iRMX ${ }^{\circledR}$
 Installation and Startup

Order Number: 611032-003

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:
Literature Distribution Center
Intel Corporation
P.O. Box 7641

Mt. Prospect, IL 60056-7641
Or you can call the following toll-free number: 1-800-548-4725
In locations outside the United States, obtain additional copies of Intel documentation by contacting your local Intel sales office. For your convenience, international sales office addresses are printed on the last page of this document. Contact your local sales office to obtain the latest specifications before placing your order.
Intel Corporation (Intel) makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel assumes no responsibility for any errors that may appear in this document. Intel makes no commitment to update nor to keep current the information contained in this document. No part of this document may be copied or reproduced in any form or by any means without prior written consent of Intel. Intel retains the right to make changes to these specifications at any time, without notice.
Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or disclosure is subject to restrictions stated in Intel's Software License Agreement.
U.S. GOVERNMENT RESTRICTED RIGHTS: These software products and documentation were developed at private expense and are provided with "RESTRICTED RIGHTS." Use, duplication, or disclosure by the Government is subject to restrictions as set forth in FAR 52.227-14 and DFAR 252.227-7013 et seq. or its successor.
The Intel logo, i960, Pentium, and iRMX are registered trademarks of Intel Corporation, registered in the United States of America and other countries. Above, i287, i386, i387, i486, Intel287, Intel386, Intel387, Intel486, Intel487 and EtherExpress are trademarks of Intel Corporation.
Adaptec is a registered trademark of Adaptec, Inc. Adobe and Acrobat are trademarks of Adobe Systems Incorporated, which may be registered in certain jurisdictions. AT, IBM, EGA and PS/2 are registered trademarks and PC/XT and VGA are trademarks of International Business Machines Corporation. All Borland products are trademarks or registered trademarks of Borland International, Inc. Centronics is a trademark of Centronics Data Computer Corporation. Microsoft, MS, MS-DOS and XENIX are registered trademarks of Microsoft Corporation. CompuServe is a registered trademark of CompuServe Corporation. Comtrol is a registered trademark and HOSTESS is a trademark of Comtrol Corporation. DEC is a trademark of Digital Equipment Corporation. DT2806 is a trademark of Data Translation, Inc. Ethernet is a registered trademark of Xerox Corporation. Hayes is a registered trademark of Hayes Microcomputer Products. Hazeltine and Executive 80 are trademarks of Hazeltine Corporation. Hewlett-Packard is a registered trademark of Hewlett-Packard Co. Maxtor is a registered trademark of Maxtor Corporation. MIX® is a registered trademark of MIX Software, Incorporated. MIX is an acronym for Modular Interface eXtension. MPI is a trademark of Centralp Automatismes (S.A.). NetWare and Novell are registered trademarks of Novell Corp. NFS is a trademark of Sun Microsystems, Inc. Phar Lap is a trademark of Phar Lap Software, Inc. Soft-Scope is a registered trademark of Concurrent Sciences, inc. TeleVideo is a trademark of TeleVideo Systems, Inc. UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited. VAX is a registered trademark and VMS is a trademark of Digital Equipment Corporation. Visual Basic and Visual C_{++}are trademarks of Microsoft Corporation. All Watcom products are trademarks or registered trademarks of Watcom International Corp. Windows, Windows 95 and Windows for Workgroups are registered trademarks and Windows NT is a trademark of Microsoft in the U.S. and other countries. Wyse is a registered trademark of Wyse Technology. Zentec is a trademark of Zentec Corporation. Other trademarks and brands are the property of their respective owners.
Copyright © 1992, 1993 and 1995 Intel Corporation, All Rights Reserved

REVISION HISTORY
-001
Original Issue
DATE
-002 Revision One 08/92
-003 Revision Two 12/93 12/95

Quick Contents

Choosing Your InstallationChapter 1
iRMX Installation ProceduresChapter 2 - Chapter 5
iRMX Getting Started Chapters
Chapters 6 - Chapter 9
iRMX AppendicesAppendix A - Appendix G
Index
Service Information

Notational Conventions

Most of the references to system calls in the text and graphics use C syntax instead of PL/M (for example, the system call send_message instead of send\$message). If you are working in C , you must use the C header files, $r m x _c . h$, udi_c. h and rmx_err.h. If you are working in PL/M, you must use dollar signs (\$) and use the rmxplm.ext and error.lit header files.

This manual uses the following conventions:

- Syntax strings, data types, and data structures are provided for PL/M and C respectively.
- All numbers are decimal unless otherwise stated. Hexadecimal numbers include the H radix character (for example, OFFH). Binary numbers include the B radix character (for example, 11011000B).
- Bit 0 is the low-order bit. If a bit is set to 1 , the associated description is true unless otherwise stated.
- Data structures and syntax strings appear in this font.
- $\quad r$? denotes an invisible file.
- System call names and command names appear in this font.
- PL/M data types such as BYTE and SELECTOR, and iRMX data types such as STRING and SOCKET are capitalized. All C data types are lower case except those that represent data structures.
- Whenever this manual describes I/O operations, it assumes that tasks use BIOS calls (such as rq_a_read, rq_a_write, and rq_a_special). Although not mentioned, tasks can also use the equivalent EIOS calls (such as rq_s_read, rq_s_write, and rq_s_special) or UDI calls (dq_read or dq_write) to do the same operations.

\Leftrightarrow Note

Notes indicate important information.

1

CAUTION
Cautions indicate situations which may damage hardware or data.

Contents

1 Introduction
Welcome to the iRMX ${ }^{\oplus}$ Family of Operating Systems! 17
Package Inventory 17
Software 17
Documentation 18
Registration 19
Important "Getting Started" Files 19
Deciding Which Installation Procedure to Perform 20
What To Do If You Need More Help 23
Support Services Terms \& Conditions (World-Wide Services) 23
Customer Support Offerings 25
When to Use Customer Support. 25
Free Hardware Support 25
24-Hour Automated Technical Support 26
Additional Product Support 27
Software Licensing Information 29
How to Make Copies of the Software 29
Incorporation Administration and Permit Labels 30
2 Installing iRMX for Windows on a PC-compatible SystemHardware Requirements33
Software Requirements 34
Decisions You Must Make Before Installing Software 34
Installation Media 35
Install Procedure 35
Step 1. Prepare the Hard Drive 35
Step 2. Execute Install 36
Step 3. Check config.new and autoexec.new 39
A. Save Original Files 39
B. Edit autoexec.new and config.new 39
C. Rename the Changed Files 40
Step 4. Reboot the System 40
Step 5. Copy iRMX for Windows to an iRMX Partition 40
A. Create or Prepare the iRMX Disk Partition 40
B. Start iRMX for Windows from the DOS Partition 41
C. Switch to the iRMX Logon Prompt 41
D. Attach the iRMX Partition 41
E. Copy the iRMX Software 42
Step 6. Install Soft-Scope Cross Debugger 42
Step 7. Where to Go Next 43
3 Installing iRMX for PCs on a PC-compatible System
Hardware Requirements 45
Software Requirements 46
Decisions You Must Make Before Installing Software 46
Installation Media 47
Install Procedure 47
Step 1. Copy DOS Software 48
Step 2. Hard Drive Preparation (DOS Disk Partition) 49
Step 3. Hard Drive Preparation (iRMX Disk Partition) 50
A. Insert Boot Diskette 51
B. Reboot System 51
C. Switch to Commands Diskette 51
D. Create the iRMX Disk Partition 51
E. Switch to the iRMX Prompt 51
F. Run Install from Commands Diskette 52
G. Switch Back to the DOS prompt 53
H. Establish DOS Network Drive Z 53
I. Remove Commands Diskette 53
Step 4. Execute Install 53
Step 5. Clean-up Steps When Installing on an iRMX Partition 56
A. Insert the Commands Diskette 56
B. Return to the iRMX Logon Prompt 56
C. Logon 56
D. Follow Console Instructions 56
E. Use the iRMX for PCs Bootstrap Loader 57
Step 6. Reboot the System 58
Step 7. Where to Go Next 58
4 Installing the iRMX III OS on Multibus I Systems
Minimum System Requirements 60
Multibus I Boards 60
Preparing for the Installation 60
Step 1. Running the Board Diagnostics 62
Running the System Confidence Test 62
Step 2. Booting from the Start-up Boot Diskette 63
To Boot from a Low-Density Diskette 63
To Boot from a High-Density Diskette 63
Step 3. Logging On and Setting the Date and Time 65
Step 4. Determining Disk Parameters 67
Step 5. Formatting the Disk and Installing Software From Tape 70
Full Format Option 70
Partial Format Option 71
What Happens to Current Files When Installing Over a Previous Release 71
Renaming Files With Existing _old Extensions 72
Performing a Partial Format 72
Step 6. Logging On and Copying the Start-up Boot System. 73
Step 7. Setting Up Your Terminal 74
Step 8. Updating Your Software 75
Step 9. Generating a Default OS 75
A. Additional Step for Non-SCSI Boards 75
B. Making a New Version of the OS 77
Step 10. Testing by Booting from the Hard Disk 80
Step 11. Copying the New Version over the Start-up Version 81
Step 12. Taking Precautions for System Security 82
Step 13. Merging the User and Configuration Files 83
User and Alias Files 83
Alias Additions 84
Configuration Files 85
Where to Go Next 87
5 Installing the iRMX III OS on Multibus II Systems
Minimum System Requirements 90
Multibus II Boards 90
Preparing for the Installation 91
Step 1. Testing the System Hardware 93
Step 2. Booting From the Start-up Boot Diskette 95
Step 3. Logging On and Setting the Date and Time 97
Step 4. Determining Disk Parameters 99
Step 5. Formatting the Disk and Installing Software From Tape 102
Full Format Option 102
Partial Format Option 103
What Happens to Current Files When Installing Over a Previous Release 104
Renaming Files With Existing _old Extensions 104
Performing a Partial Format 105
Step 6. Logging onto the System 106
Step 7. Setting Up Your Terminal 106
Step 8. Modifying BPS Files for Non-default I/O Server Boards and Devices 108
Modifications for 486/133SE Board 108
Modifications for SBC P5090ISE, P5120, and P5090 Boards 109
Modifications for Hard Drive Type 109
Step 9. Updating Your Software 110
Step 10. Generating a Default Operating System for the I/O Server Board 110
Step 11. Testing by Booting from the Hard Disk 113
Step 12. Copying the New Version Over the Start-up Version 115
Step 13. Taking Precautions for System Security 116
Step 14. Merging the User and Configuration Files 117
User and Alias Files 117
Alias Additions 118
Configuration Files 119
Where to Go Next 122
$6 \quad$ iRMX for Windows Specifics
Configuring DOS for Extended Memory 125
Customizing the OS 128
Starting iRMX for Windows 128
Starting iRMX for Windows from a DOS Partition 129
Starting iRMX for Windows from an iRMX Partition 129
Starting iRMX for Windows from Config.sys 130
Logging On 132
Using the Hot Keys 132
Toggling the Console Between DOS and iRMX Operation 132
Changing the Console Colors 133
Breaking to the SDM Debug Monitor 133
Restarting the System 134
Networking Capabilities 134
Network Software Choices 135
Using iRMX-NET 136
Accessing DOS-formatted Diskettes from the iRMX Prompt 137
Using a DOS-formatted Hard Drive from the iRMX Prompt 138
Using an iRMX-formatted Hard Drive from the DOS Prompt 138
Using the WTERM Sample Application 139
Running WTERM 140
Initializing iRMX for Windows for Shutdown 140
7 iRMX for PCs Specifics
Switching Between DOS and iRMX for PCs 141
Customizing the OS 142
Starting iRMX for PCs 142
Files Used for Booting iRMX for PCs 143
Files Used for Booting DOS 144
Logging On 145
Using the Hot Keys 145
Changing the Console Colors 145
Breaking to the SDM Debug Monitor 146
Restarting the System 146
Networking Capabilities 147
Using iRMX-NET 148
Configuring the Screen Saver 148
Initializing iRMX for PCs for Shutdown 149
8 Getting Acquainted with the Operating System
Logging On and Off 152
Logging On to the Operating System 152
Logging Off 153
Moving the Cursor 153
Bell Warning 153
Terminal Characteristics 153
Managing Files 155
Creating a Simple Data File 155
Displaying the Contents of Files 156
Copying to New Files 156
Replacing Existing Files 157
Concatenating Files 158
Renaming Files 159
Deleting Files 159
Using Devices 160
Device Names 160
Switching Diskettes 161
Uniform and Standard Granularity Diskettes 161
Using the Online Command Help 162
Using Online iRMX System Call Help 163
Using Online iRMX Manuals 163
Installing the Reader. 163
Accessing the Online Manuals 165
$9 \quad$ Where To Go From Here 167
A Installed Directories
Directory Structure 173
Multibus I Minimum File Structure Needed 175
Multibus II Minimum File Structure Needed 176
B Changes and New Features in Manuals for this Release
New Features 177
Commands, New and Changed 177
Compilers and Data Types 177
Configuration 178
Debugging. 178
First-level Jobs 178
Loadable Jobs and Drivers 179
Networking, iNA 960 and iRMX-NET 179
Networking, TCP/IP and NFS 180
Paging Subsystem 180
System Calls 181
Others 182
New Documentation of Existing Features 183
C Limitations
iRMX for Windows General Limitations 185
iRMX for Windows-specific Limitations 185
Extended Memory Usage 186
Expanded Memory Usage 186
Ill-Behaved DOS Applications 186
DOS Application Installation 187
Real-time Performance Issues 187
Networking and Communication 187
DOS Debuggers 188
Software Interrupts 188
Hardware Sharing 188
Accessing Serial Devices. 188
Priority Level 189
Invisible Files 189
Last Cylinder Usage and RDISK 190
Printing 190
EDOS File Driver 191
RTE Calls 192
Message Passing Limitations 193
Low-density Diskette Install Produces Incompatible Shutdown Command 193
Delete_task or Suspend_task Deadlock Problem 194
D Configuration Requirements for PC Platforms
Intel OEM PC Platforms With a PCL2(A) Board 196
SBC 386SX Platform 196
SBC 486DX33 and 486DX66 Platforms 197
HOSTESS 550 Terminal Controller 198
Digiboard Asynchronous Communications Boards 198
E Changing Memory Size During the iRMX III OS Installation
Changing the Memory Size 199
Installation and Startup Contents 11
F Hardware Modifications for the iRMX III OS
Installation
How To Use This Appendix 201
Multibus I CPU Boards 202
SBC 386/12 CPU Board 202
SBC 386/12S CPU Board 202
SBC 386/2x/3x CPU Boards 203
SBC 486/12S CPU Board 204
Multibus II CPU Boards 205
MIX 486?X33, MIX 486DX66, and MIX n86/020A CPU Boards 205
SBC 486/166SE and 486/133SE CPU Boards 207
SBC 386/258(D) Boards 207
Peripheral Controller Boards 208
SBC 208 Flexible Diskette Controller. 208
SBC 214 Peripheral Controller 209
SBC 215G Hard Disk Controller 209
SBC 220 SMD Disk Controller 212
SBC 221 Peripheral Controller 212
SBX 217C Cartridge Tape Controller 212
SBX 218A Flexible Diskette Controller 213
Communications and I/O Controller Boards 214
SBC 186/410 Serial Communications Controller 214
SBC 534 Four Channel Communications Expansion Board 214
SBC/SXM 544A Communications Controller 215
SBC 546 Terminal Controller Board 216
SBC 547 Terminal Controller Board 217
SBC 548 Terminal Controller Board 217
SBC 549 Terminal Controller Board 218
SBC 188/48 and SBC 188/56 Communications Boards 218
SBX 351 Serial I/O Module 222
SBX 354 Serial I/O Module 223
SBX 279A Graphics Module 224
SBX 350 Parallel I/O Module 224
Networking Controller Boards 225
SBX 586 Network Controller. 225
SXM 552A Ethernet Communication Engine 226
Modifications to Non-Intel Controller Boards. 227
Adaptec 1542A Intelligent Host Adapter (SCSI) 227
Comptrol Hostess 550 Serial Controller 228
NCR ADP-20 Flexible Disk Controller 228
DigiBoard DigiCHANNEL PC/4, PC/8, and PC/16 Controllers 229
G Error Messages
Non-Fatal Error Messages 231
Fatal Error Messages 232
Handling Fatal Error Messages from the Tinstall Command 232
Handling Fatal Error Messages from the Install Command 233
Index 235
Service InformationInside Back Cover
Tables
4-1. BSL Device Name, Diskette, and Controller Information 63
4-2. Interleave Factors 67
4-3. Device Names and Numbers of Files for ST506 and ESDI Hard Disks 68
4-4. Device Names and Numbers of Files for Generic SCSI Hard Disks on an SBC 221S Controller. 68
4-5. Device Names and Numbers of Files for SCSI Hard Disks (386/12S and 486/12S only) 69
4-6. Directories Renamed in a Multibus I Installation 72
4-7. Terminal Names Defined in the termcap File 74
4-8. Files Generated by mksys for CPU Boards 77
5-1. Device Names and Numbers of Files for SCSI Hard Disks 100
5-2. Directories Renamed in a Multibus II Installation 104
5-3. Terminal Names Defined in the termcap File 107
5-4. Files Generated by mksys for I/O Server Boards as CPU Boards 111
6-1. Hot Keys 132
7-1. Boot Command Selection. 142
7-2. Hot Keys 145
8-1. Function Keys and Special Characters. 154
C-1. Sequential I/O Performance Benchmark 192
D-1. Intel PCL2(A) Network Interface Adapter Board 196
D-2. SBC 386SX Platform 196
D-3. Controller Boards for SBC 386SX CPU Board 197
D-4. SBC 486DX33/486DX66 Platform 197
D-5. HOSTESS 550 Terminal Controller 198
D-6. Digiboard Switch Settings 198
F-1. SBC 386/2x/3x CPU Boards 203
F-2. MIX 486?X33, MIX 486DX66, and MIX n86/020A CPU Boards 205
F-3. Bus Arbitration Mode Selection for the MIX 386/020A, and 486/020A Boards 206
F-4. Bus Arbitration Mode Selection for the MIX 486SX33, 486DX33, and 486DX66 Boards 206
F-5. SBC 486/166SE and SBC 486/133SE CPU Boards 207
F-6. SBC 386/258(D) Boards 207
F-7. SBC 208 Board Jumper Changes 208
F-8. SBC 214 Board Jumper Changes 209
F-9. SBC 215G Board Jumper Changes 210
F-10. SBC 220 Board Jumper Changes 212
F-11. SBX 217C Module Jumper Changes 213
F-12. SBX 218A Module Jumper Changes 213
F-13. SBC 534 Board Configuration Information 214
F-14. SBC 544A Board Jumper Changes 216
F-15. SBC 546 Board Jumper Changes 217
F-16. SBC 549 Board Jumper Changes 218
F-17. SBC 188/48 and SBC 188/56 Board Jumper Changes 219
F-18. SBX 351 Module Jumper Changes 222
F-19. SBX 354 Module Jumper Changes 223
F-20. SBX 350 Module Jumper Changes 224
F-21. Line Printer Pin Assignments 225
F-22. Adaptec 1542A Jumper Connections 227
F-23. HOSTESS 550 Terminal Controller 228
F-24. NCR ADP-20 Flexible Diskette Switch Settings 228
F-25. PC/4 I/O Addresses 229
F-26. PC/8 I/O Addresses 229
Figures
5-1. Sample Board and System Test Report 94
6-1. Memory Map of the System 127
9-1. Recommended Documentation Roadmap for New Users 168
9-2. Recommended Documentation Roadmap for Experienced Users 169

CHOOSING YOUR INSTALLATION

This section helps you decide which iRMX installation procedure to perform. This chapter is in the section:

Chapter 1. Introduction

Introduction

Welcome to the iRMX ${ }^{\circledR}$ Family of Operating Systems!

The iRMX® Operating System runs on Intel386 ${ }^{\mathrm{TM}}$, Intel486 ${ }^{\mathrm{TM}}$, Pentium®, and Pentium Pro microprocessor-based single board computers and other microcomputers based on these microprocessors. There are three versions of the iRMX Operating System (OS): iRMX for PCs, iRMX for Windows, and the iRMX III OS. With any iRMX OS, you can develop applications that require preemptive, priority-based multitasking and real-time response.

This manual:

- Guides you through the installation procedure appropriate for you
- Shows you how to get help on using the OS
- Shows you how to boot the system and enter simple commands
- Shows you how to get the most from the documentation

Package Inventory

Before installing an iRMX OS, check the contents of your package against the contents listed in the Customer Letter. Make sure that you have all the tapes, diskettes, documentation, and other materials. If your package is not complete, contact Intel Customer Support. In the United States and Canada, call
1-800-257-5404 to contact your Intel Sales Representative or Intel Authorized Distributor.

Software

The iRMX Software Package includes:

- iRMX III OS software, iNA 960, iRMX-NET, TCP/IP and NFS, demonstration software, and the Aedit text editor
- iRMX for Windows OS
- iRMX for PCs OS

These tools and languages are also provided with the OS:

- $\mathrm{iC}-386$
- Support files for developing applications using third-party compilers.
- ASM386 and utilities (BLD386, BND386, LIB386, and MAP386)
- PL/M-386
- Soft-Scope Debugger

Documentation

The following operating system documentation is included in this package:

- Installation and Startup (this manual)
- Introducing the iRMX Operating Systems
- System Concepts
- Master Index
- Programming Concepts for DOS and Windows
- Driver Programming Concepts
- Network User's Guide and Reference
- TCP/IP and NFS for the iRMX Operating System, including Quick Reference to Telnet and FTP
- System Call Reference
- Command Reference, including Quick Reference to Commands
- C Library Reference
- Programming Techniques and AEDIT Text Editor
- Real-Time and Systems Programming for PCs by Christopher Vickery
- System Debugger Reference
- System Configuration and Administration
- MSA for the iRMX Operating System
- ICU User's Guide and Quick Reference
- iC-386 Compiler User's Guide
- Soft-Scope Debugger User's Guide, including the Quick Reference
- Intel386 Family Utilities User's Guide
- ASM386 Macro Assembler Operating Instructions and ASM386 Assembly Language Reference
- PL/M-386 Programmer's Guide

For more background information, you can request these manuals through your nearest Intel Sales Office:

- Intel386 Family System Builder (DOS), part \# 481342-001
- Bootstrap Loader Reference Manual, part \# 464244-002
- 80387 Support Library Reference Manual, part \# 455497-001

Registration

Please complete the Product Registration card included with your package. Sending in your completed registration card enables you to receive telephone support during the term of the product warranty period.

To register the software, fill out the software registration card and fax it or mail it to Intel. Your registration number is listed on the registration certificate.

\Leftrightarrow Note

European customers must affix appropriate postage if mailing the registration. Alternatively, you may fill in the registration card and fax it to the USA fax number given on the card.

Important "Getting Started" Files

After performing the installation you might want to examine these files:
readme.txt describes known problems and workarounds, and important last-minute information that did not make it into the manuals.
rnotes.txt describes incorporation information and lists problems fixed since the last release.
features.txt describes major and minor changes this release of the operating system.

You can find each of these files in the top-level directory $r m x 386$ after the installation is complete.

Deciding Which Installation Procedure to Perform

Chapters 2 through 5 present different iRMX OS installation procedures. The one you use depends on the platform on which you are installing the software and whether you want to run the iRMX OS concurrently with DOS/Windows or run iRMX OS exclusively. Use this list to see which install procedure you should perform:

Chapter 2 Use the install procedure in this chapter if these conditions are true:

- The platform you are installing software on is a PC or a PC-compatible board in a Multibus I or II system. PC-compatible boards in a Multibus system include:

SBC PCP4 (Multibus I)
SBC 386/SX (Multibus I)
SBC 486/DX33 (Multibus II)
SBC 486DX66 (Multibus II)
SBC P5090[V] (Multibus II)

- You want the iRMX OS to run concurrently with DOS/Windows (installation of iRMX for Windows). In this environment, Windows 3.0, 3.1, and 3.11 are supported. Windows for Workgroups 3.1 and 3.11 as well as Windows 95 and Windows NT are not supported in this environment.

or

The platform on which you are performing the installation will be a purely DOS/Windows-hosted development environment (no run-time iRMX OS available). DOS/Windows-hosted environments allow development of loadable iRMX applications using both Intel and third-party DOS/Windows development tools. With this environment you cannot run iRMX applications or fully develop embedded iRMX applications. To run the applications, you must use a separate system that has an iRMX OS installed. In this environment, any version of Windows or Windows for Workgroups is supported.

Chapter 3 Use the install procedure in this chapter if these conditions are true:

- The platform you are installing software on is a PC or a PC-compatible board in a Multibus system (see the previous list of boards).
- You want the iRMX OS to run exclusively (installation of iRMX for PCs). Running the iRMX OS exclusively means you will not be able to switch between DOS/Windows (if you have it on the system) and the iRMX OS without rebooting the system.

Chapter 4 Use the install procedure in this chapter if the platform you are installing software on is a Multibus I board that cannot be run as a PC.

These boards include:

CPU Boards	Controller Boards
SBC 386/12(S)	SBC 208
SBC 486/12(S)	SBC 214
SBC 386/2x	SBC 215G
SBC 386/3x	SBC 220
	SBC 221(S)
	SCSI controller on SBC 386/12S and
	486/12S boards

Chapter 5 Use the install procedure in this chapter if the platform you are installing software on is a Multibus II board that cannot or will not be run as a PC.

These boards include:

CPU Boards	CPU + I/O Server Boards
SBC 386/120	SBC 386/258
SBC 386/133	SBC 386/258D
SBC 386/258	SBC 486/133SE
SBC 386/258D	SBC 486/166SE
SBC 486/125	SBC P5090[V]
SBC 486/150	SBC P5090ISE
SBC 486/133SE	SBC P5120ISE
SBC 486/166SE	
MIX 386/020	
MIX 386/020A	
MIX 486/020A	
MIX 486SX33	
MIX 486DX33	
MIX 486DX66	
SBC 486DX33	
SBC 486DX66	
SBC P5090CPU	
SBC P5120CPU	

See also: Introducing the iRMX Operating Systems for information on iRMX for PCs, iRMX for Windows, and the iRMX III OS versions of the iRMX OS.

What To Do If You Need More Help

Intel stands behind its products with a world-wide service and support organization. If you have problems installing the iRMX OS or have a question, call Customer Support. Use the remainder of this chapter to learn about support services terms and conditions, customer support offerings, and software licensing information.

Support Services Terms \& Conditions (World-Wide Services)

1. TO OBTAIN SERVICE

To be eligible for service under these terms and conditions, an authorized representative of your company must sign and return the Intel Product and Support Registration Certificate.
2. PHONE SERVICE

Please refer to Customer Support Offerings in this chapter for specific product detail. Technical phone service is available by calling one of the numbers listed on the inside back cover of this manual and enables you to communicate directly with members of Intel's software support staff. Service is available as listed Monday through Friday (excluding holidays). Technical phone support is provided for one person per Product Registration Certificate.
3. EXCLUDED SERVICES

The services provided specifically exclude: (i) service for Software not used on PCs based on the Intel386, Intel486 or Pentium, and Pentium Pro microprocessor or on non-PC hardware not designated by Intel product documentation as a supported configuration; (ii) hardware maintenance; (iii) problem assistance for non-Intel software products; (iv) service or support for source code and (v) service for software or hardware that has been discontinued by Intel. You may request application assistance or engineering time not covered under this Agreement. Intel may, at its option, issue a quotation for this service on a best reasonable efforts basis.
4. RESTRICTIONS/LICENSES

All services provided are subject to these terms and conditions. The Software is provided under the terms and conditions of the Intel Developer Software License Agreement.
5. TERM OF THE AGREEMENT

The period of software service begins upon Intel's receipt of the unaltered, executed Intel Product and Support Registration Certificate and shall continue for a ninety (90) day period.

6. CONTINGENCIES

Intel shall not be liable for its failure to perform any obligation under this Agreement due to unforeseen circumstances or causes beyond Intel's reasonable control, including but not limited to, acts of God, war, riot, embargoes, acts of civil or military authorities, fire, flood, accident, strikes, inability to secure transportation, facilities, fuel, energy, labor or materials. Time for performance will be extended by Force Majeure.

7. LIMITED WARRANTY

EXCEPT AS SET FORTH HEREIN, INTEL DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, ARE EXCLUDED AND SHALL NOT APPLY TO THE SERVICES PROVIDED UNDER THIS AGREEMENT. INTEL NEITHER ASSUMES NOR AUTHORIZES ANY OTHER PERSON TO ASSUME ANY OTHER LIABILITIES IN CONNECTION WITH THE SERVICE OF THE SOFTWARE.
8. LIMITATION OF LIABILITY

INTEL SHALL NOT BE RESPONSIBLE FOR ANY LOSS OF PROFITS, LOSS OF DATA, LOSS OF USE, INCIDENTAL, CONSEQUENTIAL, OR SPECIAL DAMAGES WHETHER UNDER THIS AGREEMENT OR OTHERWISE. IN NO EVENT WILL INTEL'S TOTAL LIABILITY EXCEED THE SUM PAID TO INTEL FOR THE SERVICES PROVIDED HEREUNDER.

9. CONTROLLING LAW

This Agreement shall be governed by, subject to and construed according to the laws of the State of Oregon. For purposes of applying Oregon law, this Agreement shall be deemed to have been entered into and wholly performed in Oregon.

YOU MAY CONTACT INTEL AT 1-503-696-5025 OR THE ADDRESS BELOW IF YOU HAVE ANY QUESTIONS ABOUT THIS AGREEMENT.

Intel Corporation 5200 N.E. Elam Young Parkway Hillsboro, OR 97124-9987
Attn: OEM Modules Operation Customer Support, HF3-55

Customer Support Offerings

Intel offers a wide variety of customer support. These subsections provide an overview of the customer support offerings.

When to Use Customer Support

Customer Support is important at all stages of the product cycle. Intel Support engineers have the experience and expertise that can save valuable development time. Their knowledge of Intel boards, systems, software, and development tools can help you get your product to market sooner, boost your productivity, and insure compatibility with future Intel products. As the application or product development is completed and production starts, sustaining support becomes a valuable service. Intel offers several services that allow you to pick the right type of support you need.

Intel's Software Support offers several ways to get help from qualified and professional engineers. To provide you with the support-level most convenient to you, Intel offers several avenues to get answers to your questions.

Free Hardware Support

For customers requiring support for Intel-manufactured Multibus I and Multibus II products, Intel Hardware Support engineers staff the phones 5 days a week Monday to Friday.

To obtain hardware support and repairs, please refer to the telephone and fax numbers given on the inside back cover of this manual.

CompuServe Forums

During normal business hours, Intel technical representatives periodically monitor the Multibus and iRMX OS sections in the CompuServe INTELC forum.

Intel has developed the Intel Information Center that consists of multiple forums. The Information Center is accessed by typing GO INTEL. The Multibus and iRMX OS sections are located in the INTELC Forum.

- The Intel Forum (GO INTELF)
- The Intel Architecture Labs Forum (GO INTELA)
- The Intel Components/Embedded Tools Forum (GO INTELC)

The Intel Components/Embedded Tools Forum contains sections that provide technical support for designers using or contemplating the use of the Intel iRMX Operating System Family of products and current Multibus I and Multibus II product families, including: SBC, MIX, and SBX. If you have a problem or question about the iRMX Operating System or Multibus hardware, simply post a message in the Multibus or iRMX OS sections within the INTELC forum. If you would like a list of features, documentation changes, or the latest update, you can find them in the Libraries area. In it you will find many of the more popular files that are also found on Intel's BBS.

24-Hour Automated Technical Support

Get your products to market faster, better, and cheaper with the help of Intel's Automated Technical Support. Intel's Application Bulletin Board System (BBS) and FaxBack System are at your service, 24-hours a day, without any subscription charges. They are simple to use, so start today and you will have regularly updated technical information in your hands.

- Tools information
- Multibus firmware upgrades
- Presentations
- Revised software
- Insite libraries

Intel's Bulletin Board System

You can rely on Intel's Application Bulletin Board System for the following type of information:

- iRMX software drivers
- Early software versions
- Sample code
- Documentation
- New product information

The BBS allows file downloads of any of these files, for free, excepting normal phone charges.

To use Intel's Application Bulletin Board System, just dial one of the numbers listed on the inside back cover of this manual, and the user-friendly system will prompt you along. For new users, the first log-in allows you to register with the system operator by entering your name and location. To access files on the BBS, \log in again 24 -hours later.

- Settings: 9600 baud,n,8,1
- Autobaud sensing for 1,200 through 14.4 Kb baud modem.

FaxBack System

Order documents by phone for prompt delivery to your fax machine. The following types of information are available:

- Design recommendations
- Stepping and errata notifications
- Multibus Exchange (MBX) notifications
- Product literature
- Tools and technical support material
- Application articles
- New product announcements

To use Intel's FaxBack System, just dial one of the numbers listed on the inside back cover of this manual, and you will be prompted for input. Be sure to have your fax number handy. Each catalog is assigned an order code number and is listed in the subject catalog. First time users should call FaxBack to order a subject catalog since there are many products represented on this system. Use the catalogs to reference the order number for the document you need, entering the number when prompted. An example of the catalogs available are:

- System Catalog
- Microcontroller and FLASH catalog
- Multibus \& iRMX Software catalog
- Multibus \& iRMX Software Fact Sheets
- Microprocessor and Peripheral catalog
- Quality and Reliability catalog

To request the iRMX software and Multibus catalog, select Catalog \#6.
For Multibus and iRMX Software Fact sheets, order Document \#4750.

Additional Product Support

In addition to the basic support that is included with the product, a number of other sources of support are available.

Literature

Intel maintains a literature service that provides User Guides, manuals, design specifications and data sheets for Multibus and iRMX software products. The literature service produces an Intel Literature Guide for OEMs and ISVs that is updated and published on a quarterly basis. To obtain this guide or to order any literature call the following numbers: In North America call 1-800-548-4725 or fax 1-708-296-3699 and in Europe contact your local Intel Sales Representative or Intel Authorized Distributor.

Training

Intel can offer an iRMX OS Training workshop built to your needs. To find out more, call the following numbers in North America: 1-800-438-4769 or 1-503-696-5025.

Intel's Real Time Users Group (iRUG)

Just by purchasing the iRMX OS development kit, you are entitled to a free oneyear membership in Intel's Real Time Users Group (iRUG). Simply check the appropriate box on the Product and Support Registration Certificate to register as a member. iRUG is an international organization, formed in 1984, with several thousand members.
iRUG hosts an annual conference, bringing members, Intel management and technical staff together for three days of intensive technical seminars. iRUG also publishes the Human Interface newsletter six times each year, hosts the iRUG area within the INTELC forum, and maintains the iRMX Program Library with hundreds of useful programs for the iRMX I, II, III, iRMX for PCs, and iRMX for Windows operating systems.

To contact the iRUG organization in North America, call 1-800-255-iRUG, 1-216-224-2760, or fax 1-216-224-2769.

Software Licensing Information

As a registered licensee of the iRMX OS developer kit, you can begin development of your application right away. However, when you are ready to distribute your application, please follow the instructions below. Because the iRMX OS is an OEM^{1} software product, Intel assumes that you will be making copies of the operating system to distribute with your product. Intel requires you to pay a royalty fee for each copy you make. This section explains how you can make copies of the software and describes how and when to use Intel Incorporation Permit Labels and Licenses.

How to Make Copies of the Software

There are two different parts of your development kit software which you may copy and pass on to your customers: the iRMX OS and the TCP/IP run-time software. Every run-time copy you make must include the iRMX OS run-time and requires a royalty fee. The TCP/IP software is optional and requires a separate royalty fee.

First, you must sign a Software Redistribution License agreement, available from the iRMX Incorporations Administrator. To contact the Administrator from North America call 1-800-257-5404 or from any region call 1-503-696-5025 and ask for the iRMX Incorporations Administrator. After signing the agreement, you can make run-time copies. The files which can be included in your product are listed in rnotes.txt. This file may be found, once the iRMX Operating System is installed, in the /rmx 386 directory.

\Leftrightarrow Note

The developer kit contains other software that cannot be copied, such as the compilers, a debugger, and parts of the networking software. Contact the Intel Incorporations Administrator if you need to make copies of these items.

[^0]
Incorporation Administration and Permit Labels

Prior to redistributing the iRMX run-time software, you must sign a Software Redistribution License Agreement and purchase an incorporations permit label for each iRMX or TCP/IP run-time copy that you make. Both of these are available from the iRMX Incorporations Administrator. To contact the Administrator from North America call 1-800-257-5404 or from any region call 1-503-696-5025 and ask for the iRMX Incorporations Administrator. Optionally, you may fax the Administrator at 1-503-681-8497. In Europe, contact your authorized Intel distributor for more information.

