffer can be of
any valid data type, but should match the data type of the buffer in the
corresponding send operation.

Length (in bytes) of the buf parameter.

Node number of the sender. Setting
the nodesel parameter to - 1 receives a message from any node.

Process type of the sender. Setting the prypesel parameter to - 1 receives a
message from any process type.

.

mFAARRBEARERERBRER R

mnm=-

e m .
=

-Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
|RECV() (cont.) |RECV() (cont.)
info Eight-element array of long integers in which to store message information. The

Description

first four elements contain the message’s type, length, sending node, and sending
process type. The last four elements are reserved for system use. If you do not need
this information, you can specify the global array msginfo, which is the array used
by the info...() system calls.

Use the appropriate asynchronous receive function to post a receive for a message and return
immediately:

¢ Use the irecv() function to post a receive for a message of a specified type.

* Use the irecvx() function to post a receive for a message of a specified type from a specified
sender and place information about the message in an array.

The asynchronous receive system calls return a message ID that you can use with the msgdone() and
msgwait() system calls to determine when the receive completes (and the buffer contains valid data).

For the irecv() function, you can use the info...() system calls to get more information about the
message after it is received. For the irecvx() function, the same message information is returned in
the info array. Until the receive completes, neither the info...() system calls nor the info array contain
valid information. '

If the message is too long for the buffer, the receive completes with no error returned, and the content
of the buffer is undefined. To detect this situation, check the value of the infocount() function or the
second element of the info array.

These are asynchronous system calls. The calling process continues to run while the receive is being
done. If your program needs the received message for further processing, it must do one of the
following:

* Use the msgwait() function to wait until the receive completes.

* Loop until the msgdone() function returns 1, indicating that the receive is complete.

¢ Use one of the synchronous system calls (for example, crecv()) instead.

93

Manual Pages

Paragon™ OSF/1 C System Calis Reference Manual

IRECV() (cont.) k |RECV() (cont.)

NOTE

The number of message IDs is limited, and an error occurs when
no message |Ds are available for a requested asynchronous send
or receive. Therefore, your program should release its message
IDs as soon as possible by calling msgcancel(), msgdone(),
msgignore(), or msgwait().

Return Values

Errors

See Also

94

Upon successful completion, the irecv() and irecvx() functions return a message ID and return
control to the calling process. If an error occurs, these functions print an error message to standard
error and cause the calling process to terminate. The message ID is for use with the msgcancel(),
msgdone(), msgignore(), msgmerge(), or msgwait() system calls.

Upon successful completion, the _irecv() and _irecvx() functions return a message ID. Otherwise,
these functions return - 1 and set errno to indicate the error.

Refer to the errno manual page for a complete list of error codes that occur in the C underscore
system calls.

crecv(), csend(), csendrecv(), errno, hrecv(), hsend(), hsendrecv(), infocount(), infonode(),

infoptype(), infotype(), isend(), isendrecv(), msgcancel(), msgdone(), msgignore(), msgmerge(),
msgwait()

MEEERANEERRENEE R R TR REBER R R R RER

ﬂ
A

B

al

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

ISEND()

ISEND()

Sends a message and returns immediately. (Asynchronous send)

Synopsis

Parameters

Description

#include <nx.h>

long isend(
long nype,
char *buf,
long count,
long node,

long ptype);

type Type of the message to send. Refer to Appendix A of the ParagonTM OSFI1 C
System Calls Reference Manual for information on message types.

buf Pointer to the buffer containing the message to send. The buffer may be of any
valid data type.

count Number of bytes to send in the buf parameter.
node Node number of the message destination (that is, the receiving node). Setting node
to - 1 sends the message to all nodes in the application (except the sending node

when the prype is the sender’s process type).

ptype Process type of the message destination (that is, the receiving process).

The isend() function returns a message ID that you can use with the msgdone() and msgwait()
functions to determine when the send completes. Completion of the send does not mean that the
message was received, only that the message was sent and the send buffer (buf) can be reused.

In an asynchronous system call, the calling process continues to run while the send is being done.

To send a message and block the calling process until the send completes, use an synchronous send
call (for example, csend()).

95

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

ISENDY) (con. ISENDY() (cont.

Return Value

Errors

See Also

96

Upon successful completion, the isend() function returns a message ID and returns control to the
calling process. If an error occurs, this function displays an error message to standard error and
causes the calling process to terminate. The message ID is for use with the msgcancel(), msgdone(),
msgignore(), msgmerge(), or msgwait() system calls.

Upon successful completion, the _isend() function returns a message ID. Otherwise, this function
returns - 1 and sets errno to indicate the error.

NOTE

The number of message IDs is limited, and an error occurs when
no message |IDs are available for a requested asynchronous send
or receive. Therefore, your program should release its message
IDs as soon as possible by calling msgcancel(), msgdone(),
msgignore(), or msgwait().

Refer to the errno manual page for a complete list of error codes that occur in the C underscore
system calls.

cprobe(), crecv(), csend(), csendrecv(), errno, hrecv(), hsend(), hsendrecv(), iprobe(), irecv(),
isendrecv(), msgcancel(), msgdone(), msgignore(), msgmerge(), msgwait()

M EEE AR AAENRREESE§EMREERERNRE=RAaRERRRRERRRR R

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
[}
I
-
¥
I
| ISENDRECV() ISENDRECV()
I Sends a message, posts a receive for a reply, and returns immediately. (Asynchronous send-receive)
w
i
® Synopsis
I #include <nx.h>
L N - long isendrecv(
I long rype,
N ‘ - char *sbuf,
I : long scount,
| long node,
I - long ptype,
. ' long typesel,
L char *rbuf,
- long rcount);
I
Parameters
I
type Type of the message to send. Refer to Appendix A of the ParagonTM OSF/1C
1 System Calls Reference Manual for more information about message types.
1 sbuf Pointer to the buffer containing the message to send. The buffer may be of any
‘ valid data type.
1
scount Number of bytes to send in the sbuf parameter. —
L
' node Node number of the message destination (that is, the receiving node). Setting node
I to - 1 sends the message to all nodes in the application (except the sending node
when ptype is the sender’s process type).
I
' ptype Process type of the message destination (that is, the receiving process).
I
‘ typesel Message type(s) toreceive. Setting this parameter to - 1 receives a message of any
I type. Refer to Appendix A of the Paragon’~ OSF/1 C System Calls Reference
) Manual for more information about message type selectors.
I
' rbuf Pointer to the buffer in which to store the reply. The buffer can be of any valid data
[type, but should match the data type of the buffer in the corresponding send
' operation.
M .
rcount Length (in bytes) of the rbuf parameter,
97

E
55

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

ISENDRECV/() (con, ISENDRECV/() (cont.

Description

The isendrecv() function sends a message and immediately posts a receive for a reply. The
isendrecv() function immediately returns a message ID that you can use with msgdone() and
msgwait() to determine when the send-receive completes (that is, the reply is received). When the
reply arrives, the calling process receives the message and stores it in the rbuf buffer.

If the reply is too long for rbuf, the receive completes with no error returned, and the content of the
rbuf buffer is undefined.

This is an asynchronous system call. The calling process continues to run while the send-receive
operation is occurring. If your program needs the received data for further processing, it must do one
of the following:

e Use the msgwait() function to wait until the receive completes.

e Loop until the msgdone() function returns 1, indicating that the receive is complete.

¢ Use the csendrecv() function (a synchronous system call) instead of the isendrecv() function.

Return Values

98

Upon successful completion, the isendrecv() function returns a message ID and returns control to
the calling process. If an error occurs, this function displays an error message to standard error and
causes the calling process to terminate. The message ID is for use with the msgeancel(), msgdone(),
msgignore(), msgmerge(), or msgwait() system calls.

Upon successful completion, the _isendrecv() function returns a message ID. Otherwise, this
function returns - 1 and sets errno to indicate the error.

NOTE

The number of message IDs is limited, and an error occurs when
no message |IDs are available for a requested asynchronous send
or receive. Therefore, your program should release its message
IDs as soon as possible by calling msgcancel(), msgdone(),
msgignore(), or msgwait().

LI B B

HEEE NN R ERANEMNR®=ERNRM®RMN

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
ISENDRECV() (conr) ISENDRECV() (cont
Errors

See Also

Refer to the errno manual page for a complete list of error codes that occur in the C underscore
system calls.

cprobe(), crecv(), csend(), csendrecv(), errno, hrecv(), hsend(), hsendrecv(), iprobe(), irecv(),
isend(), isendrecv(), msgcancel(), msgdone(), msgignore(), msgmerge(), msgwait()

Manual Pages

ISEOF()

Paragon™ OSF/1 C System Calls Reference Manual

ISEOFQ

Determines whether the file pointer is at end-of-file.