Affix the labels to a part of the product shipped to your end customer. The labels may be affixed to the chassis of a system, a diskette, or a manual. The end customer's site must keep one label for each run-time copy of the iRMX operating system and one label for each run-time copy of TCP/IP. The sole exclusion to this rule is copies made for backup purposes.

iRMX INSTALLATION PROCEDURES

This section describes the iRMX OS installation procedures. These are the chapters in this section:

Chapter 2. Installing iRMX for Windows on a PC-compatible System
Chapter 3. Installing iRMX for PCs on a PC-compatible System
Chapter 4. Installing the iRMX III OS on Multibus I Systems
Chapter 5. Installing the iRMX III OS on Multibus II Systems

Installing iRMX for Windows on a PC-compatible System

Use this procedure if the platform on which you are installing is a PC or PC-compatible board and you want the iRMX OS to run concurrently with the DOS/Windows operating system.

See also: Chapter 1 for a list of Multibus I and II boards that qualify as PC-compatible boards.

Before performing these installation steps, ensure that your computer meets the minimum requirements necessary to complete the installation. Check Appendix D for any special configuration requirements for your computer.

Hardware Requirements

- A PC based on an Intel 386 processor (or above) or one of the PC-compatible Multibus boards listed in Chapter 1.
- 512 Kbytes of conventional memory if you are installing on a DOS partition; 640 Kbytes if you are installing on an iRMX partition.
- At least 6 Mbytes of total memory for DOS and iRMX.
- At least 8.5 Mbytes of total memory for DOS/Windows and iRMX.
- A 1.44 Mbyte 3.5-inch diskette drive.
- 18-57 Mbytes of free hard disk space, depending upon the product configuration you select during installation. The Product Selection Screen displayed during installation lists the specific disk space requirements for each product configuration.
- EGA, VGA, or Super VGA video controller.

See also: Soft-Scope Debugger User's Guide for Soft-Scope memory requirements beyond those listed above

\Leftrightarrow Note

If you use a network interface controller (NIC), you must know which interface controller is used and whether it is supported by iRMX before you perform the installation procedure.

Software Requirements

Installation of iRMX for Windows to a DOS partition must be done from the DOS prompt. The version of DOS running must be at least 5.0. You cannot install iRMX for Windows under any version of Windows or Windows for Workgroups.

Running the iRMX OS concurrently with DOS/Windows is supported with Windows versions 3.0, 3.1, and 3.11. Intel does not support running iRMX for Windows under Windows 95, Windows NT, or any version of Windows for Workgroups.

Decisions You Must Make Before Installing Software

Before installing software on a PC or PC-compatible board, you need to be able to answer each of these questions:

Will the development environment be purely DOS/Windows-hosted or iRMX-hosted?

For a purely DOS/Windows environment you will not be installing the iRMX OS. You will be installing only development tools. From this type of environment you can develop loadable iRMX applications using both Intel and third-party DOS/Windows development tools. You cannot run iRMX applications or fully develop embedded iRMX applications. To run the applications, you must use a different platform that has an iRMX OS installed.

For an iRMX-hosted environment, you will be installing iRMX for Windows onto a DOS partition.

Will the iRMX OS reside on a DOS partition or an iRMX named partition?

After installing the iRMX OS onto a DOS partition, you can move it to an iRMX named partition if you need added security through file access permissions.

Leave the iRMX OS on the DOS partition if any of these apply:

- You will be exchanging data through Windows
- You need to maintain existing DOS files
- You are not changing partition size or adding an iRMX partition
- You are using DOS/Windows-hosted development tools, such as compilers and editors

Installation Media

You can perform this installation procedure with either the compact disc (CD) or a set of forty-plus, 3.5-inch diskettes. Use the CD if you have a CD drive available.

Install Procedure

To perform the installation, follow the steps in this section. Much of the installation process is menu driven and performed on-screen. The steps in this section, in many cases, supplement the on-screen process. However, some steps are independent of the on-screen install process.

18 Note

Once the iRMX OS has been installed, be sure to review the readme.txt, rnotes.txt, and features.txt files in the $\backslash r m x 386$ directory. These files contain the latest iRMX OS product information. You can also view updated information on the Intel Bulletin Board System (BBS).

Step 1. Prepare the Hard Drive

You must have a hard disk with at least one DOS partition on which to install iRMX for Windows. Be sure that this DOS partition has enough space for the installation process. If it does not, add space using either of these methods:

- Use the DOS fdisk and format commands to create a DOS partition big enough to hold the iRMX OS.
- Add a larger capacity hard drive to your system.

§
 CAUTION

Be sure you have copies of all the files in a partition before changing the partition. If you use fdisk to change existing partitions on a hard disk, you will lose all information on the disk. Additionally, if you change the primary DOS partition you must re-install DOS.

See also: fdisk, your DOS manual
If you plan to copy the installed iRMX OS from the DOS partition to an iRMX partition, you must either have enough free disk space in which to create an iRMX partition, or you must have an existing iRMX partition with enough space for the iRMX OS. If you don't have enough free space, use one of these methods to get more:

- Use the DOS fdisk and format commands to resize the DOS partition(s) so that there is enough free disk space to create the iRMX disk partition later during the install process. If you change the primary DOS partition you must re-install DOS.
- Add a larger capacity hard drive to your system.
- Remove any DOS partitions from the disk that you will not need. Do not plan to use a secondary (extended) DOS partition by reformatting it with the iRMX format command. Instead, delete all the logical drives inside the extended DOS partition and then delete the extended DOS partition itself. This frees up the space on the disk.

1 CAUTION

The iRMX OS allows you to access a primary or secondary DOS partition in addition to iRMX partitions from within the iRMX OS. However, having more than one primary DOS partition may cause system errors.

Step 2. Execute Install

Insert the media (CD or the diskette labeled PC-hosted iRMX ${ }^{\circledR}$ III Release 2.2 Disk 1 of x) and execute the install script from the DOS prompt (you cannot do this from Windows):
$C: \>d: i n s t a l l$ <CR>
where d is the drive letter, such as A.
When you execute this script, you must respond to on-screen questions that further define your installation. The order in which the actual screens appear depends on your responses. Use the descriptions below if you have trouble deciding how to answer a question.

\Leftrightarrow Note

During the execution of install, screens indicate that the autoexec.bat and config.sys files change. In reality, no changes are made to these files. However, you will be instructed to make changes to these files during a later step in the install procedure.

DOS/Windows-hosted Environment or iRMX-hosted Environment

If you do not want to install the iRMX OS on this disk, choose a DOS/Windows-hosted environment. This choice installs iRMX development tools (such as assemblers, compilers and the Soft-Scope cross debugger) but not the iRMX OS. This choice lets you develop loadable iRMX applications on the installation platform. It is also possible to write and compile the code for embedded iRMX applications. However, to embed an application, you must run the Interactive Configuration Utility (ICU) on a platform that runs the iRMX OS.

If you choose the iRMX-hosted environment you will install iRMX for Windows on a DOS partition. Minimally, this choice provides you with the ability to execute loadable iRMX applications that you have developed. In a later step, you have an opportunity to copy the OS to an iRMX partition if this is your preference.

Operating System Selection

You select the operating system from this screen. To let the iRMX OS run concurrently with DOS, select iRMX for Windows. (If you want to install iRMX for PCs, follow the instructions in Chapter 3.) This choice allows you to move freely back and forth between the two OSs (once the system has been booted) without having to reset the system.

Development Capabilities

If you will be using the platform simply to run iRMX applications, select the Basic Run/Time System option. With a run-time system, you can run applications but will not be able to develop them.

If you will be using the platform to develop loadable applications but not generate custom versions of the iRMX OS, select the Loadable Application Development option.

Finally, if you will be using the platform to run, develop, and debug applications as well as generate custom versions of the iRMX OS, select the Application and Customized O/S Development option.

TCP/IP Support

If you want TCP/IP support on the platform, select Yes. TCP/IP support allows you to use TCP/IP services such as TELNET, FTP, and NFS.

See also: $\quad T C P / I P$ and NFS for the iRMX Operating System
If you do not want TCP/IP support on the platform, select No.

Development Tools Selection

For each of the listed development tools you can select or exclude the tool by toggling the Yes/No option. You can choose any combination of the available tools.

Unsupported Software Selection

For each of the listed unsupported software types you can select or exclude the type by toggling the Yes/No option. You can choose any combination of unsupported software.

Platform-specific Screen

If your platform is a standard PC, select the Standard PC Compatible System.
If your platform is an Intel-developed Multibus I or Multibus II PC-compatible processor board, locate the appropriate one from the list and select it.

Drive Selection

Select the drive on which the iRMX OS and/or development tools will be installed. Once you make your selection, the install process attempts to access the drive and ensure that enough disk space is available.

Deleting/Overwriting iRMX

If your platform has an older version of iRMX installed, you can choose to delete it, overwrite it, or quit the installation.

- Choosing to delete the old version causes the install procedure to remove all iRMX OS files from the drive. Note that any user-generated files are not deleted.
- Choosing to overwrite the old version causes the installation to check for enough free disk space to do the installation. If there appears to be enough space, the installation proceeds. If not, a warning appears that indicates the installation may fail. A failed installation will yield unpredictable results. You may want to exit the install procedure and clean up the disk.
- Choosing to quit the install procedure returns you to the DOS OS.

iNA 960 Network Interface Type

Select the appropriate network interface type from the list. If you do not have a network interface controller (NIC), select the No NIC option.

iNA 960 NIC Selection

Select the appropriate NIC from the displayed list. The selections depend on your platform and network interface type.

iNA 960 Remote COMMengine Selection

Select the appropriate COMMengine board to use as a NIC for your platform. The list presented represents PC-compatible processor boards available from a Multibus II system.
iRMX Network Name Selection
Provide a unique name for your network.

Installing Screen

This is the final screen before installation proceeds. Pressing any key starts the installation.

Step 3. Check config.new and autoexec.new

The installation process produces two new files: config.new and autoexec.new. You need to check to see that the contents of these files are acceptable, possibly edit them, and then rename them.

A. Save Original Files

The autoexec.new file is the same as your original autoexec.bat file except that the path command is changed to include the iRMX for Windows software path.
Similarly, the config.new file is identical to your config.sys file except that the files, buffers, and lastdrive commands have been modified or added.

Save your original config.sys and autoexec.bat files as config.old and autoexec.old.

B. Edit autoexec.new and config.new

Edit the autoexec.new and config.new files to make these changes:

1. Remove, or comment out with the rem command, any lines which consume extended memory or switch the processor into Protected Mode. Some typical lines are listed below.

> devicehigh=(filename)
> device=emm386.sys
> device=ramdrv.sys
> device=smartdrv.sys
> loadhigh (filename)
> lh (filename)
2. Remove memory manager commands that cause expanded memory to be emulated in extended memory. iRMX for Windows does not conflict with expanded memory usage from DOS, as long as memory is hardware supplied. Software-emulated expanded memory is not supported.

See also: Limitations, Appendix C, Programming Concepts for DOS and Windows
3. Remove any line that logs the system onto a network. Always \log on to the network after booting and starting iRMX for Windows.

See also: Network User's Guide and Reference;
Choosing a Network Job, System Configuration and Administration

C. Rename the Changed Files

Rename config.new as config.sys and autoexec.new as autoexec.bat.

Step 4. Reboot the System

Remove the installation media and reboot your system using <Ctrl-Alt-Del>.

Step 5. Copy iRMX for Windows to an iRMX Partition

\Leftrightarrow Note
Perform this step only if you want the iRMX OS on an iRMX disk partition. This step copies iRMX for Windows from the DOS partition to your iRMX partition.

A. Create or Prepare the iRMX Disk Partition

\Leftrightarrow Note
Perform this step only if you do not have an iRMX partition. If you have an existing iRMX partition that you know is large enough to hold the iRMX OS then skip this part of Step 5.

Create the iRMX disk partition using the iRMX rdisk command. Enter the command from the DOS prompt:

```
rdisk
```


\triangle

 CAUTION Be sure you have copies of all the files in a partition before changing the partition. If you use rdisk to change existing partitions on a hard disk, you will lose information on the disk. Additionally, if you change the primary DOS partition you must re-install DOS.See also: rdisk, Command Reference

B. Start iRMX for Windows from the DOS Partition

Start iRMX for Windows from the DOS partition using the \dosrmx This example starts the iRMX OS if it is installed on drive C :.

```
C:\> rmx c <CR>
```


C. Switch to the iRMX Logon Prompt

Press <Alt-SysRq> to toggle to the iRMX prompt from DOS. At the Logon: prompt, enter:

Logon: super <CR>
At the password prompt, enter:
Password: passme <CR>

D. Attach the iRMX Partition

Attach the iRMX partition using the attachdevice command:

- attachdevice <device_name> as :w: <CR>

Where:
> <device_name> Is the DUIB (Device Unit Information Block) name of the iRMX partition one device. For an iRMX partition on a fixed disk 1, use c_rmxn. For an iRMX partition on fixed disk 2, use d_rmxn. The n variable is the partition number on which iRMX for Windows will be loaded.

See also: attachdevice, Command Reference

E. Copy the iRMX Software

Copy the iRMX software from the DOS partition to the iRMX partition:

- installrmx :w: <CR>

The installation utility will prompt you for configuration options. The prompts are listed below along with criteria for answering them.
i. Format Options [0=None;1=Bootstrap Only;2=Full]

Value Meaning
$0 \quad$ Skip formatting. Enter 0 if you already have a formatted iRMX partition with the bootstrap files loaded.

1 Load only the bootstrap files because there is already an active iRMX partition with files on that partition.

2 Reformat the partition because you have just created an iRMX partition and/or are loading an iRMX OS for the first time.
ii. Enter the number of files for the partition (1000 to 65000)

This prompt is only for a Full format, as described above. Enter the maximum number of files that can be placed on the iRMX partition. Use increments of 5000 for every 40 Mbytes of partition space. For example, if you have a 120 Mbyte partition, enter 15000.
iii. Enter any extra parameters desired during the format:

See also: format command, Command Reference for other parameters to enter in the format command

Step 6. Install Soft-Scope Cross Debugger

The iRMX for Windows installation includes the kernel for the Soft-Scope Debugger and the command-line version of Soft-Scope that runs on the iRMX OS.

You can also install Soft-Scope for Windows, either on this system or a separate system connected by a serial cable or TCP/IP network. Soft-Scope for Windows is on a separate set of diskettes from the iRMX OS installation.

See also: \quad Soft-Scope Debugger User's Guide for details on the Soft-Scope for Windows installation process

Step 7. Where to Go Next

The installation process is complete. Here are other areas of the manual that you should investigate:

Chapter 6 describes system-level operations specific to iRMX for Windows.
Chapter 8 helps you get aquainted with the iRMX OS.
Chapter 9 shows you where to go beyond this manual.
Appendix B describes what is new in this release of the OS.
Appendix C describes iRMX limitations.

\Leftrightarrow Note

Chapter 8 describes the installation process for online iRMX manuals and the Windows Help file for the iRMX system calls supplied with this release. Installation of both these features is performed separately from the installation procedure in this chapter.

Installing iRMX for PCs on a PC-compatible System

Use this procedure if the platform on which you are installing is a PC or PC-compatible board and you want the iRMX OS to run exclusively on the platform.

See also: Chapter 1 for a list of Multibus I and II boards that qualify as PC-compatible boards.

Before performing these installation steps, ensure that your computer meets the minimum requirements necessary to complete the installation. Check Appendix D for any special configuration requirements for your computer.

Hardware Requirements

- A PC based on an Intel386 processor (or above) or one of the PC-compatible Multibus boards listed in Chapter 1.
- 512 Kbytes of conventional memory if you are installing on a DOS partition; 640 Kbytes if you are installing on an iRMX partition.
- At least 4 Mbytes of total memory (conventional and extended).
- A 1.44 Mbyte 3.5-inch diskette drive.
- 14-52 Mbytes of free hard disk space, depending upon the product configuration you select during installation. The Product Selection Screen displayed during installation lists the specific disk space requirements for each product configuration.
- EGA, VGA, or Super VGA video controller.

(1) Note

If you use a network interface controller (NIC), you must know which interface controller is used and whether it is supported by iRMX before stepping through the installation procedure.

Software Requirements

Installation of iRMX for PCs to a DOS partition must be done from the DOS prompt. The version of DOS running must be at least 5.0.

Decisions You Must Make Before Installing Software

Before installing software on a PC or PC-compatible board, you need to be able to answer this question:
Will the iRMX OS reside on a DOS partition or an iRMX named partition?
Install the iRMX OS on an iRMX named partition if either of these apply:

- You have no need for DOS on your application system
- You need added security through file access permissions

Install the iRMX OS on the DOS partition if any of these apply:

- You need to maintain existing DOS files
- You are not changing partition size or adding an iRMX partition
- You are using DOS-hosted development tools, such as compilers and editors

Installation Media

The installation media you begin with depends on your particular installation and the availability of a compact disc (CD) drive. This list summarizes the installation media that starts the install procedure:

Media Install Conditions

Compact Start with this media if you want the iRMX OS to reside (boot
Disc (CD) from) a DOS disk partition and you have a CD drive available.
Diskettes Start with this media if you want the iRMX OS to reside (boot from) a DOS disk partition but do not have a CD drive available.

Boot and Start with this media if you want the iRMX OS to reside (boot
Commands from) an iRMX disk partition regardless of whether you have a
Diskette CD drive available or not.

Install Procedure

To perform the installation, follow the steps in this section. Much of the installation process is menu driven and performed on-screen. The steps in this section, in many cases, supplement the on-screen process. However, some steps are independent of the on-screen install process.

\Leftrightarrow Note

Once the iRMX OS has been installed, be sure to review the readme.txt, rnotes.txt, and features.txt files in the $\backslash r m x 386$ directory. These files contain the latest iRMX OS product information. You can also view updated information on the Intel Bulletin Board System (BBS).

Step 1. Copy DOS Software

\Leftrightarrow Note

Perform this step only if you are installing iRMX for PCs on an iRMX disk partition.

1. Make copies of the following diskettes using the DOS diskcopy command:

Diskette Name

Boot Diskette
PC-hosted iRMX ${ }^{\circledR}$ III Release 2.2 Disk 1 of x
Commands Diskette

\Leftrightarrow Note

Use these copies for the remainder of the installation.
2. Insert the copy of Boot Diskette and transfer the basic MS DOS files to it with:

```
sys x:
```

where x is either A or B depending on your system.
3. Insert the copy of the Commands Diskette and execute the following command:

```
x:prepare y x
```

where x is either A or B (the drive letter for your 3.5-inch diskette) and where y is the drive letter on which your $\backslash D O S$ directory is located.
4. Insert the copy of the PC-hosted iRMX ${ }^{\circledR}$ III Release 2.2 Disk 1 of x and execute the following copy command:

```
copy \DOS\COMMAND.COM x:
```

where x is either A or B depending on your system.

Step 2. Hard Drive Preparation (DOS Disk Partition)

$\Leftrightarrow \quad$ Note

Perform this step only if you are installing iRMX for PCs on a DOS disk partition.

To install iRMX for PCs on a DOS partition both of these must be true:

- DOS is installed and running. Minimally, you need a bootable system. Optionally, you can have a full DOS installation.
- The partition on which you are installing the iRMX OS has enough space.

If your disk drive is blank, create and prepare a bootable DOS disk partition on which to install the iRMX OS by using the DOS fisk and format commands.

If installing the iRMX OS onto an existing DOS disk partition and the partition doesn't have enough space for the OS, add space using either of these methods:

- Use the DOS fisk and format commands to create a DOS partition big enough to hold the iRMX OS.
- Add a larger capacity hard drive to your system.

1
 CAUTION

Be sure you have copies of all the files in a partition before changing the partition. If you use fdisk to change existing partitions on a hard disk, you will lose information on the disk. Additionally, if you change the primary DOS partition you must re-install DOS.

See also: fdisk and format, your DOS manual

4

CAUTION

The iRMX OS allows you to access a primary or secondary DOS partition in addition to iRMX partitions from within the iRMX OS. However, having more than one primary DOS partition may cause system errors.

Step 3. Hard Drive Preparation (iRMX Disk Partition)

\Leftrightarrow Note
Perform this step only if you are installing iRMX for PCs on an iRMX disk partition.

To install iRMX for PCs on an iRMX disk partition the hard disk must have enough space to hold the OS. If your disk has one or more DOS partitions, be sure that the remaining free disk space is large enough to hold the iRMX partition that you will later create. If not, add disk space using any of these methods:

CAUTION

Be sure you have copies of all the files in a partition before changing the partition. If you use fdisk to change existing partitions on a hard disk, you will lose information on the disk.

See also: fdisk, your DOS manual

- Use the DOS fdisk and format commands to resize the DOS partition(s) so that there is enough free disk space to create the iRMX disk partition later during the install process. If you change the primary DOS partition you must re-install DOS.
- Add a larger capacity hard drive to your system.
- Remove any DOS partitions from the disk that you do not need. Do not plan to use a secondary (extended) DOS partition by reformatting it with the iRMX format command. Instead, delete all the logical drives inside the extended DOS partition and then delete the extended DOS partition itself. This frees up the space on the disk.

\triangle

CAUTION

The iRMX OS allows you to access a primary or extended DOS partition in addition to iRMX partitions from within the iRMX OS. However, having more than one primary DOS partition may cause system errors.

If you plan on installing iRMX onto an existing iRMX disk partition, be sure the partition is large enough to hold the new version of iRMX. If it is, the install process will prepare it during a later step. If the existing partition is not large enough, delete it now using the DOS fdisk command.

A. Insert Boot Diskette

Insert the Boot Disk in diskette drive A:. Make sure that the diskette is not write-protected.

B. Reboot System

Reboot the system using <Ctrl-Alt-Del> or the system's reset button.

(1) Note

The error message Error in CONFIG.SYS line 5 may appear as the iRMX OS is being installed. This is a normal part of the installation.

C. Switch to Commands Diskette

When the drive A: prompt appears, remove the Boot Disk and insert the Commands Disk in diskette drive A:.

D. Create the iRMX Disk Partition

19 Note

Perform this step only if you do not have an existing iRMX disk partition.

Create the iRMX disk partition with the iRMX rdisk command. Enter the following command from the DOS prompt:
rdisk
Use the menu system to create and correctly size the iRMX partition. Be sure that you mark it as the active partition if you want to boot the machine using iRMX.

CAUTION

Be sure you have copies of all the files in a partition before changing the partition. If you use rdisk to change existing iRMX partitions on a hard disk, you will lose information on the disk.
Additionally, if you change the primary DOS partition you must re-install DOS.

See also: rdisk, Command Reference

E. Switch to the iRMX Prompt

Switch to the iRMX prompt by pressing <Alt-SysRq>.

F. Run Install from Commands Diskette

At the Logon: prompt, enter install. At the Password: prompt, press <CR>.

\Leftrightarrow Note

You will install only certain diskettes, based on your system configuration and selected options. Be sure to install the proper diskettes by carefully reading the diskette labels.

The installation utility will prompt you for configuration options. These prompts are listed below along with criteria for answering them.

1. Format Options [0=Bootstrap Only;1=Full]

Value Meaning

0 Load only the bootstrap files because there is already an active iRMX partition with files on that partition.
1 Reformat the partition because you have just created an iRMX partition and/or are loading an iRMX OS for the first time.
2. Enter the number of files for the partition (1000 to 65000)

This prompt is only for a Full format, as described above. Input the number of files which can be placed on the iRMX partition. Use increments of 5000 for every 40 Mbytes of partition space. For example, if you have a 120 Mbyte partition, enter 15000.
3. Enter 1 to create a duplicate set of fnodes, Enter 0 otherwise:

This prompt lets you reserve disk space for a backup copy of the fnode table. Entering a 1 creates the special file r ? save at the end of a volume after formatting. The volume label file and the fnode file are copied to r ? save. You can use this file in conjunction with the diskverify utility to back up the fnodes file on the volume. The r ? save file is not updated when files are altered; you update the file by using diskverify or by specifying backup in the shutdown command.
4. Enter any extra parameters desired during the format:

See also: format command and the reserve parameter, Command Reference.

G. Switch Back to the DOS prompt

When the Logon: prompt reappears, switch back to the DOS A: prompt by pressing <Alt-SysRq>.

H. Establish DOS Network Drive Z

From the DOS A: prompt, enter netrdr. This DOS batch file establishes the iRMX partition as a DOS network drive Z:.

I. Remove Commands Diskette

Remove the Commands Disk from the diskette drive.

Step 4. Execute Install

Insert the media (CD or the diskette labeled PC-hosted iRMX ${ }^{\circledR}$ III Release 2.2 Disk 1 of x) and execute the install script from the DOS prompt (you cannot do this from Windows):

C:\> d:install <CR>
where d is the drive letter, such as A.
When you execute this script, you will respond to on-screen questions that further define your installation. The order in which the actual screens appear depends on your responses. Use the descriptions below if you have trouble deciding how to answer a question.

\Leftrightarrow Note

If you are installing the iRMX OS to a DOS partition, the installation procedure renames the config.sys file to config.dos, renames the autoexec.bat file to autoexec.dos, and creates a new autoexec.bat file that contains only commands necessary to start iRMX. Do not change these names if you want to boot your system as both a DOS and iRMX machine.

DOS/Windows-hosted Environment or iRMX-hosted Environment

If you do not want to install the iRMX OS on this disk, choose a DOS/Windows-hosted environment. This choice installs iRMX development tools (such as assemblers, compilers, and the Soft-Scope cross debugger) but not the iRMX OS. You can develop loadable iRMX applications on the installation platform. It is also possible to write and compile the code for embedded iRMX applications. However, to embed an application, you must run the Interactive Configuration Utility (ICU) on a platform that runs the iRMX OS.

If you choose the iRMX-hosted environment you will be installing iRMX for PCs on a DOS partition. Minimally, this choice provides you with the ability to execute loadable iRMX applications that you have developed.

Operating System Selection

You select the operating system from this screen. To let the iRMX OS run exclusively on the platform, select the iRMX for PCs version. (If you want to install iRMX for Windows, follow the instructions in Chapter 2.) Once the system is booted, you cannot freely move back and forth between operating systems as with iRMX for Windows. If you want DOS available from the system, you must have it on a separate disk partition. And, you must boot the platform from that partition.

Development Capabilities

If you will be using the platform simply to run iRMX applications, select the Basic Run/Time System option. With a run-time system you can run applications but will not be able to develop them.

If you will be using the platform to develop loadable applications but not generate custom versions of the iRMX OS, select the Loadable Application Development option.

Finally, if you will be using the platform to run, develop, and debug applications as well as generate custom versions of the iRMX OS, select the Application and Customized O/S Development option.

TCP/IP Support

If you want TCP/IP support on the platform, select Yes. TCP/IP support allows you to use TCP/IP services such as TELNET, FTP, and NFS.

See also: TCP/IP and NFS for the iRMX Operating System
If you do not want TCP/IP support on the platform, select No.

Development Tools Selection

For each of the listed development tools you can select or exclude the tool by toggling the Yes/No option. You can choose any combination of the available tools.

Unsupported Software Selection

For each of the listed unsupported software types you can select or exclude the type by toggling the Yes/No option. You can choose any combination of unsupported software.

Platform-specific Screen

If your platform is a standard PC, select the Standard PC Compatible System.
If your platform is an Intel-developed Multibus I or Multibus II PC-compatible processor board, locate the appropriate one from the list and select it.

DOS or iRMX Partition

If you are installing the iRMX OS on a DOS partition, you need to select the $D O S$ option. Otherwise, select the $i R M X$ option.

Drive Selection

Select the drive on which the iRMX OS and/or development tools will be installed. Once you make your selection, the install process attempts to access the drive and ensure that enough disk space is available.

Deleting/Overwriting iRMX

If your platform has an older version of iRMX installed, you can choose to delete it, overwrite it, or quit the installation.

- Choosing to delete the old version causes the install procedure to remove all iRMX OS files from the drive. Note that any user-generated files are not deleted.
- Choosing to overwrite the old version causes the installation to check for enough free disk space to do the installation. If there appears to be enough space, the installation proceeds. If not, a warning appears that indicates the installation may fail. A failed installation will yield unpredictable results. You may want to exit the install procedure and clean up the disk.
- Choosing to quit the install procedure returns you to the DOS OS.

iNA 960 Network Interface Type

Select the appropriate network interface type from the list. If you do not have a network interface controller (NIC), select the No NIC option.

iNA 960 NIC Selection

Select the appropriate NIC from the displayed list. The selections depend on your platform and network interface type.

iNA 960 Remote COMMengine Selection

Select the appropriate COMMengine board to use as a NIC for your platform. The list presented represents PC-compatible processor boards available from a Multibus II system.

iRMX Network Name Selection

Provide a unique name for your network.

Installing Screen

This is the final screen before installation proceeds. Pressing any key starts the installation.

Step 5. Clean-up Steps When Installing on an iRMX Partition

\Leftrightarrow Note
Perform this step only if you are installing iRMX for PCs on an iRMX disk partition.

A. Insert the Commands Diskette

When the DOS A: prompt appears after iRMX for PCs is installed, remove the CD or diskette and place the Commands Diskette in the diskette drive.
B. Return to the iRMX Logon Prompt

Press <Alt-SysRq> to return to the iRMX Logon: prompt.
C. Logon

Enter finish at the Logon: prompt and <CR> at the Password: prompt.

D. Follow Console Instructions

Instructions on what to do next are displayed on the console.

E. Use the iRMX for PCs Bootstrap Loader

The iRMX for PCs Bootstrap Loader displays default settings as shown below.

```
iRMX for PCs Bootstrap Loader
Copyright Intel Corporation 1987 - 1995
Boot File Name: /dosrmx/dosrmx
Debug: OFF
Boot DOS: NO
Directory: /dosrmx
<Esc> for next field. <Space> to toggle. <CR> to boot
```


18 Note

If the Bootstrap Loader screen does not appear, do the following:

- Insert the Boot Diskette (making sure that it is not write-protected).
- Reset the system with either <Ctrl-Alt-Del> or the system's reset button.
- When the drive A: prompt appears, remove the Boot Diskette and insert the Commands Diskette in diskette drive A:.
- Be sure you have the right number and type of disk partitions configured. Use the rdisk command to make the first iRMX partition active for boot.

Enter a <CR> to begin loading the default/dosrmx/dosrmx boot file or press the <Esc> key to make changes to the default settings. For example, if you are using the Multibus I SBC PCP4 board and want to boot the pcp4s OS that supports native PCI-SCSI, press the <Esc> key and change /dosrmx/dosrmx to /boot32/pcp4s. When the boot file begins loading a status line displays the loading status.

(1) Note

If you do not press the <Esc> or <Space> keys when the Bootstrap Loader screen appears, it will automatically begin loading the default boot file after a brief period of time.

Step 6. Reboot the System

\Leftrightarrow Note
Perform this step only if you are installing iRMX for PCs on a DOS disk partition.

Remove the installation media and reboot your system using <Ctrl-Alt-Del>.

Step 7. Where to Go Next

The installation process is complete. Here are other areas of the manual that you should investigate:

Chapter 7 describes system-level operations specific to iRMX for PCs.
Chapter 8 helps you get aquainted with the iRMX OS.
Chapter 9 shows you where to go beyond this manual.
Appendix B describes what is new in this release of the OS.
Appendix C describes iRMX limitations.
\Leftrightarrow Note
Chapter 8 describes the installation process for online iRMX manuals and the Windows Help file for the iRMX system calls supplied with this release. Installation of both these features is performed separately from the installation procedure in this chapter.

Installing the iRMX III OS on Multibus I Systems

Use this procedure if the platform on which you are installing is a Multibus I board that cannot run as a PC.

Use the instructions in this chapter to make a first-time installation of the OS, or to install over a previous version. During the installation you will:

- Run the board diagnostics.
- Bootstrap load the system from a diskette.
- Log on as the system manager.
- Format the computer's hard disk, either partially or completely.
- Install the OS software and support products.
- Reboot the Multibus system.
- Generate a boot system.
- Establish the default boot system.
- Merge user files with the new software if you installed over a previous version of the OS.

Minimum System Requirements

The installation procedure in this chapter assumes you have an Intel System 310, System 310AP, System 320, or compatible Multibus system.

You need a minimum of 75 Mbytes of space on your hard disk to install the iRMX III software. You need a minimum of 4 Mbytes of RAM to boot the iRMX III OS.

Multibus I Boards

The iRMX III OS supports these Multibus I boards:

CPU Boards	Controller Boards
SBC 386/12(S)	SBC 208
SBC 486/12(S)	SBC 214
SBC 386/2x	SBC 215G
SBC 386/3x	SBC 220
	SBC 221
	SBC 221S
	SCSI controller on SBC $386 / 12$ S and $486 / 12$ S boards

Preparing for the Installation

1. If you are not installing the OS on a new Multibus system, back up all current files on tape, especially before formatting the Multibus system's hard disk. In a later step you will format the hard disk. At that point you choose whether to do a complete or partial format. Choosing the partial format allows you to retain all current files on your disk.
2. Write down the option code of the hard disk in your Multibus system if you are using an Intel Multibus system. You can find the option code information on documents delivered with the hardware, or on a label on the bottom cover of the Multibus system. If there are two hard disks, choose the option code of the disk on which you want to make the installation. If you are building a custom system, the supported device types are listed in Tables 4-3 through 4-5.
3. Determine the type of the processor board and peripheral controller board in your Multibus system. If you are using an Intel Multibus system and do not know what type of boards you have, refer to the label on the bottom of the cover of the Multibus system.
4. Read your Multibus system's hardware installation manual to be sure that the equipment is set up correctly and that the terminal is connected with the correct cable.
5. See Appendix F, Hardware Modifications, to determine if you need to make any changes to your hardware so that it can run the iRMX III OS.
6. Gather the materials you need for the product(s) you will install. For lowdensity boot diskettes, you need separate boot and commands diskettes. For high-density diskettes, the commands are included on the boot diskette.
7. Choose which diskette(s) your system requires from this list, based on the processor board in your Multibus system:

- SBC 386/12 and 486/12 ST506 and ESDI Start-up Boot Diskette, plus the iRMX III Multibus I Start-up Commands Diskette (low-density diskettes)
- SBC 386/2x/3x ST506 and ESDI Start-up Boot Diskette, plus the iRMX III Multibus I Start-up Commands Diskette (low-density diskettes)
- SBC $386 / 12$ S and $486 / 12$ S SCSI Start-up Boot Diskette (high-density diskette that includes the Multibus I Start-up Commands)

You will also need these tapes or diskettes:

- OS tapes
- Tapes or diskettes for products to be installed that are not included in the iRMX III OS software package

If you are missing an item for a product you have purchased, contact your sales representative.
8. Check that all the diskettes and tapes are write-protected.

The installation process described in this chapter can take two hours or more, depending on the type of disk format and the amount of software being installed.

Step 1. Running the Board Diagnostics

Multibus I processor boards use System Confidence Test (SCT) board diagnostics. The SCT is supplied in firmware as part of an Intel Multibus system. It tests all parts of the system.

Running the System Confidence Test

1. Turn on the power for the system console and the Multibus system. In about five seconds, the system console displays a series of x's, which is the prompt.
2. Within ten seconds after you see the prompt, type the uppercase letter U repeatedly, until the diagnostics begin to execute (the U does not show on the screen).
3. If you see this prompt, enter $n<C R>$ (after ten seconds, n is assumed):

Break to DMON-386 monitor (y or [n]) ? $n<C R>$
If you see this prompt, enter $\mathrm{y}<\mathrm{CR}>$ (after ten seconds, automatic booting begins):

Exit to iSDM after testing? Enter y or n [$n] y$ <CR>
The diagnostics execute tests and display a test status report on the system console. When the tests are complete, the SDM monitor is invoked. It displays an entry address (xxxx:yyyy) and a dot prompt (.) as shown:

```
Interrupt 3 at <xxxx:yyyy>
```

See also: The manual for your Multibus system for information about the test results

Step 2. Booting from the Start-up Boot Diskette

Two procedures are described here, one for a low-density diskette and one for a high-density diskette.