Synopsis

Parameters

Description

#include <nx.h>

long iseof(
int fildes);

fildes A file descriptor representing an open file.

Use the iseof() function together with read or write operations to determine whether the file pointer
in a file is at the end-of-file.

Return Values

Errors

100

Upon successful completion, the iseof() function returns control to the calling process and returns
the following values:

0 If file pointer is not at end-of-file.
1 If file pointer is at end-of-file.

Otherwise, the iseof() function displays an error message to standard error and causes the calling
process to terminate.

Upon successful completion, the _iseof() function returns the same values as the iseof() function.
Otherwise, the _iseof() function returns -1 and sets errno to indicate the error.

If the _iodone() function fails, errno may be set to the following error code value:

EBADF The fildes parameter is not a valid file descriptor.

‘EEEREERENEN NN NENENERNNNNNENNENRNNNN]

i
i i

i

™

I:Al

Paragon™ OSF/1 C

System Calls Reference Manual

ISEOF() (cont.)

See Also

cread(), cwrite(), eseek(), iread(), iwrite(), Iseek()

OSF|1 Programmer’s Reference: open(2), read(2), write(2)

Manual Pages

|SEOF() (cont.)

101

Manual Pages Paragon™ OSF/1 C System Calls Refersnce Manual

ISNAN() ISNAN()

-~

isnan(), isnand(), isnanf(): Test for floating-point NaN (Not-a-Number).

Synopsis

Parameters

Description

#include <ieeefp.h>

int isnan(
double dsrc);

int isnand(
double dsrc);

int isnanf{(
float fsrc);

dsrc Any double value.

fsre Any float value.

These functions determine whether or not their argument is an IEEE “Not-a-Number”” (NaN). None
of these functions ever generates an exception, even if the argument is a NaN.

Return Values

102

Upon successful completion, the isnan(), isnand(), and isnanf() functions return 1 if the argument
is a NaN or 0 if the argument is not a NaN, and these functions return control to the calling process.
If an error occurs, these functions print an error message to standard error and cause the calling
process 1o terminate.

Upon successful completion, the _isnan(), _isnand(), and _isnanf() functions return 1 if the
argument is a NaNor 0 if the argument is not a NaN. Otherwise, these functions return -1 when an
error occurs and set errno to indicate the error.

mrRPErRREREREER

B B o

A m

ME AR ERARARRARN™

o]
]

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

- ISNAN() (cont,) ISNAN() (cont,)

Errors

Refer to the errno manual page for a complete list of error codes that occur in the C underscore
|} ' system calls.

See Also

errno, fpgetround()

103

Manual Pages

IWRITE()

Paragon™ OSF/1 C System Calls Reference Manual

IWRITE

Writes to a file and returns immediately. (Asynchronous write)

Synopsis

Parameters

Description

104

#include <nx.h>

long iwrite(
int fildes,
char *buffer,
unsigned int nbytes);

fildes File descriptor identifying the file to which the data is to be written.
buffer Pointer to the buffer containing the data to be written.
nbytes Number of bytes to write.

Other than return values, additional errors, and asynchronous behavior (all discussed in this manual
page), the iwrite() function is identical to the OSF/1 write() function. See write(2) in the OSF/I
Programmer’s Reference.

The iwrite() function is an asynchronous version of the cwrite() function. A call to the iwrite()
function returns immediately to the calling process. The calling process continues to run while the
write is being done. If the calling process needs the write buffer for further processing, it must do
one of the following:

* Use cwrite() (a synchronous system call) instead of iwrite().

* Use iowait() to wait until the write completes.

* Loop until iodone() returns a 1, indicating that the write is complete.

The iwrite() function modifies the file pointer immediately, so Iseek(), iseof(), or a read or write call

can be used immediately without waiting for the write to finish. To determine whether the write
operation moved the file pointer to the end of the file, use the iseof() function.

B AR RN AR AR RN R R R RRR

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

IWRITE() (con. IWRITE() (con.

Return Values

Errors

See Also

Upon successful completion, the iwrite() function returns control to the calling process and a
non-negative I/O ID for use in iodone() and iowait() functions. Otherwise, the iwrite() function
displays an error message to standard error and causes the calling process to terminate.

Upon successful completion, the _iwrite() function returns a non-negative /O ID for use in iodone()
and iowait() calls. Otherwise, the _iwrite() function returns -1 and sets errno to indicate the error.

NOTE

The number of I/O IDs is limited, and an error occurs when no I/O
IDs are available for a requested asynchronous read or write.
Therefore, your program should release the /O ID as soon as
possible by calling iodone() or iowait().

If the _iwrite() function fails, errno may be set to one of the error code values described in the OSF/1
write(2) function or one of the following values:

EMIXIO In IO modes M_SYNC or M_GLOBAL, nodes are attempting different
operations (reads and writes) to a shared file. In these modes, all nodes must
perform the same operation.

EMREQUEST An asynchronous system call has been attempted, but too many requests are

already outstanding. Use either iowait() or iodone() to clear asynchronous read
and write requests that are outstanding.

cread(), cwrite(), iodone(), iowait(), iread(), iseof(), setiomode()

OSF/1 Programmer’s Reference: dup(2), open(2), write(2)

105

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual

- .
.o e

Turns the node board’s green LED on or off.

Synopsis
#include <nx.h>

void led(
long state);

Parameters
state Specifies the state of the node board’s green LED:
1 Turns on the LED.
0 Turns off the LED.

Other values are not defined.

Description
The Intel supercomputer has a number of light-emitting diodes (LEDs) on its front panel that
indicate the processor and message-passing status of all the nodes in the system. The led() function
controls the node board’s green LED allowing you to turn it on and off.

Return Values
Upon successful completion, the led() function returns control to the calling process; no values are
returned. Otherwise, this function displays an error message to standard error and causes the calling
process to terminate.
Upon successful completion, the _led() function returns 0 (zero). Otherwise, this function returns
-1 and sets errno to indicate the error.

Errors

Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

106

A A A A A AFEN AN ®E®SR@EERARPID™-S " RARRRAEERERRE

Paragon™ OSF/1 C System Calls Reference Manual

LED() (cont.)

See Also

€rrno

Manual Pages

LED() (cont.)

107

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual

LSIZE() LSIZE()

Increases the size of a file.

Synopsis
#include <nx.h>

long lsize(
int fildes,
off_t offset,
int whence),

Parameters
fildes A file descriptor representing a regular file opened for writing.

offset The value, in bytes, to be used together with the whence parameter to increase the
file size.

whence Specifies how offser affects the file size. Values for the whence parameter are as
follows (defined in nx.h):

SIZE_SET Sets the file size to the greater of the current size or
offset.

SIZE_CUR Sets the file size to the greater of the current size or the
current location of the file pointer plus offset.

SIZE_END Sets the file size to the greater of the current size or the
current size plus offset.
Description
The Isize() function allocates sufficient file space before starting performance-sensitive applications
or storage operations. This increases throughput for I/O operations on a file, because the I/O system
does not have to allocate data blocks for every write that extends the file size.

This function cannot decrease the size of a file.

The Isize() function has no effect on FIFO special files or directories, nor does it affect the position
of the file pointer. The contents of file space allocated by the Isize() function is undefined.

108

A E N R R M ENRERE= "R~ TR IR RN

'w
21y
I

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

LSIZE () (cont.) LSIZE () (cont.)

If the file has enforced file locking enabled and there are file locks on the file, the Isize() function
fails.

Note

If the requested size is greater than the available disk space,
Isize() allocates the available disk space and returns the actual
new size.

Return Values

Errors

Upon successful completion, the Isize() function returns the new size of the file, in bytes. Otherwise,
the Isize() function displays an error message to standard error and causes the calling process to
terminate.

Upon successful completion, the _Isize() function returns the same value as the Isize() function.
Otherwise, the _Isize() function returns - 1 and sets errno to indicate the error.

If the _Isize() function fails, errno may be set to one of the following error code values:

EGAIN The file has enforced mode file locking enabled and there are file locks on the file.

EACCES Write access permission to the file was denied.

EBADF The fildes parameter is not a valid file descriptor.

EFBIG Ele ﬁle size specified by the whence and offset parameters exceeds the maximum
ile size.