To Boot from a Low-Density Diskette

1. Insert the boot diskette for your processor board.
2. At the dot prompt, enter this to boot from a low-density diskette controlled by the SBC 214 , SBC 221(S), or SBC 215 G controller board (where WF0 ends in a 0 , not the letter O):
```
.b :wf0: <CR>
```

When bootstrap loading is complete, the system console displays this message:

```
Insert the Start-up Commands Diskette and type G <RETURN>
Interrupt 3 at <xxxx:yyyy>
```

3. Remove the boot diskette.
4. Insert the commands diskette for your system.
5. Enter g (the SDM monitor's go command):

$$
. g<C R>
$$

To Boot from a High-Density Diskette

Table 4-1 lists the device names for supported diskettes and controllers. Find the appropriate device name for your system.

Table 4-1. BSL Device Name, Diskette, and Controller Information

BSL Device Name	Granularity	Density	Controller
wf0	iRMX standard	low	SBC 214, 221(S), and 215G
sqf0	uniform	high	SCSI to floppy adapter
t55_0	uniform	high	SCSI to embedded SCSI Teac 5.25-inch diskette
t235_0	uniform	high	SCSI to embedded SCSI Teac 3.5-inch diskette

1. Insert the boot diskette for your processor board.
2. At the dot prompt, boot from a high-density diskette (controlled by an on-board SCSI interface) by entering:
.b : sqf0: <CR>
or
.b :t55_0: <CR>
or
.b :t235_0: <CR>
To boot from a diskette controlled by an SBC 221(S) or SBC 214, enter:
.b :wfo: <CR>

Step 3. Logging On and Setting the Date and Time

The console displays this bannerhead:

```
*-*-*-*-*-*-*-*-*-*-*-*_*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
    iRMX* Ver.# Operating System
* iRMX is a Registered Trademark of Intel Corporation
*_*-*-*_*-*_*_*-*-*-*-*_*_*-*-*-*-*_*-*-*-*-*-*-*-*-*
Logon:
```

You now log on as the system manager, Super. The system manager has access to all files used during the installation process, and can change access rights to all iRMX files.

1. Enter the Super logon at the prompt:

Logon: super <CR>
2. The system prompts you for a password. For now, enter the default password for Super, passme. The password must be in lower-case letters. It is not shown on the screen.

```
Password: passme <CR>
```

The OS signs on with this message:

```
iRMX HI CLI, Vx.y: USER = 0
Copyright years Intel Corporation
All rights reserved
```

-

3. When you see a prompt for the date, enter the date in one of these formats. If the displayed date is already correct, enter e instead.
month/day/year (for example, 01/15/1994)
day month year (for example, 15 JAN 1994)
day month year (for example, 15 JANUARY 1994)
Example:
DATE: 01/15/1994 <CR>
If your system does not include a global clock, you will see the message:
```
E$EXIST, Global Clock not present - will query for
local date
```

4. The system prompts you for the time, which is based on a 24 -hour clock. Enter the time in hours:minutes:seconds format, using either one or two digits for each field. If you omit the minutes and seconds, the system sets them to 0 . If the displayed time is already correct, enter e instead.

For example, at 7:36 AM and 40 seconds, enter $07: 36: 40$ or at 2:00 PM, enter 14:00.

Example:
TIME: 7:36:40 <CR>
If you enter either the date or the time in the wrong format, you get a message to re-enter it.

If your system does not include a global clock, you will see the message:

```
E$EXIST, Global Clock not present - will query for local time
```

Two submit files named :prog:alias.csd and :config:alias.csd are executed.
These files define aliases for command names. To see the complete list of aliases, use the alias command. Do not modify the aliases in the :config:alias.csd file because the iRMX software uses them as defined.

The OS defines the logical name :tape:. In these steps, the command that formats the hard disk requires this logical name.

Step 4. Determining Disk Parameters

The submit commands in these steps require parameters specific to the hardware in your system. In this step, you determine the parameters based on your peripheral controller board and hard disk. For an installation over a previous release, you need only the device name parameter, described in Item 2.

1. If you are not installing over a previous release, use Table 4-2 to determine the parameters for your disk drive. You will need the device name, number of files, and interleave factor.

Table 4-2. Interleave Factors

	Interleave Factor for 5.25- and 3.5-inch Hard Drives	Interleave Factor for 8-inch Hard Drives
Controller Board	1	--
SBC 214 or 221(S) ${ }^{1}$	4	5
SBC 215G	1	--
SCSI	8	

1 Device names for the first hard disk (or for systems with only one hard disk) end in 0 . Device names for a second hard disk end in 1.
2. Refer to Tables 4-3 through 4-5 to locate the type of hard disk on which you will install the software. Table 4-4 applies only if you are using a 221S controller board.

When you locate the type of hard disk, make a note of the device names and number of files for that disk type. If your system includes multiple hard disks, choose the appropriate device name based on which disk you will use.

\Leftrightarrow Note

The files parameter used in the submit commands is the total number of files that can be created on the hard disk. If the number of files needs to be changed later, you will have to back up your files and reformat the hard disk. The recommended numbers listed in Tables 4-3 through 4-5 are approximations based on 125 files per megabyte of disk capacity. You may choose a different number. The maximum number of files that the OS can handle is 65,528 .

Table 4-3. Device Names and Numbers of Files for ST506 and ESDI Hard Disks

Hard Disk Model Number	System 310 Designation	System 310AP Option Code	System 320 Option Code	Device Name	Recommended Number of Files
Maxtor XT-1140	140 Mbyte 5.25-inch	GK3	$\begin{aligned} & \text { T1GF4 } \\ & \text { T1GF9 } \end{aligned}$	mma0 mma1	18000
Maxtor XT-1085	86 Mbyte 5.25-inch	GK8	none none	mmb0 mmb1	11000
$\begin{aligned} & \text { Maxtor XT- } \\ & 4175 \mathrm{E} \end{aligned}$	none none	none none	T1GF10 T1GF12	mmc 0 mmc1	22000
$\begin{aligned} & \text { Maxtor XT- } \\ & \text { 4380E } \end{aligned}$	none none	none none	T1GF11 T1GF13	mmd0 mmd1	48000
Maxtor XT8760E	none none	none none	T1GF16 T1GF17	mme0 mme1	65528
Seagate ST-251	43 Mbyte 5.25-inch	GK12	none	$\begin{aligned} & \text { sma0 } \\ & \text { sma1 } \end{aligned}$	5400
Toshiba MK56FB	85 Mbyte 5.25-inch	none T1GF8	T1GF3 tma1	tma0	11000

Table 4-4. Device Names and Numbers of Files for Generic SCSI Hard Disks on an SBC 221S Controller

Generic SCSI Size	Device Name	SCSI ID Number (\boldsymbol{n})	Recommended Number of Files
500 Mbyte or larger with 512 -byte granularity 700 Mbyte or larger with 512 -byte granularity	GW500M_n	0,1	62500
1 Gb700M_n n	0,1	65528	
2 Gbyte or larger	GW1G_n n	0,1	65528
4 Gbyte or larger	GW2G_n	0,1	65528

Table 4-5. Device Names and Numbers of Files for SCSI Hard Disks (386/12S and 486/12S only)

Hard Disk Model Number	Device Name	SCSI ID Number (\boldsymbol{n})	Recommended Number of Files
Maxtor XT-3170S	M3170_n	2,3	22000
Maxtor XT-4170S	M4170_n	2,3	22000
Maxtor XT-4380S	M4380_n	2,3	48000
Maxtor XT-8380S	M8380_n	2,3	48000
Maxtor XT-8760S	M8760_n	2,3	65528
Hewlett-Packard 97536	HP97536_n	2,3	40000
Siemens Megafile 2300	S2300_n	2,3	48000
Micropolis 1578	MP1578_n	2,3	39000
Quantum Pro 80	Q280_n	2,3	11000
Generic SCSI 512 byte	GSCW5_n	2,3	depends on drive size
granularity	GSCW_n	2,3	depends on Generic SCSI 1024 byte dranularity

3. Replace the n in the device name in the second column in Tables $4-4$ and $4-5$ with the appropriate SCSI ID Number from the third column. For example, the device name for the Maxtor XT-4380S drive with SCSI ID 2 is M4380_2. Use the Generic SCSI DUIBs for hard disks not listed in the table.

See also: Your hard disk drive reference manual for the appropriate SCSI ID number;
Appendix F, Command Reference for information on partitioned SCSI hard disk drives

Step 5. Formatting the Disk and Installing Software From Tape

You must now format the hard disk. There are two options, a full format or a partial format (track 0 only).
$\left.\begin{array}{ll}\text { Full format } & \text { Formats the entire hard disk. } \\ \text { Choose this option if you have a new Multibus system with } \\ \text { nothing on the hard disk. All Intel Multibus systems are } \\ \text { shipped with unformatted hard disks. You may also choose } \\ \text { this option for a system whose software you want to } \\ \text { completely erase. }\end{array}\right\}$

Either option also installs the OS, along with any included support software. Enter your commands after the hyphen (-) prompt.

Full Format Option

CAUTION

Do not perform this option if you want to keep the files on your hard disk. The Full format option deletes all files. Proceed to the Partial format option if you want to save existing files.

1. Insert the first OS tape.

2. To format the hard disk, enter a submit command with the proper parameters for the disk you want to format. Substitute a device name, the interleave factor, and the number of files appropriate for your system:
```
submit :tape:form_disk(device, interleave, files) <CR>
```

This command is valid for a Maxtor XT-4380E disk that is the first hard disk in the system, and is controlled by an SBC 221 board:

```
submit :tape:form_disk(mmd0, 1, 48000) <CR>
```

The OS formats the hard disk, which can take 30 minutes or longer. Then it displays a summary of alternate tracks assigned for bad tracks found during the format.

```
The following tracks have been assigned an alternate:
    {disk information}
```

Following formatting, the submit file sets up a directory structure on the hard disk. It invokes the restore command and copies all the files from the tape to the hard disk. It establishes World permission rights for files. Then it switches the system device from the diskette drive to the hard disk, so that the OS reads future commands from the hard disk. This process can take up to 45 minutes.
3. When you receive the logon prompt, remove the Start-up Commands diskette and OS tape from their drives. Store them in their covers.

Partial Format Option

If you performed the Full format option, skip these instructions and go to Step 6.

$\$$
 CAUTION

If you have performed this installation once, and want to repeat the partial format option on a disk, read the instructions for saving current files before a partial format. If you do not follow those instructions, repeating the partial format option can overwrite files you want to save.

What Happens to Current Files When Installing Over a Previous Release

The iRMX III OS uses some directories from previous releases. The current iRMX directories and files are renamed so that you may choose what to do with them. Files you have created will not be deleted when installing over a previous release.

To save the current iRMX files in those directories, the submit file renames directories as shown in Table 4-6. Following an installation over the previous release, current iRMX files reside in the *_old directories/files specified in Table 4-6.

Table 4-6. Directories Renamed in a Multibus I Installation

Previous Directory/File	Renamed To
/user	/user_old
/msa32	/msa32_old
/boot32	/boot32_old
/rboot32	/rboot32_old
/net	/net_old
/system/rmx86	/system/rmx86_old
/system/rmx86.386	/system/rmx86_old.386
/msa/config/bps	/msa/config/bps_old
/rmx386/config/terminals	/rmx386/config/terminals_old
/rmx386/config/udf	/rmx/config/udf_old
/rmx386/config/user/super	/rmx386/config/user/super_old
/rmx386/config/user/world	$/ r m \times 386 /$ config/user/world_old

Renaming Files With Existing _old Extensions

If your hard disk has any of the target files listed in the Renamed To column in Table 4-6, the submit file renames the current files from the Previous Directory/File column in Table 4-6 to have an extension of _dd.\# where \# is the lowest number that doesn't overwrite an existing file.

Performing a Partial Format

1. Using the device name you selected in Step 4, enter this submit command to format track 0 of the hard disk:
```
submit :tape:form_trk0(device_name) <CR>
```

Use this command for a Maxtor Model XT-1140 hard disk:

```
submit :tape:form_trk0(mma0) <CR>
```

The submit file formats track 0 of the hard disk. It renames directories and files to preserve current files.

After formatting, the submit file creates a directory structure on the hard disk. It invokes the restore command and copies all files from the tapes to the hard disk. Enter Yes <CR> after switching tapes. It establishes World permission rights for files and then it switches the system device from the diskette drive to the hard disk (so that the OS reads future commands from the hard disk).
2. When the logon prompt appears, remove the Start-up Commands Diskette and OS tapes from their drives.

Step 6. Logging On and Copying the Start-up Boot System

1. Enter the Super logon and the default password (in lower case) as:

Logon: super <CR>
Password: passme <CR>
2. When prompted for the date and time, enter the letter e:

DATE: e <CR>
TIME: e <CR>
The start-up boot system is now copied from the diskette to the hard disk. The Multibus system can now be rebooted from the hard disk if a failure occurs.

Step 7. Setting Up Your Terminal

The command described below selects terminal attributes, so you can use your terminal with the Aedit text editor and the Command Line Interpreter (CLI). Put this command in your :prog:r?logon file. Until you do so, you must enter the command each time you log on.

1. Select the appropriate terminal name from Table 4-7.

Table 4-7. Terminal Names Defined in the termcap File

Terminal Type	Description
ANY	Default ANSI terminal for terminals not listed
1510 E	Hazeltine 1510 with escape lead-in
1510T	Hazeltine 1510 with tilde lead-in
ADM3A	Lear Seigler ADM-3A
AT386	PC system console
RMXPC or PC	PC system console
QVT102	Qume QVT102, in QVT102 mode
RGI	SBX 279 Graphic Subsystem
S120	PC system console
TV910P	Televideo 910 Plus
TV950	Televideo 950
VT100	DEC VT100, VT101 (also for Wyse 75 and Wyse 85)
VT102	DEC VT102
VT52	DEC VT52
WYSE50 or WY50	Wyse 30, Wyse 50
XTERM	X-Windows terminal
ZENTEC	Zentec Zephyr and Cobra

2. Enter this command using this terminal name:

- set terminal = terminal_name <CR>

Step 8. Updating Your Software

For information on updating your iRMX III software, please see the Release Notes.
Updating the software and generating a new version could cause the size of the OS to exceed the amount of memory allocated for it in the ICU definition file. If you get an error message to this effect, you must increase the amount of memory available to the OS.

See also: Changing the Memory Size, Appendix E

Step 9. Generating a Default OS

In this step, you make a new version of the OS using the mksys command. This version will independently boot the processor board in your Multibus system.

A. Additional Step for Non-SCSI Boards

\Leftrightarrow Note

Perform part A of this step only if you are running a non-SCSI board. Otherwise, skip to part B.

The installed system comes with the following iRMX OSs pre-generated:

- /boot32/38612.386
- /boot32/38620.386

Before you generate your new version of the operating system, you will need to reboot the system from one of the pre-generated operating systems. Use the following list to see which OS to reboot with:

CPU Board	Boot File Pathname
SBC 386/12	/boot32/38612
SBC 486/12	/boot32/38612
SBC $3862 x$	$/$ boot32/38620
SBC 3863x	/boot32/38620

$\Leftrightarrow \quad$ Note

Before generating your new version of the OS with mksys, you should rename the pre-generated OS to something which will not be over written during the OS generation process. For example:

```
rename /boot32/38612 to /boot32/i38612
rename /boot32/38612.386 to /boot32/i38612.386
```

You must rename both the third stage bootstrap loader (38612 in this example) and the iRMX OS (38612.386 in this example).

To reboot the system with the pre-generated version of the OS, follow these steps:

1. Shut down the OS with the sh command (an alias for shutdown $\mathbf{w}=\mathbf{0}$):

- sh <CR>

2. When you see a ShUtdown completed message, reset the system. Press the RESET button or turn the RESET switch on the front panel of the computer.
3. The SCT runs again. Answer its prompts as you did in Step 2, to invoke the SDM monitor.
4. When you see the monitor prompt (.), enter this command to bootstrap load the OS. Use the boot file pathname from the previous page:
```
.b /boot32/board_name <CR>
```

If the system does not boot, call your Intel Customer Support representative.

B. Making a New Version of the OS

1

CAUTION

For any one definition file, do not invoke the mksys command again after you have successfully used it once to generate the OS. Because mksys does not use your modified file for input, it will overwrite the local copy of your definition file. You will lose any modifications that you have made to the file. Instead of using mksys, invoke the ICU using the definition filename as the input parameter.

Table 4-8 shows the files used and generated by the mksys command for different processor boards. It also shows the board name to use for your processor board in these commands.

See also: Multibus I Standard Definition files, ICU User's Guide and Quick Reference

Table 4-8. Files Generated by mksys for CPU Boards

CPU Board	Board Name	ICU Definition File	Generation Directory	Boot File Pathname
SBC 386/12	38612	38612. bck	:home:38612	/boot32/38612.386
SBC 386/12S	38612 S	38612 S.bck	:home:38612S	/boot32/38612S.386
SBC 486/12	48612	$48612 . b c k$:home:48612	/boot32/48612.386
SBC 486/12S	48612 S	48612 S.bck	:home:48612S	/boot32/48612S.386
SBC 386/2x	38620	38620. bck	:home:38620	/boot32/38620.386
SBC 386/3x	38620	$38620 . b c k$:home:38620	/boot32/38620.386

To generate a default OS:

1. From Table 4-8, find the board name that corresponds to your processor board. For instance, the SBC 386/3x board has board name 38620.
2. The mksys command takes approximately 15 minutes to execute. Sometimes the screen scrolls faster than you can read it. This is because the mksys command rapidly shows the ICU screens as it executes. The scrolling is not a cause for concern.

Enter this command substituting board_name for your processor board:

- mksys board_name <CR>

Various ICU prompts are displayed on the screen; they are answered by a submit file. Do nothing until you see an End submit message.

The mksys command creates a directory under your :home: directory. It attaches that new directory as your default prefix. It creates a local copy of the appropriate ICU definition file. Then it generates on disk an updated version of the OS suited to the processor board specified in the command.

The command ends with a line similar to this:
-END submit :config:cmd/mksys.CSD
3. Following the END submit message, use either the Aedit editor or the skim command to discover if errors occurred in the process.

See also: skim command, Command Reference
While the mksys command was running, it recorded its progress in an output file. Use the skim command to read this output file to find out if any errors occurred during the generation process. Replace board_name with the same name you used in the mksys command:

- skim board_name.out <CR>

Press the space bar at the more? prompt to page through the file.
If the output file contains any error messages, a problem occurred during the mksys generation. Use an example file to identify the errors.

See also: Generation output file, ICU User's Guide and Quick Reference

If you receive this error message, use the ICU to change the amount of memory reserved for the iRMX III OS.

```
ERROR 192: NO SPACE FOR SEGMENT - BASE NOT SET
See also: Changing memory size, Appendix E
If you receive a different error, call Intel Customer Support.
```


\Leftrightarrow Note

The mksys command copies a third stage bootstrap loader for you. If you create a different boot system using the ICU rather than mksys, you must remember to copy the correct third stage from the bootstrap loader directory to the /boot32 path. For example:
copy /bsl/38612.32 to /boot32/38612 <CR>
Third Stage files in the iRMX III system have the suffix . 32 to indicate that they load 32-bit code.

Step 10. Testing by Booting from the Hard Disk

To test the previous installation, you must shut down the OS, then reset and reboot the Multibus system.

1. Shut down the OS with the sh command (an alias for shutdown w=0):

- sh <CR>

2. When you see a ShUtdown Completed message, reset the system. Press the RESET button or turn the RESET switch on the front panel of the computer.
3. The SCT runs again. Answer its prompts as you did in Step 2, to invoke the SDM monitor.
\Leftrightarrow Note
If you interrupt the SCT with a <Ctrl-C> and proceed directly to the boot phase, on some configurations a spurious parity error can cause a break to the SDM monitor. To avoid this problem let the SCT run to completion. However, if this spurious break to SDM does occur, simply type $\mathrm{g}\langle\mathrm{CR}\rangle$ at the SDM prompt and the boot will continue.
4. When you see the monitor prompt (.), enter this command to bootstrap load the OS. Use the same board name that you used in previous commands:
.b /boot32/board_name <CR>
If the system does not boot, call your Intel Customer Support representative.
5. When prompted for the date and time, enter the letter e :

DATE: e <CR>
TIME: e <CR>
6. At the Logon prompt, enter the Super logon and the default password:

Logon: super <CR>
Password: passme <CR>

Step 11. Copying the New Version over the Start-up Version

\Leftrightarrow Note

If you do not perform this step, or you copy incorrect file names, the system will not boot automatically the next time you start it. If that occurs, repeat Step 10 to boot the system, then perform this step.
Assuming the new OS is running, use this procedure to copy the new bootable image over the image first used to boot the system. If the OS is not running, call your Intel Customer Support representative.

This step allows you to automatically boot the OS, rather than setting boot parameters each time you start the Multibus system.

Issue these copy commands, using the same board name as in previous commands:

- copy /boot32/board_name over /system/rmx86
- copy /boot32/board_name. 386 over /system/rmx86.386

Appropriate values for board_name are found in the second column of Table 4-8.
The file /system/rmx86 is the default BSL third-stage pathname for the bootstrap loader on Multibus I systems. After executing the above commands, the file contains the BSL third-stage for your processor board. The file /system/rmx86.386 contains the OS system for your processor board. From now on, you may let the system boot on its own, or you may enter b at the monitor dot prompt. The OS boots using the target BSL third-stage file /system/rmx86 and the target OS file /system/rmx86.386.

Step 12. Taking Precautions for System Security

Use this step to protect the security of your system. You want to make sure that unauthorized people cannot \log on as the system manager because a system manager can make changes to the OS. Memorize the new password you enter below. You must know the password to perform system maintenance.

A password can be up to eight characters long. It may consist of any printable ASCII characters, and is case-sensitive.

1. Change the system manager password using the password command:

- password <CR>

2. You are prompted with a series of commands. Select c to change the password:
```
Enter the command: c <CR>
```

3. You receive these prompts. Respond to each. The password entries that you make will not be shown on the screen:
```
Enter your user name - super <CR>
Enter the old password - passme <CR>
Enter the new password - new_password <CR>
Repeat the new password - new_password <CR>
```

4. To exit, enter e as follows:

Enter the command: e <CR>
There is another logon called World that does not have the powers of the system manager. The World default password is <CR> (press <CR> at the password prompt). Do not change the password for World. If you want to remove the ability of the user World to access your system, delete the file :config:user/world, and use the password command to remove the World user from :config:udf.

Do not routinely \log on as the system manager. Instead, \log on either as World or as some other user that you define. Log on as Super only to manipulate system files. This reduces the chance of deleting or modifying a system file by mistake.

To log off as Super, use the logoff command. To become Super while logged on as another user, enter the command super, then the Super password. To return to the ordinary user logon, enter the exit command.)

Step 13. Merging the User and Configuration Files

\Leftrightarrow Note

Perform this step only if you have installed over a previous version of the OS, using the Partial format option. If you formatted the whole disk, the installation is finished.

1. CAUTION

The default r ?logon file submits the file :config:alias.csd in addition to :prog:alias.csd. The file :config:alias.csd contains aliases used by the OS. Installation instructions and example code use these aliases as defined. Do not modify the existing aliases in :config:alias.csd; adding new aliases is acceptable.

User and Alias Files

The submit file for the installation renamed the existing /user directory to /user_old.

1. Enter these commands to restore user files to their original directory structure, and put the boot system in Super's :home: directory. Replace board_name in the last command below with the same board name you used in previous commands.

- rename /user to /user_new <CR>
- rename /user_old to /user <CR>
- rename /user_new/super/board_name to /user/super/board_name <CR>

You can now delete the /user_new directory.
2. The default r ?logon file for each user submits :config:alias.csd in addition to submitting :prog:alias.csd.

To allow users access to the aliases in :config:alias.csd, add this line to the :prog:r?logon file for each user:
submit :config:alias
3. Some of the aliases in :config:alias.csd are the same as aliases defined in the old :prog:alias.csd file. An alias defined in :config:alias.csd should not also be defined in :prog:alias.csd.

From this list, delete duplicate aliases in file :prog:alias.csd. Invoke the 32-bit languages with the run86 utility.

```
alias ad=attachdevice
alias af=attachfile
alias crdir=createdir
alias dd=detachdevice
alias df=detachfile
alias flim=floppyimage
alias install=submit :config:cmd/instal(#0)
alias tinstall=submit :config:cmd/tinstall(#0)
alias mksys=submit :config:cmd/mksys(#0)
alias plm386=run86 -fixplm :lang:plm386
alias asm386=run86 :lang:asm386
alias bnd386=run86 :lang:bnd386
alias bld386=run86 :lang:bld386
alias lib386=run86 :lang:lib386
alias map386=run86
alias ic386=run86 :lang:ic386
```


Alias Additions

4. You may want to add the new user aliases listed below to your :prog:alias.csd file. These are defined in the file :config:default/alias.csd.
```
alias s=submit
alias m=skim
alias trv=traverse
```


Configuration Files

These instructions help you decide how to merge your old iRMX II or iRMX III configuration files with the newly installed files in the :config: directory. After you have merged these files to your satisfaction, you may remove the old versions of the files.

The new system configuration files in the :config: directory are compatible with previous releases of the OS. This release can boot and use the old versions with no problems. For some of the files, however, if you simply overwrite the new version with your previous version, some important enhancements are lost.
5. The :config:termcap file is the iRMX HI CLI terminal attribute file. The information in this file provides terminal attribute definitions for the CLI and for Aedit. Using the CLI's set command allows Aedit to operate without creating a specific aedit.mac file, as was necessary in the past.

Compare the new termcap file with changes you made to your previous version. Decide whichever file provides a better starting point for merging your changes; adding your changes to the new file may be easier. If :lang:aedit.mac or :home:aedit.mac exist, they need to contain only utility macros, not terminal attributes. Also, :lang:useful:mac contains some valuable macros.
6. The :config:terminals file is the Human Interface (HI) user terminal configuration file. The format of this file allows a Network Server system to provide remote system device services to a diskless remote file consumer. The terminals file allows multiple remote consumers to use one copy of the file for each of their unique terminal definitions.

Read the description of :config:terminals in the System Configuration and Administration manual for more information. The original form of the file will work fine for the local system. To restore the original iRMX II version, enter:

- copy /rmx286/config/terminals over :config:<CR>

To restore the old iRMX III version, enter:

```
- copy /rmx386/config/terminals_old over :config:terminals <CR>
```

7. The :config:udf file is the user definition file. No changes have been made to this file's format.

If you defined users in a previous version of the iRMX II UDF file, restore it with this command:

- copy /rmx286/config/udf over :config:<CR>

For a previous version of the iRMX III UDF file:

- copy /rmx386/config/udf_old over : config:udf <CR>

8. The :config:cdf file is the Administration Unit definition file for network consumer systems. No changes have been made to this file's format.

If you defined any networking Administration Units (subnets) in a previous version of the iRMX II CDF file, restore it with the command:

- copy /rmx286/config/cdf over :config:<CR>

For a previous version of the iRMX III CDF file:

- copy /rmx386/config/cdf_old over : config:cdf <CR>

9. All users that you created in an iRMX II system are still valid in your iRMX III system. The process of adding and configuring users has not changed. To add all of your iRMX II users to your iRMX III system, enter:
```
copy /rmx286/config/user/* to :config:user <CR>
```

For a previous version of the iRMX III OS users, enter:

```
copy /rmx386/config/user/*_old to :config:user/* <CR>
```

10. The :config:r?init file is the iRMX System Initialization file. This submit file is executed when the HI is initialized. Its output goes to the first entry in :config:terminals. No CLI commands, such as background or alias, can be used, because no CLI job is created when the file is executed.

A default version of the config:r? init file is provided. It contains a description of how to set the file up to load one of the SBX 279(A) menus. To select the default version, enter:

```
copy :config:default/rinit over :config:r'?'init
```

Modify the file as necessary.
11. The :config:logon.msg file is the logon message file. Modify the logon.msg file as needed.

Where to Go Next

If you want to turn off the Multibus system, first invoke the sh command (as Super). You may leave the system running, but you should first log off as Super by invoking the logoff command.

To learn more about your new OS, see these manuals:

Topic

Basic operations, such as
logging on, entering commands, etc.

Features of the iRMX
Operating Systems

Manual
Chapter 8 of this manual

Introducing the iRMX Operating Systems

\Leftrightarrow Note

Chapter 8 describes the installation process for online iRMX manuals and the Windows Help file for the iRMX system calls supplied with this release. Installation of both these features is performed separately from the installation procedure in this chapter.

Installing the iRMX III OS on Multibus II Systems

Use this procedure if the platform on which you are installing is a Multibus II board and you will not be running it as a PC.

The standard Multibus II installation assumes you have an I/O Server board compatible with the System 520 system.

Use the instructions in this chapter to make a first-time installation of the OS, or to install over a previous version. During the installation you will:

- Run the system diagnostics.
- Bootstrap load the system from a diskette.
- Log on as the system manager (Super).
- Format the computer's hard disk, either partially or completely.
- Install the OS software and support products.
- Generate a boot system and reboot the Multibus II system.
- Establish the default boot system.
- Merge user files with the new software (if you installed over a previous version of the OS).

Minimum System Requirements

A minimum of 75 Mbytes of space on your hard disk is required to install the iRMX III software. A minimum of 4 Mbytes of RAM is required to boot the iRMX III OS.

Multibus II Boards

See also: MSA for the iRMX Operating System for additional information on configuring multiple processor boards

The iRMX III OS supports these Multibus II boards:

CPU Boards
SBC 386/120
SBC 386/133
SBC 386/258
SBC 386/258D
SBC 486/125
SBC 486/150
SBC 486/133SE
SBC 486/166SE
MIX 386/020
MIX 386/020A
MIX 486/020A
MIX 486SX33
MIX 486DX33
MIX 486DX66
MIX 486/DX4
SBC 486DX33
SBC 486DX66
See also: Hardware Modifications, Appendix F

Preparing for the Installation

1. If you are not installing the OS on a new Multibus II system, back up all current files on tape. In a later step you will format the Multibus II system's hard disk. At that point you choose whether to do a complete or partial format. Choose the partial format to retain all current files on your disk. However, first back up the files to protect these files.
2. If you are using an Intel Multibus II system, write down the type of the hard disk in your system. This information should be listed on documents delivered with the hardware. If there are two hard disks, choose the device type of the disk on which you want to make the installation. If you are building a custom system, the supported device types are listed in Table 5-1.
3. Determine the type of the I/O Server board in your system. If you do not know what type of I/O Server board is in your system, refer to the back panel.
4. Read your Multibus II system's hardware installation manual to be sure that the equipment is set up correctly and that the terminal is connected with the correct cable.
5. See Appendix F, Hardware Modifications, to determine if you need to make any changes to your hardware so that it can run the iRMX III OS.
6. Choose which diskette(s) your system requires from this list, based on the I/O Server board in your Multibus II system:

- SBC 386/258 Start-up Boot Diskette (for SBC 386/258 and 386/258D boards)
- SBC 486/166SE Start-up Boot Diskette (for SBC 486/166SE and 486/133SE boards)
- SBC P5120ISE Start-up Boot Diskette (SBC P5120ISE, SBC P5090ISE, SBC P5120, and SBC P5090 boards)

You will also need these tapes or diskettes:

- Operating system tape
- Tapes or diskettes for products to be installed that are not included in the iRMX III software package

If you are missing an item for a product you have purchased, contact your sales representative.
7. Check that all the diskettes and tapes are write-protected. (Boot diskettes for the SBC P5* boards are write-enabled.)

The installation process described in this chapter can take two hours or more, depending on the type of disk formatting performed and the amount of software being installed.

Step 1. Testing the System Hardware

1. If you are using the SBX 279A module for your system console, make sure the SBX scan bit in your I/O Server board's firmware is enabled.

See also: SBX scan, Firmware User's Guide for MSA Firmware
2. Turn on the system console and the Multibus II system.
3. When you see asterisks or other characters displayed on the screen, enter:
u
The u will not show on the screen.
4. The system prompts you for a selection from this menu. Select Run System Diagnostics by typing 1 at the Enter number ? prompt:

```
1 \text { Run System Diagnostics}
2 \mp@code { G o ~ t o ~ O p e r a t o r ~ I n t e r f a c e }
3 Go to Bootphase
Enter number ? 1
```

The 1 will not show on the screen. If you do not make a choice in 9 seconds, the system defaults to running the diagnostics (selection 1).
5. Test results look like Figure 5-1. Make a note of which Multibus II system slots hold the I/O Server board and the optional processor board. You need this information for later steps.
6. At this prompt, type a y to invoke the MTH:

```
Do you want to enter additional commands? Enter y or n [n]?
y <CR>
```

If the hardware is working correctly, the status column displays PASS for all the tests, and the display is similar to Figure 5-1. If one of the tests fails, invoke the MTH to choose further tests by pressing <Ctrl-C>. To display the MTH help menu, enter h. If you cannot find and fix the problem, call Intel's Customer Support.

See also: Using the MTH Commands, Firmware User's Guide for MSA Firmware

This display is only an example. If your system hardware configuration differs, so will the display.

```
System Configuration and BIST Status
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Slot & Product Code & Vendor & Rev & Class & SSR & SLR & Test & Status \\
\hline 0 & 386/258 & Intel & 01H & F2H & OOH & A3H & 18 & PASS \\
\hline 2 & 386/120 & Intel & 01H & F1H & OOH & 23H & 21 & PASS \\
\hline 6 & 186/410 & Intel & 03H & E4H & 00H & 23H & 14 & PASS \\
\hline 7 & 186/530 & Intel & 03H & E5H & 00H & 23H & 14 & PASS \\
\hline
\end{tabular}
iPSB Tests
    Slot 2 Test 128 Unsolicited Message Receive PASS
    Slot 2 Test 129 Unsolicited Message Send PASS
    Slot 2 Test 130 Solicited Message Receive 2-C PASS
    Slot 2 Test 131 Solicited Message Send 2-C PASS
```



```
Pre-configured Systems Tests
    Slot 0 Test 1 Init Routine PASS
    Slot 0 Test 12 Data & Parity Dynamic RAMs PASS
    Slot 0 Test 20 RAM, Refresh PASS
    Slot 0 Test 22 Display On-Board RAM Size
On-Board RAM Size is 4 Megabytes
    PASS
    Slot 0 Test 24 PSB Interconnect Access PASS
    Slot 2 Test 1 Init Routine PASS
    Slot 2 Test 12 Data & Parity Dynamic RAMs PASS
    Slot 2 Test 22 Display On-Board RAM Size
On-Board RAM Size is 4 Megabytes
    PASS
```



```
Do you want to enter additional commands? Enter y or n [n] ?
```

Figure 5-1. Sample Board and System Test Report

Step 2. Booting From the Start-up Boot Diskette

In this step, you instruct the MTH to change a boot parameter that makes the system boot from software on diskette (in the drive with SCSI ID 0). The instructions show the prompt as MTH [0], but the number in brackets might not be zero for your system. The number indicates which system slot holds the I/O Server board.

1. Insert the Start-up Boot Diskette for your I/O Server board into the diskette drive.
2. Enter the $\mathbf{m p}$ command to change a bootstrap parameter:
```
MTH [O] mp <CR>
```

3. At this display, set the bl_unit parameter. (The parameter value is zero, not the letter O.):
```
Modify Boot Parameters for slot 0:
Modify parameters: "#" deletes, "." quits, <CR> advances
new parameter
bl_unit = 0 <CR>
```

4. Enter the device name for the boot device (diskette drive):

If you are using the TEAC 5.25 inch drive with the embedded SCSI controller, enter:

```
rq_sd = t55_0 <CR>
```

For the TEAC 3.5 inch drive with the embedded SCSI controller, enter:

```
rq_sd = t235_0 <CR>
```

5. If your I/O server board is an SBC 386/258, SBC 486/166SE, or SBC P5120ISE proceed to item 6.

If you are using an SBC 486/133SE, you must set the bl_config_file parameter.

For an SBC 486/133SE, enter:

```
bl_config_file = /msa/config/bps. 133 <CR>
```

For an SBC P5090ISE, enter:

```
bl_config_file = /msa/config/bpsise.90 <CR>
```

For an SBC P5120, enter:
bl_config_file = /msa/config/bps. 120 <CR>
For an SBC P5090, enter:

```
bl_config_file = /msa/config/bps.90 <CR>
```

For an SBC 386/258D, enter:

```
bl_config_file = /msa/config/bps.d <CR>
```

6. Press the <CR> key in response to each of the next two prompts :
```
new parameter
<CR>
save changes ([y] or n)
<CR>
```

7. Enter the \mathbf{b} (Bphase) command. This tells the MTH to invoke the boot phase:
```
MTH [0] b <CR>
```

The screen clears, messages indicating boot status are displayed, and then the OS signs on. The boot diskette portion of the OS is loaded onto the I/O Server board.
\Leftrightarrow Note
A logon banner should appear within two minutes after you invoke the boot phase. If after several minutes nothing appears on the screen, you may not have shut the diskette drive door, or you entered the bl_unit parameter wrong. Reset the Multibus II system and start over with Step 1.

Step 3. Logging On and Setting the Date and Time

The console displays this bannerhead:

```
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
    iRMX* Ver.# Operating System
* iRMX is a Registered Trademark of Intel Corporation
*_*-*-*-*-*_*_*-*-*_*-*_*_*-*-*_*-*-*_*-*-*-*-*-*-*-*
Logon:
```

Log on as the system manager, Super. The system manager has access to all files used during the installation process, and can change access rights to all iRMX files.

1. Enter the Super logon at the prompt:

Logon: super <CR>
2. The system prompts you for a password. For now, enter the default password for Super, passme. The password must be in lower-case letters. It is not shown on the screen.

```
Password: passme <CR>
```

The OS signs on with this message:

```
iRMX HI CLI, Vx.y: USER = 0
Copyright years Intel Corporation
All rights reserved
```

-

3. When you see a prompt for the date, enter the date in one of these formats. (If the displayed date is already correct, enter e instead.)
month/day/year (for example, 01/15/1994)
day month year (for example, 15 JAN 1994)
day month year (for example, 15 JANUARY 1994)
Example:
DATE: 01/15/1994 <CR>
If your system does not include a global clock, you will see the message:
E\$EXIST, Global Clock not present - will query for local date
4. The system prompts you for the time, which is based on a 24 -hour clock. Enter the time in hours:minutes:seconds format, using either one or two digits for each field. If you omit the minutes and seconds, the system sets them to zero. (If the displayed time is already correct, enter e instead.)

For example, at 7:36 AM and 40 seconds, enter $07: 36: 40$ or at 2:00 PM, enter 14:00.

Example:
TIME: 7:36:40 <CR>
If you enter either the date or the time in the wrong format, you get a message to re-enter it.

If your system does not include a global clock, you will see the message:
E\$EXIST, Global Clock not present - will query for local time
Two submit files named :prog:alias.csd and :config:alias.csd are executed. These files define aliases for command names. Use the alias command to see the complete list of aliases. Do not modify the aliases in :config:alias.csd because the iRMX software uses them as defined.

The OS defines one logical name, :tape:. In these steps, the command that formats the hard disk requires this logical name when you are installing the OS from tape.

Step 4. Determining Disk Parameters

The submit commands in these steps require parameters specific to the hardware in your system. In this step, you determine the parameters based on your peripheral controller board and hard disk. For an installation over a previous release, you need only the device name parameter, described in Item 2.

1. The submit commands in the next steps include parameters that are specific to the type of hard disk. Use Table 5-1, to determine the parameters for your disk drive. You will need the device name, number of files, and interleave factor. The interleave factor is 1 .
2. Refer to Table 5-1 to locate the type of hard disk on which you will install the software. When you locate the type of hard disk, make a note of the device names and number of files for that disk type. If your system includes multiple hard disks, choose the appropriate device name based on which disk you will use. Device names for the first hard disk (or for systems with only one hard disk) end in 2 . Device names for a second hard disk end in 3.

\Leftrightarrow Note

The files parameter used in the submit commands is the total number of files that can be created on the hard disk. If the number of files needs to be changed later, you will have to back up your files and reformat the hard disk. The recommended numbers listed in Table 5-1 are based on 125 files per Mbyte of disk capacity. You may choose a different number. The maximum number of files that the OS can handle is 65,528 .

Table 5-1. Device Names and Numbers of Files for SCSI Hard Disks

Hard Disk Model Number	Device Name	SCSI ID Number (n)	Recommended Number of Files
Maxtor XT-3170S	M3170_n	2,3	22000
Maxtor XT-4170S	M4170_n	2,3	22000
Maxtor XT-4380S	M4380_n	2,3	48000
Maxtor XT-8380S	M8380_n	2,3	48000
Maxtor XT-8760S	M8760_n	2,3	65528
Hewlett-Packard 97536	HP97536_n	2,3	40000
Siemens Megafile 2300	S2300_n	2,3	48000
Micropolis 1578	MP1578_n	2,3	39000
Quantum Pro 80S	Q280_n	2,3	11000
Quantum Pro 40S	Q280_n	2,3	5500
Generic SCSI	GSCW5_n	2,3	depends on
512 byte granularity		2,3	drive size
Generic SCSI	GSCW_n	2,3	depends on
1024-byte granularity	GSCW5_nMxEy	2,3	drive size Generic SCSI ${ }^{1}$
Gartitioned with a			drive size
512-byte granularity			

Generic SCSI partitioned with a 512-byte granularity are supported by the SBC 486/133, 486/166, and P5* family boards only.
3. Replace the n in the device name in the second column in Table 5-1 with the appropriate SCSI ID Number from the third column. For example, the device name for the Maxtor XT-4380S drive with SCSI ID 2 is M4380_2. Use the Generic SCSI DUIBs for hard disks not listed in the table.

See also: Your hard disk drive reference manual for the appropriate SCSI ID number;
Appendix F, Command Reference for information on partitioned SCSI hard disk drives
4. If you wish to create multiple partitions on your hard disk, you must take the following action:

1. CAUTION

Do not perform this option if you want to keep the files on your hard disk. The Full format option deletes all files. Proceed to the Partial format option if you want to save existing files.
a. Enter the following submit command:

```
submit :tape:part_form (device)
```

where device is the device name for the SCSI hard drive you want to partition.

If the device has a granularity of 512 bytes per sector, you may use the quick parameter as well:

```
submit :tape:part_form (device, quick)
```

b. Use the rdisk command to partition the SCSI device.

```
rdisk device
```

See also: Partitioning Example for the iRMX III OS, Command Reference, Appendix F

Step 5. Formatting the Disk and Installing Software From Tape

There are two options to format the hard disk: a Full format or a Partial format (track 0 only).

Full format	Formats the entire hard disk.
Choose this option if you have a new Multibus II system with	
nothing on the hard disk. (All Intel microcomputers are	
shipped with unformatted hard disks.) You may also choose	
this option for a system whose software you want to	
completely erase.	

Either option also installs the OS, along with any included support software.
Enter your commands after the hyphen (-) prompt.

Full Format Option

CAUTION

Do not perform this option if you want to keep the files on your hard disk. The Full format option deletes all files. Proceed to the Partial format option if you want to save existing files.

1. Insert the OS tape.
2. To format the hard disk, invoke a submit command with the proper parameters for the disk you want to format. Substitute a device name, the interleave factor, and the number of files:
```
submit :tape:form_disk(device, interleave, files) <CR>
```


Note

If you performed partitioning in Step 4, make sure you specify the appropriate partitioned DUIB name from Table 5-1.

This command is valid for a Maxtor XT-4380S disk that has a SCSI ID of 2:

```
submit :tape:form_disk(m4380_2, 1, 48000) <CR>
```

The OS formats the hard disk. Then it displays a summary of alternate tracks assigned for bad tracks found during the format.

```
The following tracks have been assigned an alternate:
    {disk information}
```

Following formatting, the submit file sets up a directory structure on the hard disk. It invokes the restore command and copies all the files from the tape to the hard disk. Enter Yes <CR> when switching tapes. It establishes World permission rights for files. Then it switches the system device from the diskette drive to the hard disk, so that the OS reads future commands from the hard disk. The process can take up to 45 minutes.
3. When you receive the logon prompt, remove the Start-up Commands diskette and OS tape from their drives.

Partial Format Option

If you performed the Full format option, skip these instructions and go to Step 6.

CAUTION

If you have performed this installation once, and want to repeat the Partial format option on a disk, read the instructions for saving current files before a Partial format. If you do not follow those instructions, repeating the Partial format option can overwrite files you want to save.

What Happens to Current Files When Installing Over a Previous Release

Some directories from previous releases of the OS are used in the iRMX III OS. The current iRMX directories and files are renamed so that you may choose what to do with them. Any files you have created will not be deleted during an installation over a previous release.

To save the current iRMX files in those directories, the submit file renames directories as shown in Table 5-2. Following an installation over a previous release, current iRMX files reside in the *_old directories specified in Table 5-2.

Table 5-2. Directories Renamed in a Multibus II Installation

Previous Directory/File	Renamed To
/user	/user_old
/bsl	/bsl_old
/msa32	/msa32_old
/boot32	/boot32_old
/rboot32	/rboot32_old
/net	/net_old
/system/rmx86	/system/rmx86_old
/system/rmx86.386	/system/rmx86_old.386
/msa/config/bps	/msa/config/bps_old
/rmx386/config/terminals	/rmx386/config/terminals_old
/rmx386/config/udf	/rmx/config/udf_old
/rmx386/config/user/super	/rmx386/config/user/super_old
/rmx386/config/user/world	/rmx386/config/user/world_old

Renaming Files With Existing _old Extensions

If your hard disk has any of the target files listed in the Renamed To column in Table 4-6, the submit file renames the current files from the Previous
Directory/File column in Table 5-2 to have an extension of _dd.\# where \# is the lowest number that doesn't overwrite an existing file.

Performing a Partial Format

1. Using the device (hard disk) name you selected in Step 4, enter a submit command to format track 0 of the hard disk:
```
submit :tape:form_trk0(device_name) <CR>
```

For example, use this command for a Maxtor Model XT-8760S hard disk with a SCSI ID of 2 :

```
submit :tape:form_trk0(m8760_2) <CR>
```

The submit file formats track 0 of the hard disk. It renames directories/files to preserve current files.

After formatting, the submit file sets up a directory structure on the hard disk. It invokes the restore command and copies all the files from the tape to the hard disk. It establishes World permission rights for files. Then it switches the system device from the diskette drive to the hard disk, so that the OS reads future commands from the hard disk.
2. When you receive the logon prompt, remove the Start-up Commands diskette and OS tapes from their drives. Store them in their covers.

Step 6. Logging onto the System

Enter the Super logon and the default password (in lower case) as follows:

```
Logon: super <CR>
Password: passme <CR>
```


Step 7. Setting Up Your Terminal

1. Two sample versions of :config:terminals are supplied. Both are installed in the :config:default directory. The one you select depends on what device is used for the system console. If your system uses an SBX 279A board, select the terminals. 279 file. If your system uses a serial terminal, select the terminals.arc file. For example, to select the terminals.arc file, enter:
```
copy :config:default/terminals.arc over :config:terminals <CR>
```

Use the skim command to examine both of these files. In general, the physical device name t279_x is used to communicate with the SBX 279A driver and the physical device name atcs_con_0 is used to communicate with the serial terminal.

See also: $\begin{aligned} & \text { Configuring Users and Terminals and ATCS Driver, System } \\ & \text { Configuration and Administration }\end{aligned}$ Configuration and Administration
2. Select the terminals file for your system. The command described below selects terminal attributes, so you can use your terminal with the Aedit text editor and the CLI. You should put this command in your :prog:r?logon file. Until you do so, you must enter the command each time you log on.

Select the appropriate terminal name from Table 5-3.

Table 5-3. Terminal Names Defined in the termcap File

Terminal Type	Description
ANY	Default ANSI terminal for terminals not listed
$1510 E$	Hazeltine 1510 with escape lead-in
1510 T	Hazeltine 1510 with tilde lead-in
ADM3A	Lear Seigler ADM-3A
AT386	PC system console
RMXPC or PC	PC system console
QVT102	Qume QVT102, in QVT102 mode
RGI	SBX 279 Graphic Subsystem
S120	PC system console
TV910P	Televideo 910 Plus
TV950	Televideo 950
VT100	DEC VT100, VT101 (also for Wyse 75 and Wyse 85)
VT102	DEC VT102
VT52	DEC VT52
WYSE50 or WY50	Wyse 30, Wyse 50
XTERM	X-Windows terminal
ZENTEC	Zentec Zephyr and Cobra

Enter this command using the terminal name:

- set terminal $=$ terminal_name <CR>

Step 8. Modifying BPS Files for Non-default I/O Server Boards and Devices

If your I/O server board in slot 0 is an SBC 486/133SE, P5090ISE, P5120, or P5090; or your system device is anything other than GSCW5_2 you need to perform some modifications to the BPS files. If none of these conditions apply to you, skip this step and proceed to Step 9.

Modifications for 486/133SE Board

If your I/O server board in slot 0 or 1 is a $486 / 133 \mathrm{SE}$, edit the file $/ \mathrm{msa} /$ config/bps.

1. Invoke the Aedit editor:
```
aedit /msa/config/bps
```

2. In the bnam parameters of rq_pci_a and rq_atcs_con, replace the string $486 / 166$ SE with $486 / 133$ SE.
3. Quit the Aedit editor while saving the file using these commands:
<ESC>
q
e
See also: Boot Scenarios, SPS Parameters, MSA for the iRMX Operating System

Modifications for SBC P5090ISE, P5120, and P5090 Boards

If your I/O server board in slot 0 or 1 is an SBC P5090ISE, P5120, or P5090, edit the file /msa/config/bps.

1. Invoke the Aedit editor:
```
aedit /msa/config/bps
```

2. In the bnam parameters of rq_pci_a and rq_atcs_con, replace the string P5120ISE with the appropriate string: P5090ISE, SBCP5120, or SBCP5090.
3. Quit the Aedit editor while saving the file using these commands:
<ESC>
q
e
See also: Boot Scenarios, SPS Parameters, MSA for the iRMX Operating System

Modifications for Hard Drive Type

If your system device is anything other than GSCW5_2 (generic SCSI with a 512byte granularity) replace the string GSCW5_2 with the device name. For example, if you have a SCSI drive with 1024-byte granularity, replace the string GSCW5_n with GSCW_n.

Step 9. Updating Your Software

For information on updating your iRMX III software, please refer to the Release Notes.

Updating the software and generating a new version may cause the size of the OS to exceed the amount of memory allocated for it in the ICU definition file. If you get an error message, you will need to increase the amount of memory.

See also: Changing the Memory Size, Appendix E

Step 10. Generating a Default Operating System for the I/O Server Board

In this step, you make a new version of the OS using the mksys command. This version will independently boot the I/O Server board in your Multibus system, so it will act also as a processor board.

CAUTION

For any one definition file, do not invoke the mksys command again after you have successfully used it once to generate the OS. Because mksys does not use your modified file for input, it will overwrite the local copy of your definition file. You will lose any modifications that you have made to the file. Instead of using mksys, invoke the ICU using the definition file as the input parameter.

1. Table 5-4 shows the files used and generated by the mksys command for different processor boards. It also shows the board name to use for your processor board in these commands.

Find the board name that corresponds to the processor board in your Multibus system. For instance, the SBC 386/258 board has the board name 386258.

See also: Multibus II Standard Definition Files, ICU User's Guide and Quick Reference

Table 5-4. Files Generated by mksys for I/O Server Boards as CPU Boards

I/O Server Board	Board Name	ICU Definition File	Generation Directory	Boot File Pathname	OS Name
SBC 386/258	386258	258s.bck	:home:258s	/msa32/boot/258s	258s
SBC 386/258D	386258	258s.bck	:home:258s	/msa32/boot/258s	258s
SBC 486/133SE	486133	433s.bck	:home:433s	/msa32/boot/433s	433s
SBC 486/166SE	486133	433s.bck	:home:433s	/msa32/boot/433s	433s
SBC P5120ISE	P5120ISE	p90s.bck	:home:p90s	/msa32/boot/p90s	p90s
SBC P5090ISE	P5090ISE	p90s.bck	:home:p90s	/msa32/boot/p90s	p90s
SBC P5120	SBCP5120	p90s.bck	:home:p90s	/msa32/boot/p90s	p90s
SBC P5090	SBCP5090	p90s.bck	:home:p90s	/msa32/boot/p90s	p90s

2. This command may take as long as 45 minutes to execute. Sometimes the screen scrolls faster than you can read it. This is because the mksys command rapidly shows the ICU screens as it executes. The scrolling is not a cause for concern.

Enter this command substituting the appropriate OS name for your processor board:

```
- mksys os_name <CR>
```

Various ICU prompts are displayed on the screen. These prompts are answered by a submit file. Do nothing until you see an END submit message.

The mksys command creates a directory under your :home: directory. It attaches that new directory as your default prefix. It creates a local copy of the appropriate ICU definition file. Then it generates on disk an updated version of the OS suited to the processor board appropriate for the specified OS in the command.

The command ends with a line similar to this:

```
-END submit :config:cmd/mksys.CSD
```

3. Following the END submit message, use either the Aedit editor or the following skim command to discover if errors occurred in the process.

While the mksys command was running, it recorded its progress in an output file. Use the skim command to read this output file to find out if any errors occurred during the generation process. Replace os_name with the same name you used in the mksys command:

- skim os_name.out <CR>

Press the space bar at the more? prompt to page through the file.
If the os_name.out file contains any error messages, some problem occurred during the mksys generation. Use an example file to identify the errors.

See also: Generation output file, ICU User's Guide and Quick Reference
If you find this error message, use the ICU to change the amount of memory reserved for the iRMX III OS, as described in Appendix E.

ERROR 192: NO SPACE FOR SEGMENT - BASE NOT SET
See also: Changing memory size, Appendix E
If you find a different error, call Intel Customer Support.
See also: Boot Scenarios, MSA for the iRMX Operating System

Step 11. Testing by Booting from the Hard Disk

To test the previous installation, you must shut down the OS, then reset and reboot the Multibus system.

1. Shut down the OS with the sh command (an alias for shutdown w=0):

- sh <CR>

2. When you see a Shut down Completed message, reset the system. Turn the key switch on the front panel of the computer to Reset and then back to Unlock.
3. When the first character appears on the screen, type a u. The power-up tests will run again.

$$
\mathrm{u}
$$

4. The system prompts you for a selection from this menu. Select Go to Operator Interface by typing 2 at the Enter number? prompt:

1 Run system Diagnostics
2 Go to Operator Interface
3 Go to Bootphase

Enter number ? 2
The 2 will not show on the screen. If you do not type a choice in 9 seconds, the system defaults to running the diagnostics (selection 1). The diagnostics can be interrupted by pressing 〈Ctrl-C>.
5. Enter the $\mathbf{m p}$ command to change a bootstrap parameter:

```
MTH [0] mp <CR>
```

6. At the following display, enter a new parameter:
```
Modify Boot Parameters for slot 0:
Modify parameters: "#" deletes, "." quits, <CR> advances
new parameter
bl_target_file = /msa32/boot/os_name <CR>
```

7. Press the <CR> key in response to each of the next two prompts :
```
new parameter
    <CR>
save changes ([y] or n)
    <CR>
```

8. Enter the \mathbf{b} (Bphase) command. This tells the MTH to invoke the boot phase:
```
MTH [0] b <CR>
```

The OS boots on the I/O Server board.
9. Enter the super logon and the default password:

```
[0] Logon: super <CR>
Password: passme <CR>
```

See also: Boot Scenarios, MSA for the iRMX Operating System

Step 12. Copying the New Version Over the Start-up Version

Assuming the new OS is running, use this procedure to copy the new bootable image over the image first used to boot the system. If the OS is not running, call your Intel Customer Support representative.

This step allows you to choose option 3 of the MTH menu to automatically boot the OS, rather than setting boot parameters each time you start the Multibus system.

Use the copy command to copy over the rmx file:

- copy /msa32/boot/os_name over /msa32/boot/rmx <CR>

Use an appropriate value for os_name from the right-most column of Table 5-4.

Step 13. Taking Precautions for System Security

Use this step to protect the security of your OS. By securing the OS, unauthorized people cannot log on as the system manager and make changes to the OS. To prevent unauthorized OS changes, the system manager should implement password protection.

A password can be up to eight characters long. It may consist of any printable ASCII characters, and is case-sensitive.

1. Change the system manager password using the password command:

- password <CR>

2. You are prompted with a series of commands. Enter c to change the password:
```
Enter the command: c <CR>
```

3. You receive these prompts. Respond to each. The password entries that you make will not be shown on the screen:
```
Enter your user name - super <CR>
Enter the old password - passme <CR>
Enter the new password - new_password <CR>
Repeat the new password - new_password <CR>
```

4. To exit, enter e as follows:

Enter the command: e<CR>
There is another logon called World that does not have the powers of the system manager. The World default password is <CR> (press <CR> at the password prompt). Do not change the password for World. If you want to remove the ability of the user World to access your system, delete the file :config:user/world, and use the password command to remove the World user from :config:udf.

Do not routinely \log on as the system manager. Instead, \log on either as World or as some other user that you define.

See also: World user, Super user, Command Reference
Log on as Super only when system files need manipulation. This reduces the chance of deleting or modifying a system file by mistake.

See also: Logging On and Off, Chapter 8
When you want to log off as Super, issue the logoff command. To become Super while logged on as another user, enter the command super, then the Super password. Then to get back to the ordinary user logon, enter the exit command.

Step 14. Merging the User and Configuration Files

\Leftrightarrow Notes

Perform this step only if you have installed over a previous version of the OS, using the Partial Format option. If you formatted the whole disk, the installation is finished.

If you are configuring multiple processor boards, refer to MSA for the iRMX Operating System for additional instructions.

1 CAUTION

The default r ?logon file submits file :config:alias.csd in addition to :prog:alias.csd. The file :config:alias.csd contains aliases used by the OS. Installation instructions and example code use these aliases as defined. Do not modify the existing aliases in :config:alias.csd; adding new aliases is acceptable.

User and Alias Files

The submit file for the installation renamed the existing /user directory to /user_old.

1. Invoke these commands to restore user files to their original directory structure as well as put the boot system in Super's :home: directory. Replace os_name in the last command below with the same OS name used in previous commands.

- rename /user to /user_new <CR>
- rename /user_old to /user <CR>
- rename /user_new/super/os_name to /user/super/os_name <CR>

You can now delete the /user_new directory
2. The structure of the :prog:r?logon file changed slightly from previous iRMX II releases (up through release 3.0). In addition to submitting :prog:alias.csd as in the past, the default r ? logon file for each user now also submits :config:alias.csd.

To allow users access to the aliases in :config:alias.csd, add this line to the :prog:r?logon file for each user:

```
submit :config:alias
```

3. Some of the aliases in :config:alias.csd are the same as aliases defined in the old :prog:alias.csd file. An alias defined in :config:alias.csd should not also be defined in :prog:alias.csd.

From this list, delete duplicate aliases in file :prog:alias.csd. The 32-bit languages are invoked using the run86 utility.

```
alias ad=attachdevice
alias af=attachfile
alias crdir=createdir
alias dd=detachdevice
alias df=detachfile
alias flim=floppyimage
alias install=submit :config:cmd/instal(#0)
alias tinstall=submit :config:cmd/tinstall(#0)
alias mksys=submit :config:cmd/mksys(#0)
alias plm386=run86 -fixplm :lang:plm386
alias asm386=run86 :lang:asm386
alias bnd386=run86 :lang:bnd386
alias bld386=run86 :lang:bld386
alias lib386=run86 :lang:lib386
alias map386=run86 :lang:map386
alias ic386=run86 :lang:ic386
```


Alias Additions

4. Use the Aedit text editor to add new user aliases to your :prog:alias.csd file. These are defined in the file :config:default/alias.csd.
```
alias s=submit
alias m=skim
alias trv=traverse
```

5. Aliases specific to Multibus II systems are in the :config:alias.csd and :prog:alias.csd files. Use the Aedit text editor to add new aliases to this file.
```
alias agents = ic -c agents
alias agentreset = ic -c reset #O local
alias armfpi = ic -c fpi arm
alias coldreset = ic -c reset 0 cold
alias disarmfpi = ic -c fpi disarm
alias icread = ic -c get #0 #1 #2
alias icwrite = ic -c set #0 #1 #2
alias monitor = ic -c reset -p monitor #O local
alias myslot = ic -c myslot
alias nmi = ic -c nmi #O software
alias nmiforce = ic -c nmi -e #O software
alias offline = ic -c kill #O
alias reboot = ic -c reset -p bootstrap #0 local
alias warmreset = ic -c reset 0 warm
```


Configuration Files

These instructions help you decide how to merge your old iRMX II or iRMX III configuration files with the newly installed files in the :config: directory. After you have merged these files to your satisfaction, you may remove the old versions of the files.

The new system configuration files in the :config: directory are compatible with previous releases of the OS. This release can boot and use the old versions with no problems. For some of the files, however, if you simply overwrite the new version with your previous version, some important enhancements are lost.
6. The :config:termcap file is the iRMX HI CLI terminal attribute file. The information in this file provides terminal attribute definitions for the CLI and for Aedit. Issuing the CLI's set command allows Aedit to operate without creating a specific aedit.mac file, as was necessary in the past.

Compare the new termcap file with changes you made to your previous version. Decide which file provides a better starting point for merging your changes; adding your changes to the new file may be easier. If :lang:aedit.mac or :home:aedit.mac exist, they need to contain only utility macros, not terminal attributes. Also, :lang:useful:mac contains some valuable macros. If you are using the SBX 279A board, try the file
/rmx386/rgi/rgi.mac.
7. The :config:terminals file is the HI user terminal configuration file. The format of this file allows a Network Server system to provide remote system device services to a diskless remote file consumer. The terminals file allows multiple remote consumers to use one copy of the file for each of their unique terminal definitions.

Read the description of :config:terminals in the System Configuration and Administration manual for more information. The original form of the file should work fine for the local system. To restore the original iRMX II version, enter:

- copy /rmx286/config/terminals over /rmx386/config <CR>

To restore the old iRMX III version, enter:

- copy /rmx386/config/terminals_old over /rmx386/config/terminals <CR>

The physical device names of terminals controlled by the Multibus II ATCS driver have been expanded.

See also: ATCS Driver in System Configuration and Administration for the list of new device names
8. The :config:udf file is the user definition file. No changes have been made to this file's format.

If you defined users in a previous version of the iRMX II UDF file, restore it with the command:

- copy /rmx286/config/udf over /rmx386/config <CR>

For a previous version of the iRMX III UDF file:

- copy /rmx386/config/udf_old over /rmx386/config/udf <CR>

9. The :config:cdf file is the Administration Unit definition file for network consumer systems. No changes have been made to this file's format.

If you defined any networking Administration Units (subnets) in a previous version of the iRMX II CDF file, restore it with the command:

- copy /rmx286/config/cdf over /rmx386/config <CR>

For a previous version of the iRMX III CDF file:

- copy /rmx386/config/cdf_old over /rmx386/config/cdf <CR>

10. All users that you created in an iRMX II system are still valid in your iRMX III system. The process of adding and configuring users has not changed. To add all of your iRMX II users to your iRMX III system, enter this command:

- copy /rmx286/config/user/* to /rmx386/config/user <CR>

For a previous version of the iRMX III users, enter:

- copy /rmx386/config/user/*_old to /rmx386/config/user/* <CR>

11. Modify the :config:r? init file. The :config:r?init file is the iRMX System Initialization file. This submit file is executed when the HI is initialized. Its output goes to the first entry in :config:terminals. No CLI commands, such as background or alias, can be used, because no CLI job is created when the file is executed.

A default version of the file is provided. It contains a description of how to set it up to load one of the SBX 279(A) menus. To select the default version, enter:

```
copy :config:default/rinit over :config:r'?'init
```

Modify the file as needed.
12. Modify the logon.msg file as needed. The :config:logon.msg file is the logon message file.

Where to Go Next

If you want to turn off the Multibus system, first issue the sh command (as Super). You may leave the system running, but you should first log off as Super by issuing the logoff command.

To learn more about your new OS, refer to these manuals:

Topic

Basic operations, such as
logging on, entering commands, etc.

Features of the iRMX
Operating Systems

Manual

Chapter 8 of this manual

Introducing the iRMX Operating Systems
\Leftrightarrow Note
Chapter 8 describes the installation process for online iRMX manuals and the Windows Help file for the iRMX system calls supplied with this release. Installation of both these features is performed separately from the installation procedure in this chapter.

iRMX GETTING STARTED CHAPTERS

This section contains information that lets you get started with your iRMX OS. These are the chapters in this section:

Chapter 6. iRMX for Windows Specifics
Chapter 7. iRMX for PCs Specifics
Chapter 8. Getting Acquainted with the Operating System
Chapter 9. Where To Go From Here

Configuring DOS for Extended Memory

iRMX for Windows provides support for DOS extended memory, the area above the 1 MB boundary. However, there are some restrictions on what you can load into extended memory, due to the order of loading DOS drivers and loading the iRMX extended memory manager.

See also: Memory types, MS-DOS User's Guide and Reference and Microsoft Windows User's Guide

The iRMX for Windows extended memory manager is himem.job, which is similar to the himem.sys driver supplied with Windows and DOS. It provides support for extended memory and for the high memory area (HMA). HMA is the 64 Kbytes of memory immediately above the 1 MB boundary which the processor can access in real mode.

.

CAUTION

Although himem.sys can provide access to the HMA under DOS, no program can be running in extended memory outside the HMA when iRMX for Windows starts. If a program is running, this message is displayed:

ERROR -->Protected mode software already loaded
Himem.job provides DOS extended memory in the free space allocated by iRMX for Windows. Himem.job loads under the iRMX OS, not under DOS, when you use the sysload command. You may have to configure DOS differently than you would without iRMX for Windows. Himem.job does not support loading programs into upper memory blocks (UMBs). UMBs are memory areas between 640 K and 1 MB that are not used by system ROM, video display cards, or other I/O devices.

See also: sysload, Command Reference;
himem.job, System Configuration and Administration

The iRMX OS loads into physical memory beginning at the $1 \mathrm{MB}+64 \mathrm{~K}$ boundary. The OS manages all memory above that in protected mode. When it loads, any extended memory provided by himem.sys is gone, except for the HMA. (The loadrmx command detects whether a program is loaded in the HMA, and saves this information.) At this point, DOS has available the real-mode space below 1 MB and the HMA if it was loaded before starting iRMX for Windows. Without loading himem.job, you could run Windows in real mode, but no extended memory would be available to DOS or to Windows.

After you load himem.job in the iRMX OS, DOS applications and Windows can access extended memory, using the XMS services of himem.job.

You must also use sysload to load a Windows-encapsulator job called smw.job, before you can start Windows in standard mode. If a program was in the HMA before iRMX for Windows loaded, it is still there. If the HMA was not occupied when iRMX for Windows loaded, himem.job provides HMA access to any program that requests it.

See also: Loadable jobs, smw.job, System Configuration and Administration
Figure 6-1 on page 127 shows the memory map of the system after loading iRMX for Windows and himem.job.

Figure 6-1. Memory Map of the System

Customizing the OS

You can specify which parts of the OS are loadable using the sysload command from the command line or modifying the :config:loadinfo file. Additionally, by modifying parameters in the rmx.ini file, you can enhance the performance of your application system.

After you install the OS, you may want to modify the default configuration to match your application. Some of the defaults you can change are:

- System memory configuration
- User IDs and memory requirements
- Terminal configuration
- Loadable jobs (including network jobs)
- Loadable device drivers
- Interrupt response

See also: Loadinfo file and rmx.ini parameters, System Configuration and Administration

Starting iRMX for Windows

There are three scenarios for starting iRMX for Windows depending on which partition it is installed.

- From a DOS partition
- From an iRMX partition
- From config.sys on a DOS partition (DOS 5.0 only)

Starting iRMX for Windows from a DOS Partition

After you install iRMX for Windows, you can boot it from DOS using these steps:

1. To load iRMX for Windows, use the rmx.bat file, followed by the drive letter where the software is installed. Do not follow the drive letter with a colon. If the iRMX OS is installed on drive C :, enter:
```
C:\> \dosrmx\rmx c <CR>
```

A number of messages will be displayed. When these messages appear, the OS is running.

```
DOS is now running as a VM86 iRMX Task
Use Alt-SysRq key combination to switch to the iRMX console
C:\>
```


18 Note

If you receive one of the messages below, you have not removed all the lines in your autoexec.bat or config.sys file that consume extended memory or switch the processor to Protected Mode.

No extended memory present
Protected mode program already loaded

Starting iRMX for Windows from an iRMX Partition

To run iRMX for Windows if you have installed it on an iRMX partition, use these steps.

1. Start the system or press <Ctrl-Alt-Del> to warm boot the system.
2. Invoke the rmxtsr command at the DOS prompt to load the iRMX interface.
3. Invoke the loadrmx command. This example assumes that the boot file is dosrmx and that partition 2 on fixed disk 1 is the iRMX partition (c_rmx2).
$\mathrm{C}: \backslash>$ loadrmx -n c:\dosrmx\dosrmx -s c_rmx2 -f n <CR>
See also: loadrmx, Command Reference
4. Press <Alt-SysRq> to invoke iRMX for Windows from the iRMX partition.
5. Log on to iRMX for Windows. Enter world at the Logon: prompt and <CR> at the Password: prompt.

After iRMX for Windows is installed on an iRMX hard disk, you have two options for backing up the system:

- You can use iRMX-NET and the iRMX network redirector to map the iRMX partition, then continue to use your existing DOS/Windows tools to back up the system.

See also: Using iRMX-NET in a DOS Environment, System Configuration and Administration, Network User's Guide and Reference

- You can add an Adaptec 1542 SCSI controller as a secondary (not primary) disk controller, then use the Intel-supplied tape driver and the iRMX backup command to back up the system.

See also: backup, Command Reference

Starting iRMX for Windows from Config.sys

You can load iRMX for Windows from the config.sys file provided the system is using DOS 5.0.

See also: Booting iRMX for Windows and iRMX for PCs Automatically, System Configuration and Administration

Loading from config.sys has these advantages:

- Automatically invoking iRMX for Windows upon boot-up.
- Loading iRMX for Windows before DOS utilities, allowing himem.job to provide all XMS memory. This eliminates using the HIMEM.SYS driver, thereby saving conventional memory.
- With iRMX for Windows loaded first, you can load consumers of XMS services, such as DOS=HIGH and SMARTDRV, which use the XMS memory provided by the iRMX OS. This improves disk performance noticeably.

To load iRMX for Windows from the config.sys file, use these steps:

1. Modify your config.sys file to begin with these lines.
```
buffers=40
files=64
lastdrive=Z
install=C:\dosrmx\rmxtsr.exe
install=C:\dosrmx\loadrmx.exe -n C:\dosrmx\dosrmx -s c_dos -f d -w
dos=high
install=C:\windows\smartdrv.exe /e: 2048 256 256 c
```

These values for buffers, files, and lastdrive are recommended; you can change them to match the requirements of other software applications.
2. Reset (warm boot) your system. iRMX for Windows should be automatically invoked upon reboot.

If the OS has not booted, check for:

- Not enough system memory. When defining the amount of memory to give SMARTDRV, be sure that Windows is left at least 1 Mbyte of XMS memory.

1.
 CAUTION

With write cache enabled, SMARTDRV buffers up data in the write cache and only updates the disk when needed. This can cause disk corruption if the write cache is not flushed to disk before turning off the system.

See also: smartdrv command, cache flushing, Microsoft Windows Users Guide

- Syntax errors in the config.sys file
- Driver conflicts

Logging On

Refer to Chapter 8 for instructions on how to log on the iRMX operating systems.

Using the Hot Keys

A number of Hot Keys control the mode of operation of the console.
Invoke the Hot Keys by entering an <Alt-appropriate key> sequence. Table 6-1 provides a summary of the Hot Keys and their function.

Table 6-1. Hot Keys

Hot Keys	Function
$<$ Alt-SysRq>	Toggle between DOS and iRMX prompts
$<$ Alt $+>^{*}$	Change iRMX console foreground color
$<$ Alt $->^{*}$	Change iRMX console background color
$<$ Ctrl-Alt-Del>	Restart system (DOS and iRMX OSs)
$<$ Ctrl-Alt-Break>	Break to system debug monitor (SDM) from the iRMX prompt

* Use the '+' and '-' keys on the numeric keypad.

Toggling the Console Between DOS and iRMX Operation

You can toggle between the DOS and the iRMX prompts whenever the console is in text mode, but not when it is in graphics mode. Graphics mode is incompatible with the iRMX command line. To toggle the console, press <Alt-SysRq>.

The current display is saved before the change is made, unless the console has been in graphics mode or a DOS application has reset the video card. When you toggle back, the displayed data is the same as when you left.

If the console has been in graphics mode or if a DOS application has reset the video card, you can restore the iRMX prompt by changing to text mode and then pressing <Alt-SysRq> followed by <Enter>. This sets the console display to 80 columns by 25 lines.

At the DOS prompt, you may enter DOS commands at the keyboard; at the iRMX prompt, you may enter iRMX commands at the keyboard. When DOS owns the console, iRMX output to the console is saved in a buffer and is displayed when you switch back to iRMX. When the iRMX OS owns the console, DOS output to the console is discarded.