EFSNOTSUPP The fildes parameter refers to a file that resides in a file system that does not

support this operation.
EINVAL The file is not a regular file.
ENOSPC No space left on device.
EROFS The file resides on a read-only file system.

109

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

LS'ZEO (cont.) LS'ZEO (cont.)

See Also

110

eseek(), esize()

OSF/1 Programmer’s Reference: fentl(2), Iseek(2), open(2)

=l

= =

RE R R MEREM®RNE®RRERNS =R

; !4! l ! ;,!

ey
|
I
i
l -
s

e
B [ERE]

i

- .
[

== R

G

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

MASKTRAP() MASKTRAP()

Enables or disables send and receive traps.

Synopsis
#include <nx.h>

long masktrap(
long srate);

Parameters
state The state of send-receive traps:
0 Enables (allows) send and receive traps.
1 Disables (blocks) send and receive traps.

Other values are not defined.

Description

The masktrap() function enables and disables send and receive traps. Use this function to protect
critical code from being interrupted by the execution of the handler procedure invoked when one of
the handler send or receive system calls (for example, hrecv(), hsend(). or hsendrecv()) completes.
If a send or receive operation completes after calling the masktrap() function with a szate value of
1 to disable traps, its interrupt is delayed until the masktrap() function is called with a state value
of 0 to enable traps again.

Return Values

Upon successful completion, the masktrap() function returns the previous value of srare and returns
control to the calling process. Otherwise, this function displays an error message to standard error
and causes the calling process to terminate.

Upon successful completion, the _masktrap() function returns the previous value of szate.
Otherwise, this function returns - 1 and sets errno to indicate the error.

m

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual
MASKTRAP() (com.) MASKTRAP() (cont.)
Errors

Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

See Also

errno, hrecv(), hsend(), hsendrecv()

112

ME A ERERM R RAMR@E MR R R TAaRErEEEEER R

I

Lo

[

[] £

. mE e EE W e e

L

-l

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

MSGCANCEL() MSGCANCEL()

Cancels an asynchronous send or receive operation.

Synopsis
#include <nx.h>

void msgcancel(
long mid);

Parameters
mid The message ID returned by one of the asynchronous send or receive system calls
(for example, isend(), irecv(), or isendrecv()) or by the msgmerge() system call.
Description
The msgcancel() function cancels an asynchronous send or receive operation. When msgcancel()
returns, you do not know whether the send or receive operation completed, but you do know the
following: '
» The asynchronous operation is no longer active.

* The message buffer may be reused.

* The message ID is released.

NOTE

The number of message IDs is limited, and an error occurs when
no message IDs are available for a requested asynchronous send
or receive. Therefore, your program should release its message
IDs as soon as possible by calling msgcancel(), msgdone(),
msgignore(), or msgwait().

113

Manuai Pages Paragon™ OSF/1 C System Calls Reference Manual

MSGCANCEL() (con. MSGCANCEL() (corr.)

Return Values

Upon successful completion, the msgeancel() function returns control to the calling process; no
values are returned. Otherwise, this function displays an error message to standard error and causes
the calling process to terminate.

Upon successful completion, the _msgcancel() function returns 0 (zero). Otherwise, this function
returns - 1 and sets errno to indicate the error.

Errors
Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

See Also
errno, isend(), irecv(), isendrecv(), msgdone(), msgignore(), msgmerge(), msgwait()

114

AN EEEERAR TR RAARERRRE RPN RN RERRERER

E
I

-

I
l '
I
I

|

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

MSGDONE() MSGDONE()

Determines whether an asynchronous send or receive operation is complete.

Synopsis
#include <nx.h>

long msgdone(
long mid);
Parameters
mid | Message ID returned by one of the asynchronous send or receive system calls (for
example, isend(), irecv(), or isendrecv()) or by the msgmerge() system call.
Description

If the msgdone() function returns 1, it means the asynchronous send or receive operation identified
by mid is complete, and indicates the following:

¢ The buffer contains valid data (if mid identifies a receive operaﬁon), or the buffer is available
for reuse (if mid identifies a send operation).

¢ The info array (used by the extended receive system calls) contains valid information.
e The info...() system calls return valid information.

¢ The message ID number that identifies the asynchronous send or receive (mid) is released for
use in a future asynchronous send or receive.

NOTE

The number of message IDs is limited, and an error occurs when
no message IDs are available for a requested asynchronous send
or receive. Therefore, your program should release its message
IDs as soon as possible by calling msgcancel(), msgdone(),
msgignore(), or msgwait().

115

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

MSGDONE() (cont,) MSGDONE() (cont,

Return Values

Errors

See Also

116

Upon successful completion, the msgdone() function returns the following values and returns
control to the calling process:

0 If the send or receive is not yet complete.
1 If the send or receive is complete.

Otherwise, this function displays an error message to standard error and causes the calling process
to terminate. :

Upon successful completion, the _msgdone() function returns the following:
0 If the send or receive is not yet complete.
1 If the send or receive is complete.

Otherwise, this function réturns - 1 and sets errro to indicate the error.

Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

errno, infocount(), infonode(), infoptype(), infotype(), irecv(), isend(), isendrecv(), msgcancel(),
msgignore(), msgmerge(), msgwait()

AREHRERRERREERER=R®RE®RRRRA""C"TTRIBERRARRERRBRRS

=

[el
R

—
1

-

i

mERAR=

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

MSGIGNORE() MSGIGNORE()

Releases a message ID as soon as its asynchronous send or receive operation completes.

Synopsis
#include <nx.h>

void msgignore(
long mid);
Parameters
mid The message ID returned by one of the asynchronous send or receive system calls
(for example, isend(), irecv(), or isendrecv()) or by the msgmerge() system call.
Description

The msgignore() function releases a message ID as soon as its asynchronous send or receive
operation completes. This is a non-blocking system call.

NOTE

The number of message IDs is limited, and an error occurs when
no message IDs are available for a requested asynchronous send
or receive. Therefore, your program should release its message
IDs as soon as possible by calling msgcancel(), msgdone(),
msgignore(), or msgwait().

Note the following:

* Anapplication must have some alternate means to determine when it can reuse a send or receive
buffer.

¢ Do not use msgignore() as a substitute for msgwait().

¢ The mid cannot be reused by msgdone() or msgwait().

117

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual

MSGIGNORE() (con. MSGIGNORE() (cont.

Return Values

Upon successful completion, the msgignore() function returns control to the calling process; no
values are returned. Otherwise, this function displays an error message to standard error and causes
the calling process to terminate.

Upon successful completion, the _msgignore() function returns 0 (zero). Otherwise, this function
returns - 1 and sets errno to indicate the error.

Errors
Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

See Also
errno, irecv(), isend(), msgcancel(), msgdone(), msgmerge(), msgwait()

118

-
pout

AR ERERRFRARRRRERRARP R RRERRTARRERE R RERRER

-l
e

-~

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

MSGMERGE()

MSGMERGEQ

Groups two message IDs together so they can be treated as one.

Synopsis

Parameters

Description

#include <nx.h>

long msgmerge(
long midl,
long mid2);

midl, mid2 Message IDs returned by asynchronous send or receive system calls (for example,
isend(), irecv(), or isendrecv()) or by the msgmerge() system call.

The msgmerge() function groups mid2 with mid! and returns a message ID to use for both. After
calling msgmerge(), the original message IDs (mid! and mid2) become invalid (although they are
not released until the new message ID is released). The operation associated with the new message
ID (msgdone() or msgwait()) does not complete until borh of the asynchronous send or receive
operations associated with the original message IDs complete.

Normally, msgmerge() returns mid!, and only mid2 becomes invalid. As a special case, one mid can
be -1, in which case the other mid is returned with no other action.

Do not use the info...() system calls after a call to the msgmerge() function; the information returned
is unpredictable.

119

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual

MSGMERGE() (con.) MSGMERGE() (con.)

Return Value

Upon successful completion, the msgmerge() function returns a message ID and returns control to
the calling process. Otherwise, this function displays an error message to standard error and causes
the calling process to terminate. The returned message ID is for use in msgcancel(), msgdone(),
msgignore(), msgmerge(), or msgwait() system calls.

Upon successful completion, the _msgmerge() function returns a message ID. Otherwise, this
function returns - 1 and sets errno to indicate the error.

NOTE

The number of message IDs is limited, and an error occurs when
no message IDs are available for a requested asynchronous send
or receive. Therefore, your program should release its message
IDs as soon as possible by calling msgcancel(), msgdone(),
msgignore(), or msgwait().