Changing the Console Colors

You can change the foreground and background colors of the iRMX console. On an EGA, VGA, or Super VGA display, the selectable colors are: white, black, blue, green, cyan, red, magenta and yellow, at both normal and high intensity. The default colors are normal intensity, white foreground on a black background.

You cannot select the same color for the foreground and the background.
To change the foreground color press
<Alt +>
using the plus key on the numeric keypad. Each time you press this key sequence, the foreground color changes to the next available color, eventually wrapping around to the initial color.

To change the background color press:

```
<Alt ->
```

using the minus key on the numeric keypad.
You can change colors by changing the x and y parameters in this line from the :config:loadinfo file.
sysload /rmx386/jobs/keybd.job (x,y,7a55)
See also: the loadinfo file for the line sysload keybd.job(f,1,7a55)

Breaking to the SDM Debug Monitor

You can invoke the system debug monitor from the iRMX prompt (not the DOS prompt) by pressing <Ctrl-Alt-Break>.

If you want to use SDM to debug an iRMX application while the console is in graphics mode, install an auxiliary MDA monochrome card attached to a monochrome monitor. Then, SDM will always use this monitor for its console output. (The iRMX OS, however, does not support the MDA monochrome card and the HI will not use it.) Use the console command to direct output and input for the terminal.

You can resume normal operation by entering the system debugger \mathbf{g} command at the system console. This command exits SDM.

\Leftrightarrow Note

A General Protection error will also cause a break to SDM, even if the DOS prompt is displayed. In this case, entering g 284:1c will exit SDM and return to the iRMX prompt. To reboot the system from SDM, enter o64, fe at the system console. Alternatively, you can use a power OFF-then-ON cycle.

Both the DOS and the iRMX OS are effectively suspended when control passes to SDM on the system console. You will know that you are in SDM when the system prompt changes to .. (two dots).

Restarting the System

You can initiate a cold reset of the entire system by pressing <Ctrl-Alt-Del>. This resets the processor and should not be done unless necessary.

Networking Capabilities

IRMX for Windows gives DOS and the iRMX OS simultaneous access to network services. This support for both DOS and the iRMX OS provides a variety of capabilities:

- DOS and iRMX applications that communicate on the network run unchanged when they run on the same processor.
- DOS files can be accessed from a remote file consumer without a dedicated file server.
- DOS and iRMX OSs running on the same processor can share a single network controller.
- OpenNET networking support provides connections to computers running the DOS and UNIX operating systems.
- DOS networking applications can use the network controller in a Multibus I or Multibus II system.
- TCP/IP networking support provides access to other operating systems through TCP/IP, FTP, or TELNET.
- NFS networking support provides access to remote files on other operating systems.

Network Software Choices

PCs running iRMX for Windows can run this network software used by DOS:

- MS-Net client or server
- IBM PC LAN client or server
- Novell NetWare client
- Combinations of iRMX-NET client, MS-Net client, and NetWare on one computer
- DOS Virtual Terminal consumer

4 CAUTION

A system error may occur if MS-Net is active when iRMX for Windows is loaded with a network system job specified in \rmx380【config\loadinfo and both use the same network controller.

See also: Using iRMX-NET in a DOS Environment, System Configuration and Administration

Using iRMX-NET

After you have installed iRMX for Windows, you can connect your system to a network. Before you attempt to establish connection to a network, ensure that:

- The appropriate supported Intel network interface controller board for your system has been installed.
- The Ethernet cable is connected.
- iRMX for Windows is running.
- The appropriate iNA 960 job for your network interface controller (NIC) is loaded and running.
- For ISO networking, the iRMX-NET LAN is set up and ready to accept nodes.
- Additionally for TCP/IP networking:
- The TCP/IP Kernel jobs and optionally POSIX and NFS jobs are loaded and running
- The TCP/IP LAN configuration files are set up

See also: Network jobs, System Configuration and Administration; Using the Network, Supported Hardware, Network User's Guide and Reference;
Installing and Starting TCP/IP, TCP/IP and NFS for the iRMX Operating System

Accessing DOS-formatted Diskettes from the iRMX Prompt

\Leftrightarrow Note

You can access iRMX formatted diskettes only from the iRMX prompt.

Toggle to the iRMX prompt from DOS.
Before any diskette may be used by the iRMX OS, you must attach the diskette drive to the OS and assign it a logical name. Logical names are surrounded with colons to differentiate them from other device or file names.

See also: Creating and Using Logical Names, Command Reference
To attach DOS diskette drive A:, enter:

- ad A_DOS as : f: <CR>

See also: attachdevice, Command Reference
Drive A: has now been attached with the iRMX logical name :f:. Obtain a directory listing of the DOS-formatted diskette in drive A: by entering:

- dir :f: <CR>

The directory listing is displayed in regular iRMX fashion.
See also: dir, Command Reference
Toggle the console back to DOS operation and compare the DOS and iRMX directory listings of the DOS diskette.

Before proceeding to the next section you must detach the diskette drive.

1. Toggle to the iRMX prompt.
2. Detach the diskette drive by entering:

- dd :f: <CR>

See also: detachdevice, Command Reference

CAUTION

Always detach and reattach diskette drives when changing iRMXformatted diskettes; otherwise data may be corrupted.

See also: Switching Diskettes, Command Reference

Using a DOS-formatted Hard Drive from the iRMX Prompt

If you booted with DOS as the system device, toggle to the iRMX prompt from DOS and enter:

```
- dir :sd: <CR>
```

If your primary DOS partition is not being used by the iRMX OS as the system device, toggle to the iRMX prompt from DOS and enter:

```
- ad c_dos as :w: <CR>
```

The DOS partition on Drive C : is now attached and you can access it as :w: from the iRMX OS. Use the logical name :w: just as any other iRMX logical name.

See also: Logical names, Command Reference

Using an iRMX-formatted Hard Drive from the DOS Prompt

If your system contains an iRMX-formatted drive or an iRMX-formatted partition, toggle to the iRMX prompt from DOS and attach that iRMX-formatted partition (or drive) as : x :. For example, if you have an iRMX partition on your first physical drive and that partition has not been attached, enter:

```
- ad C_rmx as :x: <CR>
```

If you receive the error:

```
c_rmx, device already attached
```

c_rmx is being used as your system device :sd:
After establishing the iRMX logical name and loading the appropriate networking job, use the offer command to set $: x$: as a network public directory.

```
- offer :x: as w <CR>
```

See also: offer command, Command Reference

Once the partition has been offered by the iRMX OS, DOS can access it. If you are running MS-NET on DOS, toggle to DOS from the iRMX prompt and enter:

```
C:\> net use f: \\sysname\world <CR>
```

where sysname is the iRMX-NET network name of your system.
See also: Network names, Network User's Guide and Reference; loadname, setname commands, Command Reference

You can now access the iRMX logical name : x : (or : $s d$:, if the device is your system device) from DOS as DOS logical drive F:. For example, enter:

```
C:\> dir f:<CR>
```

The directory listing of the iRMX partition is displayed in regular DOS fashion.

Using the WTERM Sample Application

Since you are running Windows under DOS as the display, and DOS is the lowest priority iRMX task, you may see a delay when using iRMX commands that perform screen I/O.

(1) Note

While you are running the WTERM sample application, you will not be able to toggle to the iRMX OS. Windows uses graphics mode which is not compatible with the iRMX command line or the SDM monitor.

Executable code for the example is located in the \dosrmx directory. Example source code is located in the $\backslash r m x 386$ demo 1 wterm directory.

Use these steps to install WTERM on your system:

1. Install Windows, if you have not done so.
2. Create a Windows icon to invoke \dosrmx\wterm.exe.

Running WTERM

Use these steps to run the WTERM demonstration program:

1. Toggle to DOS and enter:
```
C:\WINDOWS> win /s <CR>
```

to start Standard Mode Windows.
2. Double click on the WTERM icon.
3. Activate the WTERM item from the menu and click on the Connect option. If you have not logged on to the iRMX OS, do so now.
4. You can now enter iRMX OS commands at the iRMX prompt.

To exit WTERM, click on Exit under File in the menu bar.

Initializing iRMX for Windows for Shutdown

Before turning the system power off, initialize iRMX for Windows for system shutdown. This initialization, which you can do if you are logged on as a Super user, flushes data to the disk and not to internal buffers.

1. Toggle to the iRMX prompt from DOS.
2. Execute the shutdown command as follows:

- shutdown wait=0 <CR>

3. After this message appears, turn the system power off.
```
*** SHUTDOWN COMPLETED ***
```

4. Toggle to the DOS prompt. You can turn your system power off now if desired.

See also: shutdown, Command Reference

Switching Between DOS and iRMX for PCs

You must first perform the following steps if iRMX for PCs is installed on an iRMX partition and you want to change between the iRMX OS and DOS on a regular basis. If iRMX for PCs is installed on a DOS partition, do not perform these steps.

1. At the iRMX prompt, change to the iRMX directory dosrmx.

- cd /dosrmx <CR>

2. Attach the DOS partition.

- ad c_dos as : c: <CR>

3. Create a DOS dosrmx directory.

- createdir :c:dosrmx <CR>

4. Copy iRMX files as listed below:

- copy rdisk.exe to :c:/dosrmx <CR>
- copy bootrmx.exe to :c:/dosrmx <CR>

5. Append $c: \backslash$ dosrmx to the PATH line in your autoexec.bat file.

Customizing the OS

You can specify some custom configurations of the OS. You can load certain parts of the OS with the sysload command from the command line or by modifying the :config:loadinfo file. Additionally, by modifying parameters in the rmx.ini file, you can enhance the performance of your application system.

After you install the OS, you may want to modify the default configuration to match your application. Some of the defaults you can change are:

- System memory configuration
- User IDs and memory requirements
- Terminal configuration
- Loadable jobs (including network jobs)
- Loadable device and file drivers
- Interrupt response

See also: Loadinfo file and rmx.ini parameters, System Configuration and Administration;
Interrupt response, \rmx380【readme.txt file

Starting iRMX for PCs

There are four scenarios for starting iRMX for PCs, depending on the partition in which it is installed.

Table 7-1 is a matrix for selecting commands to boot DOS or iRMX for PCs.
Table 7-1. Boot Command Selection

Partition iRMX for Pcs is Installed On	OS to Boot	
	DOS OS	iRMX for PCs OS
	rundos	runrmx
iRMX partition	bootdos	bootrmx

Note: The rundos file undoes the changes of the runrmx file and vice-versa.

Files Used for Booting iRMX for PCs

RUNRMX iRMX for PCs is installed on an DOS Partition
Invoke the runrmx.bat file to change the config.sys and autoexec.bat files to boot iRMX for PCs. Also invoke this file to undo the changes of rundos.bat.

```
C:\> \dosrmx\runrmx <drive with no colon> <CR>
``` <drive with no colon> is the DOS partition (drive) on which iRMX for PCs is installed. For example, if iRMX for PCs is installed on drive D :, the invocation is:
```

C:\> \dosrmx\runrmx d <CR>

```

If you have run the runrmx.bat file and need to undo the change, invoke \dosrmx\rundos.bat.

C:\> \dosrmx\rundos <CR>
Reset your system using <Ctrl-Alt-Del> for the change to take effect.
BOOTRMX iRMX for PCs is installed on an iRMX Partition
The bootrmx file activates the first iRMX partition and resets the system.

C:\> \dosrmx\bootrmx <CR>

\section*{Files Used for Booting DOS}

RUNDOS iRMX for PCs installed on a DOS Partition
The rundos file copies \(c: \backslash c o n f i g . d o s\) over \(c: \backslash c o n f i g . s y s\) and autoexec.dos over autoexec.bat.
- rundos <: logical drive:> <CR>
<:logical drive:> is the iRMX logical name used to attach the drive. For example, if iRMX is installed on the C : drive, the invocation would be:
- rundos :sd: <CR>

If iRMX is installed on any drive but C :, you must attach the C : drive before invoking rundos, like this:
- ad c_dos as : \(\mathrm{C}:\) <CR>
- rundos :C: <CR>

Reset your system using <Ctrl-Alt-Del> for the change to take effect.
See also: attachdevice command, Command Reference
BOOTDOS iRMX for PCs installed on an iRMX Partition
The bootdos file activates the primary DOS partition and resets the system.
- bootdos <CR>

\section*{Logging On}

Refer to Chapter 8 for instructions on how to log on the iRMX operating systems.

\section*{Using the Hot Keys}

A number of Hot Keys control the mode of operation of the console.
Invoke the Hot Keys by entering an <Alt-appropriate key> sequence. Table 7-2 provides a summary of the Hot Keys and their function.

Table 7-2. Hot Keys
\begin{tabular}{|ll|}
\hline Hot Keys & Function \\
\hline <Alt +>* & Change iRMX console foreground color. \\
\(<\) Alt ->* & Change iRMX console background color. \\
\(<\) Ctrl-Alt-Break> & \begin{tabular}{l}
Break to system debug monitor from the \\
iRMX prompt.
\end{tabular} \\
\(<\) Ctrl-Alt-Del> & \begin{tabular}{l}
Restart system. An error message is \\
displayed if the shutdown command has not \\
been used.
\end{tabular} \\
\hline
\end{tabular}
* Use the '+' and '-' keys on the numeric keypad.

\section*{Changing the Console Colors}

Colors are selectable on EGA, VGA, or Super VGA displays. The default colors are normal intensity, white foreground on a black background. You cannot select the same color for the foreground and the background.

To change the foreground color press:
<Alt +>
using the plus key on the numeric keypad. Each time you press this key sequence, the foreground color changes to the next available color, eventually wrapping around to the initial color.

To change the background color press:
<Alt ->
using the minus key on the numeric keypad.
You can change colors by changing the \(x\) and \(y\) parameters in this line in the :config:loadinfo file.
```

sysload /rmx386/jobs/keybd.job(x,y,7a55)

```

See also: the loadinfo file for the line sysload keybd.job(f,1,7a55)

\section*{Breaking to the SDM Debug Monitor}

You can invoke the system debug monitor (SDM) from the iRMX prompt (not the DOS prompt) by pressing <Ctrl-Alt-Break>.

If you want to use SDM to debug an iRMX application while the console is in graphics mode, install an auxiliary MDA monochrome card attached to a monochrome monitor. Then, SDM will always use this monitor for its console output. (The iRMX OS, however, does not support the MDA monochrome card and the HI will not use it.) Use the console command to direct output and input for the terminal.

You can resume normal operation by entering the system debugger \(\mathbf{g}\) command at the system console. This command exits SDM.

\section*{\(\Leftrightarrow\) Note}

A General Protection error will also cause a break to SDM, even if the DOS prompt is displayed. In this case, entering g 284:1c will exit SDM and return to the iRMX prompt. To reboot the system from SDM, enter 064 , fe at the system console. Alternatively, you can use a power OFF-then-ON cycle.

The iRMX OS is effectively suspended when control passes to the SDM monitor on the system console. You will know that you that you are in SDM when the system prompt changes to .. (two dots).

\section*{Restarting the System}

You can initiate a cold reset of the entire system by pressing <Ctrl-Alt-Del>. This resets the processor and should not be done unless necessary.

\section*{Networking Capabilities}
iRMX for PCs enables access to OpenNET and TCP/IP network services. These networks provide connections to computers running the DOS, UNIX, and iRMX operating systems.

\section*{. CAUTION}

If you are booting iRMX for PCs from a DOS partition, ensure that DOS networking has not been loaded prior to the loading of iRMX for PCs.

PCs running iRMX for PCs can also run the iRMX network software listed below.
- ISO-based Protocols:
- iNA 960 jobs for a programmatic interface
- iRMX-NET consumer and server for remote file access

See also: i*.job, System Configuration and Administration
- TCP/IP-based Protocols:
- NFS client and server for remote file access
- FTP client and server for remote file access
- TELNET client and server for remote login
- Socket library programmatic interface for user networking applications

See also: Overview of TCP/IP, TCP/IP and NFS for the iRMX Operating System

\section*{Using iRMX-NET}

After you have installed iRMX for PCs, you can connect your system to a network.
Before you attempt to establish a connection to a network, ensure that:
- The appropriate supported Intel network interface controller board for your system has been installed.
- The Ethernet cable is connected.
- iRMX for PCs is running.
- The appropriate iNA 960 job for your network controller is loaded and running.
- For ISO networking, the iRMX-NET LAN is set up and ready to accept nodes.
- Additionally for TCP/IP networking:
- The TCP/IP Kernel jobs and optionally POSIX and NFS jobs are loaded and running.
- The TCP/IP LAN configuration files are set up.

See also: Network jobs, System Configuration and Administration; Installing and Starting TCP/IP, TCP/IP and NFS for the iRMX Operating System

\section*{Configuring the Screen Saver}
iRMX for PCs comes with a configurable screen saver. As with changing screen colors, the parameters for the screen saver are listed in the loadinfo file:
```

sysload /rmx386/jobs/keybd.job(x,y,FFFF)

```
where \(x\) and \(y\) configure screen colors and the value FFFFH, in units of 10 ms , configures the screen saver. The first of its two functions is the amount of time in which there is no output to the console. The screen saver activates after this time span. The second function serves as the blinking rate for the screen saver icon.

The screen saver is activated and similarly, de-activated based on output to the terminal console. If your program captures keystrokes and processes them, it should send them to the terminal console.

\section*{(1) Note}

The default value is FFFFH. This sets the screen saver never to be activated. If the screen saver will be activated, ensure that the time delay value is greater than 1770 H (60 seconds).

\section*{Initializing iRMX for PCs for Shutdown}

Before turning the system power off, initialize iRMX for PCs for system shutdown. This initialization, which you can do if you are logged on as a Super user, flushes data to the disk and not to internal buffers.
1. Execute the shutdown command as follows:
- shutdown wait \(=0\) <CR>
2. After this message appears, turn the system power off.
```

    *** SHUTDOWN COMPLETED ***
    ```

See also: shutdown, Command Reference

\section*{Getting Acquainted with the Operating System}

This chapter tells you how to perform some basic operations with the iRMX OS. It covers these topics:
- Logging on and off
- Moving the cursor
- Managing files
- Using devices
- Using the on-line help facility

See also: The Human Interface (HI), The Command Line Interpreter (CLI), and Understanding the File System, System Concepts;
Chapter 1, Command Reference

\section*{Logging On and Off}

\section*{Logging On to the Operating System}

If your terminal is configured as a static terminal, you do not need to \(\log\) on to the system. The system prompt is displayed and you may begin entering commands. If you use a dynamic terminal, you must \(\log\) on to the system.

When the HI initializes a dynamic terminal, it displays a prompt for the user logon name, which is not case-sensitive. When you enter a name, the HI prompts for a password. The password is case-sensitive, and is not displayed when you enter it. The prompts look like this:

Logon:
Password:
If you have been assigned a user name and password by a system manager, enter these at the prompts. Otherwise, there are two user names defined for all iRMX systems. One is Super, the system manager, with user ID 0. The default password for Super is passme. Super has special privileges with regard to file access and command usage. The other user is World, with user ID 65535. World is the default user on iRMX systems, and requires no password. Simply press <CR> at the password prompt.

When you enter a valid user name and the correct password, the HI places you in a home working directory: for example, /user/world. Then it displays the CLI signon message. This is the default message:
```

iRMX HI CLI Vx.y: user = <ID>
Copyright years Intel Corporation
All Rights Reserved
-submit commands

```

The sign-on message displays your user ID. When you \(\log\) on to the system, the HI creates your interactive job and starts the CLI. The CLI executes the logon file, :prog:r?logon, which contains a set of submit commands. These commands are automatically invoked whenever you \(\log\) on.

The :prog:r?logon file, and any file with a name that contains \(r\) ?, is a hidden file. It does not show up in a normal directory listing. The :prog:r?logon file is unique for each user, though many user files can be very similar. You can customize your file by adding commands to it. After processing all the commands in the logon file, the CLI issues a dash (-) prompt. You can now enter commands or invoke application programs.

See also: Hidden files, Command Reference; submit and logoff commands, Command Reference; Logon, static, and dynamic terminals, System Configuration and Administration

\section*{Logging Off}

Logging off of a dynamic terminal frees the terminal for other users, and frees the memory pool used by your interactive job.

Enter the logoff command to log off. Whenever you log off, the CLI searches for the logoff file, :prog:r?logoff, and invokes the commands in it. You can customize this file by adding commands to it.

\section*{Moving the Cursor}

Table 8-1 lists the line-editing and cursor-movement keys supported by the CLI, along with other characters that have meaning for the CLI and HI.

\section*{Bell Warning}

On some systems, when you attempt an invalid action the CLI line-editor beeps the terminal bell. For example, it beeps if you:
- Type <Up-Arrow> to move the cursor up when you have not previously entered commands (there is no history buffer).
- Type < Down-Arrow> to move the cursor down when you are on the last line of the history buffer.
- Type <Right-Arrow> to move the cursor right beyond the line limit.

\section*{Terminal Characteristics}

The CLI executes on a wide variety of terminals. It uses the :config:termcap file to identify terminals and define keys used for special functions, such as cursor movement and line-editing. Each terminal is assigned a terminal name in the file. To change terminal types, use the set command and specify a terminal name from
the file. To add a terminal or change terminal characteristics, edit the :config:termcap file.

See also: Terminal definition file, System Configuration and Administration; set command, Command Reference

Table 8-1. Function Keys and Special Characters
\begin{tabular}{|c|c|}
\hline Key & Function \\
\hline <Right-Arrow> & Moves the cursor one place to the right. \\
\hline <Left-Arrow> & Moves the cursor one place to the left. \\
\hline <Up-Arrow> & Replaces the current command line with the previous command line. \\
\hline <Down-Arrow> & Replaces the current command line with the next command line. \\
\hline <Home> & Moves the cursor in the direction of the last arrow key used. After <Right-Arrow> or <Left-Arrow>, <Home> moves to the end or beginning of the line. After <UpArrow> or <Down-Arrow>, <Home> moves to the first or last command in the history buffer. \\
\hline or <Backspace> & Deletes one character to the left of the cursor. \\
\hline <DelCh> (<Ctrl-F>) & Deletes the character on which the cursor is positioned; usually configured to <Ctrl-F>. \\
\hline \begin{tabular}{l}
<DelR> \\
(<Ctrl-A>)
\end{tabular} & Deletes all characters to the right of and including the cursor location: usually configured to <Ctrl-A>. \\
\hline <Dell>
(<Ctrl-X>) & Deletes all characters to the left of the cursor; usually configured to <Ctrl-X>. \\
\hline <Esc> & Executes the entire command line, regardless of the cursor position. \\
\hline <CR> & Executes from the beginning of the command to the cursor. Everything to the right of the cursor is ignored. \\
\hline <Ctrl-C> & Aborts the current foreground command and returns control to the CLI. \\
\hline \& & An ampersand designates the next line as a command continuation line. \\
\hline ; & A semicolon designates a comment in HI commands. Everything to the right of the semicolon is considered a comment. \\
\hline ' or " & Single or double quotes around a character remove the special meaning of the character. For example, to use an ampersand or semicolon in a command for any other purpose than line continuation or a comment, surround the character with quotes. The only special characters not affected by the quotes are slashes (/), which are pathname separators, and dollar signs (\$). The second quote must match the first. To include a quote character inside a quoted string, specify the character twice or use the opposite type of character (single or double). \\
\hline
\end{tabular}

\section*{Managing Files}

One of the main commands to manage files is the copy command. Use it for:
- Creating a new file
- Displaying the contents of files at the console screen
- Copying one or more files to new files
- Copying data from one file and overwriting data in another file
- Appending data from one or more files to the end of data in another file
- Concatenating multiple files into a single file

The examples that follow show you how to use these techniques. They also illustrate the general use of the to, over, and after parameters common to many iRMX commands. The syntax for the commands used in these sections is typically:
```

command infile [to|over|after] outfile options

```

\section*{Creating a Simple Data File}

Use the copy command to create data files. You do this by redirecting keyboard input to a file. To create a file called alpha under your :\$: working directory and write two lines of data into the file, enter:
```

-copy :ci: to alpha <CR>
aaaaa <CR>
bbbbb <CR>
<Ctrl-Z>

```

The HI responds:
```

:ci: copied to alpha

```
-

The command does not prompt you for the data lines; you simply begin entering data after you press <CR> at the end of the command line. The <Ctrl-Z> entry writes an end-of-file mark at the end of your input (but not into the file you are copying), to inform the copy command that there is no more data to be copied.

After you enter the last line of data, you must press <CR> before you enter <Ctrl-Z> to insert an end-of-file. Otherwise, the <Ctrl-Z> will be ignored.

If the file already exists, this message and query appear:
```

alpha, already exists, OVERWRITE?

```

Enter y to overwrite the file, or n to cancel the command.

\section*{Displaying the Contents of Files}

To display a file's contents on the screen, enter:
```

-copy alpha <CR>

```

The HI responds:
```

aaaaa
b.b.b.b
alpha copied to :co:

```

This example uses the default preposition to and default output file :co:, which means that the command copies the output to the console screen.

To halt the scrolling of a displayed list, press these control keys:
<Ctrl-S> Stops the data from scrolling off the screen until you press <Ctrl-Q>.
<Ctrl-W> Puts the terminal into scrolling mode. In this mode, output stops after a single screen of data appears. Entering another <Ctrl-W> displays the next screen of data. <Ctrl-Q> exits this mode.
<Ctrl-T> Similar to <Ctrl-W> except output stops after each line.
<Ctrl-Q> Resumes scrolling of listed data until the end-of-file is reached or you enter \(\langle\mathrm{Ctrl}-\mathrm{C}>\).
<Ctrl-C> Cancels listing of the data and returns control to the HI, which prompts for a new command.

\section*{Copying to New Files}

You can copy multiple files with one copy command. The files are copied in the same sequence you specify in the input list and output list on the command line. To copy files \(a 1, a 2\), and \(a 3\) to files \(b 1, b 2\), and \(b 3\) respectively, enter this command:
```

-copy a1, a2, a3 to b1, b2, b3 <CR>

```

The HI responds:
```

a1 copied to b1
a2 copied to b2
a3 copied to b3

```

You can also use wildcards when copying files. If the files \(a 1, a 2\), and \(a 3\) are the only files in the directory that begin with the character \(a\), you can use this command to perform the same operation:
```

-copy a* to b* <CR>

```

The HI responds:
```

a1 copied to b1
a2 copied to b2
a3 copied to b3

```

\section*{Replacing Existing Files}

Use either the rename command or the copy command's over preposition to update existing files.
To copy new data over an existing file, first create a file named temp, then enter:
```

-copy temp over alpha <CR>

```

The HI responds:
temp copied over alpha
You can also use the to preposition, but you get a warning message:
```

-copy temp to alpha <CR>

```

The HI responds like this, and you reply with y :
```

alpha, already exists, OVERWRITE? y <CR>
temp copied to alpha
-

```

You now have two copies of the same new data; one in the temp file and one in the alpha file. If you use the over preposition in a rename command instead of the copy command, the temp file is deleted automatically when rename is executed.

\section*{Concatenating Files}

Concatenation is combining a number of files by appending them in sequence into a single file. Use the copy command to concatenate files by specifying the after preposition or by specifying multiple input pathnames and a single output pathname. (If the output pathname is a directory, concatenation does not occur).

Use the after preposition as follows:
```

-copy b,c,d after a <CR>

```

The HI responds:
```

b copied after a
c copied after a
d copied after a
-

```

To concatenate all four files into a new file called all, enter:
```

-copy a,b,c,d to all <CR>

```

The HI responds:
```

a copied to all
b copied after all
c copied after all
d copied after all

```

In this last example, file \(a\) is copied to all and the remaining input files are automatically appended to the end of all.

You can also concatenate files displayed on the screen. To list files named alpha, beta, and gamma to the default file :co: (the output device, or screen), enter:
```

-copy alpha,beta,gamma <CR>

```

The HI responds:
```

aaaaa
aaaaa
alpha copied to :co:
b.b.bb
bbb.bb
beta copied after :co:
ggggg
gamma copied after :co:

```

\section*{Renaming Files}

To change the name of file alpha to the new name omega, where omega does not already exist, enter:
```

-rename alpha to omega <CR>

```

The HI responds:
```

alpha renamed to omega

```
-

The alpha pathname is automatically deleted from the system when the rename command executes.

You can rename lists of files to new pathnames. When using the rename command, you must always have a one-for-one match of pathnames between the old file list and the new list of names.

You can also use the over preposition with rename. The primary purpose of over is to move data from one named file and overwrite the data in another existing file. This use of the over preposition matches the action of the over preposition in the copy command, with one important distinction: rename automatically deletes the input file when the command is executed.

\section*{Deleting Files}

To delete files alpha, beta, and key from the system, enter this command:
```

-delete alpha,beta,key <CR>

```

The HI responds:
```

alpha, deleted
beta, deleted
key, does not exist
-

```

The error message for the key file tells you one of three things:
- There is a spelling error in the name of the file.
- The file does not exist.
- The file exists in a different directory than where you are currently working.

\section*{Using Devices}

The list below shows which kinds of devices you can communicate with and the types of files supported on those devices.
\begin{tabular}{ll}
Terminals & \begin{tabular}{l}
Use terminals to communicate with the HI. You can also write \\
programs that read from and write to terminals. Terminals are \\
accessed as physical files.
\end{tabular} \\
Disks & \begin{tabular}{l}
Disks provide permanent storage for programs and data. You can \\
communicate with hard disks and diskette drives. During format, \\
backup, restore, and diskverify operations, disks are treated as \\
physical files. Other operations can access named files.
\end{tabular} \\
RAM disk & \begin{tabular}{l}
A RAM disk provides an area of memory that acts like a secondary \\
storage device in the system. The RAM disk creates a disk image \\
within your memory and provides faster access to your files than a \\
physical disk. It is similar to a physical disk in all aspects except that \\
it does not provide permanent storage. If there is a power failure, the
\end{tabular} \\
system fails for some reason, or you turn the power off, the data on \\
the RAM disk is lost.
\end{tabular}

See also: File types, Introducing the iRMX Operating Systems

\section*{Device Names}

Except for devices attached by the system as a result of the system configuration, you must attach a device with the attachdevice command before using it. In the attachdevice command, you specify a physical device name that defines device characteristics. Device names are provided for standard configurations. In a custom configuration you may define new device types (and names) or remove standard ones. You can also use the sysload command with a loadable device driver to add new device types.
For terminal devices, you also specify physical device names in the lock, unlock, and connect commands.

See also: sysload, attachdevice, Command Reference

\section*{Switching Diskettes}

When you remove an iRMX-formatted diskette from the drive and then access the drive device, any connections to files on that device are deleted. Any logical names that represent files on the volume are no longer valid. The names remain cataloged in the directories, but they do not represent valid connections.

See also: Creating Logical Names for Devices, Command Reference
To maintain your data in usable form, detach a diskette before you remove it, and then attach a new diskette before you use it. Use this procedure:
1. Before removing the first diskette, invoke the detachfile command to detach the files, or use the force parameter in the detachdevice command.
2. Remove the first diskette and insert the replacement diskette.
3. Invoke the attachdevice command (or the alias ad) to gain access to the new diskette.

\section*{1 \\ CAUTION}

If you do not follow this procedure, the OS assumes that the first diskette is still in the drive. The volume directory is written only during the detachdevice command and directory changes made to the volume are not written if you remove the diskette before the detachdevice. Furthermore, if you change diskettes without a detachdevice, access the new diskette (using dir, for example), then detach the device, the directory from the former diskette is written to the current volume, destroying the file system on it. This also applies to remote diskette volumes managed by the iRMX named file driver.

\section*{Uniform and Standard Granularity Diskettes}

Modern diskette formats use uniform granularity. This means the diskette has a consistent number of bytes per sector on every track. Standard granularity is an older iRMX diskette format that uses 128 bytes per sector (single density) on track 0 , regardless of the sector density used on the rest of the volume. Older releases of the OS were distributed on this format diskette, and you may still use standard granularity diskettes.

On a standard granularity device, the iRMX BIOS can recognize the type of physical device from information written on track 0 during the format operation. If the diskette does not match the physical device type specified in the attachdevice command, the BIOS attaches an appropriate device unit information block (DUIB) for the device. The BIOS cannot do this, however, when you switch diskettes in a 5.25 -inch or 3.5 -inch drive without detaching the device. If you use a Multibus I system with 8 -inch drives, you can switch diskettes without a detachdevice, because the 8 -inch drive interrupts the OS when the diskette is changed.

Because the device characteristics recognition feature does not apply to physicalfile operations, the format, backup, and restore commands do not use this feature.

\section*{Using the Online Command Help}

Use the command help at the iRMX prompt to obtain information about most iRMX commands. You can get help by typing:
help command_list [to|over|after outpath_list] [q] [p = num]
Where:
```

command_list

```

One or more command names for which you want help. Separate command names with commas. Wildcards are permitted.
to|over|after outpath_list
Writes the help file to the specified file(s) rather than to the screen. If you specify multiple help files and one output file, the output is appended.
q (uery) Prompts for permission to display each help file.
\(\mathrm{p}(\) agelength) \(=\) num
The maximum number of lines in the output page.
See also: help command, Command Reference

\section*{Using Online iRMX System Call Help}

A Windows Help file is available for all system calls, cq_ calls from the Network User's Guide and Reference, and all exception codes. The help program runs only under Windows, not the iRMX OS.

After installing the iRMX OS, the rmxcall.hlp file is located in the \dosrmx directory on the hard disk.

To install rmxcall.hlp on any PC running DOS/Windows without performing an iRMX installation procedure, copy the file from the iRMX installation CD to your hard disk. The file is in the instal\common\dosrmx directory on the CD.

Once you have the Help file on your hard disk, you can set up an icon for it in Windows by choosing New.../Program Item from the Files menu in the Program Manager. Or, double-click on rmxcall.hlp from the File Manager to start the Help file.

\section*{Using Online iRMX Manuals}

This release of the OS provides a complete set of iRMX manuals online in Adobe Acrobat format. The manuals are on the installation CD in the Vmanuals directory. Also on the CD is a special version of the Acrobat Reader that allows full-text search across the iRMX manual set. After you install the Reader you can access the files (Portable Document Format files) directly from the CD or from a location on your hard disk, if you choose to copy them to the hard disk.

You can view the manuals online, search for text in them, and print any part (or all) of the manuals from the Reader.

\section*{Installing the Reader}

The Acrobat Reader shipped with the iRMX CD supports the Acrobat Reader Search command. With this command you can perform full-text searches of collections of the iRMX documents. Even if you have already installed a version of the Acrobat Reader, you must install this new version to support full-text search.

Unlike the Find command of a word-processing program, which searches for words by reading every word on every page, the Search command searches full-text indexes included with the electronic manuals. The full-text indexes represent the entire iRMX online documentation set. The Search command uses the index to find words and terms quickly in the iRMX manual set without having to open the documents.

To install the Reader, perform these steps:
1. Insert the iRMX 2.2 CD into the CD drive.
2. From Windows, run setup.exe from the \acrosrch\diskl directory on the CD. For example, if the CD is drive E:, in the Program Manager, choose Run... from the File menu, and enter this command:
```

e:\acrosrch\disk1\setup

```
3. Read the agreement that appears in the Electronic End User License Agreement Screen and press the Accept button.
4. From the Acrobat Installer screen:
- Be sure the Acrobat Search check box is selected to get the full-search capability within the iRMX manual set. You will need approximately 4.7 Mbytes on your hard disk to perform the installation with the search capability activated.
- Enter the path on your hard disk where you want the Reader to be installed, for example, c:\userbob\acrosrch.
5. Accept the Windows information displayed for Name, Organization, and Serial Number.
6. Wait for the installation to complete.

After the installation completes, you will have an Adobe Acrobat program group with two items: the Reader and a "readme" file.

Start the Reader and view the help_r.pdf and help_s.pdf files in the help subdirectory under the directory where you installed the Acrobat Reader. These files describe how to use the Reader and the search facility, respectively.

You can use this version of the Reader to view Acrobat-format documents (.PDF files) for any product, not just for the iRMX OS.

\section*{Accessing the Online Manuals}

You can view the iRMX manuals directly from the CD or you can copy the files from CD to a directory of your choice on the hard drive.

By accessing the manuals directly off the CD you save hard disk space but can sacrifice access time.

By installing the files to your hard disk you can gain better performance when viewing manuals. To copy the files to your hard disk enter this command:
```

xcopy e:\manuals\*.* \d:\<new_directory> /s/e

```
where e: is the CD-ROM drive, \(d\) : is your hard disk, and <new_directory> is the destination path.

The Vmanuals directory contains *.pdf files and a . \(p d x\) file. There is also a readme.txt file with the latest information about using and installing this tool. The subdirectories under \(\backslash\) manuals contain parts of the index tool used by the search engine in the Acrobat Reader.

\section*{19 Note}

Read the readme.txt file to make sure you have the latest information. To start viewing iRMX manuals, start the Reader and open Welcome.PDF.

\section*{Where To Go From Here}

You can take several paths through the documentation. The figures that follow offer suggestions.

Figure 9-1 on page 168 displays the recommended order for new users. New users means that you're new to the iRMX OS.

If you've developed application programs with the iRMX OS, browse through Introducing the iRMX Operating Systems. Figure 9-2 on page 169 displays the recommended order for experienced users.
See also: Appendix B for a list of manuals where new features are documented

Optional

Figure 9-1. Recommended Documentation Roadmap for New Users

Figure 9-2. Recommended Documentation Roadmap for Experienced Users

\section*{iRMX INSTALLATION APPENDICES}

This section contains information that lets you get started with your iRMX OS. These are the chapters in this section:

Appendix A. Installed Directories
Appendix B Changes and New Features in Manuals for this Release
Appendix C Limitations
Appendix D Configuration Requirements for PC Platforms
Appendix E Changing Memory Size During the iRMX III OS Installation
Appendix F Hardware Modifications for the iRMX III OS Installation
Appendix G Error Messages

\section*{Installed Directories}

A

This appendix shows the installed directory structure for all versions of the OS: iRMX for Windows, iRMX for PCs, and the iRMX III OS.

\section*{Directory Structure}

Following are key directories resulting from the installation of iRMX OS. The column to the left gives the name of the directory (shown hierarchically) and the column to the right provides a brief description of the directory's contents.
```

Directories
:sd:
bin
boot32
bsl
dev
dosrmx
etc
ins_sys
intel
bin
include
arpa
net
netinet
sys
pse
lib
ndp387
gen
src
lang286
msa
boot
config
msa32
386258
486133
p5090
boot

```

\section*{Comments}

TCP/IP binaries
Multibus I boot images
Multibus I boot generation and configuration files
TCP/IP device definitions
DOS-specific files including Windows Help
TCP/IP commands and configuration files
iRMX MBI Installation system commands
AEDIT, Intel386 utilities
C header files (include files)
C include files specific to TCP/IP protocols, e.g., FTP
C include files for networking not specific to TCP/IP C include files specific to TCP/IP protocols, e.g., TCP
System-related C include files
C include files for Unix Streams Emulator (iRMX)
C-start objects, C-library interface libraries
Math coprocessor utilities
Generation files
C-start objects for ASM
Compiler and utility executable files
Default MSA files
Default MSA boot image file
Default MSA BPS file
iRMX III MSA boot files
BPS files for 386/258 and 386/258D
BPS files for 486/133SE and 486/166SE
BPS files for P5xxx family of boards
MSA boot images
```

:sd:
net
rboot32
rmx386
clib
config
demo
altsys
asm
C
dde
plm
rgi
rom
rte
wterm
drivers Loadable device driver files
early
eios
help
hi
icu
inc
inc16
ios
jobs
lib
loader
nucleus
network
sdb
sdm
udi
unsupprt
vm86
sys386
system
tmp
user
super
prog
world
prog
util286
util386
work
iNA 960 load files
Multibus I remote boot files
Readme text files
C run-time system libraries
iRMX configuration files
Example files (includes source files)
New but unintegrated software
EIOS library files (used in generating boot images)
Help files for iRMX commands
Human Interface (HI) library files
ICU files (screen master, template, registration, and .bck)
P/LM 32-bit external declaration and literal files
P/LM 16-bit external declaration and literal files
I/O system library files (used in generating boot images)
Loadable system jobs
Interface libraries for OS
Application Loader library files (used in generating boot images)
Nucleus library files (used in generating boot images)
iNA 960 network library files (used in generating boot images)
SDB library files (used in generating boot images)
SDM library files (used in generating boot images)
UDI library files (used in generating boot images)
Unsupported software features
VM86 library files (used in generating boot images)
Commonly used Intel-provided command files
Default Multibus I boot image file
TCP/IP temporary files directory
User directory
Super user :home:directory
Super user :prog: directory
World user :home:directory
World user :prog: directory
HI utility commands (16-bit)
HI utility commands (32-bit)
Temporary work files

```

\section*{Multibus I Minimum File Structure Needed}

This directory structure is the minimum needed to boot the iRMX III OS from a Multibus I system.

\section*{Directories and Files}
:sd:
etc
sys386
system
. \(r m x 86\)
rmx86.386
rmx386
. config
. . udf
. . terminals
. . logon.msg
. . termcap
. . user
. . . super
user
. super
prog
work
util286
util386
lang286

\section*{Multibus II Minimum File Structure Needed}

This directory structure is the minimum needed to boot the iRMX III OS from a Multibus II system.

\section*{Directories and Files}
:sd:
etc
msa
stage2.rmx
boot
\(r m x\)
rmxio
config
bps
sys386
util286
util386
lang286
rmx386
config
user
. . super
. udf
terminals
logon.msg
termcap
user
- super
prog
\(r\) ?logon
work

\section*{Changes and New Features in Manuals for this Release}

\section*{New Features}

The features listed in this appendix were added or changed in this release of the OS. To read about the details of each feature, refer to the indicated entries in the manual set.

\section*{Commands, New and Changed}

See the descriptions of the following commands in Command Reference, Chapter 2. All TCP/IP-related commands moved to the Command Reference manual.

\section*{New Commands}
domain
netinfo
rpcinfo
share
showmount
touch
unshare
r* TCP/IP (Berkeley) commands

\section*{Changed Commands}
attachdevice (for NFS)
attachfile
detachfile
esubmit
keyb (now documented)
make (used to be mk)
rdisk
setname
sysinfo
sysload

\section*{Compilers and Data Types}

Include files use standardized Kernel data types (e.g., UINT_16 instead of unsigned short) System Call Reference, Chapter 1

Support for non-Intel (third party) C compilers Borland/Microsoft/Watcom
Programming Techniques, Chapters 4 and 8
System Call Reference, Chapter 1, Interface Libraries
First-level job support in ICU for applications created with third-party compilers
Programming Techniques, Chapter 4
ICU User's Guide and Quick Reference, TPUJ screen

\section*{Configuration}

Aedit Undo key configuration
Aedit Text Editor, Chapter 3
ICU definition file (*.bck) master list
ICU User's Guide and Quick Reference, Appendix D
New BPS parameters for partitioning, terminal file, system configuration file, iRMX-NET MSA for the iRMX OS, Chapter 2 (bl_master_boot_part, bl_logical_boot_part, rq_hterm, rq_hscf, rq_rnet_s, rq_rnet_c)

New parameters in rmx.ini file
System Configuration and Administration, Chapter 5, [HI] block (see SCF, TCF) and [PCIAD1], [RNETS] and [RNETC] blocks

New/changed BPS files and directories
MSA for the iRMX OS, Chapter 3
Remote Boot changes
Network User's Guide and Reference, Chapter 15
System Configuration and Administration, Chapter 4 (rbootsrv.job)
ROMming method and examples
Programming Techniques, Chapter 9

\section*{Debugging}

Soft-Scope operates locally or on a remote host
Soft-Scope Debugger User's Guide
SDM new commands for breakpoints and page tables
System Debugger Reference, Chapter 3 (bc, bs, \(\mathbf{p}^{*}\) commands)

\section*{First-level Jobs}

See System Configuration and Administration, Chapter 6, and screens in the ICU User's Guide and Quick Reference for a description of new first-level jobs:
iNA 960 jobs, including jobs for routing and Multibus II subnet
Soft-Scope kernel
TCP/IP
X. 25 Client and Server

\section*{Loadable Jobs and Drivers}

See System Configuration and Administration, Chapter 4, for a description of these new loadable jobs and drivers:

82530 terminal driver (drv82530)
ARC server (atcs279.job)
DDE support over a TCP/IP network (tcpdde.job)
iNA 960 jobs for routing and Multibus II subnet (\(i^{*}\). job \()\)
iRMX-NET client, server, and remote bootserver (remotefd.job, rnetserv.job, rbootsrv.job)
NFS jobs (nfsfd.job, nfsd.job, mountd.job, pmapd.job)
Paging subsystem and flat model support (flat.job, paging.job)
Soft-Scope support for remote debug host (sskernel, ssload)
X. 25 Client (x25cli.job)

\section*{Networking, iNA 960 and iRMX-NET}
/net/data file change
Network User's Guide and Reference, Chapter 11
Command Reference, setname command
iRMX-NET loadable Client and Server
System Configuration and Administration, Chapter 4 (remotefd.job, rnetserv.job)
MIP configuration now performed in ICU
ICU User's Guide and Quick Reference
Name Server new commands
Network User's Guide and Reference, Chapter 11 (ADD_SEARCH_DOMAIN, DELETE_SEARCH_DOMAIN, and GET_SEARCH_DOMAIN)

Remote boot client on remote systems waits for cataloged values from the boot server
Network User's Guide and Reference, Chapter 11 (NSDONE, RNETSRV)
System Configuration and Administration, Chapter 4 (rnetserv.job)
Remote boot loadable server job
System Configuration and Administration, Chapter 4 (rbootsrv.job)
Routing support, multiple subnets, and Multibus II subnet
Network User's Guide and Reference, Chapter 9
System Configuration and Administration, Chapter \(4\left(i^{*} . j o b\right)\)

\section*{Networking, TCP/IP and NFS}

Berkeley R-series commands added TCP/IP and NFS for the iRMX OS, Chapter 6 Command Reference, Chapter 2

Configure TCP/IP as first-level job
System Configuration and Administration, Chapter 6 ICU User's Guide and Quick Reference, NET screen

NFS capability added
TCP/IP and NFS for the iRMX OS, Chapter 3
Command Reference, (attachdevice, share, showmount, unshare commands) System Configuration and Administration, Chapter 4 (nfsfd.job, mountd.job, \(n f s d . j o b\), pmapd.job)

TCP/IP configuration changes
TCP/IP and NFS for the iRMX OS, Chapter 2

\section*{Paging Subsystem}

New system calls for flat model applications (non-segmented) applications
System Call Reference, Chapter 10, all
Chapter 6, (rq_move_data, rq_get_buffer_limit, rq_validate_buffer)
Chapter 3 (rq_wait_iors)
SDM debug display for page tables and directories
System Debugger Reference, Chapter 3 (p* commands)
Support for flat model applications
Programming Techniques, Chapter 8

\section*{System Calls}

See the chapters listed below in the System Call Reference for a description of these new calls:

Paging Subsystem, Chapter 10 (rqv_ calls), and support for flat model applications:
Chapter 2 (Application Loader calls rqe_a_load_io_job, rqe_s_load_io_job)
Chapter 3 (BIOS call rq_wait_iors)
Chapter 6 (Nucleus calls rqe_exit_interrupt, rq_get_buffer_limit, rq_move_data, rq_validate_buffer)

Condition code master list, Appendix D
Kernel time calls, Chapter 9 (KNE_get_time, KNE_set_time)
Nucleus time calls, Chapter 6 (rq_get_time and rq_set_time moved from BIOS to Nucleus)
Exception handling, Chapter 6 (rqe_set_exception_handler, rqe_get_exception_handler) See also System Concepts, Chapter 9

Task and system accounting, Chapter 6 (rq_get_task_accounting, rq_get_task_info, rq_get_task_state, rq_system_accounting)
See also System Concepts, Chapter 9
Watchdog timer for live insertion support, Chapter 6 (rq_attach_reconfig_mailbox) See also System Concepts, Chapter 3

\section*{Others}

C Library functions added
C Library Reference, Chapter 3 (_get_cs, _get_ds, _get_ss)
DDE support enhanced
Programming Concepts for DOS and Windows, Chapter 7
Exception handling
System Concepts, Chapter 9
Include files master list
System Call Reference, Chapter 1
Interface Libraries master list
System Call Reference, Chapter 1
Multibus II Live Insertion support; watchdog timer
System Concepts, Chapter 12
System Call Reference, Chapter 6 (rq_add_reconfig_mailbox)
Partitioning support for SCSI hard drives with PCI driver
Command Reference, Chapter 2 (rdisk) and Appendix F
System Configuration and Administration, Chapter 4 (pcidrv)
MSA for the iRMX OS, Chapter 2 (bl_boot_master_part, bl_boot_logical_part)
Task and System Accounting
System Concepts, Chapter 9
X. 25 applications
X. 25 User's Guide and Reference

System Configuration and Administration, Chapter 4 (x25cli.job) and 6 (X. 25 jobs)

\section*{New Documentation of Existing Features}

Console output codes documented
System Configuration and Administration, Appendix A
Known limitations of the OS documented
Installation and Startup, Appendix F
Using iRMX-NET with MS-NET and PCNET in a DOS environment
System Configuration and Administration, Chapter 3
Windows Help version of System Call Reference and Acrobat online versions of all manuals
Installation and Startup, Chapter 6

\section*{Limitations}

This appendix presents general and area-specific limitations for the iRMX for Windows version of the OS as well as other limitations that are common to all versions of the OS. Review this appendix to make sure your application and software configuration is compatible.

\section*{iRMX for Windows General Limitations}
- The OS does not work with Windows for Workgroups, Windows 95, or Windows NT.
- The OS does not work with enhanced-mode Windows. Use Windows 3.1 in standard mode only.
- The OS does not support DPMI (DOS protected-mode interface) applications, such as those built with Phar Lap's DOS Extender. You cannot start iRMX for Windows with such an application running, nor can you start a DPMI application after starting iRMX for Windows.
- DOS or Windows applications that remotely control another PC or that manage the system timer are incompatible with the OS, and are not supported.

\section*{iRMX for Windows-specific Limitations}
iRMX for Windows has limitations in these specific areas:
- Extended memory usage
- Expanded memory usage
- Ill-behaved DOS applications
- DOS application installation
- Real-time performance issues
- Networking and Communication
- DOS debuggers
- Software interrupts
- Hardware sharing
- Priority level
- Invisible files
- Last cylinder usage
- Printing
- EDOS File Driver
- RTE Calls

These limitations are described in the subsections that follow.

\section*{Extended Memory Usage}
iRMX for Windows provides support for DOS extended memory; however, there are restrictions on what you can load into extended memory. These restrictions are due to the order of loading DOS drivers and loading the iRMX extended memory manager.

See also: Chapter 6 for more details

\section*{Expanded Memory Usage}

If an application requires expanded memory, provide hardware expanded memory, such as an Intel Above Board, not expanded memory emulated in extended memory.

\section*{III-Behaved DOS Applications}

DOS application programs which use or do the following are not supported:
- Reprogramming the Programmable Interrupt Controller (PIC)
- Accessing the timer in ways other than trying to re-program it to a different clock rate, or trying to calibrate programs by using the timer to measure elapsed time. Both of these attempts are handled by the operating system. Other access attempts will cause unpredictable results, such as breaking to the SDM monitor.
- Calling software interrupt handlers directly instead of using the INT instruction
- Relying on 64 Kbyte wrap-around for Code and Data segments
- For TSR's, not following DOS reentry protocols or chaining improperly to interrupt vectors

\section*{DOS Application Installation}

Any DOS application that requires resetting the system, such as Windows setup.exe, must be run prior to loading iRMX for Windows. Even if you have shut down the OS, reset the system before running such software.

\section*{Real-time Performance Issues}

DOS applications and Windows programs are prevented from disabling iRMX interrupts indefinitely. Virtual interrupts are used to provide correct behavior for DOS and Windows without impacting the iRMX OS.

The DOS clock interrupt handler can take an indefinite amount of time, especially if there are many TSR's chained to it. The DOS handler needs to do the end-ofinterrupt to the PIC within a millisecond, even if the call does not return for a longer duration.

\section*{Networking and Communication}

DOS applications performing disk I/O or communication I/O, such as XMODEM data transfers or disk testing software, can fail if the applications are sensitive to timing and are competing with the iRMX OS for processor time.

Since the EDOS file driver removes \(r\) ? from the beginning of filenames before sending them across the network, you may need to duplicate invisible iRMX named files that reside on an iRMX partition (that is, have one file named \(r\) ?logon and another named logon) before you can access them via DOS networks.
iRMX filenames sent across DOS networks are truncated to eight characters and a three character extension even if the remote host is an iRMX partition and the named file driver is used.

You cannot start the DOS version of MS-NET software with the normal net start rdr command and then start iRMX for Windows with its network software. Instead, use the pcnet version of MS-NET software, with the iRMX netrdr job. You can start Novell software before starting iRMX for Windows.

See also: Using iRMX-NET in a DOS Environment, System Configuration and Administration

Booting the OS from files on a Novell server is not supported. If you start DOS and Novell networking, then attach to the Novell server as drive E., for example, do not boot iRMX for Windows from drive E. The length of filenames under iRMX is incompatible with filename length as managed on the Novell server.

\section*{DOS Debuggers}

Some DOS debuggers support both Real Mode and Protected Mode. Use Real Mode for debugging DOS application programs. However, you can use Standard mode Windows if your are running a Windows-based debugger.

\section*{Software Interrupts}

Certain software interrupts are reserved and not available for use by DOS application programs.

\section*{Hardware Sharing}

These iRMX-encoded hardware interrupt levels are reserved and not available for any other use:
- For PC compatible networking systems, PIC Slave Level 1 is reserved for a PCLINK2(A) board.
- For Multibus I networking systems, PIC Master Level 5 is reserved for the SBX 586.
- For Multibus II networking systems, PIC Slave Level 1 is reserved for the MPC.

\section*{Accessing Serial Devices}

DOS applications can access any serial device not attached by the iRMX OS. However, once a serial device is attached by iRMX, it is not available to DOS. If you use a serial device from DOS, do not enter the device name in the terminal configuration file or attach it with the attachdevice command.

See also: Configuration of Local Terminals, System Configuration and Administration

\section*{Priority Level}

DOS runs at priority 254: an iRMX task running at 255 will not execute. This also implies that if any iRMX task running at a priority higher (numerically lower) than 254 is in a tight polling loop, that task will prevent the DOS task from ever executing. Your iRMX application program must not include tight polling loops.

A low priority iRMX task (for example, priority=200) in a tight loop can indirectly keep a higher priority task (for example, priority=141) from running, if the higherpriority task needs I/O from the EDOS file driver or the ROM BIOS. This is because an I/O task that uses EDOS or the ROM BIOS has to wait for DOS to be safe before initiating I/O. If the low-priority iRMX task preempts DOS while it is in a "DOS-busy" state (during an INT 21 or INT 13), DOS never gets a chance to complete and become "safe" so the high-priority iRMX task can perform its I/O. Therefore, if you must poll in an iRMX task, have the task either periodically release the CPU using an rq_sleep call, or run the task round robin with DOS at priority 254.

When you create users with the Command Line Interface (CLI), set the maximum task priority at one less than the DOS priority (that is, 253) in the :config:user file. Then those users will share the processor with DOS. If you use submit, set the task priority to one less than DOS. If you use background, set the task priority to three less than DOS. If you use all three, set the task priority to five less than DOS.

See also: User attributes files, System Configuration and Administration

\section*{Invisible Files}

In the iRMX OS, hidden files begin with \(r\) ?. The ? (question mark) character is not valid in a DOS file name so iRMX filenames containing a ? are not accessible to DOS. The EDOS file driver uses the following convention:
- Files on the iRMX volume that begin with \(r\) ? are created on the DOS volume without the \(r\) ?, but with the DOS invisible attribute.
- Files on the DOS volume that have their invisible bits set, appear to the iRMX OS as beginning with \(r\) ?.

For example, if you copy the file \(r\) ? login from an iRMX partition to a DOS partition, the file will appear as login with the invisible attribute. DOS invisible files such as msdos.sys appear as \(r\) ?msdos.sys when you list them from iRMX using the EDOS file driver.

On the iRMX volume, you can have two versions of the same file, one invisible and one visible, with the same name, for example \(r\) ? login and login. On DOS, you can have only one version of a file, invisible or visible.

\section*{Last Cylinder Usage and RDISK}

Rdisk and the iRMX for Windows hard disk device driver are ROM BIOS-based. Certain implementations of the ROM BIOS do not provide access to the last cylinder on the disk. If you have an existing partition table that includes the last cylinder in one of the partitions, and you invoke rdisk, it reports:
```

Invalid Partition in Partition Table

```

If the partition table still contains the last cylinder in one of the partitions and you attempt to write the partition table to the disk, rdisk reports the same error message and will not perform the write.

If you wish to create an iRMX partition on this disk, perform the following steps to remove the last cylinder and preserve the contents of the partition.
1. Back up the contents of the partition that contains the last cylinder.
2. Resize the partition so it does not contain the last cylinder.
3. Format the resized partition to modify the FAT (for DOS partitions) or bit map table (for iRMX partitions).
4. Restore the files back onto the partition.

\section*{Printing}

There is no print spooler. Output sent to the :lp: device from one job can interrupt printing from another job or interrupt printing from a DOS/Windows application. The print output is mixed.

The <Print Scrn> key is not supported from the iRMX OS as it is in DOS. You cannot use the <Print Scrn> key to print the display from iRMX.

\section*{EDOS File Driver}

These limitations or behaviors exist for the EDOS file driver:
- You cannot open more than 55 EDOS files at a time. Attempting to open more results in an E_IOMEM exception.
- An application that uses the EDOS file driver or I/O from the ROM BIOS can be blocked by a lower-priority task. Assume that a low priority iRMX task (priority \(=200\)) is in a tight loop. If a higher-priority task (priority \(=141\)) needs I/O from EDOS or the ROM BIOS, the I/O task has to wait for DOS to be safe before initiating I/O. If the low-priority task preempts the DOS task while DOS is in a "DOS-busy" state (i.e., in the middle of an INT 21 or INT 13), the DOS task never gets a chance to complete. Thus the low-priority task can block the high-priority task that needs DOS I/O. If you must poll in an iRMX task, have the task either periodically release the processor (using an rq_sleep call), or run the task round-robin with DOS at priority 254.
- The EDOS file driver treats various file access conditions differently than the named file driver. The following system calls can return unexpected condition codes with the EDOS file driver:
- rq_s_delete_file may return E_FNEXIST (21H) instead of E_FACCESS (26H)
- rq_s_rename_file may return E_FNEXIST (21H) instead of E_FACCESS (26H)
- rq_s_rename_file, when renaming a data file to which World has readonly access, may return E_OK instead of E_FACCESS (26H)
- rq_s_get_path_component, when a deleted file is specified, may return E_OK instead of E_FNEXIST (21H).
- \(\quad\) RMX for PCs/Windows EIOS buffer sizes are configurable in the rmx.ini file on a per-file driver basis. The default buffer size is 1 K for the Named, EDOS, DOS, and Remote file drivers. Increasing the default size can provide an increase in the performance of sequential I/O, but will not enhance the performance of random I/O. Also, the memory tradeoff must be considered, since buffers are allocated on a per-connection basis system-wide.

Table C-1 below summarizes the results of an I/O benchmark which performs sequential writes to a single disk file. This benchmark sequentially writes out blocks of data (using fwrite) of size "Transfer Size" until the "File Size" is reached. The table relates EIOS buffer sizes to the time it takes to write the entire file. Times are in seconds. DOS timings for the same benchmark are included for completeness. Hardware was an Intel SYP403E (33MHz 486) with a Maxtor XT-8760S SCSI drive controlled by an Adaptec 1542B SCSI controller. When comparing the numbers, the lower the number, the better the I/O performance.

Table C-1. Sequential I/O Performance Benchmark
\begin{tabular}{|lllllll|}
\hline \begin{tabular}{l}
Transfer \\
Size
\end{tabular} & \begin{tabular}{l}
File \\
Size
\end{tabular} & \begin{tabular}{l}
1K \\
Buffers
\end{tabular} & \begin{tabular}{l}
2K \\
Buffers
\end{tabular} & \begin{tabular}{l}
4K \\
Buffers
\end{tabular} & \begin{tabular}{l}
DOS Plus \\
iRMX
\end{tabular} & \begin{tabular}{l}
DOS \\
Only
\end{tabular} \\
\hline 128 & 256 K & 4 & 3 & 2 & 9 & 9 \\
256 & 512 K & 9 & 6 & 5 & 17 & 17 \\
512 & 1 M & 19 & 11 & 10 & 35 & 35 \\
1 K & \(2 M\) & 37 & 21 & 20 & 37 & 36 \\
\hline
\end{tabular}
\(\Leftrightarrow\) Note
The I/O benchmark was run on the Named, EDOS, and DOS file drivers with essentially the same results. The EDOS file driver is slightly slower due to the overhead of DOS system calls.
- On iRMX for Windows with short circuit iRMX-NET configurations, offering any local EDOS file driver devices as public directories when accessing from the DOS side of the system will result in a system hang.

\section*{RTE Calls}

These iRMX system calls do not work properly when invoked as real-time extension (RTE) calls from DOS. They do work properly when called from Windows.
- rq_sleep can hang DOS/Windows.
- Using timeouts with mailbox and semaphore operations (rq_receive_message, rq_receive_data, and rq_receive_units) can also hang DOS/Windows.
- Using regions (rq_accept_control and rq_send_control) can temporarily raise the DOS task's priority.

\section*{Message Passing Limitations}

The PC-compatible Multibus II processor boards SBC 486DX33 and SBC 486DX66 have the following Nucleus Communication System message passing limitations.
```

Data chains are not supported as message passing buffers.

```

The DMA hardware expects solicited message buffers to meet address alignment restrictions: the physical address of the buffer must be DWORD aligned (two LSBs of address are 0). Alignment buffers are used to force alignment of misaligned data, one each for input and output. The size of these buffers is configurable, in the ICU adjust the values of DIB and DOB on the MBII screen, or in the rmx.ini file set these parameters to at least the size of the largest unaligned solicited message. Attempts to send/receive from/to unaligned buffers larger than the configured alignment buffer size results in an E_NUC_BAD_BUF exception. The iRMX Free Space Manager guarantees that all segments are created with 16-bit aligned physical addresses (four LSBs are 0), so any iRMX segment used as a buffer will work (e.g., buffers in a buffer pool).

\section*{Low-density Diskette Install Produces Incompatible Shutdown Command}

Some diskette installations will load a default boot image that is not compatible with the newest version of shutdown. This will cause an error when trying to use the shutdown command. An alternative to shutdown is the command:
detachdevice :sd: force
Any boot images created after installation will not exhibit this problem upon shutdown.

\section*{Delete_task or Suspend_task Deadlock Problem}

Deletion or suspension of an iRMX task that has a VM86 interrupt running in its context will cause a deadlock.

A deadlock will occur in the following scenario:
1. The current iRMX task (Task A) is interrupted by a DOS hardware interrupt.
2. An iRMX hardware interrupt (which could be the system clock interrupt) occurs before the DOS interrupt handler completes. This situation causes a task switch to iRMX Task B that leaves Task A ready but not running.
3. Task B deletes or suspends Task A.

To avoid this problem, do not use suspend_task except to suspend the calling task. The preferred method of task synchronization is to use mailboxes, ports, regions, and semaphores.

See also: Mailboxes, Ports, Regions, and Semaphores, System Concepts

\section*{Configuration Requirements for PC Platforms}

Before you install the iRMX for Windows or iRMX for PCs software on the supported Intel OEM platforms, check this appendix for any configuration requirements.

This appendix lists the hardware configurations for each of the supported Intelmanufactured platforms. It also lists the jumpers and interrupt levels for each platform, and the configuration requirements of the various Multibus I terminal communications controllers supported by iRMX for Windows. Switch settings for the optional HOSTESS 550 Terminal Controller board are also listed.

\section*{\(\Leftrightarrow\) Note}

All jumper changes indicated in this appendix assume that the platform or board is jumpered to factory defaults before the indicated change.

These Intel-manufactured platforms are included:
- Intel OEM PC platforms with a PCL2(A) board or an EtherExpress board
- Multibus platforms including
- \(\quad\) SBC 386SX (Multibus I)
- SBC 386/PC-16 (Multibus II)
- SBC 486DX33/486DX66 (Multibus II)

See also: The hardware reference manual for your particular board.

\section*{Intel OEM PC Platforms With a PCL2(A) Board}

Table D-1 lists the jumpers for the PCL2(A) board.

Table D-1. Intel PCL2(A) Network Interface Adapter Board
\begin{tabular}{|ll|}
\hline Network Interface Adapter & Jumper Changes For Networking \\
\hline PCL2(A) NIA & \\
I/O Port 360H & Install E2-E3 \\
\begin{tabular}{l}
Interrupt IRQ2 \\
(iRMX Int 21H)
\end{tabular} & Install E11-E12 \\
EtherExpress & No jumpers \\
\hline
\end{tabular}

See also: Interrupt management, System Concepts

\section*{SBC 386SX Platform}

Table D-2 lists the boards that can be used in an SBC 386SX platform.
Table D-2. SBC 386SX Platform
\begin{tabular}{|lll|}
\hline CPU Board & iRMX-encoded Interrupt & Jumper Changes For Networking \\
\hline SBC 386SX & 58 H & Install E35-E47 \\
& 23 H & Install E39-E51 \\
& & Remove E105-E106 \\
& & Insert SBX 351 into SBX socket J7 \\
& & Insert SBX 586 into SBX socket J8 \\
\hline
\end{tabular}

\section*{\(\Leftrightarrow\) Note}

If you are using an SBC 386SX with an SBX 586 networking board and you need to reset the system, always use a cold boot (power down and then power up the system) instead of using the <Ctrl-Alt-Del> sequence.
Serial communication board recommendations for the SBC 386SX platform are shown in Table D-3. Six pairs are listed; each pair consists of an interrupt level and jumpers for a controller board and a corresponding interrupt level and jumpers for the SBC 386SX board. In each pair, the Multibus interrupt on the controller board maps to the iRMX interrupt on the SBC 386SX board.

Table D-3. Controller Boards for SBC 386SX CPU Board
\begin{tabular}{|c|c|c|}
\hline Controller & Multibus INT iRMX INT & Jumper Changes Jumper Changes \\
\hline SBC 546/9 & Multibus INT3 maps to iRMX INT21H & \\
\hline SBC 547/8 (\#1) & Multibus INT2 maps to iRMX INT22H & E24-E25 Install E50-E59 (wirewrap) \\
\hline SBC 547/8 (\#2) & Multibus INT4 maps to iRMX INT 27H & E23-E24 Install E54-E61 (wirewrap) \\
\hline SBC 188/48/56 (\#1) & Multibus INT3 maps to iRMX INT21H & E9-E344, E335-E336, E339 open Install E49-E60 (wirewrap) \\
\hline SBC 188/48/56 (\#2) & Multibus INT2 maps to iRMX INT22H & E9-E345, E335-E336, E339 open Install E50-E59 (wirewrap) \\
\hline SBC 188/48/56 (\#3) & Multibus INT4 maps to iRMX INT 27H & E9-E343, E335-E336, E339 open Install E54-E61 (wirewrap) \\
\hline
\end{tabular}

\section*{SBC 486DX33 and 486DX66 Platforms}

Table D-4 lists boards that can be used with SBC 486DX33 and 486DX66 platforms.

Table D-4. SBC 486DX33/486DX66 Platform
\begin{tabular}{|ll|}
\hline CPU Board & Jumper Changes \\
SBC 486DX33/486DX66 & None \\
\hline \multicolumn{2}{|l|}{ Peripheral Controller and Network Interface Adaptor Board } \\
SBC 486/133SE Single Board Computer & None \\
MIX 386/560 & None \\
MIX n86/020(A) with MIX 560 & None \\
SBC 186/530 & None \\
\hline Serial Controller Board & \\
Up to four SBC 186/410 & None \\
Up to four SBC 186/450 & None \\
MIX n86/020(A) with up to three MIX 450 & None \\
\hline
\end{tabular}

\section*{HOSTESS 550 Terminal Controller}
iRMX for Windows supports 4, 8, and 16 channel HOSTESS 550 terminal controller boards. Table D-5 lists the jumper changes for the HOSTESS 550 eight port terminal controller board in order to have an I/O address of 280 H and an interrupt level of 58 H .

See also: The board documentation for the 4 and 16 channel switch settings

Table D-5. HOSTESS 550 Terminal Controller
\begin{tabular}{|ll|}
\hline HOSTESS 550 Terminal Controller & Switch Settings \\
\hline Switch 1 & \(5,3,1\) OFF \\
& \(8,7,6,4,2\), ON \\
Switch 2 & \(8,7,6,4,3,2,1\) OFF \\
& 5 ON \\
\hline
\end{tabular}

\section*{Digiboard Asynchronous Communications Boards}

Table D-6 lists supported Digiboard terminal controllers.
See also: The Digiboard manual for your board
Table D-6. Digiboard Switch Settings
\begin{tabular}{|ll|}
\hline Digiboard & Switch Settings \\
\hline DigiBoard Digichannel PC/4 & Refer to the Digiboard manual \\
DigiBoard Digichannel PC/8 & with each Digiboard \\
DigiBoard Digichannel PC/16 & \\
\hline
\end{tabular}

\section*{Changing Memory Size During the iRMX III OS Installation}

\section*{Changing the Memory Size}

When you install over a previous iRMX OS release and you use old definition files, the size of the operating system may increase beyond the amount of memory configured for it. If so, you will receive this error message:
```

ERROR 192: NO SPACE FOR SEGMENT - BASE NOT SET

```

This example shows how to increase the memory size for the operating system by 8000 H bytes.

\section*{\(\Leftrightarrow\) Note}

The example in this appendix uses a specific definition file, p90s.bck. This example is appropriate for systems whose I/O Server board is an SBC P5090 board. If your system has a different processor board, substitute every reference in the definition file with the appropriate os_name. The current directory :home:os_name is assumed. (See the Generating a Default Operating System step in either Chapter 4 or 5.)
1. Examine the segment map portion of the builder's map file, \(/ m s a 32 / b o o t / p 90 s . m p 2\). If a segment's base is not set, it will have a string of dashes instead of a physical address. To determine how much space you require, add up the segment lengths. The example uses 8000 H .
2. Invoke the ICU:
- icu386 p90s.bck <CR>

See also: ICU User's Guide and Quick Reference for complete instructions on using the ICU and a list of definition files provided with the OS
3. Display the MEMS screen.
4. Add 8000 H to the high address.
5. Display the MEMF screen.
6. Add 8000 H to the low address.
7. Generate the system.
8. Save the changes made to the definition file and exit the ICU.

\section*{Hardware Modifications for the iRMX III OS Installation}

This appendix contains tables of jumper configurations for your hardware so it can run the iRMX III OS (as defined by the ICU definition files). Each table lists all the changes you need to make to a particular processor board.

See also: The hardware reference manual for each board; standard definition files, ICU User's Guide and Quick Reference

\section*{How To Use This Appendix}

To use the information in this appendix, follow these steps:
1. Locate the section that describes your board:
a. Processor Boards
b. Peripheral Controller Boards
c. Communications and I/O Controller Boards
d. Network Controller Boards
e. Non-Intel Controller Boards
2. Remove the jumpers listed in the Remove Jumper column of the jumpering table.
3. Install the jumpers listed in the Install Jumper column.
4. Make the changes to the switch settings listed in the switch table if your board has switches. The changes to switch settings are listed in a separate table for each board.
5. Install any required components.

\section*{\(\Leftrightarrow\) Note}

The jumpering changes in this appendix describe the modifications that must be made to the factory-installed jumpers; not the default jumper configuration. Refer to the individual board's hardware reference manual for a list of the factoryinstalled jumpers.

\section*{Multibus I CPU Boards}

This section lists the hardware modifications for these Intel Multibus I CPU boards:
SBC 386/12
SBC 386/12S
SBC 386/2x/3x
SBC 486/12S

\section*{SBC 386/12 CPU Board}

No jumpering changes are required to run the iRMX III OS. This board supports a range of memory devices.

See also: The board's hardware reference manual for details on how to select memory types

You must use the standard definition files for the SBC 386/12 board as a starting point for building a custom version of the operating system to run on the SBC 386/12 board. These definition files select only the MSC device driver. They do not support SCSI peripherals.

\section*{SBC 386/12S CPU Board}

\section*{\(\Leftrightarrow\) Note}

This release of the OS requires that you install firmware version V1.6, X127 or later on an SBC 386/12S board. A version of firmware that works with these SBCs is included on the Multibus Firmware diskette. Only install this firmware if it is newer than the firmware currently on your SBC.

When you boot the OS, this message may appear:
```