Errors
Refer to the errno manual page for a complete list of error codes ihat occur in the C underscore
system calls.

See Also
errno, irecv(), isend(), isendrecv(), msgcancel(), msgdone(), msgignore(), msgwait()

120

mERERERERERR

mARP”

MAE R RNRER MR AR RRRER MR RS

Paragon™ OSF/1 C System Calls Reference Manual : Manual Pages

b
i
I
i

MSGWAIT() MSGWAIT()
I ‘
I Waits (blocks) until an asynchronous send or receive operation completes.

i
I .

- Synopsis
I ~ #include <nx.h>
I void msgwait(
. long mid);
i
r Parameters
L mid The message ID returned by one of the asynchronous send or receive system calls
I (for example, isend(), irecv(), or isendrecv()) or by the msgmerge() system call.
I -

Description

L The msgwait() function causes a node process to wait until an asynchronous send or receive
‘ "]) operation (for example, isend() or irecv()) completes. When the msgwait() function returns:
1 « The buffer contains valid data (if mid identifies a receive operation), or the buffer is available

- for reuse (if mid identifies a send operation).
i * The info array (used by the extended receive system calls) contains valid information.
I ¢ The info...() system calls return valid information.
I
I * The message ID that identifies the asynchronous send or receive (mid) is released for use in a
I future asynchronous send or receive.

J

NOTE

I

The number of message IDs is limited, and an error occurs when
1 no message IDs are available for a requested asynchronous send

_ or receive. Therefore, your program should release its message
I IDs as soon as possible by calling msgcancel(), msgdone(),

msgignore(), or msgwait().

B
I
n

\ 121

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

MSGWA |T() (cont.) MSGWA'T() (cont.)

Return Values

Errors

See Also

122

Upon successful completion, the msgwait() function returns control to the calling process; no values
are returned. Otherwise, this function displays an error message to standard error and causes the
calling process to terminate.

Upon successful completion, the _msgwait() function returns 0 (zero). Otherwise, this function
returns - 1 and sets errno to indicate the error.

Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

errno, infocount(), infonode(), infoptype(), infotype(), irecv(), isend(), isendrecv(), msgcancel(),
msgdone(), msgignore(), msgmerge()

5!!!!!!!!!Eﬁﬂﬁ%gﬁéﬁﬁﬁﬁﬁ!ﬂaaaﬁaﬂg

i = =

|
i

)
I

[R +

T e i e B B

I3

mEaE-

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

MYHOST() MYHOST()

Gets the node number of the controlling process.

Synopsis
#include <nx.h>

long myhost(void);

Description

The myhost() function returns the node number of the caller’s controlling process (the host process)
for use in send and receive operations. For controlling processes, myhost() returns the same number
as mynode(), which is the node number of the calling process.

Return Values

Upon successful completion, the myhost() function returns the node number of the controlling
process and returns control to the calling process. Otherwise, this function displays an error message
to standard error and causes the calling process to terminate.

Upon successful completion, the _myhost() function returns the node number of the controlling
process. Otherwise, this function returns - 1 and sets errno to indicate the error.

Errors

Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

See Also

csendrecv(), errno, hsend(), hsendrecv(), isendrecv(), mynode(), myptype(), numnodes(),
nx_loadve(), nx_nfork()

123

-
=

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual
[§4
m
W
MYNODE() MYNODE() H
Gets the node number of the calling process. L
Synopsis B
#include <nx.h> E
long mynode(void); T
i
Description I
The mynode() function returns the node number of the calling process (an integer between 0 and m
numnodes()). .
E
Return Value ¥
Upon successful completion, the mynode() function returns the node number of the calling process I

and returns control to the calling process. Otherwise, this function displays an error message to
standard error and causes the calling process to terminate.

Upon successful completion, the _mynode() function returns 0 (zero). Otherwise, this function ﬂ
returns - 1 and sets errno to indicate the error.)
Errors |
Refer to the errno manual page for a list of errno values that can return for errors in C underscore [§
system calls.
E
See Also E
errno, myhost(), myptype(), numnodes(), nx_loadve(), nx_nfork() E
K
K
K
K
124 m
| H

£ S !

P
[

EEEREREREEMmMR=R®=

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

MYPTYPE() MYPTYPE()

Gets the process type of the calling process.

Synopsis
#include <nx.h>

long myptype(void);

Description

The myptype() function returns the process type of the calling process.

Return Values
Upon successful completion, the myptype() function returns the process type (ptype) of the calling
process and returns control to the calling process. Otherwise, this function displays an error message
to standard error and causes the calling process to terminate.
Upon successful completion, the _myptype() function returns the process type (prype) of the calling
process. Otherwise, this function returns - 1 and sets errno to indicate the error.

Errors

Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

See Also

csend(), csendrecv(), errno, hsend(), hsendrecv(), isend(), isendrecv(), myhost(), mynode(),
numnodes(), nx_loadve(), nx_nfork(), setptype()

125

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual

NUMNODES() NUMNODES()

Gets the number of nodes in an application.

Synopsis
#include <nx.h>

long numnodes(void);

Description

The numnodes() function returns the number of nodes allocated to the application.

Return Values

Upon successful completion, the numnodes() function returns the number of nodes in an application
and returns control to the calling process. Otherwise, this function displays an error message to
standard error and causes the calling process to terminate.

Upon successful completion, the _numnodes() function returns the number of nodes in an
application. Otherwise, this function returns - 1 and sets errno to indicate the error.

Errors
Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

See Also
errno, myhost(), mynode(), nx_initve(), nx_load()

126

mERBER =R

TEmm

LI I B B B

Mmoo =

.-

I Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
&
| b
i
I
-
LI NX_CHPART() NX_CHPART()
| M
I nx_chpart_epl(), nx_chpart_mod(), nx_chpart_name(), nx_chpart_owner(), nx_chpart_rq(): Changes a
“ partition’s characteristics.
I Synopsis
I #include <nx.h>
I long nx_chpart_epl(
o char *partition,
I long priority);
I long nx_chpart_mod(
I char *partition,
| ¢ long mode);
I

long nx_chpart_name(
1. char *partition,
char *name);

I
1 long nx_chpart_owner(
o char *partition,
i long owner,
long group);
.
s long nx_chpart_rq(
: char *partition,
I long rollin_quantum);
B
Parameters
I
partition Pointer to a relative or absolute pathname of the partition for which you are
L B changing the characteristics. The partition must exist and must give write
permission to the calling process (except for the nx_chpart_owner() function).
I
priority New effective priority limit for the partition expressed as an integer with a range
I : from O (lowest priority) to 10 (highest priority) inclusive.
|

127

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

NX_CHP A RT() (cont.) NX__CH PA RT() (cont.)
mode New protection modes for the partition expressed as an octal number. See the
chmod command in the OSF/I Command Reference for more information on
specifying protection modes.
name New name for a partition. The name parameter must be a simple name (without
dots).
owner New owner for the partition expressed as a numeric user ID (UID). If the owner

Description

128

parameter is - 1, the owner name is not changed.

See the OSF/1 Programmer’s Reference for information about using the
getpwnam() function to convert a user name to a numeric user ID.

group New group for the partition expressed as a numeric group ID (GID). If the group
parameter is -1, the group name is unchanged. See the OSF/1 Programmer’s
Reference for information about using the getgrnam() function to convert a group
name to a numeric group ID.

rollin_quantum New rollin quantum for the partition expressed as an integer number of
milliseconds, or 0 to specify infinite rollin quantum. The specified value must not
be greater than 86,400,000 milliseconds (24 hours). If you specify a value that is
not a multiple of 100, the value is silently rounded up to the next multiple of 100.

The nx_chpart...() functions change specific characteristics of a partition. Each of these functions
specifically changes a partition characteristic as follows:

nx_chpart_epl()
Changes the partition’s effective priority limit.

nx_chpart_mod()
Changes the partition’s permission modes.

nx_chpart_name()
Changes the partition’s name.

nx_chpart_owner()
Changes the partition’s owner and group.

nx_chpart_rq() Changes the partition’s rollin quantum.

-~ -

mERERE

=N NN N

PR REARM"

rREARMN

mnmEm

-

[| 3

[]

[

4

i

Eod 3 . 0 #

CI

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

NX_CHPART() (con, NX_CHPART/() (cont.