Break at xxxx:yyyyyyyy

```

If this occurs, enter \(g<C R>\) to boot the system. To avoid this error message, allow the firmware memory tests to complete after a system reset or power-up.

No jumpering changes are required to run the iRMX III OS. This board supports a range of EPROM devices. Refer to the board's hardware reference manual for details on how to select the EPROM type.

You can use the standard definition files 38612S.bck and 38612Snet.bck as a starting point for building a custom version of the operating system to run on the

SBC 386/12S board. These definition files select both the SCSI device driver and the MSC device driver (for ST506 and ESDI peripherals).

\section*{SBC 386/2x/3x CPU Boards}

There are minimum changes to the default jumpers required to execute the iRMX III OS. After making the changes, you can run the iRMX III Start-up System for System 320 Microcomputers.

See also: The board's hardware reference manual for details on how to select memory types

This release of the iRMX III OS provides preconfigured EPROM images containing board diagnostics, the SDM monitor, and the iRMX Bootstrap Loader for this board.

You can use the standard definition files for the SBC 386/2x/3x boards as a starting point for building a custom version of the operating system.

Table F-1 SBC 386/2x/3x CPU Boards
\begin{tabular}{|lll|}
\hline Function & Remove Jumper & Description \\
\hline Numeric Coprocessor & E11-E12 & \begin{tabular}{l}
Remove this jumper when installing \\
the Intel387
\end{tabular} \\
\hline
\end{tabular}

\section*{SBC 486/12S CPU Board}
\(\Leftrightarrow\) Note
This release of the OS requires that you install firmware version V1.6, X127 or later on an SBC 386/12S board. A version of firmware that works with these SBCs is included on the Multibus Firmware diskette. Only install this firmware if it is newer than the firmware currently on your SBC.

When you boot the OS, this message may appear:
Break at xxxx:yyyyyyyy
- -

If this occurs, enter \(\mathrm{g}<\mathrm{CR}>\) to boot the system. To avoid this error message, allow the firmware memory tests to complete after a system reset or power-up.

No jumpering changes are required. This board supports a range of EPROM devices. Refer to the board's hardware reference manual for details on how to select the EPROM type.

You can use the standard definition files 48612S.bck and 48612Snet.bck as a starting point for building a custom version of the operating system to run on the SBC 486/12S board. These definition files select both the SCSI device driver and the MSC device driver (for ST506 and ESDI peripherals).

You can use the standard definition files 48612.bck, 48612net.bck, and \(48612 r s d . b c k\) as a starting point for building a custom version of the operating system to run on the SBC 486/12S board. These definition files select only the MSC device driver.

\section*{Multibus II CPU Boards}

This section lists the hardware modifications for these Intel Multibus II CPU boards:

MIX 486? X33 (where ? is either S or D)
MIX 486DX66
MIX \(n 86 / 020 \mathrm{~A}\) (where \(n\) is either 3 or 4)
SBC 486/133SE
SBC 486/166SE

\section*{MIX 486?X33, MIX 486DX66, and MIX n86/020A CPU Boards}

This section describes the minimum changes to the default jumpers. The jumpering is described in Table F-2.

You can use the standard definition files for the MIX486?x33, MIX 486DX66 and MIX n86/020a boards as a starting point for building a custom version of the OS.

Table F-2. MIX 486?X33, MIX 486DX66, and MIX n86/020A CPU Boards
\begin{tabular}{|llll|}
\hline & & \multicolumn{2}{c|}{\begin{tabular}{c}
MIX Board
\end{tabular}} \\
Function & Description & \begin{tabular}{l}
486?X33 and 486DX66 \\
(Jumper Block 2)
\end{tabular} & n86/020A \\
\hline Bus arbitration mode & \begin{tabular}{l}
Explicit \\
Implicit (default)
\end{tabular} & J13-14 & E2-E3 \\
& Enhanced implicit & J14-16 & E1-E2 \\
\hline
\end{tabular}

The OS images generated from \(486020 a^{*} . b c k\) files are not bootable on the MIX 386/020(A) processor boards, since \(486020 a^{*}\). bck files include support for the numeric-coprocessor.

In the \(386020 a^{*} . b c k, 486020 a^{*} . b c k\), and mix4.bck files provided, the MPC duty cycle parameters (MCO, MCT, and MDC) in the MBII screen are set assuming the default bus arbitration mode of Implicit Mode. This mode is selected as the default arbitration mode for backward compatibility with the MIX 386/020 board. On the MIX 386/020A, MIX 486/020A, MIX 486SX33, MIX 486DX33, and MIX 486DX66 boards, the Enhance Implicit mode provides greater performance.

To select Enhanced Implicit mode on the MIX 386/020A and MIX 486/020A boards, change jumper E2-E3 to E1-E2, and change the MPC duty cycle parameters for the \(386020 a^{*}\).bck and the \(486020 a^{*}\).bck files to one of the Enhanced Implicit Mode values from Table F-3 (select one of \(40 \%\) or \(80 \%\) local bus bandwidth, depending on your application). For completeness, the Implicit Mode values are also provided.

Table F-3. Bus Arbitration Mode Selection for the MIX 386/020A, and 486/020A Boards
\begin{tabular}{|llll|}
\hline \begin{tabular}{l}
Bus Arbitration \\
Mode
\end{tabular} & DMA Mode & \begin{tabular}{l}
Percent Local \\
Bus Bandwidth
\end{tabular} & \begin{tabular}{l}
Duty Cycle \\
Parameter
\end{tabular} \\
\hline Implicit & One Cycle (MCO) & 50 & 4 FH \\
& Two Cycle (MCT) & 50 & 94 H \\
& Burst (MDC) & 50 & 4 BH \\
Implicit & One Cycle (MCO) & 25 & 55 H \\
& Two Cycle (MCT) & 25 & 94 H \\
& Burst (MDC) & 25 & 50 H \\
Enhanced Implicit & One Cycle (MCO) & 85 & 1 CH \\
& Two Cycle (MCT) & 85 & 8 AH \\
& Burst (MDC) & 85 & 17 H \\
Enhanced Implicit & One Cycle (MCO) & 40 & 4 CH \\
& Two Cycle (MCT) & 40 & 8 CH \\
& Burst (MDC) & 40 & 49 H \\
\hline
\end{tabular}

To select Enhanced Implicit mode on the MIX 486SX33, MIX 486DX33, and the MIX 486DX66 boards, change jumper J13-J14 to J14-J16 on jumper block J2, and change the MPC duty cycle parameters for the mix4.bck file to one of the Enhanced Implicit Mode values from Table F-4. For completeness, the Implicit Mode values are also provided.

Table F-4. Bus Arbitration Mode Selection for the MIX 486SX33, 486DX33, and 486DX66 Boards
\begin{tabular}{|llll|}
\hline \begin{tabular}{l}
Bus Arbitration \\
Mode
\end{tabular} & DMA Mode & \begin{tabular}{l}
Percent Local \\
Bus Bandwidth
\end{tabular} & \begin{tabular}{l}
Duty Cycle \\
Parameter
\end{tabular} \\
\hline Implicit & One Cycle (MCO) & 50 & 52 H \\
& Two Cycle (MCT) & 50 & 97 H \\
& Burst (MDC) & 50 & 4 AH \\
Enhanced Implicit & One Cycle (MCO) & 85 & 4 AH \\
& Two Cycle (MCT) & 85 & 8 HH \\
& Burst (MDC) & 85 & 12 H \\
\hline
\end{tabular}

See also: MIX 386/020A and MIX 486/020A Baseboard User's Guide for further explanation of these bus arbitration modes and duty cycles.

\section*{SBC 486/166SE and 486/133SE CPU Boards}

This section describes the minimum changes to the default jumpers. The jumpering is described in Table F-5.

On some Maxtor SCSI hard drives, scanning does not detect SCSI Logical Units (LUNs) on a SCSI bus. Changing jumpers on the SBC 486/133SE and SBC 486/166SE boards overcomes this by scanning for SCSI LUN 0.

Table F-5. SBC 486/166SE and SBC 486/133SE CPU Boards
\begin{tabular}{|ll|}
\hline Function & Install Jumper \\
\hline Detect SCSI logical units on a SCSI bus & E54-E58 \\
\hline
\end{tabular}

\section*{SBC 386/258(D) Boards}

This section describes the minimum changes to the default jumpers. The jumpering is described in Table F-6.

On some Maxtor SCSI hard drives, scanning does not detect SCSI Logical Units (LUNs) on a SCSI bus. Changing jumpers on the SBC 386/258 and SBC 386/258D boards overcomes this by scanning for SCSI LUN 0 .

Table F-6. SBC 386/258(D) Boards
\begin{tabular}{|ll|}
\hline Function & Install Jumpers \\
\hline Detect SCSI logical units on a SCSI bus & E20-E21 \\
& E28-E29 \\
\hline
\end{tabular}

\section*{Peripheral Controller Boards}

This section lists the hardware modifications you must make to these Intel Multibus I and SBX bus peripheral controllers:

Multibus I
SBC 208
SBC 214
SBC 215G
SBC 220
SBC 221

\section*{SBX Bus}

SBX 217C
SBX 218A

\section*{SBC 208 Flexible Diskette Controller}

The SBC 208 board can control either 5.25 -inch or 8 -inch flexible diskette drives. The drives support either single-sided or double-sided diskettes. In its default configuration, the SBC 208 board controls 8-inch diskette drives.

Table F-7. SBC 208 Board Jumper Changes
\begin{tabular}{|llll|}
\hline Function & \begin{tabular}{l}
Remove \\
Jumper
\end{tabular} & \begin{tabular}{l}
Install \\
Jumper
\end{tabular} & Description \\
\hline Interrupt Level Selection & & E79-E85 & SBC 208 to Multibus INT4 \\
\hline I/O Address Size Decoding & E45-E49 & E41-E45 & Selects 16 bit address decoding \\
\hline \begin{tabular}{l}
I/O Controller Address \\
Selection
\end{tabular} & E48-E52 & E44-E48 & Selects port address 180H \\
\hline Multibus Priority Selection & & & Default selects serial priority \\
& E77-E78 & & Selects parallel priority \\
\hline 5.25-inch Drive Selection & E18-E19 & E4-E5 & Selects 5.25-inch diskette drive \\
& & E6-E11 & \\
& E21-E22 & E17-E22 & \begin{tabular}{l}
Change these two jumpers if the \\
5.25-inch drive you are using is \\
single-sided
\end{tabular} \\
\hline
\end{tabular}

\section*{SBC 214 Peripheral Controller}

The SBC 214 board controls 5.25-inch ST506 style hard disks, diskette, and tape drives. The board does not support 8 -inch devices.

Table F-8. SBC 214 Board Jumper Changes
\begin{tabular}{|llll|}
\hline Function & \begin{tabular}{l}
Remove \\
Jumper
\end{tabular} & \begin{tabular}{l}
Install \\
Jumper
\end{tabular} & Description \\
\hline Multibus Priority Selection & no change & no change & \begin{tabular}{l}
Default setting selects \\
parallel priority
\end{tabular} \\
& E101-E102 & \begin{tabular}{l}
E100-E101 \\
E95-E96
\end{tabular} & Selects serial priority \\
\hline
\end{tabular}

\section*{SBC 215G Hard Disk Controller}

The SBC 215G board controls 5.25 -inch or 8-inch ST506 hard disks. You must modify the default configuration to support any type of ST506 hard disks. The jumpering changes for mounting the SBX 217C Tape Controller module on the SBC 215G board assume that the SBX 218A is also mounted on the SBC 215G board.

\section*{\(\Leftrightarrow\) Note}

If this is not how you are configuring your SBC 215G board, you must refer to the hardware reference manual for additional jumpering instructions.

Table F-9. SBC 215G Board Jumper Changes
\begin{tabular}{|llll|}
\hline Function & \begin{tabular}{l}
Remove \\
Jumper
\end{tabular} & \begin{tabular}{l}
Install \\
Jumper
\end{tabular} & Description \\
\hline Interrupt Level Selection & & & \begin{tabular}{l}
The default configuration \\
connects the SBC 215G \\
interrupt to Multibus INT5
\end{tabular} \\
\hline I/O Address Size Decoding & & W30, 2-19 & Selects 16-bit addressing \\
\hline Multibus Priority Selection & W28, 1-2 & & Selects parallel priority \\
& W23, 1-2 & W23, 2-3 & Selects serial priority \\
\hline 5.25-inch Drive Selection & W1, 1-2 & W1, 2-3 & Selects 5.25-inch hard disk \\
& W2, 1-2 & & drives \\
& W5, 1-2 & W5, 2-3 & \\
& W6, 1-2 & W6, 2-3 & \\
& W7, 1-2 & W7, 2-3 & \\
& W8, 1-2 & W8, 2-3 & \\
& W13, 2-3 & W9, 1-2 & \\
& W14, 1-3 & W14, 1-2 & \\
& W15, 1-2 & & \\
& W16, 1-3 & W16, 1-2 & \\
& W22, 1-3 & W22, 1-2 & \\
& W33, 1-3 & W27, 1-2 & \\
& W34, 1-2 & W37, 1-2 & \\
& W35, 1-2 & W38, 1-2 & \\
\hline
\end{tabular}
continued

Table F-9. SBC 215G Board Jumper Changes (continued)
\begin{tabular}{|c|c|c|c|}
\hline Function & Remove Jumper & Install Jumper & Description \\
\hline \multirow[t]{10}{*}{8-inch Drive Selection} & W9, 1-2 & & Selects 8-inch Priam, model 3450-10, hard disk drives \\
\hline & W10-1-2 & & \\
\hline & W17, 1-2 & & \\
\hline & W22, 1-3 & W22, 1-2 & \\
\hline & W26, 1-2 & & \\
\hline & W27, 1-2 & & \\
\hline & W28, 1-2 & & \\
\hline & W33, 1-3 & W33, 1-2 & \\
\hline & W34, 1-2 & W37, 1-2 & \\
\hline & W35, 1-2 & W38, 1-2 & \\
\hline \multirow[t]{2}{*}{SBX 218A Installation} & & W24, 1-2 & Selects an SBX 218A module installed in SBX1 connector J4 \\
\hline & & W4, 1-2 & Selects an SBX 218A module installed in SBX1 connector J4 \\
\hline \multirow[t]{2}{*}{SBX 217C Installation} & W3, 1-2 & & Selects an SBX 217C module installed in SBX2 connector J3 \\
\hline & & W24, 1-2 & Selects modules installed in both SBX1 and SBX2 connectors \\
\hline Power connect & & W20, 1-2 & Connects \(\pm 12\) volts from the Multibus to the SBC 215G \\
\hline
\end{tabular}

\section*{SBC 220 SMD Disk Controller}

There are two versions of the SBC 220 board. One is configured by changing switch settings. The other is configured by changing jumpers. Both are described below.

Table F-10. SBC 220 Board Jumper Changes
\begin{tabular}{|c|c|c|c|}
\hline Function & Remove Jumper & Install Jumper & Description \\
\hline \multirow[t]{3}{*}{Select port address Select address decoding} & & E15-E16 & \multirow[t]{2}{*}{Selects port address 120H} \\
\hline & & E19-E20 & \\
\hline & & E17-E18 & Selects a 16-bit bus and 16 -bit address decoding \\
\hline Set Interrupt Level & W4-C - W4-5 & W4-C - W4-2 & Connect Multibus Interrupt level 2 \\
\hline \multicolumn{4}{|c|}{Switch Settings for the SBC 220 Board} \\
\hline \multicolumn{2}{|l|}{Switch Setting} & \multicolumn{2}{|r|}{Description} \\
\hline \[
\begin{array}{ccc}
\text { SW1, } & 1-7 & \text { OFF } \\
8 & \text { ON }
\end{array}
\] & & & Selects Port address 120H \\
\hline 2 ON & & & Selects a 16 -bit bus and 16 -bit address decoding \\
\hline 3-4 OFF & & & Selects Port Address 120H \\
\hline 5
\(6-10 ~ O F F\) & & & \\
\hline
\end{tabular}

\section*{SBC 221 Peripheral Controller}

The SBC 221 board controls 5.25-inch ST506 and ESDI-type hard disks, flexible diskettes (including high density 1.2 MByte diskettes), and tape devices. It does not support 8 -inch devices. No jumper changes are required.

\section*{SBX 217C Cartridge Tape Controller}

You can mount the SBX 217C module on the SBC 215G board and use it to control \(1 / 4\)-inch cartridge tapes. The iRMX III OS does not support use of the SBX 217C module in any other mode.

Table F-11. SBX 217C Module Jumper Changes
\begin{tabular}{|llll|}
\hline Function & \begin{tabular}{l}
Remove \\
Jumper
\end{tabular} & \begin{tabular}{l}
Install \\
Jumper
\end{tabular} & Description \\
\hline Configure the SBC 217C & E37-E38 & E88-E95 & Use a wire-wrap wire to \\
& E87-E88 & E95-E96 & connect these jumper posts. \\
\hline
\end{tabular}

\section*{SBX 218A Flexible Diskette Controller}

The SBX 218A module controls either 5.25-inch or 8-inch flexible disk drives. The board can be mounted on an SBC 215G board. The BIOS device driver for the SBC 215G board controls the SBX 218A module in this configuration. The default jumpering for the SBX 218A module allows it to be mounted in the SBX1 connector (J4) of the SBC 215G board. This configuration controls 5.25-inch drives.

Table F-12. SBX 218A Module Jumper Changes
\begin{tabular}{|c|c|c|c|}
\hline Function & Remove Jumper & Install Jumper & Description \\
\hline 8-inch Drive & E5-E8 & E1-E2 & \multirow[t]{15}{*}{Make these changes to the jumpers on the SBX 218A when mounting it on the SBC 215G to control 8-inch drives} \\
\hline Selection & E6-E7 & E7-E8 & \\
\hline & E9-E10 & E11-E12 & \\
\hline & E11-E14 & E13-E14 & \\
\hline & E16-E17 & E17-E18 & \\
\hline & E21-E23 & E21-E22 & \\
\hline & E24-E25 & E25-E26 & \\
\hline & E28-E29 & E27-E28 & \\
\hline & E31-E32 & E30-E31 & \\
\hline & E43-E44 & E42-E43 & \\
\hline & E56-E57 & E55-E56 & \\
\hline & E58-E59 & E59-E60 & \\
\hline & E61-E62 & E62-E63 & \\
\hline & E64-E65 & & \\
\hline & E68-E69 & E69-E70 & \\
\hline
\end{tabular}

\section*{Communications and I/O Controller Boards}

This section lists the hardware modifications you must make to these Intel Multibus I, Multibus II, and SBX bus communications and I/O controller boards:

\section*{Multibus I}

SBC 534
SBC/SXM 544A
SBC 546
SBC 547
SBC 548
SBC 549
SBC 188/48 SBC 188/56

SBX Bus
SBX 350
SBX 351
SBX 354
SBX 279A

Multibus II
SBC 186/410

\section*{SBC 186/410 Serial Communications Controller}

This SBC 186/410 Multibus II serial communications controller supports up to six serial I/O interfaces simultaneously. The six serial I/O interfaces are configured as two terminal devices and four interfaces that use the IBM implementation of RS-232C. No jumper changes are required.

\section*{SBC 534 Four Channel Communications Expansion Board}

The SBC 534 board controls up to four RS-232C serial channels when the iRMX III OS is configured with the SBC 534 device driver. As shipped, the DIP header sockets on the SBC 534 board do not have a header. You must construct a header, using the instructions below, to connect a terminal to a serial channel on the SBC 534 board using a mass-terminated ribbon cable.

Table F-13. SBC 534 Board Configuration Information
\begin{tabular}{|llll|}
\hline Function & \begin{tabular}{l}
Remove \\
Jumper
\end{tabular} & \begin{tabular}{l}
Install \\
Jumper
\end{tabular} & Description \\
\hline Interrupt Level Selection & E132-E140 & E130-E137 & SBC 534 interrupt to Multibus \\
& E131-E140 & E131-E138 & INT3 \\
\hline I/O Controller Address Selection & E118-E125 & E123-E126 & Selects port address 30H \\
\hline
\end{tabular}

To construct a header to insert in the serial port's 18 pin header socket (W1, W2, W3, or W4), you must either solder wires on a solder-style header or insert wires into a pin-and-socket-style header. Connect the header pins as follows:
```

DIP Header pin Description/Function
4-5 Board DSR to Board DTR
6-7 Board RTS to Board CTS
8-10 Board RxD to Terminal TxD
9-11 Board TxD to Terminal RxD
12-13 Terminal RTS to Terminal CTS
14-15 Terminal DSR to Terminal DTR

```

\section*{SBC/SXM 544A Communications Controller}

The SBC 544A board controls up to four RS-232C serial channels when the iRMX III OS is configured with the SBC 544A device driver. The SXM 544A is a preconfigured version of the SBC 544A.

As shipped, the DIP header sockets on the SBC 544A board do not have a header. You must construct a header, using the instructions that follow Table F-14, to connect a terminal to a serial channel on the SBC 544A board using a massterminated ribbon cable.

If you use the SXM 544A kit, no changes are required. If you use the SBC 544A board, you must:
1. Program the SBC 544A PROMs with the file /rmx386/proms/xf544
2. Install the PROMs
3. Jumper the board
4. Install the headers

Table F-14. SBC 544A Board Jumper Changes
\begin{tabular}{|llll|}
\hline Function & \begin{tabular}{l}
Remove \\
Jumper
\end{tabular} & \begin{tabular}{l}
Install \\
Jumper
\end{tabular} & Description \\
\hline Interrupt Level Selection & E80-E83 & E80-E85 & SBC 544A Multibus INT3 \\
\hline I/O Controller Address & E40-E41 & E41-E42 & Selects 2732A EPROMs \\
Selection & E45-E46 & E51-E108 & Selects base address 0E000H \\
& & E53-E54 & for dual-port RAM \\
& & E55-E56 & \\
& & E57-E58 & \\
& & E59-E60 & \\
& & E63-E62 & \\
& & E65-E66 & \\
\hline
\end{tabular}

To construct a header to insert in the serial port's 18 pin header socket (W1, W2, W3, or W4), you must either solder wires on a solder-style header or insert wires into a pin-and-socket-style header. Connect the header pins as follows:

DIP Header pin Description / Function
2-3 Board DSR to Board DTR
4-5 Board RTS to Board CTS
6-12 Board RxD to Terminal TxD
7-13 Board TxD to Terminal RxD
14-15 Terminal RTS to Terminal CTS
16-17 Terminal DSR to Terminal DTR
If the terminal being used requires a DSR signal but does not provide a DTR signal for loopback purposes, the DIP header connections should be modified as follows:

DIP Header pin Description / Function
15-16
Board DSR to Board DTR
3-17
Board DSR to Terminal DTR
4-5
6-12
Board RTS to Board CTS
Board RxD to Terminal TxD
7-13 Board TxD to Terminal RxD
14-15
Terminal RTS to Terminal CTS

\section*{SBC 546 Terminal Controller Board}

The SBC 546 board is a four-channel serial I/O board that controls up to four terminals. It also has a Centronics-compatible line printer port and a clock calendar on it. The line printer is accessed as if it were a serial channel. After
attaching the channel using the attachdevice command, use the iRMX copy command to copy a text file to the line printer.

The clock calendar is referred to as a Global Clock in iRMX OS documentation. It is battery-powered and, when jumpered correctly, runs regardless of whether power is applied to the system. When the iRMX III OS is configured to use the Global Clock on the SBC 546 board, the BIOS attaches it and the HI reads it (during initialization) to set the local time-of-day clock.

See also: attachdevice, Command Reference
Table F-15. SBC 546 Board Jumper Changes
\begin{tabular}{|lll|}
\hline Function & Install Jumper & Description \\
\hline Enable Battery & E30-E31 & Enables the battery-backup for the Global Clock \\
\hline
\end{tabular}

\section*{SBC 547 Terminal Controller Board}

The SBC 547 board is an eight channel serial I/O board that controls up to eight terminals. The standard definition files for the SBC 386/2x/3x boards support up to three SBC 547 boards, plus one SBC 546 installed at the same time. No jumper changes are required.

\section*{SBC 548 Terminal Controller Board}

The SBC 548 board is an eight channel serial I/O board that controls up to eight terminals. No jumper changes are required.

\section*{SBC 549 Terminal Controller Board}

The SBC 549 board is a four-channel serial I/O board that controls up to four terminals. It also has a Centronics-compatible line printer port and a clock calendar on it. The line printer is accessed as if it were a serial channel. After attaching the channel using the attachdevice command, use the iRMX III copy command to copy a text file to the line printer.

The clock calendar is referred to as a Global Clock in the iRMX III OS documentation. It is battery-powered and, when jumpered correctly, runs regardless of whether power is applied to the system. When the iRMX III OS is configured to use the Global Clock on the SBC 549 board, the BIOS attaches it and the HI reads it (during initialization) to set the local time-of-day clock.

See also: attachdevice, copy, Command Reference
Table F-16. SBC 549 Board Jumper Changes
\begin{tabular}{|lll|}
\hline Function & Install Jumper & Description \\
\hline Enable Battery & E30-E31 & Enables the battery-backup for the Global Clock \\
\hline
\end{tabular}

\section*{SBC 188/48 and SBC 188/56 Communications Boards}

The SBC 188/48 and SBC 188/56 communications boards control up to eight RS-232C serial channels when the iRMX III OS is configured with the TCC driver. The SBC 188/48 and 188/56 communications boards are configured for data terminal equipment (DTE) operation. This requires a null-modem cable to connect a terminal to the board. A null-modem cable swaps the receive data and transmit data signals (pins 2 and 3). To use a mass terminated ribbon cable to connect the SBX to a terminal, you must jumper the communication boards for data communications equipment (DCE) operation. If you received your SBC 188/48 or SBC 188/56 board as part of a System 300 Series Microcomputer, the conversion from DTE to DCE is already done. The jumpering instructions for both board configurations are described in Table F-17.

Table F-17. SBC 188/48 and SBC 188/56 Board Jumper Changes
\begin{tabular}{|c|c|c|c|}
\hline Function & Remove Jumper & Install Jumper & Description \\
\hline Interrupt selection & \[
\begin{aligned}
& \text { E251-E252 } \\
& \text { E335-E336 }
\end{aligned}
\] & \begin{tabular}{l}
E259-E274 \\
E276-E335
\end{tabular} & \begin{tabular}{l}
Disconnects PIC level 0 interrupt source. \\
Disconnects PIC level 4 interrupt source. \\
Connects SBX1 MINT0 to PIC level 0 . Make this change if you are installing an SBX 354 module in SBX1. \\
Connects SBX2 MINT0 to PIC level 0.
\end{tabular} \\
\hline Channel 0 DCE & \begin{tabular}{l}
E202-E204 \\
E203-E205 \\
E206-E208 \\
E207-E209 \\
E210-E212 \\
E211-E213 \\
E214-E216 \\
E217-E219
\end{tabular} & \begin{tabular}{l}
E190-E191 \\
E192-E193 \\
E194-E195 \\
E202-E203 \\
E204-E205 \\
E206-E207 \\
E208-E209 \\
E210-E211 \\
E212-E213 \\
E214-E215 \\
E218-E219
\end{tabular} & Configure Channel 0 for DCE operation. \\
\hline Channel 1 DCE & \begin{tabular}{l}
E172-E174 \\
E173-E175 \\
E176-E178 \\
E177-E179 \\
E180-E182 \\
E181-E183 \\
E184-E186 \\
E187-E189
\end{tabular} & \begin{tabular}{l}
E161-E162 \\
E166-E167 \\
E170-E171 \\
E172-E173 \\
E174-E175 \\
E176-E177 \\
E178-E179 \\
E180-E181 \\
E182-E183 \\
E184-E185 \\
E188-E189
\end{tabular} & Configure Channel 1 for DCE operation. \\
\hline
\end{tabular}
continued

Table F-17. SBC 188/48 and SBC 188/56 Board Jumper Changes (continued)
\begin{tabular}{|c|c|c|c|}
\hline Function & Remove Jumper & Install Jumper & Description \\
\hline Channel 2 DCE & \begin{tabular}{l}
E140-E142 \\
E141-E143 \\
E144-E146 \\
E145-E147 \\
E148-E150 \\
E149-E151 \\
E152-E154 \\
E155-E157
\end{tabular} & \begin{tabular}{l}
E111-E112 \\
E113-E114 \\
E140-E141 \\
E142-E143 \\
E144-E145 \\
E146-E147 \\
E148-E149 \\
E150-E151 \\
E152-E153 \\
E156-E157
\end{tabular} & Configure Channel 2 for DCE operation. \\
\hline Channel 3 DCE & \begin{tabular}{l}
E119-E121 \\
E120-E122 \\
E123-E125 \\
E124-E126 \\
E127-E129 \\
E128-E130 \\
E131-E133 \\
E134-E136
\end{tabular} & E115-E116 E117-E118 E119-E120 E121-E122 E123-E124 E125-E126 E127-E128 E129-E130 E131-E132 E135-E136 & Configure Channel 3 for DCE operation. \\
\hline Channel 4 DCE & \begin{tabular}{l}
E88-E90 \\
E89-E91 \\
E92-E94 \\
E93-E95 \\
E96-E98 \\
E97-E99 \\
E100-E102 \\
E103-E105
\end{tabular} & \begin{tabular}{l}
E61-E62 \\
E63-E64 \\
E88-E89 \\
E90-E91 \\
E92-E93 \\
E94-E95 \\
E96-E97 \\
E98-E99 \\
E100-E101 \\
E104-E105
\end{tabular} & Configure Channel 4 for DCE operation. \\
\hline
\end{tabular}
continued

Table F-17. SBC 188/48 and SBC 188/56 Board Jumper Changes (continued)
\begin{tabular}{|c|c|c|c|}
\hline Function & Remove Jumper & Install Jumper & Description \\
\hline Channel 5 DCE & \[
\begin{aligned}
& \text { E67-E69 } \\
& \text { E68-E70 } \\
& \text { E71-E73 } \\
& \text { E72-E74 } \\
& \text { E75-E77 } \\
& \text { E76-E78 } \\
& \text { E79-E81 } \\
& \text { E82-E84 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { E59-E60 } \\
& \text { E65-E66 } \\
& \text { E67-E68 } \\
& \text { E69-E70 } \\
& \text { E71-E72 } \\
& \text { E73-E74 } \\
& \text { E75-E76 } \\
& \text { E77-E78 } \\
& \text { E79-E80 } \\
& \text { E83-E84 }
\end{aligned}
\] & Configure Channel 5 for DCE operation. \\
\hline Channel 6 DCE & \[
\begin{aligned}
& \text { E38-E40 } \\
& \text { E39-E41 } \\
& \text { E42-E44 } \\
& \text { E43-E45 } \\
& \text { E46-E48 } \\
& \text { E47-E49 } \\
& \text { E50-E52 } \\
& \text { E53-E55 }
\end{aligned}
\] & \begin{tabular}{l}
E1-E2 \\
E3-E4 \\
E38-E39 \\
E40-E41 \\
E42-E43 \\
E44-E45 \\
E46-E47 \\
E48-E49 \\
E50-E51 \\
E54-E55
\end{tabular} & \\
\hline Channel 7 DCE & \[
\begin{aligned}
& \text { E17-E19 } \\
& \text { E18-E20 } \\
& \text { E21-E23 } \\
& \text { E22-E24 } \\
& \text { E25-E27 } \\
& \text { E26-E28 } \\
& \text { E29-E31 } \\
& \text { E32-E34 }
\end{aligned}
\] & \begin{tabular}{l}
E5-E6 \\
E7-E8 \\
E17-E18 \\
E19-E20 \\
E21-E22 \\
E23-E24 \\
E25-E26 \\
E27-E28 \\
E29-E30 \\
E33-E34
\end{tabular} & Configure Channel 7 for DCE operation. \\
\hline
\end{tabular}

\section*{SBX 351 Serial I/O Module}

The SBX 351 module controls one RS-232C serial channel when the iRMX III OS includes the 8251A device driver. As shipped, the SBX 351 module is configured for DTE operation. This requires a null-modem cable to connect a terminal to the module. A null-modem cable swaps the receive data and transmit data signals (pins 2 and 3). To use a mass-terminated ribbon cable to connect the module to a terminal, you must jumper the module for DCE operation.

To mount the SBX 351 module on a processor board, you must:
- Jumper the processor board to route the interrupt signal from the SBX connector MINTR0 pin (receive interrupt) to the appropriate interrupt of the PIC.
- Jumper the processor board to route the interrupt signal from the SBX connector MINTR1 pin (transmitter interrupt) to the appropriate interrupt of the PIC.

Table F-18. SBX 351 Module Jumper Changes
\begin{tabular}{|lll|}
\hline Function & Install Jumper & Description \\
\hline Interrupt Level Selection & E33-E34 & Connects 8251A RXRDY to MINTR0 \\
& E35-E36 & Connects 8251A TXRDY to MINTR1 \\
\hline
\end{tabular}

To construct a header to insert in the serial port's 18 pin header socket, U6, you must either solder wires on a solder-style header or insert wires into a pin-andsocket style header. Connect the header pins as follows:

\section*{DIP Header pin Description/Function}

3-13 Board RxD to Terminal TxD
4-14 Board TxD to Terminal RxD
5-6 Board RTS to Board CTS
7-8 Board DSR to Board DTR
9-10 Terminal DSR to Terminal DTR
11-12 Terminal RTS to Terminal CTS

\section*{SBX 354 Serial I/O Module}

The SBX 354 module controls two RS-232C serial channels when the iRMX III OS includes the 82530 device driver. As shipped, the SBX 354 module is configured for DTE operation. This requires a null-modem cable to connect a terminal to the module. A null-modem cable swaps the receive data and transmit data signals (pins 2 and 3). To use a mass-terminated ribbon cable to connect the module to a terminal, you must jumper the module for DCE operation.

To mount the SBX 354 module on a processor board, you must jumper the processor board to route the interrupt signal from the SBX connector MINTR0 pin (receive interrupt) to the appropriate interrupt of the PIC.

Table F-19. SBX 354 Module Jumper Changes
\begin{tabular}{|c|c|c|c|}
\hline Function & Remove Jumper & Install Jumper & Description \\
\hline \multirow[t]{10}{*}{Channel A:} & & E13-E14 & Connects DSR to +5 volts \\
\hline & & \[
\begin{aligned}
& \text { E9-E10 } \\
& \text { E19-E20 }
\end{aligned}
\] & Selects DCE configuration \\
\hline & E27-E29 & E27-E28 & \\
\hline & E28-E30 & E29-E30 & \\
\hline & E31-E33 & E31-E32 & \\
\hline & E32-E34 & E33-E34 & \\
\hline & E35-E37 & E35-E36 & \\
\hline & E36-E38 & E37-E38 & \\
\hline & E40-E42 & E39-E40 & \\
\hline & E41-E43 & E43-E44 & \\
\hline \multirow[t]{10}{*}{Channel B:} & & E15-E16 & Connects DSR to +5 volts \\
\hline & & \[
\begin{aligned}
& \mathrm{E} 11-\mathrm{E} 12 \\
& \mathrm{E} 17-\mathrm{E} 18
\end{aligned}
\] & Selects DCE configuration \\
\hline & E45-E47 & E45-E46 & \\
\hline & E46-E48 & E47-E48 & \\
\hline & E49-E51 & E49-E50 & \\
\hline & E50-E52 & E51-E52 & \\
\hline & E53-E55 & E53-E54 & \\
\hline & E54-E56 & E55-E56 & \\
\hline & E58-E60 & E57-E58 & \\
\hline & E59-E61 & E61-E62 & \\
\hline
\end{tabular}

\section*{SBX 279A Graphics Module}

The SBX 279A module controls a color graphics monitor, serial mouse, and an IBM PC/AT-compatible keyboard. To mount the module on a processor board, you must jumper the processor board to route the interrupt signal from the SBX connector MINTR0 pin to the appropriate input of the PIC. The PIC level is ICUconfigurable. The submit file \(/ r m x 386 / r g i / a d d 279 . c s d\) assists you in configuring the device driver. The device driver is compatible with both the SBX 279 and SBX 279A boards. No changes are required to the standard jumpering. Refer to the module's hardware reference manual for more information.

\section*{SBX 350 Parallel I/O Module}

The SBX 350 module controls a Centronics interface line printer. To mount the SBX 350 module on a processor board, jumper the processor board to route the interrupt signal from the SBX connector MINTR0 pin to the appropriate PIC input for the SBX 350 line printer driver.

Table F-20. SBX 350 Module Jumper Changes
\begin{tabular}{|llll|}
\hline Function & \begin{tabular}{l}
Remove \\
Jumper
\end{tabular} & \begin{tabular}{l}
Install \\
Jumper
\end{tabular} & Description \\
\hline INTA & E13-E14 & E13-E18 & Connect INTA (PC3) toMINTR0 \\
PC7 & E25-E26 & \\
\hline & & SBX 350 IC Sockets \\
\hline Socket Number & IC Type & Description \\
\hline U3 & SBC 902 & 1K Pullup Terminator Pack \\
U4 & 7438 & Open Collector Line Driver \\
U5 & SBC 902 & 1K Pullup Terminator Pack \\
U6 & SBC 902 & 1K Pullup Terminator Pack \\
\hline
\end{tabular}

If you use the parallel port for the line printer, configure the printer interface connector to the Centronics interface standard as shown in Table F-21. You can use any line printer that recognizes the Centronics signal/pin standard.

Table F-21. Line Printer Pin Assignments
\begin{tabular}{|cccl|}
\hline \begin{tabular}{c}
50-Pin \\
Cable \\
Connector \(\mathbf{1}^{2}\)
\end{tabular} & \begin{tabular}{c}
50-Pin \\
SBX Edge \\
Connector \(^{2}\)
\end{tabular} & \begin{tabular}{c}
30-Pin \\
Connector
\end{tabular} & \multicolumn{1}{c|}{ Centronics-Standard Signal } \\
\hline 24 & 23 & 1 & Character strobe to printer \\
26 & 25 & 13 & SLCT (Select) \\
28 & 27 & 12 & Paper Out \\
30 & 29 & 10 & Acknowledge from printer \\
34 & 33 & 9 & Data Bit 7 \\
36 & 35 & 8 & Data Bit 6 \\
38 & 37 & 7 & Data Bit 5 \\
40 & 39 & 6 & Data Bit 4 \\
42 & 41 & 5 & Data Bit 3 \\
44 & 43 & 4 & Data Bit 2 \\
46 & 45 & 3 & Data Bit 1 \\
48 & 47 & 2 & Data Bit 0 \\
\hline
\end{tabular}
\({ }^{1}\) All odd-numbered pin numbers are connected to ground.
\({ }^{2}\) All even-numbered pins are connected to ground.
\({ }^{3}\) On the Centronics LP connector pin 16 is signal ground and pin 17 is chassis ground.

\section*{Networking Controller Boards}

This section describes how to jumper these Intel network controller boards:
- SBX 586 network controller
- SXM 552A Ethernet communication engine

\section*{SBX 586 Network Controller}

The SBX 586 module provides access to a LAN. No jumpering is required on the module. The iRMX III OS supports the SBX 586 mounted on the SBC 386/12, \(386 / 12\), and \(486 / 12 \mathrm{~S}\) boards. This configuration is a COMMputer configuration.
See also: i*.job, System Configuration and Administration

The hardware configuration of the processor board required to use the SBX 586 module is:
- The SBX 586 module must be mounted on the SBX1 (80H) connector.
- The MINTR0 from the SBX 586 is connected to interrupt level 3 of the slave PIC connected to interrupt level 7 of the master PIC (encoded level 73H).
- Timer 2 of the on-board 8254 timer at port address D0H is connected to interrupt level 4 of the slave PIC connected to interrupt level 7 of the master PIC (encoded level 74H).
- 16-bit width of SBX Bus I/O.

See also: The hardware reference manual for your processor board for the specific jumper numbers

\section*{SXM 552A Ethernet Communication Engine}

The SXM 552A Ethernet communication engine is a front-end processor for all Multibus systems. The intelligent controller is driven by the 82586 LAN coprocessor and supports an IEEE 802.3 network. The LAN controller executes iNA 960 software, which is in a COMMengine environment.

When you specify a COMMengine configuration, the OS uses these parameters:
- The Multibus interrupt line INT4 is used by the SXM 552A Ethernet communication engine.
- Interrupt level 48 H (master level 4) of the 8259A programmable interrupt controller (PIC), on the processor board, is connected to Multibus INT4.
- Port address 8B4H is used for the SXM 552A Ethernet communication engine wakeup port.
- Memory addresses 1040 H and 1088 H are used for the start of the SXM 552A data queues.
- Multibus parallel priority bus resolution is used.

The IEEE 802.3 transceivers power up and power down without causing noise on the coaxial cable; therefore, the transceiver may be connected to or disconnected from a LAN communications controller board at any time.
See also: The appropriate hardware installation manual for specific directions on removal and replacement of boards in the system; i*.job, System Configuration and Administration

\section*{Modifications to Non-Intel Controller Boards}

These sections contain tables that you need to jumper some non-Intel controller boards. The jumpering changes cover only the changes that must be made to the factory-installed jumpers. If your board has been used in another application, refer to the controller board's installation guide and jumper your board as it was originally jumpered. Then proceed with the modifications described in the tables.

The controller boards are:
- Adaptec 1542A Intelligent Host Adapter (SCSI)
- Comptrol Hostess 550 Serial Controller
- NCR ADP-20

\section*{Adaptec 1542A Intelligent Host Adapter (SCSI)}

The Adaptec 1542A Intelligent Host Adapter (SCSI) can be used on PC bus platforms with the iRMX III OS to control SCSI flexible diskette drives, tape drives, or hard disk drives. The jumper configurations in Table F-22 make this controller compatible with the SCSI devices in these ICU definition files:

Board
Adaptec 1542A

\section*{Definition File}
pc.bck
pcnet.bck
pccprsd.bck
pccp.bck

Table F-22. Adaptec 1542A Jumper Connections
\begin{tabular}{|llll|}
\hline\(J-1,8\) & \(J-1,11\) & \(J-6,1\) & \(J-7,1\) \\
\(J-11,1\) & \(J-14,2\) & \(J-15,2\) & \(J-16,3\) \\
\hline
\end{tabular}

SCSI ID Used for
0,1 floppies
2, 3, 4, 5 hard disks
6

\section*{Comptrol Hostess 550 Serial Controller}

The iRMX III OS supports 4, 8, and 16 channel HOSTESS 550 terminal controller boards. The Comptrol Hostess 550 Serial Controller is an 8 channel serial communications board. To be compatible with the default ICU definition files for PC Bus systems (base I/O address of 280 H and an interrupt level of 5 (58H)), change the switch settings on the Comptrol Hostess 550 board.

See also: The board documentation for the 4 and 16 channel switch settings

Table F-23. HOSTESS 550 Terminal Controller
\begin{tabular}{|ll|}
\hline HOSTESS 550 Terminal Controller & Switch Settings \\
\hline Switch 1 & \(5,3,1\) OFF \\
& \(8,7,6,4,2\), ON \\
Switch 2 & \(8,7,6,4,3,2,1\) OFF \\
& 5 ON \\
\hline
\end{tabular}

\section*{NCR ADP-20 Flexible Disk Controller}

The NCR ADP-20 is a high-performance, general-purpose flexible disk drive controller for 3.5 -inch or 5.25 -inch drives. The controller provides a high-level interface between the SCSI bus and the SA-400 drive interface. The switch settings on the NCR ADP-20 flexible disk controller need to be changed to the settings in Table F-24. On a high-density TEAC drive, ensure the RY, I, and U1 jumpers are installed.

Table F-24. NCR ADP-20 Flexible Diskette Switch Settings
\begin{tabular}{|lll|}
\hline \multicolumn{2}{|c|}{ Switch Setting } & \multicolumn{1}{c|}{ Switch Setting } \\
\hline 8 Position Switch & 1-2 OFF & Selects 1 drive present \\
& \(3-4\) OFF & Power-up diagnostic options \\
& 5 OFF & Selects SCSI ID 0 \\
& \(6-8\) OFF & Ignore SCSI parity \\
\hline 4 Position Switch & \(1-3\) ON & Not user selective \\
& 4 OFF & Must be off \\
\hline
\end{tabular}

\section*{DigiBoard DigiCHANNEL PC/4, PC/8, and PC/16 Controllers}

The DigiBoard PC/4, PC/8, and PC/16 boards are 4-channel, 8-channel, and 16-channel, respectively, serial communications boards. Each PC/X board contains jumpers and/or switches that set the I/O addresses of the board's status register and each asynchronous communication element (ACE). An ACE is one serial channel; if it is a PC/4 board, there will be four serial channels (ACE chips) on it.

See also: pcxdrv.job, System Configuration and Administration
In every case except the second \(\mathrm{PC} / 16\) board, the hardware board number must be set to 0 . If you have a second PC/16 board, use the jumpers to set its hardware board number to 1 .

Table F-25. PC/4 I/O Addresses
\begin{tabular}{|llllll|}
\hline Board & Status Port & Port 0 & Port 1 & Port 2 & Port 3 \\
\hline 0 & 188 & 130 & 138 & 140 & 148 \\
\hline 1 & 288 & 150 & 158 & 160 & 168 \\
\hline 2 & 208 & \(1 B 0\) & 1B8 & 1C0 & 1C8 \\
\hline 3 & 308 & 1D0 & 1D8 & 1E0 & 1E8 \\
\hline
\end{tabular}

Table F-26. PC/8 I/O Addresses
\begin{tabular}{|llllllllll|}
\hline & \multicolumn{8}{c|}{ Ports } \\
Board & Status Port & \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) \\
\hline 0 & 188 & 130 & 138 & 140 & 148 & 150 & 158 & 160 & 168 \\
\hline 1 & 288 & 1 B 0 & 1 B 8 & 1 C 0 & 1 C 8 & 1 DO & 1 D 8 & 1 E 0 & 1 E 8 \\
\hline 2 & 208 & 230 & 238 & 240 & 248 & 250 & 258 & 260 & 268 \\
\hline 3 & 308 & 2 B 0 & 2 B 8 & 2 C 0 & 2 C 8 & 2 D 0 & 2 D 8 & 2 E 0 & 2 EE 8 \\
\hline
\end{tabular}

\section*{18 Note}

The PC/16 board uses PAL chips to set addresses instead of address switches. When ordering the PC/16 board, specify a board number of 0 or 1 and if you want the PICK OS PAL chips.
These are available from Digiboard. Consult your PC/16 hardware reference manual for more information.

\section*{Error Messages}

Since the iRMX OS installation procedures cover different situations such as installing the operating system on a newly formatted disk or installing over a previous release, it is possible that you will receive error messages during installation. The error messages might appear in a log file or at the console terminal. This type of error message is generally a non-fatal message.

There are mistakes you might make in the installation that generate a fatal error message, such as attempting to install software while not logged on as Super. This type of error requires that you correct the situation and restart the installation.

\section*{Non-Fatal Error Messages}

Many error messages are for information only, and do not reflect an installation failure. Such messages can be ignored. Some typical error messages and their causes are:
file_name, file does not exist
This error may appear multiple times in the log file.
0021: E\$FILE_NOT_EXIST, during submit execution
This error may be displayed on the screen when the submit file terminates.
The error messages above can occur because the current installation uses the convention of naming a previous version to ..._old. The errors listed above are generated if a file to be renamed is not found, because it was not originally installed.
```