You initially set a partition’s characteristics when you create the partition with the mkpart
command or the nx_mkpart...() functions. Using the mkpart command, you can specifically set the
partition’s characteristics or use the default characteristics, which are the parent partition’s
characteristics. Using the nx_mkpart...() functions, the partition receives the characteristics of the
parent partition. After you create a partition, you are the owner of the partition. You can use the
nx_chpart...() functions or the chpart command to change the partition’s characteristics.

The effective priority limit is the upper priority limit on a partition. The system uses the effective
priority limit for gang scheduling in partitions. See the ParagonTM OSF/1 User’s Guide for more
information about effective priority limits and gang scheduling. The nx_chpart_epl() function
changes the effective priority limit for a partition. The effective priority ranges from 0 to 10. This
limit does not affect the priority of applications or partitions within a partition.

The nx_chpart_name() function changes the partition’s name only. You cannot use this function to
change the partition’s parent partition or the partition’s relationship in a partition hierarchy.

Each partition has an owner, a group, and protection modes that determine who can perform what
operations on a partition. When you create a partition, you become the partition’s owner and the
partition’s group is set to your current group. The nx_chpart_owner() function changes the owner
and group of a partition. Use the OSF/1 getpwnam() function to convert an owner name to a user
ID. Use the OSF/1 getgrnam() function to convert a group name to a numeric group ID. See the
OSF/1 Programmer’s Reference for more information about these functions.

A partition’s protection mode consists of three groups of permission bits that indicate the read, write
and execute permissions for the owner, group, and other users of the partition. A partition’s
protection mode is initially set when the partition is created. The nx_chpart_mod() function
changes the protection mode for a partition. Set the mode parameter to the three-digit octal value that
represents the protection mode you want for the partition. See the chmod command in the OSF/1
Command Reference for more information on specifying protection modes.

Return Values

0 Partition’s characteristic was successfully changed.

-1 Error; errno is set.

129

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual I
{4
W

NX_CHPART() (con) NX_CHPART() (con

Errors

When -1 is returned by this function, errno is set to one of the following values:
EPACCES The application has insufficient access permission on a partition.

EPALLOCERR
An internal error occurred in the node allocation server.

EPBADNODE The specified node is a bad node or is not present in the partition.

EPINVALPART
The specified partition (or its parent) does not exist.

EPLOCK The specified partition is currently being updated and is locked by someone else.

EPPARTEXIST
The specified partition already exists.

See Also
chpart, Ispart, mkpart, nx_mkpart(), nx_rmpart(), pspart, rmpart
OSF/1 Command Reference: chgrp(1), chmod(1), chown(1)
OSF/1 Programmer’s Reference: getgrnam(3), getpwnam(3)

130

AEERERRAPEERRARR "R RARR R EEE

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
NX_INITVE() NX_INITVE()
Initializes a parallel application.

Synopsis

#include <nx.h>

long nx_initve(
char *partition,
long size,
char *account,
long *argc,
char *argv[]);

Parameters

partition Name of the partition in which to run the application in, or a null string (" ") touse
the partition specified by the -pn switch on the command line. You can use a
relative or an absolute partition pathname; the specified partition must exist and
must give execute permission to the calling process.

If you specify the null string for partition, and argc is 0 (zero) or the -pn switch
is not used, the application runs in the partition specified by the environment
variable NX_DFLT PART.If NX DFLT PART is not set, the default is the
.compute partition.

size Number of nodes to run the application on, or O (zero) to use the size specified by
the -sz switch on the command line. If argc is 0 (zero) or the -sz switch is not used,
defaults to all nodes in the partition.

account Reserved for future use. Set this parameter to NULL.

argc Pointer to an integer that is the number of arguments on the command line
(including the application name). If the value of the integer is 0 (zero), the
command line is ignored. When nx_initve() returns, argc indicates the number of
remaining command line arguments after all the recognized arguments are
removed from argv.

argv Array of character pointers to null-terminated strings containing the application’s
command line arguments. All recognized arguments are removed from argv.

131

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual

mRER R

NX_INITVE() (cont. NX_INITVE() (cont.

™

Description

The nx_initve() function initializes an application on a set of nodes in a specified partition. Use this
call as follows:

M=

"

* Call nx_initve() before any other Paragon”" OSF/1 system calls.
+ Call nx_initve() only once.
* Do not use the -nx option to link a program that calls nx_initve(). Use the -Inx option.

The nx_initve() function just initializes a program. Use the nx_loadve(), nx_load(), or nx_nfork()
calls to start a program’s processes.

I = Il

The nx_initve() function recognizes the following command line switches for an application: -gth,
-mbf, -mea, -mex, -on, -pkt, -plk, -pn, -pri, -pt, -sct, -sth, and -sz. See the application manual page
for a description of the recognized switches for applications. When a switch is recognized, the
appropriate application characteristic is set, the switch and any associated argument are removed
from argv, and argc is decremented appropriately. The remaining switches and arguments are
moved to the beginning of argv.

The application’s scheduling priority is specified by the -pri argument in argv. If the -pri switch is
not specified or the argc parameter is 0 (zero), then the scheduling priority is set to S.

When calling the nx_initve() function, the calling process becomes the controlling process of the
application. If not already the process group leader, the nx_initve() function disassociates the calling
process from its current process group, creates a new process group, and makes the calling process
the process group leader of the new process group.

The nx_initve() function does not set the calling process’s ptype.

Return Values
>0 Number of nodes on which the application was created.

-1 An error occurred and errno is set.

132

M APAEPAAE PR EREE®RPM™S BR

[N |

g

BRI

i

S

FEN.]

]

mEn-

g

Paragon™ OSF/1 C System Calls Reference Manual

NX_INITVE() (con.

Errors

| See Also

When -1 is returned by this function, errno is set to one of the following values:
EAEXIST An application has already been established for the process group.

EPALLOCERR An internal error occurred in the node allocation server.

EPACCES The application has insufficient access rights to a partition for this operation.

EPXRS The request exceeds the partition resources.

application, nx_load(), nx_nfork()

Manual Pages

NX_'N'TVE() (cont.)

133

Manual Pages

NX_LOAD()

hx_load(), nx_loadve(): Loads and starts an executable image.

Synopsis

#include <nx.h>

long nx_load(

long node_list],
long numnodes,
long ptype,

long pid_list(],
char *pathname);

long nk_loadve(

Parameters

node_list

numnodes

pope

pathname

134

long node_list(],
long numnodes,
long ptype,

long pid_list[],
char *pathname,
char *argv[],
char *envp[]);

Paragon™ OSF/1 C System Calls Reference Manual

NX_LOAD()

Array of node numbers on which to load and start the executable image.

Number of node numbers in the node_list. If numnodes is set to - 1, the

application is loaded onto all the application’s nodes (the node_list parameter is

ignored).

Process type of the new process(es).

Pathname of the executable image to load and start.

mERrTREREARERERRPT T RARBRRRRRERRERERRER

mam

mmE M

= M

L

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

NX__LOA DO (cont.)

Description

pid_list

argv

envp

NX_LOA D() (cont.)

Array of OSF/1 process IDs (PID) of the new processes. Each element of the
pid_list array identifies the process ID of the node identified by the corresponding
element of node_list. An entry of 0 (zero) indicates that the process on the
corresponding node was not started successfully. The pid_list array must be the
size of the number of nodes used in the application.

If the num_nodes parameter equals -1, the first element of the pid_list array equals
the PID of node 0, the second element of the pid_list array equals the PID of node
1, and so on for all the nodes in the system.

The argument vector pointer to pass to the executable image’s new processes
(corresponds to the argv parameter of the OSF/1 execve(2) system call).

The environment vector pointer to pass to the executable image’s new processes
(corresponds to the env parameter of the OSF/1 execve(2) system call).

The nx_load() and nx_loadve() functions load and start an executable image on the nodes specified
by the node_list parameter. The nx_loadve() function is just like the nx_load() function except it
lets you specify the argument list and environment variables for the new process. These calls can
only be made after the calling process makes an initial nx_initve() call.

The nx_load() and nx_loadve() functions return immediately to the calling process. Use
nx_waitall() to wait for processes created by nx_load() and nx_loadve().

Return Values

>0

Number of nodes on which the executable image was loaded and started
successfully.

Error; errno is set.

NOTE

It is possible that loading and starting the executable image could
fail on more than one node, and that each failure could be for a
different reason. In such a case, the value of errno reflects only
one of the failures, and it is not possible to determine which one.

135

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual
NX_LOAD() (con) . NX_LOAD() (con,
Errors

When -1 is returned by this function, errno is set to one of the following values:
EPALLOCERR An internal error occurred in the node allocation server.

EPBADNODE The specified node is a bad node.

See Also
nx_initve(), nx_nfork(), nx_waitall(), setptype()

OSF/1 Programmer’s Reference. execve(2)

136

AREAERARM AR RE RN

- .
= e

mmerrREERERRR

el =

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

NX_MKPART() NX_MKPART()

nx_mkpart(), nx_mkpart_rect(), nx_mkpart_map(): Creates a new partition.

Synopsis
#include <nx.h>

long nx_mkpart(
char *partition,
long size,
long rype);

long nx_mkpart_rect(
char *partition,
long rows,
long cols,

long type);

long nx_mkpart_map(
char *partition,
long numnodes,
long node_list[],

long type);

Parameters

partition New partition’s relative or absolute pathname. The new partition must not exist.
The parent partition of the new partition must exist and must give the calling
. process write permission.

size Number of nodes for the new partition, or - 1 to specify all nodes of the parent
partition. If you specify a size smaller than the number of nodes in the parent
partition, the system selects the nodes that make up the new partition and the
nodes are not necessarily contiguous.

type New partition’s scheduling type: NX_STD specifies standard scheduling and
NX_GANG specifies gang scheduling. The scheduling type names are specified
in the nx.h include file. See the Paragon”" OSF/1 User’s Guide for more
information about partitions and scheduling.

rows Number of rows in the new partition.

137

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

NX_MKPART() (con.) NX_MKPART() (con.)
cols Number of columns in the new partition.
numnodes Number nodes in the parent partition available to the new partition.
node_list Array of 'node numbers that list the nodes in the parent partition available to the
new partition.
Description

The nx_mkpart(), nx_mkpart_rect(), or nx_mkpart_map() functions create partitions for your
application programs. The nx_mkpart() function creates a partition with a specified number of
nodes. The system selects the shape of the partition and the nodes that make up the partition. The
nodes are not necessarily contiguous.

The nx_mkpart_rect() function creates a partition with a rectangular shape and a specified number
of rows and columns. The system allocates the rectangular partition where it can in the parent
partition.

The nx_mkpart_map() function creates a partition with a specified list of nodes. You pass the
numnodes and nodelist parameters to specify the number of nodes and the list of nodes to use for the
new partition. The node numbers listed in the nodelist must exist and be available in the parent
partition The system allocates the nodes for the new partition from the nodelist only.

When you create a partition with the nx_mkpart...() functions, the new partition gets default
characteristics. The partition’s owner and group are set to the owner and group of the calling process.
All other characteristics including the effective priority limit, protection mode, and rollin quantum
are set to the same values as the parent partition. If you want to change a partition’s characteristics,
use the nx_chpart...() functions.

Return Values

138

>0 Number of nodes allocated for the partition.

-1 Error; errno is set.

L
el

mREE R

mrEErRRARRRER

mom =™

mEEm

mhEn

- il Bl

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
NX_MKPART() (con) NX_MKPART() (con)
Errors

See Also

When -1 is returned by this function, errno is set to one of the following values:
EPACCES The application has insufficient access permission on a partition.

EPALLOCERR
An internal error occurred in the node allocation server.

EPBADNODE The specified node is a bad node or is not present in the partition.
EPBXRS Partition request contains bad or missing nodes.

EPINVALPART
The specified partition (or its parent) does not exist.

EPLOCK Partition is currently in use or being updated.

EPPARTEXIST
The specified partition already exists.

EPXRS Request exceeds the partition’s resources.

chpart, Ispart, mkpart, nx_chpart(), nx_rmpart(), pspart, rmpart

139

Manual Pages

NX_NFORK()

Paragon™ OSF/1 C System Calls Reference Manual

NX_NFORK()

Forks the calling process and creates an application’s processes.

Synopsis

Parameters

Description

140

#include <nx.h>

long nx_nfork(
long node_list{],
long numnodes,

long ptype,
long pid_list[]);

node_list

numnodes

pyype

pid_list

Array of node numbers on which to fork the calling process.

Length of the node_list array (that is, the number of nodes on which to fork the
calling process). If you set the numnodes parameter to -1, the nx_nfork() uses all
the nodes of the application and ignores the node_list parameter.

Process type of the new process(es).

Array in which nx_nfork() records the OSF/1 process IDs of the new processes.
Each element of the pid_list array contains the OSF/1 process ID of the process
that was forked on the node identified by the corresponding element of the
node_list array. An entry of 0 (zero) indicates that the process on the
corresponding node was not forked successfully.

If the numnodes parameter equals -1, the first element of the pid_list array equals
the PID of node 0, the second element of the pid._list array equals the PID of node
1, and so on for all the nodes in the system.

The nx_nfork() function forks the calling process onto the nodes specified by the node_list
parameter. The fork operation copies the calling process onto a specified set of nodes with a
specified process type. It creates one child process for each specified node. The nx_nfork() function
is similar to the OSF/1 fork() call, except that it can fork processes onto multiple nodes and specifies
a process type for the child processes. This call can only be made after an initial nx_initve() call.

]
L]

EREERERERR

TR MAE

A mm -

kil
| Fi

I
I’

Paragon™ OSF/1 C System Calls Reference Manual

Manual Pages

NX_NFORK() (con.) NX_NFORK() (cont,

Return Values

If the fork succeeds:

« The parent process receives a value that indicates the number of child processes that were

created (that is, the number of nodes on which the process was forked).
» Each child process receives the value 0 (zero).
If the fork fails:
. The calling process receives the value -1.

¢ Each successfully created child process receives the value 0 (zero).

NOTE

It is possible that the fork could fail on more than one node, and
that each failure could be for a different reason. In such a case, the
value of errnoreflects only one of the failures, and it is not possible
to determine which one. '

Errors
When -1 is returned by this function, errno is set to one of the following values:
EPALLOCERR An internal error occurred in the node allocation server.
EPBADNODE The specified node is a bad node.

See Also

nx_initve(), nx_load(), setptype()

OSF|1 Programmer’s Reference: fork(2)

141

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

NX_PERROR() NX_PERROR()

Print an error message corresponding to the current value of errno.

Synopsis

Parameters

Description

Errors

See Also

142

#include <nx.h>
#include <errmo.h>

void nx_perror(
char *string);

string String that contains the name of the program or function that caused the error.

Other than additional errors and the error message format, nx_perror() is identical to the OSF/1
perror() call. See perror(2) in the OSF/1 Programmer’s Reference.

There is a standard error message for each value of errno, which you can print out by calling
nx_perror(). nx_perror() prints its argument (any string), the current node number and process
type, and the error message associated with the current value of errno to the standard error output in
the following format:

(node n, ptype p) string: error message

The include file errno.h declares errno and defines constants for the possible errno values.

Refer to the errno manual page for a complete list of error codes that occur in the C underscore
system calls.

errno

OSF!1 Programmer’s Reference: perror(2)

mTEmE S

S -

MEEA RPN RE

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

NX_PRI() NX_PRI()

Sets the priority of an application.
Synopsis
#include <nx.h>
long nx_pri(

long pgroup,
long priority);

Parameters

pgroup Process group ID for the application, or 0 (zero) to specify the application of the

calling process. If the specified process group ID is not a process group ID of the
calling process, the calling process’s user ID must either be root or the same user
ID as the specified application.

priority New priority for the application, an integer from O (lowest priority) to 10 (highest
priority) inclusive.

Description
An application runs in a partition with a priority. The priority determines how and when the
application is scheduled to run in the partition. The nx_pri() function sets an application’s priority.
An application’s priority can range from 0 (low priority) to 10 (high priority), inclusive; an
application with the higher priority takes scheduling precedence over applications with lower
priorities. See the Paragon’ = OSF/1 User’s Guide for more information on scheduling and an
application’s priority.
If you do not call nx_pri() and you do not use the -pri switch with your application, the default
priority is 3.

Return Values

>0 No errors; priority successfully set.

-1 Error; errno is set.

143

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

NX__PRI() (cont.) NX_PRI() (cont.)

Errors

See Also

144

When -1 is returned by this function, errno is set to one of the following values:

EANOEXIST
The specified process group does not exist.

EPALLOCERR
An internal error occurred in the node allocation server.

EPINVALPRI
The specified priority is out of the range of priority values.

nx_chpart(), nx_initve(), nx_nfork(), nx_load()

Paragon™ OSF/1 User’s Guide

rTARRrRRREERR

[N

il =l

mEomm™

A E A M @B MNP NN

i St

=l = =

&
i

o

. by

I
I
1
.
|
1

1
1

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
NX_RMPART() NX_RMPART()
Removes a partition.