directory, file already exists

```

This error message can occur when installation software attempts to create a directory that already exists.
file does not exist no files found
This error message can occur when installation software attempts to assign access rights to a file that does not exist.

\section*{Fatal Error Messages}

Some error messages state that the error is fatal, which means you cannot proceed with the operation you are doing. You can easily correct some fatal errors.

\section*{Handling Fatal Error Messages from the Tinstall Command}
1. If you receive a fatal error message after issuing a tinstall command, stop the submit file by pressing;
<Ctrl-C>
If an error occurs, an error message is displayed, but the submit file does not stop. It continues executing the series of commands. The <Ctrl-C> stops the submit file so you can investigate the problem. It may be several minutes before you see a prompt on the screen, because the tape completely rewinds before the prompt appears.
2. Detach the tape drive by entering:
```

dd :in_tape: <CR>

```
3. Correct the fault. The most likely problem is that you are not logged on as the system manager, Super. If this is the case, enter:
```

Login: super <CR>
Password: passme <CR>

```
4. Enter the tinstall command again.

\section*{Handling Fatal Error Messages from the Install Command}
1. If you receive a fatal error message after issuing an install command, stop the execution of the submit file by pressing;
```

<Ctrl-C>

```

If an error occurs, an error message is displayed, but the submit file does not stop. It continues executing the series of commands. The <Ctrl-C> stops the submit file so you can investigate the problem.
2. Detach the diskette drive by entering:
```

dd :f: <CR>

```
3. Correct the fault.

If the error was caused by inserting the diskette incorrectly, re-insert the diskette.

If you are not logged on as the system manager (Super), enter:
```

Login: super <CR>
Password: passme <CR>

```
4. Enter the install command again.
" character, 154
\$ character, 154
\& character, 154
' character, 154
/ character, 154

\section*{A}
alias command, 66, 98
alias.csd file, 66, 83, 84, 98, 118
<Alt +>, 133, 145
<Alt ->, 133, 145, 146
<Alt-Sys Req>, 132
application and customized O/S development option, 37, 54
application Bulletin Board System (BBS), 26
attachdevice command, 41
diskette drive attachment, 161
switching diskettes, 161
with physical device name, 160
autoexec.bat file, 39
autoexec.new file
changes, 39
editing, 39
renaming, 40

\section*{B}
backup command, 130
bell warning, 153
BIOS, and automatic device recognition, 162
board diagnostics
MBI, 62
MBII, 93
boot file, 57
boot system, creating the
MBI, 81
MBII, 115
bootdos command, 144
booting
DOS, iRMX for PCs, 144
iRMX for Windows, 129
iRMX, iRMX for PCs, 143
scenarios, 142
bootrmx command, 143
Bootstrap Loader, 57
bootstrap parameter, 113

\section*{C}

CDF file, 120
characters, special, 154
CLI (Command Line Interpreter)
function keys, 154
prompt, 153
sign-on message, 152
special characters, 154
clock interrupt handler, 187
clock rate, different, 186
cold reset, 134
colors, changing console, 133, 145
command line interpreter, see CLI
comment character for commands, 154
communicating with devices, 160
CompuServe INTELC forum, 25
concatenating files, 158
config.new file
changes, 39
editing, 39
renaming, 40
config.sys file, 39, 131
configuration files, 85, 119
configuring
devices, 160
DOS, 125
memory size, 199
connections, device, 161
console color change, 133, 146
console command, 133, 146
contents, package, 17
continuation character for commands, 154
controller boards
MBI, 21, 60
MBII, 22, 90
copy command, 81
appending to files, 158
example, \(81,115,155,156,158\)
copying files, 156
CPU boards
MBI, 21
MBII, 22
<CR> key, 154
creating files, 155
<Ctrl-A> keys, 154
<Ctrl-Alt-Break>, 134, 146
<Ctrl-Alt-Del>, 134, 146
<Ctrl-C> keys, 154, 156
<Ctrl-F> keys, 154
<Ctrl-Q> keys, 156
<Ctrl-S> keys, 156
<Ctrl-T> keys, 156
<Ctrl-W> keys, 156
<Ctrl-X> keys, 154
cursor-movement keys, 153, 154
customer support, 17, 23
customer support offerings, 23, 25
customizing the operating system, 128, 142

\section*{D}
date format, 66, 97
deadlock problems, 194
debug registers, 188
debuggers, 188
default
alias.csd file, 84
file structure, 173
password for Super, 73
r?init file, 86
user, 152
 key, 154
<DelCh> key, 154
delete command, 159
deleting files, 159
deleting iRMX during install, 38, 55
<DelL> key, 154
<DelR> key, 154
detachdevice command, 137
diskette drive detachment, 161
switching diskettes, 161
development capabilities, choosing, 37, 54
development environment choices, 34
development tools, choosing, 38, 54
device name, 41
devices
adding new types, 160
communication with, 160
disks, 160
loadable drivers, 160
ram disk, 160
tapes, 160, 161
terminals, 160
dir command, 137
directories
default structure, 173
home, 78,152
renaming, 71, 103, 104
\rmx386\demolwterm, 139
\windows\rmx, 139
disabling interrupts, 187
disk partitions
attaching DOS, 138
attaching iRMX, 138
choosing between DOS or iRMX, 55
DOS, 35, 49
for iRMX-hosted environments, 35, 50
for pure DOS/Windows-hosted environments, 35,49
installing iRMX for PCs on, 51,56
iRMX, 35, 50
iRMX for Windows copy from DOS to iRMX partition, 40, 42
pros and cons for DOS and iRMX, 46
diskettes
accessing DOS, 137
attaching and detaching, 161
attaching DOS, 137
changing iRMX-formatted, 137
detaching an iRMX, 137
granularity, 161
switching, caution, 161
disks
backing up iRMX hard disk, 130
communication with, 160
device types, 160
format options, iRMX for PCs install, 52
format options, iRMX for Windows install, 42
formatting, iRMX III install (MBI), 70
formatting, iRMX III install (MBII), 102
displaying files, 156
documentation, shipped, 18
<Down-Arrow> key, 154
DOS commands needed to install iRMX for PCs, 48
DOS/Windows-hosted environment, 34, 37, 54
dosrmx boot file, 57, 129
drive selection, 38,55
dynamic terminals, logging on with, 152

\section*{E}

EDOS file driver limitations, 191
EMM386.EXE file, 125
EMS page frame, 126
end-of-file mark, 155
<Esc> key, 154
exit command, 82, 116
expanded memory
compatibility, 40
limitation, 186
provided by himem.job, 125
system map, 126
extended memory
limitation, 40, 186
manager, 125

\section*{F}
fdisk command (DOS), \(35,36,49,50\)
features, new for release, 177
features.txt file, 19, 35, 47
files
appending to, 158
default structure, 173
renaming, 159
files per disk, 99
fnodes, 42, 52
format command (DOS), 35, 36, 49, 50
format command (iRMX), 41
formatting disks, see disks
free disk space requirement
iRMX for PCs install, 45
iRMX for Windows install, 33
iRMX III on MBI install, 60
iRMX III on MBII install, 90
function keys, table of, 154

\section*{G}
g command, 134, 146
General Protection error, 134, 146
go command, 63
Graphics mode, 133, 146

\section*{H}
hard disks supported, 67
hard drive preparation
iRMX for PCs install, 47, 49, 50
iRMX for Windows install, 35
hardware interrupt levels, reserved, 188
hardware requirements
iRMX for PCs install, 45
iRMX for Windows install, 33
help
commands, online, 162
manuals, online, 163
hidden file, 189
high memory area, 125
HMA memory, 125
<Home> key, 154
HOSTESS 550 Terminal Controller, 198
hot keys
<Alt +>, 133, 145
<Alt ->, 133, 145, 146
<Alt-Sys Req>, 132
<Ctrl-Alt-Break>, 133, 146
<Ctrl-Alt-Del>, 134, 146
iRMX for PCs, 145
iRMX for Windows, 132

\section*{I}

I/O server boards, Multibus II, 22
icons, setting up for online help
(Windows), 163
ICU, 75, 110, 199
iNA 960
network interface type, choosing, 38, 55
NIC, choosing, 38, 55
remote COMMengine, choosing, 39, 55
incorporations administrator, 30
install command, 52
install procedure
choosing, 20
iRMX for PCs, see Chapter 3
iRMX for Windows, see Chapter 2
iRMX III on MBI, see Chapter 4
iRMX III on MBI with non-SCSI boards, 75
iRMX III on MBII, see Chapter 5
installation media
iRMX for PCs install, 47
iRMX for Windows install, 35
installrmx command, 42
INT instruction, 186
Intel Above Board, 186
INTELC forum, 28
interrupts
disabling, 187
handler software, 186
reserved levels (hardware), 188
Windows and DOS, 187
invisible attribute, DOS, 189
invisible files, 189
iRMX for PCs, 17
software installation, see Chapter 3
iRMX for Windows, 17
software installation, see Chapter 2
iRMX hard disk, see disks and disk partitions
iRMX III, 17
installing on MBI with non-SCSI boards, 75
software installation, see Chapters 4 and 5
iRMX network name, choosing, 39, 56
iRMX-hosted environment, 34, 37, 54
iRUG, 28

\section*{J}
jobs
himem.job, 125
interactive, 153
POSIX, 136
smw.job, 126
TCP/IP, 136

\section*{K}
keys, hot, see hot keys

\section*{L}
last cylinder, 190
<Left-Arrow> key, 154
licensing information, 23, 29
limitations
EDOS file driver, 191
iRMX for Windows, area-specific, 185
iRMX for Windows, general, 185
message passing, 193
task deletion or suspension, 194
line-editing keys, 153,154
loadable application development option, 37, 54
loadname command, 139
loadrmx command, 126, 129
logging off, 153
logoff command, 82, 116, 153
logoff file, 153
logon, 82, 116, 152
as World, 41
general procedure, 152
home directory, 152
iRMX for PCs, 145
iRMX for Windows, 132
user ID, 153
logon.msg file, 86, 121

\section*{M}
manuals, shipped, 18
master test handler, see MTH
memory
changing size, 199
expanded, see expanded memory
extended, see extended memory
used by iRMX, 126
used by Windows, 126
memory requirements
iRMX for PCs install, 45
iRMX for Windows install, 33
iRMX III on MBI install, 60
iRMX III on MBII install, 90
merging files, 85, 119
message passing limitations, 193
MIX 386/020, 22, 90
MIX 386/020A, 22, 90
MIX 486/020A, 22, 90
MIX 486DX33, 22, 90
MIX 486DX66, 22, 90
MIX 486SX33, 22, 90
mksys command, 77, 78, 111
mp command, 95
/msa/config/bps file, 108, 109
MTH (Master Test Handler)
boot phase invocation, 96
modify parameter command, 95
using the, 93
Multibus I
boards (non-PC), 21
software installation, see Chapter 4
Multibus II
boards, (non-PC), 22
software installation, see Chapter 5

\section*{N}
netrdr command, 53
network
choosing iRMX network name, 39, 56
connection, 136, 148
connections limitations, 187
iRMX-NET, 147
ISO protocols, 147
MIP jobs, 147
software, 147
DOS, 135
support, 134, 147
TCP/IP protocols, 147
new features, 177
non-SCSI boards, iRMX III on MBI install, 75

\section*{0}
offer command, 138
online help
commands, 162
manuals, 163
OS selection, 37, 54
OS versions, iRMX, 17
overwriting files with the iRMX OS, 157
overwriting iRMX during install, 38, 55

\section*{P}
package inventory, 17
parameters
bl_config_file, 96
bl_unit, 95
bootstrap, 95
files, 67
hardware-specific, 99
HI commands, 155
rq_sd, 95
partitions, see disk partitions
password, 116, 152
case-sensitive, 152
command, 82
PC-compatible boards, Multibus system, 20
per disk files, 67
physical device names, 160
physical files, 160
PIC, reprogramming, 186
platform, choosing, 38, 55
preserving files, 71, 103, 104
priority, DOS, 189
product registration, 19
program the timer, 186
prompt, CLI, 153
protected mode memory, 126
purpose of manual, 17

\section*{R}
r?init file, 86,121
r?logon file, \(74,83,106,117,152,153,175\), 176, 187
RAM disk, 160
rdisk command (iRMX), 41, 51
readme.txt file, \(19,35,47\)
real mode memory, 126
rebooting, \(40,58,134,146\)
rename command, example, 157, 159
reserved software interrupts, 188
reset CPU, 134, 146
restore command, 71
<Right-Arrow> key, 154
rmx.bat file, 41, 129
rmx.ini file, 128,142
rmx86.386 file, 81
rmxcall.hlp file, 163
rmxtsr command, 129
rmxwin command, 140
rnotes.txt file, 19, 35, 47
rundos command, 144
runrmx command, 143
run-time system, choosing, 37, 54

\section*{S}

SBC 208, 21, 60
SBC 214, 21, 60
SBC 214 board
booting from diskette with, 63, 64
interleave factor, 67
table of device names, 64
SBC 215G, 21, 60
SBC 215G board
booting from diskette with, 63, 64
interleave factor, 67
table of device names, 64
SBC 220, 21, 60
SBC 221 board
booting from diskette with, 63
interleave factor, 67
SBC 221(S), 21, 60
SBC 221(S) board
booting from diskette with, 64
table of device names, 64

SBC 386/12 CPU board boot file pathname, 77
generation directory, 77
SBC 386/12(S), 21, 60
SBC 386/120, 22, 90
SBC 386/12S CPU board
boot file pathname, 77
generation directory, 77
SBC 386/133, 22, 90
SBC 386/258, 22, 90
SBC 386/258D, 22, 90
SBC 386/2x, 21, 60
SBC 386/2x/3x CPU boards
boot file pathname, 77
generation directory, 77
SBC 386/3x, 21, 60
SBC 486/12 CPU board
boot file pathname, 77
generation directory, 77
SBC 486/12(S), 21, 60
SBC 486/125, 22, 90
SBC 486/12S CPU board
boot file pathname, 77
generation directory, 77
SBC 486/133SE, 22, 90
SBC 486/150, 22, 90
SBC 486/166SE, 22, 90
SBC 486DX33, 22, 90
SBC 486DX66, 22, 90
SBC P5090, 22, 90
example of changing memory size, 199
SBC P5090ISE, 22, 90
SBC P5120, 22, 90
SBC P5120ISE, 22, 90
screen saver, configuring the, 148
scrolling, 156
SCT (System Confidence Test), iRMX III on MBI install, 62
:sd:, 138
SDM, 62
in MB I board diagnostics, 62
SDM Debug Monitor, 133, 146, 148
serial device, accessing from DOS, 188
service and support, 23
service information, inside back cover
set command, 85,153
setname command, 139
sharing the system console, 132
shutdown command, 113, 140, 149
shutting down iRMX OS, 140, 149
sign-on message, 152
skim command, 78
Soft-Scope debugger, installation, 42
software interrupts reserved, 188
software package, contents, 17
software requirements
iRMX for PCs install, 46
iRMX for Windows install, 34
special characters, 154
standard granularity, description of, 161
standard mode windows, starting, 140
starting
iRMX for Windows, 129
standard mode Windows, 140
submit command, 67
super command, 82, 116
Super user, 80, 82, 83, 87, 116, 117, 152
support products, 18
Supported platforms
Intel-manufactured OEM Systems
PC platform with a PCL2(A)
board, 196
SBC 386SX platform, 196
SBC 486DX33 platform, 197
SBC 486DX66 platform, 197
sysload command, 125, 128, 142
system
cold reset, 134
console, change colors, 133
console, changing colors, 145
console, share, 132
console, toggle, 132
debug monitor, invoke, 133, 146
device, 138
system confidence test, see SCT
system device, using iRMX partition, 129
system requirements
iRMX III on MBI, 60

\section*{T}
tapes, device types for, 160, 161
TCP/IP support, choosing, 37, 54
termcap file, 74, 107, 153
terminal emulator program, 139
terminal types
1510E, 74, 107
1510T, 74, 107
ADM3A, 74, 107
AN, 107
ANY, 74
AT386, 74, 107
PC, 74, 107
QVT102, 74, 107
RGI, 74, 107
S120, 74, 107
TV910P, 74, 107
TV950, 74, 107
VT100, 74, 107
VT102, 74, 107
VT52, 74, 107
WYSE50, 74, 107
Zentec, 74, 107
terminals
attaching, 91
communication with, 160
definition file, 154
device types for, 160
scrolling display, 156
types, 74, 107
terminals file, 85, 120
time format, 66, 98
timer, 186
Toggle, system console, 132
tools and languages, 18
TSR programs, 186
turning power off, 140, 149

\section*{U}

UDF file, 82, 86, 120
UMB memory, 125
uniform granularity, description, 161
unpacking your package, 17
unsupported software, choosing, 38,54
<Up-Arrow> key, 154
upper memory blocks, 125
user files, 83, 117
user ID, logon display of, 153
user/world file, 82

\section*{users}
experienced, 167
new, 167
Super, 152
World, 152

\section*{V}
video requirements
iRMX for PCs install, 45
iRMX for Windows install, 33

\section*{W}
wildcards, copying files using, 157
Windows
memory used by, 126
running with iRMX, 125
World user, 72, 82, 116, 152
logging on, 41
WTERM
entering iRMX commands, 140
executable code, 139
exiting, 140
installing, 139
running, 140

\section*{WE'D LIKE YOUR OPINION}

Please rate the following:
- Manual organization
- Technical accuracy
- Completeness
- Clarity of concepts and wording
- Quality of examples and illustrations
- Overall ease of use

Comments: \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Please list any errors you found (include page number): \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Name \(\qquad\)
Company Name \(\qquad\)
Address \(\qquad\)

May we contact you? \(\qquad\) Phone \(\qquad\)
Thank you for taking the time to fill out this form.

\author{

}

Please fold here and close the card with tape. Do not staple.

\section*{WE'D LIKE YOUR COMMENTS....}

This document is one of a series describing Intel products. Your comments on the other side of this form will help us produce better manuals. Each reply will be reviewed. All comments and suggestions become the property of Intel Corporation.

If you are in the United States and are sending only this card, postage is prepaid.

If you are sending additional material or if you are outside the United States, please insert this card and any enclosures in an envelope. Send the envelope to the above address, adding "United States of America" if you are outside the United States.

Thanks for your comments.

\section*{International Sales Offices}

\section*{AUSTRALIA}

Intel Australia Pty. Ltd.
Unit 1A
2 Aquatic Drive
Frenchs Forest, NSW, 2086
Sydney

Intel Australia Pty. Ltd.
711 High Street
1st Floor
East Kw. Vic., 3102
Melbourne

\section*{BRAZIL}

Intel Semiconductores do Brazil LTDA
Avenida Paulista, 1159-CJS 404/405
CEP 01311-Sao Paulo - S.P.
CANADA
Intel Semiconductor of Canada, Ltd.
999 Canada Place
Suite 404, \#11
Vancouver V6C 3E2
British Columbia
Intel Semiconductor of Canada, Ltd.
2650 Queensview Drive
Suite 250
Ottawa K2B 8H6
Ontario
Intel Semiconductor of Canada, Ltd.
190 Attwell Drive
Suite 500
Rexdale M9W 6H8
Ontario
Intel Semiconductor of Canada, Ltd.
1 Rue Holiday
Suite 115
Tour East
Pt. Claire H9R 5N3
Quebec

\section*{CHINA/HONG KONG}

Intel PRC Corporation
China World Tower, Room 517-518
1 Jian Guo Men Wai Avenue
Beijing, 100004
Republic of China
Intel Semiconductor Ltd.
32/F Two Pacific Place
88 Queensway
Central
Hong Kong

\section*{FINLAND}

Intel Finland OY
Ruosilantie 2
00390 Helsinki

\section*{FRANCE}

Intel Corporation S.A.R.L.
1, Rue Edison-BP 303
78054 St. Quentin-en-Yvelines
Cedex

\section*{GERMANY}

Intel GmbH
Dornacher Strasse 1
85622 Feldkirchen bei Muenchen
Germany

\section*{INDIA}

Intel Asia Electronics, Inc.
4/2, Samrah Plaza
St. Mark's Road
Bangalore 560001

\section*{ISRAEL}

Intel Semiconductor Ltd.
Atidim Industrial Park-Neve Sharet
P.O. Box 43202

Tel-Aviv 61430

\section*{ITALY}

Intel Corporation Italia S.p.A. Milanofiori Palazzo E 20094 Assago Milano

\section*{JAPAN}

Intel Japan K.K.
5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26
Intel Japan K.K.
Hachioji ON Bldg.
4-7-14 Myojin-machi
Hachioji-shi, Tokyo 192
Intel Japan K.K.
Bldg. Kumagaya
2-69 Hon-cho
Kumagaya-shi, Saitama 360
Intel Japan K.K.
Kawa-asa Bldg.
2-11-5 Shin-Yokohama
Kohoku-ku, Yokohama-shi
Kanagawa, 222
Intel Japan K.K.
Ryokuchi-Eki Bldg.
2-4-1 Terauchi
Toyonaka-shi, Osaka 560
Intel Japan K.K.
Shinmaru Bldg.
1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100
Intel Japan K.K.
Green Bldg.
1-16-20 Nishiki
Naka-ku, Nagoya-shi
Aichi 460

\section*{KOREA}

Intel Korea, Ltd.
16th Floor, Life Bldg.
61 Yoido-dong, Youngdeungpo-
Ku
Seoul 150-010

\section*{MEXICO}

Intel Technologica de Mexico S.A. de C.V.

Av. Mexico No. 2798-9B, S.H. 44620 Guadalajara, Jal.,

NETHERLANDS
Intel Semiconductor B.V.
Postbus 84130
3009 CC Rotterdam

\section*{RUSSIA}

Intel Technologies, Inc.
Kremenchugskaya 6/7
121357 Moscow
SINGAPORE
Intel Singapore Technology, Ltd.
101 Thomson Road \#08-03/06
United Square
Singapore 1130

\section*{SPAIN}

Intel Iberia S.A.
Zurbaran, 28
28010 Madrid

\section*{SWEDEN}

Intel Sweden A.B.
Dalvagen 24
17136 Solna

\section*{TAIWAN}

Intel Technology Far East Ltd.
Taiwan Branch Office
8th Floor, No. 205
Bank Tower Bldg.
Tung Hua N. Road
Taipei

\section*{UNITED KINGDOM}

Intel Corporation (U.K.) Ltd.
Pipers Way
Swindon, Wiltshire SN3 1RJ

\section*{If you need to contact Intel Customer Support}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Contacting us is easy. Be sure that you have the following information available: \\
- Your phone and FAX numbers ready \\
- Complete description of your hardware or software configuration(s) \\
- Your product's product code \\
- Current version of all software you use \\
- Complete problem description
\end{tabular}} \\
\hline Type of Service & & How to contact us \\
\hline \begin{tabular}{l}
FaxBACK* \\
fax-on-demand system \\
24 hrs a day, 7 days a week
\end{tabular} & Using any touch-tone phone, have technical documents sent to your fax machine. Know your fax number before calling. & \begin{tabular}{ll}
U.S. and Canada: & \((800) 628-2283\) \\
& \((916) 356-3105\) \\
Europe: & \(+44-1793-496646\) \\
\hline
\end{tabular} \\
\hline \begin{tabular}{l}
Intel PC and LAN \\
Enhancement Support \\
BBS \\
24 hrs a day, 7 days a week
\end{tabular} & Information on products, documentation, software drivers, firmware upgrades, tools, presentations, troubleshooting. & \begin{tabular}{ll}
U.S and Canada: & \((503) 264-7999\) \\
Europe: & \(+44-1793-432955\) \\
\(\quad\) Autobaud detect \\
8 data bits, no parity, 1 stop
\end{tabular} \\
\hline \begin{tabular}{l}
CompuServe* Information Service \\
24 hrs a day, 7 days a week
\end{tabular} & Worldwide customer support: information and technical support for designers, engineers, and users of 32-bit iRMX® OS and Multibus product families. & \begin{tabular}{l}
Worldwide Locations: (check your local listing) \\
Type: GO INTELC once online.
\end{tabular} \\
\hline Customer Support & Intel Multibus Support engineers offering technical advice and troubleshooting information on the latest Multibus products. & \begin{tabular}{cc}
U.S. and Canada: & \((800) 257-5404\) \\
& \((503) 696-5025\) \\
FAX: & \((503) 681-8497\) \\
Hrs: M-F; 8-5 PST \\
Furope: & \(+44-1793-641469\) \\
FAX: & \(+44-1793-496385\) \\
Hrs: M-F; 9-5:30 GMT
\end{tabular} \\
\hline Hardware Repair & Multibus board and system repair. & \begin{tabular}{cc}
U.S. and Canada: & \((800) 628-8686\) \\
& \((602) 554-4904\) \\
FAX: & \((602) 554-6653\)
\end{tabular} \\
\hline Sales & Intel Sales engineers offering information on the latest iRMX and Multibus products and their availability. & \begin{tabular}{l}
Worldwide: Contact your local Intel office or distributor \\
U.S. and Canada: (800) 438-4769 \\
(503) 696-5025 \\
FAX: (503) 681-8497 \\
Hrs: M-F; 8-5 PST
\end{tabular} \\
\hline Correspondence Mail letters to: & \begin{tabular}{l}
Worldwide: \\
Intel Customer Support \\
Mailstop HF3-55 \\
5200 NE Elam Young Parkway \\
Hillsboro, Oregon 97124-6497
\end{tabular} & \begin{tabular}{l}
Europe: \\
European Application Support \\
Intel Corporation (UK) Ltd. \\
Pipers Way \\
Swindon, Wiltshire \\
England SN3 1RJ
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
* Third-party trademarks are the property of their respective owners.
}```

[^0]: ${ }^{1}$ OEM (Original Equipment Manufacturer): Someone who purchases products, integrates them, adds their own value, and then sells the integrated product to an end user.