Synopsis

#include <nx.h>

long nx_rmpart(
char *partition,
long force,
long recursive);

Parameters

partition Relative or absolute pathname of the partition to be removed. The parent partition
must give write permission to the calling process.

Jorce Removes partitions that contain running applications. If the value is 0 (zero), the
partition will not be removed if any applications are running in the partition. Any
other value specifies removing the partition even if applications are running in the
partition. '

recursive Recursively remove the partition. A value of 0 (zero) specifies that the partition
will not be removed if the partition has any subpartitions.

A non-zero value specifies that the partition and all its subpartitions will be
removed recursively. There cannot be any applications running in the partition or
any of its subpartitions. If applications are running in the partition or any of its
subpartitions, the nx_rmpart() function does not remove the partition or any of
its subpartitions.

The force parameter set to a positive integer and used with the recursive parameter

allows a partitions and subpartitions to be removed if they have applications
running in them.

145

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

NX_RMPART() (con.) NX_RMPART() (con.)

Description

The nx_rmpart() function removes from the system a partition, its subpartitions, and applications
running in the partition or its subpartitions. A calling process must have write permission on the
parent partition to remove the partition.

The force parameter specifies whether to remove the partition if it contains applications. A 0 (zero)
value specifies not to remove a partition if it contains applications. Any other value forces the
partition to be removed. This is a safety mechanism so you do not accidently destroy an application
or subpartition.

The recursive parameter specifies whether to remove the partition and all its subpartitions. A 0 (zero)
value specifies not to remove a partition if it contains subpartitions. Any other value removes the
partition and all its subpartitions. :

If you provide non-zero values for both the force and recursive parameters, nx_rmpart() removes
the partition and all its subpartitions, even if applications are running in the partition or its
subpartitions.

Return Values

Errors

146

>0 Partition was successfully removed.

-1 Error; errno is set.

When -1 is returned by this function, errno is set to one of the following values:
EPACCESS Insufficient access permission for this operation on a permission.

EPALLOCERR
An internal error occurred in the node allocation server.

EPINVALPART
The specified partition does not exist.

EPLOCK The specified partition is currently being updated and is locked by someone else.

EPNOTEMPTY The specified partition contains one or more subpartitions or running applications.

mARE=EEERR

I

=l =N

mEm RNl RES

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages
NX_RMPART() (cont) NX_RMPART() (cont)
See Also

chpart, Ispart, mkpart, nx_chpart(), nx_mkpart(), pspart, rmpart

147

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

NX_WAITALL() NX_WAITALL()

Waits for all the child processes of a calling process to stop or terminate

Synopsis

Description

#include <nx.h>

long nx_waitall(void);

The nx_waitall() function takes no parameters, waits for all the child processes of a calling process
to stop or terminate, and returns 0 (zero) for successful termination of child processes or - 1 for
unsuccessful termination of child processes. Otherwise, the nx_waitall() function is identical to the
OSF/1 wait() function. See wait(2) in the OSF/I Programmer’s Reference.

The nx_waitall() function suspends the application’s calling process until all the application’s child
process stop or terminate. An application can start child process with the nx_nfork(), nx_load(), or
nx_loadve() functions.

Return Values

Errors

See Also

148

0 All the application’s processes terminated successfully

-1 One or more of the application’s processes terminated with an error

If the nx_waitall() function fails, errno may be set to one of the error code values described for the
OSF/1 wait(2) function.

nx_nfork(), nx_load()

mRERR R

mER

mEPFERAPERAPrPPRERNTATRTAR

m e R M

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

SETIOMODE() SETIOMODE()

Sets the I/0O mode of a file and performs a global synchronization operation.

Synopsis
#include <nx.h>
void setiomode(
int fildes,
int iomode);
Parameters
fildes A file descriptor representing an open file.
iomode The I/O mode to be assigned to the file associated with fildes. Values for the
iomode parameter are as follows:

M_UNIX Each node has its own file pointer; access is
unrestricted.

M_LOG All nodes use the same file pointer; access is first
come, first served; records may be of variable length.

M_SYNC All nodes use the same file pointer; access is in node
order; records are in node order but may be of variable
length.

M_RECORD Each node hasits own file pointer; access is first come,
first served; records are in node order and of fixed
length.

Description

The setiomode() function changes the /O mode of an open shared file. A shared file is a file that is

opened for access by more than one node. Shared files opened by open() or fopen() have the /O
mode M_UNIX.

Each node calling setiomode() must specify a fildes that refers to the same file, and the file pointer
must be in the same position in the file for each node at the time the call to setiomode() is made.

149

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

SETIOMODE() (con.) SETIOMODE’() (cont.)

150

In addition to setting the file’s /O mode, setiomode() performs a global synchronizing operation
like that of the gsyne() function. That is, all nodes must call the setiomode() function before any
node can continue executing. In the M_LOG, M_SYNC, and M_RECORD modes, closing the file
also performs a global synchronizing operation.

Use the iomode() function to return a file’s current mode.

Using the fork() function, the child process does not inherit the I/O modes associated with the parent
process’s file descriptors; all I/O modes in the child process default to the mode M_UNIX.

M_UNIX (Mode 0)

In this mode, each node maintains its own file pointer and can access information anywhere in the
file at any time. If two nodes write to the same place in the file, the latest data written by a node
overwrites the data written previously by another node.

This mode is often used when all nodes are only reading a data file or when each node is responsible
for data in a specific area of a file.

Because each node can access the file immediately, this mode generally has higher performance than
the M_LOG, M_SYNC, or M_RECORD modes.

M_LOG (Mode 1)

In this mode, all nodes use the same file pointer. I/O requests from nodes are handled on a first-come,
first-served basis. Because requests can be performed in any order, the order of the data in the file
may vary from run to run.

This mode is often used for log files. The files stdin, stdout, and stderr are always opened in this
mode.

Because only one node may access the file at a time, this mode has lower performance than the
M_UNIX mode.

M_SYNC (Mode 2)

In this mode, all nodes use the same file pointer, but I/O requests are handled in node order. This
mode treats file accesses as global operations in which all nodes must complete their access before
any node can access the file again. The amount of data read or written may, however, vary from node
to node.

ERAERNRAERRARPEPRP AR BN ARRE R ERERRRER

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

SETchODEO (cont.) SETIOMODE() (cont.)

In this mode, all nodes must perform the same file operations in the same order. The only valid use
for the Iseek() or eseek() function is for all nodes to seek to the same position in the file prior to an
access.

Because nodes must access the file in node order, this mode has the lowest performance of all the
modes.

M_RECORD (Mode 3)

In this mode, each node maintains its own file pointer and can access the file at any time. The data
for each corresponding access (that is, the nth read or write) must be the same length for all nodes.
Because the data from each node appears in the file in a predictable location, each node can access
the file whenever it is ready.

Files created in this mode resemble files created in the M_SYNC mode. The data appear in node
order. All nodes should perform the same file operations in the same order. However, in the
M_RECORD mode most operations are not synchronized for performance reasons. The operations
that are synchronized are the Iseek() and eseek() system calls: the only valid use of one of these calls
is for all nodes to seek to the same position in the file prior to an access.

Because nodes may access the file when they are ready, this mode offers better performance than
mode M_SYNC. '

Return Values

Errors

Upon successful completion, the setiomode() function returns control to the calling process; no
values are returned. Otherwise, the setiomode() function displays an error message to standard error
and causes the calling process to terminate.

Upon successful completion, the _setiomode() function returns 0 (zero). Otherwise, the
_setiomode() function returns -1 and sets errno to indicate the error.

If the _setiomode() function fails, errno may be set to one of the following error code values:

EBADF The fildes parameter is not a valid file descriptor.
EINVAL The given value for iomode is not a valid I/O mode.
EMIXIO The given fildes is invalid because all nodes have not specified a fildes that

represents the same file.

151

Manual Pages

SETIOMODEO (cont.)
EMIXIO
EMIXIO
See Also

Paragon™ OSF/1 C System Calls Reference Manual

SETIOMODE() (cont.

The given value for iomode is not valid because all nodes sharing the file
represented by fildes have not used the same value.

In I/O modes M_LOG, M_SYNC, or M_RECORD, all nodes sharing the file
have not set the file pointer to the same location.

cread(), cwrite(), iomode(), iread(), iwrite()

OSF/1 Programmer’s Reference: dup(2), fork(2), open(2)

152

-~ =

FEREBER

SN

[

- o e
P 4 S | 3

-

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

SETPTYPE() SETPTYPE()

Sets the process type of a process.

Synopsis

Parameters

Description

#include <nx.h>

void setptype(
long prype);

prype Process type you are assigning to a process. The prype must be a non-negative
integer between 0 and 23! - 1.

The setptype() function sets the process type of the calling process.Call the setptype() function
before using any message-passing calls.

Multiple processes running on the same node in the same application must have different process
types (ptypes). However, processes on different nodes may (and usually do) have the same process
type. Two processes running on a single node may have the same process type only if they belong
to different applications.

When you run an application that is linked with the -nx switch, the system automatically sets, by
default, the process type for all processes in an application to 0 (zero). You can override the default
process type in the application’s command line with the -pt switch.

The nx_nfork(), nx_load(), and nx_loadve() system calls have a prype parameter that lets you
specify the process type for newly created processes in an application.

If an application creates additional processes after it starts up, and no process type is specified for
the new process, the new process’s process type is set to the special value INVALID_PTYPE (a
negative constant defined in the header file nx.h). A process whose process type is
INVALID_PTYPE cannot send or receive messages. It must call the setptype() function to set its
process type to a valid value before it can send or receive any messages.

153

Manual Pages

Paragon™ OSF/1 C System Calls Reference Manual

SETPTYPE() (o, SETPTYPE() (com.)

A process can call the setptype() function multiple times to change its process type to a new value
or to a previously set value. Once a process has used a process type, it remains associated with the
process for the life of the application. No other process in the same application on the same node can
use that process type.

The process type in effect when making a send or receive system call determines the process type
associated with the message. If a process changes its process type, messages that arrive for the
previous process type cannot be received unless the process changes its process type back to the
previous value.

Return Values

Errors

See Also

154

Upon successful completion, the setptype() function returns control to the calling process; no values
are returned. Otherwise, this function displays an error message to standard error and causes the
calling process to terminate.

Upon successful completion, the _setptype() function returns 0 (zero). Otherwise, this function
returns - 1 and sets errno to indicate the error.

Refer to the errno manual page for a list of errno values that can return for errors in C underscore
system calls.

application, errno, myptype(), nx_load(), nx_nfork()

2= i

rrRrARAERRERRR

™

FEERPRARRARPARREREPRAERSET RS

R |

' ' i . i
B

FI

I

Message Types and Typesel Masks

Types

The type parameter used in message passing calls is a user-defined integer value used to identify the
kind of information contained in the message. Types 0 to 999,999, 999 are normal types that can
be used by any send or receive call.

NOTE

Types 1,000,000,000 to 1,073,741,823 and 2,000,000,000 and up
are used by the system and should be avoided. Their use may
produce unpredictable results.

Types 1,073,741,824 to 1,999,999,999 are special force types intended specifically for the
csendrecv(), hsendrecv(), and isendrecv() calls. Force types have three special properties:

1. A message with a force type bypasses the normal flow control mechanisms and is not delayed
by clogged message buffers on the sending or receiving node.

2. Force types do not match the - 1 wildcard type selector. This property can be used to guarantee
that the message is received by the proper buffer, no matter what other messages are also
received.

3. A message with a force type is discarded if no receive is posted (as when the receiving process
has been killed). In general, bypassing the normal flow control mechanisms causes no problem
because the send-receive calls guarantee that a receive is posted for the message.

Message Types and Typesel Masks

Paragon™ OSF/1 C System Calls Reference Manual

Typesel Masks

The rypesel parameter used in receive calls is an integer value that specifies the type(s) of message
you are waiting for in a probe, receive, or flush operation. You assign a type to a message when you
initiate a send operation. The rypesel (type selector) allows you to select a specific message type or
a set of message types based on a 32-bit mask. The rypesel can be set as follows:

A-2

If rypesel is a non-negative integer, a specific message type will be recognized. All other
messages will be ignored.

If rypesel is -1, the first message to arrive for the process that initiated a probe or receive
operation will be recognized. After the first message has been received, you canuse -1 again
to receive or probe the next message, and so on.

If rypesel is any negative number other than -1, a set of message types will be recognized. In

this case, bits 0-29 of the rypesel correspond to types 0 - 29. For example, if bit number 3 is set
to lin the typesel, then a message of type 3 will be recognized. If bit number 3 is set to 0, then
a message of type 3 will be ignored.

Bit 30 allows you to select all types greater than 29 as a group. Bit 30 can be used in conjunction
with bits 0-29, as desired. Bit 31 set to 1 makes the typesel parameter negative and indicates that
it is a mask.

Table A-1 shows the hexadecimal numbers associated with bits 0-31. To generate a mask, add the
constant 0x80000000 and the hexadecimal numbers associated with the fypes you want to select.
For example, if you want to receive message types 1, 2, 5, and 12, add the following hex numbers:

0x80000000 + 0x2 + 0x4 + 0x20 + 0x1000 = 0x80001026

then enter

crecv (0x80001026, buf, len);

Or, if you want to receive any message except type 0, use:

crecv (O0xXFFFFFFFE, buf, len);

Table A-1. Typesel Mask List (1 of 2)

Type Hex Number
0 0x00000001
1 : 0x00000002
2 0x00000004
3 0x00000008

s I
s e

=]

T T OB B - e - - O N - B B I = B = B B = R

4

mEERE N

=

Paragon™ OSF/1 C System Calls Reference Manual

Message Types and Typesel Masks

Table A-1. Typesel Mask List (2 of 2)

Type Hex Number
4 0x00000010
5 0x00000020
6 0x00000040
7 0x00000080
8 0x00000100
9 0x00000200
10 0x00000400
11 (0x00000800
12 0x00001000
13 0x00002000
14 0x00004000
15 0x00008000
16 0x00010000
17 0x00020000
18 0x00040000
19 0x00080000
20 0x00100000
21 0x00200000
22 0x00400000
23 0x00800000
24 0x01000000
25 0x02000000
26 0x04000000
27 0x08000000
28 0x10000000
29 0x20000000
Other types 0x40000000

A-3

Message Types and Typesel Masks

Paragon™ OSF/1 C System Calls Reference Manual

A-4

L] []

mERER RN

R =l = N

==

mEERR R M

Index

C

cprobe 1
cprobex 1
cread 3
crecv 5
crecvx 5
csend 8
csendrecv 10
cwrite 12

D
dclock 14

E
eadd 15
. ecmp 15
ediv 15
emod 15
emul 15
eseek 30
esize 32
estat 35

esub 15
etos 37

F

festat 35

flick 39
flushmsg 41
fpgetmask 43
fpgetround 43
fpgetsticky 43
fpsetmask 43
fpsetround 43
fpsetsticky 43

G

gcol 47
gcolx 49
gdhigh 51
gdlow 53
gdprod 55
gdsum &7
giand 59

Index-1

Index

gihigh 51
gilow 53
gior 61
giprod 55
gisum 57
gland 59
glor 61
gopf 63
gsendx 65
gshigh 51
gslow 63
gsprod 55
gssum 57
gsync 67

H

hrecv 68
hrecvx 68
hsend 72
hsendrecv 76
hsendx 72

|

infocount 79
infonode 79
infoptype 79
infotype 79
iodone 81
iomode 83
iowait 85

Index-2

iprobe 87
iprobex 87
iread 90
irecv 92
irecvx 92
isend 95
isendrecv 97
iseof 100
isnan 102
isnand 102
isnanf 102
iwrite 104

L
led 106
Isize 108

M

masktrap 111
msgcancel 113
msgdone 115
msgignore 117
msgmerge 119
msgwait 121
myhost 123
mynode 124
myptype 125

N
numnodes 126

Paragon™ OSF/1 C System Calls Reference

mERERERRERE

i

[

=N =il =il .

e B =

N

=

= EmEmnm

e

IW!
3}
lm

Paragon™ OSF/1 C System Calls Reference

nx_chpart_epl 127
nx_chpart_mod 127
nx_chpart_name 127
nx_chpart_owner 127
nx_chpart_rq 127
nx_initve 131
nx_load 134
nx_load_ve 134
nx_mkpart 137
nx_mkpart_map 137
nx_mkpart_rect 137
nx_nfork 140
nx_perror 142

nx_pri 143
nx_rmpart 145
nx_waitall 148

S

setiomode 149
setptype 153
stoe 37

Index

Index-3

Index

Index-4

Paragon™ OSF/1 C System Calls Reference

TR

LI B N

TR RARM

mAaa=nPR

